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RESUME

L'objet de cette the@se est d'obtenir 3 1l'aide de la notion
de suite équirépartie d'importants résultats classiques de
théorie des nombres (théor2me de Tchebotareff, '"théoréme des
nombres premiers', théoréme de Dirichlet). Les techniques
utilisées font appel 2 1'analyse harmonique dans les groupes
compacts (théoréme de Peter-Weyl), 2 la théorie des variables
complexes (théoréme de Wiener-Ikehara), & la théorie des nombres

algébriques.
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INTRODUCTION

This thesis aims mainly at proving important density results
from number theory. What we mean by density, we will clarify in
our chapter 3 but in order to get the flavour of it let us state
right now a typical result due to Dirichlet:

Dirichlet's Theorem: if m is a positive integer,

if m and a are relatively prime, then
there exists infinitely many primes p
such that p E a{mod m).

This result is often referred to as Dirichlet's theorem on
primes in an arithmetic progression.

To prove this we will need Cebotarev's theorem (see chapter 3),
which is a density theorem following from the "equidistribution"
of the Frobenius elements of a finite Galois group.

This explains why our first chapter has to be about "equidiséri—
bution': we define the notion, give criteria and consider the
important cases when the elements of the sequences to be "equidistri-
buted" belong to the sp;ce of conjugacy classes of a compact group (and
this leads us to harmonic analysis on a compact group: see [5] or
[lﬂ ) or to the two dimensional torus. Some of the facts about
equidistribution we do not prove since they are not needed in the
rest of the thesis but we do give references. Let us just mention
that historically the notion of equidistribution arises from diophantine

analysis in connection with the "distribution" in [b, i]of the
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fractional parts of the elements of a sequence.

Then comes chapter 2: the technical core of the thesis. The
so-called L-functions, generalization of the well-known zeta-functions,
give us a sufficient condition for equidistribution. We use this
condition to get the equidistribution of the Frobenius elements of
a finite Galois group: then we are all set up to get in chapter 3
the required density results.

On our way, not in the main stream of the exposure though,
we get the prime number theorem.

Our topic needs methods from various parts of mathematics:
from the theory of the complex variable we will assume the Wiener-
Ikehara theorem and the Abel summation trick. From the theory of
the representations of a compact group we will assume the Peter-Weyl

theorem: the reader can refer to the classical book Topological Groups

by Pontryagin or to [1?]. From algebraic number theory we assume

the definitions and results from Théorie Algébrique des Nombres by

Pierre Samuel (see [igl). The main reference though will be

Abelian 2-adic Representations and Elliptic Curves by J.P. Serre

(see [li], pages 18-29).
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1.1 Basic terminology.

Let X be a compact topological space.
Let C(X) be the Banach space of continuous, complex-valued

functions on X with its usual norm ||f]|e = sup {£(x)].
x € X

For each x € X let Gx be the Dirac measure associated to x:

for £ € C(X) we have Gx(f) = f(x).

Let (xn)n >1 be a sequence of elements of X.
For n > 1 we define y_ = 8. + ... + &
- n X , X
1 n
n

Let Y be a Radon measure in X (cf [12]).

Definition 1.l1l.1 The sequence (xn) is said to be y—-equidistri-

Note ;.1.2 (xn)

Note 1.1.3 if (xn)n N

buted or p-uniformly distributed or "équirépartie par rapport

-~

a2 p" (in French)if WU weakly as n -+ « (that is to say: if

un(f) -+ u(f) as n > @ for any £ € C(X) ).

We get the following obvious results:

a>1 can be equidistributed relatively to at

most one measure .

Assume (xn) is "u-and-v-equidistributed"

n > 1
then u(f) = v(f) for all f € Cc(X)
thus Ut = v

1 is p-equidistributed, p is positive

and of total mass 1.
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For £ >0

un(f) = f(xl) + v.. + f(xn) > 0.

n

Hence u(f) > O.

Take £ = Xx

W (xx)

Hence U(Xx) =

the characteristic function X.



£

Proof: for all a call u(¢a) the limit of (un (¢a) )n > 1

1.2 General criteria.

We give two conditions for equidistribution: the first is
sufficient; the second, necessary. Our first condition in fact
amounts to noticing that we need check the weak convergence of

the un's only on a set of generators of a dense vector subspace

of C(X).

lemma 1.2.1 1let (¢a) be a family of continuous functions on X

with the property that their linear combinations are dense in

C(X). Assume that for all a, (un (¢a) ) > 1 has a limit. Then

n

(x)

2n > 1 is equidistributed with respect to some measure U:

it is the unique measure such that u(¢a) = 1lim un(¢a)
n > o«

= < >
Let V ¢a

i.e. V is the subspace generated by the ¢a's.

Let £V,
m
£f= I A ¢ for certain scalars A..
i Ta, i
i=1
m
= i '
un(f) iil Ai Wy (¢ai) since the U 's are clearly linear.

m
Hence un(f) > I Ai u(¢a ) by the hypothesis
i=1l i

m
Let us call u(f) the quantity I Ai u(¢a ).
i=1 i




let ge CX), g¢ V, € >0.

There exists f € V such that ||f - gl!m <E
and un(f) > u().

There exists N such that n > N imply

Ty 4 p® - (O] <e
Iy 4 p® — 1@ <[(E - &) + oo+ (F -0, )
n+p
(- x) 4+ (E - )| + ]f(xl) PRI {CT,
n n+p
- f(x) 4 ..t f(xn)l
n
iy 4 (@ - w ()| s RIS Hae e =3

Hence (un(g) ) is a Cauchy sequence and converges to a limit we

will call u(g).

This way we have defined a function:
u: C(X) = €, the set of complex numbers.

g > u@@ = lim u_(g)

n >«

¢ is linear since un(f +g) = un(f) + un(g)
u, ) = A u ()

for any £, g € C(X), A complex,

Fix e > 0.



Assume ||f - g||°° <8 = €.

R & -
[ () - w @] = ZICE - &) (x) + o0 (£ - 8)(x)| 5_:11_6 €
Thus |u(f) - u(g)| <e
and Y is continuous and a Radon measure.

Q.E.D.

We now give a necessary condition for equidistribution.

Theorem 1.2.2

Assume that (xn)n s

1 is p-equidistributed.

Let U ¢ X have a boundary with p-measure zero.

For all n let nU be the number of m <n

such that xm € U.

Then 1lim (nU / n) = u)
n - o

where p(U) = u(U°) and U° is the interior of U.
Proof: let € > 0.
There exists ¢ € C(X), 0 <¢ <1, ¢ =0on X - U°
such that u(¢) > w(W) - €

w (9 = ¢(x1)+ cee + O(x) <ny / n

n

since q)(xi) =0 if x, ¢ U
0 < d)(xi) < lifxieU.

This result combined with the hypothesis un(cb) - u(¢)
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yields: 1lim inf nU/n > u(d) > u() - ¢€ for all e.
n >« -

Thus lim inf nU/n > u(u).
n >« -

Since the boundary of X -~ U has l-measure zero, the same

process for X - U yields:

1im inf (n ) / n= 1lim inf (n - ) / n>uX - U)
n > X-—-U n > «© n.U -

1 - lim sup ng /n>uE-0) =1-w()

n >«

1im inf nU/n > uw(U) > lim sup nU/n
n >« n > x

Q.E.D.
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1.3 The case of a compact group.

We now consider the case when the elements to be equi-
distributed belong to the space of conjugacy classes of a
compact group; we will use the powerful methods of harmonic
analysis on a compact group (mainly the Peter-Weyl theorem
about the irreducible characters of a compact group): this
will give us a first criterion of equidistribution. As compact
groups are provided with a unique normalized Haar measure, we
will find a second criterion in this particular case. For

references, see [5] or [12] .

Let G be a compact group and X, its space of conjugacy classes.

Let 1 be a Radon measure on G.

Take g € C(X).

Let p be the canonical projection from G to X.

Define u* (g) = u(gp)

Lemma 1.3.1. u* is a Radon measure on X. We will denote it
by p since there is no possible confusion.

u* is clearly linear.

Given € > 0 there exists a § > 0 such that

e, - g,lle < 6 imply |u(g p) - uig,p)| = lu*(gl) - ]J*(gz)l <e

since U and p are continuous.

Q.E.D.
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Under the above hypothesis we get:

Theorem 1.3.2

The sequence (xn)n is p-equidistributed if and only if

>1
for any irreducible characters X of G we have:
n
im 1 X Xx(x;) = u(x)
n > con i=1

Proof: consider C(X) - C(G)

g > gp.
This is an isomorphism onto the space of central
functions on G: by the Peter-Weyl theorem, the ir-
reducible characters of G generate a dense subspace
of C(X) (when viewed as functions x* € C(X)
where X = x*p but of course we will denote x* by X).
Assume that lim 1 g x(xi) = u(.

n > on i=1

Then by lemma 1.2.1 (xn)n > 1 is y-equidistributed.

*
The converse is obvious since ¥ € C(X).

Q.E.D.

In the case when Y is the Haar measure of G with u(G) = 1,

we geé the important coroliary:

Theorem 1.3.3 (xn) is y-equidistributed in X if and only if

for any irreducible character X of G, X #=1, we have
n .
lim 1 Z X(xi) =0
n > on i=l
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Ot

Proof:
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if X ¥ 1, there exists y such that X(y) +# 1.

Denote xy(x) = x(xy).

where the operation in G is denoted multiplicatively.

Then u(x) = u(xy) since the Haar measure is invariant

by translation.

But xy(x) = xxy) = x(x) x@).
Therefore u(x) = u(xyx) = Xy n(x)

1-xy))ux) =0

Since X(y) #+ 1, u(x) = 0.

If x =1, u( =1=u(6).

The last two results and the theorem 1.3.2 yield the result.

Q.E.D.

We finish this section by quoting a result from [5]

(without proof since we will not need it):

Theorem 1.3.4

Let G be a compact group,
H its Haar measure,

(x )n > 1 @ sequence of elements of G.

Then the following statements are equivalent:
a) for all closed subset U of G the boundary of which has

measure zero, we have:

(with the notation of 1.2).

1lim nU/n = u(
n >
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b) for all £ € C(G)

n
nlimw.i E f(xi) = u(f)
n i=1

(our definition of equidistribution).

¢) for all not trivial unitary irreducible representation
M of G, one has:
n

lim 1 I M(x;) = 0.
n>on i=l

Note that here there is no question of the space of
conjugacy classes. Compare b) with theorem 1.2.2: b) is
stronger since it is an equivalence and theorem 1.2.2 is
only a necessary condition of equidistribution. Compare c)
and theorem 1.3.3: in the first case we use characters,

in the second representations.
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The case of R/Z.

This section is mainly a particular case of the preceeding
one except that at the end we consider the classical case of
equidistribution in [0, i] without using the compact group
structure, turning instead to "visual methods".

Let G = R/Z

where R is the set of real numbers and Z is the set of

integers. G is [O, 1[:with the addition modulo one.

G can also be called the two-dimensional torus because of

an obvious identification mapping.

Let y be the normalized Haar measure on G, i.e. u(G) = 1.
Note that the space X of the conjugacy classes of G can be con-
sidered to be G itself since G is abelian. In these conditions
we have:

Theorem 1.4.1 (xn)n >1

is p-equidistributed if and only if

for any integer m # 0 we have

2Timx 2
z e -0 where i = ~ 1.

The above result is known as Weyl's criterion. For

classical proofs of it, see [4],page'89 or The American

Mathematical Monthly, Volume 76, no. 6, page 654.

Proof: we will need:

Lemma 1.4.2. The irreducible characters X of R/Z are the mappings:

2Timr
r*e (m € 2).
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Proof of the lemma: (outline)

From [12], page 99 we accept the following powerful result:

a bounded (or equivalently continuous) irreducible representation
of an abelian group is nothing but a continuous solution

x(x) of x(x + v) = x(X)x(y), Ix(x)l = 1 and is undistinguishable
from its character.

Since R/Z is compact, it has continuous characters: since it is
abelian, its irreducible characters are as described above.

Now if £ is an irrational in [0,1[, the set {nE}n is dense

> 1
in [0,1].
The value X(E) determines x(ng) since x(n&) = (x(g))n. Since ¥

is continuous, its values on a dense set determine it completely.

Put x(&) = e2nmie. There exists a subsequence (nkE)k > 1 such

that {x(n, &) - 1| < e for any € > 0 and this can be shown
Py

to force 0 = E.

Q.E.D.
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Back to theorem 1l.4.1l: we need only to put together

theorem 1.3.3 and lemma l.4.1.

Q.E.D.

Example 1.4.3 We prove the equidistribution in R/Z relatively

to the Haar measure (the uniform distribution modulo one
according to the classical terminology) of the fractional parts
of the sequence {n £} where £ is irrational. Here we see the
roots of the classical theory of equidistribution, i.e. the

link with diophantine analysis.,

Consider % = {n £} = ng - [nE]
where £ is irrational, ‘
"{r} denotes the fractional part of the real number r,

[r] denotes the biggest integer not exceeding r.

N 2mim (ng - [nﬁ]) N omimén
1 -1 L e
Then = T e ==
n - n n=1l
n=1
N 2minim 2ML(N + 1)Em 2TimE
Now Z e | = e - e
n=1 2TimE
e -1
-2 = 1 for m # O.
< 2MimE _ 1
|e ‘ 'sin T m €|

N mim (nE - [n&i])
Thus = I e ->
B a=1

0+ Conclude with 1l.4.1.

Q.E.D.
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For more examples, see [é], a book using ergodic theory.

A few remarks to conclude.

If one drops the group structure of R/Z = [0, 1[ and
consider the compact topological space [b, i] (usual topology)
instead, using the Lebesque measure, one gets:

Theorem 1.4.4 (f Eﬂ for a proof and look at 1.2.2)

(xn) is y-equidistributed if and only if for each interval

El, b:] of length d > 0 in [0, ]:] lim (nf_a, E] / n) = 4.

n->o©
Theorem l.4.4 provides a very visual criterion and for an
even better one in this respect see [é], where the notion of
Yalmost—-arithmetic progression' is defined.

Proof of theorem 1l.4.4 (outline).

The necessity part is exactly theorem 1.2.2.
Let us prove the sufficiency part.

Let h = X[a, b] be the characteristic function of [a, h].

n
Then since 1£1h(x1) = n[a, b] we have:

n
lim I h(x)/n=d= f(l) h(x)dx,
n--o i=1

By linearity this extends to any step function g. Let f be any
continuous function: for any £ > 0, there exists step functions

1
81s 89 such that g < £ < By IO (gz(x) - gl(x))dx < €, 80

that the above equation still holds for E£.

Q.E.D.
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2.1 L-functions associated to a compact group.

Let G be a compact group, and X its space of conjugacy classes.
L is a denumerable set; IN is the set of natural numbers including
zero.

{xv}v el is a family of elements of X.

Consider the function N:
2+ mN- {0, 1}
v > Nv

€ is the set of complex numbers,

R(s) denotes the real part of s for s € (.

"det" stands for the determinant of a matrix.

Assumption 2.1l.1
1

TT 1- (Ww)°° converges for every s £ € with R(s) > 1
vezl

and extends to a meromorphic function on R(s) > 1 having

neither zero nor pole except for a simple pole at s = 1.

Assumption 2.1.2

Let p be an irreducible representation of G with character ¥.

Put L(s, p) = T L .

vel det (1 - p(xv) av)"3)

Then L(s, p) converges for R(s) > 1 and extends to a meromorphic

function on R(s) > 1 having neither zero nor pole except

possibly for s = 1.
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The order of L(s, p) at s = 1 will be denoted by - cx.

Of course the functions just defined above will be referred to

as L-functions.

We introduce a notation we will need all through this

section. Given two sequences u = (un) and (vn) = v we say

that u = o(v) if lim 35 =0
n >y

Under the above assumptions, we get:

Theorem 2.1.3

a) The number of v € I with Nv £ n is asymptotic
n / logn as n > «,
b) 1If ¥ is irreducible,

then I X(x.) =c. n/logn+ o (n/ log n)
v X
Nv £ n

Proof:

1
Step 1: computation of L /L (the logarithmic derivative of L).

Let d be the degree of p and take s, R(s) > 1, s # 1.

d
Ls, =TT TT 1

veli=1 1 - Av(i) (Nv)-s

where A (1)
v

are the eigenvalues of p(xv).
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d (1) o \-s

log L(s, p) = - z z log (1 - A Nv) 7)
vel 1i=1 v

The log is defined since L(s, p) ¥+ 0 by assumption 2.1.2.

nees

_d log L(s, p) == = Av(i) )~ log Nv

ds vel i 1

1- Av(i) () ~S

1 -—
L /L =_d log L(s, p) = - I log Nv Av(i) Nw) S

ds vez i

™A

1

1- Av(i) () ~S

Now Av(i) awv) S| = lxv(i4 <1 <1,
2

'NVI R(s)

1
[

since by the theory of compact groups

}\(1)'_
v
and by assumptions Nv > 2, R(s) > 1.

Hence we can develop using geometric series:

]
L /L

xv(i) (Nv) S
1 m

e 8

lv(i)m(Nv)-Sm

e~

Z log Nv
vel i

e

Av(i)m(Nv)_sm

L /L=~ L log Nv z
= 1

Av(i)m (NV)—sm
1 .

(LI o I ]
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1 [« <]
LJ/L=- L  log Nv T W Ty ™
vezl m= ' v
1 o n
L/L=- z Z (log Nv)x(xv )
vel m=1
[0
Step 2: we prove:
Lemma 2.1.4 Y g g o § ) log Nv converges
- NS
for R(s) > 1/2.
We will need:
Lemma 2.1.5 z log Nv <o for T > 1.

vezl
awv)"

Choose € > 0O such that T >t - € > 1.

Then log x * 0 as x > o,

[
X
log Nv = log Nv 1
aw)’ av)® @t T E

and there exists a constant C such that log Nv < C for any v.

() €
Thus z log Nv < C z 1
vel T vel -
() (®v)
Now )X 1 converges since || 1
vezl vezl
ot T F 1- an' T E

converges by assumption (a classical theorem tells us that this
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sum and this product converge or diverge simultaneously).

Q.E.D.

Back to the proof of lemma 2.1.4.

z z log Nv = z z log Nv
velm>2 m>2 vel
| vy s | vy

Now lemma 2.1.5 implies z log'Nv < o for R(s) > 1/2.

veZ
I(Nv)zsl
r z log Nv S.( pX log Nv ) ( 14 1 + 1
m > 2 veil v

| vyl ** law?l PR(s)  2R(s)

+ 1l + e y °
23R(s)

Q.E.D.

Step 3: applying the Wiener-TIkehara theorem and the Abel
summation trick.

Using "step 1" and lemma 2.1.4, one can write

L/L=- I x(xv) log Nv + ¢ (s)

veEeZX

wv)°
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where ¢(s) = - T T log Nv converges for R(s) > 1/2.
velm>2
()™
Moreover from 2.1.4
ol c 1 & 1egw

vezL
1- 1 |Nv|2R(s) .
oR(s)
Fix € > 0.
Hence |¢(s)‘ < 1 z log Nv
vezl
1- 1 Nv1 + €
21/2
for R(s) >1 + € .
2 2

Hence the convergence is uniform on R(s) > 1 + for any € > Q.
2

€
2
We just proved:

Lemma 2.1.6 ¢ is holomorphic for R(s) > 1/2.

By the hypothesis on L:

L(s, p) = g(s)

(s - D
where g(s) is holomorphic without zeroes or poles on R(s) > 1.
1 - .C ! c -1
L(s, M=(-D% g (o) -gs) 6 =D% Ve

(s - l)zcx

1 1 c
L/L=g(s) - _X
g(s) (s - 1)

¢
We just proved:
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1
Lemma 2.1.7 L /L can be extended to a meromorphic function

on R(s) > 1, holomorphic except possibly for a simple pole of

residue -cx at s = 1.

We state the following without proof (cf [i]):

Theorem 2.1.8 (Wiener-Ikehara)

Let F(s) =

to™g

n=1 an/nS be a Dirichlet's serie (cf [é])

with complex coefficients,

let F + (s) = z
n:

a; / n° be a Dirichlet's serie with
1

positive coefficients,
such that:

+
a) ‘anl < a_ for all n,

b) F * converges for R(s) > 1,

c) F¥ (resp. F) can be extended to a meromorphic function.
on R(s) > 1 having no poles except (resp. except possibly)
for a simple pole with residue c *>o0 (resp. ¢).

Then z a =cn+ o(n).
m
m<n

Apply 2.1.8 choosing F(s), F + (s) such that:

a = an+ = 0 if Nv # n for all v,

2
n

r x(xv) log Nv where r is the number of v such that

2
<
fl

n and d is the degree of the representation.
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1
Then F(s) = L /L - ¢(s) = - I x(xv) log Nv
vel

w)*°
Ft (s) =d LI log Nv
vel s
(¥v)
as can be seen from a simple rearrangement.

From 2,1.6 and 2.1.7, F(s) verifies hypothesis c¢) of 2.1.8.

From the theory of compact groups (cf [1i]) x(xv) is the sum
of d complex numbers of absolute value one: hence |x(xvﬂ < d.
Hence |a_]| = r |x(x. )] |log Nv| < rd |log Nv| = |a +|.

n v n
From 2.1.7 the residue of F(s) at s = 1 is cx.
From 2.1.5 F + (s) converges for R(s) > 1,

Applying 2.1.8:

> X(x. ) log Nv = c¢_ n + o(n)
Nv €n v X

We state the following without proof cf [7]:

Theorem 2.1.9 (Abel summation trick)

Let bn €eC,n>2

N
and ¥ (N) = Z b =0aN+o0o N, aeC, N IN.
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Applying this to the preceeding result:
Z X(x)=cn +o0( n )
log n log n
which is theorem 2.1.3 b).
In particular if ¥ = 1,

we get theorem 2.1.3 a):

£ 1= n/logn+ o (n/log n).
Nv <n
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2,2 A sufficient condition for equidistribution.

We now have in hand all the information we need to get the
theorem which is the "raison d'étre" of this thesis: a theorem
providing us with a sufficient condition for equidistribution,
from which result applied to a finite Galois group the whole
chapter 3 will follow. All through this section our terminology
from 2,1 holds. We keep assumptions 2.1.1 and 2.1.2 but we
complete them with:

Assumption 2.2.1 There exists a constant C such that for

every integer n the number of v € £ with Nv =n is less than

or equal to C.

We cannot talk about equidistribution yet since the sequence

we are looking at, namely (xv)v e T *

is not indexed by natural
numbers as in our definition 1.1.1. But we do have a function
>IN - {0, 1}

v *+ Nv

that will enable us tbAdo so, with the help of assumption 2.2.1.

Rearrange the elements of I as a sequence (vi)i> 1 S°

that i <€ j implies Nvi < ij . In general this is possible in

many ways: if there are many v's mapped to a given n, one

can permute them., Let (v and (wi) be two such

1> 1 1>1
rearrangements and let £ € C(X), K = sup |f(x)| since f is
x e X

continuous on a compact. For any n the sets {v. .}, _
i‘i=1l,...n
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and f_ } are the same except possibly for at most
i'i=1,..., n
C elements, namely vi's and wi's for which Nv, and Nw; are
maximal. Therefore:
n n
|2 = = )-%2 1 £ )] < EE s,
i=1 i i=1 i
We just proved:
1 0 , 1 B
Lemma 2.2.2 (= Z £f(x_)) and (= I f(x_ ))
Pi=1 Y w1l Pi=3 W m2tl

converge (to the same limit) or diverge simultaneously where

(Vi)i > 1 and ICFOFINN 1 are rearrangements of Z of the type

described above: one can then talk about equidistribution for

(x )

vivel

The next lemma will make that even clearer:

Lemma 2.2.3 Let (vi) be a suitable rearrangement of I

i>1

and take f € C(X) with K = sup lf(x)l .

xe X
n
z f(xv) z f(xv)
Then 1lim | Nv<n - i=1 i j=20.
1 n
Nvza
Proof: put kn = r 1,
Nv £ n
n
is= .
_ f(xv)
n . .
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Obviously (skn) n>1 is a subsequence of (sn)n >1

Clearly for every n there exists a unique m such

k <n <k
m m

+ 1.
1 1
Define s_ = s ; then |s_ ~ Sk | >0
n k n n
m
1
since (sn )n >1 is obtained from (skn)n > 1

by repeating every value of it at most C times after itself.

Now if n = k (note that n - k < C)
m m

Coe = | = | k’zn x, ) : ot )|
8 - s = |s - s = |n f(x -k z f(x
n kp @ i=1 V4  ®mi=3 Yy
nk
m
k
Igf( Y +k |z £(x_)|
<(n-%k) x X
™y =1 Yy my=k +1 Vi
m
nk
™
< Ck_K+ k_CK
p— L > 0.
nk
m
1 1
Now |sn - 5 | < Isn - 5 | + Isn - Sn[ -+ 0.
n n
Q.E.D.

We can now proceed to our 'new'" definition of equidistribution:

Definition 2.2.4 With the notation of 2.1, under the assumption

2.2.1, we say that (xv)v e X is y-equidistributed if
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1im z f(xv)
n>+ Nv < n

= u(f) for any £ ¢ C(X).

z 1
Nv £ n

In the light of the above definition and under assumptions

2.1.1 and 2.1.2 we state:

is p-equidistributed

Theorem 2.2.5 The sequence (xv)v -

in X with u(y) = cx for any irreducible character X of G.

Proof: theorem 2.1.3 a) and b) yields:

X&)

z
liva_<_n = ¢

z

<

n > x

Nv

Applying theorem 1.3.2, u()) = c_.

Q.E.D.

We get as an immediate corollary (by 1.3.3):

Theorem 2.2.6 The elements X, VE L are equidistributed

with respect to the normalized Haar measure if and only if

cx = 0 for every irreducible character X + 1 of G, if and

only if, the L-functionsrelative to the non trivial irreducible

characters of G are holomorphic and non zero at s = 1.
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2.3 The case of a finite Galois group.

We want now to apply our sufficient condition for equi-~
distribution (cf section 2.2) to the case of a finite Galois
group. The results needed for this have standard, sometimes
long and technical proofs: we will restrict ourselves to out-
lines and references not to make this section too heavy. The
techniques required for our purpose resort to basic algebraic
number theory, Galois theory, the theory of complex variables
(mainly analytic continuation), the theory of representations
of groups. We assume all the basic concepts of algebraic

number theory (cf [1], [7] or [10]).

Let G be the Galois group of a finite normal extension K
of the number field k (cf [10]). We first want to define a
topology on G. In the general case where G can be infinite,
Artin defines the following quantities (see [1], page 104):
given T € G and a subfield E of K, put

NE(T) = {y € G with t(e) = w(e) for any e € E}.
Intuitively NE(T) is a typical open neighborhood of T, for any T.

In an obvious manner one can build a topology which turns out
to be the discrete topology (i.e. the set of all the subsets
of G) in the finite case.

This motivates the following trivial result which we do not prove.
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Lemma 2.3.1 Under our hypothesis, the set of all the subsets
of G is a compact Hausdorff topology making the characters of

G continuous.

Denote by I the set of unramified prime ideals of k. Define:
N: £ ->@®N - {0,1}
v > Nk/Q (v) = card(Ak/v)
where Nk/Q is the "norm" function, Q is the set of rational
numbers, card is the "cardinality" function and Ak is the ring

of integers of k.

Lemma 2.3.2 There exists a constant C such that I 1 <C
Nv=n

for all n.

Note that this implies that I is denumerable since card I < C gcard /N,

Proof: A most clear reference for this proof is:

Algebraic Numbers, Paulo Ribenboim, Wiley, 1972, pages 109, 122,

162, 164. Since Ak is a Dedekind ring, any non-zero prime v
is maximal and Ak/v is a finite field. Hence Nv = ps where p

is a prime and s > 1 an integer. If n cannot be put under the

form ps, then £1=0,
Nv=n
s g ®4
If n=p, let Akp = I v be the decomposition of Akp into
=1 1
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product of prime ideals vy of Ak' Let m be the degree of the

extension k of Q. Then by the properties of the norm (which

we accept) we have (see Ribenboim page 164):

m g ei
N(Akp) =p = 1 (N("i)) .
i=1

£

i

Denote N(Vi) =p . We have m = eifi and the number of £

1 i

1 00

i
equal to s is less than or equal to m. Since all the v's
such that Nv = pS must zppear in the above decomposition (they

must divide Akps by Ribenboim, page 122), their number is less

than or equal to m. Taking C = m finishes the proof.
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We have not yet described the sequence (xv)v wve want

1)
to consider. Fix v € Z. Let w pe a prime factor of v imn K.
Put D= {T € G, with T(w) = w}; D is called the decomposition
subgroup of w. It is known {(cf [id], page 107 or’[i], page 57)
that D is cyclic and that there exists a generator T with

t(a) - a™ € w for all a € AK’ where A.K is the ring of the
integers of K, n = card(Ak/v) . T is called the Frobenius

automorphism of w,is denoted (w, K/k) = 1. It is then easy to
show ( 0w (W), K/k) = w (w, K/k) w—l for any w € G.

Let Wis Wy be two prime factors of v in K. Theﬁ there
exists w, with w(wl) = Wy Calling X, the conjugacy class of

the Frobenius automorphism of any of the prime factors of v
in K, we get a sequence of elements of X (the space of conjugacy

classes of G) which we denote x, = (v, K/k).

Our L-functions will take the following shape:

L(s, p) = TT- 1 .

v EZ

det (1-p ( (v, K/K) ) N ,0(07%)

Now comes the biggest gap in this thesis: the proofs for
assumptions 2.,1.1 and 2.1.2 are clearly beyond the scope of

our work and we have also to prove that cX = 0 for all irreducible

X # 1. We do provide an outline though. One first considers
the case where G is abelian: using analytic continuation,

a functional equation (cf [3], page 209) one gets the result.
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There is still a problem with the abelian case though: the
reference just given uses '"Dirichlet characters", defined on
prime ideals of k and not on elements of G as we would need to
be consistent with our exposure. A first way to deal with this
is to show the relation between the two kinds of characters, using
a "reciprocity law" (see [3], page 165). Another way is to go
back to Artin's original work (see [2], page 113, in German)
where the "right kind" of characters is used.

The general case has to be brought down to the abelian case
(see [2], pages 105-121 or [3], pages 218-225). One first shows
that L(s, p) really depends only on the character x attached to
p (see [3], page 220). Accordingly from now on we will talk
about L(s, ¥). Suppose 2 is an intermediate field between
K and k, normal over k. Let H = Gal(K/Q). Then it can be proved
that

L(s, X, K/k) = L(s, X, @/k)
where X is a character of G/H that can be regarded as a character
of G and where the notation for the L-series has been completed
in an obvious manner. With the above result, one can break
L(s, x) into a product of L-functions attached to abelian

characters (see [3], page 225).

All the considerations of this section merely put us in

the hypothesis of theorems 2.2.5 and 2.2.6: all together we get:
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Theorem 2.3.3 The conjugacy classes of a finite Galois group

containing Frobenius automorphisms are equidistributed with

respect to the Haar measure.



CHAPTER 3
EQUIDISTRIBUTION
APPLIED TO
NUMBER

THEORY

e
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3.1 The prime number theorem.

Before applying the powerful result of section 2.3 to get
density theorems, we make explicit the statement of the prime number
theorem hidden in the preceeding pages.

Let everything be as at the beginning of section 2.3 except
that we particularize in the following way: we put K= k = Q.

Then v € Z means v = Zp where p is a prime number in the ring Z

of the integers and N / (v) = caxrd Z/Zp = p. Put w(n) = I 1:
Q/Q Nv €<n

7T (n) is the number of primes of Z less then or equal to n. From
the fact that theorem 2.1.3 a) holds in this case, we get:

Theorem 3.1.1 (The prime number theorem)

lim 7w(n) - n/logn = O.

n > «

n/log n



- 40 -

3.2 The notion of density.

Let k be a number field and Zk’ the set of its prime ideals v.
Put Nv = Nk/Q(v) = card Ak/v where Ak is the ring of integers of k.

For any P £ Zk, and n natural n > 2, an(P) stands for the number

of v € P such that Nv £ n.

Definition 3.2.1 P & Zk is said to have density a, where a is real,

if lim an(P)
n > o«
an(Ek)

. It is seen at once that a finite set has measure zero. As easily
we notice that for k = Q the density has a very intuitive meaning,
since it gives '"the number of elements in a set of primes of 2
divided by the number of primes in Z" (so to speak): this density
is called natural following the terminology in Serre, Cours

d'Arithmétique, Presses Universitaires de France, 1970, page 126.

In the same book, on page 121 another kind of density, called
"analytical", is defined:

Definition 3.2.2 P € ZQ has density a where a is real if

2 l') !/ (log

(
EP s
P P

) tends to a as s tends to 1 in the
s - 1

complex plane.

It can be shown that if P has a natural density, it has the
same analytical density but the converse is not true.

For different uses of the word "density", in a close way to

ours though, see Addition Theorems, Mann, Wiley, 1965: there are

defined the Schnirelmann, Besicovitch and asymptotic demsities,

the first two using the "greatest lower bound" function. Our
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concern in the next sections will be about the "natural density.
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v

3.3 Cebotarev's theorem.

We now prove a fairly general density theorem, assuming the
conditions of section 2.3,
Let G be the Galois group of the finite extension K of the number
field k. Let Y be a subset of G, stable by conjugation. Denote

by P, the set of the prime ideals v of k, unramified in K such

Y
that the Frobenius class X, is contained in Y (ef [7] or [10] or
2.3). Then

Theorem 3.3.1 (Cebotarev's theorem)

lim an(PY) = card Y

n->x

an(zk) card G

according to the notation introduced in 3.2, i.e. PY hag '"natural

density" (cf 3.2.1) card Y

card G.
Proof:

The characteristic function Xy of Y is trivially continuous since

the topology of G is discrete.

Applying 2.3.3 we get:

I X, (x)
Y v
1im Nvzn u(xY)
n-+o 5 1
Nvfn

where u is the normalized Haar measure on G, and v varies through
the set © of all the unramified prime ideals of k. Since there
are only a finite number of ramified primes (see [7] or [10]),

our result still holds if v runs througn Ek, the set of all

prime ideals of k.
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Conclusion: describing the Haar measure.

If v e Zk, then v belongs to PY if and only if X, €Y and v is

unramified. Thus: X XY(xv) = an(PY) and z 1= an(Zk).
Nv €<n Nv <n
On the other hand for any part P of G define u(P) = card P .
card G

Viewed as a set function this is clearly a translation invariant
measure on G with u(G) = 1: by unicity of the normalized Haar
measure, | is the measure and XY being continuous we have
u(xY) = card Y .

card C

Combining these results with "step 2" we get:

1im 20 ®Y) - card v
n > o

an(Zk) card G
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3.4 Dirichlet's theorem on primes in an arithmetic progression.

From section 3.3 we now get a most classical result.

Theorem 3.4.1 (Dirichlet's theorem).

Let a, m be relatively prime integers of Q (the rational
numbers).

Then there exists infinitely many primes p congruent to
a mod m.

More precisely the density of the set of the prime ideals

generated by the p's is 1 where ¢ is the Euler function
$(m)

(cf [4]).

Proof: a good reference for the terminology we need now is

van der Waerden, Modern Algebra, Frederick Ungar Pub. Co.,

1964, page 160. Let £ be a primitive m—-th root of unity and
let Q(z) be the smallest field containing Q and 7. 1In

reference to 3.3 put K=Q(g), k=Q and Y = {Ta} where
Ta(C) = 2, Since G is abelian (cf van der Waerden, page 162),

Y is stable by conjugation, each class consisting of one
element.

Now every Tt € G is of the form:

(g) = §b where b and m are relatively prime.

Let us identify the Frobenius automorphism, to be denoted Tp ’

attached to a prime p unramified in K (unicity coming from

the fact that G is abelian). According to the definition
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given right after lemma 2.3.2 we must have:
n
Tp(a) -—a ew for any a ¢ AK

where w is a prime factor of p in Q(Z),

n = card(A, /p) = p,
A, is the ring of integers of K = Q(g).

Since ¢ is an integer and 0 € w,

TP(C) - ;p = 0 meets our needs,

The above equation in turn defines an element of G
when p and m are relatively prime.
Since the Frobenius element of a prime p unramified in K
is assumed to exist, it takes the form we just derived.

The PY of theorem 3.3.1 becomes the set of prime numbers p

relatively prime to m such that Tp = Ty ji.e. the set of

prime numbers congruent to a mod m.

Applying 3.3.1 we get:

The density of Py is card Y= 1 # 0.
card G ¢(m)

Hence PY is infinite and we get our most classical result.
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