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ABSTRACT

A model was developed to account for the static elastic behaviour of the lung
tissue strip in terms of distributions of collagen and elastin fibers. Distributions of
collagen fiber lengths and elastin fiber stiffnesses were determined by fitting the model to
data from dog lung tissue strips. These distributions followed 1/f power-laws for more
than 95% of the data. Computer simulations of two dimensional tissue strip models with
1/f distributions of collagen fiber lengths also predicted realistic stress-strain curves. The
simulations illustrated the gradual development of geometric and stress heterogeneity
throughout the tissue as the collagen fibers were recruited during stretch. This model
suggests a mechanistic basis for the shape of the pressure-volume curve of whole lung. It
also indicates how this curve may be affected by changes in tissue collagen and elastin
similar to the changes occurring in the diseases of pulmonary emphysema and fibrosis.
Nonparametric block-structured nonlinear models for describing both the static and
dynamic stress-strain behaviour of the lung were applied to dog lung tissue strips and to
whole rat lungs in vivo. Both the Wiener and Hammerstein models accounted for more
than 99% of the tissue strip data, although the Hammerstein model was more consistently
accurate across a range of perturbation amplitudes and operating stresses. Plastic
dissipation of energy within the lung tissue strip was estimated at less than 20% of the
total dissipation during slow sinusoidal cycling. The Hammerstein model was also the
best of those investigated for describing the rat lung data in vivo, although there were
dependencies of the model parameters on perturbation amplitude and operating point that
indicate that a more complicated model is required for the whole lung. Finally,
construction of a fiber recruitment model for the dynamic mechanical behaviour of lung
tissue strips was attempted. However accurate reproduction of measured behaviour was
not achieved, indicating that lung tissue dynamics arise from processes independent of
fiber recruitment and may originate from the ensemble behaviour of its many

constituents interacting as a complex dynamic system.



ABREGE

Un modéle a été développé pour expliquer le comportement statique-€élastique
d’une bande de tissu pulmonaire en fonction de la distribution des fibres collagénes et
élastines. Les distributions de longueurs de fibres collagénes et de rigidités de fibres
élastines ont été déterminées en comparant le modéle aux données provenant des bandes
de tissu pulmonaire canin. Ces distributions se conforment a une distribution 1/f pour
plus de 95% des données. Des simulations de mod¢les bi-dimentionnels faites a partir de
distributions 1/f de longueurs de fibres collagenes prédisent des diagrammes
allongement-contrainte vraissemblables. Ces simulations démontrent le développement
de ’hétérogeénéité de la géométrie et de la contrainte au cours du recrutement des fibres
coliageénes en fonction de la traction. Ceci suggére un mécanisme qui détermine la forme
du diagramme pression-volume du poumon. De plus, ce mécanisme explique comment
les changements de ce diagramme peuvent provenir de changements de tissus collagénes
et élastines tels qu’occasionnés par I’emphyséme et la fibrose pulmonaire. Les modéles
non-paramétriques a base de modules ont €té appliqués a des bandes de tissu pulmonaire
canin et a2 des poumon de rat in vivo pour décrire le comportement statique et dynamique
du diagramme allongement-contrainte. Les modéles de Wiener et de Hammerstein
expliquent, chacun, plus de 99% des données de bandes de tissu. Cependant, celui de
Hammerstein indique une précision plus uniforme pour différentes amplitudes et
contraintes d’opération. L’émission énergétique due a la déformation plastique de la
bande de tissu représente moins de 20% de I'émission totale effectuée durant des
mouvements sinusoidaux cycliques lents. Le modéle de Hammerstein est aussi le plus
approprié pour décrire le poumnon du rat in vivo. Cependant, les parametres du modéle
dépendent de I’amplitude et de la contrainte moyenne; donc un modéle plus sophistiqué
du poumon entier est nécessaire. Finalement, un modéle du comportement dynamique
d’une bande de tissu pulmonaire basé sur le recrutement de fibres a été essay€, mais ne
permet pas la prédiction des propriétés mesurées. Ceci indique que les propriétés
dynamiques proviennent de processus indépendants du recrutement de fibres, et peut étre
d’un comportement de [’interaction du systétme dynamique de I’ensemble de ses

éléments.
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PREFACE

This thesis is divided into 9 chapters. Chapter 1, is an introduction to the thesis,
while Chapter 2 gives a review of the literature relevant to this thesis. Chapters 3 and 5
contain content that is in press at the Journal of Applied Physiology'. Chapter 4 is to be
submitted to Computer Methods in Biomechanics and Biomedical Engineering. A portion
of the work shown in the Introduction to Chapter 6 has been published in the Journal of
Applied Physiology’. Chapter 7 has been submitted to the Annals of Biomedical
Engineering’. A portion of the work of Chapter 8 has been published in the Annals of
Biomedical Engineering*. Chapter 9 provides conclusions to the thesis, statements of
original contributions, and suggestions for future research. Conference papers and

abstracts that have resulted from the work contained in this thesis are listed below.

Journal Articles

'Maksym, G. N. and J. H. T. Bates. A distributed nonlinear model of lung tissue elasticity. J.

Appl. Physiol. (in press).

*Maksym, G. N. and J. H. T. Bates. Nonparametric block structured modeling of rat lung

mechanics. Ann. Biomed. Eng. (submitted).

"Navajas, D., G. N. Maksym, and J. H. T. Bates. Dynamic viscoelastic nonlinearity of lung
parenchymal tissue. J. Appl. Physiol. 79: 348-356, 1995.

*Bates, J. H. T., G. N. Maksym, D. Navajas, and B. Suki. Lung tissue rheology and 1/f noise.
Ann. Biomed. Eng. 22: 674-681, 1994.
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Conference papers (2-page minimum)

Maksym, G. N. and J. H. T. Bates. Distributed modeling of nonlinear tissue elasticity. Proc.
20th Conf. Canadian Med. Biol. Eng. Soc. Vancouver. 138-139, 1994,

Maksym, G. N. and J. H. T. Bates. A theory for the basis of lung tissue elasticity. Proc. /7th
Ann. Int. Conf. IEEE Eng. Med. Biol. Soc. Montreal. 1527-1528, 1995.

Abstracts

Bates, J. H. T. and G. N. Maksym. A nonlinear distributed model of lung tissue elasticity. Ann.
Biomed. Eng. 23: s-11, 1995.

Maksym, G. N. and J. H. T. Bates. An analytical model for lung distensibility. American
Journal of Respiratory & Critical Care Medicine 151: A116, 1995.

Maksym, G. N. and J. H. T. Bates. A nonlinear model of lung parenchyma disease. Ann.
Biomed. Eng. 1996.

Maksym, G. N., T. F. Schuessler, and J. H. T. Bates. Nonlinear pulmonary rat mechanics
identification. American Journal of Respiratory & Critical Care Medicine 151: A116, 1995.

The apparatus for the tissue strip experiments is described in my Master’s Thesis,
Computer controlled oscillator for dynamic testing of biological soft tissue strips, M.Eng.
McGill University, 1993. The stress-strain curves of Chapter 3 were obtained in
collaboration with Dr. Daniel Navajas. Ms. Carrie Dolman performed most of the animal
preparation for Chapter 7. Mr. Thomas Schuessler constructed the small animal ventilator

used in Chapter 7.
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1. Introduction

The mechanical impedance to breathing arises from the mechanical properties of
the chest wall and the lung. A large portion of the lung impedance comes from the
rheological properties of the lung tissue, where the tissue rheology embodies all of its
mechanical behaviour. Historically, lung mechanics have almost always been modelled
by separating the 'static' properties from the 'dynamic’. This is primarily due to the two
most common methods of measuring the lung behaviour. With a slow inflation or
deflation one obtains the 'static' pressure-volume (PV) curve (21,45), while with the
forced oscillation technique (30,52) the dynamic mechanical impedance can be obtained.
Furthermore, modelling the static PV curve has been largely empirical while the
impedance is commonly modelled using linear parametric approaches (12,30,65,89).
Many researchers have recognised the importance of understanding the origins of tissue
rheology and have put forward a variety of models to describe the observed behaviour.
These models have been largely parametric and focused on explaining the dynamic
behaviour (37,58,107,114,144,145,152,155,160). Recently, some of these have included
static nonlinearities using block structured models of the Hammerstein form to study the
mechanics of lung tissue strips (114), or of either the Wiener and Hammerstein forms in
the study of the mechanics of whole lungs in vivo (160). These last two models have
shown promise in describing the observed mechanical behaviour. However, both were
parametric in form, and neither modelled the observed data perfectly. Thus I felt it was
important to apply these block structured models in nonparametric form, to determine the
appropriateness of these model structures without bias. Furthermore, I wished to examine
the nature of the nonlinearity obtained from these modelling approaches in order to assess
whether either model could extract the static nonlinear behaviour from dynamic
measurements, and whether the extracted nonlinearity would correspond to the well

known static nonlinearity in lung mechanics.

Chapter 1. Introduction ) 1



My interest in the static nonlinear behaviour extended beyond the empirical
description of the nonlinear curve. In particular, I wished to improve our understanding of
how collagen and elastin fibres interact to produce the stress-strain curve. Setnikar (137)
first introduced the now well-recognised qualitative idea that elastin determines the
stress-strain behaviour of lung parenchyma at low strains while collagen takes over as
strain increases. More recently there have been a few studies that explore this idea in a
quantitative fashion. For example, Fung (41) developed a recruitment model based on
observed distributions of fibre types to develop a strain energy function for the
calculation of linear incremental material constants. A model based on reorientation of
fibres was introduced by Suwa et al. (161), while models based on the gradual
recruitment of kinked or 'wavy' fibres were proposed by Soong and Huang for human
alveolar wall (143) and by Decraemer et al. (27) for various biological soft tissues.
However, these models consisted of only one fibre type, elastic collagen, and assumed a
specific functional form for the distribution of fibre lengths rather than estimating the
distribution from the available data. I have thus developed a quantitative model which
provides a mechanistic basis for the shape of the stress-strain curve based on the
fundamental properties of the stress-bearing constituents, the collagen and elastin fibres. [
have explored this model further in a 1D computer simulation to investigate the effects of
variability among the constituents. I have also developed a 2D model in order to
introduce greater physiologic reality. Finally, I have extended the model conceptually in
an attempt to understand how changes in tissue constituents due to diseases such as
emphysema and fibrosis can explain the abnormal shapes of PV curves seen in patients

with these diseases.

The key aim of this work was therefore to improve our understanding of lung
tissue rheology under normal conditions and in disease. There are two main thrusts of the
thesis. In the first, [ derive models which give a mechanistic explanation of the nonlinear
stress-strain behaviour of lung tissue in terms of the fundamental properties of the stress-
bearing constituents. In the second, I apply Wiener and Hammerstein models to the

mechanics of rat lungs in vivo and lung tissue strips in vitro.
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1.1 Overview

Chapter 2 presents a brief introduction to modelling lung mechanics. A review of
the literature is provided which examines the lung structure and mechanics relevant to
this thesis. This is followed by a detailed discussion on the different modelling
approaches that have been applied to the lung mechanics, with particular attention paid to

nonlinear approaches.

Chapter 3 presents a one-dimensional model of the lung tissue static elastic
behaviour. I[mportant structure to function relationships for the lung tissue are described.
The model is based on distributing the fundamental properties of the stress-bearing
constituents of the lung tissue, the collagen and elastin fibres. Measurement of stress-
strain curves of lung tissue are reported. These data are used to derive the distributions of

the model.

Chapter 4 extends the models of Chapter 3 by introducing geometric effects via a
two-dimensional finite element simulation. Different distributions of constituent element
properties are generated and length-tension curves produced from the model are

compared with measured tissue strip data.

In Chapter 5, the ideas developed in the first chapter are applied to the PV curves
of the whole lung in vivo. Important relationships are made between the structural
changes in the lung tissue and the changes observed in the shapes of PV curves in the

lung diseases of emphysema and fibrosis.

Chapters 6 and 7 introduce non-pargmetric modelling to the field of respiratory
mechanics. In Chapter 6, Wiener and Hammerstein models are applied to lung tissue
strips perturbed with pseudo-random strain input signals. A new parallel arrangement of
the functional blocks of these models is developed and fit to the same data. In Chapter 7,
large amplitude pseudo-random volume input signals are used to identify Wiener and

Hammerstein models of rat lung mechanics in vivo.

In Chapter 8, an exploratory look is taken into extending the modelling concepts

introduced in Chapter 3 to account for the dynamic behaviour of lung tissue.

(98}
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Finally, Chapter 9 summarises the contributions made in this thesis, and provides

suggestions for further research.
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2. Literature review

2.1 Physiology of the lung

The lung is one part of the total respiratory system, which includes the upper
airways, the chest wall and the respiratory musculature. The primary function of the
respiratory system is to provide adequate gas exchange — the supply of oxygen to the
blood and removal of carbon dioxide — according to the body's metabolic requirements.
The lung inflates due to the negative pressure (with respect to atmosphere) applied at its
surface by the respiratory muscles. Deflation normally occurs passively as a result of the
static recoil of the lung and chest wall, but effort by the internal intercostals and
abdominal muscles can supply an active contribution during exercise. Most of the
mechanical energy expended during inflation is elastic and is thus recovered during
deflation. The remaining energy is dissipated through viscous effects in both the airways

and the tissues. These processes comprise the mechanics of the respiratory system.

2.1.1 Lung structure

Surrounding the lung is the visceral pleura which smoothly slides against the
parietal pleura lining the ribcage, diaphragm and mediastinum. Upon inspiration, air is
conducted from the mouth and nose through the airways to the sites of gas exchange, the
alveoli. The airways form an asymmetric tree-like structure branching through a series of
bifurcations to successively smaller bronchi, lobar, segmental and subsegmental bronchi,
small bronchi, bronchioles, respiratory bronchioles, and finally to the alveolar ducts and
alveoli. The mean number of generations of branching airways from the trachea to alveoli
is 23, but a given path can have many more or less branches. Some alveoli are located
along the respiratory bronchioles, but most alveoli line the alveolar ducts. The walls of

the airways larger than generations 12-16 (counting from the trachea) contain cartilage
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which contributes to maintaining airway calibre. In the smaller airways, calibre is
maintained through connection with the surrounding parenchyma. The alveoli are the
sites of gas exchange and comprise a total surface area of from 43 to 102 m’ depending

on body size (170).

Gas is exchanged by passive diffusion through the alveolar walls to an extensive
network of pulmonary capillaries that form part of the pulmonary circulation. Separating
the blood within the capillaries from the air in the lung are the endothelial layer of the
capillaries, the pulmonary interstitium filled with the interstitial fluid, and the alveolar
epithelium. The alveoli and septa comprise the large part of the lung parenchyma which
tethers both airways and vasculature. The septa are thicker bands of fibrous tissue which
branch through the parenchyma subdividing different lung structures from the acini (the
collection of alveoli fed by a single terminal bronchiole) to the largest segments dividing
the lung lobes. Within the alveolar walls, free edges and septa run a complex
interconnected network of collagen and elastin fibres. The fibres are embedded in the
ground substance which is an amorphous material primarily composed of proteoglycans,
serum constituents, cell products, enzymes, other glycoproteins and products from the

degradation of collagen and elastin (50).

2.1.2 Stress bearing constituents of lung tissue

It is commonly agreed that the stress-bearing constituents of lung tissue are the
collagen and elastin fibres. These fibres differ considerably in their elastic properties. The
incremental Young’s modulus of collagen at typical strains is 6.8 x 10® dyn/em® to 1.2 x
10'! (40,56), while the Young’s modulus of elastin is 1 x 10° to 8 x 10° dyn/cm? (41). In
other words, collagen is 100 to 10 000 times stiffer than elastin. Elastin is extensible by
as much as 230% of its unstressed length (17), while collagen once taut is only extensible
by 1-3 % (56). Other components of the lung tissue which may contribute to its
mechanics are the ground substance, smooth muscles and other cells. Brown et al. (14)
proposed that the deformation of the ground substance may be a significant influence on

the mechanical properties of tissue, although this remains to be tested. However, all these
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components have much lower elastic constants than both collagen and elastin (41), and
are thus likely to play only minor roles in maintaining tissue tension. The ground
substance has been proposed to be responsible for much of the viscous dissipation within

the lung tissue (70).

Both collagen and elastin occur only within the interstitium, external to the
interstitial cells (117). The distributions of collagen and elastin fibre diameter
distributions were measured in human pulmonary alveolar walls by Sobin et al. (142) and
in alveolar mouths and ducts by Matsuda et al. (97). They found that collagen and elastin
fibre diameter distributions were skewed towards a larger density of smaller diameters.
Fibre curvatures were similarly distributed, but with a greater skewness. They found that
the square root of fibre width and the cube root of fibre curvature were both distributed in
an approximately Gaussian fashion. The mean thicknesses of elastin and collagen fibre
bundles were about five times greater in the alveolar mouths and ducts than in alveolar

walls (97).

The differences in quantities of elastin and collagen in different structures within
canine lung parenchyma were examined by Oldmixon and Hoppin (117). They found that
elastin was primarily located along free edges of septa and along septal intersections.
Also, the elastin in septa was much larger in diameter (~10x) than that in the alveolar
walls. Similar to elastin, collagen was found in large bundles in the septal borders and
edges, but was more diffusely scattered in the alveolar walls. The ratio of collagen to
elastin was near unity in the edges and borders, but near 2:1 in the walls. Mercer et al.
(103) found similar results in humans, but found the collagen to elastin ratio was higher
in the alveolar walls in rats (~5:1). Using serial sections, they also observed that collagen
fibres near the septal edges meandered about in a wavelike fashion with no apparent order
or uniform pattern. The elastin and collagen fibres were interwoven, especially in the
alveolar entrance ring region, implying some mechanical coupling. The studies of
Oldmixon and Hoppin (117), Sobin et al. (142) and Matsuda et al. (97) each found a wide
distribution of fibre widths and a complex connected network of both collagen and elastin

fibres.
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2.1.3 Measurements of lung tissue mechanics

Knowledge of the contribution of the lung tissues to the mechanics of breathing
can be obtained in 3 ways: via direct measurements in vitro, by partitioning tissue and
airway behaviour in vivo using the alveolar capsule technique, or via modelling
approaches. Direct measurements of the tissue are done on excised samples of lung
parenchyma, usually maintained in a tissue bath, by uniaxial, biaxial or triaxial stretching.
The alveolar capsule technique was originally proposed by J. Mead but developed by
Sasaki et al. (133) and improved by Fredberg (36). By measurement of alveolar pressure
together with pressure and flow at the airway opening, this technique permits the separate
determination of airway and tissue impedances. Modelling approaches will be covered in
Section 2.2. Each method has advantages and limitations, and can be viewed as

complementary to the others.
Measurements of lung tissue mechanics in vitro

The first measurements of lung tissue in vitro were made by Radford in 1957
(129), who found that tissue strips from dog lungs exhibited very nonlinear elastic
properties. Suwa et al. (161) measured the length-tension relationships for a single
extension of human lung parenchymal strips, and found the force to be an exponential
function of the strain. The length-tension relationship of human alveolar wall segments
was found to be similar by Fukaya et al. (38), who showed that the length-tension curves
exhibited tissue hysteresis. They also found that lung tissue exhibited stress-relaxation
after a step change in force. Sugihara et al. (149,150) measured human alveolar wall
segments and showed very similar results, and found that neither age, sex nor diseases

such as emphysema altered the amounts of hysteresis or stress-relaxation.

Measurements of larger samples (1 cm cubes) of parenchyma subjected to triaxial
loading were obtained by Hoppin et al. (59), who searched for tissue anisotropy by
looking for differences in the stress-strain curves and hysteresis along different axes.
They concluded that either the degree of anisotropy was small and not systematically
distributed throughout the lung, or that the observed anisotropy was due to differences in

the experimental handling of each sample. Tai and Lee (162) also examined isotropy and
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homogeneity in triaxial tests of dog parenchyma. They found less than 10% anisotropy in
young dogs and less in older dogs. Also, no regional variation was discovered in lung
samples taken from different parts of the lung. They therefore concluded that lung
parenchyma can be reasonably assumed to be isotropic and homogeneous with respect to
its bulk mechanical behaviour. Other mechanical tests on lung tissue have been
performed to assess the effects of transverse loading (165,180) and changes in

temperature (25,69).

2.1.4 Quasi-static PV behaviour of the normal and diseased lung

Some of the recoil pressure of the inflated lung is due to deformation of the
tissues, while the remainder is due to development of surface tension at the air-liquid
interface. The classic approach to determining the respective contributions of the tissues
and surface tension to the PV curve is by comparing the behaviour of air-filled and saline-
filled lungs, in which the effects of surface tension are presumably abolished
(46,140,148). The saline-filled P¥ curve moves to lower pressures for the same volume,
and the size of the hysteresis loop is decreased compared to the air-filled PV curve. In the
saline-filled case, hysteresis is due solely to energy dissipation within the tissues, and is
similar to that found in in vitro studies of lung tissue strips (38,149). In the air-filled case
the additional hysteresis is due to the surface lining layer and to recruitment and
derecruitment of airways through the collapse and reopening of airways, particularly at
low lung volumes (19,26,100,113). In addition, differences between saline-filled and air-
filled lungs are always much greater for the inflation limbs than the deflation limbs of PV
curves, implying that surface tension plays a more important role during inflation. This
may be due to the high pressures needed to open collapsed airspaces upon inflation (in
the air-filled case) and hysteresis of the surface lining layer. There are problems with the
assumption that saline-filling reproduces the same tissue forces that are generated upon
air-filling at the same lung volume. The surface tension forces and tissue forces are not
entirely independent. That is, surface tension provides a contribution to recoil, directly

and indirectly, by distorting the parenchymal geometry (60,144). Evidence for such
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distortions was provided by Gil et al. (46) in fixed lungs at different volumes, who
showed that the total alveolar surface area was larger in saline-filled lungs than in air-
filled lungs at the same volume. Thus, estimates of the surface tension contribution to
recoil obtained by saline inflation are in general too large. Considering this, Bachofen et
al. (3) found that alveolar geometry is dependent on both surface and tissue forces at low
lung volumes, while tissue forces are the predominant determining factor at high lung
volumes. An analysis by Oldmixon and Hoppin (117) also concluded that tissue tensions
exceed those of surface tension at all lung volumes, and indeed even dominate at low
lung volumes. Although estimates for the amount of recoil due to surface tension vary, it
would appear that both the tissue and surface tension components are significant at all

lung volumes (46,146,148).

The equation most commonly used for the static pressure volume curve is that

first introduced by Salazar and Knowles (132),
V = A- Bexp(-KP), (2-1)

where 4, B and K are constants. This curve has been found to accurately describe the
shape of the PV curve above 50% of total lung capacity (TLC), but parameters are

significantly altered if the curve is fit below this volume (21).

The parameter K (Eq. 2-1) has been found to be increased in patients with
emphysema (45,48,120) and to be decreased in fibrosing alveolitis (163). Emphysema is
characterised as a loss of tissue resulting in an enlargement of alveolar airspaces, an
increase in TLC and a decrease in elastic recoil (44). There are two forms of emphysema
— panlobular emphysema, in which the disease is present in an essentially homogeneous
manner throughout the lung, and centrilobular emphysema, which has a more
heterogeneous development usually concentrated near larger airways. Emphysema is one
of the conditions classified as a chronic obstructive pulmonary disease (COPD). COPD is
characterised by very long passive expiratory time constants due to chronic or recurrent
increases in resistance (obstruction) to airflow. Emphysema is most commonly linked
with a history of smoking, although persons with alpha, antiprotease deficiency (a genetic

condition) have a 70 to 80% risk of developing the disease as well (141). In emphysema
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the increased resistance is irreversible and is mostly concentrated in the peripheral
airways (127). By contrast, fibrosis is an example of a restrictive disease. These are
diseases in which vital capacity is reduced. Fibrosis is associated with widespread
inflammation, an increase in the concentration of interstitial fibre constituents, and
airspaces which are reduced or even filled in with inflammatory products (33). Both
emphysema and fibrosis characteristically occur inhomogeneously; some areas of the

lung can be greatly affected, while other regions appear normal (44).

The parameter K in Eq. 2-1 has also been shown to be independent of lung size
and sex (22,45) and to be related to age. Morphologically, X has been shown to be
directly related to the mean linear alveolar intercept, L,, between alveolar walls of
peripheral airspaces (48,49). Haber et al. (49) found that L,, measured in lungs from dogs,
cats and rats, was linearly related to K obtained from air-filled lungs, but that there was
no relation between L, and K obtained from saline-filled lungs. This implies that
alterations in K due to disease are linked to changes in surface tension - insofar as saline-
filling assesses the tissue contribution to elastic recoil. K was also found to be linearly
related to L, in emphysematous human lungs obtained post-mortem (48). However, as
pointed out above, due to the mechanical coupling between surface tension and tissue
stress under air-filling conditions, a portion of the component of elastic recoil due to
surface tension may originate from changes in tissue distensibility. It has also been shown
that in patients with emphysema, specific lung elastance calculated as a function of
inflation pressure is consistently greater than that of normals (91). A tissue based change
in mechanics was found by Sugihara et al. (150) who reported that alveolar walls taken
from lungs with emphysema showed a decrease in maximum extension compared to
those taken from normal lungs. They assumed this to be due to a increase in the resting

length of alveolar walls in the emphysematous lungs.

The amounts of collagen and elastin and their spatial arrangements in the lung are
altered in both emphysema and fibrosis. Pathologic studies in humans have confirmed the
elastic fibre network as the site of major lesion in human emphysema and the disease is

often associated with the degradation of elastin components by proteolytic enzymes
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released from inflammatory cells (141). In smoke-induced emphysema in guinea pigs,
elastin volume concentration has been shown to be increased, while collagen volume
concentrations were initially reduced and then increased due to resynthesis (178).
Elastase-induced lung injury is often used as a model of emphysema, as it reproduces the
characteristic increases in L,, and decreases in total alveolar surface area (128,179).
Elastase-induced lung injury has also been shown to cause long term changes in elastin
and collagen concentrations in hamsters (68). Mercer et al. (104) have shown that elastase
injury in hamsters introduces gaps in the normally continuous band of elastin that
encircles alveolar entrance rings. In human lungs with fibrosis, airspaces are replaced
with fibrotic tissue, and the remaining alveoli show an increased wall thickness (167).
Similar results have been observed in bleomycin-induced and radiation-induced fibrosis

in baboons, where elastin concentrations were increased above normal (33).

As well as fibre concentration after exposure to digestive enzymes, the
mechanical properties of lungs or lung tissue exposed to either elastase or collagenase
have been measured. Koo et al. (75) measured the mechanical properties of in vivo
hamster lungs exposed to pancreatic elastase or collagenase. After 21 days of treatment
with elastase the lungs showed a marked increase in TLC and a shift in the P¥ curve to
the right, indicative of reduced elastic recoil. However, with collagenase, only slight
increases in TLC were observed. However, the same group found that, soon after
instillation of collagenase in hamster lungs in vitro, TLC increased markedly, while
elastase had little effect on TLC (70). The difference in response was therefore attributed
to remodelling before the in vivo measurements. Sata et al. (134) measured the length-
tension characteristics of elastase and collagenase strips over a wide range of strain. They
modelled the elastic behaviour using a bi-exponential function, the first exponential
accounting for the low strain and the second accounting for the high strain portions of the
stress-strain curve. They showed that the exponent of the first exponential was altered
only by the elastase treatment while the exponent of the second exponential was altered

only by the collagenase treatment.

Chapter 2. Literature review 12



2.2 Modelling lung mechanics

2.2.1 Overview

Two approaches in general have been applied to modelling lung behaviour:
models which attempt to reproduce static elastic behaviour, and models to describe the
dynamic mechanical impedance. Very few models attempt to incorporate both aspects
simultaneously. The principal goal of modelling lung mechanics is to gain insight into
underlying causes for observed behaviour. There are two main paradigms of modelling
which can fulfil this task: forward modelling and inverse modelling. Forward modelling
is essentially the construction of a model whose constituent elements are given defined
properties, and the model behaviour is compared with observations of the system under
study. Inverse modelling consists of first devising a model structure, and then the
parameters of the model are chosen so that the model matches observed behaviour as
closely as possible. Both modelling approaches usually make use of a priori information
of the physiologic system in order to construct an appropriate structure. However, another
approach to modelling which makes very few assumptions about model structure is the
so-called 'black box' approach. The black box model embodies the relationship between
input and output empirically, but in general incorporates limited structural or functional

information about the system.

The structure of any model depends on the data it is meant to mimic. Since there
are many possible methods of measuring the mechanics of the lung, there are many
ditferent models. The following sections will give a brief summary of different modelling
approaches applied to the study of the respiratory system, with particular attention paid to
the lung and especially to models of the lung tissue. Models of the static mechanics have
principally been of the forward type, while models of lung dynamics have been mostly
inverse. As will be discussed, 'black box' models have only recently been introduced to
the study of lung mechanics, and offer certain advantages when the system under study

exhibits significantly nonlinear behaviour.
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2.2.2 Modelling the static mechanics

The static mechanics of the lung are determined by its elastic properties. The
elastic behaviour is the deformation in response to an applied stress, or alternatively, the
stress in response to an applied deformation. Many models attempt to generate bulk and
shear moduli which match observation. The bulk modulus of the lung is nearly an
exponential function of the pressure, and the shear modulus is nearly a linear function of

the pressure, with the bulk modulus much greater than the shear modulus (78).
The lung tissue as an elastic continuum

In 1970, Mead et al. (101) introduced the basic concepts of modelling the
parenchyma as an elastic continuum consisting of a mesh of interconnected membranes
idealised as a 2-dimenstonal network of springs. This concept was soon extended
mathematically by Wilson and Lambert (79,174) and later followed by a large number of
models with idealised geometries composed of substructural elements with specified
elastic properties. In most cases, the elements were assigned strain energy functions based
on measurements of tissue samples in vitro. By relating the bulk strain field to the strain
experienced by individual elements within the model, the resulting bulk deformation
behaviour was calculated. Many different geometries have been employed in this manner
such as cubes, (166), spheres (39,43), dodecahedrons (34,67,83) and circular line
elements (147). The strain energy functions employed in these models have all been
based on empirical fits to the stress-strain measurements of lung tissue. Wilson and
Bachofen (175) developed a model for the alveolar duct in which recoil pressure arose
from the combined effects of three terms: the extension of the tissue forming the alveolar
duct entrance rings, the direct effects of surface tension, and a term arising from the
distortion of the parenchymal geometry due to the action of surface tension on the tissue.
The model was capable of accounting for the PV curve between 40% and 80% of TLC,
but failed to agree at higher volumes, presumably due to the neglected role of the alveolar
septal tissue. This model, like others (34,39,43,80,83,84,175), successfully described the
uniform expansion of the lung, but overestimated the resistance to shear deformations.

Stamenovic and Wilson (147) extended the model of Wilson and Bachofen to describe

Chapter 2. Literature review 14



nonuniform distortions and were able to reproduce appropriate estimates of the shear

modulus between 20% and 80% of TLC.

Other models similarly based on idealised geometric structures, but which do not
make use of strain energy functions, are those of Budiansky and Kimmel and colleagues
(15,72). These models assumed linear incremental stress-strain behaviour for the rod
elements of a pin-jointed dodecahedron, and treated the lung as an elastic continuum in
which the macroscopic strain field is identical to the strain experienced by the sub-
structure. Most of these models assumed that surface tension was incorporated into the
loading of the sub-elements. These models were made of statically indeterminate
structures, that is, they required a prestress to resist collapse. This corresponds to the
normal condition of the lung which is always under tension. These models represent a
significant advance since their resistance to shear deformation depends primarily on the
inflation pressure as has been observed experimentally, rather than on the constitutive
properties of the elements (144). However, each model (15,72) represents the mechanical
behaviour of the lung in terms of a single alveolus, and thus does not incorporate effects

due to parenchymal interdependence (101).
Finite element models

West and Matthews (172) were the first to formally apply the finite element
method to the analysis of the lung. They examined the three dimensional deformations
and stresses induced within a vertical wedge of lung by its own weight. The elements of
the model were assigned nonlinear elastic properties similar to those obtained from tissue
strips (129). Liu and Lee (85) extended the model and obtained results more closely
matching the measured data. Other models employed finite element methods and
demonstrated the necessity of explicitly including surface tension (67,164). Some models
of this type have attempted to incorporate physiologic variability by the use of
stochastically distributed substructures. Frankus and Lee (34) constructed a
dodecahedron-based model with faces upon which were distributed straight, randomly
oriented fibres which could be simplified to that of an ‘equivalent fibre’, with stress-strain

properties like that of alveolar wall. Other models which make use of the finite element

Chapter 2. Literature review 15



method are discussed below (28,77,80).
Fibre recruitment models

The idea that elastin determines the stress-strain behaviour of lung parenchyma at
low strains while collagen takes over as strain increases is well known, first having been
introduced by Setnikar (137) and extended later by Mead (98). More recently there have
been a few studies that explore this idea in a quantitative fashion. For example, Fung
(41.42) used a linear expression for the constitutive equation for elastin together with an
exponential function for collagen. The two fibre types were assumed to be distributed
probabilistically according to observed distributions of fibre diameter and curvature. This
gave a tissue strain energy function from which the incremental material constants were
calculated according to the theory of continuum mechanics. Suwa et al. (161) ascribed the
origin of the curvilinear stress-strain relationship of lung parenchymal strips to the
reorientation of the constituent fibres, where a fibre does not support load until oriented
in the direction of the applied strain. Models based on the gradual recruitment of kinked
or 'wavy' fibres were proposed by Soong and Huang for human alveolar wall (143), and
by Decraemer et al. (27) for various biological soft tissues. Lanir (81) developed an
analytical expression based on fibre recruitment which was shown to be compatible with
the quasilinear theory of viscoelasticity (described below) — but only with extension, not
during decreasing stretch. These models consisted of only one fibre type, elastic collagen,
and assumed a specific functional form for the distribution of fibre lengths rather than
estimating the distribution from the available data. For general soft biological tissues of
more than one fibre type, Lanir (81) derived relations which describe the force extension
behaviour of fibrous tissues from summation functions over the orientation distribution
and waviness distribution functions. However only a simplified version in which the
fibres were lumped into an equivalent fibre and isotropically and uniformly distributed
was considered for lung tissue (80). Brown et al. (14) studied ligamentum propatagiale
from birds and discussed a model in which the collagen fibres had distributed initial
waviness, in parallel with elastin fibres. Although they did not develop the model

mathematically, they concluded that it may represent an important factor in distensible
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tissues, but it was probably not the predominant mechanism in ligamentum propatagiale.
Based on the model of Kowe et al. (77), Denny and Schroter (28) recently constructed a
modei for the alveolar duct - including collagen and elastin fibres of 3 different diameters
for different alveolar locations - based on the densities of collagen and elastin fibres
found in dog lungs (117). They used a particular stress-strain relationship for the collagen
fibre bundles which they assumed arose from gradual recruitment of tensed collagen
fibres within a bundle. They simulated the effects of elastase and collagenase which
disrupt the elastin and collagen networks respectively and found qualitative agreement

with the measured behaviour of Karlinsky et al. (70) (see end of Section 2.1.4).

2.2.3 Modelling lung dynamics

Measurement of the mechanical behaviour of the lung is most often obtained by
the measurement of pressures and flows at the airway opening. If the experiment is done
with the chest closed, the total respiratory system mechanics are determined including the
properties of the chest wall as well as the lung. If intrathoracic pressure is recorded via
direct recording of the pleural pressure (1) or less invasively via the esophageal balloon
technique (13,108), transpulmonary pressure can be obtained. The alternative is to
conduct the experiment with the chest open (in animals, or in humans during open chest
surgery), so that the surface of the lung is at atmospheric pressure, or to use excised
lungs. Flow or pressure perturbations are applied most often at the airway opening
(9,31,52,66,121,122), and sometimes at the body surface (30,47,123,159), or even at the

alveoli (6,8,24,109), and the resulting pressure or flow is recorded.

Like the excised lung tissue described above, the intact lung exhibits complex
mechanical dynamic behaviour that depends on frequency, perturbation amplitude, and
lung volume (or operating pressure). The type of model used to characterise the observed
behaviour depends in large part on the type of perturbation applied. Perturbations that
have been used range from quasi-sinusoidal ventilation (82), sinusoidal perturbations of

single or multiple frequencies (10,30,66,159), step changes in flow (9,73,139), broad
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spectrum random noise (23,31,105). and pseudo-random noise with specifically chosen

frequency components (52,53,89,121,157,160).
Linear models

The simplest and still the most popular model used to represent the passive
dynamic mechanics of the respiratory system is the single compartment model with

govemning equation
P=RV +EV +K, (2-2)

where P is pressure usually at the airway opening or transpulmonary pressure, R
represents resistance, £ represents elastance, ¥ and ¥ represent volume and flow
respectively, while K, is baseline pressure. This model is depicted in Figure 2-1 and
features R as an idealised linear resistance gas flow (pipe), and E as an idealised linear
elastance (balloon). This model is only appropriate for a single frequency and a single

operating pressure and oscillation amplitude.

E

Figure 2-1. Single compartment linear model of the respiratory system, where R

represents resistance and E represents elastance.

The frequency dependence of R and E stimulated Mount in 1955 (111) to
introduce additional parameters in a rheologic model. His model contained an additional
resistance and elastance connected in series to account for viscoelastic properties which

he attributed to the tissues (Fig. 2-2A). In Figure 2-2A the lumped element resistances
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and elastances are represented respectively by dashpots and springs. The spring and
dashpot in series is commonly known as a Maxwell element, while the parallel
combination is known as a Voigt element. Other models for lung mechanics based on
ventilation ithomogeneity have been proposed, such as two balloons and pipes connected
in parallel (119) or in series (99) (Fig. 2-2B and 2-2C). However, as Similowski and
Bates (138) point out, the models of Figure 2-2 are mathematically equivalent. By using
alveolar capsules in dogs, Bates et al. (11) showed that the tissue rheology model of
Mount (111) was the most appropriate for the low frequency behaviour of the normal
respiratory system. At higher frequencies it becomes necessary to add inertive elements
to the models. In 1956, Dubois et al. (30) proposed a six element model which included
inertances representing the inertia of the gas and tissues in a model for the respiratory
transfer impedance. As the frequency range of perturbation studies increased to between 4
and 64 Hz, more complex linear models consisting of nine elements were postulated such
as those of Peslin et al. (121). However, parametric models of this type pose great
difficulties as there can be several canonical realisations, each of which can reproduce the
data, but would invoke different physiological interpretations. Also, the requirements

imposed on an experiment to obtain statistically reliable parameter estimates are quite

stringent (88).
A B C
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Figure 2-2. Two compartment linear models: A) rheologic model. B) parallel gas

redistribution model C) serial gas redistribution model.

Chapter 2. Literature review 19



Modelling of the respiratory system in the low frequency range near the breathing
frequency has been of considerable interest because of its obvious physiological
relevance. [n this range, much of the impedance to breathing is due to the tissues. Indeed,
through the use of the alveolar capsule technique, Ludwig et al. (86) showed that tissue
resistance can account for most of the lung resistance in dogs at low frequencies. This
was particularly true at high lung volumes, where the tissue resistance accounted for 69-
86% of the total lung resistance at 1 Hz oscillations. At a lower frequency. 0.5 Hz, the
percentage of total lung resistance due to the tissues was even greater, and at a higher

frequency, 2 Hz, the percentage was less.

Similar to the behaviour of excised lung tissue specimens, the lung displays stress
adaptation in response to step changes in volume (57,58). In 1970, Hildebrandt (58)
measured the stress adaptation of cat lungs filled with both air and saline, and found that
the stress-relaxation following a step change in volume decayed with the logarithm of

time as
P(t)/AV = A4, - B, In(1), (2-3)

where AV is the size of the step change in volume, and 4, and B, are constants. The
frequency domain version of this equation was found to accurately predict the oscillatory
behaviour between 0.125 and 5 Hz in dogs (52), and between 0.01 and 1 Hz in humans
(151). Hildebrandt (58) modelled this behaviour with lumped elements using an infinite
series of spring-dashpot pairs (see Fig. 2-3 below), for which a hyperbolic distribution of

time constants has been shown to be able to predict Eq. 2-3 (40).

Fredberg and Stamenovic (37) noted that the ratio between the dissipative and
elastic parts of lung tissue impedance were well conserved across species, and was nearly
independent of frequency and oscillation amplitude. Accordingly. they introduced the
structural damping hypothesis, which relates the dissipation and elastic storage of energy

through a single constant which they called tissue hysteresivity, n, where

n=oR/E . (2-4)
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This hypothesis implies that energy dissipation and storage in lung tissue are intimately
coupled. They also showed that Eq. 2-3 leads to a weak negative frequency dependence
of n, and stated that this was not incompatible with observations from Hildebrandt

(37.58).

As an alternative to Eq. 2-3 to describe the dynamic behaviour of the tissue strip,

Hantos et al. (55) introduced the constant phase model

G —ifl,

a, K

Z(w) = (2-3)

where Z(w) is the mechanical impedance of the lung tissues, G, and H, are coefficients of

damping and elastance, i is the positive square root of -1, and
o, =(2/n)arctan(H, / G,). (2-6)

Both elastic and dissipative parts of Z(») follow the same frequency dependence, and the
phase is independent of frequency. Note that this is a two-parameter model like equation
2-3. This model was used in other studies as a tissue compartment for the lungs and chest
walls of cats (51) and for dog lungs (54,90,125). In the time domain, the step response of

the constant phase tissue model is
P()/AV =ct™, (2-7)

which is essentially identical to the description of stress-relaxation in elastic balloons
given by Hildebrandt (57). Equation 2-7 is almost equivalent to Eq. 2-3, provided that the

constant d is small (8,154).

Eq. 2-7 is perhaps more compatible with the structural damping hypothesis (Eq.
2-4) than is Eq. 2-3, since in the frequency domain version of Eq. 2-7 (Eq. 2-5), n is
simply the ratio of G, to H,, which is completely frequency independent. Suki et al (154)
developed a mathematical framework for the basis of the constant phase model. They
showed that one could develop this model by replacing ordinary time derivatives with
fractional derivatives, and introduced a new constitutive element called the springpot
based on the fractional calculus as defined by Koeller (74). The stress response of the

springpot is determined by the fractional derivative of the strain which incorporates
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dependence on the past strain with a fading memory, rather than the instantaneous
derivative of integer calculus. A physical basis for this model was provided from models
of polymer viscoelasticity, which take into account the complexity and statistical nature
of the motion of long polymer chains (154). In particular, models of branched polymers

are able to predict stress relaxation of the form of Eq. 2-3.
Nonlinear models

Ever since the first quantitative experiments on respiratory mechanics were
performed by Fritz Rohrer in the period from 1915 to 1925 (118). nonlinear phenomena
have been recognised as an important aspect of lung behaviour. Rohrer proposed the

nonlinear flow model for a pressure drop across the lungs

P=KV+KV

7. (2-8)

where K, and K, are constants. K, represents laminar resistance in a rigid tube to flow,
while K is a second constant related to the density of the gas, and represents the degree
of nonlaminar flow in the airways (98). However, interest in modelling the nonlinear
aspects of the tissues did not arise until much later, due likely to improvements in ease of
analysis with the onset of computer techniques. Hildebrandt (58) noted that by employing
the Fourier transform of Eq. 2-3, the stress relaxation data was not able to predict the total
amount of hysteresis observed when the same lungs were oscillated at different
frequencies. He concluded that additional energy was being dissipated plastically, and
introduced a parallel viscoelastic plastoelastic model (Fig. 2-3) in order to account for the
discrepancy. The viscoelastic compartment consisted of an infinite series of Voigt
elements (with additional! series springs), while the plastoelastic compartment was a
series of Prandtl bodies (with additional series springs), each consisting of the parallel
arrangement of a spring and coulomb 'dry friction' element. The dry friction elements
behave nonlinearly as they only move when a certain yield force is reached, upon which
they dissipate energy at a rate independent of motion. This differs from the dashpot which
is a linear element and dissipates energy proportional to the rate of motion. The

Hildebrandt model (58) was tested by Stamenovic et al. (144), who concluded that both
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plasticity and viscoelasticity were important determinants of the mechanical behaviour of

the respiratory tissues at low frequencies.

viscoelastic

/ 1 -
A 1 B
100 (o)
; 000 500 000
/
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A

plastoelastic
Figure 2-3. Hildebrandt nonlinear model for lung mechanics, consisting of an infinite
series of Voigt bodies with a distribution of time constants, in parallel with an infinite

series of Prandtl bodies with a distribution of yield points.

More recently Stamenovic et al. (145) developed an improved model which
reduced the number of fitted parameters from 8 to 4. They found that the model fitted
stress relaxation and oscillation data from human chest wall fairly well, but did not
account for all the amplitude dependence observed in excised cat lungs. An important
difference from the earlier study was that the plastoelastic and linear viscoelastic
compartments (similar to those in Fig. 2-3) were mechanically coupled in a serial
arrangement, rather than mechanically decoupled (parallel). A feature of this model is
that amplitude and frequency effects are not separable, whereas they are in the
Hildebrandt model. However, Suki and Bates (155) realised that the combination of
plastoelastic and linear viscoelastic components was not necessary to explain the
rheologic behaviour of lung tissues. Nonlinear viscoelasticity could, in principle, provide
additional sources of dissipation not possible with linear viscoelasticity. Therefore, they
developed a nonlinear viscoelastic model which could account for the amplitude-
dependent behaviour observed in dog lungs subjected to sinusoidal perturbations (155).

This model was based on the Volterra series, which is discussed in the following section.
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Mijailovich et al. (107) developed a viscoplastic model that provided a
mechanistic basis for the empirical model proposed by Hildebrandt (58). The viscoplastic
model was based on a single fibre interacting with its neighbours. A fibre was modelled
as a linear elastic element, which may slip once a certain yield force is achieved. Once in
motion, the fibre dissipates energy both plastically (independent of strain rate) and
viscously (proportional to strain rate). The model predictions were in qualitative
agreement with some of the observed rate and amplitude dependencies of E and 7.
However, not all the amplitude and frequency dependencies of n were accounted for, and

the predicted relaxation response approached Eq. 2-3 only over a limited range.

2.3 Wiener and Hammerstein block structured modelling

The Wiener or Hammerstein models (Figure 2-4) consist of static nonlinearities in
series with dynamic linear systems. In the Wiener model the linear dynamic block is
followed by a static nonlinearity, while in the Hammerstein model the blocks are
reversed. In their most general form these models are nonparametric, i.e. a 'black box'
which does not represent anatomical features of the system it describes. However, Wiener
and Hammerstein models can also be represented in parametric form, if appropriate a
priori information about the system is available. Only parametric forms of Wiener or

Hammerstein models been applied to respiratory mechanics.
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Figure 2-4. Wiener and Hammerstein block structured models. The Wiener system
features a linear dynamic system followed by a static nonlinearity, while the
Hammerstein system has the order reversed. See text in Section 2.3.2 for explanation of

symbols.

2.3.1 Block structured modelling

The Wiener and Hammerstein models are but a small subset of a class of
nonlinear models that can have Volterra series representations. The Volterra series relates
the output y(f) of a system to its input x(f), via cross-correlations of system functionals

with the input of increasingly higher order as

y() = b, + [i@)x( —t)dn + [ [y (e,7)x(0 =T Dx(t =1, )t dt, +
0 00 , (2-9)

D

]""J.hm(T,,-"‘tm)[x(t —T,)x(t —Tt,)--x(¢ —1:,t,)]zitl---d'rm

0 0

where h,, h;, ... h, represent the Volterra series kemels of increasing order, and it is

assumed that x(¢) is zero for ¢ < 0. Note the integrals need only be evaluated to some time
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greater than the memcry length of the system kernels. The Volterra series can describe
any physically realisable nonlinear system with fading memory which is single input -
single output and time invariant. It cannot however describe systems that exhibit infinite
memory behaviour such as plastic hysteresis (76). As special cases of the Volterra series,
the Wiener or Hammerstein models also share this limitation and can only represent
systems which contain static nonlinearities in series with dynamic linear behaviour, but
they cannot model systems with complex dynamics in the higher order kernels. In a
Hammerstein model, the higher order kernels may be non-zero only along the main
diagonals (76), while in the Wiener model, the kernels may have off-diagonal
components. If the system under study is more complex, sophisticated approaches may be
used to identify the higher order dynamics. An excellent review of current methods to
identify more general systems with Volterra series representations can be found in the

Ph.D. thesis of Westwick (173).

2.3.2 System identification techniques

Linear systems

The output of a physically realisable linear system to an arbitrary input can be
completely represented by the convolution of the input with the system impulse response

as
y(t) = a]-h('c )x(t —t)drt, (2-10)

where h(t) is the impulse response, the lower limit of zero in the integral indicates the
system is causal, and the upper limit need only be as great as the length of the impulse
response function. The input-output cross-correlation ¢,,, can be shown to be related to the

input auto-correlation ¢, and A(t), expressed here in discrete time as

T-1
00 (T) =AY A(T)0. (4, -7 ,), (2-11)
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where Ar is the sampling interval, and ¢, is calculated for the same memory length 7. If
the input is white, then the ¢, is proportional to the 4(z). If the input is non-white, A(t)

can be solved for directly using Toeplitz matrix inversion (62), written compactly as
h(t)=9¢,/0. - (2-12)

Other methods exist for identifying linear systems in parametric form; however I am
primarily interested in the non-parametric identification of the linear blocks within the

Wiener or Hammerstein models.
Wiener model

Hunter and Korenberg (63) developed an iterative identification technique for the
Wiener model, which is shown in the upper panel of Figure 2-4. In their technique, the
linear impulse response function 4,(t) is identified between the input x(¢) and output y(¢)
in discrete time using Toeplitz matrix inversion. Next, the output of the linear block u,,(¢)
is generated using Eq. 2-11, and a nonlinear polynomial m,, is fitted in the least-squares
sense between u,,(f) and y(¢). The signal u,(r) is then re-estimated from y(t) through the
inverse of m,, and a re-estimate of A,(t) is fit between x(¢) and u,(¢). The intermediate
signal u,(t) is then re-estimated in the forward direction from x(f) and A,(t), and the
procedure is repeated until the improvement in the percent variance accounted for
(VAF%) between y(¢) and the predicted model output in successive subsequent iterations

falls below some desired level. The VAF% is calculated as

VAF% = 100| 1 - Y& ~5(1)) 2-13)
var(y(1)) )’

where var() is the variance of the bracketed quantity and y(¢) is the model predicted
output. The above scheme identifies A4,(¢) and m,, to within a scale factor. That is, if h,,(¢)

and m,, are the solution to the system then so are A (t)/a and am,, for arbitrary a.
Hammerstein model

‘The block diagram for the Hammerstein model is shown in the lower panel of
Figure 2-4. The Hammerstein model fitting process is very similar to that of the Wiener

model. It is only summarised here and can be found in greater detail in Hunter and
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Korenberg (63). Essentially it begins with estimation of an inverse of the impulse
response function w! #(t) as if the system under study generated x(f) from y(f). By
convolution of y(r) with h'[,,(t) via Eq. 2-11, an estimate of the intermediate signal u,(¢) is
obtained and a polynomial m, is fitted between x(z) and u,(t). Estimaies of A,(t) are
generated via Eq. 2-12 applied to u,(r) and y(¢). The process iteratively estimates h'l,,(t),
u,(t) and m,, using the same convergence criteria as for the Wiener model. Again, similar

to the Wiener model, the estimates of 4,(f) and m,, are known to within a scale factor.

2.3.3 Wiener and Hammerstein models applied to lung mechanics

Only recently has attention been paid to block structured models of the Wiener or
Hammerstein type for describing biomechanical systems. The Hammerstein model has
been successfully used in parametric form to describe the length-extension behaviour of
several biological tissues by Fung (40), and to describe oscillation dynamics and step
responses of diaphragm strips (115) and parenchymal strips (64). The model of Fung is
known as the quasilinear viscoelastic model, since for a step change in the input, the
amplitude dependence of the response is nonlinear and elastic while the time-dependent
relaxation is linear. The implementation of quasilinear viscoelasticity by Navajas et al.
(115) consisted of an exponential function of strain for the elastic response and time-
dependent behaviour modelled according to the Hildebrandt linear step response, Eq. 2-3.

Thus the elastic response is

c =0, et (2-14)

r

where o is the stress, «, is a parameter of the model, o, is the stress at an arbitrary
reference stretch A=A, and A is defined as the ratio of the tissue length to the unloaded
length. The stress response to a step change of AA amplitude is from the Hildebrandt

model (Eq. 2-3) leading to
s(t)=06,=c,(* -)(1-y,In() (2-15)

where o, is the stress prior to the step and y, = B,/4, from Eq. 2-3. Based on the Fourier

transform of Eq. 2-15, the response to sinusoidal inputs was predicted and compared to
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the measured oscillatory response in terms of R and E, determined as per Fredberg and
Stamenovic (37). This model fitted the data fairly well, but a slight decrease in o was
observed with increasing step or oscillation amplitude, at odds with Eq. 2-15. This weak
dependence on AA may have arisen due to plasticity in the material (115). Suki et al.
(160) used the Wiener and Hammerstein models as part of a block structured forward
model used to simulate the effects of nonlinearities in respiratory mechanics. The model
consisted of two parallel paths, a nonlirear airway compartment in parallel with a tissue
compartment. The tissue was modelled as either a Wiener or Hammerstein system,
consisting of a fourth order polynomial in series with a Kelvin body (mechanically
parallel spring and dashpot in series with an additional spring). To my knowledge,
Wiener and Hammerstein models were first used in identification of lung mechanics in
vivo by Suki et al. (160). They measured lung mechanics in open-chested dogs before and
after histamine infusion using sparse pseudo-random inputs. Several different model
structures were tested in which the mechanical response was partitioned into separate
blocks for the airways and tissues, connected in series or in parallel. Each block was
given a parametric functional form and the parameters were fitted in a weighted least-
squares sense. For the frequency and amplitude ranges they studied, a model consisting of
a linear airway compartment in parallel with a Wiener model for the tissues provided the
best fit to the data. The linear block of the Wiener model was the constant phase model
(Eq. 2-5), while the polynomial nonlinearity was 3rd order. In addition, they found that
modelling the airway compartment as a Rohrer nonlinearity (Eq. 2-8) did not improve the

model performance compared to using a simple linear model for the airways.
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3. One-dimensional elastic properties
of the lung tissue strip

3.1 Introduction

The nonlinear stress-strain characteristic of the tissue plays a very significant role
in the elastic recoil of the lung at normal breathing frequencies (148). It is commonly
agreed that the main stress-bearing constituents of lung tissue are collagen and elastin
fibres (135,144). As discussed in Section 2.1.2, these fibres differ significantly in their
mechanical properties with collagen being 3 to 4 orders of magnitude stiffer than elastin.
Furthermore, elastin is stretchable to greater than 250% of its original length before
rupturing, while collagen can stretch merely 1-3%. The origin of the curvilinear stress-
strain behaviour is thus generally thought to be one of collagen fibre recruitment. That is,
elastin is responsible for load-bearing at low strains when much of the collagen is 'wavy'
and therefore not contributing to the tension. As strain increases, the collagen fibres
become straight and so progressively take up more load, thereby stiffening the tissue.
However, it is currently unclear how to precisely translate alterations in lung tissue

constituents into changes in tissue mechanical properties.

In this chapter, we develop a model for uniaxial static elastic stress-strain curve of
the lung tissue strip. The model is based on the large differences in the mechanical
behaviour of the stress-bearing constituents. We attempt to construct as simple a model as
possible, but which still leads to the observed elastic behaviour. Thus, the collagen fibre
is considered as a wavy string which does not extend once straight, and the elastin is
represented as a linear Hookean spring. The collagen and elastin fibres are assembled in a
series of string-spring pairs, which may stiffen upon extension only if we permit the
relevant parameters (spring stiffnesses and the straightening length of the strings) of the

elements to be distributed. Qur interest therefore, is whether the model contains sufficient
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features to describe the data, and if so, what are the forms of the element property
distributions. To gather data for the model, we also measure the stress-strain properties of

dog lung tissue strips submerged in an environmentally controlled tissue bath.
3.2 Methods
3.2.1 Analytic model development
kl k2 k n-1
M O - Y YT
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Figure 3-1. The series model of parallel spring-string elements extended to length, L

n-

g

with force, F. The springs are identical with stiffness &, while the strings each have an

associated stop length / at which further extension is not permitted.

Consider the model of Figure 3-1. The model is constructed from a series of
spring-string pairs where the springs represent elastin fibres and the strings represent
collagen fibres. Each spring-string pair (unit) begins at resting length, with no load and
flaccid strings. As the model is extended, each spring resists the applied force in a linear
Hookean manner until its associated string becomes taut. The strings are inextensible, so
further extension of the unit is impossible. We define the maximum extension of a unit as
its ‘stop length’. This is thus the difference between the maximum length of the unit and
the resting length of the spring. As the model is stretched, the number of units that have
reached their stop length increases, thereby progressively increasing the slope of the
stress-strain curve. We will assume that the spring-string pairs are small and numerous so
that their stop lengths and spring constants can be described in terms of continuous

distributions.
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Distributed stop length model

We consider the model of Figure 3-1 with identical spring constants for each
spring-string pair, while the stop lengths are distributed. At rest there is no load on the
model and its resting length is L,- When the model is extended to length L > L, all the
units with stop lengths less some value /, will have become stopped. The length of the

model is then the sum of 3 terms,
L=L+ L +L, (3-1)
where L, is the combined extensions of all the stopped units, and L, is the length

contribution of the remaining units. The stop lengths, /, are distributed according to a

density distribution N(/). Eq. 3-1 becomes
I, £
L(=1L, + j IN(Ddl +1, [N(Dd. (3-2)
0 1

In the third term representing all those units which are not stopped, each unit is at length
1, since all k& are identical and all the units of the model share the same force, F. As the

model is lengthened, /, increases and more units become stopped. Differentiating, we

have
dL 7
— = |N(Ddl, 3-3
i I 0 (3-3)
which gives the model compliance
ai _4, [N, (3-4)
dr|, dF;

where dl /dF is the compliance of the string-spring unit that has just become stopped. We

have defined this compliance to be the same for all units, thus

d 1
° — '-_5
dF & (3-5)

Differentiating Eq. 3-4 with respect to /, gives
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- dFLdI,, dF|, J

(3-6)

Recognising that this is true for every value of /,, and substituting in for 4/ /dF from Eq.

3-5 we have

, d*L

N(D = -k . 3-7
N(l)=-k e (3-7)

Eq. 3-7 allows us to calculate M(/) to within the arbitrary elastic constant £ from

measurements of tissue force and length.
We note that Eq. 3-5 substituted into Eq. 3-4 and evaluated for /, = 0 gives the

initial slope of the length-tension curve. Thus

L
dF

lrﬂ
— [Nal
|

X
k

, (3-8)

where X is the total area under the stop length density distribution. We have no guarantee
that X will be finite, so we merely ensure that the upper limit of the integral in Eq. 3-8 is
at least as great as the maximum extension of the tissue generating the data to which Eq.
3-7 is applied. In this chapter, we use an upper limit corresponding to a strain of 2 and a

value for X of 10000, thus defining a value for £.
Distributed stiffness model

An alternate model based on Figure 3-1 can be developed in which the stiffnesses
are distributed, but the stop lengths are identical for all spring-string units. Let M(k)

represent the stiffness density distribution. Eq. 3-1 now becomes

M(k)

L(Fy=L_+1 j M(k)dk + F j (3-9)
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where £, is the stiffness of that unit which has just become stopped. Differentiating with

respect to the force, we get the compliance of the model

dL| T M(k) X
=i _J P (3-10)

Differentiating again with respect to &, gives

(ar| ) Mk,

(2]

Y (3-11)

)

Since all units of the model experience the same force, equal to the force of the unit

d (dF aL

which has just reached its stop length, we have

F=kK]l. (3-12)
Consequently
;": =1 (3-13)

o

Substituting Eq. 3-13 into Eq. 3-11 and recognising that the result holds for all values of

k, gives

d’L
M(k)=-kl— . 3-14
(k) T (3-14)

Eq. 3-14 allows us to calculate M(k) to within the arbitrary stop length constant / from

measurements of tissue force and length.

We note that the maximum extension L, .., is given by

5.max

L. =1 oj M(lc)dkv Gu15)

=Y
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where Y is the total area under the stiffness distribution. Similarly to the case for the stop
length distribution, we have no guarantee that ¥ will be finite, so we fix the upper limit of
the integral in Eq. 3-15 such that the maximum strain is 2 when Y has a value of 10000

thus determining /.

3.2.2 Experimental methods

We obtained a tissue strip from each of 5 different degassed dog lungs. The
preparation and testing apparatus are also described elsewhere (93). Briefly, sub-pleural
strips were taken from the left lobes which had been rinsed several times by injection and
withdrawing of Krebs-Ringer solution into the bronchi with a syringe, and the pleura
removed. The strips were cut to L, = 2.80 + 0.18 cm, with a cross-section, 4, of 0.230 +
0.025 cm’® (means + std. dev.). Using a large length to width ratio (28 mm to ~ 4 mm)
minimised the effects of distortion effects at the tissue ends. Unstressed length was
measured with a vernier calliper in the tissue bath prior to attachment, and 4, was
determined from the mass and an assumed density of p=1.06 g/cm3 as 4, = weight/(pL,).
Tissue samples were placed in a 220 ml tissue bath (Fig. kept at 37°C in continuously
circulating Krebs-Ringer solution (in mM: 118 NaCl, 4.5 KCI, 25.5 NaHCO,, 1.2
MgSO0,, 1.2 KH,PO,, 5.6 C¢H,,04, 2.5 CaCl,; pH 7.4) bubbled with 95% 0, and 5%
CO,. The gas diffuser and pump were placed in an overflow reservoir to minimise noise.
One end of the strip was glued with cyanoacrylate to a semiconductor load cell attached
to a wall of the bath. The load cell compliance was 75 pm at the full scale load of 50 g.
The other end was glued to the coil of a linear motor which was computer controlled. The
glue rigidly held the tissue to the surface of the attachments for forces far in excess of
those occurring during measurements. Length was measured with a linear variable
differential transformer (LVDT) attached to the motor coil. The frequency response of the
motor was flat to 30 Hz for amplitudes less than 0.4 cm peak-to-peak decreasing to 15 Hz
for 2 cm peak-to-peak. Force resolution was ~10 mg and length resolution was 13.6 um.
Signals were anti-aliased filtered to 10 Hz (8-pole Bessel), and sampled at 30 Hz on a 486
PC using a 12 bit A/D converter.
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Figure 3-2. Tissue bath setup. The position of the motor arm is measured via the LVDT
and servo controlled from the computer. The Plexiglas attachments are glued to the

tissue prior to attaching to the transducer and motor arm via the set screws.

The tissue strips were preconditioned several times by slowly cycling at 2% L, /sec
between resting length and 5 kPa tension. The length-tension curves were obtained by
straining the tissue at 0.5% L/sec from L, to greater than 100% strain. The length-tension

curves from the five tissue strips were fitted to the function
c =G(exp(s / H)-1), (3-16)

where G and H are fitted constants, ¢ is the tissue stress defined by the measured tension
F divided by A4,, and € is the axial tissue strain where € = (L - L,)/L,. Curve fits were
obtained using the Marquardt-Levenberg algorithm implemented in SigmaPlot v. 2.0
(Jandel Scientific, Corte Madera, CA).

To calculate the stop length distributions (Eq. 3-7) and stiffness distributions (Eq.
3-14) from stress-strain tissue data, the following relationship was used to convert from
stress-strain to length-tension:

de  A’d'L

= , 3-17
do’ I, dF G-17)

where L, and A4, are resting length and cross-sectional area respectively for each tissue

strip.
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3.2.3 Computer model simulations

We simulated the tissue models on computer by assigning spring and string
properties to 10000 units assembled in series. The length tension curves were calculated
as follows. Each unit ceases extension at the stop length of the unit, at which point the
force is equal to the product of £ and /, which we define as the ‘stop force’ of that unit.
The units are rank ordered in terms of their stop forces. The model is then extended from
rest and the total extension calculated in sequence at each stop force, thus forming a
piece-wise linear length-tension curve. At each point in this curve, the length of the
model is equal to the resting length plus the sum of the stop lengths of all stopped units
plus the extensions of the unstopped units. Note that in choosing 10 000 units, we match
the areas chosen for M(/) and M(k), thus permitting direct comparison with the analytic
results, as the number of units is the discrete equivalent of the areas under the continuous
density distribution functions. The simulated curves were converted from length-tension
to stress-strain units using the means of the tissue areas and resting lengths (Table 3-1).
These curves were then compared to a mean tissue stress-strain curve generated from the
mean values of G and H from the 5 tissue strips via Eq. 3-16. Stress-strain curves were
generated for the following different cases: (A) stop lengths varied among the 10 000
units while the stiffnesses were all identical, (B) stiffnesses varied while the stop lengths

were all identical, and (C) both stop lengths and stiffnesses varied among the units.
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3.3 Results

3.3.1 Application to lung tissue stress-stain curves

The 5 stress-strain curves from dog tissue strips are shown in Figure 3-3 with their
curve fits according to Eq. 3-16. The parameters of the curve fits and the root mean

squared (RMS) residuals for each curve are shown in Table 3-1.

stress (kPa)

1.5

Figure 3-3. The five tissue stress-strain curves recorded at 0.5% of resting length

extension per second (solid) with their curve fits according to Eq. 3-16 (dashed).
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tissue strip | A, (cm”) L, (cm) G (kPa) H RMS residual
(kPa)
1 0.229 2.8 0.254 0.300 0.108
2 0.204 3.0 0.199 0.326 0.028
3 0.240 2.6 0.137 0.249 0.163
4 0.207 3.1 0.164 0.348 0.086
5 0.272 2.6 0.390 0.297 0.036
mean 0.230 2.8 0.229 0.304 0.088
std. dev. 0.025 0.2 0.100 0.037 0.055

Table 3-1. The parameters from the tissue strips and the curve fits of the tissue strip
stress-strain curves to Eq. 3-16, with mean and standard deviations. The RMS residual is

the root mean squared error from the fits.

Applying the distributed stop length model via Egs. 3-7 and 3-17 to the stress-
strain Eq. 3-16, the stop length distribution is

LH
N =—T"—=. 3-18
) ( GA,)' (3-18)
[+
k
where £ is computed from Eq. 3-8 as
A,GX
k= 2GX (3-19)
L. H

The resulting N(/) for each tissue strip are shown in Figure 3-4, where the range of / over

which M(/) is plotted corresponds to the measured forces from the relation

I=—. (3-20)
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Figure 3-4. The stop length distributions N(/), calculated according to the model from

each of the curve fits to the tissue stress-strain curves.

Similarly applying the stiffness distribution model via Eq. 3-12, 3-14 and 3-17 to
Eqg. 3-16,

kHL /1
M(ky=—"""+7, (3-21)
(k+G4, /I)
where / is calculated from Eq. 3-15 as
e, L
[ = fY -, (3-22)

where €, is the maximum strain of the model. In this case & is our dependent variable and

is chosen to correspond to the range of available data from the relation

k=" (3-23)

The resulting stiffness distributions for each of the tissue strips are shown in Figure 3-5.

Chapter 3. One-dimensional elastic properties of the lung tissue strip 40



1.00

z
§ 0.10 |+
x
=
001 1 v 1 I 1
1E+0 1E+1 1E+2 1E+3 1E+4 1E+5

k (N/m)

Figure 3-5. The stiffness distributions M(k), calculated according to the model from each

of the curve fits to the tissue stress-strain curves.

3.3.2 Computer simulations

Figure 3-6 shows the mean experimental stress-strain curve with curves generated
using our 10000 element numerical model. For the distributed stop length model, values
for / were randomly assigned according to Eq. 3-18 with & chosen according to Eq. 3-19.

The range of / for the distribution function was between 0 and
L = Fy [k

GA, ;
= Texp(s,/H— 1)

where £ is the final force defined by €,= 2. In the distributed stiffness model stiffnesses
were distributed according to Eq. 3-21, with / from Eq. 3-22. The range of & was limited

between 0 and

Chapter 3. One-dimensional elastic properties of the lung tissue strip 41



k,=F, /I
(3-25)

GA, :
== exp(e, /H-1)

where again F is the final force defined by €,= 2. The distributions for the combination
model were created according to Egs. 3-18 and 3-21 respectively, with parameters altered
so as to more closely match the mean tissue stress-strain curve. Specifically, the value of
k in Eq. 3-18 and in Eq. 3-24 decreased by a factor of 2 over the distributed / model, and
the value of / of Eq. 3-18 and Eq. 3-25 was increased by a factor of 2 over the distributed

k model.
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Figure 3-6. The stress-strain curve according to Eq. 3-16 from the mean parameter
values for G and H from the five curve fits (solid), with the predicted curve from the
simulated stop length distribution model (dotted) and the predicted curve from the
simulated stiffness distribution model (dashed), and from the simulation of both stop
lengths and stiffness distributed with stiffnesses halved and stop lengths doubled (dash-
dot).
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3.4 Discussion

We have described a model for interpreting static elastic behaviour of the lung
tissue strip. Collagen is considered to be infinitely stiff compared to elastin. This is based
on the observation that the incremental Young’s modulus of collagen at typical strains is
6.8 x 10° dyn/c:m2 to 1.2 x 10" (40,56), while the Young’s modulus of elastin is 1 x 10
to 8 x 10° dyn/cm2 (41). In other words, collagen is 100 to 10000 times stiffer than
elastin. We assumed a linear length-tension relationship for elastin as has been used in
previous studies (2,28,41). This is justified because elastin exhibits its nonlinear
behaviour outside the range of physiological strains (0.0~0.7) (17,134). Other
components of the lung tissue which may contribute to its mechanics are the ground
substance, smooth muscles and other cells. Brown et al. (14) proposed that the
deformation of the ground substance may be a significant influence on the mechanical
properties of tissue, although this remains to be tested. Therefore since this effect is not
known, and since these substances have much smaller elastic constants than collagen and
elastin (41), we do not explicitly incorporate the effects of ground substance in our

model.

The idea that elastin determines the stress-strain behaviour of lung parenchyma at
low strains while collagen takes over as strain increases is well known, first having been
introduced by Setnikar (137) and extended later by Mead (98). More recently there have
been a few studies that explore this idea in a quantitative fashion. For example, Fung (41)
used a linear expression for the constitutive equation for elastin with an exponential
function for collagen. The two fibre types were assumed to be distributed
probabilistically according to observed distributions of fibre diameter and curvature. This
gave a tissue strain energy function from which the incremental material constants were
calculated according to the theory of continuum mechanics. Suwa et al. (161) ascribed the
origin of the curvilinear stress-strain relationship of lung parenchymal strips solely to the
reorientation of the constituent fibres where a fibre does not support load until oriented in
the direction of the applied strain. As described in Chapter 2.2.2, models based on the

gradual recruitment of ‘kinked’ or 'wavy' fibres were proposed by Soong and Huang for

Py
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human alveolar wall (143), and by Decraemer et al. (27) for various biological soft
tissues. These models consisted of only one fibre type, elastic collagen, and assumed a
specific functional form for the distribution of fibre lengths rather than estimating the
distribution from the available data. Brown et al. (14) and Denny and Schroter (28) also
considered the development of tension from distributed initial 'waviness' of collagen
fibres, but did not develop it mathematically. Qur approach however has a significant
advantage over all of the above studies in that it allows us to determine functional forms
for the distributions of elastin or collagen fibre properties from experimental stress-strain

data, rather than having to assume these forms a priori.

The distributions of elastin fibre diameters were measured in human pulmonary
alveolar walls of human lungs by Sobin et al. (142) and in alveolar mouths and ducts by
Matsuda et al. (97). The distribution of elastin diameters would be expected to relate to
our distribution of elastin stiffnesses, given that the stiffness of a fibre or fibre bundle is
proportional to its cross-sectional area for a fixed Young’s modulus. Thus a plot of the
stiffness distribution functions versus the square root of stiffness should resemble a fibre
diameter distribution function. This is borne out by the mean diameter distribution from
our 5 tissue strips shown in Figure 3-6, which demonstrates a striking similarity to the
data of Sobin (Fig. 3-8). Distributions of collagen fibre curvatures in the lung (97,142)
are also similar in form to our stop length distributions, although it is not entirely clear

how these two quantities relate.
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Figure 3-7. The mean stiffness distribution function (solid) with mean * std. dev.
(dotted) of the M(k)’s from Figure 4 plotted versus the square root of the stiffness &,
which is proportional to fibre bundle diameter. The axes are arbitrarily scaled to more

closely match the axes of Figure 3-8.

These morphological observations lend support to the model, but this does not
imply direct correspondence between the strings and springs of our model and the
individual components of actual tissue. The arrangement of the fibres in lung tissue is not
only serial, but is also parallel and interwoven, forming complex interconnections (103).
In fact, our stop length distribution may span multiple length scales. That is, the shorter
collagen fibrils may correspond to the smallest stop lengths, but as many fibres become
taut, a stop length may be formed from a cluster of collagen fibres (connected in parailel
and in series), all reorienting and straightening against the load. Thus the distribution of
stop lengths in our model may represent how the collagen matrix is arranged in a fractal

Se€nse.
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Figure 3-8. An example of a histogram of width of elastin fibre bundles in pulmonary
interalveolar septa of a 75-year-old male subject inflated to a transpulmonary pressure of

14 cmH,0 reproduced from Sobin et al. (142).

In our model, the properties of collagen and elastin are considered independently,
but their interaction is defined by their pair-wise coupling and serial connection. Mercer
et al. (103) showed that elastin and collagen fibres are interwoven, especially in the
alveolar entrance ring region, implying mechanical coupling of some kind. In fact,
Mijailovich et al. (106,107) considered this interaction to be responsible for the observed
dynamic viscoelastic properties of lung parenchymal strips in a model based on sliding
filaments. It may thus be that interaction along the lengths of the fibres is responsible for
dynamic tissue properties, while interconnections between the two fibre matrices with
fibre properties distributed in a fractal-like manner are responsible for the static

mechanics.

We note that for the large majority of the data (>95%) the distributions of Figures
3-4 and 3-5 are nearly power-law in form, manifest in the nearly linear tails where M) is
proportional to 1/7 and M(k) is proportional to 1/k. There are other examples of inverse

power laws exhibited by the lung. For example, the stress response of lung tissue strips to
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a step change in strain exhibits power law dependence with time. Also, when strips are
mechanically cycled over a range of frequencies the impedance amplitude is an inverse
power law function of the cycling frequency (12). The lung inflation process has also
been found to follow power laws, both as the magnitude of decreases in airway resistance
measured from the terminal alveolar space and as the times between airway opening
events (153). Complex systems with many varied elements interacting over a wide range
of length scales tend to exhibit some measure or multiple measures in a inverse power
law sense of the form 1/f b with 0 < b < 2, and fis usually a distributed frequency,
amplitude, or spatial measure. [n particular, the inverse power law function often arises as
the result of a cascade of smaller events that occur in a chain reaction (5,171). We
hypothesise, therefore, that the bulk stress-strain properties of lung tissue are due in large
part to some kind of fractal-like structure arising from biological self-organisation. This is
responsible for the 1/f character found for our collagen and elastin distributions, which is

a manifestation of general complexity.

In each of our models, the parameter of the element in parallel with the distributed
parameter is identical for the entire model. That is, for the distributed stop length model
the stiffnesses are fixed, while in the distributed stiffness model, the stop lengths are
fixed. This is clearly not realistic, considering natural physiological variability in real
tissue. We thus wondered how robust our models are to variability in the fixed parameters
of each model. We therefore generated an / distributed model as before (Eq. 3-18), but
with the stiffnesses chosen randomly from uniform distributions having mean & chosen as
in Eq. 3-19 and with ranges from 0 to 100% of the mean. We found that the stress-strain
curve changed only slightly, showing visible weakening from the mean tissue curve for
ranges greater than 50% of the mean (Fig. 3-9, dashed lines). Similarly, we generated a
stiffness distributed model as before according to Eq. 3-21 but with uniformly distributed
[ of the same mean as the fixed / model and with increasing ranges from 0 to 100% of the
mean. Again, this caused little change in the stress-strain curve, with some stiffening

observed at ranges greater than 50% of the mean (Fig. 3-9, dotted lines).
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We therefore see that the model is robust to the introduction of variability in the
fixed parameters. Nevertheless, it is obvious that both fibre types will be distributed in
real tissue, as indicated by the data of Matsuda et al. (97) and Sobin et al. (142). We
presumed that the forms of the collagen and elastin distributions are those given in Egs.
3-18 and 3-21. However, each of these distributions accounts for the entire stress-strain
characteristics independently. Thus in order to invoke both simultaneously, we softened
their individual contributions by doubling all stop lengths and halving all stiffnesses. This
produced a stress-strain curve that matched the mean experimental curve fairly well,

dissociating only at high strains (Fig. 3-6, dot-dashed line).
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Figure 3-9. Dashed lines: The stress-strain curves calculated from simulation of the
distributed stop length model with stiffnesses randomised with ranges of 50 and 100% of
the mean. Dotted lines: The stress-strain curves from the distributed stiffness model with
stop lengths randomised with ranges of 50 and 100% of the mean. The solid line

represents the stress-strain curve according to Eq. 3-16 from the mean values of G and H

computed from the 5 tissue strips.
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3.4.1 Concluding comments

We have introduced a model that accounts for the nonlinear stress-strain curve of
lung tissue based on the fundamental differences in behaviour of the structural constituent
fibres. A mechanistic description is developed which quantitatively defines the relative
roles of collagen and elastin fibres. The model predicts that the distributions for the
collagen and elastin fibres are 1/f~like for the large part of the data. The distribution found
for the elastin fibres match the distributions found by Sobin et al. (142). We hypothesise

that this reflects a fractal kind of organisation of the tissue constituents.
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4. Two-dimensional finite element
modelling of lung tissue elasticity

4.1 Introduction

Ever since the seminal work by Mead (101), it has long been recognised that the
static elastic properties of the lung are derived not only from the properties of the
underlying tissue constituents, but also from the way these constituents are organised.
That is, as tissue is extended, the stiffness is much lower than would be predicted if the
material were an isotropic solid. The lung tissue is made up of a complex interconnected
network of fibres which are abie to re-orient when a stress is applied. Some of the strain
is thus taken up by this reorganisation. In the models of the previous chapter, this effect
was incorporated by the straightening of formerly wavy or curved strings, taken to
represent the straightening of collagen fibres. Once these fibres became taut, no further
extension could occur. In lung tissue, both elastin and collagen may also reorient in the
direction of the load, as may entire alveolar walls. Furthermore, collagen fibres which are
straightened in an off-axis direction may still contribute to the stress through
reorientation. This is commonly known as 'nylon stocking elasticity’ coined by Bull (16).
Thus, geometric effects are an important determinant of the elastic properties of lung
tissue. In Chapter 3, we could account for the nonlinear nature of the stress-strain curve
based on 1/f distributions of the properties of the constituent elements in one-dimensional
models. In this chapter we investigate whether similarly distributed properties lead to the

stress-strain curve of lung tissue in a two-dimensional finite element model.
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4.2 Methods

4.2.1 The model

We construct the simulated tissue as a 2-dimensional finite element mesh
consisting of interconnected spring-string pairs shown in Figure 4-1, where each line
segment represents a given element pair. As in the models of Chapter 3, the springs are
linear, but we replace the infinite stiffness of the strings by a finite stiffness much greater
than that of the spring. Thus instead of a stop length, the fundamental mechanical spring-
string unit has a 'knee' length. The length-tension relationship of a fundamental unit is

indicated in Figure 4-2, and is given by

F=k(, -1), 1 <,

; (4-1)
=k,(l,-l)+k( . -1), [, 2]

where /, is the length of the unit, /, is the resting length, &, and k; are the stiffnesses below
and above the knee length /,.

<]
J
<
>
<)
>

Figure 4-1. Example of 2-dimensional finite element mesh at rest where each line

segment represents a spring-string pair (30x5 nodes, 381 elements).
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Figure 4-2. The force-length relationship for a single spring-string pair. For lengths
below the knee length /, the spring constant of the unit is &; ,while for lengths greater

than /;, the spring constant is k,. The resting length is /..

4.2.2 Simulation

The tissue simulation software was written in the Oberon language (created by
Niklaus Wirth as a successor to Modula 2 and Pascal) (130) and followed an object-
oriented programming style. Although the model could be coded in any language, Oberon
was chosen as it is more concise than C++, has a very fast compiler, and is avaiiable
freely from ftp.inf.ethz.ch. Program code was developed on both a PC-486/33MHz and
IBM RS6000 model 320 computer, while the numerical simulations were run on an IBM
RS6000 model 390 machine.

The solution algorithm initially attempted a simulated annealing approach (177).
This method has the advantage of being extremely simple to code, and is known to be
very robust in complex problems with nonlinearities (177). Briefly, the simulated
annealing method proceeded as follows: First, the simulated tissue was stretched
uniformly to the desired length. The energy stored within each of the units was calculated

and summed, where the energy in a given unit is
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Energy =05k,(1, -1, ), l, <, @)
=05k, (I, —1,) +05k,(, =1, )* +k (L, = 1), ~1,), [, 21,

g =

Each node (intersection of the units) was then moved a random distance in a random
direction and the total energy stored within the tissue was re-calculated. If the energy was
less than the previous energy, the new node positions were accepted. If the energy was
higher, then the node positions were accepted with a probability of less than one. The
procedure was repeated with the random distances by which the nodes were translated
being gradually decreased. This process mimics the cooling (annealing) of a metal, where
the atoms may reach a minimum energy configuration provided that the rate of cooling is
sufficiently slow. Unfortunately this method may take a long time to achieve adequate

convergence.

A much greater rate of convergence (1-2 orders of magnitude) was found by using
a version of the steepest descent algorithm, which makes use of the force gradient at the
node positions. The tension within each of the elements at each iteration was computed
according to Eq. 4-1, allowing the resultant force on each node to be determined. The

nodes were then moved down their respective force gradient according to

AQ = QO+ uF, (4-3)

where AQ is the change in node position from position Q, and p is an adaptive parameter.
If the value used for p caused a decrease in the total energy of the entire tissue, then p
was increased by a factor of 1.01. Conversely, if the energy was increased, the new nodal
positions were not accepted, and p was decreased by a factor of 0.9 until the energy
decreased. Thus, p slowly increased when energy was decreasing, and quickly dropped
when p was too high. Convergence of this process was based on the principle that the
same total force must be transmitted through each cross-section of the tissue when it is at
its equilibrium configuration. Thus when the difference between the minimum and
maximum axial cross-sectional forces along the tissue was less than 1 % of the average
force, the tissue strip nodal positions were considered to have converged to the minimum

energy positions, and the average force was taken as the tissue strip force at that level of
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strain. Using some of the smaller model sizes tested, it was verified that the final node
positions computed using the steepest descent method converged to the same positions as

using the simulated annealing.

Tissue strips having length-to-width ratios like that of the measured strip of
Chapter 3 were simulated. Model sizes of 30x5 nodes (381 elements), 60x10 nodes (1661
elements), and 90x15 nodes (3841 elements) were simulated. The properties of the

elements were chosen according to the following four schemes:
A) identical /, with fixed &, and &;,

B) identical /, with Gaussian distributed &, and &, keeping the same mean &, and & as in
(A),
y power-law distributed /, distributed between limits of 10° and 10° according to
PUOY=U -1)7, (4-4)
with b ranging from 0.1 to 2.0. Values for &, ranged between 0.01 to 1 with &, = 100,
and at k; = 0.1, &, was either 10, 100 or 1000, and

D) selected examples from (C) with Gaussian distributed &, and %,, keeping the same

mean values of k; and %,.

For Gaussian distributed spring constants, no spring constant was permitted to be less
than zero, and &, was restricted to be greater than k, within a single spring-string pair.
Since the units of length and force are arbitrary, length was normalised in all simulations
to the resting length of the elements, which were all identical. Spring constants were
similarly assigned unity stiffness defined by the generation of one unit of force per unit of
extension. The Gaussian random deviates were generated according to the transformation
method and power-law distributed deviates were chosen according to the rejection
method (126). The node positions, element forces, and average axial force were
monitored during the iterative process. Force-strain curves were generated by stepping
the tissue from a strain of zero in steps of 0.05 to a strain of 1.25 (25 steps), and allowing

the tissue to converge at each step.
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4.3 Results and discussion

Calculation of force-strain curves took from 3 minutes to 16 hours, depending on
the number of elements, distribution of /, and degree of nonlinearity. Generally the
greater the ratio between k, and k;, the longer was the convergence time. Figure 4-3
shows equilibrium node positions for simulated tissue with identical /, = 1.5, and
identical stiffnesses, £; = 0.1 and k, = 10. The tissue narrows in the centre as the strain
increases. The tissue begins to narrow rapidly at strains greater than about 0.5, which
corresponds to the level at which the elements begin to exceed their knee lengths, and
elements near the ends of the tissue begin to carry more stress than central elements due
to the geometric distortion caused by the fixed end node positions. Figure 4-4 shows the
same tissue strip as Figure 4-3 except that the spring constants are now chosen from
Gaussian distributions about the same mean stiffnesses with 50 % standard deviations.
The forces carried by each element vary considerably (indicated by the varying line
thickness in Fig. 4-3), producing a heterogeneous force distribution within the tissue.
Figure 4-5 shows the force length curves from the these two simulation examples. Each
tissue strip follows nearly identical force strain curves, despite distributing stiffnesses
about their respected mean values. The force-strain curves are essentially piece-wise
linear, with a ‘knee’ at about strain 0.7. The curves are very much like that of Fig. 4-2,
except that the knee in the curve has been translated to the right of that of a single unit.
All of the units have /; = 1.5, and would each individually give a ‘knee’ at 0.5 on Fig. 4-5.
This rightward motion of the knee is attributable to changes in orientation of the units,

which contributes to the total strain.
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Figure 4-5. Force-strain curves of the tissues described in Figures 4-3 and 4-4. The solid
line shows the results for the tissue with nondistributed stiffnesses, while the dashed line

is for the tissue with Gaussian distributed stiffnesses.

Tissues in which the /, were distributed according to power laws posed severe
difficulties in numerical simulation. This was primarily due to the fact that the
distributions necessarily spanned several decades, and thus sampling the distributions
adequately required a very large number of units. The largest simulations we attempted
were 90x15 nodes. However, solution of some of these models required several days,
particularly for high ratios of &, to &;. Simulations of models having 60x10 nodes usually
required less than a few hours, and this size of model was used most often. An example
of six force-length curves for 60x10 node simulations with hyperbolically (4=1)
distributed /; is shown in Figure 4-6. There is a large variation amongst the different
realisations of the model due to the course sampling of the distribution for /; in each case.
[t was observed that this variation was less at other values of 4 (Eq. 4-4) and was
inversely related to the number of elements. In order to choose representative results for a
given value of b (Eq. 4-4), 6 different realisations of the distribution were simulated and
either the 3rd or 4th curve in rank-order of force at strain 0.6 was chosen. The force-

length curves were found to match the experimental data only when the [/, were
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distributed with b very close to unity. Figure 4-7 shows force-strain curves from 60x10
node tissue strips with k; = 0.1, £, = 100 and /; distributed according to Eq. 4-4 with

values for b ranging from 0.9 to 1.1.
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Figure 4-6. Force-strain curves from six realisations of simulated tissue (60x10 nodes)

with hyperbolically (5=1) distributed /; with k; =0.1 and &, = 100.
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Figure 4-7. Force-strain curves from simulated tissues (60x10 nodes) with power-law

distributed /; with the exponents b indicated (Eq. 4-4).

The behaviour of the model when the [/, are hyperbolically distributed and the
spring constants are Gaussian distributed is shown in Figure 4-8. This agrees with the
findings shown in Figure 4-4 and is the same result as in Chapter 3, Figure 3-9. In
Chapter 3, the 1D model also showed this invariance in force-strain curves when the
spring constants were chosen from Gaussian distributions, with stop lengths distributed
according to a power law for ~99% of the data. This is despite the additional behaviour
from the finite and random £, in this model. Thus, as in the 1D models of Chapter 2, the
2D distributed /, model is very robust to variability of the spring stiffnesses. However, the
results of this simulation study are somewhat different to the analytic results and
simulation of Chapter 3. In the 1D model, the force length curve was produced when the
stop-lengths were distributed according to Eq. 4-4 with b = 2 for 99% of the data. In
contrast, the 2D model gave realistic results for b = 1. It is likely that this difference is a
geometrical effect. This may mean that in 3 dimensions, the exponent for the distribution
may be altered again due to the increased range of motion, although this remains to be
tested. One may speculate that if a model were constructed consisting of two 2D layers

connected vertically at their nodes, these additional vertical elements would only alter the
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equilibrium node positions from the 2D case slightly since the uniaxial loading implies
that these members are not likely to be greatly extended. Thus the change in exponent of
the /, distribution may be only slight. However, if the elements connecting the layers
were oriented partially in the direction of the applied strain (e.g. by connecting nodes at
45 degree angles), then perhaps these elements would become a contributing factor to the

stress-strain curve, and thus result in a greater change in the value for 5.
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Figure 4-8. Force-strain curves from tissue simulations (60x10 nodes) with
hyperbolically distributed /; (identical realisations) and Gaussian distributed spring
constants. The spring constants mean values are k; = 0.1, k; = 100, and the standard

deviations for both constants together are 0, 12.5, 25, and 50% of the means.

[t is perhaps surprising that the force-strain curves should be so sensitive to the
exponent of the /; distribution (Fig. 4-7). The sensitivity is due to the rate at which the
elements exceed their respective /, as the tissue is stretched. This depends on both the /;
distribution and the value of k,. The value of &, is less important because as an element
reaches its knee length, it is more likely to distort the nearby tissue rather than move up

the steep portion of its length-tension curve, provided there are nearby elements which
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have not yet reached their respective knee lengths. This kind of recruitment of nearest
neighbours as the tissue becomes stressed can be observed in Figure 4-9, which shows a
sequence of strains of a tissue strip with hyperbolically distributed /,. When elements
begin to exceed their /, (indicated by thick line elements in Fig. 4-9), they cause local
tissue distortion which causes the stress to be inhomogeneously distributed throughout
the tissue. Regions of increased stiffness appear to connect in small chains at first and
then to form progressively longer chains. Finally, at the highest level of stress a
continuous link of elements which have been stressed beyond their /; forms from end to
end of the tissue. Thus, for the hyperbolic distribution of /;, the elements become strained
to their knee lengths in a gradual manner, which reflects the presumed way in which
collagen fibres are recruited with increasing strain to produce a smoothly stiffening

stress-strain curve.

It is possible, of course, that a different distribution of the /; and different &; and &,
values could produce similar force-strain behaviour to the experimental data. However,
no suitable candidates were found. Nevertheless, it is sufficient for our purposes that a
parameter set was found that yielded the desired force-strain behaviour. It is for these
reasons also that we did not investigate the behaviour of lung tissue models with power-
law distributed spring constants. It was shown that distributing /, while keeping the
spring constants fixed was equivalent to distributing the spring constants while keeping
the stop-lengths fixed in Chapter 3. Therefore, similar results would be expected in the
2D case. Figure 4-10 shows a single tissue strip curve from Chapter 3 (Fig. 3-2) with the
two closest realisations of 6 simulations with hyperbolically distributed /,. The data
match fairly well to about strain 0.6 for one of the realisations and to about strain 0.9 in

the other.
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Figure 4-9. Simulated tissue (60x10 nodes, 1661 elements) with power-law distributed /;
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Figure 4-10. Tissue strip stress-strain curve from Figure 3-3 (solid), with the two closest
realisations of 6 simulated curves normalised to match the tissue curve at 60% strain

(dashed).

The change in shape of the tissue samples (Fig. 4-9) behaves similarly to the in
vitro tissue strip described in Chapter 3. That is, the tissue narrows with extension, and
most of the transition from fixed width at tissue ends to the narrower cross-section in the
centre is confined to the tissue end regions. However, we cannot expect to match the
geometric behaviour quantitatively, since this model is only 2-dimensional. Also, the
model is composed of statically determinate structures (triangular spaces). Although
statically determinate models can predict the bulk properties of the air-filled lung (144), it
has been shown that the resistance to shear is better reproduced using statically
indeterminate structures, such as the dodecahedron shape in 3 dimensions (15,72). This is
presumably because indeterminate structures, when not prestressed, have very little
resistance to shear deformations, since their members can rotate to a new configuration
with little stress of the elements. With prestress, the resistance to shear is increased. For
the statically determinant structure, on the other hand, resistance to shear arises from both
prestress and element loading. Real tissue likely has substructures of both indeterminate

and determinate nature. The criss-crossing network of fibres across alveolar walls may
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behave more as a determinate structure while the geometric arrangement of the alveolar

walls themselves is indeterminate.

The tissues of Figure 4-9 are quite distorted at the higher levels of strain, and
some of the nodes have even crossed over neighbouring units. This is a kind of buckling
that could not occur in 3-dimensions, at least at the scale of the alveolar wall, since this
would mean that the walls would have to pass through each other. This may explain some
of the lack of agreement between the true data and the simulated data at high strains
shown in Figure 4-10. The true tissue strip stress-strain curve becomes stiffer than the
simulated curves at high strain, perhaps due to these additional physical restrictions. The
degree of distortion shown in Figure 4-9 is not normally observed experimentaily in fixed
samples of lung tissue (116,169). However, most tissue images are from samples fixed at
a defined level of transpulmonary pressure, and thus do not show how tissue behaves
under nonuniform loading. To my knowledge, no study has imaged the microstructure of
the lung tissue subjected to uniaxial strains. Large degrees of distortion have been
observed in nearly 2-dimensional flat sections of tissue which have been exposed to
smooth muscle agonists (29,112). The contractile agonist caused smooth muscle cells
within the alveolar walls and around airways to constrict producing a large degree of
heterogeneity within the tissue. However, it is uncertain whether this heterogeneity is
attributable to differences in smooth muscle cell response, differences in the smooth
muscle distribution or due to passive mechanical inhomogeneity (or a combination of
each process). In any case, evidence for inhomogeneity in the passive mechanics of the
lung tissue has been observed by Wilson et al. (176), who showed that the regional PV
curves measured using parenchymal markers followed markedly disparate paths during
passive expiration from total capacity. Indeed, this could conceivably arise from different
samplings of the underlying distributions of the constituent properties as observed in

Figure 4-6, as Wilson et al. remarked (176).
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4.4 Conclusions

-

In this chapter, I have expanded the ideas developed in Chapter 3 in a 2-
dimensional model of lung parenchyma with distributed constituent properties. The
actions of the elastin and collagen fibres were simplified to a string-spring pair in which
the elastin first extended as a weak spring until the collagen fibre became taut (at its knee
length). at which point the pair acted like a stiff spring. Curves which were very close to
measured stress-strain data were generated for models in which the knee-lengths followed
a hyperbolic distribution. This was different than the 1/ distributions found in Chapter 3.
This difference is likely due to geometric effects appearing in the 2D models. The elastic
behaviour of the model was very sensitive to the value of b in the 1//,” distribution. Also,
a large amount of variability was observed between different realisations of hyperbolic
distributions. Finally, the model illustrated the development of geometric heterogeneity in
the tissue micro-structure with increasing strain. This is due to the 1/f distribution of the
fibre properties leading to fractal-like spatial recruitment of collagen fibres under uniaxial

loading.
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S. A model for the quasi-static PV
curve of the lung

S.1 Introduction

The amounts of collagen and elastin and their spatial arrangements in the lung are
altered in diseases such as pulmonary emphysema and fibrosis (167,178), and it is
thought that these alterations could be responsible for the abnormal PV curves associated
with these diseases (127). However, it is currently unclear how to precisely translate
alterations in lung tissue constituents into changes in tissue mechanical properties. In
Chapter 3, I developed a model of lung tissue that exploits the collagen fibre recruitment
concept by representing the collagen and elastin fibres as a series of spring-string pairs. In
this chapter, I explore how the model might be used to explain the curvilinear quasi-static
PV curve of whole lung, and how the changes in the P¥ curve due to disease are reflected

in the model.

5.2 Methods

In analogy to the tissue model developed in chapter 3, I consider the lung as a
series of elastic volume elements (elastance E), each of which extends to a maximum stop
volume (v). In doing so I presume that the nature of the tissue expansion in 3-dimensions
is like that in tissue strips. That is, elastin fibres stretch elastically under the applied load
whether uniaxially or from lung inflation while collagen fibres straighten until taut. Thus,
in no way does a stop volume unit correspond to a well-defined physical structure such as
an alveolus. It merely represents the action of collagen fibres straightening within the
lung tissue in terms of volume units. Indeed, Mercer and Crapo (102) showed via serial

reconstruction that the pressure volume characteristics of alveoli are much the same as for
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the whole lung. With the model we explore how the mechanism of mechanical stops in
parallel with elastic springs can describe the deflation limb of PV curves, and how
changes in PV curves in disease are reflected in changes in the model constituents, the
elastin and collagen fibre matrices. In particular, I examine how changes in static
deflation PV curves may be related to changes in the underlying tissue structure with

tissue diseases such as emphysema and fibrosis.

We can generate static elastic PV curves by having both stop volumes and unit
elastances distributed according to Egs. 3-7 and 3-14, with F, L, £ and / substituted for P,
V, E and v respectively, where V' is lung volume and P is transpulmonary pressure. The
equation most commonly used for the static PV curve is that first introduced by Salazar

and Knowles (132), reproduced here from Chapter 2 (Eq. 2-1):
V = A— Bexp(-KP), (5-1)

where 4. B and K are constants. If we solve for the model distributions by double

differentiation of Eq. 5-1 in the PV equivalent of Eqgs. 3-7 and 3-14, we have

Ny =2 exp(-v/9), (5-2)
where
L (5-3)
?=%E
and
B -
M(E)= exp(-E/v), (5-4)
where
— L (5-5)
Y Kv
and we have used the fact that
P=Ev (5-6)
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in analogy with Eq. 3-12. It can also be shown, since the areas under the distributions of
Eq. 5-2 and 5-4 are fixed and finite, that B is proportional to v in the stop voiume
distribution model, and is proportional to v in the distributed elastance model. Since the
actual values of E or v are arbitrary, I use the convention adopted in Chapter 3, and thus
fix the area under each distribution to be 10000. Thus the model cannot be used to
predict the magnitudes of the parameters of the models, but only changes in their value
from some reference, which for the purposes of this chapter will be the parameters

derived from the normal PV curve.

Equations 5-2 and 5-3 represent the stop volume distribution model while Egs. 5-
4 and 5-5 represent a distribution of elastances. It is likely that the collagen fibre matrix
and the elastic constitutive elements of lung tissue have distributed stop volume and
stiffness properties, respectively. We therefore recognise that the two models represent
the extremes of possibility, and so consider these two extremes in order to quantitatively

assess how changes in PV curves may reflect pathologic changes in lung tissue.

5.3 Results and discussion

We can apply these two extremes to examine the effects of changes in the model
parameters. | first consider the effect of decreasing the elastance by 50%. For the N(v)
model, this means a decrease in the value of £ by 50%, or using the M(E) model, we shift
the distribution leftward by halving each elastance. In either case, the change in the PV
curve is a leftward shift, resulting in a doubling in the value of X, with no change in B or
A (Figure 5-1). This is in agreement with the current hypothesis that changes in K
associated with emphysema are due to changes in the elastin network. However,
emphysema is also associated with increased lung volume, which in my model can only
be caused by changes in the collagen network. I thus conduct the alternate experiment and
cause the stop volume distribution to be altered by increasing v by 50 % in either the M(v)
model or M(£) model and maintaining the same zero pressure intercept. Again the results
are the same for either model and are shown in the left panel of Figure 5-2. The PV curve

begins with the same slope at low lung volumes, but as the volume increases the slope
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decreases more slowly and the asymptotic volume maximum increases. In this case, K is
decreased to 66% of normal, while B is increased to 150% of normal. Note that, while £
and y have units of elastance and thus affect the rate of change of pressure within the vital
capacity (Fig 5-1), ¢ and v have units of volume (and are in fact proportional to B), and

thus control the vital capacity of the model (Fig 5-2).
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Figure 5-1. Left panel: PV curve of normal lung (solid) with curve from model in which
E had been decreased by 50% (dashed). Right panel: elastance distribution of model

applied to normal PV curve (solid) and with £ decreased by 50% (dashed).
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Figure 5-2. Effects of increasing v by 50% from normal values. Left panel: PV curve of

normal lung (solid) with curve from model in which v had been increased (dotted). Right

panel: NM(v) distribution of model applied to normal PV curve (solid) with M(v)

distribution where v has been increased (dotted).

A B () K (cmH,0™)
normal 5.65 4.79 0.143
emphysema 7.66 6.98 0.325
fibrosis 2.64 0.93 0.089

Table 5-1. Parameter values from the fit of Eq. 5-1 to the deflation limb of PV curves of

a normal, emphysematous and fibrotic lung in vivo from Gibson et al. (45).
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Figure 5-3. PV curves of representative emphysematous, normal and fibrotic lungs

reproduced according to Eq. 5-1 using the parameters from Table 5-1.

To investigate how the parameters of the model are changed from normal when
applied to representative examples of lung tissue disease, I applied the model equations
(Egs. 5-2 to 5-5) to the curves shown in Figure 5-3. The changes of the model parameters
expressed as a percentage of normal are shown in Table 5-2. For emphysema, ¢ and v are
elevated while £ and y are decreased below normal. In terms of the stop volume
distribution model, NM(v) for an emphysematous lung is thus shifted toward large stop
volumes compared to normal (Fig. 5-4), and E is decreased to 30% of normal. This is
consistent with the nature of the disease, which causes destruction of tissue with
associated remodelling of both elastin and collagen networks as well as an increase in
airspace volumes (48,178). If interpreted in terms of the elastance distribution (Fig. 5-4,
right panel) the M(FE) shifts leftward of normal indicating a loss in tissue stiffness, and v
increases to 146% of normal. Both models predict changes in qualitative agreement with
observation. Of course, both elastance and stop-volumes are likely to be distributed, so
the actual changes in distributions are likely to lie between the limits expressed in Figure
5-4.

By contrast, the changes in the tissue afflicted by fibrosis involve widespread
inflammation, an increase in the concentration of interstitial fibre constituents, and

airspaces are reduced or even filled in with inflammatory products (33). Correspondingly
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for fibrosis. in terms of each model, the parameters ¢ and v are greatly decreased below
normal while £ and y are elevated, which results in a reduction in vital capacity and a
stiffening of the tissue (Table 5-2). The changes according to the distributions of each
model are indicated in Figure 5-5. M(v) is shifted towards smaller stop volumes
corresponding to the reduction in vital capacity, while M(E) is shifted to greater tissue

stiffness in agreement with increased amounts of connective tissue associated with the

disease.
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Figure 5-4. Stop volume distributions (left panel) according to application of Egs. 5-2
and 5-3 and elastance distributions (right panel) according to application of Eqgs. 5-4 and

5-5 to representative PV curves of normal and emphysematous lungs (Fig. 5-3).
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Figure 5-5. Stop volume distributions (left panel) according to application of Egs. 5-2

and 5-3 and elastance distributions (right panel) according to application of Eqs. 5-4 an