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Abstract

Differential-algebraic equations over the past years have become a widely accepted tool for the

modeling and simulation of constrained dynamical systems in numerous applications, such

as mechanical multibody systems, electrical circuit simulation, chemical engineering, control

theory, fluid dynamics, and many other areas. In this thesis we have explored the theory and

numerical methods for solving complex DAEs. In particular, we provide a systematic and

detailed analysis of initial and boundary value problems for differential-algebraic equations.

We also discuss numerical methods and software for the solution of these problems. This

includes linear and nonlinear problems, over and underdetermined problems as well as control

problems. Methods of incorporating constraints in the kalman filtering of DAEs are studied.

This significantly improves the prediction accuracy of the filter. The use of filtering algorithm

is explained with simple nonlinear vehicle tracking problem.
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Abrégé

Au cours des dernières années, les équations algébriques différentielles sont devenues un

outil largement accepté pour la modélisation et la simulation de systèmes dynamiques

contraints dans de nombreuses applications, telles que les systèmes mécaniques multicorps,

la simulation de circuits électriques, le génie chimique, la théorie du contrôle, la dynamique

des fluides et de nombreux autres domaines. Dans cette thèse, nous avons exploré la

théorie et les méthodes numériques pour résoudre les DAE complexes. Dans en particulier,

nous fournissons une analyse systématique et détaillée des problèmes de valeurs initiales et

limites pour les équations différentielles-algébriques. Nous discutons également des

méthodes numériques et des logiciels pour la solution de ces problèmes. Cela inclut les

problèmes linéaires et non linéaires, les problèmes surdéterminés et sous-déterminés ainsi

que les problèmes de contrôle. Les méthodes d’incorporation des contraintes dans le filtrage

kalman des DAE sont étudiées. Cela améliore considérablement la précision de prédiction

du filtre. L’utilisation de l’algorithme de filtrage est expliquée par un simple problème de

suivi non linéaire des véhicules.
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Chapter 1

Introduction and Literature Review

1.1 Introduction

The dynamical behavior of physical processes is usually modeled via differential equations.

However, if the states of the physical system are in some ways constrained, like for example

by conservation laws such as Kirchhoff’s laws in electrical networks, or by position constraints

such as the movement of mass points on a surface, then the mathematical model also contains

algebraic equations to describe these constraints. Such systems, consisting of both differential

and algebraic equations are called differential-algebraic systems, algebro-differential systems,

implicit differential equations or singular systems [1].

The most general form of a differential-algebraic equation is

F (t, x, ẋ) = 0 (1.1)

with

F : I× Dx × Dẋ → Rm

where I ⊆ R is a (compact) interval and Dx,Dẋ ⊆ Rn are open, m, n ∈ N. The meaning
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of the quantity ẋ is ambiguous as in the case of ordinary differential equations. On one hand,

it denotes the derivative of a differentiable function x : I→ Rn with respect to its argument

t ∈ I. On the other hand, in the context of (1.1), it is used as an independent variable of

F. The reason for this ambiguity is that we want F to determine a differentiable function x

that solves (1.1) in the sense that F(t, x(t), ẋ(t)) = 0 for all t ∈ I.

In connection with (1.1), we will discuss the existence of solutions. Uniqueness of solutions

will be considered in the context of initial value problems, when we additionally require a

solution to satisfy the condition

x(t0) = x0 (1.2)

with given t0 ∈ I and x0 ∈ Rn, and boundary value problems, where the solution is supposed

to satisfy

b(x(t0), x(tf )) = 0 (1.3)

with b : Dx × Dx → Rd, I = [t0, tf ] and some problem dependent integer d. It will turn

out that the properties of differential-algebraic equations reflect the properties of differential

equations as well as the properties of algebraic equations, but also that other phenomena

occur which result from the mixture of these different types of differential and algebraic

equations.

The basic theory for linear differential-algebraic equations with constant coefficients is

given by

Eẋ = Ax+ f(t) (1.4)

where E,A ∈ R(m,n) and f : I×Rm. This type of system is first used in the nineteenth century

by the fundamental work of Weierstraß [2], [3] and Kronecker [4] on matrix pencils, until the

pioneering work of Gear [5] for modeling dynamical systems. The subsequent developments

in numerical methods for the solution of differential-algebraic equations made differential-
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algebraic equations to be used directly in numerical simulation. Since then an explosion of

the research in this area has taken place and has led to a wide acceptance of differential-

algebraic equations in the modeling and simulation of dynamical systems. Despite the wide

applicability and the great importance, only few monographs and essentially no textbooks

are so far devoted to this subject, see [6], [7], [8], [9]. Partially, differential-algebraic equations

are also discussed in [10], [11], [12], [13], [14], [15], [16]. However, the implicit systems of

the form (1.1) were usually transformed into ordinary differential equations via analytical

transformations.

ẏ = g(t, y) (1.5)

One way to achieve this is to explicitly solve the constraint equations analytically in order

to reduce the given differential-algebraic equations to an ordinary differential equations with

fewer variables. However, this approach heavily relies on either transformations by hand

or symbolic computation software which are both not feasible for medium or large scale

systems.

Another possibility is to differentiate the algebraic constraints in order to get an ordinary

differential equation with the same number of variables. Due to the necessary use of the

implicit function theorem, this approach is often difficult to perform. Moreover, due to

possible changes of coordinate bases, the resulting variables may have no physical meaning.

In the context of numerical solution methods, it was observed in Gear [5] approach that the

numerical solution may drift off from the constraint manifold after a few integration steps.

For this reason, in particular in the simulation of mechanical multibody systems, stabilization

techniques were developed to address this difficulty. But it is in general preferable to develop

methods that operate directly on the given differential-algebraic equation.

In view of the described difficulties, the development of numerical methods that can be
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directly applied to the differential-algebraic equation has been the subject of a large

number of research projects in the last thirty years and many different directions have been

taken. In particular, in combination with modern modeling tools (that automatically

generate models for substructures and link them together via constraints), it is important

to develop generally applicable numerical methods as well as methods that are tailored to a

specific physical situation. It would be ideal if such an automatically generated model

could be directly transferred to a numerical simulation package via an appropriate interface

so that in practical design problems the engineer can optimize the design via a sequence of

modeling and simulation steps. To obtain such a general solution package for

differential-algebraic equations is an active area of current research that requires strong

interdisciplinary cooperation between researchers working in modeling, the development of

numerical methods, and the design of software. A major difficulty lies in understanding the

analytical and numerical properties of differential-algebraic systems. In particular, the

treatment of bifurcations or switches in nonlinear systems and the analysis and numerical

solution of heterogeneous (coupled) systems combined of differential-algebraic equations

and partial differential equations (sometimes called partial differential-algebraic equations)

represent major research tasks [1].

Our thesis gives a coherent introduction to the theoretical analysis of differential-algebraic

equations and to present some appropriate numerical methods for initial and boundary value

problems. For the analysis of differential-algebraic equations, there are several paths that

can be followed. A very general approach is given by the geometrical analysis initiated by

Rheinboldt [17], see also [9], to study differential-algebraic equations as differential equations

on manifolds. Our main approach, however, will be the algebraic path that leads from the

theory of matrix pencils byWeierstraß and Kronecker via the fundamental work of Campbell

on derivative arrays [44] to canonical forms for linear variable coefficient systems [18], [19]
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and their extensions to nonlinear systems in the work of the authors ( [20], [21], [22], [23]).

The algebraic approach allows the study of generalized solutions and the treatment of

over and under determined systems as well as control problems. At the same time, it leads

to new discretization methods and new numerical software.

Unfortunately, the simultaneous development of the theory in many different research

groups has led to a large number of slightly different existence and uniqueness results,

particularly based on different concepts of the so-called index. The general idea of all these

index concepts is to measure the degree of smoothness of the problem that is needed to

obtain existence and uniqueness results. To clarify exact implementation of our thesis , we

now briefly discuss the most common approaches.

1.2 ODE and DAE

To understand the similarity and the difference between DAEs and ODEs, consider two

functions y(t) and z(t) which are related on some interval [0, b] by

˙y(t) = z(t), 0 ≤ t ≤ b (1.6)

and the task of recovering one of these functions from the other via the differential equation

(1.6). To recover z from y, one needs to differentiate y(t), an automatic process familiar

to us from a first calculus course. To recover y from z one needs to integrate z(t)— a

less automatic process necessitating an additional boundary condition (such as the value

of y(0)). This would suggest that differentiation is a simpler, more straightforward process

than integration. On the other hand, though, note that y(t) is generally a smoother function

than z(t). For instance, if z(t) is bounded but has jump discontinuities, then y(t) will not

have any discontinuities; see Figure 1.1. Thus, integration is a smoothing process, while
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Figure 1.1: A function and its less smooth derivative.

differentiation is an anti-smoothing process. The differentiation process is unstable1 to noisy

perturbations, although it is often very simple to carry out analytically.

A differential equation involves integration, hence smoothing: the solution y(t) of the

linear system ẏ = Ay + q(t) is one degree smoother than q(t). A DAE, on the other hand,

involves both differentiations and already integrated equations. The class of DAEs contains

all ODEs but it also contains problems where both differentiations and integrations are

intertwined in a complex manner when simple differentiations may no longer be possible,

but their effect complicates the numerical integration process, potentially well beyond what

we have seen so far [1].

Implicit Function Theorem:

Let f : Rn+m → Rm be a continuously differentiable function, and let Rn+m have coordinates

(x, y). Fix a point (a, b) = (a1, . . . , an, b1, . . . , bm) with f(a, b) = 0, where 0 ∈ Rm is the zero

vector. If the Jacobian matrix

Jf,y(a, b) =
[
∂fi
∂yj

(a, b)
]

1If we add to y(t) a small perturbation cos wt, where |e| � 1 and w;> |ε−1|, then z(t)) is perturbed by
a large amount |wε|.
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is invertible, then there exists an open set U ⊂ Rn containing a such that there exists a unique

continuously differentiable function g : U → Rm such that g(a) = (b), and f(x, g(x)) = 0 for

all x ∈ U . Moreover, the partial derivatives of g in U are given by the matrix product

∂g

∂xj
(x) = − [Jf,y(x, g(x))]−1

m×m

[
∂f

∂xj
(x, g(x))

]
m×1

1.3 Solvability Concepts

To analyze the DAE system (1.1) from the view point of existence of solutions we have to

specify the function space in which the solution should lie.

Definition 1.1. (Classical Solutions) Let Ck(I, Rn) denote the vector space of all k-times

continuously differentiable functions from the real interval I into the real vector space Rn.

1. A function x ∈ C1(I, Rn) is called a solution of (1.1), if it satisfies (1.1) pointwise.

2. The function x ∈ C1(I, Rn) is called a solution of the initial value problem (1.1) with

initial condition (1.2), if it furthermore satisfies (1.2).

3. An initial condition (1.2) is called consistent with F, if the associated initial value

problem has at least one solution.

A problem is called solvable if it has at least one classical solution. Note that in the previous

section solvability is used only for systems which have a unique solution when consistent

initial conditions are provided. If the solution of the initial value problem is not unique,

which is in the case of control problems, then further conditions have to be specified to

single out specific desired solutions.
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Generalized Solutions

The smoothness requirements for the forcing function f in (1.4) can be mildly relaxed if

the solution is allowed to be less smooth. The consistency conditions for the initial values,

however cannot be relaxed when considering classical solutions (Definition 1.1). Other way to

remove consistency conditions and to relax smoothness requirements is to allow generalized

functions (or distributions) [1], as solutions of (1.4). For the analysis of differential-algebraic

equations, this approach is relatively recent. Several different directions can be followed that

allow to include non-differentiable forcing functions f or non-consistent initial values. A

very elegant and completely algebraic approach was introduced in [1] to treat the problem

by using a particular class of distributions introduced first in [1] in the study of control

problems. We essentially follow this [1] approach.

Example: The discharging of a capacitor via a resistor, in Figure 1.2, can be modeled

by the system as shown below

x1 − x3 = u(t), C(ẋ3 − ẋ2) + x1 − x2

R
= 0, x3 = 0

where x1, x2, x3 denote the potentials in the different parts of the circuit. This system

can be reduced to the ordinary differential equation

ẋ2 = − 1
RC

x2 + 1
RC

u(t).

Let the input voltage u be defined by u(t) = u0 > 0 for t < 0 and u(t) = 0 for t ≥ 0.

Thus, we want to study the behavior of the circuit when we close a switch between x1 and

x3. As initial condition, we take x2(0) = u0. The differential equation can then be solved

separately for t < 0 and t > 0. Since both parts can be joined together into a continuous

function, we may view x2 defined by
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Figure 1.2: Discharging a capacitor.

x2 =


u0 for t < 0

u0e
−t/RC for t ≥ 0

as solution everywhere inR. This procedure can be formalized for linear differential equations

working with piecewise continuous forcing function and piecewise continuously differentiable

solutions. However, such a solution is not differentiable at points where the forcing function

is discontinuous.

1.4 Mathematical Structure and Index Concepts

Since a DAE involves a mixture of differentiable functions and algebraic equations, we may

hope that applying analytical differentiations to a given system and eliminating constraints

as needed will yield an explicit ODE system. This is true unless the DAE problem is singular.

The number of differentiations needed for this transformation is called the index of the DAE.

Thus, ODEs have index 0 .

We must specify m initial or boundary conditions to find the solution of a DAE of order
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m. Complex DAE systems most probably include ODE subsystems. Thus, the DAE system

will have l degrees of freedom, where l is anywhere between 0 and m [24].

It may be difficult to find the necessary information about the constraints needed to

solve the DAE system. Often the entire initial solution vector is known. Initial or boundary

conditions which are specified for the DAE must be consistent i.e they must satisfy the

constraints of the system. The important difference between index-1 and higher-index (index

greater than 1) is that DAE’s with higher-index include some hidden constraints (1.8b).

These hidden constraints (1.8b) are the derivatives of the explicitly stated constraints in the

system. Index-2 systems include hidden constraints which are the first derivative of explicitly

stated constraints. Higher-index systems include hidden constraints which correspond to

higher-order derivatives.

The most general form of a fully implicit DAE is given by

F (t, y, ẏ) = 0 (1.7)

where ∂F
∂ẏ

is the Jacobian matrix and may be singular. The rank and structure of the Jacobian

matrix may depend on the solution y(t), and for simplicity we will always assume that it

is independent of t. Consider the following special case of a semi-explicit DAE with hidden

constraints

ẋ = f(t, x, z) (1.8a)

0 = g(t, x, z) (1.8b)

The index for (1.7) is 1, if ∂g
∂z

is non-singular, because then one differentiation of (1.8b) yields

ż. For the semi-explicit index-1 DAE we can distinguish between differential variables x(t)

and algebraic variables z(t). The algebraic variables may be less smooth than the differential
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variables by one degree (e.g., the algebraic variables may be non-differentiable).

Generally, y in (1.7) may contain a mix of differential and algebraic components, which

makes the numerical solution of such high-index problems (see section 3.5) complex. DAE of

(1.7) can be written in the semi-explicit form (1.8) but with the index increased by 1, upon

defining ẏ = z, which gives

ẏ = z (1.9a)

0 = F (t, y, z) (1.9b)

The rearranged equations (1.9) does not make the problem easier to solve. Consider a

semi-explicit index-2 DAE system (1.10), where ẇ = z. It is easily shown that the system

ẋ = f(t, x, ẇ) (1.10a)

0 = g(t, x, ẇ) (1.10b)

is an index-1 DAE and yields exactly the same solution for x as (1.8). The class of fully

implicit index-1 DAEs of the form (1.7) and semi-explicit index-2 DAEs of the form (1.8)

are therefore equivalent.

In the analysis of linear differential-algebraic equations with constant coefficients (1.4),

all properties of the system can be determined by computing the invariants of the associated

matrix pair (E,A). In particular, the size of the largest Jordan block [25] to an infinite

eigenvalue in the associated Kronecker canonical form [25], called index, plays a major role

in the analysis and determines (at least in the case of so-called regular pairs) the smoothness

that is needed for the forcing function f in (1.4) to guarantee the existence of a classical

solution (Definition 1.1).
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Inspired by this case, it was first defined as an analogous index for linear time-varying

systems and then for general implicit systems, see [26]. However, it was soon realized that

a direct generalization by linearization and consideration of the local linearized constant

coefficient system does not lead to a reasonable concept. The reason is that important

invariants of constant coefficient systems are not even locally invariant under nonconstant

equivalence transformations (Definition 1.2). This observation led to a multitude of different

index concepts even for linear systems with variable coefficients, see [27].

The differentiation index is the minimum number of times that an equation (1.1) must

be differentiated with respect to t in order to determine x as a continuous function of t and

x. The procedure to solve the algebraic equations (using their derivatives if necessary) is by

transforming the implicit system (1.1) to an ordinary differential equation. Although the

concept of the differentiation index is widely used, it has a major drawback, since it is not

suited for over and underdetermined systems. The reason for this is that it is based on a

solvability concept that requires unique solvability. In our thesis, we will focus on the concept

of the strangeness index [18], [20], [21], [23], which generalizes the differentiation index to

over and underdetermined systems. We will not discuss other index concepts such as the

geometric index [17], the tractability index [7], [28], [29] or the structural index [30] in our

thesis. Perturbation index is of great importance in the numerical treatment of differential-

algebraic equations that was introduced in [8] to measure the sensitivity of solutions with

respect to perturbations of the problem. For a detailed analysis and a comparison of various

index concepts with the differentiation index, see [27], [31], [32], [33], [34], [35].

The purpose of index of DAE is to categorise different types of differential-algebraic

equations with respect to the difficulty to solve them analytically as well as numerically. In

view of the above classification aspect, the differentiation index was introduced to determine

how far the differential-algebraic equation is away from an ordinary differential equation, for
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which the analysis and numerical techniques are well established. However, pure algebraic

equations of (1.1) are equally well analyzed. Furthermore, it would certainly not make sense

to turn a uniquely solvable classical linear system Ax = b into a differential equation, since

the solution would not be unique anymore without specifying initial conditions. In view

of above discussion, it seems desirable to classify differential-algebraic equations by their

distance between system of ordinary differential equations and purely algebraic equations.

However, it can be concluded the index of an ordinary differential equation and that of a

system of algebraic equations should be the same.

1.5 Linear and Non-Linear DAEs

1.5.1 Linear DAEs with Constant Coefficients

Linear differencial-algebraic equations with constant coefficients are of the form

Eẋ = Ax+ f(t), (1.11)

with E, A ∈ Rm,n and f ∈ R(I, Rm), possibly together with an initial condition

x(t0) = x0. (1.12)

Such equations occur by linearization of autonomous nonlinear problems with respect to

constant (or critical) solutions, where f plays the role of a perturbation [36].
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Canonical forms [36]

The properties of the above equations (1.11) can be well understood in the works of

Weierstraß [31] and Kronecker [32]. In the following, we describe the main aspects of

solving equation (1.11) by purely algebraic techniques. Scaling (1.11) by a nonsingular

matrix P ∈ Rm,n, and the function x according to x = Qẋ with a nonsingular matrix

Q ∈ Rn,n, we obtain

Ẽ ˜̇x+ f̃(t), Ẽ = PEQ, Ã = PAQ, f̃ = Pf, (1.13)

which is again a linear differential-algebraic equation with constant coefficients. Moreover,

the relation x = Qx̃ gives a one-to-one correspondence between the corresponding solution

sets. This means that we can consider the transformed problem (1.13) instead of equation

(1.11) with respect to solvability. The following definition (1.2) of equivalence is now evident.

Definition 1.2. Two pairs of matrices (Ei, Ai), Ei,Ai ∈ Rm,n, i = 1, 2, are called (strongly)

equivalent if there exist nonsingular matrices P ∈ Rm,m and Q ∈ Rn,n, such that

E2 = PE1Q, A2 = PA1Q. (1.14)

If this is the case, we write (E1, A1) ∼ (E2, A2) [36].

Lemma 1.3. The relation introduced in Definition 1.2 is an equivalence relation.

Having defined the equivalence relation (Definition 1.2), the standard procedure is to look

for a canonical form, i.e. to look for a matrix pair (A in 1.14) which is equivalent to a given

matrix pair (E in 1.14) and which has a simple form from which we can directly read off the

properties and invariants of the corresponding differential-algebraic equation. In (1.14), such

a canonical form is represented by the so-called Kronecker [32] canonical form. We therefore

restrict ourselves to a special case i.e we present only the general result without proof. In
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the next section, we will derive a canonical form for linear differential-algebraic equations

with variable coefficients which will generalize the Kronecker [32] canonical form at least in

the sense that existence and uniqueness results can be obtained in the same way as from the

Kronecker canonical form for the case of constant coefficients.

Theorem 1.4. Let E, A ∈ Rm,n, then there exist nonsingular matrices P ∈ Rm,m and

Q ∈ Rn,n such that (for all λ ∈ R)

P (λE − A)Q = diag(Lε1, ......,Lεp,Mη1.....,Mηq,Jρ1, ......Jρr,Nσ1, .......Nσs) (1.15)

Where the block entries have the following properties:

1. Every entry Lεj is a bidiagonal block of size ε× (ε+ 1), εj ∈ N0, of the form

λ


0 1

. . . . . .

0 1

−


1 0
. . . . . .

1 0



2. Every entry Mηj is a bidiagonal block of size (ηj + 1)× ηj, ηj ∈ N0, of the form

λ



1

0 . . . . . .
. . . . . . 1

0


−



0

1 . . . . . .
. . . . . . 0

1


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3. Every entry : Jρj is a Jordan block of size ρj × ρj, ρj ∈ N, λj ∈ N, of the form

λ


1

. . . . . .

1

−

λj 1

. . . . . . 1

λj



4. Every entry : Nσj is a nilpotent block of size σj × σj, σj ∈ N, of the form

λ


0 1

. . . . . . 1

0

−


1
. . . . . .

1



The Kronecker canonical [36] form is unique up to permutation of the blocks, i.e., the kind,

size and number of the blocks are characteristic for the matrix pair (E,A) [36].

Definition 1.5. Let E, A ∈ Rm,n. The matrix pair (E,A) is called regular if m = n and

so-called characteristic polynomial p defined by

p(λ) = det(λE − A) (1.16)

is not zero polynomial. A matrix pair which is not regular is called singular [36].

Lemma 1.6. Every matrix pair which is strongly equivalent to a regular matrix (Definition

1.5) pair is regular [36].

Definition 1.7. Let the matrix pair (E,A) be regular and E,A ∈ Rn,n. Then

(E,A) ∼


I 0

0 N

 ,
J 0

0 I


 (1.17)
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where J is a matrix in Jordan canonical form [36] and N is a nilpotent matrix also in Jordan

canonical form. Moreover, it is allowed that one or the other block is not present [36].

Theorem 1.8. Let the pair of square matrices (E,A) be regular. Let P and Q be nonsingular

matrices which transform (1.11) and (1.12) to Weierstraß canonical form (E,A) [36] i.e.,

PEQ =

I 0

0 N

 , PAQ =

J 0

0 I

 , Pf =

f̃1

f̃2

 (1.18)

and set

Q−1x =

x̃1

x̃2

 , Q−1x0 =

 ˜x1,0

˜x2,0

 (1.19)

Furthermore, let v = ind(E,A) where ind is the index of the matrix pair and f ∈ Rv(I, Rn)

.Then we have the following:

1. The differential-algebraic equation (1.11) is solvable.

2. An initial condition (1.12) is consistent if and only if

x̃2,0 = −
v−1∑
i=0

N if̃
(i)
2 (t0)

In particular, the set of consistent initial values x0 is nonempty.

3. Every initial value problem with consistent initial condition is uniquely solvable [36].

Theorem 1.9. Let E, A ∈ Rm,n and suppose that (E,A) is a singular matrix pair.

1. If rank (λE − A) < n for all λ ∈ R, then the initial value problem

Eẋ = Ax, x(t0) = 0 (1.20)
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has a nontrivial solution.

2. If rank (λE − A) = n for some λ ∈ R and hence m > n, then there exist arbitrarily

smooth forcing function f for which the corresponding differential algebraic equation

is not solvable [36].

1.5.2 Linear DAEs with variable coefficients

Linear differencial-algebraic equations with variable coefficients are of the form

E(t)ẋ = A(t)x+ f(t), (1.21)

with E, A ∈ R(I, Rm,n) and f ∈ C(I, Rm), again possibly together with an initial condition

[36]

x(t0) = x0. (1.22)

Canonical forms [36]

Comparing with the case of constant coefficients in previous section , in view of Theorem 1.8,

an obvious idea in dealing with (1.21) for m = n would be requiring regularity of the matrix

pair (E(t), A(t)) for all t ∈ I. Unfortunately, this does not guarantee unique solvability

of the initial value problem. Moreover, it turns out that these properties are completely

independent of each other.

Definition 1.10. Two pairs (Ei, Ai), Ei, Ai ∈ R(I, Rm,n), i = 1, 2, of matrix functions

are called (globally) equivalent if there exist pointwise nonsingular matrix functions P ∈

R(I, Rm,m) and Q ∈ R1(I, Rn,n) such that

E2 = PE1Q, A2 = PA1Q− PE1Q̇ (1.23)
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as equality of functions. We again write (E1, A1) ∼ (E2, A2) [36].

Lemma 1.11. The relation introduced in Definition 1.10 is an equivalence relation.

Definition 1.12. Two pairs of matrices (Ei, Ai), Ei, Ai ∈ Rm,n i = 1, 2, are called (locally)

equivalent if there exist matrices P ∈ Rm,m and Q,R ∈ Rn,n where P,Q are nonsingular,

such that

E2 = PE1Q, A2 = PA1Q− PE1R (1.24)

Again, we write (E1, A1) ∼ (E2, A2) and distinguish from the equivalence relation in

Definition 1.9 by the type of pairs (matrix or matrix function) [36].

Lemma 1.13. The relation introduced in Definition 1.12 is an equivalence relation.

Definition 1.14. Let E,A ∈ Rm,n and introduce the following spaces and matrices:

T basis of kernel E,

Z basis of corange E = kernel EH ,

T ′ basis of cokernel E = range EH ,

V basis of corange (ZH A T)

Then the quantities

r = rankE, (rank)

a = rank(ZHAT ) (algebraicpart)

a = rank(V HZHAT ′) (strangeness)

d = r − s, (differentialpart)
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u = n− r − a, (undeterminedvariables)

v = m− r − a− s, (vanishingequations)

are invariant under (1.24), and (E,A) is (locally) equivalent to the canonical form





Is 0 0 0

0 Id 0 0

0 0 0 0

0 0 0 0

0 0 0 0


,



0 0 0 0

0 Id 0 0

0 0 Ia 0

Is 0 0 0

0 0 0 0







s

d

a

s

v


, (1.25)

where all diagonal blocks with the exception of the last block are square and the column in

the last block in both matrices (1.25) has size u [36].

Theorem 1.15. Let E ∈ Rl(I, Rm,n), l ∈ N0 ∪ {∞} , with rank E(t) = r for all t ∈ I. Then

there exist pointwise unitary (and therefore nonsingular) functions U ∈ Rl(I, Rn,n) , such

that

UHEV =

∑ 0

0 0

 (1.26)

with pointwise nonsingular ∑ ∈ C l(I,Cr,r) [36].

Theorem 1.16. Let E,A ∈ R(I, Rm,n) be sufficiently smooth and suppose that

r(t) ≡ r, a(t) ≡ a, s(t) ≡ s (1.27)

for the local characteristic values of (E(t), A(t)). Then, (E,A) is globally equivalent to the
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canonical form 



Is 0 0 0

0 Id 0 0

0 0 0 0

0 0 0 0

0 0 0 0


,



0 A12 0 A14

0 0 0 A24

0 0 Ia 0

Is 0 0 0

0 0 0 0







s

d

a

s

v


, (1.28)

All entries Aij are again matrix functions on I and the column in the last block of both

matrix functions of (1.28) has size u = n− s− d− a [36].

Theorem 1.17. Assume that the pairs (E,A) and (Ẽ, Ã) of matrix functions are (globally)

equivalent and in global canonical form (1.28). Then the modified pairs (Emod, Amod) and

( ˜Emod, ˜Amod) obtained by passing from (1.28) are also (globally) equivalent [36].

Definition 1.18. Let (E,A) be a pair of sufficiently smooth matrix functions. Let the

sequence (ri, ai, si), i ∈ N0, be well defined. In particular, let (1.27) hold for every entry

(Ei, Ai) of the above sequence. Then, we call

µ = min{i ∈ N0|si = 0} (1.29)

the strangeness index of (E,A) in (1.21). In case that µ = 0 we call (E,A) in (1.21)

strangeness-free [36].

Theorem 1.19. Let the strangeness index µ of (E,A) as in (1.29) be well defined (i.e., let

(1.27) hold for every entry (Ei, Ai ) of the above sequence and let f ∈ Rµ(I, Rm). Then the

differential-algebraic equation (1.21) is equivalent (in the sense that there is a one-to-one

correspondence between the solution spaces via a pointwise nonsingular matrix function) to
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a differential-algebraic equation of the form

ẋ1 = A13(t)x3 + f1(t), dµ (1.30a)

0 = x2 + f2(t), aµ (1.30b)

0 = f3(t), vµ (1.30c)

where A13 ∈ R(I, Rdµ,uµ), and the forcing function f1, f2, f3 are determined by f 0, ...., fµ [36].

Corollary 1.20. Let the strangeness index µ of (E,A) as in (1.29) be well defined and let

f ∈ Rµ+1(I, Rm). Then we have:

1. The problem (1.21) is solvable if and only if the vµ functional consistency conditions

f3 = 0 (1.31)

are fulfilled.

2. An initial condition (1.22) is consistent if and only if in addition the aµ conditions

x2(t0) = −f2(t0) (1.32)

are implied by (1.22).

3. The corresponding initial value problem is uniquely solvable if and only if in addition

uµ = 0 (1.33)

Observe that the stronger assumption on the smoothness of the forcing function, i.e., that

f ∈ Rµ+1(I, Rm) rather than f ∈ Rµ(I, Rm), is only used to guarantee that x2 is continuously
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differentiable. The structure of (1.30), however, suggests that it is sufficient to require only

continuity for the parts x2 and x3 of the solution [36].

Lemma 1.21. Let the strangeness index µ of (E,A) as in (1.29) be well defined. Let the

process leading to Theorem 1.19 yield a sequence (Ei, Ai), i ∈ N0, with characteristic values

(ri, ai, si, di, ui, vi) according to the quantities in Definition 1.14 and

(Ei, Ai) ∼





Isi 0 0 0

0 Idi 0 0

0 0 0 0

0 0 0 0

0 0 0 0


,



0 Ai12 0 Ai14

0 0 0 Ai24

0 0 Iai 0

Isi 0 0 0

0 0 0 0







si

di

ai

si

vi


, (1.34)

where the last block column in both matrix functions has size ui. Defining

b0 = a0, bi+1 = rankA(i)
14 (1.35a)

c0 = a0 + s0, ci+1 = rank
[
A

(i)
12 A

(i)
12

]
(1.35b)

w0 = v0, wi+1 = vi+1 − v − i (1.35c)
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we have

ri+1 = ri − si, (1.36a)

ai+1 = ai + si + bi+1 = c0 + ....+ ci+1 − si+1, (1.36b)

si+1 = ci+1 − bi+1, (1.36c)

di+1 = ri+1 − si+1 = di − si+1, (1.36d)

wi+1 = si − ci+1, (1.36e)

ui+1 = u0 − b1 − ....− bi+1, (1.36f)

vi+1 = v0 + w1 − ....+ wi+1, (1.36g)

(1.36h)

Theorem 1.22. Let the strangeness index µ of (E,A) as in (1.29) be well defined [36].

Then, (E,A) is (globally) equivalent to a pair of the form




Idµ 0 W

0 0 F

0 0 G

 ,


0 ∗ 0

0 0 0

0 0 Iaµ



 , (1.37)

with

F =


0 Fµ ∗

. . . . . . F1

. . . 0

 , G =


0 Gµ ∗

. . . . . . G1

. . . 0

 (1.38)

where Fi and Gi have sizes wi × ci−1 and ci × ci−1, respectively, with wi,ci as in (1.27),
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and W = [0 · · · ] is partitioned accordingly. In particular, Fi and Gi together have full

row rank, i.e.,

rank

Fi
Gi

 = ci + wi = si−1 6 ci−1 (1.39)

1.5.3 Nonlinear differential-algebraic equations

In general nonlinear systems of differential-algebraic equations are of the form

F (t, x, ẋ) = 0 (1.40)

However, we first study the case where, the number of equations equals the number of

unknowns. Thus, we consider with F ∈ R(I×Dx ×Dẋ,Rn) with Dx,Dẋ ⊆ Rn open. Again,

we may have an initial condition

x(t0) = x0. (1.41)

together with (1.40) [36] [37].

Existence and uniqueness of solutions [36]

A typical approach to analyze nonlinear problems is to use the implicit function theorem

in order to show that a (given) solution is locally unique. To apply the implicit function

theorem, one must require that for the given solution the Fréchet derivative of the underlying

nonlinear operator is regular (i.e., has a continuous inverse). Using the Fréchet derivative

it can be interpreted as linearization of the nonlinear problem. In (1.40) the linearization

will lead to linear differential-algebraic equations with variable coefficients. Also, we must

deal with inflated systems that are obtained by successive differentiation of the original
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equation with respect to time. We are then concerned with the question that how these

differentiated equations and their linearizations look like. We must investigate whether these

two processes (differentiation and linearization) commute, i.e., whether it makes a difference

first to differentiate and then to linearize or vice versa.

Theorem 1.23. Let E ∈ Rl(D,Rm,n), l ∈ N0∪{∞} , with rank E(x) = r for all x ∈M ⊆ Rk.

For every x̂ ∈ M there exist a sufficiently small neighborhood V ⊆ D of x̂ and matrix

functions T ∈ Rl(V,Rn,n−r), Z ∈ Rl(V,Rm,m−r) with pointwise orthonormal columns such

that

ET = 0, ZTE = 0 (1.42)

on M

Definition 1.24. Given a differential-algebraic equation as in (1.40), the smallest value of

µ is called the strangeness index of (1.40). If µ = 0, then the differential-algebraic equation

is called strangeness-free. The definition of the strangeness index for a nonlinear differential-

algebraic equation is a straightforward generalization of the strangeness index for a linear

differential-algebraic equation.

Assumption 1.25. The function f : Rn × Df × If → Rk is continuous on the open set

Rn ×Df × If ⊆ Rn × Rm × R and has continuous partial derivatives fy, fx with respect to

the first two variables y ∈ Rn, x ∈ Df .

The function d : Df × If → Rn is continuously differentiable.

DAEs in the form (1.40) arise, for instance, in circuit simulation by means of the modified

nodal analysis. Involving the derivative (1.40) by means of an extra function into the DAE

brings benefits in view of solvability.

Definition 1.26. A solution x∗ of equation (1.40) is a continuous function defined on an

interval I∗ ⊆ If , with values x∗(t) ∈ Df , t ∈ Is , such that the function u∗(.) := d(x∗(.), .)

is continuously differentiable, and x∗ satisfies the DAE (1.40) pointwise on I∗.
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In general, if a DAE is solvable then it means their exist a solution for the given DAE.

In contrast, mostly in the literature on DAEs, solvability of a DAE means the existence of

a continuously differentiable function satisfying the DAE pointwise. As for linear DAEs, we

can expect lower smoothness solvability results for for nonlinear DAEs (1.40).

1.6 Linear and Non-Linear Filtering of DAEs

1.6.1 Kalman Filter for Linear System

The linear discrete-time Kalman filter provides an algorithm that is optimal for filtering noise.

This subsection presents the Kalman filter algorithm for a linear discrete-time system. There

exists a Kalman filter which can be applied on linear continuous-time systems and hybrid

systems. A system is called hybrid if the process is continous and the measurements are

available at discrete times, these systems are also known as continuous-discrete. It should be

noted that a system with a continuous process may be transformed into a discrete system.

Given:

ẋ = Ax, x(0) = xinitial (1.43)

then a discrete-time system is defined as

xk = exp(hkA)xk−1, x0 = xinitial, (1.44)

where the time between xk and h = tk − tk−1 Given a linear discrete-time system:

xk = Akxk−1 + wk, (1.45a)

yk = Hkxk + vk. (1.45b)
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where xk ∈ R is the state at time k, Ak ∈ Rn×n is the process matrix at time k, yk ∈ Rm is

the measurement at time k, Hk ∈ Rm×n is the measurement matrix at time k. The noises,wk

and vk, are white, zero-mean, uncorrelated and have known covariance matrices Qk and Rk

wk ∼ N(0, Qk) (1.46a)

vk ∼ N(0, Rk) (1.46b)

E[wkwTj ] =


Qk k = j

0 k 6= j

(1.46c)

E[vkvTj ] =


Rk k = j

0 k 6= j

(1.46d)

E[wkvTj ] = 0 (1.46e)

The discrete-time Kalman filter can be applied on the above system (1.49) to filter out the

noise and provide an optimal estimate of the true state. After initialization, the algorithm

progresses one time step at a time, using only the updated estimates from the previous step,

along with the given information about the system. Each time step has two phases, the

predict phase and the update phase. The predicted (pre-updated) estimates are indicated

by a minus sign in the superscript and the updated estimates are indicated by a plus sign in

the superscript. Below is the Kalman filter algorithm:

Initialize:

x̂+
0 = E(x0)

P+
0 = E[(x0 − x̂+

0 )(x0 − x̂+
0 )T ]
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1. Predict phase:

(a) Predict state estimate

x̂−k = Akx̂
+
k−1

(b) Predict estimate covariance

P−k = AkP
+
k−1 +Qk

2. Update phase:

(a) Obtain the optimal Kalman gain,

Kk = P−k H
T
k−1(Hk−1P

−
k H

T
k−1 +Rk)−1

(b) Update state estimate

x̂+
k−1 = x̂−k +Kk(yk −Hkx̂

−
k )

(c) Update estimate covariance

P+
k = (I −KkHk)P−k

The Kalman filter is applied recursively to produce state estimates x+
1 , x

+
1 , .... at times

t = 1, 2, .... The outputs of the Kalman filter can be tuned by changing the covariance

matrices Q and R. If the measurement is to be trusted more than the model then the norm

‖R‖ should be lower than ‖Q‖ and vice versa, the greater the trust in the measurement

over the model the greater the ratio ‖Q‖/‖R‖. The formula forP+
k may be replaced by the
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so-called Joseph stabilized version

P+
k = (I −KkHk)P−k (I −KkHk)T +KkRkK

T
k

This is the original equation for covariance derived in [38]. The Joseph stabilized version is

more robust and stable [38] and guarantees that despite numerical inaccuracies P+
k will be

symmetric and positive-definite as long as P−k and Rk are. For more information see [38].

1.6.2 Kalman Filter for Nonlinear System

The algorithm presented in the previous section is only applicable on linear systems.

However, many systems are nonlinear. This section discusses generalizations of the

standard Kalman filter: the Extended Kalman Filter (EKF). Other such generalizations

exist such as Unscented Kalman Filter (UKF), Particle Filter/Sequential Monte Carlo,

Ensemble Kalman Filter and Iterative Extended Kalman Filter [38].

Extended Kalman Filter

The Extended Kalman filter is a generalization of the Kalman Filter to nonlinear systems.

The EKF requires the Jacobian matrices of the nonlinear process and measurement functions

with respect to the state and noise to be available. The idea of the EKF is to linearize at

each time step and treat the system as a time-varying linear system. Suppose we have a
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non-linear discrete time system:

xk = f(tk, xk−1, wk) (1.47a)

yk = h(tk, xk, vk) (1.47b)

wk ∼ N(0, Qk) (1.47c)

vk ∼ N(0, Rk) (1.47d)

(1.47e)

The noises, wk and vk, are allowed to act nonlinearly on the process and measurement. Below

is the Extended Kalman filter algorithm:

Initialize:

x̂+
0 = E(x0)

P+
0 = E[(x0 − x̂+

0 )(x0 − x̂+
0 )T ]

1. Predict phase:

(a) Predict state estimate

x̂−k = f(tk, ˆxk−1, 0).

(b) Compute the Jacobians to linearize the process.

Ak = ∂f

∂x

∣∣∣∣∣
(tk,x+

k−1,0)
and Lk = ∂f

∂w

∣∣∣∣∣
(tk,x+

k−1,0)

(c) Predict estimate covariance,

P−k = AkP
+
k−1A

T
k + LkQkL

T
k
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2. Update phase

(a) Compute the Jacobians to linearize the measurement,

Hk = ∂h

∂x

∣∣∣∣∣
(tk,x−

k
,0)

and Mk = ∂h

∂w

∣∣∣∣∣
(tk,x−

k
,0)

(b) Obtain the optimal Kalman gain,

Kk = P−k H
T
k−1(HkP

−
k H

T
k +MkRkM

T
k )−1

(c) Update state estimate

x̂+
k = x̂−k +Kk(yk − h(tk, x̂−k , 0))

(d) Update estimate covariance,

P+
k = (I −KkHk)P−k

The EKF uses a first-order approximation to obtain a linear estimate to the system. This

is a clear limitation and as it may fail to provide a good estimate when the system is highly

nonlinear. Higher order approximations exist and can be used to obtain better estimates.

This is the idea behind the Iterated EKF and the Second-Order EKF, a discussion of these

is beyond the scope of this thesis but for more information see [38].
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1.7 Applications of DAEs

1. Multibody systems is one area, in which methods for solving DAEs are of special

interest. A multibody system is a mechanical system, that consists of one or more

bodies. The bodies can either be rigid or elastic. They can have a mass and/or a

torque. Somehow they are connected with each other. These mass-less connections

can either be force-elements, like springs, dampers or friction, or non-elastic joints, i.e.

translational or rotational joints. Examples of such systems are The multibody truck,

the pendulum [39]

2. DAEs in Energy System Models consists of technical installations in which fluids are

employed to transport energy between the mechanical devices and thereby determine

the work of the installation. Common examples of energy systems are power plants,

combustion engines, refrigerators, air conditioning, district heating and many

industrial production processes. The devices used in energy systems are for instance

heat exchangers, pumps, turbines, valves, compressors and fans. Many models of

these systems are used for optimization and steady state operation, but more often

dynamic simulation are of interest [39].

3. Modeling on DAEs contributes to systems of rigid bodies, network, electrical circuits,

chemical reactionns and discretization of PDEs [40].

4. One of the ways that differential algebraic equations (DAEs) naturally arise is with

tracking problems. A robotics example is explained in details in [41].

5. Applications occurring in path planning tasks for mobile robots and vehicle dynamics

which involve differential algebraic equations (DAEs). The modeling aspects and

issues arising from the DAE formulation such as hidden constraints, determination of
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algebraic states, and consistency is best explained with exmple in [41]

6. Systems of Differential Algebraic Equations in Computational Electromagnetics.

Starting from space-discretisation of Maxwell’s equations, various classical

formulations are proposed for the simulation of electromagnetic fields. They differ in

the phenomena considered as well as in the variables chosen for discretisation [41].

7. Gas Network Benchmark Models. The simulation of gas transportation networks

becomes increasingly more important as its use involve more complex applications.

Classically, the purpose of the gas network was the transportation of predominantly

natural gas from a supplier to the consumer for long-term scheduled volumes. With

the rise of renewable energy sources, gas-fired power plants are often chosen to

compensate for the fluctuating nature of the renewables, due to their on-demand

power generation capability. Such a short-term plannable supply and demand setting

requires sophisticated simulations of the gas network prior to the dispatch to ensure

the supply of all customers for a range of possible scenarios and to prevent damages

to the gas network [41].

8. Topological Index Analysis Applied to Coupled Flow Networks. The multi-physical

model consists of (simple connected) networks of different or the same physical type

(liquid flow, electric, gas flow, heat flow) which are connected via interfaces or coupling

conditions. Since the individual networks result in differential algebraic equations

(DAEs), the combination of them gives rise to a system of DAEs. While for the

individual networks existence and uniqueness results, including the formulation of index

reduced systems, is available through the techniques of modified nodal analysis or

topological based index analysis, topological results for coupled system are not available

so far [41].
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9. Nonsmooth DAEs with Applications in Modeling Phase Changes. A variety of

engineering problems involve dynamic simulation and optimization, but exhibit a

mixture of continuous and discrete behavior. Such hybrid continuous/discrete

behavior can cause failure in traditional methods; theoretical and numerical

treatments designed for smooth models may break down. Recently it has been

observed that, for a number of operational problems, such hybrid continuous/discrete

behavior can be accurately modeled using a nonsmooth differential-algebraic

equations (DAEs) framework, now possessing a foundational well-posedness theory

and a computationally relevant sensitivity theory. Numerical implementations that

scale efficiently for large-scale problems are possible for nonsmooth DAEs. Moreover,

this modeling approach avoids undesirable properties typical in other frameworks

(e.g., hybrid automata); in this modeling paradigm, extraneous (unphysical) variables

are often avoided, unphysical behaviors (e.g., Zeno phenomena) from modeling

abstractions are not prevalent, and a priori knowledge of the evolution of the physical

system (e.g., phase changes experienced in a flash process execution) is not

needed [41].

1.8 Thesis Contribution and Organization

In this thesis, both theory and numerical methods for the solving DAEs have been studied.

In particular, we provide a systematic and detailed analysis of initial and boundary value

problems for differential-algebraic equations. We also discuss numerical methods and

simulation software for finding the solution of DAE systems. This includes linear and

nonlinear systems, over and underdetermined systems as well as control problems.

The goals of the thesis are:
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• Goal 1: Solvability concepts of DAE have been studied and DAE index has been

described. Literature review of Linear and nonlinear DAE has been mentioned.

Filtering techniques of DAEs have been summarized.

• Goal 2: Numerical methods for solving DAEs have been described. Simulation

software for numerical solution of DAE have been studied. Studied and described the

ways to use software packages to solve DAE with IVP, BVP and through order

reduction technique.

• Goal 3: Implementation of MapleSoft and Mathematica software packages for solution

of complex DAE system via various integration algorithms.

• Goal 4: Nonlinear filtering technique of DAE, known as EKF has been studied through

an example.

• Goal 5: Recommendation of the simulation packages based on the index of DAE has

been concluded. Preference of the simulation package based on the required solution

of the DAE has been described.

The thesis is organized as follows:

• Chapter 1 discuss the basic introduction to ordinary differential equations and

differential algebraic equations. Index and solvability concepts of Linear and

Non-linear DAEs have been discussed. Some of the application of DAEs are also

mentioned. Provides with insights into filtering of DAEs. It also states the objective

and organization of the thesis.

• Chapter 2 provides the description of DAE solutions. Different methods have been

studied in the thesis for numerical solution of DAEs. Inspection of simulation software

used for solving complex DAEs are also discussed.
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• Chapter 3 provides the comparision of DAE system solvers using simulation software

such as MapleSoft, Mathematical and Matlab.

• Chapter 4 discusses the filtering methods used in DAE system. Kalman filtering for

linear and non linear system is discussed with an example to illustrate the need of

filtering the semi-explicit index-1 DAE system.

• Chapter 5 provides the conclusion of the thesis
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Chapter 2

Solutions of Differential Algebraic

Equations

2.1 Numerical Methods for Solving DAE

2.1.1 Runge-Kutta Methods for DAE [44]

The most widely known member of the Runge–Kutta family is generally referred to as ”RK4”,

the ”classic Runge–Kutta method” or simply as ”the Runge–Kutta method”. Consider a

following initial value problem, where y is an unknown function (scalar or vector) of time t,

which we would like to approximate, the rate at which y changes is a function of t and of y

itself, be specified as:

ẏ = f(t, y), y ∈ Rn, f : Rn → Rn

y(t0) = y0
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The function f and the initial conditions t0, y0 are assumed to be given. Consider step-size

h > 0 and RK4 methods is defined for n = 0, 1, 2, 3, ...,

yn+1 = yn + 1
6h (k1 + 2k2 + 2k3 + k4) ,

tn+1 = tn + h

where

k1 = f(tn, yn),

k2 = f

(
tn + h

2 , yn + h
k1

2

)
,

k3 = f

(
tn + h

2 , yn + h
k2

2

)
,

k4 = f (tn + h, yn + hk3) .

In the above equation, yn+1 is the RK4 approximation of y(tn+1), and the next value (yn+1) is

determined by the present value (yn) plus the weighted average of four increments, where each

increment is the product of the size of the interval h, and an estimated slope (k1, k2, k3, k4)

specified by function f on the right-hand side of the differential equation are defined as:

1. k1 is the slope at the beginning of the interval, using y (Euler’s method);

2. k2 is the slope at the midpoint of the interval, using y and k1;

3. k3is again the slope at the midpoint, but now using y and k2;

4. k4 is the slope at the end of the interval, using y and k3.

In averaging the four slopes, greater weight is given to the slopes at the midpoint. If f is

independent of y, so that the differential equation is equivalent to a simple integral, then

RK4 is known Simpson’s rule [42].
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The RK4 method is a fourth-order method, where the local truncation error is of the order

of O(h5), while the total accumulated error is of the order of O(h4).

In many practical applications the function f is independent of t (so called autonomous

system, or time-invariant system, especially in physics), and their increments are not

computed at all and not passed to function f , with only the final formula for tn+1 used [42].

Collocation methods [43]

Collocation method is a method for the numerical solution of ODE, PDE and integral

equations. The idea is to choose a finite-dimensional space of candidate solutions (usually

polynomials up to a certain degree) and a number of points in the domain (called

collocation points), and to select that solution which satisfies the given equation at these

collocation points [43].

Consider the following ODE which is to be solved over the interval [t0, t0 + ckh]. The

corresponding (polynomial) collocation method approximates the solution y by the

polynomial p of degree n which satisfies the initial condition p(t0) = y0, and the differential

equation ṗ(tk) = f(tk, p(tk)) at all collocation points tk = t0 + ckh for k = 1, . . . , n. This

gives n+ 1 conditions, which matches the n+ 1 parameters needed to specify a polynomial

of degree n.

ẏ(t) = f(t, y(t)), y ∈ Rn, f : Rn → Rn

y(t0) = y0

Choose ck from 0 ≤ c1 < c2 < . . . < cn ≤ 1.

All these collocation methods are in fact implicit Runge–Kutta methods. The coefficients ck

in the Butcher tableau [24] of a Runge–Kutta method are the collocation points. However,
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not all implicit Runge–Kutta methods are collocation methods [42].

Example: The trapezoidal rule

Consider the following example where the two collocation points are c1 = 0 and c2 = 1(so

n = 2). The collocation conditions are

p(t0) = y0

p′(t0) = f(t0, p(t0))

p′(t0 + h) = f(t0 + h, p(t0 + h))

There are three conditions, so p should be a polynomial of degree 2. Consider p is written

in the form

p(t) = α(t− t0)2 + β(t− t0) + γ

to simplify the computations. Then the collocation conditions can be solved to give the

coefficients

α = 1
2h

(
f(t0 + h, p(t0 + h))− f(t0, p(t0))

)
β = f(t0, p(t0))

γ = y0

The collocation method is now given (implicitly) by

y1 = p(t0 + h) = y0 + 1
2h
(
f(t0 + h, y1) + f(t0, y0)

)

where y1 = p(t0 + h) is the approximate solution at t = t0 + h.

This method is known as the ”trapezoidal rule” for differential equations. Indeed, this
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method can also be derived by rewriting the differential equation as

y(t) = y(t0) +
∫ t

t0
f(τ, y(τ)) dτ

and approximating the integral on the right-hand side by the trapezoidal rule for integrals.

Explicit Runge–Kutta methods [42]

The family of explicit Runge–Kutta methods is a generalization of the RK4 method. It is

given by

yn+1 = yn + h
s∑
i=1

biki,

where

k1 = f(tn, yn),

k2 = f(tn + c2h, yn + h(a21k1)),

k3 = f(tn + c3h, yn + h(a31k1 + a32k2)),
...

ks = f(tn + csh, yn + h(as1k1 + as2k2 + · · ·+ as,s−1ks−1)).

To specify a particular method, one needs to provide the integer s (the number of stages),

and the coefficients aij (for 1 ≤ j < i ≤ s), bi (for i = 1, 2, ..., s) and ci (for i = 2, 3, ..., s).

The matrix [aij] is called the Runge–Kutta matrix, while the bi and ci are known as the

weights and the nodes. These data are usually arranged in a mnemonic device, known as a

Butcher tableau (after John C. Butcher):
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A Taylor series expansion shows that the Runge–Kutta method is consistent if and only

if
s∑
i=1

bi = 1

There are also accompanying requirements if one requires the method to have a certain

order p, meaning that the local truncation error is O(hp+1). These can be derived from the

definition of the truncation error itself. For example, a two-stage method has order 2 if

b1 + b2 = 1, b2c2 = 1/2, and b2a21 = 1/2. Note that a popular condition for determining

coefficients is
i−1∑
j=1

aij = ci for i = 2, . . . , s

This condition alone, however, is neither sufficient, nor necessary for consistency [42].

In general, if an explicit s-stage Runge–Kutta method has order p, then it can be proven

that the number of stages must satisfy s ≥ p, and if p ≥ 5, then s ≥ p + 1. However, it is

not known whether these bounds are sharp in all cases; for example, all known methods of

order 8 have at least 11 stages, though it is possible that there are methods with fewer

stages. (The bound above suggests that there could be a method with 9 stages; but it

could also be that the bound is simply not sharp.) Indeed, it is an open problem what the

precise minimum number of stages s is for an explicit Runge–Kutta method to have order p
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in those cases where no methods have yet been discovered that satisfy the bounds above

with equality. Some values which are known are:

p 1 2 3 4 5 6 7 8

min s 1 2 3 4 6 7 9 11

The provable bounds above then imply that we can not find methods of orders p = 1, 2, . . . , 6

that require fewer stages than the methods we already know for these orders. However, it is

conceivable that we might find a method of order p = 7 that has only 8 stages, whereas the

only ones known today have at least 9 stages as shown in the above.

Implicit Runge–Kutta methods [42]

Explicit Runge–Kutta methods are generally unsuitable for the solution of stiff equations

because their region of absolute stability is small, in particular, it is bounded. This issue is

especially important in the solution of partial differential equations.

The instability of explicit Runge–Kutta methods motivates the development of implicit

methods. An implicit Runge–Kutta method has the form

yn+1 = yn + h
s∑
i=1

biki

where

ki = f

tn + cih, yn + h
s∑
j=1

aijkj

 , i = 1, . . . , s

The difference with an explicit method is that in an explicit method, the sum over j only

goes up to i− 1. This also shows up in the Butcher tableau the coefficient matrix aij of an

explicit method is lower triangular. In an implicit method, the sum over j goes up to s and
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the coefficient matrix is not triangular, yielding a Butcher tableau of the form:

c1 a11 a12 . . . a1s

c2 a21 a22 . . . a2s
... ... ... . . . ...

cs as1 as2 . . . ass

b1 b2 . . . bs

b∗1 b∗2 . . . b∗s

=
c A

bT

The consequence of this difference is that at every step, a system of algebraic equations

has to be solved. This increases the computational cost considerably. If a method with s

stages is used to solve a differential equation with m components, then the system of algebraic

equations has ms components. This can be contrasted with implicit linear multistep methods

(the other big family of methods for ODEs): an implicit s-step linear multistep method needs

to solve a system of algebraic equations with only m components, so the size of the system

does not increase as the number of steps increases [42].

The Segregated Runge–Kutta Method [44]

The Segregated Runge–Kutta (SRK) method[1] is a family of IMplicit–EXplicit (IMEX)

Runge–Kutta methods that were developed to approximate the solution of differential

algebraic equations (DAE) of index 2. Consider an index 2 DAE defined as follows:

ẏ(t) = f(y(t), z(t)),

0 = g(y(t))
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where y(t) ∈ Rn, z(t) ∈ Rm, f : Rn+m → Rn and g : Rn → Rm.

In the above equations, y is known as the differential variable, while z is known as the

algebraic variable. The time derivative of the differential variable, ẏ depends on itself y on

the algebraic variable z and on the time t. The second equation can be seen as a constraint

on differential variable y [44].

Let us take the time derivative of the second equation. Assuming that the function g is

linear and does not depend on time, and that the function f is linear with respect to z, we

have that

0 = ġ(y) = g(ẏ) = g(f(y, z)) = g(f(y) + f(z)) = g(f(y)) + g(f(z)))

A Runge–Kutta time integration scheme is defined as a multistage integration in which each

stage is computed as a combination of the unknowns evaluated in other stages. Depending

on the definition of the parameters, this combination can lead to an implicit scheme or an

explicit scheme. Implicit and explicit schemes can be combined, leading to IMEX schemes.

Suppose that the function f can be split into two operators F and G such that

ẏ(t) = F(y(t)) + G(y(t), z(t)),

where F(y(t)) and G(y(t), z(t)) are the terms to be treated implicitly and explicitly,

respectively.

The SRK method is based on the use of IMEX Runge–Kutta schemes and can be defined

by the following scheme:

Given a time step size h > 0, at a time tn+1 = tn + h, for each Runge-Kutta stage i, with
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0 ≤ i ≤ s, solve:

yi = yn + h
i∑

j=1
aijF(yj) + h

i−1∑
j=1

âijG(yj, zj),

g(f(zi)) = −g(f(yi))

Update the variables at tn+1 solving:

yn+1 = yn + h
s∑
i=1

biF(yi) + h
s∑
i=1

b̂iG(yi, zi),

g(f(zn+1)) = −g(f(yn+1))

2.1.2 BDF-methods for DAE [47]

The backward differentiation formula (BDF) is a family of implicit methods for the numerical

integration of ordinary differential equations. They are linear multistep methods that, for a

given function and time, approximate the derivative of that function using information from

already computed time points, thereby increasing the accuracy of the approximation. These

methods are especially used for the solution of stiff differential equations. A BDF method is

used to solve the initial value problem.

The general formula for a BDF for an ODE of the form

ẏ = f(t, y), y(t0) = y0, y ∈ Rn, f : Rn → Rn

can be written as, where f is evaluated for the unknown yn+s and h denotes the step size

and tn = t0 + nh:
s∑

k=0
αkyn+k = hβf(tn+s, yn+s),
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The coefficients αk and β are chosen so that the method achieves order s, which is the

maximum possible. BDF methods are implicit and possibly require the solution of nonlinear

equations at each step.

The constant step-size BDF method applied to a nonlinear DAE of the form F (t, x, ẋ) = 0

where (t0 ≤ t ≤ tf ) and β0, αj, (j = 0, 1, ..., k, ) are the coefficients in the BDF method, is

given by

F

tn, xn, 1
β0h

k∑
j=0

αjxn−j

 = 0 (2.13)

It has been shown that the k-step BDF method of fixed step-size h is convergent of order

O(hk) if all initial values are correct to O(hk) and if the Newton iteration on each step is

solved to accuracy O(hk+1). [45]

2.2 Software for Numerical Solution of DAE

Due to the great importance of DAE in applications (see section 1.6), many of the numerical

techniques for differential-algebraic equations have been implemented in software packages.

In this section, we will describe about the available software packages to solve DAEs.

Most of the available software packages for differential-algebraic equations are FORTRAN

or C subroutine libraries and can be found via the internet from software repositories or

homepages. We have listed all relevant web addresses in below table (2.2). Following is the

description for Table 2.2:

1. Computational packages such as Maple(Table 2.2, 8) and Mathematica(Table 2.2,9)

contain calling routines/functions for the solution of differential-algebraic equations.

MAPLE uses the following routines/methods for solving DAE:

(a) rk45 dae
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(b) mebdfi

(c) ck45 dae

(d) Rosenbrock method for stiff problems.

Mathematica uses the following integration algorithms to solve DAE :

(a) Pantellides algorithm

(b) Structural Matrix

(c) Backward Differential Formula for stiff problems

(d) IDA(Implicit Differential Algebraic Solver)

(e) Projection Method

(f) Collocation Method

(g) Block Lower Triangular(BLT) Form

2. MEXAX(Table 2.2, 11) [46](short for MEXAnical systems eXtrapolation integrator)

is a Fortran code for time integration of constrained mechanical systems. MEXAX is

suited for direct integration of the equations of motion in descriptor form. It is based

on extrapolation of a time stepping method that is explicit in the differential equations

and linearly implicit in the nonlinear constraints. It only requires the solution of well-

structured systems of linear equations which can be solved with a computational work

growing linearly with the number of bodies, in the case of multibody systems with few

closed kinematic loops. Position and velocity constraints are enforced throughout the

integration interval, whereas acceleration constraints need not be formulated. MEXAX

has options for time-continuous solution representation (useful for graphics) and for

the location of events such as impacts.
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3. Following software packages are used for simulation of multibody systems:

(a) MBSSIM(Table 2.2,17) of von Schwerin and Winckler [47]

(b) ODASSL(Table 2.2,15) of Führer [48].

(c) GEOMS (Table 2.2,14) of Steinbrecher [49].

(d) MBSpack (Table 2.2,18) of Simeon [50]. Steinbrecher [49].

4. Software package COLDAE [51] is the collocation software for DAE with BVP.

COLDAE can solve boundary value problems for nonlinear systems of semi-explicit

differential-algebraic equations (DAEs) of index at most 2. Fully implicit index-1

boundary value DAE problems can be handled as well.

5. Software Packages maintained by E.Hairer(Table 2.2,10) are:

(a) RADAU5: solves DAE by 2-stage Radau IIA method.

(b) SDIRK4: solves DAE by a diagonally-implicit Runge–Kutta method of order 4.

(c) RODAS: solves DAE by a Rosenbrock method of order 4.

6. Software Packages maintained by SUNDIAls(Table 2.2,10) are:

(a) DASSL [52]: DASSL uses the backward differentiation formulas of orders 1

through 5 to solve a DAE system.

(b) DASPK [52]: daspk provides an interface to the FORTRAN DAE solver and uses

BDF method to solve DAE.

7. Software Packages maintained by Iavernaro and Mazzia [53]:

(a) GAMD : The code GAM numerically solves solves first order ordinary

differential equations, either stiff or nonstiff in the form y′ = f(x, y), with a
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given initial condition.The code GAMD is a generalization of GAM for the

solution of Differential Algebraic Equations of index less than or equal to 3 in

the form My′ = f(x, y), with a given initial condition. The methods used in

both codes are in the class of Boundary Value Methods (BVMs), namely the

Generalized Adams Methods (GAMs) of order 3,5,7,9 with step size control.

8. Special codes for multibody systems are available in commercial packages like Simpack

(19), ADAMS (20), or DYMOLA (21).

9. Following algorithms are used by J.R.Cash(Table 2.2, 12):

(a) MEBDFV: This solver is based on the modified extended backward

differentiation formulae of Cash [54]. It is especially suited for the solution of

differential-algebraic equations with time- and state-dependent mass matrix.

(b) MEBDFDAE: The code MEBDFDAE uses the Modified Extended Backward

Differentiation Formulas of Cash, that increase the absolute stability regions of

the classical BDFs.These methods are A-stable up to the order 4 . This

algorithm implements three-stage linear methods with the same Jacobian to be

used in the Newton iteration for all the stages.The current versions of this solver

for the solutions of ODEs are MEBDF and MEBDFSO,which is designed to

solve stiff IVP for very large sparse systems of ODEs.

10. GNU Octave(Table 2.2, 7) [55] is a high-level language, primarily intended for

numerical computations. Octave has extensive tools for solving common numerical

linear algebra problems, finding the roots of nonlinear equations, integrating ordinary

functions, manipulating polynomials, and integrating ordinary differential and

differential-algebraic equations. It is easily extensible and customizable via
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user-defined functions written in Octave’s own language, or using dynamically loaded

modules written in C++, C, Fortran, or other languages.

Table 2.1: Web paths for DAE Software

Remark 2.1. Many of the above mentioned algorithms are in the state of flux. The

iterative methods arise at every iteration step as well as with the use of differentiation

packages.The use of these iterative methods for the solution of the linear systems is to



2. Solutions of Differential Algebraic Equations 54

determine the necessary Jacobians. In the standard design of modern software packages

[56], the implementation of most of the above mentioned codes is based on existing basic

linear algebra subroutines BLAS, see [57], which are usually provided with the computer

architecture. BLAS uses high quality linear algebra packages such as LAPACK (1) or

SCALAPACK (1), see [58] and [59], respectively, for the solution of problems like the singular

value decomposition, linear system solution or the solution of least squares problems. A

possible solver for nonlinear problems is NLSCON (11), see [60]. Furthermore, in the solution

of the linear and nonlinear systems that arise in the time-stepping procedures, most of the

methods need appropriate scaling routines and the design of such routines is essential in

getting the codes to work.

Remark 2.2. Almost all of the above mentioned codes contain order and step size control

mechanisms. For BDF codes, order and step-size control is described in detail in [6] and for

Runge–Kutta methods are discussed in [61], [15].

2.3 Software Methods

2.3.1 MapleSoft: Differential-Algebraic Equations in Maple

MapleSoft uses the function dsolve to solve DAE’s. dsolve will be discussed further in this

section. Maple’s differential equation solvers employ advanced techniques to solve [62].

• Ordinary differential equations (ODEs): dsolve solves linear and nonlinear ODEs,

initial value problems (IVPs), and boundary value problems (BVPs). The ODE

Analyzer Assistant provides an interactive way to solve an ODE and plot the solution.

• Partial differential equations (PDEs): The function pdsolve finds exact solutions to

PDEs and uses Maple’s PDE tools to perform structural analysis and order reduction
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for PDE systems. pdsolve handles systems of time-dependent PDEs in one spatial

dimension with boundary conditions. pdsolve includes 11 standard methods for

numerically solving PDEs.

• Differential-Algebraic Equations (DAEs): dsolve uses order reduction and enable

Maple to solve high-index DAE problems:

Maple has four solver methods for handling DAEs:

1. Modified Runge-Kutta Fehlberg method:rk45 dae,

2. Cash-Karp Pair Runge-Kutta method:ck45,

3. Rosenbrock method,

4. Modified Extended Backward-Differentiation Implicit method:mebdfi.

dsolve [63]:

• Calling Sequence:

dsolve(DAEsys, numeric,method, vars, options)

• Parameters

DAEsys - differential algebraic equations

numeric - literal name; instruct dsolve to find a numerical solution

method - type of numerical method/algorithm to use. Default method is rk45 dae

vars - (optional) any indeterminate function of one variable, or a set or list of them,

representing the unknowns of the ODE problem

options - (optional) equations of the form keyword = value

procopts - options used to specify the ODE system using a procedure (procedure,

initial, start, number, and procvars).
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• Description:

– The dsolve command with the options numeric and method = rkf45 finds a

numerical solution using a Fehlberg fourth-fifth order Runge-Kutta method with

degree four. This is the default method of the type=numeric solution for initial

value problems when the stiff argument is not used. The other non-stiff method

is a Runge-Kutta method with the Cash-Karp coefficients, ck45.

– Modes of Operation:

∗ The rkf45 method has two distinct modes of operation (for procedure-type

outputs).

∗ With the range option : When used with the range option, the method

computes the solution for the IV P over the specified range, storing

the solution information internally, and uses that information to rapidly

interpolate the desired solution value for any call to the returned procedure.

Though possible, it is not recommended that the returned procedure be called

for points outside the specified range.

The storage of the interpolant solution used by this method can be disabled

by using the interpolation = false option. This is recommended for high

accuracy solutions where storage of the interpolant (in addition to the discrete

solution) requires too much memory.

∗ Without the range option: When used without the range option, the IV P

solution values are not stored, but rather computed when requested. Since,

not all solution values are stored, computation must restart at the initial

values whenever a point is requested between the initial point and the most

recently computed point (to avoid reversal of the integration direction), so it
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is advisable to collect solution values moving away from the initial value.

– Options

The following options are available for the rkf45 method.

∗ ’output’=keyword or array

∗ ’known’=name or list of names

∗ ’abserr’=numeric

∗ ’relerr’=numeric

∗ ’initstep’=numeric

∗ ’interr’=boolean

∗ ’maxfun’=integer

∗ ’number’=integer

∗ ’procedure’=procedure

∗ ’start’=numeric

∗ ’initial’=array

∗ ’procvars’=list

∗ ’startinit’=boolean

∗ ’implicit’=boolean

∗ ’optimize’=boolean

∗ ’compile’=boolean or auto

∗ ’range’=numeric..numeric

∗ ’events’=list

∗ ′event pre′=keyword

∗ ′event maxiter′=integer
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∗ ′event iterate′=keyword

∗ ′event initial′=boolean

∗ ′complex′=boolean

– output

∗ Specifies the desired output from dsolve. The keywords procedurelist,

listprocedure, or operator provide procedure-type output. The keyword

piecewise provides output in the form of piecewise functions over a specified

range of independent variable values.

– known

∗ Specifies user-defined known functions [63].

– abserr, relerr, and initstep

∗ Specifies the desired accuracy of the solution and the starting step size for the

method [63].The default values for rkf45 are abserr = 1e − 7 and relerr =

1e − 6. The value for initstep, if not specified, is determined by taking the

local behavior of the ODE system into account.

– interr

∗ By default, this is set to true. It controls the interpolant solution error to

integrate into error control. When set to false, areas where the solution

is varying rapidly (e.g. a discontinuity in a derivative due to a piecewise)

may have a much larger solution error than dictated by the specified error

tolerances. When set to true, the step size is reduced to minimize error in

regions where the solution is varying rapidly, but for problems where there is

a jump discontinuity in the variables, the integration may fail with an error

indicating that a singularity is present.
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– maxfun

∗ Specifies a maximum number of evaluations of the right-hand side of the first

order ODE system. This option is disabled by specifying maxfun = 0. The

default value for rkf45 is 30000.

– number, procedure, start, initial, and procvars

∗ These options are used to specify the IV P using procedures.

– startinit, implicit, and optimize

∗ These options control the method and behavior of the computation [63].

– compile

∗ This option specifies that the internally generated procedures compiled for

efficiency are used to evaluate the numeric solution. Note that this option

will only work if Digits is set within the hardware precision range and the

input function contains only evalhf capable functions (e.g. only elementary

mathematical functions like exp, sin, and ln). By default, this value is set

to false. If set to true and compiling the numeric solution is not possible,

an error will be shown. If set to auto and compiling is not possible, the

uncompiled procedures will be used directly.

– range

∗ Determines the range of values of the independent variable for which solution

values are required. Use of this option significantly changes the behavior of

the method for the procedure− style output types.

– complex

∗ Accepts a boolean value indicating if the problem is (or will become) complex

valued. By default, this is detected based on the input system and initial data,
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but in cases where the input system is procedure defined, or the system is

initially real, it may be necessary to specify complex = true to obtain the

solution. It is assumed that for an initially real system that becomes complex,

the point at which this transition occurs is considered to be a singularity, so

if complex = true is not specified, the integration will halt at that point.

In most cases dsolve is able to detect if a given problem is a DAE system, as opposed to an

ODE system, by identifying whether a pure algebraic equation in the dependent variables is

present. If the input is a DAE system containing no purely algebraic equations, the method

must be included to specify that the system is a DAE system.

dsolve has four methods for finding numeric solutions for DAEs. The default DAE IV P

method is a modified Runge-Kutta Fehlberg method (rkf45 dae). The other methods,

ck45 dae (an extension of the ck45 method, a Runge-Kutta method with the Cash-Karp

coefficients), rosenbrock dae (an extension of the rosenbrock method, an Implicit Rosenbrock

third-fourth order Runge-Kutta method with degree three), and mebdfi (Modified Extended

Backward-Differentiation Formula Implicit method) can be specified using the method

option. If we specify that the problem is stiff with the option stiff = true without selecting

a method, then the method rosenbrock dae will be used.

Maple’s core numeric ODE and DAE IV P solvers (rkf45, ck45, rosenbrock, and the DAE

versions of these) can handle user-defined events.

DAE plotting in Maple (using function odeplot) [64]

• Calling Sequence

– odeplot(dsn, vars, range, options)

• Parameters
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– dsn-output of dsolve( ... , numeric)

– vars-(optional list) axes and functions to plot

– range-(optional) range of the independent variable

– options-(optional) equations that specify plot options

• Description:

– The odeplot function plots one or more solution curves (either 2-D or 3-D)

obtained from the output (dsn) of dsolve.

– The ordering of the coordinates is given by vars. If no coordinates are given,

then it is assumed that a plot of the first dependent variable as a function of the

independent variable is obtained (that is, the first two coordinates of the solution).

Significantly more flexibility is available in the specification of the coordinates.

The coordinates can be functions of the independent variable, or any dependent

variable and derivative values that are part of the dsolve solution.

For example, for a second-order problem in y(x), we could specify a plot of y(x)

versus y(x)2 + (ẏ(x))2 with [y(x), y(x)2 + (ẏ(x))2].

Multiple curves can be plotted by specifying a nested list format. For example,

[[x, y(x)], [x, ddxy(x)]] displays the dependent variable and its derivative as a

function of x on the same plot.

Curve-specific options can be specified for each curve (for plots with multiple

curves) by including them in the desired variable list after the plot variables.

Allowed options are color, linestyle, style, symbol, symbolsize, and thickness.

For example, the plot described by the nested list above can be displayed with

y(x) in blue dots, and d
dx
y(x) as a red line of thickness 2 with the argument
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[[x, y(x), color = blue, style = point],[x, diff(y(x), x), color = red, thickness =

2]].

• The range argument defines the range of the independent variable to produce the plot,

and must evaluate to real numbers. If not specified, the range is determined as follows:

– If the dsolve output is not of a procedure type (that is, it is in the form of matrix),

then the values present in the matrix are used directly for the plot.

– If the problem is a boundary value problem (BV P ), then the plot is produced for

the entire solution region.

– If the problem is a initial value problem (IV P ), and was created with the range

option (rkf45 and rosenbrock only), then that range is used for the plot.

– If the problem is a IV P , Env smart dsolve numeric is set to true, and a prior

call was made for the numeric solution, the plot is produced from the initial point

to the point used in the prior call.

– Finally, if none of the above conditions are met, then the plot is produced for the

range x0 − 10..x0 + 10, where x0 is the initial point for the IV P .

• If the default numerical IV P solvers rkf45 and rosenbrock were used with the range

argument to obtain dsn, then an additional option is available to control the number

of points used to produce the plot. The refine = v option tells odeplot to use v times

the number of stored points for the plot, where v must be a non-negative integer.

For example, specification of refine = 1 tells odeplot to use all points in the stored

solution, while refine = 2 requests twice the computed points, and refine = 1/3

requests one-third the computed points.

Note: Use of above option with a range solution of dsolve produces an adaptive plot,



2. Solutions of Differential Algebraic Equations 63

where more points are plotted in more rapidly changing solution regions (that is, regions

where a greater number of steps were required by the numerical method).

Note: This option cannot be used with the numpoints option.

• If not specified, the labels of the plot are obtained from the vars argument (or from the

dsolve solution if vars is not specified). Since these are displayed as text, the derivative

of y(x) with respect to x is displayed as ẏ, and the function y(x) is displayed as y.

Variables specified in vars using operator notation, such as D(y)(x) are left unchanged.

For 2-D plots, if the length of the text of an automatically-generated axis label exceeds

10 characters, then it is not displayed. To display long labels as a legend (instead of

omitting them), specify the labels = legend option.

Labels can be disabled by specifying them as empty strings or identifiers (that is,

labels = [””, ””] or labels = [“, “]).

• If the frames = n option is given, then odeplot produces an animation of the solution

over the independent variable range for the plot, from lowest to highest value. The

final frame of the animation is the same as the plot created without the frames option.

Note: The refine option cannot be used with animations, as odeplot must choose the

points for the animated plot.

• Remaining arguments must be equations of the form option = value. These options

are the same as found for plot (in the case of 2-D solution curves) or those found for

plot3d (in the case of 3-D solution curves).

• The result of a call to odeplot is a PLOT or PLOT3D data structure which can be

rendered by the plotting device. You can assign the value to a variable, save it in a

file, then read it back in for redisplay.
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Example: One of the simplest examples is the pendulum system, where the m*g (mass

times gravitational constant) term has been replaced by π2 [64] .

dsys := [ d
2

dt2
x(t) = −2λ(t)x(t), d

2

dt2
y(t) = −2λ(t)y(t)− π2, x(t)2 + y(t)2 = 1]

To display derivatives and functions using a simpler notation, use the PDEtools[declare]

command: PDEtools[declare](x(t), y(t), θ(t), r(t), λ(t), prime = t, quiet)

The typical solution approach for this problem is to apply a change of variables to polar

co-ordinates, which would proceed as follows:

tr := x(t) = r(t)sin(θ(t)), y(t) = −r(t)cos(θ(t));

nsys := PDEtools[dchange](tr, dsys, [r(t), θ(t)])

The last equation implies r = 1.

Evaluate and remove λ(t) as follows, giving an ODE in θ(t).

nsys := nsys||r(t) = 1;

isolate(nsys[1]λ(t));

eval(nsys[2],);

pode := simplify(isolate(, d d2

dθ2 (t)), trig)

The above equation is more commonly known as pendulum equation. As an approximation

for small displacements, we can approximate sin(θ) ∼ θ giving us the simple harmonic

oscillator equation: d2

dt2
θ(t) +π2θ(t) = 0. This is appropriate for the pendulum equation, but,

in general, such a coordinate transform may not exist. Hence, there is a need for numerical

solution methods for DAEs [64].
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Structure of DAE [65]

Consider the system (′dsys′) from the above example.

Consider the constraint: c1 := dsys[−1]

Differentiate: c2 :=
∂d
∂t
c1

2

Differentiate, eliminate, and isolate:

c3 := eval( ∂
∂t
c2, dsys[1..2]); c3 := factor(isolate(c3, λ(t)))

One more differentiation and elimination yields an ODE for λ(t).

d4:=eval( ∂
∂t
c3, dsys[1..2])

The above process of successive differentiation until we obtain an ODE for each variable

is called index reduction. The number of required differentiations is called the gear index.

It sometimes corresponds to the difficulty in obtaining a numerical solution of the DAE

problem. (A greater index corresponds to a more difficult problem.)

Issues: We obtained 3 algebraic relations for λ, x, ẋ, y, ẏandc1, c2, c3 as initial conditions

must satisfy these algebraic relations as a result, we only have 2 degrees of freedom in

the initial conditions for a problem that would normally have 5. This restricts the initial

conditions. They must be checked for consistency.

Note: Constraints are typically nonlinear, and cannot be solved in terms of the free initial

conditions. The algebraic constraints must satisfy along the entire solution [65].

Solution Methods [65]

1. Method of Index Reduction: As shown above, the method involves successive

differentiation of system until the DAE becomes an ODE system.

• Advantages:

-Allows us to obtain all constraints directly
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-Allows the use of a standard ODE solver to obtain the solution

• Disadvantages:

-Does not enforce the constraints, other than at the initial point (resulting in

constraint drift)

Example: IRdsys:= {dsys[1],dsys[2],d4} where g = φ2

IRcons := [c1, c2, c3] with g = φ2 [65]

• Find suitable initial conditions:

ICs := y(0) = −1, D(x)(0) = 1
10

• From the first constraint, we have:

IRcons[1] where y(t) = −1

ICs := ICs ∪ x(0) = 0 :

• From the second constraint, we have:

eval(convert(IRcons[2], D)att = 0, ICs)

ICs := ICs ∪D(y)(0) = 0 :

• And finally from the third constraint, we have:

eval(convert(IRcons[3], D)att = 0, ICs)

• ICs := ICs ∪ {}

• Now, we can obtain a numerical solution for the index reduced system ignoring

the constraints.

(Note: We set maxfun = 0 to remove the limit on the number of function

evaluations.)

• dsn := dsolve(IRdsys ∪ ICs, numeric,maxfun = 0)
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• Consider the value at t = 1000:

t1000a := dsn(1000)

• Now consider the constraints at t = 1000:

evalf [15](eval(map(a→ (rhs−lhs)(a), convert(IRcons,D)), convert(t1000a[2..−

1], D)))

• This indicates that the constraints are not satisfied. This is one of the

disadvantages of this approach.

Note: Problems arise when small changes to the problem dictate large changes in

the solution at a later time (instability).

• The Maple DAE extension solvers (rkf45 dae and rosenbrock dae) are

modifications to ODE solvers, and can operate in this mode:

dsn := dsolve(op(dsys) ∪ ICs, numeric, differential = true, projection =

false,maxfun = 0)

• t1000a2 := dsn(1000)

• evalf [15](eval(map(a→ (rhs−lhs)(a), convert(IRcons,D)), convert(t1000a2[2..−

1], D)))

2. Direct Solution Approaches: These methods work directly with the original DAE

system, and do not require differentiation of the constraint. They are typically limited

to handling DAEs of index 1, 2, or 3.

• Advantages:

-Does not require symbolic manipulation of the system

• Disadvantages:

-Does not indicate constraints on the initial data, and simply fails if these are not
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satisfied.

-Limited to problems with a maximum index.

-The core solver is usually more complex than for the other approaches.

Maple has the mebdfi solver (Modified Extended Backward Difference Formula

Implicit). This solver has the ability to fully solve implicit DAE systems. For the

above mentioned pendulum example, we get:

• dsn := dsolve(op(dsys) ∪ ICs, numeric,method = mebdfi,maxfun = 0) :

• t1000e:=dsn(1000)

• evalf [15](eval(map(a→ (rhs−lhs)(a), convert(IRcons,D)), convert(t1000e[2..−

1], D)))

Important: The constraints are all satisfied within tolerance even though they

are not explicitly used in the solution process [65] [66].

2.3.2 Wolfram Mathematica

Wolfram Mathematica is a software system with built-in libraries for several areas of technical

computing that allow machine learning, statistics, symbolic computation, manipulating

matrices, plotting functions and various types of data, implementation of algorithms, creation

of user interfaces, and interfacing with programs written in other programming languages.

It was conceived by Stephen Wolfram, and is developed by Wolfram Research of Champaign,

Illinois. The Wolfram Language is the programming language used in Mathematica [67].
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Study of Mathematica for Numerical Solution of ODEs and DAEs [68]

In general, a system of ordinary differential equations (ODEs) can be expressed in the normal

form,

ẋ(t) = f(t, x), x ∈ Rn, f : Rn → Rn (2.15)

The derivatives of the dependent variables in (2.23) are expressed explicitly in terms of the

independent transient variable and the dependent variables . As long as the function has

sufficient continuity, a unique solution can always be found for an initial value problem where

the values of the dependent variables are given at a specific value of the independent variable.

The derivatives of some of the dependent variables in DAEs typically do not appear in the

equations and are not expressed explicitly. For example, the following equation

ẍ(t) + y(t) = cos(t) (2.16a)

x(t) = cos(t) (2.16b)

does not explicitly contain any derivatives of y. Such variables are often referred to as

algebraic variables [68].

The general form of a system of DAEs is

F (t, x, ẋ) = 0 (2.17)

Solving systems of DAEs often involves many steps. The flow chart shown above indicates

the general process associated with solving DAEs in Mathematica with function NDSolve.

The NDSolve has been discussed further in this chapter.

Generally, a system of DAEs can be converted to a system of ODEs by differentiating it with

respect to the independent variable. The index of a DAE is the number of times needed to
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Figure 2.1: Flow chart of steps involved in solving DAE systems in NDSolve.

differentiate the DAEs to get a system of ODEs.

The DAE solver methods built into NDSolve works with index-1 systems, so for higher-index

systems an index reduction may be necessary to get a solution. NDSolve can be instructed

to perform that index reduction. When a system is found to have an index greater than 1,

NDSolve generates a message and number of steps need to be taken in order to solve the

DAE [68].

As a first step for high-index DAEs, the index of the system needs to be reduced. The

process of differentiating to reduce the index, referred to as index reduction, can be solved

with NDSolve.

The process of index reduction leads to a new equivalent system. This new system is

restructured by substituting new (dummy) variables in place of the differentiated variables.

This leads to an expanded system that then can be uniquely solved. Another approach for
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restructuring the system involves differentiating the original system n number of times until

the differentials for all the variables are accounted for. The preceding n − 1 differentiated

systems are treated as invariants.

In order to solve the new index-reduced system, a consistent set of initial conditions must

be found. A system of ODEs in the form, ẋ = f(t, x), can always be initialized by

giving values for x at the starting time. However for DAEs, it may be difficult to find

initial conditions that satisfy the residual equation F (t, x, ẋ) = 0, this amounts to solving

a nonlinear algebraic system where only some variables may be independently specified.

Furthermore, the initialization needs to be consistent. This means that the derivatives of

the residual equations dn

dtn
F (t, x, ẋ) = 0 also need to be satisfied. In general, higher-index

systems are harder to initialize. NDSolve cannot analyze the interaction of x and hence,

not able do an automatic index reduction. However, NDSolve has a number of different

methods accessible via options to perform index reduction and find a consistent initialization

of DAEs [68].

DAE Solver and Solution Methods used in Mathematica [68]

Mathematica has various solution methods built into NDSolve for solving DAEs.

Two such methods which work with the general residual form F (t, x, ẋ) = 0 of index-1 DAEs

are,

• IDA—(Implicit Differential-Algebraic solver from the SUNDIALS package) based on

backward differentiation formulas (BDF)

• StateSpace—implicitly solves for derivatives to use an underlying ODE solver

If the system has index higher than 1, both of the above mentioned solvers typically fail. To

accurately solve such systems, index reduction is needed. Note that index-1 systems can be
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reduced to ODEs, but it is often more efficient to use one of the solvers above.

NDSolve [69]

NDSolve is a solver option available in Mathematica that solves for ordinary differencial

equations and differencial algebraic equations. NDSolve function has the calling sequence

NDSolve [ eqns , u [ x ] ,{ x , x {min} , x {max}} ]

which finds a numerical solution to the ODEs and DAEs eqns for the function u with the

independent variable x in the range xmin to xmax. NDSolve also has some solvers that work

with DAEs that can be reduced to special forms, such as:

• MassMatrix—for DAEs of the form M.ẋ(t) = f(t, x(t))

• Projection—for ODEs with invariants g(t, x(t)) = 0

Some of the key features of NDSolve is as follows [69]:

• NDSolve gives results in terms of Interpolating Function objects.

• NDSolve [eqns, u[x], x, xmin, xmax] gives solutions for u[x] rather than for the function

u itself.

• Differential equations must be stated in terms of derivatives such as u̇[x].

• NDSolve solves a wide range of ordinary differential equations as well as partial

differential equations.

• NDSolve can also solve delay differential equations.

• In ordinary differential equations, the functions ui must depend only on the single

variable t. In partial differential equations, they may depend on more than one variable.
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• Initial and boundary conditions are typically stated in the form u[x0] == c0, u̇[x0] ==

dc0, etc., but may consist of more complicated equations.

• The c0, dc0, etc. can be lists, specifying that u[x] is a function with vector or general

list values.

• Periodic boundary conditions can be specified using u[x0] == u[x1].

• The point x0 that appears in the initial or boundary conditions need not lie in the

range xmin to xmax over which the solution is solved.

• Boundary values may also be specified using DirichletCondition and NeumannValue.

• The differential equations in NDSolve can involve complex numbers.

• The ui can be functions of the dependent variables.

• NDSolve adapts its step size so that the estimated error in the solution is just within

the tolerances specified by PrecisionGoal and AccuracyGoal.

• AccuracyGoal effectively specifies the absolute local error allowed at each step in finding

a solution, while PrecisionGoal specifies the relative local error.

• The option NormFunction f specifies that the estimated errors for each of the ui

should be combined using f [{e1, e2, . . . }].

• If solutions must be followed accurately when their values are close to zero,

AccuracyGoal should be set larger, or to Infinity.

• The default setting of Automatic for AccuracyGoal and PrecisionGoal is equivalent to

WorkingPrecision/2.
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• The default setting of Automatic for MaxSteps estimates the maximum number of

steps to be taken by NDSolve, depending on start and stop time and an estimate of

the step size. If this is not possible, a fixed number of steps is taken

• The setting for MaxStepFraction specifies the maximum step to be taken by NDSolve

as a fraction of the range of values for each independent variable.

• With DependentV ariables = Automatic, NDSolve attempts to determine the

dependent variables by analyzing the equations given.

• NDSolve typically solves differential equations by going through several different

stages, depending on the type of equations. With Method-{s1− > m1, s2− > m2, . . . },

stage si is handled by method mi. The actual stages used and their order are

determined by NDSolve, based on the problem to solve.

• Possible solution stages include TimeIntegration solution, BoundaryValue sulutions

for ordinary differencial equations and IndexReduction, Initialization for differencial

algebraic equations

• With Method m1 or Method {m1, s2− > m2, . . . }, the method m1 is assumed to be

for time integration, so Method m1 is equivalent to Method {”TimeIntegration”,m1}.

• Possible explicit time integration settings for the Method option include: Adams

(predictor-corrector) method with orders 1 through 12, backward differencial

formulas (BDF) method with order 1 through 5, ExplicitRungeKutta methods

with order 1 through 8, implicit backward differenciation formulas for DAEs, and

implicitRungeKutta methods for arbitrary orders.

• With Method function, possible controller methods include composition, DoubleStep,

eventLocator, Extrapolation, FixedStep, OrthogonalProjection.



2. Solutions of Differential Algebraic Equations 75

• The setting InterpolationOrder = All specifies that NDSolve should generate

solutions that use interpolation of the same order as the above mentioned methods.

IDA Method for NDSolve [70]

The IDA package is part of the SUNDIALS (SUite of Nonlinear and DIfferential/ALgebraic

equation Solvers) developed at the Center for Applied Scientific Computing of Lawrence

Livermore National Laboratory [71]. As described in the IDA user guide [72], ”IDA is

a general purpose solver for the initial value problem for systems of differential-algebraic

equations (DAEs). The name IDA stands for Implicit Differential-Algebraic solver. IDA

is based on DASPK ...”. DASPK [73] is a Fortran code for solving large-scale differential-

algebraic systems.

In the Wolfram Language, an interface has been provided to the IDA package so that rather

than needing to write a function in C for evaluating the residual and compiling the program,

the Wolfram Language generates the function automatically from the equations you input

to NDSolve.

IDA solves index-1 DAE systems by differentiating the DAEs to get a system of ODEs. IDA

solves the system with Backward Differentiation Formula (BDF) methods of orders 1 through

5, implemented using a variable-step form. The BDF of order k at time tn = tn−1 + hn is

given by the formula
k∑
i=0

an,jxn−i = hnẋn. (2.18)

The coefficients an,j depend on the order and past step sizes. Applying the BDF to the DAE

gives a system of nonlinear equations to solve:

F
(
tn, xn,

1
hn
an,jxn−i

)
= 0 (2.19)
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The solution of the system is achieved by Newton-type methods [72], typically using an

approximation to the Jacobian

J = ∂F

∂x
+ cn

∂F

∂x
,where cn = αn,0

hn
(2.20)

The IDA’s most notable feature is that, in the solution of the underlying nonlinear system

(2.27) at each time step, it offers a choice of Newton methods [72]. In the Wolfram Language,

you can access the Newton method solvers [72] using method options.

IDA computes an estimate En at each step (n) of the solution. The local truncation error,

step size and order are chosen such that the weighted norm Norm[En/wn] is less than 1.

The jth component, wn,j, of wn is given by

wn,j = 1
10−prec|xn.j|+ 10−acc (2.21)

The values prec and acc are taken from the NDSolve settings for the PrecisionGoal (prec)

and AccuracyGoal (acc).

As IDA provides a great deal of flexibility, especially in the way nonlinear equations

are solved, there are a number of method options which allow us to get the desired

solutions. We can use the method options to IDA by giving NDSolve the option

Method− {IDA, ida method options}.

When strict accuracy of intermediate values computed with the InterpolatingFunction

object is returned from NDSolve, we use the NDSolve method option setting

InterpolationOrder = All that uses interpolation based on the order of the method. It

is sometimes called as dense output and it represents the solution between time steps. By

default, NDSolve stores a minimal amount of data to represent the solution well enough

for graphical purposes. Keeping the amount of data small saves on both memory and time
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for more complicated solutions. When the quantity we want to derive from the solution

is complicated, we can ensure that it is locally kept within tolerances by giving it as an

algebraic quantity, forcing the solver to keep its error in control. The DAE solution takes

far more steps to control the error for the quantity of interest but still uses far less memory

than using dense output.

There are two possible settings for the ”ImplicitSolver” option, which can be ”Newton”

or ”GMRES”. With ”Newton”, the Jacobian or an approximation to it is computed and

the linear system is solved to find the Newton step. On the other hand, ”GMRES” is

an iterative nonlinear solver method, and rather than computing the entire Jacobian, a

directional derivative is computed for each iterative step. The ”Newton” method has one

method option, ”LinearSolveMethod”, which we can use to tell the Wolfram Language how

to solve the linear equations required to find the Newton step. There are several possible

values for this option. The ”GMRES” method may be substantially faster, but is typically

quite a bit trickier to use because to be really effective, it typically requires a preconditioner

which can be supplied via a method option [72]. Using the ”GMRES” method without a

preconditioner leads to larger computation times and more steps when compared to the

default method. It is for this reason that this method is not recommended without a

preconditioner. Finding a good preconditioner however is not usually trivial. The setting

of the ”Preconditioner” option should be a function f , which accepts four arguments that

will be given to it by NDSolve such that f [t, x, ẋ, c] returns another function that will

apply the preconditioner to the residual vector. (See IDA user guide [72] for details on how

the preconditioner is used.) The arguments t, x, ẋ, c are the current time, solution vector,

solution derivative vector and the constant c. For example, if we can determine a procedure

that would generate an appropriate preconditioner matrix as a function of these arguments,

then we could use
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”Preconditioner”− Function[t, x, xp, c, LinearSolve[P [t, x, xp, c]]]

to produce a LinearSolveFunction object which will effectively invert the preconditioner

matrix P . The LinearSolve Function has been discussed further in this section. Each time

the preconditioner function is set up, it is applied to the residual vector several times using

some sort of factorization as in LinearSolveFunction. For the diagonal case, the inverse can

be affected simply by using the reciprocal. The most difficult part of setting up a diagonal

preconditioner is keeping in mind that the values on the boundary should not be affected by

it. Thus, even with a crude preconditioner, the ”GMRES” method computes the solution

faster than using the direct sparse solvers.

LinearSolve [74]

Consider a matrix equation m.x = b LinearSolve solves x for the matrix equation.

Calling sequence for the matrix equation Linear Solve [m, b]. LinearSolve [m] generates

a LinearSolveFunction [...] that can be applied repeatedly to different b. Some of the key

features of LinearSolve [74] is as follows:

• LinearSolve works on both numerical and symbolic matrices, as well as SparseArray

objects.

• The argument b can be either a vector or a matrix.

• The matrix m can be square or rectangular.

• LinearSolve [m] and LinearSolveFunction [. . . ] provide an efficient way to solve the

same approximate numerical linear system many times.

• LinearSolve[m, b] is equivalent to LinearSolve[m][b].



2. Solutions of Differential Algebraic Equations 79

• For underdetermined systems, LinearSolve will return one of the possible solutions;

Solve will return a general solution.

• With Method -Automatic, the method is automatically selected depending upon input.

• Explicit Method settings for approximate numeric matrices include banded matrix

solver, Cholesky method for positive definite Hermitian matrices, iterative Krylov

sparse solver, direct sparse LU decomposition and parallel direct sparse solver [74].

State-Space Method for DAEs [75]

Consider a DAE system of the following form:

f(t, x, ẋ, y) = 0 (2.22a)

g(t, x, y) = 0 (2.22b)

If the Jacobian matrices ∂f
∂ẋ

and ∂g
∂y

are both invertible, then by the implicit function theorem,

the system can effectively be expressed in the state-space form as

ẋ = F (t, x,G(x)). (2.23)

The invertibility requirement is effectively equivalent to the system being of index 1, so a

method based on the state-space form is appropriate for index 1 DAE system. The most

common form is where f(t, x, ẋ, y) = ẋ − fr(t, x, y) and ∂f
∂ẋ

is the identity matrix. The

”StateSpace” time integration method is based on this representation. Given values of x,

Newton iterations are used to find y = G(x) and ẋ = F (t, x,G(x)) The values ẋ are returned

for an ODE method that just requires evaluation of the right-hand side of function. In

between evaluations, previously computed values of the derivatives and algebraic variables
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are saved to initialize iterations for the next evaluation.

The ODEs resulting from the state-space form are often quite stiff and so require a Jacobian.

The right-hand side Jacobian can be computed by differentiating the partitioned system with

respect to x, as shown below

∂f

∂x
+ ∂f

∂ẋ

∂ẋ

∂x
+ ∂f

∂y

∂y

∂x
= 0 (2.24a)

∂g

∂x
+ ∂g

∂y

∂y

∂x
= 0, (2.24b)

solving for the right-hand side Jacobian gives

∂f

∂x
+ ∂f

∂ẋ

∂ẋ

∂x
= −

(
∂f

∂ẋ

)−1
∂f
∂x
− ∂f

∂y

(
∂g

∂y

)−1
∂g

∂x

 . (2.25)

Matrix decompositions for ∂f
∂ẋ

and ∂g
∂y

are typically saved from the Newton iterations so the

application of the inverses can be computed efficiently [75].

The ”StateSpace” method is typically slower than the default ”IDA” multistep method

because it has to solve for each evaluation as opposed to for each time step. Some possible

advantage is that a stable integration method could be used to improve overall stability.

The StateSpace method is effectively a one-step method and is used to implement arbitrary-

precision solutions [75]. The Method option of the ”StateSpace” method allows us to choose

the integration method.

Block Lower Triangular (BLT) Form [75]

Consider a linear equation s.x = b where s is matrix. When s is a nonsingular matrix, the

variables in each successive block along the diagonal depend only on the ones in previous

blocks. This means that the above linear equation can be solved by working sequentially

down the diagonal, solving each block subsystem in order, forming a block lower triangular
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form.

Depending on the structure of the system, it may be advantageous to order the system into

block lower triangular (BLT) form. If the largest block size can be greatly reduced using

BLT, then it can reduce the computational complexity of the Newton iterations significantly.

The BLT form is used in a number of ways for solving DAEs, including consistent

initialization, setting up dummy derivatives for index reduction, and solving sparse linear

systems. The description in this section is focused on its use in the state-space method, but

the applicability extends to other areas as well.

In its simplest form, the BLT ordering is a matrix algorithm, and that is the best general

way to access it in the Wolfram Language [75].

Projection Method for NDSolve [76]

When a differential system has a certain structure, it is advantageous if a numerical

integration method preserves the structure. In certain situations, it is useful to solve

differential equations in which solutions are constrained. Projection methods work by taking

a time step with a numerical integration method and then projecting the approximate

solution onto the manifold on which the true solution evolves [76].

NDSolve includes a differential algebraic solver which may be appropriate and is described

in more detail within Numerical Solution of Differential-Algebraic Equations [68].

Sometimes the form of the equations may not be reduced to the form required by a DAE

solver. Furthermore, so-called index reduction techniques can destroy certain structural

properties that the differential system may possess (see [77] and [78]). An example that

illustrates this can be found in the documentation for DAEs [68].

In such cases it is often possible to solve a differential system and then use a projective

procedure to ensure that the constraints are conserved. This is the idea behind the method
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”Projection”.

If the differential system is ρ-reversible [79], then a symmetric projection process can be

advantageous. Symmetric projection is generally more costly than projection and has not

yet been implemented in NDSolve.

ODEs with invariants: Consider a DAE of the form

ẋ(t) = f(t, x(t)), x ∈ Rn, f : Rn → Rn (2.26a)

g(t, x(t)) = 0 (2.26b)

where g is an invariant that is consistent with the differential equations.

When a system of DAEs is converted to ODEs via index reduction, the equations that

were differentiated to get the ODE form are consistent with the ODEs, and it is typically

important to make sure those equations are well satisfied as the solution is integrated.

Such systems have more equations than unknowns and are overdetermined unless the

constraints are consistent with the ODEs. NDSolve does not handle such DAEs directly

because it expects a system with the same number of equations and dependent variables.

In order to solve such systems, the ”Projection” method built into NDSolve handles the

invariants by projecting the computed solution onto after each time step. This ensures that

the algebraic equations are satisfied for solution [68].

Example 1. Consider a system of DAE with three equations, but only one differential term

given by

ẋ1(t) = x3(t) (2.27a)

x2(t)(1− x2(t)) = 0 (2.27b)

x1(t)x2(t) + x3(t)(1− x2(t) = t (2.27c)
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With initial conditions x1(0) = −1, x2(0) = 0

From the the second equation (2.35b), x2 requires to be either 0 or 1.

If x2(t) = 0, then the two remaining equations make an index-1 system, since differentiation

of the third equation gives a system of two ODEs:

ẋ1(t) = x3(t) (2.28a)

ẋ3(t) = 1 (2.28b)

On solving the system of DAEs with specified initial condition for x1 = −1 and x2 = 0 and

t ∈ [0, 1] in Mathematica gives the solution plot of x1, x2 and x3 as shown in figure 2.2

If x2(t) = 1, then the two remaining equations (2.35a and 2.35c) make an index-2 system.

Differentiating the third equation (2.35c) gives ẋ1(t) = 1, and substituting into the first

equation (2.35a) gives x3(t) = 1, which needs to be differentiated to get an ODE (2.37)

ẋ1(t) = x3(t) (2.29a)

x3(t) = 1 (2.29b)

On solving the system of DAEs starting with x2 = 1 gives the solution plot
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Figure 2.2: Plot for the solution of x1, x2, x3 for x2 equals to 0 and 1

Both the number of initial conditions needed and the index of a DAE may influence the

actual solution being found.

Index Reduction for DAE

The built-in solvers for DAEs in NDSolve handles index-1 DAE systems automatically.

For higher-index systems, an index reduction is necessary to get to a solution. This index

reduction can be performed by giving appropriate options to NDSolve.

NDSolve uses symbolic techniques to do index reduction. This means that if our DAE

system is expressed in the form F (t, x, ẋ) = 0, where NDSolve cannot see how the

components of x interact and compute symbolic derivatives, the index reduction cannot

be done. Hence, for this reason NDSolve does not do index reduction, by default.

For example, consider the classic DAE describing the motion of a pendulum:

mẍ(t) + λ(t)x(t) = 0, (2.30a)

mÿ(t) + λ(t)y(t) = −g, (2.30b)

x2(t) + y2(t) = L, (2.30c)
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with initial conditions x(0) = 1, ẋ(0) = 0, ẍ(0) = 0, y(0) = 0, ẏ(0) = 0, ÿ(0) = −1 ,where

there is a mass m at the point {x(t), y(t)} constrained by a string of length L. λ is a Lagrange

multiplier that is effectively the tension in the string. For simplicity in the description of

index reduction, take m = L = g = 1. The software detects that the index is 3, indicating

that index reduction is necessary to solve the system. The option setting in NDSolve uses

the index reduction method irmeth with general index reduction options iropts

For all index reduction methods, other options such as ”ConstraintMethod” to handle

constraints and ”IndexGoal” to reduce index to (1 or 0)

Index reduction is done by differentiating equations in the DAE system. Suppose that an

equation (eqn) is differentiated during the process of index reduction so that deqn = d

dt
eqn

is included in the system in place of eqn. Once the differentiation has been done, the

differentiated equations comprise a fully determined system and can be solved. However, it

is typically important to incorporate the original equations in the system as constraints. This

is controlled by the ”ConstraintMethod” index reduction option, using the index reduction

and solving the equation with constraints.

In the numerical solution with just the differentiated equations, the length of the pendulum

is drifting away. Incorporating the original equations into the solution as constraints is an

important aspect of index reduction.

The purpose of the dummy derivative method is to introduce algebraic variables so that

the combined system of original equations and equations that have been differentiated for

index reduction is not overdetermined. NDSolve can solve the system with index reduction

algorithms built on dummy derivatives.
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Index Reduction Algorithms

NDSolve has two algorithms for achieving index reduction, the Pantelides and the structural

matrix methods. Both of these methods use the symbolic form of the equations to determine

what equations to differentiate and then use symbolic differentiation to get the differentiated

system.

Both methods make use of the concept of structural incidence in the equations; in particular,

if variable vj appears explicitly in equation ej, then vj is termed incident in ej. The structural

incidence matrix is the matrix with elements mij = 1 if vj is incident in ej and otherwise

mij = 0. A DAE system has structural index 1 if the structural incidence matrix can be

reordered so that there are 1s along the diagonal. The existence of such a reordering means

that there is a matching between equations and variables such that there is one equation for

every variable.

Pantelides Method [80]

The method proposed by Pantelides [80] is a graph theoretical method that was originally

proposed for finding consistent initialization of DAEs. It works with a bipartite graph of

dependent variables and equations, and when the algorithm can find a traversal of the graph,

then the system has been reduced to index of atmost 1. A traversal in this sense effectively

means an ordering of variables and equations so that the graph’s incidence matrix has no

zeros on the diagonal.

When the bipartite graph does not have a complete traversal, the algorithm effectively

augments the path by differentiating equations, introducing new variables (derivatives of

previous variables) in the process. Unless the original system is structurally singular,

the algorithm will terminate with a traversal. Generally, the algorithm does only the

differentiations needed to get the traversal, but since it is a greedy algorithm, it is not
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always the minimal number.

The implementation built into the Wolfram Language follows the algorithm outlined in [81].

It uses Graph to efficiently implement the graph computations and symbolically differentiates

the equations with D when differentiation is called for.

When there is a traversal of the system, it is then possible to find an ordering for the variables

and equations such that the incidence matrix is in block lower triangular (BLT) form. The

BLT form is used in setting up the dummy derivative method for maintaining constraints

and also in the ”StateSpace” time integration method. A description of the BLT ordering is

included in ”State Space Method for DAEs”.

The Pantelides algorithm is efficient because it can use graph algorithms with well-controlled

complexity even for very large problems. However, since it is based solely on incidence, there

can be issues with systems that lead to Jacobians that are singular. The structural matrix

method may be able to resolve such cases, but may have larger computational complexity

for large systems.

Structural Matrix Method

The structural matrix algorithm is an alternative to the Pantelides algorithm. The structural

matrix method follows from the work of Unger [UKM95] and Chowdhary et al. [CKL04].

The graph-based algorithms such as the Pantelides algorithm rely on traversals to perform

index reduction. However, they do not account for the fact that sometimes there may be

variable cancellations in a particular system. This leads to the algorithm underestimating

the index of the system. If a DAE has not been correctly reduced to an index-0 or index-1

system, then the numerical integration may fail or may produce an incorrect result.

Note that the structural index may be smaller than the actual index of the system. In the

real system the Jacobian matrix may be singular. The structural matrix method tries to
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take into account the possibility of singularities in the Jacobian and will do a better job of

index reduction for some systems, but at the cost of greater computational expense.

Constraint Methods

The purpose of the dummy derivative method is to introduce algebraic variables so that the

combined system of original equations and equations that have been differentiated for index

reduction is not overdetermined. The main idea behind the dummy derivative method of

Mattson and Söderlind [82] is to introduce new variables that represent derivatives, thus

making it possible to reintroduce constraint equations without getting an overdetermined

system.

The alternative to using dummy derivatives is to reduce the index to 0 such that there is

a system of ODEs. We use projection to ensure that the original constraints are satisfied.

With this method, the original constraints are typically satisfied up to the local tolerances

for NDSolve specified by the PrecisionGoal and AccuracyGoal options.

2.3.3 MATLAB Toolbox for the Numerical Solution of DAEs

SolveDAE is a MATLAB toolbox [83] for the numerical solution of systems of linear or

nonlinear differential-algebraic equations (DAEs) of arbitrary index given in the form

F (x(t), ẋ(t), t) = 0, x(t0) = x0 (2.31)

or

E(t)ẋ(t) = A(t)x(t) + f(t), x(t0) = x0 (2.32)

in the domian [t0, tf ]

The toolbox employs the Fortran77 subroutines GENDA (GEneral Nonlinear Differential-
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Algebraic equation solver) [83] and GELDA (GEneral Linear Differential-Algebraic equation

solver) [84] to solve these kind of problems. Both routines provide solutions for under- and

overdetermined systems. The toolbox features symbolic differentiation (the Symbolic Math

Toolbox is required). In this way the user only has to supply the functions defining the given

DAE and does not need to provide the derivatives or Jacobians of these functions. Other

features of the toolbox include the computation of characteristic values and the computation

of consistent initial values in the least square sense (the Optimization Toolbox is required).

In order to make the utilization of the solvers GELDA and GENDA as easy and comfortable

as possible, a graphical user interface (GUI) provides the possibility to adjust a variety of

parameters that enable the user to customize the solvers to certain problems [83] [83].

GEneral Nonlinear Differential Algebraic Equation Solver (GENDA)

GENDA is a Fortran77 sofware package for the numerical solution of nonlinear differential-

algebraic equations (DAEs) of arbitrary index In the domian [t0, tf ] as shown below: [85]

F (x, ẋ, t) = 0, x(t0) = x0 (2.33)

An important invariant in the analysis of DAEs is the so called strangeness index, which

generalizes the differentiation index [85], [86], [87] for systems with undetermined components

[88]. Many of the integration methods for general DAEs require the system to have

differentiation index not higher than one. If this condition is not valid or if the DAE

has undetermined components, then the methods as implemented in codes like DASSL of

Petzold [52] or LIMEX of Deuflhard/Hairer/Zugck [89] may fail. The implementation of

GENDA is based on the construction of the discretization scheme introduced in [1], which

transforms the system into a strangeness-free DAE with the same local solution set. The
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resulting strangeness-free system is allowed to have nonuniqueness in the solution set or

inconsistency in the initial values or inhomogeneities. But this information is now available

to the user and systems with such properties can be treated in a least squares sense. When

DAE is found to be uniquely solvable, GENDA is able to compute a consistent initial value

and apply an integration scheme for DAEs. In GENDA Runge-Kutta scheme of type RADAU

IIa of order 5 [90] is implemented [91].

GEneral Linear Differential Algebraic Equation Solver (GELDA)

GELDA is a Fortran77 sofware package for the numerical solution of linear differential-

algebraic equations (DAEs) with variable coefficients of arbitrary index

E(t)ẋ(t) = A(t)x(t) + f(t), t ∈ [t0, tf ] (2.34)

together with initial condition x(t0) = x0, t0 ∈ [t0, tf ]

An important invariant in the analysis of linear DAEs is the so called strangeness index,

which generalizes the differentiation index ( [85], [86], [87]) for systems with undetermined

components which occur, for example, in the solution of linear quadratic optimal control

problems and differential-algebraic Riccati equations, see e.g. [92], [93], [94]. Many of the

integration methods for general DAEs require the system to have differentiation index not

higher than one, which corresponds to a vanishing strangeness index, see [95]. If this

condition is not valid or if the DAE has undetermined components, then the methods as

implemented in codes like DASSL of Petzold [96], LIMEX of Deuflhard/Hairer/Zugck [89],

or RADAU5 of Hairer/Wanner [90], [91] may fail. The implementation of GELDA is based

on the construction of the discretization scheme introduced in [95], which first determines

all the local invariants and then transforms the system into an equivalent strangeness-free
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DAE with the same solution set. The resulting strangeness-free system is allowed to have

nonuniqueness in the solution set or inconsistency in the initial values or inhomogeneities.

But this information is now available to the user and systems with such properties can be

treated in a least squares sense. When DAE is found to be uniquely solvable, GELDA is able

to compute a consistent initial value and apply the well-known integration schemes for DAEs.

In GELDA the BDF methods [97] and Runge-Kutta schemes [90], [91] are implemented.

2.3.4 Matlab Solver ode 15s and 23t [97]

ode15s solves stiff differential equations and DAEs using variable order method. The function

[t, y] = ode15s(odefun, tspan, y0), where tspan = [t0, tf ], integrates the system of differential

equations ẏ = f(t, y) from t0 to tf with initial conditions y0. Each row in the solution array

y corresponds to a value returned in column vector t.

The ode15s and ode23t solvers can solve index-1 linearly implicit problems with a singular

mass matrix M(t, y)ẏ = f(t, y), including semi-explicit DAEs of the form

ẏ = f(t, y, z), (2.35a)

g(t, y, z) = 0. (2.35b)

In this form, the presence of algebraic variables leads to a singular mass matrix, since there

are one or more zeros on the main diagonal.

Mẏ =



ẏ1 0 . . . 0

0 ẏ2 0 ...
... 0 . . . 0

0 . . . 0 0


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By default, solvers automatically test the singularity of the mass matrix to detect DAE

systems. If we know about singularity ahead of time, then we can set the MassSingular

option of odeset to ’yes’. With DAEs, we can also provide the solver with a guess of the

initial conditions for ẏ0 using the InitialSlope property of odeset. This is in addition to

specifying the usual initial conditions for y0 in the call to the solver.

The ode15i solver can solve more general DAEs in the fully implicit form

f(t, y, ẏ) = 0, y ∈ Rn, f : Rn → Rn (2.36)

In the fully implicit form, the presence of algebraic variables leads to a singular Jacobian

matrix. This is because at least one of the columns in the matrix is guaranteed to contain

all zeros as the derivative of that variable does not appear in the equations.

J = ∂f

∂ẏ
=


∂f1
∂ẏ1

. . . ∂f1
∂ẏn

... . . . ...
∂fm
∂ẏ1

. . . ∂fm
∂ẏn



The ode15i solver requires that we specify initial conditions for both ẏ0 and y0, Also, unlike

the other ODE solvers, ode15i requires the function encoding the equations to accept an

extra input: odefun(t, y, yp).

DAEs arise in a wide variety of systems because physical conservation laws often have forms

like x + y + z = 0. If x, ẋ, y, and ẏ are defined explicitly in the equations, then this

conservation equation is sufficient to solve for z without having an expression for ż.
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Consistent Initial Conditions [98]

When we are solving a DAE, we can specify initial conditions for both ẏ0 and y0. The

ode15i solver requires both initial conditions to be specified as input arguments. For the

ode15s and ode23t solvers, the initial condition for ẏ0 is optional (but can be specified using

the InitialSlope option of odeset). In both cases, it is possible that the initial conditions

we specify do not agree with the equations you are trying to solve. Initial conditions that

conflict with one another are called inconsistent [98]. The treatment of the initial conditions

varies by solver:

• ode15s and ode23t — If we do not specify an initial condition for ẏ0, then the solver

automatically computes consistent initial conditions based on the initial condition we

provide for y0. If we specify an inconsistent initial condition for ẏ0, then the solver

guess the value by attempting to compute consistent values close to the guess, and

continues to solve the problem.

• ode15i — The initial conditions we supply to the solver must be consistent, and ode15i

does not check the supplied values for consistency. The helper function decic computes

consistent initial conditions for this purpose.

Differential Index

DAEs are characterized by their differential index, which is a measure of their singularity.

By differentiating equations, we can eliminate algebraic variables and if we do this enough

times, then the equations take the form of a system of explicit ODEs. The differential index

of a system of DAEs is the number of derivatives we must take to express the system as an

equivalent system of explicit ODEs. Thus, ODEs have a differential index of 0.

The ode15s and ode23t solvers only solve DAEs of index 1. If the index of the equations is 2
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or higher, then we need to rewrite the equations as an equivalent system of index-1 DAEs.

It is always possible to take derivatives and rewrite a DAE system as an equivalent system

of index-1 DAEs. Note that if we replace algebraic equations with their derivatives, then

we might have removed some constraints. If the equations no longer include the original

constraints, then the numerical solution can drift [98].

Imposing Nonnegativity

Most of the options in odeset works in the same manner as the DAE solvers ode15s, ode23t,

and ode15i. However, one notable exception is with the use of the NonNegative option. The

NonNegative option does not support implicit solvers (ode15s, ode23t, ode23tb) applied to

problems with a mass matrix. Therefore, you cannot use this option to impose nonnegativity

constraints on a DAE problem, which necessarily has a singular mass matrix [98].
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Chapter 3

Comparision of DAE system

Simulation Software

In this chapter, we are analyzing various systems using integration methods used to solve

complex DAE’s in professional DAE software. The comparison of solutions have been done

at specific time in each software and the solutions has been plotted.

3.1 The Double Pendulum

The double pendulum is a pendulum with an additional weight attached to the first pendulum

bob by a string. It is a system with four 2-order ODEs and two index-3 DAEs.
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Figure 3.1: Double Pendulum

(x1(t), y1(t)) are the coordinates of the first pendulum bob, and (x2(t), y2(t)) are the

coordinates of the second, which is attached to the first.

m1ẍ1 + 2λ1x1(t) + 2λ2(x1 − x2) = 0 (3.1a)

m1ÿ1 +m1g + 2λ1y1 + 2λ2(y1 − y2) = 0 (3.1b)

m2ẍ2 − 2λ2(x1 − x2) = 0, (3.1c)

m2ÿ2 +m2g − 2λ2(y1 − y2) = 0 (3.1d)

Given the DAE (3.1) with constraints eqn,

x2
1 + y2

1 = l21,

(x1 − x2)2 + (y1 − y2)2 = l22
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,constants

m1 = 1

l1 = 1

m2 = 1

l2 = 0.5

g = 9.8

and Initial Conditions:

x1(0) = 0,

ẋ1(0) = −52,

y1(0) = −l1,

ẏ1(0) = 0,

x2(0) = 0,

ẋ2(0) = 3,

y2(0) = −l1− l2,

ẏ2(0) = 0
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Results

At t=3s:
Software MapleSoft Maplesoft Mathematica

Method rkf45 mebdfi bdf

y1(t)

y2(t)

x1(t)

x2(t)

λ1(t)

λ2(t)

ẏ1(t)

ẏ2(t)

ẋ1(t)

ẋ2(t)

−0.992989982189998455

−1.16620471672429

−0.238568182081203

−1.16620471672429

0.118771407459081

0.587784168432389

8.76953859380733

8.28461507797740

−0.238568182081203

1.70427327529758

−0.992989982189998455

−1.16550276522482821

0.118198571580415718

0.587495225070804317

8.74100178650109960

8.22823789229041580

−0.236982303015614737

1.70158342077031000

−1.99088067513323863

−1.27826095258629624

−0.999581

−1.28058

−0.0289592

−0.442528

6.94487

5.17561

−0.0302166

0.848122

1.04293

0.446134

Table 3.1: Double pendulum solution values at t = 3

Figure 3.2: Solution plot of x1(t) and x2(t)
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Figure 3.3: Solution plot of y1(t) and y2(t)

Figure 3.4: Solution plot of ẋ1(t) and 2̇1(t)

Figure 3.5: Solution plot of ẏ1(t) and ẏ2(t)
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Figure 3.6: Solution plot of λ1(t) and λ2(t)

3.2 Linear DAE system

Consider the following linear DAE system of index-1,

ẋ(t) + ẏ(t) = y(t)− sin(t) + 2cos(t) (3.5)

Given the DAE (3.5) with constraints eqn,

x(t) + y(t) = −sin(t)

with Initial Conditions:

y(0) = −3

Mathematica: The Pantelides algorithm fails in Mathematica software in this case because

there is a singular Jacobian matrix. So we solve the system using the structural matrix

method for index reduction, which is more accurate.
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Results:

At t=3s:

Software Method x(t) y(t)

MapleSoft rkf45 dae -3.25221752429386 3.11109748275225

MapleSoft mebdfi -3.25221712086898007 3.11109711188525084

Mathematica bdfi 0.00755848 -0.999126

Table 3.2: Linear DAE system solution using Different Software and Method

Figure 3.7: Plot of x(t) and y(t) of linear DAE system

3.3 Robertson Problem as Semi-Explicit Differential

Algebraic Equations

This example reformulates a system of ODEs as a system of differential algebraic equations

(DAEs). The Robertson problem is a classic test problem for programs that solve stiff ODEs.
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The system of equations is

ẏ1(t) = −0.04y1 + 104y2y3 (3.8a)

ẏ2 = 0.04y1 − 104y2y3 − (3 ∗ 107)y2
2 (3.8b)

ẏ3 = (3 ∗ 107)y2
2 (3.8c)

Given the DAE (3.8) with constraints eqn,

y1 + y2 + y3 = 1

and Initial Conditions:

y1(0) = 1

y2(0) = 0

y3(0) = 0

The system of equations can be rewritten as a system of DAEs by using the conservation

law to determine the state of y3. This reformulates the problem as the DAE system.
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Results

At t=5s:
Software MapleSoft Matlab Mathematica

Method rkf45 ode15s bdf

y1(t)

y2(t)

y3(t)

0.891517815060457

0.0000208525842127058

0.108461332355330

0.8916

0.2086

0.1084

0.891518

0.0000208527

0.108461

Table 3.3: Solution values of semi-explicit DAE system at t = 5s

Figure 3.8: Solution plot of y1(t), y2(t) and y3(t) for semi-explicit DAE Vs time

3.4 The Car Axis System

The car-axis model is a simple multi-body system that is designed to simulate the behavior

of a car axis on a bumpy road. A schematic of the system is shown below. The model

consists of two wheels: the left wheel is assumed to be moving on a flat surface, while the

right wheel moves over a bumpy surface. The bumpy surface is modeled as a sinusoid. The
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left and right wheels transfer their motion to the chassis of the car through two massless

springs as shown following. The chassis of the car is modeled as a bar of mass M. This is an

index-3 system.

Figure 3.9: Schematic of Car Axis System

The left tire is always on a flat surface, while the right tire periodically goes over a bump.

ẍl
2000 = ( 1

2ll − 1)xl + λ1xb + 2λ2(xl − xr) (3.11a)
ÿl

2000 = ( 1
2ll − 1)yl + λ1yb + 2λ2(yl − yr)−

1
2000 (3.11b)

ẍr
2000 = ( 1

2lr − 1)(xr − xb)− 2λ2(xl − xr), (3.11c)
ÿr

2000 = ( 1
2lr − 1)(yr − yb)− 2λ2(yl − yr)−

1
2000 (3.11d)

Given the DAE (3.11) with constraints eqn,

xlxb + ylyb = 0,

(xl − xr)2 + (yl − yr)2 = 1
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variables

yb = sin(10t)
10

xb =
√

1− y2
b

ll =
√
x2
l + y2

l

lr =
√

(xr − xb)2 + (yr − yb)2)

and Initial Conditions:

xl(0) = 0, ẋl(0) = −12,

yl(0) = 12, ẏl(0) = 0,

xr(0) = 1, ẋr(0) = −12,

yr(0) = 12, ẏr(0) = 0,

λ1(0) = 0, λ2(0) = 0
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Results

At t=3s:
Software MapleSoft Maplesoft Mathematica

Method rkf45 mebdfi bdf

yl(t)

yr(t)

xl(t)

xr(t)

λ1(t)

λ2(t)

ẏl(t)

ẏr(t)

ẋl(t)

ẋr(t)

0.496989454931799

0.373910194846413

0.0493455779014822

1.04174242180063

−0.00473687080377494

−0.00110467301491424

0.00743988527865740

0.770371407475221

−0.0770590607488194

0.0175614035187924

0.496986099958342753

0.373920932254743710

0.0493452447425273694

0.0175876121855471045

−0.00473829109687389904

−0.00110538962168678020

0.00737709900347955066

0.770647938480540917

−0.0770648014835232098

0.0175876121855471045

0.496989

0.373911

0.0493456

1.04174

−0.00473689

−0.00110468

0.00744686

0.770342

−0.0770584

0.0175569

Table 3.4: Solution values of multi-body system (Car-axis system) at t = 3s

Figure 3.10: Solution plot of xL(t) and xR(t)
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Figure 3.11: Solution plot of yL(t) and yR(t)

Figure 3.12: Solution plot of λ1(t) and λ2(t)

Figure 3.13: Solution plot of ẏL(t) and ẏR(t)
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3.5 Simple Pendulum in Cartesian Coordinates

In this example, we model a simple pendulum in Cartesian coordinates. The equations result

in an index-3 DAE, which we solve using dsolve with the numeric option in Mathematica.

˙vx(t) = F (t)x(t) (3.15a)

˙vy(t) = F (t)y(t)− g (3.15b)

˙x(t) = vx(t) (3.15c)

˙y(t) = vy(t) (3.15d)

Given the DAE (3.15) with constraints eqn,

x2 + y2 = 1

Initial Conditions:

x(0) = 1,

y(0) = 0,

vx(0) = 0,

vy(0) = 0
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Results

At t=1.5s:
Software MapleSoft Maplesoft Mathematica

Method rkf45 dae mebdfi bdf

x(t)

y(t)

vx(t)

vy(t)

F(t)

−0.885210671853245

−0.465190354526072

1.40466937778533

−2.67294519503751

−13.6765975574988

−0.885210686075761144

−0.465190324459711979

1.40466780732217456

−2.67294226202269192

−13.6766315537367014

−0.877704

−0.473984

1.4137

−2.67802

−13.9351

Table 3.5: Solution values of simple pendulum in cartesian coordinates at t = 1.5

Figure 3.14: Solution plot of x(t) and y(t)
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Figure 3.15: Solution plot of vx(t) and vy(t)

Figure 3.16: Solution plot of F (t)

3.6 Akzo-Nobel Chemical Reaction

The following system describes a chemical process in which two species, FLB and ZHU, are

mixed and added constantly to the system. The chemical names are fictitious. The reaction

equations are given below. Associated with each reaction, there are rates of reaction, which

are specified. The algebraic constraint comes from the last reaction, which requires FLB and

ZHU and its mixture to maintain a constant relationship.
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˙FLB(t) = −2r1 + r2 + r3 + r4 (3.18a)

˙CO2(t) = −0.5r1 − r4 − 0.5r5 + Fin (3.18b)

˙FLBT (t) = r1 − r2 + r3 (3.18c)

˙ZHU(t) = −r2 + r3 − 2r4, (3.18d)

˙ZLA(t) = r2 − r3 + r5 (3.18e)

Given the DAE (3.18) with constraints eqn,

ksFLB(t)ZHU(t) = FLBZHU(t)
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,variables:

Fin = klA(pCO2/H − CO2(t));

r1 = k1FLB(t)2CO2(t)1/2;

r2 = k2FLBT (t)× ZHU(t);

r3 = (k2/KK)FLB(t)× ZLA(t);

r4 = k3FLB(t)ZHU(t)2CO2(t);

r5 = k4FLB(t)× ZHU(t);

,constants :

k1 = 18.7;

k2 = 0.58;

k3 = 0.09;

k4 = 0.42;

KK = 34.4;

KlA = 3.3;

Ks = 115.83;

pCO2 = 0.9;

H = 737;
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Initial Conditions:

FLB(0) = 0.444,

CO2(0) = 0.00123,

FLBT (0) = 0,

ZHU(0) = 0.007,

ZLA(0) = 0

Results

At t=150s:
Software MapleSoft Maplesoft Mathematica

Method rkf45 dae mebdfi bdf

FLB(t)

ZHU(t)

CO2(t)

ZLA(t)

0.006127111

0.000019876532

0.001198746

0.022654983

0.006126999

0.000019875429

0.022644978

0.0061267899

0.00601173

0.0000207108

0.00121757

0.0237892

Table 3.6: Solution values of Akzo-Nobel chemical reaction t = 150
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Figure 3.17: Solution plot of FLB(t) and ZHU(t)

Figure 3.18: Solution plot of CO2(t) and ZLA(t)
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Chapter 4

Kalman Filter for index-1 DAE

It is possible to convert a DAE into an ODE and apply a well known state estimation method.

There are three problems with this approach [38]:

• Converting a DAE into an ODE and simulating it using an ODE solver can introduce

significant errors.

• The updated estimates produced by the state estimator will not necessarily satisfy the

algebraic constraints.

• If the DAE is reduced to a model containing only the differential states then

measurements which are dependent on algebraic states may not be easily used.

This section explores semi-explicit index-1 DAE-compatible Kalman filter. A reminder of

the of definition of semi-explicit index-1 DAE’s is presented followed by a discussion on the

filters presented with example. A semi-explicit index-1 DAE-compatible EKF was introduced

in [99] but this filter is limited in that it can only process systems where no algebraic states

are measured. This filter was expanded upon in [100], allowing measurement of algebraic

variables. The formulation for semi-explicit index-1 DAE-compatible EKF is focussed of this
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section.

Recall: a semi-explicit index-1 DAE has the form

ẋD = fD(t, xD, xA), (4.1a)

0 = fA(t, xD, xA), (4.1b)

where

det
(
∂fA
∂xA

)
6= 0

Differentiate equation (4.1b) with respect to t

0 = ∂fA
∂t

+ ∂fA
∂xD

ẋD + ∂fA
∂xA

ẋA (4.2a)

ẋA = −
(
∂fA
∂xA

)−1 (
∂fA
∂t

+ ∂fA
∂xD

ẋD

)
(4.2b)

This is the formula for transforming a semi-explicit index-1 DAE into an ODE. This allows

numerical methods for ODE’s to be applied on a DAE.

Some define the index of a DAE as the number of differential operations needed to transform

a DAE into an ODE, specifically this is referred to as the differential index. This is consistent

with the index-1 in semi-explicit index-1 DAE as it can be transformed into an ODE with

one differential operation as done in equation (4.2).

4.1 EKF for semi-explicit index-1 DAE

The EKF presented here was first introduced in [100] which is a modification of the EKF

introduced in [38]. The EKF in [100] is semi-explcit index-1 DAE is compatible with systems

where the measurement function is dependent on an algebraic state. This EKF propagates
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the state estimate using a DAE solver and propagates the covariance by converting the DAE

into an ODE and linearizing about the state estimate, then the matrix exponential of the

Jacobian is obtained and the formula used is

Pk+1|k = APk|kA
T +Q

where P is the covariance, A is the matrix exponential of the Jacobian and Q is the process

noise. The covariance has dimensions equal to the amount of the differential states.

The EKF introduced is able the handle semi-explicit index-1 DAE’s where the measurement

depends on algebraic states. The covariance has dimensions equal to the amount of

differential states plus the amount of algebraic states.

Consider a semi-explicit index-1 DAE with noise and measurements taken at discrete

intervals

ẋD = fD(t, xD, xA) + w (4.3a)

0 = fA(t, xD, xA) (4.3b)

yk = h(tk, xD,k, xA,k) + vk (4.3c)

where w and vk are Gaussian noise with covariance matrices Q and R respectively. Notice

that here we assume that noise is injected linearly into the system as opposed to the system

used in the EKF.
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Linearize (4.3a) and (4.3b) to obtain

ẋD =
[
Ak Bk

] xD
xA

 = AkxD +BkxA (4.4a)

0 =
[
Ck Dk

] xD
xA

 = CkxD +DkxA (4.4b)

where Ak Bk

Ck Dk

 =

 ∂fD∂xA
(tk, xD,k, xA,k) ∂fD

∂xA
(tk, xD,k, xA,k)

∂fA
∂xD

(tk, xD,k, xA,k) ∂fA
∂xA

(tk, xD,k, xA,k)


Differentiate the linearized algebraic constraint (4.4b)

0 = CkẋD +DkẋA (4.5a)

ẋA = −D−1
k CkẋD (4.5b)

ẋA = −D−1
k Ck(AkxD +BkxA) (4.5c)

ẋA = −D−1
k CkAkxD −D−1

k CkBkxA (4.5d)

Writing this together with the linearized differential part (4.4a)

ẋD
ẋA

 =

 Ak Bk

−D−1
k CkAkxD −D−1

k CkBk


xD
xA



Let

Lk =

 Ak Bk

−D−1
k CkAk −D−1

k CkBk





4. Kalman Filter for index-1 DAE 119

and define the transition matrix as

φ = exp(4tkLk)

where 4tk is the size of a time step from tk−1 to tk, i.e. 4tk = tk − tk−1

Given state estimates and covariance x̂D,k−1|k−1, x̂A,k−1|k−1, Pk−1|k−1 ∈ R(nD+nA)×(nD+nA) we

wish to progress the estimate from time tk−1 to tk,At time tk, measurement yk is available.

Below is the process for progressing according to EKF method introduced.

1. Predict phase:

(a) Propagate the state estimate from time tk−1 to tk with x̂D,k−1|k−1 and x̂A,k−1|k−1 as

the initial conditions using a DAE solver such as Matlab’s ode15s, Mathematica

or MapleSoft. Obtain x̂D,k|k−1 and x̂A,k|k−1

(b) Obtain new covariance,

Pk|k−1 = φkPk−1|k−1φ
T
k +

 InD×nD
−D−1

k Ck

Q
 InD×nD
−D−1

k Ck


T

where I is an identity matrix and an element of R(nD×nD).

2. Update phase:

(a) Compute the Kalman gain,

Kk = Pk|k−1H
T
k (HkPk|k−1H

T
k +R)−1

where Hk =
[
∂h
∂xD

(tk, xD,k|k−1, xA,k|k−1) ∂h
∂xA

(tk, xD,k|k−1, xA,k|k−1)
]

is the

linearized measurement at time tk
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(b) Update the state estimate,

x̂D,k|k
x̂A,k|k

 =

x̂D,k|k−1

x̂A,k|k−1

+Kk(yk − h(tk, x̂D,k|k−1, x̂A,k|k−1)).

(c) Solve

0 = fA(tk, x̂D,k|k, x̂A,k|k)

for x̂A,k|k to obtain a consistent updated algebraic state.

(d) Calculate the updated covariance,

Pk|k = (InD×nD −KkHk)Pk|k−1

We now have the next state estimates xD,k|k and xA,k|k and covariance matrix Pk|k.

4.2 Example: Non linear Vehicle Tracking Problem

Let us consider a simple example to illustrate the efficacy of the constrained Kalman filter.

The dynamics of the system is given by the equations as:

ẋ1 = x1 + 3x3 + wk (4.7a)

ẋ2 = x2 + 3x4 + wk (4.7b)

ẋ3 = x3 + 2.59 + wk (4.7c)

ẋ4 = x4 + 1.5 + wk (4.7d)



4. Kalman Filter for index-1 DAE 121

y =

(x1 − rn1)2 + x2 − re1)2)

(x1 − rn2)2 + x2 − re2)2)

+ ek

With algebraic constraints

x1 − 1.732x2 = 0 (4.8a)

x3 − 1.732x4 = 0 (4.8b)

Substituting the algebraic constraints in equation 4.7 gives

ẋ1 = x21.732 + 3x3 (4.9a)

ẋ2 = x41.732 + 3x4 (4.9b)

ẋ3 = x3 + 2.59 (4.9c)

ẋ4 = x4 + 1.5 (4.9d)

where w represents process disturbances and e represents measurement errors, and u is the

commanded acceleration. T is the sample period of the position estimator. The dynamic

equations are linear but the measurement equations are nonlinear, so the extended Kalman

filter can be used to estimate the state vector. The navigation reference points are at (0,0)

and (173210,100000) meters, while the covariances of the process and measurement noise are

Q = Daig(4, 4, 1, 1) (4.10a)

R = Diag(900, 900) (4.10b)
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We can use a Kalman filter to estimate the position of the vehicle. During certain times

the vehicle may be travelling off-road, or on an unknown road, in which case the problem

is unconstrained. At other times it may be known that the vehicle is travelling on a given

road, in which case the state estimation problem is constrained. For instance, if it is known

that the vehicle is travelling on a road with a constant heading angle. The sample period T

is 3s and the heading is set to a constant angle of 60 degee. The commanded acceleration

is alternately set to ±1, as if the vehicle was alternately accelerating and decelerating in

traffic. Note that with the 60 deg heading angle, the vehicle and the two reference points

form a straight line, which makes the state estimation problem more difficult. The initial

conditions are set to

x = x̂0 = [0 0 17 10]T (4.11a)

P0 = Diag[900 900 4 4]T (4.11b)

The unconstrained and constrained Kalman filters were simulated using MATLAB for 300s.

The figures show typical simulation results. The Fig. 4.1 shows the true position of the

vehicle which in unconstrained.
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Figure 4.1: True position of the vehicle

Figure 4.2: Unconstrained filter position error
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Figure 4.3: Constrained filter position error

Fig. 4.2 shows the position estimation error of the unconstrained Kalman filter, and Fig. 4.3

shows the position estimation error of the constrained Kalman filter. It can be seen that the

constrained filter results in much more accurate estimates than the unconstrained filter. The

unconstrained filter results in average position errors of about 5.08 m, while the constrained

filter results in position errors of about 0.5 m. In addition, for this particular example, the

Kalman filter performs identically whether we incorporate state constraints using perfect

measurements, or whether we incorporate state constraints using the approach W = I or

W = ∑1.
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Chapter 5

Conclusions

In this thesis, initially we presented a detailed review of literature on differential algebraic

equations with Mathematical structure, index and solvability concepts. Filtering of DAEs

have also been explored for linear and non linear DAE system. Some real time applications

of DAEs with numerical example has been shown.

Finding numerical solutions of DAEs have always been a challenging task especially with

constrains. The use of Professional softwares for solving complex DAEs are investigated

along with different integration algorithms that are discussed in this thesis.

Comparison of professional software with various integration algorithms has been done

by considering DAE systems of different index. The systems are simulated in specific time

domains and its corresponding output has been plotted.

We have observed that IVP and index order reduction has been found challenging in

MapleSolf as compared to Mathematica. The Mathematica software has proven to be better

in finding the solutions of DAE systems irrespective of initial conditions. Mathematica

can also find the initial conditions of the DAE system if needed . The plot commands

in Mathematica are more reasonable and easy to plot with the software user interface as
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compared to the MapleSoft. In its core algorithms and in most technical application areas,

Mathematica offers a deeper, more complete and better integrated collection of features.

Also, Mathematica is good at handling numerical work and it is a perfect programming

system whereas Matlab is not a perfect programming system. Mathematica is good for

handling calculus and differential differential-algebraic equations whereas Matlab is good in

design functions. To conclude, if dealing with analytical solution, its better to use Maple,

instead if interested in numerical, better to go with Mathematica.

Lastly, Kalman filtering of linear and nonlinear DAEs are studied with real time

example. Method of incorporating linear algebraic constraint in kalman filter demonstrates

the effectiveness of this method. For nonlinear complex DAE sytem, EKF filtering method

gives best filtering estimates of the system. The EKF methods used in the example as

described in chapter 4 gives better convergence results.

5.1 Future work

The filtering aspect of the DAE system can be further explored. If the system has nonlinear

constraints, even if they are linearized they may result in convergence problem, which can

be looked upon. Different filtering methods such as Unscented Kalman filter and Particle

filter can also be explored for nonlinear DAE system with linear and nonlinear algebraic

constraints. Future work along with the comparison of different filtering methods [101] [102]

and adding nonlinear constraints [103] to higher index DAE system could be studied.
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Appendix A

Code of 3.1 Pendulum System

A.1 MapleSoft:

dsys := {x′′ = −2λx, y′′ = −2λy − π2, x2 + y2 = L2}

ICs :={x(0) = 0, y(0) = −1, x′(0) = 1/10, y′(0) = 0, λ(0) = 1
200 + π2

2 }

dso lve ( dsys , ICS , numeric , method=mebdfi , maxfun=0 )

( or )

dso lve ( dsys , ICS , numeric , method=rkf45 dae , maxfun=0 )

A.2 Mathematica:

eqa = {x ’ ’ [ t ] + \ [ Lambda ] [ t ]∗ x [ t ] == 0 ,

y ’ ’ [ t ] + \ [ Lambda ] [ t ]∗ y [ t ] == −1, x [ t ] ˆ2 + y [ t ] ˆ2 == 1} ;

i c = {x [ 0 ] == 0 , y [ 0 ] == −1};

NDSolve [{ eqa , i c } , {x , y , \ [ Lambda ]} , {t , 0 , 3000} ,

Method −> {” IndexReduction ” −> ” Pante l i d e s ” ,
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” Equa t i onS imp l i f i c a t i on ” −> ” Res idua l ” } ]

s o l = NDSolve [{ eqa , i c } , {x , y , \ [ Lambda ]} , {t , 0 , 3000} ,

Method −> {” IndexReduction ” −> ” Pante l i d e s ” } ]

Plot [ Evaluate [#[ t ] / . s o l ] , {t , 0 , 50} , PlotRange −> All ,

PlotLabel −> #[t ] ] & /@ {x , y , \ [ Lambda ]}
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Appendix B

Code of 3.2 The Double Pendulum

B.1 MapleSoft:

dsys := {x′′1 + 2λ1x1(t) + 2λ2(x1 − x2) = 0, y1
′′ + 9.8 + 2λ1y1 + 2λ2(y1 − y2) = 0 ,

x2
′′ − 2λ2(x1 − x2) = 0, y2

′′ + 9.8− 2λ2(y1 − y2) = 0, x2
1 + y2

1 = 1, (x1 − x2)2 + (y1 − y2)2 = 0.52}

ICs :={x1(0) = 0, x1
′(0) = −52, y1(0) = −1, y1

′(0) = 0, x2(0) = 0, x2
′(0) = 3, y2(0) = −1.5, y2

′(0) = 0}

dso lve ( dsys , ICS , numeric , method=mebdfi , maxfun=0 )

( or )

dso lve ( dsys , ICS , numeric , method=rkf45 dae , maxfun=0 )

B.2 Mathematica:

cpdae = {x1 ’ ’ [ t ] + 2∗\ [Lambda ] 1 [ t ] ∗ x1 [ t ] +

2∗\ [Lambda ] 2 [ t ] ∗ ( x1 [ t ] − x2 [ t ] ) == 0 ,

y1 ’ ’ [ t ] + 9 .8 + 2∗\ [Lambda ] 1 [ t ] ∗ y1 [ t ] +

2∗\ [Lambda ] 2 [ t ] ∗ ( y1 [ t ] − y2 [ t ] ) == 0 ,
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x2 ’ ’ [ t ] − 2∗\ [Lambda ] 2 [ t ] ∗ ( x1 [ t ] − x2 [ t ] ) == 0 ,

y2 ’ ’ [ t ] + 9 .8 − 2∗\ [Lambda ] 2 [ t ] ∗ ( y1 [ t ] − y2 [ t ] ) == 0 ,

x1 [ t ] ˆ2 + y1 [ t ] ˆ2 == 1 ,

( x1 [ t ] − x2 [ t ] ) ˆ 2 + ( y1 [ t ] − y2 [ t ] ) ˆ 2 ==

1/4} ;

c p i n i t = {x1 [ 0 ] == 0 , x1 ’ [ 0 ] == −5/2, y1 [ 0 ] == −1, y1 ’ [ 0 ] == 0 ,

x2 [ 0 ] == 0 , x2 ’ [ 0 ] == 3 , y2 [ 0 ] == −5/2, y2 ’ [ 0 ] == 0} ;

var = {x1 [ t ] , x2 [ t ] , y1 [ t ] , y2 [ t ] , \ [ Lambda ] 1 [ t ] , \ [ Lambda ] 2 [ t ] ,

x1 ’ [ t ] , x2 ’ [ t ] , y1 ’ [ t ] , y2 ’ [ t ] } ;

NDSolve [{ cpdae , c p i n i t } , var , {t , 0 , 5} ,

Method −> {” IndexReduction ” −> ” Pante l i d e s ” } ] ;

s o lS2 = NDSolve [{ cpdae , c p i n i t } , var , {t , 0 , 5} ,

Method −> {” IndexReduction ” −> Automatic} ]

so lP0 = NDSolve [{ cpdae , c p i n i t } , var , {t , 0 , 5} ,

Method −> {” IndexReduction ” −> {” Pante l i d e s ” , ” IndexGoal ” −> 0} ,

” Equa t i onS imp l i f i c a t i on ” −> ” Res idua l ” } ]

Plot [ Evaluate [#[ t ] / . so lP0 ] , {t , 0 , 5} , PlotRange −> All ,

PlotLabel −> #[t ] ] & /@ {x1 , x2 , y1 , y2 , x1 ’ , x2 ’ , y1 ’ ,

y2 ’ , \ [ Lambda ] 1 , \ [ Lambda ]2}
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Appendix C

Code of 3.3 Linear DAE System of

Index-4

C.1 MapleSoft:

dsys := {ẋ(t) + ẏ(t) = y(t)− sin(t) + 2cos(t), x(t) + y(t) = −sin(t)}

ICs :={y(0) = −3}

dso lve ( dsys , ICS , numeric , method=mebdfi , maxfun=0 )

( or )

dso lve ( dsys , ICS , numeric , method=rkf45 dae , maxfun=0 )

C.2 Mathematica:

Clear [ x1 , x2 , x3 , x4 , x5 , x6 , i c s , vars ] ;

eqns = ({{x1 ’ [ t ] == Cos [ t ] − x2 [ t ] + x3 [ t ]} , {x2 ’ [ t ] ==

Cos [ t ] − x3 [ t ] + x4 [ t ]} , {x3 ’ [ t ] ==
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Cos [ t ] − x4 [ t ] + x5 [ t ]} , {x4 ’ [ t ] ==

Cos [ t ] − x5 [ t ] + x6 [ t ]} , {x5 ’ [ t ] ==

Cos [ t ] + Sin [ t ] − x6 [ t ]} , {0 ==

x1 [ t ] + x2 [ t ] + x3 [ t ] + x4 [ t ] + x5 [ t ] − 5∗Sin [ t ] } } ) ;

i c s = {x1 [ 0 ] == x2 [ 0 ] == x3 [ 0 ] == x4 [ 0 ] == x5 [ 0 ] == x6 [ 0 ] == 0} ;

vars = {x1 , x2 , x3 , x4 , x5 , x6 } ;

NDSolve [{ eqns , i c s } , vars , {t , 0 , 4 Pi} ,

Method −> {” IndexReduction ” −> ” St ructura lMatr ix ” } ] ;

solSM0 = NDSolve [{ eqns , i c s } , vars , {t , 0 , 4 Pi} ,

Method −> {” IndexReduction ” −> {” St ructura lMatr ix ” ,

” IndexGoal ” −> 0 } } ] ;

Row[ Plot [ Evaluate [ (#[ t ] − Sin [ t ] ) / . solSM0 ] , {t , 0 , 4 Pi} ,

PlotLabel −> #, PlotRange −> All , ImageSize −> Small ] & /@

vars ]
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Appendix D

Code of 3.4 Linear DAE System

D.1 MapleSoft

dsys := {x1
′ = cos(t)− x2 + x3, x2

′ = cos(t)− x3 + x4, x3
′ = cos(t)− x4 + x5, x4

′ = cos(t)− x5 + x6,

x5
′ = cos(t) + sin(t)− x6, x1 + x2 + x3 + x4 + x5− 5sin(t) = 0}

ICs :={x1(0) = x2(0) = x3(0) = x4(0) = x5(0) = x6(0) = 0}

dso lve ( dsys , ICS , numeric , method=mebdfi , maxfun=0 )

( or )

dso lve ( dsys , ICS , numeric , method=rkf45 dae , maxfun=0 )

D.2 Mathematica:

eqns = {x ’ [ t ] + y ’ [ t ] == y [ t ] − Sin [ t ] + 2 Cos [ t ] ,

x [ t ] + y [ t ] == −Sin [ t ] } ;

i c = {y [ 0 ] == −3};

NDSolve [{ eqns , i c } , {x , y} , {t , 0 , 1} ,
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Method −> {” IndexReduction ” −> ” Pante l i d e s ” ,

” Equa t i onS imp l i f i c a t i on ” −> ” Res idua l ” } ]

s o l = NDSolve [{ eqns , i c } , {x , y} , {t , 0 , 2 Pi} ,

Method −> {” IndexReduction ” −> ” St ructura lMatr ix ” } ]

Plot [ Evaluate [#[ t ] / . s o l ] , {t , 0 , 2 Pi} , PlotRange −> All ,

PlotLabel −> #[t ] ] & /@ {x , y}
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Appendix E

Code of 3.5 Robertson Problem

E.1 MapleSoft

dsys := {ẏ1(t) = −0.04y1 + 104y2y3, ẏ2 = 0.04y1 − 104y2y3 − (3 ∗ 107)y2
2, ẏ3 = (3 ∗ 107)y2

2,

y1 + y2 + y3 = 1}

ICs :={y1(0) = 1, y2(0) = 0, y3(0) = 0}

dso lve ( dsys , ICS , numeric , method=mebdfi , maxfun=0 )

( or )

dso lve ( dsys , ICS , numeric , method=rkf45 dae , maxfun=0 )

E.2 Mathematica:

cpdae = {y1 ’ [ t ] == −0.04∗y1 [ t ] + 10ˆ4∗y2 [ t ] ∗ y3 [ t ] ,

y2 ’ [ t ] == 0.04∗ y1 [ t ] − 10ˆ4∗y2 [ t ] ∗ y3 [ t ] − (3∗10ˆ7)∗ y2 [ t ] ˆ 2 ,

1 == y1 [ t ] + y2 [ t ] + y3 [ t ] } ;

c p i n i t = {y1 [ 0 ] == 1 , y2 [ 0 ] == 0 , y3 [ 0 ] == 0} ;
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var = {y1 [ t ] , y2 [ t ] , y3 [ t ] } ;

s o l = NDSolveValue [{ cpdae , c p i n i t } , var , {t , 0 , 100} ,

Method −> {” Equa t i onS imp l i f i c a t i on ” −> ”MassMatrix ” } ] ;

u c s o l = F i r s t [

NDSolve [{ cpdae , c p i n i t } , {y1 , y2 , y3 } , {t , 0 , 100} ,

Method −> {” IndexReduction ” −> {Automatic ,

” ConstraintMethod ” −> None}} , MaxSteps −> \ [ I n f i n i t y ] ] ] ;

E.3 Matlab 15s:

y0 = [ 1 ; 0 ; 0 ] ;

tspan = 0 : 1 : 1 0 0 ;

M = [ 1 0 0 ; 0 1 0 ; 0 0 0 ] ;

opt i ons = odeset ( ’ Mass ’ ,M) ;

[ t , y ] = ode15s ( @robertsdae , tspan , y0 , opt ions ) ;

y ( : , 2 ) = 1e4∗y ( : , 2 ) ;

semi logx ( t , y ) ;

y l a b e l ( ’ 1 e4 ∗ y ( : , 2 ) ’ ) ;

l egend ( ’ y1 ’ , ’ y2 ’ , ’ y3 ’ )

t i t l e ( ’ Robertson DAE problem , so lved by ODE15S ’ ) ;

f unc t i on out = rober t sdae ( t , y )

out = [ −0.04∗y (1 ) + 1e4∗y ( 2 ) . ∗ y (3 )

0 .04∗ y (1 ) − 1e4∗y ( 2 ) . ∗ y (3 ) − 3e7∗y ( 2 ) . ˆ 2
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y (1 ) + y (2) + y (3) − 1 ] ;

end
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Appendix F

Code of 3.6 The Car Axis System

F.1 MapleSoft:

dsys := { ẍl
2000 = ( 1

2ll − 1)xl + λ1xb + 2λ2(xl − xr), ÿl
2000 = ( 1

2ll − 1)yl + λ1yb + 2λ2(yl − yr)− 1
2000 ,

ẍr
2000 = ( 1

2lr − 1)(xr − xb)− 2λ2(xl − xr), ÿr
2000 = ( 1

2lr − 1)(yr − yb)− 2λ2(yl − yr)− 1
2000 ,

xlxb + ylyb = 0, (xl − xr)2 + (yl − yr)2 = 1yb = sin(10t)
10 , xb =

√
1− y2

b ,

ll =
√
x2
l + y2

l , lr =
√

(xr − xb)2 + (yr − yb)2)}

ICs :={xl(0) = 0, ẋl(0) = −12, yl(0) = 12, ẏl(0) = 0, xr(0) = 1, ẋr(0) = −12, yr(0) = 12, ẏr(0) = 0,

λ1(0) = 0, λ2(0) = 0}

dso lve ( dsys , ICS , numeric , method=mebdfi , maxfun=0 )

( or )

dso lve ( dsys , ICS , numeric , method=rkf45 dae , maxfun=0 )

F.2 Mathematica:

Clear [ yB , xL , yL , xB , L , m, L l e f t , Lr ight , \ [ Eps i lon ] , eqns ,
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i c s , \ [Omega ] , carParams , params , vars , carAxis , M] ;

yB [ t ] = h Sin [ \ [ Omega ] t ] ;

c o n s t r a i n t s = {xL [ t ] xB [ t ] + yL [ t ] yB [ t ] ==

0 , (xL [ t ] − xR [ t ] ) ˆ 2 + (yL [ t ] − yR [ t ] ) ˆ 2 == Lˆ2} ;

m = ( \ [ Eps i lon ]ˆ2 M) / 2 ;

xB [ t ] = Sqrt [ Lˆ2 − yB [ t ] ˆ 2 ] ;

L l e f t = Sqrt [ xL [ t ] ˆ2 + yL [ t ] ˆ 2 ] ;

Lr ight = Sqrt [ ( xR [ t ] − xB [ t ] ) ˆ 2 + ( yR [ t ] − yB [ t ] ) ˆ 2 ] ;

eqns = ({

{m xL ’ ’ [ t ] == ( ( L0 − L l e f t ) xL [ t ] ) /

L l e f t + \ [ Lambda ] 1 [ t ] xB [ t ] +

2 \ [ Lambda ] 2 [ t ] (xL [ t ] − xR [ t ] ) } ,

{m yL ’ ’ [ t ] == ( ( L0 − L l e f t ) yL [ t ] ) /

L l e f t + \ [ Lambda ] 1 [ t ] yB [ t ] +

2 \ [ Lambda ] 2 [ t ] (yL [ t ] − yR [ t ] ) − m} ,

{m xR ’ ’ [ t ] == (L0 − Lr ight ) (xR [ t ] − xB [ t ] ) / Lr ight −

2 \ [ Lambda ] 2 [ t ] (xL [ t ] − xR [ t ] ) } ,

{m yR ’ ’ [ t ] == (L0 − Lr ight ) (yR [ t ] − yB [ t ] ) / Lr ight −

2 \ [ Lambda ] 2 [ t ] (yL [ t ] − yR [ t ] ) − m}

} ) ;

i c s = {xL [ 0 ] == 0 , yL [ 0 ] == 1/2 , yR [ 0 ] == 1/2 , yL ’ [ 0 ] == 0 ,

yR ’ [ 0 ] == 0} ;

carParams = {L −> 1 , L0 −> 1/2 ,

\ [ Eps i lon ] −> 10ˆ−2 , M −> 10 ,

h −> 10ˆ−1 , \ [Omega ] −> 10} ;
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vars = {xL , yL , xR, yR, \ [ Lambda ] 1 ,

\ [ Lambda ] 2 , xL ’ , yL ’ , xR ’ , yR ’ } ;

carAxis =

NDSolve [{ eqns , c on s t r a i n t s , i c s } / . carParams , vars ,

{t , 0 , 3} ,

Method −> {” IndexReduction ” −> Automatic} ,

AccuracyGoal −> 7 ] ;

Plot [ Evaluate [#[ t ] / . carAxis ] , {t , 0 , 3} , PlotRange −> All ,

PlotLabel −> #[t ] ] & /@ {xL , xR, yL , yR,

\ [ Lambda ] 1 , \ [ Lambda ] 2 ,

xL ’ , xR ’ , yL ’ , yR’}
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Appendix G

Code of 3.7 Example from Physical

Chemistry

G.1 MapleSoft:

dsys := {ȧ = −a
10 + 104b.c, ḃ = a

10 − 104bc+ 107b2, a+ b+ c = 1}

ICs :={a(0) = 1, b(0) = 0}

dso lve ( dsys , ICS , numeric , method=mebdfi , maxfun=0 )

( or )

dso lve ( dsys , ICS , numeric , method=rkf45 dae , maxfun=0 )

G.2 Mathematica:

cpdae = {a ’ [ t ] == −a [ t ]/10 + 10000∗b [ t ]∗ c [ t ] ,

b ’ [ t ] == a [ t ]/10 − 10000∗b [ t ]∗ c [ t ] − 10000000∗b [ t ] ˆ 2 ,

a [ t ] + b [ t ] + c [ t ] == 1 } ;



G. Code of 3.7 Example from Physical Chemistry 142

c p i n i t = {a [ 0 ] == 1 , b [ 0 ] == 0} ;

var = {a [ t ] , b [ t ] , c [ t ] } ;

NDSolve [{ cpdae , c p i n i t } , var , {t , 0 , 4000} ,

Method −> {” IndexReduction ” −> ” Pante l i d e s ” } ] ;

so lP0 = NDSolve [{ cpdae , c p i n i t } , var , {t , 0 , 4000} ,

Method −> {” IndexReduction ” −> {” Pante l i d e s ” , ” IndexGoal ” −> 0} ,

” Equa t i onS imp l i f i c a t i on ” −> ” Res idua l ” } ]

Plot [ Evaluate [#[ t ] / . so lS1 ] , {t , 0 , 4000} , PlotRange −> All ,

PlotLabel −> #[t ] ] & /@ {a , b , c}
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Appendix H

Code of 3.8 Simple Pendulum in

Cartesian Coordinates

H.1 MapleSoft:

dsys := { ˙vx(t) = F (t)x(t), ˙vy(t) = F (t)y(t)− g, ˙x(t) = vx(t), ˙y(t) = vy(t), x2 + y2 = 1}

ICs :={x(0) = 1, y(0) = 0, vx(0) = 0, vy(0) = 0}

dso lve ( dsys , ICS , numeric , method=mebdfi , maxfun=0 )

( or )

dso lve ( dsys , ICS , numeric , method=rkf45 dae , maxfun=0 )

H.2 Mathematica:

cpdae = {vx ’ [ t ] == F[ t ]∗ x [ t ] , vy ’ [ t ] == F[ t ]∗ y [ t ] − 9 . 8 ,

x ’ [ t ] == vx [ t ] , y ’ [ t ] == vy [ t ] , x [ t ] ˆ2 + y [ t ] ˆ2 == 1} ;

c p i n i t = {x [ 0 ] == 1 , y [ 0 ] == 0 , vx [ 0 ] == 0 , vy [ 0 ] == 0} ;
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var = {x [ t ] , y [ t ] , vx [ t ] , vy [ t ] , F [ t ] } ;

NDSolve [{ cpdae , c p i n i t } , var , {t , 0 , 3} ,

Method −> {” IndexReduction ” −> ” Pante l i d e s ” } ] ;

so lP0 = NDSolve [{ cpdae , c p i n i t } , var , {t , 0 , 3} ,

Method −> {” IndexReduction ” −> {” Pante l i d e s ” , ” IndexGoal ” −> 0} ,

” Equa t i onS imp l i f i c a t i on ” −> ” Res idua l ” } ]

Plot [ Evaluate [#[ t ] / . so lP0 ] , {t , 0 , 3} , PlotRange −> All ,

PlotLabel −> #[t ] ] & /@ {x , y , vx , vy , F}
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Appendix I

Code of 3.9 Akzo-Nobel Chemical

Reaction

I.1 MapleSoft:

dsys := { ˙FLB(t) = −2r1 + r2 + r3 + r4, ˙CO2(t) = −0.5r1 − r4 − 0.5r5 + Fin,

˙FLBT (t) = r1 − r2 + r3, ˙ZHU(t) = −r2 + r3 − 2r4, ˙ZLA(t) = r2 − r3 + r5,

ksFLB(t)ZHU(t) = FLBZHU(t), F in = klA(pCO2/H − CO2(t)), r1 = k1FLB(t)2CO2(t)1/2,

r2 = k2FLBT (t)× ZHU(t), r3 = (k2/KK)FLB(t)× ZLA(t), r4 = k3FLB(t)ZHU(t)2CO2(t),

r5 = k4FLB(t)× ZHU(t), k1 = 18.7, k2 = 0.58, k3 = 0.09, k4 = 0.42, KK = 34.4, KlA = 3.3,

Ks = 115.83, pCO2 = 0.9, H = 737}

ICs :={FLB(0) = 0.444, CO2(0) = 0.00123, FLBT (0) = 0, ZHU(0) = 0.007, ZLA(0) = 0}

dso lve ( dsys , ICS , numeric , method=mebdfi , maxfun=0 )

( or )

dso lve ( dsys , ICS , numeric , method=rkf45 dae , maxfun=0 )
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I.2 Mathematica:

Fin = klA (pCO2/H − CO2[ t ] ) ;

r1 = k1 FLB[ t ] ˆ2 CO2[ t ] ˆ ( 1 / 2 ) ;

r2 = k2 FLBT[ t ] ZHU[ t ] ;

r3 = ( k2/KK) FLB[ t ] ZLA[ t ] ;

r4 = k3 FLB[ t ] ZHU[ t ] ˆ2 CO2[ t ] ;

r5 = k4 FLB[ t ] ZHU[ t ] ;

params = {k1 −> 18 . 7 , k2 −> 0 . 58 , k3 −> 0 . 09 , k4 −> 0 . 42 ,

KK −> 34 . 4 ,

klA −> 3 . 3 , Ks −> 115 .83 , pCO2 −> 0 . 9 , H −> 737} ;

eqns = {FLB ’ [ t ] == −2 r1 + r2 − r3 − r4 ,

CO2 ’ [ t ] == −0.5 r1 − r4 − 0 .5 r5 + Fin ,

FLBT’ [ t ] == r1 − r2 + r3 ,

ZHU’ [ t ] == −r2 + r3 − 2 r4 , ZLA ’ [ t ] == r2 − r3 + r5 } ;

eqEqn = Ks FLB[ t ] ZHU[ t ] == FLBZHU[ t ] ;

i c = {FLB [ 0 ] == 0 .444 , CO2 [ 0 ] == 0.00123 , FLBT[ 0 ] == 0 ,

ZHU[ 0 ] == 0.007 , ZLA[ 0 ] == 0} ;

s o l = NDSolve [{ eqns , eqEqn , i c } / . params ,

{FLB, ZHU, , CO2, ZLA} ,{ t , 0 , 2 0 0} ] ;

Plot [ Evaluate [#[ t ] / . s o l ] , {t , 0 , 200} , PlotRange −> All ,

PlotLabel −> #[t ] ] & /@ {FLB, ZHU, CO2, ZLA}
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