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 Abstract 
Transcript expression and pre-mRNA processing are emerging as 
important mechanisms that increase the complexity of eukaryotic 
transcriptomes. These processes allow a genomic locus to produce a 
number of mRNAs and proteins with distinct properties that affect function, 
stability, and sub-cellular localization by controlling the rate of transcript 
expression, by varying the initiation or termination of transcription and by 
modulating the inclusion of exons (alternative splicing) in mature mRNAs. 
Thus, it is crucial to determine the extent of these types of variations to 
better understand their importance in creating organism diversity. The 
studies described in this thesis provide the first genome-wide estimations 
of how single nucleotide polymorphisms (SNPs) affect the regulation of 
transcript expression and pre-mRNA processing in a human population as 
well as between humans and chimpanzees using a microarray-based 
approach.  We first demonstrated that transcript expression changes at 
the isoform level are common between two unrelated individuals and that 
these changes are heritable and therefore have an underlying genetic 
component. We then investigated what proportion was under genetic 
control in a normal human population by conducting a genome-wide 
association analysis between single nucleotide polymorphisms and 
transcript isoform variants. We found that 50-55% of transcript expression 
variation is isoform based. We also extended our comparison of human 
transcript isoform variation to chimpanzee. We showed that genetic 
substitutions in regulatory sequences are responsible for some of the 
isoform variations observed between these two closely related species. 
We ascertained that in our study these isoform variations are responsible 
for certain phenotypic differences mostly related to immune responses. 
These results constitute an important change in the way genetic variations 
are viewed in humans and chimpanzees and they highlight the need for 
broader investigation into these types of variation and how they affect 
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gene expression. In the last two chapters of this thesis we also provide 
solutions for some of the methodological and analysis issues we 
encountered because they could be of a great benefit to scientist 
conducting experiments with the Exon Array. 
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Résumé 
Le niveau d’expression d’un transcrit et les processus de maturation de 
celui-ci en ARN messager (ARNm) se révèlent être des mécanismes 
augmentant la complexité du transcriptome des eucaryotes. Ces 
processus permettent au même locus génomique de produire plusieurs 
ARNm et protéines ayant des propriétés distinctes qui affectent leurs 
fonctions, leur stabilité et leurs localisations intra cellulaire en contrôlant la 
vitesse de transcription, en variant le site d’initiation ou de terminaison de 
la transcription et en modulant l’inclusion d’exons (épissage) dans les 
ARNm matures. Il est donc primordial de déterminer l’ampleur de ces 
types de variations afin de mieux comprendre leur impact sur la diversite 
des oraganismes. Les études décrites dans cette thèse fournissent les 
premières estimations de la façon dont les variations de polymorphism 
nucléotidique simple (SNP) peuvent affecter la régulation de l’expression 
d’un transcrit et ses processus de maturation à l’échelle du génome entier. 
Ces processus sont examinés dans une population humaine et entre 
humain et chimpanzé en utilisant une méthode basée sur les puces à 
ADN. Nous démontrons d’abord l’existence d’un nombre important de 
variations d’isoformes d’ARNm entre deux individus non apparentés et 
nous démontrons que ces variations sont héritées ce qui leur révèle une 
composante génétique. Par la suite, nous avons déterminé quelle 
proportion et quel type de variation au niveau de l’isoform était sous 
contrôle génétique dans une population humaine. En réalisant une 
analyse d’association entre l’expression des transcrits du génome entier 
et les SNPs présents dans cette population, nous avons observé que 50-
55% de la variation était à l’échelle de l’isoforme du transcrit. Nous avons 
aussi étendu cette comparaison au chimpanzé en utilisant les profils 
d’expression mesurés lors de l’analyse précédente. Nous avons démontré 
que des substitutions dans certaines séquences qui régulent l’épissage 
étaient responsables de variations d’expression au niveau des isoforms 
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de transcrits entre ces deux espèces apparentées. Nous estimons que ce 
type de variation est responsable de certaines différences phénotypiques, 
plus précisément au niveau de certaines réponses immunitaires. 
Ensemble ces observations amènent un changement important dans 
notre compréhension du rôle de ces variations dans le contrôle de 
l’expression des gènes et elles soulignent l’importance de mener des 
recherches plus étendues sur ces types de variations ainsi que l’impact 
produit sur l’expression des gènes. De plus, les deux derniers chapitres 
décrivent diverses solutions que nous avons élaborées afin d’aider la 
communauté scientifique qui utilise le Exon Array.   
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Chapter 1 Introduction 
Preface 
Over the past two decades, sequencing and comparison of entire 
genomes from different species have changed our conception of organism 
complexity and diversity. The surprisingly low number of genes found 
throughout diverse eukaryotic organisms such as worm, mouse, 
chimpanzee and human suggests that an increase in biological complexity 
and diversity is achieved by other means (CHERRY et al. 1997; LANDER et 
al. 2001; THE C. ELEGANS SEQUENCING CONSORTIM 1998; THE CHIMPANZEE 

SEQUENCING AND ANALYSIS CONSORTIUM 2005; WATERSTON et al. 2002).  
 
Insight into this paradox was obtained when mRNA was defined as the 
intermediate between the genetic information contained in sections of 
DNA (genes) and the protein-synthesizing machinery. Research into its 
regulation has completely changed our view of how information flows in 
the cell (CRICK 1970). The concept of one promoter that controls one gene 
which is transcribed to one mRNA transcript no longer holds. In fact, a 
single genomic locus can produce multiple mRNA transcript isoforms with 
the use of alternative transcription initiation and termination as well as 
alternative pre-mRNA splicing. Processes such as alternative transcription 
initiation and termination modify the 5' and 3' ends of mRNA transcripts, 
respectively, while alternative splicing consists of the differential exclusion 
of exons within mRNA transcripts. Consequently, this can alter mRNA 
turnover, translation and sub-cellular localization (GRENS and SCHEFFLER 
1990; RUSSO et al. 2006; WANG et al. 2008) or create different protein 
domain combinations such as in the classical example of the Dscam gene 
(SCHMUCKER et al. 2000). Overall, it is estimated that 95% of mammalian 
genes encode for multiple transcript isoforms (PAN et al. 2008; WANG et al. 
2008). Thus, these processes further diversify eukaryotic transcriptomes 
and proteomes and have contributed to the evolution of organism 
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complexity. A cell can adapt to changing environments and states by 
tightly regulating transcription and pre-mRNA processing. In specialized 
tissues such as the brain, liver and testis, the frequency of alternative 
splicing is higher to accommodate their complex functions (JOHNSON et al. 
2003). Studying transcriptome variation is becoming increasingly 
important because of its contribution to phenotypic differences among 
individuals and its regulatory and functional relationship to disease. In fact, 
splicing defects can result in genetic disorders (FAUSTINO and COOPER 
2003) and in some cases confer susceptibility to complex diseases 
(reviewed in (COOPER et al. 2009; LUKONG et al. 2008; WANG and COOPER 
2007). Consequently, the study of transcriptome variation is important to a 
broad range of biomedical disciplines from evolutionary biology through 
development and to medicine.  
 
These transcriptome variations are routinely investigated using DNA 
microarrays. The typical microarray platform employs a large collection of 
probes that are designed to hybridize to specific targets, usually a 
fluorescently labelled nucleic acid sequence from a particular gene. The 
fluorescence emitted by the bound target to its probe is measured and 
compared between samples being investigated to identify variation in 
whole-transcript expression. More recently, advances in microarray design 
enabled the investigation of mRNA expression at the resolution of a single 
exon. The Affymetrix GeneChip® Human Exon 1.0 ST Array is the first 
commercially available microarray product designed for transcriptome-
wide exon level analysis. The array relies on targeting multiple probes to 
individual exons and allows exon-level detection of expression intensity for 
~1.4 million exons which theoretically covers the entire set of human 
exons. The complexity of this array design and the sheer magnitude of 
data generated per experiment have hindered the use of traditional 
analysis methods. Therefore, new statistical and data visualization 
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approaches are needed to adequately analyze expression data derived 
with the Human Exon Array. 
 
Hypothesis 
What is hypothesized in this thesis is that inter- and intra- genetic 
difference in humans and chimpanzees produce variable expression 
profiles of mRNA isoforms and that it is possible to adequately measure 
these types of variations using isoform sensitive microarrays. 
   
Outline 
This thesis consists of a literature review, five manuscripts and a 
discussion that together address the study of gene expression variation at 
the isoform level in humans and chimpanzees using the Affymetrix 
GeneChip® Human Exon 1.0 ST Array. The literature review summarizes 
the basic mechanisms of transcription and pre-mRNA processing, 
describes how these processes are regulated and explains some of their 
effects on organism phenotype and diversity. It also describes what tools 
are used to study gene expression and examines the typical analysis 
workflow of the Affymetrix GeneChip® Human Exon 1.0 ST Array. The 
third chapter is a pilot study that was performed to verify the efficacy of the 
Human Exon Array in detecting transcript isoform variations among two 
human individuals. This study demonstrated that the Human Exon array 
was capable of detecting transcript isoform differences that were caused 
by alternative transcript initiation, alternative splicing and alternative 
termination. A linkage analysis conducted on single nucleotide 
polymorphisms also showed that these types of isoform variations were 
heritable and therefore had an underlying genetic component. This 
prompted a second study that is described in the fourth chapter of this 
thesis. A genome-wide association analysis was conducted between 
single nucleotide polymorphisms and transcript isoform variants. It 
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demonstrated that expression variation at the isoform level was under 
genetic control and common in a natural population. It also investigates 
the relationship between genetic variations associated to certain splicing 
differences that cause disease phenotypes. The fifth chapter extends the 
comparison to the chimpanzee. It uses the expression profiles derived 
from the previous human population study and compares them to the 
expression profile derived from a chimpanzee lymphoblast cell line. It 
confirms that genetic substitutions in regulatory sequences are 
responsible for some of the isoform variations observed between these 
two closely related species. It also ascertains that these isoform variations 
are responsible for certain phenotypic differences mostly related to 
immune responses. The following two chapters (6 and 7) relate to the 
methodological issues involved in the analysis of the Human Exon Array 
because substantial time and effort was put into finding solutions to the 
different technical problems encountered during the analyses described in 
the last three chapters that could greatly benefit scientist conducting 
experiments with the Human Exon Array. The sixth chapter outlines 
problems encountered in the analysis of expression data generated with 
the Exon array. It also describes some of the statistical and technological 
problems encountered and proposes solutions to resolve them. The 
following seventh chapter continues on the technical theme of the 
preceding one. It describes how polymorphisms present in the probe-
target sequence affect hybridization. It shows that this effect is the main 
source of false positives in Exon Array experiments involving individuals of 
different genetic backgrounds and a simple solution is proposed to reduce 
the false positive rate that consists of removing misbehaving probes from 
the analysis. The last chapter (chapter 8) is a summary of the main results 
and a discussion of the future work that is needed to better comprehend 
the role of transcript expression variation in organisms.   
 



Chapter 2 Literature review  

Gene expression 
The central dogma of molecular biology states that genetic information is 
transferred in a sequential manner (Figure 2.1) and that each type of 
molecule (DNA, RNA and protein) is used as a template for the synthesis 
of another and is entirely dependant on the original molecule (CRICK 
1970). The general model (see full lines in Figure 2.1) describes the 
normal flow of information in cells; (1) the DNA copies itself through DNA 
replication, (2) genetic information is copied from the DNA to a RNA 
transcript via transcription and this RNA transcript is then (3) translated 
into a protein.  

 

 
Figure 2.1: The central dogma of molecular biology. Solid arrows show the 
general transfer of genetic information from DNA to RNA to protein that 
occurs in most cells. The dashed arrows show the special transfer of 
genetic information such as RNA to RNA that occurs occasionally in some 
RNA viruses (LEIS and HURWITZ 1972), DNA to protein transmission has 
been observed only in-vitro studies (MCCARTHY and HOLLAND 1965; 
UZAWA et al. 2002), protein to protein transmission is taught to occur in 
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prion replication (WEISSMANN 2004) and there is no evidence of protein to 
RNA or DNA. Figure modified from (CRICK 1970). 
 
Transcription 
Transcription plays a central role in this model (Figure 2.1) because it acts 
as a messenger between genetic information contained in sections of 
DNA (genes) and the protein-synthesizing machinery of the cell. In 
eukaryotes, transcription involves two main phases; the first is the 
transcription of a gene into a primary RNA transcript (pre-mRNA) that is 
divided into 5 stages: pre-initiation, initiation, promoter clearance, 
elongation and termination. The second phase is the processing of this 
primary transcript (pre-mRNA) into a mature messenger RNA (mRNA) in a 
3 step process that consists of 5'-capping, splicing and polyadenylation. 
 
Chromatin remodelling 
The first step in gene transcription is called pre-initiation. This is where the 
gene promoter is exposed by the remodelling of chromatin. Chromatin is 
formed of proteins that serve as scaffold onto which DNA is packaged. 
DNA is wrapped around histone proteins (an H3-H4 tetramer flanked by 
two H2A-H2B dimmers) that make up the nucleosomes and are the 
primary repeating units of chromatin (KORNBERG 1974; KORNBERG and 
THOMAS 1974). Transcription is repressed when nucleosomes inhibit the 
access of the transcription machinery to the promoter (WORKMAN and 
BUCHMAN 1993; YAGER et al. 1989). Therefore, to allow the transcription 
machinery to gain access to the genomic DNA of the promoter, 
nucleosomes are modified by histone acetylation (PENNISI 1997; WADE et 
al. 1997) and by chromatin remodelling enzymes (CAIRNS 1998) that 
together displace the nucleosomes and change the structure of the 
chromatin in order to expose the promoter. 
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Transcription initiation 
Promoters of genes that encode proteins are usually composed of a core 
promoter near the transcription start site as well as enhancer elements 
that can be several kilobases upstream and/or downstream of the 
transcription start site (BLANCHETTE et al. 2006). The DNA segments 
where these enhancer elements lie can bend back on themselves to allow 
the placement of regulatory sequences near the core promoter. The core 
promoter is where the assembly of the transcription initiation complex 
takes place. This complex is composed of enhancer elements bound by 
transcription factors that in turn, regulate transcription by promoting or 
inhibiting the recruitment of the RNA polymerase (KARIN 1990; LATCHMAN 
1997). The RNA polymerase, also called DNA-dependent RNA 
polymerase is responsible for the transcription of DNA into RNA. It uses 
the complementary nature of DNA and RNA to produce a primary RNA 
copy based on the segment of DNA it is transcribing (Figure 2.2). In 
eukaryotes, there are three types of RNA polymerase; RNA polymerase I, 
II and III (ROEDER and RUTTER 1969). These polymerases consist of 8 to 
12 protein subunits and transcribe specific types of genes. For instance, 
RNA polymerase I and III transcribe RNA genes such as ribosomal, 
transfer and small nucleolar genes (RUSSELL and ZOMERDIJK 2006; 
WOLFFE 1991) whereas RNA polymerase II mostly transcribes protein 
coding genes (BOEGER et al. 2005; KORNBERG 1999). Once the 
transcription initiation complex composed of transcription factors and the 
RNA polymerase have been assembled on the core promoter, 
transcription elongation starts. 
 
Transcription elongation  
The next step in the transcription of a protein coding gene involves the 
synthesis of a pre-mRNA transcript by RNA polymerase II (Figure 2.2). 
The RNA polymerase unwinds the DNA strand using helicase action 
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(SVEJSTRUP et al. 1996), clears the promoter and starts transcription at the 
transcription start site. The RNA polymerase travels from the  end of 
the anti-sense DNA strand and uses it as a template to synthesize the pre-
mRNA transcript from the end. It assembles ribonucleotides 
following the rules of base pairing (WATSON and CRICK 1953) and 
produces an exact copy of the DNA sense-strand although the thymines 
are replaced by uracils and the nucleotides are composed of ribose sugar 
instead of a deoxyribose as in DNA. The RNA polymerase continues to 
transcribe the gene until a transcription termination event.  

5''3 

3'  '5 

 
Transcription termination  
The exact mechanism of transcription termination is not well understood in 
eukaryotes although two scenarios involving the polyadenylation signal 
have been proposed. The first referred to as the “anti-termination” model 
suggests that the emergence of the polyadenylation sequence on the RNA 
transcript and subsequent binding of a polyadenylation factor could 
displace a positive elongation factor or recruit a negative elongation factor 
and consequently the RNA polymerase would terminate transcription 
(LOGAN et al. 1987). In the second scenario, the “torpedo” model, the 
polyadenylation site is cleaved and generates a new uncapped 5' end 
(CONNELLY and MANLEY 1988). This uncapped end would act as an entry 
point for an exonuclease or helicase that would track along the RNA and 
dissociate the RNA polymerase. Other studies have shown factors that 
induce the pausing of the RNA polymerase such as the transcription of 
particular RNA sequences that create secondary structures in the RNA or 
DNA binding proteins that inhibit the forward movement of the RNA 
polymerase could trigger termination (YONAHA and PROUDFOOT 1999). In 
general these theories all point to a stochastic process that terminates 
transcription somewhere downstream of the polyadenylation site (KIM and 
MARTINSON 2003; TRAN et al. 2001) (Figure 2.2). 
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Pre-mRNA processing 
Processing of pre-mRNA usually occurs in a co-transcriptional manner 
meaning that the pre-mRNA is processed into mRNA while it is 
synthesized (Figure 2.2). RNA polymerase II contains a unique C-terminal 
protein domain (CDT) that coupled with processing factors, are 
responsible for directing the three main post-transcriptional modifications; 
(1) 5'-end capping, (2) splicing and (3) polyadenylation (CALVO and 
MANLEY 2003; MCCRACKEN et al. 1997a; MCCRACKEN et al. 1997b; 
NEUGEBAUER 2002; REED 2003).  
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Figure 2.2: Co-transcriptional pre-mRNA processing. Schematic 
illustrating the principal steps involved in pre-mRNA processing (capping 
(m7G), splicing and polyadenylation) and their interaction with the C-
terminal domain of the RNA polymerase II to form a mature mRNA 
transcript. 
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5' capping  
Soon after the pre-mRNA has emerged from the RNA polymerase II the 5’ 
end undergoes a chemical modification with the addition of a cap (Figure 
2.2). This cap formation involves three enzymatic reactions: a 5'-
triphosphatase that removes the γ-phosphate from the first transcribed 
nucleotide, a guanylyltransferase (GTase) that attaches a guanosine via a 
5'–5' triphosphate linkage, and a 7-methyltransferase that modifies the 
terminal guanine (reviewed in (SHATKIN and MANLEY 2000). Capping the 
5'-end mainly stabilizes the mature mRNA against exonucleolytic 
degradation, facilitates mRNA cytoplasmic transport and assists with 
translation (HOWE 2002). 

3'  '5 

 
Constitutive Splicing 
Constitutive splicing is the process by which intron sequences are 
removed from the pre-mRNA and consecutive exons are joined. This 
process is catalyzed by a complex of small nuclear ribonucleoproteins and 
associated proteins designated as the spliceosome that assembles on the 
pre-mRNA in a stepwise manner at the splice sites located at the intron-
exon boundaries. The intron-exon boundaries are defined by specific 
sequences that are recognized by the spliceosome. In addition, both 
exons and introns contain weak binding sites such as exonic and intronic 
splicing enhancers and silencers for a multitude of splicing auxiliary and 
regulatory proteins (MATLIN et al. 2005; WANG and COOPER 2007). The 
donor splice site is located at the 5'-end of the intron and begins with a GU 
dinucleotide while the acceptor splice site located at the 3'-end of the 
intron and ends with an AG dinucleotide (Figure 2.3.A). The first steps of 
spliceosome assembly is the recognition of the donor splice site by the 
small nuclear ribonucleoprotein (snRNP) U1, the binding of splicing factor 
SF1 to the branchpoint and the recognition of the acceptor splice site by 
the U2 snRNP auxiliary factor (U2AF) that together form the E complex. 
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Following this initiation step, the A complex is formed when the U2 snRNP 
binds to the branch point dislodging the splicing factor SF1. Subsequently, 
the A complex is substantially remodelled by the action of 3 other snRNPs 
(U4, U5, and U6) to form the B complex and leads to the formation of the 
mature and active spliceosome (C complex) that catalyses both trans-
esterification splicing reactions (BLACK 2003; BLAUSTEIN et al. 2007; 
STANCHEV and STANCHEV 1984) (Figure 2.3.B). Some experiments have 
demonstrated that splicing is tightly coupled to transcription and at least 
some introns are excised while the nascent transcript is still associated 
with the polymerase through the action of snRNP and SR proteins 
associated to the c-terminal domain (CTD) of the RNA polymerase II 
(CHABOT et al. 1995; DAS et al. 2007; MORTILLARO et al. 1996; VINCENT et 
al. 1996). The majority of introns found in eukaryotes are removed using 
this U2-dependent process although~700 human introns rely on the U12-
dependant spliceosome. The splicing process is very similar to what is 
described in Figure 2.3 and the major differences between these two 
types of introns reside in the donor splice site and branch point 
sequences. The U1, U2, U4 and U6 found in the U2-dependent 
spliceosome are replaced by four different snRNP proteins U11, U12, 
U4atac and U6atac in the U12-dependent mechanism (ALIOTO 2007; 
SHETH et al. 2006).  
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Figure 2.3: Schematic diagram of the spliceosome assembly at the splice 
site.  A. Scheme of a typical intron flanked by exons in pre-mRNA. Cis-
acting sequences that are relevant for the splicing reaction are shown for 
the 5' splice site, branch site and 3' splice site. The grey boxes represent 
exons and the line represents the intron sequence. B. Steps along 
spliceosome assembly. Schematic representation of spliceosomal 
complex E, A, B and C. See text for more details. This figure was modified 
from (BLAUSTEIN et al. 2007).   
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3'-End processing  
Polyadenylation of pre-mRNA at the 3'-end is a vital step in transcription 
termination and pre-mRNA processing (WAHLE and RUEGSEGGER 1999). 
Almost all pre-mRNA in eukaryotes are polyadenylated with a few 
exceptions such as histone genes. (DAVILA LOPEZ and SAMUELSSON 2008). 
In humans, the pre-mRNA is recognized, cleaved, and then 
polyadenylated by a complex of enzymes (MANDEL et al. 2008) directed by 
distinct polyadenylation signal sequences present in the pre-mRNA 
transcript such as the highly conserved upstream AAUAAA sequence and 
a downstream G/U-rich sequence (BEAUDOING et al. 2000; GRABER et al. 
1999; TIAN et al. 2005). PolyA tails have been shown to influence mRNA 
stability, translation and transport (JACOBSON and PELTZ 1996; LEWIS et al. 
1995; WICKENS et al. 1997). In recent years, studies have shown the 
interconnection of other transcriptional and post-transcriptional processes 
(see above), such as splicing and transcriptional termination (MANIATIS 
and REED 2002).  
 
Gene expression variation 
Each cell contains, in its set of genomic loci, all the information required to 
make many thousand different RNA and protein molecules. However, a 
typical cell only expresses a subset of these genes because their identity 
and function, i.e. their phenotypes, is defined by the expression of specific 
genes in a spatial and temporal manner. To achieve this high level of 
diversity and precision, the cell regulates each step implicated in gene 
expression by (1) controlling when and what genes are transcribed 
(transcriptional control), (2) controlling how the RNA transcript is 
processed (RNA processing control), (3) selecting which mRNA will be 
exported and where in the cytoplasm (RNA transport and localization 
control), (4) controlling the stability of certain mRNA molecules in the 
cytoplasm (mRNA degradation control) (5) selecting which mRNAs are 
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translated (translational control), and (6) selectively controlling the 
activation, degradation and compartmentalization of specific proteins 
(protein activity control) (reviewed in (ALBERTS 2002). Although all these 
processes, in addition to others such as environmental signals, interact to 
form a complex network that coordinates gene expression, the following 
sections will deal with the regulation of transcription and pre-mRNA 
processing. 
 
Transcript expression variation 
The rate of gene transcription i.e., how many transcripts from a genomic 
locus are transcribed by the RNA polymerase for a given period, is a 
central parameter that controls cellular processes. The importance of this 
process was recognized 40 years ago (BRITTEN and DAVIDSON 1969), 
however it is only in this last decade that tools needed to study transcript 
expression variation at the genome-wide level, such as DNA microarrays 
have become available (see below). Studies using these tools have begun 
analyzing how environmental and genetic factors contribute to transcript 
expression variation.  
 
Environmental factors 
Organisms can modify the expression of specific genes in order to adapt 
their physiology to changing environmental conditions. For example, a 
study of Moroccans living in different environmental conditions (urban, 
mountain, desert) showed that ~37% of genes expressed in leukocyte 
samples had significantly different transcript expression levels. The 
authors of the study tested if this variation was due to genetic or 
epigenetic factors and found that environmental factors were the most 
likely cause (IDAGHDOUR et al. 2008). This type of environmental influence 
is well illustrated in another study of goby fish (Gillichthys mirabilis) 
exposed to multiple levels of heat stress (BUCKLEY et al. 2006). In this 
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study, temperature variations were shown to influence the transcript 
expression of genes responsible (i.e. chaperones) for the physiological 
adaptation to temperature changes. Interestingly, this expression variation 
was different between tissues, demonstrating another important aspect of 
transcript expression regulation, i.e. tissue identity and complexity is 
strongly defined by specific patterns of transcript expression. In fact, a 
study comparing the transcript expression profiles of 155 human tissues 
showed that gene expression was strongly correlated with anatomic 
locations, cellular compositions and physiologic functions (SHYAMSUNDAR 
et al. 2005).  
 
Genetic factors 
It has also been demonstrated that the evolution of an organism is 
achieved, in part, through changes in transcript expression regulation. The 
importance of regulatory mutations in the evolution of species was first 
proposed following the comparison of human and chimpanzee homologue 
proteins (KING and WILSON 1975). The authors concluded that the modest 
degree of divergence in homologous protein sequences could not account 
for the extensive phenotypic differences observed between these two 
closely related species and postulated that regulatory mutations must play 
an important role. An interesting example of this process is demonstrated 
by the comparison of different primate tissues (ENARD et al. 2002) where 
the authors showed that the transcript expression profiles for human brain 
had significantly diverged from the other primate species. Subsequent 
studies also found that ~10% of genes showed expression differences 
between humans and chimpanzees (CACERES et al. 2003; KHAITOVICH et 
al. 2005; KHAITOVICH et al. 2004). This indicates that some of the complex 
cognitive abilities found in humans and more generally other species-
specific traits (ABZHANOV et al. 2004; CLARK et al. 2006; STERN 1998), are 

 16



 

the result of transcript expression regulatory variations caused by genetic 
changes that occurred between species.  
 
Expression quantitative trait loci  
Genetic variations present in regulators of transcript expression are also 
responsible for some of the transcript expression variation observed 
between individuals of the same population. Expression quantitative trait 
loci (eQTL) mapping (JANSEN and NAP 2001) is a popular approach to 
determine the polymorphism(s) or the genomic region containing the 
polymorphism that is partly responsible for variation of transcript 
expression regulation (CHEUNG et al. 2003; CHEUNG et al. 2005; DIXON et 
al. 2007; GORING et al. 2007; MORLEY et al. 2004; STRANGER et al. 2007a; 
STRANGER et al. 2007b). In these studies, gene expression levels are 
treated as quantitative traits and their genetic basis is studied using well-
established linkage and association tools. Linkage mapping uses a study 
design that is based on tracking the transmission of alleles through 
families. This approach aims to identify genetic variations that are linked 
with transcript expression phenotypes (eQTLs) by tracking its transmission 
patterns through a pedigree. Association analysis uses samples of 
unrelated individuals to correlate marker genotypes with the eQTL 
(reviewed in (HIRSCHHORN and DALY 2005). Association analyses are 
usually more powerful than analyses using a linkage method because they 
are better at finding eQTLs with a medium to small effect size given a 
dense enough set of polymorphisms that are in linkage disequilibrium (LD) 
with the causative polymorphism (GILAD et al. 2008). In addition, this 
technique allows the fine mapping of the region with the causative 
polymorphisms which depends heavily on the haplotype structure around 
the eQTL. These types of studies have associated cis-acting eQTLs with 
many disease phenotypes such as resistance to infection with malaria 
(HAMBLIN and DI RIENZO 2000; TOURNAMILLE et al. 1995), risk of heart 
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disease (BEYZADE et al. 2003; YE et al. 1996), susceptibility to 
schizophrenia (HE et al. 2006) and many more (see review (WRAY 2007). 
It is apparent that regulation of transcript expression plays an essential 
role in gene expression. Moreover, in recent years, biologists have also 
begun studying how cells regulate the production of alternative transcript 
structures and the important role this process plays in gene expression. 
 
Transcript structural variations 
The ability of the metazoan cell to produce multiple mRNA transcripts from 
a single genomic locus was a key factor in their evolution. This allowed 
them to expand their transcriptomes and proteomes without increasing 
genome complexity, i.e. without increasing the number of genes. This 
increase in genetic coding potential was achieved by the evolution of 
specific regulatory processes involved in gene expression such as 
alternative transcription initiation, alternative splicing and alternative 
transcription termination.  
 
Alternative transcript initiation 
Transcription initiation is one of the first processes involved in regulating 
transcript expression. Regulation of mRNA synthesis depends heavily on 
the formation of the pre-initiation complex (see above) at the right time 
and at the right promoter. This temporal and spatial control relies on the 
intricate interplay between many transcription factors, cis-regulatory DNA 
elements, core promoter elements as well as chromatin remodelling and 
modifying factors to properly position the pre-initiation complex near the 
transcription start site of a genomic locus (LEMON and TJIAN 2000). In the 
past, genomic loci were thought to contain only one transcriptional start 
site. However, recent studies suggest that at least 50% of human genes 
use varying transcription start sites through the use of alternative core 
promoters (BAEK et al. 2007; COOPER et al. 2006; KIMURA et al. 2006; 
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TAKEDA et al. 2007). These alternative promoters allow a single genomic 
locus to produce a wide variety mRNA transcript and protein isoforms 
(Figure 2.4) in response to changing cellular conditions and states (e.g., 
differentiation, growth and development). 
 

 
Figure 2.4: Processes that generate alternative transcript initiation. Two 
promoters on a single exon (top); alternative first exon (middle); and a 
downstream promoter located within the intron region of another isoform 
(bottom). 
  
The exact molecular mechanisms responsible for alternative transcription 
start sites are still not clearly understood. Some mechanisms have been 
proposed such as the presence of multiple core-promoter structures, 
variable concentrations of cis-regulatory elements and factors, and 
epigenetic changes in the promoter region (reviewed in (DAVULURI et al. 
2008). Alternative transcription initiation can result in the production of 
distinct mRNA isoforms with different 5' untranslated regions (5'-UTR). 
The 5'-UTRs contain sequences that regulate mRNA stability and 
translational efficiency such as sequences responsible for mRNA 
secondary structure and translational initiation sites. Therefore, certain 
types of alternative transcription initiation can affect these processes 
without affecting the protein coding potential of the mRNA by only varying 
the 5'-UTR sequence (DAVULURI et al. 2008). Other types of alternative 
transcription initiation affect the protein coding structure if alternative 
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translation start sites are included in the pre-mRNA transcript. This might 
affect protein domains that are important for different biological activities 
and consequently this diversifies protein functions. Therefore, transcription 
initiation variation is quite common between different tissue types (BIRNEY 
et al. 2007). Moreover, aberrant alternative transcription initiation has 
been associated to a number of diseases (LIU et al. 2005; MARCU et al. 
1992; NAKANISHI et al. 2006; SUN et al. 2007). More recent studies have 
shown that genetic variations were linked to alternative promoter usage. 
For example, regional rearrangements (insertions and inversions) in the 
promoter region of the aromatase (CYP19A1) gene increase its 
expression which is associated with a higher incidence of breast cancer 
(DEMURA et al. 2007). As demonstrated in this example, alternative 
promoter usage can, in addition to modifying the transcript structure and 
stability, affect the transcription level of a gene.  
 
Alternative splicing 
A typical human gene contains, on average, 8.8 short exonic sequences 
with a mean size of 145 bp. These exons are usually separated by much 
larger intron sequences that on average, account for >90% of the pre-
mRNA transcript (LANDER et al. 2001). The maturation of pre-mRNA into 
mRNA involves the removal of these intron sequences and the joining of 
the exon sequences. This process called constitutive splicing is catalyzed 
by the large ribonucleoprotein complex known as the spliceosome that 
interacts with the splicing signals (see above). In 1978, Gilbert (GILBERT 
1978) proposed that through regulation, splicing could produce multiple 
mRNA isoforms from the same pre-mRNA transcript by alternatively 
splicing out specific exons. A few years later, his theory of alternative 
splicing was validated (EARLY et al. 1980; ROSENFELD et al. 1982) and 
more recently it was estimated that almost all mammalian genes (~95%) 
undergo some form of alternative splicing (PAN et al. 2008; WANG et al. 

 20



 

2008). This high propensity of alternative splicing is theorized to offset the 
low level of genome complexity of higher eukaryotes. For example, the 
drosophila DSCAM gene can theoretically produce more than 38,000 
different mRNA isoforms (SCHMUCKER et al. 2000), which is far superior 
than the total number of genomic loci in all of its genome (CLARK et al. 
2007a). Changes in the splicing patterns of different tissues have been 
proposed as important mechanisms for species evolution. In closely 
related species such as humans and chimpanzees, the expression profiles 
for ~1000 orthologous exons from different tissues were compared and 
this revealed that alternative splicing patterns from brain had the highest 
level of divergence (CALARCO et al. 2007). In addition, comparisons of 
human and mouse transcripts have revealed that less than 20% of 
alternative splicing events were conserved between these species 
(MODREK and LEE 2003; PAN et al. 2005; YEO et al. 2005). This 
demonstrates that splicing variation is partially responsible for some of the 
species specific phenotypes. This observation also holds when comparing 
organs from the same species. Complex organs comprised of specialized 
cell types such as brain and liver present more splicing variation than 
simpler tissues such as kidney and skeletal muscle (JOHNSON et al. 2003; 
XU et al. 2002; YEO et al. 2004a). The various mechanisms responsible for 
producing mRNA isoform variation through alternative splicing are 
illustrated in Figure 2.5.  
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Figure 2.5:  Common types of alternative splicing events. A. This 
represents an alternatively spliced exon where an exon is either included 
or excluded from the mRNA transcript. B. In this case the intron is not 
spliced out from the mRNA transcript therefore is annotated as an intron 
retention event. C. and D. are example of alternative 5' and 3' splice site 
usage, respectively. Here a second splice site found either in the exon or 
the intron is used to define the exon boundaries. E. The red exons in this 
example are mutually exclusive, i.e. when one is included in the mRNA 
transcript the other is excluded. In many cases, these common 
mechanisms are combined to generate more complicated alternative 
splicing events. This figure is modified from (WANG and BURGE 2008). 
 

These events are controlled through the interaction of the spliceosome 
and specific cis-regulatory elements that serve as either splicing 
enhancers or silencers (Figure 2.6). Elements found in an exon that 
promote or inhibit its inclusion are respectively classified as exonic splicing 
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enhancers (ESE) and silencers (ESS). Elements found in an intron that 
enhance or inhibit the use of adjacent splice sites are known as intronic 
splicing enhancers (ISEs) and silencers (ISSs), respectively. These 
splicing regulatory elements promote or inhibit the recruitment of splicing 
factors by activating or suppressing the recognition of splice sites or by 
regulating the assembly of the spliceosome (MATLIN et al. 2005). 
Therefore, splicing decisions result from differences in the concentration 
and/or activity of these proteins. Splicing regulatory elements that 
enhance splicing are expected to play a predominant role in constitutive 
splicing while alternative splicing is principally controlled by silencing 
elements.  
 

 
Figure 2.6: A schematic of two alternative splicing pathways for the middle 
exon. This illustrates the interaction of cis-splicing regulatory elements 
(ESE, ESS, ISS, and ISE) with trans-splicing factors (hnRNP and SR 
proteins) that together enhance or inhibit the recruitment of spliceosome 
proteins (U2 and U1) which leads to the inclusion or exclusion of the 
middle exon from the mature mRNA transcript. This figure was modified 
from (WANG and BURGE 2008). 
 
Sequence changes in these splicing regulatory elements can lead to 
disease phenotypes. A very conservative estimate suggests that at least 
15% of point mutations that cause human disease affect splicing (CHEN et 
al. 2003). Spinal muscular atrophy is an example of a recessive disease 
that is caused by a point mutation in an exonic regulatory element. A C→T 
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mutation in the SMN2 gene causes the missplicing of exon 7 which 
creates a non-functional protein that leads to the disease phenotype 
(reviewed in (WIRTH et al. 2006). Hutchinson–Gilford progeria syndrome is 
associated with premature aging and is another example of a disease 
caused by a point mutation but this time in an intron. This mutation 
activates a cryptic splice site in the Lamin A gene that truncates that last 
150 base pairs of exon 11 from the Lamin A gene (DE SANDRE-GIOVANNOLI 
and LEVY 2006). Mutations can also disrupt proteins belonging to the 
spliceosome and therefore affect the splicing of multiple exons and 
consequently create many disease phenotypes. For example, a mutation 
in the TDP43 splicing factor belonging to the hnRNP family of proteins has 
been implicated in a number of diseases such as cystic fibrosis (BURATTI 
et al. 2001), frontotemporal lobar degeneration and Lou Gehrig's disease 
(NEUMANN et al. 2006). Splicing variations have also been implicated in 
different cancers (reviewed in (VENABLES 2006). 
 
Another interesting characteristic of alternative splicing is its ability to 
regulate transcript expression. It is estimated that approximately ~65% of 
alternative splicing events occur within the translated regions of mRNA 
transcripts (GUPTA et al. 2004). A splicing event that introduces a 
premature stop codon in a mRNA transcript is subject to the non-sense 
mediated decay (NMD) surveillance system (BELGRADER et al. 1994). This 
system recognizes mRNA isoforms containing premature stop codons that 
are subsequently targeted for degradation. In a study of more than 3000 
alternatively spliced human genes, it was shown that 35% of the mRNA 
isoforms produced contained a premature stop codon and that 75% of 
these isoforms were degraded by the non-sense mediated decay system 
(LEWIS et al. 2003). Thus, alternative splicing and NMD act together to 
play an important role in regulating gene expression.  
 

 24



 

Alternative polyadenylation 
Gene expression is also influenced by other types of mRNA structural 
variation such as alternative polyadenylation. The vast majority of 
eukaryotic mRNA transcripts are polyadenylated, i.e. they acquire a 
poly(A) tail at their 3' ends (reviewed in (EDMONDS 2002). Polyadenylation 
involves a two step process where the pre-mRNA transcript is cleaved and 
then adenosine (A) residues are added at the 3' end. This process is 
controlled by core polyadenylation elements as well as auxiliary elements 
found upstream and downstream of the consensus polyadenylation 
sequence that interact with the cleavage and polyadenylation machinery 
(see above). In recent years, studies have demonstrated that genes can 
contain multiple polyadenylation sites (reviewed in (LUTZ 2008). Recently, 
it has been estimated that around 50% of human genes are alternatively 
polyadenylated (TIAN et al. 2005). Alternative polyadenylation can create 
mRNA transcript isoforms that have varying 3' UTR lengths and coupled 
with alternative splicing can alter the translation region (Figure 2.7).   

 
Figure 2.7: Types of alternative polyadenylation. A. This is an example of 
constitutive polyadenylation because only one polyadenylation site is 
present in the 3' UTR. B. Example of alternative polyadenylation with 
multiple polyadenylation sites in the present on the last exon of the 3' 
UTR. C. This demonstrates an alternative splicing event (last exon is 
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skipped) coupled with the use of different polyadenylation sites. This figure 
is modified from (LUTZ 2008).  
 
These types of variation can influence protein coding potential, transcript 
localization, stability and transport (LEWIS et al. 1995; WICKENS et al. 
1997). Therefore polyadenylation is an important aspect of gene 
expression. Similar to what was mentioned for transcript expression, 
alternative transcription initiation and alternative splicing, regulation of 
alternative polyadenylation varies between tissues (BEAUDOING and 
GAUTHERET 2001; RIGAULT et al. 2006) in response to different 
developmental or functional cues and has been implicated in evolution 
(ARA et al. 2006) and certain disease phenotypes (DANCKWARDT et al. 
2008) .  
 
Profiling gene expression 
The mRNA population of a cell specifies its identity and helps govern its 
present and future activities (see above). This has made the efficient 
analysis of the transcriptome an important aspect in the field of molecular 
biology. Over the past 30 years, many technological advances have 
facilitated the study of gene expression. The first technologies developed 
to study gene expression were the Northern Blot (ALWINE et al. 1977) and 
reverse transcription-polymerase reaction (RT-PCR) (MULLIS et al. 1986). 
These approaches were useful for analysing expression of a small number 
of genes, however could not be easily scaled up for studies of a large 
number of genes in many tissues. Thus, higher throughput methods were 
needed to capture the whole complexity of the transcriptome. High-
throughput methods such as expressed sequence tags (EST) (BOGUSKI et 
al. 1994) and serial analysis of gene expression (SAGE) (VELCULESCU et 
al. 1995) were developed to measure gene expression in a multiplex 
manner. The method relied on sequencing cloned mRNAs and mapping 
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them back to genomic sequence to identify the genes expressed in cells. 
These techniques were limited by time and cost constraints as well as by 
biases that affect coverage and sampling. These limitations led to the 
development and broad distribution of a technology known as the DNA 
microarray (AUGENLICHT et al. 1987; POUSTKA et al. 1986; SCHENA et al. 
1995).  
 
Microarray applications  
The DNA microarray was developed using the concept of the Northern 
Blots. As with Northern Blots, DNA microarrays are used to measure the 
abundance of specific nucleic acid sequences in a given sample, except 
that the DNA microarray does this in a multiplex manner. It uses a 
collection of probes made of DNA sequences of varying length that are 
ordered and bound onto the surface of a solid support such as glass. 
These probes are designed to bind specific targets that consist of 
fluorescently labelled nucleic acid sequence (cRNA or cDNA). The level of 
binding between a probe and its target is quantified by measuring the 
fluorescence emitted by the hybridized target when scanned and 
corresponds to the abundance of the target. This concept was applied to a 
variety of DNA microarray designs to study a broad range of nucleic acid 
variations. They are mainly used for gene expression analysis and 
screening samples for single nucleotide polymorphisms (genotyping) 
(HACIA et al. 1999). Although in recent years, DNA microarrays have also 
been used in other application such as ChIP-on-chip experiments (IYER et 
al. 2001; LIEB et al. 2001; REN et al. 2000), epigenetic studies (ADORJAN et 
al. 2002; HUANG et al. 1999; YAN et al. 2001) and DNA-mapping  (MORAN 
et al. 2004; POLLACK et al. 1999). More recently, with advances in 
manufacturing techniques, DNA microarrays are now used to study gene 
expression at the sub-transcript level. In fact, expression of individual 
mRNA isoforms produced by transcriptional and pre-mRNA processing 
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variations such as alternative transcript initiation and termination as well 
as alternative splicing can now be assessed with the use of different 
alternative splicing microarrays. These alternative splicing arrays target 
their probes to each exon and/or exon junction within a gene to determine 
mRNA levels at the resolution of a single exon or splice site. 
 
Isoform level detection microarrays 
The first attempt at using microarrays to study alternative splicing was 
explored using the multi-probe design of the Affymetrix Gene Chip (HU et 
al. 2001). In this study, the Affymetrix Gene Chip probes that are usually 
summarized together into one measure of whole-transcript expression 
were instead used to measure the expression of individual exons they 
targeted. This study demonstrated that gene expression at the isoform 
level could be measured by targeting probes to individual exons within a 
transcript. This lead to the manufacturing of the first custom microarray 
designed to measure gene expression variation at the isoform levels by 
using a mix of exon-body and junction probes (WANG et al. 2003). The first 
high-throughput analyses of alternative splicing (JOHNSON et al. 2003; PAN 
et al. 2005; PAN et al. 2004) were conducted with custom arrays and 
measured global alternative splicing patterns in different tissues and 
species. However, the gene coverage of these custom arrays was 
insufficient to cover every possible exon in the genome. This prompted the 
microarray manufacturing company Affymetrix Inc. to design the first truly 
genome-wide alternative splicing DNA microarray known as the 
GeneChip® Human Exon 1.0 ST Array. 
 
Human Exon array  
The GeneChip® Human Exon 1.0 ST Arrays are constructed using a 
patented photolithographic process borrowed from the computer chip 
industry. Probes are synthesized on a wafer slide using photolithographic 
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masks for selective location activation followed by the addition of the base 
to the activated site (see affymetrix.com for details). This process 
produces extremely dense arrays that are composed of 5.5 million 25-mer 
probes that in turn enable genome-wide analyses of gene expression at 
the isoform level. Probes target individual exons or portions of an exon 
when prior evidence of alternative splicing exists. Each exon within a gene 
is targeted on average by 4 probes (Figure 2.8) which allows the 
simultaneous exon-level detection of expression intensity for 1.4 million 
probe sets covering over 1 million known and predicted human exons. 
Probe sets on the array are divided into 3 levels of annotation: core, 
extended and full. The core probe sets target ~284,000 exons supported 
by RefSeq and GenBank. The extended and full annotations are based on 
less confident annotated exons, with evidence from ESTs and 
computationally predicted exons. These last two annotation levels are 
designed to identify novel transcript variants while the core probe set are 
used for straightforward studies of gene expression variation at the 
isoform level given the reduced size and high confidence annotation data 
set they produce  (SIEPEL et al. 2007).    
 

 
Figure 2.8: Schematic for coverage of probe sets across a gene. Yellow 
regions are exons and grey regions represent introns. The short dashes 
below the exon regions (red) indicate individual probes of 25 nucleotides 
in length and represent a probe set.  
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Workflow for Exon Array analysis 
The biggest challenge of studying transcript isoform variations using 
microarrays is how to analyse and interpret data generated in these 
experiments. In the past, whole-gene expression studies using 
microarrays were based on the dogma that one gene is transcribed to one 
transcript that is subsequently translated to one protein. Now, the scenario 
has changed to one gene that produces multiple products. This extra level 
of complexity has created several problems in microarray analysis that 
must be solved. For instance, a given probe can represent the sum of 
intensities from multiple isoforms of a gene and at the same time that 
probe along with others represent expression for that one gene. 
Therefore, new analysis method are needed to decouple signals coming 
from changes in pre-mRNA processing such as variation of alternative 
splicing from changes in overall gene expression to adequately assess 
gene expression at the isoform level (CUPERLOVIC-CULF et al. 2006). In 
addition, Exon Array data consists of very noisy signal measurements. 
The true expression signal is buried by different sources of noise, such as 
poor sample preparation, labelling, hybridization and many more 
(ZAKHARKIN et al. 2005). Therefore, pre-existing analysis pipelines 
developed for standard gene expression microarray experiments such as 
quality assessments, data normalization, detection of differential 
expression and annotation of differentially expressed isoforms must be 
adjusted to accommodate this type of data (Figure 2.9).  
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Figure 2.9: Exon array analysis workflow. 1) The first step is preparation 
and hybridization of cDNA extracted from sample for analysis on the Exon 
array. 2) Data acquisition and normalization to remove noise and technical 
biases. 3) Summarization of probe signals into probe set (exon) and meta-
probe set (gene) expression scores. 4) Data filtering to remove 
misbehaving probe set and meta-probe sets folded to statistical testing to 
identify varying exons or genes within samples. 5) Mapping of interesting 
probe sets to known and predicted transcript structures overlaid with 
expression data to determine isoform expression. Image modified from 
(OKONIEWSKI and MILLER 2008). 

 31



 

Quality control 
Quality assessment is an essential first step in the analysis of Exon Array 
data because it can identify noisy samples due to issues related to RNA 
quality, probe labelling, hybridization, washing and signal/background 

detection in the scanning process. During the summarization step (see 
below) of Exon Array data, a quality report is generated by the Affymetrix 
Power tool software (affymetrix.com) where summary metrics such as 
mean probe set intensity for each sample, the number of expressed probe 
sets per sample (DABG see below) and others are computed to identify 
outliers samples (see affymetrix.com; Quality Assessment of Exon 
Arrays). In addition, a principal components analysis (PCA) plot is a tool 
that is commonly used to identify outliers in a group of samples (DE HAAN 
et al. 2007). The decision regarding which samples is an outlier depends 
heavily on the experience of the user and varies on a case by case basis. 
These outlier samples could be flagged and excluded from the analysis or 
the analysis could be adjusted to account for the outlier by down-weighting 
it.   
 
Normalization 
The next step in the analysis pipeline is normalization. This procedure is 
essential to reduce noisy microarray data. Many techniques have been 
developed such as standardization (Z-score), housekeeping gene based 
normalization and equalized quantile normalization (AUTIO et al. 2009). 
Most of these techniques rely on the assumption that the majority of exon 
or gene expression is unchanged between samples therefore they attempt 
to make each sample in a data set have the same probe signal 
distribution. For example, quantile-normalization is a non-parametric 
procedure that first consists of constructing quantiles (ranks) for the probe 
signals on each array individually. The median probe signal in each 
quantile is then computed across all arrays. That median value now 
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represents the normalized signal value for each probe of that given 
quantile (BOLSTAD et al. 2003). This type of normalization procedure 
ensures that all arrays in an experiment have the same median and 
standard deviation of probe signals and therefore removes some of the 
high variability and biases introduced by technical artefacts. 
 
Expression summarization 
For the Exon array data, expression summarization is the process of 
combining specific probe signal values into probe set (exon) and meta-
probe set (transcript) expression scores. The most popular summarization 
algorithms  are RMA (robust multichip average) (IRIZARRY et al. 2003a) 
and PLIER (see affymetrix.com - Gene signal estimates from exon 
arrays). Essentially, these algorithms determine the expression level of a 
probe set or a meta-probe set by performing a type of weighted average 
and background correction (see below) of probe intensities. 
 

Background correction 
The Human Exon Array implements a new system to estimate background 
noise levels. Instead of using mismatch probes, as was typically the case 
for earlier Affymetrix designs, they include a collection of probes, called 

antigenomic probes that have no target in mammalian transcriptomes. The 
signal intensities of the antigenomic probes mostly originate from non-
specific binding which is a function of their GC-content. Therefore, before 
summarizing probe set and meta-probe set expression scores, probe 
signals are corrected by subtracting the median non-specific binding 
signals computed from the distribution of antigenomic probes of the same 
GC-content. In addition, instead of the classical presence / absent calls 
used to establish if a gene was expressed in a sample, a new metric 
called the detected above background (DABG) is computed for each 
probe set and meta-probe set. This metric represents the probability that 
the expression of a given probe set or meta-probe set is background noise 
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and therefore not expressed (www.affymetrix.com; Exon array background 
Correction). A threshold is usually set (DABG < 0.05) to determine if a 
probe set or meta-probe set is expressed in a given sample. 
 
Identification of variation 
To compare variation of gene expression at the isoform level between a 
set of samples, the most straightforward method to use is the splicing 
index (SRINIVASAN et al. 2005). The splicing index is a conceptually simple 
algorithm that aims to identify probe sets (exons) that have different 
inclusion rates between two sample groups (affymetrix.com - Identifying 
and Validating Alternative Splicing Events). The Splicing index is first 
computed as the value of probe set intensity relative to the meta-probe set 
intensity in a given sample on a log2 scale (Intensityprobe set / Intensitymeta-

probe set). Then the normalized intensities (NI) from each group are divided 
between each other (NIsample1 / NIsample2) which represent the splicing 
index. A splicing index of 0 (log2 scale) indicates equal inclusion rates of 
the exon between both samples, a positive value indicates a skipping of 
that exon in sample 2 and a negative value indicates skipping of that 
probe set in sample 1. To identify probe sets that present statistically 
significant differences between two groups, a statistical test such as the 
Student’s t-test or the analysis of variance (ANOVA) is used on gene-level 
normalized exon intensities (NI). The splicing index for every exon within a 
transcript is usually observed in a graphical representation overlaid with 
the p-value from the statistical test to identify isoform variations between 
samples (see below). 
  
An issue with statistical testing in microarray experiments is multiple 
testing. These types of experiment present a challenge because 
thousands or millions, in the case of the Exon array (1.4 million) of 
statistical tests are performed and the false positive rate must be 
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controlled in order minimize the false positive results. Multiple testing 
corrections aims to address this issue by restricting the stringency 
threshold (α = 0.05) to reduce the false positive rate with as little affect as 
possible on the number of incorrect rejections of real results, i.e. false 
negatives. The false discovery rate (FDR) correction (BENJAMINI and 
HOCHBERG 1995) is a popular strategy that consists of finding a threshold 
where the number of expected false positives is known. One issue with 
multiple testing corrections on Exon array data is the violation of certain 
assumptions such as non-independence of probe sets that makes it 
difficult to accurately compute the stringency threshold (AICKIN and 
GENSLER 1996; BENDER and LANGE 2001). However, these techniques can 
still be used to identify sizable data sets of isoform variation.    
 
Filters 
Other strategies, in addition to multiple testing corrections should be used 
to reduce the false positive rate in Exon array experiments. Filtering of 
signal data is very important in these types of experiments because it 
reduces the laborious steps of validating (e.g. by RT-PCR) false results. 
For analysis of Exon array data at the isoform level, removing all genes 
that are not expressed in all samples or excluding probe sets that are not 
expressed in at least one sample are mandatory filtering steps 
(affymetrix.com; Identifying and Validating Alternative Splicing Events). To 
date, literature on the filtering criteria is quite poor and new methods need 
to be developed in order to clean up Exon array data.  
 
Annotation mapping and visualization 
Once interesting probe sets have been identified by filtering and statistical 
testing, the next step is to map the probe sets to their respective exons 
and genes. The main aim of mapping is to identify genes that are 
differentially expressed or that present isoform variation in the form of 
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exon skipping, alternative initiation or termination. This is usually achieved 
using the standard definition files provided by Affymetrix. These files 
contain three levels of annotation: core, extended and full (see above). A 
decision on what level of annotation the analysis will be conducted on can 
significantly influence its outcome. Studies focusing on core probe sets will 
deal with high confidence annotated exons whereas the extended and full 
annotations are used for discovering new genes and exons given the 
predictive nature of these two levels of annotation. The use of these 
different annotation levels will also influence multiple testing correction 
procedures because use of the smaller data sets such as the core will 
have a beneficial effect on the false discovery rate. Data visualization is 
the last in-silico procedure in the analysis workflow before in-vitro 
validation gene or isoform variations. In-house, open access (XMAP, 
Integrated Genome Browser, Expression Console) or commercially (Gene 
sifter) available visualization tools should be used to overlay expression 
data onto gene structure in order to identify gene expression variation at 
the isoform level.  
 
Summary of the literature review 
This literature review demonstrates the important roles that transcription 
and pre-mRNA processing play in the regulation of gene expression. 
These processes work in concert to dictate the quantity and the type of 
mRNA isoform a gene will produce. The regulatory evolution of these 
processes has enabled organisms to expand their transcriptomes and 
proteomes without having to increase the complexity of their genomes. 
Higher eukaryotes use these processes to create distinct cellular 
phenotypes that in turn have enabled the development of specialized 
tissues. Therefore, regulatory disruption of these processes can lead to 
disease phenotypes. This has prompted the scientific community to 
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develop methods and tools to explore variation of transcript expression at 
the isoform level. 
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Connecting text 
It has recently been shown that variation in whole-transcript expression is 
under genetic control in human populations and is responsible for 
phenotypic variation and susceptibility to certain complex diseases (see 
literature review). However, our understanding of how variable transcript 
expression is at the isoform level is still poorly understood. Despite a few 
isolated examples no study has evaluated the prevalence and potential 
impact of these variations at the genome-wide level. This chapter 
represents a pilot study that we conducted in order to evaluate the 
performance of the Human Exon array in detecting transcript isoform 
differences such as alternative initiation, splicing and termination as well 
as whole-transcript expression differences among humans.  
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Abstract 
Alternative pre-mRNA splicing increases proteomic diversity and provides 
a potential mechanism underlying both phenotypic diversity and 
susceptibility to genetic disorders in human populations. To investigate the 
variation in splicing among humans on a genome-wide scale, we use a 
comprehensive exon-targeted microarray to examine alternative splicing in 
lymphoblastoid cell lines (LCLs) derived from the CEPH HapMap 
population. We show the identification of transcripts containing sequence 
verified exon skipping, intron retention, and cryptic splice site usage that 
are specific between individuals. A number of novel alternative splicing 
events with no previous annotations in either RefSeq or EST databases 
were identified, indicating that we are able to discover de novo splicing 
events. Using family-based linkage analysis, we demonstrate Mendelian 
inheritance and segregation of specific splice isoforms with regulatory 
haplotypes for three genes: OAS1, CAST, and CRTAP. Allelic association 
was further used to identify individual SNPs or regulatory haplotype blocks 
linked to the alternative splicing event, taking advantage of the high-
resolution genotype information from the CEPH HapMap population. In 
one candidate, we identified a regulatory polymorphism that disrupts a 5′ 
splice site of an exon in the CAST gene, resulting in its exclusion in the 
mutant allele. This report illustrates that our approach can detect both 
annotated and novel alternatively spliced variants, and that such variation 
among individuals is heritable and genetically controlled. 
 
Introduction 
The human genome is estimated to contain ∼20,000–25,000 genes, and 
recent studies suggest that ∼50%–75% of multi-exon genes undergo 
alternative splicing (AS), generating multiple mRNA isoforms and greatly 
increasing human proteomic diversity (LANDER et al. 2001; MODREK et al. 
2001). The splicing of mRNA is a highly regulated process involving the 
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interactions of trans-acting splicing factors and cis-acting regulatory 
motifs. Disruptions of this process through mutations within these factors 
and regulatory signals may play an important role in phenotypic diversity 
and genetic disorders (BLACK and GRAVELEY 2006; FAUSTINO and COOPER 
2003; NISSIM-RAFINIA and KEREM 2005).  
 
Recent advances in microarray technology hold great promise for the 
genome-wide detection of AS events (LEE and ROY 2004). Small to large-
scale microarrays have been designed using probes spanning predicted 
exon junctions (JOHNSON et al. 2003; MODREK et al. 2001; SUGNET et al. 
2006; ULE et al. 2005; ZHANG et al. 2006), probes targeted toward 
individual exons (FREY et al. 2005), or a combination thereof (SRINIVASAN 
et al. 2005) and applied to identification of AS events that are tissue-
specific, for the most part. However, one caveat of these studies utilizing 
customized arrays is a bias toward genes with solid EST and cDNA 
evidence for known AS events and that are therefore limited in their 
usefulness as a discovery tool for de novo splicing events. Here, we have 
chosen to use an alternative array design, the Affymetrix GeneChip 
Human Exon 1.0 ST Array, which is less biased toward known AS events 
by targeting multiple probes to individual exons and allowing 
simultaneous, exon-level detection of expression levels for 1.4 million 
probe sets covering over one million known and predicted human exons 
(Figure 3.1). Exon-tiling arrays have several advantages over exon-
junction arrays: flexibility of probe placement, exact transcript structures 
do not need to be known a priori, and most AS events can be monitored 
without designing probes specific to all possible junctions. However, it 
should be noted that exon arrays do not provide immediate information on 
transcript structures containing candidate alternative events. 
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We show that (1) the Exon Array is able to detect AS at a level that is 
comparable in sensitivity as other microarray methods, and (2) we can 
identify quantitative and qualitative variations in splicing among 
individuals. Preliminary analysis estimates that up to 5% of all RefSeq 
exons are differentially spliced between individuals. Our approach for 
establishing a genetic basis for the variation in splicing uses lymphoblats 
derived from individuals of the CEPH population (COHEN et al. 1993), 
where we take advantage of the high resolution HapMap genotype 
information from these samples (ALTSHULER et al. 2005) to perform allelic 
association studies. 
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Figure 3.1: (A) Schematic for coverage of probe sets across the entire 
length of the transcript. Yellow regions are exons, whereas grey regions 
represent introns. The short dashes underneath the exon regions indicate 
individual probes of 25 nucleotides in length representing the probe set. 
The Affymetrix GeneChip Human Exon 1.0 ST Array allows for exon-level 
expression profiling in a single chip, and can interrogate over one million 
predicted exons within the human genome. (B) Flowchart for processing 
and analysis of chips to validation of alternative splicing events. Total RNA 
is extracted from the two cell lines (n = 15 replicates per individual) and is 
transcribed to cDNA and labeled with biotin. The total cDNA is then 
hybridized to the exon chip, followed by washing and staining with an anti-
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streptavidin antibody. Chips are then scanned, and hybridization data are 
processed and analyzed by the Affymetrix Power Tools (version 1.6) 
software package. A splicing index is calculated for ∼1.4 million probe sets 
covering one million exons. A subset of 20 alternative splicing events 
predicted between the two individuals using an unpaired t-test (P < 8.915 
× 10−4) on the splicing index and other criteria (see Methods), are then 
validated by (1) RT-PCR using exon body primers flanking the probe set 
of interest and (2) sequencing of the RT-PCR products.   
 
Methods 
Cell line preparation 
RNA samples were obtained from 74 Epstein-Barr virus-transformed LCLs 
belonging to the CEPH (Center d’étude du polymorphisme humain) 
reference individuals from the state of Utah in the United States (CEU). 
For this study, we used DNA samples from 60 unrelated individuals that 
have been genotyped for approximately four million SNPs by the 
International HapMap Project (ALTSHULER et al. 2005). Additionally, LCLs 
from CEPH pedigree 1444 (14 samples) were included to examine genetic 
influences on AS in a three-generation family. Cells were grown at 37°C 
and 5% CO2 in RPMI 1640 medium (Invitrogen) supplemented with 15% 
heat-inactivated fetal bovine serum (Sigma-Aldrich), 2 mM L-glutamine 
(Invitrogen), and penicillin/streptomycin (Invitrogen). Cell growth was 
monitored with a hemocytometer, and cells were harvested at a density of 
0.8 × 106 to 1.1 × 106 cells/mL. Cells were then resuspended and lysed in 
TRIzol reagent (Invitrogen). For all LCLs, three successive growths were 
performed (corresponding to the second, fourth, and sixth passages) after 
thawing frozen cell aliquots.  
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Affymetrix exon arrays 
RNA was isolated using TRIzol reagent following the manufacturer’s 
instructions (Invitrogen). The RNA quality was assessed using RNA 6000 
NanoChips with the Agilent 2100 Bioanalyzer (Agilent). Biotin-labeled 
target for the microarray experiment were prepared using 1 μg of total 
RNA. The RNA was subjected to a rRNA removal procedure with the 
RiboMinus Human/Mouse Transcriptome Isolation Kit (Invitrogen), and 
cDNA was synthesized using the GeneChip WT (Whole Transcript) Sense 
Target Labeling and Control Reagents kit as described by the 
manufacturer (Affymetrix). The sense cDNA was then fragmented by UDG 
(uracil DNA glycosylase) and APE 1 (apurinic/apyrimidic endonuclease 1) 
and biotin-labeled with TdT (terminal deoxynucleotidyl transferase) using 
the GeneChip WT Terminal labeling kit (Affymetrix). Hybridization was 
performed using 5 μg of biotinylated target, which was incubated with the 
GeneChip Human Exon 1.0 ST array (Affymetrix) at 45°C for 16–20 h. 
Following hybridization, nonspecifically bound material was removed by 
washing and detection of specifically bound target was performed using 
the GeneChip Hybridization, Wash and Stain kit, and the GeneChip 
Fluidics Station 450 (Affymetrix). The arrays were scanned using the 
GeneChip Scanner 3000 7G (Affymetrix), and raw data was extracted 
from the scanned images and analyzed with the Affymetrix Power Tools 
software package (Affymetrix).  

 
For the initial study, three separate passages of two unrelated individuals, 
GM12750 and GM12751, from the CEPH 1444 pedigree were used, with 
five technical replicates of each growth, for a total of 15 arrays hybridized 
for each sample. Multiple replicates were used to assess the relative 
contributions of biological and technical noise to the observed exon and 
transcript levels. In particular, since this array uses probe cells with a 
feature size that is only one-quarter of previous expression array designs, 
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we aimed to determine whether they showed greater technical variability 
or higher background noise and also to identify a minimum number of 
biological and technical replicates required for an acceptable signal-to-
noise ratio. For the linkage studies of the CEPH 1444 pedigree, three 
passages for each of GM12739, GM12740, GM12750, and GM12751 
were used along with single replicates for the remaining 10 individuals.  
Analysis of array hybridization data 
 
The Affymetrix Power Tools software package (Affymetrix) was used to 
quantile normalize the probe fluorescence intensities and to summarize 
the probe set (representing exon expression) and meta-probe set 
(representing gene expression) intensities using a probe logarithmic 
intensity error model (see 
http://www.affymetrix.com/support/technical/technotes/plier_technote.pdf). 
Probe sequences that map to SNPs in a particular sample may give rise to 
altered binding affinities and influence intensity data and the resulting SI 
scores (data not shown); therefore, probe sets were cross-referenced to 
the dbSNP database (release 126) for the presence of polymorphisms 
within the probes, and SNP-containing probes were excluded from this 
analysis. Probes showing sub-background levels of expression in all 
samples were also removed to reduce the influence of these probes on 
total probe set and meta-probe set expression levels. We calculated mean 
probe intensities for a set of anti-genomic probes, which we designated as 
background expression. For each probe on the array, if the intensity for all 
samples was less than the background expression plus two standard 
deviations for the same GC content, then the probe was excluded from the 
summary calculations. The SI score was calculated by simply dividing the 
probe set intensity by the meta-probe set intensity (i.e., exon 
expression/gene expression) after the addition of a stabilization constant 
(13) to both the probe set and meta-probe set scores.  
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PCA was performed on the SI scores from all chips using the Partek 
Genomics Suite software package (Partek) in order to attribute the 
variance averaged over all exons to sources of variability, and to 
determine a confidence level in the consistency of expression profiles from 
biological and technical replicates. Comparison of expression data from 
individuals GM12750 and GM12751 identified outliers for three replicates 
of GM12750 (Figure 3.2) that were excluded from all subsequent 
analyses.  
 
To analyze splicing differences between the two samples for each probe 
set, an unpaired Student’s t-test was performed using the log-transformed 
SI values for all remaining replicates (12 of GM12750 and 15 of 
GM12751) of each individual (R statistical package, version 2.3.0). Probe 
sets showing significantly different SI scores were ranked by P-value. 
Linkage analysis tests of SI scores cosegregating with chromosomal 
regions for the CEPH 1444 family was carried out using MERLIN (version 
1.0.1) with default settings (ABECASIS et al. 2002). The scan was 
performed using a region spanning 20 SNP markers centered on the 
probe set.  
 
Differentially spliced probe sets were filtered using a number of criteria 
including: (1) detectable level above background (DABG < 0.05) for both 
the probe set and the meta-probe set to which it belongs; (2) normalized 
meta-probe set scores with a minimum intensity score of 50; (3) the 
transcript defined by a minimum of three exons; and (4) size of the exon 
corresponding to the probe set is divisible by three. This last criterion was 
added to ensure that changes resulting from exon inclusion/exclusion 
would be in frame, which has been observed in a high percentage of 
conserved and species-specific alternative exons (MAGEN and AST 2005) 
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comparisons, we also required that transcript expression levels between 
samples was less than twofold.  
 
RT-PCR and sequence analysis 
Total RNA was treated with 4 U of DNase I (Ambion) for 30 min to remove 
any remaining genomic DNA. First-strand cDNA was synthesized using 
random hexamers (Invitrogen) and Superscript II reverse transcriptase 
(Invitrogen). For all candidate probe sets, locus-specific primers within the 
adjacent, flanking exons were designed using Primer3 software (ROZEN 
and SKALETSKY 2000). Primers were designed within exons that had the 
following restrictions: (1) flanking exon expression level above background 
(DABG < 0.05) and (2) the flanking exon itself was not predicted to be 
alternatively spliced. Approximately 20ng of total cDNA was then amplified 
by PCR using Hot Start Taq Polymerase (Qiagen) with an activation step 
of 15 min at 95°C followed by 35 cycles of 30 sec at 95°C, 30 sec at 58°C, 
and 40 sec at 72°C and a final extension step of 5 min at 72°C. Amplicons 
were visualized by electrophoresis on a 2.5% agarose gel. Sequencing of 
the two products whose sizes corresponded to the predicted larger 
exon/intron-inclusion and shorter exon-skipped forms confirmed the AS. 
We performed BLAST analysis of the two splice variants against the non-
redundant and EST databases at the National Center for Biotechnology 
Information (NCBI) to verify if both sequences are known or whether a 
novel splice isoform has been identified.  
 
Results 
Examination of splicing differences between two CEPH HapMap 
individuals 
We investigated differences in exon-level expression in lymphoblastoid 
cell lines (LCLs; three biological and five technical replicates, for a total of 
15 replicates per individual) from two unrelated individuals from the CEPH 
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HapMap population (GM12750 and GM12751). We defined the splicing 
index (SI) as the expression level of a given probe set (representing one 
exon) divided by the expression of the corresponding meta-probe set 
(representing the gene), to control for differences in gene expression 
levels between samples (CLARK et al. 2002; SRINIVASAN et al. 2005). 
Principal component analysis (PCA) indicates that the majority of the 
variance in SI is due to individual differences, while the remainder is due 
to biological and technical factors, suggesting that splicing variation 
between the two cell lines is frequent (Figure 3.2). Three of the replicates 
from individual GM12750 appear to be outliers and were removed from all 
subsequent analyses. 
 

 
Figure 3.2: Principal component analysis. A three-dimensional plot of the 
splicing index data showing the three passages of five technical replicates 
each of individuals GM12750 and GM12751, on the left and right sides, 
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respectively. The three biological replicates are shown as purple, orange, 
and yellow spheres, respectively. The three outliers that were removed 
from all subsequent analyses are shaded in a blue sphere. The 
percentage of variance attributed to principal components one and two is 
shown on the X- and Y-axes, respectively. Plots were created using the 
Partek Genomics Suite software package (Partek). 
 
The array contains sequences from two main sources: high confidence 
mRNAs from RefSeq and GenBank databases and ESTs from dbEST, 
and a lower confidence set of speculative gene structures predicted using 
software such as GENSCAN (BURGE and KARLIN 1997), TWINSCAN 
(KORF et al. 2001), and Exoniphy (SIEPEL and HAUSSLER 2004). For this 
study, we restricted our analyses to the high confidence set of mRNAs 
and probe sets. Inclusion of the low confidence theoretical probe sets may 
contribute expression values that go toward the overall summary and 
calculations of the meta-probe set score and may adversely affect the SI 
and all subsequent analyses. In doing so, the number of probe sets has 
been reduced approximately fivefold, from 1.4 million to 277,000 probe 
sets belonging to core RefSeq transcripts.  
 
One of the potential issues regarding the use of microarrays, particularly 
with respect to our study of looking at differences in splicing between 
individuals, is the effect of polymorphisms within the probes that 
potentially affect binding affinities. Single nucleotide polymorphisms 
(SNPs) are very common genetic variations and occur at a frequency of 
one in 1000bp in the human genome (SACHIDANANDAM et al. 2001). 
Considering such a high frequency of SNPs, we would expect a large 
number of the probes to contain SNPs and, in some of the cases, to be 
polymorphic between the individuals that we are examining. In the 
comparison of two individuals, if a SNP exists within the target sequence 
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in only one of the individuals, probe binding and intensity will most likely 
be negatively affected in this sample. This would result in an apparent 
lower SI relative to the individual with the wild-type allele, potentially 
leading to a false-positive identification of differential probe set expression. 
We circumvent this issue by conservatively masking out all probes 
containing SNPs from the dbSNP database (release 126) and all HapMap 
SNPs polymorphic between our two samples, from the calculation of 
probe set and meta-probe set summaries. However, there are most likely 
unknown SNPs that are not yet annotated that may be present within the 
probes on the array, and all candidate probe sets will be dealt with on a 
case by case basis, examining the probe set for any discordant probes 
within them. Probes showing below background intensities in all samples 
were also masked out before calculation of probe set summaries in order 
to avoid potential influences of these low intensity probes on the estimated 
exon and transcript expression levels. After masking out all of these SNP-
containing and background intensity probes, 234K probe sets remain for 
analysis.  
 
After summarizing probe set scores, ∼76K probe sets did not pass the 
statistical DABG (detected above background) criteria (see Methods) and 
therefore were not included in subsequent analyses. In order to identify 
candidates from the remaining 158K probe sets suggestive of differential 
splicing between the two individuals, we performed a t-test comparing the 
log-transformed SI scores on replicates of the two groups. Since there is 
no clear method for optimal determination of statistical cutoffs (THOMAS et 
al. 2005), we applied three different methods for multiple testing 
correction. The Bonferroni correction provided the most conservative 
estimate (P = 3.159 × 10−7, significance threshold P = 0.05), yielding 1892 
potential probe sets (1.2% of expressed “core” probe sets) showing 
differential splicing. The false discovery rate (FDR) (BENJAMINI and 

 50



 

HOCHBERG 1995; STOREY et al. 2007) at a 0.01 significance level provided 
the least conservative estimate (P = 8.915 × 10−4), with 8771 (5.7%) 
potential splicing events. We also ascertained the significance values 
using an empirical null distribution of P-values from the observed data, by 
shuffling the SI scores for all samples of each probe set (CHURCHILL and 
DOERGE 1994). For each probe set, we calculated an empirical P-value by 
comparing our observed, nonpermuted P-value to the distribution of 
permuted P-values, followed by Bonferroni correction on the permuted P-
values. This method estimates 4020 (2.6%) differentially spliced probe 
sets between the two individuals. The average fold change in SI of all 
significant probe sets at the Bonferroni, permuted, and FDR corrected 
cutoffs are 1.85-fold, 1.48-fold, and 1.45-fold, respectively, showing a 
positive correlation between significance and fold-change expression.  
 
We applied some additional biological and statistical criteria to the data set 
(see Methods), reducing the number of candidate probe sets to 1028. 
From this list, we proceeded to test a random selection of probe sets 
ranging from the highest significance level to those near the FDR cutoff. A 
small subset of 20 candidates were subjected to validation by reverse 
transcriptase–polymerase chain reaction (RT-PCR) using a pair of primers 
in two distinct exons flanking a third exon containing the predicted probe 
set. The presence of alternative isoforms for nine transcripts was 
confirmed by RT-PCR (Table 3.1), which translates into a 45% validation 
rate. However, our study evaluates the ability of this microarray 
technology to identify alternative AS events de novo in genetically diverse 
populations. Restricting our candidates to those showing EST and cDNA 
evidence of AS in sequence databases reduces the number of cases from 
20 to 12, thereby increasing our success rate to 60% (seven out of 12). 
This is similar to the observed rates in a genome wide junction array study 
(73/153 = 48%)  (JOHNSON et al. 2003) and a smaller custom array of both 
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exon and junction primers (11/20 = 55%) based on a priori knowledge of 
AS events (LE et al. 2004).  
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Table 3.1: Candidate genes with alternative splicing events 

  
Analysis of validated AS events 
Based on EST and RefSeq evidence, seven of the nine probe sets with 
confirmed AS are predicted to confer exon-skipping events, with the 
exception of the OAS1 and SFRS5 genes. Two OAS1 splice variants 
(RefSeq accession nos. NM_016816 and NM_002534) are predicted to 
encode isoforms with alternative 3′ splice site (ss) usage of the last 
downstream coding exon. The probe set identified in the SFRS5 gene is 
located within an intron between exons 4 and 5 and represents an intron-
retention event. In total, seven of the nine probe sets that were identified 
in this study show annotated evidence in EST and RefSeq databases of 
AS. Probe sets corresponding to exons from the PPFIA1 and SIDT1 
genes show no previous evidence of AS, demonstrating that the array can 
detect novel splicing events.  
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In three (CAST, PPFIA1, OAS1) of the top four validated splicing events 
with the highest degree of fold-change in SI between individuals, we 
observe a clear predominance of one isoform in one individual versus the 
alternate variant in the second individual. The majority of candidates with 
lesser fold changes show the presence of both splice variants in each of 
the individuals. From a biological perspective, the presence or absence of 
one of the two splice variants between individuals is more likely to have a 
functional consequence than are cases where two splice variants are 
expressed in all individuals with subtle differences in relative ratios. Loss 
of function from one variant without compensatory effects from expression 
of the alternative splice isoform may have drastic differences in 
downstream effects. However, until a complete validation of all candidate 
probe sets is performed, we cannot estimate how many of these “all-or-
none” splicing events are present compared with the observation of both 
isoforms in each individual.  
 
In one of our candidate genes, sequence analysis of the RT-PCR products 
identified a variant using a cryptic splice site within the predicted exon. 
Two OAS1 transcripts show alternative 3′ ss usage in the predicted last 
exon of the gene, resulting in differential stop codon usage and a longer 3′ 
UTR in one transcript. In the future, sequence analysis of all validated 
probe sets will be necessary to accurately determine cryptic splice site 
usage, especially those in close proximity to the annotated splice site, 
which may be beyond the resolution of standard gel electrophoresis.  
 
The available EST and mRNA-based evidence of AS in most of our 
candidate genes provides support and validation for our array-based 
discovery of known alternatively spliced transcripts. More importantly, the 
identification of new PPFIA1 and SIDT1 splice variants provide confidence 
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that we may be able to discover novel AS events and increase the catalog 
of the human transcriptome.  
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Association of splicing to cis-regulatory haplotypes  
An important goal of this study was to demonstrate the genetic component 
of AS, specifically the inheritance of a splicing pattern and its association 
to a cis-regulatory haplotype. Using the SI of an exon as a quantitative 
trait, we performed regression-based linkage analysis (implemented in 
Merlin) (ABECASIS et al. 2002) within a three-generation family (CEPH 
1444) for the nine verified AS events detected in this study. At a nominal 
level of LOD > 0.59, corresponding to P < 0.05, we observed evidence of 
linkage between SI scores and the corresponding chromosomal region in 
the OAS1 (LOD = 0.76), CRTAP (LOD = 1.29), and CAST (LOD = 1.98) 
genes. RT-PCR based analysis confirmed segregation of the splicing 
pattern with the associated haplotype through all three generations of this 
pedigree (Figure. 3.3).  

 56

http://genome.cshlp.org/content/17/8/1210.full#F3


 

 
Figure 3.3: Heritability of alternative splicing. Inheritance of alternative 
splicing for genes (A) OAS1, (B) CRTAP, and (C) CAST. Left panel shows 
pedigree structure of CEPH/UTAH family 1444 with the autosomal 
dominant inherited splice pattern as blue symbols. Haplotypes for each of 
the eight founder chromosomes are labeled A, B, C, D, E, F, G, and H, 
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and the two inherited haplotypes of each family member are indicated 
within the symbol. The regulatory haplotype is shown as bold white text. 
Squares represent males, and circles represent females. CEPH/UTAH 
1444 pedigree is labeled as follows: 1 (GM12739), 2 (GM12740), 3 
(GM12741), 4 (GM12742), 5 (GM12743), 6 (GM12744), 7 (GM12745), 8 
(GM12746), 9 (GM12847), 10 (GM12747), 11 (GM12748), 12 (GM12749), 
13 (GM12750), and 14 (GM12751). The right panel shows the two 
transcript isoforms of the genes. Exon-body primers are shown above the 
flanking exons of the predicted alternatively spliced exons. Shown below 
the transcript isoforms are the RT-PCR results. Lanes are numbered from 
1–14 according to the pedigree on the left.   
 
The association between alternatively spliced isoforms and genetic 
variation was examined further by testing our nine candidates on a larger 
panel of 60 unrelated HapMap CEU individuals. In many cases, both 
splice variants are expressed in different ratios in various individuals, but 
the RT-PCR approach that was used here was not sensitive enough to 
quantify the relative isoform levels and establish a statistical association 
with a regulatory haplotype. Other methods based on the use of 
fluorescent dyes such as TaqMan PCR (GIBSON et al. 1996) may be more 
sensitive in detecting relative amounts of each isoform, although the cost 
associated with this technology is prohibitive for large-scale validation of 
predicted AS events. In clear cases where only one of the isoforms or the 
other is expressed, classical RT-PCR is a more suitable method. We were 
able to confirm the previously described association of OAS1 variants to a 
candidate regulatory polymorphism (FIELD et al. 2005) and establish that 
the CRTAP splicing variant is rare and does not occur outside of members 
of CEPH family 1444 (data not shown).  
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The most interesting example of allelic association was identified in the 
CAST gene, which encodes for calpastatin, a calpain protease inhibitor. 
There are at least 11 known isoforms of calpastatin, all differing in their N-
terminal regions (Figure 3.4B) (LEE et al. 1992). The predicted 
alternatively spliced exon of the CAST gene is supported by RefSeq and 
EST evidence of AS and encodes a portion of the first of four repetitive 
protease-inhibition domains. Consequently, removal or disruption of these 
calpain-inhibition domains may affect functionality and/or tissue specificity 
of the protein (TAKANO et al. 1993). The splicing pattern in the entire panel 
was correlated to a single SNP (rs7724759) that is most likely the 
causative polymorphism resulting in our differentially spliced isoforms. The 
SNP is located at the 3′ end of the exon and involves a G to A substitution 
that abates the weak consensus 5′ ss sequence. All individuals genotyped 
as homozygous GG for rs7724759 have an intact 5′ ss sequence and 
properly splice the exon, resulting in the larger PCR product. Individuals 
homozygous for AA at this position have a non-functional 5′ ss on both 
alleles that is improperly recognized by the splicing machinery; as such, 
the exon is excluded and accounts for the shorter, lower molecular weight 
band. When both isoforms are observed, the individual is heterozygous for 
this SNP and has both wild-type and polymorphic alleles. This exon also 
demonstrated linkage in the CEPH 1444 family, as previously mentioned, 
and examination of the pedigree clearly shows the inheritance of the two 
haplotypes through the three generations (Figure 3.3C). 
 

 59

http://genome.cshlp.org/content/17/8/1210.full#F4
http://genome.cshlp.org/content/17/8/1210.full#F3


 

 
Figure 3.4: Association of alternative splicing and genotypes for the CAST 
gene. (A) RT-PCR of CAST exon against a panel of unrelated parents 
from each of the 30 HapMap CEU trios. Sample names are coloured 
according to their genotype for SNP rs7724759: homozygous GG (green), 
homozygous AA (red), and heterozygous AG (black). (B) Four known 
isoforms of the CAST gene are shown with their RefSeq accession 
numbers on the left and the candidate probe set shaded in grey. Shown 
below is the sequence of the exon in capital letters and flanked by the 
intronic sequence in lower case. The SNP rs7724759 is located at the last 
position of the exon and is a G to A substitution that disrupts the 
consensus splice site sequence.   
 
We also examined the remaining eight AS events for both functional 
domains encoded within the respective exons and also for putative cis-
acting SNPs that may control the splicing patterns. We did not identify any 
domains for any of the exons except a putative transmembrane domain 
within the HHAT exon. In most of the cases, the closest polymorphic 
SNPs between individuals GM12750 and GM12751 were all located either 
in the 5′ or 3′ flanking introns but at significant distances (>100 bp) from 
the splice site. We were able to identify SNPs either within or in close 
proximity (<100 bp) to the putative AS exon for the SIDT1 and OAS1 
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genes and within the retained SFRS5 intron. SNP rs2271494 is located 25 
bp upstream of the SIDT1 exon and is found within the polypyrimidine 
tract. Mutations within this region may alter binding between the large 
subunit of the U2 small nuclear ribonucleoprotein particle (snRNP) 
auxiliary factor, U2AF, to this motif (SINGH et al. 1995). The SNP rs151042 
is located within exon 7 of the OAS1 gene and is part of a haplotype block 
where another SNP marker, hCV2567433, at the exon 7 splice-acceptor 
site, has been shown to result in the usage of an internal splice site in the 
mutant allele (BONNEVIE-NIELSEN et al. 2005). In the one example of intron 
retention for the SFRS5 gene, we identified a SNP (rs3104) centrally 
located within the intron; however, it does not appear to disrupt any known 
intronic splice enhancer or silencer. These results demonstrate that 
association studies of alternatively spliced exons with well-genotyped 
individuals are valuable in identifying the potential polymorphisms linked to 
the splicing event. 
 
Discussion 
Identifying AS events is important to understanding the diversity and 
complexity of the human genome, and we report on the use of a 
comprehensive exon-tiling array in our experimental design to discover 
such events between individuals. The same microarray design has also 
been recently used for a complete analysis of tissue-specific differences in 
splicing (GARDINA et al. 2006) and is potentially useful for many pairwise 
comparisons of splicing. Since the design of this array is not biased 
toward a priori knowledge of AS events, there is more potential for 
detecting novel splicing events. We demonstrated that novel isoforms can 
be discovered using this microarray, and others have recently shown the 
same (CLARK et al. 2007b; GARDINA et al. 2006). A number of different 
types of splicing events were identified, including exon exclusion, intron 
retention, and the use of cryptic splice sites. Exon-tiling arrays provide an 
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advantage over exon junction arrays in their ability to identify the use of 
cryptic splice sites due to the design of probes within an exon. Exon-
junction probes can detect the joining of two exons at specific, known 
splice sites and are not as effective at the detection of novel, unannotated 
cryptic splice site usage. However, one disadvantage of tiling probes only 
within exons is its inability to provide information on how all the individual 
exons are linked within the different splice isoforms of a particular gene, a 
feature more suited to an exon-junction probe array. Proper design of an 
exon junction array for the entire human genome to interrogate all possible 
gene structures requires too many probes for every possible joining event. 
Such a design is more suitable for the examination of a smaller number of 
events, as demonstrated recently (BEN-ARI et al. 2006; VALVERDE et al. 
2006; ZHANG et al. 2006). Each of these array designs possesses 
advantages and disadvantages, and given comparable false-positive rates 
obtained in this study and other splicing microarray studies, both are 
useful and informative in the identification of AS events. A follow-up study 
using a custom microarray consisting of a combination of exon and exon-
junction probes may prove useful for confirming AS events and examining 
all possible transcript structures for a smaller subset of genes. This study 
focused on differentially expressed probe sets located within in-frame 
coding exons. Validation of probe sets corresponding to out-of-frame 
exons were not looked at, but these may introduce an upstream stop 
codon through cryptic splice site usage. This may confer differences in 
post-transcriptional regulation through nonsense-mediated decay. Probe 
sets located within 5′/3′ UTRs can also have widely varying biological 
functional consequences, such as changes in promoter regions or 
polyadenylation and transcript termination differences.  
 
Exactly how much differential splicing is occurring between any two 
individuals is still unknown. We estimated that up to 2.5% of all RefSeq 
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exons expressed in lymphoblasts may show differential expression 
between the two samples tested, after factoring in our current validation 
rate, although a more accurate determination on the amount of differential 
splicing events will require a proper ROC-type analysis. However, this 
study examines splicing in lymphoblasts, and this estimate may change 
depending on the tissue tested. Alternative splice variants of the same 
gene can be expressed in multiple cell types to exert different functional 
and regulatory effects, which may also be individual specific. Neuronal 
tissues are known to have high levels of splicing (YEO et al. 2004a), and it 
is not unreasonable to assume that the amount of splicing between 
individuals may be higher in brain tissues than in lymphoblasts. A more 
complete picture may be ascertained by pairwise comparison of splicing in 
many tissues between individuals.  
 
The large amount of genotyping information within identified populations 
from the HapMap project provides a tremendous resource for associating 
known SNPs or regions of linkage disequilibrium with genetic differences 
such as copy number variation, allelic imbalance, and AS, or phenotypic 
traits that may convey an increased risk of disease. Here, we have shown 
that this approach can be used to identify one or more SNPs associated 
with some of the splicing events identified. Further examination of the 
nature of the polymorphisms and their location relative to the spliced exon 
can give insight as to whether it is part of a larger cis-regulatory haplotype 
or in fact the causative SNP disrupting a splice site consensus sequence, 
an exonic splicing enhancer (ESE) or silencer (ESS), an intronic splicing 
enhancer (VIGNAUD et al.) or silencer (ISS), or other splice regulatory 
motifs such as the branch point or the polypyrimidine tract. Assigning a 
definitive causative effect of the SNP will require further experimental 
validation in vitro, such as monitoring splicing activity in cells using splice 
reporter constructs (MAYEDA and KRAINER 1999). However, it is quite 
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possible that there are unannotated SNPs proximal to the exon that are 
responsible for the differential splicing, and resequencing of the genomic 
regions neighboring the exons will be necessary to identify these 
polymorphisms.  
 
Although we identify a candidate exon from the CAST gene showing 
genetic association with expression level changes, we do not know how 
often this occurs in a human population on a genome-wide scale. One 
method of properly assessing how common inherited splicing occurs 
would be to perform a whole-genome association study with more 
individuals from the HapMap population, using the SI scores as a 
quantitative trait. This is very similar to recent whole-genome association 
studies that suggest that common genetic variation explains much of the 
gene expression differences among individuals (STRANGER et al. 2005; 
STRANGER et al. 2007b). Carrying out a similar analysis at the exon level 
will yield better estimates of how common this heritability and genetic 
association is in humans.  
 
The identification of SNPs within specific individuals in a population that 
affect splicing is an important issue to address when considering its 
relevance to possible resistance or susceptibility to disease states. An 
estimated 20%–30% of disease-causing mutations is believed to affect 
pre-mRNA splicing (FAUSTINO and COOPER 2003), through the disruption 
of splice sites, exonic and intronic splicing enhancers and silencers, or 
RNA secondary structure. In this study, the two OAS1 splice variants 
identified have been previously associated with a SNP at an exon splice-
acceptor site. This polymorphism results in the usage of an internal splice 
site in the mutant allele, which is thought to confer differences in host 
susceptibility to viral infection in type I diabetes patients (FIELD et al. 
2005). A genome-wide analysis with well-genotyped CEPH HapMap 
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individuals will be an important starting point in identifying many more AS 
events and the causative polymorphisms involved in human diseases.  
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Connecting text 
In the previous chapter, we compared the transcript expression patterns 
derived from lymphoblast cell lines of two unrelated HapMap individual. 
We established that the Exon Array was capable of detecting different 
types of isoform differences such as alternative initiation, splicing and 
termination. We also found by conducting linkage analyses that some of 
these observed differences were inherited and therefore likely to be under 
genetic control. The efficacy of this pilot study prompted us to continue 
this study on a larger scale.  
 
Chapter 4 describes our use of lymphoblast cell lines derived from 60 
unrelated HapMap individual of Northern European descent that have 
been previously genotyped for ~4 millions SNPs by the International 
HapMap project (THE INTERNATIONAL HAPMAP CONSORTIUM 2003). RNA 
was isolated from these cell lines for each individual and was hybridized to 
an Exon Array. The main goal of this study is to combine the genotype 
information and the transcript expression at the isoform level to carry out 
genome-wide allelic association analysis.  
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Abstract 
We have performed a genome-wide analysis of common genetic variation 
controlling differential expression of transcript isoforms in the CEU 
HapMap population using a comprehensive exon tiling microarray 
covering 17,897 genes. We detected 324 genes with significant 
associations between flanking SNPs and transcript levels. Of these, 39% 
reflected changes in whole gene expression and 55% reflected transcript 
isoform changes such as splicing variants (exon skipping, alternative 
splice site use, intron retention), differential 5' UTR (initiation of 
transcription) use, and differential 3' UTR (alternative polyadenylation) 
use. These results demonstrate that the regulatory effects of genetic 
variation in a normal human population are far more complex than 
previously observed. This extra layer of molecular diversity may account 
for natural phenotypic variation and disease susceptibility. 
 
Introduction 
Alternative pre-mRNA processing increases the complexity of eukaryotic 
transcriptomes, allowing multiple transcripts and protein isoforms with 
distinct functions to be produced from a single genomic locus (KIM et al. 
2004). Within an organism, tissue specific gene isoforms are known to 
have important functions in development and proper functioning of diverse 
cell types (BLACK and GRAVELEY 2006). Across individuals, changes in 
normal isoform structure have phenotypic consequences and have been 
associated with disease (FAUSTINO and COOPER 2003; NISSIM-RAFINIA and 
KEREM 2005). Splicing defects in a number of genes, such as the cystic 
fibrosis transmembrane conductance regulator, CFTR, result in several 
known mendelian disorders (ZIELENSKI 2000). More subtle changes, such 
as alternative 3' processing and polyadenylation, have recently been 
associated with complex disorders: OAS1 in severe acute respiratory 
syndrome (FIELD et al. 2005), TAP2 in type I diabetes (QU et al. 2007), 
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and IRF5 in susceptibility to systemic lupus erythematosus (CUNNINGHAME 

GRAHAM et al. 2007; GRAHAM et al. 2007). 
 
Several recent studies have suggested that natural variation at the level of 
whole-gene expression is common in humans and is associated with 
genetic variants, such as SNPs or copy number variants (CNVs) (CHEUNG 
et al. 2005; SPIELMAN et al. 2007; STRANGER et al. 2005; STRANGER et al. 
2007a). Studying variation in gene expression is becoming increasingly 
important because of its contribution to phenotypic differences among 
individuals and its possible regulatory and functional relationships to 
diseases. However, little is known at present about the genetic variation at 
the sub-transcript level or about differences in multiple transcript isoforms 
of the same gene. Here, we interrogated transcripts across their entire 
length, using the Affymetrix GeneChip Human Exon 1.0 ST Array, which 
can detect splicing differences between various types of samples (CLARK 
et al. 2007b; GARDINA et al. 2006; KWAN et al. 2007). 
 
Methods 
Cell line preparation 
We obtained triplicate RNA samples from LCLs derived from the parents 
of 30 CEPH (CEU) trios (60 individuals) that had been genotyped for 
approximately 4 million SNPs by the International HapMap Project (THE 

INTERNATIONAL HAPMAP CONSORTIUM 2005). Cells were grown at 37 °C and 
5% CO2 in RPMI 1640 medium (Invitrogen) supplemented with 15% 
(vol/vol) heat-inactivated FCS (Sigma-Aldrich), 2 mM L-glutamine 
(Invitrogen) and penicillin/streptomycin (Invitrogen). Cell growth was 
monitored with a hemocytometer and cells were collected at a density of 
0.8 106 to 1.1 106 cells/ml. Cells were then resuspended and lysed in 
TRIzol reagent (Invitrogen). Three successive growths were performed 
(corresponding to the second, fourth and sixth passages) after thawing 

 68



 

frozen cell aliquots. Three cell lines showed extremely poor growth and 
were not used in the study, leaving 57 LCLs for subsequent analyses. 
 
 
Affymetrix exon arrays 
We isolated RNA using TRIzol reagent following the manufacturer's 
instructions (Invitrogen) and assessed the RNA quality using RNA 6000 
NanoChips with the Agilent 2100 Bioanalyzer (Agilent). Biotin-labeled 
targets for the microarray experiment were prepared using 1 g of total 
RNA. Ribosomal RNA was removed with the RiboMinus Human/Mouse 
Transcriptome Isolation Kit (Invitrogen) and cDNA was synthesized using 
the GeneChip WT (Whole Transcript) Sense Target Labeling and Control 
Reagents kit as described by the manufacturer (Affymetrix). The sense 
cDNA was then fragmented by uracil DNA glycosylase and 
apurinic/apyrimidic endonuclease-1 and biotin-labeled with terminal 
deoxynucleotidyl transferase using the GeneChip WT Terminal labeling kit 
(Affymetrix). Hybridization was performed using 5 micrograms of 
biotinylated target, which was incubated with the GeneChip Human Exon 
1.0 ST array (Affymetrix) at 45 °C for 16–20 h. After hybridization, non-
specifically bound material was removed by washing and specifically 
bound target was detected using the GeneChip Hybridization, Wash and 
Stain kit, and the GeneChip Fluidics Station 450 (Affymetrix). The arrays 
were scanned using the GeneChip Scanner 3000 7G (Affymetrix) and raw 
data was extracted from the scanned images and analyzed with the 
Affymetrix Power Tools software package (Affymetrix). 
 
Preprocessing and analysis of array hybridization data 
The Affymetrix Power Tools software package was used to quantile-
normalize the probe fluorescence intensities and to summarize the probe 
set (representing exon expression) and meta–probe set (representing 
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gene expression) intensities using a probe logarithmic-intensity error 
model (Affymetrix). High false-positive rates are common in microarray 
studies, and previous studies have suggested that a major factor arises 
from probes overlapping SNPs that result in changes to hybridization 
intensity (NAEF and MAGNASCO 2003), potentially influencing the apparent 
association between the SNP genotype and probe intensities. To reduce 
potential influences of SNPs on false positives, all probes containing 
known SNPs (dbSNP release 126) were masked out before summarizing 
probe set and meta–probe set scores. The presence of unannotated SNPs 
affecting probe hybridization will remain (see below), but these cannot be 
detected by any statistical methods except for the impractical solution of 
resequencing all probes across the panel used in the study. We also 
filtered probe intensity levels by magnitude of response, removing probes 
that seemed to be in the background. Probe intensities were extracted for 
a series of 16,934 antigenomic probes targeted to nonhuman sequences 
and averaged by their relative G+C content. The threshold for background 
expression was defined as the average intensity for a given G+C content 
plus 2 standard deviations. For any given genomic probe on the array, if 
the intensity across all samples was below the threshold for the same 
G+C percentage, then it was considered background and masked from 
the analysis. In total, 670,809 probes corresponding to core annotated 
probe sets were masked from the analysis, reducing the number of core 
probe sets in the analysis to 244,027 probe sets. 
 
Association analysis and multiple test correction 
We examined probe set expression levels for association with flanking 
SNPs. For each of the 244,027 core probe sets and 17,653 meta–probe 
sets, we tested for association of the expression levels to HapMap phase 
II (release 21) SNPs with a minor allele frequency of at least 5% within a 
50-kb region flanking either side of the gene containing the probe set, 
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using a linear regression model in the R software package. Raw P-values 
were obtained from the regression using the standard asymptotic t-
statistic. 
 
To correct for testing of associations between multiple probe sets and 
SNPs, we carried out permutation tests followed by FDR correction. Within 
each expression-versus-genotype matrix, we randomly permuted the 
expression values for all probe sets belonging to the same meta–probe set 
(to preserve the haplotype block structure). For each expression 
measurement, we computed and retained only the highest asymptotic P-
value and produced the distribution of maximum P-values within the 
permuted dataset. The maximum asymptotic P-values from the 
experimental data were then converted into empirical P-values by 
mapping onto the permuted distribution. The above procedure corrects for 
testing multiple SNPs against each expression value. Subsequently, we 
performed an FDR correction (BENJAMINI and HOCHBERG 1995) on the 
empirical P-values, to control the FDR across multiple expression values. 
The procedure was applied separately to measurements at the probe set 
and meta–probe set levels. We used a 0.05 FDR criterion as a 
significance cutoff in our analysis. For the sake of clarity, all of the values 
and cutoffs quoted in the results correspond to the raw, uncorrected P-
values. 
 
Classification of transcript isoforms 
We developed an automated method to categorize the transcriptional and 
isoform changes. The algorithm first classifies transcripts as expression 
variants if there is an association of the entire meta–probe set significant 
at the P < 6.02 10-7 level (see above for explanation of the cutoffs). 
Subsequently, the algorithm identifies all individual probe sets significant 
at the P < 9.73 x 10-9 level that do not belong to the expression variants 
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detected above. All such significant probe sets are then grouped into 
blocks corresponding to exons, according to their RefSeq annotation. 
Each significant block is classified as an initiation, splicing or termination 
change according to its position within the transcript (3', internal, or 5', 
respectively). Cases with two or more of the above events occurring in a 
single transcript are classified as complex. Finally, all results were 
manually curated. To visualize the potential nature of the isoform changes 
on a gene level, the probe sets were examined in the context of their 
transcript, mRNA, and EST information. For each gene predicted to have 
SNP-associated transcript- or exon-level expression changes, we plotted 
the P-values of all the corresponding probe sets and overlaid the fold 
change expression levels between the two homozygous genotypes for the 
significant SNP identified in the association analyses (see Supplementary 
Figure 2 - www.nature.com/ng/journal/v40/n2/suppinfo). We made minor 
adjustments (23 of 324 events) to the automated classifications, mostly in 
cases where the designations were not consistent with annotated 
alternative isoform structures or where the Affymetrix transcript annotation 
was incorrect. 
 
Validation of transcript isoform changes 
Total RNA was treated with 4 U of DNase I (Ambion) for 30 min to remove 
any remaining genomic DNA. First-strand complementary DNA was 
synthesized using random hexamers (Invitrogen) and Superscript II 
reverse transcriptase (Invitrogen). All primers used for RT-PCR reactions 
(see Supplementary Table 3 - 
www.nature.com/ng/journal/v40/n2/suppinfo) were designed using 
Primer3 software (ROZEN and SKALETSKY 2000). Candidate probe sets 
showing association were validated in two ways, depending on their 
location within the gene. For all probe sets located within coding exons 
and possessing flanking exons in all known RefSeq isoforms, we designed 
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locus-specific primers within the adjacent flanking exons. Approximately 
20ng of total cDNA was then amplified by PCR using Hot Start Taq 
Polymerase (Qiagen) with an activation step at 95 °C (15 min) followed by 
35 cycles at 95 °C (30 s), 58 °C (30 s) and 72 °C (40 s) and a final 
extension step at 72 °C (5 min). Amplicons were visualized by 
electrophoresis on a 2.5% agarose gel. 
 
For probe sets located within 5' or 3' untranslated regions or within exons 
that did not have a flanking exon, we designed a set of primers to amplify 
the differentially expressed candidate probe set itself. For comparison, 
other primer pairs were designed to amplify products that corresponded to 
the adjacent probe sets and were not significantly associated with the 
same SNP. Total expression measurements were carried out using real-
time PCR with Power SYBR Green PCR Master Mix (Applied Biosystems) 
following the manufacturer's instruction on an ABI 7900HT (Applied 
Biosystems) instrument. The reaction was set up in 10 l final volume 
applying the following conditions: 8 ng of total cDNA and 0.32 M of gene-
specific primers; cycling, 95 °C (15 min) and 95 °C (20 s), 58 °C (30 s), 72 
°C (45 s) for 40 cycles. Relative quantification of each amplicon was 
evaluated on RNA from 57 cell lines in triplicate. For each amplicon, a 
standard curve was established using dilution series of a mix of cDNA 
samples with known total cDNA concentration. Human 18S rRNA was 
also quantified using TaqMan probes as a control for well-to-well 
normalization (TaqMan Pre-Developed Assay Reagents for Gene 
Expression – Human 18S rRNA, 4319413E, Applied Biosystems). The 
cycle threshold (Ct) values for each replicate were transformed to relative 
concentrations using the estimated standard curve function (SDS 2.1, 
Applied Biosystems) and normalized based on 18S real-time data from the 
same samples to account for well-to-well variability. The quantitative data 
was used in regression analyses with the same SNP identified in the 

 73



 

original association to confirm the significance, using a P-value threshold 
of 0.05/N where N is the number of candidate genes tested using this 
method. The regression line was required to be in the same direction as 
the original association. Quantitative RT-PCR of the control probe sets 
showing no association with the SNP were also required to be 
nonsignificant at this threshold. 
 
Effect of unannotated SNPs on the analysis 
We have previously shown that SNPs located within probes may affect 
their hybridization to target DNA (KWAN et al. 2007), and have therefore 
conservatively masked out all probes containing SNPs to circumvent this 
problem. However, probes containing unannotated SNPs are not 
accounted for; therefore, we wanted to assess the effect of these unknown 
SNPs on our analysis. We selected 83 genes, each of which contained 
only a single significant probe set. Many (63) of these probe sets are 
supported by a single independent, nonoverlapping probe, and such probe 
sets are the most susceptible to the effect of SNPs, because every probe 
could potentially be affected by a single SNP. We sequenced the probe 
sets from the cell lines of six individuals, three from each of the two 
homozygous genotypes of the associated SNP. We observed that the 
sequences for 56 probe sets (67.5%) were identical in all samples tested, 
suggesting that these are more likely to be true events and not an artifact 
of one or more SNPs located in the individual probes representing the 
probe set. In the remaining 27 probe sets (32.5%), we identified previously 
unknown SNPs or indels overlapping one or more of the probes of the 
probe set, and in most cases, these polymorphisms segregated with one 
of the two homozygous sample groups, most likely giving rise to the 
apparent false-positive hit. We excluded these 27 probe sets from our 
candidate list presented in the manuscript. All of the remaining candidates 
are supported by two or more independent probes, and are much less 
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susceptible to the effect of unknown SNPs. Only 2 out of the 32 
candidates from the final dataset selected for validation (6%) contained 
previously unidentified SNPs and hence failed validation, showing that the 
effect of SNPs on the final results presented here is small. 
 
Results and discussion 
Exons within a gene are represented on the microarray by individual probe 
sets, and were considered discrete units for our analysis of transcript 
isoform-processing differences. We used triplicate samples of 
lymphoblastoid cell lines (LCLs) derived from 57 unrelated Centre 
d'Etudes du Polymorphisme Humain (CEPH) CEU individuals (Utah 
residents with northern and western European ancestry) genotyped by the 
HapMap consortium (THE INTERNATIONAL HAPMAP CONSORTIUM 2005), 
allowing us to establish a possible genetic basis for any observed 
variations in transcript isoforms with associated SNPs. A linear regression 
analysis under a codominant model was carried out to associate probe set 
expression intensities with the genotypes of all SNP markers within a 
window of 50 kb flanking the boundaries of the transcript cluster (meta–
probe set) containing the probe set. We assessed the statistical 
significance of the variation using the t-statistic, and used the regression 
equation to estimate the fold change in expression between the two 
homozygous genotypes. We used permutation testing (CHURCHILL and 
DOERGE 1994) to determine empirical P-values corresponding to the 
asymptotic P-values obtained from the regression. Subsequently, we 
applied the false discovery rate (FDR) correction to establish a cutoff P-
value of 9.73 x 10-9, corresponding to the 0.05 FDR level (see Methods). 
This yielded 757 unique probe sets showing significant SNP associations, 
belonging to 317 unique meta–probe sets (see Supplementary Table 1 - 
www.nature.com/ng/journal/v40/n2/suppinfo). Although the most 
significant SNPs may not be the causative polymorphisms responsible for 
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these differences in probe set expression, they are very probably in 
linkage disequilibrium with the causative polymorphism(s). This is 
reflected in the distance distribution of associated polymorphisms, most of 
which are in close proximity to the probe sets (see Supplementary Figure 
1 - www.nature.com/ng/journal/v40/n2/suppinfo). The association analysis 
at the transcript (meta–probe set) level resulted in a 0.05 FDR cutoff of 
6.02 x 10-7, yielding 127 unique transcripts with significant genetic 
association at the gene expression level. Of these 127 transcripts, all but 
seven were common to the 317 transcripts derived from the regression 
analysis at the probe-set level; therefore, our final dataset comprised 324 
transcripts predicted to have expression changes at the meta–probe set 
and/or probe set level. 
 
We examined the 324 transcripts in greater detail (Figure 4.1; examples in 
Figure 4.2) to determine the nature of the isoform changes on a transcript 
level (summarized in Supplementary Table 2 and Supplementary Figure 2 
- www.nature.com/ng/journal/v40/n2/suppinfo). Expression changes were 
automatically classified on the basis of the positions of the variable probe 
sets, followed by manual curation based on visualization of the entire 
transcript (Supplementary Figure 2 - 
www.nature.com/ng/journal/v40/n2/suppinfo). A large number of genes 
(127, or 39%) showed whole-gene expression changes. However, an 
even larger proportion (55%) of genes showed transcript-isoform changes 
only, without an accompanying change in the expression of the entire 
locus. Nearly half of these transcript variations were at the splicing level 
(85, or 26%), with the remaining changes at the level of transcript 
termination (57, or 18%) and initiation (35, or 11%) (Figure 4.3). It should 
be noted that some of the genes showing changes in the expression level 
of the whole gene also showed further changes in splicing, transcript 
termination and/or transcript initiation, suggesting that transcript isoform 
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variation constitutes a large part of the genetic variation we have 
observed. A small number (20, or 6%) of genes showed very complex 
patterns of isoform variation that were difficult to interpret. Notably, when 
we compare the proportion (18%) of significant probe sets within the 3' 
untranslated regions (UTRs) with the proportion of all 3' UTR core probe 
sets (13%) on the array, we found a significant over-representation 
(Pearson's chi-squared test, P = 5.73 x 10-6) of probe sets in this region, 
indicating that transcript termination variations may occur more frequently 
than expected. Because predicted changes to the 3' UTR may affect 
mRNA stability and subcellular localization, this type of isoform variation 
may have important regulatory roles. These findings illustrate a very 
complex pattern of expression changes associated with genetic variation, 
encompassing alterations at the whole-gene expression level and/or 
differences in transcript isoforms. 
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Figure 4.1: Analysis steps from identification of significant probe set in 
PARP2 gene to validation. (a) Linear regression analysis of expression 
scores for probe set (PS) 3527423 with genotypes of SNP rs4981998, 
giving a P-value of 2.81 x 10-30. Probe set scores for each individual are 
shown in red and regression line is indicated with blue dashes. (b) 
Visualization of probe set 3527423 in the context of all other probe sets 
belonging to the same transcript (meta–probe set 3527418). For each 
probe set, the significance level (P-value) is graphed (red line), along with 
fold change expression between the mean scores of the two homozygous 
genotypes (meanTT / meanCC) (vertical blue bars). The solid horizontal 
red and blue lines represent the significance and fold change expression 
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for the regression analysis at the meta–probe set level against SNP 
rs4981998. Arrow, probe set 3527423. (c) RT-PCR validation of probe set 
3527423 using flanking exon-body primers. Individuals are highlighted by 
color according to their genotype for SNP rs4981998: CC (red), CT 
(black), TT (blue). (d) Schematic of 5' end of two isoforms of PARP2 with 
exon array probe sets shown below the exons. The significant probe set 
3527423 is highlighted in red and corresponds to alternative 5' splice site 
use resulting in a larger second exon for NM_005484.  
 

 
Figure 4.2: Examples of different types of transcript isoform events 
observed (data is graphed as in Figure 4.1b). (a) Gene expression level 
changes of ERAP2, including alternative splicing of a cassette exon. (b) 
Differential 3' UTR change of ERAP1 resulting in long and short isoforms 
with alternative stop codon use. (c) Expression of two TCL6 transcript 
isoforms that contain different 5' and 3' ends. (d) Increasing significance 
and fold change in expression levels toward the 3' end of the CCT2 gene, 
suggesting genetic variation associated with mRNA stability.  
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Figure 4.3: Classification of genes showing expression changes at the 
exon and/or transcript level. The 324 genes were classified into separate 
categories depending on the nature of the isoform change occurring: 
expression changes at the whole transcript level (green), transcription 
initiation changes (yellow), alternative splicing of a cassette exon (blue), 
transcription termination changes (purple), and complex changes of 
multiple event types (red). The percentages shown assume a uniform 
false-positive rate for all results. To obtain a lower bound for the relative 
frequency of isoform variants, we have also recalculated the frequencies 
of the isoform changes (but not whole-gene expression and complex 
changes) based on our current false positive rate estimate of 20% (from 
validation experiments). Thus, we obtained the following ranges for each 
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of the changes: whole gene expression, 39–44%; initiation, 10–11%; 
splicing, 24–26%; termination, 16–18%; and complex events, 6–7%.  
 
We proceeded, using two different methods, to validate 32 of our top 
candidate events distributed among the coding (16), 5' UTR (6), and 3' 
UTR (10) regions. For alternative splicing events of internally located 
probe sets, we performed RT-PCR on our entire panel of cell lines using 
exon-body primers in the two exons flanking the candidate probe set 
(Figure 4.1c). We confirmed 15 probe sets showing SNP association to 
splicing of a cassette exon or intron (Table 4.1) and classified them as 
follows: eight probe sets corresponded to splicing of a coding exon, four 
probe sets were located in the 5' UTR and resulted in the removal of 
potential promoter sequences or alternative start codon use, two probe 
sets were found within intronic regions and resulted in intron retention, and 
the remaining probe set was located in the 3' UTR and altered its length. 
The second, more sensitive validation method using quantitative real-time 
RT-PCR was applied to differentially expressed probe sets within the 5' or 
3' UTR and to those in which one of the flanking probe sets was missing in 
one of the alternative isoforms. We designed sets of primers to amplify the 
differentially expressed probe set itself and compared the resulting PCR 
products to ones corresponding to adjacent probe sets showing no 
association to the SNP and also expected to have similar expression 
levels across all cell lines. Quantitative PCR data was used to perform a 
linear regression fit with the original associated SNP and confirm the 
significance and direction of the association analysis with the microarray 
data at a nominal P-value of 0.05/N, where N is the number of candidates 
tested in the real-time RT-PCR. Using this method, we validated six UTR-
located probe sets showing SNP association: four in the 3' UTR 
(alternative polyadenylation) and two in the 5' UTR (differential 
transcriptional initiation). We also used this method on the candidate 
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probe sets that failed our initial validation method owing potentially to low 
sensitivity of endpoint PCR of minor isoforms, and we were able to 
validate another four probe sets: two within coding regions and two within 
the 3' UTRs. In total, 25 of 32 candidate probe sets were validated, for a 
success rate of 78%. The remaining 7 probe sets failed validation, which 
can be partially accounted for by unannotated SNPs located within the 
probe sets possibly leading to altered hybridization signals (ALBERTS et al. 
2007) (see Methods), suboptimal primer design, limited sensitivity of our 
validation methods, and/or noise from the microarray. We also validated 
several differentially spliced exons under a more relaxed stringency below 
our estimated cutoff, indicating that the frequency of genes showing SNP-
associated changes is probably greater than what can be estimated from 
our current analysis. A recent estimate suggests that 21% of annotated 
alternatively spliced genes are associated with SNPs that determine the 
relative abundances of the alternative transcript isoforms (NEMBAWARE et 
al. 2004). 
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Table 4.1: Validation of probe sets 

 
A recent study used Illumina arrays to capture gene expression 
information within the CEU population (STRANGER et al. 2007a).The 
Illumina design, along with many other expression platforms, targets 
probes to the 3' end of genes and cannot identify specific isoform 
changes. Our present results demonstrate that the nature of the changes 
is qualitatively different than previously reported for several genes in that 
study. For example, our analysis shows that IRF5, implicated in 
susceptibility to systemic lupus erythematosus, shows differences in the 3' 
UTR (Figure 4.4), where the A allele of rs10954213 creates a functional 
polyadenylation site, shortening its 3' UTR (CUNNINGHAME GRAHAM et al. 
2007; GRAHAM et al. 2007). This result for IRF5 contrasts the original 
predicted change at the gene expression level (CHEUNG et al. 2005; 
SPIELMAN et al. 2007; STRANGER et al. 2005; STRANGER et al. 2007a) and 
occurs because the Illumina array interrogates IRF5 with a probe in the 3' 
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UTR specific to the long isoform. Other examples previously classified as 
expression changes include PTER, which we show to have a variation in 
the 3' UTR, and C17orf81 (also known as DERP6), which shows 
alternative splicing of a cassette exon. Another interesting example is 
ERAP2, which has been reported as having an expression change 
(CHEUNG et al. 2005). Our results confirm this variation in expression; 
however, we additionally detect alternative splice-site use in one of the 
exons (Figure 4.2a). Many platforms have been used so far in these 
population-wide expression analyses, and although there is substantial 
overlap between the studies, significant discordance also exists. A recent 
paper identified 374 gene-expression phenotypes associated with SNP 
markers from a study of 3,554 genes (CHEUNG et al. 2005). Differences in 
statistical stringency and false discovery rate most likely explain the higher 
proportion of SNP associations in their study. However, their set of 3,554 
genes was pre-selected for the most variable expression phenotypes 
among an original set of >8,000 genes. This restricted set of genes may 
exclude examples of isoform changes without an accompanying change in 
whole-gene expression, which we observed in our study. In future 
expression association studies, comparative meta-analyses across 
different microarray designs may help eliminate platform-specific technical 
artefacts and allow the elucidation of true isoform and gene-level 
variations. 
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Figure 4.4: Validation of 3' UTR change in IRF5 by quantitative real-rime 
RT-PCR (a) Schematic of the 3' ends of the long and short isoforms of 
IRF5. Exons are shown in blue, introns are dashed lines, and solid 
horizontal lines below the exons indicate probe sets. (b) Regression 
analyses of probe sets 3023263 and 3023264 against SNP rs10954213. 
(c) Regression analysis of Ct counts from quantitative real-time RT-PCR 
against the genotype of SNP rs10954213, to confirm the original 
microarray data. We used two sets of primers on the panel of individuals, 
designed to amplify probe sets 3023263 and 3023264, respectively. 
 
We show that tools such as the exon array, targeting probes to many 
regions of the gene, give a more complete picture of the true complexity of 
variation in gene expression than previously believed. This variation exists 
at all levels of transcript processing, beginning with initiation of 
transcription, through pre-mRNA splicing (HULL et al. 2007; KWAN et al. 
2007; NEMBAWARE et al. 2004), to alternative polyadenylation, and it has 
the potential to exert diverse cellular responses and phenotypic effects. 
Transcript alterations within coding regions of the gene, such as the 

 85



 

addition or removal of sequences coding for functional domains or the 
introduction of premature stop codons, may greatly alter the protein 
sequence, structure and function (LEWIS et al. 2003; LIU and ALTMAN 
2003). Changes outside the coding regions can also have wide-ranging 
regulatory consequences. Differential exon selection within the 5' and 3' 
UTRs may alter mRNA stability and translational efficiency by the addition 
or removal of regulatory sequences. In some genes (for example, ATPIF1 
and TAP2), selection of an alternative splice site for the terminal exon 
resulted in differential stop codon use and, consequently, changes in the 
length and composition of the 3' UTR. Alterations in the 3' UTR can also 
be affected by alternative use of polyadenylation sites and approximately 
half of human genes are predicted to contain several polyadenylation 
sites, resulting in transcripts with different 3' UTR lengths (TIAN et al. 2005; 
YAN and MARR 2005). Altering a functional polyadenylation site through a 
single polymorphism may lead to isoform switching. The 3' UTR is also 
involved in post-transcriptional regulation through the targeting of specific 
UTR sequences by microRNAs (miRNA) (VALENCIA-SANCHEZ et al. 2006; 
WU et al. 2006). Expression of multiple isoforms may be indirectly 
controlled through the differential expression of miRNAs or by 
polymorphisms in these miRNA-specific sequences. The end 
consequence of many of these alterations in the UTRs affects a cascade 
of downstream processes such as stability, localization and translation 
efficiency, and it directly contributes to phenotypic diversity and possible 
disease states. A systematic characterization of the polymorphisms to 
determine the true causative SNPs resulting in these changes will lead to 
the possible identification of new regulatory motifs and is currently being 
undertaken. 
 
Earlier studies suggested that gene expression constituted an important 
piece of human variation, and although it remains a significant aspect, the 
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added complexity of transcript-processing variations and the potential 
outcome of these differences greatly alter our earlier perceptions. We 
estimate that between 50 and 55% of gene expression variation is isoform 
based. Our results constitute an important change in way we view the 
effects of common genetic variation in humans and highlight the need for 
broader investigation into the causes of differential gene expression, as 
well as previously found and new disease associations that lack clear 
functional variants. 
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Connecting text 
In the last chapter, we demonstrated the existence of common transcript 
expression variations at the isoform level in a normal human population. 
We showed that differences such as alternative initiation, splicing and 
termination were associated to common genetic single nucleotide 
polymorphisms (SNPs). Our results show that the effects of genetic 
variants on transcript expression at the isoform level are much more 
complex than previously believed, and constitute an important step 
towards understanding the functional consequences of such variations.  
 
Given the extent of isoform variations we observed in a human population, 
we hypothesized that these types of variation should be prevalent 
between humans and chimpanzees and that some specie-specific traits 
evolved through regulatory modifications that control these mechanisms. 
In this chapter, we describe the first genome-wide comparison of transcript 
isoform variations between humans and chimpanzees by comparing the 
isoform variation in from lymphoblast cell lines between the 60 HapMap 
individuals used in the previous chapter and a single chimpanzee, Clint, 
for which the chimpanzee genome is derived from (THE CHIMPANZEE 

SEQUENCING AND ANALYSIS CONSORTIUM 2005). 
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Abstract 
The sequencing and comparison of the human and chimpanzee genomes 
has revealed only a small number of genomic variations; yet these closely 
related species present many different phenotypic traits. Previous studies 
have begun to identify the mechanisms responsible for these differences. 
We found that around 58% of the 8,578 genes we defined as expressed in 
lymphoblast cell lines derived from these two closely related species, 
presented either whole-gene (34%) or isoform expression changes (24%). 
The major type of isoform change we observed were represented by 
differential inclusion of cassette exons but we also observed differences in 
alternative transcription initiation and polyadenylation sites. We conducted 
a comparative genomics analysis and showed that the presence of 
substitutions predicted to alter the strength of splice sites and miRNA 
binding sites were correlated with isoform and whole transcript expression 
changes. A functional gene ontology analysis revealed that these genes 
with expression differences affect many different pathways related to 
metabolism and immunity. As an example, we described in detail the 
expression changes that occur in the Nf-κB pathway that is activated 
following an infection by certain types of viruses, such as HIV-1, and 
discuss its possible role in conveying different susceptibility of humans 
and chimpanzees to AIDS. Together our results demonstrate that genomic 
differences between humans and chimpanzees affect transcription and 
pre-mRNA processing and may be responsible of certain phenotypic 
differences observed between these two closely related species. 
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Introduction 
 
For thousands of years, humans have contemplated their uniqueness. 
Now with the ushering of the post-genomic era, answers to what makes us 
human are finally acquiring a molecular perspective. An important 
challenge in evolutionary biology is to identify the set of molecular 
characteristics that account for our unique cognitive, behavioral and 
physiological traits that have emerged since we last shared a common 
ancestor with chimpanzees, around 6 millions years ago (VIGNAUD et al. 
2002). At the root of these differences are the molecular changes that 
stem from genomic variations that in turn have shaped the transcriptomes 
and proteomes of these species. In recent years, the sequencing and 
comparison of the human and chimpanzee genomes has revealed the 
extent of this genomic diversity. These species have accumulated around 
~35 million single-nucleotide changes, 5 million insertion/deletion events, 
and various chromosomal rearrangements (CONSORTIUM 2005). Yet little is 
known about how these genomic variations translate to variations in the 
transcriptomes and proteomes and subsequently to overall phenotypic 
diversity between these two species. 
 
The comparison of human and chimpanzee transcriptomes represents a 
critical first step toward understanding the evolution of species-specific 
phenotypes. Researchers have begun to compare gene expression 
profiles of humans and chimpanzees and have found remarkable diversity, 
particularly in testis (ENARD et al. 2002; KHAITOVICH et al. 2005). Another 
study has highlighted variation between humans and chimpanzees at the 
sub-transcript level in some genes where differential inclusion of exons 
produced different mRNA isoforms (CALARCO et al. 2007). Other types of 
processes can generate transcriptome variation such as alternative 
promoter usage where transcription is initiated at different positions or 
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alternative termination where the use of different polyadenylation sites 
marks the end of the transcript.  
 
Here we use an exon-centric expression microarray to compare the 
human and chimpanzee sets of mRNA molecules from transcribed exons 
of protein coding gene. To illustrate the variation, we use a model system 
of lymphoblastoid cell lines (LCLs), which we previously used to study 
transcriptome diversity in humans (KWAN et al. 2008; KWAN et al. 2007). 
Our comparison reveals that around half of the genes expressed in LCLs 
present either isoform or whole-gene expression changes between 
humans and chimpanzees. The most common type of isoform variation is 
caused by alternatively spliced coding exons but we also observed 
expression differences in the 5’ and 3’ UTR regions that arise with the use 
of different transcription start and termination sites, respectively. We also 
demonstrate an association between these isoform variations and single 
nucleotide substitutions that occur between the genomes of these two 
species. We showed that these substitutions can occur in sequences that 
regulate splicing and gene expression, such as splice site consensus 
sequences, regulatory motifs, and microRNA binding sites, respectively. 
An in-silico pathway analysis revealed that isoform and whole-expression 
changes are often targeted immune response genes. As an example of 
this phenomenon, we describe the changes that occur in the Nf-κB 
pathway that is activated following an infection by certain types of viruses 
such as HIV-1 and discuss its possible role in conveying different 
susceptibility of humans and chimpanzees to AIDS.  
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Materials and Methods 
Microarray data source 
Human expression data was obtained from one of our previous studies 
where we surveyed isoform variation in humans (KWAN et al. 2008). This 
data set comprised of 57 unrelated HapMap individuals of European 
ancestry (INTERNATIONAL_HAPMAP_CONSORTIUM 2005). Immortalized 
lymphoblast cells derived from these individuals were grown in triplicate 

and RNA was extracted from each of these growths and hybridized onto 
an Affymetrix Human Exon array (n = 171) as described in (KWAN et al. 
2008).  
 
Four chimpanzee (Pan troglodytes) lymphoblast cell lines were obtained 
at the Coriell Cell Repositories (http://ccr.coriell.org) and processed 
following the same protocol that was used for the HapMap samples (see 
above). One of these samples was from Clint (Coriell id: S006006) who 
was selected for the availability of his genomic sequence (CONSORTIUM 
2005) and the other three were from a family trio (Coriell ids: S003657, 
S003612, S003610). We prepared five (n = 5) successive cell harvest or 
biological replicates for Clint and one for each of the other three 
chimpanzees (n =1). Due to issues of probe hybridization (see below) we 
focused our analysis on samples derived from the chimpanzee Clint. 
 
Noise reduction strategies 
We implemented different strategies to reduce the sources of noise that 
often led to erroneous results. The first strategy we used was to only 
include probes targeted to the ~260,000 core RefSeq exons because of 
their high confidence annotation and to reduce the size of our data set. 
The second was to implement a strategy we described in our previous 
study (BENOVOY et al. 2008). Briefly, we showed that microarray studies 
conducted on samples with different genetic backgrounds presented high 
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rates of false positives hits because of mismatches between microarray 
probes and its intended target resulted in erroneous probe signals and 
subsequently lead to incorrect estimates of exon (probe set) and gene 
(meta-probe set) expression. To mitigate this effect, we removed probes 
targeted to regions that were not identical in chimp and human. The 
availability of the chimpanzee (Clint) genome sequence (CONSORTIUM 
2005) allowed us to identify 297,017 (27%) probes targeted to core exons 
that contained mismatches. This step removed the majority of 
misbehaving probes due to inter-species mismatches, however, to remove 
intra-species difference, we masked out probes that targeted potential 
polymorphic position in our samples. Based on SNP positions of human 
and chimpanzee from dbSNP version 128 
(http://www.ncbi.nlm.nih.gov/projects/SNP/), we identified and removed 
127,087 and 9,515 probes targeted to these polymorphic positions in 
humans and in chimpanzees, respectively. The lower numbers of probes 
we identified that were targeted to known heterozygote position in 
chimpanzee is due to the shallower depth of SNP sampling in chimpanzee 
when compared to humans. Consequently, this could potentially cause 
more erroneous expression scores for probe set and meta-probe sets 
derived from probes targeted to unknown heterozygote position in Clint. 
 
Next, we conducted a principal components analysis (PCA) on the probe 
expression profiles of all our samples and found that the chimpanzees 
from the trio were exceedingly variable (results not shown) most likely 
because of unknown polymorphisms that disrupt probe to target 
hybridization. Consequently, the chimpanzee trio was excluded from the 
main analysis. 
 
Cross-hybridization was potentially another source of noise in this study 
because we used chimpanzee samples and the Affymetrix Human Exon 
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Array was optimally designed to reduce cross-hybridizing only in humans 
(Affymetrix). To mitigate this effect, we searched the human and 
chimpanzee reference genomes using default setting in Blat (KENT 2002) 
for matches with the probe sequences from the Affymetrix Human Exon 
array. We found 43,382 and 47,241 probe sequences with more than one 
significant hit in the human (NCBI Build 35) and chimpanzee (UCSC Build 
2.1) genomes, respectively. The larger number of hits for the chimpanzee 
genome indicates the higher potential for chimpanzee samples to cross-
hybridize with probes from the Affymetrix Humans Exon array. To mitigate 
this effect, we masked out any probe that had more than one significant hit 
in either genome.  
 
Comparative analysis of array hybridization data 
Fluorescent intensities from the remaining 680,676 probes (see above) 
were quantile-normalized and GC-background corrected using the Power 
Tools software package from Affymetrix. The normalized probe intensities 
from each of the arrays (n = 179) were summarized into 212,720 probe 
sets (representing exons expression) and 15,898 meta-probe set 
(representing gene expression) scores using a probe logarithm-intensity 
error (PLIER) model (affymetrix.com). The Exon Array also contains a 
large number of “antigenomic” probes that do not have a match anywhere 
in the genome and ideally represent a null signal. The PLIER algorithm 
groups these antigenomic probes by their GC-content and uses them to 
produce a Detection Above Background (DABG) p-value (affymetrix.com). 
We have also established from previous experiments (results not 
published) that probe sets and meta-probe sets scores with expression 
score < 15 were generally not expressed therefore we use this threshold 
along with the DABG metric to  ascertain if a probe set or meta-probe set 
is expressed.  
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For the gene-level analysis, we compared genes if 50% of their exons 
showed a detected above background (DABG) probability ≤ 0.05, 95% of 
the samples had a meta-probe set score that was ≥  15  and both these 
criteria were true in 95% of the samples from either the human or 
chimpanzee groups as suggested in (Affymetrix.com). In addition to this, 
we restricted our analysis to genes with a clear 1:1 orthologues ratio 
between human and chimpanzee as defined in (CONSORTIUM 2005) to 
mitigate any non-specific fluorescence from other orthologous genes. For 
the exon-level analysis, we defined an exon as expressed if it belonged to 
an expressed gene (see above) and its DABG value is ≤ 0.05. We only 
compared exons if their normalized intensities (probe set expression / 
meta-probe set expression) were between 0.2 and 5 and that the gene 
they are encoded from is expressed in both chimpanzee and humans but 
shows no statistically significant difference (see below) at the gene 
expression level (BEMMO et al. 2008). This restricted our analysis to 8,578 
meta-probe sets and 51,413 probe sets.  
 
To identify which gene or exon were differentially expressed between the 
HapMap and Clint samples, and because of our unbalanced experimental 
design, we first conducted a one-way analysis of variance (ANOVA) by 
grouping the expression scores of each probe set or meta-probe set into 
58 groups; 57 from HapMap samples (humans) with 3 replicates each and 
1 from Clint (chimpanzee) with 5 replicates. Following a significant test 
after false discovery rate (FDR) correction (α = 0.05) (BENJAMINI et al. 
2001), we specifically examined our a priori hypothesis by testing for 
expression differences between the Clint and the HapMap samples using 
a contrasts analysis. We constructed a contrasts matrix to partition the 
total variance for a given probe set or meta-probe set into variance 
derived from Clint and the HapMap samples using a second ANOVA. A 
significant test indicates that the expression derived from Clint was 
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significantly different than the expression derived from the 57 HapMap 
samples.  
 
Classification of Transcript Isoforms 
We developed an automated method (perl script available upon request) 
to categorize isoform changes. The algorithm first classifies probe sets 
into blocks according to their Refseq annotation. Each significant block is 
then classified as an initiation, splicing, termination or transcript 
expression change according to its position within the transcript (5’UTR, 
coding, 3’UTR or whole-gene, respectively).   
 
Comparative Genomic Analysis 
Human exonic and intronic sequences were defined using the using the 
RefSeq annotation file (September 2008; 
http://hgdownload.cse.ucsc.edu/goldenPath/hg17/) from the University of 
California Santa Cruz (UCSC). Orthologous chimpanzee sequences were 
extracted from UCSC human versus chimpanzee pair-wise alignments 
(http://hgdownload.cse.ucsc.edu/goldenPath/hg17/vsPanTro2/) and the 
divergence rate was measured as the number of substitutions in aligned 
nucleotides divided by the total number of aligned nucleotides.  
 
Splice Site Strength Analysis 
We measured the strengths of the donor (5’) and acceptor (3’) splice site 
using the MaxEntScan program available at 
http://genes.mit.edu/burgelab/maxent/. This program defines the acceptor 
splice site as the last 20 bases from the 5’ flanking intron and the first 3 
bases from the 5’ end of the exon. The donor splice site was defined as 
the last 3 bases from the 3’ end of the exon and the first 6 bases of the 
flanking 3’ intron. We used this program to scan differentially expressed 
exons from our analysis against a library of known donor and acceptor 
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splice sites (http://genes.mit.edu/burgelab/maxent/ssdata) and scored 
each splice site in both species using maximum entropy method (YEO and 
BURGE 2004). The resulting score was used to compute the difference in 
splice site strength between human and chimpanzee. 
 
UTR Controlled Gene Expression 
We determined the miRNA binding potential in the 3’UTR of human and 
chimpanzee for each of the 8,578 genes surveyed in this analysis using 
the MiRanda algorithm (LEWIS et al. 2005). The algorithm searched the 
3’UTRs (defined by RefSeq, see above) of each gene in each specie 
against the library of human miRNA targets (version September 2008) 
(BETEL et al. 2008) available at 
http://www.microrna.org/microrna/getDownloads.do. We expressed the 
binding potential as the total score from the MiRanda output file for each 
gene. 
  
Gene Ontology and Pathway Analysis 
We conducted gene ontology and pathway analyses with the sets of 
genes that presented either whole-gene expression changes or isoform 
differences using the Ingenuity Pathways Analysis (IPA version 6.0) 
software package (Ingenuity Systems, Mountain View, CA). This software 
package tests the statistical significance, i.e. assigns a FDR corrected p-
value to the biological functions or pathways of genes with expression 
differences by comparing it to a reference data set. By default, the IPA 
software package defines the reference data set as all genes represented 
on the Human Exon array. However, the use of this default reference list 
may cause erroneous p-value estimates because of the presence of 
certain experimental biases related to microarray analyses. For instance, 
genes that are highly expressed are less influenced by background noise 
compared to genes with low expression levels. This increases the power 
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to detect an expression change for high expressing and consequently 
biases our significant hits to highly expressed exons or genes. To reduce 
the effect of this bias, we constructed reference lists for both levels of 
analysis (whole-gene and isoform) were we chose genes from a random 
pool that presented no significant expression difference between HapMap 
samples and Clint but were expressed in lymphoblasts from both species. 
More importantly, we chose genes so that the expression distributions for 
the test list (genes with expression changes) and the reference list were 
similar. Using the expression-matched reference list, we can more 
accurately determine (Fisher exact test) to what degree a particular gene 
ontology term or functional pathway is over-represented for genes with 
expression changes between species. 
Results 
Exome comparison 

The main objective of our study was to characterize transcript 
isoform differences between humans and chimpanzees. To asses these 
differences, we generated isoform expression profiles of lymphoblast cell 
lines (LCLs) derived from the common chimpanzee (Pan troglodytes) Clint 
(CONSORTIUM 2005) and 57 HapMap individuals 
(INTERNATIONAL_HAPMAP_CONSORTIUM 2005) using the Affymetrix Human 
Exon Array (Affymetrix).  By comparing these profiles, we found a large 
number of differentially expressed genes (2,932 or 34.2%) from the 8,578 
expressed in both species with an average fold change of 1.79. A similar 
number of genes (2,095 or 24.3%) with an average fold change of 1.6 
showed transcript-isoform changes only without an accompanying whole-
transcript expression change. These last differences represent 4,235 
(8.2%) differentially expressed probe sets (exons) out of the 51,413 probe 
sets surveyed where the major type of change is at the splicing level 
(3,532 or 83.4%) with the remaining changes at the level of transcript 
initiation (212 or 5,8%) and termination (491 or 14%) (Figure 5.1).  
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Figure 5.1:  Classification of genes showing expression changes at the 
exon or transcript level. The 5,027 genes were classified into separate 
categories depending on the nature of the expression change occurring: 
expression changes at the whole transcript level (yellow), transcription 
initiation (purple), alternative splicing of a cassette exon (blue) and 
transcription termination changes (red).  
  
We also compared the number of significant expression difference 
between the HapMap individuals and Clint to the number of significant 
difference within the HapMap individuals. This allowed us to estimate the 
ratio of inter-species divergence to intra-species diversity. We found that 
this divergence to diversity ratio was ~5.7 at both the whole-transcript and 
isoform levels. This ratio was compared with the divergence to diversity 
ratios calculated by (KHAITOVICH et al. 2005) at the whole transcript level 
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for different tissues such as testis (5.6), heart (2.5), kidney (2.1), liver (1.8) 
and brain (2.3). We find that the ratio we observe in lymphoblast is similar 
to what was observed in the testis which is an outlier compared to the 
other tissues (5.7 and 5.6 versus 1.8 to 2.5). This high ratio provides an 
indication although not proof that strong selection could be operating on 
transcript expression in lymphoblast.    

 
Graphical visualization of the different types of expression variations 
mentioned above is presented in Figure 5.2. We represented the 
expression fold-change (blue bars) on a log2 scale between chimpanzees 
(only Clint) and humans (HapMap individuals) and the associated p-value 
(red bars) on a –log10 scale for each probe set (exon) targeted to gene 
LCK (Figure 5.2A). For this gene, each probe set is expressed at a lower 
level in chimpanzee, which is concordant to the meta-probe set scores 
(log2 scale) computed by PLIER (see methods) for humans (9.45) and 
chimpanzees (5.14) and represents a whole gene expression change. 
Figure 5.2B illustrates an example of an alternative splicing event in gene 
PRKCE, were the 9th exon exhibits lower inclusion levels in chimpanzee. 
In Figure 5.2C and 5.2D, we show examples of alternative transcript 
initiation and termination. In these examples a probe set from a group of 
probe sets targeted to the same UTR exon is differentially expressed. For 
gene TTRAP (Figure 5.2C) and gene TMEM63A (Figure 5.2D) we predict 
that they produce distinct isoforms in chimpanzees and humans by using 
different transcription initiation start sites and different polyadenylation 
sites, respectively.  
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Figure 5.2:  Visualization of expression data. Custom view of the UCSC 
browser with expression data overlaid onto gene structures. Red vertical 
bars represent the p-value (-log10 scale) derived from the contrast 
analysis for each probe set for a given gene. Blue vertical bars represent 
the expression fold-change between Clint and the HapMap samples for 
each probe set. A. LCK is an example of a whole-gene expression change 
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where all probe sets from the HapMap samples are all expressed at 
higher levels than in Clint. B. The PRKCE gene is an example of an 
alternative spliced cassette exon. C. The TTRAP gene is an example of 
alternative initiation where the longer isoform is expressed in Clint. D. The 
EPHX1 gene is an example of alternative termination. 
  
Genome-wide microarray analyses, like the one conducted here, are 
difficult to adequately validate using classical low-throughput experiments 
such as RT-PCR because of cost and time issues associated to 
conducting hundreds of these experiments. To circumvent this problem, 
we used an in-silico genome-wide validation method where we compared 
the 51,413 “expressed” probe sets surveyed in this study (see methods) to 
a data set of known splicing events derived from EST evidence. We used 
the “Alt-Splicing” track from the UCSC genome browser that lists known 
examples of splicing and other transcript isoform events (KAROLCHIK et al. 
2008) and found that the differentially expressed probe sets from our 
study were significantly overrepresented as compared to a random 
expectation (odds ratio = 2.23 (0.11 / 0.049); Chi-square analysis: Χ2 = 
90.91; p-value < 2.2x10-16) in this list. This indicates that our analysis 
preferentially identifies exons with prior evidence of alternative splicing or 
alternative inclusion within transcripts. 
 
In addition to this, we examined how the exons and genes that presented 
the most significantly divergent expression profiles between the 
chimpanzee Clint and the HapMap individuals behaved in the other 3 
chimpanzees that were excluded from the main analysis because of 
hybridization issues (see methods). Out of the top 10 exons and genes 
with the most significant (FDR correction at α = 0.05) expression 
differences between the chimpanzee Clint and the HapMap individuals, 
we found that 80% and 100% of these exons and genes, respectively, 
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also presented significant expression differences between these 3 
chimpanzees and the HapMap individuals. For the top 100 hits the 
concordance is still good because we found that 75% of the exons and 
90% of the genes were also significant between the 3 chimpanzees and 
the HapMap individuals. These observations are good indications that the 
expression differences observed between the chimpanzee Clint and the 
HapMap individuals are not unique to Clint because the majority of the top 
hits have been validated in 3 other chimpanzees and they potentially 
represent true inter-species expression variations.  
 
Comparative Genomics Analysis 
We hypothesized that the differences in splicing profiles we observed 
between humans and chimpanzees were in part due to nucleotide 
substitution that disrupted cis-regulatory splicing elements such as splicing 
enhancers and silencers (BLENCOWE 2006; BRUDNO et al. 2001; CALARCO 
et al. 2007; MAJEWSKI and OTT 2002; MATLIN et al. 2005; YEO et al. 2004b; 
ZHANG et al. 2003). Given that these short, degenerate regulatory 
elements are over-represented in exonic and intronic regions near the 
splice sites, we determined the sequence divergence for the entire exon 
and 150 bp upstream and downstream of the flanking intronic sequences. 
We found that the sequence divergence was significantly higher (Mann-
Whitney; W = 45655458, p-value < 2.2x10-16) for exons that presented 
significant expression differences (mean sequence divergence = 0.66%) 
than for exon that were expressed at the same level (mean sequence 
divergence = 0.46%) between these closely related species. This result 
indicates that elevated sequence divergence in exonic and intronic regions 
are correlated with an increased expression divergence and suggests that 
genetic differences between these species are responsible for some of the 
differential isoform expression.  
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Contrary to splicing enhancer and silencers, the donor (5’) and acceptor 
(3’) splice site motifs are well characterized in mammals. Therefore, we 
specifically measured the different splicing potential of these motifs in 
human and chimpanzee for each differentially expressed exon. We found 
that these expression differences were significantly correlated to 
differences in donor splice site strength (Spearman correlation; rho = 0.27; 
p-value = 0.010). An example of this phenomenon is illustrated in Figure 
5.3 were we show that the donor splice site for the 4th exon of the 
C14ORF159 gene is weakened in chimpanzee (MaxEnt score = 0.57) 
compared to its human orthologue (MaxEnt score = 8.76) by a G to A 
substitution. Consequently, this substitution is most likely responsible for 
the lower inclusion of this exon in chimpanzee.  
 

 
 
Figure 5.3: Effect of a substitution in the splice site. This example 
illustrates the effect a G/A substitution in one of the exons of the 
C14orf159 gene. The presence of an A in the first base of the intron 
disrupts the splicing of the exon and consequently lowers the expression 
of this exon in chimpanzee. 
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Recent studies have shown that gene expression can be regulated in a 
post-transcriptional matter by miRNAs (NEILSON and SHARP 2008; 
SANDBERG et al. 2008). We believed that substitutions that disrupt miRNA 
binding sites in an mRNA transcript would render it less prone to 
degradation by the dicer pathway and consequently we would detect that 
transcript to be differentially expressed. This is in fact what we observed 
when we compared the miRNA binding potential of the human and 
chimpanzee 3’UTRs (see Materials and Methods). We found that 
differentially expressed genes had significantly higher differences (Mann-
Whitney test; W = 7164348; p-value = 2.7 x 10-4) in binding potential 
(mean binding potential = 1542.71) compared to genes with no expression 
differences (mean binding potential = 1348.613).   
 
Gene ontology analysis  
We performed a network analysis using the Ingenuity Pathways Analysis 
(IPA) system on the sets of genes that had either different isoform or 
whole-gene expression differences between humans and chimpanzees. 
We observed interesting differences between these two types of 
expression variation and their related pathways. Many genes with whole 
transcript expression changes were related to energy metabolism such as 
carbohydrate synthesis and degradation pathways (fructose, mannose, 
galactose, starch and sucrose metabolism; Table 5.1) whereas genes with 
isoform differences were more implicated in signalling pathways (killer cell, 
B-cell, IL-8, IL-4 and IL-2, NF-κB) related to immunity (OTT et al. 1998; 
SCHRAM and ROTHSTEIN 2003; TRIVEDI et al. 2001).  

 105



 

Table 5.1: Top 20 over-represented canonical pathways for genes with 
isoform differences or whole-transcript expression differences 

Type of 
expression 

change 
Canonical pathway 

# of genes with 
expression changes  
(Total # of gene in 

pathway) 

p-value 

Tight Junction Signaling 29 (160) 2.04E-04 

Estrogen Receptor Signaling 26 (121) 3.80E-03 

Erythropoietin Signaling 18 (75) 1.15E-02 

Role of NFAT in Regulation of the Immune 
Response 

32 (185) 1.15E-02 

Cysteine Metabolism 7 (83) 1.23E-02 

Aminoacyl-tRNA Biosynthesis 15 (83) 1.26E-02 

Protein Ubiquitination Pathway 43 (205) 1.35E-02 

Huntington's Disease Signaling 37 (228) 1.55E-02 

Cell Cycle: G1/S Checkpoint Regulation 15 (57) 1.66E-02 

Butanoate Metabolism 13 (126) 1.78E-02 

FcγRIIB Signaling in B Lymphocytes 11 (52) 1.78E-02 

CCR5 Signaling in Macrophages 11 (85) 1.78E-02 

Nucleotide Excision Repair Pathway 11 (35) 1.78E-02 

Alanine and Aspartate Metabolism 11 (85) 1.78E-02 

Ceramide Signaling 17 (82) 2.00E-02 

PPARα/RXRα Activation 27 (168) 2.29E-02 

IL-8 Signaling 31 (181) 2.82E-02 

Leukocyte Extravasation Signaling 27 (189) 3.24E-02 

IL-15 Production 7 (29) 3.39E-02 

Exon-level 
analysis 

CTLA4 Signaling in Cytotoxic T Lymphocytes 18 (85) 3.63E-02 

Fructose and Mannose Metabolism 17 (131) 2.88E-05 

IL-10 Signaling 21 (71) 1.02E-03 

Xenobiotic Metabolism Signaling 45 (241) 1.66E-03 

 
 
 
 
 
 
 
 
 Purine Metabolism 72 (412) 1.78E-03 
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Arginine and Proline Metabolism 15 (177) 3.09E-03 

Galactose Metabolism 14 (107) 3.31E-03 

N-Glycan Biosynthesis 19 (87) 8.13E-03 

NF-κB Activation by Viruses 23 (80) 9.77E-03 

PXR/RXR Activation 13 (81) 1.12E-02 

Axonal Guidance Signaling 54 (392) 1.23E-02 

Cardiac β-adrenergic Signaling 23 (136) 1.35E-02 

Actin Cytoskeleton Signaling 40 (221) 1.38E-02 

α-Adrenergic Signaling 20 (104) 1.48E-02 

CD27 Signaling in Lymphocytes 17 (49) 1.58E-02 

Starch and Sucrose Metabolism 14 (181) 1.58E-02 

Phototransduction Pathway 8 (62) 1.82E-02 

Urea Cycle and Metabolism of Amino Groups 7 (80) 1.91E-02 

Activation of IRF by Cytosolic Pattern Recognition 
Receptors 

19 (70) 2.34E-02 

Aminosugars Metabolism 14 (103) 2.40E-02 

 
Transcript-

level 
analysis 

B Cell Receptor Signaling 45 (153) 2.40E-02 

 

Interestingly some of the pathways mentioned above are involved in HIV-1 
infection. We examined in detail one important pathway that is involved in 
HIV-1 infection; the NF-κB signalling pathway (Figure 5.4). Activation of 
this pathway can be induced by HIV-1 proteins that interact with the TNF 
receptor (HERBEIN and KHAN 2008). Once the NF-κB transcription factor is 
activated it initiates and enhances HIV-1 gene expression in infected cells 
by binding to the long terminal repeats (LTR) of HIV-1 (HERBEIN and KHAN 
2008; TERGAONKAR 2006). Many genes associated with this pathway 
presented isoform and expression differences or both (highlighted in 
yellow, blue and red, respectively, in Figure 5.4). Detailed expression 
profiles of three genes that play important roles (BELTINGER et al. 1996; 
CHAN et al. 2000; CHENG et al. 1999; RODRIGUES-LIMA et al. 2001; 
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STUMPTNER-CUVELETTE et al. 2003) in the activation of this pathway are 
presented in Figure 5.2A, 5.2B and 5.2C. Together, these figures illustrate 
the different types of transcript changes as well as the amount of 
transcriptome diversity that can be present in a pathway. 
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Figure 5.4: Expression changes in the NF-κB pathway. Genes are colored 
according to the types of expression change. Whole-gene expression 
changes are colored in blue, isoform changes are colored in yellow and 
genes with both isoform and whole-gene expression changes are colored 
in red Colored in red. 
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Discussion 
To our knowledge this study is the most comprehensive analysis of 

transcriptome variation between humans and chimpanzees. The 
transcriptome of these two closely related species vary from each other in 
part because of differences in RNA transcription that stem from differential 
transcript expression to mRNA processing variations such as pre-mRNA 
splicing, transcription initiation and alternative termination. These types of 
variations such as the amount mRNA produced by a genetic locus or the 
exclusion of a coding exon by alternative splicing can greatly alter the 
concentration and sequence of protein, respectively, and as a result its 
function. Also, alternative splicing of a 5’ or 3’ UTR, in addition to 
alternative pre-mRNA transcript initiation or termination, may add or 
remove regulatory sequences that influence mRNA stability, mRNA 
localization and translational efficiency (KOZAK 1983). Through these 
processes, evolution has diverged the transcriptome of these two closely 
related species to a point were we estimate that ~59% of the genes 
expressed in lymphoblast cells produce transcript with structural or 
expression variants between humans and chimpanzees.  

 
One goal of the chimpanzee genome sequencing project (CONSORTIUM 
2005) was to undertake a comparative analysis with the human genome in 
order to identify and catalogue human-chimpanzee genomic differences. 
Hidden among these differences are functional changes that underlie the 
phenotypic diversity between these two species. The challenge now is to 
identify how these differences have created the phenotypic diversity 
observed between humans and chimpanzees. We have shown in previous 
studies that cis-regulatory single nucleotide polymorphisms were 
associated to transcript isoform variations in a human population (KWAN et 
al. 2008; KWAN et al. 2007) and other studies have shown that these 
polymorphisms were associated to gene expression variation (CHEUNG et 
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al. 2005; SPIELMAN et al. 2007; STRANGER et al. 2005). In this study, we 
demonstrate that disruption of certain regulatory sequences such as splice 
site motifs and microRNA binding sites by single nucleotide substitutions 
are correlated with transcript structural and gene expression changes 
between humans and chimpanzees. From this evidence, future studies 
should be undertaken to definitively establish associations between 
genomic and transcriptome variations to further our understanding of 
human evolution. 
 
Another important challenge is to determine whether changes at the 
transcriptome level have any phenotypic effect; that is whether they are 
neutral or under selection. System or network approaches attempt to 
resolve this issue by placing genes in their functional context and identify 
networks that have accumulated genes with structural and expression 
changes more than would be expected by chance. When these genes 
accumulate in a specific network, we assume that the resulting phenotypic 
trait encoded by this network is under selection. One interesting 
observation that emerged from our network analysis is that isoform and 
whole-gene expression changes tend to affect signalling pathways but 
more specifically immune response pathways. Given the number of 
immune related pathways affected by these changes, we propose that the 
immune systems of humans and chimpanzees have undergone important 
evolutionary adaptations caused by changes in isoform and whole-gene 
expression and consequently may respond differently to infectious agents. 
For example, one striking immunological difference between these closely 
related species is their response to HIV infection. In fact, once infected 
with HIV-1 (human immunodeficiency virus) humans will usually develop 
AIDS (acquired immune deficiency syndrome) whereas chimpanzees 
infected with a closely related HIV-1 strain, SIVchp (simian 
immunodeficiency virus) will rarely exhibit symptoms related to AIDS 
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(HEENEY et al. 2006; TEN HAAFT et al. 2001). Interestingly, many genes 
from our study present isoform and whole-gene expression differences 
that are related to the NF-κB pathway that plays an important role in HIV-1 
infection. The exact relationship between these expression differences 
and varying susceptibility of humans and chimpanzees to the development 
of AIDS is only speculative at this stage and will require more detailed 
analyses to establish a clear association, if any. However, we presented 
this example to illustrate how the exomes have evolved to potentially 
create distinct phenotypic traits in humans and chimpanzees. 
 
Ultimately, understanding our unique physiological, cognitive and social 
characteristics, i.e. what makes us human, will require us to connect 
specific genomic variations to the phenotypes that are most relevant to our 
evolution. Comparisons like the one conducted here help to reveal the 
molecular basis for these phenotypic traits as well as the evolutionary 
forces that have shaped our species. Systematic comparison of other 
tissues from chimpanzee and other species will likely reveal new important 
functional pathways that contribute to our uniqueness and help us explain 
certain variations and abnormalities that lead to diseases. 
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Chapter 6: Alternative isoform detection using Exon arrays 

 
Exerts taken from  

David Benovoy, Amandine Bemmo, Tony Kwan, Daniel J Gaffney, 
Roderick V Jensen and Jacek Majewski. 2008. Gene Expression and 

Isoform Variation Analysis using Affymetrix Exon Arrays. BMC Genomics. 

9:529. 
And  

Jacek Majewski, David Benovoy and Tony Kwan. Alternative Isoform 
Detection Using Exon Arrays. 2009. Handbook of Research on Systems 
Biology Applications in Medicine. Information Science Reference. p.262-

277. Hershey, New York. 
 
Connecting text 
In the preceding chapter (chapter 5) we showed that transcript isoform 
variations were common between humans and chimpanzees. We 
demonstrated that these isoform variations were correlated with genetic 
differences in certain regulatory motifs. We also showed that these 
isoform variations were associated with species-specific phenotypic traits 
and more specifically differences in immune responses. We conclude by 
proposing that the variation of transcript isoforms regulation is responsible, 
in part, for the divergence and evolution of these closely related species. 
These last three chapters end the biological portion of our studies.  
 
The next two chapters present the methodological aspect related to the 
analysis of data generated with the Affymetrix Human Exon Array. In 
them, we outline some of the problems we encountered during the 
analyses presented in the previous three chapters and describe solutions 
that we developed to overcome them. 
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Abstract 
Eukaryotic genes have the ability to produce several distinct products from 
a single genomic locus. Recent developments in microarray technology 
allow monitoring of such isoform variation at a genome-wide scale. These 
types of experiments generate huge amounts of complex data that in turn 
create analytical issues that need to be solved. Here, we demonstrates 
how to analyses data generated with the Exon array using the well studied 
Quality Control (MAQC) dataset. We outline the analysis involved in 
detecting alternative mRNA isoforms and point out solutions to problems 
that may be encountered by researches using this technology.  
 
Introduction 
Alternative pre-mRNA splicing is a process allowing the production of 
several distinct gene isoforms from a single genomic locus. The most 
common type of alternative splicing events in mammals results in cassette 
exons, where each such exon can be either included or excluded from the 
mature mRNA. Other events include alternative use of donor or acceptor 
splice sites, and intron retention. In addition, processes such as alternative 
promoter usage and alternative polyadenylation, resulting in differences in 
initiation and termination of the transcript, respectively, further diversify 
eukaryotic transcriptomes and proteomes. As researchers are becoming 
aware of the importance of splicing and mRNA processing in generating 
transcriptome diversity, isoform-sensitive microarrays are rapidly gaining 
popularity in gene expression analysis (FREY et al. 2005; LEE and ROY 
2004).  
 
Splicing sensitive microarrays employ a number of exon body 
oligonucleotide probes, or exon junction probes, or a combination of the 
two designs, to determine mRNA levels at the resolution of a single exon 
or splice site. The Affymetrix GeneChip® Human Exon 1.0 ST Array is the 

114 



 

first commercially available microarray product designed for genome-wide, 
exon level expression analysis. The array relies on targeting multiple 
probes to individual exons and allows simultaneous, exon-level detection 
of expression intensity for 1.4 million probe sets covering over 1 million 
known and predicted human exons. The Exon Array is a flexible tool, 
which can be used to perform the function of classical expression arrays 
and concurrently provide supplementary information on isoform changes. 
This level of data complexity has introduced the need to develop new 
statistical and computational tools capable of distinguishing between gene 
expression differences and isoform differences, and this at the genome 
wide level. 
 
In this chapter, we will use the example of a well studied system in order 
to outline the flow of the analysis required to process Exon Arrays, outline 
problems which may be encountered by potential users of the chips, and 
describe solutions that we have developed to overcome such problems.. 
We use the brain and reference human mRNA samples previously studied 
by the MicroArray Quality Control (MAQC) consortium (CANALES et al. 
2006; SHI et al. 2006). These commercially available samples provide a 
high quality reference dataset for comparing microarray results across 
various platforms and laboratories. The human brain has very distinct 
gene expression signatures, and the comparison with the reference 
(combined) tissue pool results in detection of numerous genes with 
differential expression at the isoform level. 
 
Methods 
Exon Array Hybridization 
The Universal Human Reference RNA (catalogue no. 740000) and Human 
Brain Reference RNA (catalogue no. 6050) were obtained from 
Stratagene and ambion, respectively. The RNA quality was assessed 
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using RNA 6000 nanoChips with the Agilent 2100 Bioanalyzer (Agilent, 
Palo Alto, USA). Five technical replicates of each sample were hybridized 
independently at two test sites: McGill University and Genome Quebec 
Innovation Centre (Montreal, Quebec, Canada) and Virginia Tech 
(Blacksburg, Virginia, USA). Biotin-labelled target for the microarray 
experiment were prepared using 1 μg of total RNA. The RNA was 
subjected to an rRNA removal procedure with the RiboMinus 
human/Mouse Transcriptome Isolation Kit (Invitrogen) and cDNA was 
synthesized using the GeneChip® WT (Whole Transcript) Sense Target 
Labelling and Control Reagents kit as described by the manufacturer 
(Affymetrix). The sense cDNA was then fragmented by UDG (uracil DNA 
glycosylase) and APE 1(apurinic/apyrimidic endonuclease 1) and biotin-
labelled with TdT (terminal deoxynucleotidyl transferase) using the 
GeneChip® WT terminal labelling kit (Affymetrix, Santa Clara, USA). 
Hybridization was performed using 5 micrograms of biotinylated target, 
which was incubated with the GeneChip® Human Exon 1.0 ST array 
(Affymetrix) at 45°C for 16–20 hours. Following hybridization, non-
specifically bound material was removed by washing and detection of 
specifically bound target was performed using the GeneChip® 
Hybridization, Wash and Stain kit, and the GeneChip® Fluidics Station 
450 (Affymetrix). The arrays were scanned using the GeneChip® Scanner 
3000 7G (Affymetrix) and raw data was extracted from the scanned 
images and analyzed with the Affymetrix Power Tools software package 
(Affymetrix). The microarray data has been deposited in the Gene 
Expression Omnibus Database (GEO: GSE13072). 
 
Data Pre-processing and Analysis 
The Affymetrix Power Tools software package (Affymetrix) was used to 
quantile normalize the probe fluorescence intensities and to summarize 
the probe set (representing exon expression) and meta-probe set 
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(representing gene expression) intensities using a probe logarithmic 
intensity error model (PLIER, www.affymetrix.com) or robust multichip 
analysis (RMA, (IRIZARRY et al. 2003b)). The above procedures were 
carried out separately for the two test sites (McGill University and Virginia 
Tech). The raw data (.cel files) was downloaded from the MAQC website 
for the Illumina and U133 arrays. In order to keep the number of replicates 
and test sites consistent across platforms, we only used two of the MAQC 
test sites (a total of 10 technical replicates of each sample). For the probe 
set-level analysis and alternative isoform detection, we only used the most 
confident subset of core probe sets from the Exon Array. 
 
Probe set and Gene Mapping 
To determine a subset of genes common to the three platforms, we used 
the mapping provided by the MAQC study (SHI et al. 2006) to select 12091 
probe sets common Illumina and Affymetrix U133 arrays. Subsequently, 
we used the Exon Array probe set annotation and retained only the genes 
where the Exon Array meta-probe set coordinates contained both the 
Illumina and U133 probe sets. This procedure resulted in 8391 genes with 
a high confidence concordant mapping across the three platforms. 
 
Results 
Variability across labs 
Five technical replicates of brain and reference were hybridized in two 
independent labs: McGill University (MU) and Virginia Tech (VT), for a 
total of 20 samples. Principal component analysis, which is a commonly 
used method to visualize sources of variability in the data, is shown in 
Figure 6.1.  
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Figure 6.1: PCA plots at the probe set level show two main sources of 
variation among the 20 samples. The first principal component explains 
57% of the variance and corresponds, as expected, to the biological 
source of the sample: brain (B) vs. reference (R). The second principal 
component explains 23% of the variance and corresponds to the "lab 
effect" between VT (blue), and McGill (red) – that is, it illustrates the 
technical variability across labs.  
 
Our experience with Exon Arrays indicates that in general the ribosomal 
RNA reduction step is the most inconsistent part of the protocol and is 
likely to be a major contributor to the differences across labs. Variability in 
hybridization intensities, background noise, and random errors across labs 
may contribute to differences in final conclusions resulting from microarray 
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analyses. In the case of the MAQC data, the final goal was to quantify 
differences in gene expression levels between the human brain and 
reference tissues. A relevant metric of such expression difference is the 
fold change (FC), calculated as FC = ExpressionBrain / ExpressionReference. 
In Figure 6.2, we show a correlation plot comparing the calculated fold 
changes in genes expression between the two labs. Despite the inter-lab 
variability in expression levels shown in the PCA plots, the final results 
(fold changes) are highly consistent for the two labs, with a correlation 
coefficient of greater than 0.97.  
 

 
Figure 6.2: Comparison of log2 (FC) detected between the biological 
samples for the two labs. Despite significant variation in expression 
measure across test sites, the fold change estimates are highly correlated.  
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Variability across summarization methods 
The aim of the summarization step in microarray analysis is generally to 
combine signals from multiple probes, which target the same expression 
unit, into a single expression index. Most of the popular methods strive for 
robustness against outlier probes (e.g. cross hybridizing, saturated, or 
non-responsive probes). We used our fold change results to compare two 
commonly used summarization methods: PLIER and RMA. We noted that 
RMA does result in a slight compression of fold changes, as has been 
observed in prior studies using other microarray platforms (CANALES et al. 
2006). However, we find that the correlation of fold changes obtained from 
the two approaches is very high (r = 0.99). 
 

Variability across platforms 
The original MAQC studies demonstrated that microarray results are 
highly consistent across different platforms (CANALES et al. 2006). In 
Figure 6.3, we compare the performance of the Exon Array in determining 
gene expression levels with two other popular platforms previously used 
by MAQC: Illumina Bead Array and Affymetrix U133 Gene Chip. In order 
to facilitate comparison across labs as well as platforms, we selected a 
number of genes which are reliably annotated and targeted by a common 
set of probe sets (see Methods). 
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Figure 6.3: Correlation of fold changes between Affymetrix U133, Illumina, 
and the Affymetrix Exon Array. Fold changes (log2 transformed) between 
brain and reference expression levels for 8391 genes common to all three 
platforms: A) Illumina vs. U133. B) Exon Array vs. U133, C) Exon Array 
vs. Illumina.  
 
For the Exon Arrays, the fold changes were calculated by combining the 
results from the two labs (MU and VT). For the sake of consistency in the 
comparison, two test sites were chosen at random and combined for each 
platform within the MAQC dataset. We find that the 3' targeted platforms, 
Illumina Human-6 BeadChip and Affymetrix U133, produce the most 
consistent results (R = 0.92). This is not surprising, since the probe 
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selection regions for the two platforms largely coincide, and the 
amplification protocols are poly-A primed and biased towards the 3' ends 
of genes. The correlation with the Exon Array is slightly lower: R = 0.89 for 
U133 and 0.85 for Illumina. It has been previously shown (OKONIEWSKI et 
al. 2007a; ROBINSON and SPEED 2007; XING et al. 2007), that the Exon 
Arrays are effective tools for gene expression profiling. Therefore, it is of 
interest, to examine the main sources of differences between the Exon 
Arrays and other platforms. Thus, in the analysis below we will 
concentrate on the genes whose predicted expression patterns are not 
consistent across platforms. In particular, the Exon Array is able to 
distinguish between specific isoforms of a given genomic locus, whereas 
the Illumina and Affymetrix U133 platforms generally target only a single 
isoform. 
 
Alternative Isoform Detection 
It has previously been pointed out that some discordant results in the 
original MAQC (CANALES et al. 2006) study were caused by differential 
isoform expression and differences in probe placement across platforms. 
One particular discordant gene, ELAVL1, was suspected to express two 
alternative isoforms, differing in the 3' UTR region. In Figure 6.4C, we use 
the example of ELAVL1 to illustrate the advantages of using the Exon 
Array for profiling individual isoforms. It is clear that although the Exon 
Array does not report the entire gene as differentially expressed, individual 
probe sets within the gene reach high statistical significance levels (p-
value < 10-9). More interestingly, the gene appears to be composed of two 
"blocks", with the first block on the 3' end showing elevated expression in 
the brain, while the second block has elevated expression in the reference 
sample. In order to understand the more precise nature of this isoform 
change, it is advantageous to visualize this data in the context of known 
gene annotation, EST, and mRNA data. Generally, our lab uses the 
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custom track feature of the UCSC genome browser (KAROLCHIK et al. 
2008), in order to export our own information and combine it with publicly 
available data. In Additional file 1, we present other examples of 
discordance between the platforms, further illustrating the value of 
additional information present on the Exon Array in profiling both "whole 
transcript" and "isoform-level" changes. 
 
Using the Exon Array to Profile Alternative Isoforms 
One of the biggest challenges in profiling alternative isoforms using Exon 
Arrays is the deconvolution of mRNA processing and transcription. A 
simple comparison of probe set intensities across samples is not 
sufficient; if an exon belongs to a transcript that is differentially expressed, 
the examination of a single exon out of its genomic context will lead to an 
incorrect conclusion. A very simple and intuitive solution to this problem is 
the use of the Splicing Index (SI), that is calculated by dividing the probe 
set intensity by the meta-probe set intensity (i.e. exon expression/gene 
expression), after the addition of a stabilization constant to both the probe 
set and meta-probe set scores (www.affymetrix.com).This simple 
procedure normalizes the expression level of each exon and accounts for 
any possible gene expression differences between samples. However, we 
find that the splicing index has some undesirable statistical properties 
(arising from large errors in the estimates in both the numerator and the 
denominator) as well as being prone to methodological artifacts and 
should be used with caution. Thus, we have also used a simpler, but more 
labor intensive method, of carrying out the entire analysis at the probe set 
level, and relying on visualization and manual curation of the results in 
order to distinguish splicing and expression differences between samples. 
While more robust statistical approaches are being developed, we strongly 
advocate visualization of results in the context of genome annotation and 
EST evidence in order to filter out false positive signals. We have relied on 
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custom scripts and modifications of the UCSC and ENSEMBL genome 
browsers (Figure 6.4), but increasingly useful and user-friendly 
commercial packages for the Exon Arrays are available (e.g. Partek 
Genomics Suite, Biotique XRay) along with academic BioConductor 
packages (OKONIEWSKI and MILLER 2008; OKONIEWSKI et al. 2007b; 
PURDOM et al. 2008). Below, we describe in more detail two approaches to 
alternative isoform detection. For the case of simplicity, only the core 
(most confident) subset of Exon Array probe sets was considered in this 
analysis. 
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Figure 6.4: Evolution of the different methods developed to visualize 
expression data. A. First method was developed to visually compare 
expression data between 2 samples. In this example, each probe 
(columns) for 5 probe sets is represented as grey-scaled coloured pixels 
(square) where probe intensity scores increase as the colour whitens. The 
rows represent 15 technical replicates for each group (A and B). B. This 
visualization method was developed for assessment of potential transcript 
isoform variation events. The top panel represents each probe set in their 
gene context from the 5' to the 3' end (x-axis). The vertical bars represent 
the splicing index (right y-axis) for each probe set. Their colors represent 
their position within the gene, i.e. 5' UTR, coding region and 3' UTR. The 
red line represents the p-value (-log10 scale on the left y-axis) derived from 
a t-test conducted between the 2 groups using probe set intensities 
values. The horizontal green and red line represents the fold-change and 
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p-value, respectively, at the meta-probe set level computed between the 
two samples. In the middle panel the mean intensity and standard 
deviation for each probe set (log2 scale, right y-axis) are represented for 
both samples. The orange line represents the average GC-content derived 
from each probe that make up a given probe set (for assessing cross 
hybridization potential). Bellow the middle panel is an alignment of probe 
for a probe set that shows significant differential expression between the 
two groups. In this example, 3 of the 4 probes target the same position 
indicating that they measure the same region of the exon. This makes the 
probe set less confident and more prone to be influenced by unknown 
SNPs (see chapter 7). The bottom panel is a box plot representation of 
probe intensity from each group under investigation. The horizontal green 
and red lines represent the mean and 2 standard deviations, respectively, 
for background expression intensity thresholds derived from the 
antigenomic probe expression distributions based on a specific GC-
content. When boxplots are above these lines the region these probes 
target are considered expressed. C. Visualization of expression using 
custom tracks for the UCSC browser to determine the isoform variation 
event. The p-value and fold-change are represented as the red and blue 
horizontal bars, respectively. Note that the two probe set "blocks" 
correspond to the two isoforms of the gene. The long 3'UTR isoform is 
predominantly expressed in the brain, whereas the short isoform is more 
abundant in the reference tissues. 
 
Probe set level analysis 
At this level of the analysis, each probe set (roughly corresponding to an 
exon) is used as a unit of expression, instead of a meta-probe set (a 
transcript) as is done in more traditional gene expression analysis. With 
appropriate statistical significance cut-offs (e.g. a Benjamini-Hochberg 
(BENJAMINI et al. 2001) False Discovery Rate correction), it is generally 
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possible to select a highly confident set of probe sets exhibiting 
significantly altered expression. However, it is not immediately possible to 
classify the "hits" as results of alternative isoform expression (e.g. 
alternative splicing), differential gene expression, or both. The easiest way 
of factoring out of gene expression is to consider only the genes whose 
expression does not change across samples or treatments. That is, we 
can select probe sets that are statistically significant, but which belong to 
genes whose meta-probe set expression does not appear to be 
significantly altered (nominal p > 0.05). For the MAQC samples, we 
generated a list of the top 100 such genes. The list and links to the UCSC 
browser are provided in the Additional file 2. The top candidates show 
evidence for differential promoter usage, polyadenylation, and alternative 
splicing. A few examples appear to be annotation errors, where the 
Affymetrix annotation combines two distinct genes into a single transcript 
cluster. In general, we advocate RT-PCR based validation of alternative 
isoforms. However, cross validation with existing information is also 
extremely useful. Extensive EST and mRNA based information on tissue 
specific splicing is available from many sources, e.g. from the ASAPII (KIM 
et al. 2007) or Hollywood (HOLSTE et al. 2006). Most of the source data 
can be viewed directly in the UCSC genome browser by displaying the 
mRNA, spliced EST, or AltEvents tracks. 
   
Dataset Reduction 
In order to reduce the amount of random noise, and decrease the number 
of tests being carried out, it is useful to exclude all genes which are either 
not expressed in all of the samples, or more than one of the samples 
being compared. Such genes, by definition cannot be alternatively spliced 
across samples. There is currently no reliable procedure on deciding 
whether a gene is expressed or not, and Affymetrix recommends using an 
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ad hoc expression value of 15, and some additional filters using DABG 
values of individual exons. 
 
Effect of “Dead” Probe sets 
A probe set which is not expressed – e.g. an exon which is skipped – in all 
samples under investigation may produce a false positive signal in the 
splicing index, in the presence of transcript-level variation. All non-
responsive probe sets should be removed from the analysis. A DABG-
based criterion may be used here, e.g. DABG p-value < 0.05 in at least 
50% of the samples. 
 
Discussion 
The recognition of alternative splicing and alternative isoform expression 
as an important component in gene expression analysis has prompted the 
introduction of isoform sensitive microarray platforms. By targeting 
individual exons, exon junctions, and annotated isoform variants, such 
platforms possess the ability to profile not only the expression levels of the 
entire transcript, but also variations in the types of expressed isoforms. 
The Affymetrix Exon Array 1.0 ST is one of such commercially available 
platforms. To date, it has been shown that the Exon Array produces gene 
expression measurements that are comparable with the previous 
generation 3' targeted arrays. However, little is known about the in-depth 
level of similarities and particularly differences among WT and 3' based 
technologies. This comparison utilizes the well studied brain and reference 
samples previously used in the MAQC study to determine sources of 
variability in profiling gene expression using microarrays. These samples 
are particularly valuable for the purposes of benchmarking the 
performance of the Exon Array for two reasons: 1) they allow easy 
comparison of gene expression level measurements with other platforms 
that have already been tested, and 2) they allow detection of alternative 
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splicing and isoform difference, since neural tissues are known to be 
particularly prone to alternative splicing. 
 
Our first conclusions concern the utility of the Exon Array as an expression 
profiling tool. We note that although the Exon Array results are very 
consistent with 3' profiling methods, the level of agreement between the 
Exon Array and 3' targeted platforms (Illumina and Affymetrix U133) is 
slightly lower than the agreement between the 3' platforms. Many of the 
outliers in the correlation plot (Figure 6.3) are due to the presence of real 
variations in the expression of specific isoforms. This is illustrated using a 
previously noted example of the ELAVL1 gene, which showed 
discordance across platforms in the original MAQC study, as well as in 
additional new examples (Additional file 1). The detected expression 
differences of transcript variants may have important biological 
significance. For example the longer 3' UTR in the dominant ELAVL1 
transcript in brain has a different set of putative micro RNA binding sites 
than the shorter 3' UTR in the reference RNA. It should also be noted that 
discordant results will often be obtained because of differences in the 
annotation provided by microarray manufacturers. We circumvented most 
of such problems here by re-mapping the probes and selecting only a 
subset of genes that we were confident were correctly targeted by all three 
platforms, but researchers should keep in mind that the annotations and 
gene assignments provided by manufacturers contain numerous errors 
(DAI et al. 2005). In the case of the Exon Array, we found that the most 
common annotation error resulted from joining together distinct transcripts 
into single meta-probe sets, particularly in the case of transcripts that 
partially overlap. Thus, we recommend that lists of candidates from 
individual experiments should be carefully curated. 
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We also outline how the Exon Array can be used to detect alternative 
splicing and alternative mRNA processing events. Although our analysis 
methods are not in themselves novel, and most of them have been briefly 
described elsewhere (KWAN et al. 2007), our goal is to convey to the 
potential users their intuitive appeal and potential pitfalls. The most 
challenging step remains the decoupling of whole transcript expression, 
and individual probe set inclusion. The simplest solution to this problem is 
to consider only the genes that do not change overall expression levels, 
but contain probe sets that exhibit individual variations. Although this 
approach produces a highly confident set of alternative events, it can 
result in a huge reduction of the dataset, particularly in case of 
comparisons across samples with highly heterogeneous gene expression 
levels. In the case of MAQC dataset, which has been chosen for the exact 
reason of it's extreme gene expression variability, imposing the restriction 
of expression fold change of less than 2 reduces the total number of 
genes considered by 31% (from 17665 to 12198). A more inclusive 
approach is to attempt to correct for gene expression differences that may 
occur concurrently to splicing differences. We discuss two such 
approaches: 1) the splicing index, which compares probe set inclusion 
across samples after normalizing by gene expression levels, and 2) two-
way ANOVA, where the interaction term between sample type and probe 
set can be used to indicate differential inclusion of probe sets within 
transcripts. Both approaches suffer from similar systematic biases; they 
assume a uniform (linear or log-linear) response of each probe set within a 
meta-probe set. This assumption is violated in many cases, particularly for 
probe sets that hybridize at very high levels (saturated response) or probe 
sets with hybridization levels close to background (poorly or non-
responsive). As a result, in the presence of significant gene expression 
changes, such analyses predominantly indicate three types of events: 
dead probe sets, saturated probe sets, and probe sets that may be 
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predominantly skipped (alternative), but not necessarily differentially 
included across samples.  
 
Many of the above systematic errors can be avoided by filtering out 
potentially troublesome subsets of the data: probe sets with extremely low 
variability (saturated), probe set with low inclusion levels (close to 
background), and genes with extremely high differences in expression 
levels across samples. However, such filtering decreases the false 
positive rates at the cost of reduced genomic coverage. In our earlier 
studies, we have also pointed out that in many experimental designs, 
particularly when samples originate from different genetic backgrounds 
(e.g. different individuals), the presence of sequence variants within probe 
target sequences may be a very significant source of errors (KWAN et al. 
2008; KWAN et al. 2007). This effect can be especially prominent in eQTL 
association studies, where we have shown that it can be responsible for a 
false positive rate >80% in alternative splicing analysis (BENOVOY et al. 
2008). Thus, unless all tested samples are isogenic, we highly 
recommend additionally "masking". 
 
Conclusion 
In summary, the WT profiling provides a wealth of valuable information, 
which is either not available or misrepresented in traditional 3' gene 
expression arrays. However, it should be noted that the isoform-level 
analysis of Exon Arrays is significantly more complicated, suffers from 
higher false positive rates, and requires more manual intervention than 
traditional gene expression analysis. We strongly advocate visualization of 
candidate isoform changes in the context of available genome annotation 
as a means to both reduce false positive rates and interpret the nature of 
detected variants. 
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Connecting text 

In the last chapter, we evaluated how the Exon arrays behaves when 
detecting differences at the whole-transcript expression by comparing it to 
traditional 3' array and found good concordance between these platforms. 
We also investigated the general sources of noise encountered in 
experiments using the Affymetrix Human Exon array and discussed ways 
to reduce the false positive rate. In this chapter, we investigate the main 
source of false positives when conducting an eQTL experiment using the 
Affymetrix Human Exon Array. We show that polymorphisms in probe 
targets are responsible for >80% of the false positives when conducting 
the analysis at the isoform level. We propose a simple solution to this 
problem that entails removing probes that target polymorphic regions. This 
greatly reduces the false positive rate without a significant reduction in 
exon coverage.  
 
 

134 



Abstract 
Hybridization-based technologies, such as microarrays, rely on precise 
probe-target interactions to ensure specific and accurate measurement of 
RNA expression. Polymorphisms present in the probe–target sequences 
have been shown to alter probe- hybridization affinities, leading to reduced 
signal intensity measurements and resulting in false-positive results. Here, 

we characterize this effect on exon and gene expression estimates derived 
from the Affymetrix Exon Array. We conducted an association analysis 
between expression levels of probes, exons and transcripts and the 
genotypes of neighbouring SNPs in 57 CEU HapMap individuals. We 
quantified the dependence of the effect of genotype on signal intensity with 
respect to the number of polymorphisms within target sequences, number 
of affected probes and position of the polymorphism within each probe. 
The effect of SNPs is quite severe and leads to considerable false-positive 
rates, particularly when the analysis is performed at the exon level and 
aimed at detecting alternative splicing events. Finally, we propose simple 

solutions, based on ‘masking’ probes, which are putatively affected by 
polymorphisms and show that such strategy results in a large decrease in 
false-positive rates, with a very modest reduction in coverage of the 
transcriptome. 
 
Introduction 
Microarray analysis has become an integral part of high-throughput 

biological research. Microarray-based measurements typically rely on the 
precise hybridization of a DNA probe to a complementary target DNA or 
RNA molecule. Advances in technology and miniaturization now allow 
manufacturers to print up to 10 million probes on a single chip. Such chips 
are routinely used for truly genome-wide studies of polymorphisms, 
genomic aberrations (KOMURA et al. 2006), gene expression levels 
(STRANGER et al. 2007a) and alternative splicing patterns (KWAN et al. 
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2008). Unfortunately, such massive amounts of data come at the expense 
of a high potential for false discovery. Common sources of error range 
from the purely statistical (e.g. multiple testing problems), through 

experimental techniques, to systematic technical errors (e.g. probe cross-
hybridization). As a result, particularly in gene expression analysis, 
microarray results have often been relegated from the realm of ‘proof’ to 
the role of a ‘discovery platform’ for further validation. In view of their 
overall popularity and utility, it is of great importance to minimize 

systematic errors in microarray experiments. In this study, we focus on 
one particular source of error: the effect of polymorphisms contained within 
probe target sequences on hybridization levels. Using expression 
quantitative trait analysis (eQTA) as an example, we show that this effect 
can be a major source of error, particularly for the latest generation whole-
transcript (WT) arrays.  

 
Association of genetic variants to expression phenotypes is becoming a 
promising strategy to identify sources of phenotypic diversity among 
individuals. A large number of genome-wide studies have been conducted 
in recent years, using various microarray platforms to determine gene 
expression levels (CHEUNG et al. 2005; DEUTSCH et al. 2005; DIXON et al. 
2007; EMILSSON et al. 2008; GORING et al. 2007; MORLEY et al. 2004; 
STRANGER et al. 2005; STRANGER et al. 2007b). This approach usually 
treats expression data obtained from microarray experiments as a 
quantitative trait and tests for association with cis-acting polymorphisms. 
The final goal is to identify regulatory determinants of a particular 
phenotype, such as a disease state. Once significant associations have 
been identified, costly and time consuming downstream validations are 
conducted in order to identify the causative regulatory element. Therefore, 

it is important to identify candidate cis-acting polymorphisms with a high 
degree of confidence. Recent studies have shown that mismatches 
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between a microarray probe and its target sequence affect hybridization 
(SLIWERSKA et al. 2007; VALLEE et al. 2006; ZHANG et al. 2007) that cause 
erroneous probe signal estimates. This phenomenon leads to an increase 
in false-positives, particularly in studies across individuals with different 
genetic backgrounds (WALTER et al. 2007). Individuals expressing mRNA 
that perfectly complements the probes on the microarrays hybridize better 
than individuals with mRNA sequence diversity in the probe–target region. 
This results in a difference in probe–signal intensity between individuals, 
even if both groups express the mRNA at the same level (ALBERTS et al. 
2007).  

 
Here, we present a detailed analysis of this phenomenon using Affymetrix 
Human Exon Array data from our previous study of transcript isoform 
variation in humans (KWAN et al. 2008) and describe how it affects 
association results at the probe, exon and gene levels. In addition, to 
mitigate the effect of polymorphisms, we propose a simple strategy that 
consists of removing probes that are targeted to annotated polymorphic 
regions. We show that this approach greatly reduces false-positive rates, 
particularly for associations at the exon level, with only a small reduction in 
exon and gene coverage. 
 
Methods 
Microarray data source 
In a previous study, we surveyed genetic variation associated with 
differences in isoform level expression in humans (KWAN et al. 2008). We 
characterized this effect in a sample of 57 unrelated HapMap individuals of 
European ancestry (ALTSHULER et al. 2005) for which 4 million single 

nucleotide polymorphism (SNP) genotypes are available. Lymphoblast 

cells derived from these individuals were grown in triplicates and RNA was 
extracted from each of these growths and hybridized onto an Affymetrix 

 137



 

Human Exon array (n = 171). The resulting probe-fluorescent intensities 
were used for the present analysis. We restricted our analysis to probes 
targeting core exons because of their high confidence annotation. 
 
Effect of mismatches on hybridization 
Probe expression signals were quantile-normalized and GC-background 

corrected using the Affymetrix Power Tools (APT) software package 

(Affymetrix). To investigate how mismatches affect probe-to-target 

hybridization on the Affymetrix Human Exon array, we took advantage of 
the high-resolution genotyping information available from HapMap cell 
lines and identified 6110 probes that were targeted to a region with only 
one SNP in at least 1 of the 57 HapMap individuals. These probes were 
selected because the exon and gene they targeted were considered 
expressed. Expression of an exon or gene was established using the 
detected above background (DABG) metric generated by Affymetrix. This 
metric represents the probability that an exon or gene is expressed below 
the background. We used false discovery rate (FDR) correction (BENJAMINI 
et al. 2001) to establish the significance threshold for expression above 

background at DABG ≤0.02 and DABG ≤0.043 for exons and genes, 

respectively. Next, we categorized each of these probes in 25 bins, 
depending on the position of the SNP within the target region (from 5' to 3' 
end). For each of these bins, we determined the fold change between the 
average probe intensity derived from individuals with a perfect 
complementary target region and the average probe intensity from 
individuals with one mismatch (Figure 7.1).  

 
Masking procedure 
We have previously shown (KWAN et al. 2008; KWAN et al. 2007) that 
SNPs located within probe-targets affect their hybridization to Affymetrix 
Human Exon array probes and consequently cause erroneous expression 
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estimates. To mitigate this effect, we devised a simple procedure that 
consists of removing all probes from the analysis whose target region 
contains a known SNP. In total, we found 21 843 core probes target 
regions out of 1 096 799 probes overlapping at least one polymorphic 

HapMap II SNP (release 21).  
 
Preprocessing and summarization of hybridization data 
To study how probe-to-target hybridization is affected by SNPs, we 
generated two data sets of exon and gene expression estimates. The APT 
software package was used to quantile-normalize and GC-background 
correct each data set at the probe level. The average probe set 
(representing exons) and meta-probe set (representing genes) expression 
scores (averaged from triplicates) for each data set were computed using 
the probe logarithmic error intensity model (Affymetrix). The first data set 
consisted of probe set and meta-probe set expression estimates produced 
by summarizing all core probes, regardless of polymorphic probe target 
regions. The second data set was generated by implementing our masking 

procedure (see above). Thus, probe set and meta-probe set expression 

scores, for this last data set, were estimated from probes where no 
HapMap SNP overlapped their target region.  
 
Association analyses 
For each of the two data sets, the first generated from the full core probe 
list and the second from the masked core probe list, we examined probe, 
exon, and transcript expression estimates (averaged from triplicate 
samples for each individual) for association with flanking HapMap SNPs 
(release 21). One of the objectives of our previous analysis (KWAN et al. 
2008) was to identify possible cis-regulatory determinants of differential 
alternative splicing. The presence of linkage disequilibrium in humans has 
created haplotype blocks, where SNPs in close proximity to each other 
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escape rearrangements due to recombination. Therefore, assuming 
physical proximity of a regulatory variant to the target and to limit the cost 

of multiple testing, we only tested for SNPs within a 50-kb region flanking 
either side of the gene containing either the probe or probe set. It should 
be noted that the SNPs associated with a change in microarray 
hybridization intensity may either be the actual causative SNPs, or simply 
be in linkage disequilibrium (part of the same haplotype block) with the 
causative SNP. We measured the level of association between expression 
scores (probes, probe sets and meta-probe sets) and the genotypes of a 
given SNP using linear regression analysis, implemented in the Plink 
software package (PURCELL et al. 2007), under a codominant genetic 

model. This model considers genotypes AA, AB and BB as the 
independent discrete variable. The genotypes are encoded as 0, 1 and 2, 

respectively, whereas expression scores were considered a quantitative 

trait and treated as the dependent variable in the linear regression. Raw P-
values were obtained from the linear regression using the standard 
asymptotic t-statistic. To correct for testing multiple SNPs against each 
probe set and meta-probe set expression values, we carried out 
permutation tests (CHURCHILL and DOERGE 1994) followed by 5% FDR 
correction. Permutation analyses were performed using the ‘label 
swapping’ and ‘adaptive permutation’ options implemented in Plink. The 
‘label swapping’ option is used to preserve the haplotype block structure 
and the ‘adaptive permutation’ algorithm allows for computationally 
efficient permutation analyses (PURCELL et al. 2007). Subsequently, we 
performed FDR corrections of 5% on the empirical P-values (from 
permutations) for association of genotype to the expression at the probe 
set (P-value <9.73 x 10–9) and meta-probe set levels (P-value <6.07 x 10–

7).  
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Evaluation of SNP mask 
To evaluate how SNPs in probe–target regions impacted our association 
analyses, we estimated the proportion of false-positive and false-negative 
associations due to polymorphic probe target regions. We treated the 
association results for the masked data set as the reference (true) data set 
because they were derived from expression estimates free of influence 
from known SNPs. This reference data set enables us to evaluate the four 
scenarios described in Table 7.1.  
 
Table 7.1: Comparison of association analyses with and without a SNP 
mask 

 SNP Mask 

 
Positive for 
Association 

Negative for 
Association 

No Mask   

Positive for 
Association 

True Positive False Positive 

Negative for 
Association 

False Negative True Negative 

 
Associations of probe set or meta-probe set, which were significant (P-
value below the thresholds) and non-significant (P-value above thresholds) 

in both masked and unmasked data sets, were classified as true positives 
and true negatives, respectively. We consider a result a false-positive 
when a significant association is found in the unmasked data set, but 
become non-significant after masking probes containing SNPs (masked 
data set). Conversely, associations that were non-significant in the 
unmasked data set but significant in the masked data set were categorized 
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as false-negatives. The false-positive and -negative rates are computed 
by: FPR = FP/ (FP + TP) and FNR = FN/ (FN + TN), respectively. In order 

to avoid the problem of reduced coverage within the masked data, the 
above analysis does not include probe sets which were entirely ‘masked’ 
due to the presence of SNPs. 
 
Results 
Our first objective was to examine the effect of sequence mismatches on 
probe-to-target hybridization. We selected all probes that contained known 
SNPs and compared their hybridization intensity between individuals with 
homozygous match and mismatch genotypes. We illustrated how 
hybridization intensity changed when a mismatch is present at a given 
position within a probe in Figure 7.1. We observed that the position of the 
polymorphism within the probe's target sequence affects its binding 
affinity. Probe expression scores show a median 2-fold decrease in 
expression when a polymorphism is present near the middle of the target 
area i.e. between positions 6 and 21. This effect decreases linearly 
towards the edges of the target area and the median fold change in the 
end is near zero i.e. at positions 1 and 25, which supports the theoretical 

prediction of Lee et al. (LEE et al. 2004). It should be noted that the 
variance in the estimate of the effect is very high and that some 
mismatches decrease hybridization levels by much more than 2-fold; 7.5% 

of mismatches cause 5-fold decrease in signal intensity. Thus, in some 
cases the effect of SNPs may be very severe. This corroborates 

suggestions by earlier studies (HUGHES et al. 2001; SLIWERSKA et al. 2007; 
VALLEE et al. 2006; WALTER et al. 2007; ZHANG et al. 2007) that mRNA 
sequence diversity in probe target regions disrupts hybridization and that 
polymorphisms in the middle of the probe target regions destabilize 
hybridization more than those closer to the ends. 
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Figure 7.1: Boxplots illustrating the positional effect of SNPs within the 
probe target region. Probe signal ratios between perfect complementary 
regions and regions with a single mismatch. 
 
We next investigated how the association of expression phenotypes to 
neighbouring SNPs, as in our previous analysis (KWAN et al. 2008), are 
distorted by including probes whose target regions were polymorphic. We 

characterized this by performing an association analysis between 

expression levels of probes, exons and transcripts, with the genotypes of 
neighbouring HapMap II SNPs. We compared only the top 1% of 
significant associations as a way to uniformly correct for multiple testing 
between the different levels of expression (probe, exon and gene). We 
observed that probes with polymorphic target regions were highly over-
represented in the top 1% of significant association by a factor (odds ratio) 
of 16.8 (Table 7.2; 2 = 33976.74, P-value << 10–16) compared to probes 

with perfectly complementary probe target regions. We also observed this 
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over-representation at the probe set and meta-probe set levels, although 
to a lesser degree. In the top 1% of significant associations, we found an 
enrichment of 6.1-fold (Table 7.2; 2 = 1443.88, P-value << 10–16) and 2.5-
fold (Table 7.2; 2 = 19.45, P-value = 1.03 x 10–5) for probe sets and meta-
probe sets, respectively, whose expression estimates included probes that 
were targeted to polymorphic regions. In addition, this enrichment is also 
positively correlated with the number of polymorphisms within probe target 
region at the probe set (Pearson r = 0.956) and meta-probe set (Pearson r 
= 0.967) levels (Table 7.2). This further demonstrated that sequence 
polymorphisms between an Affymetrix Human Exon array probe and its 
target sequence resulted in changes to hybridization intensity and 
influenced the apparent association between the SNP genotypes and 
expression intensities. Given that probe set and meta-probe set 
expression estimates are derived by summarizing probe signals, 
erroneous probe signals due to probe target mismatches are a source of 

error in comparative expression analyses. 
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Table 7.2: Enrichment for probes with polymorphic target region in the top 
1% of significant association for probes, probe sets and meta-probe sets 

Enrichment (odds ratio) 

Number of SNP overlaps 
Probe Probe set 

Meta-probe 
set 

All 16.83 4.30 2.46 

1 16.78 1.98 1.94 

2 19.39 5.02 2.12 

3 NA 10.89 2.40 

4 NA 15.64 3.00 

5 NA 14.84 3.01 

 
To reduce this source of error, we developed a simple masking procedure 
where we removed all probes targeted to a known polymorphic region 
(HapMap phase II SNPs). The remaining probes were used to estimate 
probe set and meta-probe set expression scores. A detailed example of 
this procedure and how it reduces the false-positive association caused by 
polymorphic probe target regions for gene ZNF37A is illustrated in Figure 
7.2. Expression estimates for this gene were derived from four probe sets 
(Figure7.2a), one of which, probe set 3243183, comprised probes 
targeting a polymorphic region in the 57 HapMap individuals. The first 3 
probes from this probe set (Figure 7.2b) overlapped each other to some 
degree and targeted a region containing SNP rs176889. Individuals with 
TT genotypes have higher probe signals than individuals with a TC or CC 
genotype because the T allele creates a perfectly complementary target to 
these 3 probes (Figure 7.2c). The fourth probe, probe 496020, targets a 
region with no known SNP and shows no significant associations with 
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SNPs rs176889. In addition, we do not find any significant association with 

neighbouring SNPs that could be in linkage disequilibrium with SNP 
rs176889. Therefore, by using this single probe to estimate the expression 
of probe set 3243183, we obtain expression estimates that are not 
affected by erroneous probe signals and in subsequent association 
analyses (Figure 7.2d), the same is observed at the gene level (Figure 
7.2e). We only used probe set expressions derived from probes unaffected 
by SNP to estimate meta-probe set expression scores and find no 
significant association with neighbouring SNPs. 
 

 
Figure 7.2: ZNF37A is an example of a false-positive induced by a SNP 
(rs176889). (A) The ZNF37A mRNA molecule is illustrated with the coding 
region in yellow and the 5' and 3' UTRs is represented in white. The 
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horizontal green rectangles represent the 4 probe sets that target this 
transcript. The red bars represent the position of SNP rs176889 in the 
coding sequence of this transcript. (B) The alignment of the 4 probe 
sequences that constitute probe set 3 243 183 and SNP rs176889 falls 
within each of these probes (red box). (C) Plots illustrating the association 
between each of the 4 probes and the different genotypes for SNP 
rs176889. Probe 496 020 does not contain any SNP and the association 
is non-significant. It is the only probe used to estimate probe set 3 243 183 
expression scores. (D) Probe set 3 243 183 is no longer a false-positive 
after our masking procedure. (E) The same is observed at the meta-probe 
set level, where this gene is not significantly associated with SNP 
rs176889 or any other neighbouring SNPs (results not shown). 
 
A potential drawback associated with removing problematic probes, is the 
reduction of probe set and meta-probe set coverage. For this data set, 21 
843 (1.99%) probe target sequences overlapped at least one HapMap 
SNP and the distribution of affected probes per probe set and meta-probe 
set is illustrated in Figure 7.3a and b, respectively. We found 1258 (0.47%) 
probe sets and 99 (0.57%) meta-probe sets where we could not derive any 
expression estimates because no probes were left after ‘masking’ which is 
a very modest amount of lost coverage. 
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Figure 7.3: Distribution of probe sets and meta-probe sets containing 
SNPs. (A) Proportion of affected probes per exon (B) Proportion of probes 
that contain SNPs per transcript.  
 
Next, we assessed how our masking procedure improved results obtained 
from our association analyses. For the purpose of the analysis, we 
assumed that an association is a false-positive when a probe set or meta-
probe set is significant in the unmasked data set, and that the same 
association becomes non-significant after masking probes containing 
SNPs. This assumption is based on two sources of evidence: (i) the strong 
over-representation of SNPs in the significant data set and (ii) the fact that 
in our previous work (KWAN et al. 2008; KWAN et al. 2007) we were unable 
to experimentally validate an alternative splicing event supported by an 
SNP-containing probe. We assumed that the expression data set derived 
by ‘masking’ misbehaving probes represents the best estimates of probe 
set and meta-probe set expression scores. Using this as the reference 

(true) data set, we evaluated the four scenarios described in Table 7.1 by 
comparing the P-values obtained from the association of the same 
neighbouring SNPs to the same probe sets or meta-probe sets expression 
score estimated without ‘masking’ problematic probes. It should be noted 
that the reference set itself may not be free of false-positives (due to 
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sources of errors other than SNPs), but this approach allows us to 
determine the rates of false-positive results that are induced by the 

presence of SNPs. We established P-value significance thresholds of 9.73 
x 10–9 and 6.07 x 10–7 for probe sets and meta-probe sets, respectively, by 
permutation testing followed by FDR correction at 5%. We found that the 
SNP-induced false-positive rate is 86.6 and 8.1% at the probe set and 
meta-probe set levels, respectively Table 7.3. However, false-negative 
rates do not seem to be influenced by SNPs because, after masking these 
potentially misbehaving probes, the false-negative rates were reduced by 

only 0.3 and 0.05% at the probe set and meta-probe sets Table 7.3, 

respectively. This demonstrates that the removal of probe signals 

impacted by SNPs greatly reduces the rate of false-positives particularly 
for association conducted at the probe set level (e.g. alternative splicing). 
We concluded that masking probes targeted to known polymorphic regions 
does not substantially decrease the coverage of the Human Exon array 
and effectively reduces the SNP-induced false-positives. 
 
Table 7.3: Effect of the masking procedure on results from the association 
analysis of probe sets and meta-probe sets 

 Probe set Meta-probe set 

False positives 446 9 

False negatives 41 4 

True positives 69 102 

True negatives 13,359 8,115 

False positive rate 0.866 0.081 

False negative rate 0.003 0.0005 
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Discussion 
Our analysis suggests that the presence of SNPs within the target 

sequence of Affymetrix Human Exon array probes causes false-positives 

when the analysis is conducted at the exon and transcript levels. Exon 
expression estimates are affected by misbehaving probes at a higher 
degree then transcript expression estimates because they are summarized 
from only 4 probe signals, whereas transcript expression estimates rely, 
on average, on 30 probes. In addition, we demonstrate that ‘masking’ a 
probe targeted to a known polymorphic region is a simple and effective 
solution for decreasing the rate of false-positives in an association analysis 
with individuals of different genetic backgrounds.  

 
Alternative filtering approaches have been suggested. Zhang et al. (ZHANG 
et al. 2008) proposed to remove from the analysis probe sets with 2 or 
more probes harboring dbSNPs (release 126). This would result in the 
removal of 1.96% of probe sets—a much more significant reduction than 
the 0.47% in the approach outlined here. In addition, we do not advocate 
leaving probe sets containing single SNPs in the analysis, as we show in 
Table 7.2, that such probe sets are still 2-fold over-represented in the 
significant data set and are likely to produce false-positive results.  

 
Our analysis takes advantage of the HapMap dataset, which has been 
genotyped at a high resolution. This constitutes an ideal data set for the 
purpose of illustration and quantification of the effect of SNPs. However, 
the results and solutions are applicable to most studies, whenever 
individuals with diverse genetic backgrounds are being compared. This is 
typically done in cancer studies and should be taken into consideration, 
particularly since investigation of alternative splicing and the use of WT 

arrays are quickly gaining popularity in this field (GARDINA et al. 2006; 
THORSEN et al. 2008). Generally, when two large groups of patients and 
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controls are being compared, the effect of SNPs should be minimal in the 

pooled comparison. However, whenever a single individual or a group of 
related individuals is being used in a comparison to control samples, the 
effect of SNPs will be substantial. Similar problems will be encountered in 
any comparison of alternative splicing across tissues, whenever the 
tissues do not originate from the same individual. In all such cases, we 
advocate conservatively masking all probes containing putative SNP sites 
(from dbSNP). In addition, in our previous study (KWAN et al. 2008) we 
found a non-trivial effect of still unannotated SNPs. While this problem 
cannot be corrected for a priori, we advise investigators to carefully 

monitor the behavior of individual probes before undertaking further costly 
functional studies—a single significant outlier probe whose behavior is 
inconsistent with the rest of the probe set may be an indication of a 
technical problem. 

 
Finally, while we focus our study on the exon array and the analysis of 
alternative splicing, we would like to point out that other platforms are not 
immune to this effect. Examples of similar problems have been identified 
for the Affymetrix 3' expression arrays (ALBERTS et al. 2007; WALTER et al. 
2007). Other popular expression platforms, such as Agilent and Illumina, 
use longer probes, which are less sensitive to SNPs, but a slight effect of 
polymorphisms can be detected in those platforms as well (DOSS et al. 
2005; STRANGER et al. 2005). Therefore, we advocate preventive 
measures (such as SNP masking) and vigilance (careful scrutiny of final 
results), and propose that the next generation of microarray designs avoid, 
when possible, targeting polymorphic sites. 
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Chapter 8: Summary and Conclusion 

Biology 
The regulation of gene expression is recognized as an important 
mechanism in numerous biological processes. The study of how 
processes, such as alternative transcript initiation and termination, 
alternative splicing and transcript expression, are regulated will provide 
new insights into organism complexity and diversity. Recent studies have 
already demonstrated that variation of transcript expression is common 
among higher eukaryotes and that these types of variation have a genetic 
basis (CHEUNG et al. 2003; CHEUNG et al. 2005; STRANGER et al. 2005; 
STRANGER et al. 2007b). It is believed that certain regulatory changes that 
affect transcript expression are responsible for downstream phenotypic 
differences observed between and within species such as species specific 
traits and susceptibility to genetic diseases, respectively. This thesis 
demonstrates that, in addition, to transcript expression differences, a 
significant amount of expression variation is observed at the transcript 
isoform level. Moreover, it confirms that this variation also has a strong 
genetic component, and hence, the effect of common genetic variation in 
a human population and between humans and chimpanzees is much 
more complex than previously believed. Single nucleotide polymorphisms 
affect processes that generate transcript isoforms to an extent that is 
comparable or even superior to overall transcript expression. Therefore, 
the downstream phenotypic effects of these variations are likely as 
important as the ones generated by whole-transcript expression 
differences. For example, the genome-wide association analysis, 
described in chapter 4, identified a mutation in the polyadenylation 
sequence of the IRF5 gene that is responsible for generating a 3' UTR 
variant that in turn, is associated with an increased susceptibility to lupus 
(GRAHAM et al. 2007). This example illustrates the type of information 
needed to better understand the phenotypic effect of isoform variants.  
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For most of the isoform variations between individuals, identifying the 
cause is a difficult but essential task to better understand the evolutionary 
processes that are responsible for generating phenotypic diversity as well 
as increasing our knowledge of disease mechanisms that in turn can help 
us develop novel therapeutic applications. Identifying the true causative 
genetic variant from an association analysis is still a challenge because 
the majority of polymorphisms are embedded within a haplotype block and 
consequently in linkage disequilibrium with many other good candidate 
polymorphisms. This task is even more difficult when conducting inter-
species comparisons as the one described in chapter 5 because 
sequence regulatory elements are poorly defined and therefore any 
substitution could potentially be the cause of the expression difference. To 
identify the exact genetic difference responsible for an observed 
expression variation will require assay systems capable of confirming and 
further dissecting how genetic differences cause expression variations. 
Methods such as site-directed mutagenesis or in-silico approaches could 
be used for this purpose which would help the scientific community identify 
the elements responsible for regulating gene expression and to better 
understand the processes involved. Another important aspect to consider 
is how mRNA variations translate to the proteome. It is still not clear if the 
multiple mRNA isoforms created by alternative splicing and alternative 
initiation and termination actually produce the predicted protein variants. 
Moreover, even if these mRNA do produce protein variants the exact 
phenotypic effect may be hard to ascertain because they may act on the 
cellular, tissue or organism levels. The answer to these questions will 
require technological advances in diverse fields.  
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Technology 
In the past, transcript isoform variations were first characterized by very 
low throughput technologies such as RT-PCR and Northern blots. The 
advent of EST libraries showed the extent of transcript isoforms variation 
and motivated research to further develop splicing-sensitive microarrays 
capable of genome-wide analysis. The Exon Array developed by 
Affymetrix is the first commercially available array truly capable of 
genome-wide detection of isoform variations. The studies presented in this 
thesis demonstrate the capabilities of the Exon array in detecting 
transcript isoform variations. However, as demonstrated here the analysis 
of data generated with this technology requires caution. The large amount 
of data points generated in these experiments can potentially produce a 
large number of false results. Therefore, many pre- and post- processing 
steps are necessary to remove systematic artefacts that generate these 
erroneous results such as unresponsive, cross-hybridizing, unresponsive 
probes (chapter 6) and SNPs present in probe targets (chapter 7). In 
genome-wide studies, multiple testing is also an important factor that 
generates false positives. The development of new statistical methods and 
microarray designs are essential for improving their analyses. 
 
Newer technological advances will also readily improve our understanding 
of gene expression. For instance, the next generation microarrays are 
likely to combine exon body and splice junction probes. This will greatly 
improve their sensitivity and will allow the detection of other types of 
splicing events such as alternative splice site junction usage and intron 
retention events. In the very near future, ultrahigh-throughput parallel 
sequencing will become very competitive and eventually eclipse 
microarrays as the preferred transcriptome profiling tool. 
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Conclusion  
In summary, this thesis demonstrated that isoform variations created by 
processes such as alternative splicing, alternative transcription initiation 
and termination are common in human and chimpanzee. This thesis also 
demonstrates an underlying genetic component to these types of 
variation. Genetic linkage and allelic association analyses confirm that 
transcript isoform variations are caused, in part, through single nucleotide 
polymorphisms. These results show that the effects of genetic variants on 
gene expression are much more complex than previously believed and 
constitute an important step towards understanding the functional 
consequences of such variations.  
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	Transcript expression and pre-mRNA processing are emerging as important mechanisms that increase the complexity of eukaryotic transcriptomes. These processes allow a genomic locus to produce a number of mRNAs and proteins with distinct properties that affect function, stability, and sub-cellular localization by controlling the rate of transcript expression, by varying the initiation or termination of transcription and by modulating the inclusion of exons (alternative splicing) in mature mRNAs. Thus, it is crucial to determine the extent of these types of variations to better understand their importance in creating organism diversity. The studies described in this thesis provide the first genome-wide estimations of how single nucleotide polymorphisms (SNPs) affect the regulation of transcript expression and pre-mRNA processing in a human population as well as between humans and chimpanzees using a microarray-based approach.  We first demonstrated that transcript expression changes at the isoform level are common between two unrelated individuals and that these changes are heritable and therefore have an underlying genetic component. We then investigated what proportion was under genetic control in a normal human population by conducting a genome-wide association analysis between single nucleotide polymorphisms and transcript isoform variants. We found that 50-55% of transcript expression variation is isoform based. We also extended our comparison of human transcript isoform variation to chimpanzee. We showed that genetic substitutions in regulatory sequences are responsible for some of the isoform variations observed between these two closely related species. We ascertained that in our study these isoform variations are responsible for certain phenotypic differences mostly related to immune responses. These results constitute an important change in the way genetic variations are viewed in humans and chimpanzees and they highlight the need for broader investigation into these types of variation and how they affect gene expression. In the last two chapters of this thesis we also provide solutions for some of the methodological and analysis issues we encountered because they could be of a great benefit to scientist conducting experiments with the Exon Array.
	Résumé
	Le niveau d’expression d’un transcrit et les processus de maturation de celui-ci en ARN messager (ARNm) se révèlent être des mécanismes augmentant la complexité du transcriptome des eucaryotes. Ces processus permettent au même locus génomique de produire plusieurs ARNm et protéines ayant des propriétés distinctes qui affectent leurs fonctions, leur stabilité et leurs localisations intra cellulaire en contrôlant la vitesse de transcription, en variant le site d’initiation ou de terminaison de la transcription et en modulant l’inclusion d’exons (épissage) dans les ARNm matures. Il est donc primordial de déterminer l’ampleur de ces types de variations afin de mieux comprendre leur impact sur la diversite des oraganismes. Les études décrites dans cette thèse fournissent les premières estimations de la façon dont les variations de polymorphism nucléotidique simple (SNP) peuvent affecter la régulation de l’expression d’un transcrit et ses processus de maturation à l’échelle du génome entier. Ces processus sont examinés dans une population humaine et entre humain et chimpanzé en utilisant une méthode basée sur les puces à ADN. Nous démontrons d’abord l’existence d’un nombre important de variations d’isoformes d’ARNm entre deux individus non apparentés et nous démontrons que ces variations sont héritées ce qui leur révèle une composante génétique. Par la suite, nous avons déterminé quelle proportion et quel type de variation au niveau de l’isoform était sous contrôle génétique dans une population humaine. En réalisant une analyse d’association entre l’expression des transcrits du génome entier et les SNPs présents dans cette population, nous avons observé que 50-55% de la variation était à l’échelle de l’isoforme du transcrit. Nous avons aussi étendu cette comparaison au chimpanzé en utilisant les profils d’expression mesurés lors de l’analyse précédente. Nous avons démontré que des substitutions dans certaines séquences qui régulent l’épissage étaient responsables de variations d’expression au niveau des isoforms de transcrits entre ces deux espèces apparentées. Nous estimons que ce type de variation est responsable de certaines différences phénotypiques, plus précisément au niveau de certaines réponses immunitaires. Ensemble ces observations amènent un changement important dans notre compréhension du rôle de ces variations dans le contrôle de l’expression des gènes et elles soulignent l’importance de mener des recherches plus étendues sur ces types de variations ainsi que l’impact produit sur l’expression des gènes. De plus, les deux derniers chapitres décrivent diverses solutions que nous avons élaborées afin d’aider la communauté scientifique qui utilise le Exon Array.  
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	Preface

	Over the past two decades, sequencing and comparison of entire genomes from different species have changed our conception of organism complexity and diversity. The surprisingly low number of genes found throughout diverse eukaryotic organisms such as worm, mouse, chimpanzee and human suggests that an increase in biological complexity and diversity is achieved by other means (Cherry et al. 1997; Lander et al. 2001; The C. elegans Sequencing Consortim 1998; The Chimpanzee Sequencing and Analysis Consortium 2005; Waterston et al. 2002). 
	Insight into this paradox was obtained when mRNA was defined as the intermediate between the genetic information contained in sections of DNA (genes) and the protein-synthesizing machinery. Research into its regulation has completely changed our view of how information flows in the cell (Crick 1970). The concept of one promoter that controls one gene which is transcribed to one mRNA transcript no longer holds. In fact, a single genomic locus can produce multiple mRNA transcript isoforms with the use of alternative transcription initiation and termination as well as alternative pre-mRNA splicing. Processes such as alternative transcription initiation and termination modify the 5' and 3' ends of mRNA transcripts, respectively, while alternative splicing consists of the differential exclusion of exons within mRNA transcripts. Consequently, this can alter mRNA turnover, translation and sub-cellular localization (Grens and Scheffler 1990; Russo et al. 2006; Wang et al. 2008) or create different protein domain combinations such as in the classical example of the Dscam gene (Schmucker et al. 2000). Overall, it is estimated that 95% of mammalian genes encode for multiple transcript isoforms (Pan et al. 2008; Wang et al. 2008). Thus, these processes further diversify eukaryotic transcriptomes and proteomes and have contributed to the evolution of organism complexity. A cell can adapt to changing environments and states by tightly regulating transcription and pre-mRNA processing. In specialized tissues such as the brain, liver and testis, the frequency of alternative splicing is higher to accommodate their complex functions (Johnson et al. 2003). Studying transcriptome variation is becoming increasingly important because of its contribution to phenotypic differences among individuals and its regulatory and functional relationship to disease. In fact, splicing defects can result in genetic disorders (Faustino and Cooper 2003) and in some cases confer susceptibility to complex diseases (reviewed in (Cooper et al. 2009; Lukong et al. 2008; Wang and Cooper 2007). Consequently, the study of transcriptome variation is important to a broad range of biomedical disciplines from evolutionary biology through development and to medicine. 
	These transcriptome variations are routinely investigated using DNA microarrays. The typical microarray platform employs a large collection of probes that are designed to hybridize to specific targets, usually a fluorescently labelled nucleic acid sequence from a particular gene. The fluorescence emitted by the bound target to its probe is measured and compared between samples being investigated to identify variation in whole-transcript expression. More recently, advances in microarray design enabled the investigation of mRNA expression at the resolution of a single exon. The Affymetrix GeneChip® Human Exon 1.0 ST Array is the first commercially available microarray product designed for transcriptome-wide exon level analysis. The array relies on targeting multiple probes to individual exons and allows exon-level detection of expression intensity for ~1.4 million exons which theoretically covers the entire set of human exons. The complexity of this array design and the sheer magnitude of data generated per experiment have hindered the use of traditional analysis methods. Therefore, new statistical and data visualization approaches are needed to adequately analyze expression data derived with the Human Exon Array.
	Hypothesis

	What is hypothesized in this thesis is that inter- and intra- genetic difference in humans and chimpanzees produce variable expression profiles of mRNA isoforms and that it is possible to adequately measure these types of variations using isoform sensitive microarrays.
	Outline

	This thesis consists of a literature review, five manuscripts and a discussion that together address the study of gene expression variation at the isoform level in humans and chimpanzees using the Affymetrix GeneChip® Human Exon 1.0 ST Array. The literature review summarizes the basic mechanisms of transcription and pre-mRNA processing, describes how these processes are regulated and explains some of their effects on organism phenotype and diversity. It also describes what tools are used to study gene expression and examines the typical analysis workflow of the Affymetrix GeneChip® Human Exon 1.0 ST Array. The third chapter is a pilot study that was performed to verify the efficacy of the Human Exon Array in detecting transcript isoform variations among two human individuals. This study demonstrated that the Human Exon array was capable of detecting transcript isoform differences that were caused by alternative transcript initiation, alternative splicing and alternative termination. A linkage analysis conducted on single nucleotide polymorphisms also showed that these types of isoform variations were heritable and therefore had an underlying genetic component. This prompted a second study that is described in the fourth chapter of this thesis. A genome-wide association analysis was conducted between single nucleotide polymorphisms and transcript isoform variants. It demonstrated that expression variation at the isoform level was under genetic control and common in a natural population. It also investigates the relationship between genetic variations associated to certain splicing differences that cause disease phenotypes. The fifth chapter extends the comparison to the chimpanzee. It uses the expression profiles derived from the previous human population study and compares them to the expression profile derived from a chimpanzee lymphoblast cell line. It confirms that genetic substitutions in regulatory sequences are responsible for some of the isoform variations observed between these two closely related species. It also ascertains that these isoform variations are responsible for certain phenotypic differences mostly related to immune responses. The following two chapters (6 and 7) relate to the methodological issues involved in the analysis of the Human Exon Array because substantial time and effort was put into finding solutions to the different technical problems encountered during the analyses described in the last three chapters that could greatly benefit scientist conducting experiments with the Human Exon Array. The sixth chapter outlines problems encountered in the analysis of expression data generated with the Exon array. It also describes some of the statistical and technological problems encountered and proposes solutions to resolve them. The following seventh chapter continues on the technical theme of the preceding one. It describes how polymorphisms present in the probe-target sequence affect hybridization. It shows that this effect is the main source of false positives in Exon Array experiments involving individuals of different genetic backgrounds and a simple solution is proposed to reduce the false positive rate that consists of removing misbehaving probes from the analysis. The last chapter (chapter 8) is a summary of the main results and a discussion of the future work that is needed to better comprehend the role of transcript expression variation in organisms.  
	Gene expression

	The central dogma of molecular biology states that genetic information is transferred in a sequential manner (Figure 2.1) and that each type of molecule (DNA, RNA and protein) is used as a template for the synthesis of another and is entirely dependant on the original molecule (Crick 1970). The general model (see full lines in Figure 2.1) describes the normal flow of information in cells; (1) the DNA copies itself through DNA replication, (2) genetic information is copied from the DNA to a RNA transcript via transcription and this RNA transcript is then (3) translated into a protein. 
	Figure 2.1: The central dogma of molecular biology. Solid arrows show the general transfer of genetic information from DNA to RNA to protein that occurs in most cells. The dashed arrows show the special transfer of genetic information such as RNA to RNA that occurs occasionally in some RNA viruses (Leis and Hurwitz 1972), DNA to protein transmission has been observed only in-vitro studies (McCarthy and Holland 1965; Uzawa et al. 2002), protein to protein transmission is taught to occur in prion replication (Weissmann 2004) and there is no evidence of protein to RNA or DNA. Figure modified from (Crick 1970).
	Transcription

	Transcription plays a central role in this model (Figure 2.1) because it acts as a messenger between genetic information contained in sections of DNA (genes) and the protein-synthesizing machinery of the cell. In eukaryotes, transcription involves two main phases; the first is the transcription of a gene into a primary RNA transcript (pre-mRNA) that is divided into 5 stages: pre-initiation, initiation, promoter clearance, elongation and termination. The second phase is the processing of this primary transcript (pre-mRNA) into a mature messenger RNA (mRNA) in a 3 step process that consists of 5'-capping, splicing and polyadenylation.
	Chromatin remodelling

	The first step in gene transcription is called pre-initiation. This is where the gene promoter is exposed by the remodelling of chromatin. Chromatin is formed of proteins that serve as scaffold onto which DNA is packaged. DNA is wrapped around histone proteins (an H3-H4 tetramer flanked by two H2A-H2B dimmers) that make up the nucleosomes and are the primary repeating units of chromatin (Kornberg 1974; Kornberg and Thomas 1974). Transcription is repressed when nucleosomes inhibit the access of the transcription machinery to the promoter (Workman and Buchman 1993; Yager et al. 1989). Therefore, to allow the transcription machinery to gain access to the genomic DNA of the promoter, nucleosomes are modified by histone acetylation (Pennisi 1997; Wade et al. 1997) and by chromatin remodelling enzymes (Cairns 1998) that together displace the nucleosomes and change the structure of the chromatin in order to expose the promoter.
	Transcription initiation

	Promoters of genes that encode proteins are usually composed of a core promoter near the transcription start site as well as enhancer elements that can be several kilobases upstream and/or downstream of the transcription start site (Blanchette et al. 2006). The DNA segments where these enhancer elements lie can bend back on themselves to allow the placement of regulatory sequences near the core promoter. The core promoter is where the assembly of the transcription initiation complex takes place. This complex is composed of enhancer elements bound by transcription factors that in turn, regulate transcription by promoting or inhibiting the recruitment of the RNA polymerase (Karin 1990; Latchman 1997). The RNA polymerase, also called DNA-dependent RNA polymerase is responsible for the transcription of DNA into RNA. It uses the complementary nature of DNA and RNA to produce a primary RNA copy based on the segment of DNA it is transcribing (Figure 2.2). In eukaryotes, there are three types of RNA polymerase; RNA polymerase I, II and III (Roeder and Rutter 1969). These polymerases consist of 8 to 12 protein subunits and transcribe specific types of genes. For instance, RNA polymerase I and III transcribe RNA genes such as ribosomal, transfer and small nucleolar genes (Russell and Zomerdijk 2006; Wolffe 1991) whereas RNA polymerase II mostly transcribes protein coding genes (Boeger et al. 2005; Kornberg 1999). Once the transcription initiation complex composed of transcription factors and the RNA polymerase have been assembled on the core promoter, transcription elongation starts.
	Transcription elongation 

	The next step in the transcription of a protein coding gene involves the synthesis of a pre-mRNA transcript by RNA polymerase II (Figure 2.2). The RNA polymerase unwinds the DNA strand using helicase action (Svejstrup et al. 1996), clears the promoter and starts transcription at the transcription start site. The RNA polymerase travels from the end of the anti-sense DNA strand and uses it as a template to synthesize the pre-mRNA transcript from theend. It assembles ribonucleotides following the rules of base pairing (Watson and Crick 1953) and produces an exact copy of the DNA sense-strand although the thymines are replaced by uracils and the nucleotides are composed of ribose sugar instead of a deoxyribose as in DNA. The RNA polymerase continues to transcribe the gene until a transcription termination event. 
	Transcription termination 

	The exact mechanism of transcription termination is not well understood in eukaryotes although two scenarios involving the polyadenylation signal have been proposed. The first referred to as the “anti-termination” model suggests that the emergence of the polyadenylation sequence on the RNA transcript and subsequent binding of a polyadenylation factor could displace a positive elongation factor or recruit a negative elongation factor and consequently the RNA polymerase would terminate transcription (Logan et al. 1987). In the second scenario, the “torpedo” model, the polyadenylation site is cleaved and generates a new uncapped 5' end (Connelly and Manley 1988). This uncapped end would act as an entry point for an exonuclease or helicase that would track along the RNA and dissociate the RNA polymerase. Other studies have shown factors that induce the pausing of the RNA polymerase such as the transcription of particular RNA sequences that create secondary structures in the RNA or DNA binding proteins that inhibit the forward movement of the RNA polymerase could trigger termination (Yonaha and Proudfoot 1999). In general these theories all point to a stochastic process that terminates transcription somewhere downstream of the polyadenylation site (Kim and Martinson 2003; Tran et al. 2001) (Figure 2.2).
	Pre-mRNA processing

	Processing of pre-mRNA usually occurs in a co-transcriptional manner meaning that the pre-mRNA is processed into mRNA while it is synthesized (Figure 2.2). RNA polymerase II contains a unique C-terminal protein domain (CDT) that coupled with processing factors, are responsible for directing the three main post-transcriptional modifications; (1) 5'-end capping, (2) splicing and (3) polyadenylation (Calvo and Manley 2003; McCracken et al. 1997a; McCracken et al. 1997b; Neugebauer 2002; Reed 2003). 
	Figure 2.2: Co-transcriptional pre-mRNA processing. Schematic illustrating the principal steps involved in pre-mRNA processing (capping (m7G), splicing and polyadenylation) and their interaction with the C-terminal domain of the RNA polymerase II to form a mature mRNA transcript.
	5' capping 

	Soon after the pre-mRNA has emerged from the RNA polymerase II the 5’ end undergoes a chemical modification with the addition of a cap (Figure 2.2). This cap formation involves three enzymatic reactions: a 5'-triphosphatase that removes the γ-phosphate from the first transcribed nucleotide, a guanylyltransferase (GTase) that attaches a guanosine via a 5'–5' triphosphate linkage, and a 7-methyltransferase that modifies the terminal guanine (reviewed in (Shatkin and Manley 2000). Capping the 5'-end mainly stabilizes the mature mRNA against exonucleolytic degradation, facilitates mRNA cytoplasmic transport and assists with translation (Howe 2002).
	Constitutive Splicing

	Constitutive splicing is the process by which intron sequences are removed from the pre-mRNA and consecutive exons are joined. This process is catalyzed by a complex of small nuclear ribonucleoproteins and associated proteins designated as the spliceosome that assembles on the pre-mRNA in a stepwise manner at the splice sites located at the intron-exon boundaries. The intron-exon boundaries are defined by specific sequences that are recognized by the spliceosome. In addition, both exons and introns contain weak binding sites such as exonic and intronic splicing enhancers and silencers for a multitude of splicing auxiliary and regulatory proteins (Matlin et al. 2005; Wang and Cooper 2007). The donor splice site is located at the 5'-end of the intron and begins with a GU dinucleotide while the acceptor splice site located at the 3'-end of the intron and ends with an AG dinucleotide (Figure 2.3.A). The first steps of spliceosome assembly is the recognition of the donor splice site by the small nuclear ribonucleoprotein (snRNP) U1, the binding of splicing factor SF1 to the branchpoint and the recognition of the acceptor splice site by the U2 snRNP auxiliary factor (U2AF) that together form the E complex. Following this initiation step, the A complex is formed when the U2 snRNP binds to the branch point dislodging the splicing factor SF1. Subsequently, the A complex is substantially remodelled by the action of 3 other snRNPs (U4, U5, and U6) to form the B complex and leads to the formation of the mature and active spliceosome (C complex) that catalyses both trans-esterification splicing reactions (Black 2003; Blaustein et al. 2007; Stanchev and Stanchev 1984) (Figure 2.3.B). Some experiments have demonstrated that splicing is tightly coupled to transcription and at least some introns are excised while the nascent transcript is still associated with the polymerase through the action of snRNP and SR proteins associated to the c-terminal domain (CTD) of the RNA polymerase II (Chabot et al. 1995; Das et al. 2007; Mortillaro et al. 1996; Vincent et al. 1996). The majority of introns found in eukaryotes are removed using this U2-dependent process although~700 human introns rely on the U12-dependant spliceosome. The splicing process is very similar to what is described in Figure 2.3 and the major differences between these two types of introns reside in the donor splice site and branch point sequences. The U1, U2, U4 and U6 found in the U2-dependent spliceosome are replaced by four different snRNP proteins U11, U12, U4atac and U6atac in the U12-dependent mechanism (Alioto 2007; Sheth et al. 2006). 
	Figure 2.3: Schematic diagram of the spliceosome assembly at the splice site.  A. Scheme of a typical intron flanked by exons in pre-mRNA. Cis-acting sequences that are relevant for the splicing reaction are shown for the 5' splice site, branch site and 3' splice site. The grey boxes represent exons and the line represents the intron sequence. B. Steps along spliceosome assembly. Schematic representation of spliceosomal complex E, A, B and C. See text for more details. This figure was modified from (Blaustein et al. 2007).  
	3'-End processing 

	Polyadenylation of pre-mRNA at the 3'-end is a vital step in transcription termination and pre-mRNA processing (Wahle and Ruegsegger 1999). Almost all pre-mRNA in eukaryotes are polyadenylated with a few exceptions such as histone genes. (Davila Lopez and Samuelsson 2008). In humans, the pre-mRNA is recognized, cleaved, and then polyadenylated by a complex of enzymes (Mandel et al. 2008) directed by distinct polyadenylation signal sequences present in the pre-mRNA transcript such as the highly conserved upstream AAUAAA sequence and a downstream G/U-rich sequence (Beaudoing et al. 2000; Graber et al. 1999; Tian et al. 2005). PolyA tails have been shown to influence mRNA stability, translation and transport (Jacobson and Peltz 1996; Lewis et al. 1995; Wickens et al. 1997). In recent years, studies have shown the interconnection of other transcriptional and post-transcriptional processes (see above), such as splicing and transcriptional termination (Maniatis and Reed 2002). 
	Gene expression variation

	Each cell contains, in its set of genomic loci, all the information required to make many thousand different RNA and protein molecules. However, a typical cell only expresses a subset of these genes because their identity and function, i.e. their phenotypes, is defined by the expression of specific genes in a spatial and temporal manner. To achieve this high level of diversity and precision, the cell regulates each step implicated in gene expression by (1) controlling when and what genes are transcribed (transcriptional control), (2) controlling how the RNA transcript is processed (RNA processing control), (3) selecting which mRNA will be exported and where in the cytoplasm (RNA transport and localization control), (4) controlling the stability of certain mRNA molecules in the cytoplasm (mRNA degradation control) (5) selecting which mRNAs are translated (translational control), and (6) selectively controlling the activation, degradation and compartmentalization of specific proteins (protein activity control) (reviewed in (Alberts 2002). Although all these processes, in addition to others such as environmental signals, interact to form a complex network that coordinates gene expression, the following sections will deal with the regulation of transcription and pre-mRNA processing.
	Transcript expression variation

	The rate of gene transcription i.e., how many transcripts from a genomic locus are transcribed by the RNA polymerase for a given period, is a central parameter that controls cellular processes. The importance of this process was recognized 40 years ago (Britten and Davidson 1969), however it is only in this last decade that tools needed to study transcript expression variation at the genome-wide level, such as DNA microarrays have become available (see below). Studies using these tools have begun analyzing how environmental and genetic factors contribute to transcript expression variation. 
	Environmental factors

	Organisms can modify the expression of specific genes in order to adapt their physiology to changing environmental conditions. For example, a study of Moroccans living in different environmental conditions (urban, mountain, desert) showed that ~37% of genes expressed in leukocyte samples had significantly different transcript expression levels. The authors of the study tested if this variation was due to genetic or epigenetic factors and found that environmental factors were the most likely cause (Idaghdour et al. 2008). This type of environmental influence is well illustrated in another study of goby fish (Gillichthys mirabilis) exposed to multiple levels of heat stress (Buckley et al. 2006). In this study, temperature variations were shown to influence the transcript expression of genes responsible (i.e. chaperones) for the physiological adaptation to temperature changes. Interestingly, this expression variation was different between tissues, demonstrating another important aspect of transcript expression regulation, i.e. tissue identity and complexity is strongly defined by specific patterns of transcript expression. In fact, a study comparing the transcript expression profiles of 155 human tissues showed that gene expression was strongly correlated with anatomic locations, cellular compositions and physiologic functions (Shyamsundar et al. 2005). 
	Genetic factors

	It has also been demonstrated that the evolution of an organism is achieved, in part, through changes in transcript expression regulation. The importance of regulatory mutations in the evolution of species was first proposed following the comparison of human and chimpanzee homologue proteins (King and Wilson 1975). The authors concluded that the modest degree of divergence in homologous protein sequences could not account for the extensive phenotypic differences observed between these two closely related species and postulated that regulatory mutations must play an important role. An interesting example of this process is demonstrated by the comparison of different primate tissues (Enard et al. 2002) where the authors showed that the transcript expression profiles for human brain had significantly diverged from the other primate species. Subsequent studies also found that ~10% of genes showed expression differences between humans and chimpanzees (Caceres et al. 2003; Khaitovich et al. 2005; Khaitovich et al. 2004). This indicates that some of the complex cognitive abilities found in humans and more generally other species-specific traits (Abzhanov et al. 2004; Clark et al. 2006; Stern 1998), are the result of transcript expression regulatory variations caused by genetic changes that occurred between species. 
	Expression quantitative trait loci 

	Genetic variations present in regulators of transcript expression are also responsible for some of the transcript expression variation observed between individuals of the same population. Expression quantitative trait loci (eQTL) mapping (Jansen and Nap 2001) is a popular approach to determine the polymorphism(s) or the genomic region containing the polymorphism that is partly responsible for variation of transcript expression regulation (Cheung et al. 2003; Cheung et al. 2005; Dixon et al. 2007; Goring et al. 2007; Morley et al. 2004; Stranger et al. 2007a; Stranger et al. 2007b). In these studies, gene expression levels are treated as quantitative traits and their genetic basis is studied using well-established linkage and association tools. Linkage mapping uses a study design that is based on tracking the transmission of alleles through families. This approach aims to identify genetic variations that are linked with transcript expression phenotypes (eQTLs) by tracking its transmission patterns through a pedigree. Association analysis uses samples of unrelated individuals to correlate marker genotypes with the eQTL (reviewed in (Hirschhorn and Daly 2005). Association analyses are usually more powerful than analyses using a linkage method because they are better at finding eQTLs with a medium to small effect size given a dense enough set of polymorphisms that are in linkage disequilibrium (LD) with the causative polymorphism (Gilad et al. 2008). In addition, this technique allows the fine mapping of the region with the causative polymorphisms which depends heavily on the haplotype structure around the eQTL. These types of studies have associated cis-acting eQTLs with many disease phenotypes such as resistance to infection with malaria (Hamblin and Di Rienzo 2000; Tournamille et al. 1995), risk of heart disease (Beyzade et al. 2003; Ye et al. 1996), susceptibility to schizophrenia (He et al. 2006) and many more (see review (Wray 2007). It is apparent that regulation of transcript expression plays an essential role in gene expression. Moreover, in recent years, biologists have also begun studying how cells regulate the production of alternative transcript structures and the important role this process plays in gene expression.
	Transcript structural variations

	The ability of the metazoan cell to produce multiple mRNA transcripts from a single genomic locus was a key factor in their evolution. This allowed them to expand their transcriptomes and proteomes without increasing genome complexity, i.e. without increasing the number of genes. This increase in genetic coding potential was achieved by the evolution of specific regulatory processes involved in gene expression such as alternative transcription initiation, alternative splicing and alternative transcription termination. 
	Alternative transcript initiation

	Transcription initiation is one of the first processes involved in regulating transcript expression. Regulation of mRNA synthesis depends heavily on the formation of the pre-initiation complex (see above) at the right time and at the right promoter. This temporal and spatial control relies on the intricate interplay between many transcription factors, cis-regulatory DNA elements, core promoter elements as well as chromatin remodelling and modifying factors to properly position the pre-initiation complex near the transcription start site of a genomic locus (Lemon and Tjian 2000). In the past, genomic loci were thought to contain only one transcriptional start site. However, recent studies suggest that at least 50% of human genes use varying transcription start sites through the use of alternative core promoters (Baek et al. 2007; Cooper et al. 2006; Kimura et al. 2006; Takeda et al. 2007). These alternative promoters allow a single genomic locus to produce a wide variety mRNA transcript and protein isoforms (Figure 2.4) in response to changing cellular conditions and states (e.g., differentiation, growth and development).
	Figure 2.4: Processes that generate alternative transcript initiation. Two promoters on a single exon (top); alternative first exon (middle); and a downstream promoter located within the intron region of another isoform (bottom).
	The exact molecular mechanisms responsible for alternative transcription start sites are still not clearly understood. Some mechanisms have been proposed such as the presence of multiple core-promoter structures, variable concentrations of cis-regulatory elements and factors, and epigenetic changes in the promoter region (reviewed in (Davuluri et al. 2008). Alternative transcription initiation can result in the production of distinct mRNA isoforms with different 5' untranslated regions (5'-UTR). The 5'-UTRs contain sequences that regulate mRNA stability and translational efficiency such as sequences responsible for mRNA secondary structure and translational initiation sites. Therefore, certain types of alternative transcription initiation can affect these processes without affecting the protein coding potential of the mRNA by only varying the 5'-UTR sequence (Davuluri et al. 2008). Other types of alternative transcription initiation affect the protein coding structure if alternative translation start sites are included in the pre-mRNA transcript. This might affect protein domains that are important for different biological activities and consequently this diversifies protein functions. Therefore, transcription initiation variation is quite common between different tissue types (Birney et al. 2007). Moreover, aberrant alternative transcription initiation has been associated to a number of diseases (Liu et al. 2005; Marcu et al. 1992; Nakanishi et al. 2006; Sun et al. 2007). More recent studies have shown that genetic variations were linked to alternative promoter usage. For example, regional rearrangements (insertions and inversions) in the promoter region of the aromatase (CYP19A1) gene increase its expression which is associated with a higher incidence of breast cancer (Demura et al. 2007). As demonstrated in this example, alternative promoter usage can, in addition to modifying the transcript structure and stability, affect the transcription level of a gene. 
	Alternative splicing

	A typical human gene contains, on average, 8.8 short exonic sequences with a mean size of 145 bp. These exons are usually separated by much larger intron sequences that on average, account for >90% of the pre-mRNA transcript (Lander et al. 2001). The maturation of pre-mRNA into mRNA involves the removal of these intron sequences and the joining of the exon sequences. This process called constitutive splicing is catalyzed by the large ribonucleoprotein complex known as the spliceosome that interacts with the splicing signals (see above). In 1978, Gilbert (Gilbert 1978) proposed that through regulation, splicing could produce multiple mRNA isoforms from the same pre-mRNA transcript by alternatively splicing out specific exons. A few years later, his theory of alternative splicing was validated (Early et al. 1980; Rosenfeld et al. 1982) and more recently it was estimated that almost all mammalian genes (~95%) undergo some form of alternative splicing (Pan et al. 2008; Wang et al. 2008). This high propensity of alternative splicing is theorized to offset the low level of genome complexity of higher eukaryotes. For example, the drosophila DSCAM gene can theoretically produce more than 38,000 different mRNA isoforms (Schmucker et al. 2000), which is far superior than the total number of genomic loci in all of its genome (Clark et al. 2007a). Changes in the splicing patterns of different tissues have been proposed as important mechanisms for species evolution. In closely related species such as humans and chimpanzees, the expression profiles for ~1000 orthologous exons from different tissues were compared and this revealed that alternative splicing patterns from brain had the highest level of divergence (Calarco et al. 2007). In addition, comparisons of human and mouse transcripts have revealed that less than 20% of alternative splicing events were conserved between these species (Modrek and Lee 2003; Pan et al. 2005; Yeo et al. 2005). This demonstrates that splicing variation is partially responsible for some of the species specific phenotypes. This observation also holds when comparing organs from the same species. Complex organs comprised of specialized cell types such as brain and liver present more splicing variation than simpler tissues such as kidney and skeletal muscle (Johnson et al. 2003; Xu et al. 2002; Yeo et al. 2004a). The various mechanisms responsible for producing mRNA isoform variation through alternative splicing are illustrated in Figure 2.5. 
	Figure 2.5:  Common types of alternative splicing events. A. This represents an alternatively spliced exon where an exon is either included or excluded from the mRNA transcript. B. In this case the intron is not spliced out from the mRNA transcript therefore is annotated as an intron retention event. C. and D. are example of alternative 5' and 3' splice site usage, respectively. Here a second splice site found either in the exon or the intron is used to define the exon boundaries. E. The red exons in this example are mutually exclusive, i.e. when one is included in the mRNA transcript the other is excluded. In many cases, these common mechanisms are combined to generate more complicated alternative splicing events. This figure is modified from (Wang and Burge 2008).
	These events are controlled through the interaction of the spliceosome and specific cis-regulatory elements that serve as either splicing enhancers or silencers (Figure 2.6). Elements found in an exon that promote or inhibit its inclusion are respectively classified as exonic splicing enhancers (ESE) and silencers (ESS). Elements found in an intron that enhance or inhibit the use of adjacent splice sites are known as intronic splicing enhancers (ISEs) and silencers (ISSs), respectively. These splicing regulatory elements promote or inhibit the recruitment of splicing factors by activating or suppressing the recognition of splice sites or by regulating the assembly of the spliceosome (Matlin et al. 2005). Therefore, splicing decisions result from differences in the concentration and/or activity of these proteins. Splicing regulatory elements that enhance splicing are expected to play a predominant role in constitutive splicing while alternative splicing is principally controlled by silencing elements. 
	Figure 2.6: A schematic of two alternative splicing pathways for the middle exon. This illustrates the interaction of cis-splicing regulatory elements (ESE, ESS, ISS, and ISE) with trans-splicing factors (hnRNP and SR proteins) that together enhance or inhibit the recruitment of spliceosome proteins (U2 and U1) which leads to the inclusion or exclusion of the middle exon from the mature mRNA transcript. This figure was modified from (Wang and Burge 2008).
	Sequence changes in these splicing regulatory elements can lead to disease phenotypes. A very conservative estimate suggests that at least 15% of point mutations that cause human disease affect splicing (Chen et al. 2003). Spinal muscular atrophy is an example of a recessive disease that is caused by a point mutation in an exonic regulatory element. A C→T mutation in the SMN2 gene causes the missplicing of exon 7 which creates a non-functional protein that leads to the disease phenotype (reviewed in (Wirth et al. 2006). Hutchinson–Gilford progeria syndrome is associated with premature aging and is another example of a disease caused by a point mutation but this time in an intron. This mutation activates a cryptic splice site in the Lamin A gene that truncates that last 150 base pairs of exon 11 from the Lamin A gene (De Sandre-Giovannoli and Levy 2006). Mutations can also disrupt proteins belonging to the spliceosome and therefore affect the splicing of multiple exons and consequently create many disease phenotypes. For example, a mutation in the TDP43 splicing factor belonging to the hnRNP family of proteins has been implicated in a number of diseases such as cystic fibrosis (Buratti et al. 2001), frontotemporal lobar degeneration and Lou Gehrig's disease (Neumann et al. 2006). Splicing variations have also been implicated in different cancers (reviewed in (Venables 2006).
	Another interesting characteristic of alternative splicing is its ability to regulate transcript expression. It is estimated that approximately ~65% of alternative splicing events occur within the translated regions of mRNA transcripts (Gupta et al. 2004). A splicing event that introduces a premature stop codon in a mRNA transcript is subject to the non-sense mediated decay (NMD) surveillance system (Belgrader et al. 1994). This system recognizes mRNA isoforms containing premature stop codons that are subsequently targeted for degradation. In a study of more than 3000 alternatively spliced human genes, it was shown that 35% of the mRNA isoforms produced contained a premature stop codon and that 75% of these isoforms were degraded by the non-sense mediated decay system (Lewis et al. 2003). Thus, alternative splicing and NMD act together to play an important role in regulating gene expression. 
	Alternative polyadenylation

	Gene expression is also influenced by other types of mRNA structural variation such as alternative polyadenylation. The vast majority of eukaryotic mRNA transcripts are polyadenylated, i.e. they acquire a poly(A) tail at their 3' ends (reviewed in (Edmonds 2002). Polyadenylation involves a two step process where the pre-mRNA transcript is cleaved and then adenosine (A) residues are added at the 3' end. This process is controlled by core polyadenylation elements as well as auxiliary elements found upstream and downstream of the consensus polyadenylation sequence that interact with the cleavage and polyadenylation machinery (see above). In recent years, studies have demonstrated that genes can contain multiple polyadenylation sites (reviewed in (Lutz 2008). Recently, it has been estimated that around 50% of human genes are alternatively polyadenylated (Tian et al. 2005). Alternative polyadenylation can create mRNA transcript isoforms that have varying 3' UTR lengths and coupled with alternative splicing can alter the translation region (Figure 2.7).  
	Figure 2.7: Types of alternative polyadenylation. A. This is an example of constitutive polyadenylation because only one polyadenylation site is present in the 3' UTR. B. Example of alternative polyadenylation with multiple polyadenylation sites in the present on the last exon of the 3' UTR. C. This demonstrates an alternative splicing event (last exon is skipped) coupled with the use of different polyadenylation sites. This figure is modified from (Lutz 2008). 
	These types of variation can influence protein coding potential, transcript localization, stability and transport (Lewis et al. 1995; Wickens et al. 1997). Therefore polyadenylation is an important aspect of gene expression. Similar to what was mentioned for transcript expression, alternative transcription initiation and alternative splicing, regulation of alternative polyadenylation varies between tissues (Beaudoing and Gautheret 2001; Rigault et al. 2006) in response to different developmental or functional cues and has been implicated in evolution (Ara et al. 2006) and certain disease phenotypes (Danckwardt et al. 2008) . 
	Profiling gene expression

	The mRNA population of a cell specifies its identity and helps govern its present and future activities (see above). This has made the efficient analysis of the transcriptome an important aspect in the field of molecular biology. Over the past 30 years, many technological advances have facilitated the study of gene expression. The first technologies developed to study gene expression were the Northern Blot (Alwine et al. 1977) and reverse transcription-polymerase reaction (RT-PCR) (Mullis et al. 1986). These approaches were useful for analysing expression of a small number of genes, however could not be easily scaled up for studies of a large number of genes in many tissues. Thus, higher throughput methods were needed to capture the whole complexity of the transcriptome. High-throughput methods such as expressed sequence tags (EST) (Boguski et al. 1994) and serial analysis of gene expression (SAGE) (Velculescu et al. 1995) were developed to measure gene expression in a multiplex manner. The method relied on sequencing cloned mRNAs and mapping them back to genomic sequence to identify the genes expressed in cells. These techniques were limited by time and cost constraints as well as by biases that affect coverage and sampling. These limitations led to the development and broad distribution of a technology known as the DNA microarray (Augenlicht et al. 1987; Poustka et al. 1986; Schena et al. 1995). 
	Microarray applications 

	The DNA microarray was developed using the concept of the Northern Blots. As with Northern Blots, DNA microarrays are used to measure the abundance of specific nucleic acid sequences in a given sample, except that the DNA microarray does this in a multiplex manner. It uses a collection of probes made of DNA sequences of varying length that are ordered and bound onto the surface of a solid support such as glass. These probes are designed to bind specific targets that consist of fluorescently labelled nucleic acid sequence (cRNA or cDNA). The level of binding between a probe and its target is quantified by measuring the fluorescence emitted by the hybridized target when scanned and corresponds to the abundance of the target. This concept was applied to a variety of DNA microarray designs to study a broad range of nucleic acid variations. They are mainly used for gene expression analysis and screening samples for single nucleotide polymorphisms (genotyping) (Hacia et al. 1999). Although in recent years, DNA microarrays have also been used in other application such as ChIP-on-chip experiments (Iyer et al. 2001; Lieb et al. 2001; Ren et al. 2000), epigenetic studies (Adorjan et al. 2002; Huang et al. 1999; Yan et al. 2001) and DNA-mapping  (Moran et al. 2004; Pollack et al. 1999). More recently, with advances in manufacturing techniques, DNA microarrays are now used to study gene expression at the sub-transcript level. In fact, expression of individual mRNA isoforms produced by transcriptional and pre-mRNA processing variations such as alternative transcript initiation and termination as well as alternative splicing can now be assessed with the use of different alternative splicing microarrays. These alternative splicing arrays target their probes to each exon and/or exon junction within a gene to determine mRNA levels at the resolution of a single exon or splice site.
	Isoform level detection microarrays

	The first attempt at using microarrays to study alternative splicing was explored using the multi-probe design of the Affymetrix Gene Chip (Hu et al. 2001). In this study, the Affymetrix Gene Chip probes that are usually summarized together into one measure of whole-transcript expression were instead used to measure the expression of individual exons they targeted. This study demonstrated that gene expression at the isoform level could be measured by targeting probes to individual exons within a transcript. This lead to the manufacturing of the first custom microarray designed to measure gene expression variation at the isoform levels by using a mix of exon-body and junction probes (Wang et al. 2003). The first high-throughput analyses of alternative splicing (Johnson et al. 2003; Pan et al. 2005; Pan et al. 2004) were conducted with custom arrays and measured global alternative splicing patterns in different tissues and species. However, the gene coverage of these custom arrays was insufficient to cover every possible exon in the genome. This prompted the microarray manufacturing company Affymetrix Inc. to design the first truly genome-wide alternative splicing DNA microarray known as the GeneChip® Human Exon 1.0 ST Array.
	Human Exon array 

	The GeneChip® Human Exon 1.0 ST Arrays are constructed using a patented photolithographic process borrowed from the computer chip industry. Probes are synthesized on a wafer slide using photolithographic masks for selective location activation followed by the addition of the base to the activated site (see affymetrix.com for details). This process produces extremely dense arrays that are composed of 5.5 million 25-mer probes that in turn enable genome-wide analyses of gene expression at the isoform level. Probes target individual exons or portions of an exon when prior evidence of alternative splicing exists. Each exon within a gene is targeted on average by 4 probes (Figure 2.8) which allows the simultaneous exon-level detection of expression intensity for 1.4 million probe sets covering over 1 million known and predicted human exons. Probe sets on the array are divided into 3 levels of annotation: core, extended and full. The core probe sets target ~284,000 exons supported by RefSeq and GenBank. The extended and full annotations are based on less confident annotated exons, with evidence from ESTs and computationally predicted exons. These last two annotation levels are designed to identify novel transcript variants while the core probe set are used for straightforward studies of gene expression variation at the isoform level given the reduced size and high confidence annotation data set they produce  (Siepel et al. 2007).   
	Figure 2.8: Schematic for coverage of probe sets across a gene. Yellow regions are exons and grey regions represent introns. The short dashes below the exon regions (red) indicate individual probes of 25 nucleotides in length and represent a probe set. 
	Workflow for Exon Array analysis

	The biggest challenge of studying transcript isoform variations using microarrays is how to analyse and interpret data generated in these experiments. In the past, whole-gene expression studies using microarrays were based on the dogma that one gene is transcribed to one transcript that is subsequently translated to one protein. Now, the scenario has changed to one gene that produces multiple products. This extra level of complexity has created several problems in microarray analysis that must be solved. For instance, a given probe can represent the sum of intensities from multiple isoforms of a gene and at the same time that probe along with others represent expression for that one gene. Therefore, new analysis method are needed to decouple signals coming from changes in pre-mRNA processing such as variation of alternative splicing from changes in overall gene expression to adequately assess gene expression at the isoform level (Cuperlovic-Culf et al. 2006). In addition, Exon Array data consists of very noisy signal measurements. The true expression signal is buried by different sources of noise, such as poor sample preparation, labelling, hybridization and many more (Zakharkin et al. 2005). Therefore, pre-existing analysis pipelines developed for standard gene expression microarray experiments such as quality assessments, data normalization, detection of differential expression and annotation of differentially expressed isoforms must be adjusted to accommodate this type of data (Figure 2.9). 
	Figure 2.9: Exon array analysis workflow. 1) The first step is preparation and hybridization of cDNA extracted from sample for analysis on the Exon array. 2) Data acquisition and normalization to remove noise and technical biases. 3) Summarization of probe signals into probe set (exon) and meta-probe set (gene) expression scores. 4) Data filtering to remove misbehaving probe set and meta-probe sets folded to statistical testing to identify varying exons or genes within samples. 5) Mapping of interesting probe sets to known and predicted transcript structures overlaid with expression data to determine isoform expression. Image modified from (Okoniewski and Miller 2008).
	Quality control

	Quality assessment is an essential first step in the analysis of Exon Array data because it can identify noisy samples due to issues related to RNA quality, probe labelling, hybridization, washing and signal/background detection in the scanning process. During the summarization step (see below) of Exon Array data, a quality report is generated by the Affymetrix Power tool software (affymetrix.com) where summary metrics such as mean probe set intensity for each sample, the number of expressed probe sets per sample (DABG see below) and others are computed to identify outliers samples (see affymetrix.com; Quality Assessment of Exon Arrays). In addition, a principal components analysis (PCA) plot is a tool that is commonly used to identify outliers in a group of samples (de Haan et al. 2007). The decision regarding which samples is an outlier depends heavily on the experience of the user and varies on a case by case basis. These outlier samples could be flagged and excluded from the analysis or the analysis could be adjusted to account for the outlier by down-weighting it.  
	Normalization

	The next step in the analysis pipeline is normalization. This procedure is essential to reduce noisy microarray data. Many techniques have been developed such as standardization (Z-score), housekeeping gene based normalization and equalized quantile normalization (Autio et al. 2009). Most of these techniques rely on the assumption that the majority of exon or gene expression is unchanged between samples therefore they attempt to make each sample in a data set have the same probe signal distribution. For example, quantile-normalization is a non-parametric procedure that first consists of constructing quantiles (ranks) for the probe signals on each array individually. The median probe signal in each quantile is then computed across all arrays. That median value now represents the normalized signal value for each probe of that given quantile (Bolstad et al. 2003). This type of normalization procedure ensures that all arrays in an experiment have the same median and standard deviation of probe signals and therefore removes some of the high variability and biases introduced by technical artefacts.
	Expression summarization

	For the Exon array data, expression summarization is the process of combining specific probe signal values into probe set (exon) and meta-probe set (transcript) expression scores. The most popular summarization algorithms  are RMA (robust multichip average) (Irizarry et al. 2003a) and PLIER (see affymetrix.com - Gene signal estimates from exon arrays). Essentially, these algorithms determine the expression level of a probe set or a meta-probe set by performing a type of weighted average and background correction (see below) of probe intensities.
	Background correction

	The Human Exon Array implements a new system to estimate background noise levels. Instead of using mismatch probes, as was typically the case for earlier Affymetrix designs, they include a collection of probes, called antigenomic probes that have no target in mammalian transcriptomes. The signal intensities of the antigenomic probes mostly originate from non-specific binding which is a function of their GC-content. Therefore, before summarizing probe set and meta-probe set expression scores, probe signals are corrected by subtracting the median non-specific binding signals computed from the distribution of antigenomic probes of the same GC-content. In addition, instead of the classical presence / absent calls used to establish if a gene was expressed in a sample, a new metric called the detected above background (DABG) is computed for each probe set and meta-probe set. This metric represents the probability that the expression of a given probe set or meta-probe set is background noise and therefore not expressed (www.affymetrix.com; Exon array background Correction). A threshold is usually set (DABG < 0.05) to determine if a probe set or meta-probe set is expressed in a given sample.
	Identification of variation

	To compare variation of gene expression at the isoform level between a set of samples, the most straightforward method to use is the splicing index (Srinivasan et al. 2005). The splicing index is a conceptually simple algorithm that aims to identify probe sets (exons) that have different inclusion rates between two sample groups (affymetrix.com - Identifying and Validating Alternative Splicing Events). The Splicing index is first computed as the value of probe set intensity relative to the meta-probe set intensity in a given sample on a log2 scale (Intensityprobe set / Intensitymeta-probe set). Then the normalized intensities (NI) from each group are divided between each other (NIsample1 / NIsample2) which represent the splicing index. A splicing index of 0 (log2 scale) indicates equal inclusion rates of the exon between both samples, a positive value indicates a skipping of that exon in sample 2 and a negative value indicates skipping of that probe set in sample 1. To identify probe sets that present statistically significant differences between two groups, a statistical test such as the Student’s t-test or the analysis of variance (ANOVA) is used on gene-level normalized exon intensities (NI). The splicing index for every exon within a transcript is usually observed in a graphical representation overlaid with the p-value from the statistical test to identify isoform variations between samples (see below).
	An issue with statistical testing in microarray experiments is multiple testing. These types of experiment present a challenge because thousands or millions, in the case of the Exon array (1.4 million) of statistical tests are performed and the false positive rate must be controlled in order minimize the false positive results. Multiple testing corrections aims to address this issue by restricting the stringency threshold (α = 0.05) to reduce the false positive rate with as little affect as possible on the number of incorrect rejections of real results, i.e. false negatives. The false discovery rate (FDR) correction (Benjamini and Hochberg 1995) is a popular strategy that consists of finding a threshold where the number of expected false positives is known. One issue with multiple testing corrections on Exon array data is the violation of certain assumptions such as non-independence of probe sets that makes it difficult to accurately compute the stringency threshold (Aickin and Gensler 1996; Bender and Lange 2001). However, these techniques can still be used to identify sizable data sets of isoform variation.   
	Filters

	Other strategies, in addition to multiple testing corrections should be used to reduce the false positive rate in Exon array experiments. Filtering of signal data is very important in these types of experiments because it reduces the laborious steps of validating (e.g. by RT-PCR) false results. For analysis of Exon array data at the isoform level, removing all genes that are not expressed in all samples or excluding probe sets that are not expressed in at least one sample are mandatory filtering steps (affymetrix.com; Identifying and Validating Alternative Splicing Events). To date, literature on the filtering criteria is quite poor and new methods need to be developed in order to clean up Exon array data. 
	Annotation mapping and visualization

	Once interesting probe sets have been identified by filtering and statistical testing, the next step is to map the probe sets to their respective exons and genes. The main aim of mapping is to identify genes that are differentially expressed or that present isoform variation in the form of exon skipping, alternative initiation or termination. This is usually achieved using the standard definition files provided by Affymetrix. These files contain three levels of annotation: core, extended and full (see above). A decision on what level of annotation the analysis will be conducted on can significantly influence its outcome. Studies focusing on core probe sets will deal with high confidence annotated exons whereas the extended and full annotations are used for discovering new genes and exons given the predictive nature of these two levels of annotation. The use of these different annotation levels will also influence multiple testing correction procedures because use of the smaller data sets such as the core will have a beneficial effect on the false discovery rate. Data visualization is the last in-silico procedure in the analysis workflow before in-vitro validation gene or isoform variations. In-house, open access (XMAP, Integrated Genome Browser, Expression Console) or commercially (Gene sifter) available visualization tools should be used to overlay expression data onto gene structure in order to identify gene expression variation at the isoform level. 
	Summary of the literature review

	This literature review demonstrates the important roles that transcription and pre-mRNA processing play in the regulation of gene expression. These processes work in concert to dictate the quantity and the type of mRNA isoform a gene will produce. The regulatory evolution of these processes has enabled organisms to expand their transcriptomes and proteomes without having to increase the complexity of their genomes. Higher eukaryotes use these processes to create distinct cellular phenotypes that in turn have enabled the development of specialized tissues. Therefore, regulatory disruption of these processes can lead to disease phenotypes. This has prompted the scientific community to develop methods and tools to explore variation of transcript expression at the isoform level.
	Chapter 3: Heritability of alternative splicing in the human genome
	Tony Kwan, David Benovoy, Christel Dias, Scott Gurd, David Serre, Harry Zuzan, Tyson A. Clark, Anthony Schweitzer, Michelle K. Staples, Hui Wang, John E. Blume, Thomas J. Hudson, Rob Sladek, and Jacek Majewski.
	This chapter is published in Genome Research on May 31st, 2007. 17: 1210-1218.
	Connecting text

	It has recently been shown that variation in whole-transcript expression is under genetic control in human populations and is responsible for phenotypic variation and susceptibility to certain complex diseases (see literature review). However, our understanding of how variable transcript expression is at the isoform level is still poorly understood. Despite a few isolated examples no study has evaluated the prevalence and potential impact of these variations at the genome-wide level. This chapter represents a pilot study that we conducted in order to evaluate the performance of the Human Exon array in detecting transcript isoform differences such as alternative initiation, splicing and termination as well as whole-transcript expression differences among humans. 
	Abstract

	Alternative pre-mRNA splicing increases proteomic diversity and provides a potential mechanism underlying both phenotypic diversity and susceptibility to genetic disorders in human populations. To investigate the variation in splicing among humans on a genome-wide scale, we use a comprehensive exon-targeted microarray to examine alternative splicing in lymphoblastoid cell lines (LCLs) derived from the CEPH HapMap population. We show the identification of transcripts containing sequence verified exon skipping, intron retention, and cryptic splice site usage that are specific between individuals. A number of novel alternative splicing events with no previous annotations in either RefSeq or EST databases were identified, indicating that we are able to discover de novo splicing events. Using family-based linkage analysis, we demonstrate Mendelian inheritance and segregation of specific splice isoforms with regulatory haplotypes for three genes: OAS1, CAST, and CRTAP. Allelic association was further used to identify individual SNPs or regulatory haplotype blocks linked to the alternative splicing event, taking advantage of the high-resolution genotype information from the CEPH HapMap population. In one candidate, we identified a regulatory polymorphism that disrupts a 5′ splice site of an exon in the CAST gene, resulting in its exclusion in the mutant allele. This report illustrates that our approach can detect both annotated and novel alternatively spliced variants, and that such variation among individuals is heritable and genetically controlled.
	Introduction

	The human genome is estimated to contain ∼20,000–25,000 genes, and recent studies suggest that ∼50%–75% of multi-exon genes undergo alternative splicing (AS), generating multiple mRNA isoforms and greatly increasing human proteomic diversity (Lander et al. 2001; Modrek et al. 2001). The splicing of mRNA is a highly regulated process involving the interactions of trans-acting splicing factors and cis-acting regulatory motifs. Disruptions of this process through mutations within these factors and regulatory signals may play an important role in phenotypic diversity and genetic disorders (Black and Graveley 2006; Faustino and Cooper 2003; Nissim-Rafinia and Kerem 2005). 
	Recent advances in microarray technology hold great promise for the genome-wide detection of AS events (Lee and Roy 2004). Small to large-scale microarrays have been designed using probes spanning predicted exon junctions (Johnson et al. 2003; Modrek et al. 2001; Sugnet et al. 2006; Ule et al. 2005; Zhang et al. 2006), probes targeted toward individual exons (Frey et al. 2005), or a combination thereof (Srinivasan et al. 2005) and applied to identification of AS events that are tissue-specific, for the most part. However, one caveat of these studies utilizing customized arrays is a bias toward genes with solid EST and cDNA evidence for known AS events and that are therefore limited in their usefulness as a discovery tool for de novo splicing events. Here, we have chosen to use an alternative array design, the Affymetrix GeneChip Human Exon 1.0 ST Array, which is less biased toward known AS events by targeting multiple probes to individual exons and allowing simultaneous, exon-level detection of expression levels for 1.4 million probe sets covering over one million known and predicted human exons (Figure 3.1). Exon-tiling arrays have several advantages over exon-junction arrays: flexibility of probe placement, exact transcript structures do not need to be known a priori, and most AS events can be monitored without designing probes specific to all possible junctions. However, it should be noted that exon arrays do not provide immediate information on transcript structures containing candidate alternative events.
	We show that (1) the Exon Array is able to detect AS at a level that is comparable in sensitivity as other microarray methods, and (2) we can identify quantitative and qualitative variations in splicing among individuals. Preliminary analysis estimates that up to 5% of all RefSeq exons are differentially spliced between individuals. Our approach for establishing a genetic basis for the variation in splicing uses lymphoblats derived from individuals of the CEPH population (Cohen et al. 1993), where we take advantage of the high resolution HapMap genotype information from these samples (Altshuler et al. 2005) to perform allelic association studies.
	Figure 3.1: (A) Schematic for coverage of probe sets across the entire length of the transcript. Yellow regions are exons, whereas grey regions represent introns. The short dashes underneath the exon regions indicate individual probes of 25 nucleotides in length representing the probe set. The Affymetrix GeneChip Human Exon 1.0 ST Array allows for exon-level expression profiling in a single chip, and can interrogate over one million predicted exons within the human genome. (B) Flowchart for processing and analysis of chips to validation of alternative splicing events. Total RNA is extracted from the two cell lines (n = 15 replicates per individual) and is transcribed to cDNA and labeled with biotin. The total cDNA is then hybridized to the exon chip, followed by washing and staining with an anti-streptavidin antibody. Chips are then scanned, and hybridization data are processed and analyzed by the Affymetrix Power Tools (version 1.6) software package. A splicing index is calculated for ∼1.4 million probe sets covering one million exons. A subset of 20 alternative splicing events predicted between the two individuals using an unpaired t-test (P < 8.915 × 10−4) on the splicing index and other criteria (see Methods), are then validated by (1) RT-PCR using exon body primers flanking the probe set of interest and (2) sequencing of the RT-PCR products.  
	Methods
	Cell line preparation


	RNA samples were obtained from 74 Epstein-Barr virus-transformed LCLs belonging to the CEPH (Center d’étude du polymorphisme humain) reference individuals from the state of Utah in the United States (CEU). For this study, we used DNA samples from 60 unrelated individuals that have been genotyped for approximately four million SNPs by the International HapMap Project (Altshuler et al. 2005). Additionally, LCLs from CEPH pedigree 1444 (14 samples) were included to examine genetic influences on AS in a three-generation family. Cells were grown at 37°C and 5% CO2 in RPMI 1640 medium (Invitrogen) supplemented with 15% heat-inactivated fetal bovine serum (Sigma-Aldrich), 2 mM L-glutamine (Invitrogen), and penicillin/streptomycin (Invitrogen). Cell growth was monitored with a hemocytometer, and cells were harvested at a density of 0.8 × 106 to 1.1 × 106 cells/mL. Cells were then resuspended and lysed in TRIzol reagent (Invitrogen). For all LCLs, three successive growths were performed (corresponding to the second, fourth, and sixth passages) after thawing frozen cell aliquots. 
	Affymetrix exon arrays

	RNA was isolated using TRIzol reagent following the manufacturer’s instructions (Invitrogen). The RNA quality was assessed using RNA 6000 NanoChips with the Agilent 2100 Bioanalyzer (Agilent). Biotin-labeled target for the microarray experiment were prepared using 1 μg of total RNA. The RNA was subjected to a rRNA removal procedure with the RiboMinus Human/Mouse Transcriptome Isolation Kit (Invitrogen), and cDNA was synthesized using the GeneChip WT (Whole Transcript) Sense Target Labeling and Control Reagents kit as described by the manufacturer (Affymetrix). The sense cDNA was then fragmented by UDG (uracil DNA glycosylase) and APE 1 (apurinic/apyrimidic endonuclease 1) and biotin-labeled with TdT (terminal deoxynucleotidyl transferase) using the GeneChip WT Terminal labeling kit (Affymetrix). Hybridization was performed using 5 μg of biotinylated target, which was incubated with the GeneChip Human Exon 1.0 ST array (Affymetrix) at 45°C for 16–20 h. Following hybridization, nonspecifically bound material was removed by washing and detection of specifically bound target was performed using the GeneChip Hybridization, Wash and Stain kit, and the GeneChip Fluidics Station 450 (Affymetrix). The arrays were scanned using the GeneChip Scanner 3000 7G (Affymetrix), and raw data was extracted from the scanned images and analyzed with the Affymetrix Power Tools software package (Affymetrix). 
	For the initial study, three separate passages of two unrelated individuals, GM12750 and GM12751, from the CEPH 1444 pedigree were used, with five technical replicates of each growth, for a total of 15 arrays hybridized for each sample. Multiple replicates were used to assess the relative contributions of biological and technical noise to the observed exon and transcript levels. In particular, since this array uses probe cells with a feature size that is only one-quarter of previous expression array designs, we aimed to determine whether they showed greater technical variability or higher background noise and also to identify a minimum number of biological and technical replicates required for an acceptable signal-to-noise ratio. For the linkage studies of the CEPH 1444 pedigree, three passages for each of GM12739, GM12740, GM12750, and GM12751 were used along with single replicates for the remaining 10 individuals. 
	Analysis of array hybridization data
	The Affymetrix Power Tools software package (Affymetrix) was used to quantile normalize the probe fluorescence intensities and to summarize the probe set (representing exon expression) and meta-probe set (representing gene expression) intensities using a probe logarithmic intensity error model (see http://www.affymetrix.com/support/technical/technotes/plier_technote.pdf). Probe sequences that map to SNPs in a particular sample may give rise to altered binding affinities and influence intensity data and the resulting SI scores (data not shown); therefore, probe sets were cross-referenced to the dbSNP database (release 126) for the presence of polymorphisms within the probes, and SNP-containing probes were excluded from this analysis. Probes showing sub-background levels of expression in all samples were also removed to reduce the influence of these probes on total probe set and meta-probe set expression levels. We calculated mean probe intensities for a set of anti-genomic probes, which we designated as background expression. For each probe on the array, if the intensity for all samples was less than the background expression plus two standard deviations for the same GC content, then the probe was excluded from the summary calculations. The SI score was calculated by simply dividing the probe set intensity by the meta-probe set intensity (i.e., exon expression/gene expression) after the addition of a stabilization constant (13) to both the probe set and meta-probe set scores. 
	PCA was performed on the SI scores from all chips using the Partek Genomics Suite software package (Partek) in order to attribute the variance averaged over all exons to sources of variability, and to determine a confidence level in the consistency of expression profiles from biological and technical replicates. Comparison of expression data from individuals GM12750 and GM12751 identified outliers for three replicates of GM12750 (Figure 3.2) that were excluded from all subsequent analyses. 
	To analyze splicing differences between the two samples for each probe set, an unpaired Student’s t-test was performed using the log-transformed SI values for all remaining replicates (12 of GM12750 and 15 of GM12751) of each individual (R statistical package, version 2.3.0). Probe sets showing significantly different SI scores were ranked by P-value. Linkage analysis tests of SI scores cosegregating with chromosomal regions for the CEPH 1444 family was carried out using MERLIN (version 1.0.1) with default settings (Abecasis et al. 2002). The scan was performed using a region spanning 20 SNP markers centered on the probe set. 
	Differentially spliced probe sets were filtered using a number of criteria including: (1) detectable level above background (DABG < 0.05) for both the probe set and the meta-probe set to which it belongs; (2) normalized meta-probe set scores with a minimum intensity score of 50; (3) the transcript defined by a minimum of three exons; and (4) size of the exon corresponding to the probe set is divisible by three. This last criterion was added to ensure that changes resulting from exon inclusion/exclusion would be in frame, which has been observed in a high percentage of conserved and species-specific alternative exons (Magen and Ast 2005) comparisons, we also required that transcript expression levels between samples was less than twofold. 
	RT-PCR and sequence analysis

	Total RNA was treated with 4 U of DNase I (Ambion) for 30 min to remove any remaining genomic DNA. First-strand cDNA was synthesized using random hexamers (Invitrogen) and Superscript II reverse transcriptase (Invitrogen). For all candidate probe sets, locus-specific primers within the adjacent, flanking exons were designed using Primer3 software (Rozen and Skaletsky 2000). Primers were designed within exons that had the following restrictions: (1) flanking exon expression level above background (DABG < 0.05) and (2) the flanking exon itself was not predicted to be alternatively spliced. Approximately 20ng of total cDNA was then amplified by PCR using Hot Start Taq Polymerase (Qiagen) with an activation step of 15 min at 95°C followed by 35 cycles of 30 sec at 95°C, 30 sec at 58°C, and 40 sec at 72°C and a final extension step of 5 min at 72°C. Amplicons were visualized by electrophoresis on a 2.5% agarose gel. Sequencing of the two products whose sizes corresponded to the predicted larger exon/intron-inclusion and shorter exon-skipped forms confirmed the AS. We performed BLAST analysis of the two splice variants against the non-redundant and EST databases at the National Center for Biotechnology Information (NCBI) to verify if both sequences are known or whether a novel splice isoform has been identified. 
	Results
	Examination of splicing differences between two CEPH HapMap individuals


	We investigated differences in exon-level expression in lymphoblastoid cell lines (LCLs; three biological and five technical replicates, for a total of 15 replicates per individual) from two unrelated individuals from the CEPH HapMap population (GM12750 and GM12751). We defined the splicing index (SI) as the expression level of a given probe set (representing one exon) divided by the expression of the corresponding meta-probe set (representing the gene), to control for differences in gene expression levels between samples (Clark et al. 2002; Srinivasan et al. 2005). Principal component analysis (PCA) indicates that the majority of the variance in SI is due to individual differences, while the remainder is due to biological and technical factors, suggesting that splicing variation between the two cell lines is frequent (Figure 3.2). Three of the replicates from individual GM12750 appear to be outliers and were removed from all subsequent analyses.
	Figure 3.2: Principal component analysis. A three-dimensional plot of the splicing index data showing the three passages of five technical replicates each of individuals GM12750 and GM12751, on the left and right sides, respectively. The three biological replicates are shown as purple, orange, and yellow spheres, respectively. The three outliers that were removed from all subsequent analyses are shaded in a blue sphere. The percentage of variance attributed to principal components one and two is shown on the X- and Y-axes, respectively. Plots were created using the Partek Genomics Suite software package (Partek).
	The array contains sequences from two main sources: high confidence mRNAs from RefSeq and GenBank databases and ESTs from dbEST, and a lower confidence set of speculative gene structures predicted using software such as GENSCAN (Burge and Karlin 1997), TWINSCAN (Korf et al. 2001), and Exoniphy (Siepel and Haussler 2004). For this study, we restricted our analyses to the high confidence set of mRNAs and probe sets. Inclusion of the low confidence theoretical probe sets may contribute expression values that go toward the overall summary and calculations of the meta-probe set score and may adversely affect the SI and all subsequent analyses. In doing so, the number of probe sets has been reduced approximately fivefold, from 1.4 million to 277,000 probe sets belonging to core RefSeq transcripts. 
	One of the potential issues regarding the use of microarrays, particularly with respect to our study of looking at differences in splicing between individuals, is the effect of polymorphisms within the probes that potentially affect binding affinities. Single nucleotide polymorphisms (SNPs) are very common genetic variations and occur at a frequency of one in 1000bp in the human genome (Sachidanandam et al. 2001). Considering such a high frequency of SNPs, we would expect a large number of the probes to contain SNPs and, in some of the cases, to be polymorphic between the individuals that we are examining. In the comparison of two individuals, if a SNP exists within the target sequence in only one of the individuals, probe binding and intensity will most likely be negatively affected in this sample. This would result in an apparent lower SI relative to the individual with the wild-type allele, potentially leading to a false-positive identification of differential probe set expression. We circumvent this issue by conservatively masking out all probes containing SNPs from the dbSNP database (release 126) and all HapMap SNPs polymorphic between our two samples, from the calculation of probe set and meta-probe set summaries. However, there are most likely unknown SNPs that are not yet annotated that may be present within the probes on the array, and all candidate probe sets will be dealt with on a case by case basis, examining the probe set for any discordant probes within them. Probes showing below background intensities in all samples were also masked out before calculation of probe set summaries in order to avoid potential influences of these low intensity probes on the estimated exon and transcript expression levels. After masking out all of these SNP-containing and background intensity probes, 234K probe sets remain for analysis. 
	After summarizing probe set scores, ∼76K probe sets did not pass the statistical DABG (detected above background) criteria (see Methods) and therefore were not included in subsequent analyses. In order to identify candidates from the remaining 158K probe sets suggestive of differential splicing between the two individuals, we performed a t-test comparing the log-transformed SI scores on replicates of the two groups. Since there is no clear method for optimal determination of statistical cutoffs (Thomas et al. 2005), we applied three different methods for multiple testing correction. The Bonferroni correction provided the most conservative estimate (P = 3.159 × 10−7, significance threshold P = 0.05), yielding 1892 potential probe sets (1.2% of expressed “core” probe sets) showing differential splicing. The false discovery rate (FDR) (Benjamini and Hochberg 1995; Storey et al. 2007) at a 0.01 significance level provided the least conservative estimate (P = 8.915 × 10−4), with 8771 (5.7%) potential splicing events. We also ascertained the significance values using an empirical null distribution of P-values from the observed data, by shuffling the SI scores for all samples of each probe set (Churchill and Doerge 1994). For each probe set, we calculated an empirical P-value by comparing our observed, nonpermuted P-value to the distribution of permuted P-values, followed by Bonferroni correction on the permuted P-values. This method estimates 4020 (2.6%) differentially spliced probe sets between the two individuals. The average fold change in SI of all significant probe sets at the Bonferroni, permuted, and FDR corrected cutoffs are 1.85-fold, 1.48-fold, and 1.45-fold, respectively, showing a positive correlation between significance and fold-change expression. 
	We applied some additional biological and statistical criteria to the data set (see Methods), reducing the number of candidate probe sets to 1028. From this list, we proceeded to test a random selection of probe sets ranging from the highest significance level to those near the FDR cutoff. A small subset of 20 candidates were subjected to validation by reverse transcriptase–polymerase chain reaction (RT-PCR) using a pair of primers in two distinct exons flanking a third exon containing the predicted probe set. The presence of alternative isoforms for nine transcripts was confirmed by RT-PCR (Table 3.1), which translates into a 45% validation rate. However, our study evaluates the ability of this microarray technology to identify alternative AS events de novo in genetically diverse populations. Restricting our candidates to those showing EST and cDNA evidence of AS in sequence databases reduces the number of cases from 20 to 12, thereby increasing our success rate to 60% (seven out of 12). This is similar to the observed rates in a genome wide junction array study (73/153 = 48%)  (Johnson et al. 2003) and a smaller custom array of both exon and junction primers (11/20 = 55%) based on a priori knowledge of AS events (Le et al. 2004). 
	Table 3.1: Candidate genes with alternative splicing events
	Analysis of validated AS events

	Based on EST and RefSeq evidence, seven of the nine probe sets with confirmed AS are predicted to confer exon-skipping events, with the exception of the OAS1 and SFRS5 genes. Two OAS1 splice variants (RefSeq accession nos. NM_016816 and NM_002534) are predicted to encode isoforms with alternative 3′ splice site (ss) usage of the last downstream coding exon. The probe set identified in the SFRS5 gene is located within an intron between exons 4 and 5 and represents an intron-retention event. In total, seven of the nine probe sets that were identified in this study show annotated evidence in EST and RefSeq databases of AS. Probe sets corresponding to exons from the PPFIA1 and SIDT1 genes show no previous evidence of AS, demonstrating that the array can detect novel splicing events. 
	In three (CAST, PPFIA1, OAS1) of the top four validated splicing events with the highest degree of fold-change in SI between individuals, we observe a clear predominance of one isoform in one individual versus the alternate variant in the second individual. The majority of candidates with lesser fold changes show the presence of both splice variants in each of the individuals. From a biological perspective, the presence or absence of one of the two splice variants between individuals is more likely to have a functional consequence than are cases where two splice variants are expressed in all individuals with subtle differences in relative ratios. Loss of function from one variant without compensatory effects from expression of the alternative splice isoform may have drastic differences in downstream effects. However, until a complete validation of all candidate probe sets is performed, we cannot estimate how many of these “all-or-none” splicing events are present compared with the observation of both isoforms in each individual. 
	In one of our candidate genes, sequence analysis of the RT-PCR products identified a variant using a cryptic splice site within the predicted exon. Two OAS1 transcripts show alternative 3′ ss usage in the predicted last exon of the gene, resulting in differential stop codon usage and a longer 3′ UTR in one transcript. In the future, sequence analysis of all validated probe sets will be necessary to accurately determine cryptic splice site usage, especially those in close proximity to the annotated splice site, which may be beyond the resolution of standard gel electrophoresis. 
	The available EST and mRNA-based evidence of AS in most of our candidate genes provides support and validation for our array-based discovery of known alternatively spliced transcripts. More importantly, the identification of new PPFIA1 and SIDT1 splice variants provide confidence that we may be able to discover novel AS events and increase the catalog of the human transcriptome. 
	Association of splicing to cis-regulatory haplotypes 

	An important goal of this study was to demonstrate the genetic component of AS, specifically the inheritance of a splicing pattern and its association to a cis-regulatory haplotype. Using the SI of an exon as a quantitative trait, we performed regression-based linkage analysis (implemented in Merlin) (Abecasis et al. 2002) within a three-generation family (CEPH 1444) for the nine verified AS events detected in this study. At a nominal level of LOD > 0.59, corresponding to P < 0.05, we observed evidence of linkage between SI scores and the corresponding chromosomal region in the OAS1 (LOD = 0.76), CRTAP (LOD = 1.29), and CAST (LOD = 1.98) genes. RT-PCR based analysis confirmed segregation of the splicing pattern with the associated haplotype through all three generations of this pedigree (Figure. 3.3). 
	Figure 3.3: Heritability of alternative splicing. Inheritance of alternative splicing for genes (A) OAS1, (B) CRTAP, and (C) CAST. Left panel shows pedigree structure of CEPH/UTAH family 1444 with the autosomal dominant inherited splice pattern as blue symbols. Haplotypes for each of the eight founder chromosomes are labeled A, B, C, D, E, F, G, and H, and the two inherited haplotypes of each family member are indicated within the symbol. The regulatory haplotype is shown as bold white text. Squares represent males, and circles represent females. CEPH/UTAH 1444 pedigree is labeled as follows: 1 (GM12739), 2 (GM12740), 3 (GM12741), 4 (GM12742), 5 (GM12743), 6 (GM12744), 7 (GM12745), 8 (GM12746), 9 (GM12847), 10 (GM12747), 11 (GM12748), 12 (GM12749), 13 (GM12750), and 14 (GM12751). The right panel shows the two transcript isoforms of the genes. Exon-body primers are shown above the flanking exons of the predicted alternatively spliced exons. Shown below the transcript isoforms are the RT-PCR results. Lanes are numbered from 1–14 according to the pedigree on the left.  
	The association between alternatively spliced isoforms and genetic variation was examined further by testing our nine candidates on a larger panel of 60 unrelated HapMap CEU individuals. In many cases, both splice variants are expressed in different ratios in various individuals, but the RT-PCR approach that was used here was not sensitive enough to quantify the relative isoform levels and establish a statistical association with a regulatory haplotype. Other methods based on the use of fluorescent dyes such as TaqMan PCR (Gibson et al. 1996) may be more sensitive in detecting relative amounts of each isoform, although the cost associated with this technology is prohibitive for large-scale validation of predicted AS events. In clear cases where only one of the isoforms or the other is expressed, classical RT-PCR is a more suitable method. We were able to confirm the previously described association of OAS1 variants to a candidate regulatory polymorphism (Field et al. 2005) and establish that the CRTAP splicing variant is rare and does not occur outside of members of CEPH family 1444 (data not shown). 
	The most interesting example of allelic association was identified in the CAST gene, which encodes for calpastatin, a calpain protease inhibitor. There are at least 11 known isoforms of calpastatin, all differing in their N-terminal regions (Figure 3.4B) (Lee et al. 1992). The predicted alternatively spliced exon of the CAST gene is supported by RefSeq and EST evidence of AS and encodes a portion of the first of four repetitive protease-inhibition domains. Consequently, removal or disruption of these calpain-inhibition domains may affect functionality and/or tissue specificity of the protein (Takano et al. 1993). The splicing pattern in the entire panel was correlated to a single SNP (rs7724759) that is most likely the causative polymorphism resulting in our differentially spliced isoforms. The SNP is located at the 3′ end of the exon and involves a G to A substitution that abates the weak consensus 5′ ss sequence. All individuals genotyped as homozygous GG for rs7724759 have an intact 5′ ss sequence and properly splice the exon, resulting in the larger PCR product. Individuals homozygous for AA at this position have a non-functional 5′ ss on both alleles that is improperly recognized by the splicing machinery; as such, the exon is excluded and accounts for the shorter, lower molecular weight band. When both isoforms are observed, the individual is heterozygous for this SNP and has both wild-type and polymorphic alleles. This exon also demonstrated linkage in the CEPH 1444 family, as previously mentioned, and examination of the pedigree clearly shows the inheritance of the two haplotypes through the three generations (Figure 3.3C).
	Figure 3.4: Association of alternative splicing and genotypes for the CAST gene. (A) RT-PCR of CAST exon against a panel of unrelated parents from each of the 30 HapMap CEU trios. Sample names are coloured according to their genotype for SNP rs7724759: homozygous GG (green), homozygous AA (red), and heterozygous AG (black). (B) Four known isoforms of the CAST gene are shown with their RefSeq accession numbers on the left and the candidate probe set shaded in grey. Shown below is the sequence of the exon in capital letters and flanked by the intronic sequence in lower case. The SNP rs7724759 is located at the last position of the exon and is a G to A substitution that disrupts the consensus splice site sequence.  
	We also examined the remaining eight AS events for both functional domains encoded within the respective exons and also for putative cis-acting SNPs that may control the splicing patterns. We did not identify any domains for any of the exons except a putative transmembrane domain within the HHAT exon. In most of the cases, the closest polymorphic SNPs between individuals GM12750 and GM12751 were all located either in the 5′ or 3′ flanking introns but at significant distances (>100 bp) from the splice site. We were able to identify SNPs either within or in close proximity (<100 bp) to the putative AS exon for the SIDT1 and OAS1 genes and within the retained SFRS5 intron. SNP rs2271494 is located 25 bp upstream of the SIDT1 exon and is found within the polypyrimidine tract. Mutations within this region may alter binding between the large subunit of the U2 small nuclear ribonucleoprotein particle (snRNP) auxiliary factor, U2AF, to this motif (Singh et al. 1995). The SNP rs151042 is located within exon 7 of the OAS1 gene and is part of a haplotype block where another SNP marker, hCV2567433, at the exon 7 splice-acceptor site, has been shown to result in the usage of an internal splice site in the mutant allele (Bonnevie-Nielsen et al. 2005). In the one example of intron retention for the SFRS5 gene, we identified a SNP (rs3104) centrally located within the intron; however, it does not appear to disrupt any known intronic splice enhancer or silencer. These results demonstrate that association studies of alternatively spliced exons with well-genotyped individuals are valuable in identifying the potential polymorphisms linked to the splicing event.
	Discussion

	Identifying AS events is important to understanding the diversity and complexity of the human genome, and we report on the use of a comprehensive exon-tiling array in our experimental design to discover such events between individuals. The same microarray design has also been recently used for a complete analysis of tissue-specific differences in splicing (Gardina et al. 2006) and is potentially useful for many pairwise comparisons of splicing. Since the design of this array is not biased toward a priori knowledge of AS events, there is more potential for detecting novel splicing events. We demonstrated that novel isoforms can be discovered using this microarray, and others have recently shown the same (Clark et al. 2007b; Gardina et al. 2006). A number of different types of splicing events were identified, including exon exclusion, intron retention, and the use of cryptic splice sites. Exon-tiling arrays provide an advantage over exon junction arrays in their ability to identify the use of cryptic splice sites due to the design of probes within an exon. Exon-junction probes can detect the joining of two exons at specific, known splice sites and are not as effective at the detection of novel, unannotated cryptic splice site usage. However, one disadvantage of tiling probes only within exons is its inability to provide information on how all the individual exons are linked within the different splice isoforms of a particular gene, a feature more suited to an exon-junction probe array. Proper design of an exon junction array for the entire human genome to interrogate all possible gene structures requires too many probes for every possible joining event. Such a design is more suitable for the examination of a smaller number of events, as demonstrated recently (Ben-Ari et al. 2006; Valverde et al. 2006; Zhang et al. 2006). Each of these array designs possesses advantages and disadvantages, and given comparable false-positive rates obtained in this study and other splicing microarray studies, both are useful and informative in the identification of AS events. A follow-up study using a custom microarray consisting of a combination of exon and exon-junction probes may prove useful for confirming AS events and examining all possible transcript structures for a smaller subset of genes. This study focused on differentially expressed probe sets located within in-frame coding exons. Validation of probe sets corresponding to out-of-frame exons were not looked at, but these may introduce an upstream stop codon through cryptic splice site usage. This may confer differences in post-transcriptional regulation through nonsense-mediated decay. Probe sets located within 5′/3′ UTRs can also have widely varying biological functional consequences, such as changes in promoter regions or polyadenylation and transcript termination differences. 
	Exactly how much differential splicing is occurring between any two individuals is still unknown. We estimated that up to 2.5% of all RefSeq exons expressed in lymphoblasts may show differential expression between the two samples tested, after factoring in our current validation rate, although a more accurate determination on the amount of differential splicing events will require a proper ROC-type analysis. However, this study examines splicing in lymphoblasts, and this estimate may change depending on the tissue tested. Alternative splice variants of the same gene can be expressed in multiple cell types to exert different functional and regulatory effects, which may also be individual specific. Neuronal tissues are known to have high levels of splicing (Yeo et al. 2004a), and it is not unreasonable to assume that the amount of splicing between individuals may be higher in brain tissues than in lymphoblasts. A more complete picture may be ascertained by pairwise comparison of splicing in many tissues between individuals. 
	The large amount of genotyping information within identified populations from the HapMap project provides a tremendous resource for associating known SNPs or regions of linkage disequilibrium with genetic differences such as copy number variation, allelic imbalance, and AS, or phenotypic traits that may convey an increased risk of disease. Here, we have shown that this approach can be used to identify one or more SNPs associated with some of the splicing events identified. Further examination of the nature of the polymorphisms and their location relative to the spliced exon can give insight as to whether it is part of a larger cis-regulatory haplotype or in fact the causative SNP disrupting a splice site consensus sequence, an exonic splicing enhancer (ESE) or silencer (ESS), an intronic splicing enhancer (Vignaud et al.) or silencer (ISS), or other splice regulatory motifs such as the branch point or the polypyrimidine tract. Assigning a definitive causative effect of the SNP will require further experimental validation in vitro, such as monitoring splicing activity in cells using splice reporter constructs (Mayeda and Krainer 1999). However, it is quite possible that there are unannotated SNPs proximal to the exon that are responsible for the differential splicing, and resequencing of the genomic regions neighboring the exons will be necessary to identify these polymorphisms. 
	Although we identify a candidate exon from the CAST gene showing genetic association with expression level changes, we do not know how often this occurs in a human population on a genome-wide scale. One method of properly assessing how common inherited splicing occurs would be to perform a whole-genome association study with more individuals from the HapMap population, using the SI scores as a quantitative trait. This is very similar to recent whole-genome association studies that suggest that common genetic variation explains much of the gene expression differences among individuals (Stranger et al. 2005; Stranger et al. 2007b). Carrying out a similar analysis at the exon level will yield better estimates of how common this heritability and genetic association is in humans. 
	The identification of SNPs within specific individuals in a population that affect splicing is an important issue to address when considering its relevance to possible resistance or susceptibility to disease states. An estimated 20%–30% of disease-causing mutations is believed to affect pre-mRNA splicing (Faustino and Cooper 2003), through the disruption of splice sites, exonic and intronic splicing enhancers and silencers, or RNA secondary structure. In this study, the two OAS1 splice variants identified have been previously associated with a SNP at an exon splice-acceptor site. This polymorphism results in the usage of an internal splice site in the mutant allele, which is thought to confer differences in host susceptibility to viral infection in type I diabetes patients (Field et al. 2005). A genome-wide analysis with well-genotyped CEPH HapMap individuals will be an important starting point in identifying many more AS events and the causative polymorphisms involved in human diseases. 
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	Connecting text

	In the previous chapter, we compared the transcript expression patterns derived from lymphoblast cell lines of two unrelated HapMap individual. We established that the Exon Array was capable of detecting different types of isoform differences such as alternative initiation, splicing and termination. We also found by conducting linkage analyses that some of these observed differences were inherited and therefore likely to be under genetic control. The efficacy of this pilot study prompted us to continue this study on a larger scale. 
	Chapter 4 describes our use of lymphoblast cell lines derived from 60 unrelated HapMap individual of Northern European descent that have been previously genotyped for ~4 millions SNPs by the International HapMap project (The International HapMap Consortium 2003). RNA was isolated from these cell lines for each individual and was hybridized to an Exon Array. The main goal of this study is to combine the genotype information and the transcript expression at the isoform level to carry out genome-wide allelic association analysis. 
	Abstract

	We have performed a genome-wide analysis of common genetic variation controlling differential expression of transcript isoforms in the CEU HapMap population using a comprehensive exon tiling microarray covering 17,897 genes. We detected 324 genes with significant associations between flanking SNPs and transcript levels. Of these, 39% reflected changes in whole gene expression and 55% reflected transcript isoform changes such as splicing variants (exon skipping, alternative splice site use, intron retention), differential 5' UTR (initiation of transcription) use, and differential 3' UTR (alternative polyadenylation) use. These results demonstrate that the regulatory effects of genetic variation in a normal human population are far more complex than previously observed. This extra layer of molecular diversity may account for natural phenotypic variation and disease susceptibility.
	Introduction

	Alternative pre-mRNA processing increases the complexity of eukaryotic transcriptomes, allowing multiple transcripts and protein isoforms with distinct functions to be produced from a single genomic locus (Kim et al. 2004). Within an organism, tissue specific gene isoforms are known to have important functions in development and proper functioning of diverse cell types (Black and Graveley 2006). Across individuals, changes in normal isoform structure have phenotypic consequences and have been associated with disease (Faustino and Cooper 2003; Nissim-Rafinia and Kerem 2005). Splicing defects in a number of genes, such as the cystic fibrosis transmembrane conductance regulator, CFTR, result in several known mendelian disorders (Zielenski 2000). More subtle changes, such as alternative 3' processing and polyadenylation, have recently been associated with complex disorders: OAS1 in severe acute respiratory syndrome (Field et al. 2005), TAP2 in type I diabetes (Qu et al. 2007), and IRF5 in susceptibility to systemic lupus erythematosus (Cunninghame Graham et al. 2007; Graham et al. 2007).
	Several recent studies have suggested that natural variation at the level of whole-gene expression is common in humans and is associated with genetic variants, such as SNPs or copy number variants (CNVs) (Cheung et al. 2005; Spielman et al. 2007; Stranger et al. 2005; Stranger et al. 2007a). Studying variation in gene expression is becoming increasingly important because of its contribution to phenotypic differences among individuals and its possible regulatory and functional relationships to diseases. However, little is known at present about the genetic variation at the sub-transcript level or about differences in multiple transcript isoforms of the same gene. Here, we interrogated transcripts across their entire length, using the Affymetrix GeneChip Human Exon 1.0 ST Array, which can detect splicing differences between various types of samples (Clark et al. 2007b; Gardina et al. 2006; Kwan et al. 2007).
	Methods
	Cell line preparation


	We obtained triplicate RNA samples from LCLs derived from the parents of 30 CEPH (CEU) trios (60 individuals) that had been genotyped for approximately 4 million SNPs by the International HapMap Project (The International HapMap Consortium 2005). Cells were grown at 37 °C and 5% CO2 in RPMI 1640 medium (Invitrogen) supplemented with 15% (vol/vol) heat-inactivated FCS (Sigma-Aldrich), 2 mM L-glutamine (Invitrogen) and penicillin/streptomycin (Invitrogen). Cell growth was monitored with a hemocytometer and cells were collected at a density of 0.8 106 to 1.1 106 cells/ml. Cells were then resuspended and lysed in TRIzol reagent (Invitrogen). Three successive growths were performed (corresponding to the second, fourth and sixth passages) after thawing frozen cell aliquots. Three cell lines showed extremely poor growth and were not used in the study, leaving 57 LCLs for subsequent analyses.
	Affymetrix exon arrays

	We isolated RNA using TRIzol reagent following the manufacturer's instructions (Invitrogen) and assessed the RNA quality using RNA 6000 NanoChips with the Agilent 2100 Bioanalyzer (Agilent). Biotin-labeled targets for the microarray experiment were prepared using 1 g of total RNA. Ribosomal RNA was removed with the RiboMinus Human/Mouse Transcriptome Isolation Kit (Invitrogen) and cDNA was synthesized using the GeneChip WT (Whole Transcript) Sense Target Labeling and Control Reagents kit as described by the manufacturer (Affymetrix). The sense cDNA was then fragmented by uracil DNA glycosylase and apurinic/apyrimidic endonuclease-1 and biotin-labeled with terminal deoxynucleotidyl transferase using the GeneChip WT Terminal labeling kit (Affymetrix). Hybridization was performed using 5 micrograms of biotinylated target, which was incubated with the GeneChip Human Exon 1.0 ST array (Affymetrix) at 45 °C for 16–20 h. After hybridization, non-specifically bound material was removed by washing and specifically bound target was detected using the GeneChip Hybridization, Wash and Stain kit, and the GeneChip Fluidics Station 450 (Affymetrix). The arrays were scanned using the GeneChip Scanner 3000 7G (Affymetrix) and raw data was extracted from the scanned images and analyzed with the Affymetrix Power Tools software package (Affymetrix).
	Preprocessing and analysis of array hybridization data

	The Affymetrix Power Tools software package was used to quantile-normalize the probe fluorescence intensities and to summarize the probe set (representing exon expression) and meta–probe set (representing gene expression) intensities using a probe logarithmic-intensity error model (Affymetrix). High false-positive rates are common in microarray studies, and previous studies have suggested that a major factor arises from probes overlapping SNPs that result in changes to hybridization intensity (Naef and Magnasco 2003), potentially influencing the apparent association between the SNP genotype and probe intensities. To reduce potential influences of SNPs on false positives, all probes containing known SNPs (dbSNP release 126) were masked out before summarizing probe set and meta–probe set scores. The presence of unannotated SNPs affecting probe hybridization will remain (see below), but these cannot be detected by any statistical methods except for the impractical solution of resequencing all probes across the panel used in the study. We also filtered probe intensity levels by magnitude of response, removing probes that seemed to be in the background. Probe intensities were extracted for a series of 16,934 antigenomic probes targeted to nonhuman sequences and averaged by their relative G+C content. The threshold for background expression was defined as the average intensity for a given G+C content plus 2 standard deviations. For any given genomic probe on the array, if the intensity across all samples was below the threshold for the same G+C percentage, then it was considered background and masked from the analysis. In total, 670,809 probes corresponding to core annotated probe sets were masked from the analysis, reducing the number of core probe sets in the analysis to 244,027 probe sets.
	Association analysis and multiple test correction

	We examined probe set expression levels for association with flanking SNPs. For each of the 244,027 core probe sets and 17,653 meta–probe sets, we tested for association of the expression levels to HapMap phase II (release 21) SNPs with a minor allele frequency of at least 5% within a 50-kb region flanking either side of the gene containing the probe set, using a linear regression model in the R software package. Raw P-values were obtained from the regression using the standard asymptotic t-statistic.
	To correct for testing of associations between multiple probe sets and SNPs, we carried out permutation tests followed by FDR correction. Within each expression-versus-genotype matrix, we randomly permuted the expression values for all probe sets belonging to the same meta–probe set (to preserve the haplotype block structure). For each expression measurement, we computed and retained only the highest asymptotic P-value and produced the distribution of maximum P-values within the permuted dataset. The maximum asymptotic P-values from the experimental data were then converted into empirical P-values by mapping onto the permuted distribution. The above procedure corrects for testing multiple SNPs against each expression value. Subsequently, we performed an FDR correction (Benjamini and Hochberg 1995) on the empirical P-values, to control the FDR across multiple expression values. The procedure was applied separately to measurements at the probe set and meta–probe set levels. We used a 0.05 FDR criterion as a significance cutoff in our analysis. For the sake of clarity, all of the values and cutoffs quoted in the results correspond to the raw, uncorrected P-values.
	Classification of transcript isoforms

	We developed an automated method to categorize the transcriptional and isoform changes. The algorithm first classifies transcripts as expression variants if there is an association of the entire meta–probe set significant at the P < 6.02 10-7 level (see above for explanation of the cutoffs). Subsequently, the algorithm identifies all individual probe sets significant at the P < 9.73 x 10-9 level that do not belong to the expression variants detected above. All such significant probe sets are then grouped into blocks corresponding to exons, according to their RefSeq annotation. Each significant block is classified as an initiation, splicing or termination change according to its position within the transcript (3', internal, or 5', respectively). Cases with two or more of the above events occurring in a single transcript are classified as complex. Finally, all results were manually curated. To visualize the potential nature of the isoform changes on a gene level, the probe sets were examined in the context of their transcript, mRNA, and EST information. For each gene predicted to have SNP-associated transcript- or exon-level expression changes, we plotted the P-values of all the corresponding probe sets and overlaid the fold change expression levels between the two homozygous genotypes for the significant SNP identified in the association analyses (see Supplementary Figure 2 - www.nature.com/ng/journal/v40/n2/suppinfo). We made minor adjustments (23 of 324 events) to the automated classifications, mostly in cases where the designations were not consistent with annotated alternative isoform structures or where the Affymetrix transcript annotation was incorrect.
	Validation of transcript isoform changes

	Total RNA was treated with 4 U of DNase I (Ambion) for 30 min to remove any remaining genomic DNA. First-strand complementary DNA was synthesized using random hexamers (Invitrogen) and Superscript II reverse transcriptase (Invitrogen). All primers used for RT-PCR reactions (see Supplementary Table 3 - www.nature.com/ng/journal/v40/n2/suppinfo) were designed using Primer3 software (Rozen and Skaletsky 2000). Candidate probe sets showing association were validated in two ways, depending on their location within the gene. For all probe sets located within coding exons and possessing flanking exons in all known RefSeq isoforms, we designed locus-specific primers within the adjacent flanking exons. Approximately 20ng of total cDNA was then amplified by PCR using Hot Start Taq Polymerase (Qiagen) with an activation step at 95 °C (15 min) followed by 35 cycles at 95 °C (30 s), 58 °C (30 s) and 72 °C (40 s) and a final extension step at 72 °C (5 min). Amplicons were visualized by electrophoresis on a 2.5% agarose gel.
	For probe sets located within 5' or 3' untranslated regions or within exons that did not have a flanking exon, we designed a set of primers to amplify the differentially expressed candidate probe set itself. For comparison, other primer pairs were designed to amplify products that corresponded to the adjacent probe sets and were not significantly associated with the same SNP. Total expression measurements were carried out using real-time PCR with Power SYBR Green PCR Master Mix (Applied Biosystems) following the manufacturer's instruction on an ABI 7900HT (Applied Biosystems) instrument. The reaction was set up in 10 l final volume applying the following conditions: 8 ng of total cDNA and 0.32 M of gene-specific primers; cycling, 95 °C (15 min) and 95 °C (20 s), 58 °C (30 s), 72 °C (45 s) for 40 cycles. Relative quantification of each amplicon was evaluated on RNA from 57 cell lines in triplicate. For each amplicon, a standard curve was established using dilution series of a mix of cDNA samples with known total cDNA concentration. Human 18S rRNA was also quantified using TaqMan probes as a control for well-to-well normalization (TaqMan Pre-Developed Assay Reagents for Gene Expression – Human 18S rRNA, 4319413E, Applied Biosystems). The cycle threshold (Ct) values for each replicate were transformed to relative concentrations using the estimated standard curve function (SDS 2.1, Applied Biosystems) and normalized based on 18S real-time data from the same samples to account for well-to-well variability. The quantitative data was used in regression analyses with the same SNP identified in the original association to confirm the significance, using a P-value threshold of 0.05/N where N is the number of candidate genes tested using this method. The regression line was required to be in the same direction as the original association. Quantitative RT-PCR of the control probe sets showing no association with the SNP were also required to be nonsignificant at this threshold.
	Effect of unannotated SNPs on the analysis

	We have previously shown that SNPs located within probes may affect their hybridization to target DNA (Kwan et al. 2007), and have therefore conservatively masked out all probes containing SNPs to circumvent this problem. However, probes containing unannotated SNPs are not accounted for; therefore, we wanted to assess the effect of these unknown SNPs on our analysis. We selected 83 genes, each of which contained only a single significant probe set. Many (63) of these probe sets are supported by a single independent, nonoverlapping probe, and such probe sets are the most susceptible to the effect of SNPs, because every probe could potentially be affected by a single SNP. We sequenced the probe sets from the cell lines of six individuals, three from each of the two homozygous genotypes of the associated SNP. We observed that the sequences for 56 probe sets (67.5%) were identical in all samples tested, suggesting that these are more likely to be true events and not an artifact of one or more SNPs located in the individual probes representing the probe set. In the remaining 27 probe sets (32.5%), we identified previously unknown SNPs or indels overlapping one or more of the probes of the probe set, and in most cases, these polymorphisms segregated with one of the two homozygous sample groups, most likely giving rise to the apparent false-positive hit. We excluded these 27 probe sets from our candidate list presented in the manuscript. All of the remaining candidates are supported by two or more independent probes, and are much less susceptible to the effect of unknown SNPs. Only 2 out of the 32 candidates from the final dataset selected for validation (6%) contained previously unidentified SNPs and hence failed validation, showing that the effect of SNPs on the final results presented here is small.
	Results and discussion

	Exons within a gene are represented on the microarray by individual probe sets, and were considered discrete units for our analysis of transcript isoform-processing differences. We used triplicate samples of lymphoblastoid cell lines (LCLs) derived from 57 unrelated Centre d'Etudes du Polymorphisme Humain (CEPH) CEU individuals (Utah residents with northern and western European ancestry) genotyped by the HapMap consortium (The International HapMap Consortium 2005), allowing us to establish a possible genetic basis for any observed variations in transcript isoforms with associated SNPs. A linear regression analysis under a codominant model was carried out to associate probe set expression intensities with the genotypes of all SNP markers within a window of 50 kb flanking the boundaries of the transcript cluster (meta–probe set) containing the probe set. We assessed the statistical significance of the variation using the t-statistic, and used the regression equation to estimate the fold change in expression between the two homozygous genotypes. We used permutation testing (Churchill and Doerge 1994) to determine empirical P-values corresponding to the asymptotic P-values obtained from the regression. Subsequently, we applied the false discovery rate (FDR) correction to establish a cutoff P-value of 9.73 x 10-9, corresponding to the 0.05 FDR level (see Methods). This yielded 757 unique probe sets showing significant SNP associations, belonging to 317 unique meta–probe sets (see Supplementary Table 1 - www.nature.com/ng/journal/v40/n2/suppinfo). Although the most significant SNPs may not be the causative polymorphisms responsible for these differences in probe set expression, they are very probably in linkage disequilibrium with the causative polymorphism(s). This is reflected in the distance distribution of associated polymorphisms, most of which are in close proximity to the probe sets (see Supplementary Figure 1 - www.nature.com/ng/journal/v40/n2/suppinfo). The association analysis at the transcript (meta–probe set) level resulted in a 0.05 FDR cutoff of 6.02 x 10-7, yielding 127 unique transcripts with significant genetic association at the gene expression level. Of these 127 transcripts, all but seven were common to the 317 transcripts derived from the regression analysis at the probe-set level; therefore, our final dataset comprised 324 transcripts predicted to have expression changes at the meta–probe set and/or probe set level.
	We examined the 324 transcripts in greater detail (Figure 4.1; examples in Figure 4.2) to determine the nature of the isoform changes on a transcript level (summarized in Supplementary Table 2 and Supplementary Figure 2 - www.nature.com/ng/journal/v40/n2/suppinfo). Expression changes were automatically classified on the basis of the positions of the variable probe sets, followed by manual curation based on visualization of the entire transcript (Supplementary Figure 2 - www.nature.com/ng/journal/v40/n2/suppinfo). A large number of genes (127, or 39%) showed whole-gene expression changes. However, an even larger proportion (55%) of genes showed transcript-isoform changes only, without an accompanying change in the expression of the entire locus. Nearly half of these transcript variations were at the splicing level (85, or 26%), with the remaining changes at the level of transcript termination (57, or 18%) and initiation (35, or 11%) (Figure 4.3). It should be noted that some of the genes showing changes in the expression level of the whole gene also showed further changes in splicing, transcript termination and/or transcript initiation, suggesting that transcript isoform variation constitutes a large part of the genetic variation we have observed. A small number (20, or 6%) of genes showed very complex patterns of isoform variation that were difficult to interpret. Notably, when we compare the proportion (18%) of significant probe sets within the 3' untranslated regions (UTRs) with the proportion of all 3' UTR core probe sets (13%) on the array, we found a significant over-representation (Pearson's chi-squared test, P = 5.73 x 10-6) of probe sets in this region, indicating that transcript termination variations may occur more frequently than expected. Because predicted changes to the 3' UTR may affect mRNA stability and subcellular localization, this type of isoform variation may have important regulatory roles. These findings illustrate a very complex pattern of expression changes associated with genetic variation, encompassing alterations at the whole-gene expression level and/or differences in transcript isoforms.
	Figure 4.1: Analysis steps from identification of significant probe set in PARP2 gene to validation. (a) Linear regression analysis of expression scores for probe set (PS) 3527423 with genotypes of SNP rs4981998, giving a P-value of 2.81 x 10-30. Probe set scores for each individual are shown in red and regression line is indicated with blue dashes. (b) Visualization of probe set 3527423 in the context of all other probe sets belonging to the same transcript (meta–probe set 3527418). For each probe set, the significance level (P-value) is graphed (red line), along with fold change expression between the mean scores of the two homozygous genotypes (meanTT / meanCC) (vertical blue bars). The solid horizontal red and blue lines represent the significance and fold change expression for the regression analysis at the meta–probe set level against SNP rs4981998. Arrow, probe set 3527423. (c) RT-PCR validation of probe set 3527423 using flanking exon-body primers. Individuals are highlighted by color according to their genotype for SNP rs4981998: CC (red), CT (black), TT (blue). (d) Schematic of 5' end of two isoforms of PARP2 with exon array probe sets shown below the exons. The significant probe set 3527423 is highlighted in red and corresponds to alternative 5' splice site use resulting in a larger second exon for NM_005484. 
	Figure 4.2: Examples of different types of transcript isoform events observed (data is graphed as in Figure 4.1b). (a) Gene expression level changes of ERAP2, including alternative splicing of a cassette exon. (b) Differential 3' UTR change of ERAP1 resulting in long and short isoforms with alternative stop codon use. (c) Expression of two TCL6 transcript isoforms that contain different 5' and 3' ends. (d) Increasing significance and fold change in expression levels toward the 3' end of the CCT2 gene, suggesting genetic variation associated with mRNA stability. 
	Figure 4.3: Classification of genes showing expression changes at the exon and/or transcript level. The 324 genes were classified into separate categories depending on the nature of the isoform change occurring: expression changes at the whole transcript level (green), transcription initiation changes (yellow), alternative splicing of a cassette exon (blue), transcription termination changes (purple), and complex changes of multiple event types (red). The percentages shown assume a uniform false-positive rate for all results. To obtain a lower bound for the relative frequency of isoform variants, we have also recalculated the frequencies of the isoform changes (but not whole-gene expression and complex changes) based on our current false positive rate estimate of 20% (from validation experiments). Thus, we obtained the following ranges for each of the changes: whole gene expression, 39–44%; initiation, 10–11%; splicing, 24–26%; termination, 16–18%; and complex events, 6–7%. 
	We proceeded, using two different methods, to validate 32 of our top candidate events distributed among the coding (16), 5' UTR (6), and 3' UTR (10) regions. For alternative splicing events of internally located probe sets, we performed RT-PCR on our entire panel of cell lines using exon-body primers in the two exons flanking the candidate probe set (Figure 4.1c). We confirmed 15 probe sets showing SNP association to splicing of a cassette exon or intron (Table 4.1) and classified them as follows: eight probe sets corresponded to splicing of a coding exon, four probe sets were located in the 5' UTR and resulted in the removal of potential promoter sequences or alternative start codon use, two probe sets were found within intronic regions and resulted in intron retention, and the remaining probe set was located in the 3' UTR and altered its length. The second, more sensitive validation method using quantitative real-time RT-PCR was applied to differentially expressed probe sets within the 5' or 3' UTR and to those in which one of the flanking probe sets was missing in one of the alternative isoforms. We designed sets of primers to amplify the differentially expressed probe set itself and compared the resulting PCR products to ones corresponding to adjacent probe sets showing no association to the SNP and also expected to have similar expression levels across all cell lines. Quantitative PCR data was used to perform a linear regression fit with the original associated SNP and confirm the significance and direction of the association analysis with the microarray data at a nominal P-value of 0.05/N, where N is the number of candidates tested in the real-time RT-PCR. Using this method, we validated six UTR-located probe sets showing SNP association: four in the 3' UTR (alternative polyadenylation) and two in the 5' UTR (differential transcriptional initiation). We also used this method on the candidate probe sets that failed our initial validation method owing potentially to low sensitivity of endpoint PCR of minor isoforms, and we were able to validate another four probe sets: two within coding regions and two within the 3' UTRs. In total, 25 of 32 candidate probe sets were validated, for a success rate of 78%. The remaining 7 probe sets failed validation, which can be partially accounted for by unannotated SNPs located within the probe sets possibly leading to altered hybridization signals (Alberts et al. 2007) (see Methods), suboptimal primer design, limited sensitivity of our validation methods, and/or noise from the microarray. We also validated several differentially spliced exons under a more relaxed stringency below our estimated cutoff, indicating that the frequency of genes showing SNP-associated changes is probably greater than what can be estimated from our current analysis. A recent estimate suggests that 21% of annotated alternatively spliced genes are associated with SNPs that determine the relative abundances of the alternative transcript isoforms (Nembaware et al. 2004).
	Table 4.1: Validation of probe sets
	A recent study used Illumina arrays to capture gene expression information within the CEU population (Stranger et al. 2007a).The Illumina design, along with many other expression platforms, targets probes to the 3' end of genes and cannot identify specific isoform changes. Our present results demonstrate that the nature of the changes is qualitatively different than previously reported for several genes in that study. For example, our analysis shows that IRF5, implicated in susceptibility to systemic lupus erythematosus, shows differences in the 3' UTR (Figure 4.4), where the A allele of rs10954213 creates a functional polyadenylation site, shortening its 3' UTR (Cunninghame Graham et al. 2007; Graham et al. 2007). This result for IRF5 contrasts the original predicted change at the gene expression level (Cheung et al. 2005; Spielman et al. 2007; Stranger et al. 2005; Stranger et al. 2007a) and occurs because the Illumina array interrogates IRF5 with a probe in the 3' UTR specific to the long isoform. Other examples previously classified as expression changes include PTER, which we show to have a variation in the 3' UTR, and C17orf81 (also known as DERP6), which shows alternative splicing of a cassette exon. Another interesting example is ERAP2, which has been reported as having an expression change (Cheung et al. 2005). Our results confirm this variation in expression; however, we additionally detect alternative splice-site use in one of the exons (Figure 4.2a). Many platforms have been used so far in these population-wide expression analyses, and although there is substantial overlap between the studies, significant discordance also exists. A recent paper identified 374 gene-expression phenotypes associated with SNP markers from a study of 3,554 genes (Cheung et al. 2005). Differences in statistical stringency and false discovery rate most likely explain the higher proportion of SNP associations in their study. However, their set of 3,554 genes was pre-selected for the most variable expression phenotypes among an original set of >8,000 genes. This restricted set of genes may exclude examples of isoform changes without an accompanying change in whole-gene expression, which we observed in our study. In future expression association studies, comparative meta-analyses across different microarray designs may help eliminate platform-specific technical artefacts and allow the elucidation of true isoform and gene-level variations.
	Figure 4.4: Validation of 3' UTR change in IRF5 by quantitative real-rime RT-PCR (a) Schematic of the 3' ends of the long and short isoforms of IRF5. Exons are shown in blue, introns are dashed lines, and solid horizontal lines below the exons indicate probe sets. (b) Regression analyses of probe sets 3023263 and 3023264 against SNP rs10954213. (c) Regression analysis of Ct counts from quantitative real-time RT-PCR against the genotype of SNP rs10954213, to confirm the original microarray data. We used two sets of primers on the panel of individuals, designed to amplify probe sets 3023263 and 3023264, respectively.
	We show that tools such as the exon array, targeting probes to many regions of the gene, give a more complete picture of the true complexity of variation in gene expression than previously believed. This variation exists at all levels of transcript processing, beginning with initiation of transcription, through pre-mRNA splicing (Hull et al. 2007; Kwan et al. 2007; Nembaware et al. 2004), to alternative polyadenylation, and it has the potential to exert diverse cellular responses and phenotypic effects. Transcript alterations within coding regions of the gene, such as the addition or removal of sequences coding for functional domains or the introduction of premature stop codons, may greatly alter the protein sequence, structure and function (Lewis et al. 2003; Liu and Altman 2003). Changes outside the coding regions can also have wide-ranging regulatory consequences. Differential exon selection within the 5' and 3' UTRs may alter mRNA stability and translational efficiency by the addition or removal of regulatory sequences. In some genes (for example, ATPIF1 and TAP2), selection of an alternative splice site for the terminal exon resulted in differential stop codon use and, consequently, changes in the length and composition of the 3' UTR. Alterations in the 3' UTR can also be affected by alternative use of polyadenylation sites and approximately half of human genes are predicted to contain several polyadenylation sites, resulting in transcripts with different 3' UTR lengths (Tian et al. 2005; Yan and Marr 2005). Altering a functional polyadenylation site through a single polymorphism may lead to isoform switching. The 3' UTR is also involved in post-transcriptional regulation through the targeting of specific UTR sequences by microRNAs (miRNA) (Valencia-Sanchez et al. 2006; Wu et al. 2006). Expression of multiple isoforms may be indirectly controlled through the differential expression of miRNAs or by polymorphisms in these miRNA-specific sequences. The end consequence of many of these alterations in the UTRs affects a cascade of downstream processes such as stability, localization and translation efficiency, and it directly contributes to phenotypic diversity and possible disease states. A systematic characterization of the polymorphisms to determine the true causative SNPs resulting in these changes will lead to the possible identification of new regulatory motifs and is currently being undertaken.
	Earlier studies suggested that gene expression constituted an important piece of human variation, and although it remains a significant aspect, the added complexity of transcript-processing variations and the potential outcome of these differences greatly alter our earlier perceptions. We estimate that between 50 and 55% of gene expression variation is isoform based. Our results constitute an important change in way we view the effects of common genetic variation in humans and highlight the need for broader investigation into the causes of differential gene expression, as well as previously found and new disease associations that lack clear functional variants.
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	Connecting text

	In the last chapter, we demonstrated the existence of common transcript expression variations at the isoform level in a normal human population. We showed that differences such as alternative initiation, splicing and termination were associated to common genetic single nucleotide polymorphisms (SNPs). Our results show that the effects of genetic variants on transcript expression at the isoform level are much more complex than previously believed, and constitute an important step towards understanding the functional consequences of such variations. 
	Given the extent of isoform variations we observed in a human population, we hypothesized that these types of variation should be prevalent between humans and chimpanzees and that some specie-specific traits evolved through regulatory modifications that control these mechanisms. In this chapter, we describe the first genome-wide comparison of transcript isoform variations between humans and chimpanzees by comparing the isoform variation in from lymphoblast cell lines between the 60 HapMap individuals used in the previous chapter and a single chimpanzee, Clint, for which the chimpanzee genome is derived from (The Chimpanzee Sequencing and Analysis Consortium 2005).
	Abstract

	The sequencing and comparison of the human and chimpanzee genomes has revealed only a small number of genomic variations; yet these closely related species present many different phenotypic traits. Previous studies have begun to identify the mechanisms responsible for these differences. We found that around 58% of the 8,578 genes we defined as expressed in lymphoblast cell lines derived from these two closely related species, presented either whole-gene (34%) or isoform expression changes (24%). The major type of isoform change we observed were represented by differential inclusion of cassette exons but we also observed differences in alternative transcription initiation and polyadenylation sites. We conducted a comparative genomics analysis and showed that the presence of substitutions predicted to alter the strength of splice sites and miRNA binding sites were correlated with isoform and whole transcript expression changes. A functional gene ontology analysis revealed that these genes with expression differences affect many different pathways related to metabolism and immunity. As an example, we described in detail the expression changes that occur in the Nf-κB pathway that is activated following an infection by certain types of viruses, such as HIV-1, and discuss its possible role in conveying different susceptibility of humans and chimpanzees to AIDS. Together our results demonstrate that genomic differences between humans and chimpanzees affect transcription and pre-mRNA processing and may be responsible of certain phenotypic differences observed between these two closely related species.
	Introduction

	For thousands of years, humans have contemplated their uniqueness. Now with the ushering of the post-genomic era, answers to what makes us human are finally acquiring a molecular perspective. An important challenge in evolutionary biology is to identify the set of molecular characteristics that account for our unique cognitive, behavioral and physiological traits that have emerged since we last shared a common ancestor with chimpanzees, around 6 millions years ago (Vignaud et al. 2002). At the root of these differences are the molecular changes that stem from genomic variations that in turn have shaped the transcriptomes and proteomes of these species. In recent years, the sequencing and comparison of the human and chimpanzee genomes has revealed the extent of this genomic diversity. These species have accumulated around ~35 million single-nucleotide changes, 5 million insertion/deletion events, and various chromosomal rearrangements (Consortium 2005). Yet little is known about how these genomic variations translate to variations in the transcriptomes and proteomes and subsequently to overall phenotypic diversity between these two species.
	The comparison of human and chimpanzee transcriptomes represents a critical first step toward understanding the evolution of species-specific phenotypes. Researchers have begun to compare gene expression profiles of humans and chimpanzees and have found remarkable diversity, particularly in testis (Enard et al. 2002; Khaitovich et al. 2005). Another study has highlighted variation between humans and chimpanzees at the sub-transcript level in some genes where differential inclusion of exons produced different mRNA isoforms (Calarco et al. 2007). Other types of processes can generate transcriptome variation such as alternative promoter usage where transcription is initiated at different positions or alternative termination where the use of different polyadenylation sites marks the end of the transcript. 
	Here we use an exon-centric expression microarray to compare the human and chimpanzee sets of mRNA molecules from transcribed exons of protein coding gene. To illustrate the variation, we use a model system of lymphoblastoid cell lines (LCLs), which we previously used to study transcriptome diversity in humans (Kwan et al. 2008; Kwan et al. 2007). Our comparison reveals that around half of the genes expressed in LCLs present either isoform or whole-gene expression changes between humans and chimpanzees. The most common type of isoform variation is caused by alternatively spliced coding exons but we also observed expression differences in the 5’ and 3’ UTR regions that arise with the use of different transcription start and termination sites, respectively. We also demonstrate an association between these isoform variations and single nucleotide substitutions that occur between the genomes of these two species. We showed that these substitutions can occur in sequences that regulate splicing and gene expression, such as splice site consensus sequences, regulatory motifs, and microRNA binding sites, respectively. An in-silico pathway analysis revealed that isoform and whole-expression changes are often targeted immune response genes. As an example of this phenomenon, we describe the changes that occur in the Nf-κB pathway that is activated following an infection by certain types of viruses such as HIV-1 and discuss its possible role in conveying different susceptibility of humans and chimpanzees to AIDS. 
	Human expression data was obtained from one of our previous studies where we surveyed isoform variation in humans (Kwan et al. 2008). This data set comprised of 57 unrelated HapMap individuals of European ancestry (International_HapMap_Consortium 2005). Immortalized lymphoblast cells derived from these individuals were grown in triplicate and RNA was extracted from each of these growths and hybridized onto an Affymetrix Human Exon array (n = 171) as described in (Kwan et al. 2008). 
	Four chimpanzee (Pan troglodytes) lymphoblast cell lines were obtained at the Coriell Cell Repositories (http://ccr.coriell.org) and processed following the same protocol that was used for the HapMap samples (see above). One of these samples was from Clint (Coriell id: S006006) who was selected for the availability of his genomic sequence (Consortium 2005) and the other three were from a family trio (Coriell ids: S003657, S003612, S003610). We prepared five (n = 5) successive cell harvest or biological replicates for Clint and one for each of the other three chimpanzees (n =1). Due to issues of probe hybridization (see below) we focused our analysis on samples derived from the chimpanzee Clint.
	Noise reduction strategies

	We implemented different strategies to reduce the sources of noise that often led to erroneous results. The first strategy we used was to only include probes targeted to the ~260,000 core RefSeq exons because of their high confidence annotation and to reduce the size of our data set. The second was to implement a strategy we described in our previous study (Benovoy et al. 2008). Briefly, we showed that microarray studies conducted on samples with different genetic backgrounds presented high rates of false positives hits because of mismatches between microarray probes and its intended target resulted in erroneous probe signals and subsequently lead to incorrect estimates of exon (probe set) and gene (meta-probe set) expression. To mitigate this effect, we removed probes targeted to regions that were not identical in chimp and human. The availability of the chimpanzee (Clint) genome sequence (Consortium 2005) allowed us to identify 297,017 (27%) probes targeted to core exons that contained mismatches. This step removed the majority of misbehaving probes due to inter-species mismatches, however, to remove intra-species difference, we masked out probes that targeted potential polymorphic position in our samples. Based on SNP positions of human and chimpanzee from dbSNP version 128 (http://www.ncbi.nlm.nih.gov/projects/SNP/), we identified and removed 127,087 and 9,515 probes targeted to these polymorphic positions in humans and in chimpanzees, respectively. The lower numbers of probes we identified that were targeted to known heterozygote position in chimpanzee is due to the shallower depth of SNP sampling in chimpanzee when compared to humans. Consequently, this could potentially cause more erroneous expression scores for probe set and meta-probe sets derived from probes targeted to unknown heterozygote position in Clint.
	Next, we conducted a principal components analysis (PCA) on the probe expression profiles of all our samples and found that the chimpanzees from the trio were exceedingly variable (results not shown) most likely because of unknown polymorphisms that disrupt probe to target hybridization. Consequently, the chimpanzee trio was excluded from the main analysis.
	Cross-hybridization was potentially another source of noise in this study because we used chimpanzee samples and the Affymetrix Human Exon Array was optimally designed to reduce cross-hybridizing only in humans (Affymetrix). To mitigate this effect, we searched the human and chimpanzee reference genomes using default setting in Blat (Kent 2002) for matches with the probe sequences from the Affymetrix Human Exon array. We found 43,382 and 47,241 probe sequences with more than one significant hit in the human (NCBI Build 35) and chimpanzee (UCSC Build 2.1) genomes, respectively. The larger number of hits for the chimpanzee genome indicates the higher potential for chimpanzee samples to cross-hybridize with probes from the Affymetrix Humans Exon array. To mitigate this effect, we masked out any probe that had more than one significant hit in either genome. 
	Comparative analysis of array hybridization data

	Fluorescent intensities from the remaining 680,676 probes (see above) were quantile-normalized and GC-background corrected using the Power Tools software package from Affymetrix. The normalized probe intensities from each of the arrays (n = 179) were summarized into 212,720 probe sets (representing exons expression) and 15,898 meta-probe set (representing gene expression) scores using a probe logarithm-intensity error (PLIER) model (affymetrix.com). The Exon Array also contains a large number of “antigenomic” probes that do not have a match anywhere in the genome and ideally represent a null signal. The PLIER algorithm groups these antigenomic probes by their GC-content and uses them to produce a Detection Above Background (DABG) p-value (affymetrix.com). We have also established from previous experiments (results not published) that probe sets and meta-probe sets scores with expression score < 15 were generally not expressed therefore we use this threshold along with the DABG metric to  ascertain if a probe set or meta-probe set is expressed. 
	For the gene-level analysis, we compared genes if 50% of their exons showed a detected above background (DABG) probability ≤ 0.05, 95% of the samples had a meta-probe set score that was ≥  15  and both these criteria were true in 95% of the samples from either the human or chimpanzee groups as suggested in (Affymetrix.com). In addition to this, we restricted our analysis to genes with a clear 1:1 orthologues ratio between human and chimpanzee as defined in (Consortium 2005) to mitigate any non-specific fluorescence from other orthologous genes. For the exon-level analysis, we defined an exon as expressed if it belonged to an expressed gene (see above) and its DABG value is ≤ 0.05. We only compared exons if their normalized intensities (probe set expression / meta-probe set expression) were between 0.2 and 5 and that the gene they are encoded from is expressed in both chimpanzee and humans but shows no statistically significant difference (see below) at the gene expression level (Bemmo et al. 2008). This restricted our analysis to 8,578 meta-probe sets and 51,413 probe sets. 
	To identify which gene or exon were differentially expressed between the HapMap and Clint samples, and because of our unbalanced experimental design, we first conducted a one-way analysis of variance (ANOVA) by grouping the expression scores of each probe set or meta-probe set into 58 groups; 57 from HapMap samples (humans) with 3 replicates each and 1 from Clint (chimpanzee) with 5 replicates. Following a significant test after false discovery rate (FDR) correction (α = 0.05) (Benjamini et al. 2001), we specifically examined our a priori hypothesis by testing for expression differences between the Clint and the HapMap samples using a contrasts analysis. We constructed a contrasts matrix to partition the total variance for a given probe set or meta-probe set into variance derived from Clint and the HapMap samples using a second ANOVA. A significant test indicates that the expression derived from Clint was significantly different than the expression derived from the 57 HapMap samples. 
	Classification of Transcript Isoforms

	We developed an automated method (perl script available upon request) to categorize isoform changes. The algorithm first classifies probe sets into blocks according to their Refseq annotation. Each significant block is then classified as an initiation, splicing, termination or transcript expression change according to its position within the transcript (5’UTR, coding, 3’UTR or whole-gene, respectively).  
	Comparative Genomic Analysis

	Human exonic and intronic sequences were defined using the using the RefSeq annotation file (September 2008; http://hgdownload.cse.ucsc.edu/goldenPath/hg17/) from the University of California Santa Cruz (UCSC). Orthologous chimpanzee sequences were extracted from UCSC human versus chimpanzee pair-wise alignments (http://hgdownload.cse.ucsc.edu/goldenPath/hg17/vsPanTro2/) and the divergence rate was measured as the number of substitutions in aligned nucleotides divided by the total number of aligned nucleotides. 
	Splice Site Strength Analysis

	We measured the strengths of the donor (5’) and acceptor (3’) splice site using the MaxEntScan program available at http://genes.mit.edu/burgelab/maxent/. This program defines the acceptor splice site as the last 20 bases from the 5’ flanking intron and the first 3 bases from the 5’ end of the exon. The donor splice site was defined as the last 3 bases from the 3’ end of the exon and the first 6 bases of the flanking 3’ intron. We used this program to scan differentially expressed exons from our analysis against a library of known donor and acceptor splice sites (http://genes.mit.edu/burgelab/maxent/ssdata) and scored each splice site in both species using maximum entropy method (Yeo and Burge 2004). The resulting score was used to compute the difference in splice site strength between human and chimpanzee.
	UTR Controlled Gene Expression

	We determined the miRNA binding potential in the 3’UTR of human and chimpanzee for each of the 8,578 genes surveyed in this analysis using the MiRanda algorithm (Lewis et al. 2005). The algorithm searched the 3’UTRs (defined by RefSeq, see above) of each gene in each specie against the library of human miRNA targets (version September 2008) (Betel et al. 2008) available at http://www.microrna.org/microrna/getDownloads.do. We expressed the binding potential as the total score from the MiRanda output file for each gene.
	Gene Ontology and Pathway Analysis

	We conducted gene ontology and pathway analyses with the sets of genes that presented either whole-gene expression changes or isoform differences using the Ingenuity Pathways Analysis (IPA version 6.0) software package (Ingenuity Systems, Mountain View, CA). This software package tests the statistical significance, i.e. assigns a FDR corrected p-value to the biological functions or pathways of genes with expression differences by comparing it to a reference data set. By default, the IPA software package defines the reference data set as all genes represented on the Human Exon array. However, the use of this default reference list may cause erroneous p-value estimates because of the presence of certain experimental biases related to microarray analyses. For instance, genes that are highly expressed are less influenced by background noise compared to genes with low expression levels. This increases the power to detect an expression change for high expressing and consequently biases our significant hits to highly expressed exons or genes. To reduce the effect of this bias, we constructed reference lists for both levels of analysis (whole-gene and isoform) were we chose genes from a random pool that presented no significant expression difference between HapMap samples and Clint but were expressed in lymphoblasts from both species. More importantly, we chose genes so that the expression distributions for the test list (genes with expression changes) and the reference list were similar. Using the expression-matched reference list, we can more accurately determine (Fisher exact test) to what degree a particular gene ontology term or functional pathway is over-represented for genes with expression changes between species.
	Results
	Exome comparison


	The main objective of our study was to characterize transcript isoform differences between humans and chimpanzees. To asses these differences, we generated isoform expression profiles of lymphoblast cell lines (LCLs) derived from the common chimpanzee (Pan troglodytes) Clint (Consortium 2005) and 57 HapMap individuals (International_HapMap_Consortium 2005) using the Affymetrix Human Exon Array (Affymetrix).  By comparing these profiles, we found a large number of differentially expressed genes (2,932 or 34.2%) from the 8,578 expressed in both species with an average fold change of 1.79. A similar number of genes (2,095 or 24.3%) with an average fold change of 1.6 showed transcript-isoform changes only without an accompanying whole-transcript expression change. These last differences represent 4,235 (8.2%) differentially expressed probe sets (exons) out of the 51,413 probe sets surveyed where the major type of change is at the splicing level (3,532 or 83.4%) with the remaining changes at the level of transcript initiation (212 or 5,8%) and termination (491 or 14%) (Figure 5.1). 
	Figure 5.1:  Classification of genes showing expression changes at the exon or transcript level. The 5,027 genes were classified into separate categories depending on the nature of the expression change occurring: expression changes at the whole transcript level (yellow), transcription initiation (purple), alternative splicing of a cassette exon (blue) and transcription termination changes (red). 
	We also compared the number of significant expression difference between the HapMap individuals and Clint to the number of significant difference within the HapMap individuals. This allowed us to estimate the ratio of inter-species divergence to intra-species diversity. We found that this divergence to diversity ratio was ~5.7 at both the whole-transcript and isoform levels. This ratio was compared with the divergence to diversity ratios calculated by (Khaitovich et al. 2005) at the whole transcript level for different tissues such as testis (5.6), heart (2.5), kidney (2.1), liver (1.8) and brain (2.3). We find that the ratio we observe in lymphoblast is similar to what was observed in the testis which is an outlier compared to the other tissues (5.7 and 5.6 versus 1.8 to 2.5). This high ratio provides an indication although not proof that strong selection could be operating on transcript expression in lymphoblast.   
	Graphical visualization of the different types of expression variations mentioned above is presented in Figure 5.2. We represented the expression fold-change (blue bars) on a log2 scale between chimpanzees (only Clint) and humans (HapMap individuals) and the associated p-value (red bars) on a –log10 scale for each probe set (exon) targeted to gene LCK (Figure 5.2A). For this gene, each probe set is expressed at a lower level in chimpanzee, which is concordant to the meta-probe set scores (log2 scale) computed by PLIER (see methods) for humans (9.45) and chimpanzees (5.14) and represents a whole gene expression change. Figure 5.2B illustrates an example of an alternative splicing event in gene PRKCE, were the 9th exon exhibits lower inclusion levels in chimpanzee. In Figure 5.2C and 5.2D, we show examples of alternative transcript initiation and termination. In these examples a probe set from a group of probe sets targeted to the same UTR exon is differentially expressed. For gene TTRAP (Figure 5.2C) and gene TMEM63A (Figure 5.2D) we predict that they produce distinct isoforms in chimpanzees and humans by using different transcription initiation start sites and different polyadenylation sites, respectively. 
	Figure 5.2:  Visualization of expression data. Custom view of the UCSC browser with expression data overlaid onto gene structures. Red vertical bars represent the p-value (-log10 scale) derived from the contrast analysis for each probe set for a given gene. Blue vertical bars represent the expression fold-change between Clint and the HapMap samples for each probe set. A. LCK is an example of a whole-gene expression change where all probe sets from the HapMap samples are all expressed at higher levels than in Clint. B. The PRKCE gene is an example of an alternative spliced cassette exon. C. The TTRAP gene is an example of alternative initiation where the longer isoform is expressed in Clint. D. The EPHX1 gene is an example of alternative termination.
	Genome-wide microarray analyses, like the one conducted here, are difficult to adequately validate using classical low-throughput experiments such as RT-PCR because of cost and time issues associated to conducting hundreds of these experiments. To circumvent this problem, we used an in-silico genome-wide validation method where we compared the 51,413 “expressed” probe sets surveyed in this study (see methods) to a data set of known splicing events derived from EST evidence. We used the “Alt-Splicing” track from the UCSC genome browser that lists known examples of splicing and other transcript isoform events (Karolchik et al. 2008) and found that the differentially expressed probe sets from our study were significantly overrepresented as compared to a random expectation (odds ratio = 2.23 (0.11 / 0.049); Chi-square analysis: Χ2 = 90.91; p-value < 2.2x10-16) in this list. This indicates that our analysis preferentially identifies exons with prior evidence of alternative splicing or alternative inclusion within transcripts.
	In addition to this, we examined how the exons and genes that presented the most significantly divergent expression profiles between the chimpanzee Clint and the HapMap individuals behaved in the other 3 chimpanzees that were excluded from the main analysis because of hybridization issues (see methods). Out of the top 10 exons and genes with the most significant (FDR correction at α = 0.05) expression differences between the chimpanzee Clint and the HapMap individuals, we found that 80% and 100% of these exons and genes, respectively, also presented significant expression differences between these 3 chimpanzees and the HapMap individuals. For the top 100 hits the concordance is still good because we found that 75% of the exons and 90% of the genes were also significant between the 3 chimpanzees and the HapMap individuals. These observations are good indications that the expression differences observed between the chimpanzee Clint and the HapMap individuals are not unique to Clint because the majority of the top hits have been validated in 3 other chimpanzees and they potentially represent true inter-species expression variations. 
	Comparative Genomics Analysis

	We hypothesized that the differences in splicing profiles we observed between humans and chimpanzees were in part due to nucleotide substitution that disrupted cis-regulatory splicing elements such as splicing enhancers and silencers (Blencowe 2006; Brudno et al. 2001; Calarco et al. 2007; Majewski and Ott 2002; Matlin et al. 2005; Yeo et al. 2004b; Zhang et al. 2003). Given that these short, degenerate regulatory elements are over-represented in exonic and intronic regions near the splice sites, we determined the sequence divergence for the entire exon and 150 bp upstream and downstream of the flanking intronic sequences. We found that the sequence divergence was significantly higher (Mann-Whitney; W = 45655458, p-value < 2.2x10-16) for exons that presented significant expression differences (mean sequence divergence = 0.66%) than for exon that were expressed at the same level (mean sequence divergence = 0.46%) between these closely related species. This result indicates that elevated sequence divergence in exonic and intronic regions are correlated with an increased expression divergence and suggests that genetic differences between these species are responsible for some of the differential isoform expression. 
	Contrary to splicing enhancer and silencers, the donor (5’) and acceptor (3’) splice site motifs are well characterized in mammals. Therefore, we specifically measured the different splicing potential of these motifs in human and chimpanzee for each differentially expressed exon. We found that these expression differences were significantly correlated to differences in donor splice site strength (Spearman correlation; rho = 0.27; p-value = 0.010). An example of this phenomenon is illustrated in Figure 5.3 were we show that the donor splice site for the 4th exon of the C14ORF159 gene is weakened in chimpanzee (MaxEnt score = 0.57) compared to its human orthologue (MaxEnt score = 8.76) by a G to A substitution. Consequently, this substitution is most likely responsible for the lower inclusion of this exon in chimpanzee. 
	Figure 5.3: Effect of a substitution in the splice site. This example illustrates the effect a G/A substitution in one of the exons of the C14orf159 gene. The presence of an A in the first base of the intron disrupts the splicing of the exon and consequently lowers the expression of this exon in chimpanzee.
	Recent studies have shown that gene expression can be regulated in a post-transcriptional matter by miRNAs (Neilson and Sharp 2008; Sandberg et al. 2008). We believed that substitutions that disrupt miRNA binding sites in an mRNA transcript would render it less prone to degradation by the dicer pathway and consequently we would detect that transcript to be differentially expressed. This is in fact what we observed when we compared the miRNA binding potential of the human and chimpanzee 3’UTRs (see Materials and Methods). We found that differentially expressed genes had significantly higher differences (Mann-Whitney test; W = 7164348; p-value = 2.7 x 10-4) in binding potential (mean binding potential = 1542.71) compared to genes with no expression differences (mean binding potential = 1348.613).  
	Gene ontology analysis 

	We performed a network analysis using the Ingenuity Pathways Analysis (IPA) system on the sets of genes that had either different isoform or whole-gene expression differences between humans and chimpanzees. We observed interesting differences between these two types of expression variation and their related pathways. Many genes with whole transcript expression changes were related to energy metabolism such as carbohydrate synthesis and degradation pathways (fructose, mannose, galactose, starch and sucrose metabolism; Table 5.1) whereas genes with isoform differences were more implicated in signalling pathways (killer cell, B-cell, IL-8, IL-4 and IL-2, NF-κB) related to immunity (Ott et al. 1998; Schram and Rothstein 2003; Trivedi et al. 2001). 
	Table 5.1: Top 20 over-represented canonical pathways for genes with isoform differences or whole-transcript expression differences
	Type of expression change
	Canonical pathway
	# of genes with expression changes 
	(Total # of gene in pathway)
	p-value
	Exon-level analysis
	Tight Junction Signaling
	29 (160)
	2.04E-04
	Estrogen Receptor Signaling
	26 (121)
	3.80E-03
	Erythropoietin Signaling
	18 (75)
	1.15E-02
	Role of NFAT in Regulation of the Immune Response
	32 (185)
	1.15E-02
	Cysteine Metabolism
	7 (83)
	1.23E-02
	Aminoacyl-tRNA Biosynthesis
	15 (83)
	1.26E-02
	Protein Ubiquitination Pathway
	43 (205)
	1.35E-02
	Huntington's Disease Signaling
	37 (228)
	1.55E-02
	Cell Cycle: G1/S Checkpoint Regulation
	15 (57)
	1.66E-02
	Butanoate Metabolism
	13 (126)
	1.78E-02
	FcγRIIB Signaling in B Lymphocytes
	11 (52)
	1.78E-02
	CCR5 Signaling in Macrophages
	11 (85)
	1.78E-02
	Nucleotide Excision Repair Pathway
	11 (35)
	1.78E-02
	Alanine and Aspartate Metabolism
	11 (85)
	1.78E-02
	Ceramide Signaling
	17 (82)
	2.00E-02
	PPARα/RXRα Activation
	27 (168)
	2.29E-02
	IL-8 Signaling
	31 (181)
	2.82E-02
	Leukocyte Extravasation Signaling
	27 (189)
	3.24E-02
	IL-15 Production
	7 (29)
	3.39E-02
	CTLA4 Signaling in Cytotoxic T Lymphocytes
	18 (85)
	3.63E-02
	Transcript-level analysis
	Fructose and Mannose Metabolism
	17 (131)
	2.88E-05
	IL-10 Signaling
	21 (71)
	1.02E-03
	Xenobiotic Metabolism Signaling
	45 (241)
	1.66E-03
	Purine Metabolism
	72 (412)
	1.78E-03
	Arginine and Proline Metabolism
	15 (177)
	3.09E-03
	Galactose Metabolism
	14 (107)
	3.31E-03
	N-Glycan Biosynthesis
	19 (87)
	8.13E-03
	NF-κB Activation by Viruses
	23 (80)
	9.77E-03
	PXR/RXR Activation
	13 (81)
	1.12E-02
	Axonal Guidance Signaling
	54 (392)
	1.23E-02
	Cardiac β-adrenergic Signaling
	23 (136)
	1.35E-02
	Actin Cytoskeleton Signaling
	40 (221)
	1.38E-02
	α-Adrenergic Signaling
	20 (104)
	1.48E-02
	CD27 Signaling in Lymphocytes
	17 (49)
	1.58E-02
	Starch and Sucrose Metabolism
	14 (181)
	1.58E-02
	Phototransduction Pathway
	8 (62)
	1.82E-02
	Urea Cycle and Metabolism of Amino Groups
	7 (80)
	1.91E-02
	Activation of IRF by Cytosolic Pattern Recognition Receptors
	19 (70)
	2.34E-02
	Aminosugars Metabolism
	14 (103)
	2.40E-02
	B Cell Receptor Signaling
	45 (153)
	2.40E-02
	Interestingly some of the pathways mentioned above are involved in HIV-1 infection. We examined in detail one important pathway that is involved in HIV-1 infection; the NF-κB signalling pathway (Figure 5.4). Activation of this pathway can be induced by HIV-1 proteins that interact with the TNF receptor (Herbein and Khan 2008). Once the NF-κB transcription factor is activated it initiates and enhances HIV-1 gene expression in infected cells by binding to the long terminal repeats (LTR) of HIV-1 (Herbein and Khan 2008; Tergaonkar 2006). Many genes associated with this pathway presented isoform and expression differences or both (highlighted in yellow, blue and red, respectively, in Figure 5.4). Detailed expression profiles of three genes that play important roles (Beltinger et al. 1996; Chan et al. 2000; Cheng et al. 1999; Rodrigues-Lima et al. 2001; Stumptner-Cuvelette et al. 2003) in the activation of this pathway are presented in Figure 5.2A, 5.2B and 5.2C. Together, these figures illustrate the different types of transcript changes as well as the amount of transcriptome diversity that can be present in a pathway.
	Figure 5.4: Expression changes in the NF-κB pathway. Genes are colored according to the types of expression change. Whole-gene expression changes are colored in blue, isoform changes are colored in yellow and genes with both isoform and whole-gene expression changes are colored in red Colored in red.
	Discussion

	To our knowledge this study is the most comprehensive analysis of transcriptome variation between humans and chimpanzees. The transcriptome of these two closely related species vary from each other in part because of differences in RNA transcription that stem from differential transcript expression to mRNA processing variations such as pre-mRNA splicing, transcription initiation and alternative termination. These types of variations such as the amount mRNA produced by a genetic locus or the exclusion of a coding exon by alternative splicing can greatly alter the concentration and sequence of protein, respectively, and as a result its function. Also, alternative splicing of a 5’ or 3’ UTR, in addition to alternative pre-mRNA transcript initiation or termination, may add or remove regulatory sequences that influence mRNA stability, mRNA localization and translational efficiency (Kozak 1983). Through these processes, evolution has diverged the transcriptome of these two closely related species to a point were we estimate that ~59% of the genes expressed in lymphoblast cells produce transcript with structural or expression variants between humans and chimpanzees. 
	One goal of the chimpanzee genome sequencing project (Consortium 2005) was to undertake a comparative analysis with the human genome in order to identify and catalogue human-chimpanzee genomic differences. Hidden among these differences are functional changes that underlie the phenotypic diversity between these two species. The challenge now is to identify how these differences have created the phenotypic diversity observed between humans and chimpanzees. We have shown in previous studies that cis-regulatory single nucleotide polymorphisms were associated to transcript isoform variations in a human population (Kwan et al. 2008; Kwan et al. 2007) and other studies have shown that these polymorphisms were associated to gene expression variation (Cheung et al. 2005; Spielman et al. 2007; Stranger et al. 2005). In this study, we demonstrate that disruption of certain regulatory sequences such as splice site motifs and microRNA binding sites by single nucleotide substitutions are correlated with transcript structural and gene expression changes between humans and chimpanzees. From this evidence, future studies should be undertaken to definitively establish associations between genomic and transcriptome variations to further our understanding of human evolution.
	Another important challenge is to determine whether changes at the transcriptome level have any phenotypic effect; that is whether they are neutral or under selection. System or network approaches attempt to resolve this issue by placing genes in their functional context and identify networks that have accumulated genes with structural and expression changes more than would be expected by chance. When these genes accumulate in a specific network, we assume that the resulting phenotypic trait encoded by this network is under selection. One interesting observation that emerged from our network analysis is that isoform and whole-gene expression changes tend to affect signalling pathways but more specifically immune response pathways. Given the number of immune related pathways affected by these changes, we propose that the immune systems of humans and chimpanzees have undergone important evolutionary adaptations caused by changes in isoform and whole-gene expression and consequently may respond differently to infectious agents. For example, one striking immunological difference between these closely related species is their response to HIV infection. In fact, once infected with HIV-1 (human immunodeficiency virus) humans will usually develop AIDS (acquired immune deficiency syndrome) whereas chimpanzees infected with a closely related HIV-1 strain, SIVchp (simian immunodeficiency virus) will rarely exhibit symptoms related to AIDS (Heeney et al. 2006; ten Haaft et al. 2001). Interestingly, many genes from our study present isoform and whole-gene expression differences that are related to the NF-κB pathway that plays an important role in HIV-1 infection. The exact relationship between these expression differences and varying susceptibility of humans and chimpanzees to the development of AIDS is only speculative at this stage and will require more detailed analyses to establish a clear association, if any. However, we presented this example to illustrate how the exomes have evolved to potentially create distinct phenotypic traits in humans and chimpanzees.
	Ultimately, understanding our unique physiological, cognitive and social characteristics, i.e. what makes us human, will require us to connect specific genomic variations to the phenotypes that are most relevant to our evolution. Comparisons like the one conducted here help to reveal the molecular basis for these phenotypic traits as well as the evolutionary forces that have shaped our species. Systematic comparison of other tissues from chimpanzee and other species will likely reveal new important functional pathways that contribute to our uniqueness and help us explain certain variations and abnormalities that lead to diseases.
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	Connecting text

	In the preceding chapter (chapter 5) we showed that transcript isoform variations were common between humans and chimpanzees. We demonstrated that these isoform variations were correlated with genetic differences in certain regulatory motifs. We also showed that these isoform variations were associated with species-specific phenotypic traits and more specifically differences in immune responses. We conclude by proposing that the variation of transcript isoforms regulation is responsible, in part, for the divergence and evolution of these closely related species. These last three chapters end the biological portion of our studies. 
	The next two chapters present the methodological aspect related to the analysis of data generated with the Affymetrix Human Exon Array. In them, we outline some of the problems we encountered during the analyses presented in the previous three chapters and describe solutions that we developed to overcome them.
	Abstract

	Eukaryotic genes have the ability to produce several distinct products from a single genomic locus. Recent developments in microarray technology allow monitoring of such isoform variation at a genome-wide scale. These types of experiments generate huge amounts of complex data that in turn create analytical issues that need to be solved. Here, we demonstrates how to analyses data generated with the Exon array using the well studied Quality Control (MAQC) dataset. We outline the analysis involved in detecting alternative mRNA isoforms and point out solutions to problems that may be encountered by researches using this technology. 
	Introduction

	Alternative pre-mRNA splicing is a process allowing the production of several distinct gene isoforms from a single genomic locus. The most common type of alternative splicing events in mammals results in cassette exons, where each such exon can be either included or excluded from the mature mRNA. Other events include alternative use of donor or acceptor splice sites, and intron retention. In addition, processes such as alternative promoter usage and alternative polyadenylation, resulting in differences in initiation and termination of the transcript, respectively, further diversify eukaryotic transcriptomes and proteomes. As researchers are becoming aware of the importance of splicing and mRNA processing in generating transcriptome diversity, isoform-sensitive microarrays are rapidly gaining popularity in gene expression analysis (Frey et al. 2005; Lee and Roy 2004). 
	Splicing sensitive microarrays employ a number of exon body oligonucleotide probes, or exon junction probes, or a combination of the two designs, to determine mRNA levels at the resolution of a single exon or splice site. The Affymetrix GeneChip® Human Exon 1.0 ST Array is the first commercially available microarray product designed for genome-wide, exon level expression analysis. The array relies on targeting multiple probes to individual exons and allows simultaneous, exon-level detection of expression intensity for 1.4 million probe sets covering over 1 million known and predicted human exons. The Exon Array is a flexible tool, which can be used to perform the function of classical expression arrays and concurrently provide supplementary information on isoform changes. This level of data complexity has introduced the need to develop new statistical and computational tools capable of distinguishing between gene expression differences and isoform differences, and this at the genome wide level.
	In this chapter, we will use the example of a well studied system in order to outline the flow of the analysis required to process Exon Arrays, outline problems which may be encountered by potential users of the chips, and describe solutions that we have developed to overcome such problems.. We use the brain and reference human mRNA samples previously studied by the MicroArray Quality Control (MAQC) consortium (Canales et al. 2006; Shi et al. 2006). These commercially available samples provide a high quality reference dataset for comparing microarray results across various platforms and laboratories. The human brain has very distinct gene expression signatures, and the comparison with the reference (combined) tissue pool results in detection of numerous genes with differential expression at the isoform level.
	Methods
	Exon Array Hybridization


	The Universal Human Reference RNA (catalogue no. 740000) and Human Brain Reference RNA (catalogue no. 6050) were obtained from Stratagene and ambion, respectively. The RNA quality was assessed using RNA 6000 nanoChips with the Agilent 2100 Bioanalyzer (Agilent, Palo Alto, USA). Five technical replicates of each sample were hybridized independently at two test sites: McGill University and Genome Quebec Innovation Centre (Montreal, Quebec, Canada) and Virginia Tech (Blacksburg, Virginia, USA). Biotin-labelled target for the microarray experiment were prepared using 1 μg of total RNA. The RNA was subjected to an rRNA removal procedure with the RiboMinus human/Mouse Transcriptome Isolation Kit (Invitrogen) and cDNA was synthesized using the GeneChip® WT (Whole Transcript) Sense Target Labelling and Control Reagents kit as described by the manufacturer (Affymetrix). The sense cDNA was then fragmented by UDG (uracil DNA glycosylase) and APE 1(apurinic/apyrimidic endonuclease 1) and biotin-labelled with TdT (terminal deoxynucleotidyl transferase) using the GeneChip® WT terminal labelling kit (Affymetrix, Santa Clara, USA). Hybridization was performed using 5 micrograms of biotinylated target, which was incubated with the GeneChip® Human Exon 1.0 ST array (Affymetrix) at 45°C for 16–20 hours. Following hybridization, non-specifically bound material was removed by washing and detection of specifically bound target was performed using the GeneChip® Hybridization, Wash and Stain kit, and the GeneChip® Fluidics Station 450 (Affymetrix). The arrays were scanned using the GeneChip® Scanner 3000 7G (Affymetrix) and raw data was extracted from the scanned images and analyzed with the Affymetrix Power Tools software package (Affymetrix). The microarray data has been deposited in the Gene Expression Omnibus Database (GEO: GSE13072).
	Data Pre-processing and Analysis

	The Affymetrix Power Tools software package (Affymetrix) was used to quantile normalize the probe fluorescence intensities and to summarize the probe set (representing exon expression) and meta-probe set (representing gene expression) intensities using a probe logarithmic intensity error model (PLIER, www.affymetrix.com) or robust multichip analysis (RMA, (Irizarry et al. 2003b)). The above procedures were carried out separately for the two test sites (McGill University and Virginia Tech). The raw data (.cel files) was downloaded from the MAQC website for the Illumina and U133 arrays. In order to keep the number of replicates and test sites consistent across platforms, we only used two of the MAQC test sites (a total of 10 technical replicates of each sample). For the probe set-level analysis and alternative isoform detection, we only used the most confident subset of core probe sets from the Exon Array.
	Probe set and Gene Mapping

	To determine a subset of genes common to the three platforms, we used the mapping provided by the MAQC study (Shi et al. 2006) to select 12091 probe sets common Illumina and Affymetrix U133 arrays. Subsequently, we used the Exon Array probe set annotation and retained only the genes where the Exon Array meta-probe set coordinates contained both the Illumina and U133 probe sets. This procedure resulted in 8391 genes with a high confidence concordant mapping across the three platforms.
	Results
	Variability across labs


	Five technical replicates of brain and reference were hybridized in two independent labs: McGill University (MU) and Virginia Tech (VT), for a total of 20 samples. Principal component analysis, which is a commonly used method to visualize sources of variability in the data, is shown in Figure 6.1. 
	Figure 6.1: PCA plots at the probe set level show two main sources of variation among the 20 samples. The first principal component explains 57% of the variance and corresponds, as expected, to the biological source of the sample: brain (B) vs. reference (R). The second principal component explains 23% of the variance and corresponds to the "lab effect" between VT (blue), and McGill (red) – that is, it illustrates the technical variability across labs. 
	Our experience with Exon Arrays indicates that in general the ribosomal RNA reduction step is the most inconsistent part of the protocol and is likely to be a major contributor to the differences across labs. Variability in hybridization intensities, background noise, and random errors across labs may contribute to differences in final conclusions resulting from microarray analyses. In the case of the MAQC data, the final goal was to quantify differences in gene expression levels between the human brain and reference tissues. A relevant metric of such expression difference is the fold change (FC), calculated as FC = ExpressionBrain / ExpressionReference. In Figure 6.2, we show a correlation plot comparing the calculated fold changes in genes expression between the two labs. Despite the inter-lab variability in expression levels shown in the PCA plots, the final results (fold changes) are highly consistent for the two labs, with a correlation coefficient of greater than 0.97. 
	Figure 6.2: Comparison of log2 (FC) detected between the biological samples for the two labs. Despite significant variation in expression measure across test sites, the fold change estimates are highly correlated. 
	Variability across summarization methods

	The aim of the summarization step in microarray analysis is generally to combine signals from multiple probes, which target the same expression unit, into a single expression index. Most of the popular methods strive for robustness against outlier probes (e.g. cross hybridizing, saturated, or non-responsive probes). We used our fold change results to compare two commonly used summarization methods: PLIER and RMA. We noted that RMA does result in a slight compression of fold changes, as has been observed in prior studies using other microarray platforms (Canales et al. 2006). However, we find that the correlation of fold changes obtained from the two approaches is very high (r = 0.99).
	Variability across platforms

	The original MAQC studies demonstrated that microarray results are highly consistent across different platforms (Canales et al. 2006). In Figure 6.3, we compare the performance of the Exon Array in determining gene expression levels with two other popular platforms previously used by MAQC: Illumina Bead Array and Affymetrix U133 Gene Chip. In order to facilitate comparison across labs as well as platforms, we selected a number of genes which are reliably annotated and targeted by a common set of probe sets (see Methods).
	Figure 6.3: Correlation of fold changes between Affymetrix U133, Illumina, and the Affymetrix Exon Array. Fold changes (log2 transformed) between brain and reference expression levels for 8391 genes common to all three platforms: A) Illumina vs. U133. B) Exon Array vs. U133, C) Exon Array vs. Illumina. 
	For the Exon Arrays, the fold changes were calculated by combining the results from the two labs (MU and VT). For the sake of consistency in the comparison, two test sites were chosen at random and combined for each platform within the MAQC dataset. We find that the 3' targeted platforms, Illumina Human-6 BeadChip and Affymetrix U133, produce the most consistent results (R = 0.92). This is not surprising, since the probe selection regions for the two platforms largely coincide, and the amplification protocols are poly-A primed and biased towards the 3' ends of genes. The correlation with the Exon Array is slightly lower: R = 0.89 for U133 and 0.85 for Illumina. It has been previously shown (Okoniewski et al. 2007a; Robinson and Speed 2007; Xing et al. 2007), that the Exon Arrays are effective tools for gene expression profiling. Therefore, it is of interest, to examine the main sources of differences between the Exon Arrays and other platforms. Thus, in the analysis below we will concentrate on the genes whose predicted expression patterns are not consistent across platforms. In particular, the Exon Array is able to distinguish between specific isoforms of a given genomic locus, whereas the Illumina and Affymetrix U133 platforms generally target only a single isoform.
	Alternative Isoform Detection

	It has previously been pointed out that some discordant results in the original MAQC (Canales et al. 2006) study were caused by differential isoform expression and differences in probe placement across platforms. One particular discordant gene, ELAVL1, was suspected to express two alternative isoforms, differing in the 3' UTR region. In Figure 6.4C, we use the example of ELAVL1 to illustrate the advantages of using the Exon Array for profiling individual isoforms. It is clear that although the Exon Array does not report the entire gene as differentially expressed, individual probe sets within the gene reach high statistical significance levels (p-value < 10-9). More interestingly, the gene appears to be composed of two "blocks", with the first block on the 3' end showing elevated expression in the brain, while the second block has elevated expression in the reference sample. In order to understand the more precise nature of this isoform change, it is advantageous to visualize this data in the context of known gene annotation, EST, and mRNA data. Generally, our lab uses the custom track feature of the UCSC genome browser (Karolchik et al. 2008), in order to export our own information and combine it with publicly available data. In Additional file 1, we present other examples of discordance between the platforms, further illustrating the value of additional information present on the Exon Array in profiling both "whole transcript" and "isoform-level" changes.
	Using the Exon Array to Profile Alternative Isoforms

	One of the biggest challenges in profiling alternative isoforms using Exon Arrays is the deconvolution of mRNA processing and transcription. A simple comparison of probe set intensities across samples is not sufficient; if an exon belongs to a transcript that is differentially expressed, the examination of a single exon out of its genomic context will lead to an incorrect conclusion. A very simple and intuitive solution to this problem is the use of the Splicing Index (SI), that is calculated by dividing the probe set intensity by the meta-probe set intensity (i.e. exon expression/gene expression), after the addition of a stabilization constant to both the probe set and meta-probe set scores (www.affymetrix.com).This simple procedure normalizes the expression level of each exon and accounts for any possible gene expression differences between samples. However, we find that the splicing index has some undesirable statistical properties (arising from large errors in the estimates in both the numerator and the denominator) as well as being prone to methodological artifacts and should be used with caution. Thus, we have also used a simpler, but more labor intensive method, of carrying out the entire analysis at the probe set level, and relying on visualization and manual curation of the results in order to distinguish splicing and expression differences between samples. While more robust statistical approaches are being developed, we strongly advocate visualization of results in the context of genome annotation and EST evidence in order to filter out false positive signals. We have relied on custom scripts and modifications of the UCSC and ENSEMBL genome browsers (Figure 6.4), but increasingly useful and user-friendly commercial packages for the Exon Arrays are available (e.g. Partek Genomics Suite, Biotique XRay) along with academic BioConductor packages (Okoniewski and Miller 2008; Okoniewski et al. 2007b; Purdom et al. 2008). Below, we describe in more detail two approaches to alternative isoform detection. For the case of simplicity, only the core (most confident) subset of Exon Array probe sets was considered in this analysis.
	Figure 6.4: Evolution of the different methods developed to visualize expression data. A. First method was developed to visually compare expression data between 2 samples. In this example, each probe (columns) for 5 probe sets is represented as grey-scaled coloured pixels (square) where probe intensity scores increase as the colour whitens. The rows represent 15 technical replicates for each group (A and B). B. This visualization method was developed for assessment of potential transcript isoform variation events. The top panel represents each probe set in their gene context from the 5' to the 3' end (x-axis). The vertical bars represent the splicing index (right y-axis) for each probe set. Their colors represent their position within the gene, i.e. 5' UTR, coding region and 3' UTR. The red line represents the p-value (-log10 scale on the left y-axis) derived from a t-test conducted between the 2 groups using probe set intensities values. The horizontal green and red line represents the fold-change and p-value, respectively, at the meta-probe set level computed between the two samples. In the middle panel the mean intensity and standard deviation for each probe set (log2 scale, right y-axis) are represented for both samples. The orange line represents the average GC-content derived from each probe that make up a given probe set (for assessing cross hybridization potential). Bellow the middle panel is an alignment of probe for a probe set that shows significant differential expression between the two groups. In this example, 3 of the 4 probes target the same position indicating that they measure the same region of the exon. This makes the probe set less confident and more prone to be influenced by unknown SNPs (see chapter 7). The bottom panel is a box plot representation of probe intensity from each group under investigation. The horizontal green and red lines represent the mean and 2 standard deviations, respectively, for background expression intensity thresholds derived from the antigenomic probe expression distributions based on a specific GC-content. When boxplots are above these lines the region these probes target are considered expressed. C. Visualization of expression using custom tracks for the UCSC browser to determine the isoform variation event. The p-value and fold-change are represented as the red and blue horizontal bars, respectively. Note that the two probe set "blocks" correspond to the two isoforms of the gene. The long 3'UTR isoform is predominantly expressed in the brain, whereas the short isoform is more abundant in the reference tissues.
	Probe set level analysis

	At this level of the analysis, each probe set (roughly corresponding to an exon) is used as a unit of expression, instead of a meta-probe set (a transcript) as is done in more traditional gene expression analysis. With appropriate statistical significance cut-offs (e.g. a Benjamini-Hochberg (Benjamini et al. 2001) False Discovery Rate correction), it is generally possible to select a highly confident set of probe sets exhibiting significantly altered expression. However, it is not immediately possible to classify the "hits" as results of alternative isoform expression (e.g. alternative splicing), differential gene expression, or both. The easiest way of factoring out of gene expression is to consider only the genes whose expression does not change across samples or treatments. That is, we can select probe sets that are statistically significant, but which belong to genes whose meta-probe set expression does not appear to be significantly altered (nominal p > 0.05). For the MAQC samples, we generated a list of the top 100 such genes. The list and links to the UCSC browser are provided in the Additional file 2. The top candidates show evidence for differential promoter usage, polyadenylation, and alternative splicing. A few examples appear to be annotation errors, where the Affymetrix annotation combines two distinct genes into a single transcript cluster. In general, we advocate RT-PCR based validation of alternative isoforms. However, cross validation with existing information is also extremely useful. Extensive EST and mRNA based information on tissue specific splicing is available from many sources, e.g. from the ASAPII (Kim et al. 2007) or Hollywood (Holste et al. 2006). Most of the source data can be viewed directly in the UCSC genome browser by displaying the mRNA, spliced EST, or AltEvents tracks.
	Dataset Reduction

	In order to reduce the amount of random noise, and decrease the number of tests being carried out, it is useful to exclude all genes which are either not expressed in all of the samples, or more than one of the samples being compared. Such genes, by definition cannot be alternatively spliced across samples. There is currently no reliable procedure on deciding whether a gene is expressed or not, and Affymetrix recommends using an ad hoc expression value of 15, and some additional filters using DABG values of individual exons.
	Effect of “Dead” Probe sets

	A probe set which is not expressed – e.g. an exon which is skipped – in all samples under investigation may produce a false positive signal in the splicing index, in the presence of transcript-level variation. All non-responsive probe sets should be removed from the analysis. A DABG-based criterion may be used here, e.g. DABG p-value < 0.05 in at least 50% of the samples.
	Discussion

	The recognition of alternative splicing and alternative isoform expression as an important component in gene expression analysis has prompted the introduction of isoform sensitive microarray platforms. By targeting individual exons, exon junctions, and annotated isoform variants, such platforms possess the ability to profile not only the expression levels of the entire transcript, but also variations in the types of expressed isoforms. The Affymetrix Exon Array 1.0 ST is one of such commercially available platforms. To date, it has been shown that the Exon Array produces gene expression measurements that are comparable with the previous generation 3' targeted arrays. However, little is known about the in-depth level of similarities and particularly differences among WT and 3' based technologies. This comparison utilizes the well studied brain and reference samples previously used in the MAQC study to determine sources of variability in profiling gene expression using microarrays. These samples are particularly valuable for the purposes of benchmarking the performance of the Exon Array for two reasons: 1) they allow easy comparison of gene expression level measurements with other platforms that have already been tested, and 2) they allow detection of alternative splicing and isoform difference, since neural tissues are known to be particularly prone to alternative splicing.
	Our first conclusions concern the utility of the Exon Array as an expression profiling tool. We note that although the Exon Array results are very consistent with 3' profiling methods, the level of agreement between the Exon Array and 3' targeted platforms (Illumina and Affymetrix U133) is slightly lower than the agreement between the 3' platforms. Many of the outliers in the correlation plot (Figure 6.3) are due to the presence of real variations in the expression of specific isoforms. This is illustrated using a previously noted example of the ELAVL1 gene, which showed discordance across platforms in the original MAQC study, as well as in additional new examples (Additional file 1). The detected expression differences of transcript variants may have important biological significance. For example the longer 3' UTR in the dominant ELAVL1 transcript in brain has a different set of putative micro RNA binding sites than the shorter 3' UTR in the reference RNA. It should also be noted that discordant results will often be obtained because of differences in the annotation provided by microarray manufacturers. We circumvented most of such problems here by re-mapping the probes and selecting only a subset of genes that we were confident were correctly targeted by all three platforms, but researchers should keep in mind that the annotations and gene assignments provided by manufacturers contain numerous errors (Dai et al. 2005). In the case of the Exon Array, we found that the most common annotation error resulted from joining together distinct transcripts into single meta-probe sets, particularly in the case of transcripts that partially overlap. Thus, we recommend that lists of candidates from individual experiments should be carefully curated.
	We also outline how the Exon Array can be used to detect alternative splicing and alternative mRNA processing events. Although our analysis methods are not in themselves novel, and most of them have been briefly described elsewhere (Kwan et al. 2007), our goal is to convey to the potential users their intuitive appeal and potential pitfalls. The most challenging step remains the decoupling of whole transcript expression, and individual probe set inclusion. The simplest solution to this problem is to consider only the genes that do not change overall expression levels, but contain probe sets that exhibit individual variations. Although this approach produces a highly confident set of alternative events, it can result in a huge reduction of the dataset, particularly in case of comparisons across samples with highly heterogeneous gene expression levels. In the case of MAQC dataset, which has been chosen for the exact reason of it's extreme gene expression variability, imposing the restriction of expression fold change of less than 2 reduces the total number of genes considered by 31% (from 17665 to 12198). A more inclusive approach is to attempt to correct for gene expression differences that may occur concurrently to splicing differences. We discuss two such approaches: 1) the splicing index, which compares probe set inclusion across samples after normalizing by gene expression levels, and 2) two-way ANOVA, where the interaction term between sample type and probe set can be used to indicate differential inclusion of probe sets within transcripts. Both approaches suffer from similar systematic biases; they assume a uniform (linear or log-linear) response of each probe set within a meta-probe set. This assumption is violated in many cases, particularly for probe sets that hybridize at very high levels (saturated response) or probe sets with hybridization levels close to background (poorly or non-responsive). As a result, in the presence of significant gene expression changes, such analyses predominantly indicate three types of events: dead probe sets, saturated probe sets, and probe sets that may be predominantly skipped (alternative), but not necessarily differentially included across samples. 
	Many of the above systematic errors can be avoided by filtering out potentially troublesome subsets of the data: probe sets with extremely low variability (saturated), probe set with low inclusion levels (close to background), and genes with extremely high differences in expression levels across samples. However, such filtering decreases the false positive rates at the cost of reduced genomic coverage. In our earlier studies, we have also pointed out that in many experimental designs, particularly when samples originate from different genetic backgrounds (e.g. different individuals), the presence of sequence variants within probe target sequences may be a very significant source of errors (Kwan et al. 2008; Kwan et al. 2007). This effect can be especially prominent in eQTL association studies, where we have shown that it can be responsible for a false positive rate >80% in alternative splicing analysis (Benovoy et al. 2008). Thus, unless all tested samples are isogenic, we highly recommend additionally "masking".
	Conclusion

	In summary, the WT profiling provides a wealth of valuable information, which is either not available or misrepresented in traditional 3' gene expression arrays. However, it should be noted that the isoform-level analysis of Exon Arrays is significantly more complicated, suffers from higher false positive rates, and requires more manual intervention than traditional gene expression analysis. We strongly advocate visualization of candidate isoform changes in the context of available genome annotation as a means to both reduce false positive rates and interpret the nature of detected variants.
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	In the last chapter, we evaluated how the Exon arrays behaves when detecting differences at the whole-transcript expression by comparing it to traditional 3' array and found good concordance between these platforms. We also investigated the general sources of noise encountered in experiments using the Affymetrix Human Exon array and discussed ways to reduce the false positive rate. In this chapter, we investigate the main source of false positives when conducting an eQTL experiment using the Affymetrix Human Exon Array. We show that polymorphisms in probe targets are responsible for >80% of the false positives when conducting the analysis at the isoform level. We propose a simple solution to this problem that entails removing probes that target polymorphic regions. This greatly reduces the false positive rate without a significant reduction in exon coverage. 
	Abstract

	Hybridization-based technologies, such as microarrays, rely on precise probe-target interactions to ensure specific and accurate measurement of RNA expression. Polymorphisms present in the probe–target sequences have been shown to alter probe- hybridization affinities, leading to reduced signal intensity measurements and resulting in false-positive results. Here, we characterize this effect on exon and gene expression estimates derived from the Affymetrix Exon Array. We conducted an association analysis between expression levels of probes, exons and transcripts and the genotypes of neighbouring SNPs in 57 CEU HapMap individuals. We quantified the dependence of the effect of genotype on signal intensity with respect to the number of polymorphisms within target sequences, number of affected probes and position of the polymorphism within each probe. The effect of SNPs is quite severe and leads to considerable false-positive rates, particularly when the analysis is performed at the exon level and aimed at detecting alternative splicing events. Finally, we propose simple solutions, based on ‘masking’ probes, which are putatively affected by polymorphisms and show that such strategy results in a large decrease in false-positive rates, with a very modest reduction in coverage of the transcriptome.
	Introduction

	Microarray analysis has become an integral part of high-throughput biological research. Microarray-based measurements typically rely on the precise hybridization of a DNA probe to a complementary target DNA or RNA molecule. Advances in technology and miniaturization now allow manufacturers to print up to 10 million probes on a single chip. Such chips are routinely used for truly genome-wide studies of polymorphisms, genomic aberrations (Komura et al. 2006), gene expression levels (Stranger et al. 2007a) and alternative splicing patterns (Kwan et al. 2008). Unfortunately, such massive amounts of data come at the expense of a high potential for false discovery. Common sources of error range from the purely statistical (e.g. multiple testing problems), through experimental techniques, to systematic technical errors (e.g. probe cross-hybridization). As a result, particularly in gene expression analysis, microarray results have often been relegated from the realm of ‘proof’ to the role of a ‘discovery platform’ for further validation. In view of their overall popularity and utility, it is of great importance to minimize systematic errors in microarray experiments. In this study, we focus on one particular source of error: the effect of polymorphisms contained within probe target sequences on hybridization levels. Using expression quantitative trait analysis (eQTA) as an example, we show that this effect can be a major source of error, particularly for the latest generation whole-transcript (WT) arrays. 
	Association of genetic variants to expression phenotypes is becoming a promising strategy to identify sources of phenotypic diversity among individuals. A large number of genome-wide studies have been conducted in recent years, using various microarray platforms to determine gene expression levels (Cheung et al. 2005; Deutsch et al. 2005; Dixon et al. 2007; Emilsson et al. 2008; Goring et al. 2007; Morley et al. 2004; Stranger et al. 2005; Stranger et al. 2007b). This approach usually treats expression data obtained from microarray experiments as a quantitative trait and tests for association with cis-acting polymorphisms. The final goal is to identify regulatory determinants of a particular phenotype, such as a disease state. Once significant associations have been identified, costly and time consuming downstream validations are conducted in order to identify the causative regulatory element. Therefore, it is important to identify candidate cis-acting polymorphisms with a high degree of confidence. Recent studies have shown that mismatches between a microarray probe and its target sequence affect hybridization (Sliwerska et al. 2007; Vallee et al. 2006; Zhang et al. 2007) that cause erroneous probe signal estimates. This phenomenon leads to an increase in false-positives, particularly in studies across individuals with different genetic backgrounds (Walter et al. 2007). Individuals expressing mRNA that perfectly complements the probes on the microarrays hybridize better than individuals with mRNA sequence diversity in the probe–target region. This results in a difference in probe–signal intensity between individuals, even if both groups express the mRNA at the same level (Alberts et al. 2007). 
	Here, we present a detailed analysis of this phenomenon using Affymetrix Human Exon Array data from our previous study of transcript isoform variation in humans (Kwan et al. 2008) and describe how it affects association results at the probe, exon and gene levels. In addition, to mitigate the effect of polymorphisms, we propose a simple strategy that consists of removing probes that are targeted to annotated polymorphic regions. We show that this approach greatly reduces false-positive rates, particularly for associations at the exon level, with only a small reduction in exon and gene coverage.
	Methods
	Microarray data source


	In a previous study, we surveyed genetic variation associated with differences in isoform level expression in humans (Kwan et al. 2008). We characterized this effect in a sample of 57 unrelated HapMap individuals of European ancestry (Altshuler et al. 2005) for which 4 million single nucleotide polymorphism (SNP) genotypes are available. Lymphoblast cells derived from these individuals were grown in triplicates and RNA was extracted from each of these growths and hybridized onto an Affymetrix Human Exon array (n = 171). The resulting probe-fluorescent intensities were used for the present analysis. We restricted our analysis to probes targeting core exons because of their high confidence annotation.
	Effect of mismatches on hybridization

	Probe expression signals were quantile-normalized and GC-background corrected using the Affymetrix Power Tools (APT) software package (Affymetrix). To investigate how mismatches affect probe-to-target hybridization on the Affymetrix Human Exon array, we took advantage of the high-resolution genotyping information available from HapMap cell lines and identified 6110 probes that were targeted to a region with only one SNP in at least 1 of the 57 HapMap individuals. These probes were selected because the exon and gene they targeted were considered expressed. Expression of an exon or gene was established using the detected above background (DABG) metric generated by Affymetrix. This metric represents the probability that an exon or gene is expressed below the background. We used false discovery rate (FDR) correction (Benjamini et al. 2001) to establish the significance threshold for expression above background at DABG ≤0.02 and DABG ≤0.043 for exons and genes, respectively. Next, we categorized each of these probes in 25 bins, depending on the position of the SNP within the target region (from 5' to 3' end). For each of these bins, we determined the fold change between the average probe intensity derived from individuals with a perfect complementary target region and the average probe intensity from individuals with one mismatch (Figure 7.1). 
	Masking procedure

	We have previously shown (Kwan et al. 2008; Kwan et al. 2007) that SNPs located within probe-targets affect their hybridization to Affymetrix Human Exon array probes and consequently cause erroneous expression estimates. To mitigate this effect, we devised a simple procedure that consists of removing all probes from the analysis whose target region contains a known SNP. In total, we found 21 843 core probes target regions out of 1 096 799 probes overlapping at least one polymorphic HapMap II SNP (release 21). 
	Preprocessing and summarization of hybridization data

	To study how probe-to-target hybridization is affected by SNPs, we generated two data sets of exon and gene expression estimates. The APT software package was used to quantile-normalize and GC-background correct each data set at the probe level. The average probe set (representing exons) and meta-probe set (representing genes) expression scores (averaged from triplicates) for each data set were computed using the probe logarithmic error intensity model (Affymetrix). The first data set consisted of probe set and meta-probe set expression estimates produced by summarizing all core probes, regardless of polymorphic probe target regions. The second data set was generated by implementing our masking procedure (see above). Thus, probe set and meta-probe set expression scores, for this last data set, were estimated from probes where no HapMap SNP overlapped their target region. 
	Association analyses

	For each of the two data sets, the first generated from the full core probe list and the second from the masked core probe list, we examined probe, exon, and transcript expression estimates (averaged from triplicate samples for each individual) for association with flanking HapMap SNPs (release 21). One of the objectives of our previous analysis (Kwan et al. 2008) was to identify possible cis-regulatory determinants of differential alternative splicing. The presence of linkage disequilibrium in humans has created haplotype blocks, where SNPs in close proximity to each other escape rearrangements due to recombination. Therefore, assuming physical proximity of a regulatory variant to the target and to limit the cost of multiple testing, we only tested for SNPs within a 50-kb region flanking either side of the gene containing either the probe or probe set. It should be noted that the SNPs associated with a change in microarray hybridization intensity may either be the actual causative SNPs, or simply be in linkage disequilibrium (part of the same haplotype block) with the causative SNP. We measured the level of association between expression scores (probes, probe sets and meta-probe sets) and the genotypes of a given SNP using linear regression analysis, implemented in the Plink software package (Purcell et al. 2007), under a codominant genetic model. This model considers genotypes AA, AB and BB as the independent discrete variable. The genotypes are encoded as 0, 1 and 2, respectively, whereas expression scores were considered a quantitative trait and treated as the dependent variable in the linear regression. Raw P-values were obtained from the linear regression using the standard asymptotic t-statistic. To correct for testing multiple SNPs against each probe set and meta-probe set expression values, we carried out permutation tests (Churchill and Doerge 1994) followed by 5% FDR correction. Permutation analyses were performed using the ‘label swapping’ and ‘adaptive permutation’ options implemented in Plink. The ‘label swapping’ option is used to preserve the haplotype block structure and the ‘adaptive permutation’ algorithm allows for computationally efficient permutation analyses (Purcell et al. 2007). Subsequently, we performed FDR corrections of 5% on the empirical P-values (from permutations) for association of genotype to the expression at the probe set (P-value <9.73 x 10–9) and meta-probe set levels (P-value <6.07 x 10–7). 
	Evaluation of SNP mask

	To evaluate how SNPs in probe–target regions impacted our association analyses, we estimated the proportion of false-positive and false-negative associations due to polymorphic probe target regions. We treated the association results for the masked data set as the reference (true) data set because they were derived from expression estimates free of influence from known SNPs. This reference data set enables us to evaluate the four scenarios described in Table 7.1. 
	Table 7.1: Comparison of association analyses with and without a SNP mask
	SNP Mask
	Positive for Association
	Negative for Association
	No Mask
	Positive for Association
	True Positive
	False Positive
	Negative for Association
	False Negative
	True Negative
	Associations of probe set or meta-probe set, which were significant (P-value below the thresholds) and non-significant (P-value above thresholds) in both masked and unmasked data sets, were classified as true positives and true negatives, respectively. We consider a result a false-positive when a significant association is found in the unmasked data set, but become non-significant after masking probes containing SNPs (masked data set). Conversely, associations that were non-significant in the unmasked data set but significant in the masked data set were categorized as false-negatives. The false-positive and -negative rates are computed by: FPR = FP/ (FP + TP) and FNR = FN/ (FN + TN), respectively. In order to avoid the problem of reduced coverage within the masked data, the above analysis does not include probe sets which were entirely ‘masked’ due to the presence of SNPs.
	Results

	Our first objective was to examine the effect of sequence mismatches on probe-to-target hybridization. We selected all probes that contained known SNPs and compared their hybridization intensity between individuals with homozygous match and mismatch genotypes. We illustrated how hybridization intensity changed when a mismatch is present at a given position within a probe in Figure 7.1. We observed that the position of the polymorphism within the probe's target sequence affects its binding affinity. Probe expression scores show a median 2-fold decrease in expression when a polymorphism is present near the middle of the target area i.e. between positions 6 and 21. This effect decreases linearly towards the edges of the target area and the median fold change in the end is near zero i.e. at positions 1 and 25, which supports the theoretical prediction of Lee et al. (Lee et al. 2004). It should be noted that the variance in the estimate of the effect is very high and that some mismatches decrease hybridization levels by much more than 2-fold; 7.5% of mismatches cause 5-fold decrease in signal intensity. Thus, in some cases the effect of SNPs may be very severe. This corroborates suggestions by earlier studies (Hughes et al. 2001; Sliwerska et al. 2007; Vallee et al. 2006; Walter et al. 2007; Zhang et al. 2007) that mRNA sequence diversity in probe target regions disrupts hybridization and that polymorphisms in the middle of the probe target regions destabilize hybridization more than those closer to the ends.
	Figure 7.1: Boxplots illustrating the positional effect of SNPs within the probe target region. Probe signal ratios between perfect complementary regions and regions with a single mismatch.
	We next investigated how the association of expression phenotypes to neighbouring SNPs, as in our previous analysis (Kwan et al. 2008), are distorted by including probes whose target regions were polymorphic. We characterized this by performing an association analysis between expression levels of probes, exons and transcripts, with the genotypes of neighbouring HapMap II SNPs. We compared only the top 1% of significant associations as a way to uniformly correct for multiple testing between the different levels of expression (probe, exon and gene). We observed that probes with polymorphic target regions were highly over-represented in the top 1% of significant association by a factor (odds ratio) of 16.8 (Table 7.2; 2 = 33976.74, P-value << 10–16) compared to probes with perfectly complementary probe target regions. We also observed this over-representation at the probe set and meta-probe set levels, although to a lesser degree. In the top 1% of significant associations, we found an enrichment of 6.1-fold (Table 7.2; 2 = 1443.88, P-value << 10–16) and 2.5-fold (Table 7.2; 2 = 19.45, P-value = 1.03 x 10–5) for probe sets and meta-probe sets, respectively, whose expression estimates included probes that were targeted to polymorphic regions. In addition, this enrichment is also positively correlated with the number of polymorphisms within probe target region at the probe set (Pearson r = 0.956) and meta-probe set (Pearson r = 0.967) levels (Table 7.2). This further demonstrated that sequence polymorphisms between an Affymetrix Human Exon array probe and its target sequence resulted in changes to hybridization intensity and influenced the apparent association between the SNP genotypes and expression intensities. Given that probe set and meta-probe set expression estimates are derived by summarizing probe signals, erroneous probe signals due to probe target mismatches are a source of error in comparative expression analyses.
	Table 7.2: Enrichment for probes with polymorphic target region in the top 1% of significant association for probes, probe sets and meta-probe sets
	Number of SNP overlaps
	Enrichment (odds ratio)
	Probe
	Probe set
	Meta-probe set
	All
	16.83
	4.30
	2.46
	1
	16.78
	1.98
	1.94
	2
	19.39
	5.02
	2.12
	3
	NA
	10.89
	2.40
	4
	NA
	15.64
	3.00
	5
	NA
	14.84
	3.01
	To reduce this source of error, we developed a simple masking procedure where we removed all probes targeted to a known polymorphic region (HapMap phase II SNPs). The remaining probes were used to estimate probe set and meta-probe set expression scores. A detailed example of this procedure and how it reduces the false-positive association caused by polymorphic probe target regions for gene ZNF37A is illustrated in Figure 7.2. Expression estimates for this gene were derived from four probe sets (Figure7.2a), one of which, probe set 3243183, comprised probes targeting a polymorphic region in the 57 HapMap individuals. The first 3 probes from this probe set (Figure 7.2b) overlapped each other to some degree and targeted a region containing SNP rs176889. Individuals with TT genotypes have higher probe signals than individuals with a TC or CC genotype because the T allele creates a perfectly complementary target to these 3 probes (Figure 7.2c). The fourth probe, probe 496020, targets a region with no known SNP and shows no significant associations with SNPs rs176889. In addition, we do not find any significant association with neighbouring SNPs that could be in linkage disequilibrium with SNP rs176889. Therefore, by using this single probe to estimate the expression of probe set 3243183, we obtain expression estimates that are not affected by erroneous probe signals and in subsequent association analyses (Figure 7.2d), the same is observed at the gene level (Figure 7.2e). We only used probe set expressions derived from probes unaffected by SNP to estimate meta-probe set expression scores and find no significant association with neighbouring SNPs.
	Figure 7.2: ZNF37A is an example of a false-positive induced by a SNP (rs176889). (A) The ZNF37A mRNA molecule is illustrated with the coding region in yellow and the 5' and 3' UTRs is represented in white. The horizontal green rectangles represent the 4 probe sets that target this transcript. The red bars represent the position of SNP rs176889 in the coding sequence of this transcript. (B) The alignment of the 4 probe sequences that constitute probe set 3 243 183 and SNP rs176889 falls within each of these probes (red box). (C) Plots illustrating the association between each of the 4 probes and the different genotypes for SNP rs176889. Probe 496 020 does not contain any SNP and the association is non-significant. It is the only probe used to estimate probe set 3 243 183 expression scores. (D) Probe set 3 243 183 is no longer a false-positive after our masking procedure. (E) The same is observed at the meta-probe set level, where this gene is not significantly associated with SNP rs176889 or any other neighbouring SNPs (results not shown).
	A potential drawback associated with removing problematic probes, is the reduction of probe set and meta-probe set coverage. For this data set, 21 843 (1.99%) probe target sequences overlapped at least one HapMap SNP and the distribution of affected probes per probe set and meta-probe set is illustrated in Figure 7.3a and b, respectively. We found 1258 (0.47%) probe sets and 99 (0.57%) meta-probe sets where we could not derive any expression estimates because no probes were left after ‘masking’ which is a very modest amount of lost coverage.
	Figure 7.3: Distribution of probe sets and meta-probe sets containing SNPs. (A) Proportion of affected probes per exon (B) Proportion of probes that contain SNPs per transcript. 
	Next, we assessed how our masking procedure improved results obtained from our association analyses. For the purpose of the analysis, we assumed that an association is a false-positive when a probe set or meta-probe set is significant in the unmasked data set, and that the same association becomes non-significant after masking probes containing SNPs. This assumption is based on two sources of evidence: (i) the strong over-representation of SNPs in the significant data set and (ii) the fact that in our previous work (Kwan et al. 2008; Kwan et al. 2007) we were unable to experimentally validate an alternative splicing event supported by an SNP-containing probe. We assumed that the expression data set derived by ‘masking’ misbehaving probes represents the best estimates of probe set and meta-probe set expression scores. Using this as the reference (true) data set, we evaluated the four scenarios described in Table 7.1 by comparing the P-values obtained from the association of the same neighbouring SNPs to the same probe sets or meta-probe sets expression score estimated without ‘masking’ problematic probes. It should be noted that the reference set itself may not be free of false-positives (due to sources of errors other than SNPs), but this approach allows us to determine the rates of false-positive results that are induced by the presence of SNPs. We established P-value significance thresholds of 9.73 x 10–9 and 6.07 x 10–7 for probe sets and meta-probe sets, respectively, by permutation testing followed by FDR correction at 5%. We found that the SNP-induced false-positive rate is 86.6 and 8.1% at the probe set and meta-probe set levels, respectively Table 7.3. However, false-negative rates do not seem to be influenced by SNPs because, after masking these potentially misbehaving probes, the false-negative rates were reduced by only 0.3 and 0.05% at the probe set and meta-probe sets Table 7.3, respectively. This demonstrates that the removal of probe signals impacted by SNPs greatly reduces the rate of false-positives particularly for association conducted at the probe set level (e.g. alternative splicing). We concluded that masking probes targeted to known polymorphic regions does not substantially decrease the coverage of the Human Exon array and effectively reduces the SNP-induced false-positives.
	Table 7.3: Effect of the masking procedure on results from the association analysis of probe sets and meta-probe sets
	Probe set
	Meta-probe set
	False positives
	446
	9
	False negatives
	41
	4
	True positives
	69
	102
	True negatives
	13,359
	8,115
	False positive rate
	0.866
	0.081
	False negative rate
	0.003
	0.0005
	Discussion

	Our analysis suggests that the presence of SNPs within the target sequence of Affymetrix Human Exon array probes causes false-positives when the analysis is conducted at the exon and transcript levels. Exon expression estimates are affected by misbehaving probes at a higher degree then transcript expression estimates because they are summarized from only 4 probe signals, whereas transcript expression estimates rely, on average, on 30 probes. In addition, we demonstrate that ‘masking’ a probe targeted to a known polymorphic region is a simple and effective solution for decreasing the rate of false-positives in an association analysis with individuals of different genetic backgrounds. 
	Alternative filtering approaches have been suggested. Zhang et al. (Zhang et al. 2008) proposed to remove from the analysis probe sets with 2 or more probes harboring dbSNPs (release 126). This would result in the removal of 1.96% of probe sets—a much more significant reduction than the 0.47% in the approach outlined here. In addition, we do not advocate leaving probe sets containing single SNPs in the analysis, as we show in Table 7.2, that such probe sets are still 2-fold over-represented in the significant data set and are likely to produce false-positive results. 
	Our analysis takes advantage of the HapMap dataset, which has been genotyped at a high resolution. This constitutes an ideal data set for the purpose of illustration and quantification of the effect of SNPs. However, the results and solutions are applicable to most studies, whenever individuals with diverse genetic backgrounds are being compared. This is typically done in cancer studies and should be taken into consideration, particularly since investigation of alternative splicing and the use of WT arrays are quickly gaining popularity in this field (Gardina et al. 2006; Thorsen et al. 2008). Generally, when two large groups of patients and controls are being compared, the effect of SNPs should be minimal in the pooled comparison. However, whenever a single individual or a group of related individuals is being used in a comparison to control samples, the effect of SNPs will be substantial. Similar problems will be encountered in any comparison of alternative splicing across tissues, whenever the tissues do not originate from the same individual. In all such cases, we advocate conservatively masking all probes containing putative SNP sites (from dbSNP). In addition, in our previous study (Kwan et al. 2008) we found a non-trivial effect of still unannotated SNPs. While this problem cannot be corrected for a priori, we advise investigators to carefully monitor the behavior of individual probes before undertaking further costly functional studies—a single significant outlier probe whose behavior is inconsistent with the rest of the probe set may be an indication of a technical problem.
	Finally, while we focus our study on the exon array and the analysis of alternative splicing, we would like to point out that other platforms are not immune to this effect. Examples of similar problems have been identified for the Affymetrix 3' expression arrays (Alberts et al. 2007; Walter et al. 2007). Other popular expression platforms, such as Agilent and Illumina, use longer probes, which are less sensitive to SNPs, but a slight effect of polymorphisms can be detected in those platforms as well (Doss et al. 2005; Stranger et al. 2005). Therefore, we advocate preventive measures (such as SNP masking) and vigilance (careful scrutiny of final results), and propose that the next generation of microarray designs avoid, when possible, targeting polymorphic sites.
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	Biology

	The regulation of gene expression is recognized as an important mechanism in numerous biological processes. The study of how processes, such as alternative transcript initiation and termination, alternative splicing and transcript expression, are regulated will provide new insights into organism complexity and diversity. Recent studies have already demonstrated that variation of transcript expression is common among higher eukaryotes and that these types of variation have a genetic basis (Cheung et al. 2003; Cheung et al. 2005; Stranger et al. 2005; Stranger et al. 2007b). It is believed that certain regulatory changes that affect transcript expression are responsible for downstream phenotypic differences observed between and within species such as species specific traits and susceptibility to genetic diseases, respectively. This thesis demonstrates that, in addition, to transcript expression differences, a significant amount of expression variation is observed at the transcript isoform level. Moreover, it confirms that this variation also has a strong genetic component, and hence, the effect of common genetic variation in a human population and between humans and chimpanzees is much more complex than previously believed. Single nucleotide polymorphisms affect processes that generate transcript isoforms to an extent that is comparable or even superior to overall transcript expression. Therefore, the downstream phenotypic effects of these variations are likely as important as the ones generated by whole-transcript expression differences. For example, the genome-wide association analysis, described in chapter 4, identified a mutation in the polyadenylation sequence of the IRF5 gene that is responsible for generating a 3' UTR variant that in turn, is associated with an increased susceptibility to lupus (Graham et al. 2007). This example illustrates the type of information needed to better understand the phenotypic effect of isoform variants. 
	For most of the isoform variations between individuals, identifying the cause is a difficult but essential task to better understand the evolutionary processes that are responsible for generating phenotypic diversity as well as increasing our knowledge of disease mechanisms that in turn can help us develop novel therapeutic applications. Identifying the true causative genetic variant from an association analysis is still a challenge because the majority of polymorphisms are embedded within a haplotype block and consequently in linkage disequilibrium with many other good candidate polymorphisms. This task is even more difficult when conducting inter-species comparisons as the one described in chapter 5 because sequence regulatory elements are poorly defined and therefore any substitution could potentially be the cause of the expression difference. To identify the exact genetic difference responsible for an observed expression variation will require assay systems capable of confirming and further dissecting how genetic differences cause expression variations. Methods such as site-directed mutagenesis or in-silico approaches could be used for this purpose which would help the scientific community identify the elements responsible for regulating gene expression and to better understand the processes involved. Another important aspect to consider is how mRNA variations translate to the proteome. It is still not clear if the multiple mRNA isoforms created by alternative splicing and alternative initiation and termination actually produce the predicted protein variants. Moreover, even if these mRNA do produce protein variants the exact phenotypic effect may be hard to ascertain because they may act on the cellular, tissue or organism levels. The answer to these questions will require technological advances in diverse fields. 
	Technology

	In the past, transcript isoform variations were first characterized by very low throughput technologies such as RT-PCR and Northern blots. The advent of EST libraries showed the extent of transcript isoforms variation and motivated research to further develop splicing-sensitive microarrays capable of genome-wide analysis. The Exon Array developed by Affymetrix is the first commercially available array truly capable of genome-wide detection of isoform variations. The studies presented in this thesis demonstrate the capabilities of the Exon array in detecting transcript isoform variations. However, as demonstrated here the analysis of data generated with this technology requires caution. The large amount of data points generated in these experiments can potentially produce a large number of false results. Therefore, many pre- and post- processing steps are necessary to remove systematic artefacts that generate these erroneous results such as unresponsive, cross-hybridizing, unresponsive probes (chapter 6) and SNPs present in probe targets (chapter 7). In genome-wide studies, multiple testing is also an important factor that generates false positives. The development of new statistical methods and microarray designs are essential for improving their analyses.
	Newer technological advances will also readily improve our understanding of gene expression. For instance, the next generation microarrays are likely to combine exon body and splice junction probes. This will greatly improve their sensitivity and will allow the detection of other types of splicing events such as alternative splice site junction usage and intron retention events. In the very near future, ultrahigh-throughput parallel sequencing will become very competitive and eventually eclipse microarrays as the preferred transcriptome profiling tool.
	Conclusion 

	In summary, this thesis demonstrated that isoform variations created by processes such as alternative splicing, alternative transcription initiation and termination are common in human and chimpanzee. This thesis also demonstrates an underlying genetic component to these types of variation. Genetic linkage and allelic association analyses confirm that transcript isoform variations are caused, in part, through single nucleotide polymorphisms. These results show that the effects of genetic variants on gene expression are much more complex than previously believed and constitute an important step towards understanding the functional consequences of such variations. 
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