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Abstract

This thesis comprises three research projects.

In Chapter 2 we study the problem of complexity of orbit equivalence relations

induced by Borel actions of Polish groups. We prove that the homeomorphism relation

of locally connected continua is complete. This answers a question of Chang and Gao

[2].

In Chapter 3 we are interested in measurable equidecompositions. Our main result

provides a combinatorial condition for measurable equidecomposability a.e. of equidis-

tributed sets with respect to actions of finitely generated abelian groups. This confirms

a special case of Gardner’s conjecture [18]. As a corollary we obtain a generalization

of a result of Grabowski, Máthé and Pikhurko on measurable circle squaring [20].

In Chapter 4 we consider the problem of lifting invariant measures. We give a

fairly general sufficient condition for lifts to exist. This answers a question of Feliks

Przytycki.





Abrégé

Cette thèse comprend trois projets de recherche.

Dans le chapitre 2, nous étudions le problème de complexité des relations d’équivalences

orbitales, induites par des actions boréliennes des groupes polonais. Nous prouvons

que la relation d’homéomorphisme des continus localement connexes est la relation

complète. Cela rèpond au question de Chang et Gao [2].

Dans le chapitre 3, nous nous intéressons aux équidécompositions mesurables. Le

résultat principal fournit une condition combinatoire pour l’équidécomposabilité mesu-

rable presque partout des ensembles équidistrubués par rapport aux actions des groupes

abéliens de type fini. Cela confirme le cas special d’une conjecture de Gardner [18]. En

conséquence nous obtenons une généralisation du résultat de Grabowski, Máthé and

Pikhurko sur la quadrature mesurable du cercle [20].

Dans le chapitre 4, nous considérons le problème du relèvement des mesures inva-

riantes. Nous donnons une condition assez générale pour qu’un relèvement existe. Cela

répond à une question de Feliks Przytycki.
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Preface

Descriptive set theory studies ”definable” sets, i.e. sets which can be ”nicely” described

in terms of simpler objects. For instance, Borel sets are the sets that can be defined from

open sets using the operations of complements and countable unions. There are also other

classes of definable sets such as analytic sets (continuous images of Borel sets), coanalytic

sets (complements of analytic sets), or sets measurable with respect to a Borel measure.

Descriptive set theory has a lot of interesting applications in other branches of mathematics

such as topology, functional analysis, measure theory, ergodic theory and mathematical logic.

This thesis comprises three research projects in which we use descriptive set theoretic

methods. We study orbit equivalence relations, measurable equidecompositions and lifts of

invariant measures.

In Chapter 1 we present necessary background which is beyond the scope of standard

undergraduate courses. Section 1.1 is a brief introduction to descriptive set theory. We

focus only on notions that are used in later chapters. For a comprehensive introduction to

descriptive set theory we refer the interested reader to [24]. In Subsection 1.1.1 we discuss

Polish spaces. Subsection 1.1.2 covers hyperspaces of compact subsets of Polish spaces.

Subsection 1.1.3 provides basic information on Borel sets. In Subsection 1.1.4 we define the

space of probability measures on a Polish space.

In Section 1.2 we define orbit equivalence relations and the notion of reducibility of

xi



xii Preface

equivalence relations. Section 1.3 is an introduction to decomposition theory. In Section 1.4

we discuss the notion of amenability. Section 1.5 is devoted to Mokobodzki’s medial means.

Next chapters contain the author’s contribution to mathematics. Results presented in

Chapters 2 and 4 are based on the author’s solo papers [3] and [4], respectively. In Chapter

3 we present results from a joint paper of the author and Sabok [5].

The main result of Chapter 2 is that the homeomorphism relation of locally connected

continua is a complete orbit equivalence relation in the class of orbit equivalence relations

induced by actions of Polish groups. This answers a question of Chang and Gao [2] in the

affirmative.

In Chapter 3 the problem of measurable equidecompositions is studied. The main result

states that for free pmp actions of finitely generated abelian groups the existence of measur-

able equidecompositions a.e. of equidistributed sets is equivalent to the Hall condition.

In Chapter 4 we consider Feliks Przytycki’s question concerning lifting of invariant mea-

sures. We prove that invariant measures admit invariant lifts in a broad context of amenable

group actions.



Chapter 1

Preliminaries

1.1 Basics of descriptive set theory

1.1.1 Polish spaces

Definition 1.1. We say that a topological space is Polish if it is separable and completely

metrizable.

The simplest examples of Polish spaces are finite and countably infinite discrete spaces,

such as {0, 1}, {0, 1, 2, . . . , n − 1}, ω = {0, 1, 2, 3, . . .}. Other familiar examples of Polish

spaces are: the real line R, the circle T, the closed unit interval [0, 1], separable Banach

spaces.

The class of Polish spaces is closed under finite and countable products, so in particular

the following spaces are Polish: Rn, [0, 1]n where n ∈ ω, {0, 1}ω, [0, 1]ω, ωω, Rω. The

space {0, 1}ω is called the Cantor space and is homeomorphic to the ternary Cantor set{∑∞
k=1 εk · 3−k : εk ∈ {0, 2}

}
. The space ωω is called the Baire space and is homeomorphic

to R \ Q with Euclidean topology; for this reason sequences of non-negative integers are

1



2 Chapter 1. Preliminaries

sometimes referred to as irrationals. The space [0, 1]ω is called the Hilbert cube. It has

a remarkable property: all metrizable separable spaces homeomorphically embed into the

Hilbert cube.

It is worth pointing out that the class of Polish spaces is not closed under taking subsets.

For example, Q with the usual topology is not a Polish space. Indeed, note that Q =
⋃
q∈Q{q}

and the sets {q} are closed and nowhere dense in Q. Hence the Baire category theorem fails

for Q and therefore Q is not a Polish space.

One can give a full characterization of subspaces of a Polish space which are Polish: if

X is a Polish space and Y ⊂ X is its subspace then Y is Polish if and only if it Y is a Gδ

subset of X (i.e. Y is the intersection of countably many open sets). This result is known

as Alexandrov’s theorem.

What are possible cardinalities of Polish spaces? Clearly it can be any finite number

and ℵ0 as witnessed by discrete Polish spaces. It turns out that the cardinality of any

uncountable Polish space is c. The upper bound is easy to prove: if {xn : n ∈ ω} is dense in

X then every x ∈ X is the limit of some sequence of the form xn0 , xn1 , xn2 , xn3 , . . . and there

are only ℵℵ00 = c such sequences. This shows that if X is Polish then |X| ≤ c. The lower

bound follows from the following interesting fact.

Proposition 1.2. If X is an uncountable Polish space then the Cantor space embeds home-

omorphically in X.

Sketch of proof. Fix a compatible complete metric d on X bounded by 1. Construct a Cantor

scheme, i.e. a family of sets As indexed by s ∈ {0, 1}<ω with the following properties:

• As is an uncountable open set,

• As_0 ∩ As_1 = ∅,

• As_i ⊂ As,
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• diam(As) ≤ 2− lh(s).

We let A〈 〉 = X. If As was already defined, choose two distinct points x, y ∈ As so that

their neighbourhood bases consist of uncountable sets. Choose r > 0 so that

r < min

{
1

2
d(x, y), dist(x,X \ As), dist(y,X \ As), 2− lh(s)−2

}
and define As_0 = B(x, r), As_1 = B(y, r).

By construction, for all z = 〈z0, z1, z2, . . .〉 ∈ {0, 1}ω the set
⋂
n∈ω A〈z0,z1,...,zn〉 consists of a

single point, which we shall denote by xz. Then f : {0, 1}ω → X given by f(z) = xz embeds

homeomorphically the Cantor space into X.

1.1.2 The hyperspace of compact sets

Given a topological space X denote by K(X) the collection of all compact subsets of X. We

endow K(X) with Vietoris topology, i.e. with the topology generated by sets of the form

{K ∈ K(X) : K ∩ U 6= ∅} and {K ∈ K(X) : K ⊂ U}

where U ⊂ X is open.

If D ⊂ X is dense in X then {K ⊂ D : K is finite} is dense in K(X). In particular, if X

is separable then so is K(X).

Suppose now that X is metrizable. Fix a compatible metric d on X bounded by 1. If

x ∈ X and A ⊂ X, define d(x,A) = inf{d(x, a) : a ∈ A}. For K1, K2 ∈ K(X) define

δ(K1, K2) = maxx∈K1 d(x,K2) and

dH(K1, K2) =


0 if K1 = K2,

1 if K1 = ∅ 6= K2 or K1 6= ∅ = K2,

max(δ(K1, K2), δ(K2, K1)) otherwise.
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Then dH is a metric on K(X) called the Hausdorff metric. The Hausdorff metric is com-

patible with Vietoris topology. Hence K(X) equipped with Vietoris topology is metrizable.

Moreover, if d is complete then dH is also complete.

It follows that if X is Polish then K(X) is Polish as well. Moreover, if X is a compact

Polish space then so is K(X).

We conclude this subsection by stating and proving [24, 4.29 v)]. We shall use it later in

the proof of the main result of Chapter 4.

Proposition 1.3. Let X be metrizable. Let K ⊂ K(X) be a compact subset of K(X). Then

the set
⋃
K is a compact subset of X.

Proof. Let U be an open cover of
⋃
K. Note that U is an open cover of K for any K ∈ K.

By compactness of K, there exists a finite collection U ′ ⊂ U so that K ⊂
⋃
U ′. It follows

that the collection{{
K ∈ K(X) : K ⊂

⋃
U ′
}

: U ′ is a finite subset of U
}

is an open cover of K. By compactness of K, there exist finite subsets U1, . . . ,Un of U so

that {{K ∈ K(X) : K ⊂
⋃
Ui} : i = 1, 2, . . . , n} is an open cover of K. Then

⋃
K is covered

by
⋃n
i=1 Ui, which is a finite subcover of U . Hence

⋃
K is compact.

1.1.3 Borel sets

Given a topological space X we denote by B(X) the σ-algebra generated by open sets. This

means: B(X) is the smallest family of subsets of X containing all open sets which is closed

under taking complements and countable unions. The elements of B(X) are called Borel

subsets of X.

Note that we do not obtain any ”new” Borel sets (i.e. sets that are not open) by taking

countable union of open sets. This is because open sets are closed under arbitrary unions.
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However, in general the complement of an open set does not need to be open. This yields

Borel subsets of X different from the open sets. The complements of open sets are called

closed sets. Note that complements of closed sets are open so this does not define ”new”

Borel sets. However, countable union of closed sets usually is neither open neither closed.

This leads to ”new” Borel sets: countable unions of closed sets (these are called Fσ sets).

Continuing this process, one can define Gδ sets — the complements of Fσ sets (which by de

Morgan laws happen to be countable intersections of open sets). Countable unions of Gδ

sets are called Fσδ sets, complements of Fσδ sets are called Gδσ sets, and so on. Continuing

this process we eventually obtain all Borel sets. Note that this process has to go for more

than ω steps since in general the countable union of a Gδ set, Gδσ set, Gδσδ set, Gδσδσ set,

. . . is a ”new” Borel set. We make it precise in forthcoming paragraphs.

For all ordinals 1 ≤ α < ω1 we define by transfinite recursion classes Σ0
α(X) and Π0

α(X)

of subsets of X. We denote by Σ0
1(X) the class of open sets. If Σ0

α(X) is already defined,

we let

Π0
α(X) =

{
X \ A : A ∈ Σ0

α(X)
}
.

If for all β < α classes Π0
β(X) are defined, we let

Σ0
α(X) =

{⋃
n∈ω

An : ∀n ∈ ω An ∈
⋃
β<α

Π0
β(X)

}
.

Hence, Π0
1(X) is the class of closed sets, Σ0

2(X) is the class of Fσ sets, Π0
2(X) is the class

of Gδ sets, and so on.

Since for all A ∈ Π0
α(X) one has A =

⋃
n∈ω An where An = A for all n ∈ ω, it follows

that A ∈ Σ0
α+1(X), i.e. Π0

α(X) ⊂ Σ0
α+1. Consequently, if A ∈ Σ0

α(X) then X \A ∈ Π0
α(X),

so X \A ∈ Σ0
α+1(X), and A = X \ (X \A) ∈ Π0

α+1(X). So Σ0
α(X) ⊂ Π0

α+1(X). This shows

that
⋃
α<ω1

Σ0
α(X) =

⋃
α<ω1

Π0
α(X). Note that

B(X) =
⋃
α<ω1

Σ0
α(X) =

⋃
α<ω1

Π0
α(X).
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The ⊃ inclusion follows from the observation that every element of
⋃
α<ω1

Σ0
α(X) can be

obtained by applying countably many operations of taking countable unions and intersections

starting from the open sets. The ⊂ inclusion follows from the observation that
⋃
α<ω1

Σ0
α(X)

is a σ-algebra of subsets of X containing all open sets.

Note that if X is Polish and |X| ≤ ℵ0 then B(X) = P(X), i.e. every subset of X is

Borel. The reason is that the singletons are closed, so all subsets of X already appear in

Σ0
2(X). However, if X is an uncountable Polish space then B(X) 6= P(X). Surprisingly, all

uncountable Polish spaces share the same Borel structure. This means that if X and Y are

uncountable Polish spaces then there is a Borel bijection f : X → Y so that A ∈ B(X) if

and only if f(A) ∈ B(Y ). This motivates the following definition.

Definition 1.4. Let X be a set and Σ be a σ-algebra of subsets of X. We say that (X,Σ) is

a standard Borel space if there exists a Polish topology on X so that Σ is its Borel σ-algebra.

So, any two standard Borel spaces are isomorphic. The notion of standard Borel space is

very useful. For instance, if we only care about the Borel structure we can impose a topology

which is most convenient for us: we may want to work with the Cantor space or with the

Baire space or with [0, 1] or any other Polish space to make things simpler.

1.1.4 Space of measures

Let M be a σ-algebra of subsets of a set X. A function µ : M→ [0,+∞] is called a measure

on (X,M) if µ(∅) = 0 and µ is countably additive, i.e. whenever A0, A1, A2, A3, . . . ∈M are

pairwise disjoint sets, µ(
⋃∞
n=0An) =

∑∞
n=0 µ(An). If µ is a measure on (X,M) then we let

N (µ) denote the σ-ideal of µ-null sets, i.e.

N (µ) = {N : N ⊂ A for some A ∈M with µ(A) = 0}.
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A set of the form A4N with A ∈ M, N ∈ N (µ) is called µ-measurable. (Recall that 4

denotes symmetric difference, X4Y = (X \ Y )∪ (Y \X) = (X ∪ Y ) \ (X ∩ Y ).) We denote

the collection of µ-measurable sets by Σ(µ). Note that Σ(µ) is a σ-algebra.

If X is a Polish space and µ is a measure on (X,B(X)) then we say that µ is a Borel

measure on X. Recall that µ extends uniquely to a measure µ̃ on (X,Σ(µ)) and that µ̃

satisfies N (µ̃) = N (µ) and Σ(µ̃) = Σ(µ). The measure µ̃ is called the completion of µ.

Usually the tilde is skipped and the same symbol is used to denote both a Borel measure

and its completion.

Given a compact Polish space X, denote by P (X) the collection of all Borel probability

measures on X. We equip P (X) with the topology of pointwise convergence on C(X) =

{f : X → R : f is continuous}, i.e., with the topology whose basic neighbourhoods of µ ∈

P (X) are the sets{
ν ∈ P (X) :

∣∣∣∣∫
X

fjdµ−
∫
X

fjdν

∣∣∣∣ < ε for j = 1, 2, . . . , n

}
where f1, f2, . . . , fn ∈ C(X). Due to the Riesz representation theorem, there is an identifica-

tion of Borel probability measures on X with M+
1 (X), the space of non-negative functionals

ϕ on C(X) so that ϕ(χX) = 1. This identification is a homeomorphism when M+
1 (X) is

equipped with the weak∗ topology.

It turns out that if X is a compact Polish space then so is P (X).

1.2 Orbit equivalence relations

An orbit equivalence relation is an equivalence relation induced by an action of a group, i.e.

a relation whose equivalence classes are precisely the orbits of the action. In other words, if

a is an action of G on X, then a defines a relation Ea given by xEay ⇐⇒ ∃g ∈ G x = gy.
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From a descriptive set theoretic point of view, it is interesting to consider orbit equiv-

alence relations induced by actions with some additional properties. For instance, G could

be a Polish group (i.e. a group with a Polish topology so that the group operations are

continuous), X could be a Polish space or a standard Borel space, and the action could be

continuous or Borel.

Let us give some examples of actions of Polish groups.

(i) Any group G acts on itself by left multiplication. The equivalence relation induced by

this action consists of a single orbit G.

(ii) Let G be a countable group. Consider {0, 1}G, the set of binary sequences indexed by

the elements of G. The shift action of G on {0, 1}G is defined by g(xh)h∈G = (xg−1h)h∈G.

(iii) View binary sequences x = (x0, x1, x2, x3, . . .) ∈ {0, 1}ω as infinite binary strings

. . . x3x2x1x0. One can define addition of such strings by

. . . x3x2x1x0 + . . . y3y2y1y0 = . . . z3z2z1z0

where zn is the n-th digit in binary expansion of the number
∑n

k=0 xk2
k +

∑n
k=0 yk2

k.

This corresponds to addition with carries of binary ”numbers” having infinitely many

digits. The group Z acts on {0, 1}ω by adding . . . 000001. This is called the odome-

ter action. The orbit of an x ∈ {0, 1}ω in the orbit equivalence relation induced by

the odometer action is {y : x and y differ on finitely many coordinates} if x contains

infinitely many zeros and ones, and {y : y is eventually constant} otherwise.

(iv) Given a Polish space X let Homeo(X) = {h : X → X : h is a homeomorphism}. Then

Homeo(X) is a Polish group which acts on X via hx = h(x).

Given a relation E on X and a relation F on Y we say that E is reducible to F if there
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exists a function f : X → Y with the following property:

∀x, y ∈ X xEy ⇐⇒ f(x)Ff(y).

We say that f reduces E to F and write E ≤ F . The idea is that F is at least as complicated

as E since given x, y ∈ X one may tell whether x and y are E-related by examining whether

their images by f are F -related. Note that ≤ is a pre-order (i.e. it is reflexive and transitive).

If X and Y are topological spaces then one may define the notion of continuous reducibil-

ity (denoted by ≤c) by requiring that f is a continuous map. Similarly, if X and Y have

Borel structures, we may consider Borel reducibility (denoted by ≤B by requiring the map

f to be Borel. Clearly, both ≤c, ≤B are pre-orders as well.

As an example of a Borel reduction we describe Gromov’s result that the isometry relation

of infinite compact metric spaces (defined below) is Borel reducible to the equality relation

id(2ω) on 2ω. For a more detailed discussion of this example we refer the reader to Sections

14.1 and 14.2 of [15]. If (X, d) is an infinite Polish metric space and {xn : n ∈ ω} is its dense

subset, we define rX ∈ Rω×ω by rX = (d(xi, xj))i∈ω,j∈ω. Note that rX ∈ X where

X = {(ri,j)i∈ω,j∈ω ∈ Rω×ω : ∀i, j, k ∈ ω ri,j = rj,i ≥ 0, ri,j = 0 ⇐⇒ i = j, ri,j + rj,k ≥ ri,k}.

Conversely, every r ∈ X encodes a unique infinite Polish space Xr — the completion of the

metric space (ω, dr) where dr(i, j) = ri,j. Hence, one may think of the class of infinite Polish

metric spaces as X (even though different rs may encode isometric Polish spaces). Denote

by Xcpt the set of all r ∈ X encoding compact metric spaces. Then Xcpt is a Borel subset of

Rω×ω and hence inherits a Borel structure from Rω×ω. Define the isometry relation ∼=i on

Xcpt by

r ∼=i s ⇐⇒ r and s encode isometric spaces.

It turns out that every compact metric space (X, d) is uniquely determined by the com-

pact sets Φn(X) = {(d(xi, xj))0≤i,j≤n ∈ R(n+1)×(n+1) : x0, x1, . . . , xn ∈ X} for n ∈ ω and
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that the map Xcpt 3 r 7→ Φn(Xr) is Borel for all n ∈ ω. It follows that if we let

f :
∏

n∈ωK(R(n+1)×(n+1)) → 2ω be any Borel isomorphism then the map g : Xcpt → 2ω

given by

Xcpt 3 r 7→ f ((Φn(Xr))n∈ω) ∈ 2ω

is Borel and has the property that r ∼=i s ⇐⇒ g(r) = g(s). Therefore ∼=i ≤B id(2ω) as

witnessed by g.

From now on we narrow down our interest to orbit equivalence relations induced by a

Borel action of a Polish group acting on a Polish space or on a standard Borel space. We

are also interested only in Borel reducibility.

One may ask whether there is the most complicated orbit equivalence relation. This

means: is there an orbit equivalence relation E so that every other orbit equivalence relation

is Borel reducible to E? Such a relation is usually called complete or universal. It turns

out that this is true: there exists a complete orbit equivalence relation. This follows from

the existence of universal Polish groups and the Mackey-Hjorth theorem [15, Theorem 3.5.2]

on extensions of actions of Polish groups. For a complete proof of this we refer the reader

to [15, Theorem 5.19]. On the other hand, the first natural example of a complete orbit

equivalence relation is the isometry relation of Polish metric spaces as proved by Gao and

Kechris [17] and Clemens [6]. Later on many other orbit equivalence relations naturally

arising in mathematics were proved to be complete. We discuss the topic further in Chapter

2.

1.3 Equidecompositions

Given two sets, A and B, can we partition A into certain number of pieces and rearrange

them to obtain the set B? The answer to this general question depends on many factors:
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what are the sets A and B, how many pieces we allow in the decomposition, how regular the

pieces should be and what we mean by ’rearrangements’.

The idea of equidecompositions was known to ancient Greek mathematicians: one of

their proofs of Pythagorean theorem is based on cutting two small squares into five pieces

and building a big square using these pieces.

Later on it was observed by Bolyai and Gerwien that for any two polygons P and Q of

the same area one can cut P into finitely many polygons, move them by isometries to obtain

a partition of Q. On the other hand, Max Dehn proved that a similar result does not hold

for three-dimensional polyhedra: it is not the case that if P and Q are arbitrary polyhedra

of the same volume then P can be cut into finitely many polyhedra which can be rearranged

to obtain a partition of Q. This fails even for cube and regular pyramid. This answered

Hilbert’s third problem.

Let us also mention that a result of Dubins, Hirsch and Karush [10] implies that a disc

cannot be cut into finitely many pieces homeomorphic to discs so that the pieces can be

rearranged by isometries to obtain a partition of a square.

Note that in the examples above we ignore the boundaries of pieces. We introduce now

a precise set-theoretic notion of equidecomposability.
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Definition 1.5. Let G be a group acting on X. We say that sets A and B are G-

equidecomposable if there exist pairwise disjoint sets A1, A2, . . . , An, pairwise disjoint sets

B1, B2, . . . , Bn and group elements g1, g2, . . . , gn so that A =
⋃n
i=1 Ai, B =

⋃n
i=1 Bi, and

Bi = giAi for all i.

A classical theorem by Banach and Tarski, known as the Banach-Tarski paradox, states

if d ≥ 3 then one can partition the unit ball in d-dimensional space into finitely many pieces

and move them by isometries to obtain a partition of two unit balls. The proof uses axiom

of choice.

Theorem 1.6. Let d ≥ 3. The unit ball B in Rd is equidecomposable (with respect to the

group of isometries) with two copies of B.

It can be proved that the minimal number of pieces in paradoxical decomposition of the

three-dimensional unit ball is five.

A more general version of the Banach-Tarski paradox says:

Theorem 1.7. Let d ≥ 3 and A,B ⊂ Rd be two bounded sets with nonempty interior. Then

A and B are equidecomposable with respect to the group of isometries of Rd.

Sketch of proof. SinceA contains a ball C ⊂ A andB is bounded, B can be covered by a finite

number of copies of C. It follows from Theorem 1.6 that C (and thus A) is equidecomposable

with a superset of B. Similarly, B is equidecomposable with a superset of A. The conclusion

follows from a variant of the Cantor-Schröder-Bernstein theorem.

A natural question arises: is the analogue of the Banach-Tarski paradox true in dimen-

sions d < 3? The answer is negative: if two Lebesgue-measurable sets in the plane are

equidecomposable then they have the same Lebesgue measure. The reason is that there

exists an isometry-invariant finitely additive measure µ defined on all subsets of R2 which
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extends the Lebesgue measure λ. So, if A1, . . . , An and B1, . . . , Bn are partitions of A and

B, respectively, witnessing that A and B are equidecomposable then

λ(A) = µ(A) =
n∑
i=1

µ(Ai) =
n∑
i=1

µ(Bi) = µ(B) = λ(B).

It turns out that non-existence of such a finitely additive measure is the only obstruction

preventing the existence of paradoxical decompositions.

Theorem 1.8 (Tarski). Suppose G acts on X and E ⊂ X. The following are equivalent:

(i) There exists a finitely additive, G-invariant measure µ : P(X)→ [0,∞] with µ(E) = 1

(ii) E is not G-paradoxical, i.e. there exist no partition of E into pairwise disjoint subsets

E1, . . . , En and group elements g1, . . . , gn so that for some k the sets g1E1, g2E2, . . . , gkEk

are pairwise disjoint, the sets gk+1Ek+1, . . . , gnEn are pairwise disjoint, and E =
⋃k
i=1 giEi =⋃n

i=k+1 giEi.

1.4 Amenability

In this section we briefly review the notion of amenable groups and semigroups. For more

information on amenability the reader may wish to consult [41].

Definition 1.9. We say that a group G is amenable if there exists a finitely additive measure

µ : P(G) → [0, 1] so that µ(G) = 1 and µ is left-invariant, i.e. µ(gA) = µ(A) for all A ⊂ G

and g ∈ G.

All finite groups are amenable, as witnessed by the measure µ(A) = |A|
|G| .

The group of integers is amenable; we outline the sketch of proof of this. For any n

let Fn ⊂ Z be a finite set of consecutive integers so that limn→∞ |Fn| = ∞. Define a

measure νn on Z by νn(A) = |A∩Fn|
|Fn| . Let U be a non-principal ultrafilter on N and define



14 Chapter 1. Preliminaries

ν(A) = limn→U νn(A). It turns out that ν is a left-invariant finitely additive measure on Z

with ν(Z) = 1. Essentially the same argument shows that a countable group G is amenable

provided it satisfies the Følner condition: there exists an increasing sequence of finite sets

Fn so that
⋃
n∈ω Fn = G and limn→∞

|gFn4Fn|
|Fn| = 0 for all g ∈ G. In fact, the Følner condition

is equivalent to amenability for countable groups. All countable abelian groups satisfy the

Følner condition, hence countable abelian groups are amenable.

Note that F2, the free group on two generators, is not amenable since it admits paradoxical

decompositions. Neither is any group G containing F2 as a subgroup. It was a long-standing

problem whether there exists a non-amenable group none of whose subgroup is isomorphic

to F2. This was answered in the affirmative by Ol’shanskii [40].

It turns out that there is a bijection between finitely additive measures µ on G with

µ(G) = 1 and continuous linear functionals m on `∞(G) so that ‖m‖ = 1 (we call such

functionals means); this bijection is given by µ(E) = m(χE). An equivalent definition of an

amenable group follows: a group G is amenable if and only if there exists a left invariant

mean m on G. A mean m is left invariant if m(ϕx) = m(ϕ) where for ϕ ∈ `∞(G) and x ∈ G

we define ϕx by ϕx(y) = ϕ(xy) for y ∈ G. Note that this definition also makes sense for

semigroups; we say that a semigroup is left amenable if it admits a left invariant mean. Let

us also remark that the Følner condition is not equivalent to left amenability of semigroups.

Let S be a semigroup. Let K be a compact convex subset of a locally convex space E.

The set K is called an affine left S-set if S acts on K from the left and for all s ∈ S the

map K 3 x 7→ sx ∈ K is affine. The following theorem is a fundamental result in theory of

amenable semigroups.

Theorem 1.10 (Day’s fixed point theorem). Let S be a left amenable semigroup and K an

affine left S-set. Then the action of S on K has a fixed point.
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1.5 Mokobodzki’s medial means

A mean is a linear functional m : `∞ → R so that:

(i) m is positive, i.e. if f ≥ 0 then m(f) ≥ 0,

(ii) m is normalized, i.e. m(1) = 1,

We say that a mean m is shift-invariant if for all f ∈ `∞ one has m(Sf) = m(f), where

S : `∞ → `∞ is the shift map: Sf(n) = f(n + 1). A Banach limit is a shift-invariant mean.

Note that Banach limits extend the notion of limit to arbitrary bounded sequences, i.e. if m is

a Banach limit then for all f ∈ `∞ so that limn→∞ f(n) exists we have m(f) = limn→∞ f(n).

How strong set theoretic axioms are needed to prove the existence of Banach limits?

There exists a model of ZF + DC in which there are no Banach limits (see e.g. [23, Theorem

44.]). Hence, in order to prove that a Banach limit exists one has to work in a theory stronger

than ZF + DC. Denote by HB the statement that the Hahn-Banach theorem holds. Since

one can prove that Banach limits exist using the Hahn-Banach theorem for `∞ [14], it follows

that HB is not a theorem of ZF + DC. Interestingly enough, HB implies the Banach-Tarski

paradox [42].

Below we shall prove working in ZF + DC + HB that if µ is a Borel probability measure

on [0, 1]ω then there exists a Banach limit whose restriction to [0, 1]ω is µ-measurable. We

shall also present a proof in ZFC + CH that there exists a Banach limit so that its restriction

to [0, 1]ω is universally measurable (i.e. measurable with respect to all Borel probability

measures on [0, 1]ω). This was first proved by Mokobodzki [39]; for this reason such Ba-

nach limits are often called Mokobodzki’s medial limits or Mokobodzki’s medial means. Our

exposition of these results is based on [37].

Let E be a locally convex topological vector space. Let X be a convex compact metrizable

subset of E. For a convex function u : X → R let Au = {(x, t) : u(x) ≤ t}. This is a convex
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set. Moreover, u is lower semicontinuous if and only if Au is closed, and if this is the case

then for all s ∈ R the set Asu = {(x, t) : u(x) ≤ t ≤ s} is compact and convex. By the

Hahn-Banach theorem such a u is the supremum of a family of continuous affine functions,

hence u satisfies Jensen’s inequality:

u(b) ≤
∫
X

u(x)dµ(x)

for all probability measures µ with barycenter b.

Let u1, u2 : X → R be two convex lower semicontinuous functions bounded from above

by s ∈ R. Note that

conv(Au1 ∪ Au2) = conv(Asu1 ∪ A
s
u2

) ∪ (X × [s,∞))

where conv(Z) denotes the convex hull of Z. Since Asui are compact, the set conv(Asu1 ∪A
s
u2

)

is compact as well, hence conv(Au1 ∪ Au2) is closed as it is the union of a compact set and

a closed set. It follows that conv(Au1 ∪ Au2) = Au for some convex lower semicontinuous

function u : X → R. We denote u = u1 ∧
conv

u2. Clearly, the operation ∧
conv

is associative. Note

that if v : X → R is an arbitrary convex function satisfying v ≤ u1, v ≤ u2 then v ≤ u1 ∧
conv

u2.

This is analogous to a property of f ∧ g = min(f, g): if h ≤ f and h ≤ g then h ≤ f ∧ g,

and justifies the choice of the symbol ∧
conv

.

Let Γ+ be the class of bounded convex functions v : X → R so that v = infn∈ω vn for

some convex lower semicontinuous functions vn : X → R. Note that such a v is the limit of

a decreasing sequence of bounded convex lower semicontinuous functions un = s ∧
conv

v1 ∧
conv

v2 ∧
conv

. . . ∧
conv

vn (where s is an upper bound of v). It follows that v is universally measurable

and that it also satisfies Jensen’s inequality. We let Γ− = −Γ+. This class consists of

bounded concave functions v : X → R so that v = supn∈ω vn with vn being concave and

upper semicontinuous and, analogously, such a v is the limit of an increasing sequence of

bounded concave upper semicontinuous functions.
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Let us make an easy observation that if a1, a2, a3, . . . are continuous affine functions

then the convex function lim supn an = infn supm≥n am belongs to Γ+ since the functions

supm≥n am are convex and lower semicontinuous. Similarly, lim infn an ∈ Γ−.

Lemma 1.11 (ZF + DC + HB). Let X be a convex compact metrizable subset of a locally

convex topological vector space E. Let u ∈ Γ− and v ∈ Γ+ satisfy u ≤ v. Let µ be a

Borel probability measure on X. Then there exist functions u′ ∈ Γ−, v′ ∈ Γ+ so that

u ≤ u′ ≤ v′ ≤ v and u′ = v′ µ-a.e.

Proof. Let (un) be an increasing sequence of bounded concave upper semicontinuous func-

tions converging pointwise to u. Let (vn) be a decreasing sequence of bounded convex lower

semicontinuous functions converging pointwise to v. Let s be a lower bound of un− 1
n

and let

s′ be an upper bound of vn+ 1
n
. Note that the sets Kn = {(x, t) ∈ X×R : s ≤ t ≤ un(x)− 1

n
}

and Ln = {(x, t) ∈ X×R : s′ ≥ t ≥ vn(x)+ 1
n
} are disjoint convex compact subsets of E×R.

Using the Hahn-Banach theorem we obtain a continuous linear functional H : E × R → R

and a γ ∈ R so that Kn and Ln are separated by the hyperplane {(x, t) : H(x, t) = γ}. Then

h : E → R given by h(x) = γ−H(x,0)
H(0,1)

is a continuous affine function so that un(x) − 1
n
≤

h(x) ≤ vn(x) + 1
n

for all x ∈ X. Hence, for all n the set

Bn =

{
h : h is a continuous affine function so that un −

1

n
≤ h ≤ vn +

1

n

}
⊂ L1(X,µ)

is nonempty. Let Bn be the closure of Bn in weak topology. Note that Bn is compact. Also,

the sequence Bn is decreasing since the sequence Bn decreases. Hence the intersection of all

Bn is nonempty. Let a ∈
⋂
n∈ω Bn. Note that for any n the set Bn is convex, so by Mazur’s

theorem Bn coincides with the closure of Bn in norm topology. Hence for all n there is

an ∈ Bn with ‖an− a‖L1(X,µ) ≤ 2−n. The sequence an converges to a µ-a.e., so the functions

u′ = lim infn∈ω an, v′ = lim supn∈ω an are as required.



18 Chapter 1. Preliminaries

Theorem 1.12 (ZF + DC + HB). Let µ be a Borel probability measure on [0, 1]ω. Then there

exists a Banach limit m : `∞ → R so that the restriction of m to [0, 1]ω is µ-measurable.

Proof. Let E = `∞, X = [0, 1]ω, u = lim infn ξn, and v = lim supn ξn where ξn : `∞ → R is

the n-th coordinate function. Use Lemma 1.11 to obtain functions u′ ∈ Γ−, v′ ∈ Γ+ so that

u ≤ u′ ≤ v′ ≤ v and u′ = v′ µ-a.e. Let A = {x ∈ X : u′(x) = v′(x)} and define w : A → R

by w = u′|A = v′|A. Note that w is linear since 0 ∈ A and it is both concave and convex.

Extend w to w̃ : span(A)→ R by linearity and note that u ≤ w̃ ≤ v. Use the Hahn-Banach

theorem to obtain an extension of w̃ to a linear functional ` : `∞ → R so that ` ≤ v.

Note that ` satisfies u ≤ ` since for all x ∈ `∞ we have u(x) = −v(−x) ≤ −`(−x) = `(x).

So, if x ∈ `∞ and x ≥ 0 then `(x) ≥ u(x) ≥ 0. This shows that ` is positive. Note that if

x = (x0, x1, . . .) is a convergent sequence then u(x) = v(x) = limn xn, hence `(x) = limn xn.

In particular, `(1) = 1 which proves that ` is normalized. Therefore ` is a mean. Also note

that the restriction of ` to [0, 1]ω is µ-measurable as it agrees with v′ ∈ Γ+ on a set of full

measure, namely A.

Finally, define m : `∞ → R by

m(x0, x1, x2, x3, . . .) = `

(
x0,

x0 + x1

2
,
x0 + x1 + x2

3
,
x0 + x1 + x2 + x3

4
, . . .

)
. (1.1)

Since ` is positive, normalized and µ-measurable, it follows that m has these properties as

well. We claim that m is shift-invariant. Indeed, for any x = (x0, x1, . . .) ∈ `∞

m(x)−m(Sx) = m(x0 − x1, x1 − x2, x2 − x3, . . .)

= `

(
x0 − x1,

x0 − x2

2
,
x0 − x3

3
, . . .

)
= 0

since limn→∞
x0−xn
n

= 0. This finishes the proof.
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Before we formulate and prove the second aforementioned result we shall introduce a

definition and prove a more general theorem.

Definition 1.13. We say that a bounded universally measurable function w : X → R is

strongly affine if w(b) =
∫
X
w(x)dµ(x) for all probability measures µ with barycenter b.

Proposition 1.14. Every strongly affine function is affine.

Proof. Let w : X → R be a strongly affine function. Let x, y ∈ X, 0 < α < 1. Consider the

measure µ = αδx + (1− α)δy. Its barycenter is αx+ (1− α)y. Hence

w(αx+ (1− α)y) =

∫
X

w(x)dµ(x) = αw(x) + (1− α)w(y).

Hence w is affine.

Clearly, all continuous affine functions are strongly affine. However, there exist Borel

affine functions which are not strongly affine.

Theorem 1.15 (ZFC + CH). Let X be a convex compact metrizable subset of a locally convex

topological vector space E. Let u ∈ Γ− and v ∈ Γ+ satisfy u ≤ v. Then there exists a strongly

affine function w with u ≤ w ≤ v.

Proof. Since X is metrizable compact, it is Polish. Hence, P (X) is a compact Polish space

and therefore has cardinality c. Hence, using CH, we can enumerate the elements of P (X)

with countable ordinals: P (X) = {µα : α < ω1}.

We define by transfinite recursion functions uα, vα so that:

• uα ∈ Γ−, vα ∈ Γ+ for all α < ω1,

• u ≤ uα ≤ uβ ≤ vβ ≤ vα ≤ v for all α < β < ω1

• for all α the equality uα = vα holds µα-a.e.
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We obtain u0, v0 by applying Lemma 1.11 for u, v and µ0. Suppose 0 < β < ω1 and

uα, vα are defined for all α < β. Consider the function supα<β uα. Clearly, it is bounded.

It is also concave: this follows from concavity of uαs and from the fact that the sequence

uα is increasing. Since each uα belongs to Γ−, uα = supn∈ω uα,n for some concave upper

semicontinuous functions uα,n. It follows that supα<β uα = sup(α,n)∈β×ω uα,n, hence it is

the supremum of a countable family of concave upper semicontinuous functions. Therefore,

supα<β uα belongs to Γ−. Similarly, infα<β vα belongs to Γ+.

We use Lemma 1.11 for supα<β uα, infα<β vα, and µβ. We obtain functions uβ ∈ Γ−,

vβ ∈ Γ+ so that supα<β uα ≤ uβ ≤ vβ ≤ infα<β vα and uβ = vβ µβ-a.e. Hence uβ and vβ

satisfy all required conditions.

Note that for all x ∈ X there is α < ω1 so that δx = µα. Hence uα(x) = vα(x), and

so for all β > α we have uα(x) = uβ(x) = vβ(x) = vα(x). Hence the sequences {uα}α<ω1 ,

{vα}α<ω1 converge pointwise to a common function, call it w. Clearly, u ≤ w ≤ v. Moreover,

for all α the function w agrees with u µα-a.e., and hence w is µα-measurable. Finally, if µ

is a measure on X with barycenter b then for some α we have 1
2
δb + 1

2
µ = µα. Then b is the

barycenter of µα as well, hence

vα(b) ≤
∫
X

vα(x)dµα(x) =

∫
X

w(x)dµα(x) =
1

2
w(b) +

1

2

∫
X

w(x)dµ(x).

Similarly,

uα(b) ≥
∫
X

uα(x)dµα(x) =

∫
X

w(x)dµα(x) =
1

2
w(b) +

1

2

∫
X

w(x)dµ(x).

Since uα(b) ≤ vα(b), it follows that equality holds in the above inequalities. In particular,

uα(b) = vα(b) = 1
2
w(b) + 1

2

∫
X
w(x)dµ(x). As shown earlier uα(b) = vα(b) implies uα(b) =

vα(b) = w(b). It follows that w(b) =
∫
X
w(x)dµ(x). Hence w is strongly affine.

Mokobodzki’s result easily follows from Theorem 1.15 and arguments used in the proof

of Theorem 1.12.
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Theorem 1.16 (ZFC + CH). There exists a Mokobodzki’s medial mean.

Proof. Let E = `∞, X = [0, 1]ω, u = lim infn ξn, and v = lim supn ξn where ξn : `∞ → R is

the n-th coordinate function. Theorem 1.15 provides a strongly affine (and hence universally

measurable) function w : [0, 1]ω → R so that u ≤ w ≤ v. Since u(0) = v(0) = 0, we have

w(0) = 0 and so w is linear. We extend w to a function ` : `∞ → R by linearity. We

define m : `∞ → R by formula 1.1. Note that the proof of Theorem 1.12 shows that m is

positive, normalized and shift-invariant. Universal measurability of the restriction of m to

[0, 1]ω follows from universal measurability of w.





Chapter 2

Complexity of the homeomorphism

relation of locally connected continua

In this chapter we prove that the homeomorphism relation of locally star-convex continua

is a complete orbit equivalence relation. This implies that the homeomorphism relation of

locally connected continua is complete. This answers a question posed by Chang and Gao

in [2].

2.1 Introduction

A Borel action a of a Polish group G on a standard Borel space X determines an equivalence

relation Ea given by xEay ⇐⇒ ∃g ∈ G gx = y. In other words, xEay if and only if x and

y are in the same orbit of the action a. Such relations are called orbit equivalence relations.

Note that every orbit equivalence relation is analytic, i.e. the set {(x, y) ∈ X ×X : xEay} is

an analytic subset of the product X ×X.

Given two orbit equivalence relations E and F on standard Borel spaces X and Y ,

23
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respectively, we say that a Borel map f : X → Y reduces E to F if and only if for every

x, y ∈ X

xEy ⇐⇒ f(x)Ff(y).

If this is the case we say that E is Borel reducible to F .

If E is Borel reducible to F and F is Borel reducible to E then we say that E and F are

Borel bireducible. Roughly speaking, this means that E and F are of the same complexity.

If E is an orbit equivalence relation such that every orbit equivalence relation F is

reducible to E then we say that E is complete (or universal) orbit equivalence relation.

Complete orbit equivalence relations are, in a sense, the most complex objects in the class

of orbit equivalence relations. It is known that complete orbit equivalence relations exist,

on abstract grounds. This follows from the existence of universal Polish groups and the

Mackey-Hjorth theorem [15][Theorem 3.5.2] on extensions of actions of Polish groups. On

the other hand, the first natural example of a complete orbit equivalence relation is the

isometry relation of Polish metric spaces as proved by Gao and Kechris [17] and Clemens [6].

Interestingly enough, recently Melleray [36] proved that there exists a Polish metric space

whose group of isometries with its natural action on the space induces a complete orbit

equivalence relation.

In recent years there has been a considerable amount of research on the classification

program of separable C*-algebras from a descriptive set-theoretic point of view. This began

with the work of Farah, Toms and Törnquist [12] and later Elliott, Farah, Paulsen, Rosendal,

Toms and Törnquist [11] and led to the question of the complexity of the isometry relation

of separable C*-algebras. This problem has been solved by Sabok [44] who showed that the

isometry relation of separable C*-algebras is a complete orbit equivalence relation. Soon

thereafter, Zielinski [50], using Sabok’s result, solved the long-standing problem whether the

homeomorphism relation of compact metric spaces is a complete orbit equivalence relation.
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The latter result was subsequently improved by Chang and Gao [2] who showed that the

homeomorphism relation of continua (connected compact metric spaces) is also a complete

orbit equivalence relation.

These results lead to a number of open questions.

Problem 2.1 (Zielinski, [50]). Is the homeomorphism relation of homogeneous compact

metric spaces a complete orbit equivalence relation?

This problem seems to be very difficult as there are not so many known ways to construct

homogeneous spaces.

Problem 2.2 (Chang, Gao, [2]). Is the homeomorphism relation of locally connected con-

tinua a complete orbit equivalence relation?

In this paper we prove that the answer to Problem 2.2 is affirmative. In fact, we prove

the following stronger theorem.

Theorem 2.3. The homeomorphism relation of locally star-convex continua is a complete

orbit equivalence relation.

Recall that every compact metric space embeds in the Hilbert cube Q = [0, 1]N and the

family K(Q) of all compact subsets of Q has a natural Borel structure steming from the

Vietoris topology. Kuratowski proved that the set of locally connected subcontinua of Q is

an Fσδ subset of K(Q) [25]. His proof actually gives the following stronger result: if C is a

closed subset of K(Q) then the set of locally-C subcontinua of Q is Fσδ in K(Q). Choosing

C as the set of star-convex continua we see that the set of locally star-convex continua is Fσδ

in K(Q). This gives Borel structures on the collection of locally connected continua and on

the collection of locally star-convex continua. It is worth noting that local connectedness

and local path-connectedness are equivalent in the class of continua [21]. Such continua are

also called Peano continua, as they are continuous images of the interval.
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Section 2.2 is devoted to a description of coding spaces. They are used in the last section

in which we prove Theorem 2.3.

2.2 The coding spaces

Let d be a metric on Q given by the formula d((xn)n∈N, (yn)n∈N) =
∑

n∈N
|xn−yn|

2n
. Let

d′ be a metric on Q × Q given by d′((x, y), (z, t)) = d(x, z) + d(y, t). We also denote

0 = (0, 0, 0, . . .) ∈ Q and ei = (0, 0, . . . , 0︸ ︷︷ ︸
i times

, 1, 0, 0, . . .) ∈ Q.

In this section we consider locally star-convex continua X, Y ⊂ Q and non-empty families

(finite or countably infinite) A = {An : n < |A|}, C = {Cn : n < |C|} of non-empty closed

convex subsets of Q such that
⋃
A is a closed subset of X and

⋃
C is a closed subset of Y .

For every A ∈ A let aA0 , a
A
1 , . . . be an enumeration of a dense subset of A in which every

element appears infinitely many times. Define bAk = (aAk , e〈n,k〉) ∈ X × Q, where n is such

that A = An and 〈·, ·〉 is a bijection between N× N and N.

We define

X ′ = X × {0} ∪ {bAk : A ∈ A, k ∈ N}.

The idea is that for every A ∈ A we introduce a set of new isolated points whose boundary

is precisely the set A. Note that X ′ is a compact space.

Similarly, for every C ∈ C we consider an enumeration with infinite repetitions cC0 , c
C
1 , . . .

of a dense subset of C and we define dCk = (cCk , e〈n,k〉) ∈ Y ×Q, where n is such that C = Cn.

We define

Y ′ = Y × {0} ∪ {dCk : C ∈ C, k ∈ N}.

A standard back-and-forth construction yields the following

Proposition 2.4. If f : X → Y is a homeomorphism such that {f [A] : A ∈ A} = C then

there is a homeomorphism g : X ′ → Y ′ extending f such that g[{bAk : k ∈ N}] = {df [A]
k : k ∈
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N} for every A ∈ A.

For every A ∈ A and k ∈ N we define XA
k = {t · x+ (1− t)bAk : 0 ≤ t ≤ 1, x ∈ A× {0}},

i.e. XA
k is the cone with base A× {0} and apex bAk . Further, let

X ′′ = X × {0} ∪
⋃
A∈A

⋃
k∈N

XA
k .

That is, for every A ∈ A we build a sequence of cones with base A such that the boundary

of the set of apexes of these cones is A. Moreover, every two cones have no common points

lying outside X × {0}.

We prove now that X ′′ is a locally star-convex continuum. Compactness easily follows

from the assumption that all sets A ∈ A are convex. Connectedness is clear. Therefore X ′′ is

a continuum. For the proof of local star-convexity, consider a point (x, r) ∈ X ′′. If r 6= 0 then

clearly (x, r) has arbitrarily small convex neighbourhoods, thus proving local star-convexity

at (x, r). Now assume that r = 0. Observe that any set of the form (U × V ) ∩ X ′′ where

x ∈ U ⊂ X, U is star-convex neighbourhood of x, and V ⊂ Q is a basic neighbourhood of

0, is a star-convex neighbourhood of (x,0) in X ′′. This is because if (y, s) ∈ (U × V ) ∩X ′′

then (y, s) ∈ XA
k for some A ∈ A and k ∈ N and since XA

k and V are convex, the segment

connecting (x,0) with (y, s) is contained in XA
k ∩ V . Moreover y ∈ U and therefore the

segment with endpoints x and y is contained in U . Finally, the segment with endpoints

(x,0), (y, s) is contained in (U × V ) ∩ XA
k ⊂ (U × V ) ∩ X ′′. Now, since x has arbitrarily

small star-convex neighbourhoods in X, (x,0) has arbitrarily small neighbourhoods in X ′′.

We use the same notation for Y , and for every C ∈ C and k ∈ N let Y C
k be the cone with

base C × {0} and apex dCk and let Y ′′ be the union of Y × {0} and all the cones Y C
k .

Proposition 2.5. If f : X → Y is a homeomorphism such that {f [A] : A ∈ A} = C and

for every A ∈ A the restriction f |A is affine then there is a homeomorphism h : X ′′ → Y ′′

extending f such that for every A ∈ A f [{bAk : k ∈ N}] = {df [A]
k : k ∈ N} and for every A ∈ A

and k ∈ N the restriction of h to XA
k is affine.
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Proof. Let g : X ′ → Y ′ be a homeomorphism extending f constructed in the previous propo-

sition. We define h : X ′′ → Y ′′ by h|X′ = g, and for every A ∈ A, x ∈ A, k ∈ N, 0 < t < 1

h(t · (x,0) + (1− t) · bAk ) = t · g(x,0) + (1− t) · g(bAk ).

This map is a bijection between compact spaces, so to prove that h is a homeomorphism

we only have to show that h is continuous. It is also clear from the definition of h that h|XA
k

is affine for every A ∈ A and k ∈ N.

Let tj(xj,0)+(1−tj)b
Anj

kj
, where kj, nj ∈ N, xj ∈ Anj

, tj ∈ [0, 1] be a sequence of elements

of X ′′ converging to some t(x, 0)+(1−t)bAn
k (where x ∈ An, t ∈ [0, 1], k, n ∈ N). If t < 1 then

for sufficiently large j we have kj = k, nj = n and also lim
j→∞

xj = x, lim
j→∞

tj = t. Therefore

h(tj(xj,0) + (1− tj)b
Anj

kj
) = tjg(xj,0) + (1− tj)g(b

Anj

kj
)

j→∞−−−→ tg(x,0) + (1− t)g(bAn
k ) = h(t(x,0) + (1− t)bAn

k ).

If t = 1 then tj(xj,0) + (1 − tj)b
Anj

kj

j→∞−−−→ (x,0). Fix ε > 0. Pick an integer N

so large that if 〈n, k〉 > N and g(bAn
k ) = dCm

l then d(cCm
l , f(aAn

k )) < ε/4 and 2−〈m,l〉 <

ε/4. Pick an integer N ′ such that whenever j > N ′ then (1 − tj)2
−〈nj ,kj〉 < ε2−N−2 and

d(f(x), tjf(xj) + (1− tj)f(a
Anj

kj
)) < ε/4.

We have h(x,0) = g(x,0) = (f(x),0) and

h(tj(xj,0) + (1− tj)b
Anj

kj
) = tjg(xj,0) + (1− tj)g(b

Anj

kj
)

= (tjf(xj) + (1− tj)f(a
Anj

kj
),0)

+ (1− tj)(c
Cmj

lj
− f(a

Anj

kj
), e〈mj ,lj〉),

therefore, if j > N ′ then
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d′(h(x,0), h(tj(xj,0) + (1− tj)b
Anj

kj
))

≤ d(f(x), tjf(xj) + (1− tj)f(a
Anj

kj
))

+ (1− tj)d(c
Cmj

lj
, f(a

Anj

kj
)) + (1− tj)2−〈mj ,lj〉

≤ ε/4 + (1− tj)d(c
Cmj

lj
, f(a

Anj

kj
)) + (1− tj)2−〈mj ,lj〉 = (∗).

If 1 − tj ≥ ε/4 then ε2−〈nj ,kj〉−2 ≤ (1 − tj)2
−〈nj ,kj〉 < ε2−N−2, i.e. 〈nj, kj〉 > N , so

d(cCm
l , f(aAn

k )) < ε/4 and it follows that (∗) < ε/4 + (1− tj)ε/4 + ε2−N−2 ≤ ε.

Otherwise 1− tj < ε/4 and (∗) ≤ ε/4 + ε/4 · sup d′ + ε/4 = ε.

It follows that h is a continuous function. This finishes the proof.

Now, for every k ∈ N and A = An ∈ A let b̂Ak and b̃Ak be two distinct points in Q×{e〈n,k〉}

such that d′(bAk , b̂
A
k ) = d′(bAk , b̃

A
k ) = 1

2+〈n,k〉 . We denote ÎAk = {tbAk + (1− t)b̂Ak : 0 ≤ t ≤ 1} and

ĨAk = {tbAk + (1− t)b̃Ak : 0 ≤ t ≤ 1}. We define

T (X,A) = X ′′ ∪
⋃
A∈A

⋃
k∈N

ÎAk ∪ ĨAk .

In other words, we consider the space X ′′ and for every k ∈ N and A ∈ A we attach two

short segments ÎAk and ĨAk to the apex of XA
k . The key property of points bAk in T (X,A) is

that T (X,A) \ {bAk } consists of three connected components.

Note that T (X,A) is a locally star-convex continuum. Compactness of T (X,A) is proved

similarly as of X ′′. It is clear that T (X,A) is connected. Local star-convexity of T (X,A)

easily follows from local star-convexity of X ′′.

We define similarly d̂Ck and d̃Ck as points at the distance 1/(2 + 〈n, k〉) from dCk , where

C = Cn, we denote the segment with endpoints dCk , d̂
C
k as ÎCk and the segment with endpoints

dCk , d̃
C
k as ĨCk . We define T (Y, C) as the union of Y ′′ and all the segments ÎCk , ĨCk .
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Proposition 2.6. If f : X → Y is a homeomorphism such that {f [A] : A ∈ A} = C and

for every A ∈ A the restriction f |A is affine then there is a homeomorphism h′ : T (X,A)→

T (Y, C) extending f such that for every A ∈ A h′[{bAk : k ∈ N}] = {df [A]
k : k ∈ N} and for

every A ∈ A and k ∈ N the restrictions of h′ to XA
k , ÎAk , and ĨAk are affine.

Proof. We simply extend the homeomorphism h : X ′′ → Y ′′ constructed in the previous

proposition to h′ : T (X,A) → T (Y, C) by the formula h′(tbAk + (1− t)b̂Ak ) = tdCl + (1− t)d̂Cl
and h′(tbAk + (1− t)b̃Ak ) = tdCl + (1− t)d̃Cl , where h(bAk ) = dCl .

We will also need a variant of the space T (X,A). Consider a set B ∈ A. Consider the

space T (X,A). For every k ∈ N let b̌Bk be a point distinct from b̂Bk , b̃
B
k with d′(bBk , b̌

B
k ) =

d′(bBk , b̂
B
k ) and b̌Bk − bBk + (aBk ,0) ∈ Q × {0}. Denote the closed segment with endpoints bBk ,

b̌Bk by ǏBk . We define

T ′(X,B,A) = T (X,A) ∪
⋃
k∈N

ǏBk ,

that is, we attach an extra segment to the apex of every cone with base B, so removing the

apex results in four connected components instead of three.

Clearly T ′(X,B,A) is a locally star-convex continuum.

Proposition 2.7. If f : X → Y is a homeomorphism such that {f [A] : A ∈ A} = C and for

every A ∈ A the restriction f |A is affine, and B ∈ A, D ∈ C are such that f [B] = D, then

there is a homeomorphism h′′ : T ′(X,B,A)→ T ′(Y,D, C) extending f .

Proof. Using Proposition 2.6 we get a homeomorphism h′ : T (X,A) → T (Y, C). We extend

it by putting h′′(tbBk + (1− t)b̌Bk ) = tdDl + (1− t)ďDl , where h′(bBk ) = dDl . Then h′′ clearly is

a homeomorphism.
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2.3 Homeomorphism relation of locally connected con-

tinua is complete

In this section we will prove the main result.

Recall that the space KChoq of metrizable Choquet simplices is a Borel subset of K(Q)

and that the relation ≈a of affine homeomorphism on KChoq is complete (this is due to Sabok

[44]).

Consider a relation ∼=(3) introduced by Zielinski in [50] defined on the space {(X,R) ∈

K(Q)×K(Q3) : R ⊂ X3}, where (X,R) ∼=(3) (Y, S) if and only if there is a homeomorphism

f : X → Y with f 3[R] = S. Here, f 3 means f 3(x, y, z) = (f(x), f(y), f(z)). Consider the

map Γ: KChoq → K(Q3) given by the formula

Γ(X) = {(x, y, z) ∈ X3 :
1

2
x+

1

2
y = z}.

The following is [50, Proposition 2]

Proposition 2.8. For every X, Y ∈ KChoq the following equivalence holds: X ≈a Y ⇐⇒

(X,Γ(X)) ∼=(3) (Y,Γ(Y )).

Note that Γ(X) is convex for every Choquet simplex X.

We recall another relation from [50]. Let ∼=perm be defined on K(Q)N in the following

way: (A1, A2, . . .) ∼=perm (B1, B2, . . .) if and only if there exists a homeomorphism h : Q → Q

and a permutation σ of N such that h(An) = Bσ(n) for any n.

For a Choquet simplex X consider the space X̃ = T (X, {X}) and write bk instead of bXk .
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Define for any n ∈ N,

Bn = {bn} × X̃2

Cn = X̃ × {bn} × X̃

Dn = X̃2 × {bn}

En = Bn ∪ Cn

Fn = Bn ∩Dn.

Let Ψ: KChoq → K(Q3)N be the function

Ψ(X) = (X̃3,Γ(X), B1, C1, D1, E1, F1, B2, C2, D2, E2, F2, . . .).

The proof of the following proposition is similar to the proof of [50, Proposition 3].

Proposition 2.9. For every X, Y ∈ KChoq the following equivalence holds: X ≈a Y ⇐⇒

Ψ(X) ∼=perm Ψ(Y ).

Proof. It follows from the proof of [50, Proposition 3] (where instead of using [50, Proposition

1] we use Proposition 2.6) that X ≈a Y =⇒ Ψ(X) ∼=perm Ψ(Y ).

For the implication in the other direction, suppose that Ψ(X) ∼=perm Ψ(Y ) witnessed by

σ : N→ N and h : X̃3 → Ỹ 3. Write

Ψ(Y ) = (Ỹ 3,Γ(Y ), H1, I1, J1, K1, L1, H2, I2, J2, . . .)

and let dn ∈ Ỹ be such that Hn = {dn} × Ỹ 2. Again, the proof of [50, Proposition 3]

shows that h[X̃3] = Ỹ 3, h[Γ(X)] = Γ(Y ), and that there is a permutation τ : N → N with

h[Bn] = Hτ(n), h[Cn] = Iτ(n), h[Dn] = Jτ(n), h[En] = Kτ(n), h[Fn] = Lτ(n).

Denoting X ′ = X ∪ {bn : n ∈ N} and Y ′ = Y ∪ {dn : n ∈ N} the proof of [50, Proposition

3] shows that (X,Γ(X)) ∼=(3) (Y,Γ(Y )). It follows from the Proposition 2.8 that X ≈a Y .
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Let

X = {(x, y) ∈ Q2 : ∀m 6= n, ym = 0 ∨ yn = 0}.

Note that X is a locally star-convex continuum.

For every (A1, A2, . . .) ∈ K(Q)N we define

Ξ(A1, A2, . . .) = {(x, y) ∈ X : ∀n yn = 0 ∨ x ∈ An}.

We identify Q with Q× {0}.

Recall the definition of the relation ∼=(1,1) from [50]. If A ⊂ B ⊂ X and C ⊂ D ⊂ Y then

(X,B,A) ∼=(1,1) (Y,D,C) if and only if there exists a homeomorphism f : X → Y such that

f [A] = C and f [B] = D.

The following is [50, Proposition 4].

Proposition 2.10. Let ~A = (A1, A2, . . .) ∈ K(Q)N and ~B = (B1, B2, . . .) ∈ K(Q)N. Then

~A ∼=perm
~B if and only if (X ,Ξ( ~A),Q) ∼=(1,1) (X ,Ξ( ~B),Q). Moreover, if f : X → Y and

σ : N → N witness that ~A ∼=perm
~B then f × hσ−1|X witnesses that (X ,Ξ( ~A),Q) ∼=(1,1)

(X ,Ξ( ~B),Q), where hτ : Q → Q is the homeomorphism given by hτ (x1, x2, . . .) = (xτ(1), xτ(2), . . .).

Identifying Q3 with Q in an obvious way we may treat Ψ(X) as an element of K(Q)N.

Therefore it makes sense to consider Ξ(Ψ(X)). Note that Ξ(Ψ(X)) can be written as a union

of a countable family of convex closed subsets of X . Indeed, let X denote the family of cones

and segments X̃ is the union of. Also let [0, 1]n = {ten : t ∈ [0, 1]} ⊂ Q. Then Ξ(Ψ(X)) is

the union of the following family:
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FX = {Q × {0}} ∪ {(S1 × S2 × S3)× [0, 1]0 : S1, S2, S3 ∈ X} ∪ {Γ(X)× [0, 1]1}

∪
⋃
n∈N

{({bn} × S1 × S2)× [0, 1]5n+2 : S1, S2 ∈ X}

∪
⋃
n∈N

{(S1 × {bn} × S2)× [0, 1]5n+3 : S1, S2 ∈ X}

∪
⋃
n∈N

{(S1 × S2 × {bn})× [0, 1]5n+4 : S1, S2 ∈ X}

∪
⋃
n∈N

{({bn} × S1 × S2)× [0, 1]5n+5 : S1, S2 ∈ X}

∪
⋃
n∈N

{(S1 × {bn} × S2)× [0, 1]5n+5 : S1, S2 ∈ X}

∪
⋃
n∈N

{({bn} × S1 × {bn})× [0, 1]5n+6 : S1, S2 ∈ X}.

The following proposition gives an explicit reduction of ≈a to the homeomorphism re-

lation of locally connected continua. Borelness of this reduction follows from a routine

verification. As a consequence we get Theorem 2.3.

Proposition 2.11. The map X 7→ T ′(X ,Q,FX) is a reduction of ≈a to the homeomorphism

relation of locally connected continua.

Proof. Let X, Y ∈ KChoq. Assume that f : X → Y is an affine homeomorphism.

We use Proposition 2.6 for A = {X} and C = {Y } and we get a homeomorphism

g : T (X, {X})→ T (Y, {Y }) which is affine on the sets XX
k , ÎXk , ĨXk for every k ∈ N. Note that

g determines a permutation σ : N → N such that g3 and σ witness that Ψ(X) ∼=perm Ψ(Y ).

Then, by proposition 2.10, g3×hσ−1|X witnesses that (X ,Ξ(Ψ(X)),Q) ∼=(1,1) (X ,Ξ(Ψ(Y )),Q)

and since g is affine on every set XX
k , ÎXk , ĨXk , it follows that g3×hσ−1|X is affine on every set

from FX . Therefore, using proposition 2.7, T ′(X ,Q,FX) is homeomorphic to T ′(X ,Q,FY ).
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Conversely, assume that T ′(X ,Q,FX) is homeomorphic to T ′(X ,Q,FY ) and let f be a

homeomorphism witnessing that. Let SXk ⊂ T ′(X ,Q,FX) be the set of points x such that

T ′(X ,Q,FX) \ {x} consists of exactly k connected components. Note that this property is

preserved by homeomorphisms. By construction of T ′(X ,Q,FX), the boundary of the set

SX4 is Q. Therefore, since f [SX4 ] = SY4 , the image of the boundary of SX4 is equal to the

boundary of SY4 , i.e. f [Q] = Q. Analogously, by construction we know that the boundary

of the set SX3 is
⋃
FX = Ξ(Ψ(X)). We conclude that f [Ξ(Ψ(X))] = Ξ(Ψ(Y )). The points

x ∈ X \ Ξ(Ψ(X)) are characterized by the following property: the connected component of

x in the space T ′(X ,Q,FX)\Ξ(Ψ(X)) is disjoint from SX3 ∪SX4 . Analogous statement holds

for Y . It follows that f [X \ Ξ(Ψ(X))] = X \ Ξ(Ψ(Y )). Finally,

f [X ] = f [(X \ Ξ(Ψ(X))) ∪ Ξ(Ψ(X))] = f [X \ Ξ(Ψ(X))] ∪ f [Ξ(Ψ(X))]

= (X \ Ξ(Ψ(Y ))) ∪ Ξ(Ψ(Y )) = X .

Therefore (X ,Ξ(Ψ(X)),Q) ∼=(1,1) (X ,Ξ(Ψ(Y )),Q). By Proposition 2.10, Ψ(X) ∼=perm Ψ(Y ).

In view of Proposition 2.9 this is equivalent to X ≈a Y . This finishes the proof.





Chapter 3

Measurable Hall’s theorem for actions

of abelian groups

3.1 Introduction

In 1925 Tarski famously asked if the unit square and the disk of the same area are equide-

composable by isometries of the plane, i.e. if one can partition one of them into finitely

many pieces, rearrange them by isometries and obtain the second one. This problem became

known as the Tarski circle squaring problem.

The question whether two sets of the same measure can be partitioned into congruent

pieces has a long history. At the beginning of the 19th century Wallace, Bolyai and Gerwien

showed that any two polygons in the plane of the same area are congruent by dissections

(see [48, Theorem 3.2]) and Tarski [46] ([48, Theorem 3.9]) showed that such polygons are

equidecomposable using pieces which are polygons themselves. Hilbert’s 3rd problem asked

if any two polyhedra of the same volume are equidecomposable using polyhedral pieces. The

latter was solved by Dehn (see [1]). Banach and Tarski showed that in dimension at least 3,

37
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any two bounded sets in Rn with nonempty interior, are equidecomposable, which leads to

the famous Banach–Tarski paradox on doubling the ball. Back in dimension 2, the situation

is somewhat different, as any two measurable subsets equidecomposable by isometries must

have the same measure (see [48]) and this was one of the motivation for the Tarski circle

squaring problem. Using isometries was also essential as von Neumann [49] showed that

the answer is positive if one allows arbitrary area-preserving transformations. The crucial

feature that makes the isometries of the plane special is the fact that the group of isometries

of R2 is amenable. Amenability was, in fact, introduced by von Neumann in the search of a

combinatorial explanation of the Banach–Tarski paradox.

The first partial result on the Tarski circle squaring was a negative result of Dubins,

Hirsch and Karush [10] who showed that pieces of such decompositions cannot have smooth

boundary (which means that this cannot be performed using scissors). However, the full

positive answer was given by Laczkovich in his deep paper [27]. In fact, in [30] Laczkovich

proved a stronger result saying that whenever A and B are two bounded measurable subsets

of Rn of positive measure such that the upper box dimension of the boundaries of A and

B is less than n, then A and B are equidecomposable. The assumption on the boundary

is essential since Laczkovich [28] (see also [29]) found examples of two measurable sets of

the same area which are not equidecomposable even though their boundaries have even the

same Hausdorff dimension. The proof of Laczkovich, however, did not provide any regularity

conditions on the pieces used in the decompositions. Given the assumption that A and B

have the same measure, it was natural to ask if the pieces can be chosen to be measurable.

Moreover, the proof of Laczkovich used the axiom of choice.

A major breakthrough was achieved recently by Grabowski, Máthé and Pikhurko [20] who

showed that the pieces in Laczkovich’s theorem can be chosen to be measurable: whenever A

and B are two bounded subsets of Rn of positive measure such that the upper box dimension

of the boundaries of A and B are less than n, then A and B are equidecomposable using
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measurable pieces. Another breakthrough came even more recently when Marks and Unger

[35] showed that for Borel sets, the pieces in the decomposition can be even chosen to be

Borel, and their proof did not use the axiom of choice.

The goal of the present paper is to give a combinatorial explanation of these phenomena.

There are some limitations on how far this can go because already in Laczkovich’s theorem

there is a restriction on the boundary of the sets A and B. Therefore, we are going to work

in the measure-theoretic context and provide sufficient and necessary conditions for two

sets to be equidecomposable almost everywhere. Recently, there has been a lot of effort to

develop methods of the measurable and Borel combinatorics (see for instance the upcoming

monograph by Marks and Kechris [32]) and we would like to work within this framework.

The classical Hall marriage theorem provides sufficient and necessary conditions for a

bipartite graph to have a perfect matching. Matchings are closely connected with the exis-

tence of equidecompositions and both have been studied in this context. In 1996 Miller [38,

Problem 15.10] asked whether there exists a Borel version of the Hall theorem. The question

posed in such generality has a negative answer as there are examples of Borel graphs which

admit perfect matchings but do not admit measurable perfect matchings. One example is

provided already by the Banach-Tarski paradox and Laczkovich [26] constructed a closed

graph which admits a perfect matching but does not have a measurable one. In the Baire

category setting, Marks and Unger [33] proved that if a bipartite Borel graph satisfies a

stronger version of Hall’s condition with an additional ε > 0, i.e. if the set of neighbours of a

finite set F is bounded from below by (1 + ε)|F |, then the graph admits a perfect matching

with the Baire property (see also [34] and [8] for related results on matchings in this context).

On the other hand, in all the results of Laczkovich [30], Grabowski, Máthé and Pikhurko

[20] and Marks and Unger [35] on the circle squaring, a crucial role is played by the strong

discrepancy estimates, with an ε > 0 such that the discrepancies of both sets are bounded

by C 1
n1+ε (for definitions see Section 3.2). Recall that given a finitely generated group Γ
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generated by a symmetric set S and acting freely on a space X, the Schreier graph of the

action is the graph connecting two points x and y if γ ·x = y for one of the generators γ ∈ S.

Definition 3.1. Suppose Γ y (X,µ) is a free pmp action of a finitely generated group on a

space X. Let S be a finite symmetric set of generators of Γ. Write G for the Schreier graph

of the action. A pair of sets A,B satisfies the k-Hall condition (µ-a.e.) with respect to S if

for every (µ-a.e., resp.) x ∈ X and for every finite subset F of Γ · x we have

|F ∩ A| ≤ | ballk(F ) ∩B|, |F ∩B| ≤ | ballk(F ) ∩ A|,

where ballk(F ) means the k-ball around F in the graph G.

We say that A,B satisfy the Hall condition (µ-a.e.) if the above holds for some choice of

generators S and some k > 0. If the set S of generators is understood and A,B satisfy the

k-Hall condition (µ-a.e.) with respect to S then we simply say that A,B satisfy the k-Hall

condition (µ-a.e.).

We will work under the assumption that both sets A,B are equidistributed (for definition

see Section 3.2).

Our main result is the following.

Theorem 3.2. Let Γ be a finitely generated abelian group and Γ y (X,µ) be a free pmp

action. Suppose A,B ⊆ X are two measurable Γ-equidistributed sets of the same positive

measure. The following are equivalent:

1. the pair A,B satisfies the Hall condition µ-a.e.,

2. A and B are Γ-equidecomposable µ-a.e. using µ-measurable sets,

3. A and B are Γ-equidecomposable µ-a.e.
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This result gives a positive answer to Miller’s question, in the measurable setting for

Schreier graphs of actions of finitely generated abelian groups and equidistributed sets, and

removes the ε from the earlier results mentioned above. As a consequence, it gives the

following.

Corollary 3.3. Suppose Γ is a finitely generated abelian group and Γ y (X,µ) is a free

pmp Borel action on a standard Borel probability space. Let A,B ⊆ X be measurable Γ-

equidistributed sets. If A and B are Γ-equidecomposable, then A and B are Γ-equidecomposable

using measurable pieces.

This generalizes the recent measurable circle squaring result [20] as already in Laczkovich’s

proof, he constructs an action of Zd satisfying the conditions above, for a suitably chosen d

(big enough, depending on the box dimensions of the boundaries).

In fact, in 1991 Gardner [18, Conjecture 6] conjectured that wheneverA,B are measurable

subsets of Rn which are Γ-equidecomposable using isometries from an amenable group Γ,

then A and B are Γ-equidecomposable using measurable pieces. The above corollary confirms

this conjecture in case of an abelian group Γ and Γ-equidistributed sets.

The main new idea in this paper is an application of Mokobodzki’s medial means, which

are measurable averaging functionals on sequences of reals. They are used together with

a recent result of Conley, Jackson, Kerr, Marks, Seward and Tucker-Drob [7] on tilings of

amenable group actions in averaging sequences of measurable matchings. This allows us

to avoid using Laczkovich’s discrepancy estimates that play a crucial role in both proofs of

the measurable and Borel circle squaring. We also employ the idea of Marks and Unger

in constructing bounded measurable flows. More precisely, following Marks and Unger we

construct bounded integer-valued measurable flows from bounded real-valued measurable

flows. However, instead of using Timár’s result [47] for specific graphs induced by actions of

Zd, we give a self-contained simple proof of the latter result, which works in the measurable
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setting for the natural Cayley graph of Zd. This is the only part of the paper which deals

with abelian groups and we hope it could be generalized to a more general setting.

While this paper deals with abelian groups (the crucial and only place which works under

these assumptions is Section 3.5), a positive answer to the following question would confirm

Gardner’s conjecture [18, Conjecture 6] for amenable groups.

Question 1. Is the measurable version of Hall’s theorem true for free pmp actions of finitely

generated amenable groups?

3.2 Equidistribution and discrepancy

Both proofs of Grabowski, Máthé and Pikhurko and of Marks and Unger use a technique

that appears in Laczkovich’s paper [27] and is based on discrepancy estimates. Laczkovich

constructs an action of a group of the form Zd for d depending on the upper box dimension

of the boundaries of the sets A and B such that both sets are very well equidistributed on

orbits on this action. To be more precise, given an action Zd y (X,µ) and a measurable set

A ⊆ X, the discrepancy of A with respect to a finite subset F of an orbit of the action is

defined as

D(F,A) =

∣∣∣∣ |A ∩ F ||F |
− µ(A)

∣∣∣∣ .
It is meaningful to compute the discrepancy with respect to finite cubes, i.e. subsets of

orbits which are of the form [0, n]d · x, where x ∈ X and [0, n]d ⊆ Zd is the d-dimensional

cube with side {0, . . . , n}. The cube [0, n]d has boundary, whose relative size with respect

to the size of the cube is bounded by c · 1
n

for a constant c. This motivates the following

definition.

Definition 3.4. Given a Borel free pmp action of a finitely generated abelian group Zd×∆ y

(X,µ) with ∆ finite, and a measurable set A ⊆ X, we say that A is equidistributed if there
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exists a constant c such that for every n the discrepancy

D([0, n]d ×∆ · x,A) ≤ c
1

n

for µ-a.e. x.

Note that if the above holds then for every d-tuple g1, g2, . . . , gd ∈ Zd of generators of Zd

there exists a constant c′ such that for all n and µ-a.a. x ∈ X the following estimate holds:

D({n1g1 + . . . ndgd : ni ∈ {0, 1, . . . , n}} ×∆ · x,A) ≤ c′
1

n
.

Thus if Γ is a finitely generated abelian group and Γ y (X,µ) is a Borel free pmp action

then it makes sense to say that A is equidistributed if Definition 3.4 holds for some (and

therefore for every) representation of Γ in the form Zd ×∆.

A crucial estimation that appears in Laczkovich’s paper is that the action of Zd is such

that for both sets A and B the discrepancy is actually estimated as

D([0, n]d · x,A), D([0, n]d · x,B) ≤ c
1

n1+ε
,

for some ε > 0 and some c > 0, which means that the discrepancies of both sets on cubes

decay noticeably faster than the sizes of the boundaries of these cubes.

In particular, this means that A and B satisfy the following property: for every x and

cube F = [0, n]d · x we have

||A ∩ F | − |B ∩ F || ≤ c
1

n1+ε

for some ε > 0 and some c > 0. Again, since the ratio of the boundary of the cube F to its

size is at most 2d/n, any two equidecomposable subsets must satisfy

||A ∩ F | − |B ∩ F || ≤ c
1

n

for some constant c and the above condition with positive ε is not necessary for the existence

of an equidecomposition. Also, for examples not satisfying this condition, see [31].
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3.3 Mokobodzki’s medial means

We will be working under the additional assumption of the Continuum Hypothesis. This

is mainly for the purpose of the use of Mokobodzki’s universally measurable medial means

which exist under this (or even slightly weaker) assumption.

Definition 3.5. A medial mean is a linear functional m : `∞ → R which is positive, i.e.

m(f) ≥ 0 if f ≥ 0, normalized, i.e. m(1N) = 1 and shift invariant, i.e. m(Sf) = m(f) where

Sf(n+ 1) = f(n).

Mokobodzki showed that under the assumption of the Continuum Hypothesis there exists

a medial mean which is universally measurable as a function on [0, 1]N, see Section 1.5. For a

proof the reader can also consult the textbook of Fremlin [13, Theorem 538S]. As CH can be

always true in a forcing extension or in L[r] (for a suitable real r coding the Borel sets we are

dealing with), the admissibility of this assumption follows from the following absoluteness

lemma.

Recall that Borel sets can be coded using a Π1
1 set (of Borel codes) BC ⊆ 2N in a ∆1

1

way, i.e. there exists a subset C ⊆ BC×X such that the family {Cx : x ∈ BC} consists of

all Borel subsets of X and the set C can be defined using both Σ1
1 and Π1

1 definitions. For

details the reader can consult the textbook of Jech [22, Chapter 25].

Given a Borel probability measure µ on X and a subset P ⊆ X×Y , we write ∀µ xP (x, y)

to denote that µ({x ∈ X : P (x, y)}) = 1. It is well known [24, Chapter 29E] that if P is Σ1
1,

then {y ∈ Y : ∀µx P (x, y)} is Σ1
1.

Lemma 3.6. Let V ⊆ W be models of ZF + DC. Suppose in V we have a standard Borel

space X with a Borel probability measure µ, two Borel subsets A,B ⊆ X and Γ y (X,µ)

is a Borel pmp action of a countable group Γ. The statement that the sets A and B are

Γ-equidecomposable µ-a.e. using µ-measurable pieces is absolute between V and W .
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Proof. Suppose that in W the sets A and B are Γ-equidecomposable µ-a.e. Then there

exist disjoint Borel subsets A1, . . . An of A and disjoint Borel subsets B1, . . . , Bn of B such

that µ(A \
⋃n
i=1Ai) = 0, µ(B \

⋃n
i=1Bi) = 0 and γiAi = Bi for some γ1, . . . , γn ∈ Γ. This

statement can be written as

∃x1, . . . , xn
∧
i≤n

BC(xi) ∧
∧
i 6=j

Cxi ∩ Cxj = ∅

∧ ∀µx (x ∈ A↔
n∨
i=1

x ∈ Cxi) ∧ ∀µx (x ∈ B ↔
n∨
i=1

x ∈ γiCxi)

and thus is it Σ1
2. By Shoenfield’s absoluteness theorem [22, Theorem 25.20], it is absolute.

3.4 Measurable flows in actions of amenable groups

Given a standard Borel space X, a Borel graph G on X and f : X → R, a function ϕ : G→ R

is an f -flow if ϕ(x, y) = −ϕ(y, x) for every (x, y) ∈ G and f(x) =
∑

(x,y)∈G ϕ(x, y) for every

x ∈ X.

Let Γ be a finitely generated amenable group. Let γ1, . . . , γd be a finite symmetric set of

generators of Γ. Let X be a standard Borel space and let µ be a Borel probability measure

on X. Let Γ y (X,µ) be a free pmp action. Recall that by the Schreier graph of the action

we mean the graph {(x, γix) : x ∈ X, 1 ≤ i ≤ d} ⊆ X ×X.

Definition 3.7. For finite sets F,K ⊆ Γ and δ > 0 we say that F is (K, δ)-invariant if

|KF4F | < δ|F |.

In the following lemma we assume that there exists a universally measurable medial mean

m, which, by the remarks in the previous section, we can assume throughout this paper.
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In order to make it a bit more general, let us define the Hall condition for functions: a

function f : X → Z satisfies the k-Hall condition if for every finite set F contained in an

orbit of Γ y X we have that

∑
x∈F :f(x)≥0

f(x) ≤
∑

x∈ballk(F ):f(x)≤0

−f(x),
∑

x∈F :f(x)≤0

−f(x) ≤
∑

x∈ballk(F ):f(x)≥0

f(x).

Note that a pair of sets A,B satisfies the k-Hall condition if and only if f = χA−χB satisfies

the k-Hall condition.

Proposition 3.8. Let Γ be a finitely generated amenable group and Γ y (X,µ) be a Borel

free pmp action. Suppose f : X → Z is a measurable function such that

• |f | ≤ l

• f satisfies the k-Hall condition

for some k, l ∈ N. Then there exists a Γ-invariant measurable subset X ′ ⊆ X of measure 1

and a measurable real-valued f -flow ϕ on the Schreier graph of Γ y X ′ such that

|ϕ| ≤ l · dk,

where d is the number of generators of Γ.

Proof. First, we are going to assume that |f | ≤ 1, i.e. that f = χA−χB for two measurable

subsets A,B ⊆ X. Indeed, consider the space X × l and the action of Γ on X × l given

by γ(x, i) = (γx, i). Consider the projection π : X × l → X. Then we can find two subsets

A,B ⊆ X × l such that f(x) = |π−1({x}) ∩ A| − |π−1({x}) ∩ B|. We can also induce the

graph structure on X× l by taking as edges all the pairs ((x, i), (y, j)) such that (x, y) forms

an edge in X as well as all pairs ((x, i), (x, j)) for i 6= j. Then A and B satisfy the k-Hall

condition in X × l for the above graph.
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Let K = {γ ∈ Γ: d(e, γ) ≤ k}. Fix δ > 0. Use the Conley–Jackson–Kerr–Marks–

Seward–Tucker-Drob tiling theorem [7, Theorem 3.6] forK and δ to get a µ-conull Γ-invariant

Borel set X ′ ⊆ X, a collection {Ci : 1 ≤ i ≤ m} of Borel subsets of X ′, and a collection

{Fi : 1 ≤ i ≤ m} of (K, δ)-invariant subsets of Γ such that F = {Fic : 1 ≤ i ≤ m, c ∈ Ci}

partitions X ′.

For a finite set F ⊆ Γ define F (K) = {f ∈ F : Kf ⊆ F}. Note that if F ′x = F ′′y

where F ′, F ′′ are finite subsets of Γ and x, y ∈ X then F ′(K)x = F ′′(K)y. If F ⊂ X is a

finite subset of a single orbit then we let F (K) = F ′(K)x where F ′ ⊂ Γ and x ∈ X satisfy

F = F ′x. This definition does not depend on the choice of representation F = F ′x by the

previous remark. Note that if F ⊆ X is a (K, δ)-invariant set lying in a single orbit then

|F (K)| ≥ |F | − |KF4F | · |K| > |F | · (1− δ|K|).

Write

H = {(x, γx) ∈ A×B : x ∈ Fi(K) · c for some 1 ≤ i ≤ m and c ∈ Ci, γ ∈ K}.

Then H is a locally finite Borel graph satisfying Hall’s condition as A,B satisfy the k-Hall

condition. By the Hall theorem, there exists a Borel injection

h : A ∩
⋃
F∈F

F (K)→ B ∩
⋃
F∈F

F.

WriteG for the Schreier graph of Γ y X. For every x ∈ domh let px = {(x0, x1), (x1, x2), . . . , (xj−1, xj)}

be the shortest lexicographically smallest path in the graph G connecting x0 = x with

xj = h(x). Let P = {px : x ∈ domh}.

Define ϕ : G→ R by the formula

ϕ(x, γx) = |{p ∈ P : (x, γx) ∈ p}| − |{p ∈ P : (γx, x) ∈ p}|.
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Note that ϕ is Borel (by definition). Also, |ϕ| is bounded by dk (the number of paths of

length not greater than k passing through a given edge in the graph G). By definition, ϕ is

a (χdomh − χimh)-flow.

Define

X ′′ =
⋃
F∈F

F (K) \ (B \ h(A)).

Note that for every x ∈ X ′′ we have χA(x)− χB(x) = χdomh(x)− χimh(x).

For every 1 ≤ i ≤ m let {(A1,i, B1,i, h1,i), (A2,i, B2,i, h2,i), . . . , (Ani,i, Bni,i, hni,i)} be the

set of all triples (A′, B′, h′) consisting of sets A′, B′ ⊆ Fi and a bijection h′ : A′ → B′. For

1 ≤ j ≤ ni define

Cj,i = {c ∈ Ci : (domhj,i)c = A ∩ (Fic) ∧ ∀γ ∈ domhj,i hj,i(γ)c = h(γc)}.

Then {C1,i, C2,i, . . . , Cni,i} is a partition of Ci into Borel sets.

Observe that for every F ∈ F we have

|h(A) ∩ F (K)| ≥ |F (K) ∩ A| − |F \ F (K)|

and

|B ∩ F (K)| ≤ |A ∩ F | ≤ |A ∩ F (K)|+ |F \ F (K)|.

Therefore

|F (K) ∩ (B \ h(A))| = |(F (K) ∩B) \ (F (K) ∩ h(A))|

= |F (K) ∩B| − |F (K) ∩ h(A)|

≤ |A ∩ F (K)|+ |F \ F (K)| − (|F (K) ∩ A| − |F \ F (K)|)

= 2|F \ F (K)|.

It follows that

|F (K) \ (B \ h(A))| = |F (K)| − |F (K) ∩ (B \ h(A))|

≥ |F (K)| − 2|F \ F (K)| = 3|F (K)| − 2|F | > |F |(1− 3δ|K|).
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Therefore

µ(X ′′) = µ(
m⋃
i=1

ni⋃
j=1

(Fi(K)Cj,i \ (B \ h(A)))) =
m∑
i=1

ni∑
j=i

|Fi(K) \ (Bj,i \ Aj,i)|µ(Cj,i)

>
m∑
i=1

ni∑
j=i

|Fi|(1− 3δ|K|)µ(Cj,i) =
m∑
i=1

|Fi|(1− 3δ|K|)µ(Ci)

= 1− 3δ|K|.

Now, for every n pick δn > 0 so that 1 − 3δn|K| > 1 − 1
2n

. Denote hn = h, ϕn = ϕ and

Xn = X ′′ where h, ϕ and X ′′ are constructed above for this particular δn.

Let Y = lim inf Xn =
⋃∞
m=1

⋂∞
n=mXn. Then µ(Y ) = 1. We can assume that Y is Γ-

invariant (by taking its subset if needed). Denote by G the Schreier graph of Γ y Y . Write

ϕ∞ = (ϕn)n∈N : G→ `∞. Define

ϕ(x, y) = m(ϕ∞(x, y)),

where m denotes the medial mean. Then for x ∈ Y we have

∑
y : (x,y)∈G

ϕ(x, y) =
∑

y : (x,y)∈G

m((ϕn(x, y))n∈N) = m((
∑

y : (x,y)∈G

ϕn(x, y))n∈N)

= m((χdomhn(x)− χimhn(x))n∈N) = χA(x)− χB(x)

as the sequence χdomhn(x)− χimhn(x) is eventually constant and equal to χA(x)− χB(x).

Therefore ϕ is a (χA − χB)-flow in the Schreier graph G of Γ y Y . Moreover, |ϕ| is

bounded by dk, which is a common bound for the flows ϕn. For measurability of ϕ, write

µ′ = ϕ∗(µ× µ) for the pushforward to [−dk, dk]N of the measure µ× µ on the graph G and

note that since m is µ′-measurable, it follows that ϕ is µ-measurable.
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3.5 Flows in Zd

In this section we prove a couple of combinatorial lemmas which lead to a finitary procedure

of changing a real-valued flow on a cube in Zd to an integer-valued flow on a cube in Zd.

This gives an alternative proof of [35, Lemma 5.4] in the measurable setting. Also, this is

the only part of the paper which deals with the groups Zd as opposed to arbitrary amenable

groups.

Let

G = {(x, x′) ∈ Zd × Zd : x′ − x ∈ {±e1,±e2, . . . ,±ed}}

be the Cayley graph of Zd. An edge (x, x′) is called positively oriented if x′−x = ej for some

j.

Definition 3.9. For a set A ⊆ Zd we define:

edges(A) = {(x, x+ ej) : j ∈ {1, 2, . . . , d}, {x, x+ ej} ⊆ A},

edges+(A) = {(x, x+ ej) : j ∈ {1, 2, . . . , d}, {x, x+ ej} ∩ A 6= ∅},

ball(A) = {x+ y : x ∈ A, y ∈ {−1, 0, 1}d}.

So, edges(A) is the set of positively oriented edges whose both endpoints are in A,

edges+(A) is the set of positively oriented edges whose at least one endpoint is in A, and

ball(A) is the 1-neighbourhood of A (in the sup-norm).

Definition 3.10. We say that a subset C of Zd is a cube if C is of the form

{n1, n1 + 1, . . . , n1 + k1} × . . .× {nd, nd + 1, . . . , nd + kd}

for some n1, . . . , nd, k1, . . . , kd ∈ Z with k1, . . . , kd ≥ 0. By the upper face of C we mean

{n1, n1 + 1, . . . , n1 + k1} × . . .× {nd + kd}.
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Definition 3.11. For any x1, x2, x3, x4 ∈ Zd which are consecutive vertices of a unit square,

and a real number s we define a 0-flow �x1,x2,x3,x4
s by the following formula:

�x1,x2,x3,x4
s (y, z) =


s for (y, z) ∈ {(x1, x2), (x2, x3), (x3, x4), (x4, x1)},

−s for (y, z) ∈ {(x2, x1), (x3, x2), (x4, x3), (x1, x4)},

0 otherwise.

That is, �x1,x2,x3,x4
s is a flow sending s units through the path x1 → x2 → x3 → x4 → x1.

Note that if ϕ : G→ R is an f -flow and s = ϕ(x1, x4)−bϕ(x1, x4)c then ψ = ϕ+�x1,x2,x3,x4
s

is an f -flow such that |ϕ− ψ| < 1 and ψ(x1, x4) is an integer.

We will now prove a couple of lemmas stating that one can modify a flow so that it

becomes integer-valued on certain sets of edges.

Lemma 3.12. Let f : Zd → R. Let ϕ : G→ R be a bounded f -flow. Let

C = {n1, n1 + 1, . . . , n1 + k1} × . . .× {nd−1, nd−1 + 1, . . . , nd−1 + kd−1} × {nd, nd + 1}

for some n1, . . . , nd, k1, . . . , kd−1 ∈ Z with k1, . . . , kd−1 ≥ 0. Then for every 1 ≤ ` < d there

is an f -flow ψ such that:

• supp(ϕ− ψ) ⊆ edges(C),

• for every x = (x1, . . . , xd−1, nd) ∈ C such that n` ≤ x` < n` + k` we have

ψ(x, x+ ed) ∈ Z.

• |ϕ− ψ| < 2.

Proof. Without loss of generality we may assume that n1 = n2 = . . . = nd = 0.
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For every j ≤ k` define Cj = {(x1, . . . , xd−1, 0) ∈ C : x` = j}. We will define a sequence

of f -flows ϕ0, ϕ1, . . . , ϕk` such that

ϕj(x, x+ ed) ∈ Z and supp(ϕ− ϕj) ⊆ edges(C).

for all x ∈
⋃
i<j Ci.

So, let ϕ0 = ϕ. Given ϕj we define ϕj+1 in the following way. For every x ∈ Cj let

�x = �x,y,z,t
s where y = x+ e`, z = y + ed, t = z − e` = x+ ed and

s = ϕj(x, t)− bϕj(x, t)c.

We define

ϕj+1 = ϕj +
∑
x∈Cj

�x.

Note that supp(�x) for x ∈ Cj are disjoint from {(x, x + ed) : x ∈
⋃
i<j Ci}. Therefore,

ϕj+1(x, x + ed) = ϕj(x, x + ed) ∈ Z for x ∈
⋃
i<j Ci. Also, the sets supp(�x) are pairwise

disjoint for x ∈ Cj, and therefore, by definition of ϕj+1 we have for x ∈ Cj

ϕj+1(x, x+ ed) = ϕj(x, x+ ed) + �x(x, x+ ed) = bϕj(x, x+ ed)c ∈ Z.

It is also clear that supp(�x) ⊆ edges(C), so

supp(ϕ− ϕj+1) ⊆ supp(ϕ− ϕj) ∪
⋃
x∈Cj

supp(�x) ⊆ edges(C).

Therefore ϕj+1 satisfies all required properties.

We put ψ = ϕk` . It remains to check that |ϕ − ψ| < 2. This is because ψ = ϕ +∑k`−1
j=0

∑
x∈Cj

�x, |�x| < 1 and for every edge (y, z) there are at most two x ∈
⋃
j<k`

Cj for

which �x(y, z) 6= 0.

Lemma 3.13. Let f : Zd → R. Let ϕ : G→ R be a bounded f -flow. Let

C = {n1, n1 + 1, . . . , n1 + k1} × . . .× {nd−1, nd−1 + 1, . . . , nd−1 + kd−1} × {nd, nd + 1}
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for some n1, . . . , nd, k1, . . . , kd−1 ∈ Z with k1, . . . , kd−1 ≥ 0. Then there is an f -flow ψ such

that:

• supp(ϕ− ψ) ⊆ edges(C),

• if x = (x1, . . . , xd−1, nd) ∈ C \ {(n1 + k1, n2 + k2, . . . , nd−1 + kd−1, nd)}, then

ψ(x, x+ ed) ∈ Z,

• |ϕ− ψ| < 2d.

Proof. Without loss of generality we may assume that n1 = n2 = . . . = nd = 0.

Define

Cj = {k1} × . . .× {k`−1} × {0, 1, . . . , k`} × . . .× {0, 1, . . . , kd−1} × {0, 1}

and

Dj = {(x1, . . . , xd−1, 0) : (x1, . . . , xj) 6= (k1, . . . , kj)}.

By induction, construct f -flows ϕ0, ϕ1, . . . , ϕd−1 such that

(i) supp(ϕ− ϕj) ⊆ edges(C),

(ii) ϕj(x, x+ ed) ∈ Z for every x ∈ Dj,

(iii) |ϕj − ϕj−1| < 2.

We define ϕ0 = ϕ. Given ϕj−1, we obtain ϕj by applying Lemma 3.12 for ϕj−1, f , ` = j

and Cj. Then ϕj satisfies (i) as

supp(ϕ− ϕj) ⊆ supp(ϕ− ϕj−1) ∪ supp(ϕj−1 − ϕj) ⊆ edges(C) ∪ edges(Cj) = edges(C).

For (ii) observe that

Dj = Dj−1 ∪ {(k1, . . . , kj−1, xj, . . . , xd−1, 0) ∈ C : xj < kj}.
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By Lemma 3.12, ϕj agrees with ϕj−1 on {(x, x + ed) : x ∈ Dj−1}, thus ϕj(x, x + ed) ∈ Z for

x ∈ Dj−1. Moreover, ϕj(x, x+ ed) ∈ Z for x ∈ Dj \Dj−1 again by Lemma 3.12. Also (iii) is

immediate by Lemma 3.12. Therefore ϕj satisfies the required properties.

We define ψ = ϕd−1. By construction, ψ satisfies the first two conditions. For the third

condition note that

|ϕ− ψ| ≤
d−1∑
j=1

|ϕj − ϕj−1| < 2d.

Lemma 3.14. Let C be a cube. Let C be a collection of cubes such that:

• ball(C ′) ⊆ C for every C ′ ∈ C,

• ball(C ′) ∩ ball(C ′′) = ∅ for every distinct C ′, C ′′ ∈ C.

Write

E = edges+(C) \
⋃
{edges(ball(C ′)) : C ′ ∈ C}.

Let f : Zd → Z. Let ϕ : G → R be a bounded f -flow. Then there exists an f -flow

ψ : G→ R such that:

• supp(ϕ− ψ) ⊆ edges(ball(C)),

• supp(ϕ− ψ) is disjoint from edges+(C ′) for every C ′ ∈ C,

• ψ(e) is integer for every edge e ∈ E,

• |ϕ− ψ| < 6d.

Proof. Without loss of generality we may assume that

C = {1, 2, . . . , k1} × . . .× {1, 2, . . . , kd}
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for some positive integers k1, . . . , kd. Then

ball(C) = {0, 1, . . . , k1 + 1} × . . .× {0, 1, . . . , kd + 1}.

For any 0 ≤ k ≤ kd let Hk = Zd−1 × {k}. Let

E2k = {(x, x+ ed) ∈ E : x ∈ Hk}

be the set of vertical edges from E having their starting point in Hk and

E2k+1 = {(x, x+ ej) ∈ E : x ∈ Hk, j < d}

be the set of edges from E having both endpoints in Hk.

We construct a sequence ϕ0, ϕ1, . . . , ϕ2kd of f -flows so that

• supp(ϕ− ϕk) ⊆ edges(ball(C)) for every 0 ≤ k ≤ 2kd,

• supp(ϕ− ϕk) is disjoint from edges+(C ′) for every C ′ ∈ C and 0 ≤ k ≤ 2kd,

• ϕk(y, z) is integer for every 0 ≤ k ≤ 2kd and (y, z) ∈
⋃
i≤k Ei.

In the end we put ψ = ϕ2kd .

To define ϕ0 we use Lemma 3.12 for ϕ, f , ` = 1, and the cube

{1, 2, . . . , k1 + 1} × {1, 2, . . . , k2} × {1, 2, . . . , k3} × . . .× {1, 2, . . . , kd−1} × {0, 1}.

Suppose that ϕ2k is defined. Now we define ϕ2k+1 (cf. Fig. 3.1). For every edge

(x, y) ∈ E2k+1 let z = y + ed, t = x+ ed, s = −ϕ2k(x, y) + bϕ2k(x, y)c and �(x,y) = �x,y,z,t
s .

Define ϕ2k+1 = ϕ2k +
∑

�(x,y) where the summation goes over all (x, y) ∈ E2k+1.

Note that ϕ2k+1 assumes integer values on all (x, y) ∈ E2k+1. Indeed, if (x′, y′) ∈ E2k+1

is distinct from (x, y) then �(x′,y′)(x, y) = 0 and so

ϕ2k+1(x, y) = ϕ2k(x, y) + �(x,y)(x, y) = bϕ2k(x, y)c ∈ Z.
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Figure 3.1: Construction of ϕ2k+1.

Moreover, by definition, ϕ2k+1 agrees with ϕ2k on
⋃
i≤2k Ei. It follows that ϕ2k+1 is integer-

valued on
⋃
i≤2k+1 Ei.

Since for every (x, y) ∈ E2k+1 we have supp(�(x,y)) ⊆ edges(ball(C)) and supp(�(x,y)) ∩

edges+(C ′) = ∅ for every C ′ ∈ C, and ϕ2k satisfies these as well by inductive hypothesis, we

see that ϕ2k+1 also has these properties.

Thus ϕ2k+1 is as required.

Now suppose that ϕ2k+1 is defined. We construct ϕ2k+2 (cf. Fig. 3.2). LetD = {x : (x, x+

ed) ∈ E2k+2}. Note that every x ∈ D is either an element of C \
⋃
{ball(C ′) : C ′ ∈ C} or lies

on the upper face of some cube ball(C ′) for C ′ ∈ C. We also note that if C ′ ∈ C then the
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upper face of ball(C ′) is either contained in D or disjoint from D. So, let C1, C2, . . . Cn be

all elements of C such that the upper faces D1, D2, . . . , Dn of ball(C1), ball(C2), . . . , ball(Cn)

are subsets of D.

Let (x, x+ ed) ∈ E2k+2. Then either x ∈ Dj for some j ≤ n or x ∈ D \
⋃
j≤nDj.

First we deal with the case x ∈ D \
⋃
j≤nDj. Then (x− ed, x) ∈ E2k and (x, x+ ei), (x−

ei, x) ∈ E2k+1 for every 1 ≤ i ≤ d− 1. By the inductive hypothesis

ϕ2k+1(x, x± e1), ϕ2k+1(x, x± e2), . . . , ϕ2k+1(x, x± ed−1), ϕ2k+1(x, x− ed) ∈ Z.

Since f(x) ∈ Z and

f(x) =
d∑
i=1

ϕ2k+1(x, x± ei),

it follows that ϕ2k+1(x, x+ ed) ∈ Z.

Next we deal with the case x ∈ Dj for some j ≤ n. Each Dj, j ≤ n is dealt with

separately. For every j ≤ n we obtain an f -flow ϕ′j by applying Lemma 3.13 for ϕ2k+1, f

and the cube

D′j = Dj ∪ (Dj + ed) = {n′1, . . . , n′1 + k′1} × . . .× {n′d−1, . . . , n
′
d−1 + k′d−1} × {n′d, n′d + 1}.

Then ϕ′j agrees with ϕ2k+1 outside of edges(D′j), and ϕ′j is also integer-valued on all edges

of the form (x, x+ ed) with x ∈ Dj \ {x′}, where

x′ = (n′1 + k′1, n
′
2 + k′2, . . . , n

′
d−1 + k′d−1, n

′
d).

The only problematic edge is the one (x′, x′ + ed) We claim that ϕ′j(x
′, x′ + ed) is integer as

well.

Indeed, observe that ∑
x∈ball(Cj)

f(x) =
∑

(x,y)∈E,x∈ball(Cj),y /∈ball(Cj)

ϕ′j(x, y)
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Figure 3.2: Construction of ϕ2k.

Since f(x) ∈ Z for every x and, by the properties of ϕ′j, we have that ϕ′j(x, y) ∈ Z for all

(x, y) 6= (x′, x′ + ed) with x ∈ ball(Cj) and y /∈ ball(Cj), it follows that ϕ′j(x
′, x′ + ed) ∈ Z as

well.

We define ϕ2k+2 by the formula

ϕ2k+2(x, y) =

ϕ
′
j(x, y) if (x, y) ∈ edges(D′j) or (y, x) ∈ edges(D′j) for some j,

ϕ2k+1(x, y) otherwise.

ϕ2k+2 is well-defined because edges(D′j) are pairwise disjoint. By definition, it is integer-

valued on
⋃
i≤2k+2Ei, and the conditions on supp(ϕ − ϕ2k+2) are clearly satisfied. Thus
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ϕ2k+2 is as required.

We put ψ = ϕ2kd . It remains to check that |ϕ− ψ| < 6d. This follows from the fact that

the value on every edge was modified at most three times by at most 2d.

3.6 Measurable bounded Z-flows a.e.

In this section we show how to turn a measurable bounded real-valued flow into a measurable

bounded integer-valued flow on a set of measure 1. We only use Lemma 3.14 proved in the

previous section and the Gao–Jackson tiling theorem for actions of Zd.

Suppose Zd y (X,µ) is a free pmp action. We follow the notation from the previous

section in the context of the action.

Definition 3.15. We say that a finite subset of X is a cube if it is of the form

(
d∏
i=1

ki) · x = ({0, 1, . . . , k1} × . . .× {0, 1, . . . , kd}) · x

for some positive integers k1, . . . , kd and x ∈ X. We refer to the numbers k1, . . . , kd as to the

lengths of the sides of the cube. A family of cubes {(
∏d

i=1 ki(x)) · x : x ∈ C} is Borel if the

set C is Borel and the functions ki are Borel. A family of cubes {Cx : x ∈ C} is a tiling of

X if it forms a partition of X.

Definition 3.16. Let C ⊆ [X]<∞ be a collection of cubes. We say that it is nested if for

every distinct C,C ′ ∈ C:

• if C ∩ C ′ = ∅ then ball(C) ∩ ball(C ′) = ∅,

• if C ∩ C ′ 6= ∅ then either ball(C) ⊆ C ′ or ball(C ′) ⊆ C.

Definition 3.17. Given a cube of the form

C = {(n1, . . . , nd) · x : 0 ≤ ni ≤ Ni},
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by its interior we mean the cube

intC = {(n1, . . . , nd) · x : 1 ≤ ni ≤ Ni − 1}

and its boundary is

bdC = C \ intC.

Lemma 3.18. Suppose Zd y (X,µ) is a free pmp action. Then there is a sequence of

familes Fn of cubes such that each Fn consists of disjoint cubes,
⋃
Fn is nested and covers

X up to a set of measure zero.

Proof. If S and T are families of sets, define

S u T = {C ∩ C ′ : C ∈ S, C ′ ∈ T, C ∩ C ′ 6= ∅}.

Note that
⋃

(S u T ) = (
⋃
S) ∩ (

⋃
T ). Also note that if S and T are families of cubes then

S u T is a family of cubes as well. We also write intS = {intC : C ∈ S} and intk for the

k-th iterate of int.

Use the Gao–Jackson theorem [16] to obtain a sequence of partitions S1, S2, . . . of X so

that Sn consists of cubes with sides n3 or n3+1. Define S1
n = intSn and Skn = Sk−1

n u intk Sn+k

for k > 1. Note that each Skn consists of pairwise disjoint cubes.

Define

Fn = lim inf
m

Smn = {C : ∃m0∀m ≥ m0 C ∈ Smn }.

Note that if C ∈ Fn then there exist unique cubes Cn ∈ Sn, Cn+1 ∈ Sn+1, . . . such that

C =
⋂
k≥0 intk+1 Cn+k. Also note that

⋃
Fn =

⋂∞
k=0

⋃
intk+1 Sn+k.

We claim that F =
⋃
n Fn is nested and covers a set of measure 1.

For nestedness, consider cubes C,C ′ ∈ F . Then C ∈ Fn, C ′ ∈ Fm for some n,m. We

may assume that m ≥ n. Write C =
⋂
k≥0 intk+1Cn+k and C ′ =

⋂
k≥0 intk+1 Cm+k with

Ck, C
′
k ∈ Sk.
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If m = n and Ck = C ′k for all k ≥ m then C = C ′.

If m > n and Ck = C ′k for all k ≥ m then

C ⊆
⋂
k≥m

intk−n+1Ck =
⋂
k≥m

intk−n+1C ′k ⊆
⋂
k≥m

intk−m+2Ck,

so ballC ⊆
⋂
k≥m intk−m+1Ck = C ′.

If Ck 6= C ′k for some k ≥ m then Ck ∩ C ′k = ∅. Note that C ⊆ intk−n+1 Ck ⊆ intCk so

ballC ⊆ Ck. Similarly, ballC ′ ⊆ C ′k. Since Ck, C
′
k ∈ Sk are disjoint, C and C ′ are disjoint.

This shows that F is nested.

We will prove now that µ(
⋃
F ) = 1.

For a cube C let xC to be the point x ∈ X such that C =
(∏d

i=1[0, ni]
)
· xC . For a

positive integer n write Xn = {xC : C ∈ Sn}. Note that for any 0 ≤ k < n

µ
(⋃

intk Sn

)
≥ (n3 − 2k)dµ(Xn) ≥ (n3 − 2k)d

(n3 + 1)d
=

(
1− 2k + 1

n3 + 1

)d
≥ 1− d · 2k + 1

n3 + 1
.

Since
⋃
Fn =

⋂∞
k=0

⋃
intk+1 Sn+k, we have

µ
(
X \

⋃
Fn

)
≤

∞∑
k=0

µ
(
X \

⋃
intk+1 Sn+k

)
≤ d ·

∞∑
k=0

2k + 3

(n+ k)3 + 1
≤ d ·

∞∑
k=n

3

k2
.

This implies that

µ
(
X \

⋃
F
)

= lim
n→∞

µ
(
X \

⋃
Fn

)
= 0.

Hence µ (
⋃
F ) = 1.

Marks and Unger [35, Lemma 5.4] showed that for every d ≥ 2, any Borel, bounded

real-valued flow on the Schreier graph of a free Borel action of Zd can be modified to a

bounded Borel integer-valued flow. Below we provide a short proof for the case d = 1 and

additionally an independent proof (based on Lemma 3.14) for d ≥ 2 in the case of a pmp

action where we consider flows defined a.e.
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Proposition 3.19. Suppose Zd y (X,µ) is a free pmp action and G is its Schreier graph.

Let f : X → Z be a bounded measurable function. For every measurable f -flow ϕ : G→ R,

there exists a measurable bounded ψ : G→ Z such that:

• ψ is an f -flow µ-a.e.,

• |ψ| ≤ |ϕ|+ 12d.

Proof. First we deal with the case d = 1. In that case for every e ∈ G we simply put

ψ(e) = bϕ(e)c. Note that since G is a graph of degree 2, for every x ∈ X, the fractional

parts of the two edges which contain x are equal because f is integer-valued. Thus, ψ is also

an f -flow.

Now suppose d ≥ 2. By Lemma 3.18, there exists an invariant subset X ′ ⊆ X of measure

1 and a sequence of families Fn of cubes such that
⋃
n∈N Fn is nested, each Fn consists of

disjoint cubes,
⋃
n∈N Fn covers X ′. By induction on n we construct measurable f -flows ϕn

such that ϕ0 = ϕ and

• supp(ϕn+1 − ϕn) ⊆
⋃
{edges(ball(C)) : C ∈ Fn},

• ϕm = ϕn+1 for every m > n on every edges+(C) for C ∈ Fn,

• |ϕn| ≤ |ϕ|+ 12d.

Given the flow ϕn we apply Lemma 3.14 on each cube C ∈ Fn to obtain the flow ϕn+1. The

bound on ϕn follows from the fact that the value of the folow on each edge is changed at

most twice by at most 6d along this construction.

The sequence ϕn converges pointwise on the edges of X ′ to a measurable f -flow ϕ∞,

which is integer-valued on all edges in X ′ except possibly for the edges in bdC for cubes

C ∈
⋃
n Fn. However, the family {bdC : C ∈

⋃
n Fn} consists of pairwise disjoint finite sets.

By the integral flow theorem for finite graphs, we can further correct ϕ∞ on each of these
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finite subgraphs without changing the bound |ϕ|+12d to obtain a measurable integer-valued

f -flow ψ, which is equal to ϕ∞ on all edges from G \
⋃
{edges(bdC) : C ∈

⋃
n∈N Fn}.

3.7 Hall’s theorem

In this section we prove Theorem 3.2. The proof of (1)⇒(2) is based on an idea of Marks

and Unger [35].

Proof of Theorem 3.2. (2)⇒(3) is obvious.

(3)⇒(1) is true for every finitely generated group Γ. In general, if A and B are Γ-

equidecomposable, and the group elements used in the decomposition are γ1, . . . , γn, then

A and B satisfy the k-Hall condition for k greater than the word lengths of the group

elements γ1, . . . , γn. If X ′ ⊆ X is a set of measure 1 such that A ∩ X ′ and B ∩ X ′ are

Γ-equidecomposable, then A ∩X ′ and B ∩X ′ satisfy the k-Hall condition.

(1)⇒(2). Without loss of generality assume that the k-Hall condition is satisfied every-

where and the equidistribution condition

D([0, n]d ×∆ · x,A), D([0, n]d ×∆ · x,B) ≤ c
1

n

holds for all x. Write α = µ(A) = µ(B). Let Γ = Zd × ∆ where ∆ is a finite group and

d ≥ 0.

If d = 0, then the group Γ is finite and the action has finite orbits (the discrepancy

condition trivializes and we do not need to use it). On each orbit the Hall condition is

satisfied, so on each orbit there exists a bijection between A and B on that orbit. Thus,

the sets A and B are ∆-equidecomposable using a Borel choice of bijections on each orbit

separately.

Thus, we can assume for the rest of the proof that d ≥ 1. Since ∆ is finite, we can quotient

by its action and get a standard Borel space X ′ = X/∆ with the probability measure induced



64 Chapter 3. Measurable Hall’s theorem for actions of abelian groups

by the quotient map π : X → X ′. We then have a free pmp action of Zd y X ′. Consider

the function f : X ′ → Z defined by

f(x′) = |A ∩ π−1({x′})| − |B ∩ π−1({x′})|.

Note that f is bounded by |∆|. Using Proposition 3.8 and Proposition 3.19 we get an

invariant subset Y ′ ⊆ X ′ of measure 1 and an integer-valued measurable f -flow ψ on the

edges of the Schreier graph G of Zd y Y ′ on Y ′ such that |ψ| ≤ |∆| dk+12d. Again, without

loss of generality, we can assume Y ′ = X ′ by replacing X with Y = π−1(Y ′), if needed.

Note that there exists a constant K, depending only on d such that for every tiling of Zd

with cubes with sides n or n+ 1, every cube is adjacent to at most K many other cubes in

the tiling.

Note that equidistribution implies that

|A ∩D|, |B ∩D| ≥ α(n+ 1)d|∆| − c |∆|(n+ 1)d

n
.

Now, let n be such that

α(n+ 1)d|∆| − c |∆|(n+ 1)d

n
≥ K(n+ 1)d−1(|∆| dk + 12d). (∗)

Using the Gao–Jackson theorem [16], find a Borel tiling T ′ of X ′ with cubes of sides n

or n+ 1. Pulling back the tiling to X via π, we get a Borel tiling T of X with cubes of the

form D = (C×∆) ·x where C has sides of length n or n+ 1. Note that the assumption that

both A and B are equidistributed in X with constant c and the estimate (∗) imply that for

every tile D in T we have

|A ∩D|, |B ∩D| ≥ K(n+ 1)d−1(|∆| dk + 12d). (∗∗)

Let H be the graph on T where two cubes are connected with an edge if they are adjacent

and similarly let H ′ be the graph on T ′ with two cubes connected with an edge if they are
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adjacent. We have two functions F ′ : T ′ → Z defined as F ′(C) =
∑

x′∈C f(x′) and F : T → Z

defined as

F (C) = |A ∩ C| − |B ∩ C|.

Define an F ′-flow Ψ′ on H ′ as Ψ′(C,D) =
∑

(x′1,x
′
2)∈G,x′1∈C,x′2∈D

ψ(x′1, x
′
2) and let Ψ be

an F -flow on H obtained by pulling back Ψ′ via π. Note that any adjacent cubes in T ′

are connected by at most (n + 1)d−1 edges, so both Ψ and Ψ′ are bounded by |Ψ|, |Ψ′| ≤

(n+ 1)d−1(|∆| dk + 12d).

Note that each vertex in H ′ has degree at most K and the same is true in H.

Thus, by (∗∗), for each C ∈ T and D ∈ T which are connected with an edge in H, we

can find pairwise disjoint sets A(C,D), B(C,D) ⊆ C of size at least (n+ 1)d−1(|∆| dk + 12d)

such that A(C,D) ⊆ A ∩ C, B(C,D) ⊆ B ∩ C.

Now, the function which witnesses the equidecomposition is defined in two steps. First,

for each C,D if Ψ(C,D) > 0, then move Ψ(C,D) points from B(C,D) to A(C,D) and if

Ψ(D,C) > 0, then move Ψ(D,C) points from B(D,C) to A(D,C). After this step, for each

C ∈ T we have |A∩C| = |B ∩C| and we can find a measurable bijection which within each

C maps points of A ∩ C onto B ∩ C. Since ψ and hence Ψ′ and Ψ are measurable, in each

of the two steps, the bijections can be chosen measurable and they move points by at most

2(|∆| + (n + 1)d) in the Schreier graph distance. Thus, their composition witnesses that A

and B are equidecomposable using measurable pieces.

3.8 Measurable circle squaring

In this section we comment on how Corollary 3.3 follows from Theorem 3.2. We use an

argument which appears in a preprint of Grabowski, Máthé and Pikhurko [19] and provide

a short proof for completeness.
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Lemma 3.20. Suppose Γ y (X,µ) is a free pmp action of a countable group Γ. If A,B ⊆ X

are Γ-equidecomposable and X ′ ⊆ X is Γ-invariant, then A ∩ X ′ and B ∩ X ′ are also

equidecomposable. If X ′ is additionally µ-measurable and A and B are Γ-equidecomposable

using µ-measurable pieces, then A∩X ′ and B∩X ′ are Γ-equidecomposable using µ-measurable

pieces.

Proof. The proof is the same in both cases. Let A1, . . . , An and B1, . . . , Bn be partitions of

A and B such that γiAi = Bi for some γi ∈ Γ. Put A′i = Ai ∩X ′ and B′i = Bi ∩X ′. Then

γiA
′
i = B′i, so A′i and B′i witness that A ∩X ′ and B ∩X ′ are equidecomposable.

Lemma 3.21. Let µ be a probability measure on X and Γ y X be a Borel pmp action of a

countable group Γ. Suppose A,B ⊆ X are Γ-equidecomposable and there exists a measurable

set Y ⊆ X of measure 1 such that A ∩ Y,B ∩ Y are equidecomposable using µ-measurable

piecces. Then A,B are equidecomposable using µ-measurable pieces.

Proof. Write X ′ =
⋂
γ∈Γ γX. Note that µ(X ′) = 1 and γX ′ = X ′ for all γ ∈ Γ. By Lemma

3.20, A′ = A ∩ X ′ and B′ = B ∩ X ′ are Γ-equidecomposable using µ-measurable pieces.

Write X ′′ = X \X ′ and note that γX ′′ = X ′′ for all γ ∈ Γ. By the previous lemma again,

A′′ = A ∩X ′′ and B′′ = B ∩X ′′ are Γ-equidecomposable. However, all pieces in the latter

decomposition all µ-null, hence µ-measurable. This shows that A = A′∪A′′ and B = B′∪B′′

are Γ-equidecomposable using µ-measurable pieces.

Finally, we give a proof of Corollary 3.3.

Proof of Corollary 3.3. Suppose Γ y (X,µ) is a free pmp action of a finitely generated

abelian group Γ and A and B are two measurable Γ-equidistributed sets which are Γ-

equidecomposable. Note that since Γ is amenable, A and B must have the same measure (see

[48, Corollary 10.9]). Let γ1, . . . , γn be the elements of Γ used in the equidecomposition and
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let k be bigger than the lengths of γi. Then A and B satisfy the k-Hall condition. In partic-

ular, A and B satisfy the k-Hall condition µ-a.e., so by Theorem 3.2 there is a Γ-invariant

measurable set X ′ ⊆ X of measure 1 such that A ∩X ′ and B ∩X ′ are Γ-equidecomposable

using µ-measurable pieces. By Lemma 3.21, A and B are Γ-equidecomposable using µ-

measurable pieces as well.





Chapter 4

Lifting of invariant measures

4.1 Introduction

In this chapter we address the following question asked by Feliks Przytycki:

Question. Let X be a compact metric space and Y a Polish space. Let T : X → X, S : Y →

Y be continuous maps. Let p : Y → X be a Borel surjection with p ◦ S = T ◦ p. Let µ be

a T -invariant Borel probability measure on X. When does µ lift to an S-invariant Borel

probability measure on Y ?

The answer is affirmative under the assumption that S is injective, fibers of p are finite,

and the sets {x ∈ X : |p−1(x)| = n} are T -invariant (for instance, this holds if S and T are

homeomorphisms). A special case of this (|p−1(x)| ≤ 2 for all x ∈ X) appeared in the proof

of [43, Corollary 10.2]. An obvious modification of Przytycki’s argument shows that one can

lift µ to an S-invariant measure ν where ν is defined by

ν(A) =

∫
X

|A ∩ p−1(x)|
|p−1(x)|

dµ(x).

It is also known that if Y is compact and p is continuous then µ lifts to an S-invariant
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measure ν. Note that p induces the push-forward map p∗ : P (Y ) → P (X) (here, P (Y ) and

P (X) denote the spaces of all Borel probability measures on Y and X, respectively) which

is a continuous surjection, so the preimage of µ is a non-empty compact subset K of P (Y ).

Clearly, K is convex. Since µ is T -invariant and p ◦S = T ◦ p, we obtain S∗(K) ⊂ K. Hence

by Schauder’s fixed-point theorem there exists ν ∈ K with ν = S∗(ν). This means: ν is a

lift of µ which is S-invariant.

On the other hand, if the assumption on compactness of fibers of p is dropped then it

may happen that µ does not lift to an S-invariant measure even if Y is compact, T is the

identity map and S is a homeomorphism. For instance, let X = {0, 1} and Y = Z∪{∞} be

the one-point compactification of the countable discrete space Z. Let T = idX , S(n) = n+ 1

for n ∈ Z, S(∞) =∞, p(n) = 0 for n ∈ Z, p(∞) = 1, and µ = 1
2
δ0 + 1

2
δ1. Suppose that ν is

an S-invariant measure on Y . By S-invariance, ν({n}) = ν({0}) for all n ∈ Z. If ν({0}) = 0

then ν(Z) =
∑

n∈Z ν({n}) = 0 and if ν({0}) > 0 then ν(Z) =
∑

n∈Z ν({n}) = ∞. In both

cases ν(Z) 6= 1
2
, hence µ does not lift to an S-invariant measure.

We shall work in a more general context. We drop the assumption on compactness of X

and continuity of T . The following result generalizes both special cases discussed above.

Theorem 4.1. Let X be a standard Borel space with a Borel probability measure µ and let

T : X → X be a µ-measurable map preserving µ. Let Y be a Polish space and let S : Y → Y

be a continuous map. Let p : Y → X be a Borel map such that p◦S = T ◦p and µ(p(Y )) = 1.

Suppose that for µ-a.a. x ∈ X the set p−1(x) is compact. Then there exists a Borel probability

measure ν on Y which is S-invariant and p∗(ν) = µ.

One can prove even more general result: instead of single maps S and T one can work with

a left amenable semigroup Γ (for instance, an abelian semigroup) acting on Y by continuous

maps and acting on X by measure-preserving maps so that the actions of Γ on Y and X

commute with p.
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Theorem 4.2. Let X be a standard Borel space with a Borel probability measure µ. Let Y

be a Polish space. Let p : Y → X be a Borel map with µ(p(Y )) = 1 and such that the set

p−1(x) is compact for µ-a.a. x ∈ X. Let Γ be a left amenable semigroup. Consider actions

Γ y Y , Γ y X so that:

• Γ acts on Y by continuous maps, i.e. for all γ ∈ Γ the map Sγ : Y → Y , Sγ(y) = γy

is continuous,

• µ is Γ-invariant, i.e. for all γ ∈ Γ the map Tγ : X → X, Tγ(x) = γx preserves µ,

• The actions of Γ on Y and X commute with p, i.e. p ◦ Sγ = Tγ ◦ p for all γ ∈ Γ.

Then there exists a Γ-invariant Borel probability measure ν on Y such that p∗(ν) = µ.

Clearly, Theorem 4.1 is a special case of Theorem 4.2; to see this just take Γ = (N,+) with

actions on X and Y given by N ×X 3 (n, x) 7→ T nx ∈ X and N × Y 3 (n, y) 7→ Sny ∈ Y ,

respectively. Therefore it is enough to prove Theorem 4.2. Nevertheless, we provide a proof

of Theorem 4.1 which avoids using tools from theory of amenable semigroups.

4.2 Preliminaries

In this section we recall some definitions and useful facts.

A standard Borel space is an uncountable set X with a σ-algebra Σ of subsets of X such

that there exists a Polish (i.e. separable, completely metrizable) topology τ on X whose

Borel σ-algebra is Σ.

Given a topological space Y we denote by K(Y ) the collection of all compact subsets of

Y . The set K(Y ) can be endowed with Vietoris topology, i.e. the topology generated by

sets

{K ∈ K(Y ) : K ∩ U 6= ∅} and {K ∈ K(Y ) : K ⊂ U}
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where U ⊂ Y is open. If Y is Polish, compact, then K(Y ) is Polish, compact, respectively.

For a Polish space Y we denote by P (Y ) the set of all Borel probability measures on Y

endowed with the weak∗ topology, i.e. the topology generated by sets of the form{
σ ∈ P (Y ) :

∣∣∣∣∫
Y

fdσ −
∫
Y

fdσ0

∣∣∣∣ < ε

}
where σ0 ∈ P (Y ), f : Y → R is continuous and bounded, and ε > 0. Traditionally, a

somewhat erroneous terminology is in use: a sequence of measures convergent in the weak∗

topology is sometimes said to converge weakly. If Y is a compact metric space then P (Y ) is

a compact metric space.

Recall that semigroup Γ is called left amenable if there exists a left invariant mean for

Γ. For more on amenability of semigroup the reader may wish to consult [41, 0.18].

4.3 Proof of Theorems 4.1 and 4.2

We start with the following key lemma.

Lemma 4.3. Let X be a standard Borel space with a Borel probability measure µ. Let Y be

a Polish space. Let p : Y → X be a Borel map such that µ(p(Y )) = 1. Let M ⊂ P (Y ) be the

set of all measures σ with p∗(σ) = µ. If for µ-a.a. x ∈ X the set p−1(x) is compact then M

is a non-empty convex compact subset of P (Y ).

Proof. Suppose additionally that Y is compact. The general case will be considered later.

First of all, the set M is non-empty. For instance, by [24, 18.3] there exists a µ-measurable

function u : p(Y ) → Y with u(x) ∈ p−1(x) for all x ∈ p(Y ). Define a measure σ ∈ P (Y ) by

σ(B) =
∫
p(Y )

δu(x)(B)dµ(x). Then σ ∈M . Secondly, it is clear that M is convex. It remains

to prove that M is compact. Let ν1, ν2, ν3, . . . be a sequence of elements of M convergent to

some ν ∈ P (Y ). We shall prove that ν ∈M , i.e. that p∗(ν) = µ.
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Claim 1. Let A ⊂ X be a Borel set. Then p∗(ν)(A) ≥ µ(A).

Proof of Claim 1. This is trivial if µ(A) = 0, so let us assume that µ(A) > 0. Fix ε > 0.

Endow X with a Polish topology giving X its Borel structure. Let X ′ ⊂ X be a Borel set

of full measure such that for all x ∈ X ′ the set p−1(x) is compact.

Let f : X ′ → K(Y ) be given by f(x) = p−1(x). We shall prove that f is Borel. Recall that

the Borel structure of K(Y ) is generated by sets of the form B = {K ∈ K(Y ) : K ∩ U 6= ∅}

where U ⊂ Y is open (see [24, 12.C]). Therefore it is enough to prove that the set f−1(B) is

Borel whenever B is of the aforementioned form. Note that

f−1(B) = {x ∈ X ′ : f(x) ∈ B} = {x ∈ X ′ : f(x) ∩ U 6= ∅}

= {x ∈ X ′ : ∃y ∈ U p(y) = x} = πX(graph(p) ∩ (U ×X ′)),

which is Borel by 1.3. Hence f is Borel.

By Lusin’s Theorem there exists a non-empty compact subset K ⊂ A ∩ X ′ such that

µ(K) > µ(A)− ε and the function f |K : K → K(Y ) is continuous. Then the set {f(x) : x ∈

K} is compact in K(Y ), as it is a continuous image of a compact set. By [24, 4.29], the set

f(K) =
⋃
{f(x) : x ∈ K} = p−1(K) is a compact subset of Y .

Since νn converges to ν weakly and p−1(K) is compact, we have by Portmanteau lemma

p∗(ν)(K) = ν(p−1(K)) ≥ lim sup
n→∞

νn(p−1(K)) = lim sup
n→∞

µ(K) = µ(K).

It follows that p∗(ν)(A) ≥ p∗(ν)(K) ≥ µ(K) ≥ µ(A) − ε. Since ε > 0 can be chosen

arbitrarily, the claim follows.

Claim 2. Let A ⊂ X be a Borel set. Then p∗(ν)(A) ≤ µ(A).

Proof of Claim 2. Claim 1 for the set X \ A gives p∗(ν)(X \ A) ≥ µ(X \ A). This can be

rewritten as 1− p∗(ν)(A) ≥ 1− µ(A), hence p∗(ν)(A) ≤ µ(A).
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Claims 1 and 2 imply that p∗(ν)(A) = µ(A) for all Borel sets A ⊂ X. Therefore p∗(ν) = µ,

which proves that M is closed in P (Y ) and hence compact. This finishes the proof in the

case when Y is compact.

It remains to consider the case when Y is non-compact. Recall that any Polish space

embeds homeomorphically into the Hilbert cube [0, 1]N as a Gδ subset. Write Y ′ = [0, 1]N for

brevity and view Y as a subspace of Y ′. Let Σ be the Borel σ-algebra of X. Let X ′ = X∪{∗}.

Let Σ′ = Σ ∪ {A ∪ {∗} : A ∈ Σ}. Then Σ′ gives X ′ a structure of standard Borel space.

Let µ′ be a Borel probability measure on X ′ given by µ′(B) = µ(B ∩ X) for any B ∈ Σ′.

Let p′ : Y ′ → X ′ be given by p′(y) = p(y) if y ∈ Y and p′(y) = ∗ otherwise. Note that p′

is Borel. Let M ′ ⊂ P (Y ′) be the set of all measures σ′ with p∗(σ
′) = µ′. Then X ′, Y ′, µ′,

p′, and M ′ satisfy the hypotheses of the lemma and in addition Y ′ is compact, so M ′ is a

non-empty convex subset of P (Y ′). It is clear that the map M 3 σ 7→ σ′ ∈ P (Y ′) given

by σ′(B) = σ(B ∩ Y ) maps M onto M ′ homeomorphically. Therefore M is a non-empty

compact subset of P (Y ), which obviously is convex as well.

We prove Theorem 4.1 using the averaging trick.

Proof of Theorem 4.1. Let M ⊂ P (Y ) be the set of all measures σ with p∗(σ) = µ. By

Lemma 4.3, M is non-empty, convex and compact.

Pick an arbitrary σ ∈M . For all positive integers n define

νn =
1

n

n−1∑
i=0

(Si)∗(σ).

Note that for all i

p∗((S
i)∗(σ)) = (p ◦ Si)∗(σ) = (T i ◦ p)∗(σ) = (T i)∗(p∗(σ)) = (T i)∗(µ) = µ

so (Si)∗(σ) ∈ M for all i and since M is convex νn ∈ M for all n. So, by compactness

of M there exists a subsequence νn1 , νn2 , νn3 , . . . convergent to some ν ∈ M . Then ν is
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S-invariant by the proof of the Bogolyubov-Krylov theorem (see [45, Theorem 1.1]). Hence

ν is as required.

The averaging trick can be used to prove Theorem 4.2 provided Γ admits a Følner se-

quence, i.e. an increasing sequence of finite sets Fn ⊂ Γ such that Γ =
⋃
n∈N Fn and

limn→∞
|gFn4Fn|
|Fn| = 0 for all g ∈ Γ. This is the case for instance for amenable groups and

for abelian semigroups. However, there exist amenable semigroups admitting no Følner

sequences, so we need a different method to prove Theorem 4.2.

Proof of Theorem 4.2. Let M ⊂ P (Y ) be the set of all measures σ satisfying p∗(σ) = µ. By

Lemma 4.3, M is a non-empty convex compact subset of P (Y ).

Note that the action Γ y Y induces an action Γ y P (Y ) by push-forwards: γσ =

(Sγ)∗(σ). Also, ΓM ⊂M . Indeed, for any γ ∈ Γ and σ ∈M

p∗(γσ) = p∗((Sγ)∗(σ)) = (p ◦ Sγ)∗(σ) = (Tγ ◦ p)∗(σ) = (Tγ)∗(p∗(σ)) = (Tγ)∗(µ) = µ.

Hence by Day’s fixed-point theorem [9] there exists ν ∈ M with ν = (Sγ)∗(ν) for all γ ∈

Γ.
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