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Abstract

In this thesis, we have developed a parallel GPU accelerated code for carry-
ing out transport calculations within the Non-Equilibrium Green’s Function
(NEGF) framework using the Tight-Binding (TB) model. We also discuss the
theoretical, modelling, and computational issues that arise in this implemen-
tation. We demonstrate that a heterogenous implementation with CPUs and
GPUs is superior to single processor, multiple processor, and massively parallel
CPU-only implementations.

The GPU-Matlab Interface (GMI) developed in this work for use in our
NEGF-TB code is not application specific and can be used by researchers in
any field without previous knowledge of GPU programming or multi-threaded
programming. We also demonstrate that GMI competes very well with com-
mercial packages.

Finally, we apply our heterogenous NEGF-TB code to the study of electronic
transport properties of Si nanowires and nanobeams. We investigate the effect
of several kinds of structural defects on the conductance of such devices and
demonstrate that our method can handle systems of over 200,000 atoms in a

reasonable time scale while using just 1-4 GPUs.

vil



Résumé

Dans cette these, nous présentons un logiciel qui effectue des calculs de trans-
port quantique en utilisant conjointement la théorie des fonctions de Green hors
équilibre (non equilibrium Green function, NEGF) et le modele des liens troits
(tight-binding model, TB). Notre logiciel tire avantage du parallélisme inhérent
aux algorithmes utilisés en plus d’étre accéléré grace a l'utilisation de pro-
cesseurs graphiques (GPU). Nous abordons également les problemes théoriques,
géométriques et numériques qui se posent lors de I'implémentation du code
NEGF-TB. Nous démontrons ensuite qu’'une implémentation hétérogene util-
isant des CPU et des GPU est supérieure aux implémentations a processeur
unique, a celles a processeurs multiples, et méme aux implémentations massive-
ment paralleles n’utilisant que des CPU.

Le GPU-Matlab Interface (GMI) présenté dans cette these fut développé
pour des fins de calculs de transport quantique NEGF-TB. Néanmoins, les ca-
pacités de GMI ne se limitent pas a 'utilisation que nous en faisons ici et GMI
peut étre utilisé par des chercheurs de tous les domaines nayant pas de connais-
sances préalables de la programmation GPU ou de la programmation “multi-
thread”. Nous démontrons également que GMI compétitionne avantageusement
avec des logiciels commerciaux similaires.

Enfin, nous utilisons notre logiciel NEGF-TB pour étudier certaines pro-

viil



Résumé ix

priétés de transport électronique de nanofils de Si et de nanobeams. Nous
examinons |'effet de plusieurs sortes de lacunes sur la conductance de ces struc-
tures et démontrons que notre méthode peut étudier des systemes de plus de
200 000 atomes en un temps raisonnable en utilisant de un a quatre GPU sur

un seul poste de travail.



Statement of Originality

My goal in this thesis work is to identify and solve the issues that cripple
computational performance in the study of the electronic transport properties
of nanoscale systems, and to use highly specialized state-of-the-art techniques
to simulate systems consisting of a very large number of particles. Specifically,

my main contributions to this work are:

e [ developed a scalable, multi-threaded interface for connecting Matlab to
the GPU to accelerate linear algebra operations. My software is called the
GPU-Matlab Interface (GMI) and is written in C. It is built upon CUDA,
CULA and POSIX Threads and is capable of handling several GPU de-
vices in parallel and without requiring the Matlab Parallel Computing
Toolbox (PCT) or other proprietary toolboxes. GMI’s performance also
competes very well with commercial software and can be readily used by
users with no previous experience with GPUs or multi-threaded program-
ming. Some benchmarks, applications and results are were included in a

recent review article [1].

e [ used GMI to develop a parallelized heterogenous CPU/GPU code for

carrying out transport calculations within the Non-Equilibrium Green’s
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Function (NEGF) framework using the Tight-Binding (TB) model. Using
this code, 1 investigated the transport properties of pure Si nanowires
and nanobeams and demonstrated that my method can handle structures
containing over 200,000 atoms on a very reasonable timescale of several

hours.

Matlab and PCT are trademarks of Mathworks. CUDA, CULA, MAGMA,
POSIX Threads, and Jacket are trademarks of Nvidia, EM Photonics,
The Computational Algebra Group at the School of Mathematics and
Statistics at the University of Sydney, The Lawrence Livermore National
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1

INTRODUCTION

The first microprocessor was invented by Intel in 1971 and contained a few
thousand transistors[2]. A few years later, Gordon Moore made his famous
observation that the number of components in integrated circuits was doubling
approximately every two years [3]. Since then, electronic devices have been
scaled down relentlessly. Today’s microprocessors are crammed with billions of
transistors. Figure 1.1 shows the number of transistors in microprocessors vs
the year of introduction since 1971.

The components of today’s electronics are on the order of tens of nanome-
ters and can truly be regarded as quantum mechanical devices. Their electronic
behaviour is best understood with quantum mechanical modelling using first
principles theories like Density Functional Theory (DFT)[5, 6, 7, 8]. However,
the computational cost of these parameterless ab initio techniques makes them
impractical for large systems. Empirical methods, on the other hand, are several
orders of magnitude faster but not sufficiently accurate. Tight-binding mod-

elling is the intermediate solution. It has the advantage of retaining quantum
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Figure 1.1: The number of transistors in microprocessors has doubled every two years. Data
retrieved from Wolfram|Alpha Pro[4].

mechanical details, while being 2-3 orders of magnitude faster when compared
to ab initio methods [9].

Both techniques, first principles modelling using DFT and tight-binding
modelling, can be combined with the Non-Equilibrium Green’s Function (NEGF)
formalism to form a solid foundation for the study of electronic transport the-
ory in meso-scale systems[10, 11, 12, 13, 14]. The basic idea is to calculate
the Hamiltonian self-consistently with DF'T or non-self-consistently using tight-
binding modelling, and apply NEGF to study the electronic transport properties

of the system.
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Both approaches, however, share a common persistent bottleneck. The size
of the matrices involved in NEGF-DFT and NEGF-TB calculations scales non-
linearly with the number of simulated particles and is usually the factor most
responsible for limiting the size of systems that can be studied. One can sim-
ply utilize more cores in a supercomputer, but this is excessive and inelegant.
Typical massively parallel supercomputers also consume enormous amounts of
power. Japan’s K Computer, consisting of 705,024 cores, consumes 9.89 MW
of power - about half of the peak power output of a nuclear submarine - most
of which goes into cooling the components. It is clear that CPU-only super-
computers cannot be scaled much more and that more specialized, application
specific hardware needs to be utilized if computing power is to continue growing
at the current rate.

GPUs, once used only for video processing applications, have recently gained
attention for their impressive floating point capabilities and low power consump-
tion [15, 16, 17]. They contain hundreds of cores and are ideal for performing
computationally intensive problems that have crippled performance in the past.
Typically, these highly specialized devices are used alongside general purpose
processors as part of a heterogenous computing scheme, where the sequential
parts of the application are run on traditional processors and the numerically
intensive parts are sent to the GPU for processing.

To tap into this promising computational resource and overcome the ever-

present linear algebra bottleneck, we developed a package to reroute linear
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algebra calls by Matlab to the GPU for acceleration. We also developed a
parallel GPU accelerated code that combines the tight-binding model and the
non-equilibrium Green’s function (NEGF) formalism to study the transport
properties of nanoscale systems such as silicon nanowires and nanobeams.

In chapter 2, we discuss the length scales at which a quantum mechanical
treatment is necessary to understand device physics and briefly review the the-
oretical formalisms, such as the Landauer formalism and the non-equilibrium
Green’s function formalism, used in this work.

Chapter 3 addresses the modelling techniques used in the study of electronic
transport in mesoscopic systems such as the Principal Layer (PL) algorithm and
the iterative Transfer Matrix algorithm for calculating self-energies. Two block-
tridiagonal matrix inversion algorithms, the Recursive Green’s Function (RGF)
algorithm and the Generalized Green’s Function (GGM), algorithm are also
presented.

Chapter 4 addresses the computational details of the work. We argue in
favour of a heterogenous computing scheme instead of a massively parallel CPU-
only implementation and describe how it fits in the context of our NEGF-TB
code. We also introduce the GPU-Matlab Interface (GMI) developed in this
work and compare its performance to several types of CPU implementations
and several commercial GPU interfaces for Matlab.

In chapter 5, we use the NEGF-TB code developed in this work in combina-

tion with GMI to study the transport properties of Si nanowires and nanobeams.
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The effects of periodic and random vacancies are also considered.

Finally, chapter 6 presents a summary of the thesis, future developments,
and some concluding remarks.

The appendices contain a reference manual for GMI as well as a sample

code for one of GMI’s functions, with some comments.
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QUANTUM TRANSPORT

2.1 'The Mesoscopic Regime

The current through a macroscopic conductor is proportional to A the cross
sectional area, and L, the length of the conductor. The conductance of such a

macroscopic conductor can be written as:

G=o (2.1)

Here, o, the electrical conductivity, depends specifically on the material the
conductor is composed of. As the conductor is scaled down to small length-
scales, the discrete properties of the material need to be taken into account in
order to describe the electronic transport behaviour of the conductor. Quantum
effects become important if the dimensions of the conductor are on the same

length scale as several characteristic lengths. These length scales are:

1. Ap: If the conductor has the same length scale as the de Broglie wave-

length of current carrying electrons, then the wave like nature of the elec-
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trons must be taken into account. At low temperatures, current is carried
mainly by electrons having an energy close to the Fermi energy Ep or
those lying near the Fermi surface. The de Broglie wavelength of these

electrons is defined as the Fermi wavelength:

27

~kr

AR (2.2)
2. L,,: The elastic mean free path is the average distance an electron travels
before suffering an elastic collision. Since the Fermi electrons are mainly

responsible for carrying current, the mean free path can be obtained as:

Lm = VUFrTn- (23)

where vp = MWF is the Fermi velocity and 7, is the momentum relaxation

time; % is the rate at which the electron loses momentum. Generally,

L = 2 where 7¢ is the mean time interval between collisions and the

™™ TC

factor a ranges from 0 < a < 1 depending on how effective the collisions
are in scattering the electron’s momentum. If the length scale of the
conductor is on the order of the mean free path, the transport becomes

ballistic. A more detailed discussion on scattering times and the factor «

can be found in [18].

3. Ly: If the conductor is on the same length scale as the distance an electron

travels before the phase of its wave function is lost, the electrons can no
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longer be modelled classically but rather as wave packets possessing a
quantum phase. This length scale is the phase coherence length L4 and

can be expressed in terms of the phase relaxation time 7,:
L¢ = VFTy. (24)

As with the momentum relaxation time, the phase relaxation time 74 can
be defined in terms of the time between inelastic collisions : % = f—é’ where

0<Oé¢<1.

The above length scales are intermediate between atomic length scales (micro-
scopic) and bulk conductor length scales (macroscopic). Although, they vary
from one material to another, the mesoscopic transport regime typically ranges
from roughly 10nm, the de Broglie wavelength in semiconductors and mean free
path in polycrystalline metal films, up to 100um, the mean free path/phase
relaxation length in high mobility semi-conductors at low temperature [19]. To-

day’s commercial semi-conductor devices are in these meso-scales.

2.2 'The Landauer Formalism

The transport of charge in mesoscopic systems cannot be modelled using Ohm’s
law alone because this treatment does not account for quantum mechanical ef-
fects. In this section, an expression for the conductance of a mesoscopic con-

ductor will be derived.
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Consider a conducting device connected to two electron reservoirs at chemi-
cal potentials p;, and ppg through two leads as shown in figure 2.1. It is assumed
that the leads conduct ballistically and that electrons injecting from the leads
into the contacts have zero probability of reflection. For example, a +k electron
originating from the left contact can be reflected in the device region, but must
inject into to the right contact with no reflection if it is transmitted through
the device into the right lead. In our considerations, reflections can only occur

in the device region.

L R
lu L IZTLC I me
— -—
L R
I ref Iref
o

Itmns I trans
Left Contact Left Lead Device Region Right Lead Right Contact

Figure 2.1: A simple two-probe system consisting of a conducting device connected to elec-
trical contacts at pr and pugr by the means of two leads. It is assumed that the leads conduct
ballistically and that the contacts are reflectionless.

If the leads are narrow relative to the contacts, it is reasonable to assume

that that the probability of reflection is negligible at the contact/lead interface.
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A direct consequence of a model with reflectionless contacts is that the distri-
bution of electrons originating from left contact, f;, is independent from the
distribution of electrons originating from the right contact, fr. The current

incident on the device region from the left lead can be written:

——) Ju(E)M(E) (2.5)

where M (E) is the number of transverse modes available at energy E. Con-

verting the sum to an integral:

L 2e
b= [ ey (2.6)

An expression for the reflected current can be written in terms of the probability

of transmission T'(E):

by =% [ AEMEQ-T(E)E 2.7

Similarly, an expression for the current from the right lead that has transmitted

through the device to the left lead can be written:

trans h

It = —%/fR(E)M(E)T(E)dE (2.8)

By charge conservation, the total current in the left lead and anywhere else in
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the circuit can be written:

I :[z%c + [7”Lef + [t}jans
_ 2e

h

(2.9)
[fL(E) — fr(E)M(E)T(E)dE

If M(E) and T(E) are constant in the range g > E > ug, the electrochemical
potentials of the left and right leads respectively, then the the current at zero

temperature can be written:

2e
I= E[NL — pr]MT (2.10)

and the conductance of the device is given by:

22
Gz%%MT (2.11)

Equation 2.11 is the Landauer formula. In this picture, the current through a
conducting device is expressed in terms of the probability that an electron can
transmit through it. Several reviews of the Landauer formalisms are available

[19, 20, 21].
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2.3 The Non-Equilibrium Green’s Function Formal-
1sm

Another widely used approach is the Non-Equilibrium Green’s Function (NEGF)

formalism. Several detailed reviews of NEGF are available [19][22][23][24][25].

In this section, the key results of NEGF and its application to the transport

through a two-probe system are outlined.

2.3.1 1-D Wire with Constant Potential

It is useful to first study a simple case to understand the physical interpretation
of the Green’s function and demonstrate the usefulness of the technique. Here,
a 1-D wire with a constant potential Uy is considered. The Hamiltonian is given

by:

- ho o2
H=—5 ot Up (2.12)

and the corresponding Green’s function G(x) is defined as:

hoo?
E-Up+5—o

5 D G(z) = d(x) (2.13)

Comparing with the 1-D Schrodinger equation,

h 02
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we find that equations (2.13) and (2.14) are identical except for the non-homogenous
term 6(x); G(z) can simply be viewed as the wave function at x resulting from a
unit excitation applied at the origin. It is easy to find the solutions to equation
(2.13). They can be written:

1

G"(z) = —ﬁeﬂ‘k‘fl G*(z) = +%e—“ﬂ‘x' (2.15)

where k = /2m(E — Up)/h and v = £ The first solution, the retarded Green’s
function, corresponds to waves moving outwards from the excitation point. The

second, the advanced Green’s function, corresponds to waves moving towards

the excitation point. They are generally related by the relation:
G" =[G (2.16)

The Green’s functions G"(z) and G*(x) contain all the information in the wave
function ¢ (x) and are usually more convenient to work with. Once the Green’s
function of a system is obtained, all experimentally relevant quantities can be

calculated [25].
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2.3.2 Application to the Two-Probe Geometry

A two-probe system as shown in figure 2.2 is considered. The left/right lead

and device region Hamiltonians are given by:

ffL = Z EkCLCk (217)
k

Ho=> e,did, (2.18)

Hp =) enbl,by (2.19)

Here, c; destroys a left lead electron in the state |k), b,, destroys a right lead

A

HCR

A A

HCL HRC

Figure 2.2: A simple two-probe system consisting of a conducting device connected to elec-
trical contacts at pr and pg by the means of two leads. It is assumed that the leads conduct
ballistically and that the contacts are reflectionless.

electron in the state |m), and d,, destroys an electron in the device region that

is in the state |n). Tunnelling events between the leads and central region can
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be described by the coupling Hamiltonians as:

Hyc = Z(tﬁn)"‘dT Hep, = th,cld, (2.20)

Hep = Zt,’fmbjn Hpe = (t5,)dlb,, (2.21)

where t© and ¢t are coupling constants and the coupling Hamiltonians are re-
lated by H Lc = PAIEL and FICR = }AI;C. The Hamiltonian of the whole system

can be expressed as the sum of the non-interacting and coupling Hamiltonians:
F[:}AIR‘F[:[C‘FF[L‘FFILC‘FFICL‘FF[CR‘FHRC (222)

Separating the wave function into the left (L), right (R), and central (C') regions,

the Schrodinger equation takes the following form:

E — HL _HLC 0 wL O
—Her, E—He —Her Yo | = 0 (2.23)
0 —Hrc FE — Hp YR 0

where the v, g ¢y are the wave functions in different regions of the system and

E are the corresponding diagonal energy eigenvalues. The Green’s function of



2: QUANTUM TRANSPORT 16

the system satisfies:

€ — HL _HLC 0 GL GLC GLR I 00

_HCL € — HC _HCR GCL GC GCR = 0 I 0

0 _HRC € — HR GRL GRC GR 0 I
(2.24)

By solving the above matrix equation for G¢, the retarded Green’s function

. can be obtained[22]:

o=le—(Ho -, —Xp)] (2.25)

where e = (E 4 i0")I adds an infinitesimal imaginary part to an energy point.
The infinitesimal 0" is necessary to avoid singularities in case E happens to lie

at an energy eigenvalue. The retarded self energies ZE LRy are defined as:

Ez = HCLQZHLC E% = HC’Rg;{HRC (226)

where i1 Ry A€ the retarded surface Green’s function for the left /right leads:

e — Hipmylgiomy = Lz.ry (2.27)
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Once G, is obtained, the transmission function 7 (E) can be obtained using the

Fischer-Lee relation [1]:
T(E) = TI'[FLGEFRG%] (228)

where,

Dyrry = EEL,R} - ?L,R} (2.29)
and 2’{1 LR} = [Z’{" L R}]T The current can be calculated simply by integrating the
transmission function over all energies:

_26

I'=— [[fu(E) = frE)T(E)E (2.30)

Equation 2.30 is a more general case of equation 2.9 - the transmission function
T(E) includes all the information contained in M(FE) and T(E) expressed in

terms of the internal states of the system.

2.4 Contour Integration

At zero bias, the central region density matrix p at zero temperature can be

constructed in terms of the retarded Green’s function.

p=2Im [ / " Gg(E)dE] (2.31)
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and the number of states N can be counted from tracing the density matrix:

N =Tr|[p] (2.32)

For closed systems, the Fermi level is obtained by numerically solving equations
(2.31 and 2.32) for Ep. For open systems, Er can be determined from the
electronic structure of the leads. Referring to equation 2.25 makes it clear
that G, has poles in the lower complex plain near the real axis, specifically at
E = E’' —i0" where E’ is an eigenvalue of (Ho — X} — X7).

A
Im

Re

\

A

Figure 2.3: Contour integration of the Green’s function: The integration is performed in the
upper complex plane to avoid poles in the lower plane near the real axis. The values of the
integrals over contours C; and C5 are identical.

The integration must be steered clear of this region to avoid running into a

pole, so the integral is performed along a semi-circle in the upper complex plain
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by parametrizing E = Ey + Ere and equation 2.31 as

™

2 0 , .
p==Im [ / Gr(Ey + Ere®)iEge™dd (2.33)

where Ey and Er correspond to the center and radius of the semi-circle contour

respectively, as in figure 2.3.

In this chapter, we first started with the expression for the conductance
of a macroscopic conductor, well known as Ohm’s law, and discussed why this
relation breaks down as the conductor is scaled down to small length scales.
To study the behaviour of meso-scale systems, a quantum mechanical treat-
ment is necessary. We reviewed the theoretical formalisms used in the study of
such systems such as the Landauer formalism and the Non-Equilibrium Green’s
Function (NEGF) formalism. In the following chapter, we present the modelling

tools used.
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DEVICE MODELLING

On a technical level, the simplest nano-electronic device can be regarded as
consisting of a device scattering region, such as the channel region of a transistor,
contacted by several electrodes. The electrodes extend to electron reservoirs far
away where bias voltages are applied and electric current is collected[1]. Figure
3.1 shows a schematic of a such a device.

Left Lead i Buffer Device Buffer-i Right Lead

JOC JU

i Simulation Box i

Figure 3.1: A typical atomic two-probe system. A portion of the leads is included in the
device region as a ‘buffer’.

The left and right leads are modelled as periodic and infinite while the
scattering region, or simulation box, is finite and, in general, not periodic. A
portion of the left and right leads are included in the simulation box as a buffer
layer. Once the Hamiltonian of the system is specified, the transport properties

of the system can, in principle, be computed using the techniques outlined in

20
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section 2.3. However, this is a costly computational endeavour and care needs
to be taken into choosing proper algorithms.

Section 3.1 outlines the Principal Layer (PL) algorithm and its application
to the two-probe geometry. Section 3.2 describes the computation of the lead
surface Green’s functions gy gy and self energies ¥ ry. Since the leads are
semi-infinite, this needs be done iteratively. Section 3.3 discusses the techniques
used in the calculation of the central region Green’s function G and finally,

the calculation of the transmission function 7 (F) is addressed in section 3.4.

3.1 Principal Layer Ordering

The prescription in [13, 26] is followed and the system is partitioned into several
principal layers (PL) along the direction of transport. Interactions within a PL
can be described by the matrices h;; while interactions between layers ¢ and j

are described by the interaction matrices h; ;.

Principal Layer Partitioning

Figure 3.2: The device is partitioned into several principal layers. The atoms in each layer
interact only with atoms in the same or nearest neighbouring layer.

The layers are chosen thick enough so that that the atoms in a PL interact only
with atoms in the same PL or the nearest neighbouring PLs (h; ; = 0 if |i — j| >

1). Figure 3.2 shows a schematic. The nearest neighbour interactions result
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in the full Hamiltonian taking a block-tridiagonal form. For example, the full

Hamiltonian H for a device such as the one shown in figure 3.2 can be written:

PL O 1 2 3 .- e N

0 hoo hor O 0 0 . 0

1 hip hii hiza 0 0 . 0

2 0 hoy hoy hos O o 0

3 0 0 hga hsgs hy e 0 (3.1)
0

N o 0 0 -+ 0 hyy-1 hyn

The principal layer ordering lends itself well to the two-probe geometry. Here,
the semi-infinite leads are modelled as consisting of an infinite number of prin-
cipal layers extending to the left and right. The periodicity of the structures
provides a simplification - the leads’ self-interaction and coupling matrices ex-

hibit translational symmetry:

h070 = hl,l == h272 = ... (32)
h071 - h172 - h273 = ... (33)

h170 = h271 = h372 = ... (34)
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As for the central region, it is finite and in general, not periodic. The full

Hamiltonian (eqn. 2.22) of the system can now be organized in the following

form:

hLlO hLOO hLOl

hLlO hLOO hLOl

hLlO hLOO

her

hrc

heoo

heo

hcor

hen

heaa

hCN—lN

hCNN

hrc

hcr

hROO hROl
thO hROO hROl

hrio Nroo

In practice, a portion of the leads are included in the central region as a buffer so

that hroo = heoo and heyy = hroo. Consequently, hror = hre and her = hgoi-

I rot
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3.2 Iterative Calculation of the Self-Energies

Referring to equation (2.27), we construct the Green’s function equation for the

semi-infinite right lead:

hroo  hrot groo 9ro1 Yro2 - 1
hrio hroo hro grio 9gri1 Yri2 - B I
hrio hroo Nrot 9r20 9Rr21 YRr22 - I

(3.5)
A similar equation can be constructed for the left lead. Dropping the {L, R}
subscripts, both equations yield a set of equations for the surface Green’s func-

tion:

(€ = hoo)goo = I + hoogi0,
(€ = hoo)g10 = 10900 + ho1920,

ey

(€ — hoo)gn.o = hiogn-1,0+ ho1gn+1.0 (3.6)

These equations can then be iterated to convergence and X7, gy may then be
calculated using equation (2.26). However, a more highly convergent scheme is
presented in [27]. The chain in equation (3.6) can be transformed to express to
Green’s function of each layer in terms of the Green’s function of the preceding

layer with the introduction of the transfer matrices T and T [13]. These are
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defined:

T =ty + tot1 + tot1ts + totita...tn,

T = fg -+ togl -+ totlgz -+ totltg...gn,

where t; and t; are defined recursively:

ti= (I —tiqtig — tiqtiog) 't 4,

t; = (I — tioiti — giflti71>71£?—l7

and

to = (€ — hoo) " hio

to= (e — hoo)_lhm

25

(3.9)

The nth term is 2" —1 order in hg; and vanishes rapidly[27]. The equations are

iterated repeatedly until convergence to some tolerance (t,,t, < §). The self-

energy terms in equation (2.25) are then computed directly using the transfer
gy t in equation (2.25) th puted directly using the transfi

matrices. Convergence is usually achieved in a reasonable number of iterations

(usually ~10-20 for the systems we studied).

Yp = hcT Sk = herT

(3.10)
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Conceptually, the self-energies Yy gy describe the effect of the leads on the
central region. The infinite open conductor/leads system is replaced by an
equivalent one consisting of a finite conductor with self-energy terms[19]. The
calculation is a major computational bottleneck and highly specialized hardware

and software (section 4.2) are employed to accelerate the process.

3.3 Calculating the Central Region Green’s Function

The principal layer ordering described in the section 3.1 results in the ma-
trix representation of He taking a convenient form. Computing the central
region Green’s function G¢ (eqn. 2.25) is essentially reduced to a large block-
tridiagonal matrix inversion problem. The number of diagonal blocks is equal
to the number of principal layers along the transport direction, while the block
size is related to the thickness of each layer (number of atoms/orbitals within
the PL). For large systems, He can quickly reach unmanageable sizes and can-
not be inverted directly. For a system where the scattering region is a roughly
(8.12) x 43.5 nm Si structure (140,000 atoms and ten orbitals per atom), He
takes on a matrix of size of 1,400,000x 1,400,000[1]. In this section, two block-
tridiagonal inversion techniques, the Recursive Green’s Function (RGF) and
the Generalized Green Matrix (GGM) algorithms are presented. The goal is
to express the blocks of G¢ in terms of inverses and products of the blocks of
He. In this manner, the problem of inverting a large block-tridiagonal matrix

is mapped to a sequence of several smaller, more manageable matrix inversion
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and multiplication processes.

3.3.1 Recursive Green’s Function (RGF) Technique

Consider a general N x N matrix A that has been partitioned into several blocks:

An A
A=| 7" (3.11)

Ay Agy
The diagonal blocks are square matrices of not necessarily the same size. The
inverse A can also be partitioned in the same manner into blocks of the same
size:
AT = {1” /:112 (3.12)
Ag1 A
Using A™*A = I = AA™!, the blocks of the inverse can be expressed in terms

of the blocks of the original matrix[14] as:

12111 = (A — 1412/427211421)71
Apy = —121111412142_21
AQl = _A2_21A2112111

Ay = Ay + Agy Ao A Ag Ay (3.13)

If A is very large, computing A~! quickly becomes impractical. Instead, the
inverse can be computed using equation (3.13), which involves a chain of smaller

matrix inversions.
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These relations can be generalized to a block tridiagonal matrix B [14]:

By B 0 - 0 0
By Bag Baz - 0 0
| 0 Be Bs o0 0 _
0 0 0 - Bpin-1 Bnoin
0 0 0 -+ Buna By

The corresponding tridiagonal blocks of the inverse B! are given by forward

recursion:
Biit1 = —Bi;iB;it1Cit1,i11
Bit1i = —Cit1i41Bi41,Bi (3.15)
Bit141 = Ciyrim(L — Biy1,iBii1)
(i=1,2,..,n—1)
where:

Cii = [Bii — Biiy1Cis1i41Bis1) "
Chn = By, (3.16)

(i=n—1,n-2,..1)
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or alternatively by backwards recursion:

Biiv1 = —D;;B;iv1Bit1,i+1
Bit1i = —Biq1,i1Biv1:Di (3.17)
Bit1iv1 = Dii(I — By iy1Big1,)

(i=n—-1,n-2,..,1)

where:

Dit141 = [Bis1i41 — Bi+1,iDi,iBi,i+1]_1
Ci1 =By (3.18)

(i=1,2,..,n—1)

Additionally, the first column blocks of B~! are given by:

Bi—i—l,i = - i+1,i+1Bi+1,iBi,1
Bl,l — 0171 (319)

(i=1,2,..,n—1)
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and the last column blocks by:

Byn =Dy (3.20)

(i=n—-1,n-2..,1)

The complexity of this approach scales linearly with the number of diagonal

blocks in B and is approximately O(N?) in the size of the blocks!.

3.3.2  Generalized Green Matrix (GGM) Technique

A new algorithm that competes well with RGF has been recently developed|[29].
This method is currently in use in this work. We introduce the ratio matrices

S; and R;:

S = —B;E%Blz
S; = —(Bi; + Bii1Si1)7" (3.21)

(i=2,3,..,n—1)

'An efficient matrix inversion typically involves performing an LU decomposition, a back-
substitution step, and solving the system A~'L = U~! for A~!. However, the process is still
dominated by matrix multiplication which can be performed in slightly faster than O(N?3).
The interested reader is refered to ‘Is Matriz Inversion an N* process?’ in [28].
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R.1=—B, Bun
R, = —(Bit1i41 + Bi+1,i+2Ri+1)7le’+1,i (3.22)

(i=n—-2,n-3,..,2)

Now, the corresponding blocks of the inverse of (equation 3.14) can be written[29]:

n—1
D, S\ D, S1S2Ds <H S| D,
=
R, D, D, Sy Dy <H S; | D,
=2
B_l n—1
- RyRyD, Ry D, D <+ | I]5: | Dn
=3
1 2 3
(H &)Dl <H R@)Dg (H Ri)Dg D,
i=n—1 i=n—1 i=n—1

(3.23)
Here, the D; are the diagonal blocks. They can be computed using the ratio

matrices and the blocks of B:

Dy = (By1+ B1,2R1)_1
Dy = (B + Bup-19,-1)"" (3.24)
D; = (B;i-15i-1+ Bi; + Bi,z’+1Rz‘)71

(i=2,3,..,n—1)
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On a single core, both techniques, GGM and RGF, have a similar performance.
GGM has a lower complexity and is slightly faster in computing the first and last
block columns while RGF performs better at computing the tridiagonal blocks.
However, the real advantage is that GGM can be more parallelized to yield a
speed-up factor of 1.25 to 3 over RGF. A detailed analysis of the complexity
of both techniques as well as a description on parallelizing GGM can be found

in [29].

3.4 Fast Calculation of the Transmission Function

Finally, T (E) can be computed as a trace using the Fischer-Lee relation (equa-
tion 2.28). However it is worth mentioning that because of the form of the
product, not all the elements of G¢ are required. Explicitly, the right hand side

of (equation 2.28) is:

I GC1,1 T Gcl,n GCl,l

Tn Ge
(3.25)

The surviving non-zero diagonal element in the result depends on the Gg,

block only. The trace can be computed quickly as:

T(E) = vec([T1Ga,,]") - vec(TrGY, ) (3.26)
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For transmission calculations, blocks other than the top-right block of G need
not be calculated, saving considerable computation time. More details are pre-

sented in section 4.4.

In this chapter, we presented some of the modelling tools used in the study
of electronic transport in mesoscopic systems. We started by partitioning the
mesoscopic conductor into several principal layers along the transport direc-
tion, each of which interacts only with itself or the nearest neighbouring layers.
The Principal Layer (PL) ordering results in the device Hamiltonian taking a
convenient block tridiagonal form. We then presented two block tridiagonal
matrix inversion algorithms, the Recursive Green’s Function (RGF) algorithm,
and the recently developed Generalized Green’s Function (GGM) algorithm,
and proceeded to show how these tools can be used to efficiently calculate the
self-energies, Green’s function and subsequently the transmission function of a

mesoscopic device.
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COMPUTATION

A major bottleneck in computational physics is the performance of linear al-
gebra routines. In section 3, it was shown that computing transfer matrices
and subsequently the surface Green’s function of the leads relies on heavily on
matrix-matrix multiplication and matrix inversion. Additionally, in section 2.3,
it was shown that finding the central Green’s function of a two-probe system is
essentially a large block-tridiagonal matrix inversion problem.

In addition to developing faster and more efficient numerical algorithms, it
helps to use proper hardware. Employing massively parallel clusters of CPUs
for linear algebra is an excessive approach which is of limited effectiveness at
large problem sizes. Section 4.3 contains a comparison of the performance of
such CPU clusters against a single GPU device.

In this section, we review the history of GPUs and present a brief overview
of their unique architecture. We then introduce the GPU-Matlab Interface,
designed to connect Matlab to the GPU. Finally, we show how GPUs fit into

the context of quantum transport calculations and demonstrate how they can

34



be used to bypass severe computational bottlenecks.

4.1 Heterogeneous Computing and GPUs

GPUs have existed since the early 1980s and were traditionally employed as
specialized accelerators for video games. Their potential for scientific computing
was first realized by researchers in the field of computer science, however, they
were limited in that they were not easily programmable compared to a general
purpose processor. The high level of expertise required to use them was the
major limitation that prevented them from achieving mainstream popularity,
despite their impressive floating point performance.

Today, GPUs are becoming increasingly highly programmable. With the
introduction of general purpose programming tools for GPU such as CUDA and
OpenCL, GPU computing became much more popular and easily accessible to
researchers other than highly specialized computer scientists.

OpenCL or “Open Computing Language” is an Application Programming
Interface (API) initially developed by Apple and subsequently in collaboration
with teams from companies such as Intel, IBM and Nvidia. The specification[30]
was made public in December 2008 and the first release was made available as
part of Mac OS X Snow Leopard.

OpenCL kernels are written as strings and must be incorporated inside
another host code, such as C or C++, for execution. They are not device specific

and are capable of running on various devices such as CPU, GPU, portable



4: 36

electronic device, or any other available OpenCL capable device without any
special modifications. This feature makes it very easy to port an OpenCL code
from one device to another without rewriting the entire application in a different
programming language. It also makes it possible to take advantage of every
computational resource on the system using a single programming interface.
Several excellent lectures with example code are freely available as podcasts
from MacResearch [31].

CUDA (Compute Unified Device Architecture) is a general purpose GPU
programming interface from Nvidia. Unlike OpenCL, CUDA is device specific
and executes only on CUDA capable Nvidia GPUs. A significant effort has
been made by Nvidia to increase the accessibility of their devices for scientific
computation. A complete GPU-accelerated Basic Linear Algebra Subroutines
library (cuBLAS) with support for all 152 standard BLAS routines and all data
precision types was developed by Nvidia and researchers at The University of
California at Berkeley [15] and made freely available as part of the CUDA
interface. OpenCL libraries are open source and therefore take a longer time
to mature. Currently, the proprietary CUDA based Lapack implementation
used in this work - CULA [32] - is more extensive than its OpenCL counter
part - MAGMA [33]. Some good starting points to pick up CUDA and GPU
programming are [34] and [35].

A glance at GPU architecture makes it apparent that they are designed for

processing highly parallel problems - something once possible only with large
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CPU clusters. The original Fermi design [36] features 512 stream processors at
1401 MHz, known as CUDA cores, and up to 6 gigabytes of GDDR5 RAM. The
CUDA cores are organized into 16 streaming multiprocessors (SM) of 32 CUDA
cores each, shown as green vertical blocks in figure 4.1. Thread management in
GPUs is done using dedicated hardware at a local level for each SM by local
schedulers, shown as an orange strips, and at a global level by the dedicated
GigaThread global scheduler, which is capable of managing thousands of threads

in parallel.

Host Interface

L2 Cache

o
©
o

=

E
]

5

Q

Figure 4.1: An overview of the massively parallel Fermi Architecture. The green strips rep-
resent CUDA cores. They are organized into 16 streaming processors of 32 cores each. Each
streaming processor also has a local scheduler represented by an orange strip. Taken from
[36].

The unique massively parallel architecture of GPUs makes them ideal for

performing computations with a high arithmetic intensity, but limits their ap-
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plication to sequential problems. GPUs are not used as or intended to be a
stand-alone replacement to traditional processors. In general, they are em-
ployed as part of a heterogenous computing scheme where the sequential parts
of the application are run on traditional processors and the highly paralleliz-
able parts are sent to the GPU for acceleration. Heterogenous computing is
cheaper, more efficient, less power consuming and presents a serious challenge
to the traditional CPU-only based cluster approach. In section 4.4, we outline

how NEGF calculations are performed using heterogenous computation.

4.2 The GPU-Matlab Interface

GPUs are ideal for performing computationally intensive tasks such as linear
algebra routines in less time than required on CPU clusters. In order to tap into
this computational resource, a Matlab-GPU Interface (GMI) has been developed
in this work. The interface is multi-threaded and can also be used to manage
several GPUs in parallel. The usage is very similar to the native Matlab syntax
and no experience with GPU programming is required by the end-user.

GMI allows users to use multiple GPUs in parallel by starting an individual
thread on each device. A thread is the smallest unit of instructions scheduled
by the operating system. In this case, each thread contains a set of instructions
to schedule an operation on some device, for example, scheduling a matrix
multiplication operation. Thread management of the scheduling threads was

done in-software using the freely available POSIX Threads library *.

IThe scheduled operation itself e.g. matrix multiplication could start new threads on the
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GMI is written in C and is powered by CULA [32], a set of GPU-accelerated
linear algebra routines for Nvidia cards. Recently, CULA released a feature that
allows users to use the library directly from Matlab by simply changing Matlab’s
linking settings to point to the CULA libraries instead of a regular LAPACK
library[32]. However, this is limited since it allows for only one GPU to be used
at a time.

A flow diagram for GMI is presented in figure 4.2. After the user specifies
the input arguments, GMI locates and counts the number of GPU devices on
board, starts a number of threads equal to the number of devices, and binds each
thread to a different GPU. Each thread then makes a call to the appropriate
CULA routines to perform a linear algebra operation. When all the threads
finish execution, the results are returned to the Matlab workspace in the host

memory.

4.3 Benchmarks

In this section, we test the capabilities of the GPU-Matlab interface (GMI) de-
veloped in this work. We show that for linear algebra heavy applications, a het-
erogeneous computing scheme with GPUs is more suitable than any CPU-only
approach. A single GPU outperforms single processors, multiple processors,
and massively parallel processor grids. We also compare GMI’s linear algebra

performance to Jacket[37] and the Matlab Parallel Computing Toolbox (PCT)

device it executes on. These threads however are managed automatically, either in dedicated
hardware if the executing device is a GPU, or in software by Matlab if the executing device
is a CPU.
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call
Pthreads
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device 0 device 1 device 2 device 3
call CULA call CULA call CULA
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pthread_join
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Figure 4.2: GMI flow diagram: Multiple threads with different input data but performing the

same operation are executed in parallel on several GPU devices. (Single program, Multiple
Data)

and demonstrate it competes very well with these commercial software. We also

demonstrate that the performance scales fairly efficiently, but not perfectly, with

each additional GPU added.



4: 41

4.3.1 Comparison with traditional CPU approach (single-node)

We compared the linear algebra performance of a single GPU to a two single
processors: (i) a mid-range general purpose processor: AMD Phenom II X6
1075T, 6 real cores and ii) a high-end general purpose processor: Intel Xeon

X5650 CPU, 6 real cores. 12 virtual cores with hyper threading enabled.

The benchmark operations are matrix multiplication and matrix inversion
and the test arrays were chosen to be of the same data type and shape as the
large matrices involved transport calculations: double precision, complex, and
square. However, the results hold for any shape, since the performance only
depends on the total number of floating point operations performed, which in
turn is related only to the number of elements in the array.

Matrix inversion in GMI is done with an LU decomposition with partial
pivoting. The CULA routines culaGETRF (performs LU decomposition) and
culaGETRI (computes matrix inverse using result of LU decomposition) are
used. Suppose A can be decomposed into a product of a lower triangular matrix

L and an upper triangular matrix U,

A=LU (4.1)

The upper triangular matrix U can be easily inverted by back substitution and

A~1 is computed by solving the equation



Al L=U"" (4.2)

for A=1. The CPU operation was done in the native Matlab environment with
the inv function. inv is also essentially composed of the Lapack equivalents:
GETRF and GETRI. Figure 4.3 displays the matrix inversion performance on all
tested platforms at various matrix sizes. The speed-up of the GPU relative to
each CPU platform is also shown.

Single Device Complex Double Matrix Inversion Benchmark
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Figure 4.3: A benchmark for complex double precision matrix inversion. The horizontal axis
shows the square (NxN) matrix size. The figure on the left shows the true execution time for
several platforms and the right shows shows the execution time relative to the GPU.

The speed-up factor ranges from ~2.5 to ~6 and is not constant across
all matrix sizes. The reason is that even though GPUs perform floating point

operations very quickly, the overhead associated with using GPUs is greater

than that of using a traditional processor. Each time the GPU is used, an
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individual thread needs to be initialized, the thread is then bound to a GPU
device, and the data is sent to and from to the device for processing over the
machine’s PCI bus port, which typically has a bandwidth of 133-533 Mbyte/s.
In fact, if the total number of floating point operations (FLOPS) is not high
enough, the calculation may be performed on the CPU several times before the
data even reaches the GPU. This is apparent in figure 4.3: The speed-up factor
relative to GPU is less than 1 for matrices smaller than 500 x 500. Generally,
no significant speed-up is observed unless the size of the input array exceeds at
least ~10°% elements. The speed-up then scales with increasing input array size
and plateaus when the computation time is very large relative to the overhead
time.

Matrix multiplication in GMI is done using the general O(N?) matrix mul-
tiplication algorithm. The CULA routine used is culaGEMM (general matrix-
multiplication). In this section, we compare the performance of the double,
complex GMI matrix multiplication routine on a single GPU to a CPU-based
Matlab implementation with the mtimes function. mtimes is essentially com-
posed of the Lapack routine GEMM (general matrix-multiplication). The test was
performed on matrices ranging from 100 x 100 to 10, 000 x 10, 000 with the same
hardware as the previous section. Figure 4.4 displays the results on all tested
platforms at various matrix sizes. The speed-up of the GPU relative to each
CPU platform is also shown.

The speed-up factor ranges from 2 to 4.5 at the largest square matrix size
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Single Device Complex Double Matrix Multiplication Benchmark
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Figure 4.4: A benchmark for complex double precision matrix multiplication. The horizontal
axis shows the square (NxN) matrix size. The figure on the left shows the true execution time
for several platforms and the right shows shows the execution time relative to the GPU.

and for the reasons previously discussed is not constant for all matrix sizes. The
speed-up is low at first and scales positively with increased square matrix size

and eventually plateaus.

4.3.2  Comparison with traditional CPU approach (massively-parallel)

The linear algebra performance of a single Nvidia Tesla C2050 card was bench-
marked and compared to a (i) node with two Quad-Core Xeon E5620 proces-
sors and (ii) a tuned massively parallel Scalapack implementation using the
Scalapack-Matlab Interface(SMI)[38]. Scalapack is a scalable linear algebra
package for use with shared memory super computing clusters. The Scalapack
‘grid size’ is an abstraction of the actual arrangement of individual processor

cores on the supercomputer. In this case, a 5 x 5 grid (i.e. 25 processor cores)
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was used on CLUMEQ’s Guillimin supercomputer cluster equipped with Quad-
Core Xeon E5620 processors. A single Quad-Core Phenom IT 910 processor was
also included in the benchmark to establish a baseline.

The benchmark operations were chosen to be double precision complex ma-
trix inversions of square matrices sizes ranging from 6000 x 6000 to 10000 x 10000.
Figure 4.5 shows a comparison of the execution time (and execution time relative

to single GPU) on all platforms tested.
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Figure 4.5: A benchmark for complex double precision matrix inversion (lower is better).
The horizontal axis shows the square (N x N) matrix size . The top figure shows the true
execution time for several platforms and he bottom figure shows the execution time relative
to the GPU. The Nvidia C2050 GPU has the lowest execution time for all matrix sizes.

Although the massively parallel CPU implementation is a significant im-

provement over the single/multiple processor CPU approach, the GPU won in
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each case and the speed-up ranged from a factor of 3, relative to the 25 core
Scalapack grid, to a factor of 8, relative to an implementation on a typical

modern quad core processor.

4.3.3 Multiple GPU devices working in parallel

The performance scales well with additional GPUs, but there is a non-trivial
overhead associated with using additional devices. For this reason, the input
data set should be reasonably large. Figure 4.6 shows the execution time for
performing a computationally intense problem - 24 double precision complex

matrix inversions - on 1, 2, 3, and 4 Nvidia C2050 GPUs in parallel.
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computation time [s]

500

400
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200 : :
1 2 3 4

# of GPU cards used

Figure 4.6: Computation time for performing 24 double precision complex 10,000x 10,000
matrix inversions. The horizontal axis is the number of GPU used to perform the operation.
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Since the GPUs are being controlled by a central CPU, adding an additional
device incurs some overhead as a result of the devices competing for processing
power. This makes scaling imperfect; according to figure 4.6, the speed-up
factor relative to a single device is 1.8 % for two devices (~90% efficiency), 2.5%
for three devices (~85% efficiency) and 3.2x for four devices (~80% efficiency).
The overhead incurred by each additional device is a systematic ~5% reduction
from perfect efficiency. For this reason, it is recommended that the number of
GPUs per node be limited to four cards. Additional nodes can be added to the

cluster for every four extra GPUs to maintain a reasonable efficiency.

4.3.4 Comparison with Commercial GPU packages

Several proprietary GPU software for Matlab are available. In this section we
compare two commercial packages, Jacket and the Matlab Parallel Computing
toolbox (PCT) to the GPU Matlab Interface (GMI) developed in this work.
Jacket, like GMI, relies on the CULA (GPU accelerated Lapack) package to
perform linear algebra routines on CUDA capable GPUs. PCT, on the other
hand, utilizes Magma, an open source GPU accelerated linear algebra library.
The Matlab Parallel Computing Toolbox (PCT) was introduced by Math-
works in 2008 and allowed users to use multicore, processors and computer
clusters to solve computationally intensive problems. It also allowed users to
run as many ‘workers’, or separate Matlab sessions, as licensing allows (up to
12) on one multicore desktop. Other key features included are parallel for-

loops (parfor) and distributed arrays for large data set handling. As of 2010,



Mathworks introduced GPU support in the toolbox.

Jacket from Accelereyes is a third party GPU interface for Matlab. The first
release appeared in 2007, 3 years before Mathwork’s PCT started including
GPU support. Recently, NASA utilized genetic algorithms as well as GPUs
with Jacket for rover image compression in the Curiosity Mars rover mission.
“With Jacket and GPUs, the researchers were able to achieve 5x speedups on
the larger data sizes. [39]”

We compared the linear algebra performance of GMI to Jacket and PCT
in the cases of matrix multiplication and matrix inversion. For both cases, the
same operation was done using each interface over a range of square matrix
sizes.

Figure 4.7 shows the general, double precision, complex square matrix mul-
tiplication computation time for both operations. Jacket closely matches GMI’s
matrix multiplication performance, but gradually trails behind at larger matrix
sizes at matrix inversion. The version of PCT tested does not support matrix
inversion ! and trails behind both at for all sizes at matrix multiplication.

The main result that is apparent from figure 4.7 is that GMI can handle
significantly larger input data sets than both other packages while maintaining
an efficient performance. On our workstation equipped with Tesla C2050 cards,
matrix multiplication with PCT returned out of memory errors at a maximum

square (double complex) matrix size of 5700 x 5700, Jacket could handle matrices

TAs of 2012, Mathworks added GPU matrix inverse support to PCT but this version was not
tested in this work.
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Figure 4.7: A benchmark for complex double precision matrix inversion and matrix multipli-
cation. The horizontal axis shows the square (NxN) matrix size. The figure on the left shows
the true execution time for several platforms and the right shows shows the execution time
relative to the GPU. GMI matches the performance of Jacket and PCT while being able to
handle significantly larger matrix sizes.

of up to 7100 x 7100 while GMI runs out of memory at a significantly larger
matrix size of 10, 300 x 10, 300. For matrix inversion, Jacket runs out of memory
at 8,100 x 8,100 while GMI can handle matrices of up to 12,300 x 12, 300.
The main reason GMI can handle larger matrices is because of its uncon-
ventional ‘black box’ memory management. Jacket and PCT manage memory
very similarly. Both create separate workspaces for the host and GPU device
and allow users to send data to and from these workspaces. This is done by
introducing ‘gpu objects’; gdouble objects in Jacket and gpuArray objects in
PCT. These objects are stored on the GPU workspace memory. Functions with

gpu objects as input parameters automatically execute on the GPU. The fol-



4: 50

lowing code snippets demonstrate the usage of gdouble and gpuArray objects
as compared to the native Matlab environment.

-example 1: Matlab native environment:

>>A=rand (N) #Create a test array in host memory.
>>C=inv (A) ; %Inverts A on the CPU. Host memory now contains
%A and C.

- example 2: Jacket gdouble objects:

>>A=rand (N) ; iCreate a test array in host memory.

>>A_=gdouble(A); Ycopy A to device memory.

>>C_=inv(A_); %Inverts A_ on the GPU. Device memory now contains
%A_ and C_.

>>C=double(A_);  %Copy C_ to host memory.
-example 3: PCT gpuArray objects

>>A=rand (N) ; #Create a test array in host memory.

>>A_=gpulrray(A); %Copy A to device memory.

>>C_=inv(A_); %Inverts A_ on the GPU. Device memory now contains
HA_ and C_.

>>C=gather(C_); %Copy C_ to host memory.

In contrast, GMI does away with the concept of a ‘gpu object’ and separate
workspaces for the host and device. Instead, GMI utilizes each GPU device as

a computational black box; data cannot be stored permanently and cannot be
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moved back and forth from the device unless a GPU computation is required.
This has two main advantages: (i)The GPU input data set can be overwritten
thus saving considerable, valuable GPU device memory. (ii)Syntax is simpler
and less verbose making research code easier to port to the GPU.

-example 4: GMI:

>>A=rand (N) ; #Create a test array in host memory.

>>C=gpuBasicDinv(A); %Copies A to the device memory. The data on
J»the GPU is then overwritten by the result of
Jthe calculation. The results are then copied
Jback to host memory. At any given time, only

hone array needs to be stored in device memory.

From the user’s perspective, replacing inv with gpuBasicDinv simply makes
the calculation run faster. The memory management and data transfer to and
from the GPU device is all done under the hood.

In conclusion, it was demonstrated that the Matlab GPU Interface (GMI)
competes effectively with recent, state of the art commercial packages. GMI
matches or exceeds commercial software in performance and can handle signifi-
cantly larger data sets. Porting CPU code to GPU code with GMI is also more

straightforward because of the transparent syntax.



4.4 Pertinence to Transport

In the previous chapters, the theory and modelling tools of quantum trans-
port were introduced. We also argued in favour of a heterogeneous GPU/CPU
computing scheme as opposed to a traditional massively parallel CPU-only ap-
proach. We introduced the GPU-Matlab interface (GMI) and demonstrated
some performance benchmarks. In this section, we describe concretely how
heterogenous computing fits into the context of NEGF quantum transport cal-
culations.

Figure 4.8 presents a flow diagram of the GPU-accelerated NEGF-TB code
developed in this work. The code has two main parts. (i) Calculating the
transfer matrices 7 and T and calculating the Self-Energies ¥, and Yx and
(i) Calculating the the central region Green’s function G¢. In this section, we
discuss our implementation on a work station equipped with four Tesla C2050
GPU devices.

The procedure in sections 3.2 and 3.3 is followed. The left column describes
the operation, the next four columns represent one thread each and the final
column specifies whether the operation was done on the GPU or by using sparse
routines on the CPU. Sparse routines are appropriate for arrays that consist of
mostly zero elements because of the special format used. In the Yale Sparse
Matrix Format, an arbitrary sparse m x n matrix A is stored as three 1-D
arrays. Suppose A has N,. non-zero elements. The first array, A, is of length

N,.. and contains all the non zero entries of A. The second array I A is of length
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Figure 4.8: GPU Accelerated NEGF-TB code flow diagram: There are two major bottlenecks
in calculating a system’s Non-Equilibrium Green’s Function: (i) The convergent self-energy
calculation and (ii) inverting the large block-tridiagonal central region Hamiltonian with self-
energy terms. Both are highly linear algebra intensive and benefit greatly from a heterogenous
computing scheme. Sparse operations are done on the CPU to avoid GPU overhead, while
dense, intensive calculations are sent to several GPUs working in parallel.

(m 4+ 1). The first m elements are the row-indices of the first non zero element
on each row of A and the last element is the value of NNZ. The third array, JA
contains the column-indices of the elements of A and consists of NN Z elements.

For example, the matrix

1 2 0
A=10 0 3 (4.3)
0 —4 0

can be expressed in sparse form as:



A= [1 2 3 -4]
IA=[1 3 2 4]

JA=[0 1 2 1]

For a general matrix of datatype type’, the sparse format requires

N,.. (sizeof (type) + sizeof(int)) + (m + 1) X sizeof (int) (4.4)

bytes of storage, while the usual format requies mn x sizeof (type). So, the

sparse format saves memory if and only if:

mn X sizeof (type) — (m + 1) x sizeof (int)

N,. < (4.5)

sizeof (type) + sizeof (int)

Note that in the special case of the integer matrix above, the sparse format
is not appropriate since it contains 12 entries but the usual format contains 9
entries.

The sparse format is advantageous for matrix multiplication involving ma-
trices with a low density of non-zero entries because (i) it reduces the amount
of memory required to store the matrix - zero elements are not stored and (ii)
it does not waste floating point operations on non-zero entries. Instead, a la-
belling scheme is used to perform the operations (the additional overhead is
worthwhile if the inputs are sparse enough). However, for the same reasons, the
sparse representation is severely disadvantageous for dense matrices. Addition-

ally, it is disadvantageous for matrix inversion because the results are typically



not sparse even if the input is sparse.

The TB Hamiltonians used are typically very sparse. For example, the TB
Hamiltonian of the Silicon Nanowire in section 5.2 is composed of ~94 % zero
elements. Figure 5.2 shows the structure. In our heterogenous implementation,
any matrix-multiplication with a TB Hamiltonian as one of the inputs is done
using the CPU with sparse routines. All other operations involve dense matrices
and a large number of floating point operations - these are done on the GPU.
This scheme is shown explicitly in figure 4.9 but excluded in figure 4.10 for
compactness and clarity of presentation.

The first step of calculating the self-energies consists of iterating equations
3.7 to convergence. Convergence is reached when the ||t;||,]|%;|| < §. The toler-
ance ¢ is typically chosen as 1071 but can be increased to arbitrary precision
(up to machine accuracy). The matrix multiplication operations in equations
3.7 are highly parallelizeable and this is exploited. Once the calculation con-
verges, typically 5-10 iterations, the Self-Energies are calculated quickly using
sparse routines. For the Central Region Green’s function, the ratio matrices
S; are R; are computed sequentially. Once these are determined, any diagonal
block can be found quickly using equation 3.25. For transport, the top-right
corner block of the Central Green’s function, G, is of interest. This specific
case is addressed in the pseudocode presented in figure 4.10 and the compution
of any other non-diagonal block reduces to a chain of matrix multiplications (see

equation 3.23) and can be easily parallalized in a similar manner. The optimal
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| operation | thread 1 | thread 2 | thread 3 | thread 4 | device |
find to, %o templ = (€ — hgp) ™" GPU

to = templ x by CPU

to = templ *x hgy CPU

T=Cy=ty,T=Co=1 CPU
Repeat till templ = t;_y * ;_; temp2 = f;_y *t;_1 | temp3 =t;_1 *t;_1 | tempd =t;_y *t;_; | GPU
convergence templ = (/ — templ — temp2)~* GPU
titi <6 t; = templ * temp3 t; = templ * temp4 GPU
i=1,2,..

T=T+C;xt; T=T+C;xt{; GPU

CH»I = Cl * 1 CH»I = CH»l * 1 GPU
Calculate Xy, | X7 = —ho T CPU
and Xp from | Xp = —h), T CPU
Tand T

Figure 4.9: Self Consistent ¥, r calculation pseudo-code parallelized (where possible) over
four devices.

procedure for finding the Central Green’s function depends on what blocks are
of interest. The number of ratio matrices that need to be multiplied increases
by 1 with every block away from the diagonal and the top-right and bottom left

corner blocks, G, and G, 1, are the most time consuming to calculate.

In this chapter, we presented the specialized computational tools we devel-
oped and applied to the study electronic transport in mesoscopic systems. We
discussed briefly the history of GPUs and heterogenous computing and intro-
duced the GPU-Matlab Interface (GMI), developed in this work. We present
several benchmarks and compare GMI to several CPU approaches and sev-
eral commercial GPU packages. We then proceed to explain how heterogenous

computing pertains to transport calculations and present some pseudocode de-
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{51, 8}
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Calculate Ra- | Ry,—1 = —(€ — hcnn) thenn-1 GPU
tio Matrices R; = —(e = hoir1i41 + heivrivoRivt) " heiv GPU
{Rza Rnfl}
t=n—1,.,2
Calculate Di- | Dy = (€ — hc11 + her2Ri) 7t GPU
gonal Blocks | D; = (hcii—1 * Si—1 + (6 — heig) + heigp1 Ri) ™ GPU
{D1,D;,D,} | Dy = (€ — hcnn + honn-15n-1)""
1=2,..,n—-1
Calculate Gy, | Ay = S; %5, Ay =S3% 8y | A3 = 55% 5 Ay = S7 %Sy GPU
i=9, =1 A = Ay Ay Ap=Asx Ay | Ag =5 Siss | As=5i+2% Sius | GPU

A=A x Ay Ay =A3x Ay | A3 = Sng* Sns | Ay = Sp 2% 5,1 GPU
A=A x Ay Ay = Agx Ay GPU
prod = Ay * Ay GPU
G1,, =prod x D, GPU
Figure 4.10: Central Green’s Function calculation pseudo-code. Parallelized (where) possible

over four devices.

tailing our heterogenous parallel GPU NEGF-TB implementation. Here, GPUs

are used for when the number of floating point operations is high (e.g. large,

dense matrices) and sparse CPU routines are used for quick or sequential tasks

(e.g. vector operations, sparse matrices etc.)
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APPLICATIONS

5.1 Transport properties of Silicon Nanowires

Filamentary crystals of Silicon were first fabricated about fifty years ago [40].
Traditionally, the term Silicon ‘whiskers’ was used to refer to these struc-
tures. In the mid 1990s, however, advances in microelectronics and fabrica-
tion techniques[41] sparked a new interest in these structures because of their
applications as electrical nanowires[42]. Recently, much of the work on Sili-
con nanowires (SINW) has been on their electronic properties and their ap-
plications to nanoscale electronic devices such as nanoscale-interconnects and
nano-transistors[43, 44, 45].

Here, the transport properties of a hydrogen passiviated SINW (see figure
5.1 ) are investigated using the NEGF-TB formalism discussed in chapter 2.3
combined with GPU acceleration. The nanowire has a diameter of 1.26 nm and
is grown in the [110] direction.

The Si-Si and Si-H bonds were taken as 2.37 and 1.48 A from the result of

o8
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an ab-initio DFT calculation with the Vienna Ab-Initio Simulation Package[46]
(VASP) from [43]. The tight-binding Hamiltonian of the device was constructed
using a 10-orbital sp3d®s* Hamiltonian for Si atoms and a single orbital Hamil-
tonian of the H atoms on the surface, as in [43] and [47]. The TB parameters
and hamiltonians were obtained using ‘Nanomatm’ [48].

Si

H

Figure 5.1: The structure investigated was a 0.46 diameter hydrogen passivated silicon
nanowire grown in the [110] direction. Rendering was done with QuteMol[49]

Since the structure is periodic, the leads and central region on-site Hamilto-
nians are identical. The sparse, patterned structure of the on-site and coupling
Hamiltonians Hyy and Hy; in the sp?d®s* basis is displayed in figure 5.2.

First, the Fermi level was be determined from a density of states calculation
(see section 2.4) to lie in the band-gap. A band structure was then constructed
from the tight-binding Hamiltonians and the transmission coefficient was cal-
culated as a function of energy using the NEGF-TB formalism described in

sections 2.3. The results are shown side-by-side in figure 5.3. Since the trans-
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Figure 5.2: The sparse structure of the on site and coupling Hamiltonian matrices for a [110]
SiNW in a ten orbital sp3d®s* basis set.

port is ballistic, the transmission in this case is just an integer count of the
number of available bands at each energy point and vanishes at the band gap
as expected.

The above structure contains 120 atoms in the simulation box. The matrices
involved in the calculation are only 256 x 256 and this particular calculation
does not fully benefit from the heterogenous NEGF code developed in this work.
Its purpose is to validate the developed software. The results in transmission
results in figure 5.3 closely match those obtained by Svizhenko et al [43]. In the
next section, we present calculations involving vast systems with a much larger

number of atoms, demonstrating the computational potential of our method.
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Figure 5.3: The band structure and transmission coeflicient for a silicon nanowire are shown
side by side with energy on the y-axis. The transmission vanishes at energy points lying in
the bandgap. Since the transport is ballistic, the transmission takes on integer values equal
to the number of available bands available at each energy range.

5.2 Transport Properties of Silicon Nanobeams

Single crystal silicon beams are among the most common structures in MEMS,
usually in the form of a cantilevered beam [50, 51].

In general, the electrical properties of semiconductors are closely coupled
to their mechanical properties. The field of electromechanical systems emerged
with the discovery of the piezoresistive effect by C.S. Smith in 1954 [52]. Smith
observed that “unaxial tension causes a change of resistivity in silicon and ger-

manium of both n and p types”, or in more utilitarian terms, that semiconduc-
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tors make excellent pressure sensors.

With rapid improvements in micromachining and fabrication, the large scale
production of Microelectromechanical Systems (MEMS) has become possible.
Today, MEMS are ubiquitous in everyday electronic devices. Their applications
include inertial sensors for game controllers, pacemakers, airbags, image stabi-
lization in cameras, pressure sensors in altimeters and scuba gear, flow sensors
for measuring engineer air intake in automobiles, IR sensors, fingerprint sensors
and many others. A more complete list of applications can be found in [53, 54]

The mechanical properties of beams of single crystal silicon ranging from
the nano to millimetre scale have been investigated extensively[55, 56, 57, 58].
However, these structures can contain a vast number of atoms. This makes
studying their electronic properties from first principles unrealistic and semi-
emperical modeling computationally arduous. The main bottleneck is linear
algebra routines on large matrices.

In this section, we briefly review how silicon beams can be fabricated and
apply our GPU accelerated NEGF-TB code using a work station equipped with
four Nvidia Tesla C2050 GPUs to bypass the computational bottleneck and

study their electronic transport properties.

5.2.1 Fabrication

Silicon nanobeams can be fabricated using field enhanced annodization with
an AFM and anistropic wet etching. We summarize the fabrication procedure

presented by Sunbdararajan et al [57]. The process starts with a Si separated
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by implanted oxygen (SIMOX) wafer. From bottom to top, it is composed of
thin SiO,-Si-Si0s layers, a bulk Si layer and a thin SiO, layer. A portion of
the bottom SiO; layer is etched with photolithography to expose the bulk Si
layer on the bottom. The Si layer is then etched using anisotropic wet etching
resulting in the trench shown in figure [57]. The top SiOs is then also etched

away, exposing the thin Si diaphragm.

SIMOX wafer

% —1
Si etching — e

ﬁ Si cantilever/tip coated with Au
SiO, etching i AN

=

Anodization % A

Si etching |
E —‘ 4H,0+4e" —+ 2H,+40H-

Si0, etching

[ﬁl Si+2H,0 - SiO,+4H'+4e
Si beam

Thermal %

oxidation l—/Sio2 bean*—‘

Figure 5.4: Fabrication of Si nanobeams with field enhanced annodization using AFM. Taken
from [57].

A line of SiOs is then deposited on the Si diaphragm using field-enhanced
anodization. The process works by applying a voltage bias to a cantilever tip in
an AFM and moving it in a line across the diaphragm in air at room tempera-

ture. The tip oxidizes the surface of the Si diaphragm drawing a SiO, pattern
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to be used as an etching mask. The width of the mask is proportional to the ap-
plied voltage bias. Finally, the unmasked portion of the Si diaphragm is etched
anistropically resulting in a trapezoidal Si beam spanning across the trench, like
a cantilever bridge.

The trapezoidal shape is due to the anistropic wet etching process because
the etching rate varies profoundly depending on the crystal orientation of the

exposed crystal face.

5.2.2 The Effect of Vacancies on Transport

Three basic [100] nanobeam structures of various sizes and shapes were studied.
Nanobeam A is trapezoidal hydrogen passivated Si nanobeam containing 2,286
atoms. The cross section has a width varying from roughly 5.20 — 2.17 nm and
a height of 1.49 nm. The length of the structure in the transport direction was
4.87 nm. It is modelled as central region composed of 9 principal layers (~0.543

nm each). See figure 5.5.

Figure 5.5: Atomic visualization of nanobeam A: Cross section and 3D lateral view.

Nanobeam B is trapezoidal hydrogen passivated Si nanobeam containing

14,059 atoms. The cross section has a width varying from roughly 10.59 — 4.61
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nm and a height of 2.99 nm. The length of the structure in the transport
direction is 9.23 nm. It is modelled as central region composed of 17 principal

layers (~0.543 nm each). See figure 5.6.

(3

Figure 5.6: Atomic visualization of nanobeam B: Cross section and 3D lateral view.

Nanobeam C is a rectangular hydrogen passivated Si nanobeam containing
224,180 atoms. The cross section has a width and height of 8.1 nm. The length
of the structure in the transport direction is 59.73 nm. It is modelled as central
region composed of 110 principal layers (~0.543 nm each). See figure 5.7.

We investigated the the effect of vacancies on the electronic transport prop-
erties. Physically, surface vacancies can arise on the edge of the structure as fab-
rication imperfections in the form of cracks, corners, dislocations, holes, crevices
and steps[59]. Figure 5.8 shows an SEM image showing a detail of a defect on

the surface of a Si Beam.
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Figure 5.7: Atomic visualization of nanobeam C: Cross section and 3D lateral view.

Internal vacancy defects, on the other hand, can arise in the Si wafer itself
before fabrication by vacancy diffusion. An energetic atom at the surface can
spontaneously break its bonds and jump to a new surface location. Atoms from
the bulk can repeatedly diffuse to fill the vacancy resulting in the a diffusion of
the vacancy towards the bulk[59].

Vacancy diffusion in materials occurs for a variety of reasons. It can be
well understood using Kinetic Monte Carlo techniques and can give rise to very
interesting effects, such as memristance [60, 61]. Another kind of defect is a local
lattice distortion as the result of a vacancy or substitutional impurity where the

impurity atom is of a different size than the lattice atom[59].
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Figure 5.8: SEM image of Si nanobeam. Taken from [56].

In this work, non distortive internal and surface Si vacancy defects are con-
sidered. For structures, A and B, three cases are studied:
(i) Structure is vacancy free and periodic
(il) Atomic vacancies distributed randomly throughout the structure.
(iii) Atomic vacancies distributed periodically in the structure to form a vacancy

chain. It is believed that memristive features are due to the formation of similar
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chains filaments of vacancies [61].

The leads were taken as vacancy free and periodic. The central region was
taken to have vacancy concentration of 1 in 254 and 1 in 827 - one per principal
layer - for structures A and for nanobeam B respectively. Only a vacancy free
case was considered for nanobeam C.

The tight-binding Hamiltonians of nanobeams A and B were calculated
using the same methods in section 5.2. Figure 5.9 shows the electronic band
structures. As before, the Fermi level was calculated by contour integration of
the Green’s function, determined to lie in the band gap, and was shifted to lie
at the peak of the highest valence band.

Nanobeam A Nanobeam B

=
@

Energy [eV]

Energy [eV]

=
o
T

Figure 5.9: Nanobeam A and B electronic band structures.

The electronic structure of Si channels depends sensitively on several factors.

The size of the channel, the group used to passivate the wire, the degree of
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saturation, as well as the crystal orientation the channel is grown in all come
into play. For [100] channels, First principles DFT calculations indicate that the
band gap is largest when the surface is saturated with hydrogen and lowest when
passivated with a hydroxyl (-OH) group [62]. For large diameter channels, not
saturating the surface bonds leads to a lower and more highly indirect band gap
[63]. The orientation of the channel not only affects the magnitude and position
of the band gap, but even how sensitively is affected by structural defects such
as roughness at an interface. [110] channels followed by [100] channels have the
highest current and are the best cuts to use [64]. The band gap usually tends
to be direct for small diameter channels and transitions to the bulk indirect gap
as the channel diameter is increased [62, 63]. In our results, the band gaps of
all considered nanowires and nanobeams were direct.

For nanobeam A, a pure system and an ensemble of 20 structures, 10 con-
taining random vacancies and 10 with periodic vacancies, were considered. A
mean value of the transmission was taken for each case. The results are pre-
sented in figure 5.10.

Since the self-energy calculation does not depend on the arrangement inside
the simulation box, the calculation consisted of calculating the self-energies for
all energy points first (0.01 eV mesh) first and then calculating G(E) and T (E)
for each structure at all energy points. Each self-energy calculation took ~2-3
minutes (depending on convergence) and each Green’s function and transmission

function calculation took ~20s. The total computation time including the pure
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Figure 5.10: Transmission as a function of energy through nanobeam A. Random vacancies
strongly degrade transmission.

structure and the ensemble average for 20 structures was ~14.5 hours.

The transmission for periodic vacancy case follows the same behaviour as
the vacancy free transmission curve, retaining the basic step pattern shape,
but lags behind slightly. Additionally, the transmission is not an integer be-
cause even though the structure in the simulation box is periodic, the attached
leads are vacancy free, thus breaking translational symmetry. Random defects,
on the other hand, very strongly diminish the transmission in both structures
considered.

We also present the unaveraged single transmission curves for periodic and
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random defects in nanobeam A in figure 5.11. For periodic defects, the trans-
mission was more strongly degraded in the case of internal defects than surface

defects.

12 SRSTRRLY SRR TS SR T SRLREY . 16 seeeeees REPRPIY PR EEETRIIES g PSR ;

=]

T [Gh/2e?]
T [Gh/2e?]

1T 1:2 1:3 14 1i5 1:6 1T 1?2 1:3 1.4 1f5 1:5
Energy [eV] Energy [eV]

Figure 5.11: a) Transmission for an ensemble (10) of systems containing random vacancies.
b) Transmission for an ensemble (10) of systems containing periodic vacancies. with basic
structure A. The basic structure is nanobeam A in both cases.

Figure 5.12 displays a profile illustrating where the vacancies were located
for a single principal layer (composed of four atomic planes) colour coded corre-
sponding to each transmission curve in figure 5.11 b). The two curves with the
lowest conductance both correspond to the two structures’ internal vacancies.
One way to interpret this would be a reduction in the effective width of the
nanobeam due to defect back-scattering [65].

For nanobeam B, no spatial averaging of vacancies over an ensemble of
systems was performed. We present the transmission curves for a pure structure,

a structure with periodic defects, and a structure with random defects in figure
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Figure 5.12: Location of vacancies in the principal layer (composed of four atomic layers) for
each system with periodic vacancies considered.

5.13.

Once again, the calculation involved first calculating the self-energies at
each energy point (0.01 eV mesh) and then calculating G(F) and T (F) for each
structure. The total computation time for all three arrangements was roughly
~36 hours. Each self-energy calculation took ~12 minutes and each Green’s
function and transmission function calculation took ~8 minutes.

In order to test the peak computational power of our code, we computed
the transmission at a single energy point through nanobeam C, shown in figure
5.7. The structure contains over 224,180 atoms. This corresponds to a block-
tridiagonal central region Hamiltonian matrix He of 2,012, 780x 2,012, 780 with

the block diagonal consisting of 110 blocks of 18,298 x 18,298 each. The self-
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Figure 5.13: Transmission as a function of energies through nanobeam B. A pure system, a
system with periodic vacancies, and a system with random vacancies are considered.

energy calculation converged to a tolerance of 1078 within ~4 hours. Computing
the G¢1 1, the top-right most block of the Green’s function (most difficult block),
and subsequently the transmission function took ~11 hours, an improvement
on our result published in [1].

The calculation was done out of core by reading and writing calculated
blocks to and from the hard disk using a special version of the NEGF-TB
code. The GMI block functions (see appendix A) were used to achieve this.
Rather than running several linear algebra operations in parallel as shown in

the pseudocode in section 4.4, each individual linear algebra operation was



5: APPLICATIONS 74

parallelized over all onboard devices. This approach is better suited for dealing
with very large blocks.

Previously in section 3.3, we reviewed a method of mapping the large block
tridiagonal matrix inversion problem to a more manageable chain of matrix
inversions and matrix multiplications involving the blocks. For this reason, the
computation time in our model scales as O(n?®) with the number of atoms per
principal layer, corresponding to the size of each on-site Hamiltonian matrix
but as O(n) with with the number of blocks.

Using one node equipped with 4 GPUs and the current code, we esti-
mate that the the self-energies, G(F) and subsequently 7 (F) for a system of

~1,000,000 atoms can be computed in ~2 days.
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CONCLUSION

In this work, we have developed a parallel GPU accelerated code for carrying out
transport calculations within the Non-Equilibrium Green’s Function (NEGF)
framework using the Tight-Binding (TB) model and reviewed the theoretical
formalisms, modelling techniques, and computational tools used.

The GPU acceleration and parallelization was done using a multi-threaded
GPU-Matlab Interface (GMI) developed in this work. Although GMI was orig-
inally intended to be used in the context of electronic transport calculations, it
is not application specific and can be used by researchers in any field without
any required knowledge of GPU programming or multi-threaded programming.
Additionally, it was demonstrated that GMI’s linear algebra performance com-
petes well with commercial software and performs well when scaled to multiple
GPU devices in parallel.

We validated our heterogenous parallel NEGF-TB software by studying the
electronic transport properties of Si nanowires and comparing to known results.

We then investigated the electronic transport behaviour of Si nanobeams and

75
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studied the effect of random and periodic vacancies inside the beam on its con-
ductance. We demonstrated that our method is capable of accurately simulating
systems composed of over 200,000 atoms in reasonable timescales using only 1-4
GPU devices.

Several improvements, refinements, and optimizations remain to be made to
our codes. Although the persistent linear algebra bottleneck was bypassed using
a highly specialized implementation, the matrices we are capable of handling are
so large that the calculation needs to be done out of core. Reads and writes to
and from the hard disk now take a significant portion of the total computation
time and need to be further minimized or eliminated.

Additionally, in the study of systems that require spatial averaging, such
as systems involving point defects, vacancies and dopants, much computation
time is spent on repeating the entire calculation for an ensemble of very sim-
ilar systems. We are currently researching computational techniques to avoid
repeating the same calculation each time.

Since only the location of the defect or vacancy is altered in system, the
Hamiltonians of each member of the ensemble at any given energy point differ
only by row and column interchanges. A very promising implementation that
we are currently investigating would be to compute the Green’s function for
only one system in the usual manner, and then compute only the change in the
inverse for each member of the ensemble as a correction using the Sherman-

Morison formula, thus greatly reducing the total computation time. However,
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more work needs to be done before stronger claims can be made.

Scientific advancement has always been driven by increasingly sophisticated
experimental techniques and the discovery of theories that describe the results.
As we move forward to study increasingly complex systems, the gap between
theory and experiment becomes progressively more difficult to bridge. This is
a fundamental limitation that an entirely new field of physics, computational
physics, has emerged to address.

Before the invention of the modern computer, scientists were limited to ei-
ther using only models with closed form solutions or resorting to highly imprac-
tical and error-prone methods, such as human computers. Today and always,
we are restricted to using models that can be efficiently solved by the computers
and computational techniques known to us. In order to refine our theoretical
models, it is very important to continuously develop strategies to circumvent
bottlenecks and efficiently deal with the mathematical and computational issues
that arise.

Even though the use of GPUs for solving computationally intensive scientific
problems started fairly recently, accelerating applications by using specialized
hardware is nothing new, and is often done ad hoc to boost computational
performance. It is the author’s impression that although it is unlikely that
GPU computing is the final frontier of high performance computing (HPC), it

is clear that it is by far the best currently available option.
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The GPU Matlab Interface (GMI) is a set of functions that reroute lin-
ear algebra calls in Matlab to the the GPU for accelerated performance. The

interface was designed with several features in mind.

1. Scalability: GMI can automatically access any number of onboard GPUs

specified by the user.

2. Versatility: GMI was not developed in the context of strictly quantum

transport. It can be readily used by any researcher in any field.

3. Accessibility: No knowledge GPU programming, multi-threaded program-

ming, or CUDA is required.

4. Transparency: Users can very quickly port their CPU code to GPU code
simply by replacing the native Matlab functions with GMI functions. No

major changes to the application are required.

A.1 System Requirements

CUDA, CULA, and POSIX threads should be installed on the system. Please
follow the instructions in their respective User Guides. At least one Nvidia
CUDA (G8x series of higher) enabled GPU card must be on board. Nvidia
Tesla cards are recommended. GMI was tested under Debian ‘Wheezy’ with

Matlab 2010b on a workstation with 4 Nvidia Tesla C2050.
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A.2 Preparing your Computer System

1. Make sure that the CUDA drivers/runtime versions and CULA libraries
are up to date. This can be verified by running nvcc -V in a terminal.

The CUDA compilation tool needs to be release 4.0 or higher.

harbm@dorothea:~$ nvcc -V

nvcc: NVIDIA (R) Cuda compiler driver
Copyright (c) 2005-2011 NVIDIA Corporation
Built on Thu_May_12_11:09:45_PDT_2011

Cuda compilation tools, release 4.0, V0.2.1221

2. Run the examples in the NVIDIA GPU Computing SDK directory, partic-
ualarly deviceQuery.c and bandwidthTest.c. These tests should return

PASSED.

3. Make sure that all the CULA related environment variables are defined.

This can be done by adding the following lines to the .bashrc file:

export CULA_ROOT="/usr/local/cula"

export CULA_INC_PATH="$CULA_ROOT/include"
export CULA_BIN_PATH_32="$CULA_ROOT/bin"
export CULA_BIN_PATH_64="$CULA_ROOT/bin64"
export CULA_LIB_PATH_32="$CULA_ROOT/1lib"
export CULA_LIB_PATH_64="$CULA_ROOT/1ib64"

export LD_LIBRARY_PATH=$CULA_LIB_PATH_64:$LD_LIBRARY_PATH
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4. Run the CULA basicUsage.c example:

harbm@dorothea:/usr/local/cula/examples/basicUsage$ ./basicUsage
Allocating Matrices

Initializing CULA

Calling culaSgeqrf

Shutting down CULA

A.3 Installation
Download the GMI package
1. Extract the GMI folder into the home directory and define the relevant

GMI environment variables by adding the following lines to the .bashrc

file.

export GMI_ROOT="$HOME/GMI"
export GMI_SOURCE_PATH="$GMI_ROOT/source"

export GMI_EXEC_PATH="$GMI_RO0T/executables"

Finalize these changes by typing ’source .bashrc’ into the command

line.

2. Navigate to $HOME/GMI and run the install.sh script. This step will

compile the GMI source code.

3. Start Matlab and add the compiled GMI executables’ path:
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>> addpath ~/GMI/executables

82

4. Try running the gpuReveal function to verify that the installation was

done correctly. This should return some information about any GPUs

onboard.

>> gpuReveal

Found 4 devices:

device

device

device

device

5. Congratulations! GMI is now ready to be used.

0:

2:

1:

3:

Tesla

Tesla

Tesla

Tesla

C2050 / C2070 (3 GB)
C2050 / C2070 (3 GB)
C2050 / C2070 (3 GB)

C2050 / C2070 (3 GB)

A.4 Data Types

Matlab labels arrays according to two complexity flags and 17 classes. The two

complexity flags are mxREAL and mxCOMPLEX and they correspond to real and im-

maginary/complex arrays respectively. Of the 17 classes, only mxSINGLE_CLASS

and mxDOUBLE_CLASS, corresponding to single and double precision, arrays are

supported. Cells, logicals, strings and other classes of arrays are not supported.

GMI functions are strongly typed and arguments of the appropriate complexity

flag and class must be passed to each function.
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GMI data type prefix | Complexity flag Class ID
S mxREAL mxSINGLE_CLASS
C mxCOMPLEX | mxSINGLE_CLASS
D mxREAL mxDOUBLE_CLASS
Z mxCOMPLEX | mxDOUBLE_CLASS

Table A.1: GMI data-types

The Lapack convention is used; each function is preceded by one of the
symbols S,D,C, or Z to denote its data type. For example, a function that takes
a complex, single-precision array as an argument is preceded by the prefix S.
Passing any different kind of array to that function will result in an error. The

four symbols and their corresponding data types are summarized in table A.1.

A.5 Computation Types

GMI allows users to take advantage of one or several GPUs on their system
with zero knowledge of multithreaded programming and GPU programming.

Users can either choose to use one GPU to work on one problem or several
GPUs to work on several problems in parallel. All thread management is done
under the hood and the user needs only to specify the input arguments and
number of GPUs to be used. Additionally, users can take advantage of all
GPUs onboard simultaneously to work on one large problem.

As with the data type symbols, one of three computation type prefixes,
Basic, Par, and Block must precede any GMI function. A description of each

computation type is presented below:

1. Basic computation: The basic computation type is labeled by the prefix
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Single device

Multiple device

Single input

Multiple input
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Figure A.1: GMI Computation types

Basic and denotes a computation involving a single algebra routine with

a single input performed on one GPU. This is the simplest computation

type. For example:

>>C=gpuBasicCinv(A);

performs a matrix inversion on the single precision, complex matrix A on

the GPU and stores the result in B.

. Parallel computation: The parallel computation type is denoted by the

prefix Par. It performs a computation involving a single algebra routine

with several inputs using one or several GPUs in parallel. The user simply
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needs to specify the input arguments and the number of GPUs desired.

For example:

>>[C1,C2,C3,C4]=gpuParZinv(4,A1,A2,A3,A4);

simultaneously inverts each of [A1, A2, A3, A4] on a separate GPU. If
more than four arguments are passed, GMI distributes the extra arrays in

the most optimal manner automatically. For example:

>>[C1,C2,...,CN]=gpuParZinv(4,A1,A2, ... ,AN);

automatically distributes all the data arguments over four GPUs and in-
verts them in parallel, four at a time. If the number of arguments is not

a multiple of 4, the remaining data is simply sent to any idling devices.

3. Block computation: Unlike traditional processors, GPU memory is not
shared across the devices and as a result, multiple GPU cannot be made
to directly work on one large individual problem simultaneously. The
block type was developed to address this issue and is the most advanced
computation type supported. It performs a computation involving a single
algebra routine with a single large input using all GPUs available onboard.
This is very useful in cases where the input array is too large to fit in the
memory of only one device. For example, in the case of matrix multipli-

cation, consider the matrices A and B. Each can be subdivided into four
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blocks:

. A Ap B— Bi1 B (A1)
Ay A By Bao
The blocks of the product C' = A x B can be expressed in terms of the
blocks of A and B as:

O rA11 B + A19Bor A1 Big + A12By (A2)

Ag1Biy + A Bay Az Bia + A2 B
The gpuBlockDtimes function computes the product C' = AB by com-

puting the individual blocks of C' in parallel.
C=gpuBlockDmtimes(A,B);

A block inversion is also available and uses the 2 x 2 block case of the
RGF algorithm. See section 3.3.1. Although it seems appealing to always
use the block functions instead of the basic and parallel functions, it is not
recommended to do so because of the additional overhead these functions
incur. The block functions are most suitable when dealing with one large

array that is too large to fit on the memory of a single GPU.

A.6 Function Reference

The syntax of all GMI functions (except gpuReveal) follow the same easy to

remember pattern: A gpu prefix, followed by the computation type and data
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type prefixes and the linear algebra operation:

The section documents all functions available in GMI. For each function we
present (i) a detailed description. (ii) A description of each of the function’s
input and out parameters. (iii) A description of some possible errors that may

be encountered. (iv) Usage comments and guidelines if applicable.

A.6.1 gpuReveal

-Description

Displays the number of and some information about all onboard GPU devices.
-Input parameters

none

-Output parameters

none

- Errors

(i) No CUDA capable GPU devices are found

>> Found no devices onboard.

A.6.2 gpuBasic{S,C,D,Z}inv
-Description
Solves for the inverse of a square N x N matrix A using an LU decomposition.

Similar to the matlab function inv.

-CULA Routines

e GETRF
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e GETRI
-Input parameters

e A: Square N x N array.
-Output parameters

e C: Matrix inverse of A.

- Errors

(i) No input arguments were specified.
>> 1 input argument required.
(ii) More than one output arguments were specified.
>> 1 output argument required.
(iii) Input argument has the wrong data type or matrix is not square.
>> Input must be a square matrix of the appropriate data type.
- Example:
>> C=gpuBasicSinv(A);
A.6.3 gpuBasic{S,C,D,Z}mtimes
-Description

Performs a general matrix-matrix multiplication. Similar to the Matlab function

mtimes

-CULA Routines



A: GMI USEr GUIDE

e GEMM
-Input parameters
e A: M x N array.
e B: N x K array.
-Output parameters
e C: M x K matrix C = A x B.

- Errors

(i) Wrong number of arguments were specified.

>> 2 input argument required.

(ii) More than one output arguments were specified.

>> 1 output argument required.
(iii) A and B cannot be multiplied.

>> Inner dimensions must agree.
- Example:

>> C=gpuBasicCmtimes (A);

89
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A.6.4 gpuPar{S,C,D,Z}inv

-Description

Inverts m square matrices using LU decomposition/backsubstitution on n GPU
in parallel. This is done by distributing the matrices into n threads and starting
one thread on each device. If the specified n is greater than the number of GPU
available, the operation is automatically done on all available GPU. If n > m,

then then n is automatically set to m.

-CULA Routines

e GETRF

e GETRI
-Input parameters

e n: Number of GPU to use.

e [ A1, A2, ... ,Am msquare arrays.
-Output parameters

e [ C1, C2, ... ,Cm]: msquare arrays containing the inverses of A_1,

A2, ... ,Am

- Errors

(i) No input arrays were specified.

>> two or more input arguments are required.
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(ii) Input argument has the wrong data type or matrix is not square.
>> Input arguments must be square matrices of the appropriate data type.
- Example:
>> [C1 C2 C3 C4 ] = gpuParDinv(4,A1,A2,A3,A4);
A.6.5 gpuPar{S,C,D,Z}mtimes
-Description
Multiplies m pairs of matrices in parallel on n GPU. This is done by distributing
the pairs of matrices into n threads and starting one thread on for device. If
the specified n is greater than the number of GPU available, the operation is

automatically done on all available GPU. If n > m, then then n is automatically

set to m.

-CULA Routines

e GEMM
-Input parameters

e n: Number of GPU to use.

e A1, B.1, ... ,Am,Bm: m pairs of arrays.
-Output parameters

e [ C1,...,Cm]: marrays containing the products of [A_1 x B_1,..., A-m x B_m]
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- Errors

(i) No input arrays were specified.
>> two or more input arguments are required.
(ii) Input argument has the wrong data type or matrix is not square.
>> Input arguments must be square matrices of the appropriate data type.
(iii) matrices are not paired properly.
>> An even number of matrices is required.
(iv) Some matrix pairs inner dimensions do not agree.
>> Inner dimensions of all pairs of matrices must agree.
- Example:
>> [F1 F2 F3 F4] = gpuParZmtimes(4,A1,A2,B1,B2,C1,C2,D1,D2);
A.6.6 gpuBlock{S,C,D,Z}inv
-Description

Inverts a single large square matrix A using all available GPUs using the 2 x 2

matrix partitioning technique.

-CULA Routines
e CETRF

e GETRI
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e GEMM
-Input parameters

e A: Large N x N array.
-Output parameters

e Matrix inverse of A.

- Errors

(i) No input arguments were specified.
>> 1 input argument required.
(ii) More than one output arguments were specified.
>> 1 output argument required.
(iii) Input argument has the wrong data type or matrix is not square.
>> Input must be a square matrix of the appropriate data type.
- Example:

>> A=rand(40000); %Test matrix. Make sure input is large.

>> C= gpuBlockDinv(A);
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A.6.7 gpuBlock{S,C,D,Z}mtimes

-Description

Performs a single general matrix-matrix multiplication on two large arrays using
all available GPUs.
-CULA Routines

e GEMM
-Input parameters

e A: Large M x N array.

e A: Large N x K array.
-Output parameters

e C: Matrix product C' = A x B.

- Errors

(i) Wrong number of arguments were specified.
>> 2 input argument required.

(ii) More than one output arguments were specified.
>> 1 output argument required.

(iii) A and B cannot be multiplied.

>> Inner dimensions must agree.
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- Example:

>> A=rand(20000)+rand (20000)*i; %Test matrix. Make sure input is large.
>> B=rand(20000)+rand (20000)*i; %Test matrix. Make sure input is large.

>> C= gpuBlockZmtimes(A,B);
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The following is the C/MEX source code for GMI function gpuParZinv.c along
with some comments. Other GMI functions follow a similar structure. They

are not included here for compactness of this thesis. GMI can be obtained at [66]

/*****************************************************************
Function: gpuParZinv.c

Usage: Inverts matrices in parallel on several GPU.

Author: Harb, Mohammed

A AAAA A A A A KKK KRR KKK KKK KRR A A A A A A A A KA A A A A KKK KKK KKK AAAA A A KK )

#include "GMlIframework.h”

/*Define a custom data type. Each thread will be passed on of these
typedef struct{

int id;

int thisNumMatrices;

culaDoubleComplex** a;

96
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/+Single Process Multiple Data (SPMD) thread routine.

B: SOURCE CODE

intx n;

intxx ipiv;

tthreadArgType;

the code will

* erecute on several devices in parallel each with a different

input.*/

void* Zinv(voidx arg){

int i;

/xCatch this thread’s threadArg and type cast it to the

appropriate type.x/

threadArgTypex package = (threadArgTypex) arg;

/+*Define a status wvariable for debugging purposes.+/

culaStatus status;

/*Each thread will bind to a different device.x/
status=culaSelectDevice (package—>id) ;

checkStatus (status);
/xInitialize CULAx/
status=culalnitialize ();

checkStatus (status);

/*Loop over matrices assigned to the thread.x/
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B: SOURCE CODE

for (i=0;i<package—>thisNumMatrices; i++){

/*Compute the LU factorization of a matriz using partial
pivoting with row interchanges.x*/

status=culaZgetrf ((package—>n)[i], (package—>n)[i], (
package—>a)[i], (package—>n)[i], (package—>ipiv)[i]);

checkStatus(status);

/+*Compute the inverse of a matriz using the LU
factorization from GETRF.x/

status=culaZgetri ((package—>n)[i], (package—>a)[i], (
package—>n)[i], (package—>ipiv)[i]);

checkStatus(status);

/xGateway function.x/
void mexFunction( int nlhs, mxArray *plhs(],

int nrhs, const mxArray xprhs|[]) {

int i, j, k, m;

/*Make sure there is at least one matriz to operator on.x*/

if (nrhs<2)

mexErrMsgTxt (" gpuZparinv: Too few arguments”);

98

/*The first argument is how many devices gpuZparinvshould usex/
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int numThreads=(int)mxGetScalar(prhs[0]) ;

/+*number of matrices the user passedx/

int numMatrices=(int )nrhs —1;

/*This is to prevent the wuser from wusing more threads than
matrices. «/
if (numMatrices<numThreads)

numThreads=numMatrices ;

/xmatrizPerThread is an array of length numThreads that
specifies how

*many matrices each thread will handle. e.g. if
matrizPerThread [2]==5, this

*means thread #2 will handle 5 matrices.

*/

int matrixPerThread [numThreads];

memset (matrixPerThread, 0, numThreadsxsizeof(int));

/xdistribute the number of matrices each thread will handle as
evenly

xas possible. x/

for (i=0;i<numMatrices; i++){

matrixPerThread [ i%numThreads]++;

/xdefine an array of threadArgs of length wuser inputed
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numThreads. */

threadArgType threadArgBundle [numThreads];

/xAllocate memory for each element of each threadArg in the
bundle
x depending on how many matrices that thread is handling.x*/
for (i=0;i<numThreads; i++){
threadArgBundle[i].n=(int x)mxMalloc (matrixPerThread [i]*
sizeof (int));
threadArgBundle [i].a=(culaDoubleComplex **)mxMalloc (
matrixPerThread [i]*sizeof(culaDoubleComplexx*)) ;
threadArgBundle [i].ipiv=(int*x)mxMalloc(matrixPerThread [i]x*

sizeof (intx));

/+k starts at 1 for prhs because the first argument is the
number of GPU
xbeing used. Use k—1 for plhsx/

for (i=0, k=1; i<numThreads; i++){

/*Give each threadArg a unique numeric ID and set the
number of matrices

xit will handle.x/

thread ArgBundle[i]. id=i;

threadArgBundle [i]. thisNumMatrices=matrixPerThread [i];

for (j=0;j<matrixPerThread [i]; j++, k++){
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103

104 /*Make sure arguments are square matrices.*/

105 m=(int )mxGetM( prhs [k]) ;

106 threadArgBundle[i].n[j]=(int )mxGetN(prhs[k]);

107 if(m != threadArgBundle[i].n[j])

108 mexErrMsgTxt (” gpuZparinv: Arguments must be square

matrices.”);

109

110 /xAllocate memory for pivolt wvariable (needed for GETRF)

111 threadArgBundle[i].ipiv [j]=(int*)mxMalloc(
threadArgBundle[i].n[j]*sizeof(int));

112

113 /+*Make sure arguments are double complex matrices.«/

114 if (! mxIsDouble(prhs[k]) || !mxIsComplex(prhs[k]))

115 mexErrMsgTxt (” gpuZparinv: Arguments must be double

complex matrices.”);

116

117 /*Allocate memory for each matriz and convert it to
Lapack orderingx/

118 threadArgBundle[i].a[j]=(culaDoubleComplex*)mxMalloc(
threadArgBundle[i].n[j]*threadArgBundle[i].n[j]x*
sizeof (culaDoubleComplex) ) ;

119 mat2cula(threadArgBundle[i].a[j], mxGetPr(prhs[k]),
mxGetPi(prhs[k]), threadArgBundle[i].n[]]*
threadArgBundle[i].n[j] );

120




B: SOURCE CODE 102

121 }
122 }
123
124 /*Create the threads, each will execute on a GPU device with
different
125 * arguments. x/
126 pthread_t threadBundle [numThreads];
127 for (i=0; i<numThreads; i++){
128 pthread_create(&threadBundle[i], NULL, Zinv, &
threadArgBundle[i]) ;
129 sleep (1) ;
130 }
131
132 /xWait for all threads to finish execution before stepping
forward. x/
133 for (i=0; i<numThreads; i++){
134 pthread_join (threadBundle[i], NULL);
135 }
136
137 for (i=0, k=0; i<numThreads; i++){
138 for (j=0;j<matrixPerThread [i]; j++, k++){
139
140 /xAllocate memory for outputs and convert them to
mzArray ordering.*/
141 plhs [k]=mxCreateDoubleMatrix (threadArgBundle[i].n[]],
threadArgBundle[i].n[j], nxCOMPLEX) ;
142 cula2mat (threadArgBundle[i].a[j], mxGetPr(plhs[k]),
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mxGetPi(plhs [k]), threadArgBundle[i].n[j]x*
threadArgBundle[i].n[j]);

143

144 /xdeallocate the copy used to change ordering from
mzArray to Lapack.x/

145 mxFree(threadArgBundle[i].a[j]);

146

147 }

148 }

149/ }
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