THE METALLOGENY OF Cu-Ni AND Zn-Cu-Pb DEPOSITS OF THE . FREDERICKSON LAKE AREA, CENTRAL LABRADOR TROUGH

James Gebert
Department of Geological Sciences
McGill University Montreal

A thesis submitted to the Faculty of Graduate Studies and Research in partial fulfillment of the requirements for the degree of Master of Science.

James Gebert, 1988

Permission has been granted to the National Library of Canada to microfilm this thesis and to lend or sell copies of the film.

The author (copyright owner) has reserved other publication rights, and neither the thesis nor extensive extracts from it may be printed or otherwise reproduced without his/her written permission.

L'autorisation a été accordée à la Bibliothèque nationale du Canada de microfilmer cette thèse et de prêter ou de vendre des exemplaires du film.

L'auteur (titulaire du droit d'auteur) se réserve les autres droits de publication; ni la thèse ni de longs extraits de celle-ci ne doivent être imprimés ou autrement reproduits sans son autorisation écrite.

ISBN 0-315-46021-0

Abstract

In the Frederickson Lake area (Central Labrador Trough)
Zn-Cu-Pb massive sulphide lenses and associated sulphidefacies iron formation occur within black argillites (Menihek
Formation) adjacent to glomeroporphyritic sills (Montagnais
Group) that are mineralized with Cu-Ni sulphides. Previous
studies proposed a magnatic origin for both gabbro-hosted CuNi and sediment-hosted Zn-Cu-Pb deposits.

The sediment-hosted deposits have an average d S34 value of +9.2 per mil, and an average S/Se ratio of 30,000. Cu-Ni sulphide lenses which occur within glomeroporphyritic gabbro sills adjacent to sulphide-enriched sediments have an average d S34 value of +3.7 per mil, have low magma/sulphide ratios (R=57 for N1, R=53 for Cu) and a low average S/Se ratio (5,000).

The Cu-Ni deposits are interpreted to have formed by sulphide liquid immiscibility from glomeroporphyritic gabbro magmas. The contact metamorphism of stoped sulphide-facies iron formation xenoliths by glomeroporphyritic sills may have vapourized and released sulphur, causing sulphide liquid immiscibility. The Zn-Cu-Pb deposits are interpreted to have formed syngenetically by the circulation of hydrothermal fluids driven by the heat of the gabbros. These deposits are probably members of a poorly described class of sediment-hosted Zn-Cu deposits (E.g. deposits of the Swedish Caledonides and the American Ducktown region).

Résumé

Dans la région du Lac Frederickson (partie centrale, Fosse du Labrador) des sulfures de Zn-Cu-Pb et des lits de formation de fer aux faciès sulfuré sont trouvés dans les argilites noires (Formation de Menihek) adjacent aux gabbros gloméroporphyriques minéralisées en sulfures de Cu-Ni. Des travaux antérieurs suggèrent une origine magmatique pour les sulfures de Cu-Ni qui se trouvent dans les gabbros gloméroporphyriques et les sulfures de Zn-Cu-Pb qui se trouvent au sédiments.

Les gisements de Zn-Cu-Pb dans les sédiments ont une valeur moyen de d S34 de +9.2 per mil et un rapport moyen S/Se de 30,000. Les sulfures Cu-Ni aux gabbros gloméroporphyriques qui se trouvent pre des sédiments riche en soufre, ont une valeur moyenne de d S34 de +3.7 per mil, ont des rapport magma/sulfures bas (R=57 pour Ni, R=53 pour Cu), et ont des rapports bas de S/Se (5,000).

Les gisements de Cu-Ni sont interprétés de comme ayant été produits par', la segregation d'un liquide sulfureux d'un magma qabbro glaméroporphyrique. L'incorporation de xénolites de la formation de fer au faciés sulfuré et la conversion métamorphique subséquente de la pyrite Ces excès de en pyrrhotite auraient liberés le soufre dans le magma. soufre pourraient avoir provoqué l'immiscibilité du liquide sulfureux, et expliquerait les valeurs positives de d S34. Les gisements Zn-Cu-Pb sont interprétés comme représentant des gisements sédimentaires formés par «la circulation de solutions hydrothermales mise en circulation en reponse a° des fluxs thermiques cause par l'intrusion des gabbros. sont probablement membres d'un classe de gisements sédimentaires de Zn-Cu qui ne sont pas bien connues (e.g. les gisements de Caledoindes Suèdoise et Les Applaches Americain)

Acknowledgements

This study was funded and supported by le Ministère de l'Energie et des Ressources du Quebec (MERQ) and is presented with their authorization. The author wishes to acknowledge the generous support and advice given by Marc Bélanger and Tom Preparation and editing of this thesis was Clark of the MERO. greatly assisted by thesis co-directors Dr. J. Fox and Dr. T.J. by R. Wares. Thanks are also extended to Tom Avison for providing the drill logs from the Frederickson Lake Showing. The manuscript was improved by comments and criticisms offered by Drs. D. Francis, C. Gariepy, W. MacLean and & A.E. Williams-Jones. Field assistance was provided by Y. Langlois and C. Couture.

TABLE OF CONTE	NTS	, ,	·\\		-		,
		' 1	٠.٠	•		Ð	page
	•	. ' '			, ,		
Abstract	***	••••••		• • • • • • • •	• • • • •	• • • •	ii
≱ esume	• • • • • • • • • • • • • • • • • • • •			• • • • • •		• • • •	iii
Acknowledgemen	ts		•	• • • • • •	• • • • •	· .	iv
List of Pables	• • • • • • • • • • • • • • • • • • • •	• • • • • •		•••••			vij
List of Figure	s	••••••	• • • • • • • • • • • • • • • • • • • •	· · · · · · ·	• • • • •	, ·	vii
List of Append	iceś,	• • • • • •		• • • • • •		• • • • •	Í2
List of Maps:.	• • • • • • • • • • •			• • • • • •		• • • • •	is
l introduction	, , , , , , , , , , , , , , , , , , ,		·		•		
1.2 Location. 1.3 Investiga	Purpose	ds`		• • • • • •	· · · · · · ·		
2 GEOLOGICAL S	SETTING: CE	NTRAL L	ABRADOR	TROUGH			
	Setting and Metamaphy	orphism		•			15
LOCAL GEOLOGY	7	,		•			,
Murdoch F 3.3 Thompson 3.4 Willbob F 3.5 Montagnai 3.5.1 Ordin 3.5.2 Glome 3.6 Local Str	Formation Formation Lake Formation S Group ary Gabbro Proporphyrical Control Contr	tion Sills	pro Sill	s		• • • • • • • • • • • • • • • • • • • •	25 27 28 29 32
4 GEOCHEMISTR	Y OF GARRE	TC AND	VOLCANI	יר פטרא?	.	•	v
4.1 Frederick 4.2 Chemical 4.3 Glomeropo	son Lake Iq Variation i orphyritic (h Element /	gneous F in Ordin Gabbros.	Rock Sui	te bro Sil		• • • • •.	52

5 ' F1	TROGRAPHY AND GEOCHEMISTRY OF THE SULPHIDE SHOWINGS	
5.1 5.1 5.1 5.2 5.2 5.2 5.2 5.3 5.3 5.3 5.3	1 Cu-Ni Deposits	77,79111246
6 D:	ISCUSSION	ě
6.1 6.2 6.3	Evolution of the Labrador Trough Upper Cycle II84 Genesis of Glomeroporphyritic Gabbros85 Genesis of Cu-Ni deposits in Glomeroporphyritic	1 5
0.5 ,	Gabbros9	L
6.4	Genesis of Sediment-Hosted Zn-Cu-Pb Deposits99	9
	· ·	
	NCLUSIONS	
7.1	Conclusions	4
REFER]	ENCES100	Ģ
	. **	

List of Tables

Tal	ore ,	page
ļ	Grades and tonnages/of selected sulphide deposits	
•	of the Labrador Trough, in Quebec	3
2	Classification of the sulphide mineralization types	
2	of the Labrador Trough	4
3 4	Composition of sedimentary rocks of the Menihek	13
-1	Formation	26
5,		56
6	Rare earth elements analyzed by neutron activation	
7	Partition coefficients between silicate and sulphide	
3 71		
	Formula for R value	
8 9	Analyses of sulphur and selenium	• • • • / /
_	separates from the Frederickson Lake area	80
10	Lead isotope analyses of iron-sulphides from the	, ,
	Frederickson Lake AreaAppend	ix 3-3
T.ie	t of Figures	
1113	or rightes	
Fįg	ure	page
,		
1	Selected sulphide showings of the Quebec portion of	
2	the Labrador Trough	
	the locations of Cu-Ni and Zn-Cu-Pb deposits	
3	Schematic cross section of the northern half of the	
	map area	· Ź
4	Aerial photo of the northwestern portion of the study	<i>?</i> \
_	area showing the Walsh Lake Fault	8
5	View looking northwest near the Frederickson Lake	
·气 6 ^デ	South showingSummary and stratigraphic development of the North-	/8
O	Central and South-Central Labrador Trough	
7	Hand specimen of sulphide-facies iron formation	
8	Microphotograph of sulphide-facies iron formation	
9	Interlamianted siltstone and fine-grained sandstone	24
10	Microphotograph of fine-grained sandstone	24
11	Generalized stratigraphic section of an ordinary •	,
12	gabbro sill west of Connolly Lake	30
13,	gabbro sill west of Connolly Lake	3 %
L 4	Schematic diagram illustrating the difference between	1 .
	ordinary, glomeroporphyritic and anorthositic gabbros	
l 5	Glomeroporphyritic gabbro dyke crosscutting an	
.	ordinary gabbro sill	36
l6 °	Generalized stratigraphic section of a glomero-	^ - -
L 7	porphyritic gabbro sill at Frederickson Lake South Generalized diagram of a plagioclase glomerophenocrys	
L /	generalized gradium or a braditocrase dromerobuenocras	いしゅ・コブ

18	Rim zone of a plagioclase glomerophehocryst40
1.9	Growth rims on a plagioclase phenocryst in the rim
20	zone of a glomerophenocryst
20	Hand specimen of a glomeroporphyritic gabbro showing both small and large plagioclase glomerophenocrysts41
21	Tracing of a glomeroporphyritic hand sample41
22	Schematic cross section of the southern part of the
/	study area43
23	Outcrop photograph of a local, tight fold in the
2.4	sediments of the Menihek Formation at Gossan Lake45
24	AFM diagram showing the complete analytical data set48
25	Jensen (1976) cation plot49
26	Major element cationic variation diagrams
	a Al cation versus Si cation
	c Ca cation versus Mg cation
27	Tectionic discriminate diagrams
	a Ti/100-Zr-Y*3 (Pearce and Cann, 1973)53
	b Ti/100-Zr-Sr/2 (Pearce and Cann, 1973)53
•	c Ti-Zr (Pearce and Cann, 1973)54
	c Ti-Zr (Pearce and Cann, 1973)
28	Chemical cross section through a 500 m-thick
29	ordinary gabbro sill
29	Chondrite-normalized rare earth element diagrams
	a Glomeroporphyritic gabbro chilled margins
	c Ordinary gabbro chilled margins60
	d Anorthositic gabbro (mineral separates)
	e Glomeroporphyritic gabbro (mineral separates)61
30	Generalized cross section through the Frederickson
. ,	Lake showings64
31	Microphotograph of a polished section of Cu-Ni
	mineralization (Frederickson Lake South showing)68
32	Hand sample tracing of Zn-Cu-Pb mineralization from
33	the Frederickson Lake South showing
33	Microphotograph of a polished section of Zn-Cu-Pb mineralization (Frederickson Lake North showing)70
34	Cu-Zn-Pb diagram for massive sulphides at the
J 1	Frederickson Lake North showing
35	Sulphur isotope data from the Frederickson Lake
	region and from other selected deposits81
36	Diagram illustrating the effect of contamination on
	the average gabbroic liquid88
37	Th-La-Sc diagram89
38	Schematic diagram illustrating the transformation of
	the Labrador Trough from a sediment-dominated to a
39	volcanic-dominated environment92
39	Diagram showing the maximum amount of sulphur which
	can be released to the melt by the metamorphic breakdown of pyrite to pyrrhotite
40	breakdown of pyrite to pyrrhotite97 Lead isotope data from the Frederickson Lake area
	plotted on curves from A: Doe and Stacey (1974) and
	B: Stacey and Krammers (1976)Appendix 3-4

List of Appendices

Appendix

- Geochemical Analyses 1
- Analytical Techniques and Precision of Chemical Analyses.
- Lead Isotopes

List of Maps .

Map

1 The Frederickson Lake Area (1:20,000).....back pocket 2 Frederickson Lake (1:5,000) and Gossan Lake (1:500) Sulphide Showings.....back pocket

CHAPTER 1. INTRODUCTION

1.1 Scope and Purpose

Although first exploited for its iron ore deposits, the Labrador Trough also contains sub-economic base metal sulphide deposits, a number of which have attracted exploration work since the early 1940s (Fig. 1, Table 1). An initial regional study_divided these sulphide showings into six classes (Table Fournier, 1983). The present study concerns two of these classes, glomeroporphyritic gabbro-hosted Cu-Ni deposits and sediment-hosted Zn-Cu-Pb deposits. In the Frederickson Lake area, there appears to be a spatial (relationship between glomeroporphyritic gabbros of the Montagnais Group and Zn-Cumineralization within black argillites of the Menihek Formation. This apparent spatial relationship has led to the speculation that all sulphide mineralization within the region genetically related to the glomeropcrphyritic gabbro sills (e.g. Griffis, 1943; Fournier, 1983). While the gabbro-hosted Cu-Ni · deposits glomeroporphyritic undoubtedly a magmatic product of the gabbros, a relationship between sediment-hosted Zn-Gu-Pb deposits Models which glomeroporphyritic gabbros 1.5 less clear. attempt to relate the Zn-Cu-Pb mineralization to the gabbros (e.g. Fournier, 1983) are somewhat controversial because they rely upon the magmatic segregation of zinc and are normally only found in trace | amounts elements that deposits formed by sulphide liquid immiscibility from mafic Shimazaki and MacLean, 1976). The glomeroporphyritic gabbro-hosted "Cu-Ni deposits are °

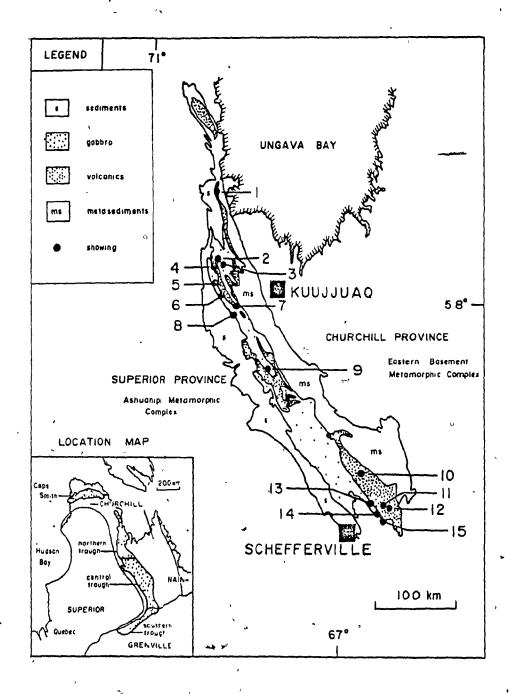


Fig. 1 Selected sulphide showings of the Quebec portion of the Labrador Trough. The numbers refer to showings listed in Table 1. The Frederickson Lake study area is indicated by number 14. Adapted from map 2001 of 1e Minstère de 1 Energie et des Ressources, Québec (MERQ). Location map showing structural provinces adapted from Dimroth (1978).

Grades and tonnages of selected sulphide deposits of the Labrador Trough in Quebec. Numbers refer to Figure 1.

Map #	Deposit	Deposit Type	Cu [§]	Ni%	Zn%		eser tonn	
		ه الله الله الله الله الله الله الله ال			v	,	-	
1	Hopes Advance-1	Gab Cu-Ni	0.59	0.22		2	000	999
2	Soucy C	Gab Cu-Ni	0.72	0.22		Ų		700
	Soucy A	Sed Zn-Cu	1.49		1.80	5	444	000
3	St Pierre	Sed Zn-Cu	1.34		1.87			
4	Prudhomme-1	Sed Zn-Cu	2.04		2.66	4	303	700
5	Partington	Sed Po-Py			L			
6	Erickson-l	Gab Cu-Ni	1.12	0.32		_	519	700
7	Connolly	Gab Cu-Ni						
8	Koke	Sed Zn-Cu	0.70		6.86	1	060	400
9	Aulneau Lake	Per Cu-Nı	2.02	0.45		1	088	000
10	Chance Lake	Per Ću-Ni	. 0.66	0.89			649	400
11	Blue Lake	Per Cu-Ni	0.85	0.50	e		506	400
12	Retty Lake	Per Cu-Ni	1.50	0.67		1	360	500
13	Walsh Lake	Gab Cu-Ni						
14	Frederickson S.	Gab Cu-Nı						
	Frederickson N.	Sed Zn-Cu	0.77		4.38		279	400
15 '	Jimmick Lake	Sed Zn-Cu	0.26		5.20		108	800

Per = peridotite-hosted Gab = glomeroporphyritic gabbro-hosted ·

Sed = sediment-hosted

Table 1

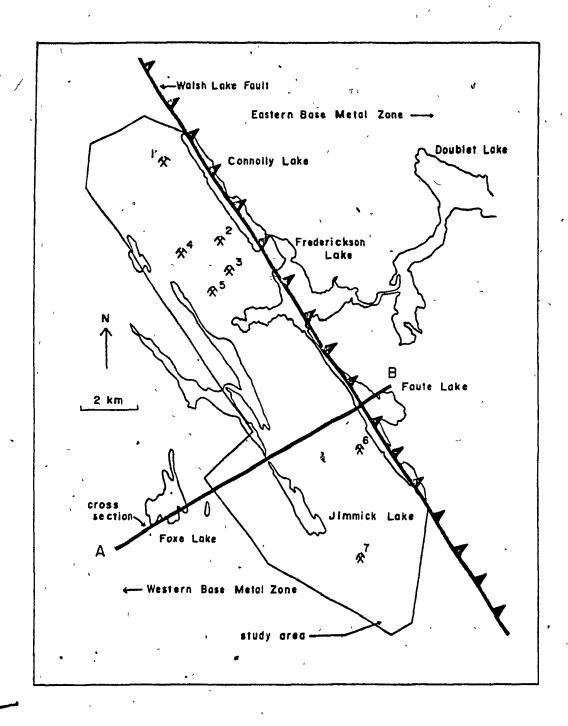
Sources: Avramtchev and LeBel-Drolet (1979)

Lavergne (1985)

Table 2

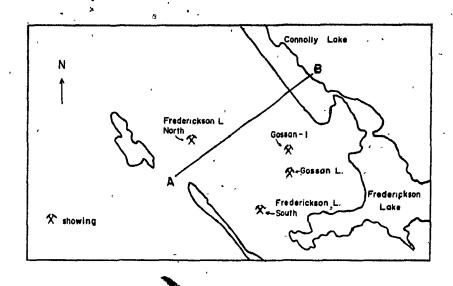
Classification of the sulphide mineralization types of the Labrador Trough (after Fournier, 1983)

peridotite hosted Cu-Ni deposits
glomeroporphyritic gabbro-hosted Cu-Ni deposits
sediment-hosted Zn-Cu deposits
iron sulphides within black argillites
copper in late-to post-tectonic quartz-carbonate veins
chalcopyrite in pillowed basalt chill margins


distinctive, as the Cu-Ni sulphides are associated with concentrations of plagioclase rather than with olivine and pyroxene-bearing cumulates (e.g. Duluth Complex). This study examines the metallogeny of the Frederickson Lake region by focusing on the following three problems:

- 1. Were the sediment-hosted Zn-Cu-Pb deposits formed through synsedimentary or synvocanic processes, or are they related to glomeroporphyritic gabbros as suggested by Fournier (1983)?

 2. Is there a relationship between the occurrence of Cu-Ni sulphides and the glomeroporphyritic texture of these gabbros?
- 3. Does the spatial overlap of glomeroporphyritic gabbro-hosted Cu-Ni deposits and sulphide-rich sediments imply their formation by the incorporation of sedimentary sulphur?


1.2 Location

The Frederickson Lake study area is located 50 km northeast of Schefferville, Quebec, and covers some 80 square kilometres (latitude 54°48' to 55°07', longitude 66°17' to 66°07') (Fig. 2). Topographically, the area consists of a series of parallel ridges and valleys, which trend northwest along the regional strike of the Labrador Trough (Fig. 3). Erosionally resistant gabbro sills comprise the ridges (Fig.4) whereas argillite underlies the valley floors (Fig. 5). Good exposure is limited to the tops of gabbro ridges; ridge slopes and valley floors are covered by glacial sediments.

Map of the Frederickson Lake study area illustrating the locations of the Cu-Ni and Zn-Cu-Pb showings discussed in the text. The cross section line refers to Figure 22.

- 1. Connolly (Cu-Ni)
- Gossan 1 (Cu-Ni) 2.
- Gossan Lake (Cu-Ni)
- Frederickson Lake North (Zn-Cu-Pb) Frederickson Lake South (Cu-Ni)
- 5.
- Faute Lake (Po-Py) 6.
- Jimmick Lake (Zn-Cu)

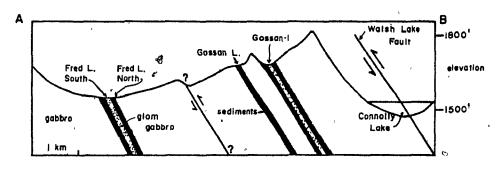


Fig. 3 Schematic cross section across the northern half of the study area. Sulphide showings have been projected on to the line of section. The ridges and valleys are composed of gabbro and sedimentary rocks respectively.

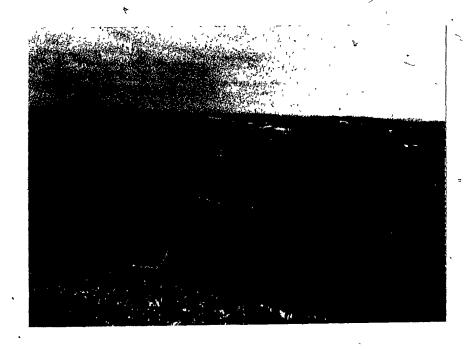


Fig. 4 Aerial photograph taken towards the northwest. The Walsh Lake Fault is marked by the lake at right of photo. The prominant linear ridge is composed of ordinary gabbro; valley to the left is floored by sedimentary rocks of the Menihek Formation.

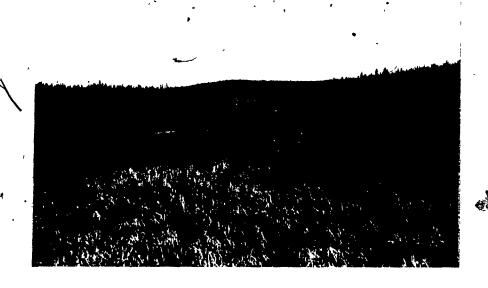


Fig. 5 View looking northwest near the Frederickson Lake South showing. The swamp overlies sediments of the Menihek Formation. The photo is illustrative of the extreme paucity of sediment outcrop in the study area.

1.3 Investigative Methods

author studied the map area outlined in Figure 2 The Geological information on the during the summer of 1985. sulphide occurrences was difficult to obtain because of the paucity of and the destruction of outcrop stratigraphic relationships by the intrusion of massive gabbro sills (Fig. 3). Thus, for the sediment-hosted deposits original deposit geometry, metal zonation, and alteration Drill core for the patterns could not be established. Frederickson Lake showings had not been kept by the original exploration companies, although drill logs are available.

As a result, emphasis in this study was placed on examining the regional mafic intrusives to determine if these played a role in the mineralization now present within the sediments. Sampling traverses were carried out across the strike of gabbro and glomeroporphyritic gabbro sills, and gabbro-sediment contacts were examined. The objective was to detect by systematic change in the distribution of elements both along and across the strike of the gabbro sills. Regional sampling of different igneous and volcanic units was also carried out in order to evaluate the magmatic evolution of this section of the Labrador Trough.

of the samples which were chemically analyzed were also cut for thin or polished sections. Chemical analyses (Appendix 1) were performed at Le Centre de Recherches Minérales (CRM) in Québec City by XRF or ICP. Analytical techniques, precision and uncertainties are outlined in Appendix 2. Ten samples were re-analyzed by neutron

activation at l° Université de Montréal to check reproducibility, and to provide more accurate rare earth element data. Analyses performed by the CRM were generally accurate except for trace elements which were close to their lower limit of detection. Sulphur isotopic analyses were performed upon pyrrhotites separated from samples by hand The pyrrhotite 'separates were analyzed at l' Université du Québec à Montréal, and at the University of Ottawa. Sulphur isotopic values are given relative to the Canon Diablo meteorite standard and have an uncertainty of +/- 0.2 per mil. In addition, bulk rock sulphur was extracted from a gabbro sample by the Kiba agent (Sasaki et al. 1979), and was analyzed at the University of This sample had an uncertainty of +/- 0.5 per mil.

An important element of this study was the comparison of the showings within the Frederickson Lake map area to similar showings within the Northern Labrador Trough. Reference is therefore made to the work carried out by the author in conjunction with R. Wares of McGill University during the summer of 1986 in the area west of Kuujjuaq (showings 2, 3, 4, and 8 on Fig. 1).

1.4 Previous Work and Metallogenic Interpretations

Important regional studies can be found in the works of Sauvé and Bergeron (1965), Baragar (1967), Frarey (1967), Dimroth (1970, 1972, 1978), Dimroth et al., (1972, 1978), Harrison et al., (1972), Dimroth and Dressler (1978), Wardle and Bailey (1981), and LeGallais and Lavoie (1982). The

first recorded geological investigations of the Labrador Trough were undertaken in the 1890s by A. P. Low of Geological Survey of Canada (Low, 1898). At that time the presence of iron formation was noted, although the first commercial discoveries were not made until the late 1920s. Regional base metal exploration of the Central Labrador Trough in the 1940s by the Hollinger North Shore Exploration led to the division of the Trough into two -Company (HNS) separate base metal zones bounding the Walsh Lake Fault (Griffis, 1945; Fig. 3). The area of the present study belongs to the western zone, which contains glomeroporphyritic gabbro-hosted Cu-Ni deposits (Fournier's metallogenic type 2) and sediment-hosted Zn-Cu-Pb and Po-Py deposits (metallogenic types 3 and 4). East of the fault, in the eastern base metal Cu-Ni sulphides are associated with ultramafic sills (metallogenic type 1).

Drilling in the Frederickson Lake region by HNS in 1943-44 revealed several deposits of relatively high grade but low tonnage. Re-examination of these showings in 1949 and in 1956 failed to find extensions to the mineralized zones (Hogg, 1957). Interest has recently been renewed in the eastern base metal sulphide zone as a result of the discovery of platinum group element (PGE) mineralization within the fultramafic-hosted Cu-Ni deposits at Retty Lake (Clark, 1987).

Since their discovery, gabbro-hosted Cu-Ni deposits of the Frederickson Lake area have been considered as magmatic products from a gabbroic source (e.g. Baragar, 1967; Fournier, 1983). However, the Zn-Cu-Pb showings, which occur within

sedimentary rocks or along gabbro-sedimentary contacts, have been attributed to both magmatic and synsedimentary processes. reports emphasized the localization of these sulphide déposits to the contacts between gabbros and sediments (Griffis, 1943). As a result, early workers believed that these deposits were the result of the replacement sedimentary rocks by fluids that were expelled from intruding glomeroporphyritic gabbro sills (Griffis, 1943; 1945). discounted a direct relationship between glomeroporphyritic gabbros and Zn-Cu-Pb mineralization, inferred that such deposits were formed by replacement at structurally favourable sites (Auger, 1950; Kirkland, 1950). Frarey observed that iron sulphide mineralization (1967)within sedimentary rocks (sulphide-facies iron formation) was more common in areas of extensive gabbroic intrusions than ir areas where gabbro sills were absent. For this reason, he attributed all of the sulphide mineralization within the region to the emplacement of basic igneous rocks. Fournier (1983) concluded that there was a relationship between a phenocryst-poor facies of glomeroporphyritic gabbro and Cu-Pb mineralization localized at gabbro-sediment contacts. He proposed that fractional crystallization within gabbroic magma chambers could give rise to both CM-Ni-rich and Zn-Cu-Pb-rich immiscible sulphide liquids. The tapping of these liquids by higher crustal chambers would allow these two separate types of liquids to rise to higher levels in crust, and ultimately to form Cu-Ni and Zn-Cu-Pb

Fournier postulated that a phenocryst-poor glomeroporphyritic magma would be able to transport a larger volume of sulphiderich liquid because of its lower suspended load of phenocrysts, and suggested that the latter liquid would tend to be trapped in structural sites such as gabbro-sediment contacts.

A syngenetic origin has also been suggested for sediment-hosted deposits. Kavanagh (1953) proposed that iron sulphide mineralization within sedimentary rocks, was syngenetic because of its widespread distribution and the continuous lateral extent of individual sulphide-rich beds. However, he attributed the Zn-Cu-Pb sulphide mineralization to hydrothermal solutions originating from a gabbroic magma. (1957) supported Kavanagh's model but further proposed that remobilization was responsible for concentrating Zn-Cu-Pb sulphides in structural sites. In contrast, Baragar (1967) pointed out that the apparent spatial relationship iron-sulphide mineralization gabbro sills., and within sedimentary units did not necessarily imply a relationship, and proposed that iron-sulphide the mineralization could have been produced by seafloor volcanism prior the intrusion of the sills.

CHAPTER 2 GEOLOGICAL SETTING: CENTRAL LABRADOR TROUGH

The Labrador Trough (Churchill Province) is the erosional remnant of an Aphebian volcano-sedimentary belt which was previously referred to, as the Labrador geosyncline (Harrison, et al., 1972). The Trough extends 960 km in a direction from the western shores of Ungava Bay in northern Quebec to the Grenville Front. • It attains a maximum width of 130 km between the Ashuanipi Metamorphic Complex Superior Craton to the west, and the Eastern Basement Metamorphic Complex of the Churchill Province to the -east Geographically, the Trough has been divided into 1). three segments: the Northern Trough north of 570N, the Central Trough between 570N and the Grenville Front, and the Southern Trough south of the Grenville Front (Dimroth, 1978; Fig. 1). The age of the Trough is bracketed by K-Ar dates at ~2150 Mar Superior basement, and Ma for the granitoid corresponding to the Hudsonian Orogeny (Fryer, 1972).

2.1 Tectonic Setting

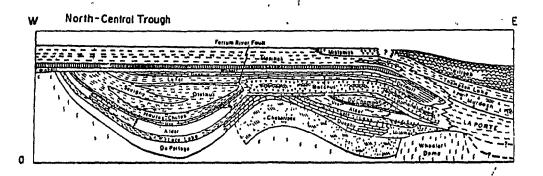
The precise tectonic setting of the Labrador Trough remains a matter of speculation because the geologic history of the complexely deformed rocks of the eastern hinterland has yet to be established. Early tectonic models (Dimroth, 1972; 1981; Dimroth and Dressler, 1978) proposed that the Labrador Trough formed in a rifted, ensialic basin floored by continental crust. Current models (Wardle and Bailey, 1981; LaVoie and LeGallais, 1982) propose that the Labrador Trough represents the erosional remnant of a rifted passive

continental margin.

2.2 Structure And Metamorphism

Labrador Trough was affected by the Hudsonian The during which deformation was directed westward Orogeny, 1978). Three separate periods of (Dimroth and Dressler, regional folding have been recognized in the Northern (Goulet et al., 1987), and at least two periods are present within the Central Trough. The Central Trough can be divided several tectonic domains, into within each' of structural style appears to have been controlled by competency of bedrock lithologies (Frarey, 1967). the West-Central Trough, igneous intrusions are lacking and the rocks are tightly folded and overturned to the southwest, forming imbricate thrust sheets. Towards the east, thick gabbroic sills appear to have increased the lithogic competency so that the rocks have been folded into large, open structures which are upright (or slightly inclined northeast) and plunge towards the southwest (op. cit). The Labrador Trough itself plunges towards the south deeper stratigraphic levels are recorded in the Northern Trough. Basin growth faults, which were active in controlling sedimentation during rifting of the Trough, are believed to have been re-activated as thrust faults during deformation (Dimroth, 1972). Coincident with increasing deformation towards the east is an accompanying metamorphic grade, from sub-greenschist facies in the west to amphibolite facies in the east (Dimroth and Dressler, 1978):

The Frederickson Lake area occurs within the sub-greenschist factes zone, although greenschist factes assemblages are locally present, having been produced by late deuteric alteration of the Montagnais gabbros (Baragar, 1967). For the purposes of this thesis the prefix meta has generally been excluded from rock names.


2.3 Stratigraphy -

The rocks of the Central Labrador Trough belong to the Kaniapıskau Supergroup (Frarey and Duffell, 1964), which is divided into the Knob Lake, Doublet and Laporte Groups. Knob Lake Group is restricted to the western half of the Trough and is composed of five subgroups (Table 3; Dimroth, The lowermost Seward Subgroup consists mainly of fluviatile and shallow marine clastic sediments and alkaline volcanics, and appears to record early rifting of the Trough. . The Pistole't and Swampy Bay Subgroups together represent deposition in local, restricted sub-basins of the North-Central Trough, but are absent in the Frederickson Lake region (Fig. 6). A major marine transgression is recorded in the Attikamagen Subgroup, with shelf carbonates and shallow marine shales overlain by deeper water turbidites. first four subgroups constitute the first sedimentary cycle of the Trough (Cycle I). In the overlying Ferriman Subgroup, a second marine transgression (Cycle II) is recorded, with sedimentation proceeding again from shelf carbonates and shales to deeper water turbidites (Wardle and Bailley, 1981) .

Table 3

Stratigraphy of the Labrador Trough at 550 North. Formations of direct relevance to this study are shown in bold type. (after Dimroth, 1978)

SUPERGROUP	GROUP '		SUB-GROUP	FORMATION
	Montagnais)		Retty Peridotite Wakuach Gab bro
KANÎAPISKAU				1
•	Doublet ,		•	Willbob Thompson Lake Murdoch
	Knob Lake	IJ	Ferriman-	Menihek Sokoman Ruth Wishart
			Attıkamagen ø	Dolly Denault Le Fer
	₩.	fl	Swampy Bay	absent at $55^{0}\mathrm{N}$
•			Pistolet	absent at '550 N
	,		Seward 0	Dunphy Chakonipau

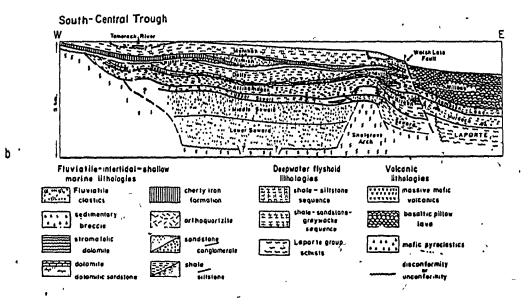


Fig. 6 Summary and stratigraphic development of the a: North-Central and b: South-Central Labrador Trough. The Frederickson Lake area is located in the South-Central Trough immediately west of the Walsh Lake Fault (From Wardle and Bailey, 1981).

The Doublet Group (or Doublet/Hellancourt) is confined to the eastern half of the of Trough and is composed dominantly of mafic volcanic rocks. This Group appears to have formed during a phase of rapid crustal rifting and incipient ocean basin development (Wardle and Bailey, 1981).

The Laporte Group (Harrison, 1952) outcrops in the extreme eastern margins of the Labrador Trough. Within the Central Trough, this Group consists of metamorphosed amphibolitic and semi-pelitic gneisses which are separated from the Doublet Group by a thrust fault. Initially the Laporte Group was not recognized as belonging to the Labrador Trough but it is now generally included in the Trough stratigraphy.

The Montagnais Group consists of intrusive rocks (the Wakuach Gabbro and the Retty Peridotite) which invade the Kaniapiskau Supergroup. The Montagnais Group is present only in the eastern half of the Knob Lake Group, whereas ultramafic sills occur dominantly in the Doublet Group. The Montagnais intrusives have been shown to be co-magmatic with the extrusive volcanic rocks of the Doublet group (Baragar, 1967; Fournier, 1983).

CHAPTER 3 LOCAL GEOLOGY

The Frederickson Lake study area encloses approximately 80 square kilometers of sediments of the Menihek Formation, and abundant gabbro sills of the Montagnais Group (Fig. 2; Map 1). These rocks constitute the subject of the present study, and will be described in detail. The geology of the Doublet Group adjoining the study area east of the Walsh Lake Fault will only be summarized.

3.1 Menihek Formation

The Menihek Formation is the uppermost unit within Knob Lake Group (Frarey and Duffell, 1964). In the Trough, this formation unconformably overlies the Sokoman Formation and is composed of grey, rhythmically banded siltstone and shale. Towards the east, the Menihek Formation conformable contact with the Sokoman Formation and is composed of black shale, siltstone and greywacke (Wardle and Extreme eastern exposures of these 1981). grained 'sediments are marked by intercalated basaltic flows In the South-Central Trough, the Doublet (Baragar, 1967). Group has been thrust upon the Menihek Formation, with the contact marked by the Walsh Lake Fault (Fig. 5). Towards the northwest this fault dies out, and the Menihek Formation interfingers with the Murdoch Formation (Baragar) 1967). Regional mapping in the Central Trough indicates that the former formation thickens from 1000 m in the west to 1500 m in the east (Wardle and Bailey, 1981). The Menihek Formation is commonly correlated with the Upper Baby Formation of the

Northern Trough and an unnamed sequence of schists and gneisses in the Southern Trough. Fournier (1983) correlated the Menihek Formation with the Doublet Group across the Walsh Lake Fault.

the Menihek Formation is poorly the study area, thin bands of exposed. sediment enclosed occurring as between thick gabbro sills. These sedimentary bands appear laterally continuous, although rarely lenses of sediment are enclosed by gabbro. Most gabbro sills in the region dip the east. ' As a result, sedimentary bands preferentially preserved on the eastern sides of valleys where they have been protected from erosion by a hanging wall Cherty or silicified sediments, which are more erosion, outcrop as low rounded mounds resistent valley floors.

Massive, dense, black argillite is the dominant slightly lithology exposed within the map area. Locally, graphitic or siliceous varieties are present. section, the argillites consist of a semi-opaque clay-sized minerals and disseminated fine-grained sulphides 0.01 mm in length. With increasing iron sulphide content, these grade into sulphide-facies iron formation Finely interlaminated mudstone-siltstone and (Fig. 7). sulphide-rich layers are present on scales ranging from tenths of millimetres to centimetres (Fig. 8) ? Where grading is present within the siltstone-mudstone layers, sulphides usually confined to the finest-grained fraction. The finescale interlamination of sulphide and mudstone bands suggests

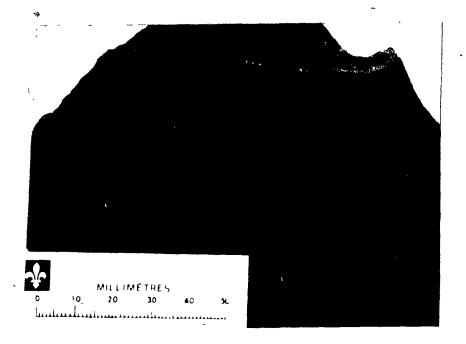


Fig. 7 Hand specimen of sulphide-facies iron formation illustrating the fine interlamination of iron sulphides (light layers) and clay-sized silicate minerals (dark layers).

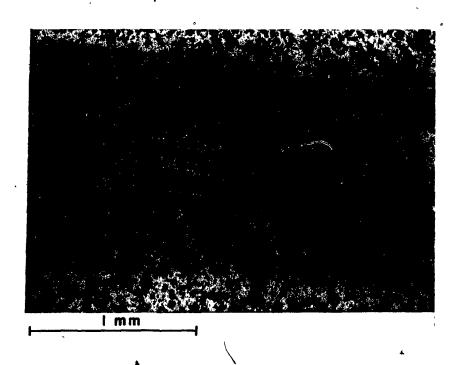


Fig. 8 Microphotograph of sulphide-facies iron formation. The banding is caused by the lamination of pyrrhotite (light mineral) and clay-sized silicate minerals (dark minerals). Note the slight intergrowth of sulphides and silicates.

that the sulphides are an original syngenetic component of these sediments.

Rhythmically laminated sandstone-siltstone outcrop at a variety of locations in the study area (Fig. 9). The sandstone layers (Fig. 10) are composed of quartz and minor feldspar, both with commonly sutured grain boundaries, and a finer-grained quartz-feldspar-sericite matrix. The siltstone layers resemble the matrix of the sandstones but contain secondary chlorite and stilpnomelane. The presence of tuff layers interbedded with the siltstones suggests that some of the material in the siltstones may also have been in part volcanogenic.

Light-weathering quartzites occur as beds up to 20 cm thick, usually interbedded with sandstone-siltstone. Framework grains of rounded to subrounded quartz (2 mm) comprise 95% of this lithology; the matrix consists of smaller quartz grains and sericite. Some quartzites near gabbro sill contacts show slight re-crystallization of grain boundaries and possible retrograde replacement of contact metamorphic minerals.

A breccia consisting of cherty argillite fragments within a pyrrhotite matrix occurs at the Frederickson Lake North showing. Similar pyrrhotitic breccias have been reported at this and other sediment-hosted deposits by Fournier (1983). A conglomerate composed of possible volcanic fragments was also reported in the drill core from this showing, and several metres of conglomerate occur 4 km north of the map area along the shoreline of Blais Lake (Griffis, 1945). The Blais Lake conglomerate occurs along strike from

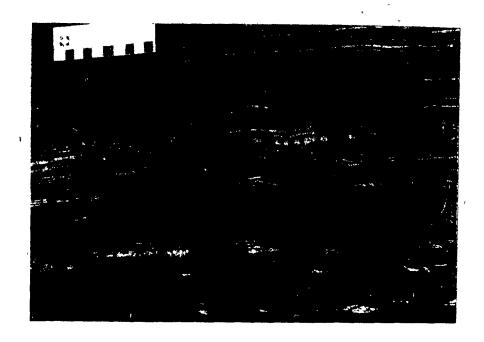


Fig. 9 Interlaminated siltstone (dark layers) and fine-grained sandstone (light layers). Squares on scale bar are one centimetre in length.

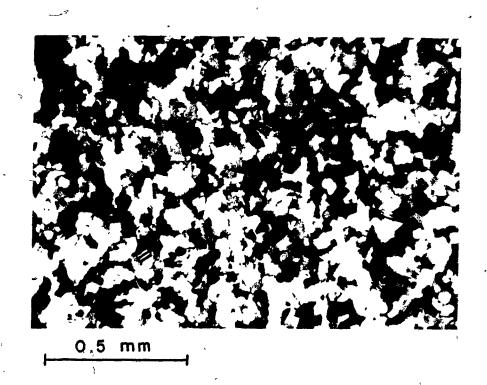


Fig. 10 Microphotograph of fine-grained sandstone. Note the slight suturing of the quartz grain boundaries and twinned plagioclase grains.

the Frederickson Lake breccia although it could not be determined this unit is laterally continuous.

Fine-grained, massive lavas occur at intervals within the upper stratigraphic levels of the Menihek Formation. These lavas, which resemble fine-grained gabbros, can be recognized by their 2 cm-thick weathering rind, which is generally composed of an oxidized orange-red outer layer and an inner grey layer. By contrast, the fine-grained gabbros possess a 2 mm-thick, weathering rind. Although only massive flows were noted in the Frederickson Lake area, poorly preserved pillow selvages are reported in the vicinity of Walsh Lake (Baragar, 1967).

Near the Connolly Lake showing, several 10 cm-thick beds of buff-weathering, dark green tuff are interbedded with fine-grained sandstones and siltstones. The tuffs have a flattened appearance which may reflect flattening of fiammelike clasts 3 mm long. Chemical analysis indicates that this tuff is of intermediate composition (Table 4).

3.2 Murdoch Formation

The Murdoch Formation occurs in both the Northern and Central Trough and has an estimated thickness of 2000 m (Baragar, 1967). At Frederickson Lake, it unconformably overlies the Menihek Formation along the Walsh Lake Fault. For the most part the Murdoch Formation is composed chlorite-rich schists of possible tuffaceous origin, and rare thin sedimentary horizons and volcanic flows. The schists are composed of chlorite, albite, actinolite, epidote and

Table 4 Composition of sedimentary rocks of the Menihek Formation

	>		
	l argillite	2 sandstone- siltstone	3 tuff
SiO2 A12O2 Fe2O3 MgO CaO Na2O K2O TiO2 MnO P2O5 LOI	41.6 6.7 37.6 3.06 0.63 1.26 0.83 0.59 0.12 0.11 7.57	67.3 14.7 8.3 2.00 0.15 1.16 3.69 0.38 0.05 0.05	59.9 12.0 15.6 3.32 0.07 0.30 2.68 0.38 0.32 0.03 4.45
TOTALS:	100.07	100.65	99.05

average of three samples average of two samples one sample

magnetite. The volcanic flows are compositionally similar but to contain less albite. This formation is greenschist facies metamorphic grade and exhibits complete recontrasts with the lower grade of crystallization. This metamorphism that characterizes the Menihek Formation on the side of the Walsh Lake fault. (1983)Fournier correlated the Murdoch Formation with the minor mafic pyroclastic tuffs described from the Menihek Formation (Baragar, 1967).

3.3 Thompson Lake Formation

Thompson Lake Formation consists of sediments overlying the Murdoch Formation. The contact is not exposed east of the Frederickson Lake area, although regional mapping to the northwest indicates conformable contacts (Baragar, 1967). East of Frederickson Lake, where the entire Thompson Lake Formation is exposed, it exhibits a upwards cycle composed of basal greywacke, intermediate rhythmically layered siltstone-sandstone and an upper unit of black shale (Fournier, 1983). Fournier (1983) suggested that formation is a deeper water equivalent of this the sedimentary component of the Menihek Formation.

3.4 Willbob Formation

East of Frederickson Lake the Willbob Formation overlies the Thompson Lake Formation. The bulk of this formation, which is 1,500 m thick, consists of massive and pillowed volcanics, and minor interflow siltstone and shales. Fournier (1983) correlated this formation with volcanic rocks that occur in

the upper stratigraphic levels of the Menihek Formation. On a regional scale this formation is commonly correlated with the Hellancourt volcanics of the Northern Labrador Trough. The informal name Doublet-Hellancourt is often applied to the dominantly volcanic rocks that occur above the cycle II sediments. Baragar (1967) reported that three horizons of glomeroporphyritic basalt occur within the Willbob Formation, although tectonic repetition by faulting and folding could be responsible for the multiple occurrences.

3.5 Montagnais Group

· · Gabbroic sills of the Wakuach Gabbro invade both the Knob Lake and Doublet Group. Sills present within the Doublet Group have been referred to as metagabbro (Baragar, Fournier, 1983), They are identical to the sills in the Knob Lake Group' except for their higher metamorphio bodies within the Laporte Group to the east may Amphibolite also représent metamorphic equivallents of the Wakuach Gabbro. Fournier (1983) reported that ultramafic sills were much less common in the Northern Trough than in the Central Trough, although this feature could reflect different erosion in these two areas. Within the Frederickson Lake several varieties of mafic sills belonging to the Montagnais Group are present. Folding of the gabbro-sediment sequence south of Jimmick lake indicate that the sills injected prior to regional deformation.

3.5.1 Ordinary Gabbro Sills (Fig. 11)

The term "ordinary gabbro" was proposed by Baragar (1960) to describe all non-glomeroporphyritic sills and is retained in this thesis. Ordinary gabbro sills comprise at least 85% of the map area. Individual sills can be traced for up to 6 and for up to 30 km in other areas of the (Baragar, 1967). Most sills maintain a constant thickness along strike, although several sills appear to pinch out. Typical sills are 400 to 600 meters thick and display a vertical zonation commonly attributed to in situ magmatic differentiation (e.g. Baragar, 1967). Thinner ordinary gabbro sills are vertically unzoned.

The lowermost portions of the differentiated gabbro sills 11) are usually composed of two rock types, a grained chilled margin and an overlying porphyritic zone. the chilled margin, pyroxene pseudomorphs composed of chlorite and actinolite occur within a matrix of plagioclase microlites. Away from the chilled margin, embayed but unaltered anhedral augite grains 3 mm in length occur within matrix of fine-grained plagioclase. laths. Sporadic. orthopyroxene grains up to 10 mm in length are completely pseudomorphed. by bastite. Saussuritized plagioclase phenocrysts up to 2 cm in diameter are also irregularly distributed within the porphyritic zone, but never comprise more than 2% of the rocks. At some localities, lower chilled are marked by the incomplete alteration mærgins clinopyroxene. This has created a rock with irregular (unaltered clinopyroxene) and dark (actinolite and chlorite)

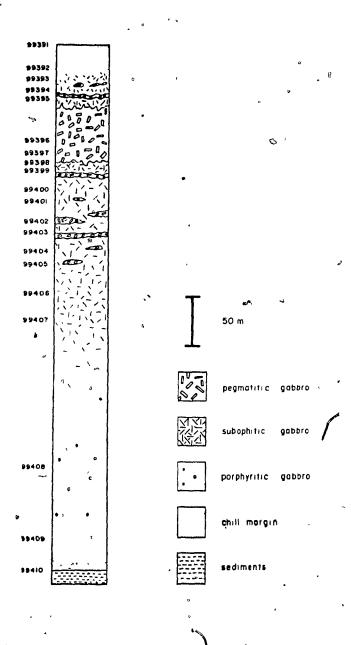


Fig. 11 Géneralized stratigraphic section of an ordinary gabbro sill west of Connolly Lake. The numbers refer to chemical analyses listed in Appendix 1.

patches. This texture can be confused with primary textures of the glomeroporphyritic gabbros.

The bulk of a typical ordinary gabbro-sill is fine-to medium-grained, with a sub-ophitic to ophitic texture. There is a gradual increase in grain size from the base of the sill to the transition with the overlying pegmatitic zone. The lower regions of the typical sill are characterized by irregularly shaped augite crystals within a matrix of fine-grained plagioclase laths. Pseudomorphs of serpentine and chlorite after orthopyroxene are also present. At higher levels, augite crystals become more euhedral and sometimes exhibit altered exsolution lamellae of orthopyroxene. As the pegmatitic zone is approached, there is an increase in the degree of transformation of matrix minerals to epidote, chlorite and actinolite.

The contact between the central and upper zones typical ordinary gabbro sill is transitional and is marked by the first appearance of pods and veins of gabbroic pegmatite. The transition to massive pegmatite takes place over interval of approximately 60 m. The pegmatitic zone characterized by large, tabular augite crystals up to 3 cm in length, an increased quartz content, and the appearance of quartz-potassic feldspar intergrowths (granophyre). Plagioclase grains in this zone are generally intensely saussuritized, although unaltered plagioclase grains (An 50) can also occur. Margins of augite crystals are replaced by and chlorite. actinolite In some gabbro clinopyroxenes in the pegmatitic zone have been completely. replaced by actinolite and minor stilpnomelane.

3.5.2 Glomeroporphyritic Gabbro Sills

Glomeroporphyritic gabbro is the most distinctive rock unit in the field (Figs. 12, 13), and is known by a variety of names including leopard rock, blotchy gabbro, anorthositic gabbro, feldspathic gabbro and spotty diorite. The presence of glomeroporphyritic gabbros in the sediments of the Upper Knob Lake Group, together with the occurrence of pillow lavas with glomerophenocrysts of plagioclase at the base of the Doublet Group, suggests that these gabbros occupy a specific stratigraphic interval within the Labrador Trough (Sauvé and Bergeron, 1965).

Within the Frederickson Lake region, two facies of this gabbro can be distinguished on the basis of plagioclase (Fig. 14). Gabbro sills glomerophenocryst content glomerophenocrysts designated than are anorthositic, while gabbro sills with glomerophenocrysts are referred to as glomeroporphyritic. the study area, glomeroporphyritic and anorthositic facies were never observed in the same sill.

In other areas of the Trough, ordinary gabbro sills involve the core zones of glomeroporphyritic gabbro sills to form composite intrusions, and a complete gradation between the anorthositic facies and non-porphyritic facies may be observed (Fig. 14; Baragar, 1967). Within the Frederickson Lake area, rare cross-cutting relations demonstrate that glomeroporphyritic gabbros are slightly younger than the

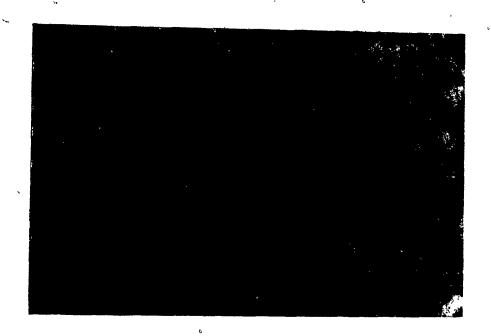


Fig. 12 Outcrop photo of an unbanded glomeroporphyritic gabbro. The white patches are glomerophenocrysts of plagioclase. The scale is given by the pencil (15 cm).

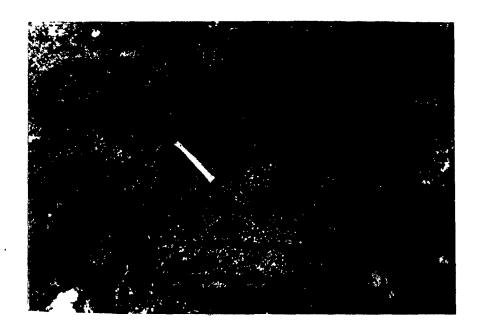


Fig. 13 Outcrop photo of banded glomeroporphyritic gabbro, showing plagioclase glomerophenocrysts concentrated into light-coloured bands. Geological hammer for scale,

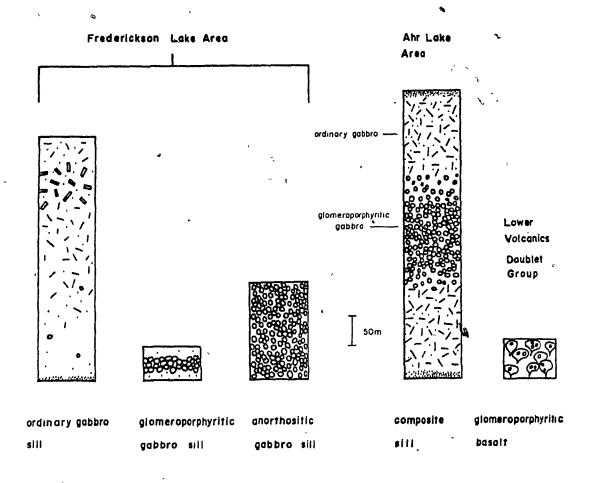


Fig. 14 Schematic diagram illustrating the differences between ordinary, glomeroporphritic and anorthositic gabbros in the Frederickson Lake study area. Note that the ordinary and anorthositic gabbros appear to represent end members containing respectively, the least and the most plagioclase glomerophenocrysts. Also illustrated are stratigraphically equivalent composite gabbro sills of the Ahr Lake area of the North-Central Trough (From Baragar, 1967) and glomeroporphyritic basalts of the Doublet Group.

ordinary gabbro sills (Fig. 15). Outside the map area, glomeroporphyritic sills may also be older than the ordinary gabbros sills (Baragar, 1967; Wares, pers. comm., 1987). On the basis of extensive work on the magmatic rocks of the Labrador Trough, Baragar (1960, 1967) concluded that all intrusive and extrusive rocks were of the same generation.

Glomeroporphyritic sills have a maximum observed thickness of 50 m (Fig. 16) in the Frederickson Lake area. Typically, plagioclase phenocrysts are concentrated near the centre of the sill. In the vicinity of the Frederickson Lake South showing, plagioclase glomerophenocrysts are concentrated in two major bands within the sill. Glomeroporphyritic sill margins are sparsely porphyritic and, by themselves, could be mistaken for non-porphyritic gabbros.

Banding within glomeroporphyritic sills occurs on both a centimetre and metre scale (Fig. 13) and is believed to have been produced by magmatic flow within the sill (Baragar, gabbros 'are composed of saussuritized 1967). These plagioclase glomerophenocrysts in a groundmass less saussuritized plagioclase, clinopyroxene, orthopyroxene olivine psuedomorphs. In hand specimen, the glomerophenocryst cores appear dark as a result of saussuritization, while the rims are pale grey. Glomerophenocrysts are up to 10 cm in and are composed of clusters of diameter plagioclase phenocrysts up to 1 cm in diameter (Fig. 17). Core zones are almost completely transformed to secondary clinozoisite albite. Glomerophenocryst rim zones (Fig. composed of fused plagioclase phenocrysts, each of which

Fig. 15 Glomeroporphyritic gabbro dyke crosscutting an ordinary gabbro sill, Frederickson Lake South showing. Location is given in Figure 30. The pencil is 15 cm in length.

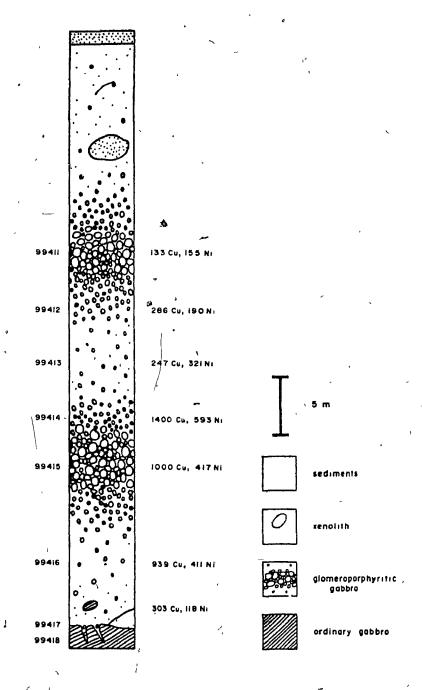


Fig. 16 Generalized stratigraphic section of a glomeroporphyritic gabbro sill at the Frederickson Lake South showing. The numbers at the left refer to chemical analyses (Appendix 1), while numbers to the right are Ni and Ca concentrations in ppm. Note that the highest base metal values occur towards the centre of the sill.

a central saussuritized core. In addition, plagioclase phenocrysts of the rim zone usually exhibit growth zoning (Fig. 19).

Glomerophenocryst clustering and agglomeration occur to varying degrees (Fig. 20). Clusters range from two phenocrysts to several tens of phenocrysts. In several sills the long axis of the clusters is parallel to flow banding (Fig. 21). This texture suggests that flow within the sills was responsible for uniting originally separate plagicalse phenocrysts and that the late plagicalse growth evidenced by the growth rims was responsible for holding the clusters together.

Anorthositic gabbros contain more plagioclase glomerophenocrysts than glomeroporphyritic gabbros. In the study area, all Cu-Ni sulphide mineralization was restricted to the glomeroporphyritic facies; the anorthositic gabbros were barren.

3.6 Local Structure

Within the study area, the gabbro-sediment sequence strikes northwest and dips 45 to 90 degrees northeast. This sequence is terminated at a low angle by the Walsh Lake Fault (Fig. 4; Map 1). South of Jimmick lake, the gabbro-sediment sequence is tightly folded into an antiformal syncline, the western limb of which is overturned (Fig. 22). A similar synclinal structure is visible on aerial photographs immediately west of the Jimmick Lake antiformal syncline. The lack of an antiformal structure between these two synforms suggests that they are separated by a NW-striking fault. A

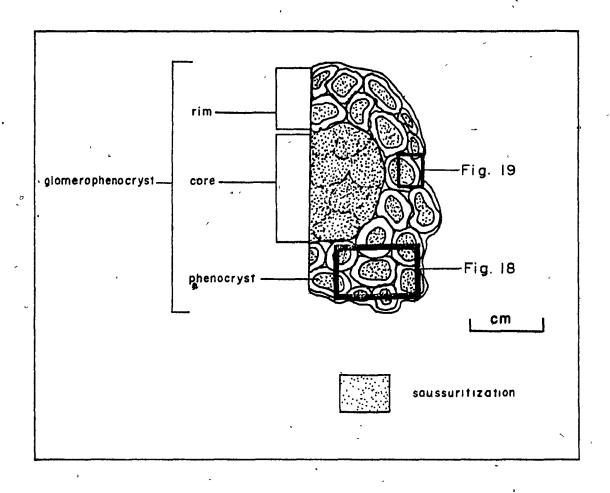


Fig. 17 Generalized diagram of a plagioclase glomerophenocryst. Saussurization, represented by black dots, is confined to the core of the glomerophenocryst and to the cores of the smaller phenocrysts which comprise the rim zone.

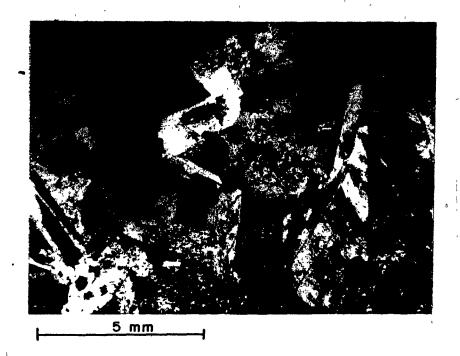


Fig. 18 Rim zone of a plagioclase glomerophenocryst. Each rim zone phenocryst has a centralized zone which is saussuritized. See Figure 17 for the location of the photograph.

Fig. 19 Growth rims on a plagioclase phenocryst in the rim zone of a glomerophenocryst. The core of the phenocryst is saussuritized. See, Figure 17 for the location of the photograph.

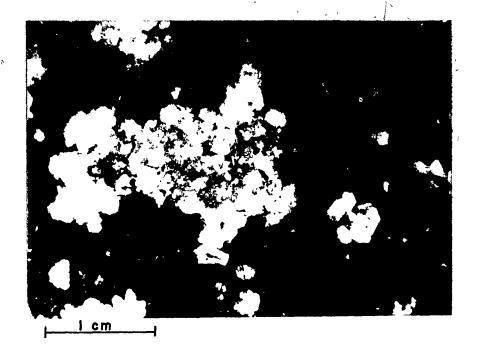


Fig. 20' Hand specimen photograph of a glomeroporphyritic gabbro showing both small and large plagioclase glomerophenocrysts.

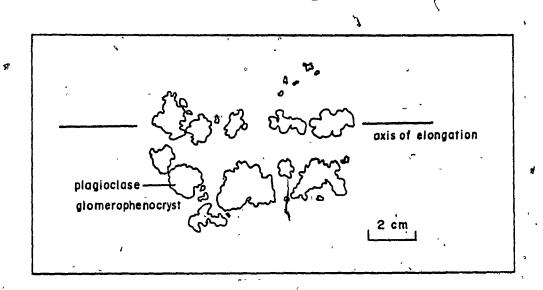


Fig. 21 Tracing of a glomeroporphyritic hand sample. Note the elongation of plagioclase clusters parallel to the banding of the plagioclase clusters.

NW-striking fault is also interpreted to occur between the Jimmick Lake antiformal syncline, and strata to the east, as both gabbro-sediment sequences have similar facing directions. Baragar (1967) described the Frederickson Lake region as a NE facing homocline, but the recognition of these faulted synforms suggests that the map area lies on the limbs of large regional isoclinal folds that have been detached by faulting.

Further evidence for tectonically induced stratigraphic repetition in the Frederickson Lake region comes from regional mapping. Glomeroporphyritic gabbros are interpreted to foccur at the upper levels of the Menihek Formation. The occurrence of abundant glomeroporphyritic gabbro sills within Menihek Formation between. Attikamagen Lake 10 km west of the map area, and the Walsh Lake fault suggests repetition of strata in this region by a)combination of isoclinal folds NW-striking faults. A more detailed elucidation structure in the study region is hampered by the paucity of sedimentary rock outcrops, the lack of and structures in the massive gabbros.

In addition to the large folds which have affected the gabbro-sediment sequence, minor tight folds with NW-trending hinges are locally developed in the sediments (Fig. 23). The fold axes in the sediments parallel those of the regional fold described above. Differences in observed fold wavelengths are probably caused by the competency contrasts of thick gabbro sills and thin sedimentary units (cf. Hobbs et al., 1967).

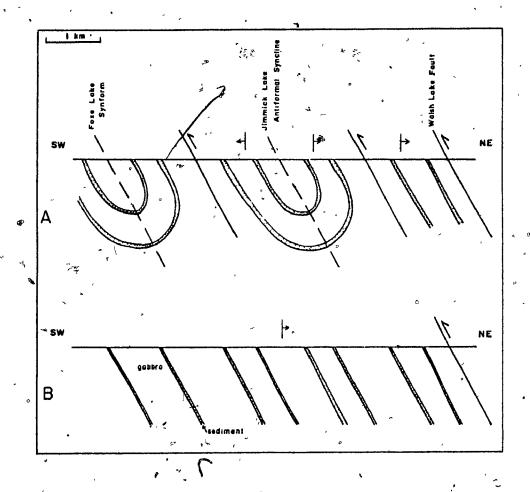


Fig. 22 Schematic cross section across the southern part of the study area. In (A) the gabbro-sediment sequence is interpreted to be folded into synclinal structures separated by northwest-trending faults. Older interpretations (B) inferred that the gabbro-sediment sequence formed a northeast-facing homocline (Baragar, 1967, Fournier, 1983). Refer to Figure 2 for the location of the cross section. (Refer to Map 1.)

3.7 Local Metamorphism

The effects of regional and contact metamorphism are subtly expressed within the Frederickson Lake area. belong to the sub-greenschist facies (Dimroth and Dressler, 1978) and atte characterized by the presence of pumpellyite, chlorite, actinolite, and Clinopyroxenes are generally preserved, although they are often turbid and are replaced on the rim zones by chlorite and Orthopyroxenes and possible olivine pseudomorphs are completely transformed to chlorite, amphibole and serpentine. Plagioclase is often saussuritized; Baragar (1967) proposed a late magmatic origin for some of has saussuritization.

Siltstones and the matrices of sandstones exhibit the development of sericite, stilphomelane and chlorite. Quartz grains within the sandstones ar recrystallized in some samples. Plagioclase framework grains are unaltered, confirming the low grade of metamorphism.

Argillaceous sediments along the margins of gabbro sills are commonly compact, well indurated, and exhibit a slight conchoilal fracture, but in general lack the development of phaneritic hornfels textures caused by contact metamorphism. The limited contact metamorphic effects in argillites of the Labrador Trough have been attributed to the intrusion of the gabbroic sills into wet sediments (Dimroth and Dressler, 1978) and also to the high level of emplacement of the sills (Wardle and Bailey, 1981). In contrast, arenaceous sediments within several meters of gabbroic sills commonly display diffuse

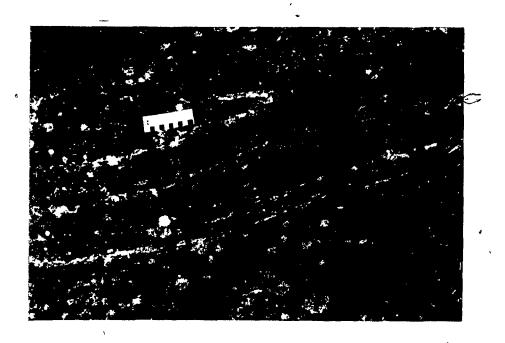


Fig. 23 Outcrop photograph of a local, tight fold in the sediments of the Menihek Formation at the Gossan Lake showing. The more competent gabbro sills on either side of the sedimentary band at this locality are not folded. The squares on the scale bar are one centimetre in length.

patches of light-coloured minerals up to 2 mm in diameter, in a darker matrix. The light-coloured patches consist of quartz within a darker, finer-grained (0.01 mm) matrix rich in chlorite. Sauvé and Bergeron (1965) describe similar "adenoles" from the contact zones of quartz-rich sediments of the Northern Labrador Trough and attribute them to the retrograde replacement of some pre-existing contact metamorphic phase.

CHAPTER 4 GEOCHEMISTRY OF GABBROIC AND VOLCANIC ROCKS

4.1 Frederickson Lake Igneous Rock Suite

Samples analyzed in the present study include ordinary and chilled margins (20 and 7 samples gabbro sills respectively), glomeroporphyritic gabbro sills margins (8 and 1 respectively), basalts the Menihek of Formation (8), volcanics of the Murdoch Formation (7) and basalts of the Willbob Formation (3). In addition, three analyses of ultramafic sills from Fournier (1983) The tholeiitic nature of the Frederickson Lake discussed. igneous suite is illustrated in the AFM diagram (Fig. 24) and on a Jensen plot (Fig. 25) The mafic rocks of the Montagnais Group form a distInct cluster of points on Al-Si, Mg-Fe and Ca-Mg plots (Fig. 26). This cluster excludes the ultramafic rocks of the Murdoch Formation (sample set 6) and ultramafic of the Montagnais Group (sample set 7). These latter , rocks fall, respectively, within the komatiitic basalt and rocks komatiite fields in a Jensen (1976) cation plot (Fig. important to note the geochemical similarity of the basalts of the Menihek Formation with the chilled margins of the ordinary gabbros (Figs. 24-26).

Deen developed by Pearce and Cann (1973), Winchester and Floyd (1976), and Pearce and Norry (1979). These diagrams, although developed to classify Paleozoic rocks, are also commonly applied to Precambrian rocks. Basalts of the Menihek Formation and the ordinary gabbro chill margins, rock types most indicative of original liquid compositions, cluster

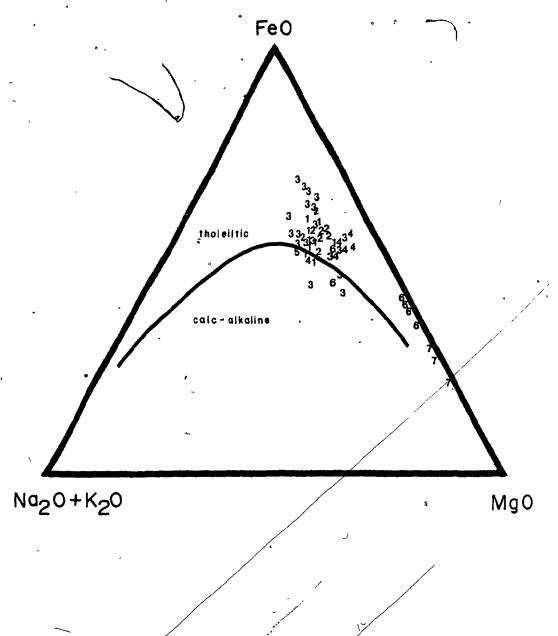


Fig. 24 AFM diagram (Irvine and Baragar, 1971) showing the complete analytical data set. The samples plot mainly in the tholeitic field.

tholeiitic field.

| = chilled margins of ordinary gabbros |
| 2 = basalts of the Merihek Formation |
| 3 = ordinary gabbros |
| 4 = glomeroporphyritic gabbros |
| 5 = chilled margins of glomeroporphyritic gabbros |
| 6 = volcanic rocks of the Murdoch Formation |
| 7 = ultramatic rocks of the Montagnais group |

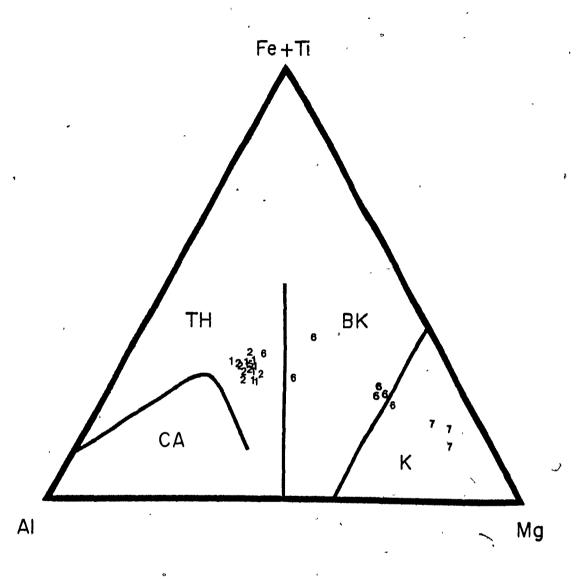


Fig. 25 Jensen (1976) cation plot. Only rocks thought to represent original liquids are plotted. Symbols as in Figure 24. CA=calc-alkaline, TH=tholeiitic, BK=komatiitic basalt, K=komatiite.

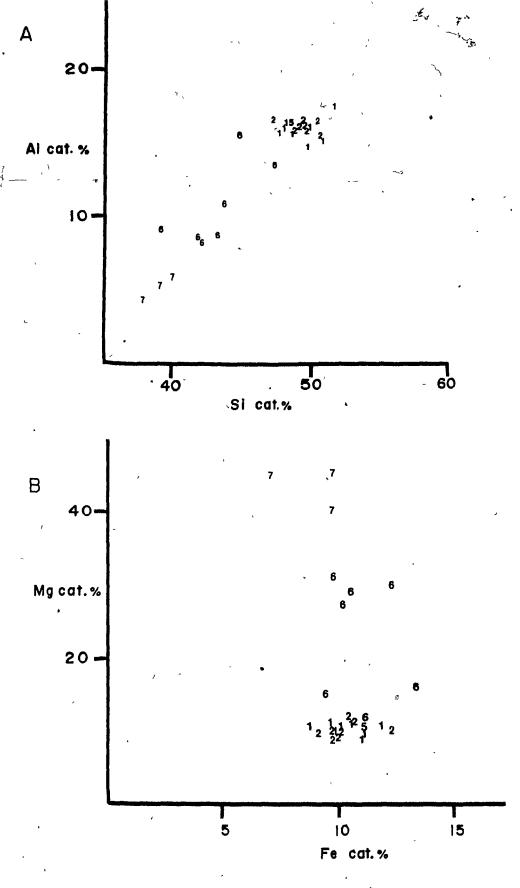


Fig. 26 a,b, Major element cationic variation diagrams. Note the compositional overlap between chill margins of the ordinary gabbros (1) and the basalts of the Menihek Formation (2). Other symbols as in Figure 24.

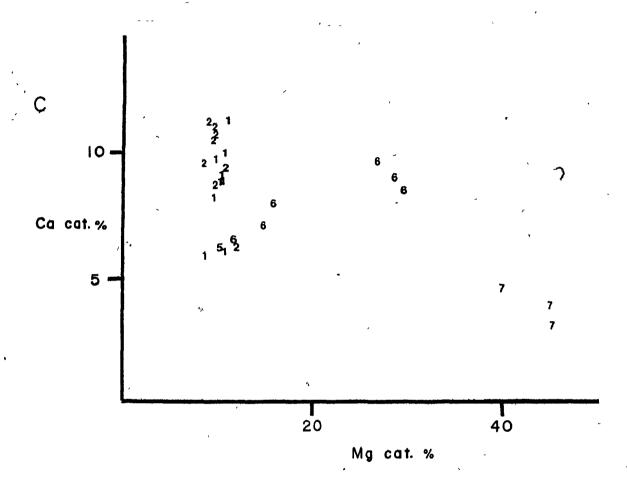
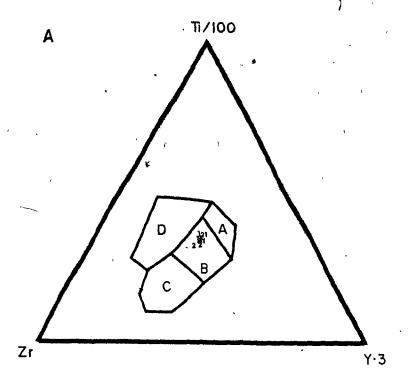



Fig. 26 c Major element cationic variation diagram. Note the compositional overlap between chill margins of the ordinary gabbros (1) and the basalts of the Menihek Formation (2). Other symbols as in Figure 24.

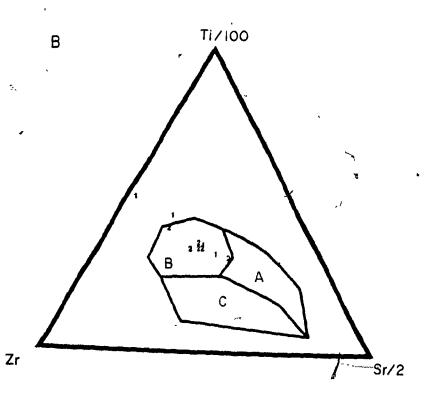
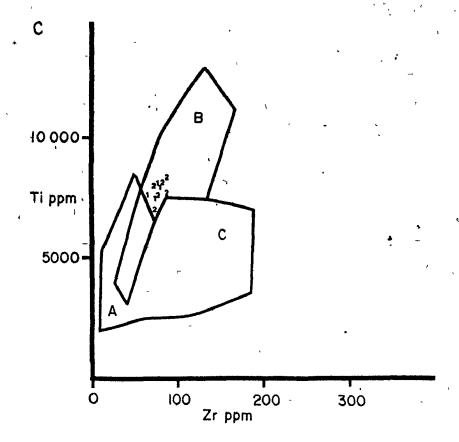



Fig. 27 a,b Tectonic discriminate diagrams (Pearce and Cann, 1973). Note the restriction of gabbro chilled margins (1) and Menihek basalts (2) to the ocean floor basalt field (B).

A=low K tholeiite B=ocean floor basalt C=calc-alkaline basalt D=within-plate basalt

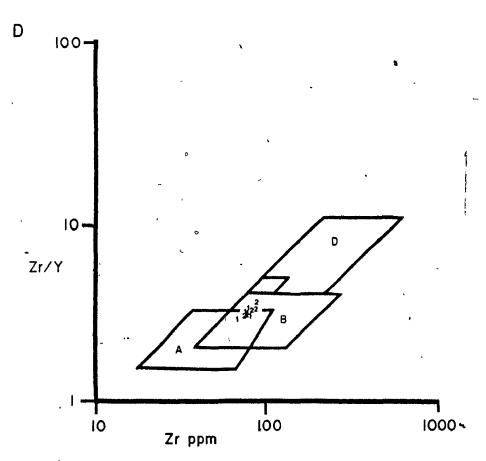


Fig. 27 c,d Tectonic discriminate diagrams (Pearce and Cann, 1973; Pearce and Norry, 1979). Note the restriction of gabbro chilled margins (1) and Menihek basalts (2) to the ocean floor basalt field (B).

within the ocean floor basalt fields in such diagrams (Fig. 27).

Previous extensive studies of the "basaltic" rocks of the Labrador Trough (Baragar, 1960; 1967) have demonstrated both the tholeitic nature of the Montagnais Group and the derivation of intrusives and extrusives of this Group from a common parental liquid. The limited data base of this study confirms the chemical similarity of the chilled margins of the ordinary gabbros to the basalts of the Menihek Formation.

4.2 Chemical Variation in Ordinary Gabbro Sills

metre-thick ordinary gabbro sill in the Frederickson Lake area was selected for detailed study (Fig. 11). From bottom to top, this sill shows an overal/ increase in Si, Ti, Fe and P, and a corresponding decrease in Al, Mg and Ca (Fig. 28). The fluctuations in composition are caused by small scale layering, and, in upper regions of the sills, variable amounts of pegmatitic veining. A reversal in some elemental trends towards the base of the sill suggests that clinopyroxene and orthopyroxene crystals in this part of the sill represent crystal cumulates. minor fluctuations, the overall chemical trends are compatible with in-situ differentiation of a single injection of magma. is further supported by the similarity of the average composition of the entire sill to its chilled margins (Table 5).

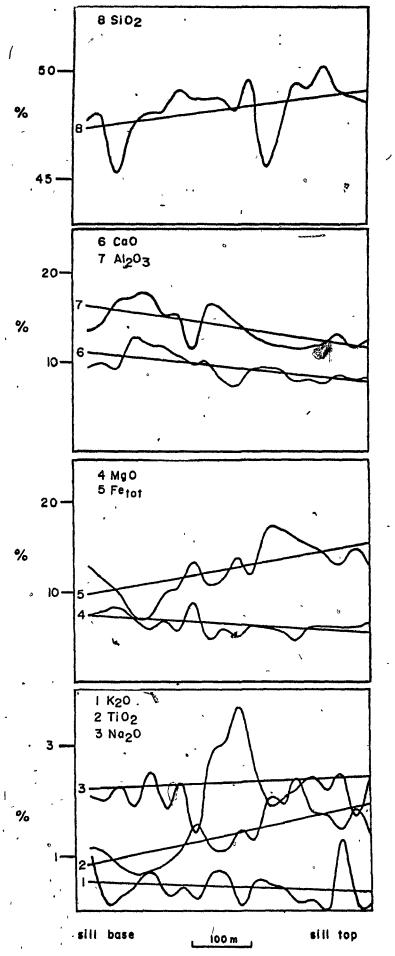


Fig. 28 Chemical cross sections through a 500 m-thick ordinary gabbro sill. Straight lines represent linear regressions of the data.

			Ź	r					•	•		
	Ord.	SD	Basalt	SD-	Volcan	SD	Glom.	SD	Gabbro	SD	Basalt	SD '
-	Gabbro		Menih		Murd	0	Gabbro *		Chill	,	Doub	
D ()	2222	=====	225#2	* ====	=====	=====	=====	=====	2222	=====	=====	=====
						,				•		
Si02	48.3	1.21	48.7	1.21	43.4	2.38	45.9	1.12	49.2	1.24	48.0	1.31
A1203	14.0	2.00	13.8	0.26	9.21	2.34	15.7	2.00	13.7	0.41	13.9	0.57
Fe tot	14.0	3.02	13.9	1.17	14.9	1.75	13.5	2.06	13.9	1.02	-13.3	0.71
Mg0	6,40	1.12	6.93	0.55	15.5	5.07	8.01	1.31	7.34	0.29	6.12	0.32
CaO	9.57	1.45	9.20	1.51	7.80	0.88	9.85	1.07	8.67	1.41	10.8	0.49
Na20	2.33	0.49	2.22	0.66	1.66	1.73		0.36	2.52	0.50	1.90	
Ķ20	0.44	0.32	0.31	0.19	0.08	0.06	0.36	0.23	0.78	0.50	0.08	0.03
f i02	1.37	0.47	1.28	0.09	2.44	0.84	0.97	0.13	1.23	0.07	1.30	0.15
Mn0	0.19	0.04	0.21	0.02	0.14	0.03	0.17	0.03	0.30	0.07	0.17	0.02
P205	0.10	0.03	0.09	0.01	0.21	0.11	0.08	0.02	0.08	0.01	0.10	0.02
FOI	2.54	0.43	3.30	1.16	3.89	1.24	3.15	0.41	2.29	0.42	- 4	1.23
TOTALS:	99.24	10.58	99.94	6.83	99.23	16.43	99.38	8.74	100.01	5.94	99.46	5.50
٠		,					,					í
1.5									0	-		•
Ba	88.4	56.1	101	58.4	•		58.3	33.1	ຳ 196	131		•
Be .	_ 2.00	0.77	0.38	0.70			1.00	0.00	0.43	0.73		
Cd			1		•	الم السامة	-			,,		t
Се	16.8	5.13	22.5				12.1	0.99	15.7	7.78	``	
Co	48.6	8.64	42.5	-	k a	•	69.1	22.9	41.0	9.02		
Cr	69.9	81.8	70.0	121			127	92.9	127	113	•	
Cu	187	91. 0	173	66.4			615	454	115	61.4	,	•
Dy ~	5,80	2.18	1.13	1.96			. 2.71	0.70	3.86	3.76		
Eu	4.80	1.08	2.63	1.11	•		, 4.00	0.53	2.86	1.36		
La	6.90	10.0	3.13	4.99			4.71	3.37	2.43	2.19		
Li '	10.2	3.06	12,4	8.09		a	10.9	2.59	11.0	3.21		
Мо)	^								
₩d	89.0	24.1	54.4	₹0.7			67.1	6.47	69.3	. 19.0		_
Ni	82.4	50.0	104	6.10	-		315	159	I16	31.0	o	
′РЬ			,		•			-	6.57	16.1		
Pr	-											
,Se	45.9	3.94	42.63	,2.39			32.1	5.84	46.1	3.80		
Sm	0.30	0.90	0	7) F		,						
V	455	199	378	13.7		- ,	269	44.5	376	12.7	٠.	,
Zn	72.6	20.7	96.5	30.9			112	83.2	92.9	16.5	,	
· *	•		•	•					,			
Ga	19.5	0.50	16.3	6.85			18.0	2.45	10.4	9.26		
· Nb	2.50	2.50	0.38	0.99							3	
RЬ	8.00	2.00	10.0	6.60			12.7	10.1	17.0	24.1	,	
Sr	135	15.0	147	53.5	4		107	23.3	71.7	71.4	•	۶ ۰
Ta .	4.50	4.50	0.71	1.75			1.67	2.36	1.43	2.26		*
Th	1.50	1.50	6.86	1.46	•		6.00	1.41	4.00	3.63		
υ	2 400	2.00	2.00	1.77			1.00	1.41	0.57	1.40		•
Υ	30.5	8.50	22.9	6.10 -			19.0	0.00	14.1	12.3	•	
Zr	97.5	32.5	83.6	4.40			67.3	4.78	43.4	37.8		
	•	đ							•			

4.3 Glomeroporphyritic Gabbros

As a result of the mechanical concentration of plagioclase it was difficult to obtain 'glomeroporphyritic phenocrysts, were representative of the original gabbro samples that liquid compositions. In terms of major element chemistry, some samples from the centres of glomeroporphyritic sills were different from the chilled margin reflecting the concentration of phenocrysts (for example sample, 99411 sill interior contains 19.2% Al203 while the chilled margin sample 99417 contains only 13.6% Al203). However, glomeroporphyritic chilled margins are similar to those of ordinary gabbros (Table 5, Fig. 26), suggesting a Minor differences in concentrations of Co, parental magma. Cu, Cr, V and Zn between the chilled margin and the centers of glomeroporphyritic gabbro sills could also reflect the effects of flow differentiation.

Plagioclase compositions reflect the composition of the parental magma from which the plagioclase crystallizes. However, the common saussuritization of glomerophenocrysts in the Frederickson Lake area precludes a simple estimation of their An content. In order to circumvent this problem, a normative calculation was carried out based on chemical analyses of the most feldspar-rich glomeroporphyritic gabbro (sample 99411). This calculation yielded a bulk rock plagioclase composition of An 75, which represents the average of the plagioclase in the groundmass (An 55) and that in the glomerophenocrysts. Thus the composition of the plagioclase glomerophenocrysts is inferred to be greater than

Corroboration of this is provided by microprobe small 0.01 mm patches of unsaussuritized plagioclase, which are present in the cores of some plagioclase glomerophenocrysts. These patches yield ·composition of An 82. Theoretically (Nielsen and Dwagan, chilled margin of the glomeroporphyritic -qabbro should crystallize plagioclase with a maximum An content in The plagioclase 75-82. the range 67-70 not An glomerophenocrysts, therefore appear to be too calcic to have formed from 'a liquid with the composition of the chilled margin.

4.4 Rare Earth Element Analyses

Two basalts of the Menihek Formation, two ordinary gabbro chilled margins, and a glomeroporphyritic chill margin (J-8) have similar, relatively flat patterns with overall abundances approximately ten times chondrite (Fig. 29 a,b,c). As shown earlier, trace element discrimination diagrams place the rocks of the Montagnais Group mainly within the ocean floor basalt field. However the flat REE patterns of these rocks contrast with the LREE depletion of most modern MORBs.

REE data also were obtained for plagioclase phenocryst separates ("plag" and "matrix" in Fig. 29 d,e) and the accompanying groundmass from both the glomeroporphyritic and anorthositic gabbros. The purpose was to determine if the plagioclase glomerophenocrysts were geochemically related to the accompanying matrix. In the anorthositic gabbro, the strong positive Eu anomaly of the phenocrysts and mirror-image

* TABLE 6 Rare earth element analyses of igneous rocks from the Central Labrador Trough

•	, , , ,	7.0	7 21	1 10	7 17	2 10	J-30	J-31	J - 32	, J-33
	J-7 Gabbro	J-8 Glom	J-11 Menihek	J-12 Menihek	J-17 Gabbro	J-19 Glom	Glom Glom	Glom	3−32 An Gab	ررس An Gab
	Chill	Chill	Basalt	Basalt	Chill	Chill	Plag	Matrix	Plag	Matrix
•	CHILL	CHILL	Dasart	pasait	CHITT	CHILL	· i ray	MACLIX	ı 1ag	INCLIA
	=====		******		22222	======	=======================================	¥2222	522232	53522
La	3:45	2.81	3.54	3.59	3.89	19.3	1.39	。3.22	1.65	4.20
Се	7.80	6.80	8.90	8.90	8.80	35.6	2.20	7,50	4.00	10.0
Nd	5.70	5.00	5.80	6.90	6.80	16.0	1.00	5.10	2.60	9.20
Sm	2.53	2.45	2.69	2.71.	2.49	3.65	0.34	1.97	0.98	3.37
Eu	0.82	0.63	1.11	1.13	0.98	1.17	0.37	0.61	0.72	0.79
Tb	0.52	0.56	0.53	0.55	0.58	0.63	0.04	0.38	0.19	0.74
Ho	0.98	0.94	1.08	0.94	0.91	1.08	0.18	0.70	0.24	1.46
Tm	0.31	0.27	0.35	0.49	0.34	0.43	0.07	0.27	0.10	0.46
° Yb	2.35	2.29	2.55	2.66	2.58	2.76	0.15	1.92	0.65	3.74
Lu	0.42	0.38	0.39	0.46	0.36	0.34	0.04	0.27	0.10	0.42
Sc	42.5	43.9	42.3	47.0	42.9	31.2	0.19	30.2	2.37	62.4
\mathtt{Cr}	161	186	182	187	168	97.2	4.10	116	1.56	76.5
Co	48.1	51.1	44.6	44.3	38.6	18.8°	11.1	71.6	5.61	54.2
As	1.62	0.53	0.30	nd	3.77	0.53	nd	nd	nd	nd
Sb	0.10	0.40	0.10	0.10	0.50	0.45	nd	nd	nd	nd
Cs	0.92	1.39	0.76	0.48	1.24	1.23	2.03	. 1.76	0.87	0.24
Ва	. ~ 207	33.0	119	188	337	241	244	nd	nd	nd
Hf	1.66	1.28	1.90	2,04	2.13	3.41	0.20	1.45	0.67	2.72
Ţа	0.24	0.26	0.14	0.16	0.13	0.53	0.04	0.12	nd	0.64
W	5.18	6.07	7.25	7.72	6.43	6.15	1.34	⁸ nd	nd	nd
Th	0.30	0.40	0.40	0.30	0.30	5.40	0.10	0.50	0.20	0.40
U	0.30	n 20	0 10	0.10,.	0.ÎO	0.90	0.10	0.20	0.10	0.10
Na (%)	1.72	1.61	1.60	1.66	1.73	2.30	1.15	nd	nď	nd

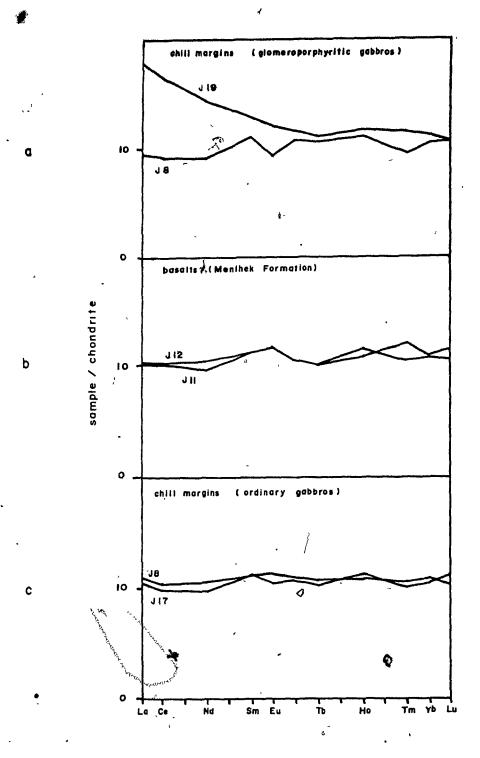


Fig. 29 Chondrite-normalized rare earth element diagrams.

- a. Glomeroporphyritic gabbro chilled margins. Note the distinctive LREE enrichment in sample J-19.
- b. Basalts of the Menihek Formation
- c. Ordinary gabbro chill margins. Patterns are similar to the basalts of the Menihek Formation.

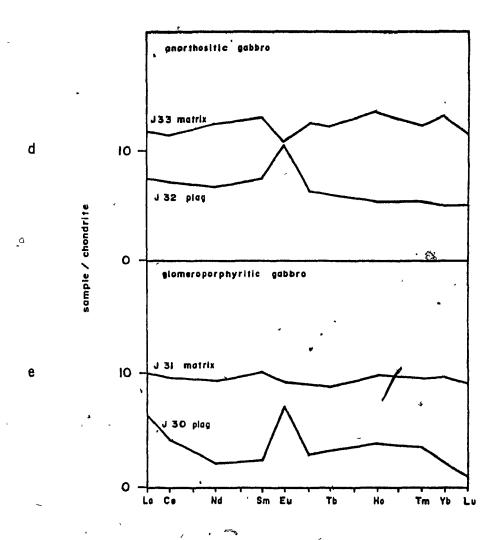
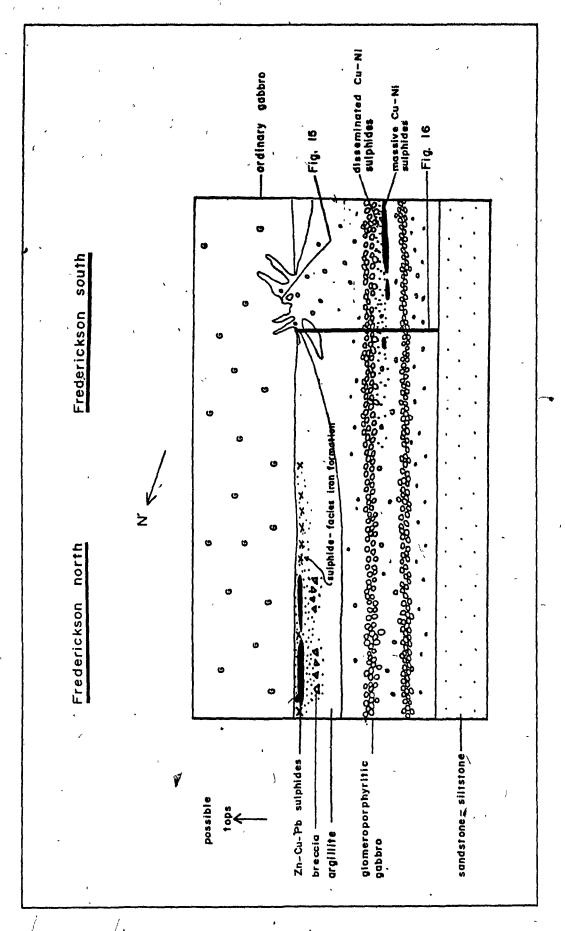


Fig. 29 Chondrite-normalized (Talyor and Gorton, 1977) rare earth element diagrams.

- d. Anorthositic gabbro. Note the mirror image patterns of the matrix and plagioclase separates.
- e. Glomeroporphyritic gabbro. The matrix of sample J-31 lacks a Eu anomaly.


pattern of the matrix suggest that the matrix liquid could have precipitated the phenocryst assemblage. The Eu anomaly in this gabbro also may have been enhanced by its high plagioclase phenocryst-matrix ratio (3:1). Growth rims on plagioclase phenocrysts demonstrate the late stage precipitation of plagioclase, which may account for the negative Eu anomaly in the residual matrix. Patterns for the glomeroporphyritic gabbro are harder to interpret because there is no Eu anomaly in the matrix. This suggests, but does not prove, that the glomerophenocrysts were not precipitated from the matrix in which they now reside.

CHAPTER 5 PETROGRAPHY AND GEOCHEMISTRY OF THE SULPHIDE SHOWINGS

- 5.1 Descriptions of Showings
- 5.1.1 Frederickson Lake South Showing (glomeroporphyritic gabbro-hosted Cu-Ni deposit)

Stratigraphic relationships for this area (Fig. 30) were determined from old diamond drill logs obtained from the Hollinger North Shore Exploration Company (HNS); surface exposure was poor. North of this showing, a thin band 'of black argillite containing sulphide-facies iron formation is intruded along its western contact by a 50 metre-thick sill of glomeroporphyritic gabbro. To the east, the argillite intruded by a thicker ordinary gabbro sill. The eastern ordinary gabbro sill exhibits partial transformation of clinopyroxene to actinolite, a texture also observed in lower regions of other ordinary gabbro sills. The eastern band of argillite pinches out along strike to the south, leaving the glomeroporphyritic gabbro in direct contact with the ordinary gabbro sill close to the zone of mineralization (Fig. 30; 2). Xenoliths of sedimentary rock within the glomeroporphyritic gabbro, and dykes of glomeroporphyritic gabbro, which crosscut the ordinary gabbro where the pinching out occurs (Fig. 15), suggest that the sedimentary band here removed by the intrusion has of the younger glomeroporphyritic gabbro.

A layer of massive Cu-Ni-bearing sulphides, about 200 m in length and 1.5 m in thickness, occurs near the centre of the glomeroporphyritic sill and is oriented parallel both to sill margins and to internal flow banding (Fig. 30). The

'Generalized cross section through the Frederickson Fig. /30 Note the localization of the Zn-Cu-Pb lens to Lake showings. contact with an ordinary gabbro sill, and the abrupt sedimentary band the south host near its termination of The two showings are separated by 2 000 metres. showing.

western contact of the sulphide body is sharp; its eastern contact is diffuse; the percentage of sulphides decreases upwards to form net-textured sulphide mineralization. This texture suggests that sill tops are towards the east. Although the tabular nature of the sulphide body led early workers to describe it as a vein (Griffis, 1945), the asymmetry of the sulphide lens and the absence of metasomatic alteration at its margins suggests it is syngenetic rather than epigenetic.

As noted by Fournier (1983), the upper portion of the sulphide lens appears to be richer in Ni and Cu (0.81% and 4.19% respectively) than the lower part (0.23% and 0.61%). Disseminated sulphides 4 m above the massive zone assayed 0.66% Cu and 0.14% Ni (Appendix 1). The overall grade of the deposit, however, is low, 1.5% Cu and 0.5% Ni. Three samples of Cu-Ni mineralization were analyzed for the platinum group elements Pt, Pd and Rh; one sample assayed 0.73 g/t Pd.

Disseminated sulphides consisting mainly of pyrrhotite are present within the matrix of the glomeroporphyritic gabbro along strike from the main ore lens. The largest of these occurrences is located 500 m northwest of the main sulphide showing.

5.1.2 Frederickson Lake North (sediment-hosted Zn-Cu-Pb deposit)

Although exposure is poor, this showing appears to occur stratigraphically above (i.e. to the east of) the glomeroporphyritic gabbro hosting the Southern deposit. Fournier (1983) suggested that this showing is bounded to the

east by a glomeroporphyritic gabbro; however, it is suggested here that the glomeroporphyritic gabbro lies to the west of the showing (Fig. 30). The contact zone of the eastern gabbro is again marked by incomplete alteration of pyroxene to amphibole as seen in other gabbro chilled margins.

Drilling by HNS in 1944 indicated that a massive Zn-Cu-Pb-rich sulphide lens about 2 meters thick occurs within black argillite and extends for 200 m parallel to the ordinary gabbro contact. The best assays obtained by HNS were DDH-7, which returned 14.1% Zn, 2.25% Cu, 1.76% Pb and 10.1 oz/ton Ag over 1.3 meters. Drill logs indicate that disseminated sulphides and quartz-carbonate veins with pyrite and minor chalcopyrite lie west of the massive (i.e. Sulphide-facies iron formation occurs probably beneath it). along strike from the sulphide lens, but its contact relation with the lens is unknown. The drill logs also indicate the host black argillite is siliceous around the ore first zone that two breccia zones are present. Theoccurs within the massive sulphide ore; the second zone, which is several meters in thickness, occurs 40 m below the massive (Hogq, 1957). Breccia fragments are described as volcanic, but this could not be confirmed during the present study; only a few surface blocks of sulphide-rich breccia were located.

5.1.3 Other Showings in the Frederickson Lake Region

Other glomeroporphyritic, gabbro-hosted Cu-Ni showings in the region include the Gossan 1 and Connolly showings (Map 1; Fig. 2). Both of these occur adjacent to sulphide-facies iron formation. The glomeroporphyritic gabbro of the Connolly showing contains several sedimentary xenoliths of sulphide-facies iron formation. Sulphide mineralization in the gabbros at both localities consists only of disseminated pyrrhotite and chalcopyrite.

Sediment-hosted sulphides in the area are present at the Jimmick Lake, Gossan Lake and Faute showings. At Jimmick Lake, sulphides occur close to the nose of a major antiformal syncline; this is the only showing which has any visible relation to structure. Sulphide-facies iron formation limb of the syncline displays local eastern recrystallization of iron sulphides. The Gossan Lake and showings are essentially sulphide-facies iron Faute Lake formation with rare disseminated chalcopyrite.

5.2 Sulphide Petrology

5.2.1 Cu-Ni Deposits

In these deposits pyrrhotite is the most abundant phase and forms the matrix for other sulphides (Fig. 31). The occurrence of many sub-grain boundaries suggests recrystallization. Pentlandite is present as exsolution flames up to 0.5 mm in length in pyrrhotite and as coarser euhedral grains up to 2 mm in diameter along pyrrhotite grain boundaries. Chalcopyrite occurs as anhedral crystals and as

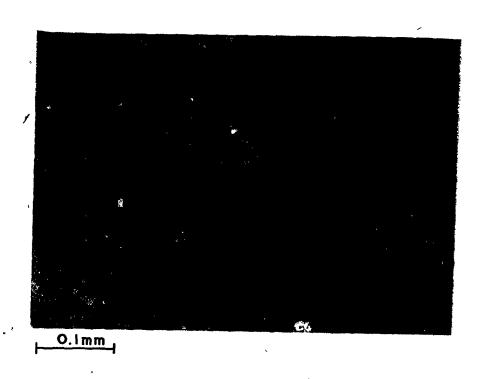


Fig. 31 Microphotograph of a polished section of Cu-Ni mineralization from the Frederickson Lake South showing. (po=pyrrhotite, py=pyrite, mag=magnetite, cpy=chalcopyrite, gan=gangue)

exsolution lamellae within the massive pyrrhotite. Magnetite is present as rounded grains and only rarely contains exsolution lamellae of ilmenite. Pyrite is rare, occurring both as small cubes (0.05 mm) within the pyrrhotite matrix and as larger annealed grains (0.1 mm). Quartz is the dominant gangue mineral in the zone of massive mineralization. Towards the top of the sulphide lens, where a net-texture is developed, chlorite and epidote after clinopyroxene become more common.

5.2.2 Zn-Cu-Pb Deposits (Frederickson Lake North)

mineralization Megascopically, the massive Frederickson Lake North has a layered appearance resulting alternating sphalerite-galena-rich and iron sulphidefrom chalcopyrite-rich bands (Fig. 32). Deformation sulphide lens was not evident in outcrop, but cut specimens of massive ore exhibited minor folding (Fig. pyrrhotite-rich. layers contain abundant anhedral masses chalcopyrite and large pyrite cubes. Sphalerite occurs as anhedral masses surrounding anhedral grains of galena. oriented and unoriented inclusions of chalcopyrite are common within sphalerite (Fig. 33). Trace amounts of arsenopyrite occur as euhedral, diamond-shaped crystals. A similar mineral assemblage is present in the breccia horizon of the ore lens, where it forms the matrix to cherty argillite clasts up to 5 cm in diameter.

On the basis of the anhedral nature of the galena and chalcopyrite in the massive mineralization, Fournier (1983) proposed that these were the last-formed sulphide minerals.

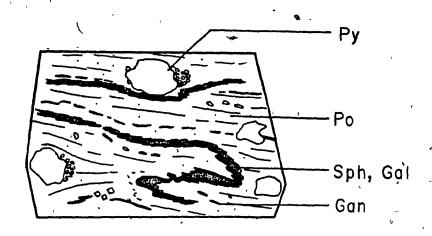


Fig. 32 Hand sample tracing of Zn-Cu-Pb mineralization from the Frederickson Lake North showing (actual size). Note the deformation of bedding by minor folds and the development of large pyrite porphyroblasts. Refer to Figure 31 for symbols.

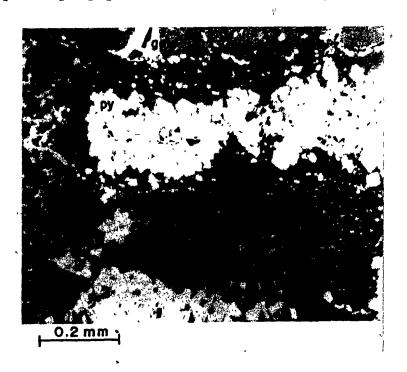


Fig. 33 Microphotograph of polished section of Zn-Cu-Pb mineralization from the Frederickson Lake North showing. Note inclusions of chalcopyrite in sphalerite. Refer to Figure 31 for symbols.

However, anhedral textures for these sulphides also commonly result from metamorphism (Volkes, 1969). In any case, the lack of primary textures in the Zn-Cu-Pb deposits makes it impossible to determine the original mineral paragenesis.

5.2.3 Po-Py rich sediments

These sediments were classified in the field as sulphide-facies iron formation. Such sediments commonly contain 50% iron sulphides, mainly as pyrrhotite, with minor pyrite. The pyrrhotite is recrystallized and intergrown with silicate grains (Fig. 8). Pyrrhotite-rich boulders of sulphide-facies iron formation on the eastern flank of the Jimmick Lake antiformal syncline exhibit schistocity parallel to bedding and recrystallization of pyrrhotite. Base metaland gold concentrations in po-py rich sediments are low (Appendix 1).

- 5.3 Geochemistry of the Showings
- .5.4.1 Ni/Cu ratios of Gabbro-Hosted Mineralization.

Ni/Cu ratios have been applied to magmatic Cu-Ni sulphide deposits to infer parental magma compositions and the timing of sulphide liquid, immiscibility with respect to olivine Olivine fractionation rapidly depletes a fractionation. magma of Ni but increases the amount of Cu in the residual A low Ni/Cu ratio of 0.35 for the Frederickson liquid. showing, and similar Lake South ratios for glomeroporphyritic gabbro-hosted Cu-Ni deposits Labrador Trough (Fournier, 1983), indicate that olivine fractionation may have depleted the magma in Ni prior to

sulphide liquid immiscibility. By contrast, komatiite-hosted Ni-Cu deposits, with Ni/Cu ratios of up to 15, are inferred to reflect early sulphide liquid immiscibility relative, to olivine fractionation (Naldrett, 1981). It is interesting to note that the ultramafic-hosted Cu-Ni sulphide deposits of the Montagnais Group (type 1) have Ni/Cu ratios that are similar to the glomeroporphyritic gabbro-hosted deposits (type 2). This suggests that the ultramafic rocks are cumulates that formed from a gabbroic parental magma.

5.3.2 Magma-Sulphide Ratios

Syngenetic magmatic sulphide deposits are generally attributed to the separation of an immiscible sulphide liquid from a silicate melt (Vogt, 1893). Elements enter the sulphide liquid in proportion to their sulphide-silicate partition coefficients (Table 7: MacLean and Shimazaki, 1976; NalWrett, 1981). For the economically important elements Ni and PGE, the coefficients are >>1, thus sulphide 'liquids , are able to scavenge and concentrate these elements from (co-existing silicate liquids. initial Ιf the partit/ion concentration, final concentration, and coefficient for any element are known, then the proportion of silicate liquid that has equilibrated with a given sulphide liquid, its R value, can be calculated (Table 7b). Large R values (up to 10 000) imply that the sulphide liquid has equilibrated with a large volume of silicate liquid, whereas small values (below 500) indicate the opposite (Campbell and Naldrett, 1979).

Table 7

Partition coefficients between silicate and sulphide liquids for selected elements.

v	4 1 1	l Ni	l Cu	l Pt	l Pd	2 Zn	3 Pb
	ic liquids					,	~~~
27 % 19 %	Mg0	100 175	250	1 000	1,500		
Basaltic	liquids	275	250	1 000	1 500,	.15	10

Sources: 1 - Naldrett (1981)

2 - MacLean and Shimazaki (1976)

2 - Shimazaki and MacLean (1976)

Note: Campbell and Barnés (1984) suggested that the partition coefficients for the PGE are as high as 1 000 000.

Table 7b Formula for R value

$$Yi = Di * Xi * (R + 1)$$

 $(R + Di)$

where:

R=silicate-sulphide ratio Yi=final concentration of element in sulphide liquid Xi=initial concentration of element in silicate liquid Di=partition coefficient Magma-sulphide ratios have been used to argue that the Pipe nickel deposit of the Manitoba Nickel Belt formed through the assimilation of sulphur (Naldrett et al., 1979). An R value of 43 for this deposit was interpreted as indicating an excess of sulphur above that which could be dissolved in the parental magma. This excess sulphur was considered to reflect assimilation of sulphide-rich sediments.

R values were calculated for the Frederickson Lake Cu-Ni showing, using initial values of 110 ppm Ni and 300 ppm Cu values for the chilled margin of the host glomeroporphyritic gabbro; sample 99417, Appendix 1). The resulting R values range between 53 for Ni and 57 for Cu, suggesting that the sulphide liquid which formed the deposit did not equilibrate with large volumes of silicate liquid. This may indicate that sulphide 'liquid immiscibility occurred late in the magmatic history of the host glomeroporphyritic gabbros.

5.3.3 Zn-Cu-Pb ratios in sediment-hosted mineralization

On the ternary plot of Gustafson and Williams (1981), data from the Frederickson Lake Zn-Cu-Pb showing fall in both the, sediment-hosted and volcanogenic massive sulphide fields (Fig. 34). Sediment-hosted stratiform sulphide deposits can be divided into two generally separate classes, Cu-rich and Pb-Zn-rich (Gustafson and Williams, 1981). The Frederickson Lake sulphides are similar to the Zn-Pb class because of the dominance of (Zn+Pb) over Cu, but in general contain too much copper to be directly analogous. They have Zn-Cu-Pb values similar to the Koke showing (Fig. 1, showing #8) of the

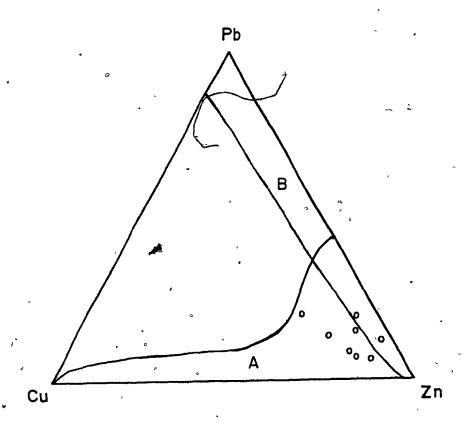


Fig. 34 Cu-Zn-Pb diagram for massive sulphides at the Frederickson Lake North showing.

- (from
- volcanogenic massive sulphide field Pélissonnier, 1972) sediment hosted Pb-Zn massive sulphide (estimated from Gustafson and Williams, 1981) В.

Northern Labrador Trough (R. Wares; pers. comm., 1987).

5.3.4 Sulphur-Selenium Ratios

S/Se ratios for two samples of each of the three main types of mineralization are given in Table 8. The S/Se ratio has been proposed as a possible discriminant between magmatic sedimentary ore deposits (Goldschmidt and Strock, Mineralization with S/Se ratios below 10 000 (cosmic ratio 7 Cameron, 1968) have been interpreted as magmatic origin while those with higher ratios have been considered `as synsedimentary deposits. However, not all sedimentary rocks are depleted in Se, and seleniferous sedimentary provinces are 1972). Although S/Se ratios have known to exist (Stanton, been employed as discriminators by Naldrett (1981), and Naldrett (1984), and Eckstrand and Hulbert (1987), their recently has been criticized by Auclair et al., (1987) because the behaviour of both selenium and sulphur hydrothermal systems is variably affected by pH and fO2.

Notwithstanding, this method still appears valid for purely magmatic deposits. The average ratio of 5000 for the two samples of glomeroporphyritic gabbro-hosted Cu-Ni ore is compatible with a magmatic origin for the ore. The low S/Se ratios also imply that the glomeroporphyritic gabbros have not assimilated large volumes of sedimentary sulphides, as this would increase the ratio. The average ratio of 30 000 for the Zh-Cu-Pb sediment-hosted sulphides is compatible with a sedimentary origin for the sulphides.

Table 8

Analyses of sulphur and selenium

sample type	S %	Se ppm	s/se
<pre>1 argillite rich in po-py 2 argillite rich in po-py 3 Zn-Cu-Pb (Frederickson N.) 4 Zn-Cu-Pb (Frederickson N.) 5 Cu-Ni (Frederickson S.) 6 Cu-Ni (Frederickson S.)</pre>	32.7	, 20	16 450
	15.9	10	15 900
	42.5	10	42 500
	38.5	20	19 250
	35.2	70	5 030
	25.0	50	5 000

Analyst: D. Toye - Acme Analytical Laboratories Ltd

lower limit of detection S: 0.01% Se: 1 ppm

NOTE:

In order for sample 6 to equal the average value S/Se of the Zn-Cu-Pb mineralization (~30 000) the Se value would have to be reduced by 85%. Thus even with an analytical error of 20% with respect to the Se value, the S/Se ratio would still reflect magmatic values.

5.3.5 Sulphur Isotopes

Contamination of gabbroic magmas with crustal sulphur was proposed by Sullivan (1959) to explain the Cu-Ni deposits of the Thompson Belt. Later sulphur isotope studies invoked mechanism for a variety of gabbro-hosted deposits this (Noril'sk: Godlevski and Grinenko, 1963; Duluth Complex: Naldrett and Mainwaring, 1977; Ripley, 1981; Rao and Ripley, 1983; Thompson and Naldrett, 1984; Ripley and Alawi, 1986; Ripley and Al-Jassar, 1987; Bushveld (Potgietersrus Limb): Buchanan and Rouse, 1984). Early work on the Water Hen-Complex) suggested deposit (Duluth that sulphur was incorporated into the Water Hen intrusion by the assimilation and melting of local sulphur-rich sedimentary rocks (Naldrett Mainwaring, 1977). Later studies of the Dunka Road deposit (Duluth Complex) proposed that sulphur was transferred to the melt as a vapour phase produced by contact metamorphic breakdown of pyrite in wall rocks and sedimentary xenoliths * (Ripley, 1981; Rao and Ripley, 1983). In contrast, a study of the Babbitt depósit of the Duluth complex (Ripley and Al-Jassar, 1987) demonstrated that sulphur incorporation took place in auxiliary magma chambers at depth rather than at the presently exposed level of the Duluth complex.

Although fractionation of sulphur isotopes during regional or contact metamorphism potentially complicates the interpretation of sulphur isotopic data, metamorphosed deposits are thought to retain their initial sulphur isotopic ratios up to amphibolite facies if there is no change in mineralogy (Ohmoto and Rye, 1979). However, experimental

work by Kajiwara et al., (1981) detected significant sulphur isotope fractionation during the thermal decomposition of pyrite to pyrrhotite and sulphur at 600 C. In their study, initial sulphur vapour was 12 per mil lower than source pyrite, and the final pyrrhotite residue was enriched 4.5 per mil. These large degrees of fractionation \are, however, somewhat controversial because of the high temperature at which fractionation took place. Ripley and Al-Jassar (1987) found no evidence for such S-isotope fractionation between pyrrhotite and pyrite in the Babbitt gabbrohosted deposit.

and the second second second second

In the Frederickson Lake area, glomeroporphyritic gabbros have intruded sulphur-rich sediments. In order to assess whether mixing of magmatic and sedimentary sulphur occurred, the sulphur isotopic composition of pyrrhotite has determined for pyrrhotite was separates glomeroporphyritic gabbro-hosted Cu-Ni deposits, sedimenthosted Zn-Cu-Pb deposits, and sulphide-facies iron formation In addition the isotopic composition of whole (Table 9). rock sulphur from the ordinary gabbro sills was measured.

Six pyrrhotites from the Frederickson Lake South Cu-Ni deposit had an average d S34 value of +3.7 per mil (Fig. 35). Two pyrrhotites from a disseminated Cu-Ni sulphide occurrence, 500 m northwest and along strike of the main showing, had an average d S34 value of +19.6 per mil. Three pyrrhotites from separate locations at the Frederickson Lake North Zn-Cu-Pb showing yielded a tight clustering of d S34 values at +9.2 per

Table 9

Sulphur isotope analyses of pyrrhotite mineral separates from the Frederickson Lake area

	•		'	t
Sample	Showing and of Mineralization	Type ation	d s34	(+/- 0 .2)
^			,	
S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13	Frederickson N. Frederickson N. Frederickson N. Secalar Lake Gossan-l Frederickson S. Frederickson S. Frederickson S. Disseminated Po	(Zn-Cu-Pb) (Zn-Cu-Pb) (Po-Py) (Po-Py) (Po-Py (Cu-Ni) (Cu-Ni) (Cu-Ni) NE of Frederick		
S14	Disseminated Po			20.4
S15	Ordinary Gabbro	bulk rock sulpr	iur	*2.2 +/- 0.5

average	standard	# of
value	dearacron	sambres
3.7	0.2	6
9.2	0.05	- 3
3.5	. 0.9	3
3.7	0.9	12
	value 3.7 9.2 3.5	value deviation 3.7 0.2 9.2 0.05 3.5 0.9

S1-S9 analyzed at Universite du Quebec a Montreal by C. Gariepy S10-S15 analyzed at the University of Ottawa by J. St-Jean

^{*} Kiba extraction - higher analytical uncertainty is due to the low sulphur content of the sample

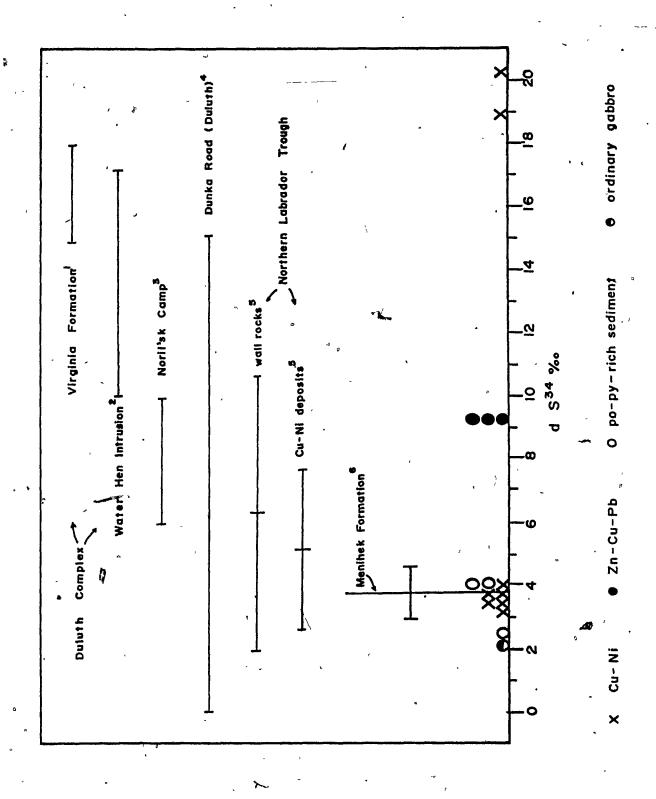


Fig. 35 Sulphur isotope data from the Frederickson Lake region and from other selected deposits. 1, 2 Mainwaring and Naldrett (1977), 3 Godlevski and Grinenko (1963), 4 Ripley (1981), 5 Eckstrand (1983), 6 Cameron (1983).

mil. The d S34 values of pyrrhotites from three widely separated occurrences of sulphide-facies iron formation ranged from +2.4 to +4.1 per mil, with an average of +3.5. per mil. Regionally, over a 77 km interval, the sulphide-facies iron formation of the Menihek Formation has a similar average d S34 value of +3.7 +/- 0.9 per mil (Cameron, 1983). A sample of bulk rock sulphur from an ordinary gabbro sill had a value of +2.2 +/- 0.5 per mil.

The d S34 value of primary magmatic minerals in mafic to ultramafic rocks depends on the temperature and f02 of the magma, but is believed to be between -1.0 and +2.0 with an average value of +1.3 per mil (Ohmoto and Rye, 1979). However, magmatic sulphides in the Bushveld complex range from -0.6 to +3.5 per mil (Buchanan and Rouse, 1984). contrast, sulphides within the Water Hen intrusion of Duluth 'Complex had an average d \$34 value of +15 per (Mainwaring and Naldrett, 1977). Adjacent sediments had an .average sulphur isotopic value of +18 per mil. Because of the extreme difference between the isotopic composition of sulphides in the Water Hen intrusion and the ideal magmatic value of zero, a significant addition of sedimentary sulphur to the Water Hen intrusion could be demonstrated. Frederickson Lake area, the value of +3.5 per mil probable assimilant (sulphide-facies iron formation) close to the possible range of natural magmatic values to conclusively demonstrate mixing. The value of +3.7 per for the Frederickson Lake South showing may reflect a minor component of non-magmatic sulphur.

Pyrrhotites from the sediment-hosted Zn-Cu-Pb showing have an isotopic value (+9.2 per mil) which is significantly higher than those from sulphide-facies iron formation of the Menihek Formation (+3.7 per mil; Cameron, 1983). If the former pyrrhotites are synsedimentary, the value of +9.2 would reflect the isotopic composition of sulphur deposited on the seafloor. The large difference in the d S34 values of the sediment and gabbro-hosted deposits makes it unlikely that both types of deposits formed as immiscible sulphide liquids, as suggested by Fournier (1983).

The average d S34 value of +19.7 per mil for the small disseminated sulphide showing in glomeroporphyritic gabbro is problematic. A normal magmatic source can be ruled out, as can assimilation of sediment (even the Zn-Cu-Pb sulphide lens only has an average value of +9.2 per mil).

6.1 Evolution of the Labrador Trough - Upper Cycle II

Regionally, the Menihek Formation overlies shallow water shelf sediments. It was deposited following the flooding of an epicontinental shelf wedge during the second major marine transgression identified in the Labrador Trough (Cycle II). Wardle and Bailey (1981) have proposed a turbidite origin for the bulk of the Menihek Formation; Baragar (1967) emphasized that both volcanic terrains and basement gneisses were important in supplying detritus.

Within the Frederickson Take area, limited sediment preservation precludes a complete stratigraphic reconstruction, although a few inferences about the original depositional environment can be made. The extremely finegrained 1aminations preserved within the sulphide-rich argillites indicate deposition in quiet water. interlaminated sandstones and siltstones are reminiscent of distal turbidites, although complete Bouma sequences with grading and parallel laminations are absent. The compositional maturity of the quartzite beds that occur with the interlaminated sandstones and siltstones appears to conflict with a deep water origin, although fine-grained quartz sands from shelf environments conceivably could have been transported by mass flow mechanisms into deep water settings (c.f. Sarnthein and Diester-Haass, 1977). Limited volcanism during Menihek deposition is indicated by presence of minor, intermediate tuff horizons within

sandstone-siltstone layers and by thin basaltic flows in its upper stratigraphic levels.

The Menihek Formation has been correlated with Doublet Group (Wardle and Bailey, 1981; Fournier, 1983). appears that the Menihek Formation was deposited during Labrador Trough from a relatively transition of the water, sediment-dominated environment to a volcanic-dominated, (1967) proposed that gabbro sills of environment. Baragar Montagnais Group the are most likely the subvolcanic equivalent of the extrusive rocks of the Doublet Group. relationship is supported by the chemical similarity between gabbroic chilled margins and basalts of the Menihek Formation (Figs. 25, 26).

6.2 Genesis of Glomeroporphyritic Gabbros

Glomeroporphyritic gabbros are a minor but consistent component of mafic magmatic environments ranging from Archean greenstone belts (Green, 1975; Phinney and Morrison, 1982; 1984) to Proterozoic volcano-sedimentary belts (Baragar, 1967), and modern ocean-floor basalt terrains (Flower, Cullen et al., in press). Nevertheless, their genesis is Green (1975) and Phinney and Morrison poorly understood. 1984, 1985) have suggested that these gabbros result the fractional crystallization of plagioclase primitive magmas at deep crustal levels. Ashwal et (1983) and Phinney and Morrison/(1983) have pointed out a possible genetic link between glomeroporphyritic gábbros anorthosite complexes.

Phenocrysts in the glomeroporphyritic gabbros are calcic than normative values calculated for the chilled (section 4.3). Such calcic phenocrysts could have been produced either from a more primitive mafic magma or from gabbroic magma contaminated by continental crust. favouring, a parental magma of primitive composition Archean glomeroporphyritic gabbros with calcic phenocrysts have been developed by Phinney and Morrison (1982, 1984, In these models, it is assumed that primitive magmas are trapped at the crust-mantle boundary where A fractionated Mg-rich olivine and calcic plagioclase. Calcic plagioclase phenocrysts are later entrained in upwelling magmas. models are difficult to verify in the field because requisite mafic cumulates would have been retained at levels in the crust that are not presently exposed! plagioclase phenocrysts (An 85-91.5) which are present MORBs may have formed in this manner (Wilkinson, 1982). The occurrence of calcic plagioclase phenocrysts in basalts far removed from continental crust (e.g. Galapagos Archipelago; Cullen et al., in press) suggests that such phenocrysts can form in the absence of contamination by continental crust.

Assimilation of continental crust can effect the An content of plagioclase in gabbroic bodies by modifying the Al-Si ratio of the melt. However, models favouring assimilation are constrained by the small amount of continental crust that a mafac magma can assimilate before the latent heat of crystallization is consumed and the magma

solidifies (c.f. Bowen, 1928). It is unlikely that thin, subvolcanic glomeroporphyritic sills could assimilate much sediment, although assimilation is possible at deeper crustal levels.

Figure 36 illustrates the effects of variable amounts of upper crustal contamination on the REE pattern of the average gabbro chilled margin liquid. A composite sample of Post Archean Australian Shales (PAAS) was chosen as the assimilant (Taylor and McLennan, 1985) because of its similarity to the argillites of the Menihek Formation (Fig. 37). The lowermost line on Figure 36 represents the average of gabbro chilled margins and basalts of the Menihek Formation but excludes LREE enriched sample J-19. Although contamination of the gabbroic liquid by as little as 5-10% PAAS should be detectable using such a plot, there is no way of verifying that the liquid itself was not previously contaminated.

The LREE enriched sample J-19 was taken from the same glomeroporphyritic sill as sample J-8 (Fig. 29a) which has a flat REE pattern. It is unlikely that one portion of the chilled margin could assimilate greater than 10% of the surrounding sediment. Thus, sample J-19 may reflect a local, selective contamination of LREE; no other explanation is obvious.

The chemical similarity of the glomeroporphyritic and ordinary gabbro chilled margins in the study area and the unlikelihood that the original magma could produce every calcic plagioclase phenocrysts suggest that such phenocrysts may

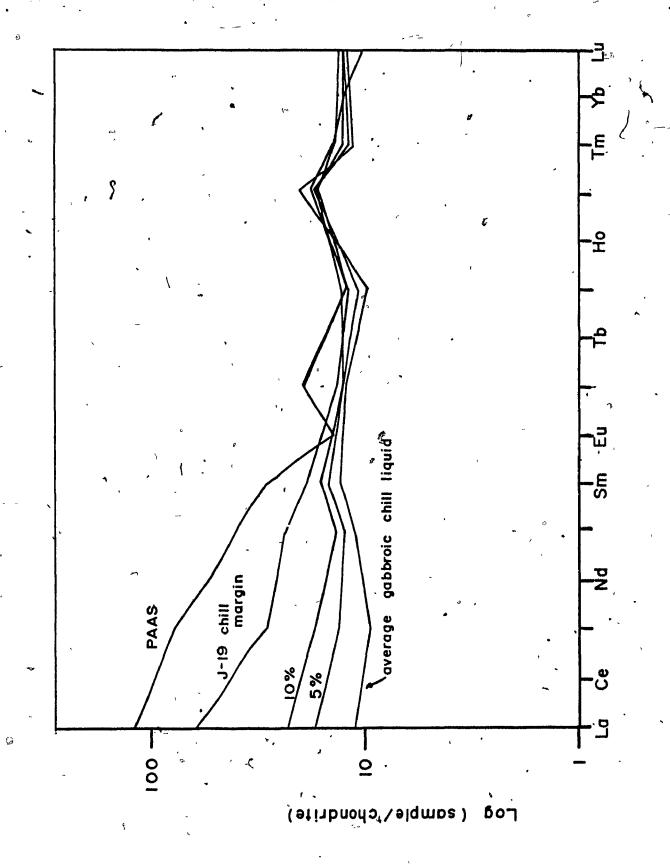


Fig. 36 Diagram illustrating the effect of contaminating the average gabbroic liquid of the Frederickson Lake area with upper continental crust. Upper continental crust is represented by PAAS (Taylor and McLennan, 1985). The average gabbroic liquid represents the average of gabbro chilled margins (excluding LREE enriched sample J-19) and basalts of the Menihek Formation. The lines labelled 5% and 10% represent the patterns which would result from contamination of average chill liquid by 5% and 10% PAAS.

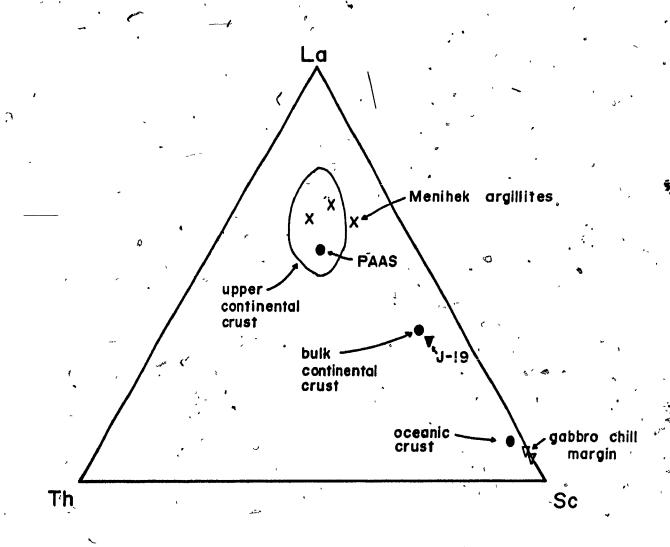


Fig. 37 Th-La-Sc diagram (Taylor and McLennan, 1985). The argillités of the Menihek Formation (X) plot within or close to the upper continental crust field. Two gabbro chilled margins, but not sample J-19, plot close to oceanic crust.

been introduced into an ordinary gabbro have Subsequent clustering of phenocrysts and their alignment within the glomeroporphyritic gabbros sills may have resulted from magmatic flow during sill emplacement. Growth rims around plagioclase glomerophenocrysts indicate that cementing previously united phenocrysts took place during flow. Negative Eu anomalies for a glomeroporphyritic chilled margin (sample J-8) and an anorthositic gabbro matrix J-33) suggest an earlier phase of plagioclase The lack of a significant Euranomaly in the fractionation. matrix of the glomeroporphyritic gabbro (sample J-31") suggests that the plagioclase glomerophenocrysts werd not precipitated from the matrix liquid, but were incorporated and concentrated by mechanical processes.

Glomeroporphyritic gabbros of the Labrador Trough occur specific stratigraphic horizon: the boundary sediments and the volcanics of Doubletsuggests that these gabbros This Hellancourt Group. produced during a restricted interval the Trough. Models attempting to evolution of relate glomeroporphyritic gabbros to tectonic parameters spreading rates' have been proposed by Flower (1980) Cullen et al.; (in press). Flower has suggested that existence of thick oceanic crust beneath slow-spreading ridges the ponding of magmas in lower crustal would favour reservoirs, wherein slow, uninterrupted crystallization could produce large calcic phenocrysts. Cullen et al. (in press) believe that the presence of thick oceanic crust would serves to retard the upward movement of calcic phenocrysts; they postulate that such phenocrysts form under thin oceanic crust, and at slow spreading rates.

and Bailey (1981) proposed that the extrusion Wardle Doublet Group occurred in response to rapid rifting which accompanied a second phase of opening of the Labrador It is suggested here that prior to rapid rifting, mafic melts accumulated plagioclase glomerophenocrysts due have extensive plagioclase fractionation at depth (Fig These melts were intruded as glomeroporphyritic sills into the upper stratigraphic levels of the Menihek Formation (Fig. rapid rifting led to short residence times for Later new batches of gabbroic melt, which gave rise to the ordinary gabbro sills (Fig. 38-3). In this fashion, a single parental type could produce both glomeroporphyritic and ordinary gabbros in response to different rates of crustal without invoking deep-level crustal contamination.

6.3 Genesis of Cu-Ni Deposits in Glomeroporphyritic Gabbros

The association of Cu-Ni sulphide bodies and glomeroporphyritic gabbros in the Labrador Trough is unusual. Many other gabbro-hosted Cu-Ni deposits occur instead within the lower mafic cumulate zones of differentiated intrusions (i.e. the Sudbury and Duluth Complexes). In any deposit formed by

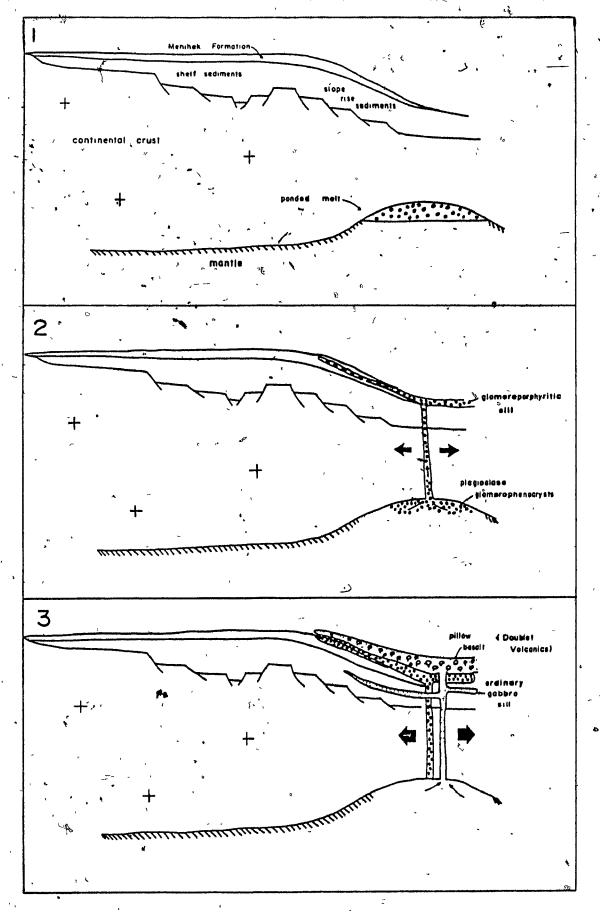


Fig. 38 Schematic diagram illustrating the transformation of the Labrador Trough from a sediment-dominanted to a volcanic-dominated environment. In (1) mafic melts are ponded at depth before rapid rifting; plagioclase phenocrysts are produced at this time. The onset of rifting (2) releases glomeroporphyritic magmas to a specific stratigraphic horizon. Later rapid rifting (3) produces non-porphyritic magmas.

sulphide liquid immiscibility, the availability and behavior of sulphur is critical. A brief review therefore follows on the controls on sulphide liquid immiscibility in tholeiftic melts.

Experimental evidence indicates that sulphur solubility in silicate melts increases with pressure Pand temperature. Most importantly, a sulphur solubility increases with the ferrous iron content of the melt (MacLean, #1969; Haughton et al., 1974; Buchanan and Nolan, 1979), probably reflecting the complexing of sulphur with reduced iron in the melt. ability of a fractionating mafic melt to achieve sulphur within a closed system depends on .the saturation crystallization history of its silicate and oxide phases. As magma fractionates, sulphur behaves incompatibly, and its concentration in the melt will increase until bearing phase appears. Initial fractionation of tholeiitic melts is usually controlled by olivine and clinopyroxene, which removes minor amounts of reduced iron (i.e. Stolper and. When plagioclase joins olivine on the Walker, 1980). ្រីរ៉ូម៉ឺបidus, the amount of reduced iron in the melt rises to produce the iron-enrichment trend characteristic rapidly tholeiitic magmas, Calculations by Czamanske and Moore (1977) suggest that sulphide liquid immiscibility at this stage is unlikely. A small increase in the activity of silica during plagioclase fractionation, which favourş immiscibility (Irvine 1975), will be more than offset by the increase in ferrous/iron content of the melt, which increases sulphur solubility. Thus, extensive

fractionation should inhibit rather than favour sulphide liquid immiscibility. Eventually, iron enrichment trends are reversed by crystallization of iron-oxide phases, at which time an immiscible sulphide phase may also be produced.

Although most tholeitic magmas should be close to sulphur saturation after first stage melting of the mantle (Helz, 1977; McGoldrick et al., 1979; Mitchell and Keays, 1981; Roedder, 1981; Wendlandt, 1982; Hamlyn et al., 1985) and upon emplacement into higher levels of the crust (Mathez; 1976; MacLean, 1977), this does not imply that large volumes of immiscible sulphide liquids can be produced. Indeed, the the low initial sulphur content of tholeites (300 ppm: Ringwood, 1966; 800 +/- 150 ppm at mantle source: Moore and Fabbi, 1971) implies that even with fractionation, only small amounts of sulphur will be available for liquid immiscibility. Gross sulphur oversaturation may be required to produce immiscible sulphide liquids of sufficient volume to form an economic ore body (c.f. McCarthy et al., 1984).

Because of the tendency of tholeittic melts to remain close to, but not exceed sulphur saturation until late stages of crystallization (i.e. the appearance of magnetite), many models for the generation of Cu-Ni deposits invoke the addition of sulphur from external sources (Sullivan, 1959, Godlevski and Grinenko, 1963; Mainwaring and Naldrett, 1977; Ripley, 1981; and Thompson and Naldrett, 1984). Such models are supported by sulphur isotopic data, which suggest components of nonmagnatic sulphur.

The low R-values, low metal grades and low Ni-Cu ratios of the Frederickson Lake South showing suggest that sulphide liquid immiscibility was a late stage event, which, occurred within the glomeroporphyritic gabbro sills at high crustal levels. Fournier (1983) proposed that sulphide liquid immiscibility took place in deep-level crustal magma chambers during the precipitation of plagioclase phenocrysts. Sulphide droplets were assumed to have adhered to plagioclase phenocrysts, causing them to sink, and concentrating both plagioclase and Cu-Ni sulphides. Fournier proposed that Cu-Ni sulphides and plagioclase phenocrysts were later extracted from the deep level chambers and emplaced into higher crustal levels as sills.

is unlikely that sulphide liquid immiscibility took place during plagioclase fractionation because plagioclase fractionation would increase sulphur solubility. Even if the immiscible sulphide liquid formed at depth, as proposed by Fournier (1983), it would tend to separate from plagioclase because of their contrasting densities. Furthermore, early production of a sulphide melt at depth would have allowed a longer period for equilibration of this melt with a co-existing silicate liquid. As discussed in section 5.3.2, this would produce sulphide deposits with high R values and increased metal grades, and high Ni-Cu ratios. Thompson and Naldrett (1984) suggest that the grade of the Katahdin Cu-Ni deposit was diluted by late stage addition of crustal sulphur during emplacement of the gabbro host. Thus, sulphur assimilation will increase the probability of sulphide

liquid immiscibility, excess sulphur may lower metal grades.

Sulphur isotopic data from the glomeroporphyritic gabbros (section '5.3.5) suggests a contribution of non-magmatic sulphur, although the results are not conclusive. In Northern Trough, Cu-Ni deposits within glomeroporphyritic gabbros have a more convincing non-magmatic component, sulphur isotopic values up to 6 per mil (Eckstrand, Wares, pers. comm., 1987). In the Frederickson Lake area, sulphide-facies iron formation adjacent to the gabbro-hosted Cu-Ni deposits commonly contains more than 40% pyrrhotite, although the original iron-sulphide was probably pyrite. Previous arguments suggest that large volumes of were not assimilated by the high level glomeroporphyritic Xenoliths of sulphide-facies iron formation at the Connolly Cu-Ni showing show no evidence of assimilation -Nevertheless, it is possible that sulphur was volatilized' from these xenoliths through the breakdown of pyrite to pyrrhotite Experimental studies show that during contact metamorphism. this reaction occurs at 743C, well below the liquidus temperature of a gabbroic melt (Kullerud and Yoder, Incorporation of sulphur as a volatile phase, without large scale melting of sediment or country rocks, also has been proposed by Ripley (1981 for the Duluth Complex. 39 shows the amount of sulphur that can be liberated from the metamorphic conversion of pyrite to pyrrhotite, assuming that all pyrite is converted to pyrrhotite plus sulphur gas. diagram indicates that the incorporation of 0.25% xenoliths * also Mainwaring and Naldrett (1977)

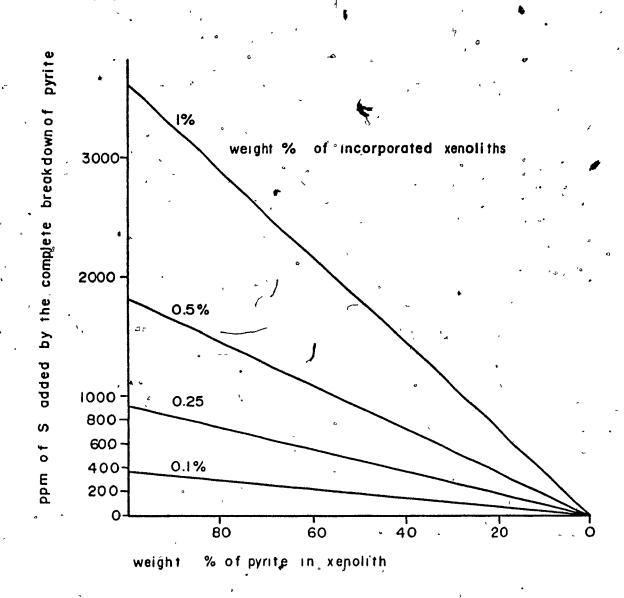


Fig. 39 Diagram showing the maximum amount of sulphur which can be released to a melt by the metamorphic breakdown of pyrite to pyrrhotite. Very low contents of sulphide-facies iron formation xenoliths can release significant quantities of sulphur to the melt.

containing 50% pyrite should release 500 ppm of sulphur to the melt. Experimental curves of Haughton et al., (1974) suggest that about 1000 ppm "sulphur is required to saturate at tholeitic melt. Thus, incorporation of a very small proportion of sulphide-facies iron formation into a tholeitic melt, followed by volalitization of the sulphur, could provide enough excess sulphur to cause sulphide liquid immiscibility.

Addition sulphur by the contact metamorphism' of xenoliths does not explain why glomeroporphyritic gabbros mineralized, and ordinary and anorthositic gabbros are barren, all gabbros intrude the same sulphur-rich sediments. However, the effect of sulphur incorporation in the thinner would be glomeroporphyritic sills greater incorporated sulphur would be diluted by lower The glomeroporphyritic gabbros of the gabbroic magma. region are an order of magnitude thinner ;, Frederickson Lake than the ordinary gabbro sills (50 m versus 500 m).

timing of sulphide liquid immiscibility is factor affecting the potential of the glomeroporphyritic gabbros to host platinum group element (PGE) mineralization. Rapid, late stage sulphide liquid immiscibility would not sulphide liquid time to equilibrate with silicate liquid and concentrate PGE elements. This effect can be seen in the Babbitt deposit of the Duluth Complex, for which early sulphide liquid immiscibility has been proposed. PGE concentrations in the Babbitt deposit four late than in the Dunka deposit, for which stage immiscibility has been proposed (Ripley and Al-Jassar, 1987).

6.4 Genesis of Sediment-Hosted Zn-Cu-Pb deposits

Zn-Cu-Pb The close association of some sediment-hosted leď deposits with glomeroporphyritic gabbros gabbros. speculation that they are genetically related to the Fournier (1983) proposed two possible relationships between glomeroporphyritic gabbros: deposits and Zn-Cu-Pb glomeroporphyritic gabbro magmas produced Zn-Cu-Pb-rich immiscible sulphide liquids, which were injected structurally favourable sites such as gabbro-sediment contacts; and ii) Zn-Cu-Pb-rich residual solutions produced from the cooling glomeroporphyritic sill were injected sulphide-rich sediments, where they reacted with sedimentary sulphur to form Zn-Cu-Pb sulphide deposits.

There are several lines of evidence, however, conflict with these magmatic models. Zn-Cu-Pb deposits, although occurring close to the contacts of gabbro sills, are always within sediments; proximity to contacts may reflect, the thinness of most sedimentary units Frederickson Lake area . Furthermore, at the Frederickson Lake North and the Jimmick Lake showings, the nearest gabbro Thus, Zn-Cu-Pb deposits also occur in is of ordinary type. the absence of glomeroporphyritic gabbros. In addition, studies of gabbro-hosted sulphide deposits formed by sulphide immiscibility indicate that these deposits enriched in Cu and Ni but rarely contain In (Naldrett, 1981). are enriched in Zn, for example the Those deposits that Zenith mine (Kite, 1981) and the Obrazek deposit (Watkinson

et al., 1978), are thought to represent volcanogenic massive that were mechanically incorporated into the magma chamber as large Finally, xenoliths. Fournier (1983) postulated that glomeroporphyritic gabbros could give rise to immiscible sulphide liquids of both Cu-Ni and Zn-Cu-Pb types; the former in association with early magmatic cumulate phases, and the latter with residual magmatic phases. However, there apparent explanation for why these two independently evolved liquids should ultimately form deposits and in particular why the Cu-Ni liquids spatial association, should remain trapped within the sills whereas the Zn-Cu-Pb liquids are expelled to form replacement deposits in sediments.

These various factors, in conjunction with the S/Se ratios and sulphur isotope values at Frederickson Lake North suggest that sediment-hosted mineralization is not magmatic but syngenetic. More convincing documentation of such an origin is impossible due to the lack of exposure. However, a few broad inferences can be made based on the regional geology and on similar deposits found elsewhere.

On a world-wide basis, most syngenetic base metal deposits hosted solely by sediments can be classified into Cu-rich and Zn-Pb-rich groups (Gustafson and Williams, 1981; Russell et al., 1981). The Frederickson Lake North deposit does not fall clearly into either of these classes. Zn and Cu more commonly are important ore constituents in mixed volcanic-sedimentary deposits of (Besshi Type) or in volcanic-dominated environments (Polymetallic Type) (Hutchison, 1980).

On the basis of depositional environment and associated rock types, the Frederickson Lake Zn-Cu-Pb deposits appear more similar to the Besshi type, which occurs in deep marine settings in association with tholeiltic volcanism. The occurrence of all three metals in the former deposits may in part reflect the mixed sedimentary and volcanic source rocks. The polymetallic type, by contrast, occurs in shallow water in association with calc-alkaline to alkaline marine or continental volcanism.

possible analogous deposit is present Ankarvattnet in the Northern Swedish Caledonides. This is hosted by Ordovician calcareous turbidites which been intruded by thick, tholeiitic gabbro sills have (Sundblad, 1981). Stephens (1980) interpreted the regional Ankarvattnet area in terms of а geology of the continental margin, similar to the model proposed for Trough by Wardle and Labrador Bailey (1981).The Ankarvattnet mine (750 000 tonnes; 5.5% Zn, 0.45% Cu, 0.37% is also similar in grade and tonnage to the Frederickson Lake North Deposit (279 400 tonnes; 4.38% Zn, 0.77% Cu, 0.50% In the Southern Caledonides, the Roros district contains on numerous Zn-Cu-Pb sulphide deposits within a gabbrointruded metagreywacke sequence (Rui and Bakke, 1975; Sundblad A similar gabbro-intruded sedimentary Stevens, 1983). the Ducktown district characterizes Appalachians (Magee, 1968; Gair and Slack, 1980)

Sediments of the Menihek Formation appear to be partly

with more distal volcanism of coeval the Doublet Group (Wardle and Bailey, 1981; Fournier, 1983). volcanism, basaltic magmas chambers may have existed which heat flow within the sediments of the Cycle increased would have led to circulation of basin. This fluids, which may have leached metals from the formational sediments. Structures such as the Walsh Lake Fault, Which Dimroth (1972) proposed was an oraginal basinal growth influential in focusing the discharge could have been metal-bearing fluids through the sediments and localizing the deposits. If so, the common brecciated intervals sulphide matrices in drill core from the Frederickson Lake showing conceivably could represent fault North mineralization. Unfortunate by, 'stratigraphic relations in the study area have been disrupted by the intrusion of and fluid pathways cannot sills, traced. Nevertheless, the proximity of most Zn-Cu-Pb deposits in the upper levels of the Menihek Formation to the Walsh Lake Fault suggests this structure was influential in their formation.

The closest modern analog of the Frederickson Lake area can found in the Guaymas basin in the Gulf of California (Einsele et al., 1980; Koski et al., 1985). High sedimentation rates in the Guaymas basin have led to burial of a segment of the spreading axis of the East Pacific Rise. As a result, mafic magmas intrude into unconsolidated sediment as sills rather than forming normally layered oceanic crust. Sediment layers are 10 to 100 metres in thickness (Einsele et al., 1980), a range similar to that of the Frederickson Lake

area. Sediments in contact with the sills have been altered by the circulation of pore water fluids driven by the heat of the gabbro sills (Kastner, 1982). Polymetallic sulphide deposits (po-py-sph-cpy-gal) are forming at the sediment-seawater interface as fluids at 200-300°C discharge into seawater (Peter, 1986).

CHAPTER 7 CONCLUSIONS

Although the metallogeny of the Frederickson Lake remains problematic, arguments presented in this study allow modifications to be made to previous models, as allowing constraints to be placed on the genesis glomeroporphyritic gabbros. The calcic plagioclase glomerophenocrysts of the glomeroporphyritic gabbros could not have been precipitiated from the liquids in which they which suggests that plagioclase precipitation took reside, place at depth. This is also supported by the textures of gabbros which plagioclase glomeroporphyritic show that glomerophencrysts were only concentrated in the high level It is speculated that prior to glomeroporphyritic sills. rifting, less evolved mafic magmas underwent prolonged rapid fractional crystallization at depth to produce calcic plagioclase phenocrysts. Later rapid rifting specific near-surface glomeroporphyritic to magmas а Continued rapid rifting, which stratigraphic interval. limited the residence times of magma at depth, Ied to formation of ordinary gabbro sills. Such a model therefore relates glomeroporphyritic gabbros to tectonic factors. such, the assimilation of continental crust is not required to explain the genesis of the plagioclase glomerophenocrysts, although minor assimilation would be undetectable.

Cu-Ni sulphide deposits occurring within glomeroporphyritic gabbros are interpreted as magmatic deposits formed by sulphide liquid immiscibility. The average sulphur isotopic composition of pyrrhotites from the

Frederickson Lake South Cu-Ni showing (+3.7 per mil) is consistent with a component of non-magmatic sulphur. Low metal grades, which reflect low magma/sulphide ratios, suggest that sulphide liquid immiscibility took place within high-level sills rather than within gabbro magma chambers at depth. The contact metamorphism of sulphide-facies iron formation could have provided enough sulphur to saturate the melt and induce sulphide liquid immiscibility. The exclusion of Cu-Ni deposits from anorthositic and ordinary gabbro sills may reflect the dilution of any incorporated sulphur by these thicker sills.

Zn-Cu-Pb deposits of the Frederickson Lake area are interpreted as synsedimentary in origin, rather than magmatic. This is supported by the occurrence of these deposits in sediments of the Menihek Formation and by arguments relating to the inability of gabbroic magmas to segregate sulphide enriched in lead and zinc. Metals may have acquired during circulation of heated formational sediments prior to and during the through high. synsedimentary intrusion of Montagnais Group sills; faults may have focused discharge of these fluids on the seafloor produce syngenetic massive sulphide deposits. Later qabbro sills invaded the sediments of the Menihek Formation, enclosing the sediments and sulphide deposits within a sequence of thick gabbro sills. The sulphides seem to represent an uncommon class of syngenetic, sediment-hosted deposits enriched in Zn-Cu-Pb that form in deep water marine settings during tholeiitic volcanism.

- Albarede, F., and Juteau, M., 1984, Unscrambling the lead model ages: Geochim. Gosmochim. Acta, v. 48, p. 207-212.
- Ashwal, L.D., Morrison, D.A., Phinney, W.C., and Wood, J., 1983, Origin of Archean anorthosites: evidence from the Bad Vermillion Lake Anorthosite Complex, Ontario: Contr. Mineral. Petrol., v. 82, p. 259-273.
- Avramtchev, L., and LeBel-Drolet, S., 1979, Inventaire des gisements minéraux du Quebec, au 30 septembre 1979: Ministère des Richesses Naturelles du Québec, DPV-707.
- Auclair, G., Fouquet, Y., and Bohn, N., 1987, Distribution of selenium in high-temperature hydrothermal sulphide deposits at 13 north, East Pacific Rise: Can. Mineral., in press.
- Auger, P.E., 1950, Report on detailed geological mapping in the Frederickson-Faute-Martin Lake area, Base metal zone: Labrador Mining and Explor. Comp. Ltd.: Ministère de l'Energie et des Ressources du Québec, GM-6844, 20p.
- Baragar, W.R.A., 1960, Petrology of basaltic rocks in part of the Labrador Trough: Bull. Geol. Soc. Am., v. 77, p. 1589-1644.
- Baragar, W.R.A., 1967, Wakuach map area, Quebec-Labrador: Geol. Sur. Can., Memoir 344. 174 p.
- Bowen, N., 1928, The Evolution of Igneous Rocks. Dover Press: New York, 332 p.
- Buchanan, D.L., and Nolan, J., 1979, Solubility of sulphur and sulphide immiscibility in synthetic tholeiitic melts and their relevance to Bushveld Complex rocks: Can. Mineral., v. 17, p. 483-494.
- Buchanan, D.L., and Rouse, J.E., 1984, Role of contamination in the precipitation of sulphides in the Platreef of the Bushveld Complex: in: M.J. Jones (ed.), Sulphide Deposits in Mafic and Ultramafic Rocks, p.141-146.
- Campbell, I.H., and Naldrett, A.J., 1979, The influence of silicate:sulphide ratios on the geochemistry of magmatic sulphides: Econ. Geol., v. 74, p. 1503-1505.
- Campbell, I.H., and Barnes, S.J., 1984, A model for the geochemistry of the platinum-group elements in magmatic sulphide deposits: Can. Mineral., v. 22, p. 151-160.

- Cameron, A.W.G., 1968, A new table of solar abundances of the elements in the solar system: in: L.H. Ahrens (ed.), Origin and Distribution of the Elements: Pergammon Press: Oxford.
- Cameron, E.M., 1983, Genesis of Proterozoic iron-formation:

 Sulphur isotope evidence: Geochim. Cosmochim. Acta, v. 47,
 p. 1069-1074.
- Clark, T., 1987, Platinum group element occurrences of the Labrador Trough: Minsitère des Richesses Naturelles du Québec, Document de promotion no. 18.
- Clark, T., and Thorpe, R., 1987 Lead isotope galena ages from the Labrador Trough: (abs.) In: GAC-MAC joint annual meeting Saskatoon 1987, p. 37.
- Cullen, A., Vicenzi, E., and McBirney, A.R., 1985, Abingdonites, plagioclase ultraphyric basalts of the Galapagos Archipelago: in press.
- Czamanske, G.K., and Moore, J.G., 1977, Composition and phase chemistry of sulphide globules in basalt from the mid-Atlantic ridge rift valley near 37 lat: Geol. Soc. Am. Bull., v. 88, p.587-599.
- Dimroth, E., 1970, Evolution of the Labrador Geosyncline: Geol. Soc. Am. Bull., v. 81, p. 2717-2742.
- Dimroth, E., Baragar, W.R.A., Bergeron, R., and Jackson, G.D., 1970, The filling of the Circum-Ungava Geosyncline: In: A.J. Baer, (ed.), Symposium on Basins and Geosynclines of the Canadian Shield, Geol. Sur. Can., Paper 70-40, p. 45-142.
 - Dimroth, E., 1972, The Labrador Geosyncline revisited: Am. J. Sci., v. 272, p. 487-506.
 - Dimroth, E., 1978, Région de la Fosse du Labrador (54 30 56 30): Ministère des Richesses Naturelles du Quèbec, Geology Report 193, 396 p.
 - Dimroth, E., and Dressler, B., 1978, Metamorphism of the Labrador Trough. In: Metamorphism of the Canadian Shield. Geol. Sur. Can., Report 78-10, p. 215-236.
 - Dimroth, E., 1981, Labrador Geosyncline: type example of early Proterozoic cratonic reactivation: In: A. Kroner (ed.), <u>Precambrian Plate Tectonics</u>, Elsevier: Amsterdam, p. 332-352.
 - Doe, B.R., and Stacey, J.S., 1974, The application of lead isotopes to the problem of ore genesis and ore prospect evaluation: A review: Prof. Geol., v. 69, p. 757-776.

- Doe, B.R. and Zartman, R.E., 1979 Plumbotectonics I, the Phanerozoic: In: H. L. Barnes (ed.), Geochemistry of Hydrothermal Ore Deposits, 2nd edition. Wiley Interscience: New York, p. 22-70.
- Eckstrand, O.R., 1983, Sulphur isotope data for selected nickel deposits of the Labrador Trough and Thompson Belt: Notes accompanying a poster display, Geol. Sur. Can., Current Activities Fourm, unpublished.
- Eckstrand, O.R., and Hulbert, L.J., 1987, Selenium and the source of sulphur in magmatic nickel and platinum deposits: (abs.) In: GAC-MAC joint annual meeting, Saskatoon 1987, p. 40.
- Einsele, G., Gieskes, J.M., Curray, J., Moore, D.M., Aguayo, E., Aubury, M.; Fornari, D., Guerrero, J., Kastner, M., Kelts, K., Lyle, M., Matoba, Y., Molina-Cruz, A., Niemitz, J., Rueda, J., Saunders, A., Schrader, H., Simoneit, B., and Vacquier, V., 1980, Intrusion of basaltic sills into highly porous sediments, and resulting hydrothermal activity: Nature, v. 283, p. 441-445.
- Flower, M.F., 1980 Accumulation of calcic plagioclase in ocean-ridge tholeiites: an indication of spreading rate?:
 Nature v. 285, p. 530-532.
- Fournier, D., 1983, Les Indices de Cu-Ni et de Zn-Cu, Fosse du Labrador: unpublished Phd Thesis, Université de Pierre et Marie Curie, Paris, 209 p.
- Franklin, J.M., Roscoe, S.M., Loveridge, W.D., and Sangster, D.F., 1983, Lead isotope studies in Superior and Southern Provinces: Geol. Sur. Can., Bull. no. 351, 60 p.
- Frarey M.J., and Duffell, S. 1964, Revised stratigraphic nomenclature for the central part of the Labrador Trough: Geol. Sur. Can., Paper 64-25; p. 1-13.
- Frarey, M.J., 1967, Willbob Lake and Thompson Lake map area, Quebec and Newfoundland: Geol. Sur. Can., Memoir 348, 73 p.
 - Fryer, B.J., 1972, Age determination in the Circum Ungava geosyncline and the evolution of Precambrian banded iron-formations: Can. J. Earth Sci., v. 9, p. 652-663.
- Gair, J., and Slack, J.F., 1980, Stratabound massive sulphide deposits of the U.S. Appalachians. in: F.M. Volkes and E. Zackrisson (eds.), Review of Caledonian-Appalachian Stratabound Sulphides: Geol. Sur. Ireland, Special Paper 5, p. 67-81.

- Godlevski, M.N., and Grinenko, L.N., 1963, Some data on the isotopic composition of the sulphides from the Noril'sk deposit: Geochemistry v. 1, p. 35-41.
 - Goldschmidt, V.M., and Strock, L.W., 1935, Zur geochemie des selens II: Ges. Wiss. Gottingen, Nachr., mat-phys. Kl., Geol. U. Miner. N.F. Bd. 1, no. 11, p. 123-142.
 - Goulet, N., Gariépy, C., and Mareschal, J.C., 1987, Structure, geochronology, gravity and tectonic evolution of the Northern Labrador Trough: (abs.) In: GAC-MAC joint annual meeting, Saskatoon 1987, p. 48.
 - Green, N.L., 1975, Archean glomeroporphyritic basalts: Can. J. Earth Sci., v. 12, p. 1770-1784.
- Griffis, A.T., 1943, The Geology of the Attikamagen-George River area, 1942: Labrador Mining and Explor. Comp. Ltd: Ministère de l'Energie et des Ressources du Québec, GM-1212, 26 p.
- Griffis, A.T., 1945, The Frederickson-Jimmick-Walsh Lake area, 1944: Hollinger North Shore Explor. Comp. Ltd: Ministère de l'Energie et des Ressources du Québec, GM-8394B, 39 p.
- Gulson, B.L., and Porritt, P.M., 1987, Base metal exploration of the Mount Read volcanics, Western Tasmania: pt. II. Lead isotope signatures and genetic implications: Econ. Geol., v. 82, p. 291-307.
 - Gulson, B.L., Large, R.R., and Porritt, P.M., 1987, Base metal exploration of the Mount Read volcanics, Western Tasmania: pt. III. Application of lead isotopes at Elliott Bay: Econ. Geol., v. 82, p. 308-327.
- Gustafson, L. B., and Williams, N., 1981, Sediment-hosted stratiform deposits of copper, lead and zinc. In: B. J. Skinner (ed.), Economic Geology 75th Anniversary Volume, p. 139-178.
- Harrison, J.M., 1952, The Quebec-Labrador iron belt, Quebec and Newfoundland (preliminary report): GeoI. Sur. Can., Report 52-20.
- Harrison, J.M., Howell, J.E., and Farhig, W.F., 1972, A geological cross section of the Labrador Trough miogeosyncline near Schefferville, Quebec: Geol. Sur. Can., Report 70-37.
- Haughton, D.R., Roedder, P.L., and Skinner, B.J., 1974, Solubility of sulphur in mafic magmas: Econ. Geol., v. 69, p. 451-461.

- Hamlyn, P.R., Keays, R.R., Cameron, W.E., Crawford, A. J., and Waldron, H.M., 1985, Precious metals in magnesian low-Ti lavas: implications for metallogenesis and sulphur saturation in primary magmas: Geochim. Cosmochim. Acta; v. 49, p. 1797-1811.
- Helz, R.T., 1977, Determination of P-T dependance of the first appearance of Fe-S-rich liquids in natural basalts to 20 kb: (abs.) EOS, v. 58, p.523.
- Hobbs, B.E., Means, W.P., and Williams, P.F., 1976, An Outline of Structural Geology: John Wiley and Sons: Toronto, 571 p.
- Hogg, G.M., 1957, Report on the Frederickson Prospect:
 Hollinger North Shore Explor. Comp. Ltd, Ministère de l'Energie et des Ressources du Quèbec, GM-5200.
- Hutchison, R.W., 1980, Massive base metal sulphide deposits as guides to tectonic evolution. in: D.W. Strangeway (ed.), Continental Crust and Its Mineral Deposits: Geological Association of Canada, Special Paper 20, p. 659-684.
- Irvine, T.N., and Baragar, W.R.A., 1971, A guide to the chemical classification of common volcanic rocks: Can. J. Earth Sci., v. 8, p. 523-548.
- Irvine, T.N., 1975, Crystallization sequences of the Muskox intrusion and other layered intrusions II. Origin of chromite layers and other similar deposits of other magmatic ores: Geochim. Cosmochim. Acta, v. 39, p. 991-1020.
- Jensen, L.S., 1976, A new cation plot for classifying subalkalic volcanic rocks: Ont. Dept. Mines, Misc. Paper 66.
- Kajiwara, Y., Sasaki, A., and Matsubaya, O., 1981, Kinetic sulphur isotopic effects in the thermal decomposition of pyrite: Geochem. Jour., v. 15, p. 193-197.
- Kastner, M., 1982, Evidence for two distinct hydrothermal systems in the Guaymas Basin: In: J.R. Curray and D.G. Moore et al., (eds.), <u>Initial Reports of the Deep Sea Drilling Project</u>, v. 64, Washington (U.S. Govt. Printing Office), p. 1143-1157.
- Kavanagh, P.M., 1953, Geology of the Hyland Lake area, New Quebec: Labrador Mining and Explor. Comp. Ltd: Ministère de l'Energie et des Ressources du Québec, GM-2757.
- Kirkland, R.W., 1950, The Connolly-Walsh Lake area, New Quebec: Ministère de l'Energie et des Ressources du Québec, GM-6847, 9 p.

- Kite, B.T., 1981, The Geology of the Zenith Zinc deposit near Schreiber Ontario: B.Sc. Thesis, Lakehead University, Unpublished.
- Koski, R.A., Lonsdale, P.F., Shanks, W.C., Berndt, M.E., and Howe, S.S., 1985, Mineralogy and geochemistry of a sediment-hosted hydrothermal sulphide deposit from the Southern Trough of the Guaymas Basin, Gulf of California: J. Geophys. Res., v. 90, no. B8; p. 6695-6707.
- Kullerud G., and Yoder, H.S., 1959, Pyrite stability relations in the Fe-S system: Econ. Geol., v. 54, p. 533-572.
- Lavergne, C., 1985, Gîtes minéraux à tonnage évalué et production minérale du Québec: Ministère de l'Energie et Des Ressources, Québec, DV-85-08.
- LeGallais, C.J., and LaVoie, S., 1982, Basin evolution of the Lower Proterozoic Kaniapiskau Supergroup, central Labrador miogeocline (Trough) Quebec: Bull. Can. Soc. Pet. Geol., v. 30, p. 150-166.
- Low, A.P., 1898, Report on a traverse of the Northern part of the Labrador Peninsula from Richmond Gulf to Ungava Bay: Geol. Sur. Can., Annu. Rept. 9, part L.
- MacLean, W.H., 1969, Liquidus phase relationships in the FeS-FeO-Fe2O3-SiO2 system, and their application in geology: Econ. Geol., v. 64, p. 865-884.
- MacLean, W.H., 1977, Sulphides in Leg 37 drill cores from the mid-Atlantic: Can. J. Earth Sci., v. 14, p. 677-683.
- MacLean W,H., and Shimazaki, H., 1976, The partition of Co, Ni, Cu and Zn in silicate liquids: Econ. Geol., v. 74, p. 1049-1057.
- Magee, M., 1968, Geology and ore deposits of the Ducktown district, Tennessee. in: J.D. Ridge (ed.), Ore Deposits of the United States, 1933-1967: AIME, p. 208-241.
- Mainwaring, P.R., and Naldrett, A.J., 1977, Country-rock assimilation and the genesis of Cu-Ni sulfides in the Water Hen intrusion, Duluth Complex, Minnesota: Econ. Geol., v. 72, p. 1269-1284.
- Mathez, B.A., 1976, Sulphur solubility and magmatic sulphides in submarine basaltic glass: J. Geophy. Res., v. 81, p. 4269-4276.

- McCarthy, T.S., Bee, C.A., Fesq, H.W., Kable, E.J.D., and Erasmus, C.S., 1984, Sulphur saturation in the lower and critical zones of the Eastern Bushveld Complex: Geochim. Cosmochim. Acta, v. 48, p. 1005-1019.
- McGoldrick, P.J., Keays, R.R., and Scott, B.S., 1979, Thallium: a sensitive indicator of rock/seawater interaction and of sulphur saturation in silicate melts: Geochim. Cosmochim. Acta., v. 43, p. 1303*1311.
- Mitchell, R.H., and Keays, R.R., 1981, Abundance and distribution of gold, palladium, and iridium in some spinel and garnet ilherolites: Implications for the nature and origin of precious metal-rich intergranular components in the upper mantle: Geochim. Cosmochim. Acta, v. 45, p. 2425-2442.
- Ministère de L'Energie de Des Ressources Quebec, 1985, Map # 2001, DV 85-09.
- Moore, J.G., and Fabbi, B.P., 1971, An estimate of the juvenile sulphur content of basalt: Contr. Mineral. Petrol., v. 33, p. 118-127.
- Naldrett, A.J., Hoffman, E.L., Green, A.H., Chou, C.L., and Naldrett, S.R., 1979, The composition of Ni-sulphide ores, with particular reference to their content of PGE and Au: Can. Mineral., v. 17, p. 403-415.
- Naldrett, A.J., 1981, Nickel sulphide deposits: classification, composition and genesis. In: B. J. Skinner (ed.), Economic Geology 75th Anniversary, Volume, p. 628-685.
- Nielsen, R.L., and Dungan, M.A., 1983, Low pressure mineral-melt equilibria in natural anhydrous mafic systems: Contr. Mineral. Petrol., v. 84, p. 310-326.
- Ohomto, H., and Rye, R.O., 1979, Isotopes of sulphur and carbon: In: H.L. Barnes (ed.), Geochemistry of Hydrothermal Ore Deposits, second edition. John Wiley and Sons: Interscience, p. 509-567.
- Pearce, J.A., and Cann, J.R., 1973, Tectonic setting of basic volcanic rocks determined using trace element analyses: Earth Planet. Sci. Lett., v. 19, 290,300.
- Pearce, J.A., and Norry, M.J., 1979, Petrogenetic implications of Ti, Zr, and Nb variations in volcanic rocks: Contr. Mineral. Petrol., v. 69, p. 33-47.
- Pélissonnier, H., 1972, Les dimensions des gisements de cuivre du monde. Essai de métallogénie quantitative: Bur. Recherche Géol. Minière. Memoir 57, 405 p.

- Peter, J.M., 1986, Genesis of hydrothermal vent deposits in the Southern Trough of the Guaymas Basin, Gulf of California: A mineralogical and geochemical study: MSc. Thesis, University of Toronto, Unpublished.
- Phinney, W.C., and Morrison, D.A., 1982, Archean megacrystic plagioclase units and the tectonic setting of greenstones: Lunar Planet. Sci. Inst., Report 82-01, Houston, p. 121-124.
- Phinney, W.C., and Morrison, D.A., 1984, Calcic plagioclase megacrysts: implications for widespread formation of cumulates in Archean crust: Precambrian Geochemistry Field Conference, 1984, p. 115.
- Phinney, W. and Morrison, D.A., 1985, Alteration in Archean anorthosites, Lunar Planet. Sci. Conf. XVII, Houston, p. 589-590.
- Rao, B.V., and Ripley, E.M., 1983, Petrochemical studies of the Dunka Road Cu-Ni deposit, Duluth Complex, Minnesota: Econ. Geol., v. 78, p. 1222-1238.
- Ringwood, A.E., 1966; The Chemical composition and the origin of the earth: In: P.M. Hurley (ed.), Advances in Earth Science. MIT Press: Cambridge Mass.
- Ripley, E.M., 1981; Sulphur isotopic studies of the Dunka Road Cu-Ni deposit, Duluth Complex, Minnesota: Econ. Geol., v. 76, p. 610-620.
- Ripley, E.M., and Alawi, J.A., 1986, Sulphide mineralogy and chemical evolution of the Babbitt Cu-Ni deposit, Duluth Complex, Minnesota: Can. Mineral., v. 24, p. 347-368.
- Ripley, E.M., and Al-Jassair, T.J., 1987, Sulphur and oxygen isotope studies of melt-country rock interaction, Babbit Cu-Ni deposit, Duluth Complex, Minnesota: Econ Geol., v. 82, p. 87-107.
- Roedder, P.L., 1981, CO2-sulphide melt and silicate melt inclusions in olivine nodules from the Loihi Seamount, Hawaii: (abs.) EOS, v. 62, p. 1083.
- Rui, J.I., and Bakke, I., 1975, Stratabound sulphide mineralization in the Kjoli area, Roros District, Norwegian Caledonides: Norsk Geologisk Tidsskrift, v. 55, p. 51-57.
- Russell, M.J., Solomon, M., and Walshe, J.L., 1981, The genesis of sediment-hosted, exhalative zinc + lead deposits: Mineral. Deposita, v. 16, p. 113-127.

- Sarnthein, M., and Diester-Haass, L., 1977, Eolian-sand tumbidites: J. Sed. Petrol., v. 47, no. 2, p. 868-890.
- Sasaki, A., Arikawa and Foinsbee, R., 1979, Kiba reagent method of sulphur extraction applied to isotopic work: Bull. Geol. Sur. Japan, v. 30, p. 241-245.
- Sauvé, P., and Bergeron, R., 1965, Region des lacs Gerido et Thevenet: Ministère des Richesses Naturelles du Québec, Geology Report 104, 110 p.
- Shimazaki, H., and MacLean, W.H., 1976, An experimental study on the partition of lead and zinc between silicate and sulphide liquids: Mineral. Deposita, v. 11, p. 125-132.
- Stacey, J.S., and Kramers, J.D., 1976, Approximation of terrestrial lead by a two stage model: Earth Sci. Plan. Lett., v. 26, p. 207-221.
- Stanton, R.L., 1972, Ore Petrology. McGraw Hill: New York, 713 p.
- Stephens, M.B., 1980, Occurrence, nature and tectonic significance of volcanic and high-level intrusive, rocks within the Swedish Caledonides: In: D.R. Wones (ed.), The Caledonides in the USA. Viriginia Polytechnic Institute and State University, Blacksburg, p. 289-298.
- Stolper, E.M., and Walker, D., 1980, Melt density and the average composition of basalt: Contr. Mineral. Petrol., v. 74, p. 7-12.
- Sullivan, C.J., 1959, The origin of massive sulphide ores: CIM Bull., v. 52, p. 613-619.
- Sundblad, K., 1981, Chemical evidence for, and implication of, a primary FeS phase in the Ankarwattnet Zn-Cu-Pb massive sulphide deposit, Central Swedish Caledonides: Mineral. Deposita, v. 16, p. 129-146.
- Sundblad, K., and Stephen, M.B., 1983, Lead Isotope systematics of strata-bound sulphide deposits in the Higher Nappe Complexes of the Swedish Caledonides: Econ. Geol., v. 78, p. 1090-1107.

3

- Taylor, S.R., and Gorton, M.P., 1977, Geochemical application of spark source spectrography III, element sensitivity, precision and accuracy: Geochim. Cosmochim. Acta, v. 41, p. 1375-1380.
- Taylor, S.R., and McLennan, S.M., 1985, <u>The Continental Crust: Its Composition and Evolution: Blackwell Scientific Publications: London.</u>

- Thompson, J.F.H., and Naldrett, A.J., 1984, Sulphidesilicate reactions as a guide to Ni-Cu-Co mineralization in central Maine USA. in: D.L. Buchanan and M.J. Jones (eds.), Sulphide deposits in Mafic and Ultramafic Rocks, p. 103-113.
- Volkes, F.M., 1969, A review of the metamorphism of sulphide deposits: Earth Sci. Rev., v. 5, p. 99-143.
 - Vogt, J.H.L., 1893, Bildung von Erzlagerstatten durch differentiationprocesse in basischen Eruptivmagmata. II. z. prakt. Geol., p. 125-143.
- Wardle, R.J., and Bailey, D.G., 1981, Early Proterozoic sequences in Labrador: Geol. Sur. Can., Report, 81-10, p. 331-395.
- Watkinson, D.H., Mainwaring, P.R., and Pertold, Z., 1978, The Cu-Zn Obrazak deposit, Czechoslovakia, a volcanogenic deposit invaded in the Ransko Intrusive Complex: Mineral. Deposita, v. 13, p. 151-163.
- Wendlandt, R.F., 1982, Sulphide saturation of basalt and andesite melts at high pressures and temperatures: Am. Mineral., v. 67, p. 877-885.
- Wilkinson, J.F.G., 1982, The genesis of mid-ocean ridge basalt: £arth Sci. Rev., v. \$18, p. 1-57.
- Winchester, J.A., and Floyd, P.A., 1976, Geóchemical magma type discrimination: application to altered and metamorphosed basic igneous rocks: Earth Planet. Sci, Lett., v. 28, p. 459-469.
- Yamamoto, M., 1976, Relationship between Se/S and sulphur isotope ratios of hydrothermal sulphide minerals: Mineral. Deposita, v. 11, p. 197-209.
- York, D., 1969, Least squares fitting of a straight line with correlated errors: Earth Planet. Sci. Lett., v. 5, p. 320-324.

99391 99392 99393 99394 99395 99396 99397 99398 99399 99400 99401 99402 Gebbro Gebbro

	-												
	=====	=====	====	====	=====	=====	=====	=====	=====	2222	=====	11222	
S102	48.6	48.5	49.2	50.3	49.3	49.4	47.1	45.7	49.6	48.6	48.7	48.7	
A1203	12.7	11.8	13.3	12, 2	11.9		11.9	12.1	13.3	14.4	15.8	16.2	
Fe tot	14.5	16.5	14.5	15.9	16.9	17.8	18.9	18.8	13.4	15.5	12.8	12.1	
Mg0	6.63	6.04	6.14	6.10	6.04	4.68	5.61	6.07	6.26	5.12	5.81	4.77	
CaO	8.49	8.22	8.70	7.81	8.25	8.09	9.47	9.57	9.29	7.62	8.16	10.2	
Na20	2.53	1.75	2.50	2.13	2.44	2.26	2.08	1.93	2.77	3 70	3.09	2,79	
K20	0.18	0.15	1.32	0.06	0.21	0.18	0.41	0.49	0.57	0.11	0.67	0.70	
TiO2	1.39	1.86	1.51	1.74	1.82	2.41	1.99	2.06	1.32	1.49	1.21	1.16	
Mn0	0.22	0.20	0.19	0.21	0.21		0.23	0.23	0.20	0.17	0.16	0,16	
P205	0.11	0.16 · 3.04	0.12 2.73	0.15 3.12	0.13 2.85	0.16 2.62	0.10 1.99	0.08 2.16	0.09 2.46	0.13 2.74	0.09 2.63	0.10 2.37	
LOI	3.16 98.51	48.22	100.21	49.72	140105	99,42	99,18	99.19	99,26	99,58	99.12	10013	
Total	1C.01		,				•		,,,,,,,		•		
Ba C-	_	38-		22		61		142	_	30		112	
Be	• ,	9 3		2		3		3-		2		2	
Cd		nd		nd		nd	,	nd		, uq		nd	
Ce		22.		24		24	1	19		_ 19		13	
Co		51		50 30		53		62	,	49 25		40 18	
Cr		19		30	,	12		10		•		199	
Cu		224		78 8	1	2 3 7 9		407 6		78 6		5	
Dy Eu		9 6		6		6.		6		5		4	
		5		6		36		nd	,	6	•	7	
La Li	•	17		14		10		10		8		8	
										nd		nd	
Мо		nd		nd		nd	•	nd				. 75	
Nd		105		115 54	•	1 <i>3</i> 0 37		105 86		100 51		° 51	
Ni Ob		49						oo bin		, nd		nd	
Pb .	-	nd		nd		nd		nd		nd , nd	,	' nd	
Pr Sc		nd 48		nd 49	{	nd 48		54		44	-	42	
					I	nd	•	nd		nd		nd	,
Sm		, 3 500		nd 457				963		418		342	,
V		500	9	457		616 84		68		87		61	
Zn		85		72	•	04		00		07		01	
0-						20							
Ga	•				·	5							
Nb ,		1				6							
Rb C-		•	-					•	•			٥	
Sr						120						-	
Ta						nd	,		-				
Th				1		3							
U		_				.4 39	:						
Y		_					•		,				
Zr						130			•				

Gabbro = Montagnais gabbro

major elements in wt% trace elements in ppm

nd=not | de tected

blank space=not analyzed

		99403	99404	20405	99406	99407	99408	davoa.	99410	99411	99412	99413	99414
			• • • •			-			Gabbro		•		
		000010	aapbi a	GUDDI O	000010	dabato	GCDOIG	000010		Glom	Glom	Glom	Glom
		=====	22222	====	, =====	*===	=====	=====	=====	=====	=====	=====	=====
	S±02	48.7	49.1	48.1	48.0	47.2	45.3	47.8	47.7.	46.6	47.1	46.2	44.1
	A1203	11.5	15.3	15.3	17.7	17.3	16.9	14.6	13.6	19.2	14.6	14.8	13.6
•	Fe tot	14.9	11.8	11.0	8.0	8.2	11.1	12.8	14.4	9.8	13.2	14.1	16.3
	MgO	8.88	5.85	6.79	5.85	7.45	8.50	7.96	17.50	5.61	8.32	9.49	9.77
	CaO	10.0	10.9	11.8	12.1	12.8	9.59	10.7	9.54	11.4	9.64	9.78	8.28
	Na20	1.44	2.34	f. 89	2.52	1.92	2.28	2.04	2.11	2.16	2.16	1.35	1.29
	K20 .	0.24	0.44	0.30	0.72	0.50	0.30	0.16	1.01	0.85	0.18	0.15	0.13
	T102	1.00	1.15	0.90	0.73	0.68	0.82	1.07	1.18	0.90	1.13	0.97	0.98
	MnO	0.22	0.18	0.16	0.13	0.13	0.17	0.19	0.28	0.14	0.19	0.18	0.16
	P205	0.07	0.08	0.07	0.06	0.04	0.12	0.09	0.08	0.08	0.10	0.08	0.08
٠	LOI	2.59	2.13	.2.54	2.49	2.40	3.31	1.65	1.89	3.35	2.93	2.65	3.92
	Tota1	99.54	99.21	98.85		98,62	98,3	•				-	98.61
	Ba		88		159	,		44	788	136	54	34	34
	Be		1	-	1		-	1		1	, 1	Ţ	1
	Cd .		nd		nd			nd	nd	nd	nd	nd	nd
	Ce		13		10		-	11	13	11	13	` 12	14
	Co Cr		40 39		31			55	_ 55	42	53	69	120
	Cu		187		250 127		•	9 6	200	49	240	67	47
	Dy		4	,	2			134 4	203 5	133 2	286 - 3	247 3	1400
	Eu		4		3			. 4	4	3	4	4	. 5
	La		2		3			nd	. 4	, nd	2	4.	, 9
	Li		. 6		11			- 10 · - 8	10	, 110 9 :		7	` 13
	Mo		nd		nd			nd			nd		nd
	Nd		70		50			70	nd 70	nd 75	70	nd, 65	65
	Ni'		66		77	-		199	,154	. 155	190	321	593
	Pb		nd	<u> </u>	nd			nd	nd	bn.	nd	nd	uq .
	Pr		nd"	L	nd			nd	'nd	nd	nd	nd	nd
	Sc 👡		47		40			` 42	45	29	36	28	28
	Sm		nd		nd			nd	nd	nd	nd	nd	nd
	V		327		217				374				
	Zn		53		39			332 60	117	269 70	320`	248 97	2 56 7 4
	211		,,,	•	"			ĎΟ	111	70	71	71	74
	Ga	•	19								18		15
	Nb		nd							-	nd		nd(
	Rb		10-							-	6		5
	Sr		150		-						140		9.5
	Ta	١	9		,	,		,			nd		5
	Th	•	· nd i			با بيو				· ,	5		8
	U		nd	*	•	•					nd		3
	Y		22								19	,	19
	Zr	"		P				•			74	,	63
•	``										, ,		

Gabbro = Montagnais gabbro Gabbro Glom = glomeroporphyritic gabbro Chill = chilled margin

major elements in wt%

trace elements in ppm

nd=not detected

blank space=not analyzed

				•				-	,	*				
		99415	99416	99417	99418	.99419	99420	126	127	128	№ 129	130	131	
			Gabbro	Gabbro	Gabbro	Basalt	Basalt	Basalt	Basalt	Basalt	Volcan	Volcan	Volcan	
	*	G1 om	Gl om	G1 om	Chill	Menih	Menih	Doub	Doub	Doub	Murd	Murd	Murd	
_		22222	=====	22222	=====	=====	=====	=====		=====	****	22222	FEFER	
	i02	45.2	45.0	47.4	47.6	48.7		49.5	46.3	48.2		44.0	45.3	3
	1203	18.1	15.5	13.8	14.0		14.1	14.6	13.8	13.2	11.7	9.4	13.6	
	e tot	12.4	12.6	15.8	13.0	13.5			13.9	13.7	12.8		15.3	
	90	7.47	8.16	7.27	7.64	6.79	7.42	6.51	5.73	6.13	10.3	-	8.18	
	aO	10.3	11.0	8.57	10.7	10.1	8.78	10.2	10.7	11.4	6.97	7.62	6.31	
	a20	1.50	*1.41	1.99	1.69		₹ 2.65	2.70	1.89		3.60		4.21	
	20	0.35	0.38	0.46	0.40	0.31	0.16	0.06	0.12	0.07	0.20	0.11	0.10	
	i02	0.77	0.88	1.15	1.09	1.38		1.19	1.51	1.21	2.34	3.79	3,65	
Mr	- 7	0.13	0.15	0.24	. 0.19	0.20	0.20	0.16	0.19	0.15	0.15	0.11	0.08	
	205	0.05	0.06	0.11	0.08	0.11	0.10	0.11	0.12	0.08	0.17	0.31	0.45	
LC		3.43	3.00	2.79	2.72	2.72 99.2	3.31 99.75	2.08 99.4	4.91 99,17	4.38	2.48	2.42	2.60	۱.,
	otal	99,70	98.14						41,17	49.4	3 98:1	1 99,9	99.7	1,
Ba	· ·	62	46	42	40	158	. 50	17				,*		
Be		*	1	1	1	2	1	1						
Co		nd	nd	1	nd	nd	'nd	nd	ı		4			
Ce		11,		12	. 15	. 15	15	. 15						
Cc		73		66	49	40	47	40						}
Cr		36	180	270	280	270	290	240						
Cı		1000	939	303	. 95	133	137	42						
Dy		2	2	4	.4	5	4	4	<				1	
EL		4	4	4	4	4	5	4	,	_				
La		3	5	10	5	4	6	3		-				
Li		14	9	10	13	19	6	6				4		
Mo)	nd	nd	nd	nd	nd	nd	nd	•				1	
No		55	65	75	75	90	85	70		,				
Ni		417	411	118	168	. 95	108	94						
Pt		nd	nd	ùq	_ nd	nd	, nd	nd	,					
Pı		nd	nd	nd	nd	nd	nd	, nd	ı				,	
Sc	3	29	30	45	44	46	46	46		~				
Sn	n	nd	nd	nd	nd	nd	nd	nd	-					
` V		200	248	343	348	391	381	348						
Zr	ו	69	86	314	91	76	83	84						
Ga	3			21	•	1 6	19	17		•				
Nt			1	nd		3		nd						
R		• ,	•	27		11-								
-Sı				87	•	210		130		•				
Tε				nd		nd		nd			ı		-	
TH				5		_ 5	8	5			,		~	
				nd		Δ.	nd	nd		٠		æ		
U Y				19		7	25	24				•		
,Zr				65		87	83			,		•		
,4,1	• •	-								 				

Menih = Menihek Formation

Doub = Doublet Formation

Murd = Murdoch Formation

major elements in wt%

trace elements in ppm

nd=not detected

blank space=not analyzéd

			•					•				
	132	133	134	135	20464	20465	20466			20469		20471
				Volcan	Cu-Ni		Cu-Ni	Po-Py			Po-Py	
	Murd	Murd	Murd	Murd	Fred S	Fred S	Gos-1	Faute	Fred N	Jimmic	Gos L.	
	=====	=====	2222	====	=====	====	=====	=====	22222	=====	=====	====,
5102	42.1	42.3	43.1	39.3	`							
A1203	7.3	7.1	7.5	7.8	,	,						
Fe tot	14.3	13.3	13.8	16.5					٠		•	
MgO O=0	19.7	21.2	18.3	20.1				•			-	
CaO	8.58	7.93	9.13	8.05		,				ı		
Nø20 K20	0.21 0.05	0.12 0.02	0.30 0.03	0.12 0.02		t					(موسد
TiO2	2.06	1.57	1.87	1.77		^					ŧ	·
Mn0	0.17	0.15	0.14	0.17					-		•	
P205	0.15	0.12	0.13	0.15			6					
LOI	4.73	5.12	4.42	5.47		•					**	
Total		98.93			5							
βa Ba	11133	14.,2	10 70	7	26	4	- 62	56	17	18	10	36
Be				2	nd	nd	nd	1	nd	nd	1	- 3
Cd				nd	nd	4	nd	4	175	8	† nd	
Ce				50	3.		6	19	27	nd	36	38
Co 93			,	• 92	279	934	120	38	35	, 91	24	50
Cr				2300	77	néi	330	31	44	nd	45	48
Cu		, ,		269	6000	41900	3000	563	2600	4600	208	235
Dy			•	3	5	3	5	4	9	1	7	4
Eu '				5	7	16	4	. 14	7	10	5	8
La				95	2	nd -	3	17	18 -	394	13	27
Li .	٤			13	10	nd	12	. 6	19	2.	9	6
Mo ·				. nd	'nd	5	nd	22	59	4	nd	25
Nd			•	110	nd	nd	. 50	nd	nd	nd	60	35
Ni				1000	2300	8100	1200	256	. 38	33	36	186
Pb	,	'		nd	. nd	nd	ņd	59	7700	36	nd	17
Pr		•		nd	nd	nd	nd	nd	nd	bà	[*] nd	nd
Sc		*		29	18	3	36	8	9	. 2	13	10
Sm				nd	nd	nd	nd	nd	nd	nd	nd	nd
V ,		•		293	103	83	280	99	169	1	156	352
Zn '				46	. 129	119	92	76	>3	1600	81	61
											X	•
G a	•				•			25	230	44	11	20
Nb	`				/		-	31	13	22	5	54
Rb					~ /	•		36	, 2	nd	nd	3
Sr					Ţ			3	3	nd	6	4
Ta	_	•			• \			nd	ng	9	. nd	nd
Th	',	•			,	ì		17	nd	7	11	10
J						•		`13	nd	' nd	nd	. ` 7
γ 、						-		11	7	nd	20	18
				•				56	76	8	61	180

Volcan = volcanic rock

Gos-1 = Gossan 1 Showing

Gos L. = Gossan Lake Showing

Fred S = Frederickson South Showing Fred N = Frederickson North Showing

Faute = Faute Showing
Conn = Connolly Showing
Jimm = Jimmick Showing

major elements in wt%

trace elements in ppm

nd≥not detected

blank space=not analyzed

											_	£	-
		200	201	202	203	"2 0 4	205	711	712	713	714	° 715	716
	•	Gabbro	Gabbro	Gabbro	Gabbro	7	Tuff	Argill	Gabbro	Argill	Gabbro	Argill	Sand.
		Glom	Chill	Chill	Chill	Chill	Menih	Menih	Chill	Menih	Chill	Menih	Menih
		=====	=====	2222	=====	=====	2222	=====	=====	=====	2222	=====	2222
	SiO2	42.6	49.6	42.0	51.5	50.2	60.9	42.4	49.8	39.1	49.5	43.4	59.8
	A1203	13.3	12.8	5.0	13.4	14.9	12.0	6.8	14.0	7.4	13,8	6.0	15.4
	Fe tot	19.2	13.4	38.1	12.2	14.7	- 15.6	36.6	15.2	38.6	14.0	37.5	12.7
	MgO	6.09	6.97	3.00	7.49	6.02	3.32	2.92	7.48	2.49	7.46	3.77	2.38
	CaO	9.90	9.32	0.89	8.68	5.50	0.07	0.20	5.83	~	(48.62	1.50	0.31 '
	Na20 a	1.49	3.22	1.14	2.94	2.00	0.30	0.50	2.85	2.50	, 2.21	0.79	2.20
	K20	0.09	0.18	0.04	0.63	0.73	2.68	2.14	0.79	0.30	•	0.06	3.75
	Ti02	0.95	1.22	0.32	1.30	1.78	0.38	0.70	1.30	0.52	1.23	0.57	0.37
	Mn0	0.18	0.32	0.09	0.30	0.51	0.32	0.26	0.40	0.10	0.38	0.28	0.10
	P205	0.07	0.07	0.15	0.09	0.16	0.03	0.15	0.07	0.07	0.08	0.12	0.05
	LOI	4.41	2.04	8.08	1.85	3.61	4.45	8.12	3.03	8.41	2.05	6.08	3.02
	Total	98,28	99,14		100.3	=				5 99 61			
	Ba Be -	64 nd	4 <u>1</u> nd	10 1	1 <u>3</u> 8 nd	213 1	683 1	95	360 , i nd	36 · 2	400, nd	17 2	443
	Cd	n d	nd	1	nd	nd	nd	ج nd	nd	nd	nd	⊸nd	nd
,	Ce	2	5	.⇒rnde		11	25	77	22	74	22	57	48
	Co	136	41	57	25	49	5	19		51	40	. 37	16
	Cr	270	210	- , 53 53	200	95	71	nd	nd	` nd	nd	nd	nd
	Cu	6600	84	382		228	252	266	57	231	70	140	50
	Dy	6	9	5		13	5	- nd	nd	nd	nd	nd	nd
	Eu	6	4	10	4	5	. 4	4	ì	4	2	2	1
	La	5	4	nd	4	, 10	.16	40	nd	40	nd	, 30	22
	Li	11	9	21	10	28	26	11	18	13	9	7	14
	Mo ,	nd	nd	°26	nd	nd	nd	15	nd	22	nd	9	8,
	Nd	65	95	nd	95	120	35 ⁻	40	50	30	55	30	30
	Ni	1400	110	129	71	112	20	88	103	158	111	61	- 90
	Pb	nd	nd	· ^32	. nd	nd	🐂 nd	22	46	22	nd	15	nd
	Pr	nd	nd	nd	nd	ηф	nd	nd	nd	nd	nd	nd	nd
	Sc	46	51	12	52	· 52	• . 9	11	47	12	41	13	12
	Sm	nd	nd	i nd	nd	ύq	nd	nd	nd	nd	, nd	nd	nd
	,V	275	376	300	387	450	113	184	390	226	381	212	297
	Zn ~	188	61	≯ 8	99	132	234	45	103	60	81	50	195
			-	s in.						,			
	Ga ,	25	14				16	33		23	. 20	22	21
	Nb 🚴	4	nd				. 3	35			nd	13	٠ 4
	Rb	nd	5				67	77		15	71	6	100
	Sr	180	62		•		28	10		6	140	12	15
	Ta	16	nd	· Ýuq			nd	· \ nd					nd
	, Th	4	, 7				14	12			5	5	21
	U	nd	nd	. 9,	-		5	8	.4	9	nd	nd	8
	Y	15	24		٥	-	8	21		14	24		13
	Zr	66	68	. 68			61	140	79	, 91	76	77	. 87

Argill = argillite

Sand = sandstone

major elements in wt% trace elements in ppm t

nd=not detected

blank space=not analyzed

		*					•			
	717	718	719	720	721	722	.723	724	725	
	Sand.	Basalt	Gabbro	Basalt	Basalt	Basalt	Basalt	Basalt	Gabbro	
	5ilt	Menih	Chill	Menih	Menih	Menih	Menih	Menih	Chill	
1	#### #	=====	=====	=====	=====	=====	=====	=====	=====	
S102	74.8	49.1	54.3	48.0	51.0		49.2	48.3	49.0	
A1203	14.0	14.3	12.8	13.6	13.6		14.0	13.7	14.0	
Fe tot	3.9	13.4	11.7	13.9	13.5		12.2	16.5	15.1	
Mg0	1.62	6.72	6.24	8.08		6.83	6.65	6.85	6.82	
CaO		10.4	5.00	5.80	929	10.7	10.3	8.26	7.98	
Ne20	0.13	1.98	2.78	2.84	3.41	2.00	1.85	1.13	2.60	
. K20	3.64	0.42	0.11	0.51	0.07	0.65	0.17	0.15	0.60	,
T102	0.40	1.43	0.39	1.26	1.13	1.29	1.20	1.20	1.29	
Mn0	0.04	0.19	0.21	0.22	0.19	0.21	0.21	0.25	0.23	
P205	0.04	0.10	0.07	0.10	0.09	0.08	0.08	0.09	0.10	
LOI Total	2.73 101-26	2.60 100.64	7.42	6.29	- 2.84	2.45 100.61	98.82	·3.26 · 99.69	2.42	1
Ba	703	118	27	123	26	208	77	46	206	,
Be	nd ·	nd	2	nd	nd	nd	nd	nd	nd	
Cď	nd	nd	nđ	nd	nd	nd	nd	,nd	nd	
Ce	37	27	29	22	23	26	, 26	26	27	
Co	4	50	- 13	29	55	38	41	40	43	_
Cr	nd	nd	nd	nd	nd	nd	nd	nd	nd	
Cu	61	149	25	127	165	143	185	342	217	
Dy	nd	nd	nd	nd		nd .		nd	nd	
Eu	nd	2	. 1	2	2	2	2	2	` 1	
La	26	15	17	nd	nd	nd	nd	nd	nd	٠
Li	10	11	31	31	8	7	, 6	11	8	
Мо	nd	nd	nd	nd	nd	. nd	ind	nd	nd	
Nd	nd _,	45	25	40	45	30	40	60	45	
Ni	14	93	37	105	112	102	107	106	98	
РЬ	15	nd	nd	nd	nd	nd	, nd	nd	nd	
Pr .	nd	nd	nd į	nd	nd	nd	nd	nd	nd	
Sc	10	43	9	40	39	43	43	41	43	
Sm	nd	ηd	nd	nd	nd	nd	nd	،nd	nd	
V	70	380	174	398	359	383	374	355	375	
Zn	21	93	62	106	69	68	169	108	98	,
Ga `	_ 20	21	20	18	nḍ	24	13	19	21	
Nb	nd	nd	nd	nd	nd	nd	nd	nd	nd	
ŖЬ	120	16	3	15		21	8	4	/ 15	
Sr	10	160	23	_. 70		230	130	130 °	190	
Ta	5	nd	nd	nd		nd	nd	5	5	
Th	21	. 9	13	6		5	7	8	9	
U '	4	3	3	nd		3	4 -	nd	nđ	
Y	13	27	13	8		25	25	25	27	
Zr .	240	88	63 	83 	8 ′ ;	77 [.]	78`	89	81	

Sand. Silt = finely laminated sandstone-siltstone

APPENDIX 2 Analytical Techniques and Precision of Chemical Analyses

note: for some elements precision varies with concentration $\mbox{LLD} = \mbox{lower limit of detection}$

Element	LLD	Preci	laion	Method .
		Conc	+/-	٠,
		· 		222222222
5 i02	0.10%	63.0%	0.8%	XRF
		49.0%	0.9%	XRF
		39.0%	0.9%	XRF
A1203	0.02%		2.0%	XRF
Fe203	0.10%	12.0%	2.0%	XRF
•		10.0%	3.0%	XRF
		6.0%	4.0%	XRF
Mg0	0.10%	20.0%	2.0%	XRF
•		9.0%	2.0%	XRF
		5.0%	3.0%	XRF
Ca0	0.02%		2.0%	· XRF
Na20 '	0.10%		5.0%	XRF
K20	0.01%	•	5.0%	. XRF
TiO2	. 0.01%	2.0%	3.0%	XRF. 1
*	1	0.5%	5.0%	XRF
MnD	0.01%	0.2%	6.0%	XRF [*]
		- 0.1% -	14.0%	XRF
P205	0.01%		10.0%	XRF
LOI	0.10%	, •	4.0%	Gravimetric
Ba	l ppm	130 ppm	8.0%	ICP
Da	t bb	150 ppm	5.0%	, ICP
		420 ppm	6.0%	ICP
		420 pp	0.0%	ICP
Ве	3 ррт		24.0%	ICP
Cq ,	2 ppm		74.0%	ICP
Ce .	3 ppm	20 ppm	11.0%	ICP
	· pp	50 ppm	8.0%	ICP^
Co	2 ppm	20 ppm	8.0%	ICP
45	- pp	40 ppm	7.0%	ICP
		100 ppm	5.0	ICP
Cr	2 ppm	202 PP	12.0%	ICP
Cu	l ppm	30 ppm	7.0%	ICP
	'''	70 ppm	13.0%	ICP
Dy	1 ppm	2 ppm	50.0%	ICP
٠ .	#r #r- ···	20 ppm	12.0%	
Eu	l ppm	L.	41.0%	- ' ICP
La	2 ppm	10 ppm	15.0%	- ICP
_ · · ·	, - LL	40 ppm	11.0%	ICP
4		90 ppm	12.0%	ICP
Li;	· 1 ppm	10, ppm	9.0%	ICP

Element	LLD	Prec	ision `	Method
	3	Conc	· +/ -	
444232777772	254222252222222	=====================================	11.0%	ICP
Nd	25 ppm	40 ppm	20.0%	ICP
,	r> ppm	150 ppm	17.0%	ICP
NI	1 ppm	10 ppm	38.0%	IÇP
-	- Jr.P	70 ppm	8.0%	ICP
à	•	2300 ppm	6.0%	* ICP
Pb 🗸	12 ppm	30 -ppm	22.0%	ICP
Pr	10 ppm		·	ICP
Sc /	1 ppm	20 ppm	6.0%	, ICb
• .	•	60 ppm -	6.0%	ICP
Sm	2 ppm	25 ppm	28.0%	ICP
V	2 ppm	50 ppm ·	11.0%	IÇP
•		. 100 ppm	5.0%	ICP
		250 ppm	7.0%	IÇP
Zn	, 2 ppm	60 ppm	15.0%	ICP
•		100 ppm	7.0%	ICP
		150 ppm	11.0%	ICP
Ga	3 ррт	20 ppm	15.0%	XRF
		30 ppm	13.0%	XRF
Nb	3 ppm	10 ppm	30.0%	XRF
J		25 ppm	20.0%	XRF
RÞ	mqq C	15 ppm	10.0%	XRF
		35 ppm	5.0%	XRF
		90 ppm	4.0%	XRF
_	_	180 ppm ~	4.0%	XRF
_Sr	7 ppm		4.0%	XRF
Ta	5 ppm	_		XRF
Th	, 3 bbw	5 ppm	30.0%	XRF
	_	30 ppm	12.0%	XRF
U	3 ppm	4 ppm	30.0%	XRF
Y	3 ppm	10 ppm	30.0%	✓ XRF
		40 ppm	10.0%	XRF
_	_	• 60 ppm	6.0%	XRF
Zr	3 bbw.	40 ppm	10.0%	XRF
****		200 ppm	4.0%	XRF
Au	15 ppb	30 ppb	50.0%	AA
	,	100 ppb	25.0%	AA
		, 200 ppb	10.0%	- AA
Pd	0.07 ppm	0.13 ppm	40.0%	AA
	-	0.73 ppm	10.0%	AA
Pt	0.07 ppm	,		ΑĄ
Rh	0.03 ppm	<i>a</i> , ~		AÃ
a a	٠,			

APPENDIX 3 Lead Isotopes

Lead isotopes potentially can be used in metallogenic studies to determine the age of mineralization and the source of the lead (c.f. Franklin et al., 1983; Gulson and Porritt, # 1987: Gulson et al., 1987). Sediment-hosted Zn-Pb deposits such as Broken Hill, Mt. Isa, McArthur River and Sullivan plot the single-stage growth curve for conventional Pb isotopic plots (Gustafson and Williams, 1981). dating these deposits by other techniques revealed that the lead dates are inaccurate, and it is now recognized that single-stage growth models represent oversimplication of lead isotopic evolution (op cit.). leads from conformable, syngenetic deposits do not depresent unmodified mantle values: because of their prior involvement sedimentary or volcanic processes, such leads represent mean values for large crustal segments (Albarede and 1984). Multistage models such as those of Stacey and Krammers (1976), and Doe and Zartman (1979) have developed to account for mixing in crustal and mantle reservoirs, but such models involve assumptions that cannot be directly verified.

Nevertheless, Pb isotopes were determined for a suite of samples from the Frederickson Lake region in order to assess whether crustal contamination had occurred, and to determine if a genetic relationship exists between the Pb in sediment-hosted and gabbro-hosted ore deposits. The sample suite consisted of pyrrhotites separated from two gabbro-hosted Cu-

Ni ores (Frederickson Lake, Connolly), one pyrrhotite from the sediment-hosted Zn-Cu-Pb deposit at Frederickson Lake North, and two pyrrhotite samples from sulphide-facies iron formation. The limited numbers of samples seemed justifiable, given the observation of Doe and Stacey (1974) that lead isotope ratios within individual conformable ore deposits are tightly tonstrained.

The data presented in Table 10 show a wide variation isotopic ratios, with data points falling on and below the single stage growth curve of Doe and Stacey (1974) The data points were subjected to a linear regression analysis (York, 1969) to determine the modelage. This treatment yielded an age of 2.06 +/- 0.3 Ga (two sigma)., The large error is the result of data scatter. Pb isotope results from Clark and Thorpe (1987) suggest a possibly younger age of Ga for the Frederickson Lake deposits, although 1875 fall within the error range of the present study (2.36 to 1.76 Ga.).

The isotopic heterogeneity of the sulphide suite could be produced by mixing of crustal and mantle leads, or by the in situ decay of uranium to increase the Pb206/Pb204 ratio. The dominant process is difficult to determine because both lead to similar end products. Since the lead isotopic data were obtained from iron sulphides, uranium decay could be a complicating factor because the ratio of uranium to Pb can be much higher in iron sulphides than in the galenas which are conventionally measured (Gulson and Porritt, 1987). Because of the various possible explanations of the lead isotopic

Table 10

Lead isotope analyses of iron sulphides from the Frederickson Lake area

	, oʻ	•	¢	Pb	·	
sample	showing an	d type	206/204	207/204	208/204	
(+/-)			(0.01)	(0.01)	(0.06)	ι
Pb-2' Fred Pb-3 Faut Pb-4 Jimm	erickson S. erickson N. e Lake ick Lake olly Lake	(Cu-Ni) (Zn-Cu-Pb) (Po-Py) (Po-Py) (Cu-Ni)	15.56 15.32 17.62 15.74 16.16	15.26 15.25 15.54 15.34 15.35	35.39 35.27 35.54 35.23 35.49	,
~			,			

Analyst: R. Farquhar, Dept. of Physics, University of Toronto.

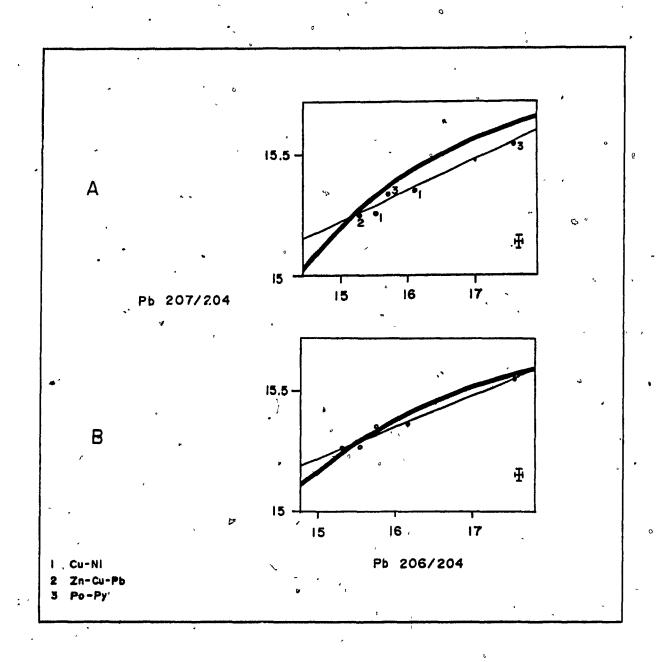
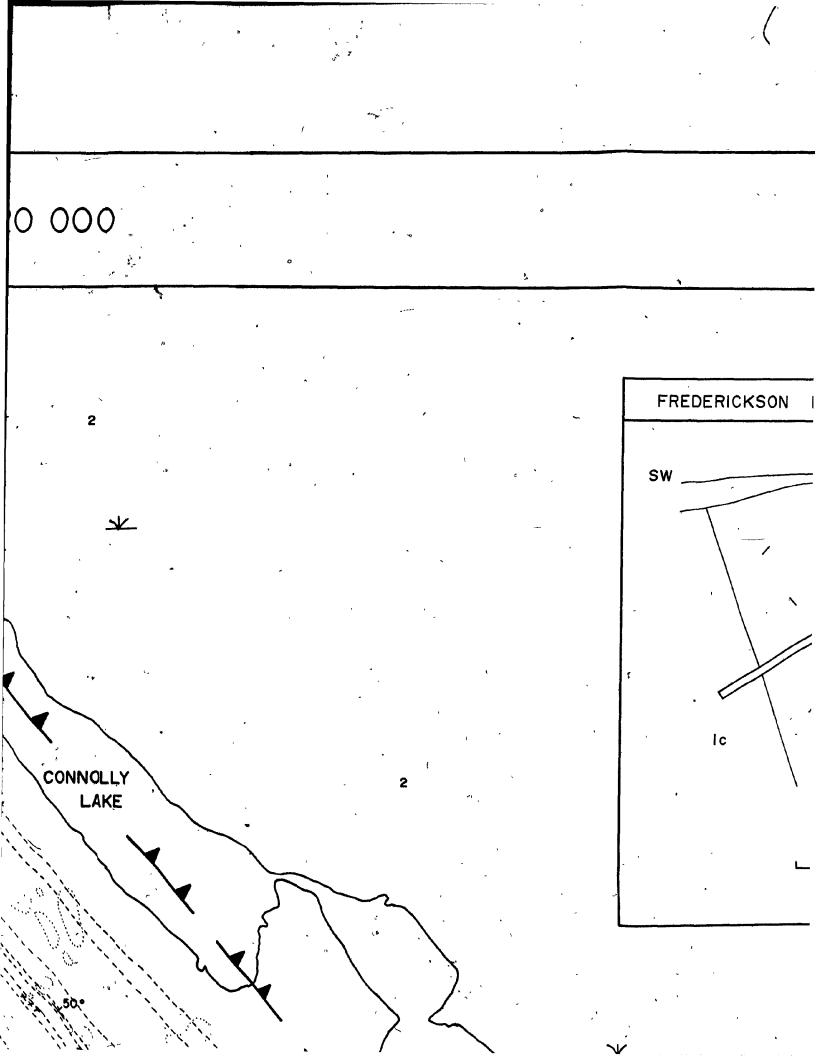


Fig. 40 Lead isotope data from the Frederickson Lake area plotted for growth curves from A: Doe and Stacey (1974) and from B: Stacey and Krammers (1976). Straight lines represent a linear regression through the data.

data, no genetic inferences could be made about the sulphide deposits. Franklin et al., (1983) also encountered interpretational problems in a Pb-isotope study of Labrador Trough sulphides.

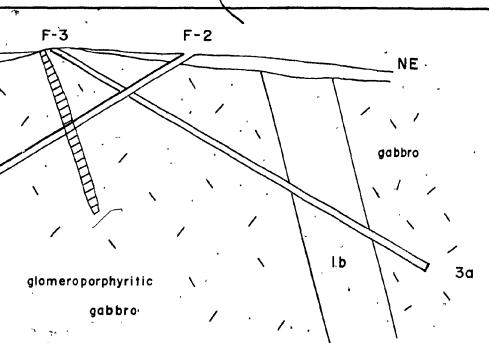
B


MAP-I THE FRE

| km | 500 m

FREDERICKSON LAKE NORTH SHOWING - DDH F-8

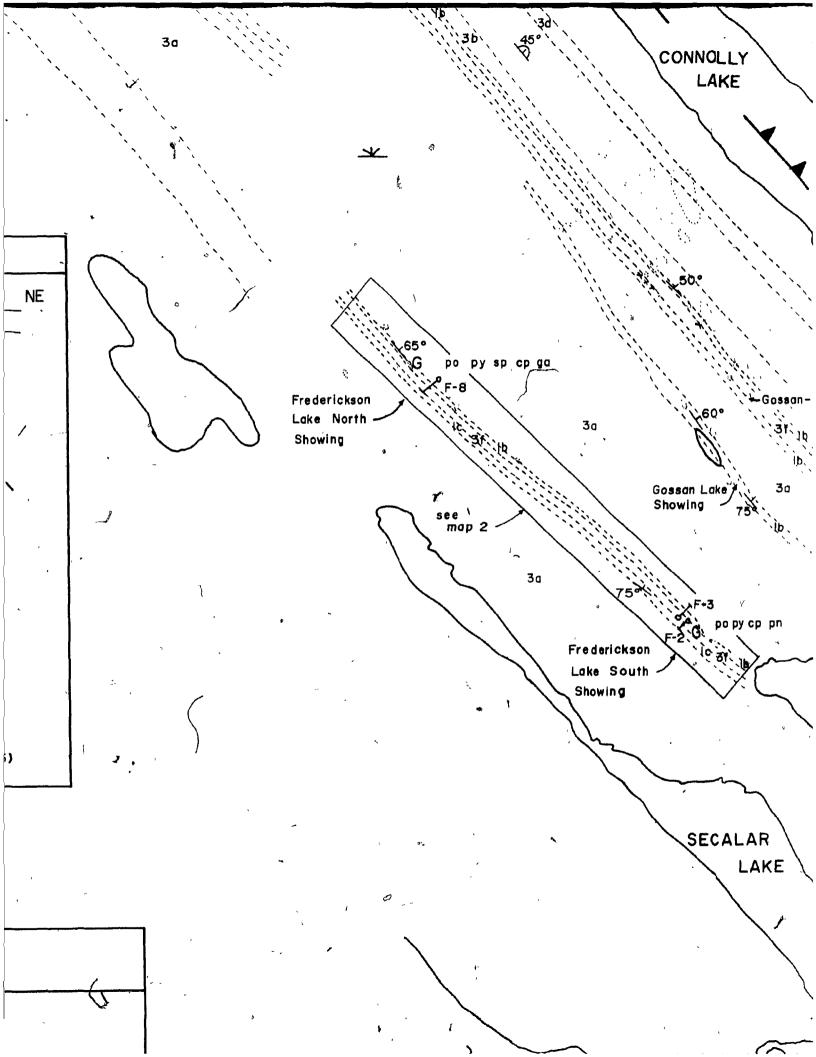
SW _____overburden

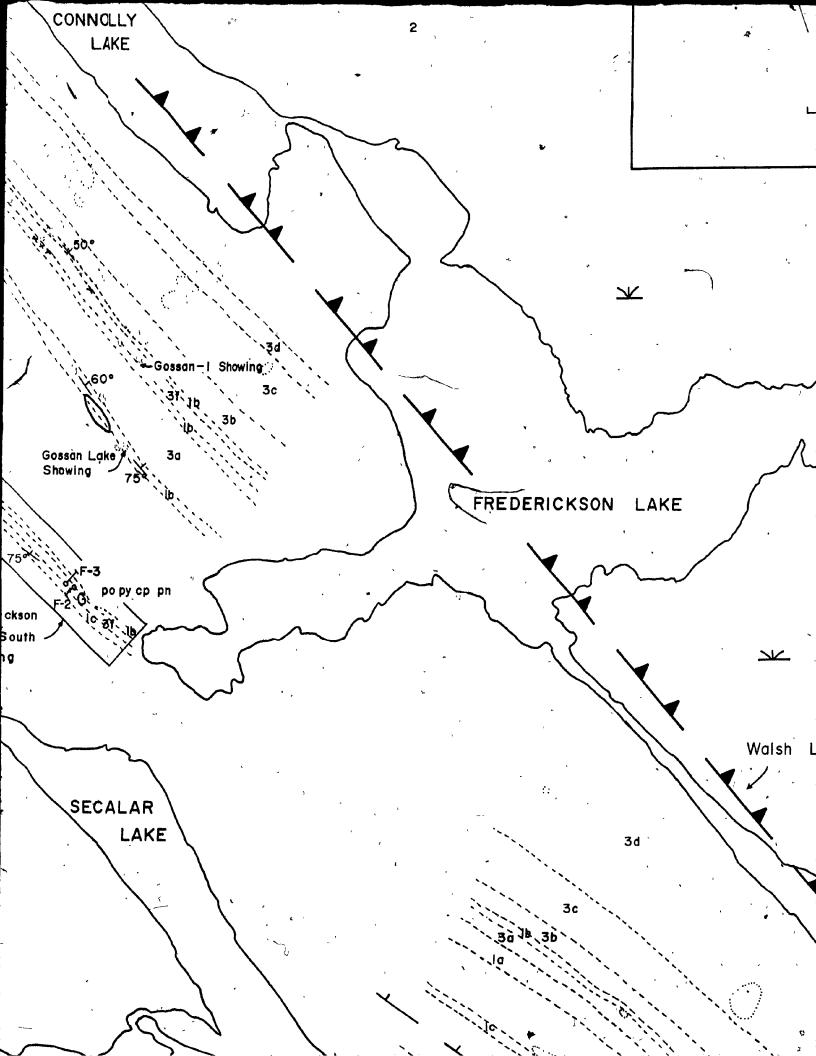

DERICKSON LAKE AREA 1:20 000 CONNOLLY NE

J.S. GEBERT 1987

LAKE SOUTH SHOWING - DDH F-2, F-3

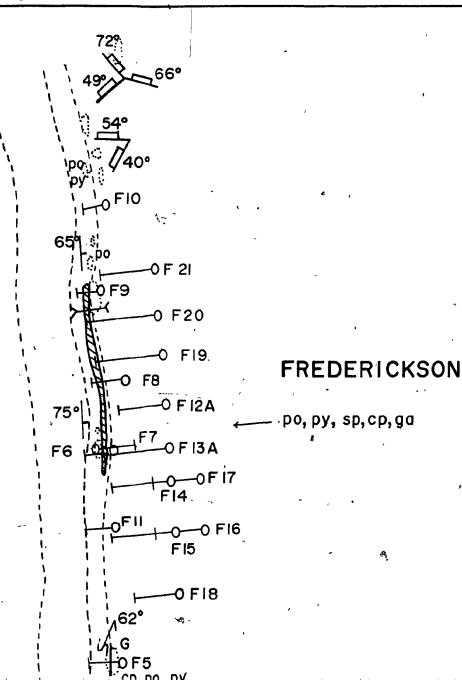
3 f


5 m


mineralized zone is projected

from Griffis (1945),

FREDERICKSON LAKE NORTH SHOWING DDH F-8 overburden SW mineralization Cu% Zn% .73 2.63 2.08 1.74 | .33 - .32 .19 - .07 .36 За black argillite / gabbro ⅓ Ib •disseminated mineralization sandstone 5 m IC' breccia from Griffis (1945)


LEGEND

3 f mineralized zone is projected 5 m from Griffis (1945) , 't 2 Lake Fault FAUTE LAKĘ

FREDERICKSON, LAKE

N LAKE AND	GOSSAN	LAKE	SULPHIDE
			,
1:5 000			GOSSA
7			.*
		•	
	~ą	`	°25 m
I LAKE NORTH		,	, N
			35°

1 .

.

•

RICKSON LAKE AND GOSSAN LAKE SULPI

LAKE 1:5 000

DERICKSON LAKE NORTH

, sp,cp,ga

35°

25 m

HIDE SHOWINGS

JS GEBERT 1987

GOSSAN LAKE

l: 500

sulphide-facies iron formation

3f

po ج

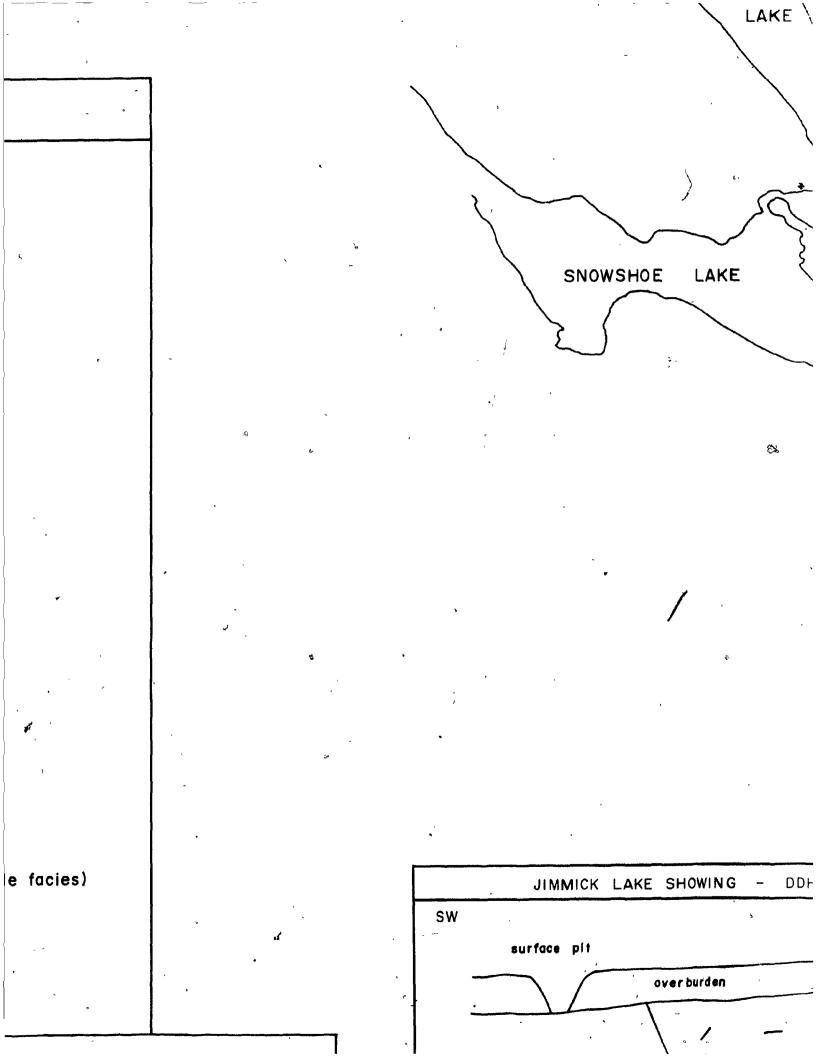
LEGEND

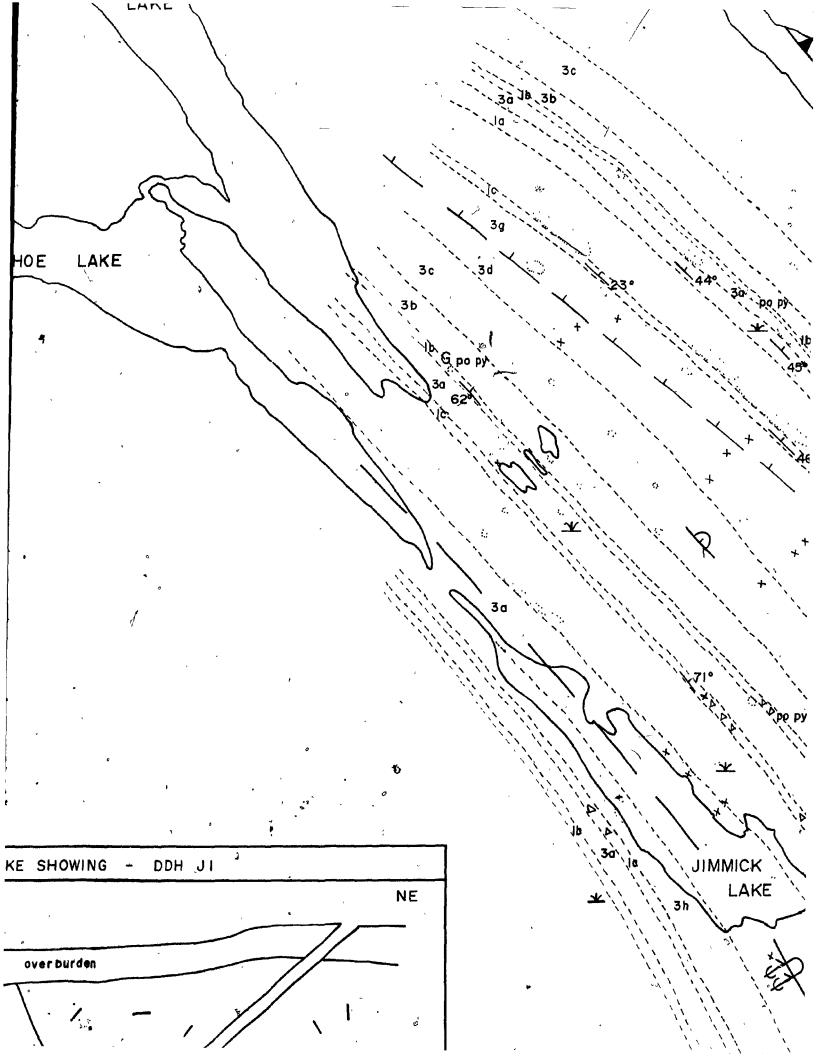
MONTAGNAIS **GROUP**

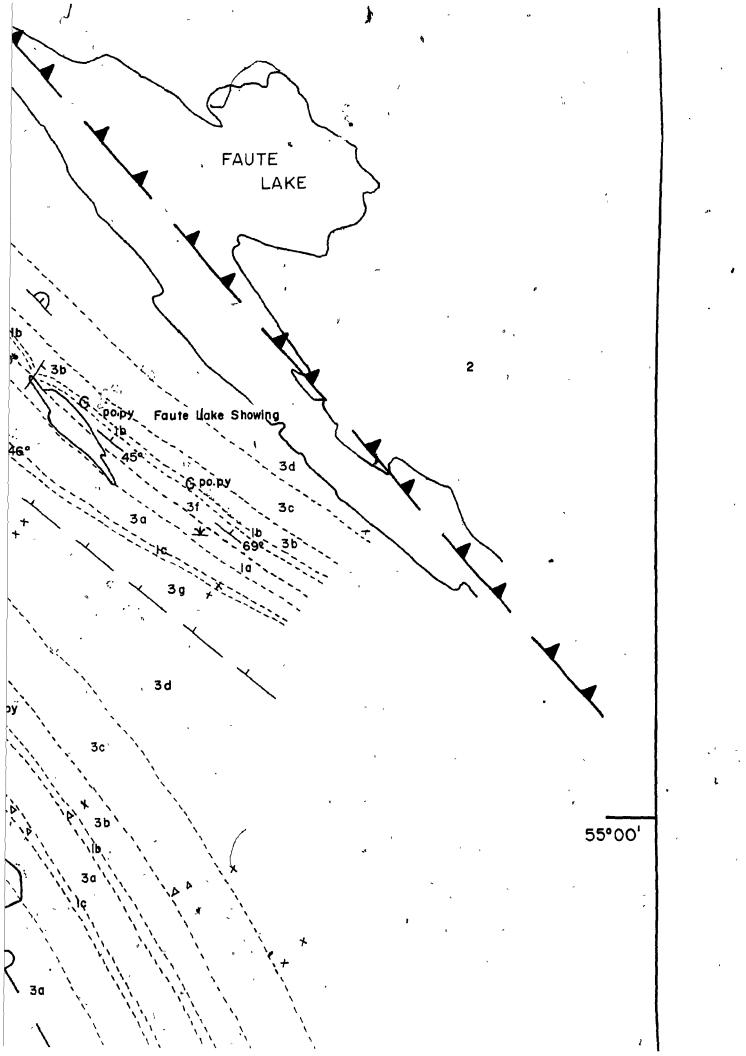
Wakuach gabbro

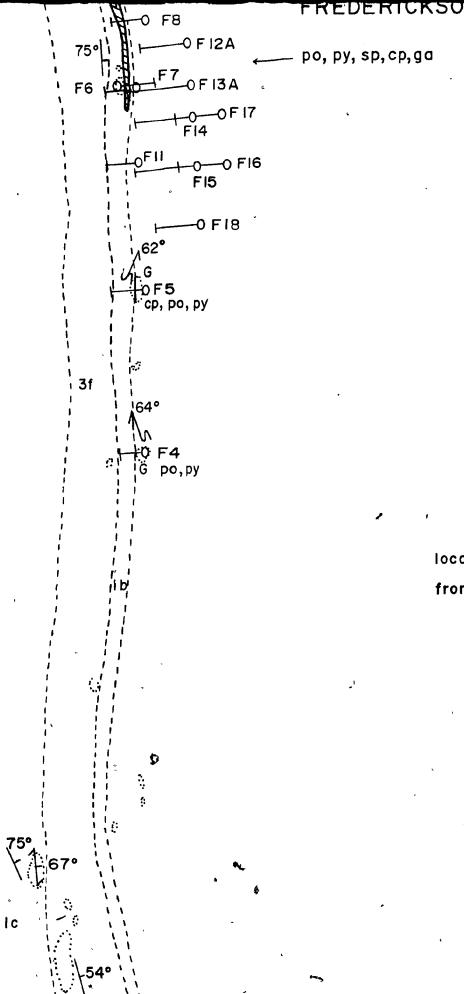
- a gabbro (not divided)
- b porphyritic gabbro c ordinary gabbro
- d pegmatitic gabbro
- e fine-grained gabbro
- f glomeroporphyritic gabbro
- g anorthositic gabbro

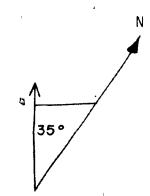
KANIAPISKAU SUPERGROUP

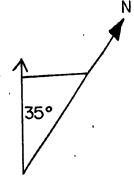

KNOB LAKE GROUP

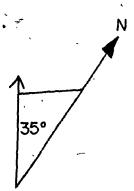

Murdoch Formation

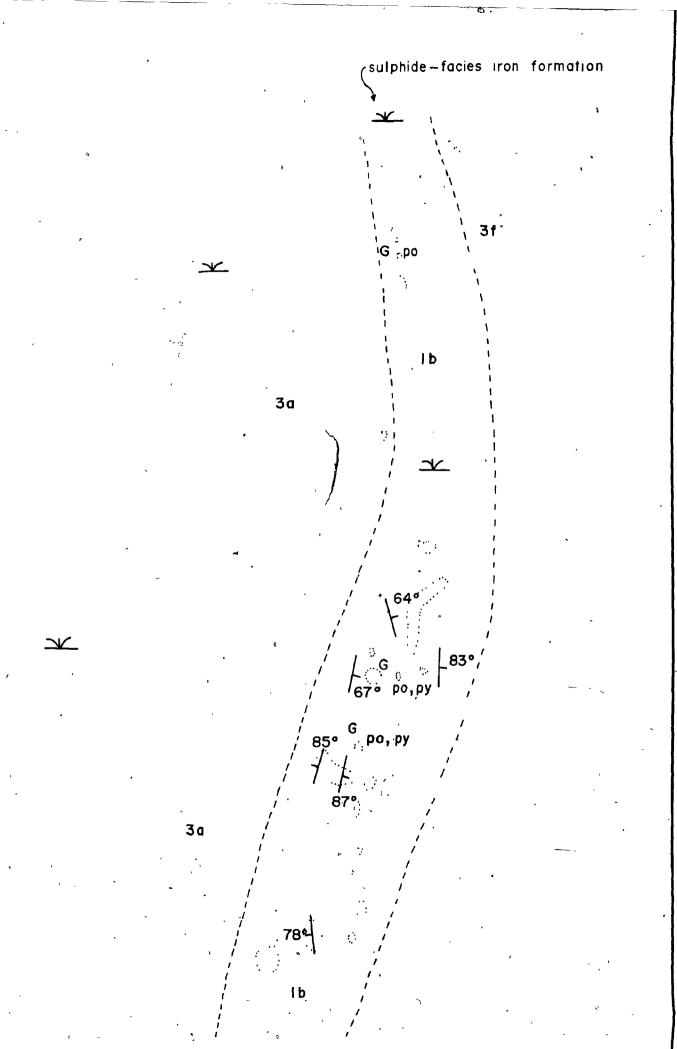

chlorite schist


Formation Menihek


- shale
- b argillite (po-py indicates sulphide
- siltstone sandstone
- basalt
- tuff



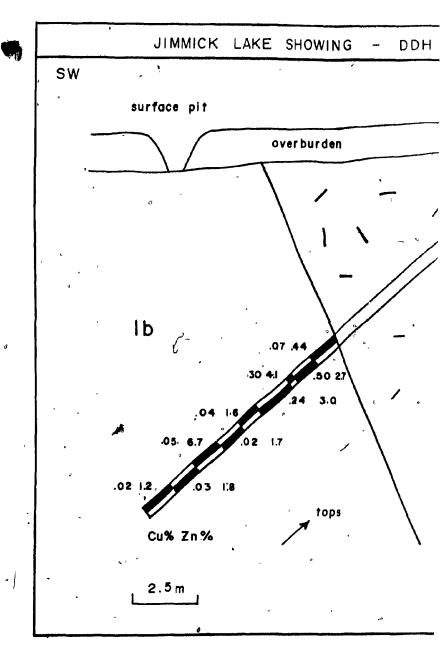

ation of outcrops and diamond drill holes m Griffis (1945) and Hogg (1957)



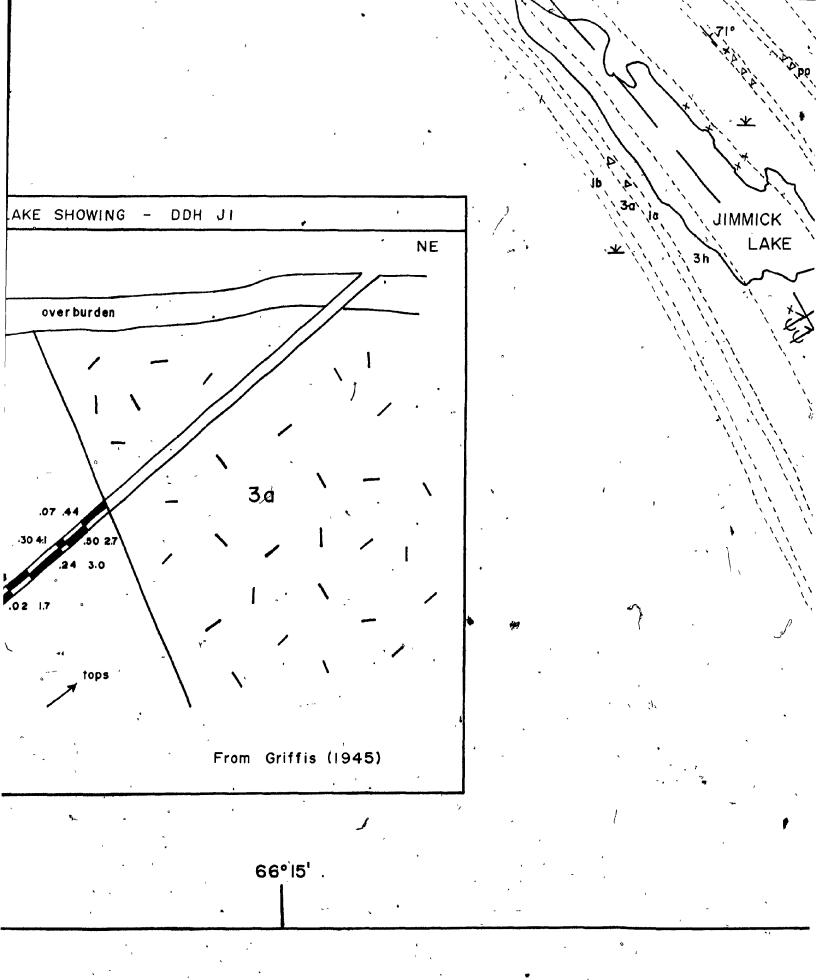
₽

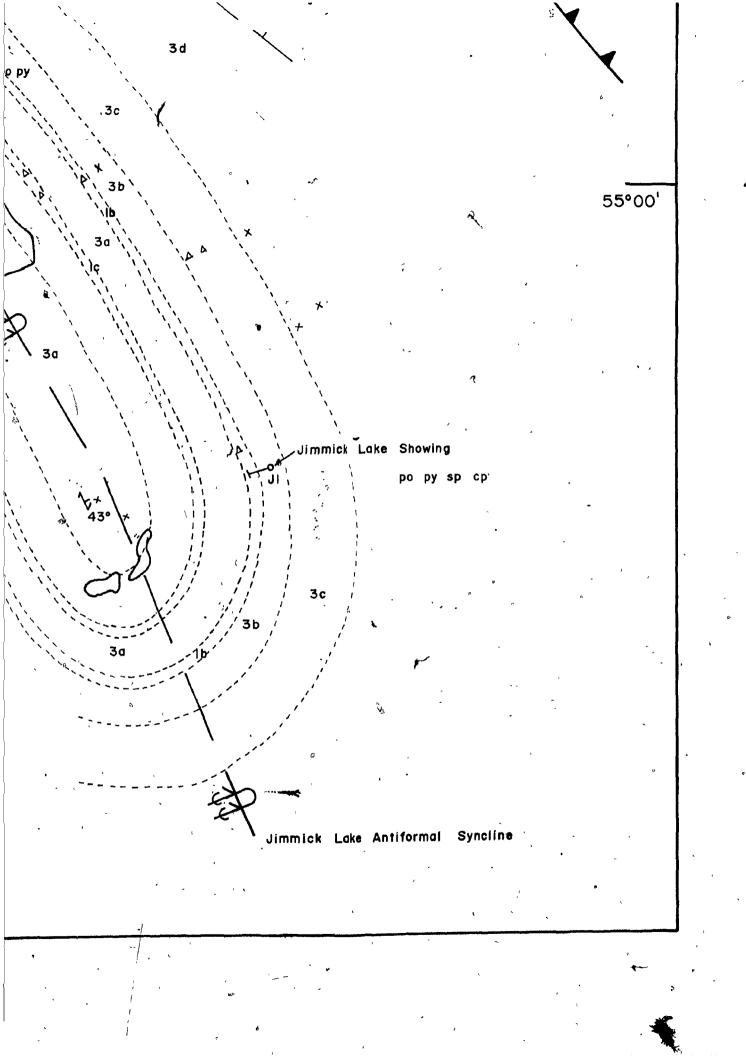
35°

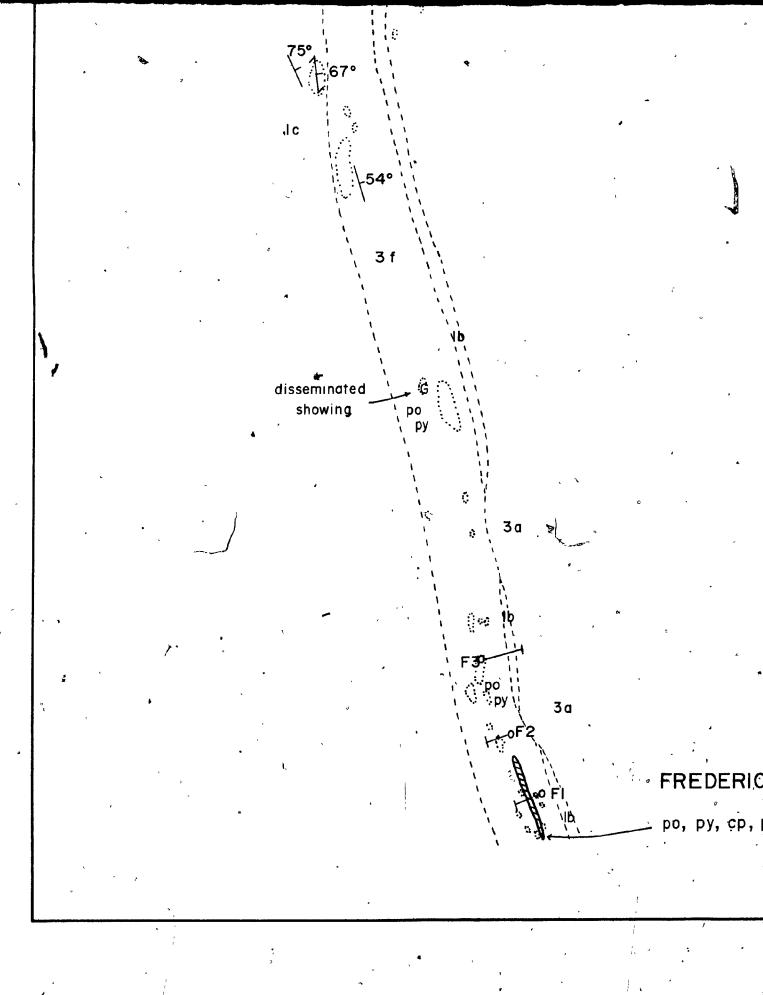
location of outcrops and diamond drill holes from Griffis (1945) and Hogg (1957)

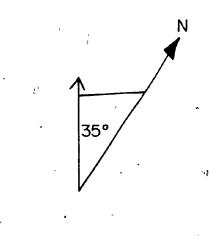


	2	Murdoch Formation
	<u> </u>	chlorite schist
		Menihek Formation a shale b argillite (po-py indicates sulphid c siltstone - sandstone d basalt
	, ·	e tuff °°
	*	swamp outcrop
	×	small outcrop frost-wedged rock fragment
'n		bedding foliation
	s L	minor fold antiformal syncline
	— ,,	regional fault
		geological contact

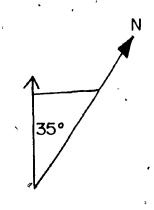

e facies)


diamond drill hole trench mineralized zone tops pyrite ру pyrrhotite рo chalcopyrite СР galena ga sphalerite sp. pentlandite pn

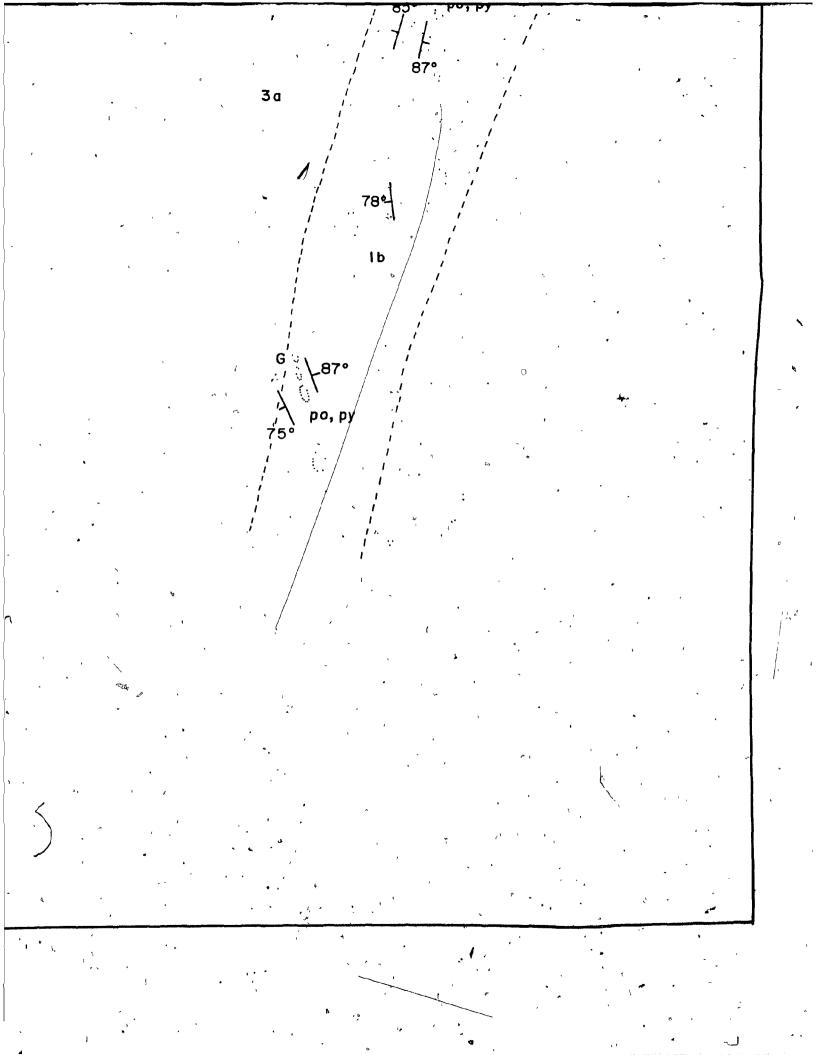



gossan

G



200 m


CKSON LAKE SOUTH

pn

200 m

FREDERICKSON LAKE SOUTH

