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Abstract

Milling of thin-walled aerospace structures is a critical process due to the high flexibility of

the workpiece. Available models for the prediction of the effect of the fixture on the dynamic

response of the workpiece are computationally demanding and fail to represent practical cases

for milling of thin-walled structures. Based on the analysis of typical structural components

encountered in the aerospace industry, a generalized unit-element, with the shape of an

asymmetric pocket, was identified to represent the dynamic response of these components.

Accordingly, two computationally efficient dynamic models were developed to predict the

dynamic response of typical thin-walled aerospace structures. These models were formulated

using Rayleigh’s energy and the Rayleigh-Ritz methods.

In the first model, the dynamics of multi-pocket thin-walled structures is represented

by a plate with torsional and translational springs. A methodology was proposed and

implemented for an off-line calibration of the stiffness of the springs using Genetic Algorithms.

In the second model, the dynamics of a 3D pocket is represented by an equivalent 2D multi-

span plate. Through a careful examination of the milling of thin-walled structures, a new

formulation was developed to represent the continuous change of thickness of the workpiece

due to the material removal action. Two formulations, based on holonomic constraints and

springs with finite stiffness, were also developed and implemented to take into account the

effect of perfectly rigid and deformable fixture supports.

All the developed models and formulations were validated numerically and experimentally

for different workpiece geometries and various types of loading. These models resulted in

one to two orders of magnitude reduction in computation time when compared with FE

models, with prediction errors of less than 10%. The experimental validation of the models

was performed through the machining of thin-walled components. The predictions of the

developed models were found to be in excellent agreement with the measured dynamic

responses. The developed models meet the conflicting requirements of prediction accuracy

and computational efficiency. In addition, a novel methodology was proposed and validated

to compensate for the effect of the dynamics of the force measurement system.
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Résumé

Le fraisage des structures aérospatiales à parois minces est un processus critique dû à la

flexibilité élevée de la pièce. Les modèles disponibles pour la prévision de l’effet du système

de fixation sur la réponse dynamique de la pièce sont basés sur des méthodes numériques

très lentes et n’arrivent pas à représenter les cas pratiques du fraisage des structures à parois

minces. Basé sur une analyse des composants structurels typiques produits dans l’industrie

aérospatiale, un élément généralisé de base avec la forme d’une poche asymétrique, a été

identifié pour représenter la réponse dynamique de ces composants. En conséquence, deux

modèles dynamiques efficaces ont été développés pour prévoir la réponse dynamique des

structures aérospatiales types à parois minces. Ces modèles ont été formulés en utilisant les

méthodes de Rayleigh et Rayleigh-Ritz.

Dans le premier modèle, les réponses dynamiques des structures de poches multiples à

parois minces sont représentées par des plaques avec des ressorts de torsion et de translation.

Une méthodologie a été proposée et mise en application pour calibrer la rigidité des ressorts en

utilisant les algorithmes génétiques. Dans le deuxième modèle, la réponse dynamique d’une

poche en 3D est représentée par une plaque équivalente de multi-travées en 2D. À travers

une étude approfondie du fraisage des structures à parois minces, une nouvelle formulation

a été développée pour représenter le changement continu de l’épaisseur de la pièce durant

l’usinage. Deux formulations, basées sur des contraintes holonomes et des ressorts avec des

rigidités finies, ont été développées et mises en application pour simuler l’effet des supports

parfaitement rigides et déformables.

Tous les modèles et les formulations développés ont été validés numériquement et

expérimentalement pour des pièces de géométries différentes et divers types d’efforts. Ces

modèles ont réduit le temps de calcul de un à deux ordres de grandeur, en comparaison

avec des modèles des éléments finis. Les erreurs de prévision étaient moins de 10%. La

validation expérimentale des modèles a été effectuée par l’usinage des pièces à parois minces.

Les prévisions des modèles développés sont en parfait accord avec les réponses dynamiques

mesurées. Les modèles développés répondent aux exigences contradictoires de l’exactitude

de prévision et de l’efficacité du calcul. En outre, une méthodologie originale a été proposée

et validée pour compenser l’effet de la dynamique du système de mesure des efforts.
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Claims of Originality

1. A generalized unit-element with the form of an asymmetric pocket was extracted from

typical thin-walled aerospace structures. This unit-element allows the development

of simplified models for the analysis of the dynamic response of complex thin-walled

structures.

2. A new generalized model was developed and formulated based on an off-line calibration

of a plate with torsional and translational springs using Genetic Algorithms, to represent

the dynamics of multi-pocket thin-walled structures. This simplified model allows for

the reduction of the computational time by at least one order of magnitude when

compared to FE models, with prediction errors less than 5%.

3. A model was developed and formulated for the representation of the dynamics of a 3D

pocket using a 2D semi-analytical multi-span plate model. For this model, a new set

of trial functions were developed for the approximation of the multi-span plate mode

shapes. This model allows for the prediction of the dynamic responses of various types

of thin-walled aerospace structures with at least one order of magnitude reduction in

computation time, compared to FE models, and with prediction errors less than 6%.

4. A new formulation was proposed and implemented to simulate possible cases for the

change of the thickness during milling of thin-walled pockets. This formulation was

validated through FE models and experimental machining tests. Excellent agreement

in the results was achieved with errors less than 10%.

5. An integrated model for the analysis of the effect of the fixture layout on the dynamics of

thin-walled structures was developed while taking into account the continuous change of

thickness of the workpiece and the effect of rigid and deformable fixture supports. This

integrated model was validated numerically through FE models and experimentally

through machining tests of thin-walled structures.

6. A novel methodology was developed for the compensation of the effect of the dynamics

of the force measurement system, as well as the dynamics of the workpiece.
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Nomenclature

Capital letter symbols

Ab Area of a beam (m2)

Aba Area of the ath span of a multi-span beam (m2)

Af Maximum amplitude of the response at a given point using the FE model (µm)

Al Area of application of the load for a rectangular plate (m2)

Amax Maximum amplitude of the response at point PB using the FE model (µm)

Ap Maximum amplitude of the response at a given point using the proposed model (µm)

D Matrix for the transformation from q to φ

Da Flexural rigidity of the ath span of a plate (N·m)

D(a,b) Flexural rigidity of span (a,b) of the 5× 3 span plate (N·m)

DE Flexural rigidity of a plate (N·m)

E Young’s Modulus (Pa)

FD Discrete Fourier Transform (DFT) of the force measured by the dynamometer (N)

Fin DFT of the input (applied) force to the dynamometer (N)

Fm DFT of the measured force during the machining of the side of the pocket (N)

Fo DFT of the predicted force using the transfer functions Tsys (N)

Fs DFT of the idealized force for the machining of the side of the pocket (N)

Fu Vector of generalized forces for the uth spring (N)
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Kxo Stiffness per unit length of a translational spring at x = x0 (N/m2)
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Mc Constrained mass matrix

Px Approximate maximum potential energy of the springs at x = 0, xl (J)

Py Approximate maximum potential energy of the springs at y = 0, yl (J)

P xij Maximum potential energy of the springs at x = 0, xl for W ij (J)

P yij Maximum potential energy of the springs at y = 0, yl for W ij(J)

Q Vector of generalized forces Qr

Qr Generalized forces of a plate

R Ratio of the new thickness to the original thickness for the adjacent side (m/m)

Rxl Stiffness per unit length of a rotational spring at x = xl (N/rad·m)

Rxo Stiffness per unit length of a rotational spring at x = x0 (N/rad·m)

Ryl Stiffness per unit length of a rotational spring at y = yl (N/rad·m)

Ryo Stiffness per unit length of a rotational spring at y = y0 (N/rad·m)

T Kinetic energy (J)

T ∗ Reference kinetic energy (J·s)

Tmax Maximum kinetic energy (J)

TF Transfer function between the input force to the dynamometer and the measured

force (N/N)

Tsys Transfer function between the applied force on the experimental setup and the

measured force (N/N)

Tw Transfer function for the two degree of freedom system representing the workpiece

and the fixture dynamics

Tx Transfer function between the input force and the output displacement of the

dynamometer (m/N)

T ij Reference kinetic energy for the trial function W ij (J·s)

U Strain energy of a rectangular plate (J)
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Uc Modal matrix for the rigidly constrained system

Um Modal matrix

Umax Maximum strain energy (J)

U ij Maximum strain energy for W ij (J)

V Potential energy (J)

Vmax Maximum potential energy (J)

W Maximum displacement of a rectangular plate (m)

Wr Exact mode shapes of a rectangular plate

W Vector of trial functions W ij

W ij Trial function for a rectangular plate

W
(a)

ij Trial function for the ath span of a plate

W
(a,b)

ij Trial function for span (a, b) of a 5×3 span plate

W̃ Vector of trial functions W̃r

W̃r Approximate mode shape of a rectangular plate (trial function)

X(a) Solution of the BVP 1 for the ath span of a beam in the x-direction

X
(a)
i ith mode shape of the ath span of a beam in the x-direction

X i Trial function in the x-direction for a plate

X
(a)

i Trial function in the x-direction for the ath span of a plate

Y Solution of the BVP for a single-span clamped-free beam in the y-direction

Yj jth mode shape of a clamped-free beam

Y (b) Solution of the BVP for the bth span of a beam in the y-direction

Y
(b)
j jth mode shape of the bth span of a beam in the y-direction

Y j Trial function in the y-direction for a rectangular plate

Y
(a)

j Trial function in the y-direction for the ath span of a plate

Y
(a,b)

j Trial function in the y-direction for span (a, b) of a 5×3 span plate

Z Solution of the BVP for a beam

Zr rth mode shape of a beam with torsional and translational springs

1BVP: Boundary-value problem
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c1 First damper for a two degree of freedom system (N·m/s)

c2 Second damper for a two degree of freedom system (N·m/s)

cD Damping factor of the dynamometer (N·m/s)

d Array for the displacement response of the pocket-side (µm)

d̃ Array for the displacement response of the plate (µm)

dc Maximum of the calculated displacements at the position of the rth probe (µm)

dm Maximum of the measured displacements of the rth probe (µm)

dp Tool-path depth or the position of the tool relative to the free edge of the side (mm)

dr Maximum amplitude of the displacement of a pocket without fixture layout (µm)

dy Axial depth of cut (mm)

dz Radial depth of cut (mm)

dw Maximum amplitude of the displacement of a pocket with fixture layout (µm)

f Applied force (N)

fc Compensated force (N)

fp Force applied on a rectangular plate (N)

fu Force of the uth spring (N)

h Thickness of a rectangular plate (m)

ha Thickness of the ath span of a plate (m)

hn New thickness of the strip representing the change of thickness (m)

ho Original thickness of the plate or the pocket-side (m)

h
(a,b)
p Thickness of span (a,b) of a 5× 3 span plate (m)

hxa Thickness of the ath span of a beam in the x-direction (m)

hy Thickness of a clamped-free beam in the y-direction (m)

hyb Thickness of the bth span of a beam in the y-direction (m)

k Number of constraints or springs on a rectangular plate

k1 Stiffness of the first spring for a two degree of freedom system (N/m)
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k2 Stiffness of the second spring for a two degree of freedom system (N/m)

kD Stiffness of the spring representing the dynamometer (N/m)

kl Stiffness of a translational spring at u = ul (N/m)

ko Stiffness of a translational spring at u = uo (N/m)

ku Stiffness of the uth spring (N/m)

lx Length of a rectangular plate in the x-direction (m)

ly Length of a rectangular plate in the y-direction (m)

lu Length of a beam (m)

m Mass of a rectangular plate per unit area (kg/m2)

m1 First mass for a two degree of freedom system (kg)

m2 Second mass for a two degree of freedom system (kg)

ma Mass of a the ath span of a rectangular plate per unit area (kg/m2)

mD Mass of the dynamometer (kg)

n Number of included mode shapes

pcu Location of the uth constrained point

q Vector of generalized coordinates qr

qc Eigenvectors for the discretized equations of a plate with internal springs

qe Vector of dependent coordinates

qo Vector of independent coordinates

qr Generalized coordinates for the approximate mode shapes of a plate

q̄ Eigenvectors

rc Original stiffness of the calibrated rotational springs (N/rad)

rl Stiffness of a rotational spring at u = ul (N/rad)

rn New stiffness of the calibrated rotational springs (N/rad)

ro Stiffness of a rotational spring at u = uo (N/rad)

sx Total number of spans of the plate or the beam in the x-direction

sy Total number of spans of the plate or the beam in the y-direction

t Time variable (s)
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x Spatial coordinate for the x-direction

xa, xa−1 Coordinates of the ath span of a plate

xu Location of the uth spring in the x-direction

y Spatial coordinate for the y-direction

yu Location of the uth spring in the y-direction

u Spatial coordinate of a beam

ua Actual displacement of a pocket side (µm)

uc Measured displacement by the probe using the calibration curve (µm)

w Transverse displacement of a rectangular plate (m)

w(a) Transverse displacement of the ath span of a plate (m)

w(a,b) Transverse displacement of span (a,b) for a 5×3 span plate (m)

w̃ Approximate transverse displacement of a rectangular plate (m)

wc Calculated displacement using the cutting forces of the machining experiments (µm)

z Transverse displacement of a beam (m)

z1 DFT of the displacement for the first mass of a two degree of freedom system (m)

z2 DFT of the displacement for the second mass of a two degree of freedom system (m)

zD DFT of the displacement of the top face of the dynamometer (m)

z
(a)
x Transverse displacement of the ath span of the beam in the x-direction (m)

Greek symbols

β Eigenvalue parameter for a beam (rad·s/m4)

βr rth Eigenvalue parameter for a beam (rad·s/m4)

βxa Eigen-value parameter for the ath span of the beam in the x-direction (rad·s/m4)

βy Eigen-value parameter for a clamped-free beam in the y-direction (rad·s/m4)

βyb Eigen-value parameter for the bth span of a beam in the y-direction (rad·s/m4)

βyj jth eigenvalue parameter for a clamped-free beam in the y-direction (rad·s/m4)

Γ Vector of generalized forces Γr

Γr Generalized forces
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γ Vector of modal coordinates γr

γr Modal coordinates

δrs Kronecher delta

ε Percentage error between the proposed model and the FE model

εc Percentage error between the measured and predicted displacements for a given probe

ε1 Measurement error during the impact test due to the inaccuracy of the probe (µm)

ε2 Measurement error during impact tests due to the inaccuracy of the force sensor (µm)

ε3 Measurement error during impact tests due to the uncertainty of the location of the

load (µm)

εf Total force measurement during machining tests (%)

εf1 Measurement error during machining tests due to dynamometer inaccuracies (µm)

εf2 Measurement error during machining tests due to the dynamics of the dynamometer-

workpiece setup (µm)

εc Total force measurement error on the calculated response during machining(%)

εm Total probe measurement error on the measured response during machining(µm)

εp1 Measurement error during machining tests due to probe inaccuracies (µm)

εp2 Measurement error during machining tests due to probe holder dynamics (µm)

εt Total measurement error during the impact test (µm)

ηr Generalized modal coordinates for the exact mode shapes

Θ Time-dependent function for the transverse vibration of a beam

θ Time-dependent function for the transverse vibration of a beam

λ Eigen-value parameter

ν Poisson’s ratio

ρ Density (kg/m3)

σu Standard deviation for the calibration of the proximity probe sensors (µm)

Φx
(a) Transfer matrix between the coefficients of spans a + 1 and a for the beam in the

x-direction
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(b) Transfer matrix between the coefficients of spans b + 1 and b for the beam in the

y-direction

Φt Total transfer matrix for the beam in the y-direction

φ Vector of minimum set of generalized coordinates

Ψ Deviation parameter for the effect of the fixture layout

ψ Objective function for the calibration of the stiffness of the springs for the GSSP

model

ψe Objective function for the identification of the parameters of the transfer function Tw

Ω Time-dependent harmonic function

ω Natural frequency of a rectangular plate (rad/s)

ωs Frequency at which the amplitude of the DFT of the measured forces has a peak

(rad/s)

ωu Natural frequency of a beam (rad/s)

ωur rth natural frequency of a beam (rad/s)

ωx Natural frequency of a multi-span beam in the x-direction (rad/s)

ωy Natural frequency of a beam in the y-direction (rad/s)

ωij Approximate natural frequency of a plate for the trial function W ij (rad/s)

ω̃ Approximate natural frequencies of a plate (rad/s)

ω̃r Approximate natural frequency of a plate for the trial function W̃r (rad/s)

Subscripts

a Index for the beam or the plate spans in the x-direction
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j Index for the trial functions in the y-direction

Abbreviations
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Chapter 1

Introduction

1.1 Introduction

One of the challenging manufacturing processes in the aerospace industry is the machining

of the thin-walled structural components that are assembled into the load-carrying members

such as the wing and the vertical and horizontal stabilizers. The load-carrying structures

are composed of three main components including the skin, the spar and the rib. The wing,

for example, has along its length two beams facing each other, which are called the front

and rear spars. These spars are connected by ribs and covered by the skin, which gives the

aerodynamic shape of the wing while distributing the load on the ribs and the spars. All of

these components (rib, spar, and skin) are composed of multiple pockets in order to reduce

their weight, while maintaining their stiffness. An illustrative 3D sketch of a spar and a rib

is shown in Fig. 1.1. These components are initially rolled or forged and then machined.

High-speed multiple-axis milling is a commonly used machining process to produce the final

shape of these complex monolithic structural aerospace components. The machining accuracy

depends, in general, on the thermal deformations and the cutting temperatures, the selection

of the tool-path, the tool material and design, the tool wear, the workpiece material, and

the dynamics of the tool, the workpiece and the fixture.

For the machining of thin-walled components, the dynamics of the system is a major

factor that greatly affects the accuracy and the efficiency of the milling process. The non-

linearity of the system is demonstrated by the coupling between the cutting forces and the

dynamics of the system, in which the cutting forces are both affecting and being affected by
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Figure 1.1: Illustrative 3D sketch of an aerospace structural component

the system dynamics. This is compounded by the continuous change in the dynamics of the

workpiece-tool system during machining from rigid-flexible to flexible-rigid system.

1.2 Motivation

In the aerospace industry, the machined thin-walled monolithic structural elements has

to meet very tight requirements for the tolerances (up to ±125 µm), and the surface quality

(0.4-0.8 µm Ra) given that the walls are very thin (1.5 mm to 4 mm) and the parts are

considerably large (10 m long and 0.1 m high). Machining is considered as the last major

process (before assembly) for these components. Dimensional errors and damaged surfaces

lead to the scraping of the whole workpiece thus costing money and time of both the

machining process and all the precedent processes. In order to reduce cost and scrap, a

“first-time-correct” approach is currently targeted by the aerospace industry. Presently, the

designers rely on very conservative guidelines for the selection of the cutting parameters and

the design of the fixture, which substantially reduces productivity.

In order to meet the cost, productivity and quality requirements, one needs to control the
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machining process by determining the effect of the dynamics of the workpiece, the tool, the

machine and the fixture on the final part quality (dimensional errors and surface integrity).

If the interactions between the machine, the tool, the workpiece and the fixture are predicted

accurately, then the final part quality can be determined without the need to perform actual

machining tests. This will certainly save a considerable amount of time, money and material

and will help reach a “scrap-free” production.

1.3 Scope and Terminal Objective of the Research

To define the scope of the research, one has to identify the essential elements that affect

the dynamics of the system. An overview of the different elements of the dynamics of the

cutting process is shown in Fig. 1.2. Three main sub-systems have to be considered and they

include the fixture-workpiece, the workpiece-tool, and the tool-machine systems.

The dynamics of the fixture-workpiece includes the analysis of the fixture (static and

dynamic deformations of its components) and the effect of the fixture on the displacement,

deformation and the vibration of the workpiece. This requires the modelling of the effect

of the fixture layout (number, location and stiffness of the supports) and the modelling

of the contact (linear or non-linear) between the workpiece and the fixture. The workpiece

dynamics includes the rigid-body motion and the vibrations of the workpiece as a continuous

parameter system. The dynamics of the workpiece-tool system includes, in addition to the

dynamics of the workpiece, the study of the static deformation and the dynamic vibrations

of the tool. The dynamics of the tool-machine includes the analysis of the dynamic response

of the milling machine (the column, the spindle and the tool holder), and the tool.

For the milling of thin-walled structures, the following has to be considered in defining

the scope of the research:

1. The vibration of the workpiece, as a continuous parameter system, will be more

dominant than the rigid-body motion. Thus, it is more important to focus on the

vibration due to the flexibility of the workpiece.

2. The workpiece deformation is mainly affected by the number, location and stiffness
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Figure 1.2: Illustration for the elements of the system dynamics in machining

of the fixture supports. The contact between the fixture elements and the workpiece

affect mostly the rigid-body motion. The contact has less effect on the deformation of

the workpiece away from the contact region. Thus, for the analysis of the deformation

of the workpiece, a rigid contact could be assumed between the fixture supports and

the workpiece.

3. The machining of thin-walled structures is considered as a finishing process. It is

preceded by roughing processes. During the roughing process, the tool dynamics is

more dominant since the workpiece can be regarded as rigid. However, in the finishing

stage of the thin-walled structures, the dynamics of the workpiece is more dominant

and the tool can be considered as a rigid load application element.

4. When comparing the finishing to roughing in machining, the forces in the former are

relatively low and will result in very low amplitudes of vibrations for the machine

structure. Accordingly, the dynamics of the machine, which is relatively rigid, could

be ignored.
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Thus, for the analysis of fixtures for the milling off thin-walled structures, the focus is

on the fixture-workpiece dynamics. The elements of the fixture-workpiece dynamics that

will be considered in this research work are highlighted in blue in Fig. 1.2. The objective is

to predict the dynamic response of the flexible workpiece while including the effect of the

fixture layout and the effect of the deformation of the fixture locators. With this objective in

mind, one has to realize that this should later on help to optimally design the fixture layout.

In addition, the prediction of the dynamic response would be integrated to the cutting force

models in order to optimize the cutting parameters and the machining tool-path. Both

the optimization of the fixture layouts and the integration of the dynamic response in the

cutting force models will require the evaluation of a substantially large number of cases

(hundreds and thousands) for a given workpiece. One of the main challenges in developing a

dynamic model for the workpiece and the fixture is the fact that the shape of the workpiece

continuously changes during machining. For such problem, available modelling techniques

(e.g. Finite Element Methods) are computationally extensive.

The terminal objective of this research is to develop a computationally efficient dynamic

model to predict accurately the dynamic response of thin-walled aerospace structures during

milling while taking into account the continuous change in thickness of the workpiece and

the effect of the fixture layout in terms of the number, the position and the stiffness of the

locators. The detailed objectives of this research program will be presented in Chapter 2,

section 2.6.

1.4 Thesis Outline

The thesis outline is as follows:

1. Chapter one briefly introduced the research topic and highlighted the motivation, the

scope and the terminal objectives of the research.

2. Chapter two presents a review of the literature related to the fixture design in the

machining of rigid and flexible workpieces, the available dynamic and mechanistic force

models for the milling of thin-walled structures, and the different model order reduction
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techniques for FE models. According to the analysis of the existing methods in the

open literature, the detailed objectives of the research will be established.

3. Chapter three describes the main conceptual developments of the research. This

includes the introduction of a generalized unit-element and the conceptual development

for two models for the representation of the dynamic response of the unit-element. The

first and second models are referred to as the Generalized Single-Span Plate (GSSP)

and the Multi-Span Plate (MSP) models, respectively. In addition, the change of

thickness during milling of thin-walled structure will be analyzed. Finally, a review of

plate dynamics will be presented.

4. Chapter four will detail the mathematical formulations for the different models. It will

start with a description of Rayleigh’s energy and the Rayleigh-Ritz methods. Then

the mathematical formulations for the GSSP and the MSP models will be presented.

This will be followed by the developed formulation for the change of thickness of the

workpiece and the formulations to simulate the effect of the fixture supports.

5. Chapter five will present the validation for the GSSP and the MSP models through

FE models of pockets and through experimental impact tests. This will be followed by

the validation of the change of thickness formulation and the different formulations for

the effect of the fixture supports.

6. Chapter six will present the experimental validation of the developed models through

the machining of an actual thin-walled workpiece. This will include the description of

the experiment, the analysis and the modelling of the dynamics of the measurement

system, the error analysis and the discussion of the obtained results.

7. Chapter seven summarizes the developments and the results of the thesis and highlights

the potential areas for future research work.

8. Three appendices are included for additional mathematical formulations related to

chapters four and six.
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Chapter 2

Literature Review

2.1 Introduction

In the last two decades, the analysis of fixtures for machining applications has gained

special attention due to its effects on the productivity, the final part quality, and the cost.

To develop new models for the design of fixtures for the milling of thin-walled structures, an

analysis of the research available in the literature had to be performed by reviewing three

main areas. The first area deals with the existing methods and models for the analysis of the

fixtures for machining in general and more specifically, for milling of thin-walled structures.

The second area relates to the available models for the dynamics of the milling of flexible

structures. In these two areas, the dynamics of thin-walled structures is mainly determined

using Finite Element models. These models are computationally prohibitive and do not

satisfy the computational requirements for the design and optimization of fixture layouts.

Consequently, the third area focuses on available Model-Order Reduction (MOR) techniques

of Finite Element Methods (FEM). Based on the review of these areas, the limitations of

existing models will be identified, thus putting the objectives of the research in perspective.

2.2 Fixture Design for Machining Applications

Careful examination of the current practice, which included interviewing experienced

fixture designers, shows that the fixture design relies on general guidelines and the tool
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designer’s experience, rather than systematic analysis. Although many models exist for the

design and the evaluation of the fixtures, they are usually computationally demanding and

ignore crucial practical aspects of the machining fixtures. To study the fixture design, one

has to analyze the different components of the fixture, their role and the possible sources

of errors. A fixturing system consists mainly of a set of locators and clamps. Based on the

review of the literature, the following set of design parameters affects the performance of the

fixture and they include:

1. The shape and the material of the locators and clamps, which affect the compliance of

the fixture components.

2. The number and position of the locators and clamps, which are referred to as the

fixture layout.

3. The clamping force, the sequence of part loading, the machining tool path, and the

cutting forces.

4. The workpiece material and shape, which affect its dynamic characteristics given that

the workpiece shape is continuously changing due to the material removal action.

The fixture role is to properly position and maintain the location of the workpiece relative

to some datum points. By analyzing a fixture design, one can determine the errors in the

positioning of the workpiece relative to a fixed reference frame. For the sake of this review,

the errors are categorized as follows:

1. Static errors for a rigid workpiece: This type of errors is due to violation of the

workpiece stability conditions, the positioning errors at the initial setup of the workpiece,

and the static deformation of the fixture components.

2. Static errors for a flexible workpiece: They include, in addition to the static errors for

a rigid workpiece, the deflection of the workpiece-fixture system.

3. Dynamic errors for a rigid workpiece: They include both the stability and the rigid-

body dynamics of the workpiece considering the compliance of the contact between
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the workpiece and the fixture and the dynamic vibrations of the compliant fixture

components.

4. Dynamic errors for a flexible workpiece: They include the dynamic deformations of the

flexible (thin-walled) workpiece, in addition to the dynamic errors for a rigid workpiece.

The different system parameters for the design of fixture and the sources of errors are shown

in Fig 2.1. For a given source of error (e.g. workpiece stability), the system parameters that

affect it are indicated by a circle. In the following subsections, a review will be presented for

the different models developed to predict each category of errors. An additional subsection

will be included to present briefly the concept of Computer Aided Fixture Design (CAFD)

and the different optimization models for the fixture design.
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Figure 2.1: Representation of the design parameters of the workpiece-fixture system, the
types of analysis and the different criteria for the evaluation of the fixture performance
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2.2.1 Static Analysis of Fixtures with a Rigid Workpiece

To properly locate a workpiece, the rule of 3:2:1 is commonly used. In brief, this rule states

that on 3 perpendicular surfaces, three, two and one datum points have to be constrained

on the workpiece in order to properly locate it. In most of the research work, the fixture

layout is applied according to this rule. As mentioned previously, the objective of the static

error analysis of a rigid workpiece could be either to determine the positioning errors or the

stability of the workpiece-fixture system.

One source of positioning errors is the contact compliance between the workpiece and

the fixture. Shawki and Abd-Aal [1] investigated the effect of the contact compliance on

the positioning errors by performing an experimental study to characterize the effect of

the elastic contact between different types of locators and the workpiece. Li and Melkote [2]

developed an analytical model to relate the effect of the contact compliance and the clamping

forces on the positioning errors and the stability of the workpiece-fixture system. They used

a non-linear optimization scheme to select the optimum positions of the locators and the

clamps. They also developed a model to determine the optimum clamping force that reduces

the positioning errors, taking into account the non-linear contact between the workpiece and

the fixture clamps [3]. A more sophisticated model was developed by Yu and Tong [4] to

include the surface properties (curvature and scale factors) to model the contact between

the workpiece and the locator and its effect on the positioning errors. In this model, the

kinematics of the positioning errors was based on a velocity formulation of the constrained

contact.

Another source of positioning errors is the geometrical errors of the locators or the

workpiece contact surfaces. Batyrov [5] studied the effect of the dimensional errors of the

fixture supports on the positioning errors. He also focused on the effect of the clamping force

on the shifting of the workpiece as the major error in positioning it. Bazrov and Sorokin [6]

found that the clamping sequence affects the errors in the mounting of the workpiece due

to translation, while the position of the supports affected the angular deviations. Mittal et

al. [7] found that the effect of the clamping sequence is less than the clamping position.

Estrems et al. [8] proposed a methodology to account for the positioning errors taking into
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account the tolerances on the dimensions of the fixture and workpiece surfaces. Marin and

Ferreira [9] solved the inverse problem of determining the acceptable error in the geometry

of the locators and clamps that produces a part within the allowable positional and surface

profile tolerances. Qin et al. [10] proposed a model and a set of corollaries to check the

positioning errors due to manufacturing errors of the locators and the workpiece surfaces

and setup errors.

The stability of the workpiece-fixture system is affected by the rigidity of the fixture

components and the contact compliance. Shawki and Abd-Aal [11] performed an experimental

study to compare the rigidity of different clamping elements during steady loads. It was

shown that the rigidity of the workpiece-fixture system diminishes with the increase of the

number of contact points. De Sam and King [12] developed a model for the automation of

the fixture design of rigid workpieces based on static equilibrium while taking into account

different machining operations and the part tolerances.

Screw theory, in which the applied loads are described by a rotation about an axis and

a translation along the same axis, has often been used to determine the stability condition

of the system. De Meter [13] included the effect of the frictionless and the friction contact

in the static analysis of the workpiece-fixture to evaluate the total restraint of the system

using screw theory. Sayeed and De Meter [14] developed a software package for the design

of fixtures based on the stability of the rigid workpiece using screw theory and kinematic

constraint analysis. The analysis included the effect of the friction at the locator-workpiece

interface. A tool-path analysis was included to detect collisions with the fixture elements.

Li et al. [15] looked at the effect of large contact areas on the static equilibrium of the

workpiece-fixture system. Wang and Pelinescu [16] used the minimum norm solution to

determine a quick estimate of the contact forces between the fixture and the workpiece.

2.2.2 Static Analysis of Fixtures with a Compliant Workpiece

The compliance of the workpiece, in addition to the compliance of the fixture and the

fixture-workpiece contact, play an important role in evaluating the performance of the fixture.

They can affect the positioning errors, the stability of the workpiece-fixture system and the
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deflection of the workpiece.

The positioning errors for a compliant workpiece are mainly controlled by the local

deformation at the workpiece-fixture contact region. Satyanarayana and Melkote [17] studied

the effect of the frictional contact of the spherical-planar and the planar-planar locators’

contact geometries. It was shown that for thin-walled structures, when the thickness of the

wall is decreased, the contribution of the deflection due to contact compliance is small when

compared to the deflection of the workpiece. Thus, for thin-walled structures, the contact

between the workpiece and the locators could be assumed rigid, relative to the workpiece

flexibility. Melkote and Siebenaler [18] investigated the effect of the fixture compliance on

the static deformation of the workpiece using a FE model. In their model, they investigated

the effect of the friction on the workpiece local deformation. It was found that 98% of the

system deformation could be captured when the workpiece and the fixture tip compliances

are included. The results also showed that the change in the friction coefficient had a small

effect on the workpiece deformation.

The FEM is commonly used to model the workpiece and sometimes the fixture compliance.

The FE model developed in [19, 20], takes into account the fixture geometric errors, the

contact geometry and its compliance, the bulk compliance of the workpiece, the compliance

of the fixture, as well as the effect of clamping sequence, and the locator reaction forces on

the positioning errors. In this model, the contact region on the workpiece was considered

flexible, while the rest of the workpiece was assumed rigid. In addition, Qin et al. [21, 22]

developed a model to check the optimal clamping sequence to minimize the positioning error,

taking into account the contact forces, and the compliance of the fixture, the workpiece and

the workpiece-fixture contact.

The difference between the stability analysis for a rigid and a compliant workpiece is that

the compliance of the workpiece affects the contact and clamping forces. Some researchers

looked at determining the clamping force that will result in a stable system. A model was

developed to determine the minimum clamping force to prevent slipping of the workpiece

[23, 24]. The model was tested for both ramp loads and milling forces. It was shown that the

clamp pre-loads are sensitive to the value of the friction coefficient at the contact. Sanchez

et al. [25] developed a contact model based on evaluating the flexibility of the contact region
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of the workpiece and the fixture separately. Based on this model, valid clamping regions

are identified by satisfying the form closure condition. Sanchez et al. [26] combined the

studies performed in [8, 25] with a FE model of the static structural deformation in order to

determine the total positioning error of the workpiece.

The flexility of the workpiece has a large effect on its machined surface quality and

dimensions. Shaogang et al. [27] used a FE model of a thin-walled workpiece in order to

optimize the location of the locators based on the predicted surface errors of the workpiece.

The proposed methodology for selecting the initial layout of the locators was based on the

evaluation of the point where the maximum deflection of the workpiece occurred. In this

research, the optimization technique and the computational efficiency were not discussed.

Ratchev et al. [28] proposed a methodology for combining the effect of fixture-contact and

the deformation of the workpiece to predict the behaviour of the workpiece using FE models.

Another model was developed by Liao and Hu [29, 30] using the FEM to model the effect of

the contact, the clamping force, the sequence of part loading and the cutting forces on the

deflection of the workpiece system.

Some research work was performed to implement different methods to decrease the

computational time of FE models for fixture analysis. Gu et al. [31] extracted the flexibility

influence coefficients from a FE model in order to determine the static deformations of

the workpiece under a given cutting load and its effect on the surface flatness in face

milling. The main advantage of using flexibility influence coefficient is the considerable

reduction in computational time. Li [32] used FEM to model the workpiece-fixture system

and included the contact compliance equation for spherical surfaces. The fixture and the

workpiece compliances were formulated using the flexibility influence coefficient. Sayeed and

De Meter [33, 34] implemented a mixed-integer programming to optimize the number and

position of the locators to minimize the deformation of the workpiece at some candidate

points. FEM was used to model the static deformation of the workpiece. In order to reduce

the computational time, the output points were chosen at the position of the locators and the

cutting tool and the static condensation method was implemented. It was shown that the use

of the flexibility influence coefficient lead to considerable reduction in computational time.

Similar to the work by Sayeed and De Meter [33, 34], Masset and Debongnie [35] looked at
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improving the computational efficiency of the FE model by reducing the number of output

points to represent only the cutting region and by using flexibility influence coefficients.

Their objective was to predict the deflection of the workpiece due to the clamping loads to

be able to determine the final form errors on the machined surfaces.

All the previous models did not include the change of thickness due to the material

removal action. Only Kaya and Ozturk [36] evaluated the effect of the contact friction

between the workpiece and the locator and the effect of the material removal on the bulk

deformation of the workpiece. The death element technique was used in order to reduce

the computational time of the FE model. It was shown that as the shape of the workpiece

changes, the initial configuration of the fixture layout is not optimal. In this model, only the

bulk deformation of the workpiece was taken into account.

2.2.3 Dynamic Analysis of Fixtures with a Rigid Workpiece

The rigid body dynamics of the workpiece-fixture assembly plays an important role in

evaluating the performance of the fixture especially when the dynamic cutting forces are

considered. Most researchers focused on modelling the contact between the workpiece and

the fixture in terms of non-linear behaviour, damping and stiffness characteristics.

Mittal et al. [7] analyzed the dynamics of the workpiece-fixture system as an assembly

of rigid bodies with kinematic constraints and compliant components. All the constraints

were holonomic and the contact between the workpiece and the fixture was represented as

Hertzian contact of spherical surfaces. A simple model of a cubic workpiece was used for the

validation. In this analysis, the effect of the moving cutting force, the position of the locators

and clamps, the clamping forces and the sequence of part loading were taken into account.

The change of weight and shape of the workpiece were ignored since the computational effort

required for this problem was excessively high. It was found that the effect of the clamping

sequence on the rigid body dynamics was less than the effect of the position of the clamps.

Hockenberger and De Meter [37, 38] developed a model for quasi-static and dynamic

analysis of the workpiece displacement, taking into account the effect of the stick, slip and lift

off at the contact regions using polynomial functions for the calculations of the forces at the
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contact. Yeh and Liou [39] developed a contact model based on Hertz theory while including

the surface finish of the workpiece and the locators. This model was applied in a FE model

of the workpiece and the frequency response was evaluated and compared to experimental

results. Li and Melkote [40] developed a model to calculate the optimum clamping force

while taking into account the contact forces between the workpiece and the fixture, and

the rigid-body dynamics of the system. Behzadi and Arezoo [41] developed a model for

the analysis of the workpiece and the fixture to describe the positioning error and the rigid

body dynamics due to the contact compliance. The model investigated the effect of the

fixture layout, the stiffness of the supports, and the clamping force. Fang et al. [42] included

the effect of friction damping in the dynamic analysis of the workpiece-fixture system. A

stability analysis was performed to generate the stability lobes while taking into account the

effect of the clamping load. Deiab [43] studied the effect of the tribological aspects at the

workpiece-fixture contact area on the dynamics of the system. Accordingly, a friction model

was incorporated in the FE analysis to predict the dynamics of the workpiece-fixture system

during face milling.

Most of the previous studies ignored the change of the workpiece shape due to the material

removal action. In a slightly more comprehensive research, Deng [44] developed a model

to describe the stability of the workpiece-fixture in terms of the static and the dynamic

displacement while taking into account the contact between the fixture locators and the

workpiece and the change in the dynamics of the workpiece due to the material removal

action. The material removal was modelled using the solid modeller ACIS. The centre of

gravity and the principal inertial axis of the workpiece were updated based on the change

of the shape of the workpiece according to the planned tool-path. The stiffness matrix was

derived in terms of the rigidity of the elements of the fixture. It was shown that the change

of geometry and the mass of the workpiece have the largest effect on its dynamic response.

2.2.4 Dynamic Analysis of Fixtures with a Compliant Workpiece

A limited number of research work has focused on the dynamics of the workpiece-

fixture system, while taking into account the vibrations due to the flexibility of thin-walled
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structures. To analyze the effect of fixturing on the dynamics of thin-walled structures, FE

models were commonly used to cover various features that cannot be modelled analytically.

Although, the FEM is an excellent analysis tool, the computational efficiency for such

problems is relatively poor [45]. In some early investigations of this problem, Daimon et al.

[46] proposed a general guideline for the selection of the supporting points. This guideline was

based on the evaluation of the maximum compliance of the workpiece through experiments

or FE modelling. Two main features were not treated in this study, namely the effect of the

change of the workpiece thickness, and the computational efficiency of the FE model.

Chu et al. [47] developed a methodology for updating of the mass and stiffness matrices of

the workpiece using experimental measurements and quadratic optimization. The purpose of

this study was to develop an accurate FE model of the workpiece-fixture system. De Meter

[45] used a FE model to evaluate the deformation of the workpiece due to external load

assuming a rigid support and a rigid contact between the workpiece and the fixture. The

computational efficiency was improved by selecting candidate points on the FE model and

defining the stiffness matrix accordingly. The models did not take into account the material

removal effect.

Recently, Rai and Xirouchakis [48] included a comprehensive analysis for the simulation of

the milling process while taking into account the deflection of the workpiece and the fixture,

the contact compliance, the thermal behaviour of the workpiece and the material removal

action. The material removal was simulated by using the death-birth feature of the elements.

A simplified model was used to simulate the cutting forces. In this model, the computational

efficiency was very low due to the high complexity of the FE model. The validation of the

model was presented for relatively thick-parts and thus the vibration was not representative

of the vibration encountered in the machining of thin-walled workpieces. The minimum

errors between the model and the measurements were greater than 15%. Moreover, during

the validation, the dynamics of the measurement system, which substantially distorts the

measured forces and displacements, especially during milling with small radial depths of cut,

was not taken into account.
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2.2.5 Computer-Aided Fixture Design and Fixture Optimization

In the last two decades, some effort has been directed towards the development of

Computer-Aided Fixture Design (CAFD) software packages. The main idea here is to

combine the different models for the analysis of the fixture performance. As an example,

Kang et al. [49, 50] developed a framework for computer aided-fixture design that included

locator layout optimization, locator tolerance verification and assignment, stability verification,

clamping force optimization, and clamping sequence verification. The workpiece was assumed

rigid and the material removal action was not considered. These types of software are not

adopted by the industry since they lack practicality and are computationally demanding.

It is important to note that CAFD requires the optimization of the design parameters of

the fixture. Several researchers proposed different models for the optimization of the fixture

layout (number and position of the locators and clamps) or the clamping forces. Meyer and

Liou [51] looked at the optimization of the fixture layout to minimize the clamping forces by

using linear programming. Only static analysis was performed using an upper bound value

for the machining forces. The sequence of the part loading was also taken into consideration.

Li and Melkote [2] used a non-linear optimization algorithm to select the optimum fixture

layout, which will minimize the clamping forces. In another study, Li and Melkote [40]

optimized the clamping forces by using sequential quadratic programming.

To include the static workpiece deformations, some researchers solved the optimization

problem using FE models to predict the deflection of a reduced set of candidate points to

increase the computational efficiency [45, 52]. Kashyap and DeVries [52] used the penalty

function method to optimize the fixture layout while taking into consideration the flexibility

of the workpiece. Sayeed and De Meter [33, 34] implemented mixed integer programming with

a heuristic approach in order to select a reduced set of machining points for the optimization.

Tan et al. [53] used the force closure theorem and FEM to determine the optimum clamping

and locator layout when the contact friction and the static deformations of the workpiece

and the fixture are accounted for.

Global optimization techniques such as Genetic Algorithms (GA) have gained popularity

in solving optimization problems since they provide near global optimum solutions when the
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number of variables is large. Kulankara et al. [54] used GA to optimize the fixture layout

and the clamping forces with respect to the static deformation of a compliant workpiece. To

minimize the computational effort, the Guyan reduction method [55] was implemented. Li

[56] used GA to optimize the number of locators and clamps as well as their position in order

to minimize the deformation of sheet-metal components. The optimization was performed

on two phases: In the first phase, optimal regions for the locators are identified and in the

second phase optimum positions are selected within each region.

Some research work was devoted to compare different optimization techniques. Vallapuzha

et al. [57] used real-coded genetic algorithm with FEM to optimize the fixture layout based

on the static deformation of the workpiece. The spatial coordinates of the workpiece were

used instead of the FE model nodes. It was shown that the continuous GA offered a faster

convergence and better solution than the discrete optimization. The locators and supports

were represented by spring elements. The compliance-based formulation was used since it

offers some reduction in computation time when compared to the stiffness formulation. A

discrete interpolation was used to position the locators in the FE model. In another study,

Vallapuzha et al. [58] compared the GA and the sequential quadratic programming with

discrete and continuous interpolation functions for the placement of the springs representing

the locators. It was found that the GA with FE models using continuous interpolation

function offered the best results. The method was tested for a simple plate with a coarse FE

mesh. As mentioned in this study, the computational time is expected to increase significantly

for finer meshes and more complicated structures. Prabhaharan et al. [59] compared the GA

algorithm to the Ant Colony Optimization (ACO) for the optimization of the fixture layout

to minimize the static deformation of the workpiece. It was shown that the ACO converged

faster and was consistently nearer to the optimum solution than GA.

As can be seen, most of the optimization problems are focusing on the fixture layout.

In addition, in all these optimization problems, the effects of the dynamics of the workpiece

and the material removal was not considered due to the complexity and the intensive

computational effort required to model the dynamics of the continuously changing workpiece.
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2.3 Dynamics of the Milling of Thin-Walled Structures

Milling of thin-walled structures is a critical process due to the high flexibility of the

workpiece. Several factors contribute to the complexity of this process, e.g., the closed loop

interaction between the cutting forces and the vibration of the tool-workpiece system, the

regenerative effect of the previously machined surface and the non-linear contact between

the tool and the workpiece. Most of the research in this field was either focused on the

suppression of the vibrations of the workpiece during milling through the development of

new machining techniques or on the modelling of the process in order to understand the

effect of the different cutting parameters on the final surface finish and the dimensional

tolerances of the workpiece. The following subsections will present a brief review of the

techniques used for the milling of thin-walled structures, the milling force models including

either the static deflections or the dynamic vibrations of the workpiece and finally the models

for chatter analysis.

2.3.1 Techniques Used for the Milling of Thin-Walled Structures

Currently, the industry is seeking a set of general guidelines and/or techniques for the

milling of thin-walled structures. A large number of the thin walls are found in pocket-shaped

structures rather than a simple cantilever plate. In a thin-walled pocket, there are two main

areas of interest: the rib and the web. The rib is the vertical side wall of a pocket and the

web is the bottom floor of the pocket. Different strategies exist for the machining of each of

these features.

In an early attempt to control the milling of thin-walled structures, Anjanappa et al.

[60, 61] developed an online-optimal control to maximize the feed-rate for machining thin-

webs while maintaining the dimensional accuracy. The controlling parameters were the

measured cutting forces. The thin-rib machining was modelled as a stochastic process.

Tlusty et al. [62] presented two techniques for the use of long slender cutting tools to avoid

chatter. In the first technique, the tool length is adjusted such that the stability lobes

coincide with the maximum power and spindle speed of the machine. The second technique

19



is for the machining of thin-walled ribs by using long slender end mills with a relieved shank.

It was shown that the relieved shank prevents the over-cutting of the thin-walled ribs when

cutting at large depths.

Smith and Dvorak [63] suggested the selection of a certain path for the machining of

thin-webs (bottom floor of the pocket), such that the web is supported by the un-machined

material of the workpiece. It was shown that tools with zero-corner radii are preferred since

they generate smaller forces in the direction normal to the surface of the web. Zhao et al.

[64] proposed a similar tool-path (stepped spiral-out) for machining of pockets with thin-

webs (bottom of the pocket) in which the tool reaches the bottom of the pocket then spirals

out such that the web is always supported by a bulk of material. Based on experimental

analysis, Wu et al. [65] proposed a set of guidelines for the selection of optimum parameters

for the milling of thin-walled structures such as low axial depth of cut, large radial depth of

cut, high cutting speed and moderate feed per tooth. In a following study, Zhao et al. [64]

suggested the tilting of the tool for error compensation.

Recently, Herranz et al. [66] proposed some guidelines for the machining of thin-walled

parts taking into account the static and the dynamic behaviour of the workpiece. These

guidelines include the optimization of the tool path to take advantage of the un-machined

material as a support for the flexible parts, the use of large tool radii for the machining of

ribs and small tool radii for the machining of webs and the use of stability lobes that account

for the dynamics of the workpiece to evaluate the stable cutting conditions.

2.3.2 Mechanistic Force Models Including the Static Deflections of Thin-Walled
Workpieces

Although the above-mentioned techniques offer general guidelines for the milling of thin-

walled structures, more specific force models are required to assess the effect of the various

cutting parameters on the machining forces and the final dimensional accuracy and surface

quality of the workpiece. Due to the complexity of the milling process, analytical cutting

force models are not used. Instead, most researchers use empirical mechanistic force models.

In these models, the forces are determined as the product of a specific cutting pressure and

20



the area of the chip. The specific cutting pressure is determined experimentally and the chip

area is determined geometrically by the intersection of the workpiece and the cutting tools

[67].

Assuming a rigid tool-workpiece system, many mechanistic models were developed for

2.5-axis milling, e.g., [68, 69], and for 4- and 5-axis milling, e.g., [70, 71]. Devor et al. [72]

were one of the first researchers to develop a mechanistic model that takes into account

the deflection of the cutter. Similarly, many other models were developed to include the

deflections of the tool, e.g., [73, 74, 75, 76]. Liao and Tsai [77] included also the dynamics of

the spindle and the supporting bearings. The milling cutter was simulated by a pre-twisted

Timoshenko beam element, which has different moments of inertia about the two axes normal

to the tool axis. Recently, Omar et al. [78] developed a mechanistic force model for end

milling, which incorporated the effects of tool runout, tool deflection, tool tilting, flank face

wear and the dynamics of the tool on the surface roughness of the workpiece. The dynamics

of the tool was represented by a single degree of freedom model.

As the milling of thin-walled structures gained popularity in the aerospace industry, the

developed mechanistic models started taking into account the static and the quasi-static

deflections of the workpiece. Kline et al. [79] developed a mechanistic model that considers

the flexibility of the tool and the workpiece. The cutter was modelled as a cantilever beam,

and the static deflection of a simple workpiece geometry in the form of a plate was predicted

using 2D FE model. The purpose of the model was to predict the surface accuracy of the

machined plate. It was found that, for accurate predictions of the workpiece deflection, the

transverse force played the most important role.

Sutherland and Devor [80] developed a methodology to include the relative displacement

between the tool and the workpiece due to their flexibility. However, the model was tested

for a flexible tool only. Tsai and Liao [81] developed a mechanistic model in which the static

deflections of the tool and a flexible stepped plate are accounted for. The stepped plate was

modelled using a FE model and 3D 12-node iso-parametric elements. The tool was modelled

using a Timoshenko beam element [77]. In this model, the update of the workpiece thickness

due to the material removal action was ignored. In addition, the experiment was performed

at low rpm (less than 3000) such that the assumption of quasi-static forces is valid.
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In a series of research studies, Ratchev et al. [82, 83, 84, 85, 86, 87, 88] developed a

comprehensive methodology for the compensation of the surface errors during the milling

of low rigidity components. The proposed approach included a module for the integration

of the force and the workpiece deflection and the integration of the workpiece deflection

and the material removal [83, 84]. However, the frequency of the update of the model

and the computational efficiency were not discussed and the validation was performed for a

simple cantilever plate. A force model was implemented using the perfect plastic layer model

developed originally by Merchant [85]. A Voxel-cutting algorithm was presented to simulate

the change of thickness of the workpiece during machining and to generate elements, which

are compatible with FEM packages [86]. As mentioned in the paper, the frequent update of

the workpiece geometry resulted in an extensively high computation time. Another problem

was that the Voxel transformation led to the creation of elements of abnormal span-to-

thickness ratio, which would result in erroneous results in the FE model. Moreover, for small

feed rates, the element size for the update of the workpiece thickness should be accordingly

reduced. This further reduces the computational efficiency of the system. Based on the

developed models, an off-line single step and multiple step error compensation approach was

proposed [87, 88].

Guo et al. [89] analyzed the deformations of a thin walled plate during milling using a

FE model with special consideration to the effect of the initial residual stresses. Kang et

al. [90] developed an approach to predict the static form errors in the milling of thin-walled

structures. The workpiece was modelled using a 3D FE model to simulate the material

removal action. An algorithm was devised using a double iterative approach to predict the

maximum surface error.

Recently, Tang et al. [91] considered the large deformation of plates during milling by

establishing the equations for large deformation of thin-plates and implementing them in a

FE model. The effect of the cutting forces, the location of the tool and the thickness of the

workpiece on the large deformation of thin-walled structures was studied. Tang and Liu [92]

developed an analytical model for the deformation of a cantilever plate using the reciprocal

theorem to investigate the effect of the magnitude and location of the cutting forces and the

thickness of the plate on its deformation.
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As can be seen, for all the developed models, the validation was performed using mainly

a simple plate, which does not represent the practical shape of aerospace structural elements.

The main problem associated with these models is the low computational efficiency especially

when considering the material removal action. In addition, all analysis were static, thus the

dynamic interactions between the tool and the workpiece were not captured.

2.3.3 Mechanistic Force Models Including Dynamic Vibrations of Thin-Walled
Workpieces

For the development of accurate mechanistic force models, it is crucial to determine

the dynamic response of the thin-walls at each location of the tool during milling. The

evaluation of the dynamic deflection of the thin wall will affect the intersection of the tool

and the workpiece, thus affecting the force predictions, as well as the final part topography.

Thus a model describing the dynamics of thin-walled structures is essential to accurately

determine the chip load.

Limited research work has been done in this area. Altintas et al. [93] developed a

mechanistic force model to predict the surface finish of a cantilever stepped plate. The

dynamics of the plate was determined using the FEM and modal analysis. The response

was determined at the tool-workpiece contact only. The material removal action was not

taken into account. Large discrepancies between the measured and the predicted vibrations

were found and were attributed mainly to the process damping, which was not included in

the model. Davies and Balachandran [94] performed a dynamic analysis of the displacement

response obtained during the milling of a cantilever plate. The objective of this study was

to investigate the effect of the non-linearities due to the intermittency of the milling process.

It was shown that the impact dynamics dominates the vibrations of the thin-walled plate.

A simplified cutting model was developed and only one mode of the plate dynamics was

included to validate the observations made from the experimental results.

Kanchana et al. [95] performed a FE study and found through a frequency response

analysis that at high frequency loading, i.e., high spindle speeds, the vibrations of the

workpiece are less due to its higher dynamic stiffness. Campomanes and Altintas [96]
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developed a time domain simulation for the milling process where the dynamics of the tool

and the workpiece (cantilever plate) is taken into consideration. The dynamics of the tool-

holder-spindle system was modelled using an experimentally measured transfer function.

Peigne et al. [97, 98] developed a geometrical model to predict generated surfaces during

machining. The effect of forced and regenerative vibrations in the milling of a flexible plate on

the surface was studied. The workpiece was represented by a single degree of freedom model

and the parameters were identified experimentally. It was shown that forced vibrations had

a slight effect on the roughness when compared to the effect of the regenerative vibrations.

All the previous studies did not take into account the change of thickness of the workpiece

during machining. Only two studies focused on this issue. Sagherian and Elbestawi [99]

developed a mechanistic force model that took into account the flexibility of the thin-walled

structures as well as the deflection of the tool. The tool was modelled as a cantilever beam

and two modes were identified based on impact tests. The workpiece was represented by

a beam and modelled using the FEM. Abrari [100] developed a mechanistic force model

including the dynamics of the tool and the workpiece. Boundary representation (B-rep) of

the workpiece and the tool swept volume were used to determine the intersection between the

tool and the workpiece. ACIS solid modeler was used to generate the mesh of the updated

workpiece for the FE model. The model was validated using a cantilever plate. The main

problem of using FEM is the low computational efficiency since one has to frequently update

the model to simulate the continuous change of thickness. For this reason, only simple

workpiece geometries (beams and plates) are used for the validation.

One can conclude that most of the studies that were performed to analyze the dynamics

of the workpiece during milling did not include the change of the workpiece thickness during

machining. The models are usually validated against simple beam and plate workpieces,

which do not represent typical thin-walled structures. In addition, most of the research

work does not present a validation of the models through the measurement of the dynamic

vibrations of the workpiece. This is mainly due to the challenges encountered in measuring

the forces and the displacement during low-immersion milling of flexible structures. Finally,

none of these studies took into account of the effect of the fixture layout and the compliance

of the supports on the dynamics of the workpiece during milling.
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2.3.4 Models for Chatter Analysis of the Workpiece-Tool System

Another way to study the dynamics of the cutting process is to evaluate the stability of

the process through chatter analysis. The theory of the regenerative chatter was established

by Tobias [101]. Other models for chatter analysis were developed later by Hanna and

Tobias [102], Tlusty and Ismail [103, 104], and Ruxu et al. [105]. Altintas and Budak [106]

presented a new model for the prediction of the chatter based on the identification of the

transfer function of the cutting tool in the frequency domain. Further models were developed

for the prediction of the onset of chatter during milling. Ismail and Soliman [107] developed a

new method for the identification of the stability lobes by increasing the spindle speed while

monitoring a statistical chatter indicator which is function of the cutting forces. Merdol and

Altintas [108] developed a model for chatter analysis while taking into account the coupling

between the spindle speed and the process dynamics for low immersion cutting operations.

Most of these models are based on the analytical representation of the tool dynamics. A

limited number of models exists for the chatter due to the flexibility of the workpiece. This is

mainly due to the difficulty of developing analytical expressions for the workpiece dynamics.

Ismail and Ziaei [109] combined an off-line feed scheduling and an online chatter control

using the statistical chatter indicator to reduce chatter during the milling of flexible turbine

blades. De Lacalle et al. [110] performed a chatter analysis while taking into account the

relative transfer function between the tool and the workpiece. The workpiece was a cantilever

plate and the dynamic characteristics were determined experimentally. A 3D stability lobe

chart was developed with the following three parameters: Spindle speed, axial depth of cut

and the different steps for the machining of the workpiece. It was shown that the stability

lobes, determined using this method, are more accurate than considering the workpiece or

the tool individually. The change of thickness during machining was not taken into account.

This model was extended for ball endmill cutters while assuming a single degree of freedom

workpiece [111, 112]. Thevenot et al. [113] generated 3D stability lobes for a thin cantilever

plate. A FE model of the plate was developed and updated 10 times to track the change

of the thickness of the plate along the tool path. Based on the FE model, the first five

natural frequencies and the apparent stiffness of the plate at the force application point were
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determined and used to generate the stability lobes. Recently, this model was extended by

Seguy et al. [114] to take into account the effect of ploughing on the prediction of the 3D

stability lobes and the surface roughness of the finished part. Mane et al. [115] developed

3D stability lobes for a thin-walled cantilever plate by modelling the workpiece, the tool

and the spindle using a FE model. In this model, the effect of the change of the spindle

dynamics at different rotational speeds was accounted for; however, the change of thickness

of the workpiece during machining was not taken into account.

2.4 Model-Order Reduction Techniques

As mentioned previously, FE based models, which are used to evaluate the dynamics

of the fixture during the milling of thin-walled structures, are computationally extensive.

Therefore, it was necessary to review the different model-order reduction (MOR) techniques

in order to assess whether they can be efficiently used for this specific problem where the

workpiece dynamics is continuously changing. Different model-order reduction techniques are

available in the literature and will be briefly discussed in the coming sections. They include

methods for the reduction of the number of physical coordinates, modal superposition, load

dependent Ritz vectors, and Component Mode Synthesis. Frequency domain identification

methods can also be implemented to FE models to reduce the order of the models [116];

however, they require optimization for the system parameter identification. Although most

of these methods can substantially reduce the computational effort, they can be sensitive to

the selection of the reduced-order model parameters. Moreover, these techniques will still

require the update of the full FE model each time the structural dynamic characteristics

change, which is the case when machining thin-walled structures.

2.4.1 Reduction of the Physical Coordinates of the Model

One of the oldest MOR techniques that has been implemented in most commercial

FEM packages is the Static Reduction (Guyan) [55]. It assumes that the inertia terms
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have negligible effects on the dynamic response of the structure. For static problems, this

method offers accurate results and very good computational efficiency. For medium and high

frequency loading, this method introduces large errors for the dynamic analysis [117]. Other

techniques have been used in order to improve this method such as the Improved Reduced

System (IRS), which includes a first-order estimate of the inertia terms [118]. However, this

method is sensitive to the selection of the included coordinates of the system and thus its use

is very limited [119]. An iterative IRS (IIRS) could be implemented by repeating the same

transformations using the reduced mass and stiffness matrices [120]. Although this approach

offers better approximation of the full-order system, the computational efficiency is reduced

due to the iterative nature of the solution.

Dynamic Condensation is another technique to improve the Guyan Reduction. This

method explicitly includes a dynamic approximation of the inertial effects by using the steady

state harmonic response of the full-order system [121]. Other modifications to this approach

were developed to improve its accuracy including the First-Order Dynamic Condensation

[122], the Second-Order Dynamic Condensation [123] and an iterative approach [120] similar

to the IIRS. One of the main drawbacks of the dynamic condensation approach is its intensive

computational requirements [119]

The major advantage of the physical coordinate reduction techniques over other reduction

techniques is that they do not require the solution of the eigenvalue problem of the full

model. However, these methods might have significant accuracy limitation depending on

the selection of the reduced physical coordinates [119]. In addition, for milling applications,

the mass and stiffness matrices are continuously changing. The computational efficiency of

these methods is substantially reduced as the number of updates of the system parameters

increase.

2.4.2 Modal Superposition Methods

The modal superposition method is one of the widely used techniques for the reduction

of the order of large complex structures. It is based on the transformation of the physical

coordinates to a set of reduced generalized coordinates [124]. It requires the solution of
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the eigenvalue problem of the system. In general, the modal superposition methods are

advantageous when the number of contributing modes is small.

One of the modal superposition methods is the Mode-Displacement method, in which

high frequency modes are simply truncated. For better accuracy, modes up to three times

the loading frequency have to be included in the model [119]. The mode displacement

method does not account for the truncated modes and thus could introduce large errors in

the calculated response. For low frequency loading, this method can provide accurate results.

One of the limitation of this method is that it requires a model with large number of physical

coordinates to avoid numerical problems in the inversion of the transfer matrices [117].

Another modal superposition method is the Mode-Acceleration technique. In this method,

the effect of the truncated frequencies and modes is approximated by including the complete

set of the system modes in the static term and the reduced set of modes for the dynamic

term. However, when the truncated modes have lower frequency than the loading frequency,

the errors are larger than those for the Mode-Displacement method [119]. Both the Mode-

Displacement and the Mode-Acceleration techniques are suited for low frequency problems.

For medium and high frequency loading, the number of included modes increases, and thus

the computational efficiency is reduced.

For high frequency problems, quasi-static compensation techniques were developed to

take into account a band of frequencies [125]. These techniques are based on representing

the dynamic response of the system as the sum of the mode-displacement solution in the

desired frequency range and an unknown residual error. Similarly, the forces are represented

as a force vector satisfying the mode-displacement equation and a residual force term [119].

By solving the dynamic equilibrium equation of the residual force, an approximate expression

for the residual error could be determined. It was shown that the quasi-static method offers

better results compared to the Mode-Acceleration method even for the cases when only the

high frequency modes are truncated [125].

The main advantage of the mode-superposition technique is that, for a given system, once

the eigenvalue problem is solved, a small number of modes is used to represent the response of

the system. The main limitation of the mode-superposition technique is that the solution of

the eigenvalue problem is often computationally intensive. For fixture design during milling
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of thin-walled structures, the dynamic characteristics of the system are continuously changing

due to the material removal action. Thus, each time the mass and the stiffness matrices are

updated, the full eigenvalue problem has to be solved. Consequently, the computational

advantage of these methods is lost, especially for high-order problems.

2.4.3 Load-Dependent Ritz Vector Methods

In the Ritz Vector methods, instead of using the exact modes, orthogonal approximate

modes are used, which can reduce the computational effort required to solve the eigenvalue

problem and sometimes could improve the accuracy. For the Load-Dependent Ritz Vector

(LDRV), the modes are generated based on the load applied on the structure. One of the

available LDRV techniques is the Wilson-Yuan-Dickens (WYD) algorithm [126] where a

static recurrence procedure is used to generate the vectors. The first mode corresponds to

the static response of the structure for a given load. This method was extended by other

researchers by using different vectors such as the Lanczos vector [127]. These methods are

suited for problems with loading at low frequency. For medium and high frequency problems,

the generation of the Ritz vectors requires large number of recurrences, thus reducing the

computational efficiency and introducing large numerical errors. Gu [119] proposed a quasi-

static Ritz Vector method. The approach was based on using a quasi-static recurrence

procedure. The solution convergence is controlled by a centring frequency parameter within

the desired band of frequencies. It was shown that this method offers better accuracy. As

previously mentioned, for dynamically time-varying structures, the computational advantage

of the Ritz method is lost unless the number of degrees of freedom of the system is small.

2.4.4 Component Mode Synthesis

The Component Mode Synthesis (CMS) is one of the widely used methods for the

analysis of large complex dynamic problems [128]. It is based on partitioning the system into

assemblies and components and using a set of approximate functions for the representation of
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the modes of each component. The CMS aims at replacing the large number of the physical

coordinates of each component with a reduced set of basis coordinates. The transformation

matrix between the full and the reduced set of coordinates includes pre-selected normal

modes of each component and other Ritz-basis vectors (computational mode) [119]. The

most popular computational modes are the constrained modes developed by Craig-Brampton

[129]. A constraint mode is defined as the static deflection of a component when a unit

displacement is applied at one coordinate of its active degree of freedom set while restraining

the remaining coordinates. Other types of computational modes can be developed; however,

they are beyond the scope of the review. Although the CMS is mainly intended for the

solution of low frequency problems, some attempts were made for mid and high frequency

problems based on quasi-static modes. These modes depend on the value of a centring

frequency, which is employed to capture the effect of truncated modes [130]. Similar to other

MOR reduction techniques, the CMS method loses its computational advantage in the case

of structures that are continuously changing in terms of their dynamic characteristics.

2.5 Gap Analysis and Limitations of Existing Methods

Based on the review of the literature, the following can be concluded:

• No accurate representation of the dynamic response of typical aerospace structures

is presented while including the continuous change of thickness during machining.

The available models are mainly based on FE models, which require extremely large

computational time when considering an interactive design of fixture layout.

• Although MOR techniques can offer substantial reduction in the computation time,

they lose their computational advantage for models where the structural dynamics is

continuously changing.

• Generally, the effect of the fixture layout on the dynamics of thin-walled structures has

not been extensively investigated.

• Most of the available mechanistic force models do not take into account the effect of

30



the fixture layout on the dynamic response of thin-walled structures.

• The validations of the models are always performed for very simple workpieces such

as beams and plates. Thus, a practical solution for the computational efficiency of the

models has never been investigated.

• The validation experiments never included a comparison between the models’ predictions

and the dynamic response of the real structure. Moreover, rough cutting paths were

mostly used; consequently, the initial thicknesses of the workpiece were considerably

large. This was intended to avoid dealing with the effect of the dynamics of the

measurement system on the measured forces and displacements. As a consequence,

most of the designed experiments do not represent practical cases encountered in

industry.

One can conclude that a computationally efficient integrated model is required to describe the

effect of the fixture layout on the flexible workpiece dynamics during milling of thin-walled

structures. The model has to take into account the following:

• The dynamics of typical thin-walled structures encountered in the aerospace applications.

• The continuous change of thickness of the walls of the structure during machining.

• The effect of the number, location and stiffness of the fixture locators/supports on the

response of the workpiece.

2.6 Detailed Objectives and Approach of the Research

The main objective of this thesis is to develop a semi-analytical approximate model to

predict the dynamic response of typical thin-walled structures with an error less than 10%,

while minimizing the computational time by at least one order of magnitude compared to

FE models. The model will include the change in the workpiece thickness during milling,

the effect of the fixture layout and the interaction between the dynamics of the workpiece

and the machining forces. The approach to achieve this objective is as follows:
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1. Review the current practices in the aerospace industry in order to determine typical

thin-walled components.

2. Develop a novel model to describe the dynamics of these thin-walled structures. The

computational time for this model has to be minimized without compromising the

accuracy in such a way that it can be usable by fixture designers in industrial setups.

When comparing the developed model with Finite Element (FE) models, the error

in predictions of the responses relative to the maximum amplitude of vibration has

to be < 10% and the computational time has to be reduced by at least one order of

magnitude.

3. Develop an extended model to represent the continuous change of thickness of the

workpiece during machining. This model should simulate typical machining tool-paths

and practical ranges for the reduction in thickness.

4. Represent the effect of the fixture supports, in terms of the location, the number and

the stiffness, on the dynamic behaviour of the workpiece.

5. Validate the developed models against FE models and impact tests experiments.

6. Demonstrate the applicability of the model through real machining experiments of a

thin-walled workpiece. Due to the flexibility of the workpiece and the nature of the

cutting forces encountered in finishing operation, the dynamics of the measurement

system has to be analyzed and a new methodology has to be developed to compensate

for the dynamics of the measurement system.

32



Chapter 3

Conceptual Development of Dynamic Models
for Thin-Walled Aerospace Structures

3.1 Introduction

Based on the literature review presented in Chapter 2, one can conclude that it is

necessary to develop models which describe accurately the dynamics of thin-walled aerospace

workpieces within a practical computational time frame. This chapter will include a description

of the conceptual developments for the proposed models. The analysis of different aerospace

structural components will be presented first and a generalized unit-element will be identified

to represent the dynamics of these structures. Then, two different models will be proposed to

predict the dynamic response of the unit-element. This will be followed by an analysis of the

change of thickness of thin-walled structures during milling. Finally, since the formulation

of the models is based on the dynamics of plates, a review of this topic will be presented.

3.2 Development of a Generalized Unit-Element

To develop a computationally efficient dynamic model of practical relevance, it is necessary

to analyze the different thin-walled aerospace structural components. These components

include the skin, the spar and the rib; they are composed of multiple pockets in order to

reduce their weight, while maintaining their stiffness. To efficiently study the dynamics of

these structural components, they are broken into a series of unit elements with the shape of
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a pocket with different aspect ratios, and different features (orthogonal vs. slanted walls). A

generalized unit-element (pocket) is depicted in Fig. 3.1. Ranges of values for the dimensions

representing the generalized pocket encountered in aerospace structural elements are shown

in Table 3.1.

L1

L2

L3

L4
h3

h4

h1

h2


H

h5

2 1

Figure 3.1: Generalized unit-element (pocket) shape

Table 3.1: Dimensions of typical aerospace structural components

Dimensions, angles Rib Spar
Height (H) 25 mm - 50 mm 35 mm - 100 mm
Thickness (h1 - h5) 1.5 mm - 4.0 mm 2.0 mm - 5.0 mm
Length (L1 - L4) Up to 400 mm Up to 500 mm
Angle (α1, α2) 90◦ - 135◦ 90◦-135◦

Angle (β) 90◦ - 95◦ 90◦-100◦

According to the performed analysis, it was found that the unit element could be found

in three main general cases which are illustrated in Fig. 3.2. These cases are:

1. Single pocket: This represents the simplest case where the structural component is
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a pocket which does not have any adjacent sides to it. This is typically encountered in

small ribs.

2. Single pocket with internal rib-wall: In this case, the pocket length and width are

large and thus the pocket has internal rib-walls to support its outer walls. This case

is encountered in structures such as large ribs and small spars. The internal rib-walls

are usually thinner than the walls of the pocket and their heights are usually smaller

than the height of the pocket. The dimensional tolerances for the thickness of these

rib-walls are usually large since they do not fit into other components.

3. Multiple pockets: This is the general case where the structure has pockets adjacent

to each other. This is mainly encountered in typical spars and some ribs. As seen in

Fig. 3.2, the pockets are usually adjacent to each other along a single direction. For a

given pocket, depending on the dimensions of the adjacent pockets, one can decide to

ignore or include their effect on the vibration of the pocket under consideration.

Case 1

Single Pocket

Case 2

Single Pocket  with 

Internal Rib-Walls

Case 3

Multiple Pockets

Figure 3.2: Different cases for the unit element (pocket) in aerospace structural components
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In the analysis of these cases, the following expressions will be used:

• Load-application pocket: This is the pocket that has the load applied on one of its

sides.

• Adjacent pocket: This is the pocket adjacent to the load-application pocket.

• Load-application side: This is the side on which the load is applied and for which it is

necessary to predict the dynamic response.

• Adjacent side: This is the side which is directly connected to the load-application side.

• Non-adjacent side: This is the side which is either opposite to the load-application

side within the same pocket or any side in an adjacent pocket which is not directly

connected to the load-application side.

For example, if the load-application side is side 1 in Fig. 3.1, then the adjacent sides are 2

and 4 and the non-adjacent side is 3.

For the three general cases in Fig. 3.2, two different models are proposed for the prediction

of the dynamic response of the unit-element (pocket). These models will be presented in

sections 3.3 and 3.4 and their formulations will be described in Chapter 4, sections 4.3 and

5.3. In sections 4.5 and 4.6, these models will be further extended to include the effect of

the change of thickness and the fixture layout, respectively. The development of efficient

dynamic models to represent the cases in Fig. 3.2, require some simplifying assumptions

including:

1. The base of the pocket is rigid and could be simulated by clamped boundary conditions.

During machining, the workpiece is usually clamped on the fixture base using vacuum

plates, for instance. Therefore, the bottom of the pocket is relatively rigid compared

to the side walls of the pocket.

2. The geometric and material non-linearities of the contact between the supports and

the workpiece do not affect the displacement away from the support. As mentioned

previously, for the analysis of the vibration of thin-walled workpieces, the contact

between the supports and the workpiece could be assumed rigid [17].
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3. Only the forces normal to the side of the pocket are considered. Using FE models, the

effect of the in-plane forces on the transverse vibration of the workpiece was found to

be negligible when compared to that of the normal forces. Different comparison cases

will be shown in section 3.2.1.

4. The effect of non-adjacent sides on the vibration of the load-application side is negligible.

FE models of pockets with different aspect ratios were constructed to validate this

assumption and they will be discussed in section 3.2.2.

5. For the case of structures with multiple pockets, the effect of adjacent pockets on

the vibration of the load-application pocket depends on the aspect ratio of the wall

thicknesses of the pockets. This will be described in details in section 3.2.3.

6. For the prediction of the dynamic response of the load-application side, the effect of

the fixture supports applied on adjacent and non-adjacent sides is negligible. This

assumption will be verified in section 3.2.4

For the verifications of assumptions 3 to 6, all the FE models are developed on ABAQUS

(version 6.4), using 2D quadrilateral linear shell elements and general aluminum material

properties: E = 69×109 GPa, ν = 0.3 and ρ =2700 kg/m3.

3.2.1 Effect of In-Plane Forces on the Transverse Vibration of Thin-Walls

To determine the effect of the in-plane forces on the transverse vibration of thin-walls,

FE models for nine plates were developed. Each plate has three clamped edges and one free

edge. An illustration of the different plates and their dimensions is shown in Fig. 3.3. The

in-plane forces are designated as Fx and Fy and the transverse force is Fz. As shown in

Fig. 3.3, the forces are applied at the centre of the free edge of the plate. The total number

of elements in the FE models of plates 1 to 3, 4 to 6, and 7 to 9 is 1200, 1650 and 2500,

respectively.

For each plate, two cases were evaluated. In the first case, the in-plane forces (Fx and Fy)

and the transverse force had an amplitude of 30 N each and a frequency of 600 rad/s. In the
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second case, only the transverse force Fz was applied with the same amplitude (30 N) and

frequency (600 rad/s) as in the first case. The responses were calculated at the position of

the load application point since it represents the location of maximum deflection. The error

between the responses for the two cases was calculated in terms of the maximum amplitude

of vibration. It was found that for the nine plates the errors were less than 0.1%. Thus,

the effect of the in-plane forces on the transverse vibration of thin-walled structures can be

ignored.

Figure 3.3: Illustration of the dimensions (in mm) of the plates used to evaluate the effect
of the in-plane forces on the transverse vibration of a plate

3.2.2 Effect of Non-Adjacent Sides on the Response of the Load-Application
Side

The effect of non-adjacent sides on the response of the load-application side was examined

by developing FE models of rectangular pockets and comparing the response of the load-

application side for different thicknesses of the non-adjacent side. The dimensions of the

pockets used for this analysis are shown in Fig. 3.4. All pockets have a width of 100 mm,

height of 75 mm, and wall thicknesses of 3 mm, 2 mm and 2 mm for sides 1, 2 and 3,

respectively. The load-application side is side 1 and the non-adjacent side is side 3. According

to the table in Fig. 3.4, there are nine pockets such that each three have the same length.
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Pockets 1 to 3, 4 to 6 and 7 to 9 have a length L equals to 50 mm, 100 mm and 150 mm,

respectively. For a given length L, the thickness h is either 2 mm, 3 mm or 4 mm. A load of

60 N and 600 rad/s was applied at the middle of the free edge of side 1, as shown in Fig. 3.4.

The displacement response was calculated at the same location of the force application. In

the FE models, the bottom base of each pocket was clamped. A total of 2600, 3400 and 4300

elements were used for pockets 1 to 3, 4 to 6, and 7 to 9, respectively.

Dimensions 

in mm

Pocket
h

(side 3)
L

1 2
502 3

3 4

4 2

1005 3

6 4

7 2

1508 3

9 4

L

h

100

Force

3

22
7

5

Figure 3.4: Illustration of the dimensions (in mm) of the pockets used to evaluate the effect
of non-adjacent sides

For a given length L, the responses of the pockets with a thickness h equals to 3 mm

and 4 mm were compared to the response of the pocket with a thickness h equal to 2 mm.

The errors were calculated in terms of the maximum amplitude of vibration. In Fig. 3.5, for

each length L, the responses of the different pockets are shown and the maximum amplitude

of vibration and the errors are reported in the adjacent tables. As can be seen, varying the

thickness h has a small effect on the response. The errors for L equals to 50 mm, 100 mm,
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and 150 mm are less than 3.5%, 4%, and 1.5%, respectively. Thus, one can assume that the

effect of non-adjacent sides on the response of the load-application side is negligible.
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Pocket

Maximum 

Amplitude 

(m)
Error

4 150.5

5 154.7 2.8%

6 155.8 3.5%

Pocket

Maximum

Amplitude

(m)
Error

7 264.3

8 260.5 1.4%

9 264.0 0.1%

L = 100 mm

L = 50 mm

L = 150 mm

Pocket

Maximum 

Amplitude 

(m)
Error

1 40.3

2 41.7 3.3 %

3 40.5 0.5 %

Figure 3.5: Summary of the results for the effect of non-adjacent sides on the vibration of
the load application side

3.2.3 Effect of the Adjacent Pockets on the Vibration of the Load-Application
Side

For structures with multiple adjacent pockets, it is necessary to identify the cases when

the effect of the adjacent pocket on the vibration of the load-application side can be neglected.

Thus, one has to compare the response of a pocket with and without adjacent pockets. The

pocket without adjacent units will be referred to as a single pocket. The dimensions of a

three-pocket structure are shown in Fig. 3.6. According to the tables in Fig. 3.6, there are

three sets of results, which are set K, set M, and set N. For all sets, the dimensions of the
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load-application pocket are the same except the thickness hb. The value of hb is equal to 2

mm, 3 mm and 4 mm for sets K, M, and N, respectively. For each set, the dimensions of the

single pocket (pocket without adjacent units) are the same as the dimensions of the load-

application pocket. The main objective is to compare the response of the load application side

to the response of the corresponding single pocket, for different aspect ratios of the adjacent

pockets. Thus, for each set, two main dimensions are varied, which are the thickness ha and

the length L of the adjacent pockets. The length L is either 100 mm, 150 mm or 200 mm

and the thickness ha was either 2 mm, 3 mm or 4 mm. For all the cases, the width and the

height of the structure are equal to 100 mm, and the length of the load-application side is

equal to 150 mm.

150

100

100

ha

ha

ha ha

ha

ha

L

hb

3

3

L

hb

Force

Set K: hb= 2 mm Set M: hb= 3 mm Set N: hb= 4 mm

ha ha/hb L ha ha/hb L ha ha/hb L

K1 2 1

100

M1 2 0.67

100

N1 2 0.5

100K2 3 1.5 M2 3 1 N2 3 0.75

K3 4 2 M3 4 1.33 N3 4 1

K4 2 1

150

M4 2 0.67

150

N4 2 0.5

150K5 3 1.5 M5 3 1 N5 3 0.75

K6 4 2 M6 4 1.33 N6 4 1

K7 2 1

200

M7 2 0.67

200

N7 2 0.5

200K8 3 1.5 M8 3 1 N8 3 0.75

K9 4 2 M9 4 1.33 N9 4 1

Load-application 

Pocket

Adjacent 

Pockets

Figure 3.6: Illustration of the dimensions (in mm) of the pockets used to evaluate the effect
of adjacent pockets

FE models were developed to calculate the response for the different cases. Clamped

boundary conditions were applied at the base of the pockets. The total number of elements
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for the FE models of the pockets with L equals to 100 mm, 150 mm and 200 mm are

4400, 5200, and 6000, respectively. A load of 50 N amplitude and 1256 rad/s frequency was

applied on the middle of the free edge of the load-application side as shown in Fig. 3.6. The

displacement was calculated at the same location of the force application. The response of

the single pocket for each set is the reference to which the different cases are compared. For

a given case in a set, the percentage error between the maximum amplitude of vibration of

the response of the load-application side of the three-pocket structure and the response of

the corresponding single pocket (reference pocket) is calculated.

The results for the different cases are shown in Fig. 3.7. On the left side, three plots are

shown representing the percentage error versus the thickness ratio of ha/hb for sets K (hb =

2mm), M (hb = 3mm) and N (hb = 4mm), respectively. On the right side, the responses for

cases K1, M1, and N1 are shown, each with the response of the corresponding single pocket.

For each set, as the ratio ha/hb increases, the percentage error increases. This is expected

since as the thickness ratio ha/hb increases, the rigidity of the adjacent pockets increases, and

the response of the load-application side is more constrained. These additional constraints

are not reflected in the case of a single pocket. For the results of set K (hb = 2mm), the

minimum ratio of ha/hb is equal to 1.00. For this ratio, the error is greater than 15%. For

the results of set M (hb = 3mm), when the ratio of ha/hb is equal to 0.67, the error was less

than 11%. For the results of set N (hb = 4mm), the maximum ratio of ha/hb is 1.0. For this

ratio, the error was less than 15%. For the ratios 0.75 and 0.5, the error was less than 11%

and 10%, respectively. When comparing the three sets (M, N, and K) at a thickness ratio

ha/hb of 1.00, one can notice that the errors are almost the same. Thus, the aspect ratio

ha/hb is a good indicator to identify the cases where the effect of adjacent pockets can be

ignored. According to the results shown in Fig. 3.7, when the thickness ratio ha/hb is less

than 0.75 for both adjacent pockets, one can neglect the effect of the adjacent pockets on

the vibration of the load-application side. In addition, it can be seen that the effect of the

length L of the adjacent pockets is negligible compared to the effect of the thickness ratio

ha/hb.
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Figure 3.7: Results for the effect of adjacent pockets on the dynamic response of the load
application side

3.2.4 Effect of the Fixture Layout on the Response of the Load-Application
Side

It is assumed that for the prediction of the dynamic response of the load-application side

of a pocket, the effect of the fixture supports applied on the opposite and adjacent sides is

negligible. To verify this assumption, the response of the load-application side was compared

for different fixture layouts on the opposite and adjacent sides. Four different FE models

of rectangular pockets were constructed. All the pockets have a width W , height H and

wall thickness of 100 mm, 100 mm and 3 mm, respectively. The lengths of pockets 1, 2, 3

and 4 are 100 mm, 200 mm, 300 mm and 400 mm, respectively. These pockets represent

practical dimensions with length-to-width aspect ratios varying from 1:1 to 1:4. The side
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along the length of the pocket will be referred to as the L-side (Long side). The sides along

the width will be referred to as S-side (Short side). A load of 50 N amplitude and 200 Hz

frequency was applied first on the S-side and then on the L-side. The location of the load

application was always on the top free edge of the side. The displacement was calculated

at the same location where the force is applied. The total number of elements for the FE

models of pockets 1, 2, 3, and 4 were 2900, 3950, 5300, and 6500, respectively.

For each model, three cases of fixture layouts with 3, 6 and 9 locators were applied on the

adjacent and opposite sides. The different fixture layout cases are represented schematically

in Fig. 3.8 for the load applied either on the S-side or the L-side. The reference case for a

given pocket and load-application side is the pocket without any locators. For a given pocket,

force location and fixture layout, the relative difference between the maximum amplitude of

vibration of the response for this case and for the pocket without locators (reference pocket)

is calculated and referred to as the deviation parameter (Ψ). This can be expressed as:

Ψ =
dw − dr

dr

× 100 (3.1)

where dw is the maximum amplitude of the calculated displacement of the pocket with

locators and dr is the maximum amplitudes for the reference pocket (no locators).

Figure 3.8: Different cases for the fixture layout for the load applied either on the short side
(S-side) or the long side (L-side)
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The percentage deviation for each case of fixture layout is shown in Table 3.2. It can

be concluded that the percentage deviations for all pockets are less than 9%, except for the

short side of pocket 2, where the deviations are 11.6%. The responses of pocket 2, with the

load applied on the S-side and the L-side are shown in Fig. 3.9 for the different cases of the

fixture layout. From this analysis, one can conclude that at the initial stage of the design of

the fixture, the response of the load-application side can be approximately predicted without

considering the effect of the locators on opposite and adjacent sides. Since the effect of the

fixture layout on the sides within the same pocket can be neglected, then for large structures

with multiple pockets, the response of the load-application side is negligibly affected by the

number of supports applied on adjacent pockets.

Table 3.2: Percentage deviation of the pocket response for different fixture layout

Case No. of Locators Pocket 1
Pocket 2 Pocket 3 Pocket 4

S-side L-side S-side L-side S-side L-side
1 3 3.5 % 0.5% 4.4% 1.5% 3.7% 6.0 % 0.5%
2 6 4.2 % 11.5% 6.2% 8.7% 6.0% 0.2 % 1.4%
3 9 4.5 % 11.6% 7.0% 7.7% 6.4% 0.2 % 1.8%
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Figure 3.9: Dynamic response of S-side and L-side of pocket 2
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3.3 Conceptual Development for the Generalized Single-Span Plate
(GSSP) Model

To evaluate a fixture design for milling of thin-walled workpieces, the main target is to

predict the dynamic response of the load-application side, especially at the area where the

load is applied. It is required to develop a computationally efficient approximate model,

which gives an accurate representation for the dynamic behaviour of typical aerospace

structures. The proposed model in this section will be referred to as the Generalized Single-

Span Plate (GSSP) model.

3.3.1 Description of the Proposed Concept for the GSSP Model

The proposed model is based on discretizing the unit-element to four sides and a clamped

floor. The boundary conditions for each side have to represent the effect of adjacent walls,

which can be considered by torsional and translational springs. Accordingly, the dynamic

response of each pocket-side can be represented by the transverse vibration of a rectangular

plate model having torsional and translational springs at the boundaries as shown in Fig. 3.10.

The translational springs are in the transverse direction (normal to the plate). The rotational

springs act around the axis that coincides with the corresponding edge.

Figure 3.10: Plate representing a side wall of a pocket

The stiffness of the springs is function of the dimensions of the adjacent sides. By
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properly tuning the values of the springs’ stiffness at the edge of the plate, the behaviour

of each side of the pocket can be represented. The springs can also take into account the

effect of adjacent pockets. In order to tune the values of the stiffness of the springs, virtual

experiments, using detailed FE models of the actual workpiece, are performed to determine

the dynamic response at representative points on each side of the pocket. By minimizing

the error between the response of these points obtained from the FE and the plate models,

the optimum values for the boundary springs using global optimization techniques can be

determined. The developed model can then be used to predict the response at any point on

the sides of the pocket under any time- and position-dependent loads. This model allows

the predictions of the dynamic response of the sides of the pocket independently of the other

sides of the structure. This, in turn, reduces the computation time.

The integration of this dynamic model in the analysis of the machining and fixture design

is shown in the flow chart in Fig. 3.11 and can be described as:

1. The design procedure starts by calibrating the plate model for each pocket-side. The

formulation of the thin plate model will be presented in Chapter 4, section 4.3.

2. After calibrating the plate, an optimization process is performed to determine the

optimum fixture layout applied on the load-application side while no supports are

applied on the adjacent sides nor on the opposite side. In reality, the calibrated stiffness

of the plate has to take into account the stiffening effect of the supports applied on the

adjacent and opposite sides. As was shown in section 3.2.4, this effect can be neglected

at this step of the analysis.

3. Once an optimum layout is determined for all the sides, the values of the stiffness of

the springs for a given side are re-calibrated in order to take into account the effect of

the fixture layout applied on the opposite and adjacent sides, if necessary.

4. The dynamic response is then integrated with the mechanistic model to predict the final

part tolerances and the cutting forces for the suggested fixture layout. This requires the

update of the thickness of the load-application side and the adjacent sides. The change

of thickness of the load-application side will be simulated by changing the thickness
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of the corresponding calibrated plate. The change of thickness of the adjacent sides

will be applied by changing the values of the stiffness of the springs according to a

relationship that will be established in section 4.3.3.

5. If the final part tolerances, displacements and forces are not within the desired range,

the fixture layout is optimized again and steps 2 to 5 are repeated until the displacement,

forces and dimensions are within tolerances.

FE model of a 

pocket

(1) Calibration of the 

springs

Plate model with torsional 

and translational springs

(2) Optimization of 

the layout of the 

supports for each side

Mechanistic force 

calculations 

Dynamic plate model 

Sides (1 to N)

(4)

Forces and 

displacements

Update plate 

dynamics (thickness, 

spring values)

(5) Forces and 

displacements 

within 

tolerances

No

yes

(6) Final part 

dimensions,  forces  & 

displacements 

(3) Refinement of the 

spring calibration

Initial estimate of Forces

Figure 3.11: Flow chart for the integration of the GSSP model in the analysis of fixtures
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3.3.2 Advantages and Limitations of the GSSP Model

There are several advantages for the GSSP model. Unlike a model-order reduction

method, when using the GSSP model, the change of thickness of the load-application side

or the adjacent and opposite sides does not require the re-evaluation of the dynamics of the

whole structure. Instead, the plate parameters will be modified according to established

relationships as will be seen in Chapter 4, section 4.3.3. In addition, the computation time

is reduced by at least one to two orders of magnitude, as will be shown in Chapter 5. This

is due to the fact that only the response of the load-application side is calculated instead of

evaluating the response of the whole structure. There is also a limitation to this concept,

which is the need to calibrate the stiffness of the springs against FE models. This will slightly

reduce the computational efficiency. The additional time associated with the calibration is

negligible compared to the reduction of the computation of the model during the optimization

of the fixture layout and integration with the mechanistic force models, which require the

evaluation of thousands of cases.

3.4 Conceptual Development for the Multi-Span Plate (MSP)
Model

As seen from the literature review presented in Chapter 2, using FEM for the calculation

of the dynamic response of complex aerospace structural components is computationally

extensive. While the GSSP model can offer a new generalized approach to efficiently predict

the dynamics of these structures, a calibration of the model parameters is required. To

develop a model for complex thin-walled structures without the need for calibration, it is

proposed to evaluate the dynamics of each unit-element (pocket) of the structure, without

including the stiffening effect from the adjacent pockets.

Although the pocket has a simple geometry as depicted in Fig. 3.1, no exact

analytical solution is available to accurately predict its dynamic response within the small

computational time frame required in fixture layout optimization schemes and mechanistic

force model calculations. Some models were developed in the literature to predict the
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vibration of box-type structures using approximate techniques. A series solution was

developed for symmetrical box-type structures in [131]. For this solution, it was assumed

that all edges are simply supported, the corners do not deflect and all corners are at a right

angle. Another approximate solution was developed using the Rayleigh-Ritz method and

polynomial functions in [132]. The convergence of the solution was based on prior knowledge

of the stiffness of the corners of the box. The computational efficiency of this model is

relatively poor for interactive applications and is conditional on the presence of simplifying

assumptions such as symmetry and uniform thicknesses. Other approximate solutions, which

were developed using FEM [133, 134], require the discretization of the structure to a large

number of elements, hence the computational efficiency is poor.

3.4.1 Description of the Proposed Concept for the MSP Model

The proposed approach is based on considering the 3D pocket shape as a 2D multi-span

plate as shown in Fig. 3.12. The vertical edges of the pocket and the corresponding edges of

the multi-span plate are designated by e0, e1, e2, e3 and e4. As can be seen, the two edges of

the multi-span plate e0 and e4 are represented by a single edge e0,4 in the pocket. Each side

of the pocket and the corresponding span of the plate has four edges: a bottom, a top and

two side edges. To accurately represent the dynamics of the pocket, the boundary conditions

at each span of the plate have to be equivalent to the boundary conditions at the edges of

the pocket. This can be established by analyzing the boundary conditions at the edges of

a given side of the pocket and applying similar conditions on the corresponding span of the

plate. For example, the boundary conditions at side 2 are:

1. At the bottom edge, clamped boundary conditions are applied (zero displacement and

zero rotation about the edge). This is true since the base of the pocket is assumed to

be rigidly clamped.

2. At the top edge, free boundary conditions are applied (zero forces and zero moments).

3. For edge e1, the rotations and bending moments of side 2 and side 1 about e1 are equal.

Similarly, the rotations of side 2 and side 3 about e2 are also equal.
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4. At the edge e1, the transverse displacement of side 2 is equal to the in-plane displacement

of side 1 at the same edge. This would also apply to the transverse displacement of side

2 and the in-plane displacement of side 3 at e2. The in-plane displacements of side 1

and 3 at e1 and e2, respectively, can be assumed to be zero. This is true since the axial

(in-plane) stiffness of these sides is relatively high. Thus the transverse displacement

of side 2 at e1 and at e2 can be neglected and assumed equal to zero.

span 1 span 2 span 3 span 4

x

y

e0 e1 e2 e3 e4

Clamped

e0,4

Clamped

Figure 3.12: Illustration for the representation of a pocket with a multi-span plate

To represent the dynamics of the pocket, the multi-span plate has to have specific

boundary conditions for the inner spans (i.e spans 2 and 3) and the outer ones (i.e. spans 1

and 4). For the inner spans, clamped boundary conditions at the bottom edge, free boundary

conditions at the top edge, and simply supported boundary conditions at the side (vertical)

edges have to be applied. For outer spans, the same boundary conditions are applied except

for the outer edges e0 and e4. If simply supported boundary conditions are applied at e0 and

e4 (outer edges), then the multi-span plate will not represent the pocket since the continuity

of the rotations and bending moments about edges e0, e4 of the pocket will not be satisfied.
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Thus, in order to have a close approximation of the pocket response, the displacement at

edges e0 and e4 have to be equal to zero and the rotations and moments of side 1 about edge

e0 are equal to the rotations and moments of side 4 about edge e4.

To validate this concept, the frequencies, mode shapes and the responses of various

pockets with different aspect ratios and shapes and the corresponding multi-span plates

were compared using FE models. Excellent matching of the results was found with errors

less than 5% in terms of frequency and response. This analysis will be presented in detail

in Chapter 5, section 5.3. Based on this new concept, a mathematical model, which will

be referred to as the Multi-Span Plate (MSP) model, will be developed to represent the

dynamics of a thin-walled pocket.

3.4.2 Advantages and Limitations of the MSP Model

The main advantage of this model when compared to a FE model is that the computational

effort is substantially reduced without loss of accuracy. Reducing the problem from a 3D

pocket to a 2D multi-span plate permits the use of an approximate analytical model to

predict the response. In addition, with minimal computational efforts, the proposed model

can be updated to take into account the effect of the change of thickness of the sides of the

pocket.

According to Fig. 3.2, there are three cases for aerospace structural components including

single pocket, single pocket with internal rib-walls and multiple pockets. A comparison of

the GSSP and the MSP models is shown in Table 3.3 to illustrate the applicability of the

proposed models for these cases. Since the GSSP model is more generalized, it can deal with

all the cases. The MSP model can deal with the cases of a single pocket and a single pocket

with internal rib-walls. In addition, the MSP model can also be used for the case of multiple

pockets when the effect of adjacent pockets is negligible. Although the MSP model cannot

deal with all the cases, it offers further reduction in the computation time when compared

to the GSSP model, since there is no need to calibrate the model.
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Table 3.3: Comparison of the GSSP and the MSP models

Case GSSP model MSP model
Single pocket yes yes
Single pocket with internal rib-walls yes yes
Multiple pockets (without the effect of adjacent pockets) yes yes
Multiple pockets (with the effect of adjacent pockets) yes no

3.5 Special Considerations for the Modelling of the Change of
Thickness During Milling of Thin-Walled Pockets

Until this point, the thickness of the sides of the pocket has been assumed to be uniform.

However, it is necessary to account for the change of thickness during the milling of thin-

walled pockets. One of the features in milling is the gradual change of thickness from the un-

machined to the machined area. This change of thickness is shown in Fig. 3.13 for roughing

and finishing operations. For roughing operations, the tool diameter and the radial depths

of cut are large; consequently, the gradual change of thickness occurs over a large region. For

finishing operation, the tool diameter and the radial depths of cut are small. Thus the region

for the gradual change of thickness could be represented by a stepped change of thickness

between the machined and the un-machined areas.

Figure 3.13: Difference between the change of thickness for roughing and finishing operations

The proposed GSSP and MSP models will be based on the theory of plate dynamics.

Since plate models are two dimensional, the plate is assumed to be symmetric with respect
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to its neutral plane. Thus, the thickness from each side of the neutral plane has to be the

same. However, in machining applications, the change of thickness occurs from one side

only. The difference between these two cases is illustrated in Fig. 3.14. Since the change of

thickness in the finishing operations of thin-walled structures is relatively small compared to

the thickness of the wall, it is assumed that the symmetric change of thickness with respect

to the neutral plane is sufficient to capture the changes in the dynamic behaviour of the

workpiece during machining.

Non-symmetric change 

of thickness with respect 

to the neutral plane of 

the plate

Symmetric change of 

thickness with respect 

to the neutral plane of 

the plate

Figure 3.14: Representation of the non-symmetric and the symmetric change of thickness
with respect to the neutral plane of a plate

To validate this assumption, a 3D FE model was constructed for two plates with symmetric

and non-symmetric changes of thickness with respect to their neutral plane. The dimensions

of the two plates are shown in Fig. 3.15(a), and Fig. 3.15(b). The two side edges and the

bottom edge of the plates are clamped and the top edge is free. A load of 50 N amplitude

and 1256 rad/s frequency was applied at the middle of the top free edge as indicated by the

arrows and the circles. The displacement was calculated at the point of load application since

it represents the location of maximum deflection. The 3D FE model was developed using 4-

node brick elements and Aluminum material properties (refer to section 3.2). The responses
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for the two cases are shown in Fig. 3.15(c). As can be seen, an excellent matching in response

is achieved with errors less than 1.5% in terms of the maximum amplitude of vibration even

when the change of thickness was as large as 25% (4 mm to 3 mm). In addition, as will be

shown in Chapter 6, the developed models, which are based on this assumption, produced

excellent matching between the model and the experimental results.

(b) Dimensions of the plate: Case 2(a)  Dimensions of the plate: Case 1
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Figure 3.15: Effect of non-symmetric and symmetric change of thickness on the response of
a rectangular plate

In order to track the change of thickness during machining, one has to investigate the

common tool-paths used for machining thin-walled structures. Figure 3.16 presents an

illustration of possible cases for the change of thickness corresponding to different tool-paths

during machining of a pocket-side. Although these cases do not represent all conceivable

tool-paths, they cover the main ones encountered in practice for finishing of pockets. Case A

represents a machining tool-path where the tool moves vertically, thus removing a uniform

Vertical strip (VS) or when it moves horizontally with a depth of cut equal to the full

depth of the pocket. For Case B, at a given depth, the tool follows a horizontal path, thus

removing a Horizontal strip (HS) along the whole width of the side. Cases A and B represent
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the situations when the change of thickness during milling is small relative to the original

thickness of the pocket-side, and thus it is only required to track the change of the workpiece

dynamics at the end of each tool path. Cases C and D represent the machining of a side

of a pocket by removing either a Corner strip (CS) or an L-shaped strip (LS). These two

cases can represent the change of thickness as the tool moves between two points within the

tool-path. To represent these four cases, it is necessary to divide the pocket-side into two

spans in the x-direction and three spans in the y-direction, as shown by the dashed lines in

Fig. 3.16. The spans do not have to be equal to each other.
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Figure 3.16: Representation of the different cases for the change of thickness

3.6 Review of Methods and Approximation Techniques for Modelling
the Dynamics of Plates

The proposed concepts for the GSSP and the MSP models are based on the dynamics

of plates. Consequently, a review of the available models in the literature for rectangular

plates and multi-span plates is performed to identify the most suitable modelling technique
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for each model.

3.6.1 Models for Plates with Torsional and Translation Springs

The GSSP model is based on representing the dynamics of a plate with uniformly

distributed translational and rotational springs along the four boundaries. An analytical

solution for this problem can be obtained by using the superposition method [135]. To

apply this method, the problem has to be broken down to several other plate problems

with standard boundary conditions. For each of these plates, it is required to solve an

eigenvalue problem. Consequently, the computation time is relatively high compared to

other approximation techniques.

Some of the common approximation techniques are Rayleigh’s energy and the Rayleigh-

Ritz methods. Both these methods require the approximation of the mode shapes of the

structure. A solution for the frequencies of plates with standard boundary conditions

(free, simply supported, clamped) was developed using Rayleigh’s energy method and beam

mode shapes in [136, 137, 138]. It was shown that beam mode shapes provided good

approximation for the plate modes for standard boundary conditions. Better approximations

can be obtained by using the Rayleigh-Ritz method; however the computation time is slightly

increased [136].

Many models are available for elastically restrained plates using the Rayleigh-Ritz method.

Several types of functions can be used to approximate the plate mode shapes including

polynomial functions and beam mode shapes. By using polynomial functions, models have

been developed for plates with either uniform thickness [139, 140, 141], stepped thickness

[142, 143], or uniformly varying thickness [144]. In addition, models have been developed

for plates with concentrated masses or springs [140, 145, 146] and for plates with uniformly

distributed springs [147, 148]. A commonly used beam mode shape to approximate the mode

shapes of elastically restrained plates is the one of the free-free beam model [132]. To obtain

better approximation of the mode shapes of the plate, beam mode shapes for a beam model

with rotational springs at the boundaries can also be used [149].

Based on this review, one can conclude that the Rayleigh-Ritz method is commonly
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used to approximate the frequencies and the dynamic response of plates. However, the

computational efficiency of Rayleigh’s energy method was found attractive for the formulation

of the GSSP model, given the requirement for an off-line calibration of the model parameters.

The main drawback of Rayleigh’s energy method is its sensitivity to the choice of trial

functions. Thus, it is necessary to select trial functions that closely resemble the actual

mode shapes of the structure in order to obtain accurate results. Both Rayleigh’s energy

and the Rayleigh-Ritz methods will be used for the development of the GSSP model.

3.6.2 Models for Multi-Span (Continuous) Plates

For the MSP model, it is necessary to identify exact or approximate techniques to

represent a multi-span plate with the previously described boundary conditions. It is helpful

to specify the designation for the different edges of a multi-span plate. As shown in Fig. 3.12,

a four-span plate has two horizontal edges (bottom and top edges) and five vertical edges.

An exact solution exists for multi-span plates that are simply supported at all edges

[150, 151]. Elishakoff and Sternberg [152] developed an approximate solution for multi-

span plates, clamped at the bottom and top edges, and simply supported at the inner

vertical edges, using the modified Boltin’ method. Various boundary conditions were applied

on the outer vertical edges. Gorman and Garibaldi [153] proposed a model based on the

superposition method for multi-span plates with simply supported conditions for the vertical

edges and free boundary conditions for the bottom and top edges.

Some researchers used the Rayleigh-Ritz method to approximate the frequencies and the

response of multi-span plates. Ercoli and Laura [154, 155] developed a model to approximate

a multi-span plate with simply-supported bottom and top edges and elastically restrained

vertical edges using the Rayleigh-Ritz method. Marchesiello et al. [156] used the Rayleigh-

Ritz method to predict the response of multi-span plates with a moving load. Different

studies were performed to compare these solutions with FEM results. It was found that the

Rayleigh-Ritz method can offer good results for simply supported plates; however, the errors

were large when the outer vertical edges are clamped [157, 158].

One of the available techniques, similar to the FEM, to predict the dynamics of multi-span
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plates, is the Finite Strip method (FSM) [159]. This method is mainly intended for structures

which are uniform in one direction. In the other direction, the structure is discretized into

small vertical strips. The solution is developed by assembling all the elements and solving

for the displacement at the nodes of each strip. The FSM was used by several researchers to

develop solutions for multi-span plates with various boundary conditions [160, 161, 162, 163].

This method is not suitable for predicting the dynamics of thin-walled structures during

milling since, due to the change of thickness, the structure is not uniform in any direction.

According to this review, one can see that exact solutions are available for a limited

number of cases of multi-span plates. For the other cases, approximate techniques, such as

the FEM or the FSM, are used. These methods have low computational efficiency. Several

models were developed using the Rayleigh-Ritz method. These models used local polynomial

functions defined for each span separately to approximate the mode shapes of the multi-

span plate. These models seem to provide accurate solutions with reduced computational

effort. Consequently, it was decided to use the Rayleigh-Ritz method to model multi-span

plates. However, a new set of trial functions, based on multi-span beam models, are used

to approximate the mode shape of a multi-span plate. Using these trial functions, fewer

modes are needed to approximate the frequencies and the response of the multi-span plate.

Consequently, the computational efficiency of the model is further improved. For the same

trial functions, the solution will also be developed using Rayleigh’s energy method since

it provides additional reductions in computation time. A comparison between Rayleigh’s

energy method and the Rayleigh-Ritz method will be performed.

3.7 Concluding Remarks

In this chapter, different aerospace structural components were analyzed. These

components were broken down to unit-elements with the shape of a pocket. Two concepts

were proposed for the representation of the dynamics of the unit-element. The first concept

is based on discretizing the pocket into four sides, which are represented by a plate with

torsional and translational springs. These springs take into account the effect of the adjacent
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sides. The second concept is based on representing the unit-element by a multi-span plate.

The boundary conditions for the pocket are studied and accordingly corresponding boundary

conditions are applied to the multi-span plate. In addition, the change of thickness of thin-

walled workpieces was analyzed and some simplifying assumptions for the problem were

made. Finally, a review of plate models is performed; Rayleigh’Energy method and the

Rayleigh-Ritz method are chosen for the development of the mathematical models.
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Chapter 4

Mathematical Formulations of the Proposed
Dynamic Models

4.1 Introduction

In the previous chapter, different concepts were introduced for the representation of

the dynamics of thin-walled structures and the change of thickness during milling. These

concepts are essentially based on plate dynamics. In this chapter, the mathematical

formulation for the different models will be detailed. The equations for a general plate

model will be presented first, followed by a description of the approximation techniques used

to predict the response. Based on these approximation techniques, the Generalized Single-

Span Plate (GSSP) and the Multi-Span Plate (MSP) models will be developed. This will be

followed by the modelling of the change of thickness of a pocket-side and the mathematical

formulations for rigid and flexible supports.

4.2 Mathematical Formulation of a Rectangular Plate Model

Based on the Euler-Bernoulli assumptions, the transverse vibration of a thin-plate is

given by the following fourth-order, partial differential equation [128]:

DE(
∂4w

∂x4
+

∂4w

∂x2∂y2
+
∂4w

∂y4
) + fp(x, y, t) = m

∂2w

∂t2
(4.1)
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where x and y are the spatial coordinates, t is the time, m is the mass per unit area of the

plate, w(x, y, t) is the transverse displacement, fp(x, y, t) is the distributed applied force, and

DE is the plate flexural rigidity expressed as:

DE =
Eh3

12(1− ν2)
(4.2)

where E is the Young modulus, ν is the Poisson ratio, h is the plate thickness and lx and ly

are the dimensions of the plate in the x- and y-directions, respectively. The response of the

transverse vibration of the plate is given by:

w(x, y, t) =
∞∑

r=1

Wr(x, y)ηr(t) (4.3)

where Wr are the exact orthogonal plate mode shapes and ηr represents the generalized

modal coordinates, which are functions of time. The exact plate mode shapes are defined

by satisfying the boundary conditions of the plate. In many instances, the development of

exact mode shapes is not possible. Instead, approximate shape functions which satisfy the

geometric boundary conditions are used together with approximation techniques in order to

determine the frequencies and the response of the system.

4.2.1 Rayleigh’s Energy Method

Rayleigh’s energy method is based on Rayleigh’s principle which is stated as follows:

“The frequency of vibration of a conservative system vibrating about an equilibrium position

has a stationary value in the neighbourhood of a natural mode” [124]. Rayleigh’s energy

method is mainly used for the approximation of the first natural frequency of a system. The

method relies on the assumption that natural modes exhibit a harmonic motion. Thus, the

transverse free vibration response of a rectangular plate can be expressed as:

w(x, y, t) = W (x, y)Ω(t) (4.4)
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where W represents the maximum displacement at point (x,y) and Ω is a time-dependent

harmonic function. The kinetic energy of the system can be written as

T (t) =
1

2
m

∫ lx

0

∫ ly

0

w2dydx =
1

2
mΩ̇2(t)

∫ lx

0

∫ ly

0

W 2dydx (4.5)

If the harmonic function has a frequency ω, then the maximum kinetic energy can be written

as:

Tmax = T ∗ω2 (4.6)

where T ∗ is the reference kinetic energy expressed as:

T ∗ =
1

2
m

∫ lx

0

∫ ly

0

W 2dydx (4.7)

The strain energy of the plate is written as:

U(t) =
1

2

∫ lx

0

∫ ly

0

DE

[(
∂2w

∂x2

)2

+

(
∂2w

∂y2

)2

+ 2ν
∂2w

∂x2

∂2w

∂y2
+ 2(1− ν)

(
∂2w

∂x∂y

)2
]
dydx

(4.8)

The maximum strain energy is given by:

Umax =
1

2

∫ lx

0

∫ ly

0

DE

[(
∂2W

∂x2

)2

+

(
∂2W

∂y2

)2

+ 2ν
∂2W

∂x2

∂2W

∂y2
+ 2(1− ν)

(
∂2W

∂x∂y

)2
]
dydx

(4.9)

Based on the principle of conservation of energy:

Tmax = Vmax (4.10)

where Vmax is the maximum potential energy due to the strain energy of the plate and the

work of conservative forces.

In the absence of conservative forces (e.g. spring forces), the potential energy is equal to

the strain energy. By introducing Eqs. (4.6) in (4.10), and assuming the potential energy is
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equal to the strain energy, the following equation is obtained:

ω2 =
Vmax

T ∗
=
Umax

T ∗
(4.11)

This equation can be recognized as Rayleigh’s quotient. To approximate the first natural

frequency of the plate, an approximate shape function, satisfying the geometrical boundary

conditions of the first mode, has to be substituted for W . It was shown that the frequencies of

higher modes could also be predicted by assuming shape functions which closely approximate

the corresponding mode shapes of the system and substituting them in Rayleigh’s quotient

[136]. In this case, the approximate rth natural frequency ω̃r of the system can be determined

by substituting W in Eqs. (4.6) and (4.9) by a trial function W̃r and substituting these

equations in Eq. (4.11). The trial function W̃r approximates the corresponding exact mode

shape Wr.

By using a series of the space dependent trial functions multiplied by time-dependent

generalized coordinates, the transverse vibration response of the plate could be approximated

as:

w̃(x, y, t) =
n∑

r=1

W̃r(x, y)qr(t) (4.12)

where n is the total number of included mode shapes and qr represents the generalized

coordinates, which are function of time. Since the trial function W̃r closely approximates the

corresponding exact mode shape of the plate, one can assume the following orthogonality

properties: ∫ lx

0

∫ ly

0

W̃rmW̃sdydx = δrs r, s = 1, 2, ... (4.13a)

∫ lx

0

∫ ly

0

W̃rDE

(
∂4W̃s

∂x4
+

∂4W̃s

∂x2∂y2
+
∂4W̃s

∂y4

)
dydx = ω̃rδrs r, s = 1, 2, ... (4.13b)

where δrs is the Kronecher delta. By using these orthogonality properties, inserting Eq. (4.12)

in (4.1), multiplying by W̃r and integrating over the entire domain of the plate (x- and y-

directions), the following set of decoupled equations is obtained:

q̈r + ω̃2
rqr(t) = Qr(t) (4.14)
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The generalized forces Qr can be expressed as:

Qr =

∫
Al

fpW̃rdAl (4.15)

where Al is the surface of application of the load.

4.2.2 Rayleigh-Ritz Method

In the Rayleigh-Ritz method, the transverse vibration of the plate with standard boundary

conditions can be expressed using Eq. (4.12) similar to Rayleigh’s energy method. However,

in the Rayleigh-Ritz method, one does not assume that the trial functions have the same

orthogonality properties as in Eq. (4.13). The equations of motion of the discretized system

can be derived using Lagrange’s equations, which are expressed as:

d

dt

(
∂T

∂q̇r

)
−
(
∂T

∂qr

)
+

(
∂V

∂qr

)
= Qr (4.16)

where T is the kinetic energy of the plate, V is the total potential energy including the work of

conservative forces and the strain energy of the plate and Qr represents the non-conservative

generalized forces. The kinetic and potential energy of the system are determined by

substituting w in Eqs (4.5) and (4.8) by w̃ from Eq. (4.12). By inserting the expressions

for the kinetic and the potential energy of the plate in Eq. (4.16), the following equations of

motions of the system are obtained:

Mq̈ +Kq = Q (4.17)

where M and K are the mass and stiffness matrices of the system, q = [q1, q2, ..., qn]T is

the vector of generalized coordinates and Q = [Q1, Q2, ..., Qn]T is the vector of generalized

forces, which can be expressed as:

Q =

∫
Al

fp(x, y, t)W̃ dAl (4.18)
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where W̃ is the vector of trial functions [W̃1, W̃2, ..., W̃r]
T .

For a harmonic motion, the solution of q has the following form:

q = q̄eiω̃t (4.19)

where q̄ is a constant vector and ω̃ is the approximate frequency of the vibration of the plate.

The eigenvalue problem can be expressed as:

Kq̄ = λMq̄ (4.20)

where

λ = ω̃2 (4.21)

By solving the eigenvalue problem, the natural frequencies of the system can be determined.

To calculate the time response of the system, one has to solve for q in Eq. (4.17). If the

non-diagonal terms in the mass and stiffness matrices are neglected, then the equations

become decoupled and we obtain a model that is equivalent to the one which results from

the application of Rayleigh’Energy method. When the non-diagonal term are small compared

to the diagonal terms, Rayleigh’s energy and the Rayleigh-Ritz methods yield similar results.

4.3 Mathematical Formulation of the Generalized Single-Span Plate
(GSSP) Model

The GSSP model requires the modelling of a rectangular plate with flexible supports

along its boundaries as shown in Fig. 4.1(a). The symbols Kxo, Rxo, Kxl, and Rxl refer

to the torsional and translation springs per unit length at x = 0 and x = lx, respectively.

Similarly, Kyo, Ryo, Kyl, and Ryl are the torsional and translation springs per unit length at

y = 0 and y = ly, respectively. Two natural boundary conditions for the balance of the shear

forces and the bending moments have to be specified at each edge. These are presented in

detail in Appendix A, section A.1.
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(a) Sketch of a plate with torsional and translational springs 

(b) Illustration of the proposed trial functions based on a beam model

K yl, R yl

x =0 x =lx

y =0

y =ly

K xo

R xo
K xl

R xl

K yo, R yo
x

z
y

R xo  ly

K xo  ly

R yo  lx

R xl  ly

K xl  ly

R yl  lx

K yo  lx

K yl  lx

x

z
y

x =0 x =lx

y =0

y =ly

Figure 4.1: Illustration of a rectangular plate with torsional and translational springs and
the proposed beam models

4.3.1 Generation of the Trial Functions for the GSSP Model

As mentioned previously, both Rayleigh’s energy and the Rayleigh-Ritz methods require

trial functions to approximate the mode shapes of the plate. Using separation of variables,

a trial function can be expressed as:

W ij = X i(x)Y j(y) (4.22)

where X i and Y j are trial functions in the x- and y-directions, respectively. The functions X i

and Y j are generated using the ith and jth mode shapes of a beam model. Instead of using

the traditional trial mode shapes based on a free-free beam model [132], the trial functions in

the x- and y-directions are generated based on an Euler-Bernoulli beam model with torsional

and translational springs at the boundaries, as shown in Fig. 4.1(b). These trial functions

allow a good approximation of the plate mode shapes since they closely represent the natural

boundary conditions at the edges of the plate.
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The transverse motion of an Euler-Bernoulli beam model with a uniform cross section is

described by the following equation [128]:

ρAb
∂2z

∂t2
+ EI

∂4z

∂u4
= f(u, t) (4.23)

where u represents the spatial coordinate along the neutral axis of the beam with length lu,

z(u, t) is the transverse displacement, f(u, t) is a distributed applied force, ρ is the density,

Ab is the cross sectional area of the beam, and I is the second moment of area. The dynamic

boundary conditions for the force and moment balances of the beam with torsional and

translational springs at u = 0, respectively, can be written as:

EI
∂3z

∂u3

∣∣∣∣
u=0

+ ko z|u=0 = 0, (4.24a)

EI
∂2z

∂u2

∣∣∣∣
u=0

− ro
∂z

∂u

∣∣∣∣
u=0

= 0 (4.24b)

where ko and ro are the translational and rotational springs at u = 0, respectively. Similarly,

the force and moment balances at u = lu result in the following boundary conditions:

EI
∂3z

∂u3

∣∣∣∣
u=lu

− kl z|u=lu
= 0 (4.25a)

EI
∂2z

∂u2

∣∣∣∣
u=lu

+ rl
∂z

∂u

∣∣∣∣
u=lu

= 0 (4.25b)

where kl and rl are the translational and rotational spring coefficients at u = lu, respectively.

To determine the solution of this problem, the method of separation of variables is used such

that:

z(u, t) = Z(u)θ(t) (4.26)

where Z(u) represents the spatial dependence and θ gives the time dependence. By inserting

Eq. (4.26) into Eq. (4.23) and rearranging the terms, the following equations can be obtained:

EIZ ′′′′(u)

ρAbZ(u)
= − θ̈

θ
= ω2

u (4.27)
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where ωu is the unknown natural frequency. The prime refers to the derivative with respect

to the spatial coordinate u. Eq. (4.27) leads to an initial value problem and a spatial

boundary-value problem which can be expressed as:

d4Z

du4
− β4Z(u) = 0 (4.28)

where

β4 =
ρAbω

2
u

EI
(4.29)

By inserting Eq. (4.26) in Eqs. (4.24)-(4.25), the boundary conditions for the spatial boundary-

value problem are obtained:

At u = 0:

EI
d3Z

du3

∣∣∣∣
u=0

+ ko Z|u=0 = 0, (4.30a)

EI
d2Z

du2

∣∣∣∣
u=0

− ro
dZ

du

∣∣∣∣
u=0

= 0 (4.30b)

At u = lu

EI
d3Z

du3

∣∣∣∣
u=lu

− kl Z|u=lu
= 0 (4.31a)

EI
d2Z

du2

∣∣∣∣
u=lu

+ rl
dZ

du

∣∣∣∣
u=lu

= 0 (4.31b)

The solution for the boundary-value problem has the following form:

Z(u) = A sin(βu) +B cos(βu) + C sinh(βu) +D cosh(βu) (4.32)

By inserting Eq. (4.32) in Eqs. (4.30) and (4.31), the characteristic equation of the boundary

value problem is determined. The solution of this equation gives an infinite set of eigen-

functions (mode shapes) and natural frequencies. The mode shapes are expressed as:

Zr(u) = Ar sin(βru) +Br cos(βru) + Cr sinh(βru) +Dr cosh(βru) (4.33)

where

β4
r =

ρAbω
2
ur

EI
(4.34)
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in which ωur is the rth natural frequency of the beam. The expressions for the characteristic

equations and for the coefficients Br, Cr and Dr are detailed in Appendix A, section A.2.

The coefficients Ar are determined through normalization.

The beam mode shapes are substituted in the trial functions X i and Y j in Eq. (4.22)

by replacing the variables in Eqs. (4.24)-(4.33) according to Table 4.1. This represents the

parameter mapping between the plate trial functions and the calculated modes based on the

beam models.

Table 4.1: Parameter mapping for the beam mode shapes

Zr(u) r lu I ko kl ro rl

X i(x) i lx
1
12
lyh

3 Kxoly Kxlly Rxoly Rxlly
Y j(y) j ly

1
12
lxh

3 Kyolx Kyllx Ryolx Ryllx

To apply Rayleigh’s energy method, Eq. (4.22) is substituted in Eqs. (4.6) and (4.9) to

calculate the reference kinetic energy and the maximum strain energy, respectively. The

expression for the reference kinetic energy of the approximate mode shape W ij is:

T ij =
1

2

∫ lx

0

∫ ly

0

mW
2

ijdydx (4.35)

Similarly, the maximum strain energy of the approximate mode shape W ij is:

U ij =
1

2

∫ lx

0

∫ ly

0

DE

[(
∂2W ij

∂x2

)2

+

(
∂2W ij

∂y2

)2

+ 2ν
∂2W ij

∂x2

∂2W ij

∂y2
+ 2(1− ν)

(
∂2W ij

∂x∂y

)2
]
dydx

(4.36)

It is also necessary to account for the potential energy due to the stiffness of the springs at

the boundaries of the plate. The maximum potential energy due to the springs at x = 0, lx

can be expressed as:

P xij =
1

2

∫ ly

0

[
KxoW ij(0, y)2 +Rxo

(
∂W ij(0, y)

∂x

)2

+KxlW ij(lx, y)2 +Rxl

(
∂W ij(lx, y)

∂x

)2
]
dy

(4.37)
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Similarly, the maximum potential energy due to the springs at y = 0, ly can be expressed as:

P yij =
1

2

∫ lx

0

[
KyoW ij(x, 0)2 +Ryo

(
∂W ij(x, 0)

∂y

)2

+KylW ij(x, ly)2 +Ryl

(
∂W ij(x, ly)

∂y

)2
]
dx

(4.38)

According to Rayleigh’s energy method (refer to Eq. (4.11)), the natural frequency of the

plate can be approximated as:

ω2
ij =

U ij + P xij + P yij

T ij

(4.39)

A vector W of the trial functions W ij is defined such that the trial functions are listed

in ascending order of their corresponding approximate natural frequencies. For m and l

trial functions in the x- and y-directions, respectively, the dimensions of W are (ml × 1).

To generate a model with n degrees of freedom, the first n trial functions of the vector W

are selected and are referred to as W̃r, for r = 1, 2, ..., n. The response of the plate can be

approximated using Eq. (4.12). It has to be noted that n has to be less or equal to m × l.

The first n approximate frequencies are designated by ω̃r, for r = 1, 2, ..., n.

To implement the Rayleigh-Ritz method, the kinetic and the strain energies of the plate

are calculated by substituting Eq. (4.12) in Eqs. (4.5) and (4.8), respectively. The total

potential energy of the plate can be expressed as:

V = U + Px + Py (4.40)

where Px and Py are the potential energy terms of the springs at the edges x = 0, x = xl

and y = 0, y = yl, respectively and they can be calculated as follows :

Px =
1

2

∫ ly

0

[
Kxow̃(0, y)2 +Rxo

(
∂w̃(0, y)

∂x

)2

+Kxlw̃(lx, y)2 +Rxl

(
∂w̃(lx, y)

∂x

)2
]
dy

(4.41)
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and

Py =
1

2

∫ lx

0

[
Kyow̃(x, 0)2 +Ryo

(
∂w̃(x, 0)

∂y

)2

+Kylw̃(x, ly)2 +Ryl

(
∂w̃(x, ly)

∂y

)2
]
dx

(4.42)

Substituting the total potential energy and the kinetic energy in Eq. (4.16), the mass and

stiffness matrices are calculated according to Eq. (4.17). The approximate frequencies of the

plate and the modal matrix are determined by solving the eigenvalue problem as outlined

by Eq. (4.20).

As mentioned previously, in this work, Rayleigh’s energy method is seen as a simplification

of the Rayleigh-Ritz method by neglecting the non-diagonal terms of the mass and stiffness

matrices. It was found that by using the beam mode shapes, Rayleigh’s energy and the

Rayleigh-Ritz methods gave similar results for the prediction of the frequencies and the

response of the plate.

4.3.2 Dynamic Response for the GSSP Model

In order to decouple the equations of motion of the system, the following transformation

of coordinates is used:

q = Umγ (4.43)

where Um is the modal matrix normalized with respect to the mass matrix, and γ is a vector

of a new set of generalized coordinates [γ1, γ2, ...γn]T called modal coordinates. Using the

principle of virtual work, the following variational equation is obtained [128]:

δqT (Mq̈ +Kq −Q) = 0 (4.44)

Q is the generalized forces, which can be determined using Eq. (4.18). By inserting Eq. (4.43)

in (4.44), the following set of decoupled equations are obtained:

γ̈r + ω̃2
rγr(t) = Γr(t) for r = 1, 2, ... (4.45)
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where

[Γ1,Γ2, ...Γn]T = Γ = Um
TQ (4.46)

The general solution of Eq. (4.45) is [128]:

γr(t) =
1

ω̃r

∫ t

0

Γr(τ) sin ω̃r(t− τ)dτ + γr(0) cos(ω̃rt) +
γ̇r(0)

ω̃r

sin(ω̃rt)dτ (4.47)

where γr(0)and γ̇r(0) are the initial modal displacements and velocities, respectively. To

apply actual machining forces, one has to resort to numerical methods to compute the

convolution integral in Eq. (4.47). The solution for Eq. (4.45) can also be developed by

direct numerical methods. Here, the Runge-Kutta-Fehlberg method was used [164].

4.3.3 Genetic Algorithms and Boundary Condition Calibration

To simulate the response of a pocket-side using a plate with torsional and translational

springs, an off-line calibration for the stiffness coefficients of the springs needs to be performed.

In this context, detailed FE models were used as virtual experiments to simulate the actual

response of a pocket-side.

Description of the Calibration Procedure

For each pocket-side, an equivalent plate model is calibrated. The values of the stiffness of

the springs of the plate are optimized by minimizing the error ψ between the response of the

pocket-side resulting from the FE simulation of the pocket and the predictions calculated

based on the GSSP model. Once the optimum values of the stiffness of the springs are

determined, the plate model can be used to simulate the response of any point on the

pocket-side under any loading condition. This calibration is repeated for all of the sides of

the pocket. A near global optimization is required for the calibration of the spring values to

avoid solutions at local optima, which can be expected in this case due to the large number

of decision variables and the nature of the objective function. Real-coded Genetic Algorithm

(GA) [165] is used in this research to determine the values of the optimum stiffness of the
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springs. Once these values are determined from the GA code, local optimization is performed

using the Nelder-Mead method [166].

To reduce the computational effort during optimization, the response of the plate and

the FE models are compared at four output points as shown in Fig. 4.2. Point PA, where

the force is applied, is at the centre of the pocket-side/plate. At this location, the force

equally affects each opposing side of the plate. Point PB, where the maximum displacement

is expected, is at the middle of the top free edge. Points PC and PD are midway between

point PA and edges 2 and 3, respectively. These locations are chosen such that they capture

the effects of the springs at the side edges. Under stable machining conditions and uniform

chip load, machining forces are periodic and can be represented by Fourier transforms; thus

a sinusoidal force is applied for the calibration with a frequency different from the pocket

natural frequencies, to avoid resonance. It will be shown in Chapter 5, section 5.2 that this

approach is not restrictive and the response due to machining loads and impact excitations

are also accurately predicted.

Figure 4.2: Schematic of the plate/pocket-side illustrating the location of the applied force
and the output points for the response

Structure of the Genetic Algorithm Optimization Scheme

Although the formulation of the genetic algorithm differs from one problem to the other,

depending on the complexity of the problem, the structure of the code has to include the
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following:

1. Decision variables: In this case there are eight variables that represent the distributed

torsional and translational springs along the four boundaries. Although, the top edge

of the pocket-side is a free edge (no springs), and the bottom edge is clamped (rigid),

springs are assigned to both edges in order to allow more flexibility in the calibration

procedure, and to include other effects such as adjacent pockets and edge clamps, if

any.

2. Objective function: The objective function to be minimized is the error ψ, which can

be expressed as:

ψ =

g∑
c=1

s∑
e=1

| dce − d̃ce |
max | d |

(4.48)

where s is the number of time response points, g is the number of output points on the

plate, and dce and d̃ce are the elements of the arrays d and d̃ with dimensions g × s,

representing the displacement response of the pocket-side and the plate, respectively.

3. Constraints: In this case, no constraints are defined for the optimization algorithm.

4. Operators: They are intended either to randomize the search so as to break off one

of the local optima or to improve the actual solution. The operators could be based

on a two-point averaging method (cross-over) or single-point-alteration (mutation).

The following three cross-overs and five mutations are implemented [165]: Arithmetic,

simple, and heuristic cross-overs as, well as, uniform, whole uniform, non-uniform,

boundary and Gaussian mutations.

Effect of the Change of Thickness of the Adjacent Sides on the Calibrated

Stiffness of the Springs

During the machining of the pocket, the thicknesses of the adjacent-sides change. To reduce

the number of times required for optimization, for a given load-application side, a correlation

between the change of thickness of the adjacent-sides for a pocket and the calibrated stiffness
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of the rotational springs is determined and is expressed as:

rn = rcR
3 (4.49)

where rn and rc are the new and the calibrated stiffness coefficients, respectively and Rt is the

ratio of the new thickness to the original one. This relationship was determined empirically

and based on the fact that the torsional stiffness of beams and plates is proportional to the

cube of their thickness. Thus, once the calibrated values of the stiffness of the springs are

determined, no further calibration is required even if the wall thicknesses vary. The validity

of this relationship will be demonstrated in the results given in Chapter 5, section 5.2.2. Due

to the high axial stiffness of the adjacent sides, the changes of the wall thicknesses have small

effects on the stiffness of the translational springs. It was found that non-adjacent sides had

negligible effects on the calibrated values of the stiffness of the springs.

4.4 Mathematical Formulation of the Multi-Span Plate (MSP)
Model

The MSP model is based on developing a dynamics model for a multi-span plate to

approximate the dynamics of thin-walled pockets. Similar to the GSSP model, one needs to

generate trial functions that closely approximate the mode shapes of the multi-span plate.

Using these trial functions, together with Rayleigh’s energy and the Rayleigh-Ritz methods,

the frequencies and the response of the multi-span plate can be approximated.

4.4.1 Boundary Conditions for the MSP Model

To describe the formulation of the MSP model, a multi-span plate is illustrated in Fig. 4.3.

As can be seen, the spans are in the x-direction. The transverse vibration of span a with

thickness ha, will be designated as w(a). According to Eq. (4.1), the transverse vibration of
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span a can be expressed as:

Da

(
∂4w(a)

∂x4
+
∂4w(a)

∂x2∂y2
+
∂4w(a)

∂y4

)
+ fp(x, y, t) = ma

∂2w(a)

∂t2
(4.50)

where ma is the mass per unit area of the ath span and Da is the flexural rigidity which can

be written as:

Da =
Eha

3

12(1− ν2)
(4.51)

where ha is the thickness of the ath span. Based on the analysis performed in section 3.4,

Figure 4.3: Representation of a multi-span plate

the following boundary conditions have to be applied in order to closely approximate the

dynamics of the pocket:

At x = xa, for a = 1, 2, 3

w(a)
∣∣
(x=xa)

= 0 (4.52a)

w(a+1)
∣∣
(x=xa)

= 0 (4.52b)

∂w(a)

∂y

∣∣∣∣
(x=xa)

=
∂w(a+1)

∂y

∣∣∣∣
(x=xa)

(4.52c)

Da

(
∂2w(a)

∂x2
+ ν

∂2w(a)

∂y2

)∣∣∣∣
(x=xa)

= Da+1

(
∂2w(a+1)

∂x2
+ ν

∂2w(a+1)

∂y2

)∣∣∣∣
(x=xa)

(4.52d)

Eqs. (4.52a) and(4.52b) represent the conditions for zero displacement. Eqs. (4.52c) and

(4.52d) represent the continuity of the rotations and the moments, respectively, about the

edge x = xa. For edges x = x1, x4, the following boundary conditions have to be specified:

w(4)
∣∣
(x=x4)

= 0 (4.53a)
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w(1)
∣∣
(x=x0)

= 0 (4.53b)

∂w(4)

∂y

∣∣∣∣
(x=x4)

=
∂w(1)

∂y

∣∣∣∣
(x=x0)

(4.53c)

−D4

(
∂2w(4)

∂x2
+ ν

∂2w(4)

∂y2

)∣∣∣∣
(x=x4)

= −D1

(
∂2w(1)

∂x2
+ ν

∂2w(1)

∂y2

)∣∣∣∣
(x=x0)

(4.53d)

Equations (4.53c) and (4.53d)represent the continuity of the rotations and the moments

of span 1 about edge x = x0 and span 4 about edge x = x4. Clamped boundary conditions

have to be applied at y = y0 as follows:

w(a) = 0 (4.54a)

∂w(a)

∂y
= 0 (4.54b)

where Eqs. (4.54a) and (4.54b) represent the conditions of zero displacement and slope,

respectively. At y = y1, free boundary conditions have to be applied and can be written as:

Da

(
∂2w(a)

∂y2
+ ν

∂2w(a)

∂x2

)
= 0 (4.55a)

Da

(
∂3w(a)

∂y3
+ (2− ν)

∂3w(a)

∂x2∂y

)
= 0 (4.55b)

where Eqs. (4.55a) and (4.55b) represent the conditions of zero moment and zero transverse

shear, respectively.

4.4.2 Generation of the Trial Functions for the MSP Model

To approximate the mode shapes of the multi-span plate, the trial functions will be

discretized in the x- and y-directions based on:

W
(a)

i,j = X
(a)

i (x) Y
(a)

j (y), x = xa−1 : xa; y = y0 : 1; 1 ≤ a ≤ sx (4.56)
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where a is an index for the spans of the plate in the x-directions, xa−1 and xa are the

coordinates of the ath span, and sx is the total number of spans. For the ath span, trial

functions in the x-direction X
(a)

i and the y-direction Y
(a)

j are assigned. The trial functions

in the x-direction are based on a multi-span beam model and the trial functions in the y-

direction are generated using a clamped-free beam model. The advantage of using these beam

mode shapes is that the displacements of the pocket are accurately described by including

less than 20 approximate mode shapes in the model.

For the x-direction, the trial function will be generated using the equations of a four-span

beam with dimensions corresponding to the dimensions of the spans of the plate. Each span

of the beam is simply supported. Continuity conditions are satisfied between the internal

edges of the beam as well as between the two external edges. The beam mode shapes are

determined based on the Euler Bernoulli beam assumptions. The vibration of the ath span

of the beam can be expressed as:

ρAba
∂2z

(a)
x

∂t2
+ EIa

∂4z
(a)
x

∂x4
= f(x, t) (4.57)

where z
(a)
x , Aba, and Ia are the transverse displacement, the area, and the moment of inertia,

respectively of the ath span. Based on the separation of variables, similar to Eq. (4.26), the

solution of the beam response is expressed as:

z(a)
x (x, t) = X(a)(x)Θ(t) (4.58)

whereX(a)represents the spatial dependence for the ath span and Θ gives the time dependence.

The boundary-value problem can be expressed using Eq. (4.28) by replacing Z by X(a). For

x = xa, the following four boundary conditions could be specified:

X(a)
∣∣
(x=xa)

= 0 (4.59a)

X(a+1)
∣∣
(x=xa)

= 0 (4.59b)

dX

dx

(a)
∣∣∣∣∣
(x=xa)

=
dX

dx

(a+1)
∣∣∣∣∣
(x=xa)

(4.59c)
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h3
xa

d2X

dx2

(a)
∣∣∣∣∣
(x=xa)

= h3
xa

d2X

dx2

(a+1)
∣∣∣∣∣
(x=xa+1)

(4.59d)

where hxa is the thickness of the ath span of the beam and is equal to the thickness of the

corresponding span of the plate. Eqs. (4.59a) and (4.59b) represent the conditions of zero

displacement at x = xa, for spans a and a+1, respectively. Eqs. (4.59c) and (4.59d) represent

the continuity of the rotations and the bending moments, respectively, about x = xa. When

applying this set of boundary conditions at x = x0 and x = x4, Eqs. (4.59) can be re-written

as:

X(4)
∣∣
(x=x(4)

= 0 (4.60a)

X(1)
∣∣
(x=x0)

= 0 (4.60b)

dX

dx

(4)
∣∣∣∣∣
(x=x4)

=
dX

dx

(1)
∣∣∣∣∣
(x=x0)

(4.60c)

h3
x4

d2X

dx2

(4)
∣∣∣∣∣
(x=x4)

= h3
x1

d2X

dx2

(1)
∣∣∣∣∣
(x=x1)

(4.60d)

For the ath span, the solution of the boundary-value problem can be expressed as:

X(a) = Aa sin βxa(x̃) +Ba cos βxa(x̃) + Ca sinh βxa(x̃) +Da cosh βxa(x̃) (4.61)

where x̃ is equal to x−xa−1, Aa, Ba, Ca and Da are the coefficients of the beam mode shape

equation determined by satisfying the spatial boundary conditions and βxa is described by

the following equation:

β4
xa =

ρω2
x

1
12
h2

xaE
(4.62)

where ωx is the natural frequency of the beam.

A total of 16 boundary conditions have to be satisfied for a four span beam. The equations

are represented in the terms of the coefficients in Eq. (4.61), which results in a 16×16 matrix

(16 equations and 16 coefficients). Different methods exist in the literature for solving for the

coefficient of these equations. One way is to calculate the determinant of the 16×16 matrix.

As the number of spans increases, this method will result in a substantial increase in the
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computation time. Instead, this system of equations could be reduced to four equations by

using the method of transfer matrices where the coefficients of a given span are expressed in

terms of the coefficients of the previous span [167, 168]. By using this method, increasing the

number of spans does not affect the computation time. By inserting Eq. (4.61) in Eqs. (4.59),

the following system of equations is obtained:
Aa+1

Ba+1

Ca+1

 = Φx
(a)


Aa

Ba

Ca

 (4.63)

where Φ(a)
x is the transfer matrix and has dimensions of 3 × 3. The coefficients of span 1

can be represented in terms of the coefficients of span 4 as a result of the continuity of the

rotations and the moments about x = x0 and x = x4. Using the transformation in Eq. (4.63),

the following equation can be derived:

(
a=1∏

a=sx−1

Φx
(a)

)
Φx

(sx) − I


Asx

Bsx

Csx

 = 0 (4.64)

The eigenvalues of the multi-span beam are determined by finding the nontrivial solutions

of Eq. (4.64). The detailed derivation of Eqs. (4.63) and (4.64) are presented in Appendix

B, section B.1. The ith eigenfunctions of the ath span of the beam in the x-direction will be

denoted by X
(a)
i . These mode shapes will be used by replacing X

(a)

i in Eq. (4.56) by X
(a)
i .

The trial functions in the y-direction are based on a clamped-free beam model. The same

equation of motion as in Eq. (4.23) is used. Using the separation of variables, a boundary-

value problem is obtained and can be expressed by substituting Z in Eq. (4.28) by Y (y)

which represents the spatial dependence in the y-direction. The following spatial boundary

conditions for the clamped-free beam have to be satisfied:

At y = y0:

Y (y0) = 0 (4.65a)
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dY

dy

∣∣∣∣
y=y0

= 0 (4.65b)

which represent the conditions for zero displacement and rotations, respectively.

At y = y1

d2Y

dy2

∣∣∣∣
y=y1

= 0 (4.66a)

d3Y

dy3

∣∣∣∣
y=y1

= 0 (4.66b)

which represent the conditions for zero bending moment and shear forces, respectively. The

following beam mode shape representation is used:

Y (y) = Ay sin βy(y) +By cos βy(y) + Cy sinh βy(y) +Dy cosh βy(y) (4.67)

where Ay, By, Cy and Dy are the coefficients of the beam mode shape equation determined

by satisfying the spatial boundary conditions. The equation for βy can be expressed as:

β4
y =

ρω2
y

1
12
h2

yE
(4.68)

where ωy is the natural frequency of the beam and hy is the thickness of the beam. By

inserting Eq. (4.67) in Eqs. (4.65) and (4.66), the following characteristic equation is obtained

[128]:

cos(βyy1) cosh(βyy1) = −1 (4.69)

By solving the characteristic equation, the eigenvalues and the mode shapes are determined.

The jth mode shape of the beam can be expressed as:

Yj = Ayj

[
sin βyjy − sinh βyjy −

sin βyjy1 + sinh βyjy1

cos βyjy1 + cosh βyjy1

(cos βyjy − cosh βyjy)

]
(4.70)

For each plate span a, the expression for Yj is calculated and substituted for Y
(a)

j in Eq. (4.56).

It is necessary to evaluate the proposed trial functions in terms of satisfying the boundary

conditions of the multi-span plate. For a multi-span plate with a uniform thickness, the trial

functions satisfy the geometric and the dynamic boundary conditions of the plate at the
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edge x = xa. For a plate with spans having different thicknesses, the geometric boundary

conditions are satisfied; however, the dynamic boundary conditions are not satisfied. In this

case, it is expected that the Rayleigh-Ritz method will provide more accurate results than

Rayleigh’s energy method. As can be seen from Eq. (4.70), although the thickness of each

span could be different, the same trial function in the y-direction is used.

To estimate the frequencies of the multi-span plate, Rayleigh’s energy method and the

Rayleigh-Ritz methods are implemented in the same way as for the GSSP model. For

Rayleigh’s energy method, the maximum strain energy and the reference kinetic energy of

each mode have to be evaluated. By substituting Eq. (4.56) in Eq. (4.9), the maximum

strain energy for a given mode is determined as:

U i,j =
1

2

sx∑
a=1

∫ xa

xa−1

∫ y1

y0

DaE
(a)

i,j dydx (4.71)

where E
(a)

i,j is expressed as:

E
(a)

i,j =

(
∂2W

(a)

i,j

∂x2

)2

+

(
∂2W

(a)

i,j

∂y2

)2

+ 2ν
∂2W

(a)

i,j

∂x2

∂2W
(a)

i,j

∂y2
+ 2(1− ν)

(
∂2W

(a)

i,j

∂x∂y

)2

(4.72)

By substituting Eq. (4.56) in Eq. (4.6), the reference kinetic energy for a given mode can be

written as:

T i,j =
1

2

sx∑
a=1

∫ xa

xa−1

∫ y1

y0

(
W

(a)

i,j

)2

dydx (4.73)

The approximate natural frequencies of the multi-span plate are determined by evaluating

Rayleigh’s quotient expressed as:

ω2
i,j =

U i,j

T i,j

(4.74)

Similar to the GSSP model, a vector W of trial functions W ij is defined such that

the trial functions are listed in ascending order of their corresponding approximate natural

frequencies. In order to generate a model with n degrees of freedom, the first n trial functions

of the vector W are selected and are referred to as W̃r, for r = 1, 2, ..., n. To apply the

Rayleigh-Ritz method, the response of the plate is approximated using Eq. (4.12) and the
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kinetic and strain energies are calculated by substituting Eq. (4.12) in Eq. (4.5) and Eq. (4.8),

respectively. In this case, the total potential energy is equal to the strain energy of the plate.

Using Lagrange’s equations, the equations of motion are derived. Based on Eq. (4.16), the

mass matrix M and the stiffness matrix K of the system are determined. By solving the

eigenvalue problem, the frequencies ω̃r and the modal matrix Um are determined.

4.4.3 Dynamic Response for the MSP Model

To determine the response of the multi-span plate, one has to solve for the generalized

coordinates q in Eq. (4.16). Using the same transformation as in Eq. (4.43), the modal

coordinates γ are obtained. The vector of generalized forcesQ is determined using Eq. (4.18).

By applying the principle of virtual work, the equations of motion of the system are decoupled

and the solution for the generalized coordinates is determined using Eqs. (4.44) to (4.47).

As mentioned previously, in the Rayleigh’ Energy method, the non-diagonal terms of the

mass and stiffness matrices are ignored. For the GSSP model, these non-diagonal terms

were negligible. Thus, the frequencies and the response obtained by using Rayleigh’s energy

method were similar to those obtained by the Rayleigh-Ritz method. However, for the

case of the MSP model, these terms are more significant and thus, it is expected that the

Rayleigh-Ritz method will offer higher accuracy when compared to Rayleigh’s energy method,

especially for the case of a plate with spans having different thicknesses.

4.5 Change of Thickness (CoT) Formulation

Up to this point, the thickness of each side of the pocket (unit-element) has been assumed

uniform. It is necessary to develop a formulation that could approximate the change of

thickness of a pocket-side during milling. In section 3.5, the change of thickness of a pocket-

side for typical machining tool-paths was analyzed. It was proposed to discretize a plate

to two spans in the x-direction and three spans in the y-direction in order to simulate the

different machining tool-paths. To apply the proposed concept, the formulation of the change
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of thickness (CoT) will be developed for the MSP model. It should be also applied for the

GSSP model.

For the four-span plate in Fig. 4.3, the previously described cases for the change of

thickness will be applied to the first span. In the x-direction, span 1 will be divided in two sub-

spans. In the y-direction, the multi-span plate is divided to three spans. Thus, eventually,

the plate will have five spans in the x-direction and three spans in the y-direction, as shown

in Fig. 4.4. Each span, denoted by indices (a,b), will have a thickness h
(a,b)
p , a flexural rigidity

D(a,b) and a transverse vibration w(a,b). The total number of spans in the x- and y-directions

are sx and sy, respectively.

Case A: Vertical Strip (VS)

x0 x1 x2

y0

y3

y2

y1

Case B: Horizontal Strip (HS)

Case C: Corner Strip (CS)

x0 x1 x2

y0

y3

y2

y1

x0 x1 x2

y0

y3

y2

y1

Case D: L-Shaped Strip (LS)

x0 x1 x2

y0

y3

y2

y1

x

y x0 x1 x2 x5x4

y0

y3

x3

y2

y1

b = 3
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b = 1

a = 1 a = 2 a = 3 a = 4 a = 5
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( 5 ,2 )
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X
( 2 )

X
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X
(5 )

X
( 4 )

X

Figure 4.4: Illustration of the CoT formulation for the MSP model

The boundary conditions for the edges x = x0, x2, x3, x4, x5, are based on Eqs. (4.52) by

substituting w(a), ha and Da by w(a,b), h
(a,b)
p and D(a,b), respectively. For edge x = x1, the

continuity of the rotations and the bending moments are satisfied according to Eqs. (4.52c)

and (4.52d), respectively. In addition, the equations for the continuity of the displacements
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and the shear forces have to be satisfied and can be expressed as:

w(1,b) = w(2,b) (4.75a)

D(1,b)

(
∂3w(1,b)

∂x3
+ (2− ν)

∂3w(1,b)

∂x∂y2

)
= D(2,b)

(
∂3w(2,b)

∂x3
+ (2− ν)

∂3w(2,b)

∂x∂y2

)
= 0 (4.75b)

The boundary conditions at y = y0 and y = ysy are determined according to Eq. (4.54) and

Eq. (4.55). The boundary conditions at y = yb, for b = 1, ..., sy − 1, are determined as:

w(a,b) = w(a,b+1) (4.76a)

∂w(a,b)

∂y
=
∂w(a,b+1)

∂y
(4.76b)

D(a,b)

(
∂2w(a,b)

∂y2
+ ν

∂2w(a,b)

∂x2

)
= Da,b+1

(
∂2w(a,b+1)

∂y2
+ ν

∂2w(a,b+1)

∂x2

)
(4.76c)

D(a,b)

(
∂3w(a,b)

∂y3
+ (2− ν)

∂3w(a,b)

∂x2∂y

)
= D(a,b+1)

(
∂3w(2,b+1)

∂y3
+ (2− ν)

∂3w(2,b+1)

∂x2∂y

)
= 0

(4.76d)

To approximate the mode shapes of this multi-span plate, the trial functions will be

discretized in the x- and y directions based on:

W
(a,b)

i,j = X
(a)

i (x) Y
(a,b)

j (y), x = xa−1 : xa; y = yb−1 : yb; 1 ≤ a ≤ sx; 1 ≤ b ≤ sy (4.77)

where X
(a)

and the Y
(a,b)

are the trial functions in the x- and y-directions, respectively. As

can be seen, the trial function in the y-direction is a piece-wise function defined over sy

spans. For each set of spans with a given index a, a different trial function in the y-direction

can be assigned. The trial functions in the x- and y-directions are based on multi-span beam

models.

The x-direction trial function will be developed using a five-span beam. Based on the

separation of variables as in Eq. (4.58), Eq. (4.61) is used to describe the mode shape of the

beam in the x-direction. The boundary conditions at x0, x2, x3, x4, and x5, are the same as

described in section 4.4, Eqs. (4.59). At x = x1, the following boundary conditions have to

be applied to represent the continuity of the displacement, the rotation, the bending moment
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and the shear force:

X(1)
∣∣
(x=x1)

= X(2)
∣∣
(x=x1)

(4.78a)

dX

dx

(1)
∣∣∣∣∣
(x=x1)

=
dX

dx

(2)
∣∣∣∣∣
(x=x1)

(4.78b)

h3
x1

d2X

dx2

(1)
∣∣∣∣∣
(x=x1)

= h3
x2

d2X

dx2

(2)
∣∣∣∣∣
(x=x1)

(4.78c)

h3
x1

d3X

dx3

(1)
∣∣∣∣∣
(x=x1)

= h3
x2

d3X

dx3

(2)
∣∣∣∣∣
(x=x1)

(4.78d)

By inserting Eq. (4.61) in Eqs. (4.59) and (4.78), the characteristic equation, the eigen-

frequencies and the mode shapes can be determined similar to the four span beam for the

MSP model (refer to section 4.4.2). The detailed derivation of the characteristic equation

for the five-span beam is presented in Appendix B, section B.2.

The trial functions in the y-direction are based on a three-span clamped-free beam. Based

on the separation of variables, the following spatial boundary conditions for the three-span

clamped-free beam have to be satisfied:

At y = y0:

Y (1)(y0) = 0 (4.79a)

dY (1)

∂y

∣∣∣∣
y=y0

= 0 (4.79b)

Eqs. (4.79a) and (4.79b) represent the boundary conditions for zero displacement and rotations,

respectively.

At y = y1, y2:

Y (b)
∣∣
(y=yb)

= Y (b+1)
∣∣
(y=yb)

(4.80a)

dY

dy

(b)
∣∣∣∣∣
(y=yb)

=
dY

dy

(b+1)
∣∣∣∣∣
(y=yb)

(4.80b)

h3
yb

d2Y

dy2

(b)
∣∣∣∣∣
(y=yb)

= h3
y(b+1)

d2Y

dy2

(b+1)
∣∣∣∣∣
(y=yb)

(4.80c)
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h3
yb

d3Y

dy3

(b)
∣∣∣∣∣
(y=yb)

= h3
y(b+1)

d3Y

dy3

(b+1)
∣∣∣∣∣
(y=yb)

(4.80d)

where hyb is the thickness of the bth span. Eqs. (4.80a) and (4.80c) represent the continuity

of displacement and the shear force, respectively. Eqs. (4.80b) and (4.80d) represent the

continuity of the rotation and the bending moments about y = yb, respectively.

At y = y3

d2Y (3)

dy2

∣∣∣∣
y=y3

= 0 (4.81a)

d3Y (3)

dy3

∣∣∣∣
y=y3

= 0 (4.81b)

Eqs. (4.81a) and (4.81b) represent the conditions of a free edge with zero bending moment

and shear forces, respectively. For the bth span of the beam, the following beam mode shape

expression can be used:

Y (b)(y) = Ab sin βby(ỹ) +Bb cos βby(ỹ) + Cb sinh βby(ỹ) +Db cosh βby(ỹ) (4.82)

where Y (b) represents the transverse displacement of the bth span of the beam, ỹ = y− yb−1,

yb and yb−1 are the coordinates of the bth span, Ab, Bb, Cb and Db are the coefficients of the

beam mode shape equation determined by satisfying the spatial boundary conditions. The

equation for βyb can be expressed as:

β4
yb =

ρω2
y

1
12
h2

ybE
(4.83)

where ωy is the natural frequency of the beam. By inserting Eq. (4.82) in Eqs. (4.79), (4.80),

and (4.81) and solving the characteristic equation, the eigenvalues and the mode shapes are

determined. The characteristic equation is derived in detail in Appendix B, section B.3. The

jth mode shape of the bth span is referred to as Y
(b)
j . For the spans of the plate with a given

index a, the expression for Y
(b)
j is calculated and substituted for Y

(a,b)

j in Eq. (4.77).

When applying the trial functions for the multi-span plate, the trial functions in the

y-direction for a = 1 and 2 have to be the same or else the continuity of the displacements is

violated at x = x1. The trial functions in the y-direction for a = 1, 2 could be different from
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the trial function for a = 3, 4, 5. To use the beam mode shapes in the different directions,

one has to assign a thickness for each span of the x- and y-beams. The thickness of the

different spans of the beam for the trial function in the x- direction can be determined as:

For a = 1 : 5

hxa =

3∑
b=1

(yb − yb−1)h
(a,b)
p

y3 − y0

(4.84)

This equation represents an average of the thicknesses of the plate spans based on the lengths

of their corresponding spans in the y-direction. For the trial functions in the y-direction, the

following equations are used to determine the thickness of the different spans of the beam:

For a = 1 and a = 2

hyb =
h

(1,b)
p (x2 − x1) + h

(2,b)
p (x1 − x0)

x2 − x0

(4.85a)

For a = 3, 4, 5,

hyb = h(a,b)
p (4.85b)

Eq. (4.85a) is empirically determined and represents an average of the thicknesses based on

the lengths of the spans in the x-direction.

In all the cases for the change of thickness, the continuity of the displacements and the

rotations of the multi-span plate at the edges y = yb for b = 0, 1, ..sy, are satisfied. The

continuity of the displacements and the rotations of the plate at the edges x = xa, for

a = 0, 1, ..., sy, are satisfied only when the same trial function in the y-direction is used for

all spans. This is true for Case A (VS: vertical strip). For Cases B, C and D, the continuity

of the rotation is violated along the edges x0 and x2 since the trial functions in the y-direction

for a = 1, 2 are different from those for a = 3, a = 4 and a = 5. Given that the change

of thickness during finishing operation in machining is small when compared to the actual

thickness of the pocket side, it is still expected that these approximate mode shapes would

give good results. This hypothesis is tested and confirmed in Chapter 5, section 5.3.

Once the trial functions are determined for the plate, Rayleigh’s energy and the Rayleigh-

Ritz method can be implemented to predict the frequencies of the plate using Eqs. (4.71)

to (4.74) in section 4.4.2. The dynamic response can be predicted using the same procedure

described in section 4.4.3.
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4.6 Formulation for the Incorporation of the Fixture Constraints

In the review of the literature, it was shown that the contact nonlinearities due to the

material properties and the geometry of the locators have negligible effect on the response

of thin-walled structures away from the contact region. Thus, each locator can be applied

at a single point with a rigid contact. For design purposes of the fixture layout, it is more

convenient to assume that the fixture supports are perfectly rigid. In this case, the main goal

is comparing the relative change in the displacement response from one layout to another.

After optimizing the fixture layout, it is required to determine the effect of the stiffness of

the locators on the absolute displacement of the workpiece. The objective in this case is

either to perform some sensitivity analysis for the effect of the stiffness of the locators, or

based on prior knowledge of the support stiffness (experimentally or through modelling),

one can predict the response of the structure under such conditions. Thus, in the following

sections, two formulations for the effect of the fixture supports will be presented. The first

formulation, which will be referred to as Perfectly Rigid Support (PRS) deals with perfectly

rigid supports. The second formulation, which will be referred to as Finite Stiffness Support

(FSS) represents the effect of deformable supports. These two formulations are generalized

and could be applied to both the GSSP and the MSP models.

According to the previous section, the approximate response of the plate can be expressed

according to Eq. (4.12) where the trial functions and the generalized coordinates are denoted

as W̃r and qr, respectively. The equations of motion of the system are described according

to Eq. (4.17), where M and K are the mass and stiffness matrices, respectively, q and Q

are the vectors of generalized coordinates and forces, respectively.

4.6.1 Perfectly Rigid Support (PRS) Formulation

In this formulation, the perfectly rigid supports are represented by geometric (holonomic)

constraints. For a total of k constrained points, the constraint equation for the uth point can
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be represented as:

w̃(pcu) =
n∑
r

W̃r(pcu)qr = 0 u = 1, 2, ..., k (4.86)

where pcu is the location of the uth constrained point and n is the total number of included

modes. Using Eq. (4.86), the constraints can be expressed as:

Gq = 0 (4.87)

where G is the Jacobian matrix with dimensions k × n and can be expressed as:

G =


W̃1(pc1) W̃2(pc1) ... W̃n(pc1)

W̃1(pc2) W̃2(pc2) ... W̃n(pc2)

... ... ... ...

W̃1(pck) W̃2(pck) ... W̃n(pck)

 (4.88)

According to Eq. (4.87), there are k independent constraint equations, which allow the

reduction of the number of generalized coordinates of the system to n − k. The vector of

dependent coordinates, which will be referred to as qe, will be represented in terms of the

vector of the independent coordinates, which will be designated as qo. The dimensions of qe

and qo are k× 1 and (n− k)× 1, respectively. The equation of the constraints in (4.87) can

be re-written in terms of qo and qe as:

G

 qo

qe

 = [Go Ge]

 qo

qe

 = Goqo +Geqe = 0 (4.89)

where Go and Ge have dimensions of k × (n − k) and k × k, respectively. They represent

the matrices of the coefficients of qo and qe, respectively. According to Eq. (4.89), the

transformation between qo and qe can be expressed as:

qe = −Ge
−1Goqo = Gmqo (4.90)
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where Gm has dimensions of k × (n− k) and represents the transformation matrix between

qe and qo. A new set of generalized coordinates φ can be introduced such that

φ = qo (4.91)

Using Eqs. (4.90) and (4.91), the transformation between q and φ can be described as:

q =

 qo

qe

 =

 I

Gm

φ = Dφ (4.92)

where D has dimensions of n× (n− k). Substituting Eq. (4.92) into Eq. (4.17) and using

the principle of virtual work, the following variational equation can be obtained:

δφT
(
Mcφ̈+Kcφ−DTQ

)
= 0 (4.93)

where the constrained mass matrix Mc and stiffness matrix Kc can be written as:

Mc = DTMD (4.94)

and

Kc = DTKD (4.95)

Since the variations associated with the minimum set of generalized coordinates φ, in

Eq. (4.93), are all independent, the dynamic equations of motion in terms of the new

generalized coordinates are obtained as:

Mcφ̈+Kcφ−DTQ = 0 (4.96)

By solving the eigenvalue problem, the modal matrix Uc and the approximate frequencies of

the constrained system ω̃c can be determined. The modal matrix is orthogonal with respect

to the mass matrix Mc and the stiffness matrix Kc. Using the orthogonality properties of

Uc, Eq. (4.96) can be decoupled and solved for φ.
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4.6.2 Finite Stiffness Support (FSS) Formulation

In this formulation, the supports are modelled as springs with a finite stiffness. The

spring forces are considered as external forces. The approximate response of the plate can

be expressed using Eq. (4.12). For a total number of springs equal to k, the spring force fu

of the uth spring can be approximated as:

fu(xu, yu, t) = −kuw̃(xu, yu, t) = −ku

n∑
r=1

W̃r(xu, yu)qi(t) (4.97)

where xu and yu are the spatial coordinate of the location of the spring, ku is the stiffness of

the uth spring and n is the total number of mode shapes included in the approximation of

the response. According to Eq. (4.18), the generalized force Fur for the spring load can be

determined as:

Fur =

(
−ku

n∑
i=1

W̃i(xu, yu)qi

)
W̃r(xu, yu) (4.98)

Using a matrix form, the vector of the generalized forces for a given spring force can be

written as:

Fu = −kuW̃ (xu, yu)W̃ (xu, yu)Tq (4.99)

where Fu = [Fu1, Fu2, ..., Fun]T and W̃ (xu, yu) = [W̃1(xu, yu), W̃2(xu, yu), ...W̃n(xu, yu)]T .

According to Eq (4.99), the generalized forces for all springs can be expressed as:

F =
k∑

u=1

Fu = −Ksq (4.100)

where Ks is expressed as:

Ks =
k∑

u=1

kuW̃ (xu, yu)W̃ (xu, yu)T (4.101)

Based on Eqs. (4.17) and (4.100), the free vibration of a plate carrying k translational

springs can be described as:

Mq̈ +Kq = −Ksq (4.102)
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Assuming harmonic motions of the plate, the eigenvalue problem is set as:

(
K +Ks

)
qc = ω̃2

cMqc (4.103)

where qc and ω̃c represent the eigenvector and the eigenfrequency of the constrained system.

By solving this eigenvalue problem, the frequencies of the constrained plate and the eigenvector

matrix are determined. The dynamic equations of motion of the constrained system, including

the non-conservative external forces, can be written as:

Mq̈ +
(
K +Ks

)
q = Q (4.104)

Based on the orthogonality properties of the calculated mode shape vectors, Eq. (4.104) can

be decoupled and solved for q in a way similar to what was described in section 4.6.

4.7 Concluding Remarks

In this chapter, the mathematical formulations for the models proposed in Chapter 3

were developed. The first model, which is referred to as the Generalized Single-Span Plate

(GSSP), represents the dynamics of a plate with torsional and translational springs at the

boundaries. The dynamic response of the plate is approximated using Rayleigh’s energy and

the Rayleigh-Ritz method. Trial functions for the approximation of the plate mode shapes

are generated using beam models with torsional and translation springs at the boundaries.

A methodology for the calibration of the stiffness of the springs was proposed such that the

model can represent the dynamics of a pocket-side. This methodology is based on global

and local optimization techniques.

The second model, which is referred to as the Multi-Span Plate (MSP) model, represents

the dynamics of a 3D generalized pocket using a multi-span plate with special boundary

conditions. The approximate mode shapes of the multi-span plate are based on multi-span

beam models. Similar to the previous model, both Rayleigh’s energy and the Rayleigh-Ritz

methods are used for the calculation of the frequencies and the response of the multi-span
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plate.

A new formulation, referred to as the Change of Thickness (CoT) formulation, was

developed and implemented to represent the proposed cases for the milling of thin-walled

pockets. In addition, the effects of the supports of the fixture were included in the dynamic

models. Two formulations for the fixture supports were presented, the first, which is referred

to as PRS formulation, represents perfectly rigid supports by using holonomic constraints

and the second, which is designated as FSS formulation, represents deformable supports by

using springs with a finite stiffness.

As will be demonstrated in Chapter 5, the developed models for the representation of

the dynamics of thin-walled structures reduce the computational time by at least an order

of magnitude when compared to FE models.
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Chapter 5

Validation of the Dynamic Models Using
FEM and Impact Tests

5.1 Introduction

In chapters 3 and 4, the development of new mathematical models for the dynamics of

typical thin-walled structural components encountered in aerospace applications was presented.

The objective of this chapter is to validate the mathematical formulations of these models and

to demonstrate their ability to simulate accurately the dynamics of the thin-walled aerospace

structures during milling. The chapter will be divided in four main sections including the

validation of the GSSP model, the MSP model, the CoT formulation and the formulations

representing the effect of the fixture supports (PRS and FSS). FE models and impact tests

are used for the validation. As will be shown, the developed models permit the prediction

of the response of pockets encountered in thin-walled aerospace structures with errors less

than 10%, when compared to the FE models and the impact tests. The computation time

is reduced by at least one order of magnitude.

5.2 Validation of the Generalized Single-Span Plate Model

The GSSP model is based on the representation of the different sides of a thin-walled

structure using plates with translational and rotational springs at the boundaries. To validate

this model, five sets of results will be presented. The first set of tests validates the developed
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model for a plate with torsional and translational spring against a corresponding FE plate.

The second set of tests validates the capability of the GSSP model to predict accurately

the dynamics of asymmetric pockets with oblique angles and different wall thicknesses.

Sinusoidal forces, as well as force signals from actual machining experiments are applied.

The third set of validation tests presents the results for the GSSP model for predicting the

dynamics of a highly flexible square pocket. The fourth set of results will demonstrate the

capability of the GSSP model to predict the dynamic response of a complex multiple-pocket

structure with internal rib-walls and holes. As shown in Fig. 4.2, the responses are compared

at four output points (PA, PB, PC, PD). To compare the FE model to the proposed model,

the percentage error ε at a given point is calculated as follows:

ε =
Af − Ap

Amax

× 100 (5.1)

where Af is the maximum amplitude of the response at the point under consideration,

predicted using the FE model. The symbol Ap designates the maximum amplitude of the

response at a given point calculated using the proposed model. The symbol Amax represents

the maximum amplitude of the response of point PB, predicted using the FE model. For

these four sets of results, the force will always be applied at point PA.

The fifth set of tests compares the responses determined from the GSSP and the FE

models with those obtained experimentally from impact tests. In all cases, Rayleigh’s energy

method was used for the GSSP model with a maximum of 10 mode shapes versus 30 mode

shapes in the FE models. The FE model was developed and analyzed in ABAQUS (version

6.4.) using 2D quadrilateral linear shell elements. Convergence analysis was performed to use

a minimum number of elements without sacrificing the accuracy of the solution. Although

this considerably reduced the computation time of the FE model, it was found that the

developed GSSP model still offered much faster computation. General aluminum material

properties were used: Young modulus E = 69×109 GPa, ν = 0.3 and ρ =2700 kg/m3.
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5.2.1 Set 1 of Tests: Validation of the GSSP Model Using a FE Model of a
Plate

It is necessary to validate the developed approximate model of a plate with torsional and

translational springs with a corresponding FE model of a plate. The dimensions of the plate

are 200 mm × 100 mm × 2 mm. The different parameters chosen for this case study are

summarized in Table 5.1. The values of the stiffness of the springs were chosen such that

they do not represent a clamped or a free edge. A total of 1000 elements were used in the

FE model. By comparing the first ten plate frequencies obtained from the FE and the GSSP

models, an error less than 1.3% was obtained as reported in Table 5.2.

Table 5.1: List of parameters for the plate model

lx 0.2 (m) ly 0.1(m)
Kox 84× 104 (N/m2) Koy 102.5× 104 (N/m2)
Klx 126× 104(N/m2) Kly 143.5× 104 (N/m2)
Rox, Rlx 21.0× 103 (N/m.rad) Roy, Rly 20.5× 103(N/m.rad)

Table 5.2: Comparison of the mode frequencies for the plate using the FE model and the
GSSP model

Mode 1 2 3 4 5 6 7 8 9 10
FE Plate(Hz) 369 459 670 702 821 1108 1159 1636 1920 1937
GSSP model(Hz) 368 458 672 710 822 1098 1166 1636 1945 1948
Error % 0.3 0.3 0.2 1.2 0.03 0.9 0.5 0.01 1.3 0.6

A sinusoidal force with 30 N magnitude and 628 rad/s frequency was applied at the

centre of the plate, i.e point PA (x=100 mm, y=50 mm) in Fig. 4.2. The errors, in terms

of the dynamic responses, are less than 1% at points PA and PB as depicted in Fig. 5.1

with a maximum amplitude of vibration of the FE plate of 170 µm. For this simple case,

a substantial reduction in computational time (1 to 2 orders of magnitude) was achieved

when comparing the developed model (< 2 seconds), with the FE model (> 100 seconds),

using the same number of output points. Negligible differences have been found between the

frequencies and responses determined using Rayleigh’s energy method and the Rayleigh-Ritz
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method. This can be attributed to the choice of trial functions, which closely approximate

the exact mode shapes of the plate.
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Figure 5.1: Comparison of the plate response predicted by the FE and the GSSP models
under a sinusoidal load

5.2.2 Set 2 of Tests: Prediction of the Response of an Asymmetric Pocket

A general case of an asymmetric pocket with a clamped base was used in order to

demonstrate the applicability of the GSSP model for the prediction of the response of pocket-

type structures. The dimensions of the asymmetric pocket, shown in Fig. 5.2, are typical of

flexible aerospace structures. The aspect ratios of the length and height to thickness are 66

and 33, respectively. A sinusoidal force with an amplitude of 60 N and a frequency of 300

rad/s was applied on side 1 (3 mm-thick). The point of load application PA is located at

x=100 mm and y=50 mm. The four output points PA, PB, PC and PD are shown in Fig. 5.2.

A total of 1500 elements were used in the FE model.

Following the procedure described in section 4.3.3, the values of the stiffness of the springs

resulting from the calibration, are reported in Table 5.3. The dynamic responses of the GSSP
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Figure 5.2: Dimensions of the asymmetric pocket in mm

and the FE models are shown in Fig. 5.3. The error in the prediction of the response at

points PA and PB are less than 2%. This corresponds to an absolute error ≤ 3 µm, which

is small compared to the plate thickness and to the typical tolerance value for the aerospace

structural components (±125 µm). The errors in prediction of the responses at points PC and

PD are less than 1.0%. The simulation time of the developed model is less than 2 seconds,

while the computation time for the FE model is greater than 3 minutes.

Table 5.3: Calibrated stiffness values of the springs for the asymmetric pocket

Kox 10× 107 (N/m2) Koy 5× 107 (N/m2)
Klx 10× 107(N/m2) Kly 1.2× 104 (N/m2)
Rox 1.1× 104 (N/m.rad) Roy 4.0× 105(N/m.rad)
Rlx 2.3× 103 (N/m.rad) Rly 48(N/m.rad)

To demonstrate the necessity for calibration, two plate models with standard boundary

conditions (i.e. simply supported, clamped, free) were analyzed and compared to the pocket-

side response. The first model represents a plate simply supported at the two side edges,

clamped at the bottom edge and free on the top edge (SCSF). This model represents a

more flexible structure than the pocket-side since the edges are free to rotate. The second

100



0 0.02 0.04 0.06
-150

-75

0

75

150

Point PA (x=100mm, y=50mm)

D
is

pl
ac

em
en

t (
µm

)

0 0.02 0.04 0.06
-150

-75

0

75

150

Point PC (x=50mm, y=50mm)

0 0.02 0.04 0.06
-150

-75

0

75

150
Point PB (x=100mm, y=100mm)

Time (seconds)

D
is

pl
ac

em
en

t (
µm

)

0 0.02 0.04 0.06
-150

-75

0

75

150

Point PD (x=150mm, y=50mm)

Time (seconds)

FE model
GSSP model

Figure 5.3: Comparison of the asymmetric pocket responses predicted by the FE and the
GSSP models under a sinusoidal load (300 rad/s)

case is a plate clamped at the side and bottom edges, and free on the top edge (CCCF).

This represents the other extreme, where the plate is more rigid than the actual pocket-side

since the rotations of the side edges are completely constrained. A sinusoidal force with an

amplitude of 60 N and a frequency of 300 rad/s was applied at point PA. The responses

obtained from these two plate models and the FE model of the pocket at points PA and PB

are shown in Fig. 5.4. It is found that the first model overestimates the response by 30%

in terms of the maximum amplitude of vibration, when compared to the FE response. The

second plate model underestimates the maximum amplitude of vibrations by 22%.

The GSSP model was tested by using the same pocket while applying a sinusoidal force of

60 N amplitude and 3770 rad/s frequency (600 Hz/36000 rpm) at point PA. The frequency

of the force simulates the high rotational speeds encountered in high speed machining. As

seen in Fig. 5.5, an excellent matching in the prediction of the responses using the GSSP and

the FE models is still achieved, both in terms of frequency content and vibration amplitude,

with a maximum error at point PB of less than 4%. This demonstrates that the proposed

model can predict accurately the response for higher frequency forces that are different from
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Figure 5.4: Comparison of the responses of the SCSF and CCCF plates to the response of
the asymmetric pocket using FEM

those used for the calibration of the model.
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Figure 5.5: Comparison of the asymmetric pocket responses predicted by the FE and the
GSSP models under a sinusoidal load (3770 rad/s)
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A milling experiment was conducted on a 5-axis high-speed, horizontal machining centre,

Makino A88ε, in order to generate an actual machining force signal as shown in Fig. 5.6a.

In this experiment, a 2-flute, 19 mm flat end-mill cutter was used to finish a pocket made

of Al 6065 at 3,180 rpm corresponding to a surface speed of 3.16 m/s. A 0.25 mm and 40

mm radial and axial depth of cuts were used to reproduce practical finishing operations.

The force signal during the milling process was measured using a 3-component piezoelectric

dynamometer (Kistler, model # 9255B). This machining force was applied at point PA both

in the detailed FE and the simplified GSSP models, as shown in Fig. 5.6b. A comparison of

the results can be seen in Fig. 5.7. At point PA, the relative error in the responses is 2%,

while at point PB, where the maximum deflection occurs, the error is less than 4% (5 µm

absolute error). Thus, with a maximum amplitude of vibration of 128 µm, both the GSSP

and the FE models will indicate that the part is almost out of tolerance (±125µm).

Figure 5.6: Measured machining force and an illustration of the direction of the force with
respect to the tool and the workpiece

It is necessary to validate the correlation established in section 4.3.3 between the change

of thickness of the adjacent sides and the calibrated stiffness of the rotational springs (refer

to Eq. (4.49)). Using the asymmetric pocket in Fig. 5.2, the wall thicknesses of the adjacent

sides were incrementally varied from 4 mm to 2 mm for side 2 and from 2 mm to 1 mm
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Figure 5.7: Comparison of the asymmetric pocket responses predicted by the FE and the
GSSP models under an actual machining load

for side 4. For a given new thickness of an adjacent side, a new spring stiffness has to be

determined. One way to determine it is through optimization. In Fig. 5.8, the graphs on

the left show the optimization function ψ (refer to Eq. (4.48)) plotted versus the spring

stiffness, for different thicknesses of sides 2 and 4. As can be seen, for each new thickness, a

corresponding optimum spring stiffness is determined.

Instead of using optimization, new spring values are calculated using the relationship

in Eq. (4.49). In Fig. 5.8, the graphs on the right show the stiffness values determined

through optimization or calculated using Eq. (4.49) versus the ratio Rt of the new to the

old thickness. The springs stiffness coefficients, which are determined through optimization

and calculation, are in excellent agreement. Thus, once the calibrated stiffness values of

the rotational springs are determined, no further calibration is required for different wall

thicknesses. As mentioned previously, due to the high axial stiffness of the adjacent sides,

the changes of thickness has a small effect on the translational spring stiffness. The effect

of the change of thickness of the non-adjacent sides on the response of the load-application

side is negligible.
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Figure 5.8: Correlation between the rotational spring stiffness and the change of the thickness
of the adjacent wall

5.2.3 Set 3 of Tests: Prediction of the Response of a Highly Flexible Square
Pocket

Another validation of the model is performed by using a highly flexible pocket structure

where the aspect ratios of the length-to-thickness and height-to-thickness are 100 and 50,

respectively. Although not common, this level of flexibility is sometimes encountered in

aerospace structures. The dimension of this square pocket is 200 mm × 100 mm × 2 mm.

Due to the symmetry, the pocket has repeated natural frequencies for different mode shapes,

which are not accounted for in the GSSP model. The calibrated values of the stiffness of

the springs are shown in Table 5.4. Due to the symmetry of the pocket, the number of

optimization variables is six instead of eight since the values for Kox and Rox are the same

as Klx and Rlx, respectively. In the FE model, a total of 2200 elements was used to model

the square pocket with a clamped base.

A Comparison of the responses of the FE pocket versus the GSSP model is shown in
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Table 5.4: Calibrated stiffness values of the springs for the square pocket

Kox 3.2× 106 (N/m2) Koy 5× 107 (N/m2)
Klx 3.2× 106(N/m2) Kly 5× 106 (N/m2)
Rox 3.4× 103 (N/m.rad) Roy 0(N/m.rad)
Rlx 3.4× 103 (N/m.rad) Rly 392(N/m.rad)

Fig. 5.9. A sinusoidal force with 30 N amplitude and 300 rad/s was applied at point PA. The

maximum displacement has a large magnitude of 210 µm. Although some pocket frequencies

are absent from the GSSP model, the agreement in the response of the GSSP and the FE

models is still remarkably good with a maximum error in response at points PA and PB

of less than 2%. This corresponds to an absolute error of 4 µm. These errors are within

the prediction requirements, set in the objectives of this research and are still small when

compared to a tolerance of ±125 µm. Thus, for the extreme case of flexibility, the GSSP

model can still offer accurate results in substantially smaller computational times with at

least one order of magnitude reduction in the computation time when compared to the FE

model.
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Figure 5.9: Comparison of the square pocket responses predicted by the FE and the GSSP
models under a sinusoidal load (300 rad/s)
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5.2.4 Set 4 of Tests: Prediction of the Response of a Complex Multiple Pocket
Structure

To demonstrate the generality of the GSSP model, the model was validated using a

complex thin-walled structure having the shape and the dimensions shown in Fig. 5.10.

The load application point is indicated by the arrows and the dotted circle. A sinusoidal

load was applied with an amplitude of 60 N and a frequency of 600 rad/s. The response

was calculated at four output points (refer to Fig. 4.2). In the FE model the base of the

structure was clamped and a total of 3200 elements were used.
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Figure 5.10: Dimensions of the multiple pocket structure in mm

The calibrated values of the stiffness of the springs, which were determined using the

procedure outlined in section 4.3.3, are reported in Table 5.5. The responses determined

using the FE and the GSSP models are shown in Fig. 5.11. As can be seen, an excellent

matching in the response is obtained with predictions errors at points PA and PB of less than

4.5%. This corresponds to an absolute error of 5.5 µm. The GSSP model offered at least one
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to two orders of magnitude reduction in the computation time when compared to the FE

model. These results demonstrate the capability of the GSSP model to predict accurately

and efficiently the dynamic response of complex thin-walled structures.

Table 5.5: Calibrated stiffness values of the springs for the multiple pocket structure

Kox 10× 107 (N/m2) Koy 5× 107 (N/m2)
Klx 10× 107(N/m2) Kly 4.9× 103 (N/m2)
Rox 2.1× 104 (N/m.rad) Roy 4.0× 105(N/m.rad)
Rlx 1.5× 104 (N/m.rad) Rly 3.8× 102 (N/m.rad)
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Figure 5.11: Comparison of the multiple-pocket structure response predicted by the FE and
the GSSP models under a sinusoidal load (300 rad/s)

5.2.5 Set 5 of Tests: Experimental Validation Through Impact Experiments

The objective of this test is to verify the accuracy of the FE models, as well as, to

validate the GSSP model. This is achieved by comparing the responses predicted by the

GSSP and the FE models to the actual experimental results of two pockets with different
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dynamic characteristics. The dimensions of these two pockets are shown in Fig. 5.12a and

Table 5.6. For pockets 1 and 2, a total of 1000 and 1800 elements were used, respectively, in

the FE model. An illustration of the pocket with a contactless probe to measure the dynamic

displacement of the side of the pocket and the probe holder is shown in Fig. 5.12b. The rigid

probe holder is fixed to the solid base of the pocket. This solid base represent the boundary

conditions of a clamped edge. Due to the non-uniformity of the wall thicknesses, they were

determined based on an average of 9 to 15 points on each side using a coordinate measuring

machine (Mitutoyo, model: MACH 806). To demonstrate the generality of the approach, the

corner radius in pocket 1 was represented in the FE model as a sharp corner. The calibrated

spring values, determined using the methodology described in section 4.3.3, are shown in

Tables 5.7 and 5.8. The use of these spring values in the GSSP model gives results that are

in very good agreement in terms of the displacement response with the predictions of the

FE model with errors less than 6%.

(a) Pocket Dimensions (b) 3D sketch of the pocket, probe & holder
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Figure 5.12: Representation for the dimensions of the pockets used for the experimental
validation of the GSSP model
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Table 5.6: Dimensions (in mm) of pockets 1 and 2, for the experimental validation of the
GSSP model

L1 L2 H h1 h2 h3 h4 R d
Pocket 1 101 50 51 1.57 ±0.06 1.55 ±0.07 1.53 ±0.06 1.51 ±0.08 4.76 3.5
Pocket 2 102 51 101 3.25 ±0.05 3.20 ±0.04 3.33 ±0.05 3.25 ±0.05 0 10

Table 5.7: Calibrated stiffness values of the springs for pocket 1

Kox 4.2× 106 (N/m2) Koy 1.0× 108 (N/m2)
Klx 5.2× 106 (N/m2) Kly 1.5× 105 (N/m2)
Rox 2.2× 103 (N/m.rad) Roy 1.0× 107(N/m.rad)
Rlx 6.4× 103 (N/m.rad) Rly 0(N/m.rad)

Table 5.8: Calibrated stiffness values of the springs for pocket 2

Kox 1.0× 108 (N/m2) Koy 1.0× 108 (N/m2)
Klx 1.0× 108 (N/m2) Kly 4.7× 105 (N/m2)
Rox 1.1× 104 (N/m.rad) Roy 3.9× 106(N/m.rad)
Rlx 1.5× 104 (N/m.rad) Rly 1.2× 104 (N/m.rad)

The experimental frequencies of the pockets were determined using an Impulse Force

Test Hammer system. The system consists of impulse hammers with automatically-actuated

piezoelectric units (PCB 086C04 and PCB 086D05) for pockets 1 and 2, respectively and an

accelerometer (PCB 352C23). The comparison of the first two natural frequencies determined

experimentally and through the FE model is presented in Table 5.9. For the first pocket, the

errors in the 1st and 2nd frequencies are less than 7% and 4%, respectively. For the second

pocket, the errors are less than 0.1% and 3%, respectively.

Table 5.9: Comparison of the experimental frequencies and the FE frequencies of pockets 1
and 2 for the first two modes

Experimental FE
% Error

Frequency(Hz) Frequency (Hz)

Pocket 1
Mode 1 896 959 7.0
Mode 2 1001 1037 3.6

Pocket 2
Mode 1 1326 1325 0.08
Mode 2 2701 2764 2.33
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Using the hammers (PCB 086C04) and (PCB 086D05), which also measure the forces,

an impact force was applied on side 1 of pockets 1 and 2, respectively. The responses were

measured using the contactless displacement sensor (KAMAN, model 1UEP) illustrated in

Fig. 5.12b. The measured forces were applied in the FE and the GSSP models in order

to compare the predicted and measured responses. There are three different measurement

errors including the errors due to the accuracy of the probe εp, the accuracy of the force

measurement transducer εf and the uncertainty of the position of the load-application point

εl.

The calibration of the probe was performed by using linear fitting with a coefficient of

determination (R2) of 0.997 and a measurement error ε1 of ± 3 µm. For the errors in the

force measurement ε2, the transducer of the hammer has a linearity of ± 1%, according to

the manufacturer specifications. Since the model is linear, one can assume that the measured

force linearly affect the measured vibration. Thus a 1% error in the force measurement is

translated to a 1% error in the probe measurements. Thus, ε2 is determined in µm as ±1%

of the maximum amplitude of the measured vibration. The uncertainty of the position of

the load-application is estimated to be within ± 2 mm. To determine the effect of the force

position on the response, using the FE model, the load was applied at four points on the

circumference of a circle with a radius of 2 mm and a centre at the nominal position of the

load. The amplitude of the peak displacement was calculated for each case and compared

to a nominal case in which the load is applied at the centre of the circle. The error ε3 is

determined in µm as the average of the differences between the amplitudes of the peaks

of the four cases and the amplitude of the peak of the nominal case. The total error in

measurement εt can be calculated as:

εt =

(
3∑

i=1

ε2
i

) 1
2

(5.2)

The experimental responses for the first and second pockets, shown in Fig. 5.13, are in

excellent agreement with the GSSP model predictions. The measurement errors, calculated

for each pocket according to Eq. (5.2), are shown in Table 5.10. The percentage deviation

between the maximum amplitude of the experimental data and those of the FE and the
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GSSP model are less than 1% for the first pocket (1.6 µm) with a total measurement error of

± 8.0 µm. For the second pocket, the predictions errors are 6% (7.5 µm) for the FE model

and 2% (2.6 µm) for the GSSP model with a total measurement error of ± 6.0 µm.
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Figure 5.13: Comparison of the responses from experiment, FE model and GSSP model for
pockets 1 and 2

Table 5.10: Measurement errors for the impact test for pockets 1 and 2

Error type Pocket 1 Pocket 2
ε1 (µm) ± 3.0 ± 3.0
ε2 (µm) ± 1.6 ± 1.4
ε3 (µm) ± 7.2 ± 5.0
εt (µm) ± 8.0 ± 6.0

Although the GSSP model was calibrated using a sinusoidal force, excellent matching of

the response is achieved under impact loading as well. This shows that both the FE and the

GSSP models can be considered as high-fidelity representations of the pocket dynamics. For

these two cases, no damping was included since the structural damping coefficients of the

pockets were found to be less than 1.0%.
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5.3 Validation of the Multi-Span Plate Model

The validation of the MSP model includes two main sets of validations results. Set 1 will

compare the MSP model to FE multi-span plates. Set 2 will include the comparison of the

frequencies and the responses for different types of pockets using the MSP and FE models.

Referring to Fig. 4.2, the response will be calculated at the same output points (PA, PB,

PC and PD) located on the first span of the plate and the corresponding side of the pocket.

Point PA will be located at the centre of the span/side, PB at the middle of the free edge

and PC and PD midway between point PA and the side edges. The prediction errors will be

calculated using Eq. (5.1). No impact tests were performed to validate the MSP model since

an extensive experimental validation through machining tests was performed for the MSP

model and will be presented in Chapter 6. An additional validation case will be presented

in section 5.5.4 to demonstrate the applicability of the MSP model for the prediction of the

dynamic response of pockets with internal rib-walls. Similar to the previous sections, the FE

models are based on 2D quadrilateral linear shell elements. The same aluminum material

properties were used (E = 69×109 GPa, ν = 0.3 and ρ =2700 kg/m3).

5.3.1 Set 1 of Tests: Validation of the MSP Model Against FE Models of Multi-
Span Plates

For the developed multi-span plate model, there is neither analytical nor approximate

solutions in the literature. In order to validate its formulation, the MSP model was compared

to FE models of different multi-span plates. The frequencies and the responses of two four-

span plates will be analyzed. Both plates have the same width and length; however, the

first multi-span plate has uniform thicknesses for all spans and the second has non-uniform

thicknesses. The width of the two multi-span plates is 100 mm. The other dimensions are

given in Table 5.11. In both cases, Rayleigh’s energy method and the Rayleigh-Ritz method

are implemented and the results are compared. The calculation of the MSP model included

10 mode shapes as opposed to 30 mode shapes in the FE model with a total of 2500 elements.

The frequencies of multi-span plate 1 (with uniform thicknesses), evaluated using the FE
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Table 5.11: Dimensions of the multi-span plate for the validation of the MSP model

Multi-span plate # Dimensions span 1 span 2 span 3 span 4

1
Length (mm) 200 100 200 100
Thickness (mm) 3.0 3.0 3.0 3.0

2
Length (mm) 200 100 200 100
Thickness (mm) 3.0 2.0 4.0 3.5

model and the MSP model, are listed in Table 5.12. The maximum error in the frequencies

determined using the Rayleigh-Ritz method and Rayleigh’s energy method are less than 1.5%

and 3.0%, respectively. Although the Rayleigh-Ritz method offers better accuracy, both

methods allow us to predict accurately the frequencies of the multi-span plate. This was

expected since the proposed trial mode shapes satisfy the geometric and natural boundary

conditions for the vertical edges of multi-span plates with uniform thicknesses. It should be

noticed that increasing the number of included mode shapes does not affect the prediction

of the first frequencies in the case of Rayleigh’s energy method. The responses of the four

points on the first span are shown in Fig. 5.14. For this case, a 30 N force with a frequency

of 1256 rad/s (200 Hz or 12,000 rpm) was applied at the centre of the free edge, i.e. at point

PB (x=100 mm, y = 100 mm). The maximum error of the response at point PB is less than

6% for the Rayleigh-Ritz method, and less than 11% for Rayleigh’s energy method. It can

be seen that an excellent matching is achieved using the Rayleigh-Ritz method in terms of

frequency and amplitude. Rayleigh’s energy method also offers excellent predictions of the

frequencies and relatively good prediction of the dynamic response with a slightly better

computational efficiency.

Table 5.12: Comparison of the mode frequencies of multi-span plate 1 (with uniform
thicknesses) predicted by the FE model and the MSP model

Mode 1 2 3 4 5 6 7 8 9 10
FE (Hz) 465 500 923 1094 1232 1476 1841 1848 1991 2194

Rayleigh- MSP (Hz) 468 505 933 1108 1248 1495 1853 1862 2015 2222
Ritz Error % 0.9 0.9 1.1 1.2 1.3 1.3 0.6 0.9 1.2 1.3

Rayleigh
MSP (Hz) 475 510 950 1124 1266 1511 1872 1875 2041 2245
Error % 2.4 2.0 3.0 2.8 2.8 2.3 1.7 1.5 2.5 2.3
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Figure 5.14: Comparison of the responses of multi-span plate 1 (with uniform thicknesses)
predicted by the FE and the MSP models under a sinusoidal load

For multi-span plate 2 (with non-uniform thicknesses), the predictions of the frequencies

using the two MSP formulations, are listed in Table 5.13. The errors in frequencies between

the MSP and the FE models are less than 2% when the Rayleigh-Ritz method was implemented.

Using Rayleigh’s energy method, the errors in the frequencies of the first six mode shapes

are less than 6%; however, for higher mode shapes the error become relatively large, as

expected. For the same applied loading and output points as in the previous case, the

responses determined using the FE and the MSP models are shown in Fig. 5.15. The errors

in the response predicted by the MSP model using the Rayleigh-Ritz method are less than

3.5%. This corresponds to an absolute error of 11 µm. There is generally a reasonable

agreement in the responses when using Rayleigh’s energy method; however, the error at

point PB is greater than 15%. Based on these results and in order to maintain consistency,

the responses for all the coming validation cases, will be calculated using the Rayleigh-Ritz

method.
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Table 5.13: Comparison of the mode frequencies of multi-span plate 2 (with non-uniform
thicknesses) predicted by the FE model and the MSP model

Mode 1 2 3 4 5 6 7 8 9 10
FE (Hz) 468 594 931 1133 1264 1583 1817 1889 2030 2424

Rayleigh- MSP (Hz) 472 600 942 1147 1281 1607 1835 1921 2061 2452
Ritz Error % 1.0 1.0 1.2 1.2 1.3 1.5 1.0 1.7 1.5 1.2

Rayleigh
MSP (Hz) 495 594 970 1196 1264 1624 1991 2087 2351 2398
Error % 5.9 0.02 4.3 5.5 0.03 2.6 9.6 10.5 15.9 1.0
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Figure 5.15: Comparison of the responses of multi-span plate 2 (with non-uniform
thicknesses) predicted by the FE and the MSP models under a sinusoidal load

5.3.2 Set 2 of Tests: Validation of the MSP Model Against FE Models of
Asymmetric Pockets

Now that the MSP model was validated against FE models of multi-span plates, it is

necessary to compare the response of different pockets to the corresponding MSP model.

To show the generality of the approach, the validations are performed for different pocket

shapes. The strategy for the validation is to start with a rectangular pocket, then modify
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its shape by changing the dimensions of its sides and the angles of its corners. In such a

way, one could see the effect of the gradual change of the pocket shape on the response. The

general shape of the pocket is shown in Fig. 5.16 and the dimensions are listed in Table 5.14.

The output points, where the responses are calculated, are on side 1, as shown in Fig. 5.16.

The total number of elements for the six pockets ranged between 2200 to 2600.
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Figure 5.16: Representation of the dimensions of the generalized pocket used for the
validation of the MSP model

Table 5.14: Dimensions (in mm) of the pockets for the validation of the MSP model

L1 L2 L3 L4 h1 h2 h3 h4 H α1 α2

Pocket 1 150.0 100.0 150.0 100.0 3.0 3.5 4.0 2.0 80 0 0
Pocket 2 150.0 101.6 132.0 100.0 3.0 3.5 4.0 2.0 80 10 0
Pocket 3 150.0 106.6 113.0 100.0 3.0 3.5 4.0 2.0 80 20 0
Pocket 4 150.0 115.6 92.0 100.0 3.0 3.5 4.0 2.0 80 30 0
Pocket 5 150.0 130.6 66.0 100.0 3.0 3.5 4.0 2.0 80 40 0
Pocket 6 200.0 130.6 58.0 115.6 3.0 3.5 4.0 2.0 80 40 30
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The frequencies for pocket 1 calculated using a FE model and the MSP model of the

pocket are listed in Table 5.15. The maximum error in the predictions of the frequencies

is less than 3.5%. This close agreement in the frequencies can be attributed to the good

approximation of the mode shapes. The first four mode shapes of the pocket using the FE

and the MSP models are shown in Fig. 5.17. By unfolding the pocket sides, one can see the

agreement between the mode shapes of the pocket and the multi-span plate. For the first

mode shape, sides 1 and 3 move outwards, while sides 2 and 4 move inward. Correspondingly,

spans 1 and 3 move up and spans 2 and 4 move down. For mode 2, sides 1, 2 and 4 move

outward and side 3 moves inward. In the multi-span plate, spans 1, 2, 4 move down and

span 3 moves up. For mode 3, the maximum deflection is seen on side 4 and span 4, while

one can notice a sine wave shape on side 1 and span 1. For mode 4, the maximum amplitude

is at side 2 and span 2. The shape of a sine wave can be seen at sides 1 and 3 and spans 1

and 3.

Table 5.15: Comparison of the mode frequencies of pocket 1 predicted by the FE model and
the MSP model

Mode 1 2 3 4 5 6 7 8 9 10
FE (Hz) 756 949 1126 1533 1880 2323 2427 2871 2910 3484

MSP (Hz) 768 969 1143 1565 1926 2388 2488 2926 2956 3592
Error % 1.6 2.1 1.5 2.1 2.4 2.8 2.5 1.9 1.6 3.1

A sinusoidal force of 30 N amplitude and 1256 rad/s frequency was applied at the centre

of the free edge of side/span 1, i.e point PB (x=75 mm, and y = 80 mm). The responses

at the four output points for the FE and the MSP models are shown in Fig. 5.18. The

error in the prediction of the responses at points PB and PA, are less than 5.5 % and 4.5

%, respectively. The maximum amplitude of vibration at point PB is 155 µm. As shown

in Fig. 5.18, the responses calculated using the MSP model and the FE pocket are in close

agreement in terms of the global amplitude and the instantaneous time response. For this

case, 20 mode shapes were used for the MSP model versus 30 mode shapes in the FE model.

The computation time to determine the responses was reduced by at least one order of

magnitude when compared to the FE calculations. When 30 mode shapes were used in the

MSP model, the errors in the response at point PB were less than 4.5%.
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Figure 5.17: Comparison of the first four mode shapes of pocket 1 using the FE and the
MSP models
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Figure 5.18: Comparison of the responses of pocket 1 predicted by the FE and the MSP
models under a sinusoidal load

For pockets 2, 3, 4 and 5, similar agreement in the predictions of the frequencies of the

pockets are achieved with errors less than 6%. The responses at point PB, for pockets 2,

3, 4 and 5, are shown in Fig. 5.19. The frequency, amplitude and location of the load are

similar to those applied for pocket 1. One can see that an excellent matching is achieved

in the responses with predictions errors of less than 5%. It can be also noticed that small

variations exist between the response of the different pockets. This shows that for a given

side (e.g. side 1), variations in the dimensions of the adjacent sides has negligible effect on

its response. This is one of the reasons why the concept of a multi-span plate can accurately

simulate the response of rectangular and non-rectangular pockets.

The comparison of the frequencies of pocket 6, which has a trapezoidal shape, are listed

in Table 5.16, with prediction errors less than 5%. The responses at the four points on side

1 are shown in Fig. 5.20. The errors for all points are less than 3%. Although the amplitude

of the applied force was equal to 30 N, the maximum amplitude of vibration is 223 µm.

This large amplitude of vibration and small applied force highlight the main challenge in

machining such structures.
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Figure 5.19: Comparison of the responses at point PB for pockets 2, 3, 4 and 5 predicted by
the FE and the MSP models under a sinusoidal load

Table 5.16: Comparison of the mode frequencies of pocket 6 predicted by the FE model and
the MSP model

Mode 1 2 3 4 5 6 7 8 9 10
FE (Hz) 593 864 1040 1252 1986 2224 2264 2603 2726 3329

MSP (Hz) 600 882 1067 1278 2027 2259 2337 2706 2756 3413
Error % 1.2 2.1 2.6 2.1 2.1 1.6 3.2 4.0 1.1 2.5

To validate the model for different loading conditions, the frequency of the load was

increased to 3896 rad/s (620 Hz, 37200 rpm) while maintaining its amplitude and location

unchanged. This frequency is chosen such that it is close to the first natural frequency of

pocket 6 and thus, resonance is expected. As seen in Fig. 5.21, the responses are still in

excellent agreement. Thus, the MSP model can provide accurate predictions for the responses

of thin-walled pockets in resonance.
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Figure 5.20: Comparison of the responses of pocket 6 predicted by the FE and the MSP
models under a sinusoidal load (1256 rad/s)
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Figure 5.21: Comparison of the responses of pocket 6 predicted by the FE and the MSP
models under a sinusoidal load (3896 rad/s)
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5.4 Validation of the Change of Thickness (CoT) Formulation

As mentioned in section 4.5 and as shown in Fig. 5.22, there are different cases for the

change of thickness which can be represented by a vertical strip (VS) for case A, horizontal

strip (HS) for case B, corner strip (CS) for case C and L-shaped strip (LS) for case D.

In Fig. 5.22, the original and the new (reduced) thicknesses are referred to as ho and hn,

respectively. The dimensions of the strips are determined by the x and y coordinates. As

mentioned in section 4.5, the MSP model will include five spans in the x-direction and three

spans in the y-directions. Spans 1 and 2 in the x-direction represent side 1 of the pocket,

and spans 3, 4 and 5 represent sides 2, 3 and 4, respectively.

Case A: Vertical Strip (VS)

Case C: Corner Strip (CS) Case D: L-shaped Strip (LS)

Case B: Horizontal strip (HS)

hn

ho
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Figure 5.22: Illustration for the cases of the change of thickness used in the validation of the
MSP model with the CoT formulation

To validate the MSP model with the CoT formulation, these four cases for the change of

thickness were simulated on side 1 of pocket 6 (refer to Table 5.14). According to Fig. 5.22,

x1 and x2 are equal to 100 mm and 200 mm, respectively, and y1, y2 and y3 are equal to

26.6 mm, 53.3 mm and 80 mm, respectively. The original and the new thicknesses are equal

to 3 mm and 2 mm, respectively. For the machining of such thin-walled structures, this is

considered as a large change of thickness since it will lead to relatively high cutting forces

and thus more vibrations. For the validation of the capability of the proposed model in

capturing the effect of the change of thickness, these selected values represent an extreme
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case. The frequencies of the four cases are listed in Table 5.17. An excellent matching in

frequencies is achieved with errors less than 5% for the first 10 frequencies of all the cases.

One can note that if the MSP model were used with a uniform thickness for spans 1 and 2,

this would have produced very large errors in the predictions of the frequencies.

Table 5.17: Comparison of the mode frequencies of pocket 6 for different configurations
for the change of thickness predicted by the FE model and the MSP model with the CoT
formulation

Case Mode 1 2 3 4 5 6 7 8 9 10
Case A FE (Hz) 515 792 980 1146 1717 2105 2117 2219 2523 2819
(VS) MSP (Hz) 520 807 1001 1179 1748 2131 2170 2265 2619 2876

Error % 1.0 2.0 2.1 2.8 1.8 1.2 2.5 2.1 3.8 2.0
Case B FE (Hz) 611 825 1004 1146 1762 2133 2215 2471 2516 2859
(HS) MSP (Hz) 612 859 1026 1182 1783 2225 2265 2528 2581 2967

Error % 0.1 4.0 2.2 3.1 1.2 4.3 2.3 2.3 2.6 3.8
Case C FE (Hz) 605 825 1030 1209 1854 2167 2217 2558 2634 3104
(CS) MSP (Hz) 609 852 1058 1243 1892 2239 2268 2669 2716 3244

Error % 0.6 3.3 2.7 2.8 2.0 3.3 2.3 4.3 3.1 4.5
Case D FE (Hz) 580 802 979 1107 1669 2089 2194 2320 2443 2746

(LS) MSP (Hz) 581 839 988 1155 1671 2184 2250 2385 2518 2864
Error % 0.2 4.6 0.9 4.4 0.1 4.6 2.6 2.8 3.1 4.3

For all the cases, a load was applied at point PB (x = 100 mm, y = 80 mm) with an

amplitude of 30 N and a frequency of 1256 rad/s on side 1. For case A (vertical strip), the

responses at the four locations shown in Fig. 5.16 are presented in Fig. 5.23. The errors

in the response at point PB is less than 2.5 % with a maximum amplitude of vibration of

383 µm. The errors for the other points are less than 1.0%. Although the applied force is

relatively low (30 N), the amplitude of vibrations is very high. This explains why such a

change in thickness is not common in the machining of thin-walled structures since in such

case the cutting forces will be even higher than 30 N and may lead to chatter. As discussed

in section 4.5, for case A (VS), the close agreement between the MSP and the FE models is

expected since the trial functions satisfy all the geometric boundary conditions.

For case B (horizontal strip), the responses are shown in Fig. 5.24. The error in the

prediction of the response at point PB is less than 4.0 % with a maximum amplitude of

vibration of 344 µm, while the errors at the other points are less than 1.0%. For this case,
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Figure 5.23: Comparison of the responses of pocket 6 predicted by the FE model and the
MSP model with the CoT formulation for Case A: Vertical strip

the trial functions satisfy all the geometric boundary conditions expect for the continuity of

the rotations about edges x = x0 and x = x2. One can see that a close agreement in the

response is still achieved.

The responses for case C (corner strip), and case D (L-shaped strip) are shown in Fig. 5.25

and Fig. 5.26, respectively. The error at point PB is less than 6.5% and 3% for cases C and

D, respectively. The close agreement in the responses for these two cases shows that the CoT

formulation can simulate the continuous change of thickness with relatively high accuracy.

An extensive effort was performed for the validation of the CoT formulation using 162

different FE models. The response of eighteen different rectangular pockets, with nine cases

for the change of thickness for each pocket were evaluated. A general 3D sketch of the pocket

is shown in Fig. 5.27. All pockets have a width Wd of 100 mm. The eighteen pockets were

categorized into three sets (Set E, Set F, Set G) with lengths L of 200 mm, 150 mm, and

100 mm, respectively. The eighteen pockets are generated by varying the height H and the

thicknesses of the sides as reported in Table 5.18.

Different scenarios for the change of thickness were implemented based on the four cases
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Figure 5.24: Comparison of the responses of pocket 6 predicted by the FE model and the
MSP model with the CoT formulation for Case B: Horizontal strip
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Figure 5.25: Comparison of the responses of pocket 6 predicted by the FE model and the
MSP model with the CoT formulation for Case C: Corner strip
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Figure 5.26: Comparison of the responses of pocket 6 predicted by the FE model and the
MSP model with the CoT formulation for Case D: L-shaped strip

Table 5.18: Pocket dimensions (in mm) for the validation of the CoT formulation

Height (H) Thickness (h)

No
. Set E Set F Set G

Side 1 Side 2 Side 3 Side 4
(L=200 mm) (L=150 mm) (L=100 mm)

1 80 60 60 3 3 3 3
2 80 60 60 3 4 2 4
3 80 60 90 4 2 3 2
4 120 90 90 3 3 3 3
5 120 90 90 3 4 2 4
6 120 90 90 4 2 3 2

presented in Fig 5.22. The change of thickness for all cases was applied by selecting a non-

uniform strip on side 1 and assigning to it a different thickness. The dimensions of the strip

are determined by µ1 and µ2, which represent a fraction of the length L and µ3 and µ4 which

represent a fraction of the height H. To establish the limits of the CoT formulation, the new

(reduced) thickness is half the original one. As mentioned previously, such large change of

thickness, is not likely to occur in the machining of thin-walled structures since this will lead
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Figure 5.27: 3D sketch for the representation of the different pockets and cases for the change
of thickness

to very high forces, chatter and damage of the workpiece or the cutting tool. The lengths

and heights of the strips and the location of the applied force are presented in Table 5.19.

The coordinates of the point of load application are determined by xf and yf . For each case,

a force of 10 N amplitude and 1256 rad/s frequency was applied on side 1 at (xfL, yfH).

The pocket response was evaluated at the point of load application using a FE model and

the corresponding MSP model.

Table 5.19: Dimensions of the strips for the validation of the CoT formulation

Case
Variable 1 2 3 4 5 6 7 8 9
µ1 0.0 1/4 0.5 3/4 1.0 0.5 1.0 1.0 1.0
µ2 0.0 0.0 0.0 0.0 0.0 0.5 1/4 0.5 3/4
µ3 0.0 0.5 0.5 0.5 0.5 0.5 1/3 1/3 1/3
µ4 0.0 0.0 0.0 0.0 0.0 0.5 1/3 1/3 1/3
xf 0.5 1/4 0.5 3/4 0.5 0.5 1/4 0.5 3/4
yf 1.0 1.0 1.0 1.0 1.0 1.0 2/3 2/3 2/3
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A summary of the prediction errors in the maximum amplitude of vibration for the 162

cases is shown in Fig. 5.28. The errors are calculated relative to the maximum amplitude

of the response of the FE model at the point of load application and not relative to the

maximum displacement of the whole side. The figure shows that for all the cases, expect

for Pocket G3 (cases 5,9), the errors are less than 10%. The slightly large error for Pocket

G3 (case 5) can be attributed to the fact that not all the geometric boundary conditions

are satisfied and that the change of thickness is very high. For the other cases, given the

large change of thickness, the model provides an accurate calculation of the responses. An

example of the obtained responses for pockets E1, E3, G1, and G3 (case 6) are shown in Fig.

5.29. An excellent agreement in the responses is achieved in all the cases.
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Figure 5.28: Prediction errors of the MSP model with the CoT formulation for different cases

129



0 0.005 0.01 0.015
-50

0

50

D
is

pl
ac

em
en

t (
μm

)

Time (seconds)

Pocket E1

0 0.005 0.01 0.015
-20

0

20

D
is

pl
ac

em
en

t (
μm

)

Time (seconds)

Pocket E3

0 0.005 0.01 0.015
-20

0

20

D
is

pl
ac

em
en

t (
μm

)

Time (seconds)

Pocket G1

0 0.005 0.01 0.015
-10

0

10

D
is

pl
ac

em
en

t (
μm

)

Time (seconds)

Pocket G3
FE model
MSP model

Figure 5.29: The responses of pockets E1, E3, G1 and G3 for case 6 of the change of thickness
predicted by the FE model and the MSP model with the CoT formulation

5.5 Validation of the Formulations for the Effect of the Fixture
Supports

In section 4.6, two formulations were presented to model perfectly rigid and deformable

supports. To validate these formulations, two different fixture layouts, which are illustrated

in Fig. 5.30 were applied in the FE model of pocket 6 (refer to Fig. 5.16 and Table 5.14) and

compared to the corresponding MSP model with the proposed support formulations.

5.5.1 Validation of the Perfectly Rigid Support (PRS) Formulation

The Perfectly Rigid Support (PRS) formulation, presented in section 4.6.1, is based on

representing the support using holonomic constraints. For pocket 6, point PA (x=100 mm,

y=40 mm), which is at the centre of side 1, was rigidly constrained. The comparison of

the frequencies of the FE model and the MSP model with the PRS formulation is listed in

Table 5.20 with errors in frequencies less than 4.5%. A force of 30 N and 1256 rad/s was
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Figure 5.30: Illustration of the support locations on pocket 6

applied on side 1 at point PB (x=100 mm, y=80 mm). The responses determined using the

FE model of the pocket and the MSP model are shown in Fig. 5.31. The error at point

PB is less than 8% with a maximum amplitude of vibration of 82 µm. This corresponds to

an absolute error less than 6.5 µm. As seen for the response of point PA, the constraint is

satisfied since the vibrations are zero. The errors at points PC and PD are less than 1.5%.

As compared to the response of the same pocket without constraints (refer to Fig. 5.20), a

reduction in the amplitude of vibration of 140 µm (≈ 65%) was achieved by applying only

one constraint on the pocket side and thus the amplitude of vibration falls within the typical

tolerance requirements of ± 125 µm.

Table 5.20: Comparison of the mode frequencies of pocket 6 with one support predicted by
the FE model and the MSP model with the PRS formulation

Mode 1 2 3 4 5 6 7 8 9 10
FE (Hz) 833 988 1080 1271 2071 2234 2308 2609 3318 3347

MSP (Hz) 850 1031 1113 1301 2116 2248 2384 2704 3386 3482
Error % 2.1 4.4 3.1 2.3 2.2 0.6 3.3 3.7 2.1 4.0

Instead of using one support at the centre of side 1, i.e point PA, two points (x=50 mm,

y=80 mm and x=150 mm, y=80 mm) on the free edge of side 1 were rigidly constrained

as illustrated in Fig. 5.30. The frequencies of the FE model and the MSP model are listed
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Figure 5.31: Comparison of the responses of pocket 6 with one rigid support predicted by
the FE model and the MSP model with the PRS formulation

in Table 5.21. As can be seen the errors are less than 6.0%. The frequency, amplitude and

location of the applied force are similar to the previous case (one support). The responses

determined using the FE model of the pocket and the MSP model were calculated and are

shown in Fig. 5.32. The error in the prediction of the response at point PB is less than 7%

with a maximum amplitude of vibration of 72 µm. This corresponds to an absolute error of

less than 5.0 µm. The errors at the other points are less than 3%. As compared to the same

pocket with one support, a reduction in the amplitude of vibration of 10 µm only (12%) was

achieved by applying two constraints on the pocket side. Thus, for this particular case, a

two support fixture layout did not substantially reduce the vibrations when compared to a

support applied at a single point. The same pocket and loading were tested when constraints

were added at the middle of the free edge of sides 2, 3 and 4. Almost the same response was

achieved for the points on side 1 with the same maximum amplitude. This shows that the

effect of the supports on adjacent sides (sides 2, 3, 4) on the response of the load application

side (side 1) is negligible, as explained in section 3.2.4.
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Table 5.21: Comparison of the mode frequencies of pocket 6 with two supports predicted by
the FE model and the MSP model with the PRS formulation

Mode 1 2 3 4 5 6 7 8 9 10
FE (Hz) 877 1097 1220 2067 2220 2265 2411 2638 3306 3508

MSP (Hz) 892 1134 1280 2133 2247 2399 2496 2726 3449 3619
Error % 1.8 3.4 4.9 3.2 1.2 5.9 3.5 3.3 4.3 3.2
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Figure 5.32: Comparison of the responses of pocket 6 with two rigid supports predicted by
the FE model and the MSP model with the PRS formulation

5.5.2 Validation of the Finite Stiffness Support (FSS) Formulation

The objective here is to validate the Finite Stiffness Support (FSS) formulation for the

effect of the supports presented in section 4.6.2, which is based on springs with a finite

stiffness. The same cases presented in section 5.5.1 for one and two supports were repeated

with deformable supports having a stiffness 3×106 N/m. As will be seen in Chapter 6,

section 6.2.3, this stiffness value corresponds to the stiffness of the supports used during

the machining experiments. The errors in the prediction of the frequencies for both cases

were less than 4.5 %. The same amplitude, frequency and location of the applied load were
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used for the cases with one or two flexible supports, as the corresponding cases with rigid

supports. The responses for the case with one support at point PA are shown in Fig. 5.33.

The error at point PB is less than 3%, which corresponds to an absolute error of 3.3 µm with

a maximum amplitude of vibrations of 115 µm. The error at point PA (100, 40) relative to

the maximum displacement of this point (not the maximum displacement of the whole side),

is less than 2.0%. This shows that the formulation of the flexible supports is able to capture

accurately the response of the structure even at the location of the support.
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Figure 5.33: Comparison of the responses of pocket 6 with one support predicted by the FE
model and the MSP model with the FSS formulation

For the case of two point supports, the response is shown in Fig. 5.34. The error in the

response at point PB (100, 80) is less than 5% and the errors at the other points are less than

2%. The maximum amplitude of vibration is 80 µm. When comparing the flexible supports

to the rigid supports, the reduction in the amplitude of vibration is ≈ 63% when using one

rigid support and ≈ 50% when using one flexible support, instead of no supports. In both

cases, a substantial reduction in the vibration amplitude was achieved. Similarly, using two

supports instead of no supports lead to a reduction in amplitude of 67% and 65% for the
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rigid and flexible supports, respectively. As a conclusion, for the initial design of the fixture

layout, the designer could assume the supports to be perfectly rigid in order not to include

a large number of variables in the optimization of the fixture layout. However, for the fine

tuning of the fixture layout, it might be necessary to include the effect of the flexibility of

the supports for accurate predictions of the cutting forces and the surface topography of the

machined workpiece.
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Figure 5.34: Comparison of the responses of pocket 6 with two supports predicted by the
FE model and the MSP model with the FSS formulation

5.5.3 Validation of the PRS and the FSS Formulations while Including the CoT
Formulation

It is necessary to validate the CoT formulation with the proposed formulations to represent

the effect of the fixture supports. Thus, two points at x=50 mm, y=80 mm and x=150 mm,

y= 80 mm were rigidly constrained one side 1 of pocket 6. The change of thickness according

to case D (L-shaped strip) (refer to Fig. 5.22) was also applied on side 1 as illustrated in
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Fig. 5.35. Both the PRS and FSS formulations were implemented. For the FSS formulation,

a spring stiffness of 108 N/m was used to simulate a perfectly rigid support. The errors

in frequencies for both cases were less than 6% when compared to the FE model. The

responses are shown in Fig. 5.36, with a maximum error in the prediction of the responses

of less than 8.0% for both formulations. As can be seen, the FSS can be used to represent

both deformable and perfectly rigid supports.

Figure 5.35: Illustration of the support locations and the change of thickness with an L-
shaped strip on side 1 of pocket 6

It is noteworthy that simulating the dynamic response of the pocket shown in Fig. 5.35,

while considering the continuous change of thickness for all the sides and five different fixture

layouts, would require approximately 90 to 100 hours computation time using a FE model.

Consequently, the FE models are not adopted for fixture design in the aerospace industry

due to their extensive computational requirements. Compared to this, the computation

time for the above-mentioned cases is reduced to less than one hour using the models and

formulations presented in this thesis. This significant reduction of computation time (one to

two orders of magnitude) will allow the use of these newly developed models and formulations

for interactive fixture design.
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Figure 5.36: Comparison of the responses of pocket 6 predicted by the FE model and the
MSP model with the PRS and the FSS formulations while including the CoT formulation

5.5.4 Use of the FSS Formulation with the MSP Model to Predict the Response
of a Pocket with Internal Rib-Walls

As mentioned in Chapter 3, section 3.2, one of the types of thin-walled aerospace structures

that need to be represented is a pocket with internal rib-walls. In Fig. 5.37, a rectangular

pocket with rib-walls across its length and width is illustrated. In the FE model, the base of

the pocket was clamped and a total of 1500 of elements was used. A force of 30 N amplitude

and 1256 rad/s was applied at point PB (100, 80) on side 1 and the response was calculated

at four output points as shown in Fig. 5.37. To represent the effect of the internal rib-walls,

the FSS formulation was implemented in the MSP model by adding two springs on each side

at the positions corresponding to the top and the middle of the rib-wall as illustrated by the

squares in Fig. 5.37. To simulate the high axial rigidity of the rib-walls, a stiffness of 107

N/m was used for all the springs.

The comparison of the frequencies determined using the MSP model and the frequencies

of the corresponding modes in the FE model are reported in Table 5.22 with errors less than
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Figure 5.37: Dimensions (in mm) of the pocket with internal rib-walls

3.5%. The responses predicted using the MSP and the FE model are shown in Fig. 5.38. The

error at points PB, where the load is applied, is less than 1.0% with a maximum amplitude

of vibration of 80 µm. The error at point PA is less than 3%. These results show that the

MSP model can accurately predict the response of the pocket even at the position of the

rib-wall.

Table 5.22: Comparison of the mode frequencies of the pocket with internal rib-wall predicted
by the FE model and the MSP model with the FSS formulation

Mode 1 2 3 4 5 6 7 8 9 10
FE (Hz) 1207 1418 1524 1797 2060 2423 2875 3382 3891 4004

MSP (Hz) 1234 1434 1553 1822 2111 2479 2924 3463 4015 4134
Error % 2.2 1.1 1.9 1.4 2.5 2.3 1.7 2.4 3.2 3.2
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Figure 5.38: Comparison of the response of the pocket with internal rib-wall predicted by
the FE model and the MSP model with the FSS formulation

5.6 Summary of the Results

In this chapter, extensive validations of the mathematical models with respect to FE

models was presented. The validation cases were chosen so that they represent typical

pockets encountered in thin-walled aerospace structures in terms of the shape, dimensions,

features and types of loading during machining. The GSSP model was validated for different

thin-walled structures and different types of loadings (sinusoidal, impact and real machining

forces). Experimental impact tests were performed for the validation of the model as well

as for the verification of the FE model. In all cases, an excellent agreement in response

was found with errors less than 5 % when comparing the GSSP model with the FE model.

The proposed model offered at least one order of magnitude reduction in the computation

time. Similarly, the MSP model was validated for different pocket shapes and different loads.

The comparison of Rayleigh’s energy method and the Rayleigh-Ritz method was performed

and it was shown that for pockets with non-uniform thicknesses, the Rayleigh-Ritz method
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offers better accuracy in terms of the predictions of the frequencies and the responses with

errors less than 6%. The CoT formulation was validated using different pocket shapes and

change of thickness scenarios. An extensive analysis for 162 cases for the change of thickness

was performed and it was shown that the proposed formulation can accurately represent the

varying dynamics of the structures. The PRS and FSS formulations for rigid and flexible

supports were validated using different fixture layouts applied on a pocket. Using these

different validations cases, it was shown that the proposed models can accurately represent

the effect of the fixture layout on the dynamics of thin-walled structures during milling. An

excellent agreement in the prediction of the frequencies and the responses have been found

with errors less than 10 % and at least one order of magnitude reduction in computation

time when compared to FEM, thus satisfying the objectives set for this research program.

140



Chapter 6

Experimental Validation of the Dynamic
Models Through the Machining of
Thin-Walled Pockets

6.1 Introduction

In the previous chapter, the developed dynamic models were validated against FE models

and experimental impact tests. This chapter will detail the experimental validation of the

MSP model, the CoT formulation, and the FSS formulation, through the machining of thin-

walled workpieces. The chapter will include the description of the experimental setup, the

different model parameters, the procedure to prepare and conduct the experiment, error

analysis and the comparison of the results for the machining of a rectangular pocket, with

and without supports. The effect of the dynamics of the measurement systems on the output

signals will also be discussed. This will include, a brief review of the literature, the analysis

of the problem by the mean of a two-degree of freedom model and the development and the

validation of a new methodology for the compensation of the dynamics of the measurement

system in the measured force signal.

6.2 Description of the Experiment

The setup in the experiments was comprised of a machining centre, force and displacement

measurement systems, a fixture for locating and clamping the workpiece, and the cutting
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tools. The setup, the test procedures and the calibration of different measurement systems

are discussed in the coming subsections.

6.2.1 Experimental Setup

All tests were carried out on a 5-axis high-speed, high-power horizontal machining centre

Makino A88ε, with the following characteristics: 50 kW spindle, a maximum spindle speed

of 18,000 rpm, a maximum feed rate of 50 m/min, a tool clamping force of 19.6 kN and an

HSK 100A spindle adapter. The large machining envelope (900 × 800 × 970 mm) has the

capability to machine medium size components used in the aerospace industry. The machine

has a high thermal stability and rigidity; these characteristics reduce the thermal and the

machine vibration errors.

The acquisition of the data was performed using an 8 channel data acquisition card

(National Instruments, model NI PCI-4472) and a software application developed in LabView

(version 8.0). All signals were recorded with a high sampling frequency of 12,000 Hz to

capture the characteristics of the dynamics of the measurement system.

The setup consisting of the workpiece, the workpiece fixture, and the dynamometer is

shown in Fig. 6.1. A 3-component force measurement dynamometer (Kistler 9255B) was

fixed to the moving table of the machining centre. The dynamometer coordinate system,

referred to as DCS, is also shown in the figure. In the z-direction, the dynamometer has a

rigidity of 3 kN/µm and a natural frequency of 2.0 kHz, when mounted on a flange. In the

x- and y-directions, the dynamometer has a rigidity and a natural frequency of 2 kN/µm

and 1.7 kHz, respectively. The calibrated measurement range is 0 to 4 kN in the z-direction

and 0 to 2 kN in the x- and y-directions. The dynamometer has a linearity of ± 1%. In

these experiments, the cutting forces in the z-direction were the input to the model.

A rectangular pocket was machined from Aluminum 6060 with the dimensions shown

in Fig. 6.2. The bottom thick base of the workpiece was necessary to simulate clamped

boundary conditions at the bottom of the pocket. The grooves at the base of the workpiece

were used to fix the probe and support holders inside the pocket, since all the machining

was performed from outside. The 1/4” threaded holes were used to fix the supports to the
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Figure 6.1: Picture of the setup including the workpiece, the fixture, the probes and the
dynamometer

sides of the pocket as illustrated in Fig. 6.1.

The vibrations of the thin-walled pockets were measured by three contactless position

sensors (probes 1 and 2: KAMAN, model 1UEP and probe 3: BENTLY model 3300

REBAM). The diameters and the lengths of probes 1 and 2 are 6.35 mm and 30 mm,

respectively, while those of probe 3 are 10 mm and 50 mm, respectively. Cubic regression

functions were used for the calibration of probes 1 and 2 (KAMAN) and a linear function

was used for probe 3 (Bently), as shown in Fig. 6.3. The coefficients of determination R2

for the calibration functions of probes 1, 2 and 3 are 0.9998, 0.9997 and 0.9996, respectively.

The errors due to calibration will be discussed in section 6.4.

To take into account the magnetic effect of the fixture on the probe measurements, the

probes were calibrated while mounted on the probe holder. The probe holder was designed

in a way to have relatively high rigidity, and to maintain a minimum distance from the
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support to the face of the probe, as recommended by the manufacturer. The dimensions

of the probe holder used in this experiment are shown in Fig. 6.4. The same design of the

probe holders was used to hold the fixture supports (locators). The supports were threaded

aluminum pins with a diameter of 6.35 mm. As shown in Fig. 6.1, the supports (pins) fit

inside the threaded holes on the pocket sides. Epoxy adhesive was added to eliminate any

relative motion between the pin and the workpiece.

A two-flute Cobalt M42 end-mill with a 15.875 mm diameter and a 30◦ helix angle was

used for the machining of the pocket from outside. The tool was mounted on a balanceable

HSK 100A tool holder, as shown in Fig. 6.5. The whole assembly was balanced up to 20,000

rpm with a permissible unbalance of 9.22 g (balancing grade: G2.5).
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Figure 6.5: Picture of the end-mill mounted on the tool holder

6.2.2 Experimental Procedures

A solid block was opened using a two-flute end mill with a diameter of 3/4 inch (19.05

mm). A 1.0 mm machining allowance was left on each wall from inside. A semi-finishing

machining path with a radial depth of cut of 0.5 mm was performed on the inside walls of

the pocket using a four-flute end mill with a diameter of 7/16 inch (11.11 mm). Finally,

the walls were finished using a four-flute end mill with a diameter of 1/4 inch (6.35 mm) to

produce the desired corner fillets. A 0.5 mm thickness is machined from the outside of the

walls of the pocket. After these machining processes, the block had the dimensions shown

in Fig. 6.2.

After opening the pocket, the workpiece was removed and the tool and the holder in

Fig. 6.5 were mounted on the spindle. The forces were measured while cutting in air

to determine the effect of any tool/spindle unbalance on the forces. The stability lobes

were determined for the tool-workpiece material combination to properly select the cutting

parameters. The probes and the holders were then installed inside the pocket, which was

mounted on the dynamometer as shown in Fig. 6.1.

The machining started on the outside of side 1 without any fixture supports for the walls

of the pocket. The measurement of the displacement of side 1 was performed using the three

contactless probes shown in Fig. 6.6a. After finishing the machining of side 1, three supports

were installed on sides 2, 3, and 4 and two probes were placed facing side 3 as illustrated
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in Fig. 6.6b. The block was flipped such that side 3 is at the bottom. The workpiece

coordinate system (WCS) is always located at the lower right corner of the machined side of

the pocket. To ensure the accuracy of the force measurements, the distance in the z-direction

(with respect to DCS) between the force application point (cutting tool) and the face of the

dynamometer was maintained less than 100 mm, as recommended by the dynamometer

supplier. Thus, during the machining of sides 1 and 3, the pocket was placed such that

the side which is machined is closer to the dynamometer top face as shown in Fig. 6.6.

Moreover, the workpiece was always positioned near the centre of the dynamometer. During

the machining of one side, the thicknesses of the other sides remained unchanged.

Probes

Side 1 Side 3

Probes

(a) 3D Illustration of the set up 

during the machining of side 1

(b) 3D Illustration of the set up 

during the machining of side 3

Dynamometer 

Face
<100 mm <100 mm

z
x

y

z
x

y

Figure 6.6: Illustration of the setup during the machining of sides 1 and 3

For each of sides 1 and 3, the machining started at the top free edge of the side until

reaching the bottom (fixed end). An illustration of the machining paths is shown in Fig. 6.7.

The position of the tool relative to the top edge of the side will be referred to as the tool-path

depth (dp). Thus, the axial depth of cut (dy) is the distance between a given tool-path depth
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and the previous one. For each tool-path depth, two machining paths were performed. All

the measurement are done during the first path. The radial depth of cut of the first path is

designated as dz. Thus, during this path, the thickness is reduced by an amount dz as shown

in Fig. 6.7a. Then during the second path, the tool moves by 0.2 mm in the z-direction (with

respect to WCS) as presented in Fig. 6.7b. The role of this path is to clean any under- or

over- cut from the first path. In addition, it ensures that at a given tool-path depth, the

tool does not touch the workpiece at the previous tool-path depths. This is illustrated in

Fig. 6.7c. In this way, the force location can be determined accurately. At the end of each

case, after reaching the bottom of the side, the stability lobes of the side were determined

at the expected most flexible point. From the stability lobes of the workpiece and the tool,

the cutting parameters for the next thickness were chosen. At some instances, the selected

cutting parameters still resulted in chatter, especially at the initial tool-path depths. As a

consequence, the cutting parameters were modified until chatter was eliminated or reduced

to an acceptable level.

(a) First path at a 

tool-path depth 

dp = dy

(b) Second path at 

a tool-path depth

dp = dy

(c) First path at a 

tool-path depth 

dp = 2dy
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Figure 6.7: Description of the tool path used for machining the side of the pocket
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Table 6.1 shows the sequence for the reduction of the thickness of sides 1 and 3. There are

two sets of results, one for the pocket without supports (machining side 1) and the second for

the pocket with supports (machining side 3). There are four cases in each set of results. At a

given tool-path depth dp, the intermediate thickness designate the thickness of the wall after

the first machining tool path. The final thickness is the thickness of the wall after the second

tool path. The name for each case is assigned according to the initial and final thicknesses.

The details of the feed rates and the spindle speeds for each case will be presented in section

6.5, Tables 6.5 and 6.6. During the machining of side 1, the thicknesses of sides 2, 3 and 4

were 2.0 mm, 4.0 mm and 3.0 mm, respectively. During the machining of side 3, the average

thickness of side 1 was found to be 1.20 mm.

Table 6.1: Thicknesses and radial and axial depths of cut for the different cases

Side Set Case
Initial
thickness
(mm)

Intermediate
thickness
(mm)

Final
thickness
(mm)

dy

(mm)
dz

(mm)

S
id

e
1

No supports 4.0 - 3.2 4.0 3.4 3.2 2.0 0.6
No supports 3.2 - 2.4 3.2 2.6 2.4 2.0 0.6
No supports 2.4 - 1.8 2.4 2.0 1.8 1.5 0.4
No supports 1.8 - 1.3 1.8 1.5 1.3 1.0 0.3

S
id

e
3

With supports 4.0 - 3.0 4.0 3.2 3.0 4.0 0.8
With supports 3.0 - 2.1 3.0 2.3 2.1 3.0 0.7
With supports 2.1 - 1.5 2.1 1.7 1.5 1.0 0.4
With supports 1.5 - 1.0 1.5 1.2 1.0 1.0 0.3

The probe locations for the pocket without and with support are shown in Fig. 6.6 and

are specified in Table 6.2. All the dimensions are determined with respect to the origin of the

workpiece coordinate system WCS. The probe measures the average vibration of the surface

in-front of its face. To compare the experimental results with the MSP model, for each probe

position, an average of 5 points was used in the MSP model. One point was located at the

centre of the probe, and the remaining 4 points were equally distributed on a circle with a

diameter equal to the diameter of the probe.
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Table 6.2: Probe locations

Side 1 Side 3
without supports with supports
x (mm) y (mm) x (mm) y (mm)

Probe 1 62.0 43.0 88 42.5
Probe 2 30.0 43.0 33 42.5
Probe 3 92.5 41.5 — —

6.2.3 Parameters Used in the Developed Dynamic Models

For the comparison of the results, the machining forces in the z-direction are input to

the MSP model with the CoT and the FSS formulations. The probe measurements and the

predicted responses are compared.

In the MSP model, the following workpiece material properties were used: Young’s

modulus E = 69 × 103 MPa, Poisson’s ratio ν = 0.3 and density ρ = 2700 kg/m3. In

all cases, the load was treated as a line load. The calculation of the response was performed

using the explicit Runge-Kutta (4,5) integration through the MATLAB function “ode45”

with a relative tolerance error of 10−5, an absolute tolerance error of 10−6 and a maximum

time step of 10−5 s. According to the analysis presented in Chapter 5, it was sufficient to

include 10 mode shapes in the MSP model for the comparison of the results of the pocket

without supports. This was confirmed with some additional convergence analysis in which

the number of included mode shapes were incrementally increased from 5 modes to 25 modes.

It was found that the difference between the results for 10 modes and 25 modes are less than

0.3% in terms of the maximum amplitude of vibration. For the pocket with supports, 20

mode shapes were used to better describe the response since the supports add extra dynamic

constraints to the equations. To approximate the continuous change of thickness during

machining at a given depth of cut, the thickness value was updated five times.

For the set of results of the pocket with supports, the FSS formulation for deformable

supports was used to account for the support and the holder flexibility. The stiffness of the

support/ holder system is affected by the material and geometric properties of the support

and the holder in addition to the effect of the interface between the support and its holder,
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and the support and the workpiece. An estimated stiffness of 3.0 ×106 N/m was used

through out all the cases. To determine this estimated value of the stiffness, preliminary tap

tests were performed by applying impacts on the top of the support holder and measuring

the response at the same point. An estimated stiffness was determined from the transfer

function. This stiffness value was input to the model as an initial guess for the calibration

of the support stiffness. The calibration was performed for only one case and one depth of

cut by matching the response from the model and the experiment at the support location.

6.3 Dynamics of the Force Measurement System

Different types of transducers can be used for the force measurement either by mounting

them on the workpiece or on the spindle holding the cutting tool. When discussing the

force measurement system, two factors need to be considered. The first is the dynamic

characteristics of the force measurement system and the second is the nature of the applied

force. As mentioned previously in the experimental setup, the measurements of the forces

were performed using a rigid dynamometer, with a natural frequency of 2 KHz in the z-

direction (the direction of concern). Based on standard guidelines, accurate measurement

up to 1/3 of the natural frequency of the transducer can be achieved [169]. This corresponds

to a maximum rotational speed of 20,000 rpm for an end mill with 2 flutes, similar to the one

used in this experiment. However, due to the extra mass of the workpiece and the fixture,

the natural frequency of the dynamometer is further decreased [170, 171]. In addition, the

workpiece and the fixture act as a mechanical filter, which distorts the force signal [172].

The dynamometer measurements are accurate for roughing operations of rigid workpieces

due to the large static component of the forces [173]. For finishing operations, the milling

process has the following characteristics, which are directly reflected on the force signal:

• Small radial depths of cut, which lead to small immersion angles as compared to an

immersion angle of 180◦ in the case of slotting. This results in a highly intermittent

force with impulse-like signal. Even at lower frequencies, this force can still excite the

dynamometer natural frequencies [171].
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• Due to the small radial and axial depths of cut, the force amplitude is low. Thus the

signal to noise ratio is low [171].

• For relatively small tool diameters, a higher rotational tool speed is required. This

leads to high frequency forces, which can excite the dynamometer natural frequencies.

One of the traditional solutions to such problem is the accelerometric compensation, in

which the inertial effect of the dynamometer top plate is subtracted from the force signal

[174, 175, 176]. However, in many instances, this technique leads to large inaccuracies and

phase distortion in the neighbourhood of the natural frequency of the measurement system

[172]. Also, this technique is useful only for point measurements, where the excitation and

the response are at the same point [169]. A modification of this method was achieved by

using multiple accelerometers to measure the vibration of the top plate of the dynamometer

in three directions [177, 178]. The Frequency Response Function (FRF) between the input

force and the resultant acceleration was used to determine the stiffness and the mass matrices

of the dynamometer and to retrieve the original signal. Another technique was proposed

based on experimentally determining the transfer function between the input force and the

output signal from the dynamometer. By using inverse filtering of the transfer function, the

applied forces are then obtained from the measured force signals [170, 172]. It was shown

that a Kalman filter could also be implemented to filter out the effect of structural modes

on the force measurement [179]. In all previous studies, the workpiece was rigid, and thus

the material removal action did not substantially change its dynamic characteristics. Thus,

the dynamics of the workpiece was either ignored or identified once at the beginning of the

experiment. For the machining of thin-walled structures, the change of thickness considerably

affects the dynamics of the system, and thus the implementation of these approaches is not

practical. For the measurement of the forces during the milling of thin-walled structures,

De Lacalle et al. [171] suggested the use of spindle speeds lower than 6000 rpm, and using

a dynamometer with a higher natural frequency. However, it was pointed out that these

types of dynamometers have lower measurement range, which reduces their applicability.

Moreover, limiting the spindle speed below 6000 rpm is not practical since for finishing

operations, smaller tools are used, and thus a higher spindle speed is required. In the coming
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sections, a new methodology to determine the actual cutting forces from the measured signal

during the milling of thin-walled structures will be presented.

6.3.1 Two Degree of Freedom Model

To understand the nature of the problem, a simple two degree of freedom model was

formulated and is shown in Fig. 6.8. The dynamometer is represented by a mass mD, a

damping cD and a stiffness kD. The displacement of the top plate of the dynamometer is

designated by zD. For simplicity, the workpiece, with a displacement z1, is represented by

a one degree of freedom model with a mass m1, a damping c1, and a stiffness k1. An input

force f is applied on mass m1. The values of the parameters of the model, which are listed in

Table 6.3, were extracted from impact tests on the side of the pocket and the dynamometer.

Figure 6.8: Schematic of a two degree of freedom model

Table 6.3: Parameters of the two degree of freedom model

Workpiece Dynamometer
m1 0.01 (kg) mD 4.0 (kg)
c1 8.9(N.s/m) cD 5030 (N.s/m)
k1 7.8 ×105 (N/m) kD 6.3 ×108 (N/m)

The shape of the input force f was determined based on a simple 2D mechanistic force

model for a 2-flute, 15.875 mm diameter tool, a 10,000 rpm spindle speed and a 1 mm radial
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depth of cut. These parameters were chosen based on actual cutting experiments. The

output signal of the dynamometer results from the deformation of the piezo-electric crystal

inside it [172, 178]. Accordingly, the output signal (force) could be represented as kD × zD

for the model in Fig. 6.8. The comparison of the input force and the output force using

this model is shown in Fig. 6.9. Due to the dynamics of the system, the output signal was

completely distorted, and its amplitude was increased by more than 250%, as compared to

the input force signal. A comparison of the Fast Fourier Transform (FFT) of these input

and output signals is shown in Fig. 6.10. The harmonics of the tooth passing frequency was

present in both signals. In the input signal, the amplitudes of these harmonics have a peak at

the first tooth passing frequency and then they decrease gradually. Nevertheless, due to the

dynamics of the workpiece and the measurement system, the peak amplitude of the output

signal was found at a frequency of 1330 Hz, which is close to the natural frequency of the

workpiece.
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Figure 6.9: Comparison of the theocratical input force and the output force obtained using
the two degrees of freedom model

Different cutting parameters were examined, and it was observed that in order to minimize

the distortion of the output signal, a large radial depth of cut (or a small tool diameter),
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Figure 6.10: FFT of the input and output forces using the two degrees of freedom model

and a spindle speed lower than 2,000 rpm, were required. These values are not practical for

the purpose of finishing operations and can still give rise to other problems such as large

deviations from specified tolerances in the case of large immersion angles, chatter due to tool

deflection for tools with small diameters, and higher forces in the case of low cutting speeds.

Instead, a methodology is required to compensate for the dynamics of the measurement

system and the workpiece.

6.3.2 Proposed Methodology for the Identification of the Transfer Function of
the Force Measurement System

By reviewing the literature, the inverse filtering techniques were found to be a promising

solution for this problem. However, it was necessary to account for the change of the

workpiece dynamics due to the change of thickness of its sides during machining. The

proposed methodology is based on modelling the workpiece and the fixture as a two degree

of freedom system while representing the dynamic characteristics of the dynamometer by
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a multi-mode transfer function, determined experimentally. This model can be represented

schematically as shown in Fig. 6.11 where m1, c1, k1 and m2, c2, k2 are the mass, the damping

and the stiffness for the first and second degrees of freedom of the workpiece and the fixture,

respectively. The displacement of the first and second mass are designated by z1 and z2 while

the displacement of the face of the dynamometer is represented by zD.

Figure 6.11: Schematic illustration of the model representing the workpiece, the fixture and
the dynamometer setup

The flow chart shown in Fig. 6.12 represents the steps for the development and the

validation of the proposed methodology for the extraction of the input machining forces

from the dynamometer measurements:

1. Identification of the dynamometer transfer function: Impact tests are performed

to characterize the transfer function (TF ) between the input force (Fin) and the output

signal from the dynamometer (FD), as well as the transfer function (Tx) between the

input force and the displacement of the dynamometer top plate (zD). The dynamometer

is fixed on the table of the machining centre.

2. Optimization of the parameters of the workpiece/fixture model: Based on

the cutting parameters (spindle speed, and radial and axial depths of cut) that were

used during the machining of the pocket side at a given thickness (h) and tool-path

depth dp, the idealized shape of the machining force signal (Fs) is determined. The

transfer function representing the dynamics of the system (workpiece, fixture and
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dynamometer) and relating the input machining force to the output measurement

from the dynamometer is designated as Tsys. This transfer function is obtained by

combining the transfer function (Tw) of the workpiece and the fixture and the two

transfer functions TF and Tx (see Appendix C for the detailed formulation). The

transfer function Tw depends on the following unknown parameters of the workpiece

and the fixture (m1, m2, c1, c2 and k1, k2). To determine these parameters, the

idealized machining force Fs is input to the combined transfer function Tsys. A global

optimization such as Genetic Algorithms is used to determine the optimum parameters

that minimizes the error between the output force from the model (Fo) and the

force signal (Fm) which was measured during the machining experiments for the same

thickness h and tool-path depth dp. Once the transfer function Tsys is identified for

a given h and dp, it can be inverted an multiplied by the force measurement of the

dynamometer to obtain the real cutting forces.

To validate the proposed methodology, a known input force Fin (e.g. impact force) is

applied on the workpiece while the whole set-up is mounted. The output force measurement

of the dynamometer FD is multiplied by the inverse of the system transfer function [Tsys]
−1

to obtain the compensated force signal Fc. This force is then compared to the input force Fin.

If the two forces are in agreement, then the transfer function Tsys can accurately represent

the dynamics of the workpiece-fixture-dynamometer system.

6.3.3 Details of the Formulation of the Dynamics of the Force Measurement
System

To be able to use the different transfer functions, the variables are transformed to the

frequency domain. The force and the displacement variables described earlier including Fin,

FD, Fs, Fo, Fm, zD, z1, and z2 represent the Discrete Fourier Transform (DFT) of their

corresponding time signal variables. The identification of the two transfer functions (Tw and

Tx) was based on an average of 5 impact (tap) tests. For these tests, the force was applied and

measured using an impulse hammer with automatically-actuated piezoelectric units (PCB

086D05). The displacement of the top face of the dynamometer was obtained by measuring
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Figure 6.12: Flow chart for the identification of the transfer function of the workpiece-
dynamometer system

the acceleration at the centre of the dynamometer using a piezoelectric accelerometer (PCB

352C68) and then double integrating the measured signal.

Once identified, these transfer functions were used in the optimization. The optimization

was performed using Genetic Algorithms with three cross-overs (arithmetic, simple, and

heuristic) and five mutation operators (uniform, whole uniform, non-uniform, boundary and

Gaussian mutations). The frequencies at which the magnitude of the force Fm has peaks are

determined. These frequencies are sorted in a descending order according to the amplitude

of their corresponding force peak and are referred to as ωs for s = 1, 2, .... The objective

function ψe used to determine the error between the measured force and the predicted output
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force from the model is defined as follows:

ψe =

(
3∑

s=1

[Fo(ωs)− Fm(ωs)]
2

) 1
2

(6.1)

where Fo(ωs) and Fm(ωs) are the magnitude of the DFT of the output force from the model

(Fo) and the measured force (Fm), respectively, evaluated at ωs. Increasing the number

of maximum peaks in the objective function negligibly affected the final transfer function

in most cases. Nevertheless, in some instances, it was found that a high number of peaks

resulted in the divergence of the optimization scheme.

Since the sampling frequency was 12,000 Hz, the range of frequency in the DFT was

0 to 6,000 Hz. The high frequency range (4,000 Hz to 6,000 Hz) was removed from the

signal for several reasons. Due to aliasing problems, the range of frequencies from 0.4 to

0.5 of the sampling frequency does not contains accurate data to describe the system [180].

Moreover, by analyzing the frequency content of the hammer forces, it was observed that

the impacts could excite the structure up to a frequency close to 3,000 Hz. Consequently,

keeping the frequencies in the higher range resulted in large numerical errors and erroneous

results. Finally, it was found that the content of the signal in the higher range did not affect

the amplitude or the shape of the signal.

6.3.4 Validation of the Proposed Methodology for the Identification of the
Transfer Function of the Force Measurement System

Tap tests were performed on side 1 at the base of the pocket while the whole setup was

mounted. Applying the force on the base of the pocket allowed us to have large amplitude

impacts with sufficient energy content to excite the frequencies of the system, with good

coherence, and without damaging the workpiece. The transfer function Tsys was determined

through the procedure described in section 6.3.2 for the case of machining side 1 with a

thickness h of 3.2 mm and at a tool-path depth dp of 42 mm. This case was selected so

that the tool-path depth is close to the point where the impact force (Fin) for validation is

applied.
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Figure 6.13 shows the input force of the hammer Fin, the dynamometer measurements,

and the compensated force, in addition to the optimized transfer function Tsys. The error

between the maximum amplitudes of the hammer force and the dynamometer measured

force is more than 110%. By applying the proposed methodology, the error in amplitude

was reduced to less than 3%, as shown in Fig. 6.13. It can be seen that the proposed

methodology reduced the amplitude of the overshoot after the impact by more than 90%

relative to the maximum amplitude of the hammer (≈ 1800 N). While the forces after the

impact should be equal to zero, the measured forces have some residual vibrations. The

proposed methodology was able to substantially reduce these residual vibrations; however,

it did not completely eliminate it. To recuperate the correct force signal, these oscillations

have to be discarded. Similarly, when the proposed methodology is applied to the measured

machining forces, some oscillations could appear for the time interval when the flutes of

the tool are not engaged in the workpiece. These small amplitude oscillations will also be

discarded. Ten validation cases were performed and the average of the errors was found to

be 8.0%.
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6.4 Error Analysis of the Measurement System

To be able to validate the predictions of the proposed dynamic models experimentally,

the errors in the measurements of the forces and the displacements have to be accounted

for. Depending on the type of the experiment, different error analysis techniques could be

applied. The experiments could be categorized as multiple or single sample experiments. The

multiple sample experiment involves the repetition of the experiment for the same conditions

to quantify the uncertainties in the measurements. In the single sample experiment, the

uncertainty in the measurement is established analytically by combining the errors resulting

from the different measurement devices [181].

In the machining experiment, described in this chapter, there are many factors that could

affect the forces including the tool wear, the uniformity of the workpiece thickness, tool run-

out, material nonlinearities, the tool signature on the workpiece, and chatter. Thus it is very

difficult to repeat the different tests with exactly the same conditions. For this reason, the

experiment is considered as a single-measurement experiment.

For the displacement measurements, there are two main sources of errors. The first

is the error due to the lack of accuracy of the measurements of the probe (εp1). For a

given displacement (ua), the probe outputs a voltage, which is transformed to an equivalent

displacement (uc) through the calibration curve (refer to Fig. 6.3). At a 95% confidence

level, the error interval is represented by twice the standard deviation σu, where σu can be

calculated as follows [182]:

σu =

[
1

N

∑
(uc − ua)2

] 1
2

(6.2)

The mean, the standard deviations (σu), the error interval (2σu), and the number of points

(N) for probes 1, 2 and 3, are shown in table 6.4.

The second source of error is due to the dynamic response of the probe holder (εp2). This

error is determined from the transfer function of the probe holder relating the machining

forces on the side of the pocket to the vibration of the probe holder. Tap tests were performed

by applying impacts on the side of the pocket and measuring the response on the support

holder. The transfer function, determined from the impact tests, is shown on Fig. 6.14.
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Table 6.4: Measurement errors due to the accuracy of the probes

Mean
Standard
Deviation
σu

Error
interval
(2σu)

No. of
points
(N)

Probe 1 0.67 µm 0.47 µm 1.6 µm 26
Probe 2 1.10 µm 0.72 µm 2.5 µm 26
Probe 3 1.28 µm 1.12 µm 3.4 µm 14

For each individual measurement (at a given tool-path depth), the forces are input to this

transfer function to determine the corresponding response. The maximum of the absolute

displacement for this response is used as the bound of the error interval corresponding to

the probe dynamics. In most experiments, this error was less than ± 4 µm. The total

measurement error for each probe is calculated as:

εm =
[
ε2

p1 + ε2
p2

] 1
2 (6.3)

The maximum measurement error for probes 1, 2 and 3 was found to be less than 8.0 µm,

6.7 µm, and 6.9 µm, respectively.

0 1000 2000 3000 4000 5000 6000

-1

0

1

x 10-5

Frequency (HZ)

R
ea

l (
m

/N
)

0 1000 2000 3000 4000 5000 6000
-4

-3

-2

-1

0 x 10-5

Frequency (HZ)

Im
ag

in
ar

y 
(m

/N
)

Figure 6.14: Example of the transfer function of the support holder
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For the force measurement, two sources of errors are present. The first is the error due to

the nonlinearity of the dynamometer (εf1). As previously mentioned in the specification of

the dynamometer (refer to section 6.2), this error is within ±1%. The second source of error

is due to the dynamics of the measurement system (dynamometer) (εf2). According to the

validation presented in 6.3.4, the compensated forces have an error of±8.0%. This percentage

will represent the measurement error due to the dynamics of the force measurement system.

The total force measurement error was found to be equal to 8.1%. This value was calculated

as follows:

εf =
[
ε2

f1 + ε2
f2

] 1
2 (6.4)

Assuming that the system is linear, the calculated response wc can be expressed as:

wc = mfc (6.5)

where m represents the slope of the curve and fc is the compensated force, which is input

to the MSP model. Knowing that the force has an error εf , introducing a corresponding

error εc to the calculated displacement and substituting in Eq. (6.5), the following equation

is obtained:

wc ± εcwc = m(fc ± εffc) (6.6)

By dividing the left hand side of Eq. (6.6) by wc and the right hand side by mfc, it will

be found that the percentage error εc of the calculated displacement is equal to the force

measurement percentage error. One needs to multiply εc by the calculated instantaneous

displacement in order to estimate the effect of the force measurement errors on the displacement

in µm.

According to this analysis, the measured displacement will have an error band of ±εm to

represent the measurement errors of the probe. The displacement calculated by the models

will have an error band of ±εcwc due to the measurement errors of the force.
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6.5 Experimental Results

As mentioned previously, the objective of this chapter is to compare the vibration measured

during real cutting experiment versus the calculated response from the developed models.

During the experiments, two conditions were monitored: chatter and tool wear. Since the

objective of this experiment is to validate the model under stable conditions, the results are

focused on the cases with no chatter or very low level of chatter and low or medium level

of tool wear. As will be seen, for the cases with undesirable conditions such as high level of

chatter or tool wear, the accuracy of the model is still reasonable, which further validates

the model. The levels of chatter were determined qualitatively based on the surface finish of

the machined area and the magnitude of the recorded cutting forces. For the tool wear there

are two extremes. The first is when the tool is new and the second is when the edge of the

tool starts to chip. All the cases in between these two extreme conditions are considered as

having low or medium tool wear depending on how long the tool has been used.

The error εc between the measured and the calculated responses, at a given location of a

probe, is expressed as follows:

εc =| dc − dm

dm

| ×100 (6.7)

where dc and dm are the maximum of the calculated and measured displacements, respectively.

The error could have been calculated relative to the maximum displacement of the pocket

side. However, since only three probes were used for the measurements, the location where

the global maximum displacement of the side occurred was not detected during the experiment.

6.5.1 Validation Test Results under Stable Cutting Conditions

A summary of the cases that will be presented for the cutting tests under stable conditions

is shown in Table 6.5. Several cases were evaluated at different tool-path depths with and

without supports. The identification name of each case (e.g. 3.2-2.4) represents the change

of thickness during machining from 3.2 mm to 2.4 mm. For each case, two tool-path depths

were selected to compare the measured versus the calculated response of the side of the
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pocket. For each set of results (pocket without and with supports), the cases are presented

in an ascending order based on the relative measurement errors. By analyzing the different

cases, it was found that the relative errors in the measurements were higher in the cases

with very thick or very thin sides. For the case where the machining was performed on a

thick side, the amplitude of the vibrations was relatively small and the relative measurement

errors were high. On the other extreme, very thin sides experienced more chatter, leading

to higher errors in the force compensation.

Table 6.5: Summary of the test cases with stable cutting conditions

Stable conditions
(no / low chatter and no, low, medium tool wear)

Set Case
Tool-path
depth dp

(mm)

Spindle
speed
(rpm)

Feed rate
(mm/min)

Chatter
Tool
wear

1- No supports 3.2-2.4
10.0
16.0

9000
9300

3600
2790

low low

2- No supports 4.0-3.2
2.0
20.0

8000 3200 none
none
low

3- No supports 2.4-1.8
15.0
21.0

12300 4200 none medium

4- With supports 2.1-1.5
11.5
15.5

6000 3600 none none

5- With supports 3.0-2.1
9.0
18.0

8900 1780 low low

6- With supports 4.0-3.0
8.0
12.0

8900 1600 none none

Test Cases for Machining the Pocket Without Supports

For each of these cases, tap tests were performed on side 1 before machining, and the

workpiece frequencies were determined and compared to those calculated from the model.

The responses for test case 3.2-2.4 at a tool-path depth of 10 mm are presented in Fig 6.15. In

this figure, two types of plot can be seen; the plots on the left show an envelop for the peaks

of the responses during the whole machining path. The envelop represents the average of the

negative peaks of the response. For the sake of clarity, the envelops for the positive peaks
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were not included since their amplitudes were relatively small. The measurement errors of

the probes are represented with error bars around the measured response. The measurement

errors of the force, input to the proposed dynamic models, are indicated by a shaded band

around the envelope of the calculated response. The location of the probe is indicated by

a solid vertical line. The plots on the right represent the time responses at the location

of each probe. This type of plot permits the comparison of the dynamic characteristics

of the measured and the calculated responses. It is expected that some deviations in the

responses could occur near the edges of the side of the pocket. These deviations are due to

the assumptions made in the model concerning the approximation of the boundary conditions

(refer to section 4.4.2). For this reason, the area within the tool position 0 to 20 mm and

100 to 120 mm are shaded. Practically, for the purpose of the design of the fixture layout,

any deviation at these regions is not of a significance, since the vibrations are expected to

be low at the edges as compared to the centre.

Figure 6.15: Pocket without supports; the results for the displacements of test case 3.2 -2.4,
at a tool-path depth of 10.0 mm

Based on the tap tests before machining for test case 3.2-2.4, the frequencies of the

first 3 mode shapes were found to be 1576 Hz, 1812 Hz, and 2046 Hz, as compared to the
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calculated ones 1614 Hz, 1898 Hz and 2055 Hz with errors less than 2.5%, 4.5% and 0.5%,

respectively. As reported in Table 6.1, the radial and axial depth of cut for this case are 0.6

mm and 2.0 mm, respectively. The errors between the envelops of the calculated and the

measured responses at probes 1, 2 and 3 were found to be 5.4%, 10.8% and 12.8%. As can

be seen, the shape of the envelops of the measured and the calculated responses are in close

agreement, even at the region where sudden change occur (tool positions between 42 mm

to 45 mm). This certainly validates the accuracy of the response predicted from the model,

as well as the accuracy of the compensated force signal since this same discontinuity can be

found in the force signal shown in Fig. 6.16. The responses from the model at the corners

of the pocket were still in good agreement with the measurements. For the calculated and

the measured time responses presented in Fig. 6.15, the frequencies of the free vibration

portion of the responses were calculated and the error was found to be less than 7.5%. Thus,

the dynamic characteristics of the machined pocket are captured accurately in the model

in terms of amplitude and frequency. The thickness before the machining was measured

at different locations on the pocket side. Variations less than 50 µm was observed. This

thickness uniformity is one of the factors that contributed to the close agreement between

the model and the experiment.

Damping is an important factor to determine so that the vibration of the system could

be properly described. As seen in Fig. 6.15, as the tool moves away from the probe location,

the response is damped. To describe the damping, one needs to differentiate between the

time intervals when the flutes of the cutting tool are in-cut and out-of-cut. When the flutes

are out-of-cut, no external forces are applied on the pocket side. Thus the main source of

damping is the structural damping. For these time intervals, a damping of 0.02 was used

in the model. This value was determined from different tap tests performed on the side of

the pocket. During the time interval when the flutes are in-cut, an additional damping is

present, due to the interaction between the workpiece and the tool. At these instances a

higher damping is expected due to the rubbing effect between the workpiece and the clearance

face of the tool [114]. The damping value used in the model was determined through the

calibration of the damping ratio for each case at only one depth of cut, by matching the

measured and the calculated responses. Once determined, this value was used for the other
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Figure 6.16: Compensated force for test case 3.2 - 2.4, at a tool-path depth of 10 mm

depths of cut. The value of this damping ratio for test cases 4.0-3.2 and 3.2-2.4 was found

to be 0.07. For test case 2.4-1.8, with smaller radial depths of cut, the damping ratio was

0.2. This is expected due to the potential rubbing between the tool and the workpiece. In

general, the rubbing can be related to the maximum chip thickness during cutting. For a

chip thickness lower than a certain value, rubbing is likely to occur [183]. The minimum chip

thickness depends on many factors including the corner radius of the tool and the cutting

speed. The chip thickness is related to the feed per tooth fz. In roughing operations, where

the difference between the entrance and the exit angles of the flute are greater than 90◦,

the feed per tooth is equal to the maximum chip thickness. For smaller depths of cut, the

maximum chip thickness is much lower than the feed per tooth. This is shown in Fig. 6.17

where the maximum chip thickness is represented by the segment AB. In these experiments,

to avoid rubbing, higher feed rates were used such that the value of the maximum chip

thickness AB was greater or equal to 0.05 mm. Nevertheless, in many instances, these high

feed rates resulted in chatter and were reduced leading to more rubbing and higher damping.

The responses for the same test case at a depth of cut of 16 mm is shown in Fig. 6.18. The

errors ψc between the envelops of the measured and the calculated responses at probes 1, 2,
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Figure 6.17: Illustration of the relation between the feed per tooth fz and the maximum chip
thickness

and 3 were found to be 5.0%, 10.9%, and 1.7%, respectively. Based on the time response plots,

the error in the frequencies of the free vibration of the calculated and measured responses

was found to be less than 1.0%. Within the measurement errors, one can see excellent

agreement in the shape of the envelopes of the calculated and measured responses as well as

the dynamic characteristics of the time responses. For this case, a slightly less agreement was

found near the corners of the pocket, as expected. A slightly higher damping was expected

for this tool-path depth as a result of some rubbing between the tool and the workpiece.

The feed per tooth at this tool-path depth was 0.15 mm/th, as compared to a 0.2 mm/th in

the previously presented results. Other depths of cut were evaluated for this test case and

showed the same agreement between measured and predicted responses.

For test case 4.0-3.2, the errors between the calculated and the measured frequencies of

the first three mode shapes were found to be less than 3.5%. The results for test case 4.0-3.2

at 2 mm and 20 mm tool-path depths are shown in Fig. 6.19 and Fig. 6.20, respectively.

For the first tool-path depth (2 mm), the errors between the envelops of the measured

and the calculated responses for the three probes were found to be 9.7%, 4.0% and 5.0%,

respectively. Similar to the previous cases, a good agreement is seen between the calculated

and the measured responses. A good agreement is seen between the calculated and the

measured time responses in terms of the frequency content of the free vibration oscillations.

Due to the displacement measurement errors, some deviations appear between the measured
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Figure 6.18: Pocket without supports; the results for the displacements of test case 3.2 -2.4,
at a tool-path depth of 16.0 mm

and calculated low amplitude free vibration oscillations. At 20 mm tool-path depth, the

same level of agreement was achieved, with errors between the envelops of the measured and

the calculated responses for probes 1, 2 and 3 of 9.4%, 6.7% and 5.6%, respectively.

For a thinner wall thickness, as in test case 2.4-1.8, the first 3 frequencies of the pocket

before machining were found experimentally to be equal to 1290 Hz, 1170 Hz, and 1960 Hz.

These values are compared to 1283 Hz, 1810 Hz and 2015 Hz with errors less than 0.5%,

2.5% and 3.0% when the model was used. As mentioned previously, for test case 2.4-1.8,

with a radial and axial depth of cut of 0.4 mm and 1.0 mm respectively, the damping of

the system was expected to be higher due to potential rubbing between the workpiece and

the system. Another reason for this high damping could be the wear observed on the tool.

Figure 6.21 presents the responses during the machining at a tool-path depth of 15 mm. All

the machining paths previous to this tool-path depth resulted in very high chatter, which

eventually led to some non-uniformity of the machined areas. Since this non-uniformity was

not taken into account in the model, some deviations were expected between the measured

and the calculated responses. Moreover, the non-uniformity of the thickness might have
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Figure 6.19: Pocket without supports; the results for the displacements of test case 4.0 -3.2,
at a tool-path depth of 2.0 mm

Figure 6.20: Pocket without supports; the results for the displacements of test case 4.0 -3.2,
at a tool-path depth of 20.0 mm
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resulted in the tool touching the workpiece at regions away from the specified tool-path

depth. This might have affected the point of load application. As seen in Fig. 6.21, the

errors between the envelops of the measured and the calculated responses were found to be

less than 4.0%, 6.5%, and 1.0%, respectively. Less agreement is seen between the shape

of the envelops of the responses for the tool positions at 70 mm to 80 mm for probe 2,

and 20 mm to 30 mm for probe 3. One can see, however, that the results are in close

agreement, considering the measurement errors, especially in the force signal. Negligible

errors in frequencies, between the measured and the calculated responses, can be seen in

the time responses at probes 1 and 3. For the time responses at probe 2, some differences

exist, which could be a result of some local errors in the probe measurements or in the

compensation of the force signal.

Figure 6.21: Pocket without supports; the results for the displacements of test case 2.4 -1.8,
at a tool-path depth of 15.0 mm

Similar agreement in the response can be seen for the same test case at a tool-path depth

of 21 mm (refer to Fig. 6.22). The errors between the envelops of the measured and the

calculated responses are 11.4%, 11.8%, and 4.6%, for probes 1, 2 and 3, respectively. Within

the measurement errors, some deviations can be seen between the envelops of the measured
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and the calculated responses due to the non-uniformity of the thicknesses, the rubbing of the

tool, and the tool wear. For the time responses, excellent agreement in terms of frequency

of the free vibration oscillations is seen at probe 1. Some deviations between the measured

and the calculated time responses can be seen at probes 2 and 3. This is mainly attributed

to the errors in the compensated forces. The rotational speed of the tool in this test case

was relatively higher (12,300 rpm) than previous ones. Since a 2-flute tool was used, the

force frequency was double that of the spindle speed. Although the methodology for the

compensation of the forces was shown to produce good results in all the previous cases, for

high frequency force signals, it was hard to match all the peaks of the forces, especially at

the tooth-passing frequency. Other results at different tool-path depths were evaluated for

this case, and similar agreement was found.

Figure 6.22: Pocket without supports; the results for the displacements of test case 2.4 -1.8,
at a tool-path depth of 21.0 mm

It should be noted that for all test cases, the relative measurement errors for the machining

at a tool-path depth larger than 25 mm were high due to the low amplitudes of the vibration

of the side, and thus the evaluation of the results were limited to the range up to this depth.

During the machining of the final thickness of side 1 (test case 1.8-1.3), high chatter occurred,
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therefore the results for this case will be presented in section 6.5.2.

Test Cases for Machining the Pocket with Supports

For this set of results, the same types of plots were used to compare the responses from the

MSP model and the measurements. Only two probes were used in the measurement due

to space limitation inside the pocket. As previously described, there was one support on

each side of the pocket, except side 1. All the machining tests were performed on side 3.

The stiffness of the supports were determined based on tap tests as mentioned in section

6.2.3. For all the test cases, a damping factor of 0.1 was determined for the forced vibration

intervals through the calibration procedure described earlier. A damping factor of 0.02 was

estimated for the free vibration intervals.

The results for test case 2.1-1.5 will be presented first since relatively large amplitudes

of vibration were achieved, with a stable cutting process leading to the lowest errors in the

measurements. The results for a tool-path depth of 11.5 mm are shown in Fig 6.23. The

location of the support is indicated by the dashed line at a tool position of 60 mm. Similar

to the previous set of results, it was expected that some deviations could exist near the

corners of the pocket due to the assumptions embed in the model in relation to the boundary

conditions. In addition, some deviations were expected at the support location. This is a

result of the simplifying assumptions in the modelling of the support. These deviations were

expected at the portions of the envelop away from the probe location, where the amplitudes

of measured vibrations were relatively small (tool position 0 to 55 mm for probe 1 and 65

mm to 120 mm for probe 2), which is indicated by the shaded areas. For this tool-path

depth, the agreement was still very good in these regions. The errors between the envelops

of the measured and the calculated responses at probes 1 and 2 were found to be less than

1.5% and 1%, respectively. In the time response graphs, it can be seen that the predictions

of the model follow faithfully the measurements. The frequencies of the free oscillations of

the measured and the calculated time responses were found to be 2500 Hz and 2340 Hz,

respectively, with an error less than 6.5%.

The results for the tool-path depth of 15.5 mm is shown in Fig. 6.24. The errors between

the envelops of the responses at probes 1 and 2 were found to be less than 5.5% and 1.5%,
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Figure 6.23: Pocket with supports; the results for the displacements of test case 2.1 -1.5, at
a tool-path depth of 11.5 mm

respectively. As expected, minor deviations are seen in the shaded regions (tool position 0

- 50 mm) for probe 1 and (tool position 65 mm -120 mm) for probe 2. The frequencies of

the free vibration oscillation of the measured and the calculated time responses are in close

agreement. For probe 1, the amplitudes of the free vibration oscillations from the model

predictions are smaller than those from the measurements. This is mainly attributed to

the estimated value of the damping. Other tool-path depths were evaluated, and similar

agreement was achieved.

For test case 3.0-2.1, the results for the 9.0 mm tool-path depth are shown in Fig. 6.25.

The errors between the envelops of the measured and the calculated responses were found to

be 3.0% and 13.0%, respectively for probes 1 and 2. The errors in measurement are slightly

higher due to the higher forces, which resulted in larger amplitudes of vibration of the probe

holder, as compared to the previous case. As expected, some deviations exist at tool position

0 to 50 mm for probe 1, which is due to the simplifying assumption for the support modelling

and the boundary conditions near the pocket corner.

The results for the same test case at a tool-path depth of 18 mm are shown in Fig. 6.26.
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Figure 6.24: Pocket with supports; the results for the displacements of test case 2.1 -1.5, at
a tool-path depth of 15.5 mm

Figure 6.25: Pocket with supports; the results for the displacements of test case 3.0 -2.1, at
a tool-path depth of 9.0 mm
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The errors between the envelops of the measured and the calculated responses were found

to be 3.4% and 4.0%, at probes 1 and 2, respectively. The amplitude of the calculated

displacement is very low at tool position 0 to 50 mm for probe 1 and 70 mm to 120 mm for

probe 2. This is again due the simplifying assumptions for the support and the boundary

conditions of the MSP model. The errors in the frequencies of the free vibration response

of the measured and the calculated time responses were found to be less than 3.0% and

1.0%, respectively for the tool-path depths 9.0 mm and 18.0 mm. These negligible errors

in frequency show that the model can capture accurately the dynamic characteristics of the

system. Through the analysis of the measured time responses in Fig. 6.25 and Fig. 6.26, it

can be seen that for two consecutive peaks, representing the engagement of the two flutes of

the cutting tool, one was smaller than the other. This could be a result of a tool-run out.

Due to the dynamics of the measurement systems, these small peaks were masked (filtered)

and were very difficult to retrieve in the compensated force signal. This explains why in the

calculated time response these small peaks were missing.

Figure 6.26: Pocket with supports; the results for the displacements of test case 3.0 -2.1, at
a tool-path depth of 18.0 mm

For test case 4.0-3.0, the wall thickness was relatively thick. As seen in Fig 6.27, the
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amplitudes of the vibrations at a tool-path depth of 8 mm were less than 40 µm. The errors

between the envelops of the measured and the calculated responses have been estimated to

be 3.5% and 9.0%, respectively for probes 1 and 2. At tool position equal to 60 mm, one

can notice a sudden change in the envelop of the measured response, which is a result of a

sudden change in the force. At this tool position, the tool path intersects with the support

location leading to the tool cutting the support. Due to the difference between the material

of the support and the workpiece, an abrupt change in the cutting forces occurs.

Figure 6.27: Pocket with supports; the results for the displacements of test case 4.0 -3.0, at
a tool-path depth of 8.0 mm

The results for the machining at 12 mm tool-path depth are shown in Fig 6.28. The errors

between the envelops of the measured and the calculated responses are less than 5.0%. There

were some deviations in the envelops at tool positions 90 mm to 120 mm. For both tool-path

depths, the errors of the frequencies of the free vibration oscillations of the measured and

the calculated time responses were found to be less than 1%. It was very difficult to compare

the difference in the amplitudes of the free vibration intervals since these amplitudes for the

measured results were less than 10 µm. These are compared to the probe measurement errors

of ≈ ±5 µm. It is important to note that for this large thickness, the model is still providing
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accurate results in terms of the maximum amplitudes of displacement, the frequencies of the

time response and the general nature of the dynamic behaviour.

Figure 6.28: Pocket with supports; the results for the displacements of test case 4.0 -3.0, at
a tool-path depth of 12.0 mm

6.5.2 Validation Test Results under Unstable Cutting Conditions

To demonstrate the applicability of the model in the cases where machining instability is

encountered, some results are presented for the cases with high chatter or tool wear. In these

cases, the amplitudes of the vibrations were relatively high. It has to be noted that from the

fixture designer point of view, the objective is not to predict accurately the vibrations during

chatter, but rather to know roughly the extent by which the vibrations exceed a predefined

tolerance limit. Based on this, it will be shown that the model was still able to predict the

time response of the side of the pocket, without and with supports, with relatively good

accuracy. The test cases with machining instability that will be presented are listed in Table

6.6.

For test case 1.8-1.3, chatter occurred during the machining at most of the tool-path
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Table 6.6: Summary of the test cases with unstable cutting conditions

Unstable machining conditions
(medium to high chatter or high tool wear)

Set Case
Tool-path
depth dp

(mm)

Spindle
speed
(rpm)

Feed rate
(mm/min)

Chatter
Tool
wear

1- No supports 1.8-1.3 8.0 10000 2000 high high
2- No supports 3.2-2.4 2.0 9000 4500 high low
3- With supports 1.5-1.0 14.0 6000 3600 medium high

depths. Based on the tap tests that were performed before machining in this test case, the

following 3 frequencies were determined 1035 Hz, 1703 Hz, and 1855 Hz. The error in the

frequencies between the model and the measurements were found to be 2.2%, 0.7% and 5.7%,

respectively. Figure 6.29 shows the results for test case 1.8-1.3 at a tool-path depth of 8.0

mm. During machining, high chatter and high tool wear were observed. A relatively good

matching was, however, achieved between the maximum of the envelops of the measured

and the calculated responses with errors of 5.5% and 12%, and 4% at probes 1, 2 and 3,

respectively.

It should be noted, that the errors in the compensation of the forces should have been

higher. As shown in the figure, there are some deviations in the shapes of the envelops.

This can be explained as follows: At the time intervals where some instability occurs, the

measured force is distorted, and as a consequence, it is very hard to compensate for the

dynamics of the measurement system. By analyzing the time responses of the measured and

the calculated results, one can see excellent matching in terms of the amplitude and the

frequency of the vibration.

Figure 6.30 shows the results for test case 3.2-2.4 at the first tool-path depth. For this

case, only the chatter was observed, while the tool wear was relatively low. The errors

between the envelops of the measured and the predicted responses were found to be less

than 4%, 6% and 4%, respectively at probes 1, 2 and 3. Some deviations between the

envelops of the measured and the calculated responses can be seen near the edges of the side

(tool position 10 mm to 20 mm and 90 mm to 100 mm). Similar to the previous test case,

an excellent matching was found between the calculated and the measured time responses.
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Figure 6.29: Pocket without supports; the results for the displacements of test case 1.8 -1.3,
at a tool-path depth of 8.0 mm

Figure 6.30: Pocket without supports; the results for the displacements of test case 3.2 -2.4,
at a tool-path depth of 2.0 mm
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For test case 1.5-1.0, with supports, the results are shown in Fig. 6.31 for a tool-path

depth of 14 mm. Due to the very small thickness of the side of the pocket, very high chatter

was experienced during the machining, which resulted in a maximum amplitude of vibration

of 217 µm. The errors between the envelops of the measured and the calculated responses

were found to be 9.0% and 5.7% at probes 1 and 2, respectively. The error between the

frequency of the free vibration of the measured and the calculated responses were found to

be less than 1%. It can be seen that although the matching between the two envelops is not

as good as the cases with stable conditions, almost all of the dynamic characteristics of the

time responses (frequency and amplitudes) are in very close agreement.

Figure 6.31: Pocket with supports; the results for the displacements of test case 1.5 -1.0, at
a tool-path depth of 14.0 mm

6.6 Summary of the Results

In this chapter, experimental validation results were presented for machining a rectangular

pocket, with and without supports. The results covered different side thicknesses, different
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tool-path depths, and different cutting parameters. The agreement between the calculated

and the measured responses were evaluated based on the natural frequencies of the pocket

before the machining of each side (for the cases without support), the maximum amplitude of

the vibration during machining and the frequency of the free vibration of the time responses.

It was shown that under stable cutting conditions (low chatter and tool wear), the model

predictions were in excellent agreement with the measured responses taking into account the

measurement errors. The predictions error for most of the cases were less than 10%. At

some instances, deviations occurred between the measurements and the predictions of the

model due to the differences between the model assumptions and the experimental conditions

including the uniformity of the side thickness, the modelling of the support contact, the value

of the damping ratio, and the continuity conditions at the edges of the side of the pocket.

Although the model was not intended for cases with high chatter and tool wear, it still

provided reasonably good agreement with the measurements with errors less than 10%. The

presented results demonstrate the validity of the model in predicting the dynamic behaviour

of thin-walled pockets during real machining applications, while accurately capturing the

effect of the fixture supports on the dynamics of the pocket sides. In addition, a new

methodology was developed to account for the dynamics of the force measurement system

while taking into account the dynamics of the workpiece. This methodology was validated

for different cases and the errors between the input force and the compensated force were

found to be ≈ 8.0%.
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Chapter 7

Conclusions and Recommendations for Future
Research Work

7.1 Conclusions

This research is focused on the modelling of the dynamics of thin-walled aerospace

structures during milling while taking into account the effects of the fixture layout. The

following conclusions can be drawn from the performed analyses and the obtained results:

1. According to the review of the current practices in the aerospace industry, it was

found that the fixture design relies mainly on the designer’s experience and general

conservative guidelines. For the fixture design of flexible workpieces, few models

take into account the dynamics of thin-walled structures. These models ignore the

continuously varying dynamic characteristics of the workpiece due to the material

removal action. In addition, they are based on computationally demanding formulations.

It was concluded that a computationally efficient model was required to represent the

effect of the fixture layout on the dynamics of thin-walled aerospace structures during

milling while taking into account the continuous change of thickness of the workpiece.

2. An analysis of typical aerospace structural components was performed and a generalized

unit-element with the shape of an asymmetric pocket was identified to represent the

dynamics of these components. Two different models were proposed in this research

for the prediction of the dynamics of the identified unit-element. The proposed models

were developed using Rayleigh’s energy method and the Rayleigh-Ritz method.
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3. The first model, which was referred to as Generalized Single-Span Plate (GSSP) model,

was based on discretizing the pocket to plates with torsional and translational springs

at the boundaries. The role of the springs was to take into account the effect of the

adjacent walls and adjacent pockets. The stiffness values of the springs were determined

through an off-line calibration based on FE models using Genetic Algorithms as an

optimization technique. The approximate mode shapes were based on beams with

torsional and translational springs at the boundaries. Numerical validations through

FE models of typical aerospace structural components and experimental validations

through impact tests were performed. The prediction errors of the GSSP model were

found to be less than 5% when compared to FE models and experimental measurements.

The computational time is reduced by one to two orders of magnitude.

4. The second model, which was referred to as the Multi-Span Plate Model (MSP), was

based on representing the dynamics of a generalized 3D pocket by a 2D multi-span

plate. A new set of trial functions based on multi-span beam and clamped-free beam

models were used. These trial functions allowed an accurate approximation of the

response of the multi-span plate with few mode shapes. Numerical validations of

the MSP model were performed using different FE models of thin-walled pockets and

various frequencies of loading. It was shown that the prediction error of the model is

less than 6%.

5. Four general scenarios were identified for the change of thickness during the milling

of thin-walled pockets. A change of thickness (CoT) formulation was developed and

implemented in the MSP model to represent these cases. Multi-span beam models were

used for the trial functions in both the x- and y-directions. An extensive FE validation

of the CoT formulation was performed for different aspect ratios of rectangular and

non-rectangular pockets and various change of thickness schemes. It was shown that

the proposed model can accurately capture the dynamic effect of the change of thickness

with prediction errors of less than 9%.

6. Two different formulations were developed to represent the effect of the fixture layout

for rigid and flexible supports. The first, which was referred to as Perfectly Rigid
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Support (PRS) formulation, simulates the effect of a rigid support using holonomic

constraints. The second formulation, which was referred to as Finite Stiffness Support

(FSS) formulation, uses springs with finite stiffness to represent flexible supports. The

proposed formulations were validated by implementing them in the MSP model, with

and without the CoT formulation. It was found that an excellent agreement between

the predictions of the proposed models and the FE models was achieved with errors

less than 10% and at least one order of magnitude reduction in the computation time.

7. The MSP model and the CoT and the FSS formulations were validated experimentally

by conducting machining tests of a thin-walled pocket, with and without supports. It

was shown that the developed models are able to predict the changes in the dynamics

of the workpiece during milling for a wide range of thicknesses varying from 4 mm

to 1 mm, with predictions errors of 10 -13%. It was also found that the models can

still predict accurately the responses for cases with machining instability due to high

chatter and tool wear.

8. A new methodology was proposed and validated in order to account for the errors due

to the dynamics of the force measurement system. It was shown that the proposed

methodology reduced the measurement errors from more than 100% to an average error

of 8%.

7.2 Contributions to Knowledge

1. New conceptual developments have been made by representing complex thin-walled

aerospace structures using a generalized unit-element with the shape of an asymmetric

pocket. In addition, new concepts were introduced to represent the 3D asymmetric

pocket with a 2D plate. These new concepts made it possible to develop models

and formulations for the prediction of the dynamic response of thin-walled aerospace

structures while taking into account the effect of the fixture layout and the continuous

change of thickness during milling.
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2. A new model was developed to represent the dynamics of complex thin-walled aerospace

structures through an off-line calibration of a plate with torsional and translational

springs. This simplified semi-analytical model offers a reduction in the computation

time by at least one order of magnitude compared to available FE models and a

prediction error of less than 5%.

3. A new model was developed for the representation of the dynamics of a 3D pocket

using a 2D analytical multi-span plate model. This model can predict the dynamic

responses of various types of aerospace structures with at least one order of magnitude

reduction in computation time compared to FE models and prediction errors less than

6%. Although not generalized as the previous model, this model eliminates the need

for calibration.

4. A new formulation was developed to simulate possible cases for the change of thickness

during milling of thin-walled pockets. The prediction errors were found to be less than

9% when compared to FE models. To date, no analytical model is available to represent

the continuous change of thickness of thin-walled structures.

5. Two different formulations were proposed for the modelling of the effect of the fixture

layout. The first formulation is based on the use of holonomic constraints and the

second is based on springs with finite stiffness.

6. By integrating the developed dynamic models and the proposed formulations for the

effect of the fixture supports, a generalized analytical model for the analysis of the

effect of the fixture layout on the dynamics of thin-walled structures was developed

while taking into account the continuous change of thickness of the workpiece and

the effect of rigid and deformable fixture supports. These integrated models meet the

conflicting requirements of prediction accuracy and computational efficiency as set by

the aerospace industry.

7. A novel methodology was developed to account for the dynamics of the measurement

system, as well as the dynamics of the workpiece.
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Impact on industry: To date, no fixture design software exists that includes the effect of

the vibrations of thin-walled workpieces during machining. The developed models will bridge

this gap and provide an interactive prediction capability to suit the industrial applications.

This will substantially improve the productivity and lower the machining cost. Based on

these models, optimization of the fixture layout could be performed within reasonable time

frames, thus decreasing the design and development time.

7.3 Recommendations for Future Research Work

The present study provides a starting point for the analysis of the effect of the fixture

layout on the dynamics of thin-walled structures during milling while taking into account

the continuous change of thickness of the workpiece. The following topics could be pursed

for future research work:

1. Integration of the developed dynamic models with 5-axis mechanistic force models in

order to determine the effect of the cutting parameters such as the feed-rate, the radial

and axial depths of cut, and the spindle speed on the cutting forces and the integrity

of the machined surface.

2. Extension of the developed models to deal with other non-structural aerospace thin-

walled components such as turbine blades.

3. Deriving expressions for the stiffness of the springs in the GSSP model, as function

of the dimensions of the adjacent sides and pockets. This will eliminate the need for

calibration through FE models.

4. Modelling of the process damping of low immersion milling and its effect on the

vibration of thin-walled structures.

5. Developing an expert system for the design of fixtures while taking into account the

static and the dynamic deflections of thin-walled workpieces. This should also include

the implementation of different optimization schemes.
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Appendix A

Boundary Conditions and Trial Functions for
a Plate with Torsional and Translational
Springs

This appendix has two section. In the first section, the boundary conditions for a plate

with torsional and translation springs will be presented. The second section includes the

detailed expression of the characteristic equation and the mode shape of a beam with

torsional and translational springs.

A.1 Boundary Conditions for a Plate with Torsional and Translational
Springs

The boundary conditions for a rectangular plate with torsional and translational springs

at the boundaries can be represented at each edge as follows [184]:

At x = 0
∂3w

∂x3
+ (2− ν)

∂3w

∂x∂y2
− Kxo

DE

w = 0 (A-1a)

DE

[
∂2w

∂x2
+ ν

∂2w

∂y2

]
+Rxo

∂w

∂x
= 0 (A-1b)

At x = lx
∂3w

∂x3
+ (2− ν)

∂3w

∂x∂y2
− Kxl

DE

w = 0 (A-2a)

DE

[
∂2w

∂x2
+ ν

∂2w

∂y2

]
+Rxl

∂w

∂x
= 0 (A-2b)
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Eqs (A-1) and (A-2) represent the force and moment balance at x = 0 and x = xl,

respectively.

At y = 0
∂3w

∂y3
+ (2− ν)

∂3w

∂y∂x2
− Kyo

DE

w = 0 (A-3a)

DE

[
∂2w

∂y2
+ ν

∂2w

∂x2

]
+Ryo

∂w

∂y
= 0 (A-3b)

At y = ly
∂3w

∂y3
+ (2− ν)

∂3w

∂y∂x2
− Kyl

DE

w = 0 (A-4a)

DE

[
∂2w

∂y2
+ ν

∂2w

∂x2

]
+Ryl

∂w

∂y
= 0 (A-4b)

Eqs (A-3) and (A-4) represent the force and moment balance at x = 0 and x = xl,

respectively.

A.2 Beam with Torsional and Translational Springs

The characteristic equation for a beam with torsional and translation springs at the

boundaries can be obtained by using the separation of variables according to Eq. (4.26)

and substituting Eq. (4.32) in Eqs. (4.30) and (4.31). The expression for the characteristic

equation can be written as:
6∑

i=1

κi = 0 (A-5)

where κi is expressed as follows:

κ1 =

(
EIβ (EIβ3)

2

k0

+
r0rlkl

EIβ

)
(cos βlu cosh βlu − 1) (A-6a)

κ2 =

(
−klrlEIβ

3

k0

− r0EIβ3

)
(cos βlu cosh βlu + 1) (A-6b)

κ3 =

(
−2rlEIβ

3 − 2
r0klEIβ

3

k0

)
(cos βlu cosh βlu) (A-6c)
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κ4 =

(
2
rlr0EIβ

5

k0

− 2klEIβ

)
(sin βlu sinh βlu) (A-6d)

κ5 =

(
−kl (EI)2 β4

k0

− (EI)2 β4 + klrl + klr0

)
(cos βlu sinh βlu − sin βlu cosh βlu) (A-6e)

κ6 =

(
(r0 + rl) (EIβ3)

2 − r0klrlβ
2

k0

− rlr0β
2

)
(cos βlu sinh βlu + sin βlu cosh βlu) (A-6f)

For Eqs. (A-6a) to (A-6f), the second bracket in each equation represent the characteristic

equation for a beam model with certain standard boundary conditions. For example, Eqs. (A-

6a) and (A-6b) represent the characteristic equation for a free-free beam and clamped- free

beam, respectively. The eigenvalues of the beam with torsional and translational springs

are determined by finding the values of βr which satisfy Eq. (A-5). By substituting the

calculated values of βr in Eq. (4.32) and then satisfying the spatial boundary conditions in

Eqs. (4.30) and (4.31), the expressions for Br, Cr and Dr can be determined in function of

Ar as follows:

Br =

(
EIβ3

r (1− kcr)

2ko

− ro(1 + kcr)

2EIβr

)
Ar (A-7)

Cr = kcrAr (A-8)

Dr

(
EIβ3

r (1− kcr)

2ko

+
ro(1 + kcr)

2EIβr

)
Ar (A-9)

where kcr can be represented as follows:

kcr = − n1 + n2

m1 +m2

(A-10)

where

n1 = −EIβ3
r cos βrlu +

(EIβ3
r )2

2ko

sin βrlu −
roβ

2
r

2
sin βrlu +

(EIβ3
r )2

2ko

sinh βrlu +
roβ

2
r

2
sinh βrlu

(A-11)

n2 = −kl sin βrlu −
klEIβ

3
r

2ko

cos βrlu +
klro

2EIβr

cos βrlu −
klEIβ

3
r

2ko

cosh βrlu −
klro

2EIβr

cosh βrlu

(A-12)
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m1 = −(EIβ3
r )2

2ko

sin βrlu−
roβ

2
r

2
sin βrlu +EIβ3

r cosh βrlu−
(EIβ3

r )2

2ko

sinh βrlu +
roβ

2
r

2
sinh βrlu

(A-13)

m2 =
klEIβ

3
r

2ko

cos βrlu +
klro

2EIβr

cos βrlu − kl sinh βrlu +
klEIβ

3
r

2ko

cosh βrlu −
klro

2EIβr

cosh βrlu

(A-14)
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Appendix B

Characteristic Equations for the Multi-Span
Beam Models

In the following sections, the derivation of the characteristic equations for three models of

multi-span beams will be presented. The first two models are for a four-span and five-span

beam used to generate the trial functions in the x-direction for the multi-span plate with

and without change of thickness, respectively. The third model is for a three-span clamped-

free beam used to generate the trial functions in the y-direction for the multi-span plate

with change of thickness. For a multi-span beam, the relation between βu and βu+1 can be

expressed as:

βu+1

βu

=

(
hu

hu+1

) 1
2

= R
1
2
u (B-1)

where u is the index of the span of the beam and βu and βu+1 are the eigenvalue parameters

for spans u and u+ 1, respectively. For simplification of the notation, the term βulu will be

referred to as βu, where lu designates the length of the uth span.

B.1 Four-Span Beam

The mode shapes of the four-span beam can be expressed according to Eq. (4.61) where

a is the index for the ath span and sx is the total number of spans. By substituting Eq. (4.61)

in Eqs. (4.59a), (4.59c) and (4.59d) for the edge x = xa, Eqs. (B-2) to (B-4) are obtained,

respectively, as follows:

Ba = −Da (B-2)
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Aa+1 + Ca+1 =

(
ha+1

ha

) 1
2

[Aa cos βa −BaGa + Ca cosh βa] (B-3)

where Ga = sin βa + sinh βa

Ba+1 = −1

2

(
ha

ha+1

)2

[−Aa sin βa −BaSa + Ca sinh βa] (B-4)

where Sa = cos βa + cosh βa

By inserting Eq. (4.61) in Eq. (4.59b) for the edge x = xa+1, Eq. (B-5) is obtained by

Aa+1 sin βa+1 + Ca+1 sinh βa+1 = −Ba+1Ma+1 (B-5)

where Ma+1 = cos βa+1 − cosh βa+1.

Substituting Ba+1 from Eq. (B-4) into Eq. (B-5), the following equation is obtained:

Aa+1 sin βa+1 + Ca+1 sinh βa+1 =
1

2
Ma+1

(
ha

ha+1

)2

[−Aa sin βa −BaSa + Ca sinh βa] (B-6)

By writing Eqs. (B-3), (B-4), and (B-6) in a matrix form, Eq. (B-7) is obtained:


Aa+1

Ba+1

Ca+1

 = Φx
(a)


Aa

Ba

Ca

 (B-7)

where the transfer matrix Φx can be expressed as:

Φx
(a) = 1

2


1 0 1

0 1 0

sin βa+1 0 sinh βa+1


−1


2R
− 1

2
a cos βa −2R

− 1
2

i Ga 2R
− 1

2
a cosh βa

R2
a sin βa R2

iSa −R2
a sinh βa

−Ma+1R
2
a sin βa −Ma+1R

2
iSa Ma+1R

2
a sinh βa

 (B-8)
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Eq. (B-7) is the same as Eq. (4.63). Using the transformation in Eq. (4.63) or Eq. (B-7), the

following equation can be obtained:
A4

B4

C4

 =
a=1∏
a=3

Φx
(a)


Aa

Ba

Ca

 (B-9)

Taking into account that the beam is continuous from span 4 to span 1, thus the coefficients

of span 1 can be expressed in terms of the coefficients of span 4 as follows:
A1

B1

C1

 =
a=1∏
a=3

Φ(4)
x


A4

B4

C4

 (B-10)

Substituting Eq. (B-10) in (B-9), the characteristic equation of the four-span beam, presented

in Eq. (4.64), is obtained. The eigenvalues of the four-span beam and the coefficients of

Eq. (4.61) can be determined by finding the non-trivial solutions of Eq. (4.64)

B.2 Five-Span Beam

The development of the mode shapes of the five span beam, shown in Fig. (4.4), can

be also obtained by using the transfer matrix method. The coefficients of spans 4 and 5

are expressed in terms of the coefficients of spans 3 and 4, respectively, using Eqs. (B-7)

and (B-8). The coefficients of span 3 are determined in terms of the coefficients of span 2

by substituting Eq. (4.61) in (4.59). In this case, B2 6= −D2, and thus the following 3 × 4

transfer matrix is obtained: 
A3

B3

C3

 = Φx
(2)


A2

B2

C2

D2

 (B-11)
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such that,

Φx
(2) = 1

2


1 0 1

0 1 0

sin β3 0 sinh β3


−1


2R
− 1

2
2 cos β2 −2R

− 1
2

2 sin β2 2R
− 1

2
2 cosh β2 2R

− 1
2

2 sinh β2

R2
2 sin β2 R2

2 cos β2 −R2
2 sinh β2 −R2

2 cosh β2

−M3R
2
2 sin β2 −M3R

2
2 cos β2 M3R

2
2 sinh β2 M3R

2
2 cosh β2

 (B-12)

By satisfying the boundary conditions at x = x1 according to Eq. (4.78), the coefficients of

span 2 can be expressed in terms of the coefficient of span 1 according to the following set

of equations: 
A2

B2

C2

D2

 = Φx
(1)


A1

B1

C1

 (B-13)

such that,

Φx
(1) =

1

2


1 0 1 0

0 1 0 1

1 0 −1 0

0 1 0 −1




R
− 1

2
1 cos β1 −R

− 1
2

1 G1 R
− 1

2
1 cosh β1

sin β1 M1 sinh β1

R
3
2
1 cos β1 −R

3
2
1N1 −R

3
2
1 cosh β1

R2
1 sin β1 R2

1S1 −R2
1 sinh β1

 (B-14)

where Na+1 = sin βa+1 − sinh βa+1. In order to determine the transfer matrix to express

the coefficients of span 1 in terms of the coefficients of span 5, the following four boundary

condition equations will be used:

X(1)(x0) = 0 (B-15a)

dX(1)

dx

∣∣∣∣
x=x0

=
dX(5)

dx

∣∣∣∣
x=x5

(B-15b)
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h3
1

d2X(1)

dx2

∣∣∣∣
x=x0

= h3
5

d2X(5)

dx2

∣∣∣∣
x=x5

(B-15c)

X(2)(x2) = 0 (B-15d)

Using the mode shape expression in Eq. (4.61) and substituting Eq. (B-13) in Eq. (B-15d)

gives:

[ sin β2 cos β2 sinh β2 cosh β2 ]Φx
(1)


A1

B1

C1

 = 0 = [τ1 τ2 τ3 ]


A1

B1

C1

 (B-16)

According to Eq. (B-16), A1 and C1 can be expressed in terms of B1. Consequently, by

substituting Eq. (4.61) in Eqs. (B-15a) to (B-15c) and putting them in a matrix form gives

the following relation between the coefficients of span 1 and span 5:
1 0 1

0 1 0

τ1 0 τ3



A1

B1

C1

 =
1

2


2R
− 1

2
5 cos β5 −2R

− 1
2

5 G5 2R
− 1

2
5 cosh β5

R2
5 sin β5 R2

5S5 −R2
5 sinh β5

−τ2R2
5 sin β5 −τ2R2

5S5 τ2R
2
5 sinh β5



A5

B5

C5

 (B-17)

The characteristic equation of the five-span beam can be written as:
A5

B5

C5

 =
a=1∏
a=4

Φx
(a)


Aa

Ba

Ca

 =
a=1∏
a=4

Φx
(a)Φ(5)

x


A5

B5

C5

 (B-18)

As can be seen, Eq. (B-18) can be expressed using Eq. (4.64).

B.3 Three-Span Clamped-Free Beam

For the three-span clamped free beam, b is the index for the bth span and sy is the total

number of spans. At y = y0, the conditions of zero displacement and rotation have to be
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satisfied by substituting Eq. (4.82) in (4.79), which leads to the following equations:

B1 = −D1 (B-19a)

A1 = −C1 (B-19b)

At y = yb, for b = 1, .., sy−1, the conditions for the continuity of the displacement, rotation,

bending moment and shear force expressed in Eq. (4.80) have to be satisfied. By substituting

Eq. (4.82) in (4.80), the relation between the coefficients of span b + 1 and span b can be

expressed as: 
Ab+1

Bb+1

Cb+1

Db+1

 = Φy
(b)


Ab

Bb

Cb

Db

 (B-20)

where Φy
(b) is expressed as follows:

Φy
(b) =

1

2


1 0 1 0

0 1 0 1

1 0 −1 0

0 1 0 −1




R
− 1

2
b cos βb −R

− 1
2

b sin βb R
− 1

2
b cosh βb R

− 1
2

b sinh βb

sin βb cos βb sinh βb cosh βb

R
3
2
b cos βb −R

3
2
b sin βb −R

3
2
b cosh βb −R

3
2
b sinh βb

R2
b sin βb R2

b cos βb −R2
b sinh βb −R2

b cosh βb


(B-21)

By substituting Eq. (4.82) in Eqs.(4.81), which represent the conditions of the free edge at

y = ysy , the following equations are obtained:

− A3 sin β3 −B3 cos β3 + C3 sinh β3 +D3 cosh β3 = 0 (B-22a)

− A3 cos β3 +B3 sin β3 + C3 cosh β3 +D3 sinh β3 = 0 (B-22b)
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Substituting Eqs. (B-19) and (B-20) in Eqs.(B-22), the following characteristic equation of

the clamped-free beam can be obtained :

Φt

 A1

B1

 = 0 (B-23)

where Φt can be expressed as follows:

Φt =

 − sin β3 − cos β3 sinh β3 cosh β3

− cos β3 sin β3 cosh β3 sinh β3

Φy
(2)Φy

(1)


1 0

0 1

−1 0

0 −1

 (B-24)

The eigenfrequencies and the mode shapes of the beam are obtained by determining the

non-trivial solution of Eq.(B-23).
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Appendix C

Formulation of the Transfer Function of the
Force Measurement System

From the tap tests on the dynamometer, the following transfer functions were determined

experimentally:

TF =
FD

Fin

(C-1)

Tx =
zD

Fin

(C-2)

In the system in Fig 6.11, the equation for the forces applied on the top plate of the

dynamometer from the spring and damper k2 and c2, respectively, is:

Fk = (c2s+ k2)[z2 − zD] (C-3)

Using the identified transfer function in C-2 and substituting in C-3, the following equation

is obtained:

z2 = κ · Fk (C-4)

where

κ =

[
1 + (c2s+ k2)Tx

c2s+ k2

]
The equations of motion for m1 and m2 are:

m1s
2z1 = (c1s+ k1)[z2 − z1] + F (C-5)
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m2s
2z2 = (c1s+ k1)[z1 − z2]− Fk (C-6)

Adding C-5 and C-6

m2s
2z2 +m1s

2z1 = F − Fk (C-7)

Rearranging C-6 and substituting z2 from C-4, the following equation is obtained:

z1 = φ · Fk (C-8)

where

φ =
(m2s

2 + c1s+ k1)κ+ 1

c1s+ k

Substituting C-8 and C-4 in C-7:

ϕ =
F

Fk

= m2s
2κ+m1s

2φ+ 1 (C-9)

Using the transfer function identified in C-1 and C-9, the transfer function of the system can

be expressed as:

Tsys =
FD

F
=
TF

ϕ
(C-10)
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