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Abstract

We establish an invariance principle for the barycenter of a Brunet-Derrida particle system in d-
dimensions. The model consists of N particles undergoing dyadic branching Brownian motion
with rate 1. At a branching event, the number of particles is kept equal to N by removing the
particle located furthest away from the barycenter. To prove the invariance principle, a key step is
to establish Harris recurrence for the process viewed from its barycenter. This thesis is based on a
paper, which is joint work with my advisors Louigi Addario-Berry and Jessica Lin.

Résumé

Nous établissons un principe d’invariance pour un système de particules de Brunet-Derrida en d-
dimensions avec séléction. Le modèle consiste en N particules suivant un mouvement Brownien
branché dyadique à taux 1. Lors d’un branchement, le nombre de particules est maintenu à N en
tuant la particule la plus loin du barycentre. Pour démontrer le principe d’invariance, une étape clé
est d’établir que le processus, vu de son barycentre, est Harris-récurrent. Ce mémoire est basé sur
un article écrit en collaboration avec mes superviseurs, Louigi Addario-Berry et Jessica Lin.
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1. Introduction

The barycentric Brownian bees processes are Brunet–Derrida particle systems defined as follows. The
population consists ofN individual particles, whose positions are points inRd. Independently, each
particle moves according to a standard Brownian motion, and undergoes binary branching at rate
one. The instant when a branching event occurs, the particle furthest from the current barycenter
of the particles is removed. Our notation for such a process is

X = (X(t), t ≥ 0) = ((Xi(t))i∈[N ], t ≥ 0).

We write X(t) = N−1
∑

1≤i≤N Xi(t) and X = (X(t), t ≥ 0), and call X(t) the barycenter of
X(t).

The result of the current work is an invariance principle for the barycenter process X.

Theorem 1.1. For all d ≥ 1 and N ≥ 1, there exists σ = σ(d,N) ∈ (0,∞) such that, as m → ∞,(
m−1/2X(tm), 0 ≤ t ≤ 1

)
d→ (σB(t), 0 ≤ t ≤ 1),

with respect to the Skorohod topology onD([0, 1],Rd), where (B(t), 0 ≤ t ≤ 1) is a standard Brownian motion
in Rd starting at the origin.

It turns out that σ(d, 1) = 1 = σ(d, 2) for all d ≥ 1. ForN ≥ 3, our proof does not yield insight
into the value of σ(d,N). We point out that whatever the initial configurationX(0), it is sent to the
origin by this scaling. Since the Skorohod topology relativized to C([0, 1],Rd) coincides with the
uniform topology, it is not hard to see that any reasonable smoothing of

(
m−1/2X(tm), 0 ≤ t ≤ 1

)
will converge in distribution to (σB(t), 0 ≤ t ≤ 1) in the uniform topology on C([0, 1],Rd). For
example, one may linearly interpolate

(
m−1/2X(tm), 0 ≤ t ≤ 1

)
at integer times.

A key step in proving Theorem 1.1 is to show that, when viewed from its barycenter, the process
is Harris recurrent.

Definition 1.2. (Harris recurrence, [16]) We say that a time-homogeneous càdlàg Markov process Φ =
(Φt, t ≥ 0) on the state space Rd×N is Harris recurrent if there exists a σ-finite Borel measure φ on Rd×N such
that for any Borel set A ⊂ Rd×N with φ(A) > 0, for all x ∈ Rd×N ,

Px(ηA = ∞) = 1

where ηA :=
∫∞
0 1{Φt∈A}dt is the total time spent in A by Φ.

Throughout the thesis, we will denote particle configurations by x = (xi)i∈[N ] ∈ Rd×N where
each xi ∈ Rd. Given a configuration x ∈ Rd×N , and another point y ∈ Rd, we write x − y :=
(xi − y)i∈[N ]. Equipped with this definition and notation, we state the second main result of the
present work.

Theorem 1.3. The process X−X := (X(t)−X(t), t ≥ 0) is Harris recurrent.
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1.1. Two constructions of barycentric Brownian bees, and a little additional notation

We work on an abstract probability space (Ω,F ,P), rich enough to support all of the random
variables encountered.

There are two distinct constructions of the barycentric Brownian bees (hereafter BBB) process
that will be useful at different points in our analysis. The first construction closely parallels that
given in Section 2 of [7].

• Let J = (Jt, t ≥ 0) be the counting process for a Poisson point process on [0,∞) with rate
N , and for i ≥ 0 let Ji = inf{t ≥ 0 : Jt = i}. The process J will be the number of
branching events of X up to time t, and (Ji; i ≥ 1) will be its branching times (and J0 = 0).

• Let (Ui; i ≥ 1) be independent random variables, uniformly distributed on {1, · · · , N} and
independent of J .

• Let (Bi)i∈[N ] be independent d-dimensional Brownian motions starting from the origin,
which are independent of J and of (Ui; i ≥ 1).

With these definitions at hand, the picture to have in mind when reading the formal construction
is this: at time Ji, particle Ui branches, and some particle is killed. If the killed particle has index
k, then we may equivalently view this as the particle with index k jumping to the location of the
branching event, which is XUi(Ji−).

Formally, fix an initial configuration x = (xj)j∈[N ] ∈ Rd×N . We may define the BBB in-
ductively, as follows. Set Xj(0) = xj for each j ∈ [N ]. Then, for each i ≥ 1 and j ∈ [N ],
let

Xj(t) := Xj(Ji−1) +Bj(t)−Bj(Ji−1), for t ∈ [Ji−1, Ji).

This essentially states that in between jump times Ji−1 and Ji, the BBB process is nothing more
thanN independent Brownian motions, appropriately shifted. Finally, for each i ≥ 1, at time Ji−,
we let particle Ui branch, and kill (remove) the particle with index

k := argmax
j∈[N ]

∣∣∣∣∣∣Xj(Ji−)− 1

N + 1

XUi(Ji−) +
∑
l∈[N ]

Xl(Ji−)

∣∣∣∣∣∣ .
In words, we kill the particle which is furthest from the barycenter; the barycenter is calculated
taking the newly born particle into account. We do not need to worry about ties since they occur
with probability 0. This means that at time Ji, we set

Xj(Ji) =

{
XUi(Ji−) j = k,

Xj(Ji−) j ∈ [N ]\{k}.
(1.1)

This completes the first construction.
The second construction realizes the BBB process as embeddedwithin a standard d-dimensional

dyadic branching Brownian motion W (t) = (Wi(t))i∈[N (t)]. The function N : [0,∞) → N
counts the number of particles in the branching Brownian motion W at any given time. Our con-
vention is that when a branching event occurs inW, the new particle is appended to the end of the
list of existing particles; if the particle with index i branches at time τ then N (τ) = N (τ−) + 1
and

Wj(τ) =

{
Wj(τ−) if j < N (τ),

Wi(τ−) if j = N (τ).

The branching property means that after time τ , the particles with indices i and N (τ) evolve
independently.
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Given x ∈ Rd×N , we initializeW withN particles inRd at positions (xi)i∈[N ], so thatN (0) =
N and W (0) = x. To describe the embedding of X within W, it suffices to explain the evolution
of the vector I(t) = (I1(t), . . . , IN (t)) ∈ N (t)[N ] of indices of particles belonging to the BBB
process at all times t ≥ 0.

First, I(0) = (1, 2, . . . , N), and I is constant between branching events of W. If a particle
with index i 6∈ {I1(τ−), . . . , IN (τ−)} branches at time τ > 0 then I(τ) = I(τ−). Finally, if for
some i ∈ [N ] the particle with index Ii(τ−) branches at time τ , then let

k = argmax
j∈[N ]

∣∣∣∣∣∣WIj(τ−)(τ)−
1

N + 1

WIi(τ−)(τ) +
∑
l∈[N ]

WIl(τ−)(τ)

∣∣∣∣∣∣ .
In other words, k is the index of the particle furthest from the barycenter, when the barycenter
is calculated taking the newly born particle (which has index N (τ) and position WIi(τ−)(τ) =
WN (τ)(τ)) into account.

Now set

Ij(τ) =

{
N (τ) if j = k

Ij(τ−) if j 6= k .

We can then realize the process X as

X = (Xj(t))j∈[N ] := (WIj(t)(t))j∈[N ]. (1.2)

The realization of the BBB process within a branching Brownian motion will be useful in particular
in Section 2.

We note that the labelling conventions of particles are consistent between the two constructions,
in the sense that from a given configuration (Xj(t−))j∈[N ], if there is a branching event at time t,
then the definitions of the vectors (Xj(t))t∈[N ] given by (1.1) and by (1.2) agree with one other.

At one point in the thesis, it will be useful to allow the BBB process to start from a configuration
with fewer than N particles. In this case no killing occurs until the population size reaches N ; a
branching event which occurs before this time simply increases the population size by one (with
the convention that the newly-born particle is appended to the end of the list of existing particles,
like in a BBM). For a BBB started from fewer than N particles, we write N(t) for the number of
particles at time t, so X(t) = (Xi(t))i∈[N(t)] and a.s. N(t) = N for all t sufficiently large.

We write (Ft, t ≥ 0) for the natural filtration of X,

Ft = Ft(X) := σ((Xj(s))j∈[N ], 0 ≤ s ≤ t) .

We write Px(·) := P(·|X(0) = x) for x ∈ Rd×N . Likewise, for a Borel probability measure µ on
Rd×N , we writePµ for the probability measure under which the process starts from a µ-distributed
initial configuration, namely Pµ(X(0) ∈ A) = µ(A) for Borel A ⊂ Rd×N .

We use the notationB(y, r) to denote the Euclidean ball centered at y of radius r inRd. Given
two functions f, g : R → R with g 6= 0, we write f m→∞∼ g if f(m)

g(m) = 1+o(1) asm → ∞. Finally,
forR-valued random variables Z1 and Z2, we say that Z1 stochastically dominates Z2 (with respect
to a given probability measure P), if

P(Z1 ≥ y) ≥ P(Z2 ≥ y), ∀y ∈ R .

1.2. Overview of the proof

In this section, we first describe a general mechanism for obtaining invariance principles for càdlàg
processes. We then sketch how it is applied in the current setting, and in particular how Harris
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recurrence comes into play, and conclude with an overview of the proof that, when viewed from its
barycenter, the BBB process is Harris recurent.

FixN, d ∈ N. Given an arbitraryD([0,∞),Rd×N )-valued stochastic processX = ((Xj(t))j∈[N ],

t ≥ 0), we define the barycenter X(t) := N−1
∑

1≤i≤N Xi(t); so X = (X(t), t ≥ 0) is an Rd-
valued stochastic process. We say that X satisfies an invariance principle if there exist α ∈ Rd and
a d× d matrix Σ = Σ(d,N) such that(

m−1/2
(
X(tm)− tmα

)
, 0 ≤ t ≤ 1

)
d−→ (ΣB(t), 0 ≤ t ≤ 1) (1.3)

with respect to the Skorohod topology on D([0, 1],Rd×N ), where B = (B(t), 0 ≤ t ≤ 1) is a
standard d-dimensional Brownian motion. The following general proposition identifies sufficient
conditions for X to satisfy an invariance principle.

Proposition 1.4. Let (Ω,F ,P) denote a probability space and X : Ω → D([0,∞),Rd×N ) a càdlàg
stochastic process with X = ((Xj(t))j∈[N ], t ≥ 0) with X(0) = x for some x ∈ Rd×N . Suppose that there
exists a nondecreasing sequence (τi; i ≥ 1) of Px-a.s. finite [0,∞)-valued random variables, and such that the
following properties are satisfied.

1. (IID time increments) The time increments

(τi+1 − τi; i ≥ 1)

are independent and identically distributed, with finite mean.

2. (IID increments) The Rd-valued random variables

((X1(τi+1)−X1(τi)); i ≥ 1)

are independent and identically distributed.

3. (Identical distribution between times) The R-valued random variables(
sup

τi≤t≤τi+1

|X1(t)−X1(τi)|; i ≥ 1

)
are identically distributed.

4. (Finite variance increments) We have

Ex

[
sup

τ1≤t≤τ2

|X1(t)−X1(τ1)|2
]
< ∞.

5. (Barycenter approximation in probability) We have

m−1/2 sup
0≤t≤1

|X(tm)−X1(tm)| → 0

in probability as m → ∞.

Then the barycenter X of X satisfies an invariance principle (1.3). Moreover, the rescaling Σ and the drift α are
given by

Σ = Ex[τ2 − τ1]
−1/2Q

where Q is a d-by-d matrix such that C := QQT is the covariance matrix of X1(τ2)−X1(τ1), and

α = Ex[X1(τ2)−X1(τ1)]Ex[τ2 − τ1]
−1.
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The proof of Proposition 1.4 appears in the Appendix. To apply the proposition in our setting,
we begin by constructing a sequence of “regeneration” times for the BBB processX with properties
(1), (2) and (3) of Proposition 1.4 in mind. The prototypical regeneration time will be defined as
the first time ρ > 0 when two specific events have occurred. The events are constructed in such a
way that when they both occur, the process starts over (regenerates) from a single queen particle, by
which we mean that all particles in the BBB at time ρ are descendants of X1(ρ − 1). At a time ρ
when these two events have just taken place, the law of (Xj(ρ) −X1(ρ − 1))j∈[N ] is given by an
explicit measure and is independent of the state of the process at any previous regeneration times
ρ′ ≤ ρ.

In order to verify the conditions of Proposition 1.4, the key will be to control the amount of
time required for regeneration from a single queen particle to occur. The events required for re-
generation are defined in Section 2.1; for now we simply note that they shall involve (a) a specific
branching pattern occurring over a bounded time interval, and (b) the particles staying in certain
bounded regions over the same time interval. The probability that these events occur will be easy
to bound from below, provided that all particles start at a bounded distance from their barycenter.

The latter requirement is closely connected to theHarris recurrence ofX−X. Harris recurrence
essentially requires that a process eventually spends an infinite amount of time in any sufficiently
large set, where “large” is measured by a σ-finite Borel measure which we are free to choose. We
prove this for X − X by showing that the time required for X to reach a configuration in which
all particles are a bounded distance from the barycenter has exponential tails (see Remark 2.6 (ii)
below), so in particular has finite moments of all orders. This will easily yield Harris recurrence.
It will also allow us to deduce that our renewal time increments have exponential tails, and thence
to show that the renewal times satisfy the conditions of Proposition 1.4. Theorem 1.1 will then
straightforwardly follow from Proposition 1.4.

The remainder of this section provides an overview of the proof that Φ := X − X is Harris
recurrent. In broad strokes, the proof proceeds as follows. Given given points x1, . . . , xN in Rd,
say that x = (x1, . . . , xN ) is unambiguous if for any vector (f1, . . . , fN ) of non-negative integers
with

∑N
i=1 fi = N + 1,

∣∣∣xj − 1

N + 1

N∑
i=1

fixi

∣∣∣ 6= ∣∣∣xk − 1

N + 1

N∑
i=1

fixi

∣∣∣ (1.4)

for all 1 ≤ j < k ≤ N . Here is the meaning of this condition. Suppose that at some point in the
BBB process, the particles have positions x1, . . . , xN . Now imagine that a sequence of branching
events occurs in rapid succession, rapidly enough that the particles essentially do not move during
the course of the branching. If at some point during such a sequence, the moment a branching
event occurs, there are fi particles at (or extremely near to) position xi (for each 1 ≤ i ≤ N ), then
the barycenter of the configuration is at (or extremely close to)

1

N + 1

N∑
i=1

fixi.

Ifx is unambiguous, then at this point there is a unique particle which is furthest from the barycenter,
so there is no ambiguity about which particle to kill.

We actually use a more quantitative version of the above definition. For δ > 0, say that
x = (x1, . . . , xN ) is δ-unambiguous if for any vector (f1, . . . , fN ) of non-negative integers with∑N

i=1 fi = N + 1, for all 1 ≤ j < k ≤ n, we have∣∣∣∣∣∣∣∣xj − 1

N + 1

N∑
i=1

fixi
∣∣− ∣∣xk − 1

N + 1

N∑
i=1

fixi

∣∣∣∣∣∣∣∣ > δ. (1.5)
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It is not hard to show that if x = (x1, . . . , xN ) is δ-unambiguous and y = (y1, . . . , yN ) is such
that |xi − yi| < δ/4 for 1 ≤ i ≤ N , then for any non-negative integers (f1, . . . , fN ) with∑N

i=1 fi = N + 1, the index j for which
∣∣∣xj − (N + 1)−1

∑N
i=1 fixi

∣∣∣ is maximized, also max-

imizes
∣∣∣yj − (N + 1)−1

∑N
i=1 fiyi

∣∣∣. This means that in the BBB process, if particles stay within
distance δ/4 of a fixed δ-unambiguous configuration x for a given period of time, then during that
time, for the purpose of identifying which particle is furthest from the barycenter, one may pretend
that all particles within distance δ/4 of point xi are in fact colocated at xi. In other words, during
that time the effect of spatial motion can be ignored when calculating which particles are killed after
branching events; we may just pretend all particles are located at one of x1, . . . , xN .

The following straightforward lemma implies that from any initial configuration, the BBB pro-
cess quickly reaches a δ-unambiguous configuration for some δ > 0. Write

ξδ := inf{t ≥ 0 : X(t) is δ-unambiguous} .

Lemma 1.5. For any ϵ > 0, there exists δ = δϵ > 0 such that

inf
x∈Rd×N

Px(ξδ < 1) > 1− ϵ.

The value of reducing to the unambiguous setting is that it allows us to study sequences of
branching and killing events for deterministic configurations in order to make deductions about
the possible behaviour of the BBB process. An unambiguous configuration consists of an unambiguous
vector x = (x1, . . . , xN ) and a vector w = (w1, . . . , wN ) of non-negative integer weights with∑N

i=1wi = N . A branching event for site ℓ ∈ [N ] corresponds to increasing wℓ by 1, and a killing
event for particle k ∈ [N ] corresponds to decreasing wk by 1. Formally, given x,w as above, for
ℓ ∈ [N ] let

k = k(x,w, ℓ) = argmax
j∈[N ],wj>0

∣∣∣∣∣∣xj − 1

N + 1

( ∑
1≤i≤N

wixi + xℓ

)∣∣∣∣∣∣ (1.6)

and define weights g(x,w, ℓ) = (g1, . . . , gN ) by

gj = wj + 1{j=ℓ} − 1{j=k} .

Note that
∑N

i=1 gi = N , so the pair x, g(x,w, ℓ) again form an unambiguous configuration.
Given an unambiguous configuration x,w, any sequence l1, . . . , lm of elements of [N ] induces

a sequence of weight vectors w(0), w(1), . . . , w(m), by letting particle li branch at step i. Formally,
set w(0) = w, and for 1 ≤ i ≤ m let w(i) = g(x,w(i−1), li). We say l1, . . . , lm is a valid sequence
for x,w if w(i−1)

li
> 0 for all 1 ≤ i ≤ m, i.e. if branching only occurs for particles with positive

weight.

Lemma 1.6. Given any unambiguous configuration x,w, there exists an integerm ≤ (N −1)2 and a sequence
l1, . . . , lm ∈ [N ] which is valid for x,w such that w(m) contains exactly one non-zero entry.

We say that a sequence l1, . . . , lm as in Lemma 1.6 collapses the (unambiguous) configuration
x,w. The proof of Lemma 1.6, which is the key step in the proof of Harris recurrence, is found in
Section 3.2, below.

To prove Harris recurrence for Φ = X−X, we now argue as follows. Step 1, we wait until the
first time t thatX(t) is δ-unambiguous (for some small fixed δ > 0); by Lemma 1.5 and the strong
Markov property this takes a bounded amount of time. Step 2, we hope that in the time interval
[t, t + 1], (a) all particles stay within distance δ/4 of their time-t locations, and (b) a sequence of
branching events occurs which collapses the configurationX(t), (1, 1, . . . , 1). (The all-ones vector
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represents the fact that at time t there is one particle at each location.) If Step 2 succeeds, then
there is j ∈ [N ] such that inX(t+ 1) all particles lie within distance δ/4 ofXj(t), so all entries of
Φ(t+ 1) have distance at most δ from the origin.

By Lemma 1.6, there is at least one sequence consisting of at most (N − 1)2 branching events
which collapses the configuration, from which it is not hard to see that Step 2(b) succeeds with
probability bounded away from zero uniformly over the possible values ofX(t). If Step 2 fails, we
start over from Step 1. The Markov property then guarantees that both steps will succeed after
a bounded number of trials. This means that from any initial configuration, Φ will reach a state
where all particles are at bounded distance from the origin in bounded time. Combined with the
fact that between branching events, the process X behaves like N independent Brownian motions,
this allows us to prove Harris recurrence by comparing the law of the process Φ at a fixed time to
the joint law ofN independent d-dimensional standard Gaussians. The full details of this argument
appear in Section 3.3.

1.3. Related work

The BBB model may be seen as a close relative of the Brunet-Derrida particle systems [9, 10]
and their multidimensional generalizations [7]. A Brunet-Derrida particle system also consists of a
population of a fixed size N undergoing both branching and spatial displacement, with individual
trajectories taking values in R. The law of the system is determined by a fitness function s : R → R;
when a branching event occurs, particles of lowest fitness are removed from the system to keep
the population size constant. (The original papers on the subject [9, 10] considered discrete-time
processes – branching random walks with selection, in which multiple branching events can occur
simultaneously. Much of the subsequent work in the area has focused on branching Brownian
motion, as in this thesis.) The asymptotic displacements [3, 15], evolution of empirical particle
densities [12, 13], and typical genealogies [4] of such systems have all received attention in the
literature.

In [7], Berestycki and Zhao consider branching Brownian motion with selection in Rd. The
model is again specified by a fitness function, s : Rd → R; a fixed number N of particles move
as independent Brownian motions which independently branch at rate 1. On a branching event,
a particle of minimal fitness is removed from the system. Berestycki and Zhao prove, among other
results, the following facts. When s(x) = |x|, the large-time limit the particle system asymptotically
travels at a constant speed, in a uniformly random direction, in a cloud of particles whose diameter
is O(1) in probability. When the fitness function is linear, s(x) = 〈x, v〉 for a fixed v ∈ Sd−1, the
cloud of particles travels asymptotically with constant speed in direction v. In this case (under some
conditions on the time-zero configuration of the particles), the diameter of the cloud of particles in
direction v is asymptotically O(logN) in probability, whereas for any w ∈ Sd−1 with 〈v, w〉 = 0,
the diameter of the cloud in direction w is at least O(logN)3/2 in probability.

We also mention some recent and forthcoming works on branching systems with selection, with
some similarity to ours.

• Berestycki, Brunet, Nolen and Penington [5, 6] study a branching Brownian motion
((Xi(t))i∈[N ], t ≥ 0) in Rd with N particles, with a selection rule that can be specified via
the fitness function s(x) = −|x|; in other words, on a branching event the particle farthest
from the origin is removed. For such a model, [5, 6] proves results on the long-time and
large-particle behaviour of the empirical distribution of particles in the system, by developing
a connection with certain free-boundary problems. We discuss these works further in the
conclusion, Chapter 4.

• In [11, 14], the authors consider the Fleming-Viot particle system, which is a catalytic branch-
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ing system with the following selection rule: a particle which leaves a domainD is killed, and
at the same time, a different particle splits into two particles. They show that the long-time
and large-particle behaviour of the empirical distribution of the system is described by the
first eigenfunction of the Laplacian in D with Dirichlet boundary conditions.

• The works [1, 2] consider binary branching Brownian motion (Xi(t))i∈[N (t)] in Rd with a
variable number of particles, where the branching/death rate at position x at time t has the
form

µt(x) = g

(∫
R
f(x− y)νt(dy)

)
;

here f, g : R → R are Borel functions, and νt = N (t)−1
∑N (t)

i=1 δXi(t) is the empirical mea-
sure of the time-t particle distribution. When µt(x) is positive it is interpreted as a branching
rate; when this quantity is negative it is interpreted as a death rate. For certain choices of
the functions f and g, Beckman [1] proves hydrodynamic limit theorems for such systems,
showing that the evolution of the empirical density is governed by certain integro-differential
equations; other models of the same sort are considered in [2].

1.4. Outline of the thesis

The rest of the thesis is organized as follows. Theorem 1.1 is a consequence of Proposition 1.4 for
an appropriately defined sequence of times (τi; i ≥ 1). In Section 2, we construct such a sequence
(τi; i ≥ 1) for the BBB process and state several key lemmas about these times, which we then use
to demonstrate they satisfy the hypotheses of Proposition 1.4. We conclude Section 2 with the proof
of Theorem 1.1. In Section 3, we prove the technical lemmas used in the construction of the times
in Section 2, and also prove Harris Recurrence (Theorem 1.3), which follows relatively easily from
one of these lemmas. Section 4 contains concluding remarks and open questions. Finally, in the
Appendix (Section 5), we present the proof of Proposition 1.4.
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2. Construction of (τi; i ≥ 1) and the
Proof of Theorem 1.1

Throughout this chapter, unless otherwise state, we assume that N ≥ 3. The first portion of this
chapter is devoted to the construction of (τi; i ≥ 1), and to introducing two technical lemmas
which motivate the construction. We thereafter show that (τi; i ≥ 1) satisfies properties (1)-(5) of
Proposition 1.4. We conclude with the proof of Theorem 1.1.

In fact, we will focus on constructing a sequence of regeneration times (ρi; i ≥ 1) for which the
law of the BBB process has an explicit and fairly simple form (and, after recentering, is the same for
all i ≥ 1). We will then define (τi; i ≥ 1) from these (ρi; i ≥ 1) (by letting τi := ρi − 1), for which
we will be able to verify properties (1)-(5) of Proposition 1.4.

2.1. Construction of (ρi; i ≥ 1) and some key ideas

For I ⊆ N, given a collection x = (xi)i∈I of vectors in Rd, the extent of x is defined to be

E(x) := sup
i,j∈I

|xj − xi|.

For t > 0, we define an event At, measurable with respect to σ(X(s), t ≤ s ≤ t + 1), as follows.
Write G′ := {2, . . . ,

⌈
N+1
2

⌉
} and D′ := {

⌈
N+1
2

⌉
+ 1, . . . , N}, and note that |G′| ≥ |D′|. Let

rN := 1
4(N+1) . The event At occurs if and only if the following events all take place.

(At,1) There are no branching events in the time interval [t, t+ 1].
(At,2) Xj(t+1)−X(t) ∈ B (−5e1, rN ) for all j ∈ G′, andXj(t+1)−X(t) ∈ B (5e1, rN )

for all j ∈ D′.
(At,3) X1(t+ 1)−X(t) ∈ B (γ, rN ), where

γ :=
1

N − 1

(
−5

⌈
N − 1

2

⌉
+ 5

⌊
N − 1

2

⌋)
e1 =

{
0 N odd,
− 5

N−1e1 N even.

is roughly the position of the time-(t+1) barycenter (reshifted byX(t)) of the particles
in G′ ∪D′ along the direction of the standard unit vector e1 = (1, 0, · · · , 0)T .

In words,At = At,1∩At,2∩At,3 is the event that during the time interval [t, t+1], no branchings
occur and no single trajectory makes a large displacement; particle X1 moves to a position close
to the time-(t + 1) barycenter; and the remaining particles cluster into two roughly equal groups,
both with small extent and both reasonably far from the barycenter and from each other. The shift
by X(t) is simply an adjustment to make the event easier to describe (by ensuring that the starting
particle configuration has barycenter located at 0). Moreover, the three clusters of particles with
indices in G′, D′, and {1} are approximately collinear.
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Next, for t ≥ 0, we define an eventBt, measurable with respect to σ(X(s), t+1 ≤ s ≤ t+2),
as follows. The event Bt occurs if and only if the following events both take place.

(Bt,1) In the time interval [t+1, t+2], particleX1 and its descendants branch at leastN−1
times and no other particle branches.

(Bt,2) Every particle remains at distance less than or equal to rN from the location of its
time-(t+1) ancestor from time t+1 to time t+2 or the time of its death, whichever
comes first.

Although the eventBt only requires certain branching events to occur and minimal movement
of the particles, we now show that the eventAt∩Bt forces all particles besidesX1 and its descendants
to be killed in the time interval [t+ 1, t+ 2].

We introduce S , the set of all possible configurations x ∈ Rd×N such that there exist disjoint
sets G,C and D with C 6= ∅ and G ∪ C ∪D = [N ] with

(a) xi ∈ B(γ, 2rN ) for all i ∈ C, where γ was defined by (At,3).

(b) xj ∈ B(−5e1, 2rN ) for all j ∈ G, and xj ∈ B(5e1, 2rN ) for all j ∈ D.

(c) |G ∪ C| ≥
⌈
N−1
2

⌉
+ 1 and |D ∪ C| ≥

⌊
N−1
2

⌋
+ 1.

Conditioned on the event At ∩ Bt, we note that X(s) − X(t) ∈ S for all s ∈ [t + 1, t + 2].
Therefore, to determine which particles of X get killed in time [t+1, t+2], it suffices to show that
for all configurations belonging to S , a branching event in C implies that, under the same killing
rules as BBB (namely that the particle farthest away from the barycenter is killed), the killing event
occurs in G tD.

Figure 2.1: Example of particle configuration x = (xi)i∈[N ] in S with C = {1} which could arise
just after event A has occurred. The particles in the ball on the left are (xi)i∈G, and those in the
ball on the right are (xi)i∈D.

Lemma 2.1. For any configuration x ∈ S , a branching event in C implies that the killed particle belongs to
G tD.

Proof. Suppose first that G,D 6= ∅ and that the particle with index ℓ ∈ C branches. Let xN+1

denote the barycenter of the system with N + 1 particles (before a killing event occurs). Then
xN+1 lies in the convex hull of the particles {xj}j∈[N ] ∪ {xℓ}. Since the clusters of particles G, C,
andD are roughly collinear with C located in betweenG andD, it follows that the resulting killing
occurs in either G or D.

We may therefore assume without loss of generality thatD = ∅, |C| ≥
⌊
N−1
2

⌋
+ 1, and |G| ≤⌈

N−1
2

⌉
. Upon a branching event in C, we observe that for the system with N + 1 particles (before
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a killing occurs), |C| > |G|. A small computation then shows that x(N+1) lies in the halfspace{
y ∈ Rd : y · e1 ≥ ι− 2rN

}
, where

ι :=
1

N + 1

[
−5

⌈
N − 1

2

⌉
−
(⌊

N − 1

2

⌋
+ 2

)
γ

]
=

{
−5

2
N−1
N+1 N ≥ 3 odd,

−5
2
N2+2
N2−1

N ≥ 3 even.

The point ιe1 roughly corresponds to the barycenter of the (N + 1) system of particles after a
branching event in C. Using now that for all i ∈ G, xi ∈ B (−5e1, 2rN ) and for all j ∈ C,
xj ∈ B (γ, 2rN ), still with rN = 1

4(N+1) , we see that

min
i∈G′

|xi − x(N+1)| > max
j∈C′

|xj − x(N+1)|.

Therefore the particle being killed must belong to G.

Remark 2.2. Conditioned on At ∩ Bt, since X(s) − X(t) ∈ S for all s ∈ [t + 1, t + 2], it follows
by Lemma 2.1 that all particles with indices in G t D to die, so at time t + 2 all particles are descendants of
X1(t+ 1). The resulting particle configuration looks like the one shown in Figure 2.2.

Remark 2.3. The proof of Lemma 2.1 can be seen as a simple case of using “deterministic configurations” to
deduce which killing events occur, when the particles are allowed very limited movement. A more complex formulation
of similar ideas appears in the proof of Lemma 2.5.

Figure 2.2: Example of a time-(t+ 2) configuration after At ∩ Bt has occurred. The crossed-out
particles indicate that when At ∩Bt occurs, at time t+ 2, the particles in (Xi(t+ 1))i∈G′∪D′ live
inB(γ, 2rN ) (by Lemma 2.1). The blue triangle is the location ofX1(t+2)−X(t), and the black
square is the location of X(t+ 2)−X(t).

Observe that the events At and Bt are invariant under translations in Rd. Namely, At and Bt

occur for X = (Xi)i∈[N ] if and only if they occur for X+ y := (Xi + y)i∈[N ] for every y ∈ Rd.
For any L > 0, define

CL := {x ∈ Rd×N : E(x) ≤ L},

the set of deterministicN -particle configurations (xi)i∈[N ] with extent at most L. DenoteA := A0

and B := B0. It turns out that as long as we start from configurations of bounded extent, there is
a uniformly positive probability that A ∩B occurs.

Lemma 2.4. For all L > 0, there exists ϵ = ϵL,N > 0 such that

inf
x∈CL

Px(A ∩B) > ϵ.
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Since the lower bound in Lemma 2.4 depends on L, we will want to show that regardless of the
extent of the starting configuration, the BBB reaches a state with extent L in finite time. This is a
consequence of the next lemma.

Lemma 2.5. For T (L) := inf{t ≥ 0 : E(X(t)) ≤ L}, we have

lim
L→∞

sup
x∈Rd×N

Px

(
T (L) > L

)
= 0.

Remark 2.6. (i) Lemma 2.5 holds for all N ≥ 1. The cases N = 1, 2 are trivial, and the case N ≥ 3
will be proved in Section 3.3.

(ii) It is a direct consequence of Lemma 2.5 that T (L), the time to reach a configuration with extent at most L,
has exponential tails. Indeed, it suffices to choose L > 0 such that supx∈Rd×N Px(T

(L) > L) < 1
2 and

then apply the Markov property.

We will see that Lemma 2.5 implies Harris recurrence (Theorem 1.3). Equipped with Lemmas
2.4 and 2.5, we can now construct the stopping times (ρi; i ≥ 1) as follows. Fix L as in Remark 2.6
(ii) and set T1 := inf{t ≥ 1 : E(X(t)) ≤ L}. For each i ≥ 1, recursively define the stopping times

Ti+1 := inf{t ≥ Ti + 2 : E(X(t)) ≤ L}, i ≥ 1, (2.1)

and let
I1 := inf{i ≥ 1 : ATi ∩BTi occurs}.

By Remark 2.6 (ii), and the strong Markov property, Ti < ∞ almost surely for each i ≥ 1. By
the strong Markov property and Lemma 2.4, ATi ∩ BTi has positive probability uniformly over
all possible initial configurations for each i ≥ 1. In particular, an application of the second Borel-
Cantelli lemma implies that I1 < ∞ Px-almost surely. Thus, we can define τ1 := TI1 + 1 and
ρ1 := TI1 + 2; both τ1 and ρ1 are Px-a.s. finite. By construction, we observe that at time ρ1, the
events ATI1

and BTI1
have occurred (as depicted in Figure 2.2), and at time ρ1 − 2, the particles

had extent at most L.
Next, for each integer l > 1, inductively set

Il := inf{i > Il−1 : ATi ∩BTi occurs},

and let

τl := TIl−1
+ 1 , and (2.2)

ρl := TIl−1
+ 2.

At time τl, the event ATIl
has just occurred, and the event BTIl

is about to occur; by time ρl the
event BTIl

has also occurred. Note that both (τi; i ≥ 1) and (ρi; i ≥ 1) are strictly increasing
sequences, and that (ρi; i ≥ 1) are stopping times with respect to the natural filtration of X. We
now have the following key lemma, which guarantees that the times (τi; i ≥ 1) satisfy the hypotheses
of Proposition 1.4.

Lemma 2.7. Assume N ≥ 3. Let (τi; i ≥ 1) be defined as above. Then for any x ∈ Rd×N , under Px, X
and (τi; i ≥ 1) satisfy the hypotheses of Proposition 1.4.

To prove Lemma 2.7, we must verify properties (1)-(5) of Proposition 1.4. Lemma 2.7 follows
immediately the results of the next two subsections. Specifically, Corollary 2.9, Proposition 2.11
and Proposition 2.13 establish properties (1)-(3), property (4), and property (5) from the hypotheses
of Proposition 1.4, respectively.
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2.2. The regeneration structure

The goal of this section is to show that, when considered on time intervals of the form [τm, τm+1],
the BBB process has an essentially IID structure. The key to revealing this structure is to only focus
on descendants of particles ofX1(τm). Ignoring other particles creates some indexing issues, which
have to be managed in order to avoid creating subtle dependencies. However, the gist of the story
is that the events Aτm−1 and Bτm−1 together ensure that the descendants of particle 1 take over
the population on the time interval [τm, τm + 1]; this is what yields the IID structure.

Fix any m ≥ 1, write σm(1) = 1, and for 2 ≤ i ≤ N let σm(i) be the index of the (i − 1)’st
particle to be killed in the time interval [τm, τm+1]. Because the eventAτm−1∩Bτm−1 occurs, all
particles aside fromX1 die during this time interval (Remark 2.2), so (σm(i))i∈[N ] is a permutation
of [N ].

Next, for s ≥ 0, let Nm(s) be the number of living time-(τm + s) descendants of X1(τm),
includingX1(τm+s) itself. The eventBτm−1 = BTIm

ensures thatNm(s) ≥ 1 for s ≥ 0 and that
Nm(1) = N , so the descendants ofX1(τm) have taken over the population by time τm +1 = ρm.
It follows that that Nm(s) = N for all s ≥ 1.

Now write X̂(m)(s) = (X̂
(m)
j (s))j∈[Nm(s)] for the locations of time-(τm + s) descendants of

X1(τm), listed in order of their birth times; formally, X̂(m)
j (s) = Xσm(j)(τm+s). This means that

for all s ≥ 0,(
X̂

(m)
j (s)− X̂

(m)
1 (0)

)
j∈[Nm(s)]

=
(
Xσm(j)(τm + s)−X1(τm)

)
j∈[Nm(s)]

.

WriteX(m) = ((X̂
(m)
j (s)− X̂

(m)
1 (0))j∈[Nm(s)], 0 ≤ s ≤ τm+1− τm). The processX(m) describes

the locations of descendants of X1(τm) relative to that ofX1(τm), between time τm and τm+1.
Finally, recall from Section 1.1 that we allow for the BBB process to be started from a configu-

ration with fewer than N particles, and in this case we write N(t) for the number of particles alive
at time t. It is useful for the next proposition to introduce the notation X̃ := (X̃(t), t ≥ 0) with
X̃(t) = (X̃i(t))i∈[N(t)], for a BBB process started from a single particle at 0 ∈ Rd. We then write
F for the event that sup0≤s≤1max1≤i≤N(t) |X̃i(s)| ≤ rN and that N(1) = N .

Proposition 2.8. The processes (X(m);m ≥ 1) are iid, and their common distribution is the conditional
distribution of (X̃(t), 0 ≤ t ≤ τ1) given F .

Proof. The main subtlety to the proof is that the events Aτm−1 ∩Bτm−1 contain some information
about the process on the time interval [τm, ρm] = [τm, τm + 1], and the effect of this on the law
must be understood. Introduce the filtration (Ht, t ≥ 0) defined by

Ht := σ
(
(X(s), 0 ≤ s ≤ t), (1ATi

∩BTi
, 0 ≤ Ti ≤ t− 1)

)
.

For anym ≥ 1, by definition, τm ≤ t if and only if ρm ≤ t+ 1, which in turn occurs if and only if
TIm ≤ t− 1 and ATIm

∩BTIm
occurs. It follows that τm is an Ht-stopping time for allm ≥ 1.

The event Aτm−1 is σ(X(s), 0 ≤ s ≤ τm)-measurable. The event Bτm−1,1 ⊃ Bτm−1 en-
forces thatX1(τm) and its descendants branch at leastN −1 times in the time interval [τm, τm+1].
Lemma 2.1 and Remark 2.2 together show that when Aτm−1 and Bτm−1 both occur, each such
branching event increases the number of living descendants ofX1(τm) until those descendants oc-
cupy the full population. In particular, at time τm + 1 = TIm + 2, all individuals are descendants
of X1(τm), and so Nm(1) = N .

Moreover, the only constraint on the motion of particles during the time interval [τm, τm+1] is
imposed by the eventBτm−1,2 ⊃ Bτm−1; this event precisely requires that |X(m)

j (s)| = |X̂(m)
j (s)−

X̂
(m)
1 (0)| ≤ rN for all 0 ≤ s ≤ 1 and all j ∈ [Nm(s)].
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The preceding paragraphs show that (X(m)(s), 0 ≤ s ≤ 1) is distributed as a BBB process run
for time 1, started from a single particle at 0 ∈ Rd, and conditioned on the event F defined in the
proposition statement. To understand the law of the whole process X(m) = (X(m)(s), 0 ≤ s ≤
τm+1−τm), recall that the eventAτm−1∩Bτm−1 is measurable with respect toFτm+1 = FTIm+2.
It follows that the process

((X̂
(m)
j (s)− X̂

(m)
1 (0))j∈[N ], s ≥ 0)

is distributed as a BBB started from a single particle at 0 ∈ Rd and conditioned on the event F .
The last thing to check is that τm+1 − τm indeed has the correct law. Since τm = TIm + 1,

necessarily τm+1 ≥ TIm+1 ≥ TIm +2 = τm +1. Our approach is thus to first understand the law
of TIm+1, so that we can think of the time interval [τm, τm+1] as [τm, TIm+1] ∪ [TIm+1, τm+1]. By
definition, TIm+1 ≥ TIm + 2 = τm + 1; thus

TIm+1 − τm = inf{t ≥ 1 : E(X̂(m)(t)) ≤ L}.

Since
T1 = inf{t ≥ 1 : E(X(t)) ≤ L} ,

it follows that the law of TIm+1 − τm is precisely the conditional law of T1 in a BBB started
from a single particle at 0 ∈ Rd given that the event F occurs. The fact that τm+1 − τm and
((X̂

(m)
j (s) − X̂

(m)
1 (0))j∈[N ], s ≥ 0) have the correct joint distribution now follows by the strong

Markov property applied at time TIm+1 together with the definition of τm+1.

Corollary 2.9. For any x ∈ Rd×N , under Px, the BBB process and the stopping times (τi; i ≥ 1) satisfy
conditions (1), (2) and (3) of Proposition 1.4.

Proof. The differences (τm+1 − τm;m ≥ 1) are the total lifetimes of the processes (X(m);m ≥ 1);
since these processes are IID, so are the differences (τm+1− τm;m ≥ 1). This verifies property (1).

Next, writing X(m)
1 = (X

(m)
1 (s), 0 ≤ s ≤ τm+1 − τm) for the projection of X(m) on its first

coordinate, then the processes (X(m)
1 ,m ≥ 1) are also IID. By definition,

X
(m)
1 (s) = Xσm(1)(τm + s)−X1(τm) = X1(τm + s)−X1(τm) ,

the second inequality since σm(1) = 1 for all m ≥ 1. It follows that the processes

(X1(τm + s)−X1(τm), 0 ≤ s ≤ τm+1 − τm)

are IID for m ≥ 1; properties (2) and (3) of the proposition are immediate.

2.3. Finite variance of the increments

In this section, we prove property (4) in Proposition 1.4. We first establish that the regeneration
increments have exponential tails. Recall that ρ1 := τ1 + 1.

Lemma 2.10. There exists b = bL,N > 1 such that

sup
x∈Rd×N

Ex[b
ρ1 ] < ∞.

Proof. Fix any initial configuration x ∈ Rd×N . For any b > 1, using the change of variables
r := logb(s), we may write

Ex[b
ρ1 ] =

∫ ∞

0
Px(ρ1 > logb(s))ds

= ln(b)

(∫ 1

−∞
brPx(ρ1 > r)dr +

∫ ∞

1
brPx(ρ1 > r)dr

)
.
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The first integral is bounded from above by ln(b)
∫ 1
−∞ brdr which is finite for any b > 1. By

Lemma 2.5, there exists L > 1 such that

inf
x∈Rd×N

Px(T
(L) ≤ L) > 1/2. (2.3)

Moreover, we claim Lemma 2.4 implies the existence of a constant c = cL,N > 0 such that for all
t ≥ L+ 2,

inf
x∈Rd×N

Px(ρ1 ≤ t|T (L) ≤ L) ≥ c. (2.4)

Indeed, since T (L) = T1, we obtain that for all t ≥ L+ 2, for any x ∈ Rd×N ,

Px(ρ1 ≤ t|T1 ≤ L) = Ex[1{ρ1≤t}|T1 ≤ L]

= Px(T1 ≤ L)−1Ex[1{ρ1≤t}1{T1≤L}]

= Px(T1 ≤ L)−1Ex[Ex[1{ρ1≤t}|FT1 ]1{T1≤L}]

= Px(T1 ≤ L)−1Ex[PX(T1)(ρ1 ≤ t− T1)1{T1≤L}] (strong Markov prop.)
= Ex[PX(T1)(ρ1 ≤ t− T1)|T1 ≤ L]

≥ inf
y∈CL

Py(A ∩B)

= c > 0.

Denote c′ := c/2 ∈ (0, 1). By (2.3) and (2.4), for any t ≥ L+ 2 and any x ∈ Rd×N ,

Px(ρ1 ≤ t) ≥ Px(ρ1 ≤ t, T (L) ≤ L)

≥ Px(ρ1 ≤ t|T (L) ≤ L)Px(T
(L) ≤ L)

> c′,

whence for each x ∈ Rd×N ,
Px(ρ1 > t) < 1− c′.

It follows by the strong Markov property and time-homogeneity that

Px(ρ1 > t) ≤
⌊t/(L+2)⌋∏

k=1

Px(ρ1 > k(L+ 2)|ρ1 > (k − 1)(L+ 2))

≤

(
sup

x∈Rd×N

Px(ρ1 > L+ 2)

)⌊t/(L+2)⌋−1

≤ (1− c′)⌊t/(L+2)⌋−1

for all x ∈ Rd×N . Thus,∫ ∞

1
brPx(ρ1 > r)dr ≤

∫ ∞

1
br(1− c′)⌊r/(L+2)⌋−1dr.

The integral is finite provided we choose b > 1 such that b(1 − c′)1/(L+2) < 1. Since c′ ∈ (0, 1),
this is possible.

Note that, taking ρ0 ≡ 0, the lemma implies that

sup
x∈Rd×N

Ex[b
ρi+1−ρi ] < ∞
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for any i ≥ 0, since we may write by the tower law and the strong Markov property

Ex[b
ρi+1−ρi ] = Ex[Ex[b

ρi+1−ρi |Fρi ]] = Ex[EX(ρi)[b
ρ1−ρ0 ]] = Ex[EX(ρi)[b

ρ1 ]]

and Lemma 2.10 implies that the inner conditional expectation is deterministically bounded by
some C < ∞. Also observe that τi+1−τi = ρi+1−ρi for each i ≥ 1 and τ1 ≤ ρ1, so Lemma 2.10
yields

sup
x∈Rd×N

Ex[b
τi+1−τi ] < ∞. (2.5)

for all i ≥ 0, where we have defined τ0 ≡ 0. This last fact will be used in the proof of property (4)
of Proposition 1.4 for the BBB process (Proposition 2.11).

Proposition 2.11. For any x ∈ Rd×N , underPx, the BBB process and the stopping times (τi; i ≥ 1) satisfy
condition (4) of Proposition 1.4.

Proof. The condition asserts that

Ex

[
sup

τ1≤t≤τ2

|X1(t)−X1(τ1)|2
]
< ∞.

We bound the supremum as follows. Recall that ρ1 = τ1 + 1, and write

sup
τ1≤t≤τ2

|X1(t)−X1(τ1)|2 = max
(

sup
τ1≤t≤ρ1

|X1(t)−X1(τ1)|2, sup
ρ1≤t≤τ2

|X1(t)−X1(τ1)|2
)

≤ sup
τ1≤t≤ρ1

|X1(t)−X1(τ1)|2 + sup
ρ1≤t≤τ2

|X1(t)−X1(τ1)|2.

≤ rN + sup
ρ1≤t≤τ2

|X1(t)−X1(τ1)|2 ,

the last inequality since by definition, |X1(t)−X1(τ1)| ≤ rN for t ≤ τ1+1 = ρ1. So to prove the
lemma it suffices to show that

Ex

[
sup

ρ1≤t≤τ2

|X1(t)−X1(τ1)|2
]
< ∞ .

We further decompose this supremum by writing

sup
ρ1≤t≤τ2

|X1(t)−X1(τ1)|2 ≤ 4

(
rN + sup

ρ1≤t≤τ2

|X1(t)−X1(τ1)|2
)

,

where we have used the inequality (a− b)2 ≤ 4(a− c)2 + 4(c− b)2 and the fact that |X1(ρ1)−
X1(τ1)| ≤ rN . It thus suffices to prove that

Ex

[
sup

ρ1≤t≤τ2

|X1(t)−X1(τ1)|2
]
< ∞ .

Now write π for the law ofX(τ1 +1)−X1(τ1). Precisely, if X is the BBB process started from
a single particle at 0 ∈ Rd, then π is the conditional law of X(1) given that N(1) = N and that

sup
0≤t≤1

max
1≤i≤N(t)

|Xi(t)| ≤ rN .
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Recall that τ1 − 1 = TI1 is the time at which ATI1
∩ BTI1

occurs. By definition, ATI1
∩ BTI1

is
Fρ1-measurable, since ρ1 = τ1 + 1 = TI1 + 2. It follows by the strong Markov property that

Ex

[
sup

ρ1≤t≤τ2

|X1(t)−X1(τ1)|2
]
= Eπ

[
sup

0≤t≤τ1

|X1(t)−X1(0)|2
]
,

and we must show the final expectation is finite. To do so, make use of the first construction of the
BBB process given in Section 1.1. In other words, we view X as constructed from N independent
Brownianmotions (Bi)i∈[N ] with the aid of a Poisson counting processJ which gives the branching
times, and of a sequence (Ui; i ≥ 1) of random variables which determines which particle branches
at each branching time. An immediate consequence of this construction is that

sup
0≤t≤τ1

max
j∈[N ]

|Xj(t)−Xj(0)| ≤ Jτ1 sup
0≤s≤τ1

max
j∈[N ]

|Bj(s)| , (2.6)

so it suffices to prove that

Eπ

[
J 2
τ1 sup

0≤s≤τ1

max
j∈[N ]

|Bj(s)|2
]
< ∞;

establishing this bound occupies the remainder of the proof.
By the Cauchy-Schwarz inequality, we have

Eπ

[
J 2
τ1 sup

0≤s≤τ1

max
j∈[N ]

|Bj(s)|2
]
≤ Eπ[J 4

τ1 ]
1/2Eπ

[
sup

0≤s≤τ1

max
j∈[N ]

|Bj(s)|4
]1/2

(2.7)

Moreover, since t 7→ Jt is almost-surely nondecreasing

Eπ

[
J 4
τ1

]
= Eπ

 ∞∑
p=0

J 4
τ11{τ1∈[2p,2p+1]}


≤

∞∑
p=0

Eπ

[
J 4
2p+11{τ1∈[2p,2p+1]}

]
≤

∞∑
p=0

Eπ

[
J 8
2p+1

]1/2
Pπ (τ1 ≥ 2p)1/2 . (2.8)

By Markov’s inequality and (2.5), there exist constants b > 1 and K > 0 such that

Pπ (τ1 ≥ 2p) ≤ Kb−2p . (2.9)

A standard computation of higher moments of Poisson random variables yields

Eπ

[
J 8
2p+1

]
=

8∑
i=0

N i2i(p+1)

{
8

i

}
= O(N828(p+1)),

where
{
j
i

}
denotes a Stirling number of the second kind. Continuing from (2.8), we obtain

Eπ

[
J 4
τ1

]
≤ K1/2N4

∞∑
p=0

O(24(p+1))b−2p−1
< ∞. (2.10)
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To bound the second factor in (2.7), we note that

Eπ

[
sup

0≤s≤τ1

max
i∈[N ]

|Bi(s)|4
]
=

∞∑
p=0

Eπ

[
sup

0≤s≤τ1

max
i∈[N ]

|Bi(s)|41{τ1∈[2p,2p+1]}

]

≤
∞∑
p=0

Eπ

[
sup

0≤s≤2p+1

max
i∈[N ]

|Bi(s)|41{τ1∈[2p,2p+1]}

]

≤
∞∑
p=0

Pπ (τ1 ≥ 2p)1/2Eπ

[
sup

0≤s≤2p+1

max
i∈[N ]

|Bi(s)|8
]1/2

. (2.11)

Observe that
max
i∈[N ]

|Bi(s)|8 ≤ d4 max
i∈[N ]

max
j∈[d]

|Bij(s)|8,

and that (
max
i∈[N ]

max
j∈[d]

|Bij(t)|, t ≥ 0

)
is a submartingale. SoDoob’sL8 inequality and IID-ness of the one-dimensional Brownianmotions
Bij imply that

Eπ

[
sup

0≤s≤2p+1

max
i∈[N ]

|Bi(s)|8
]
≤ d4

(
8

7

)8

Eπ

[
max
i∈[N ]

max
j∈[d]

|Bij(2
p+1)|8

]
≤ d5N

(
8

7

)8

Eπ

[
|B11(2

p+1)|8
]

= d5NO(24(p+1)), (2.12)

where we have used thatEπ

[
|B11(2

p+1)|8
]
= O

(
24(p+1)

)
. Combining (2.11), (2.12) and (2.9), we

conclude that

Eπ

[
sup

0≤s≤τ1

max
i∈[N ]

|Bi(s)|4
]
≤ K1/2d5N

∞∑
p=0

b−2p−1
O(24(p+1)) < ∞.

as required.

2.4. Barycenter approximation in probability

In this section, we show that property (5) of Proposition 1.4 holds for the BBB process. We will make
frequent use of the following fact on the convergence in probability of certain random variables.

Fact 2.12. Let (km)m≥1 be a sequence of nonnegative integer valued random variables with the property that there
exists a constant κ > 0 such that m−1km → κ in probability as m → ∞. Suppose that (Zi; i ≥ 1) are
identically distributed nonnegative random variables with E

[
Z2
1

]
< ∞. Then, as m → ∞

m−1/2 max
1≤i<km

Zi → 0 (2.13)

in probability.

Proof. Since Z1 ∈ L2(P), it is P-almost surely finite. Hence, by Chebyshev’s inequality and the
dominated convergence theorem, we obtain

lim
m→∞

mP(m−1/2Z1 > ϵ) ≤ lim
m→∞

E
[
ϵ−2Z2

11m−1/2Z1>ϵ

]
= 0 (2.14)
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We have

P

(
m−1/2 max

1≤i<km
Zi > ϵ

)
≤ P

(
m−1/2 max

1≤i<ϵ−1m
Zi > ϵ

∣∣∣km ≤ ϵ−1m

)
+P

(
km > ϵ−1m

)
. (2.15)

For all ϵ > 0 small enough that ϵ−1 > κ, since m−1km → κ in probability as m → ∞ by
assumption, it follows that

lim
m→∞

P
(
km > ϵ−1m

)
= 0. (2.16)

Moreover, since the Zi are identically distributed, a union bound and (2.14) give

P

(
m−1/2 max

1≤i<ϵ−1m
Zi > ϵ

∣∣∣km ≤ ϵ−1m

)
≤ ϵ−1mP(m−1/2Z1 > ϵ)

m→∞−−−−→ 0. (2.17)

Combining (2.15), (2.16) and (2.17) establishes (2.13).

For each m ≥ τ1, let k[m] denote the unique natural number such that τk[m] ≤ m < τk[m]+1,
and for m < τ1 let k[m] = 0. By Corollary 2.9, the increments (τk+1 − τk; k ≥ 1) are IID; since
τk+1 − τk = ρk+1 − ρk, by Lemma 2.10 these increments have some positive finite expected value
κ ∈ (0,∞). The law of large numbers then implies that τk/k

a.s.→ κ as k → ∞, from which it
follows easily that m−1k[m]

a.s.→ 1/κ as m → ∞.

Proposition 2.13. Fix any x ∈ Rd×N . As m → ∞, we have

m−1/2 sup
0≤t≤m

|X(t)−X1(t)| → 0 (2.18)

in probability with respect to Px.

Proof. Since τ1 < ∞ almost surely with respect to Px by Lemma 2.10, it suffices to prove that as
m → ∞

m−1/2 sup
τ1≤t≤m

|X(t)−X1(t)| → 0

in probability with respect to Px. For all t ≥ 0, we have

|X(t)−X1(t)| ≤ max
j∈[N ]

|Xj(t)−X1(t)|.

Therefore
sup

τ1≤t≤m
|X(t)−X1(t)| ≤ max

i∈[k[m]]
sup

τi≤s≤τi+1

max
j∈[N ]

|Xj(s)−X1(s)|.

At time τi = TIi + 1, the event ATIi
has just occurred, which implies that maxj∈[N ] |Xj(τi) −

X1(τi)| ≤ 5 + 2−1(N + 1)−1 + 5(N − 1)−1 < 11. Moreover, the event BTIi
is about to occur,

which means that for all times s ∈ [τi, ρi] = [τi, τi + 1], every particle has distance at most
rN = 1

4(N+1) from the location of some time-τi particle. Therefore,

sup
τi≤s≤ρi

max
j∈[N ]

|Xj(s)−X1(s)| ≤ 12 .

Writing

Zi := max

(
12, sup

ρi≤s≤τi+1

max
j∈[N ]

|Xj(s)−X1(s)|

)
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for i ≥ 1, it follows that
sup

τ1≤t≤m
|X(t)−X1(t)| ≤ max

i∈[k[m]]
Zi.

To obtain (2.18), it thus suffices to verify the conditions of Fact 2.12 for (Zi; i ≥ 1). UnderPx, the
random variables supρi≤s≤τi+1

maxj∈[N ] |Xj(s)−X1(s)| are identically distributed for i ∈ [k[m]]
by Proposition 2.8, from which it is immediate that (Zi; i ≥ 1) are identically distributed. It only
remains to show that Z1 ∈ L2(Px). For this, observe that

max
j∈[N ]

|Xj(s)−X1(s)|2

≤ 4 max
j∈[N ]

|Xj(s)−Xj(τ1)|2 + 4 max
j∈[N ]

|Xj(τ1)−X1(s)|2

≤ 4 max
j∈[N ]

|Xj(s)−Xj(τ1)|2 + 16 max
j∈[N ]

|Xj(τ1)−X1(τ1)|2 + 16|X1(τ1)−X1(s)|2

≤ 20 max
j∈[N ]

|Xj(s)−Xj(τ1)|2 + 16 max
j∈[N ]

|Xj(τ1)−X1(τ1)|2

≤ 20 max
j∈[N ]

|Xj(s)−Xj(τ1)|2 + 1600

where in the last inequality, we have used thatmaxj∈[N ] |Xj(τ1)−X1(τ1)|2 ≤ 102 by the definitions
of events (At,2) and (At,3). Taking the supremum over s ∈ [ρ1, τ2] and taking expectations, we infer
that

Ex[Z
2
1 ] ≤ 144 + 20Ex

[
sup

ρ1≤s≤τ2

max
j∈[N ]

|Xj(s)−Xj(τ1)|2
]
+ 1600

By the strong Markov property and (2.6), we obtain

Ex

[
sup

ρ1≤s≤τ2

max
j∈[N ]

|Xj(s)−Xj(τ1)|2
]
= Eπ

[
sup

0≤s≤τ1

max
j∈[N ]

|Xj(s)−Xj(0)|2
]

≤ Eπ

[
J 2
τ1 sup

0≤s≤τ1

max
j∈[N ]

|Bj(s)|2
]
,

which is finite, as seen in the proof of Proposition 2.11. This proves that Z1 ∈ L2(Px); and
establishes the convergence in (2.18).

2.5. Proof of Theorem 1.1

Set ∆1 := X1(τ2) − X1(τ1), and denote by ν the law of ∆1 under Px; it is a Borel probability
measure on Rd defined by

ν(B) := Px(∆
−1
1 (B)) = Pπ(X1(τ1)−X1(0) ∈ B);

the second equality holds by Proposition 2.8 and makes it clear that the measure ν does not depend
on the initial configuration x ∈ Rd×N . The rotational invariance of Brownian motion immediately
implies the following lemma (whose proof we omit).

Lemma 2.14. The measure ν is invariant under the action of the group O(d,R) of d-by-d orthogonal matrices
with entries in R.

We are now ready to prove Theorem 1.1.
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Proof of Theorem 1.1. Fix x ∈ Rd×N . We work on the probability space (Ω,F ,Px). When N = 1,
the process X consists of a single Brownian motion so the theorem holds with σ(d, 1) = 1 and no
drift term.

Next suppose that N = 2. In this case, the first construction of the BBB process given in
Section 1.1 simplifies as follows. Let (ζi; i ≥ 1) be the jump times for a counting process J =
(Jt, t ≥ 0) for a Poisson point process on [0,∞) with rate 2 and define ζ0 = 0. We denote by
X1 = (X1(t), t ≥ 0) and B = (B(t), t ≥ 0) two d-dimensional Brownian motions started from
x1 ∈ Rd and 0 ∈ Rd, respectively. Define a process X2 = (X2(t), t ≥ 0) by X2(0) = x2 ∈ Rd,
and inductively for each i ≥ 0 by

X2(t) = X1(ζi) +B(t)−B(ζi), t ∈ [ζi, ζi+1).

Thus, whenN = 2, the BBB process X = (X1,X2) consists of a Brownian motion X1 to which we
attach branches X2 that can only grow between consecutive branching times. For s ≥ 0, let k[s]
be the unique positive integer such that ζk[s] ≤ s ≤ ζk[s]+1. By the triangle inequality, we have

sup
0≤t≤1

∣∣∣∣X(tm)√
m

− X1(tm)√
m

∣∣∣∣
= sup

0≤t≤1

∣∣∣∣X2(tm)

2
√
m

− X1(tm)

2
√
m

∣∣∣∣
≤ sup

0≤t≤1

∣∣∣∣X2(tm)

2
√
m

−
X2(ζk[tm])

2
√
m

∣∣∣∣+ sup
0≤t≤1

∣∣∣∣X1(tm)

2
√
m

−
X1(ζk[tm])

2
√
m

∣∣∣∣
≤ max

0≤i<k[m]
sup

s∈[ζi,ζi+1]

|X2(s)−X2(ζi)|
2
√
m

+ max
0≤i<k[m]

sup
s∈[ζi,ζi+1]

|X1(s)−X1(ζi)|
2
√
m

.

We claim that the last expression converges to 0 in probability. Since ζ2 − ζ1 has exponential tails,
and for each j ∈ {1, 2},

(Xj(s)−Xj(ζ1), s ∈ [ζ1, ζ2])

is a Brownian motion, we infer that

sup
s∈[ζ1,ζ2]

|Xj(s)−Xj(ζ1)| ∈ L2(Px).

Therefore, Fact 2.12 implies the convergence to 0 in probability. Since the initial value of X is sent
to 0 when m → ∞, we conclude that X satisfies an invariance principle with σ(d, 2) = 1.

Suppose now that N ≥ 3. By Lemma 2.7 and Proposition 1.4 the barycenter X satisfies an
invariance principle, i.e. there exists a non-zero d-by-d matrix Σ = Σ(d,N) such that (1.3) holds.
We next show that the drift term in the invariance principle is zero for any d ≥ 1 and N ≥ 3.
By Proposition 1.4, the drift is α = Ex[∆1]Ex[τ2 − τ1]

−1. Moreover, we note that property
(4) in Proposition 1.4, combined with the Cauchy-Schwarz inequality, immediately implies that
∆i = X1(τi+1)−X1(τi) ∈ L1(Pπ), for each i ≥ 1. In particular, Ex[∆1] < ∞. The rotational
invariance from Lemma 2.14 then immediately implies thatEx[∆1] = 0, and henceα = 0. Finally,
since for any m > 0, the process

(
m−1/2X(tm), 0 ≤ t ≤ 1

)
is rotationally invariant, then the

limit process (ΣB(t), 0 ≤ t ≤ 1) is also rotationally invariant. Considering rotations of the form
(x, y) 7→ (−y, x) applied to all pairs of coordinates, rotational invariance implies that (ΣB(t), 0 ≤
t ≤ 1) has uncorrelated and identically distributed coordinates. Since (ΣB(t), 0 ≤ t ≤ 1) is a
Gaussian process, this implies its coordinates are in fact IID, and thus Σ(d,N) = σ(d,N)Id for
some σ(d,N) > 0.
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3. Proofs of Technical Ingredients

In this chapter, we include the proofs of Lemma 2.4, Lemma 2.5, and Theorem 1.3. Recall from
Section 2.1 that CL = {x ∈ Rd×N : E(x) ≤ L} is the set of configurations with extent at most L.

3.1. Two events with positive probability

We begin by proving that the events A and B defined by (At,1)-(At,3) and (Bt,1),(Bt,2) have positive
probability.

Lemma 3.1. Let A = A0 = A0,1 ∩ A0,2 ∩ A0,3 be defined by (At,1)-(At,3) with t = 0. There exists
ϵ = ϵL,N > 0 such that

inf
x∈CL

Px(A) > ϵ.

Proof. First, note that the event A can be rewritten for the process X (instead of X − X(0)) by
assuming that X(0) = 0. Hence, it is enough to show that there exists ϵ = ϵL,N > 0 such that

inf{Px(A) : x ∈ CL, x = 0} > ϵ.

Fix any x ∈ CL with x = 0. We write A as

A = A0,1 ∩ E1 ∩ E2 ∩ E3,

where the events Ei are defined as follows, using the same notation as in (At,1)-(At,3). Define

E1 := {Xj(1) ∈ B(−5e1, rN ),∀j ∈ G′},
E2 := {Xj(1) ∈ B(5e1, rN ),∀j ∈ D′},

and
E3 := {X1(1) ∈ B(γ, rN )},

where as before rN := 1
4(N+1) ∈ (0, 1), andwe recall that γ is roughly the location of the barycenter

of G′ ∪D′. We then have

Px(A) = Px(E1 ∩ E2 ∩ E3

∣∣A0,1)Px(A0,1)

=

3∏
k=1

Px

Ek

∣∣A0,1,

k−1⋂
j=1

Ej

Px(A0,1).

Since we start from a deterministic configuration x, and conditioning on A0,1 means there are no
branching events between times 0 and 1, the positions of the particles at time 1 are independent
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given A0,1. Therefore we can bound each term in the last product as follows: writingN (x, Id) for
a d-dimensional Gaussian centered at x,

Px(E1|A0,1) ≥
(
min
j∈G′

P (N (xj , Id) ∈ B(−5e1, rN ))

)|G′|
,

Px(E2|A0,1, E1) ≥
(
min
j∈D′

P (N (xj , Id) ∈ B(5e1, rN ))

)|D′|
,

Px(E3|A0,1, E1 ∩ E2) ≥ P (N (x1, Id) ∈ B(γ, rN )) ,

andPx(A0,1) = e−N . Taking the infimum over admissible configurations x ∈ CL satisfying x = 0,
we obtain

inf{Px(A) : x ∈ CL, x = 0}

≥ e−N inf
x∈CL,x=0

[(
min
j∈G′

P (N (xj , Id) ∈ B(−5e1, rN ))

)bN−1
2 c

×

×
(
min
j∈D′

P (N (xj , Id) ∈ B(5e1, rN ))

)dN−1
2 e

P (N (x1, Id) ∈ B(γ, rN ))

]
=: ϵL,N > 0.

Lemma 3.2. Let B = B0 = B0,1 ∩ B0,2 be defined by (Bt,1),(Bt,2). There exists ϵ = ϵL,N > 0 such
that

inf
x∈CL

Px(B|A) > ϵ.

Proof. Let S ′ ⊂ S be the set of possible values of X at time 1, given that A occurred. Namely,
x ∈ S ′ if and only if

(a) C = {1}, G = {2, · · · ,
⌈
N+1
2

⌉
}, and D = {

⌈
N+1
2

⌉
+ 1, · · · , N},

(b) x1 ∈ B(γ, rN ),

(c) xj ∈ B(−5e1, rN ) for all j ∈ G, and xj ∈ B(5e1, rN ) for all j ∈ D.

In particular, we have that G = G′ and D = D′. By the Markov property and (At,1)-(At,3), we
have

inf
x∈CL

Px(B|A) ≥ inf
x∈S′

Px(B̃), (3.1)

where B̃ = B̃0,1 ∩ B̃0,2 is the event B “taking place in the time interval [0, 1]” (rather than [1, 2]).
We can decompose B̃ as the intersection of the following five events:

U1 :=
⋂

j∈G′∪D′

{Xj doesn’t branch from time 0 until time 1 or until it is killed, whichever comes first} ⊂ B̃0,1,

U2 :={Each particle in G′ stays in B(−5e1, 2rN ) from time 0 until time 1 or until it is killed,

whichever comes first} ⊂ B̃0,2,

U3 :={Each particle in D′ stays in B(5e1, 2rN ) from time 0 until time 1 or until it is killed,

whichever comes first} ⊂ B̃0,2,

U4 :={The descendants of X1 stay in B(γ, 2rN ) for all times in [0, 1]} ⊂ B̃0,2,

U5 :={X1 and its descendants branch at least N − 1 times in [0, 1]} ⊂ B̃0,1.
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Observe that for any x ∈ S ′, we have

Px(B̃) =

5∏
k=1

Px(Uk| ∩k−1
j=1 Uj). (3.2)

We bound each factor in (3.2) individually as follows. We have

Px(U1) ≥ Px(a particle doesn’t branch in [0,1])N−1 = e−(N−1),

Given U1, the particles inG′ are independent until time 1 or until they are killed, whichever comes
first. Therefore, if B = (B(s), s ≥ 0) denotes a d-dimensional Brownian motion, then we have

Px(U2|U1) ≥ min
j∈G′

P(B(s) ∈ B(−5e1, 2rN ),∀s ∈ [0, 1]|B(0) = xj)
N .

Similarly, we have

Px(U3|U1 ∩ U2) ≥ min
j∈D′

P(B(s) ∈ B(5e1, 2rN ), ∀s ∈ [0, 1]|B(0) = xj)
N .

EventU4 contains the event that particleX1 does not branch in [0, 1], and that its trajectory stays in
B(γ, 2rN ) for all times in [0, 1]. Thus, if B = (B(s), s ≥ 0) is a d-dimensional Brownian motion,
we have

Px(U4|U1 ∩ U2 ∩ U3) ≥ e−1P(B(s) ∈ B(γ, 2rN ),∀s ∈ [0, 1]|B(0) = x1).

Event U5 contains the event that particle X1 branches N − 1 times in the time interval [0,1], and
no other particle in the BBB branches in the time interval [0,1]. Thus

Px(U5|U1 ∩ U2 ∩ U3 ∩ U4) ≥ e−(N−1) (1− e−1)N−1

(N − 1)!
.

Combining these lower bounds, and taking the infimum over x ∈ S ′ in (3.2), we obtain

inf
x∈CL

Px(B|K) > ϵL,N ,

for some ϵL,N > 0. The lemma then follows from (3.1).

Proof of Lemma 2.4. Lemmas 3.1 and 3.2 imply that

inf
x∈CL

Px(A ∩B) ≥
(

inf
x∈CL

Px(A)

)(
inf

x∈CL

Px(B|A)

)
> 0 .

3.2. Proof of Lemma 1.6

This section is devoted to proving the deterministic Lemma 1.6. For this we will use the following
two claims.

Claim 3.3. Fix a configuration x,w and an integer ℓ ∈ [N ] with wℓ > 0. Write k = k(x,w, ℓ) and
w∗ = g(x,w, ℓ). If w∗

k ≥ 1 and k 6= ℓ then also k(x,w∗, ℓ) 6= ℓ.

Proof. Let
y =

1

N − wℓ − wk

∑
i∈[N ]\{k,ℓ}

wixi ,
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and define
b =

N − wℓ − wk

N + 1
y +

(wℓ + 1)

N + 1
xℓ +

wk

N + 1
xk ;

this is the barycenter of the configuration obtained from x,w after letting xℓ branch (increasing its
weight by 1) but before any killing takes place (so the total weight isN+1 rather thanN ). Likewise,
upon killing particle xk and letting xℓ branch consecutively, define

b∗ =
N − wℓ − wk

N + 1
y +

(w∗
ℓ + 1)

N + 1
xℓ +

w∗
k

N + 1
xk.

We have (N − wℓ − wk)y =
∑

i∈[N ]\{k,ℓ}wixi =
∑

i∈[N ]\{k,ℓ}w
∗
i xi since w∗

i = wi for all
i ∈ [N ]\{k, l} andN −w∗

ℓ −w∗
k = N −wℓ−wk since w∗

ℓ = wℓ+1 and w∗
k = wk−1. Thus, the

point b∗ is the barycenter of the configuration obtained from x,w∗ by letting xℓ branch but before
any killing takes place, and also,

b∗ =
N − wℓ − wk

N + 1
y +

(wℓ + 2)

N + 1
xℓ +

(wk − 1)

N + 1
xk = b+

xℓ − xk
N + 1

. (3.3)

As depicted in Figure 3.1 below, since |xℓ−b| < |xk−b|, it follows immediately that |xℓ−b∗| <
|xk − b∗|.

Figure 3.1: Pictorial description of (3.3) showing that |xℓ − b∗| < |xk − b∗|. Here, H is the
hyperplane perpendicular to xℓ − xk and passing through b.

Since w∗
k ≥ 1, this means there is at least one positive-weight particle further from b∗ than xℓ,

and thus k(x,w∗, ℓ) 6= ℓ.

Claim 3.4. Fix a configuration x,w, let b0 = N−1
∑N

i=1wixi, and let

ℓ := argmin
i∈[N ]:wi>0

|xi − b0| . (3.4)

If there exists j ∈ [N ] \ {ℓ} with wj > 0 then k(x,w, ℓ) 6= ℓ.

Proof. Since the killing rules for deterministic configurations are invariant under affine transforma-
tions, we may assume that b0 = (0, 0, . . . , 0) and xℓ = (1, 0, . . . , 0). Writing

z =
1

N − wℓ

∑
j∈[N ]\{ℓ}

wjxj ,
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we have
b0 =

N − wℓ

N
z +

wℓ

N
xℓ,

so z = (Nb0−wℓxℓ)/(N−wℓ) = (−wℓ/(N−wℓ), 0, . . . , 0). Since z is the (weighted) barycenter
of the particles excluding xℓ, it follows that there is j 6= ℓ with wj > 0 such that xj is an element
of the halfspace P = {(p1, . . . , pd) : p1 ≤ −wℓ/(N − wℓ)}.

Now, similar to the proof of Claim 3.3, write

b =
N − wℓ

N + 1
z +

wℓ + 1

N + 1
xℓ

for the barycenter of the configuration obtained from x,w after letting xℓ branch but before any
killing takes place. An easy calculation gives that b = (1/(N+1), 0, . . . , 0), so |xℓ−b| < |xℓ−b0|.
Moreover, for a particle xj ∈ P as in the previous paragraph, we have |xj − b| > |xj − b0|. By
our choice of ℓ we also have |xℓ − b0| < |xj − b0|, and thus |xℓ − b| < |xj − b|. Thus there is at
least one particle further from b than xℓ, so k(x,w, ℓ) 6= ℓ.

We now conclude the proof as follows.

Proof of Lemma 1.6. Fix any unambiguous configuration x,w (recall (1.4)) with at least two particles
with non-zero weights. For b0 as in Claim 3.4, let ℓ = argminℓ∈[N ]:wℓ>0 |xℓ − b0|. Let w(0) = w,
and for j ≥ 0, w(j+1) = g(x,w(j), ℓ), and kj = k(x,w(j), ℓ). By Claim 3.4, k0 6= ℓ. By
Claim 3.3 and induction, for all j ≥ 0 such that w(j+1)

kj
≥ 1, we have k(x,w(j+1), ℓ) 6= ℓ, so

w
(j+1)
ℓ = w

(j)
ℓ + 1. Since the maximum possible weight is N , it follows that there is j ≤ N − 1

such that w(j+1)
kj

= 0.
We have shown that, starting from any unambiguous configuration with at least two particles

of non-zero weight, there exists a sequence of at most N − 1 branching events which reduces the
number of particles with nonzero weight by at least one. Repeating such a procedure at mostN−1
times, we necessarily obtain a configuration with at most one nonzero weight. This completes the
proof.

Given δ > 0, let x ∈ Rd×N be a δ-unambiguous configuration (as defined by (1.5)) and intro-
duce the notation

Rd×N
δ/4, x

:=

{
y ∈ Rd×N : y = (y1, · · · , yN ) ∈

N∏
i=1

B

(
xi,

δ

4

)}
, (3.5)

which is the set of generic configurations within δ
4 of x. The following corollary will be essential to

the proof of Lemma 2.5 in the next section (Section 3.3).

Corollary 3.5. Given any δ-unambiguous configuration x,w, Lemma 1.6 assigns the same collapsing sequence
of branching events to y, w for all y ∈ Rd×N

δ/4, x.

Proof. It is immediate from the definition of Rd×N
δ/4, x and the fact that x is δ-unambiguous that any

element y ∈ Rd×N
δ/4, x is δ

2 -unambiguous. Moreover, yi ∈ B
(
xi,

δ
4

)
for each i ∈ [N ] so at any step

in the proof of Lemma 1.6, the barycenter of y, w can only be at most δ
4 away from the barycenter

of x,w. Hence, Lemma 1.6 assigns the same sequence to y, w as to x,w.
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3.3. Harris recurrence for the recentered BBB

In this section we prove Lemma 1.5, Lemma 2.5, and finally Theorem 1.3, which asserts the Harris
recurrence of X−X.

Recall that for δ > 0, we defined ξδ := inf{t ≥ 0 : X(t) is δ-unambiguous}, where the
meaning of δ-unambiguous is given by (1.5). Lemma 1.5 states that for δ small, the event {ξδ < 1}
occurs with probability as close to 1 as we wish, uniformly over starting configurations.

Proof of Lemma 1.5. For each α ∈ (0, 1), define the event

Dα := {no branching occurs in [0, α]}.

For each t ≥ 0 and j ∈ [N ], we define

rj(t) = |Xj(t)−X(t)|.

For any x ∈ Rd×N and any δ > 0, we have

Px(ξδ ≥ 1|Dα) = Px

 ⋂
0≤t<1

{
min

i ̸=j∈[N ]
|ri(t)− rj(t)| ≤ δ

} ∣∣∣Dα


≤ Px

(
min

i ̸=j∈[N ]

∣∣∣ri (α
2

)
− rj

(α
2

)∣∣∣ ≤ δ
∣∣∣Dα

)
≤

∑
i ̸=j∈[N ]

Px

(∣∣∣ri (α
2

)
− rj

(α
2

)∣∣∣ ≤ δ
∣∣∣Dα

)
≤
(
N

2

)
max

i ̸=j∈[N ]
Px

(∣∣∣ri (α
2

)
− rj

(α
2

)∣∣∣ ≤ δ
∣∣∣Dα

)
.

Moreover,

Px

(∣∣∣ri (α
2

)
− rj

(α
2

)∣∣∣ ≤ δ
∣∣∣Dα

)
= Px

(∣∣∣gi,j (X (α
2

))
− gj,i

(
X
(α
2

))∣∣∣ ≤ δ
∣∣∣Dα

)
, (3.6)

where

gi,j

(
X
(α
2

))
:=

∣∣∣∣∣∣N − 1

N
Xi

(α
2

)
− 1

N
Xj

(α
2

)
− 1

N

∑
k∈[N ]\{i,j}

Xk

(α
2

)∣∣∣∣∣∣ .
is the distance between Xi and X at time α

2 . Thus, by the tower law, we can write (3.6) as

Ex

[
Px

(∣∣∣gi,j (X (α
2

))
− gj,i

(
X
(α
2

))∣∣∣ ≤ δ
∣∣∣σ ((Xk(s))k∈[N ]\{i,j}, 0 ≤ s ≤ α

2

)
, Dα

) ∣∣∣Dα

]
.

GivenDα, the particle positions at time α
2 are independent Gaussians. So, as δ ↓ 0, the event in the

conditional probability then requires that the norms of two independent Gaussians be arbitrarily
close at time α

2 . It follows that

lim
δ↓0

sup
x∈Rd×N

Px(ξδ ≥ 1|Dα)

= lim
δ↓0

sup
x∈Rd×N

max
i ̸=j∈[N ]

Px

(∣∣∣ri (α
2

)
− rj

(α
2

)∣∣∣ ≤ δ
∣∣∣Dα

)
= 0. (3.7)

28



Finally, we have

Px(ξδ ≥ 1) = Px(ξδ ≥ 1, Dα) +Px(ξδ ≥ 1, Dc
α)

= e−αNPx(ξδ ≥ 1|Dα) + (1− e−αN )Px(ξδ ≥ 1|Dc
α)

≤ e−αNPx(ξδ ≥ 1|Dα) + 1− e−αN .

Thus taking the supremum over x ∈ Rd×N , and subsequently the limits as δ ↓ 0 and as α ↓ 0, and
using (3.7), we deduce that

lim
δ↓0

sup
x∈Rd×N

Px(ξδ ≥ 1) = 0.

We conclude that for any ϵ > 0, there exists δ = δϵ > 0 such that

inf
x∈Rd×N

Px(ξδ < 1) > 1− ϵ.

We now turn to the proof of Lemma 2.5. Recall that the time-t extent of the process is defined
as

E(X(t)) := max
i ̸=j∈[N ]

|Xi(t)−Xj(t)|;

the lemma asserts that the extent reaches bounded values in a bounded time with high probability.
For the proof we need one final definition. For any t ≥ s ≥ 0 and δ > 0, let

Hδ(s, t] := {Each particle stays within distance δ of the location of its time-s ancestor
from time s until it is killed or until time t, whichever comes first} .

Note that for any x ∈ Rd×N ,

Px(Hδ(s, t]|Fs) ≥ e−N(t−s)P

(
sup

r∈[0,t−s]
|B(r)| < δ

)N

> 0 ,

where (B(r), r ≥ 0) is a standard d-dimensional Brownian motion starting from the origin. This
holds since one way for Hδ(s, t] to occur is for no branching to occur in (s, t) and for no particle
to travel distance ≥ δ.

Proof of Lemma 2.5. We give a two-step argument. Throughout the proof we assume that L ≥ 2.

Step 1: Getting to a δ-generic configuration confined to small balls of radius δ
4 with positive probability.

Fix ϵ ∈ (0, 1). By Lemma 1.5, there exists δ = δϵ > 0 such that

1− ϵ < inf
x∈Rd×N

Px(ξδ < 1).

Moreover, there exists c = cL,δ > 0 such that

inf
x∈Rd×N

Px(Hδ/4(ξδ, L]|ξδ < 1) > c.

It follows that
inf

x∈Rd×N
Px(Hδ/4(ξδ, L], ξδ < 1) > (1− ϵ)c > 0. (3.8)

For any x ∈ Rd×N , we have

Px(T
(L) > L) = Px(T

(L) > L|Hδ/4(ξδ, L], ξδ < 1)Px(Hδ/4(ξδ, L], ξδ < 1),
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so by (3.8) the result follows if we can show limL→∞Px(T
(L) > L|Hδ/4(ξδ, L], ξδ < 1) = 0.

Step 2: Application of the deterministic lemma (Lemma 1.6) and of Corollary 3.5.

By Lemma 1.6, there exists a deterministic sequence (ij)mj=1 ofm ≤ (N−1)2 branching events
that collapses the configuration X(ξδ), (1, 1, . . . , 1). For convenience, introduce the notation

νx(·) := Px(·|Hδ/4(ξδ, L], ξδ < 1)

and, recalling the definition of Rd×N
δ,x from (3.5),

EL := {x ∈ Rd×N
δ/4, X(ξδ)

: E(x) > L}.

By the law of total probability and the Markov Property, we obtain

νx(T
(L) > L)

= νx(T
(L) > L− 2)νx(T

(L) > L|T (L) > L− 2)

= νx(T
(L) > L− 2)

∫
EL

νx(T
(L) > L|T (L) > L− 2, X(L− 2) = y)νx(X(L− 2) ∈ dy)

≤ sup
x∈Rd×N

νx(T
(L) > L− 2) sup

y∈EL

νy(T
(L) > 2). (3.9)

Thus, it suffices to show that there exists C ∈ (0, 1) such that

sup
x∈EL

νx(T
(L) > 2) < C. (3.10)

Consider the event

F := {(ij)mj=1 are the first m branching events to occur in (ξδ, 2]}.

We have the containment F ⊂ {T (L) ≤ 2}, so taking complements

{T (L) > 2} ⊂ F c = {(ij)mj=1 are not the first m branching events of (ξδ, 2]}.

Using the first construction of the BBB process from Section 1.1 and the fact that the same sequence
(ij)

m
j=1 collapses any configuration x ∈ EL by Corollary 3.5, we obtain that

νx(T
(L) > 2) ≤ νx(F

c)

= 1− νx(J (2)− J (ξδ) ≥ m)νx(F
c | J (2)− J (ξδ) ≥ m)

≤ 1−P(Poisson(N) ≥ m) · (1−N−m)

= C < 1

for all x ∈ EL, which proves (3.10). It then follows from (3.9) that

lim
L→∞

sup
x∈Rd×N

Px(T
(L) > L) ≤ lim

L→∞
sup

x∈Rd×N

νx(T
(L) > L) ≤ lim

L→∞
C⌊L/2⌋ = 0.

We will now prove Theorem 1.3 using Lemma 2.5. We use Φ to denote the recentered BBB
process, so thatΦt := X(t)−X(t) for all t ≥ 0. For each t > 0 and x ∈ Rd×N , letµt,x := Px◦Φ−1

t

be the law ofΦt given thatΦ0 = x−x. Denote byφ theN -fold product measure of a d-dimensional
standard Gaussian and recall the notation

CL := {x ∈ Rd×N : E(x) ≤ L}

We begin with the following key estimate.
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Lemma 3.6. For any L ≥ 0, there exists γ = γ(L,N) > 0 such that

inf
x∈CL

inf
1≤t≤2

µt,x(A) ≥ γφ(A), for all Borel A ⊂ Rd×N (3.11)

Proof. Let L ≥ 0. Define

D := {no branching events occur in [0, 2]}.

By monotonicity and independence, for any Borel A ⊂ Rd×N , we obtain

µt,x(A) ≥ µt,x(A ∩D)

= µt,x(A|D)µt,x(D)

= e−2N

∫
A

N∏
i=1

e−
|yi−(xi−x)|2

2t

(2πt)d/2
dy1 · · · dyN .

Moreover, for each x ∈ CL, y ∈ Rd×N , and t ∈ [1, 2],

e−
|yi−(xi−x)|2

2t

(2πt)d/2
≥ e−

|yi|
2

2t e−
|xi−x|2

2t

(2πt)d/2
≥ e−

L2

2

2d/2
e−

|yi|
2

2

(2π)d/2
,

which implies that for each x ∈ CL and t ∈ [1, 2],

e−2N

∫
A

N∏
i=1

e−
|yi−(xi−x)|2

2t

(2πt)d/2
dy1 · · · dyN ≥ e−2N e−

NL2

2

2dN/2

1

(2π)dN/2

∫
A

N∏
i=1

e−
|yi|

2

2 dy1 · · · dyN

= e−2N e−
NL2

2

2Nd/2
φ(A).

Thus (3.11) holds if we take γ(L,N) := e−2Ne−
NL2

2

2Nd/2 > 0.

Proof of Theorem 1.3. We wish to show that Φ is Harris recurrent. According to Definition 1.2, it
suffices to show that for the same choice of φ as above, we have for all A ⊂ Rd×N Borel,

φ(A) > 0 ⇒ inf
x∈Rd×N

Px(ηA = ∞) = 1,

where ηA =
∫∞
0 1{Φt∈A}dt. By Lemma 2.5 and Remark 2.6 (i), the stopping times (Ti; i ≥ 1)

defined by (2.1) are finite Px-almost surely. Fix L ≥ 0 and any Borel set A ⊂ Rd×N . For each
integer i ≥ 1, define

ηiA :=

∫ Ti+2

Ti+1
1{Φt∈A}dt.

For all i ≥ 1, the strong Markov property, Tonelli’s Theorem and Lemma 3.6 imply that

Ex[η
i
A] = Ex

[
EX(Ti)

[
η1A
]]

= Ex

[∫ 2

1
PX(Ti)(Φt ∈ A)dt

]
= Ex

[∫ 2

1
µt,X(Ti)(A)dt

]
≥ γφ(A).
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Let θ := γφ(A) ∈ (0, 1), since γ ∈ (0, 1) and φ is a probability measure. Using the strong Markov
property and Tonelli’s theorem, it follows that for any i ≥ 1

θ ≤ Ex[η
i
A]

= Ex[η
i
A1{ηiA≤θ2}] +Ex[η

i
A1{ηiA>θ2}]

= Ex[η
i
A1{ηiA≤θ2}] +Ex

[
EX(Ti)

[
η1A1{η1A>θ2}

]]
≤ θ2Px(η

i
A ≤ θ2) +Ex

[∫ 2

1
PX(Ti)(Φt ∈ A, η1A > θ2)dt

]
≤ θ2Px(η

i
A ≤ θ2) +Ex

[
PX(Ti)(η

1
A > θ2)

]
= θ2(1−Px(η

i
A > θ2)) +Px(η

i
A > θ2)

= θ2 + (1− θ2)Px(η
i
A > θ2).

where in the second to last equality, we have used the strong Markov property to obtain the identity
Ex

[
PX(Ti)(η

1
A > θ2)

]
= Px(η

i
A > θ2). Rearranging the above inequality, we now have

Px(η
i
A > θ2) ≥ θ − θ2

1− θ2
> 0, ∀i ≥ 1. (3.12)

Moreover, the same proof shows that almost surely

Px(η
i
A > θ2 | FTi) ≥

θ − θ2

1− θ2

for all i ≥ 1. Since the random variables (ηjA, 1 ≤ j < i) are FTi-measurable, it follows that
almost surely

Px(η
i
A > θ2 | ηjA, 1 ≤ j < i) ≥ θ − θ2

1− θ2
.

This implies that the collection of indicators (1[ηiA>θ2]; i ≥ 1) stochastically dominates a sequence
(Bi; i ≥ 1) of independent Bernoulli random variables success probability θ−θ2

1−θ2
> 0. It is imme-

diate that, almost surely, ηiA > θ2 for infinitely many i, and so

ηA ≥
∑
i≥1

ηiA
a.s.
= ∞ ,

as required. .
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4. Open Questions

We ask questions which arise naturally from our work, as well as more general questions on the
BBB process.

• It would be nice to understand the behavior of the rescaling σ(d,N) obtained in Theorem
1.1, especially asN → ∞. We have shown that σ(d, 1) = σ(d, 2) = 1 for all d ≥ 1, and that
in general, σ(d,N) is related to the quantity Σ(d,N) = Ex[τ2 − τ1]

−1/2Q, where Q is a d-
by-dmatrix such that C = QQT is the covariance matrix of∆1 = X1(τ2)−X1(τ1). Thus,
one way to gain information about σ(d,N) would be to understand the relations between
the coordinates of∆1. This approach seems rather difficult to implement given the abstract
nature of∆1. We expect, however, that the barycentre becomes harder to shift as the number
of particles grows. Therefore, it seems likely that

lim
N→∞

σ(d,N) = 0,

for all d ≥ 1.

• For Borel A ⊂ Rd, write

πN
t (A) :=

1

N
#{{X1(t)−X(t), · · · , XN (t)−X(t)} ∩A}

for the empirical measure of the BBB process viewed from its barycentre. We expect that πN
t

converges weakly as first t → ∞, thenN → ∞, to a continuous Borel measure with compact
support. It seems likely that the limiting measure is the one identified as the hydrodynamic
limit of the branching particle systems studied in [5, 6], where the authors considerN -BBMs
with killing of the particle furthest from the origin.

• By analogy with the L-BBM process, it could be interesting to study a BBB process with the
following selection rule: at a branching event, we remove all of the particles with distance to
the barycenter greater than or equal to some constant L > 0. It is clear that the process has
a positive probability of surviving. Conditioned on survival, we can ask about the long-time
and large-particle behavior of the process.
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5. Appendix

Given two functions f, g : R → R with g 6= 0, we write f m→∞∼ g if f(m)
g(m) = 1 + o(1) as m → ∞.

Moreover, we define the set

Λ := {λ : [0, 1] → [0, 1] : λ is a strictly increasing, continuous bijection},

and subsequently the Skorohod metric on D([0, 1],Rd) by

d(x, y) := inf
λ∈Λ

{max (d∞(λ, I), d∞(x, y ◦ λ))},

where I ∈ Λ is the identity map on [0, 1], and d∞ is the supremum metric defined by

d∞(f, g) := sup
0≤t≤1

|f(t)− g(t)|

for functions f and g on [0, 1]. In particular, we observe that for all x, y ∈ D([0, 1],Rd)

d(x, y) ≤ d∞(x, y) (5.1)

by taking λ = I ∈ Λ. We can now recall the multidimensional version of Donsker’s invariance
principle.

Theorem 5.1. (Donsker’s Theorem, Theorem 4.3.5 in [17]) Let (∆i; i ≥ 1) be a sequence of indepen-
dent and identically distributedRd-valued random variables with meanβ and d-by-d covariance matrixC = QQT ,
for some matrix Q. Define the partial sums S(j) :=

∑j
i=1∆i. Then, we have(

m−1/2 (S(btmc)− tmβ) , 0 ≤ t ≤ 1
)

d→ (QB(t), 0 ≤ t ≤ 1)

in the Skorohod topology on D([0, 1],Rd) as m → ∞, where B = (B(t), 0 ≤ t ≤ 1) is a standard
d-dimensional Brownian motion.

5.1. Proof of Proposition 1.4

Let x ∈ Rd×N denote the initial configuration of X, i.e. X(0) = x. The main idea will be to
approximate X by a sum of IID random variables, for which we may apply Donsker’s invariance
principle. The approximation is justified by properties (1)-(5) in Proposition 1.4. Throughout the
appendix, we denote by B = (B(t), t ≥ 0) a standard d-dimensional Brownian motion and we fix
m := Ex[τ2 − τ1].
We first define the appropriate sum of IID random variables which automatically satisfies an in-
variance principle.
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Lemma 5.2. Consider the sequence of sums of increments S(j) :=
∑j

i=1∆i, where ∆i = X1(τi+1) −
X1(τi). There exist β ∈ Rd and a d-by-d matrix Q such that(

m−1/2 (S(btmc)− tmβ) , 0 ≤ t ≤ 1
)

d→ (QB(t), 0 ≤ t ≤ 1)

in the Skorokod topology on D([0, 1],Rd) as m → ∞.

Proof. By property (2), the random variables (∆i; i ≥ 1) are IID. Moreover, by property (4), they
belong to L2(Px). Letting C = QQT be the covariance matrix of∆1 and taking β = Ex[∆1], the
lemma then follows from Donsker’s invariance principle (Theorem 5.1).

For each s ≥ τ1, let k[s] be the unique positive integer such that τk[s] ≤ s < τk[s]+1 and
for s < τ1 let k[s] = 0. Note that each k[s] is a random variable. We next control the errors in
probability between an appropriate rescaling of X1 and S.

Lemma 5.3. Fix any initial configuration x ∈ Rd×N . We have

d∞

(
X1(·m)√

m
,
S(k[·m])√

m

)
→ 0

in probability with respect to Px as m → ∞.

Proof. Since τ1 < ∞ almost surely with respect toPx andX is right-continuous, it suffices to prove
that as m → ∞

m−1/2 sup
τ1≤t≤m

|X1(t)− S(k[t])| → 0

in probability with respect to Px. We have

X1(t)− S(k[t]) = X1(t)−
k[t]∑
i=1

(X1(τi+1)−X1(τi))

= X1(t)−X1(τk[t]+1) +X1(τ1)

Therefore,

sup
τ1≤t≤m

|X1(t)− S(k[t])| = sup
τ1≤t≤m

|X1(t)−X1(τk[t]+1) +X1(τ1)|

≤ max
1≤i≤k[m]

sup
τi≤s≤τi+1

|X1(s)−X1(τi)|+ |X1(τ1)|

almost surely. Fix any ϵ > 0. It follows that

Px

(
sup

τ1≤t≤m
m−1/2|X1(t)− S(k[t])| > ϵ

)
≤ Px

(
max

1≤i≤k[m]
sup

τi≤s≤τi+1

m−1/2|X1(s)−X1(τi)| >
ϵ

2

)
+Px

(
m−1/2|X1(τ1)| >

ϵ

2

)
(5.2)

Since τ1 < ∞ almost surely with respect to Px and X is right-continuous, then |X1(τ1)| < ∞
almost surely with respect to Px. Therefore, the second probability in (5.2) converges to 0 asm →
∞. Consider the random variables

Zi := sup
τi≤s≤τi+1

|X1(s)−X1(τi)|, i = 1, · · · , k[m].
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By property (3) of Proposition 1.4, the (Zi)i≥1 are identically distributed. Moreover, by property
(4) of Proposition 1.4 and the triangle inequality, we obtain Ex[Z

2
1 ] < ∞. Since (τi+1 − τi; i ≥ 1)

are IID with finite mean by Property (1) of Proposition 1.4, the strong law of large numbers implies
that τn

n → m, Px-a.s. as n → ∞. It then easily follows that

k[s]
s→∞∼ m−1s, Px-a.s. (5.3)

The result therefore follows from Fact 2.12.

Combining Lemma 5.3 with property (5) of Proposition 1.4, we obtain the following lemma.

Lemma 5.4. We have

d∞

(
X(·m)√

m
,
S(k[·m])√

m

)
→ 0

in probability as m → ∞. In particular, by (5.1), this implies that

d
(
m−1/2

(
X(·m)− k[·m]β

)
,m−1/2 (S(k[·m])− k[·m]β)

)
→ 0

in probability as m → ∞, where β := Ex[∆1].

Proof. For every ϵ > 0, the triangle inequality implies that

Px

(
d∞

(
X(·m)√

m
,
S(k[·m])√

m

)
> ϵ

)
≤ Px

(
d∞

(
X(·m)√

m
,
X1(·m)√

m

)
>

ϵ

2

)
+Px

(
d∞

(
X1(·m)√

m
,
S(k[·m])√

m

)
>

ϵ

2

)
→ 0

as m → ∞.

We will make use of the following version of Slutsky’s Theorem for general metric space-valued
random variables.

Theorem 5.5. (Slutsky’s Theorem, Theorem 3.1, [8]) Let (M,d) be a metric space. Suppose that
(Xn, Yn) are random elements of M ×M . If Xn

d−→ X and d(Xn, Yn) → 0 in probability, then Yn
d−→ X .

We are now able to prove Proposition 1.4.

Proof of Proposition 1.4. In this proof, every convergence in distribution statement is with respect to
the Skorohod topology on D([0, 1],Rd). Lemma 5.2 and (5.3) imply that(

m−1/2 (S(k[tm])− k[tm]β) , 0 ≤ t ≤ 1
)

m→∞∼
(
m−1/2

(
S
(⌊
tmm−1

⌋)
− tmm−1β

)
, 0 ≤ t ≤ 1

)
d−→
(
m−1/2QB(t) : 0 ≤ t ≤ 1

)
as m → ∞. Combining this with Lemma 5.4, we can apply Slutsky’s Theorem (Theorem 5.5) to
obtain (

m−1/2
(
X(tm)− k[tm]β

)
, 0 ≤ t ≤ 1

)
d−→
(
m−1/2QB(t), 0 ≤ t ≤ 1

)
as m → ∞. Hence(

m−1/2
(
X(tm)− tmα

)
, 0 ≤ t ≤ 1

)
d−→ (ΣB(t), 0 ≤ t ≤ 1)

as m → ∞, where in view of (5.3), we have defined

α := βm−1 = Ex[∆1]m
−1 and Σ := m−1/2Q.
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