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Abstract

Two aspects of quantum field theory in curved spacetimes are discussed.
First, the limits for applicability of the equivalence principle in the context of
low energy effective field theories is considered. In particular. we find three
classes of higher-derivative interactions for the gravitational and electromag-
netic fields which produce dispersive photon propagation. One of these classes
of interactions also produces birefringent propagation. This result is illustrated
by calculating the energy-dependent contribution to the bending of light. In
the second part, the divergences appearing in statistical black hole entropy are
analysed. Using a Pauli-Villars regulator, it is shown that 't Hooft's approach
to evaluating black hole entropy through a statistical-mechanical counting of
states for a scalar field propagating outside the event horizon yields precisely
the one-loop renormalization of the standard Bekenstein-Hawking formula,
S = A/(4G), where A is the black hole area. The calculation also yields a
constant contribution to the black hole entropy, which may be associated with
the one-loop rcnormalization of certain higher curvature terms in the gravita-
tional action. The calculation of black hole entropy is done for a Schwarzschild

black hole as well as for a Reissner-Nordstrom black hole.



Résumeé

Deux aspects de la théorie des champs quantiques en espace-temps courbe
sont examinés. D’abord, la limite d’applicabilité du principe d’équivalence est
abordée dans le contexte de la théorie effective des champs a basses énergies.
En particulier, nous trouvens trois classes d’interactions d’ordres élevés qui
produisent une dispersion dans la propagation des photons. Une de ces classes
d’interactions produit aussi de la biréfringence. Ceci est illustré en calculant la
contribution de la déflection de la lumiére qui dépend de ['énergie des photons.
La seconde partie analyse les divergences qui apparaissent dans le calcul de
{'entropie statistique des trous noirs. En utilisant une régularisation de Pauli-
Villars, nous trouvons que la méthode introduite par 't Hooft pour calculer
'entropie des trous noirs & partir d’'un comptage des états d'un champ scalaire
qui se déplace a I'extérieur de 'horizon donne précisément la renormalisation
a une boucle de la formule habituelle de Bekenstein et Hawking, S = A/(4G),
ou A ~st la surface du trou noir. Nos calculs donnent aussi une contribution
constante & ’entropie du trou noir, associée a la renormalisation & une boucle
de terraes de l'action gravitationnelle d’ordre plus élevé en courbure. Le calcul
de P’entropie est effectué pour un trou noir de Schwarzschild ainsi que pour un

trou noir de Reissner-Nordstrom.
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Chapter 1

Introduction

1.1 Purposes of the thesis

The 20* century has brought two very successful theories to describe the
physical world. On thes one hand, quantum field theory is the foundation of
the standard model of particle physics and describes the microscopic world
with a great accuracy. On the other hand, General Relativity is the theory
describing physics at very large scales, up to the size of the universe, and as well
it explains the dynamics of stars and galaxies. It is a classical theory of gravity
and spacetime. It is generally believed that the fundamental framework for
the description of all fields should be quantum field theory. Therefore, classical
General Relativity is an incomplete theory because it treats the gravitational
field as classical. It is also incomplete because it predicts that singularities
of spacetime arise in the beginning of the expansion of the universe (the Big
Bang) and in the collapse of stars to form black holes* (see ref. [3]). At these

singularities, General Relativity will break down. It is hoped that a quantum

*Black holes are defined in section 1.2.




theory of gravity will be able to address what will happen at these singularities.

Despite many efforts during t]lé past fifty years, there is still no consis-
tent quantum theory of gravity. The procedures to quantize a classical theory,
which are very successful for the other interactions, have encountered funda-
mental difficulties. The essential difference between General Relativity and
other classical theories is the lack of a background spacetime for General Rel-
ativity. Indeed, for other interactions, one quantizes the fields in a flat back-
ground. On the other hand for gravity, the spacetime is a dynamical field and
one cannot use a background geometry from the start. It seems necessary to
radically change our idea of particles and spacetime. At the moment, there are
two leading theories to build a quantum theory of gravity: string theory [4] and
non-perturbative canonical gravity[5]. In string theory, one replaces point-like
particles by strings (we give some introductory materials on string theory in
section 1.3). In the canonical gravity, one uses a Hamiltonian formulation of

General Relativity and one is led to a quantization of the geometry.

Without a definite quantum theory of gravity, one can still look for a semi-
classical approximation where the gravitational field is considered classically
but the matter fields are treated quantum-mechanically. The quantum ef-
fects should become important for scales of the order of the Planck length
Ip = (RG/c®)Y2. The Planck length is so small (Ip ~ 1073 cm, twenty powers
of ten below the size of the atom nucleus) that one should be able to build
a sensible semiclassical theory of gravity. This theory is called quantum field

theory in curved spacetime.

The effect of quantum gravity should become important near the time of the
Big Bang or near a black hole singularity. A black hole is a region of spacetime

where the gravitational attraction is so strong that nothing, even light, can



escape. The gravitational attraction is produced by a compact massive object.
A black hole can be produced by a massive collapsing star at the late stage of
its evolution. It is also believed that black holes form the center of galaxies.
Recently, this claim was confirmed by the observation by the Hubble Space
Telescope of massive black holes in the galaxies M87 {6] and NGC 4261 [7]. In
this thesis, we are concerned with the possible applications of quantum field

theory in curved spacetime to black hole physics.

The study of quantum field theory in curved spacetime has led to two
important discoveries. First, Hawking discovered[8] that black holes radiate
subatomic particles with a thermal spectrum. As we will see in section 3.1.1,
this result establishes a strong connection between black hole dynamics and
ordinary thermodynamics, that was suspected before from results of classical
General Relativity[9]. In particular, it establishes the idea that black holes
have entropy, proportional to the black hole area. Black hole entropy should be
related to information loss during its formation and when matter falls inside the
black hole {10, 11]. The idea of analysing black holes from a thermodynamical
point of view is called black hole thermodynamics. The understanding of
black hole entropy, though, is only within a thermodynamic framework, and
despite a great deal of effort, a microphysical understanding of this entropy is
still lacking. Many attempts have been made to provide a definition of black
hole entropy using statistical mechanics {(we review the different methods in

section 3.2) but in these calculations, divergences appear in the entropy[12, 13).

The second discovery, obtained by Drummonds and Hathrell[14], is the
limit of applicability of the equivalence principle in quantum field in curved
spacetime. By vacuum polarization, point-like photons acquire an effective size

and they are sensitive to tidal interactions. The first consequence is the exis-



tence of superluminal motion (without necessarily the implication of a causal
paradox} [14. 15]. In the context of string theory. Mende[16] also observed
limits of the applicability of the equivalence principle and he suggested that
the extended nature of strings should imply an energy-dependent deflection of

light and that it would be a clear signature of string theory.

These two effects are signatures of quantum gravity that should survive
when the final theory of quantum gravity is found. With the lack of obser-
vations related to quantum gravity, these signatures may serve as guidelines
for the construction of a quantum theory of gravity. The purpose of this the-
sis is to address two questions related to each effect. First, we want to see
if it is possible to obtain an energy-dependent deflection of light within the
framework of quantum field theory in curved spacetime. If so, this behavior
would not be a clear signature of string theory. The second goal is to under-
stand the divergences occuring in the statistical black hole entropy. Such an

understanding is essential to make sense of the statistical black hole entropy.

In the remainder of this chapter, we introduce some background material
needed in the thesis. In section 1.2, we review some notions of General Relativ-
ity and the Schwarzschild and Reissner-Nordstrom solutions. Then section 1.3

introduces the classical action for bosonic string theory.

The chapter 2 is concerned with the limit of applicability of the equivalence
principle and the construction of an effective action that can describe dispersive
photon propagation in a gravitational field. We start our study in section 2.1
by reviewing the equivalence principle in General Relativity and its implication
on light propagation. We will see in this section that the equivalence principle
implies the energy-independent propagation of photons. Then in section 2.2,

we review Mende’s idea that string theory leads to energy-dependent light
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deflection. The results of ref. [l4] on the limit of the equivalence principle
in quantum field theory in curved spacetime is reviewed in section 2.3. This
section leads us to try to build an effective action that implies an energy-
dependent deflection of light by a gravitational field. This is done is section 2.4
where we find three classes of effective actions leading to dispersive photon
propagation. Then in section 2.5, we discuss our results with respect to the
uniqueness of the effective actions, to the relation to possible string effective

action and to the magnitude of the dispersion.

In the chapter 3, we study black hole entropy using statistical methods.
We start by reviewing in section 3.1 black hole thermodynamics, i.e., the rela-
tion between black hole dynamics and ordinary thermodynamics. This is done
for General Relativity as well as for more general theories of gravitation. In
section 3.2, we present the different methods that were introduced to calculate
statistical black hole entropy. These calculations lead to divergences in the
entropy and one needs to introduce a regularization scheme. To compare with
the divergences of black hole entropy, we calculate in section 3.3 the effective
action for a scalar field in a curved background. Divergences occur in this
calculation and we introduce a Pauli-Villars regularization and then absorb
the infinities by renormalization of Newton’s constant and other coupling con-
stants. The divergences of black hole entropy are studied in section 3.4 using
the same Pauli-Villars regularization. To calculate black hole entropy, we use
a modification of the methad initially introduced by 't Hooft[12]. We find that

the divergences are exactly what is needed to renormalize Newton’s constant

“a.nd the other coupling constants. Then some discussion remarks are included

in section 3.5, with respect to possible generalizations of the calculation.

"‘-“"'Finally, we conclude this thesis in chapter 4. Some technical material is



included in the appendices. Throughout the thesis. we use the convention of
ref. [17]. where the metric has signature (= +-+). the Riemann tensor is given
by R = 8.Tgy— Qa8+ 0.5, — T4, with Tg, the Christoffel symbol and
Einstein equation is given by eq. (1.1). We also use units where A =c=kg=1

except in chapter 2 where we use units where h =c =G = 1.

1.2 Review of General Relativity

Currently, the accepted classical theory of gravity is Einstein’s theory of
General Relativity. The theory was first verified by looking at three predictions
(the so-called classical tests) namely, the precession of the perihelion of Mer-
cury, the bending of light by the sun and the red-shift of light escaping from a
gravitational field. These tests probe the weak-field regime. Since that time,
the theory has been verified with other weak-field observations and also in the
strong-field regime, with observations related to binary pulsars (for reviews on

the experimental verification of General Relativity, see e.g., refs. [18, 19]).

General Relativity is a theory of gravitation and spacetime. Energy gen-
erates curvature of the spacetime. Conversely, curvature interacts with the
energy distribution of spacetime, establishing an equilibrium described by Ein-

stein field equation
1
Rab - '2"9an = BFGTab ' (1.1)

where R, is the Ricci tensor, R is the curvature scalar, g, is the metric, G
is Newton's constant and T is the matter stress-energy tensor. if the energy

distribution is expressed by a field action I, the stress tensor can be calculated
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Tu=-——ld

V=gdg*’ (-2

with g the determinant of the metric tensor g.s. Eq. (1.1) can also be written

1
Rub = SWG(T.,{, - 3905ch) .

The motion of particles in free fall is described by timelike geodesics (or null
geodesics for massless particles). A geodesic is a curve whose tangent vector
T° is parallel propagated along itself, thus T satisfies T°V,T® = o7T®, where
a is an arbitrary function of the curve. The geodesic van be reparametrized

such that the tangent vector obeys
v, T =0. (1.3)

In that case, the parametrization is called an affine parametrization. If one
introduces a coordinate system, the geodesic is mapped to a curved z°(r) and

the tangent vector is given by

_d:c"
=—-

™

For timelike geodesics, one has gsT°T® < 0 and for null geodesics, one has

gabT°T® = 0. Eq. (1.3) becomes

d?z° 4T dz® dz°
dr? be dr dr

=0. (L4)

This is the geodesic equation. The parameter 7 is the affine parameter. For
timelike geodesics, the affine parameter can be interpreted as the proper time
and the geodesic is the curve between two points that extremizes the proper

time.



1.2.1 The Schwarzschild black hole

The empty space Einstein equation
R =0 (1.5)

admits a spherical symmetric solution, known as the Schwarzschild solution.

The metric is

ds® = gapdr® dr®

= (1-2)ar 1 (1- %)*'drur?do? Frisin20det,  (L6)

r

where (¢,7,0,d) describe the Schwarzschild time, radial and angular coordi-
nates and r, = 2GM is the Schwarzschild radius. This solution describes
the geometry around a spherical distribution of matter with mass M. The
Schwarzschild metric is asymptotically flat, i.e., it behaves as the Minkowski
metric for r — co. A theorem due to Birkhoff states that the Schwarzschild so-
lution is the only spherical symmetric, asymptotically flat solution of Einstein
vacuum field equation (1.5)'. Thus, the field produced in the surrounding re-
gion by a spherical symmetric mass distribution may always be represented by
the metric (1.6), regardless of whether the mass is static, collapsing, expanding

or pulsating.

Components of the metric become zero or diverge at r =0 and at r = r,.

Numerically, one has

WM . M
—CT = 31"_I@km

Ty =
For ordinary objects like the sun or the earth, the Schwarzschild radius is in-
side the radius of the body, where the vacuum Einstein equation is not valid.

However, these singularities are relevant for bodies which undergo complete

tFor a proof, see ref. [3].



gravitational collapse. The divergences can be produced by singularities of
the spacetime or by pathologies in the coordinate system. The easiest way
to identify a spacetime singularity is to look for a scalar quantity describing
the geometry that becomes infinite. [f a scalar quantity is infinite in a cer-
tain coordinate system. it will be infinite in all coordinate systems and the
singularity will be a true singularity, independently of the coordinate system.
On the other hand, apparent singularities in tensor components may be only
coordinate singularities, produced by a bad choice of the coordinate systern.
In Schwarzschild geometry, the simplest curvature scalar is RapeqR%*®. From

eq. (A.10) in appendix A, one obtains

12r2
Ranabai = 65 .
T

This quantity remains finite at » = r, but it becomes infinite at » = 0. Hence
the singularity at » = 0 is real and » = r, is probably only a coordinate
singularity. In fact, we will see shortly that the latter is the event horizon of
the Schwarzschild black hole. The surface r = r, is also called the static limit
surface because on this surface, gu = 0 and one cannot remain at rest (with
dr = df = d¢ = 0). For Schwarzschild geometry, the event horizon and the

static limit surface coincide but in general they are different.

Let us remove the singularity at » = r, by using the Kruskal coordinate

system[20]. We first introduce the Kruskal null coordinates

U= —e "/
V= el
with
u=t—r,

v==1t4r,
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where r. 15 the tortoise coordinate

r
r.=r+r,.ln(——!) .
Fe

The original (¢.r) coordinates are mapped to ~xx < 7 < 0.0 < V" < .
With this transformation. the metiic (1.6) reads

.lr.’lewr/r,

ds® = ~—2——dU7 dV" + r*(d8® +sin 0do°) .

r

where r is to be viewed as a function of I/ and V. The metric is no longer
singularat r = r, (I =0 or V =0). .t is possible to extend the Schwarzschild
solution by allowing U/ and V" to take all values compatible with the restriction
r > 0, that is, —oc < U,V < 0o. We then make the final transformation
T=U+V)/2and X = (V - U)/2. In this way, we obtain the maximal
extension of the Schwarzschild geometry, given by the metric

3
ds? = %e"’“(—d’rz +dX?) +1*(d6® + sin” §do%) . (1.7)

This geometry is illustrated by the two-dimensional spacetime diagram in
fig. 1.1. By construction, the radial null geodesics are 45° lines in the Kruskal
geometry. Each point represents a two-sphere with radius r. The relation

between the old coordinates (¢, r) and the new coordinates (T, X) is given by

(1 - 1) el = X2 -T2

Ts
t_ T+X
, T-X°

In fig. 1.1, the curves ¢ = const. are lines through the origin and the curves
r = const. are hyperbolae, This figure illustrates the bad behavior of the (¢, )
coordinate system at 7' = X. The singularity » = 0 becomes the hyperbola
T = +/XZ £ 1. In fig. 1.1, there are four different regions. The region labeled
I is the original asymptotically flat region r > r,. It can be interpreted as the

spacetime outside a spherical body. However, a radially infalling observer can



1

— -

Figure 1.1: Spacetime diagram for the Kruskal extension of Schwarzschild

geommetry.

cross the null line 7 = X and enter in region //. Once this observer has
entered in this region, he cannot escape from it. Within a finite proper time,
he will fall into the singularity r = 0. Even light cannot escape from this region
and will fall also into the singularity. Hence, the region /[ is a black hole. The
null surface X = T (corresponding to r = r,) is a one-way membrane. It
is called the future event horizon because observers in the region [/ cannot
be causally influenced by an event that takes place beyond this surface. The
region /7 has the same time-reversed properties of the region IJ and it is
called a white hole. Any observer should have started his existence near the
singularity T = —v/ X2 + 1 and must leave the region within a finite proper
time. Finally, region [V is another asymptotically flat region, which is causally

disconnected from region 1.

The complete extended Schwarzschild solution cannot represent the space-

time resulting from a gravitational collapse because one does not initially have



r g
(singularity )
h

r 0 |
(ongin of coordinates)

—
RN
AN

collapsing matter

Figure 1.2: Spacetime diagram for a complete gravitational collapse of a spher-

ical body.

two asymptotically flat regions with an initial singularity connecting them.
One can represent a spherical collapse by the spacetime diagram of fig. 1.2.
The regions {11 and V" are unphysical but part of region /[ is produced and
a black hole is formed. The complete gravitational collapse of a spherical body

always produces a Schwarzschild black hole.

1.2.2 The Reissner-Nordstrom black hole

The Schwarzschild solution describes the zravitational field surrounding a
spherical distribution of mass which is electrically neutral. For an electrically

charged distribution of matter, one has to solve the coupled Einstein-Maxwell
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equations.
Ray~ 300 = 8T,y
Vo F® = Jo
ViFig =0,

where J® is the current density and T, is the stress-energy tensor for the

electromagnetic field. From the Maxwell action
|
ILo= —4—/d“z V=g FuF® | (1.8)
and eq. (1.2), one may calculate T,
e 1
Top = FocFy© — ZgadeF“’ .

A spherical solution can be found. It is the Reissner-Nordstrom solution, with

the metric
2 9 2y —1
ds* = — 1—2GM+Gi. dt* + 1—“G—M+Gi dr?
T 4nr? r 4rr?
+72df? + r¥sin®0dg® (1.9)
and the field strength
Fop = 2E(r) dopadyyy (1.10)

where the square brackets indicate that the expression is antisymmetrized in

a and b with a factor of 1/2 and

E(r) = 4—7?;.2- (L11)

is the electric field. This solution describes the geometry around a spher-

ical distribution of matter with mass M and charge Q. It reduces to the
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Schwarzschild solution when @ = 0. The metric has divergences for r = 0 and

r = ry, where

2
re = GM 1 a2ge = €9 (1.12)

47 -
As for the Schwarzschild case, only the singularity at r = 0 is a space-

time singularity. This can be seen by calculating the scalar R R®®. Using

eq. {A.17), one obtains the scalar quantity
GBQ-t

b _
Rap ™ = 4728

which diverges only at 7 = 0. For GM? > @*/(4~w), the null surface r = r,
is the event horizon and the null surface » = r_ is another horizon inside the
black hole. When GM? = Q*/(4w), r. = r_ and the two horizons coincide.
This black hole is called extremal. Finally, for Q*/(47) > GM?, there are no
horizons, only a singularity at » = 0. A singularity without horizons is called
a naked singularity. For the Reissner-Nordstrom black hole, the configuration
@Q?/(4m) > GM? is unstable because the electric repulsion becomes bigger than
the gravitational attraction. For general collapse, it is generally believed that
a naked singularity cannot be produced by a gravitational collapse (this is the

cosmic censorship conjecture[21]).

1.3 The Bosonic string action

String theory is a theory that incorporates ;svavity with the other interac-
tions. String theory has a better ultraviolet behavior than the ordinary field
theory and the scattering amplitude should be finite to all orders of the cou-
pling constant. In this way, no infinite renormalization should be needed. In
this thesis, we are studying quantum gravity in a semi-classical approxima-

tion. In this line, we need to introduce the classical action for bosonic strings



(we restrict ourselves to bosonic string for simplicity) to compare some of our

results with those coming from string theory.

We begin with the action principle that describes the motion of a point
particle of mass m in a curved spacetime. This action is proportional to the

invariant length of the world line

I=—m/ds=—m/\/—g,bdz“dxb

where g4 is the spacetime metric. If the trajectory is described by the curve

z%(7), with 7 an affine parameter, the action takes the form

/ dz® dzb
I= —m/d‘r —Gab—— dr dT (1.13)

This action is invariant under reparametrization 7 — 7'(r) of the particle
trajectory and so does not depend on the coordinate system. The action (1.13)
leads to two difficulties. First, it is non-polynomial and thus it is difficult to
work with this kind of action. Next, it does not apply for massless particles.
To overcome these difficulties, one may introduce an auxiliary field k(7). The
action becomes

f drvh(h™! “E%”T—b-mz) : (1.14)

h plays the role of a world line metric. One may recover eq. (1.13) by solving

the equation of motion for A

dz® dzb
9ab g dr

— +m?h=0.

The point-particle can be generalized to a one-dimensional object. To
parametrize the string, one introduces a spacelike parameter o!. As it moves,
the string sweeps a two-dimensional surface called the world sheet, parametri-

zed by ¢! and by a timelike parameter ¢ (which plays the same role as 7 in
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the point particle case). Then, the position of the string is given by a function

X¢(0% o'). With this, the action (1.14) is generalized to the string action

T
F)

-

Ip = 2oV —hh*(0)g.s( X )0, X0, Xt . (1.15)

Usually, string theory is formulated in a flat background and the action is given

by
=1 f 2o/ Th (0)7a8, X9, X .

This is the Polyakov action [22]. The hatted greek indices refer to the world
sheet coordinates (6%, 6!), h;; is the world sheet metric and T' is the string ten-
sion, with dimensions of (mass)®. It can be related to the Regge slope parame-
ter &' by T = 1/(2ma'). The action {1.15) is invariant under reparametrization
of the world sheet 0? — ¢'%(0?,5!), 0! - 0" (0%,6!). It is also invariant clas-

sically under Weyl rescaling of the world sheet metric hz; — A(c®,o')hss.



Chapter 2

Dispersive photon propagation

We begin our study of quantum gravity by looking at limits for applicability
of the equivalence principle. After reviewing the effect of vacuum polarization
on photon propagation in curved spacetime, we will show that it is possible to
construct effective actions leading to dispersive propagation, i.e., propagation
that is energy dependent. Throughout this chapter, we use units where £ =
c=G=1.

2.1 The equivalence principle

The equivalence principle is part of the foundation of Einstein’s theory of
General Relativity. It states that at every point, one can build a local Lorentz
frame and that for an arbitrarily small region, the laws of physics are described
by the laws of Special Relativity. This is the Einstein equivalence principle. It
implies that all local inertial frames are equivalent and it imposes a minimal
coupling between the gravitational field and the external fields, i.e., one can

obtain the laws of physics from Special Relativity by replacing the Minkowski

17
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metric by a curved metric and by replacing ordinary derivatives by covariant
derivatives. There are no couplings between the fields and the Riemann tensor.
We will see in this chapter that when we consider interacting quantum fields
in curved spacetime, the Einstein equivalence principle is violated. One can
still build a local Lorentz frame at each point but the local frames need not
all be equivalent. This is the weak equivalence principle, which is the real
foundation of General Relativity, that is, spacetime is a pseudo-Riemannian
manifold. In more physical terms, the weak equivalence principle states that
the inertial mass is equal to the gravitational mass. In the following, we refer

to the Einstein equivalence principle.

To illustrate the equivalence principle in General Relativity, we consider the
deflection of light by a gravitational field. The deflection of light is one of the
classical tests of General Relativity proposed by Einstein to verify his theory.
Its observation in 1919 [23] was one of the first verifications of the theory. The
deflection of light was measured many times since then and the observations
are still in accord with the theory." Because of this success, the deflection of
light has become a useful tool in astrophysics. Gravitational lenses are used for
many purposes (see,e.g., ref. [25]) and particularly for the possible observation

of the dark matter[26, 27].

2.1.1 Geometric optics approximation

To study photon propagation in a gravitational field, we start with the
Maxwell action (1.8)

I = _.}I f Bz GFW F® | (2.1)

*Far the results of the latest measurement, see ref. [24].
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where Fy, = V, 4, — V4, is the field strength and A, is the gauge potential.

The variation of I leads to the equation of motion
V. F®=0. (2.2)
The field strength also obeys the Bianchi identity

VaFpe + VpFoa + V Fo, =0 (2.3)

In order to know the properties of photon propagation, it is sufficient to
take the geometric optics approximation (for more details, see appendix B).
In the leading order, one writes the field strength as the product of a slowly

varying amplitude and a rapidly varying phase
Fab = fab eiB . (24)

The wave vector is defined by k, = V,0. Light rays follow curves 2*(7) normal
to the wave fronts © = const. So the wave vector is tangent to z°. Given an

affine parameter T, one has

dz*

— e __ ab
=k =g*V,0. (2.5)

Such curves ate called integral curves. In the quantum interpretation, the wave
vector becomes the photon momentum and the light rays become the photon

trajectories.

Let us introduce eq. (2.4) in the Bianchi identity (2.3). In the leading order

of the geometric optics approximation, all derivatives act on the phase
kafbc + kbfcn =+ kcfnb =0. . (2'6)
This constrains f,; to take the form

Jab = Koay — kpag (2.7)
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for some vector a,. The direction of a, indicates the photon polarization. The
field strength is an antisymmetric tensor of rank two, with six components.
Eq. (2.6) imposes three independent constraints and so fg; has three indepen-
dent components. From eq. (2.7}, we see that a polarization a, parallel to
the wave vector yields f,;, = 0 and thus, it is unphysical. So in fact, the field

strength has only two independent components.

Now, let us introduce eq. (2.4) in the equation of motion (2.2). To leading

otder, one obtains:
kof®=0. (2.8)
This equation, together with the Bianchi identity, implies that light rays are
null geodesics. Indeed, by multiplying eq. (2.8) by &°
0 = kok® f®
= —kak®f5 — kok® f
= ~kak* > .
Therefore,
=0 (2.9)
and k, is a null vector. Then, taking a covariant derivative on k2, one obtains
0 = V. (k?) = 265V ks = 20PVik, |

where we use the fact that &, is the gradient of a scalar function ©, for which
V.ky = Vik,. The geodesic equation is found by substituting eq. (2.5)

d*z® . dobdze
d—1_2—+1‘,,c¥ Ir =0. (2.10)

An important property of the geometric optics results is that the light-

cone condition (2.9) is invariant under the rescaling of k,, i.e., under k, = Ak,.
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Figure 2.1: Bending of light.

Therefore, in this approximation the propagation of light is independent of the
photon frequency. This may be understood as a direct implication of the Ein-
stein equivalence principle. Photons fall freely along geodesics, independently

of their frequency.

2.1.2 Bending of light

To illustrate the frequency-independent propagation of light, we consider
the bending of light in a spherical symmetric spacetime. Consider a Schwarz-

schild spacetime described by the metric (1.6)
-1
ds® = — (1 - @) dt® + (1 - g) dr? +7%dQ? (2.11)

where d2? = d6? +sin® 8 d¢? is the angular line element for a unit two-sphere.
For large values of r, the Schwarzschild metric is almost flat and the coordinates
(r,0,¢) can be identified with the usual flat space spherical coordinates. We
consider photon trajectories which begin at » — oo in the equatorial plane
8 = x/2 (the £ — y plane) with an impact parameter b, as illustrated in fig. 2.1.

We want to find the change A¢ = ¢y — ¢_oo — 7 in the angular coordinates



N
3%

¢. The factor of = is subtracted because it is the change in ¢ when there is no

deflection at all.

One can solve the geodesic equation (2.10) to find (see eqs. (C.7) in ap-

pendix C)

where E is the photon energy and the dot indicates a derivative with respect
to the affine parameter. The minus sign describes the incoming photons and
the plus sign, the outgoing photons. The spatial orbits of the photons are then

given by
y 9 29 —-1/2
.8 ub i (1220517
r  F r Jr

To obtain the deflection angle, one integrates over the entire trajectory. The
integral is an even function of r and one may integrate from the distance of

closest approach ry {where # changes sign) to infinity and multiply by 2

° aM\ b2V
=2 r=1-{1-22) 2 i
Ap 4T /; dl"?2 [1 (1 " )1'2]

The impact parameter is related to the distance of closest approach ry by

-1/2
b: To (1 — 2—M) .

o
The photon energy entered by ¢ and # but scales out of %f and the deflection
angle is independent of the photon frequency. In the solar system, the gravita-
tional field is always weak and one can expand the deﬂecfion angle in powers
of M/r. To lowest order, the impact parameter equals the distance of closest

approach and the deflection angle is

4GM
A¢g = el (2.12)
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where we have put back the factors of G and ¢*. For photons just grazing the

sun, one obtains the standard result[17, 28]

, ‘lG.‘l’I@ —_—M
—_ =155 9
Ap= R = 1757 . (2.13)

2.2 Bending of light in string theory

Point particles fall along geodesics. This result is a consequence of the
equivalence principle. For photons, the trajectory is given by eq. (2.10) and
the deflection angle can depend only on the impact parameter b. One might
ask what would happen if photons were extended objects, as is the case in

string theory.

As explained in section 1.3, to describe the propagation of strings, one
replaces the world line 2%(7) by a world sheet X°%(¢% 0'), where ¢° is the
affine paramecter and o' is a spatial coordinate describing the string. The

equation (2.10) is replaced by
AX® + I (X)0: X0 Xh¥ =0,

where h#” is the world sheet inverse metric and O is the world-sheet Laplacian.

The hatted greek indices refer to the world sheet parameters ¢° and o!.

For point particles, one can choose Riemann normal coordinates (see sec-
tion 3.3.2) where I'f, is zero along the trajectory. This is the free fall inertizl

frame. The equation of motion for the particle then becomes

d?z
dr? 0

and there is no apparent local gravitational interaction. The particle energy

does not appear in this equation and so the trajectory is energy independent.
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For strings. things are different because in general. there are no coordinate
systems where 't = 0 over the entire world sheet. Because of their extended
nature, strings always feel tidal forces. The equation of motion is non-linear.
Ultimately the energy does not scale out and the trajectories should be energy

dependent.

This idea led Mende[16] to suggest that string theory would yield an energy-
dependent bending of light and that this would be a clear signature of string
theory because there is no such effect in classical General Relativity. Of course,
this effect would be very small, typically of order {p/R, where lp = (Gh/c*)"/?
is the Planck length and R is the typical curvature scale. Mende further argued
that the energy-dependent bending of light is a consequence of the extended
nature of strings and therefore it should occur independently of the details of

the final string theory.

2.3 Quantum effects in photon propagation

in this section, we consider point-like photons in the contexi of quantum
electrodynamics in curved spacetime. Because of the vacuum polarization, a
photon exists part of the time as electron-positron pairs. These pairs can then
be influenced by external fields. For example, it was shown by Adler[29] that
electromagnetic waves passing through a strong magnetic field will exhibit
birefringence, i.e., the propagation would depend on the wave polarization.
Similar resuits can be found for photons propagating in a gravitational field.
The virtual pairs give the photon an effective size of O().), where A is the
electron Compton wavelength. Because of this effective size, photons can feel

tidal forces and the Einstein equivalence principle is violated. This effect was



b
w

first considered by Drummonds and Hathreli[14] who studied photon propa-
gation in de Sitter, Robertson-Walker!, Schwarzschild and gravitational wave
backgrounds. For e Sitter space. the curvature is isotropic and Maxwell
equations are modified only by a normalization factor. In Robertson-Walker
geometry, the photon velocity is changed but it is independent of the direction
of photon polarization. More interesting results appear for Schwarzschild and
gravitational wave backgrounds for which the Riemann tensor is not isotropic.
in those cases, the propagation of photons is polarization dependent. There
is a gravitational birefringence effect. Recently, gravitational birefringence
was also found for Reissner-Nordstrém background [15] and Kerr background?
{30]. Similar violations of the equivalence principle were also considered in
refs. [31, 32]. In the following, we describe the calculation leading to birefrin-

gence in the bending of light for the Schwarzschild geometry, as presented in

ref. [14).

2.3.1 Effective action for QED in curved spacetime

The contribution of virtual particle loops in photon propagation can be
obtained by repfacing the Maxwell action [, by a one-loop effective action
I = Iy + I. The action [; incorporates electron loops. It is given by

1 —a
L = “ﬂzunaf[]_:_[d‘:c,, A.,"(:z:,.)]G"" "(T1y.+e 4 Tn) (2.14)
where G~ (xy,...,x,) is the sum over one-particle-irreducible Feynman

diagrams. Because we are concerned with the propagation of photons, it is

tDe Sitter and Robertson-Walker backgrounds are two idealized cosmological models
describing homogenous and isotropic universes. The stress-energy is provided in the former

by a non-zero cosmological constant and in the latter by a perfect fluid.
‘The Kerr metric describes rotating black holes.



Figure 2.2: Diagram for the one-loop vacuum polarization in flat spacetime.

sufficient to consider only contributions which are quadraticin 4,(x). One may
do an expansion of (2.14) in the number of derivatives. The first modification
to the Maxwell action has four-derivative interactions. There are four gauge

invariant and coordinate invariant interactions. They may be written

L= EI; f diz /=g [aRF.,bF““+bR.,5F“°F*’C
+ R FPF + dV.,F""VcF%,] . (2.15)

where m is the electron mass and a, b,c,d are dimensionless coefficients. To
determine the latter, one may compare the scattering amplitudes given by I,
with the one-loop results calculated for a weak gravitational field theory. The
interaction proportional to d can be found by considering the flat spacetime
vacuum polarization amplitude of fig. 2.2. The on-shell renormalized amplitude
is given to fourth order in derivatives by (see, e.g., ref. [33])

Hab___ agb — %02 (1 0‘12 2.16
= ("¢ -1 |1+ 5= (2.16)

where 7 = diag{—1,1,1,1) is the Minkowski metric and a = e?/(4~) is the
fine structure constant. The effective action will yield the same scattering

amplitude to Q(e?) if

30mm? -~
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Similarly, one may calculate the coefficients a, b and ¢ by looking at the
diagrams of fig. 2.3. Using the Feynman rules found in ref. [34], Drummonds

and Hathrell obtained, to O(e?) [14]}

ba 13 a

c=—

*= 720r = T 3607 3607

These coefficients may also be obtained by calculating the Green function for
electrons in an external gravitational and electromagnetic background using
DeWitt-Schwinger techniques [14], similar to the methods presented in sec-

tion 3.3.

The equation of motion is given by

Y4
8 A, ()

= V F* - #vc [4aRF‘"‘ + 2b(R%F® — R*.F™) + 4cR""ch°"] . (2.17)

0=

The interaction proportional to d has been omitted because V,F is of order
e?, so dV,F is of order e*. Eq. (2.17) is valid for photon wavelengths A >
Ac =

1
—

2.3.2 Superluminal velocity in Schwarzschild geometry

The Schwarzschild geometry is described by the metric (2.11).
. -1 -
s = - (1 - g) dt* + (1 - ~2TM) dr® +r1dQ? .

It is a Ricci-flat spacetime with R = R, = 0. The equation of motion (2.17)

reduces to

VoF® — £ [V R% P + R4 F] =0,

¥The actual coefficients in ref. [14] have opposite signs because they use {+ — ——) for

the metric signature.
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Figure 2.3: Diagrams for the one-loop gravitational vacuum polarization.

with £2 = a/(907m?). Using the Bianchi identity for the Riemann tensor, one

obtains
VoR®oF = [~V RSy, ~ VR, | F
= [VCR"d - VdR”c] Fd=0
for Ricci-flat geometries. Hence

V. F® - 2RV Fy=0.

“Let us examine this equation in the geometric optics approximation (2.4).
As in section 2.1.1, all derivatives act on the phase in the leading order which

yields
kafab = EzRaHkafcd =0.

This equation is invariant under rescaling k; — Ak,. Therefore, the trajectory
will be frequency independent, just as in General Relativity. However, the

R4}, .4 term does violate the Einstein equivalence principle.

To solve the equation of motion, it is useful to work in a local orthonor-

mal frame by introducing the vierbein e*, = diag(U,1/U,r,r sin 8} satisfying
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%5)1/2. The greek letters represent the or-

€"2€"bTuw = Gab, Where U = (1 —
thonormal coordinates {0, 1,2, 3), associated with (¢.7,8,¢). We also introduce

the bivector

ab _ _a_ b I
Uiw =e,%e,” —e,’e,® .

One may choose the three independent components of the field strength to be
for = L fasU2 and similarly f3 and fo3. Then, the equation of motion can be

put in a matrix form

Rre2 0 0\ {fu
0 E—em® 0 f23 =0, (2-18)
~elp  —em-p K Joz

where

€=

2 2y 1 2
o (1 4 20 ) =5V o, (2.19)

P=USk, mb=UBk, pP=Uk,. (2.20)

In terms of local frame components, we have
P=kl-k m*=k+k =ik (2.21a)
Im =0 l-p = —kik; m-p = koka . (2.21b)

To have a non-trivial solution, the determinant of the square matrix in eq.(2.18)

must vanish
(K + el?}(k* —em®)k* =0 . (2.22)

Each root yields a modified light-cone condition, and a specific polarization
is associated to each. Eq. (2.18) determines the polarization vector to O(e%)
and so it is sufficient to consider the classical propagation equation for the

polarization vector. From the results of appendix B, the polarization vector is
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parallel transported along the rays and thus its orientation 1emains constant.
For a given trajectory, two of the light-cone conditions describe physical polar-
izations while the third is unphysical. To understand the implication of these

modified light cones, we consider two limiting cases.

(i) First, we look at radial trajectories given by 4 = &® = 0. From
eq. (2.21a), one has m® = k2 + %3 = O and £ = &2 — k2 = —k%. The
first root yields k% + e/2 = k?(1 — ¢) = 0 and by eq. (2.18) it describes
photons with radial polarization a, = d,,, which are unphysical. The
second root and the third root are degenerate and yield the unmodified
light-cone condition &* = 0. They describe the two independent phys-
ical polarizations. Hence, the photon velocity remains unity for both

polarizations

ko

H ‘=1.

(ii) Next, we consider the opposite case where &" = k% = 0 and k% # 0.
Using eq. (2.21a), the first root yields the light cone

(L~ )(—k3) + 43 = 0

and the photon velocity is

Ko
ks

1 € 4
—'—1—_-—';—1'*"2"+0(E),

where € = O(e?). From eq. (2.18), this describes radial polarization. In

the same way, the second root yields
—kE+(1-eki=0
which leads to a photon velocity

ko

ks

=\/1-—e=1—§+0(e4)
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and describes the transverse polarization a; = 8. The third root k2 =0

descibes the unphysical polarization a; = §pg.

Substituting (2.19), one obtains

aM . P
1+ 725 for radial polarization,

kol
k3 - AM . .
1~ 2 for 8 polarization.

Hence, the propagation of light is polarization dependent and one obtains

gravitational birefringence.

The two previous cases are useful to analyse a general motion of propagation.
In fact, one can always choose a coordinate system such that the trajecto-
ries remain entirely in the equatorial plane 8 = #/2 with &® = k; = 0 (see
appendix C). Then the cases analysed previously represent the two limiting
cases. Now in general, one has /2 # 0 and m? # 0 and the root of eq. (2.22)
k% = 0 describes the unphysical polarization a; = Aks, which yields f., = 0.
Moreover, the velocity of light is greater than unity for the polarization tangent
to the equatorial plane and it is less than unity for the polarization normal to
the equatorial plane. It is only for purely radial motion that the light cone

remains £? = 0 and the velocity unity.

The velocity is greater than unity for the polarization tangent to the equa-
torial plane. The existence of superluminal motion suggests the possibility of
violations of causality. It is well known that if an observer A sends a spacelike
signal (with &% > 0) to B, then there exists an observer C for whom B happens
before A. Then by the equivalence of Lorentz frames, B can send back a signal
to A that arrives before the emission of the initial signal. In the present case,
the effect is produced by a tidal effect and so all Lorentz frames are not equiv-

alent. Therefore the second step in the construction of the causal paradox is
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missing, and hence, the violation of the Einstein equivalence principle allows

“faster than light” motion without necessarily implying a causal paradox.

2.3.3 Birefringence in the bending of light

To show that there are real physical consequences behind the previous
analysis, one may consider the bending of light produced by the new equation
of motion. For photons with polarization lying in the r-y plane (the equatorial

plane 8 = 7/2), the light-cone condition reads
B +el?=0.
In a Schwarzschild geometry, the equation of motion reduces to
IM aM M\ oM
-[1-— - —— | K -— - —— | kTk"
( T ) (1 15m2r3) + (1 T ) (1 15m2r3)
+ 2ROk 4 2 sin? 0 4%h* =0,

where we are using &* with spacetime coordinate indices. The easiest way to
determine the deflection angle is to consider the wave vector 4® as a null vector

in an effective metric

ds® = —B(r)dt? + A(r)dr® + r® d6? + r* sin® 0 dgp®

with
Ar) = (1 ~ z—f-{) B (1 - wifm) (2.22a)

Expanding A(r) and B(r) in powers of @ and keeping only the linear term, one
obtains the modification to the deflection angle for photons with a polarization

lying in the equatorial plane

2
6A¢¢_y=— (4 (Ac) 4M )

45 \re) 1o
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where 1 is the distance of closest approach and A; = 1/m is the electron’s
Compton wavelength. For the other polarization parallel to the z-axis, the
magnitude of the modification is the same but the sign is the opposite.

2
§AD, = — (ﬁ) M

457 \ rp 70

Putting back factors of ¢, & and G, the two polarizations acquire a separation

angle

3¢ = 457

?.a( A )24GM. (2.23)

T'QC2

mcry

For solar parameters, this angle is unmeasurably small:
6o =3x107A¢ .

To get an observable angle, one would need a small black hole with radius
of the order of the electron’s Compton wavelength. The deflection of light is
still frequency independent. In ref. [34], they reported a frequency-dependent
deflection angle for this effective action but it was an erroneous result, as

described by ref. [14].

2.4 Dispersive photon propagation

The first quantum corrections to photon propagation produces gravita-
tional birefringence but the bending of light remains independent of the photon
frequency. In this section, we want to find if it is possible to build an effective
action which yields dispersive bending of light in the context of interacting
quantum field theory. This is important in order to understand whether string

theory is the only possible theory with this prediction.
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2.4.1 Six-derivative interactions

To have dispersive results then, the leading-order equation should not be
invariant under scaling of &,. Thus one must consider interactions with more
derivatives, and in particular, the interactions must contribute to the electro-
magnetic equations of motion with more derivatives of the field strength. With

this in mind, a natural extension of eq. (2.15) is
Bt
b=~ dz /=g R*IV_F,VeFy (2.24)

where 3 is a dimensionless coupling constant, and A is the (length) scale asso-
ciated with the eflfective interaction. This action may be a curved sparetime
modification to the effective action coming from the diagram of fig. 2.2. Com-
bined with the Maxwell action (2.1), this new term leads to an equation of

motion
Vo F - BNV, V. (R™VFy) =0
and in the leading order of the geometric optics approximation, one finds
kaf®® — BA Rk k?fg =0, (2.25)
Multiplying by &9 and antisymmetrizing over b and g, one finds
k2 ( F9 — 9@A% ksl Rakledy, f.,,) =0, (2.26)

where the square brackets indicate that the expression is antisymmetrized in
b and g with a factor of 1/2. We will assume that the effective action is
constructed perturbatively in the coupling 8. Within such a framework, even
though eq. (2.26) is not invariant under scaling of %,, the light-cone condition
remains k2 = 0. The second factor in brackets would define spurious char-

acteristics which are nonperturbative in 3. Alternatively, one may say that
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perturbatively we wish to calculate the modification of eq. (2.9) at order 3,
and so expect to find & = O(0) in general. Substituting the latter into the
term proportional to 3 in eq. (2.25), we in fact have &* = O(8?) and so there

is no perturbation of the light cone to the order which we are calculating.

There are other six-derivative interactions similar to /; where the indices
are contracted in different ways, but in the equations of motion, the higher-
derivative terms are proportional to k% or to k, f*®, which are both higher order
corrections. Thus we found that there are no six-derivative interactions which
will produce a dispersive light-cone condition. To obtain an energy-dependent
result, one needs to consider interactions with both more derivatives and more

background curvatures in order to avoid the above contractions.

2.4.2 Dispersive interaction without birefringence

From the last subsection then, we have learned that in order to produce
a dispersive modification of the light-cone condition, we need an interaction
which is quadratic in the field strength, has two derivatives of the field strength,
and has more than one background curvature or derivatives of the background
curvature. In the remainder of this section following these criteria, we construct
a number of eight-derivative interactions, and show that they lead to energy-

dependent photon propagation.

We begin with a simple extension of eq. (2.24), where a second curvature

tensor is introduced.
B - L
I:! = —"4— d“:l: v—g R Rc 9 VdFubVng}. (2.27)

where § and A are the coupling and scale, as above. The equation of motion
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for the electromagnetic field becomes
V. F™ — AV, V, (R R"V _F,) =0 .
[ntroducing the geometric optics approximation,
kaf® + BXE R R kokake fon =0 . (2.28)

As desired, these equations are not invariant under scaling of the wave vec-
tor, and the higher order term is not proportional to &% or to k. f°*. Hence
these equations produce dispersion, and should lead to energy-dependent light

deflection in a gravitational potential.

We now turn to the Schwarzschild background to display such dispersive
deflection of light. Using the method of section 2.3, we introduce the vier-
bein e*, = diag(U,1/U,r,rsinf). The Riemann tensor can be conveniently
expressed as (see appendix A)

My . a M, . M.
R = —= |9 -g dgbc] - T_;,,Uongf'*' T—JU2§’U§§ )

with the bivector

U =e, %" —e,be,” .

The equation of motion (2.28) becomes
ko +¢ [lzlbfm + m“"m“fza] =0, (2.29)

where ( = EL;‘:L: and we have dropped terms of the form (4% = O(3?) which

are higher order terms.

We choose fo1, f2a and fo3 as independent components of f,;. One can

project eq. (2.29) over these components by multiplying successively by Iy, m,
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and ps, defined in eq. (2.20). The equations can then be put in a matrix form

k2 + (I 0 0\ { fun
0 K+imt 0)lfs]=0. (2.30)
CPlp ¢m*mp k*J \ fos

The determinant condition is
(& 4+ ¢+ cmY =0.

To find the polarization associated to each light-cone condition, we consider

a general motion (with I # 0 and m? # 0) in the equatorial plane, with

K =k=0.

(i) Taking the root &% 4+ (I* =0, eq. (2.30) leads to
which is the polarization in the z-y plane.

(ii) The root k* + {m* = 0 describes the polarization in the z direction.
al?) o &g (2.32)
(iii) For the root k% = 0, the solution of eq. (2.30) is
al® o ky . (2.33)

This polarization is not physical because the field strength is then iden-

tically zero.

In fact, both light-cone conditions are equivalent because m? = &2 + &% =

2 + k* = I? + O(8). Hence, the interaction I; produces no birefringence.
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Now we calculate the modifications to the deflection angle. In the Schwarz-
schild background using spacetime coordinates. the generalized light-cone con-

dition is

2 ; 3 2‘- -1 ¥
- (1 - ﬂ) (1= CPYRt A + (1 - ‘—‘r) (1 = CUMWTRT
r

r

+ 12 k%h + rsin® 0k%ke = 0 .

Working perturbatively in ¢, it is sufficient to use the classical value for I* =
koko — k1&y = E®b*/r? above, where E is the photon energy and &, the impact
parameter (see appendix C}. The deflection angle may be found by considering

the wave vector &* as a null vector in an effective metric

ds® = —B(r)dt® + A(r)dr? 4 r*d6® + r*sin? 0 d¢?

- (1252
o0-(1-2) (-27).

The deilection angle is then given by eq. {C.9)

1/2
b d’r (r)
Ap+7= 2f [———-——-r, Bl 1]

) Bir)

with

where 7y is the distance of closest approach. Expanding A(r) and B(r) in
powers of ¢ and keeping only the liiiear terms, one obtains an integral for the

modification of the deflection angle 6A¢
2 —
500 = f dr [ SA(r) _ r*3B(r) JB(r)]

3 1)1/2 rg L’% —_ 1)3/2

Inserting dA(r) = 6 B(r) = —18BA M2 E2%h%/+8, one obtains for both polariza-
tions

92057 BAS M2 E?

0= 128 3

(2.34)
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Note that this result is a leading order expression, corrected by terms which

are higher order in M/ro.
A second interaction which produces similar dispersive results is
3AS b

Iy = e d*z /=g R Roge, VaFy VIF™ (2.35)
In this case, the equation of motion for the electromagnetic field becomes

VeF® — XV, Vo Regon REIVIFHH) = 0
Inserting the geometric optics approximation (2.4), one obtains

ko f + BAS R h RUI L kgh? fH = 0

One may now follow the procedure used above to determine the modified
light-cone conditions for photons in a Schwarzschild background. A simpler
approach for this specific case yields a general light-cone condition, namely use

the Bianchi identity (2.6) on kl° 4 to find

8
(ke + % con B okak?hR) = 0.

To have a non-trivial solution, the expression inside brackets must vanish, and

this leads to a general light-cone condition describing all polarizations

]
4 ﬁ_;\‘ coeh Rk kak®k® = 0 . (2.36)

Therefore, there is no birefringence in any background. In the Schwarzschiid

background, this light cone becomes
K+ % [t +mt] (2.37)

where as above, we use { = E%?L:, 2 =ki-k?2 and m? = k} + k2. To
leading order, & = O(8) and m? = {2 + O(B) and so eq. (2.37) reduces to

P2+ %l‘ = (. Hence up to a factor of two, we have recovered precisely the
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same dispersive light cone as in the analysis of the interaction I3 (for the
physical polarizations). The modification to the deflection of light is therefore

one half the angle obtained in eq. (2.34).

2.4.3 Dispersive and birefringent interaction

A final eight-derivative interaction which produces dispersive light propa-
gation is found by extending eq. {2.24) by introducing extra background deriva-

tives, rather than an extra curvature tensor
I ﬁAG d4 V(c d) Rabegv E 9
5= —T Tv—g \% cFasVd cg (2.38)

where VVY = (V°V9? 4 V4V*) /2. After adding /5 to the Maxwell action

(2.1), the equation of motion for the electromagnetic field becomes
Vo F® — gAYV, V, (VEVIR®9IV,F,) =0.
We then insert the geometric optics ansatz {2.4) to obtain:
ke f® + BASVVI Rk kg fog =0 . (2.39)

To calculate the light-cone conditions in the Schwarzschild background, we
followed the same method that was used in the analysis of I; above. If we
consider photon trajectories in the plane § = /2 and we apply &* = 9(3) in

the second term of eq. (2.39), we find:
k% 4 A 0 2nk k3 1°B fu

0 k% — qi2C 0 fa | »
—-T]klksA 0 k2 - 21]’\:%[23 foa
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. where 1 = 608A% M /r® and

A=k§(1—¥)—kf(5—“M)

T

rs

‘).l
B=(1_ﬂ)
r

f
= (1-20) g (7 1)

The determinant condition yields the modified light cone

(k2 + 9I2C)(k? - pPC)k? =0 .

As before, the root k% = 0 describes the unphysical polarization a, = Ak.
The second root k2 + 5l?C = 0 describes photons with the polarization (2.31),
tangent to the x-y plane and the second root &* — 7{2C = 0 describes the po-
larization {2.32), in the z direction. Since the light cones fer the polarizations
agl) and a.?) differ, this last case provides an example of gravitational birefrin-

gence. Calculating the deflection angle as above, we find an energy-dependent

contribution

6 2
5Ap = 1504[”—:‘;”3— (2.40)
[

where the plus sign corresponds to the polarization in the z-y plane as,” and
the minus sign, to the polarization in the z direction a{f’. Note that this result
is one order lower in the M/rq expansion than the previous result (2.34). This

reduction occurs since the present interaction (2.38) involves a single Riemann

tensor, while the previous interactions have two curvature tensors.
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2.5 Discussion

2.5.1 Uniqueness of the interactions

We have found some explicit field theory interactions that produce disper-
sive photon propagation, in the context of an effective field the.cy where the
Maxwell action is modified by higher-derivative terms. Such dispersion was
not observed in earlier studies simply because the effective actions considered
previously did not include sufficiently high numbers of derivatives. The final

case also provides a new example of gravitational birefringence.

If one considers the post-geometric modification to the General Relativity
deflection (2.12), one also finds a dispersive scattering. This deflection is the
usual wave-like effect of diffraction. Contrary to the present results, diffractive
scattering is proportional to the photon wavelength (Apn x 1/E) instead of
to the photon energy. Therefore, the two results have the opposite energy
dependence. Moreover, the post-geometric medifications are small when the
photon wavelength is much smaller than the typical curvature scale and also

much smaller than the scale of variation for the amplitude «f the wave front.

One may ask whether there will be other eight-derivative interactions whiéﬁ
will produce dispersion, and clearly the answer is yes. However, the three
interactions that-we have considered are representatives of three classes of
interactions, which produce the same leading order equations in the geometric
optics approximation. It is not difficult to verify that egs. (2.28), (2.36) and
(2.39) are unique. For instance, there is only a single way to contract three

wave vectors and one field strength with a double derivative of the background
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curvature tensor, and this is the combination appearing in eq. (2.39). Thus,
' _ 3A6 a rboed freg
.[5 = —-—-T d43'3 V4 —gV(,,Vb)Rcd,gV F*VeF

leads to precisely eq. (2.39) as the leading order equations of motion. The two
interactions, Is and I3, differ by total derivatives, =nd also terms which do not
contribute to these leading urder contributions (i.e., they do not contribute to

the dispersion).

2.5.2 String effective action

In egs. (2.34) and (2.40), we have found contributions t, the deflection
angle of light rays, which depend on the square of the photon energy. This
behavior is the same as that found for string theory by Mende. One may
then ask if interactions of the form discussed here appear amongst the higher

dimension interactions included in the low-energy effective string action.

There are two alternative approaches to build these low-energy actions.
The first method starts with a string theory in an external background[4, 35].

For example, in the case of the bosenic string, one works with the action (1.15)
Ly = _ﬁ / 2o V=h 8: X0, X*h ¥ g (X?) . (2.41)

The two-dimensional field theory based on the action (2.41) is called the non-
linear ¢ model. Classically, the action (2.41) is invariant under the Weyl
rescaling of the two-dimensional metric, A** — A{g)h*. To be consistent,
the ¢ model a.s a quantum field theory should remain locally scale invariant.
This requirement is non-trivial and defines the low-energy string equation of
-motion. Unfortunately, o model calculations involving background metric and
gauge fields have not been carriext out to sufficient order to detect terms of the

form suggested here.



44

Alternatively, one can use string theory to compute the tree-level scattering
amplitudes for the massless particles and then build an effective action which
reproduces the S-matrix[4, 36]. This method is similar to the method used
to find the QED effective action, presented in section 2.3.1. The calculation
can be done perturbatively in powers of a'p®, where p? represents a typical
momentum from the scattering process. Interactions of the form (2.27), (2.35)
or (2.38) would contribute to a scattering amplitude of two photons and two
gravitons — the contribrution of [5 to a two-photon and one-graviton ampli-
tude vanishes on-shell. A sufficiently detailed study of the o “-energy effective
action for heterotic strings has been made to detect terms of the form discussed
here[36], but unfortunately, one finds that these terms do not appear in this
action. This suggests that Mende’s dispersive effect, which should be universal
to all string theories{16], must be produced by an interaction at an even higher
order in the o' expansion (or the expansion in numbers of derivatives) than
considered in the present pa.;iér. So one would expect that the dependence on
the 1adius of closest approach is even more dramatic than the r;® appearing
in eq. (2.34). Additional Riemann tensors would also increase the power of the

central mass appearing in the dispersive contribution to the deflection angle.

If one considers studies of low-energy string actions, there is one eight-
derivative interaction which is known to be universal to all string theories[37,
38

Is = g-g%i / @%z /=g (2Rasut R ; R Ry’ + RapaRij* R¥F R ;)
where ((s) is the Riemann zeta function. We have also indicated that this ef-
fective action is in D dimensions, since typically string theories are constructed

for D > 4. If the spacetime is then compactified down to four dimensions via

a Kaluza-Klein ansatz[39, 40], then new vector particles will appear in the



45

effective theory arising from off-diagonal components of the metric, which mix
the four-dimensional spacetime with the compact directions (e.g., gus =~ 4,).
The D-dimensional Einstein action provides the standard Maxwell action (2.1)
for these vectors upon compactification. Similarly one finds that upon com-
pactification the above interaction yields interactions of the form of egs. (2.27)
and (2.35) (e.g., using Rseap ~ —3VcFy +...). Therefore the above string
interaction produces dispersive propagation as described in our present anal-
ysis for these Kaluza-Klein vector fields. The latter, of course, correspond to

particular modes in the string spectrum.

2.5.3 Magnitude of the dispersion

Finally, we consider the magnitude of the deflection angles that we have
calculated. Ultimately, we expect that this dispersion would only be observable
in very exotic circumstances, but to begin let us evaluate eq. (2.40) with solar
parameters for which the leading order deflection angle of General Relativity is
given by eq. (2.13): A¢ = 1.75". The length scale A is the microphysical scale
associated with the processes that induce our effective interaction. Here, we
will choose the interaction scale to correspond to the Compton wavelength of
the electron (i.e., A = A, ~ 2.4 x 1071* m) as it would be if eq. (2.38) arose as
a higher order term in the derivative expansion of the one-loop effective action
for QED — clearly the effect will be more suppressed if we choose a shorter
length scale, e.g., the Planck scale in & string effective action. In this case, it
is natural to choose the dimensionless coupling constant to be of the order of
the fine structure constant (i.e., § ~ a). With these choices, the dispersive

deflection angle for a photon with polarization tangent to the z-y plane grazing
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over the limb of the sun (i.c., ro =~ 7 x 10° m) is given by

SAg  107%
A~ X,

(2.42)

where Apn is the wavelength of the photon measured in angstroms. So the
visible spectrum ranging from four- to seven-thousand angstroms would be
spread over an angle of about 6 x 107 arcseconds. Clearly as such, dispersive

propagation of light would be unobservable.

Now we also wish to consider situations in which the dispersion would be-
come more pronounced. If we consider eq. (2.34} or eq. {2.40) with A and 3
fixed as above for the QED (i.e., A = A. and 3 ~ a), there are three op-
tions: increase the photon energy, decrease the radius of closest approach or
increase the central mass. With any of these options, we are limited by the
approximations entering into our calculations. The deflection of much higher
energy photons is certainly greater, but one must remember that the applica-
bility of the effective action is limited to photon wavelengths greater than the
interaction scale A, which we are here considering to be the Compton wave-
length of the electron. Thus one could only consider photons up to the X-ray
portion of the spectrum. The deflection is also increased with a reduction in
the radius of closest approach 5. This radius would be minimized by con-
sidering a black hole for which one might achieve ro ~ M. Cuch a scenario,
though, runs into conflict with another approximation made in our scattering
angle calculations, namely M /rq <& 1. In principle, one could carry out those
calculations in more detail if oﬁé wished to consider M/ry ~ 1. With this
choice then, one would actually want to decrease, rather than increase, the
mass, M. Here the limitation is the validity of the geometric optics approxi-
mation, which requil;éé that '.Jie photon wavelength be much smaller than the

radius of curvature of the spacetime geometry. In a Schwarzschild geometry



47

then, one demands that A2, < ro/M ~ M?. Thus at least M must be greater
than A., which was a lower bound on the photon wavelength. Certainly, one
could imagine then that dramatic dispersion would be produced for X-rays
by a black hole of M =~ 10'%g, for which the gravitational radius would be of
the order of the Compton wavelength of electron. It seems, though, that such
an object (with M ~ 10~®Mg) and the dispersed X-rays are unlikely to be
observed. [t may also be interesting though to consider photon propagation
beyond the geometric optics approximation. It may be that effective interac-
tions of lower dimension than considered in section 3 could produce dispersion
in situations with large and rapidly varying curvatures, as could possibly be
created by gravitational collapse. In conclusion, while the dispersive photon
propagation appearing in the present analysis in principle presents a violation
of the equivalence principle, it appears to be beyond the practical limits of

observation.



Chapter 3

Statistical black hole entropy

The final part of our study of quantum gravity is concerned with black hole
entropy in the context of statistical physics. This entropy should be related
tc information stored inside the black hole horizon but its exact statistical
interpretation is still lacking. Previous calculations in statistical inechanics
of black hole entropy produced divergent results[12, 13]. My goal is to relate
these divergences to the divergences that appear in the gravitational effective

action.

3.1 Black hole thermodynamics

3.1.1 Laws of black hole dynamics

Intensive work on General Relativity and specifically on black holes in the

60's and 70’s culminated in the four laws of black hole mechanics [9, 41].

48
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Starting with & the surface gravity®, the zeroth law states that the surface
gravity is constant over the horizon of a stationary black hole. The first law
is concerned with how the black hole mass changes when a small stationary
axtsymmetric change is made in the solution:

N

SM = G

SA+ Q6T , (3.1)

where Af is the black hole mass, G is Newton’s constant, A is the black hole
area, {2 is the angular velocity and 7 is the angular momentum of the black
hole. The first law has the nice property of relating variations of quantities
measured at infinity (the mass, the angular momentum) to the variation of a
geometric property of the horizon (the area). The second law is known as the

area law [42]:

JA 20, (

Ca3
[L¥]
~

namely, the area of a black hole never decreases in any physical process. Fi-
nally, the third law states that it is impossible to achieve x = 0 by a physical

process.

These laws are very similar to the ordinary laws of thermodynamics (see
table 3.1). The analog quantities are: E « M, work terms & Q40J, T &
ak and § & 1/(87Ga)A, where o is a constant. In fact, the black hole
mass represents physically the total energy of the system and the term Q4.7
corresponds to a work term for a rotating body. Bekenstein took seriously the
idea that black holes have an intrinsic entropy given by Sy, = vA/l% [10, 11},
where v is a constant and Ip = 1/@!1/_6’ is the Planck length. He suggested

to replace the ordinary second law of thermodyramics by a generalized second

*The surface gravity can be interpreted as the acceleration of a fiducial observer moving

just outside the horizon. A more precise definition appears in eq. (3.23).
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05 +05pn 2 0. (3.3)

This is motivated by the following idea. Having failen through an event hori-
zon, a system cannot interact with the outside universe. If a system with a
non-zero entropy is dropped into a black hole, the entropy is then unobservable
from the outside and so the entropy decreases for that part of the universe.
However, because of the area theorem, the area of the black hole increases at
the same time and one might expect the combination (3.3) increases for v of
the order of unity [10]. At this stage, the physical interpretation breaks down
because classically the black hole absorbs everything and emits nothing. Hence

one must interpret its temperature as being exactly zero.

Further insight came from Hawking who showed that a black hole emits
thermal radiation when one takes into account quantum field theory in the
black hole background(8]. This discovery revealed that the laws of black holes
dynamics are probably just the ordinary laws of thermodynamics applied for

black holes. Hawking's result was that black holes emit thermal radiation with

Law Thermodynamics Black holes

Zeroth | In thermal equilibrum, T is | For stationary black hole, « is

constant throughout the bodyr constant over the horizon
First 6E =T dS + work terms OM = == A+ Q4T
Second | S > 0 in any process dA > 0 in any process

Third | Impossible to achieve T' = 0 in | Impossible to achieve x =0 in

physical process any process

Table 3.1: Analogy between thermodynamics and black hole dynamics.



temperature T = x/(2x). Taking eq. (3.1) as the ordinary first law, one then

obtains the Bekenstein-Hawking entropy

Spu = {E{g = ‘;% . (3.4)
The generalized second law (3.3) should also hold for processes involving Hawk-
ing radiation. In that case, the energy needed to produce the radiation comes
from the black hole mass which decreases and so the black hole area decreases

but the radiation emitted is thermal. Hence, the black hole entropy decreases

but the entropy of the surroundings increases at the same time [43, 44].

3.1.2 Euclidean methods

To go further in the vnderstanding of black hole entropy, one needs to
consider the statistical mechanical origin of these thermodynamic relations,
For this, it is useful to introduce a partition function. For gravity, this step

was introduced by Gibbons and Hawking [45, 46] using Euclidean methods.

In statistical physics, the starting point is the definition of a partition

function at temperature T'=1/8
Z=Tee P8 =3 < pule |3, >, (3.5)

where H is the Hamiltonian. The nsefulness of Euclidean methods comes
from the analogy between ordi'ué.r:sr field theory at zero temperature and finite
temperature field theory. In or‘di‘nary field theory, the amplitude for a con-
figuration ¢, at time ¢, to propag:".te to a configuration ¢, at time £, can be

written in the Schrodinger picture
<2, taldr, 1> =< gale~ FE g, >
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where 1{¢] ’s the action. If we rotate the time axis to imaginary time 7 = —it
and we pu t, — t, = —i3, ¢» = & = @ then sum over a complete set of states

¢, we obtain
S <ol Py >= 2.
n

where we used eq. (3.3). From eq. (3.6), the nartition function has the path

integral representation

7 =[ D[é]e-fsl-ﬁ] .
periedic

with Ig = —il the Euclidean action and the integral is over fields periodic in

imaginary time 7 with period 3.

To illustrate this approach for gravity, we introduce the Schwarzschild met-

ric (2.11). (The same method can be used for other black hole solutions [45].)

ds* = — (1 ~)de + (1 _ ?:)_'d-rz +r2d0?

T

with r, = 2GM and d? = d@ + sin®0d¢®. The Euclidean Schwarzschild

metric is found by setting 7 = ~it
2 _ 1 _Ts\ ;2 _r\ e 202
ds _(1 T)dr +(1 r) dr? 4 r2dQ? . (3.7)

Using the change of coordinates z = 2r, /1 — #,/r, the metric becomes

. dr\? 2\ ? .
ds® = 2? (—) + (1_—2) dz? 4 r?d0® . (3.8)

2r, A
Near r = r,, the £ — 7 part of eq. (3.8) is like the origin of polar coordinates
if one identifies the coordinate T with period 47r, = 27/x}. With this choice,
the metric (3.8) is free of singularities for ¢ > 0, 0 < 7 < §. In the Euclidean

formalism, the periodicity in T refers to the inverse temperature of the system.

tFor Schwarzschild metric, s~} = 2r,.
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Therefore, the Euclidean formalism leads naturally to T = /27 for the black

hole temperature.

The next step is to calculate the partition function

Z-= / Dlg, 6] e~"e1o1 (3.9)

where @ represents some matter fields. One expects that the main contribution
to eq. (3.9) should come from metrics and fields which are near a metric gy and
fields ¢ which are solutions of the equations of motion. From this point of
view, one may expand the Euclidean action as a Taylor series in the fluctuation

fields g,, and ¢

Ielg, 8] = Is[go, do] + F2[d, 8] + - -

where gap = Goab + Gaub. @ = o+ ¢ and I is quadratic in §u and ¢. The linear
term is absent because the first derivative of the action yields the equations of
motion and the background fields are solutions of these equations of motion.

The free energy is

1 1 1 o hld
F=—Ean=EIE[9m¢o]—b—lnfD[g,¢}e hladl 4 ...

The first term is the contribution of the background to the free energy and the
second term is the one-loop contribution. As a first approximation, we keep
only the zero-loop contribution of the Schwarzschild background with ¢ =0

The free energy reduces to the action of the background

= ;_31,.3[90] . (3.10)

The action for General Relativity in Euclidean space is the Euclidean

Hilbert action

=gt G/d‘*z,/‘R (3.11)
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where R is the curvature scalar. This action contains terms which are finear in
the second-order derivatives of the metric. To obtain Einstetn equation from
eq. (3.11), the metric and the normal derivative of the metric have to vanish
at the boundary. In field theory, the condition on the normal derivative of
the metric is too strong to be implemented. The best way to take care of this
problem is tv add a surface term that will cancel the contribution coming from
the normal derivative at the boundary. This surface term can be calculated

by taking variation of eq. (3.11) under variations of the metric g (see e.g.,

ref. [47])

- L l ab ab
151[.{ = —m/(ﬁl‘\/_& [(Rab - EgabR) §g +g (SRab:I .
The wurface term comes from g®®§ R, which can be written V%v,, with
e = V¥(8gas) ~ 9 Va(6ga) -

Using Gauss’s theorem, one can write the surface term

1 1
]=_ d‘i a,“=__ 3 /— “'ﬂ!
5 lﬁ?l‘G_[M z gV T6nC BMd z Vhrty,

where M is the manifold, n, is the unit normal to the boundary OM and A
is the determinant of the induced metric Aqp on M. Using gus = han -+ notp,

we have on oM
nv, = n°g™ [Vc((sgab) - Vu(‘sgbc)]
= noh¥ [Vc(ffgab) - Vn(‘sgbc)]
= —n*h%V, (8gs) ,

where we use A%V, (6gqs) = 0 because AV, is the derivative along the bound-

“ary and 8gas = 0 on the boundary. The right-hand side is related to the vari-

ation of the trace of the extrinsic curvature of the boundary, K = K2, =



AotV in,
§K = h%6(V,n®)
= 5hs6[Val60ed) + Vel69u) = Valbguc)
= SRV (0ad) |
where we used the symmetry of the induced metric hq, = hy,. Therefore, the

complete gravity action is

1 1 .
== - 2
I on f d'z \/gR 526G /, &z VhE . (3.12)

The extremization of I yields the Einstein equation when one imposes dggs = 0
at the boundary, without any conditions on the normal derivative of the metric.
This action is well defined for spatially compact geometries but diverges for
non-compact ones. To define an action in the latter case, one must choose a
reference background go, which is a static solution to the field equations [48).

The physical action is then

Ip= 13[9] - 3[90} .

This action is finite for a class of fields g which asymptotically approach g,.
For asymptotically flat spacetime, the appropriate background is flat space,
with R =0, and Ip reduces to

___1 1 3 _
Ielg] = ~ o [M Pz iR~ 5 j;deﬂ(K K%,  (313)

where K° = K{n,), is the extrinsic curvature of the boundary when it is

embec.ded in flat spacetime.

We are now ready to calculate the free energy for the Schwarzschild black
hole. For the Schwarzschild geometry, R = 0 and the free energy is given by
eq. (3.10)

1
" 87GB Joum

&z vVh(K - K°) . (3.14)
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At thisstage, we see that the surface terr. ir essential, otherwise the free energy

would be zero and there would be no ti:ermodynamics from this zero-lonp

approximation. To cvaluate eq. (3.14), we choose S* @ [0, 2] as the boundary,

where 5* is a sphere with radius r 3> r,. The integral of A" is given by the

derivative of the surface as each point of M is moved an equal distance along

n [45}, the outward unit normal to aM

[ d?':':\/_h——q- d%ﬂ.
dn

For a sphere, the unit norma! n is along the r-axis

o a
on (l B ?)l“ or

and the area is

/_-,..s 1/2 _ o 1/2
faMdm\/_ j d'r/erz | A Br® (l r) .

The integral of the extrinsic curvature (3.15) is given by

/;Md?‘a:\/ﬁl( = 470 (1 - -) /2% [r (1 - :—’)”2]
=478 (21‘ - gr,) ,

where we use eqs. (3.16) and (3.17). In the same way,

&z VRK® = 478 (1 - ?) 2 %rz

_41l‘ﬁ( 7:) /221'.

aM

Using egs. (3.18) and (3.19), the free energy is given by

F=-—2LG [21-—;1',—21'(1—-:—’) /2]

(3.16)

(3.17)

(3.18)

(3.19)
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where we have used 8 = 47r,. Given the free energy, different therm>dynamic
quantities can be evaluated. By differentiating the free energy with respect to

3, one obtains the expectation value of the energy

9 _ B

This confirms the relation between the mass of the black hole and the inverse

temperature M =<E>= 8/(8%G). One can also calculate the entropy

B A
S =_6(<E> —F) = 66 = iG

where A = 4712 is the area of the event horizon. The entropy and the tem-
perature are exactly the same as was needed in section 3.1.] {o identify the
laws of black hole dynamics with the laws of thermodynamics applied to black

holes.

3.1.3 Thermodynamics for general theories

As described above, the relation found between black hole dynamics and
thermodynamics was shown for black hole solutions to General Relativity. The
final theory of quantum gravity is not known but it should lead at low energies
lo a general ccvanant effective uction with higher curvature interactions. Such
effective acticus occur nat'ufa.lly in the context of renormalization of quantum
field theory in curved spacetime (see section 3.3 and ref. [49]) and in string
theory (see.e.g., ref. [4]). In that case, one might ask: Does black hole ther-
modynamics arise és \f.fell or is it particular to General Relativity? This is an
important question‘tii:at has stimulated a great deal of research recently. Iq our
study, it is important to know if bl#ék hole entropy is defined for more general

theories and if in particular the Bekenstein-Hawking formula is modified.
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In general, black holes do emit thermal radiations at a temperature T =
xf(27) because Hawking’s result is a property of black hole solutions, inde-
pendently of the field equations. Moreover, Wald [50] found a derivation of
the first law for general theories invariant under diffeomorphisms using a La-
grangian method. His first law takes the same form as eq. (3.1) but the entropy
is modified. However the latter is given by an integration over a spacelike cross

section of the event horizon of a function of local geometric quantities.

Before reviewing Wald’s proef, we need to introduce some concepts of dif- .
ferential geometry. An isometry is a change of coordinates z — z' that leaves

the form of the metric g,; unchanged

, a tc axrd ,
0a5(z) = 0a(2) = 5o 55 0ua(2) - (3:20)

In general, eq. (3.20) is a complicated restriction. To simplify, one can look
at the special case of an infinitesimal transformation z'* = £* + ex®(z) with

€ < 1. Eq. (3.20) then reduces to
Xaib + Xba = -cx_gab =0, (3.21)

where £, is the Lie derivative along the vector x (see, e.g., ref. [47]). This
equation is called the Killing equation and the vector x? is called the Killing
field. In Wald’s calculation, one takes also .£,1 = 0 for ¥ the matter fields so
that the entire solution is invariant under the Killing flow. A spacetime is said
to be stationary if there exists a Killing field x* which is timelike at infinity.
This Killing field generates a one-parameter group of isometries, whose orbits
are timelike curves. This group of isometries expresses the time translational

symmetry of the spacetime.

A horizon h* is a Killing horizon if there exists a Killing field £* which is

normal to A*. In the context of General Relativity, there is a theorem that
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states that the event horizens of any stationaty black hole are Killing horizons
[3]. If in such a stationary spacetime, the Killing field x* is not normal to
h*, then this theorem implies that there exists another Killing field £* which
is. It can be shown also that a linear combination ¢* of £* and x° has closed
orbits. Hence, stationary black holes for which y® # £ are axis-symmetric.

One defines the angular velocity of the black hole 2 by
§*=x"+Q¢%, (3.22)

where ¢° is normalized such that the orbits have period 27 and x* is normalized

by imposing x*x« = —1 at infinity. With the Killing feld £°, one defines the

surface gravity &

£2V.£5 = k€® on kT (3.23)

Using Einstein equations, one can show that if the generators of hA* are
geodesically complete in the past and if the surface gravity is non-zero, the
Killing horizon contains a two-dimensional spacelike cross section B, called
the bifurcation surface, on which £* vanishes [51]. Such a horizon is called a
bifurcate horizon. The presence of such a bifurcation surface is a consequence
of the zeroth law. If the surface gravity is constant on the horizon, then the

horizon must be a bifurcate Killing horizon or the surface gravity vanishes.

For more general theory of gravity, there is no general proof of the zeroth
law but recently, i.icz and Wald have given a proof with the condition that the
twist form field w, is zero at the horizon [52], where w, = €abeab®V°ET and €g5q
is the Levi-Civita tensor. As a corollary, the zeroth law holds for static black
holes and stationary axis-symmetric black holes possessing a t — ¢ reflection
isometry. These black holes have a Killing horizon that can be extended (if

necessary) to a bifurcate horizon.
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In the following, we review Wald’s method[50] for general theories in four
dimensions. (The generalization to other numbers of dimensions is trivial.)
Wald starts with a Lagrangian L(¢) describing a general theory invariant
under diffeomorphisms and built out from the metric and matter fields, collec-
tively named . It is useful to take the Lagrangian as a 4-form (for a review
of forms, see e.g., ref. [53]) instead of the usual scalar density. Under a general

field variation 41, the Lagrangian varies as
0L = Eé¢ +dO (3.24)

where in the first term of the right-hand side, 2 summation over all fields
(including contractions of tensor indices) is understood and E = ( are the
equations of motion. If ¢ is chosen as a symmetry of the Lagrangian (i.e.,
0L = 0) then @ is the corresponding Noether current 3-form, locally con-
structed from 4 and d1p. When the equations of motion are satisfied, the

Noether current is conserved, 7.e., d® =10.

Let 5% be a diffeomorphism transformation generated by a Killing vector

£, 6y = Letp. The Lagrangian variation is
0L = £L=d(¢-L),
where we use the formula for Lie derivative on differential forms
LA =€-dA+d(€-A). (3.25)

In ey. (3.25), the “.” denotes the inner product. In this case, the Lagrangian
variation does not vanish but it is a total derivative. The action will be invari-

ant if the fields satisfy appropriate boundary conditions.

One can build an improved Noether current 3-form J which is conserved
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when the equations of motion are satisfied

J=0-¢.L (3.26)

dJ =0 when E =0.

When E =0, one can show that there exists a globally-defined 2-form @ [54]
such that the Noether current is given by J = d@Q. @ is called the Noether
potential 2-form relative to £*. The integral of @ over a closed surface yields

the Noether charge @ relative to £°.

Now consider a stationary black hole with a bifurcate Killing horizon A*
and a bifurcation surface B. Choose £® to be the Killing field that vanishes
on B and is normalized as eq. (3.22). Then £¢9 = 0. Choose V, to be the
covariant derivative operator for this background. Let §y be a variation of
the dynamical fields away from the background solution ¥ such that §¢ is
an asymptotically flat solution of the linearized equations. Then the Noether

current J changes as
0J =d(£-9) , (3.27)

where we used eq. (3.24) and eq. (3.26) as well as L¢9p = 0.

Because (¥ + &¢) is still a solution of the equations of motion, §J = déQ.
To obtain the first law, one integrates eq. (3.27) over €, a spatial three-surface

stretching from asymptotic infinity to an interior boundary at B.

o=fed(«fo—e-e)=L(Jo—e-e)—L(ao—e-@), (3.28)

where oo is a 2-sphere at infinity. At infinity, it is natural to associate the

Noether charges associated with £° to conserved quantities in the manner of



refs. [55, 56].

‘W=f (SQ[] - \ - ©) (3.29)
5T = - / 5Q[4] . (3.30)

In eq. (3.30), ¢ - © = 0 because ¢" is taken to be tangent to the sphere at
infinity. Using egs. (3.28), (3.29) and (3.30) and the fact that £&* = 0 at the

bifurcate surface, one obtains
Jf Q=3M—-Q5T . (3.31)
B

Q is a local functional of the local fields (the metric and other matter fields),
and also of the Killing field £° and its derivatives. Higher derivatives of £°
may be eliminat.d using the identity for Killing fields VoVsl, = —Rac%4, .
leaving @ as a linear combination of £ and V,&,. One can eliminate all the
dependence of the Killing field at the bifurcation surface B since there £* =0
and V, & = Kegp, €qp being the binormal to B. Thus on the bifurcate surface,

the Noether potential 2-form depends only on the local fields.

The first law is found by expressing @ as Q = xQ [50], where O is the
Noether potential 2-form build from the Killing field {-:“ normalized to have
unit surface gravity. Using this and eq. (3.31), one obtains the first law of

black hole dynamics for general theory invariant under diffeomorphisms

K .
508 = 6M — 067, (3.32)

with
S=2r f Q. (3.33)
‘B

Thus, the first law still relates variations of quantities measured at infinity to

variations of geometric properties of the horizon.
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There are three kinds of ambiguities in the definition of the Noether po-
tential 2-form. First, an exact form can be added to the Lagrangian. Second,
an cxact form can be added to © in eq. (3.24). Finally, one can add a closed
form to the Noether potential. These ambiguities do not change the entropy
(3.33) for stationary black holes [57]. It can also be shown that for stationary
black holes, one can integrate over any spacelike cross section of the horizon

and the entropy is still a local function of the metric and other matter fields

To calculate the entropy for a generic theory invariant under diffeomor-
phisms, one needs to calculate the Noether potential. An inductive algorithm
has been given in ref. [54] and the entropy has been calculated for a wide class
of thecries usiﬁg Wald’s method [57, 58] and Euclidean method [59]. For a
theory described by a Lagrangian scalar density L built out from the metric,
from m derivatives of the Riemann tensor and from { derivatives of the matter

field ¢ (with symmetrized derivatives}

L= L(gabv Rbcdn VcRbcdey seey V(at st vam)Rbcdu ¢7 vu¢! AR vvttu i 'Vn|)¢) ’

the entropy is given by
S= —QWfEMecbecd .

where

aL oL
B SR~ VBV T

oL
+ (—I)IV(Q‘ .-

Y, X
YV ar -+ Var) Rabed)

gap and V, are kept fixed and the integral is taken over any spacelike cross

section of the horizon.
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We finish this section by an example of the calculation of black hole entropy
for a theory described by the action

— — & 2 P opas bed
! ‘/d*:\/ Llﬁ 4TR+ R" .,,,+ R“ R‘M}.

This action occurs in the context of renormalization of quantum fields in curved

spacetime (see section 3.3). The entropy is given by
fdzm\/_[ ac w-i-QRgach-F,BR“gM-F‘?RGM] €ab€ed -

Introduce a unit timelike vector n, and a unit spacelike vector v,, both normal
to the horizon withn-n=—1, v-v =1 and n-» = 0. The binormal is given

by €. = naup — v, and the entropy reduces to
A 2 VAl ab bod
=G + [ d°z h[)aR + BRa.g)y — YR® ed,ec_.;] , (3.34)

where we used €®eg = —2 and eqel = nane — vv. = —Glae gj‘_" is the metric
in the normal subspace to the cross section of the horizon. The first term in
(3.34) is the usual Bekenstein-Hawking formula and the second term is the
modification due to the higher-derivative interactions. It will be important to
take into account these modifications in black hole entropy when we consider

the statistical entropy.

3.2 Statistical entropy

The concept of black hole entropy described in the previous section is in
terms of thermodynamics. Black hole entropy comes into play from the first
and the second laws of black hole dynamics and the analogy with ordinary
thermodynamics. One would also like to understand black hole entropy from

a statistical poiat of view. Despite a great deal of effort, this understanding is
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still incomplete. Various methods have been proposed to calculate the entropy

by some counting of microstates of the black hole system.

York considered a dynamical black hole with no external fields [60]. Because
of the fluctuations of the geometry, the black hole emits radiation. These
fluctuations induce a shift of the event horizon inside the static limit surface.
(We recall that the static limit surface is the surface where an observer cannot
be at rest and the event horizon is a null surface defined by the outermost
locus traced by outgoing photons that can never reach infinity.) The region
between the two surfaces is called the quantum ergosphere. York proposed
that the entropy is then given by the logarithm of the number of ways that the
quantum ergosphere can be excited during the black hole evaporation. This
model is unsatisfactory because it is non-local in time. The entropy depends

on the entire future evolution of the black hole.

In the membrane paradigm [61, 62], the entropy is hypothesized to be the
logarithm of the amount of information that one loses under the stretched
horizon. The entropy is located at the event horizon. Put differently, the en-
tropy is the logarithm of the number of quantum mechanically distinct ways to
generate the black hole total mass, angular momentum and charge by injecting

quanta.

A similar method was introduced by 't Hooft [12], where the entropy is
obtained by counting the number of states of a quantum field propagating just
outside the horizon of a fixed black hole. The model was initially defined in
four dimensions but it was generalized for other dimensions in ref. [63]. The
number of states a particle can occupy diverges at the horizon because of an
infinite blue shift factor. To avoid this problem, 't Hooft introduces a “brick

wall”, where the field vanishes, at a coordinate distance h from the horizon.
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The entropy found becomes

r

» s

= 360h

(3.35)

If one replaces the distance h by an invariant proper distance ¢

roth Ta-th dr
= §= — 2 2k,
€ /'; ds [ = = VAN

the entropy is

. e A 1

° =50 = To0me

The entropy is equat to the Bekenstein-Hawking entropy if one chooses ¢ =

lp/V90m = /G/(90m). It is natural to take a cut-off of the order of the Planck
length. However, the entropy diverges if one allows the cut-off to vanish, i.e.,

e — 0.

Another method to define statistical black hole entropy is the idea of entan-
glement entropy [13, 64]. In this approach, entropy is due to loss of information
in a region outside the observation. One can study this in flat spacetime by
introducing an imaginary sphere Q that mimics the black hole. One starts

with the ground state

IO >= ‘p[(ﬁim ¢out] y

where ¢, and ¢, represent the degrees of freedom inside and outside the
sphere (2, respectively. For a black hole, we cannot observe the degrees of
freedom inside the event horizon and we must trace over these degrees of

freedom and build a density matrix

P[¢ouh d’:m] = f D[¢in] ‘I’[qb,-n,q’)wg]‘ll'[gb‘-mqb:m] .

Alternatively, one can trace over the degrees of freedom outside Q [65]. The

results should be equivalent if one starts with a global pure state [13]. By
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diagonalizing the density matrix

| D166, 611181 = pateld]

one can calculate the entanglement entropy

S== palnp, . (3.36)

The entropy (3.36) uiverges and one needs to introduce a cut-off. Ref. [13]

uses a lattice and obtains for the entropy

T‘2
$=030= (3.37)

a?’
where a is the lattice spacing. The entropy is proportional to the area and
if one takes the cut-off to be of the order of the Planck length, eq. (3.37) is
of the order of the Bekenstein-Hawking fermula. The entanglement entropy
(3.36) has a thermal character, independent of the quantum field theory [66].
The latter implies that eq. (3.37) is equivalent to the entropy found using
't Hooft’s brick wall model, although the actual divergent coefficient is scheme

dependent.

Instead of taking the cut-off to be of the order of the Planck length, one can
interpret these entropy formulae as the one-loop correction to the Bekenstein-
Hawking formula [67, 68, 69]. In this sense, Susskind and Uglum suggested [67)
that the divergence in the entropy could be absorbed in the renormalization of
Newton’s constant. This is an interesting suggestion because both divergences

are quadratic (for the divergence of Newton's constant, see section 3.3).

In the rest of this chapter, we are concerned with this suggestion. Because
the value of the divergent coefficient is scheme dependent, it is important to
do both calculations (the divergences in G and in §) with the same regulator.
With this concern, we will first use Pauli-Villars regularization in the calcula-

tion of the divergences that appear in Newton’s constant in section 3.3. Then
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we will use 't Hooft’s method to calculate black hole entropy in section 3.4 but

we will replace his brick wall by the same Pauli-Villars regulator.

3.3 Renormalization of the effective action

The divergence of Newton's constant appears in the context of quantum
field theory in curved spacetime, where one considers guantum fields that prop-
agate in a fixed curved background [49]. It is a semi-classical apprcximation to
the unknown theory of quantum gravity where the gravitational field is treated

classically and the matter fields quantum mechanically.

3.3.1 The effective action

To quantize the matter fields, one may use the path-integral formalism.
The starting point is the generating functional Z[J] that gives the transition
amplitude from the initial vacuum |0, in > to the final vacuum |0, out > in the

presence of external sources J(z):

Z[J] =<0, out|0, in>"=fD[¢] exp [iI[¢]+i/ diz J(z)¢(z)] )

where () represents collectively the matter fields and the metric and I is
the total action. The connected time-ordered Green functions are obtained by

differentiation

1 8z[J
i 8J(zy) - --0J(z,)

where T is the time-ordering operator. In flat spacetime, Z[0] =<0[0> is a

< 0,0ut|T($(z1) -+~ $(ea)) 0, in >e=

1
J=0

constant that can be normalized to unity. However, particles can be created in
curved spacetime by the background gravitational field and |0, in ># |0, out >

in general, even without the external sources J(zx).
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In the study of the divergence of Newton's constant, we may set J(z) =0
and study the generating functional Z = Z[0] for a fixed background g and a
scalar field ¢:

Z[g] = e”l[gi‘/‘D[é]e”m[g-¢] ,

where I; is the gravity action and I, is the matter action. One defines the

effective action by

Lalg; = —iln Z{g] = [g[g] + W(g} (3.38)

where W(g] is the scalar effective action
W =—i ln./D[¢]eiIm[9'¢l . (3.39)

The effective action represents the gravity action after taking into account
the contribution of the matter fields to the geometry. The gravity action is
modified. Let us illustrate this by choosing the Hilbert action as the gravity
action and neglecting the surface term

1
lﬁﬂGfd-*x\/:;R.

Iy =

The equation of motion for the gravitational field is obtained by taking varia-

tion of Ig with respect to the inverse metric g%*
6lg=0

- 1 f— 1 ab
= 167G /d“z q (Rd, 2gabR) Jg

1 81, .
———e— [ D[g|peimislgg .
t 0.out0, > f ¢l 55 g

The variation of the maticr action yields the matter stress tensor T, =

——A= 3. Therefore, the equation of motion is
1 8x G il,
— g R = —————— | D[§]| T, e'™=lol

< 0,0ut|Ty|0,in >

= 81G—5, outl0, >

=81G <Ty> .
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Hence, the variation of the effective action (3.38) leads to the semi-classical

Einstein equation, with the stress tensor replaced by its expectation value.

We want to calculate the scalar effective action (3.39) for a single free scalar

particle described by the action
—__fwz [ Va6¥s6 + m?6?] | (3.40)

where m is the mass of the scalar particle. For the gravity action, one needs to
add to the Hibert action a cosmological constant and higher-order interactions
because these terms may be induced by the scalar effective action W. Thus,

we start with the gravity action

R Oy o
I"ffx Q[SGBI%Q+ el

+—-R°"Rq¢,+1"~1i’“°“Rau+---] , (3.41)
d7 4

where Ag is the cosmological constant, Gy is Newton’s constant and aa, 8g
and -, are dimensionless coupling constants. The subscript B indicates that
the quantities are bare ones that will be renormalized shortly. The ellipsis
indicates that the action may contain other higher-order interactions but only
the present terms will be of interest in the present calculation. The scalar field

effective action W is a gaussian integral that can be evaluated exactly

= —i]nfD[qb] exp{-—%fd‘x m[g“V¢¢Vb¢ +m2¢2]} . (3.42)

Using an integration by parts, the exponent can be written

-3 [ 2 d'e VIRV IE K ) (349)

where K(z,z') is a symmetric operator

K(z,z') = S (-0. +m?)§(z —2') . (3.44)

Vv —g(z)
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The operator K {z, '} is the inverse of the Feyninan Green function Gg. where

Gr is defined by

e 7) (3.45)

V-g(z)

Using eq. (3.43) and eq. (3.44) as well as Gy = K1, eq. (3.42) Hecomes

(0: — m*) Gp(z, ') = —

W =-ila [ Dlg p{—; [ 2=y V=@V el K néta) |

i
= —(—am = —;5 Trln(Gp) . (346)

3.7.2 Asymptotic expansion of the Green function

The scalar effective action (3.46) is only a formal result. To obtain meaning-
ful information, one needs to introduce a representation for the Green function.
In flat spacetime, the behavior of Green functions are studied using momentum
space techniques. In curved spacetime, the homogeneity required for a global
momentum space is lacking in general. However, it is possible to introduce
a local momentum space to study the ultraviolet behavior of Green functions
[70] using Riemann normal coordinates [71]. Riemann normal coordinates are
valid in normal neighborhoods of the origin in which the geodesics from the
origin do not intersect. They should describe the ultraviolet regime because

the latter involves arbitrarily short distances scales.

Consider the Green function defined by eq. (3.45) and introduce Riemann

normal coordinates y® with origin at the point z'. One has [71]

1 1
Gab = Tab — §Rafbg yfyf — ERafbg;h ¥ yoy"

1 2 ,
+ (—ﬁRofbg:hj + 4_5Rfaglthbj) Yyt 4+ (3.47)
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l a l a (4

4= 1 - _Raby yb - '_Rab'cy yby
+ ( RepReq — _Rlab Rycar ~ —6vdv Rnb) byt - L (348)
where the coeflicients are evaluated at y = 0 and 7, is the Minkowski metric.

All indices in the right-hand side of egs. (3.47) and (3.48) are raised with the

Minkowski metric.

One may define

S(z.2') = (~g(2))*Ge(z, ') (3.49)

and its Fourier transform

S(2.2) = [ oze**S(h) (3:50)

where k - y = 5°®k,ys. With this, one can expand eq. (3.45) in normal coordi-
nates using eqs. (3.49) and (3.50) to obtain an equation for G(k) that can be

solved by iteration. This yields

G(k) =~ (k* +m?)™! +%R(k2+m2)‘2+ : R-“al. (" +m?)~?
1 &P o aa 1 2 2 2 -3 (351)
+ 3% S B aLb(L + m*) +[ﬁR -gﬂb] (k2 +m?)?,
where
Gab = Ry — —O Ry +  RoIR ——R R"‘--—R" WR
ab 40 ab ab 30 db daeb defb »

and = means that this is an asymptotic expansion. The Green function (3.49)

correspon<’s to a time-ordered product if one uses the usual replacement m? —
m? — ie. Substituting eq. (3.51) in (3.50), one obtains

d*k . 0

G(z,z') = (211_)413""!‘ [ao(z,x') + ay(z,2') (—gm—z)

wf 8\ 1
+ay(z,z') ( am2) ] R (3.52)




where
ao(z,x') =1 (3.53a)

and, to fourth order in derivatives of the metric

: l 1 1
az,z) = ER + 1‘)R“y - gauby v, {3.53b)
|
ay(z,z') = %Rz - Eabb . (3.33¢)

To evaluate the integral in eq. (3.52), it is useful to introduce the integral
representation

1 % 2
_ = f dse—-is(k‘+m’-ic) .

—_— =
kZ -+ m? —ie 0
The integral on d*k is then a gaussian integral. It can be evaluated to obtain

1 ids

3e.2) = (4m)? Jo (s

mts — 2] Ple.ati 3.
exp[ im®s 2is]r(z,x,zs), (3.54)

where ¢ = %y.,y“ is half the geodesic distanc: between z and z’' and m* —

? _ je is understood. To fourth order in derivatives of the metric

m
F(z,z';is) = ay(z, z') + isa,(z, =') + (is)’az(z, ') . (3.55)

The Feynman Green function is found using egs. (3.49) and (3.54)

IR U NN SR P
Gr(z,z') @) L exp[ im‘s 21,3] F(z,z';is),  (3.56)
where A(z,z') is the van Vleck determinant

1 1
v —g(z) v —g(z')

which reduces to A(z,z') = 1/4/—g(z) in normal coordinates. The represen-

Az, z') = -

det [0, (2, ~")]

tation (3.56) for the Green function was originally derived by DeWitt [72, 73]
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following the work of Schwinger [74]. The representation is exact, but the func-
tion F(z,z';is) is not known exactly. It can be expanded in an asymptotic

series

o0

F(z,r';is) = Z:a,,(:c,;z:')(is:)ﬂ .

n=0

The coefficients a,(z,z") are given by recursion relations [75].

3.3.3 DeWitt-Schwinger expansion

With the representation for the Green function Gg(z,z'}, we can find a
representation for the scalar effective action W(g]. In eq. (3.46), G can be
viewed as an operator acting in the space of vectors [z > such that Gg(z,2') =
< z| Gr |z’ >. The vectors |z > are normalized by <z|z'>= §(z—2')//—g(z)

and the trace of an operator O is given by
TrO = f &'z /=3(@) lim < 2|0}z’ > . (3.57)
r=z!
One may introduce the proper time representation of the Green function
Gelz,2') = K~\(z,2) = i f ds e=K(=e) (3.58)
0

If one compares eq. (3.58) with eq. (3.56), one obtains

-i¢K(:.z’) = —'iA(m’ a:') i 2 _ i L
€ T exp [~im’s 3] F@2iis) (3.59)

Then, assume that K has a small negative imaginary part (the —i¢) and con-

sider the integral

f % g = B, (i3K) (3.60)
é

for § < 1. E\(z) is the exponential integral. For small values of the argument,

E;(z) has the expansion (see, e.g., tef. [76])

E\(z) = —7 — In(z) + O(z) . (3.61)



Take 4 — 0 and discard a metric independent infinite constant to obtain the

logarithm of the Green function

* ds

: e—isi\'(z.z') ) (3.62]

InGe(z.2') = —ln K(r,2') = /
Q

where eqs. (3.60) and (3.61) have been used. Substitute (3.59) in (3.62) to

obtain

L18

InGg(z,2') = 167r2 )f ucp mis ~ _)‘f__] F(x,z'yis) . (3.63)

The DeWitt-Schwinger expansion of tl.e scalar effective action is found using

eqs. (3.57) and (3.63) in (3.46)

= 322fd*xmllmf —-A(:c.r:)

X exp [-—i m*
L

o
- —| Pz, z';1s) .
* 23’3] (2, )
For & # ', the integral over s converges because for s — 0, the factor
—o /s in the exponential plays the role of a damping factor and for s = oo,
the damping factor comes from the replacement of m? by m? —ie. Taking the
limit ' — , and using the asymptotic expansion for £(z,z';is), the scalar

effective action is

W= f t'z /=@ [ §e-"""-2a,.(m)(is)" . (364)

where a,(z) = limy,. an(2z,2') and A(z,z) = 1. The integral over s diverges
for n € 2 hecause therc is no damping factor for s = 0. Therefore, one needs

to introduce a regularization to properly define W.

3.3.4 Regularization and renormalization

In the following, we are only interested in the divergent parts of W to see

how Newton's constant is renormalized. Therefore, we consider the three first



terms in the expansion of 1

i

Haw = - 3250

> ds . "
f & V=g [ % [aole) +isan(x) + isPas(e)] -

where the coeflicients a,(z) are given by

ao(r) =1 (3.65a)

ay(r) = én (3.83b)
_ ! beud ! b l L 2 -

ax(r) = lSORa Rupet — @Rﬂ R+ %UR + ER . (3.65¢)

where we used eqs. (3.53).

‘The effective action may be regulated using many different methods [49],
but in the present calculation we adopt a Pauli-Villars regularization scheme
[77, 78, T9]. In general, such a scheme involves the introduction of a number
of fictitious fields with very large masses set by some ultraviolet cut-off scale.
Some of these regulator fields are also quantized with the “wrong” statistics,
so that their contributions in loops tend to cancel those of the remaining fields.
The number, statistics and masses of the regulator fields are chosen in order
to render all of the ultraviolet divergences finite. The potentially divergent
terms are functions of the fictitious particle masses. To avoid the production
of fictitious particles and to remove the regularization, the masses are allowed

to go to infinity at the end of the calculation.

In the present four-dimensional scalar field theory, one introduces five
regulator fields: ¢, and ¢,, which are two anticommuting fields with mass
mya = m; ¢3 and ¢4, which are two commuting fields with mass
myq = \/m; and ¢s, which is an anticommuting field with mass m; =
V4u% + m2, The total action for the matter fieids is

1¢ .
=33 [ 'z =7 [0 ViV + m2e?] (3.66)

i=0



where the original scalar is included as ¢q = ¢ with mass my = m. Now, each
field makes a contribution to the effective action as discussed in section 3.3.3,
except that as a result of the anticommuting statistics for &, ¢; and ¢s,
their contribution to the effective action has the opposite sign, i.e., W(g) =~

%TI log[Gr (g, m?)]. The divergent part of the scalar effective action is then

dur =

=g f 2 Tao(x) + isai(z) + (is) ax(c)]

[e im - e —i(p?+m?)s + Ze ~i(3pT+mi)s e—-i(-l,u:-}-m:)s]

3)1'-

fd"x V=g [-C ao(z) + B ay{z) + Aas(z)] .

= 322
(3.67)
In this expression, A, B and C are constants which depend on m and g, and

which diverge for p - oo:

2
A= o i‘—+l (3.68a)

[ 3?4+ m? 3u® +m? m? 3u® +m?
B=4%|2In 2 _—  +2lp—
T i +4]n4,u2+m2 ™ [n4p2+m2 n,uz-}-mz

(3.68b)

[ 3 +m? 3u* +m? 2 [ 3u? +m? 3ud + m?

=t dny? [Ip 2B ™ op” Tm”

C=p ~81 4p2+m2+ln T + 2mp (In W mE +2 114#2_,'_"&2
4 2 3

+—§—[ln3;‘2—n:_-—+2l “:"‘J (3.68¢)

Combining the scalar one-loop action with the original bare action in eq. (3.41),
we can identify the renormalized coupling constants in the eflective gravita-

tional action

I,ﬂ'=1 + W
A C R 1 B R? A
f“"’"" [‘“‘ (Gs +_) * i6r (6;‘*%) IR ("“+ 576«)

A 1 A
+4_-.-rR“"Rdb ( 0 = 14401r)"'11?R“"°“RM ("’°+1440n)+"'] » (369)
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where in this action. we discard the total derivative term OR occurring in a..

In particular from eq. (3.69), we obtain the renormalized Newton's constant

! l B

Ge Gy  127°

(3.70)
in eq. (3.69), divergent renormalizations also occur for the cosmological con-

stant Ay and the quadratic-curvature coupling constants ay, Js and 7.

‘\R _ i\a C _ A L

Gn - Gg -I—Ti'. ' Op = Qp + 576 (3! la)
A A )

b =0 - 1440 = RT Mo + 14407 (3.71b)

For large values of y, the constants A, B and C grow to leading order as
In{ge/m), u® and u* respectively, but they also contain subleading and finite
contributions. The higher order bare coupling constants (beyond those explic-
itly shown) would receive finite renormalizations from the {inite terms in the

one-loop action (3.64), but they will play no role in the present analysis.

3.4 Renormalization of the entropy

In this section, we calculate statistical black hole entropy and we identify
the divergences with the di ergences due to renormalization of Newton’s con-
“stant. To calculate the black hole entropy, we follow the work of 't Hooft [12],
but we replace his brick wall by a Pauli-Villars regularization. This method
calculates the entropy by counting the number of states of a scalar field prop-
agating just outside a fixed black hole horizon. We consider a Schwarzschild

black hole given by the metric (1.6)

as* =~ (1-2)at + (1- 1,'_'_'1)'l dr? +12d0? .

In section 3.3, we saw that one has to introduce higher-order interactions

in the Lagrangian to be able to absorb the infinities that arise from the scalar
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effective action. However, as seen in section 3.1.3, these higher-order interac-
tions modify the black hole entropy. From eq. {3.34), the modified entropy for

a Schwarzchild black hole is

Sa = A 8 fdz-r\/gf?“wfabfcd ,
4Gy

where we use the fact that for Schwarzschild black holes, R = R, = 0. Also
the integration is vver . spatial cross section of the event horizon r = r,. We
can introduce the unit timelike vector n, and the unit vector v, such that the
binormal €, is given by €, = ng vy —npv,. Using the symmetry of the Riemann

tensor, we obtain
R vecq = AR n vpn vy = 4RO

where (0, 1) currespond to the Lorentz coordinates asse iated with (¢,7) (see
appendix A). From results of appendix A, eq. (A.9) yields RO = —r, /73,

Therefore, the bare entropy is

Ss

= 9
g 167 (3.72)

3.4.1 The density of states

We calculate the entropy in three steps. First, we obtain the density of
states. Then, we define the free energy of a canonical ensemble. We then

obtain the entropy by differentiation of the free energy.
In 't Hooft's method, one starts with the Klein-Gordon equation
(O —m¥)¢(z)=0, (3.73)

where

09(z) = 4V, Vid(o) = —==0[V=T00r6(5)] -
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Expanding the field in spherical coordinates 0 = ' f(r)Y,.(#. 6). the Klein-

Gordon equation becomes

([ - %)“!E"}f(r) + ;_lz-('), [r"!(l - %)(),.f(r)] - [[(f::‘ b + m'“’]f(r) =0.

(3.74)

This equation can be solved in the WKB approximation, which is similar to
the geometric optics approximation used in chapter 2. In this approximation,
one sets f(r) = p(r)}e*S"), where p(r) is a slowly varying amplitude and S(r)
is a rapidly varying phase. To leading order. the real part of eq. (3.74) yields

the radial wave number k{r,{, E) = 0,5:

k(r,t. E) = (1 - '—”ri)_l [E2 _ (1 - "'—) (t‘({’: 2 +m"’)]w . (3.75)

and the imagtnary part yields a differential equation for the amplitute p(r)

SR E-3) (-3) =0

that can be solved to yield

st = e (1-2) (A0 )]

with € a constant of integration. The amplitude is tinite at the horizon but
because of the infinite blue shift, the phase diverges at the horizon. To avoid

this, 't Hooft introduces a brick wall cut-off at a distance A to the horizon
#lz)=0 forz<r,+h, (3.76)

with h & r,. To also remove infrared divergences, ene puts the black hole in

a box such that at some large distance L, the field also vanishes

#z)=0 fore>L.
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The radial modes number n is found by counting the number of nodes in
the radial wave function
L
mz:/ drk(r, €, E) .
rt+h
To obtain the total number of modes with energy less than £, one sums over
the angular degeneracy of the radial modes
L

g(BE)=) (2¢+1) ii—rk(r,t’, E).

t r.t+h T

If we replace the sum over £ by an integral (which is a good approximation
because we are in the large quantum number regime) and we use eq. {3.75),

the number of states becomes

L

1 rey -1t
_ = 9 _ =
g(E) = wfdf(-£+ 1)‘ r.-rhdr (1 r)

x [E2 -(1-2) (W; )+m2)]1,2 . (377)

where the interral over £ ranges for the values of £ for which the square root

is real.

3.4.2 The free energy

We consider the free energy of a thermal ensemble of scalar particles with

an inverse temperaturr 8
BF = Zln (1 - e™PEw)
N

_ it 1_d_g. _ »—BE
_-/; ddeln(l eP) |
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where ‘—:% is the density of states with energy £. Integrating by parts and using

eq. (3.77) to determine the density of states, we obtain

o f*’ dE g(E)
Q

edE — ]

1 >~ dJdF L oy |
- — - —_ - = (2
= ‘T‘/; e‘*"E—l[_‘hdr (l r) [dl(_£+l)
.2 roy fEHE+ D) 1Y

The integration over ¢ can be evaluated to yield

-

P [ [ (1) [ (- 2) ]

where the remaining integrals are still taken for values where the square root
is real. To examine the divergences, we introduce a new variable, s = t — r,/r.
The horizon corresponds to s = 0 and r - oo corresponds to s = 1. In terms

of s, the free energy is

23 = dE L ds » . 1372
= - * —m"s 78
F 3w ,/; eAE ~ | fu sl - i [E " q] ' (3.73)

where ' = 1 —r /L and h' = h/(ry+h) ~ h/r,. The necessity of the brick wall
cut-off is clear at this point siuce the integrand diverges with a double pole
at the event horizon. Thus, for smal! values of s, we have fh, ds/s® ~ —\/k',

which diverges as the brick wall is pulled back to the horizon, i.e., as &' = 0.

The integrand also diverges as r — oo i.e., s = 1. Taking s = L', the main

contributiun in the infrared regime is

2L ™ dE 2 2132
FmN“QTr/,; eﬁE-—l[E --m] )

This result is just the usual free energy of scalar particles propagating in flat
spacetime and confined to a box of volume L*. The subleading divergences are

modifications due to the curvature of spacetime.
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In order to separate the two types of divergences. we write the first factor

in the integrand as

I 1 4+ 4s 10 — 20s + 15s% = 457
= +*

s = s) LA (1 - s)

Because we are only interested with divergences that come from the horizon.
we drop the volume-dependent contribution which has no poles at the horizon.
and we take the limit of the infinite volume L — oc. The part of the f[ree
energy that diverges at the horizon is

2 3 20 1 ds N N 32
Fyy = - r“'/‘ —;E—- dsl+ ts [E"—m"s] :
€

3= E_ 1 IX; 32

One can then integrate over s and E to find the brick wall regulated free

energy, which then yields the 't Hooft entropy (3.35).

Now, rather than considering a single scalar field, we repeat 't Hooft’s
calculation for the Pauli-Villars regulated field theory introduced in eq. {3.66).
Each of the fields makes a contribution to the free energy as in eq. (3.78), and

the total free energy becomes

I T © dE ' 1+dsp_, ;32 .
F=-2t ;:;.-fo el MR [B2-sm?] ", (379)

where Ay = A3y = Ay = +1 for the commuting fields, and Ay = Ay = Ay = ~1
for the anticommuting fields. The free energy of the anticommuting regulator
fields comes with 2 minus sign with respect to the commuting fields, as is
required since the role of these fields is to cancel contributions of very high
energy modes in the regulated theory. The integral is taken for the values of
E and s for which the square root is real. The exact domain of integration is

presented in fig. 3.1.

Consider the free energy F; that comes from the field ¢; with mass m;. The
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Figure 3.1: Integration domain for the free energy.

integration over s can be evaluated to yield

F= ?.riA.-f‘” dE | (E* — min')3/? 4 3Im?
T8 Sy €9E1 Eh T\ 2E?

X [;2;(5"" — mERYE 4 3E(ER — mdn) 4 B3 n EZVE 2 ’"2"'] }

E' + E? - mik

23 [* dE {(E’—mf)sfz_(4_3m?)

37 S, €PE-1 E? 2E?
- ,/ - m?
X g(E2 —m3P? 4 2B} E? - m?)V2 + E*In E-vE -—m|
3 E+ /E?—m?

(3.80)
The second integral in eq. (5.30) is independent of k' and therefore, it does not
diverge when one takes the limit A’ — 0. It also becomes vanishingly small
for the Pauli-Villars fields in the limit 4 — 0. Hence, we drop it. The first
integral has linear and logarithmic divergences, as A’ — 0. To isolate the form
of the divergences, one may expand the integrand in a Laurent series around
k' =0.

I A a0 3
R A dE [E‘ ( 3m?

3 mih' 0
el Wl 4= o) Bl T + O(h )] . (3.81)
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Neglecting O(k") contributions. one is free to integrate from 0 instead of inte-
grating from mv/h'. without changing the divergent parts. One can then sum
over the scalar fields. The linear divergence cancels out hecause Z?zo A =0
The logarithmic divergence also cancels out because 37 A,m? = 0. There-
fore. we are free to remove 't Hooft’s brick wall by taking the limit ' — 0.
The sum over ¢ yiclds the same renormalization constants introduced in

eqs. (3.68):

Note that the energy £ drops out of these sums. Hence.

. w3 = dE 3
= kN 1AE3
P2 [T [ aae]

7.- 873

Y AP 82
g [61323 5 A] (352)

We emphasize that eq. (3.82) neglects contributions to the integral which do

not diverge as u — cc.

3.4.3 Statistical black hole entropy

Given the free energy of the black hole system, the entropy may be calcu-

lated using the standard formula

_ oF _afrw 3278
S= ﬁz'a—ﬁ— =r, {_3?8 + Es—ﬁ-iA] . (3.83)

Choosing the inverse temperature 3 to correspond to the Hawking temperature

of a Schwarzchild black hole, we set

B =dmr, ,



upon which the entropy (3.83} becomes

S—AB +‘4 3.81)
T oa2s 90 (3.8

where A = 4717 is the surface area of the event horizon. Thus we see that the
entropy contains the constants A and B. which give precisely the dependence
on the regulator mass p appearing in the renormalization of Newton's con-
stant and of the quadratic-curvature coupling constants. In fact we see that
eq. (3.84) can be interpreted as the one-loop correction to the bare entropy

(3.72). The total entropy is then the sum

Slotal = SB + S

Jl 1 B
= —+—-—- + 167 | ve +
Gy 12rm

1440::)

=3 H 16 (3.85)

where we have used eq. (3.70) for the renormalized Newton's constant and
eq. (3.71b} for the coupling constant y. Thus both terms in the scalar field
entropy (3.84) account for precisely the scalar one-loop renormalization of the

full black hole entropy.

A priori, one might not have expected the Pauli-Villars scheme to regulate
't Hooft’s entropy calculation at all. In fact, though, not only do we find
that the Pauli-Villars scheme regulates the latter calculation, our results are
in complete agreement w1th the suggestion of Susskind and Uglum. The diver-
gences appearing in 't Ho;ﬁ’t’s statistical-mechanical calculation of black hole
entropy are precisely the quantum field theory divergences associated with
the renormalization of the coupling constants appearing in the expressions of
the entropy. This identification includes both the divergent and finite con-
tributions in the renormalization of the couplings, Gy and 5. This precise

equality, including the finite terms, occurs because the combinations of masses
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Y Amilnm? and ¥ A, Inm? arise naturally in both calculations. We have
not considered here any of the remaining finite contributions arising in the free
energy (3.79). It should be possible to identify the corresponding contributions
to the black hole entropy with finite renormalizations of the higher curvature

terms arising from finite terms in the one-loop action (3.64).

3.5 Discussion

In this last section, we discuss our results and look for possible extensions

of the above calculations.

3.5.1 Definition of the density of states

We have defined the density of states of scalar fields by imposing a brick wall
near the horizon. We have then removed the brick wall or more specifically,
we have pulled back the brick wall to the horizon. The free energy has a
smooth limit in this process. It is implicit that there is still a brick wall,
but at the horizon. We still have to impose ¢(r = r,) = 0 to produce a
well-defined density of states. We assume that the results from this limiting
procedure coincide with those arising within the canonical quantization of the

Pauli-Villars regulated theory.

3.5.2 Robustness

One would like to know whether the present results hold for arbitrary field
theories coupled to gravity, rather than for just a minimally coupled scalar

field. One simple extension of our calculations would be to consider a non-



minimaily coupled scalar tield. The original matter action in eq. (3.10) s then
extended to

, | s 4 2
po=_t f 1 V=g [T a0 Vo + mio? + £RY] .

2
It is well known [19] that the additional coupling of the scalar field to the curva-
ture modifies the adiabatic expansion coefficients in eqs. (3.65). and therefore
it affects the renormalizations of the bare coupling constants. For example.

eq. (3.70) for the renormalized Newton's constant is replaced by

i 1 B (1 2 e
GR -_— GB + § ('6'" - ) . (I;.Sb)

On the other hand. if we repeat the calculation of section 3.4 for the new scalar

Iy

field theory, we find that the resulting entropy is completely unchanged. The
new coupling constant £ enters the new equation of motion, (J—m?*—£R)¢ = 0,
which replaces eq. (3.73). The remainder of the calculation is unmodified,
though, because R = 0 for the background Schwarzschild metric. Given that
Newton's constant is renormalized as in eq. (3.86), the entropy in eq. (3.84),
which is independent of £, does not properly account for the renormalization

of the Bekenstein-Hawking formula.

To cure this, one probably has to take into account the degrees of freedom
at the horizon using the methods introduced by Fursaev and Solodukhin [80,
31, 82]. We saw in eq. (3.8) that the Schwarzschild Euclidean action is similar
to polar coordinates when one identifies the imaginary time 7 with a period
2n/x = By. Without this identification, there is a conical singularity at the

horizon and the curvature scalar is not zero but it is given by

R=41r(1—[%)63,

where dy is a d function normalized as
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and integration over ¥ is an integration over a spacelike eross section of the
horizon. To calculate the entropy. one needs to take derivatives with respect to
3 and therefore one has to consider metries with inverse temperature shightly
different than Jy. Because the curvature is zero except at the horizon for
conical metrics. it is plausible that the needed renormalization comes from

behavior of the horizon.

In our calculations. the conical singularity does not come into play because
the brick wall fixes the scalar field away from the herizon. To see the conical
singularity. we may replace the conical metric with a regularized metric and
consider 't Hooft’s calculation in this background. This problem may also have
some relation with the definition of the density of states. i.c.. that we impose

o(r =r,) = 0. In any event, these questions require further study.

One may also want to verify the calculations with fields of higher spins. For
this purpose, we need to solve the problem associated with the non-minimal
coupling of the fields with the curvature because there is always such a cou-
pling for fields with higher spins. For example, the Dirac equation in curved

spacetime is
(i~,‘v.- +m)y=0, (3.87)

where v' are the curved Dirac matrices, obeying {y',7'} = 2¢¥ and V, is the
covariant derivative for the spinor . Multiplying eq. (3.87) by (iv/V; + m),

one obtains
2 1
—O4m +1R P=0.

This is Klein-Gordon equation with ¢ = 1/4. [In the same way, Maxwell

equation in curved spacetime can be written

(o6 - B)ai =0,
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where -7 ts the spin-one fieid.

3.5.3 Reissner-Nordstrom background

Another place where one may want to generalize the present calculation is
to do it i a different background. In this sense. we can consider our calcu-
lation in a Reissner-Nordstrom (RN) background. The background includes
a metric and a U{1) gauge potential. Therefore. the gravity action should be
supplemented with a Maxwell term and in general, additional higher-derivative

terms, like in chapter 2:
1 2
loqy = fff‘-'c \/—y[“zﬂbp'b + 6o FuF®) 4 NoRoy FF2 + ] .

Despite introducing a background gauge field, we consider only a neutral scalar
field as above, and therefore, in the effective action, the gauge field interactions
are completely unaffected by the scalar one-loop contributions. (An obvious
extension of the present anslysis would be to repeat the calculations for a

complex scalar field which couples to the gauge potential.)

The RN metric (1.9) can be written

ds? = — (1 - "—”) (1 - fi) de? + [(1 _ ir‘-) (1 - ’T*)] Tt 41202

T r

This black hole has an event horizon at . = GM + /G*M? — GQ*/(47) and
an inner horizon at r_ = GM — \/G*M? — GQ?/(47), where Q is the black

hole charge. In this background, the Ricci tensor is non-zero and the bare

entropy (3.34) is given by

S =

4'2,3 +/d2:z:\/f_z[ﬁaR""g_|_¢b - 'yan""ed,ed] )
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As before, introducing the unit timelike vector n, and the unit spacelike vector
s, the binormal is ¢ = .0 — npr, and the metnic g _, = —n,ny + varn. The
entropy is given by

8= I?r'n — Rxude + 1671 = Ju)sy, . -\

~
7]
—

where we use eqs. (A.13) and (A.16) and u = r [fr. = GQ*/(47r?).

Now. we repeat 't Hooft’s calculation as described in section 3.4. We
constder a scalar field. which satisfies the Klein-Gordon equation {3.73) and
we introduce a brick wall near the event horizon by setting o(x)} = 0 for
r < r. + h to define the density of states. Then. the radial Klein-Gordon
equation is solved within the WKB approximation and we obtain the number

of modes with energy not exceeding E:

=t [ af(1-%) (- 2] faeeren
[ (- 2) (-3) (e m)] "

One can introduce the {ree energy of a thermal ensemble of scalar particles at

inverse temperature 3
F= fdadg In (1 - &*F) |

and introduce the same Pauli-Villars regularization as previously. Then, we

are free to remove 't Hooft's brick wall and the free energy becomes

F__zrifv dE /L’ ds
T 3 Jy ePF 1y sl —s)Y{1l— u+us)?

ST A ~ s(1—u+usym?]Y* . (3.89)

=0

Now, integrating over s and E, we focus only on the divergent contributions

at the horizon and find

R e L

T 47*(2 — 3u) 4]
6(1 — u)3? 45(1 — u)3p4”
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where 1 and B are the same constants given in egs. (3.68). The entropy is

then given by

. JOF y 16(2 - 3u)=?
S = I — = 3 B - . -
a3~ - [3(1 —03 T B upE x] (3.90)

Choosing the inverse temperature 3 to correspond to the Hawking temperature

of a non-extremal RN black hole, we set

_dar,
l—u’

a

upon which the entropy {3.90) becomes

L AB  (2-3u4
=11t TIs0

(3.91)

where A = 4772 is the surface area of the event horizon. Combining eq. {3.91)

and eq. (3.88), we obtain the total entropy

Afl B A A
= — ] - —_— - -— -2
Stoul = 7 (G + 12«) Smu (5 . 144071') + 167(1 - 2u) (7" + 14401r)
A

4G

+ 8mufn + 161 — 2u)yn ,

where egs. (3.71b) have been used. In this case, both terms in the scalar
entropy account for precisely the renormalization of the black hole entropy, in-
cluding the contribution of the Ricci tensor squared in the bare entropy (3.88).
In the RN background, the divergences appearing in 't Hooft’s statistical-
mechanical calculation of black hole entropy are precisely the quantum field
theory divergences associated with the renormalization of the coupling con-
stants appearing in the expressions of the entropy, including both the divergent
and finite contributions in the renormalization of the couplings, Gs, 8s and
~e. Thus the RN background allows for a more sensitive comparison between
the renormalization of the effective action and 't Hooft’s entropy calculation
than the Schwarzschild background.
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3.5.4 Extremal Reissner-Nordstrom

It is not difficult to repeat our calculations for the case of an extremal RN
black hole with r. = r_. In this case. 't Hooft’s brick wall cut-off leads to
ill-defined results [383]. The problem is that the coordinate cut-off, h. cannot
be converted to a proper length cut-off because any point which is a fixed
coordinate distance outside of the extremal horizon is in fact an infinite proper
distance from the horizon {on a constant time hypersurface). No such problem
arises with the covariant Pauli-Villars regulator. However, precisely at the
extremal limit « = 1. the structure of the small s divergences in eq. (3.39)
changes. and hence we must re-evaluate the integral. We find that the divergent

part of the free energy is given by

= .. 3|7 41‘r3'
Foxe = —r [3,?3-*-9_37,1] N

and the entropy which follows is

2 1673
Sext = Ti. [3_63 + ?BTA] . (392)

Here A and B are the same divergent coefficients (3.68) that appear in the
scalar one-loop action and in the non-extremal entropy. Hence, with a covari-
ant regulator, we find that the extremal entropy has no stronger divergences
than appear in the non-extremal case. In fact, the entire result has essentially

the same form as the non-extremal entropy in eq. (3.90).

To proceed further, one must fix the inverse temperature in eq. (3.92).
Using the standard formula T' = x/(2x) [8], one finds that the temperature is
zero since the surface gravity vanishes for the extremal RN black hole. Thus,
the inverse temperature 3 diverges, and we find that S,., vanishes. The same
result is found when using the brick wall regulator [83, 84]. This result is in

accord with the recent discovery [83, 86] that extremal black holes should have
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vanishing entropy. since one then expects that the renormalization contribution
must also vanish: since the value of entropy is independent of the coupling

cvonstants. the renormalized value of zero is still zero.

On the other hand, the recent investigations of extremal black holes [33, 86)
also suggest that an extremal black hole can be in equilibrium with a heat bath
of an arbitrary temperature. Hence, one might consider leaving the inverse
tempeiature arbitrary in eq. (3.92). In this case, one hzs the curious result that
Sex appears to represent the renormalization of some finite entropy expression
for an extremal RN black hole. For example, the first term in eq. (3.92) would
represent the renormalization of S = %5'-%'-*— Previous calculations have given
no indication that such an entrepy arises for extremal black holes, and so one
may conclude that one must use 3 — oc in this case. Alternatively, it may
be that 't Hooft’s model does not capture the full physics of extremal black

holes as for non-minimal couplings, and that the correct result should still be

Sezt = 0 even with a nonvanishing temperature.

3.5.5 On-shell versus off-shell

Most of the discussions and derivations of black hole entropy focus on
black hole backgrounds which are solutions to the equations of motion. For
example, the method of Noether charge presented in section 3.1.3 calculates the
entropy using the equations of motion. In our method, we calculate the first
quantum correction to this entropy and therefore, it is an off-shell calculation.
We do not refer to any equations of motion for the backgrounds, even if the
backgrounds used may be solutions of the bare equations of motion. However,
we use the usual entropy expression (3.34) to assign a black hole entropy to the

backgrounds, within both bare and renormalized theories. Hence, we suppose
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l that this formula is valid off-shell. This is suggested in ref. [82], where they

demonstrate eq. 13.34) without any reference 1o equations of motion.



Chapter 4

Conclusion

In this thesis, we have considered quantum gravity from a semi-classical
point of view, where gravity is analysed classically and the matter fields quan-
tum mechanically. With the small size of the Planck length with respect to
other length scales of nature, the semi-classical treatment of gravity should
yield sensible results, even if it is not the complete final theory of quantum
gravity. In this scheme, interesting results have emerged and especiaily one
finds that the equivalence principle is violated and also that black holes can

be analysed in terms of thermodynamical quantities.

The Einstein equivalence principle states that all Lorentz frames are equiv-
alent and there is no coupling between the matter fields and the Riemann
tensor. It implies that photons fall freely along null geodesics, independently
of their frequency. We illustrate in section 2.3 with a review of the results of
ref. [14] Lhat this principle is violated when one considers interacting quan-
tum field theory in curved spacetime. In particular, birefringence appears. In
section 2.4, we consider effective action for the electromagnetic field in curved

spacetime with higher-order interactions to obtain new effects. In this way,
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we are able to build three classes of eight-derivative interactions that produce
energy-dependent light deflection. One class also produces birefringent prop-
agation. The first important conclusion of this thesis is that it is possible to
produce energy-dependent deflection of light in the context of quantum field
theory in curved spacetime. Hence. the claim of ref. [16] saying that such

behavior would be a clear signature of string theory is false.

Having given the possible dispersive interactions, the next task would be
to calculate the one-loop effective action for QED in curved spacetime up to
eight derivatives to see if these interactions are generated and if so, what their

actual ceefficient is.

The magnitude of the dispersive deflection found is unmeasurably small
for the solar parameters which of course is no surprise. With the weakness
of the gravitational field, one cannot hope to observe quantum gravity effects
in the solar system. Like all of the quantum gravity predictions, one would
need small black holes to observe the effect of dispersive propagation. In that
regime, our calculation is not directly applicable due to the approximations we
have used. However in principle, we should be able to do the calculation for

the strong-field regime as well.

The second investigation in this thesis was concerned with the statistical
interpretation of black hole entropy. The thermodynamic interpretation of
black hole entropy is well established. It comes into play from the first law
and the second law of black hole dynamics and the entropy is proportional to
the black hole area. However, the statistical interpretation remains unclear.
One problem that arises in this context is the appearance of divergences in the
entropy. The understanding of these divergences is essential to make sense of

the statistical black hole entropy calculation. The suggestion by ref. {67] that
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statistical black hole entropy should be viewed as the one-loop modification
to the Bekenstein-Hawking entropy Sgn = A/(4G) is interesting. In this way,
the divergences may come from the renormalization of Newton's constant that

appears in the Bekenstein-Hawking formuia.

With this in mind, the renormalization of the gravitational effective action
is presented in section 3.3. To regularize the calculation, we introduce a Pauli-
Villars regularization. This regularization is manifestly covariant. To absorb
all the infinities that arise at one-loop, one needs to introduce a bare action
with a cosmological constant and with four-derivative interactions. As noted
by refs. [57, 58, 59], these higher-order interactions modify the black hole

entropy by a constant.

The statistical black hole entropy is calculated in section 3.4. We use the
method introduced by ref. [12] but with an important modification. We replace
the brick wall regulator by the same Pauli-Villars regularization introduced
in section 3.4. In this way, the regulator is manifestly covariant and we can
compare directly the divergences appearing in the entropy with the divergences

of the effective action.

The second important conclusion of this thesis is that the divergences ap-
pearing in the statistical entropy are the divergences needed to renormalize the
Newton's constant and the coupling constants of the higher-order interactions.
We have done the calculation for the Schwarzschild geometry in section 3.4 and

the calculation was generalized to Reissner-Nordstrom geometry in section 3.5.

In the near future, I would like to generalize the calculation to non-min-
imally coupled scalar fields and for fields of higher spin. For this purpose, it
is important to consider the degrees of freedom at the horizon. The methods

of the conical singularity introduced by refs. [80, 81, 82] might be useful. One
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strategy would be to smear the horizon curvature over an extended region so its
effects could be felt at the brick wall, even when the latter is still away from the
horizon and then pull back the brick wall to the horizon after a Pauli-Villars
regularization. It might also be useful to consider the effects on the density

of states arising from the horizon boundary condition which we impose on the

field.



Appendix A

Calculation of the Riemann

tensor

In this appendix, we calculate the components of the Riemann tensor for
the Schwarzschild geometry and for the Reissner-Nordstrom geometry. We use

the method of the orthonormal frame (see, e.g., refs. [17] or [47]).

A.1 Spherical symmetric manifold

Consider a spherically symmetric manifold described by the metric

1
2 _ 2 2 2, 20902 | 20 2
ds* = =U*(r}dt +U2(r)dr + r*(df* + sin‘ 6 dg*) . (A.1)

This metric is not the most general metric for spherical symmetric mani-

folds but it is general enough to describe both Schwarzschild and Reissner-

Nordstrom geometries. We introduce the vierbein

e, = diag(U,1/U,r,rsin8)
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satisfying #,,6”.¢”s = gas. The greek letters describe the orthonormal com-
ponents (0.1.2.3} and the roman letters describe the spacetime components

{t.r.0,¢). We also introduce the dual basis é = et dats

8 = U(r)dt (A.2a)
A1 I
= d A2
ok (A.2b)
6 =rdo (A.2¢)
° = rsin@de . (A.2d)

With this basis, the metric reads

" At ~p

ds*=n,60 ®86

The computation of the Riemann tensor is done in two steps. First, one
calculates the connection one-form w*, using the Cartan torsion-free structure
equation

dé" +w*, A8 =0. (A.3)
The connection one-form is related to the connection in the orthonormal frame
5
u w G
W, = F.\ue . (A.4)
The condition that the covariant derivative is compatible with the metric (i.e.,

Vagse = 0) implies that the connection one-form is antisymmetric w,, = —w,,,.

For the metric (A.1), one obtains

d0° =drndd

d6° = sinfdr Adg +rcos0df A ds .
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By comparing this result with eq. (A.3) and using the definition {A.2) and the

antisymmetry of the connection one-form, we obtain
Wy =wly =U(r)'(r)dt
w') = —w'y = U(r)do
W'y = —w'y = U(r)sin8do

wy = —w?; = cosfdo .

For the second step of the calculation, one calculates the curvature two-

form R¥, using the second Cartan structure equation

R, =duw”, +w!, AW’ .

(A.6)

The Riemann tensor in local coordinates is readily obtained by using the iden-

tification
R*, = R"',,[p,]ép A6°

From egs. (A.5), we calculate the curvature two-form

R, =—(U?+UU"E AG'
R = -ga AG
R =YY A8
7
R, = _{{:ﬂo NG
Rl = —‘U—fia AB
R (1-U%oe nE
Using eq. (A.7), one obtains-
Rl = "'(U'2 + UU“)
R’y =R 303“"R2l2—R313—_%_q"'

1
Raza"'—(l—U2) .

(A7)
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The other non-zero components are found nsing the symmetry of the Riemann

tensor

Ruupo- - Rprrjw = _Ru,upo‘ = _Ruyfrp . (.\8)

A.2 Schwarzchild geometry

For the Schwarzschild metric, one has U(r) = /1 — 'G" and the Riemann

tensor reads in local coordinates

23 2GM
RO _ _pa _ (:; (A.9a)
RO202 _ po303 _ _ pi212 _ _ p13d Gr‘:[ ] (A.9b)
Using eqs. (A.9), one may calculate the scalar
202
RdwRabcd — igg_r‘{_[_ . (AIO)

The Riemann tensor can be expressed in a useful way by introducing the

bivector UE‘,;' = 6,';5',; — 8Bd¢

_GM

Ruvee —

3GM uryjer , IGM
01

[17""17 onP

— Ui U

This relation can be transformed in spacetime components with the help of

the vierbein

Rabcd _ e”uepbepcead vapa'

ad bc] SGM

_GM[ 3GM
= [g" g™ — g™y US +

r3

—Ug U.;,gf’U23 . (Ad1)
with

U =e 0% —elbe,®. (A.12)
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A.3 Reissner-Nordstrom geometry

The non-zero components of the Riemann tensor for the Reissner-Nord-

strom metric with

T 2
U(r) = \ﬂ_ __‘Ci'” + GQ

dard

is given by. in local components

2GM  3GQ?
o= 2OM %ﬁ (A.13a)
RY202 _ ROI03 _ _ Q212 _ _ p1d3 _ QH - GQ* (A.13b)
r3 47ri o
2GM  GQ@?
323 _ _
R _ - — (A.13c)

The other non-zero components are found using the symmetry of the Riemann

tensor (A.8). The Riemann tensor can be expressed as

R = — (4 — B) [g%g™ - g™g™| ~ (34— 4B) UtV + (34 - 2B) UUSS

(A.14)
with
_GM _ GQ?
A——rs— ' B—&F; (A15)
The Ricci tensor can also be calculated. The non-zero components are
GQ?
Roo = -—Ru = Rz«z = R33 = 4—71_—1.:‘- . (A.16)
From egs. (A.13)}, we can calculate the scalar
Gqu
Rab Rab = _4_11-2_7-8 . (A.].T)

A.4 Derivatives of the Riemann tensor

In section 2.4.3, we need the second covariant derivative of the Riemann

tensor for the Schwarzschild geometry. In local frame, the first covariant deriva-



tive is given by

VARppe = 3" Ruvpor = U Ruwper = T Rpr = U5 R = TS R -
(A.18)

The non-zero components of the spin connection are found using egs. (A.4)

and {A.5)
7A G\ 2
Tor =g = "_C:,! (l - G ) (A.19a)
re r
2G A
I3, =-Th= ! (1 - I) (A.19b)
r r
1 2G M
[ =-Tu= " ( - ) (A.19¢)
g
r3, = —rz, = <% (A.19d)

Thus, using egs. (A.9) and (A.19), one obtains the non-zero components of the

covariant derivative of the Riemann tensor in local frame
6GM 2GM\ V2
ViRoior = =V Raps = — (I - ) (A.20a)

3GM 2GM\?
ViRo202 = ViRozes = - ViRi212 = -V Rz = ——1:;-— (l - )

(A.20b)

3GM IGM\ 2
VaRias = ViR = = ViR = = V3R = p (1 - ) .

(A.20¢)

The second covariant derivative may be calculated in the same way

VeVaRupo = €0, (VARuv.w) = NaVaRupe — TR VaRypo

- szv-\Rumw - PZ,,VARW - anvv\anm .

From egs. (A.20) and (A.19), the second covariant derivative can be found

The result is a lengthy expression that we will not explicitly write.



Appendix B

Geometric optics approximation

in curved spacetime

In this appendix, we present some results of the geometric optics approx-
imation in General Relativity. More details can be found in ref. [17]. We
analyse the approximation in terms of the vector potential. One can easily

obtain the field strength from this analysis.

Consider the wavelength of the electromagnetic wave, A, as measured by
a typical Lorentz frame. Let L be the typical length over which the ampli-
tude, polarization and wavelength vary (like the radius of the wave front for
exemple). Consider also R the typical radius of the curvature of the spacetime
through which the waves propagate. Geometric optics approximation is valid
when A € R and A « L. Then the waves are locally plane waves propagating

through spacetime of negligible curvature.

The vector potential can be written as the real part of the product of
a slowly varying complex amplitude and a rapidly varying real phase. If one

holds fixed the scale of the amplitude variation L and the scale of the spacetime
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curvature R while making the wavelength shorter and shorter. the phase will
vary more and more rapidly but the amplitude can remain almost unchanged.

Thus. one may write
A = [(a + 5b + e)e'®] (B.1)

where the real part is understood. The coeffictents b* and ¢* are post-geometric
optics corrections {which would be necessary to realize the full wavelike char-
acter of the solution, like diffraction and interference) and ¢ is a dummy ex-
pansion parameter that keeps track of how rapidly various terms change as

A/L = 0. with L the minimum of L and R.

We define the wave vector k, = V.0, the scalar amplitude a = (a,3)'/*
and the polarization vector f* = a®/a, where 3® is the ccmplex conjugate of
the amplitude. Light rays are defined to be the curves z%(7) normal to the
surface of constant phase ©. Since &, = V.0 is normal to this surface, the

light rays are

d a
% = k(z) = g®V,0 .

Consider the source-free Maxwell equation (2.2)
Vo F®=0.
If one introduces the vector potential defined by
Fop = Vady - V4, , (B.2)
one obtains the wave equation for the vector potential
—0A° + R*Ab =0 . (B.3)
We use also the Lorentz gauge condition

V-A=0. (B.4)



To leading order. the field strength is given by

For = ikeay — ikpa, .
If we insert eq. (B.1) in eq. (B.4). we obtain

0= {[-I:k,,(a“ +:b%) + V2t + U(;‘)] e"e-"‘} )

The leading order yields

or similarly
kfP=0.

Hence the polarization vector is orthogonal to the wave vector. The post-
geometric optics modifies the orthogonality between the amplitude and the

wave vector

kb® =1iV,a® .

Next, we insert eq. (B.1) in the wave equation
0= { [Ela—kz (a® + &b® 4+ %%) — -‘i_—i-k"vb(a“ +¢b?)
- ;;v-k (a® +€b®) — Oa® + R%a® + 0(5)] } .
To leading order, one obtains
B=0. (B.6)
The wave vector is é null vector. To order 1/¢, we have

Va0 4 2(V k)2 =0.  (B7)
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The order ¥ vields the first post-geometric optics modification

_ 1 .
aﬂftW+ﬂvwm0_mﬂ+mﬁ=n.

The eqs. (B.6) and (B.7), 1ogether with eq. {B.5) are the basis of the geometric
optics approximation in curved spacetime. Eq. (B.6) leads to the geodesic

equation for the wave vector (see section 2.1.1)

et drbdre
dr? dr dr

Writing a* = af*. one may obtain propagation equations for a and f* sep-

arately. Using eq. (B.7), one obtains

2ak°V,a = A*V (%) = aph* V88 + Bk ¥ 2t

l 2
=-5;VA(Ta+ad)=-a" V.
Hence, the propagation equation for the amplitude is
a 1 .
Vaa=—5(V-k)a. (B.8)
For the wave vector, one obtains, using egs. (B.7) and (B.8)

0= k°V,(af*) + =(V - k) al® = ak*V,f* .

] —

5

Thus, the polarization vector is parallel transported along the trajectory
v =0. (B.9)
Therefore. if we impose the conditions £* =0, f2 = 1 and &-f = 0 at one

point, they will be satisfied along the entire trajectory because from egs. (B.6)

and (B.9) as both vectors are parallel transported along the trajectory.



Appendix C

Null geodesics in spherical

symmetric geometry

In this appendix, we find the null geodesics of spherical symmetric space-
time. They are used in chapter 2 to calculate light deflection in a gravitational

field. We use the methods presented in ref. [87].

In the geometric optics approximation, one obtains that light rays are null
geodesics satisfying k% = 0, where k, = V,© is the derivative of the wave
phase. Yor a general asymptotically flat spherical spacetime described by the

metric
ds® = —B(r)dt® + A(r)dr? + r*(d6® +sin® 9 d¢?) , (C.1)
the light-cone condition becomes
2 2 2 2
o () () + (L) + i () -0
B(r) \ 8¢ A(r) \ or r2 \ 89 r2sin® 6 \ ¢
(C.2)

We have assumed that the metric (C.1) is independent of t and ¢. These

isometries imply the existence of two Killing vectors £* = ¢ and x* = 43
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which give rise to two conserved quantities

E = — gtk = _ 90

at
£ = gupk® = ‘;—2 . (C.3b)

(C.3a)

The quantity £ has the physical interpretation of the total energy and the
quantity £, the azimuthal angular momentum, as measured by a static observer
at infinity. Introducing egs. (C.3), the light-cone condition becomes
1 .. 1 (80 180\ @&
- - - = | = ——=0. C4
O +A(r)(3r) +r2(ae) + Zan’o (C4)

The geodesics can be found by solving eq. (C.4) by a separation of variables.

Writing © = O,(r) + 64(9), one can introduce a separation variable L such

that
o\, &
(ao) tame =Y (C.5a)
1 (8 1 ., L -
w (50) “" =R (cab)

The constant L has the physical interpretation of the total angular momentum,
as measured by a static observer at infinity. Using eqs. (C.5) and (C.3), one
obtains the equations of motion &' = &' = g'k;, where the dot represents

derivative with respect to an affine parameter.

t=kt= BL(;J;) (C.6a)
o E? AN ke
=¥ =t |~ ) (C65)
. . 17, g V2 .
=%k = :l:T_—2 L~ ey (C.6c)
; ¢
6=k = r2sin® 9 (C6d)

The equations of motion (C.6) apply for any photon trajectories. We can

simplify the analysis by restricting the trajectory to the equatorial plane § =
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/2. 1o that case the azimuthal angular momentum equals the total angular
momentum and we have k® = § = 0. Therefore, the entire photon trajectory
lies in the equatorial plane. The trajectory can be specified by the impact

parameter b = L/E and the energy E. The photon momentum is then given
by

k' = EB(r) (C.7a)
. ! e 1 -
=28 | ) (C70)
K = %‘3 (C.7c)

The light deflection angle is found by integrating along the trajectory

_ d¢ _ k¢
A¢+1r-fdr$—fdr-‘;

=2 w Eoroe r*f(r)] "

where 7y is the distance of closest approach, where & vanishes. Hence

2

2 _
b = B(ra)

(C.8)

Replacing b by 79, one obtains[28]

1/2
o, [Cdr | A
A¢+1r—2j;° ?‘[__-_:BB(':}-—I] . (C9)

For the special case of Schwarzschild metric, one has B(r) = A7Y(r) =

(1 — 2GM/r) and the deflection angle is

o0 27-1/2
Ap+m= 2[ dr b2 [1 - (l - 2GM) jb—--] ) (C.10)

=) 2
ro T T T

with

~1/2
b=rq (1 _ oM ) . (C.11)
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