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Abstract

Deep learning methods such as convolutional neural networks (CNN) have achieved

state-of-the-art success in a variety of medical imaging applications such as pathology

segmentation, diagnosis, and prediction of prognosis using information from complex

imaging data (e.g. CT, MRI). However, deep learning models can still make mistakes

when performing predictions based on images alone, leading to potentially devastating

consequences if embedded into real clinical workflows. In medical practice, imaging find-

ings are often interpreted in combination with clinical context provided by non-imaging

data, resulting in more informative decision making and improved diagnostic accuracy.

How to best leverage additional clinical and other information in order to improve image-

based deep learning models remains an open research problem. In this thesis, we propose

a meta-learning deep learning method for interpretation of medical images that guides a

CNN model to learn imaging features that are informed by clinical context, allowing for

improved classification performance over imaging-only methods in the medical imaging

domain. A CNN model is pretrained using a meta-learning scheme in order to learn

shared imaging features that are predictive of several relevant clinical markers and are

informative of the clinical context, following which the model can be adapted to a related

desired clinical task (e.g. diagnosis). To evaluate our method, we leverage Multiple Scle-

rosis (MS) and Alzheimer’s Disease (AD) datasets containing 3D MRI and tabular clinical

data to perform three clinical tasks: detection of brain lesion presence and prediction of

future lesional activity in MS patients, as well as regression of neurological assessment

scores in AD patients. We compare our method against existing deep learning methods
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that use imaging-only data, clinical-only data, and a combination of the two to analyze

importance of individual data modalities along with various ways of combining them.

Furthermore, we perform an exploratory ablation study on the selection of supporting

clinical data, role of dataset size, and their impacts on model performance. Based on

the selected metrics, the proposed approach performed better compared to imaging-only

methods across all tasks, as well as achieved better or comparable classification and re-

gression performance compared to other data fusion methods on select tasks. Lastly, our

approach showed robust performance across varying dataset sizes compared to other

baselines, making it more suitable for real-world applications where there is often a lack

of available training data. The findings outlined in this thesis can be of use to other re-

searchers by demonstrating how meta-learning methods can help train more informative

medical imaging models.
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Abrégé

Les méthodes d’apprentissage profond telles que les réseaux neuronaux convolutifs (CNN)

ont connu un succès de pointe dans une variété d’applications d’imagerie médicale telles

que la segmentation des pathologies, le diagnostic et la prédiction du pronostic à par-

tir d’informations provenant de données d’imagerie complexes (par exemple, CT, IRM).

Cependant, les prédictions d’apprentissage profond peuvent encore faire des erreurs lorsqu’elles

effectuent des prédictions basées uniquement sur des images, ce qui entraı̂ne des conséquences

potentiellement dévastatrices si elles sont intégrées dans les cliniques réels. Dans la pra-

tique médicale, les résultats d’imagerie sont souvent interprétés en combinaison avec le

contexte clinique fourni par des données non liées à l’imagerie, ce qui permet de pren-

dre des décisions plus informatives et d’améliorer la précision du diagnostic. La façon

d’exploiter au mieux les informations cliniques supplémentaires et autres afin d’améliorer

les modèles d’apprentissage profond basés sur l’image reste un problème de recherche

ouvert. Dans cette thèse, nous proposons une méthode de méta-apprentissage profond

pour l’interprétation des images médicales qui guide le modèle CNN pour apprendre

les caractéristiques d’imagerie qui sont informées par le contexte clinique, ce qui permet

d’améliorer les performances de classification par rapport aux méthodes basées unique-

ment sur l’imagerie dans le domaine de l’imagerie médicale. Un modèle CNN est pré-

entraı̂né à l’aide d’un schéma de méta-apprentissage afin d’apprendre des caractéristiques

d’imagerie partagées qui sont prédictives de plusieurs marqueurs cliniques pertinents

et qui sont informatives du contexte clinique, après quoi le modèle peut être adapté à

une tâche clinique connexe souhaitée (par exemple, le diagnostic). Pour évaluer notre
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méthode, nous exploitons des ensembles de données sur la sclérose en plaques (SEP) et la

maladie d’Alzheimer (MA) contenant des données IRM 3D et des données cliniques tabu-

laires pour réaliser trois tâches cliniques: la détection de la présence de lésions cérébrales

et la prédiction de l’activité lésionnelle future chez les patients atteints de SEP, ainsi que

la régression des scores d’évaluation neurologique chez les patients atteints de MA. Nous

comparons notre méthode aux méthodes d’apprentissage profond existantes qui utilisent

des données d’imagerie uniquement, des données cliniques uniquement et une combi-

naison des deux, afin d’analyser l’importance de chaque modalité de données ainsi que

les différentes façons de les combiner. En outre, nous réalisons une étude exploratoire

sur la sélection des données cliniques de soutien, le rôle de la taille de l’ensemble de

données, et leurs impacts sur la performance du modèle. Sur la base de certaines mesures,

l’approche proposée a donné de meilleurs résultats que les méthodes basées uniquement

sur l’imagerie pour toutes les tâches, et a obtenu des performances de classification et de

régression supérieures ou comparables à celles d’autres méthodes de fusion de données

pour certaines tâches. Enfin, notre approche a montré des performances robustes sur des

ensembles de données de taille variable, par rapport aux autres méthodes de référence,

ce qui la rend plus appropriée pour les applications du monde réel où il y a souvent un

manque de données d’entraı̂nement disponibles. Les résultats présentés dans cette thèse

peuvent être utiles à d’autres chercheurs en démontrant comment les méthodes de méta-

apprentissage peuvent aider à former des modèles d’imagerie médicale plus informatifs.
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Chapter 1

Introduction

Advances in modern medicine has led to adoption of various medical imaging sensors

that have tremendously improved clinical decision making. In particular, technologies

such as computed tomography (CT), magnetic resonance imaging (MRI), and positron

emission tomography (PET) allow to non-invasively view complex internal structures of

the body and therefore diagnose, monitor, and treat medical conditions. However, review

and interpretation of high-dimensional medical imaging data (e.g. high-resolution 3D

MRI scans containing millions of voxels) is a time-consuming process requiring a trained

expert and is prone to manual errors. With the ever growing workload of radiological

imaging exams, radiologists may need to interpret over 900 images in a typical 8 hour

workday, leading to fatigue and an increased error rate in image interpretation [89]. To

help ease the workload through automation, numerous machine learning methods have

been adapted for a number of medical imaging tasks such as segmentation, diagnosis, and

prognosis prediction. In particular, deep learning has been successfully used for pathol-

ogy and structure segmentation [68, 78, 95, 163], disease diagnosis [53, 62, 157], clinical

marker regression [90], and prediction of future disease flow [25, 120, 121] using high-

dimensional medical imaging data (e.g. MRI, CT, PET).

In medical practice, correct interpretation and classification of organ and pathology

structures (e.g. lesions) within complex medical images can often benefit from knowl-

1



edge of clinical context of the patient. If given only the imaging data, different structures

can look similar and create uncertainty with their identification which can subsequently

lead to incorrect clinical decisions. Clinical context is information that is not explicitly

related to the imaging data and is gathered through non-imaging sensors (e.g. blood

test results). For example, imaging features in chest X-rays resembling pneumonia (lung

infection) could be attributed to a number of other conditions (e.g. lung cancer), how-

ever, presence of clinical context can confirm accurate pneumonia diagnosis if the patient

also shows signs of immune response provided by context from clinical and laboratory

data (e.g. presence of fever, elevated white blood cell count) [52]. Physicians often rely

on clinical information from electronic health record (EHR) data to ensure effective and

accurate diagnosis and treatment decisions [10]. EHR data includes information about de-

mographics (e.g. age, sex), laboratory test results (e.g. urinalysis), patient history, disease

diagnosis, and other clinical information. In one study, radiologists managed to diag-

nose additional causes of abdominal pain when interpreting CT scans, with the authors

claiming how simple patient questionnaires can increase diagnostic yield by providing

relevant clinical history to radiologists [21]. We hypothesize that using clinical informa-

tion in combination with medical imaging data can lead to better performing and more

accurate deep learning models by reducing uncertainties because of additional informa-

tion provided by clinical data that is lacking in imaging data. One of the ways to make use

of both imaging and clinical information is to look at methods proposed by multimodal

deep learning techniques.

1.1 Multimodal Deep Learning

When a sensor observes some natural phenomenon (e.g. a microphone recording speech),

the way the data is recorded, stored, and interpreted is referred to as a data modality [110].

In the context of digital medicine, the state of the patient can be observed and recorded

through a variety of sensors, for example imaging technologies (e.g. MRI, CT, PET), lab-
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oratory tests (e.g. blood tests, urinalysis, EHR), natural language records (e.g. patient

questionnaires), and vital signal recording devices (e.g. ECG, EEG) that make up a clin-

ical record. Digitally, these observations are stored in different ways depending on the

dimensionality of the captured data, that is, how much storage is needed for a single

data sample. For example, high-dimensional data such as a single high-resolution 3D

MR image can contain a million voxels each containing an intensity value, meanwhile,

low-dimensional tabular data such as age, blood oxygenation levels, and sex can be rep-

resented by a single value. As such, different data types (images, tabular data, natural

language, speech) can be considered as different modalities. Furthermore, within medical

imaging itself, different types of technologies (PET, MRI, CT, ultrasound) can be con-

sidered as their own modalities given that they capture information in a different man-

ner [49].

In deep learning, multimodal fusion describes methods and models that aim to uti-

lize complimentary information (related to a target task) from multiple data modalities

in order to improve performance over single modality models [110]. In this thesis, we fo-

cus on multimodal fusion techniques that combine high-dimensional imaging data with

other types of lower-dimensional clinical data (we often refer to this type of data as tab-

ular). Within this context, multimodal fusion can be categorized into early fusion, joint

fusion, and late fusion strategies [52, 110, 132], depending on how modalities are com-

bined using deep learning models. Early fusion methods aim to combine data modalities

at the raw data level prior to their use by a DL model. Joint fusion methods perform

feature-level fusion, where features are first extracted from each modality (e.g. by an-

other DL model) prior to their fusion. Late fusion methods perform decision-level fusion

where each modality is used separately to predict a given task, at which point all predic-

tions are aggregated to form a final consensus. Multimodal deep learning methods have

found many applications in computer vision and natural language processing, including

in domains such as visual question-answering [81, 124, 131, 154], and autonomous driv-

ing [18, 48]. Multimodal deep learning also saw successful applications in medical imag-
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ing including lesion detection [?, 54, 152], disease diagnosis [93, 106, 135], and prediction

of disease trajectory [111, 145, 158].

Looking at diseases such as Multiple Sclerosis (MS) and Alzheimer’s disease (AD),

correct analysis and interpretation of complex medical images like brain MRI are crucial

for diagnosis and treatment planning. Given the difficulty of identifying various brain

structures and pathologies from MRI-only information due to close visual similarities

between them (e.g. 1.1), multimodal deep learning models that can utilize both imaging

and clinical context information are of particular interest to aid in correct interpretation

of MRI data in both MS and AD.

1.2 Multiple Sclerosis

Multiple Sclerosis is an inflammatory disease that is one of the most common causes of

neurological disability in young adults [67]. MS acts as an autoimmune condition where

the immune system attacks the myelin sheath, the tissue that surrounds the nerves in

the brain, potentially causing damage to the nerve and causing transmitted messages to

be disrupted [30]. While symptoms vary among patients, some of the main symptoms

of MS include fatigue, muscle weakness, poor motor control, numbness in various parts

of the body, vision problems, and difficulty with cognitive tasks such as thinking and

learning [33]. Given that globally the average age of patients diagnosed with MS is 32, MS

impacts adults in their productive years and severely limits their abilities and quality-of-

life [30]. As of September 2020, there are 2.3 million people worldwide with MS, with two

to three times as many females as males [30]. Canada’s population is of special interest,

as it has one of the highest rates of MS in the world at 1 in 400 [30]. Worryingly, both the

global and Canadian rates of MS have been observed to increase since 2013 with no signs

of stopping. Given the above, MS presents a significant threat to Canadian society due

to it’s debilitating symptoms as well as potential economic burden by targeting younger

adults [94].
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There are two main types of MS disease (often referred to as phenotype): relapsing-

remitting, and progressive. Approximately 80-90% of MS patients are typically diagnosed

with relapsing-remitting type (RRMS) [30]. This stage is categorized by sudden episodes

(relapses) of worsening symptoms that disappear afterwards. A relapse can last from a

few days to a few months. Periods between worsening symptoms are called remission

periods. The other type of MS is progressive MS, which can be broken down into primary

progressive (PPMS) and secondary progressive (SPMS) stages. During progressive MS,

symptoms worsen overtime without remission periods, and this affects approximately

20% of MS patients. Meanwhile, a large portion of RRMS patients often progress into

SPMS stage, which manifests as gradual worsening of MS symptoms over many years

but without obvious relapse episodes [30].

The diagnosis of MS disease is done through the evidence of one or more of the follow-

ing: 1) chronic inflammation of the central nervous system (CNS), 2) at least two different

relapses, and 3) presence of at least two different lesions (new lesions) in the white matter

of CNS [41]. Detection of brain lesion presence is done through acquisition and analy-

sis of MRI sequences, which typically include T1-weighted, T2-weighted, Proton Density

(PD), and Fluid Attenuated Inverse Recovery (FLAIR) [116]. This makes MRI one of the

primary diagnostic tools for monitoring MS.

In order to investigate disease progression and pathology as well as monitor treat-

ment effects, brain lesion activity is monitored with the use of MRI. The presence of

Gadolinium-enhanced (Gad) lesions as well as new and enlarging T2 (NE-T2) lesions

in MRI taken at sequential time points (e.g. images taken six months apart) act as sur-

rogates for MS disease worsening (e.g. more relapses). In the context of RRMS patients,

treatments are available that suppress new lesional activity. When a patient is on a treat-

ment, the presence of Gad and NE-T2 lesions is used as an indication of low treatment

efficacy. Furthermore, the number of NE-T2 and Gad lesions is also used as an endpoint

in clinical trials during development of new treatments.
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Figure 1.1: Example MRI of a patient with Gad lesions. Left to right: T1-w, T1-w with

Gadolinium contrast, T1-w difference image with visible hyperintensities, T1-w with

expert-annotated Gad lesions. Green boxes show hyperintensities which are labeled as

Gad lesions, while red boxes show non-lesional hyperintensities. The rightmost image

shows true Gad lesions overlapped on a T1-w (MRI pixel intensity values were modified

to allow for better lesion visualization). Note how not all visible hyperintensities are real

Gad lesions, making it hard to discern from image information alone.

To identify Gad lesions, Gadolinium-based contrast agents are administered to pa-

tients to boost visibility and delineation of new lesions in MRI scans of MS patients

[33]. During an MS relapse in RRMS patients, Gadolinium contrast agent is able to pass

through the blood-brain barrier and into the newly formed MS lesions [116], which be-

come visible as high-intensity areas (hyperintensities) on post-contrast MRI scans (Figure

1.1. One major problem of identifying Gad lesions is not all hyperintensities visible in the

MRI scan are Gad lesions. As seen in Figure 1.1, difference image between contrasted and

non-contrasted MRI has several hyperintensity regions identified as Gad lesions (green

boxes) as well several that are not (red boxes). As such, identifying which hyperintesities

are real lesions solely from the MRI information is a difficult task, which can be helped

through inclusion of additional clinical information.

The presence of new and enlarging (NE) T2 lesions are determined by comparing two

temporally-sequential T2 MRI scans (typically at the first and the next patient visit to the

clinic) and determining the number of new lesions or existing ones that have been en-
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Figure 1.2: Visualization of FLAIR MRI, T2, and NE-T2 lesions. Left to right: FLAIR MRI

at baseline time point, T2 lesion hypterintensities overlapped on FLAIR scan at baseline

time point, NE-T2 lesion map from 48 weeks later overlapped onto baseline time point

FLAIR scan. Green circles highlight locations of NE-T2 lesions. For our purposes, this

patient is considered active as there are more than three NE-T2 lesions present [33].

larged [118] (shown in Figure 1.2). Similarly to Gad lesions, T2 and NE-T2 lesions are

typically identified as hyperintensity areas on T2-w or FLAIR MRI scans [30]. Given that

there are treatments that can suppress development of NE-T2 lesions, prediction of fu-

ture NE-T2 lesion activity can serve as valuable surrogate marker of treatment efficacy.

There has been published research in developing methods for the detection of NE-T2 le-

sions [22, 121] and binary classification of future disease activity [120] from MRI data.

However, these methods lack the clinical context of the patient such as clinical markers

or demographics information that can influence development of NE-T2 lesions (e.g. dis-

ease stage of the patient). Inclusion of additional clinical information along with MRI for

prediction of future disease activity can be of benefit as shown by one study where use

of both MRI and clinical data showed improved classification accuracy over MRI-only

methods [25].
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Figure 1.3: Coronal axis view of T1-w MRI scan of a cognitively normal (left) patient

and one diagnosed with Alzheimer’s disease (right). Both patients are female and are

approximately 75 years old. Red arrows indicate differences in brain volume loss due to

disease factors. Images taken from the ADNI dataset.

1.3 Alzheimer’s Disease

Alzheimer’s disease is a neurological disorder that causes brain atrophy and is very com-

mon in elderly patients (visualized in Figure 1.3). It is the most common cause of de-

mentia leading to severe memory loss and decline in thinking and behavioral skills of the

patient. One of the major biomarkers (indicators that are correlated with disease progres-

sion) for severity of AD is reduction in hippocampal volume that is visible and measured

from a single time point T1-weighted MRI scan [34], however, this is not sufficient to

make a diagnosis as changes in hippocampal volume can also be attributed to normal

age-related changes in the brain [12]. As such, information from multiple sources (clin-

ical tests, patient questionnaires, brain imaging) is needed for correct diagnosis. In fact,

AD is diagnosed through a series of tests such as mental status and neuropsychological

tests, laboratory tests, and brain imaging examinations with MRI, CT, and PET [12]. Sim-

ilarly, proposed machine learning methods using a combination of imaging and clinical

data have shown to perform well in classification tasks for AD diagnosis [7, 15, 135, 158],
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demonstrating better performance of multimodal methods over methods using only one

type of data [106].

1.4 Transfer Learning

One of the primary challenges with multimodal deep learning is determining the best

method to fuse different modalities when there are large differences in dimensionality

between different types of data (e.g. images vs. tabular data). For example, autonomous

vehicles make use of imaging sensors (camera, LiDAR) and vehicle sensors (e.g. ultra-

sound, speed) that produce 3D and 1D data respectively [103]. This challenge is even

more prevalent within medical imaging when attempting to use EHR data, where high-

dimensional imaging data (e.g. MRI, CT) are combined with tabular data that are often

just a single value (e.g. laboratory results, clinical scores). Furthermore, heterogeneous

nature of how data are stored and represented between modalities often means that raw

data samples require some sort of preprocessing prior to fusion in order to extract useful

information [11,70]. For example, when finding ways to combine imaging and other types

data of much lower dimensionality, convolutional neural networks (CNN) are commonly

used in multimodal methods to preprocess raw imaging data in order to learn lower di-

mensional features that can then be used for fusion with non-imaging low-dimensional

data [52].

While use of CNN models is a popular approach at extracting useful information from

imaging data, they have also been known to learn spurious features that are predictive

of the target label that are not inherently relevant to the problem (e.g. focusing on back-

ground when trained for object detection) [149]. In one example, researchers found that a

CNN model trained for pneumonia detection from 2D chest X-rays learned to use metal

tokens seen in training images as one of the predictive features, and as a result, per-

formed poorly when used with an unseen real-world dataset [157]. Another study [8]

found that CNN models trained for skin lesion classification were unable to capture
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clinically-meaningful information and relied on obscure visual artifacts instead. Diag-

nosing whether the model learned spurious features is a difficult task, and even more

so in medical imaging applications due to complexity of data and expert knowledge re-

quired to discern what constitutes a spurious feature [8, 37]. We hypothesize that finding

ways to help a CNN model to learn imaging features that are truly relevant to clinical in-

formation can result in improvement of model performance on related clinical tasks (e.g.

disease diagnosis).

One way to guide what features are learned by the imaging model is by adjusting

the learned objective, that is, what is being optimized. For example, in contrasting self-

supervised learning methods [57] the imaging models are pretrained to learn underlying

image structures by comparing an image to a heavily augmented version of itself. Once

such features are learned, the pretrained model parameters can be used for finetuning on

a desired task (e.g. object classification), often showing impressive results while utilizing

magnitudes-less of labeled data compared to fully supervised methods. This example is

just one of many methods out there that fall under the transfer learning category. In short,

transfer learning is an approach to use learned knowledge from one domain in order to

perform better on a different domain [72]. The main assumption is that the knowledge

learned during pretraining stage will be of benefit to learning the desired target task or

dataset [167]. One popular transfer learning method in medical imaging applications

[24, 25, 73, 136, 153, 158] is multi-task learning [117], with the idea that learning several

related tasks simultaneously by a single model can capture intertask differences and be

beneficial to model performance. However, this approach creates additional complexity

in the design of the optimization objective (e.g. which tasks are more important) as well

as the learning procedure in general, given that multiple optimizations are happening

at once. In contrast, another transfer learning method called meta-learning [50] aims to

achieve a similar goal as multi-task learning but instead aims to use full representational

power of the model to focus on learning each task individually (explained further in the

next section). We hypothesize that a meta-learning approach to learning multiple relevant
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tasks at once can help guide a CNN model to learn more meaningful and relevant imaging

representations for the clinical context.

1.5 Meta-learning

Meta-learning is a subset of transfer learning focusing on learning to learn, that is, observ-

ing how algorithms perform on a distribution of learning tasks and then learning from

this experience [79]. Meta-learning methods aim to train models that capture prior knowl-

edge (also referred to as inductive bias) from a distribution of related tasks. This inductive

bias (contained in the trained model parameters) can then be used to quickly adapt the

model and still perform well on a previously unseen task [50]. The intuition behind meta-

learning is to treat entire tasks as training examples in order to generalize well over a dis-

tribution of tasks, compared to conventional ML where model is trained using multiple

data instances to generalize across the dataset [31]. Meta-learning is also a common tech-

nique for few-show learning, tackling the problem of training models with little available

data [141] which is prevalent in medical imaging domain due to difficulty of acquisition

and data labeling [75]. Meta-learning approach allows pretrained models to quickly learn

a new task using only a few data samples or training cycles, and has seen many appli-

cations in few-shot detection, segmentation, and image generation [42, 102, 139, 151]. In

medical imaging applications, meta-learning has been successfully used for segmentation

tasks where the model that was pretrained to segment a set of organs is able to generalize

well and perform accurate segmentation on an unseen organ from a few training sam-

ples [29]. Similarly, another study used meta-learning approach to train DL models in a

low-data regime by first training a CNN to learn a set of common disease classification

tasks and then adapt this model to successfully diagnose rare skin diseases from only a

several training samples [79].

In this thesis, we conjecture that deep learning model outcomes based on medical im-

ages alone will show improvement should addition clinical information (e.g. demograph-
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Figure 1.4: Simplified overview of the proposed meta-learning method for embedding

clinical context into learned imaging features. Top (a): a CNN model is pretrained using

a Reptile meta-learning algorithm to perform well at predicting a set of clinical features

from MRI data. Bottom (b): the pretrained weights are used as parameter initialization to

finetune the CNN on the desired target task using the same MRI data.

ics, disease state) be provided to the network via meta learning, with the assumption that

each data modality (e.g. MRI, laboratory test results, doctor reports) carries unique in-

formation about the clinical context. This is accomplished by adapting a gradient-based

meta-learning algorithm called Reptile [97] for pretraining a CNN model, and tested us-

ing MS and AD medical datasets. The intuition is to guide a CNN model to learn imaging

features from MRI data that can capture relevant clinical context and carry complimen-

tary information to help improve performance on a desired related clinical task (overview
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in Figure 1.4). First, a CNN model is pretrained on MRI data to independently classify

or regress a number of relevant clinical features (e.g. cognitive test scores, disease stage,

lesion volume) using a meta-learning scheme. The pretrained CNN model is then fine-

tuned on a desired target task using the same MRI data as input. For evaluation purposes,

we apply the above method to train deep learning models on three example target tasks:

1) detection of Gad lesions in MS, 2) prediction of future NE-T2 lesion activity in MS, and

3) estimation of ADAS-13 and MMSE cognitive scores in AD patients using both MRI

and tabular clinical data. Through experimentation, we compare our method to single

modality (unimodal) methods using only imaging or only clinical data as well as existing

multimodal and transfer larning methods in medical imaging. Additionally, we perform

a study on the selection and impact of individual clinical markers on the target task per-

formance of our proposed approach. Lastly, given that meta-learning methods have been

previously used for training models in low-data regimes [79, 162] and the prevalence of

the data availability problem in medical imaging [143], we also investigate the effect of

dataset size on the performance of our proposed approach.

1.6 Contributions of Thesis

The work presented in this thesis demonstrates how meta-learning approach can be used

to enhance the quality of imaging features in deep learning algorithms through provision

of clinical information, and consequently, improve performance of the imaging DL mod-

els on desired target tasks. Through several experiments, we demonstrate the following:

1. Present an adaptation of meta-learning approach for enhancing performance of

image-based deep learning algorithms on medical interpretation tasks. We hy-

pothesize that correct interpretation of medical images with deep learning models

can benefit from addition of tabular clinical context. This thesis presents a meta-

learning approach to infuse knowledge of clinical information directly into the imag-

ing features extracted by a convolutional neural network. These pretrained features
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are then used to finetune the network on a related target task, and show improved

classification performance over methods using imaging-only data as well as com-

petitive performance against existing multimodal and transfer learning methods in

the medical imaging domain. We experiment on a real-world MS and AD datasets

in our experiments to show examples of real-world applications on tasks of lesion

presence detection, prediction of future lesion activity, and regression of clinical

scores.

2. Quantitative analysis of the impact of clinical feature selection and dataset size

on performance of the proposed method on the target tasks. Through experimen-

tation, we explore the impact of individual clinical features on the meta-learning

process and model performance, and provide a guidelines on their selection given

the target task. Furthermore, given the common problem with labelled data avail-

ability in medical imaging, existing meta-learning methods have been used to tackle

this problem in this domain. Similarly, we conduct a short exploratory study to in-

vestigate how well our proposed approach performs across various data regimes.

1.7 Thesis Overview

This thesis presents a meta-learning approach to fusion of clinical and medical imaging

information in deep learning algorithms for detection and prediction of lesion activity in

MS patients and regression of clinical scores in AD patients. The thesis is structured as

follows.

Chapter 2 provides background knowledge on design, training procedures, and eval-

uation metrics of deep learning algorithms. We then provide definition of data modality,

multimodal fusion in deep learning, and present a literature review of existing methods

and their applications in computer vision as well as the medical imaging domain. The

concepts of transfer learning, multi-task learning, and meta-learning are then discussed
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along with background on their existing applications in medical imaging and computer

vision.

Chapter 3 presents our proposed approach of utilizing Reptile meta-learning method

for combining imaging and clinical data to improve performance of image-based DL

methods. We present the original Reptile method in detail and describe how it is adapted

for fusion of clinical and medical imaging information. We then discuss the thought pro-

cess and considerations behind selection of clinical features as well as Reptile-specific

hyperparameters and their impact on model performance.

Chapter 4 starts by covering implementation details of our proposed method and ex-

perimentation pipeline. In this chapter, we introduce example problems used for eval-

uating the proposed method, which are 1) detection of Gad lesion presence, 2) predic-

tion of future NE-T2 lesion activity, and 3) regression of ADAS-13 and MMSE cognitive

scores, all from baseline brain MRI scans and supporting clinical data. Compared to us-

ing imaging-only DL methods, the above example tasks were chosen as we believe they

can show benefits of using both imaging and clinical data to provide clinical context to

the image-based deep learning model and help discern ambiguities that are present when

using imaging-only data (described further in Sections 1.2, 1.3, and in Chapter 4.3). In the

case of task #1, using only MRI information is difficult because Gad lesions can be mis-

taken for unrelated hyperintensities (Figure 1.1). For tasks #2 and #3, providing DL model

with only MRI information presents only one data point for prediction of future NE-T2 le-

sion activity and estimation of the cognitive scores respectively, and is insufficient to fully

capture the clinical context of the patient and make accurate predictions. The chapter

then presents the details about the MS and AD datasets along with the relevant statis-

tics, evaluation metrics, and the data preprocessing steps we used. Additionally, we list

and describe selection of clinical features and MRI sequences along with rationale behind

the choices. Lastly, we describe in detail unimodal, multimodal, and transfer learning

baseline methods used for comparison with our proposed approach later in Chapter 5.
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Chapter 5 presents experimental results of the proposed meta-learning approach and

baseline methods on the three selected target problems. The proposed approach showed

general improvement of 1-3% across metrics over imaging-only method for the Gad le-

sion presence detection (task #1) and prediction of future NE-T2 lesion activity (task #2),

as well as achieved lower root mean squared error on estimation of ADAS-13 and MMSE

cognitive scores (task #3). Additionally, meta-learning approach also achieved marginally

better metric performance than all other baseline methods for tasks #1 and #3, but not with

task #2 where a modality bias was identified. Ablation experiments on selection of sup-

porting clinical data confirmed our assumption that clinical features which are closely

related to both the target task and the visible structures in the MRI generally achieved

the best performance on the target task, demonstrated by experimental results on tasks

#1 and #3. while it is unknown whether the above findings are statistically significant

(due to computational and time resources required, focus instead on thorough experi-

mentation and use of cross validation), we believe the extensive experimental results are

sufficient to give insight on the trends discussed above. Lastly, a short investigation into

the effects of dataset size on model performance showed that meta-learning approach can

perform competitively compared to other baseline methods across varying data regimes.

Specifically, experimental results on task #1 showed meta-learning approach achieving

on-par or better ROC AUC and PR AUC metrics compared to the next best performing

method across all but the lowest data regime. We conclude the chapter with a discussion

of the limitations of our proposed approach.

Chapter 6 concludes the thesis by summarizing the findings and key insights pre-

sented in Chapter 5, as well as provides some thoughts on future work.
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Chapter 2

Background and Related Works

This chapter provides a thorough overview of deep learning fundamentals, multimodal

fusion techniques, concepts of transfer learning and multi-task learning, as well as meta-

learning methods in medical imaging. First, relevant background knowledge about deep

learning concepts, training procedures, and evaluation metrics is presented. It is followed

by a review of multimodal fusion methods, examples of use, and their application within

the medical domain. Lastly, the concepts of transfer learning, multi-task learning, and

meta-learning, are presented along with their various applications in computer vision and

medical domain. Information presented in this chapter provides the required knowledge

foundation for the following chapters.

2.1 Deep Learning

Deep learning (DL) is a subset of machine learning (ML) that focuses on training and

using artificial neural network (ANN) algorithms to automatically learn useful features

from input data and perform desired tasks [72]. In traditional ML, data preprocessing

involves manual creation of useful features that can be then passed to the ML algorithm,

which lead to many years of research into feature engineering [46]. With deep learning,

this process of feature extraction from data is automated during training of DL models,
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where the model automatically selects what features to extract in order to learn the task at

hand. In recent years, DL methods have exploded in popularity by reaching state-of-the-

art performance with applications in computer vision (CV), natural language processing

(NLP), graph learning, and many other domains.

2.1.1 Convolutional Neural Networks

In computer vision applications of DL, Convolutional Neural Networks (CNN) are one

of the most popular types of NNs, and have been designed to efficiently deal with struc-

tured data (matrix-like, e.g. images) as they are able to learn spatial hierarchical patterns

in structured data [3]. CNNs are made up of convolution layers, non-linearity activa-

tion functions, pooling layers, and fully-connected layers (e.g. multilayer perceptorns, or

MLP). Convolution layers (along with activation functions) are used for feature extrac-

tion, pooling layers are used for downsampling, and fully connected layers are used to

consume extracted features to perform the desired task (e.g. classification).

Figure 2.1: Visualization of convolution operation in CNN on a 5x5 input matrix using a

3x3 kernel with zero padding and stride of 1. Courtesy of [146], used with permission.
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The core component of CNNs are convolutional layers. Typically paired up with ac-

tivation and normalization operations, convolutional layers perform convolution opera-

tion on the input data matrix (pictured in Figure 2.1). During a convolution operation,

a matrix of learned parameters (kernel) performs element-wise product and sum in a

sliding-window manner across the input data matrix to produce a feature map. The step

of the kernel during sliding-window operation is referred to as stride. In order to allow

CNN to model non-linear relations, feature maps are passed through a non-linear acti-

vation functions such as ReLU, sigmoid, tanh, and others [20, 72]. Afterwards, a pooling

layer such as Maxpool or Averagepool is used to downsample feature maps by selecting

either the maximum or the average value within the patch area for the output (visualized

in Figure 2.2). Pooling operations are used to reduce number of learnable parameters and

introduce translation invariance.

Figure 2.2: Visualization of maxpool and meanpool (identical to averagepool) operations

with 2x2 filter size and stride of 2. Courtesy of [86], used with permission.

2.1.2 Training Neural Networks

When training NN models, a given dataset is typically split into training, validation, and

testing sets. Data samples contained in the training set are used for training the model,

meanwhile the validation set is used to measure how the model performs on unseen data
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during the training process. The test set is used at the end of the training to evaluate

generalization performance of the trained model on unseen data.

In a supervised learning setup, neural network models are trained by updating the

model parameters (also known as weights) in an iterative manner to reduce the difference

between predicted output and ground-truth labels. Using the training set, this is done

by feeding data samples into the model and comparing the predicted output to the corre-

sponding ground-truth label using a selected metric, called a loss function. Loss functions

vary widely depending on the learning objective, however, all have one necessary con-

dition: a loss function must be smooth differentiable in order to ensure a useful gradient

of the loss can be computed. Some common ones include binary cross entropy loss for

binary classification tasks, mean squared error for regression tasks, and cross entropy loss

for multi-class classification.

An optimization function is used to determine how should the model parameters

change in order to minimize the loss function, and as such, bringing the predicted model

outcome closer to the ground truth. There are a number of different options for opti-

mization functions, including Stochastic Gradient Descent, AdaM, RMSProp, and Ada-

grad [66,155]. Gradient descent uses the derivative of the loss function with regards to the

model parameters to update said parameters in the direction negative to the gradient, and

thus minimizing the loss [4]. The magnitude by which the model weights are changed

is called the learning rate, and it controls how ”fast” the learning takes place (e.g. higher

learning rate means greater change in weights). The gradient is then propagated through

all of the model parameters using the back-propagation algorithm, and each parameter is

updated using the gradient descent scheme [47] (visualized in Figure 2.4).

The act of passing a data sample through the model and getting a prediction is referred

to as a forward pass, while the act of updating model parameters given the calculated

loss between prediction and ground-truth is known as backward pass. A training iteration

is a single instance of forward-backward pass, where the model parameters have been

updated a single time. During the training process, there are many iterations and thus
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Figure 2.3: Training of a CNN model using supervised learning learning approach. Dur-

ing forward pass, input data are passed through the model to obtain a prediction. The

prediction is compared to the ground truth label using the loss function to obtain an error

metric, which is then used to update model parameters using an optimization algorithm

and backpropagation.

many model parameter updates, as the model consumes entirety of the training set. One

cycle of the model consuming all of the training set samples is called an epoch, and is made

up of many iterations. Models are trained over many epochs, with the number of epochs

being one of the hyperparameters selected by the user.

There are two main aspects to consider during the model training stage: training and

validation losses. Monitoring training loss provides feedback on how well the model

is learning, that is, model predictions get closer to the ground truth labels and the loss

should decrease as the model completes more training epochs. In the meantime, we also

want to make sure that the model is not overfitting to the training data and still provides

good performance on unseen samples. After every training epoch, all samples in the val-

idation set are passed through the model and the validation loss is calculated. Once the
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Figure 2.4: Visualization of gradient descent optimization procedure on the learning pa-

rameter w. Courtesy of [146], used with permission.

validation loss plateaus or begins increasing (Figure 2.5), training should be stopped even

if training loss continues to decrease as this is a sign of overfitting (Figure 2.5). To com-

bat overfitting and improve generalization, various regularization techniques are used,

for example data augmentation and dropout. Data augmentation introduces random

changes to the input data during training to introduce extra variation within the data,

and by extension, artificially increase the size of the dataset. Ideally, these augmentations

should be realistic and non-destructive to the features of the desired task. In computer

vision domain, some of these include image augmentation operations such as rotation,

flipping, minor Gaussian noise, or contrast changes [126]. Dropout is another approach

to combat overfitting [130]. With dropout, random neurons in the neural network are set

to zero, reducing the learning capacity of the network and approximates training large

number of models with different architectures. This method has been shown to be very

effective at reducing overfitting [130].

Another aspect of DL model training is hyperparameter tuning. Using the validation

set performance, hyperparameters can be adjusted in order to improve performance on

unseen data [148]. Hyperparameters are defined as the parameters that control the learn-

ing process and are specified by the user. These include batch size, number of epochs,

amount of augmentations, learning rate, loss and optimization functions, and regulariza-
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Figure 2.5: Point of overfitting (dotted line) during model training

tion strategy. Additionally, specifying model architecture parameters can be included as

well, such as number layers in the network, types of normalization layers, CNN kernel

size and stride, and activation functions.

2.1.3 Evaluation Metrics

While measuring training and validation losses is important to ensure proper model

training, there are other metrics that are directly related to the task which are used to

decide whether the model performs up to our expectations after training. For evaluating

binary classification tasks, a popular approach is to a binary confusion matrix seen in Fig-

ure 2.6. This matrix contains counts of four outcomes of a binary classifier: true positives

(TP), false positives (FP), true negatives (TN), and false negatives (FN). Combinations of

these counts make up a number of useful metrics for evaluating performance of a binary

classifier.

Recall, also known as Sensitivity, measures the number of correct positives out of all

true positive predictions (true positives and false negatives).

Recall =
TP

TP + FN
(2.1)
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Figure 2.6: Binary confusion matrix

Precision, also known as Positive Predictive Value (PPV), measures the number of

correct positives out of all true and false positive predictions.

Precision =
TP

TP + FP
(2.2)

F1-score is a harmonic mean of precision and recall, and is a useful measure when a

class imbalance is present (e.g. many more samples of class 1 compared to class 2).

F1 =
2× Precision×Recall

Precision+Recall
(2.3)

It is important to note that all of the above metrics rely on the selection of a threshold

that will binarize model output and determine what is considered positive or negative

class (e.g. with 0.5 threshold, anything 0.5 and above is considered positive class, and ev-

erything below as negative class). Given how critical threshold selection is, we make use

of Precision Recall Area Under Curve (PR AUC) as well as Receiver Operating Character-

istic (ROC) curve AUC. Precision-Recall curve is a plot of precision and recall against each

other and ROC curve is a plot of recall vs. false positive rate (FPR), both at a wide range

of binarization thresholds. ROC AUC and PR AUC are the areas under their respective

curves, and are bounded between 0 and 1 range (1 being the ideal classifier). These met-

rics are important as they allow to compare model performance without the dependency

on correct selection of the decision (binarization) threshold.
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Performance evaluation of regression tasks is commonly done by measuring the error

between the predicted value, ypredicted, and true value, ytrue. One example is mean squared

error (MSE) which measures the average squared error across all N data samples. A

modified version of MSE is root MSE (RMSE) which takes the square root of MSE value,

with the benefit of measuring the error in the same units as the predicted value.

MSE =
1

N

N∑
n=1

(ytruen − ypredictedn )2 (2.4)

2.2 Multimodal Fusion In Deep Learning

When a sensor (e.g. digital camera) observes some phenomenon in the real world, the

way the sensor records and stores data that represents that event is referred to as a data

modality [110]. Different sensors and modalities allow to capture complimentary yet non-

overlapping information when recording the same event. For example, capturing a video

of a barking dog records both image and sound which produces different data modalities

that both independently identify the subject (a dog). In deep learning, use of multiple

modalities is motivated by the assumption that there is complimentary information pro-

vided by each modality that can be used by a DL model [110]. The goal is to use this

additional modality-specific information in order to improve performance on selected

tasks (e.g. object classification) compared to methods that use only a single modality.

Given the differences in representation between data modalities (e.g. grid-like 2D im-

age arrays vs. 1D time-series sound recording), one of the primary challenges multimodal

fusion is how to best combine and make use of various types of data [51]. In multimodal

deep learning, there are three main design choices that must be decided on prior to im-

plementation: 1) how to fuse different modalities, 2) which modalities to use, and 3) how

to deal with missing data [110]. The first design choice is how to fuse different modalities

(an overview of various DL multimodal fusion methods is visualized in Figure 2.7). Also

known as data fusion, combining raw data of several modalities early-on into a unified
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feature vector prior to feeding into a DL model is known as early fusion. Given that fusing

raw data samples can be often be challenging due to differences in dimensionality and

representation (e.g. 3D image data and 1D time-series data), extraction of high-level rep-

resentations (features) prior to fusion can help alleviate these issues [110]. With joint fusion

methods, feature representations are first learned by the separate layers (e.g. CNN layers

for imaging data) from the raw data. Then, these features are fused together (e.g. con-

catenation, pooling) to create a shared representation used by a DL model for the desired

task (e.g. classification). The main difference between early and join fusion is that with

joint fusion, the training loss is also used for training the feature extraction model and

thus, modifying feature representation to better suit the end task. Lastly, late fusion (also

known as decision-level fusion), refers to training separate models on raw data of different

modalities to get predictions that are then aggregated (e.g. averaging, majority voting) to

make a final decision.

The second design choice, and potentially the most important, deals with selecting

which modalities to fuse. The core assumption of multimodal fusion is that different

modalities can provide complimentary and useful information to the task being solved

[51]. It is also possible that inclusion of some modalities can be actually detrimental to

model performance, and thus, diligent feature selection is vital to ensure that the benefits

of multimodal fusion are realized. Feature selection can be done manually with the prior

knowledge of the user, however, there has also been research into learning the optimal

selection of modalities and fusion architectures. Previous studies proposed methods such

as pruning algorithms [112], genetic algorithms [125], as well as forms of reinforcement

learning [168] and Bayesian optimization [109] with various degrees of success [110].

In use cases where data from multiple modalities are present, multimodal fusion has

often shown to provide significant performance improvements over single modality DL

methods. In the domain of human activity recognition, multimodal fusion methods com-

bine audio, video, depth, and skeletal motion data modalities to solve problems such

as action recognition [?, 108] and human pose estimation [114]. In another example, vi-
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Figure 2.7: Categories of multimodal fusion methods in deep learning. Early fusion meth-

ods combines raw data (type 1) or extracted features (type 2) prior to model input. Joint

fusion methods extract learned features prior to fusion and use the training loss to guide

feature extraction process. Late fusion aggregates predictions from separate models us-

ing separate modalities to provide a single output. Blue and cyan circles represent raw

data of separate modalities, slashes represent extracted features, and squares represent

predictions. Courtesy of [51], used with permission.

sual question answering (VQA) tasks by their nature deal with multimodal data (nat-

ural language text and images), where the objective is to produce a natural language

answer given an image and a related natural language question [134]. Due to dimen-

sionality differences between modalities, a common approach in VQA problems is joint

fusion [134] where learned features from text and imaging data are first extracted with

the use of CNN, MLP, and autoencoder models prior to fusion and use in a downstream

DL model [13, 55, 101], often reaching state-of-the-art performance [107]. In autonomous
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driving applications, multimodal data are often captured from multiple sensors (LiDAR,

radar, camera, proximity), giving popularity to applications of DL multimodal meth-

ods [58,96,99,144]. In one case, combining camera and LiDAR data has lead to higher ac-

curacy in object detection tasks over LiDAR-only methods [103]. Applying a deep learn-

ing method to determine if a person is lying or telling the truth, Gogate et al. showed that

combining audio, visual, and text data improved performance when compared to exist-

ing state-of-the-art methods, with early fusion outperforming late fusion approach [40].

There has also been extensive use of multimodal fusion for scene understanding and se-

mantic segmentation space in computer vision domain, often reaching state-of-the-art

performance [163].

2.2.1 Medical Imaging

Digitization of modern medicine generates many types of data and modalities, such as

imaging data, natural language data (e.g. doctor reports), and EHR data such as clinical

information (e.g. diagnosis), demographics (e.g. age, sex), and laboratory results [51].

While different types of medical images (e.g. MRI, CT, PET, X-ray) can also be considered

as separate modalities due to differences in how data are represented and interpreted,

we specifically focus on fusion of medical images with low-dimensional clinical data

(e.g. clinical scores). From cancer risk prediction to brain lesion detection and disease

diagnosis, utilizing multiple data modalities has shown to reduce visual ambiguities and

improve performance of DL methods for interpretation of medical images [51]. Within

the medical imaging domain, the most common multimodal fusion approach is early fu-

sion. Early fusion methods directly concatenate clinical data with imaging features that

have been extracted by using a CNN or other methods (e.g. analysis software). Many

studies using early fusion methods have demonstrated improved performance in tasks

like predicting symptom progression, lung cancer subtypes, and bone density estima-

tion [7,25,54,74,93]. Applications of joint fusion typically first extract feature representa-

tions of each of the modalities (with the help of MLP or CNN layers) prior to their fusion.
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These methods are not as common as early fusion, however, still show improvement

over single modality methods [63, 129, 145]. Lastly, studies using late fusion techniques

that aggregate predictions from unimodal models also showed improvement over single

modality methods when used for diagnosis of Alzheimer’s disease [106], prostate can-

cer [111], and pulmonary embolism [52]. While multimodal methods are a popular way

of utilizing imaging and clinical data, transfer learning is another commonly used set of

methods for learning useful information from both modalities.

2.3 Transfer Learning

One of the primary challenges to wider adoption of machine learning applications is the

lack of availability of sufficient labelled training data, which is often the case in a lot of

real-world problems [167]. One promising solution to tackle the lack of labelled data in

one domain (e.g. task or dataset) is to exploit knowledge learned from another. The set

of machine learning methods that do this are known as transfer learning (TL) [72]. The

intuition is that the knowledge learned from one domain (e.g. classifying animal species)

can be leveraged to improve learning performance on a related domain (e.g. classifying

dog breeds). In practice, a model is first pretrained on a labelled dataset to learn useful

representations (knowledge) from the data (captured by the trainable parameters of the

model). This pretrained model is then finetuned (either entire model or select layers) on

the target dataset or task, with the goal of decreasing training time and/or improving

model performance on the target task [167]. One of the key considerations, aside from

availability of labels, is selecting a pretraining (source) domain that is related to the de-

sired (target) domain in order for knowledge transfer to be successful [167]. Otherwise,

a negative transfer phenomenon can occur where transferred knowledge is ”unrelated”

and negatively affects performance on the desired domain [161]. In computer vision and

NLP, TL methods have gained popularity due to existence of many large labelled large

datasets that can be used for pretraining [167], and have been shown to have improved
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generalization and training time over training networks from scratch with randomly ini-

tialized weights [26]. Aimed at tackling different problems, there are a number of vari-

ations of transfer learning techniques including domain adaptation [62], self-supervised

learning [59], multi-task learning [117], and meta-learning [50]. Domain adaptation ad-

dresses problems where there is a drift in data or label distribution between source and

target domains. Self-supervised learning aims to learn useful features from unlabeled

or very small amounts of labeled data. Multi-task learning aims to jointly learn a set of

related tasks from the same data by taking advantage of similarities and differences be-

tween the tasks. Lastly, meta-learning aims to learn over a distribution of related domains

in order to generalize well to an unseen domain. In the next section, we provide further

background on multi-task learning and meta-learning.

2.3.1 Multi-task Learning

Multi-task learning is a technique for training machine learning models where several re-

lated tasks are jointly learned (visualized in Figure 2.8). Compared to traditional transfer

learning with sequential training (train on source then on target domain), the intuition

behind multi-task learning is that by paying attention to all related tasks simultaneously

the model can take advantage of intertask relevance and differences and thus, lead to

better generalization and performance [117]. As seen in Figure 2.8, typically a shared

representation is first learned by a backbone model (e.g. CNN layers for image data), fol-

lowed by separate task-specific layers. By learning a shared representation between re-

lated tasks, the model learns an inductive bias with the assumption that the information

learned for one task can also be beneficial for learning other tasks [137]. Various appli-

cations of multi-task learning have been successful in both computer vision and medical

imaging domains [1, 80, 147, 153, 164]. In medical imaging, Zhang et al. utilized mul-

titask learning in a multimodal setup for feature selection and successful estimation of

several clinical markers for Alzheimer’s disease progression [158]. In the meantime, au-

thors of [53] used multi-task learning for joint diagnosis of several mental disorders from
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functional MRI in a federated learning setup. In another study, multi-task approach to le-

sion segmentation from MRI resulted in improved Dice score and segmentation accuracy

of small brain lesions [95]. Lastly, a multi-task approach has also been used for prediction

of treatment efficacy in MS patients from brain MRI and select clinical data [25].

Figure 2.8: Visualization of multi-task learning scheme with hard parameter sharing

which aims to jointly learn several related tasks. Typically, a shared representation of

the input data are learned through a number of shared layers, which is then used by sep-

arate task-specific layers to learn each task. Training loss from each of the learned tasks is

used to adjust the learning of the shared representation accordingly.

2.3.2 Meta-learning

Meta-learning is another type of transfer learning aimed at generalizing across a distribu-

tion of tasks in order to improve future learning performance on an unseen task, and has

found many uses in training models with small amounts of data [50]. Compared to tra-

ditional learning schemes that aim to train models to directly solve tasks at hand, meta-

learning instead aims to learn-to-learn, that is, to improve on the learning process itself.

This is achieved through pretraining models over multiple learning episodes (rather than

multiple data instances as in traditional ML) using a distribution of related tasks in order

to capture inductive bias (prior information) relevant to the task distribution [50]. This

learned experience can then improve future training performance and provide computa-
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Figure 2.9: Overview of meta-learning scheme. An inner learning stage consists of train-

ing a model on a specific task. An outer learning stage adjusts the inner learning algo-

rithm based on a specific objective.

tional benefits when the model is finetuned on an unseen related task. There are typically

two phases in a meta-learning scheme: base (inner) learning and meta-learning (outer)

stages [50]. During the base learning, a learning algorithm (e.g. CNN) is trained to solve

a specific task (e.g. classification) defined by an objective and a dataset. During the meta-

learning stage, an outer algorithm updates the inner learning algorithm to improve a cer-

tain outer objective (e.g. generalization across tasks, speed of training, etc.). For example,

by using this definition, the process of hyperparameter optimization by cross-validation

could be considered as an example of meta-learning. While there are various approaches

to meta-learning, in this thesis we specifically focus on gradient learning methods [31,97]

due to the relative simplicity of their implementation.

Gradient-based meta-learning methods work by adjusting the optimization process to

achieve the meta-learning goals. One popular approach is model-agnostic meta-learning

(MAML) [31], a method that aims to learn feature representations such that they are

broadly suitable for a number of related tasks while remaining model-agnostic (no re-

quirements for model architecture). The resultant model allows for fast learning on a

desired domain through finetuning with a small amount of gradient updates. A short

overview of how MAML works is the following. During meta-pretraining, each task
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ti ∈ T = {t1, t2, ...} has a support data set Dtr
i and a query test set Dts

i . In a single iteration

for a single task ti, the parameters of model Θ are updated such that if Θ is finetuned on

support set Dtr
i (resulting into model parameters Φ), it also performs well on the query

test set Dts
i and thus, generalizes well on both sets. The above process is repeated for all

tasks, and the final gradient update to the model Θ is a combination (e.g. sum, average)

of gradients across all tasks T , resulting in model Θ′ . The above process is visualized in

Figure 2.10. One major downside of MAML is the need to compute second derivative

terms (a Hessian) for every task which is computationally expensive, and gave a rise to

further modifications that aimed to solve this problem [27, 97].

Figure 2.10: Comparison between MAML [31], and Reptile [97] meta-pretraining for a

single task. MAML computes the meta-gradient through fine-tuning on the support and

query sets sequentially. With Reptile, the meta-gradient is computed by multiple gradient

updates on the selected task, without the need for second derivative computation nor

seperate support or query sets.

Since the original publication, there have been many further developments of the

MAML approach. For example, first-order MAML (FOMAML) omitted computation of
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second derivatives and thus gained significant computation and speed improvements

while maintaining similar performance [27]. Reptile is another method that majorly sim-

plified MAML while achieving nearly identical performance and retaining speed of FO-

MAML [97]. Similar to FOMAML, Reptile requires no second derivative computation,

but also does not require a train-test data split for each of the tasks, allowing for more

natural and simpler implementation. Authors proposed serial and batch versions of the

Reptile algorithm depending on how meta-tasks are sampled. In short, serial version

of Reptile works by 1) randomly choosing a task from a set of predetermined tasks (re-

ferred to as meta-tasks), 2) training on that task for multiple gradient steps, and 3) up-

dating model weights towards new parameters (Figure 2.10). The batch version of Rep-

tile follows an identical process for the exception that instead of sequentially choosing

meta-tasks, several independent copies of the model are pretrained on all meta-tasks

in parallel (further information on Reptile provided in Chapter 3). Authors of Reptile

have showed that use of multiple steps of gradient descent for every task allows the al-

gorithm to pick up on the high-order derivatives without the need to explicitly calcu-

late them [97]. Since the original MAML publication, many applications for gradient-

based meta-learning methods (e.g. MAML and its derivatives) have been proposed such

as few-shot learning [29, 98, 113], federated learning [28, 77, 165], reinforcement learn-

ing [2, 156, 159], and large-scale imbalanced classification problems [76, 83, 142].

2.3.3 Meta-learning in Medical Imaging

Within the medical imaging domain, meta-learning has primarily found uses for image

segmentation [29, 160], disease classification [105], and anomaly detection [88] problems.

Given the scarcity of medical imaging data and difficulty in acquiring ground truth la-

bels [143], one of the most popular uses for meta-learning in this domain is for few-shot

learning applications. Few-shot learning [140] is a type of machine learning that aims

to train accurate models from small amounts of data [79, 162]. In a study by Farshad

et al, the authors used Reptile algorithm [97] to leverage existing organ segmentation
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datasets to improve segmentation on an unseen organ while using only few samples (or

k shots) [29]. Specifically, they redefine meta-task definition as a collection of 2D samples

from a 3D volume (CT or MRI) of a single organ that are used for semantic segmentation.

After meta-pretraining on several organs, the model was finetuned on a small set of 15 2D

slices of an unseen organ. In comparison to supervised and transfer learning methods, the

Reptile approach achieved modest performance boost in terms of segmentation metrics.

In another study by Singh et al., a similar approach of using gradient-based meta-learning

for pathology classification on several skin lesion datasets [127] outperformed traditional

transfer learning methods in few-shot learning scenarios and in the presence of signifi-

cant class imbalance. Moreover, meta-learning has also found uses in domain adaptation

where underlying statistics between source and target domains differ [36], a phenomenon

often found within medical imaging due to differences in acquisition protocols, patients,

and scarcity of data [64, 82, 166]. In one study, Zhang et al. proposed slight modification

to meta-task selection in Reptile algorithm for domain adaption in organ segmentation,

leading to improved generalization performance in colon and liver organ segmentation

when compared to original MAML and Reptile methods [160]. Given all of the above, it

is important to note that the majority of meta-learning applications in medical imaging

treat different datasets as meta-tasks, rather than using different learning objectives (e.g.

classification, regression, etc.) for meta-pretraining purposes.

2.4 Summary

This chapter provided the background information necessary to understand the work

of this thesis. We reviewed the foundational knowledge of DL, types of models, and

their training procedures. Then, we presented the concept of multimodal fusion in DL,

different implementation styles, and applications within computer vision and medical

imaging, showing the benefits of using multimodal data with DL in a variety of medical

tasks. This chapter then introduced the concepts of transfer learning, multi-task learning,
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and meta-learning with the idea of models learning shared representation that can be

quickly finetuned on a relevant task. Lastly, previous research with applications of meta-

learning both in computer vision and medical imaging is discussed, demonstrating the

benefits of the approach.
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Chapter 3

Meta-learning for Multimodal Fusion

In this chapter, we describe how meta-learning and tabular clinical information is used to

improve performance of image-based DL models on clinical tasks. Specifically, this sec-

tion provides a detailed overview of Reptile meta-learning algorithm and how it is used

to provide clinical context and allow CNN models to learn more informative imaging fea-

tures from MRI. The process and considerations for selection of clinical features used as

meta-tasks is then discussed. Lastly, an overview of meta-learning specific hyperparam-

eters and how each controls the meta-pretraining process is provided.

3.1 Meta-learning for Fusion of Clinical and Imaging In-

formation

As mentioned in Chapter 1.4, CNN models sometimes suffer from learning spurious fea-

tures from imaging data that are not inherently relevant to the actual problem at hand,

which can hamper model performance on the desired task [149]. In order to learn more

informative imaging features, make use of additional clinical information, and improve

model performance, we adapt a modified version of Reptile [97] algorithm as a way of

multimodal fusion of 3D MRI imaging and tabular clinical data. The idea is that the

features learned by the CNN model from the MRI can be guided with Reptile-based pre-
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training to provide more information about the clinical context of the patient through the

clinical data. The pretrained CNN model can then be adapted on a desired related task

through finetuning on the same MRI data, and result in more accurate model compared to

a model trained on imaging data alone without pretraining. The intuition is, for example,

that if a CNN model can first learn to classify disease stage and age of the patient from

the imaging data (and thus, learning related features), this knowledge can also be useful

for predicting clinical test scores of the patient given the assumption that test scores and

age are correlated with disease stage. We provide a visualization of Reptile pretraining

scheme in Figure 3.1 for easier interpretation.

Figure 3.1: Visualization of batch version of Reptile [97] meta-pretraining and finetuning

stages. During meta-pretraining, the global meta model ϕm is independently trained for

k gradient descent operations on prediction each of the meta tasks, resulting in meta-

models {ϕ1, ϕ2, .., ϕn}. The global meta model ϕ′
m parameters are then updated as an

average gradient of all the individual meta models. During finetuning, the pretrained

model ϕm can be adapted by finetuning on a related desired task (e.g. θ1)

First introduced in Chapter 2.3.2, Reptile is a gradient-based meta-learning algorithm

with the idea of pretraining deep learning models on a distribution of related tasks such
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that the model can be quickly adapted on an unseen task [97]. As seen in Figure 3.1, in

a single pretraining iteration of batch version of Reptile, the global meta-model ϕm (e.g.

CNN) is trained in parallel on several meta-tasks (using multiple gradient update steps

for each), resulting in unique set of task meta-models {ϕ1, ϕ2, .., ϕn}. The global meta-

model parameters ϕm are then updated with the average gradient across all meta-models,

defined as the difference between model parameters of global meta model ϕm and task

meta-models {ϕ1, ϕ2, .., ϕn}. After the pretraining, the model can be adapted to an unseen

related target task (e.g. θ1, θ2 or θ3) through finetuning.

In our case, we use batch version of Reptile to pretrain a CNN model (e.g. ResNet [45])

to predict several clinical and demographic features (distribution of tasks) from the MRI

data. The set of tasks used for pretraining, referred to as meta-tasks, come from the tabular

clinical data (e.g. prediction of age, lesion size, test scores), given the assumption that

these clinical markers are 1) have a relation to the MRI data, and 2) are related to the

desired target task (considerations in selection of clinical data are discussed further in

Chapter 3.1.1). Using 3D MRI as input, a ResNet [45] model is pretrained with Reptile

such that it generalizes well at across all meta-tasks, that is, predicting all of the clinical

features. Lastly, the pretrained ResNet model is finetuned using the same MRI data to

adapt it to an unseen desired task (e.g. prediction of diagnosis).

An overview of the proposed method is visualized in Figure 3.2. Steps 1 - 3 show a

single epoch of Reptile pretraining of the CNN model on predicting clinical information

(meta-tasks). Before pretraining, learnable parameters of a global meta-model ϕm (e.g.

ResNet CNN) are initialized in a traditional manner (e.g Kaiming [44]), following which

we create {ϕ1, ..., ϕn}N copies (meta-models) of the the global meta-model. Using 3D MRI

volume as input in step 1, several meta-models are trained in parallel (one model ϕn per

meta-task n for total of N meta-tasks) with a set number of gradient updates. Happening

at the end of the pretraining epoch, step 2 performs model parameter update of the global

meta-model ϕm with the exponential moving average (EMA) of all of the individual meta-

models {ϕ1, ..., ϕn}N . In step 3, learnable parameters of the meta-models {ϕ1, ..., ϕn}N are
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Figure 3.2: Overview of the proposed meta-learning method for fusion of imaging and

clinical data using batch version of Reptile; Top: meta-pretraining stage to pretrain a

ResNet CNN meta-model ϕm using MRI as imaging input and tabular clinical informa-

tion (e.g. age, lesion volume, etc.) as meta-tasks; Bottom: pretrained meta-model ϕm is

finetuned using the same MRI data as imaging input to predict the desired target task

(e.g. Gad lesion presence detection).

set to the newly updated parameters of the global meta-model ϕm. Pretraining procedure

in steps 1 - 3 repeats for a set number of epochs, determined by the user. Finally in step

4, the same MRI data used in pretraining stage is used for finetuning the meta-pretrained

model ϕm on a desired end task (e.g. lesion detection). Implementation details of batch

version of Reptile pretraining are described in detail in Algorithm 1.

We define ϕm as the parameters of the global meta-model to be pretrained and used

later for finetuning, {n1, n2, ...}N is a set of N meta-tasks, Uk operator denotes k-steps

of an optimization algorithm (e.g. SGD [4] or Adam [66]), and ϵ is referred to as meta

learning rate. First, the global meta-model parameters ϕm are initialized in a standard

manner (e.g. Kaiming initialization [44]). Per one training epoch, global meta-model ϕm

40



Algorithm 1 Batch version of Reptile algorithm [97]

Initialize ϕm, initial vector of global meta-model parameters
ϕn=1,2...N ← ϕm ▷ Initialize meta-task models parameters to ϕm

for epoch=1,2,3.. do
ϕn=1,2...N ← ϕm ▷ Reset meta-task model parameters to ϕm

for n ∈ N do
ϕ̃n = Un

k (ϕn) ▷ Compute ϕ̃n denoting k training steps of Adam for task n
end for
ϕm ← ϕm + ϵ 1

N

∑N
n=1 ωn(ϕ̃n − ϕm) ▷ EMA update of ϕm meta-model parameters

end for

is trained in parallel for k gradient updates of an optimization algorithm for each task

n (represented by the operator Un
k ). The model that has undergone k gradient updates

on a meta-task n is referred to as ϕn meta-model. In total, there are N parallel meta-

models {ϕn=1, ϕn=2, ...}N , one per each task n that are trained for k steps. At the end of the

training epoch, parameters of the global meta-model ϕm are updated in an exponential

moving average (EMA) scheme with the uniform weights ωn = 1 across parameters of

task meta-models {ϕn=1, ϕn=2, ...}N , as seen in Equation 3.1:

ϕm ← ϕm + ϵ
1

N

N∑
n=1

ωn(ϕ̃n − ϕm) (3.1)

The intuition is to train the global meta-model ϕm such that it can generalize and per-

form well with all meta-tasks, thus, it is updated in the direction of the average gradient

of all meta-tasks. The delta between each task meta-model ϕn and global meta-model

ϕm parameters are summed over all the meta-tasks and then normalized by the number

of the meta-tasks N . The magnitude of the parameter update of the global meta-model

ϕm is controlled by meta learning rate hyperparameter ϵ (ϵ = 1 meaning ϕm is fully set by

the average of the task meta-models). Lastly, prior to the beginning of the next training

epoch, all task meta-models {ϕn=1, ϕn=2, ...}N parameters are reset to match the updated

parameters of global meta-model ϕm. This process repeats for a set number of pretraining

epochs selected by the user.
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3.1.1 Selection of Meta-tasks

As mentioned in Chapter 2.2, one of the important design choices for multimodal fusion

is selection of which features/modalities to fuse. In our case, this means the selection of

which clinical or demographic features to use with the MRI data. The question then be-

comes as to which markers are 1) related to, and 2) potentially beneficial when used along-

side imaging data. Recall meta-pretraining stage in Figure 3.1; the global meta-model ϕm

aims to learn useful representation that is shared between all meta-tasks ϕ1, ϕ2, ϕ3. Given

the original assumption that different modalities (in this case, clinical features used as

meta-tasks) provide useful complimentary information, a pretrained model should in

theory obtain better performance when fine tuned on a related target task. However, if

one or all of the meta-tasks are selected incorrectly (e.g. have no relation to other tasks or

the input data), this can instead ”confuse” the model and be detrimental to performance

on the target task. This is known as negative transfer [161] and is common with transfer

learning methods [167].

Given the assumption that imaging data carries useful information for the target task,

the clinical meta-tasks should also be directly related to the input imaging data. For ex-

ample, if the target task is to predict treatment response of a patient from a baseline time

point MRI scan (when no treatment effect was yet visible), treatment information cannot

be provided as a meta-task since the imaging data (baseline time point MRI scan) has no

relation to the treatment information. However, treatment information could be used as

a meta-task if the input imaging data also included MRI scans sometime after treatment

effect appears (e.g. seen as decrease in the number of new or enlarged T2 (NE-T2) lesions

in the MRI [118]). Lastly, since our approach aims to enhance the imaging features by

using clinical data, the imaging data is assumed to be the main (or at least partial) driver

behind model performance on the target task (that is, imaging data has correlations with

the target task).

Compared to traditional multimodal fusion methods described in Chapter 2.2, cor-

rect selection of relevant clinical features carries more importance in the meta-learning
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scheme. This is due to the fact that the pretraining dynamics in a meta-learning approach

are not directly impacted by the performance of the model on the desired end task, since

there are two separate training stages. In comparison, multimodal methods seen in Chap-

ter 2.2 use the gradient of the loss of the target task as a direct feedback signal to adjust

the impact of individual modalities automatically (e.g. early or joint fusion). With Rep-

tile, one way to control the impact of individual clinical features is by adjusting meta-task

weights ωn during EMA update stage in Algorithm 1, assigning higher weight to tasks

of more importance (e.g. higher relevance to the end task). Selecting ωn weights is done

manually as part of hyperparameter optimization. For example, original Reptile imple-

mentation assigns uniform ωn across all meta-tasks, meaning each meta-task has identical

contribution to the global meta-model. In contrast, one approach presented by Farshad et

al. uses inverse distance weighting (IDW) scheme to control meta-task importance by giv-

ing more weight to meta-models with parameters closer to the parameters of the global

meta-model [29], measured by the squared difference between the weights:

ωn =
1∑I

i=1(ϕn,i − ϕm,i)2
(3.2)

In Equation 3.2 ϕm,i is the i-th weight of the global meta-model ϕm, and ϕn,i is the i-

th weight of the n-th task meta-model. The meta-task weights ωn for n-th task are then

normalized across all N meta-tasks by dividing each ωn by the sum of all other meta-

weights
∑N

n=1 ωn [29]. Our exhaustive attempts to use similar task weighting scheme

lead to highly unstable and failed training, and it was decided to use the average meta-

task weighting scheme as was done in the original Reptile implementation [97] to reduce

the scope of our study and simplify hyperparameter tuning.

3.1.2 Controlling Meta-pretraining

As mentioned in Chapter 2.1.2, the process of training a model in a traditional scheme

is largely controlled by the number of epochs, learning rate, choice of optimizer, and
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regularization (e.g. L2 weight decay) hyperparameters. With meta-learning, there are

also additional hyperparameters that affect the learning process during meta-pretraining:

number of gradient updates k, meta learning rate ϵ, and the number of meta-pretraining

epochs. Number of gradient updates per task meta-model, k, in our case is controlled

by the amount of training data provided and the batch size (given same amount of data,

larger batch size means less gradient updates but more stable training [72]). Meta learn-

ing rate, ϵ, controls the amount of change model parameters of ϕm receive from the

trained meta-models {ϕn=1, ϕn=2, ...}N in one epoch, identical to how learning rate con-

trols the speed of learning in traditional deep learning training. Lastly, the number of

meta-pretraining epochs controls duration meta-pretraining process and encompasses

the impact of all of the previously mentioned hyperparameters. As with other hyper-

parameters, selecting correct values for the above is part of the overall hyperparameter

tuning process.

3.2 Summary

This chapter provided detailed description of our proposed method of adapting Rep-

tile algorithm for improving performance of image-based DL models for interpretation

of medical imaging tasks. It outlined the process and considerations of selecting meta-

tasks, as well as hyperparameters controlling the pretraining process. In this thesis, rele-

vant clinical markers and demographic information are used as meta-tasks during meta-

pretraining of a CNN model. By using clinical features for model pretraining, CNN is

guided to learn more informative imaging features with regards to the target clinical task

(e.g. lesion detection). The pretrained model can then be finetuned on a relevant target

task and achieve better performance compared to models trained only using the imaging

data. The clinical features must be chosen carefully in order to adhere to the assump-

tion that they will provide useful complimentary information to the desired target task,

as well as being directly related to the content of the imaging data. Lastly, amount of
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meta-pretraining can be controlled through three main meta-hyperparameters that can

be selected as part of a wider hyperparameter tuning process.
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Chapter 4

Implementation and Experimental

Details

This chapter provides the implementation and experimentation details for the proposed

meta-learning method in Chapter 3. Through experimentation, we hope to show that the

proposed meta-learning approach can perform better than models trained with imaging-

only data. By using MS and AD datasets described in this chapter, we evaluate perfor-

mance by training all methods on three example target tasks: 1) detection of Gad lesion

presence in MS patients, 2) prediction of future lesion activity in MS patients, and 3) re-

gression of ADAS-13 and MMSE cognitive scores in AD patients. Given that our method

uses multimodal data, we also compare performance of the proposed method against ex-

isting deep learning methods that make use of medical imaging and clinical data together.

As a surrogate measure to understand how informative medical imaging and tabular clin-

ical data are independently of each other, we first trained separate models using either

imaging-only data or clinical-only data (referred to as unimodal methods). For methods

that use both modalities (imaging and clinical data) as model input, we trained examples

of early, joint, and late fusion multimodal methods described in Section 2.2. Furthermore,

given that the proposed meta-learning method is an example of a transfer learning ap-

proach, we also compare its performance to existing transfer learning techniques such
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as multi-task learning and multi-task pretraining. All experiments are implemented in

Python using PyTorch v1.10 [100] and MONAI v0.9.1 [17] frameworks.

4.1 Multiple Sclerosis Dataset

We make use of five proprietary MS clinical trial datasets that have been pooled together,

resulting in a total of 3560 patients (listed in Table 4.1). Each clinical trial contains patient

samples with longitudinal data of five MRI sequences: T2-weighted (T2-w), T1-weighted

(T1-w), T1 with Gadolinium contrast agent (T1-ce), PD, and post-contrast FLAIR. For ex-

periments on detection of Gad lesion presence, we use all patients across all treatment

arms listed in Table 4.2, meanwhile experiments on prediction of future NE-T2 lesion ac-

tivity only make use of placebo (no treatment) patients as to avoid taking into account

treatment effects. Nonetheless, all MS experiments make use of baseline time point MRI

scans as the imaging data. In addition to MRI, every patient sample also contains tabu-

lated longitudinal clinical data, containing information such as demographics (e.g. age,

sex), clinical test results, disease stage, and MRI-derived features (discussed later in more

detail in Section 4.4). The above MRI sequences were originally obtained at 1mm × 1mm

× 1mm resolution, and were then down scaled to 2mm × 2mm × 2mm resolution. Prior

to their use, the MRI scans were preprocessed in a consistent manner to minimize ac-

quisition effects due to differences in scanners, given that each trial merged data from

dozens of different study sites and MRI scanners. For all scans, the steps were as follows:

denoising [85], intensity heterogeneity correction [128], and intensity normalization into

[0,100] range. Next, FLAIR, PD, and T2-w scans were co-registered to T1-w scan using a

six-parameter rigid registration [16], after which the T1-w scans were registered to an av-

erage template stereotaxic space [19]. Lastly, all scans were then resampled onto a 1mm

isotropic grid. For our experiments, we also z-score standardized all MRI volumes by

subtracting mean and dividing by standard deviation of the pixel intensity values within
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the brain region, followed by skull stripping with the brain mask to leave only the brain

structures in the image.

Table 4.1: Trial names, MS disease phenotypes, number of patients, and number of

unique study sites per trial in the MS dataset.

Trial Name Disease Phenotype Patients Unique Sites
BRAVO

Relapsing Remitting
992 150

DEFINE ENDORSE 408 77
ADVANCE ATTAIN 1266 183
ASCEND Secondary Progressive 599 154
ORATORIO Primary Progressive 295 16

4.2 Alzheimer’s Disease Dataset

For the task of regression of cognitive scores, we use a subset of public Alzheimer’s

Disease (AD) dataset obtained from the Alzheimer’s Disease Neuroimaging Initiative

(ADNI) [104] database (adni.loni.usc.edu). The ADNI was launched in 2003 as a public-

private partnership, led by Principal Investigator Michael W. Weiner, MD. The primary

goal of ADNI has been to test whether serial magnetic resonance imaging (MRI), positron

emission tomography (PET), other biological markers, and clinical and neuropsychologi-

cal assessment can be combined to measure the progression of mild cognitive impairment

(MCI) and early Alzheimer’s disease (AD).

The AD dataset is made up of 722 patient samples containing baseline time point T1-w

MRI volumes obtained at 1mm × 1mm × 1mm resolution which were then downscaled

to 2mm × 2mm × 2mm. Without affecting visibility of vital structures in the MRI (e.g.

hippocampus), reduced dimensionality of the input MRI allowed for reduced number of

model parameters, leading to faster training time and experimentation process. All MRI

volumes were brain-extracted and linearly registered to MNI152 [84] space. For our ex-

periments, MRI volumes are also z-score standardized within the brain region and then

skull stripped by using a brain mask. Out of 766 patients, 197 are diagnosed as cognitively
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normal (CN), 409 with mild cognitive impairment (MCI), and 116 with Alzheimer’s dis-

ease (AD). The dataset also contains clinical records of the patient in tabular form, taken

at the time of MRI acquisition. This includes imaging summary statistics (e.g. hippocam-

pus volume), laboratory results, genetic markers, demographics information, and clinical

test scores (discussed further in Section 4.4).

4.3 Selection of Target Tasks

To test our proposed method, we selected three medical imaging interpretation tasks that

we hypothesize could benefit from inclusion of clinical context information (as originally

introduced in Chapters 1.2 and 1.3): 1) detection of presence of Gad brain lesions in MS

patients, 2) prediction of future (48 weeks later) new and enlarging T2 (NE-T2) lesion

activity in MS patients, and 3) estimation of disease severity scores Alzheimer’s Disease

Assessment Scale (ADAS-13) [138] and Mini-Mental State Examination (MMSE) [32] in

AD patients, all from baseline MRI scans.

For task #1, previous studies using DL methods generally relied on lesion segmenta-

tion [35, 60, 61] (achieved 0.93 recall) and lesion counting [92] (achieved 0.86 recall and

86.3 F1 score) for detection of Gad lesions. In our case, we simplify task #1 by designing it

as a binary classification problem to detect from the MRI data whether the patient has real

Gad lesions present. The ground truth label is the binarized count of Gad lesions, with

patients that have one or more Gad lesions belonging to the positive class and negative

class otherwise. We selected this threshold to allow as many positive class cases as pos-

sible in order to tackle severe class imbalance (seen in Table 4.2). This task was selected

because we hypothesize that inclusion of clinical context can help discern uncertainty in

identifying whether hyperintensity areas in MRI are real Gad lesions or not (described

in more detail in Section 1.2 and visualized in Figure 1.1). Given that presence of Gad

lesions is one of the indicators of MS disease worsening, detection of their presence can
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alert the treatment providers to take a closer look at the MRI data and adjust treatment if

necessary.

Similarly to task #1, prediction of future NE-T2 lesion activity has primarily been at-

tempted through lesion segmentation [39, 119, 122], lesion count regression [23, 25], and

lesion presence classification [123] from multi-sequence MRI data. Out of the listed stud-

ies, the one [25] with the closest equivalent experiment task (prediction of future NE-T2

of placebo patients) achieved ROC AUC of 0.836, meanwhile the next closest study [123]

attained 80.21% accuracy. For our purposes, task #2 was designed as a binary classifi-

cation problem to predict whether a patient will have future NE-T2 lesion activity. The

ground truth label is a binarized NE-T2 lesion count at 48 weeks after the initial MRI scan

was taken. According to the MS guidelines [33], a cutoff of three or more NE-T2 lesions

is used as an indicator of minimal evidence of disease activity, and as such, patients with

NE-T2 count ≥ 3 are considered as positive class (active patient) and negative class other-

wise (an example of an active patient MRI with NE-T2 lesions can be seen in Figure 1.2).

We selected this task as we hypothesize that prediction of future NE-T2 lesion activity can

benefit from knowledge of clinical history (e.g. disease stage, age) that can be predictive

of disease activity in addition to MRI information. With the ability to predict whether

the patient will have NE-T2 lesion activity in the future, this information can be of use to

physicians in order to help select appropriate treatment earlier.

For task #3, we focused on estimating ADAS-13 and MMSE scores given that in medi-

cal practice, patient symptoms are more likely treated based on clinical assessments rather

than on a specific diagnosis [133]. MMSE is a commonly used cognitive assessment for

diagnosis of Alzheimer’s disease with the scores ranging from 0 to 30, with lower score

indicating more severe impairment. ADAS-13 is version of ADAS-cog test used for as-

sessment of severity of dementia symptoms, with scores ranging from 0 to 85 and higher

score indicating greater cognitive impairment. Previous studies [24, 73, 90, 136] generally

focused on prediction of future MMSE and ADAS scores (mainly MMSE) by using multi-

task and joint learning methods from MRI and clinical data. By learning diagnosis clas-
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sification in addition to cognitive score prediction, [24] achieved 3.27 RMSE for MMSE

prediction, meanwhile prediction of several cognitive scores at once by [73] obtained

MMSE MAE of 1.92. As closer equivalents to our target task of estimating MMSE and

ADAS-13, [136] obtained 2.50 RMSE when estimating MMSE in conjunction with disease

classification task, and [90] achieved 2.15 and 7.34 RMSE in joint MMSE and ADAS-13

regression respectively. Similarly to other target tasks, we believe that estimating ADAS-

13 and MMSE scores from MRI data can benefit from clinical context due to uncertainties

present in imaging information. For example, reduced hippocampal volume is a known

biomarker for AD [34] and is determined by examining the size of hippocampus visi-

ble in the MRI. Given that hippocampal volume also decreases naturally as humans age

older [34], this creates ambiguity when trying to diagnose the patient using MRI data

alone. Knowledge of clinical context such as patients age can greatly help confirm the

diagnosis since visible decrease in hippocampal volume of a 20 year old patient is much

more indicative of AD diagnosis compared to the same decrease in a 70 year old patient.

Comparison between MRI of cognitively normal patient and a patient with Alzheimer’s

disease is shown in Figure 1.3.

4.4 Selection of Supporting Clinical Data

As first mentioned in Chapters 2.2 and 3.1.1, selection of supporting clinical data to be

used as model input is done on the assumption that it is related to the target task and

ideally, also the other input modality (in our case, MRI scans). Given the motivation of our

method to guide CNN model in learning more informative features from MRI, we also

make use of image-derived data found in the MS and AD datasets in order to investigate

effects between non-imaging (e.g. age, sex, disease diagnosis) and image-derived clinical

data (e.g. T2 lesion volume, hippocampus volume) on model performance. Note that

throughout this thesis, we often refer to supporting clinical data (e.g. age, lesion volume,

cognitive scores) as clinical features or clinical markers.
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4.4.1 Multiple Sclerosis

For prediction of future NE-T2 lesion activity (target task #2), we selected Expanded Dis-

ability Status Scale (EDSS) score [69], T2 lesion volume, age, MS disease stage (phenotype,

e.g. RRMS), and Gad lesion count at baseline time point as support clinical data, given

that majority of these have been successfully used in conjunction with MRI data for pre-

diction of MS treatment efficacy in previous studies [25]. These tabular clinical features

provide valuable clinical context to the imaging model as follows. EDSS value provides a

score quantifying levels of disability and by extension the severity of MS [69]. Volume of

T2 lesions has been found to be a robust marker of MS progression [38], and thus, directly

related to MS lesion activity. The disease phenotype (e.g. RRMS, SPMS) itself is in part

determined by the lesion load of the patient. Age of the patient has been shown to be one

of the prognostic factors for MS [5, 43]. Lastly, Gad lesion count can reflect the level of

lesional MRI activity (how many new lesions are forming) and can indicate the stage of

MS disease [30]. For detection of Gad lesion presence (target task #1), we used the same

supporting clinical data as described above for the same reasons with one exception. Gad

lesion count was excluded as one of the supporting clinical features due to the fact that

the target task #1 aims to predict presence of Gad lesions, which is in itself a binarized

version of Gad lesion count. All of the above clinical and demographic data were mea-

sured at the baseline time point (the initial visit for acquisition of MRI), with the exception

of future NE-T2 lesion count, which was recorded at the next consecutive time point 48

weeks later. The relevant statistics are presented in Table 4.2.

4.4.2 Alzheimer’s Disease

Supporting clinical information for ADAS-13 and MMSE regression are divided into two

subsets: clinical and image-derived features. For clinical features, we selected age, years

of education, sex, and presence of apolipoprotein E4 (APOE4) gene variant [65] as these

are known risk factors and markers for development of AD and dementia [6]. For imaging
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Table 4.2: Selected tabular clinical data and demographics statistics for MS dataset

Feature Statistics
EDSS Mean: 3.24, Std. Dev.: 1.71
Age (years) Mean: 39.38, Std. Dev.: 10.01
T2 lesion volume (ml3) Mean: 11.00, Std. Dev.: 12.79

MS Phenotype Number of patients:
PPMS: 294; RRMS: 2666; SPMS: 599

Treatment

Number of patients per treatment:
Dimethyl Fumarate: 265
Interferon Beta-1a: 338
Laquinimod:317
Natalizumab: 308
Ocrelizumab: 207
Peginterferon Beta-1a: 1263
Placebo: 862

Gad-enhanced lesions Number of patients with/out Gad-enhanced lesions:
Present: 1223 (34.4%); Absent: 2337

Future lesion activity Number of patients with/out future NE-T2 lesion activity:
Active: 1070 (30.5%); Inactive: 2490

summary data, we used measurements of hippocampus, ventricles, entorhinal cortex,

and whole brain volumes since volume measurement of select brain structures is one

way to quantify brain atrophy, and is one of the methods to diagnose stages of AD [56].

Relevant statistics of the above data are presented in Table 4.3.

Table 4.3: Selected tabular clinical data and demographics statistics for AD dataset

Feature Statistics
Hippocampus volume (ml3) Mean: 6795.31, Std. Dev.: 1158.58
Ventricle volume (ml3) Mean: 38198.59, Std. Dev.: 21229.54
Whole brain volume (ml3) Mean: 1024495.88, Std. Dev.: 109887.25
Entorhinal cortex volume (ml3) Mean: 3468.82, Std. Dev: 757.107
Age (years) Mean: 72.99, Std. Dev: 7.04
Education (years) Mean: 15.95, Std. Dev: 2.80
Sex Male: 337, Female: 385
ADAS-13 Mean: 16.41, Std. Dev: 9.284
MMSE Mean: 27.31, Std. Dev: 2.61

APOE4 presence Number of patients:
Absent: 391; Present: 331;
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4.5 Model Architecture

As the base CNN model, we use a popular ResNet [45] architecture as seen in Figure 4.1.

It consists of two major components: CNN backbone for extraction of MRI features and an

MLP classification head. The CNN backbone is made up of four residual blocks (bottom

left of Figure 4.1), along with adaptive average pooling and flattening operations at the

end. The MLP head consists of two fully-connected layers with leaky ReLU activation in

the middle. The model hyperparameters are outlined in the Table 4.4 below.

Figure 4.1: Diagram of the CNN architecture. Top: ResNet model with MRI-only input;

minor modifications to the MLP classification head are made for different experiments.

Bottom left: architecture of the residual block.

Table 4.4: Model architecture details. Note that for the linear layers in the MLP, the num-

ber of input or output nodes changes with respect to the task at hand (e.g. single output

node for binary classification, but three for 3-class classification).

Block Layer Details

Residual
3x3x3 Conv3d Channels (block 1 to 4): [32, 64, 128, 256]

Stride: 1; Padding: 1
Dropout P = 30%
1x1x1 Conv3d Same as 3x3x3 Conv3d

MLP
Linear Layer 1: 256 to 32; Layer 2: 32 to 1*
Leaky ReLU Negative slope: 0.01
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4.6 Baseline Methods

As a surrogate for quantifying how informative each modality is with regards to the target

tasks, we trained unimodal models that use only imaging (referred to as MRI-only) or only

tabular (referred to as clinical-only) data as input. For MRI-only experiments, the entire

model in Figure 4.1 is used, meanwhile, clinical-only experiments utilize a 2-layer MLP

model (seen in Figure 4.1, without the CNN backbone), both of which are commonly

used architectures in for processing imaging and tabular-style data respectively.

Given that our proposed method makes use of multimodal data (imaging and clini-

cal), we compare our method to other existing methods of multimodal fusion in medical

imaging by training examples of early-fusion, joint-fusion, and late-fusion models as orig-

inally described in Chapter 2.2. For early fusion (Figure 4.2a), imaging features from the

ResNet CNN are concatenated with preprocessed clinical data which are then used as

input to the MLP. For joint fusion, clinical features are first extracted by an MLP and are

then concatenated with ResNet-extracted imaging features prior to being used as input

to another MLP (Figure 4.2b). For late fusion in Figure 4.2c, there are two separate mod-

els for each modality (ResNet for MRI, MLP for clinical data) both of which predict the

target task (for example in classification tasks, these are pre-softmax values). The actual

output is then the mean value of the individual model outputs. The process is mirrored

for AD experiment for the exception that there are two parallel MLP classification heads

(a multi-task approach), one for regression of each of the ADAS-13 and MMSE cognitive

scores.

Since the proposed meta-learning approach is a subtype of transfer learning, we also

compare it to existing transfer learning methods in the medical imaging domain. One

popular approach to learning a shared imaging representation is multi-task learning (de-

scribed in Chapter 2.3.1). Shown in Figure 4.2d, both target tasks and supporting clinical

features are predicted simultaneously via parallel MLP classification heads (one per task)

and using a shared ResNet backbone. Furthermore, to mirror the pretraining-finetuning
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Figure 4.2: Architectures of different multimodal and transfer learning baseline models

(C - concatenation, µ - mean operator). CNN backbone from Figure 4.1 is used to learn

imaging features from MRI; 2-layer MLP blocks are used for clinical feature extraction

or feature mixing; a) is an example of early fusion by concatenating raw clinical feature

vector with imaging features, b) is joint fusion by first passing raw clinical data through

an MLP to extract features prior to concatenation, c) is late fusion where logit predictions

are averaged between CNN and clinical models prior to output; d) shows architecture of

multitask learning approach where both target task and clinical features are predicted at

the same time. Details of CNN backbone and MLP networks are shown in Figure 4.1.

process of our proposed method, a similar multi-task baseline method (referred to as

multitask pretrained) is used. A multi-task model (Figure 4.2d) is first pretrained to simul-

taneously predict all of the supporting clinical features. Afterwards, the multihead MLP

blocks are replaced with a newly-initialized MLP block, and the entire model is then fine-
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tuned on the target task. With this method, we compare the differences between learning

imaging features through a multi-task approach against using a meta-learning approach.

It is important to note that architecture details change slightly depending on the tar-

get task. For example, the number of nodes in the output layer can change when used for

multiclass classification tasks (e.g. MS phenotype) and single-value regression (e.g. age).

However, all of the methods are made up of identical building blocks (e.g. CNN back-

bone, MLP blocks) as to maintain that the number of trainable model parameters (and by

extension, their representation power [9]) of the models remain similar in order to allow

for fair comparison between the methods.

4.7 Training Procedures

To ensure evaluation validity and minimize the possibility of distribution shifts, data

splits (divided into a 70/10/20% training/validation/testing ratio) were created in a way

such that class distributions remained identical between the splits. In the case of task

#3 (ADAS-13 and MMSE score regression), we maintained the distribution of patients

through disease diagnosis (CN, MCI, and AD) and confirmed that summary statistics of

ADAS-13 and MMSE remain similar between data splits. Furthermore, the size of the MS

dataset for task #2 (prediction of future NE-T2 lesion activity) was reduced from 3560 pa-

tients to only 862 by using only placebo patients in order to avoid introducing more task

complexity due to presence of treatment. Note that for all MS experiments, we only used

post-contrast FLAIR MRI scans in order to reduce the overall dimensionality and com-

plexity of the imaging input compared to using all available sequences. Given the fact

that the FLAIR scans were acquired after the patient was administered Gadolinium con-

trast agent (hence post-contrast), these scans still capture the relevant information about

both Gad-enhanced and T2 lesions in the scan (both seen as hyperintensities in the image).

During the model training stage, image augmentations are applied to artificially in-

crease our dataset size and improve robustness to image perturbations [126]. We make
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use of random flipping along saggital axis (left and right hemispheres) with the probabil-

ity of 30%, and apply random Gaussian noise with µ = 0 and σ = 0.1 with 30% proba-

bility. Any numerical data (age, EDSS score, years of education, brain volumes, cognitive

test scores) are z-score standardized with their respective mean and standard deviation

statistics (seen in Tables 4.2 and 4.3), meanwhile categorical data (MS phenotype, indica-

tor of APOe4 gene presence, sex) are converted to a one-hot encoded representation.

For all experiments, model parameters were first initialized using Kaiming [44] ini-

tialization with an identical random seed prior to training. For methods trained directly

on the target task (no pre-training), we used the following hyperparameters for model

training (with minor modifications due to hyperparameter tuning): Adam optimizer [66],

learning rate α = 3× 10−4, L2 weight decay γ = 2× 10−5, step learning rate decay rate of

0.995 after every epoch, and a minibatch size b = 6 (this controls the number of gradient

updates per meta-epoch given a constant dataset size). While the models were trained

for 800 epochs in order to observe full training dynamics, evaluation metrics were taken

when the model achieved lowest validation loss. The same hyperparameters were used

for model pretraining with the exception of learning rate α = 1× 10−3 and L2 weight de-

cay γ = 2× 10−4, in addition to meta learning rate ϵ = 0.75 and 75 epochs. For finetuning,

a similar setup is used but instead with learning rate α = 2 × 10−4 and L2 weight decay

γ = 3 × 10−5 to tune all the trainable parameters. Note that the same dataset is used for

both pretraining and finetuning stages.

Depending on the task, we selected the appropriate loss function for the training pro-

cess. Binary cross entropy (BCE) is used for binary classification tasks (e.g. detection of

Gad lesion presence), mean squared error (MSE) for regression (e.g. EDSS score), and

cross entropy (CE) loss for multi-class classification (e.g. MS phenotype classification).

Specifically for target task of joint ADAS-13 and MMSE scores regression, we utilized

root mean squared error (RMSE) to mirror what has already been used in previous stud-

ies for this exact problem [24, 90]. For the multitask and multitask pretrained methods, the

total loss used for backpropagation is the sum of losses from all of the tasks as seen in
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Equation 4.1, where N is the set of learned tasks (e.g. prediction of multiple supporting

clinical markers).

Ltotal =
N∑

n=1

Ln (4.1)

4.8 Performance Evaluation

Given that both of the target MS tasks are binary classification tasks, we measure perfor-

mance with metrics designed for binary classification problems (introduced in Chapter

2.1.3). Both of the target MS tasks experience severe class imbalance where the positive

class (e.g. patient with Gad lesions detected) is much less prevalent than the negative

class (see Table 4.2 for details). For both of the MS tasks, we put the emphasis on correct

detection of the positive class because correct detection of Gad lesion presence or potential

future NE-T2 activity in a patient can be a sign for additional treatment intervention by

the medical staff. As such, we select metrics that focus more on the accuracy of prediction

for the positive class, which are precision-recall (PR) and F1 score metrics. In contrast, we

also use ROC metric as it is not biased towards minority nor majority class, and is one of

the standard metrics used for binary classification. With both PR and ROC, we make use

of AUC in order to eliminate the effects of binarization threshold selection. It is important

to note that binarization thresholds can vary from metric to metric when selecting for the

highest metric value. For regression tasks, performance is evaluated with either MSE or

RMSE depending on the task. Detailed description of the above metrics is provided in

the Chapter 2.1.3. Unless stated otherwise, all models are trained in a 4-fold cross valida-

tion manner using their respective MS or AD datasets (data folds across experiments are

identical).
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4.9 Summary

This chapter presented implementation details for experiments in the following chap-

ters, and discussed the datasets used, data preprocessing steps, description of baseline

methods, training procedures, as well as evaluation metrics. Information provided in

this chapter is of major importance to other researches attempting to replicate results in

this thesis. In the following chapter, the models described in this chapter are used to

compare performance and feasibility of the proposed meta-learning approach against ex-

isting unimodal, multimodal, and transfer learning methods on the target tasks, compare

robustness in varying data regimes, and investigate the importance of individual clinical

markers for the target task performance.
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Chapter 5

Experimental Results and Discussion

In this chapter, we present and discuss results of experiments and methods discussed in

Chapter 4. We first show performance metrics of the proposed meta-learning approach

along with unimodal, multimodal, and transfer learning methods on the target tasks of

detection of Gad lesion presence, prediction of future NE-T2 lesion activity, and regres-

sion of ADAS-13 and MMSE cognitive scores, with the belief that meta-learning can per-

form better than unimodal and potentially transfer learning methods. This chapter then

investigates the effects of individual clinical features and the selection of supporting clin-

ical data on the target task performance, where we hope to gain more insight on how

to best select the supporting clinical data for the meta-learning approach. Following is

a short exploratory studying to investigate how the meta-learning approach performs

across varying data regimes in comparison to the other baseline methods. Lastly, this

chapter concludes with discussion about limitations of meta-learning approach and con-

siderations about its use.

5.1 Comparison of Multimodal Fusion Methods

This section presents experimental results of the proposed meta-learning method to eval-

uate its performance on the tasks of 1) detection of Gad lesion presence, 2) prediction

61



of future NE-T2 lesion activity, and 3) regression of ADAS-13 and MMSE cognitive test

scores. Results from MRI-only or clinical-only methods are used as surrogate measure-

ments of how informative each modality is. We hypothesize that the proposed meta-

learning approach can perform better than the MRI-only method, as well as achieve com-

petitive performance with other transfer learning methods (multitask and multitask pre-

trained). Furthermore, we also compare performance of the above methods to examples

of early, joint, and late multimodal fusion approaches. Descriptions of different methods

are presented in Chapter 4. Performance on binary classification tasks (tasks #1 and #2) is

evaluated through ROC AUC, PR AUC, and F1 score metrics. Performance on regression

task # 3 is evaluated using RMSE metric on each individual cognitive score.

5.1.1 Results and Discussion

Detection of Gadolinium-enhanced Lesion Presence

Results on the task of detection of Gad lesion presence are shown in Table 5.1 as mean

and standard deviation across all folds. All experiments use baseline post-contrast FLAIR

MRI and clinical data recorded at the time of MRI acquisition.

Table 5.1: Performance metrics of various unimodal, multimodal, and transfer learning

techniques for detection of Gad brain lesion presence. Performance is measured using

4-fold cross validation showing mean and standard deviation respectively. Gray are uni-

modal methods, cyan are multimodal methods, and green are transfer learning methods.

Best results in bold, arrow direction indicates that higher value is better.

Method ROC AUC ↑ PR AUC ↑ F1 ↑
MRI-only 0.822±0.006 0.763±0.008 0.673±0.004

Clinical-only 0.777±0.023 0.659±0.026 0.651±0.022
Early Fusion 0.829±0.004 0.780±0.005 0.689±0.007
Joint Fusion 0.838±0.002 0.784±0.007 0.682±0.005
Late Fusion 0.833±0.005 0.778±0.001 0.684±0.004
Multitask 0.748±0.011 0.677±0.010 0.697±0.009

Multitask Pretrained 0.758±0.012 0.671±0.015 0.649±0.008
Meta-learning 0.848±0.007 0.797±0.005 0.694±0.004
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Comparing the methods using only one modality, MRI-only approach performed sig-

nificantly better than clinical-only approach across all metrics. Given that Gad lesions

are visible hyperintensities on the MRI (see Figure 1.1), it is logical that a model using

MRI data as input performs better as there is a direct relationship between the input and

the ground truth label (presence of Gad lesions), in comparison to learning the indirect

relationships from the clinical data. Furthermore, clinical-only method showed the high-

est variance out of all other methods, which can be a sign of overfitting on the training

dataset and bad generalization to new data.

In general, multimodal non-transfer learning methods (early, joint, and late fusion)

have performed 1 - 2% better than the single modality methods across all metrics. While

its a marginal improvement, this shows the benefits of multimodal methods and using

imaging and clinical data together. Interestingly, all of the above multimodal methods

performed very similarly to each other with no major benefit to either one on this specific

target task.

Comparing the transfer learning methods (multitask, multitask pretrained, and meta-

learning), multitask methods performed the worst across all methods (for the exception

of F1 score). Given that both multitask methods only use MRI as input, the significant

drop in performance compared to MRI-only approach is a potential sign of negative

transfer [161] phenomenon (introduced in Chapter 2.3), where the shared imaging rep-

resentation learned by the multitask approach was in-fact detrimental to the detection of

Gad lesion presence task. In contrast, the proposed meta-learning approach performed

the best in two out of three metrics, marginally outperforming the next best method by

1 - 2% in ROC AUC and PR AUC and performing second-best in F1 score. While it is

unknown whether the above findings are statistically significant, the improved results of

meta-learning method compared to MRI-only hint that pretraining the CNN on the sup-

porting clinical data is beneficial to learning the target task. However, observing worse

performance metrics of the other transfer learning methods (multitask and multitask pre-

trained) when compared to meta-learning, we believe that the differences in the pretrain-
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ing mechanism (e.g. multitask or meta-learning approach) are one of the determining

factors whether pretraining the model will be beneficial or not to the target task.

Prediction of Future NE-T2 Lesion Activity

Presented in Table 5.2 are the results of meta-learning and various baseline methods on

prediction of future (48 weeks later) NE-T2 lesion activity from baseline MRI and clini-

cal data. As described in detail in Chapter 4.4, we selected T2 lesion volume, EDSS score,

age, MS phenotype, and Gad lesion count as supporting clinical data. Compared to exper-

iment in Section 5.1.1, we only utilized placebo patients (no treatment) for this experiment

in order to simplify the task by removing treatment effects, resulting in 862 samples with

332 considered as active (≥ 3 NE-T2 lesions in the future).

Table 5.2: Performance metrics of unimodal, multimodal, and transfer learning tech-

niques for prediction of future NE-T2 lesion activity on placebo patients. Performance

is measured using 4-fold cross validation showing mean and standard deviation respec-

tively. Gray are unimodal methods, cyan are multimodal methods, and green are transfer

learning methods. Best results in bold, arrow direction indicates that higher value is bet-

ter.

Method ROC AUC ↑ PR AUC ↑ F1 ↑
MRI-only 0.681±0.017 0.545±0.015 0.653±0.019

Clinical-only 0.804±0.010 0.700±0.040 0.708±0.012
Early Fusion 0.813±0.011 0.723±0.010 0.720±0.020
Joint Fusion 0.809±0.009 0.710±0.029 0.715±0.020
Late Fusion 0.836±0.017 0.661±0.027 0.665±0.027
Multitask 0.689±0.037 0.558±0.065 0.627±0.047

Multitask Pretrained 0.701±0.024 0.581±0.029 0.637±0.029
Meta-learning 0.713±0.012 0.597±0.030 0.658±0.018

Observing the performance metrics in Table 5.2, we first notice that all methods and

metrics generally have much higher variance as compared to results for detection of Gad

lesion presence task in Table 5.1. While these tasks are different, high variance is often a

sign of worse model generalization, potentially due to a drastically decreased dataset size

and the underlying difficulty of predicting future disease activity. Comparing the uni-
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modal methods, MRI-only approach performed significantly worse compared to clinical-

only method across all metrics. We theorize that is due to the fact that baseline MRI

scan is much less informative of future lesion and disease activity compared to the collec-

tion of clinical data. Logically, this makes sense because while MRI (single post-contrast

FLAIR volume) can provide evidence of lesion activity at baseline, it is only a single data

point that does not cover the overall clinical context of the patient. In contrast, clinical

data (EDSS score, T2 lesion volume, Gad lesion count, etc.) provides multiple data points

that are relevant to disease progression, and thus, are more informative when predicting

future lesion activity.

We also notice a large discrepancy between methods where clinical information is pro-

vided ”implicitly” (in transfer learning methods as meta-tasks or pretraining objectives)

and ”explicitly” (as model inputs in early, joint, and late fusion), with the latter showing

much better performance. Similarly to the unimodal methods results, this points to the

fact that the provided clinical data are more informative for successful prediction of fu-

ture NE-T2 activity compared to the information contained in the MRI. We refer to this as

modality bias. Methods where clinical information is part of the input to the model (early,

joint, and late fusion) all performed similarly and outperformed all methods where clini-

cal information was not provided as model input. Late fusion approach obtained highest

ROC AUC, meanwhile early fusion method achieved highest PR AUC and F1 score. In

addition, early and joint fusion marginally outperformed the unimodal methods across

all metrics, again showing the benefits of utilizing multiple modalities. It is once again

important to note that it is unknown whether the results are statistically significant, how-

ever, we believe that they can still demonstrate informative trends and are useful for

intended analysis.

In order to confirm that the modality bias exists, we trained two identical early fusion

methods while varying the imaging input. One method used real MRI data for training,

meanwhile the other replaced the MRI input with random Gaussian noise with µ = 0 and

σ2 = 1, but kept the same clinical data as input. ROC AUC performance on the validation
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Figure 5.1: PR AUC performance on the validation set during model training using early

fusion method for prediction of future NE-T2 lesion activity. Imaging input to the model

using real MRI FLAIR sequence (purple) and random Gaussian noise (blue). Showing

results for the first 500 epochs of training.

set with real MRI data can be observed in Figure 5.1, where using random Gaussian noise

(red) reaches nearly identical performance as is using the real MRI scans (purple) for

training. The fact that using random noise can achieve similar performance as the MRI

demonstrates the existence of modality bias and the lack of useful information provided

by the baseline FLAIR MRI sequence to the prediction of future NE-T2 activity.

As shown in Table 5.2, all of the transfer learning methods (multitask, multitask pre-

trained, and meta-learning) generally performed worse across all metrics than any meth-

ods using clinical data as part of the model input. This is expected due to the confirmed

existing modality bias since these methods aim to improve performance by learning more

informative imaging features and rely heavily on the information in the MRI. Nonethe-

less, both multitask methods achieved marginally better ROC AUC and PR AUC than

MRI-only approach demonstrating the benefits of pretraining with clinical data. Inter-

estingly, the proposed meta-learning approach performed better than both multitask as

well as the MRI-only methods across all metrics. Given that MRI-only and meta-learning
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methods have nearly identical model architectures and input data, the improved results

indicate the benefits of meta-pretraining compared to training directly on the target task.

Estimation of ADAS-13 and MMSE cognitive scores

This section presents results of prediction of AD clinical score in Table 5.3 as RMSE mean

and standard deviation (lower is better). As the first experiment, the models used T1-w

MRI as the imaging input and non-imaging clinical data as the supporting clinical data

(as mentioned in Chapter 4.4.2, specifically age, years of education, sex, and presence of

APOE4 gene). In the later section, we also investigate the use of only image-derived as

supporting clinical data.

Table 5.3: RMSE of various unimodal, multimodal, and meta-learning techniques for re-

gression of ADAS-13 and MMSE clinical scores (using T1-w MRI and non-imaging clinical

data). Performance is measured using 4-fold cross validation showing mean and standard

deviation respectively. Gray are unimodal methods, cyan are multimodal methods, and

green are transfer learning methods. Best results in bold, arrow direction indicates that

lower value is better.

Method MMSE ↓ ADAS-13 ↓
MRI-only 1.843±0.119 7.323±0.179

Clinical-only 1.818±0.099 6.996±0.122
Early Fusion 1.623±0.154 6.534±0.135
Joint Fusion 1.652±0.132 6.608±0.145
Late Fusion 1.703±0.145 6.789±0.138
Multitask 1.787±0.185 7.101±0.143

Multitask Pretrained 1.813±0.176 7.204±0.151
Meta-learning 1.729±0.116 6.715±0.139

Observing the results for unimodal methods, clinical-only method achieved lower er-

ror than MRI-only method, more so for ADAS-13 score than MMSE. There is no large

difference in mean RMSE between the two methods (compared to results in Table 5.2 for

NE-T2 activity prediction), leading to the assumption that there is a low chance of modal-
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ity bias and both modalities are similarly informative for the regression tasks. However,

it is unknown if this is statistically significant.1

Multimodal methods (early, joint, and late fusion) once again demonstrated the ben-

efits of utilizing multimodal data by generally achieving the lowest losses for both tasks,

with early fusion performing the best and late fusion performing the worst out of the

three. Transfer learning methods (multitask, multitask pretrained, and meta-learning)

performed worse than the multimodal methods, however, all achieved lower loss than

MRI-only method, indicating the minor benefits of CNN pretraining with the clinical

data. Meta-learning method performed the best out of the three transfer learning meth-

ods, while also achieving lower loss for both tasks compared to the clinical-only method.

Similarly to the detection of Gad lesion presence task (Table 5.1), our proposed meta-

learning approach achieved lower mean error than unimodal and transfer learning meth-

ods (multitask and multitask pretrained), yet it fell short of the performance of all mul-

timodal methods. Given that in both tasks (lesion presence detection and AD score re-

gression) there isn’t a large performance difference between MRI-only and clinical-only

methods (leading to assumption that there a low chance of modality bias), it was hypothe-

sized that meta-learning would also perform on-par or better than multimodal methods,

however, the results showed the opposite. Comparing the clinical data used between

the two tasks, the ones used for Gad lesion presence detection are a mix of non-imaging

(e.g. age, MS phenotype) and image-derived (e.g. T2 lesion volume) clinical features.

In contrast, the clinical data used for AD score regression are all non-imaging markers.

Believing that the absence of image-derived clinical data is related to the performance dif-

ference between multimodal and meta-learning methods, we investigated how selection

of non-imaging or image-derived clinical data affects performance of the meta-learning

approach on the target tasks. This is explored in the next section.

1Statistical significance test were not carried out due to computational and time complexity of the ex-
periments, with a focus instead on very extensive experimentation and hyperparameter tuning, as well as
the use of cross validation.
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5.2 Selection and Effects of Supporting Clinical Data on

Target Task Performance

In this section, we investigate the selection of supporting clinical data and its impact

on the target task performance of our proposed meta-learning approach. Specifically, we

compare performance of meta-learning approach that uses purely image-derived features

(set of values that summarize important image-derived information) against using purely

non-imaging features (as in Section 5.1.1) on the task of ADAS-13 and MMSE score regres-

sion. For non-imaging data, we used age, years of education, sex, and presence of APOE4

gene as was done in Section 5.1.1. First described in Chapter 4.4.2, we selected volumes

of hippocampus, ventricles, entorhinal cortex, and whole brain as the image-derived fea-

tures. Additionally, baseline methods were also trained using the two sets of supporting

clinical data for comparison. All experiments are trained using an identical 4-fold cross

validation setup, with the results presented in Table 5.4.

5.2.1 Results and Discussion

As presented in Table 5.4, clinical-only method achieved slightly lower loss on MMSE

task (1.818 vs. 1.974 error) but relatively the same on ADAS-13 task when comparing

non-imaging and image-derived clinical data. Similarly, multimodal methods performed

largely the same when using either type of supporting clinical data, with the exception

of early fusion which achieved marginally higher error using the image-derived markers.

Interestingly, all transfer learning methods (multitask, multitask pretrained, and meta-

learning) performed better with image-derived clinical data compared to non-imaging re-

lated. While it is unknown whether the findings are statistically significant, the proposed

meta-learning approach also saw the largest improvement in terms of absolute error for

both tasks among the transfer learning methods, and managed to achieve nearly the low-

est error among all the methods. These findings lead us to believe that the meta-learning

approach performs better when the meta-tasks used for pretraining are closely related to
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Table 5.4: Comparing non-imaging (demographic; Dem.) and image-derived (Img.) sup-

porting clinical data for ADAS-13 and MMSE regression in AD patients (identical T1-w

MRI used for all experiments). Performance is measured using RMSE on 4-fold cross val-

idation, showing mean and standard deviation respectively. Best results in bold, arrow

direction indicates that lower value is better.

Method Clinical Data MMSE ↓ ADAS-13 ↓Dem. Img.
MRI-only 1.843±0.119 7.323±0.179

Clinical-only ✓ 1.818±0.099 6.996±0.122
✓ 1.974±0.103 6.931±0.131

Early Fusion ✓ 1.623±0.154 6.534±0.135
✓ 1.676±0.149 6.773±0.141

Joint Fusion ✓ 1.652±0.132 6.608±0.145
✓ 1.650±0.129 6.598±0.127

Late Fusion ✓ 1.703±0.145 6.789±0.138
✓ 1.694±0.106 6.698±0.104

Multitask ✓ 1.787±0.185 7.101±0.143
✓ 1.709±0.164 6.753±0.121

Multitask Pretrained ✓ 1.813±0.176 7.204±0.151
✓ 1.804±0.176 7.103±0.176

Meta-learning ✓ 1.729±0.116 6.715±0.139
✓ 1.621±0.102 6.219±0.130

the information present in the imaging data (e.g. measurement of hippocampus volume

that is directly visible in the MRI). While it would be logical to experiment with using

all non-imaging and image-derived clinical features with the meta-learning approach, we

do not perform such experiment due to significant additional computational resources

required and complexity of hyperparameter tuning (elaborated on further in Section 5.4).

Instead, we take a closer look at detection of Gad lesion presence experiments which use

a combination of image-derived and non-imaging clinical features.

To further investigate the effects of non-imaging and image-derived clinical data on

transfer learning performance, we explore whether the similar pattern can be found with

the detection of Gad lesion presence task. Using the same set of supporting clinical data

as in the original experiments in Section 5.1.1 (age, EDSS score, T2 lesion volume, and

MS phenotype), we pretrained the CNN model to predict/regress each individual clini-
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cal feature prior to finetuning on the target tasks. In this setup, the CNN learns imaging

features that are only relevant to predicting a single clinical feature, as compared to pre-

dicting all clinical features in the case of multitask and meta-learning methods. Models

are trained using the same hyperparameters and dataset as in Section 5.1.1 using 4-fold

cross validation. ROC AUC and PR AUC metrics on the hold-out test set can be observed

in Table 4.2.

Table 5.5: Test set ROC AUC AND PR AUC metrics on detection of Gad lesion pres-

ence after pretraining on varied individual clinical features. No pretraining (MRI only)

achieved best performance, followed by pretraining on T2 lesion volume, MS phenotype,

EDSS, and age. Performance is measured using 4-fold cross validation showing mean

and standard deviation respectively. Results for meta-learning method using all of the

supporting clinical features are also included for comparison. Best results in bold, arrow

direction indicates that higher value is better.

Method ROC AUC ↑ PR AUC ↑
MRI-only 0.822±0.006 0.763±0.008

T2 Volume 0.773±0.007 0.646±0.009
EDSS 0.746±0.007 0.606±0.008
Age 0.735±0.009 0.573±0.010

MS Phenotype 0.755±0.006 0.621±0.006
Meta-learning 0.848±0.007 0.797±0.005

Results in Table 5.5 show a clear separation in performance between different clinical

features that were used for pretraining. As a baseline, model trained using only imaging

information (MRI-only) managed to achieve the best performance compared to any of the

single-feature pretraining methods, indicating that pretraining only on a single task is

actually detrimental to the target task performance and can potentially lead to negative

transfer. Between the pretraining methods, T2 lesion volume achieved better performance

in both metrics over the other clinical markers, followed by MS phenotype classification

task and EDSS score regression. Pretraining for age regression performed the worst and

saw nearly no improvement over the course of finetuning. However, similarly to the AD

experiments in Table 5.4, pretraining using an image-derived marker (T2 lesion volume)
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still showed the best performance compared to non-imaging markers. Moreover, the next

best performing clinical feature to pretrain on was MS phenotype. Within the context

of detection of Gad lesion presence, knowing the MS disease phenotype (e.g. SPMS) is

valuable since it is known that patients with RRMS are much more prone to developing

Gad-enhanced lesions, which can also be visible in the MRI. As such, pretraining on clas-

sification of MS phenotype is indirectly related to the target task of detection presence

of Gad lesions, as well as the information present in the MRI. At the same time, EDSS

score [69] is a more subjective assessment of MS that measures overall patient ability and

is not directly related to the target task. This is reflected by worse performance compared

to pretraining on MS phenotype, however, still better than age regression.

5.3 Effects of Training Dataset Size on Target Task Perfor-

mance

As mentioned in Chapter 2.3.3, meta-learning methods are often used in medical imag-

ing for few-shot learning in order to combat lack of sufficient data. Typically, such meth-

ods [29, 127, 160] define meta-tasks as different datasets which are used to learn a single

task (e.g. segmentation). In contrast, our proposed approach instead uses a single dataset

but defines meta-tasks in terms of different learned tasks (e.g. regression, classification)

from the same data. As a short exploratory study, we performed a set of experiments

to understand how well our proposed meta-learning method performs across varying

dataset sizes. As an example target task, we once again used detection of Gad lesion

presence as in Section 5.1.1 due to the size of the dataset (3560 unique samples) and rel-

atively good performance of the meta-learning approach in previous experiments. The

MS dataset was split into 70% training, 10% validation, and 20% testing data splits. In

order to simulate varying data regimes, the training split was then further reduced into

20%, 40%, 60%, 80%, and 100% splits of the overall 70% training splits. This was done by

removing samples such that the distribution of samples with/out Gad lesion presence re-

72



mained identical (within 2-3%) across all splits in order to avoid a class distribution shift.

Same methods as originally listed in Table 5.1 (for exception of clinical-only method) were

trained using the dataset permutations above. Performance was evaluated using ROC

AUC, PR AUC, and F1 score metrics on the hold-out test set.

5.3.1 Results and Discussion

Figure 5.2: Effects of training dataset size across various image-based and multimodal

methods on ROC AUC, PR AUC, and F1 score on the hold-out test set. Target task is

detection of Gad lesion presence. All methods achieved higher performance as more

training data is available; meta-learning approach generally achieved better performance

across data regimes compared to other methods, with some exceptions.

Observing results in Figure 5.2, all methods generally tend to improve performance as

more training data becomes available. This is expected behaviour given that more unique

training samples allow the deep learning model to better learn the underlying data-label

relationships as well as generalize on the unseen data [72]. Multimodal methods (early,

joint, and late fusion) performed better in all metrics than MRI-only approach in nearly

all data regimes. Surprisingly, among the transfer learning methods (multitask, multitask

pretrained, and meta-learning) multitask and multitask pretrained methods performed

significantly worse compared to other methods across all the metrics, for the exception of
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multimodal method’s F1 score. We believe that this is due to the fact that using MRI to

predict several clinical features at once (multitask), where each permutation of the clinical

features can be treated as a unique ground truth label, is suffering from an even worse

lack of data compared to when the same input MRI is used for prediction of a single label

(e.g. Gad lesion presence detection). In contrast, the proposed meta-learning approach

outperformed (in some cases marginally) all other methods across all metrics and training

dataset sizes for the exception of 20% training data split case. Interestingly, meta-learning

generally achieved the same ROC AUC, PR AUC, and in some cases F1 score as the next

best method with 20% less data available (with some exceptions). We believe that the

performance of meta-learning in lower data regimes can be attributed to meta-pretraining

allowing for a larger number of unique gradient updates compared to training a model

directly on the target task. For example, in a 20% training dataset case, there are 498

unique MRI samples with the respective target label (ignoring additional samples due to

augmentations). When pretraining with meta-learning, the same 498 MRI samples also

gain four additional and unique target labels (the meta-tasks) which provide additional

training guidance for the model. In essence, the input data gap problem is mitigated

through additional training supervision with extra ground truth labels (the meta-tasks).

However, this once again relies on the assumption that the learned shared knowledge

from the meta-tasks is related and beneficial to the target task. While this section presents

a potential direction for future research, it is only a shallow exploration with experiments

done on a single permutation of the dataset (e.g. no cross-validation, unknown statistical

significance), and would require further experimentation to confirm the initial findings.

5.4 Limitations

Throughout experimentation, we identified a number of limitations of our proposed meta-

learning approach. Compared to single-stage training methods such as multi-task, multi-

modal, and unimodal methods, the meta-learning approach has separate pretraining and
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finetuning stages. This introduces a number of challenges with the selection of support-

ing clinical features and hyperparameter tuning. While there are guidelines for selecting

which clinical features to use as meta-tasks, for example, the need to be related to the

information in the MRI and the target task, it is not guaranteed that the learning a shared

representation with meta-pretraining will result in better performance on the target task

after finetuning. An example case of this was demonstrated with modality bias in experi-

ments in Section 5.1.1. This is due to the fact that there is no feedback signal such as a loss

gradient from performance on the target task to the meta-pretraining process. Addition-

ally, this severely limits which clinical features can be used even if they are potentially

beneficial to the learning of the target task, but not in a shared learning environment

with other meta-tasks. Lastly, our approach is sensitive to cases with severe modality

bias (see experiments in Section 5.1.1), where MRI was largely uninformative of the tar-

get task compared to clinical data. At the same time, multimodal methods do not have

these limitations as they can adjust the contribution of each of the input sources directly

when learning the target task, with the model automatically learning the optimal feature

selection by itself.

Another downside of the proposed method is that the two-stage training approach

makes hyperparameter tuning and validation much more complicated. Essentially, the

hyperparameter tuning process is separated into two parts: meta-pretraining tuning and

target task adaptation tuning, with the goal of maximizing validation performance on

the target task. In addition, there are extra hyperparameters specific to the meta-learning

process that need to be taken into account. For example, our implementation assumes

that all meta-tasks are equally important during meta-pretraining stage, however, that

might not always be the case. As such, selecting appropriate weights (ωn in Algorithm 1)

for the meta-tasks becomes an additional consideration to take into account. In summary,

meta-learning approach requires a lot more user effort and computational time compared

to single-stage methods.
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Our proposed approach is also computationally and resource expensive. During meta-

pretraining using batch version of Reptile, an individual meta-model is trained on each

clinical feature leading to N parallel models when using a set of N clinical features. De-

pending on the implementation, the meta-pretraining stage either requires N -fold more

computation time (each meta-model trained in series per training step), or N -fold more

compute resources (if trained in parallel, e.g. one GPU per model) when compared to

other multimodal fusion methods. This makes using large number of clinical features

(and by extension, meta-tasks) computationally unreasonable. One way to solve this is-

sue would be to sequentially randomly sample individual meta-tasks during pretraining,

however, this increases the training time and raises question of how to ensure fair meta-

task representation, which is an on-going research area in itself [14, 150].

Lastly, it is important to note the effects of dataset size on our experiments. The subset

of MS dataset that was used contained over 3500 patient samples, and is considered as

a large dataset in the medical imaging domain. For comparison, other large brain MRI

datasets such as BrATS 2020 [91] and a variation of a broader ADNI dataset [87] contained

2640 and 1886 patient samples respectively. However, these datasets are considered very

small in the context of a DL system which are known to perform better with large amounts

of data (e.g. a small computer vision dataset for benchmarking DL methods, Tiny Ima-

geNet [71], contains 100,000 images). In addition to 3D nature and structure complexity

within the MRI volumes, this lack of data can hamper training and model performance

of an ML system.

5.5 Summary

This chapter presented experimental results and comparison between the proposed meta-

learning and existing unimodal, multimodal, and transfer learning methods trained for

three medical imaging tasks. First, performance metrics of multimodal methods com-

pared to unimodal methods generally showed benefits of utilizing both the MRI and
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clinical data for all of the three target tasks, with minor exceptions. For two of them (de-

tection of Gad lesion presence and estimation of ADAS-13 and MMSE cognitive scores)

meta-learning performed the best across all methods. For the task of future NE-T2 lesion

activity prediction, experimental results identified a significant modality bias towards the

clinical data, which is believed to be the cause of poor performance by the transfer learn-

ing methods. This chapter also presented an ablation study comparing use of image-

derived and non-imaging related clinical features with the proposed meta-learning ap-

proach. Experimental results demonstrated that meta-learning methods benefit the most

when the supporting clinical markers are closely related to the target task as well as the

content found in the MRI sequence itself. Lastly, a short exploratory study illustrated

the effectiveness of meta-learning method in dealing with lack of training data, where

the results showed meta-learning outperforming other methods in all but the lowest data

regimes across nearly all metrics. While the statistical significance of the above results is

unknown, we believe the results are sufficient to identify the discussed trends. Lastly, this

chapter discussed some of the downfalls of our proposed approach, in particular, com-

plexity of hyperparameter tuning, selection of supporting clinical data, and high compu-

tational requirements.
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Chapter 6

Conclusion

This thesis presented a meta-learning approach to improving deep learning model per-

formance when clinical information is provided in addition to medical imaging data.

First, we illustrated the importance of using multimodal data for correct interpretation

of medical images due to the problem of visual ambiguities in the imaging data, and

hypothesized that addition of clinical information provides valuable clinical context and

patient history that can improve model performance compared to imaging-only meth-

ods. Various multimodal and transfer learning approaches that make use of multiple

data modalities were then introduced, and we listed a number of their successful exist-

ing applications within the medical imaging domain. We then presented our adaptation

of Reptile meta-learning algorithm for pretraining image-based CNN models with tab-

ular clinical features, followed by finetuning on the desired target task. To evaluate our

method, we trained all methods to perform three example medical imaging tasks: 1) de-

tection of Gad lesion presence, 2) prediction of future NE-T2 lesion activity, and 3) re-

gression of ADAS-13 and MMSE cognitive scores. Experimental results in Chapter 5.1

demonstrated that our proposed meta-learning approach performed not only better than

imaging-only methods for tasks #1 and #3 in select metrics, but also marginally outper-

forming multimodal and other transfer learning methods in some cases. Interestingly,

we also identified a case of modality bias in the prediction of future NE-T2 lesion activ-
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ity task, where selected clinical feature set was much more informative compared to the

information in the MRI data. However, even in this case, the proposed meta-learning

approach achieved better metrics than the imaging-only method, once again showing the

benefits of meta-pretraining with clinical context. While it is unknown whether these

findings are statistically significant, they do show trends that are convincing enough to

warrant further research into applications of meta-learning in the medical imaging do-

main.

Experimental results of supporting clinical data ablation (5.2) demonstrated that clin-

ical features that are used as meta-tasks during meta-pretraining should be the ones that

are closely related to 1) the target task and 2) the information in the MRI itself in order

to achieve the best target task performance with our proposed method. This was inline

with our original assumptions and was specifically observed with the tasks of Gad lesion

presence detection in MS and cognitive score regression in AD. Lastly, results of the short

dataset size ablation experiments in Chapter 5.3 showed impressive robustness of our

proposed approach by generally achieving the best metric performance compared to uni-

modal, multimodal, and other transfer learning methods across nearly all data regimes.

In summary, we presented experimental evidence of the merits of the proposed meta-

learning approach for making use of clinical information with medical image-based DL

models, a guideline on selection of the supporting clinical feature set, and an exploratory

look at robustness across different data regimes.

One promising future research direction is to investigate how to improve the meta-

pretraining procedure with regards to performance on the target task. For example, de-

termining the loss on the target task during meta-pretraining stage and using it to adjust

the meta-model parameter updates, or to choose the duration of the pretraining process

(e.g. stopping meta-pretraining when target loss is at the lowest). Another possible fu-

ture extension of the work is to explore our proposed use of meta-learning for improving

parameter initialization of DL models used for medical image segmentation (e.g. brain

lesion or white matter). For example, a segmentation model (e.g. UNet [115]) can be
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pretrained to predict relevant clinical information (e.g. disease stage) by using the meta-

learning scheme. Following that, the model can be finetuned for segmentation, and in

theory could potentially achieve more accurate segmentation given that the model has

prior knowledge of the clinical context (e.g. later disease stage relates to more lesions

being present).
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