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Abstract 
 

 The discovery and adaptation of the type II Clustered Regularly Interspaced 

Palindomic Repeats (CRISPR) prokaryotic immune system has revolutionized the world 

of targeted genome editing. The programmable, scaleable and multiplexable nature of 

the CRISPR/Cas9 system makes it amenable to in vivo screening applications in a way 

that its Zinc Finger Nuclease (ZFN) and Transcriptional Activator Like Effector Nuclease 

(TALEN) predecessors were not. While the use of CRISPR/Cas9 in a screening context 

has been used to great success, there remains much ground to cover in the 

development of functional in vivo screening frameworks. In Chapter 2, we detail the use 

of CRISPR/Cas9 to functionally screen for oncogenic drivers of Burkitt’s Lymphoma (BL) 

in the powerful Eµ-myc mouse model. We identified two genes with novel tumor-

suppressor activity: Phip and Sp3. Since the size of vectors harboring the two CRISPR 

components can surpass the limits of efficient viral packaging, in Chapter 3, we describe 

the development of a novel transgenic mouse containing a doxycycline-inducible Cas9 

allele. We demonstrated conditional presence of Cas9 protein across a number of 

tissues and the absence of deleterious effects of long-term induction. Additionally, we 

developed a novel compact retroviral sgRNA delivery vector, and demonstrated the 

vector and the mouse’s utility for in vivo functional studies. 
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Résumé 
La découverte et l’adaptation du système immunologique prokaryote de 

courtes répétitions palindromiques groupées et régulièrement espacées (CRISPR) de 

type II a complètement révolutionné le monde du génie génétique. Avec sa flexibilité, sa 

facilité de programmation et à être multiplexée, la technologie CRISPR/Cas9 surpasse 

amplement les autres technologies de génie génétique telles les nucléases de doigts de 

zinc (ZFNs) et les nucléases effectrices de type activateur de transcription (TALENs). 

Même si beaucoup de progrès ont été faits dans l’utilisation du système CRISPR pour 

des criblages génétiques  in vitro, il reste encore beaucoup de travail pour en 

développer son plein potentiel à ce niveau. Au Chapitre 2, nous décrivons l’identification 

de nouveaux gènes impliqués dans la lymphomagènese en combinant l’utilisation de 

CRISPR/Cas9 et le modèle de lymphome de type Burkitt (BL) Eµ-myc. Nous avons ainsi 

identifié deux nouveaux gènes qui protègent contre l’apparition des tumeurs : Phip et 

Sp3. Étant donné la taille de la protéine Cas9, il est présentement difficile de bien 

distribuer ce système dans les divers tissus d’un organisme avec les vecteurs viraux 

conventionnels. Au Chapitre 3, nous décrivons le développement d’une souris 

transgénique possédant  une allèle de Cas9, dont l’expression est inductible en 

présence de doxycycline. Nous avons démontré que la protéine Cas9 est bien 

inductible et que sa production n’entraîne pas d’effets nocifs chez la souris à long terme. 

De plus, nous avons créé un nouveau vecteur d’expression du sgRNA plus compact et 

avons démontré qu’il est possible de l’utiliser dans des essais fonctionnels in vivo. 
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Chapter 1: General Introduction 
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1.1 Targeted Genome Editing 
	
1.1.1 A Historical Perspective 

The genome is the blueprint for human life but it is only recently that we have 

developed the tools to read and interpret these plans. The sequencing of the human 

genome cost hundreds of millions of dollars and took 13 years to complete (National 

Human Genome Research Institute). Now, genomes of plants, animals, people and 

diseased tissues are sequenced on a regular basis for several hundred dollars. We are 

living in an age of unprecedented genetic understanding, with insight into biology and 

disease mechanisms that would have been unimaginable to researchers less than 20 

years ago. However, while genomic sequencing is more accessible than it has ever 

been, we still lack adequate tools to write, re-write, edit and rearrange eukaryotic 

genomes. Restriction endonucleases identified in prokaryotes allowed for targeting of 

specific DNA sequences from 4 to 8 nucleotides, [1] but with the human genome 

containing ~3x109 base pairs, this was nowhere near selective enough to be used in the 

study of human disease, or for use in therapeutics. Over the past 10 years, enormous 

strides have been made in development of new technologies which could allow for 

precision genome editing with à la carte design of proteins and complexes capable of 

targeting specific DNA sequences from 18-36 nucleotides [2], making them suitable for 

use in highly complex genomes. These technologies largely take advantage of the DNA 

repair machinery already present in the cell by cleaving target DNA and introducing 

double stranded breaks (DSBs). Double-stranded breaks are undesirable to the cell as 

they could lead to dangerous rearrangement of genomic elements and limit the fitness 

of the cell. Cells therefore seek to repair these breaks through two different 

mechanisms: Non-Homologous End-Joining (NHEJ) and Homology-Directed Repair 

(HDR) [3]. NHEJ is an error-prone repair mechanism where non-homologous DNA 

strands are brought together and ligated [4]. This repair often leads to the introduction of 

various small insertion or deletion mutations (indels), disrupting the endogenous 

sequence. (Figure 1.1) HDR occurs when a homologous piece of DNA – usually a sister 

or daughter chromosome, although researchers introduce exogenous DNA sequences 
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when they wish to introduce novel sequences or replace existing ones – is available for 

the cell to use as a “repair template” or “donor”, replacing the damaged DNA with a copy 

of the sequence present between the homology arms [4](Figure 1.1). While HDR has 

been used to create genetically modified animals and cells before simply by introducing 

donor DNA and screening subsequent clones for spontaneous recombination, the rate 

of conversion is extremely low [5]. It was shown that by inducing DSBs one could 

significantly increase the rate of clone conversion [6]. The most prominent and 

commonly-used examples of systems adapted to take advantage of this are: Zinc Finger 

Nucleases (ZFNs), Transcriptional Activator-Like Effector Nucleases (TALENs) and the 

Clustered Regularly Interspaced Repeats (CRISPR) Cas9 system. 

 

  



	 4	

 

 

 
 

Figure 1.1. Schematic outlining two DNA repair pathways after induction of a double-

stranded break.  

The error-prone NHEJ pathway will lead to random insertions or deletions in the 

repaired DNA. In the presence of DNA containing sufficient regions of homology, HDR 

machinery will use this as a template for targeted repair of the endogenous DNA. 
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1.1.2 Zinc Finger Nucleases 

Zinc finger nucleases (ZFNs) are engineered proteins made by fusing tandem 

C2H2 zinc-finger domains to a modified FokI nuclease subunit [7]. Each finger contains 

amino acid residues that form a DNA-interacting surface and most show trinucleotide 

specificity [8]. ZFNs are often constructed with 3-6 finger domains, allowing for specific 

targeting of 9-18 nucleotides [9]. As the modified FokI is an obligate dimer, cleavage 

requires the assembly of offset ZFNs separated by a short spacer for effective double-

stranded cleavage (Figure 1.2). This leads to target specificity of up to a previously 

unheard of 36 nucleotides, conferring enough specificity for use in mammalian genomes. 

Their modular nature made ZFNs an attractive option for researchers. 

Rearrangement of the zinc-finger domains allowed for targeting of a wide variety of 

genes in a number of different biological entities including fruit flies[10-12], zebrafish[13, 

14], mice[15-18], and human cells [19-21]. However, it became evident that this 

technology was not without its drawbacks. There was found to be a high level of 

difficulty in designing ZFNs that would effectively cleave the target sequence of interest, 

and not all sequences could be targeted with similar efficiency using ZFNs [22, 23]. ZF 

binding to DNA also appeared to be context-dependent, with different fingers binding 

more or less efficiently depending on the ZFs which flanked them [24]. It was also 

reported that introduction of ZFNs could lead to undesirable levels of toxicity in targeted 

cells, depending on the specificity of the ZFN pair utilized in the experiment [25]. There 

still remained much room for improvement and development of a more optimal gene 

editing system. 
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Figure 1.2. A schematic demonstrating specificity of offset ZFNs.  

Tandem fingers recognize specific trinucleotide sequences. Upon paired 

recognition of target sites, FokI nuclease domains will dimerize and activate, cleaving 

the target DNA. 
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1.1.3 Transcriptional Activator-Like Effector Nucleases  

Transcriptional Activator-Like Effector Nucleases (TALENs) are another variety of 

engineered protein that was inspired by naturally-occurring DNA-binding proteins.  They 

are based off of Transcription Activator Like Effectors (TALEs) which were originally 

identified in plant pathogenic bacteria [26]. Each TALE contains an array of nearly 

identical 33-35 amino acid repeats (with the exception of the most C-terminal repeat 

which contains only 20 amino acids and is referred to as a “half repeat”) containing two 

highly variable residues around positions 12 and 13, called Repeat Variable Diresidues 

(RVDs) [27]. These RVDs provide the TALEs their DNA-binding specificity, with each 

RVD demonstrating a preference for a single nucleotide [28, 29]. As with ZFNs, their 

modular nature lent TALEs very well to custom arrangement for à la carte gene 

targeting, with the added bonus of each repeat showing preference for a single 

nucleotide rather than a triplet, making them a much more flexible system [29]. Most 

TALEs generally contain 15.5-19.5 repeats [30] so the fusion of these repeats to the 

non-specific FokI nuclease domains and creation of paired TALENs would allow for 

highly specific sequence recognition (Figure 1.3).  In addition to their relative ease of 

assembly, TALENs offered another advantage over their ZFN counterparts: freedom 

from context dependence. Unlike the zinc-finger modules whose efficiency was found to 

be highly dependent on its neighbouring fingers, TALE repeats can be arranged in any 

order and whose targeting capacity is limited only by the need for a thymine or ‘T’ 

residue at the 0 position of the target sequence [31]. 

 The relative simplicity and ease of construction made TALENs an attractive 

option for researchers interested in genome editing but who may have been 

discouraged by the complexity and difficulty of designing and testing appropriate ZFNs. 

In the end, TALENs have been successfully implemented in a wide variety of 

applications and host systems such as the fruit fly[31, 32], zebrafish [33-35], frogs[36-

39], rat[40], pig[41], and human cells [42, 43]. Comparing TALENs and ZFNs, it was 

found that both systems demonstrated similar editing efficiencies, while TALENs 

appeared to cause less cytotoxicity and more live births, in the case of zygote injections 

[43-45].  However, this technology is not without its own drawbacks. While the facile 
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assembly of TAL repeats allowed for unprecedented flexibility in target sequence 

selection, the DNA encoding the resulting TALEN proteins could be 3-4 times longer 

than that of ZFNs [46] which limits the delivery systems one can use to administer the 

proteins. 
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Figure 1.3. Schematic demonstrating the DNA-targeting specificity of TALENs.  

Each TAL repeat is shown paired with its preferred nucleotide substrate. FokI 

nuclease domains dimerize and cleave in the 12-32 nucleotide spacer between paired 

TALENs. Obligate thymines at the 0 position (T0) are indicated by the black arrows. 
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1.2 From Prokaryote Immune System to Eukaryote Genome Editing Revolutionary 
 
1.2.1 Quit Bugging Me: CRISPR as defense against foreign viral and plasmid DNA 

The genome-editing revolution that is CRISPR originated in a rather unusual and 

unassuming manner, with Ishino et al. noticing a cluster of odd palindromic repeat 

sequences, downstream of an isoenzyme-encoding gene in Escherichia coli [47]. These 

repeats were distributed at regular intervals, with different nucleotide “spacer” 

sequences separating them, eventually became known as Clustered Regularly 

Interspaced Palindromic Repeats, or CRISPR (Figure 1.4a). While the exact repeat 

sequence and length of the intervening spacers vary between species, CRISPR arrays 

themselves were found to be extremely common, existing in 40% of bacterial genomes 

and 90% of archaeal genomes [48]. Nearly 20 years after their discovery in E. coli, it 

was proposed that these CRISPR arrays were a part of some sort of prokaryotic 

immune system providing protection against invading pathogens, as the spacers 

between repeat sequences were often found to correspond to plasmid or bacteriophage 

DNA[49-51]. This was soon proven to be true, when Barrangou et al. challenged 

Streptococcus thermophilus, with bacteriophages, sequencing of the CRISPR loci in 

resistant clones revealed acquisition of one or several new spacers, with level of 

resistance increasing with the number of novel spacers acquired[52]. Additionally, 

spacers acquired that contained mismatches of 1 to 15 nucleotides (in a 29-30 

nucleotide spacer) conferred no such resistance to the bacteria [52].  Many different 

arrangements of CRISPR and CRISPR-associated (Cas) proteins were identified, which 

were then separated into different classes, the simplest of which is the Type II CRISPR 

system, which required only three components to achieve cleavage and destruction of 

invading DNA [53]. First, the Cas9 protein – an endonuclease which recognizes and 

binds to DNA. Second, two small RNAs which together allow the targeting and binding 

of Cas9 to the target DNA– the CRISPR-related RNA (crRNA) and trans-activating 

CRISPR-related RNA (tracrRNA).  In order to achieve cleavage, two events must occur: 

the 20 nucleotide targeting sequence within the crRNA must pair with the target DNA 
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and there must be a short downstream motif called the Protospacer Adjacent Motif 

(PAM) consisting of an NGG trinucleotide [54, 55] (Figure 1.4b). 

 

1.2.2 Adaptation of CRISPR/Cas9 for Targeted Vertebrate Genome Editing 

 The simplicity of the type II CRISPR/Cas9 system made it an excellent candidate 

for adaptation for use in targeted genome editing. In the same way that ZFNs and 

TALENs were used to introduce double-stranded breaks into eukaryotic DNA, so too 

would the CRISPR/Cas9 system. In addition to being a highly streamlined system, 

CRISPR/Cas9 was easily programmable. In the case of ZFNs and TALENs, large 

complex proteins had to be designed, cloned, and then delivered to cells, with each pair 

targeting only a single gene. With the CRISPR/Cas9 system, delivery of Cas9 along with 

two short RNAs would allow for efficient and effective targeting of a locus of choice [55-

57]. This system was further simplified by fusing the necessary portions of the crRNA 

and tracrRNA to form a single chimeric guide RNA (sgRNA) which was sufficient to 

allow binding and cleavage of target DNA [55] (Figure 1.4c). The CRISPR/Cas9 system 

quickly sprung to the forefront of the field of genome editing. Researchers studying an 

enormous variety of organisms quickly put this new tool to use and achieved editing in 

species across the eukaryotic domain: crop plants[58-61], roundworms[62, 63], frogs[64, 

65], fish[66-68] and mice[69-72]. The contribution of CRISPR/Cas9 to the study of 

human biology and disease has been incredible as well [73-76].  
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Figure 1.4. Adaptation of prokaryotic CRISPR system for eukaryotic genome editing  

a) Schematic representing bacterial operon containing the Clustered Regularly 

Interspaced Repeats and intervening protospacers and how the protospacers are 

transcribed and processed into targeting crRNAs. b) Representation of the three 

essential components for DNA targeting by Type II CRISPR/Cas systems and c) 

subsequent fusion of the two component short RNAs for system streamlining.   
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1.2.3 CRISPR as screening tool  

 Another major advantage of the CRISPR/Cas9 system was its potential for 

multiplexing. With the delivery of the single Cas9 protein, one opens up the possibility to 

target any desired locus or loci within that cell just through delivery of the appropriate 

sgRNAs [77-82], something that would not have been feasible with TALENs or ZFNs. 

Not only did this system allow for greater flexibility than previously used genome editing 

technologies, but it also offered some advantages to the widely implemented RNA-

interference (RNAi) high-throughput screening tools: short interfering RNAs (siRNAs) 

and short hairpin RNAs (shRNAs). Both of these RNAi screening tools take advantage 

of endogenous RNA-degradation machinery. The siRNA or shRNA contains sequences 

complementary to a target of choice and upon target recognition and pairing, the 

duplexed RNAs are recognized by the RNA-induced silencing complex (RISC) and the 

targeted RNA is degraded [83]. Although this technique has proved highly useful and 

has contributed greatly to our understanding of different diseases and biological 

processes, RNAi is not without its limitations. Firstly, as RNAi acts on the mRNA rather 

than on the gene itself, the amount of translated product is merely reduced and not 

completely abolished. This can lead to false negatives in a screening context if the 

amount of targeted gene is not sufficiently reduced[84]. Additionally, off-target 

knockdown can occur very frequently, so careful assay design is critical for screening 

and validation [84], although this remains true within the CRISPR/Cas9 system as well. 

Finally, negative selective pressures can cause the loss of shRNA expression over time, 

with cells potentially losing the shRNA expression cassette, or shutting down expression 

through other means. The CRISPR/Cas9 system offers the advantage of permanent 

editing of the targeted locus. Since the genomic DNA is altered directly, all resulting loss 

of protein expression will be maintained across generations of cells, even if the targeted 

cell adapts through silencing or removal of the Cas9/sgRNA-encoding construct, which 

would not be the case with an shRNA. Genome-scale screening (targeting between 7 

000 and 20 000 genes [85]) using CRISPR/Cas9 has been used to great effect by a 

number of different groups for the study of both biological processes[86-92] and human 

disease[93-95]. 
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1.3 The Eµ-Myc Mouse Model 
 

The Eµ-myc mouse model is a transgenic model of Burkitt’s and other Non-

Hodgkin’s lymphomas modeled after the canonical Burkitt’s translocation which places 

oncogene c-myc driven by a lymphoid-specific immunoglobulin heavy chain enhancer 

(µ) [96]. This enhancer is highly potent, and mice containing this transgene will often 

succumb to disseminate B-cell lineage lymphomas within 6 to 15 weeks after birth [96, 

97]. Upon transplantation of these tumor cells into wild-type recipients, nearly all will 

give rise to lymphomas with nearly identical histopathology to the donor animals, 

confirming the malignant nature of these tumors [97]. This model has proven to be an 

extremely powerful tool in the study of human cancer. It has been used to evaluate drug 

response/genotype relationships [98], identify potential new therapeutic targets [99],  

and identify important new players in lymphomagenesis and drug response through 

implementation of RNAi screening [100, 101]. The Eµ-myc mouse is also a highly useful 

screening tool. Hematopoietic Stem and Progenitor Cells (HSPCs) can be harvested 

from Eµ-myc fetal livers, manipulated ex vivo, and transplanted into syngeneic wild-type 

recipients to assess the effect of genetic alterations on lymphomagenesis [100]. 

 

1.4 Overview and Basis for Thesis 

 
The CRISPR/Cas9 system has clearly revolutionized the world of targeted 

genome editing. Although an impressive amount of ground has been covered within the 

few years since it’s implementation, there remains significant potential for expansion. 

With its potential for multiplexing, CRISPR/Cas9 has proved to be an excellent 

screening tool. With the advent of next-generation sequencing technology, the 

availability of high-resolution sequencing data of both normal and diseased tissue has 

skyrocketed. Determining which reported variants are simply neutral “bystander” 

mutations and which are disease-drivers remains a struggle. The more frequently 

mutated genes or “heavy hitters” are most often prioritized for validation, however this 
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leaves a large bulk of the reported variants uninvestigated, which may leave rare 

disease drivers undiscovered. In Chapter 2, we sought to identify mutations reported 

after deep-sequencing of Burkitt’s lymphoma (BL) cell lines and patient samples which 

are not frequently mutated but can contribute to lymphomagenesis by performing an in 

vivo knockout screen in the Eµ-myc mouse model using CRISPR/Cas9. In order to 

facilitate in vivo screening, we also developed a transgenic mouse with a doxycycline-

inducible Cas9 allele, which would allow for development of smaller sgRNA-delivery 

vectors and open the door to a number a new experimental avenues. This work is 

detailed in Chapter 3.  
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Chapter 2: A Multiplexed CRISPR/Cas9 Functional Screen 

Identifies Rare Tumor Suppressors 
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2.1 Preface to the Manuscript 
 

With the recent development of All-in-One retroviral CRISPR/Cas9 delivery 

vectors [102], the availability of a robust murine model of Burkitt’s lymphoma[97], and 

the recent publication of several deep-sequencing studies of Burkitt’s lymphoma cell 

lines and patient samples[103-105], we sought to conduct a targeted in vivo screen to 

identify rare oncogenic drivers that may otherwise be overlooked in favor of their more 

frequently-mutated counterparts. 

 
 

2.2 Abstract 

 

 An enormous amount of tumor sequencing data has been generated through 

large scale sequencing consortiums. The functional consequences of the majority of 

mutations identified by such projects remain an open, unexplored question. This 

problem is particularly complicated in the case of rare mutations where frequency of 

occurrence alone or prediction of functional consequences are not insightful in 

distinguishing driver from passenger or bystander mutations. Here we combine genome 

editing technology with a powerful mouse cancer model to uncover previously 

unsuspected rare oncogenic driver mutations in Burkitt’s lymphoma. We identify two 

candidate tumor suppressors, PHIP and SP3, whose loss cooperates with MYC over-

expression to accelerate lymphomagenesis. Our results highlight the utility of in vivo 

CRISPR/Cas9 screens combined with powerful mouse models to identify and validate 

rare oncogenic driver events from tumor mutational data.  

 
2.3 Introduction 
 

The International Cancer Genome Consortium is a colossal tumor sequencing 

endeavor that has profiled over 10,000 tumors and uncovered ~10 million 

mutations[106]. Mutation frequency, predicted functional impact, and pan-cancer 
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analysis of mutated networks are powerful approaches by which to identify oncogenic 

drivers in order to support diagnostic and therapeutic efforts [107-111]. However, 

cancers exhibit extensive mutational heterogeneity and in many cases it appears that 

only a few frequently mutated genes (among all tumor-associated mutations) are 

significant for initiation and progression. Indeed, the vast proportion of gene mutations 

within a tumor are thought to represent “passenger” or “bystander” mutations. However, 

it is unclear whether among these rarer events reside low penetrant oncogenic drivers 

and this currently constitutes an obstacle to a full understanding of tumor biology.  

 Burkitt’s lymphoma (BL) is a common B-cell lymphoma, predominantly arising in 

children, which which is characterized by the hallmark Burkitt translocation 

t(8;14)(q24;q32) or its variants t(2;8) and t(8:22) – all of which juxtapose the MYC 

oncogene with one of three immunoglobulin loci [112]. Recent whole genome, exome, 

and transcriptome sequencing data from 104 sporadic BL patient samples and BL cell 

lines has defined the mutational landscape in this cancer [103-105]. Among these 

studies, Schmitz et al. [105] undertook RNA sequencing of 28 sporadic BL samples and 

13 cell lines and identified >5000 mutations, Love et al. [103] identified 70 recurrently 

mutated genes from exome sequencing of 51 primary BL tumors and 8 BL cell lines and 

Richter et al. [104]sequenced four Burkitt’s lymphomas and identified 119 genes with 

potentially protein-altering mutations. Within this rich source of BL mutational data lie 

known oncogenic drivers along side a large number of infrequently mutated genes, 

leading to a characteristic “long tail” phenomenon when analyzing gene mutation counts 

in tumors (Figure 2.1a). The significance of this latter class of mutations in BL remains 

unknown and it is here that functional assays have much to offer. 
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Figure 2.1 Representation of genes containing rare nonsense or frameshift mutations in 

BL and design of functional in vivo screen.  

(See following page for legend) 
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a) Gene mutation count in BL. The top graph represents all coding region 

mutations, as reported in Love et al. [103], Richter et al. [104] and Schmitz et al. [105]. 

The right pie chart denotes the proportion of genes harboring the indicated number of 

mutations found in the 104 BLs. The bottom graph highlights the frequency and nature 

of mutations within genes in where at least one nonsense or frameshift mutation was 

identified in BL mutational studies. Gene names and sgRNA pools are indicated at the 

bottom. One sgRNA was omitted from pools 2-4, while 3 were omitted from pool 14 as a 

consequence of quality control experiments revealing that the original vector contained 

undesired second site mutations. b) Schematic representation of retroviral design and 

adoptive transfer strategy used for Cas9/sgRNA delivery to HSPCs, followed by 

transplantation and lymphoma monitoring. Details of pQCiG2 have been previously 

reported[102]. Accelerated tumors were characterized by: 1) PCR amplification and 

sequencing of sgRNAs residing in the resulting tumors, 2) the sgRNA targeted loci are 

probed for mutational status in the obtained tumors, and 3) independent sgRNAs and 

shRNAs were used in new transplantation experiments for validation of results.  
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2.4 Materials and Methods 
 
2.4.1 Retroviral Infections, Stem Cell Isolation, and Adoptive Transfer  

Low passage Phoenix-Eco viral packaging cells were cultured in complete 

DMEM (10% FBS, 1% Penicillin-Streptomycin, 1% L-Glutamine) at 37˚C in 5% CO2. 

Twenty four hours prior to transfection, 3.5 x 106 cells were seeded in 10 mL DMEM in 

10 cm tissue culture plates. pQCiG2 constructs were pooled in equal molar ratios to a 

total of 10 µg and co-transfected into Phoenix-Eco cells with 1 µg pCL-eco replication-

incompetent helper vector[113] using calcium phosphate. Twenty four hours after 

transfection and twelve hours before the first virus harvest infection, plates were washed 

with PBS and refreshed with 5 mL complete BCM (45% DMEM, 45% IMEM, 10% FBS, 

1% Penicillin-Streptomycin, 1% L-Glutamine). Virus was collected 4 times, every 12 

hours starting from 12 hrs after BCM media change. 

 Hematopoietic stem and progenitor cells (HSPCs) were isolated from fetal livers 

at E13.5 and frozen until used. Cells were thawed 12 hours before first infection in BCM 

supplemented with 1 ng/mL IL-3, 10 ng/mL IL-6, 100 ng/mL SCF (stem cell factor) and 

incubated at 37˚C in 5% CO2. Cultured HSPCs were infected four times at 12h intervals 

with viral supernatant from transfected Phoenix-Eco cells, supplemented with 1 ng/mL 

IL-3, 10 ng/mL IL-6, 100 ng/mL SCF and 4 µg/mL Polybrene, and spinoculated at 950 x 

g for 1h at 37˚C. Transduction efficiency was assessed by determining the GFP+ 

population by flow cytometry using a Guava 8HT flow cytometer (Millipore). 
 For transplantations, 6-8 week old female C57BL/6 mice were placed on 0.125 

mg/mL ciprofloxacin + 2% sucrose two days before transplantation. Four hours before 

transplantation, mice were irradiated with 4 Gy of γ radiation. Approximately 6 x 105 – 

8.2 x 105 cells were transplanted into irradiated mice via intravenous tail-vein injection. 

Mice were maintained on antibiotics for 3 weeks post-transplantation. Mice were 

palpated twice a week to assess tumor status until the experimental end point at day 

120. When tumors arose, mice were sacrificed and the masses harvested. Lymphomas 

were gently macerated between the frosted ends of two microscope slides and the 

resulting cell suspension was passed through a 40 µm cell strainer to isolate single cells. 
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These cells were then frozen in BCM + 20% FBS + 10% DMSO and stored in liquid N2 

until further used. All animal studies were approved by the McGill University Faculty of 

Medicine Animal Care Committee. 

 

2.4.2 Recovery of sgRNAs and T7 Endonuclease I Assay (T7EI)  

 Genomic DNA was prepared from isolated tumor cells by lysing tumor cell pellets 

overnight in TNE buffer (10 mM Tris [pH 8.0], 100 mM NaCl, 25 mM EDTA [pH 8.0], 

0.25% SDS, 125 µg/mL Proteinase K, 125 µg/mL RNase A) at 55˚C. Genomic DNA was 

deproteinized by extracting once with phenol, twice with phenol:chloroform: (50:50), and 

once with chloroform and recovered by ethanol precipitation using 0.3M NaOAc [pH 5.2]. 

PCR amplification of targeted loci was performed using Phusion High-Fidelity DNA 

polymerase (NEB) according to the manufacturer’s recommendations. Amplified DNA 

was purified using BioBasic EZ-10 spin columns. The T7EI assay was then performed 

as previously described [72] and the entire reaction was resolved on a 15% 1 x TBE 

polyacrylamide gel (29:1 acrylamide:bisacrylamide) before staining with ethidium 

bromide.  

 

2.4.3 Sequencing of Modified Loci  

Targeted loci were amplified from tumor genomic DNA using primers designed 

with Primer3[114] and containing adaptor sequences (Table S3). The amplified loci 

were then cloned into pSKII(+) and inserts sequenced via Sanger sequencing using the 

T7 sequencing primer.  

 

2.4.4 Small Hairpin (sh) RNA Design  

The Designer of siRNA (DSIR) algorithm with extended rules described by 

Fellman et al.[115] was used to generate shRNAs targeting Phip and Sp3. Five shRNAs 

targeting each gene were generated and cloned into the MLS retroviral backbone using 

unique XhoI/EcoRI restriction sites. After validation ex vivo in cell lines, the two most 

potent shRNAs were chosen for use in HSPC adoptive transfer experiments.  
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2.4.5 PHIP and PHIP R1212Δ Plasmids  

The PHIP cDNA was kindly provided by Dr. Anne-Claude Gingras (The 

Lunenfeld-Tanenbaum Research Institute, Toronto). From this cDNA, a truncation 

mutant was generated by excising the C-terminal region of PHIP using unique AgeI/XhoI 

sites and replacing it with an oligonucleotide containing a premature stop codon to 

generate PHIP R1212Δ. For insertion into MLS, the proviral backbone was digested with 

BglII, repaired with Klenow, and digested with XhoI. PHIP and PHIP R1212Δ) were excised 

from the parental plasmid by digestion with AscI, Klenow repaired, and digested with 

XhoI. Following gel purification, the PHIP cDNAs were ligated into MLS and the integrity 

of the resulting clones verified by sequencing. 

 

2.4.6 Antibody Generation and Western Blotting 

The DNA sequence encoding amino acids 661-913 of PHIP (Uniprot: Q8VDD9) 

were amplified from the complete cDNA with PCR Primers 
5’GAATTCGAAGCAGGTGTTAGTAATGCCAG3’ and 
5’CTCGAGTCACTTTGGTGATGTTGGTCCATC3’. This product was then cloned into 

pSKII(+) before subcloning into pGEX6p1 using unique EcoRI/XhoI restriction sites, 

which allow the in-frame addition of a GST tag to the N-terminus of the protein. The 

GST-fusion protein was then purified from BL21 E. coli induced with 0.3 mM IPTG for 4 

hours. Bacteria were lysed in 1M NaCl, 50 mM Tris –HCl [pH 8.0], 1 mM EDTA [pH 8.0], 

1 mM EDTA and protein was purified with Gluthatione Sepharose 4B (Amersham) 

before eluting with 50 mM Tris [pH 7.5], 10 mM reduced Glutathione. Proteins were 

dialyzed and stored in 50 mM Tris [pH8.0], 150 mM NaCl, 10 mM EDTA,1 mM DTT, and 

20% Glycerol. The GST tag was cleaved from the purified PHIP antigen using GST-3C 

protease followed by subsequent retrieval from the flow-through following passage 

through a Glutathione Sepharose column. The resulting protein was used antigen for 

subsequent immunizations. 
 Protein extracts for immunoblotting were prepared by lysing tumor cell pellets in 

RIPA buffer (20 mM Tris-HCl [pH 7.5], 150 mM NaCl, 0.1% SDS, 1% NP40, 0.5% 

sodium deoxycholate, 1 mM β-glycerophosphate, 1 mM PMSF, 1 µg/ml leupeptin, 10 
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µg/ml aprotinin, and 2.5 µM pepstatin A) on ice for 10 minutes, followed by sonication. 

Extracts were then boiled for 10 minutes at 95˚C in 1X Laemmli sample buffer and 

resolved on a 6% or 8% NuPAGE gel. Proteins were transferred to PVDF membranes at 

200 mA for 2h. The primary antibodies used in this study were: α-PHIP (1:1000, Bethyl 

laboratories, A302-055A), α-PHIP-N (1:1000),  α-SP3 (1:1000, Santa Cruz, sc-655), α-

actin (1:20000, Sigma, A5316), or α-eEF2 (1:1000, Cell Signaling, 2332). Secondary α–

rabbit and α-mouse antibodies (Jackson Immunoresearch, 1:5000, 715-035-146/152) 

were used and the signal was visualized using enhanced chemiluminescence (ECL) 

(Perkin Elmer). 
 

2.5 Results 

 

2.5.1 Coupling CRISPR/Cas9 and the Eµ-Myc model to identify rare BL oncogenic 

drivers 

 To functionally screen for rare oncogenic drivers from BL sequencing data, we 

took advantage of an adoptive transfer strategy utilizing the Eµ-Myc genetically 

engineered mouse model (GEMM) (Figure 2.1b). This GEMM is modeled after the 

defining Burkitt’s translocation and recapitulates typical genetic and pathological 

features of human non-Hodgkin’s lymphomas [96, 97]. It has been extremely useful for 

unraveling oncogene cooperation, defining pathway addictions, and elucidating drug 

response/genotype relationships in vivo in cancer[98]. From the large number of rarely 

mutated genes, we focused on genes that had incurred nonsense or frameshift 

mutations and thus could be engineered using CRISPR/Cas9 (Figure 2.1a, bottom 

panel and Table S1)[103-105] Perusal of the human BL mutation data identified 91 

genes fulfilling these criteria, although in many cases, additional missense mutations 

were noted in independent BL samples (Figure 2.1a and Table S2). Our screen focused 

on genes not known to be drivers in this cancer type and that had not been previously 

characterized in BL. A few known tumor suppressors were retained (e.g. Tsc1, TP53) 

and served as positive controls in our assay [116, 117]. In total, 75 sgRNAs targeting 

the murine orthologs of genes infrequently mutated in BL were generated (Table S2). 
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We designed the sgRNAs to target their murine counterpart in the vicinity of the 

nonsense or frameshift mutation that had been documented in the human BL data. 

Testing of 9 randomly chosen sgRNAs indicated that all displayed significant editing 

activity, as assessed by the T7EI cleavage assay (Figure 2.2).   
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Figure 2.2. Testing functionality of pQGiG2 constructs  

T7EI assay performed on DNA isolated from NIH 3T3 cells infected with pQCiG2 

derivatives harboring sgRNAs to the indicated loci. NT, non-transduced. 
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 One of the parameters that we wished to define before undertaking an in vivo 

screen in the Eµ-Myc model was to elucidate the sgRNA pool complexity that would 

enable identification of “hits” following reconstitution of HSPCs in transplanted recipients 

(Figure 2.1b). To this end, we used a well-characterized p53-targeting sgRNA, sgp53-1 

and an sgRNA targeting the neutral Rosa26 locus as positive and negative controls, 

respectively [72, 118]. All sgRNAs were co-expressed with Cas9 from a second 

generation “All-in-One” retroviral vector that also produced green fluorescent protein 

(GFP), enabling tracking of infected cells by flow cytometry (Figure 2.1b)[102].  

 Eµ-Myc HSPCs transduced with undiluted sgp53-1, or with a 1:5 dilution of 

sgp53-1 in sgRosa26, produced tumors in recipients by ~25 days with complete 

penetrance (Figure 2.3a). Mice receiving HSPCs with sgp53-1 diluted 1:20 or 1:100 

developed tumors with a slightly longer onset rate and with incomplete penetrance. In 

contrast, Eµ-Myc HSPCs transduced with undiluted sgRosa26 produced tumors with a 

median onset rate of ~80 days (Figure 2.3a). These results indicate that a functional 

sgRNA targeting a tumor suppressor gene could be reproducibly enriched from pools 

containing 5 different sgRNAs. 
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Figure 2.3 Testing functional pool complexity and onset curves for non-significant pools 

a) Kaplan-Meier plot of tumor onset rates in mice transplanted with HSPCs 

transduced with pQCiG2/sgp53-1, pQCiG2/sgRosa26, and the indicated dilutions of 

pQCiG2/sgp53-1 with pQCiG2/sgRosa26. b) Kaplan-Meier plot of tumor onset rates in 

mice transplanted with HSPCs infected with the indicated sgRNA pools. Note that data 

from all cohorts receiving the sgRosa26 pool is combined and used as reference in 

these plots. In parenthesis are the p values (relative to sgRosa26 cohort) as determined 

by the Log-Rank Mantel-Cox Test. 
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2.5.2 In vivo screening identifies candidate sgRNAs capable of promoting 

lymphomagenesis 

 Based on the results of our dilution experiments, we screened our candidate 

genes in pools of five sgRNAs or fewer (Figure 2.1a and Table S1). This yielded a total 

of 16 pools that were used to transduce at least three independent HSPC populations 

and transplanted into five irradiated recipients. Four of the pools showed significantly 

increased tumor onset rates compared to mice having received HSPCs infected with 

pQCiG2/sgRosa26 (Figure 2.4a; p<0.0001, (Log-Rank Mantel-Cox Test)). None of the 

recipients receiving HSPCs infected with the other pools developed lymphomas at rates 

that were significantly faster than those obtained with pQCiG2/sgRosa26 (Figure 2.3b). 

 Despite the presence of a GFP reporter within our transduction vector, we found 

that not all of the recovered tumors were GFP+, which we attribute to the absence of 

selective pressure to maintain expression from pQCiG2 following locus modification. To 

identify the tumor-promoting sgRNAs in tumors arising from sgRNA pools 5, 11, 12, and 

13, we isolated genomic DNA from all lymphomas, amplified the sgRNA encoding 

sequences by PCR, and sequenced the amplified products. Two of five tumors from 

Pool 5 yielded PCR products that, when sequenced, revealed the presence of sgRNAs 

targeting only Phip (data not shown). T7EI analysis of the Phip locus in tumors revealed 

the presence of mutations at the Phip locus in those same two tumors (Figure 2.4b, Top 

panel: T1 and T5). We have not further characterized the three remaining tumors (T2, 

T3, T4) to determine the underlying oncogenic driver event since we failed to retrieve 

PCR products from these tumors. From Pool 11, 5/5 tumors revealed the presence of 

only Sp3-targeting sgRNA and T7EI analysis of these 5 tumors confirmed modification 

at the endogenous Sp3 locus (Figure 2.4b, Middle panel). All tumors from Pool 12 

harbored an sgRNA targeting Tsc1 and indeed all 5 tumors showed evidence of 

mutagenesis at this locus (Figure 2.4b, Bottom panel). All tumors from Pool 13 revealed 

the presence of an sgRNA targeting Tfap4 (data not shown).  
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Figure 2.4 Analysis of sgRNA pools exhibiting accelerated tumorigenesis.  

a. Kaplan-Meier plot of tumor onset rates in mice transplanted with HSPCs 

infected with the indicated sgRNA pools. Note that data from all cohorts receiving 

sgRosa26 are combined and used as reference in these plots. b. T7EI assay from 

individual tumors of the indicated pools or non-targeted (NT) control cells. The locus 

targeted for amplification is shown to the left of each gel.  
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2.5.3 In vivo validation of candidate tumor suppressors  

We undertook to validate these results by repeating the HSPC adoptive transfer 

experiment using the original sgRNA on its own as well as a second independent, non-

overlapping sgRNA (Figures 2.5 and 2.6 and Table S2). For Sp3 and Phip, both 

sgRNAs lead to increased lymphoma onset compared to the Rosa26 cohort (Figs. 2.5b 

and 2.6b). For Tfap4, we were able to recapitulate accelerated tumorigenesis with the 

original sgRNA, but not with a second independent sgRNA (Figure 2.7) and thus did not 

further pursue Tfap4 characterization. Sequencing of cloned amplicons obtained from 

PCR amplification across the sgRNA targeted loci for Sp3 and Phip from tumors 

obtained in the validation experiment revealed indel mutations (Figures 2.8 and 2.9). We 

also noted considerable sequence heterogeneity at the Sp3 or Phip loci within any given 

lymphoma indicating that the tumors that arose were polyclonal in nature and thus 

unlikely to be due to rare integration events that happened to inactivate a tumor 

suppressor locus. Western blot analysis of tumors obtained generated by CRISPR/Cas9 

targeting of Sp3 and Phip indicated significant reductions in levels of both proteins in all 

tumors analyzed (Figures 2.5c and 2.6c). We attribute the small residual protein levels 

to normal cells contaminating the tumor samples. 
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Figure 2.5. Validation of Sp3 as a tumor suppressor.  

a) Schematic of the Sp3 gene denoting targeted regions by the sgRNAs and 

shRNAs used in this study. Note that 4 protein isoforms are generated from the Sp3 

gene as a result of alternative translation initiation events[119]. The light blue shading 

represents untranslated regions whereas dark blue denotes coding exons. b) Kaplan-

Meier plot of tumor onset rates in mice receiving HSPCs infected with retroviruses 

expressing the indicated sgRNAs. Data from all cohorts receiving sgRosa26 are 

combined and used as reference in this plot. c) Immunoblots comparing SP3 levels in 

tumors obtained from mice transplanted with HSPCs infected with Cas9/sgRosa26 or 

Cas9/sgSp3. d) Kaplan-Meier plot of tumor onset rates in mice receiving HSPCs 

transduced with retroviruses expressing the shRNAs targeting RLuc (neutral control) or 

Sp3. Data from all cohorts receiving shRLuc.713 were pooled and used as reference. e) 
Immunoblots assessing SP3 protein levels in sgRosa26- or shSp3.658-derived tumors 
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Figure 2.6. Validation of Phip as a tumor suppressor. 

a) Schematic diagram of the Phip gene indicating the sgRNA and shRNA 

targeted sites. The light blue shading represents untranslated regions whereas dark 

blue denotes coding exons. b) Kaplan-Meier plot of tumor onset rates in mice receiving 

HSPCs infected with retroviruses expressing the indicated sgRNAs. Data from all 

cohorts receiving sgRosa26 are combined and used as reference in this plot. c) 

Immunoblots comparing Phip levels in sgPhip and sgRosa26 derived tumors. d) Kaplan-

Meier plot of tumor onset rates in mice receiving HSPCs transduced with retroviruses 

expressing shRNAs targeting Phip. Data from all cohorts receiving shRLuc.713 were 

pooled and used as reference. e) Immunoblots comparing PHIP levels in sgRosa26- or 

shPhip.3809-derived tumors.  
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Figure 2.7. Validation experiments for Tfap4  

Kaplan-Meier plot of tumor onset rates in mice transplanted with HSPCs 

transduced with pQCiG2/sgTfap4 and pQCiG2/sgTfap4-2. Compiled pQCiG2/sgRosa26 

cohort data is used for comparison.  
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 Figure 2.8. Sequence analysis of the Sp3 locus from sgSp3 derived tumors.  

PCR products obtained following amplification of the Sp3 locus were cloned into 

pSKII(+) and sequenced. The region targeted by the sgRNA is highlight in light blue and 

the PAM motif is denoted in red. Dashes represent deleted nucleotides and the number 

of clones harboring the indicated lesions is denoted to the right. The presence of wild-

type alleles likely reflect contamination of the tumor by infiltrating wild-type cells or 

hemizygous inactivation being sufficient to drive tumor initiation. 

 

 

CTCACATCTGAGAGCACACCTGCGTTGGCA--TTCGGGGGAGCGCCCTTTTATTTGTAAC  7
CTCACATCTGAGAGCACACCTGCGTTGGCAT-TTCGGGGGAGCGCCCTTTTATTTGTAAC  16
CTCACATCTGAGAGCACACCTGCGTTGGCAG-TTCGGGGGAGCGCCCTTTTATTTGTAAC  14 
CTCACATCTGAGAGCACACCTGCGTTGGCACCTTCGGGGGAGCGCCCTTTTATTTGTAAC  12
CTCACATCTGAGAGCACACCTGCGTTGGCAA-TTCGGGGGAGCGCCCTTTTATTTGTAAC  3
CTCACATCTGAGAGCAC----------------------------CCTTTTATTTGTAAC  2
CTCACATCTGAGAGCACACCTGCGTTGGCAC-TTCGGGGGAGCGCCCTTTTATTTGTAAC  1 

CTCACATCTGAGAGCACACCTGCGTTGGCA----TTCGGGGGAGCGCCCTTTTATTTGTAAC  3
CTCACATCTGAGAGCACACCTGCGTTGGCAA---TTCGGGGGAGCGCCCTTTTATTTGTAAC  50
CTCACATCTGAGAGCACACCTGCGTTGGCAAC--TTCGGGGGAGCGCCCTTTTATTTGTAAC  8
CTCACATCTGAGAGCAC------------------------------CCTTTTATTTGTAAC  2
CTCACATCTGAGAGCACACCTGCGTTGGCAAT--TTCGGGGGAGCGCCCTTTTATTTGTAAC  1 
CTCACATCTGAGAGCACACCTGCGTTGGCAGAT-TTCGGGGGAGCGCCCTTTTATTTGTAAC  1
CTCACATCTGAGAGCACACCTGCGTTGGCAGGTTTTCGGGGGAGCGCCCTTTTATTTGTAAC  1 

CTCACATCTGAGAGCACACCTGCGTTGGCA----TTCGGGGGAGCGCCCTTTTATTTGTAAC  3
CTCACATCTGAGAGCACACCTGCGTTGGCAA---TTCGGGGGAGCGCCCTTTTATTTGTAAC  45
CTCACATCTGAGAGCACACCTGCGTTGGCAGGACTTCGGGGGAGCGCCCTTTTATTTGTAAC  20
CTCACATCTGAGAGCACACCTGCGTTGGCAG---TTCGGGGGAGCGCCCTTTTATTTGTAAC  2

TAAAGTCTATGGGAAGACCTCACATCTGAGAGCACACCTGCGTTGGCA-----TTCGGGGGAGCGCCCTTTTATTTGTAACTGG  8
TAAAGTCTATGGGAAGACCTCACATCTGAGAGCACACCTGCGTTGGCAA----TTCGGGGGAGCGCCCTTTTATTTGTAACTGG  19
TAAAGTCTATGGGAAGACCTCACATCTGAGAGCACACCTGCGTTGGCAGT---TTCGGGGGAGCGCCCTTTTATTTGTAACTGG  13
TAAAGTCTATGGGAAGACCTCACATCTGAGAGCACACCTGCGTTGGCAGGGCCTTCGGGGGAGCGCCCTTTTATTTGTAACTGG  11
TAAAGTCTATGGGAAGACCTCACATCTGAGAGCACACCTGCGTTGGCAGG---TTCGGGGGAGCGCCCTTTTATTTGTAACTGG  9
TAA-----------------------------------------------------------------------------CTGG  8
TAAAGTCTATGGGAAGACCTCACATCTGAGAGCACACCTGCGTT------------GGGGGAGCGCCCTTTTATTTGTAACTGG  4
TAAAGTCTATGGGAAGACCTCACATCTGAGAGCACACCTGCGTTGGCAT----TTCGGGGGAGCGCCCTTTTATTTGTAACTGG  2
TAAAGTCTATGGGAAGACCTCACATCTGAGAGCACACCTGCGTTGGCAC----TTCGGGGGAGCGCCCTTTTATTTGTAACTGG  1
TAAAGTCTATGGGAAGACCTCACATCTGAGAGCACACCTGCGTTGGCACC---TTCGGGGGAGCGCCCTTTTATTTGTAACTGG  1
TAAAGTCTATGGGAAGACCTCACATCTGAGAGC---------------------------------CCTTTTATTTGTAACTGG  1

CCTCACATCTGAGAGCACACCTGCGTTGGCATTCGGGGGAGCGCCCTTTTATTTGTAACT   2
CCTCACATCTGAGAGCACACCTGCGTT------CGGGGGAGCGCCCTTTTATTTGTAACT   35    
CCTCACATCTGAGAGCACACCTGCGTTGGCA-GAGGGAGAGCGCCCTTTTATTTGTAACT   31
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Figure 2.9. Sequence analysis of the Phip locus from sgPhip-derived tumors.  

PCR products obtained following amplification of the Phip locus were cloned into 

pSKII(+) and sequenced. The region targeted by the sgRNA is highlighted in light blue 

and the PAM motif is denoted in red. Dashes represent deleted nucleotides and the 

number of clones harboring the indicated lesions is denoted to the right. The presence 

of wild-type alleles may reflect contamination of the tumor by infiltrating normal cells or 

hemizygous inactivation being sufficient to drive tumor initiation. 

CCTTATTTATTTTAGATATTGCGTCTGCATTTGTTGCCCCTGTGGACCTTCAAGCTTATCCCATGTATTGCACTGTGG  28
CCTTATTTATTTTAGATATTGCGTCTGCATTTGTTGCCC-TGTGGACCTTCAAGCTTATCCCATGTATTGCACTGTGG  2
CCTTATTTATTTTAGATATTGCGTCTGCATTTGTTGCC--TGTGGACCTTCAAGCTTATCCCATGTATTGCACTGTGG  1
CCTTATTTATTTTAGATATTGCGTCTGCATTTG---------TGGACCTTCAAGCTTATCCCATGTATTGCACTGTGG  1
CCTTATTTATTTTAGATATTGCGTCTGCATT---------TGTGGACCTTCAAGCTTATCCCATGTATTGCACTGTGG  1
CCTTATTTATTTTAGATATTGCGTCTGCATT--------------------AAGCTTATCCCATGTATTGCACTGTGG  1
CCTTATTTATTTTAGATATTGCGTCT-----------------------TCAAGCTTATCCCATGTATTGCACTGTGG  1
CCTTATTTATTTTAGATAT------------------------------TCAAGCTTATCCCATGTATTGCACTGTGG  1
CCTTATTTATTTTAGATATTGCGTCTGCA--ATTATCTTAATAAT-------AGCTTATCCCATGTATTGCACTGTGG  1
CCTTATTTATTTTAGATATT-------------------------------------------------GCACTGTGG  1
CCTT-TT--------------------------------------------------------------GCACTGTGG  1

Phip Locus 

CCTTATTTATTTTAGATATTGCGTCTGCATTTGTTGCCCCTGTGGACCTTCAAGCTTATCCCATGTATTGCACTGTGG  12
CCTTATTTATTTTAGATATTGCGTCTGCATTTGTTGCCC-TGTGGACCTTCAAGCTTATCCCATGTATTGCACTGTGG  26
CCTTATTTATTTTAGATATTGCGTCTGCATTTGTTGCCC--GTGGACCTTCAAGCTTATCCCATGTATTGCACTGTGG  12
CCTTATTTATTTTAGATATTGCGTCTGCATTTG-----------GACCTTCAAGCTTATCCCATGTATTGCACTGTGG  8
CCTTATTTATTTTAGATATTGCGTCTGCATT-------CCTGTGGACCTTCAAGCTTATCCCATGTATTGCACTGTGG  3
CCTTATTTATTTTAGATATTGCGTCTGCATT-------CCTGTGGACCTTCAAGCTTATCCCATGTATTGCACTGTGG  3
CCTTATTTATTTTAGATATTGCGTCTGCATTTGT---------GGACCTTCAAGCTTATCCCATGTATTGCACTGTGG  2
CCTTATTTATTTTAGATATTGCGTCTGCATTTGTTGCCC--ATGGACCTTCAAGCTTATCCCATGTATTGCACTGTGG  1
CCTTATTTATTTTAGATATTGCGTCTGCATT-------------GACCTTCAAGCTTATCCCATGTATTGCACTGTGG  1

CCTTATTTATTTTAGATATTGCGTCTGCATTTGTTGCCCCTGTGGACCTTCAAGCTTATCCCATGTATTGCACTGTGG  2
CCTTATTTATTTTAGATATTGCGTCTGCATTTGTTGCCC-TGTGGACCTTCAAGCTTATCCCATGTATTGCACTGTGG  10
CCTTATTTTATTTTAGATATTGCGTCTGCATTTG----------GGACCTTCAAGCTTATCCCATGTATTGCACTGTGG 10
  
CCTTATTTATTTTAGATATTGCGTCTGCATTTGTTGCCCCTGTGGACCTTCAAGCTTATCCCATGTATTGCACTGTGG  1
CCTTATTTATTTTAGATATTGCGTCTGCATTTGTTGCCC-TGTGGACCTTCAAGCTTATCCCATGTATTGCACTGTGG  10
CCTTATTTATTTTAGATATTGCGTCTGCATTTGT-----CTGTGGACCTTCAAGCTTATCCCATGTATTGCACTGTGG  4
CCTTATTTATTTTAGATAT---------ATAAG--------GTGGACCTTCAAGCTTATCCCATGTATTGCACTGTGG  3 
  

CCTTATTTATTTTAGATATTGCGTCTGCATTTGTTGCCCCTGTGGACCTTCAAGCTTATCCCATGTATTGCACTGTGG  3
CCTTATTTATTTTAGATATTGCGTCTGCATTTGTTGCCCCCTGTGGACCTTCAAGCTTATCCCATGTATTGCACTGTGG 17
CCTTATTTATTTTAGATATTGCGTCTGCATTTGTTGCCC-TGTGGACCTTCAAGCTTATCCCATGTATTGCACTGTGG  4
CCTTATTTATTTTAGATATTGCGTCTGCATTATCTTATCCCAT----------GCTTATCCCATGTATTGCACTGTGG  1
   

CCTTATTTATTTTAGATATTGCGTCTGCATTTGTTGCCCCTGTGGACCTTCAAGCTTATCCCATGTATTGCACTGTGG  3
CCTTATTTATTTTAGATATTGCGTCTGCATTTGTTGCCCCCTGTGGACCTTCAAGCTTATCCCATGTATTGCACTGTGG 25
CCTTATTTATTTTAGATATTGCGTCTGCATTTGTTGCCC-TGTGGACCTTCAAGCTTATCCCATGTATTGCACTGTGG  5
CCTTATTTATTTTAGATATTGCGTCTGCATTTGT-----CTGTGGACCTTCAAGCTTATCCCATGTATTGCACTGTGG  1
CCTTATTTATTTTAGATATTG--------------------------------------------TATTGCACTGTGG  1  
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2.5.4 SP3 and PHIP display tumor suppressive activity in vivo 

 Both SP3 and PHIP have been reported to exhibit pro-oncogenic activity in other 

contexts. Reduced SP3 expression in the rat small intestinal cell line IEC-6 is 

associated with decreased apoptosis-related caspase activity, a phenomenon that is 

recapitulated using siRNAs[120]. Induction of SP3 expression in LS174 modified colon 

carcinoma cells leads to increased apoptosis and prevents tumor formation in nude 

mice[121], whereas in other situations, loss of SP3 is associated with reduced 

oncogenicity[122-124]. Similar conflicting data exists for PHIP[125]. Although 

predominantly a nuclear protein, over-expression of PHIP profoundly inhibits IRS-1 

tyrosine phosphorylation levels[126], potently stimulates a mitogenic response mediated 

in part through transcriptional induction of cyclin D2[127], and inhibits caspase-9 and -3 

activation in pancreatic b cells[127]. 

 Therefore, to exclude the possibility that modification of the Sp3 or Phip loci by 

CRISPR/Cas9 had led to the generation of gain-of-function truncation mutants, we 

targeted Sp3 and Phip for knockdown using two independently generated shRNAs. Our 

rationale was that if loss of function was truly responsible for tumor initiation in our 

Cas9-based experiments (Figures 2.4b and 2.5b), we should be able to phenocopy this 

using shRNAs that reduce gene activity. In both cases, using two independent shRNAs, 

we observed significantly accelerated tumor onset as compared to a neutral control 

shRNA targeting renilla luciferase (Figures 2.4d and 2.5d). As expected, the resulting 

tumors showed significant reductions in target protein expression levels (Figures 2.4e 

and 2.5e). As well, ectopic expression of a PHIP C-terminal truncation mutant, lacking 

the same functional regions as expected from the human mutation identified in  BL, 

did not lead to accelerated tumorigenesis following infection of Eµ-Myc HSPCs (Figure 

2.10) In sum, our results demonstrate that both Sp3 and Phip behave as tumor 

suppressors in Eµ-Myc driven lymphomas.  
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Figure 2.10 Functional assessment of a PHIP truncation mutant in the Eµ-Myc model.  

a) Schematic diagram showing functional domains of PHIP and the site of the 

PHIPR1212Δtruncation mutation. b) Immunoblot illustrating ectopic expression of full-

length PHIP and PHIPR1212Δ in NIH 3T3 cells following retroviral transduction. Solid and 

white arrowheads indicate the position of migration of PHIP and PHIPR1212Δ, respectively. 

c. Kaplan-Meier plot of tumor onset in mice receiving HSPCs transduced with retrovirus 

expressing PHIP or PHIPR1212Δ.  
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Figure 2.11. Frequency of mutations in PHIP (a) and SP3 (b) across human tumor 

samples as reported from the COSMIC (v77) database 

(http://cancer.sanger.ac.uk/cosmic).  

  

%
 T

um
or

 S
am

pl
es

 
wi

th
 M

ut
at

io
ns

 
%

 T
um

or
 S

am
pl

es
 

wi
th

 M
ut

at
io

ns
 

Sk
in

Lu
ng

Liv
er

Bo
ne

Ne
rvo

us
 S

ys
tem

La
rge

 In
tes

tin
e

En
do

metr
ium

St
om

ac
h

Up
pe

r A
ero

dig
es

tiv
e T

rac
t

Ur
ina

ry 
Tr

ac
t

Br
ea

st
Pr

os
tat

e
So

ft T
iss

ue

He
mato

po
iet

ic 
an

d L
ym

ph
oid

Kid
ne

y
Ova

ry

Oes
op

ha
gu

s
Pa

nc
rea

s
Ce

rvi
x

Bil
iar

y T
rac

t

Ce
ntr

al 
Ne

rvo
us

 S
ys

tem
Th

yro
id

1
0

0

2

3

4

5

6

Ne
rvo

us
 S

ys
tem

En
do

metr
ium

La
rge

 In
tes

tin
e

St
om

ac
h

Sk
in

Liv
er

Lu
ng

Bil
iar

y T
rac

t

Ur
ina

ry 
Tr

ac
t

Pr
os

tat
e

Up
pe

r A
ero

dig
es

tiv
e T

rac
t

Bo
ne

Oes
op

ha
gu

s
Ce

rvi
x

Kid
ne

y
Pa

nc
rea

s

Ce
ntr

al 
Ne

rvo
us

 S
ys

tem

He
mato

po
iet

ic 
an

d L
ym

ph
oid

So
ft T

iss
ue

Ova
ry

1

2

3

4

PHIP

SP3

a

b



	 40	

2.6 Discussion 
 Our results provide a framework for identifying functionally relevant rare 

mutations in human tumor sequencing data. Our approach is complementary to 

bioinformatics initiatives that score for mutation frequency and predicted gene function 

to identify oncogenic drivers among tumor mutation data. Interestingly, perusal of the 

Catalogue of Somatic Mutations in Cancer (COSMIC) database revealed that PHIP and 

SP3 are found mutated in other human cancers, including a small fraction of 

hematopoietic and lymphoid cancers (Figure 2.11). In the absence of our functional data 

and solely based on in vitro cell-based assays, the role of Sp3 and Phip in 

tumorigenesis would have been difficult to assess or could have been misclassified. SP 

family members SP1/3/4 have been implicated as non-oncogenic addiction events in 

pancreatic cancer xenograft experiments[127]. Sp3 null mice are not viable, succumbing 

to respiratory failure shortly after birth[128] and are impaired in hematopoiesis[129]. On 

the other hand, increased Phip copy number is correlated with ulceration in 

melanoma[130]  and increased PHIP expression is linked to increased likelihood of 

metastasis and poor prognosis in melanoma patients whereas knockdown of Phip in 

mouse models prolongs survival and has been reported to protect against 

metastasis[125]. In embryogenesis, Phip is required for post-natal development in mice 

and its loss in the mouse leads to hypoglycemia, poorly developed lung epithelia, and 

death within 4-5 weeks after birth[131]. In the Eµ-Myc model, PHIP and SP3 

demonstrated clear in vivo tumor suppressor activity (Figures 2.4 and 2.5). This may 

reflect context-dependency of tumor-suppressor activity as highlighted by eIF5A, which 

acts as a promoter of oncogenesis in a liver cancer model[132], but when knocked-

down in the Eµ-Myc system, acts as a potent tumor suppressor[100]. CRISPR/Cas9 in 

concert with available deep-sequencing data and appropriate GEMM is thus a powerful 

approach to identify context-dependent lesions.  

 CRISPR/Cas9 is well-suited for the type of in vivo loss-of-function screens 

undertaken herein, but we note that our screen was not exhaustive: expanding the 

number of sgRNAs used per gene, increasing the animal cohort size, and technological 

improvements should improve the discovery rate and throughput of the screen. Related 
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to the latter point - an obvious limitation of this screen is the fairly low complexity of 

sgRNA screening pools used herein as compared to previously published shRNA 

screens[100]. One limitation is the large size of the pQCiG2 sgRNA/Cas9 retroviral 

delivery vector (~8 kbp) which leads to reduced viral titers and subsequent lower 

infection efficiencies[133]. Hence the incorporation of Cas9 alleles into cancer 

GEMMs[134] will allow the use of smaller sgRNA delivery vectors with higher viral titers 

and hence, transduction efficiencies.  

 Although BL and the Eµ-Myc model share the same initiating genetic lesion (i.e. a 

translocation leading to elevated MYC expression), the etiology of the murine and 

human diseases differ. As the translocation is present in the germline in the Eµ-Myc 

model, transformation arises in pro- and pre-B cells in the bone marrow at a time when 

the Eµ enhancer becomes activated and begins driving MYC expression. Human BL 

however arises as a consequence of a Myc translocation occurring in more mature B 

cells present in lymph node germinal centers. This may be a limitation of the Eµ-Myc 

model and we may be under-estimating the number of oncogenic lesions in BL if any of 

these are B cell-stage specific. None-the-less the Eµ-Myc model has proven itself as an 

excellent genetic system for identifying lesions that co-operate with MYC in vivo[116]. 

This model has correctly reported on the ability of p53 suppression[135]  or Tsc1 and 

Tsc2 loss[117] to accelerate tumorigenesis - two genes mutated in human BL.  

 In the era of personalized medicine, the identification of rare alleles that restrict 

tumorigenesis has important therapeutic implications. If some of the identified genes are 

pro-oncogenic in certain settings and are targets for drug development, defining context 

is critical to supporting correct clinical development. Also, understanding downstream 

networks perturbed by loss of PHIP or SP3 could lead to identification of new 

therapeutic targets. As well, rare mutational events may dilute the response to 

therapeutics targeting the more frequent mutational events and a better understanding 

of these rare events will enable better clinical stratification. If loss of PHIP or SP3 is also 

required for tumor maintenance, then this would support the rationale for biotherapeutic 

development, such as approaches aiming to systemically deliver wild-type protein[136]. 

The priority placed on developing tailored therapeutics to rare mutations that can drive 
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tumorigenesis will ultimate be determined by their relevance to tumor biology.  

 
2.7 Acknowledgements 
 AK is supported by a Lymphoma Research Foundation Fellowship. This research 

was supported by a Canadian Cancer Society Research Institute (CCSRI) grant 

(#702778) to JP.  

  



	 43	

Chapter 3: Inducible Genome Editing with Conditional 

CRISPR/Cas9 Mice 
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3.1 Preface to the Manuscript  
 Although CRISPR/Cas9 has shown remarkable utility in a plethora of 

investigations, advances in in vivo gene editing remain hampered by the question of 

delivery. Adenoassociated virus (AAV) vectors remain the delivery method of choice in 

mammals, however they are limited by their packaging capacity of ~4.9 kb and the 

expression of the most commonly used Cas9 variant requires a 4.2 kb cDNA [137]. We 

have also noted rather poor transduction efficiency of Eµ-myc HSPCs using an All-in-

One CRISPR/Cas9 retroviral vector, which allowed only for the interrogation of rather 

low-complexity pools in a screening context [138]. We therefore decided to develop a 

transgenic mouse which would contain a germline doxycycline-inducible Cas9 allele, 

thereby allowing the development of smaller sgRNA delivery vectors and exploration of 

new experimental avenues.  

 

3.2 Abstract 

 Genetically engineered mouse models (GEMMs) are powerful tools by which to 

elucidate gene function in vivo, provide insight into disease etiology, and identify 

modifiers of drug response. Increased sophistication of GEMMs has lead to the design 

of tissue-specific and/or inducible models in which genes of interest are expressed or 

ablated in defined tissues or cellular subtypes. Here we describe the generation of a 

transgenic mouse harboring a doxycycline-inducible Cas9 allele. Genome editing is 

achieved by exogenous delivery of sgRNAs and should allow for the modelling of a 

range of biological and pathological processes. 
 

3.3 Introduction 

Rapid and facile genome editing has been enabled through the use of type II 

bacterial CRISPR (clustered, regularly interspaced, short palindromic repeats)/Cas9 

(CRISPR-associated protein) systems. By taking advantage of RNA-directed targeting, 

the Cas9 endonuclease is used to induce DNA breaks at a given locus. These are 

subsequently repaired by either the mutagenic NHEJ (non-homologous end joining) 

pathway or, if a template complementary to the targeted region is available, by HDR 
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(homology-directed repair). This game changing technology has been used in a myriad 

of applications; including ex vivo and in vivo genome editing and the rapid development 

of novel animal models for disease.  

Genetically engineered mouse models (GEMMs) are powerful tools with which one 

can elucidate gene function in vivo, provide insight into disease etiology, and identify 

modifiers of drug response. Increased sophistication of GEMMs has lead to the design 

of tissue-specific and/or inducible systems in which genes of interest can be expressed 

or ablated in defined tissues or cellular subtypes. Indeed, to extend the utility of the 

mouse for CRISPR/Cas9-based functional genomic studies, transgenic mice expressing 

Cas9 in their germline have been developed. A Cre-dependent Cas9 knock-in mouse in 

which Cas9 expression is activated in a tissue-specific manner has been used to model 

lung adenocarcinoma by simultaneously inactivating p53 and Lkb1  by NHEJ, while 

generating KrasG12D alleles by HDR[134]. Prolonged expression of Cas9 in constitutively 

expressing mice is well tolerated [134].  Dow et al. [139]  used a different approach and 

produced GEMMs co-expressing sgRNAs and DOX (doxycycline)-inducible Cas9 (as 

well as the nickase variant Cas9D10A) in their germline. This platform illustrated the 

feasibility of inducible in vivo genome editing at multiple loci (p53 and Apc) to model 

cancer progression[139]. A third Cas9 transgenic mouse strain was recently described 

harboring a Cre/loxP-dependent conditional Cas9 allele engineered into the Rosa26 

locus[140]. These powerful models are enabling the application of Cas9 editing 

technology to a number of tissue- and embryo-based settings. 

 Here, we report on the generation of a DOX-inducible Cas9 mouse in which we 

placed a TRE (tetracycline responsive element)-inducible Cas9 allele into the Col1A1 

locus. This mouse overcomes the in vivo delivery challenges of Cas9, avoids potential 

genotoxicity associated with Cre recombinase[141], and maintains flexibility with respect 

to choice of sgRNA delivery. We demonstrate viral-mediated sgRNA delivery achieves 

efficient editing in adoptive stem cell transfer experiments.  
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3.4 Materials And Methods 
 

3.4.1 Generating Col1A1 Knock-in Cas9 Mice  

A pUC57 derivative (pUC57a) with appropriate linker sequences tailored for 

multi-component assembly of the donor template was purchased from GenScript and 

contained the following adaptor sequence: 
5’CCATGGTGATGCATATGGCCGTGAAGAGACCCGCCGCCACCAAGAAGGCCGGCC

TTAATTAAACGCGTTGAGAACTTCAGGGTGAGTTTGGGGACCCTTGATTGTTCTTTC

TTTTTCGCTATTGTAAAATTCATGTTATATGGAGGGGGCAAAGTTTTCAGGGTGTTG

TTTAGAATGGGAAGATGTCCCTTGTATCACCATGG3’. Using unique FseI/PacI (NEB; 

New England Biolabs) restriction sites, the Flag-Cas9-IRES-GFP fragment from 

pQCiG2[102] was cloned into pUC57a. GFP was transferred from pUC57a-Cas9-IRES-

GFP into pCol-TGM-p53.1224 [142] using NcoI (NEB). The resulting plasmid was 

partially cleaved with NcoI and the Cas9-IRES fragment from the parental pUC57a-

Cas9-IRES-GFP vector transferred to generate pCol-Tre-Cas9-iG. Unique AscI/XmnI 

restriction sites were then used to transfer the CAGs-rtTA3-SAdpA cassette [143] [143] 

into pCol-Tre-Cas9-iG, downstream of GFP to generate the knock-in donor template, 

pCol-TCiG-rtTA3.  

 C10 ES cells were cultured in complete Knock-out DMEM (15% ESC Qualified 

Serum, 1% Penicillin-Streptomycin, 1% Non-Essential Amino Acids, 1% L-Glutamine, 

0.1% BME, 0.01% LIF) on gelatinized plates with PMEF-N Feeders (Millipore). Fifty 

micrograms of pCol-TCiG-rtTA3 was electroporated with 25 µg of Flpe recombinase 

expression plasmid (pCAGs-Flpe) as previously described[144]. After 2 days of 

recovery, recombinant clones were selected using 140 µg/mL hygromycin, assessed for 

DOX inducibility, and used to generate chimeras. The TRE-Cas9 allele has been 

crossed onto the C57BL/6 background for 6 generations. All animal studies were 

approved by the McGill University Faculty of Medicine Animal Care Committee. 
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3.4.2 Genotyping 

Cas9 allele status was assessed with primers Col1A1-F: 
5’AATCATCCCAGGTGCACAGC3’, SAdpA-R (from Mirimus, NY): 
5’CTTTGAGGGCTCATGAACCTCCCAGG3’, Col1A1-R: 
5’ACCGCGAAGAGTTTGTCCTCAAC3’. Primers Col1A1-F and Col1A1-R provided a 

characteristic 379 bp band indicative of the presence of Cas9, whereas Col1A1-F and 

SAdpA-R generated a 239 bp band indicative of a wt Col1A1 locus. The Rosa26 locus 

status was assessed using the following primers: Rosa-A: 
5’AAAGTCGCTCTGAGTTGTTAT3’, Rosa-B: 5’GCGAAGAGTTTGTCCTCAACC3’, Rosa-

C: 5’GGAGCGGGAGAAATGGATATG3’. Rosa-A and Rosa-B produce a ~500 bp band, 

indicative of a wild-type Rosa26 allele, while Rosa-A and Rosa-C produce a ~300 bp 

band, indicating the presence of the rtTA allele. Eµ-Myc allele status was assessed 

using primers 5’Eµ-Myc: 5’GGACAGTGCTTAGATCCAAGGTGA3’, and 3’Eµ-Myc: 
5’CCTCTGTCTCTCGCTGGAATTACT3’ which produce a 600 bp band when the Eµ-Myc 

allele is present. 

 

3.4.3 Construction of pUSPPC sgRNA-expression Vectors 

To generate pUSPPC, we first replaced GFP in pQCiG2 with mCherry by 

digesting with EcoRV/ClaI to remove the IRES-GFP sequence. This was replaced with 

the EMCV IRES which was PCR amplified from pQCiG2 using primers “IRES-F” 
5’AGTACGTAGATATCCCCATTAATCGATTTGAATTCCG3’ and “IRES-R” 
5’AGTACGTAATCGATACTAGTGTGGCCATATTATCATCG3’ and digested with 

ClaI/EcoRV and ligated into the gutted pQCiG2 vector to produce ‘pQCi’.  The mCherry 

coding region sequence was amplified using PCR with primers “mCherry-F” 
5’ATATCGCCTAGGCTTTTGCAAAAAGC3’ and “mCherry-R” 
5’ATATCGCCTAGGTTACTTGTACAGCTCGTCCATG3’ using Vent polymerase 

according to manufacturer’s instructions. This amplicon was then digested with AvrII 

and cloned into pQCi, which had been linearized with SpeI, to form ‘pQCiC’. The Cas9 

expression cassette was then removed from this vector using unique XhoI/EcoRV sites. 

The PGK-Puromycin cassette from pPrime-shRNA [145]  was excised by first digesting 
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with PacI, repaired with T4 DNA polymerase, and cleaved with XhoI. The resulting 

product was ligated into pQCiC vector to generate pUSPPC. 

 
3.4.4 T7 Endonuclease I (T7EI) Cleavage Assay 

Genomic DNA from pUSPPC-transduced HSPCs was prepared using a Zymo 

Research Quick-gDNA MiniPrep kit (D3006). PCR amplification of the sgP53-3 targeted 

region of Trp53 was performed using Primer F: 5’CTGTGCAGTTGTGGGTCAG3’ and 

Primer R: 5’GGAGGCTGCCAGTCCTAAC3’ with A-Key 

(5’CCATCTCATCCCTGCGTGTCTCCGACTCAG3’) and Tr-P1 

(5’CCTCTCTATGGGCAGTCGGTGAT3’) adaptor sequences using Phusion High-Fidelity 

polymerase according to manufacturer’s recommendations. The T7EI assay was then 

performed as previously described[72] [72] and the entire reaction resolved on a 15% 1x 

TBE polyacrylamide gel (29:1 acrylamide:bisacrylamide) before staining with SybrGold 

(ThermoFisher). 

 

3.4.5 HSPC Adoptive Transfers  

Low passage Phoenix-Eco packaging cells were cultured in complete DMEM 

(10% FBS, 1% Penicillin-Streptomycin, 1% L-Glutamine) and grown at 37˚C/5% CO2. 

Twenty four hours prior to transfection, 3.5 million Phoenix-Eco cells were seeded in 10 

cm tissue culture plates. Plasmids (10 µg) were co-transfected with 1µg pCL-eco 

replication-incompetent helper vector using calcium phosphate[113]. Twenty-four hours 

after transfection and 12h before the first virus harvest infection, plates were washed 

with PBS and refreshed with 5 mL complete BCM (45% DMEM, 45% IMEM, 10% FBS, 

1% Penicillin-Streptomycin, 1% L-Glutamine). 12h after refreshing media, virus was 

then collected every 12 h for a period of 48h 

R26-rtTA;TRE-CiG/rtTA;Eµ-Myc HSPCs were isolated from fetal livers at E13.5 

days as previously described [146]. Cells were placed in culture 12 hours before first 

infection in BCM supplemented with 1 ng/mL IL-3, 10 ng/mL IL-6, 100 ng/mL SCF and 

incubated at 37˚C/5% CO2. Cultured HSPCs were infected four times at 12h intervals 

with viral supernatant from transfected Phoenix-Eco cells, supplemented with 1 ng/mL 
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IL-3, 10 ng/mL IL-6, 100 ng/mL SCF and 4 µg/mL polybrene, and spinoculated at 950 xg 

for 1 hour at 32˚C. To induce Cas9 expression, cells were treated with 1µg/mL 

doxycycline. Transduction and GFP-induction efficiency was assessed by flow-

cytometry prior to transplantation (Guava EasyCyte 8HT).  

For transplantations, 6-8 week old female C57BL/6 mice were placed on 0.125 

mg/mL ciprofloxacin/2% sucrose two days before transplantation. Four hours before 

transplantation, mice were irradiated with 4 Gy γ radiation. Approximately 6 x 105 

HSPCs were transplanted into irradiated mice via intravenous tail-vein injection. Mice 

were palpated bi-weekly to assess tumor status until the experimental end point at day 

120.  

 

3.4.6 Immunoblotting  

Extracts were prepared from frozen cell pellets. Pellets were resuspended in 

RIPA buffer (20 mM Tris-HCl [pH 7.5], 150 mM NaCl, 0.1% SDS, 1% NP40, 0.5% 

sodium deoxycholate, 1 mM β-glycerophosphate, 1 mM PMSF, 1 mg/ml leupeptin, 10 

mg/ml aprotinin, and 2.5 mM pepstatin A) on ice for 10 minutes. Lysates were 

denatured in Laemmli sample buffer by heating to 90oC for 10 minutes. Proteins were 

resolved on 10% NuPAGE gels and transferred to PVDF membranes by electroblotting 

at 200 mA/gel for 2 hours. Antibodies used were: α-Flag (1:5000, Sigma), α-Cas9 

(1:1000, Abcam ab191468), α-GAPDH (1:1000, Abcam ab8245), α-eEF2 (1:1000, Cell 

Signaling, 2332). 

 

3.4.7 Southern Blot Analysis of the Col1A1 Locus  

Genomic DNA was isolated from ES cell clones, digested with EcoRI, and 

fractionated on a 0.8% TBE agarose gel [147]. After transfer to Hybond N+ membranes, 

the DNA was interrogated using a probe targeting the hygromycin gene outside of the 

region targeted by the donor template. The probe was generated by PCR amplification 

using primers A (5’ATGAAAAAGCCTGAACTCACCG3’) and B 

(5’CCAATGTCAAGCACTTCCG3’) and labeled using ThermoFisher DecaLabel DNA 

Labeling Kit (K0662) with 32P-dCTP (New England Nuclear, MA). Following hybridization, 
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membranes were washed in 2x SSC/0.1% SDS once at 25˚C, twice at 55˚C, and then 

once with 1x SSC/0.1% SDS at 55˚C.  

 

3.4.8 Immunophenotyping and Immunohistochemical Analysis  

Spleens were harvested from mice, macerated, and passed through a 40 µm cell 

strainer to create single-cell suspensions. Red blood cells were eliminated by lysis in 

ACK lysis buffer (150 mM NH4Cl, 10 mM KHCO3, 0.1 mM EDTA) [pH 7.2] for 5 minutes 

on ice, before neutralizing with PBS. 300,000 cells were stained either with 0.06 µg PE-

conjugated α-CD4 (BD Pharmigen 553652) or α-B220 (BD Pharmigen 553090) for 30 

minutes before washing with PBS. PE+ and GFP+ populations were analyzed by flow 

cytometry (Guava EasyCyte 8HT, Millipore). 

 Tissues were harvested from mice and fixed in 10% buffered formalin for 48 h 

before embedding in paraffin. Sections (4 µm) were de-paraffinized using xylene and 

rehydrated through a series of decreasing ethanol washes, followed by a final water 

wash. Antigen retrieval was performed in a pressure cooker for 15 min in 10 mM sodium 

citrate (pH 6.0)/ 0.05% Tween-20. After washing, samples were blocked using TBS [pH 

7.5]/ 10% FBS/ 1% BSA for 2h at RT and incubated with a-GFP antibodies (1:500, Cell 

Signaling, 2555) overnight at 4˚C. Slides were blocked with hydrogen peroxide for 10 

minutes, incubated for 30 minutes with biotinylated goat anti-rabbit IgG and then 

streptavidin peroxidase (Anti-rabbit HRP/DAB detection kit, Abcam). Staining was 

performed using DAB chromogen and substrate from Abcam and counterstained using 

IHC-optimized hematoxylin (Vector Labs). Sections were dehydrated, mounted using 

permount, and slides scanned using an Aperio XT slide scanner with the resultant 

images analyzed using Aperio ScanScope. 
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Figure 3.1. Inducible and reversible Cas9 Expression in mouse ESCs.  

a) Configuration of the Col1A1 locus in C10 ESCs as well as following Flpe-

mediated recombination. Denoted are the diagnostic EcoR1 sites and region outside of 

the targeting vector used for probe generation (red bar) to confirm integration by 

Southern blotting. b) Southern blot analysis of the parental C10 ES cell line and two 

hygromycin-resistant clones (AK1 and AK2) using a downstream probe external to the 

FRT site (see panel A, red bar). c) Western blot indicating Cas9 induction in ESC clones 

48 h following 1 ug/ml DOX treatment. Blots were probed with antibodies directed to the 

indicated proteins. d) GFP induction in ESC clones 48 h following 1 ug/ml DOX 

treatment as assessed by flow cytometry. e) Western blot illustrating reversible Cas9 

expression in AK1 cells. AK1 cells were treated with 1 ug/ml DOX for 24 h, after which 

time fresh media lacking DOX was added. At the indicated time points, one aliquot of 

cells was taken to prepare extracts for Western blot analysis and another analyzed by 

flow cytometry. 
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3.5 RESULTS 
3.5.1 Generation of a Doxycyline (DOX)-Inducible Cas9 Mouse  

Recombinase-mediated cassette exchange (RMCE) is a rapid method by which 

to generate transgenic mice with DOX-inducible cDNAs or shRNAs. This approach is 

facilitate by the existence of pre-engineered C10 ES cells containing a FRT-hygro-pA 

“homing” cassette downstream of the Col1A1 locus [142, 148]  (Figure 3.1a, top panel). 

We took advantage of the ease of manipulation of these cells and used FLPe 

recombinase to mediate recombination between the FRT sites at the Col1A1 locus and 

a site present in the pCol-TCiG-rtTA3 targeting vector[142, 148]. In this vector, we 

placed Cas9 and GFP under regulation of the tetracycline response elements (TRE) and 

positioned a second transcriptional unit downstream with the CAGs promoter[149]  

driving reverse tet-transactivator (rtTA3) expression (Figure 3.1a, bottom panel). 

Following ES cell electroporation and RMCE, two hygromycin resistant cells (AK1 and 

AK2) were clonally expanded and characterized by Southern blotting to confirm correct 

integration at the desired locus, as revealed by the presence of an 8 kbp DNA fragment 

(Figure 3.1a and b). Both AK1 and AK2 showed DOX-dependent induction of Cas9 and 

GFP expression (Figure 3.1c and d). Expression of both proteins was reversible (Figure 

3.1e).  

 

3.5.2 Characterization of Inducible Cas9 Expression in Mice  

Transgenic mice were produced from AK1 ESCs, referred to henceforth as TRE-

CiG/rtTA, and their preliminary characterization revealed weak global GFP induction in a 

large number of tissues following DOX treatment (data not shown). We reasoned that 

one possibility for this could be limiting rtTA3 activity and/or levels. Indeed, DOX 

induction of the TRE promoter in vivo can be restricted by limiting rtTA levels – as 

documented in GEMMs harboring conditional shRNAs[150]. Specifically, shRNA-

mediated suppression of Replication Protein A, subunit 3 (Rpa3) in vivo has been 

shown to be more potent when two rtTA expressing alleles are present in the germline 

of shRpa3-bearing mice, compared to mice expressing only one rtTA allele[150]. We 

therefore crossed Rosa26(R26)-rtTA mice to the TRE-CiG/rtTA GEMM and found that 
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the resulting R26-rtTA;TRE-CiG/rtTA offsprings displayed higher induced levels of Cas9 

and GFP in a number of analyzed tissues compared to TRE-CiG/rtTA mice following 

DOX exposure (eg, skin, spleen, thymus, small and large intestine, liver) (Figure 3.2a 

and b). Robust induction of GFP was also observed in B cells isolated from spleen and 

thymus of R26-rtTA;TRE-CiG/rtTA mice (Figure 3.2c). 

 We did not notice any evidence of toxicity associated with expression of the Cas9 

transgene. Mice harboring the TRE-CiG/rtTA allele were fertile, had normal litters, and 

appeared morphologically normal. The TRE-CiG/rtTA allele was inherited at the 

expected Mendelian frequency with no significant associated sex effects in the 

inheritance pattern (Figure 3.3a). Long-term (6 months) treatment of R26-rtTA;TRE-

CiG/rtTA mice with DOX did not affect weight gain (Figure 3.3b) nor overall general 

behavior. Cas9 was still expressed in tissues of mice continuously receiving DOX for 6 

months and in many, levels appeared even higher than in tissues from R26-rtTA;TRE-

CiG/rtTA mice that had been on DOX for only 1 week (Figure 3.3c). Tissue analysis 

showed no discernible histological changes and we found no significant pathology 

(Figure 3.3d and Table S5). Additionally, blood chemistry from R26-rtTA;TRE-CiG/rtTA 

mice after 6 months of DOX treatment showed almost all values within normal range, 

with the values of blood cholesterol and potassium being the only parameters only 

slightly outside the norm (Table S4). Thus, consistent with what was reported for mice 

constitutively expressing Cas9[134], long term sustained Cas9 expression is not 

associated with any overt detrimental phenotype or negative impact on the animal’s well 

being. 
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Figure 3.2. Inducible Cas9 expression  
a) Western blot of Cas9 from the indicated tissues harvested from TRE-CiG/rtTA 

mice treated with vehicle (-) or DOX (+) and from R26-rtTA;TRE-CiG/rtTA mice treated 

with DOX for 1 week. s.e., short exposure; l.e., long exposure. b) Immunohistochemical 

staining for GFP expression in the small intestine, kidney, and liver from the indicated 

mice (+/- DOX). Magnification bars denote 50 um. c) Quantitation of B220+ cells 

isolated from the spleen and thymus of R26-rtTA;TRE-CiG/rtTA mice that had been 

treated with DOX for 1 week.  
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Figure 3.3. Long Term expression of Cas9 is well tolerated in the mouse  
a) Mendelian inheritance frequency of the TRE-CiG/rtTA allele, as well as sex 

distribution of the inheritance frequency. b) Body weight of the indicated mice that had 

been treated with DOX or vehicle for 6 months. N= 2 mice +/- SD. c) Western blot of 

Cas9 from the indicated tissues harvested from R26-rtTA;TRE-CiG/rtTA mice treated 

with vehicle (-) or DOX (+) for 1 week (wk) or 6 months (mo). d) Immunohistochemical 

analysis of GFP expression in the pancreas, kidney, and liver from R26-rtTA;TRE-

CiG/rtTA mice exposed to vehicle or DOX for 1 week (left) or 6 months (right). 

Magnification bars denote 50 um. 
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Figure 3.4. DOX-inducible Genome Editing Ex Vivo  

a) Schematic representation of pUSPPC  sgRNA vector. b) Flow cytometry 

analysis of R26-rtTA;TRE-CiG/rtTA HSPCs infected with pUSPPC expressing a neutral 

sgRNA (sgTLR: 5’AGCAGCGTCTTCGAGAGTG3’ ) or targeting p53 (sgp53-3: 
5’AAGUCACAGCACAUGACGG3’). Following infection, cells were exposed to vehicle or 

DOX (1 ug/ml) for 3 days. Infected cells are mCherry+ and those responsive to DOX are 

mCherry+/GFP+. c) Western blot showing induction of Cas9 expression in R26-

rtTA;TRE-CiG/rtTA HSPCs exposed to DOX for 3 days. d) T7E1 assay from DNA 

isolated from the indicated HSPCs. The dark circles denote the position of migration of 

cleaved products observed with DNA from pUSPPC-sgp53-3 infected R26-rtTA;TRE-

CiG/rtTA HSPCs exposed to DOX for 2 days.  
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Figure 3.5. Dosage effect of rtTA alleles in the TRE-CiG mouse HSPCs 

 

Two rtTA Alleles drive stronger Cas9-mediated editing than a single rtTA allele in 

HSPCs. T7E1 assay from DNA isolated from the indicated HSPCs. The dark circles 

denote the position of migration of cleaved products observed with DNA from pUSPPC-

sgp53-3 infected R26-rtTA;TRE-CiG/rtTA HSPCs exposed to DOX for 2 days. 
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3.5.3 Ex Vivo Genome Editing in Primary Hematopoietic Stem and Progenitor Cells 

(HSPCs)  

In our mouse, the spatial induction of Cas9 is determined by the sites of 

expression of the rtTA alleles. Very powerful genetic screens for novel oncogenic 

drivers have utilized the Eµ-Myc model, a GEMM that predisposes mice to 

lymphomagenesis. For example, the approach has identified novel oncogenic drivers by 

infecting Eµ-Myc HSPCs with libraries of shRNAs followed by transplantation into 

normal recipients and monitoring for tumor onset[100]. As a prelude to future 

experiments in which sgRNAs could be used for in vivo screens in the Eµ-Myc 

model[151], we sought to assess if we could obtain Cas9-mediated editing in HSPCs 

that had been isolated from R26-rtTA;TRE-CiG/rtTA mice. For this, we tailored a 

retroviral delivery vector, pUSPPC, to constitutively express sgRNAs as well as 

puromycin and mCherry selectable markers (Figure 3.4a). Infection of HSPCs derived 

from R26-rtTA;TRE-CiG/rtTA mice with pUSPPC lead to infection rates ranging from 30-

48% (mCherry+ cells) (Figure 3.4b). Cas9 expression was induced upon exposure of 

HSPCs to DOX ex vivo (Figure 3.4c). Infection of these with pUSPPC-sgp53-3 revealed 

editing at the p53 locus 2 days later (Figure 3.4d). Consistent with our previous findings 

(Figure 3.2), significantly higher levels of modification were observed when two rtTA 

alleles [R26-rtTA;TRE-CiG/rtTA] were present in HSPCs compared to only one [TRE-

CiG/rtTA] (Figure 3.5). These results show that Cas9 is inducible and functional in 

HSPCs and that conditional editing can be achieved in HSPCs in vitro.  

 

3.5.4 Ex vivo manipulation of HSPCs and adoptive transfer experiment in the Eµ-Myc 

GEMM  

The Eµ-Myc mouse model is a robust and malleable model of non-Hodgkin’s 

lymphomas [97]. We have previously demonstrate that delivery of Cas9 with an sgRNA 

targeting p53 to Eµ-Myc HSPCs ex vivo accelerated tumor onset rates in transplanted 

recipients compared to recipients who received HSPCs infected with 

Cas9/sgRosa26[97]. However, transduction efficiencies of HSPCs with an All-In-One 

vector was disappointing low, precluding screens involving high complexity pools[138]. 
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We compared the ability of HSPCs isolated from Eµ-Myc mice (infected with the All-In-

One vector, pQCiG2, expressing sgTLR (a neutral sgRNA) or sgp53-3) to form tumors 

compared to HSPCs isolated from R26-rtTA;TRE-CiG/rtTA;Eµ-Myc mice (transduced 

with pUSPPC expressing sgTLR or sgp53-3) (Figure 3.6). The results indicated that 

pUSPPC driven sgp53-3 was as efficient at driving tumorigenesis in R26-rtTA;TRE-

CiG/rtTA;Eµ-Myc HSPCs as pQCiG2 driving sgp53-3 production in Eµ-Myc HSPCs, as 

was a 1:5 dilution of sgP53-3. A further  dilution of pUSPPC-sgP53-3 to 1:50 also 

accelerated tumor onset .   

 
 

  



	 60	

 
 
 
 

 
Figure 3.6. Effectiveness of GEMM for in vivo functional assays  

Kaplan-Meier plot indicating tumor-free survival of C57B/6 mice receiving either 

Eµ-Myc HSPCs transduced with the All-in-One pQCiG2 system, or Eµ-Myc;R26-

rtTA;TRE-CiG/rtTA HSPCs transduced with the more compact pUSPPC system. Tumor 

onset curves for pUSPPC-sgP53-3 diluted in pUSPPC-sgTLR 1:5 or 1:50 are overlaid.  
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3.6 DISCUSSION 
 Herein, we describe the generation of a mouse model that inducibly expresses 

Cas9 across a wide range of tissues upon administration of doxycycline. Although 

Cas9-expressing mice exist, our iteration distinguishes itself in a number of ways. Platt 

et al.[134]  developed a Cre-dependent CRISPR-Cas9 mouse which constitutively 

expresses Cas9 in tissues expressing Cre-recombinase. Although in their model (as in 

ours) long-term Cas9 expression was not deleterious at an organismal level, Cas9 is a 

foreign antigen and one concern is generating an immune response that could target for 

elimination cells from the edited pool. Indeed, experiments with adenovirus-mediated 

delivery of Cas9 and sgRNA to the liver resulted in a Cas9-specific immune response 

[152]. Similar findings were also reported following delivery of split-Cas9 moieties via 

adeno-associated virus (AAV) vectors[153].  As well, given that off-target effects are an 

ever-present concern when it comes to genome editing, constitutive Cas9 expression is 

unwanted, especially since longer-term expression of Cas9 is associated with more off-

target damage than transient Cas9 expression [154] [155]. Dow et al.[139] have 

successfully generated transgenic mice that demonstrate inducible CRISPR/Cas9 

editing upon doxycycline administration. This inducible system is quite powerful but 

limited in that the sgRNA expression cassette is co-integrated with Cas9, therefore 

necessitating generation of a new strain for every target. The TRE-CiG/rtTA mice we 

describe here  addressed these issues. It is a doxycycline inducible system, which 

allows for controlled, short-term induction of Cas9 expression, which should decrease 

off-target mutagenesis and mitigate host immune responses against Cas9. Additionally, 

any sgRNA of choice can be introduced into these mice, allowing for flexibility and facile 

multiplexing, making it a robust addition to the CRISPR/Cas9 toolbox. 
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Chapter 4: General Discussion 
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4.1 CRISPR/Cas9 in functional in vivo screening 
 With the ready availability of high-resolution genome sequencing data of both 

normal and disease tissues, there is great interest in using this data to identify which 

reported variants are important drivers of disease. Most often, this involves 

bioinformatics approaches where the most frequently mutated gene or sets of genes are 

identified and then queried with functional assays. However, what we often see in 

disease sequencing data is a handful of frequently mutated genes and a vastly larger 

number of infrequently mutated ones. Additionally, there are samples where the more 

frequent mutations are not present.  To address this discrepancy, we demonstrate in 

Chapter 2 a complementary application of the CRISPR/Cas9 system in a functional in 

vivo screens to identify rare drivers of oncogenesis. By targeting sgRNAs to those 

infrequently mutated genes reported in three deep sequencing studies [103-105] we 

identified two genes with novel tumor suppressor function: Phip and Sp3. These genes 

are reported in the Catalogue of Somatic Mutations in Cancer (COSMIC) to be mutated 

in a number of different human tumor types, including a small number of hematopoietic 

or lymphoid malignancies (Figure 2.11). Additionally, Sp3-/- embryos have been shown 

to have impaired hematopoiesis [129]. Using the more conventional bioinformatics 

approach, these genes likely would have notbeen investigated, leaving our knowledge 

of the system incomplete. Interestingly, both Phip and Sp3 have been reported to have 

either pro- and anti-cancer properties in a number of different cancers and cancer 

models. Increased PHIP copy number and PHIP expression are correlated with severity 

of melanoma in human patients [125, 130], whereas knockdown of Phip in a mouse 

model reduces metastatic potential and promotes survival [125]. Similarly, exogenous 

expression of SP3 in LS174 modified colon carcinoma cells leads to increased apoptotic 

events as well as abrogating the ability of these cells to form tumors in nude mouse 

xenograft experiments [121]. However, loss of SP3 expression has also been 

demonstrated to reduce oncogenic potential in through a number of different processes 

such as through regulation of histone deacetylases [122], regulation of proteins that are 

known metastatic markers  [123], and  regulation of proteins involved in the regulation of 

cell death [124]. However, in the Eµ-myc model, both Phip and Sp3 demonstrate clear 
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tumor suppressor function. This again highlights the utility of developing in vivo assays 

with functional significance, as bioinformatics and cell culture-based approaches cannot 

give a complete view of biological systems and thus can be limited in what they can 

uncover. CRISPR/Cas9 offers a great deal of potential for exploration in this area. 

 

4.2 Improvements on the Eµ-Myc Screen 
 There are clearly several limitations on the screen we have performed and there 

remains much room for improvement. First, expanding the number of sgRNAs targeting 

each candidate gene could have increased the power of our screen, providing a 

safeguard against false negatives resulting from inefficient sgRNA activity, or disruption 

of the target gene which is well tolerated. Additionally, expanding the animal cohort size 

would have increased the statistical power of our screen. However, one of the greatest 

limitations of our screen in comparison to previous shRNA screens in the same model is 

the relatively low complexity of pools from which we can successfully identify a positive 

hit. We established that we could identify an sgRNA which promotes lymphomagenesis 

diluted in equal molar ratios with four other neutral sgRNAs (Figure 2.3a). This is a far 

cry from the effective pools of 200 shRNAs that had previously been reported [100]. 

One contributor to this issue is the large size of our All-in-One pQCiG2 vector (~8 kb) 

which approaches the packaging capacity of retroviruses. This large size reduces the 

packaging efficiency of our virus, leading to reduced viral titers and resulting in poor 

transduction efficiency [133]. The most commonly used Cas9 cDNA alone accounts for 

4.2 kb, therefore the development of genetically engineered mice which already express 

Cas9 protein in the desired tissues would allow for development of more compact 

sgRNA delivery vectors, thereby increasing viral titers, transduction efficiency and, 

ultimately, effective pool size. 

 

4.3  Utility of a Genetically Engineered Inducible Cas9 Mouse 

 Delivery of the CRISPR/Cas9 system to the target tissue remains one of the 

largest obstacles in in vivo genome editing. As has been previously mentioned, the most 

commonly used variant of Cas9 has a cDNA of 4.2 kb. This is problematic when 
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considering viral administration routes. Adding on regulatory components and an 

sgRNA expression cassette to a Cas9 vector stretches the limit of lenti- and retroviral 

packaging, and is completely beyond the capacity of a single AAV vector. Various 

approaches have been taken in order to address these difficulties. Most commonly, the 

sgRNA and Cas9 protein will be delivered in two separate viruses. Other groups have 

created split-Cas9 systems wherein Cas9 is split into two domains and delivered 

independently of one another and self-assemble once expressed in cells [153, 156, 157]. 

Additionally, smaller Cas9 orthologs are being examined and characterized. One such 

ortholog from Staphylococcus aureus, whose cDNA is >1kb shorter than that of the 

most commonly used Cas9, has been characterized and successfully used for in vivo 

editing[158]. However, one approach summarily removes the question of Cas9 delivery 

altogether: generation of a genetically engineered Cas9 mouse. Several such mice have 

already been described. Platt et al. [134] developed a genetically engineered Cre-

dependent mouse where Cas9 protein will be constitutively expressed in any tissue also 

expressing Cre-recombinase. Though highly powerful, this mouse is not without its 

limitations. Cas9 is a foreign bacterial protein against which an immune response could 

be elicited. In the case of an in vivo screen, this could negatively impact targeted cells, 

affecting the readout of the screen. Expression of Cas9, while not deleterious at the 

organismal level, has been reported to elicit an immune response specific to the Cas9 

protein in both adenoviral and AAV-based administration routes [152, 153]. Additionally, 

it has been demonstrated that prolonged expression of CRISPR/Cas9 machinery can 

increase the ratio of off-target to on-target editing [154, 155, 159], therefore making it 

desirable to limit the duration of expression of Cas9. Dow et al. [139] have described a 

doxycycline-inducible CRISPR/Cas9 mouse which constitutively expresses an sgRNA, 

but inducibly expresses Cas9 upon administration of doxycycline. However, this system 

is limited in that the sgRNA is included in the transgene, therefore requiring the 

generation of a new strain for every new target of interest. The system which we 

describe in Chapter 3 addresses each of these issues. We have developed a more 

compact sgRNA delivery vector with which we achieve much higher transduction 

efficiencies of HSPCs  than we do with the previously used All-in-One construct (Figure 
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3.4, data not shown). Although we did not see significant acceleration of tumorigenesis 

in a 50-fold dilution of our sgP53-3 sgRNA, there is potential to further increase the 

transduction efficiency by further reducing the size of our pUSPPC vector by excising 

the PGK-Puromycin cassette. Our system also has inducible, controllable expression of 

Cas9 across a variety of tissues. And finally, we have the flexibility to introduce any 

sgRNA of interest, with the potential for facile multiplexing. All of these suggest that our 

TRE-CiG/rtTA is a welcome expansion on the current CRISPR/Cas9 technology. 
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Appendices



Table S1 - List of Genes with Nonsense or Frameshift Mutations in Burkitt's Lymphoma with the Corresponding Murine 
Orthologs and Designed sgRNAs   

	

II	

II	

Gene Murine Ortholog Reference sgRNA Name sgRNA Sequence Nonsense Frameshift Missense Total Pool Number 

DLGAP1 Dlgap1 Love et al. sgDLGAP1 GTGAGCGAGATGGAGGTGAA 1 0 2 3 1 

CDC73 Cdc73 Love et al.;Schmitz et al. sgCDC73 GAGGAGTTTTGTGGATGCTG 1 0 4 5 1 

ADNP Adnp Richter et al.; Schmitz et al. sgADNP GTTCATATTGATGAAGAGAT 2 0 1 3 1 

AIM1 Aim1 Schmitz et al. sgAIM1 GACCAAGTCTTGCAGAGTTT 1 0 2 3 1 

ANKRD17 Ankrd17 Schmitz et al. sgANKRD17 GGTTCTCAGGTGAATTCAGC 1 0 2 3 1 

EIF2AK3 Eif2ak3 Schmitz et al. sgEIF2AK3 GCAGATCACAGTCAGGTTCC 1 0 2 3 2 

ELMO3 Elmo3 Schmitz et al. sgELMO3 GGCTCTGAAGCCCACCTCCC 1 0 2 3 2 

FAM184A Fam184a Schmitz et al. sgFAM184A GGTGGAGGCCTTGAACAACA 1 0 0 1 2 

GOLGB1 Golgb1 Schmitz et al. sgGOLGB1 GATGAAGGAACAGTTCCTCA 1 0 2 3 2 

SLC29A2 Slc29a2 Love et al. sgSLC29A2 GATGCCCAGACCTCTGCTCT 1 0 2 3 3 

MAP3K6 Map3k6 Love et al.;Schmitz et al. sgMAP3K6 GTGGAGCCCAGCCTGCACTC 1 0 3 4 3 

RP11.269H4.1 
(PREX1) 

Prex1 Love et al. sgPREX1 GAAAGTGTGCTTCAAGGTGT 1 0 2 3 3 

KIFC3 Kifc3 Love et al. sgKIFC3 #2 GACCCGGAACCAGCACCTGC 1 0 2 3 3 

CC2D1B Cc2d1b Schmitz et al. sgCC2D1B GGAGCAGGTGACACTGCTGG 1 0 1 2 4 

FAM160B1 Fam160b1 Schmitz et al. sgFAM160B1 #1 GATTTTGTTTATCACTGGA 1 0 1 2 4 

STK36 Stk36 Schmitz et al. sgSTK36 GGCGCTCAGAGAAAGAGCTG 1 0 2 3 4 

BIN2 Bin2 Schmitz et al. sgBIN2 GGGCAGAGGTCAGACAGGGA 1 0 1 2 4 

POLRMT Polrmt Love et al.;Schmitz et al. sgPOLRMT GCGTGTAAACGGGCATCTGC 1 0 1 2 5 

HSPE Hspe Schmitz et al. sgHPSE GAACGGTCAAATTCTGAAGA 1 0 1 2 5 

LSG1 Lsg1 Schmitz et al. sgLSG1 GCCACCGTCATACTGACTCC 1 0 1 2 5 

PHIP Phip Love et al.;Schmitz et al. sgPHIP GTCTGCATTTGTTGCCCCTG 1 0 2 3 5 

PMAIP1 Pmaip1 Schmitz et al. sgPMAIP1 GGACGAGTGTGCTCAACTC 1 0 1 2 5 

ZNF518A Zfp518a Schmitz et al. sgZNF518A GTTCATCCCCTGTGCTTGCC 1 0 1 2 6 

WDR27 Wdr27 Schmitz et al. sgWDR27 GTCTGAAGACCGAAGCTTTA 1 0 1 2 6 

RFX7 Rfx7 Schmitz et al.;Richter et al. sgRFX7 GACCGTGAGTCAAAATCAGA 1 1 0 2 6 

SNX5 Snx5 Schmitz et al. sgSNX5 GGCCGCGGTTCCCGAGTTGC 1 0 1 2 6 

UBR5 Ubr5 Schmitz et al. sgUBR5 GTTTTCCAAGCCCTTATATA
C 

1 0 1 2 6 

ACAD11 Acad11 Schmitz et al. sgACAD11 GGTGACAACAGTGGCGGTCA 1 0 0 1 7 

ALKBH1 Alkbh1 Schmitz et al. sgALKBH1 GTGCGTCAGGTACTGGCCAC 1 0 0 1 7 
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Orthologs and Designed sgRNAs   

	

III	

III	

Gene Murine Ortholog Reference sgRNA Name sgRNA Sequence Nonsense Frameshift Missense Total Pool Number 

ATG16L2 Atg16l2 Schmitz et al. sgATG16L2 GGTCATCCCCGTGCAGGGCC 1 0 0 1 7 

C18orf54 4930503L19Rik Schmitz et al. sgC18orf54 GACCTGGTCGATGATACCAG 1 0 0 1 7 

C1orf174 A430005L14Rik Schmitz et al. sgC1orf174 GATGACGAGGATGACGCTGA 1 0 0 1 7 

DOCK4 Dock4 Richter et al. sgDOCK4 GCCATTTACCCAACACCCG 1 0 0 1 8 

CDH26 Cdh26 Richter et al. sgCDH26 GGGAAATTGATCACTATTCA 1 0 0 1 8 

CUX1 Cux1 Richter et al. sgCUX1 #1 GAGCAGACCCTGAAGAGTC 1 0 0 1 8 

CUZD1 Cuzd1 Schmitz et al. sgCUZD1 #2 GGGATATTCCTTCCTACAAA 1 0 0 1 8 

DHX58 Dhx58 Schmitz et al. sgDHX58 GCAGCCTTGCCTACAGACTG 1 0 0 1 8 

HNRNPD Hnrnpd Richter et al. sgHNRNPD GATCGACGCCAGTAAGAACG 1 0 0 1 9 

IDUA Idua Schmitz et al. sgIDUA GGGCAGAGGTCTCAAAGGCT 1 0 0 1 9 

MST1 Mst1 Schmitz et al. sgMST1 GAATGTAACACGAAGTACCG 1 0 0 1 9 

MTMR4 Mtmr4 Schmitz et al. sgMTMR4 GCTCAGAGCCAGGAATTTTC 1 0 0 1 9 

LCP1 Lcp1 Schmitz et al. sgLCP1 GGCCAGAAAAATCGGAGCAA 1 0 0 1 9 

PTPRC Ptprc Richte et al.;Schmitz et al. sgPTPRC GGCCTTTGGATTTGCCCTTC 0 1 3 4 10 

NHLH1 Nhlh1 Richter et al. sgNHLH1-new GTCGTGAGGAGCGCAGGCGC 1 0 0 1 10 

PLS1 Pls1 Schmitz et al. sgPLS1 GACTGTGTTTGCCTGCTTAA 1 0 0 1 10 

POLQ Polq Schmitz et al. sgPOLQ GAGTGAATCTTCCTGCTCGT 1 0 0 1 10 

RHBDD3 Rhbdd3 Schmitz et al. sgRHBDD3 GACGAGCAGATGCTACAGGA 1 0 0 1 10 

SP3 Sp3 Richter et al.;Schmitz et al. sgSP3 GCACACCTGCGTTGGCATTC 1 0 0 1 11 

SIN3A Sin3a Richter et al. sgSIN3A GCAGCAGTTTCAGAGGCTCA 1 0 1 2 11 

SKA3 Ska3 Richter et al. sgSKA3 GATAATTCTTTTGCCATTCC 0 1 0 1 11 

SMARCAD1 Smarcad1 Schmitz et al. sgSMARCAD1 GCTAAGCTTCAGACATTGA 1 0 0 1 11 

SPIRE2 Spire2 Schmitz et al. sgSPIRE2 GTGCTCCAGCCGCAAGAGCG 1 0 0 1 11 

TMEM30A Tmem30a Richter et al. sgTMEM30A GTTGTATCGTCTCATAGAG 0 1 0 1 12 

SRGAP2 Srgap2 Schmitz et al. sgSRGAP2 GCTTCTGATGACTGGTGGGA 1 0 0 1 12 

TET2 Tet2 Schmitz et al. sgTET2 GGCAATGTCAACATGCCAGG 1 0 0 1 12 

TSC1 Tsc1 Schmitz et al. sgTSC1 GCACATCCTGACCACCTTGC 1 0 0 1 12 

KDM6A Kdm6a Schmitz et al. sgKDM6A GCCAATGGACCCTTTTCTGC 1 0 2 3 13 

TFAP4 Tfap4 Schmitz et al.;Richter et al. sgTFAP4 GCCCTCTTTGCAACATTTC 1 0 3 4 13 

ANKMY2 Ankmy2 Schmitz et al. sgANKMY2 GCCACACTCCTACAGCAGC 1 0 1 2 13 
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NCOR1 Ncor1 Schmitz et al.;Richter et al. sgNCOR1 GTGTGGATGGAGAGCCAGAG 1 1 1 3 13 

TSC22D3 Tsc22d3 Schmitz et al. sgTSC22D3 GATGTACGCTGTGAGAGAGG 1 0 0 1 14 

TULP3 Tulp3 Schmitz et al. sgTULP3-New GCCTTTGACGATGAGACCCT
G 

1 0 0 1 15 

ARHGAP9 Arhgap9 Schmitz et al. sgARHGAP9-New GAACTGGGGCCCTGCTTGGG 1 0 0 1 15 

C3orf52 BC016579 Schmitz et al. sgC3orf52-New GAGGAGTGTGCTAATGAAG 1 0 0 1 15 

ZNF239 Zfp239 Schmitz et al. sgZNF239-New GTGCGGGAAGGGTTTCACC 1 0 0 1 15 

MYO6 Myo6 Richter et al. sgMYO6 GAAAAAGAAACAGCAAGAGG 0 1 0 1 16 

ARHGEF2 Arfgef2 Schmitz et al. sgARHGEF2 GTAACAAGAGCATCACAGCC
A 

1 0 0 1 16 

C10orf26 Wbp1L Schmitz et al. sgC10orf26 GGCAGGCATCGCCGCTTCAC 1 0 0 1 16 

GCA Gca Schmitz et al. sgGCA GTGAAGCTGCGCGCCCTGAC 1 0 0 1 16 

TMEM179B Tmem179b Schmitz et al. sgTMEM179B GTGTCTGGCTTTGCTGCTCC 1 0 0 1 16 

ARID1A Arid1a Love et al.;Richter et 
al.;Schmitz et al. 

  6 1 3 10 N/A 

PCBP1 Pcbp1 Love et al.;Schmitz et al.   3 0 6 9 N/A 

CYP4F22 Cyp4f39 Love et al.   1 0 4 5 N/A 

PC Pcx Love et al.; Schmitz et al.   1 0 5 6 N/A 

SAPS2 Ppp6r2 Love et al.   2 0 3 5 N/A 

BCL6 Bcl6 Love et al.;Schmitz et al.   4 0 1 5 N/A 

RET Ret Love et al.   1 0 3 4 N/A 

CAD Cad Love et al.;Schmitz et al.   1 0 6 7 N/A 

CARD4 Nod1 Love et al.   0 1 3 4 N/A 

CCT6B Cct6b Love et al.   0 1 4 5 N/A 

CREBBP Crebbp Love et al.;Richter et 
al.;Schmitz et al. 

  2 1 3 6 N/A 

ID3 Id3 Schmitz et al.;Richter et 
al.;Love et al. 

  10 5 27 42 N/A 

GNA13 Gna13 Schmitz et al.;Love et al.   6 1 14 21 N/A 

DDX3X Ddx3x Schmitz et al.;Richter et al.   4 1 8 13 N/A 

SRRM2 Srrm2 Schmitz et al.   1 0 4 5 N/A 

PDE4DIP Pde4dip Schmitz et al.   1 0 3 4 N/A 

FANCA Fanca Schmitz et al.   1 0 3 4 N/A 

MRPS34 Mrps34 Schmitz et al.   1 0 3 4 N/A 
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PUSL1 Pusl1 Schmitz et al.   1 0 3 4 N/A 

FBXO11 Fbxo11 Schmitz et al.   2 1 2 5 N/A 

ZNF292 Zpf292 Schmitz et al.   1 0 2 3 N/A 
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Table S2 - List of sgRNA and shRNAs used to validate candidate tumor suppressor 

genes. 

sgRNA Name sgRNA Sequence 	
sgPHIP-2 GTATCCCATGTATTGCACTG 	
sgSP3-2 TTTGTAACTGGATGTTCTG 	
sgTFAP4-2 GAGAAAGAAGTGATAGGA 	
  	
 	 	
shRNA Name shRNA Oligonucleotide shRNA Target Site 
shPHIP-3809 TGCTGTTGACAGTGAGCGCACGGATCTAAGTACAAT

TAAATAGTGAAGCCACAGATGTATTTAATTGTACTT
AGATCCGTTTGCCTACTGCCTCGGA 

CGGATCTAAGTACAATTAAATA 

shPHIP-4131 TGCTGTTGACAGTGAGCGCACAGAGCTCAGTCTTAC
GATATAGTGAAGCCACAGATGTATATCGTAAGACTG
AGCTCTGTTTGCCTACTGCCTCGGA 

CAGAGCTCAGTCTTACGATATA 

shSP3-658 TGCTGTTGACAGTGAGCGCCCAATCAATAGTGTCGA
TCTATAGTGAAGCCACAGATGTATAGATCGACACTA
TTGATTGGTTGCCTACTGCCTCGGA 

CAATCAATAGTGTCGATCTATA 

shSP3-3117 TGCTGTTGACAGTGAGCGCTCGTTGTAAATTACCAA
TAAATAGTGAAGCCACAGATGTATTTATTGGTAATT
TACAACGATTGCCTACTGCCTCGGA 

CGTTGTAAATTACCAATAAATA 
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Table S3 -  PCR Primer sequences used in Chapter 2	

ID Sequence 
sgRNA-ID-F AGCCCTTTGTACACCCTAAGCCTC 
sgRNA-ID-R CTAACTGACACACATTCCACAGGG 
PHIP-F CCATCTCATCCCTGCGTGTCTCCGACTCAGTGTAATTTCTTCATCCTAATGTACCA 
PHIP-R CCTCTCTATGGGCAGTCGGTGATGTTGGATAGGCCACCACAGT 
SP3-F CCATCTCATCCCTGCGTGTCTCCGACTCAGTGGGAAAAAGAAGCAACACA 
SP3-R CCTCTCTATGGGCAGTCGGTGATGCCTCTGTAATTCATCACTTCG 
TSC1-F CCATCTCATCCCTGCGTGTCTCCGACTCAGTGCTTGTCAACACGTTGGTT 
TSC2-1 CCTCTCTATGGGCAGTCGGTGATCTATGGATGAGCTGCTGTGG 
Sin3a-F TCAGCTGTGCCACAAAGTTC 
Sin3a-R TGTGCCCAGACATGTGTACT 
Myo6-F AGTCCACCATGATGACGAGG 
Myo6-R CTGGGCTCCACTCTGAAACT 
Dock4-F GTTTCTCTTCCCAGCTTCGC 
Dock4-R AGGATGAGTCAGATGGTGCT 
Mst1-F AGCACTGGTTTTGGCTCAAG 
Mst1-R TGGGTATAGCAGGCAAGTGG 
Polq-F TGGTTCTGTGGTAATGATTTTGG 
Polq-R AGCTCTTACTGGTCAACTTTCA 
Spire2-F TCAGAAGTGGCAGGACAAGG 
Spire2-R TTGAGAGTCCTGGTGTTGGG 
Eif2ak3-F CCTCGTGACGCTTGTTTTCT 
Eif2ak3-R TCTGGTAAGTCTGAGTGCCG 
Rfx7-F GTGAACCCTGCTCTTGTCAC 
Rfx7-R TGGCTGTATGTGTCCTGTGG 
Ncor1-F ACCCAGAAATGCAGGTACCA 
Ncor1-R ACCAAAGCCACACAATTGCT 
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Table S4 – Blood chemistry analysis of R26-rtTA;TRE-CiG/rtTA mice after 6 months 
maintenance on 1 mg/mL DOX (n=2). 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Criterion Units Mouse 
Values 

R26-rtTA;TRE-CiG/rtTA 
(n=2) 

Total Protein g/L 31-66 46 
Albumin g/L 25-48 22 

Albumin/Globulin Ratio   0.9 
Glucose mmol/L 5.0-10.7 9.9 

BUN Urea mmol/L 6.4-10.4 7.05 
Creatinine µmol/L 18-71 18 

Total Bilirubin µmol/L 2-15 3 
ALT U/L 28-132 31.5 
AST U/L 59-247 78 

Alkaline Phosphatase U/L 62-209 115 
CK U/L 68-1070 136 

Cholesterol mmol/L 0.93-2.48 2.56 
Sodium mmol/L 124-174 150.5 

Potassium mmol/L 4.6-8.0 4.28 
Chloride mmol/L 92-120 115 
Calcium mmol/L 1.47-2.35 2.105 

Phosphorus mmol/L 1.97-3.26 2.205 
Magnesium mmol/L 0.33-1.60 1.06 
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Table S5 - Histopathological analysis of wild-type and R26-rtTA;TRE-CiG/rtTA tissues 

after 6 month doxycycline induction  

Tissue	 Pathology	 Genotype	 Wild-Type	 R26-rtTA;TRE-CiG/rtTA	
	 	 Mouse	 1	 2	 1	 2	
	 	 	 	 	 	 	

Heart	 	 	 N	 N	 N	 N	
Lung	 	 	 A	 N	 A	 A	

	 Peribronchiolar	lymphocytic	
Infiltrate,	focal	

	 1	 ø	 1	 2	

	 Perivascular	lymphocytic	
Infiltrate	

	 	 ø	 2	 2	

	 Aleveolar	hemorrages,	multifocal	
(probable	artifact)	

ø	 2	 ø	 ø	

Kidney	 	 	 A	 N	 A	 N	
	 Perivascular	lymphocytic	

Infiltrate,	multifocal	
	 1	 ø	 1	 ø	

Ovaries	 	 	 N	 N	 N	 N	
Oviducts	 	 	 N	 N	 	 N	
Spleen	 	 	 A	 A	 A	 A	

	 Lymphoid	hyperplasia,	
diffuse,	white	pulp	

	 2	 1	 1	 1	

Pancreas	 	 	 N	 N	 N	 N	
Liver	 	 	 N	 A	 A	 A	

	 Microgranulomas,	multifocal	 	 ø	 1	 1	 1	
	 lipid	vacuoles,	multifocal,	

centrolobular	
	 ø	 2	 ø	 ø	

	 foci	of	cellular	alteration:	
basophilic,	multifocal	

	 ø	 ø	 ø	 1	

Skin	 	 	 	 N	 	 N	
Large	

Intestine	
	 	 N	 N	 N	 N	

Small	
Intestine	

	 	 N	 N	 N	 N	

	
Key 

A : No significant lesion 
N : Lesion observed 

Ø : none 
1 : modest, rare 

2 : mild, infrequent 
3 : moderate, frequent 

4 : severe, diffuse 
 


