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Abstract

Neural networks have recently regained significant interest in the scientific community
for their ability to gencralize about large samples of data. In this thesis, the feasibility of apply-
ing neural networks in the domain of telephone access network fault identification and localiza-
tion 1s explored Firstly, the aceess network and the computerized work environment of today’s
Repair Service Burcaus are described A survey of past and present automated diagnosis sys-
tems used in communications follows Neural networks are then presented and the back-propa-
gation learning algorithm 1s given particular attemtion. Another literature review ensues where
ncural network based diagnosis systems from a number of domains are presented. Finally, the
first components for an improved access network maintenance system are laid. Experimental
1esults show that the opportunity exists to benefit from neural networks pattern classification
ability in access network maintenance. A discussion of results and suggestions for future

rescarch work ends this thesis.



Sommaire

Les réseaux neuronaux ont récemment connu un regan d’mnérét maqué de fa pait de la
communauté scientifique, en grande partie pour leur capacité de genérahiser & partun dexemples
d’entrainement. Dans cette dissertation, la faisabilité d apphquer les 1éseaux neutonaus aus
problemes d’identification et de localisation de pannes dans le réseau daces (éléphonigue est
explorée. Le réseau d’acces et ’environnement de travail informatisé des centres de verification
actuels sont tout d’abord décrits. Une revue des systémes de diagnostic automatigue piésents el
passés utilis€s dans le domaine des communications suit. Les réscaux neuronaux sont ensuite
présentés et une étude particulieére de I'algorithme d’apprentissage basé sur la iétuo-propagation
est offerte. Une seconde revue litéraire su':, couvrant cette fois les systémes de diagnostic basés
sur les réseaux neuronaux dont I’application n’est cependant pas restremnte au domame des
communications. Finalement, les premiers blocs d’un systeme améhioré de mamtenance du
réseau d’acces sont jetés. Les résultats d’expérimentation indiquent que I'opportumité pour les
systeémes de maintenance du réseau d’accés de bénéficier du pouvorr de classification des
réseaux neuronaux existe. Une discussion des résultats accompagnée de suggestions touchant

de futurs travaux de recherche terminent cette dissertation.
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Chapter 1 Introduction

1.1 Motivation

1t 1s now estimated that there are around 1S mullion telephone hines m service i Canada | 71
Because of forces hke fault avoidance, cost teduction, and customer satistaction, 1t 1s in the
interest of telephone companies to enhance then network mamtenance opetations Stembicant
improvements have been achieved i the past two decades, especially with the mtroduction ol
Operational Support Systems (OSS). With these systems, Repan Service Bureaus (RSB) have
become virtually paperless operations. With the ever incieasing complexity and diversity of the
telephone access network, the automation and improvement of many mamtenance processes are

now being considered.

1.2 Objectives

The scope of this research woik 15 to mvestigate the apphcability of neural networks to tele-
phone access network maintenance. The access network 1s the portion of the network which
connects the subscriber’s equipment to the telephone operating company switchig device The
other portion — the transport network — interconnects switchimg equipment ‘Trunks connect-
ing switches in the transport network are designed with robustness mn nund as they cairy high
volumes of traffic. Alternate routes are even made available 1n case the primary ones would tail
Such protection 1s unfortunately not given to the access network. It would not be ccononucally
feasible to provide every single line with all the protection given to trunks Not surprisingly,
significant portion of the total network maintenance cost is devoted to the access network [67 ]
Neural networks have been chosen for their pattern classification capabilities ‘The prime

objective of this research 1s to evaluate the improvements 1in diagnosis performance that could



he brought to current netwerk maintenance operations by using neural networks fed with data
rcadily available in various OSS, and to determine which additional data elements would be

necessary to provide wider fault coverage.

1.3 Thesis Overview

Chapter 2 gives an overview of the telephone access network maintenance environment. This
scts the context in which this research work was carried out. A literature review in Chapter 3
reports advances that have been made in the past years to improve telephone access network
maintenance. Chapter 4 gives an introduction to neural networks and details the learning algo-
rithm that was used in this research work. A literature review of neural network classifiers used
in diagnosis is then given. Chapter S presents the prototype system that was used to evaluate
ncural networks for performing diagnosis on telephone lines. A discussion on implementation,

results and future extensions follows. Finally, chapter 6 concludes this thesis.



Chapter 2 Overview of Telephone Access Network Maintenance

This chapter describes the context in which this research work has been carried out. The first
section presents the subscriber loop and its various components. The next section gives an ovel-
view of the functionality of the Centralized Automated Loop Repotting System (CALRS'), and
the problem domain it covers. The subsequent section presents some other Operational Support
Systems involved in maintenance, provisioning and billing. A discussion of the evolution of

telephone network technology, services, and maintenance operations ends this chapter.

2.1 The Access Network

Figure 2.1 shows a typical subscriber loop. All subscriber loops taken together form the access
network. This section describes the subscriber loop first in terms of its components and second,
in terms of how it has been partitioned by the various telephone company maintenance organi-
zations. An understanding of the subscriber loop from both these points of view is necessary to
grasp why access network maintenance is carried out the way it is today. Finally, problems that

may affect subscriber loops are described.

2.1.1 The Components Forming the Subscriber Loop

A subscriber loop usually designates a pair of wires called tip and ring. It also shares a third
wire called ground (or sleeve) with the other loops in the cable to which it belongs. Tip and ring
are denominations that date back to the days of switchboards when switching was done manu-
ally. In those days, operators connected calls using connection cords ended by switchboard

jacks. The tip of the plug connected one wire while the ring, which was isolated from the tip,

1. CALRS is a trademark of Northern Telecom.
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Figure 2.1: (a) The components of the subscriber loop;(b) the subscriber loop as
divided by various telephone company maintenance organizations.

connected the other wire. The sleeve was composed of the body of the plug and was connected
to a common ground. Figure 2.2 shows a switchboard jack. This terminology will be used when
we discuss problems affecting subscriber loops. Prior to this, the components forming the sub-
scriber loop are described.

The subscriber loop originates at the line card in the central office switch. In modern digital
switching devices, the line card is the circuit responsible for the analog-to-digital and digital-to-
analog conversions between the switching device and subscriber loop. The pair of wires con-
nected to this line card goes to the main distribution frame (MDF). One can think of the main

distribution frame as a matrix where any line card can be connected to any subscriber loop. The
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Figure 2.2: Switchboard jack.

pair of wires on the subscriber’s side of the main distribution frame is called a feeder pat and 15
part of a feeder cable. Not too far from the subscriber’s premises is the jumper wire interface
(JWI) cabinet. This cabinet can be thought of as a small version of the main distribution frame.
There, every pair of the feeder cable has an appearance on a connection matrix and any pair of
wire connected to the subscriber’s premises, i.c. any distribution pair, can be connected to any
of the available feeder pairs. In a jumper wire interface, there are more distribution pairs than
feeder pairs. This is normal since up to three pairs of distribution wires can run to all subscrib-
er’s premises even though only one of them is typically used. The distribution pair connects to a
protection device just as it enters the subscriber’s premuses. This protection device is typically a
set of carbon fuses that protect the inside premises loop from hazardous voltages. Finally, on the
other side of the protection device, the distribution pair, then called the inside wire, runs to the
customer premises equipment (CPE). Telephone sets are typically the CPEs found 1n subscriber
premises, but modems, facsimile machines and answering machines are also common.

The description given above is that of a typical subscriber loop. However, 1f the loop 1s
long, loading coils are installed at regular intervals on the loop to help reduce attenuation. In
other cases, the subscriber loop may originate from a remote concentration unit. In such a situa-
tion, the feeder cable in Figure 2.1 on page 4 can be replaced by a carrier, and the jumper wire
interface cabinet by a remote concentration unit. Subscriber loops are connected to the remote

unit as if they were connected to a switching device in a central office. However, conversations



carried on those loops are all concentrated on a carrier that goes to the central office. At the cen-
tral office, the switching device processes all these conversations as if they were carried by nor-

mal loops to the main distribution frame.

2.1.2 The Subscriber Loop as Viewed by Maintenance Organizations

Telephone network maintenance organizations partition subscriber loops in a slightly different
way. The length of wire that is inside the central office is known as the CO portion of the loop.
The stretch going from the central office to the last pole on the way to the subscriber’s premises
is known as the portion belonging to the outside plant. The pair of wire going from the last pole
to the protection box is called the outside wire. Finally, the last stretch of wire going from the
protection box to the customer premises equipment is termed the inside wire.

The partitioning described above reflects the way maintenance is distributed among
telephone company work forces. The central office maintenance people take care of the CO por-
tion of the subscriber loop. The cable repair staff handles the maintenance of the outside plant.
Finally, station repair people are responsible for inside and outside wire problems as well as

telephone sets problems.

2.1.3 Problems That May Affect Subscriber Loops

Problems affecting subscriber loops are generally of two types: physical damage and transmis-

sion impairments.
Physical damage

The subscriber loop operates in a hostile environment: outside wires are ruptured by trucks,
underground cables are torn apart by excavating machines, inside wires are cut or squeezed by

people renovating their house, weather conditions cause wires to rust, etc.



A loop that has tip and/or ring open, or tip and ring short-circutted prevents a subsciiber
from placing and receiving calls. Loops damaged by rust arc noisy. In the worst cases. 1ust nay
cause conductors to short circuit each other, or to crack open.

Physical damage to the loop is the main cause of all problems reported to Repair Service
Bureaus [81]. It is naturally easier to fix a problem when the subscriber can visually identity the
trouble since this saves repair personnel the laborious task of locating the fault. When the cus-
tomer cannot visually identify the problem, maintenance people must rely on electiical mea-
surements to identify and attempt to locate the fault. A short circuit 1s recognized by the fow
resistance value measured between tip and ring. A grounded conductor has a low 1esistance
value between its terminal and ground. A loop that has both tip and ring cut open will show an
abnormally low capacitance value between tip and ring. Finally, a pair that has either up ot 1ing

cut will give significantly different measurements for tip-to-ground and ring-to-ground capaci-

tances.
Transmission impairments

Transmission impairments that may be encountered during a conversation can be due to
[35][93]:

¢ transmission loss;
» crosstalk;

* circuit noise;

* power influence;
* impulse noise;

* distortion;

s echo.

Transmission loss accounts for the attenuation that the signal suffers from going through
wiring, coupling transformers, coupling capacitances, and other devices. Crosstalk 15 the partial
replication of a signal from one channel into another channel. Crosstalk can be caused by clec-
tromagnetic coupling between physically adjacent circuits, circuit unbalance, components and
circuit boards in the switching device, or excessive repeater gain. Circuit noise is the noise that

appears across the two conductors of the loop. It can be due to random thermal motion of clec-



trons, static from hghtning storms, or errors caused by quantizing the signal into discrete steps.
Power influence designates the type of noise resulting from longitudinal currents induced from
power lines adjacent to the loop. Its effect — a steady “hum” — is more noticeable when the
loop is unbalanced. Impulse noisc is caused by arcing relay contacts, corroded connections. and
bad wire splices. It is usually defined as a voltage increase of 12 dB or more above the back-
ground notse lasting 10 ms or less. Data communications are particularly affected by this type
of noise. Distortion can be linear or non-linear. Non-linear distortion can be caused by trans-
formers, active devices, analog-to-digital converters, etc. Linear distortion can be caused by
phasc and amplitude variations in some filters [35]. Finally, echo or signal reflection can happen
in a circunt with badly matched impedance and becomes objectionable when there is sufficient

delay, thus making conversation very difficult.
Non-Electrical Problems

Customer Action Faults form a category comprising all the faults generated by subscribers not
properly using their telephone sets. A well-known fault included in this category is the receiver
off-hook. Telephones left off-hook draw current from the central office battery. After a certain
period of no signalling activity from the user, the switching equipment seizes the line, i.e. it
1emoves the battery from the line to avoid wasting resources, both in terms of energy and call
processing. Somebody trying to make a call on a line which has a secondary set with the
receiver off-hook will not be able to signal the number desired and may go to the neighbor to
call the Repair Service Bureau. These calls sometimes result in unnecessary dispatches.

This category of faults has grown in the recent years with the offering of Custom Call-
g Features (CCF) and Call Management Services (CMS)!, and it is likely to grow even more
with the advent of ISDN, home telecommunications, video-on-demand, etc. A new breed of

problems with no relation to the loop itself, but rather to the services it carries, has appeared and

I Also known as Custom Local Area Signaling Services (CLASS) in the U.S.



will continue to grow and stress the urgent need for a better integration of telephone companies’

management information systems,

2.2 CALRS: A Centralized Automated Loop Reporting System

Northern Telecom first introduced CALRS 1n late 1976 to answer telephone companies’ need (o
automate and streamline their Repair Service Bureau operations [28]. The creation and flow of
trouble reports, the maintenance of customer line records and trouble repotts, line testing, and,
to some degree, diagnosis, were all mechanized. This led the way to a paperless Repar Serviee
Bureau. In addition, CALRS provided tools for the analysis of trouble trends and for adminis-

trative tasks, such as the evaluation of the workforce performance.

2.2.1 Hardware Architecture

Figure 2.3 shows the original architecture of CALRS. The CALRS system was oniginally com-
posed of 3 PDP-11 mini computers, each one of them handling specific tasks. The database pro-
cessor handled the database disk drive, the backup magnetic tape drives, and the local and
remote printers. The terminal processor provided the person machine interface to the system
and performed some system administration tasks as well. The different positions are explained
in the next section. Finally, the test processor performed all loop accesses and test functions

using local or remote test units. Today, CALRS has been ported to the UNIX environment.

2.2.2 Functional Operation

The main goal of CALRS is to ease the flow of trouble reports within the Repair Service
Bureau. To this end, it electronically supports a number of different positions, cach with therr

own functionality and privileges. Figure 2.4 shows the different positions and systems, and how
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Figure 2.3: Original CALRS system architecture [28]

they interact. Even though 1t is not depicted explicitly, positions contained in the shaded region
communicate and exchange electronic trouble tickets with one another. The roles of the differ-
ent positions namely answer clerk, tester, dispatcher, analyst, records clerk, manager, and robot

will now be explained [28].
Answer Clerk

The answer clerk is the contact with the customer. The function of this position is to record the
description of the problem the subscriber is reporting. If the problem is a broken telephone set,

the answer clerk simply directs the subscriber to the nearest phone center where the set will be

10
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Figure 2.4: Interaction between Repair Service Bureau positions and
Operational Support Systems.

replaced. If the problem lies in the misunderstanding of a feature such as call forwarding, the
necessary instructions are described to the customer.

In the case of a subscriber reporting noise on a line, or being affected by metallic condi-
tions such as open circuits, short circuits and shorts to ground, the answer clerk issues a verify
command on the line in trouble provided the customer has hung up or is calling from another
line. The test unit then returns electrical measurements which CALRS interprets to provide the
answer clerk v ith a verify code. The clerk uses this code to determine 1f a technician needs to

. be sent and if so, informs the customer. If the problem is suspected to be inside the customer’s



premises, the answer clerk sets up an appointment with the subscriber. Finally, the clerk uses

this code to route the trouble report to the appropriate position.
Tester Position

The tester picks up where the answer clerk left off for those problems requiring further investi-
gation. In addition to the verify command available to the answer clerk, the tester has access to
a suite of tests that allows for the testing of anything from the rotary dial of a subscribezr’s tele-
phone to the ability of a line card to detect on/off hook conditions. The tester may also consult
information about billing, switching device settings for a particular line and the physical com-
ponents of the loop. Using test results and information from those databases, the tester deter-
mines what the problem is and where it is likely to be located. This information is then given to

the dispatcher so that the appropriate technician gets sent out to fix the problem.
Dispatcher Position

The main responsibility of the dispatcher position is to send out field repair personnel on the
trouble reports which require physical work. The size of a Repair Service Bureau may justify
the further subdivision of this position into three areas. The station dispatch function dispatches
all troubles on regular telephones. The cable dispatch function dispatches the cable related trou-
bles. Fnally, the central office dispatch function dispatches technicians for central office repair
work. Before sending out any technician, the dispatcher verifies that the reported condition is
still affecting the line. In the case where the problem has cleared up by itself, the dispatch is
cancelled. In addition, the dispatcher then calls the subscriber to verify that the condition has
indeed disappeared. It is common to have telephone lines affected by bad weather. The prob-

iems affecting these lines usually disappear when normal weather conditions resume.
Analyst Position

The analyst investigates related trouble reports to establish patterns in order to identify major

faults that could be affecting a significant number of subscribers. The analyst must also instruct



the computer system about repair activities, such as cable reparr, which could attect customer
service. That way, the answer clerk can readily know, when ietrieving a customer record, that
maintenance or repair work is already scheduled or being done on a line. Subscubers calling to
report a problem are then immediately advised that work 15 already in progress The analyst is
also responsible for monitoring the performance of repair personnel by analyzmg the touble
report history files. The performance of certain telephone lines may also be monitored by the

analyst.
Records Position

The operator at the records position creates, deletes and updates entries i the customer hine
records database. These responsibilities are often assumed by the answer cletk, depending on
Repair Service Bureau policies. Today, a portion of these modifications are carried out automat-
ically at night when one of the business office Operational Suppott Systems contacts CALRS to
download new information. The objective of the telephone companies 1s to fully automate this
process in order to eliminate database discrepancies caused by manual entiies done from one
system to the other. Manual entry is inevitably prone to errors and introduces delays due to the

sheer volume of records to process.
Management Position

The task of the manager is to supervise the operations of the Repair Service Buicau. Reporting
tools supplied with the system provide the manager with statistical reports on various aspects of

the maintenance operations. These reports can be cither requested or generated automatically

Robot Position

The robot position provides an effective means to automatically perform follow-up tests on
lines suspected of being affected by intermittent problems. In the present mode of operations,
trouble reports must be explicitly sent to the robot in order to have automatic tests performed. It

is presently used at night to verify trouble reports that arc scheduled for dispatch the following




day. The concept of having a robot launch tests on pre-defined telephone lines is important in
the context of automated marntenance operations. At present, this robot must be instructed as to
which hine to iest and at what time. Opportunities exist to make a more productive usage of this
10bot so that 1t can react to trouble reports. For instance, such a robot could be aware that a trou-
ble report concerning a subscriber hine affected by a metallic condition needs to be tested at reg-
ular intervals since the problem may disappear. As was mentioned before, a number of
problems are caused by bad weather conditions and typically disappear when normal weather
resumes. Having a robot consistently verifying such lines could save unnecessary dispatches

and help reduce maintenance costs.

2.2.3 CALRS Benefits

A system such as CALRS radically changes Repair Service Bureau operations. First, the elec-
tronic trouble report flow provided by CALRS eliminates the requirement for the records clerks
who were nceded to manually retrieve and deliver trouble reports and customer line record
cards to testers and dispatchers. There is still a records position in the CALRS environment, but
1t only serves the purpose of updating that portion of the computerized line records that cannot
yet be updated clectronically. This records position is normally handled by the answer clerks
during their idle time.

The major advantage brought to network maintenance by a system such as CALRS is
the improved quality of service to the customers, which is of prime importance to telephone
companices since most of them are regulated by government agencies in their respective coun-
trics. Among the CALRS features that help improve the quality of service are [28]:

* the immediate availability of trouble reports and their current status in
the system;

* the detection and identification of trouble reports in *“jeopardy”, i.e.
those that will not be fixed by the time negotiated with the customer;

* the ability to perform loop testing while being in contact with the cus-




tomer (provided the customer 1s calling from a lme other than the one m
trouble);

* the ability for the dispatcher to te-test subsenber lines before sendmg
out technicians,

* the elim:ation of delays due to lost or illegible 1ecords,

* the 1dentification of trouble pattern and repait work activities that may
affect customer service,

* better management of appomntments,

In addition, CALRS helps mmprove the Repair Service Burcau working enviionment,
and facilitates resour~e management and evaluation [28]. With the consolidation of Repan Se
vice Bureaus made possible by CALRS, reductions i the number of answer cleths, testers, dis
patchers, and managers are possible. Network maintenance operations costs can thus be

significantly reduced.

2.3 Related Operational Support Systems

Many Operational Support Systems (OSS) were introduced along with CALRS 1n the late 705
There was a strong move towards mechanization of operations and every organization withi
the telephone companies developed its own system to answer specific needs without paying
much attention to the opportunities for sharing information with other systems Providing and
improving communication channels between Operational Support Systems is one of the tele-
phone companies ongoing efforts [67]. Some Operational Support Systems relevant to tele-

phone access network maintenance are described 1n this section.

2.3.1 Billing Information Systems

Billing information systems contain information about all the services a customer subscrihes to
Billing information systems are used by testers to solve problems regarding disconnected lines

and services ordered but not yet installed due to delays or human errors. Since service charges



are calculated based on information found in billing information systems, this system is taken

as the point of reference when resolving discrepancies.

2.3.2 Plant Assignment Databases

Plant assignment databases contain information about the physical components of the access
network. Feeder cable and pair numbers, distribution cable and pair numbers, jumper wire
interface identifiers and locations, etc. are stored in plant assignment databases. Critical inputs
to the reasoning process of a tester, such as the presence of bridge lifters, loading coils, or
remote concentrator units, are also contained in plant assignment databases. Plant assignment
databases are also used in cable repair. By sectioning a subscriber loop using the information

contained in these databases, it becomes possible to localize a fault.

2.3.3 Switch Maintenance Interfaces

Using switch maintenance interfaces, access network maintenance personnel can query the sta-
tus of a particular subscriber line. They can also verify if a line is idle, currently used, or seized
by the central office equipment. The status of custom calling features, such as call forwarding,
can also be verified through a switch maintenance interface. Finally, a wide variety of tests,
ranging from electrical measurcincats to noise measurements and bit error rate tests, can also be

launched from the switch maintenance interface.
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2.4 Evolution in Telephone Network Technology, Services, and Operations

The telephone access network is presently going through a transition period where old
equipment such as step-by-step and crossbar switching offices are gradually being 1eplaced by
more advanced equipment such as members of the DMS! family of digital switching devices. A
variety of remote units that concentrate telephone lines in rural arcas will soon be retired. These
units may be replaced by AccessNodes? which have a fiber optics link to the central office to
which they belong. In addition, each of these AccessNodes will be equipped with tts own test
head, which was not the case with some of the old remote units.

There are also possibilities to introduce remote isolation devices on the customer’s pre-
mises side. These devices allow an operator or a system to temporarily isolate the customer’s
premises from the rest of the network or to place a standard termination on the customer’s pre-
mises end for testing purposes. These devices would have a considerable impact on access net-
work maintenance as they would indicate whether a fault is inside or outside the customer’s
premises, thus avoiding setting up unnecessary appointments with customers. In a situation
such as the one which prevails in the United States where subscribers own and arc responsible
for the inside wiring, it would eliminate the need for the telephone company to send techmcians
to the customer’s premises only to verify if the problem is theirs or the customer’s.

The network elements that were just described are readily available. However, it will be
some time before all the old equipment gets replaced by these new devices. In the meantime,
maintenance organizations have to deal with the added complexity of a heterogenous netwotk,
where old technology coexists with the state-of-the-art. Testers working 1n these conditions
must be aware of what the subscriber loop is composed of since this knowledge defimtely influ-

ences their diagnosis strategy.

1. Digital Multiplex Switching (DMS) is a trademark of Northern Telecom
2. AccessNode is a trademark of Northern Telecom.
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2.4.1 New Services

One of the major impacts that new network elements will have on network maintenance is the
plethora of new services they make possible [89]. Revenue generating features such as call-for-
warding or caller identification have also engendered a new breed of maintenance problems.
When a subscriber is experiencing a problem with Plain Old Telephone Service (POTS), it is
most often because of metallic conditions one can actually measure. By contrast, problems gen-
crated by new calling features are often related to the usage of those features. As features
become more sophisticated, their usage becomes more difficult. Inprovements in the user inter-
face, such as going from Dual-Tone Multi-Frequency (DTMF) detection to speaker-indepen-
dent speech recognition, will certainly make these features easier to use and thus reduce the
number of trouble calls to Repair Service Bureaus. For the time being, testers must learn to deal
with thesce problems and be aware of their existence. For instance, a subscriber reporting noise
on a line may simply be mistaking the characteristic call-waiting signal for spurious noise. This
kind of problem frequently affects Repair Service Bureaus serving regions where such features
have been widely provisioned for promotional purposes.

Other services like Integrated Services Digital Network (ISDN) and wireless communi-
cation services are gaining in popularity. ISDN maintenance is very demanding in terms of test-
ing capabilities. Wireless communication services are forcing a paradigm shift in access
network maintenance since there is no concept of a subscriber loop on which one can carry out
electrical measurements anymore. In addition, the actual path used may have changed quite a
number of times during the conversation. Issues like keeping track of this kind of information
still necds to be resolved. Finally, the move towards a fiber optics based network will undoubt-
cdly lead to the introduction of new services, each of which will require its own testing and

maintenance procedures.
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2.4.2 Towards Integrated Maintenance

Traditionally, telephone company maintenance operations have always been divided into a
number of separate organizations. Each of them developed its own tools and installed its own
testing equipment. Today, in an effort to provide better and faster service to subscribers, tele-
phone companies are planning to replace some Operational Support Systems by systems that
will offer an end-to-end view of the network. A system that can group intormation from various
sources to provide such a global view will considerably improve network maintenance. Mainte-
nance personnel will have easy access to complete information about subscribers and the cireuit
serving their premises. It will also be possible to build automated systems whose diagnosing
capabilities will be closer to that of human experts because of this end-to-end view which they
will have access to.

The next chapter contains a first literature review. Articles about the rescarch work that
led telephone companies from paperless Repair Service Bureaus in the mid 70's to today’s

experimental and deployed systems fulfilling a more active role in diagnosis will be presented.
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Chapter 3 Advances in Telephone Access Network Maintenance

Back 1n the 1960’s the prime improvement in access network maintenance was the introduction
of a conveyor to forward trouble report cards and customer line records from one desk to the
other [83]. Repair Service Bureau personnel were clearly overloaded and could no longer
respond to the demand. Hiring more staff to work in already overcrowded offices created more
problems than it solved. The quality of the maintenance service was indubitably decreasing and
there was growing evidence that telephone network maintenance operations needed major
improvements.

With the advent of compurers such as the IBM 370 and the PDP series, telephone com-
panics around the world made a first effort to automate the maintenance process in Repair Ser-
vice Bureaus. Rescarchers from various organizations were invariably striving for a common
goal: the creation of a paperless Repair Service Bureau that would help telephone companies
cope with the ever increasing number of subscribers. These multi-user systems annihilated the
nced for paper records and conveyors. All records were stored in databases and exchanged elec-
tronically between the various positions in the Repair Service Bureau. In addition, the central-
ization of information offered by the computer system provided an ongoing up-to-date view of
all repair appointments and their status. This helped to considerably reduce the number of dupli-
cate dispatches, resulting in savings for network maintenance organizations.

Today, telephone companies are facing a different kind of problem. On one end of the
loop, subscribers are now allowed to connect whatever they like to the access network. There is
a large variety of telephone sets, modems, facsimiles, and answering machines that are now

available. Each of them shows different electrical characteristics. The days when a typical “500
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set”!

was expected at the subscriber’s end are definitely over. What is sitting at the subscriber’s
end now adds an unknown variable to the problem.

All kinds of equipment are also found on the other end of the loop. Although, sophsti-
cated digital switching offices appeared some 15 years ago, a signiticant number of old electio-
mechanical devices, such as crossbar and step-by-step switches aie sull at the heart of many
central offices. A knowledge of the components forming a subscriber loop is cructal in canymg
out a meaningful diagnosis.

Furthermore, Plain Old Telephone Service (POTS) is no longer the only service oftered.
Custom Calling Features (CCF) and Call Management Services (CMS) are now available. A
variety of special services including data lines, telemetry lines and alarm lines, arc also installed
in today’s networks and more are still to come.

This wide variety of equipment at both ends of the loop coupled to the multrtude of ser-
vices now offered have brought subscriber loop maintenance to a high level of complexity. This
chapter will focus on developments in telephone maintenance systems. The first section of the
following literature review will present some of the first computerized telephone network main-
tenance systems that led to paperless Repair Service Bureaus. The next section will describe
how artificial intelligence has been applied to telephone network maintenance. Finally, the
chapter concludes by presenting the directions that new development in network maintenance is

likely to follow in the decade to come.

3.1 The Paperless Repair Service Bureaus

The initial introduction of computers in network maintenance operations led (o the paperless
Repair Service Bureau. This section presents some of these systems and describes therr func-

tionality.

1. The 500 set was a very popular telephone set manufactured by Western Electric and rented to most sub-
scribers of the Bell System. The same set was also offered in Canada through Northern Electric which has
since become Northern Telecom.
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Dirilten makes two observations that were valid for the majority of Repair Service Bureaus in
the carly 707s [28]. First, customer records and trouble reports were kept on paper records, forc-
ing the RSB personnel to waste considerable time just handling paper and manually copying
information. Second, all testing and diagnosis activities were carried out by skilled testers, even
though a significant number of the troubles were very straight forward problems that did not
require such skills. Inefficiencies caused by the handling of paper records and the lack of a cen-
tral memory to keep track of records and repair activities often lead to unnecessary dispatches
for a significant portion of the troubles. The system he describes is a self-contained system con-
solidating and handling all RSB functions as a whole in an automated fashion. The result is a
virtually paperless RSB where trivial problems can be handled by the answer clerks. With its
ability to keep track of fault patterns and repair activities, the system saves a number of unnec-
essary dispatches.

Maurtin describes Repair Service Bureaus as having four main functions [73]. First, they
handle the processing of trouble reports. Second, they perform diagnosis and testing. Third,
they maintain customer and trouble records. Finally, they analyze trouble reports for patterns
that are signs of major faults and that require quick repair action. He reports that during the late
60’s - carly 70’s, it was realized that testers were spending much of their time processing simple
1icports, the diagnosis of which was relatively straight forward and did not require the skills of
an experienced tester. Martin then reports on systems such as Line Status Verifier (LSV), Line
Fault Detector (LFD), and Loop Maintenance Operations System (LMOS). LSV and LFD were
the first steps toward testing automation while LMOS allowed Repair Service Bureaus to
reduce the cost of record handling by mechanizing most of the administration activities.

Dale reports that Repair Service Bureaus went through three generations of Operations
Support Systems up to the late 70’s [24]. The first generation saw the appearance of two sepa-
rate systems: LMOS which eliminated paper records and LSV, which allowed quick automated
testing of subscribers’ lines. Operations Support Systems of the second generation were more

integrated. The Automatic Line Verification (ALV) system was capable of automatically access-
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ing lines and made use of the data found 1n LMOS to determine which type of tests to tun. The
third generation was characterized by hardware with some imbedded intelligence. The Mecha-
nized Line Testing (MLT) system had a more extensive test suite than the ALV and could tet -
pret electrical measurements to provide a simple form of automated diagnosis.

The first version of the MLT system developed by Bell Laboratories did not incorporate
all the features of the manual test facility known as the Local Test Desk (LTD). Dale ¢f af
describe the second version of the Mechanized Line Testing system [25]. Using a highly distiib-
uted processing architecture, digital signal processing techniques, and new measurement tech-
nology, this system completely replaces the LTD. In addition, the user interface was carelully
designed such that Repair Service Bureau personnel with less experience than Test Desk techni-
cians could operate it.

Morishita et al. report of a similar system in [80]. To improve maintenance in a tele-
phone network serving more than forty million subscribers, a new Subscriber Line Testing Sys-
tem (SULTS) and a Subscriber Information Filing System (SIFS) were developed. This new
system brought improvements in the following arcas: flexibtlity in adding new formation,
improvement of measuring accuracy, improvements in operation through a better person-
machine interface, automatic compilation of statistics for repair service management and con-
centration of testing operations. SULTS/SIFS is flexible enough to accommodate the introduc-
tion of new telecomnunication devices in the network.

In another paper, Cartwright describes the 4TEL automated subscriber line test system
which provides telephone companies with tools to offer better quality while reducing costs { 19].
To accomplish this, 4TEL offers the following functions. The Daily Advisory is a manageral
and repair action report based on routine tests run at mght which provides input to preventive
maintenance. Fault distribution is provided by the system, reducing the number of wrong or
unnecessary dispatches. It also supplies means of performing accurate fault location with the
help of a linesman. Finally, special diagnostic testing capabilitics to handle problems such as

coin phone faults and dialing problems, are also available.
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Access network maintenance has always been a highly expensive and labor intensive
process. Sumner reports on various Operational Support Systems that were introduced to
reduce the expense in daily operations of telephone companies [99]. Such systems were intro-
duced for planning and engineering, scheduling, keeping inventory, assigning and controlling
facilitics, and maintaining the access network. Sumner notices that the majority of these Opera-
tional Support Systems were designed as stand alone systems to accelerate development. Oper-
ational Support Systems have impacted the telephone companies considerably by reducing
personnel requirements. However, to this date, telephone companies are still struggling with the

problem of interfacing these different and most often incompatible systems.

3.2 Automating Telephone Network Maintenance

As a result of the growth and evolution of the telephone network, the need for telephone compa-
nics to improve the efficiency of their maintenance operations has arisen. Encouraged by the
results of experimental diagnostic expert systems such as MYCIN [27], Prospector [30], and
DART [11], a number of researchers in the communications domain have designed and studied
a variety of expert maintenance systems. In this section, experimental and deployed systems
that cover cable, trunk, carrier, customer trouble reports, special services, switching device, and

network maintenance are described.

3.2.1 Cables, Trunks, Carriers, and Transmission Equipment

Automated Cable Expertise (ACE) [13]{77][97][103] is a knowledge-based expert system that
provides troubleshooting and analysis reports for telephone cable maintenance. Facts are gath-
cred from a data base management system used to store maintenance information. Knowledge
comes from the users of this database and from primers on maintenance analysis. Users of this

database regularly analyze considerable volumes of data to identify cables which should receive
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maintenance to prevent troubles affecting a large number of customers ACE runs at night; it
looks at reports in the Cable Repair Admimnistration System (CRAS), assesses which cables are
likely to need preventive maintenance and forwards the results of 1its reasoning via electionie
mail to users of the system who pick them up the following morming. Preventive mamtenance
has traditionally been an activity that was done during operators’ spare time. ACE helps make
preventive maintenance a regular tool of network operations.

The Interactive Repair Assistant (IRA) is an expert system that provides troubleshooting
advice to field technicians who have to repair telephone circuits having nowse and transmisston
problems. Horton et al. describe the goals of this system as being: improving ficld technicrans
productivity, helping field technicians to repair a broader variety of problems and cquipment,
and providing real-time advice in the maintenance, diagnosis, and repair of the local telephone
network [47]. The system has to serve many users outside of a typical office envitonment. To
achieve this, craftspersons are equipped with hand held display units that can commumcate
with the central system via a modem through regular telephone lines. This prototype system
consists of 625 “screens” (plus associated help screens) and about 200 inference rules. Each
screen either requests some inputs or provides information to help craftspersons during the trou-
bleshooting process. By supplying expert advice and information, IRA increases the clficiency
and productivity of field technicians.

Donaghy and Omanson describe MICE, the Metropolitan Inter-office Carticr Expent
[29]. By using system integration and alarm correlation, MICE is capable of finding the cause
of digital carrier failures. The information necessary to find the cause of such failures 1 scat-
tered among many Operational Support Systems in the telephone operating companies which
renders this task difficult to carry out. By visiting several Facility Maintenance and Administra-
tion Centers in the network, the authors were able to find a human expert who was achicving an
impressive diagnosis performance by manually collecting alarm reports and other information
from many Operational Support Systems. They captured this expert’s knowledge 1nto an expert

system containing some 160 OPS83 production rules. By providing system integration and
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building an expert system capable of correlating and analyzing alarms from different network
clements, they have put in place an automated system that can do the human expert’s task more
cfficiently than the manual process normally required.

Liu et al. describe I-TEST, a prototype trunk testing expert system [63]. It combines
procedural and declarative knowledge into a single inference mechanism to manage a complex
trunk testing environment involving more than one Operational Support System. Humans used
to be the interface between these various systems and data were manually copied from one sys-
tem to the other, sometimes leading to errors. I-TEST eliminates the multiple terminals and dif-
ferent test commands required for the various Operational Support Systems by providing a
common human machine interface for invoking test commands and thus improves testers’ pro-
ductivity. Knowledge from four domains was used to build the knowledge base. The data com-
munication knowledge base allows I-TEST to communicate with other systems. Procedural
knowledgc is used to build a friendly user interface for the users. Another rule base is used to
filter the necessary information from various systems. Finally, a last knowledge base controls I-
TEST, manages resources, and arranges priority and testing sequences.

Khan et al. detail GEMS-TTA, the Generalized Expert Maintenance System - Trunk
Trouble Analyzer [5S4][55]. The first phase of this system allows the automation of trunk trouble
handling, testing and performance monitoring. Later phases of GEMS should lead to the auto-
mation of trouble sectioning and isolation, and the dispatch of the appropriate repair people.
Rules are used to represent facts about the problem domain while frames are used to represent
network objects. The knowledge base itself is partitioned into four segments: the initial diag-
nostic knowledge base, the initial action knowledge base, the extended action knowledge base,
and the final diagnosis knowledge base. The implementation described by the authors offers
advice to users on trunk trouble diagnosis and on test selection and monitoring strategies. Giv-
ing GEMS the capability of performing circuit tests and monitoring itself will make it a fully

automated trunk maintenance system.
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TOPAS-ES is a real-time distributed expert system that diagnoses transmission and sig-
nalling troubles on telephone trunks in the long-distance network [16][22]. Duc to the large
number of alarms generated by the electronic telephone switches, troubleshooting trunks 18
time-consuming and requires a rare expertise. TOPAS-ES is made of two patts: a Trouble Ana-
lyzer and a Trouble Sectionalizer. The Trouble Analyzer filters out transient problems to only
deal with real trunk problems. The Trouble Sectionahzer identifies the source of the problems
and communicates the information to the required technictans. TOPAS-ES 1s a distiibuted sys-
tem in that a copy at one end can dialog with a copy at another end to conduct fault location.

Callahan et al. describe TERESA (Trouble Evaluation and Resolution by Expert System
Application) [17] which is an enhanced version of TOPAS-ES [16][22]. The man function of
TERESA is similar to that of TOPAS-ES, i.e. it can communicate with other TERESAs to pro-
vide end-to-end sectionalization capabilities. However, TERESA also cooperates with anothe
system called EASA (Expert Analysis and Solution Assistant) which specializes m transpoit
network maintenance. TERESA is specialized in DS-1 level transmission and signaling
whereas EASA concentrates on DS-3 and above network elements. TERESA and EASA com-
municate with one another to perform correlation of events, eliminate redundancices, and local-

ize faults.

3.2.2 Special Services

Yudkin describes ExT, an Expert Tester for troubleshooting faulty Special Service Cir-
cuits [109]. EXT makes use of model-based reasoning. By using a representation of the circuit
elements and their relationships, it selects tests to run and reasons about data obtained to deter-
mine the nature of the trouble. To achieve this, ExT counts on four modules. The Building Mod-
ule reads a circuit description in a database and instantiates whatever clements are found, along
with the required attributes. Connectivity rules are used to build up an internal circuit diagram.

The Testing Module uses the mode! from the Building Module to select the best test to run next
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The Analyzing Module updates the dynamic model originally created by the Building Module
bused on the test results. Finally, the Termination Module contains rules to close troubie reports
or refer problems to the required technicians.

In [110], Yudkin brings some refinements to ExT. In addition to the structural knowl-
edge the original system handled, he now adds behavioral and functional knowledge to the
model. Behavioral knowledge specifies input-to-output mappings and is used to start the diag-
nosis process based on observations of misbehavior. Functional knowledge characterizes the
purposce of a network element and is used when no observations can be obtained from a network
clement. The objective of the author and his team is to design a system that makes use of rule-
basced reasoning for speed of execution and sophisticated model-based reasoning for enhanced
problem solving.

Hautin er al describes Sylis, an expert system for troubleshooting specialized links [43].
According to the authors, the need for such a system stems from the limited availability of
expertise in the domain. In the case of old systems, this expertise is slowly disappearing while
there is almost no expertise for newer systems. Such systems allow the storage of information
about extraordinary situations for which not much knowledge is available. Considering the vast
amount of information that needs to be accessed, expert systems are considered an excellent
means to ensure that all the relevant questions are asked to customers reporting problems and to
necessary databases. The objectives of Sylis are thus to assist the human operator and secondly
to improve the global performance of specialized links maintenance. Sylis accomplishes the
first objective by asking questions to the user, giving explanations, and allowing easy access to
databases. By helping reduce the time-to-repair, improving the trouble report process, raising
technicians competence and offering training to newcomers, Sylis also reaches the second
objective.

Special Services testing is done by human experts having a vast knowledge of signaling
protocols, transmussion parameters, transmission tests, and grade-of-service requirements.

These lughly paid experts are also responsible for updating various special services databases
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when new lines are put in service or maintenance has been carried out on existing hines. In ordet
to improve efficiency in Special Services mantenance operations, an attempt wis nude at auto-
mating testing and the flow of information [1]. SARTS/AutoTest-2 contiuns rules grouped mto
three categories. The Test Strategy rules determine the best test to tun with respecet to the cucunt
configuration under examination. The Analysis Procedure interprets the esults conung trom the
Test Strategy module. Finally, the Diagnosis module deternunes 1f the ttouble 1y a real one o
simply a side effect of another problem that is already bemng processed SARTS/AutoTest 2
handles about half the problems reported to the Special Services Center and processes 80C of

those without human intervention, resulting in considerable savings i mantenance operations

3.2.3 Switching Devices

Prerau et al. describe COMPASS, the Central Office Maintenance Printout Analysts and
Suggestion System [37][90]. COMPASS analyzes maintenance prntouts from GTE's No. 2
EAX switching system and suggests maintenance actions. It achieves this by gomg through a
multi-stage process. It starts by connecting with a Remote Momtor and Control System
(RMCS) to gather monitoring data. It then formats the data and group nformation mto clusters
Clusters are further examined and some are combined. Once its analysis stage 15 completed,
COMPASS formulates maintenance actions, orders and merges them to finally output the ones
that are most likely to provide a solution. COMPASS ncreases the productivity of expenienced
maintenance persons, improves the performance of less experienced personnel, helps provide
better switch performance, and captures expertise that may not be available i the tuture.

Macleish er al. report that competition in the teleccommunications industry has made 1t
imperative that telephone operating compantes improve product reliability, reduce repair costs,
and increase customer satisfaction [39](65]. To this end, an expert system called NEMESYS
was designed to improve central office switching maintenance systems. These systems are very

complex and made of thousands of integrated circuits. Because of the complexity of these sys-
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tems, switch maintenance proves to be an activity that can be performed by only a few expert
craftspersons who can use their vast experience, their in-depth knowledge of the switch and
“rules of thumb”. NEMESYS uses more than one knowledge base. The first knowledge base
describes the network using an object-oriented approach. Another knowledge base describes the
types of problems that may occur while a third knowledge base contains rules capable of group-
ing related problems into bursts. A fourth knowledge base provides high level analysis of these
bursts while the last knowledge base contains rules to suggest corrective actions. This system is
a means of addressing the high cost of maintenance, the need for improved customer satisfac-
tion and the shortage of expert knowledge in this domain.

Novik reports on an interesting addition to GTE’s NEMESYS central office switch
maintenance expert system [85]. This new module uses statistically based temporal reasoning to
perform fault localization and determine whether a fault is located in the central office switch or
outside. T1 links are all duplicated in the network. Whenever NEMESYS receives alarm mes-
sages, it tries to determine statistically if one of the twin T1s shows significant differences with
respect to the other. Using this type of reasoning, NEMESYS can determine whether the fault is
inside or outside the switch. More accurate localization in the outside plant will become feasi-
ble with future additions to the knowledge base and improvements to network elements.

Harrington describes CSMES, a Communication Switch Maintenance Expert System he
designed to improve the maintenance of AT&T toll network [41]. The purpose of CSMES is to
make expertise available to all maintenance personnel across the toll network. To accomplish
this, CSMES reads and analyzes messages generated by switching equipment. The number of
such messages can be significantly large. CSMES is capable of determining the severity of a
message and selecting only those which have the most impact. It then translates into English the
meaning of the alarm codes it received along with some recommendations for remedial action.

The TXE4A is an analog telephone exchange which includes a diagnostic subsystem
that can automatically generate fault reports and alarms. In a real-life situation, literally thou-

sands of those are generated on a daily basis making it difficult for human experts to correlate

30



events to identify and locate faults. The Advanced Maintenance Facility (AMF) is an expert
system that can either diagnose on its own or assist maintenance technicians in their tasks [101].
It handles three main types of fault indications: operational processing faults, fault printouts,
and alarms. AMF will locate faults in the telephone exchange down to the faulty plug-in unit or
network component by using a knowledge base with about 1550 rules. All unattended and inter-
active sessions are recorded for ongoing enhancements of the knowledge base. AMF greatly
reduces the mean time to repair, increases the mean time between failures, and also serves as an
excellent on-the-job training tool.

Baseband Distribution Subsystems (BDS) are large signal switching networks. Lafley ef
al. describes LES, the Lockheed Expert System to diagnose BDS faults [61). LES uses threc
types of knowledge to carry out this task. First, factual structural knowledge about components
making up the network is stored in frames. Second, diagnostic (heuristic) knowledge is stored
in IF-THEN rules that are used in the main backward chaining inference process. Third, contiol
knowledge is stored in WHEN rules which, once certain conditions are satisfied, momentarily
stop the backward chaining to forward chain until some conclusion is met. At this point, back-
ward chaining resumes where it was stopped. These WHEN rules can be used to change the pii-
orities of the goals set in the backward chaining mode of reasoning. This allows a hetter
modelling of human experts’ way of thinking. LES performs as an advisor. It recommends
which tests should be run on which devices. The user has the possibility to ask LES why it is
requesting a particular test or why it has reached certain conclusions. General component-
related information can also be requested through LES.

The Switching Maintenance Analysis and Repair Tool (SMART) 1s an advisor expert
system for the maintenance of AT&T #1AESS switch [64]. SMART-I helps technicians in iso-
lating switch faults and repairing failed components. In order to improve #1 AESS maintenance
to an even higher level, Loberg reports how the system went through a major upgrade to
become a near real-time switch monitor expert system. Going from the advisor to the monitor

paradigm forced a major rewrite of the knowledge base to allow for the understanding of mes-
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sages coming from the switch, a task which was previously accomplished by technicians.
Knowledge about potential solutions was also added to the knowledge base which enables the
expert system to use this important information during its reasoning process.

The Bellcore Real-Time Expert System (RTES) is a prototype knowledge-based expert
system that analyzes switch output messages to identify faults and offer recommendations for
corrective actions to maintenance technicians [33]. RTES uses models of the switch mainte-
nance environment and high level reasoning processes. Heuristics are stored in rules. RTES also
logs historical data so that it can correlate incoming messages with past events. RTES provides
its own recommendations, but also keeps a log of the recommendations and responses it was
given by technicians for future improvements to the knowledge base.

Peacocke and Rabie describe MAD, an interactive expert system for helping technicians
perform maintenance on the DMS-100 family of digital switches [88]. The knowledge used to
build this expert system comes from the extensive Northern Telecom documentation and from
troubleshooting experts in Bell Canada and NT. This version of the Maintenance ADvisor uses
a “describe-recommend” cycle which allows the user to guide the system, and not the other way
around. The user describes the problem by filling electronic forms. By pressing a soft key,
MAD offers some recommendations. These recommendations may consist of preliminary
actions to be taken which may include requests for further information from the craftsperson, or
repair actions to solve the problem. Forms do not need to be complete to start the diagnosis pro-
cess. Users can thus obtain recommendations from partial information or can change some
information to see alternative courses of action. MAD also provides access to a switch database
covering the physical composition of the switch and to a “notebook” containing locally applica-
ble maintenance information.

Hibino and Fujimoto describe THINKING-ESS, an object-oriented troubleshooting
cxpert system for electronic switching systems [44]. In order to tackle the increasing complex-
ity of the telecommunication network, the authors selected a troubleshooting strategy based

upon structural and behavioral models of switching systems and represented knowledge using
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objects. This approach allows for better fault sectionalization as it is casier to tigure out which
device connects to which when trying to pinpoint the faulty element on a circuit. The use of
objects to represent knowledge adds flexibility to their expert system by easing the addition of
new elements into the knowledge base.

In order to reduce procedural errors, shorten the mean time to repair and the trmning
time for technicians, Berberich er al. have built the EWSD-XPS, an expert system for the nuun-
tenance of digital switching devices [12]. EWSD-XPS is made of six functional modules. The
Alarm Analysis module handles incoming alarms. The Diag Module determines which diagno-
sis command should be issued while the Conf Module knows about the configuration com-
mands that must be issued before the selected diagnosis commands can be run. The Hypothesis
Module uses diagnosis results to issue some fault hypotheses weighted by certainty factors.
Finally, the Replace Module figures out which components to replace while another Cont Mod-
ule issues the proper configuration commands before the selected component can be replaced.

Private Branch Exchanges (PBX) are sophisticated switching equipments instalied
large customer’s sites. Daniel et al. describe PBXpert, an expert system that diagnoscs,
resolves, or offers troubleshooting advices for problems affecting AT&T’s line of PBX [26].
PBXpert tracks PBX generated alarms and customer-reported problems. By rigorously follow-
ing standard diagnostic procedures and making use of historical data, PBXpert can either dis-
card and close a trouble report or make the necessary recommendations and forward these to
maintenance technicians. During diagnosis, PBXpert takes into account the PBX system’s char-
acteristics to select which tests to run and correctly interprets the results. PBXpert’s mainte-
nance strategy is similar to that described in maintenance manuals, and is reviewed and updated

with each new test result.

33



3.2.4 Networks

Covo et al. describe LARS/RBES, an hybrid expert system for anomaly detection, isola-
tion, and resolution [23]. The Learning and Recognition System (LARS) uses neural network to
perform status monitoring of a network. LARS is composed of two subsystems. The first one is
a collection of small neural networks that evaluates elementary features known to indicate
anomalies. The second subsystem performs correlation between the elementary features
reported by the first stage and tries to recognize the anomaly. Using the outputs to the first sub-
system, procedural actions are taken to isolate the problem. The Rule-Based Expert System
(RBES) receives messages from LARS about anomalies that have occurred and uses a data
driven inference mechanism to correct the anomaly by appropriately modifying routing.

Nuckolls describes an expert system which performs real-time diagnosis in a large digi-
tal radio telecommunications network [86]. This expert system utilizes the vast amount of infor-
mation provided by the various devices forming the network. Some working devices may report
alarms simply because they are affected by another device which has previously failed. The
cxpert system’s task is to discern truly malfunctioning equipment from all the components
rcporting alarms. To accomplish this, the expert system is given structural and behavioral
knowledge of the network to “understand” how all the devices connect to each other. It then
uses this knowledge to process information provided by the network elements and performs
real-time diagnosis.

Miyazaki et al. report that the advent of ISDN into the commercial market has pushed
for improvements towards a dynamic operation and maintenance system for switching net-
works [79]. This distributed system is made of five types of components: local exchanges, a
centralized operation system, a database system, a diagnostics expert system, and maintenance
workstations. The purpose of the expert system is to assist maintenance personnel in making
optimum decisions. The hypothetical reasoning is done in four steps. First, all symptoms

(alarms, messages, diagnostic results, etc.) are collected. Second, hypotheses are generated.
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Third, for each symptom, the expert system selects one hypothesis and combines this informa-
tion to pinpoint the faulty component. Finally, the end user verifies 1f the component is indeced
faulty. If not, current hypotheses are discarded and the cycle starts over. The knowledge used by
the expert system is stored in two knowledge bases. Onc contains the knowledge common to all
switching system versions. The other contains the knowledge specific to each version.

Allwood et al. describe a prototype expert system that was developed for a Luge data
network customer in the United Kingdom [2]. The premium objective of the expert system is to
filter out simple faults from all fault reports. This allows end users to fix simple problems them-
selves and thus avoid having to wait for specialized technicians to come on site, most of the
time only to find out some piece of equipment that had not been powered on. On the other hand,
complex problems are recognized by the expert system and forwarded to a trained network
engineer. The system improves the efficiency of response to customer faults while providing
customers with a powerful tool to manage and control their network.

Azmoodeh describes GMS, a Generic Maintenance System for integrated broadband
communication (IBC) networks [9]. To tackle the complexity of this task, a model-based
approach was selected. A knowledge base of objects contains the representation of networks,
network elements, services, users, etc. Objects can be in the functional or physical category A
functional model of networks element details the specialization of the object based on the func-
tions it performs. A physical model, on the other hand, describes the non-functional aspects of
network elements, such as location, size, etc. Constraints control the knowledge basc and force
it to be only in legal states. Using this knowledge base and fault reports, the Correlation Module
formulates hypotheses about faulty functional units. The Model Interpreter evaluates the conse-
quences of these hypotheses using behavioral rules. Hypotheses and their consequences are
maintained in an assumption-based truth maintenance system in the inference engine.

Azarmi describes RS, a knowledge-based Resource Scheduler for the network manage-

ment layer of a Generic Maintenance System (GMS) [8]. RS is designed to handle correlation

of fault reports, management of tests and supervision of repair procedures. It takes as inputs
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requests for repairs and tests and feedback concerning the states of ongoing repair works. RS
must generate a correct and near optimal schedule of repair requests, while being capable of
handling the dynamic nature of network maintenance. It accomplishes this by using three sub-
modules. The Priority Scheduler uses network performance-related, service-related, and main-
tenance-related rules to prioritize repair requests. These prioritized repair requests are the inputs
to the Predictive Scheduler which selects a set of repair actions while trying to satisfy associ-
ated constraints and resolve conflicts. Finally, the Reactive Scheduler executes and monitors
these repair activities and may reschedule tasks dynamically. RS uses structural and behavioral
knowledge as well as generic network knowledge. It also takes into account knowledge about

available resources.

3.3 An Agenda for Telephone Network Maintenance

Telephone operating companies are presently at a turning point. In North America at least, they
no longer have the monopoly on telephone services. Furthermore, competition has paved the
way to a multi-vendor environment which resulted in heterogenous networks more difficult to
maintain [18][66]{81][98]. Similarly, on the end users’ side, regulatory and marketing issues
have made possible the appearance of a wide variety of customer provided equipment. Sub-
scribers are no longer restrained to renting or buying telephone equipment solely from their
telephone company. With the mostly completed modernization of the telephone network, new
services have emerged and more are yet to come [98] that will require increasingly sophisti-
cated test procedures and systems. Finally, marketing concepts such as usage sensitive pricing
will put more and more pressure on maintenance operations to provide near-perfect quality of
service to prevent loss of revenues due to failures [67).

The problem that maintenance operations are now facing can be in part explained by the
lag of their maintenance technology and the obsolescence of their organizational hierarchy. Test

hardware is limited in accuracy and does not fully qualify as measurement devices for new ser-
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vices such as ISDN [66]. The Operational Support Systems now m place typically have
restricted domains of applications and hardly share information with other systems leading to a
proliferation of terminals, printers and human-machine intertaces [81]. As new and more
sophisticated network elements are introduced, these same Operational Support Systems do not
get upgraded accordingly and their maintenance introduces yet more complexity in the process.

The architecture of the telephone network has also known some evolution. Some would
even qualify this more a revolution than an evolution. The subscriber loop 1s no longer well
divided among the central office, the outside plant, and the customer’s premises. In teality, an
increasing portion of the subscriber loop is now being shared among multiple subscribers
through technological advances such as remote switches or ISDN [98].

If telephone companies are to maintain high levels of quality and survive in this new
competitive environment, a number of steps must be taken. New more advanced test hardware
must be introduced in the network and test access to all subscriber lines, particularly i rural
areas, must be feasible through the use of distributed test systems. Operational Support Systems
for maintenance must be improved or replaced. These systems should be designed to be generic
enough to act as “building blocks”. Whenever new services or new technologics are introduced
in the network, it should be possible to easily add the necessary maintenance functionahity to
existing systems. Better fault identification algorithms also need to be implemented to handle
new services and technologies. Enhanced automatic fault detection using all the alarm reports
generated by advanced network elements will allow maintenance organizations to operate n a
preventive mode. Fully automated and programmable testing must be deployed to better handle
intermittent faults. Finally, new technology such as Dynamically Controlled Routing and high
capacity fiber optics ring-based networks will help enhance network survivability | 74].

However, new Operational Support Systems will also need to be integrated and pro-
vided with the ability to communicate with one another [74]. Furthermore, these systems will
have the capability to exchange information with intelligent network elements. Work done by

standard bodies on the Telecommunication Network Management (TMN) will make this possi-
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ble for multi-vendor based networks [91] and will help provide an end-to-end view of the tele-
phone network.

But the greatest challenge facing maintenance operations will probably be a shift in cor-
porate culture. Traditionally, the telephone network has been divided into various sub-organiza-
tions, each taking care of its assigned portion. With the introduction of new technology, the
topology of the network has changed and will continue to evolve. Natural boundaries that
existed with the old technology are now disappearing. Work force organization and the con-
cepts on which their regulation is based will need to be revisited. On one hand, the maintenance
philosophy must shift from a reactive mode to a proactive mode. Preventive maintenance is a
key to keeping high reliability and high customer satisfaction. On the other hand, automation
and system integration should allow maintenance organizations to give more control to custom-
crs over services. Just like banking institutions, there is great potential there to reduce work load
in maintenance operations and again increase customer satisfaction [46].

The next chapter introduces neural networks. Neural networks were explored in this
rescarch work to assess their ability to identify faults affecting subscriber loops. An introduction
to neural networks is given along with the theory about the learning algorithm used. The last
seciion of the next chapter presents a second literature review, this time on application of neural

networks to diagnosis.
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Chapter 4 Neural Networks as Pattern Classifiers

This chapter introduces neural networks. Following a brief historical review, a detailed descrip-
tion of the back-propagation algorithm 1s given. Finally, a literature review of neural network

classifiers used in pattern recognition problems is presented.

4.1 Historical Review of Neural Networks

A brief overview of neural networks is presented here followed by a hicrarchical classitication
of neural components.

Neural networks have not always been popular due to limitations they had when they
were first studied. They are now gaining considerable credibility, espectally since successtul
applications have been reported. A complete chronicle of the history of ncural nctworks can be
found in [68].

In 1943, McCulloch and Pitts [75] designed a model of neural networks based on thear
knowledge of neurology. Even though 1t was a rather simple mode! that could only dcal with
simple logical operations such as AND and OR, their model did introduce the concept of paral-
lel processing using simple computing units. No computer simulation was done. Eveiything
was carried out using pencil and paper.

Computer simulations were only produced in the mid 50’s. One of the groups working
on computer simulations of neuronal models was from IBM research laboratorics. This group
carried out the work while remaining in close contact with Donald Hebb and Peter Milner, neu-
roscientists at McGill University. Whatever the neuroscientists found, they shared with the IBM
research group and vice versa. This led to the creation of a multidisciplinary trend that is still

going on today.
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In 1958, Rosenblatt [94] introduced the Perceptron. This was a three-layer neural net-
work that could learn to associate a given input to a random output unit. The system did have
some limitations, particularly in its learning method. Then, in 1960, Widrow and Hoff [107]
devised the Adaline (ADAptive LINear Element) which employed a much more sophisticated
learning method known as the Least-Mean-Square (LMS) learning rule or the Delta Rule.

In 1969, Minsky and Papert [78] published a book called Perceptron in which they
proved that a single-layer Perceptron network could not even perform the XOR operation, and
that it was restricted to linearly separable problems. Their publication had the sad effect of dis-
couraging the scientific community from pursuing research in the field of neural networks.
Nowadays, multi-layer networks can overcome this limitation.

Despite the massive lack of support and funding, a handful of researchers continued
their work and came up with very interesting neural network architectures that now prove to be
useful in many of today’s applications. Among them were Grossberg [38], Anderson [5],
Kohonen [60], Klopf [58], Werbos [105], Amari [4], and Fukushima [34]. It is in the early 70’s
that interesting results from these people were published.

Since 1986, a real resurgence of this field has been witnessed. Many conferences on
neural networks are held each year around the world. A good number of journals and magazines
have also appeared. A sign that the field has reached a certain maturity is the recent reports
about many interesting real-world applications. A number of these applications are presented in

section 4.3 of this chapter.

4.2 An Introduction to Neural Networks

This section gives a brief introduction to the theory of neural networks. Advantages of neural
networks over other methods are presented and some learning algorithms are described with

more attention given to the back-propagation learning algorithm.
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4.2.1 What Neural Networks Are

As the name suggests, a neural network is a collection of neuron-like units often
referred to as neurodes [20]. Figure 4.1 shows a typical neurode. Each neurode can have nmany
inputs but only one output, even though this single output Mmay serve as input to many other
neurodes as will be seen later on. This output is the result of some processing done by the neu-
rode. A typical neurode has a weight factor for each one of its input connections. Inputs are
multiplied (weighted) by these factors. The result for each mnput are then summed. This sum s
passed through an activation function which is usually non-linear sigmoidal function (such an
activation function allows multi-layered back-propagation networks to form complex decision
regions in multi-dimensional space). One of the inputs may be a constant bias which is some-
times compared to the ground in an electrical circuit. Some neurodes also subtract a thieshold
value from their summed input. This can be used for an on/off type of activation. An optional

gain term may also be applied to the output of the neurode.
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Figure 4.1: Components of a typical neurode.

Neurodes are normally organized in layers, where each layer can be seen as a different
level of abstraction from the input data. Neurodes within the same layer may be interconnected

or not, depending on the architecture selected.
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A network 1s typically made of many layers and it is usual to have the outputs of one
layer fully-connected to the following layer’s neurodes. Full connectivity is not necessary and
there exist techniques to get rid of unnecessary connections once training 1s accomplished and
satsfies the performance requirements. Figure 4.2 shows a typical neural network with layers

fully connected.

Figure 4.2: Neural network with fully connected layers.

4.2.2 The Back-Propagation Neural Network

The back-propagation neural network was initially proposed by Werbos in his PhD dissertation
(105]. However, Parker [87] and Le Cun [62] — apparently independently — also published
this method. Rumelhart and McClelland [95] largely contributed to the popularity of the method
with their well known book, Parallel Distributed Processing.

Back-propagation is the most widely known neural network. Because of its relative sim-
phcity and its long lived reputation, it has been successfully applied in many research projects.

Section 4.3 describes some of them.
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The Delta Rule

Back-propagation builds on the concept of the Delta Rule lea ning method  Also known
a» the Widrow/HofT rule, 1t 1s used in neural networks made up ol one set of mput neutodes and
one set of output neurodes. Each neurode from the input layer s connected to cach neurode
the output neurode via a weighted connection.

Each connection has a strength (weight) assoctated with it This werght s used to muln
ply the value coming trom the output of an input neurode. The product 1s fed to the output neu
rode linked through that connection. At first, those weights are witiahized to small tandom val
ues, usually between -0.1 and 0.1. The Delta Rule is what allows the network (o modity its
connections and hence, learn.

One trains such a network by presenting it with both the input values and the assocrated
desired output values. This is called training with supeivision. The networh uses the mput val
ues 1t is grven and its connection weights to produce an output on its own. This output 1s then
compared to the desired output according to the following equation:

(EQ 1)

Aw.. = o (D.-0)1
Ji / It

where
D; = desired output pattern at the jth output nevrode.
0; = resulting output pattern at the jth output neurode
1, = input pattern from the ith input neurode
o = learning constant.
AWJ, = value to add/subtract from the connection weight Loy

Jrom input neurode i to output neurode .
The learning constant is usually small (around 0.1). Using a bigger learning constant
may lead to oscillatory behavior of the network Once a network gets trapped 1n oscillatory

behavior, it rarely reaches completion of learning.
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The Delta Rule cssentially assigns credit or blame to the input neurodes. The more
active 1s an input unit, the more responsible it should be for the good or incorrect behavior of an
output neurode

The Delta Rule belongs to a class of gradient- or steepest-descent algorithms. It has
been shown that the Delta Rule will cause a network to modify its connections in directions that

maxinuze the change in an error term that sums the squares of output deltas [95].
Limitations of the Basic Delta Rule

The Delta Rule performs well for single-layered networks, i. e. networks that have only
input and output neurodes. Unfortunately, the class of problems to which these networks can be
applied is severely limited. As was shown in an analysis by Papert and Minsky [78], these net-
works cannot compute the exclusive-or (XOR) function. In fact, such networks are limited to
lincarly separable problems. The fact that they could not compute a logic function as simple as
XOR is largely the reason why neural networks research was almost non-existent in the early
1970’s.

Multi-layered networks are the solution to this problem. Multi-layered networks are net-
works with one or more hidden layers in addition to the usual input and output layers. These
extra layers allow neural networks to handle problems that are non-linearly separable. However,
a new learning rule is required in order to propagate the credit or blame from output neurodes
back to hidden layers and input layer neurodes. This new rule is called the back-propagation
lcarning rule or the generalized Delta Rule.

The new equation is similar to that used with the Delta Rule. The delta is now computed
as follows:

(EQ2)
aw =0 (D), =0,)f;(1,_)

where

o = learning constant



desired output of the jth output neurode

actual output of the jth output neurode

Ist-order derivative of the jth neurode activation functien
sum of all the mputs to the jth output neurode from laver p-
1

amount to add or subtract to connection weight going to jth
output neurode

output layer

This is similar to the Delta Rule, except for the first-order denvative. The power of

back-propagation comes from its ability to propagate deltas to hidden units as well. 1t s thus

feature that allows neural network to have hidden layers that are capable of learming. The delta

for hidden neurodes is computed as follows:

where

ij

O(p+ 1)k

6]’]

(EQ 3)
am =f'd,) ;8(,” YY)

sum of all the inputs of the jth hidden neurode in layer p
Ist-order derivative of the activation function of the jth
neurode in layer p

weight going from hidden neurode j in layer p to hidden
neurode k in layer p+1 (layer p+1 may be the output layer)

delta computed for neurode k in layer p+1

= delta computed for the jth hidden neurode in layer p

The basic idea introduced by the back-propagation learning rule is the computation of

weights for the hidden neurodes through propagation of deltas computed for other neurodes in

previous layers, starting with the output Jayer and going toward the input layer. Figure 4.3 1llus-

trates this.
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input layer

error 1s back-propagated to weights connect-
hidden layer 1 ing input layer to hidden layer 1

error 1s back-propagated to weights connect-

hidden layer p ing hidden layer p-1 to hidden layer p
output layer error 1s back-propagated to weights connect-
* ing hidden layer p to output layer
output

error s computed from comparing
destred output to network output

Figure 4.3: Back-propagating errors from layer to layer.

Using this rule, a network designer presents input data to the network along with the
desired output until the network achieves the required level of performance. This level of per-
formance is usually defined by setting a maximum on the magnitude of the error vector. The
crror vector is computed by subtracting the actual output from the desired output. The magni-
tude of this error vector is then compared to some threshold set by the network designer. When
the network reaches this threshold, it is said to have completed its training phase. The network
designer then presents the network with patterns it has not seen before and verifies the correct-
ness of the given outputs. If the test phase is satisfactory, the network then goes through valida-
tion. Validation involves training and testing with different training and testing data sets. Once
validation is successfully completed, the network can be deployed and applied to real-world sit-

uations for further performance assessment.
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Local minima

During the learning process, the error vector can be thought of as moving along a mulu-
dimensional error surface. The learning is normally complete when the error vector reaches a
minimum of this error surface. This minimum may be the global minimum or one of many local
minima. The back-propagation learning algorithm does not guarantee the network will reach the
global minimum.

A neural network gets stuck in a local minimum because the steepest-descent algorithm
cannot further descend. This is an undesirable situation and one way to avord 1t 1s to add a
momentum term to the back-propagation learning rule. Equation (2) with the additional

momentum term is;

(EQ 4)
8, = (D, =0,)f,(1,) + B6(/’1)’
where
B = momentum multiplying constant
5(,,1-)' = previous weight delta for the same connection (calculated

at time t-1)
The other parameters are the same as in Equation (2).

The addition of this momentum term allows the neural network to escape from local
minima. Let us consider skiers going down a hill. If the skiers encounter small bumps on the
way, their forward motion will not be blocked because they have enough momentum to go oves
small hillocks. The momentum term in the back-propagation rule allows the neural network to
go over most of the local minima.

Back-propagation is of interest because it is widely known and well understood. Fur-
thermore, it has been successfully applied in many research projects, some of which arc
described in section 4.3. Results obtained using this method are presented and discussed in

chapter 5.

47



4.2.3 Advantages and Disadvantages of Neural Networks Over

Other Methods

The problem of fault diagnosis that we are concerned with here is mainly one of pattern recog-
nition. Neural networks are one of many methods trying to solve this problem. This section pre-

sents some other techniques that could be used and compares them to neural networks.
Procedural Approaches

Using the traditional procedural approach, a designer is constrained to use logical com-
parisons (c.g. >, <, >= ...) to set boundaries in a multi-dimensional space against which input
data will be checked. These boundaries are typically fixed and act as sharp delimiters of deci-
sion regions, i.c. a data sample either belongs or does not belong to a region in the multi-dimen-
sional space. This works for well-defined cases, but data from real-world situations is often
noisy and poorly distributed. One is then faced with the task of redefining previously set bound-
aries and adding new ones. If such a system has been built using if-then-else statements or a
similar procedural approach, bringing those changes usually represent considerable work or
simply starting from scratch.

Neural networks are known for their ability to interpolate, i.e. to generalize about data'
they are presented. For instance, an input vector that is very representative of the class to which
it belongs will certainly yield the neural network to output a high value at the corresponding
output neurode, say 0.95 out of 1. On the other hand, a vector with less similarity to that same
class would result in a weaker output, say 0.65. In a pattern classification task, such results still
carry enough meaning on which decisions can be made. This is similar to the concept of mem-
bership degrees found in fuzzy logic [111]. Ultimately, when significant changes occur in the
problem domain, one can re-train a neural network or use a neural architecture which provides

continuous learning.
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Statistics

Classifiers based on statistical methods arc close to neural networks. They differ m one
important aspect. Statistics based systems rely on some assumptions about the input distribu-
tion. These assumptions take the form of parameters whose value must be tuned for best perfor-
mance. Neural networks need no assumption about the input distribution. One may argue that
neural networks do have some parameters like weights, gatn factors, and thiesholds. However,
these parameters are not tied to the input distribution. They are initially given random values
which are later refined during the learning phase.

In statistics based systems, one is often tempted to simplify the statistical model when
dimensionality becomes a concern. This is because a model must be defined a priort, 1e betore
training. Neural networks build their own model of the input data and dimensionality 1s not a
concern, at least not in the same sense as with statistics based systems. Dimensionality may
cause a problem with neural networks if it results in the design of a huge network with very
demanding computations.

Statistics are nevertheless an important tool in the design of neural networks. 1t 1s typi-
cally claimed that one does not need to be an expert in the domain of the application to use neu-
ral networks. This is not entirely true. Unlike expert systems, neural networks do not require the
knowledge of a human expert to be translated into rules. However, ncural network designers are
expected to possess or gain some knowledge about the domain of application A data set that
truly covers the problem domain of an application can otherwise hardly be built. Statistics,

among other tools and sources of information, are thus often used in that perspective.

Expert Systems

As was mentioned above, expert systems rely on rules extracted from human expert
knowledge. Neural networks also require expertise but only to give the designer a proper under-
standing of the problem domain. This knowledge may be acquired from human experts or sim-

ply from written material about the problem domain. Neural network designers do not need
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knowledge as much as they need a large sample data set that fairly represents the complete
problem space. Expert systems do have the advantage of being more user friendly. Rules are
written 1 plain English and can be easily understood, even by a non-programmer. In addition,
expert systems can provide an explanation about how they have reached a particular conclusion.

This increases the confidence of a human user who may be assisted by an expert system.

4.3 Related Research in the Domain of Neural Networks for Diagnosis

It 1s only recently that neural networks have gained considerable credibility and popularity. For
that reason, the majority of published articles relate theoretical ground work about neural net-
works. The scientific community is now witnessing a growth of neural network models and
associated learning methods. Very few applications have been reported. However, applications
based on neural networks which have been reported to this date are typically encouraging and
represent a promise of yet more interesting results to come.

In this second literature review, an overview of various neural network based diagnosis
applications is given. This section is divided according to five domains of applications where

neural networks have been applied to perform diagnosis.

4.3.1 Electronic Circuits Diagnosis

Jakubowicz and Ramanujam describe a neural-network based diagnostic system that
ditects technicians in diagnosing faults in electronic equipment [50]. The first stage of the neu-
ral network is a self-organizing feature map that learns faulty state patterns and creates feature
maps corresponding to each input pattern being presented. These feature maps are then passed
to a feed-forward network. In this second stage, the network uses the structural description of
the system to determine which components might be responsible for the observed symptom-

state. This method was successfully applied to the diagnosis of a 4-bit binary-full adder.
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Kagle et al. describe a neural-network based system trained to idenuly and locate clece-
trical faults in electronic circuit boards and perform automatic knowledge acqusition [52]. The
authors used a back-propagation network trained with single event failure characteristies. Their
results show that a network trained with single event failure charactenstics can also dentity
simultaneous multiple event failures. Results also indicate that, for this problem at least, neural
network performance is closely tied to the number of neurodes in the input layers. Diagnosis
performance decreases when the number of input neurodes used is diminished. They also
observed that the number of hidden layer neurodes needed to be adjusted so that the network
could generalize its conclusions.

Tan et al. describe INSIDE, a neural-network-based system to troubleshoot the Inertial
Navigation System, an avionic line replaceable unit [100]. Training examples were obtamed
from equipment failure history. Whenever the trained neural network fails to identify a falure,
the system falls back on a flow chart module that technicians typically use when troubleshoot-
ing these pieces of equipment. When the problem is found using the flow chart module, the new
equipment failure case is added to the set of training examples. The neural network is retrained
using the improved training set and its performance and fault coverage are thus increascd.

Totton and Limb have evaluated the performance of back-propagation neural networks
for the diagnosis of analog/digital interface line cards for digital exchanges [102]. With only a
restricted number of samples (295), they trained a neural network to recognize correct failure
modes with more than 90% of accuracy. The advantage of neural networks over their previous
expert system solution [53] is the considerably reduced time needed to train and test a neural
network compared to the time required to write and validate rules for an expert system. How-
ever, the authors estimate that a hybrid system made of neural networks and expert systems
would provide a better solution, for it would have the ability to learn from data and could pro-
vide an explanation facility.

Meador er al. have applied back-propagation neural networks to the problem of high-

volume diagnosis of integrated circuits [76]. They compare results obtained using traditional
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Gaussian Maximum Likelihood (GML) and K-Nearest Neighbor (KNN) classifiers. According
to their results, classification performance of the back-propagation neural network is consis-
tently superior or cqual to that of either the GML or KNN classifier. An interesting advantage of
ncural networks in this application is the significantly reduced number of floating-point opera-
tions (FLOPs) needed to perform diagnosis compared to what is required with either KNN or
GML. The trade-off is a greater number of FLOPs is required during training of the neural net-

work.

4.3.2 Medical Diagneosis

Schreinemakers and Touretzky describe ELSIE, a system to detect clinical and subclini-
cal udder infection in dairy cows [96]. The system consists of a production system module, a
neural network simulation module, and a knowledge acquisition module. The diagnosis deci-
sion is performed by a neural network using measurements of milk production and leucocyte
counts as inputs. Another subsystem, the Knowledge Manager (KM) operates as an intelligent
rule-based dispatcher. One of the tasks of the KM is to present wrongly classified samples to a
human expert for correction. New examples thus obtained are then submitted to the neural net-
work to refine its training set. The initial diagnosis performance of the neural network is 87%
compared to that of their expert veterinarian informant. While analyzing the classification
errors, the authors noticed that the network had detected some inconsistencies in the training
data that had been caused during the initial building of the training set by veterinarians. With
the corrected training set, the network performance was raised to 98% accuracy.

Apolloni er al. investigated the possibility of diagnosing epilepsy using multi-layer per-
ceptrons trained with the back-propagation algorithm [6]. Using a questionnaire designed by the
International League Against Epilepsy (ILAE), the authors have built a neural network with 724
inputs and 31 outputs (the ILEA considers 31 possible diagnoses). The trained neural network

oftered a performance of 87% accuracy on cases it had never seen. A study of the trained net-
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work revealed that some of the inputs are not used at all (i.e. their weights are equal or very
close to zero). After removing these unused inputs and retraining the network, the authors were
left with only 74 inputs for their neural network, i.c. about 10% of what they originally had, and
an increased accuracy of 95%. According to experts, the unused inputs point to questions m the
ILAE questionnaire that are not considered particularly relevant to this problem.

Dytch et al. have used different types of neural networks as tools for the evaluation of
DNA ploidy spectra for the objective evaluation of stratified epithelia using high-resolution
karyometry [31]. The classification rates they obtained in preliminary studics are even bettet
than what they obtained using more traditional techniques. A careful examination of the synap-
tic weights of their trained network revealed that the internal representation of the network cor-
responds to known heuristic rules for the interpretation of DNA ploidy spectra.

Boone er al. have evaluated how neural networks can be applied to computer aided
radiologic diagnosis [14]. In their first experiment, the performance of a feedforward neural net-
work trained with a variant of the generalized delta rule favorably compared with that of human
radiologists in a basic visual perception task. An interesting aspect of this experiment is that
they first had to train the network with images having a high signal-to-noise ratio. Only then
were they able to use reduced signal-to-noise ratio images to further train the network. This is
similar to the way humans learn. The easy concepts are learned first and the more advanced
concepts are then added as refinements to the basic knowledge. Whereas the goal of their first
experiment was to show the ability of neural networks to perform pattern recognition tasks, the
objective of their second experiment was to assess the feasibility of applying ncural nctworks to
cognitive tasks. With 50 possible findings as inputs and 12 possible diagnoses as outputs, the
two-layer feedforward network correctly identified 79% of the posiive diagnoses and 99% of
the negative ones.

Maricic et al. describe a prototype automated system for preliminary heart anomaly
detection based on neural networks [69]. The first stage of the system performs image process-

ing on chest radiographs to extract some 30 heart shape parameters. Of these, only 9 can be

53




shown, through statistics, to be of value for this classification task. The authors used a back-
propagation ncural nctwork with 3 outputs, one per possible diagnosis. The results of their
experiments are encouraging, but clearly show that the heart shape parameters used as wnputs do
not carry the information necessary to properly classify heart anomalies with a high degree of
success.

Egbert et al. have compared back-propagation neural networks to conventional classifi-
ers for the task of diagnosing neck and back injuries from thermographic images [32]. These
images were first preprocessed to extract feature vectors which are fed as inputs to the back-
propagation neural network. Two different implementations of the back-propagation neural net-
work were tried and yielded 90% and 80% accuracy respectively. Using the same feature vec-
tors, conventional methods such as nearest neighbor classifiers and gaussian maximum
likelihood classifiers could at best yield 45% accuracy.

Harrison et al. trained a multi-layered perceptron to diagnose the presence of chest pain
[42]. They evaluated two neural networks, one using the mean-square-error and the other, a log-
likclihood function. Both offered similar performance except that the latter completed training
in less time than the former. Both networks presented a better accuracy than that of an experi-
enced physician asked to produce diagnoses using the same data. A sensitivity analysis also
revealed that both networks and physicians gave more weight to the same six most important

positive contributors and the same most important four negative contributors.

4.3.3 Chemical Plant Diagnosis

Yamamoto and Venkatasubramanian describe an interesting neural network architecture
to carry the diagnosis of a chemical plant [108]. The authors combine a qualitative neural net-
work (QLN) with a quantitative one (QTN) and obtain more reliable diagnoses than with a
quantitative neural network alone. The same information is fed to both the QLN and QTN net-

works. Inputs for the QLN is first preprocessed to make it qualitative. Both the qualitative and
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quantitative neural networks have the same set of possible outputs. If both types of network
agree on the output, the results of the QLN network are passed to an inverse quahtative network
(IQLN). The set of possible outputs of this network is identical to the set of possible nputs to
the QLN network. If outputs from the IQLN network and inputs to the QLN network are stmi-
lar, then it is assumed that a diagnosis has been rcached. The authors use multiple copies of
QLN and QTN. Since these networks are started with different random sets of weights, that pro-
vides a means of validating the networks results against cach other. This architectuie takes
advantage of both the accurate information carried by quantitative values and the 1obustness to
noise of qualitative information. A detailed explanation of the QLN, QTN, and 1QLN architec-
tures can be found in [108].

Hoskins er al. report about their experience with neural network for fault diagnosis
chemical plant processes [48]. They report that ncural networks can fulfill several functions in
fault diagnosis. First, they are capable of classifying labeled data inputs during traming so that a
clearly delimited fault partitioning is obtained. Second, they can self-organiz¢ using non-
labeled training data. Third, they can form associative memories, thus making possible the
retrieval of fault patterns using only partial or corrupted inputs. Fourth, using high speed paral-
lel processing, they can handle sensor data in real-time. And fifth, they provide a non-lincar
mapping of inputs to outputs.

Jokinen compares Dynamically Capacity Allocating (DCA) network models to conven-
tional neural networks in the task of fault detection and diagnosis of an industrial process [51].
The author states that it can be difficult to gather all the possibie fault conditions to construct a
fault detection system. A network that is capable of continuous Icarning 1s then clearly an
advantage. Jokinen led an experiment identical to the one reported in [108] but used a DCA net-
work instead. The probabilities of “correct” observed faults as a function of the underlying
“actual” process faults using the DCA network were much higher that those obtained using the

back-propagation algorithm. Only one type of fault was consistently misclassified. The author
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suggests such results most probably indicated that not enough input information was collected
for that type of fault.

Arai et al. have evaluated a neural network for the diagnosis of problems with compres-
sor valves using valve plate sound [7]. They found that preprocessing the raw data allowed
them t¢ obtain a network offering 100% accuracy with a significantly smaller number of neu-
rodes. They used a conventional back-propagation neural network with inputs coming from
four different types of preprocessing. Their experiment revealed that training a network with
preprocessed data from one normal valve plate enabled the network to correctly recognize other
normal valve plates, whereas training the network with raw data from a normal valve plate did
not make this type of generalization possible. The authors thus suggest that preprocessing raw

data for only one normal valve plate extracts the features invariant to all normal valve plates.

4.3.4 Engine Diagnosis

Marko et al. report about their experience with an attempt to develop a neural network
to diagnose faults in computer controlled electro-mechanical systems in vehicles [70]. Using a
mixture of digital and analog signals from the inputs and outputs of an engine control computer
(ECC), they trained a back-propagation neural network to recognize 26 different faults, They
attained 100% accuracy on their testing set and similar results were also obtained when using
other neural network architectures such as counter-propagation. The authors conclude that vali-
dation 1s an issue to which attention must be paid since one cannot deduce from a trained net-
work if the problem space — which is usually multidimensional — is adequately covered.

In another paper by Marko et al., an analysis was done over a number of trainable clas-
sifiers to detect and identify faults in vehicle powertrain systems [71]. They stress the impor-
tance of assembling proper training sets and designing relevant tests for trained classifiers.
Good training sets are those that adequately cover the multidimensional space such that gener-

alization can be attained. Thorough testing is accomplished by using methods such as leave-k-
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out. The classifiers they selected to evaluate are the nearest neighbor classifier, the Restricted
Coulomb Energy (RCE) networks, the back-propagation network, and two vanants ot the
binary tree. Even though the back-propagation neural network classifier showed one of the best
performances, the authors raise the problem of tramning and testing time for such classifiers For
problems requiring large neural networks, back-propagation may prove to be impractical with
traditional computing means.

Guo and Nurre have investigated the feasibility of using multilayer feedforwiand neural
networks to identify sensor failures in the Space Shuttle main engine [40]. A fitst neural net-
work was trained to identify, among a number of sensors, which one has an output ditferent
than the others. A second neural network was also trained to provide an estimate value for the
failed sensors. They obtained 95% accuracy on their test cases, using a neural network that was
easier to design and tune than conventional methods which depend on complex models of the

system under diagnosis.

4.3.5 Power Systems Diagnosis

In [56], Khaparde and Mehta have evaluated the feasibility of using neural a network tor
detecting the presence of bad data in power systems. Their study shows that the training time 15
affected by parameters such as gain factor, momentum factor, and network architecture (1.c. the
number of hidden neurodes). The back-propagation peural netwoik they used is able to classity
good and bad data with 95% to 100% accuracy on data it has not seen during ttaming. The
authors conclude that neural networks offer a simple and straightforward solution to a problem
which typically requires elaborate algorithms.

Nishimura and Arai have evaluated both a back-propagation neural network and a struc-
tured neural network for the purpose of detecting power system states [84]. The back-propaga-
tion neural network performed successfully but did not provide acceptable results when

responding to unknown patterns. This motivated the authors to develop a structured neural net-
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work which makes use of a fecedback mechanism from logical knowledge to recognition. This

ncetwork showed a greater ability to deal with unknown nput values.

4.3.6 Applications of Neural Networks in Communications

Neural networks have also been applied in a number of areas in communications such as net-
work control and management [92][45], network switching [72], data routing [57], data interpo-
latton | 3], adaptive filters [106}, quadrature amplitude modulation [59] and local and wide area

networks [10].

4.4 Summary

An historical overview of the field of neural networks was given and a detailed description of
the hack-propagation algorithm was presented. A number of diagnosis application taken from
the scientific hiterature were also reviewed. The next chapter will describe the actual steps that
were taken to gather data, define tests, and evaluate neural networks with respect to their appli-

cability to the problem of identifying and locating faults in the telephone access network.
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Chapter 5 Subscriber Loop Fault Diagnosis with Neural Networks

This chapter describes the experimentation that was carried out to evaluate the feasibnlity of
employing neural networks in the telephone access network fault diagnosis process. The input
data available and the output goals desired from an automated diagnosts system are fist pre-
sented. The actual neural network implementation, training and testing are then deseribed. A

discussion of results and future extensions cnds this chapter.

5.1 Output Goals

Telephone access network maintenance is concerned with the two following objectives: identi-
fying faults and localizing them. Faults can be categorized by the following:

* metallic problems (damaged wires, short-circuits, open-circuits, resistive leuk-
ages, etc.)

* profile problems (erroneous database entries)

* user problems (users having difficulties using calling features such as call hold,
call forwarding, etc.)

A fault may sometimes be identified simply by talking with the customer. If the cus-
tomer calls to report a wire that was accidentally damaged, the fault 1s identified tight away.
Similarly, customers calling to request help do not involve further investigation from Repan
Service Bureau personnel.

Less straightforward are problems for which the customer can only describe the symp-
toms of the fault. For instance, a customer may call to report an inability to receive calls The
cause could be that another phone stayed off hook or that rust has finally deteriorated the inside
wire to such a degree that it is now cut open. But it could also be the result of a number of other
failures. The repair process can only start once the fault has been identified. As 1t 1s costly for

telephone companies (or for subscribers, if it is shown that they are responsible) to have a tech-
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nician examine the equipment and installation at the subscriber’s premises, it is desirable to
obtain the best indication possible of what fault occurred and its location before any dispatch
decision can be made. Fault identification and localization is the prime aspect of telephone
access network maintenance. The rapidity with which a problem is fixed depends largely on the
quality of this process. Telephone companies have regulated deadlines to meet regarding +epair
work and customer satisfaction increases when problems are resolved faster.

Another factor to consider is the organizational division of the repair work force. Repair
personnel are typically organized into outside plant group, central office group, and customer
premises group. Since the performance of each of these organizations is normally evaluated
according to the number of troubles received, how many that were solved, etc., it is important to
know the exact location of the fault in order to route the problem to the proper group.

The objective of this research work was to assess the feasibility of using neural net-
works to carry out telephone access network fault identification and localization tasks. The fol-

lowing scction presents what type of data was available to that end.

5.2 Input Data Available

The information available for subscriber loop fault diagnosis currently stems from five sources:
the customer, the trouble report files and line records, billing information, network elements and

test heads.

5.2.1 The Customer

In the present mode of operation, known as the reactive mode, the customer triggers the mainte-
nance process by calling the Repair Service Bureau to report a problem. The answer clerk, who
greets the customer, is responsible for getting the customer’s phone number, verifying the coor-

dinates, and registering the reported problem. Subscribers typically report problems such as “I
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cannot call”, “I cannot receive calls”, *I keep on reaching the wrong number”, T hear nowse on
the line”, “The wire outside was accidentally ruptured by a truck™, ete. Wuh thus hind of infor-
mation as a starting point, an experienced human tester can then mitiate the diagnosis process
and request more information from the subscriber if need be.

The information provided by the subscriber 1s of significant mportiance simee s cur-

rently the only means of probing what is happening at the far end of the loop.

5.2.2 Customer Line Records and Trouble Report Files

Each customer has a line record. This record indicates when the installation was done, which
equipment in the central office serves the line, and identifies the components (cables, junction
boxes, protection devices, etc.) that make up the loop.

If a customer has called the Repair Service Burcau in the past to report a problem, the
type of trouble reported, the problem found, and the solution used to fix 1t are stored 1 the tiou-
ble report history file. This can be used to correlate new troubles with repatr or installation work
done in the past. Similarly, active trouble report files can be used to correlate problems that have

a common source and thus need only a single dispatch [15][21][73].

3.2.3 Billing Information

Billing records often serve as a point of reference when trying to solve a problem. Customers
may call the Repair Service Bureau to report a complete service outage or the absence of a call-
ing feature they have ordered. In some instances, after it has been verified that service from a
line has indeed been purposely removed or that the switch has not been provisioned for a partic-
ular calling feature, the tester will consult the subscriber’s billing record. The billing record can
show whether service was removed because of non-payment or upon customer request, and i

there is a subscription to one or more calling features.
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5.2.4 Network Elements

Network elements now have a more active role in access network maintenance. Even though a
separate test card is often used to collect electrical measurements from the loop, today’s switch-
ing devices can now carry out their own tests on subscriber loops. They can also provide infor-
mation about the current state of a subscriber loop and its provisioned features. As network
elements are becoming increasingly “intelligent”, more and more consideration is given to their

potential for access network maintenance.

5.2.5 Test Heads

Test heads are stand-alone devices that can receive commands from Operational Support Sys-
tems and perform the functions requested. The most commonly found test head in the Repair
Service Burcau environment is the type that can perform electrical measurements on subscriber
loops. These test heads can measure AC and DC voltages, resistances, and capacitances. They
are also capable of a number of other functions, such as [19][24][25][28][36][49]:

« connection/disconnection commands;
* monitor or talk on line under test;

* look i1 toward central office, look out toward subscriber, or bridge across line
under test;

« transfer test connection to another operator;
* breakdown test, i.e. application of high voltages to dry out wet pairs;

* release lines that have a permanent signal condition, i.e. that have been seized
by the switching equipment;

* ring subscriber;

» verify subscriber equipment capability to produce acceptable Dual-Tone Multi-
Frequency (DTMF) tones;

* test rotary dials;
* apply howler tone to notify subscriber of a phone that is off hook;

* apply sounder tone for cable localizing;
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* set loop current to test coin telephone operation;

* apply transmitter current to measure current through transmitter in subscriber
telephone;

e reverse tip and ring;

* test ability of subscriber line to obtain dial tone from central office with option
to insert additional impedance on the line;

» dial on a subscriber line;

* send on hook signal toward central office on subscriber line;

* check subscriber line card in central office;

* verify office equipment to find if line is a up or ring party, or PBX hunting

group;

* verify ringer presence;

* detect voice.
With the increased power of digital switching systems, the functionality provided by traditional
test heads can be replicated by the switch hardware and associated software. With these capabil-

ities, one can look forward to a preponderant role of intelligent network clements, such as mod-

ern digital switching systems, in future access network maintenance systems.

5.3 A Neural Network for Fault Identification and Localization

5.3.1 Selection of Data for the Neural Network

Out of the five sources of information mentioned earlier, only one was used: the trouble report
This choice is not as restrictive as it appears since much information coming from other sources
is transcribed into the trouble report. The problem reported by the customer 1s entered as codes
in the trouble reports and some free-format information is also stored in remark fields. Informa-
tion about subscriptions to different services is taken from the billing system and copied onto
the customer line record, even though it is sometimes outdated. Results returned by test heads

are appended to trouble reports and available for future reference. Finally, network clements
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can carry out some tests of their own and provide a snapshot of the calling features of a particu-
lar telephone line. Unfortunately, this information is not currently integrated to the customer
line record.

Human testers seem to base their decision on a few data fields only. They typically con-
sider the following [18][19]{24][25][49][66][73](80][81]:

* the description of the problem entered by the answer clerk;
* the additional remark the answer clerk may have entered;
* the 12 clectrical measurements returned by the test head;

* the verify code which is a machine interpretation of the electrical measure-
ments.

Other fields may be exceptionally considered. As the first two items have free formats
on the trouble report and are of a subjective nature, they were not considered in the experimen-
tation. The verify code is in fact one of the items this research work is looking to improve and
will serve as a measure of comparison. Finally, the electrical measurements returned by the test
heads are without a doubt the most objective information available. These measurements con-
sist of four groups of three measurements taken between tip and ring, tip and ground, and ring

and ground. The four groups are AC voltages, DC voltages, resistances, and capacitances.

5.3.2 Preprocessing the Data

A sclection of 5,335 trouble reports was available for experimentation. Out of these, 891
were hand-picked and labelled. The machine-generated verify code indicates if the problem was
diagnosed as a short, an open, etc. However, the exact nature of the problem is contained in the
last remark field where the dispatcher enters the cause of the fault, along with the solution used
to fix it, before closing the report. This remark field had to be read for each trouble report and

encoded mto a form acceptable to a neural network. The categories of problems for the data

samples used were:
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* good lines;
* open circuits;
* lines affected by a dead left-in wire. Such lines appear to be short-ctreuted:

* lines affected by noise. Such lines are typically affected by rust. The resistance
measurement taken between tip and ring typically shows a value around 5§ MQ
instead of the normal 9.999 MQ. Conversation is still possible under these con-
ditions;

* lines affected by rust. Such lines are affected by rust to a higher degree where
drawing dial tone and conversation are no longer possible;

* short-circuits. This category includes short-circuited lines where drawing dial
tone and conversation are not possible but for which no cause was provided in
the trouble report;

Values of resistance measurements ranged from 0 Q to0 9.999 MQ whereas the other
measurements covered only 2 or 3 orders of magnitude. In order to resolve this dispanty, the
logarithm of these resistance measurements were taken and fed to the neural network. Fally,
capacitances were sometimes not measured because of the presence of high voltage that could
have damaged the test equipment. Capacitance measurements were thus preprocessed (o
replace missing values with -1 entries (valid values being positive).

All the data samples were divided among three equal subsets, cach onc contaning an
equal number of samples from a particular category. Three different training/testing pairs of
data sets were then formed by taking two subsets to form the training set, leaving one out for the

test set and performing permutations.

5.3.3 Dividing the Fault Identification Task into Smaller Problems

A first attempt was made at building a neural network to handle the six categories histed above
with the result that the network never completed the learning stage successfully. The problem
with this approach is that the six fault categories described above were not cqually represented
in the sample data set. There were 15 “lines affected by noise”, 36 “lines affected by a dead left-

in wire”, 128 “lines affected by rust”, 150 “open circuits”, 263 “good lines”, and 303 “short cir-
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cuits”. For a single network to handle all cases, duplication of samples or production of samples
using common sense would have been necessary to make up for the small number of samples of
certain fault categories. Instead of doing this, it seemed more appropriate to approach the prob-
lem the same way human testers do, i.e. by proceeding step by step and first trying to eliminate
the obvious cases.

The task was thus divided into smaller problems, each one handled by a specific neural
nctwork. Figure 5.1 shows the architecture of neural networks used to identify faults. A first
ncural network classifies incoming patterns into two categories: that of lines affected by open
circuits and that of hines not affected by open circuits. If a line is tagged as affected by an open
circuit, the fault is found and the process stops there. Otherwise, the 12 measurements are sub-
mitted to another neural network that discriminates between good lines and lines affected by
problems other than open circuits. If the line is tagged as being a good line, no fault is found and
the process stops. Otherwise, the 12 measurements are passed to a last network that classifies
lines into 4 categories: those affected by short circuits, by noise, by rust, and by dead left-in

wires

5.3.4 Training the Neural Networks

The package used to carry out the experiments 1s NeuralWorks developed by NeuralWare [82].
This software allows one to set up learning schedules. Using these, one can specify how the var-
ious back-propagation parameters are to behave as training progresses.

NeuralWorks allows the specification of a back-propagation neural network with up to 3
hidden layers. Neural networks with one and two hidden layers were investigated in this
rescarch and Tables 5.8 and 5.9 show the results. The number of neurodes in the input layer was
set to 12 in every case since all electrical measurements were used as inputs in each problem.
Even though some measurements are known to be irrelevant to identify some faults, they were

nevertheless left in to study how the neural networks would react to inputs that do not carry use-
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Figure 5.1: Neural network architecture for identifying faults.

ful information. The number of neurodes in the hidden layer was set to 4, 8, and 12. Tables 5.6
and 5.7 detail how the number of neurodes in the hidden layer affects the ability of the neural
network to generalize. The number of neurodes in the output layer was set according (o the
number of categories expected for each problem.

Each one of the hidden layers and the output layer can have their own learning coelfi-
cient. The learning coefficient controls the speed of learning of a neurode. The bigger this cocel-
ficient is, the faster a neurode learns. However, a large learning coefficient may lead to
oscillatory behavior. Learning coefficients are typically set to 0.1 and are decreased over tme
during learning. Experimentation has shown that starting with a low learning coefficient for the
output layer, e.g. 0.1, and slightly smaller ones for the following hidden layers gave best results.
The momentum term was set to 0.4 and the first transition pont to 10,000. After 10,000 training

passes, NeuralWorks switches to the next stage in the learning schedule, i.e. it multiplics the
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lcarning cocfficient of each layer and the momentum term by the learning coefficient ratio,
which was set 10 0.5. This allows the neural network to refine its learning as time progresses.

The learning rule used was the normalized cumulative delta rule which is a derivative of
the cumulative delta rule. The cumulative delta rule accumulates the weight changes over a cer-
tain number of training passes called an epoch and then make the application all at once. The
problem with this approach is that changing the epoch affects the learning coefficients. The nor-
malized cumulative delta rule takes care of this by automatically dividing the learning coeffi-
cients by the square root of the epoch. Epoch sizes of 1, 4, 8, 16, 32, and 64 were investigated.
Table 5.10 shows the results. The transfer function that was selected is the hyperbolic tangent,
which is more suited to input values with a range of -1 to +1.

Figure 5.2 shows the “BackProp Builder” dialog box which pops up when creating a
back-propagation neural network. It is interesting to go over each of the parameters of this dia-
log box. A number of check boxes allows the user to specify various configurations and the
inclusion of certain tools. The Connect Bias check box connects an input bias to each neurode
in the neural network. This is similar to providing a ground path in an electrical circuit. The
Connect Prior check box fully connects the input layer to each neurode in all other layers.
Leaving this check box blank defaults to the configuration where the input layer is fully con-
nected to the first hidden layer only. NeuralWorks allows the user to add or remove any single
connection in any layer. Checking the Functional Links box creates another layer in parallel
with the input layer to compute second order iterations. This second layer acts as a second set of
inputs for the rest of the network. The Auto-Associative box when checked sets the number of
output neurodes equal to the number of input neurodes and forces the neural network to use
input data as desired output during training. As the problems under investigation all fall under
the hetero-associative class (i.e. input patterns are mapped to categories), this feature was not
used. The Linear Qutput check box allows the user to override the selected transfer function
and forces the network to use a simple linear transfer function for the output layer. The Gauss-

ian Noise check box toggles between Gaussian noise when turned on to uniform noise when
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turned off. The Tolerant Error check box forces the network to consider a parameter tound in
the Learning/Recall Schedule dialog box as an error value to be considered as 0. When this
value is reached, learning stops. Learning can also be stopped by setting appropriate conver-

gence criterions in tools such as the RMS Error Graph.
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Figure 5.2: BackProp Builder dialog box.

The Fast Learning check box permuts the user to switch to a faster variant of the back-
propagation learning algorithm. The Minimal Configuration check box tells NeuralWorks to
eliminate less critical parameters such as the momentum term when computer memory s lim-
ited. Checking the Default Schedule box instructs the software to use a default learnming sched-
ule for all layers whereas leaving 1t blank lets the neural network designer use its own schedule.
The Default I/O Files check box allows one to direct NeuralWorks to use default file names
instead of the ones specified under Learn and Recall/Test. Checking the MinMax Table box
permits the user to get a minmax table automatically created while training data is being read in
This must be used if one wants to take advantage of the automatic linear normalization feature

provided by NeuralWorks.
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The last three check boxes allows the user to specify which standard instruments are to
be used during the simulation. The RMS Error Graph instrument shows a graph of the RMS
error at the output of the neural network with respect to the number of training passes. The
Weight Histogram instrument displays a normalized histogram of all variable weights in the
ncural network. Finally, the Confusion Matrix instrument creates a confusion matrix for each
output ncurode Figure 5.3 shows a confusion matrix. Desired outputs are mapped onto the x
axis while actual outputs are mapped on the y axis. Each axis is divided into bins. A network
that has successfully learned will have bins fully or partially filled on the lower left/upper right

diagonal.

I

Act. 0.3683

Desired
Conf. Matrix 1

Figure 5.3: Confusion matrix.

5.3.5 Testing and Evaluation
For investigation purposes, a certain class of problems was selected. In this section, the experi-

mental results are described. A brief overview of the method used to validate the results is given

first.
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Validation and Qualification of Results

In order to validate the results obtained during the experimentation, the leave-A-out method w as
applied [104]. Using this method, one takes k samples out of a total set of N samiples tor testing
(N-k) samples are thus available for training. One then repeats this procedute NA times, cach
time taking out a different set of k samples for testing All such sets of & samples must be mutu
ally exclusive. When dealing with a very limited number of samples, one typrcally sets the
value of k to 1. The size of the set of samples used for this rescarch made a 1atio of NA cqual to
3 (N/k = 891/297) seem reasonable. Three groups of 297 samples were formed and 3 “runs™
were performed for each type of neural network. In each run, one group of 297 samples vas et
out for testing and the other two groups were used for training the network. This procedure was
repeated threc times per network, each time leaving a different group of 297 samples out tor
testing and using the other two for training.
Results were qualified according to three factors:

* False recognition rate: the ratio of incorrect diagnoses to the total number of
cases.

* Rejection rate: the ratio of diagnoses where none of the network output neu-
rodes could provide a value greater than 0 (in a range of -1 to +1).

* Recognition rate: the ratio of correct diagnoses to the total number of cases It
is equal to (1 - (false recognition rate + rejection rate)).

5.4 Experimentation Results

3.4.1 Performance of the Proposed Neural Networks

Neural networks were designed to handle the following problems:

* open-circuit vs. not open-circuit (results are in Table 5.1),
* good line vs. short-circuit (Table 5.2);
* Type of short-circuit: dead left-in, noisy, rust, short-circuit (Table 5.3),

* Type of short-circuit: dead left-in, rust, short-circuit (Table 5.4);
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* Type of short-circuit: rust and short-circuit (Table 5.5).

Some verify codes in the trouble reports cover open-circuit and short-circuit problems.
However, there are no codes o differentiate between types of short-circuits. The last column in
Tables 5.1 and 5.2 show the performance of verify codes for the same problem diagnosed using
neural networks. Neural network performance when diagnosing open-circuits (98.3%) is simi-
lar to that of verify codes (98.5%). However, there is a significant difference in performance
when short circuits are considered. Neural networks offer a 96.8% performance in correct clas-
stficatton compared to 67.3% for verify code — an increase of nearly 30%.

Tables 5.3, 5.4, and 5.5 show the result of neural networks when trying to categorize
short-circuit type of problems 1nto subcategories. Results will not be compared with the present
system as there do not exist verify codes to differentiate among categories of short-circuits. The
first of thesc neural networks had to classify problems into 4 categories and offered an average
performance of 60.8%. The “noise” category was then removed due to its very small number of
samples (15). A second neural network was then trained on the 3 remaining categories and per-
formance rose to 63.0%. Another class with a small number of samples — “dead left-in” with
36 samples — was then removed to leave only 2 categories: “rust” with 126 samples and “other
short-circuits” with 303 samples. Performance for this two-category neural network was 69.2%.
Results from these three neural networks are encouraging but a more rigorous study would need

1o be carried out using trouble reports filled following strict rules. To achieve this, technicians
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Parameters *'Run | 2" Run | 39 Run | Average ‘YLL l“'::'n(‘::‘t
# of input neurodes 12 12 i12 —
# of hidden neurodes 8 8 8
. # of output neurodes 1 1 1
False recognition rate 1.6% 2.4% 5.7% 3.2% 32.7%
Rejection rate 0.0% 0.0% 0.0% 0.0% 0.0%
Recognition rate 98.4% 97.6% 94.3% 96.8% 67.3%

would be instructed to carefully identify the type of problem found and where 1t was located

Parameters IRun | 2" Run | 3"Run | Average lY:n ll"“:'n(\::i?
# of input neurodes 12 12 12
# of hidden neurodes 8 8 8 )
# of output neurodes 1 ! 1
False recognition rate 2.4% 0.3% 2.4% 1.7% 1.5%
Rejection rate 0.0% 0.0% 0.0% 0.0% 0.0%
Recognition rate 97.6% 99.7% 97.6% 98.3% 98.5%

Table 5.1: Results for the identification of lines affected by open circuit conditions

Table 5.2: Results for the identification of lines affected by short-circuit type of problems.

Parameters 15t Run 2" Run 3 Run Average
# of input neurodes 12 12 12
# of hidden neurodes g 8 8
# of output neurodes 4 4 4
False recognition rate 36.9% 41.9% 38.1% 39.0%
Rejection rate 0.0% 0.6% 0.0% 0.2%
Recognition rate 63.1% 57.5% 61.9% 60.8%

Table 5.3: Results for the identification of lines affected by various short-circuit conditions.
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Parameters 1°' Run 2" Run 3" Run Average
# of input neurodes 12 12 12
# of hidden neurodes 8 8 8
# of output neurodes 3 3 3
Fals¢ recognition rate 34.8% 39.4% 36.1% 36.8%
Rcejection rate 0.6% 0.0% 0.0% 0.2%
Recognition rate 64.5% 60.6% 63.9% 63.0%

Table 5.4: Results for the identification of lines affected by the following short circuit

conditions: dead left-in, rust, and short-circuit.

Parameters 1* Run 2" Run 3" Run Average
# of input neurodes 12 12 12
# of hidden neurodes 8 8 8
# of output neurodes 2 2 2
False recognition rate 30.0% 32.9% 29.4% 30 8%
Rejection rate 0.0% 0.0% 0.0% 0.0%
Recognition rate 70.0% 67.1% 70.6% 69.2%

Table 5.5: Results for the identification of lines affected by the following short circuit
conditions: rust and short-circuit.

5.4.2 Effect of Certain Parameters on Performance

Some parameters were varicd to observe how they affect diagnosis performance. Tables 5.6 and
5.7 show the effect of the number of hidden layer neurodes on performance. The “open-circuit/
not open-circuit” and “type of short-circuit” problems were studied. The performance on recall
is the performance obtained on the training set once the network has successfully completed

training. The performance on test is the performance on the testing set once the network has
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successfully completed training. As results show, the number of hidden layer neurodes does not
seem to affect the classification performance. Selecting the appropriate number of hidden layer
neurodes is a subject of research of its own. Rules of thumb aie given by the varnious neural net-
work package vendors but they are not universally applicable. In general, a network with too
few hidden layer neurodes will not satisfactorily extract the featutes from a set of samples On
the other hand, a network with too many hidden layer neurodes will simply memorize all the
cases it is presented instead of extracting common features.

Tables 5.8 and 5.9 show the effect of the number of hidden layers on perlormance.
Varying the number of hidden layers and the number of neurodes that populate these layers do
not seem to affect the performance for the “open-circuit/not open-circuit” problem. However,
the performance for the “type of short-circuit” problem varies slightly according to the contigu-
ration used. The partitioning of the initial problem into sub-problems resulted in neural net-
works easier to train because of the reduced problem complexity. This is why adding hidden
layers does not significantly impact the performance of the neural network. Adding hidden lay-
ers to a neural network is like adding levels of abstraction. Complex problems may benefit from
multiple hidden layers but it does not necessarily bring more value for smaller problems

Finally, Table 5.10 shows the effect of the epoch size on performance. This patameter
does not seem to have any effect on the performance for the “open-circuit/not open-circuit”
problem except when the epoch size is 64, in which case, the neural network does not 1cach sat-
isfactory learning. This parameter, along with others like the learning constant and the momen-
tum term, does not typically affect the performance of the network on recall and test. However,

it may have an impact on the learning time of the neural network.
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15t 2nd 3rd
configuration | configuration | configuration
Input layer neurodes 12 12 12
Hidden layer neurodes 12 8 4
Output layer neurodes 1 1 |
Performance on Recall 99.1% 99.3% 99.1%
Performance on Test 97.6% 97.6% 97.6%

Table 5.6: Effect of the number of hidden layer neurodes on the “open-circuit/not open-circuit”

problem,
15t ond 3rd
configuration | configuration | configuration

Input layer neurodes 12 12 12
Hidden layer neurodes 12 8 4
Output layer neurodes 4 4 4
Performance on Recall 62.8% 63.1% 63.1%
Performance on Test 62.5% 63.1% 63.1%

Table 5.7: Effect of the number of hidden layer neurodes on the “type of short-circuit” problem.

15t 2nd 3rd
configuration | configuration | configuration

Input layer neurodes 12 12 12
1*! hidden layer neurodes 12 8 8
2™ hidden layer neurodes 4 8 4
Output layer neurodes 1 1 |
Performance on Recall 99.7% 99.7% 99.3%
Performance on Test 97.6% 97.6% 97.6%

Table 5.8: Effect of the number of hidden layers and hidden layer neurodes on the “open-circuit/
not open-circuit” problem,
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1t ynd 3
configuration | configuraticn | configuration

Input layer neurodes 12 12 12
1%t hidden layer neurodes 12 8 8
2" hidden layer neurodes 4 8 4
Output layer neurodes 4 4 4
Performance on Recall 57.8% 60.6% 62.5%
Performance on Test 56.2% 64.3% 02.5%

Table 5.9: Effect of the number of hidden layers and hidden layer neurodes on the “type of

short-circut” problem.

1t conf. | 2" conf. | 3™ conf. | 4™ conf. | 5" cont. | 6™ cont
Epoch Size 1 4 8 16 32 64
Performance on Recall | 97.4% 99.7% 99.5% 99.3% 99.7% N/A"
Performance on Test 96.0% 97.6% | 97.6% | 97.6% | 98.0% | N/A"

Table 5.10: Effect of epoch size on the “open-circuit/not open-cucuit” problem.

*, Neural network did not learn satistactorily.
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5.5 Discussion and Future Extensions

Neural networks offer a performance similar if not superior to what is currently achieved by
humans assisted by traditional Operational Support Systems. One may question the complexity
of the decistons arrived at by neural networks in this research. However, in the context of tele-
phone access network maintenance, due to the high volume of trouble reports processed, deci-
stons that can be made without human assistance eventually add up to considerable savings.

Expectations were high when this research project was initiated. With time, it became
clear that data to perform more advanced fault identification was insufficient and that informa-
tion needed to perform fault localization was simply not being stored by conventional Opera-
tional Support Systems. One can expect from neural networks a diagnosis performance only as
good as the data available to train them.

An avenue certainly worth exploring for the continuation of this research consists in
gathering new data that has simply not been collected up to now. Two sources of data are
readily identifiable. First, a neural network based system should take advantage of the informa-
tion exchanged during the interaction between the customer and the answer clerk. Currently,
only the result of this interaction — a description code and a succinct remark — is kept in the
ttouble report. Projects are underway in telephone companies to replace the answer clerk posi-
tion by an interactive voice response system. Such a system would allow the customer to enter a
description of the problem affecting his or her line by going through a set of dialogues. Data
collected in that manner would certainly provide opportunities to improve the access network
maintcnance process.

A second source of information resides in the many Operational Support Systems
deployed in telephone companies. For instance, it is known that some provisioning systems
have a record of the computed length (in capacitance) of the pair of wires composing the sub-
scriber loop when it was originally installed. Such systems also store information regarding the

specifications of the subscriber loop, such as wire gauge, etc. This type of information would

78



definitely help in creating better automated fault localization systems. However, as the result of
the last twenty years of loose mechanization that took place in telephone company operations,
all these Operational Support Systems are not yet integrated. Telephone compintes ate becom-
ing more concerned about obtaining an end-to-end view of their network and so are then cus-
tomers. An integration of these systems and the benefits of mformation sharing we thus
foreseeable.

Parameters, such as temperature and the occurrence of ram fall and snow storms, play a
considerable role in today’s mode of maintenance operations. A field trial of an interactive
voice response system such as the one described above could provide the opportunity to collect
such data. Current automated maintenance systems could also be programmed to test subscriber
loops at night to gather a set of measurements describing cach subscriber loop when they are in
good condition. Data collected that way would open up interesting new possibilities for auto-
mated diagnosis based on neural networks.

Other neural network architectures are also certainly worth investigating. Self-organiz-
ing neural networks could serve as tools to study potential clusters of patterns. Probabilistic
neural networks could also be used to take advantage of the various statistics collected on fail-
ures over the years. Temporal neural networks could perhaps be utilized to detect certamn types
of noise, such as impulse noise on telephone lines. Hardware advances in parallel processing
should also open the door to other interesting applications of ncural networks in the domam of
maintenance diagnosis.

The coming of new telecommunications equipment will also change the way mamte-
nance has traditionally been done. Intelligent customer provided equipment will become capa-
ble of performing maintenance on the customer’s end of the subscriber loop thus helping
maintenance systems at the other end, such as providing additional data for a neural network
based diagnosis systems for instance. Remote Isolation Devices (RID) are quickly hecoming a
reality. By listening to high-voltage pulses on the subscriber loop on which they are installed,

these devices can perform interesting functions, such as disconnecting the customer’s premises
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from the loop and providing a standard “quiet termination” for testing purposes. Such devices
will reduce the complexity of the fault localization problem.

However, just as one should not consider network maintenance only at the access net-
work level but rather with a perspective of the network as a whole, one should also view neural
nctworks as one of a number of tools for network maintenance. Interesting investigation needs
to be done in the domain of hybrid systems. Automated decision-making systems based on a

mixture of ncural networks, fuzzy logic, and expert systems seem to be the most promising for

sophisticated maintenance diagnosis applications.
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Chapter 6 Conclusion

In this thesis manuscript, the feasibility of employing neural networks in the domam of fault
identification and localization in the telephone access network was investigated. The access net-
work itself and the present maintenance environment were first described. A first literature
review covering experimental and deployed automated mantenance systems based for the
majority on expert systems followed. Neural networks were then introduced and the back-prop
agation learning algorithm was detailed. A second literature review presented diagnosis systems
based on neural networks. The approach used to evaluated neural networks for the tash of iden-
tifying and localizing faults was then covered. A discussion of the expertmentation 1esults and
possibilities for future extensions to this work concluded this thesis. The nstallation of a field-
trial automated maintenance system will provide the opportunity to collect the data needed to

investigate more advanced automated fault location and identification using ncural networks
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