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Abstract 
 

Tropical forests are a globally important carbon store threatened by rapid 

rates of deforestation and forest degradation. When estimating these vital carbon 

stocks, the high spatio-temporal variability of aboveground biomass (AGB) in tropical 

forests is a large source of uncertainty. Pre-felling inventories (i.e. forest 

management data) may help to reduce this uncertainty due to their spatial 

distribution and sampling intensity. Throughout the past decade, over 1000 Costa 

Rican natural forest management plans, spanning 30 years in age and covering the 

country's Atlantic coast, northern lowlands, and southern Pacific coast, have been 

collected and digitized. In this study, I first aim to create a powerful database to 

ensure the standardization, quality, and analyzability of this unique collection of tree 

inventory data. Second, I use this database to evaluate the variability of estimated 

AGB (EAGB) across five regions of Costa Rica. 

The final geodatabase efficiently stores the large and diverse forest 

management dataset through the integration of logical relations and quality checks, 

permitting flexible data access across 32 tables and over 250,000 tree records. 

Through the use of quality tests, the database improves overall data integrity. An 

exploratory analysis of the database's standardized taxonomic data reveals the 

weaknesses, strengths, and potential ecological applications of forest management 

data. 
 

Using this database, the EAGB analysis found that, of the regions studied, Costa 

Rica’s Osa peninsula had a significantly higher EAGB (DBH≥30cm) (173.47 (mean) ± 

60.23 (SD) Mg ha-1). Further, the analysis indicated that the density of large trees 

(DBH≥70cm) explained approximately 50% of the variability of EAGB across the five 

ecosystems studied. Comparing the EAGB of this study to published estimates 

illustrates that a forest management based approach produces a similar range of 

values. 

Overall, the geodatabase represents the most complete record of forest 

management practices in Costa Rica to date. This tool will permit a better 

understanding of logging practices, species-environment relationships, and carbon 
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stocks in selectively logged forests at a scale necessary to address the conservation 

and resource management challenges of today. Further, this study describes, the 

most spatially rich analysis of ground level AGB data in Costa Rica as of yet. Using 

data from pre-felling inventories, this research shows that EAGB within and among 

the five ecosystems studied is highly variable. As it is the non-protected areas of the 

tropics that offer the greatest opportunity to reduce rates of deforestation and forest 

degradation, logging inventories offer a promising source of data to support 

mechanisms such as the REDD+ (Reducing Emissions from Tropical Deforestation 

and Degradation) program. 
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Résumé 
 

Les forêts tropicales forment un réservoir de carbone d'importance 

mondiale. Ce réservoir est menacée par un taux rapide de déforestation et 

dégradation. Lors de l'estimation de ces stocks de carbone vitaux, la variabilité 

spatio-temporelle de la biomasse hors-sol (AGB) dans les forêts tropicales est une 

grande source d'incertitude. Les inventaires pré-abattage (c.à.d. données de gestion 

de la forêt) peuvent aider à réduire cette incertitude en raison de leur distribution 

spatiale et de l'intensité d'échantillonnage. Durant la dernière décennie, plus de 

1000 plans de gestion des forêts naturelles du Costa Rica, couvrant la côte de 

l'Atlantique, les plaines du nord, et la côte sud du Pacifique du pays ont été 

collectionnés et numérisés. Dans cette étude, je cherche d'abord à créer une base de 

données efficace qui permet d'assurer la normalisation, la qualité, et analysabilité de 

cette collection unique de données des arbres. Deuxièmement, j'utilise cette base de 

données pour évaluer la variabilité de AGB estimée (EAGB) dans cinq régions du 

Costa Rica. 

La base de données finale entrepose efficacement le vaste ensemble de 

données de gestion de la forêt par l'intégration des relations logiques et des 

contrôles de qualité. Cette dernière permet l’accès de données multiples ( tel que la 

grandeur d’arbre, diamètre de troncs) parmi 32 tableaux et plus de 250,000 

dossiers d'arbres. Grâce à l'utilisation de tests de qualité, la base de données 

améliore l'intégrité globale des données. Une analyse exploratoire de données 

taxonomique normalisée de la base de données révèle les faiblesses, les forces, et les 

applications écologiques potentielles de données de gestion de la forêt. 

En utilisant cette base de données, l'analyse EAGB constate que, dans les 
 

régions étudiées, la péninsule d'Osa a un EAGB significativement plus élevé (DHP ≥ 
 

30cm) (173,47 (moyenne) ± 60,23 (SD) Mg ha-1). En outre, l'analyse démontre que la 

densité de grands arbres (DHP ≥70cm) explique environ 50% de la variabilité de 

EAGB à travers des cinq écosystèmes étudiés . En comparant la EAGB de cette étude 

aux estimations publiées, démontre qu'une approche fondée sur la gestion des forêts 

produit une gamme de valeurs similaires. 
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Dans l'ensemble, cette base de données représente le dossier le plus complet 

des pratiques de gestion forestière Costaricaines à ce jour. Cet outil permet une 

meilleure compréhension des pratiques d'exploitation forestière, les relations 

espèces-environnement, et des réserve de carbone dans les forêts d'abattage sélectif 

à l'échelle nécessaire pour relever les défis d'aujourd'hui de gestion et conservation 

des ressources naturelles. En outre, cette est actuellement l'analyse la plus 

spatialement riche des données AGB au Costa Rica. En utilisant des données de 

stocks pré-abattage, cette recherche montre que EAGB dans et entre les cinq 

écosystèmes étudiés est très variable. Comme ce sont les zones non protégées des 

tropiques qui offrent la plus grande opportunité de réduire le taux de déforestation 

et de dégradation des forêts, les inventaires pré-abattage offrent une source 

prometteuse de données à l'appui des mécanismes tels que le programme REDD+ 

(Réduction des émissions de la déforestation tropicale et de la dégradation).
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1. Introduction 
 

 
 

1.1. Research Context 
 
  In the face of rising atmospheric CO2 concentrations and climate change, a great 

amount of scientific effort is being devoted to quantifying and understanding terrestrial 

carbon fluxes. Tropical forests play a pivotal role in the global carbon cycle as they store a 

large portion of the earth's terrestrial carbon and biodiversity stocks (Dirzo and Raven, 

2003; Pan et al., 2011). In recent decades, these ecosystems have suffered substantially from 

deforestation and degradation. It is estimated that 15-35% of the anthropogenic greenhouse 

gas emissions (GHGs) in the 1990’s was due to tropical deforestation alone (Houghton, 

2005a). 

As these ecosystems decline, a renewed interest in quantifying and understanding 
 

spatial and temporal variations in biodiversity and carbon distribution across tropical 

forests has arisen (Petrokofsky et al., 2011). Further, novel mechanisms, such as the REDD+ 

(Reducing Emissions from Deforestation and Forest Degradation) program, have been 

developed to provide financial incentives to developing countries that can show a reduction 

in rates of deforestation and forest degradation. Today, much of the research on tropical 

forest carbon stocks relies upon the relationship between aboveground biomass (AGB) and 

forest carbon. Despite recent efforts to estimate AGB in the tropics (and in turn carbon) 

(refer Saatchi et al., 2011; Baccini et al., 2012; Asner et al., 2013), a large level of uncertainty 

in the spatial distribution and accuracy of these estimates remains (Clark and Kellner, 2012; 

Mitchard et al., 2013). Based on a review of published papers, estimates of tropical AGB and 

AGC (aboveground carbon) (Table 1.1) range from 20 Mg ha-1 in a very dry tropical forest 

(Brown and Gaston, 1995) to 497 Mg ha-1 in a moist tropical forest (Slik et al., 2010). The 

uncertainty of geospatially explicit AGB estimates is largely rooted in the inadequate spatial 

distribution and sampling intensity of traditional ecological data sets (Clark et al., 1998, 

1999). While landscape scale tropical forest inventories may offer a solution to this 

uncertainty, they are rare among ecological studies due to their high cost and complex 

logistics (Greig-Smith, 1983). Moreover, large ecological datasets require strong database 

management approaches to ensure reproducible and valid data analyses (Le Duc et al., 

2007; Condit et al. 2013). Existing pre- felling inventories from selective logging (i.e. forest 
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management) may represent a solution due to their spatial distribution and sampling 

intensity (Couteron et al., 2003; Arroyo-Mora et al., 2009). 

Logging inventories are common to tropical countries and represent an abundant 

source of data on forest structure and composition (Putz et al., 2001; Couteron et al., 2003; 

Réjou-Méchain et al., 2011a). With their success in measuring diversity on large spatial 

scales (Réjou-Méchain et al., 2011a), determining ecological factors that influence forest 

structure (Couteron et al., 2003), and estimating emission factors under REDD+ (Maniatis et 

al., 2011), logging inventories may provide a suitable source of forest data, complementing 

ecological datasets, to estimate reliable baseline carbon stocks. As reliable carbon stock 

estimates and “sound science” are essential to the realization and success of REDD 

(Petrokofsky et al., 2011), the inclusion of forest management data will help support Costa 

Rica's application to the REDD+ program. 

 
 
1.2. Research Objectives 

 

 

The overarching objectives of my Master's thesis are: firstly, to create a relational 

database encompassing the complexity of natural forest management data; and secondly, 

to assess the variability of aboveground biomass in the tropical forests of Costa Rica using 

this database. Prior to my research, the forest management data required to estimate 

aboveground biomass had yet to be fully digitized and structured in a manner that would 

permit its analysis. For this reason, I first aimed to develop and explore methodologies for 

the standardization, quality control, and organization of a large forest management dataset. 

Following the completion of this database, I aimed to assess the variability of aboveground 

biomass within and between areas of Costa Rica using forest management data. The 

specific objectives of my research are: 
 

 

(1) To develop a spatial/tabular database that integrates methods for standardization and 

quality control, ensuring forest management data is structured in a logical and accessible 

manner. 
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(2) To assess the variability of aboveground biomass among and within five Costa Rican 

conservation areas using forest management data. 

 

This research was conducted in the five following conservation areas: ACLA-C (Caribbean 

La Amistad Conservation Area), ACAHN (Arenal Huetar Norte Conservation Area), ACTO 

(Tortuguero Conservation Area), ACCVC (Central Volcanic Conservation Area), and ACOSA 

(Osa Conservation Area). All NFMPs were collected at sub-regional offices within each CA 

via digital photography. Tabular NFMP data was extracted and digitized in excel 

spreadsheets. Spatial NFMP data was digitized in ArcGIS by georeferencing maps of each 

managed forest unit taken directly from the NFMPs. The NFMPs collected were created 

between 1983 and 2011. These managed forest units represent the tropical moist, wet, 

and rain forest lifezones and largely fall within the lowland areas of Costa Rica with a few 

exceptions within the premontane transition zone. 

 

1.3. Thesis structure 
 

 

In total, this thesis is composed of five chapters. In the first chapter, I provide an 

overview of the background of my research, placing my thesis into the context of tropical 

forest management and the variability of these ecosystems across spatial scales. The 

second chapter presents a thorough review of the scientific literature on numerous aspects 
 

relating to large scale assessments of tropical forest biomass relevant to my M.Sc. research. 

Both chapters three and four present the outcome of my thesis work in the form of two 

distinct manuscripts for the submission and publication in peer-reviewed academic 

journals. More specifically, chapter three describes the development of a forest 

management database for five Costa Rican conservation areas, providing approaches for the 

standardization and quality control of large diverse forest datasets. Employing this 

database and the forest management data it stores, chapter four evaluates the variability of 

aboveground biomass within and among five Costa Rican conservation areas. In the final 

chapter of this thesis, chapter five, I conclude by summarizing the major findings of my 

M.Sc. research, emphasizing the potential impacts of my work in both the scientific 

research community and Costa Rica. Further, I describe future research opportunities 

brought to light by my results. 
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1.4. Tables and Figures 
 
Table 1.1. Examples of multiple published AGB and carbon stock values measured in the 
tropics. AGB and carbon stock values are reported as a range or a mean value (SD) is the 
reported standard deviation. All values of AGB and carbon are reported in Mg ha-1. 
 

Study Location Forest Type AGB(StD) Carbon(StD)* Forest Traits Reference 

Peru (Madre de Dios) 
Tropical 
lowland wet, 
moist 

65.4(15) 32.7(7.5) 
Secondary 
forest 

Asner et al., 
2010 

Peru (Madre de Dios) 
tropical 
lowland wet, 
moist 

81.2(30.8) 35.6(15.4) 

Forest 
degradation 
(selective 
logging) 

Asner et al., 
2010 

Costa Rica (Caribbean 
Region) 

very humid 
tropical 

82.2(47.9) 41.1(24.0) 
Secondary 
forest 4-20 
years of age 

Fonseca et al., 
2011 

Costa Rica (Caribbean 
Region) 

very humid 
tropical 

92.8(20.8) 42.9(6.0) 
Secondary 
forest 20 
years of age 

Fonseca et al., 
2011 

Costa Rica (La Selva 
Biological Sation) 

lowland 
tropical wet 

161-186 80.5-93 
Primary 
Forest 

Clark and Clark, 
2000 

Costa Rica (Osa) 
lowland 
tropical wet 

335.12(75.13) 167.56(37.57) 
Primary 
forest 

Hofhansl et al., 
2012 

French Guiana 
(Nourages Field 
Station) 

lowland 
tropical wet 

356-396 178-198 
Primary 
forest 

Chave et al., 
2008 

Panama (Along 
Panama Canal) 

lowland 
tropical moist 

277.9 138.95 
Secondary 
forest 

Drake et al., 
2003 

Panama (Barro 
Colorado) 
 

lowland 
tropical moist 

286.8 143.4 
Primary 
forest 

Drake et al., 
2003 

Costa Rica (La Selva 
Biological Station) 

tropical wet 160.5 80.3 
Primary 
forest 

Drake et al., 
2003 

Costa Rica (La Selva 
Biological Station) 

tropical wet 129.4 64.7 
Secondary 
forest of 22 
years age 

Drake et al., 
2003 

Costa Rica 
tropical, 
subtropical 

182-228 96-114 

Primary and 
secondary 
forest (entire 
country) 

Saatchi et al., 
2011 

Peru (High Andes) 
 

moist tropical 
montane 

62.5 31.25 
Primary 
forest 

Girardin et al., 
2010 

Neotropics: Costa 
Rica (La Selva), 
Panama (Barro 
Colorado), Peru 
(Cocha Cashu), Brazil 
(North Manaus) 

tropical moist, 
wet 

183.9 92 
Primary 
forest 

DeWalt and 
Chave, 2004 

*If the carbon stock value was not reported it was calculated as 0.5 times the AGB value 

provided in the literature. Refer to section 2.8 p. 15 for details on conversion of AGB to 

carbon. 
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Table 1.1. Continued. 

 
Study Location Forest Type AGB(StD) Carbon(StD)* Forest Traits Reference 

Peru (Lowland 
Amazon)  

lowland tropical 
moist 

121 60.5 Primary forest 
Girardin et al., 
2010 

Peru (Cocha Cashu) 
lowland tropical 
moist 

383.5(28.9) 191.2(14.5) 
Primary forest 
(entisol soil) 

DeWalt and 
Chave, 2004 

Brazil (North 
Manaus) 

lowland tropical 
moist 

190.4(73.6) 95.2(36.8) 
Primary forest 
(spodosol 
soil) 

DeWalt and 
Chave, 2004 

Brazil (Amazon) tropical moist 290 145 
Mainly 
primary forest 

Brown and 
Lugo, 1992 

Brazil, Bolivia 
Tropical terra 
firme, subhumid, 
moist 

24.1 12.1 - 
Houghton et al., 
2001 

Brazil, Columbia, 
Venezuela, Panama 

tropical moist, 
dry, very dry, wet 

290 145 - 
Houghton et al., 
2001 

Borneo tropical 457.1 228.6 Primary forest Slik et al., 2010 

Amazon: Ecuador, 
Venezuela, Peru, 
Guyana, French 
Guiana, Bolivia, Brazil 

lowland tropical 288.6 144.3 Primary forest 
Malhi et al., 
2006 
 

Brazil (North of 
Manaus, Amazon) 

Lowland tropical 
moist 

356(47) 178(23.5) 
Primary and 
secondary 
forest 

Laurance et al., 
1999 

Tropical Africa  
(37 countries) 

Lowland moist  
tropical 

299(44.9) 149.5(22.5) 
Primary and 
secondary 
forest 

Brown and 
Gaston, 1995 

Tropical Africa  
(37 countries) 

Lowland seasonal 
tropical 

141(100.1) 70.5(50.1) 
Primary and 
secondary 
forest 

Brown and 
Gaston, 1995 

Tropical Africa  
(37 countries) 

Lowland dry 
tropical 

60(67.2) 30(33.6) 
Primary and 
secondary 
forest 

Brown and 
Gaston, 1995 

Tropical Africa  
(37 countries) 

Lowland very dry 
tropical 

20(22.2) 10(11.1) 
Primary and 
secondary 
forest 

Brown and 
Gaston, 1995 

Tropical Africa  
(37 countries) 

montane moist 
tropical 

105(64.1) 52.5(32.1) 
Primary and 
secondary 
forest 

Brown and 
Gaston, 1995 

Tropical Africa  
(37 countries) 

montane seasonal 
tropical 

37(41.1) 18.5(20.6) 
Primary and 
secondary 
forest 

Brown and 
Gaston, 1995 

*If the carbon stock value was not reported it was calculated as 0.5 times the AGB value 

provided in the literature. Refer to section 2.8 p. 15 for details on conversion of AGB to 

carbon. 
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2. Literature Review 

 
2.1. Literature review summary 

  This literature review provides a general overview of the present state of knowledge 

on the distribution and variability of aboveground biomass across the tropics. It begins by 

describing the role and importance of tropical forests in climate change. After briefly 

reviewing the carbon cycle of a tropical forest, I describe the United Nations REDD+ 

program. I then review how pre-felling inventories could help to circumvent the weaknesses 

associated with developing large scale AGB distribution maps, leading into an overview of 

the characteristics of forest management data in Costa Rica. I will then explore the most 

commonly used techniques to manage the large ecological datasets typical of today. Further, 

I will discuss the methodology used to convert tree measurements extracted from forest 

inventories to estimates of aboveground biomass. After, I will compare and contrast previous 

studies reporting the key environmental factors that influence the variability of tropical 

forest biomass across a range of spatial scales. Finally, I will describe the potential 

advantages associated with an increased understanding of biomass variability and 

distribution in tropical forests. 

 
2.2. Tropical forests in the face of climate change 

 Representing only 7% of the Earth's land surface (Bradshaw et al., 2009), tropical 

forests house a disproportionately large fraction of the globe's biodiversity, ~60% of 

known species (Dirzo and Raven, 2003), and forest carbon (~55%) (Pan et al., 2011). 

Tropical forests are among the most carbon dense ecosystems and store roughly 56% of 

their carbon in the form of biomass (Pan et al., 2011). Through the processes of 

deforestation and degradation, the carbon once present in tropical forest biomass is 

released into the atmosphere as greenhouse gases (GHGs). As tropical forests are being 

cleared at rapid rates, with over 27.2 million hectares of humid tropical forests cleared 

from 2000 to 2005 alone (Hansen et al. 2008), they are the second largest source of 

anthropogenic GHG emissions (Van der Werf et al., 2009). In fact, Baccini et al. (2012) 

estimate that the net rate of carbon emissions from tropical deforestation and land use 

change between 2000 and 2010 was 1.0 Pg C yr-1.  Tropical forests also supply a number of 

environmental services beyond carbon storage including: the regulation water flow 
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(Bradshaw et al., 2007), the reduction of soil erosion rates, and the provision of food, 

shelter, and pollinators (Sodhi et al., 2007). 

With the threat of climate change, international initiatives to decrease the rates of 

deforestation and forest degradation in the tropics, such as the UN REDD+ program, have 

been conceived. The first element needed to implement REDD+ is the creation of forest 

carbon stock baselines (Salimon et al., 2011). An established baseline is essential to 

monitoring changes in carbon storage through time . In recent years, the quantity of studies 

devoted to estimating and understanding carbon stocks across the tropics, supporting the 

REDD+ mechanism, have radically increased (Petrokofsky et al., 2011). More specifically, a 

significant number of the published AGB and carbon distribution maps have been 

developed for the Amazon Basin (Houghton et al., 2001; Malhi et al., 2006; Saatchi et al., 
 

2007). Notable limitations of the available AGB and carbon stock maps are their 

concentration on and use of ground data from undisturbed old growth forests (Houghton et 

al., 2001; Malhi et al., 2006; Slik et al., 2010; Saatchi et al., 2011). In Costa Rica, no national 

AGB or carbon stock distribution map with detail at the landscape scale has been 

developed (Arroyo-Mora pers. comm). Assistance in the production of such a map may 
 

provide a new found potential to evaluate the variability of AGB and carbon stocks on 

numerous scales. 

 
2.3. An overview of the carbon cycle in a humid tropical forest1 

In tropical forests, photosynthetic organisms capture incoming solar radiation and 

atmospheric carbon (CO2) for the construction of fresh plant biomass, net primary 

productivity (NPP), and their own metabolic requirements. Gross primary productivity 

(GPP), which is a measure of total ecosystem photosynthesis, includes the proportion of 

fixed carbon consumed by a plant’s metabolism and released back into the atmosphere as 

CO2 (Chambers et al., 2004). It has been shown that approximately 70% off GPP is respired 

directly back to the atmosphere by tropical vegetation (Chambers et al., 2004). The 

component of GPP that is not respired as CO2 is allocated to the different components of a 

plant's living biomass (wood, root, and leaf). Malhi et al. (2011) found that on average NPP 

                                                           
1 this brief review, the definition of Lewis (2006) will be adopted where a humid tropical forest is characterized by: (1) a 
fairly dense stand; (2) mainly evergreen broadleaf trees; (3) a closed canopy; (4) an annual precipitation of 1500 mm or 
greater; (5) no more than 6 months with less than 100 mm of rainfall; and (3) multiple distinct forest strata. 
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(described as the quantity of carbon up taken per unit time) in tropical forests is partitioned 

equally between a plant’s wood, leaves, and roots - although notable variability exists 

amongst stands. In contrast to peatland ecosystems, humid tropical carbon stocks 

are largely stored in living plant biomass – specifically within trees (Laumonier et al., 2010). 

It is estimated that humid tropical forests have the greatest total NPP and NPP per unit area 

(1,422 g C m-2 yr-1) of all the vegetation types on earth, accounting for approximately 35% 

of the net ecosystem exchange of carbon between the atmosphere and terrestrial vegetation 

(Melilo et al., 1993). It is important to consider the magnitude and rate of carbon uptake by 

the living plant biomass in these ecosystems as, it is pivotal to maintain their overall 

productivity. The living carbon store in plant biomass supplies the dead carbon pool via 

processes such as litter fall and tree mortality (Potter et al., 1993). 

As a large portion of tropical soils are low in fertility, the amount and rate of carbon 

input from the living carbon pool is essential to the maintenance of the entire ecosystem’s 

productivity (Vitousek and Sandford, 1986). Each of the constituents of the dead carbon 

pool (coarse woody debris (CWD), soil, slow and passive pools) has a unique turnover rate. 

These turnover rates control the rate of carbon cycling within humid tropical forests. 

Carbon supplied to the dead pools is released back to the atmosphere by microbial 

mediated decomposition of plant and soil organic matter (Cleveland and Townsend, 2006). 

CWD is colonized by decomposer organisms within forest ecosystems, initiating the 

process of decomposition (Swift et al., 1979). Respiration rates from CWD vary 

substantially in tropical forests (0.014 to 1.003 μg C g-1 C min-1) based on the density and 

moisture content of the wood (Chambers et al., 2001). As CWD decomposes it also 

undergoes fragmentation, supplying carbon to the soil organic pool (Swift et al., 1979). Leaf 

litter fall and precipitation exert control over soil respiration in tropical forests, providing a 

flush of decomposable carbon to the soils (Cleveland and Townsend, 2006). Water 

meditated leaching transports soluble carbon molecules into the soil carbon pool, speeds up 

CWD decomposition, and breaks down CWD (McMinn and Crossley, 1993). Carbon may also 

be transported by water out of the forest system via leaching from the soil carbon pool. 

The net flux of carbon between tropical forests and the atmosphere (net ecosystem 
 

exchange; NEE) is the difference between the inputs and outputs of carbon to the forest 

system described above. If the net output of carbon from the system is positive, it qualifies 
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as a carbon source while, if it is negative, it is labeled as a carbon sink. Studies of NEE in 

humid tropical forests have resulted in contrasting conclusions, with a disagreement 

between their status as carbon sinks (Andraea et al., 2002) or carbon sources (Miller et al., 

2011). 
 
 

2.4.The REDD to REDD+ program 
 

 In the face of climate change, an international dialogue on rising greenhouse gas 

emissions (GHGs) has taken shape in the form of the 1997 Kyoto Protocol and the United 

Nations Framework Convention on Climate Change (UNFCCC). While the Kyoto Protocol did 

not include policy specifically aimed at reducing deforestation rates (Pielke et al., 2002), the 

2005 UNFCCC included the first exploratory negotiations on the incorporation of tropical 

forests as a means to reduce GHG emissions from deforestation (UNFCCC, 2005). It was not 

until 2007, however, through the UNFCCC’s adoption of the Bali Action Plan that the urgent 

need to lower GHGs emitted due to deforestation was officially brought to the international 

stage. This resolution stimulated parties to introduce methods for the Reduction of 

Emissions from Deforestation and Forest Degradation (REDD) in developing countries 

(UNFCCC, 2007). The general purpose of the REDD concept was to provide financial 

incentives to developing countries that could show a decrease of GHG emissions from forest 

degradation and deforestation. Therefore, REDD aimed to compensate developing countries 

for losses of income opportunities associated with a decrease in deforestation rates 

(Ghazoul et al., 2010). At the 16th UNFCCC Conference of the Parties (COP-16), the parties 

settled on a policy framework for an expanded Reduction of Emissions from Deforestation 

and Forest Degradation mechanism, REDD+. Beyond providing developing countries an 

incentive for the reduction of emissions from deforestation and forest degradation, REDD+ 

offers a number of additional benefits including biodiversity protection, forest restoration, 

and sustainable forest management and development (Asner, 2011). 

 For the REDD+ mechanism to actually function, the development of robust national 

and sub-national methods to monitor, report, and verify forest carbon stocks is required. 

Further, reference emission levels will need to be established against which the loss of 

carbon stocks can be estimated. Essentially, the net change in carbon stock values would be 

measured against the established baseline to calculate carbon credits to be sold to an 
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international carbon market (Griscom et al., 2009). No agreement, however, has been made 

on the methodology, criteria, and constitution of a reference level. At a conceptual level, 

references can be set as a business as usual or a crediting baseline. Particular disagreement 

has occurred on the issue of whether or not baselines should be set at national levels. 

Advocates of national baselines at the REDD negotiations (the EU, USA, Canada, Japan and 

the Rainforest Coalition) asserted that national baselines are the only way to control 

leakage - the displacement of degradation and deforestation activities within a country 

(Potvin and Bovarnik, 2008). Contrastingly, a group of Latin American countries led by 

Columbia argue that national baselines are presently beyond the financial and technical 

capacity of many developing countries. Due to the importance of reference levels to the 

success of the REDD program, the UNFCCC COP-14 held an expert meeting on the topic 

(UNFCCC, 2008). This discussion drew particular attention to uncertainty in data and data 

quality related to carbon and biomass density estimates, allometric equations, and biomass 

expansion factors (UNFCCC, 2009). 

 
2.5. Techniques and sources of error in large scale AGB and AGC estimates 

 
Remote sensing and ground level data are two techniques proposed for the 

production of reliable carbon estimates (Hill et al., 2013). An advantage of remote sensing 

technology is its ability to collect data covering an entire country. In recent years, a great 

amount of effort has been placed on the use and integration of LiDAR (Light Detection and 

Ranging) and RaDAR (Radar Detection and Ranging) for the estimation of AGB (e.g. Saatchi 

et al., 2011; Asner et al., 2013). LiDAR is a particularly valuable form of remotely sensed 

data as it is capable of capturing the aspects of forest structure (e.g. tree height) required to 

estimate AGB (Drake et al., 2003; Saatchi et al., 2011; Zolkos et al., 2013). However, this data 

still needs to be calibrated and validated with ground truth measurements (Drake et al., 

2003). Additionally, some remote sensing instruments may not be sensitive enough to 

detect differences in AGB among the high-density forest stands (Goetz et al., 2009) common 

to tropical wet and moist ecosystems. Ground level data from traditional ecological forest 

inventories may introduce error to carbon stock estimates. Within these inventories, the 

standard plot size can be quite small (0.1 ha) and there can be a bias towards high biomass 

(ideal) locations within a forest stand (Brown and Lugo, 1992). According to Clark and 
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Clark (2000), a minimal plot size of 0.3 ha is required to capture the variability present in a 

tropical wet forest stand. Recently, Wagner et al. (2010) reported that four 0.25 ha plots 

are required to estimate the AGB of a neotropical rain forest within a 20% error of the 
 

mean. When extrapolated to the landscape scale, an inventory that lacks the variation 

needed to accurately measure biomass will produce an unreliable estimate (Brown and 

Lugo, 1992). Due to their spatial distribution and sampling intensity, pre-felling inventories 

from selective logging (i.e. forest management) may represent a solution to these problems 

(Couteron et al., 2003). Logging inventories are common to tropical countries and 

represent a large source of data on forest structure and composition (Putz et al., 2001). 

With their proven success in measuring diversity on large spatial scales (Réjou-Méchain et 

al., 2011a) and determining ecological factors that influence forest structure (Couteron et 

al., 2003), logging inventories have the potential to be a suitable source of forest data to 

estimate baseline carbon stocks. 

 
2.6. Natural forest management in Costa Rica 

 
In Costa Rica, selective logging inventories are developed under a standardized 

Natural Forest Management Plan (NFMP) framework (Arroyo-Mora et al., 2009) that has 

been implemented on private lands since 1996 (Forestry Law 7575). Despite the country’s 

small size (approximately 5100 km2) it contains a rich diversity of tropical ecosystems 

ranging from dry to wet forests. Further, Costa Rica is distinct among developing countries 

due to its forward thinking environmental policies, system of protected areas, and dramatic 

reduction in rates of deforestation during 1990's (Miller, 2011). As Costa Rica's forest 

resources are managed under a national system of conservation areas (CAs), NFMPs are 

handled in local sub regional offices. In total, the country is divided into 11 CAs (Boza, 

1993). Within each CA, sub regional offices are responsible for the reception, revision, 

approval or rejection, and follow up of the forest management plans. Due to the limited 

resources of sub regional offices, this rich information is often inadequately stored, 

organized, and in some cases even destroyed (e.g. through floods, fire). 

A NFMP is required of a private farm owner who desires to selectively log his 

primary forest stand. In order to be legally approved to log, the owner must hire a certified 

forester to conduct an inventory and census of the forest stand (Arroyo et al., 2009). In an 
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inventory, every tree with a diameter at breast height (DBH) equal or greater than 30 cm is 

measured and identified in plots of 0.3 ha. In a census, every tree with a DBH equal or 

greater than 60 cm is measured and identified throughout the entire forest stand. In order 

to recover these archives and evaluate their capacity to support forest conservation, 

Arroyo-Mora et al. (2009) developed a historical forestry geographic information system 

(FGIS) in a case study of a CA in Northern Costa Rica. Following that original study, my 

current work encompasses the complete historical FGIS of Costa Rica, including the five 

CAs where selective logging has been most heavily practiced. Specifically, selective logging 

has focused in the lowland areas of the Atlantic coast, the northern lowlands, and the 

southern Pacific coast. The agglomeration of NFMPs is important to the conservation of 

Costa Rica's forests, as, despite the country's recognition for its environmental policies, the 

sustainability of its NFMP framework has been subject to little testing and validation 

(McGinley and Finegan, 2003). 

 
2.7. The management of large forest themed datasets 

 
With modern ecological datasets combining spatial and temporal scales, powerful 

data infrastructures are a necessity for efficient data storage and analysis (McInthosh et al., 

2007). The relational database model, developed by International Business Machines corp. 
 

(IBM) in the 1970’s, has become an international standard (Codd, 1979). A relational 

database model recognizes logical associations between information of different types and 

themes. It is primarily composed of tables, fields (columns), records (rows), relationships, 

and primary keys (a unique value that provides an “address” for each record in the 

database) (Codd, 1979). Ecological databases following this model have been used across 

the globe to efficiently store, mine, and analyze data - all while minimizing redundancy 

(McIntosh et al., 2007). The RAINFOR database is one such model, composed of long-term 

ecological information from plots established across the Amazonian rainforest (Peacock et 

al., 2007). The database infrastructure consists of a wide variety of forest themed tables and 

relationships. For example, the “Plot” table is related to the “Local Climate” table by the 

primary key “PlotID” (Figure 2.1). As an analysis tool, the database can rapidly assess and 

graph above ground biomass (AGB) across over 100 plots with SQL (standard query 

language). Recently, the Center for Tropical Forest Science (CTFS) developed a database for 



13  

a global network of forest plots (Condit et al. 2013), applying the relational data model and 

its theories of data normalization (Codd, 1971). Both Condit et al. (2013) and Peacock et al. 

(2007) emphasize the utility of a normalized relational database for the storage and 

tracking of taxonomic data. Further, they highlight the importance of developing standards 

for the spelling of species, genera, and families for the reliable analysis of taxonomic data 

across a large forest themed dataset. It is also essential that databases establish a system to 

track changes in taxonomy and unidentified trees as (1) taxonomy is in a constant state of 

change; (2) tropical trees are frequently unidentified at a species level; and (3) hundreds to 

thousands of species can exist within a few hectares of a tropical forest (Condit et al. 2013). 

Another advantage of relational database management systems is its capacity to 
 

ensure quality through the use of built-in data constraints and quality check queries (Le Duc 

et al., 2007). Data constraints limit the data that can be entered into a given field or table of 

a database. For example, in their relational database, Le Duc et al. (2007) specify that frond 

dry mass (g) must be greater than or equal to 0 but less than 1000. Quality check queries 

are run after data entry to check for errors. In the RAINFOR database, for example, 

a quality check query ensures that the number of stems alive, dead, and recruited is 

consistent between inventories of the same forest plot through time (Peacock et al., 2007). 

Beyond correcting data errors, the possibility to include customized quality assurance 

procedures in relational database managements systems can help to uncover the rate, 

source, and consequence of data entry errors (Le Duc et al., 2007). A more recent extension 

of the relational database model is the geodatabase, which contains spatial information that 

may be displayed in a geographic information system (GIS) (Zeiler, 1999). GIS databases 

have been employed, for instance, in Mexico to study land cover change (Mas et al., 2004) 

and by the US Forestry Service to model appropriate locations for forest management (Loh 

et al., 1994). In Costa Rica, the large NFMP dataset will not be reliably or easily analyzable 

without first using these versatile relational database tools. By developing a relational- 

spatial database tailored to Costa Rican NFMPs as well as customized standardization and 

quality assurance procedures, it will be feasible to efficiently access data, perform 

repeatable data analyses, and improve overall data quality. 
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2.8. Estimating AGB and AGC from tree measurements 
 

Following the creation of a powerful data infrastructure populated with tree 

level information acquired from NFMPs, it will be possible to analyze and estimate AGB. 

Chave et al. (2004) outline four steps to determine AGB (the first value needed to 

determine carbon stocks). The first step, measurement of trees, can be mined from NFMPs. 

Though this means that only tree data will be contained in the AGB estimates, it has been 

found throughout tropical forest ecosystems that the largest portion of biomass is held 

within living trees. Further, trees above 20 cm DBH can contribute up to 80% of the total 

AGB (Laumonier et al., 2010). Despite the fact that NFMPs only include trees of 30 cm DBH 

or greater, these estimates will still encompass a substantial and important portion of AGB. 

Next, tree level measurements are entered into allometric models to calculate AGB. In 

contrast to temperate ecosystems where species specific allometric models are applied, the 

large diversity of tree species in tropical forests means that mixed species allometric 

models are required (Chave et al., 2005). Allometric models are developed by destructively 

sampling trees and relating directly measured biomass to tree measurements, such as DBH 

(Brown et al., 1989). It is important to note that allometric models do not directly measure 

AGB but, instead, provide an AGB estimate (Clark and Kellner, 2012). Choosing the correct 

allometric model is a critical step to avoid errors in AGB estimates. Important criteria for 

model selection include the compatibility of your sample DBH range with that of the model 

and the ecosystem being studied (specifically because mixed species models are used in the 
 

tropics). Extrapolating an allometric model beyond its maximum DBH range can introduce 

up to 30% error in final AGB estimates (Chave et al., 2004). The third step is to sum biomass 

per tree across all trees in a given plot.  It is in this step that an unrepresentative plot size 

will strongly affect the accuracy of AGB estimates. In small ecological plots (0.1 ha) large 

diameter trees represent a specific source of error due to their spatial rarity and significant 

contribution to total AGB (Brown and Lugo, 1992). The final step in determining AGB is 

averaging biomass across plots. Having a representative sample of the landscape 

heterogeneity will produce an average that is truly representative of a given area. 

Additionally, to allow for regional scale comparisons, AGB estimates must be based on a 

consistent regression model (Baker et al., 2004). 

In recent years, the pantropical allometric models developed by Chave et al. (2005) 



15  

have been widely applied across the globe to estimate AGB. In Costa Rica, however, 

numerous studies of biomass have employed Brown’s (1997) equation for wet forests (e.g. 

Clark and Clark, 2000; Letcher and Chazdon, 2009; Clark et al., 2011; Saatchi et al., 2011) as 

it was calibrated with data collected at Costa Rica's La Selva Biological Station. For this 

study, the Brown’s (1997) equation had many disadvantages when compared to those 

developed by Chave et al. (2005). These shortcomings included: (1) the representation of a 

smaller DBH range; (2) the development of the equation from a smaller sample size; (3) the 

limited application of the equation outside of Costa Rica (making the comparison of AGB 

estimates with other countries/studies more complex); and (4) the absence of wood density 

as a parameter (an aspect of forest structure that varies significantly at regional scales) 

(Baker et al., 2004; Chave et al., 2009). 

Using wood specific gravity, available for many neotropical tree species in online 
 

databases and scientific literature (Chave et al., 2005), to calculate tree biomass may help 

account for variations in biomass among different species. Wood density is an important 

predictive variable when estimating AGB (Brown and Lugo, 1992; Chave et al., 2005; Keeling 

and Phillips, 2007; Baker et al., 2009). As it is known to vary among different forest 

communities (Baker et al., 2004; Chave et al., 2009; Muller-Landau, 2004; Zhang et al., 

2011), this is also critical to studying the differences in AGB across a landscape. Despite 

these findings, wood density has yet to be studied or implemented when estimating AGB 

across Costa Rica. 

Feldpausch et al. (2011, 2012) reported that an additional source of error in AGB 
 

estimates results from the exclusion of height as a predictor variable in allometric models. 

Regardless of this finding, Feldpausch et al. (2012) also reported that the decrease in AGB 

estimation error occurred only in smaller DBH classes (≥40cm) and not larger ones. 

Therefore, the greater the proportion of AGB in trees with a DBH less than or equal to 40 

cm, the greater the amount of error introduced into AGB estimates when excluding height 

in allometric models. As NFMP data only includes trees with a DBH≥30cm, the exclusion of 

height in the models applied to estimate AGB will not greatly increase the error of the 

reported values. 

Once an average AGB density (biomass per area) is calculated, it can be converted to 

carbon by multiplying the value by 0.5. This relatively simple relationship, where carbon 
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represents 50% of the total tree biomass, is the standard conversion factor throughout the 

literature (Houghton et al., 2009). However, studies have reported that the fraction of 

carbon content of AGB fluctuates between tree species. Elias and Potvin (2003) found the 

proportion of carbon in the biomass of 32 neotropical tree species varied between 44.4%- 

49.4%. Further, Martin and Thomas (2011) reported that wood carbon content ranged 

from 41.9%-51.6% based on a sample of 190 neotropical trees. Additionally, the IPCC 

recommends the use of a 47% conversion factor from biomass to carbon (Gibbs et al., 

2007).  As this conversion is an additional source of uncertainty, studies often report both 

AGB and AGC values (e.g. Saatchi et al., 2011). Next, an average AGB or AGC density can be 

extrapolated to the landscape using a land cover map and/or the application of calibrated 

models derived from ground level and remotely sensed data (Gibbs et al., 2007). 

In the Brazilian Amazon, a mere 5% level of agreement was found between 
 

published AGB distribution maps that were produced using seven different extrapolation 

methodologies (Houghton et al., 2001). In particular, the simpler methodologies applied to 

extrapolate plot level AGB data, such as krigging and spline interpolation, performed poorly 

(Houghton et al., 2001; Malhi et al., 2006). The poor performance of these techniques in 

tropical ecosystems is due to local scale variations in AGB outweighing the variability of 

AGB found at regional scales (Houghton et al., 2001). 
 
 

2.9. Factors influencing the spatial distribution of AGB 
 

The resulting AGB distribution maps produced by of the aforementioned 

techniques may be improved by the inclusion of information on environmental factors 

known to affect forest structure and carbon stocks (Table 2.1). In fact, recent advances in 

AGB estimation that combine remotely sensed data, forest plots, and environmental factors 

(e.g. Asner et al., 2013) have performed much better, producing higher quality and finer 

scale carbon density maps. Multiple studies have investigated the influence of 

environmental factors on tropical forest structure, reporting a wide array of variable 

relationships (Table 2.1). In a wet tropical forest, Clark and Clark (2000) observed the 

proportion of large diameter trees increased with soil fertility. Further, they found that stem 

density displayed a positive relationship with slope. Although their study found 

relationships between forest structure, soil type, and slope, Clark and Clark (2000) 
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concluded that these factors did not explain the low AGB variability (12%) across the forest 
 

stand. In contrast, Laurence et al. (1999) reported that soil fertility explained 

approximately 30% of the AGB variation in a tropical moist forest. These findings were 

supported by Castilho et al. (2006) who found that AGB was positively related to soil 

quality and elevation but independent of slope. Similarly, Alves et al. (2010) showed that 

AGB increased along an elevation gradient in a moist tropical forest. A regional scale study 

of the Amazon Basin indicated that another environmental variable, dry season length, was 

an important factor controlling AGB variability (Malhi et al., 2006). In the same study, 

conflicting with the findings of Castilho et al. (2006) and Laurance et al. (1999), AGB was 

reported to reach maximum values in slow growing forests found on infertile soils (Malhi et 

al., 2006). The mean wood density of a forest stand (Baker et al., 2004; Asner et al., 2009) 

and forest disturbance (Urquiza-Haas et al., 2007) have also been recognized as factors 

related to AGB variation in the Neotropics. Habitat fragmentation perturbs the cycling of 

biomass at a forest’s edge, speeding up biomass’ turnover rate, altering species 

composition, and ultimately decreasing carbon storage in the living vegetation of a forest 

stand (Nascimento and Laurance, 2004). Recently, Slik et al. (2013) found that large tree 

density (DBH≥70cm) explained 70% of the variation in pantropical AGB estimates. 

Although they found large tree density was positively associated with soil fertility, the 

dominance of wind dispersed species, and other climatic variables, they reported that the 

relationship of large tree density to associated factors was inconsistent between continents 

(Slik et al., 2013). Further, Asner et al. (2013) determined that human activity was the 

greatest driving force in the variability of AGB across Panama, highlighting the need to 

measure the impact of human activity on AGB across the tropics. As NFMP data offers a 

sample of the tropical forests that are being greatly impacted by anthropogenic activities, 

their inclusion with ecological data will provide a more representative ground level dataset 

for the estimation of AGB at landscape, regional, and national scales. 

 
 
2.10. Conclusions 

 
With the carbon market valued at over US$100 billion per year, a great emphasis has 

been placed on the production of high-quality national carbon stock baselines (Petrokofsky 

et al., 2011). Therefore, assessing the spatial variation of AGB will assist in the 
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implementation of the REDD+ mechanism, substantially improving estimates of emissions 

caused by deforestation and forest degradation. In the past, these emissions have been 

calculated using single biome averages of carbon density (Gibbs et al., 2007)2. It is currently 

well known that carbon stocks vary within biomes and on finer scales (Clark and Clark, 

2000; Houghton et al., 2001; Malhi et al., 2004; Laumonier et al., 2010). A former lack of 

consideration for this variation has resulted in relatively unreliable GHG emission estimates 

due to tropical deforestation (Baccini et al., 2012). The main objective of my Master's thesis 

is to assess the variability of aboveground biomass in tropical forests within and among 

regions of Costa Rica using forest management data. The outcome of my thesis will be 

especially helpful in Costa Rica, where accurate carbon estimates will improve the country's 

implementation of the REDD+ program - placing an economic value on living forest stands. 

                                                           
2
 Refer to example of exception in Baccini et al. 2012 
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2.11 Tables and Figures 
 

 

Table 2.1. Summary of environmental factors observed to effect (positively or negatively) 
the spatial distribution of AGB in tropical forests. 
 

Environmental Variable Reference 

Forest Fragmentation and 
Disturbance 

Nascimento and Laurance, 2004; Urquiza-Haas et al., 2007 

Soil Type and Characteristics 
Laurance et al., 1999; Malhi et al., 2006; Castilho et al., 
2006; DeWalt and Chave, 2004; Paoli et al., 2008 

Geologic Substrate Asner et al., 2009 

Precipitation 
Malhi et al., 2006; Slik et al., 2010; Chave et al., 2004; Slik 
et al., 2013 

Slope Clark and Clark, 2000; Castilho et al., 2006 

Elevation Alves et al., 2010; Castilho et al., 2006 

Forest Type Houghton et al., 2001; Chave et al., 2005 

Wood Density Baker et al., 2004; Asner et al., 2009 

Dry Season Length Malhi et al., 2006 
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Figure 2.1. Source: Peacock et al. (2007). Schema of the relations between the tables of the 
RAINFOR database with a list of their respective fields. Primary keys are underlined item in 
bold are required. Solid lines represent links between primary keys. The relationship 
between TreeNo and Tree. Plot and LocalSoil, and Plot and LocalClimate are one to one. All 
other relationships are one to many. (License for use of Figure 2.1 in thesis given in 
Appendix 1). 
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3.  The development of a forestry geodatabase for natural forest  

management plans in Costa Rica 

Citation: Svob, S., Arroyo-Mora, J.P. and Kalcska, M. (in press) 2014. The development of a 

forestry geodatabase for natural forest management plans in Costa Rica. Forest Ecology and 

Management. 

 
3.1. Context within thesis 

 
This chapter describes the development of the forestry GIS (FGIS) database for the 

storage, standardization, quality control, and analysis of a large Costa Rican forest 

management dataset. The results of this study illustrate the advantages of database 

development for tropical forest data. Further, an exploratory analysis demonstrates the 

utility of the database, providing a platform for the efficient and reproducible analysis of 

taxonomic information for over 250,000 tree records. The main outcome of this chapter is 

the finalized FGIS database, representing the most complete digital record of natural 

forest management in Costa Rica to date and a tool for future large scale analyses of 

tropical forest ecosystems. 

 
 
3.2. Abstract 

 
Forest management data is available for many tropical countries, representing a large and 

spatially rich source of tree level data. Over the past decade, we have collected and digitized 

over 1000 Costa Rican natural forest management plans, spanning 30 years and spread out 

over approximately 26,700 km2 along the country’s Atlantic coast, northern lowlands, and 

southern Pacific coast. In order to analyze this unique collection of tree inventory data we 

developed a system to ensure the standardization, quality control, and reliable management 

of the dataset. We developed a relational geodatabase, forming logical associations between 

and within the spatial and tabular components of the forest management data. In this study, 

we outline the data standardization procedures established to permit the comparison of 

data across time and space. Further, we describe quality checks built-into the database's 

functionality to identify and reduce the presence of errors. The final customized forest 

management geodatabase efficiently stores a large and diverse dataset through the 

integration of logical relations, quality checks, and flexible data access across 32 tables and 
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over 250,000 tree records. Through the use of quality tests, the database provides a means 

to improve overall data integrity and illustrates the magnitude, sources, and types of errors 

present in the initial dataset. Finally, the value of a comprehensive database for the 

management of forest data is demonstrated through an exploratory analysis of 

standardized tree taxonomic information. With this analysis, we begin to explore the 

potential strengths, weaknesses, and applications of forest management data for future 

ecological studies (e.g. species diversity assessment). For instance, although most of the 

forest management data (tree inventories and censuses) is collected using common names 

in the field, our standardization process has allowed us to depict trends similar to those 

found in ecological studies (e.g. dominant species for different ecosystems). Overall, our 

forestry geodatabase represents the most complete record of natural forest management 

practices in Costa Rica to date. 

 

3.2.1. Keywords: Data management; Logging inventories; Tropical forest; 

Ecoinformatics; Quality assurance 

 
 
3.3. Introduction 

While tropical forests roughly represent only 7% of global land cover (Bradshaw et 

al., 2009), they are home to an estimated two-thirds of the globe's terrestrial biodiversity 

(Gardner et al., 2009) and contain nearly 40% of the earth's carbon biomass (Brown and 

Lugo, 1992). Due to a rapidly changing climate combined with high rates of deforestation 

and forest degradation, these globally important carbon and biodiversity stocks are under 

threat (Malhi and Grace, 2000). As these ecosystems decline, a renewed interest in 

quantifying and understanding spatial and temporal variations in biodiversity and carbon 

distribution across tropical forests has arisen (Petrokofsky et al., 2011). However, a high 

level of uncertainty in the assessment and understanding of environmental factors 

influencing biomass and biodiversity across spatial scales persists (Houghton et al., 2001; 

Chave, 2008; Gardner et al., 2009). This uncertainty is primarily rooted in the inadequate 

spatial distribution and sampling intensity of traditional ecological data sets (Clark et al., 

1998, 1999). While landscape scale tropical forest inventories may offer a solution to this 

uncertainty, they are rare among ecological studies due to their high cost and complex 
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logistics (Greig-Smith, 1983). Moreover, long-term datasets require strong database 

management approaches to ensure reproducible and valid data analyses (Le Duc et al., 

2007; Condit et al., 2013). Existing pre-felling inventories from selective logging (i.e. forest 

management), on the other hand, may represent a solution due to their spatial distribution 

and sampling intensity (Couteron et al., 2003; Arroyo-Mora et al., 2009).  

Logging inventories are common to tropical countries. They represent a valuable and 

abundant source of data on forest composition and structure, permitting a variety of 

ecological questions to be addressed at spatial scales larger than those in traditional 

ecological inventories (Putz et al., 2001; Couteron et al., 2003; Réjou-Méchain et al., 2011a). 

Due to their unique scale, logging inventories have allowed researchers to observe the 

environmental factors controlling species distribution and community composition at 

regional and landscape scales (Couteron et al., 2003; Réjou-Méchain et al., 2008; Gourlet-

Fleury et al., 2011; Fayolle et al., 2012). Research conducted at these large scales provides a 

link to local scale studies and therefore, insight into the importance of certain 

environmental factors and processes controlling community composition at different 

spatial scales (Réjou-Méchain et al., 2011b).  The large area sampled by logging inventories 

also allows for studies to successfully capture the heterogeneity of tropical forest biomass 

distribution, and in turn forest carbon (Gourlet-Fleury et al., 2011; Maniatis et al., 

2011). These studies can help reveal the impact of particular environmental factors (e.g. 

elevation, soil type, and land-use history) on tropical forest biomass, providing crucial 

information for future studies attempting to predict the regional and landscape patterns of 

biomass. Finally, large scale inventories aid in the development of detailed wall-to-wall 

vegetation and land use maps by offering a rich source of ground level data for the 

validation and calibration of remotely sensed data (Gond et al., 2013).  

In Costa Rica, selective logging inventories are developed under a standardized 

Natural Forest Management Plan (NFMP) framework (Arroyo-Mora et al., 2009) that has 

been implemented on private lands since 1996 (Forestry Law 7575). As Costa Rica's forest 

resources are managed under a national system of conservation areas, NFMPs are handled 

in local sub regional offices. In total, the country is divided into 11 conservation areas (Boza, 

1993). Within each conservation area, sub-regional offices are responsible for the reception, 

revision, approval or rejection and follow up of the forest management plans. Due to the 
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limited resources of sub-regional offices, this rich information is often inadequately stored, 

organized, and in some cases even destroyed (e.g. floods, fire).  

In order to recover these archives and evaluate their capacity to support forest 

conservation, Arroyo-Mora et al. (2008) developed a forestry geographic information 

system (FGIS) in a case study of a conservation area in Northern Costa Rica. Following that 

original study, this present work encompasses the complete FGIS of Costa Rica, including 

the five conservation areas where selective logging has been most heavily practiced. 

Specifically, selective logging has focused in lowland areas in the Atlantic coast, the 

northern lowlands, and the southern Pacific coast. The main objective of this study is to 

develop a countrywide tree database from data extracted from natural forest management 

plans (NFMPs). Our second objective is to describe the broad taxonomic patterns occurring 

in our study region based on the FGIS database in order to assess the utility of the NFMP 

dataset.  

  With modern ecological datasets combining spatial and temporal scales, powerful 

data infrastructures are a necessity for efficient data storage and analysis (McIntosh et al., 

2007). The relational database model, developed by IBM in the 1970’s, has become an 

international standard (Codd, 1979). Relational databases following this model have been 

used extensively to efficiently store, mine, and analyze ecological data, all while minimizing 

redundancy (McIntosh et al., 2007). The RAINFOR database is one such model, composed of 

long-term ecological information from plots established across the Amazonian rainforest 

(Peacock et al., 2007). More recently, Condit et al. (2013) developed the CTFS database to 

reduce the presence of integrity errors within a global repeated-measurements forest plot 

dataset. A newer extension of the relational database model is the geodatabase, which also 

contains spatial information that may be displayed in a geographic information system 

(GIS) (Zeiler, 1999). For instance, geographic information databases have been employed in 

Mexico to study land cover change (Mas et al., 2004) and by the US Forestry Service to 

model locations for forest management (Loh et al., 1994). This study presents the 

development and structure of the FGIS geodatabase along with the forest management, 

taxonomic, and spatial data that it stores. Additionally, it highlights the importance of 

establishing data standardization and quality assurance procedures when managing large 

ecological datasets. Finally, it describes the limitations of such a database before providing 
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an example of its potential application in the study of Costa Rica's diverse forested 

ecosystems. 

 
3.4. Natural forest management plans in Costa Rica 

In Costa Rica, a natural forest management plan is a document containing a 

collection of technical standards combined with data, developed to govern the management 

activities of a privately owned area of natural forest (management unit or forest unit). The 

data applied in this study was extracted from NFMPs conducted by certified foresters 

between 1983 and 2011. Below, we provide a summary of the standard methodology 

followed and data collected in these NFMPs. 

In general, a NFMP document produced by a certified forester contains information 

on the structure and composition of a forest stand (inventory and census), official land 

tenure information, the protected and productive areas within the stand, proposed logging 

roads and timber patios (MINAE, 2008). The document also contains general maps of land 

holdings including, among other features, the shape of the forest unit, the trees to be logged, 

and the trees to be preserved as progeny trees. In addition, protected areas in the 

management unit are defined as areas near water bodies (e.g. streams, springs) and on 

steep slopes where selective logging is prohibited (MINAE, 2008). The forested area outside 

of the protected area within the bounds of each management unit is the productive area.  

Costa Rican natural forest management plans generally follow a systematic field 

sampling design. The design consists of transects placed across the forest stand 

perpendicular to a pre-established baseline. Depending on the terrain and total forest unit 

area, adjacent transects are separated by 50-100 m and extend the length of the forest 

stand. Transects are located spatially by at least one point in the field and later mapped. 

Inventory plots of 0.3 ha (30 by 100 m) are mounted randomly along these transects and all 

trees with a DBH ≥ 30 cm are recorded within the plots. Despite these standards, however, 

inventory plots are sometimes biased towards species rich and biomass dense areas of the 

forest stand (Arroyo-Mora, pers. obs.) The number of plots mounted through the inventory 

is determined so that the sampling error is less than 20% (95% confidence level) for the 

basal area per hectare of trees with a DBH ≥ 30 cm (MINAE, 2008). Of the data included in 

this study, the number of inventory plots per NFMP ranged from one to 53. A more 
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complete characterization of the tree population in the forest stand is given by the census. 

In the census, all trees with a DBH ≥ 60 cm are recorded along the previously mounted 

transects (50-100 m apart extending the length of the forest stand). Trees recorded in the 

census are spatially located in the forest stand and classified as trees for harvest or as 

remnants. The harvest intensity is determined in proportion to the abundance of each tree 

species. In Costa Rica, the logging intensity must be less than 60% of the number of trees 

per species with a DBH ≥ 60 cm (MINAE, 2008). Based on the inventory, any tree species 

represented by less than 0.3 trees per ha of DBH ≥ 30 cm is not subject to harvest, even if it 

is a commercially viable species. These trees, any non-commercially viable trees, and the 

remaining 40% of commercially viable trees are classified as either remnant or parent trees 

(refer to Appendix 2 for detailed definitions). The DBH of all trees sampled by a census or 

inventory is measured with a diametric tape at a height of 1.3 m from the base of the tree. 

Commercial height, the height from the base of the tree to the bole of the first branch, is 

measured for all trees using either a clinometer or hypsometer. When possible, all trees are 

identified in the field by local experts, referred to as “baquianos”, using vernacular names. 

 

3.4.1 NFMP data collection 

The NFMP data included in this study is composed of NFMPs that were produced 

between 1983 and 2011. The NFMP records were collected at sub-regional offices in the 

following five conservation areas: Caribbean La Amistad (ACLA-C), Arenal Huetar Norte 

(ACAHN), Tortuguero (ACTO), Central Volcanic Cordillera (ACCVC), and Osa (ACOSA) (Fig. 

3.1). At each sub-regional office visited, a digital camera was used to collect photographs 

of every page of the hard-copy NFMPs. The quality and organization of the hard copy 

NFMPs varied widely from one conservation area to another; nonetheless, regardless of 

the completeness of the management plans, we aimed to extract as much information as 

possible. Following the methodology developed by Arroyo-Mora (2008), the general 

aspects of the forest management plans (location, forest unit size, productive, protected 

area extent, etc.), tree inventories, tree censuses, and the lists relating scientific names to 

common names were digitized into separate Excel spreadsheets. In addition, the map of 

each NFMP was digitized and georeferenced in ArcGIS (versions 8.0-10.1, ESRI Inc., 

Redlands, CA, USA). 
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3.4.2. Data standardization 

Data recorded in the excel spreadsheets was formatted uniformly in order to be 

integrated into a relational database. In addition, the terminology and floristic information 

reported in the NFMPs was not up to date or consistent (data spanning 30 years over 5 

different regions) and required standardization before constructing the database and 

performing subsequent analysis.  

The complexity of the information extracted from the forest management plans (land 

tenure, inventories, census, location, etc.), required the development of several procedures, 

each tailored to a particular subset of data, to completely standardize the data. To ensure 

that values were comparable across all NFMPs, fields were standardized to a single unit of 

measurement. For example, all DBH measurements were converted into centimeters, 

commercial heights were converted into meters, and any measurements of area (e.g. 

productive area) were converted into hectares. A forest management plan identification 

code (NFMPID), which uniquely identifies each NFMP, was made into a standardized format 

consisting of six letters from the NFMP’s name followed by the year the NFMP was 

submitted to the forest authority of the state. The statuses of all the individual trees 

recorded in a census were also standardized, coded as cut, parent tree, remnant, or other. 

As Costa Rica falls within two Universal Transverse Mercator zones, it was important to 

standardize the projected coordinate system of the NFMP polygons and any additional 

spatial datasets. To do so, all projections were transformed into the country’s official 

coordinate grid, the Costa Rican Transverse Mercator. 

Taxonomic information also needed to be updated and standardized as it was 

extracted from NFMPs produced across Costa Rica and over several decades. NFMPs 

generally only supply floristic information at the genus and species levels. Therefore, family 

names were extracted after correcting any spelling errors of species and genus names 

using the Taxonomic Name Resolution Service v3.2 (Boyle et al., 2013). When running the 

scientific names through the resolution service we employed TROPICOS (Missouri 

Botanical Garden, 2013) as the taxonomic source for species and genus matching and the 

Angiosperm Phylogeny Group III (APG III, 2009) as the standard authority for family-genus 

taxonomy.  Any species listed as an out of date synonym was replaced by the currently 
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accepted species name. Specified author(s) and publication information at the family, 

genus, and species levels was also taken from TROPICOS. Beyond the NFMP data, a national 

list of scientific names provided by the government of Costa Rica (SIREFOR, 2012 unpubl.) 

was standardized following the above procedure. The national list provides both the 

common names and corresponding scientific names. Unlike NFMP lists, the national list 

includes all of the possible common names for a single species and all of the possible 

species names for a single common name. The national level list is particularly useful when 

a NFMP list relating common names to scientific names is absent. 

 
3.4.3 Database design 

In order to create a relational geodatabase based on NFMPs from five conservation 

areas in Costa Rica (Fig. 3.1.), we used the following set of rules:  

1. Be able to manage spatial information.  

2. Be able to form logical associations between NFMP based information of 

different types and themes.  

3. Support the production and storage of metadata.  

4. Include methods for quality control and assurance.  

5. Be proficient at importing and exporting information in basic file formats, 

particularly those that can be easily used in statistical analysis software.  

After determining the requirements of the geodatabase, an entity relationship model was 

generated, defining entities and the relationships among entities (Chen, 1976). The entity 

relationship model was translated into a relational model, which then underwent database 

normalization, minimizing redundancy and dependency (Codd, 1970). PostgreSQL (version 

9.2., PostgreSQL Global Development Group, Berkeley, CA, USA) and the spatial extension 

PostGIS 2.0 (version 2.0., Refractions Research Inc., Victoria, BC, CA) were selected to 

construct the geodatabase.  PostGIS is supported by a variety of GIS software such as 

QuantumGIS (version 1.8.0., Open  Source Geospatial Foundation, DE, USA) and ArcGIS 

(version 10.1., ESRI Inc., Redlands, CA, USA), allowing the use of a GIS to display and edit 

spatial information. 
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3.4.4. Database structure 

3.4.4.1. NFMP level database components 

The final database structure is composed of 32 relational tables (Fig.3.2.). The 

nfmp_general table relates to nearly all other tables within the database. This table stores 

NFMP level information such as the name of the NFMP (farm_name), the sub-regional office 

where the NFMP’s data was collected (sroid), the year the plan was created (start_year), the 

year it expires (end_year), and whether or not the plan was approved for logging 

(approved). The table’s primary key, the natural forest management plan identification 

code (nfmpid), uniquely identifies each management plan within the database and forms 

important relationships with the tree level data. As reported in a NFMP, the nfmp_general 

table stores a minimum, maximum, and average value of slope and elevation for each 

management unit. The total, managed, productive, and protected area are also recorded in 

the nfmp_general table as an NFMP can have only one value for each of these attributes. The 

table includes a set of attributes that specify whether an NFMP collected contained a census, 

inventory, list, or map of the management unit (census, inventory, list, map_farm, 

map_census, map_inventory). Finally, the table stores timber harvest information such as 

the number of trees and volume requested for extraction by the forester responsible for the 

plan (number_tree_requested, volume_requested).  

The forester table provides information on each forester responsible for the 

production of an NFMP. The cardinality between the forester and nfmp_general tables 

represents a many-to-many relationship as a forester can develop many NFMPs and a NFMP 

can be developed by more than one forester. To meet database normalization standards, 

this many-to-many relationship needed to be broken down into two one-to-many 

relationships. To do so, an associative table (nfmp_general_forester) connecting 

nfmp_general and forester was incorporated into the database. Each record in 

nfmp_general_forester relates one forester to one NFMP and has a composite primary key 

consisting of a foreign key referring to nfmp_general (nfmpid) and a foreign key referring to 

forester (foresterid). The owner table, which stores an alphanumeric code, was structured 

in the database following the same logic as the forester dataset. 

The nfmp_general table links to spatial and tabular data related to the 
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administrative divisions of Costa Rica at the district, canton, and provincial levels. 

The nfmp_polygon table stores a record of the polygon(s) outlining the location of 

each management unit. All tables storing spatial data contain two fields that refer to 

the geographic and projected coordinate systems tables. These references ensure 

that the projected and geographic coordinates of all spatial data is tracked in the 

database. 

 
3.4.4.2. Tree level database components 

 The tree level information stored in the inventory and census tables forms a one-to-

many relationship to the nfmp_general table. A one-to-many relationship was assigned 

between these tables because an NFMP can have many trees recorded in either a census or 

inventory. To form the relationship, the primary key of nfmp_general table (nfmpid) was 

included in the inventory and census tables as a foreign key. Census contains tree level 

information collected during a census. This includes a tree number, common name, DBH, 

commercial height, and status. Inventory contains tree level information collected during 

the plot based sampling of an NFMP’s productive area. For each tree record, inventory 

stores a plot number, tree number, common name, DBH, and commercial height. Because 

natural forest management plans do not consist of repeated measurements of the same tree, 

unlike many ecological inventories (Condit et al., 2013), it was not necessary to separate 

permanent tree attributes (e.g. common name) and changing traits (e.g. DBH or commercial 

height) into different tables. In the census table, inventory table, and throughout the 

database, auto-increment primary keys were used. Auto-increment primary keys are not 

reliant on an actual value extracted from an NFMP, permitting the entry of incomplete 

records (i.e. missing data). This was an important factor to consider when developing the 

database structure as some of the original hard copy NFMPs were missing data or contained 

illegible data. To ensure that duplicate entries were not allowed despite the use of auto-

increment primary keys, the combination of particular fields was given a unique constraint. 

For example, in inventory, a unique constraint was placed across the plot, tree number, and 

nfmpid fields. The census and inventory tables also have a comment field, allowing users to 

flag potential data issues and enter notes about missing data or data changed during 

standardization procedures.  
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 The inventory_details table was incorporated into the database to manage the 

problem of incomplete data. The table stores the number of plots included in a NFMP. The 

table also records the range of DBH values that were sampled in plots of a specific area for 

each NFMP inventory recorded. This is especially important as some inventories sampled 

trees of a smaller DBH than legally required (i.e. less than 30 cm). 

 
3.4.4.3. Database management of taxonomy 

The list table contains common names and corresponding scientific names as 

reported in the NFMP. Both the census and inventory tables link to list through the 

combination of their nfmpid and common_name fields.  Beyond NFMP level data, list also 

incorporates the national list of common names and corresponding scientific names 

(SIREFOR, 2012 unpubl.). While both the national and NFMP level lists have undergone 

taxonomic standardization, the original spelling and species names they report are 

recorded in the attribute original_sciname. 

            As more than one hundred species can be found in a single hectare of tropical forest, 

any census, even when conducted by an experienced botanist, will contain unidentified 

individuals. When dealing with unidentified individuals in the database, we took a 

conservative approach. This approach did not assume that unidentified individuals or 

common names without a corresponding scientific name were consistent across or within 

management plans. Because an unidentified individual or unidentified common name could 

possibly represent multiple species, we did not categorize unidentified individuals into 

specific groups. All individuals unidentified at the species, genus, or family levels are solely 

listed as unidentified at the appropriate taxonomic level. We included the national list in the 

table to enable users to review all of the potential species a single common name could 

represent if the common name was not assigned a scientific name by the NFMP. 

The standardized species, genera, and family codes stored in the list table form links 

to the taxonomic tables (family, genus, and species). As the taxonomy of tropical species is 

constantly changing, the database, applying a similar model to Condit et al. (2013), 

incorporates specific attributes and tables to track changes in species names through time. 

In the species table, the attribute ‘accepted’ flags whether a species name is currently in use 

or not. The taxonomy_change table tracks the history of species name changes in the 
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database. One row of the table stores the currently used species, previously used species, 

and the date the species was considered outdated in the database.  

Species, genus, and family were placed in separate tables to meet the requirements of 

database normalization. In doing so, spelling errors were prevented and the assignment of a 

species to an incorrect family or genus was largely avoided. For example, the record 

Pentaclethra macroloba in the species table is dependent on the existence and correct 

spelling of Pentaclethra in the genus table. The genus table is dependent on the family table 

in the same fashion. 

 The wood_density table is linked to the taxonomic tables and reports wood specific 

gravity at the species level. Wood density values were incorporated into the database to 

simplify future studies aiming to calculate aboveground biomass with the NFMP database. 

The wood_density table is largely composed of values extracted from the Global Wood 

Density database (Chave et al., 2009; Zanne et al., 2009). Additional measurements of wood 

density were extracted from the scientific literature for species sampled by the NFMPs (e.g. 

Williamson and Wiemann, 2010). We included all wood density values present in the Global 

Wood Density database for every family recorded in a NFMP or the national level species 

list to permit future users to tabulate genus and family level wood density values. 

 

3.5. Outcomes 

3.5.1. Data summary 

 The database contains a total 300,181 records. These records represent 595 

censuses, 526 inventories, 768 NFMP centroids (geolocated center point for each NFMP 

management unit) and 768 NFMP polygons all extracted and digitized from roughly 1000 

NFMPs. The number of NFMPs recorded per conservation ranges from 150 to 250, with 

ACTO having the greatest quantity and ACCVC the fewest (Fig. 3.3a.). A simple analysis of 

the count of NFMPs generated per year across all five conservation areas reveals a surge in 

NFMP production during the years of 1997 and 1998 (Fig. 3.3b.). This trend follows that 

found by Arroyo-Mora et al. (2009) in NFMPs collected entirely from ACCVC. At the tree 

level, the database consists of 253,923 entries: 154,225 from censuses and 99,698 from 

inventories. Trees identified in either a census or inventory represent 525 species, 300 

genera, and 81 families. A large proportion of the species, genera, and families sampled had 
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a frequency of less than 0.01% in the census and/or inventory tables (Table 3.1). Overall, 

395 of the species were sampled in both the inventory and census while 105 species were 

sampled only in the inventory and 44 species were sampled only in the census. The most 

species rich families sampled in the census and/or inventory are Fabaceae, Malvaceae, and 

Lauraceae. Within the taxonomic tables, 1388 species, 417 genera, and 101 families are 

stored. Of the 645 NFMPs with either a census or inventory present in the database, 99 

were missing an NFMP level list (i.e. the list was not present in the original hardcopy NFMP) 

to relate the common names found within them to scientific names. Of the remaining 546 

NFMPs with an NFMP level list, the percentage of trees identified at the species, genus, and 

family  levels within the census and inventory tables was examined (Table 3.2). A large 

improvement in the taxonomic identification of trees is found when moving from the 

species to the genus level. For example, within the inventory table there is a mean increase 

of 11.35% in the fraction of trees identified when moving from the species (69.58%) to 

genus (80.93%) level. A comparison of the census and the inventory results reveals that a 

larger proportion of trees were identified across all taxonomic levels in the census. 

 

3.5.2. Quality assurance 

Quality control within the database was first implemented by setting constraints on 

the data that can be entered into a table’s field.  These field constraints include, but are not 

limited to: unique constraints, limiting a field's data type, checks comparing fields, and 

coding field values. For example, a coded field was used in the census table to limit tree 

status values to ‘cut’, ‘remnant’, ‘parent tree’, and ‘other.’ The field constraints incorporated 

into the database flag and block the entry of illegal data into the database. Overall, 

constraints on the census and inventory tables detected an average error rate of 0.18% 

(±0.53%) in the commercial height and DBH measurements digitized for each NFMP 

census/inventory.  

The second type of quality control occurs after data has already been imported into 

the database. Quality check queries are run to search for spatial and internal tabular 

inconsistencies as well as rare values. A full list of the quality check queries performed in 

the database is given in Table 3.3.  Any data issues highlighted by the check queries or field 

constraints can be compared with the original NFMP digital photos to correct for errors that 
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occurred from the digitization level onwards. In-field errors, already present in the NFMPs, 

were harder to identify and could not be corrected in the database. Instead, any record 

identified as a potential error incurred during field collection was flagged. For example, if a 

tree’s DBH is measured as 260 cm, a warning message will be included alongside the record. 

As buttresses, tree irregularities and lianas can impede the correct measurement of DBH, 

we conservatively assumed that values of such magnitude are potentially the result of 

infield errors. DBH measurement errors were identified by a series of rare value queries 

run on the inventory and census tables. These queries checked for any tree records with a 

DBH greater than 200 cm and any inventory and census tree records with a DBH less than 

the appropriate minimum sampling DBH (standardly 30 cm and 60 cm). Overall, the three 

aforementioned rare value checks returned 7.16% (approx. 18 ,000 records) of all the 

records stored in the census and inventory tables. Within the records returned by these rare 

value queries, 149 data entry errors were uncovered, indicating a 0.78% error rate in the 

process of digitizing DBH measurements. Most of the records returned by these queries 

were instances where trees just below the minimum sampling DBH were recorded (e.g. a 

tree of a 58 cm DBH was recorded in an NFMP’s census). 

 Internal consistency queries were the most helpful form of check queries, finding 

otherwise undetectable issues with the data.  For example, the number of trees with the 

status of cut in a NFMP’s census was compared to the number of trees requested to harvest 

within the same NFMP. This query returns a false value when the two values are not equal 

and indicates by how many trees the values differ (Table 3.4). When run, this query 

tabulated 356 cases where both numbers were equal, 174 cases where values were 

inconsistent and 65 cases where no results were returned due to missing data. Of the 174 

cases where a discrepancy existed, the difference between the counts reported in the tables 

ranged from one to 327 trees, with the largest frequency of cases (38) differing by only one 

tree. For each incident with a difference greater than one, the cause of the inconsistency 

was investigated. This process revealed a range of potential sources of data error which are 

listed in (Table 3.5). While some types of errors found with this query had little impact on 

overall data quality, other, more far-reaching errors were identified and corrected. Not 

digitizing census pages, for example, not only causes inconsistency between the two tables, 

but also represents a significant omission of tree data. If not corrected, this lack of data 
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quality could impact all analyses that use that NFMP or the tree data within it. 

 

3.5.3. Data exploration 

 To illustrate the utility of the database a simple analysis of relative species 

abundance was conducted by querying the database. The results of the analysis revealed 

the three most abundant species recorded in the census or inventory tables at the 

conservation area level (Table 3.6 and Table 3.7). In the inventory table, the three most 

abundant species sampled represent 12.86-42.81% of the trees sampled per 

conservation area. In the census table, the three most abundant species per conservation 

area represent 20.80-50.73% of the trees sampled per conservation area. In three of the 

five conservation areas (ACCVC, ACLA-C, ACTO), P. macroloba was the most abundant 

species sampled in both the census and inventory. Of these conservation areas, the 

largest relative abundance values were found in ACCVC where P. macroloba had a 

relative abundance 0.3317 in the inventory and 0.3595 in the census. Contrastingly, in 

ACAHN, the most abundant species sampled differed in the inventory and census. Here, 

Vochysia ferruginea was the most abundant species within the census data and Dialium 

guianense was the most abundant species within the inventory data. A comparison of the 

inventory and census results reveals that differences in species composition are mainly 

due to the inclusion and reduction in rates of identification of trees in the 30-60 cm DBH 

range (i.e. smaller trees) in the inventory table. Additionally, the magnitude of relative 

abundance values was greater in the census, indicating a greater dominance of particular 

tree species within larger DBH classes (greater than or equal to 60 cm).  In ACOSA, two of 

the most abundant species (Brosimum utile and Qualea paraensis) are not present within 

the top three most abundant species sampled in the other four conservation areas. These 

results suggest that ACOSA differs the greatest in species composition from the other 

areas studies. At a conservation area level, the greatest number of species was recorded 

in census data collected from ACLA-C (294) while the greatest number of genera (201) 

and families (66) were recorded in census data collected from ACAHN (Table 3.8). Within 

the inventory table, the greatest number of species (311), genera (164), and families (54) 

were sampled in ACLA-C (Table 3.8). Despite the variation of total area sampled 

(sampling effort) between conservation areas, these results indicate how many species, 
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genera, and families were captured in the NFMP data collected from the five different 

areas. 

 
3.6. Discussion 

 The design and development of the FGIS geodatabase was tailored to a 

heterogeneous dataset collected over 30 years across Costa Rica. During the design stages, a 

number of procedures were developed in order to standardize and efficiently store the 

dataset. It was particularly important, for example, that scientific names, spellings, and 

taxonomic standards were made consistent and brought up to date. Additionally, the 

geographic projections, the statuses of the trees in the census, and the total area sampled 

per NFMP were all tracked and standardized within the database. The completion of tasks 

such as these allows the data to be compared and more efficiently analyzed across all 

NFMPs. The database’s analytical functionality is increased further by its capacity to store 

spatial and tabular datasets. Spatial data is especially valuable in this case, as it allows the 

data to be utilized in larger scale studies, particularly those that incorporate remote 

sensing.   

A key asset of the database is the inclusion of multiple quality assurance procedures 

(Le Duc et al., 2007; Peacock et al., 2007; Condit et al., 2013). These procedures reduce the 

effort expended during data entry/use and improve overall data quality. The quality control 

system evaluates the entire dataset, finding errors that can be corrected by referencing the 

original NFMP documents. Further, the quality checks identify errors that are present 

within the original NFMPs such as missing census pages or inconsistencies between 

reported numbers. The recognition and flagging of such issues within the database greatly 

improves the reliability of results from future analyses. Quality checks also help to estimate 

the rate and variability of human error that occurred during the various stages of data 

collection (i.e. digitization and data entry) and flag potential in-field measurement errors. 

A caveat of using forest management data not addressed by these queries, however, 

is the reliability of species identification. This is especially pertinent in the tropics where 

species diversity is high and vernacular names are often used during field data collection 

(Lam and Klein, 2008; Lacerda and Nimmo, 2010). The translation of these common names 

to scientific names is error prone as common names can be site, community, or regionally 
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specific and can represent multiple different species (Lacerda and Nimmo, 2010). 

Additionally, the local experts responsible for species identification in forest management 

can vary in their level of expertise and can perform differently based on the working 

conditions (Réjou-Méchain et al., 2011a). As floristic identification is perhaps one of the 

most significant sources of error in Costa Rican forest management practices, it is 

subsequently a significant source of error in the FGIS geodatabase. A potential approach to 

address this issue is the solicitation of expert knowledge for the development of an index on 

the degree of confidence in floristic identification for each species, genus, and family (Réjou-

Méchain et al., 2011a). Future work should also consider the spatial distribution of species 

recorded in the management plans to locate potential outliers or errors incurred during the 

translation of the common names to scientific names in different regions. Although there 

may be issues with the identification of trees in management plans (Lacerda and Nimmo, 

2010), our study is a first attempt to organize this massive amount of data.  

Over a quarter of a million records can now be queried and analyzed as a result of 

the development of the FGIS database. Both spatial and temporal trends in forest 

management can be investigated at a variety of scales. Analyses also reveal potential 

strengths and weaknesses in the dataset. For example, across all conservation areas, a great 

improvement in the fraction of trees identified is seen when moving from the species to 

genus level. Réjou-Méchain et al. (2011a) reported similar findings for commercial 

inventories conducted in the Central African Republic. In tropical forests, patterns of 

biodiversity have been studied at higher taxonomic levels to decrease the amount of data 

errors and noise (Gaston and Williams, 1993; La Torre-Cuadros et al., 2007). As numerous 

identification errors are the result of confusion between species of the same genus, working 

at the genus level specifically (e.g. Prinzing et al., 2003; Villaseñor et al., 2005) decreases the 

overall floristic identification errors. Considering this, analysis at the genus level is a 

favorable approach to take with the NFMP data.  Analyses also expose notable differences 

between inventory and census data. While inventories capture a more unique set of tree 

species, censuses are able to identify a greater percentage of the forest stand. Abundance 

analyses look at how dominant tree species are within a conservation area using inventory 

and census data.  As commercial inventories more accurately identify large trees and 

common species than small trees and rare species (Réjou-Méchain et al., 2011a), confirmed 
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by our comparison of the inventory and census identification results, these abundance 

analyses provide insight into the fraction of trees reliably identified. For example, in ACTO, 

the three most abundant species in censuses represent over 50% of the trees recorded. 

Keeping in mind that abundant species are more accurately identified, it is conceivable that 

over 50% of census tree records are reliably identified to the species level in ACTO.   

The abundance results driven by the NFMP data are consistent with ter Steege et al.  

(2013) who showed that, even in hyper diverse forests, there is a hyperdominace of a few 

species. Further, the NFMP based abundance analysis produced similar results to those 

reported for Costa Rica in the scientific literature. In Osa Peninsula (ACOSA), studies 

confirm that B. utile is an abundant species (Herwitz, 1981; Cleveland et al., 2004; Huber et 

al., 2008). In Eastern Costa Rica (ACCVC, ACLA-C, ACTO, ACAHN), multiple studies validate 

the findings that P. macroloba, Carapa nicaraguensis and V. ferruginea are dominant canopy 

species (Herrera and Finegan, 1997; Webb and Peralta, 1998; Webb, 1999). The 

correspondence of the findings of ecological studies to those found with the commercial 

logging data emphasizes the potential to exploit the NFMP data in ecological studies. The 

count of species, genera, and families sampled within and across the conservation areas 

highlights the biodiversity captured by the logging inventories. A notable proportion of the 

taxonomic data within the tree records, however, was of low frequency. With this in mind, 

the absolute counts should be viewed with discretion as less abundant species are more 

likely to be inaccurately identified in the field (Hanazaki et al., 2007; Kenfack et al., 2007; 

Réjou-Méchain et al., 2011a). 

 
3.7. Conclusions 

 In this study we present the most complete digital record of natural forest 

management in Costa Rica to date, the FGIS geodatabase. Due to the private and detailed 

nature of the data contained in the FGIS geodatabase it is only available for use by assigned 

project collaborators and is not publicly accessible. This tool will permit an improved 

comprehension of carbon stocks and species environment relationships at a scale necessary 

to address the conservation and forest management problems of today. For example, with 

the database, the estimation of aboveground carbon stocks within five conservation areas 

will be made possible, helping to create a national baseline forest carbon stock for the 



39  

country based on estimated biomass (Svob et al., 2014 submitted) from forest management 

data. This analysis has the potential to improve Costa Rica's REDD+ program (Reducing 

Emissions for Deforestation and Forest Degradation). The REDD+ program was designed to 

provide financial incentives to developing countries that can show lower GHG emissions 

from forest degradation and deforestation (Gibbs et al., 2007), where sustainable forest 

management is a key component. 

           The geodatabase will also provide a means to assess species distribution, 

biodiversity, and species environment interactions at a landscape scale (Arroyo-Mora et 

al., 2009). With the NFMPs in a standardized digital format, the database may serve also as 

a tool to evaluate the historical trends and sustainability of natural forest management in 

Costa Rica. This is a key achievement of the database because, as highlighted by Bradshaw 

et al. (2009), the sound management of human-modified landscapes is becoming 

increasingly more essential to the survival of tropical forest biodiversity. This is 

particularly pertinent in Costa Rica where, despite the country's recognition for its 

environmental policies, the sustainability of its NFMP framework has been subject to little 

testing and validation (McGinley and Finegan, 2003). Finally, we provide a framework for 

geodatabase construction that can be used in other tropical countries where natural forest 

management data is available 
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Total 

3.8. Tables and Figures 
 
 
 

Table 3.1. The families, genera, and species sampled in NFMPs. The values reported are a 
count of unique families, genera, or species sampled within the inventory, census, or both 
tables as: (1) total number and (2) the number of those representing less than 0.01% of the 
trees sampled. 

 

Family Genus Species 
< 0.01% 

tree records 
Total

 
< 0.01% 

tree records 
Total

 
< 0.01% 

tree records 
Inventory 66 12 229 60 395 158 
Census 80 13 292 75 500 174 
Total* 81 22 300 105 525 244 
*Total includes both the census and inventory data 

 
 
 
 

Table 3.2. The percentage of trees identified per NFMP in the inventory and census tables 
at different taxonomic levels. 

 

Trees identified (%) 

Taxonomic 
level 

Census 
(mean±SD) 

Inventory 
(mean±SD) 

Family 89.95±15.37 81.21±20.43 
Genus 89.73±15.38 80.93±20.56 

   Species   80.94±17.93   69.58±20.53   
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Table 3.3. List of all quality check queries performed in the database. The tables listed represent 
the tables over which the query is being run. The name of each query is enumerated and in italics. 
The column ‘Type’ refers to whether a query was a spatial (SP), rare value (RV), or internal 
consistency (IC) check query. 

 
Name 

  Table(s)   Description   Type   

 

1. NFMP polygon within conservation area 
nfmp_polygon; nfmp_general; 
ca_polygon 

Checks whether an NFMP’s polygon falls within the bounds of the 
appropriate conservation area polygon as specified in nfmp_general. 

SP 

2. NFMP polygon within district/canton/province 
nfmp_polygon; nfmp_general 
distrito_polygon; canton_ 
polygon; province_ polygon 

Checks whether an NFMP’s polygon falls within the bounds of the 
appropriate province, canton, and district as specified by the district 
listed in the nfmp_general table. 

SP 

3. Census dbh greater than 200 cm 
census Returns census records with a dbh greater than 200 cm. RV 

4. Census dbh less than 60 cm 
census Returns census records with a dbh less than 60 cm. RV 

5. Inventory greater than 200 cm 
inventory Returns inventory records with a dbh greater than 200 cm. RV 

6. Inventory dbh less than minimum specified for sampling 
inventory; inventory_details Returns records with a dbh less than the minimum dbh specified for 

collection in the inventory of a NFMP. 
RV 

7. Elevation greater than 300 m 
nfmp_general Returns NFMP records with an elevation attribute value (max, min, or 

avg) greater than 300 m. 
RV 

8. NFMP duration less than 15 years 
nfmp_general Returns NFMP records where the duration based on the start and end 

years is less than 15 years. 
RV 

9. Scientific names in list up to date 
list; taxonomy_change Returns species from the list table that are outdated and indicates the 

currently accepted name for the given species. 
IC 

10. Census trees to be logged and requested trees to log consistent 
census; nfmp_general For a given NFMP, the number of trees categorized as ‘to log’ in a 

census is compared to the number of trees requested to log. 
IC 

11. Inventory plot count consistent 
inventory, inventory_details Checks whether the number of unique plots recorded in inventory for 

a single NFMP is consistent with the number of plots specified for the 
same NFMP in inventory_details. 

IC 

12. Inventory present 
inventory; nfmp_general Checks whether an NFMP’s inventory recorded as present in 

nfmp_general is present in inventory. 
IC 

13. Census present 
census; nfmp_general Checks whether an NFMP’s census recorded as present in 

nfmp_general table is present in the census. 
IC 

14. List present 
list; nfmp_general Checks whether an NFMP’s list recorded as present in nfmp_general is 

present in the list table. 
IC 

15. NFMP polygon present 
nfmp_polygon; nfmp_general Checks whether an NFMP’s polygon recorded as present in NFMP in 

nfmp_general table is present in the nfmp_polygon. 
IC 
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Table 3.4. Example of output from query checking for an internally consistent 
number of logged trees. The ‘trees requested to log’ is reported in the nfmp_general 
table. The ‘census C tree’ is the count of trees reported with a status of ‘cut’ per 
NFMP in the census table. F (false) in the "values consistent" column indicates an 
inconsistency between the census and nfmp_general tables with regards to the 
number of trees to be logged. The final column indicates by exactly how many trees 
the two tables differ. 

 
 

NFMPID 
Trees requested 

to log 
Census C 

trees 
Values 

consistent 
Difference of 
trees to log 

orcave1998 84 83 F 1 
oresem2003 223 223 T 0 
osfear1997 55 56 F 1 
osfego1993 190 190 T 0 
oshiri1994 25 23 F 2 
osroro1998 97 97 T 0 

   otavar1999   69   69   T   0   
 
 
 
 

Table 3.5. Types of errors detected with quality check query comparing 
nfmp_general and census tables. In the "error(s) correctable" column 'T' signifies 
that the error is correctable and 'F' signifies the error is not correctable. The "impact 
level" column rates the error type by its level of impact on overall data quality with 
'High' having the largest impact and 'Low' having the smallest. 

 
 

Type of Error 
NFMP 
(count) 

Error rate* 
(%) 

Error(s) 
correctable 

Impact 
level 

Duplicate import 8 1.51 T High 
Page(s) not digitized 23 4.34 T High 
Status entry error 31 5.85 T Low 
Error in nfmp_general table 31 5.85 T Low 
1-5 trees not entered 4 0.75 T Low 
Difference of 1 tree** 38 7.17 T Low 
Page(s) missing in NFMP 9 1.70 F Med/High 
NFMP 'C' trees unclear 11 2.07 T/F Low 
Within NFMP, numbers 
Inconsistent 

 

28 
 

5.28 
 

F 
 

Low 

*Error rate within the NFMPs cross-checked with original NFMP photos 
**Differences of 1 tree could fall into many of the error types listed above but was 
categorized separately due to its very low impact on data quality. 
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Table 3.6. The relative abundance of the three most abundant species sampled by 
inventories categorized per conservation. The relative abundance values are given 
in brackets below the species name. Relative abundance values range from 0 to 1. 

 

Conservation Area 
Species (Relative Abundance) 

Rank ACAHN ACCVC ACLA-C ACOSA ACTO 
 

1 
Dialium 

guianense 
(0.0711) 

Pentaclethra 
macroloba 
(0.3317) 

Pentaclethra 
macroloba 
(0.0822) 

Qualea 
paraensis 
(0.0437) 

Pentaclethra 
macroloba 
(0.3138) 

 
2 

Pentaclethra 
macroloba 
(0.0638) 

Carapa 
nicaraguensis 

(0.0341) 

Virola 
koschnyi 
(0.0427) 

Carapa 
nicaraguensis 

(0.0427) 

Carapa 
nicaraguensis 

(0.0918) 
 

3 
Vochysia 

ferruginea 
(0.0436) 

Vochysia 
ferruginea 
(0.0316) 

Prioria 
copaifera 
(0.0389) 

Brosimum 
utile 

(0.0422) 

Pterocarpus 
hayesii 

(0.0225) 
Total* 0.1785 0.3974 0.1638 0.1286 0.4281 
*The total is the sum of the relative abundance of the three most abundant species. 

 
 
 
 
 

Table 3.7. The relative abundance of three most abundant species sampled by 
censuses categorized per conservation area. Relative abundance values range from 
0 to 1. The relative abundance values are given in brackets below the species name. 

 

Conservation Area 
Species (Relative Abundance) 

Rank ACAHN ACCVC ACLA-C ACOSA ACTO 
 

1 
Vochysia 

ferruginea 
(0.1249) 

Pentaclethra 
macroloba 
(0.3595) 

Pentaclethra 
macroloba 
(0.0981) 

Brosimum 
utile 

(0.0775) 

Pentaclethra 
macroloba 
(0.3085) 

 
2 

Carapa 
nicaraguensis 

(0.1061) 

Vochysia 
ferruginea 
(0.0758) 

Carapa 
guianense 
(0.0923) 

Qualea 
paraensis 
(0.0713) 

Carapa 
nicaraguensis 

(0.1738) 
 

3 
Dialium 

guianense 
(0.0889) 

Carapa 
nicaraguensis 

(0.0632) 

Prioria 
copaifera 
(0.0574) 

Carapa 
nicaraguensis 

(0.0592) 

Virola 
koschnyi 
(0.0250) 

Total* 0.3199 0.4985 0.2478 0.2080 0.5073 
*The total is the sum of the relative abundance of the three most abundant species 
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Table 3.8. Number of families, genera and species sampled by census and 
inventories conducted within each conservation area. The values represent the 
count of unique families, genera, and species sampled by censuses and inventories 
conducted within each conservation area. 

 

 
  

CA 

Census  Inventory 

Family 
Count 

Genera 
Count 

Species 
Count 

Area 
Sampled 

(km2) 
 

Family 
Count 

Genera 
Count 

Species 
Count 

Area 
Sampled 

(km2) 
ACAHN 66 201 275 29.2  53 138 227 3.4 
ACCVC 53 155 211 21.8  47 131 214 1.6 
ACLAC 62 194 294 30.3  54 164 311 2.9 
ACOSA 52 157 227 23.1  43 140 247 2.3 
ACTO 53 133 173 19.0  46 104 181 1.9 
Total 80 292 500 123.4  66 229 395 12.2 
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Figure 3.1. Map of Costa Rica and the conservation area system. Conservation areas 
where NFMPs were recorded are shown in white. The dark dots represent the 
NFMPs for which location data was available. 
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Figure 3.2. Schema of the relational structure of the FGIS geodatabase. The 
primary key(s) of each table is in bold and underlined. Attributes only in bold 
represent foreign keys. The symbol '1' represents a 'one to' relationship while the 
'∞' symbol represents a 'many-to' relationship. All solid lines depict a direct 
relationship between tables via foreign and primary keys. The black dashed lines 
linking the census and inventory tables to the list table represents an indirect 
relationship (i.e. the relationship is not through the use of primary/foreign key). 
The black dotted lines indicate the link between tables containing spatial data and 
the projected and geographic coordinate systems tables.
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Figure   3.3.   The   general   trends   in   quantities   of   NFMPs   collected   per   (A) 
conservation area and (B) year. The years represent the year the NFMP was 
submitted to the sub-regional office. It is important to note that the NFMPs counted 
in this figure include those with missing data components (e.g. a NFMP without a 
census would have been included in the count). 
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4.  A wood density and aboveground biomass variability assessment  

using pre-felling inventory data in Costa Rica 

Citation: Svob, S., Arroyo-Mora, J.P. and Kalacska, M. 2014. A wood density and 

aboveground biomass variability assessment using pre-felling inventory data in Costa 

Rica. submitted. 

 

4.1. Context within thesis 
 

 

In this chapter, I use the FGIS database developed and explored in Chapter 3 to 

assess the variability of estimated aboveground biomass both among and within five 

Costa Rican conservation areas. The FGIS database provides the backbone dataset 

and tool for this study, which would not have been possible without the 

standardization, quality control, and logical structuring of the large forest 

management dataset. This study compares the mean and variance of estimated 

aboveground biomass among conservation areas, assesses the spatial variability of 

AGB across regions, investigates the relationship between estimated aboveground 

biomass and wood density, and finally, evaluates the uncertainty associated with the 

estimation of aboveground biomass using natural forest management data. Here, I 

utilize published pantropical allometric models to relate a measurement of diameter 

at breast height to an estimate of aboveground biomass. Further, by relating 

standardized scientific names to natural forest management tree data with the FGIS 

database, I am able to incorporate species and genus specific wood density values 

into my analysis of aboveground biomass. 

 
4.2. Abstract 

 
Background: The high spatio-temporal variability of aboveground biomass (AGB) 

in tropical forests is a large source of uncertainty in the estimation of forest carbon 

stocks. Due to their spatial distribution and sampling intensity, pre-felling 

inventories are a potential source of ground level data that could help reduce this 

uncertainty at larger spatial scales. Further, exploring the factors known to 

influence tropical forest biomass, such as wood density and large tree density, will 

improve our nowledge of biomass distribution across tropical regions. Here, we 
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evaluate (1) the variability of wood density and (2) the variability of AGB across five 

ecosystems of Costa Rica. 

Results: We found that the mean wood density of trees with a diameter at breast 
 

height (DBH) greater than 30 cm was highest, 0.623±0.182 g cm-3 (mean±SD) in the 

most northern region of Costa Rica studied, Huetar Norte. Using forest management 

or pre-felling inventories, we determined that the region with the highest estimated 

AGB (DBH≥30cm) was Costa Rica's Osa peninsula (173.47±60.23 Mg ha-1). The 

density of large trees explained approximately 50% of the variability of estimated 

AGB across the five ecosystems studied. Comparing the AGB estimates of our study 

to published estimates reveals that, in the regions of Costa Rica where AGB has been 

previously sampled, our forest management data based approach produced a 

similar range of values. 
 

Conclusions: This study presents the most spatially rich analysis of ground level 

AGB data in Costa Rica to date. Using data from pre-felling inventories from forest 

management plans, we found that the estimated AGB within and among five Costa 

Rican ecosystems is highly variable. Combining commercial logging inventories with 

ecological plots will provide a more representative ground level dataset for the 

calibration of the models and remotely sensed data used to estimate AGB at regional 

and national scales. Additionally, because it is the non-protected areas of the tropics 

that offer the greatest opportunity to reduce rates of deforestation and forest 

degradation, logging inventories offer a promising source of data to support 

mechanisms such as the United Nations REDD+ (Reducing Emissions from Tropical 

Deforestation and Degradation) program. 

 
 
4.2.1 Keywords: Forest Management, Aboveground Biomass, Wood Density, 

Tropical Forest, Costa Rica 

 
 
4.3 Introduction 

 
Tropical forests play a vital role in regulating the Earth’s climate through the 

processes of evapotranspiration and CO2 uptake. While these areas represent only 
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7% of global land cover (Bradshaw et al., 2009), they store roughly 55% of the 

world’s forest carbon stock (Pan et al., 2011). Tropical forests are among the most 

carbon dense ecosystems (242 Mg C ha-1) in the world (Pan et al., 2011). 

Approximately 56% (193-223 Pg C) of their carbon is stored in the form of biomass 

alone (Pan et al., 2011; Saatchi et al., 2011; Baccini et al., 2012). During the 1990s and 

early 2000s, a substantial portion of this carbon stock suffered due to deforestation, 

which reached an estimated rate of 12.9·106 ha yr-1 (Malhi, 2000). The deforestation 

and degradation of tropical forests is also the second largest source of anthropogenic 

CO2 emissions (Van de Werf et al., 2009), releasing carbon at an estimated net rate of 

1.0 Pg yr-1between 2000 and 2010 (Baccini et al., 2012). 

The United Nations REDD+ (Reducing Emissions from Deforestation and 

Forest Degradation) program is an innovative global mechanism that aims to provide 

monetary benefits to developing tropical countries that can show an increase in 

forest carbon stocks from an established national baseline (Gibbs et al., 2007). In the 

past decade, the number of studies seeking to improve the methods and data used to 

accurately estimate the spatio-temporal variation of tropical forest carbon stocks, 

supporting REDD+, have substantially increased (Petrokofsky et al., 2011). Today, 

much of this research relies upon the relationship between aboveground biomass 

(AGB) and forest carbon. Despite recent efforts to estimate AGB in the tropics (and in 

turn carbon) (refer to Saatchi et al., 2001; Baccini et al., 2012; Asner et al., 2013), a 

large degree of uncertainty in the spatial distribution and accuracy of these estimates 

remains (Clark and Kellner, 2012; Mitchard et al., 2013). One of the key factors in 

reducing uncertainty in AGB estimates is using a spatial scale fine enough to capture 

variability across the landscape. 

Remote sensing and ground data (i.e. forest inventories) are two techniques 

that have been proposed for the production of reliable carbon estimates (e.g. Hill et 

al., 2013). Remote sensing is an advantageous approach as it can provide wall-to- 

wall coverage of an entire country. Remotely sensed data, however, must be 

calibrated/validated with ground truth measurements (Drake et al., 2002; Patenaude 

et al., 2005). Additionally, remote sensing instruments may not be sensitive enough 

to detect the variability of biomass within and across the high-density forest stands 
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(Patenaude et al., 2005; Goetz et al., 2009) typical of tropical moist and tropical wet 

ecosystems. Ground data collected for scientific research (ecological data), is the 

most common data source employed to estimate AGB due to its high level of detail 

and systematic nature. Nevertheless, ecological data has its own weaknesses when 

estimating AGB such as: (1) the standard plot size of 0.1 ha (Brown and Lugo, 1992) 

is too small to capture AGB variability (Clark and Clark, 2000); (2) plots are 

sometimes biased towards high density (ideal) forest locations (Brown and Lugo, 

1992); and (3) plots cover only a small fraction of a country’s total forested area 

(Maniatis et al., 2011). Commercial logging inventories may provide a solution to 

these problems due to their spatial distribution and sampling intensity (Couteron et 

al., 2003; Maniatis et al., 2011). Logging inventories are common to tropical countries 

and represent a large source of data on forest structure and composition (Putz et al., 

2011). With their success in measuring diversity on large spatial scales (Réjou-

Méchain et al., 2011a), determining ecological factors that influence forest structure 

(Couteron et al., 2003), and estimating emission factors under REDD+ (Maniatis et al., 

2011), logging inventories may provide a suitable source of forest data, 

complementing ecological datasets and helping to estimate baseline carbon stocks. 

In Costa Rica, selective logging inventories or pre-felling inventories (we use 

this terminology in this paper indistinctively) are developed under a Natural Forest 

Management Plan (NFMP) framework (Arroyo-Mora et al., 2009). NFMP data is 

available for most of the country’s ecosystems below an elevation of 300 meters, 

accurately representing the heterogeneity of the Costa Rica’s lowland landscape The 

country is divided into 11 conservation areas (CAs) (Boza, 1993), each encompassing 

distinct forest ecosystems. Despite the country’s small size (approximately 51,000 

km2), it contains a rich diversity of tropical ecosystems ranging from dry to wet 

forests. 

A NFMP is required before the forest stand of a privately owned property can 

be selectively logged. In order to be legally approved to log, the owner must hire a 

certified forester to conduct an inventory and census of the forest stand (Arroyo- 

Mora et al., 2009). In an inventory, every tree with a diameter at breast height (DBH) 
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equal to or greater than 30 cm is measured and identified in plots of 0.3 ha. For the 

same forest stand, a census is carried out to measure and identify every tree with a 

DBH equal to or greater than 60 cm. For this study we use a standardized relational 

geodatabase encompassing Costa Rican pre-felling inventory data (Svob et al. 2014a 

in press). 

The main objective of this study is to assess to variability of wood density and 

estimated AGB across five ecosystems in Costa Rica. Wood density is an important 

predictive variable when estimating AGB (Brown and Lugo, 1992; Chave et al., 2005; 

Keeling and Phillips, 2007; Baker et al., 2009). As wood density is known to vary 

among different forest communities (Baker et al., 2004; Muller-Landau, 2004; Chave 

et al., 2009; Zhang et al., 2011), this variable is also critical to studying the 

differences in AGB across a landscape. Despite these findings, wood density has yet 

to be studied or implemented when estimating AGB across Costa Rica. Further, 

although our analysis is based on medium to large trees (30 and 60 cm DBH), studies 

have shown that large trees constitute a disproportionate fraction of AGB and drive 

the variations in biomass across the tropics (Slik et al., 2013). Therefore, despite a 

lack of tree data below the 30 cm DBH range, patterns of AGB variability may be 

discernible from our NFMP dataset. A standard method to estimate a tree's biomass 

employs an allometric equation to relate measurements on DBH to units of biomass. 

The choice of allometric model is critical and should be based upon both the aim of 

the study (Baker et al., 2004) and the characteristics of the dataset (Chave et al., 

2004). Allometric models should be representative of the DBH range and ecosystem 

being studied (Chave et al. 2004). Additionally, to allow for regional scale 

comparisons, AGB estimates must be based on a consistent regression approach to 

avoid the confounding of results by variations inherent in different models (Baker et 

al., 2004). 

In recent years, the pantropical allometric models developed by Chave et al. 

(2005) have been widely applied across the globe to estimate AGB. In Costa Rica, 

however, numerous studies of biomass have employed Brown’s (1997) equation for 

wet forests (e.g. Clark and Clark, 2000; Letcher et al., 2009; Clark et al., 2011; Saatchi 

et al., 2001) as it was calibrated with data collected at Costa Rica's La Selva 
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Biological Station. For this study, we believe Brown’s (1997) equation has many 

disadvantages when compared to those developed by Chave et al. (2005). These 

shortcomings include: (1) the representation of a smaller DBH range; (2) the 

development of the equation from a smaller sample size; (3) the limited application 

of the equation outside of Costa Rica (making the comparison of AGB estimates with 

other countries/studies more complex); and (4) the absence of wood density as a 

parameter which is an aspect of forest structure that varies significantly at regional 

scales (Baker et al., 2004; Chave et al., 2009). 

 With the use of allometric models (Chave et al., 2005), the Global Wood Density 

database (Chave et al., 2009; Zanne et al., 2009), the pre-felling inventory database, 

and national measurements of wood density found in the scientific literature (e.g. 

Williamson and Wiemann, 2010), this study will first evaluate the variability in wood 

density and second assess the variability in estimated AGB across five ecosystems in 

Costa Rica. Specifically, our study uses a NFMP database for five conservation areas to 

address the following questions: (1) What are the patterns of wood density variability 

at the CA-level and between data produced by the census and inventory (i.e. sampling 

protocols)?; (2) What is the variability of estimated AGB within and among CAs?; (3) 

Do estimated AGB values differ between the two sampling protocols? (4) What is the 

uncertainty associated with AGB estimated using natural forest management data? As 

ground level data from pre- felling inventories covers a greater area than ecological 

plots within the five ecosystems being studied, our study will better capture the 

spatial heterogeneity of wood density and estimated AGB across the landscape. 

Through this analysis, we can enhance our understanding of the spatial distribution of 

estimated AGB and, in combination with both ecological and remotely sensed data, 

more reliably map and estimate national forest carbon stocks. 

 

4.4 Methods 

4.4.1 Study area and data 

 

This study used a database of NFMPs from five conservation areas: ACLA-C 

(Caribbean La Amistad Conservation Area), ACAHN (Arenal Huetar Norte 
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Conservation Area), ACTO (Tortuguero Conservation Area), ACCVC (Central Volcanic 

Conservation Area), and ACOSA (Osa Conservation Area) (Figure 4.1). These 

conservation areas cover the country’s Atlantic lowland forests, northern lowlands, 

and central and south Pacific forests, encompassing the regions where selective 

logging has been most heavily practiced. All five conservation areas include natural 

forest management plans that fall within the tropical wet (4000-8000 mm 

precipitation yr-1) and/or rain (>8000 mm precipitation yr-1) forest lifezones 

(defined by Holdridge 1979). Only ACLA-C and ACAHN include natural forest 

management plans that represent the tropical moist (2000-4000 mm precipitation 

yr-1) forest lifezone. The management plans sampled largely represent a lowland 

ecosystem (0-500 m a.s.l.3) although a small subset of the data falls within the 

transition zone from lowland to premontane (500-1500 m a.s.l.) forest. Natural 

forest management plan forest type was classified using the Life Zone System Map 

from the Atlas Costa Rica 2008 (Instituto Tecnológico de Costa Rica, 2008). All 

management plans were carried out in primary forest. 

 
4.4.2 The variability of wood specific gravity among CAs and sampling protocols 

The variability of wood density across Costa Rica can be illustrated by 

differences found in wood density between conservation areas, NFMPs, and the 

different sampling protocols (census and inventory). The greater the variability in 

wood density, the more important it becomes to include this parameter when 

producing AGB estimates comparable at a landscape-scale. To carry out the analysis, 

we excluded data from NFMPs with less than 80% of their trees identified to the 

species or genus level. The wood density value for each tree in a NFMP was selected 

in decreasing order of preference from (1) a species-level average, (2) a genus-level 

average, and (3) a NFMP-level average. Mean NFMP wood density was calculated 

separately for each census and inventory. These NFMP averages were determined 

by summing the wood density of all stems with a species or genus level value. 

Differences between the wood density of CAs and the two different sampling 

protocols were tested with a one-way ANOVA and a multiple comparisons procedure 

                                                           
3
 In text, a.s.l. refers to above sea level. 
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using the grouping variables conservation area and sampling protocol. All 

conservation area level statistical analyses only included tree data that met the 

aforementioned NFMP taxonomic identification conditions. All of the analyses were 

carried out in MATLAB version R2013b (The MathWorks Inc., Natick, MA, USA) 

unless otherwise specified. 

 
4.4.3 Estimating tree-level AGB 

In this study, we denote estimated AGB as estimated aboveground biomass 

(EAGB), following Clark and Kellner (2012). To determine EAGB per tree, Chave et 

al.’s (2005) allometric models for wet and moist forests were applied. The EAGB of 

wet and rain forest lifezones was estimated by applying the wet forest equation: 

       

                                                                      

(Equation 4.1) 

Correspondingly, the EAGB of forests within the tropical moist lifezones was 

estimated using the moist forest equation: 

       

                                                                     

(Equation 4.2) 

 

where ρ is wood density in g cm-3, DBH is in cm, and EAGB is given in kg tree-1. Wood 

density values were selected in decreasing order of preference from (1) a species-

level average, (2) a genus-level average, (3) a NFMP-level average, and (4) a 

conservation area level average. A large portion of the variation in wood density is 

captured at the genus-level, making mean genus wood density the second best 

option when estimating EAGB (Baker et al., 2004; Chave et al., 2009). We use the 

mean NFMP wood density for a tree that was present in a NFMP with at least 80% of 

its trees identified to the genus or species level and was missing a corresponding 

species or genus level wood density. For a tree that was reported in a NFMP with 

less than 80% of its trees identified to the species or genus level and lacked wood 

density information, we used a conservation area level mean wood density. 
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4.4.4 Estimating census and inventory AGB 

To calculate EAGB per unit area of a census, the EAGB values per tree with a 

DBH greater than or equal to 60 cm were summed and then divided by the NFMP's 

productive area of the forest stand. The productive area is the total area of the forest 

stand sampled by a census. To calculate EAGB per unit area of an inventory, the 

EAGB values per tree with a DBH greater than or equal to 30 cm were summed 

across each plot and then divided by 0.3 ha (area of the plot). Finally, EAGB was 

averaged across all plots within a given NFMP. 

An outlier analysis of all of the resulting EAGB values was performed, 

pinpointing cases where EAGB did not fall between the 1.5 lower and 1.5 upper 

interquartile range. All outliers were cross-checked with the original hardcopy 

versions of the NFMPs. If the values were the result of uncorrectable errors present 

in the original NFMPs, they were excluded from any further analyses. 

To assess the amount of spatial autocorrelation among the NFMPs sampled, 

we evaluated the distribution of Moran’s I with a spatial correlogram as applied in 

SAM version 4.0. Spatial correlograms indicate the correlation between pairs of 

spatial observations as the distance between them is increased (Rangel et al., 2006). 

As the values of Moran’s I were relatively small, ranging between 0.154 and -0.209, 

we did not include any additional methodological approaches to account for spatial 

autocorrelation in later analyses. 

 
4.4.5 Comparing the EAGB of the sampling protocols and CAs 

Differences in EAGB between conservation areas and between sampling 

protocols were tested with a one-way ANOVA and a multiple comparisons 

procedure using CA and sampling protocol as the grouping variables. We also 

evaluated differences in the density of large trees (DBH≥70cm) between CAs and 

sampling protocols, as the recent study of Slik et al. (2013) found that large trees 

explained up to 70% of the variation in EAGB across the tropics. 

In order to compare the data captured by inventories and censuses more 

directly, EAGB was recalculated for each inventory including only the trees 

that would be sampled during a census (DBH≥60cm). To assess whether there was a 
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significant difference in this data, a paired t-test was applied. As multiple NFMPs only 

included census data (DBH≥60cm), we attempted to develop a model to estimate the 

EAGB of stems with a with a DBH≥30cm and a DBH<60 cm. We attempted to develop 

a model by relating, for each pre-felling inventory, the EAGB of trees with a 

DBH≥60cm to the EAGB of trees with a DBH≥30cm and a DBH<60cm. We compared 

the ability of a number of regression models (linear, exponential, logistic, and 

polynomial) to capture a relationship between EAGB (DBH≥60cm) and EAGB 

(60cm<DBH≤30cm). 

 
4.4.6 Evaluating the uncertainty of AGB estimates 

Uncertainty can be introduced to a tree’s EAGB through DBH measurement 

errors (σMDBH), wood density measurement errors (σMρ), and errors inherent in 

the allometric model itself (σA) (Chave et al., 2004). In this study, we evaluated the 

uncertainty of tree-level AGB estimates introduced by error in wood density 

measurements (σMρ) at the four following levels: species (σMρ:sp), genus 

(σMρ:gen), NFMP (σMρ:NFMP), and CA (σMρ:CA). We hypothesized that the 

measurement error will increase as the source of wood density increases in 

taxonomic scale. To evaluate errors introduced by the allometric models 

themselves, we reiterated the calculation of a tree’s EAGB while varying ε 

(Equations 4.3 and 4.4 before) based on the residual standard error (RSE). Monte 

Carlo simulations were run in MATLAB version R2013b (The MathWorks Inc., 

Natick, MA, USA) to simulate the parameters (wood density and residual standard 

error of the allometric model (ε)) and determine both wood density measurement 

error and allometric model error. 

 As wood density values vary at the tree level within NFMPs, conservation areas, 

species, and genera (Chave et al., 2009), using mean wood density values to estimate 

AGB will introduce measurement error. Further, in forest management inventories, 

trees are identified in the field by common names and later related to scientific names. 

This methodology can result in the misidentification of species (Lacerda and Nimmo, 

2010) and therefore, additional wood density measurement errors. We evaluate wood 

density errors under the assumption that the errors have a centered normal 
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distribution. The distribution of errors for each tree uses the calculated mean and 

standard deviation of the appropriate species, genus, NFMP, or conservation area. We 

randomly selected 10,000 trees (5,000 from the census and 5,000 from the inventory) 

to evaluate the uncertainty at each level. For each tree, we calculated EAGB 1,000 

times while varying the wood density parameter by a random normal distribution. 

As allometric models are typically created using a regression on log-

transformed variables, there is inherent error in them. This uncertainty is the result 

of trees departing from the exact allometry described by the models (Chave et al., 

2004). Errors in tree EAGB estimates due to the allometric model were assessed by 

varying ε (Equation 4.3 and 4.4) following the methodology of Maniatis et al. (2011). 

We assumed that ε followed a centered normal distribution with a mean of 0 and a 

standard deviation of 0.356 (residual standard error reported for the models in 

Chave et al., 2005). ε was incorporated into the EAGB equations using the same 

structure as Maniatis et al. (2011). For wet forests the model became: 

       

                                                

 0.0281   lnDBH3  expε     (Equation 4.3) 

while for moist forests is became: 

                                                      

 0.0281 x lnDBH3 xexpε      (Equation 4.4) 

Following the previously described methodology, 10 000 were randomly selected 

from the census and inventory and, for each tree, EAGB was calculated 1000 times 

while varying the ε parameter by a random normal distribution. 
 

To evaluate the uncertainty of EAGB at the census and inventory 

levels, EAGB was simulated 1,000 times for every tree of 100 randomly selected 

censuses and 100 randomly selected inventories. For each simulation, we varied 

both wood density and ε simultaneously following the above sampling 

methodology. Simulated EAGB values were compared, revealing the uncertainty and 

precision of the reported EAGB values. 
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4.5 Results 

4.5.1 The variability of wood density 

 Among all conservation areas, ACLA-C had a significantly lower wood density 

(inventory: 0.528±0.161 g cm-3, p<0.01; census: 0.530±0.1520 g cm-3, p<0.01) 

(mean±standard deviation unless otherwise specified) (Table 4.1). No difference in 

wood density was detected in the census data among ACOSA, ACCVC, and ACAHN. 

Based on the inventory data set (either DBH≥30cm or only including DBH≥60cm), 

however, ACAHN had a significantly higher wood density than the other four 

conservation areas (0.623±0.182 g cm-3 and 0.636±0.197 g cm-3 respectively). The 

greater mean wood density found in ACAHN is due to a larger fraction of trees within 

the 0.8 to 0.9 g cm-3 range (Figures 4.2a and 4.2b). This is a result of the high density 

of the Dialium guianensis in ACAHN (Svob et al., 2014b submitted). In ACCVC and 

ACTO, a prominent peak in the percent of stems within the 0.6 to 0.7 g cm-3 range can 

be attributed to the high relative frequency of Pentaclethra macroloba. The range of 

wood density values sampled was similar in all five CAs. Additionally, in all 

conservation areas, the mean wood density sampled by the inventory and that 

sampled by the census did not significantly differ. 

 
4.5.2 The variability of EAGB 

Based on inventory data, the estimated AGB (EAGB) (DBH≥30cm) found in 

ACAHN and ACCVC was significantly lower than that in ACLA-C and ACOSA (p<0.05) 

(Figure 4.3 and Table 4.2). While ACAHN, ACCVC, ACTO, and ACLA-C all shared 

similar inventory EAGB values with at least one other conservation area, only in 

ACOSA did EAGB differ significantly from all other CAs. In fact, ACOSA presented the 

highest mean inventory EAGB (173.47±60.23 Mg ha-1, p<0.05). 

Based on census data, ACAHN had the lowest EAGB, significantly differing 
 

from ACLA-C, ACTO, and ACOSA (p<0.05) (Figure 4.4 and Table 4.2). Simply ranking 

conservation areas in decreasing order of mean EAGB (Table 4.2), reveals that the 

overall trends are similar between sampling protocols. For example, ACAHN had one 

of the lowest mean EAGB values in both the census and inventory data (39.77±23.48 

Mg ha-1 and 136.63±60.08 Mg ha-1). A paired t-test comparing the EAGB of trees with 



61  

a DBH≥60cm from the census and inventory detected a significant difference 

between the two sampling protocols (n=366, p<0.01). Across all five conservation 

areas, inventories generally produced higher EAGB values than censuses of the same 

forest stand (Figure 4.5). 

Our attempt to relate the EAGB of trees with a DBH≥60cm to the EAGB of 

trees with a DBH≥30cm but <60cm did not indicate a strong relationship between 

the two variables (e.g. linear regression results adj R2: 0.043, F=19.9, p<0.01, 

n=422). Although we were unable to find a relationship between the two variables, 

this analysis demonstrates the amount of variance in the structure of Costa Rican 

forests (Figure 4.6a). 

 
4.5.3 The density of large trees (DBH≥70cm) 

We found a significant correlation between the density of large trees 
 

(DBH≥70cm) and EAGB (DBH≥30cm) (correlation coefficient: 0.728, n: 422, adj R2: 
 

0.533, F= 470.6, p<0.01) (Figure 4.6b). Our results show that 53.3% of the variation 

in EAGB across five Costa Rican conservation areas was explained by the density of 

large trees. Additionally, trends in the density of large trees per conservation area 

match trends in EAGB per conservation area. For example, in ACOSA, the EAGB and 

density of large trees (16.48±8.08 tree ha-1) were both significantly higher than in 

the four other CAs (Table 4.1). Furthermore, the two conservation areas with the 

lowest mean EAGB (ACAHN and ACCVC) also had the lowest mean density of large 

trees (6.20±3.54 and 6.73±4.00 tree ha-1 respectively). Across all conservation areas, 

a pairwise t-test indicates a significantly higher number of large trees ha-1 was 

recorded by the inventory than the census of the same forest stand (n=366, p<0.01). 

 
4.5.4 Uncertainty analysis 

At the tree-level, when moving from species wood density 

(σMρ:sp=0.110〈EAGB〉) to genus wood density (σMρ:gen=0.151〈EAGB〉), we found a 4% 

increase in the uncertainty of EAGB due to wood density measurement error (σMρ).
 

We found that an even greater amount of EAGB uncertainty resulted from using
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NFMP (σMρ:NFMP

 

=0.271〈    〉) or conservation area (σMρ:CA

 

=0.281〈    〉) level wood 

density values. The uncertainty due to allometric model error (σA) for each tree was 

0.371〈    〉  Hence, based on our Monte Carlo uncertainty analysis, the uncertainty of 

a tree’s EAGB can range from 48% to 65% of its EAGB depending on the level of wood 

density used.  

At the stand level, random measurement and allometric model errors 

counteract one another, decreasing their impact on EAGB uncertainty and increasing 

the overall precision of EAGB (Figure 4.7). The uncertainty of EAGB from 

a NFMP’s inventory ranged from 0.021〈EAGB〉 to 0.171〈EAGB〉. At the census level,
 

the uncertainty of EAGB for each NFMP ranged from 0.011〈EAGB〉 to 0.101〈EAGB〉.
 

We observed that the uncertainty of a given NFMP’s EAGB was principally 

dependent on the number of trees sampled and the total area sampled (Figure 4.7). 

In Figure 4.7, we also observed that the uncertainty of EAGB decreases as the 

number of trees (Figure 4.7a) and the total area sampled increases (Figure 4.7b and 

4.7c) following a power function. 

 

4.6 Discussion 

4.6.1 The variability of wood density 

 Our study demonstrates for the first time the variability of wood density across 

five Costa Rican conservation areas based on pre-felling inventory data. We found the 

most northern forests included in our study, located in ACAHN, typically contain trees 

of higher wood density than those located in the other conservation areas sampled. In 

contrast, our results show that the southeastern lowland forests of ACLA-C house trees 

that tend to have lower wood density values. The regional differences between wood 

density values detected by our study indicate the importance of including this variable 

for the production of AGB estimates that are comparable at regional scales across 

Costa Rica. This variation also suggests that using more general country or pantropical 

scale wood density values when estimating AGB may lead to inaccurate results, 

underestimating the variability of EAGB across tropical regions (Baker et al., 2004; 

Muller-Landau, 2004). The regional wood density values found express the similarities 

and differences in species composition between the five conservation areas studied. 
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Beyond species composition, it is also known that wood density is closely linked to a 

forest’s functional composition as light-demanding fast-growing species commonly 

have lower wood densities than shade-tolerant ones (King, 1991; Whitmore, 1998). 

Building upon this idea, we believe that both natural and human disturbance regimes 

may play a key role in shaping the variation of EAGB and wood density among the 

forest stands and conservation areas studied. 

 
 
4.6.2 The variability of EAGB 

The variation of EAGB among NFMPs within any given conservation area 

reveals the heterogeneity of EAGB across the five conservation areas (Figure 4.1). We 

found, based on the pre- felling data, that the forest stands of ACOSA are some of the 

most biomass rich areas of Costa Rica while, those of ACAHN are some of the most 

biomass poor. Supporting the findings of Stegen et al. (2009), a comparison of 

conservation area level wood density and EAGB trends suggests that wood density 

alone cannot explain regional EAGB variability. For example, despite having one of 

the highest mean wood density values, ACAHN has one of the lowest mean EAGB 

values. The variation of EAGB between NFMPs was very high, as indicated by the 

large standard deviation of EAGB among conservation areas (Table 4.2). Our findings 

highlight the need for a better understanding of both the environmental and human 

variables influencing the distribution of EAGB across spatial scales. For example, 

studies have found that forest fragmentation has a strong negative impact on AGB 

and AGC (aboveground carbon) due to a significant increase in the mortality of large 

trees near forest edges (Laurance et al., 2000; Nacimento and Laurance, 2004). A 

greater comprehension of the factors controlling EAGB distribution will allow for the 

production of more reliable EAGB maps at local, regional, and national scales. 

Comparing the AGB estimates of our study to published estimates reveals that, in the 

regions of Costa Rica where EAGB has been previously sampled, our NFMP based 

approach produced a similar range of values. A study conducted at the La Gamba 

biological station in ACOSA reported the EAGB of trees with a DBH≥30cm was 

218.46±29.01 Mg ha-1 (Hofhansl et al., 2012). After considering one standard 

deviation from the mean, the EAGB determined from NFMPs (173.47±60.23 Mg ha-1) 
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overlaps with the published estimates of Hofhansl et al. (2012). At ACCVC’s La Selva 

biological station, Clark and Clark (2000) found the density of large trees ranged 

from 4.7 to 10.1 stems ha-1 and the EAGB of large trees (DBH≥70cm) ranged from 

22.6 to 55.4 Mg ha-1. The analysis of ACCVC NFMPs found values comparable to those 

reported by Clark and Clark (2000), with a large tree density of 5.27±3.39 tree ha-1 

(census) and 6.71±4.02 tree ha-1 (inventory) and a large tree (DBH≥70cm) EAGB of 

27.53±18.06 Mg ha-1 (census) and 34.84±22.43 Mg ha-1 (inventory). This indicates a 

positive aspect in using NFMP data for assessing biomass and carbon (Maniatis et al., 

2011). 

Over half of the variation in EAGB across the five conservation areas sampled 

in this study was explained by the density of large trees. Although the strength of 

this predictive variable was approximately 20% less than the value reported by Slik 

et al. (2013), our study supports the conclusion that large tree density accounts for 

a significant portion of EAGB variability across tropical regions. Additionally, we 

found that the patterns of EAGB and large tree density matched among 

conservation areas, demonstrating the importance of large trees as drivers of 

regional EAGB differences across Costa Rica. 

Despite such a great amount of EAGB variability across NFMPs, a weak 

relationship was found between the EAGB of trees with a DBH<60cm but ≥30cm 

and the EAGB of trees with a DBH≥60cm. If these results are consistent throughout 

other components of forest biomass, they indicate that models developed to 

estimate unmeasured portions of forest biomass based solely on the EAGB of 

measured forest components (e.g. Maniatis et al., 2011) may lead to an 

underestimation of the variability of forest biomass across the tropics. Future 

studies aiming to identify key variables that best explain how EAGB is distributed 

throughout different DBH classes and other forest stand components (e.g. lianas, 

coarse woody debris) could greatly improve the accuracy of AGB estimates 

(particularly in smaller trees) and in turn, the effort required to conduct large scale 

studies. 

Our results show that the plot based sampling methodology of NFMPs (i.e. the 

inventory) tends to overestimate EAGB when compared to EAGB values calculated 
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from the census of an entire forest stand. Houghton et al. (2001) reported a similar 

result, finding a weak negative correlation between area sampled and EAGB. Both 

our results and those of Houghton et al. (2001) indicate that the total area sampled 

may have important negative impacts on tropical AGB estimates. An additional 

source of the differences found may be explained by the location and distribution of 

inventory plots within forest stands. Although NFMP protocols specify that plots be 

randomly placed, we found a significant bias towards higher EAGB regions of the 

forest stand. As we do not have data to fully resolve the reason behind the bias, we 

hypothesize that it may be explained by a desire to achieve a higher economic 

outcome from the NFMP (i.e. to log a greater number of species and trees) and/or to 

reduce sampling effort (i.e. the placement of plots in more convenient areas of the 

forest stand). No matter the reason behind the bias, this finding brings to light the 

need to evaluate the sustainability of forest management practices in Costa Rica. If 

inventories are not only overestimating the number and EAGB of trees with a 

DBH≥60cm, but the number and EAGB of trees within the 30 cm to 60 cm DBH range, 

they may also be overestimating the capacity of forests to recover after a selective 

logging event (Blanc et al., 2009). 

 
4.6.3 The uncertainty of EAGB 

Our uncertainty analysis explored how incorporating wood density values at 

different scales in allometric models will introduce different amounts of uncertainty 

into a tree's estimated AGB. We found that more general stand level and regional 

wood densities can lead to uncertainties in the EAGB of a single tree between 27% 

and 28%. Further, we investigated how much the uncertainty of a tree’s EAGB will 

increase when using a genus versus a species level wood density average. Although 

the 4% increase in uncertainty reflects the taxonomic composition of the forest 

stands sampled in this study, we believe that future work should consider this 

source of uncertainty when reporting EAGB estimates. Particularly, studies should 

pay greater attention to species and genera that exhibit high levels of wood density 

variability in the tropics (refer to Chave et al., 2006 for a list of genera). The impact 

of wood density variability on EAGB uncertainty will be the greatest when (1) the 
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species and/or genera sampled are highly variable and (2) the highly variable 

species and/or genera compose a notable portion of a forest stems and the wood 

density values incorporated into allometric models. When moving from the tree level 

to the plot level, the uncertainties introduced by measurement errors (wood density 

or DBH) decrease as the number of trees sampled increases. Errors introduced by the 

allometric model, on the other hand, can be either an issue of accuracy or precision 

(Chave et al., 2004; Maniatis et al., 2011). If the allometric error is consistent, 

regardless of sample size, an accuracy error is present (i.e. the allometric model does 

not apply to or represent the given area). If the allometric error differs between trees 

and decreases with an increase in sample size, it is a precision error. As this study 

does not include direct tree biomass measurements collected via destructive 

sampling, the accuracy of the allometric model could not be addressed (Clark and 

Kellner, 2012). Therefore, in our uncertainty analysis we simulated the impact of 

random allometric model error on EAGB to evaluate the precision of the allometric 

models, finding that allometric model errors introduced 37% uncertainty to tree 

level EAGB values. It is important to note that the development of Chave et al.’s 

(2005) wet forest model included samples collected in Costa Rica (La Selva) while 

the moist forest equation did not. Future studies should evaluate the accuracy and 

applicability of these models in Costa Rican forests, particularly those that did not 

incorporate any Costa Rican data during their development.  

 Allometric model selection is an important source of error that was not directly 

addressed in this study.  Several studies comparing the results of allometric models 

have shown they produce vastly differing results (e.g. Chave et al., 2004; Segura and 

Kanninem, 2005; Komiyama et al., 2008; Pelletier et al., 2012). Further, Pelletier et 

al. (2012) demonstrated that two different allometric models can result in estimated 

annual emissions from deforestation that differ by up to 48%. Given the potential 

impact of model selection on forest biomass estimates and in turn, the success of 

international mechanisms such as REDD+, future studies will need to consider this 

source of uncertainty. In this study we consciously selected the Chave et al. (2005) 

models as they fulfill several key criteria (the inclusion of wood density, 

representation of a large DBH range, and development from a large sample size).  
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 Feldpausch et al. (2012, 2013) found that an additional source of error in AGB 

estimates results from the exclusion of height as a predictor variable in allometric 

models. Regardless of this finding, Feldpausch et al. (2013) also reported that the 

decrease in AGB estimation occurred only in smaller DBH classes (≥40cm) and not 

larger ones. As our study only includes trees with a DBH≥30cm, we believe that the 

exclusion of height in the models applied to estimate AGB will not greatly increase 

the error of the reported values. 

 
 
4.7 Conclusions 

This study presents the most spatially rich analysis of ground level EAGB 

data in Costa Rica to date. Using data from forest management inventories, we found 

that the EAGB within and among five Costa Rican conservation areas is highly 

variable. Further, we detected bias in the NFMPs towards biomass rich areas of the 

forest stand, demonstrating the need to assess the sustainability of Costa Rican forest 

management practices. Expanding upon this finding, if ecological plots are also being 

preferentially located in more easily accessible areas of forest stands, studies 

may not be accurately capturing the EAGB of tropical forests (Clark and Kellner,  

2012). Despite the potential taxonomic issues and missing DBH classes within 

NFMPs, our EAGB values were comparable to those reported in the scientific 

literature, supporting their inclusion in future EAGB assessments. Currently, the 

ground level data used to produce large-scale AGB and aboveground carbon maps 

is predominantly collected from ecological studies. Although this data is detailed 

and systematic in nature, ecological plots tend to sample either protected regions of 

the landscape or areas subject to a lesser amount of human impact. Forest 

management data, on the other hand, covers a considerable portion of the tropics 

and represents forests that are being greatly impacted by anthropogenic activities. 

In fact, Asner et al. (2013) found that human activity was the greatest driver of AGB 

and aboveground carbon in the forests of Panama, highlighting the need measure 

the impact of humans on the variability of AGB and AGC across the tropics. 

Combining commercial logging inventories with ecological plots will provide a 

more representative ground level dataset for the calibration of the models and 
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remotely sensed data used to estimate AGB and aboveground carbon at regional 

and national scales. Additionally, it is the non-protected areas of the tropics that 

offer the greatest opportunity to reduce rates of deforestation and forest 

degradation. Therefore, by improving our knowledge on the variability of 

aboveground carbon and AGB through forest management data, studies can better 

support the REDD+ mechanism and the sustainable management of the rich natural 

resources of the tropics. 
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4.8 Tables and Figures 
 

 

Table 4.1. Wood density (g cm-3) per CA and sampling protocol. 
 

 
 Wood Density (g cm

-3
)  

(Mean±Std) 

CA 
 Inventory  

(DBH≥30cm) 

Inventory  

(DBH≥60cm) 

Census 

(DBH≥60cm) 

ACAHN  0.623±0.182 0.636±0.197 0.602±0.189 

ACCVC  0.602±0.144 0.579±0.170 0.600±0.143 

ACLA-C  0.528±0.161 0.579±0.171 0.530±0.152 

ACOSA  0.574±0.165 0.579±0.169 0.604±0.166 

ACTO  0.565±0.143 0.578±0.169 0.564±0.140 

 
 
 
 

Table 4.2. EAGB (Mg ha-1) and large tree density (tree ha-1) per CA and sampling 
protocol.  

 

 Inventory (Mean±Std)  Census (Mean±Std) 

CA 
EAGBDBH≥30cm 

(Mg ha
-1

) 

EAGBDBH≥60cm 

(Mg ha
-1

) 

Lrg tree density 

(tree ha
-1

) 

 EAGBDBH≥60cm 

(Mg ha
-1

) 

Lrg tree density 

(tree ha
-1

) 

ACAHN 118.07±54.09 65.25±33.81 6.29±3.55 
 

39.77±23.48 4.25±2.72 

ACCVC 116.17±44.48 63.35±29.99 6.71±4.02  45.22±26.05 5.27±3.39 

ACLA-C 143.38±62.18 79.83±48.29 9.21±5.98  53.60±27.89 6.15±2.99 

ACOSA 173.39±60.64 123.27±53.56 16.30±7.97  58.35±23.24 7.65±2.79 

ACTO 130.30±51.05 80.12±39.21 10.70±6.26  52.36±31.46 6.98±4.27 
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Figure 4.1. Map of the EAGB (Mg ha-1) of trees with a DBH≥30cm per NFMP. (A) A 

view of the distribution NFMPs collected in ACAHN, ACCVC, and ACTO. (B) A view of 

NFMPs collected in ACOSA. Forest cover source: FONAFIFO 2005 Costa Rica forest 

cover assessment. Protected areas sources: Atlas of Costa Rica 2008 (Instituto 

Tecnológico de Costa Rica 2008). 
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Figure 4.2. The distribution of wood density within five CAs. The percentage of 

trees that occupy consecutive 0.1 g cm-3 wood density bins in NFMP where (A) 

inventories (DBH≥30cm) and (B) censuses (DBH≥60cm) in the five CAs sampled. 
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Figure 4.3. The distribution of inventory EAGB (DBH≥30cm) per CA. The 

distribution is shown by the percentage of NFMPs within 25 Mg ha-1 EAGB bins. 
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Figure 4.4. The distribution of census EAGB (DBH≥60cm) per CA. The distribution 

is shown by the percentage of NFMPs within 20 Mg ha-1 EAGB bins. 
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Figure 4.5. Scatter plot of census EAGB (DBH≥60cm) versus inventory EAGB 
(DBH≥60cm). The dashed diagonal line depicts a 1:1 relationship between census 
and inventory EAGB values. 
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Figure 4.6. The relationship between the components of forest structure for trees of 
different sizes. (A) Scatter plot of inventory EAGB (60cm>DBH≥30cm) versus 
inventory EAGB (DBH≥60cm). The distribution of points within the scatter plot 
reveals the variation found between these two EAGB DBH classes; (B) The 
relationship between the density of large trees (DBH≥70cm) and EAGB 
(DBH≥30cm). The line fit through the data explains 53.3% of the variation in EAGB. 
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Figure 4.7. The relationship between the uncertainty in EAGB per NFMP and 
sampling effort. (A) The total number of trees sampled per NFMP; (B) the total area 
sampled per NFMP inventory; and (C) the total area sample per NFMP census. 
Uncertainty is given in unit-less value that varies from 0 to 1. The solid (inventory) 
and dashed (census) lines depict the best fit function (power). 
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5. Conclusions: Summary of findings and future research directions 
 

 
5.1. Summary of findings 

 
The distribution of aboveground biomass in tropical forests is highly 

heterogeneous. To best capture the variability of AGB across regions, the use of 

ground level data with a high sampling intensity (i.e. area sampled is large enough 

to capture the variation) and spatial distribution (i.e. sample points are well 

distributed across the landscape) is required. The majority of studies evaluating the 

variability of AGB across tropical regions rely on ecological data that tends to 

represent the areas of the landscape that are protected or subject to a smaller 

amount of human impact. Further, landscape scale forest inventories are rare 

among ecological studies due to their high cost and resource requirements (Greig- 

Smith 1983). In this study, I used forest management data retrieved from five Costa 

Rican ecosystems to study the variability of AGB across regions. Firstly, however, 

my Master's research aimed to combine and structure a large Costa Rican forest 

management dataset in a way that would allow for the efficient and repeatable 

analysis of the data. 

My first objective was to develop a spatial/tabular database that integrates 

methods for standardization and quality control, ensuring forest management data is 

structured in a logical and accessible manner. Using PostgreSQL and PostGIS, I 

created a relational geodatabase, forming logical associations between the spatial 

and tabular components of the forest management data. With built-in 

standardization and quality control procedures, I was able to improve data integrity 

and reveal the magnitude, source, types, and implications of errors within the initial 

forest management dataset. The final NFMP tailored database permits flexible data 

access across 32 tables and over 250 000 tree records. Lastly, I was able to 

demonstrate the utility of the database by conducting an exploratory analysis of the 

standardized taxonomic data. The taxonomic analysis was conducted on the most 

complete digital record of natural forest management in Costa Rica to date. This 
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analysis also revealed the strengths and weaknesses of the taxonomic components 

of the NFMPs including: (1) A genus level analysis is a favorable approach to take 

with the NFMP data due to the higher fraction of trees identified at the genus level; 

and (2) absolute species counts should be viewed with discretion due to the low 

frequency of a notable proportion of species within the NFMP tree records. 

My second objective was to assess the variability of aboveground biomass 

among and within five Costa Rican conservation areas using forest management 

data. Based on NFMP data, I found that the most northern region of Costa Rica 

studied (ACAHN) had a significantly higher wood density for trees with a 

DBH≥30cm. Further, my results showed that Osa peninsula (ACOSA) houses a 

significantly higher AGB than the four other regions studied. The standard deviation 

and distributions of AGB within each conservation area supports studies that have 

found high levels AGB variability within the tropics. The density of large trees 

explained over 50% of the variability in estimated AGB across the five conservation 

areas considered in this thesis. Comparing the estimated AGB in this study to 

published estimates revealed that, in regions of Costa Rica where AGB has 

previously been sampled, my forest management based approach produced 

comparable values. Lastly, the AGB analysis indicated a bias in the NFMPs towards 

sampling biomass rich areas of forest stands, highlighting the need to assess the 

sustainability of forest management practices in Costa Rica. 

 
5.2 Future research directions 

 

In this thesis, I present the FGIS database which stores the largest forest 

management dataset in Costa Rica to date. This tool will make the analyses needed 

to address issues of conservation and sustainable resource management in Costa 

Rica possible. Further, future work could collect field samples from the NFMPs to 

refine our understanding of the issues related to taxonomic identification in Costa 

Rican NFMPs. Building upon previous studies (e.g. Couteron et al. 2003; Arroyo- 

Mora et al. 2009), the FGIS database's tree data could be used to assess species 

distribution, biodiversity, and species environment interactions from the local to 

landscape level. Further, the database could be used to expand the study of Arroyo-
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Mora et al. (2009), evaluating the historical trends of natural forest management in 

Costa Rica. 

Based on the AGB analysis, I detected bias in the NFMPs towards biomass 

rich areas of the forest stand. I hypothesize that the bias may be explained by a 

desire to achieve a higher economic outcome (i.e. log a greater number of trees and 

species) and/or to reduce sampling effort (i.e. sample more convenient areas of the 

forest stand). Future work should attempt to determine the cause for this bias and, 

in turn, assess the sustainability of the forest management plans.  Expanding upon 

the uncertainty analysis, future work should assess the accuracy of the Chave et al.'s 

(2005) allometric models in Costa Rican forests. Recent studies of allometric models 

in the tropics suggest that height is a key variable, preventing the overestimation of 

AGB in lower DBH classes (DBH<40cm) (Feldpausch et al. 2011, 2012). Therefore, 

height-DBH models applicable in Costa Rica should be created to improve the 

accuracy of AGB estimates. Given the high level of variability in AGB across the five 

conservation areas studied, the next step is to evaluate the environmental and 

anthropogenic factors controlling the spatial distribution of AGB. I hypothesize that 

forest fragmentation characteristics will be an important factor influencing AGB as 

the NFMPs are largely located within the fragmented forests of Costa Rica. This 

hypothesis is also based on my finding that ‘large tree’ density explained over 50% 

of the AGB variability in NFMPs and the findings of previous studies that 

fragmentation increases the mortality of large trees near forest edges (Laurance et 

al. 2000; Nascimento & Laurance 2004). Following this study, AGB values could be 

converted to carbon and combined with ecological plots to form the ground level 

dataset required to produce a reliable and spatially explicit national carbon baseline 

in Costa Rica. Such an effort would improve the quality of the models and remotely 

sensed data used to create wall-to-wall coverage maps of forest carbon stocks, 

supporting the REDD+ mechanism in Costa Rica. 
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Appendix 1 
 

 

Permit for the use of Figure 1 from Peacock et al. (2007) in thesis of Sienna Svob. 
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Appendix 2. Natural forest management plan terminology. 
 

Table S2. Natural forest management terminology. All terms are defined according 

to Forestry Law 7575 and Article No.115, Decree No. 34559 (MINAE 2008). 
 

Term Definition 

 
Management unit 

 
An area of forest belonging to one or more estates that shares a set of technical 
standards for the regulation of any future forest management activities 

Management plan A set of technical standards contained in a document to govern the 
management activities in one or more management units in order to use, 
conserve, and develop the existing timber resources, according to the 
principles of the sustainable use of renewable natural resources. 

Natural forest A native or indigenous ecosystem intervened or not, regenerated by natural 
succession or other forestry practices, which occupies an area ≥ 2 ha, 
characterized by the presence of mature trees of different ages, species, and 
sizes, with one or more canopies covering > 70% of the surface and > 60 trees 
per ha of a DBH ≥ 15 cm. 

Total area The total area of a property as defined in a cadastral map of the owner’s land 
parcel(s). Total area may include areas under different forms of land use such 
as forest management or agriculture. 

Managed area The total area of natural forest being governed under a forest management 
plan. 

Protected area The area within the managed area classified as protected based on a set of legal 
regulations including areas near water bodies and on steep slopes (table x) 

Productive area The area outside of the protected area and within the managed area where 
timber harvest occurs. 

Inventory A diagnostic sampling of every tree with a DBH ≥ 30 cm in plots of 0.3 ha (30 m 
by 100 m) within the productive area. The inventory aims to understand the 
silvicultural variables (species, basal area, number of trees) in the forest and 
the proportion of trees of each species and functional group, especially within 
the short lived shade-intolerant group. The inventory attempts to sample trees 
below the minimum cutting DBH to permit the sustainable use and 
regeneration of the commercial species. 

Census Along transects separated by 50 m to 100 m every tree with a DBH ≥ 60 cm is 
recorded within the entire productive area. The census aims to identify the 
commercial timber stock. The results of the census are used to plan future 
logging operations. 

Baquiano A local expert knowledgeable of the tree community composition responsible 
for identifying trees by common names during the census and inventory of the 
productive forest area. 

Parent tree A commercially viable species that is selected based on a set of phenotypic 
characteristics for seed production. These characteristics include being 
physiologically mature, phytosanitary (i.e. no pests or pathogens), and an adult 
and having a good form, well-developed crown, and straight trunk. 

Remnant tree A tree left in the forest after harvest and having the necessary features (mostly 
free of damage) to remain part of the residual mass for the next harvest. 

Low frequency 
species 

A species with an abundance of less than 0.3 trees per hectare of trees with a 
DBH ≥ 30 cm based on the inventory. Low frequency species cannot be logged. 

 


