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EQUIDISTRIBUTION AND L-FUNCTIONS 

IN NUMBER THEORY 

par 

Pierre Houde 

RESUME 

L'objet de cette thèse est d'obtenir à l'aide de la notion 

de suite équirépartie d'importants résultats classiques de 

théorie des nombres (théorème de Tchebotareff, "théorème des 

nombres premiers", théorème de Dirichlet). Les techniques 

utilisées font appel à l'analyse harmonique dans les groupes 

compacts (théorème de Peter-Weyl), à la théorie des variables 

complexes (théorème de Wiener-Ikehara), à la théorie des nombres 

algébriques. 
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INTRODUCTION 

This thesis aims mainly at proving important density results 

from number theory. What we mean by density, we will clarify in 

our chapter 3 but in order to get the flavour of it let us state 

right now a typical result due to Dirichlet: 

Dirichlet's Theorem: if m is a positive integer, 

if m and a are relatively prime, then 

there exists infinitely many primes p 

such that p a(mod m). 

This result is often referred to as Dirichlet's theorem on 

primes in an arithmetic progression. 
1 

To prove this we will need Cebotarev's theorem (see chapter 3), 

which is a density theorem following from the "equidistribution" 

of the Frobenius elements of a finite Galois group. 

This explains why our first chapter has to be about "equidistri-

bution": we define the notion, give criteria and consider the 

important cases when the elements of the sequences to be "equidistri-

buted" belong to the space of conjugacy classes of a compact group (and 

this leads us to harmonie analysis on a compact group: see [SJ or 

[1~) or to the two dimensional torus. Some of the facts about 

equidistribution we do not prove since they are not needed in the 

rest of the thesis but we do give references. Let us just mention 

that historically the notion of equidistribution arises from diophantine 

analysis in connection with the "distribution" in [0, lJ of the 
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fractional parts of the elements of a sequence. 

Then comes chapter 2: the technical core of the thesis. The 

so-called L-functions, generalization of the well-known zeta-functions, 

give us a sufficient condition for equidistribution. We use this 

condition to get the equidistribution of the Frobenius elements of 

a fini te Galois group: then we are aIl set up to get in chapter 3 

the required density results. 

On our way, not in the main stream of the exposure though, 

we get the prime number theorem. 

Our topic needs methods from various parts of mathematics: 

from the the ory of the complex variable we will assume the Wiener-

lkehara theorem and the Abel summation trick. From the theory of 

the representations of a compact group we will assume the Peter-Weyl 

theorem: the reader can refer to the classical book Topological Groups 

by Pontryagin or to [12J. From algebraic number the ory we assume 

the definitions and results from Théorie Algébrique des Nombres by 

Pierre Samuel (see [lQJ). The main reference though will be 

Abelian t-adic Representations and Elliptic Curves by J.P. Serre 

(see [U], pages 18-29). 
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1.1 Basic termino1ogy. 

Let X be a compact topo1ogica1 space. 

Let CCX) be the Banach space of continuous, comp1ex-va1ued 

functions on X with its usua1 norm 1 Ifl 100 = sup 1f(x)i. 
x e: X 

For each x e: X let ô be the Dirac measure associated to x: x 

for f e: CCX) we have ô (f) = f(x). 
x 

Let (xn)n > 1 be a sequence of e1ements of X. 

For n > 1 we define ~ = ô + + ô 
n xl x ______________ ~n 

n 

Let ~ be a Radon measure in X (cf [12J ) • 

Definition 1.1.1 The sequence (x ) is said to be ~-equidistri­
n 

buted or ~-uniformly distributed or "équirépartie par rapport 

à ~" (in French)if ~ + ~ weak1y as n + 00 (that is to say: if 
n 

~ (f) + ~(f) as n + 00 for any f e: CCX) ). 
n 

We get the fo11owing obvious resu1ts: 

Note 1.1.2 (xn)n > 1 can be equidistributed relative1y to at 

most one measure ~. 

Assume (xn)n > 1 is "~-and-v-equidistributed" 

then ~(f) = v(f) for a1l f e: CCX) 

thus ~ = v 

Note 1.1.3 if (xn)n > 1 is ~-equidistributed, ~ is positive 

and of total mass 1. 
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For f > 0 ~ (f) = f(x ) + + f(x ) > o. n __ ~l ____________ ~n~ 

n 
Renee ~(f) > o. 

Take f = Xx the characteristic function X. 

Renee ~(Xx) = 1. 
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1.2 General criteria. 

We give two conditions for equidistribution: the first is 

sufficient; the second, necessary. Our first condition in fa ct 

amounts to noticing that we need check the weak convergence of 

the ~ '5 only on a set of generators of a dense vector subspace n 

of CCX). 

lemma 1.2.1 let (~ ) be a family of continuous functions on X 
a 

with the property that their linear combinations are dense in 

CCX). Assume that for aIl a, (~n (~a) }n > 1 has a limit. Then 

(Xn)n > 1 is equidistributed with respect to some measure ~: 

it is the unique measure such that ~(~ ) = 
a 

lim ~ (~ ) n a n-rOO 

Proof: for aIl a calI ~(~a) the limit of (~n (~a) )n > 1. 

Let V = < ~ > a 

i.e. V is the subspace generated by the ~ 's. 
a 

Let f EV, 

f = 
m 

for certain scalars À .• 
~ 

~ (f) 
n 

L Ài ~n (~a.) since the ~n's are clearly linear. 
i=l ~ 

Hence ~ (f) -r 
n 

m 
L Ài p(~a ) by the hypothesis 

i=l i 

m 
Let us calI ~(f) the quantity L Ài ~(~a ). 

i=l i 
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Let g 8 CCX), g i V, 8 > O. 

There exists f 8 V such that /If - g1100:S8 

and ~ (f) + ~(f). 
n 

There exists N such that n > N imply 

/ ~n + p (f) - ~n (f) 1 ~ 8 . 

/~n + p(g) - ~n(g)1 ~I(f - g)(x
1

) + ••• + (f - g)(xn + p) 

n + P 

- (f - g) (x ) + 
l 

+ (f - g)(x ) 1 + /f(x ) t ... + f(x + ) 
n l n P 

- f(x ) + 
l 

n 

n 

/ ( ) ( ) 1 
< (n + p)8 t ~ + 8 = 38 

~n + p g - ~n g - (n + p) n 

n t P 

Hence (~ (g) ) is a Cauchy sequence and converges to a limit we 
n 

will calI ~ (g) • 

This way we have defined a function: 

~: CCX) + Œ, the set of complex numbers. 

g + ~(g) = lim ~ (g) 
n + 00 n 

~ is linear since ~n(f t g) = ~n(f) + ~n(g) 

~ (H) = À ~ (f) n n 

for any f, g 8 CCX), À complex. 

Fix. 8 > O. 
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Assume Iif - glloo ~o = e:. 

I~ (f) - ~ (g)1 = ll(f - g)(x
1

) + ... (f - g)(x)1 < n~ = E n n n n 
n 

Thus Ill(f) - ~(g) 1 5. e: 

and ~ 1s continuous and a Radon measure. 

Q.E.D. 

We now give a necessary condition for equidistribution. 

Theorem 1. 2 . 2 

Assume that (xn)n > 1 is ~-equidistributed. 

Let U C. X have él. boundary with ~-measure zero. 

For aIl n let nU be the number of m S. n 

such that x e: u. 
m 

Then lim 
n+ OO 

(nU 1 n) = ~(U) 

where ~(U) = ~(UO) and UO is the interior of U. 

Proof: let e: > O. 

There exists cp e: C(X), 0 S. cp $.1, cp = 0 on X - UO 

such that ~(CP) > ~(U) - e: 

~ (CP) = CP(x )+ n 1 

n 

This result combined with the hypothesis ~n(CP) + ~(CP) 
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yields: lim inf nU/n > ~(~) ~ ~(U) - E 
n~oo 

for aIl E. 

Thus lim inf nU/n > ~(U). 
n~oo 

Since the boundary of X - U has ~-measure zero, the same 

process for X - U yields: 

lim inf (nx 
n~OO 

u) 1 n = lim inf (n - ~) 1 n > ~(X - U) 
n~oo 

l - lim sup nU 1 n > ~(X - U) = l - ~(U) 
n~OO 

lim inf nU/n ~ ~(U) ~ lim sup ~/n 
n~oo n~OO 

Q.E.D. 
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1.3 The case of a compact group. 

We now consider the case ~ .. hen the e1ements to be equi-

distributed be10ng to the space of conjugacy classes of a 

compact group; we will use the powerfu1 methods of harmonie 

ana1ysis on a compact group (main1y the Peter-Weyl theorem 

about the irreducib1e characters of a compact group): this 

will give us a first criterion of equidistribution. As compact 

groups are provided with a unique norma1ized Haar measure, we 

will find a second criterion in this particu1ar case. For 

references, see [5J or [12J. 

Let G be a compact group and X, its space of conjugacy classes. 

Let ~ be a Radon measure on G. 

Take g E C(X). 

Let p be the canonica1 projection from G to X. 

* Define ~ (g) = ~(gp) 
* Lemma 1.3.1. ~ is a Radon measure on X. We will denote it 

by ~ sincethere is no possible confusion. 

* ~ is'c1ear1y 1inear. 

Given E > a there exists a ô > a such that 

Iig - g Il < ô imp1y I~(g p) - ~(g p) 1 = I~*(g ) - ~*(g ) 1 < E 
12 00 1 2 1 2 

since ~ and pare continuous. 

Q.E.D. 
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Under the above hypothesis we get: 

Theorem 1.3.2 

The sequence (xn)n > 1 is ~-equidistributed if and only if 

for any irreducible characters X of G we have: 

lim 1 
n+OOn 

n 
E X(xi ) = J.l(X) 

i=l 

Proof: consider CCX) + C(G) 

g + gP. 

This is an isomorphism onto the space of central 

functions on G: by the Peter-Weyl theorem, the ir-

reducible characters of G generate a dense subspace 

* of C(X) (when viewed as functions X E CCX) 

* * where X = X P but of course we will denote X by X). 
n 

Assume that lim 1 L X(x.) = ~(X). 
n + 00 n i=l 1 

Then by lemma 1.2.1 (xn)n > 1 is ~-equidistributed. 

* The converse is obvious since X E CCX). 

Q.E.D. 

In the case when J.l is the Haar measure of G with J.l(G) = l, 
we get the important coroliary: 

Theorem 1.3.3 (x) is J.l-equidistributed in X if and only if 
n 

for any irreducible character X of G, X =; l, we have 
n 

lim 1 E X (x.) = 0 
n + 00 n i=l 1 

., 
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Proof: if X + l, there exists y such that X(y) + 1. 

Denote Xy(X) = X(XY). 

where the operation in G is denoted multiplicatively. 

Then ~(X) = 11(Xy) since the Haar measure is invariant 

by translation. 

But Xy(X) = X(xy) = X(x) X(y). 

Therefore ~(X) = ~(XyX) = Xy ~(X) 

(1 - X(y) ) ~(X) = 0 

Since X(y) + l, ~(X) = o. 

If X = l, ~(X) = 1 = ~(G). 
The last two results and the theorem 1.3.2 yield the result. 

We finish this section by quoting a result from [5J 

(without proof since we will not need it): 

Theorem 1.3.4 

Let G be a compact group, 

II its Haar measure, 

(xn)n > 1 a sequence of elements of G. 

Then the following statements are equivalent: 

Q.E.D. 

a) for aIl closed subset U of G the boundary of which has 

measure zero, we have: 

lim nu ln = ~(u) 
n+ OO 

(with the notation of 1.2). 

i , 

[ 
i 
1 
i 
1: 

1 

, 
1 . , 
: . , '. , . 
! : 
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n 
~ f(x

i
) = jJ (f) 

i=l 

(our definition of equidistribution). 

c) for aIl not trivial unitary irreducib1e representation 

M of G, one has: 
n 

1im 1 ~ M(x.) = O. 
n ~ 00 n i=l 1 

Note that here there is no question of the space of 

conjugacy classes. Compare b) with theorem 1.2.2: b) is 

stro~ger since it is an equiva1ence and theorem 1.2.2 is 

on1y a necessary condition of equidistribution. Compare c) 

and theorem 1.3.3: in the first case we use characters, 

in the second representations. 
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1.4 The case of RIz. 

This section is main1y a particu1ar case of the preceeding 

one except that at the end we consider the classical case of 

equidistribution in [0, lJ without using the compact group 

structure, turning instead to "visua1 methods". 

Let G = RIz 

where R is the set of real numbers and Z is the set of 

integers. G is [0, l[ with the addition modulo one. 

G can also be ca1led the two-dimensional torus because of 

an obvious identification mapping. 

Let ~ be the norma1ized Haar measure on G, i.e. ~(G) = 1. 

Note that the space X of the conjugacy classes of G can be con-

sidered to be G itself since G is abe1ian. In these conditions 

we have: 

Theorem 1.4.1 (Xn)n > 1 is ~-equidistributed if and only if 

for any integer m+ 0 we have 

1 I: 
2m.mx 

e n ~ 0 
2 

where i = ... 1. 
N n<N 

The above result is known as Wey1's criterion. For 

c1assfcal proofs of it, see [4j,page 89 or The American 

Mathematica1 Monthly, Volume 76, no. 6, page 654. 

Pro of : we will need: 

Lemma 1.4.2. The irreducible characters X of RIz are the nappings: 
21TiEr 

(m e: Z). 
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Proof of the 1emma: (out1ine) 

From [12], page 99 we accept the fo11owing powerfu1 resu1t: 

a bounded (or equiva1ent1y continuous) irreducib1e representation 

of an abe1ian group is nothing but a continuous solution 

x(x) of X(x + y) = X(x)X(y), Ix(x) 1 = 1 and is undistinguishab1e 

from its character. 

Since RIz is compact, it has continuous characters: since it is 

abe1ian, its irreducib1e characters are as described above. 

Now if ~ is an irrationa1 in [0,1[, the set {n~} 1 is dense 
n > 

in [0,1[. 

The value X(~) determines x(n~) since x(n~) = (X(~»n. Since X 

is continuous, its values on a dense set determine it comp1ete1y. 

2mmi0 Put X(~) = e • There exista a subsequence (~~)k > 1 such 

that Ix(~~) - 11 < E for any E > ° and this can be shown 

to force 0 = ~. 

Q.E.D. 
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Back to theorem 1.4.1: we need on1y to put together 

theorem 1.3.3 and 1emma 1.4.1. 

Q.E.D. 

Examp1e 1.4.3 We prove the equidistribution in RIz re1ative1y 

to the Haar measure (the uniform distribution modulo one 

according to the c1assica1 termino1ogy) of the fractiona1 parts 

of the sequence {n ~} where ~ is irrationa1. Here we see the 

roots of the c1assica1 theory of equidistribution, i.e. the 

1ink with diophantine ana1ysis. 

Consider x =' {n ~} = n~ - [n~J n 

where ~ is irrationa1, 

Ok} denotes the fractiona1 part of the rea1 number r" 

[r] denotes the biggest integer not exceeding r.. 

Then 1 
n 

N 
L 

n=l 

21Tim (n~ - [n~) 
e =1 

n 

N 21Tin~m 
Now 1 L e 

n=l 

= \ e 21Ti (N + 1) ~m 

21Tim~ 
e 

2 1 

< 1 e 21Tim~ - 1 1 
Isin 1T m ~ 1 

Thus 
1 N 2'rrim (n~ - [n~) 

Le .... o· 
n n=l 

e 

- e 

- 1 

for m=l= o. 

Conclude with 1.4.1. 

Q.E.D. 

i 
1 
t 
1 

1 

" 

1 
1 

1 

1: 
j' , 
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For more examples, see [9], a book using ergodic theory. 

A fe~v remarks to conclude. 

If one drops the $roup structure of RIz = [0, l[ and 

consider the compact t.opological space [0, :iJ (usual topology) 

instead, using the Lebesque measure, one gets: 

Theorem 1.4.4 (6f [4J for a proof and look at 1.2.2) 

(xn) is ~-equidistributed if and only if for each interva1 

~,bJ of length d > a in [0, iJ lim (nra b1 1 n) = d. 
n+ OO u, ~ 

Theorem 1.4.4 provides a very visual criterion and for an 

even better one in this respect see [SJ, where the notion of 

"almost-arithmetic progression" is defined. 

Proof of theorem 1.4.4 (out1ine). 

The necessity part is exact1y theorem 1.2.2. 

Let us prove the sufficiency part. 

Let h = X[a, bl be the characteristic function of [a, hl. 

n 
Then since ~ h(xi ) = n[a, bl we have: 

i=l 

lim 
n-+«> 

n 1 
~ h(xi)/n = d = fO h(x)dx, 

i=l 

By linearity this extends to any step function g. Let f be any 

continuous function: for any E > 0, there exists step functions 

that the above equation still holds for f. 

Q.E.D. 
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2.1 L-functions associated to a compact group. 

Let G be a compact group, and X its space of conjugacy classes. 

E is a denumerab1e set, rn is the set of natura1 numbers inc1uding 

zero • 

. {xv}v € E is a fami1y of e1ements of X. 

Consider the function N: 

E.... IN -' {O, 1} 

v .... Nv 

œ is the set of comp1ex numbers. 

R(s) denotes the rea1 part of s for s E œ. 

"det" stands for the determinant of a matrix. 

Assumption 2.1.1 

1 

TT 1 - (Nv)-s converges for every s E œ with R(s) > 1 
v E E 

and extends to a meromorphic function on R(s) ~ 1 having 

neither zero nor pole except for a simple pole at s = 1. 

Assumption 2.1.2 

Let p be an irreducib1e representation of G with character x. 
Put L(s, p) = TT 

vEE 

1 

Then L(s, p) converges for R(s) > 1 and extends to a meromorphic 

function on R(s) > 1 having neither zero nor pole except 

possib1y for s = 1. 
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The or der of L(s, p) at s = 1 will be denoted by - c • 
X 

Of course the functions just defined above will be referred to 

as L-functions. 

We introduce a notation we will need a11 through this 

section. Given two sequences u = (u ) and (v ) = v we say 
n n 

that u = o(v) if 1im un = 0 
n-+-COv 

n 

Under the above assumptions, we get: 

Theorem 2.1.3 

a) The number of v E L with Nv $ n is asymptotic 

n 1 log n as n -+- ~. 

b) If X is irreducib1e, 

th en L X(x ) = c n 1 log n + 0 (n 1 log n) 
Nv ~ n v X 

Proof: 
1 

Step 1: computation of L IL (the logarithmic dcrivative of L). 

Let d be the degree of p and take s, R(s) ~ 1, s + 1. 

d 

L(s, p) = Tf Tf 
vELi=l 

1 

1 - À (i) (Nv)-s 
v 

where À (i) are the eigenva1ues of p(x ). 
v v 
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d 
log L(s, p) = - E L 

ve:E i=l 
log (1 - À (i) (Nv)-s) 

v 

The log is defined since L(s, p) + 0 by assumption 2.1.2. 

d log L(s, p) 
ds 

=- (i) -s À (Nv) log Nv 
v 

1 - À (i) (Nv)-s 
v 

d 1 À (i) L IL = ~ log L(s, p) - - L log Nv L (Nv)-s 
v ds v e: E i = 1 

1 - À (i) (Nv)-s 
v 

Now lÀ (i) (Nv)-s 1 = 1 Àv (i)\ 
v < 1 < 1 , --

INvl 
R(s) 2 

since by the theory of compact groups 1 Àv(i) 1 : 1 

and by assumptions Nv ~ 2, R(s) ~ 1. 

Hence we can deve10p using geometric series: 

1 d 
À (i) 

CX) 

À (i)m(Nv)-sm L IL = - L log Nv E (Nv)-s E v v v e: L i : 1 

1 
L IL = - E log Nv L 

Ve:L m=l 

by abso1ute convergence of 
d 
L 

m = 0 

d 
L À (i)m(Nv)-sm 

i = 1 v 

CX) 

L 
i - 1 m: 

À (i)m (Nv)-sm 
1 v 
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1 00 

L/L - - L log Nv L (Nv)-sm X(x m) 
1 v v e: L 1Il= 

1 00 

m L IL - - L L (log Nv)X(x ) 
v e: L m= 1 v 

(Nv) ms 

Step 2: we prove: 

Lemma 2.1. 4 

We will need: 

log Nv 

Nvms 

for R(s) > 1/2. 

converges 

Lemma 2.1.5 L log Nv < M for L > 1. 
v e: L 

(NV)L 

Choose e: > 0 such that L > L - e: > 1. 

Then log x + 0 as x + 00, 

e: x 

log Nv = log Nv 1 

(NV)L (Nv)e: (NV)L - e: 

and there exists a constant C such that log Nv < C for any v. 

(Nv)e: 

Thus L 
v e: L 

log Nv $ C 

(Nv) L 

Now L 1 
v e: L 

(NV)L - e: 

converges by assumption 

1 

converges since lT 1 
v e: L 

(Nv) L - e: 
1 -

(a classical theorem tells us that this 
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sum and this product converge or diverge simultaneous1y). 

Back to the proof of lemma 2.1.4. 

E E log Nv = 
ve:Em>2 

1 (Nv)msl 

E 
m > 2 

E 
v e: E 

Q.E.D. 

log Nv 

1 (Nv) ms 1 

Now 1emma 2.1.5 imp1ies E 
v e: E 

log Nv < 00 for R(s) > 1/2. 

1 (Nv)
2sl 

E E 
m > 2 v e: E 

log Nv 

1 (Nv)msl 

$. ( E 
v e: E 

log Nv ) ( 1 + 

1 (Nv)
2sl 

+ 1 + •.• ) 
23R(s) 

Q.E.D. 

Step 3: app1ying the Wiener-Ikehara theorem and the Abel 

summation trick. 

Using "step 1" and 1emma 2.1.4, one can write 

1 
L IL = E X(x) log Nv + ~ (s) v e: E __ ~v ______ __ 

(Nv)s 
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where <I>(s) - -
v e: r m > 2 

log Nv converges for R(s) > 1/2. 

(Nv) ms 

Moreover from 2.1.4 

Fix e: > O. 

Rence 1 <I>(s)' < 1 

1 - 1 

21/2 

for R(s) > 1" + e: 
- 2" 2 

r 
v e: r 

1 

1 - 1 

2R(s) 

log Nv 

Nv1 + e: 

L log l'lv 
v e: r 

INvI 2R(S) 

Rence the convergence 1s uniform on R(s) > 1 + e: for any e: > o. 
-2 2 

We just proved: 

Lemma 2.1.6 <1> is ho10morphic for R(s) > 1/2. 

By the hypothesis on L: 

L (s, p) :... .... g~(s....;)'--_ 

c 
(s - 1) X 

where g(s) is holomorphic without zeroes or po1es on R(s) > 1. 
l C l C 1 

L (s, p) = ~(;;;;..s _..;;;;;;1 ..... )· .... X""--.... g-->,.;(s;....:;)_--'g"'-'(:.;;;s~) -.:.;(s'---_l-')'""--"":x ..... -__ '"x~ 
2c 

(s - 1) X 

l l 
L IL = g (s) cx 

g(s) (s - 1) 
~ 

We just proved: 
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1 
Lemma 2.1. 7 L IL can be extended to a meromorphic function 

on R(s) ~ 1, holomorphic except possibly for a simple pole of 

residue -c at s = 1. 
X 

We state the following without proof (cf [7J): 

Theorem 2.1.8 (Wiener-Ikehara) 
00 

Let F(s) = 
be a Dirichlet's serie 

with complex coefficients, 
00 

let F + (s) = E a+ 1 nS be a Dirichlet's serie with 
n 

n = 1 

positive coefficients, 

such that: 

a) for aIl n, 

b) F + converges for R(s) > 1, 

) F + (resp. ~\ b t d d t hi f ti c 'i can e ex en e 0 a meromorp c unc on 

on R(s) ~ 1 having no poles except (resp. except possibly) 

for a simple pole with residue c + > 0 (resp. c). 

Then am = c n + 0 (n) • 
m !S. n 

Apply 2.1.8 choosing F(s), F + (s) such that: 

a = a + = 0 if Nv + n for aIl v, 
n n 

= r X(x ) log Nv where r is the number of v such that v 

Nv = n and d is the degree of the representation. 
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1 
Then F(s) = L IL - </>(s) ~ 

ve: 
x(x ) log Nv 

~ v 

F + (s) = d L 
v e: ~ 

log Nv 

(Nv)s 

(Nv)s 

as can be seen fro~ a simple rearrangement. 

From 2.1.6 and 2.1.7, F(s) verifies hypothesis c) of 2.1.8. 

From the theory of compact groups (cf [12J) X(x ) is the sum 
v 

of d complex numbers of abso1ute value one: hence IX(xv)1 ~ d. 

Rence lanl = r Ix(xv )1 1 log Nvl =s rd 1 log Nvl = lan+l. 

From 2.1.7 the residue of F(s) at s = 1 is c
X

• 

f From 2.1.5 F (s) converges for R(s) > 1. 

App1ying 2.1. 8: 

E 
Nv ~ n 

We state the fo110wing without proof cf [7]: 

Theorem 2.1.9 (Abel summation trick) 

Let b
n 

e: œ, n > 2 

and '1' (N) = 

N 

N 
L 

n = 2 
b = a N·t 0 (N), a e: œ, N e: IN. 

n 

Then ~ b 110g n = 
n = 2 n 

aN 

log N 
+ o( N ) 

log N 
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App1ying this to the preceeding resu1t: 

~ X(x ) = c n + o( n ) 
Nv $n v X 

log n log n 

which is theorem 2.1.3 b). 

In particu1ar if X = 1, 

we get theorem 2.1.3 a): 

~ 1 = n/1og n + 0 (n/1og n). 
Nv S. n 

1 , 



- 28 -

2.2 A sufficient condition for equidistribution. 

We now have in hand a11 the information we need to get the 

theorem which is the "raison d'être" of this thesis: a theorem 

providing us with a sufficient condition for equidistribution, 

from which resu1t app1ied to a finite Galois group the who1e 

chapter 3 will fo110w. A11 through this section our termino1ogy 

from 2.1 ho1ds. We keep assumptions 2.1.1 and 2.1.2 but we 

complete them with: 

Assumption 2.2.1 There exists a constant C such that for 

every integer n the number of v E L with Nv =n is 1ess than 

or equa1 to C. 

We cannot ta1k about equidistribution yet since the sequence 

we are 100king at, name1y (xv)v EL' is not indexed by natura1 

numbers as in our definition 1.1.1. But we do have a function 

L ~IN -' {D, 1} 

v ~ Nv 

that will enab1e us to do so, with the he1p of assumption 2.2.1. 

Rearrange the e1ements of L as a sequence (vi)i> 1 so 

that i ~ j implies Nv i $ Nv j' In genera1 this is possible in 

many ways: if there are many v's mapped to a given n, one 

can permute them. Let (vi)i> 1 and (wi )i>l be two such 

rearrangements and let f 

continuous on a compact. 

E C(X), K = sup If(x)1 since f is 
x E X 

For any n the sets· {vi }i=l , ••• n 

-, 

J .~ .. 
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and' fw } are the same except possib1y for at rnost ii-l, ••• , n 

C e1ements, name1y virs and wirs for which NVi and NWi are 

maximal. Therefore: 

1 
n 

n 
L f(x) 

i - 1 vi 

We just proved: 

Lemma 2.2.2 

1 
n 

n 
L f(x) 

i = 1 wi 

2CK 
$ n 

n 
f (x ) ) and (1. L 

1 vi n>l n i = 

-+ o. 

f(x »n > 1 
1 wi 

converge (to the sarne 1imit) or diverge simu1taneous1y where 

(vi)i > 1 and (wi)i > 1 are rearrangements of L of the type 

described above: one can then ta1k about equidistribution for 

The next 1emma will make that even c1earer: 

Lemma 2.2.3 Let (vi)i > 1 be a suitab1e rearrangement of L 

and take f e: CCX) with K = sup 1 f(x) 1 • 
x e: X 

n 
L f(x ) L f(x ) 

Then lim NvSn v i = 1 vi o. 
. n -+ 00 

L 1 n 
NV31 

Proof: put k = L 1 , n Nv $,n 

n 
S = (L f(x» / n n i =. l vi 

L f(x ) 
and = Nv $n v 

sk 
n L 1 

Nv ~n 

j 
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Obvious1y (sk ) n > l is a subsequenee of (sn)n > 1 • 
n -

C1ear1y for every n there exists a unique m sueh 

k <n<k 1 m - m + • 
1 1 

sk 1 .... 0 
Define s = sk then Is n n n m 

1 
sinee (Sn )n > 1 is obtained from (sk )n > 1 - n 

by repeating every value of it at most C times after itse1f. 

Now if n = k (note that n - k ~ C) m m 

k 
1 

18 - 8 1 = 18k n n 

m n 
= ln L f(x) - k L f(x)1 

i = 1 vi m i = 1 vi 

< (n - k ) 1 - m 

< Ck K + k 

m 

k 
m 
L 

i = 1 

CK - m m 

nk m 

Now Is -n 8k S Is 
n 

f(x )1 + k 
vi m 

.... 

1 

n 

o • 

nk 
m 

- sk 1 
n 

+ 

n 

nk 
m 

1 L f(x )1 
i = k + 1 vi 

m 

1 

Is - 8 1 .... o. n n 

Q.E.D. 

We ean now proeeed to our "new" definition of equidistribution: 

Definition 2.2.4 With the notation of 2.1, under the assumption 

2.2.1, we say that (xv)v € L is ~-equidistributed if 
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= ~(f) for any f € CCX). 

In the 1ight of the above definition and under assumptions 

2~1.1 and 2.1.2 we state: 

Theorem 2.2.5 The sequence (x ) ~ is ~-equidistributed 
v v € L. 

in X with ~(X) = Cx for any irreducib1e eharacter X of G. 

Proof: theorem 2.1.3 a) and b) yie1ds: 

1im N 
L X(x ) 
S-

v = n ~ 00 v n eX 
L 1 

Nv S- n 

App1ying theorem 1.3.2, ~(X) = cX· 

Q.E.D. 

We get as an immediate eoro1lary (by 1.3.3): 

Theorem 2.2.6 Tne e1ements x , v € Lare equidistributed 
v 

with respect to the norma1ized Haar measure if and only if 

e = 0 for every irredueible eharacter X + 1 of G, if and 
X 

on1y if, the L-funetionsre1ative to the non trivial irreducib1e 

eharacters of Gare holomorphic and non zero at s = 1. 
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2.3 The case of a finite Galois group. 

We want now to apply our sufficient condition for equi-

distribution (cf section 2.2) to the case of a finite Galois 

group. The results needed for this have standard, someti~es 

long and technical proofs: we will restrict ourselves to out-

lines and references not to make this section too heavy. The 

techniques required for our purpose resort to basic algebraic 

number theory, Galois theory, the theory of complex variables 

(mainly analytic continuation), the theory of representations 

of groups. We assume aIl the basic concepts of algebraic 

number theory (cf [1], [7] or [10]). 

Let G be the Galois group of a finite normal extension K 

of the number field k (cf [10]). We first want to define a 

topology on G. In the general case where G can be infinite, 

Artin defines the following quantities (see [1], page 104): 

given T € G and a subfield E of K, put 

NE(T) = {w € G with T(e) = w(e) for any e € E}. 

Intuitively NE(T) is a typical open neighborhood of T, for any T. 

In an obvious manner one can build a topology which turns out 

to be the discrete topology (i.e. the set of aIl the subsets 
, . 

of G) in the finite case. 
, 

This motivates the follow1ng trivial result which we do not prove. 

j 
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Lemma 2.3.1 Under aux hypothesis, the set of aIl the subsets 

of G is a compact Hausdorff topology making the characters of 

G continuous. 

Denote by E the set of unramified prime ideals of k. Define: 

N: E +tN - {O,!} 

v + N
k/Q 

(v) = card(~/v) 

where Nk/Q is the "norm" function, Q is the set of rational 

numbers, card is the "cardinality" function and ~ is the ring 

of integers of k. 

Lemma 2.3.2 There exists a constant C such that 

for aIl n. 

L 1 < C 
Nv=n 

Note that this implies that E is denumerable since card E < C çardlN. 

Proof: A most clear reference for this proof is: 

Algebraic Numbers, Paulo Ribenboim, Wiley, 1972, pages 109, 122, 

162, 164. Since ~ is a Dedekind ring, any n9n-zero prime v 

is maximal and ~/v is a finite field. s Hence Nv = p where p 

is a prime and s > 1 an integer. If n cannot be put under the 

s form p , then E 1 = O. 
Nv=n 

If n 
s 

p , let ~p = 
g e

i 
TI vi be the decomposition of ~p into 

i=1 

, . 
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product of prime idea1s vi of~. Let m be the degree of the 

extension k of Q. Then by the properties of the norm (which 

we accept) we have (see Ribenboim page 164): 

g 
We have m = L eifi and the number of fi 

i=l 

equa1 to s is 1ess than or equa1 to m. Since aIl the v's 

s such that Nv = p must ~~pear in the above decomposition (they 

s must divide ~p by Ribenboim, page 122), their number is 1ess 

tha.n or equa1 to m. Taking C = m finishes the proof. 
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"Te have not yet described the sequence (xv)v e: ~ \ole want 

to consider. Fix v e:~. Let w be a prime factor of v in K. 

Put D =' { T e: G, with T(W) = w}; D is called the decomposition 

subgroup of w. It is knowl1. (cf [16], page 107 or [7J, page 57) 

that D is cyclic and that there exists a generator T with 

T(a) - an e: w for aIl a e: A
K

, where A
K 

is the ring of the 

integers of K, n = card(~/v) • T is called the Frobenius 

automorphism of w,is denoted (w, K/k) = T. It is then easy to 

sho\ol ( W (w), K/k) = W (w, K/k) w-1 for any W e: G. 

Let w1 ' w2 be two prime factors of v in K. Then there 

exists w, with W(wl ) = w2 • Calling x the conjugacy class of 
v 

the Frobenius automorphism of any of the prime factors of v 

in K, we get a sequence of elements of X (the space of conjugacy 

classes of G) which we denote x = (v, K/k). v 

Our L-functions will take the following shape: 

L(s, p) = TI 
v e: ~ 

1 

det (1 - P ( (v, K/k) ) Nk/Q(V)-s) 

Now comes the biggest gap in this thesis: the proofs for 

assumptions 2.1.1 and 2.1.2 are clearly beyond the scope of 

our \olork and we have a1so to prove that Cx = 0 for aIl irreducible 

x + 1. He do provide an outline though. One first considers 

the case where G is abelian: using analytic continuation, 

a functional equation (cf [3J. page 209) one gets the result. 
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There is still a problem with the abelian case though: the 

reference just given uses "Dirichlet characters". defined on 

prime Ideals of k and not on elements of G as we would need to 

be consistent with our exposure. A first way to deal with this 

is to show the relation between the two kinds of characters, using 

a "reciprocity law" (see [3], page 165). Another way is to go 

back to Artin's original work (see [2], page 113, in German) 

where the "right kind" of characters is used. 

The general case has to be brought down to the abelian case 

(see [2], pages 105-121 or [3], pages 218-225). One first shows 

that L{s, p) really depends only on the character X attached to 

p (see [3], page 220). Accordingly from now on we will talk 

about L{s, X). Suppose n is an intermediate field between 

K and k, normal over k. Let H = Gal{K/n). Then it can be proved 

that 

L{s, X, K/k) = L{s, X, n/k) 

where X is a character of G/H that can be regarded as a character 

of Gand where the notation for the L-series has been completed 

in an obvious manner. With the above result, ene can break 

L{s, X) into a product of L-functions attached to abelian 

characters (see [3], page 225). 

AlI the considerations of this section merely put us in 

the hypothesis of theorems 2.2.5 and 2.2.6: aIl together we get: 
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Theorem 2.3.3 The conjugacy classes of a finite Galois group 

containing Frobenius automorphisms are equidistributed with 

respect to the Haar measure. 
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3.1 The prime number theorem. 

Before applying the powerful result of section 2.3 to get 

density theorems, we make explicit the statement of the prime number 

theorem hidden in the preceeding pages. 

Let everything be as at the beginning of section 2.3 except 

that we particularize in the following way: we put K = k = Q. 

Then v g L means v = Zp where p is a prime number in the ring Z 

of the integers and NQ/Q(V) = card Z/Zp = p. Put TI(n) = L 1: 
Nv ~ n 

TI (n) is the number of primes of Z 1ess then or equal to n. From 

the fact that theorem 2.1.3 a) ho Ids in this case, we get: 

Theorem 3.1.1 (The prime number theorem) 

lim TI(n) - n/log n = O. 

n/log n 
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3.2 The notion of density. 

Let k be a number field and Ek' the set of its prime idea1s v. 

Put Nv = Nk/Q(v) = card ~/v where ~ is the ring of integers of k. 

For any P ~ Lk' and n natura1 n > 2, a (p) stands for the number 
- n 

of v e: P such that Nv $. n. 

Definition 3.2.1 P S Lk is said to have density a, where a is rea1, 

if lim 
a (p) 

n = a. 

It is seen at once that a finite set has measure zero. As easi1y 

we notice that for k = Q the density has a very intuitive meaning, 

since it gives "the number of e1ements in a set of primes of Z 

divided by the number of primes in Z" (so to speak): this density 

is ca11ed natura1 fo110wing the termino10gy in Serre, Cours 

d'Arithmétique, Presses Universitaires de France, 1970, page 126. 

In the same book, on page 121 another kind of density, ca11ed 

"ana1ytica1", is defined: 

Definition 3.2.2 P ~ LQ has density a where a is rea1 if 

( El) 1 (log 1 ) tends to a as s tends to 1 in the 
p e: P s 

p s - 1 

comp1ex plane. 

It can be shm·;rn that if P has a natura1 density, it has the 

same ana1ytica1 density but the converse is not true. 

For different uses of the word "density", in a close way to 

ours though, see Addition Theorerns, Mann, \~i1ey, 1965: there are 

defined the Schnirelmann, Besicovitch and asymptotic densities, 

the first two using the "greatest 10wer bound" function. Our 
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concern in the next sections will be about the "natura1" density. 
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1 
3.3 Cebotarev's theorem. 

We now prove a fairly general density theorem, assuming the 

conditions of section 2.3. 

Let G be the Galois group of the finite extension K of the number 

field k. Let Y be a subset of G, stable by conjugation. Denote 

by Py the set of the prime ideals v of k, unramified in K such 

that the Frobenius class x is contained in Y (cf [7] or [10] or 
v 

2.3). Then 
1 

Theorem 3.3.1 (Cebotarev's theorem) 

n-+<x> 
card G 

according to the notation introduced in 3.2, i.e. Py has ·"natural 

density" (cf 3.2.1) card Y 

card G. 

Proof: 

The characteristic function Xy of Y is trivially continuous since 

the topology of G is discrete. 

Applying 2.3.3 we get: 

E xy(xv) 
Nv<n 

lim - = \J(Xy ) 
n-+<x> 

E 1 
Nv<n -

where ~ is the normalized Haar measure on G, and v varies through 

the set E of aIl the unramified prime ideals of k. Since there 

are only a finite number of ramified primes (see [7] or [10]), 

our result still holds if v runs througn Ek , the set of aIl 

prime ideals of k. 
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Conclusion: describing the Haar measure. 

If v e Ek' then v belongs to Py if and on1y if Xv ~ y and v is 

unramified. Thus: E Xy(x) = a (Py) and E 1 = an(Ek). 
Nv 5 n v n Nv 5 n 

On the other hand for any part P of G define ~(p) = card P 

card G 

Viewed as a set function this is c1ear1y a translation invariant 

measure on G with ~(G) = 1: by unicity of the norma1ized Haar 

measure, ~ is the measure and Xy being continuous we have 

~(Xy) = card Y • 

card G 

Combining these resu1ts with "step 2" we get: 

lim 
n+ oo 

= card Y 

card G 

Q.E.D. 
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3.4 Dirich1et's theorem on primes in an arithmetic progression. 

From section 3.3 we now get a most c1assica1 resu1t. 

Theorem 3.4.1 (Dirich1et's theorem). 

Let a, m be re1ative1y prime integers of Q (the rational 

numbers) • 

Then there exists infinite1y many primes p congruent to 

a mod m. 

More precise1y the density of the set of the prime idea1s 

generated by the p's is 1 

<I>(m) 

(cf (41). 

where <1> is the Euler function 

Proof: a good reference for the termino1ogy we need now is 

van der Waerden, MOdern Algebra, Frederick Ungar Pub. Co., 

1964, page 160. Let ç be a primitive m-th root of unit Y and 

let Q(ç) be the sma11est field containing Q and ç. In 

reference to 3.3 put K = Q(ç), k = Q and Y = {T } where 
a 

a Ta(Ç) = ç. Since G is abe1ian (cf van der Waerden, page 162), 

y is stable by conjugation, each c1ass consisting of one 

e1ement. 

Now every T € G is of the form: 

T(Ç) = çb where band mare re1ative1y prime. 

Let us identify the Frobenius automorphism, to be denoted T 
p 

attached to a prime p unramified in K (unicity coming from 

the fact that G is abe1ian). According to the definition 
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given right arter 1emma 2.3.2 we must have: 

n for any T (a) - a EW a E ~ P 

where w is a prime factor of p in Q (Z;) , 

n = card(~/p) = p, 

~ is the ring of integers of K= Q (Z;) • 

Since Z; is an integer and 0 E W, 

T (Z;) - Z;p = 0 meets our needs. 
p 

The above equation in turn defines an e1ement of G 

when p and mare re1atively prime. 

Since the Frobenius e1ement of a prime p unramified in K 

is assumed to exist, it takes the forro we just derived. 

The Py of theorem 3.3.1 becomes th~ set of prime numbers p 

re1ative1y prime to m such that Tp = Ta' Le. the set of 

prime numbers congruent to a mod m. 

Applying 3.3.1 we get: 

The density of Py i8 card Y = 1 
~~­

card G </l(m) 
1= o. 

Hence Py is infinite and we get our most c1assica1 resu1t. 
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