
Quantum Transport Modelling with
GPUs

Mohammed Harb
Center for the Physics of Materials

Department of Physics

McGill University

Montreal, Quebec

2012

A Thesis submitted to the

Faculty of Graduate Studies and Research

in partial fulfillment of the requirements for the degree of

Master of Science

T o my parents Zeinab and Aziz,

Contents

Abstract vii

Résumé viii

Acknowledgments xii

1 Introduction 1

2 Quantum Transport 6

2.1 The Mesoscopic Regime . 6
2.2 The Landauer Formalism . 8
2.3 The Non-Equilibrium Green’s Function Formalism 12

2.3.1 1-D Wire with Constant Potential 12
2.3.2 Application to the Two-Probe Geometry 14

2.4 Contour Integration . 17

3 Device Modelling 20

3.1 Principal Layer Ordering . 21
3.2 Iterative Calculation of the Self-Energies 24
3.3 Calculating the Central Region Green’s Function 26

3.3.1 Recursive Green’s Function (RGF) Technique 27
3.3.2 Generalized Green Matrix (GGM) Technique 30

3.4 Fast Calculation of the Transmission Function 32

4 Computation 34

4.1 Heterogeneous Computing and GPUs 35
4.2 The GPU-Matlab Interface . 38
4.3 Benchmarks . 39

4.3.1 Comparison with traditional CPU approach (single-node) 41
4.3.2 Comparison with traditional CPU approach (massively-

parallel) . 44
4.3.3 Multiple GPU devices working in parallel 46
4.3.4 Comparison with Commercial GPU packages 47

4.4 Pertinence to Transport . 52

iii

Contents iv

5 Applications 58

5.1 Transport properties of Silicon Nanowires 58
5.2 Transport Properties of Silicon Nanobeams 61

5.2.1 Fabrication . 62
5.2.2 The E↵ect of Vacancies on Transport 64

6 Conclusion 75

A GMI User Guide 78

A.1 System Requirements . 79
A.2 Preparing your Computer System 80
A.3 Installation . 81
A.4 Data Types . 82
A.5 Computation Types . 83
A.6 Function Reference . 86

A.6.1 gpuReveal . 87
A.6.2 gpuBasic{S,C,D,Z}inv 87
A.6.3 gpuBasic{S,C,D,Z}mtimes 88
A.6.4 gpuPar{S,C,D,Z}inv 90
A.6.5 gpuPar{S,C,D,Z}mtimes 91
A.6.6 gpuBlock{S,C,D,Z}inv 92
A.6.7 gpuBlock{S,C,D,Z}mtimes 94

B Source Code 96

References 103

List of Figures

1.1 The relentless scaling of electronic device components. 2

2.1 Two-probe system in the classical Landauer picture 9
2.2 Two-probe system in the quantum Landauer picture 14
2.3 Countour integration of Green’s function. 18

3.1 Typical atomic two-probe system with bu↵er layers 20
3.2 Partitioning an atomic device into principal layers. 21

4.1 An overview of the massively parallel Fermi Architecture. 37
4.2 GMI flow diagram . 40
4.3 Matrix Inversion: Single GPU vs single processors. 42
4.4 Matrix Multiplication: Single GPU vs single processors. 44
4.5 Single GPU vs massively parallel tuned Scalapack. 45
4.6 Computation time scaling with additional GPUs. 46
4.7 GMI vs commercial software. 49
4.8 GPU Accelerated NEGF-TB code flow diagram. 53
4.9 Self Consistent ⌃

L,R

calculation pseudo-code 56
4.10 Central Green’s Function calculation pseudo-code. 57

5.1 Silicon nanowire cross section and lateral view. 59
5.2 Sparse structure of tight-binding Hamiltonians. 60
5.3 Band structure and transmission of silicon nanowire 61
5.4 Fabrication of Si nanobeams with field enhanced annodization

using AFM. 63
5.5 Atomic visualization of nanobeam A. 64
5.6 Atomic visualization of nanobeam B. 65
5.7 Atomic visualization of nanobeam C. 66
5.8 SEM image of Si nanobeam . 67
5.9 Nanobeam A and B electronic band structures. 68
5.10 Transmission as a function of energy through nanobeam A. . . . 70
5.11 Transmission in systems with periodic and random vacancies . . 71

v

List of Figures vi

5.12 Location of periodic vacancies. 72
5.13 Transmission as a function of energy through nanobeam B. . . . 73

A.1 GMI Computation types . 84

Abstract

In this thesis, we have developed a parallel GPU accelerated code for carry-

ing out transport calculations within the Non-Equilibrium Green’s Function

(NEGF) framework using the Tight-Binding (TB) model. We also discuss the

theoretical, modelling, and computational issues that arise in this implemen-

tation. We demonstrate that a heterogenous implementation with CPUs and

GPUs is superior to single processor, multiple processor, and massively parallel

CPU-only implementations.

The GPU-Matlab Interface (GMI) developed in this work for use in our

NEGF-TB code is not application specific and can be used by researchers in

any field without previous knowledge of GPU programming or multi-threaded

programming. We also demonstrate that GMI competes very well with com-

mercial packages.

Finally, we apply our heterogenous NEGF-TB code to the study of electronic

transport properties of Si nanowires and nanobeams. We investigate the e↵ect

of several kinds of structural defects on the conductance of such devices and

demonstrate that our method can handle systems of over 200,000 atoms in a

reasonable time scale while using just 1-4 GPUs.

vii

Résumé

Dans cette thèse, nous présentons un logiciel qui e↵ectue des calculs de trans-

port quantique en utilisant conjointement la théorie des fonctions de Green hors

équilibre (non equilibrium Green function, NEGF) et le modèle des liens troits

(tight-binding model, TB). Notre logiciel tire avantage du parallélisme inhérent

aux algorithmes utilisés en plus d’être accéléré grâce à l’utilisation de pro-

cesseurs graphiques (GPU). Nous abordons également les problèmes théoriques,

géométriques et numériques qui se posent lors de l’implémentation du code

NEGF-TB. Nous démontrons ensuite qu’une implémentation hétérogène util-

isant des CPU et des GPU est supérieure aux implémentations à processeur

unique, à celles à processeurs multiples, et même aux implémentations massive-

ment parallèles n’utilisant que des CPU.

Le GPU-Matlab Interface (GMI) présenté dans cette thèse fut développé

pour des fins de calculs de transport quantique NEGF-TB. Néanmoins, les ca-

pacités de GMI ne se limitent pas à l’utilisation que nous en faisons ici et GMI

peut être utilisé par des chercheurs de tous les domaines nayant pas de connais-

sances préalables de la programmation GPU ou de la programmation “multi-

thread”. Nous démontrons également que GMI compétitionne avantageusement

avec des logiciels commerciaux similaires.

Enfin, nous utilisons notre logiciel NEGF-TB pour étudier certaines pro-

viii

Résumé ix

priétés de transport électronique de nanofils de Si et de nanobeams. Nous

examinons l’e↵et de plusieurs sortes de lacunes sur la conductance de ces struc-

tures et démontrons que notre méthode peut étudier des systèmes de plus de

200 000 atomes en un temps raisonnable en utilisant de un à quatre GPU sur

un seul poste de travail.

Statement of Originality

My goal in this thesis work is to identify and solve the issues that cripple

computational performance in the study of the electronic transport properties

of nanoscale systems, and to use highly specialized state-of-the-art techniques

to simulate systems consisting of a very large number of particles. Specifically,

my main contributions to this work are:

• I developed a scalable, multi-threaded interface for connecting Matlab to

the GPU to accelerate linear algebra operations. My software is called the

GPU-Matlab Interface (GMI) and is written in C. It is built upon CUDA,

CULA and POSIX Threads and is capable of handling several GPU de-

vices in parallel and without requiring the Matlab Parallel Computing

Toolbox (PCT) or other proprietary toolboxes. GMI’s performance also

competes very well with commercial software and can be readily used by

users with no previous experience with GPUs or multi-threaded program-

ming. Some benchmarks, applications and results are were included in a

recent review article [1].

• I used GMI to develop a parallelized heterogenous CPU/GPU code for

carrying out transport calculations within the Non-Equilibrium Green’s

x

Statement of Originality xi

Function (NEGF) framework using the Tight-Binding (TB) model. Using

this code, I investigated the transport properties of pure Si nanowires

and nanobeams and demonstrated that my method can handle structures

containing over 200,000 atoms on a very reasonable timescale of several

hours.

Matlab and PCT are trademarks of Mathworks. CUDA, CULA, MAGMA,

POSIX Threads, and Jacket are trademarks of Nvidia, EM Photonics,

The Computational Algebra Group at the School of Mathematics and

Statistics at the University of Sydney, The Lawrence Livermore National

Laboratory, and Accelereyes respectively.

Acknowledgments

I thank my supervisor Prof. Hong Guo not only for his guidance and support,

but also for introducing me to the field of nanoelectronics, which I have become

very passionate about. His enthusiasm and drive have enabled me to discover

the joy of scientific research. I also sincerely appreciate the genuine interest he

takes in his students and the valuable wisdom he imparts on what it takes to

succeed as a scientist.

Interacting with the talented graduate students, post-docs, and research

associates in the group on a daily basis has taught me more than any classroom

could. I thank Dr. Dongping Liu, Dr. Yibin Hu, Dr. Jinghzhe Chen, Vin-

cent Michaud-Rioux, Dr. Lei Liu, Dr. Yu Zhu, and Dr. Kevin Zhu for their

assistance at various stages of the project.

Lastly, I thank my friends and family for their warmth and endearment. I

have had an extraordinary experience at McGill, and formed many fond mem-

ories. I’m lucky to have shared it with such outstanding individuals.

xii

1

Introduction

The first microprocessor was invented by Intel in 1971 and contained a few

thousand transistors[2]. A few years later, Gordon Moore made his famous

observation that the number of components in integrated circuits was doubling

approximately every two years [3]. Since then, electronic devices have been

scaled down relentlessly. Today’s microprocessors are crammed with billions of

transistors. Figure 1.1 shows the number of transistors in microprocessors vs

the year of introduction since 1971.

The components of today’s electronics are on the order of tens of nanome-

ters and can truly be regarded as quantum mechanical devices. Their electronic

behaviour is best understood with quantum mechanical modelling using first

principles theories like Density Functional Theory (DFT)[5, 6, 7, 8]. However,

the computational cost of these parameterless ab initio techniques makes them

impractical for large systems. Empirical methods, on the other hand, are several

orders of magnitude faster but not su�ciently accurate. Tight-binding mod-

elling is the intermediate solution. It has the advantage of retaining quantum

1

1: Introduction 2

Ê

Ê

ÊÊ Ê
ÊÊ

Ê Ê
Ê

Ê Ê
Ê Ê

ÊÊ
Ê Ê

Ê Ê

1980 1990 2000 2010

100

104

106

108

1010
transistor coun t

actual data
Moore's Law » Computed by Wolfram »AlphaFigure 1.1: The number of transistors in microprocessors has doubled every two years. Data

retrieved from Wolfram|Alpha Pro[4].

mechanical details, while being 2-3 orders of magnitude faster when compared

to ab initio methods [9].

Both techniques, first principles modelling using DFT and tight-binding

modelling, can be combined with the Non-Equilibrium Green’s Function (NEGF)

formalism to form a solid foundation for the study of electronic transport the-

ory in meso-scale systems[10, 11, 12, 13, 14]. The basic idea is to calculate

the Hamiltonian self-consistently with DFT or non-self-consistently using tight-

binding modelling, and apply NEGF to study the electronic transport properties

of the system.

1: Introduction 3

Both approaches, however, share a common persistent bottleneck. The size

of the matrices involved in NEGF-DFT and NEGF-TB calculations scales non-

linearly with the number of simulated particles and is usually the factor most

responsible for limiting the size of systems that can be studied. One can sim-

ply utilize more cores in a supercomputer, but this is excessive and inelegant.

Typical massively parallel supercomputers also consume enormous amounts of

power. Japan’s K Computer, consisting of 705,024 cores, consumes 9.89 MW

of power - about half of the peak power output of a nuclear submarine - most

of which goes into cooling the components. It is clear that CPU-only super-

computers cannot be scaled much more and that more specialized, application

specific hardware needs to be utilized if computing power is to continue growing

at the current rate.

GPUs, once used only for video processing applications, have recently gained

attention for their impressive floating point capabilities and low power consump-

tion [15, 16, 17]. They contain hundreds of cores and are ideal for performing

computationally intensive problems that have crippled performance in the past.

Typically, these highly specialized devices are used alongside general purpose

processors as part of a heterogenous computing scheme, where the sequential

parts of the application are run on traditional processors and the numerically

intensive parts are sent to the GPU for processing.

To tap into this promising computational resource and overcome the ever-

present linear algebra bottleneck, we developed a package to reroute linear

1: Introduction 4

algebra calls by Matlab to the GPU for acceleration. We also developed a

parallel GPU accelerated code that combines the tight-binding model and the

non-equilibrium Green’s function (NEGF) formalism to study the transport

properties of nanoscale systems such as silicon nanowires and nanobeams.

In chapter 2, we discuss the length scales at which a quantum mechanical

treatment is necessary to understand device physics and briefly review the the-

oretical formalisms, such as the Landauer formalism and the non-equilibrium

Green’s function formalism, used in this work.

Chapter 3 addresses the modelling techniques used in the study of electronic

transport in mesoscopic systems such as the Principal Layer (PL) algorithm and

the iterative Transfer Matrix algorithm for calculating self-energies. Two block-

tridiagonal matrix inversion algorithms, the Recursive Green’s Function (RGF)

algorithm and the Generalized Green’s Function (GGM), algorithm are also

presented.

Chapter 4 addresses the computational details of the work. We argue in

favour of a heterogenous computing scheme instead of a massively parallel CPU-

only implementation and describe how it fits in the context of our NEGF-TB

code. We also introduce the GPU-Matlab Interface (GMI) developed in this

work and compare its performance to several types of CPU implementations

and several commercial GPU interfaces for Matlab.

In chapter 5, we use the NEGF-TB code developed in this work in combina-

tion with GMI to study the transport properties of Si nanowires and nanobeams.

1: Introduction 5

The e↵ects of periodic and random vacancies are also considered.

Finally, chapter 6 presents a summary of the thesis, future developments,

and some concluding remarks.

The appendices contain a reference manual for GMI as well as a sample

code for one of GMI’s functions, with some comments.

2

Quantum Transport

2.1 The Mesoscopic Regime

The current through a macroscopic conductor is proportional to A the cross

sectional area, and L, the length of the conductor. The conductance of such a

macroscopic conductor can be written as:

G = �
A

L
(2.1)

Here, �, the electrical conductivity, depends specifically on the material the

conductor is composed of. As the conductor is scaled down to small length-

scales, the discrete properties of the material need to be taken into account in

order to describe the electronic transport behaviour of the conductor. Quantum

e↵ects become important if the dimensions of the conductor are on the same

length scale as several characteristic lengths. These length scales are:

1. �
F

: If the conductor has the same length scale as the de Broglie wave-

length of current carrying electrons, then the wave like nature of the elec-

6

2: Quantum Transport 7

trons must be taken into account. At low temperatures, current is carried

mainly by electrons having an energy close to the Fermi energy E
F

or

those lying near the Fermi surface. The de Broglie wavelength of these

electrons is defined as the Fermi wavelength:

�
F

=
2⇡

k
F

(2.2)

2. L
m

: The elastic mean free path is the average distance an electron travels

before su↵ering an elastic collision. Since the Fermi electrons are mainly

responsible for carrying current, the mean free path can be obtained as:

L
m

= v
F

⌧
M

. (2.3)

where v
F

= h̄kF
m

is the Fermi velocity and ⌧
M

is the momentum relaxation

time; 1
⌧M

is the rate at which the electron loses momentum. Generally,

1
⌧M

= ↵

⌧C
where ⌧

C

is the mean time interval between collisions and the

factor ↵ ranges from 0 < ↵ < 1 depending on how e↵ective the collisions

are in scattering the electron’s momentum. If the length scale of the

conductor is on the order of the mean free path, the transport becomes

ballistic. A more detailed discussion on scattering times and the factor ↵

can be found in [18].

3. L
�

: If the conductor is on the same length scale as the distance an electron

travels before the phase of its wave function is lost, the electrons can no

2: Quantum Transport 8

longer be modelled classically but rather as wave packets possessing a

quantum phase. This length scale is the phase coherence length L
�

and

can be expressed in terms of the phase relaxation time ⌧
�

:

L
�

= v
F

⌧
�

. (2.4)

As with the momentum relaxation time, the phase relaxation time ⌧
�

can

be defined in terms of the time between inelastic collisions : 1
⌧�

= ↵�

⌧C
where

0 < ↵
�

< 1.

The above length scales are intermediate between atomic length scales (micro-

scopic) and bulk conductor length scales (macroscopic). Although, they vary

from one material to another, the mesoscopic transport regime typically ranges

from roughly 10nm, the de Broglie wavelength in semiconductors and mean free

path in polycrystalline metal films, up to 100µm, the mean free path/phase

relaxation length in high mobility semi-conductors at low temperature [19]. To-

day’s commercial semi-conductor devices are in these meso-scales.

2.2 The Landauer Formalism

The transport of charge in mesoscopic systems cannot be modelled using Ohm’s

law alone because this treatment does not account for quantum mechanical ef-

fects. In this section, an expression for the conductance of a mesoscopic con-

ductor will be derived.

2: Quantum Transport 9

Consider a conducting device connected to two electron reservoirs at chemi-

cal potentials µ
L

and µ
R

through two leads as shown in figure 2.1. It is assumed

that the leads conduct ballistically and that electrons injecting from the leads

into the contacts have zero probability of reflection. For example, a +k electron

originating from the left contact can be reflected in the device region, but must

inject into to the right contact with no reflection if it is transmitted through

the device into the right lead. In our considerations, reflections can only occur

in the device region.

T

Left Contact Left Lead Device Region Right Lead Right Contact

inc IR

IR

IR IL

IL

IL inc

ref ref

trans trans

μL

μR

Figure 2.1: A simple two-probe system consisting of a conducting device connected to elec-
trical contacts at µL and µR by the means of two leads. It is assumed that the leads conduct
ballistically and that the contacts are reflectionless.

If the leads are narrow relative to the contacts, it is reasonable to assume

that that the probability of reflection is negligible at the contact/lead interface.

2: Quantum Transport 10

A direct consequence of a model with reflectionless contacts is that the distri-

bution of electrons originating from left contact, f
L

, is independent from the

distribution of electrons originating from the right contact, f
R

. The current

incident on the device region from the left lead can be written:

IL

inc

= env =
e

L

X

k

✓
1

h̄

@E

@k

◆
f

L

(E)M(E) (2.5)

where M(E) is the number of transverse modes available at energy E. Con-

verting the sum to an integral:

IL

inc

=
2e

h

Z
f

L

(E)M(E)dE (2.6)

An expression for the reflected current can be written in terms of the probability

of transmission T (E):

IL

ref

= �2e

h

Z
f

L

(E)M(E)(1 � T (E))dE (2.7)

Similarly, an expression for the current from the right lead that has transmitted

through the device to the left lead can be written:

IR

trans

= �2e

h

Z
f

R

(E)M(E)T (E)dE (2.8)

By charge conservation, the total current in the left lead and anywhere else in

2: Quantum Transport 11

the circuit can be written:

I =IL

inc

+ IL

ref

+ IR

trans

=
2e

h

Z
[f

L

(E) � f
R

(E)]M(E)T (E)dE
(2.9)

If M(E) and T (E) are constant in the range µ
L

> E > µ
R

, the electrochemical

potentials of the left and right leads respectively, then the the current at zero

temperature can be written:

I =
2e

h
[µ

L

� µ
R

]MT (2.10)

and the conductance of the device is given by:

G =
2e2

h
MT (2.11)

Equation 2.11 is the Landauer formula. In this picture, the current through a

conducting device is expressed in terms of the probability that an electron can

transmit through it. Several reviews of the Landauer formalisms are available

[19, 20, 21].

2: Quantum Transport 12

2.3 The Non-Equilibrium Green’s Function Formal-

ism

Another widely used approach is the Non-Equilibrium Green’s Function (NEGF)

formalism. Several detailed reviews of NEGF are available [19][22][23][24][25].

In this section, the key results of NEGF and its application to the transport

through a two-probe system are outlined.

2.3.1 1-D Wire with Constant Potential

It is useful to first study a simple case to understand the physical interpretation

of the Green’s function and demonstrate the usefulness of the technique. Here,

a 1-D wire with a constant potential U0 is considered. The Hamiltonian is given

by:

Ĥ = � h̄

2m

@2

@x
+ U0 (2.12)

and the corresponding Green’s function G(x) is defined as:

"
E � U0 +

h̄

2m

@2

@x

#
G(x) = �(x) (2.13)

Comparing with the 1-D Schrödinger equation,

"
E � U0 +

h̄

2m

@2

@x

#
 (x) = 0 (2.14)

2: Quantum Transport 13

we find that equations (2.13) and (2.14) are identical except for the non-homogenous

term �(x); G(x) can simply be viewed as the wave function at x resulting from a

unit excitation applied at the origin. It is easy to find the solutions to equation

(2.13). They can be written:

Gr(x) = � i

h̄⌫
e+ik|x| Ga(x) = +

i

h̄⌫
e�ik|x| (2.15)

where k =
p

2m(E � U0)/h̄ and ⌫ = h̄k

m

. The first solution, the retarded Green’s

function, corresponds to waves moving outwards from the excitation point. The

second, the advanced Green’s function, corresponds to waves moving towards

the excitation point. They are generally related by the relation:

Gr = [Ga]† (2.16)

The Green’s functions Gr(x) and Ga(x) contain all the information in the wave

function (x) and are usually more convenient to work with. Once the Green’s

function of a system is obtained, all experimentally relevant quantities can be

calculated [25].

2: Quantum Transport 14

2.3.2 Application to the Two-Probe Geometry

A two-probe system as shown in figure 2.2 is considered. The left/right lead

and device region Hamiltonians are given by:

Ĥ
L

=
X

k

✏
k

c

†
k

c

k

(2.17)

Ĥ
C

=
X

n

✏
n

d

†
n

d

n

(2.18)

Ĥ
R

=
X

m

✏
m

b

†
m

b

m

(2.19)

Here, c

k

destroys a left lead electron in the state |ki, b

m

destroys a right lead

ĤL ĤRĤC

ĤLC ĤCR

ĤCL ĤRC

Figure 2.2: A simple two-probe system consisting of a conducting device connected to elec-
trical contacts at µL and µR by the means of two leads. It is assumed that the leads conduct
ballistically and that the contacts are reflectionless.

electron in the state |mi, and d

n

destroys an electron in the device region that

is in the state |ni. Tunnelling events between the leads and central region can

2: Quantum Transport 15

be described by the coupling Hamiltonians as:

Ĥ
LC

=
X

k,n

(tL
k,n

)⇤
d

†
n

c

k

Ĥ
CL

= tL
k,n

c

†
k

d

n

(2.20)

Ĥ
CR

=
X

n,m

tR
n,m

b

†
m

d

n

Ĥ
RC

= (tR
n,m

)⇤
d

†
n

b

m

(2.21)

where tL and tR are coupling constants and the coupling Hamiltonians are re-

lated by Ĥ
LC

= Ĥ†
CL

and Ĥ
CR

= Ĥ†
RC

. The Hamiltonian of the whole system

can be expressed as the sum of the non-interacting and coupling Hamiltonians:

Ĥ = Ĥ
R

+ Ĥ
C

+ Ĥ
L

+ Ĥ
LC

+ Ĥ
CL

+ Ĥ
CR

+ Ĥ
RC

(2.22)

Separating the wave function into the left (L), right (R), and central (C) regions,

the Schrödinger equation takes the following form:

0

BBBB@

E � H
L

�H
LC

0

�H
CL

E � H
C

�H
CR

0 �H
RC

E � H
R

1

CCCCA

0

BBBB@

L

C

R

1

CCCCA
=

0

BBBB@

0

0

0

1

CCCCA
(2.23)

where the {L,R,C} are the wave functions in di↵erent regions of the system and

E are the corresponding diagonal energy eigenvalues. The Green’s function of

2: Quantum Transport 16

the system satisfies:

0

BBBB@

✏� H
L

�H
LC

0

�H
CL

✏� H
C

�H
CR

0 �H
RC

✏� H
R

1

CCCCA

0

BBBB@

G
L

G
LC

G
LR

G
CL

G
C

G
CR

G
RL

G
RC

G
R

1

CCCCA
=

0

BBBB@

I 0 0

0 I 0

0 I

1

CCCCA

(2.24)

By solving the above matrix equation for G
C

, the retarded Green’s function

Gr

C

can be obtained[22]:

Gr

C

= [✏� (H
C

� ⌃r

L

� ⌃r

R

)]�1 (2.25)

where ✏ = (E + i0+)I adds an infinitesimal imaginary part to an energy point.

The infinitesimal 0+ is necessary to avoid singularities in case E happens to lie

at an energy eigenvalue. The retarded self energies ⌃r

{L,R} are defined as:

⌃r

L

= H
CL

gr

L

H
LC

⌃r

R

= H
CR

gr

R

H
RC

(2.26)

where gr

{L,R} are the retarded surface Green’s function for the left/right leads:

[✏� H{L,R}]g
r

{L,R} = I{L,R} (2.27)

2: Quantum Transport 17

Once Gr

C

is obtained, the transmission function T (E) can be obtained using the

Fischer-Lee relation [1]:

T (E) = Tr[�
L

Gr

C

�
R

Ga

C

] (2.28)

where,

�{L,R} = ⌃r

{L,R} � ⌃a

{L,R} (2.29)

and ⌃a

{L,R} = [⌃r

{L,R}]
† The current can be calculated simply by integrating the

transmission function over all energies:

I =
2e

h

Z
[f

L

(E) � f
R

(E)]T (E)dE (2.30)

Equation 2.30 is a more general case of equation 2.9 - the transmission function

T (E) includes all the information contained in M(E) and T (E) expressed in

terms of the internal states of the system.

2.4 Contour Integration

At zero bias, the central region density matrix ⇢ at zero temperature can be

constructed in terms of the retarded Green’s function.

⇢ =
2

⇡
Im

Z
EF

�1
Gr

C

(E)dE

�
(2.31)

2: Quantum Transport 18

and the number of states N can be counted from tracing the density matrix:

N = Tr [⇢] (2.32)

For closed systems, the Fermi level is obtained by numerically solving equations

(2.31 and 2.32) for E
F

. For open systems, E
F

can be determined from the

electronic structure of the leads. Referring to equation 2.25 makes it clear

that Gr

C

has poles in the lower complex plain near the real axis, specifically at

E = E 0 � i0+ where E 0 is an eigenvalue of (H
C

� ⌃r

L

� ⌃r

R

).

E0

ER

θ

Im

Re

C1

C2

Figure 2.3: Contour integration of the Green’s function: The integration is performed in the
upper complex plane to avoid poles in the lower plane near the real axis. The values of the
integrals over contours C1 and C2 are identical.

The integration must be steered clear of this region to avoid running into a

pole, so the integral is performed along a semi-circle in the upper complex plain

2: Quantum Transport 19

by parametrizing E = E0 + E
R

ei✓ and equation 2.31 as

⇢ =
2

⇡
Im

Z 0

⇡

Gr

C

(E0 + E
R

ei✓)iE
R

ei✓d✓

�
(2.33)

where E0 and E
R

correspond to the center and radius of the semi-circle contour

respectively, as in figure 2.3.

In this chapter, we first started with the expression for the conductance

of a macroscopic conductor, well known as Ohm’s law, and discussed why this

relation breaks down as the conductor is scaled down to small length scales.

To study the behaviour of meso-scale systems, a quantum mechanical treat-

ment is necessary. We reviewed the theoretical formalisms used in the study of

such systems such as the Landauer formalism and the Non-Equilibrium Green’s

Function (NEGF) formalism. In the following chapter, we present the modelling

tools used.

3

Device Modelling

On a technical level, the simplest nano-electronic device can be regarded as

consisting of a device scattering region, such as the channel region of a transistor,

contacted by several electrodes. The electrodes extend to electron reservoirs far

away where bias voltages are applied and electric current is collected[1]. Figure

3.1 shows a schematic of a such a device.

Left Lead Right Lead

Simulation Box

DeviceBuffer Buffer

Figure 3.1: A typical atomic two-probe system. A portion of the leads is included in the
device region as a ‘bu↵er’.

The left and right leads are modelled as periodic and infinite while the

scattering region, or simulation box, is finite and, in general, not periodic. A

portion of the left and right leads are included in the simulation box as a bu↵er

layer. Once the Hamiltonian of the system is specified, the transport properties

of the system can, in principle, be computed using the techniques outlined in

20

3: Device Modelling 21

section 2.3. However, this is a costly computational endeavour and care needs

to be taken into choosing proper algorithms.

Section 3.1 outlines the Principal Layer (PL) algorithm and its application

to the two-probe geometry. Section 3.2 describes the computation of the lead

surface Green’s functions g{L,R} and self energies ⌃{L,R}. Since the leads are

semi-infinite, this needs be done iteratively. Section 3.3 discusses the techniques

used in the calculation of the central region Green’s function G
C

and finally,

the calculation of the transmission function T (E) is addressed in section 3.4.

3.1 Principal Layer Ordering

The prescription in [13, 26] is followed and the system is partitioned into several

principal layers (PL) along the direction of transport. Interactions within a PL

can be described by the matrices h
i,i

while interactions between layers i and j

are described by the interaction matrices h
i,j

.

0 1 2 3 ... N

Principal Layer Partitioning

Figure 3.2: The device is partitioned into several principal layers. The atoms in each layer
interact only with atoms in the same or nearest neighbouring layer.

The layers are chosen thick enough so that that the atoms in a PL interact only

with atoms in the same PL or the nearest neighbouring PLs (h
i,j

= 0 if |i� j| >

1). Figure 3.2 shows a schematic. The nearest neighbour interactions result

3: Device Modelling 22

in the full Hamiltonian taking a block-tridiagonal form. For example, the full

Hamiltonian Ĥ for a device such as the one shown in figure 3.2 can be written:

0

BBBBBBBBBBBBBBBBBB@

PL 0 1 2 3 · · · · · · N

0 h00 h01 0 0 0 . . . 0

1 h10 h11 h12 0 0 . . . 0

2 0 h21 h22 h23 0 . . . 0

3 0 0 h32 h33 h34 . . . 0

...
...

...
...

...
...

. . .
...

...
...

...
...

...
...

... 0

N 0 0 0 · · · 0 h
NN�1 h

NN

1

CCCCCCCCCCCCCCCCCCA

(3.1)

The principal layer ordering lends itself well to the two-probe geometry. Here,

the semi-infinite leads are modelled as consisting of an infinite number of prin-

cipal layers extending to the left and right. The periodicity of the structures

provides a simplification - the leads’ self-interaction and coupling matrices ex-

hibit translational symmetry:

h0,0 = h1,1 = h2,2 = ... (3.2)

h0,1 = h1,2 = h2,3 = ... (3.3)

h1,0 = h2,1 = h3,2 = ... (3.4)

3: Device Modelling 23

As for the central region, it is finite and in general, not periodic. The full

Hamiltonian (eqn. 2.22) of the system can now be organized in the following

form:

0

BBBBBBB@

. . .

h
L10 h

L00 h
L01

h
L10 h

L00 h
L01

h
L10 h

L00

1

CCCCCCCA

0

BBBBBBB@
h

LC

1

CCCCCCCA

0

BBBBBBB@

h
CL

1

CCCCCCCA

0

BBBBBBB@

h
C00 h

C01

h
C10 h

C11 h
C12

. . .

h
CN�1N h

CNN

1

CCCCCCCA

0

BBBBBBB@
h

CR

1

CCCCCCCA

0

BBBBBBB@

h
RC

1

CCCCCCCA

0

BBBBBBB@

h
R00 h

R01

h
R10 h

R00 h
R01

h
R10 h

R00 h
R01

. . .

1

CCCCCCCA

In practice, a portion of the leads are included in the central region as a bu↵er so

that h
L00 = h

C00 and h
CNN = h

R00. Consequently, h
L01 = h

LC

and h
CR

= h
R01.

3: Device Modelling 24

3.2 Iterative Calculation of the Self-Energies

Referring to equation (2.27), we construct the Green’s function equation for the

semi-infinite right lead:

0

BBBBBBB@

h
R00 h

R01

h
R10 h

R00 h
R01

h
R10 h

R00 h
R01

. . .

1

CCCCCCCA

0

BBBBBBB@

g
R00 g

R01 g
R02 · · ·

g
R10 g

R11 g
R12 · · ·

g
R20 g

R21 g
R22 · · ·

...
...

...
. . .

1

CCCCCCCA

=

0

BBBBBBB@

I

I

I

. . .

1

CCCCCCCA

(3.5)

A similar equation can be constructed for the left lead. Dropping the {L, R}

subscripts, both equations yield a set of equations for the surface Green’s func-

tion:

(✏� h00)g00 = I + h00g10,

(✏� h00)g10 = h10g00 + h01g20,

. . . ,

(✏� h00)gN,0 = h10gN�1,0 + h01gN+1,0 (3.6)

These equations can then be iterated to convergence and ⌃{L,R} may then be

calculated using equation (2.26). However, a more highly convergent scheme is

presented in [27]. The chain in equation (3.6) can be transformed to express to

Green’s function of each layer in terms of the Green’s function of the preceding

layer with the introduction of the transfer matrices T and T̃ [13]. These are

3: Device Modelling 25

defined:

T = t0 + t̃0t1 + t̃0t̃1t2 + t̃0t̃1t̃2...tn,

T̃ = t̃0 + t0t̃1 + t0t1t̃2 + t0t1t2...t̃n, (3.7)

where t
i

and t̃
i

are defined recursively:

t
i

= (I � t
i�1t̃i�1 � t̃

i�1ti�1)
�1t2

i�1,

t̃
i

= (I � t
i�1t̃i�1 � t̃

i�1ti�1)
�1t̃2

i�1, (3.8)

and

t0 = (✏� h00)
�1h10

t̃0 = (✏� h00)
�1h01 (3.9)

The nth term is 2n+1�1 order in h01 and vanishes rapidly[27]. The equations are

iterated repeatedly until convergence to some tolerance (t
n

, t̃
n

< �). The self-

energy terms in equation (2.25) are then computed directly using the transfer

matrices. Convergence is usually achieved in a reasonable number of iterations

(usually ⇠10-20 for the systems we studied).

⌃
L

= h
LC

T ⌃
R

= h
CR

T̃ (3.10)

3: Device Modelling 26

Conceptually, the self-energies ⌃{L,R} describe the e↵ect of the leads on the

central region. The infinite open conductor/leads system is replaced by an

equivalent one consisting of a finite conductor with self-energy terms[19]. The

calculation is a major computational bottleneck and highly specialized hardware

and software (section 4.2) are employed to accelerate the process.

3.3 Calculating the Central Region Green’s Function

The principal layer ordering described in the section 3.1 results in the ma-

trix representation of Ĥ
C

taking a convenient form. Computing the central

region Green’s function G
C

(eqn. 2.25) is essentially reduced to a large block-

tridiagonal matrix inversion problem. The number of diagonal blocks is equal

to the number of principal layers along the transport direction, while the block

size is related to the thickness of each layer (number of atoms/orbitals within

the PL). For large systems, Ĥ
C

can quickly reach unmanageable sizes and can-

not be inverted directly. For a system where the scattering region is a roughly

(8.12) ⇥ 43.5 nm Si structure (140,000 atoms and ten orbitals per atom), Ĥ
C

takes on a matrix of size of 1,400,000⇥1,400,000[1]. In this section, two block-

tridiagonal inversion techniques, the Recursive Green’s Function (RGF) and

the Generalized Green Matrix (GGM) algorithms are presented. The goal is

to express the blocks of G
C

in terms of inverses and products of the blocks of

Ĥ
C

. In this manner, the problem of inverting a large block-tridiagonal matrix

is mapped to a sequence of several smaller, more manageable matrix inversion

3: Device Modelling 27

and multiplication processes.

3.3.1 Recursive Green’s Function (RGF) Technique

Consider a general N⇥N matrix A that has been partitioned into several blocks:

A =

0

B@
A11 A12

A21 A22

1

CA (3.11)

The diagonal blocks are square matrices of not necessarily the same size. The

inverse Ã can also be partitioned in the same manner into blocks of the same

size:

A�1 =

0

B@
Ã11 Ã12

Ã21 Ã22

1

CA (3.12)

Using A�1A = I = AA�1, the blocks of the inverse can be expressed in terms

of the blocks of the original matrix[14] as:

Ã11 = (A11 � A12A
�1
22 A21)

�1

Ã12 = �Ã11A12A
�1
22

Ã21 = �A�1
22 A21Ã11

Ã22 = A�1
22 + A�1

22 A21A11A12A
�1
22 (3.13)

If A is very large, computing A�1 quickly becomes impractical. Instead, the

inverse can be computed using equation (3.13), which involves a chain of smaller

matrix inversions.

3: Device Modelling 28

These relations can be generalized to a block tridiagonal matrix B [14]:

B =

0

BBBBBBBBBBBBBB@

B11 B12 0 · · · 0 0

B21 B22 B23 · · · 0 0

0 B32 B33 · · · 0 0

...
...

...
. . .

...
...

0 0 0 · · · B
n�1,n�1 B

n�1,n

0 0 0 · · · B
n,n�1 B

n,n

1

CCCCCCCCCCCCCCA

(3.14)

The corresponding tridiagonal blocks of the inverse B�1 are given by forward

recursion:

B̃
i,i+1 = �B̃

i,i

B
i,i+1Ci+1,i+1

B̃
i+1,i

= �C
i+1,i+1Bi+1,i

B̃
i,i

(3.15)

B̃
i+1,i+1 = C

i+1,i+1(I � B
i+1,i

B̃
i,i+1)

(i = 1, 2, ..., n � 1)

where:

C
i,i

= [B
i,i

� B
i,i+1Ci+1,i+1Bi+1,i

]�1

C
n,n

= B�1
n,n

(3.16)

(i = n � 1, n � 2, ..., 1)

3: Device Modelling 29

or alternatively by backwards recursion:

B̃
i,i+1 = �D

i,i

B̃
i,i+1Bi+1,i+1

B̃
i+1,i

= �B̃
i+1,i+1Bi+1,i

D
i,i

(3.17)

B̃
i+1,i+1 = D

i,i

(I � B
i,i+1B̃i+1,i

)

(i = n � 1, n � 2, ..., 1)

where:

D
i+1,i+1 = [B

i+1,i+1 � B
i+1,i

D
i,i

B
i,i+1]

�1

C1,1 = B�1
1,1 (3.18)

(i = 1, 2, ..., n � 1)

Additionally, the first column blocks of B�1 are given by:

B̃
i+1,i

= �C
i+1,i+1Bi+1,i

B̃
i,1

B̃1,1 = C1,1 (3.19)

(i = 1, 2, ..., n � 1)

3: Device Modelling 30

and the last column blocks by:

B̃
i,n

= �D
i,i

B
i,i+1B̃i,1

B̃
n,n

= D
n,n

(3.20)

(i = n � 1, n � 2, ..., 1)

The complexity of this approach scales linearly with the number of diagonal

blocks in B and is approximately O(N3) in the size of the blocks1.

3.3.2 Generalized Green Matrix (GGM) Technique

A new algorithm that competes well with RGF has been recently developed[29].

This method is currently in use in this work. We introduce the ratio matrices

S
i

and R
i

:

S1 = �B�1
1,1B1,2

S
i

= �(B
i,i

+ B
i,i�1Si�1)

�1 (3.21)

(i = 2, 3, ..., n � 1)

1An e�cient matrix inversion typically involves performing an LU decomposition, a back-
substitution step, and solving the system A�1L = U�1 for A�1. However, the process is still
dominated by matrix multiplication which can be performed in slightly faster than O(N3).
The interested reader is refered to ‘Is Matrix Inversion an N3 process?’ in [28].

3: Device Modelling 31

R
n�1 = �B�1

n,n

B
n,n�1

R
i

= �(B
i+1,i+1 + B

i+1,i+2Ri+1)
�1B

i+1,i

(3.22)

(i = n � 2, n � 3, ..., 2)

Now, the corresponding blocks of the inverse of (equation 3.14) can be written[29]:

B�1 =

0

BBBBBBBBBBBBBBBBBB@

D1 S1D2 S1S2D3 · · ·

n�1Y

i=1

S
i

!
D

n

R1D1 D2 S2D3 · · ·

n�1Y

i=2

S
i

!
D

n

R1R2D1 R2D2 D3 · · ·

n�1Y

i=3

S
i

!
D

n

...
...

...
. . .

...
1Y

i=n�1

R
i

!
D1

2Y

i=n�1

R
i

!
D2

3Y

i=n�1

R
i

!
D3 · · · D

n

1

CCCCCCCCCCCCCCCCCCA

(3.23)

Here, the D
i

are the diagonal blocks. They can be computed using the ratio

matrices and the blocks of B:

D1 = (B1,1 + B1,2R1)
�1

D
n

= (B
n,n

+ B
n,n�1Sn�1)

�1 (3.24)

D
i

= (B
i,i�1Si�1 + B

i,i

+ B
i,i+1Ri

)�1

(i = 2, 3, ..., n � 1)

3: Device Modelling 32

On a single core, both techniques, GGM and RGF, have a similar performance.

GGM has a lower complexity and is slightly faster in computing the first and last

block columns while RGF performs better at computing the tridiagonal blocks.

However, the real advantage is that GGM can be more parallelized to yield a

speed-up factor of 1.25 to 3 over RGF. A detailed analysis of the complexity

of both techniques as well as a description on parallelizing GGM can be found

in [29].

3.4 Fast Calculation of the Transmission Function

Finally, T (E) can be computed as a trace using the Fischer-Lee relation (equa-

tion 2.28). However it is worth mentioning that because of the form of the

product, not all the elements of G
C

are required. Explicitly, the right hand side

of (equation 2.28) is:

0

BBBB@

�
L

1

CCCCA

0

BBBB@

G
C1,1 · · · G

C1,n

...
. . .

...

G
Cn,1 · · · G

Cn,n

1

CCCCA

0

BBBB@
�

R

1

CCCCA

0

BBBB@

G
C1,1 · · · G

C1,n

...
. . .

...

G
Cn,1 · · · G

Cn,n

1

CCCCA

†

(3.25)

The surviving non-zero diagonal element in the result depends on the G
C1,n

block only. The trace can be computed quickly as:

T (E) = vec(
⇥
�LGG1,n

⇤T
) · vec(�RG

†
G1,n

) (3.26)

3: Device Modelling 33

For transmission calculations, blocks other than the top-right block of G
C

need

not be calculated, saving considerable computation time. More details are pre-

sented in section 4.4.

In this chapter, we presented some of the modelling tools used in the study

of electronic transport in mesoscopic systems. We started by partitioning the

mesoscopic conductor into several principal layers along the transport direc-

tion, each of which interacts only with itself or the nearest neighbouring layers.

The Principal Layer (PL) ordering results in the device Hamiltonian taking a

convenient block tridiagonal form. We then presented two block tridiagonal

matrix inversion algorithms, the Recursive Green’s Function (RGF) algorithm,

and the recently developed Generalized Green’s Function (GGM) algorithm,

and proceeded to show how these tools can be used to e�ciently calculate the

self-energies, Green’s function and subsequently the transmission function of a

mesoscopic device.

4

Computation

A major bottleneck in computational physics is the performance of linear al-

gebra routines. In section 3, it was shown that computing transfer matrices

and subsequently the surface Green’s function of the leads relies on heavily on

matrix-matrix multiplication and matrix inversion. Additionally, in section 2.3,

it was shown that finding the central Green’s function of a two-probe system is

essentially a large block-tridiagonal matrix inversion problem.

In addition to developing faster and more e�cient numerical algorithms, it

helps to use proper hardware. Employing massively parallel clusters of CPUs

for linear algebra is an excessive approach which is of limited e↵ectiveness at

large problem sizes. Section 4.3 contains a comparison of the performance of

such CPU clusters against a single GPU device.

In this section, we review the history of GPUs and present a brief overview

of their unique architecture. We then introduce the GPU-Matlab Interface,

designed to connect Matlab to the GPU. Finally, we show how GPUs fit into

the context of quantum transport calculations and demonstrate how they can

34

4: 35

be used to bypass severe computational bottlenecks.

4.1 Heterogeneous Computing and GPUs

GPUs have existed since the early 1980s and were traditionally employed as

specialized accelerators for video games. Their potential for scientific computing

was first realized by researchers in the field of computer science, however, they

were limited in that they were not easily programmable compared to a general

purpose processor. The high level of expertise required to use them was the

major limitation that prevented them from achieving mainstream popularity,

despite their impressive floating point performance.

Today, GPUs are becoming increasingly highly programmable. With the

introduction of general purpose programming tools for GPU such as CUDA and

OpenCL, GPU computing became much more popular and easily accessible to

researchers other than highly specialized computer scientists.

OpenCL or “Open Computing Language” is an Application Programming

Interface (API) initially developed by Apple and subsequently in collaboration

with teams from companies such as Intel, IBM and Nvidia. The specification[30]

was made public in December 2008 and the first release was made available as

part of Mac OS X Snow Leopard.

OpenCL kernels are written as strings and must be incorporated inside

another host code, such as C or C++, for execution. They are not device specific

and are capable of running on various devices such as CPU, GPU, portable

4: 36

electronic device, or any other available OpenCL capable device without any

special modifications. This feature makes it very easy to port an OpenCL code

from one device to another without rewriting the entire application in a di↵erent

programming language. It also makes it possible to take advantage of every

computational resource on the system using a single programming interface.

Several excellent lectures with example code are freely available as podcasts

from MacResearch [31].

CUDA (Compute Unified Device Architecture) is a general purpose GPU

programming interface from Nvidia. Unlike OpenCL, CUDA is device specific

and executes only on CUDA capable Nvidia GPUs. A significant e↵ort has

been made by Nvidia to increase the accessibility of their devices for scientific

computation. A complete GPU-accelerated Basic Linear Algebra Subroutines

library (cuBLAS) with support for all 152 standard BLAS routines and all data

precision types was developed by Nvidia and researchers at The University of

California at Berkeley [15] and made freely available as part of the CUDA

interface. OpenCL libraries are open source and therefore take a longer time

to mature. Currently, the proprietary CUDA based Lapack implementation

used in this work - CULA [32] - is more extensive than its OpenCL counter

part - MAGMA [33]. Some good starting points to pick up CUDA and GPU

programming are [34] and [35].

A glance at GPU architecture makes it apparent that they are designed for

processing highly parallel problems - something once possible only with large

4: 37

CPU clusters. The original Fermi design [36] features 512 stream processors at

1401 MHz, known as CUDA cores, and up to 6 gigabytes of GDDR5 RAM. The

CUDA cores are organized into 16 streaming multiprocessors (SM) of 32 CUDA

cores each, shown as green vertical blocks in figure 4.1. Thread management in

GPUs is done using dedicated hardware at a local level for each SM by local

schedulers, shown as an orange strips, and at a global level by the dedicated

GigaThread global scheduler, which is capable of managing thousands of threads

in parallel.

Figure 4.1: An overview of the massively parallel Fermi Architecture. The green strips rep-
resent CUDA cores. They are organized into 16 streaming processors of 32 cores each. Each
streaming processor also has a local scheduler represented by an orange strip. Taken from
[36].

The unique massively parallel architecture of GPUs makes them ideal for

performing computations with a high arithmetic intensity, but limits their ap-

4: 38

plication to sequential problems. GPUs are not used as or intended to be a

stand-alone replacement to traditional processors. In general, they are em-

ployed as part of a heterogenous computing scheme where the sequential parts

of the application are run on traditional processors and the highly paralleliz-

able parts are sent to the GPU for acceleration. Heterogenous computing is

cheaper, more e�cient, less power consuming and presents a serious challenge

to the traditional CPU-only based cluster approach. In section 4.4, we outline

how NEGF calculations are performed using heterogenous computation.

4.2 The GPU-Matlab Interface

GPUs are ideal for performing computationally intensive tasks such as linear

algebra routines in less time than required on CPU clusters. In order to tap into

this computational resource, a Matlab-GPU Interface (GMI) has been developed

in this work. The interface is multi-threaded and can also be used to manage

several GPUs in parallel. The usage is very similar to the native Matlab syntax

and no experience with GPU programming is required by the end-user.

GMI allows users to use multiple GPUs in parallel by starting an individual

thread on each device. A thread is the smallest unit of instructions scheduled

by the operating system. In this case, each thread contains a set of instructions

to schedule an operation on some device, for example, scheduling a matrix

multiplication operation. Thread management of the scheduling threads was

done in-software using the freely available POSIX Threads library 1.

1The scheduled operation itself e.g. matrix multiplication could start new threads on the

4: 39

GMI is written in C and is powered by CULA [32], a set of GPU-accelerated

linear algebra routines for Nvidia cards. Recently, CULA released a feature that

allows users to use the library directly from Matlab by simply changing Matlab’s

linking settings to point to the CULA libraries instead of a regular LAPACK

library[32]. However, this is limited since it allows for only one GPU to be used

at a time.

A flow diagram for GMI is presented in figure 4.2. After the user specifies

the input arguments, GMI locates and counts the number of GPU devices on

board, starts a number of threads equal to the number of devices, and binds each

thread to a di↵erent GPU. Each thread then makes a call to the appropriate

CULA routines to perform a linear algebra operation. When all the threads

finish execution, the results are returned to the Matlab workspace in the host

memory.

4.3 Benchmarks

In this section, we test the capabilities of the GPU-Matlab interface (GMI) de-

veloped in this work. We show that for linear algebra heavy applications, a het-

erogeneous computing scheme with GPUs is more suitable than any CPU-only

approach. A single GPU outperforms single processors, multiple processors,

and massively parallel processor grids. We also compare GMI’s linear algebra

performance to Jacket[37] and the Matlab Parallel Computing Toolbox (PCT)

device it executes on. These threads however are managed automatically, either in dedicated
hardware if the executing device is a GPU, or in software by Matlab if the executing device
is a CPU.

4: 40

Figure 4.2: GMI flow diagram: Multiple threads with di↵erent input data but performing the
same operation are executed in parallel on several GPU devices. (Single program, Multiple
Data)

and demonstrate it competes very well with these commercial software. We also

demonstrate that the performance scales fairly e�ciently, but not perfectly, with

each additional GPU added.

4: 41

4.3.1 Comparison with traditional CPU approach (single-node)

We compared the linear algebra performance of a single GPU to a two single

processors: (i) a mid-range general purpose processor: AMD Phenom II X6

1075T, 6 real cores and ii) a high-end general purpose processor: Intel Xeon

X5650 CPU, 6 real cores. 12 virtual cores with hyper threading enabled.

The benchmark operations are matrix multiplication and matrix inversion

and the test arrays were chosen to be of the same data type and shape as the

large matrices involved transport calculations: double precision, complex, and

square. However, the results hold for any shape, since the performance only

depends on the total number of floating point operations performed, which in

turn is related only to the number of elements in the array.

Matrix inversion in GMI is done with an LU decomposition with partial

pivoting. The CULA routines culaGETRF (performs LU decomposition) and

culaGETRI (computes matrix inverse using result of LU decomposition) are

used. Suppose A can be decomposed into a product of a lower triangular matrix

L and an upper triangular matrix U ,

A = LU (4.1)

The upper triangular matrix U can be easily inverted by back substitution and

A�1 is computed by solving the equation

4: 42

A�1L = U�1 (4.2)

for A�1. The CPU operation was done in the native Matlab environment with

the inv function. inv is also essentially composed of the Lapack equivalents:

GETRF and GETRI. Figure 4.3 displays the matrix inversion performance on all

tested platforms at various matrix sizes. The speed-up of the GPU relative to

each CPU platform is also shown.

Single Device Complex Double Matrix Inversion Benchmark

Square (NxN) Matrix Size Square (NxN) Matrix Size

Ex
ec

ut
io

n
tim

e
[s

]

Ex
ec

ut
io

n
tim

e
re

la
tiv

e
G

PU
 (s

pe
ed

-u
p)

Figure 4.3: A benchmark for complex double precision matrix inversion. The horizontal axis
shows the square (NxN) matrix size. The figure on the left shows the true execution time for
several platforms and the right shows shows the execution time relative to the GPU.

The speed-up factor ranges from ⇠2.5 to ⇠6 and is not constant across

all matrix sizes. The reason is that even though GPUs perform floating point

operations very quickly, the overhead associated with using GPUs is greater

than that of using a traditional processor. Each time the GPU is used, an

4: 43

individual thread needs to be initialized, the thread is then bound to a GPU

device, and the data is sent to and from to the device for processing over the

machine’s PCI bus port, which typically has a bandwidth of 133-533 Mbyte/s.

In fact, if the total number of floating point operations (FLOPS) is not high

enough, the calculation may be performed on the CPU several times before the

data even reaches the GPU. This is apparent in figure 4.3: The speed-up factor

relative to GPU is less than 1 for matrices smaller than 500 ⇥ 500. Generally,

no significant speed-up is observed unless the size of the input array exceeds at

least ⇠106 elements. The speed-up then scales with increasing input array size

and plateaus when the computation time is very large relative to the overhead

time.

Matrix multiplication in GMI is done using the general O(N3) matrix mul-

tiplication algorithm. The CULA routine used is culaGEMM (general matrix-

multiplication). In this section, we compare the performance of the double,

complex GMI matrix multiplication routine on a single GPU to a CPU-based

Matlab implementation with the mtimes function. mtimes is essentially com-

posed of the Lapack routine GEMM (general matrix-multiplication). The test was

performed on matrices ranging from 100⇥100 to 10, 000⇥10, 000 with the same

hardware as the previous section. Figure 4.4 displays the results on all tested

platforms at various matrix sizes. The speed-up of the GPU relative to each

CPU platform is also shown.

The speed-up factor ranges from 2 to 4.5 at the largest square matrix size

4: 44

Single Device Complex Double Matrix Multiplication Benchmark

Square (NxN) Matrix Size Square (NxN) Matrix Size

Ex
ec

ut
io

n
tim

e
[s

]

Ex
ec

ut
io

n
tim

e
re

la
tiv

e
G

PU
 (s

pe
ed

-u
p)

Figure 4.4: A benchmark for complex double precision matrix multiplication. The horizontal
axis shows the square (NxN) matrix size. The figure on the left shows the true execution time
for several platforms and the right shows shows the execution time relative to the GPU.

and for the reasons previously discussed is not constant for all matrix sizes. The

speed-up is low at first and scales positively with increased square matrix size

and eventually plateaus.

4.3.2 Comparison with traditional CPU approach (massively-parallel)

The linear algebra performance of a single Nvidia Tesla C2050 card was bench-

marked and compared to a (i) node with two Quad-Core Xeon E5620 proces-

sors and (ii) a tuned massively parallel Scalapack implementation using the

Scalapack-Matlab Interface(SMI)[38]. Scalapack is a scalable linear algebra

package for use with shared memory super computing clusters. The Scalapack

‘grid size’ is an abstraction of the actual arrangement of individual processor

cores on the supercomputer. In this case, a 5 ⇥ 5 grid (i.e. 25 processor cores)

4: 45

was used on CLUMEQ’s Guillimin supercomputer cluster equipped with Quad-

Core Xeon E5620 processors. A single Quad-Core Phenom II 910 processor was

also included in the benchmark to establish a baseline.

The benchmark operations were chosen to be double precision complex ma-

trix inversions of square matrices sizes ranging from 6000⇥6000 to 10000⇥10000.

Figure 4.5 shows a comparison of the execution time (and execution time relative

to single GPU) on all platforms tested.

Figure 4.5: A benchmark for complex double precision matrix inversion (lower is better).
The horizontal axis shows the square (N ⇥ N) matrix size . The top figure shows the true
execution time for several platforms and he bottom figure shows the execution time relative
to the GPU. The Nvidia C2050 GPU has the lowest execution time for all matrix sizes.

Although the massively parallel CPU implementation is a significant im-

provement over the single/multiple processor CPU approach, the GPU won in

4: 46

each case and the speed-up ranged from a factor of 3, relative to the 25 core

Scalapack grid, to a factor of 8, relative to an implementation on a typical

modern quad core processor.

4.3.3 Multiple GPU devices working in parallel

The performance scales well with additional GPUs, but there is a non-trivial

overhead associated with using additional devices. For this reason, the input

data set should be reasonably large. Figure 4.6 shows the execution time for

performing a computationally intense problem - 24 double precision complex

matrix inversions - on 1, 2, 3, and 4 Nvidia C2050 GPUs in parallel.

1 2 3 4
200

300

400

500

600

700

800

900

1000

of GPU cards used

co
m

pu
ta

tio
n

tim
e

[s
]

Figure 4.6: Computation time for performing 24 double precision complex 10,000⇥10,000
matrix inversions. The horizontal axis is the number of GPU used to perform the operation.

4: 47

Since the GPUs are being controlled by a central CPU, adding an additional

device incurs some overhead as a result of the devices competing for processing

power. This makes scaling imperfect; according to figure 4.6, the speed-up

factor relative to a single device is 1.8⇥ for two devices (⇠90% e�ciency), 2.5⇥

for three devices (⇠85% e�ciency) and 3.2⇥ for four devices (⇠80% e�ciency).

The overhead incurred by each additional device is a systematic ⇠5% reduction

from perfect e�ciency. For this reason, it is recommended that the number of

GPUs per node be limited to four cards. Additional nodes can be added to the

cluster for every four extra GPUs to maintain a reasonable e�ciency.

4.3.4 Comparison with Commercial GPU packages

Several proprietary GPU software for Matlab are available. In this section we

compare two commercial packages, Jacket and the Matlab Parallel Computing

toolbox (PCT) to the GPU Matlab Interface (GMI) developed in this work.

Jacket, like GMI, relies on the CULA (GPU accelerated Lapack) package to

perform linear algebra routines on CUDA capable GPUs. PCT, on the other

hand, utilizes Magma, an open source GPU accelerated linear algebra library.

The Matlab Parallel Computing Toolbox (PCT) was introduced by Math-

works in 2008 and allowed users to use multicore, processors and computer

clusters to solve computationally intensive problems. It also allowed users to

run as many ‘workers’, or separate Matlab sessions, as licensing allows (up to

12) on one multicore desktop. Other key features included are parallel for-

loops (parfor) and distributed arrays for large data set handling. As of 2010,

4: 48

Mathworks introduced GPU support in the toolbox.

Jacket from Accelereyes is a third party GPU interface for Matlab. The first

release appeared in 2007, 3 years before Mathwork’s PCT started including

GPU support. Recently, NASA utilized genetic algorithms as well as GPUs

with Jacket for rover image compression in the Curiosity Mars rover mission.

“With Jacket and GPUs, the researchers were able to achieve 5⇥ speedups on

the larger data sizes. [39]”

We compared the linear algebra performance of GMI to Jacket and PCT

in the cases of matrix multiplication and matrix inversion. For both cases, the

same operation was done using each interface over a range of square matrix

sizes.

Figure 4.7 shows the general, double precision, complex square matrix mul-

tiplication computation time for both operations. Jacket closely matches GMI’s

matrix multiplication performance, but gradually trails behind at larger matrix

sizes at matrix inversion. The version of PCT tested does not support matrix

inversion 1 and trails behind both at for all sizes at matrix multiplication.

The main result that is apparent from figure 4.7 is that GMI can handle

significantly larger input data sets than both other packages while maintaining

an e�cient performance. On our workstation equipped with Tesla C2050 cards,

matrix multiplication with PCT returned out of memory errors at a maximum

square (double complex) matrix size of 5700⇥5700, Jacket could handle matrices

1As of 2012, Mathworks added GPU matrix inverse support to PCT but this version was not
tested in this work.

4: 49

Complex Double Square Matrix Inversion Complex Double Square Matrix Multiplication

Square (NxN) Matrix Size Square (NxN) Matrix Size

Ex
ec

ut
io

n
tim

e
[s

]

Ex
ec

ut
io

n
tim

e
[s

]

Jacket out
of memory

Jacket out
of memory

PCT out
of memory

Figure 4.7: A benchmark for complex double precision matrix inversion and matrix multipli-
cation. The horizontal axis shows the square (NxN) matrix size. The figure on the left shows
the true execution time for several platforms and the right shows shows the execution time
relative to the GPU. GMI matches the performance of Jacket and PCT while being able to
handle significantly larger matrix sizes.

of up to 7100 ⇥ 7100 while GMI runs out of memory at a significantly larger

matrix size of 10, 300⇥10, 300. For matrix inversion, Jacket runs out of memory

at 8, 100 ⇥ 8, 100 while GMI can handle matrices of up to 12, 300 ⇥ 12, 300.

The main reason GMI can handle larger matrices is because of its uncon-

ventional ‘black box’ memory management. Jacket and PCT manage memory

very similarly. Both create separate workspaces for the host and GPU device

and allow users to send data to and from these workspaces. This is done by

introducing ‘gpu objects’; gdouble objects in Jacket and gpuArray objects in

PCT. These objects are stored on the GPU workspace memory. Functions with

gpu objects as input parameters automatically execute on the GPU. The fol-

4: 50

lowing code snippets demonstrate the usage of gdouble and gpuArray objects

as compared to the native Matlab environment.

-example 1: Matlab native environment:

>>A=rand(N) %Create a test array in host memory.

>>C=inv(A); %Inverts A on the CPU. Host memory now contains

%A and C.

- example 2: Jacket gdouble objects:

>>A=rand(N); %Create a test array in host memory.

>>A_=gdouble(A); %copy A to device memory.

>>C_=inv(A_); %Inverts A_ on the GPU. Device memory now contains

%A_ and C_.

>>C=double(A_); %Copy C_ to host memory.

-example 3: PCT gpuArray objects:

>>A=rand(N); %Create a test array in host memory.

>>A_=gpuArray(A); %Copy A to device memory.

>>C_=inv(A_); %Inverts A_ on the GPU. Device memory now contains

%A_ and C_.

>>C=gather(C_); %Copy C_ to host memory.

In contrast, GMI does away with the concept of a ‘gpu object’ and separate

workspaces for the host and device. Instead, GMI utilizes each GPU device as

a computational black box; data cannot be stored permanently and cannot be

4: 51

moved back and forth from the device unless a GPU computation is required.

This has two main advantages: (i)The GPU input data set can be overwritten

thus saving considerable, valuable GPU device memory. (ii)Syntax is simpler

and less verbose making research code easier to port to the GPU.

-example 4: GMI:

>>A=rand(N); %Create a test array in host memory.

>>C=gpuBasicDinv(A); %Copies A to the device memory. The data on

%the GPU is then overwritten by the result of

%the calculation. The results are then copied

%back to host memory. At any given time, only

%one array needs to be stored in device memory.

From the user’s perspective, replacing inv with gpuBasicDinv simply makes

the calculation run faster. The memory management and data transfer to and

from the GPU device is all done under the hood.

In conclusion, it was demonstrated that the Matlab GPU Interface (GMI)

competes e↵ectively with recent, state of the art commercial packages. GMI

matches or exceeds commercial software in performance and can handle signifi-

cantly larger data sets. Porting CPU code to GPU code with GMI is also more

straightforward because of the transparent syntax.

4: 52

4.4 Pertinence to Transport

In the previous chapters, the theory and modelling tools of quantum trans-

port were introduced. We also argued in favour of a heterogeneous GPU/CPU

computing scheme as opposed to a traditional massively parallel CPU-only ap-

proach. We introduced the GPU-Matlab interface (GMI) and demonstrated

some performance benchmarks. In this section, we describe concretely how

heterogenous computing fits into the context of NEGF quantum transport cal-

culations.

Figure 4.8 presents a flow diagram of the GPU-accelerated NEGF-TB code

developed in this work. The code has two main parts. (i) Calculating the

transfer matrices T and T̃ and calculating the Self-Energies ⌃
L

and ⌃
R

and

(ii) Calculating the the central region Green’s function G
C

. In this section, we

discuss our implementation on a work station equipped with four Tesla C2050

GPU devices.

The procedure in sections 3.2 and 3.3 is followed. The left column describes

the operation, the next four columns represent one thread each and the final

column specifies whether the operation was done on the GPU or by using sparse

routines on the CPU. Sparse routines are appropriate for arrays that consist of

mostly zero elements because of the special format used. In the Yale Sparse

Matrix Format, an arbitrary sparse m ⇥ n matrix A is stored as three 1-D

arrays. Suppose A has N
nz

non-zero elements. The first array, A, is of length

N
nz

and contains all the non zero entries of A. The second array IA is of length

4: 53

Initialize Model Calculate
Transfer Matrices

Calculate Self-
Energies

Input
Hamiltonians

Calculate
Central
Green's
function

GMI routines

Sparse routines

GMI routines

Physical
Quantities

TB-NEGF Transport with
heterogenous computing

calculate t0, t̃0

calculate ti, t̃i

ti, t̃i < �?

⌃R = HCRT̃

⌃L = HLCT

Calculate
ratio matrices

Calculate
Diagonal Blocks

Multiply ratio
matrices

Calculate Corner and
off-diagonal Blocks

Stop

yes

no

NEGF-TB

Figure 4.8: GPU Accelerated NEGF-TB code flow diagram: There are two major bottlenecks
in calculating a system’s Non-Equilibrium Green’s Function: (i) The convergent self-energy
calculation and (ii) inverting the large block-tridiagonal central region Hamiltonian with self-
energy terms. Both are highly linear algebra intensive and benefit greatly from a heterogenous
computing scheme. Sparse operations are done on the CPU to avoid GPU overhead, while
dense, intensive calculations are sent to several GPUs working in parallel.

(m + 1). The first m elements are the row-indices of the first non zero element

on each row of A and the last element is the value of NNZ. The third array, JA

contains the column-indices of the elements of A and consists of NNZ elements.

For example, the matrix

A =

0

BBBB@

1 2 0

0 0 3

0 �4 0

1

CCCCA
(4.3)

can be expressed in sparse form as:

4: 54

A= [1 2 3 -4]

IA=[1 3 2 4]

JA=[0 1 2 1]

For a general matrix of datatype ’type’, the sparse format requires

N
nz

(sizeof(type) + sizeof(int)) + (m + 1) ⇥ sizeof(int) (4.4)

bytes of storage, while the usual format requies mn ⇥ sizeof(type). So, the

sparse format saves memory if and only if:

N
nz

<
mn ⇥ sizeof(type) � (m + 1) ⇥ sizeof(int)

sizeof(type) + sizeof(int)
(4.5)

Note that in the special case of the integer matrix above, the sparse format

is not appropriate since it contains 12 entries but the usual format contains 9

entries.

The sparse format is advantageous for matrix multiplication involving ma-

trices with a low density of non-zero entries because (i) it reduces the amount

of memory required to store the matrix - zero elements are not stored and (ii)

it does not waste floating point operations on non-zero entries. Instead, a la-

belling scheme is used to perform the operations (the additional overhead is

worthwhile if the inputs are sparse enough). However, for the same reasons, the

sparse representation is severely disadvantageous for dense matrices. Addition-

ally, it is disadvantageous for matrix inversion because the results are typically

4: 55

not sparse even if the input is sparse.

The TB Hamiltonians used are typically very sparse. For example, the TB

Hamiltonian of the Silicon Nanowire in section 5.2 is composed of ⇠94 % zero

elements. Figure 5.2 shows the structure. In our heterogenous implementation,

any matrix-multiplication with a TB Hamiltonian as one of the inputs is done

using the CPU with sparse routines. All other operations involve dense matrices

and a large number of floating point operations - these are done on the GPU.

This scheme is shown explicitly in figure 4.9 but excluded in figure 4.10 for

compactness and clarity of presentation.

The first step of calculating the self-energies consists of iterating equations

3.7 to convergence. Convergence is reached when the ||t
i

||, ||t̃
i

|| < �. The toler-

ance � is typically chosen as 10�10 but can be increased to arbitrary precision

(up to machine accuracy). The matrix multiplication operations in equations

3.7 are highly parallelizeable and this is exploited. Once the calculation con-

verges, typically 5-10 iterations, the Self-Energies are calculated quickly using

sparse routines. For the Central Region Green’s function, the ratio matrices

S
i

are R
i

are computed sequentially. Once these are determined, any diagonal

block can be found quickly using equation 3.25. For transport, the top-right

corner block of the Central Green’s function, G1,n

is of interest. This specific

case is addressed in the pseudocode presented in figure 4.10 and the compution

of any other non-diagonal block reduces to a chain of matrix multiplications (see

equation 3.23) and can be easily parallalized in a similar manner. The optimal

4: 56

4:
37

Table 4.1: Calculation of Transfer Matrices T and T̃

operation thread 1 thread 2 thread 3 thread 4 device

find t0, t̃0 temp1 = (✏ � h00)�1 GPU
t0 = temp1 � h†

01 CPU
t̃0 = temp1 � h01 CPU
T = C0 = t0 , T̃ = C̃0 = t̃0 CPU

Repeat till temp1 = t
i�1 � t̃

i�1 temp2 = t̃
i�1 � t

i�1 temp3 = t
i�1 � t

i�1 temp4 = t̃
i�1 � t̃

i�1 GPU
convergence temp1 = (I � temp1 � temp2)�1 GPU
t
i

, t̃
i

< � t
i

= temp1 � temp3 t
i

= temp1 � temp4 GPU
i = 1, 2, ...

T = T + C
i

� t
i

T̃ = T̃ + C̃
i

� t̃
i

GPU
C

i+1 = C
i

� t
i

C̃
i+1 = C̃

i+1 � t̃
i

GPU

Calculate ⌃
L

⌃
L

= �h01T CPU
and ⌃

R

from ⌃
R

= �h†
01T̃ CPU

T and T̃

Figure 4.9: Self Consistent ⌃L,R calculation pseudo-code parallelized (where possible) over
four devices.

procedure for finding the Central Green’s function depends on what blocks are

of interest. The number of ratio matrices that need to be multiplied increases

by 1 with every block away from the diagonal and the top-right and bottom left

corner blocks, G1,n

and G
n,1, are the most time consuming to calculate.

In this chapter, we presented the specialized computational tools we devel-

oped and applied to the study electronic transport in mesoscopic systems. We

discussed briefly the history of GPUs and heterogenous computing and intro-

duced the GPU-Matlab Interface (GMI), developed in this work. We present

several benchmarks and compare GMI to several CPU approaches and sev-

eral commercial GPU packages. We then proceed to explain how heterogenous

computing pertains to transport calculations and present some pseudocode de-

4: 57

4:
38

Table 4.2: Calculation of Central Region Green’s function

operation thread 1 thread 2 thread 3 thread 4 device

Calculate Ra- S1 = �(✏ � h
C11)�1h

C12 GPU
tio Matrices S

i

= �(✏ � h
C11 + h

Ci,i�1Si�1)�1 GPU
{S1, Si

}
i = 2, ..., n � 1

Calculate Ra- R
n�1 = �(✏ � h

Cnn

)�1h
Cn,n�1 GPU

tio Matrices R
i

= �(✏ � h
Ci+1,i+1 + h

Ci+1,i+2Ri+1)�1h
Ci+1,i

GPU
{R

i

, R
n�1}

i = n � 1, ..., 2

Calculate Di- D1 = (✏ � h
C1,1 + h

C1,2R1)�1 GPU
gonal Blocks D

i

= (h
Ci,i�1 � S

i�1 + (✏ � h
Ci,i

) + h
Ci,i+1Ri

)�1 GPU
{D1, D

i

, D
n

} D
n

= (✏ � h
Cnn

+ h
Cn,n�1Sn�1)�1

i = 2, ..., n � 1

Calculate G1,n

A1 = S1 � S2 A2 = S3 � S4 A3 = S5 � S6 A4 = S7 � S8 GPU
i = 9, ..., n � 1 A1 = A1 � A2 A2 = A3 � A4 A3 = S

i

� S
i+1 A4 = S

i

+ 2 � S
i+3 GPU

...
...

...
...

...
A1 = A1 � A2 A2 = A3 � A4 A3 = S

n�4 � S
n�3 A4 = S

n�2 � S
n�1 GPU

A1 = A1 � A2 A2 = A3 � A4 GPU
prod = A1 � A2 GPU
G1,n

= prod � D
n

GPU

Figure 4.10: Central Green’s Function calculation pseudo-code. Parallelized (where) possible
over four devices.

tailing our heterogenous parallel GPU NEGF-TB implementation. Here, GPUs

are used for when the number of floating point operations is high (e.g. large,

dense matrices) and sparse CPU routines are used for quick or sequential tasks

(e.g. vector operations, sparse matrices etc.)

5

Applications

5.1 Transport properties of Silicon Nanowires

Filamentary crystals of Silicon were first fabricated about fifty years ago [40].

Traditionally, the term Silicon ‘whiskers’ was used to refer to these struc-

tures. In the mid 1990s, however, advances in microelectronics and fabrica-

tion techniques[41] sparked a new interest in these structures because of their

applications as electrical nanowires[42]. Recently, much of the work on Sili-

con nanowires (SiNW) has been on their electronic properties and their ap-

plications to nanoscale electronic devices such as nanoscale-interconnects and

nano-transistors[43, 44, 45].

Here, the transport properties of a hydrogen passiviated SiNW (see figure

5.1) are investigated using the NEGF-TB formalism discussed in chapter 2.3

combined with GPU acceleration. The nanowire has a diameter of 1.26 nm and

is grown in the [110] direction.

The Si-Si and Si-H bonds were taken as 2.37 and 1.48 Å from the result of

58

5: Applications 59

an ab-initio DFT calculation with the Vienna Ab-Initio Simulation Package[46]

(VASP) from [43]. The tight-binding Hamiltonian of the device was constructed

using a 10-orbital sp3d5s⇤ Hamiltonian for Si atoms and a single orbital Hamil-

tonian of the H atoms on the surface, as in [43] and [47]. The TB parameters

and hamiltonians were obtained using ‘Nanomatm’ [48].

H

Si

Figure 5.1: The structure investigated was a 0.46 diameter hydrogen passivated silicon
nanowire grown in the [110] direction. Rendering was done with QuteMol[49]

Since the structure is periodic, the leads and central region on-site Hamilto-

nians are identical. The sparse, patterned structure of the on-site and coupling

Hamiltonians H00 and H01 in the sp3d5s⇤ basis is displayed in figure 5.2.

First, the Fermi level was be determined from a density of states calculation

(see section 2.4) to lie in the band-gap. A band structure was then constructed

from the tight-binding Hamiltonians and the transmission coe�cient was cal-

culated as a function of energy using the NEGF-TB formalism described in

sections 2.3. The results are shown side-by-side in figure 5.3. Since the trans-

5: Applications 60

Figure 5.2: The sparse structure of the on site and coupling Hamiltonian matrices for a [110]
SiNW in a ten orbital sp3d5s⇤ basis set.

port is ballistic, the transmission in this case is just an integer count of the

number of available bands at each energy point and vanishes at the band gap

as expected.

The above structure contains 120 atoms in the simulation box. The matrices

involved in the calculation are only 256 ⇥ 256 and this particular calculation

does not fully benefit from the heterogenous NEGF code developed in this work.

Its purpose is to validate the developed software. The results in transmission

results in figure 5.3 closely match those obtained by Svizhenko et al [43]. In the

next section, we present calculations involving vast systems with a much larger

number of atoms, demonstrating the computational potential of our method.

5: Applications 61

Bandstructure [110] SiNW Transmission

 ka T [Gh/2e2]

En
er

gy
 [e

V]

Figure 5.3: The band structure and transmission coe�cient for a silicon nanowire are shown
side by side with energy on the y-axis. The transmission vanishes at energy points lying in
the bandgap. Since the transport is ballistic, the transmission takes on integer values equal
to the number of available bands available at each energy range.

5.2 Transport Properties of Silicon Nanobeams

Single crystal silicon beams are among the most common structures in MEMS,

usually in the form of a cantilevered beam [50, 51].

In general, the electrical properties of semiconductors are closely coupled

to their mechanical properties. The field of electromechanical systems emerged

with the discovery of the piezoresistive e↵ect by C.S. Smith in 1954 [52]. Smith

observed that “unaxial tension causes a change of resistivity in silicon and ger-

manium of both n and p types”, or in more utilitarian terms, that semiconduc-

5: Applications 62

tors make excellent pressure sensors.

With rapid improvements in micromachining and fabrication, the large scale

production of Microelectromechanical Systems (MEMS) has become possible.

Today, MEMS are ubiquitous in everyday electronic devices. Their applications

include inertial sensors for game controllers, pacemakers, airbags, image stabi-

lization in cameras, pressure sensors in altimeters and scuba gear, flow sensors

for measuring engineer air intake in automobiles, IR sensors, fingerprint sensors

and many others. A more complete list of applications can be found in [53, 54]

The mechanical properties of beams of single crystal silicon ranging from

the nano to millimetre scale have been investigated extensively[55, 56, 57, 58].

However, these structures can contain a vast number of atoms. This makes

studying their electronic properties from first principles unrealistic and semi-

emperical modeling computationally arduous. The main bottleneck is linear

algebra routines on large matrices.

In this section, we briefly review how silicon beams can be fabricated and

apply our GPU accelerated NEGF-TB code using a work station equipped with

four Nvidia Tesla C2050 GPUs to bypass the computational bottleneck and

study their electronic transport properties.

5.2.1 Fabrication

Silicon nanobeams can be fabricated using field enhanced annodization with

an AFM and anistropic wet etching. We summarize the fabrication procedure

presented by Sunbdararajan et al [57]. The process starts with a Si separated

5: Applications 63

by implanted oxygen (SIMOX) wafer. From bottom to top, it is composed of

thin SiO2-Si-SiO2 layers, a bulk Si layer and a thin SiO2 layer. A portion of

the bottom SiO2 layer is etched with photolithography to expose the bulk Si

layer on the bottom. The Si layer is then etched using anisotropic wet etching

resulting in the trench shown in figure [57]. The top SiO2 is then also etched

away, exposing the thin Si diaphragm.

phenomena, from the microscale down to the
atomic scale.

In this paper, a method to conduct bending tests
of fixed nanoscale beams using an atomic force
microscope (AFM) is presented. The AFM was
also used to aid in fabrication of the beams by
using field-enhanced anodization to create a high-
precision mask pattern for subsequent anisotropic
wet etching of the beams. The bending test
technique is used to determine elastic modulus
and fracture stress (bending strength) of nanoscale
beams made of SiO2 as well as single-crystal silicon
(results on single-crystal silicon were also reported
in Ref. [9]). SEM observations of the fracture
surfaces are also presented. Fracture mechanics
theory is used to verify that the surface roughness
on the beam surfaces dictate the values of observed
fracture stresses.

2. Experimental procedure

2.1. Fabrication of nanometer-scale specimens

Single-crystal silicon fixed nanobeams were
fabricated by bulk micromachining incorporating
enhanced-field anodization using an AFM (Seiko
Instruments Inc., SPA-300HV) on a (0 0 1) plane
of a Si wafer separated by implanted oxygen
(SIMOX). Fig. 1 schematically describes the fab-
rication process of the Si nanobeams. The trench
(width of 6 mm) is first etched from the underside
after which the top SiO2 layer is etched to expose
the Si diaphragm. A line of silicon dioxide (SiO2)
film with a width of o1 mm is deposited by field-
enhanced anodization [11,12] on the Si surface.
This SiO2 film was used as a high-precision mask
pattern for anisotropic wet etching with a solution
of 20% tetra-methyl ammonium hydroxide
(TMAH). It was then possible to fabricate a
nanometer-scale Si structure after etching. The line
pattern of SiO2 film was drawn by applying a bias
voltage between an Au-coated cantilever/tip and
the Si diaphragm in air at room temperature. The
Si diaphragm had an average thickness of 255 nm
and hence, this is the average thickness of the Si
beams.

In order to determine the optimal field-anodiza-
tion conditions for the Si nanobeams, anodization
experiments were carried out at bias voltages
of 4–20V and at cantilever scanning speeds of
0.02–13 mm/s. Fig. 2 shows the variation of the
SiO2 film thickness with the bias voltage for
different scanning speeds. The SiO2 film thickness
is directly proportional to the bias voltage at
constant scanning speed whereas it is inversely
proportional to the scanning speed for a given bias
voltage. The film thickness reaches about 4 nm at
the bias voltage of 13V and a scanning speed

Fig. 1. Fabrication process of Si and SiO2 fixed nanobeams
using field-enhanced anodization with an AFM and wet
anisotropic etching.

Fig. 2. Variation of SiO2 film thickness as a function of applied
bias voltage for different cantilever speeds.

S. Sundararajan et al. / Ultramicroscopy 91 (2002) 111–118112

Figure 5.4: Fabrication of Si nanobeams with field enhanced annodization using AFM. Taken
from [57].

A line of SiO2 is then deposited on the Si diaphragm using field-enhanced

anodization. The process works by applying a voltage bias to a cantilever tip in

an AFM and moving it in a line across the diaphragm in air at room tempera-

ture. The tip oxidizes the surface of the Si diaphragm drawing a SiO2 pattern

5: Applications 64

to be used as an etching mask. The width of the mask is proportional to the ap-

plied voltage bias. Finally, the unmasked portion of the Si diaphragm is etched

anistropically resulting in a trapezoidal Si beam spanning across the trench, like

a cantilever bridge.

The trapezoidal shape is due to the anistropic wet etching process because

the etching rate varies profoundly depending on the crystal orientation of the

exposed crystal face.

5.2.2 The E↵ect of Vacancies on Transport

Three basic [100] nanobeam structures of various sizes and shapes were studied.

Nanobeam A is trapezoidal hydrogen passivated Si nanobeam containing 2,286

atoms. The cross section has a width varying from roughly 5.20 � 2.17 nm and

a height of 1.49 nm. The length of the structure in the transport direction was

4.87 nm. It is modelled as central region composed of 9 principal layers (⇠0.543

nm each). See figure 5.5.

Figure 5.5: Atomic visualization of nanobeam A: Cross section and 3D lateral view.

Nanobeam B is trapezoidal hydrogen passivated Si nanobeam containing

14,059 atoms. The cross section has a width varying from roughly 10.59 � 4.61

5: Applications 65

nm and a height of 2.99 nm. The length of the structure in the transport

direction is 9.23 nm. It is modelled as central region composed of 17 principal

layers (⇠0.543 nm each). See figure 5.6.

Figure 5.6: Atomic visualization of nanobeam B: Cross section and 3D lateral view.

Nanobeam C is a rectangular hydrogen passivated Si nanobeam containing

224,180 atoms. The cross section has a width and height of 8.1 nm. The length

of the structure in the transport direction is 59.73 nm. It is modelled as central

region composed of 110 principal layers (⇠0.543 nm each). See figure 5.7.

We investigated the the e↵ect of vacancies on the electronic transport prop-

erties. Physically, surface vacancies can arise on the edge of the structure as fab-

rication imperfections in the form of cracks, corners, dislocations, holes, crevices

and steps[59]. Figure 5.8 shows an SEM image showing a detail of a defect on

the surface of a Si Beam.

5: Applications 66

Figure 5.7: Atomic visualization of nanobeam C: Cross section and 3D lateral view.

Internal vacancy defects, on the other hand, can arise in the Si wafer itself

before fabrication by vacancy di↵usion. An energetic atom at the surface can

spontaneously break its bonds and jump to a new surface location. Atoms from

the bulk can repeatedly di↵use to fill the vacancy resulting in the a di↵usion of

the vacancy towards the bulk[59].

Vacancy di↵usion in materials occurs for a variety of reasons. It can be

well understood using Kinetic Monte Carlo techniques and can give rise to very

interesting e↵ects, such as memristance [60, 61]. Another kind of defect is a local

lattice distortion as the result of a vacancy or substitutional impurity where the

impurity atom is of a di↵erent size than the lattice atom[59].

5: Applications 67
NAMAZU et al.: SIZE EFFECT ON MECHANICAL PROPERTIES OF SINGLE SILICON 457

Fig. 12. FE-SEM observations of fracture surface for Si beams with upper widths of (a) 200 nm, (b) 300 nm, (c) 4.75 m, and (d) 1.045 mm, which were carried
out for ten specimens at each scale (total of 60 specimens).

Fig. 13. Relationship between crack length estimated by Griffith’s theory,
maximum peak-to-valley distance - , and scale parameter .

and eV/Å estimated from the bonding energy
of Si proposed by Tersoff [22]. The maximum distance -
was measured by the AFM at about 5% area of the top and the
side surface area, respectively. The crack length of nanometer-
scale beams is approximately 1–3 nm, and it agrees with the
- values at the top surface of nanometer-scale beams. The

crack length of micro- and millimeter-scale beams increases
rapidly with an increase in the specimen size. The crack length
ranges from 10 to 1000 nm and has good correlation with

the - at the side surface of the micro- and millimeter-scale
beams. Therefore, following Griffith’s theory and considering
the FE-SEM observations in Fig. 12, the bending strength of Si
on the nanometer scale is affected by the - at the top surface,
whereas on the micro- and millimeter scale, bending strength is
affected by the - at the side surface. The bending strength of
Si beams ranging from nano- to millimeter scale is considered
to depend on the maximum peak-to-valley distance of a spec-
imen. The specimen size effect on the bending strength of Si
would have been also produced by a reduction of the maximum
peak-to-valley distance with decreasing specimen size.
This paper suggested that the specimen size effect on the

bending strength of Si could be due to the different surface
roughness of each specimen. However, the essence of the size
effect on the bending strength of Si cannot be concluded until
further experiments using different sized specimens with same
surface condition have been performed.

IV. CONCLUSIONS

Bending tests for single crystal Si beams were carried out
by using AFM, a precision hardness tester, and a scratch tester.
Si beams with sizes ranging from nano- to millimeter scale
fractured in a brittle manner in the tests. Young’s modulus on
the nanometer scale averaged 169 GPa, which was equal to
that on the micro- and millimeter scales. Young’s modulus of

Figure 5.8: SEM image of Si nanobeam. Taken from [56].

In this work, non distortive internal and surface Si vacancy defects are con-

sidered. For structures, A and B, three cases are studied:

(i) Structure is vacancy free and periodic

(ii) Atomic vacancies distributed randomly throughout the structure.

(iii) Atomic vacancies distributed periodically in the structure to form a vacancy

chain. It is believed that memristive features are due to the formation of similar

5: Applications 68

chains filaments of vacancies [61].

The leads were taken as vacancy free and periodic. The central region was

taken to have vacancy concentration of 1 in 254 and 1 in 827 - one per principal

layer - for structures A and for nanobeam B respectively. Only a vacancy free

case was considered for nanobeam C.

The tight-binding Hamiltonians of nanobeams A and B were calculated

using the same methods in section 5.2. Figure 5.9 shows the electronic band

structures. As before, the Fermi level was calculated by contour integration of

the Green’s function, determined to lie in the band gap, and was shifted to lie

at the peak of the highest valence band.

En
er

gy
 [e

V]

En
er

gy
 [e

V]

kaka

Nanobeam BNanobeam A

Figure 5.9: Nanobeam A and B electronic band structures.

The electronic structure of Si channels depends sensitively on several factors.

The size of the channel, the group used to passivate the wire, the degree of

5: Applications 69

saturation, as well as the crystal orientation the channel is grown in all come

into play. For [100] channels, First principles DFT calculations indicate that the

band gap is largest when the surface is saturated with hydrogen and lowest when

passivated with a hydroxyl (-OH) group [62]. For large diameter channels, not

saturating the surface bonds leads to a lower and more highly indirect band gap

[63]. The orientation of the channel not only a↵ects the magnitude and position

of the band gap, but even how sensitively is a↵ected by structural defects such

as roughness at an interface. [110] channels followed by [100] channels have the

highest current and are the best cuts to use [64]. The band gap usually tends

to be direct for small diameter channels and transitions to the bulk indirect gap

as the channel diameter is increased [62, 63]. In our results, the band gaps of

all considered nanowires and nanobeams were direct.

For nanobeam A, a pure system and an ensemble of 20 structures, 10 con-

taining random vacancies and 10 with periodic vacancies, were considered. A

mean value of the transmission was taken for each case. The results are pre-

sented in figure 5.10.

Since the self-energy calculation does not depend on the arrangement inside

the simulation box, the calculation consisted of calculating the self-energies for

all energy points first (0.01 eV mesh) first and then calculating G(E) and T (E)

for each structure at all energy points. Each self-energy calculation took ⇠2-3

minutes (depending on convergence) and each Green’s function and transmission

function calculation took ⇠20s. The total computation time including the pure

5: Applications 70

 Transmission

 T [Gh/2e2]

En
er

gy
 [e

V]

Figure 5.10: Transmission as a function of energy through nanobeam A. Random vacancies
strongly degrade transmission.

structure and the ensemble average for 20 structures was ⇠14.5 hours.

The transmission for periodic vacancy case follows the same behaviour as

the vacancy free transmission curve, retaining the basic step pattern shape,

but lags behind slightly. Additionally, the transmission is not an integer be-

cause even though the structure in the simulation box is periodic, the attached

leads are vacancy free, thus breaking translational symmetry. Random defects,

on the other hand, very strongly diminish the transmission in both structures

considered.

We also present the unaveraged single transmission curves for periodic and

5: Applications 71

random defects in nanobeam A in figure 5.11. For periodic defects, the trans-

mission was more strongly degraded in the case of internal defects than surface

defects.

Energy [eV]

T
[G

h/
2e

2]

T
[G

h/
2e

2]

Energy [eV]

Figure 5.11: a) Transmission for an ensemble (10) of systems containing random vacancies.
b) Transmission for an ensemble (10) of systems containing periodic vacancies. with basic
structure A. The basic structure is nanobeam A in both cases.

Figure 5.12 displays a profile illustrating where the vacancies were located

for a single principal layer (composed of four atomic planes) colour coded corre-

sponding to each transmission curve in figure 5.11 b). The two curves with the

lowest conductance both correspond to the two structures’ internal vacancies.

One way to interpret this would be a reduction in the e↵ective width of the

nanobeam due to defect back-scattering [65].

For nanobeam B, no spatial averaging of vacancies over an ensemble of

systems was performed. We present the transmission curves for a pure structure,

a structure with periodic defects, and a structure with random defects in figure

5: Applications 72

atomic plane 1

atomic plane 3

atomic plane 2

atomic plane 4

x [Å]

y
[Å

]

Figure 5.12: Location of vacancies in the principal layer (composed of four atomic layers) for
each system with periodic vacancies considered.

5.13.

Once again, the calculation involved first calculating the self-energies at

each energy point (0.01 eV mesh) and then calculating G(E) and T (E) for each

structure. The total computation time for all three arrangements was roughly

⇠36 hours. Each self-energy calculation took ⇠12 minutes and each Green’s

function and transmission function calculation took ⇠8 minutes.

In order to test the peak computational power of our code, we computed

the transmission at a single energy point through nanobeam C, shown in figure

5.7. The structure contains over 224,180 atoms. This corresponds to a block-

tridiagonal central region Hamiltonian matrix H
C

of 2, 012, 780⇥2, 012, 780 with

the block diagonal consisting of 110 blocks of 18, 298 ⇥ 18, 298 each. The self-

5: Applications 73

 Transmission

 T [Gh/2e2]

En
er

gy
 [e

V]

Figure 5.13: Transmission as a function of energies through nanobeam B. A pure system, a
system with periodic vacancies, and a system with random vacancies are considered.

energy calculation converged to a tolerance of 10�8 within ⇠4 hours. Computing

the G
C1,n

, the top-right most block of the Green’s function (most di�cult block),

and subsequently the transmission function took ⇠11 hours, an improvement

on our result published in [1].

The calculation was done out of core by reading and writing calculated

blocks to and from the hard disk using a special version of the NEGF-TB

code. The GMI block functions (see appendix A) were used to achieve this.

Rather than running several linear algebra operations in parallel as shown in

the pseudocode in section 4.4, each individual linear algebra operation was

5: Applications 74

parallelized over all onboard devices. This approach is better suited for dealing

with very large blocks.

Previously in section 3.3, we reviewed a method of mapping the large block

tridiagonal matrix inversion problem to a more manageable chain of matrix

inversions and matrix multiplications involving the blocks. For this reason, the

computation time in our model scales as O(n3) with the number of atoms per

principal layer, corresponding to the size of each on-site Hamiltonian matrix

but as O(n) with with the number of blocks.

Using one node equipped with 4 GPUs and the current code, we esti-

mate that the the self-energies, G(E) and subsequently T (E) for a system of

⇠1,000,000 atoms can be computed in ⇠2 days.

6

Conclusion

In this work, we have developed a parallel GPU accelerated code for carrying out

transport calculations within the Non-Equilibrium Green’s Function (NEGF)

framework using the Tight-Binding (TB) model and reviewed the theoretical

formalisms, modelling techniques, and computational tools used.

The GPU acceleration and parallelization was done using a multi-threaded

GPU-Matlab Interface (GMI) developed in this work. Although GMI was orig-

inally intended to be used in the context of electronic transport calculations, it

is not application specific and can be used by researchers in any field without

any required knowledge of GPU programming or multi-threaded programming.

Additionally, it was demonstrated that GMI’s linear algebra performance com-

petes well with commercial software and performs well when scaled to multiple

GPU devices in parallel.

We validated our heterogenous parallel NEGF-TB software by studying the

electronic transport properties of Si nanowires and comparing to known results.

We then investigated the electronic transport behaviour of Si nanobeams and

75

6: Conclusion 76

studied the e↵ect of random and periodic vacancies inside the beam on its con-

ductance. We demonstrated that our method is capable of accurately simulating

systems composed of over 200,000 atoms in reasonable timescales using only 1-4

GPU devices.

Several improvements, refinements, and optimizations remain to be made to

our codes. Although the persistent linear algebra bottleneck was bypassed using

a highly specialized implementation, the matrices we are capable of handling are

so large that the calculation needs to be done out of core. Reads and writes to

and from the hard disk now take a significant portion of the total computation

time and need to be further minimized or eliminated.

Additionally, in the study of systems that require spatial averaging, such

as systems involving point defects, vacancies and dopants, much computation

time is spent on repeating the entire calculation for an ensemble of very sim-

ilar systems. We are currently researching computational techniques to avoid

repeating the same calculation each time.

Since only the location of the defect or vacancy is altered in system, the

Hamiltonians of each member of the ensemble at any given energy point di↵er

only by row and column interchanges. A very promising implementation that

we are currently investigating would be to compute the Green’s function for

only one system in the usual manner, and then compute only the change in the

inverse for each member of the ensemble as a correction using the Sherman-

Morison formula, thus greatly reducing the total computation time. However,

6: Conclusion 77

more work needs to be done before stronger claims can be made.

Scientific advancement has always been driven by increasingly sophisticated

experimental techniques and the discovery of theories that describe the results.

As we move forward to study increasingly complex systems, the gap between

theory and experiment becomes progressively more di�cult to bridge. This is

a fundamental limitation that an entirely new field of physics, computational

physics, has emerged to address.

Before the invention of the modern computer, scientists were limited to ei-

ther using only models with closed form solutions or resorting to highly imprac-

tical and error-prone methods, such as human computers. Today and always,

we are restricted to using models that can be e�ciently solved by the computers

and computational techniques known to us. In order to refine our theoretical

models, it is very important to continuously develop strategies to circumvent

bottlenecks and e�ciently deal with the mathematical and computational issues

that arise.

Even though the use of GPUs for solving computationally intensive scientific

problems started fairly recently, accelerating applications by using specialized

hardware is nothing new, and is often done ad hoc to boost computational

performance. It is the author’s impression that although it is unlikely that

GPU computing is the final frontier of high performance computing (HPC), it

is clear that it is by far the best currently available option.

A: GMI User Guide 79

The GPU Matlab Interface (GMI) is a set of functions that reroute lin-

ear algebra calls in Matlab to the the GPU for accelerated performance. The

interface was designed with several features in mind.

1. Scalability: GMI can automatically access any number of onboard GPUs

specified by the user.

2. Versatility: GMI was not developed in the context of strictly quantum

transport. It can be readily used by any researcher in any field.

3. Accessibility: No knowledge GPU programming, multi-threaded program-

ming, or CUDA is required.

4. Transparency: Users can very quickly port their CPU code to GPU code

simply by replacing the native Matlab functions with GMI functions. No

major changes to the application are required.

A.1 System Requirements

CUDA, CULA, and POSIX threads should be installed on the system. Please

follow the instructions in their respective User Guides. At least one Nvidia

CUDA (G8x series of higher) enabled GPU card must be on board. Nvidia

Tesla cards are recommended. GMI was tested under Debian ‘Wheezy’ with

Matlab 2010b on a workstation with 4 Nvidia Tesla C2050.

A: GMI User Guide 80

A.2 Preparing your Computer System

1. Make sure that the CUDA drivers/runtime versions and CULA libraries

are up to date. This can be verified by running nvcc -V in a terminal.

The CUDA compilation tool needs to be release 4.0 or higher.

harbm@dorothea:~$ nvcc -V

nvcc: NVIDIA (R) Cuda compiler driver

Copyright (c) 2005-2011 NVIDIA Corporation

Built on Thu_May_12_11:09:45_PDT_2011

Cuda compilation tools, release 4.0, V0.2.1221

2. Run the examples in the NVIDIA GPU Computing SDK directory, partic-

ualarly deviceQuery.c and bandwidthTest.c. These tests should return

PASSED.

3. Make sure that all the CULA related environment variables are defined.

This can be done by adding the following lines to the .bashrc file:

export CULA_ROOT="/usr/local/cula"

export CULA_INC_PATH="$CULA_ROOT/include"

export CULA_BIN_PATH_32="$CULA_ROOT/bin"

export CULA_BIN_PATH_64="$CULA_ROOT/bin64"

export CULA_LIB_PATH_32="$CULA_ROOT/lib"

export CULA_LIB_PATH_64="$CULA_ROOT/lib64"

export LD_LIBRARY_PATH=$CULA_LIB_PATH_64:$LD_LIBRARY_PATH

A: GMI User Guide 81

4. Run the CULA basicUsage.c example:

harbm@dorothea:/usr/local/cula/examples/basicUsage$./basicUsage

Allocating Matrices

Initializing CULA

Calling culaSgeqrf

Shutting down CULA

A.3 Installation

Download the GMI package

1. Extract the GMI folder into the home directory and define the relevant

GMI environment variables by adding the following lines to the .bashrc

file.

export GMI_ROOT="$HOME/GMI"

export GMI_SOURCE_PATH="$GMI_ROOT/source"

export GMI_EXEC_PATH="$GMI_ROOT/executables"

Finalize these changes by typing ’source .bashrc’ into the command

line.

2. Navigate to $HOME/GMI and run the install.sh script. This step will

compile the GMI source code.

3. Start Matlab and add the compiled GMI executables’ path:

A: GMI User Guide 82

>> addpath ~/GMI/executables

4. Try running the gpuReveal function to verify that the installation was

done correctly. This should return some information about any GPUs

onboard.

>> gpuReveal

Found 4 devices:

device 0: Tesla C2050 / C2070 (3 GB)

device 2: Tesla C2050 / C2070 (3 GB)

device 1: Tesla C2050 / C2070 (3 GB)

device 3: Tesla C2050 / C2070 (3 GB)

5. Congratulations! GMI is now ready to be used.

A.4 Data Types

Matlab labels arrays according to two complexity flags and 17 classes. The two

complexity flags are mxREAL and mxCOMPLEX and they correspond to real and im-

maginary/complex arrays respectively. Of the 17 classes, only mxSINGLE CLASS

and mxDOUBLE CLASS, corresponding to single and double precision, arrays are

supported. Cells, logicals, strings and other classes of arrays are not supported.

GMI functions are strongly typed and arguments of the appropriate complexity

flag and class must be passed to each function.

A: GMI User Guide 83

GMI data type prefix Complexity flag Class ID
S mxREAL mxSINGLE CLASS
C mxCOMPLEX mxSINGLE CLASS
D mxREAL mxDOUBLE CLASS
Z mxCOMPLEX mxDOUBLE CLASS

Table A.1: GMI data-types

The Lapack convention is used; each function is preceded by one of the

symbols S,D,C, or Z to denote its data type. For example, a function that takes

a complex, single-precision array as an argument is preceded by the prefix S.

Passing any di↵erent kind of array to that function will result in an error. The

four symbols and their corresponding data types are summarized in table A.1.

A.5 Computation Types

GMI allows users to take advantage of one or several GPUs on their system

with zero knowledge of multithreaded programming and GPU programming.

Users can either choose to use one GPU to work on one problem or several

GPUs to work on several problems in parallel. All thread management is done

under the hood and the user needs only to specify the input arguments and

number of GPUs to be used. Additionally, users can take advantage of all

GPUs onboard simultaneously to work on one large problem.

As with the data type symbols, one of three computation type prefixes,

Basic, Par, and Block must precede any GMI function. A description of each

computation type is presented below:

1. Basic computation: The basic computation type is labeled by the prefix

A: GMI User Guide 84

basic

block par

par

M
u
lt

ip
le

d
ev

ic
e

S
in

gl
e

d
ev

ic
e

Single input Multiple input

Figure A.1: GMI Computation types

Basic and denotes a computation involving a single algebra routine with

a single input performed on one GPU. This is the simplest computation

type. For example:

>>C=gpuBasicCinv(A);

performs a matrix inversion on the single precision, complex matrix A on

the GPU and stores the result in B.

2. Parallel computation: The parallel computation type is denoted by the

prefix Par. It performs a computation involving a single algebra routine

with several inputs using one or several GPUs in parallel. The user simply

A: GMI User Guide 85

needs to specify the input arguments and the number of GPUs desired.

For example:

>>[C1,C2,C3,C4]=gpuParZinv(4,A1,A2,A3,A4);

simultaneously inverts each of [A1, A2, A3, A4] on a separate GPU. If

more than four arguments are passed, GMI distributes the extra arrays in

the most optimal manner automatically. For example:

>>[C1,C2,...,CN]=gpuParZinv(4,A1,A2,...,AN);

automatically distributes all the data arguments over four GPUs and in-

verts them in parallel, four at a time. If the number of arguments is not

a multiple of 4, the remaining data is simply sent to any idling devices.

3. Block computation: Unlike traditional processors, GPU memory is not

shared across the devices and as a result, multiple GPU cannot be made

to directly work on one large individual problem simultaneously. The

block type was developed to address this issue and is the most advanced

computation type supported. It performs a computation involving a single

algebra routine with a single large input using all GPUs available onboard.

This is very useful in cases where the input array is too large to fit in the

memory of only one device. For example, in the case of matrix multipli-

cation, consider the matrices A and B. Each can be subdivided into four

A: GMI User Guide 86

blocks:

A =

0

B@
A11 A12

A21 A22

1

CA B =

0

B@
B11 B12

B21 B22

1

CA (A.1)

The blocks of the product C = A ⇥ B can be expressed in terms of the

blocks of A and B as:

C =

0

B@
xA11B11 + A12B21 A11B12 + A12B22

A21B11 + A22B21 A21B12 + A22B22

1

CA (A.2)

The gpuBlockDtimes function computes the product C = AB by com-

puting the individual blocks of C in parallel.

C=gpuBlockDmtimes(A,B);

A block inversion is also available and uses the 2 ⇥ 2 block case of the

RGF algorithm. See section 3.3.1. Although it seems appealing to always

use the block functions instead of the basic and parallel functions, it is not

recommended to do so because of the additional overhead these functions

incur. The block functions are most suitable when dealing with one large

array that is too large to fit on the memory of a single GPU.

A.6 Function Reference

The syntax of all GMI functions (except gpuReveal) follow the same easy to

remember pattern: A gpu prefix, followed by the computation type and data

A: GMI User Guide 87

type prefixes and the linear algebra operation:

The section documents all functions available in GMI. For each function we

present (i) a detailed description. (ii) A description of each of the function’s

input and out parameters. (iii) A description of some possible errors that may

be encountered. (iv) Usage comments and guidelines if applicable.

A.6.1 gpuReveal

-Description

Displays the number of and some information about all onboard GPU devices.

-Input parameters

none

-Output parameters

none

- Errors

(i) No CUDA capable GPU devices are found

>> Found no devices onboard.

A.6.2 gpuBasic{S,C,D,Z}inv

-Description

Solves for the inverse of a square N ⇥ N matrix A using an LU decomposition.

Similar to the matlab function inv.

-CULA Routines

• GETRF

A: GMI User Guide 88

• GETRI

-Input parameters

• A: Square N ⇥ N array.

-Output parameters

• C: Matrix inverse of A.

- Errors

(i) No input arguments were specified.

>> 1 input argument required.

(ii) More than one output arguments were specified.

>> 1 output argument required.

(iii) Input argument has the wrong data type or matrix is not square.

>> Input must be a square matrix of the appropriate data type.

- Example:

>> C=gpuBasicSinv(A);

A.6.3 gpuBasic{S,C,D,Z}mtimes

-Description

Performs a general matrix-matrix multiplication. Similar to the Matlab function

mtimes

-CULA Routines

A: GMI User Guide 89

• GEMM

-Input parameters

• A: M ⇥ N array.

• B: N ⇥ K array.

-Output parameters

• C: M ⇥ K matrix C = A ⇥ B.

- Errors

(i) Wrong number of arguments were specified.

>> 2 input argument required.

(ii) More than one output arguments were specified.

>> 1 output argument required.

(iii) A and B cannot be multiplied.

>> Inner dimensions must agree.

- Example:

>> C=gpuBasicCmtimes(A);

A: GMI User Guide 90

A.6.4 gpuPar{S,C,D,Z}inv

-Description

Inverts m square matrices using LU decomposition/backsubstitution on n GPU

in parallel. This is done by distributing the matrices into n threads and starting

one thread on each device. If the specified n is greater than the number of GPU

available, the operation is automatically done on all available GPU. If n > m,

then then n is automatically set to m.

-CULA Routines

• GETRF

• GETRI

-Input parameters

• n: Number of GPU to use.

• [A 1, A 2, ... ,A m: m square arrays.

-Output parameters

• [C 1, C 2, ... ,C m]: m square arrays containing the inverses of A 1,

A 2, ... ,A m.

- Errors

(i) No input arrays were specified.

>> two or more input arguments are required.

A: GMI User Guide 91

(ii) Input argument has the wrong data type or matrix is not square.

>> Input arguments must be square matrices of the appropriate data type.

- Example:

>> [C1 C2 C3 C4] = gpuParDinv(4,A1,A2,A3,A4);

A.6.5 gpuPar{S,C,D,Z}mtimes

-Description

Multiplies m pairs of matrices in parallel on n GPU. This is done by distributing

the pairs of matrices into n threads and starting one thread on for device. If

the specified n is greater than the number of GPU available, the operation is

automatically done on all available GPU. If n > m, then then n is automatically

set to m.

-CULA Routines

• GEMM

-Input parameters

• n: Number of GPU to use.

• A 1, B 1, ... ,A m,B m: m pairs of arrays.

-Output parameters

• [C 1,...,C m]: m arrays containing the products of [A 1 ⇥ B 1, ..., A m ⇥ B m]

A: GMI User Guide 92

- Errors

(i) No input arrays were specified.

>> two or more input arguments are required.

(ii) Input argument has the wrong data type or matrix is not square.

>> Input arguments must be square matrices of the appropriate data type.

(iii) matrices are not paired properly.

>> An even number of matrices is required.

(iv) Some matrix pairs inner dimensions do not agree.

>> Inner dimensions of all pairs of matrices must agree.

- Example:

>> [F1 F2 F3 F4] = gpuParZmtimes(4,A1,A2,B1,B2,C1,C2,D1,D2);

A.6.6 gpuBlock{S,C,D,Z}inv

-Description

Inverts a single large square matrix A using all available GPUs using the 2 ⇥ 2

matrix partitioning technique.

-CULA Routines

• GETRF

• GETRI

A: GMI User Guide 93

• GEMM

-Input parameters

• A: Large N ⇥ N array.

-Output parameters

• Matrix inverse of A.

- Errors

(i) No input arguments were specified.

>> 1 input argument required.

(ii) More than one output arguments were specified.

>> 1 output argument required.

(iii) Input argument has the wrong data type or matrix is not square.

>> Input must be a square matrix of the appropriate data type.

- Example:

>> A=rand(40000); %Test matrix. Make sure input is large.

>> C= gpuBlockDinv(A);

A: GMI User Guide 94

A.6.7 gpuBlock{S,C,D,Z}mtimes

-Description

Performs a single general matrix-matrix multiplication on two large arrays using

all available GPUs.

-CULA Routines

• GEMM

-Input parameters

• A: Large M ⇥ N array.

• A: Large N ⇥ K array.

-Output parameters

• C: Matrix product C = A ⇥ B.

- Errors

(i) Wrong number of arguments were specified.

>> 2 input argument required.

(ii) More than one output arguments were specified.

>> 1 output argument required.

(iii) A and B cannot be multiplied.

>> Inner dimensions must agree.

A: GMI User Guide 95

- Example:

>> A=rand(20000)+rand(20000)*i; %Test matrix. Make sure input is large.

>> B=rand(20000)+rand(20000)*i; %Test matrix. Make sure input is large.

>> C= gpuBlockZmtimes(A,B);

B

Source Code

The following is the C/MEX source code for GMI function gpuParZinv.c along

with some comments. Other GMI functions follow a similar structure. They

are not included here for compactness of this thesis. GMI can be obtained at [66]

1 /∗∗∗

2 Function : gpuParZinv . c

3 Usage : I n v e r t s matr ices in p a r a l l e l on s e v e r a l GPU.

4 Author : Harb , Mohammed

5 ∗∗/

6 #include ”GMIframework . h”

7

8 /∗Define a custom data type . Each thread w i l l be passed on o f t h e s e

. ∗/

9 typedef struct{

10 int id ;

11 int thisNumMatrices ;

12 culaDoubleComplex∗∗ a ;

96

B: Source Code 97

13 int∗ n ;

14 int ∗∗ i p i v ;

15 } threadArgType ;

16

17 /∗ S ing l e Process Mu l t i p l e Data (SPMD) thread rou t ine . This par t o f

the code w i l l

18 ∗ execu te on s e v e r a l d e v i c e s in p a r a l l e l each wi th a d i f f e r e n t

input . ∗/

19 void∗ Zinv (void∗ arg) {

20 int i ;

21

22 /∗Catch t h i s thread ’ s threadArg and type ca s t i t to the

appropr i a t e type . ∗/

23 threadArgType∗ package = (threadArgType ∗) arg ;

24

25 /∗Define a s t a t u s v a r i a b l e f o r debugg ing purposes . ∗/

26 cu laSta tus s t a tu s ;

27

28 /∗Each thread w i l l b ind to a d i f f e r e n t dev i c e . ∗/

29 s t a tu s=cu l aSe l e c tDev i c e (package�>id) ;

30 checkStatus (s t a tu s) ;

31

32 /∗ I n i t i a l i z e CULA∗/

33 s t a tu s=c u l a I n i t i a l i z e () ;

34 checkStatus (s t a tu s) ;

35

36 /∗Loop over matr ices as s i gned to the thread . ∗/

B: Source Code 98

37 for (i =0; i<package�>thisNumMatrices ; i++){

38

39 /∗Compute the LU f a c t o r i z a t i o n o f a matrix us ing p a r t i a l

p i v o t i n g wi th row in t e r change s . ∗/

40 s t a tu s=cu l aZge t r f ((package�>n) [i] , (package�>n) [i] , (

package�>a) [i] , (package�>n) [i] , (package�>i p i v) [i]) ;

41 checkStatus (s t a tu s) ;

42

43 /∗Compute the in v e r s e o f a matrix us ing the LU

f a c t o r i z a t i o n from GETRF. ∗/

44 s t a tu s=cu l aZg e t r i ((package�>n) [i] , (package�>a) [i] , (

package�>n) [i] , (package�>i p i v) [i]) ;

45 checkStatus (s t a tu s) ;

46 }

47 }

48

49 /∗Gateway func t i on . ∗/

50 void mexFunction (int nlhs , mxArray ∗ plhs [] ,

51 int nrhs , const mxArray ∗prhs []) {

52

53 int i , j , k , m;

54

55 /∗Make sure the r e i s a t l e a s t one matrix to opera tor on . ∗/

56 i f (nrhs <2)

57 mexErrMsgTxt (”gpuZparinv : Too few arguments”) ;

58

59 /∗The f i r s t argument i s how many dev i c e s gpuZparinvshou ld use ∗/

B: Source Code 99

60 int numThreads=(int) mxGetScalar (prhs [0]) ;

61

62 /∗number o f matr ices the user passed ∗/

63 int numMatrices=(int) nrhs �1;

64

65 /∗This i s to prevent the user from us ing more threads than

matr ices . ∗/

66 i f (numMatrices<numThreads)

67 numThreads=numMatrices ;

68

69 /∗matrixPerThread i s an array o f l e n g t h numThreads t ha t

s p e c i f i e s how

70 ∗many matr ices each thread w i l l handle . e . g . i f

matrixPerThread [2]==5 , t h i s

71 ∗means thread #2 w i l l handle 5 matr ices .

72 ∗/

73 int matrixPerThread [numThreads] ;

74 memset (matrixPerThread , 0 , numThreads∗ s izeof (int)) ;

75

76 /∗ d i s t r i b u t e the number o f matr ices each thread w i l l handle as

even l y

77 ∗as p o s s i b l e . ∗/

78 for (i =0; i<numMatrices ; i++){

79 matrixPerThread [i%numThreads]++;

80 }

81

82 /∗ de f i n e an array o f threadArgs o f l e n g t h user inputed

B: Source Code 100

numThreads . ∗/

83 threadArgType threadArgBundle [numThreads] ;

84

85 /∗Al l o ca t e memory f o r each element o f each threadArg in the

bundle

86 ∗ depending on how many matr ices t ha t thread i s hand l ing . ∗/

87 for (i =0; i<numThreads ; i++){

88 threadArgBundle [i] . n=(int ∗)mxMalloc (matrixPerThread [i]∗

s izeof (int)) ;

89 threadArgBundle [i] . a=(culaDoubleComplex ∗∗)mxMalloc (

matrixPerThread [i]∗ s izeof (culaDoubleComplex ∗)) ;

90 threadArgBundle [i] . i p i v=(int ∗∗)mxMalloc (matrixPerThread [i]∗

s izeof (int ∗)) ;

91 }

92

93 /∗k s t a r t s a t 1 f o r prhs because the f i r s t argument i s the

number o f GPU

94 ∗ be ing used . Use k�1 f o r p l h s ∗/

95 for (i =0, k=1; i<numThreads ; i++){

96

97 /∗Give each threadArg a unique numeric ID and s e t the

number o f matr ices

98 ∗ i t w i l l handle . ∗/

99 threadArgBundle [i] . id=i ;

100 threadArgBundle [i] . thisNumMatrices=matrixPerThread [i] ;

101

102 for (j =0; j<matrixPerThread [i] ; j++, k++){

B: Source Code 101

103

104 /∗Make sure arguments are square matr ices . ∗/

105 m=(int)mxGetM(prhs [k]) ;

106 threadArgBundle [i] . n [j]=(int)mxGetN(prhs [k]) ;

107 i f (m != threadArgBundle [i] . n [j])

108 mexErrMsgTxt (”gpuZparinv : Arguments must be square

matr i ce s . ”) ;

109

110 /∗Al l o ca t e memory f o r p i v o t v a r i a b l e (needed f o r GETRF)

. ∗/

111 threadArgBundle [i] . i p i v [j]=(int ∗)mxMalloc (

threadArgBundle [i] . n [j]∗ s izeof (int)) ;

112

113 /∗Make sure arguments are doub le complex matr ices . ∗/

114 i f (! mxIsDouble (prhs [k]) | | ! mxIsComplex (prhs [k]))

115 mexErrMsgTxt (”gpuZparinv : Arguments must be double

complex matr i ce s . ”) ;

116

117 /∗Al l o ca t e memory f o r each matrix and conver t i t to

Lapack order ing ∗/

118 threadArgBundle [i] . a [j]=(culaDoubleComplex ∗)mxMalloc (

threadArgBundle [i] . n [j]∗ threadArgBundle [i] . n [j]∗

s izeof (culaDoubleComplex)) ;

119 mat2cula (threadArgBundle [i] . a [j] , mxGetPr(prhs [k]) ,

mxGetPi (prhs [k]) , threadArgBundle [i] . n [j]∗

threadArgBundle [i] . n [j]) ;

120

B: Source Code 102

121 }

122 }

123

124 /∗Create the threads , each w i l l e xecu te on a GPU dev i c e wi th

d i f f e r e n t

125 ∗ arguments . ∗/

126 pthread t threadBundle [numThreads] ;

127 for (i =0; i<numThreads ; i++){

128 pth r ead c r ea t e (&threadBundle [i] , NULL, Zinv , &

threadArgBundle [i]) ;

129 s l e e p (1) ;

130 }

131

132 /∗Wait f o r a l l t h reads to f i n i s h execu t i on be f o r e s t epp ing

forward . ∗/

133 for (i =0; i<numThreads ; i++){

134 p th r ead j o i n (threadBundle [i] , NULL) ;

135 }

136

137 for (i =0, k=0; i<numThreads ; i++){

138 for (j =0; j<matrixPerThread [i] ; j++, k++){

139

140 /∗Al l o ca t e memory f o r ou tpu t s and conver t them to

mxArray order ing . ∗/

141 p lhs [k]=mxCreateDoubleMatrix (threadArgBundle [i] . n [j] ,

threadArgBundle [i] . n [j] , mxCOMPLEX) ;

142 cula2mat (threadArgBundle [i] . a [j] , mxGetPr(p lhs [k]) ,

B: Source Code 103

mxGetPi (p lhs [k]) , threadArgBundle [i] . n [j]∗

threadArgBundle [i] . n [j]) ;

143

144 /∗ d e a l l o c a t e the copy used to change order ing from

mxArray to Lapack . ∗/

145 mxFree (threadArgBundle [i] . a [j]) ;

146

147 }

148 }

149 }

Bibliography

[1] J. Maassen M. Harb V. Michaud-Rioux Y. Zhu H. Guo. Quantum transport

modelling from atomic first principles. Procedings of the IEEE (to appear),

2012.

[2] Intel Corporation. Intel 4004 Data Sheet,

http://datasheets.chipdb.org/Intel/MCS-4/datashts/intel-4004.pdf.

[3] Gordon E. Moore. Cramming more components onto integrated circuits.

Electronics, 38(8):33–35, 1965.

[4] Wolfram | Alpha Pro. Moore’s law, 2012. [Online; accessed 5-September-

2012].

[5] K. Capelle. A bird’s-eye view of density-functional theory. Brazilian Jour-

nal of Physics, 36(July):69, 2002.

[6] P. Hohenberg and W. Kohn. Inhomogeneous electron gas. Phys. Rev.,

136:B864–B871, Nov 1964.

[7] W. Kohn and L. J. Sham. Self-consistent equations including exchange and

correlation e↵ects. Phys. Rev., 140:A1133–A1138, Nov 1965.

104

BIBLIOGRAPHY 105

[8] J. Junquera P. Ordejon D. Sanchez-Portal J.Soler E.Artacho J.D. Gale

A. Garcia. The siesta method for ab initio order-n materials simulation.

Journal of Physics: Condensed Matter, 14(11):2745–2779, 2002.

[9] C.M. Goringe D.R. Bowler and E Hernandez. Tight-binding modelling of

materials. Reports on Progress in Physics, 60(12):1447–1512, 1997.

[10] N. Sergueev and H. Guo. Negf-dft: a first principles formalism for modeling

molecular electronics. HIGH PERFORMANCE COMPUTING SYSTEMS

AND APPLICATIONS, pages 2–4, 2003.

[11] J. Taylor. ”Ab Initio Modelling of Transport in Atomic Scale Devices”.

PhD thesis, McGill University, 2000.

[12] A. Pechia G. Penazzi L. Salvucci and A Di Carlo. Non-equilibrium green’s

functions in density functional tight binding: method and applications.

New Journal of Physics, 10(6):065022, 2008.

[13] Marco Buongiorno Nardelli. Electronic transport in extended systems: Ap-

plication to carbon nanotubes. Phys. Rev. B, 60:7828–7833, Sep 1999.

[14] D. Waldron L. Liu H. Guo. Ab initio simulation of magnetic tunnel junc-

tions. Nanotechnology, 18:424026, 2007.

[15] V. Volkov and J.W. Demmel. ”benchmarking gpus to tune dense linear

algebra”. 2008 SC International Conference for High Performance Com-

puting Networking Storage and Analysis, (November):1–11, 2008.

BIBLIOGRAPHY 106

[16] Vasily Volkov and James Demmel. Using gpus to accelerate the bisec-

tion algorithm for finding eigenvalues of symmetric tridiagonal matrices.

Technical Report UCB/EECS-2007-179, EECS Department, University of

California, Berkeley, Dec 2007.

[17] Vasily Volkov and James Demmel. Lu, qr and cholesky factorizations using

vector capabilities of gpus. Technical Report UCB/EECS-2008-49, EECS

Department, University of California, Berkeley, May 2008.

[18] S. Datta. Quantum Phenomena - Modular Series on Solid State Devices,

Vol 8. Addison-Wesley, New York, 1989.

[19] S. Datta. Electronic Transport in Mesoscopic Systems. Cambridge Univer-

sity Press, 1995.

[20] S. Datta. Nanoelectronic devices: A unified view. The Oxford Handbook

on Nanoscience and Nanotechnology, 1:1–26, 2008.

[21] A. Douglas Stone and A. Szafer. What is measured when you measure

a resistance? – the landauer formula revisited. IBM J. Res. Develop,

32(3):384–413, 1988.

[22] Y. Ke. ”Theory of Non-Equilibrium Vertex Correction”. PhD thesis, McGill

University, 2010.

[23] D. Waldron. ”Ab Initio Simulation of Spintronic Devices”. PhD thesis,

McGill University, 2007.

BIBLIOGRAPHY 107

[24] N. Wingreen A. Jauho Yigal Meir. ”time-dependent transport through a

mesoscopic structure”. Phys. rev. B, 2006.

[25] H. Huag and A.P. Jauho. Quantum Kinetics in Transport and Optics of

Semi-Conductors. Springer, New York, 1996.

[26] D. H. Lee and J. D. Joannopoulos. Simple scheme for surface-band calcu-

lations. ii. the green’s function. Phys. Rev. B, 23:4997–5004, May 1981.

[27] M P Lopez Sancho J M Lopez Sancho J Rubio. Quick iterative scheme for

the calculation of transfer matrices: application to mo (100). Journal of

Physics F: Metal Physics, 14(5):1205, 1984.

[28] Cambridge New, York Port, Chester Melbourne, William T Vetterling,

Saul A Teukolsky, William H Press, and Brian P Flannery. Numerical

Recipes in C, volume 9. Cambridge University Press, 2002.

[29] V. Michaud-Rioux and H. Guo. A novel numerical method for Ab Initio

electronic structure calculations. unpublished, 2011.

[30] Khronos Opencl, Working Group, and Aaftab Munshi. ”opencl specifica-

tion”. ReVision, 55(2):1–385, 2011.

[31] Washington University D. Gohara, Center for Computational Biology.

MacResearch OpenCL tutorials [Podcast], 1971.

BIBLIOGRAPHY 108

[32] J. Humphrey D. Price K. E. Spagnoli A. L. Paolini E. J. Kelmelis. ”cula:

Hybrid gpu accelerated linear algebra routines”. SPIE Defense and Security

Symposium (DSS), 2010.

[33] Wieb Bosma, John Cannon, and Catherine Playoust. The Magma algebra

system. I. The user language. J. Symbolic Comput., 24(3-4):235–265, 1997.

Computational algebra and number theory (London, 1993).

[34] ”nvidia cuda programming guide 2.0”. NVIDIA Corporation, Version

3.(2.3.1):1–111, 2010.

[35] J. Sanders and E. Kandrot. ”CUDA by Example”. Addison-Wesley, 2010.

[36] Whitepaper Nvidia, Next Generation, and Cuda Compute. ”whitepaper

nvidiaÕs next generation cuda compute architecture”. Revision, 23(6):1–

22, 2009.

[37] Accelereyes. Jacket, 2012.

[38] Guangran Kevin Zhu. Scalapack-matlab interface (smi). private commu-

nication.

[39] Accelereyes GPU Software BLOG. Jacket powers mars research, 2012.

[40] R.G. Treuting and S.M. Arnold. Orientation habits of metal whiskers. Acta

Metallurgica, 5:598, 1957.

[41] R.S. Wagner and W.C. Ellis. Vapor-liquid-solid mechanism single of crystal

growth. Applied Physical Letters, 4:125417, Feb 1964.

BIBLIOGRAPHY 109

[42] Volker Schmidt, Joerg V Wittemann, Stephan Senz, and Ulrich Gosele.

Silicon nanowires: A review on aspects of their growth and their electrical

properties. Advanced Materials, 21(25-26):2681–2702, 2009.

[43] Alexei Svizhenko, Paul W. Leu, and Kyeongjae Cho. E↵ect of growth ori-

entation and surface roughness on electron transport in silicon nanowires.

Phys. Rev. B, 75:125417, Mar 2007.

[44] F. Sacconi M. P. Persson M. Povolotskyi L. Latessa A. Pecchia A. Gagliardi

A. Balint T. Fraunheim and A. Di Carlo. Electronic and transport proper-

ties of silicon nanowires. Journal of Computational Electronics, 6(1-3):329–

333, 2007.

[45] Y. Zheng C. Rivas R. Lake T. B. Boykin. Electronic properties of silicon

nanowires, 2004.

[46] Vienna ab-initio simulation package.

[47] Jean-Marc Jancu, Reinhard Scholz, Fabio Beltram, and Franco Bassani.

Empirical spds⇤ tight-binding calculation for cubic semiconductors: Gen-

eral method and material parameters. Phys. Rev. B, 57:6493–6507, Mar

1998.

[48] Lei Liu. Nanomatm. private communication.

BIBLIOGRAPHY 110

[49] M. Tarinil P. Cignoni C. Montani. Ambient occlusion and edge cueing

for enhancing real time molecular visualization. IEEE Transactions on

Visualization and Computer Graphics, 12(5):1237–1244, 2006.

[50] R. J. Wilfinger, P. H. Bardell, and D. S. Chhabra. The resonistor: a

frequency selective device utilizing the mechanical resonance of a silicon

substrate. IBM J. Res. Dev., 12(1):113–118, January 1968.

[51] Nader Jalili and Karthik Laxminarayana. A review of atomic force mi-

croscopy imaging systems: application to molecular metrology and biolog-

ical sciences. Mechatronics, 14(8):907 – 945, 2004.

[52] Charles S. Smith. Piezoresistance e↵ect in germanium and silicon. Phys.

Rev., 94:42–49, Apr 1954.

[53] H. Heeren and P. Salomon. Mems: Recent developments, future directions.

Technology Watch, 2007.

[54] Robert Bogue. MEMS sensors: past, present and future. Sensor Review,

27(1):7–13, 2007.

[55] T. Ando K. Sato M. Shikida T. Yoshioka. Orientation-dependent fracture

strain in single-crystal silicon beams under uniaxial tensile conditions .

International Symposium on Micromechatronics and Human Science, pages

55–60, 1997.

BIBLIOGRAPHY 111

[56] T. Namazu Y. Isono T. Tanaka. Evaluation of size e↵ect on mechanical

properties of single crystal silicon by nanoscale bending test using AFM.

Journal of Microelectromechanical Systems, 9(4):450–459, 2000.

[57] Sriram Sundararajan, Bharat Bhushan, Takahiro Namazu, and Yoshitada

Isono. Mechanical property measurements of nanoscale structures using an

atomic force microscope. Ultramicroscopy, 91:111 – 118, 2002.

[58] H. Kahn R. Ballarini A.H. Heuer. Dynamic Fatigue of Silicon. Journal of

Microelectromechanical Systems, 8(8):71–76, 2004.

[59] Safa O. Kasap. Principles of Electronic Materials and Devices. McGraw

Hill Higher Education, July 2005.

[60] L. Chua. Memristor-The missing circuit element. IEEE Transactions on

Circuit Theory, (5):507–519, September 1971.

[61] D. Li, M. Li, F. Zahid, J. Wang, and Hong Guo. Oxygen Vacancy Filament

Formation in TiO2: A Kinetic Monte Carlo Study. J. App. Phys, 2012.

[62] M. Nolan S. O’Callaghan G. Fagas. Silicon nanowire band gap modification.

Nano Letters, 7(1):34–38, 2007.

[63] Y. Matsuda J. Tehir-Kheli W. A. Goddard. Surface and electronic prop-

erties of hydrogen terminated si [001] nanowires. The Journal of Physical

Chemistry C, 115(25):12586–12591, 2011.

BIBLIOGRAPHY 112

[64] M. Luisier A. Schenk W. Fitchner. Atomistic treatment of interface rough-

ness in si nanowire transistors with di↵erent channel orientations. Applied

Physical Letters, 90(10), 2007.

[65] F. Mazzamuto J. Saint-Martin V. Hung Nyugen C. Chassat P. Dollfus.

Thermoelectric performance of visordered and nano structured graphene

ribbons using Green’s function method. Journal of Computational Elec-

tronics, 11(1):67–77, 2012.

[66] Mohammed Harb. Gpu-matlab interface, 2012.

