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Abstract

The formulation of a co-located equal-order Control-Volume-based Finite Element
Method (CVFEM) for the solution of two-fluid models of two-dimensional, planar
or axisymmetric, incompressible, gas-solid particle flows is presented in this thesis.
The main focus is on the development of a numerical method that allows com-
puter simulation of gas-solid particle flows over a wide range of solid-phase volume
concentration in complex irregular geometries.

A general two-fluid mathematical model is presented. This model is essentially
borrowed from published works in the area of granular flows. It is established here
that this model is applicable to gas-solid flows over a wide range of solid-phase
concentration. The goveruing equations of the fluid phase are obtained by volume
averaging the Navier-Stokes equations for an incompressible fluid. The solid-phase
macroscopic equations are derived using an approach that has been successfully used
earlier for the description of granular materials, and is based on the kinetic theory
of dense gases. This approach accounts for partic]e/particle collisions, and permits
the determination of the solid-phase macroscopic properties such as viscosity and
pressure.

The proposed CVFEM is formulated by borrowing and extending ideas put for-
ward in earlier CVFEMs for single-phase flows. In axisymmetric problems, the
calculation domain is discretized into torus-shaped elements and control volumes:
in a longitudinal cross-sectional plane, or in planar problems, these elements are
three-node triangles, and the control volumes are polygons obtained by joining the
centroids of the three-node triangles to the midi)oints of the sides. In each element,
mass-weighted skew upwind functions are used to interpolate the volume concen-
trations. An iterative variable adjustment algorithm is used to solve the discretized
equations.

The chosen mathematical model, along with its specializations to single-phase
flows and dilute gas-solid flows, and the proposed CVFEM have been applied to

1t



several test problems and some demonstration problems. These test and demon-
stration problems include single-phase flows, dilute-concentration gas-solid particle
flows and dense-concentration gas-solid particle flows. The CVFEM results have
been compared with results of independent numerical and experimental investiga-

tions whenever possible. These comparisons and the results of the demonstration

problems are quite encouraging.
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Somrmaire

La formulation d’une Méthode aux Eléments Finis/Volumes de Contrdle (CVFEM)
pour les écoulements diphasés et bidimensionnels est présentée dans cette these.
Cette méthode & colocation d’ordre égal est établi pour les écoulements de gaz avec
particules solides, et utilise les systéme de coordonnées cartésien et cylindrique. Une
attention particuliére est portée sur le développement d’une méthode numérique
permettant la simulation d’écoulements diphasés de gaz avec particules solides, sur
une grande étendue de concentration, et & l'intérieur de domaines complexes et
irréguliers.

Un modele mathématique général, utilisant sur une formulation euiérienne pour
les deux phases, est présenté. Ce modéle est base essentiellement sur certains travaux
publiés dans le domaine des écoulements granulaires. Dans cet ouvrage, il est établi
que ce modele est applicable pour les écoulements diphasés de gaz avec particules
solides, sur une grande étendue de concentration de la phase solide. Les équations
gouvernant la phase fluide sont obtenues en moyennant sur un volume les équations
de Navier-Stokes pour fluides incompressibles. Les équations macroscopiques de
la phase solide sont dérivées 4 'aide d’une approche utilisée avec succes pour la
description de matériaux granulaires. Etant basée sur la théorie dynamique des
gaz ol les effets des collisions entre particules sont inclus, cette approche permet la
détermination des propriétés macroscopiques de la phase solide telles que la viscosité
el la pression.

La formulation de la CVFEM proposée se base sur l'extension de certaines
idées utilisées dans les récentes CVFEMs pour €coulements monophasés. Pour les
problémes axisymétriques, le domaine de calcul est discrétisé en éléments et vo-
lumes de contréle en forme de tore: dans une tranche plane longitudinale, ou dans
les problemes plans cartésiens, ces éléments sont des triangles 4 trois noeuds, et les
volumes de contréle sont des polygones obtenus en unissant le centroide des trian-

gles & trois noeuds au centre de leurs cétés. Dans chaque élément, des fonctions



dites amont moyennées sur la masse sont utilisées pour interpoler la concentration
volumétrique. Une procédure itérative est utilisée pour la solution des équations
discrétisées.

Le modele mathématique choisi, les spécialisations pour écoulements monophasés
et écoulements diphasés de gaz avec particules solides en faible concentration, de
méme que la CVFEM proposée ont été appliqués sur plusieurs cas typiques et sur
certains problemes de démonstration. Ces derniers représentent des écoulements
monophasés, des écoulements diphasés de gaz avec particules solides en faible con-
centration, et des écoulements diphasés de gaz avec particules solides en forte concen-
tration. Les résultats de la CVFEM ont été comparés avec les résultats numériques
et expérimentaux d’investigations indépendantes lorsque cela était possible. Ces
comparaisons et les résultats des problemes de démonstration sont bien encou-

rageants.
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Chapter 1

Introduction

1.1 Aims and Scope of this Work

This work is primarily concerned with the numerical solution of the mathematical
models of laminar gas-solid particle flows. Both dilute and dense gas-solid particle
flows have been modelled in the past, but there have been only a few recent efforts Lo
analyze flows of medium concentration. Furthermore, most of the published works
on this subject involve gas-solid particle flows in regular-shaped geometries, or cal-
culation domains whose boundaries lie along commonly used orthogonal coordinate
axes. In this work, the focus is on the computer simulation of gas-solid particle flows
over a wide range of concentration in two-dimensional planar and axisymmetric #r-

regular geometries.

Several mathematical models of gas-solid particle flows can be found in the lit-
erature, but it is still not clear if any one set of equations is appropriate for all
I;roblems of interest [42]. The aim in this work is not to determine the most appro-
priate set of governing equations, but to provide a general numerical method capable
of solving such sets of equations in irregular geometries. To justify the scope of this
work, it is useful to cite Steward and Wendroff [172]: “It may seem rash to solve a
set of equations which are not known to be correct in detail. The effort is justified
in many cases because numerical solutions yield information of practical value even
admitting some uncertainty. More basically, numerical solutions help evaluate the

uncertainty and improve the model”. Thus the motivation behind the proposed



numerical method is to provide a useful tool to improve the mathematical models
of gas-solid particle flows. It represents a first step towards a long-term objective of
designing eficient computer simulation tools to solve practical problems involving

gas-solid particle flows.

The numerical method proposed in this thesis belongs to the family of Control-
Volume Finite Element Methods (CVFEMs) [13], which provides the geometrical
flexibility of Finite Element Methods (FEMs) along with the physically mean-
ingful numerical formulation traditionally associated with Finite Volume Methods
(FVMs) [130].

1.2 Two-Phase Flows

This section is intended to briefly introduce some fundamental concepts of two-phase
flows. This will be donc by defining some terms typically used in the description of
" two-phase flows, discussing some of the phenomena encountered in such flows, and,

finally, listing some applications.

A phase is simply one of the states of matter, which can be either a gas, a liquid
or a solid. Thus, two-phase flow implies the simultaneous flow of two phases. In the
subject of two-phase flows, however, the word phase is used in a more general sense:
the simultaneous flow of two immiscible liquids, such as water and oil, is also called
two-phase flow, even though each substance is liquid, because the mathematical
models that are used to describe actual two-phase and such two-component flows

are similar,

The subject of two-phase flows is very broad. It includes flow of liquid-liquid,
gas-liquid, gas-solid particles, and liquid-solid particles, with and without chemical
reaction and/or change of phase. Each type of two-phase flow has its own special
physical characteristics, such as thermal, momentum, and mass coupling between the
phases. A satisfactory general mathematical description of all physical phenomena
that occur in two-phase flows is unavailable, and, perhaps, hardly possible. The
interested reader is referred to detailed physical and mathematical discussions of
two-phase flows in books by Hetsroni {78], Ishii [89], Soo [169] and Wallis {186], and
papers by Bedford and Drumheller {18], Drew [48] and Stewart and Wendroff [172],
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for example. The discussion in the remainder of this section will be restricted to
gas-solid particle flows, or flows of a mixture of gas and solid particles. A review ol
the mathematical models of such flows is presented in Chapter 2, and details of the

mathematical model used in this work are given in Chapter 3.

Gas-solid particle flows are commonly encountered in the environment and in
the power-generation, chemical, process, food and aeronautics industries. Environ-
mental examples include dust and sand storms, and transport of pollutants in the
atmosphere. Industrial applications include flows in pneumatic conveyor systems,
pulverized coal fired furnaces, cyclone separators, fluidized beds, and split-flow in-

ertial separators for air intakes of helicopter gas-turbine engines.

Many of the available mathematical models of gas-solid particle flows are based
on some form of averaging where each phase is considered as a continuum occupying
the same region in space [47, 89, 124]. Such models require definitions of the volume
concentration and the bulk density of the two phases. The volume concentration of
a particular phase is the ratio of the volume occupied by the phase to the volume
of the mixture. Correspondingly, the bulk density of a particular phase is the mass

of the phase divided by the volume of the mixture.

The definition of the bulk density leads to the notion of loading which is the ratio
of the solid-phase bulk density and the fluid-phase bulk density. The loadiag is an
important parameter that characterizes the coupling between the phases. At low
loading, the coupling can be assumed to be one-way [41], because the dynamics of
the solid phase depend on the fluid-phase flow field, while the latter is only weakly
influenced by the flow of the solid phase: in other words, the amount of particles
under low-loading conditions is assumed to be so small that the fluid-phase flow
field is not affected by the presence of the particles, but the particle trajectories are
strongly influenced by the fluid-phase flow field. At larger loadings, the flow of the
fluid phase may be significantly influenced by the dynamics of the solid phase, and
vice versa [41, 42, 48].

Each phase has its own characteristic time scale. The ratio of the solid-phase
time scale and the fluid-phase time scale is the Stokes number [41]. The fluid-phase
time scale is defined by the ratio of a characteristic length and a characteristic

fluid-phase velocity. In the case of gas-solid particle flow, the solid-phase time scale



is typically taken to be the single particle relaxation time [118, 148]. The Stokes
number characterizes the dynamic equilibrium between the phases. At low Stokes
numbers, the solid phase responds very rapidly to the fluid-phase flow field and,
thercfore, is essentially always in dynamic equilibrium with the fluid phase. The
flow of such a mixture is called homogeneous equilibrium flow [186]: the fluid- and
solid-phase velocities have the same value, therefore the two-phase mixture can be
treated as a single-phase substance by defining proper average properties. However,
at large Stokes numbers, the fluid and solid phases are usually not in dynamic

equilibrium.

The dynamics of gas-solid particle flows are also influenced by the volume con-
centration of the solid phase. At low concentration, the dynamic coupling between
the phases is governed by aerodynamic forces, and the number of particle collisions
and their influence are negligible. At high concentration, particle collisions have
significant effects on the dynamics of both phases. In summary, when the dynamics
of the solid phase is primarily controlled by the aerodynamic forces that they. expe-
rience, the flow is said to be dilule, while a dense gas-solid particle flow is mainly

influenced by collisions between the particles [41).

The importance of particle collisions cannot be assessed solely on the basis of the
solid-phase concentration. When the solid phase consists of particles of nen-uniform
size (polydispersed particles), for example, collisions may be promoted since particles
of different size respond differently to the aerodynamics {forces, resulting in relative
velocity between the particles and preferential accumulation of particles in certain

regions of the flow.

1.3 Organization of the Thesis

The development of the numerical method proposed in this work was realized in
three major steps. At each step, a particular aspect of the numerical model was
developed, implemented and validated. The first step was the formulation, imple-
mentation, and testing of a Control-Volume Finite Element Method (CVFEM) for
two-dimensional planar and axisymmetric (Cartesian/cylindrical) single-phase fluid

flow. This Cartesian/cylindrical formulation is a very useful feature of the proposed



CVFEM, because it allows its application to a wide variety of test cases and prob-
lems of interest. The second step was the formulation, incorporation and testing of
a dilute gas-solid particle flow model. The last step was the formulation and incor-
poration of a more general model for gas-solid particle flows, in which the effects
of particle collisions are accounted for through a solid viscosity and pressure in the

solid-phase governing equations.

The structure of this thesis reflects this step-by-step evolution of the proposed
numerical method. In Chapter 2, various relevant, existing mathematical and nu-
merical models are reviewed. The description of the chosen mathematical model
follows in Chapter 3. The presentation in this chapter is focused on a general
model, which is capable of handling a wide range of solid-phase concentration. At
the end of Chapter 3, specializations of this general mathematical model for single-
phase flows and dilute gas-solid particle flows are presented. The proposed numerical
methoél, described in Chapter 4, is also presented in the context of the general math-
ematical model applicable to a wide range of concentration. Chapters §, 6, and 7
present the validations and results for the various specializations of the mathemati-
cal model, which also correspond to the step-by-step evolution described previously.
In Chapter 8, the contributions of this thesis are reviewed and some suggestions are

presented for the extensions of this work.



Chapter 2

Literature Review

Two-phase flow is a very broad subject and an exhaustive literature review is a
formidable task: only on the subject of gas-liquid flow prior to 1966, more than
5000 references were indexed [68]. A general review of the subject of two-phase flow
is beyond the scope of this work. Fairly detailed discussions of two-phase flow are
available in books by Hetsroni [78], Ishii [89], Soo [169] and Wallis [186], and in
papers by Bedford and Drumbheller {18}, Drew [48] and Stewart and Wendroff [172],
for example. This literature review is intended to present only the works primarily

related or significant to gas-solid particle flows.

2.1 Mathematical Models of Gas-Solid Particle
Flows

The most detailed model for gas-solid particle flows is the so-called complete local
description [172], or exact formulation {18]. This approach deals with the dynamics
of each phase and the interface on the basis of first principles [78]. At each point
of the domain of interest, only one phase exists at a time, and, therefore, the ap-
propriate governing equations are solved at those points. To be more precise, in
the case of two immiscible Newtonian fluids flowing simultaneously, for example,
the complete local description consists of two sets of Navier-Stokes equations along
with appropriate ipterphase boundary conditions. Such a complete local descrip-

tion ezactly models the flow of interest. However, the solution of practical problems



using this model is usually beyond the capabilities of available computers [42], and

some simplifications are needed to obtain a tractable model.

Practical models can be obtained by introducing the notion of volume concentra-
tion in the context of superimposed continua: each phase is treated as a continuum,
occupying simultaneously the same region in space. The governing equations can
be postulated or obtained by some averaging processes. The early models were
postulated. Example includes the works of (i) Rudinger and Chang [147], who de-
rived one-dimensional two-phase flow equations, and studied expansion and shock
waves in pipes; (i¢) Zuber [198], who proposed a mathematical model of laminar
gas-solid particle flow consisting of a continuity equation for each phase, a mixture
momentum equation, and the equation of motion of a single particle that is used
to computed the slip between the gas and the solid phases; and (z2¢) Marble [112],
who proposed a set of governing equation, the so-called dusty-gas model, consisting
of a continuity and a momentum equation for each phase. The model of Marble is
limited to dilute concentration of the solid phase, and, therefore, the fluid-phase is
governed by the well-known single-phase Navier-Stokes equations with an additional

term that représents the fluid-solid interactions.

More rigorous derivations of mathematical models of two-phase flows are based
on averaging procedures. The early works in averaging theories, such as Ander-
son and Jackson [5], Murray [122], Panton [128], and Buyevich {24] are related
to applications involving gas-solid particle flows. The works of Slattery {166] and
Whitaker [192] for porous media are based on the technique of volume averag-
ing. Averaging formulations of a more general multiphase system can be found in
the works of Drew [47], Ishii {89], and Nigmatulin [124]. Ishii’s'[89] and Nigmat-
ulin’s [124] formulations are both based on the averaging of the local instantancous
governing equations of each phase, along with the local instantancous jump condi-
tions at the interfaces. The difference between these two formulations is in the type
of averaging procedure. Ishii [89] applied time averaging while Nigmatulin [124]
used volume averaging. The volume-averaging procedure naturally introduces the
the volume fraction, or volume concentration, in the resulting average equations.
In the time-average formulation of Ishii [89], however, the local iime fraction has
to be equated to the volume concentration, and this step is not founded on any

rigorous argument [18]. Ishii’s and Nigmatulin’s formulations lead to equivalent



averaged equations, but the macroscopic variables have different interpretations:
Ishii's equations deal with time-averaged variables, while the macroscopic variables

in the formulation of Nigmatulin are volume-averaged quantities.

A more sophisticated averaging procedure has been suggested by Drew [47] in
which two spatial and two time averages are applied, not on the local governing
equations, but on their corresponding integral formulation. This four-step averag-
ing procedure was applied to obtain a formulation whose solutions have smooth
derivatives. A statistical approach has been used by Buyevich [24] to derive the
governing equation for dilute-concentration suspensions of mono-disperse particles.
Delhaye and Achard [43] derived average equations based on ensemble averaging.
These various cited averaging procedures vary significantly. However, they lead
to essentially equivalent form of averaged balance equations [18]. These average
descriptions are also called continuum-mechanical approaches [48], or continuum
mode] of immiscible mixture {18}, and are useful in problems where the exact details
of the flow, such as those obtainable from the complete local description, are not

needed.

In the average models, in addition to the specification of how each phase inter-
acts with itsell through stresses, the mutual interaction of the two phases has to
be included. These additional terms are modelled based on basic rules of physics
and empirical data applicable for a specific flow topology (stratified flow, dispersed
flow, etc.). Such models represent the major source of uncertainties in the average
formulations. Several models, developed for specific applications, exist in the litera-
ture. Anderson and Jackson [5}, and Murray {122] used volume averaging to obtain
a description of fluidized beds. Panton [128] based his gas-solid particle equations
on a combination of volume and time averaging. Jiang et al. [94] applied volume
averaging techniques to obtain a model for the suspension of neutrally buoyant par-

ticles. More recently, ensemble averaging has been applied to gas-solid particle flows
by Liljegren {104]. '

In the formulation of the fluid-phase momentum equations using the averaging
approach, terms involving the velocity fluctuations appear. These terms are similar
to the so-called Reynolds-stress terms that appear in the time-averaged momentum
equations of single-phase turbulent flow. Several names have been given to these

terms in the literature: Anderson and Jackson [5] use the term Reynolds stresses;



Buyevich [24] calls them the pseudo-turbulent stresses; Drew [48] prefers the term
turbulent stresses; and fluctuating stresses is used by Nigmatulin [124]. In the ecarly
models [147, 198, 112}, these additional stresses were not considered. However,
in many gas-solid flows of interest, these additional stresses need to be modelled,
and a large amount of works on this subject is available in the relatively recent
literature [56, 32, 163, 96]. Crowe [42] has presented a review of the various available

turbulence models for dispersed two-phase flows.

Averaged models based on the so-called Eulerian approach use an Eulerian for-
mulation both for the fluid and the solid phases. The solid phase can alternatively
be modelled by using a Lagrangian formulation [3, 39, 50] where the dynamics of in-
dividual particles are modelled by the particle equation of motion: this formulation
is referred to as the Lagrangian approach. Practically, it is impossible to track all
the particles, even in dilute concentration, and, therefore, the incoming particle flow
is represented by a finite number of “computational” particles (42]. Each “compu-
tational” particle represents a group of particles having the same properties in term
of size, density, and starting position. This formulation facilitates implementation
of the wall boundary conditions, through particle/wall coilisions, and the incorpo-
ration of a distribution of particle sizes is relatively straightforward [168]. However,
the volume concentration is not an integral part of the formulation, and, therelore,
additional treatments are needed‘to obtain the volume concentration required in the
fluid-phase governing equations. Furthermore, the Lagrangian approach can become

very expensive computationally when particle/particle collisions are important.

Most of the mathematical models of gas-solid particle flow described so far in
this review are limited to dilute concentration of the solid phase. This limitation is
not related to the averaging process, but is due to the assumption that the particles
have negligible effects on each other. However, as the solid concentration increases,
the interaction between the fluid and the solid phases is no longer the only mech-
anism that must be taken into account, since particles start to interact with each
other. One of the earliest works on dense-concentration flows is the experimental
investigation by Bagnold [9). He observed two flow regimes, namely, low shear rates
flow and high shear rates flow. His experimental results show that at high shear
rates, the normal and shear stresses are both quadratic functions of the shear rate,

while at low shear rates, the variations are linear. This change in behaviour can be



explained by noting that the transport process is dominated by collisional interac-
tions at high shear rates and by viscous fluid flow effects at low shear rates. These
two regimes were accordingly called the grain-inertia regime and the macro-viscous
regime. In the grain-inertia regime, the fluid plays a negligible role in comparison

to particle/particle interactions.

Bagnold’s interpretation of the importance of the particle collisions in the grain-
inertia regime lead Savage and co-workers [58, 91, 106, 108, 109, 150] to propose
mathematical models of dry granular materials (or collection of discrete solid par-
ticles with no interstitial fluid). Using an analogy with the kinetic theory of dense
gases [31], the momentum exchange in granular materials is assumed to occur pri-
marily through binary collisions of hard spheres. However, in the kinetic theory of
dry granular materials, an energy dissipation process is included through inelastic
collisions. These collisions are characterized by a coefficient of restitution. Using
similar averaging techniques as in the kinetic theory of gases, a macroscopic descrip-
tion of dry granular materials can be obtained. The resulting macroscopic equr;xtions
consist of a continuity equation, a momentum equation, and an equation governing
the transport of the specific kinetic energy of the solid-particle velocity fluctuations,
which has become known as the granular temperature [152]. This model, called the
granular temperature model, has the advantage of giving a microscopic interpre-
tation of the various macroscopic (average) transport properties of the solid phase

such as viscosity and conductivity.

Campbell [28] and Savage [152] have recently reviewed the works related to
granular flows. Therefore, only a brief discussion of some of the contributions to
the kinetic theory of granular materials is presented here. The early models [150,
91, 106] were developed for the case of uniform, nearly elastic, smooth, spherical
particles. The effects of particle surface roughness (92, 109], the effects of impact
velocity-dependent coefficient of restitution [107], and the effects of highly inelastic
particles [146] are among the advances included in later works on the kinetic theory
of dry granular materials. There have also been some recent efforts to include the
effects of the interstitial fluid, and develop granula;r-ﬂow kinetic theories involving
binary mixtures of particles having different sizes [58, 93]. Adapting the granular-
flow kinetic theory, Sinclair and Jackson [165] analyzed fully-developed gas-solid
particle flow in a pipe. The effects of the fluid were modelled through a drag
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force appearing in the solid- and fluid-phase momentum equations. The solid-phase
constitutive equations were simply based on the dry granular kinetic theory of Lun
et al. [106). A similar model has been developed by Ding and Gidaspow [45] and
applied to fluidized beds. Lun [107] and Lun and Savage [110] have rigorously
developed a kinetic theory for gas-solid particle mixtures. In their framework, the
particles are governed by Newton’s laws of motion: the forces acting on the particles
come from the fluid phase/particle interactions, particle/particle collisions, and the
gravity field; and the effects of the fluid phase are systematically introduced in the

solid- and fluid-phase governing equations, and also in the solid-phase constitutive

equations.

The physical behaviour of granular flows has also been studied through numer-
ical experiments [25]. Typically, the dynamics of a finite amount of particles is
computed using Newton’s laws of motion and appropriate interaction models. This
idea of numerical experiments has been successfully used in the simulation of granu-
lar flows, to investigate both the macroscopic and microscopic aspects of such flows.
It is a complete description of a multi-body problem where instantaneous particle
positions, velocities and forces are computed. Averaging processes are then applied
to obtain macroscopic properties such as stresses. These simulations are completely
deterministic [152] and are used to verify the various assumptions of the kinetic
theory of granular flows. However, numerical experiments are currently limited to
relatively simple flows, such as Couette and chute flows, and need to use special
techniques, such as periodic boundary conditions, in order to limit the number of
particles involved in the calculation. It should be also noted that the results of these
simulations depend on the model used for the particle interactions. Campbell [26, 27]
and Savage [153] treat the particles as hard spheres, and the particle collisions are
assumed to be instantaneous and binary. Other simulations by Walton [187, 188]

and Haff and Werner [71] assume particle interactions of finite durations.

Leighton and Acrivos [102] have also proposed a mathematical model for dense-
concentration particulate flows based on experimental observations of particle diffu-
sion in shear flows. This model, called diffusive flux model, is based on a macroscopic
shear induced diffusivity which is a function of the shear rate and the concentration

gradient.
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2.2 Numerical Solution of the Mathematical Mod-
els

The mathematical models of the multitude of fluid flow phenomena in engineering
and the environment are, in general, not amenable to analytical solution techniques.
Consequently, alternative solution procedures such as numerical methods have been
proposed and used successfully. In this section, some of the numerical methods used
for the solution of the mathematical models of single-phase and gas-solid particle

flows are reviewed.

Numerical methods for the prediction of such flows are based on vorticity/stream-
function [61, 67], vorticity/vector velocity potential [6), or primitive-variable formu-
lations [130]. In two-dimensional problems, methods based on vorticity/stream-
function formulation offer a number of advantages: pressure is eliminated from the
governing equations; and in single-phase flows, three governing equations, the con-
tinuity and two momentum equations, are replaced by two governing equations, one
for vorticity and one for stream function. However, the vorticity/stream-function
formulation is limited to two-dimensional problems. The vorticity/vector velocity
potential formulation is suitable for three-dimensional problems, and it too elimi-
nates pressure from the governing equations; however, in single-phase flows, six de-
pendent variables are involved, three components of the vorticity vector and three
components of the vector velocity pdtential, in contrast to four dependent variables,
three components of velocity and pressure, in the primitive-variable formulation. In
all vorticity-based formulations, the value of vorticity at walls has to be specified
iteratively, and this feature often leads to convergence difficulties [130]. It should
also be noted that it is difficult to specify boundary conditions on stream function
in problems with multiply-connected domains. For these reasons, the primitive-
variable formulation is favoured in the solution of practical problems. In this thesis,

the primitive-variable formulation is preferred.

In primitive-variable formulations of incompressible flows, there is no explicit
governing equation for pressure: when the correct pressure field is substituted into
the momentum equations, and then these equations are solved, the resulting velocity
field satisfies the continuity equation [130]). This indirect specification of pressure -

does not pose any difficulties in numerical methods if the discretized momentum and
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continuity equations are solved simultaneously. However, direct solution of the dis-
cretized, coupled momentum and continuity equations requires very large computer
storage: thus, this approach is impractical in three-dimensional problems and in the
solution of multiphase flows. To overcome this problem, alternative sequential so-
lution algorithms, such as the Semi-Implicit Method for Pressure-Linked Equations
(SIMPLE), SIMPLE-Revised (SIMPLER), and SIMPLE-Consistent (SIMPLEC),
have been proposed [130, 184]. In these sequential algorithmns, discretized equa-
tions for pressure and/or pressure correction are obtained by using the discretized
momentum equations in the discretized continuity equations, and then the sets of
discretized equations for the velocity components, pressure and/or pressure correc-
tion are solved sequentially. Other options for the solution of coupled momentum
and continuity equations include iterative coupled solution algorithms, such as the
SImultaneous Variable Adjustment (SIVA) method of Caretto et al. [29] and the
Coupled-Equation Line Solver (CELS) of Galpin et al. [62]. TIn this work, ideas from
SIMPLER and CELS are borrowed to construct an iterative variable adjustment

algorithm. Details are given in Chapter 4.

Another difficulty encountered in primitive-variable formulations of incompress-
ible flows is the following: if the velocity components and pressure are stored at the
same nodes (co-located) and interpolated by similar functions {equal-order), then
physically unrealistic checkerboard-type pressure distributions could be admitted as
solutions [130]. One way to avoid this difficulty is to use staggered grids for the
velocity components and pressure {74, 130]. However, the use of staggered grids is
not an attractive option when nonorthogonal structured or unstructured grids are
used [14, 149, 162]. In finite element methods, mixed or unequal-order interpolation
of the velocity components and pressure is often used to avoid the aforementioned
difficulty of checkerboard-type pressure distributions 10, 81, 87}. Yet another ap-
proach to overcome this difficulty in co-located, equal-order, primitive-variable for-
mulations is to use special interpolation functions for the velocity components when
discretizing mass-flux terms. Examples of this approach can be found in the works
of Prakash and Patankar [135}, Rice and Schnipke [145], Peric et al. [131], and
Saabas [149]. This approach is also used in the numerical methods proposed in this

thesis: details are presented in Chapter 4.

The discretization of the governing equations can be achieved using finite dif-

13



ference methods (FDMs) [4], finite volume methods (FVMs) [74, 129, 139], finite
element methods (FEMs) [126, 178, 196] or control-volume finite element methods
(CVFEMs) [11, 12, 13, 14, 15, 134, 135, 136, 137, 141, 156, 157]. FDMs and FVMs
have been applied very successfully to complex fluid flow phenomena in regular-
shaped calculation domains. General orthogonal grids [179] can be used to extend
the applicability of FDMs and FVMs to irregular geometries. Examples of FVMs
and FDMs based on general orthogonal and nonorthogonal grids can be found in
the works of Raithby and co-workers [140, 70, 183], Shyy and Vu [162], Acharya et
al. [1}, and Pope [133]. However, methods based on finite-element discretizations
seemn to be better suited for the solution of fluid flow problems in complex irregular

domains.

In the mid-seventies, the desire and the need to extend the capabilities of the
successful marker and cell (MAC) method of Harlow and Welch [74], and the
FVMs of Patankar and Spalding [129], and Raithby {139] to irregular geometries
provided the motivation for the CVFEMSs of Baliga [11], Ramadhyani [141] and
Prakash [134]. These early CVFEMs were formulated by combining and extending
concepls borrowed {rom the aforementioned FVMs, the work of Winslow [194], and
the FEMs of Zienkiewicz [196], Oden [126], and Taylor and Hood [178}. Today,
many papers dealing with the formulation and application of CVFEMs for con-
duction, convection-diffusion, and single-phase fluid flow problems are available in
published literature. Examples include the works of Baliga and Patankar [12, 13, 14],
Prakash and Patankar [135], LeDain-Muir and Baliga [100], Prakash [136], Hookey
and Baliga [83], Schneider and Raw [156, 157], Costa and Oliviera [34], and Elkaim
et al. [57]. The combination of finite element and finite volume approaches can also
be found in the works of Choudhoury and Nicolaides [33], van Leer [183], Jameson
and Mavriplis [90], Lahrmann [99], and Swaminathan and Volier [175].

Recent reviews of CVFEMs for two- and three-dimensional viscous fiuid flows are
available in the works of Hookey [84], Saabas [149], and Baliga and Saabas [15]. Most
of the CVFEMs proposed in the seventies and eighties have intrinsic difficulties that
restrict the scope of their applicability to practical problems. CVFEMs based on
flow-oriented upwind schemes [13, 100, 136] are successful in reducing the false dii-
fusion that afflicts locally one-dimensional upwind schemes used in FVMs [130], but

they can encounter difficulties caused by negative coefficients in the discretization
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equations. These difficulties can become quite serious when obtuse angled triangular
elements, or tetrahedral elements with a solid angle exceeding 7/2 steradians, are
used in problems that involve high Peclet numbers [15, 149]: furthermore, for these
conditions, additional difficulties related to indeterminate coefficients in the interpo-
lation functions may be encountered [149]. Some of the two-dimensional CVFEMs
based on unequal-order and equal-order co-located formulations are successful in
avoiding checkboard-type pressure distributions in incompressible flow problems,
but they suffer from other difficulties: the unequal-order formulation of Baliga and
Patankar [13] can suffer a loss of accuracy in problems with high Reynolds numbers,
and its extension to three-dimensions would be quite cumbersome; the co-located
equal-order formulations of Prakash [{136] and Hookey and Baliga [83] require over-
specification of boundary conditions and encounter convergence difficulties in prob-
lems with inflow and outflow boundaries [149]. Schneider and Raw [156, 157] have
proposed a co-located equal-order CVFEM hased a mass-weighted upwind scheme.
This method ensures that the discretized convection transport terms contribute
positively to the coeflicients in the discretization equations, and it avoids spurious
oscillations in the computed pressure field. However, this CVFEM [156, 157] is
based on planar quadrilateral elements, and its behaviour in problems with inflow

and outflow boundaries has not been discussed in detail in the published literature.

The recently completed work of Saabas [149] was aimed at overcoming some of
the difficulties mentioned in the previous paragraph. It has resulted in an equal-
order co-located CVFEM that deals directly with primitive variables and is capable
of solving steady, mu]tidimgnsiona], laminar and turbulent, incompressible, viscous
single-phase fluid flow problems in irregular-shaped geometries, with or without
inflow and outflow boundaries [15, 149]. More recently, the CVFEM proposed by
Saabas [149] has been adapted and extended for the solution of two-dimensional

axisymmetric single-phase fluid flow problems by Masson et al. [116].

CVFEMs have proved successful in the solution of single-phase fluid flow and
heat transfer problems in two- and three-dimensional geometries. Recently, Masson
and Baliga [114, 115, 117] have proposed a CVFEM for dilute gas-solid particle
flows: this CVFEM was developed as a part of the work reported in this thesis. In
this numerical method all of the dependent variables are stored at the same nodes

(co-located) and interpolated over the same elements (equal-order). This numerical
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method was constructed by adapting ideas from earlier CVFEMs for incompress-
ible single-phase fluid flows proposed by Baliga and Patankar [14], Prakash and
Patankar [135], Schneider and Raw [156, 157], Saabas [149], and Masson et al. [116].

In dilute gas-solid particle flows, if dynamic and thermal equilibrium between
the fluid and solid phases can be assumed, then the gas-solid mixture can be consid-
ered as a single-phase homogeneous fluid, with suitable thermophysical properties
that account for the presence of the particles. The corresponding mathematical
formulation can be solved using available numerical methods for single-phase flows.
However, in general, the fluid and solid phases cannot be assumed to be in equilib-
rium, and, therefore, it is not always appropriate to consider the gas-solid mixture
as a homogeneous fluid. The early numerical models for non-equilibrium dilute par-
ticulate flows, such as those proposed by Marshall and Seltzer [113], Hotchkiss and
Hirt {86], Morsi and Alexander [121], Gauvin et al. [63], and Westbrook [191], are
Eulerian-Lagrangian formulations based on one-way coupling: the fluid-phase flow
field is computed on a fixed grid, without accounting for the influence of the solid
phase; then particle trajectories are calculated by integrating the particle-motion
equation, with the previously calculated flow field as a known input. The Eulerian
formulations of Hamed and Tabakoff [72], and Eldighidy et al. [55], where, after
suitable averaging, the solid particles are considered as a continuum, are also based
on the one-way formulation. The solution of such models is straightforward, because
existing numerical methods developed for single-phase flows can be used with only
little or no modifications. One-way coupling models have been used to predict multi-
phase flows in split-flow particle separators [22], cyclone separators [180], liquid-fuel
spray nozzles [191], and ventury scrubbers [19]. They have also been used in studies
of dispersion of atmospheric pollutants [86], turbine blade erosions {176}, and spray
drying [63, 113].

In most of the applications involving gas-solid mixtures, even at low concentra-
tion, the solid-phase mass flow rate is of the same order as the fluid-phase mass
flow rate, because the density of the solid phase is usually much higher than that
of the gas. At such high loadings, a more general technique for the simulation of
dilute gas-solid particle flows, namely, the two-way coupling model, in which both
particle/gas and gas/particle interactions are taken into account, is required. Again,

the implementation of this model can be done either by using a Lagrangian or an
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Eulerian description for the solid phase. The fluid phase is always described in an

Eulerian manner.

In two-way coupling models, the effects of the solid-phase can be introduced as
implied sources of mass, momentum, and energy in the continuum description of the
fluid phase, as was first proposed by Midgal and Agosta [119]. Using the Lagrangian
description of the particulate phase and the implied-source concept of Migdal and
Agosta [119], Crowe and Pratt [36, 37], Crowe et al. [39], Stock and Crowe [173], and
Amsden and Hirt [3] have predicted particle trajectories in the continuous phase.
Their procedures consist first in solving the fluid flow assuming that no particles are
present, using either the vorticity/stream-function (38] or primitive-variable formu-
lations [39] and an appropriate numerical method, if required. Particle trajectories
are then predicted, and used to calculate the implied sources of mass and momentum
in the governing equations of the fluid phase. The fluid-phase flow is recalculated us-
ing these computed, implied sources, and the process is repeated until convergence.
A popular scheme based on such a Lagrangian approach is the PSI-CELL model first
proposed by Crowe et al. [39]; similar models have been applied to various problems
such as cyclone separator [37], liquid fuel combustion [54], pneumatic transport {101},
orifice and venturi [160], swirling flow [161], spray drying [40], electrostatic precipi-
tation [181], swirl combustion chamber [138], and pipe flow [51]. Early Lagrangian
models [3, 119] are well suited for dilute-concentration liquid-solid particle flow simu-
lations. However, for gas-solid particle flow simulation at high leading, prohibitively
small time steps are needed, a.nd the strong fluid-solid momentum coupling could
cause convergence difficulties (50, 51]. These convergence difficultics arc associated
with the explicit treatment of the momentum coupling term: during the calculation
of the fluid-phase velocity, the solid-phase velocity that appears in the momentum
coupling term is assumed to be the corresponding value taken at the previous time
step. To remove the necessity of small time steps and alleviate the aforementioned
convergence problems, Crowe et al. [39] have introduced an implicit treatment of
the momentum coupling term, resulting in an iterative process at each time step.
Dukowicz [50] used a time-splitting technique that allows implicit, noniterative,

computation of the momentum-coupling term.

Numerical models based on Eulerian formulations of the particles, such as those

proposed by Di Giacinto et al. [44], Durst et al. [51], and Simonin [164], are very
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similar to the corresponding two-fluid flow models developed by Carver [30], Harlow
and Amsden [76], Shah et al. [159], and Spalding [170}. Most of these two-fluid
models have been used in conjunction with established single-phase finite-volume
methods that employ staggered grids for the velocity component and pressure [74,
129]. A co-located, equal-order CVFEM based on a two-fluid model of dilute gas-
solid particle flows has been recently proposed by Masson and Baliga {114, 115, 117).
Again, it should be noted that this CVFEM {114, 115, 117] was developed as a
part of the work reported in this thesis. Two sets of governing equations, one
for the fluid phase and one for the solid phase, with appropriate interaction terms
have to be solved in such models. Most of these formulations in the literature
use upwind interpolation of the volume concentration, but differ in the derivation
of the pressure equation (or pressure correction equation): the pressure correction
equation is based on the overall mixture continuity equation in the algorithm of
Shah et al. [159}; Carver [30] derived a pressure correction equation based on the
volumetric continuity equation of the mixture; and the pressure correction equation

employed by Spalding [170] is based on the imbalance of volume concentrations.

The pressure correction equation of Carver [30] is based on volumetric flow rates
instead of mass flow rates, and is more appropriate than the pressure correction
equation of Shah et al. [1539] in the case of high density ratios (which is typical
of gas-solid particle mixtures). Carver {30] has also implemented an equation for
the pressure, that is similar to his pressure correction equation, and arrived at a
SIMPLER-type algorithm [{130]. The imbalance of volume concentrations defined by
Spalding [170] is computed from the individual continuity equations. Each continu-
ity equation allows the calculation of the volume concentration of the corresponding
phase. Since the mixture occupies the entire domain, the volume concentrations
should add to unity, but during the iterative solution procedure, the volume con-
centrations computed from the individual continuity equations do not necessarily
do so, and, therefore, there is a imbalance of volume concentration. The pressure
correction equation of Spalding [170], which is obtained by requiring an elimination
of this imbalance, includes the effects of available volume concentrations and ve-
locities. The form of the volume concentration equation also differs between these
various formulation. Spalding [170] and Shah et al. [159] use the continuity equation
of one of the phases to construct the volume concentration equation. Carver [30] -

notes that such a volume concentration equation does not explicitly incorporate the

18



influence of the other phase: his equation for volume concentration is based on a lin-
ear combination of the two continuity equations, one for each phase. In later work,
Spalding [171] has also explicitly included the effects of both phases by constructing
the volume concentration equation using a combination of the continuity equations
of both phases.

The Lagrangian approach is based on the solution of the parabolic equations of
motion of a large number of particles. In this formulation, the handling of boundary
conditions, though quite demanding computationally, is straightforward once the
wall/particle collision properties are known. It can also handle polydispersed particle
size distribution [51] more efficiently than the Eulerian formulation. However, the
volume concentration does not appear directly in the Lagrangian formulation, and,
therefore, special treatments need to be applied [50] in order to obtain the volume
concentration required in the equations that govern the motion of the fluid phase.
This can adversely affect the effectiveness of the solution procedure at high solid-
phase volume concentration. It has also been observed that the Eulerian formulation
often converges more easily at high loading than the Lagrangian model, as has been
discussed by Durst et al. [51]. Furthermore, at high particle concentrations, particle
collisions can occur, and these are difficult to take into account in the Lagrangian
formulation. However, recently, Lagrangian formulations have been proposed by
Tanaka and Tsuji {177], and QOesterle and Petitjean [127], in which the particle

collision eflects are included.

The granular-temperature models and numerical simulations of Johnson and
Jackson {95}, Nott and Brady [123], Sinclair and Jackson [165], and Wang and
Ni [123, 190, 189], or diffusion-flux models of Nott and Brady [125], and Schaflinger
and Acrivos [154], are examples of Eulerian {formulations in which the interparticle
collisions are included. The aforementioned numerical simulations are based on one-
dimensional formulations. Recent efforts to implement granular-temperature models
in multi-dimensional numerical simulations of high-concentration gas-solid particle
flows include the works of Gidaspow and co-workers [45, 66, 65]. These numerical
models use a staggered-grid finite volume formulation based on the ICE algorithm
developed by Harlow and Amsden {76]. Gidaspow and co-workers have successfully

used these methods for some fluidized bed calculations.
The method proposed in thic thesis is a CVFEM that is designed to solve two-
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fluid models of gas-solid particle flows over a wide range of concentrations in com-
plex two-dimensional domains. Some aspects of this CVFEM, pertaining to single-
phase flows and dilute-concentration gas-solid particle flows, have been published
recently (114, 115, 116, 117). Details of this CVFEM are presented in Chapter 4 of
this thesis.
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Chapter 3

Mathematical Model

The equations that govern single-phase Newtonian fluid flows, the Navier-Stokes
equations, are well established. However, in the case of gas-solid particle flows, the
situation is not the same. Several derivations of the governing and constitutive equa-
tions are available in the literature, but arguments still exist on the most appropriate
form of these equations. The methodology proposed by Savage and Jeffrey {150],
Jenkins and Savage [91], and Lun et al. [106] for the modelling of granular {lows, in
which the solid-particle phase is modelled using a theory similar to the kinetic theory
of gases, appears to be a promising technique for the derivation of the governing and
constitutive equations in two-fluid models of gas-solid particle flows. Lun [107], and
Lun and Savage [110] have proposed the first model of fluid-solid particle flows that,
uses the so-called granular-temperature concept. This model [107] is appropriate for
a wide range of concentralion, is based on fundamental principles of the kinetic the-
ory of gases, and allows a microscopic interpretation of the constitutive equalions.
Thus the granular temperature methodology proposed by Lun [107], and Lun and
Savage [110], will be used in this chapter to derive the governing and constitutive

equations.

- Ding and Gidaspow [45] have also used the granular-temperature approach to
derive a mathematical model of gas-solid particle flows, but their model is only
valid at dense concentrations. Using a similar approach, Koch [97] has also derived
a mathematical model for monodisperse gas-solid suspensions. In his study, the

inertia of the fluid was neglected.
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In this chapter, the major steps involved in the derivation of the solid-particle
phase governing equations and constitutive relations, as proposed by Lun [107] and
Lun and Savage [110], are presented. First, the dynamics of a single particle, which
is simply governed by Newton’s law of motion, is discussed. Then the dynamics
of multiple spherical particles in a fluid is presented. Following that, the averaging
procedure that is used to obtain the macroscopic equations is described, along with
a direct particle/particle interaction model based on simple hard-sphere binary col-
lisions. The aforementioned averaging procedure is similar to that used to obtain
the macroscopic governing equations of single-phase fluid flow from the Boltzmann

equation [31].

In principle, the motion of the fluid phase is governed by the Navier-Stokes equa-
tions, which must be satisfied at each point in the fluid regions, and the dynamics of
each particle is governed by Newton’s laws of motion. Suitable boundary conditions
can also be prescribed at the interfaces between the solid particles and the fluid.
These equations together constitute an exact local description model. Howevc'ar, for
a large number of particles, the exact topology is far too complex, so numerical
solutions of the exact local description model are impractical. To simplify this local
description, point variables which vary rapidly on the scale of the particle spacing
are averaged over regions that are large compared with that spacing, but small com-
pared with the domain of interest. The resulting average equations describe the fluid
and solid phases as two interpenetrating continua. The volume averaging procedure
of Anderson and Jackson (5] and Jiang et al. [94] is also described in this chapter.
Finally, the resulting governing equations for two-dimensional axisymmetric flows
are presented, along with specializations for single-phase flows, and dilute gas-solid

particle flows,

The Einstein notation is used in most of the developments presented in this
chapter. However, in the derivation of the solid-phase governing equations, the
vectorial notation is sometimes used for the sake of conciseness and clarity. At
the end of the chapter, the expanded equations are presented for two-dimensional,

axisymmetric problems.

1t should be noted here, again, that the objective in this thesis is not the com-
parative evaluation of the many models of gas-solid flows that are available in the

published literature, as reviewed in Chapter 2. Rather, the goal here is to select
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a model that allows the simulation of gas-solid particle flows over a wide range of
concentration, and has the general features that are commonly found in other avail-
able models, and then propose a suitable numerical method for the solution of such

mathematical models in complex two-dimensional domains.

It should be noted at this stage that the models discussed in this chapter are
based on the following assumptions: the solid phase is composed of hard, spherical,
smooth, elastic or slightly inelastic particles of uniform size; the mass density of
the particles is much larger than the fluid-phase mass density; the rotation of the
particles is neglected; the fluid is Newlonian and incompressible; and the flow is

laminar.

3.1 Dynamics of a Single Particle in a Fluid Flow

Often, the dynamics of particles in a fluid flow is typically modelled using the New-
ton’s second law of motion of a single spherical particle [80, 118, 148]. Considering a
spherical particle of diameter d and density p* in a Newtonian fluid having a density

{, dynamic viscosity u/, and velocity component, u{, in the ¢ direction the equation

of motion of the particle is given by [80, 118, 148]:

JDuf T ap! Du/ Du?
P P i s {uwf — o P Pof { L - —L
VPp — T VPpig: + gH dCpRe (u, 1,) Vv 7, + 2V ( Dt D )
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where u! is the particle velocity component in the 7 direction, Re® is the particle

Reynolds number, and V? is the volume of the particle.

pfd\/u{2 — ulul + u2?

. _
Re’ = ,

(3.2)

p_ 2% 3.3
V 5 (3.3)

In this equation of motion, side forces, such as the Magnus and Saffman forces,

are neglected since they are small compared with the viscous drag (118} under the
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assumptions presented at the beginning of this chapter. The right-hand side of this
equation of motion of the particle consists of the various external forces in the ¢
direction experienced by the particle, namely, the gravitational force, the viscous
drag, the overall fluid pressure gradient force, the apparent mass force, and the
Bassct force. The pressure force represents the effects of the global pressure gradient.
This pressure gradient can be caused by viscous shear stresses at solid boundaries,
the gravitational field, and acceleration/deceleration of the fluid. In the case of the
gravitational field, the overall pressure gradient force is simply the buoyancy force.
The apparent mass force is that needed to accelerate the mass of fluid displaced by
the particle. The Basset force accounts for effects such as boundary layer growth,

which are functions of the entire history of the particle trajectory [148].

In most practical applications of gas-solid particle flows, the particle density is
much higher than the fluid density, and, therefore, the only forces on the particle
which are significant are the gravitational, pressure, and viscous drag forces (118,
148]. The equation of motion of a particle for high values of the density ratio, %}'—,

simplifies to:

Duf _ ! s 1 ap’
D %t 95 (ui - ’”.‘) > 9z, (3.4)
where
_3 :
(p= Tod CoRe (3.5)

One of the first solutions of tne flow field around a spherical particle, with uniform
flow far from the particle, is the so-called Stokes solution [155]. Using creeping
flow assumptions, Stokes obtained a solution of the Navier-Stokes equations and
computed the drag force, D, applied on the particle by the fluid. The Stokes solution

18
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D= -g,ufchRe (wf - u}) (3.6)
with
CpRe® = 24 | (3.7)
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One third of the drag given by Eq.(3.6) is due to pressure force, and the remainder
is attributable to viscous effects [155].

The creeping flow assumption limits the applicability of Stokes solution to Re® «
1. An improvement of this expression was obtained by Oseen [155], who retained
linearized convection terms in the Navier-Stokes equations. Oseen’s expression for
the drag force, valid for Re® <5, is

CpRe’ =24 + gRe’ (3.8)

At high Re’, the Stokes and Oseen solutions are inappropriate, and empirical rela-

tions are typically used. Wallis [186] has reported a well-accepted empirical expres-

sion :

24 + 3.6(Re’)*¥ if Re® < 1000

CoRe’ = { 0.44Re’ if Re* > 1000 (3.9)

3.2 Multiple Spherical Particles in a Fluid Flow

In the case of multiple particles in a fluid flow, particle/particlé effects could be
important. At low solid-phase volume concentration, direct particle/particle inter-
actions such as collisions are negligible, but the presence of a particle in the vicinity
of another modifies the flow field around it significantly with respect to the single-
particle problem. These effects in a suspension of solid particles in a fluid was
first studied by Einstein [53]. In Einstein’s work, the suspension was treated as
a homogeneous mixture of fluid and particles, and the problem was of finding the
e.xppropria.te homogeneous-mixture viscosity as a function of the solid-phase volume
concentration. This viscosity is called the apparent viscosity of the suspension: it
will be denoted by the symbol pf. The ratio of the apparent viscosity g! and the
fluid viscosity p/ is called the relative viscosity puf. Therefore, the apparent viscosity

is given by:
ul = p'pl(a) (3.10)

where a is the solid-phase volume concentration.
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The following expression for the relative viscosity, derived by Einstein, is valid

for dilute suspensions at low Reynolds numbers.

1 5
pi{a) = l+§a (3.11)
Several other derivations of the apparent viscosity can be found in the literature [17,

182]. Using the expression given by Vand [182] and estimating the associated free

parameter, Lun and Savage [110] suggest the following expression:
W)= (1-a-03302) " - (3.12)

This last expression has been derived {or dense suspensions, but it is also applicable

to dilute concentrations. It will, therefore, be used in this work.

This functional form of the apparent viscosity leads naturally to a modified drag

force expression for a particle in a suspension of the following form {107):
D= %pgdCDRe" (u;-r - u;'-’) (3.13)

Other derivations of the drag of a particle in a suspension have been proposed for
fluidized beds. For example, using the Ergun equation [98), Gidaspow [65] proposed

the following relation to compute the drag of a particle in a dense suspension:

CDRe’ =

[-1 -

(150a + 1.75Re*)  if a > 0.2 (3.14)

3.3 Solid-Phase Macroscopic Equations

The complete description of gas-solid particle flows must include boundary con-
ditions at the interface and the interactions between the phases. Moreover, this
phenomena is usually unsteady and three dimensional. As was mentioned earlier,
the complete local description of gas-solid particle flows is not a viable option for the
solution of practical problems. In order to obtain a tractable model for the solution

of practical problems, averaging procedures, such as statistical methods, are used to
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derive macroscopic governing equations along with their constitutive relations. Fol-
lowing the works of Lun [107] and Lun and Savage [110], the motion of the particles
in a gas-solid particle flow can be assumed to be analogous to the random motion
of the molecules of a gas. Therefore, a macroscopic description of the solid-particle
phase can be obtained following closely the kinetic theory of dense gases [31]. This
model is based on the prescription of a velocity distribution function. The velocity
distribution function is governed by the Boltzmann equation, in which the exter-
nal forces applied to the particles and a collisional term appear. The collisional
term models the direct particle/particle interactions. Using appropriate averaging

procedures, the so-called hydrodynamic equations of the solid-particle phase are
obtained.

3.3.1 Terminology/Definitions

The distribution of particle velocities, &, among the large number, nd7, of particles in
the volume dZ at time { is represented by the velocily distribution function f(¢,T,1).
The statistically definite number-density of the ndf particles in the velocity-space is
denoted by f(¢,Z,t)dZ. This implies that the probable number of particles which, at
time ¢, are situated at Z in the volume d% and have velocities in the range [€, ¢+ d¢]
is f(c,7,t)dédz. Therefore, the‘numbcr of particle per unit volume, n, situated at

T is expressed by:

n = ﬁf(E,i,t)dE | (3.15)

This integral is performed over the entire velocity space. If m® is the mass of a single
particle and p® is the density of the particle, the solid-phase volume concentration,

@, can be expressed as:
ap® = nm? {3.16)

The distribution function, f(¢, ,1), contains detailed information on the motion
of the particles. The evaluation of averaged quantities can be determined once

f(&,%,1) is known. These average quantities are obtained by integration of the
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product of the distribution function and a single-particle property ¢ over the entire

velocity space as follows:

=1 [ss062.00 (3.17)

where (#) denotes the average of ¢. The solid-phase average velocity, {¢;}, is denoted
by uf. The solid-phase velocity fluctuation, C;, is the difference between the velocity,
¢;, and the averaged velocity uf. This definition leads to the important concept of
granular temperature, which is a measure of the fluctuating kinetic energy of the
solid particles [107, 110]. Using an analogy with the temperature of a gas, the
granular temperature is denoted by T and it is defined as:

3., 1, .,

where

C" =Ci— u;? (319)
uf = {¢;) ‘ (3.20}

3.3.2 Boltzmann Equation

The velocity distribution function is governed by the Boltzmann equation [31]:

O | Of el _ (O
atognth 6c;_(8t .: (3.21)

Fg*t is the sum of the external forces per unit mass of particle, such as the grav-
itational force, applied on a single particle of mass m?, and is independent of ¢;.
The force applied by the surrounding fluid on the particle is not included in Ff*,
(%{)c accounts for the changes in the particle velocity resulting from collisions.
In the two-phase system under study, two types of collisions can occur [144]: (7)

particle/particle collisions, and (i) fluid molecules/particle collisions. Therefore,

%)%+ ()



Bt
using the assumption of binary encounters of inelastic hard spheres [106) and will,

therefore, be called the hard-sphere collisional term. The contribution of collisions
s
between solid particles and fluid molecules, represented by (%{)c, are computed us-

ing the Fokker-Planck collisional term [107, 110] and will be called the soft collisional
term:

(g{) 2 (-Fir+ g msn) (3.23)

F{ is the force per unit mass of particle applied by the surrounding fluid on the
particle:

H
The term representing collisions between solid particles, (ﬂ)c , Will be modelled

Fl=¢ (vl —a) - l?i (3.24)

The first term of the Fokker-Planck collisional term represents the rate of change
of f(c,Z,t) due to momentum transfer by F,-f . The second term accounts for the
rate of change of f(& &,1) due to energy transfer from the fluid to the solid phase
and is expressed as a function of the specific kinetic energy transfer tensor, B;.
Lun [107] has proven that the specific kinetic energy transfer tensor can be related
to the force applied by the fluid on the particle. The form of the specific kinetic

energy transfer tensor proposed by Lun and Savage [110] is used in this work:
Bi; = (1 - apa?) (pTé;; (3.25)

where ap is a constant which depends on the phenomenon being considered. Based

on a fluidized bed experiment, I.un and Savage [110] suggested ag = 0.88.

3.3.3 Macroscopic Equation

A macroscopic equation may be derived by multiplying the Boltzmann equation by
the single-particle property ¢ and integrating over the velocity space. The resulting

equation is called the equation of change of the single-particle property:

i+ toen—n|(5) + (age) 4 (refe)| =0 G
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®. is the collisional rate. of increase of {¢) per unit volume of the mixture and can

be split into hard-sphere collisional and soft collisional contributions. It is expressed

as.
, 8 .
. = ol + 95 = fc_¢ (.a—{)cdc (3.27)
where
af
oM ‘j‘ﬁ(az) dé (3.28)

il <nr,f g¢> + <nB.-J~a% (g—z» (3.29)

3.3.4 Binary Encounter Dynamics

A more explicit expression for ! is obtained by considering binary collisions be-
tween hard, smooth, but inelastic spherical particles of uniform diameter d. Lun et

al. [106) found that the hard-sphere collisional term can be expressed as:

00;(4)

L(9) = X(9) — — (3.30)
where
2 -
X(¢) = d o (¢} +85~ 1 —63) (G- F) (&, 5~ dF, 1) f (&, 7, t) god kA1 dE, (3.31)
3 - - -
0u(4) = d (00 (G F) 16, 5= 55,0 /(0 3+ 5F, DaokaRdcide(3.92)

These expressions were derived by considering two spherical particles, labelled 1 and
2, having velocity ¢; and & prior to the collision. The velocities of the two particles
after the collisions are represented by ¢; and &/. At the instant of the collision, the
particle labelled 2 is located at Z and the particle labelled 1 is located at & — dk,
where & is the unit vector along the line of centres from O, to O, (Fig. 3.1). €12 is
the relative velocity of particle 1 with respect to particle 2. go is the equilibrium
radial distribution which takes into account the finite dimensions of the particles.
$ and ¢, are the single-particle property of particle 1 and 2, respectively, prior
to the collision and ¢, and ¢4 are the single-particle property of particle 1 and 2,
respectively, after the collision.
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Figure 3.1: Binary collision

In order to evaluate these integrals, a relationship between the particle velocity

prior to and after the collision is needed.

Elastic Particles
Using the principle of conservation of momentum, the following equation is obtained:
mPE, + mPE; = mPe, + mPe, (3.33)

The mass of the system is M = 2m” and its velocity, called the centre of mass

velocity, G, is given by

mP&) + mPcy

G="T2r (3.34)
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From the momentum conservation principle, it follows that the centre-of-mass of

the two particles moves uniformly throughout the encounter:
G=G (3.35)

This equation simply states that the centre-of-mass velocity prior to the collision is

equal to the centre-of-mass velocity after the collision.

The relative velocities before and after the collision are, respectively:

Ga=& — & (3.36)

=d) =1 I

C12 = Cl - C2 (3-37)

Using the definitiens of the centre-of-mass velocity and relative velocity, it can be

shown that:

=Gt &= G- TR (3.38)
= = m’ ' ol m? =
& =G+ m—c,'.‘, G =G VAGE (3.39)

The second conservation principle that applies in an elastic collision is the conser-

vation of kinetic energy during the encounter:
LINTAY + ey 8 = Larer + e & (3.40)
D) 1 1 ) Lzt L2 gt 1 1 2 2 " Lo .

Using Eqs.(3.38)-(3.39), onc can obtain:

1 o1 [ oa mP\ L

-2-m"c1 -3 + am”c? cC=mP |GG+ (_ﬁ}_) €12 - C12 (3.41)
1 p-o; - f 1 p-; - P -'] -'; mp 2 - -

g™ e " & -+ e G =m G'-G'+ 27/ & (3.42)

Since the centre-of-mass velocity is constant throughout the encounter, it follows
that

G2+ 612 =G+ Cya (3.43)



This means that the relative velocity between the two particles is changed only in

direction, and not in magnitude. If § denotes the unit vector along the line of the

centres of the smooth spherical particles at the instant of collision, then the relative

velocity component normal to £ is not changed during the collision, and the relative

velocity component in the direction of k before and after the collision are equal but

opposite 1n sign:

= 2! = VR = (& Y
C12 — &y = (Ci2 - k)k — (&3 - k)k
— I -:

Ciz2 * ’="-C12'k

Therefore,

-

612 - 61’2 = 2(612 ' k)k

and, finally, the f{ollowing relations can be obtained:

51' = — (¢2- k)k
-‘2' = E_» + (Elg * E)i\:

Inelastic Particles

(3.44)
(3.45)

(3.46)

(3.47)
(3.18)

In the case of inelastic particles, a coefficient of restitution e is defined such that:

Therefore,
Gz~ &y = (1 +¢)(@2 - F)F

and the following relations can be obtained:

- - 1+e-‘ CE N
g =6 - 5 (Ciz - k)&
Ed — 1+e-‘ i
=G+ 2 (Crz - k)k
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(3.50)
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3.3.5 Hydrodynamic Equations

The hydrodynamic equations of the solid phase are obtained from the general macro-
scopic equation, Eq. (3.26), by éssigning specific interpretations of the single-particle
property, ¢. The solid-phase continuity, momentum and fluctuating kinetic energy
equations are ohtained by setting ¢ = m®, ¢ = mPc;, and ¢ = 1mPc?, respectively.

The resulting hydrodynamic equations can be expressed as (107, 110]:
Continuity Equation

a s a 8.8y __

7 ler') + %(GP i) =0 (3.53)
Momentum Equation

a 9 s .8.3) 80';?3' s Ff s rext

EN (ap j ) T Bz; (Op u=“:) Bz: +ap < i > +ap k; (3.54)
Fluctuating Kinetic Energy Equation ,

3[8 8 Oui  Og; s

5 l“ p’T) + w—(ap’ u’T)} = % yetap (F,-fC;)

5 (or

dz; % 8:c, O
+ap® {Bi;é;;) (3.55)
where
a,-’j = —0; (mPC;) — ap® (C-C-) (3.56)
= 0; ( m”Cz) +ap's (C c?) (3.57)
= -4 ( =mPc 2) (3.58)
of; is the solid-phase stress tensor. The first term in Eq.(3.56) is the collisional

contribution, and the term involving the ensemble average represents the kinetic
contribution. The two last terms of the momentum equation, Eq.(3.54), represent
the forces due to fluid-solid interactions and body forces, such as the gravity, re-
spectively. The first term on the right-hand side of the fluctuating kinetic energy
equation is the work done by the solid-phase stress tensor. In Eqs. (3.55) and
(3.57), ¢} is the solid-phase fluctuating kinetic energy flux vector. Similarly to the
solid-phase stress tensor, it is composed of a collisional and kinetic part. 7. is the
solid-phase fluctuating kinetic energy dissipation due to inelastic particle/particle
collisions. In Eq. (3.53), ap’ (F}IC;) is the energy dissipation due to the fluid-
solid interaction forces. Finally, the last term on the right-hand side of Eq. (3.55)
represents the transfer of energy from the fluid to the solid phases during the soft

collisions.
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3.3.6 Velocity Distribution Function

Explicit expressions of the solid-phase stress tensor, fluctuating kinetic energy flux
vector, dissipation rate of fluctuating kinetic energy, and the various ensemble av-
erage terms appearing in the hydrodynamic equations can be obtained once the
velocity distribution function f{¢, £,1) is known. The velocity distribution function
is obtained by solving the Boltzmann equation. Lun [107] has assumed the following

functional form for f(c,Z,t):

FEFD) = fo(1+¥) ' (3.59)
where

n C?
o= WEXP (—ﬁ) (3.60)

11)=a1[(C;Cj =C} ,J) gu ] + [.2_—20;] [ (C{é%: (In T)) +a3(C.°-(,J—aI—f (In 11))](3.61)

f° is the Maxwellian velocity distribution function which describes local equilibrium
conditions. When this assumed form of f(¢, Z,t) is substituted into the Boltzmann
equation, it is found that no choice of a,, a; and a3 will exactly satisfy the equation
for all values of & Nevertheless, as discussed by Lun [107), the assumed func-
tional form of f(c, Z,t) will be appropriate if an optimum choice of a,, a; and aj is
made. One systematic way of making this choice is to replace the task of satisfying
the Boltzmann equation by the weaker requirement of satislying the macroscopic
equation, Eq. (3.26). This equation has been integrated over € and is, thercfore,
independent of ¢. By choosing a set of three single-particle propertics, ¢, ¢z, and
¢3, and trying to satisfy the resulting set of three equations, a system of three equa-
tions and three unknowns is obtained. This method, called the moment method,

has been used by Lun [107] to obtain the following expressions for @, a; and aj3:

= 8
s 12,
= - —n* (4 — 6
az Sapigal [1 + 3 7° (49— 3) ago] (3.63)
24" d,, ,
az = -2—50—!);;—11( )(T] - 1) do (O.‘ go) . (3-64)
where
L
s s Ty?
pan p, ' #al - ,‘L #l = M (3.65)
1+ ;f,ﬂg% (2 —7) 164



W=

g 8k* L, 1sm? (L)

k"™ = ——r B = —— = (3.66)
I+ Bk (41 — 337) 64d?
n=i (367)

The evaluations of the various collisional integrals and ensemble averages appéaring
in Eqgs. (3.53)-(3.58) involve a large amount of mathematical operations. Sufficient
information to evaluate the various collisional integrals and ensemble averages is
available in Chapman and Cowling (31, Chapters 1 and 16]. Therefore, only the

results are presented in Appendix A.

3.4 Solid-Phase Boundary Conditions

The complete physical description of the solid phase requirés the prescription of suit-
able boundary conditions. In many practical internal flow problems, the boundaries
of a domain of interest consist primarily of inflow/outflow boundaries and walls. At
inflow boundaries, usually all quantities of interest, such as solid-phase concentra-
tion, velocity and granular temperature, are specified. Outflow boundaries are most
often situated in a region of the flow were the downstream influence is negligible,
thereby allowing the assumption of negligible transport by diffusion normal to the
boundary. At walls, special treatments are needed since the particles interact with
the wall through inelastic collisions. During the collision of a particle with a wall,
the particle kinetic energy is lost through inelastic deformation. When the wall sur-
face is rough, there is a transfer.of lateral momentum from the particle to the wall.
Microscopically, in the Lagrangian formulation, the treatment of the wall is realized
through a collision model between a single particle and the wall. This formulation
introduces empirical parameters, such as the wall coefficient of restitution, which
lead to the prescription of the particle velocity after collision as a function of the
particle velocity prior to the collision. Macroscopically, in the Eulerian formulation,
the wall treatment is expressed through the prescription of appropriate solid-phase
shear stress and fluctuating kinetic energy flux at this boundary. Several proposals
for the estimation of solid-phase wall shear stress and fluctuating kinetic energy flux
can be found in the literature (88, 95]. For particles that are of small or compa-
rable size with respect to the wall roughness, Hui et al. [88] have proven that the |

prescription of no-slip condition and zero granular temperature at walls is a good
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approximation. The prescription of appropriate boundary conditions depends on
the problem of interest and, therefore, more explicit descriptions are delayed until

Chapters 5, 6, and 7 where the results of some specific applications are presented.

3.5 Fluid-Phase Governing Equations

The motion of a Newtonian fluid phase is governed by the Navier-Stokes equations,
which must be satisfied at each point of the continuous phase: appropriate boundary
conditions at the domain boundaries and the interface between the particles and
the fluid phase complete the description of the mathematical model. For large
number of particles, the exact topology is far too complex to allow modelling based
on such an exact local formulation. To simplify the description, point variables
which vary rapidly on the scale of the particle spacing are averaged over regions
that are large compared with this spacing but small compared with the domain of
interest. The resulting average equations describe the fluid and solid phases as two

interpenetrating continua.

In this section, the fluid-phase point dependent variables, the velocities uf/, v/’
and the pressure p’’, are replaced by appropriate mean variables, obtained by aver-
aging over volumes containing a large number of particles. However, these volumes
are small in comparison with the macroscopic scale. The resulting mean variables
are assumed to be smooth functions of position and time, and are considered to he
defined at all points of the domain of interest. This procedure is called volume aver-

aging, and several variants can be found in the literature [5, 35, 48, 89, 94, 124, 172].

Let VT denote a volume around a specific point in space such that it contains
a large amount of particles, but has a characteristic dimension small with respect
to the characteristic dimension of the macroscopic flow. V! and V? are the parts of
VYT occupied by the fluid and solid phase, respectively. The fluid- and solid-phase

volume concentrations are defined by

I ]
=2 a=in (3.68)

<<
<~

If ¢' is a fluid-phase point dependent variable, the fluid-phase intrinsic volume
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average variable, ¢, is defined by [94):

1 f
b =7 /v [ Fav (3.69)

A similar expression can be defined for the solid-phase intrinsic volume average.
During such a volume averaging of the fluid-phase point governing equations, the
local volume averages of space and time derivatives are encountered frequently.
Therefore, it is useful to introduced the theorems for local volume averages of a space

and of a time derivative of a scalar variable associated with a dispersed flow [94]:

1 695’ — _?_ _1_ ‘. int_int

Tﬁf]-a-t—d = i (ed) + fmqsu,. nids (3.70)
1 6(}5’ 7, int

VT -/\I)! 63, ( ¢) vT Sint ¢n'. dS (3'71)

where §™ is the union of the interface surfaces in V7; ni™ is the i-component of
the unit normal vector to the interface pointing into the fluid phase; and ul™ is the

i-component of the velocity of the interface.

3.5.1 Local Volume Average of the Fluid-Phase Continuity
Equation

The fluid-phase point continuity equation is given by:
a a f fp
a( )+a_;,(””)’° (3.72)

Integrating this equation over V' and dividing by V7 yields

1 d 3 ,
i)_T./vfat( )dv+vTj al(ff)dv'"o (3.73)

Using Eq. (3.70) with ¢' = pf and Eq. (3.71) with ¢’ = p/u!’, the following equation
is obtained:

1 .
2 (0) + g (eo'ud) + 37 [ plubtnitas = o [ pfultnitas =0 (37a)
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In the problems of interest in this work, there is no change of phase or chemical
reaction, and the particles have impermeable boundary, therefore, at the particle

H i ! . . . .
surfaces, ui™ni® = u{'ni™. Thus, the local volume average continuity equation is

simply:

% (epf) + 3(1- (epfuf) =0 (3.75)

3.5.2 Local Volume Average of the Fluid-Phase Momen-
tum Equation

The fluid-phase point momentum equation is given by:

f.r
%(pfuj") + ai (o7 ufu]') = % +p'9; (3.76)

{J- is the point fluid-phase surface stress tensor. Integrating this equation over W/

and dividing by V7 yields

1 0 ! 8 ‘ 1 7] tﬂ
S UW Bt( of f)dv+ ot T (pfuffuf)dv] Vi [/W E)Lm:dw’jw pfgjdv} (3.77)

Using Eq. (3.70) with ¢' = p/uf’ and Eq. (3.71) with ¢’ = p/u{'u!’, the left-hand

side of the previous equation can be expressed as:

;)t (ep'uf) + a%(% Wi f’dv) VIT [Pl (i = ul)nitds (3.78)

Again, in the problems considered here, wi™nint = u/'niM, so the left-hand side

simplifies to:

31: (Ep ul ) + a—( / pf { J“dV) (3.79)

The fluid-phase point velocity uf’ can be expressed as the sum of the intrinsic volume

average of the fluid-phase velocity uf and a fluctuating component u!”. Therefore

0 1 fj:fr ) 6(1 ! ) __( fjn]ﬂ )
"3_;:('177: p Y v dz; \VT wpu,udv +8:n. ./ pu dv

ooz (e o Gt ey ) o
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u], the intrinsic volume average, varies little within ¥/ [5], so it can be taken out of

the volume integrals. Therefore

_f.r
S ot ) = G (bl + G ()

3

0 ”JZ £, 40
t o (ijp uf"dy (3.81)

where

;f;f_ va Pf f.u :i{ndv (382)

As discussed by Anderson and Jackson [5], the third and feurth terms of the right-
hand side of Eq. (3.81) involve integration of the fluctuation and are negligibly small.

Therelore, the left-hand side of the local volume average momentum equation is

8 fu
gt (cpfu‘f) + 52:1 (cpfu{u!) + aa;‘: (3.83)

The right hand-side of the local volume average momentum equation (Eq. (3.77))
is composed of two terms. The first term involves the fluid-phase stress tensor and
the second term represents the eflect of gravity. The gravity term can be easily

integrated and is given by:
2 [ plgsav = ey, 3.84
vF J,, P 9idV = €ep’g; - (3.84)

Using Eq. (3.71) with ¢' = cru, the stress-tensor term is given by

1 5‘0‘{; a P 1 n
Vf ./v.' ax‘ dv . a_ (CO' ) VT js;m "J ‘ dS (3-85)
Neglecting the contribution of incomplete (only portions of, not whole) particles

lying in V7, the interface can be expressed as the sum of the surface of the complete

particles within V7. Therefore:

1 ! in — in
ﬁ./Sim *{T |td‘S TZ/ T3 "dS (3.86)
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where S? is the surface of a single particle; and 3°, means a summation over all the
complete particles within the volume VT. The surface integral involving the fluid-
phase local stress tensor can be related to the aerodynamic force m?PF J-! applied to a
single particle [5] where m? is the mass of a single particle. The aerodynamic force
applied on a particle comes from the fluid stresses at the particle surface:

mPFY = js affnitds (3.87)

% Rt |

Summing over all particles in V7 yields
o3 [ olmimas = TLS B (3.88)
VT & Jsp O 7Y YT 427 .

The stress-tensor term is, therefore, given by:
_.l._j -—6agj'dv -9 (ea-f-) - m—sz! (3.89)
vT 124 6:1:,- - 6:::,- J vT P d '

“V‘;Ep FJ=1r represents the rate of momentum transfer between the fluid and solid

phases. An equivalent term can be found in the solid-phase momentum equation
(Eq. (3.54)), and it should be noted that

mP s
W;Ff = ap* (F{) (3.90)

This equation is equivalent to the local volume average of the force balance at the
interface [94]. The following local volume average fluid-phase momentum equation

can be readily derived from the various expressions given so far in this section:

2 (ud) b o (o edad) = o (eol) - T (F) b ees o

]

ea{;- is the local volume average Newtonian fluid stress tensor. Jiang et al. [94] have

derived an expression for the local volume average of the Newtonian fluid stress
tensor based on an idealized model for the flow within the averaging volume V7,

This model yields a resulting system of 18 equations with 18 unknowns, which is a
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very large system to solve even in two dimensions. Furthermore, the model proposed
by Jiang et al. [94] is limited to dilute concentration. Following the proposals of
Anderson and Jackson [5} and Lun and Savage [110], in the proposed mathematical
model, the local volume average Newtonian fluid stress is assumed to be given in
terms of the intrinsic fluid variables, by an expression similar to that for the single-

phase Newtonian stress tensor:

2 du! oul  ouf '
A (f__f)_—kg.. T ] 2
€T}; D 04y + K 3lua z, ¥} + U axj + 3:1:,- (39 )
where p/ is the intrinsic volume average fluid-phase pressure, uf is the apparent.

fluid-phase viscosity, and st/ is the apparent fluid-phase bulk viscosity.

ol is analogous to the to the subgrid-scale Reynolds stress tensor, which is used

to simulate the drainage of energy from the large-scale motions due to the small-
scale ones in the volume-average descriptions of turbulent flows [5]. Therefore, it
seems reasonable to use approximations similar to those used in the Smagorinsky
model developed in the context of Large Eddy Simulations (LES) [66):

oul | Ol 20u] ) (3.93)

— 2 =
Oyj P (C,A) S (B.’L'J + 6.‘1‘.,; Samk 1]

where C, lies between 0.1 (for coarse grid) and 0.2 (for fine grid) [132); A is a linear

measure of the grid size; and
L
1 au‘f au; 2 (’jui au{ au-{ 9 6111{ 2
5= [5 (Ba:j T P 30z, 8z; | Bm 392, ¥ (3.94)

3.6 Fluid-Phase Boundary Conditions

The fluid phase is composed of molecules which are much smaller than the macro-
scopic length scale. Therefore, it is appropriate to assume no slip of the velocity
at walls for the fluid phase. However, some researchers [95, 165] argue that since-:

the fluid-phase velocity that appears in the governing equations is a volume-average
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velocity, the no-slip condition is not strictly valid, and, therefore, an appropriate
condition on stress at the wall has to be evaluated. Johnson and Jackson [95] have
proposed an approximation of the fluid-phase stress at walls. Their derivation is
ad-hoc and there is no evidence of whether it is more appropriate to use the simple
no-slip condition or their evaluation of the fluid-phase wall stress. Therefore, the

simple no-slip condition at walls is used in most of the calculations presented in

Chapters 5, 6 and 7.

3.7 Two-Dimensional Axisymmetric Gas-Solid Par-
ticle Flows: Summary

This section presents the governing and constitutive equations, obtained using the
theory described in this chapter, for two-dimensional axisymmetric gas-solid particle

flows. Finally, several specializations of the general mathematical model are given.

3.7.1 Governing Equations

Solid Phase

Continuity Equation

ad d 8,5 19 3.8 -
a(ap’)+5(ap U )+;é—r(rapv )=0 (3.95)

z-Momentum Equation

) ] 10 ap!

3 (ap’u®) + 7 (ap’u’v’) + - 75 — (rap®v®u’) = —aa—p- + ap’(p (uf - u’) +5;

a { ,0u 19 Ju ap’
+3_( 3.:,)-'_ 3( car)“az
0 du 109 S0V
*oz ('u° 8z)+r6r ( o az)

2 (-3 (5 + o) o

r-Momentum Equation

a s, .8 a 3. 5,3 la 3, 8.8 ap! 5 I 3 3
a(apv)+-a—(apuv)+;a—(rapvv)=——a?r—+ap Cp(v —v)+S,
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Fluctuating Kinetic Energy Equation
3 du* 18

d a 0 3,3 lua__ 5,8 — L : 2
2 |G e+ g lerwn)+ 1 Garvn)] = (422 (v 451
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Fluid Phase

Continuity Equation

2 (o) 4 Z (o) + 12 (rept?) =0 (3.99)

z-Momentumn Equation
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r-Momentum Equation
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These equations have been written in a form that is similar to that of the Navier-
Stokes equations of a single-phase Newtonian fluid. Additional comments are needed
on the form of the viscous stresses. The viscous stresses are divided into two parts,
which will be called the diffusion term and the pseudo-diffusion term. In the solid-

phase z-momentum equation, for example, the diffusion term is given by:

o[ ,0u 10 ,0u’ '
= (155) + 1o (e (3.102)

the pseudo-diffusion term is given by:

o ( 8w\ 10 ( .0\ 8 (., 2 N[0 18
2 (15 )+ (i) + 2 (- 30) (G + 1 0)) oo

Terms similar to the pseudo-diffusion term also appear in the Navier-Stokes equa-

tions for single-phase flow. However, in many single-phase applications, the viscosity
and the density may be treated as constant, and these terms cancel out. In two-
phase flow, even with constant viscosity and density, the pseudo-diffusion term is
not zero since, in general, the volume concentration varies. This term, together
with the diffusion term, are needed to model the complete viscous stresses. This
distinction between these two contributions has been introduced here in the interest

of clarity and ease in the formulation of the numerical method.

®° is the dissipation function representing the rate of conversion of mechanical
energy to fluctuating kinetic energy due to the solid-phase viscous stresses; -, and
vp are the rate of dissipation due to inelastic collisions and drag force exerted by
the fluid on the particles, respectively; and finally, v5 represents the rate of transfer

of energy of the fluid phase into fluctuating kinetic energy of the solid phase.

.3.7.2 Constitutive and Auxiliary Equations

Solid Phase

3 uf
_3# o Ret 3104
{p=7 & CpRe ( )
3 ] T i
e = 487(1 - ) 222 (}—) 7 (3.105)
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1p = 3ap®(pT’ (3.106)

B = (1 + aoﬂg) D (3.107)
2 3 a s

o= (=500 (5 < sen) o ((5) + ()« (3))

T (%‘; + %":)2 (3.108)
p* = apT (1 + 4ngoa) (3.109)
po = ’;7” (1 + %ngoa> (1 + %n (37— 2)900*) + %ﬂz (3.111)
ky = ‘g = (14 Faga) (14 S a0 - 3)goa) T (3.112)
k= 5 (1 Fame) Fa 1= 1) (1= 1) 32 (0%00) 7 (3.113)

Fluid Phase

i =yl + pf (3.114)
il =1/ pl(e) (3.115)
uh = p/ (C,A)PS (3.116)
pl =0 (3.117)

o’ A% vf)2 ol avll? 20au! 18 / ?
S-"{ [(a.)*('a?)*(?, +[a—r+'a?]‘§[ﬁ+;a7("” )] (3.118)

This mathematical model is valid for a wide range of concentration of the solid
phase, from dilute concentration to high concentration. The high-concentration
limit is restricted to flows where particles interact mainly through binary collisions.
Situations where particles interact through sliding, which occurs in situations close
to maximum packing, are not properly modelled, because the associated frictional
contribution to the solid-phase stress is not included. Various expressions for CpRe?,
pf(a) and gy can be found in the literature (please see Tables 3.1, 3.2 and 3.3): the

particular expressions used in this work are specified in Chapters 5, 6 and 7.

The resulting governing equations are very similar to the models proposed by
Lun [107] and Lun and Savage [110]. However, in the early work of Lun [107], the
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Reynolds stress tensor cr;fj" is neglected. In the recent work of Lun and Savage [110],

the Reynolds stress tensor is included and evaluated through an additional equa-
tion, corresponding to the fluctuating kinetic energy transport equation of the fluid
phase. Lun and Savage {110] allow the treatment of low density ratios f} by in-
cluding different particle coefficients of restitution in the fluid and in vacuum. In
the proposed formulation, it is assumed that the fluid density is much smaller than
the particle density. Therefore, the coefficient of restitution of a particle in a fluid
is essentially equal to the coefficient of restitution in vacuum. The Smagorinsky
model is used in this work for the evaluation of the Reynolds stresses. This removes
the need for solving the fluid-phase fluctuating kinetic energy transporl equation
derived by Lun and Savage [110].

Using the granular temperature approach, Gidaspow and co-workers [16, 15, 65]
have derived solid-phase governing equations similar to the ones proposed in this
work. The main diflerences in the derivations of Lun and Savage [110] and Gidaspow
and co-workers [46, 45, 65] come from the assumed form of the velocity distribution
function f(&, Z,t}. In the works of Gidaspow and co-workers, the velocity distri-
bution function is approximated as the Maxwellian velocity distribution f°. Using
this assumption, the kinetic contributions to the solid-phase stress tensor, af;, and
fluctuating kinetic energy flux, g7, are zero. Since the kinetic transport is the dom-
inant process at low concentration, the resulting governing equalions proposcd by

Gidaspow and co-workers are not adequate for dilute gas-solid particle flows.

The general mathematical model so far in this section can be easily simplificd
to describe the various problems of interest in this work. These specializations are

described next.

3.7.3 Specializations
Single-Phase Flow

The general governing equations presented in the last sub-section can be casily
specialized to model laminar flow of single-phase Newtonian fluids by setting the
fluid-phase concentration, ¢, equal to one and, correspondingly, the solid-phase con-

centration, a, to zero. In the context of laminar single-phase flow, the Reynolds
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stress has no meaning and is, therefore, set to zero. The corresponding govern-
ing equations consist of the continuity equation and two momentum ‘equations, as

follows:

Continuity Equation

;( )+@£( / f)+%a_ar-(rpfvf)=0 (3;-119)

z-Momentium Equation

!
% (o) + ;% (o'uu!) + %% e _%L +8!

9 ( ;0u 14 fau .
+5( oz ) t o ( T o ) (3.120)
r-Momentum Equation

8 G, 10 o
at(!l)_i_a (pfuf I)+r8 (,,pfff) -5 +5!
vi 10 s/ fuf
5= (*‘ az) t e (’"“ E) — o (3121)

Dilute Gas-Solid Particle Flow

A model for dilute gas-solid particle flow can be obtained from the general govern-
ing equations By assuming negligible solid-phase pressure and viscosities; setting the
fluid-phase effective viscosity equal to the apparent fluid viscosity; and by neglecting
the third term of the pseudo-diffusion term (Eq. {(3.103}). Using these assumptions,
the granular temperature is not needed, and the resulting model consists of two con-

tinuily equations, and two sets of two-component momentum equations, as follows:
Solid Phase

Continuity Equation
0 d 10
5{-(0',0 ) + 3 (ap’u’) + - (rep’v®) =0 (3.122)

z-Momentum Equation

d 3 Suu® 18 $..8\ a 3 s )
a(cxp ut)+ —(ap )+—5-(1'ap v’'u’) = —a—+ap’ CD( - u )+Sz (3.123)

0z
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r-Momentum Equation

3 a s 3.5 1 a F. . B ) 6 f 5 3 ]
3 (ap’v )+6 (ap’u’v )+r6 (rap’v’v*) =-—aT;?r—+ap (p (vf -v )-}-S;, (3.124)

Fluid Phase

Continuity Equation
gt (o) + aﬁ (ep'u’) + i;_ (rep’v!) =0 (3.125)

z-Momentum Equation

gt(ep uf)+53—(epfuf f)-i—%-é%(repf f f)_—c%;i-ap Cp(u —u)+Sf.r
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r-Momentum Equation
gt (ep’v ) + Bi (epfufvf) + %58; (rcpfvaf) = -—-c%_f- —ap(p (v ( ) +5
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+a— (ﬂ B ) + o (1";1c Em ) .l -——-(3 127)

This dilute model slightly differs from other simple models available in the litera-
ture [44, 51). The model proposed by DiGiacinto et al. [44] is obtained by settling
€ =1 in Eqgs.(3.1253)-(3.127). To derive the model used by Durst et al. [51], the fluid
effective viscosity #f in Eqgs.(3.126)-(3.127) has to be replaced by e/, Since ¢ = |

at dilute concentration, the three models produce similar results.
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Investigators ] CpRe’ | Remarks

Stoke Solution [155] 24 Re’ <1
Oseen Solution [155] 24 + JRe’ Re’ < 5
Wallis {186] 24 4+ 2 (Re")™™ Re® < 1000
Di Giacinto et al. [44] 24 + 4 (Re’)? Re’ < 1000
vy is the terminal velocity of
Sinclair & Jackson [165] %;,{:(—‘f_-";—)a— fall of a single particle under

the influence of gravity

v, is the ratio of the terminal
Syamlal & O’Brien [174] | Bs (0.63 +4.8\/85 ? velocity of multiple particles to

v}

that of a single particle

Ding & Gidaspow [45] 2(150a + 1.75Re’) | a > 0.2

Table 3.1: Examples of CpRe’ relations

| Investigators | ula) |
Einstein [53] 14 3a
Batchelor {17] 14 2a+5.2d°
Lun [107] (1-a)7%
Lun & Savage [110] | (1 - o — 0.33&2)“§

Table 3.2: Examples of pf(c) relations

| Investigators | go |
Sinclair & Jackson [165] ——;’
‘ - (";‘x )
Ding & Gidaspow [45] —-Lg

Lun & Savage [110], Lun {107}, Ding et al. [46] | —— =

Table 3.3: Examples of g, relations
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Chapter 4

Numerical Model

The formulation of a control-volume-based finite element method (CVFEM) for
two-dimensional, axisymmetric or planar, gas-solid particle flows is presented in
this chapter. The proposed method is based on a primitive-variables, co-located,
equal-order formulation: it works directly with the velocity components, pressure
and temperature; these dependent variables are stored at the same nodes in the finite
element mesh; and they are interpolated over the same elements. This CVFEM is
constructed by adapting and extending ideas {rom earlier CVFEM:s for single-phase
incompressible fluid flows proposed by Baliga and Patankar {13, 14], Prakash and
Patankar [135], Schneider and Raw [156, 157], and Saabas [149).

The formulation of control-volume-based finite element methods (CVFEMs) for
fluid flow typically involves five basic steps: (7) discretization of the calculation do-
main into elements; (i7) further discretization of the calculation domain into control
volumes that surround the nodes in the finite element mesh; (i¢i) prescription of
element-based interpolation functions for the dependent variables and the thermo-
physical properties of the phases ; (iv) use of subdomain, or control-volume-based,
method of weighted residuals [539] and an element-by-element procedure to derive and
assemble algebraic approximations to the governing equations; and (v) prescription
of a procedure to solve these algebraic equations. Thus CVFEMs combine con-
cepts native to finite volume methods (FVMs) and finite element methods (FEMs).
Indeed, following the views of Finlayson and Scriven [59] and Zienkiewicz {196],
FVMs, FEMs and CVFEMs can all be regarded as particular cases of the method
of weighted residuals (MWR).
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The description of the proposed numerical method is given for two-dimensional
axisymmetric problems. However, it is presented in a general manner, with re-
spect to the two-dimensional cylindrical and Cartesian coordinate systems. The
discretized equations are written in a form that allows both the two-dimensional
axisymmetric and planar (Cartesian) formulations to be obtained easily. The pro-
posed expressions are appropriate for two-dimensional axisymmetric problems; and
by setting r = 1 in the various discretized expressions, the two-dimensional planar
(Cartesian) formulation is obtained. Concise descriptions of the various steps in-
volved in the formulation of the proposed CVFEM are presented in this sectjon,
with suitable emphasis on features that are of particular interest in simulations of

gas-solid particle flows in complex geometries.

4.1 General Equation

In two-dimensional axisymmetric problems, the proposed mathematical model con-
sists of a set of seven differential equations: a continuity equation and two momen-
tum equations for each of the two phases, and a fluctuating kinetic energy equation
for the solid phase. The seven dependent variables are uf, v/, p/, u’, v*, a and
T. The superscripts f and s refer to the gas (fluid) and particulate (solid particle)
phases, respectively. The volume concentration of the solid phase is denoted by c.

The volume concentration of the fluid phase, ¢, is related to a by a4+ e = 1.

With respect to the cylindrical coordinate system (r, 8, z), axisymmetric gas-solid

particle flows can be represented by the following general formulation:

2 (B09)+ 2= (Bpud) + = o~ (rBpos) = (eg¢)+ra (Pg¢)+s¢ (1)

The appropriate governing equations can be obtained from Eq.(4.1) by defining the
dependent variable, ¢, the volume concentration, 3, the diffusion coefficient, I',, the
mass density, p, the z-component of velocity, u, the r-compenent of velocity, v, and

the volumetric source term, Sy, according to Table 4.1, where
8 (- du ou 10 10 Ov
Srs = (P ‘gz (T" i) (a& ta ))) "o ("r ‘;) (42)
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i) du 18 i) 2 ¢ 10
Srr=5(reb—r)+;g r(r=5+(n— r)(a‘f+ 5 ()))) (43)
r -—-I" 3__|_li ™
scﬂ:_( ' )(i ) -21*,,’:’_2 (4.4)
Sp: = ap’(p (uf ~ u’) (4.5)
Spr = ap’(p (v/ — v°) (4.6)
d(,,0a 18 s 0o
S, = 6(k82)+ a(‘a) (4.7
du' 19
W, = —p (ali ~- (rv’)) - (4.8)

The terms Sr; and Sp, represent part of the pseudo-diffusion term, defined in Chap-
ter 3, and will be called the diffusion-source terms. The remaining part of the
pseudo-diffusion term along with a part of the diffusion term, are regrouped in the
cylindrical source term Scy. This splitting has been done only to emphasis the dif-
ference between the cylindrical and Cartesian formulations. In the Cartesian formu-
lation, S¢y1 = 0. The source terms Sp, and Sp, are the mutual z— and r—direction
drag forces per unit volume of the mixture, respectively, exerted by the fluid and
solid phases on one another. Therefore, these source terms will be referred to as the
momentum coupling terms. S, represents the transport of solid-phase fluctuating
kinetic energy because of concentration gradients, and, finally, W, is the work done

by the solid-phase pressure.

Bl plulv |T. | Th| d|Ss

Fluid Phase

z-momentum || € pf ul | vf ,u{ y{ uf Sh...SDz.{_S{_E%’__’
ap’

r-momentum || ¢ | pf |uw/ [ o/ | pf | ul | v | Srr —Spr + 8] —¢ 'arf + Seyl
continuity e| o/ [WIv [ O0]O0]170

Solid Phase

energy aldp v v k| - | T | W, +S,+0° =7 ~1p+178
z-momentum || p* |u’ | v* | pd | uy | e’ | Sr:+Sp:+8— m:in —n’iz-
r-momentum || a | p° | u’ | o° | pufps | v | Spr +Spr + 52— o:lzé’"f’i —P— + Seyl
continuity al p? [V | 0|01 1}0

Table 4.1: Specific forms of the general equation
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4.2 Domain Discretization

It is convenient to present the domain discretization procedure with respect to a
longitudinal cross section of the axisymmetric domain of interest. This cross section
is first divided into three-node triangular elements. Then the centroids of the ele-
ments are joined to the midpoints of the corresponding sides. This creates polygonal
control volumes around each node in the finite element mesh. The longitudinal cross
section of a sample domain discretization is shown in Fig. 4.1: the solid lines denote
the domain and element boundaries; the dashed lines represent the control-volume
faces; and the shaded areas show the control volumes associated with one internal.

node and one boundary node.

Figure 4.1: Discretization of the longitudinal cross-section of a calculation domain

The discretization of the longitudinal cross section is rotated through 27 radians
about the axis of symmetry. The result is 2 discretization of the axisymmetric
calculation domain into torus elements, of triangular cross section, and torus control
volumes, of polygonal cross section. In the rest of the thesis, for conciseness in the

presentation, the torus elements and torus control volumes will be referred to as
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triangular (3-node) elements and polygonal control volumes, respectively.

4.3 Integral Conservation Equation

Consider a typical node ¢ in the calculation domain: it could be an internal node,
such as the one shown in Fig. 4.2a, or a boundary node, similar to the one shown
in Fig. 4.2b. An integral formulation corresponding to Eq.(4.1) can be obtained
by applying the appropriate conservation principle for the dependent variable, ¢,
to a suitably chosen control volume. The resulting integral conservation equation,

when applied to the polygonal control volume surrounding node 7 in Fig. 4.2, can

be written as follows:

[/o J - f2rrds + ]c J - #2rrds --—/ SedV + | %(ﬂpqﬁ)dV]
+[similar contributions from other elements surrounding node ij (4.9)

+[boundary contributions, if applicable] = 0

where 71 is a unit vector normal to the differential length element, ds, and pointing

outward with respect to the control volume. J is the combined convection-difTusion

flux of ¢:

J=Jp+BJc (4.10)
Jp=-I'.V¢ (4.11)
Jo=pVé (4.12)

The form of Eq.(4.9) emphasizes that it can be assembled by using an element-by-
element procedure akin to that used in FEMs.

4.4 Interpolation Functions

The derivation of algebraic approximations to the integral conservation equations
requires the specification of element-based interpolation functions for the dependent
variable, @, the velocity component, u and v, diffusion coeflicients, T, and T', source
term, S;, mass density, p, and volume concentration, 5. As was stated earlier,

specific forms of ¢, u, v, I'., Ty, p, and B are given in Table 4.1.
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Figure 4.2: Typical control volumes surrounding (a) an internal node; and (b) a
boundary node

The interpolation functions are specific to each element. For convenience in the
formulation of these functions, in each element, a local (z,y) coordinate system
is defined such that the origin is at the centroid of the triangular element, the z
axis is in the direction of z, and the y axis is in the direction of r, as shown in
Fig. 4.3a. Some of the interpolation functions will be expressed with respect to this

local coordinate system.

Figure 4.3: Typical triangular element: (a} global and local coordinate systems; (b)
unit normals
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4.4.1 Diffusion Coefficients, Density, and Sources

The diffusion coefficients, I'. and T';, are stored at the vertices of the triangular-
elements. In the evaluation of the diffusion and diffusion-source fluxes, defined later
in this chapter by Eqs.(4.39) and (4.52), respectively, T, and T, are assumed to
prevail over the corresponding element. T, and T, are computed by assuming a

linear variation of the diffusion coefficient;

-I-t- = (Fel + T+ rc.‘i) (4'13)

T, =

Lol —

(Tor + oz + Ta) (4.14)

where I',q, Te2, and '3 are the values of I', stored at the vertices 1, 2, and 3, defined
in Fig. 4.3. Similar notation is used for T'y. This treatment is convenieni in this
formulation because most of the diffusion coefficients, namely, u/, ,mb“r s 1oy 115, k3, and
k2, are functions of the dependent variables only and not of their derivatives. In the
case where the diffusion coefficient is expressed as a function of space derivatives of
the dependent variables, such as for ,uﬁ-, volume-average space derivatives, associated
with each control volume, are used to evaluate the nodal values of p{r. The element
contribution of Sy is evaluated assuming that the values at the vertices prevail over

the corresponding portions of the control volumes within that element.

In each triangular element, the centroidal value of p is assumed to prevail over

the corresponding element.

The source term, Sg, is linearized, if needed, and expressed in the following

general form [130]:

Ss =S¢ + Spé (4.15)

In each triangular element, the values of S¢ and Sp are stored at the vertices, and
are assumed to prevail over the corresponding portions of the control volumes within
that element. Thus within each element, three sets of So and Sp are stored: Sg,,

Sca, Sca, Se1, sz, and Sgps.
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4,4.2 Mass Flow Rates

In the caleculation of mass flow rates across the control-volume faces, the velocity is
denoted by:

V™ = u™i 4 ™) (4.16)

When mass flow rates of the solid phase are considered, 4™ = u* and v™ = v*, and
u™ and v™ are interpolated linearly in each element. However, when the mass flow
rates of the fluid phase are considered, a special treatment, borrowed from the works
of Prakash and Patankar [135] and Saabas [149], is used to prevent the occurrence
of spurious pressure oscillations in the proposed co-located equal-order CVFEM.
Similar treatments for the interpolation of the velocity in mass flux terms have been
proposed by Peric et al. [131], in the context of finite volume methods, and Rice
and Schnipke [145], in the context of finite element methods, for single-phase fluid
flow. The development of this special interpolation is based on the discretized fluid-
phase momentum conservation equations. Therefore, it will be presented later in

this chapter.

4.4.3 ¢ in Diffusion Terms

In the derivation of algebraic approximations to surface integrals of diffusion fluxes,
Eqgs.(4.9) and (4.11), the dependent variable, ¢, is interpolated linearly in "each

element:
¢=Az+By+C (4.17)

Referring to Fig. 4.3a, the constants A, B and C can be uniquely determined in terms
of the local (z,y) coordinates of the three nodes (or vertices) and the corresponding
values of ¢. Thus with reference to the element 123 and the local (z,y) coordinate
system shown in Fig. 4.3a:

A= (Y2 — ¥a)éy + (y3 — )2 + (y1 — ¥2)¢3
- DET

(4.18)
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B= (23 — 22)1 + (21 — T3)da + (22 — 24)d3

C = (Zays — Tay2)$1 + (Zayy — T1ya)é2 + (T1y2 — T2y }da (4.20)
DET

where

DET = (z1y2 + z2y3 + T3y — 1122 — Y223 — y3Ty) (4.21)

An equivalent, and perhaps more elegant, development of this linear interpolation
on triangular elements could be done using barycentric or area coordinates, tra-
ditionally employed in FEMs [196]. Here, however, the above-stated development
is preferred in order to be consistent with the derivations in the [ollowing sections
of this chapter. It should also be noted that with such linear interpolation func-
tions, Delauney triangulation is required to ensure that algebraic approximations
of the diffusion transport terms contribute positively to the coefficients in the dis-

cretized equations. Barth [16] has presented a formal proof of this statement for

two-dimensional planar problems.

4.4.4 ¢ in Convection Terms

In the derivation of algebraic approximations to surface integrals of the convective
fluxes, Eqgs.(4.9) and (4.12), two different interpolation schemes for ¢ werc inves-

tigated: a FLow Oriented upwind scheme (FLO); and a MAss Weighted upwind
scheme (MAW).

The FLO scheme is based on the earlier work of Baliga and Patankar [12, 14].
The interpolation function used in this scheme responds appropriately to an element.-
based Peclet number and to the direction of the element-average velocity vector.
This interpolation function for ¢ is defined using a local flow-oriented (X, Y) coor-
dinate system, shown in Fig. 4.3a: the origin of this coordinate system is located at
the centroid of the element, and the X axis is oriented along the elemeni average

velocity V.

¢=Aft+BY +C (422)
where

— F; PeA(X _Xmax) _
*= B {e"p [ Ximax — X ] 1} (4.23)
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,
A"manc - }* min

Pes = BpU, = T (4.24)
Xmax = max(th\’m X3) Xmin = min(Xl-‘ X2; XS) (425)
ur = |7 (4.26)

B is evaluated using linear interpolation similar to that used to obtain T,. The
constants A, B and C in equation (4.22) can be determined from Eqs. (4.18)-(4.21)
with the following modifications: replace z,, 2 and za by &, €2 and 3, respectively;
and replace y,, y2 and y3 by V1, Y2 and Y;, respectively. It should be noted that
with reference tothe typical element shown in Fig. 4.3a, the element-average value

—

of velocity in Eq.(4.26), V34, is given by
Vi = ul i+ vl 7 = (4.27)

where 7 and 7 are unit vectors in the z and r directions, respectively, and
it} m m m m m
m _ Yy TUy +uz T e 4.98
ua.\’ - 3 Ua.V - 3 ( N )

In transport equations related to the fluid phase, uf* and v[* are computed using

£q.(4.93), as discussed in Section 4.5.4. However, in transport equations related to

the solid phase, u™

pu— 5 m ]
7 =uf and v = v}

In planar two-dimensional problems that involve acute-angled triangular ele-
ments and relatively low element Peclet-numbers, the FLO scheme has proved quite
successful [12, 149]. If high values of the element Peclet number are encountered,
however, the FLO scheme can lead to negative coefficients in the algebraic discretized
equations {149], and this difficulty is compounded when obtuse angled triangular el-
ements are used [149]. These negative coefficients imply that an increase in the value
of the transported scalar at a node outside the corresponding control volume could
lead to an increase in the net outflow of the scalar from that control volume, This
is physically incorrect. In steady-state problems, in the absence of source terms,
for a scalar to be transported out of a control volume, it first has to flow into the
control volume [77]. The donor-cell scheme of Prakash [137] is one way of ensuring
positive coefficients: in this approach, the value of a scalar convected out of a control
volume, across its surface, is set equal to the value of the scalar at the node within-

the control volume. This approach guarantees positive coeflicients, but takes little
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account of the influence of the direction of the flow. Thus it is prone to considerable
false diffusion [137].

The proposed MAW scheme is an adaptation of the positive-coefficient schemes
of Schneider and Raw [156] and Saabas [149]. It ensures, at the element level, that
the extent to which the dependent variable at a node exterior to a contro! volume
contributes to the convective outflow is less than or equal to its contribution to the
inflow by convection. Thus, it is a sufficient condition to ensure that the algebraic
approximations to the convective terms in Eq.(4.9) add positively to the discretized
equation. It should be noted that the MAW scheme takes better account of the
influence of the direction of the flow than the donor-cell scheme of Prakash (137], so
it is less prone to false diffusion (137, 149, 156].

The MAW scheme defines a mass-weighted average of ¢ at each of the three con-

trol surfaces of a triangular element (Fig. 4.3b), namely, ¢., ¢,, ¢, in the following

manner: let

a - . b - . ¢ ~ -

= / BpV™ . i.2mrds 1= ] BpV™ . 7, 27rds 1= j BpV™ . F2rrds  (4.29)
-] o ~ [+]

where 7i,, 71, and 7i; are unit normals, as shown in Fig. 4.3b.

) _{ o+ (1 — )¢, where f+ = min[max(——%&,o),l] il 71, >0

f_qss + (1 - f_)(f)z where f-= min[max(_%:.’o),l] it 1h, < 0 (‘1.30)

_f frée+(1—fT)¢s where ft = min[max( -'-;‘—f,l}),l] ifm,>0 431
¢ = f~é-+(1—f")¢p2 where f~ = min[max(—%,ﬂ),]] if m, <0 (1:31)
b = { fré. +(1 = f¥)d where ft = min[max(—-%{—,(}), 1] if i, > 0

£ me

foés+ (1= f")¢s where [~ = min[max( %+,0),1]if 7o, <0 (4.32)

These mass-weighted averages of ¢ are assumed to prevail over each control sur-
face when the surface integrals of the convection terms, Eqs.(4.9) and (4.12), are
evaluated. The algebraic approximations of the mass flow rates in Eq.(4.29) will
be discussed later in this chapter. Details of the numerical implementation of the

MAW scheme are presented in Appendix B.

In problems with acute-angled triangular elements and relatively low element
Peclet numbers, the FLO scheme is more accurate than the MAW scheme. As

was mentioned earlier, however, when high element Peclet numbers are involved,
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especially in conjunction with obtuse-angled elements, the FLO scheme produces
negative coefficients in the discretized equations. Negative coefficients in the dis-
cretized equations can lead to the following difficulties:(Z) the numerical solutions
could exhibit spurious oscillations about the exact solution; (i) iterative solution
algorithms, such as SIMPLE or its variants [130] and CELS [62], that use segre-
gated or coupled equation line-by-line iterative algorithms to solve the linearized
sets of discretization equations, could diverge; and (iiz) always-positive dependent
variables, such as volume concentration of the fluid and solid phases, or the fluctu-
ating kinetic energy of the solid phase, could take on negative values and lead to a
failure of the overall solution algorithm. When such difficulties are encountered, the
MAW scheme is recommended. Indeed, a formulation that automatically switches
from the FLO scheme to the MAW scheme, when necessary, could be conceived, but

this is not within the scope of this work.

The MAW scheme defined by Eqs. (4.29)-(4.32) is highly implicit. This does not
pose any special difficulties in the proposed derivation of the discretization equations,
as preseniled in the next section, because it is based on successive-substitution, or
Picard, linearization of the convective transport terms in the momentum equations.
However, the MAW scheme would make Newton-type linearizations very difficult.
It should also be noted that in this scheme, to obtain expressions for ¢,, ¢,, and ¢,
in terms of ¢,, &,, and ¢3, a2 3 X 3 matrix of element-interpolation coefficients must

be inverted. Further details are available in Appendix B.

4.4.5 Fluid-Phase Pressure p/ and Solid-Phase Pressure p*
Fluid-phase and solid-phase pressures are interpolated linearly in each element.
With respect to the local (z,¥) coordinate system shown in Fig. 4.3a:

o =d'zt+ely+ ff . (4.33)
pP=dz+ey+f° (4.34)

The constants d, e/ and f/ (or d*, * and f*)can be obtained using procedures
similar to those used to determined the constants A, B and C in Egs. (4.18)-(4.20).
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4.4.6 Volume Concentrations

The function used to interpolate o in most of the available finite volume methods
for two-phase flows is based on the upwind scheme [30, 44, 51, 76, 159, 170]. The
donor-cell scheme of Prakash [137] is one way of implementing this idea in CVFEMs.
In this work, an adaptation of the MAW scheme described previously has been
implemented. As discussed in the last section, the MAW scheme takes better account

of the influence of the direction of the flow than the donor-cell scheme.

The modified MAW scheme defines a material mass-weighted average of § at
integration points on each of the three control surfaces of a triangular element

(Fig. 4.3b), namely, B, B;, B, in the following manner: let
. a ., . b . [
M = / oV 70mrds M? = f oV 2mrds M = j oV R omrds  (4.35)

where 7i,, 7, and 7i; are the unit-normal vectors shown in Fig. 4.3a.

Then
fro .+ (1 — f¥)a; where f+ = min[max(—%},[)), 10if M >0 (4.36)
r = e . A0
“ T\ fraw+ (1= f)ar where f~ = min[max(—5,0),1] if Mz < 0
ffar+ (1 — f*)as where f* = min{max( %,0),1] if M?>0 (4.37)
Qy, = ot . o
f~a,+ (1= f")az where f~ = min[max(—%’;,o), 1Jif M <0
fta. +{1 = fY)ay where f* = min{max —M.J:-,O M2 >0
o = M ‘ (4.38)
‘T f-a;+(1 = f")as where f~ = min[max( %ﬁ-,ﬂ),l] if M <0 .

¢ is calculated using € + « = 1. These solid-material mass-weighted averages of
a and € are assumed to prevail over each control surface when the mass flow rates

in the integral continuity and momentum equations are evaluated.

4.5 Discretization Equations

The discretization equations are obtained by first deriving algebraic approximations
to the element contributions and the boundary contributions, if applicable, and then

assembling these contributions appropriately.
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4.5,1 Discretization Equation for ¢

The following discussion pertains to node 1 of the element shown in Fig. 4.3. In each
element, there are diffusion, convection, source and unsteady contributions. The
derivation of algebraic approximations to each of these contributions is presented

separately.

Diffusion Contribution

In each element, the diffusion flux, Jp, can be expressed in terms of its components

in the z and r directions:

= - - 98\ . LA

JD = JD:Z + l]Dr'.? = ('_l-‘e_qb) 4 (_Fc_é) ¥ (4.39)
0z or

where 7 and 7 are unit vectors in the z aud r directions, respectively. The linear

interpolation function given by Eq. (4.17) is used to approximate Jp. and Jp,. Thus,

with reference to element 123 and the local (z,y) coordinate system in Fig. 4.2a,

the diffusion contribution is approximated as follows:

fofn  fonrds = 27T, 2 ; " Ay, — Bz, (4.40)
jc fD cn2rrds = 2NT:T'O—}E[B$C — Ay (4.41)

where A and B are given by Eqgs. (4.18) and (4.19), respectively.

Convection Contribution

In each element, the convection flux, Je, can be expressed in terms of its components
in the z and r directions:

Jo = (JoT'+ Jor) = (pu™ ¢ + pv™47) (4.42)

where ¢ is given by Eq. (4.22) when the FLO scheme is used, or Eqs. (4.30)-(4.32)
when using the MAW scheme. It should be noted here again that «™ and v™ denote

components of the velocity vector, ‘7’“, in the mass-flux terms.
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In the case of the FLO scheme, the interpolation function given in Eq. (4.22)
is used to approximate ¢, 8 is computed using the modified MAW scheme (Eqgs.
(4.36)-(4.38)) , Eq. (4.93) or (4.97) is used to obtain u™ and v™, and the convection
contribution is evaluated using Simpson’s rule as follows:

‘/ao ﬁjC ' ﬁzﬂ:rds = zﬂﬁr{_%ﬁ[ro("Cz)o + 4rr(JCz)r + ra(JC:)a] (4-43)
+ 'a:s_a[ro(JCr)o + 41‘,-(.]6",-),- + Ta(JC'r)n]}
fc ﬁfc -n2rrds = 27i'ﬁg{+ys£[7‘o(-jcz)o + 4ri(Je: ) + re(Jez)e) (4.44)

—_ ?ﬁ—c[ra(JCr)o + 41‘1(Jcr)t -+ rc(JCr)C]}

When the MAW scheme is used, the convection flux, fc, is computed using ¢

given by Eqs.(4.30)-(4.32), and 3 obtained from the modified MAW scheme. There-
fore, the convection contribution is simply approximated as:

f " BT, - #2rrds = B, M, ¢, f “BJ . A2nrds = B,M,d, (4.45)
where
M, = fn pff.m i 27rds M, = /c pff'"‘ - 2nrds (4.46)

Tt should be noted that 8,M, and 8,M, are the mass flow rates m, and ri,, respec-
tively; and m, and rm, are mass flow rates across the corresponding control surfaces,

in the directions of the normals 7, and 7, respectively (sce Fig. 4.3b), as expressed
in Eq. (4.29).

Element Source Contribution

The volume integral involving the source term, S;, is approximated as follows:

S¢.dv = SClvlaoc + SP] ¢)l vlaoc (4'47)

laoc

where S¢;, Spy are the stored nodal values within each element, and Vo is the

volume define by the points 1, ¢, 0, and ¢:

[DET|
36 _

with DET given by Eq. (4.21). The expressions for the various volumes involved in

vlaoc =27 (21"1 +2r,+ 1.+ Tc) (448)

the numerical formulation are developed in Appendix B.
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Element Unsteady Contribution

A fully-implicit unsteady formulation {130] is used in this work. It should be noted
here that in the proposed method, the solution of steady-state problems is also
obtained through the use of a fully-implicit unsteady formulation. This approach
is related to the solution of the coupled, non-linear, steady-state equations using
iterative methods with under-relaxation {130]). In the two-fluid model considered in
this work, there are two sets of governing equations, one related to the fluid phase
and one to the solid phase. In the iterative solution of the steady-state equations, it
is ofien necessary to prescribe different relaxation factors for each of the two sets of
discretization equations, in order to ensure convergence of the overall algorithm. An
early implementation of the proposed CVFEM was based on an iterative method
with under-relaxation: the appropriate relaxation factors to ensure convergence had
1o be changed from one problem to another and were different for each phase; and
the choice of the appropriate relaxation factors involved a tedious trial-and-error
process, In the unsteady formulation, however, only the time step is needed to be
given. This time step will naturally ensure a common evolution of the solution for
each set of equations, and this results in a robust numerical solution algorithm. In
the choice of a suitable time step, guidance is obtained from physical quantities such

as the value of the particle relaxation time [148].

The volume integral involving the unsteady term is approximated as follows:

jlaoc%(ﬁpfﬁ)dv = -p“—-]g:“(ﬂlé] - ﬁ;‘ﬁ;) (4'49)

where At is the time step, and B and ¢} are the values of 8 and ¢, respectively, at

the previous time step.

Discretized ¢ Equation

Adding up the diffusion, convection, source and unsteady contributions, the total
contribution of element 123 to the conservation equation for node 1 is obtained.
The algebraic approximation to this total element contribution can be compactly

expressed as follows:
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jJ n2rrds +/J n2nrds +f

laoe

[ (Bpg)— ses] dV=C$ ¢y + Ch 3+ CL b+ D(4.50)

Details of the derivations pertaining to the element contribution are given in Ap-
pendix B. Expressions similar to Eq. (4.50) can be derived for the contributions of
all elements associated with the internal node 7, shown in Fig. 4.2a. When the total
contributions of all elements associated with this internal node ¢ are substituted into
Eq.(4.9), the complete discretization equation for this node is obtained. A gernecral

representation of this equation can be cast in the following form:

acld; = Y acl du, + b* (4.51)
nb

4.5.2 Discretized Momentum Equations

The momentum conservation equations are identical in form to the conservation
equation for ¢. However, additional comments are needed concerning the treatment
of the source terms. The momentum source terms are divided into five parts, namely,
the diffusion-source terms (Sr;, Sr,), the momentum-coupling terms (Sp., Sp.}, the
body force terms (Sf, S¢, §?, 5?), the pressure gradient terms, and the cylindrical

source term (Sy).

Diffusion-Source Term

The diffusion-source term is integrated similarly to the diffusion term. However, its
contribution is included in the source-part of the discretized momentum equation

(in b* or b¥). A diffusion-source flux, Jpse, is defined as follows:
= Ju dJu 10 Oe| -
Jos. = [I‘ 3+ (T ‘")(aﬁ;a( ")) a—]

v du 18 de| .
+ [F, % (I";, =T ) (Bz + T3 (rv)) B_r]'? (4.52)

where ¢ stands for z for the 2-momentum equation or r for the r-momentum equa-

tion. In the algebraic approximation of Jpse, u and v are assumed 1o vary linearly in
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cach element. Therefore, the derivatives of u and v that appear in Eq.(4.52) are con-
stants over the element, and the diffusion-source contribution can be approximated

as follows:

laoc

on gt [l (v ~ 2\(0u 18 ol -
. Jpse - i2nrds = 27 9 {I:Fe (-é'g)c]e-l- (Fb-—§ g) (5;+;E"(rv))05;J T,
— { Ou — 2 10
- |:Fe (‘a—s) N + -(Fb - '3'Fe (Ha_z + ™ (rv)) ) a] ya} {4.54)
oo omrds = gt e [ -2 (24,12 ) &
[ Tpse - frards = a2 {[r ( )de +(T-3T7) ( o (rv))o E] "

— { v — 2\ (0u 10 Oe
- [Fc (g)elc * (Fb - 51—‘8 _; * ;E‘. (rv))a E} xc} (455)
where

du 130 Ou Jv Ve
Frime) = (3), (7). (429

The expression given in Eq.(4.53) is written without the diffusion-source contribu-

Sr.dV = fo J-bs, -n2nrds + / Jpse - w2rrds : (4.53)

de

tion on the surfaces 1 — a and ¢ — 1 (see Fig. 4.3a) because they cancel out when
all appropriate element contributions are assembled to approximate the complete
integral conservation equation for an internal node; in the case of boundary nodes,

one or both of these contributions may need to be included.

Momentum-Coupling Source Term

The integration of the momentum-coupling source term is presented here only for
the z-component of the momentum equation, since the treatment of this term in the
r-momentum equation is analogous. The z-component momentum-coupling source

term is given by:

Sp: =K (uJf — u‘) (4.57)
where
K =ap’(p _ < (4.58)
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All the quantities involved in the calculation of the momentum-coupling source term
are defined at the vertices (or nodes) of the triangular elements. Therefore, using a
simple prevailing assumption over the corresponding portion of the control volume
within that element, the volume integration of the momentum-coupling term can

be approximated as follows:

| SDzdv = Kl (u{ = u;) vlao.c (459)

The complete contribution of the momentum-coupling source term to the z-momentum

equation can be easily obtained:
j SpedV = K, (uf —u}) (V) (4.60)
(vcv )1

where (V.v)1 is the volume of the control volume surrounding node 1. While this
integration is straightforward, the proper linearization of the momentum-cot.ipling
source term is crucial to ensure convergence of the overall algorithm, especially in
the context of segregated iterative solution algorithms. The linearization consists in
the specification of appropriate expressions for S¢ and Sp (see Eq. (4.15)). Before

the discussion ol the linearization, it is useful to introduce the following notation:

solid-phase momentum-coupling term contribution {4.61)

‘/{v ) SDzdv = (SDZ)E' (vcv)l + (SD:)}-' u‘;(vcv)l (462)
()

fluid-phase momentum-coupling term contribution (4.63)

= [, 8p:4V = (Sp:) (Veoh + (8pe)f wl (Ve (1.64)

In this context, a linearization consists in a choice of (Sp.)%, (Sp:)ps (Sp:)&, and
(Sp:)L. A very simple linearization can be obtained by treating the momentum-
coupling source term explicitly in each iteration:

(Sp:)p =Ki (v —uf)”  (Sp)p=0 | (4.65)
(Sp)e=Ki (wi-wf)”  (Sp)fp=0 (4.66)

where (u{ — u{)' and (ui - u{). are based on initial values or values from the

previous iteration. Implementation of such a linearization in a segregated iterative
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algorithm resulted in significant convergence problems at high loading and/or low
Stokes number. For a given concentration, as the Stokes number decreases (which
can be interpreted as decreasing the size of the particles, for example), the value
of K becomes larger, and the resulting momentum equations are source dominated.
This results in very slow convergence rates, and, sometimes segregated iterative
algorithms may even diverge. In an effort to improve the robustness of the iterative
solution algorithm, a treatment could be proposed in which the momentum-coupling
source term is treated explicitly in the fluid phase but implicitly in the solid phase,

in each iteration:

Sp)e=Ki(uf)”  (Sp)p=-Ki (4.67)
(Sp)t =K (ui-u{)”  (Sp:)h=0 (4.68)

This treatment describes the physical interactions between the phases more closely
than the above-mentioned fully explicit treatment. As the Stokes number decreases,
the particle inertia decreases and, therefore, it follows the fluid closely. This means
that the solid-phase velocity is almost equal to the fluid-phase velocity. The implicit
treatment of the solid phase ensures, at high Stokes numbers, that the solid-phase
velocities will be close to the fluid-phase velocity, because of the domination of the
contribution of the momentum-coupling term in comparison to the convection and
diffusion contributions. This is the attractive feature of this linearization. However,
preliminary computations using this scheme also resulted in converging problems

similar to those encountered in the completely explicit formulation.

The proposed linearization is a fully implicit formulation in each iteration, which

allows a simultaneous coupled solution of the fluid- and solid-phase momentum

equations:
Sp)e. =Kl  (Spa)p=-K; (4.69)
(Sp)l =Kiw  (Sp.)f = ~Ky (4.70)

This linearization has proven to be much less prone to convergence problems than the
other two linearization schemes discussed earlier in this section. Numerical examples
which illustrate the characteristics of these linearization schemes are presented in

Appendix C.
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Body-Force Source Term

The integration of the body-force source term is approximated in a similar manner
to that used for the source term in the ¢ equation. An example of body-force is the

gravity field. In this particular case, no linearization is needed.

Pressure-Gradient Terms

Both the fluid-phase and solid-phase pressures are assumed to vary linearly within
an element. Therefore, their gradients are constant within an element, and the.

corresponding volume integrations are approximated as follows:

ap! o op’ |
| -8y = -4 ( o) Vi | (4.71)
ap* .., (&p
./laoc a&' dv - ( Bs )ele vluoc (4.72)

¢ stands for z in the 2-momentum equation, or » in the r-momentum equations. The

pressure gradients in these equations are computed using Eqs. (4.33) and (4.34).

Cylindrical Source Term

The evaluation of the cylindrical source term involves the diffusion coefficients, the
radial velocity, and velocity gradients. In the volume integration of this source
term, the nodal values of the diffusion coefficients are assumed to prevail over the
corresponding portions of the control volume; the radial velocity is also evaluated at
the nodal point; and the velocity gradients are evaluated using linear interpolations
and these quantities are assumed to prevail over the element. These approximations

yield the following expression:

SopdV = [_ (To - §T) (B + 22 (0)
cy -

*

© — 9T 22 | Vyaoe (4.73)
T

laec ™
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Discretized v/ and v/ Equations

The discretized momentum equations are derived and assembled using element-by-
element procedures akin to those used to obtain the discretization equation for ¢.
The resulting ©/ and v/ discretization equations for the fluid phase at a node i can

be cast in the following forms:

] vCV u 3
(ac + KV + ald Yu! = Zacn,{u,{b +b* 4 KjuiVe,

At

Vev 1 ap7 ‘

+B et v (<) (a:74)

vf - 1P vﬂ vf f uvf .8
(ac;” + KiVey + Z acyi vy, + b+ Ko Vey
i) f
E"p va J’. . _6p -
+—~——At 'U‘ "l"‘ e;vcv ( ar ) (4‘5)

The bar over the pressure gradient denotes volume average associated with the

control volume V...

Discretized u® and v* Equations

Using similar element-by-element procedures, the resulting u* and v* discretization

equations for the solid phase al a node ¢ can be cast in the following forms:

I VCV s
(ac?® + K;Vey + < P o Z ackul, + b 4V, (——5; ) + Kl Vi

Q-Psvt:\.
At

onf
s- + VCV (_L (476)

AL 0z

] vCV l a
(acy” + Kiey + ™ = L ackiuiy + 5"+ Vo (— )+ Kaofve,

.p’vcv - 2
+——— Al +a V(:v (_ 37“ ) (477)

The contribution of the momentum interaction term is stated explicitly in these
equations in order to clearly represent the coupling between the momentum equa-
tions of the two phases. This coupling will be used in the solution procedure pre-

sented later. Further manipulations of the unsteady contributions are needed in the
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calculation of mass flow rates (see Eqs.(4.91)-(4.92)); therefore, they are also stated
explicitly in the previous equations. The solid-phase pressure gradient terms that
appear in Eqs.(4.76) and (4.77) are presented as separate terms in the discretized

equations for the sake of clarity, however, in the actual implementation, they are
included in b** and b**.

4.5.3 Discretized Solid-Phase Fluctuating Kinetic Energy
Equation

For the sake of completeness, the results of the volume integrations of the various
source terms in the solid-phase fluctuating kinetic energy equation arc presented
in this sections. These source terms consist of the work done by the solid-phase
pressure, W, the viscous-dissipation source term, &°, the diffusion induced by con-
centration gradient, S,, the collisional dissipation, 7., the drag dissipation, 7p, and,

finally, the transfer of energy between the phases, yg.

Solid-Phase Pressure Work Source Term

o 10
W,dV = —p; (5“— ;E:(rv’)) V5aoe (4.78)

laoc

Viscous-Dissipation Source Term

. L2, o 1o, L\
e © WV = {(*‘w - 3#) (a_ Y ))o

ov*\? v\ 2 out\? ou’ ov® 2
s il -2 s —_— —_— 4.79
24 (( ar )e]j (ro) + ( 0z )ele) +ha (( ar )dj ( dz )elc) } Visor (4.79)

The velocity derivatives are computed using linear interpolations; and

out 18 ou’ dv® v’
L = (rv? = — ] 4.80
(62 +rar(rv ))o (az)cle-*-(ar)clc-*-ro ( )
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Concentration-Diffusion Source Term S,

The diffusion induced by concentration gradient, S,, is approximated using a deriva-
tion similar to that used to approximate the diffusion-source term in the momentum

equations. The concentration diffusion flux is given by:

- S0 L0ay
Ja=(kaa)z+(ka5)3 . (481)

o is assumed to vary linearly within each element. Therefore, the derivatives ap-
pearing in Eq.(4.81) are constant over the element, and the concentration-diffusion

source contribution can be approximated as follows:

jl S,dV = ] " T - mowrds + / T worrds (4.82)
° o To + Tq .:;6& T@a

./a Jo r27rds = 27 5 [Laara - Laaya} (4.83)

]ci R27rds = 2712 -: e [E%C}‘yc - E?Emc} (4.84)
-] A z T

where k2 is the element average of k3. The expression given in Eq.(4.82) is written
without the contribution on the surfaces 1 —a and ¢—1 (sec Fig. 4.3a) because they
cancel out when all appropriate element contributions are assembled to approximate
the complete integral conservation equation for an internal node; in the case of

boundary nodes, one of both of these contributions may have to he included.

Collisional Dissipation +,

2,5 j" 1
— [ v =891 - p AL (;‘-) T1V 1000 (4.85)

Drag Dissipation vp

- 'Tde - _3K1Tlvlaac (4'86)

laoe

Energy Transfer vz

~+5dV = 3K, (1 + agat ) Ty Vieoc (4.87)

laoc
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Discretized T Equation

The solid-phase fluctuating kinetic energy is always positive. To ensure a positive
granular temperature, special attention is needed in the linearization of the source
terms. Patankar [130] has suggested the use of positive S¢ and negative Sp to
ensure that the always-positive dependent variables are indeed positive during the
solution process. In order to satisfy Patankar’s recommendations, the following
strategy is adopted in this work: (i) contributions from the collisional and drag
dissipation source terms are included in Sz; (ii) the energy transfer term is included
in S¢; (it7) the solid-phase pressure work, the viscous dissipation, and the diffusion
induced by concentration gradients (which may exhibit both positive and negative
clement contributions) are included either in S¢ or Sp, depending on the sign of
their respective element contribution. The resulting T' discretization equation of

the solid phase at a node ¢ can be cast in the following general form:

aclTi =3 acl T + b7 (4.88)
nb

4.5.4 Discretized Equations for p/ and o

Denoting the velocity in the mass-flux terms by V™, the integral mass conservation
equation, when applied to the control volume surrounding node i in Fig. 4.2, can be

written as follows:

{ j " 8oV . 72mrds + j CBpV™ . A2rrds + % (Bp) dv]

+ [similar contributions from other elements surrounding node ¢} (4.89)

+ [boundary contributions, if applicable] = 0

The volume integral involving the unsteady term is approximated using Eq.(4.49)

with the specialization ¢ = 1.

Discretized p/ Equation

In each element, the velocity V™ can be expressed in terms of its components in the

z and r directions, u™ and v™, respectively, as shown in Eq. { 4.16). Interpolation
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functions for 4™ and v™ have to be first prescribed in order to approximate the fluid-
phase mass flux integrals in Eq. (4.89). First, the fluid-phase discretized momentum

equations, Eqs.(4.74) and (4.73), are rewritten in the following manner:

Bpf ' op’

I af D - v P

uf =af +df (—E) vf = of + (-ﬁ (4.90)

where

of = Yorb acnbunb +bef 4 I} ulVe, + ( erul” — euf) & = _uc"vL(q,gl)

+ KV, . acl + K V.,
Jopet s P’_Vs; T, I |

o = Zo activ], +bv + K Ve o+ BN — W)y __“--L_ (4.92)

,' + K 1vcv + KiVey

For the evaluation of the fluid-phase mass fluxes on the faces a-0 and o-c (Fig. 4.3),
the fluid-phase velocity components are written as:

i f
um = af 4 vl (_ai) v = of 4 g (—ai) (1.93)
3" ele a ele

z r

where @/, %7, d*/ and d*/ are interpolated linearly from the corresponding values at
the vertices of the element. This interpolation for u™ and v™ is berrowed from the
work of Prakash and Patankar [135] and Saabas [149]. It prevents the occurrence
of spurious pressure oscillations in the proposed CVFEM. Similar interpolation of
the velocity components in the mass-flux terms have been successfully used by Rice
and Schnipke [145], Peric et al. [131],and Rhie and Chow [143]. It should be noted,
however, that this interpolation procedure may not be well-suited for Newton-type
linearizations of the convective terms in the fluid-phase momentum equations. In the
proposed CVFEM, however, this mass flux interpolation does not pose any problems
because successive substitution (or Picard) linearization is used for the convective

terms in the fluid-phase momentum equations.

In the derivation of algebraic approximations to integrals of fluid-phase mass flow
rates, u™ and v™ are interpolated in each element by the functions given in Eq.(4.93).
The same functions are alsc used to approximate integrals that represent the mass
flow rates in the fluid-phase momentum equations. They are also used to compute
ugy and viy in Eq.( 4.28). Uéing these interpolation functions to approximate the
integrals in Eq.(4.89), the contributions of element 123 (Fig. 4.3) to the fluid-phase
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mass conservation equation for the node 1 are expressed as:

j:o ep! V™ - i2nrds = QW%{--ya[pfu;"(ra +2r,) + pfu™ (2r, + 1)) (4.94)
+2a[p/ V] (ra + 270) + 07 (2ra + 7o)}

jc e/ VM - fidnrds = Qw%{—mc[p U™ (re 4+ 2r0) + plo™ (2re + 15)] (4.95)
Hyelo U (re + 2ro) + pul (2r. + 7))}

where u™, o™, uT, v7, u7* and v are given by Eqs.(4.93) and ¢, and ¢, are obtained

using the modified MAW scheme given by Eqs.(4.36) and (4.38), respectively, and

the relation o 4= 1.

Addilion of the contributions of the other elements surrounding the point ¢ yields

the cornplete discretized fluid-phase continuity equation,

When explicit expressions for the pressure gradient terms are substituted into the
interpolation functions for the mass-flux velocity components (Eq.(4.93)), and then
these interpolation functions are used in the element contibutions to the discretized
fluid-phase continuity equations (Egs.(4.94) and (4.95)), discretized equations for
p’ are obtained.

A compact representation of the discretized p/ equation for a typical node i is

the following:’

ac?p! = Z ack,pl, + b? (4.96)
nb

Discretized o Equation

For the evaluation of the solid-phase mass fluxes on the faces a-o and o-c (Fig. 4.3),
the mass-flux velocity components are written as:

=y v =2 (4.97)

where u*, v* are interpolated linearly from the corresponding values at the vertices
of the element. Using these interpolation functions to approximate the integrals
in Eq.(4.89), the contributions of element 123 (Fig. 4.3) to the solid-phase mass
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conservation equation for the node 1 are expressed as:

° 7 ~ Qr 3.8 a8 )
fa ap’V* - fi2nrds = 2 {~valp’ul(ra + 2ro) + p*us (2ra + 7)) (4.98)
+2a[p"v5(ra + 2ro) + 20327 + 7))}

fo ap*V? - i2nrds = ZW%{—mc[p’v;(rc + 2r,) + p'vl (21 + 1,)] (1.99)
+yelp’ug(re + 2r0) + p*ui(2re + 7))}

where where u), v], u, v], ul and v} are given by linear interpolation of u* and v*
values at the vertices, and o, and a, are obtained using the modified MAW scheme

given by Eqs.(4.36) and (4.38), respectively.

Additinn of the contributions of the other elements surrounding the point 7 yields
the complete discretized solid-phase continuity equation. The solid-phase continuity
equation provide a set of discretized equations, which are used to compute the solid-

phase concentration, a; € is computed using a + ¢ = 1.

A compact representation of the discretized o equation for a typical node 7 is

the following:

acla; = Z acoptny + b (4.100)
nb '

Details of the numerical implementation of the clement fluid- and solid-phase

mass flow rates can be found in Appendix B.

Discussion

Carver [30] suggests subtraction of the fluid-phase continuity equation from the
solid-phase continuity equation to derive a discretization equation for a, and an
addition of these equations in the derivation of the discretization equation for p/,
so as to explicitly account for the coupling between the phases in the calculation
of o and p/. This treatment is appropriate only when local mass conservation is
ensured over each control-volume for each phase, individually, as in the finite vol-
ume method used by Carver {30]. In the proposed co-located equal-order CVFEM,
for problems that involve inflows and outflows, « is prescribed at all nodes located

on the inflow boundaries, and p/ is prescribed at one (or more) node(s) located at.
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the outflow boundaries: thus, for the control volumes surrounding the nodes on the
inflow boundaries, local mass conservation of the solid phase is not necessarily sat-
isfied; and local mass conservation of the fluid phase is not necessarily respected for
the control volumes associated with the nodes on the outflow boundaries. Thus, at
nodes on the inflow and outflow boundaries, the treatment proposed by Carver [30]
could not be incorporated into the proposed CVFEM. Furthermore, the construc-
tion of a fluid-phase pressure equation based on the sum of the fluid- and solid-phase
continuity equations can be realized only when the solid-phase mass-flow related ve-
locities are calculated using expressions similar to the fluid-phase mass-flow related
velocities, Eq.(4.93). The use of such solid-phase mass-flow related velocities have
been implemented for the solution of dilute gas-solid particle flows [114, 115, 117] but
this approach leads to severe convergence problems at high solid-phase concentra-
tions. Instead, as was described earlier in this section, the discretization equations
for o are obtained fromn the continuity equation for the solid phase, and the solid-
phase mass-flow related velocities at the integration points are obtained from linear
interpolation of the solid-phase nodal velocities; and only the fluid-phase continuity
equation is used to derive the discretization equations for p/. Therefore, the coupling
between the two phases is not directly accounted for in the calculation of & and p/,
but this did not lead to any major difficulties. It should be also noted that in dilute
gas-solid particle flows, the proposed discretization equations for o do not need any
special treatment to ensure physically realistic solutions [114, 115, 117), while the
linear combination approach suggested by Carver [30] does: the b® term of the pro-
posed discretized concentration equation (Eq.(4.100)) is always equal to or greater
than zero and so are all the coefficients in this equation. This feature ensures that
o 2 0. In addition, since a < 1 in dilute gas-solid particle flows, there is no need to
incorporate any special pror.:edures to ensure that & < 1 during the iterative solu-
tion procedure. However, for problems involving higher solid-phase concentrations,
appropriate choice of the time step was needed to ensure that o < ayy throughout

the solution procedure.

Another important feature of the formulation proposed in this work is that in
Eqs.(4.91) and (4.92), the unsteady contribution is ell included in the numerator of
it/ and $/: thus, when the steady-state solution is reached, the unsteady contribution
is zero, and the mass flux interpolation is independent of the time step. Each of these

variables can be defined in such a way that parts of the unsteady terms appear in
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the numerators of %/ and 9/, and the other parts are included in the denominators of
@/, d*f, %7, and d*/. This would be inappropriate since the mass flux interpolation

would then depend on the time step even under steady-state conditions.

4.6 Boundary Conditions

In this work, it is assumed that the domain boundaries remain at fixed spatial
locations, and they could coincide with solid walls, symmetry surfaces, and {luid-
phase and/or solid-phase inlet and outlet regions. All these boundaries can be
accounted for in a general formulation by noting that only two types of boundary
conditions are encountered: specified value or given gradient. Gas-solid particle
flows with free boundaries and/or moving boundaries are not within the scope of
this work.

The following derivation pertains to the discretization equation for node 1 of the
element 123 shown in Fig. 4.3b. The link between the points 1 and 2 is assumed Lo

coincide with the boundary of the domain of interest.

4.6.1 Specified Value

When the value of the dependent variable, ¢, is given al the boundary node, and

denoted by ¢sp, the discretization equation associated with that node is written as

follows:

act=1, ach, =0 , bf=dsp (4.101)

4.6.2 Specified Gradient

When the gradient of the dependent variable normal to the boundary is given, say
(%f) o’ the combined convection-diffusion flux of ¢ normal to the boundary is given
by:

J 7= BpVap—T. (%)SP (4.102)
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where V,, is the velocity component normal to the boundary. With reference to
node 1 in Fig. 4.3b, the values of 8, p, T'. and (-g—f)sp are assumed to be conste.u.
on surface 1-a, Thus, the contribution of boundary link 1-a to the conservation

equation for the control volume associated with node 1 is given by:

a L _ a af,ﬁ
/1 J-2nrds = ﬂp./1 V.¢2nards — T, (E;)sp .Al_,,_ (4.103)
where
2 211/2
A]-—a = 27711-—&":11 ll—a = [(Ta - 7‘1) + (zu - 21) ] (4104)

The convection contribution is evaluated using Simpson’s rule. The variations
of V, and J over the link 1-2 are approximated with linear and piecewise prevailing
interpolations, respectively. The ¢-interpolation has to be consistent with the inter-
polation scheme used in the convection terms: when the FLO scheme is used, ¢ is
interpolated linearly; when the MAW scheme is used, the prevailing assumption is
appropriate. Therefore, the convection contribution, when the FLO scheme is used,

is given hy:
f * BpV.d2rrds = 28,
1

li-a
S 61(20(Vairs + 6p(Va)mrm + p(Va)ara) (4.103)

+¢’2(p(Vn)ara + 2P(Vn)mrm )]

and the convection contribution, when the MAW scheme is used, is given by:

[ Bovadanrds = 224161
1

[’g = [p(Vahirs 4+ 4p(Va)mrm + p(Va)ara)] (4.106)

This derivation has been done for the general ¢-equation. A similar treatment

is applied to the momentum equations.

For the continuity equalion, only boundaries having mass flow crossing them
have non-zero contributions. Thus the contribution of boundary link 1-a to the
integral mass conservation equation for the control volume associated with node 1

can be expressed as:

a [
/ BpVy2rrds = 276, L
1

5 [P(Va)irs + 4p(Va)mrm + p(Va)ara] (4.107)

It should be noted here that the mass flow rates across the boundary edges, such
as 1 — a in Fig. 4.3b, are calculated using the latest available values of the nodal
velocity V, not V™. Only the mass flow rates across control-volume faces in the

interior of the domain are calculated using vm,
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4.6.3 Special Treatments

In the proposed CVFEM, special treatments are needed for 1/, &/, d*/ and d*/ on
boundaries with prescribed fluid-phase velocities, such as walls and inflow bound-
aries. At nodes which lie on such boundaries, d*/ and d*/ are set to zero, and,

therefore,

W =ufy o =0f (4.108)

At outflow boundaries, the treatment recommended by Patankar [130] is used:
it is assumed that convection is the dominant transport process and diffusion is

negligible. This is handled by dropping the =TI, (%) term in Eq. { 4.102).

4.7 Overall Solution Algorithm

The discretization equations form two sets of coupled nonlinear algebraic equations.
In this work, af each time step, a modified version of the iterative variable adjustment
procedure proposed by Saabas [149} for single-phase flow, and recently applied to
dilute gas-solid particle flows by Masson and Baliga [114, 115, 117], was used to

solve the mathematical model;

1. Start with guessed or available velocities, fluid-phase pressure, solid-phase

concentration and granular temperature fields.

2. Calculate the fluid- and solid-phase diffusion coeflicients, and the solid-phase

pressure, using the constitutive equations.

3. Calculate coefficients in the discretized unsteady momentum equations without

including contributions of the fluid-phase pressure-gradient terms.
4. Calculate @/, 94, d*/, and d*/,

5. Calculate coefficients in the discretized fluid-phase pressure equations, and

solve these equations to obtain updated values of p’.
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10.

11.

Add contributions of the fluid-phase pressure-gradient terms to the appropri-
ate coefficients of the discretized z-momentum equations calculated in Step 3,

and solve for u/ and u*, simultaneously.

Add contributions of the fluid-phase pressure-gradient terms to the appropri-
ate coefficients of the discretized r-momentum equaticns calculated in Step 3,

and solve for v/ and v°, simultaneously.

Calculate coefficients of the discretized equations for «, and solve these equa-

tions to obtain updated values of a.
Calculate € (=1 — a).

Calculate coeflicients in the discretized granular temperature equations, and

solve these equations to obtain updated values of T

Return to Step 2, and repeat until appropriate convergence criteria are satis-

ficd.

If the unsteady formulation is used only to facilitate the solution of steady-state

problems, then it is not necessary to do Step 11 in this procedure. Rather, Steps 2-10

could be repeated until steady-state conditions prevail. In this work, the solution was

considered to be converged when the non-dimensional average, absolute, residue for

each set of discretization equations was less than 10~1°. Depending on the problem,

global values, such as the separator efficiency in a problem involving a split-flow

inertial separator {Chapter 6), were also monitored, and it was stipulated that the

absolute value of the relative change from one iteration to the next (or from one

time siep to the next in steady-state problems) should be less than 10~%: in most

of the calculations, however, it was found that the convergence criterion based on

the non-dimensional average, absolute, residue is the more demanding one.

In this work, in order to facilitate implementation and testing of the proposed

CVFEM, structured grids were used: the nodes in the finite element mesh lie along

nonorthogonal lines that allow (I,J) indexing. Thus, in steps 5, 8 and 10, a line

Gauss-Seidel algorithm based on the tri-diagonal matrix algorithm [130] was used

to solve the discretized equations for p/, @ and T, respectively. In steps 6 and 7, a

line Gauss-Seidel method based on a coupled-equation line solver {84, 62, 130} was -

used.
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These ideas could be extended to unstructured-grid implementations by employ-
ing point, rather than line, Gauss-Seidel methods. More sophisticated approaches,
such as direct, or block decomposition, techniques based on sparse matrix algo-
rithms may also prove viable for use with unstructured grids. To improve the rate
of convergence, block-correction procedures and multigrid techniques, for example,

can be included. In this work, however, these options were not considered.

The proposed linearization of the momentum coupling source terms allows a
direct accounting of the coupling between the solid- and fluid-phase momentum
equations in the above-mentioned solution algorithm. The simultaneous solution of
the solid- and fluid-phase momentum equations in Steps 6 and 7 is an important
element in the robustness of the proposed algorithm. The unsteady formulation
also contributes significantly to the robustness of the overall solution procedure by
ensuring a similar evolution of the solutions of the fluid- and solid-phase sets of

equations.

The modified MAW scheme that is used to interpolate the solid-phase concentra-
tion ensures positive coefficients in the discretized solid-phase concentration equa-
tion. Furthermore, the solid-phase concentration equation is based on the solid-
phase continuity equation only: this yields zero values of b® everywhere in the
domain of interest except at points where the concentration is l‘cnoxvn. Zero b*,
along with positive coefficients, results in discretized equations that admit only pos-
itive values of &, which is a physical requirement of the volume concentration. At
high solid-phase concentrations, the discretized solid-phase concentration equations
can, in principle, admit values larger than the maximum packing limit, ayyx. How-
ever, when the concentration is large, the solid-phase pressurc appearing in the
momentum equation tends to disperse the solid particles and, therelore, reduce the
solid-phase volume concentration to values below amyx. However, in the context
of the above-mentioned iterative solution algorithm, the effects of the solid-phase
pressure are not always large enough to prevent a from reaching values equal to
or larger than the maximum packing limit, apx. In such situations, the use of a

smaller time step has been found to be useful in alleviating this difficulty.
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Chapter 5

Single-Phase Flow Simulations

The validity of the proposed CVFEM for two-dimensional, axisymmetric, single-
phase [116] fluid flow and heat transfer is demonstrated in this chapter by its appli-
cation to four problems, and comparisons of the solutions with available numerical
and experimental results. In general, the MAW scheme produces discretized equa-
tions that are more robust than those obtained with the FLO scheme, with respect
to solution with the iterative variable adjustment algorithm discussed in the previ-
ous chapter. However, the results obtained with FLO, when it converges, are more
accurate than those obtained with MAW, for the same grid. Therefore, most of
the results presented here were obtained using the FLO scheme. However, for one
of the test problems, involving laminar natural convection in a cylindrical enclo-
sure, results obtained with both FLO and MAW are presented in order to enable
a comparative evaluation of these schemes: detailed grid independence checks and
CPU times are also presented for this test problem. It should also be noted that at
high Reynolds numbers, guod initial guess values of the u/, v/, and p? fields were
essential for convergence of the FLO scheme: in such cases, a solution obtained with

the MAW scheme was fed as the initial guess to the FLO scheme.
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5.1 Developing Laminar Flow in a Pipe
Problem Statement

Laminar flow of a constant-property Newtonian fluid in the inlet region of a circular
pipe is investigated in this problem. The fluid enters the pipe of radius R with a
uniform velocity profile: u/ = &f, v/ = 0. The ratio of the length to the radius of

the pipe is Tli' = 6. The results obtained with the proposed CVFEM are compared
to those of Friedmann et al. [60].

Governing Equations

The governing equations are the continuity, z— and r—momentum equations, Eqs.
(3.119)-(3.121). For negligible body force, or for body-force terms that can bhe
absorbed into an effective pressure, the source terms in the momentum equations

are the following:
$I=58/=0 (5.1)

The boundary conditions are the prescribed uniform velocity profile at the inlet,

fully developed conditions at the outlet, and the no-slip condition on the wall.

Results

The Reynolds number, Re = P%’rﬁ, considered in this problem is 40. A nonuniform
grid, with 111 nodes in the z direction and 61 nodes in the r direction, was used
in this test. Preliminary test with 40 X 15 and 56 X 31 grids had established
that the 111 X 61 grid produces essentially grid independent results: the absolute
difference in % values produced by 56 X 31 and 111 X 61 grids is less than 0.23%.
In the region 0 < £ < 1.25, the u/ velocity profile has a local minimum on the
axis of the pipe and a maximum at a value of r > 0. This behaviour has been
observed experimentally [23]. Table 5.1 presents the local minimum and maximum
u/ velocities at several axial locations downstream of the entrance. Table 5.2

presents a comparison of the nondimensional hydrodynamic entrance length, defined
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as the distance along the axis where the centerline velocity reaches 99% of its fully
developed value. The results obtained with the proposed CVFEM are compared with
the finite difference solution of Friedinann et al. [60]. The CVFEM results match the
solution of Friedmann et al. [60] very well: the maximum percentage difference in the
results presented in Table 5.1 is 0.09%; the nondimensional hydrodynamic entrance
lengths presented differ by 0.80%. This simulation illustrates the capabilities of the
proposed formulation to accurately capture the fluid flow phenomena encountered

in the entrance regions of pipes.

Proposed CVFEM | Friedmann et al. [60]
T

R X Yrmin Eéuu'. Ymin Y¥maz
S - 4l Y] 1l

40 { 0.25 | 1.048 1.219 1.048 1.219
0.50 | 1.173 1.313 1.174 1.314 -
0.75 | 1.325 1.404 1.326 1.405
1.00 | 1.465 1.494 1.466 1.495
1.25 | 1.579 1.582 1.580 1.583

Table 5.1: Developing laminar flow in a pipe: u/;, and ul,., values

Re | Proposed CVFEM | Friedmann et al. [60]
40 4,92 4.88

Table 5.2: Developing laminar flow in a pipe: nondimensional hydrodynamic en-
trance length
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5.2 Laminar Flow in a Pipe with a Sudden Con-
traction

Problem Statement

The behaviour of laminar flow in a straight pipe with a sudden contraction in its
diameter is investigated in this problem. This simulation was conducted with the
geometry proposed by Durst and Loy [52). The inlet pipe has a diameter D of
19.1 mm, while the diameter of the pipe after the contraction is 10.2 mm. The
computational domain extends 25 mm upstream of the contraction and 20 mm
downstream. At the inlet of the pipe, the flow is considered as {ully developed. The

length of the pipe downstream of the contraction is long enough to ensure that the

following outflow treatment is satisfactory; %“} =0and v/ =0.

Governing Equations

The governing equations are the same as the ones presented in the previous section

for the problem involving developing laminar flow in a pipe.

The boundary conditions are prescribed fully developed velocity profile at the

inlet, outflow treatment at the outlet, and no-slip conditions on the pipe wall,

Results

Simulations were conducted for two values of Reynolds number, Rep, based on
the inlet diameter D and the average inlet velocity %/, namely, 196 and 968. All
simulations were done with a 72 X 97 non-uniform grid with a concentration of nodes
in the recirculating zones, one upstream and one downstream of the contraction.
The presented results consist of streamlines computed using the proposed CVFEM,
and comparisons of the computed axial and radial velocity profiles at several axial

positions with the experimental data obtained by Durst and Loy [52].

Numerical simulations on 37 X 51, 72 X 97 and 143 X 193 grids established that
the 72 X 97 grid produces essentially grid-independent results. The resulls of this
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grid independence study are well-illustrated by the variation of the radial velocity
profile at station z/D = —0.052 for the three different grids (see Fig. 5.2b): the
radial velocity profiles predicted by the 72 X 97 and 143 X 193 grids are so close
to each other that it is impossible to distinguish one from the other. All other
results showed similar or better grid-independence. Therefore, simulations done on

the 72 X 97 grid were used to obtain all other results presented in this section.

Figure 5.1: Streamline patterns for laminar flow in a pipe with a sudden contraction:
(a) Rep = 196 ; (b) Rep = 968.

For Rep = 196, there is only one recirculating zone situated upstream of the
contraction, as can be seen from the streamlines plotted in Fig. 5.1a. However,
at Rep = 968, an additional recirculating zone appears just downstream of the
contraction (see Fig. 5.1b). For Rep = 196, Fig. 5.2a presents the evolution of the
axial velocity profile along the pipe: % = 0 at the location ¢f the contraction. The
agreement with the experimental data of Durst and Loy is very good: both the shape
of the profiles and the magnitude of the velocity are well predicted. It is interesting
to note the velocity over-shooting phenomena, exhibited by both the numerical and

experimental results, just downstream of the contraction. The computed radial
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velocity profiles , for Rep = 196, presented in Fig. 5.2b do not agree as well with
the experimental data: the difference in the magnitude is up to 50% at the station
z/D = —0.052. '

ReD = 196
-+« Experiment [52]
—— CVFEM

T T ¢,
02 4 u/T

[

Figure 5.2: Laminar flow in a pipe with a sudden contraction for Rep = 196: (a)
axial velocity ; {b) radial velocity

The axial velocity profiles for Rep = 968 are shown in Fig. 5.3a. The proposed
CVFEM predicts a recirculating zone downstream of the contraction. This is clearly
confirmed by the shape of the axial velocity profiles downstream of the contraction:

a zone of negative axial velocity exists near the wall. The computations done by
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Durst and Loy [52] also indicates the presence of a recirculating zone downstream of
the contraction. No such affirmation can be drawn from their experimental velocity
profiles, however, since there are no experimental data close enough to the wall. The
agreement between the CVFEM and the experimental results is again good, but not
as good as in the case of Rep = 196. The magnitude of the radial velocity profiles,
presented in Fig. 5.3b, do not agree very well with the experimental data, but the

shapes of these profiles are close to the experimental ones.

Rep = 968
++«+ - Experiment [52]
CVFEM

] II f fuaf
012345 u /T

—0.287 -
-0.183 |
0.039 ~+

—0.183

—-0.078

—-0.052
0.039
0.105

Figure 5.3: Laminar flow in a pipe with a sudden contraction for Rep = 968: (a)
axial velocity ; (b) radial velocity
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5.3 Laminar Natural Convection in a Cylindrical
Enclosure

Problem Statement

Axisymmetric buoyancy-driven laminar flow in a cylindrical cavity is considered in
this test problem, schematically illustrated in Fig. 5.4. A Newtonian fluid, with a
temperature dependent viscosity, is confined within the cylindrical region 0 < r £
R, 0 € z € L. The lateral boundary, r = R, is insulated, and the horizontal
surfaces z = 0 and z = L are maintained at constant temperatures T4 and T},
respectively, where T;S > T/. The superscript f is used on T to clearly identify it
as the fluid thermodynamic temperature, and prevent any confusion with the solid-
phase granular temperature introduced earlier in Chapter 3. The acceleration due
to gravity, 7, is directed in the negative z direction. The results obtained with the
proposed CVFEM are compared with those obtained by Liang et al. [103] using a
finite difference method (FDM).

d

i
|

insulated
SOUOSONOMONNOMNRNNY
/ /77/ V4 /'] ////
=

W
[ —————

Figure 5.4: Schematic representation of laminar natural convection in a cylindrical
enclosure

Governing Equations

In this problem, the governing equations are the z— and r—momentum, continuity

and energy equations. The Boussinesq approximation is used: thus, density is
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assumed to be a constant, p/ = p!, in all terms, except the buoyancy term in the z
momentum equation, in which p/ = p(1 — ¢/(T/ = T})). Here, ¢/ is the thermal
volumetric expansion coefficient of the fluid. The specific heat, C}f;, and the thermal

conductivity, k/, of the fluid are assumed to remain constant.
The source terms in the momentum equations can be written as follows:

z — momenium

out oul Q! Gl

Si=—plg+{9pl(T) -Ti)+ 55+ 55 (5.2)
T — momenium

57 = aéf: aé’l_trf + aaljr'f Egjrf (5:3)
The temperature distribution is governed by the energy equation: .

; (v! ITI)'Flai(?‘po fo)=6_32(,, Afagf)+lai( ff\’ag;) (5.4)

where A/ is the thermal diffusivity of the fluid (M = —7).

Polp

In accordance with the assumptions of Liang et al. [103], the viscosity is a func-

tion of the temperature, according to the following expression:
T/ - T,
f— 1 1 +7 ! C) 5.5
H He ( TH _ i (5.5)
where n/ is a parameter for this problem. The other non-dimensional parameters

are %, the Prandtl number, Pr, and the Grashof number, Gr:

! fir fyra
pro b o 9TE-TOLY
po M P‘c

(5.6)

Results

In this problem, two steady-state solutions, one with upflow and the other with
downflow at the axis, have been found experimentally and numerically [103]. Nu-
merically, a specific steady-state regime can be obtained by using the proper initial

temperature distribution: to get upflow at the axis, the lighter fluid (hot fluid) has
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to be near the axis initially; for the downflow solution, initially, the heavier fluid
(cold fluid) has to be near the axis. The numerical results presented in this sec-
tion were computed for % = 1, Pr = 2500, Gr = 2 and nf = —0.2. Preliminary
computations on uniform 11 X 11, 31 X 31 and 51 X 51 grids (see Fig. 5.5) demon-
strate that the 51 X 51 grid is fine enough to get grid-independent results when
the FLO scheme is used. Fig. 5.5 also presents the numerical results obtained with
the MAW scheme. As was expected, with the coarse grid (11 X 11), the MAW-
scheme solution is not as accurate as that of the FLO scheme. For the grid which
is considered to produce grid-independent- results with the FLO scheme (51 X 51),
the solution obtained with the MAW scheme is in pretty good agrement with the
FLO-scheme solution. However, the solution of the MAW scheme on the 51 X 51
grid is not as grid-independent as that of the FLO scheme. In terms of convergence,
this test problem is more challenging than the other three test problems presented
in this chapter. Accordingly, the number of iterations'and the CPU times neceded
to achieve convergence are presented only for this test problem, both for the FLO
and the MAW schemes (see Table 5.3). A Hewlett-Packard HP-720 Unix-based
workstation was used to solve this problem, with a HP FORTRAN 77 compiler run-
ning at optimization level 3. Convergence was consider to be achieved when both
the absolute value of the relative change in the average Nusselt number and the
non-dimensional average, absolute, residue of all the equations were less than 10~¢
and 10710, respectively. The temperature distributions for the upflow and downflow
regimes are presented in Figs. 5.6a and 5.6b. The solutions given by the proposcd
CVFEM are in good agreement with the numerical results obtained by Liang et
al. [103]

Table 5.4 gives a comparison of the average Nusselt numbers, Nu, computed
by the proposed CVFEM and the FDM of Liang et al. [103]. The average Nussell
number is given by:

QL
Nu=
U TREI(T] - T

(5.7)

where Q is the overall rate of heat transfer through the top or bottom surface.

The CVFEM Nusselt numbers are grid-independent extrapolated values obtained

1The calculations presented in this chapter were done using an early version of the proposed
CVFEM based on an iterative algorithm with under-relaxation, instead of an unsteady formulation:
details are available in Ref. [116].
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Figure 5.5: Temperature distribution along r/R = 0.5 in laminar natural convection
in a cylindrical enclosure: grid-independence study for the case of upflow using FLO

and MAW
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as follows:
Nug; = Nu. + Ké" (5.8)

where Nuy; is the grid-independent Nusselt number, Nu, is the computed Nusselt
number, and & is the grid size (Ar = Az = const.). For a given set of parameters,
the unknowns in this equation are Nuy;, & and n. Therefore, three calculations, on
three different grids, provide enough extrapolation equations to find the unknowns.
In Eq.( 5.8), it is assumed that terms of order §™*! are negligible. To confirm that
this indeed was the case, a fourth calculation, with a 61 X 61 grid, was done. Two
extrapolated values, computed using results of the first three and the last three

grids, were obtained: they were invariant to four significant figures.

The slight discrepancy between the Nusselt numbers predicted by the proposed
CVFEM and the FDM of Liang et al. [103] can be partly explained by noting the
use of a non-conservative formulation in the FDM [103]. This non-conservative
FDM yields different Nusselt numbers at the top and bottom surfaces, while in the
proposed conservative CVFEM these Nusselt numbers are the same. In the physical
problem, since the lateral wall of the container is insulated, the top and bottom
Nusselt numbers should be equal. A difference between the top and bottom Nusselt
numbers implies a heat flux through the lateral wall, which is in contradiction with

the prescription of the problem.

Scheme | Grid | Iterations { CPU time (s)
FLO [11X11 139 7.7
FLO |31X31 972 534.3
FLO | 51 X 51 2510 3960.2
MAW 11 X 11 158 5.7
MAW | 31 X 31 1017 438.0
MAW | 51 X 51 2577 3195.1

Table 5.3: Laminar natural convection in a cylindrical enclosure: number of itera-
tions and CPU times
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Case Proposed CVFEM | Liang et al. [103]
upflow 1.768 1.767
downflow 1.765 1.761

Table 5.4: Laminar natural convection in a cylindrical enclosure: average Nusselt
number results
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5.4 Laminar Flow in a Replica Segment of a Coro-
nary Artery

Problem Statement

In this problem, laminar flow in a replica segment of a mildly atherosclerotic human
coronary artery is simulated. Mild atherosclerosis corresponds to a maximum ob-
struction in the artery of about 50% by cross-sectional area [7]. In the investigation
of Back et al. [7], two replicas of a coronary artery were used. The first one was a
hollow cast of a segment of the left circumnflex coronary artery of a man with mild
atherosclerosis. The second was an axisymmetric analogue of the original casting:
the analogue casting had a straight axis, and the same cross-sectional area as the
original casting at corresponding axial locations. A schematic representation of the
analogue casting is presented in Fig. 5.7. More recently, Back et al. {8] did a steady-
state flow test in the analogue replica. In this section, 2 numerical simulation, using
the proposed CVFEM, of fluid flow in the analogue replica will be presented, along

with a comparison with the experimental results of Back et al. [8].
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Figure 5.7: Straight axisymmetric analogue casting of a coronary artery and the
grid used in the CVFEM simulations: scale in radial direction is ten times that in
the axial direction.
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Governing Equations

The experiments of Back et al. [8] were done with a 33% sugar-water solution.
The resulting fluid can be considered as Newtonian and, therefore, the governing
equations are the same as the Navier-Stokes equations enumerated earlier in the

context of developing laminar pipe flow.

The boundary conditions are the prescribed Poiseuille velocity profile at the

inlet, the outflow treatment at the outlet, and the no-slip condition on the wall,

Results

Fig. 5.7 illustrates the analogue geometry: it is important to note that the scale
in the radial direction is ten times bigger than the axial scale. This geometry is
clearly irregular, and it has been chosen to illustrate the capability of the proposed
CVFEM to simulate flow in a complex geometry. A grid independence analysis
was done for a Reynolds number, based on average velocity and diameter at the
inlet, of 353. Pressure change coefficients (= [p/ — p/_o]/[0.5p/T'?]) obtained in this
analysis are presented in Figs. 5.8 and 5.9. In Fig. 5.8, it is seen that the results
obtained using a 85 X 13 grid is close to that obtained on a 169 X 25 grid. Based
on this comparison, the 85 X 13 grid, presented in Fig. 5.7, was used for all the
other calculations. Fig. 5.9 presents a comparison between the numerical results
obtained using the proposed CVFEM and the experimental data of Back et al. [8]
for Re = 59, 83, 207, and 353. As can be seen from these results, the agreement of

the numerical results with the experimental data is good.
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Figure 5.8: Laminar flow in a replica segment of a coronary artery: pressure-change
coeflicient for different grids
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Figure 5.9: Laminar flow in a replica segment of a coronary artery: pressure-change
coeflicient for different Reynolds numbers
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Chapter 6

Dilute Gas-Solid Particle Flow
Simulations

The validity of the proposed CVFEM [114, 115, 117] for the simulation of dilute gas-
solid particle flows is demonstrated in this chapter. This demonstration is done in
three stages: first, the capability of the proposed CVFEM to solve the mathematical
model of dilute gas-solid particle flows, Eqs.(3.122)-(3.127), is established by using
a specified solution technique; then the proposed CVFEM is applied to a problem
involving dilute gas-solid particle flows in a channel with a restriction, and the
results are compared with other results available in the literature [44] and also results
obtained by using a well-established staggered-grid finite-volume method [30, 130];
finally, the proposed CVFEM is used to simulate dilute gas-solid particle flows in

an idealized split-flow inertial separator, and the results are discussed.

In the specified solution technique, concentration and velocity fields that satisfy
the continuity equations for the fiuid and solid phases are proposed. In general,
these proposed solution fields will not satisfy the momentum equations. However,
appropriate definitions of the volumetric source terms will ensure that these equa-
tions are satisfied. The expressions for these volumetric source terms are obtained
by substituting the proposed solution fields into the corresponding governing equa-
tions. The proposed solution fields are also used to obtain appropriate boundary
conditions. Finally, treating these volumetric source terms and boundary conditions
as part of the problem specification, the proposed CVFEM is used to solve the math-

ematical model, and the results are compared with the exact solution, which simply
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consists of the proposed concentration and velocity fields. This technique is used to
determine whether or not the numerical method is able to solve the mathematical

model.

Unless otherwise specified, the CpRe® expression of Wallis [186] (see Table 3.1)
is used in the following calculations.

6.1 Non-Dimensional Parameters

Before the presentation and discussion of the test problems, it is useful to identify
some non-dimensional parameters typically involved in gas-solid particle flows. One
parameter is the Reynolds number, Re = p!—:;hﬁ: L is a characteristic length of
interest; and uJ}, is a characteristic velocity of the fluid phase. The ratio of the den-
sities of the solid and fluid phases, v = 5, is also a parameter. Another important
parameter is the ratio of the characteristic times of the two phases [148]. This pa-
rameter is called the Stokes number, Sk = :—} Each phase has its own characteristic
time, denoted here by 7/ and 7°* for the fluid and solid phases, respectively. The
fluid-phase characteristic time is given by 7/ = :Lf- The solid-phase characteristic

ch
time is taken to be the particle relaxation time, given by [148]:

4 psd2 .
e ——— .]
3 u/CpRe’ (6.1)

T.!

The expression for CpRe’ is typically obtained from theoretical or experimental
studies on a single spherical particle. Table 3.1 gives some well-known expressions.
The complete description of a test problem must also include the prescription of

suitable boundary conditions.

104



6.2 Specified Solution in a Cartesian Domain

Problem Statement

This first test case has no real physical significance. It was used only to validate the
formulation and implementation of the proposed CVFEM. The procedure consists
first to propose a concentration distribution, a mass conserving velocity field for
each phase, and a pressure field. This ensures that the continuity equations are
satisfied. In this test, the calculation domain is a square enclosure of side L. The
following steady-state Cartesian solution was proposed:

ul. =u vl =u"’  Qp=a

U{: = uf"% v/ =0 p{z = pfo%ﬂ (6-2)

where u*®, a°, uf°, and p/° are prescribed constants and 5 = 103. The solution is
expressed in term of a (z,y) Cartesian coordinate system. The subscript ex is used

to emphasis that the specified solution is the exact solution.

This proposed solution satisfies the momentum equations only for the following

non-zero volumetric source terms:

SI = pfo(1 — a°) + Ix’(uf"% — u*) (6.3)
§f =p/°(1 —a®) = Ku*® (6.4)
S = pf°a® + K(u*° — uf"%) ‘ (6.5)
5 = p'°%e® + Ku*® (6.6)

This dilute gas-solid particle flow is governed by Eqs.(3.122)-(3.127), with the
volumetric source terms given by Eqs.(6.3)-(6.6). The fluid-phase boundary condi-
tions are: (z) Couette velocity profile at the inlet plane = = 0; (it) outflow treat-
ment [130] at the outlet plane = L; and (4i) given z— and y—components of
velocity at planes y = 0 and y = L. The solid-phase boundary conditions are: (7)
uniform inlet velocity and concentration profiles at the inlet planes z = 0 and y = 0;

and (ii) outflow treatment at the outlet planes z = L and y = L.
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Results

The solutions of this problem produced by the proposed CVFEM, with coarse and
fine grids, give the exact solutions (Eq.(6.2)). This behaviour is expected since with
this specified solution, the interpolation functions used in the numerical method
give exact values of the various fluxes and sources. Nevertheless, this test problem
and these successful simulations were very useful: they clearly indicated the validity
of the implementation and the capability of the proposed CVFEM to solve the
mathematical model of dilute gas-solid particle flows given by Eqs.(3.122)-(3.127).
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6.3 Flow in a Channel with a Restriction

Problem Statement

In this test problem, steady, laminar, dilute gas-solid flow in a channel with a
restriction is investigated. The influence of gravity is considered negligible. This
problem is similar to that proposed and analyzed by Di Giacinto et al. [44]. A
schematic illustration of the problem is given in Fig. 6.1. The boundary conditions
are: (7) uniform inlet profile for o; (i7) identical Poiseuille inlet velocity profiles for
both phases; (i71) outflow treatment at the outlet plane; (iv) no-slip condition at the
walls for the fluid phase; and {iv) slip condition at the walls for the solid phase. The
nondimensional parameters considered in this problem are given in Table 6.1. In
the numerical simulations, only one-half channel was modelled, using the symmetry
condition at the centerline. The CpRe’ expression used by Di Giacinto et al. [44]

(see Table 3.1) is used in these calculations,

6L
L
/e r*— L/6 r2L/9

Figure 6.1: Geometry of the channel with a restriction
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Results

Three simulations are presented for this test problem (see Table 6.1). They have
been selected to illustrate the effect: of the Stokes number, Sk, and the inlet con-
centration, a;j,, on the flow behaviour. All of the presented results correspond to
a Reynolds number of 100, with the channel height (Fig. 6.1) as the characteristic
length L, and fluid-phase inlet centerline velocity, v/}, as the characteristic velocity,
/. The grid used had 73 X 37 ncdes; the results were considered essentially grid
independent since calculation on finer grids produced negligible changes in the cen-
terline velocities. Figs. 6.2 to 6.5 present comparisons of the centerline variation of
uf, u*, p?, and a computed using the proposed CVFEM and a staggered-grid finite-
volume method [30, 130]. Where applicable, the results of Di Giacinto et al. [44] are
also shown in these figures.

(Re [ Sk [ ow [ 7]
100 | 1072 10-° | 1000
100 | 1072 | 5x10~2 | 1000
100 | 107! | 5x10-3 | 1000

Table 6.1: Values of parameters for flow in a channel with a restriction

As can be observed in Figs. 6.2 to 6.5, the proposed CVFEM and finite-
volume/staggered-grid solutions are in good agreement. Quantitative comparisons
with the results of Di Giacinto et al. [44] are not very good, but there is agreement
in the qualitative behaviour of these solutions as a function of Sk and a;,. For
Sk = 102 and a;, = 107%, the finite-volume/staggered-grid solution obtained with
a T3 X 37 grid is in close agreement with the solution proposed by Di Giacinto
et al. [44], while, in the other cases, these solutions are only qualitatively similar.
However, for Sk = 10! and &, = 5x1073, our finite-volume/staggered-grid solution
on a coarser grid (37 X 10) was found to be in good agreement with the solution
of Di Giacinto et al. [44]. This indicates that some of the results of Di Giacinto
et al. {44] may not be grid independent. For Sk = 107!, the CVFEM predicts an
outlet concentration 1% larger than the finite-volume/staggered-grid solution (sce
Fig. 6.5). This difference is not too serious, however, since it does not aflect the

velocity and pressure distributions, and it is related to the different ways in which
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the inlet boundary is treated in the two formulations.

For Sk = 107?, the solid phase is almost in equilibrium with the fluid phase:
the results can, therefore, be analyzed using a simple homogeneous two-phase flow
theory [186], where suitable average viscosity and density are determined to treat
the two phases as a pseudofluid that obeys the usual equations of single-phase flow
with the average properties. The density and viscosity of the homogeneous mixture

were obtained using
Pmix — ainpa + Cimf"r Hmix = }Uj(l + 2-‘r-if-"in) ~ .U"f (67)

Therefore, the eflects of increasing the solid concentration, with all other conditions
unchanged, is similar to the increase of the Reynolds number in single-phase flow
when v = ;L} > 1. This is exactly the behaviour of the proposed solutions: as the
Reynolds number increases, the recirculating zone behind the restriction becomes
larger; recovery of the fluid-phase velocity profile takes place over a larger axial
length; and the velocity profiles in the core region become flatter, which results
in lower centerline velocities. One of the effects of the inlet concentration, oy,
can be seen by analyzing the results for Sk = 1072, As the inlet concentration,
Qin, is increased, the entrance and total pressure drops increase to compensate the

augmentation of the drag due to the presence of a larger number of particles.

As the Stokes number increases, the solid phase is no longer in equilibrium with
the fluid phase, which can be seen by a larger difference in u/ and u® in the region
of the restriction. At the centerline in the outlet plane, o reaches values bigger
than the inlet concentration, ej,, which indicates an accumulation of particles in

the centre of the channel downstream of the restriction.
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Figure 6.2: Flow in a channel with a restriction: variation of fluid-phase velocity
along the centerline
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Figure 6.3: Flow in a channel with a restriction: variation of solid-phase velocity
along the centerline
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6.4 Split-Flow Inertial Separator

This test problem is presented to illustrate the capability of the proposed numerical
method to solve problems that involve dilute gas-solid particle flows in complex
geometries. The proposed CVFEM is used in this section to simulate steady flows
in an idealized split-flow inertial particle separator. Such separators are usually
installed at the inlet of helicopter gas-turbine engines in order to prevent ingestion
of sand and foreign objects. Such ingestion is responsible for a large proportion of
early damage and unscheduled maintenance. The main advantage of such separators

is their low-maintenance requirements [195].

In this problem, a dilute gas-solid particle flow in an idealized inertial separator
is investigated. The idealization comes from the assumption of zero swirl in the
flow and negligible influence of gravity, which allows an axisymmetric analysis. In
a real separator, swirl is induced by inlet blades in order to increase the separation
efficiency. Furthermore, only laminar flows are considered in this work. Thus, these
simulations are not intended to model a practical separator. Rather, they are used
mainly to demonstrate the capabilities of the proposed CVFEM. It should be noted,
however, that this idealized problem is also well-suited for a demonstration of some
of the underlying physics of gas-solid particle flows in this geometry. Thus, in the
discussion of the results of the CVFEM simulations, an assessment of the eflects
of the various non-dimensional parameters on overall pressure drop and scparation

efficiency is included.

Problem Statement

A schematic illustration of the idealized problem is given in Fig. 6.6. The equivalent
axisymmetric geometry with swirling flow as been analyzed in the past [22], using
a finite element method to solve a one-way coupling model, in which the fluid flow
was computed using Euler equations. Viscous flow analysis of a similar Cartesian
separator has been realized [197] using one-way coupling and the Lagrangian for-
mulation for the solid phase. In this work, the two-fluid model is used. The inlet is
at the left end, and there are two outlets at the right end. The goal is to deviate

the particles into the bypass duct, while ensuring only particle-free fluid enters the
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main duct. The bypass ratio, b, defined as the ratio of the fluid-phase mass fiow rate
through the bypass duct to the fluid-phase inlet mass flow rate, is controlled by the
pressure difference between the main-duct outlet plane and the bypass outlet plane.
The separator efficiency, 7.7, indicates, for a given bypass ratio b, the effectiveness of
a given separator. This efficiency is defined as the ratio of the solid-phase mass flow
rate through the bypass duct to the solid-phase inlet mass flow rate. The boundary
conditions are: (i) uniform inlet solid-phase volume concentration, aj,; uniform inlet
velocity profiles for uf and u*, and v/ = v* = 0; (i) outflow treatment [130] at the
outlet planes, with given pressure difference between the bypass and main outlets;
and (i) no-slip condition at the walls for the fluid phase, and slip condition at the

walls for the solid phase.

Non-Dimensional Parameters. The non-dimensional parameters involved in the
problem of interest are the Reynolds number, Re, the Stokes number, Sk, the ratio
of the densities of the solid and fluid phases, v, the inlet volume concentration of the
solid phase, o;,,, and the bypass ratio, . There are also several geometric parameters
in this problem. The set chosen for this study is illustrated in Fig. 6.6: the ratio of
the inlet external radius, R, to the inlet internal radius, R;, is equal to 2; the other
geometric parameters may be obtained from Fig. 6.6, since this figure is drawn to
scale. Re is based on Dy, the inlet hydraulic diameter (=2R.-2R;). The solid phase

enters the separator at the same uniform velocity as that of the fluid phase.

All simulations in this study were done with Re = 200. Three different com-
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binations of ¥ and @i, were considered: v = 1000 and oy, = 103 v = 100 and
ain = 1073 and v = 1000 and o, = 10~%. Three values of the bypass ratio were
studied: b = 10%, b = 20%, and b = 30%. The influence of the Stokes number was
investigated by conducting simulations in the range 10~3 < Sk < 2x10~!. Values of
Sk higher than 2x10~! were not investigated because of the difficulty in obtaining
converged solutions. This difficulty is to be expected: as Sk increases, for a fixed
value of aj,, the coupling between the fluid-phase and solid-phase momentum equa-
tions becomes progressively weaker; furthermore, at high valuzs of Sk, for a given

value of ajy,, the validity of two-fluid models becomes questicnable.

Results

Separator Efficiency. Figs. 6.7a, 6.8a, and 6.9a give the variation of the separator
efficiency, 7.y, as a function of the Stokes number, Sk, with the bypass ratio, b, as a
parameter. The results in Fig. 6.7, which correspond to v = 1000 and a3, = 1073,
will be considered first. At low values of Sk (< 0.01), the particles are relatively
very small and almost in equilibrium with the fluid phase. In this regime, therefore,
the separator efficiency is essentially equal to the bypass ratio, and the only way to
increase 7y, for a given separator geometry, is to increase b. As the Stokes number
is increased, the particle size {or inertia) is increased, and the separator efficiency
increases: this effect is quite dramatic in the range 0.01 < Sk € 0.2. For Sk > 0.2,

the value of 7.; asymptotes to 100% with increasing values of Sk.

A comparison of the results presented in Figs. 6.7a and 6.8a shows that a decrease
in 4 from 1000 to 100, for a;, = 1073, has very little effect on the plot of #.; vs
Sk. Similarly, the results in Fig. 6.9a, which pertain to 4 = 1000 and a;, = 1074,
are very close to those in Fig. 6.7a, which corresponds to v = 1000 and e, = 1073,
Only a minor difference can be detected: at large values of Sk (> 0.03), heavier

particles (y = 1000) lead to slightly higher values of 7., than the corresponding
values obtained with lighter particles {(y = 100).

Static-Pressure Drop in the Main Duct. The variation of nondimension-
alized static-pressure drop in the main duct, Ap}{,;, with Stokes number, Sk, is

presented in Figs. 6.7b, 6.8b, and 6.9b. In each of these figures, the bypass ratio, b,
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is a parameter, and Ap}; is defined as follows:

Apj- - pin.c — pt{ut,M
M 050 (uf)?

where p,-!m is the static pressure at the central node in the inlet plane of the
separator; p{m‘M is the static pressure at the outlet plane of the main duct; p/ is
the density of the fluid phase; and ui":] is the prescribed uniform velocity of the fluid
phase at the inlet plane of the separator. In all simulations, pi";‘c was essentially

equal to the area-weighted average of the static pressure at the inlet plane.

Also presented in Figs. 6.7b, 6.8b, and 6.9b are results pertaining to flow, in
the same separator, of a homogeneous mixture (line with long dashes) and a single-
phase fluid (line with short dashes). The density and viscosity of the homogeneous
mixture were obtained using Eq.(6.7). For the single-phase fluid flow, the density

and viscosity were set equal to those of the fluid phase in the gas-solid particle flow.

The results in Fig. 6.7b show that Apj; decreases as b increases, for a fixed
Sk. This is to be expected because as b increases, the amount of fluid flow in the
bypass duct increases and that through the main duct decreases. For a fixed value
of b, Apl; asymptotes to the homogeneous-mixture solution as Sk decreases below
a value of 0.01. This is also an expected result: as Sk decreases, the solid and fluid
phases move towards equilibrium conditions with one another; and at very small
values of Sk, two-fluid models of dilute gas-particle flows become equivalent to the
homogeneous-mixture model. At large values of Sk (> 0.06), Api; values given
by the two-fluid model fall below those produced by the homogeneous flow model.
This is because the separator efficiency increases with increasing Sk; and for Sk
> 0.06, the concentration of particles in the main duct beyond the split-off point is
sighiﬁcantly below the uniform concentration (= ¢;,) that is assumed to prevail in

the homogeneous flow model.

The results in Fig. 6.7b also show that for a fixed value of b, starting from Sk =
0.001, as Sk increases, Ap,{; first increases until it reaches a maximum, and then it
decreases monotonously. This is due to the opposite variations with Sk of the size of
the particles (or particle inertia) and the particle number density (or particle-fluid

contact surface area). For a fixed oy, at low values of Sk, there is a large amount
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of small particles; high values of Sk, on the other hand, correspond to a relatively
smaller amount of large particles. High values of Sk are also accompanied by high
values of 5.y, and this further reduces the particle number density in the main duct
beyond the split-off point. Increases in size and number density of the particles are
both accompanied by increases in drag force exerted by the particles on the fluid, or
vice versa. The results in Fig. 6.7b show that for 0.001 < Sk < 0.02, the influence
of increasing particle size dominates the opposite influence of decreasing particle
number densily. The reverse is true for Sk > 0.02. In the range of parameters
considered, the Apj; values for the gas-solid particle flow are all larger than the
corresponding values for the single-phase fluid flow, but this difference decreases at
high values of Sk. This is also expected, because as Sk increases, for fixed oy, and b,

7es increases, so less particles flow through the main duct beyond the split-off point.

The results in Fig. 6.7b pertain to v+ = 1000 and a;, = 1072, which corresponds
to equal, individual, mass flow rates of the solid and fluid phases at the inlet of the
separator. In contrast, the results in Fig. 6.8b apply to ¥ = 100 and ¢;, = 1073,
and those in Fig. 6.9b correspond to 4 = 1000 and a;, = 10~". In both these cases
(Figs. 6.8b and 6.9b), the inlet total mass flow rate of the solid phase is ten times
smaller than that of the fluid phase. Thus, though the variations of Apj; with Sk
in Figs. 6.8b and 6.9b show a pattern that is similar to that in Fig 6.7h, the various
aforementioned features (or trends) are less pronounced. Indeed, there is very little
variation of Ap}; with Sk in Figs. 6.8b and 6.9b. Another interesting characteristic
of the results in Figs. 6.8b and 6.9b is the relatively small difference in the results
obtained with the homogeneous-mixture and single-phase models. This shows that
when the total inlet mass flow rate of the solid phase is ten times smaller than that
of the fluid phase, the influence of the particles on the fluid flow is quite small,
or essentially negligible; thus one-way-coupling models [41] could be expected to
produce accurate results in such cases, at significantly lower computational costs

than those incurred in simulations with two-way-coupling models.

Static-Pressure Drop in the Bypass Duct. The variation of nondimension-
alized static-pressure drop in the bypass duct, Ap{,'y, with Stokes number, Sk, is
presented in Figs. 6.7c, 6.8c, and 6.9¢c. In each of these figures, the bypass ratio, b,
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is a parameter, and Aphy is defined as follows

pfs _ Pifn.c - pguf.,BY
BY T 0.5 (ul)?

where pt{ut,BY is the static pressure at the outlet plane of the bypass duct; and
the physical meanings of pifn,c, p!, and ul, are the same as those given earlier. Also
presented in Fig. 6.7c, 6.8c, and 6.9c are results obtained with a homogeneous-
mixture model (line with long dashes) and results pertaining to a single-phase fluid

flow (line with short dashes) in the same separator.

The results in Fig. 6.7c show that Apf;, increases as b increases, for a fixed Sk.
This is expected because with an increase in b, the flow through the bypass duct
increases. For a fixed value of b, ApLy asymptotes to the homogeneous-mixture
solution as Sk decreases below a value of 0.01. The explanation for this is the same

as that provided earlier to explain this feature of Api} results.

For Sk > 0.01, the variation of ApLy with Sk is different for different values of
b. These differences are caused by the combined influences of the relative speed of
the particles with respect o the fluid at the inlet-plane of the bypass duct (Fig. 6.6);
the particle concentration distribution in the bypass duct; the particle number den-
sity in the bypass duct; and the particle size (or inertia). At b = 10%, Aphy
decreases with increases in Sk, indicating that the dominant influence is that of the
corresponding decrcase in particle number density: indeed, for Sk > 0.04, the two-
fluid-model Apfy values are lower than those obtained for single-phase fluid flow.
For these particular cases, detailed examinations of the particle- and fluid-phase
speeds, V/' = /(u/)2+ (v/)? and V* = /(w*)? + (v*)?, (see Fig. 6.10) showed
that the former are significantly larger than the latter at the inlet-plane of the by-
pass duct, just after the split-off point: so the particles facilitate the fluid fiow in the
bypass duct, rather than impdse a drag on it. For b = 20%, Apg'y decreases with
increases in Sk, but reaches a minimum value in the vicinity of Sk = 0.08: this is
because the decrease in particle number density caused by increasing Sk (at a fixed
@;n) is balanced at this point by the increase in this variable produced by increases
in 7., At b= 30%, the influences of the aforementioned factors on Aphy balance

each other out very well for 1073 < Sk < 0.04, so Apé"y is essentially constant in this
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range of Sk. However, for Sk > 0.04, increases in Sk lead to substantial increases in
Aply. For these particular cases, detailed examinations of the particle- and fluid-
phase speeds and volume concentrations (see Fig. 6.11) showed the following: (1) at
‘the inlet-plane of the bypass duct, just after the split-off point, the concentration of
the solid-phase is very high in the low-velocity region adjacent to the upper wall; (2)
downstream of this point, these low-velocity particles move to the central regions
of the bypass duct, mainly because of the geometry of this particular separator; (3)

this, in turn, causes a considerable drag on the fluid phase, and requires high values
of Aphy.
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Figure 6.7: Results pertaining to ¥ = 10 and a;;, = 1073: (a) separator efficiency;
(b) static-pressure drop in the main duct; (c) static-pressure drop in the bypass duct .
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Figure 6.10: Velocity and concentration profiles pertaining to 4 = 102, o, = 10~2
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Chapter 7

Dense Gas-Solid Particle Flow
Simulations

The validity of the proposed CVFEM for the simulation of gas-solid particle flows
using the general granular temperature model, presented in Chapter 3, is demon-
strated in this chapter. Two test cases based on the specified solution technique are
presented, one using the Cartesian and the other using the cylindrical coordinate
systems. Simulations of gas-solid particle flows in a vertical pipe, an annular shear
cell apparatus, and in a fluidized bed are also used as test problems, and the results
are compared with those of independent numerical and experimental investigations.
In another test problem, a dilute-concentration gas-solid particle flow in duct with a
sudden contraction is simulated using the general granular-temperature model, and
the results are compared with the solution presented earlier in Chapter 6, in order
to assess the capabilities of the general granular-temperature model in the dilute
concentration regime. Finally, the split-flow inertial separator discussed in Chap-
ter 6 is analyzed using the granular-temperature model. This allow an appreciation

of the effects of particle/particle collisions on such a flow.

Unless otherwise specified, CpRe’, /(@) and go of Wallis [186], Lun and Sav-
age [110], and Sinclair and Jackson (165), respectively, (see Table 3.1) are used in
the following calculations.
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7.1 Specified Solution in a Cartesian Geometry

The proposed dependent-variable fields used in this problem are:

r T8 U
‘u“_.:Ug Vor — 1+0% Qer = Op (1+%) . (71)
Lotn(l) 0 pep(2EY) -
Tc:: = TO (:r -Z L) (7'3)

The solution is expressed in term of a Cartesian coordinate system (z,y). The sub-
script ex is used,to emphasize that the specified solution is the exact solution. [
is the dimension of the square calculation domain. This proposed solution satisfies
the solid- and fluid-phase momentum equations and the solid-phase fluctuating ki-
netic energy equation only with specific non-zero volumetric source terms in these
equations. The complete expressions for these specific volumetric source terms are

fairly involved, so they are presented in Appendix D.

In this test problem, the expressions for solid- and fluid-phase velocities and
the granular temperature, given in Eqs.(7.1)-(7.3), were used to generate prescribed
values of these dependent variables at the boundaries of the domain. The volume
concentration was specified only at the plane x = 0 and the plane y = 0. The

fluid-phase pressure was prescribed at the plane z = L.

This problem was solved using the proposed CVFEM and three uniform grids,
namely 5 X 5, 11 X 11, and 21. X 21. The CVFEM solutions were compared with
the ezact solution. These comparisons allowed to verify: (i) the capability of the
proposed CVFEM to solve the granular-temperature model; (i) the implementa-
tion (or computer coding) of this numerical method; and (zi7) the consistency of the
Cartesian formulation. As the grid was refined, the average relative error (absolute
value) of the CVFEM solution with respect to the ezact solution consistently de-
creased: the average relative error in the computed values of v* was 4.6% on the 5 X
5 grid, 2.3% on the 11 X 11 grid, and 1.3% on the 21 X 21 grid. This trend can be
clearly seen in Fig. 7.1 which presents the variation of the solid-phase velocity in the
y—direction along the centerline (z/L = 0.5) of the computational domain. Fig. 7.2
illustrates the corresponding variation of the solid-phase pressure. The solid-phase’

pressure results in Fig. 7.2 are also good indicators of the accuracy in the predic-
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tions of the volume concentration and granular temperature (see Eq. (3.109})). As
is clear from all these results, the solution produced by the proposed CVFEM is
in good agreement with the exact solution. For all the grids used in this problem,
the solid-phase pressure predictions are in better agreement with the ezact solution
than v*. This can be explained by noting that T and o vary linearly with z and y,
while v* has a non-linear distribution.

126



1.0

x/L = 0.5

Exact Solution

occoo 21 X 21, CVFEM
ooooo {1 X 11, CVFEM
aassaa 5 X 5, CVFEM

1N T T T O T N OO T T U O O |

0.0 T T T

o
u
o

0.75 1.00
v'/Uo

Figure 7.1: Specified solution in the Cartesian geometry: solid-phase velocity in the
y-direction along the centerline (z/L = 0.5) of the calculation domain.
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Figure 7.2: Specified solution in the Cartesian geometry: solid-phase pressure along
the centerline {(z/L = 0.5) of the calculation domain.
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7.2 Specified Solution in a Cylindrical Geometry

The specified solution used in this problem is given below:

s 1z s T
ter = Uo (E) Ver = = (ﬁ) %es = @0 (74)
T 4+
uix = Uﬂ (f) 'Ufr =0 p{z = PU ( I, r) . (75)
T.. =15 (7.6)

The calculation domain is a cylinder of height L and radius R. The axial and
radial velocity components, u and v, respectively, of both the solid and fluid phases,
and the granular temperature are considered given on the curved boundary of the
cylinder (r = R), and the bottom and top faces (z = 0) and (z = L). The vol-
ume concentration is prescribed only on the inflow boundary (r = R), while the
fluid-phase pressure is prescribed only at the outlet plane, = = L. Here again, the
proposed solution satisfies the governing equations only with specific non-zero vol-
umetric source terms. The exact expressions for these implied volumetric source

terms are quite complex, so they are presented in Appendix D.

This problem was solved using the proposed CVFEM. Again, computations were
done with three different, uniform grids, consisting of 5 X 5, 11 X-11, and 21 X 21
nodes. The results were used to evaluate the consistency of the implementation
and the capability of the proposed CVFEM to solve gas-solid particle flows in two-
dimensional axisymmetric, cylindrical domains. The three calculations were pursued
until the residue of the various equations reached zero (to machine precision). No
convergence problem were encountered, and the average relative errors of the various
dependent variables consistently approached zero as the grid was refined. Table 7.1
gives the value of the average relative errors (absolute values) along with the number
of time steps needed to reach complete convergence: the non-linear problem was not
solved at each time step since only steady-state solutions were sought (please see
details of solution algorithm in Section 4.7).
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Grid time steps uf u’ v? a ' T
5X5 100 | 6x10~% | 8x107% | 2x10~* | 4x10~2 | 3x10~9 | 2x10~?
11 X 11 500 | 4x1072 | 5x1072 | 9x10~? | 2x1072 | 2x10~ | 9x10~3
21 X 21 2000 | 3x1072 | 3x10~2 | 5x10~% | 1x10~2 | 8x10~% | 5x10~3

Table 7.1: Specified solution in a cylindrical geometry: absolute valies of average
relative errors(%).



7.3 Vertical Pipe Flow

Problem Statement

Solutions of gas-solid particle flows in a vertical pipe have been obtained by Sinclair
and Jackson [165]. Their mathematical model is quite similar to the one used in this
thesis (see Chapter 3). It is based on the kinetic theory of gases, and the granular
temperature is a dependent variable that appears in their constitutive equations.
However, they have only solved these eqﬁations in the fully-developed regime, in
which the problem becomes one-dimensional (radial). In the fully-developed regime,
Sinclair and Jackson [165] have studied a large variety of flows using a numerical

method based on an orthogonal collocation scheme.

In this section, gas-solid particle flows in a vertical pipe (see Fig. 7.3) are in-
vestigated using the proposed CVFEM, and the results are compared with the nu-
merical results obtained by Sinclair and Jackson [165]. As was stated before, the
fully-developed problem is one-dimensional. However, here this problem was solved
using a two-dimensional formulation. This is obviously not the most efficient for-
mulation for this problem, but it allows an appreciation of the two-dimensional
capabilities of the proposed CVFEM. The problem is, therefore, formulated over a
pipe of finite length. Two types of boundary conditions at the ends of the pipe were
tried: (Z) periodic boundary conditions; and (i7) prescribed inlet conditions along
with the outflow treatment, as discussed in Section 4.6. In the following discussions,
the formulaiion based on the periodic boundary conditions will be referred to the
‘periodic’ problem, while the formulation based on inflow and outflow boundary

conditions will be referred to as the ‘inflow-outflow’ problem.

The various physical properties of the problem solved by Sinclair and Jack-

son [165], which corresponds to flow of mineral particles in air at 427°C, are the

following:

pf =3.65x107°Pa-s p! = 4.4x107 kg/m® (7.7)
" p* = 2.5x10%kg/m® amx =0.65 v, =1.29m/s (7.8)

d=15x10"*m R=15x10"%m (7.9)

vy is the terminal velocity of fall of a single particle under gravity; R is the radius
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Figure 7.3: Vertical pipe

Governing Equations

The governing equations for this problem are given by Eqs.(3.95)-(3.101). In order
to obtain solutions which correspond to the results of Sinclair and Jackson {165], the
following relations for the drag coefficient, the relative viscosity, and gg are used:

ul(a) = (1+250 +7.60%) (1 - i) (7.10)
aMX
. 4 p’d2g
CoRe’ = 35— i o (7.11)
1
Go= — (7.12)

1- (%)

where g is the gravitational acceleration (g = 9.81m/s). With reference to Eq.(3.116),
C, is set to zero since in the formulation proposed by Sinclair and Jackson [165],

the Reynolds stress is neglected. Furthermore, the constitutive equations proposed
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by Sinclair and Jackson [165] do not include the effects of the drag force. Their
simplified constitutive equations can be obtained from the ones proposed in this

work by simply setting {p = 0.

The volumetric source terms are given by:

S/ = —‘-‘:-g (7.13)
S/ =0 ' (7.14)
S =—ap’g (7.15)
$2=0 (7.16)
$5=0 : (7.17)

where %—‘S- is the overall fluid-phase effective pressure gradient, in which the gravity

term has been absorbed. This overall pressure gradient is a parameter that is spec-
ified in the ‘periodic’ formulation. In the ‘periodic’ formulation, the mass flow rates
of the fluid and solid phases are not known: they have to be calculated. Therefore,
another parameter needs to be prescribed in order to assign a specific value to the
ratio of the fluid-phase and solid-phase mass flow rates. This additional parameter
can be either (i) the average solid-phase concentration, @; (iz) the fluid-phase mass
flow rate; (zi¢) the solid-phase mass flow rate; or (iv) the value of the solid-phase
concentration at one point. In most of the calculation presented in this section, the

solid-phase mass flow rate was considered as this additional parameter,

To complete the description of the problem, boundary conditions are required.
At the wall of the pipe, both the fluid and the solid phase are allowed to slip, and
these slip conditions are expressed through the prescription of appropriate shear
stresses at the wall. Sinclair and Jackson [165] used the following expression for

solid-phase shear stress at the wall:

3 3 }
o = _\/BT,,;':rp Qo uuéqﬂ (7.18)
MX

where ¢’ is a specularity factor that is a measure of the fraction of collisions that
transfer lateral momentum to the wall. Following the approach proposed by Hui
et al. [88], this solid-phase wall shear stress expression was obtained from the rate.

of transfer of lateral momentum from the particles to the wall. For specular par-
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ticle/wall collisions (smooth wall), ¢’ = 0, while for a rough wall, ¢' = 1. In this

problem, Sinclair and Jackson used ¢' = 0.5.

For the fluid-phase wall shear stress, the following expression has been proposed
by Sinclair and Jackson [165):

__2#£GMxTwui

S —
c
vie,A

rz —

(7.19)

where A is a linear measure of the control-volume at the wall (A = V}/3).

The boundary condition for the granular temperature at the wall is expressed in
terms of a fluctuating kinetic energy flux. Johnson and Jackson [95] have proposed
an expression for this flux, obtained by assuming that the inelastic particle/wall
collisions are characterized by a coeflicient of restitution e,. They then used an
energy balance to show that the energy flux at the wall is the sum of the rate of
dissipation due to particle/wall inelastic collisions, -, and the energy generation

by slip:
Q: = 7w + u:ua:z (720)

where

V3Tump'owge (1 — e} )Ty
o = 31 WPQ’QO( 6) (7.21)

w
aMx 4

In their calculations, Sinclair and Jackson used e, = 0.9.

Solution Procedure

For the case of the ‘periodic’ problem, a special attention is needed to ensure that
the solution will correspond to the fully-developed regime. An additional equation
can be derived from the integration of the fully-developed solid-phase momentum

equation in the r—direction:

?’(a,T) = constant = p*(Q°) | (7.22)
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This equation simply states that the solid-phase pressure is constant and, for the
sake of concreteness in this discussion, this constant is named p°(@*). This equation
relates the granular temperature, T', to the solid-phase volume concentration, «, by
the use of Eq.(3.109). The granular temperature is given by the solution of the
fluctuating kinetic energy equation and, therefore, for a given constant p*(Q°}, a
can be calculated at any point. The constant p*(@?) in Eq.(7.22) is prescribed so
as to match the calculated solid-phase mass flow rate, Q*, with that computed by
Sinclair and Jackson [165): at each time step (or iteration), the solid-phase mass
flow rate was computed and compared with the desired solid-phase mass flow rate,
in order to propose a correction to the value of p*(@*); and this procedure was
continued until the desired solid-phase mass flow rate was obtained. This process is
highly implicit and the relationship between p*, o and T' (Eq.(3.109)) is nonlincar,
therefore, in most of the calculations using the periodic boundary conditions, under-
relaxation was needed to compute a. The notation used to identify the constant in
Eq.{(7.22) can now be explained to the reader: it emphasizes that this constant is

indirectly prescribed by the desired solid-phase mass flow rate Q*.

Results

Six cases corresponding to six different solid-phase volumetric flow rates were sim-
ulated in this test problem. Assuming the various physical properties given before
as fixed, each case is characterized by the nondimensional overall pressure gradient
%, the nondimensional solid-phase volumetric flow rate, (*, and the cocflicient of

restitution, e, with:

dP 1 dP
& pydr (128)
- R
Q= szt-/; ap’u’2rrdr (7.24)

Using a similar expression, the nondimensiona.l'ﬂuid-phase volumetric flow rate (/
can be calculated. Another quantity of interest that can be computed is the average
solid-phase concentration, &. For each case, the values of Q/ and @ are computed
based on the solutions of the proposed CVFEM and compared with the values
obtained by Sinclair and Jackson [165]. Table 7.2 gives the details of this comparison,

including absolute values of the relative difference between the proposed solution and
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the results of Sinclair and Jackson [165]). The results obtained with the CVFEM
are in good agreement with the solutions of Sinclair and Jackson [165]. A grid of
3 X 11 was used. 11 points were used in the r-direction in order to have a grid
similar to the one used by Sinclair and Jackson [165]. In the interect of economical
computations, only 3 points were used in the z-direction. This does not affect the
accuracy of the results, since the solution is strictly one-dimensional. However, it
should be noted that for the first case given in Table 7.2, a grid of 11 X 11 was
also used and it yielded a converged solution identical to that obtained with the 3
X 11 grid. The sixth case, which corresponds to inelastic particles, needed smaller
time step to converge than that used in the first five cases: with larger time steps,
in the course of the march towards steady-state solutions, the computed solid-phase
volume concentration could achieve values greater than the corresponding value at
maximum packing. The time step used for the sixth case was about ten times

smaller than for the other cases.

Proposed CVFEM | Sinclair and Jackson [165] | Rel. Dif. (%)
2l )o@ 5 [ @ = o] =
-0.211.01] 0.34 44 0.19 4.4 0.18 0.0 5.6
1.0 1 0.04 1.7 0.25 1.7 0.25 0.0 0.0
1.0 | -0.15 79 23 0.83 0.22 4.8 4.5
1.0 1-0.34 || -0.023 0.26 -0.022 0.25 4.5 4.0
1.0 ] -0.62 || -0.61 0.46 -0.61 0.46 0.0 0.0
99 1-210 | -2.83 0.36 -2.83 N.A. 0.0

Table 7.2: Vertical pipe flow: comparative study

The detailed CVFEM resulis, consisting of the axial velocity, concentration,
and granular temperature profiles, corresponding to the various cases described in
Table 7.2, are presented in Figs. 7.4- 7.9. In all cases, the CVFEM solutions are
in such good agreement with the results of Sinclair and Jackson [165] that they are
essentially indistinguishable in a graphical presentation; so the latter are not shown
in Figs. 7.4- 7.9. For the first case, a simulation with 21 points in the r-direction
was also obtained, and the resulting solution was found to be so close to the 11-
point solution that the respective curves presented on plots similar to Fig. 7.4 were

indistinguishable.
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As was stated before, Q* was the additional parameter used in the ‘periodic’
formulation. However, in order to obtain results comparable to Sinclair and Jack-
son [165], in the third case, the centerline solid-phase concentration was used as the
additional parameter, so there is a small difference in the corresponding solid-phase

mass flow rates: the proposed CVFEM predicted Q* = ~0.15 while the correspond-
ing case in Sinclair and Jackson [165) is § = —0.16.

In all the simulations, there is a region of high concentration near the wall,
because the particle/wall inelastic collisions have the effect of accumulating particles
in the vicinity of the wall. In the case of inelastic particle/particle collisions (casc
6), Fig. 7.9, the concentration profile presents a different behaviour than the other
cases: the maximum concentration is at the centre of the pipe. This migration of
the particle to the centre of the pipe, which is ascribed to shear-induced particle
migration in the literature [102], is in qualitative agreement with experiments [85]
and Stokesian dynamics simulations [125]. In these studies, a flattening of the
velocity profiles in the vicinity of the centerline was also observed. Again., such
a flattening behaviour can be noted in the CVFEM solution corresponding to the
particle/particle inelastic collisions case, Fig. 7.9a. The shape of the velocity profiles
and the direction of the particle migration confirm that the migration goes from
high to low shear rate regions [102]. The physical mechanism that explains such a
migration is still not well understood [125]. Leighton and Acrivos [102] suggested
that the migration is due to the roughness of the particles; Nott and Brady {125
explained this behaviour by the chaotic motion that takes place in a system of more
than three particles. Based on the results of this section, all that can be said {or sure
is that inelastic collisions between the particles clearly induce particle migration Lo

the centre of the pipe.

The results presented so far were obtained using the ‘periodic’ formulation. How-
ever, the fully-developed solution can also be obtained using the ‘inflow-outflow’ for-
mulation, by prescribing the corresponding solid- and fluid-phase mass flow rates at
the inlet. Regardless of the shape of the various prescribed profiles at the inlet, the
corresponding fully-developed profiles will be achieved somewhere along the pipe,
provided the pipe is long enough. The length between the inlet and the position
where the flow is fully-developed is commonly called the entry length. Nott and
Brady [125] found that the entry length for gas-solid particle flows is considerably
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larger than the entry length for laminar single-phase flow. Using the expression for
the entry length proposed by Nott and Brady [125], the entry length of the gas-
solid particle mixture used in this simulation is 4x10*R. Thus, the computational
domain needed to achieve fully-developed conditions at the pipe exit is far too long.
However, if the inlet conditions are prescribed to be close to the fully-developed
solution, it is expected that a much smaller length would be needed to reach the
fully-developed conditions. Here, in order to illustrate the two-dimensional capa-
bilities of the proposed CVFEM, the ‘inflow-outflow’ problem was solved in a pipe
of length 20R, with inlet conditions corresponding to a small perturbation of the
fully-developed solution obtained with the ‘periodic’ formulation. At the outlet of
the pipe, the outflow treatment of Patankar [130] is used. This treatment is not
suitable when backflow exits at the outlet plane. Therefore, the only case that can
be successfully simulated with this ‘inflow-outflow’ formulation is the one illustrated

in Fig. 7.4. The assumed perturbed inlet conditions are:

u{n = ué-D v‘fn =0aqa;, = arp (7.25)
wl =ukp v =0 Ti=.9Trp ' (7.26)

where u? ps UFp, aFp, and Trp correspond to the solution obtained with the periodic
formulation. The results of this simulation on a 101 X 11 grid are illustrated in
Fig. 7.10. It shows the evolution of the centerline granular temperature as a function
of the axial distance from the inlet. The dotted line represents the fully-developed
solution obtained with the ‘periodic’ formulation and the full line is the result of the
‘inflow-outflow’ simulation. As indicated by Nott and Brady [125], the process to
reach the fully-developed regime is very slow: a pipe length of 20R is not long enough
to reach the fully-developed region, even with the small perturbation imposed at
the entrance plane. However, the results in Fig. 7.10 do show that the granular

temperature approaches the fully-developed solution as the flow move through the

pipe.
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7.4 Flow in an Annular Shear Cell Apparatus

Problem Statement

Total normal and shear stresses in gas-solid particle flows have been obtained exper-
imentally by Savage and Sayed [151), and Hanes and Inman [73], using annular shear
cell apparatus similar to the one shown in Fig. 7.11a (this is Fig. 1 of Ref. [151)).
These experiments provide data that can be used to examine the various mathemat-
ical descriptions of the fluid- and solid-phase stress tensors. Savage and Sayed [151]
used polystyrene beads, glass beads and crushed walnut in air. Hanes and In-
man (73] used glass beads in air and water. These experiments can be described by
the simple plane shearing model of Fig. 7.11b if the centrifugal effects are negligible.
In the experiment of Savage and Sayed, for example, the centrifugal effects modify
the solid-phase stresses by only 1% to 2% [151]. Using this assumption, Johnson
and Jackson [95] have solved this problem with the simple plane shearing model.
The stress model used in their analysis includes both collisional and frictional con-
tributions. The frictional contribution appears at dense concentrations, close to
the maximum packing of the granular material, when particles interact with each
other through long-term direct contact. Their evaluation of the frictional contri-
bution included an empirical constant which was calculated to fit ‘the experimental
data. Another adjustable parameter was also included in their collisional contribu-
tion. Only comparison with the experimental data of Savage and Sayed [151] were

presented in the work of Johnson and Jacksen [95).

Experiment @ | dimm) | p*(kg/m®) | Himm) | e | e, | ¢
Savage and Sayed | .477 | 1.80 2970 11.610 { .89 | .50 | .60
[151] 5071 1.80 - 2970 10.920 | .89 | .50 | .60
Hanes and Inman | 4401 1.85 2780 13.717 | 95 .95 | -
[73] 460 | 1.85 2780 13.121 [.951.95 | -
490 | 1.85 2780 12.317 [ 9571 .95 | -

Table 7.3: Flow in annular shear cell: various parameters

In this section, numerical solutions of the simple plane shearing model obtained
using the proposed CVFEM are compared with some of the experimental data of
Savage and Sayed [151] and Hanes and Inman [73]. As was stated earlier, the
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frictional contribution becomes significant at very high concentrations, when the
concentration is close to the maximum packing of the granular material. At lower
concentrations, frictional contribution can also be important when the shearing of
the material is very low. In this section, only the relatively high shearing experiments
at concentrations far from the close-packing concentration will be presented. No
comparison with the numerical solutions of Johnson and Jackson will be presented,
since the proposed mathematical model does not include any frictional contribution

to the solid-phase stress tensor.

The plane shearing problem solved in this section consists of a fixed top wall
and a moving bottom wall separated by a distance H as shown in Fig. 7.11b. The
velocity of the bottom wall is denoted u,, and is in the positive z-direction. The
bottom wall is located at ¥y = 0, and the top wall is located at y = H. The
experiments of Savage and Sayed [151], and Hanes and Inman [73] were designed to

give the normal and shear stresses at the top wall.

Governing Equations

This problem is described by the granular-temperature model, in the Cartesian
coordinate system, corresponding to Eqgs.(3.95)-(3.101). Strictly, this problem is
one dimensional, but in order to test the proposed two-dimensional formulation, a
finite length of the plane shearing cell is modelled along with periodic boundary

conditions at the inlet and outlet planes of the calculation domain.

The experiments of Savage and Sayed [151], and Hanes and Inman [73] were con-
structed to minimise the slip of the solid phase at the top and bottom walls of the
annular shearing cell: Savage and Sayed used sand paper, while Hanes and Inman
cemented a layer of solid particles on each wall. The type of surface roughness used
by Hanes and Inman ensures a perfect no-slip condition of the solid-phase. In the
case with the sand paper, a slip can exist, and, therefore, the slip boundary condi-
tions proposed by Sinclair and Jackson [165] will be used. Particle/wall collisions
are assumed inelastic. In this work, the granular temperature gradients at the walls

are prescribed following the analysis proposed by Sinclair and Jackson [165].
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Solution Procedure

As was the case in the ‘periodic’ formulation of the flow in a vertical pipe (Sec-
tion 7.3), an additional equation is needed to converge to the desired fully-developed
solution. This equation is obtained by the integration of the solid-phase momentum

equation in the y—direction and is used to compute the solid-phase concentration,

x

P(a,T) = [p’(asxp) = (" = #') g]oy ady] (7.27)

where p*(@gxp) is a constant which has to be prescribed in order to ensure that
at convergence, the average volume concentration calculated by the CVFEM cor-
responds to the experimental one: after each time step (or iteration), the average
volume concentration of the CVFEM solution, @cvreMm, is computed; then p*(Gexp)
is modified so as to meet the requirement that @cyrem should be equal to the aver-
age volume concentration of the experiment, @gxp. The concentration is computed
using the integrated solid-phase y—momentum equation, Eq. (7.27). This process
is highly implicit and « was under-relaxed during the solution process in order to

€nsure convergence.

Results

The geometrical and physical parameters of the variou-s simulations presented in
this section are given in Table 7.3. All the simulations were done for the case
of glass particles in air. To simulate the experiments of Hanes and Inman [73],
the coefficients of restitution, e and e,, were set to 0.95. This is the value of the
coefficient of restitution of glass particles, e, in vacuum [110]. For the simulation
corresponding to the experiments of Savage and Sayed [151], smaller values of e
and e,, were used. The smaller value of e, is justified because of the type of wall
surfaces used in their experiment, namely, sandpapered wall: for such a surface,
Johnson and Jackson [95] have suggested e, = 0.50 and ¢’ = 0.60. The usc of a
smaller e, however, needs more justifications. It is assumed that the sandpapered
surfaces scratched the glass particles. Lun and Savage [109) showed that rough

particles tend to have more rotational energy than smooth particles, and this, in
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turn, leads to lower levels of stresses. The mathematical model proposed in this
work assumed that the particle are smooth and, therefore, no rotational energy is
included in the analysis. A parametric study of some of the various parameters
appearing in the proposed theory was undertaken in order to choose appropriate

values of e.

The results of the parametric study are presented in Fig. 7.12 for a case cor-
responding to an experiment of Savage and Sayed [151]. Fig. 7.12a illustrates the
effect of the coefficient of restitution of the particle/particle collisions, e, on the

nondimensionalized total shear and normal stresses at the top wall:

£ ] T-!

Ty = p’gd (7.28)

where 7, and 7, are the sum of the solid- and fluid-phase stresses applied normally
and tangentially to the top wall, respectively. Only the results with e > 0.8 are
presented, since the theory is only applicable for slightly inelastic particles. As
is clearly seen, there is a significant decrease of the shear and normal stresses as
the coefficient of restitution, e, decreases, A variation of 70% is noted between the
computed normal stresses corresponding to e = 0.95 and e = 0.80: the corresponding
variation of the shear stress is 50%. This behaviour is associated with the dissipation
of fluctuating energy by inelastic collisions, which result in a lower level of granular
temperature and, therefore, in smaller values of the solid-phase stresses. These
important variations of the stresses illustrate that physically meaningful simulations
can be realized only when a good evaluation of e is available. In order to obtain
comparable level of stresses between the experiments of Savage and Sayed [151]
with rough particles and the smooth-particle simulations done with the proposed
CVFEM , a smaller value of e (= 0.89) than the one corresponding to glass particle
in vacuum (e = 0.95) were used in the CVFEM simulations.

A parametric study was also undertaken to quantify the effects of e,, and ¢’ (see
Fig. 7.12b and c¢). The effects of e,, exhibit trends similar to those in the effects of
e, but with much smaller variations: between e, = 1.0 and e,, = 0.0, a variation of
40% is noted on the normal stress and 20% on the shear stress. Furthermore, most
of the variation is noted in the range 0.8 < e,, < 1.0. The effect of the specular-

ity coefficient ¢’ is illustrated in Fig. 7.12¢: there is an increase of the shear and
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normal stresses as ¢' increases. Low values of ¢' correspond to smooth walls, while
large values correspond to rough walls. Rough walls produce solid-phase fluctuating
kinetic energy and therefore, the solid-phase stresses increase. Another parameter
which significantly influences the level of stress is the radial distribution function

do (see Table 3.3). In the present simulations, the radial distribution function was
taken as:

Gy = ————1 (7.30)

with amx = 0.65. The radial distribution function proposed by Lun [107] (sec
Table 3.3) produces a decrease of 20% in the stress level.

Fig. 7.13 presents fluid- and solid-phase velocity, solid-phase volume concentra-
tion, and granular temperature profiles for the same problem as that corresponding
to Fig. 7.12, but with specific values of e, e,, and ¢": ¢ = 0.89, e, = 0.50 and
¢' = 0.6. The fluid and solid phases are in dynamic equilibrium in almost the entire
domain: only slight differences in velocity are noted in regions near the walls. It is
also seen that the velocity profiles are not linear, as is the case in the single-phase
Couette flow. The concentration profile exhibits accumulation of particles near both
the bottom and top walls. The increase in concentration at the bottom is explained
by the action.of gravity which tends to accumulate particles at the bottom of the
shear cell. The migration of particle to the region near the top wall is induced by
the inelastic wall/particle collisions. The granular temperature profile shows strong
increases of T near the walls, which illustrates that the production of solid-phase
fluctuating energy by rough walls is more important than the dissipation by inelastic

particle/wall collisions.

Comparisons of the experimental normal and shear stresses with those obtained
using the proposed mathematical model are presented in Figs. 7.14 and 7.15. Fig. 7.14
presents a comparison with the results of Savage and Sayed [151] for glass particles
of 1.80 mm diameter, and the results in Fig. 7.15 show a comparison with the ex-
perimental results of Hanes and Inman [73] for glass particles of 1.85 mm diameter.
The experimental and numerical results show fair agreement, with the shear stresses
showing a better agreement (see Figs. 7.14a and 7.15a) than the normal stresses(see

Figs. 7.14b and 7.15b). Furthermore, the overall trends, in terms of variation with
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1
the apparent shear rate, (%) * % and average concentration, @, are well predicted.

In conclusion, it should be noted that the experiments of Savage and Sayed [151]
and those of Hanes and Inman [73] were done with similar particles, however, the
stresses measured by the former are much smaller that those obtained by the latter.
This discrepancy is attributed to the different types of wall roughness used in each
experiment [73). Hanes and Inman used a cemented layer of particles, and, therefore,
ensured the applicability of the non-slip condition at the wall. Savage and Sayed
used sand paper at the wall, which only reduces the slip, and transforms the smooth

particles into rough particles.
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7.5 Fluidized Bed

Problem Statement

Fluidization is an important type of gas-solid particle flow that is typically used to
enhance heat and mass transfer from the solid particles to the fluid or vice versa. A
typical fluidization arrangement is illustrated in I:“ig. 7.16. It is similar to the vertical
pipe flow problem discussed earlier in this chapter. It is possible to obtain a fluidized
bed of solid particles by appropriately setting the fluid-phase mass flow rate: for
large upward fluid-phase mass flow rates, the fluid/solid interactions are stronger,
than the gravita.tional force and an upward flow of particles results; for small upward
fluid-phase mass flow rates, the fluid/solid interactions are not strong cnough to
overcome the gravitational force on the particles, and, therefore, the particles move
downward. A fluidized bed is obtained when the fluid/solid interactions balance the
gravitational force. In this regime, solid-phase recirculating cells are noted and there
is no net transport of particles. The resulting flow is complex, and in some conditions
unsteady. Unsteadiness is created by so-called bubbles, or regions of low solid-phase
concentrations, that appear at the inlet of the fluidized bed, and rise through the
bed. The movement of such bubbles has been analyzed experimentally [105] and
numerically [43]. Unsteady analyses of this problem required excessively large times
on the computers available for this study (Alacron accelerator board installed in a
PC-AT /286, and a Hewlett-Packard HP-720 Unix-based workstation): thus the less
demanding steady problem was analyzed. Steady fluidized beds can exist when the
minimum fluidization velocity is smaller than the minimum bubbling velocity {64,

69]. Such a fluidized bed has been studied experimentally by Moritomi ct al. [120].

In one of the experiments of Moritomi et al. [120], 100 g of glass beads having
diameters of 0.163 mm were fluidized with a flow of water in a vertical pipe of 50 mm
diameter. At the inlet of the vertical pipe, a screen (see Fig. 7.16), permeable to the
water, was installed to prevent any downward flow of the particles. The experiment
was designed to obtain a uniform fluid-phase velocity profile at the screen. The
quantitative results presented in the paper of Moritomi et al. [120] are the bed
height for different fluidization velocities: a sharp horizontal edge between a region

of high solid-phase concentration and a clean fluid region was noted at the top of
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the fluidized bed, which permitted the definition of the bed height.
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Figure 7.16: Typical fluidized-bed geometry

The numerical simulation of fluidized bed problems involves several challenging
features: () both dense and dilute concentration regions coexist in the calculation
domain, and there is usually a very sharp drop off in the solid-phase concentration
al the top of the bed; (ii) both the solid- and fluid-phase flow fields could contain
recirculating regions, and these flow fields are often unsteady; (z:?) the solid-phase
concentration distribution at the inlet is usually not prescribed, rather it has to
be calculated as a part of the solution; and (iv) the numerical predictions tend
to be extremely sensitive to model parameters such as the restitution coefficients
for particle/particle and particle/wall collisions, and drag coefficient. Thus reliable
numerical simulations require considerable effort, and even then, careful, and often
tedious, “calibration” of model parameters is usually essential for accurate solutions

of specific problems of interest.

The work presented in this section is merely intended to demonstrate that the
proposed CVFEM can be useful in numerical investigations of fluidized-bed prob-

lems. No elaborate fine-tuning or calibration of model parameters was attempted.
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The calculations presented here correspond to the fluidized-bed problem of Moritomi
et al. [120].

Governing Equations

An attempt was made to simulate the fluidized bed of Moritomi et al. [120] by using

the granular temperature model (see Eqs.(3.95)-(3.101)) and the following boundary
conditions:

¢ Fluid phase
— Prescribed uniform mass flow rate, with zero radial component of velocity,
at the inlet.

— Outflow treatment at the outlet plane for all the fluid-phase dependent

variables.
— No-slip condition at the wall.
e Solid phase
— Concentration calculated at the inlet plane, assuming zero inflow of the
solid-phase.
— Prescribed zero axial component of velocity at the inlet and outlet planes.

— Radial velocity and granular temperature computed at the inlet, assum-

ing negligible transport by diffusion.

— Qutflow treatment at the outlet plane for all the solid-phase dependent

variables, ezcept the azial component of velocity.

— Inelastic particle/wall collisions on a rough wall: e, = 0.9 and ¢' = 0.6.

Solution Procedure

The proposed CVFEM and the solution algorithm described in Chapter 4, along
with the mathematical model described in Chapter 3, were used to simulate the
fluidized-bed problem of Moritomi et al. [120].
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Appropriate initial conditions were essential to achieve convergence of the solu-
tion algorithm. It was not possible to start with a packed bed with a clear fluid
region on top of it, because of severe convergence problems induced by the sharp
discontinuity in the solid-phase concentration at the top of the packed bed. There-
fore, the calculations were started with an initial uniform expanded stationary bed
extending over the entire computational domain. The initial average volume con-
centration was prescribed in order to match the amount of solid-phase mass of the
experiment (100 g in the experiment of Moritomi et al. [120]). During the solution

procedure, no special treatment was needed to keep the solid-phase mass constant.

Results

As was stated earlier, the intention here is to only demonstrate that the proposed
CVFEM can be used to investigate fluidized-bed problems. Thus only e results
of some rudimentary simulations of the fluidized bed investigated by Moritomi et

al. [120] are presented in this section.

The results in Figs. 7.17 and 7.18 correspond to a fluid-phase superficial velocity
of 6 mm/s. With reference to Fig. 7.16, the calculation domain extends to 175mm
in the z-direction. The grid is uniform with 71 X 11 points. The coefficient of resti-
tution, e, used in this calculation was set to 0.985. This value seems too large since
the simulated bed height is significantly higher than the corresponding experimental
one (see Table 7.4). However, lower values of e resulted in significant convergence
problems, which appear to be caused by the corresponding very low velocities of
the solid phase. Nevertheless, this simulation illustrates some of the important fea-
tures of a fluidized bed. In Fig. 7.17, the recirculating cells of the solid and fluid
phases are clearly seen. Near the wall, the fluid-phase velocity is downward except
at the top of the bed where the solid-phase concentration is low. The solid-phase
flow field also has a low velocity region in the top part of the bed near the axis.
Lower values of e (< 0.985) resulted in an increase in the size of this low velocity
region. In such a region, calculations of the solid-phase concentration, using the
solid-phase continuity equation and the MAW scheme, become questionable. The
solid-phase concentration distribution at the axis of the bed is presented in Fig. 7.18.

At the bottom, the bed is almost at constant concentration, and there is a relatively
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sharp variation of the concentration near the top of the bed, z/R & 5.6, which also

corresponds to the height at which the fluid near the wall starts to move upward.

As stated before, these are only preliminary results, and they are by no means
considered as satisfactory predictions. However, this simulation does demonstrate
that the proposed CVFEM can produce converged solutions of the granular-temperature
model for fluidized-bed problems. These calculations also pointed out limitations of
the proposed CVFEM and mathematical model: severe difficulties were encountered
in handling the sharp drop of the solid-phase concentration at the top of the bed,
and regions of very low solid-phase velocity. It was also found that the value of e

can significantly affect the results.

Proposed CVFEM | Moritomi et al. [120]
150 72

Table 7.4: Results of the fluidized-bed problem: bed height in mm
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7.6 Flow in a Channel with a Restriction

Problem Statement

In Chapter 6, dilute gas-solid particle flows in a channel with a restriction were an-
alyzed using the dilute-concentration mathematical model. A schematic illustration
of this problem is given in Fig. 6.1. In this section, the granular-temperature model
is used to investigate this problem. The use of this general mathematical model for
a gas-solid particle flow of dilute concentration is computationally inefficient, since
an additional equation, namely the fluctuating kinetic energy equation, needs to
be solved. However, this test provides an assessment of the validity of the general
mathematical model in the simulation of gas-solid particle‘ﬂows of dilute concentra-
tion. 1t is necessary to demonstrate this feature of the general mathematical model,
before it can be used with confidence in the simulation of gas-solid particle flows

that involve a wide range of solid-phase concentration.

Governing Equations

This problem is described by the complete mathematical model given by Eqs.(3.95)-
(3.101). The boundary conditions are the same as those used in the corresponding
problem described in Chapter 6. It should be noted that these boundary conditions
are equivalent to stating that the wall is smooth, or ¢’ = 0. In addition, the
boundary conditions and parameters related to the granular temperature are: ()
zero granular temperature at the inlet plane; (2¢) inelastic particle/wall collisions,
with e, = 0.9; and (i7i) oulfiow treatment at the outlet planes. The coeflicient of

restitution for particle/particle collisions, €, is assumed to be 0.9.

Results

The values of the various parameters in this problem are presented in Table 6.1.
Figs. 7.19- 7.22 present the solutions based on the dilute concentration model and
the general granular-temperature model. All of these results were obtained using a
73 X 37 grid, as described in Chapter 6, Section 6.3. At Sk = 1072, the solutions
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are in very gooc agreement for both aj, = 102 and a4, = 5x1073. The results for
Sk = 107! and a;, = 5x1072 also compare very well. These successful comparisons
demonstrate the validity of the general mathematical model in the dilute concen-
tration regime. At Sk = 107! and o, = 5x10-3, there is a minor discrepancy in
the results: the fluid-phase pressure drop, see Fig. 7.21, predicted by the general
model] is slightly larger than that obtained in the dilute concentration simulation.
This may be due to the increasing effects of the particle/particle collisions. For
this relatively large value of the Stokes number, the solid phase is not necessarily
in dynamic equilibrium with the fluid phase: therefore, the solid-phase concentra-
tion could build up in certain regions, such as near the walls, and the effects of the

particle/particle collisions could become significant.
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7.7 Split-Flow Inertial Separator

Problem Statement

In Chapter 6, dilute gas-solid particle flows in a split-flow inertial separator were an-
alyzed using the dilute-concentration mathematical model. A schematic illustration
of this problem is given in Fig. 6.6. In this section, the general granular-temperature
model is used to investigate this problem. The separator contains regions of low and
high volume concentration of the solid phase. At the inlet and in the main duct, the
solid-phase concentration is relatively low. However, when the separator is operat-
- ing at high efficiency, the solid-phase concentration in the bypass duct may reach
values at which the effects of the particle/particle collisions are no longer negligible.
The effects of such collisions in a split-flow inertial separator can be illustrated by a
comparison between solutions obtained with the dilute-concentration and the gen-
eral granular-temperature models. The proposed CVFEM was used to solve both

these models in this particular application.

Governing Equations

The governing equations and boundary conditions for the dilute-concentration model
were presented and discussed in Chapter 6, Section 6.4. The granular-temperature
model is given by Eqs.(3.95)-(3.101), and the following boundary conditions were

used with this model:

o Fluid phase

— Prescribed uniform axial velocity and zero radial velocity at the inlet.

— Qutflow treatment at the outlet planes for all the fluid-phase dependent
variables.

— No-slip condition at the wall.
e Solid phase

— Prescribed concentration, uniform axial velocity, zero radial velocity, and

zero granular temperature at the inlet plane.
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— Qutflow treatment at the outlet planes for all the solid-phase dependent
variables.

— Inelastic particle/wall collisions on a smooth wall: e, = 0.9 and ¢' = 0.

The assumption of smooth wall leads to solid-phase slip condition at the wall (zero
shear stress). This ensures that the boundary conditions of the general model are
similar to the ones of the dilute-concentration model. The coeflicient of restitution

for particle/particle collisions, e, is assumed to be 0.9.

Results

As was discussed in Chapter 6, Section 6.4, the parameters in this problem are the
Reynolds number, based on the inlet hydraulic diameter, Re, the Stokes number,
Sk, the ratio of the densities of the solid and fluid phases, v, the inlet volume
concentration of the solid phase, «j,, and the bypass ratio, b. All the simulations
in this comparative study were done with Re = 200, b = 20%, 4 = 1000 and &;, =
1073, These results were obtained using the same grid as the corresponding dilute-
concentration simulation of Chapter 6, Section 6.4 (see Fig. 6.6). The influence of

the Stokes number was investigated in the range 1073 < Sk < 10-1.

Fig. 7.23a gives the variation of the separator efficiency, 5.y, as a function of the
Stokes number, Sk: the separator efliciency is defined in Section 6.4. The solid
line corresponds to the solution of the dilute concentration model, Egs.(3.122)-
(3.127), and the dashed line represents the solution of the granular-temperature
model, Eqgs.(3.95)- (3.101). At large Sk, the dilute-concentration model overesti-
mates the separator efficiency, and the difference between the two models reaches
a maximum value of 52%. Whenever there is a build up in the concentration of
particles, the collisions tend to spread out the particles: thus the effect of collisions
is to make the solid-phase concentration more uniform, and decrease the separator

efficiency.

The variation of the nondimensionalized fluid-phase static-pressure drop in the
main duct, Ap};, with Stokes number, Sk, is presented in Fig. 7.23b. Aphy is de-
fined in Section 6.4. The results obtained with the dilute-concentration and general

models show similar behaviour. Ap;{; asymptotes to the homogeneous-mixture so-
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lution as Sk decreases, at low values of Sk. A decrease of Apf; with increasing
Sk, at large Sk, is also evident. At an intermediate value of Sk, there is a max-
imum. However, this maximum does not appear at the same Sk for each model:
the granular-temperature model predicts the maximum at a larger Sk than the cor-
responding value for the dilute-concentration model. Furthermore, Apj; estimated
by the granular-temperature model is always greater than that predicted using the
dilute-concentration model: particle/particle collisions lead to a viscosity of the
solid-phase and the associated stresses, and, therefore, a larger fluid-phase pressure
drop is needed to drive the same mass of mixture. The increase in pressure d1:op is
more pronounced at high Sk. This is to be expected since the relaxation time of a
particle increases with increasing Sk, while the frequency of collisions is essentially
constant for a given inlet concentration. It is also seen that the effects of the collisions
are much stronger on the nondimensionalized fluid-phase static-pressure drop in the
bypass duct, Apfy, (see Fig. 7.23¢c). With the granular-temperature model, as Sk
increases, Aphy does not decrease, as predicted by the dilute-concentration model,
but increases due to the increasing effects of the particle/particle collisions. Fur-
thermore, this increase is amplified by the combined effects of the increasing Sk and
increasing solid-phase concentration (associated with the increase in the efficiency).
Again, at Jow Sk, the results of both models asymptote to the homogeneous-mixture

solution.

These results show that even at relatively low values of inlet concentrations, aj,,
the effects of the collisions may not be negligible. This is especially true at large
values of the Stokes number and in regions where there is a build up of solid-phase
concentration, such as in the bypass duct. These results also clearly illustrate that a
mathematical model that includes particle/particle collisions is essential for accurate
solutions of gas-solid particle flow problems involving a wide range of solid-phase
concentration. Finally, the results of this problem demonstrate that the proposed
CVFEM can be successfully used to simulate gas-solid particle flows in complex

geometries, over a wide range of solid-phase concentration.
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Chapter 8

Conclusion

8.1 Review of the Thesis

In this thesis, some of the ideas contained in available CVFEMs for single-phase
flows [13, 14, 83, 100, 135, 149, 156, 157] have been amalgamated and extended to
formulate a co-located, equal-order, CVFEM for the solution of two-lluid models of
two-dimensional, planar or axisymmetric, incompressible, gas-solid particle flows in
regular- or irregular-shaped geometries. The proposed numerical method has the
capability of analyzing gas-solid particle flows over a wide range of conceniration in
complex irregular geometrics. The main tasks that were undertaken and completed

in this work are summarized below:

o In Chapter 1, the aim and scope of this work werc presented. As was stated
in this chapter, the research work described in this thesis was primarily aimed
at the numerical solutivn of the mathematical models of laminar gas-solid
particle flows, with emphasis on the computer simulation of such flows over
a wide range of conceniration in two-dimensional, planar or axisymmetric,
irregular geometries. The fundamental concepts used in the mathematical

models of gas-solid particle flows were also briefly described in Chapter 1.

o A literature review was presented in Chapter 2. Several available mathemat-
ical models of gas-solid particle flows were briefly discussed, with an empha-
sis on the fundamental differences between dilute-concentration and dense-

concentration models. This literature review pointed out that most of the
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available mathematical models are applicable only to a narrow range of con-
centration of the solid phase. Several relevant numerical methods for single-
phase and gas-solid particle flows was also reviewed in this chapter. It was
demonstrated that most of the available numerical methods for gas-solid par-
ticle flows are restricted to problems involving regular-shaped geometries, or
calculation domains whose boundaries lie along commonly used orthogonal

coordinate axes.

The chosen mathematical model was presented in Chapter 3. This mathe-
matical description is based on the methodology proposed by Lun [107], and
Lun and Savage [110], in which the solid phase is modelled using a theory
similar to the kinetic theory of dense gases. This model is appropriate for
a wide range of concentration and allows a microscopic interpretation of the

solid-phase constitutive equations.

The various steps in the formulation of the proposed CVFEM were presented
in Chapter 4, with emphasis and discussion of features that are particularly
relevant, or necessary, in the simulation of gas-solid particle flows. The formu-
lation is presented and implemented in a general manner that allows solution
of the mathematical model in two-dimensional planar (Cartesian) and axisym-

metric (cylindrical) coordinate systems.

The capabilities of the proposed CVFEM [116] with regard to the solution
of axisymmetric single-phase flows were demonstrated in Chapter 5. Four
problems were analyzed in this chapter. The first one involved developing
laminar flow in a pipe, and the results were compared with the numerical
solution of Friedmann et al. [60]. In the second problem, laminar flow in a
pipe with a sudden contraction was considered. For this case, the solutions of
the proposed CVFEM were compared with the experimental data of Durst and
Loy [52]. Simulations of laminar natural convection in a cylindrical enclosure
were also presented in this chapter and the results were compared with the
numerical solutions of Liang et al. {103]). Finally, laminar flow in a replica
segment of a coronary artery was investigated, and the results were compared

with the experimental results of Back et al. [§].

The validity of the proposed CVFEM {114, 115, 117] for the simulation of dilute

gas-solid particle flows was demonstrated in Chapter 6. This demonstration
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was done in three stages. First, the capability of the proposed CVFEM to
solve a dilute-concentration mathematical model of gas-solid particle flow was
established by using a specified solution technique. Then the proposed CVFEM
was applied to a problem involving dilute gas-solid particle flows in a channel
with a restriction, and the results were compared with the results of Di Giac-
into et al. {44]. The results produced by the CVFEM were also compared with
the results obtained by using a well-established staggered-grid finite-volume
method [30, 130]. Finally, the proposed CVFEM was used to simulate dilute
gas-solid particle flows in an idealized split-flow inertiai separator, and the

results were discussed.

¢ The validity of the proposed CVFEM for the solution of the granular-temperature
model, applied to gas-solid particle flows that involve relatively high concen-
tration of the solid phase is presented in Chapter 7. Two test cases based on
the specified solution technique were presented, one using the Cartesian and
another one using the cylindrical coordinate systems. Gas-solid particle flows
in a vertical pipe, an annular shear cell, and a fluidized bed were also investi-
gated, and comparisons of the CVFEM results with independent numerical and
experimental results were presented. A diluie-concentration gas-solid particle
flow in a contraction was simulated using the general granular-temperature
model, and the results were compared with the solution obtained with the
dilute-concentration model (in Chapter 6). This comparison assessed the ap-
plicability of the general granular-temperature model in the dilute concentra-
tion regime. Finally, gas-solid particle flows in a split-flow inertial separator,
identical to that considered in Chapter 6, was analyzed using the granular-
temperature model, and the effects of particie/particle collisions on such a flow

were discussed.

In summary, the capabilities of the proposed CVFEM have been assessed by
applying it to many test problems and comparing the results with available numer-
ical and experimental results in the literature. These comparisons indicate that the
proposed CVFEM can successfully solve gas-solid particle flows in two-dimensional,
planar or axisymmetric, regular or irregular geometries, over a wide range of solid-

phase concentration.
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8.2 Contributions of the Thesis

The main contribution of this thesis is the development of a CVFEM for the solution
of two-fluid maodels of two-dimensional, planar or axisymmetric, incompressible, gas-
solid particle flows in irregular-shaped geometries. It should also be noted that this
is the first application of CVFEMs to problems involving gas-solid particle flows.

The results are quite encouraging.

The steady-state problems were solved through the use of an unsteady formula-
tion, It was found that this approach is more efficient than the use of a steady for-
mulation and an iterative solution algorithm with an under-relaxation scheme [130],

since the former ensures similar evolution of the solution of each phase.

The sets of discretized equations for p/ and o are derived from the integral
mass conservation equations for the continuous and particulate phases, respectively,
rather than a linear combination of these equations, as is done in some available
finite volume methods [30, 170]. The reasons for adopting this approach, and the
features of the proposed CVFEM :ihat allow this approach without additional special

treatments, have been discussed in this thesis.

Novel features of the proposed CVFEM vis-a-vis available CVFEMs [13, 14, 83,
100, 135, 149, 156, 157} include the following:

o A formulation that can handle planar or axisymmetric two-dimensional flows.

o Appropriate incorporation of the discretized unsteady terms in the definitions

of 1 and ¢.

o A modified MAss-Weighted skew upwind scheme (MAW) for the interpolation
of the volume concentration, «, of the solid phase: this interpolation ensures
that all coefficients in the discretized equation for o are positive; at each
integration point, the volume concentration of the fluid phase is obtained using
€ = 1 — a, thus the sum of the fluid- and solid-phase volume concentrations is

always unity.

o An iterative variable adjustment algorithm in which linearized discretization

equations for v/ and v*, and v/ and v*, are solved simultaneously, using a

174



line Gauss-Seidel algorithm based on a coupled-equation line solver: it was
found that the simultaneous solution of the fluid- and solid-phase momentum
equations yields a more robust algorit’.m than one based on a completely
segregated (sequential) solution of these equations. It should be noted that this

algorithm requires appropriate linearization of the fluid-particle interaction

term as discussed in Section 4.5.2 and Appendix C.

8.3 Recommendations for Further Work

e In order to focus attention on the formulation of the proposed CVFEM, the
developments in this thesis were conducted in the context of a two-fluid model
based on the kinetic theory of granular materials proposed by Lun and Sav-
age [110, 107]. Reference was made to other available models in the liter-
ature [89, 5, 193, 167, 48, 35, 94], but a comparative evaluation of these
models was not undertaken. However, detailed investigations of the con-
sistency and validity of these mathematical models are needed in order to
establish their inherent advantages and weaknesses, and to propose possi-
ble improvements. The proposed CVFEM could serve as a useful tool in
such comparative evaluations of available two-fluid models of gas-solid parti-
cle flows [41, 42, 89, 5, 193, 167, 48, 35, 94].

» The implementation {or computer coding) of the proposed numerical method
was based on a structured grid. In order to realize the full geometrical flexibil-
ity that the proposed CVFEM allows, implementations on unstructured grids
are needed. Such extensions would necessitate modifications of the overall
solution algorithm, since the line Gauss-Seidel algorithm would not be appro-
priate anymore, and approaches such as point-by-point Gauss-Seidel methods,

or block-by-block direct solution techniques [49] have to be considered.

e Optimization of the overall algorithm is also an important aspect which was
not tackled in this work. Block correction procedures [158], multigrid tech-
niques [21], and enhance sequential solution algorithms [2] can be included to

improve the convergence rate of the overall solution algorithm.

e The test problems presented involved only laminar flow. This was done only to

focus attention on the testing of the proposed CVFEM, without incorporating
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the uncertainties involved in available models of turbulent gas-solid particle
flows. The proposed CVFEM has no such limitation in principle. An explicit
demonstration of the capability of this CVFEM to solve available models of
turbulent gas-solid particle flows [42, 79] would be the next logical step towards

the long-term objective of efficient computer simulations of such flows.

o The two-fluid model used in this thesis is limited to gas-solid particle flows
in which the particles are of uniform size. Furthermore, the expressions that
were used to relate the drag coeflicient to the particle Reynolds number are
appropriate only for particles of spherical shape. The proposed CVFEM, with
some modifications, could serve as a useful tool to test out formulations that

relax these limitations.

o Once some of the aforementioned explorations and improvements are com-
pleted, the proposed CVFEM, along with a suitable mathematical model,
could be used to investigate a wide variety of gas-solid particle flows in engi-

neering and the environment.

In conclusion, the author hopes that this thesis will enable, or at least encourage,
other researchers to explore the possibilities offered by CVFEMs in the prediction

of practical gas-solid particle flows, and also other two-phase and multiphase flows,
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Appendix A

Ensemble Averages and
Collisional Integrals

A.1 Solid-Phase Stress Tensor

A.1.1 Xinetic Contribution

The kinetic contribution of the solid-phase stress tensor is —ap* (C;C;). 1L is eval-
uated using Eq. (3.17) with the velocity distribution function given by Eq. (3.59).
The result is the following:

10u 1 (fu: Oul
vt OO = —evn® 49 L3 ipaiiad. SOl i § J .
ap® {C:C;) ap {Té'., +2a,T [ 363:;,.6’3 + 5 (3:1:j + 83:,-)}} (A.1)

A.1.2 Collistional Contribution

The collisional contribution of the solid-phase stress tensor is given by —; (m?C;)

where:

mPd3

0:(m”C;) = ~—5

janlm(c;l-c,-l) (80F) (&, R, )1(@, B, t)gokidRdG A& (A 2)

195



Using the proposed form of the velocity distribution function, this collisional integral

can be evaluated as:

8 a du? 18
—0; (mPCj) = —-41790‘08021'5,3 - B'Of gonp 2 (2T) [ (BZ + _.._J.) Uké‘u]
)

Bn:,- 3 i
ou!  Ou Ou;
—6; .
i [(ax, Bx,) T Fei ’l (A3)
where
, 16mPaing (T 3
w=="(7) (a4
A.2 Interaction Force Term
The ensemble average of the interaction force is simply given by:
AN f 3P
op (Ff) = o (uf = w5) - o5~ (A.5)

dz;

A.3 Solid-Phase Heat Flux Vector

A.3.1 Kinetic Contribution

The kinetic contribution of the solid-phase heat flux vector is ap”i (C,Cf). The

solution is expressed as foliow:

_,l 2 - —a 5 2 a231 E@.
or'3{0CT) = =03 T8 * 7 o, (4.8)

A.3.2 Collisional Contribution

The collisional contribution of the solid-phase heat flux vector is given by 6; (~mPC2)
where:

.lpﬂ mpds‘ > 74
(2 Cj) = 4 -/c

' - 7 N - = ds T y=s 1=+
,(CH~Ch) (@) £(&, 55k, 1) (@ Figh, t)gokidRdE, 45, (A7)
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Using the proposed form of the velocity distribution function, this collisional integral

can be evaluated as:

1 T\% 8T 12 1 .5 a; 0T a3 On
0. (brr) = —tneprood (1)} 2 Mg lod oy [20T | ca0n] )
2™ G TP T dz; 5 QQWQQP 4 (2T) T Ox; + n Ox; (A8)
A.4 Collisional Dissipation
The collisional dissipation is defined as:
o= —X (—lz—mpc?) (A.9)
;r(lmrc? _md (B +ch—ch—ck) (G k) £(&1, E—dk,1) (&, 7, t)godRdE dE:
2 1 4 5121:)0 tl 12 11 2 12 14 ] 2y &y go ' 1 2
(A.10)
The collisional integral is evaluated as:
a?pige (T\?
e I (A1)
A.5 Interaction-Force Dissipation
Tﬂe interaction-force dissipation is given hy:
ap® (F/C;) = =3ap’(pT (A.12)

A.6 Energy Transfer Term

The energy transfer term can be obtained by using the expression of B;; given in
Eq. (3.25):

ap® {B;;6i;) = 3ap’(pT (1 + dga%) (A13)
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Appéndix B

Some Details of the
Implementation of the Proposed

CVFEM

B.1 Implementation of the MAW Scheme

The MAW scheme described in Section 4.4.4 can be systematically implemented by

using the notation proposed in Fig. B.1. Using such a notation, the MAW scheme

is expressed as:

s | Tt (= 1D
7 fl_qﬁpa'l'(l_fl_)d’nl

¢ _ f;épii + (l - f;)¢n3
7 frdm 4+ (1= f5)énz

by = [+ (1= f3)ém
P Sidnt (- f)dus

where

mi -
My = ./o BpV™ - i 2nrds

where ff = min[max(?-:f,(l),l] if my >0
where fI = min[max(%:—:,{]), 1if iy, <0

where ff = min[max(i%,[]), 1 if iy >0

Mp

where f; = min[max(%fj,O), 1] if y, < 0

where f; = min[max(f’:—’—;;,(]), 1] if g3 > 0

where fi = min[max(%-;%,l)), 1]if a3 <0

(B.1)

(B.2)

(B.3)

(B.4)

1y is the unit normal to the surface o0 — mi, as shown in Fig. B.1. Egs. (B.1)-(B.3)

can be cast in a more manageable form by defining the following switch function:

w; = max (0, sign(m,;))

198

(B.5)



Using this switch function, the Eqs. (B.1)-(B.3) can be rewritten as:

o =wifi b twr (1= f) dma+ (1 —wi) fTds+ (1 =) (1 = f7) $u  (B.6)
o2 = wafy dpa + wy (1 - fF ) $na + (1 —w2) f57 ¢ + (1 —wy) ( ) ¢nz  (B.7)
¢ap3 = w3f3 ¢p1 + w3 (1 - fa ) ¢’n1 + ( —‘-'-’3) fs 951-12 + (1 - w3) ( - f3 ) 45"3 (B'S)

These three equations contain three unknowns ¢, ¢,2, and ¢,a. This system can
be solved to obtain:

Gpi = DET¢ EE (ED ¢"J) ' (B.9)

where

DET? =1 —wy ffwa ffwsff ~ (1 =) [T (1 —wy) f5 (1 —wi) f5 (B.10)
Ef i =1-wff(1-w)fy Eh=wfi+(1-w)ff(1-w)f5

Efy = wifffwafi + (1 —w) f7 (B.11)
Eh=1-wff (1-w)fi Ef=wff+(1-w)ff(1-w)f;

B} = woffwafi + (1~ ws) f7 (B.12)
Efs=1-wff(l-w)fy Ef=wsff+(1—wy)fs (1 —ws)fs

ES = wrffwsff + (1 —ws) f5 ‘ (B.13)

DY =(-w)(1-f7) 5 Dh=w (1-f) ; Dh=0 (B.14)
Dh=(1-w)(1-f7) 5 Dih=w(1-43) ; D& =0 (B.15)
Df=(1-ws)(1-/5) 5 Dhi=ws(1-/F) ; D& =0 (B.16)

B.2 Implementation of the Modified MAW Scheme

The implementation of the modified MAW scheme for the interpolation of the vol-
ume concentration is very similar to the MAW scheme implementation described
in the previous section. Following the derivation of the previous section, it can be
shown that:

Byi = DETﬂ ZE (ZD 5ru) ' (B.17)

j=1
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where

DET? =1 —w fifwo ffwsff — (1 —wi)fi (1 —w2)f5 (1 —ws)fy
BYy =l—wff (1-ws)fy Eh=wiff+0-w)fi Q-ws)fs

B =wifffwfi +(1—wi) fy

Ezz =1 —wafs (1=w)fy Ezﬁa = wzf'f' +(1 _wl)fl- (1—w)fy

E21 = szz wafa (1 ~w) fy

Eh=l-wfi(-w)f;y Ef=wff+(0-w)fy(1-w)fs

Ef, = wifffwsfy + (1 ~wa) f5

D =(1- l)(l“‘ff) ; Df2=w1(1—f{|') ; D=0
Dh=(-w)(1-f;) ; Dh=w(1-/F) ; D=0
D€3=(l-—w3)(l—f:;") i Dgl=w3(1—f;) ' Dgz“—_o

mi - -
= f p’V? . i, 2nrds
o

w; = max (O,Sign(M;,-))

Mz,
fif = min[max( ”2,0), 1] f = min[max(—=2=,0),1]
! M3 : M,

3

&= mm[max(M”s,O),l] Iy _-n'un[ma,m(ﬁ’”1 0),1]

M3, .,
M, M,

'+ = min[max(=2,0),1]  f; = min[max(=£%,0),1)
p3 ‘n‘{p:}

(B.18)

(B.19)

(B.20)

(B.21)

(B.22)
(B.23)
(B.24)

(B.25)

(B.26)

(B.27)
(B.28)

(B.29)

B.3 Element Contribution of Diffusion Terms

Algebraic approximations to the surface integrals of diffusion ilux appearing in Egs.

(4.40) and (4.41) can be cast in the following general form:

[ T i 2mrds = E CD,;4;

i=t
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Figure B.1: Typical triangular element - general notation

This integral represents the integrated diffusion flux across the surface 0 — mi in the
direction of the unit normal 7i,; where ¢ can take the value of 1,2, or 3 (see Fig. B.1).
CD;; represents the contribution of node j to the integrated-diffusion flux across the

surface 0 — mi. Eq. (4.41) can also be written as:

™ Jp - fipi2rrds = 21r_cr° —Zrm_i [Bzmi — AYmi] (B.31)
where
— 13 :
T = _Z (re)m_ (B.32)

3 i=1
1 <~ MUL B

- e .33

A DET,, ; y ;i ®; ( )
1 3

= L:é: B.34
B = et ,-‘EmMU % (B.34)
zMUL; = Zp3 — Zn2 zMUL; = 2,1 — T3 zMUL3 = znp — 2y (B'35)
y]\/IU]'_,1 = Yn3 — Yn2 yMUL2 = ¥n1 — ¥Ynsa yMULs =ln2— ¥Ym (B'36)
DEsz = (mnlyn2 + Tn2¥n3 T Tn3Yn1 = Yn1Tn2 — Yn2&n3 — yn3$n1) (B'ST)
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The general expression for CD;; can be obtained from the preceding equations:

To + Mmi ﬁ
3 DET,,

CD;; =27 (zMUL;Zm; + yMULjym;) (B.38)

B.4 Element Contribution to Convection Terrns

The surface integrals of the convection flux appearing in Egs. (4.44)-(4.45) can be

cast in the following general form:
mi 3
f By - y2mrds = Y CCyid; (B.39)
o j=1

The appropriate form for CC;; depends on the interpolation function that is used

to approximate the convection of ¢.

B.4.1 FLO Scheme

Using the FLO scheme, the integrated convection flux across the surface o — mi, in

the direction of the unit normal 7,;, is given by:

-/:m ﬁfc Aipi2rrds = 27Tﬁ,,;{+%[1‘o(.fc3)o + drpi{Joz)pi + T'm,'(JC:)mg] (B.40)

_ Tmi

[T‘o JCr) + 4rpi(JCr)pi + Tmi(JCf)m"]}

where

Jo:=pu"®  Jor=pv"¢ (B.41)
¢=A£+BY+C (B.42)

1
A= _DETW ZYMUL é; | (B.43)
B= DET E EMUL;¢; (B.44)
1 i -

C = DETe & Z EYMUL; ¢ (B.45)
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EMULy =6ns — &2 EMUL2 =& —&na EMULa = £n2 — €m (B.46)
YMUL, =Y, 3-Y,, YMUL,=Y,-Y,s YMUL3=Y.-Y, (B4T)
YMUL; = &n2Yos —€naYne  EYMULg = £uaYay — &uYas

EYMUL; = €1 Yae — €n2Y (B.48)
DET¢y = {£n1Ynz + naYas + €naYoy — Yinne — Yogaa ~ Yaali) (B.49)

This yields:

o7 B :
0C;; = E}J%ﬁf;; [~YMUL;F(€) + EMUL; F(Y) + YMUL,F(1)] (B.50)

where

Fle) = (pulroco + 4pulirpi€si + pUlkiTmiEmi) Yrmi

- (PUT To€o + 4PVpiTpiCR + Pvf,f.-f‘miéme) Toni (B.51)
Uy Ugt, Uiy Vg'y Upry and vp are computed using linear interpolation of the nodal
mass conserving velocities (see Eqs. (4.93) and (4.97)). B, is calculated using Eq.
(B.17).

B.4.2 MAW Scheme

In the MAW scheme, the integrated convection flux across the surface o — mz, in

the direction of the unit normal fi,;, is simply expressed as:

[ 8Jc fiyanrds = Biliyigy: (B.52)

Using this general equation along with the expression of ¢, the following expression
to CC;; is obtained:

. 1 3
CCij = BoiMyigrrs k}?; AN (B.53)
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B.5 Element Contribution to the Mass Flow Rates

The surface integrals of the mass flux, Eqs. (4.94), (4.95), (4.98), and (4.99), are

expressed in the following general form:

[ B0V 2rds = xR o e + U] = amdlonrs + ) (B54)

Note that:

. mi
Ti’lp,- = ﬁp;Mp; = / ,prm . n,,;?wrds (B55)
and
T; =2ry + T'mi 1";“- =2rmi + o (B56)
u™, u™., v, and vy; are computed using linear interpolation on the nodal mass

conserving velocities (see Eq. (4.93) and (4.97)). B, is calculated using Eq. (B.17).

Eq. (B.54) can be expressed in terms of the nodal values of the volume concen-

tration Bni, or the fluid-phase pressure p{;, in order to derive an equation for 8 or

pl.

B.5.1 Contribution to the Fluid-Phase Pressure Equation

Using the mass conserved velocity interpolation given by Eq. (4.93) along with
the linear interpolation of the fluid-phase pressure (Eq. (4.33)), Eq. (B.54) can be

rewritten as:

j ™ BpV™ - Rp2mrds = zaj CF!;p! + BF? (B.57)

A Z

where

CF% = 220 (6(d*)aMUL ;2 ; + G(d*)yMULjym] (B.55)
6DET.,

BF? = 2205 (G a3y, — G0} (B.59).

G(e) = emiTm; + €0y (B.60)
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B.5.2 Contribution to the Volume Concentration Equa-
tion

Contribution to the volume concentration equation can be computed by using Eq.
(B.17) in Eq. (B.55):

o,m- BpV™ . Rp2mrds = M,,.-ﬁlrr—ﬁ i E}, (zs: Df,.ﬁ,.,-) = i CF8; (B.61)
k=1 j=1 i=1
Therefore
CF = M,,-L zsj Ef.D?. (B.62)
' 'DET? = *7%

B.6 Calculation of Element Volumes

The evaluation of the volume occupied by a torus element is done by applying the
Pappus theorem. This theorem stipulates that if a planar area is revolved about an
axis, the volume so formed is equal to the product of the area and the length of the

path traced by the centroid of the area.

The volume occupied by the torus control volume is obtained by an element-by-
element procedure. To acheive it, first the torus volumes defined by the rotation of
the surfaces laoc, 2boa and 3cob (see Fig. B.2) are calculated and then assembled
appropriately. These three volumes can be obtained using a similar procedure,
therefore only the volume defined by the surface laoe, Vi, will be presented in
detail.

The surface 1aoc can be considered as the sum of two triangles, namely lao and
loc. This is convenient since the position of the centroid ¥ of a triangular surface is

simply expressed:

Fra = %’"_ (B.63)
Frpe = LT (B.64)

The triangular surfaces A;,, and A, are related to the element triangular surface

Aj23. Since the point o is at the centroid of the triangular element 123, and the
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Figure B.2: Typical triangular element - volume calculation

points a, b and c are the mid-points of the corresponding element sides, it follows
that:

A
-Aluo = Aloc = é'23 (B65)
where
DET
Ay = 22T (B.66)
DETzy = (z1y2 + z2y3 + 2ay1 — 1122 — Y2T3 — Y3T1) (B.67)

The torus volumes defined by the rotation of the two triangular surfaces lao and
loc are obtained by applying the Pappus theorem:

Viao = 2WF1aoA1uo (BGS)
vloc = 27rF1::n:~'410c , (Bﬁg)

The torus volume defined by the rotation of the surface laoc is the sum of Vy,, and

Vioe- Finally, the following expression is obtained:

IDET
36

2y 4+ 20 410 +12) (B.70)

vlaoc = 2”
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Similarly, it can be shown that:

IDET)|

Viboa = 2122 (2rg + 2ro + 70 + 13) (B.71)
DET
Vicob = 271" 36 | (2ra + 2ro + 1y + 1) (B.72)
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Appendix C

Linearization of the Momentum
Coupling Source Term

The linearization of the momentum coupling term needs to be done appropriately
in order to ensure convergence of the proposed algorithm. Several linearizations
are possible. In the discussion of the momentum coupling term presented in Sec-

tion 4.5.2, three linearizations were described:

(8

(SD:)"C = Kluif (SDz); = -K, (C.1}
(Sp:) =Kiu  (Spa)p = ~Ki (C.2)
(i)

(Sp:)e =Kiu]  (Sp:)p = —K; (C.3)
(Sp:)b =K (wi—uf)  (Sp)h = (C.4)
)

(Spo)e =Ki (uf —uf)  (Sp)p =0 (C.5)
Sp)b =K (i ~ul)  (Sp:)f=0 (C.6)

This appendix is intended to give a numerical demonstration of the capabilities and
limitations of these three linearizations. For the sake of the argument, the discretized
momentum equations for the fluid and solid phases in the z-direction are simplified

to:
(ac! + KV )u! = acliufy, + bf + KBV, (C.7)
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(ac] + KV )ui = aci,usp +b° + Ku;-fvcv (C.8)

These equations can be solved for u{ and u¢ using the linearizations (), (ii) and (22},
Two different cases will be presented: one typical of low solid-phase concentration;
and the other one corresponding to a larger concentration. For the low concentration

problem, the various parameters are set to:

ac] =acl, =30 b/ =100 (C.9)
ac; =acp, =20 b’=10 (C.10)
KV., = 400 ' (C.11)

The parameters corresponding to the high concentration problem are:

ac/ =acl, =30 b/ =100 (C.12)
ac] = acl, =200 b'=100 (C.13)
KV,, = 4000 (C.14)

The boundary conditions for both problem are given by:

wl, =ul =1 (C.15)

C.1 Linearization (%)

Using the linearization (i), the resulting discretized equations are:

low concentration problem
430u! = 30 + 400ui +100  420u! = 20 + 400u] + 10 (C.16)
high concentration problem

4030u! = 30 +4000u; + 100 4200w = 200 + 4000w + 100 (C.17)

Solving the resulting set of two equations yields the exact solutions for this case,

namely,

low concentration problem  uf =3.23  ul=3.15

high concentration problem ul =189  ulf=187
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C.2 Linearization (it)

Using the linearization (iz), the momentum equations reduce to:

low concentration problem _
30uf =30 +400(u” —u{") +100  420u? = 20 + 400u! + 10 (C.18)
high concentration problem

30uf = 30 + 4000(ui” — uf") +100  4200u? = 200 + 4000u! + 100 (C.19)

These sets of equations are solved using an iterative process, where u{ is computed

first using the values of u{* and u/* from the previous time step (or iteration); u],
is then calculated using the newly computed u,f . Starting with the initial guesses

u}” =1 and uf” = 1, the results of this iterative processes are

iteration number | w/ | uf
0 1.00 { 1.00
1 4.33 | 4.20
2 2.53 ) 2.49
3 3.68 | 3.57

Table C.1: Iterative process for the low concentration problem

iteration number u{ uf
0 1.00 | 1.00
' 4.33 14.20

1
2 -12.93
3

Table C.2: Iterative process for the high concentration problem

An examination of the values in these tables shows that the iterative process for
the low concentration problem is converging; for the high concentration problem,

the solution is diverging.

C.3 Linearization (i)

Using the linearization (i), the momentum equations become:

low concentration problem
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30ul = 30 +400(u" —«{*) + 100  20u} = 20 + 400(u] — ui") + 10 (C.20)
high concentration problem

30u! = 30 + 4000(u" — uf*) + 100 200u? = 200 + 4000(x! — u{*) + 100 (C.21)

These sets of equations are solved using an iterative process similar to the one
described for the linearization (iz). Starting again with the initial guesses ui* = 1

and u{™ = 1, the results of this iterative processes are

iteration number | u} u?
0 1.00 1.00
433 | 68.17

1
2 855.44 -
3

Table C.3: lterative process for the low concentration problem

iteration number ul ul
0 1.00 1.00
1 4.33 | 68.17
2 8515.44 -
3 . -

Table C.4: Iterative process for the high concentration problem

These tables show that the iterative process is diverging for both the low and

high concentration problems.

These computations clearly indicate that the linearization (z) is the most appro-
priate, because it allows simultaneous solution of the fiuid- and solid-phase momen-
tum equations. Linearization (i2) is limited to low concentration of the solid phase,

and linearization (i2) is completely inappropriate.
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Appendix D

Implied Source Terms of the
Specified Solutions

D.1 Dense Concentration - Specified Solution in
a Cartesian Geometry

The proposed dependent-variable fields for the Cartesian geometry are:

R
ue._,:—Uo Vep = 1+% Qer = Qg 1+L (D])
T+
=0 (1) wh=0 pL=r(ZY (D2)
T.o=1T, (23 (D.3)

This solution is expressed in term of a (z,y) Cartesian coordinate system. The

corresponding implied source terms are:

51 = (1-0e) 2= 3(20)(20)(1 4 Zous () w7 41825 (uf,~e) (Dt

2 3

§f = (1 - ay,) %" - 18“;—‘2”% | (D.5)

g2 = a,x% + (g—") ”1"” - 1s“°;ff (uf, - Uo) (D.6)
s (R) (%) [gpzl,x  (Batle = Gl 2l

5! = a-,,% + lsaodgf Us + ar}f” [Tz (1 + 4nF) — (1)) + Z(BO_I)JZ) [%u:’ + ,uz'] (D.7)
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2(1):: 3 4 F. ) 3
BAAD [rjﬂelcr + Fblcr]

s 3 _,T UD 0o v:r £ ("fc,:l:)‘1 4 3 3
S (a_) (T) Ples = (UoL)? [§‘“°|°‘ + *"""] (D)
+7c(ae1's Tc:r) - GQC!E:”{D(C!,,;, Tex)
1 T0)2 ] k‘,'lex - ks-lcr ( .3 3 s
+2Te..-: (L [ Tlcz + k‘"lc: ""I‘lcr - 5#6'81)
a\2 [ k., 12 12 '
+ (%) () {Entzn - 100~ 1T [ Fr e (7 + s

ac.rgo(aﬂ')
12 d2 2 k;lcx
+ (1 + 'gngo(aw)““) 37 (2°%) e=°==] B k"’lef}
palcr = p,(aez1 Tcr) (Dg)

where
#:ler = ﬂ:(aez,Te::) Fylc:c = ﬂ”(a’ersTc.r) ﬂa‘lcr = F’-(aer’ Tc.r)

(

F;lcz = pp(Qezy Tex) (
k;‘lcz = k;‘(acm Te:c) ka'|c:r: = ka’(aexaTex) k’-ler = k”(aemTcr) (Dl2

(

(

)
koler = kalres, Tex) D.13)
1 d
- [0 az (a‘zgo) aT=Gerx - gU(Q'gr) Dld)
1 o
g = Toolacs) (a—o) [F + go(@ez)] 3]s (D.15)
aI_E 8 l (ﬂ) ( 2 _‘E 5 ) ﬂa-|c:|':

pe=gH TG Helez = 2 Hilea +fgo(a,=) (D.16)

(e (1 001~ octon) 011 (1 )

_Ju:lc:: - %Pgler)]

!
us Icz

D.2 Dense Concentration - Specified Solution in
a Cylindrical Geometry

The proposed dependent-variable fields for the cylindrical geometry are:

L=ta(]) h=0 =r () o5
T..=To (D.19)
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The corresponding implied source terms are:

! U !
S;' = (1 — ap) -}?9- — #2 (a0, To)lo + 18a0‘u (uﬁz —u:a,)

L rL d?
=(1 —ao)——ls";" :
Py  agp Uo Ofo# s
S - ao‘f + L2 - 18 d2 ( ez - uez)
- P Cl‘ml?s[f2 Q'Dﬂ o
Ss=eop Ty Tt

Uo\? g
Sp = ~3ut(a0, To) () + (e, To) — asad (e, To)
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(D.21)
(D.22)
(D.23)

(D.24)





