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ABSTRACT 

 

Fragility curves are useful tools for reliability evaluation of structures as well as for 

identifying the most vulnerable components. This study focuses on the seismic fragility 

analysis of highway bridges. Two main approaches are used for this purpose: component-

based and system-based fragility analyses. The seismic vulnerability of two existing 

bridges located in Montreal are assessed as case studies. 

The main goal of this study is to develop reliable seismic fragility curves for highway 

bridge structures considering all significant uncertainties involved. Uncertainties include 

those associated with modelling structural behavior, seismic inputs and definition of 

component capacities. The procedures are implemented for the fragility assessment of 

two existing bridges as case studies. For this purpose, deterioration due to corrosion of 

reinforcing steel and its effects on structural behavior are included, as well as validation 

of the Finite Element Model using dynamic properties obtained from ambient noise 

measurements. Proposed methods for the selection of appropriate set of ground motion 

records, the type of model analysis and probabilistic modeling of component capacities 

are presented and illustrated for the two case studies. 

Two stochastic methods are proposed for validating the Finite Element Model of a bridge. 

The first method is based on classical hypothesis testing procedures while the second uses 

a Bayesian updating approach. The stochastic methods are also used to update the input 

parameters, detect probable major damage in the bridges and determine the confidence 

interval on model responses as a function of laboratory test data and field observations. 

In order to limit the uncertainties involved in seismic inputs, a state-of-the-art ground 

motion record selection procedure based on Conditional Mean Spectrum (CMS) is used. 

Incremental Dynamic Analysis (IDA) is performed to evaluate the record to record 

variability in seismic responses and to capture the nonlinearity in structural component 

behaviors. 

The first part of the thesis describes the application of component-based fragility analysis 

for the seismic vulnerability assessment of highway bridge structures. IDA is performed 

on the validated Finite Element model of the structure using an appropriate set of ground 
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motion records. The results are used for estimating the relationships between ground 

motion intensity measures and component demands. A Joint Probabilistic Seismic 

Demand Model (JPSDM) is fitted to the results in order to develop component and system 

fragility curves of the structure. 

Since the component based fragility analysis of complex structures comprising a large 

number of components requires enormous computational efforts, in the second part of 

this study, a system-based approach for developing seismic system fragility curves is 

proposed which uses Support Vector Machines (SVM). SVM is a state-of-the-art machine 

learning technique which is used to discover patterns in highly dimensional and complex 

data sets. In this application, SVM is used to determine the relationship between ground 

motion intensity measures and peak structural responses. Seismic fragility curves are 

developed using Probabilistic SVM (PSVM). Finally, the efficiency of the proposed 

PSVM method for its application to vector-valued ground motion Intensity Measures 

(IM) as well as traditional single-valued IM are investigated. 
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RÉSUMÉ 

 

Les courbes de fragilité sont utilisées afin d’évaluer la fiabilité des structures ainsi que 

pour identifier les composants les plus vulnérables.  Cette recherche porte sur les analyses 

de fragilité sismique des ponts.  Deux approches principales sont utilisées : 1) une analyse 

basée sur les courbes de fragilité de chaque composant et 2) une analyse basée sur la 

courbe de fragilité du système.  Ces deux approches sont démontrées par la suite pour 

l’évaluation de deux ponts existants situés à Montréal. Les courbes de fragilité sont 

développées en considérant toutes les sources d’incertitudes aléatoire et épistémique, 

soit : le modèle de comportement structural, les sollicitations sismiques et la résistance 

des composants. L’évaluation de la fragilité des ponts existants comprend un modèle de 

détérioration associé à la corrosion des aciers d’armature ainsi qu’une validation du 

modèle structural à partir des caractéristiques dynamiques obtenues des mesures du bruit 

ambiant. De nouvelles procédures pour la sélection optimale des sollicitations sismiques 

et des méthodes d’analyse probabiliste pour la résistance des composants sont présentées 

et illustrées pour deux cas types.  Deux méthodes stochastiques sont développées et 

proposées pour valider le modèle en éléments finis d’un pont.  La première est basée sur 

les tests d’hypothèses statistiques classiques tandis que la deuxième est basée sur une 

approche bayésienne.  Les méthodes stochastiques sont également utilisées afin 

d’actualiser les propriétés du système, identifier les causes les plus probables de 

défaillance et de définir un intervalle de confiance sur le comportement structural en 

fonction des résultats d’essais effectués en laboratoire ou sur le terrain.  Afin de réduire 

l’incertitude sur les sollicitations sismiques à utiliser pour l’analyse, l’approche basée sur 

le spectre moyen conditionnel (Conditional Mean Spectrum - CMS) est utilisée.  Des 

analyses dynamiques par incréments (ADI) sont effectuées afin d’estimer la variabilité 

du comportement sismique non-linéaire en fonction des caractéristiques des sollicitations.  

Dans un premier temps, un modèle de fiabilité est développé sur la base des courbes de 

fragilité par composant.  Les courbes de fragilité sont dérivées à partir des analyses ADI 

en fonction de divers paramètres caractérisant les sollicitations sismiques et les demandes 

correspondantes sur chaque composant.  Une distribution probabiliste conjointe des 

demandes sismiques (DPCDS) est estimée afin de dériver les courbes de fragilité pour les 
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composants ainsi que pour l’ensemble du pont (système). Un désavantage de l’approche 

par composant est la complexité et la quantité des analyses à effectuer lorsque le système 

comprend plusieurs composants.  Une approche alternative basée sur l’analyse des 

systèmes est également proposée.  Celle-ci est basée sur la théorie des Support Vector 

Machines (SVM), une méthode innovante d’apprentissage par simulation. Cette 

technique permet d’identifier les relations entre plusieurs variables à partir de l’analyse 

d’un grand nombre de données.  Dans ce cas-ci, le SVM est utilisé afin d’établir la relation 

entre les mesures d’intensité des sollicitations sismiques et le comportement structural.  

Les courbes de fragilité sont développées par la technique de PSVM (Probabilistic 

Support Vector Machines).  Finalement, la performance de la procédure est évaluée pour 

des analyses basées sur une approche multi-variable pour la caractérisation des 

sollicitations sismiques ainsi que sur les analyses traditionnelles à une variable.  
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 Application of ambient vibration survey in model validation, parameter updating 

and damage detection of highway bridge structures: 

It is shown that applying the proposed stochastic methods to analyze the ambient 

vibration test results can reduce the parameter uncertainties of the model. 

Moreover, this methodology is applicable for detecting structural damages which 

affect the overall stiffness of the structure as well as validating the structural 

model to reduce the model uncertainties. 

 

 Investigation of the effect of component retrofits on system behavior and 

reliability of a typical highway bridge: 

Seismic fragility curves of a typical bridge located in Montreal are developed for 

both existing and retrofitted structure and the effect of retrofitting a frame 

component on the overall behavior and vulnerability of the structure is 

investigated. 

 

 Developing reliable component-based and system-based seismic fragility curves 

of highway bridge structures considering all the significant uncertainties 

involved: 

All significant sources of parameter, model and numerical uncertainty which arise 

from seismic demand and component limit state estimation, modeling and 

fragility analysis are addressed in this study and where applicable, practical 

solutions are proposed to reduce the associated uncertainties. 

 

 Introducing a novel methodology for seismic reliability assessment of structures 

based on Support Vector Machine (SVM) learning method: 

A new approach to develop fragility curves is proposed which provides more 

reliable estimations, minimizes the numerical uncertainties of fragility analysis 

and requires significantly less computational efforts.  
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CHAPTER 1: INTRODUCTION 

1.1 PROBLEM DESCRIPTION 

Historic seismic events such as the Saguenay (Ms 5.8) and Ungava (Ms 6.3) earthquakes 

in 1988 and 1989 aroused an awareness that seismic hazards extend beyond the seismic 

regions of western Canada. Seismic issues of highway bridges have been traditionally 

neglected in eastern Canada and seismic deficiencies of existing bridges must be assessed 

and addressed. 

Uncertainties involved in determining the demands from earthquakes and in evaluating 

the capacity of structures under cyclic loads are important inputs to probabilistic methods 

for evaluating the reliability of structures. The seismic reliability of a structure can be 

evaluated by combining seismic hazards at the location of the structure and the fragility 

function of the structure. Fragility curves represent the state-of-the-art in seismic risk 

assessment (SRA) and are defined as the conditional probability that a structure will meet 

or exceed a certain level of damage for a given ground motion intensity. 

Fragility curves can be developed for structural components as well as for the structure 

as a whole system. By considering variability in seismic inputs, structure response, and 

material capacity into account, component fragility curves are useful tools to identify 

weak parts of the structure and to guide the efficient allocation of funds to strengthen or 

retrofit an existing structure while system fragility curves are useful in seismic risk 

assessment of the structure. 

Fragility curves can also be used in the post-earthquake evaluation of bridges. 

Immediately following an earthquake, the damage state of bridges located in the affected 

area can be estimated rapidly using fragility curves knowing the intensity measures of 

ground motions to effectively assist the functional assessment stage of recovery. In 

addition, after a detailed inspection of the bridge components, fragility curves can be 

updated based on observations and using probabilistic methods. 

Analytical fragility curves are developed through seismic response data from the analysis 

of bridges. The fragility analysis generally includes the following major steps; 
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1) Modeling of the bridge structure considering the uncertainty in its properties. 

2) Selection or simulation of ground motions representing the effect of soils and 

earthquakes 

3) Analysis of the structure subjected to ground motions 

4) Performing analyses to estimate the fragility curves from the response of the bridge 

model. 

In modeling of existing bridge structures, the effects of aging, deteriorations and 

corrosions should be considered. According to Tavares et. al. (2010), 75% of Quebec’s 

bridges have more than thirty years of service life. Moreover, they are subject to the 

frequent use of deicing salts in winter and their columns are exposed to splash and mist 

from service roads adjacent to the bridges. Deicing salts are sources of chloride ions 

which may result in corrosion of the reinforcing steel and spalling of the concrete cover. 

Moreover, it is important to validate the structural models based on available test data of 

the actual bridge in a probabilistic context in order to minimize the uncertainties in 

modeling and probable model errors. 

For ground motion record selection, various techniques have been suggested and used 

which are generally based on matching a spectral response to a target spectrum. The target 

spectrum should be based on the seismic hazard and soil characteristics at the location of 

the bridge and the dynamic behavior of the bridge structure. 

In order to reach the highest level of accuracy, most fragility curves are developed based 

on nonlinear time history analysis of the structures for a given set of ground motion 

records. The results of the structural analysis provide the data to define the relationship 

between ground motion intensity and the Engineer Demand Parameter (EDP) as well as 

the record-to-record variability. 

Two approaches have been used in developing fragility curves for a structural system: 

System-based and Component-based fragility analyses. In system-based fragility 

analysis, the damage state is defined for the system and the system fragility is defined as 

the probability of sustaining a certain level of damage in the system at a given ground 

motion intensity. However, in component based fragility analysis, the probability of 

exceeding the defined limit state for the given ground motion intensity is calculated for 
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each component and the probability of system failure is estimated considering the 

dependencies between the components. 

Component-based fragility analysis of structures comprising a large number of 

components requires enormous computational effort. The application of Machine 

Learning and Soft Computing methods such as Support Vector Machines (SVM) is an 

alternative for discovering patterns in highly dimensional and complex data sets such as 

the relationship between ground motion intensities and peak structural responses. 

 

1.2 RESEARCH OBJECTIVES 

The main objective of this thesis is to propose methodologies to develop reliable fragility 

curves for highway bridges accounting for all significant uncertainties involved. 

Although the proposed methodologies are only applied to the reliability assessment of 

two existing reinforced concrete highway bridges located in Montreal as case studies, the 

general concepts are applicable to other bridge types and materials. The first case study 

is a typical three-span bridge with total length of 68.8 meters which is supported by rigid 

frames comprising 12 slender columns. The assessment of this case study can be broken 

down into the following steps: 

- Developing a 3-Dimensional non-linear analytical model. (de la Puente Altez, 

2005). 

- Model validation and parameter updating based on available laboratory test 

results of a half-scale model provided by Itagawa (2005) 

- Estimation of corrosion effect on behavior of structural components. 

- Identify a set of synthetic ground motion records which are representative of the 

seismic hazard for the Montreal region. 

- Performing Incremental Dynamic Analysis (IDA) of the structure with selected 

ground motions 

- Generate probabilistic seismic demand models for various bridge components and 

obtain joint distribution of component demands for any given ground motion 

intensity. 

- Investigate the effect of using various earthquake intensity measures on the 
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probabilistic seismic demand models  

- Developing seismic fragility curves for critical components. 

- Developing system fragility curve of the bridge 

- Investigate the effect of a suggested retrofit strategy (proposed by de la Puente 

Altez, 2005) on fragility curves for the bridge by following the previous steps for 

the retrofitted structure. 

The second case study is a fragility assessment of a bridge with 5 spans with a total length 

of 232 meters which is supported by hammerhead piers. The specific tasks that are 

completed for this case study are as follows: 

- Develop a 3-Dimentional non-linear analytical model of the bridge including 

detailed analytical models of the various bridge components. 

- Performing ambient vibration tests on the bridge. 

- Model validation based on results obtained from ambient vibration tests. 

- Ground motion selection by using Conditional Mean Spectrum (CMS) as the 

target spectra 

- Incremental Dynamic Analysis (IDA) of the bridge for selected ground motion 

records 

- Develop component-based fragility curves for the structure 

- Develop system fragility curve of the structure using SVM learning 

 

1.3 THESIS ORGANIZATION 

After the first introductory chapter, an overview of the main concepts which are required 

in fragility analysis of highway bridges is presented in chapter 2. This chapter reviews 

concepts of model validation and parameter updating, ambient vibration test, corrosion 

effect, ground motion record selection, IDA method, fragility analysis and SVM learning 

method. 

Chapter 3 is a journal article by the author which deals with component based fragility 

analysis of supporting frames of a typical existing highway bridge located in Montreal. 

This article adopts two stochastic model validation methods for finite element model 

validation of the structure using a single observation. The results of a laboratory test on a 
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half scale model of a supporting frame conducted by Itagawa (2005) are used in model 

validation process. The results obtained from IDA are used in comparison of the 

effectiveness of two IM candidates (Spectral Acceleration (Sa) and Peak Ground 

Acceleration (PGA)) and are used to develop component and system fragility curves. It 

is demonstrated that the bridge has several major deficiencies such as absence of shear 

reinforcement in support beams which causes a brittle failure in cap beams of the 

supporting rigid frames. 

Chapter 4 contains a second journal paper by the author which is a companion-paper to 

the previous article. This article investigates the effectiveness of a retrofit strategy 

proposed by de la Puente Altez (2005) and presents the influence of the retrofit on the 

fragility and reliability of the bridge structure. This article also applies the introduced 

stochastic model validation methods in finite element model validation of the structure 

using multiple observations. The results of a laboratory test on a half scale model of a 

supporting frame conducted by Coulombe (2007) are used in the model validation 

process. Corrosion effects on structural components is also investigated in this article. 

Chapter 5 presents a paper accepted in the Canadian Society of Civil Engineering (CSCE) 

conference (Mahmoudi and Chouinard, 2013). This article deals with finite element 

modeling and model validation of the second case study. Ambient vibration test results 

(Saeed, 2013) are used in model validation and parameter updating in this case. 

The final journal article by the author presented in Chapter 6 introduces SVMs and 

presents the application of the Probabilistic Support Vector Machine learning method in 

developing system fragility curves and demonstrates the superiority of this method to 

conventional fragility analysis methods. It is indicated that developing fragility curves 

using the PSVM method results in more reliable estimations, minimizes the numerical 

uncertainties of fragility analysis and requires significantly less computational efforts. 

This article also describes a methodology for ground motion selection using Conditional 

Mean Spectrum (CMS) as the target spectrum. 

Chapters 3 to 6 are prepared as individual articles; therefore, the overlap seen in the 

content of these Chapters is to maintain their technical integrity and completeness. 

Contributions of the co-authors of the first two journal papers include finite element 
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modeling of the structure in Ruaumoko 3D  (Carr, 2001), supervision of research, 

technical review of the articles and the contribution of the co-author of the other papers 

includes supervision and technical review of the articles. 

Conclusions of this study and recommendations for future work are presented in Chapter 

7. 

Appendices: 

Appendix A: provides more details regarding structural modeling of the bridge studied in 

Chapters 5 and 6. 

Appendix B: provides more details regarding ambient vibration tests of the bridge studied 

in Chapters 5 and 6. 

Appendix C: provides more information and data regarding CMS based ground motion 

selection  

Appendix D: provides more detailed analysis results for the bridge studied in Chapters 5 

and 6. 
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CHAPTER 2: REVIEW OF RELEVANT CONCEPTS 

A typical seismic analytical fragility analysis of a structure includes modeling the 

structure, ground motion selection, dynamic analysis and a procedure to develop fragility 

curves from the response of the bridge model. This chapter presents a detailed overview 

of the concepts and methodologies adopted in this study as well as a review of the existing 

literature in each relevant field. 

 

2.1 MODEL VALIDATION AND PARAMETER UPDATING 

It is infeasible and uneconomical to estimate the reliability of a structure by performing 

full-scale tests. So, model-based computations are becoming increasingly popular in 

reliability assessments. However, model predictions are influenced by physical, statistical 

and model uncertainties. Hence, it is imperative to validate model predictions using some 

benchmarks. In model validation, the benchmarks are high-quality experimental 

measurements of the response of the system or subsystem and component level models. 

Traditionally, computer models have been verified using subjective or quantitative 

comparison approaches (Chen et. al., 2004). The former is based on visual comparison of 

the plots or contours of the predicted model and observations. This approach neither 

presents the uncertainties involved in the prediction model nor demonstrates the level of 

confidence in the model. The latter uses some measures as the ratio of the results obtained 

from the model and observations. However, a prescribed acceptable measure cannot be 

found in the literature for every case. 

Kleijnen (1995A, 1995B) proposed two methods for model validation. The first method 

investigates whether the model predictions and experimental data demonstrate positive 

correlation and moreover have the same mean values. The other method uses Monte Carlo 

Simulation (MCS) and sensitivity analysis to find out whether the model inputs have 

effects on the model outputs that agree with the experts' intuition. Although these methods 

use statistical methods and offer more information regarding the model, they still rely on 

prescribed acceptable measures and do not demonstrate the confidence of the model. 

During the last decade, large scientific computing projects, such as those led by the US 
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National Nuclear Security Administration (NNSA) and the Advanced Simulation and 

Computing (ASC) program, have developed methods to improve project oriented 

validation experiments (Pilch et. al., 2001; Trucano et. al., 2002; Oberkampf et. al., 2004; 

Pilch et. al., 2004). 

Uncertainties arising from the selection of the conceptual model, the formulation of the 

mathematical model and the computations of the simulation are mathematically mapped 

and propagated to uncertainties in the simulation results. Using a probabilistic context for 

system properties and inputs is a proper approach to address these uncertainties. When 

the system properties and load conditions are random variables, the outputs also become 

random variables. Hence, an Uncertainty Propagation (UP) technique is required to obtain 

the distribution and confidence bounds of the system output. The available methods for 

UP are briefly discussed in the following section. 

Oberkampf and Barone (2006) use statistical confidence intervals to propose validation 

metrics for interpolation and regression of experimental data. Oberkampf and Trucano 

(2002) demonstrated the construction of validation metrics based on experimental error 

and discussed benchmarks for model validation metrics. Hills and Leslie (2003) 

developed a validation metric which normalizes the difference between the model 

prediction and the experimental observations to compute a relative error norm.  

Using classic hypothesis analysis is also an appropriate option for building and 

quantifying confidence intervals, as well as for the demonstration of the goodness-of-fit 

of a model. According to Hills and Trucano (1999), if an experiment falls inside a given 

confidence bound of the predicted model, the experiment and the model are consistent; 

otherwise the model will be rejected. This test is applicable for both univariate and 

multivariate systems and is the foundation of the methods which reject incorrect models. 

Chen et. al. (2004) has adapted this methodology for model validation of univariate and 

multivariate systems. 

Another approach is developed by Mahadevan and Rebba (2005) and Rebba and 

Mahadevan (2006) which focuses on accepting appropriate models using Bayesian 

hypothesis testing. In this methodology a model is accepted if the observation favors the 
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model. In other words, if the probability density of the predicted value increases as the 

condition of the new observation, the model will be acceptable. 

It is noted that there may not be a unique acceptable model and every model validation 

method accepts a variety of models. However, the mentioned methods present statistics 

which can be a representation of the goodness of each model. For this purpose, classical 

hypothesis test uses the confidence bound or p-value of the test while Bayesian hypothesis 

approach introduces the Bayes factor. 

Finite element models of the highway bridges in this study are validated by classic 

hypothesis tests and Bayesian hypothesis tests. Hence, these methodologies are explained 

in detail in the following section. 

 

2.1.1 UNCERTAINTY PROPAGATION (UP) 

A lot of effort has been made to develop UP methods in various fields. Hence, there are 

numerous available methods which are designed for different purposes. Various aspects 

such as the required level of uncertainty quantification, accuracy or confidence level and 

the computational cost or efficiency should be considered for UP method selection. Lee 

and Chen (2009) have classified and investigated the applicability and merits of various 

UP methods. 

Simulation based methods such as MCS is the most frequently used category of UP 

methods. Madsen et. al. (2006), Christensen and Baker (1982) and Kiureghian (1996) 

have applied MCS for UP analysis. This method offers the highest accuracy but requires 

the highest computational cost. Alternative sampling techniques such as Halton sequence 

(Halton, 1960), Hammersley sequence (Hammersley, 1960) and Latin supercube 

sampling (Owen, 1998) can be used to reduce the computational cost. However, none of 

these methods is feasible for systems that require complex computer simulations. 

An alternative category of UP methods is the local expansion-based methods. These 

methods simplify the relationship between the system output and the inputs and develop 

metamodels of the system using methods such as Taylor series or perturbation method. 

Madsen et. al. (2006), Christensen and Baker (1982), Kiureghian (1996) and Ghanem and 
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Spanos (1991) adopted this category of UP methods. Methods in this category are 

generally computationally efficient but weak against the large variability of inputs and 

nonlinearity of the system. However, their performance can be improved by using more 

complicated metamodels. Chen et. al. (2004) has suggested Response Surface Method 

(RSM) to develop metamodels in order to perform UP analysis. RSM was initially 

introduced by Box and Wilson (1951) and investigates the relationships between 

explanatory system inputs and one or more system responses. UP analysis in this study is 

performed as suggested by Chen et. al. (2004).  

Other available UP methods in the literature are functional expansion-based methods such 

as Polynomial Chaos Expansion and Wavelet Expansions, Most probable point-based 

methods such as first-order reliability method (FORM) and second-order reliability 

method (SORM) and Numerical integration-based methods such as Full factorial 

numerical integration method. (Lee and Chen, 2009) 

 

2.1.2 CLASSIC HYPOTHESIS TEST 

In order to validate a model by classic hypothesis test, confidence bounds of the system 

output(s) at a specified significance level are calculated based on the results from UP 

analysis of the system. Then, experimental observations are compared to the confidence 

bounds. A model is acceptable if the observations fall inside the given confidence bound 

of the predicted model. The main steps for performing classic hypothesis test model 

validation are as follows: 

- Identifying the sources of uncertainty in the system output 

- Forming experiments 

- Defining the probabilistic distributions of system inputs 

- Employing efficient UP analysis 

- Calculating multivariate probabilistic distribution of system outputs 

- Determine the appropriate level of significance of the test (α) and corresponding 

confidence bounds. 

- Model validation through comparison 

Figure 2-1 illustrates model validation for univariate and multivariate systems using 
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classic hypothesis testing. 

 

  

(A) (B) 

Figure 2-1. Classic Hypothesis test for (A) Single Observation (B) Multiple 

observations 

 

Model validation based on classic hypothesis testing approaches provides a powerful 

method to represent the confidence of the model. However, Edwards et. al. (1963) 

demonstrates that the classical approaches are often prone to rejecting the null hypothesis 

on account of the data that do not greatly detract from its credibility because this approach 

neglects the prior distribution under the alternative hypothesis. In other words, this 

approach considers how unlikely an observation is if the null hypothesis is true, but do 

not consider whether the observation is even less likely if the null hypothesis is false. 

Hence, models are also validated based on Bayesian hypothesis approach in this study. 

 

2.1.3 BAYESIAN HYPOTHESIS TEST 

Bayesian Hypothesis testing compares the likelihood of the experimental observations 

under the null hypothesis (H0) and the alternative hypothesis (H1). In this approach, a 

model is acceptable if the observations favor the model (null hypothesis). The Bayes 

factor (B) is defined as shown in equation (2-1) and the models with a Bayes factor higher 

than one are acceptable.  

 
𝐵(𝑥0) =

𝑃(𝑦|𝐻0: 𝑥 = 𝑥0)

𝑃(𝑦|𝐻1: 𝑥 ≠ 𝑥0)
 

(2-1) 

In equation (2-1) y and x0 represent the observation and the model prediction respectively. 

This approach was first used in mechanical model validation by Zhang and Mahadevan 
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(2000). Mahadevan and Rebba (2005) demonstrated that for a single observation test the 

Bayes factor can be calculated from equation (2-2): 

 
𝐵(𝑥0) =

𝑓(𝑥|𝑦)

𝑓(𝑥)
|𝑥=𝑥0

 
(2-2) 

In which f(x) and f(x|y) represent the prior and posterior Probability Density Functions 

(PDF) respectively. From equation 2-2, it is inferred that a model is acceptable if the 

probability density of the model prediction increases with the condition of the new 

observation. Similarly, for multivariate systems, the Bayes factor is equal to the ratio of 

the posterior Joint Probability Density Function (JPDF) to the prior JPDF as suggested 

by Rebba and Mahadevan (2006). 

In order to calculate B(x0) in equation (2-2), the prior and posterior PDF of the system 

input are required. The prior PDF (f(x)) is obtained by a UP analysis as explained in 

section 2-1-1. In order to calculate the posterior PDF (f(x|y)), first, the PDF of input 

variables of the system are updated through an Inverse Uncertainty Quantification (IUQ). 

Then, the posterior PDF of the system output is obtained by a UP analysis and using the 

updated PDF of input variables. 

In this study, IUQ is also done under the Bayesian framework. Equation (2-3) is used to 

update the PDF of the input variables given the observations (y). 

 

𝑓(𝜃𝑖|𝑦) =  
𝐿 (𝑦|𝜃𝑖) . 𝑓(𝜃𝑖) 

∫ 𝐿 (𝑦|𝜃𝑖) . 𝑓(𝜃𝑖) 𝑑𝜃𝑖𝜃𝑖

 (2-3) 

In which 𝜃𝑖 represents the input variables, L(y|𝜃i) is the likelihood of the observations in 

prior system and f(𝜃i) represents the prior PDF of the inputs. Generally, IUQ analysis 

based on equation (2-3) is computationally troublesome and requires numerical 

integration. However, since the metamodel of the system is used in this study, equation 

(2-3) can be calculated conveniently by MCS or analytically. 

Figure 2-2 shows the Bayesian Hypothesis model validation for a univariate system. 
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Figure 2-2. Model Validation of univariate system using Bayesian hypothesis approach 

 

2.2 AMBIENT VIBRATION TEST 

Various test and survey procedures have been used in bridge inspection which can be 

applied in model validation analysis. The appropriate test should be selected for every 

case based on the applications, advantages, limitations, cost and accuracy of the available 

surveys. 

The process in which structural parameters are determined based on measurements is 

called System Identification (Juang & Pappa, 1994). System identification analysis have 

been successfully implemented in various applications such as model validation (Kleijnen 

(1995) and Ren et. al. (2004a) ), parameter updating (Zhang and Mahadevan (2000), 

Soize et. al. (2008) and Wu and Li (2004) ), damage detection (Gentile & Saisi (2007), 

Siddique et. al. (2007), Zhang (2007) ) and seismic vulnerability assessments (Boutin et. 

al. (2005), Herak (2009), Gosar (2012) and Michel et. al. (2012) ). 

Modal testing is a non-destructive survey of structures which provides modal information 

of the structure such as natural frequencies, damping and vibration mode shapes. Modal 

testing was first developed in aerospace and mechanics and later adapted for civil 

engineering applications. However, implementation of these methods in civil structures 

has challenges that should be addressed (Sohn and Law, 2000): 

- The modal properties of civil structures are highly dependent on environmental 

conditions such as temperature, loading and humidity. Hence the uncertainties involved 

in modal assessment of these structures are typically higher than other types of structures 
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or machines. According to Sohn et. al. (1999), natural frequencies of a structure may 

change by as much as 5% during a day as the result of temperature changes. Hence, the 

variability in modal properties of a structure may be several times higher that changes in 

modal properties due to structural damage. 

- Civil structures are typically highly redundant, geometrically complex and consisting of 

several types of materials. As a result, multiple non-unique acceptable models may exist 

which are compatible with modal measurements. 

- The spatial extent of civil structures and maintaining their functionality during testing 

increases the cost of certain types of surveys. 

Modal test can be categorized into two classes based on the nature of the excitations: 

Forced Vibration Testing (FVT) and Ambient Vibration Testing (AVT). In FVT, an 

artificial excitation device is used to impose an external force to the structure. The main 

advantage of FVT is that input excitations are controlled and precisely measured (Huang, 

2007). However, this method of modal test is rather expensive, intrusive and may cause 

minor damages to the structure in some cases. 

In AVT, the system identification is based on operational dynamic excitations or 

environmental ambient excitations due to wind, human activity or micro-tremors. AVT 

has recently become a popular method for assessing the dynamic behaviour of full-scale 

structures. Ambient vibration surveys are non-intrusive because no excitation equipment 

is needed which translates into minimal interference with the normal function of the 

structure. 

The input excitation in AVT is not measured but assumed to be a Gaussian White Noise 

(GWN). The frequency domain representation of GWN is a function with constant power 

(Bendat and Piersol, 1993). It is noted that since the amplitude of input excitations are 

very small at all frequencies, the components of structural displacements are small and 

are representative of linear elastic behavior. 

Hans et. al. (2005) demonstrated that the AVT provides reliable and efficient data and 

results obtained from AVT and FVT are in good agreement when comparing the 
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structural responses from ambient vibrations, harmonic excitation or shock loading. 

AVT is especially suited to flexible systems such as long highway bridges. According to 

Farrar and James (1997), the first application of AVT on a bridge was carried out by 

McLamore et. al. (1971) and since then, AVT of highway bridges has been performed in 

numerous studies (Sloan et. al. (1992), Harik et. al. (1997), Farrar and James (1997), 

Brown- John et. al. (1999), Sohn and Law (2000), Cunha et. al. (2001), Gentile and 

Martinez y Cabrera (2004), Ren et. al. (2004a and 2004b), Gentile and Gallino (2007) 

and Conte et. al. (2008)). 

System identification by AVT is typically performed by the following steps: 

- Define the measurement scheme 

- Synchronization of measurements 

- System Identification 

 

2.2.1 MEASUREMENT SCHEME 

Sensors are used in AVT to measure the velocity or accelerations resulting from ambient 

excitements. The sensors may have built-in Data Acquisition Systems (DAS) to record 

the data and radio transceivers. 

The first step in an ambient vibration survey is to select the points at which the response 

is measured. The selection of the points should be done in a way such that the points are 

accessible and the survey does not interrupt the normal activities of the structure. With 

those restrictions in mind, the points which define a proper modal model should be 

selected so that the estimated modal shapes can be detected with sufficient resolution. 

For large structures such as high-rise buildings and highway bridges, there may be a need 

to plan multiple setups due to the limitation in number of available sensors. In that case, 

some sensors are designated as reference sensors and remain at the same location during 

the survey while the rest of the sensors (roving sensors) move along the structure for 

various setups. Reference sensors are required in order to synchronize and assemble the 

data recorded by the roving sensors. 

It is recommended that the reference devices be located in the positions with the highest 
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amplitude of vibration. For bridges, a node in vicinity of the middle point of the interior 

span is suggested for the reference point. 

The data recording frequency (sampling frequency) should be determined at this stage. 

The sampling frequency depends on the method of data synchronization. In the case when 

synchronization is done by GPS time marker technique, a high sampling frequency would 

be used. However, after the synchronization, the recorded data can be decimated to reduce 

the computational effort for system identification. 

 

2.2.2 SYNCHRONIZATION 

If the sensors have built-in radio transceivers, they can communicate to synchronize their 

internal clocks within a millisecond precision. Hence, the recorded data in such sensors 

are synchronized. 

However, if sensors with radio transceivers are not available, a synchronization procedure 

is required. An option for synchronization of the data is to use GPS time markers. 

In this study, TROMINO® velocity-meters are used which have built-in data acquisition 

systems with radio transceivers. Hence, a synchronization procedure is not required in 

this study. For more information regarding data synchronization, refer to Saeed (2013). 

 

2.2.3 SYSTEM IDENTIFICATION 

System identification methods based on AVT can be categorized in different ways. Ewins 

(2000) and Maia and Silva (1997) conducted a thorough investigation on various 

techniques of system identification. These methods can be divided based on their domain 

of analysis (Time Domain or Frequency Domain). 

Frequency domain methods are based on an extension of the Fourier analysis while for 

the time domain analysis, autocorrelation functions are used to determine natural 

frequencies, modal shapes, and the logarithmic decrement concept is adapted to estimate 

damping coefficients. Frequency domain methods are more commonly used due to their 

simpler implementation and interpretation. However, both approaches have benefits and 

disadvantages and the appropriate method should be selected based on the case under 
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study. 

According to Saeed (2013), Time domain methods demonstrate higher precision when 

the data contain a large range of frequencies or a large number of modes while the 

frequency domain methods tend to provide higher accuracy when the range of frequencies 

of interest is limited and the number of modes is relatively small. 

Peak Picking (PP) is the simplest and most widely used procedure in frequency domain 

methods. PP involves a discrete Fourier transformation of recoded data in the time 

domain. The peaks on the resulting spectrum correspond to the Eigenvalues of the system 

or natural frequencies of the structure and each column (or row) in the spectrum matrix 

represents the corresponding Eigenvector or a mode shape of the structure. If the detected 

Eigenvalues are not well separated, the corresponding Eigenvector may be a linear 

combination of multiple mode shapes. 

In practice, noise in the structural response measurements makes the peak selection very 

difficult because the peaks are not clear and some peaks may correspond to the noise. 

Hence, Brincker et. al. (2001) introduced the Frequency Domain Decomposition (FDD) 

and Baker et. al. (2001) proposed the Enhanced Frequency Domain Decomposition 

(EFDD) methods to improve the PP approach. System identification using FDD or EFDD 

generally involves the following steps: 

- Computation of the Cross-Power Spectral Density (CPSD) Matrix 

- Singular Value Decomposition 

- System assembly for multiple setups 

CPSD is developed at each frequency and represents the power distribution per unit 

frequency. CPSD is an estimate of the Fourier transformation of the correlation matrix of 

recorded channels. The correlation between two channels is higher when they are in-

phase or out of phase (the difference between their oscillation phase is either 0 or 180). 

The CPSD matrix is obtained from equation (2-4): 

 𝑆𝑗,𝑘(𝜔) = 𝐸[𝑋𝑗(𝜔)∗. 𝑋𝑘(𝜔)] (2-4) 

where * represents the complex conjugate and Xj is the Fourier transform of the recorded 
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velocity time history of the jth channel (xj) and is calculated by equation (2-5). 

 
𝑋𝑗(𝜔) = ∫ 𝑥𝑗

𝑇

0

(𝑡). 𝑒−2𝜋𝑖𝜔𝑡𝑑𝑡 (2-5) 

The Singular Value Decomposition of CPSD matrix at each frequency is performed based 

on equation (2-6). 

 𝑆(𝜔𝑖) = [𝑈𝑖][𝛴𝑖][𝑉𝑖] (2-6) 

in which Σ is a diagonal matrix including Eigenvalues and U is the matrix representing 

the corresponding Eigenvectors. 

In order to assemble the responses of every recorded channel in AVT, several methods 

have been proposed which are investigated thoroughly by Parloo et. al. (2003). The main 

concept of these methods is to form the CPSD matrix and corresponding Singular Value 

Decomposition matrices of every channel with the reference channel and assemble the 

normalized results to obtain the assembled dynamic properties of the structure. For more 

detailed information regarding FDD and EFDD analysis refer to Saeed (2013). 

 

2.3 CORROSION EFFECT 

Reinforcement corrosion is the main cause of damage and early failure of reinforced 

concrete structures. Hence, corrosion effects should be carefully assessed in the reliability 

analysis of existing structures especially when the structures under study are old and 

exposed to aggressive environments. The severity and duration of the winter periods in 

Montreal and the large quantities of deicing salts which are used for preparing bare 

pavements for motorists make the highway bridges prone to corrosion and deterioration. 

The adverse effect of corrosion on the behavior of reinforced concrete members is 

highlighted in several publications. According to Lounis (2003), the corrosion of the 

reinforcement reduces the cross sectional area of the steel and produces corrosive 

products with a much larger volume than the original steel material which cause 

expansive stresses in the concrete. The stresses cause cracking, delamination, spalling of 

the concrete cover and weakening of the bond between the concrete and reinforcement. 
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Therefore, corrosion reduces the overall strength and ductility of the structure. 

Andrade et. al. (1993a, 1993b) performed a detailed experimental and numerical study 

on the relationship between reinforcement corrosion and cracking and delamination of 

concrete covers. They discovered that only a few micrometer of loss in rebar cross-section 

may cause visible cracks on the cover. 

Ismail and Soleymani (2002) conducted an extensive laboratory test on reinforced 

concretes with various concrete mixtures and monitored the chloride concentration and 

corrosion rate in the specimens to investigate the environmental effects on corrosion rate 

in reinforced concrete components. 

Li (2004) investigated the effect of corrosion on the behavior of flexural reinforced 

concrete member which are mainly used in marine environments. He estimated the 

deflections and strength of components over each phase of service life of corrosion 

affected members and obtained the probability of failure of components over their service 

life. 

Recently, there have been several studies which investigate the corrosion rate and 

deterioration effects on reinforced concrete structures in a probabilistic context. Ghosh 

and Padgett (2010) develop time-dependent seismic fragility curves for highway bridges 

considering the corrosion effects on the behavior and capacities of reinforced concrete 

piers, abutments and steel bearings. 

Alipour et. al. (2011 and 2013) investigated the chloride ion concentration, corrosion rate 

and structural degradation mechanisms due to corrosion in a probabilistic framework in 

order to propose optimum inspection and maintenance strategies to minimize life cycle 

cost of highway bridges while maintaining the safety level of the bridge. They also 

presented the time-dependent fragility curves of deteriorating highway bridges. 

According to Tutti (1982), the service life of a bridge can be divided into two phases: 

Phase 1 is the Corrosion Initiation which corresponds to the time period from the 

completion of the original construction to when a sufficient amount of chloride ions (Ccr: 

Critical Chloride Concentration) accumulates around the steel and corrosion is just about 
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to begin (Ti). Phase 2 is Corrosion Propagation which is the time period after the corrosion 

has begun. Figure 2-3 illustrates the Tutti model of corrosion during the service life of a 

structure. 

 

Figure 2-3. Tutti model of degree of corrosion in a deteriorating structure 

 

2.3.1 CORROSION INITIATION 

High pH of concrete causes an oxide film to form on the surface of the reinforcing steel 

when it is placed in the concrete. This passive oxide steel layer is composed of a dense, 

stable gamma ferric oxide layer which is tightly adhering to the steel surface (Revie 

2000). The corrosion process of the reinforcement can only begin once this passive oxide 

layer has been destroyed. Reactions with chloride ions, as well as moisture and oxygen, 

destroy the oxide film. The concentration of chloride ions needed to destroy the oxide 

film is referred to as the critical or threshold chloride ion concentration. 

There have been numerous studies on the critical chloride concentration and there is a 

large variability in the values obtained as variety function of concrete mix type and 

proportions, pH, cement type, water to cement ratio, relative humidity, and temperature 

(Stewart and Rosowsky 1998; Duprat 2007). 

Corrosion initiation time is the length of time it takes for chloride ions and other 

substances needed for corrosion, such as water and oxygen, to penetrate the concrete clear 

cover and reach the depth of reinforcing steel in a sufficient amount to start corrosion of 

the steel. 
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Fick’s second law of diffusion can be used to predict the progression of chloride ions as 

a function of time and position within a semi-infinite solid as shown in equation (2-7). 

(Stewart and Rosowsky 1998). 

 𝜕𝐶(𝑥, 𝑡)

𝜕𝑡
=  −𝐷𝐶 .

𝜕2𝐶(𝑥, 𝑡)

𝜕𝑥2
 (2-7) 

in which C represents the chloride ion concentration, DC is the diffusion coefficient and 

x represents the depth. The chloride ion diffusion coefficient depends on parameters such 

as mix proportions, curing time and conditions, compaction, environmental exposure and 

time effects (Stewart 2003). By re-arranging and modifying equation (2-7), Ti can be 

obtained from equation (2-8). 

 
𝑇𝑖 =

𝑥2

4𝐷𝐶
[𝑒𝑟𝑓−1 (

𝐶0 − 𝐶𝑐𝑟

𝐶0
)]−2 

(2-8) 

in which erf is the Gaussian error function and C0 represents chloride concentration at the 

surface. 

Lounis et. al. (2004) conducted a probabilistic study of chloride induced corrosion 

initiation time in reinforced concrete structures. They performed a MCS to estimate the 

probabilistic distribution of corrosion initiation time in a typical structure located in 

Ottawa. 

Wolofsky (2011) studied the corrosion initiation time in highway bridges located in 

Montreal in a detailed probabilistic context considering local environment conditions and 

various corrosion mechanisms. 

 

2.3.2 CORROSION PROPAGATION 

Once the corrosion has initiated, the rate of corrosion depends on the availability of water 

and oxygen in the vicinity of the reinforcement (Duprat 2007) which is affected by the 

quality and condition of the concrete, and the water to cement ratio of the concrete mix 

(Lounis, 2003). Since these parameters are unknown at the design stage and vary from 

structure to structure and within a structure, it is very difficult to accurately predict the 
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corrosion rate. However, the actual corrosion rate can be determined through field 

measurements and experiments using, among others, the corrosion current density 

(Stewart and Rosowsky 1998). The basis of this field test is that the corrosion rate is 

proportional to the electric current since corrosion involves the transfer of electrons and 

ions between the metal and the surrounding intersticial solution.  

The Half-cell method, DC polarization method and AC impedance method are three most 

common methods for estimating the rate of corrosion. These methods are based on 

estimating the polarization resistance (Rp) and subsequently the corrosion current density 

(icorr) in the media. The corrosion current density is the corrosion current over a unit 

surface of polarized area of the reinforcing bar. 

The conversion of electrochemical parameters into the instantaneous corrosion rate can 

be made by means of Faraday’s law as shown in equation (2-9) (Huang and Yang 1997): 

 
𝑟𝑐𝑜𝑟𝑟 = (

𝑖𝑐𝑜𝑟𝑟

𝑧. 𝐹
) . (

𝑀𝐹𝑒

𝜌𝑠𝑡
) (2-9) 

in which z is the number of charges of the ion (equal to 2 for the ferrous ion), F is 

Faraday's constant, 96500 A.s., MFe is the atomic weight of Fe (56g) and ρst is the density 

of steel (7.81 g/cm3). It is noted that the rate of corrosion is a time-dependent variable, 

however, it is assumed to be constant in this study due to lack of data. The diameter of 

the corroding bar at the time t, D(t) can be estimated from equation (2-10). 

 
𝐷(𝑡) = {

𝐷0

𝐷0 −
0

 𝑟𝑐𝑜𝑟𝑟(𝑡 − 𝑇𝑖)

𝑡 < 𝑇𝑖

𝑇𝑖 < 𝑡 < 𝑇𝑖 + 𝐷0/𝑟𝑐𝑜𝑟𝑟

𝑡 > 𝑇𝑖 + 𝐷0/𝑟𝑐𝑜𝑟𝑟

 (2-10) 

in which D0 is the initial diameter of the bar. 

 

2.4 GROUND MOTION RECORD SELECTION 

In the seismic reliability assessment of structures, the relationship between ground motion 

intensity and structural response has to be defined. In other words, the goal of structural 

analysis is to estimate the response of the structure subjected to ground motions with 

specified intensities so that the conditional probability of exceeding a certain limit state 

can be calculated at any intensity. However, the structural response is highly dependent 
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on the set of ground motions which are used in the analyses. Baker and Cornell (2006) 

and Zareian (2006) demonstrated that using ground motion records with different spectral 

shapes can change the calculated collapse capacity substantially and in some cases as 

much as 70%. Hence, appropriate selection of ground motion records is an imperative 

task in fragility and reliability assessment of structures, which otherwise can result in 

highly biased predictions.  

A realistic and representative set of ground motions should include records with 

characteristics which are consistent with the site seismicity. Characteristics such as 

ground motion magnitude (M), distance (R) and spectral shape parameters like epsilon 

are important characteristics which can influence structural response. 

Ground Motion Prediction Equations (GMPE) and seismic hazard deaggregations are key 

elements of ground motion selection. A GMPE is an empirical equation which predicts a 

ground motion Intensity Measure (IM), such as response spectra, as a function of ground 

motion basic characteristics such as earthquake magnitude and distance. GMPEs may 

require different input parameters such as ground motion magnitude and distance, site 

condition parameters like average shear wave velocity (Vs30) of the soil and fault type and 

mechanisms. The output of a GMPE may include the predicted mean value and variance 

of the ground motion IM. GMPEs are required in Probabilistic Seismic Hazard Analyses 

(PSHA) and seismic hazard deaggregations. GMPE proposed by Atkinson and Boore 

(2006) and Atkinson (2008) are adapted in this study. 

In seismic hazard deaggregation analysis, mean value and variation of ground motion IM 

is estimated for every possible earthquake scenario with various magnitudes and distances 

using GMPEs and the results are combined with the probability of occurrence of each 

event. In order to account for all sources of uncertainty in the results of seismic hazard 

deaggregation, various GMPEs may be used with uniform or different assigned weights. 

For example, the Geological Survey of Canada (GSC) (1995 model) uses the GMPE 

suggested by Atkinson and Boore (1995) for eastern Canada while the updated model 

suggested by Goda et. al. (2010) applies the GMPEs suggested by Silva et. al. (2002), 

Campbell (2003), Atkinson and Boore (2006) and Atkinson (2008) with weights of 0.2, 

0.3, 0.4 and 0.1 respectively. For the 2015 version of Canadian national Seismic Hazard 
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Map, Atkinson and Adams (2013) suggest using 3 sets of GMPEs which result in lower, 

central and upper responses for each type of seismic event to represent the epistemic 

uncertainty involved in ground motion prediction. 

Dehghani and Tremblay (2012) proposes a ground motion selection method which 

initially selects a set of ground motion records based on seismic hazard deaggregation 

data. The set is further refined according to their intensity, frequency content and 

duration. 

Many methods have been proposed for ground motion record selection. Tehrani et. al. 

(2014) investigated the influence of using different ground motion selection approaches 

on seismic response of a typical bridge in Canada. The most widely used methods 

typically either choose ground motion with main characteristics close to the seismic 

characteristics obtained from the seismic hazard deaggregation of the site location or 

choose records which match some target spectrum. Spectral Acceleration (Sa) at a given 

period is usually considered as the ground motion IM in order to benefit from having a 

direct link to a ground motion hazard curve (Cornell et. al., 2002). Tehrani (2012) 

performed a detailed study on the influence of different earthquake types and various 

ground motion selection methods on the seismic response of highway bridges. 

 

2.4.1 MR- BASED APPROACH 

The simplest method for ground motion selection is to choose records which have similar 

magnitude, M and distance, R to the mean magnitude and distance obtained from seismic 

hazard deaggregation of the site. In order to get more diversity, one unit of magnitude can 

be assumed equivalent to a certain distance. For instance, Baker and Cornell (2006) treat 

a unit change in magnitude as equivalent to a 40km difference in distance. However, this 

approach neglects the spectral shape of the ground motions and may result in highly 

biased predictions. 

 

2.4.2 EPSILON (ε) BASED APPROACH 

Epsilon (ε) is the number of logarithmic standard deviations by which a target ground 

motion differs from a median ground motion and can be obtained by equation (2-11) in 
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which µln Sa (M,R,T) and σln Sa (T) are the predicted mean and standard deviation of ln(Sa) 

at given period and ln Sa(T) is the natural logarithm of the spectral acceleration of interest. 

 
𝜀(𝑇) =

ln 𝑆𝑎(𝑇) − 𝜇ln 𝑆𝑎(𝑀, 𝑅, 𝑇)

𝜎𝑙𝑛 𝑆𝑎(𝑇)
 (2-11) 

Figure 2-4 shows average response spectra for different ε values. 

 

Figure 2-4. Average response spectra for different ε values 

 

It is noted that ε is an indicator of the spectral shape as it shows whether an Sa at a 

specified period is in a peak or a valley of the spectrum (Baker and Cornell, 2006). Figure 

2-5 demonstrates typical normalized average response spectra for various ε at a period of 

0.4 sec. 

 

Figure 2-5. Normalized average response spectra for various ε at a period of 0.4 sec 

 

Baker and Cornell (2005) demonstrate the significant influence of ε on structural 
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responses and use ε as a component of a vector valued ground motion IM to present 

structural fragility curves. Baker and Cornell (2006) suggest the application of ε in ground 

motion record selection. Chandramohan et. al. (2013) use ε as an indicator of spectral 

shape and demonstrate the high influence of ε on the overall seismic risk of collapse of 

structures. 

It has been demonstrated that the selection of the records with similar ε(T1) (the value of 

epsilon at the first natural period of structure) to the mean ε values obtained from the 

seismic hazard deaggregation results in more realistic predictions in comparison with the 

MR-based approach. 

 

2.4.3 UNIFORM HAZARD SPECTRUM (UHS) BASED APPROACH 

The Uniform Hazard Spectrum (UHS) has been traditionally used as a target spectrum to 

determine an appropriate set of ground motions which are representative of the site 

seismicity. In this method, scaled natural records are matched and compared to a target 

UHS over a range of periods. This range should include the important modes of the 

structure and consider the period elongation due to inelastic deformation of the structure. 

A period range from 0.2 to 2 times the first period of the structure is recommended for 

this purpose. 

However, UHS is not the best target spectrum for this purpose because traditional 

probabilistic seismic hazard analysis ignores the joint probability of exceedance of 

spectral ordinates at different periods. In other words, UHS conservatively considers the 

Spectral Accelerations (Sa) with low probability of occurrence at all periods. However, 

it is unlikely to find a single ground motion record with Sa higher than median over a 

wide range of periods. In order to solve this problem, Baker and Cornell (2006) 

introduced the “Conditional Mean Spectrum” (CMS) as a suitable alternative for the 

target spectrum. 

 

2.4.4 CMS BASED APPROACH 

The main purpose of introducing CMS is to provide the expected response spectrum, 

conditioned on occurrence of a target spectral acceleration value at the period of interest 
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(e.g. at the first natural period of the structure). CMS based approach takes into account 

the influence of all three main parameters of M, R and ε in record selection. CMS is 

defined by the conditional mean and standard deviation of spectral ordinates which are 

obtained using deaggregation of the seismic hazard function and GMPE models which 

are based on the observations of correlations between spectral ordinates (Baker and 

Jayaram 2008).  

After CMS is developed as a target spectral shape for a given M, R and ε, the records 

which have similar spectral shape over a range of target period (0.2T1 to 2T1 in this study) 

will be selected regardless of their actual M, R and ε (Baker and Cornell, 2006). 

The main steps for CMS based ground motion selection as proposed by Baker (2011) can 

be summarized as follows: 

1) Determine the target Sa(T1) and corresponding M,R and ε 

The mean value of M and R of earthquakes are determined by deaggregation of the 

seismic hazard. Seismic hazard deaggregation of Montreal is investigated by Halchuk et. 

al. (2007) and the results are adapted in this study. 

2) Determine the mean value and standard deviation of the response spectrum, given M 

and R 

µln Sa(M,R,T) and σln Sa(T) are obtained from available GMPE. GMPE proposed by 

Atkinson and Boore (2006) and Boore and Atkinson (2008) are adapted for eastern 

Canada and used in this study. Soil characteristics at the location of interest are 

determined based on the seismic microzonation map developed by Chouinard et al. 

(2011) and are verified by empirical equations offered by CALTRAN (2009) which 

estimate the soil characteristics based on the result of SPT tests. 

3) Estimate ε for all the periods 

ε(T1)  can be obtained from seismic hazard deaggregation only if the target Sa(T1) is 

selected from PSHA. In case that Sa(T1) is chosen otherwise (e.g. based on UHS offered 

by codes),  ε(T1) should be calculated based on equation (2-11). The ε at other periods 

are estimated by multiplying the ε(T1) in the inter- period correlation factor as shown in 

equation (2-12). 
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 𝜇𝜀(𝑇𝑖|𝑇1) = 𝜌(𝑇𝑖, 𝑇1). 𝜀(𝑇1) (2-12) 

in which µε(Ti|T1) represents ε(Ti) given ε(T1) and 𝜌(𝑇𝑖, 𝑇1) is the inter-period correlation 

of spectral accelerations at vibration periods Ti and T1 and is proposed by Baker and 

Cornell (2006) as shown in equation (2-13). 

𝜌(𝑇𝑀𝑖𝑛, 𝑇𝑀𝑎𝑥) = 1 − cos (
𝜋

2
− (0.359 + 0.163𝐼𝑇𝑀𝑖𝑛<0.189. ln (

𝑇𝑀𝑖𝑛

0.189
) . 𝑙𝑛

𝑇𝑀𝑎𝑥

𝑇𝑀𝑖𝑛
) (2-13) 

in which TMin and TMax denote for the smallest and the largest of the two periods of interest 

and ITmin<0.189 is an indicator function which is equal to 1 if TMin is less than 0.189 sec and 

equal to 0 otherwise. 

4) Determine CMS 

CMS is implemented by using equation (2-14). (Baker, 2011) 

 𝜇𝑙𝑛𝑆𝑎(𝑇𝑖)|𝑙𝑛𝑆𝑎(𝑇1) = 𝜇𝑙𝑛𝑆𝑎
(�̅�, �̅�, 𝑇𝑖) + 𝜌(𝑇𝑖, 𝑇1)𝜀(̅𝑇1)𝜎𝑙𝑛𝑆𝑎

(𝑇𝑖) (2-14) 

where  𝜇𝑙𝑛𝑆𝑎
(�̅�, �̅�, 𝑇𝑖) and 𝜎𝑙𝑛𝑆𝑎

(𝑇𝑖) are the mean and standard deviation of the natural 

logarithm of  Sa at the first period of the structure and �̅�, �̅�, and �̅�(𝑇1) are the mean 

magnitude, mean distance and mean value of epsilon at the considered period T1 

respectively. 

5) Ground motion selection 

Once the CMS is developed, it can be used as the target spectrum to select the set of 

ground motions for dynamic analysis. For this purpose, a period range from 0.2 to 2 times 

the first period of the structure is considered to match the CMS. All the ground motion 

records of the available database are scaled so that their Sa at the first period of the 

structure (Sa(T1)) matches the target spectral acceleration from the CMS. Then the Sum 

of Squared Errors (SSE) is calculated for each ground motion record based on equation 

(2-15) and the records with the lowest SSE are selected as representative earthquakes for 

dynamic analysis. (Baker, 2011) 

 
𝑆𝑆𝐸 = ∑(ln 𝑆𝑎(𝑇𝑗) − ln 𝑆𝑎𝐶𝑀𝑆(𝑇𝑗))2

𝑛

𝑗=1

 (2-15) 
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where lnSa(Tj) is the natural logarithm of Sa of the ground motion at period Tj and 

lnSaCMS(Tj) is the natural logarithm of CMS value at period Tj. In this study, the PEER-

NGA database which offers 3541 ground motion records from 175 earthquakes is used 

for record selection. In addition, ground motion record set suggested by ATC-63, and 

some artificial ground motion record sets suggested by Atkinson and Beresnev (1998) 

which are compatible with the UHS of Montreal are also used in this study. 

 

2.5 IDA METHOD 

2.5.1 INTRODUCTION 

The increasing processing power of computers makes it possible to make more detailed 

and realistic computer models and perform more complex and accurate structural 

analyses. The Incremental Dynamic Analysis (IDA) method which was proposed by 

Vamvatsikos and Cornell (2002) has become a widely used method in seismic 

performance prediction of structures. This method has been adapted by some codes and 

guidelines such as ATC-63 (ATC-63, 2008) in order to estimate the collapse capacity and 

develop fragility curves of structures. Many researchers have adapted this method in 

performance and reliability assessment of highway bridges. Mander et. al. (2007) applied 

IDA in seismic financial risk assessment of bridges; Tehrani and Mitchell (2013) used 

IDA in order to investigate the influence of different earthquake types on the structural 

responses of a typical highway bridge; Mackie and Stojadinovic (2004) applied the IDA 

method in developing component probabilistic seismic demands and fragility assessment 

of reinforced concrete highway bridges. 

The IDA method involves performing nonlinear dynamic analyses of a structural system 

under a single or a set of ground motion records, each scaled to several Intensity Measure 

(IM) levels designed to force the structure all the way from elastic response to final global 

dynamic instability (collapse). 

According to Vamvatsikos and Cornell (2002), performing numerous nonlinear dynamic 

analyses of the structure in the IDA framework has several benefits for a better 

understanding of the structural behaviour under seismic events and for the reliability 

assessment of structures; 
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- IDA presents the seismic demands over a wide range of Intensity Measure (IM) levels 

including rare and severe ground motions which cause the structure to undergo ultimate 

performance levels such as collapse. 

- IDA analysis estimates the seismic demand on each structural component at any 

intensity level which can be conveniently used in component based structural reliability 

and fragility assessments. 

- IDA method takes into account the effect of inherent randomness in seismic inputs 

(record-to-record variability), which is a significant source of aleatory uncertainty in 

seismic evaluation of structures, on structural responses by using the set of ground motion 

records. Dolsek (2009) investigated and quantified the aleatory and epistemic 

uncertainties involved in an IDA of a typical building. He demonstrated that the record-

to-record randomness is the most important source of uncertainty in IDA. However, 

epistemic uncertainties may also have significant influence on collapse capacity despite 

their inconsiderable effect in the range far from collapse. 

 

2.5.2 INTENSITY MEASURE (IM) AND ENGINEERING DEMAND PARAMETER 

(EDP) SELECTION 

The input of IDA is the structural model and the set of ground motion records and the 

output is the structural demands, also known as Engineering Demand Parameter (EDP), 

at various Intensity Measure (IM) levels. The uncertainty involved in IDA results is 

highly dependent on the selected ground motion set (as discussed in section 2-4) and 

selected EDP and IM pair. 

IM is a nonnegative scalar which is a function of the unscaled ground motion 

accelerogram and can be monotonically scaled. The intensity level is the multiplication 

product of the scale factor in the unscaled scalar value (Vamvatsikos and Cornell, 2002). 

Based on this definition, many quantities which are normally used to demonstrate the 

earthquake intensities such as moment magnitude, duration, or Modified Mercalli 

Intensity are not applicable in IDA. Peak Ground Acceleration (PGA) and Spectral 

Acceleration (Sa) at the first period of the structure are the most popular choices of IM in 
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the literature (Nielson, 2005). 

EDP is a scalar quantity which represents the response of a structure subjected to a 

seismic event. EDP may correspond to global behaviour of the structure such as 

interstorey drift or correspond to component responses such as shear force or component 

ductility demands. Many EDPs have been suggested and implemented in IDA depending 

on the objective of the analysis. In this study, curvature ductility, axial force and shear 

force of components are considered as EDPs to account for various failure scenarios in 

each structural element. 

Mackie and Stojadinovic (2003) investigated the efficiency of various IM-EDP pairs and 

demonstrated that there may not be a single choice which is appropriate for all cases. 

However, they suggested that out of 23 studied potential IMs, Sa at the first period of the 

structure tends to be the most efficient IM for highway bridges. 

Padgett et. al. (2007) performed a thorough study on optimal IM selection in Probabilistic 

Seismic Demand Models (PSDM) and suggested efficiency, practicality, sufficiency, and 

hazard computability as main criteria for proper IM selection.  

2.5.2.1 EFFICIENCY  

The efficiency of IMs are measured based on a dispersion parameter obtained from 

regression analysis between the natural logarithm of IM and the natural logarithm of EDP. 

More efficient IMs reduce the uncertainty and variation in the estimated EDP for a given 

IM value (Giovenale et. al., 2004). It has been suggested by Cornell et. al. (2002) that the 

estimate of the median demand (EDP̂) can be represented by a power model as shown in 

equation (2-16). 

 EDP̂ = a. IMb (2-16) 

Where a and b are regression coefficients. Given the IM, the demand is assumed to be 

lognormally distributed with a logarithmic standard deviation βEDP|IM. Therefore, the 

logarithm of the demand is normally distributed. Equation 2-13 can be rewritten as 

equation (2-17) 
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 𝐿𝑛(𝐸�̂�𝑃) =  𝐿𝑛(𝑎) +  𝑏. 𝐿𝑛(𝐼𝑀) (2-17) 

The variation about the median (βEDP|IM) is the measure of effectiveness of the selected 

IM to estimate the seismic demand. Figure 2-6 compares the efficiency of Sa and PGA 

for IDA of a typical highway bridge pier. 

  

Figure 2-6. Comparison of PGA and Sa as candidate IM 

 

It is noted that in figure 2-6, the variability (βEDP|IM) for Sa is less than for PGA, in 

consequence, Sa is the more efficient choice in this case. 

 

2.5.2.2 PRACTICALITY 

Practicality of IMs is measured based on the correlation between the natural logarithm of 

the EDP and the natural logarithm of the IM. Hence the parameter b (the slope of the 

regression line) in equation (2-17) is a measure for practicality of IMs. Larger value of b 

for the IM of interest demonstrates higher dependency between studied IM and EDP and 

demonstrates the high practicality of the IM of interest. If this parameter approaches zero, 

the IM contribution in EDP is negligible and the IM is not practical.  It is noted that in 

figure 2-6 the slope of the regression line for Sa is higher. So, Sa is the more practical IM 

in that case. 

 

2.5.2.3 SUFFICIENCY 

An IM is deemed sufficient if EDP at a given intensity level is independent of basic 

earthquake characteristic such as magnitude (M) and distance (R). If an insufficient IM 

is used in IDA, the traditional application of total probability theorem for Probabilistic 
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Seismic Demand Analysis (PSDA) will be invalid. In other words, equation (2-18) will 

not be applicable since exceedance probability should be evaluated as P(D>d|IM,M,R) 

(Padgett et. al., 2007). 

 
𝜆(𝐷) = ∫ 𝑃(𝐷 ≥ 𝑑|𝐼𝑀). 𝑑𝜆(𝐼𝑀)

𝐼𝑀

 (2-18) 

In equation 2-18, λ(D) is the mean annual frequency of exceeding a level of demand and 

λ(IM) represents the mean annual frequency of exceeding each value of IM. 

Sufficiency of IM can be investigated by a classic hypothesis test. If there is a significant 

correlation between the residuals of the regression in equation (2-17) and basic ground 

motion characteristics such as M or R, the studied IM is insufficient. 

 

2.5.2.4 HAZARD COMPUTABILITY 

In order to estimate the reliability of a structure and applicability of equation (2-18), the 

hazard or occurrence probability of the selected IM should be known for various intensity 

levels. Hazard curves for Sa and PGA are already available. However, application of other 

IMs requires additional effort to develop hazard functions. 

In addition, Baker and Cornell (2005) studied vector- valued ground motion IMs and 

demonstrated the possibility of achieving higher efficiency by application of vector- 

valued IMs. They suggested the Sa-ε vector as a proper candidate for IM in PSDAs. 

The results obtained by IDA are often presented in IDA curves which demonstrate the 

EDP at different intensities for the selected records. Figure 2-7 presents two typical IDA 

results for structural components. IDA curves may indicate softening, mild or severe 

hardening or weaving behaviour (Vamvatsikos and Cornell, 2002). 
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(a) Softening behaviour (b) Weaving behaviour 

Figure 2-7. Typical IDA results accompanied by median and 16 and 84 percentile 

responses for cases presenting a) softening and b) Weaving behaviour 

 

IDA curves usually start with a linear section which ends when the first nonlinearity 

occurs in the structure. Any nonlinearity in structural behaviour changes the slope of 

IDA curve. After the linear section, the IDA curve may present softening, which 

indicates acceleration in demands or damages in structural components, or hardening 

which demonstrate deceleration of demands. This deceleration can be powerful enough 

to briefly stop the EDP accumulation or even reverse it. Weaving behavior occurs when 

the structure experiences alternating softening and hardening behavior which makes the 

IDA curve a non-monotonic function. 

As it is evident in figure 2-7, the IDA results may present high variability due to the 

record-to-record uncertainty. Hence, in order to summarize the results, Vamvatsikos 

and Cornell (2002) proposed to use certain percentiles of the obtained results. Based on 

the lognormal assumption for the structural behavior, 16, 50 and 84 percentiles can be 

used which correspond to the median and median times e±dispersion. As it is inferred from 

figure 2-7, the percentile IDA curves are smoother than the results of individual records 

and can represent the structural behavior more properly. 

 

2.6 FRAGILITY CURVES 

2.6.1 INTRODUCTION 

Uncertainties involved in determining the structural demands during earthquakes and in 

evaluating the capacity of structural components under cyclic loads are important inputs 
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of probabilistic methods to quantitatively assess the reliability of structures. The seismic 

reliability of a structure can be evaluated by combining seismic hazards at the location of 

the structure and the fragility function of the structure. Fragility curves represent the state-

of-the-art in seismic risk assessment (SRA) and are defined as the conditional probability 

that a structure will meet or exceed a certain level of damage for a given ground motion 

intensity. Equation (2-19) presents the fragility definition 

 PF  = P[LS |IM = y] (2-19) 

where LS is the limit state or damage level of the bridge or bridge component, IM is the 

ground motion intensity measure and y is the realization of the chosen ground motion 

intensity measure. 

Figure 2-8 presents a typical structural fragility curve. 

 

Figure 2-8. A typical fragility curve 

 

Fragility curves can be developed for structural components as well as for the structure 

as a whole system. Component fragility curves are useful tools to identify weak parts of 

the structure while system fragility curves are used in seismic risk assessment of the 

structure. 

 

2.6.2 FRAGILITY ANALYSIS APPROACHES 

Fragility analysis was first introduced in the seismic evaluation of nuclear facility 

vulnerabilities in the late 1970s and early 1980s and since then has expanded into other 

areas of structural engineering. Fragility analysis are classified into three major 
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categories; i) Expert based fragility curves, ii) Empirical fragility curves, and iii) 

Analytical fragility curves. 

In the 1980s and early 1990s, fragility curves for various types of structures were 

developed by a prescriptive approach and based on expert opinion due to the lack of 

required seismic data. 

For instance, Applied Technology Council (ATC) used some questionnaires filled by 

experts in order to develop expert based fragility curves in ATC-13 and ATC- 25 (ATC, 

1991). The resulted fragility curves were highly subjective and biased because of the 

limited number of experts and limited types of bridges considered in the questionnaires. 

Empirical fragility curves were widely used after the 1989 Loma Prieta, 1994 Northridge 

and 1995 Kobe earthquakes due to the availability of actual ground motions and bridge 

damage data. Basoz and Kiremidjian (1997) and Basoz et. al. (1999) used logistic 

regression analysis, Shinozuka et. al. (2000a) applied the maximum likelihood method 

and Der Kiureghian (2002) utilized a Bayesian approach and the Likelihood function to 

develop empirical fragility curves based on the data obtained from the bridges which were 

damaged during the Northridge and Kobe earthquakes. Empirical fragilities also have 

high uncertainties because of the limited number of each bridge classes in a specific area 

and their reliance on experts to determine the ground motion intensity at the bridge site 

and to assign the damage level to each bridge. (Basoz and Kiremidjian, 1997) 

Following the progress in computer modeling and availability of detailed computer 

models and complex analysis methods, analytical fragility curves became increasingly 

popular. There have been numerous researchers who developed analytical fragility curves 

for highway bridges. The fragility analysis generally includes the following major parts; 

- Simulation of bridge structure considering the uncertainty in its properties 

- Performing a set of model analyses in order to obtain structural demands (EDP) at 

various ground motion intensities 

- Evaluate the capacities or limit states of the structure or structural components 

- A procedure to develop fragility curves from the response of the bridge model under 

considered seismic loads. 

The most popular analytical method is nonlinear time history analysis (Hwang et. al., 
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2000b; Shinozuka et. al., 2000a). However, simplified analysis methods such as elastic 

spectral analysis (Hwang et. al., 2000a) and nonlinear static analysis (Mander and Basoz, 

1999, Shinozuka et. al., 2000b, Hwang et. al. 2000b and Rossetto and Elnashai, 2004) 

have also been used. 

Regarding the procedures to develop analytical fragility curves for structural systems, the 

methods which have been proposed in the literature can be divided into two different 

approaches: System-Based Fragility and Component-Based-Fragility. 

 

2.6.2.1 SYSTEM-BASED FRAGILITY 

In this approach, fragility curves are developed directly from structural analysis data. 

Hwang and Huo (1998) performed a time history analysis on a bridge structure and used 

a Bernoulli random variable with 0 and 1 outcomes to show whether or not the bridge 

sustains the defined damage-state at each level of the ground motion Intensity Measure 

(IM). They estimated the probability of failure based on the number of zeros and ones at 

each IM value and fitted a logistic probability distribution to present the fragility curve 

of the structural system. Shinozuka (1998) also considered the event of bridge damage as 

a realization from a Bernoulli experiment. However, he applied the maximum likelihood 

method to fit a lognormal distribution. This approach doesn’t directly account for 

uncertainties in component capacities. 

 

Figure 2-9. Fragility curve and the sample cumulative distribution (stepped curve) 

 

Figure 2-9 presents a system fragility curve fitted to the sample cumulative distribution 
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points obtained from the analysis of a typical structure. 

The main steps in a system-based fragility analysis are as follows: 

- Simulation of the bridge structure with median properties 

- Evaluation of the median capacities or limit states of the structure or structural 

components 

- Performing a set of model analysis (a set of ground motion records with various scaled 

or unscaled intensities) in order to obtain structural demands (EDP) at various ground 

motion intensities 

- For every analyzed point, determining if there is any failures in the structure. 

- Calculation of the sample cumulative distribution of failure at various ground motion 

intensities 

- developing the system fragility curve by fitting a cumulative distribution function to the 

obtained sample cumulative distribution.  

Wen et. al. (2003) demonstrated that the lognormal distribution is a good fit for the 

fragility curve and is convenient for calculations using conventional probability theory. 

In order to consider the uncertainties in modeling and capacities, one can either simulate 

N nominally identical but statistically different bridge samples and component capacities 

and pair them with corresponding EDPs in fragility analysis or follow the mentioned steps 

for median model and capacity variables and apply the total uncertainty to the obtained 

median value of the fragility curve based on equation (2-20). 

 
𝛽𝑇𝑜𝑡 = √𝛽𝐹

2 + 𝛽𝐶
2 + 𝛽𝑀

2
 (2-20) 

in which βTot represent combined logarithmic standard deviations of the fragility curve, 

βF is the logarithmic standard deviation of the fitted cumulative distribution and βC and 

βM are logarithmic standard deviations corresponding to uncertainties in capacities and 

modeling respectively. 

ATC63 proposes the same methodology for developing fragility curves for the design of 

seismic-force-resisting systems in new building structures. This methodology is 
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conceptually applicable to the design of any type of new structure, and to the retrofit of 

seismic-force-resisting systems in existing structures. ATC63 suggests a set of ground 

motion records for performing an IDA on the structure with median properties and 

determines the minimum ground motion intensity at which the structure sustains the 

specified damage-state under half of the scaled ground motion records. Finally, the 

methodology applies the total uncertainty of the system due to record-to-record, modeling 

and test data related uncertainties by multiplying the median response in a lognormal 

random variable with a median of 1 and representing the same uncertainty. 

 

2.6.2.2 COMPONENT-BASED FRAGILITY: 

The second approach is called component-based method in which a probabilistic model 

of the seismic demands are obtained at each ground motion intensity and the fragility 

curve for each structural component is developed by comparing the distributions of 

demands and capacities at various IM levels as shown in equation (2-21). Hwang et. al. 

(2000), Bignell et. al. (2004) and Choi et. al. (2004) followed this approach. 

𝑃𝐹  =  𝑃[𝐿𝑆 |𝐼𝑀 =  𝑦] = 𝑃[𝐷 𝐶⁄ ≥ 1|𝐼𝑀 =  𝑦] 

or 𝑃[𝐶 − 𝐷 ≤ 0|𝐼𝑀 =  𝑦] 
(2-21) 

The probabilistic seismic demands can be obtained based on the peak structural responses 

at any given ground motion intensity as shown in figure 2-10.  

 

Figure 2-10. Probabilistic Seismic Demand Model (PSDM) (Nielson, 2005) 
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Regression analysis or parameter estimation techniques like maximum likelihood method 

can be used in order to obtain Probabilistic Seismic Demand Models (PSDM). Shinozuka 

et. al. (2003) used the Maximum Likelihood Method (MLE) to model the column 

responses at the chosen earthquake intensities.  

The main steps in a typical probabilistic component fragility analysis are as follows: 

- Simulation of bridge structure with median properties 

- Determining the distribution of the component capacities or limit states 

- Performing a set of model analysis (for a set of ground motion records with various 

scaled or unscaled intensities) in order to obtain structural demands (EDP) at various 

ground motion intensities 

- Calculating the fragility of the structural component by comparing the distributions of 

EDP and corresponding capacity as shown in equation (2-21). 

According to Kottegoda and Rosso (1997), when the structural capacity and demand 

roughly fit a normal or lognormal distribution, it can be said that the composite 

performance will be lognormally distributed. Assuming lognormal distributions for 

component demand and capacity, component fragility curve can be calculated from 

equation (2-22). 

 
𝑃 [

𝐷

𝐶
≥ 1 | 𝐼𝑀] =  𝛷(

𝐿𝑛(𝐸�̂�𝑃 𝑆𝑐)⁄

√𝛽𝐸𝐷𝑃|𝐼𝑀
2 +  𝛽𝑐

2

) 
(2-22) 

in which 𝐸𝐷�̂� is the median of demand at the given IM, Sc is the median of capacity for 

the selected limit state, 𝛽𝐸𝐷𝑃|𝐼𝑀 is the logarithmic standard deviations of the component 

demand and 𝛽𝑐 is the logarithmic standard deviation of the limit state (capacity). 

Component fragility curves are very useful tools to identify weak parts of the structure 

and to guide the efficient allocation of funds to strengthen or retrofit an existing structure. 

However, the system fragility curve is required in reliability assessment of structures. In 

order to obtain system fragility curves based on component responses, Nielson and 
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DesRoches (2006) introduced a component level approach. 

In this approach, a Joint Probabilistic Seismic Demand Model (JPSDM) of natural 

logarithm of the component demands is determined at each ground motion intensity. 

Then, based on the obtained JPSDMs, component demands and corresponding capacities 

are simulated using MCS. Finally, the fragility or the conditional probability of failure at 

a given intensity is the probability of having at least one failure in the simulated system.  

In order to develop the JPSDM, median, standard deviation and correlations of logarithm 

of component EDPs are required. Median of logarithm of EDPs and logarithmic standard 

deviations are obtained by performing a regression analysis on IDA results of each 

component as explained earlier and shown in equation (2-17) and figure 2-10. 

Correlations are calculated at each Sa using IDA results which provide a set of demands 

for each component at each Sa. It is noted that the correlation between logarithm of 

component EDPs depends on Sa and vary for different levels of damage. 

It is noted that the fragility curves developed by this method have lognormal distributions. 

Tavares et. al. (2010) followed this approach to develop fragility curves for multi-span 

simply supported concrete highway bridges in Quebec. 

Song and Kang (2009) have introduced a Matrix-based System Reliability (MSR) which 

considers the correlations between components by introducing common source random 

variables using Dunnett–Sobel correlation coefficient matrix. This method enables the 

designer to consider different scenarios of failure and progressive collapse in the system. 

However, fragility analysis of structures comprising a large number of components by this 

method requires enormous computational effort. Hence, in this study, the approach 

proposed by Nielson and DesRoches (2006) is adapted. 

An advantage of the component-based approach in fragility analysis is that it provides the 

required information in order to quantify the contribution of each component in the failure 

of the system. 

 

2.6.3 COMPONENT IMPORTANCE MEASURE 

In order to compare the importance of a specific component and its contribution in the 
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failure of the system, the component and system fragility curves can be visually 

compared. Figure 2-11 provides an example of component versus system fragility 

comparison. 

 

Figure 2-11. Visual comparison of system fragility versus component fragility curves 

 

However, in order to quantify the contribution of each component in system failure, 

several methods have been proposed in the literature. Kuo and Zhu (2012a, 2012b) 

performed a thorough study on available component importance measures and their 

probabilistic perspectives, merits and applicability. 

In this study, the Bayesian Reliability Importance Measure is applied to identify the most 

critical components. Birnbaum (1969) defined the Bayesian Reliability Importance of a 

component as the probability of failure of that component given the failure of the system. 

Equation (2-23) demonstrates this definition mathematically. 

 
𝐶𝐼𝑀𝑖 = 𝑃(𝑓𝑖|𝑓𝑠𝑦𝑠) =  

𝑃(𝑓𝑖 ∩ 𝑓𝑠𝑦𝑠)

𝑃(𝑓𝑠𝑦𝑠)
 

(2-23) 

where 𝐶𝐼𝑀𝑖 represents the importance of component i, 𝑓𝑖 denotes the event of failure in 

component i and 𝑓𝑠𝑦𝑠 represents the event of system failure. 

 

2.7 SVM LEARNING 

2.7.1 INTRODUCTION 

The implicit nature of the limit state function is one of the main challenges in developing 
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seismic fragility curves for complex structures as it requires determining the  conditional 

probability that the  structure exceeds a critical state for any given intensity measure.  

Practically, many algorithms used for explicit performance function reliability evaluation 

cannot be adapted to deal with implicit performance functions. For example, it is difficult 

to implement gradient based methods such as First Order and Second Order Reliability 

Methods (FORM/SORM) for the implicit limit state function since they need to calculate 

the gradient of the performance function. Moreover, it is not feasible to directly use 

simulation based methods due to their vast computational effort of the implicit 

performance function call which is usually based on Finite Element Method (FEM). 

In order to alleviate these difficulties, regression methods such as Response Surface 

Method (RSM) have been successfully applied in many engineering cases (Hurtado, 

2004, Bucher and Bourgund, 1990, Rajashekhar and Ellingwood, 1993, Unnikrishnan et. 

al., 2013). These methods which are based on empirical risk minimization (ERM) 

inductive principle, aim at finding a substitute explicit function for the implicit 

performance function by fitting it through planned or random samples. Unfortunately, the 

inflexible nature of response surface function selection under ERM principle severely 

influences the application range of these methods. (Guan and Melchers, 2001, Hurtado, 

2004). 

In order to discover patterns in highly dimensional and complex data such as the 

relationship between ground motion intensities and peak structural responses, Machine 

Learning and Soft Computing methods such as Support Vector Machines (SVM) can be 

used. SVM introduced by Vapnik (1995) is an increasingly popular machine learning 

technique which has widespread applications in classification, regression and density 

estimation. It is based on structural risk minimization (SRM) inductive principle and aim 

at minimizing an upper bound of the generalization error (Vapnik, 1995, Cortes and 

Vapnik, 1995). 

The application of SVM in the reliability analysis was first introduced by Rocco and 

Moreno (2002). Jack and Nandi (2002) and Widodo and Yang (2007) proposed the 

application of SVM classification for machine condition monitoring and fault diagnosis. 
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Ge et. al. (2004) compared the efficiency of NN and SVM methods in fault detection in 

a manufacturing process and demonstrated the superiority of SVM classification method. 

Hong-Shuang et. al. (2006) proposed SVM based MCS and SVM based FORM analyses 

for reliability assessment of simple structures. Hurtado and Alvarez (2003) adopted SVM 

in conjunction with stochastic finite element for performing structural reliability analysis. 

Zhiwei and Guangchen (2009) introduced the application of least squares support vector 

machine for regression (LSSVR) into reliability analysis of engineering structures. 

 

2.7.2 LINEAR BINARY SVM CLASSIFICATION FOR SEPARABLE AND NON-

SEPARABLE DATA 

Consider a set of training data (x1,y1),(x2,y2),...,(xn,yn) where xi ∈ Rn is the training data 

and yi ∈ {+1,-1} is the class label for xi. Our goal is to find the optimal hyper plane that 

separates one class from the other correctly and follows the form of 

 𝑓(𝑤, 𝑥) = 𝑤. 𝑥 + 𝑏 = 0 (2-24) 

Where (.) means inner product of two vectors. 

 For this purpose SVM implements a margin-based loss function  such that most of the 

training data can be separated perfectly (with zero empirical loss) and the rest of the 

training data falls within the margin and can only be explained with some uncertainty 

(non-zero loss). The concept of margin based loss function is indicated in figure 2-12. 

The best decision boundary achieves the optimal balance between two conflicting goals 

of predictive learning (Cherkassky and Mulier, 2007): 

1. Minimizing the total empirical loss for the samples that lie within the margin. 

2. Achieving maximum separation (margin) between training samples that are perfectly 

classified by the model. 
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Figure 2-12. Margin based loss function for SVM classification 

 

In the case of linearly separable samples, the optimal hyperplane is the one which 

maximizes the distance between the hyperplane and the nearest sample points to it of each 

class. This problem can be formulated as minimization of the following function: 

𝑀𝑖𝑛(
1

2
w𝑇 . w) 𝑠. 𝑡.  𝑦𝑖(w. x𝑖 + 𝑏) ≥ 1 (2-25) 

where w is the weight vector which defines the boundary and is in the general form of 

equation (2-26) in which 𝛼𝑖 are the parameters of the hyperplane. 

 
w = ∑ 𝛼𝑖𝑦𝑖𝑥𝑖

𝑛

𝑖=1

    , 𝛼𝑖 ≥ 0 (2-26) 

The data points for which equation (2-25) is an equality are called the support vectors. 

Conceptually these are the samples that define the location of the decision surface and 

are most difficult to classify. An example of the optimal hyper-plane of two linearly 

separable data sets is presented in figure 2-13. 
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Figure 2-13. Linearly separable SVM classification 

 

 Finding the optimal hyperplane for separable data points is a quadratic optimization 

problem with linear constraints. It is noted that for very high dimensional spaces the 

problem should be translated into its dual form which is finding parameters 𝛼𝑖 that 

maximize the functional 

𝐿(𝛼) = ∑ 𝛼𝑖

𝑛

𝑖=1

− 1/2 ∑ 𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗(x𝑖. x𝑗)

𝑛

𝑖,𝑗=1

 𝑠. 𝑡.  ∑ 𝑦𝑖𝛼𝑖 = 0,       𝛼𝑖 ≥ 0

𝑛

𝑖=1

 (2-27) 

The optimal hyperplane is then given by equation (2-28). 

 
𝑓(𝑥) = ∑ 𝛼𝑖𝑦𝑖(x . x𝑖) + 𝑏

𝑛

𝑖=1

 (2-28) 

where b is given by equation (2-29). 

 
𝑏 = 𝑦𝑠 − ∑ 𝛼𝑖𝑦𝑖(x𝑖 . x𝑠)

𝑛

𝑖=1

 (2-29) 

To construct the optimal hyperplane in the case that the samples are linearly non-

separable, slack variables are introduced as shown in equation (2-30) to allow miss-

classification of difficult or noisy data points (Vapnik, 1995). 
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𝑀𝑖𝑛(
1

2
w𝑇 . w + 𝐶 ∑ 𝜉𝑖

𝑛

𝑖=1

) 𝑠. 𝑡.  𝑦𝑖(w. xi + 𝑏) + 𝜉𝑖 − 1 ≥ 0    ,      𝜉𝑖 ≥ 0 (2-30) 

where 𝜉𝑖 = max (1 − 𝑦𝑖𝑓(𝑥𝑖 , 𝑤), 0) and C is a user selected parameter that controls the 

trade-off between complexity and proportion of non-separable samples. The dual form of 

this quadratic optimization problem is to find the parameters 𝛼𝑖 that maximize the 

following functional (Vapnik, 1995). 

𝐿(𝛼) = ∑ 𝛼𝑖

𝑛

𝑖=1

− 1/2 ∑ 𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗(x𝑖. x𝑗)

𝑛

𝑖,𝑗=1

 𝑠. 𝑡.  ∑ 𝑦𝑖𝛼𝑖 = 0, 0 ≤ 𝛼𝑖 ≤ 𝐶

𝑛

𝑖=1

 (2-31) 

Figure 2-14 shows the optimal hyper-plane of two non-separable data sets. 

 

 

Figure 2-14. Non-separable SVM classification 

 

2.7.3 NONLINEAR SVM CLASSIFICATION 

In case of non-linearly separable data points, the input vectors are mapped into a high 

dimensional feature space using the nonlinear transform x → Φ(x). The optimal 

hyperplanes in the feature space will then result in nonlinear decision boundaries in the 

input space. Building the optimal hyperplanes in the feature space only involves 

calculating the inner product of two vectors in this space. For this purpose, Kernel 

functions are used as shown in equation (2-32). 
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 (𝑧𝑖. 𝑧𝑗) = (𝛷(𝑥𝑖). 𝛷(𝑥𝑗)) = 𝐾(𝑥𝑖, 𝑥𝑗) (2-32) 

where 𝑧𝑖  and 𝑧𝑗 are two vectors in the feature space Z and 𝐾(𝑥𝑖, 𝑥𝑗) is the Kernel function 

of two variables in the input sapce. The selection of the type of kernel function 

corresponds to the selection of the class of functions used for feature construction. Table 

2-1 presents some commonly used functions for learning machines that are considered in 

this study. 

Table 2-1. Formulation of Kernel Functions 

Kernel Function K(x,xj) 

Linear 𝑥𝑇 . 𝑥𝑗  

Polynomial (𝛾𝑥𝑇 . 𝑥𝑗 + 𝑟)𝑑 , 𝛾 > 0 

Gaussian RBF 
exp (− ||𝑥 − 𝑥𝑗||

2

/2𝛾2) 

 

After the kernel function is selected, the optimal hyperplane is a nonlinear function in the 

input space, which is equivalent to the linear function in feature space for the nonlinear 

separable training data and is formulated as equation (2-33). 

 
𝑓(𝑥) = ∑ 𝛼𝑖𝑦𝑖𝐾(x . x𝑖) + 𝑏

𝑛

𝑖=1

 (2-33) 

 

2.7.4 SVM MODEL SELECTION 

The quality of the SVM models depends on the proper tuning of SVM parameters such 

as the appropriate kernel function, kernel parameter (γ) and penalty parameter (C). The 

performance of a SVM classifier is usually measured in terms of its prediction error. 

Therefore, the problem of model selection includes selecting the parameters that form the 

model with lowest prediction error. However, the prediction error cannot be exactly 

calculated for most real world problems, and its estimation is required. For this purpose, 

resampling techniques can be used as they make no assumptions on the statistics of the 

data or on the type of the function being estimated (Cherkassky and Mulier, 2007). The 

basic idea is to learn a model using a portion of the available samples and then use the 
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remaining samples to estimate the prediction error of this model. A comparison of 

different resampling methods can be found in a study by Molinaro et. al (2005). It 

concludes that 10 fold cross validation generally performs well and is preferred especially 

for computationally burdensome analyses. Moreover, Rodrıguez et. al (2010) studied the 

statistical properties such as bias and variance of the k-fold cross-validation and 

recommended to use a 10-fold cross validation technique for estimating the error because 

of its small bias.  

In this study optimal parameters of the SVM model are selected using grid search in 

combination with 10-fold cross validation (Chang and Lin, 2001). It is noted that the 

minimum value of prediction risk found for model selection tends to be optimistic. In 

order to obtain an unbiased prediction error a double resampling technique is required 

(Friedman, 1994). For this purpose, the available samples are divided to 10 folds of 

roughly equal size. Each of these folds is used in turn as a test sample with the 

complement sample serving as the training sample. The training set is used for parameter 

selection, whereas the test set is used only for estimating the prediction risk associated 

with various kernel functions. In order to find the optimal parameters of (C, γ), a 9-fold 

cross validation is implemented to divide the training set into learning and validation set. 

The learning set is used to estimate the hyper-planes for every set of (C, γ) and the 

validation set is used to estimate the error associated with each set of parameters. (C, γ) 

with the lowest average of validation error are selected. Finally, the average values of 

prediction errors are compared to determine the best model and kernel function. 

 

2.7.5 MULTICLASS SVMS 

SVM was originally designed for binary classification and extending it to multiclass 

problems is an ongoing research issue. Two types of approaches may be followed in the 

generalization of binary SVM to solve a multiclass SVM. In the direct approach, the SVM 

training algorithm is reformulated to generate a multiclass version (Weston and Watkins, 

1998, Crammer and Singer, 2001, Lee et. al, 2001). This approach in general yields to 

costly algorithms and are usually avoided (Hsu and Lin, 2002, Rifkin and Klautau, 2004, 

Lorena and Carvalho, 2008a, 2008b). 
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The simpler and more popular approach consists in dividing the original data set into two-

class subsets and learning a different binary model for each new subset. The final step is 

to combine the outputs of these binary classifiers. These methods are known as 

binarization techniques. Among the most common binarization strategies, one can cite 

the "one-vs-one" (OVO) (Knerr et. al, 1990, Kreßel, 1999) and "one-vs-all" (OVA) 

(Anand et. al, 1995). The former constructs all the possible classifiers between pairs of 

classes and then predicts the output class based on the outputs of these classifiers, while 

the latter learns a classifier for each class where all of the examples in that class have 

positive labels, and all other examples have negative labels. Many researchers have 

proposed different combination methods to obtain the predicted class from the outputs of 

OVO or OVA binary classifiers. Friedman (1996) proposed the Voting strategy or Max-

Wins rule where each binary classifier gives a vote for the predicted class and the class 

with the largest number of votes is predicted. Platt et. al (2000) suggested using Decision 

directed acyclic graph (DDAG) where a rooted binary acyclic graph is constructed and 

each node is associated to a list of classes and a binary classifier. Hastie and Tibshirani 

(1998) and  Wu et. al (2004) presented the method of classification by pairwise coupling 

where the joint probability for all classes are calculated from the pairwise class 

probabilities of the binary classifiers and the class with the highest posterior probability 

is selected. In each level, the method removes the class that is not predicted. The final 

output class is the one remaining on the list. Galar et. al (2011) presented a detailed 

comparison of various binarization techniques used in dealing with multiclass learning 

machines and pointed that for most learning machines including SVM classifiers OVO 

strategy based methods outperform OVA ones. Duan and Keerthi (2005) compared 

different binarization techniques for SVM multiclass classification problem and 

demonstrated that pairwise coupling PSVM which is used in this study offers the best 

accuracy. 

 

2.7.6 PROBABILISTIC SUPPORT VECTOR MACHINES (PSVM) 

Constructing a classifier that produces a posterior probability P(class|input) is a useful 

tool in reliability analysis of structural systems. Unfortunately, the original SVMs only 
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produce a threshold value f(x) calculated based on equation (2-28) for linear SVMs and 

equation (2-33) for nonlinear SVMs. This score provides the distance of the sample point 

x to the separating hyperplane. In recent years, many researchers have proposed different 

methods to convert the threshold output of SVM into a probability estimate. Drish (1998) 

proposed the application of binning technique where the decision values are divided into 

several bins, and the conditional class probability is the fraction of the training examples 

with similar label in that bin. Zadrozny and Elkan (2002) used isotonic regression to map 

the SVM scores to probability estimates. Vovk et. al (2003 and 2005) introduced a new 

class of algorithms for online probability forecasting called "Venn Machines". Ruping 

(2004) compared various scaling methods to obtain estimates of conditional class 

probabilities from SVM decision function and concluded that the method proposed by 

Platt (2000) offers the best scaling for SVM outputs. Platt (2000) and Lin et. al. (2003) 

proposed an algorithm to map the f value into the positive class posterior probability by 

applying a sigmoid function to the SVM output as presented in equation (2-34). 
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The best parameter setting Z*=(A*,B*) is determined by solving the following regularized 

maximum likelihood problem in which N+ and N- are the number of positive and negative 

training data respectively. 
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Regarding multi-class classification problems, Hastie and Tibshirani (1998) proposed 

pairwise coupling to combine the probabilistic outputs of all the one-versus-one binary 

classifiers in order to estimate the posterior probabilities Pi=prob(wi|x), i=1,…, k. In 

which k is the number of classes. It is noted that for a k-class problem k(k-1)/2 binary 
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classifiers are required. Wu et. al., (2004) proposed the optimization problem presented 

in equation (2-36) to obtain the probability of x belonging to class i. 
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(2-36) 

in which rij = P(y=i| y=i or j, x) are auxiliary variable which represents the binary SVMs 

of the ith and jth classes and are calculated based on equation (2-34) and (2-35).This 

optimization problem provides a vector of multi-class probability estimates. 

 In this study Platt's algorithm is used to produce probabilistic outputs for the trained 

binary SVM. In case of multiclass SVM classification, OVO binarization strategy is 

applied to obtain pair-wise class probabilities of the binary classifiers, then equation (2-

36) is used to calculate the probability of x belonging to class i.  
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CHAPTER 3: MANUSCRIPT 1 

UNCERTAINTIES IN SEISMIC FRAGILITY ANALYSIS OF EXISTING 

BRIDGES 

S.N. Mahmoudi1, L. Chouinard2, D. Mitchell3, P. Tehrani1, A. De la Puente1 

 

ABSTRACT 

Seismic fragility analysis of bridges provides a powerful tool to identify critical structural 

components and to assess the reliability of structures. This paper represents the fragility 

analysis of a typical Montreal bridge built in the 1960’s. The main objective of this paper 

is to address the structural deficiencies under seismic demands considering all significant 

sources of uncertainties in modeling and evaluating the demands and capacities. 

Based on the design plans, the existing bridge bent has three major design deficiencies: 

1) large spacing of ties in the column, 2) absence of shear reinforcement in cap beams, 

and 3) lack of shear reinforcement in the beam-column joints. A 2-dimensional bridge 

model is developed which is validated with results of a laboratory test performed on a 

half scale model of the existing bridge bent. An Incremental Dynamic Analysis (IDA) is 

performed to account for record-to-record variability in seismic inputs on engineering 

demand parameters (EDP).  

Component fragility curves are developed for each critical bridge component by utilizing 

probabilistic demand models (PDMs) obtained from regression analyses of component 

response. Component fragility curves are used to identify the weak components that 

require strengthening. Finally, the system fragility curve of the bridge is generated to 

estimate the overall reliability of the bridge structure. 

                                                 
1 Graduate Student, Department of Civil Engineering and Applied Mechanics, McGill University, 

Montreal, QC, H3A 2K6 
2 Associate Professor, Department of Civil Engineering and Applied Mechanics, McGill University, 

Montreal, QC, H3A 2K6 
3 Professor, Department of Civil Engineering and Applied Mechanics, McGill University, Montreal, QC, 

H3A 2K6 
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The results demonstrate that the bridge is vulnerable and likely to be damaged under 

seismic demands and that brittle shear failure of the cap beam is the dominant failure 

mode of the structure. In the second part of this paper, a retrofit strategy is suggested 

which requires minimal interference with the normal function of the bridge and the 

fragility curves are developed for the retrofitted structure. 

Keywords: Bridge, Component Fragility Curves, System Fragility Curve, Incremental 

Dynamic Analysis (IDA), Model Validation, Hypothesis Test, Bayesian, Monte Carlo 

 

3.1 INTRODUCTION 

Much research has been conducted to assess and address seismic deficiencies of existing 

structures in high seismic regions as a result of increased awareness of potential damages 

after the occurrence of major earthquakes such as the 1989 Loma Prieta (Houser and 

Thiel, 1990; Mitchell et. al., 1995), the 1994 Northridge (Mitchell et. al., 1994) and the 

1995 Kobe (Mitchell et. al., 1995) earthquakes. However, seismic deficiencies of 

highway bridges have been traditionally neglected in moderate seismic regions such as 

eastern Canada.  

According to Tavares et. al. (2010), 75% of bridges in Quebec have more than thirty years 

of service and have some form of deterioration. Moreover, the design codes which were 

applicable at the time of the original construction of older bridges are considered 

inadequate today. With the new code requirements, the focus of decision-makers should 

be to evaluate and retrofit bridges to improve their seismic performance together with 

rehabilitation for deterioration problems.  

Uncertainties involved in determining the demands of earthquakes and in evaluating the 

capacity of structures under cyclic loads lead designers to use probabilistic methods to 

quantitatively assess the structural reliability. Fragility curves represent the state-of-the-

art in seismic risk assessment (SRA) and are defined as the conditional probability that a 

structure will meet or exceed a certain level of damage for a given ground motion 

intensity. Fragility curves are also useful tools to identify weak parts of the structure and 

to guide the efficient allocation of funds to strengthen or retrofit an existing structure.  
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Through this study, the seismic behaviour of a typical bridge built in the 1960’s in 

Montreal is determined. The 4-span overpass investigated is considered a lifeline bridge 

due to the fact that it provides a major access route to a hospital and also crosses two 

national railway lines. It is one among several similar bridges, which makes it possible to 

extend the conclusions of this study to other bridges in the area. 

 

3.2 STRUCTURE AND STRUCTURAL COMPONENTS DESCRIPTION 

The bridge is composed of a reinforced concrete deck supported by a grid of steel beams. 

The three spans (21.3, 26.2 and 21.3 m) are supported by two concrete abutments, one at 

each end, and two concrete moment resisting frames. These frames each consist of twelve 

slender columns supported by a wall. The columns are interconnected at their tops by a 

cap beam (Figure 3-1). The load from each steel beam is directly supported by one 

concrete column, which transmits the load directly to the wall and then to the foundations.  

Due to the symmetry of the bridge, it is assumed that each of the two frames shares 

equally the lateral loads. 

 

Figure 3-1. Frame elevation of bridge 

 

The square-shaped concrete columns have dimensions of 457 x 457 mm and contain a 

longitudinal reinforcement ratio of 3.52% and a volumetric ratio of transverse 

reinforcement of 0.557%, with #4 ties spaced at 305 mm (Figure 3-2a). The bottom 

portion of the columns are within the splash exposure zone for water and deicing 
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chemicals caused by vehicles on a service road that runs under the bridge which resulted 

in corrosion of the reinforcing steel and spalling of the concrete cover (Figure 3-3). The 

effect of the deterioration of the existing structure is accounted for in the analyses by 

considering the spalled concrete section of the columns and a 10% reduction of the gross 

steel area (Mahmoudi et. al, 2015 B). 

 

Figure 3-2. Details of as-built bridge components: (a) Column cross section (b) Beam 

cross section 

 

 

Figure 3-3. Deterioration in one of the bridge columns 

 

The top of each column is connected to a 457 x 457 mm cap beam composed of eleven 

segments. This beam has only longitudinal reinforcement (1.464%) without any 

transverse reinforcement, and hence is expected to have a brittle failure mode (Figure 3-

2b). 
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The wall supporting the twelve columns has a thickness of 610 mm at the top and 

increases to 915 mm at the base. The wall has a height of 3658 mm. The wall 

reinforcement consists of #6 vertical bars at 305 mm and #6 horizontal bars at 710 mm 

on each face. The mean value of the concrete compressive strength is assumed to be 25 

MPa which is typical of structures built in the 1960' s (Griezic 1996) and a mean value of 

300 MPa is assigned to yield-strength of the steel reinforcement. 

 

3.3 FINITE ELEMENT MODELING AND LABORATORY TEST 

The bridge is modeled with finite elements using Ruaumoko 3D  (Carr, 2001). The 

moment-resisting frame is idealized with 69 elements divided into six types (Figure 3-4), 

of which, 23 have possible non-linear behaviour. These elements correspond to the 12 

columns and the 11-segments of the cap beam. The nonlinear behaviour of the concrete 

component is determined with the Response 2000 software (Bentz, 2001). Moment- 

Curvature and Force- Displacement diagrams for the beams and columns are shown in 

Figure 3-5. It is noted that moment-curvature responses presented in Figure 3-5 are 

developed for the components when they are subjected to an average dead load of 465 

kN for columns and 0 kN for beams as well as when they are subjected to tension or 

compression axial loads. The grid of steel beams that support the concrete deck have 

elastic linear behaviour and are connected to the moment-resisting frame by rocker 

supports. 

 

Figure 3-4. Structural idealization of moment-resisting frame (Left side) 
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Uncertainties arise from the selection of the conceptual model and the formulation of the 

mathematical model as well as the input parameters of the selected model. Traditional 

statistical theories have provided solutions to find a set of input parameters which result 

in responses consistent with a given sample of data. However, they usually differ only in 

the parameter values and the mathematical model is assumed known. However, in 

practice, model uncertainty can be more significant than other sources of uncertainty 

(Chatfield, 1995). 

A half scale model of the existing bridge bent was designed and constructed in the 

structural laboratory at McGill University and the model was tested under reversed cyclic 

loading (Itagawa, 2005). The axial load was kept constant during the test and the lateral 

load level was increased gradually to determine the loads corresponding to various 

cracking events and to determine the dominant failure mechanism. 

This test provides the required information to investigate and quantify the goodness of 

the developed finite element model. However, in order to assess and reduce the 

uncertainties resulted from selected input variables, such as material strengths and 

stiffness of components, field testing of the actual existing bridge structure is required. 

The results obtained from the laboratory test of the half scale structure demonstrate that 

the shear failure in the beam is the dominant failure mode which occurs at a lateral load 

of about 60 kN. Finite element model results in the same failure mode at a lateral load of 

55.89 kN. The ratio of the results obtained from the test to the model is equal to 1.073 

which represents a good agreement. However, since a defined acceptable ratio or distance 

between the results is not provided in the literature, a stochastic approach is required to 

validate and verify the model. 
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(a) (b) 

  
(c) (d) 

Figure 3-5. Predicted Component Response: (a) Force- Displacement of Columns (b) 

Moment- Curvature of Columns (c) Force- Displacement of Beams (d) Moment- 

Curvature of Beams 

 

3.4 FINITE ELEMENT MODEL VALIDATION 

Traditionally, computer models have been verified using subjective or quantitative 

comparison approaches (Chen et. al., 2004). The former is based on a visual comparison 

of the plots or contours of the predicted model and observations. This approach neither 

presents the uncertainties involved in the predicted model nor demonstrates the 

confidence in the model. The latter uses some measures such as the ratio of the results 

obtained from the model and observations. However, a prescribed acceptable measure 

cannot be found in the literature for every case. 
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Two stochastic approaches are used in this study to validate the finite element model of 

the bridge structure. These approaches can be utilized for either single or multiple 

available observations. The first approach is based on classical hypothesis testing which 

provides valuable information about goodness of fit of the model and the confidence of 

predicted model. However, Edwards et. Al. (1963) and Zhang and Mahadevan (2003) 

argue that this method can be sometimes misleading and hard to interpret. In addition, 

they suggest that this approach can be biased and inclined toward rejecting the null 

hypothesis. The second approach however is based on Bayesian hypothesis testing which 

addresses the mentioned issues and provides an unbiased model validation test. 

It is noted that there may not be a unique acceptable model and every model validation 

method accepts a variety of models. However, the mentioned methods present statistics 

which can be a representation of the goodness of each model. Classical hypothesis test 

uses the confidence bound or p-value of the test while Bayesian hypothesis approach 

introduces the Bayes factor for this purpose. 

 

3.4.1 CLASSIC HYPOTHESIS APPROACH 

Hills and Trucano (1999) stated that if an experiment falls inside a given confidence 

bound of the predicted model, the experiment and the model are consistent; otherwise the 

model will be rejected. This test is the foundation of the methods which reject incorrect 

models.  

An uncertainty propagation technique should be used to evaluate confidence bounds of 

the predicted model. Hence, various uncertainties involved in finite element modeling of 

the bridge are assessed and the effect of them on the predicted model is evaluated through 

Monte Carlo Simulation (MCS). However, since performing MCS of finite element 

model is not computationally feasible, MCS is performed on a metamodel which is 

developed using Response Surface Method (RSM) as suggested by Chen et. al. (2004). 

After a brief sensitivity analysis, the compressive strength of the concrete (fc), the shear 

resistance of beams (Vc) and the axial dead load of the bridge deck (Ld) are considered as 

variables since they have significant effect on the predicted lateral load which causes 
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failure in the structure. A polynomial regression method is used for developing a RSM in 

order to model the finite element predicted response by polynomials. 

fc and Ld are assumed to have normal distributions. The mean value and standard 

deviation of fc and the mean value of Ld are obtained from tests which were performed 

by Itagawa (2005). Song and Kang (2010) demonstrated that the shear capacity of a 

reinforced concrete beam without shear reinforcement has a lognormal distribution.  The 

mean value of Vc is determined by the Response 2000 software and the standard deviation 

is assumed according to Song and Kang (2010). Distribution parameters of the variables 

are presented in Table 3-2. 

Since this test is based on the assumption of normality of the response, all the input 

variables are transformed into normal space. Hence, Vc is transformed using natural 

logarithm function. In addition, in order to give each predictor an equal share in 

determining the response, an appropriate coding transformation of the data should be 

used. So, all the normalized input variables are transferred to a space with a range of -1 

to 1. A response surface regression analysis is performed using 200 data points and the 

resulting RSM is shown in equation 3-1 in which index 1 represents the normalized 

variables. Estimates of the regression coefficients are provided in Table 3-1. It is noted 

that 216 data points are used for design of the developed response surface. 

𝐿𝑜𝑔(𝐹) = 𝑅1. 𝐿𝑜𝑔(𝑉𝑐1)2 + 𝑅2. log (𝑉𝑐1) + 𝑅3. 𝑓𝑐1
2 + 𝑅4. 𝑓𝑐1 + 𝑅5. 𝐿𝑑1

2

+ 𝑅6. 𝐿𝑑1 + 𝑅7. 𝐿𝑜𝑔(𝑉𝑐1). 𝑓𝑐1 + 𝑅8. 𝐿𝑜𝑔(𝑉𝑐1). 𝐿𝑑1 + 𝑅9. 𝑓𝑐. 𝐿𝑑1

+ 𝑅10 

(3-1) 

Table 3-1. Parameters of the input variable distributions in prior and posterior 

states 

 

 R1 R2 R3 R4 R5 

µ  2.368*10-3 0.682 7.21*10-5 -3.51*10-4 4.44*10-5 

σ (*10-5) 2.841 1.681 2.855 1.722 2.845 

      

 R6 R7 R8 R9 R10 

µ  -3.34*10-3 -9.23*10-4 -1.75*10-4 4.7*10-4 4.065 

σ (*10-5) 1.721 2.461 2.461 2.442 16.878 
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The standard deviation of residuals and the coefficient of determination (R2) for this 

regression model are 2.8*10-8 and 1.00 respectively. It is inferred from Table 3-1 that the 

variance on R2 and R10 which correspond to the design variables with the highest 

influence on the response, are negligible. It is noted that performing a hypothesis test on 

the coefficients demonstrates that R8 and R9 are statistically insignificant at the 5% 

significance level and the corresponding values shown in Table 3-1 are the values of those 

variables if they were considered in the regression model. This result is consistent with 

the physics of the structure, as Ld is uncorrelated with Vc and fc. Figure 3-6 shows the 

relationship of the variables in the model. 

  

(a) (b) 

  

(c) (d) 

Figure 3-6. Relationships of the variables which are considered in RSM 

 

The histogram and consequently the distribution of the predicted lateral load 

corresponding to failure are obtained from a MCS which is performed with 400,000 

samples. The predicted lateral load has a lognormal distribution with the mean value of 

55.89 kN and standard deviation of 11.75 kN. The histogram of natural logarithm of the 

response is shown in figure 3-7. 
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Figure 3-7. Model Validation using classic hypothesis approach 

 

It is noted that considering a narrow acceptable confidence interval increases the 

probability of type I error or rejecting the correct model, while considering wide 

acceptable confidence interval increases the probability of type II error or accepting an 

incorrect model. 

According to the results of MCS, the observation of 60 kN corresponds to 63.7% 

confidence limit or a p-value of 0.182. So, if the significant level is set at 95%, the 

experiment fails to reject the model under the null hypothesis. 

 

3.4.2 BAYESIAN MODEL VALIDATION APPROACH 

The classic hypothesis approach provides a powerful method to represents the confidence 

in the model. However, as mentioned earlier, it has been suggested that hypothesis testing 

method may be misleading and can be biased toward rejection of the models because this 

method neglects prior distribution under the alternative hypothesis. In other words, 

classical hypothesis approach only considers the likelihood of the observation if the null 

hypothesis is true and neglects the likelihood of the observation in case that the null 

hypothesis is false (Zhang and Mahadevan, 2003). Bayesian hypothesis approach is also 

used in this study to address the mentioned issue. This approach compares the likelihood 

of the observation under null and alternative hypotheses. 

According to Mahadevan and Rebba (2004), a model is accepted if the observation favors 
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the model. In other words, if the probability density of the predicted value increases given 

new observation, the model will be acceptable. Mahadevan and Rebba (2004) and Rebba 

and Mahadevan (2006) demonstrated that the Bayes factor can be calculated from 

equation 3-2: 

𝐵(𝑥0) =  
𝑓(𝑥|𝑦)

𝑓(𝑥)
|𝑥=𝑥0

 
(3-2) 

in which x0 is the predicted value, f(x) represents the prior Probability Density Function 

(PDF) and f(x|y) represent posterior PDF. It is noted that the B(x0) higher than unity 

validates the model. 

In this study, the posterior PDF is obtained from a MCS similar to the one of the previous 

part considering updated input variables. Input variables- fc, Vc and Ld- are updated 

using the following Bayesian equation: 

𝑓(𝜃𝑖|𝑦) =  
𝐿(𝑦|𝜃𝑖). 𝑓(𝜃𝑖) 

∫ 𝐿(𝑦|𝜃𝑖). 𝑓(𝜃𝑖) 𝑑𝜃𝑖𝜃𝑖

 
(3-3) 

in which 𝜃𝑖 represents the input variable, L(y|𝜃i) is the likelihood of the observation in 

prior system and f(𝜃i) represents the prior PDF of the input. The PDF of input variables 

are updated based on equation 3 using MCS. The results are shown in Table 3-2. 

Table 3-2. Parameters of the input and output variable distributions in prior and 

posterior states 

 Distribution 

Prior Posterior 

Mean 

Value 

Standard 

Deviation 

Mean 

Value 

Standard 

Deviation 

Inputs 

fc (MPa) 

Vc (kN) 

Ld (kN) 

Normal 

Lognormal 

Normal 

37.7 

66 

60 

1.34 

13.39 

6 

43.9 

73.5 

71.71 

5.44 

6.48 

8.31 

Output 

Lateral 

Load 

(kN) 

Lognormal 55.89 11.75 62.24 5.56 
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The resulted posterior PDF of the predicted lateral load corresponding to failure has a 

lognormal distribution with the mean value of 62.24 kN and standard deviation of 5.56 

kN and is shown in figure 3-8. The PDF of prior and posterior at x=55.89 kN is equal to 

0.0407 and 0.0341 respectively. Hence, the Bayes ratio at the predicted point is equal to 

1.19 and the model is validated. 

 

Figure 3-8. Model Validation using Bayesian hypothesis approach 

 

3.5 INCREMENTAL DYNAMIC ANALYSIS (IDA) 

Variability in seismic inputs is a significant source of uncertainty in the seismic 

evaluation of structures. The IDA technique (Vamvatsikos and Cornell, 2002) addresses 

the record-to-record variability by using a set of scaled input ground motions to evaluate 

the response of the structure. By performing non-linear dynamic analyses with increasing 

scaling factors for each ground motion record, the relationship of the Intensity Measure 

(IM) and the Engineering Demand Parameter (EDP) is obtained. The selection of the 

proper ground motion records, EDP and IM for the structure should be done carefully 

since they can all affect the results. 

 

3.5.1 SELECTION OF GROUND MOTION RECORDS 

Since there are few available ground motion records in the Montreal area and none of 

them is considered as a strong ground motion, a variety of artificial and simulated ground 

motion records developed by Atkinson and Bersenev (1998) are used in this study. The 

effect of using artificial records on the resulting fragility curves is investigated by 
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comparing the obtained fragility curves to developed fragilities using a set of actual 

ground motion records suggested by ATC63. IDA methods are applicable to either 

artificial, natural, or modified natural ground motion records. In this paper, three sets of 

records including ATC-63 records (44 natural records), Atkinson-6C2 records (45 

artificial records) and Atkinson-7C2 records (45 artificial records) (Atkinson and 

Beresnev, 1998) are used. 

The epsilon-based record selection method recommended by Baker and Cornell (2006) 

was used to include the effects of spectral shapes. The records that have mean epsilon 

values similar to those obtained from the seismic deaggregation analysis at the 

fundamental period of the structure are selected. Epsilon, ε, is the number of logarithmic 

standard deviations of a target ground motion from a median ground motion prediction 

equation (GMPE) for a given magnitude, M and distance (R). It has been shown that ε(T1) 

is a proxy for spectral shape (Baker and Cornell, 2006). 

Mean epsilon values for Montreal are reported in Tehrani and Mitchell (2012) based on 

the updated seismic hazard data provided by Atkinson and Goda (2011) (Table 3-3).  

 

Table 3-3. Mean epsilon values at different hazard levels from seismic deaggregation 

for Montreal (Tehrani and Mitchell, 2012) 

         Hazard level 

Period 

(sec)  

10% 

in 50 

years 

2% in 

50 

years 

0.5% in 

50 years 

0.2  0.89 0.93 0.95 

0.5  0.85 1.03 1.1 

1  0.88 1.16 1.3 

2  0.84 1.04 1.18 

3  0.76 1.22 1.24 

 

It is inferred from the Table 3-3 that the mean epsilon values from the seismic 

deaggregation are around 1.0 to 1.3 at 0.5% probability of exceedance in 50 years for 

different periods. The mean epsilon values of the records predicted using the Atkinson-

6C2 records (Atkinson and Boore, 2006) are very similar to those computed from the 

seismic deaggregation for the period range of bridges studied in this research (Figure 3-



67 

 

9). Therefore the mean spectral shape of the records used for the analysis is expected to 

be appropriate for Montreal (Tehrani and Mitchell, 2012).  

 

Figure 3-9. Epsilon values of all records and mean epsilon values computed using the 

AB06 GMPE for Eastern North America (Tehrani and Mitchell, 2012) 

 

3.5.2 SELECTION OF EDPS AND IM 

Mackie and Stojadinovic (2003) developed fragility curves considering various IM-EDP 

pairs and demonstrated that there may not be a single choice which is appropriate for all 

cases. In this study, curvature ductility, axial force and shear force are considered as EDPs 

to account for various failure scenarios in each structural component.  

Peak Ground Acceleration (PGA) and Spectral Acceleration (Sa) at the first period of the 

structure are the most popular choices of IM in the literature (Nielson, 2005). The 

efficiency of each candidate is evaluated using the method proposed by Giovenale and 

Cornell (2004) to select the better IM for the structure. In IDA, the IM of the records is 

scaled up from 0.001g until they cause the bridge to collapse. 

It has been suggested by Cornell et. al. (2002) that the estimate of the median demand 

(EDP̂) can be represented by a power model as: 

EDP̂ = a. IMb (3-4) 

where IM is the seismic intensity measure of choice and both a and b are regression 

coefficients. Given the IM, the demand is assumed to be lognormally distributed with a 

logarithmic standard deviation βEDP|IM. Therefore, the logarithm of the demand is 
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normally distributed. 

𝐿𝑛(𝐸�̂�𝑃) =  𝐿𝑛(𝑎) +  𝑏. 𝐿𝑛(𝐼𝑀) (3-5) 

The variance about the median (βEDP|IM) is a measure of the effectiveness of the selected 

IM to estimate the seismic demand. The higher the variability of the EDP for a given IM, 

the lower is the effectiveness of the selected IM to estimate seismic demand. The 

effectiveness of PGA and Sa at the dominant structural mode are compared as IM for this 

bridge. For this purpose, the first natural period of the structure was obtained by modal 

analysis and estimated at T=0.87 sec. 

Figure 3-10 presents the results of IDA for a typical component under the ATC36 ground 

motion set of records. The curvature ductility of an interior column (column-5) with 

respect to both PGA and Sa is shown. It is noted that in Figure 3-10, only the points in 

the specified box are considered for the regression analysis as they have higher 

contribution to the total probability of failure of the component. The regression 

coefficients (a,b) for PGA and Sa cases are equal to (0.707,0.162) and (3.178,0.732) and 

the βEDP|IM are equal to 0.314 and 0.190 respectively and hence, Sa is the more efficient 

IM for this component. In addition, Padgett et. al. (2007) suggests that the parameter b 

which represents the correlation between the natural logarithm of the EDP and natural 

logarithm of the IM, can be an indicator of practicality of the selected IM. Therefore, Sa 

is the more practical choice as it results in higher coefficient (b). Since this result is 

consistent for all of the structural components, Sa is selected as the IM in this study. 

  

Figure 3-10- Comparison of PGA and Sa as candidate IM for ATC-63 ground motions 

for an Interior Column Component (Element 5). 
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3.5.3 IDA RESULTS 

As predicted, IDA results demonstrate that the beams fails in shear before significant 

yielding in the columns is attained. After failure in the beam, the columns behave as 

cantilevers and the subsequent large deflections of the frame constitute failure.  

The IDA results for an interior column (Element 5) and a beam (Element 13) under 

ATC36 ground motion records are shown in figure 3-11. It is noted that a sudden change 

in column behavior after failure of the beam prevents columns from developing their 

ductility. Figure 3-11 also presents the 16, 50 and 84 percentile curves of the IDA. These 

are determined by calculating curvature ductilities associated with a given acceleration 

level for different earthquakes and repeating the calculations for increasing acceleration 

levels. 

  

(a) (b) 

Figure 3-11. IDA results associated with the 16, 50 and 84 percentiles for: (a) Beam 

Component (Element 13) (b) Interior Column Component (Element 5). 

 

3.6 FRAGILITY CURVES 

A fragility curve is the conditional probability that the structure or structural component 

sustains the specified damage-level or limit state for a given ground motion intensity. 

Assuming lognormal distributions for the probabilistic seismic demand model and the 

structural capacity, fragility curves are determined from equation 3-6. 

𝑃 [
𝐷

𝐶
≥ 1 | 𝐼𝑀] =  𝛷(

𝐿𝑛(𝐸�̂�𝑃 𝑆𝑐)⁄

√𝛽𝐷|𝐼𝑀
2 + 𝛽𝑐

2

) 
(3-6) 
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in which 𝐸𝐷�̂� is the median of demand at the selected IM, Sc is the median of capacity 

for the selected limit state, 𝛽𝐷|𝐼𝑀 is the logarithmic standard deviations of demands and 

𝛽𝑐 is the logarithmic standard deviation of the limit state (capacity). 

Fragility curves can be developed for structural components as well as for the structure 

as a whole system. By considering the variability in seismic inputs, structure response, 

and material capacity into account, component fragility curves are useful tools to identify 

weak parts of the structure while system fragility curves are useful in seismic risk 

assessment of the structure. 

 

3.6.1 COMPONENT FRAGILITY 

Component fragility curves are developed for the columns and the beams of the frame for 

the limit state of dynamic instability (collapse). It is assumed that component fragility 

curves have lognormal distribution as represented in equation 3-6. The median demand 

(𝐸𝐷�̂�) is estimated at various IMs using equation 3-5 in which a and b coefficients are 

calculated by a regression analysis over the results of IDA. Component fragility curves 

are developed for each element. To illustrate the vulnerability of the beams, fragility 

curve of a beam (Element 13), an interior column (Element 5) and an exterior column 

(Element 1) under ATC63 ground motion records are compared and shown in figure 3-

12. Values of 𝛽𝐷|𝐼𝑀 and 𝛽𝑐 are given in Table 3-4. The value of 𝛽𝑐 for columns and beams 

are chosen based on Zhu (2005) and Song and Kang (2010) respectively. 

 

Figure 3-12. Comparison of the fragility curves of a Beam Component (Element 13), an 

Interior Column Component (Element 5) and an Exterior Column Component (Element 

1) under ATC36 ground motion records 
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Table 3-4. Dispersion values used in developing component fragility curves under 

ATC63 records  

 𝛽𝐷|𝐼𝑀 𝛽𝑐 

Exterior 

Column 

0.1895 0.0699 

Interior 

Column 

0.1904 0.0699 

Beam 0.1838 0.1980 

 

From the component fragility curves, it is inferred that the beams fail in shear at a spectral 

acceleration level of 0.07g (490 year return period earthquake in Montreal), while interior 

and exterior column failure occur at Sa levels of 0.2g (2620 year return period) and 0.32g 

(5540 year return period) respectively. 

Component fragility curves are developed using 3 sets of ground motion: ATC-63 records 

(44 natural records), Atkinson-6C2 records (45 artificial records) and Atkinson-7C2 

records (45 artificial records). Figure 3-13 indicates the comparison of fragility curves 

resulting from the ground motion record sets for the beam and interior column. It is 

inferred that the fragility curves from the natural ground motion records have slightly 

higher mean values and standard deviations. So, the artificial ground motion records 

result in slightly more conservative results in this case. 

  

(a)  (b)  

Figure 3-13. Comparison of component fragility curve for three different ground motion 

set: (a) Beam component (Element 13) (b) Interior column (Element 5) 
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3.6.2 SYSTEM FRAGILITY 

Correlations between seismic demands of various components in a structure make it 

difficult to calculate the system fragility by combining component fragilities directly. 

There are three established flexible and robust approaches to obtain system fragility: 

Nielson and DesRoches (2007) have developed joint probability distribution of seismic 

demands which accounts for correlations between components and have performed 

Monte Carlo Simulation (MCS) to integrate over all failure domains; Song and Kang 

(2009) have introduced a Matrix-based System Reliability (MSR) which considers the 

correlations between components by introducing common source random variables using 

Dunnett–Sobel correlation coefficient matrix; And Dueñas-Osorio and Padgett (2011) 

have proposed a nonrecursive combinatorial closed-form method to consider all the 

possible failure modes for a limit state. 

In aforementioned studies, correlations between components are assumed to be constant 

over the range of spectral accelerations. However in this study, correlations are calculated 

at each Sa using IDA results which provide a set of demands for each component at each 

Sa. Resulted correlations between a beam, an interior column and an exterior column are 

presented in figure 3-14. It is inferred from Figure 3-14 that there is a strong correlation 

between components (over 90%) which slightly varies over the range of spectral 

accelerations. The reason is the linearity in structural behavior before brittle failure of the 

beams. 

In this study, system fragility is obtained considering Sa-dependent component 

correlations and using the approach proposed by Nielson and DesRoches (2007). In other 

words, a Joint Probabilistic Seismic Demand Model (JPSDM) of natural logarithm of 

𝐸𝐷�̂�s are simulated by MCS with 50,000 samples considering the obtained distributions 

with mean value (from equation 3-5), variance 𝛽𝐷|𝐼𝑀 and correlations between 

components. Then, corresponding capacities are also simulated by MCS and the 

probability of having at least one failure in the system is calculated over the range of Sa. 

It is noted that the component capacities are assumed to be independent in this study. 
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Figure 3-14. Correlations between natural logarithm of demands for elements 1, 5 and 

13 (Exterior Column, Interior Column and Beam) over a range of Sa 

 

Finally, having the probability of failure at various spectral accelerations, a lognormal 

distribution is fitted to obtain the system fragility of the bridge structure. Figure 3-15 

represents the system fragility of the bridge under ATC63 ground motion records 

accompanied with 95% prediction intervals. Prediction intervals present the range of the 

new or future observations and the width is a measure of the regression quality and 

numerical uncertainty of the analysis.  

It is noted that Canadian Highway Bridge Design Code (CSA-S6-06) requires that lifeline 

bridges remain open to all traffic after a design earthquake with a return period of 475 

years and usable by emergency and security vehicles after a large earthquake with a return 

period of 1000 years. Based on the data provided by Boore and Atkinson (2008), Atkinson 

and Boore (2006) and Atkinson (2008), natural logarithm of Sa at the first period of the 

studied structure (T1=0.876 sec) has a normal distribution with the mean value and 

standard deviation of –2.98 and 0.72 respectively. 

Hence, the studied bridge is required to remain serviceable after an earthquake with a 

Sa(T1)=0.4g and withstand an earthquake with a Sa(T1)=0.47g while as it is shown in 

Figure 3-15, the bridge is not expected to withstand such ground motions. So, the bridge 

structure should be retrofitted to meet the code requirements. 
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Figure 3-15. System fragility curve with confidence and prediction intervals under 

ATC63 ground motion records 
 

Contribution of each component in system fragility can be visually investigated by 

comparison of component fragilities with system fragility as it is presented in figure 3-16 

(a). A Component Importance Measure (CIM) is also quantitatively evaluated using 

equation 3-7 as proposed by Kang et. al. (2008). 

𝐶𝐼𝑀𝑖 = 𝑃(𝑓𝑖|𝑓𝑠𝑦𝑠) =  
𝑃(𝑓𝑖 ∩ 𝑓𝑠𝑦𝑠)

𝑃(𝑓𝑠𝑦𝑠)
 

(3-7) 

in which 𝑓𝑖 denotes the event of having failure in component i and 𝑓𝑠𝑦𝑠 represents the 

event of occurrence of system failure. CIMs of the selected exterior column, interior 

column and beam are calculated over a range of Sa and are presented in Figure 3-16(b). 

It is inferred that the beam failure is dominant and in almost all the cases the shear failure 

of the beam causes the failure. 

  

(a)  (b) 

Figure 3-16. Contribution of component failures in system failure under ATC63 records 

(a) Visual comparison of system fragility versus component fragility curves (b) CIM of 

components over Sa 
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Moreover, system fragility curves are also developed for the 3 sets of ground motion 

records: ATC-63 records (44 natural records), Atkinson-6C2 records (45 artificial 

records) and Atkinson-7C2 records (45 artificial records). Figure 3-17 presents the 

comparison of the resulting system fragility curves. It is inferred that the difference 

between system fragility curves obtained from the mentioned record sets are negligible. 

 

Figure 3-17. Comparison of system fragility curve for three different ground motion 

sets of: ATC-63 (natural records), Atkinson-6C2 (artificial records) and Atkinson-7C2 

(artificial records) 

 

3.7 CONCLUSION 

In this study, fragility curves of a typical existing highway bridge located in Montreal are 

developed considering the significant uncertainties involved in modeling and evaluating 

the component seismic demand and capacities. 

It is demonstrated that laboratory tests can be used to quantify the goodness of computer 

models as well as to display the actual behavior of a structure or a structural component. 

A classic hypothesis test and a Bayesian model approach are used to validate the 

developed finite element model of the bridge structure. 

Record-to-record variability in seismic inputs is addressed and assessed through an IDA 

and the associated uncertainty is minimized by choosing a proper IM-EDP. IDA is 

performed on the model and component and system fragility curves are developed 

considering Sa-dependent correlation between structural components. 

It is demonstrated that beam failure is the dominant failure mode with a Component 
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Importance Measure (CIM) above 0.9 over Spectral Accelerations and earthquakes with 

Sa higher than 0.07 g (at T = 0.876 sec) are predicted to cause the beams to fail 

prematurely in shear before any yielding occurs in columns, creating the potential of 

structural instability or collapse. This limit is below the requirements of Canadian 

standards and brittle shear failure is unacceptable in structures; hence, the frame should 

be retrofitted. 

In moderate seismic areas in which there are not enough available ground motion records, 

reliable artificial seismic records are suitable alternatives for designers. It is shown in this 

paper that in comparison with natural ground motion records, using artificial ground 

motion sets developed by Atkinson and Boore (2006) result in slightly conservative 

component fragility curves with lower mean and standard deviation values. However, the 

difference in system fragility curves is negligible. This result should be further 

investigated for other cases. 
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CHAPTER 4: MANUSCRIPT 2 

UNCERTAINTIES IN SEISMIC FRAGILITY ANALYSIS OF RETROFITTED 

BRIDGES 

S. Mahmoudi, L.Chouinard, D. Mitchell, P. Tehrani, A. De la Puente 

 

ABSTRACT 

This paper presents fragility analysis of a typical Montreal bridge after an appropriate 

seismic retrofit. Laboratory tests are used to address the model uncertainty associated 

with finite element modeling of the structure by adopting two stochastic approaches. A 

detailed description of the existing highway bridge is provided in the companion paper 

(Mahmoudi et. al, 2015 A). The companion paper also demonstrates that the bridge is 

vulnerable and likely to be damaged under seismic demands and that brittle shear failure 

of the cap beam is the dominant failure mode of the structure. In deciding upon the 

retrofitting strategy, an approach using minimum intervention is studied which involves 

the strengthening of the concrete cap beam to avoid shear failure and to provide sufficient 

flexural resistance so that yielding occurs in the columns rather than shear and flexural 

failure in the beams. 

A 3-dimensional bridge model is developed which is validated with results of a laboratory 

test performed on a half scale model of the retrofitted bridge bent. The effects of corrosion 

on structural components are assessed and addressed in a probabilistic context and an 

Incremental Dynamic Analysis (IDA) is performed to account for record-to-record 

variability in seismic inputs on engineering demand parameters (EDP). Component 

fragility curves are developed for each critical bridge element to identify the weak 

components. And the system fragility curve of the bridge is generated to estimate the 

overall reliability of the bridge structure. 

The results demonstrate that the retrofit of the beam completely changes the performance 

of the frame. The as-built frame suffers a brittle shear failure at a predicted spectral 

acceleration of 0.07g whereas the retrofitted frame is predicted to experience general 
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yielding of the columns with the ability to undergo spectral accelerations in excess of 

0.57g. In addition, this study demonstrates the importance of considering the corrosion 

effects in assessment of older bridges. 

Keywords: Bridge, Component Fragility Curves, System Fragility Curve, Incremental 

Dynamic Analysis (IDA), Model Validation, Hypothesis Test, Bayesian, Monte Carlo, 

retrofit design 

 

4.1 INTRODUCTION 

In recent years, developed countries such as US, Japan and Canada have made significant 

efforts to retrofit existing highway bridges to withstand seismic events. As a result, 

various retrofit strategies and methods have been proposed and applied based on the 

deficiencies of the structures and the objectives of the retrofit. Common retrofit methods 

which have been used for reinforced concrete bents are concrete, steel and fiber-

reinforced polymer (FRP) composite jacketing, external prestressing steel and infill shear 

walls.  

Numerous studies have been carried out to demonstrate the effectiveness of various 

retrofit methods. Priestley et. al (1993) performed experimental and analytical studies on 

a retrofitted double-deck viaduct and demonstrated the enhancement of the shear and 

flexural capacity of cap beams which are retrofitted by prestressed tendons; Gergely et. 

al (1998, 2000) studied the effectiveness of CFRP composite jackets on the behavior of 

cap beams, columns and joints in an existing bridge structure; and Mitchell (2002) tested 

cap beams, retrofitted by reinforced concrete sleeving, under reversed cyclic loading. 

Shinozuka et. al (2002) investigated the fragility curves of concrete bridges retrofitted 

with column jacketing; Pan et. al (2010) compared the effectiveness of two retrofit 

strategies on a typical bridge in New York State by comparing analytical fragility curves 

of the retrofitted structure with the two methods; and Billah et. al (2012) studied the 

effectiveness of concrete, steel, FRP and Engineered Cementitious Composites (ECC) 

jacketing by comparing fragility curves of a multi-column bridge bent retrofitted with 

each method. 
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Through this study, a retrofit strategy with minimum intervention is proposed for a typical 

highway bridge built in the 1960’s in Montreal and the seismic behaviour of the retrofitted 

frame is investigated. A Finite Element Model of the bridge which is verified by 

experimental data obtained from a half scale laboratory test is used to develop analytical 

component and system fragility curves. 

 

4.2 STRUCTURE AND STRUCTURAL COMPONENTS DESCRIPTION 

The bridge is composed of a reinforced concrete deck supported by a grid of steel beams. 

The three spans (21.3, 26.2 and 21.3 m) are supported by two concrete abutments, one at 

each end, and two concrete moment resisting frames. These frames each consist of twelve 

slender columns supported by a wall. The columns are interconnected at their top by a 

cap beam (Figure 4-1). Details of as-built columns and beam sections are shown in figure 

4-2. In this study, it is assumed that failure of the bridge occurs in moment resisting 

frames, so their fragility curves represent the system fragility curve of the bridge 

structure. 

 

Figure 4-1. Lateral view of the bridge 

 

The mean value of the concrete compressive strength is assumed to be 25 MPa which is 

typical of structures built in the 1960' s (Griezic 1996) and a mean value of 300 MPa is 

assigned to the yield-strength of the steel reinforcement.  
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Figure 4-2. Details of as-built bridge components: (a) Column cross section (b) Beam 

cross section 

 

4.3 CORROSION EFFECT 

The bridge is exposed to the frequent use of deicing salts in the winter on the deck. 

Moreover, the lower portion of the columns are in the splash zone from water and deicing 

from a service road that runs under the bridge. Deicing salts are sources of chloride ions 

which results in the corrosion of the reinforcing steel and results in spalling of the 

concrete cover (Figure 4-3). According to Tutti (1982), the service life of a bridge in 

northern climates can be divided into two phases: Phase 1 which corresponds to the time 

period from the completion of original construction to initiation of corrosion (Ti) in the 

structure, and phase 2 which is the time period starting  from the initiation of corrosion 

and onward. Corrosion begins when chloride concentration (C) at the level of reinforcing 

bars reaches the critical value (Ccr). Fick’s second law of diffusion can be used to predict 

the time variation of chloride concentration through semi-infinite solid as shown in 

equation 4-1. (Stewart and Rosowsky 1998). 

𝜕𝐶(𝑥, 𝑡)

𝜕𝑡
=  −𝐷𝐶 .

𝜕2𝐶(𝑥, 𝑡)

𝜕𝑥2
 (4-1) 

in which C represents chloride ion concentration, DC is diffusion coefficient and x 

represents the depth. Hence, Ti can be obtained from equation 4-2. 
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𝑇𝑖 =
𝑥2

4𝐷𝐶
[𝑒𝑟𝑓−1 (

𝐶0 − 𝐶𝑐𝑟

𝐶0
)]−2 (4-2) 

in which erf is the Gaussian error function and C0 represents surface chloride 

concentration. Once corrosion begins, the diameter of corroding bar at the time t, D(t) can 

be estimated from equation 4-3. 

𝐷(𝑡) = 𝐷0 − ∫ 𝑟𝑐𝑜𝑟𝑟

𝑡

𝑇𝑖

. 𝑑𝑡 (4-3) 

in which D0 is the initial diameter of the bar and rcorr represents the rate of corrosion. Rate 

of corrosion is a time-dependent variable, however, it is assumed to be constant in this 

study due to lack of data. 

 

Figure 4-3. Deterioration in one of the bridge columns 

 

It is noted that the time to initiation of corrosion and rate of corrosion depend on 

environmental conditions and are random variables. Therefore, a probabilistic model is 

developed to predict the effect of corrosion on the reliability of structural components. 

Variables adopted for this study are shown in Table 4-1. (Lounis and Mirza 2001, Lounis 

et. al. 2004, Ismail and Soleymani 2002 and Flis et. al. 1995). 
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Table 4-1. Parameters of the input variable distributions in corrosion effect prediction 

Variable X (cm) 
DC 

(cm2/year) 
C0 (kg/m3) Ccr (kg/m3) 

Rcorr 

(mm/year) 

Distribution Constant LogNormal LogNormal LogNormal Normal 

Mean 5.4 0.51 4.56 1.35 0.062 

COV 0 0.3 0.4 0.1 0.25 

 

A Monte Carlo Simulation (MCS) with a sample size of 100,000 is developed to predict 

the time to initiation of corrosion and subsequently the change in area of reinforcement 

as a function of time. The results demonstrate that the distribution of Ti is approximated 

by a lognormal distribution with mean value and standard deviation of 34 and 19 years 

respectively. The histogram of resulting Ti is shown in figure 4-4(a). 

  
(a) (b) 

Figure 4-4. Histogram of:  a) time to initiation of corrosion (Ti) b) ratio of the area of 

the remaining reinforcing bars to the area of intact bars after 50 years of service life. 

 

The results of the simulation also indicate that the ratio of the area of the remaining 

reinforcing bars (A(t)) to the area of intact bars (A0) follows a beta distribution 

(β(45.67,4.52)) with mean value and standard deviation of 0.91 and 0.04 respectively. 

The effect of the deterioration of the existing structure is accounted for in the analyses by 

considering the spalled concrete section of the columns and a 10% reduction of the gross 

steel area. Figure 4-5 compares predicted behaviour of as-built column in its original 

condition and when corrosion and cover spalling takes place using Response 2000 (Bentz, 

2001) software. 
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(a) (b) 

Figure 4-5. Predicted force-displacement response of as-built column: a) Intact b) 

Spalled and corroded 
 

4.4 BRIDGE RETROFITTING STRATEGY 

In the companion paper (Mahmoudi et. al., 2015 A), it is shown that the early shear failure 

of the concrete beam dominates the overall response of the frame. The objective of the 

retrofit is to improve the performance of the frame with minimum intervention. The 

retrofitting strategy is based on strengthening the reinforced concrete beam and beam-

column joints so that yielding occurs in the columns rather than a brittle shear failure in 

the cap beams. It is noted that the bridge is located over railroad tracks and a municipal 

street so a retrofit method which requires minimum interference with traffic is essential.  

Mitchell (2002) demonstrated that retrofitting cap beams with reinforced concrete sleeves 

results in an increase in strength and ductility of the beam. The same approach is used in 

this study. It is noted that due to the geometry of the frame structure, the additional 

longitudinal reinforcement can only be added to the sides and bottom of the beams. Four 

30M and two 35M bars are placed in three layers as shown in figure 4-6(a). To ensure 

that the added reinforced concrete is fully composite with the existing beam, horizontal 

bars with a fixed head on one end and a threaded head at the other end are used. Additional 

15M U-stirrups at a spacing of 80mm for edge beams and 150mm for interior beams are 

added to increase the shear resistance. To facilitate placement, self-levelling concrete 

with a minimum specified compressive strength of 60 MPa is used. In addition, a grid of 
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15M double-legged stirrups spaced at 55 mm in horizontal and vertical directions is used 

to enhance the shear resistance at the joints. Figure 4-6(b) illustrates the retrofitted beam 

detail at the location of the joint. Figure 4-7 compares the behaviour of as-built and 

retrofitted beams and shows that the retrofitted beam demonstrates significantly higher 

capacity and ductility. 

  
(a) (b) 

Figure 4-6. Detail of a) Retrofitted beam section b) Retrofitted beam at joint location 

 

  
(a) (b) 

Figure 4-7. Predicted force-displacement response of a) as-built beam with a brittle 

shear failure b) Retrofitted beam 
 

4.5 FINITE ELEMENT MODELING AND LABORATORY TEST 

The bridge is modeled with finite elements using Ruaumoko 3D  (Carr, 2001). The 

moment-resisting frame is idealized with 69 elements divided into six types (Figure 4-8), 
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of which, 23 have possible non-linear behaviour. These elements correspond to the 12 

column and the 11 cap beam segments whose nonlinear response are determined with the 

Response 2000 software (Bentz, 2001) (figures 4-5(b) and 4-7(b) ). The grid of steel 

beams that support the concrete deck have elastic linear behaviour and are connected to 

the moment-resisting frame by rocker supports.  

A modal analysis of the Finite Element Model demonstrates that the retrofit increases the 

stiffness of the structure and the first natural period of the structure decreases from T=0.87 

sec to T=0.83 sec. 

Traditional statistical theories have assumed that the formulation of the model is known 

and tried to find the input parameters which result in responses consistent with a given 

sample of data. However, in practice, model uncertainty can be more significant than 

other sources of uncertainty (Chatfield, 1995). Laboratory testing provides information 

which can be used to quantify the goodness of a model. 

 
Figure 4-8. Structural idealization of the moment-resisting frame (Left side) 

 

In order to investigate the goodness of the finite element model and to display the actual 

behavior of the existing structure, a half-scale model of the retrofitted frame was designed 

and constructed in the structural laboratory at McGill University and the model was tested 

under reversed cyclic loading (Coulombe, 2007). The axial load was kept constant during 

the test and the lateral load level was increased gradually to determine the loads 

corresponding to various cracking events and to determine the dominant failure 

mechanism.  
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The results obtained from the laboratory test of the half-scale structure demonstrate that 

the retrofitted beams are stronger than the columns, so column failure is the dominant 

failure mode. The test also demonstrated that although as-built columns do not meet the 

requirements for ductile columns, they exhibited a displacement ductility of about 2.3 

(Coulombe, 2007). 

According to the results from the laboratory test, the first and second yielding of the 

columns occur at lateral load levels of 120 kN and 142.5 kN respectively while the finite 

element model predictions are for lateral loads of 117.8 and 140.9 kN, respectively 

indicating good agreement. However, since a defined acceptable ratio or accuracy of the 

results is not provided in the literature, a stochastic approach is required to validate and 

verify the model. 

 

4.6 FINITE ELEMENT MODEL VALIDATION 

Two stochastic approaches are applied in this study to validate the finite element model 

of the bridge structure. The first approach is based on classical hypothesis tests and 

provides useful information about the confidence of the predicted model. However, this 

approach may be misleading and hard to interpret (Zhang and Mahadevan, 2003 and 

Edwards, 1963). The second approach however is based on Bayesian hypothesis testing 

and provides an unbiased model validation test. These approaches can be utilized for 

either single or multiple output data. In the companion paper (Mahmoudi et. al. 2015 A), 

finite element model validation is performed for a single output of the lateral load 

corresponding to shear failure of the beam; however, the aforementioned methods are 

applied using two observations in this paper. Lateral loads which result in the first and 

second yielding in columns are considered as the observations and the input variables are 

the ratio of the component height to its core height (α), compressive strength of concrete 

(fc), yielding stress of reinforcing bars (fy) and axial dead load (Ld). Distribution 

parameters of the variables are presented in Table 4-2. For each method, the power of test 

is also investigated to demonstrate their effectiveness. Power of test is defined as the 

probability that the test will reject a model when the model is incorrect. 
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4.6.1 CLASSIC HYPOTHESIS APPROACH 

Hills and Trucano (1999) stated that if an experiment falls inside a given confidence 

bound of the predicted model, the experiment and the model are consistent; otherwise the 

model will be rejected. This test is the foundation of the methods which reject incorrect 

models.  

An uncertainty propagation technique should be used to evaluate the confidence interval 

of the predicted model. Hence, the effect of uncertainties of input variables on the 

predicted model is evaluated through Monte Carlo Simulation (MCS). However, since 

performing MCS of finite element model is not computationally feasible, MCS is 

performed on a metamodel which is developed using the Response Surface Method 

(RSM) as suggested by Chen et. al. (2004). All the input variables are transferred to a 

space with a range of -1 to 1 so that each predictor have an equal share in determining the 

response. The predicted lateral loads are represented by quadratic polynomial functions 

of the variables. The resulted RSMs are shown in equations 4-4 and 4-5 in which index 1 

represents the transformed variables. 

𝐹1 = 0.292𝛼1
2 − 3.088𝛼1 − 0.048𝑓𝑐1

2 + 0.991𝑓𝑐1 − 0.109𝑓𝑦1
2 + 5.632𝑓𝑦1

+ 0.003𝐿𝑑1
2 + 0.754𝐿𝑑1 + 0.189𝛼1. 𝑓𝑐1 − 0.459𝛼1. 𝑓𝑦1

− 0.059𝛼1. 𝐿𝑑1 + 0.155𝑓𝑐1. 𝑓𝑦1 + 0.033𝑓𝑐1. 𝐿𝑑1

− 0.047𝑓𝑦1. 𝐿𝑑1 + 74.22 

(4-4) 

𝐹2 = 0.512𝛼1
2 − 6.548𝛼1 + 0.127𝑓𝑐1

2 + 3.094𝑓𝑐1 − 0.584𝑓𝑦1
2 + 3.068𝑓𝑦1

− 0.018𝐿𝑑1
2 + 0.191𝐿𝑑1 + 0.134𝛼1. 𝑓𝑐1 − 1.103𝛼1. 𝑓𝑦1

− 0.093𝛼1. 𝐿𝑑1 − 0.152𝑓𝑐1. 𝑓𝑦1 + 0.01𝑓𝑐1. 𝐿𝑑1 − 0.183𝑓𝑦1. 𝐿𝑑1

+ 94.95 

(4-5) 

in which F1 and F2 represent the lateral forces corresponding to the first and second 

yielding of the columns. The standard deviation of residuals for the regression models are 

0.003 and 0.017 and the coefficient of determination (R2) for them are 1 and 0.999, 

respectively. It is noted that performing a hypothesis test with 5% significance level on 
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the coefficients demonstrates that neither F1 nor F2 depend on Ld
2 and F2 doesn’t depend 

on 𝑓𝑐1. 𝐿𝑑1, so corresponding coefficients are regarded as zeros. 

MCSs with a sample size of 1E6 are developed to obtain the Probability Density Function 

(PDF) of F1 and F2 from equations 4-4 and 4-5. The results show that they follow a joint 

normal distribution with the following parameters, 

{
𝜇𝐹1

𝜇𝐹2
} = {

117.88
141.1

} and ∑ = [ 4.662 0.89 ∗ 4.66 ∗ 7.79
0.89 ∗ 4.66 ∗ 7.79 7.792 ] (4-6) 

In which 𝜇𝐹1
 and 𝜇𝐹2

 and ∑ are the mean values and covariance matrix of F1 and F2. 

Figure 4-9 illustrates the classic hypothesis test for F1 and F2 individually and indicates 

that the test fails to reject the model in both instance at the 5% confidence level. 

  
(a) (b) 

Figure 4-9. Model Validation using classic hypothesis testing based on: a)F1 b)F2 

 

Figure 4-10(a) shows the 95% confidence interval of the joint distribution of F1 and F2 

and figure 4-10(b) demonstrates the power of classic hypothesis test to validate the model. 

The power of test value at a given point presents the probability of rejection given that 

the model is false. In calculation of the power of test, the same covariance matrix as 

shown in Equation 4-6 is assumed for the false model. It is noted that if the significant 

level is set at 95% confidence interval the joint experiments fail to reject the model. 
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(a) (b) 

Figure 4-10. a) Classic Hypothesis test for multiple observations of F1 and F2 b) Power 

of the test 

 

4.6.2 BAYESIAN MODEL VALIDATION APPROACH 

As mentioned earlier, despite the fact that the classic hypothesis testing approach provides 

a powerful method to represent the confidence of the model and to reject incorrect 

models, it does not validate or accept the model. Hence, the Bayesian approach is also 

used in this study. 

According to Mahadevan and Rebba (2004), a model is accepted if the observation favors 

the model. In other words, if the probability density of the predicted value increases as 

the condition of the new observations, the model will be acceptable. Mahadevan and 

Rebba (2004) demonstrated that for a single observation test the Bayes factor can be 

calculated from equation 4-7: 

𝐵(𝑥0) =  
𝑓(𝑥|𝑦)

𝑓(𝑥)
|𝑥=𝑥0

 (4-7) 

In which x0 is the predicted value, f(x) represents the prior PDF and f(x|y) represent 

posterior PDF. It is noted that a value of B(x0) greater than 1 validates the model. Rebba 

and Mahadevan (2006) suggested that for multiple observations, the Bayes factor is equal 

to the ratio of the posterior joint probability density to the prior joint probability density 

for the observations. 

The prior joint PDF of outputs is obtained in the previous section. In order to estimate the 

posterior joint PDF, first, input variables are updated given the observation points using 

Bayesian updating with equation 4-8 and then, the posterior joint PDF is obtained from 
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the updated input variables using  MCS, 

𝑓(𝜃𝑖|𝑦) =  
𝐿(𝑦|𝜃𝑖). 𝑓(𝜃𝑖) 

∫ 𝐿(𝑦|𝜃𝑖). 𝑓(𝜃𝑖) 𝑑𝜃𝑖𝜃𝑖

 (4-8) 

in which 𝜃𝑖 represents the input variable, y is the vector of observations, L(y|𝜃i) is the 

likelihood of the observations given the parameter and f(𝜃i) represents the prior PDF of 

the input parameter θi. The PDF of input variables are updated based on equation 4-8 

using the MCS method. The results are shown in Table 4-2. It is noted that the posterior 

distribution parameters obtained in the companion paper (Mahmoudi et. al, 2015 A) are 

used as prior parameters in this paper since the same model is retrofitted and used in this 

study. 

Table 4-2. Parameters of the input variable distributions in prior and posterior states 

Input variables 

 

Distribution 

type 

Prior Posterior 

Mean 

Value 

Standard 

Deviation 

Mean 

Value 

Standard 

Deviation 

 

α 

fc (MPa) 

Fy (kN) 

Ld (kN) 

Normal 

Normal 

Normal 

Normal 

1.41 

43.9 

513 

71.71 

0.07 

5.44 

15.39 

8.31 

1.39 

43.13 

522.06 

73.09 

0.05 

3.43 

7.24 

8.04 

MCSs with a sample size of 1E6 are developed to obtain the posterior Probability Density 

Function (PDF) of F1 and F2 from equations 4-4 and 4-5 and using the updated PDF of 

the input variables. The results show that they follow a joint normal distribution with the 

following parameters (the index p represents the posterior state). 

{
𝜇𝐹1

𝑝

𝜇𝐹2
𝑝} = {

119.83
 142.11

} and ∑𝑝 = [  3.052 0.93 ∗ 3.05 ∗ 5.28
0.93 ∗ 3.05 ∗ 5.28 5.282 ] (4-9) 

Hence, posterior and prior joint probability density values at the experimental point 

[117.88 141.1] are equal to 2.71E-2 and 7.83E-3 respectively which results in a Bayes 

factor of 1.23 which validates the model. The power of the Bayesian model validation 

test is obtained assuming the same covariance matrix as presented in Equation 4-9 for the 

false model. The resulted power of test for Bayesian hypothesis test is presented in Figure 
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4-11.  

 
Figure 4-11. Power of Bayesian Test 

 

Comparing powers of the two applied model validation methods, it is inferred that 

Bayesian method demonstrates a higher test power. Another way to present the 

effectiveness of the methods is to obtain the domain of observations which result in 

acceptance of the finite element model. The acceptable region for hypothesis test 

corresponds to 95% confidence bound whereas the acceptable region resulted from 

Bayesian hypothesis test demonstrates the region which results in a Bayes factor of 1 and 

higher. Figure 4-12 presents the acceptable observation domain for the two methods. 

 
Figure 4-12. Domain of observations which result in acceptance of the finite element 

model 

 

From figure 4-12, it is inferred that Bayesian model validation method presents stricter 

criteria for model acceptance. However, since there may not be a unique acceptable model 

and each of the mentioned methods accepts a variety of models and as it is shown in 

Figure 4-12, the acceptable domain of Bayesian method is not a subset of the hypothesis 
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test acceptable domain, it is favorable to use both methods in validating finite element 

models. 

4.7 INCREMENTAL DYNAMIC ANALYSIS (IDA) 

Variability in seismic inputs is a significant source of uncertainty in the seismic 

evaluation of structures. The IDA technique (Vamvatsikos and Cornell, 2002) defines the 

relationship between the Intensity Measure (IM) and the Engineering Demand Parameter 

(EDP) while taking into account the record-to-record variability. IDA uses non-linear 

dynamic analyses with increasing scaling factors for each input ground motion record to 

evaluate the response of the structure. It has been suggested by Cornell et. al. (2002) that 

the estimate of the median demand (EDP̂) can be represented by a power model as: 

EDP̂ = a. IMb (4-10) 

where a and b are regression coefficients. Given the IM, the demand is assumed to be 

lognormally distributed with a logarithmic standard deviation βEDP|IM. Therefore, the 

logarithm of the demand is normally distributed. 

𝐿𝑛(𝐸�̂�𝑃) =  𝐿𝑛(𝑎) +  𝑏. 𝐿𝑛(𝐼𝑀) (4-11) 

The selection of proper ground motion records, EDP and IM for the structure should be 

done carefully since they can all affect the results. In the companion paper, it is shown 

that the ground motion record set suggested in ATC-63 is appropriate for the studied 

bridge located in Montreal.   

Peak Ground Acceleration (PGA) and Spectral Acceleration (Sa) at the first natural 

period of the structure are the most popular choices of IM in the literature (Nielson, 2005). 

Giovenale and Cornell (2004) suggested that the variation about the median (βEDP|IM) is a 

measure of effectiveness of the selected IM to estimate the seismic demand. The higher 

the variability of the EDP for a given IM, the lower is the effectiveness of the selected 

IM to estimate seismic demand. According to the results presented in the companion 

paper, Sa at the first natural period of the structure is the better IM for the studied structure 

when curvature ductility of structural components is considered as the EDP. 
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4.7.1 IDA RESULTS 

IDA results demonstrate that the beams do not suffer any shear distress or any flexural 

yielding while initial yielding in the columns is attained at 0.15g. The IDA results for an 

exterior column (Element 1), an interior column (Element 5) and a beam (Element 13) 

under ATC36 ground motion records are shown in figure 4-13. It is noted that the flexural 

demand of the beam remains constant after yielding occurs in the columns. Figure 4-13 

also presents the 16, 50 and 84 percentile curves of the IDA. These are determined by 

calculating curvature ductilities associated with a given acceleration level for different 

earthquakes and repeating the calculations for increasing acceleration levels. 

  
(a) (b) 

 
(c) 

Figure 4-13- IDA results associated with the 16, 50 and 84 percentiles for: (a) Exterior 

Column (Element 1) (b) Interior Column Component (Element 5) (c) Beam Component 

(Element 13) 
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4.8 FRAGILITY CURVES 

A fragility curve is the conditional probability that the structure or structural component 

sustains a specified damage-level or limit state for a given ground motion intensity. 

Fragility curves can be developed for structural components as well as for the structure 

as a whole system. Taking into account the variability in seismic inputs, structural 

behaviour and component capacities, component fragility curves are useful tools to 

identify weak parts of the structure while system fragility curves are useful in seismic risk 

assessment of the structure. 

Assuming lognormal distributions for EDP and the structural capacity, fragility curves 

are determined from equation 4-12. 

𝑃 [
𝐷

𝐶
≥ 1 | 𝐼𝑀] =  𝛷(

𝐿𝑛(𝐸�̂�𝑃 𝑆𝑐)⁄

√𝛽𝐷|𝐼𝑀
2 +  𝛽𝑐

2

) 
(4-12) 

in which 𝐸𝐷�̂� is the median of demand at the selected IM, Sc is the median of capacity 

for the selected limit state, 𝛽𝐷|𝐼𝑀 is the logarithmic standard deviations of demands and 

𝛽𝑐 is the logarithmic standard deviation of the limit state (capacity). 

 

4.8.1 COMPONENT FRAGILITY 

Component fragility curves are developed for each element for the limit state of dynamic 

instability (collapse). It is assumed that component fragility curves have lognormal 

distribution as presented in equation 4-12. Curvature ductility is considered as the EDP 

and is estimated at various IMs using equation 4-11 in which a and b coefficients are 

calculated by a regression analysis over the results of IDA. Values of Sc, 𝛽𝐷|𝐼𝑀 and 𝛽𝑐 are 

given in Table 4-3. It is noted that according to figure 4-13(c), beam components remain 

elastic. Hence, the high margin of safety results in negligible probability of failure in 

beams. Fragility curves of an interior column (Element 5) and an exterior column 

(Element 1) under ATC63 ground motion records are compared and shown in figure 4-

14. 
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Figure 4-14- Comparison of the fragility curves of interior and exterior columns 

(Element 5 and 1) under ATC36 ground motion records 

 

Table 4-3. Distribution values used in developing component fragility curves under 

ATC63 records 

 Sc 𝛽𝐷|𝐼𝑀 𝛽𝑐 

Exterior 

Column 

6.43 0.2610 0.0699 

Interior 

Column 

6.43 0.2363 0.0699 

Beam 7.10 0.0395 0.0633 

 

From figure 4-14, it is inferred that exterior columns are the most critical components 

under lower spectral accelerations. However, interior columns become the most critical 

components under higher spectral accelerations which lead to yielding and load 

redistribution in the structure.  

4.8.2 SYSTEM FRAGILITY 

In this study, the structural system is modelled as a series system. In other words, the 

system fragility represents the probability of having at least one failure at a given Sa. 

System fragility is obtained by comparing the Joint Probabilistic Seismic Demand Model 

(JPSDM) of natural logarithm of 𝐸𝐷�̂�s with the corresponding probabilistic models of 

natural logarithm of component capacities as proposed by Nielson and DesRoches 

(2007). JPSDM is obtained by considering the mean value vector (from equation 4-11), 

the variance ( 𝛽𝐷|𝐼𝑀) and Sa-dependent correlation between components. Correlations are 

calculated at each Sa using IDA results which provide a set of demands for each 

component at each Sa. The correlations between an interior column and an external 
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column are presented in figure 4-15. It is noted that the correlation between columns 

decrease at spectral accelerations which cause the columns enter their plastic behavior 

zone. A MCS is used to simulate the JPSDM and component capacities and to calculate 

the probability of having at least one component failure at a given Sa. 

 

Figure 4-15. Correlations between natural logarithm of demands for elements 1 and 5 

and 13 (an exterior Colum and an interior Column) over a range of Sa 

 

Finally, having probability of failure at various spectral accelerations, a lognormal 

distribution is fitted to obtain the system fragility of the bridge structure. Figure 4-16 

represents the system fragility of the bridge under ATC63 ground motion records 

accompanied with 95% prediction intervals. Prediction intervals present the range of the 

new or future observations and the width is a measure of the regression quality and 

numerical uncertainty of the analysis. 

 

Figure 4-16. System fragility curve with confidence and prediction intervals under 

ATC63 ground motion records 
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The contribution of each component to the system fragility can be visually investigated 

by comparing of component fragilities with the system fragility as it is presented in figure 

4-17 (a). However, Component Importance Measure (CIM) can be quantitatively 

evaluated using equation 4-13 proposed by Kang et. al. (2008). 

𝐶𝐼𝑀𝑖 = 𝑃(𝑓𝑖|𝑓𝑠𝑦𝑠) =  
𝑃(𝑓𝑖 ∩ 𝑓𝑠𝑦𝑠)

𝑃(𝑓𝑠𝑦𝑠)
 (4-13) 

in which 𝑓𝑖 denotes the event of having failure in component i and 𝑓𝑠𝑦𝑠 represents the 

event of occurrence of system failure. CIMs of the selected exterior column and interior 

column are calculated over a range of Sa and are presented in Figure 4-17(b). It is inferred 

that under low spectral accelerations, exterior columns are the most critical components 

while the failure of an interior column is the dominant failure mode under higher spectral 

accelerations. 

  
(a) (b) 

Figure 4-17. Contribution of component failures in system failure under ATC63 records 

(a) Visual comparison of system fragility versus component fragility curves (b) CIM of 

components over Sa 

 

In order to demonstrate the overall effect of the proposed retrofit on reliability of the 

highway bridge, system fragility curves of the existing and the retrofitted structures are 

compared in figure 4-18. It is noted that by retrofitting the beams of the frames with 

minimal interference with the normal function of the highway bridge, the Sa (at T=0.83 

sec) with 50% probability of causing a failure in the structure increases from 0.07g to 

0.57g. 
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Figure 4-18- Comparison of the system fragility curves of the existing and the 

retrofitted structures underATC36 ground motion records 

 

4.9 CONCLUSION 

A retrofit strategy using minimum intervention is proposed for an existing deficient 

highway bridge located in Montreal and seismic fragility curves of the retrofitted 

structure are developed considering significant uncertainties involved in modeling and 

evaluating structural demands and capacities. Uncertainties arising from finite element 

modeling are addressed through model validation analyses; uncertainties associated with 

seismic inputs are assessed by IDA and are reduced by proper selection of IM-EDP pair; 

and uncertainties involved in component capacities are accounted for in component and 

system fragility analysis. 

The selected retrofitting strategy involves the strengthening of the concrete cap beams to 

avoid shear failure and to provide sufficient flexural resistance so that yielding occurs in 

the columns rather than in the beams. The retrofitted structure is modeled by a nonlinear 

Finite Element model and a laboratory tests is used to quantify the goodness of a finite 

element model as well as to display the actual behavior of a structure or a structural 

component. The model is validated with laboratory test results using a classic hypothesis 

test and a Bayesian model verification approach. 

Moreover, the effects of corrosion of the reinforcing steel and spalling of the concrete 

cover on the columns are investigated in a probabilistic context. It is demonstrated that 

the corrosion initiation time for the studied structure follows a lognormal distribution with 

mean value of 34 years and the corroded reinforcement area follows a beta distribution 
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with mean value of 9%. 

IDA is performed on the model and component and system fragility curves are developed 

considering Sa-dependent correlation between structural components. It is demonstrated 

that the retrofit of the beam completely changes the performance of the frame. The as-

built frame suffers a brittle shear failure at a predicted spectral acceleration (at T=0.83 

sec) of 0.07g whereas the retrofitted frame is predicted to experience general yielding of 

the columns with the ability to undergo spectral accelerations in excess of 0.57g. 
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CHAPTER 5: MANUSCRIPT 3 

BAYESIAN UPDATING AND STRUCTURAL MODEL VALIDATION OF 

BRIDGES BASED ON AMBIENT VIBRATION TESTS 

S. N. Mahmoudi, L. Chouinard 

 

ABSTRACT: 

Analytical seismic fragility analysis of bridges provides a powerful tool to identify weak 

structural components and to assess the reliability of existing structures. To decrease 

uncertainties relative to structural models, analysts often acquire field data to validate 

their models. Ambient vibration test provides a nonintrusive and inexpensive procedure 

to assess the dynamic behaviour of full-scale structures. The objective of this paper is to 

utilize Bayesian methods as a robust approach to update input variables of the model and 

to assess the confidence and the uncertainties involved in a structural model based on 

ambient vibration test results. In this study, the total mass of the structure, concrete 

strength and rotational stiffness of the bearings are considered as variables which are 

updated based on the first natural frequency of the structure. This approach is applied to 

a typical 5-span concrete bridge as a case study.  

 

5.1 INTRODUCTION 

Many developed countries are struggling with the issue of deteriorated bridges in their 

transportation system due to aging and damage caused by increased magnitude and 

volume of vehicular loads. Moreover, seismic deficiencies of existing bridges must be 

assessed and addressed.  In both cases, these require some assessment that often requires 

a model that offers an accurate representation of the current condition and response of the 

bridge. 

Ambient vibration testing has recently become a popular method for assessing the 

dynamic behaviour of full-scale structures. This test is used to estimate the modal 

parameters of structures which are natural frequencies, mode shapes and corresponding 
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damping ratios. Ambient vibration surveys are non-intrusive because no excitation 

equipment is needed since the natural or environmental excitations are used which 

translates into minimal interference with the normal function of the structure. 

Modal parameters are related to stiffness, mass and damping of the structure. Hence, the 

results of this test can be used to validate and update the parameters which have 

significant influence on structural stiffness, mass or damping. Moreover, comparing the 

modal information obtained from ambient vibration testing and computer models can 

provide an insight into model uncertainties of the structural model when all components 

are minimally loaded. 

In addition, any major structural damage which affect the structural stiffness can be 

detected and located using ambient vibration data. 

In this paper, the Finite Element model of the bridge and the ambient vibration survey 

results are first presented. Then, validation of the model is performed using two stochastic 

approaches: a Classical hypothesis testing approach and a Bayesian hypothesis testing 

approach. Updating of input parameters of the structural model and major deficiency 

detection are also discussed in the Bayesian hypothesis test section. 

 

5.2 FINITE ELEMENT MODELING AND AMBIENT VIBRATION TEST 

The bridge under study has three lanes as well as a bicycle path and a pedestrian walkway. 

The heavy pedestrian walkway and the light bicycle path result in a non-uniform weight 

distribution of the bridge section and are expected to affect the natural frequencies, 

dominant modes and generally the behavior of the structure.  

The bridge is designated as a lifeline structure and needs to meet the highest standards in 

terms of reliability. This Bridge consists of 5 spans with a total length of 232 meters. The 

superstructure consists of a concrete deck with 0.203 m thickness which is supported by 

5 steel girders with varying depth. Except for the bearing at pier 2, which is a low type 

fixed bearing, all other bearings at the piers and abutments are high steel bearings. The 

piers located in the river bed are supported by regular footings on hard rock.  
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The bridge is modeled with finite elements with the computer program SAP2000. A three 

dimensional view of the model is shown in Figure 5-1. The bridge deck and the girders 

are modeled with 4-node shell elements. The piers are modeled with nonlinear multi 

layered shell elements. Cap beams are modeled with beam elements and the bearings and 

the abutments are modeled using Nllink elements which have six independent springs, 

one for each of six deformational degrees of freedom (SAP2000, 1996). Non-confined 

concrete material behaviour is assumed to model the behaviour of the piers (Mander, 

1988). The behaviour of bearings is determined by finite element simulation in ABAQUS 

program. And the behaviour of the abutments is determined based on the proposed model 

by Shamsabadi et. al. (2007) for granular soils. The behaviour of abutments and bearing 

are shown in Figure 5-2. Detailed analytical modeling of bridge components are provided 

in Appendix A. 

 

Figure 5-1. Three Dimensional view of Finite Element model 
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(a) (b) 

Figure 5-2. Force-Displacement relationship in a) Abutments b) Bearings 

 

Ambient vibration test was performed using 6 sensors, 4 of which were roving sensors 

and 2 reference sensors. A total of 11 setups were used to cover 21 points on each side of 

the bridge and the movements in 3 directions were recorded. More details regarding 

ambient vibration testing of the studied bridge are provided in Appendix B. Saeed and 

Chouinard (2013) obtained the natural frequencies and the mode shapes using Enhanced 

Frequency Domain Decomposition (EFDD) analysis. Figure 5-3 presents the first three 

mode shapes of the structure and Table 5-1 compares natural periods of the bridge 

obtained with the ambient vibration test and with the finite element model for the first 

twenty natural modes of the bridge which correspond to 76%, 73% and 50% mass 

participation factors in x, y and z directions, respectively. From figure 5-3, it is inferred 

that the natural modes of the bridge are combined with the torsion resulted from non-

uniform weight distribution of the bridge section. 
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(a) (b) (c) 

Figure 5-3. Results of EFDD analysis for the (a) first, (b) second and (c) third mode 

shapes of the bridge 

 

In AVT, the system identification is based on the assumption that the structure behaves 

linearly under environmental excitations. However, it is noted that although only natural 

excitations, mostly due to traffic and wind, are used in ambient vibration surveys and 

resulting forces are minimal, large structures with numerous joints may demonstrate 

nonlinear behaviour. Because in some cases all of the structural components and joints 

may not be engaged under such low loading. This nonlinear behaviour could result in 

inaccuracy in test results. 

In addition, input excitations in ambient vibration testing are assumed to be a Gaussian 

White Noise with uniform power over the frequency domain which can excite all of the 

structural modes. However, in practice, it is possible that the test cannot detect some of 

the natural modes of the structure. It is seen in table 5-1 that the fourth mode of the 

structure was not detected in the performed ambient vibration test. 
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Table 5-1. Comparison of natural periods obtained by ambient vibration test and the 

Finite Element model 

Mode number 1 2 3 4 5 6 7 8 9 10 

           

Measured Period Sec 0.69 0.63 0.46 - 0.40 0.36 0.30 0.28 0.26 0.26 

Model Period Sec 0.70 0.62 0.51 0.42 0.39 0.37 0.31 0.28 0.26 0.26 

Error (%) 0.76 1.13 10.34 - 2.98 1.62 3.71 1.41 0.86 1.57 

            

Mode number 11 12 13 14 15 16 17 18 19 20 

           

Measured Period Sec - 0.21 0.19 0.18 0.16 0.15 0.14 0.13 0.11 0.10 

Model Period Sec 0.23 0.20 0.20 0.18 0.18 0.14 0.13 0.13 0.13 0.12 

Error (%) - 1.37 1.48 1.66 13.21 3.74 6.04 2.85 10.45 24.16 

            

5.3 FINITE ELEMENT MODEL VALIDATION 

Two stochastic approaches are used in this study to validate the finite element model of 

the bridge structure. These approaches can be utilized for either single or multiple 

observations. The first approach is based on classical hypothesis tests and demonstrates 

the confidence level of the model. However, this approach focuses on rejecting incorrect 

models. Conversely, the second approach focuses on accepting appropriate models using 

Bayesian hypothesis testing. 

In this paper, concrete density, concrete strength and rotational stiffness of the bearings 

are considered as updating parameters. It is noted that concrete strength is selected 

because it affects the stiffness of the structural components. 

Moradalizadeh (1990), Slastan (1993) and Slawu (1993) argued that lower modes are best 

suited for damage detection in structures. Hence, in this study, the first natural period of 

the structure is considered as the single experimental modal data point 
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5.3.1 CLASSIC HYPOTHESIS APPROACH 

Hills and Trucano (1999) stated that if an experiment falls inside a given confidence 

bound of the predicted model, the experiment and the model are consistent; otherwise the 

model will be rejected. This test is the foundation of the methods which reject incorrect 

models. 

An uncertainty propagation technique is used to evaluate confidence bounds of the 

predicted model. Hence, the probabilistic model of the first natural period of the structure 

is evaluated through Monte Carlo Simulation (MCS). However, since performing MCS 

of a finite element model is not computationally feasible, MCS is performed on a 

metamodel which is developed using Response Surface Method (RSM) as suggested by 

Chen et. al. (2004). 

In this study, concrete density and concrete strength are assumed to have normal 

distributions. The prior distribution variables are presented in Table 5-2. For each of the 

mentioned variables, the range of mean value minus standard deviation to mean value 

plus standard deviation is uniformly divided into 7 points for the full factorial design of 

natural period of the structure.  

Ambient vibration test results are also used to detect damage in bearings. Steel bearings 

are prone to rust and get locked up or frozen such that no movement is possible. In order 

to detect frozen bearings in the studied bridge, the rotational stiffness of the bearings is 

considered as either free or fixed. Hence, the structural results are provided for two 

models of M1 and M2 corresponding to free rotation and fixed rotation of the bearings. 

This approach is also applicable to detect other types of major deficiencies in the bridge 

i.e. cracking or delamination of the concrete or loss of prestress. 

The histogram and distribution of the predicted first natural period of the structure are 

obtained from a MCS which is performed with 1.000,000 samples for each model of 

bearing stiffness. The predicted natural period has a normal distribution with the mean 

value of 0.662 sec and standard deviation of 0.023 sec for the first model and 0.647 sec 

and 0.023 sec for the second model. The histograms of the response is shown in Figure 

5-4. 
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(a) (b) 

Figure 5-4. Model Validation using classic hypothesis approach (a) Free rotation at the 

bearings (b) Fixed rotation at the bearings 

 

According to the results of MCS, the observation of 0.69 Sec corresponds to 92.2% and 

98.2% confidence limits in the first and second model respectively. So, if the significant 

level is set at the 95% confidence interval, the experimental data fails to reject the first 

model while the second model is rejected by this test. 

 

5.3.2 BAYESIAN APPROACH 

The classic hypothesis approach provides a powerful method to represent the confidence 

of the model and to reject incorrect models but it does not validate or accept the model. 

Hence, the Bayesian approach is also used in this study. 

According to Mahadevan and Rebba (2004), a model is accepted if the observation favors 

the model. In other words, if the probability density of the predicted value increases as 

the condition of the experimental data, the model will be acceptable. Mahadevan and 

Rebba (2004) and Rebba and Mahadevan (2006) demonstrated that the Bayes factor can 

be calculated from equation 5-1: 

 
𝐵(𝑥0) =  

𝑓(𝑥|𝑦)

𝑓(𝑥)
|𝑥=𝑥0

 (5-1) 

in which x0 is the predicted value, f(x) represents the prior Probability Density Function 

(PDF) and f(x|y) represent posterior PDF. It is noted that the B(x0) higher than unity 

validates the model. In this study, the posterior PDF is obtained from a MCS similar to 
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the one of the previous part but considering updated input variables. The parameters of 

the input variables, concrete density and strength, are updated as shown in equation 5-2: 

 
𝑓(𝜃𝑖|𝑦) =  

𝐿(𝑦|𝜃𝑖). 𝑓(𝜃𝑖) 

∫ 𝐿(𝑦|𝜃𝑖). 𝑓(𝜃𝑖) 𝑑𝜃𝑖
 

𝜃𝑖

 (5-2) 

in which 𝜃𝑖 represents an input variable, L(y|𝜃i) is the likelihood of the observation given 

an input parameter and f(𝜃i) represents the prior PDF of the input. The PDF of input 

variables are updated based on equation 5-2 using MCS method. 

Zhang and Mahadevan (2000) suggested to assume equal prior likelihood for Mi when 

there is no available data. Hence, in order to demonstrate the probability of having frozen 

bearings in the bridge, an equal prior probability of 0.5 is assigned to each model of free 

and fixed bearings and the posterior probability is calculated based on Bayesian equation 

as presented in equation 5-3. 

 
𝑃(𝑀𝑖|𝑦) =  

𝑃(𝑀𝑖). ∫ 𝐿(𝑦|𝜃𝑖). 𝑓(𝜃𝑖|𝑀𝑖) 𝑑𝜃𝑖
 

𝜃𝑖

∑ 𝑃(𝑀𝑖) . ∫ 𝐿(𝑦|𝜃𝑖). 𝑓(𝜃𝑖|𝑀𝑖) 𝑑𝜃𝑖
 

𝜃𝑖

 (5-3) 

By evaluating 𝑃(𝑀𝑖|𝑦) in equation 5-3 using MCS results, the posterior probability of 

the models are equal to 0.808 and 0.192 respectively. So, there is a 0.192 probability of 

having frozen bearings. This result is consistent with the result obtained in the previous 

method. Hence, the model with free rotation at bearings will be used for the purpose of 

updating input variables and model validation in this paper. The PDF of the input 

variables are updated based on equation 5-2 using MCS method. The results are shown 

in Table 5-2. 

The resulting posterior PDF of the first natural period has a normal distribution with the 

mean value of 0.674 sec and standard deviation of 0.018 kN and is shown in figure 5-5. 

The PDF of the prior and posterior at x=0.662 sec is equal to 17.345 and 17.7471 

respectively. Hence, the Bayes ratio at the predicted point is equal to 1.023 and the model 

is validated. 

Table 5-2. Parameters of the input variable distributions in prior and posterior states 
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 Distribution 

Prior Posterior 

Mean 

Value  

Standard 

Deviation 

Mean 

Value 

Standard 

Deviation 

Inputs 

Concrete 

density 
Normal 

24 

(kN/m3) 
2.4 (kN/m3) 

26.23 

(kN/m3) 

1.85 

(kN/m3) 

Concrete 

strength 
Normal 

34.5 

(MPa) 
6.9 (MPa) 

32.15 

(MPa) 
6.58 (Mpa) 

Output 

First 

Natural 

Period 

Normal 
0.662 

(Sec) 
0.023 (Sec) 

0.674 

(Sec) 
0.018 (Sec) 

 

Figure 5-5. Model Validation using Bayesian hypothesis approach 

 

 

5.4 CONCLUSION 

A typical bridge is modeled with Finite Elements as a case study and the model is 

validated by two stochastic methods. Moreover, based on the first natural period of the 

structure which is obtained from ambient vibration test, the input variables which are 

concrete density and concrete strength have been updated using Bayesian method and the 

probability of a specific major deficiency of having frozen bearings is calculated. It is 

shown that the Finite Element model is acceptable in the range of elastic behaviour and 

the probability of having frozen bearings is less than 20%. 

The proposed methodology is also applicable for multiple experimental data i.e. a set of 

natural periods or modal shapes. 
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It is shown that the proposed methodology reduces the variance of model input variables 

and subsequently the parameter uncertainties of the structural model. In addition, by 

rejecting inappropriate probable models, such as the one with frozen bearings in this 

study, model uncertainty of the reliability analysis is also reduced. Hence, performing 

ambient vibration surveys and model validation is an inexpensive test which can 

significantly increase the accuracy of structural assessments. 
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CHAPTER 6: MANUSCRIPT 4 

SEISMIC FRAGILITY ASSESSMENT OF HIGHWAY BRIDGES USING 

SUPPORT VECTOR MACHINES 

S. N. Mahmoudi, L. Chouinard 

 

ABSTRACT 

Seismic fragility curves provide a powerful tool to assess the reliability of structures. 

However, conventional fragility analysis of structures comprising a large number of 

components requires enormous computational efforts. In this paper, the application of 

Probabilistic Support Vector Machines (PSVM) for the system fragility analysis of 

existing structures is proposed. It is demonstrated that SVM based fragility curves provide 

accurate predictions compared to component based fragilities developed by Monte Carlo 

Simulations (MCS). 

The proposed method is applied to an existing bridge structure in order to develop 

fragility curves for serviceability and collapse limit states. In addition, the efficiency of 

using the PSVM method in the application of vector-valued ground motion Intensity 

Measures (IM) as well as traditional single-valued IM are investigated. The results 

obtained from an Incremental Dynamic Analysis (IDA) of the structure are used to train 

PSVMs. The application of PSVM in binary and multi-class classifications is used for the 

fragility analysis and reliability assessment of the bridge structure. 

 

Keywords: System Fragility, Bridge Structure, Incremental Dynamic Analysis (IDA), 

Probabilistic Support Vector Machines (PSVM) 

 

6.1 INTRODUCTION 

Uncertainties involved in determining the demands of earthquakes and in evaluating the 

capacity of structures under cyclic loads lead designers to use probabilistic methods to 

quantitatively assess the structural reliability. Fragility curves represent the state-of-the-
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art in seismic risk assessment (SRA) and are defined as the conditional probability that a 

structure will meet or exceed a certain level of damage for a given ground motion 

intensity. Fragility curves are also useful tools to guide the efficient allocation of funds 

to strengthen or retrofit an existing structure. 

Fragility analysis was first introduced in the seismic evaluation of nuclear facility 

vulnerabilities in the late 1970s and early 1980s and since then has expanded into other 

areas of structural engineering. The methodologies for developing fragility curves of 

bridge structural systems which have been proposed in the past can be divided into two 

different approaches. 

The first approach is to develop fragility curves directly from structural analysis data. 

Hwang and Huo (1998) performed a time history analysis on a bridge structure and used 

a Bernoulli random variable with 0 and 1 outcomes to show whether or not the bridge 

sustains the defined damage-state at each level of the ground motion Intensity Measure 

(IM). They estimated the probability of failure based on the number of zeros and ones at 

each IM value and fitted a logistic probability distribution to present the fragility curve 

of the structural system. Shinozuka (1998) also considered the event of bridge damage as 

a realization from a Bernoulli experiment. However, he applied the maximum likelihood 

method to fit a lognormal distribution. This approach doesn’t account for uncertainties in 

component capacities. 

The second approach is to develop a probabilistic model for the seismic demands and 

obtain the fragility curve by comparing the distributions of demands and capacities at 

various IM levels. The probabilistic seismic demands can be generated from ground 

motion parameters and peak structural component responses by using regression analysis 

or parameter estimation techniques like maximum likelihood method. Hwang et. al. 

(2000), Shinozuka et. al. (2003), Bignell et. al. (2004) and Choi et. al. (2004) followed 

this approach. Nielson and DesRoches (2007) introduced a component based approach to 

develop system fragility curves. They developed joint probability distribution of seismic 

demands which accounts for correlations between components and have performed 

Monte Carlo Simulation (MCS) to integrate over all failure domains. Song and Kang 

(2009) have introduced a Matrix-based System Reliability (MSR) which considers the 
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correlations between components by introducing common source random variables using 

Dunnett–Sobel correlation coefficient matrix. 

Fragility analysis of structures comprising a large number of components using the 

aforementioned methods requires enormous computational effort. Moreover, numerous 

structural analysis data is required to estimate the component correlations at each IM 

level.  

In order to discover patterns in highly dimensional and complex data such as the 

relationship between ground motion intensities and peak structural responses, Machine 

Learning and Soft Computing methods such as Support Vector Machines (SVM) and 

Neural Networks (NN) can be used. Mitropoulou and Papadrakakis (2011) applied NN 

methods on the results of Incremental Dynamic Analysis (IDA) of a structure to 

accurately predict the structural responses. Jack and Nandi (2002) and Widodo and Yang 

(2007) proposed the application of SVM classification for machine condition monitoring 

and fault diagnosis. Ge et. al. (2004) compared the efficiency of NN and SVM methods 

in fault detection in a manufacturing process and demonstrated the superiority of SVM 

classification method. Hong-Shuang et. al. (2006) proposed SVM based MCS and SVM 

based FORM analyses for reliability assessment of simple structures. 

In this study, IDA results of 40 selected ground motion records are used to train 

Probabilistic Support Vector Machines (PSVM) in order to develop fragility curves. 

Binary PSVMs are used to develop system fragility curves for serviceability and collapse 

limit states and a multi-class PSVM is developed to estimate the damage state of the 

structure subjected to a given level of ground motion intensity. Fragility curves for single-

valued and multi-valued IMs are developed in this study. The structure of this paper is as 

follows: Section 2 presents a brief review of SVM and PSVM learning methods and 

model selection; Section 3 describes the modeling of the structure, ground motion 

selection and IDA and fragility analyses of the studied bridge; Section 4 presents the 

results obtained from PSVMs and component based system fragility methods and 

demonstrates the efficiency of PSVM method in reliability analysis and Section 5 

presents the conclusion of the paper. 
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6.2 REVIEW ON SVMS 

SVM introduced by Vapnik (1995) is an increasingly popular machine learning technique 

which has widespread applications in classification, regression and density estimation. 

Unlike traditional methods (e.g. Neural Networks), which minimize the empirical training 

error, SVMs are based on the structural risk minimization (SRM) principle and aim at 

minimizing an upper bound of the generalization error (Vapnik, 1995 and Cortes and 

Vapnik, 1995). 

A binary SVM uses a number of support vectors which are a subset of the training data 

to construct a hyper-plane to define the boundary between the two classes. In SVMs, 

some nonlinear kernel functions are used to map the training data into a higher 

dimensional feature where the data are linearly separable. There can be more than one 

possible hyper-plane to separate the data so the one with the maximum margin on 

separation will be selected. The use of nonlinear kernel function enables the SVMs to 

define complex decision functions and optimally separate two classes of data samples. 

Multiclass SVMs are usually implemented by combining several binary SVMs and direct 

multiclass SVM formulation is avoided due to various complexities. Probabilistic Support 

Vector Machines (PSVM) are also based on the results of binary SVMs. 

 

6.2.1 SVM CLASSIFICATION 

Given data input xi where 
d

i Rx  , the samples are assumed to have two classes namely 

positive class and negative class which are labelled as  1,1ix . SVM finds the 

optimal hyper-plane that separates one class from the other based on quadratic 

programming technique which is mathematically presented in equation (6-1). 
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Figure 6-1. Binary SVM classification 

 

𝑀𝑖𝑛(
1

2
𝑤𝑇 . 𝑤 + 𝐶 ∑ 𝜉𝑖

𝑁

𝑖=1

) 𝑠. 𝑡.  𝑦𝑖(𝑤𝛷(𝑥𝑖) + 𝑏) + 𝜉𝑖 − 1 ≥ 0    ,      𝜉𝑖 ≥ 0 (6-1) 

where Φ(xi) maps data from the input space into a high dimensional feature space, b is 

the bias term, ξi is the slack variable which is added to allow miss-classification of 

difficult or noisy data points (Vapnik, 1995), C is the penalty for the error term that  is a 

control to prevent over-fitting, and w is the weight vector which defines the boundary. 

The weight vector is defined as,   

 
𝑤 = ∑ 𝛼𝑗𝑦𝑗

𝑛

𝑗=1

𝛷(𝑥𝑗) (6-2) 

in which xj are the support vectors. An example of the optimal hyper-plane for two data 

sets is presented in figure 6-1. In order to solve equation 6-1, a dual formulation is used 

which is obtained by Lagrange technique. Then, the Sequential Minimization 

Optimization (SMO) method is applied as suggested by Platt (1998) to obtain the decision 

hyper-plane. Once the optimal hyper-plane is constructed, the classification decision 

score is calculated by equation (6-3). 

 
𝑓(𝑥) = ∑ 𝛼𝑗𝑦𝑗𝐾(𝑥, 𝑥𝑗)

𝑛

𝑗=1

+ 𝑏 (6-3) 
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where K(x,xj)=Φ(x)T.Φ(xj) represents the kernel function which corresponds to a dot 

product of two feature vectors in some expanded feature space. In this paper, polynomial 

and Gaussian Radial Basis Function (RBF) kernel functions are used which are 

formulated in Table 6-1. In binary classification, the sign of f in equation (6-3) determines 

whether the point x belongs to the positive or the negative class. However, the value of f 

is required in PSVM analysis. 

 

Table 6-1. Formulation of Kernel Functions 

Kernel Function K(x,xj) 

Linear 𝑥𝑇 . 𝑥𝑗  

Polynomial (𝛾𝑥𝑇 . 𝑥𝑗 + 𝑟)𝑑 , 𝛾 > 0 

Gaussian RBF 
exp (− ||𝑥 − 𝑥𝑗||

2

/2𝛾2) 

 

6.2.2 PROBABILISTIC SUPPORT VECTOR MACHINES (PSVM) 

In equation (6-3), f(x) represents an uncalibrated distance measurement of x to the 

separating hyper-plane in the feature space. Platt (2000) and Lin et. al. (2003) proposed 

an algorithm to map the f value into the positive class posterior probability by applying a 

sigmoid function to the SVM output as presented in equation (6-4). 

).(where,
))(exp(1

1
)()()|1Pr( , x

x
xx ff

BfA
pfPy BA 




 

(6-4) 

The best parameter setting Z*=(A*,B*) is determined by solving the following regularized 

maximum likelihood problem in which N+
 and N- are the number of positive and negative 

training data points respectively. 
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Hastie and Tibshirani (1998) proposed Pairwise coupling for multi-class classification 
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problems. Pairwise coupling combines the probabilistic outputs of all the one-versus-one 

binary classifiers in order to estimate the posterior probabilities Pi=prob(wi|x), i=1,…, k. 

In which k is the number of classes. It is noted that for a k-class problem k(k-1)/2 binary 

classifiers are required. Wu et. al. (2004) proposed the optimization problem presented in 

equation (6-6) to obtain the probability of x belonging to class i. 
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 (6-6) 

in which rij = P(y=i| y=i or j, x) are auxiliary variables which represents the binary SVMs 

of the ith and jth classes and are calculated based on equation (6-4) and (6-5).This 

optimization problem provides a vector of multi-class probability estimates. Duan and 

Keerthi (2005) demonstrated that this pairwise PSVM technique is the most reliable SVM 

multiclass classification procedure. 

 

6.2.3 MODEL SELECTION 

A Model Selection technique is required to select the appropriate kernel function, kernel 

parameter (γ) and penalty parameter (C). A double re-sampling procedure with 

application of a K-fold method is used in this paper. First, a 10-fold Cross Validation is 

used to divide the data into training and test set. The training set is used for parameter 

selection, whereas the test set is used only for estimating the prediction risk associated 

with various kernel functions. In order to find the optimal parameters of (C, γ), a 9-fold 

cross validation is implemented to divide the training set into learning and validation sets. 

The learning set is used to estimate the hyper-planes for every set of (C, γ) and the 

validation set is used to estimate the error associated with each set of parameters. (C, γ). 

Those with the lowest average validation error are selected. Finally, the average values 

of prediction errors are compared to determine the best model and kernel function for the 

input data of this study. 

 

6.3 CASE STUDY 

The PSVM method is applied to obtain fragility curves of an existing highway bridge 

located in Montreal for serviceability and the onset of collapse limit states. In order to 
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train PSVM, damage states of the structural system given various ground motion 

intensities are required. Hence, a finite element model of the bridge is developed in 

SAP2000, 40 appropriate ground motion records are selected and an IDA on the structure 

is performed to define the damage states at various ground motion intensities. It is 

assumed that the structural system functions as a series system which implies that the 

system exceeds a limit state once any of its components exceeds that limit state. 

 

6.3.1 BRIDGE DESCRIPTION AND FINITE ELEMENT MODELING 

The bridge consists of 5 spans with a total length of 232 meters. The superstructure 

consists of a concrete deck which is supported by 5 steel girders with varying depth. 

Except for the bearing at the second pier, which is a low type fixed bearing, the other 

bearings at the piers and abutments are high steel bearings. The piers are located in the 

river bed and are supported by regular footings on hard rock.  

A three dimensional view of the model in SAP2000 is shown in Figure 6-2. The bridge 

deck and the girders are modeled with 4-node shell elements. The piers are modeled with 

nonlinear multi-layered shell elements. Cap beams are modeled with beam elements and 

the bearings and the abutments are modeled using NLlink elements which have six 

independent nonlinear springs, one for each of six deformational degrees of freedom 

(SAP2000, 1996). Non-confined concrete material behaviour is assumed for the piers 

(Mander, 1988). The behaviour of the bearings is determined by finite element simulation 

in ABAQUS and the behaviour of the abutments is based on the model by Shamsabadi 

et. al. (2007) for granular soils. The behaviour of abutments and bearing are shown in 

Figure 6-3. Detailed analytical modeling of bridge components are provided in Appendix 

A. 
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Figure 6-2. Three Dimensional view of Finite Element model of the bridge 

 

 

 
 

(a) (b) 

 

Figure 6-3. Force-Displacement relationship in a) Abutments b) Bearings 

 

6.3.2 GROUND MOTION SELECTION AND IDA 

The IDA technique (Vamvatsikos and Cornell, 2002) addresses the record-to-record 

variability which is a significant source of uncertainty in  seismic evaluations by using a 

set of scaled input ground motions to evaluate the response of a structure. By performing 

non-linear dynamic analyses with increasing scaling factors for each ground motion 

record, the relationship between the IM and the Engineering Demand Parameter (EDP) 

is obtained. The selection of the proper ground motion records, EDP and IM for the 

structure should be done carefully since they can all affect the results. 

Mackie and Stojadinovic (2003) developed fragility curves considering various IM-EDP 

pairs and demonstrated that there may not be a single choice which is appropriate for all 

cases. In this study, fragility curves for single-valued and vector-valued IM are 

developed. Spectral Acceleration at the first natural period of the structure (Sa(T1)) is 

considered as the single-valued IM and the pair of Sa and unscaled Epsilon (ε) is selected 

as the multi-valued IM as suggested by Baker and Cornell (2005). Epsilon (ε) is the 

number of logarithmic standard deviations by which a target ground motion differs from 

a median ground motion and is an indicator of spectral shape as it shows whether an Sa 

at a specified period is in a peak or a valley of the spectrum. Ground motions are assumed 
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to occur in the transverse direction and the Sa(T1) of the records is scaled up from 0.03g 

to 1.5g. Displacements of piers, bearings and abutments are considered as EDPs in this 

paper. 

The Uniform Hazard Spectrum (UHS) has been traditionally used as a target spectrum to 

determine appropriate set of ground motions. However, it is conservative to use the UHS 

as the target response spectrum because traditional probabilistic seismic hazard analysis 

ignores the joint probability of exceedance of spectral ordinates at different periods. 

Baker and Cornell (2006) introduced the “Conditional Mean Spectrum” (CMS) as a 

suitable alternative for the target spectrum. The main purpose of introducing CMS is to 

provide the expected response spectrum, conditioned on occurrence of a target spectral 

acceleration value at the period of interest (e.g. at the first natural period of the structure). 

CMS is defined by the conditional mean and standard deviation of spectral ordinates 

which are obtained using deaggregation of seismic hazard and ground motion prediction 

model based on the observations of correlations between spectral ordinates (Baker and 

Jayaram 2008). In this study, the ground motion prediction model developed by Atkinson 

and Boore (2006, 2008) are used for both ground motion selection and ground motion 

hazard assessment. The predicted median spectrum, UHS and CMS are presented in 

figure 6-4(a).  

Finally, a procedure suggested by Baker (2011) is applied to select ground motions from 

PEER-NGA database which offers 3541 ground motion records from 175 earthquakes. 

Figure 6-4(b) represents the CMS and the Sa of the selected earthquake records. Appendix 

C provides more details about ground motion selection analysis and selected records 

which are used for IDA. 
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(a) (b) 

Figure 6-4. a)CMS and UHS b)CMS and Sa of the top ten selected ground motion 

records 

 

Figure 6-5 presents the IDA results for a typical bearing at an abutment and a column and 

the 16, 50 and 84 percentile curves of the IDA results. Appendix D presents more details 

about IDA results for various bridge structural components. 

  
(a) (b) 

Figure 6-5. IDA results associated with the 16, 50 and 84 percentiles for: (a) Bearing at 

the second abutment (b) First Column 

 

6.3.3 FRAGILITY CURVES 

A fragility curve, 𝑃[𝐷/𝐶 ≥ 1 | 𝐼𝑀] is the conditional probability that the structure or 

structural component sustains the specified damage-level or limit state for a given ground 

motion intensity. Limit states are assumed to have log-normal distributions. For each 

component, the mean value of serviceability and onset of collapse limit states are derived 

based on qualitative damage definitions for slight and complete damages offered by 

HAZUS-MH. Table 6-2 presents the mean values used for each of the respective 

distributions. The coefficient of variation (COV) is assumed to be smaller for the 

serviceability than for the collapse limit state. The COV of the bearings and the columns 
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are assumed to be equal to 0.05 and 0.1 for serviceability and 0.1 and 0.15 for collapse 

limit states respectively (Zhu, 2005). It is noted that since the structural system is assumed 

to be a series system, the system exceeds a limit state once any of its components exceeds 

that limit state. 

Table 6-2. Quantitative Limit states for structural components 

Component Direction 
Serviceability 

(mm) 

Onset of 

Collapse (mm) 

Bearing at the Abutments 
Longitudinal - 60 

Transverse 2.85 14.2 

High-Type Bearing at the 

Columns 

Longitudinal - 40 

Transverse 1.4 124 

Fixed Bearing at the Columns 
Longitudinal - 45 

Transverse 1 45 

Column 1 
Longitudinal 20.2 36.15 

Transverse 9.3 12.4 

Column 2 
Longitudinal 20.1 30.95 

Transverse 9 10 

Column 3 
Longitudinal 19.8 24.9 

Transverse 8.6 10.5 

Column 4 
Longitudinal 5 9.5 

Transverse 5.6 7.45 

 

Traditionally, fragility curves are developed for single-valued IMs such as Sa(T1). In this 

study, system fragility curves are developed for single IM of Sa(T1) using PSVM with 

polynomial and RBF kernel functions and are compared to a system fragility curve 

developed by a component based method. In addition, system fragility curves for vector-

valued IM of (Sa(T1), ε) using PSVM with polynomial and RBF kernel functions are 

developed to demonstrate the superiority of using vector-valued IM in reliability analysis. 

 

6.3.3.1 COMPONENT-BASED FRAGILITY ANALYSIS 

In order to perform component-based fragility analysis, a Joint Probabilistic Seismic 

Demand Model (JPSDM) of natural logarithm of component demands is developed. 

Median values and standard deviations of component demands are obtained by 

performing a regression analysis on IDA results of each component as shown in equation 

(6-7) in which EDP represents the estimated component demand and both a and b are 

regression coefficients (Cornell et. al., 2002). Seismic demand and capacity distributions 
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of the bridge components at various IMs are provided in Appendix D. 

 EDP̂ = a. IMb (6-7) 

Since IDA provides a set of demands for each component at each Sa, correlations between 

component demands at each Sa can be calculated. Assuming a joint lognormal 

distribution as JPSDM with obtained mean value, standard deviation (βD|IM) and Sa-

dependent correlations, natural logarithm of demands are simulated by MCS. Then, 

corresponding component capacities are also simulated by MCS and the probability of 

having at least one failure in the system is calculated over the range of Sa. It is noted that 

the fragility curves developed by this method have lognormal distributions. 

 

6.3.3.2 PSVM-BASED FRAGILITY ANALYSIS 

In PSVM method, damage states of the structural system subjected to the given ground 

motion intensities are defined by comparing the component demands obtained from IDA 

results with corresponding simulated limit states. These damage states are used to train 

PSVMs and develop fragility curves. The PSVM method uses sigmoid functions 

(equation 6-4) to develop fragility curves. 

 

6.4 RESULTS AND DISCUSSION 

6.4.1 FRAGILITY CURVES USING SINGLE-VALUED IM 

The optimal kernel parameter (γ) and penalty parameter (C) are determined using a 

double re-sampling method in order to minimize misclassifications in fragility analysis 

for serviceability and collapse limit states based on single-valued and vector-valued IMs. 

For this purpose, prediction errors of SVMs with various pairs of (γ,C) are calculated and 

the pair with the minimum prediction error is selected. Figure 6-6 shows the prediction 

errors of the fragility analysis with single-valued IM using PSVM with the RBF kernel 

function. Optimal SVM parameters and associated prediction errors are shown in Table 

6-3. 
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Figure 6-6. Prediction errors of the PSVM in fragility analysis with single-valued IM 

 

Table 6-3. Optimal SVM parameters and associated prediction errors in classifications 

Method IM Kernel 

Serviceability  Collapse 

γ C 
Prediction 

Error 
 γ C 

Prediction 

Error 

SVM Sa (T1) 
RBF 1 1 0.0295  5.1 1 0.116 

Polynomial 4 1.2 0.0311  2 0.1 0.116 

SVM [Sa (T1),ε] 
RBF 2 1 0.0274  4.6 1 0.111 

Polynomial 3 1 0.0273  2 0.2 0.124 

Component 

Based MCS 
Sa (T1) - - - 0.0327  - - 0.1433 

 

It is noted that the prediction error in Table 6-3 represents the classification error which 

is equal to the fraction of untrained data that are misclassified by the analysis. So, in order 

to compare the results of PSVM to component based fragility analysis, the fragility curve 

is considered as a classifier. In other words, it is assumed that the structure exceeds the 

limit state if the probability of exceedance subjected to the given ground motion intensity 

is higher than 0.5.From table 6-3, it is inferred that PSVM offers more accurate 

classification. Moreover, RBF and polynomial kernel functions demonstrate similar 

predictions and the difference in their resulting fragility curves are negligible. So, there 

is not a superior kernel function choice for this problem. 

Figure 6-7 compares the system fragility curves obtained from PSVM analysis (based on 

equations 6-4 and 6-5) with component based system fragility cures for serviceability and 

collapse limit states assuming Sa as the IM. It is noted that the points in figure 6-7 
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represent the sample cumulative distribution (stepped curve) which are obtained from 

comparison of IDA results and simulated component capacities. Fragility curves obtained 

from both methods pass Kolmogorov–Smirnov (K-S) goodness of fit test at the 5% 

significance level, so they are acceptable. Table 6-4 presents the p-value of K-S tests. 

  
(a) (b) 

Figure 6-7. System fragility curves based on PSVM method (RBF kernel function) and 

the sample cumulative distribution (stepped curve) a) Serviceability limit state b) Onset 

of Collapse limit state 

 

Table 4. Results of Kolmogorov–Smirnov goodness of fit test 

Fragility 

Analysis 

Method 

Serviceability Collapse 

P-Value K-S Statistic P-Value K-S Statistic 

PSVM 0.187 0.172 0.777 0.103 

Component 

based MCS 

0.185 0.173 0.696 0.111 

 

In order to estimate the reliability of the bridge based on the fragility curves, a PSVM 

based MCS is performed. For this purpose, samples of Sa(T1) are generated with MCS 

based on Atkinson ground motion prediction model and the probability of exceeding any 

limit state is estimated by the developed PSVM models. According to Atkinson and 

Boore (2006 and 2008), natural logarithm of Sa(T1) at the location of the bridge has a 

normal distribution with the mean value and standard deviation of -2.718 and 0.725 

respectively. Hence, the mean value of annual probability of exceeding serviceability and 

onset of collapse limit states are 3.67 E -2 and 6.76 E -4 which are equivalent to reliability 

indices (β) of 1.79 and 3.2 respectively. 

 

http://en.wikipedia.org/wiki/Kolmogorov%E2%80%93Smirnov_test
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6.4.2 FRAGILITY CURVES USING VECTOR-VALUED IM 

Figure 6-8 demonstrates the damage states of the structure for various pairs of (Sa(T1),ε) 

and the decision hyper-planes provided by SVM with RBF kernel function for 

serviceability and collapse limit states. Figure 6-8 also shows the support vectors used in 

SVM analysis. Figure 6-9 presents the resulting fragility contours for serviceability and 

collapse limit states which offer the probability of exceeding the limit states at every 

(Sa(T1),ε) pair. 

  
(a) (b) 

Figure 6-8. Decision hyper-planes for (a) serviceability and (b) collapse limit states 

 

It is inferred from figure 6-8 that both of Sa and ε, which are measures of ground motion 

intensity and spectral shape respectively, have significant effects on the response of 

structures. For a fixed Sa(T1), records with higher ε cause smaller demands in structures, 

therefore, they have smaller probability of damage. This was predictable because a higher 

epsilon means larger than expected Sa at T1, thus smaller Sa at other periods. In other 

words, a ground motion record with a high epsilon is likely to have a peak at T1 while a 

record with a low epsilon has a valley at T1. So, when all records are scaled to a certain 

Sa(T1), the records with higher epsilons will likely have smaller Sa over a range of periods 

and cause smaller demands on the structure. However, the effect of ε is not equal over the 

range of Sa and ε is more important for higher range of Sa. This is also evident in figure 

6-9 which shows the fragility contours for serviceability and collapse limit states. 



127 

 

 
 

(a) (b) 

Figure 6-9. Fragility contours for a) serviceability b) onset of collapse limit states 

 

6.4.3 MULTI-CLASS RELIABILITY ASSESSMENT 

PSVMs can also be used in multi-class classification problems by using pairwise coupling 

and combining the probabilistic outputs of all the one-versus-one binary classifiers, based 

on equation (6-6). The results can be used to classify the damage state of the given 

structure subject to ground motions. In this study, three binary classification analyses are 

performed to develop a 3-class probability assessment. Figure 6-10 shows the probability 

of sustaining defined damage states over the range of Sa and figure 6-11 demonstrates 

the probability of sustaining each level of damage as functions of Sa and ε. 

 

Figure 6-10. Probability of sustaining various damage states assuming Sa as the IM 
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Figure 6-11.Probability of sustaining various damage states assuming (Sa,ε) as the IM 

 

6.5 CONCLUSION 

In this paper, application of PSVMs is proposed in reliability assessment of structures and 

particularly in developing system fragility curves. It is demonstrated that the application 

of PSVM in reliability assessment reduces the algorithmic or numerical uncertainties. 

The proposed methodology also reduces the analysis time and computational effort in 

fragility analysis of structures comprising large number of components significantly. 

The proposed methodology is applied in fragility and reliability analysis of an existing 

bridge located in Montreal as a case study. The results demonstrate that the bridge 

exceeds serviceability and collapse limit states with the mean annual probability of 3.67 

E -2 and 6.76 E -4 respectively.  

By considering fragility curves as classifiers and by comparing prediction errors of 

PSVMs and conventional component based fragility curves, the superiority of PSVM 

method is demonstrated.  

Moreover, it is shown that for the studied case study, polynomial and RBF kernel 

functions produce similar results. Classic SVM and PSVM are binary classifiers. 

However, by using pairwise coupling and combining the probabilistic outputs of all the 

one-versus-one binary classifiers, PSVMs can be used in multi-class classification 

problems such as fragility analysis for multiple limit states. 

SVMs generalize well even in high dimensional spaces and for small training sample 
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data. So, they can be conveniently applied in fragility analysis with vector-valued IMs. It 

is demonstrated that considering the pair of (Sa(T1),ε) as opposed to Sa as IM, reduces 

the prediction errors and enhances the reliability of the analyses because ε, as in indicator 

of spectral shape, has a significant effect on the response of structures. This effect is more 

considerable for higher limit states. It is shown through the case study that for a fixed 

Sa(T1), records with higher εs leads to smaller demands and smaller probability of 

damage. So, for reliability assessment of structure, the effect of epsilon should not be 

neglected in ground motion selection. 
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CHAPTER 7: CONCLUSIONS AND RECOMMENDATIONS 

 

This thesis explains methodologies to develop reliable fragility curves of highway bridge 

structures, considering all the significant uncertainties involved. The proposed 

methodologies are applied in seismic vulnerability assessment of two existing highway 

bridges located in Montreal. Parameter uncertainties, Model uncertainties, and algorithm 

uncertainties are addressed through the case studies. 

Parameter uncertainties arise from variability in input parameters of the model and 

include variability in seismic inputs, structural behaviour, and component limit states. 

Seismic input uncertainties are quantified through IDA of the structure and reduced by 

applying a proper ground motion selection method. The variability in structural behaviour 

is assessed and minimized through the proposed model validation and input parameter 

updating schemes. In addition, a probabilistic corrosion model is used to further reduce 

the uncertainties associated with component behaviour of existing structures. And 

uncertainties involved in component limit state definitions are addressed in developing 

both component and system seismic fragility curves of the structures. 

Model uncertainties come from discrepancies between the mathematical model and the 

underlying true physics of the structural behaviour. The effect of model uncertainties 

becomes more significant if there are unaccounted major deficiencies in an existing 

structure. To address this issue, ambient vibration testing is suggested which provides 

modal information about full scale structures. The test results are used in the proposed 

model validation and parameter updating technique to discover and locate probable major 

structural deficiencies. 

Finally, algorithm or numerical uncertainties come from numerical errors and 

approximations. In order to reduce these uncertainties, a modification to existing 

component-based fragility analysis methods is proposed in which dependencies in 

component demands are properly considered at various ground motion intensities. 

In addition, a new methodology is proposed for developing fragility curves which reduces 

numerical uncertainties as well as the required computational effort compared to existing 

fragility assessment methods. This approach applies soft computing and machine learning 
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methods such as SVM and PSVM in fragility assessment of structures. 

The conclusions from each manuscript were stated at the end of the chapters. The main 

conclusions of this thesis are summarized as follows: 

 

 Application of stochastic model validation techniques reduces the model 

uncertainty and quantifies the confidence of the developed model. The Classic 

hypothesis approach provides a powerful tool to present the confidence of the 

models. However, this approach is more focused and biased toward rejecting 

models. The Bayesian approach provides a proper alternative model validation 

method which uses an unbiased indicator for accepting or rejecting computer 

models based on available observations. 

 

 Ambient vibration surveys present modal information of structures such as natural 

frequencies, damping and vibration mode shapes. The obtained information can 

be used for validating computer models, updating model input parameters which 

have significant influence on dynamic behaviour of the structure, and for 

detecting major damages in the studied structure. 

 

 In aggressive environments such as Montreal, corrosion effects may significantly 

change the behaviour of structural components in older bridges. Estimation of 

corrosion initiation time and subsequent corrosion propagation in a probabilistic 

context can provide a realistic model of component behaviours as well as the 

confidence of the obtained models. 

 

 Structural response under seismic events highly depends on the spectral shape of 

the ground motion as well as its magnitude. Hence, an appropriate ground motion 

scheme should consider magnitude, distance and spectral shape of the ground 

motion records. Conditional Mean Spectrum is a proper ground motion selection 

method which takes into account the influence of all three main parameters of M, 

R and ε (ε as an indicator of spectral shape). 
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 Incremental Dynamic Analysis (IDA) involves numerous nonlinear dynamic 

analyses of the structure and requires a high computational effort. However, this 

method provides invaluable data for reliability and fragility evaluation. The 

results present the seismic demands of each component over the desired range of 

Intensity Measure (IM) levels as well as the effect of inherent randomness in 

seismic inputs (record-to-record variability), which is the main source of aleatory 

uncertainty in the seismic evaluation of structures. 

 

 The data provided by IDA can be used for determining efficiency, practicality and 

sufficiency of selected Intensity Measures (IM) in order to determine the most 

proper IM for the studied case. For the case studies in this research, Spectral 

Acceleration (Sa) proved to be a better choice than Peak Ground Acceleration 

(PGA). However, the use of (Sa, ε) as a pair increases the accuracy of predictions, 

especially for higher limit states. 

 

 Component fragility curves can be used to identify the weak structural 

components of the system which require special attention in order to strengthen 

or retrofit the structure. Retrofitting the weak element(s) of the structure may alter 

the local and global load distribution in the structure and subsequently the seismic 

response of the structural system; such retrofitting can significantly improve the 

reliability of the system. Hence, component fragility curves are very useful tools 

to guide the efficient allocation of funds in order to retrofit an existing structure. 

 

 Component-based fragility analysis provides the required information in order to 

estimate the reliability importance of each component. This measure presents the 

contribution of each component in the event of a system failure over the desired 

IM levels. Components may not have the same contribution at different limit 

states. Hence, the results provide the required information for goal-oriented 

planning of the retrofit design. 

 

 System fragility curves provide a probabilistic model of structural system failure 
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under given seismic intensity and can easily be translated into system reliability. 

Hence, system fragility is a useful tool to demonstrate the structural performance 

as a system under seismic events, considering all the significant sources of 

uncertainties in seismic inputs, structural behaviours and component capacities. 

 

 Support Vector Machine (SVM) learning is an outstanding method in pattern 

detection in complex systems and can be adopted for recognition of relationships 

between ground motion intensities and peak structural responses. In comparison 

to conventional fragility assessment techniques, the application of Probabilistic 

SVMs (PSVM) in fragility analysis of complex structures comprising numerous 

components reduces the computational effort significantly and increases the 

prediction accuracy. 

 

 SVMs can be implemented conveniently for systems with high dimensional 

inputs. Hence, vector-valued IMs can be easily used in fragility assessment of 

structures without causing any additional computational cost. Vector-valued IMs 

result in more accurate and reliable fragility curves, as demonstrated in a 

comparison of Sa and (Sa,ε) as IM candidates. 

 

 SVMs are applicable for both binary classification and multiclass classification 

problems. Hence, in addition to having the ability to develop classic fragility 

curves, which represent the conditional probability of exceeding a certain level of 

damage in the structure at the given ground motion intensity levels, multiclass 

PSVMs can present the probability of sustaining any level of damage at any given 

intensity level simultaneously. 
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APPENDIX A: ANALYTICAL MODEL OF HIGHWAY BRIDGE 

COMPONENT 

 

This Appendix presents the behavior of the various components of the studied bridge in 

chapters 5 and 6 accompanied by the analytical models which are used in SAP2000 to 

represent the behavior of the individual components. 

 

A.1 SUPERSTRUCTURE 

The superstructure of a bridge refers to the portion of the bridge which directly receives 

the live load and is located above the bearings. The superstructure of the studied bridge 

consists of a concrete deck with 0.203 m thickness which is supported by 5 steel girders 

with depth varying from 1.37 m at the mid-span of exterior spans to 2.594 m at the interior 

piers. Cross-bracing is provided between the girders. The girders and deck are constructed 

such that they operate in composite action. Figure A-1 represents a schematic view of 

superstructure section of the bridge. 

 

 

Figure A-1. Typical cross-section geometry of the bridge 

 

In this study, the bridge deck and the girders are modeled with 4-node shell elements. 

Figure A-2 shows the superstructure section at the location of an interior column and 

Figure A-3 demonstrates the elevation view of the bridge superstructure as defined in 

SAP2000. It is noted that the superstructure is expected to remain linearly elastic under 

seismic loading. Hence, for time integration time history analyses implemented by IDA, 
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an equivalent beam section is used to simplify the model. Table A-1 presents the section 

properties of the superstructure at end spans and middle span of the studied bridge. 

As it is seen in figure A-1, a heavy pedestrian walkway and a light bicycle path were 

added to the original structure and resulted in a non-uniform weight distribution of the 

bridge section. This has affected the natural frequencies, dominant modes and generally 

the behavior of the structure from the original design assumptions.  

 

Figure A-2. Typical Superstructure Section Definition in SAP2000 

 

It is noted that although the mass and the mass distribution of the deck have significant 

effect on structural response of the bridge, the response is not sensitive to longitudinal 

and transverse stiffness of the deck because the superstructure is much stiffer than the 

other components of the bridge in those directions and the deck almost behaves as a rigid 

link. 

 

Figure A-3. Elevation View Bridge Superstructure 
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A.2 STEEL BEARINGS 

Bearings are responsible for transmitting vertical and horizontal loads or displacements 

from superstructure to substructure. Hence, they have a significant contribution in 

reliability and vulnerability of bridge structures. Various types of bearings are available 

based on their shapes, sizes and functionality.  

Based on the movements that the bearings allow, they are categorized into two classes: 

Fixed Bearings (which only permit rotational movements) and Expansion Bearing (which 

permit both rotations and horizontal translations). A typical steel bearing connects a 

masonry plate (which is attached to the column or abutment) and a sole plate (which is 

attached to the underside of the steel girders) in a way to enable the desired motions. 

Four types of steel bearings are used in the studied bridge: one type of Low-type fixed 

bearing and three types of high-type expansion bearings. Figure A-4 presents the as-built 

plans of the bearings used in the studied bridge. 
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(a) (b) 

  

(c) (d) 

Figure A-4. As-built plans of the bearings a) low-type fixed bearing b) High-type 

expansion bearing (I) c) High-type expansion bearing (II) d) high-type expansion 

bearing (at the abutments) 

 

Steel bearings usually demonstrate don-ductile behavior and are prone to corrosion and 

deterioration. Hence, they are vulnerable to seismic loadings and they are no longer used 

in design of new bridges or retrofitting the old structures (Mander et. al., 1996). 

Figure A-5 presents the current condition of the bearings of the studied bridge. 
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(a) (b) 

Figure A-5. Current condition of the bearings a) at an abutment b) at an interior column 

 

The bearings are modeled with Finite Elements using ABAQUS software and analyzed 

using a pushover method to obtain the component behaviors. The bearings are then 

modeled in SAP2000 using Nllink elements which have six independent nonlinear 

springs, one for each of six deformational degrees of freedom. Figure A-6 shows a 

modeled high-type expansion bearing in ABAQUS. 

 

Figure A-6. ABAQUS model of the bearing located at abutment of the bridge 

 

A.2.1 LOW-TYPE FIXED BEARINGS 

As it is shown in figure A-4 (a), a spherical cap which is attached to the masonry plate is 

locked in the sole plate in order to prevent horizontal movements while allowing 

rotations. This component will fail if the ratio of the horizon load to the vertical pressure 

(due to the superstructure weight and live load) exceeds a certain limit by enduring 
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excessive displacements through sliding on spherical surface. Figure A-7 demonstrates 

the failure mechanism of this component. 

 

Figure A-7. Failure mechanism of the fixed bearing 

Figure A-9 demonstrates the nonlinear behavior of this component obtained from the 

pushover analysis in ABAQUS software. This bearing has an initial stiffness of 630 

kN/mm and yields at 1mm displacement followed by a perfectly plastic behavior (which 

models the sliding with a friction coefficient of 0.37). It is noted that the behavior of this 

component in longitudinal and transverse directions are similar. 

 

A.2.2 HIGH-TYPE EXPANSION BEARINGS AT THE ABUTMENTS 

As it is shown in figures A-4 (d) and A-6, masonry plate and sole plate are connected 

with a thick plate anchored at the ends. The behavior of this type of bearing consists of 

the deformation of the anchors due to bending and shear and overturning of the plate. 

Figure A-8 demonstrates the failure mechanism of this bearing. 
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Figure A-8. Failure mechanism of high-type expansion bearings at the abutments 

 

Figure A-9 demonstrates the nonlinear behavior of this component obtained from the 

pushover analysis in ABAQUS software. This bearing has an initial stiffness of 481.3 

kN/mm and the first yielding occurs at 0.58mm displacement followed by a strain 

hardening behavior until the brittle shear failure of the anchor. It is noted that this 

component allows longitudinal displacement with an insignificant stiffness. 

 

A.2.3 HIGH-TYPE EXPANSION BEARINGS AT THE COLUMNS 

The bearings at the columns as shown in figure A-4 (a) and (b), consist of three or four 

thick plates similar to the bearing located at abutments accompanied with a spherical cap 

at the top similar to the fixed bearings. Hence, the behavior of these bearings is a 

combination of the two previously mentioned bearings. However, as the stiffness of the 

group of plates is significantly higher than the stiffness of the sliding mechanism in 

spherical cap surface, the sliding mechanism is the dominant mode of failure and the 

behavior of these bearings in transverse direction is very similar to the fixed bearings as 

shown in figure A-9. It is noted that the stiffness of this component in longitudinal 

direction is insignificant. 

 

Figure A-9. Force-Displacement Relationship in Bearings 
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A.3 REINFORCED CONCRETE COLUMNS 

The studied bridge crosses a river and hammerhead columns with various lengths support 

its superstructure. Figure A-10 shows the as-built plan of a typical column. It is noted that 

this type of column demonstrates very low ductility. Figure A-10 presents as-built plans 

of a typical column of the structure.  

 

Figure A-10. As-built plans of a typical pier 

 

The columns are modeled with multilayer nonlinear shell elements in SAP2000 as shown 

in figure A-11. First, each column is divided into six areas with uniform thickness and 

reinforcement details and every section is modeled by multilayer nonlinear shell 

elements. Non-confined concrete material behaviour is assumed in modeling the 

behaviour of the piers (Mander, 1988). 

 

Figure A-11. Typical pier model in SAP2000 
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In order to demonstrate the behavior of the piers in longitudinal and transverse directions, 

push over analyses is performed on the pier model shown in figure A-11 in both directions 

assuming a constant vertical load. Figure A-12 presents the obtained force displacement 

curves. 

  

(a) (b) 

Figure A-12. Force-Displacement curves of a typical pier in a) transverse b) 

longitudinal directions 

 

A.4 ABUTMENTS 

Abutments are important elements of highway bridges which support the superstructure 

at bridge ends in both vertical and horizontal directions. Typical abutments are either built 

in the form of seat type or integral abutments. In seat type abutments, there is a gap 

between the superstructure and the abutment and they are connected to the by bearings 

while in integral abutments, the abutment is built integral with the bridge superstructure. 

Typical highway bridges are mostly supported by seat type abutments. Several types of 

seat type abutments can be found based on their structural form and their foundation type. 

The studied bridge is supported by U-shape abutments as shown in figure A-13 and A-

14, one of which is supported by a pile cap while the other one is located on spread footing 

on bed rock.  
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(a) (b) 

Figure A-13. Abutment located on hard rock a) plan view b) elevation view 

 

 

(a) (b) 

Figure A-14. Abutment supported by pile group a) plan view b) elevation view 

 

Past experience in 1994 Northridge earthquake (U.S.A.), the 1995 Kobe earthquake 

(Japan), the 1999 Izmit and Duzce earthquake (Turkey), and 1999 Chi-Chi earthquake 

(Taiwan) demonstrated that abutments have significant contribution in vulnerability of 

the bridges. Several studies such as Faraji et. al. (2001), El-Gamal and Siddharthan (1998) 
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have demonstrated that the assumptions in nonlinear interaction of soil-structure have a 

significant effect on overall structural response and seismic performance of highway 

bridges. 

Damages to the abutment are generally either due to the foundation failure or structural 

failures in abutment. The first type of damage is caused by excessive soil deformation 

and results in tilting, sliding, settling or overturning of the abutment and leads to a serious 

disruption in functionality of the bridge. However, the second type of damage which is 

cause by excessive soil pressure on the abutment structure is easily repairable. 

Hence, analytical modeling of abutments in both longitudinal and transverse directions 

are further discussed in the following subsection. 

 

 

 

A.4.1 LONGITUDINAL DIRECTION 

When the bridge deck moves longitudinally toward the abutment during a seismic event, 

the abutment wall is pressed into the soil back-fill and mobilizes passive resistance which 

is partially provided by the soil and partially provided by the piles. 

Strong earthquakes may result in permanent soil displacements and nonlinear soil-

structure interaction which affects the overall performance of the bridge. 

 

A.4.2 PASSIVE SOIL BEHAVIOR AT ABUTMENTS 

A hyperbolic force-displacement model developed by Shamsabadi et. al. (2007) which is 

compatible with Caltrans provision is adopted in this study. Equation A.1 and figure A-

15 presents the applied force-displacement model. 

 

 
𝐹(𝑦𝑖) =

𝐹𝑢𝑙𝑡(2𝐾𝑦𝑚𝑎𝑥 − 𝐹𝑢𝑙𝑡)𝑦𝑖

𝐹𝑢𝑙𝑡𝑦𝑚𝑎𝑥 + 2(𝐾𝑦𝑚𝑎𝑥 − 𝐹𝑢𝑙𝑡)𝑦𝑖
 (A.1) 
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In which Fult, K and ymax are maximum abutment force, average soil stiffness and 

maximum displacement respectively. These 3 geotechnical parameters are selected as 

shown in table A-2 for granular soil based on Shamsabadi et. al. (2007) suggestion. It is 

noted that H represents abutment backwall height which is equal to 4.75 m and 3.55 m 

for the studied abutments. 

 

Table A-2. Selected geotechnical parameters for passive soil behaviour modeling 

Backfill Soil Type 
Maximum Pressure 

KPa  (Fult/H) 

K 

kN/cm/m 

Maximum Displacement 

(ymax/H) 

Granular 265 290 0.05 

Cohesive 265 145 0.1 

 

Figure A-15. Hyperbolic force-displacement behavior of abutment backfill soil as 

suggested by Shamsabadi et. al. (2007) 

 

In order to model the passive soil behavior of the abutment backfill in SAP2000, Nlink 

element with nonlinear behavior are used and the hyperbolic function is estimated by tri-

linear model as shown in figure A-16. It is noted that the first two points in tri-linear 

models correspond to 0.1ymax and 0.35ymax respectively and the slope of the first two lines 

are equal to K and 0.7K as shown in Table A-3. 
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Figure A-16. Force-displacement relationship of the abutments backfill soil 

 

Table A-3. Model properties of soil passive action 

Properties Notations Values 

Initial Stiffness KP1 K (=290 kN/cm/m) 

Displacement 1 ΔP1 0.1ymax 

Second Stiffness KP2 0.7K 

Displacement 2 ΔP2 0.35ymax 

Third Stiffness KP3 
𝐹𝑢𝑙𝑡 − 0.275𝐾𝑦𝑚𝑎𝑥

0.65𝑦𝑚𝑎𝑥
 

Displacement 3 ΔP3 ymax 

 

A.4.3 PILE BEHAVIOR 

In this study, pile behavior is defined according to Caltrans provision. (Caltrans, 1990). 

Hence, an effective stiffness (Keff) of 7 kN/mm/pile and ultimate strength of 119 kN/pile 

is assumed and the force-displacement relationship is defined by a tri-linear model as 

suggested by Choi (2002) and Nielson (2005). The defined model properties are shown 

in Table A-4.  
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Table A-4. Model properties of soil passive action 

Properties Notations Values 

Initial Stiffness K1 2.33Keff  

Displacement 1 Δ1/H 7.62 mm 

Second Stiffness K2 0.428Keff 

Displacement 2 Δ2/H 25.4 mm 

Third Stiffness K3 0 

Displacement 3 Δ3/H - 

 

In order to consider the interaction of piles in a pile group a p-multiplier (Brown et. al. 

1988) can be introduced. The value of the p-multiplier depends on the position of the pile 

in the pile group. However, since the front and rear rows alternate during a cyclic loading, 

an average multiplier can be used to simplify the calculation. Hence, a p-multiplier of 0.7 

is considered for all piles regardless of their position as suggested by Curras et. al. (2001). 

 

A.4.4 TRANSVERSE DIRECTION 

Piles and wing walls are the components which contribute in the stiffness of abutments 

in transverse direction. The behavior of piles is the same in longitudinal and transverse 

directions. Hence the same pile model is used in transverse direction. 

However, according to Caltrans the effect of wing-walls decreases as the width of the 

abutment increases because they cannot fully mobilize passive behavior of the soil. 

Hence, as suggested by Maroney and Chai (1994), the abutment stiffness and strength 

obtained for the longitudinal direction are modified by wing-wall effectiveness and 

participation factors of 2/3 and 4/3 respectively. 
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APPENDIX B: AMBIENT VIBRATION TEST 

 

This appendix provides details about ambient vibration survey of the bridge studied in 

chapters 5 and 6. It includes a description of the equipments used during the test, 

measurement scheme and the results of the system identification analysis. 

 

B.1 TEST EQUIPMENT AND MEASUREMENT SCHEME 

In order to perform ambient vibration test on the studied bridge, 6 TROMINO® velocity 

meters were used. Since these sensors have Data Acquisition Systems (DAS) with radio 

transceivers, they can communicate and synchronize their internal clock with one 

millisecond precision. So, the obtained data from the sensors is always synchronized. 

In order to detect structural mode shapes with sufficient resolutions a total of 42 equally 

spaced points, 21 on each side, were identified on the bridge for ambient measurement. 

Multiple setups of sensors were required as the number of points exceeded the number of 

available sensors. Hence, 2 reference sensors were located in the middle of the bridge on 

each side and the remaining 4 sensors were used as roving sensors. 

11 setups were used to cover 21 points on each side of the bridge as shown in figure B-1. 

Two sets of data were recorded for each setup each of which for approximately six 

minute. The sampling frequency was set to 128 Hz and the movements in 3 directions 

were recorded. 

Figure B-1 schematically presents the setups used in ambient vibration survey. Reference 

and roving sensors are presented with green and yellow labels respectively. 

 

B.2 RESULTS OF THE SYSTEM IDENTIFICATION ANALYSIS 

The Enhanced Frequency Domain Decomposition (EFDD) technique was performed by 

Saeed (2013) for system identification. Table B-1 demonstrates the obtained structural 

natural periods. The obtained first singular value plots and first ten mode shapes of the 

structure are presented in figures B-2 to B-12. 
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Figure B-1. Schematic representation of setups for ambient vibration measurements 
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Table B-1. Structural natural periods obtained from EFDD analysis 

Mode number 1 2 3 4 5 6 7 8 9 10 

           

Measured Period Sec 0.69 0.63 0.46 - 0.40 0.36 0.30 0.28 0.26 0.26 

            

Mode number 11 12 13 14 15 16 17 18 19 20 

           

Measured Period Sec - 0.21 0.19 0.18 0.16 0.15 0.14 0.13 0.11 0.10 

 

 

Figure B-2. Singular value plot obtained from EFDD analysis 
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Figure B-3. First structural mode shape obtained from EFDD analysis 

 

 

Figure B-4. Second structural mode shape obtained from EFDD analysis 
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Figure B-5. Third structural mode shape obtained from EFDD analysis 

 

Figure B-6. Fourth structural mode shape obtained from EFDD analysis 
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Figure B-7. Fifth structural mode shape obtained from EFDD analysis 

 

Figure B-8. Sixth structural mode shape obtained from EFDD analysis 
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Figure B-9. Seventh structural mode shape obtained from EFDD analysis 

 

 

Figure B-10. Eighth structural mode shape obtained from EFDD analysis 

 



156 

 

 

Figure B-11. Ninth structural mode shape obtained from EFDD analysis 

 

 

Figure B-12. Tenth structural mode shape obtained from EFDD analysis 
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APPENDIX C: GROUND MOTION SELECTION 

 

This appendix provides detailed information about Conditional Mean Spectrum (CMS) 

based ground motion selection performed in chapter 6. It includes seismic hazard 

deaggregation used in the analysis as well as the MATLAB code developed for ground 

motion selection. This computer codes selects the most appropriate available ground 

motion records from PEER-NGA database which offers 3541 ground motion records 

from 175 earthquakes. Detailed information about the selected ground motion records for 

the studied bridge in chapter 6 is also provided in this appendix. 

 

C.1 DEAGGREGATION OF MONTREAL SEISMIC HAZARD 

Seismic hazard deaggregation provides helpful information regarding the relative 

contributions of the earthquake sources in terms of distance and magnitude which can be 

used in various ground motion selection strategies. In this study, the information provided 

by Geological Survey of Canada (GSC) and the results of Halchuk and Adam’s study 

(2007) is used for deaggregation of Montreal seismic hazard. Figure C-1 presents the 

deaggregation of Montreal for the probability of 2% in 50 years for various periods. 

Hence, for the studied bridge with the first period of 0.7 sec, the mean value of earthquake 

magnitude and distance of 6.8 and 57 are selected respectively. 
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Figure C-1. Deaggregation of Montreal for the probability of 2% in 50 years for various 

periods (Halchuk and Adam, 2007) 
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C.2 MATLAB PROGRAM FOR CMS BASED GROUND MOTION 

SELECTION 

A MATLAB code is developed to perform a CMS based ground motion selection 

analysis. This program uses the Ground Motion Prediction Equations (GMPE) developed 

by Boore and Atkinson (2006) and Atkinson (2008) to estimate the CMS. The inputs and 

outputs of the program are as follows: 

 

C.2.1 PROGRAM INPUTS 

- Mean values of the magnitude and distance of the earthquake based on seismic 

hazard deaggregation analysis of the location 

- Uniform Hazard Spectrum (UHS) data of the location 

- Number of required ground motion records and the range of periods for which 

the spectrum matching should be done 

- Location of the database Excel file 

 

C.2.2 PROGRAM OUTPUTS 

- Name of the selected Earthquakes and their record label 

- Magnitude, Distance and Epsilon of the selected records 

- The address of the selected ground motion records in order to be used in 

SAP2000 for dynamic time history analysis 

- Plots of CMS in comparison with UHS and Predicted Median Spectrum in 

regular and log-log scales 

- Plots of the selected ground motion records spectra in comparison with CMS, 

UHS and Predicted Median Spectrum 

 

The explained code is presented below: 
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C.3 DETAILED INFORMATION OF THE SELECTED GROUND MOTION 

RECORDS 

Table C-1. Detailed information of 40 selected ground motion records for dynamic time 

history analysis of the studied bridge 

 

NO. Earthquake Name Event ID Mag. (M) Distance (km) PGA PGV ε (T=0.7)

1     'Chi-Chi, Taiwan-06' 3302 6.3 84.3 0.15 9.8 -1.39

2     'Chi-Chi, Taiwan-06' 3471 6.3 36.0 0.08 4.7 -0.61

3     'Chi-Chi, Taiwan-02' 2211 5.9 88.2 0.03 1.7 0.94

4     'Imperial Valley-07' 201 5.01 15.3 0.14 6.7 -1.03

5     'Chi-Chi, Taiwan-02' 2162 5.9 80.5 0.03 1.5 1.19

6     'Chi-Chi, Taiwan-02' 2170 5.9 82.3 0.02 1.1 1.51

7     'Imperial Valley-07' 195 5.01 11.9 0.09 6.5 -0.85

8     'Coalinga-05' 412 5.77 16.2 0.43 24.2 -2.94

9     'Chi-Chi, Taiwan-05' 2982 6.2 84.1 0.09 8.1 -1.04

10     'Hector Mine' 1832 7.13 93.9 0.05 8.0 -0.22

11     'Victoria, Mexico' 268 6.33 58.9 0.08 8.3 -0.96

12     'Irpinia, Italy-01' 284 6.9 33.1 0.06 6.1 -0.29

13     'Chi-Chi, Taiwan-05' 3251 6.2 92.3 0.05 2.5 0.12

14     'Hector Mine' 1836 7.13 68.4 0.06 6.0 -0.26

15     'Chi-Chi, Taiwan-06' 3473 6.3 17.9 0.34 26.2 -2.95

16     'Northridge-01' 1032 6.69 52.7 0.14 11.8 -1.80

17     'Big Bear City' 2125 4.92 85.6 0.01 0.5 2.79

18     'Hector Mine' 1842 7.13 127.9 0.05 5.3 -0.01

19     'Northridge-01' 1051 6.69 20.4 1.43 75.5 -4.89

20     'Big Bear City' 2135 4.92 119.4 0.01 0.5 2.87

21     'Mammoth Lakes-07' 253 4.73 4.6 0.03 1.9 1.01

22     'Chi-Chi, Taiwan-05' 3171 6.2 73.7 0.04 3.3 0.05

23     'Chi-Chi, Taiwan' 1281 7.62 62.2 0.14 8.5 -1.24

24     'Chi-Chi, Taiwan-03' 2635 6.2 10.5 0.09 6.6 -0.88

25     'Whittier Narrows-01' 658 5.99 66.4 0.04 2.3 0.16

26     'Chi-Chi, Taiwan-05' 2988 6.2 99.4 0.05 6.2 -0.21

27     'Chi-Chi, Taiwan-02' 2375 5.9 41.5 0.04 2.9 0.23

28     'Landers' 855 7.28 121.0 0.13 12.4 -1.45

29     'Chi-Chi, Taiwan-03' 2541 6.2 63.6 0.01 0.6 2.37

30     'Chi-Chi, Taiwan-05' 2950 6.2 60.0 0.10 7.2 -0.99

31     'Tabas, Iran' 139 7.35 20.6 0.35 28.2 -2.97

32     'Chi-Chi, Taiwan-02' 2303 5.9 90.3 0.01 0.4 2.93

33     'San Fernando' 51 6.61 71.1 0.03 3.7 0.51

34     'Denali, Alaska' 2115 7.9 189.7 0.08 12.4 -0.37

35     'Chi-Chi, Taiwan-05' 3025 6.2 47.2 0.05 4.1 -0.07

36     'Loma Prieta' 737 6.93 40.1 0.15 21.1 -2.01

37     'Imperial Valley-06' 164 6.53 24.8 0.18 14.0 -2.28

38     'Northridge-01' 964 6.69 47.5 0.11 7.2 -1.18

39     'Whittier Narrows-01' 692 5.99 11.7 0.43 28.3 -3.34

40     'Chi-Chi, Taiwan-05' 2948 6.2 84.4 0.06 4.8 -0.13
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APPENDIX D: DETAILED RESULTS OF INCREMENTAL 

DYNAMIC ANALYSIS OF THE STUDIED BRIDGE IN CHAPTER 5 

AND 6 

 

In chapter 6, IDA was used to evaluate seismic response of the studied bridge over a range 

of ground motion intensities. The IDA was performed on the studied bridge using 40 

ground motion records each scaled by 50 various scaling factors to evaluate the 

component damage states at various ground motion intensities in the range of Sa(T1)= 

(0,1.5g). 

The damage states of the following 15 components are evaluated at each ground motion 

intensity: 

- 4 columns 

- 4 bearings on top of the columns 

- 2 abutments 

- 2 bearings on the abutments 

- 2 Wing walls 

- The pile group at one end of the bridge (The other end is supported by a footing 

located on the bed rock) 

This appendix provides detailed results obtained from IDA. It includes tables 

demonstrating the seismic intensities at which each structural component exceeds the 

specified limit states. In addition, probabilistic model of structural demands and 

capacities at selected ground motion intensities are presented in this appendix. 

 

D.1 GROUND MOTION INTENSITIES CORRESPONDING TO DIFFERENT 

COMPONENT FAILURES 

Table D-1 and D-2 present the ground motion intensities at which each component 

exceeds serviceability and collapse limit states respectively. It is noted that over the 

specified range of Sa, only bearings exceed the defined limit states and the other 

components are protected and remain in the range of serviceability.  
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Table D-1. Spectral Accelerations at which the bearings exceed serviceability limit state 

 

 

Earthquake 

NO.

Bearing 1 (at 

the abutment 1)
Bearing 2 Bearing 3 Bearing 4 Bearing 5

Bearing 6 (at the 

abutment 2)

1 1.44 0.57 0.40 0.31 0.66 0.76

3 0.30 0.59 0.51 0.35 0.64 0.80

4 0.22 0.32 0.32 0.22 0.36 0.48

5 0.41 0.53 0.42 0.29 0.62 0.87

6 0.36 0.48 0.34 0.25 0.54 0.78

7 0.40 0.39 0.48 0.33 0.42 0.83

8 0.30 0.32 0.29 0.19 0.34 0.53

9 0.38 0.64 0.56 0.43 0.72 0.95

10 0.44 0.54 0.44 0.30 0.59 0.94

11 0.38 0.57 0.33 0.24 0.59 0.88

12 0.34 0.64 0.50 0.33 0.64 0.96

13 0.28 0.55 0.28 0.18 0.53 0.76

14 0.37 0.47 0.29 0.20 0.50 0.86

15 0.30 0.50 0.29 0.23 0.57 0.71

16 0.32 0.46 0.28 0.20 0.49 0.73

17 1.93 0.66 0.38 0.27 0.81 1.05

19 0.47 0.67 0.46 0.33 0.63 0.98

20 0.43 0.70 0.38 0.27 0.63 0.98

21 1.91 0.87 0.54 0.36 0.90 1.19

22 0.34 0.59 0.46 0.32 0.56 0.91

23 0.33 0.53 0.46 0.32 0.57 0.83

24 0.34 0.45 0.51 0.36 0.50 0.87

25 0.22 0.46 0.36 0.27 0.52 0.59

26 0.38 0.46 0.38 0.28 0.53 0.91

27 0.36 0.53 0.34 0.22 0.50 0.96

28 0.35 0.58 0.39 0.30 0.63 0.94

29 0.32 0.61 0.45 0.31 0.67 0.98

30 0.36 0.60 0.40 0.28 0.70 1.17

31 0.41 0.60 0.48 0.31 0.60 0.99

32 0.42 0.63 0.51 0.34 0.71 0.81

33 0.40 0.66 0.47 0.32 0.57 0.96

34 0.33 0.61 0.40 0.27 0.56 0.96

35 0.29 0.57 0.34 0.25 0.54 0.81

36 0.25 0.45 0.31 0.23 0.50 0.64

37 0.36 0.60 0.45 0.34 0.65 0.74

38 0.33 0.59 0.38 0.28 0.64 0.77

39 0.39 0.57 0.36 0.25 0.75 0.79

40 0.24 0.48 0.45 0.31 0.51 0.70
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Table D-2. Spectral Accelerations at which the bearings exceed collapse limit state 

 

 

Earthquake 

NO.

Bearing 1 (at the 

abutment 1)
Bearing 2 Bearing 3 Bearing 4 Bearing 5

Bearing 6 (at the 

abutment 2)

1 1.44 - - - - -

3 0.84 - - - - 0.88

4 1.23 - - - - 1.31

5 - - - - - -

6 1.02 - - - - 1.08

7 0.88 - - - - 0.81

8 1.41 - - - - -

9 - - - - - -

10 1.40 - - - - 1.32

11 - - - - - -

12 1.37 - - - - 1.48

13 1.47 - - - - 1.45

14 1.23 - - - - 1.19

15 1.21 - - - - -

16 - - - - - -

17 - - - - - -

19 - - - - - -

20 1.23 - - - - -

21 1.20 - - - - 1.24

22 1.10 - - - - 1.21

23 1.18 - - - - 1.29

24 1.13 - - - - 1.26

25 1.42 - - - - -

26 - - - - - -

27 1.48 - - - - -

28 1.48 - - - - -

29 - - - - - -

30 - - - - - -

31 - - - - - -

32 - - - - - -

33 1.16 - - - - 1.30

34 1.02 - - - - 1.21

35 1.44 - - - - 1.39

36 - - - - - -

37 1.40 - - - - -

38 1.19 - - - - 1.21

39 0.39 0.57 0.36 0.25 0.75 0.79

40 0.24 0.48 0.45 0.31 0.51 0.70



172 

 

D.2 COMPONENT PROBABILISTIC DEMAND AND CAPACITY MODELS 

AT SELECTED GROUND MOTION INTENSITIES 

 

(a) Sa=0.09g 

 

(b) Sa=0.24gg 

 

(c) Sa=0.39g 

Figure D-1. Probabilistic models of the demand and capacity of bearing 1 for 

serviceability limit state, given that a) Sa=0.09, b) Sa=0.24 and c) Sa=0.39 
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(a) Sa=0.09g 

 

(b) Sa=0.24g 

 

(c) Sa=0.39g 

Figure D-2. Probabilistic models of the demand and capacity of bearing 2 for 

serviceability limit state, given that a) Sa=0.09, b) Sa=0.24 and c) Sa=0.39 
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(a) Sa=0.09g 

 

(b) Sa=0.24g 

 

(c) Sa=0.39g 

Figure D-3. Probabilistic models of the demand and capacity of bearing 3 for 

serviceability limit state, given that a) Sa=0.09, b) Sa=0.24 and c) Sa=0.39 
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(a) Sa=0.09g 

 

(b) Sa=0.24g 

 

(c) Sa=0.39g 

Figure D-4. Probabilistic models of the demand and capacity of bearing 4 for 

serviceability limit state, given that a) Sa=0.09, b) Sa=0.24 and c) Sa=0.39 
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(a) Sa=0.09g 

 

(b) Sa=0.24g 

 

(c) Sa=0.39g 

Figure D-5. Probabilistic models of the demand and capacity of bearing 5 for 

serviceability limit state, given that a) Sa=0.09, b) Sa=0.24 and c) Sa=0.39 
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(a) Sa=0.09g 

 

(b) Sa=0.24g 

 

(c) Sa=0.39g 

Figure D-6. Probabilistic models of the demand and capacity of bearing 6 for 

serviceability limit state, given that a) Sa=0.09, b) Sa=0.24 and c) Sa=0.39 
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(a) Sa=0.51g 

 

(b) Sa=0.99g 

 

(c) Sa=1.5g 

Figure D-7. Probabilistic models of the demand and capacity of column 1 for 

serviceability limit state, given that a) Sa=0.51, b) Sa=0.99 and c) Sa=1.5 
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(a) Sa=0.51g 

 

(b) Sa=0.99g 

 

(c) Sa=1.5g 

Figure D-8. Probabilistic models of the demand and capacity of column 2 for 

serviceability limit state, given that a) Sa=0.51, b) Sa=0.99 and c) Sa=1.5 
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(a) Sa=0.51g 

 

(b) Sa=0.99g 

 

(c) Sa=1.5g 

Figure D-9. Probabilistic models of the demand and capacity of column 3 for 

serviceability limit state, given that a) Sa=0.51, b) Sa=0.99 and c) Sa=1.5 
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(a) Sa=0.51g 

 

(b) Sa=0.99g 

 

(c) Sa=1.5g 

Figure D-10. Probabilistic models of the demand and capacity of column 4 for 

serviceability limit state, given that a) Sa=0.51, b) Sa=0.99 and c) Sa=1.5 
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(a) Sa=0.51g 

 

(b) Sa=0.99g 

 

(c) Sa=1.5g 

Figure D-11. Probabilistic models of the demand and capacity of the pile group for 

serviceability limit state, given that a) Sa=0.51, b) Sa=0.99 and c) Sa=1.5 
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(a) Sa=0.51g 

 

(b) Sa=0.99g 

 

(c) Sa=1.5g 

Figure D-12. Probabilistic models of the demand and capacity of bearing 1 for collapse 

limit state, given that a) Sa=0.51, b) Sa=0.99 and c) Sa=1.5 
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(a) Sa=0.51g 

 

(b) Sa=0.99g 

 

(c) Sa=1.5g 

Figure D-13. Probabilistic models of the demand and capacity of bearing 4 for collapse 

limit state, given that a) Sa=0.51, b) Sa=0.99 and c) Sa=1.5 
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(a) Sa=0.51g 

 

(b) Sa=0.99g 

 

(c) Sa=1.5g 

Figure D-14. Probabilistic models of the demand and capacity of bearing 6 for collapse 

limit state, given that a) Sa=0.51, b) Sa=0.99 and c) Sa=1.5 
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