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Abstl'act 

Ncural nctwork ... have re<:c ntly regaincd '\ign ificant interest in the ~cientlfic community 

lor thclr abllity to gcncrali/:l' about large sample ... of data. In thi~ the~is, the feasihility of apply­

mg neuralll1ctworh Hl the domam of lelephone accel.,,\ network fault Identification and localiza­

IJ(JIl I~ cxplored Flr~tly, the: accc:,s network and the C'omputerized work envlronment of 1.oday's 

Rl'P'lII' Servlcc Burcau~ are d(:scrlbcd A ... urwy of past and present automatc::d dmgnosis sys­

lem ... u ... ed in communications rollow~ Neural m~tworks are then presented and the bacIe-propa­

gatlon learmng algorithm I~ given lJdrtlcular aUf'll'Ition. Another hterature review ensues where 

ncural network based dJagnosls ~ystems from a number of domain~ are presented. Finally, the 

IirM cOll1poncnt~, for an improved acccss network maintenance system are laid. Experimental 

IC~.;uIt~ show that thc opportunity exiMs to benefit twm neural networks pattern classification 

ahllity in accc:s~ netv,lork maintenance. A discusSÎ()\Il of results and suggestions for future 

rescarch work cnds thls thesis. 



Sonlnlaire 

Les réseaux neuronaux ont récemment connu un rcgalll d'll1lél\:1 malqué de la paIl dl' 1.1 

communauté ~cientlfique, en grande partie pour leur capacIté de genérahsel il pal tll d\·\l'llIpk ... 

d'entraînement. Dans cettc dis~ertation, la faisahili té d'apphquer le" 1 é~caux nCUlOn.1l1 \ au \ 

problèmes d'Identification et dc localisatIon de pannc~ dan!\ le réseau d'accè~ léléplwl\lqul' e~1 

explorée. Le réseau d'accès et l'environnement de truvail IIlformatl!\é dc!\ ccntrc" de vel ihcal Hl Il 

actuels sont tout d'abord décrits. Une revuc dcs sy~tèmes de dragno~trc automatlquc plé~l'nh l't 

passés utili~és dans le domame des communications suit. Le~ n~~eaux neulOnaux ~ont i.·n~lIltl· 

présentés et une étude particulière de l'algorithme d'apprcntis~age hasé sur la létlO-plopagatlon 

est offerte. Une seconde revue litéraire su:!, couvrant cette foi!o.les système~ de dlagnmllc ha!->é!-> 

sur les réseaux neuronaux dont l'application n'est cependant pa!-> re!\lrclIllc au dOlllallll' lk ... 

communications. Finalement, les premiers blocs d'un système amélIOré de maIntenance du 

réseau d'accès sont jetés. Les résultats d'expérimentatIon indiquent que l'oppor!ullIlé pOUl k ... 

systèmes de maintenanCl' du réseau d'accès de hénéfIcler du pouvOIr de c1a"'~llicatl()n dc!\ 

réseaux neuronaux eXIste. Une discussion des ré!'oultat~ accompagnée de ~ugge~tlon~ touchant 

de futurs travaux de recherche terminent cette dis~crtation. 
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Chapter 1 Inh'odudion 

1.1 Motivation 

Il 1:-' now c:-.timatcd that therc arc alOund 15 mtlhon lelepho11l' hile" III "CI \'Il'l' III ('.lll.ld" 1111 

Becau:-.c of forces hkc fault <Ivoid.l11cc. co,,1 1 educl 1011. and Cll"llll\ll'l "al 1' .. l.ll'l Illll, II 1'" III IIIl' 

llllcrc:-.t of Iclcphonc compal11e" 10 cnhancc 1 hell nel \\'01" m:lllllell:llll'e 0Pl'I al Ion... S 1~llIlll ,ml 

improvernents tmve been achlcvcd \11 Ihe pa:-.I Iwo dccade". c:-.pel'lally wtlh Ihe 1Illllldul'llllll ul 

OperatlOnal Support Sy:-.tems (QSS), Wlth Ihe"c "y:-.tcm". Repall Sel V 1 Cl' BUll'au" (RS B) h.l\'L' 

bccome virtually paperlcss operatlons. Wllh the l'ver 1I1clea:-'lIlg cOlllpll'Xtly .lIld dlVl'l ... lty of Ihl' 

telcphone acce~:-. network, the automation and IInprovcmcnt of lI1any IIJ.l1nlcnalll'l' III Ol'l' ""'l' " .lIl' 

now bemg considered. 

1.2 Objectives 

Thc scope of this research wOlk I!'. 10 lllvc!'.llgatc the applteablhly of nelllai nelwolh" III Ick­

phone access network maintenance. The acce:-.!'. network IS the pOlllon of Ihe nctwI>lk wllleh 

connects the subscriber's cqulpmcnt ta the tc1cphonc opcrating company .... wllehlll).! devll'e The 

other portion - the tran:-.port network - interconncet:-. :-.wttdl1ng eqUlpme111 'l'iullk,, l'UlIl1Cl 1-

ing ~wltches in the transport network are de:-.igned wlth robu:-.tne:-." 111 Illllld <1" Ihey cali y IlIgh 

volumes of traffic. Alternate routes are l'ven made avmlable 111 ca:-.e the pnmal y une" wOllld Lui 

Such protection IS unfortunately not given to the accc~\ nctwork. Il would not he ecollollllcally 

feasible to provlde every ~ingle Ime with aIl thc protcctlon glven 10 Irullk" Not "1II pll"lI1gly, li 

slgmficant portion of the total network maintenance cmt i\ devotcd tl) the aece"" net WOI k 1 (>7 J 

Neural networks have bcen cho~cn for thclr paltcrn c1a\ .... lficallon capahlllllc,> Thc prllllC 

objective of this research IS ta evaluate thc Improverncnt\ ln dlagno\l\ performance that could 



he hrought to current nctwcrk mamtenance operatIOns by using neural networks fed with data 

rcadlly avatlablc in variou!-. OSS, and to determine which additional data elements would be 

necc!o>!o>ury to provldc wider fault coverage. 

1.3 Thesis Overview 

Chaptcr 2 glvcs an ovcrview of the telephone access network maintenance environment. This 

scl!>. thc context in which this research work was carried out. A literature review in Chapter 3 

rcporl!o> advances that have been made in the past years to improve telephone access network 

mainlenance. Chapter 4 gives an introduction to neural networks and details the learning al go­

rithm that was used ill thl~ fcscarch work. A literature review of neural network classifiers used 

in diagnosis is then givcn. Chapter 5 presents the prototype system that was used to evaluate 

neural Iletworks for performing diagnosis on telephone Hnes. A discussion on implementation, 

resulls and future extensions follows. Finally, chapter 6 concludes this thesis. 
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Chapter 2 Overview of Telephone Access Network M~lintel1ance 

This chapter describes the context in WhlCh this rescarch work hu~ h~cn carncd out. Th~ lilst 

section presents the subscriber loop and its various componcnts. The n~xt ~cction gl\'e~ an OVCI­

view of the functionality of the Centralized Automatcd Loop RcpOlting Sy~tcll1 (CALRS (), .ml! 

the problem domain it covers. The subsequent section presents som~ other Operatlonal Support 

Systems involved in maintenance, provisioning and billing. A discussion of the evolutlon 01 

telephone network technology, services, and maintenance operation!. cmts thls chapter. 

2.1 The Access Network 

Figure 2.1 shows a typical subscriber loop. AIl subscriber loops takcn together forlll the acœs~ 

network. This section describes the subscriber loop tirst in terms of its components anù seconù, 

in terms of how it has been partitioned by the various telephone company maintenance organi­

zations. An understanding of the subscriber loop from both these points of view is neccssary to 

grasp why access network maintenance is carried out the way it is today. FlIlally, prohlcl11s (hat 

may affect subscriber loops are described. 

2.1.1 The Components Forming the Subscriber Loop 

A subscriber loop usually designates a pair of wires called tip and rilll-:. Il also sharc~ a thinJ 

wire called ground (or sleeve) with the other loops in the cable to which it belongs. Tir and ring 

are denominations that date back to the days of switchboards when switching wa!. donc manu­

ally. In those days, operators connected caUs using connection cord ... ended oy switchhoard 

jacks. The tip of the plug connected one wire while the ring, which wa~ isolatcd from the tir, 

1. CALRS is a trademark of Northern Telecom. 
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Figure 2.1: (a) The components of the subscriber loop;(b) the subscriber loop as 
divided by various telephone company maintenance organizations. 

conncctcd the other wire. The sleeve was composed of the body of the plug and was connected 

to li cornmon ground. Figure 2.2 shows a switchboard jack. This terminology will be used when 

wc discuss problems affecting subscriber loops. Prior to this, the components forming the sub-

scriber loop are described. 

The subscriber loop originates at the line card in the central office switch. In modern digital 

switching devices, the line card is the circuit responsible for the anaIog-to-digiwl and digital-to-

analog conversions between the switching device and subscriber Ioop. The pair of wires con-

nectcd to this \ine card goes to the main distribution frame (MDF). One can think of the main 

distribution frame as a matrix where any line card can be connected to any subscriber Ioop. The 
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cord 

slceve nng IIp 

Figure 2.2: Switchboard jack. 

pair of wires on the subscriber's side of the main distribution frame is ca lied u l'ceder pal1 and I~ 

part of a feeder cable. Not too far from the subscriber's premises is the jumpcr wire mlerface 

(JWI) cabinet. This cabinet can be thought of as a small version of the main distnhullon frall1l'. 

There, every pair of the feeder cable has an appearance on a connection malrix and ally puir of 

wire connected to the subscriber's premises, i.e. any distribution pair, call he conncclcd to ally 

of the available feeder pairs. In a jumper wire interface, there are more dlstnhution pait s Ihan 

feeder pairs. This is normal since up to three pairs of distribution wires call run to ail subscnh­

er's premises even though only one of them is typically used. The distribution pair connecl~ to a 

protection device just as it enters the subscriber's premlses. This protection dcvlcc is typically a 

set of carbon fuses that protect the inside premises loop from hazardous voltagc~. Fmally, on the 

other side of the protection device, the distribution pair, then called the inside Wlre, rullS 10 Ihe 

customer premises equipment (CPE). Telephone sets are typically Ihe CPEs round m suh~cnhcr 

premises, but modems, facsimile machines and answering machines are abo common. 

The description given above is that of a typical subscriber loop. However, If the loop I~ 

long, loading coils are installed at regular intervals on the Ioop to hclp rcducc attcnual1on. In 

other cases, the subscriber loop may originate from a remote concentration unit. In ~uch a ~Itua­

tion, the feeder cable in Figure 2.1 on page 4 can be replaced by a carrier, and the Jumper wire 

interface cabinet by a remote concentration unit. Subscriber Ioops are connected to Ihe rcmolc 

unit as if they were connected ta a switching device in a central office. However, c()nver~atlOn~ 
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carncd on tho:-.e loop~ are ail concentrated on a carrier that goes to the central office. At the cen­

trai office, the switching de vice proces~es ail these conversations as if they were carried by nor­

mal loop~ to the main di:-.tribution frame. 

2.1.2 The Subscriber Loop as Viewed by Maintenance Organizations 

Telephone network maintenance organizations partition subscriber loops in a slightly different 

way. The length of wire that is inside the central office is known as the CO portion of the loop. 

The stretch going from the central office to the last pole on the way to the subscriber's premises 

is known as the portion belonging to the outside plant. The pair of wire going from the last pole 

tn the protection box is called the outside wire. Finally, the last stretch of wire going from the 

protection box to the customer pre mises equipment is termed the inside wire. 

The partitioning described above reftects the way maintenance is distributed among 

lclephone company work forces. The central office maintenance people take care of the CO por­

tion of the subscriber loop. The cable repair staff handles the maintenance of the outside plant. 

Finally, station repair people are responsible for inside and outside wire problems as weIl as 

tclephone set~ problems. 

2.1.3 Problems That May Affect Subscriber Loops 

Prohlems affecting subscriber loops are generally of two types: physical damage and transmis­

sion impairments. 

Physical damage 

The subscriber loop operates in a hostile environment: outside wires are ruptured by trucks, 

underground cab les are tom apart by excavating machines, inside wires are eut or squeezed by 

people renovating their hou se, weather conditions cause wires to rust, etc. 

6 



A loop that has tip and/or ring open. or tIp and ring short-clI"Cll1ted prc\'cnt~ il ~lIh~l'Ilhl'l 

from placing and receiving caBs. Loops damuged hy rust arc nois)'. In thc wor~t ca~l'S. lll~t Illay 

cause conductors to short circUit each other, or to crack open. 

Physical damage to the loop is the main cause of ail prohlcllls rcpol tcd to Rcpair Scrvlce 

Bureaus [81]. It is naturally easler to fix a problem when the sub!-.cribci l'an visually idcntlly the 

trouble since this saves repair personnel the laborious task of locating the faul!. Whcll thl' Cll~-

tomer cannot visually identify the prohlem. maintenance people must rcJy on ckcllicai IIll'a-

surements to identify and attempt to locate the fnuIt. A short circlllt I!-. recnglll/.ed hy thc low 

resistance value measured between tip and ring. A groundcd conduclor ha~ a low leslslancc 

value between its terminal and ground. A loop that has both tip and ring eut open Will show an 

abnormally low capacitance value between tip and ring. Fmally. a patr that has l'tlher III' 01 Img 

eut will give significantly different measurements for tip-to-grollnd and ring-to-grollnd capacl-

tances. 

Transmission impairments 

Transmission impairments that may be encountered dunng a conversation l'an he due to 

[35][93]: 

• transmission loss; 
• crosstalk; 
• circuit noise; 
• power influence; 
• impulse noise; 
• distortion; 
• echo. 

Transmission loss accounts for the attenllation that thc signal suffers l'rom gOll1g Ihrollgh 

wiring, coupling transformers, coupling capacitances, and other devices. Cros~talk 1 ... thc partial 

replication of a signal from one channel into another channel. Crosstalk l'an hc cau~ed hy clcc­

tromagnetic coupling between physically adjacent circuits, circuit unhalancc, componcnt!'l and 

circuit boards in the switching device. or exces~lve repeater gain. Circuit nOise i!'l thc n()J~c that 

appears across the two conductors of the loop. It can be due to random thermal motion of elec-
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tron ... , ... tatlc from hghtning !o.torm ... , or erior!o. caused by quantizing the ~ignal into discrete steps. 

Power inl1uencc de"ignatcs the type of nOl!o.e re!o.ulting from longitudinal currents induced from 

power line~ adjacent ta the loop. It!o. effect - a steady "hum" - is more notJceable when the 

loop i~ unhalanccd. Impubc noi!o.e is caused by arcing relay contacts, corroded connections. and 

had wire ... plicc~. ft is u~ually defined a~ a voltage increase of 12 dB or more above the back­

ground nOI~c la~tIng 1 0 m~ or less. Data communications are particularly affected by this type 

of noi!.c. Di~tortion can be linear or non-linear. Non-linear distortion can be caused by trans­

forme!'!., active dcvices, analog-to-digital converters, etc. Linear distortion can be caused by 

pha!.c and amplitudc variatIOns in sorne fiIters [35]. Finally, echo or signal reftection can happen 

in a circuIt with badly matched impedance and becomes objectionable when there is sufficient 

delay, thus making conversation very difficult. 

Non-Electrical Problems 

Customcr Action Faults form a category comprising ail the faults generated by subscribers not 

properly using thcir telephone sets. A well-known fault included in this category is the receiver 

ofT-hook. Telephones left off-hook draw current from the central office battery. After a certain 

pcnod of no signalling activity from the user, the switching equipment seizes the line, Le. it 

Icmovcs the battery from the line to avoid wasting resources, both in terms of energy and caU 

proccssing. Somebody trying to make a cali on a line which has a secondary set with the 

rcccivcr ofJ-hook will not be able to signal the number desired and may go to the neighbor to 

call the Rcpair Service Bureau. These caUs sometimes result in unnecessary dispatches. 

This category of faults has grown in the recent years with the offering of Custom Call­

mg Features (CCF) and CalI Management Services (CMS) 1, and it is likely to grow even more 

with the udvcnt of ISDN, home telecommunications, video-on-demand, etc. A new breed of 

problems with no relation to the loop itself, but rather to the services il carries, has appeared and 

1 Abo known :IS Custom Local Area Signaling Services (CLASS) in the V.S. 
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will continue to grow und stress the urgent need for a better integration or tdephllne ~olllpanic!'-' 

management information systems. 

2.2 CALRS: A Centralized Automated Loop Reporting System 

Northern Telecom first introduced CALRS m late 1976 to answcr tclephone l'ompanic!'-' Ill'l'd 10 

automate and streamline their Repair Service Bureau operations [2R 1. The creation and tlmv 01 

trouble reports, the maintenance of customer Ime records and trouble Il'polls. hne le~tlllg, and. 

to sorne degree, diagnosis, were aIl mechanized. ThIs led the way to a papcrlc~s Rcp:m Sl'I VICl' 

Bureau. In addition, CALRS provided tools for the analysis of trouble trcnds and for admillls­

trative tasks, such as the evaluation of the workforce performance. 

2.2.1 Hardware Architecture 

Figure 2.3 shows the ongmal architecture of CALRS. The CALRS sy~tem wm, onglllally l'OllI­

posed of 3 PDP-II mini computers, each one of them handling specifie ta~ks. Thc dataoasc pro­

cessor handled the database disk drive, the backup magnetic tape drivcs. and thc local ami 

remote printers. The terminal processor provided the person machine lIlterfacc to thc ~ystelll 

and performed sorne system administration tasks as weIl. The diffcrent p()siti()n~ ,IIC cxplaincd 

in the next section. Finally, the test processor performed ail loop acce~~es and te~t runctlOn~ 

using local or remote test units. Today, CALRS has been ported to the UNIX cnvironment. 

2.2.2 Functional Operation 

The main goal of CALRS is to ease the ftow of trouble reports within thc Rcpmr Service 

Bureau. To this end, it electronically supports a number of dlfferent pO~ltlOn~, each with thelr 

own functionality and privileges. Figure 2.4 shows the different positions and \y~tcm~, and how 

1} 



Telephone 
network 

Remote 
test unlts 

Access 
and test 
hardware 

Telephone 
network 

posItion 1 
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position n 

Figure 2.3: Original CALRS system architecture [28] 

Database 
processor 

mag tape 1 1 

mag tape iiJ 

thcy intcract. Even though Il is not depicted explicitly, positions contained in the shaded region 

communicate and exchange electronic trouble tickets with one another. The roles of the differ-

cnl positions namely answer clerk, tester, dispatcher, analyst, records c1erk, manager, and robot 

will now he cxplained [28]. 

Answer Clerk 

The answcr c1erk is the contact with the customer. The function of this position is to record the 

description of the problem the subscriber is reporting. If the problem is a broken telephone set, 

the answer c1erk simply directs the subscriber to the nearest phone center where the set will be 
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Figure 2.4: Interaction between Repair Service Bureau positions and 
Operational Support Systems. 

\1 

Cuhlc ( Jl 
Repit Il ,( ~ 

replaced. If the problem lies in the misunderstanding of a feature such as cali forwardlllg, the 

necessary instructions are described to the custorner. 

In the case of a subscriber reporting noise on a linc, or being affecled by rnelallic comll-

tions such as open circuits, short circuits and shorts 10 ground, the answcr c1erk issues a verity 

command on the line in trouble provided the customer has hung up or is calling from anolhcr 

line. The test unit then returns electrical measurements which CALRS interprels to providc the 

answer clerk v. ith a verify code. The clerk uses this code to detcrrnine If a tcchnician nccds 10 

be sent and if so, inforrns the custorner. If the probJern is suspected 10 be inside the cu.,tomcr'., 
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preml~e~, the an~wer c1erk ~ets up an appointment with the subscriber. Finally, the clerk uses 

ttll~ code to route the trouble report to the appropriate position. 

'l'ester Position 

The tester pich up where the answer clerk left off for those problems requiring further investI­

gatIon. In addItion to the verify command available to the answer clerk, the tester has access, to 

li ~ulte 0/ tc~ts that allows for the testing of anything from the rotary dial of a subscriber's tele­

phone to the ability of a line card to detect on/off hook conditions. The tester may also consult 

informatIon ahout billing, switching device settings for a particular line and the physical com­

ronent~ of the loop. Using test results and information from those databases, the tester de ter­

mll1cs what the problcm i~ and where it is likely to be located. This information is then given to 

the dispatcher so that the appropriate technician gets sent out to fix the problem. 

Dispatcher Position 

The main responsibility of the dispatcher position is to send out field repair personnel on the 

trouhle reports which require physical work. The size of a Repair Service Bureau may justify 

the furlher subdivision of lhis position into lhree areas. The station dispatch function dispatches 

ail trouhles on regular telephones. The cable dispatch function dispatches the cable related trou­

hIes. Fmally, the central office dispatch function dispatches technicians for central office repair 

work. Before sending out any technician, the dispatcher verifies that the reported condition is 

still affecting the line. In the case where the problem has cleared up by itself, the dispatch is 

cancclled. In addition, the dispatcher then caBs the subscriber to verify that the condition has 

mdecJ disappcared. Il is common to have telephone lines affected by bad weather. The prob­

iCl11s affceling these lines usually dlsappear when normal weather conditions resume. 

Analyst Position 

The analyst investigates related trouble reports to establish patterns in order to identify major 

faults that could be affeeting a significant number of subscribers. The analyst must also instruct 
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the computer system about repair activltlcs, ~lIch as cahle rcp,l11', whtch l'ould atTcl'1 1'1I~IOnll'l 

service. That way, the answcr clcrk can rcadtly know, whcn IClnevlIlg a 1'1I:-.IOlllCI rl'l' 0 1 d, that 

maintenance or repair work is already scheduled 01 hcmg donc llI1 a line. Suhsl'lIhl'l:-'l'alling 10 

report a problem are then immediately advised that work l~ already in proglc~s Thc analy~t 1" 

also responsiblc for monitoring the performance of rcpalr pcr:-.onncl hy analy/lng 11ll' Iwuhk 

report history files. The performance of certaIn telcphone lines may also he monilol'l'd hy IhL' 

analyst. 

Records Position 

The operator at the records position creates, deletes and lIpdalc~ entncs III the CU~IOllll'r lllle 

records database. These respoo!Jibilities are often assumed by the an:-.wel dei k, dependmg 011 

Repair Service Bureau policies. Today, a portion of these modifications arc cal ned out aulolllal­

icaUy at night when one of the business office Operational SUppOit Sy~lel1l~ contacts CALRS to 

download new information. The objective of the telephone compal1lcs IS to l'ully automatc Iim 

process in order to eliminate database discrepancies causcd hy l1lanllal cntllc~ done 1 rOll) one 

system to the other, Manual entry is inevitably prone to errors and introducc~ dl'lay~ due to tilt.' 

sheer volume of records to process. 

Management Position 

The task of the manager is to supervise the operations of the Repair Service BUICi.tu. Rcportmg 

tools supplied with the system provide the manager with ~tati~lical report., on vanou~ a~pccl .... 01 

the maintenance operations. These reports can be either rcque~ted or gcneraled automatH.:ally 

Robot Position 

The robot position provides an effective means 10 alltomatically per/orm follow-up te .... t<. on 

lines suspected of being affected by intermittent problem~. In the pre~cnt mode of ()pCratlon~, 

trouble reports must be explicitly sent to the robot in order to have automatH; te .... t\ pcrformed. It 

is presently used at night to verify trouble reports that arc scheduled for dl~patch the following 
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day. The concept of havmg a robot launch te,>t~ on pre-defined telephone lmes i~ important in 

the context of automated mamtenance operatIOns. At pre~ent, thls robot must be instructed as to 

whlch Imc tn Îc:-'l :tnd at what time. Opp0I1unitie~ eXI~t to make a more productive usage of this 

IOhot '>0 that It can rcac! to trouble report!'.. For imtancc, such a robot cou Id be aware that a trou-

hie report concernmg a !'.ub!'.crihcr Ime affected by a metallic condItion needs to be tested at reg-

1I1ar II1tcrvab !'.mce the prohlem may dlsappear. As was mentioned before, a number of 

p/ohlcll1!'. arc cau~cd hy had weather condItions and typically disappear when normal weather 

re~lIrne~. Having a rohot consi~tently verifying such lines could save unnecessary dispatches 

and hclp reduce mamtenance costs. 

2.2.3 CALRS Benefits 

1\ !-.y!'.tem !o.lIch as CALRS radically changes Repalr Service Bureau operations. First, the elec-

trolllC trouhle report 1l0w provided by CALRS eliminates the requirement for the records clerks 

who wcrc nccdcd to manually retrieve and deliver trouble reports and customer line record 

cal ds to lesters and dispatchers. There is still a records position in the CALRS environ ment, but 

Il only serves the purpose of updating that portIon of the computerized tine records that cannat 

yet he updatcd eleclronically. ThIs records position is normally handled by the answer clerks 

dllring their idle tlme. 

The major advantage brought 10 network maintenance by a system such as CALRS is 

the improvcd quality of service to the customers, which is of prime importance to telephone 

c01l1panies since most of them are regulated by government agencies in their respective coun-

trics. Among the CALRS feature~ that help improve the quality of service are [28]: 

• the I111medtate avmlability of trouble reports and their current status in 
the system; 

• the detection and identification of trouble reports in "jeopardy", i.e. 
those that will not be fixed by the time negotiated with the customer; 

• the ability ta perform loop testing while being in contact with the cus-
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tomer (provided the cu~tol11er I~ c.lllmg l'rom a IlIlc othCl than the onl' 111 

trouble); 

• the abIlity for the ùl"'patl"l1Cr to Ic-test ~Uh~l'llhL'r hnc ... lK'filll' "'l'ndlll~ 
out tcchmcmm, 

• the ehm!llutlon of dclay~ due ln lost or dleglhlc ICl'nl d~. 

• the Identification of trouhle pattern and rcpail \VOIt.. al'llvlllc:-, tll.1I Ill.l)' 
affect customl'r ~ervlce; 

• better management of apJ1oll1tmcnb. 

In additIOn, CALRS helps llnprove the R'~pair Sel vice Bureau work lllg cnVllllllllll'lll. 

and facilitates reSOllf"e management and l'valuatIon [2g 1. Wlth the l'on~ohdalloll ni Rcpall SCI 

vice Bureaus made possible by CALRS, reductlon~ III the llulllhcr of an:-.wcr deIl ....... le ... ll·I .... dl ... 

patchers, and managers are po~siblc. Network maintenance operatIon ... cn~'" l'ail Ihl! ... 1)(' 

significantly reduced. 

2.3 Related Operational Support Systenls 

Many Operational Support Sy~tem~ (OSS) wcrc 1l1lroduccd along wllh CALRS llJ the lall' 7()" 

There was a strong move toward~ mechanization of opcration~ and l'very olgallllatioll wlllllll 

the lelephone companies developcd ils own sy~tcm 10 an~wer ~pcclfic nccd~ wllholll paylllg 

much attention to the opportunities for shar1l1g lI1formation with olher <.;y~lclm Prov((llllg and 

improving communication channels between Operatlonal Support Sy"item~ i~ onl' of lhe tcll'-

phone companies ongoing efforts [67]. Some Operatlonal Support Sy ... ll'/ll~ 'l'levant to tcll'-

phone access network maintenance are described In thi~ ~ecllun. 

2.3.1 Billing Information Systems 

Billing illformation systems contain information about ail thc ~crvlcc" a cu ... tomcr "'UIN':I 1 he ... 10 

Billing Information systems are used by tc ... ter~ tu ~olve probJcm ... regardmg d, ... connccted lille ... 

and services ordered but not yet in~talled due to delay~ or human crror .... Smcc ... ervlcc charge ... 
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arc calculatcd based on information found in billing information systems, this system is taken 

a ... the point of referencc when resolving discrepancies. 

2.3.2 Plant Assignment Databases 

Plant a!o.!o.ignment databases contain information about the physical components of the access 

network. Fecder cable and pair numbers, distribution cable and pair numbers, jumper wire 

interface identifiers and locations, etc. are stored in plant assignment databases. Critical inpub 

to the reasoning process of a tester, such as the presence of bridge lifters, loading coils, or 

rClllotc concentrator units, are also contained in plant assignment databases. Plant assignment 

databascs arc also used in cable repair. By sectioning a subscriber loop using the information 

containcd in these databases, it becomes possible to localize a fauIt. 

2.3.3 Switch Maintenance Interfaces 

Usillg ~witch maintenance interfaces, access network maintenance personnel can query the sta­

tus of a partlcular subscriber line. They can also verify if a line is idle, currently used, or seized 

hy the central office equipment. The status of custom calling features, such as call forwarding, 

can also be verified through a switch maintenance interfa('e. Finally, a wide variety of tests, 

mngillg from electrical measurculCnts to noise measurements and bit error rate tests, can also be 

launched from the switch maintenance interface. 
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2.4 Evolution in Telephone Network Technology, Services, and Operations 

The telephone access network is presently going through .1 trun!>ition perioJ whcrc ohl 

equipment such as step-by-step and crossbar switehing otllccs arc grudually heing leplaccd hy 

more advanced equipment such as members of thc DMS 1 family of digital sWltching dcvicc!>. Â. 

variety of remote units that concentrate telephone lines in rurul arcas WIll SOOI1 he Ictlrcd. Thl'!>l' 

units may be replaced by AecessNodes2 which havc a t1bcr opties hnk to the central oflke 10 

which they belong. In addition, each of these AccessNodes will hc cquipped \Vith lb OWIl ll'~l 

head, which was not the case with sorne of the old remote units. 

There are also possibilities to introduce remote isolation dcvices on thc clIstomer'!'. prc­

mises side. These devices allow an operator or a system to temporanly isolalc thc custOIllCI \ 

premises from the rest of the network or to place a standard termmation on the cll~t()mcr'~ plC-

mises end for testing purpO'ies. These devices would have a considerahle impact on acccs~ Ilel­

work maintenance as they wou Id indicate whether a fauIt is inside or olltside the clIstolllcr's 

premises, thus avoiding setting up unnecessary appointments with customcrs. ln a situatloJ) 

such as the one which prevails in the United Stateli where subscrihcrs own and arc rc~pon~ihlc 

for the inside wiring, it wou Id eliminate the need for the telephone company to ~end lcchlllcian!> 

to the customer's premises only to verify if the problem is thcirs or the customcr's. 

The network clements that were just described are readily availablc. Howcvcr, it WIll hl' 

sorne time before aIl the old equipment gets replaced by lhesc ncw dcvicc~. In the mcantllllc, 

maintenance organizations have to deal with the added complexity of a hctcrogcnous net WOI k, 

where old technology coexists with the state-of-the-art. Testers working III the~c c()nditlOn~ 

must be aware of what the subscriber loop is compŒed of since this knowlcdge dcfinltcly influ­

ences their diagnosis strategy. 

1. Digital Multiplex Switching (OMS) is a trademark of Northern Telecom 
2. AccessNode is a trademark of Northern Telecom. 
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2.4.1 New Services 

One of the major impacts that new network elements will have on network maintenance is the 

plethora of new ~ervices they make possible [89]. Revenue generating features such as call-for­

warding or caller identification have also engendered a new breed of maintenance problems. 

When a ~ubscriber is experiencing a problem with Plain Old Telephone Service (POTS), it is 

1110st often because of metallic conditions one can actually measure. By contrast, problems gen­

cratcd by ncw calling features are often related to the usage of those features. As features 

bccomc more sophisticated, their usage becomes more difficult. Improvements in the user inter­

face, such as going from Dual-Tone Multi-Fre.quency (DTMF) detection to speaker-indepen­

dent speech recognition, will certainly make these features easier to use and thus reduce the 

number of trouble caUs to Repair Service Bureaus. For the time being, testers must learn to deal 

with these problems and be aware of their existence. For instance, a subscriber reporting noise 

on a line may simply be mistaking the characteristic call-waiting signal for spurious noise. This 

kind of problem frequently affects Repair Service Bureaus serving regions where such features 

have been widely provisioned for promotional purposes. 

Other services like Integrated Services Digital Network (ISDN) and wireless communi­

cation services are gaining in popularity. ISDN maintenance is very demanding in terms of test­

ing capabilities. Wireless communication services are forcing a paradigm shift in access 

nclwork maintenan..:e since there is no concept of a subscriber loop on which one can carry out 

electrical measurements anymore. In addition, the actual path used may have changed quite a 

number of times during the conversation. Issues like keeping track of this kind of information 

still needs to be resolved. Finally, the move towards a fiber optics based network will undoubt­

edly Icad to the introduction of new services, each of which will require ils own testing and 

maintenance procedures. 
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2.4.2 Towards Integrated Maintenance 

Traditionally, telephone company maintenance operations have alway!. heen dl\'lded mtn a 

number of separate organizations. Each of them developed its own tools and installcd its own 

testing equipment. Today, in an effort to provide bettcr and faster service lo ~lIhscrihcr~. tl'lc­

phone companies are planning to replace sorne Operational Support Systems hy sy~tems that 

will offer an end-to-end view of the network. A system that can group information t'rom varillll~ 

sources to provide such a global view will considerably improve network maintenanl'C. Mainte­

nance personnel will have easy access to complete information about subscnher~ and the circuit 

serving their premises. It will also be possible to build automated systems who~c diagnosmg 

capabilities will be doser to that of human experts because of this cnd-to-end vicw which Ihey 

will have access to. 

The next chapter contains a tirst literature review. Articles about the research work Ihat 

led telephone companies from paperless Repair Service Bureaus in the mid 70's 10 today\ 

experirnental and deployed systems fulfilling a more active role in dtagnosis will he prcscntcd. 
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Chapter 3 Advances in Telephone Access Network Maintenance 

Back ln the 1 960's the prime improvement in access network maintenance was the introduction 

of a conveyor to forward trouble report cards and customer line records from one desk to the 

other 183 J. Rcpair Scrvice Bureau personnel were cJearly overloaded and could no longer 

respond to the demand. Hiring more staff to work in already overcrowded offices created more 

prohlcl11s than it solved. The quality of the maintenance service was indubitably decreasing and 

therc was growing cvidencc that telephone network maintenance operations needed major 

improvcrncnts. 

Wllh the ad vent of compm.ers such as the IBM 370 and the PDP series, telephone corn­

panic~ around the world made a tirst effort to automate the maintenance process in Repair Ser­

VICC Bureaus. Researchers from various organizations were invariably striving for a common 

goal: thc creation of a paperless Repair Service Bureau that would help telephone companies 

cope with the ever increasing number of subscribers. These multi-user systems annihilated the 

nced for paper records and conveyors. AlI records were stored in databases and exchanged elec­

tronically between the various positions in the Repair Service Bureau. In addition, the central­

ization of information offered by the computer system provided an ongoing up-to-date view of 

ail repair appointments and their status. This heJped to considerably reduce the number of dupli­

l."ate dispatchcs, resulting in savings far network maintenance organizatians. 

Today, telephone companies are facing a different kind of problem. On one end of the 

loop. subscribers are now allawed to connect whatever they like to the access network. There is 

a large variety of telephone sets, modems, facsimiles, and answering machines that are now 

availablc. Each of them shows different electrical characteristics. The days when a typical "500 
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set" 1 was expected at the subscriber's end are definitely over. Whut is sittlng at thc ~uhscnhcr'~ 

end now adds an unknown variable to the prohlem. 

AIl kinds of equipment are also found on the other end of the loop. Althnugh. soplllsti­

cated digital switching offices appeared some 15 years ago. a slgnitkant tlulllocr of nId dCClIo-

mechanical devices, such as crossbar and step-by-step switches mc still at thc hcart of many 

central offices. A knowledge of the components forming a subscribcr Inop is crucIal IIlC:lllylllg 

out a meaningful diagnosis. 

Furthermore, Plain Old Telephone Service (POTS) is no longer the only ~ervicc olTclcd. 

Custom Calling Features (CCF) and CaU Management Services (CMS) arc now availahle. A 

variety of special services including data Hnes, telemetry lines and alarm lines, arc abo IIlstalled 

in today's networks and more are still to come. 

This wide variety of equipment at both ends of the loop couplcd to the Illultltudc or ser­

vices now offered have brought subscriber loop mamtenance to il high levcl of complexity. Thi~ 

chapter will focus on developments in telephone maintenance systcms. The tirst scellon of the 

following literature review will present sorne of the first computenzed telephone netwOi k main-

tenance systems that led to paperless Repair ServIce Bureaus. The next ~ection will dcscnhe 

how artificial intelligence has been applied to telephone nctwork mamtenancc. PIIl ull y, the 

chapter concludes by presenting the directions that new dcvelopment in nctwork mamtcnancc i~ 

likely to follow in the decade to come. 

3.1 The Paperless Repair Service Bureaus 

The initial introduction of computers in network maintenance operation~ led 10 the papcrlc~~ 

Repair Service Bureau. This section presents sorne of these ~ystems and dc\cnhe't thelr func-

tionality. 

1. The 500 set was a very popular telephone !let manufactureu by We!>tern Eler..tnc and renlcu 10 mo.,1 .. uh­
scribers of the Bell System. The same !oct wa!. al!.o offered in Canada through Northcrn Elcctnc whit.:h ha\ 
since become Northern Telecom. 

21 



Dlflltcn makc~ Iwo oh .. crvation .. that were valid for the majority of Repair Service Bureaus in 

the carly 70'~ 128J. Flr~t, cu~tomer records and trouble report~ were kept on paper records, forc­

ing the RSB per~onnel 10 wa~te considerable lime just handling paper and manually copying 

mformatlOn. Second, ail te~tmg and diagno~ls actlvities were carried out by skilled testers, even 

though a ~ignificant number of the troubles were very straight forward problems that did not 

rcqulre ~uch ~kill~. Inefficiencies cau~ed by the handIing of paper records and the lack of a cen­

traI mcmory to kcep track of records and repaIr activities often lead to unnecessary dispatches 

for a ~Ignificant portion of the troubles. The sy~tem he describes is a self-contained system con­

~olidatmg and handling aIl RSB functions as a whole in an automated fashion. The result is a 

virtually paperless RSB where trivial problems can be handled by the answer clerks. With its 

ahllIty tn kcep track of fault patterns and repair activities, the system saves a number of unnec­

c~~ary dlspatches. 

Martin dcscribes Repmr Service Bureaus as having four main functions [73]. First, the y 

halldle the plOcessmg of trouble reports. Second, they perform diagnosis and testing. Third, 

Ihey maintmn customer and trouble records. Finally, they analyze trouble reports for patterns 

that are signs of major fauIts and that require quick repair action. He reports that during the late 

60's - carly 70's, it was realized that testers were spending much of their time processing simple 

le)lorts, the diagnosis of which was relatively straight forward and did not require the skills of 

an experienccd tester. Martin then reports on systems such as Line Status Verifier (LSV), Line 

Faull DcteclOJ' (LFD), and Loop Maintenance Operations System (LMOS). LSV and LFD were 

the first sleps toward testing automation white LM OS allowed Repair Service Bureaus to 

rcducc the cost of record handling by mechanizing most of the administration activities. 

Dale reports that Repaar Service Bureaus went through three generations of Operations 

Support Systems up to the late 70's [24]. The first generation saw the appearance of two sepa­

raIe systems: LMOS which climinated paper records and LSV, which allowed quick automated 

tcsling of subscribers' lines. Operations Support Systems of the second generation were more 

intcgratcd. The Automalic Line Verification (ALV) system was capable of automatically access-
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ing lines and made use of the data found 111 LMOS to determinc wllll:h type of te~t~ tlllllll. The 

third generation was characterized by hUldwarc wlth SOI11C imhedded intclllgenù'. The Mcdla­

nized Line Testing (MLT) system had a more extensive test sUIte than the ALV and could mtel­

pret electrical measurements to provide a simple [mm of ~lutol11ated lhagno~i~. 

The tirst version of the MLT system developcd hy Bell Lahoratorics did not ttll'nrpol'lle 

aIl the features of the manuul test facility known as the Local Test De~k (l~rD). Dale ('/ a/ 

describe the second version of the Mcchanized L1I1e Testing system 1251. lbtng a hlghly dl~tl Ih­

uted processing architecture, digital signal processing techniques. and new mea~UrCIlll'l1t tL'ch­

nology, this system compietely replaces the LTD. In additIOn, the liser 1l1terlacc wa~ l'atd'ully 

designed such that Repair Service Bureau personnel with less experiencc than TL'~t Desk ted1l1i­

cians could operate il. 

Morishita et al, report of a similar system in [80], To improve maintenance ill a tcle­

phone network serving more than fort y million subscribers, a new Subscriher Line Testing Sy~­

tem (SULTS) and a Subscriber Information Filing System (SIFS) were developed. 'l'lm. ncw 

system brought improvements in the foIlowing areas: flexibllity in adding new IIllormation. 

improvement of measuring accuracy, improvements in operation through a hettel per:-.on­

machine interface, automatic compilation of statlstlcs for repair service management and con­

centration of testing operations, SULTS/SIFS is flexible enough to accommodate the introduc­

tion of new telecommunication devices in the network. 

In another paper, Cartwright describes the 4TEL automated sub:-.cnher line te~t sy:-.telll 

which provides telephone companies with toob to offer better quality whlle rcducmg co..,t:-.1191. 

To accomplish this, 4TEL offers the following functions. The Daily Advi<;ory i:-. a managcnal 

and repair action report based on routine te~ts run at llIght which provlde ... mput to preventive 

maintenance. Fault distribution is provided by the sy~tem, reducing the numbcr of wrong or 

unnecessary dispatches. It aiso supplies mean~ of performing accurate fault locatIon wlth the 

help of a Iinesman, Finally, special diagnostic testing capabilitie!'. to handlc prohlcln!'. ... uch a~ 

coin phone faults and dialing problems, are also available, 
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Acccs ... network mamtenance ha~ al ways been a highly expensive and labor intensive 

procc~.... Sumner report~ on various Operational Support Systems that were introduced to 

rcducc the expen~c in daily operations of telephone companies [99]. Such systems were intro­

duccd for planning and engmeering, scheduling, keeping inventory, assigning and controlling 

facilitics, and maintaining the access network. Sumner notices that the majority of these Opera­

tlOnal Support Sy~tcms were dcsigned as stand alone systems to accelerate development. Oper­

ational Support Systems have impacted the telephone companie~ considerably by reducing 

personnel requircmcnts. Howcver, to this date, telephone companies are still struggling with the 

prohlcm of intcrfacmg these different and most often incompatible systems. 

3.2 Automating Telephone Network Maintenance 

As a rcsult of the growth and evolution of the telephone network, the need for telephone compa-

e nics to improve the efficiency of their maintenance operations has arisen. Encouraged by the 

rcsults or cxperimental diagnostic expert systems such as MYCIN [27], Prospector [30], and 

DART [ Il]. a number of researchers in the communications domain have designed and studied 

li varicty of expert maintenance systems. In this section, experimental and deployed systems 

that coyer cable, trunk, carrier, customer trouble reports, special services, switching device, and 

nctwork maintenance are described. 

3.2.1 Cables, Trunks, Carriers, and Transmission Equipment 

Automated Cable Expertise (ACE) [13][77][97][103] is a knowledge-based expert system that 

provides troubleshooting and analysis reports for telephone cable maintenance. Facts are gath­

crcd from a data base management system used to store maintenance information. Knowledge 

comes from the users of this database and from primers on maintenance analysis. Users of this 

database regularly analyze considerable volumes of data to identify cables which should receive 
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maintenance to prevent troubles affecting il large number of cu~tOl1ler~ ACE rUlls at night: Il 

looks at reports in the Cable Repair Admullstration System (CRAS). assesses which cahlc~ ;IIC 

likely to need preventive maintenance and forwards the reslllts of Ils reasonlllg via Ck'ctlOllll' 

mail to lIsers of the system who pick them up thc following Illornmg. Prewnllvc tlHllntl'llanl'l' 

has traditionally been an activity that was donc during operator~' spare time. ACE helps Illakc 

preventive maintenance a regular tool of nctwork operations. 

The Interactive Repair Assistant (IRA) is an expert systelllthat providcs tlOlIblc~hoot\l1g 

advice to field technicians who have to repair telcphonc circlllt~ having nOIse and transllli~slOll 

problems. Horton et al. describe the goals of this system as being: improving fil'ld tedllllctan~ 

productivity, helping field technicians to repair a broader variety of prohlellls and cqllipmcllt. 

and providing real-time advice in the mamtenance, diagnosls, and rcpair of thc local tclcphol1c 

network [47]. The system has to serve many users outside of a typical office enVilOl1lHcnl. To 

achieve this, craftspersons are equipped with hand held display lImts that l'an COlllllllll1\Catc 

with the central system via a modem through reglliar telephone lincs. Thl~ prototype ~y~telJl 

consists of 625 "screens" (plus associated heip scrcens) and ahout 200 inferenl'c mies. Each 

screen either requests sorne inputs or provides information to hclp craftspcrs()n~ dunng thc ll'OU­

bleshooting process. By supplying expert advice and information, IRA incrca!'>cs thc clltcicllcy 

and productivity of field technicians. 

Donaghy and Omanson describe MICE, the Metropolitan Inter-omcc Can icr ExpclI 

[29]. By using system integration and alarm correlation, MICE is capablc of Hnding thc cau~c 

of digital carrier failures. The information necessary to find thc cau!'>c of such fatlurc~ I~ ~cat­

tered among man y Operation al Support Systems in thc telephone opcrating companics whlch 

renders this task difficult to carry out. By visiting ~cveral Facility Mall1tcnancc and Admjni~tra­

tion Centers in the network, the authors were ablc to find a human expert who wa~ al'hicvmg an 

impressive diagnosis performance by manually collecting alarm rcport!'> and othcr information 

from many Operational Support Systems. They captured this cxpcrt'!'> knowlcdgc lI1to an expert 

system containing sorne 160 OPS83 production rules. By provlding ... y ... tcm integration and 
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building an expert ~y~tem capable of correlating and anaIyzing alarms from different network 

cJement~, they have put in place an automated system that can do the human expert's task more 

efficiently than the manual process normally required. 

Liu et al. de~cribe 1-TEST, a prototype trunk testing expert system [63]. It combines 

proccdural and decJarative knowledge into a single inference mechanism to manage a complex 

trunk tcsting environment involving more than one Operation al Support System. Humans used 

to be the interface betwecn these various systems and data were manually copied from one sys­

tem to the other, sometimes leading to errors. 1-TEST eliminates the multiple terminaIs and dif­

l'crent tc~t command~ required for the various Operational Support Systems by providing a 

common human machine interface for invoking test commands and thus improves testers' pro­

ductivity. Knowledge from four domains was used to build the knowledge base. The data com­

munication knowledge base allows I-TEST to communicate with other systems. Procedural 

knowledge is used to build a friendly user interface for the users. Another rule base is used to 

tiller the necessary mformation from various systems. Finally, a last knowledge base controls 1-

TEST, manages resources, and arranges priority and testing sequences. 

Khan et al. detail GEMS-TTA, the Generalized Expert Maintenance System - Trunk 

Trouble Analyzer [54][55]. The first phase of this system allows the automation of trunk trouble 

handIing, testing and performance monitoring. Later phases of GEMS should lead to the auto­

mution of trouble sectioning and isolation, and the dispatch of the appropriate repair people. 

Rules arc used to represent facts about the problem domain while frames are used to represent 

nctwork objects. The knowledge base itself is partitioned into four segments: the initial diag­

nostIc knowledge base, the initial action knowledge base, the extended action knowledge base, 

and the final diagnosis knowledge base. The implementation descnbed by the authors offers 

advlce lO users on trunk trouble diagnosis and on test selection and monitoring strategies. Giv­

mg GEMS the capability of performing circuit tests and monitoring itself will make it a fully 

automatcd trunk maintenance system. 
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TOPAS-ES is a real-time distributed expert systcm that dlagnoscs transmi~Mlln and slg­

nalling troubles on telephone trunks in the long-dIstance nctwol k. 11611221. Duc to tlll' latgl' 

number of alarms generated by the electronic telephone switches. trouhleshootll1g tlllnb I~ 

time-consuming and requires a rare expertise. TOPAS-ES is made of two pm t~· a Twuhll- Ana­

lyzer and a Trouble SectlOnalizer. The Trouble Analyzcr Illters out translcnt pJOhkm~ to only 

deal with real trunk problems. The Trouble SectlOnaltzcr Identifies the ~Ol11œ of the prohlem<; 

and communicates the information to the rcquired techmcmns. TOPAS-ES IS a dlstllhutcd "Y~­

tem in that a copy at one end can dialog with a copy at another end to conduct fault locatIon. 

Callahan et al. describe TERESA (Trouble Evaluation and Resolution by Expelt Sy~tclll 

Application) [17] which is an enhanced version of TOPAS-ES [1611221. The malll functlon 01 

TERESA is simiIar to that of TOPAS-ES, i.e. it can communicate with other TERESAs to 11\1)-

vide end-to-end sectionalization capabilities. However, TERESA also coopelates with anothel 

system called EASA (Expert Analysis and Solution Assbtant) which spectalize~ \Il tran~pOi t 

e network maintenance. TERESA is specialized in OS-1 levcl transmis~ion and ~Ignalillg 

whereas EASA concentrates on DS-3 and above network elements. TERESA and EASA COIII-

municate with one another to perform correlation of event~, eliminatc redllJ1dal1cie~, and local­

ize fauIts. 

3.2.2 Special Services 

Yudkin describes ExT, an Expert Te~ter for troubleshooting faulty Special Servlcc Clr-

cuits [109]. ExT makes use of model-based reasoning. By using a reprcsentallon of the cm;uJt 

elements and their relationships, it selects tests to run and reason~ about data ohtamed lo deler-

mine the nature of the trouble. To achieve this, ExT counts on four module.,. The BUilding Mml-

ule reads a circuit description in a database and in~tantJate~ whatever clcmcnt~ arc jound, along 

with the required attributes. Connectivity rule~ arc u~ed to build up an Illtcrnal circuit dlagrarn. 

The Testing Module uses the model [rom the Build1l1g Module to 'ieIect the be.,t te.,1 to run ncxt 

27 



The AnalYl.mg Module update~ the dynarnic model originally created by the Building Module 

ha~cd on the te~t rcsult~. Fmally, the TcrmmatIOn Module contains rules to close troubie reports 

or rerer problems to the rcquircd technIcian~. 

ln IIIO}, Yudkm brings ~ome refinements to ExT. In addition to the structural knowl­

edgc the ongmal system handled, he now add~ behaviorai and functional knowledge to the 

mode!. Behavloral knowledge ~peclfie!\ input-to-output mappings and is used to start the diag­

nŒi~ pr()(':eS~ based on ob~ervation~ of misbehavior. Functional knowledge characterizes the 

purpose of a nctwork clement and is used when no observations can be obtained From a network 

clement. The objectIve of the aulhor and hb team is to design a system that makes use of rule­

ba~ed rca~oning for ~peed of execution and sophisticated model-based reasoning for enhanced 

problem ~olving. 

Hautm et al describe~ Sylis, an expert system for troubleshooting specialized links [43]. 

According to the authors, the need for such a system stems from the limited availability of 

expertise in the domain. In the case of old systems, this expertise is slowly disappearing while 

there is almost no expertise for newer systems. Such systems allow the storage of information 

about extraordinary ~iluations for which not much knowledge is available. Considering the vast 

é.l11l0unt of information that needs to be accessed, expert systems are considered an excellent 

l11can~ to cn~ure that ail the relevant questions are asked to customers reporting problems and to 

ncccs~ary databases. The objectives of Sylis are thus to assist the human operator and secondly 

to IInprove the global performance of specialized links maintenance. Sylis accomplishes the 

tirst ohjective by asking questions to the user, givmg explanations, and allowing easy access to 

ùataba~cs. By helpillg reduce the time-to-repair, improvmg the trouble report process, raising 

tcchnicians competence and offering training to newcomers, Sylis also reaches the second 

ohJectlve. 

Special Services test mg is donc by human experts having a vast knowledge of signaling 

protocols. tnmsIl11ssion parameters. transmission tests, and grade-of-service requirements. 

These lughly patd experts are also responsible for updating various special services databases 
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when new hnes are put in ~ervice or maintenance has heen carricd Ollt on c,,, ... t\ng IlI\c~. ln ollkl 

to Improve efficiency in SpecIal Servlœ~ maIntenance opcmtlons .• 111 altcmpt wa~ made..' .11 <lUI\!­

mating testing and the flow of information l11. SARTS/Autolht-2 L'llntam ... ruk~ glllupcd IIllo 

three categorIes. The Te~t Strategy l'ulcs dctclminc thc he'it te~t to lun Wllh 1e..'~IK'Ct totlll' l'IIl'l1l1 

configuration LInder examination. The Analy~l~ Procedure IIlterpleh the 1e..'~UIt~ cO\lllng 1 \()l\Ilhe..· 

Test Strategy module. Finally, the Dmgnosls module detcrnllnc~ If the lIouhk I~ .\ Ic.1I ~\IW 01 

simply a side effect of another problem that is alrcady hClIlg plocc~~ed S/\RTS//\uloTc ... ' 2 

handles about half the problems reportcd lo thc SpecIal Services ('entcl and pl OL"e..· ... ~e..':-, ~O(:;, III 

those without human interventIOn, re~ulting in con~ldcrablc ~avlllg~ III l\1allltcnancc OpCI at 1011 ... 

3.2.3 Switehing Deviees 

Prerau et al. de scribe COMPASS, the Ccntral Otlicc Maintcnanl'C Pnntollt An.dy"'l~ alld 

Suggestion System [37][90]. COMPASS analyze~ maintenance plll1tollt~ Itom Ci'n~'~ No. 2 

EAX switching system and ~uggests maintenance action~. Il achlcve~ thl ... hy gOlllg Ihlough il 

multi-stage process. It starts by connecting wlth a Remote MOJ1ltor and Control Sy ... tclll 

(RMCS) to gather monitoring data. It then format~ thc data and glollp II1lorrnallOI1 IIlto du ... tcl~ 

Clusters are further examined and some are combincd. Once It~ analy"'l~ ~tagc 1 ... cOlllplclcd, 

COMPASS formulates maintenance actlon~, orders anù mcrge ... thcm tn linally output thc OIlC ... 

that arc most likely to provide a solution. COMPASS IOcrea!'.e ... the producllvlly 01 cxpCllelll'cd 

maintenance persons, improve~ the performancc of Ic\~ cxpcllcnccd pe, ... onncl. hclp ... plOvldc 

better switch performance, and capture~ expertl~c that may not he avallahlc 111 the IUluIC. 

Macleish et al. report that competition in the telecommuOlcati()n~ IOdll ... try ha ... lIIade Il 

imperauve that telephone operating compalllc", improve product reliah!lity. reduœ repalr CO"!". 

and increase customer sati!lfactlOn [39][65J. To thi~ end, an expert ... y ... tcm callcd NEMESYS 

was designed to improve central office ~witching maintenance ~y ... telm. The ... e ... y ... tcllh arc very 

complex and made of thou!>ands of integratcd circuit!>. Becau.,e of the complexHy 01 thc ... c "y.,-
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tClm, I,witch maintenance proves to be an activity that can be performed by only a few expert 

craltl,pcN>n~ who can w~e their vast experience, their in-depth knowledge of the switch and 

"rulc!'! of thumb". NEMESYS uses more than one knowledge base. The first knowledge base 

dCl,crihe~ thc network using an object-oriented approach. Another knowledge base describes the 

typc!'! of problem~ that may occur while a third knowledge base contains rules capable of group­

mg relatcd problems into bur~ts. A fourth knowledge base provides high level analysis of these 

hur~t~ while the Jast knowledge base contains rules to suggest corrective actions. This system is 

a mcan~ of addres!'!mg the high cost of maintenance, the need for improved customer satisfac­

tion and the shortage of expert knowledge in this domain. 

Novik reports on an interesting addition to GTE's NEMESYS central office switch 

maintenance expert sy~tem [85]. This new module uses statistically based temporal reasoning to 

perform fault localization and determine whether a fault is located in the central office switch or 

out~ide. Tl links are ail duplicated in the network. Whenever NEMESYS receives alarm mes­

!'!agcs, it trics to determine statistically if one of the twin Tis shows significant differences with 

respect to the other. Using this type of reasoning, NEMESYS can determine whether the fault is 

InMde or outside the switch. More accurate localization in the outside plant will become feasi­

hic wilh future additions to the knowledge base and improvements to network elements. 

Harrington describes CSMES, a Communication Switch Maintenance Expert System he 

deslgned to improve the maintenance of AT &T toll network [41]. The purpose of CSMES is to 

makc expertIse available to aIl maintenance personnel across the toll network. To accomplish 

this, CSMES reads and analyzes messages generated by switching equipment. The number of 

~uch messages can be significantly large. CSMES is capable of determining the severity of a 

message and selecting only those which have the most impact. It then translates into English the 

Illcaning of the alarm codes it received along with sorne recommendations for remedial action. 

The TXE4A is an analog telephone exchange which includes a diagnostic subsystem 

thut can automatically generate fault reports and alarms. In a real-life situation, literally thou­

sands of those are generated on a daily basis making it difficult for human experts to correlate 
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events to identify and locate faults. The Advanced Maintcmmcc Facility (AMF) is an expert 

system that can either diagnose on its own or assist maintenance tedmicians in thcir tasks 11011. 

It handles three main types of fault indications: operational proccssing faults, falilt pnntullt~, 

and alarms. AMF williocate fauIts in the telcphonc exchange down to the fmllty plug-in unit or 

network component by using a knowledge base with about 1550 mies. Allllnattcndcd and inter­

active sessions are recorded for ongoing enhancements of the knowledgc hase. AMF grcatly 

reduces the mean time to repair, increases the mean time betwecn failurcs, and also ~ervcs as an 

excellent on-the-job training tool. 

8aseband Distribution Subsystems (BDS) are large signal switching nctworks. Lancy iJI 

al. describes LES, the Lockheed Expert System to diagnose BOS faults (611. LES lises thrcc 

types of knowledge to carry out this task. First, factual ~tructural knowlcdgc ahout cOll1p()nent~ 

making up the network is stored in frames. Second, diagnostic (heuristic) knowlcdgc is ~torcd 

in IF-TREN cules that are used in the main backward chaining infcrcncc process. Thin.!, contlOl 

knowledge is stored in WREN rules which, once certain conditions are satisfled, mOlllcntarily 

stop the backward chaining to forward chain until sorne conclusion is met. At thl~ point, hack­

ward chaining resumes where it was stopped. These WREN rules can be used to change thc PII­

orities of the goals set in the backward chaining mode of reasoning. This allows a hcllcr 

modelling of human experts' way of thinking. LES performs as an advisor. It rccolllmclllls 

which tests should be run on which devices. The user has the possibility to a!'>k LES why il is 

requesting a particular test or why it has reached certain conclusion!'>. Gencral componcnl­

related information can also be requested through LES. 

The Switching Maintenance Analysis and Repair Tooi (SMART) IS an advisor expert 

system for the maintenance of AT&T #lAESS switch [64]. SMART-I hclps lcchnicians in iso­

lating switch fauIts and repairing failed components. In order to improve # 1 AESS maintenance 

to an even higher level, Loberg reports how the system went lhrough a major upgradc 10 

become a near real-time switch monitor expert system. Going from the advbor 10 the monitor 

paradigm forced a major rewrite of the knowledge base to allow for the undcr~tanding of mc~-
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~agc~ coming Crom the ~witch, a task which was previously accompli shed by technicians. 

Knowledge about potential solutions was also added to the knowledge base which enables the 

expert system to u!.e thls important informatIOn during its reasoning process. 

The Bellcore Real-Time Expert System (RTES) is a prototype knowledge-based expert 

sy~lem that analyzes switch output messages to identify faults and offer recommendations for 

corrective actions to maintenance technicians [33]. RTES uses models of the switch mainte­

nance environment and high level reasoning processes. Heuristics are stored in rules. RTES also 

log~ historical data !'\o that it can correlate incoming messages with past events. RTES provides 

il~ own recommendations, but also keeps a log of the recommendations and responses it was 

given by technicians for future improvements to the knowledge base. 

Peacocke and Rabie describe MAD, an interactive expert system for helping technicians 

perform maintenance on the DMS-lOO family of digital switches [88]. The knowledge used to 

huild this expert system cornes from the extensive Northern Telecom documentation and from 

trouhleshooting experts in Bell Canada and NT. This version of the Maintenance ADvisor uses 

a "describe-recommend" cycle which allows the user to guide the system, and not the other way 

:.lround. The user describes the problem by filling electronic forms. By pressing a soft key, 

MAD offers sorne recommendations. These recommendations may consist of preliminary 

actions to be taken which may include requests for further information from the craftsperson, or 

repair actions to solve the problem. Forms do not need to be complete to start the diagnosis pro­

cess. Users can thus obtain recommendations from partial information or can change sorne 

information to see alternative courses of action. MAD also provides access to a switch database 

covering the physical composition of the switch and to a "notebook" containing locally applica­

ble maintenance information. 

Hibino and Fujimoto describe THINKING-ESS, an object-oriented troubleshooting 

expcrt systcm for clectronic switching systems [44]. In order to tackle the increasing complex­

ity of the telcconllnunication network, the authors selected a troubleshooting strategy based 

upon structural and behavioral models of switching systems and represented knowledge using 
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objects. This approach allows for better fault sectionalization as it is caslcr 10 ligun.' oui wluch 

device connects to which when trying to pinpoint the faulty clement on a circuit. Thc use of 

objects to represent knowledge adds fiexibility to their expert system hy easing thc addition 01 

new elements into the knowledge base. 

In order to reduce procedural errors, shorten the mean time to rcpair and thl' trallll\lg 

time for technicians, Berberich et al. have built the EWSD-XPS, an expert system for the llIalll­

tenanee of digital switching devices [12]. EWSD-XPS is made of SIX funcllOnal l11oduk:-.. The 

Alarm Analysis module handles incoming alarms. The Diag Module dClcrmine:-. which dlagno­

sis command should be issued while the Conf Module knows about the configuratIon COIll­

mands that must be issued before the selected diagnosis commands can be l'un. The llypolhc!'IlS 

Module uses diagnosis results to issue some fault hypotheses wcightcd hy ccrtaillty factors. 

Finally, the Replace Module figures out which components to replace whilc another Conf Mod­

ule issues the proper configuration commands before the selected componcnt can he replaccd. 

Private Branch Exchanges (PBX) are sophisticated switching cquipmcnts inslallcd 111 

large customer's sites. Daniel et al. describe PBXpert, an expert system that diagnoses, 

resolves, or offers troubleshooting advices for problems affecting AT&T's hne of PBX 1261. 

PBXpert tracks PBX generated alarms and customer-reportcd problcms. By rigorously follow­

ing standard diagnostic procedures and making use of historieal data, PBXpcrt can ctlhcr dls­

card and close a trouble report Of make the neccssary recommcndations and forward thcse to 

maintenance technicians. During diagnosis. PBXpert takes into aceount the PBX system's char­

acteristics to select which tests to fun and correctly intcrpret~ the results. PBXpcrt 's mamte­

nance strategy is similar to that described in maintenance manuals, and i~ revicwed and updatcd 

with each new test result. 
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3.2.4 Nelworks 

Covo et lIl. de,>cribe LARS/RBES, an hybrid expert system for anomal y detection, isola­

lIOn, and rc~olutlOn [23]. The Learning and Recognition System (LARS) uses neural network to 

pcrrorm ~latu~ monitoring of a network. LARS is composed of two subsystems. The tirst one is 

a collection or ~mall neural nctworks that evaluates elementary features known to indicate 

anomalic!'>. The second subsystem performs correlation between the elementary features 

reported hy the tirst stage and trics to recognize the anomaly. Using the outputs to the tirst sub­

system, proccdural actions are taken to isolate the problem. The Rule-Based Expert System 

(RBES) receives messages from LARS about anomalies that have occurred and uses a data 

driven inference mechanism to correct the anomaly by appropriately modifying routing. 

Nuckolls describes an expert system which performs real-time diagnosis in a large digi­

tul radio telecommunications network [86]. This expert system utilizes the vast amount of infor­

matIon provided by the various devices forming the network. Sorne working de vices may report 

alurms simply bccause they are affected by another device which has previously faited. The 

expcrt system 's task is to discern truly malfunctioning equipment from aH the components 

reportll1g alarms. To accomplish this, the expert system is given structural and behavioral 

knowledge of the network to "understand" how aIl the devices connect to each other. It then 

uses this knowledge to process information provided by the network elements and performs 

reul-tllne diagnosls. 

Miyazaki et al. report that the advent of ISDN into the commercial market has pu shed 

for improvements towards a dynamic operation and maintenance system for switching net­

works [791. This distributed system is made of five types of components: local exchanges, a 

centralized operation system, a database system, a diagnostics expert system, and maintenance 

workstatlons. The purpose of the expert system is to assist maintenance personnel in making 

optimum decisions. The hypothetical reasoning is done in four steps. First, aH symptoms 

(alarms, messages, diagnostic results, etc.) are collected. Second, hypotheses are generated. 
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Third, for each symptom, the expert system selects one hypothcsis and comhines thls 111forma­

tion to pinpoint the faulty component. Finally, the end user verifies If the component is mdl'l'd 

faulty. If not, current hypotheses are discarded and the cycle starts over. The knowledge lIsed by 

the expert system is stored in two knowledge bases. One contains the knowlcdge wmnllHl to all 

switching system versions. The other contains the knowledge specific 10 cach VCISIllll. 

Allwood et al. de scribe a prototype expert system that wa~ devclopcd for a lmgc dal.1 

network customer in the United Kingdom [2J. The prcnuum obJcctive of the expert ~y~h.·111 I~ to 

filter out simple faults from aIl fault reports. This allows end user~ to lix simple prohlellls thl'Ill­

selves and thus avoid having to wait for specialized technicians to come on SIte, most or thl' 

time only to find out sorne piece of equipment that had not bcen powered on. On the other haml, 

complex problems are recognized by the expert system and forwarded 10 a lrained nelwoi k 

engineer. The system improves the efficiency of responsc to customcr rHlIlt~ whlle plovidlllg 

customers with a powerful tool to manage and control their network. 

Azmoodeh describes OMS, a Oeneric Maintenance Sy~tem for mtegrated hroadband 

communication (lBC) networks [9]. To tackle the complexity of Ihi~ ta~k. a Illodcl-hascd 

approach was selected. A knowledge base of objects contain~ the representation of network~. 

network elements, services, users, etc. Objects can be in the functional or phy~Îl:al calcgory A 

functional model of networks element details the specialization of the ohJect ha~cd on the func­

tions it performs. A physical model, on the other hand, describes the non-functlOnal a~pœts of 

network elements, such as location, size, etc. Constraints control the knowledge hase and forœ 

it to be only in legal states. Using this knowledge base and fault reports, the Correlation Module 

formulates hypotheses about faulty functional units. The Modcllnterpreter evaluate ... the consc­

quences of these hypotheses using behavioral rulcs. Hypothc),c), and thelr con\cquence~ are 

maintained in an assumption-based truth maintenance system in the infercncc cnginc. 

Azarmi describes RS, a knowledge-based Resourcc Schcduler for the nclwork manage­

ment layer of a Oeneric Maintenance System (OMS) [8]. RS i), dc!-.igncd to handlc corrclation 

of fault reports, management of te~t~ and ~upervision of repalr procedurc:-,. Il takc), a ... input~ 
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requc.,b for repair~ and te~ts and feedback concerning the state~ of ongoing repair works. RS 

mu~t generate a correct and near optimal schedule of repair requests, while being capable of 

handling the dynamic nature of network maintenance. It accomplishes this by using three sub­

modules. The Priority Scheduler uses network performance-related, service-related, and main­

lenancc-related rules to priontize repair requests. These prioritized repair requests are the inputs 

to the Predictive Scheduler which selects a set of repair actions while trying to satisfy associ­

atcd constraints and resolve conflicts. Finally, the Reactive Scheduler executes and monitors 

lhcsc rcpair activities and may reschedule tasks dynamically. RS uses structural and behavioral 

knowledge as weil as generic network knowledge. It also takes into account knowledge about 

available resources. 

3.3 An Agenda for Telephone Network Maintenance 

Tclephone operating companies are presently at a turning point. In North America at least, they 

no longer have the monopoly on telephone services. Furthermore, competition has paved the 

way to a multi-vendor environment which resulted in heterogenous networks more difficult to 

maintain [18][66][81 ][98]. Similarly, on the end users' side, regulatory and marketing issues 

have made possible the appearanœ of a wide variety of customer provided equipment. Sub­

scribers are no longer restrained to renting or buying telephone equipment solely From their 

telephone company. With the mostly completed modernization of the telephone network, new 

services have emerged and more are yet to come [98] that will require increasingly sophisti­

catcd test procedures and systems. Finally, marketing concepts such as usage sensitive pricing 

will put more and more pressure on maintenance operations to provide near-perfect quality of 

servIce to prevcnt loss of revenues due to failures [67]. 

The problcm that maintenance operations are now facing can be in part explained by the 

lag of their maintenance technology and the obsolescence of their organizational hierarchy. Test 

hardware is Iimited in accuracy and does not fully qualify as measurement de vices for new ser-
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viees such as ISDN [66]. The Operational Support Systems now \Il plaœ typically ha\'~ 

restricted domains of applications and hardly share infonuoltion wlth other syst~l1Is Icading to a 

proliferation of terminais, printers and human-Illachine interfaces 1811. As ncw and mon: 

sophisticated network elements are introduced, thesc same Operational Support Systems do Ilot 

get upgraded accordingly and their maintenance introduces yet 1ll00e complcxity III the pIOCl'SS. 

The architecture of the telephone network ha!. also known somc evolutlon. SOI1lC would 

even qualify this more a revolution than an evolution. The subscrihcr lonp 18 no longcl wl'll 

divided among the central office, the outside plant, and thc custOIllCI 's premi!.c~. In Icalily. ail 

increasing portion of the subscriber loop is now being shared among multiple suhscnhl'I!. 

through technologie al advances such as remote switches or ISDN 198]. 

If telephone companies are to maintain high levcls of quality and !.urvlve III thl!. ncw 

competitive environment, a number of steps must be taken. New more advanccd tc~t hm dwaH .. ' 

must be introduced in the network and test access to aIl subscriber lincs, parllcularly 111 rural 

areas, must be feasible through the use of distributed test systems. Operational Support SySICI1l~ 

for maintenance must be improved or replaced. These systems should be designed tu he gencric 

enough to act as "bUilding blocks". Whenever new services or new technologies arc introduœd 

in the network, it should be possible to easily add the necessary maintenance funcllonallty 10 

existing systems. Better fauIt identification algorithms also need to he implementcd to handle 

new services and technologies. Enhanced automatic fauIt detection usmg aIl the alarm rcporl~ 

generated by advanced network elements will allow maintenance organizations to operale m a 

preventive mode. Fully automated and programmable te~ting mu~t be deployed to nettcr handlc 

intermittent faults. Finally, new technology such a!. Dynamically Controlled Routmg and high 

capacity fiber opties ring-based networks Will help enhance network survivability 1741. 

However, new Operation al Support System!. will also need 10 be integrated and pro­

vided with the ability to communicate with one another [74J. Furthermore, the!.e ~y!.lem~ Will 

have the capability to exchange information with intelligent network clement!.. Work donc ny 

standard bodies on the Telecommunication Network Management (TMN) will make this p(}!.~i-
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hIe for multl-vendor ba~ed networks [91] and will help provide an end-to-end view of the tele­

phone network. 

But the greatest challenge facing maintenance operations will probably be a shift 10 cor­

porate culture. Traditionally, the telephone network has been divided into various ~ub-organiza­

tion~, cach taking care of its assigned portion. With the introduction of new technology, the 

topology of the network has changed and wiJJ continue to evolve. Natural boundaries that 

cxi~ted with the old technology are now disappearing. Work force organization and the con­

cepts on which their rcgulation is bascd will need to be revisited. On one hand, the maintenance 

phllosophy must ~hift [rom a reactive mode to a proactive mode. Preventive maintenance is a 

key to kccping high reliability and high customer satisfaction. On the other hand, automation 

and ~ystcm integration should allow maintenance organizations to give more control to custom­

ers over servIces. Just Iike bankmg institutions, there is great potential there to reduce work load 

in mmntcnancc operations and again increase customer satisfaction [46]. 

The ncxt chaptcJ' mtroduces neural networks. Neural networks were explored in this 

J'c~carch work ta assess their ability to identify faults affecting subscriber loops. An introduction 

to neural networks is given along with the theory about the learning algorithm used. The last 

seciiml of the next chapter presents a second literature review, this time on application of neural 

nctworks to diagnosis. 

38 



Chapter4 Neural Networks as P~lttern Classificrs 

This chapter introduces neural networks. Followmg a brier historical rcVICW, a detaikd dC~L'llp­

tion of the back-propagation algorithm IS given. Finally, a litcraturc rcvicw of neural llCtWOl \.. 

classifiers used in pattern recognition problems is presented. 

4.1 Historical Review of Neural Networks 

A brief overview of neural networks is presented here fo\lowed by a hierarchical da~sllicallOll 

of neural components. 

Neural networks have not al ways been popular due 10 hmitatlOlls they hat! when thcy 

were first studied. They are now gaining considerable credibility, cspccm\ly ~IJlCC MICCC~.,rlll 

applications have been reported. A complete chronicle of the hi~tory of Ileural networh can he 

found in [68]. 

In 1943, McCulloch and Pitts [75] designed a model of neural nclworks bascd on lhclr 

knowledge of neurology. Even though It was a rather simple model that could only dcal wlth 

simple logical operations such as AND and OR, their model did introducc the concept or paral­

leI processing using simple computing units. No computer simulation wa~ donc. Evclything 

was carried out using pencil and paper. 

Computer simulations were only produced in the mid 50'.,. One 01 the groups working 

on computer simulations of neuronal models wa~ from IBM rcsearch laboral()ric~. This group 

carricd out the work whiJe remaining in close contact with Donald Hcbb and Pctcr Milner, neu­

roscicntists at McGill Univl~rsity. Whatever the neuroscienti!o.ts round, they !o.hared with the IBM 

research group and vice versa. This lcd to the creation of a muJtldlsclplinary trend that b !-,till 

going on today. 
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ln 1 958, Ro~enblatt [94] introduced the Perceptron. This was a three-Iayer neural net­

work that could Icarn to as!.ociatc a glven input to a random output unit. The system did have 

!'.omc limitations, particularly in its learning method. Then, in 1960, Widrow and Hoff [107] 

devised the Adaline (ADAptive LINear Element) which employed a much more sophisticated 

learning mcthod known as thc Least-Mean-Square (LMS) learning rule or the Delta Rule. 

ln 1969, Minsky and Papert [78] published a book called Perceptroll in which they 

provcd that a smglc-Iayer Perceptron network could not even perform the XOR operation, and 

that it was rc!.trictcd to linearly separable problems. Their publication had the sad effect of dis­

couraging thc !'.cientific comrnunity from pursuing research in the field of neural networks. 

Nowadays, multi-Iayer networks can overcome this limitation. 

Dcspite the massive lack of support and funding, a handful of researchers continued 

thcir work and came up with very interesting neural network architectures that now prove to be 

uscful in many of today's applications. Among them were Grossberg [38], Anderson [5], 

Kohoncn [60], Klopf [58], Werbos [105], Arnari l4], and Fukushima [34]. It is in the early 70's 

that interesting results from these people were published. 

Since 1986, a real resurgence of this field has been witnessed. Many conferences on 

ncural networks are held each year around the world. A good number of journals and magazines 

havc also appeared. A sign that the field has reached a certain maturity is the recent reports 

ahout many interestmg real-world applications. A number of these applications are presented in 

section 4.3 of this chapter. 

4.2 An Introduction to Neural Networks 

This section gives a brier introduction to the theory of neural networks. Advantages of neural 

netwOl'ks ovcr other methods are presented and sorne learning algorithms are described with 

more attention given to the back-propagation learning algorithrn. 
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4.2.1 What Neural Networks Are 

As the narne suggests, a neural network i~ a collcctllln of nculOn-likc untl~ ortCIl 

referred to as neurodes [20]. Figure 4.1 shows a typical ncurode. Each ncurodc can haw many 

inputs but only one output, even though thls single output may serve as input tn many othel 

neurodes as will be seen later on. This output is the rc!.ult of somc proccssing donc hy Ihe 1l1'1I­

rode. A typical neurode has a weight factor for each one of its input connectIOns. Inpul:-. arl-' 

multiplied (weighted) by these factors. The result for cach mput arc thcn SlIllllllCll. l'hi!. ~UIll I~ 

passed through an activation function which is usually non-linear sigllloidai fUllction (such an 

activation function allows multi-Iayered back-propagation networks to form complcx dCCI~IOI1 

regions in multi-dimensional space). One of the inputs may be a constant hias which is SOIllC­

tImes compared to the ground in an electrical cirCUIt. SOllle neurodcs also suhtlact li tlllc~h()ld 

value from their summed input. This can be used for an on/off type of activation. An optlollal 

gain term may also be applied to the output of the neurode. 

xl 

outpui 

Bias 

Figure 4.1: Components of a typical neurode. 

Neurodes are normally organized in layers, where each layer can he secn a!-. a differcnl 

level of abstraction from the input data. Neurodes within the sarne layer may he interconnected 

or not, depending on the architecture selected. 
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A nelwork 1" typically made of man y layers and it i!o. u~ual to have the outputs of one 

layer fully-connectcd to the following layer'!o. neurode!o.. Full connectlvity Î!o. not nece!o.sary and 

Ihcre exi~1 tcchntque~ 10 get rid of unnece!o.sary connection!o. once training 1~ accomplished and 

.,aw,hc~ the performance requiremcnt!o.. FIgure 4.2 ~hows a typical neural network with layer~ 

lully conncclcd. 

Figure 4.2: Neural network with fully connected layers. 

4.2.2 The Back-Propagation Neural Network 

The back-propagation neural network was initially proposed by Werbos in his PhD dissertation 

[1051. Howcver, Parker [87] and Le Cun [62] - apparently independently - also published 

this mcthod. Rumelhart and McClelland [95] largely contributed to the popularity of the rnethod 

wilh theil' weil known book, Parallel Distribllted Processing. 

Back-propagatlOn is the most widely known neural network. Because of its relative sirn­

phcity and ils long hved repulation, it has been successfully applied in rnany research projects. 

Scctlon 4.3 dcscribes sorne of them. 
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The Delta Rule 

Back-propagation builds on the concept of the Delta Ruk k .. u IlIng Illcthod "1"'0 "-11\1\\ Il 

a,) the Widrow/Hoff ruIe. Il I~ u!lcd in neural net\VOl"-... made up 01 one ... et 01 IIlput lIl'uwdc ... ,md 

one set of output neUl'odes. Each neurode l'rom the input laycl I~ cOllnccll'd 10 l't.lch Ill'Ullllk III 

the output neurode via il wcightcd conncctlOn. 

Each connection ha~ a ~trength (wcIght) a~~oelatcd \VIth Il Tlm wClghl " lI~cd III IIIUIII 

ply the value comlllg from the output of an input ncufode. Thl' ploduct I~ I~d tllthl' ouI put IIl'U 

rode linked through that connection. At fir~t. those welght~ ,\le lIlillalt/.ed 10 ~11l.llllalldonl v.1I 

ues, usually between -0.1 and 0.1. The Delta Rulc i~ whal allow~ the l1elwOI" lu IIlo(h Iy Il ... 

connectIOns and hence, learn. 

One trains such a network hy prescntmg it with ooth the input valuc ... and the a ...... ocl,ltl'd 

desired output values, This is called trammg wlth supel vI~ion. The nctwOl "- u.,c., the IIlput val 

ues It is glven and its connection weight~ 10 produce an output 011 it~ own. Thl~ oulpUI 1" Ihl'II 

compared ta the desired output accordmg to the followmg cquatlon: 

(EQ 1) 

dw .. = a(D.-O)/ 
.l' , 1 1 

where 

Dj = desired output pattern at tlle .It1l oltlfJut Il eu rode, 

Oj = re.mlting output paltem al the Itll output lIl'urodl' 

Il = input pattern from the il" illput I/eurode 

Cl = leamillg COflstalll. 

d WJI = value to add/.mhtract from the cOlllleclUJI/ wei!!,/u ~OI1l!!, 

Jram input neurode i tf} output neurode./. 

The learning constant is u~ually ~mall (around 0.1). lhing a olggcr Iearmng con-.la/11 

may lead to oscillatory behavior of the network Once a network get ... trappcd In o ... cJllatory 

behavior, it rarely reaches completion of learnmg. 
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The Delta Rule e ... "entJaIly a~~igns credit or blame to the input neurodes. The more 

active .... an input umt, the more responslble it ~hould be for the good or Incorrect behavior of an 

output neurodc 

The Delta Rule bclong~ ta a cJas~ of gradient- or steepest-descent algorithms. It has 

bcen ~hown that the Delta Rule will cause a nctwork to modify its connections in directions that 

IlHlXlllllze the change in an error term that ~ums the squares of output deltas [95]. 

Limitations of the Basic Delta Rule 

The Delta Rule performs weil for smgle-Iayered networks, i. e. networks that have only 

mput and output neurodes. Unforlunately, the class of problems to which these networks can be 

;'Ipplied i~ sevcrely limited. As was shown in an analysis by Papert and Minsky [78], these net­

worh cannnt compute the exclusive-or (XOR) function. In fact, such networks are limited to 

linearly ~eparable problems. The fact that they could not compute alogie function as simple as 

XOR is largely the rcason why neural networks research was almost non-existent in the early 

ItJ70\. 

Multi-Iayered networks are the solution to this problem. Multi-Iayered networks are net­

WOl'h with one or more hiddell layers in addition to the usual input and output layers. These 

extra laycr~ allow neural networks to handle problems that are non-linearly separable. However, 

.1 new learning rule is required in order to propagate the credit or blame from output neurodes 

back to hidden layers and input layer neurodes. This new rule is called the back-propagation 

Icarning rule or the generalized Delta Rule. 

The ncw equation is similar to that used with the Delta Rule. The delta is now computed 

a~ follows' 

(EQ 2) 

whcre 

cr = lellmillg cOllstallf 
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Dpj = desired Ollfpllf of the jth Olilpllt 1/ellme/t' 

Op) = actulli Ollfpllf of tlle jfh outl'llt /l('lIroc/C 

fj = J st-ortler deril'llti\'e of tlu! jfll Ilt'umde activatioll 11II/('t/lIII 

Ip_I) = ,'111111 of ail the IIlplilS 10 the jtll Olltpllf lIt'wudt' Jimll 111\'('1'/'-

J 

Ôp) = amO/l1lt to mJd or suhtract tu ('Ollllt'ctioll I\'('ight g(/illg 10 11h 

output neumde 

p = output layer 

This is similar ta the Deltd Rule, except for the first-ordcr dCl1vatlvc. Thc pOWCI or 

back-propagation cornes From it~ ability ta propagate deltas ta hidden unils as weil. Il I~ lllI'i 

feature that allows neural network to have hidden layers that me capahle of learlllng. The dclta 

for hidden neurodes is computed as follows: 

where 

Ipj = sum of ail the inputs of the jlll hiddel! neurode il/layer fJ 

rj = 1 st-order derivative of the activation ftmctiml 4 the jth 

neurode in layer p 

Wkj = weight going from hidden neurode j in layer p (0 hiddel/ 

neurode k in layer p+J (layer p+l fl/uy he the output layer) 

Ô(p+ I)k = delta computed for neurode k in layer p+ J 

Ôp) = delta compuled for the jth hidden neurode ;11 layer fJ 

(EQ 3) 

The basic idea introduced by the back-propagation learning rule i!-. the computation of 

weights for the hidden neurode~ through propagation of delta!-. computed for other ncurode~ ln 

previous layers. starting with the output layer and going toward the input layer. Figure 4,3 IIlu!-.-

trates this. 
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Input layer 

~ _______ h_l_dd_e_n_l_aY_e_r_1 __ . ____ ~I~ 
• 
• 
• 

hldden layer p 

output layer 

+ 
output 

• • 

crror I~ back-propagated to welghts connect­
lOg mpui layer 10 hldden layer 1 

crror IS back-propagaled 10 welghl~ connecl­
lOg hldden layer 1'-/10 hidden layer p 

error IS back-propagaled 10 weighls connect­
lOg hldden layer p to output layer 

error I~ computed from comparing 
dcslred oUlput 10 network output 

Figure 4.3: Back-propagating errors trom layer ta layer. 

U!o.ing this rule, a network designer presents input data to the network along with the 

dcsircd output until the network achieves the required level of performance. This level of per­

formance is usually dcfined by setting a maximum on the magnitude of the error vector. The 

crror vcctor is computed by subtracting the actual output from the desired output. The magni­

tude of this error vector is then cornpared to sorne threshold set by the network designer. When 

the nctwork reaches this threshold, it is said to have completed its training phase. The network 

designer then presents the network with patterns it has not seen before and verifies the correct­

ncss of the given outputs. If the test phase is satisfactory, the network then goes through valida­

tion. Validation involves training and testing with different training and testing data sets. Once 

valIdation is successfully completed, the network can be deployed and applied to real-world sit-

uations for further performance assessment. 
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Local minima 

During the learning process, the error veetor ean be thought of a!oo Ill11Vtng alnng a Illlllll­

dimensional error surface. The learning is normally complete whcn the error vedor readlt'!oo a 

minimum of this error surface. This minimum may be the global minimulll or one of man y local 

minima. The back-propagation learning algorithm docs not guarantcc the network willleadl the 

global minimum. 

A neural network gets stuck in a local minimum becallse thc !ooteepest-desœnt algorithlll 

cannot further descend. This is an undesirable situation and one way to avotd It IS to "dtl a 

momentum term to the back-propagation learning rule. Equation (2) wlth the additional 

momentum term is: 

(EQ 4) 

where 

~ = Inomentum multiplying constant 

O(pj)' = previous weight delta for the .mme c.:olllleetioll (ealelllalet! 

af time t-1) 

The other parameters are the .mlne as in Equation (2). 

The addition of this momentum term allows the neural network to escapc lrom local 

minima. Let us consider skiers going down a hill. If the skiers cncounter ~mall bump~ on the 

way, their forward motion will not be blocked because they have enough momentum ln go OVCI 

small hillocks. The momentum term in the back-propagation rulc allow~ thc neural network to 

go over most of the local minima. 

Back-propagation is of interest because it is widely known and weIl undcrstood. Fur­

thermore, it has been successfully applied in many research projects, ~ome of whic.:h arc 

described in section 4.3. Results obtained using this method are prcsented and discus~ed in 

chapter 5. 
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4.2.3 Advantages and Disadvantages of Neural Networks Over 

Other Methods 

The problcm of fault diagnosis that we are concerned wlth here is mamly one of pattern recog­

nition. Neural networks are one of many methods trying to solve this problem. This section pre­

~cnt~ ~omc othcr techniques that could be used and compares them to neural networks. 

Proccdural Approaches 

U~ing the traditional procedural approach, a designer is constrained to use logical com­

parisons (e.g. >, <, >= ... ) to set boundaries in a multi-dimensional space against which input 

data will he checked. These boundaries are typically fixed and act as sharp delimiters of deci­

~ion rcgions, i.e. a data sam pIe either belongs or does not belong to a region in the multi-dimen­

~ional spacc. This works for well-defined cases, but data from real-world situations is often 

noi~y und poorly distributed. One is then faced with the task of redefining previously set bound­

mics and adding new ones. If such a system has been buiIt using if-then-else statements or a 

sllnilar procedural approach. bringing those changes usually represent considerable work or 

simply starting t'rom scratch. 

Ncural nctworh are known for their ability to interpolate, Le. to generalize about data 

thcy urc prcscntcd. For instance, an input vector that is very representative of the c1ass to which 

Il helongs will ccrtainly yield the neural network to output a high value at the corresponding 

output ncurode, say 0.95 out of 1. On the other hand, a vector with less similarity to that same 

c1ass would rcsult in a weaker output, say 0.65. In a pattern classification task, such results stIll 

carry cl10ugh mcaning on which decisions can be made. This is similar to the concept of mem­

hcrship degrees round in fuzzy logic [Ill]. Ultimately, when significant changes oceur in the 

prohlem domain. one can re-train a neural network or use a neural architecture which provides 

continuous learning. 
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Statistics 

Classifiers based on statistical methods are close to ncural networks. They lhfkr 111 olle 

important aspect. Statistics based systems rely on some as~umptton~ ahout the input dl~tnhll­

tion. These assumptions take the form of parameter~ whose valuc must he tuned for he!'.t pl'I'fur­

mance. Neural networks need no assumption ahout the input dlstrihution. One may 'lIgue th.lt 

neural networks do have sorne parameters like weights, gmn factors, and thlcshold!'>. II00VI.'Vl'I, 

these parameters are not tied to the input distribution. They are initially glvcn randolll value.., 

which are later refined during the learning phase. 

In statistics based systems, one is often tempted to simplify the statistlcal modcl Whl'Il 

dimensionality becomes a concern. This is because a modcl must he delincd u prion, I.C belOtl' 

training. Neural networks build their own model of the input data and dimcnslonality IS 1101 a 

concern, at least not in the same senr-e as with statistics based systems. Dilllenslonaltty lIIay 

cause a problem with neural networks if il results in the design of il hllgc nelwork wilh vely 

demanding computations. 

Statistics are nevertheless an important tool in the design of neural nctworh. Il I~ typl' 

cally c1aimed that one does not need to be an expert in the domain of the application to ll~C neu­

ral networks. This is not entirely true. Unlike expert systems, neural networks do not require the 

knowledge of a human expert to be translated into rules. However, neural netwurk dC~lgncI'\ ale 

expected to possess or gain sorne knowledge about the domain of application A data set Ihat 

truly covers the problem domain of an application can otherwise hardly he huilt. StatlstÎl:~, 

among other tools and sources of information, arc th us often used in that pcr!'.pccllvc. 

Expert Systems 

As was mentioned above, expert systems rely on rules extracted t'rom human expert 

knowledge. Neural networks also require expertise but only to give the de!'.igncr a proper under­

standing of the problem domain. This knowledge may be acquircd l'rom human cxpcrt~ or !'.im­

ply from written material about the problem domain. Neural nctwork de!'.lgner~ do not necd 
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knowlcdgc a~ much a~ they need a large sample data ~et that fairly represents the complete 

prohlcm ~pacc. Expert systems do have the advantage of being more user friendly. Rules are 

wntlcn ln plain Engli~h and can be easily understood, even by a non-programmer. In addition, 

expert !o.y!o.tems can providc an explanation about how they have reached a particular conclusion. 

Thi'\ Incrca~e~ the confidence of a human user who may be assisted by an expert system. 

4.3 Related Research in the Domain of Neural Networks for Diagnosis 

Il IS only reccntly that neural networks have gained considerable credibility and popularity. For 

that rcason, the majority of published articles relate theoretical ground work about neural net­

works. The scicntific community is now witnessing a growth of neural network models and 

assoclated learning methods. Very few applications have been reported. However, applications 

hascd on neural networks which have been reported to this date are typically encouraging and 

rcpresent a promise of yet more interesting resuJts to come. 

ln this second literature review, an overview of various neural network based diagnosis 

applications is given. This section is divided according to five domains of applications where 

neural networks have been applied to perform diagnosis. 

4.3.1 Electronic Circuits Diagnosis 

Jakubowicz and Ramanujam describe a neural-network based diagnostic system that 

dilccts technicians in diagnosing fauIts in electronic equipment [50]. The first stage of the neu­

ralnctwork is a self-organizing feature map that learns faulty state patterns and creates feature 

mups corresponding to cach input pattern being presented. These feature maps are then passed 

to a feed- forward network. In this second stage, the network uses the structural description of 

the system to dctermine which components might be responsible for the observed symptom­

state. This method was successfully applied to the diagnosis of a 4-bit binary-full adder. 
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Kagle et al. de scribe a neural-network based system traincd 10 hkntlfy and locatc dcc­

trical faults in electronic circuit boards and perform automatic knowleùge acqUIsition 1521. l'hl' 

authors used a back-propagation network traineù with slIlgle cvcnt failure charactcnSIH:s. Till'ir 

results show that a network trained with single evcnt fuilurc charactclIstic!'l l'an also Idl'ntlfy 

simultaneous multiple event failures. Results also indicate that. for Ihis plOhlclll at kast. lU.~ural 

network performance is closely tied to the number of neurodes in the input layers. DiagnoM!'I 

performance decreases when the number of input neurodes used is ùlll1inished. They also 

observed that the number of hidden layer neurodes necded to he adjusted so that the nctwoi k 

could generalize its conclusions. 

Tan et al. describe INSIDE. a nellral-network-hased system to trollhle!'lhoot the Incrllal 

Navigation System, an avionic tine replaceable unit [100]. Trainmg exumplcs weIl' ohtallled 

from equipment failure history. Whenever the trained neural network faib to H.lentlfy a l'allure. 

the system falls back on a ftow chart module that technicians typically use when trouhlcshoot­

ing the se pieces of equipment. When the problem is found using the flow chart module. the nl'w 

equipment failure case is added to the set of training examples. The neural network is rctraincd 

using the improved training set and its performance and fault coverage arc thus increa!'lcd. 

Touon and Limb have evaluated the performance of back-propagation neural network'i 

for the diagnosis of analog/digital interface line cards for digital exchanges 1102J. With only a 

restricted number of samples (295), they trained a neural network to recognize correct /"ailure 

modes with more th an 90% of accuracy. The advantage of neural networh over their prevlOu~ 

expert system solution [53] is the considerably reduced time needed to train and te~t a neural 

network compared to the time required to wnte and validate rules for an expert ~y~tem. 1 fow­

ever, the authors estimate that a hybrid system made of neural networh and expert ~y~lem~ 

would provide a better solution, for it would have the ability to learn from data and could pro­

vide an explanation facility. 

Meador et al. have applied back-propagation neural nctworks ln the prohlcm of high­

volume diagnosis of integrated circuits [76]. They compare result~ obtained u~ing traditlOnal 
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Gau~~ian MaxImum Likelihood (GML) and K-Nearest Neighbor (KNN) classifiers. According 

lo thcir re~uJt!., clu!.Mfication performance of the back-propagation neural network is consis­

tcntly !.uperior or equal to that of either the GML or KNN cla!-.sifier. An interesting advantage of 

neural network!-. in this application is the slgnificantly reduced number of floating-point opera­

tIOns (FLOPs) needed to perform diagnosis compared to what is required with either KNN or 

GML. The trade-off is a greater number of FLOPs is required during training of the neural net­

work. 

4.3.2 Medical Diagnosis 

Schreinemakers and Touretzky describe ELSIE, a system to detcct clinical and subclini­

cal udder infection in dairy cows [96]. The system consists of a production system module, a 

neural network simulation module, and a knowledge acquisition module. The diagnosis deci­

sion is pcrformed by a neural network using measurements of milk production and leucocyte 

counts as inputs. Another subsystem, the Knowledge Manager (KM) operates as an intelligent 

rulc-based dispatcher. One of the tasks of the KM is to present wrongly c1assified samples to a 

hUl11un expert for correction. New examples thus obtained are then submitted to the neural net­

work to reHne ils training set. The initial diagnosis performance of the neural network is 87% 

compared to that of their expert veterinarian informant. White analyzing the classification 

crrors, the authors noticed that the network had detected sorne inconsistencies in the training 

datu that had becn caused during the initial building of the training set by veterinarians. With 

the corrccted training set, the network performance was raised to 98% accuracy. 

Apolloni et al. investigated the possibility of diagnosing epilepsy using multi-Iayer per­

ceptrons lrained with the back-propagation algorithm [6]. Using a questionnaire designed by the 

International League Against Epilepsy (ILAE), the authors have built a neural network with 724 

inputs and 31 outputs (the ILEA considers 31 possible diagnoses). The trained neural network 

offercd a performance of 87% accuracy on cases it had never seen. A study of the trained net-
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work revealed that some of the inputs are Ilot lIsed at aIl (i.e. thcir weights arc equal or very 

close to zero). After removing these unused input!'. .. md retmining the network. the authors W~'I~' 

left with only 74 inputs for their neural network. i.e. abOlit 10% of what they originally hall. and 

an increased accuracy of 95%. According to experts, the unused I11puts point to qucstions III the 

ILAE questionnaire that are not considered particularly relevant to this problcm. 

Dytch et al. have: used different types of neural nctworks as tools 1'01 the l'valuation of 

DNA ploidy spectra for the ohjective evaluation of stratitlcd cpithclia uSl11g 111gh-rcsohlllon 

karyometry [31]. The classification rates they obtained in preliminary studics arc evcll hettcl 

th an what they obtained using more traditional techniques. A carcful cxamination of thc ~yll<lp­

tic weights of their trained network revealed that the internai representation of the Ilclworlo. L'OI­

responds to known heuristic cules for the interpretation of DNA ploidy spcctru. 

Boone et al. have evaluated how neural networks l'an be apphed ta computcr aidcd 

radiologic diagnosis [14]. In their first experiment, the performance of a fcedforward neural ncl­

work trained with a variant of the generalized delta rule favorably compared wlth that of hUlllan 

radiologists in a basic visual perception task. An interesting aspect of this experimeflt is that 

they first had to train the network with images having a high signal-ta-noise ratio. Only then 

were they able ta use reduced signal-to-noise ratio images to further train the nctwork. This i!-. 

similar to the way humans learn. The easy concepts are learned first and the more advullt:Cd 

concepts are then added as refinements to the basic knowledge. Whereus the goal of thcir fir~t 

experiment was to show the ability of neural networks to perform pattern recognition task~, thc 

objective of their second experiment was ta assess the feaslbility of applymg neural network" to 

cognitive tasks. With 50 possible findings as inputs and 12 possible diagno~cs as outputs, the 

two-layer feedforward network correctly identified 79% of the posItive diagno~c~ and 99% of 

the negative ones. 

Maricic et al. describe a prototype automatcd ~y~tem for prehminury heart anomaly 

detection based on neural networks [69]. The first stage of the ~y~tem perform~ image proce~!-.­

ing on chest radiographs to extract sorne 30 heart shape paramctcrs. Of thc~c, only 9 can be 
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~hown, through ~tati~lic~, to be of value for this classification task. The authors used a back­

propagation neural network with 3 outputs, one per possible diagnosis. The results of their 

expenmcnt~ arc cncouragmg, but clearly show that the heart shape parameters used as mputs do 

nol carry the mformation nece~sury to properly classify heurt anomalies with a high degree of 

~uccc~!o.. 

Egbert et al. have compared back-propagation neural networks to convention al classifi­

er~ for the task of diagnosing neck and back injuries from thermographie images [32]. These 

IInagc!o. wcrc first prcprocessed to extract feature vectors which are fed as inputs to the back­

propagation neural network. Two different implementations of the back-propagation neural net­

work wcrc tricd and yieldcd 90% and 80% accuracy respectively. Using the same feature vec­

tors, conventional methods such as nearest neighbor classifiers and gaussian maximum 

likclihood classifiers cou Id at best yield 45% accuracy. 

Harrison et al. trained a multi-Iayered perceptron to diagnose the presence of chest pain 

142J. They evaluated two neural networks, one using the mean-square-error and the other, a log­

likclihood funclion. Both offered similar performance except that the latter completed training 

in lcss lime lhan the former. Both networks presented a better accuracy than that of an experi­

cnced physician asked to produce diagnoses using the same data. A sensitivity analysis also 

rcvcalcd that bath networks and physicians gave more weight to the same six most important 

positive contributors and the same most important four negative contributors. 

4.3.3 Chemical Plant Diagnosis 

Yamamoto and Venkatasubramanian describe an interesting neUlal network architecture 

to carry the diagnosis of a chemical plant [108]. The authors combine a qualitative neural net­

work (QLN) with a quantitative one (QTN) and obtain more reliable diagnoses than with a 

quantitative neural network alone. The same information is fed to both the QLN and QTN net­

works. Inputs for the QLN is first preprocessed ta make it qualitative. Both the qualitative and 
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quantitative neural networks have the same set of po~~ible outpul~. If bolh lypc!-o llf ncl\VOI-t... 

agree on the output, the results of the QLN network arc passcd to .1Il im'cl M~ qualItatlvc nl.'t",ork 

(lQLN). The set of possible outputs of this network is identical to the ~ct of pos~ihk IIlplll~ 10 

the QLN network. If outputs from the IQLN network and inputs 10 lhe QLN nctwork arc Slllll­

lar, then it is assumed that a diagnosis has heen rcached. Thc authOls u~e multiple cnplc~ of 

QLN and QTN. Since these networks are started with different randolll ~cls or wCIght!-o. thal PIO­

vides a means of validating the networks results against each olher. Thi~ archilectulc I,Ikc ... 

advantage of both the accurate information carried by quantitativc valucs und thl.' whusl ncs~ III 

noise of qualitative information. A detaHed cxplanation of thc QLN, QTN, and IQLN arch IIcc­

tures can be found in [108]. 

Hoskins et al. report about their experience with neural nctwork for fault diagno!-ol!-o III 

chemical plant processes [48]. They report that ncural networks can fullill ~everal functloll'\ in 

fau!t diagnosis. First, they are capable of c1assifying labelcd data inputs during trauung M) Ihal a 

c1early delimited fau!t partitioning is obtained. Second, they ean sclf-organll.c uSll1g nOIl­

labeled training data. Third, they can form associative memorics. thus making pos~ihle thc 

retrieval of fault patterns using only partial or corrupted inputs. Fourth, u~lI1g high ~pecd pat al­

leI processing, they can handle sensor data in real-time. And fifth, Ihey providc a non-lincar 

mapping of inputs to outputs. 

Jokinen compares Dynamically Capacity Allocating (DCA) network lIlodcb 10 COll vell­

tional neural networks in the task of fauIt detection and diagnosi~ of an i ndU~lrtal pr()t:C~~ 15 Il. 

The author states that it can be difficult to gather all the po~slbje fault condjtlon~ to con~trud a 

fault detection system. A network that is capable of continuous learning I~ thcn ch~arly an 

advantage. Jokinen led an experiment identical to the one reported in [1081 but u~ed a DCA net­

work instead. The probabi!ities of "correct" observed fault~ as a function of the undcrlYlllg 

"actual" process faults using the DCA nctwork were much highcr that tho,c ohtained u~ing the 

back-propagation algorithm. Only one type of fault was consistently mi~cla~~lficd. The author 
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.,ugge.,t~ ~uch results mo!-.t probably indicatcd that not enough input information was collected 

for that type of fault. 

Arai el al. have evaluated a neural nctwork for the diagnosis of problem!o. with compres­

~()r val ve~ u!-.mg val ve plate sound [7]. They found that preprocessing the raw data allowed 

lhem 10 oblain a nctwork offermg 100% accuracy with a ~ignificantly smaller number of neu­

rode.,. They used a conventionaJ back-propagation neural network with inputs coming from 

four different lype~ of preproces!'Iing. Their experiment revealed that training a network with 

plCprucc'~scd data l'rom one normal valve plate enabJed the network to correctly recognize other 

normal valve plates, whereas training the network with raw data from a normal valve plate did 

nol make lhi~ type of generalization possible. The authors thus suggest that preprocessing raw 

data for only one normal valve plate extracts the features invariant to aIl normal valve plates. 

4.3.4 Engine Diagnosis 

Marko et al. report about their experience with an attempt to develop a neural network 

to dHlgnose faults in computer controlled electro-mechanical systems in vehicles [70]. Using a 

mixture of digital and analog signaIs from the inputs and outputs of an engine control computer 

(EeC), lhey trained a back-propagation neural network to recognize 26 different faults. They 

atlained 100% accuracy on their testing set and similar results were also obtained when using 

other neural network architectures such as counter-propagation. The authors conclude that vali­

dation IS an issue lo which attention must be paid since one cannot de duce from a trained net­

work if the problem space - which is usually multidimensional - is adequately covered. 

ln anothcr paper by Marko et al., an analysis was do ne over a number of train able cIas­

sitiers to detect and identify fauIts in vehicle powertrain systems [71]. They stress the impor­

tancc of asscmbling proper training sets and designing relevant tests for trained classifiers. 

Good training sels are those that adequately cover the multidimensional space such that gener­

alization can be atlained. Thorough testmg is accompli shed by using methods such as leave-k-
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ollf. The classifiers they selected to evaluô.lte arc the I1Cô.lre~t neighhlH da~sil1el, the Rl"tnl'tl'd 

Coulomb Energy (RCE) networks, the hack-propagation nctwork, and two \'allant~ 01 tlll' 

bmary tree. Even though the back-prop'lgation neural network clas~lliel shmvl'd Olle of thl' hc~t 

performances, the authors raise the problem oftlaming and tl'~ting timl' fOl ~lldl das~llicI~ FUI 

prohlems requiring large neural nctworks, hack-propagation may pmvc tn he llllpractll'ai \VIth 

tradltional computing means. 

Guo and Nurre have investlgatcd the fem.,lbility of uSlllg Illultllaycr IccdfOl W:II LI Ill'lll al 

networks to identify sensor failures in the Space Shuttle main cngmc 1401. A lin.,t nClllal Ill't­

work was trained to identify, among a nLlmher of scnsors, which one has an output lhlkll'nt 

than the others. A second neLlral network was also trained to provldc an estimatc valuc 1'01 the 

failed sensors. They obtained 95% accLlraey on thcir test cases, usmg a neural Iletwor~ thal wa~ 

easier to design and tune than conventional methods which dcpend on complex lIlodeb 01 the 

system LInder diagnosis. 

4.3.5 Power Systems Diagnosis 

In [56], Khaparde and Mehta have evalutlted the fcaslbihty of u~ing ncural a netwoi k lOI 

detecting the presence of bad data in power systeml-.. Their study show~ that thc tnunlllg t\llle 1 ... 

affected by parameters such as gain factor, momentum factor, and nctwork architecture (I.c. thc 

number of hidden neurodes). The back-propagation neural nctwOlk they u~cd i ... able to c"I~"'lly 

good and bad data with 95% to 100% aecuracy on data it has not ~een dunng trallllllg. The 

authors conclude that neural networks offer a simple and ~traightforward solution to a prohlelll 

which typically requires elaborate algorithml-.. 

Nishimura and Arai have evaluated both a back-propagation neural network and a ... truc­

tured neural network for the purpose of detecting power l-.y!.tem <;tatc~ 1841. The back-propaga­

tion neural network performed succe~sfully but dld not providc acceptable re ... ult ... when 

responding to unknown patterns. Thi~ motivated the authon~ to dcvclop a ~tructured neural nct-
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work whlch makc ... u ... c of a fccdback mechanism from logical knowledge to recognition. This 

nctwork ... howcd a grcatcr ability to dcal wlth unknown mput values. 

4.3.6 Applications of Neural Networks in Communications 

Neuwl networh havc abo bcen applIed in a number of areas in communications such as net­

work control and managemcnt [92][45], network switching [72], data routing [57], data interpo­

latIOn 131, adaptivc flltcr~ 1106], quadrature amplitude modulation [59] and local and wide area 

nctwOlk ... IIOJ. 

4.4Summary 

An hi!.torical overview of the field of neural networks was given and a detailed description of 

the hack-propagation algorithm was presented. A nllmber of diagnosis application taken from 

the !.denlitk IIteratllrc were also reviewed. The next chapter will describe the actuai steps that 

wcrc takcn 10 galher dala, define tests, and evaluate neural networks with respect to their appli­

cahIlity 10 lhe prohlern of identifying and Iocating faults in the telephone access network. 
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Chapter 5 Subscriber Loop FauU Diagnosis with Neural Nctworks 

This chapter describes the experimentation that was carricd out to evalunte the fea~lhtlity or 
employing neural networks in the telephone acccss network fault diagnnsis prol'l:ss. The mput 

data available and the output goals desircd from an automated diagnosls system arc litst prc--

sented. The actual neural network implemcntatlOn, training and testing ale then de~l:nIK·d. A 

discussion of results and future extensions ends this chaptcr. 

5.1 Output Goals 

Telephone access network maintenance is conccrned with thc two following ohJectives: idcnll-

fying faults and localizing them. Faults can be categorizcd by thc f'ollowmg: 

• metallic problems (damaged wires, short-circuits, open-cIrcuits, rcsislivc Ici.lk­
ages, etc.) 

• profile problems (erroneous database entries) 

• user problems (users having difficultles using calling fcatures such as cali hold, 
cali forwarding, etc.) 

A fauit may sometimes be identified simply by talking with the CListolllcr. Il Ihe CU\­

tomer calls to report a wire that was accidentally damaged, the f'ault l~ ldcntilicd 1 ighl away. 

Similarly, customers calling to request help do not involve further inve~ligatlOn frolll RepalJ 

Service Bureau personnel. 

Less straightforward are problems for which the cu~tomer can only dC\Cllhc Ihe ~ylllp­

toms of the fauIt. For instance, a cu~tomer may call to report an inabllity 10 receive cali .. The 

cause could be that another phone ~tayed off hook or that ru~t ha~ finally deteriorated the in"ld\! 

wire to such a degree that it is now eut open. But it cou Id al .. o be thc re~ult of a nurnbcr of other 

failures. The repair process can only start once the fault ha .. bccn Identlfied. A .. It I~ co\tly for 

telephone companies (or for ~ubscribers, if it i~ shown that Ihey arc re .. pon~lblc) to have a lcch-
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nician exarmnc the equipment and installation at the subscriber's premises, it is desirable to 

ohtain the hc~t indication pO~~lble of what fault occurred and its location before any dispatch 

dccl~lon can he made. Fault identification and localization is the prime aspect of telephone 

acc.;c~~ nctwork mamtenance. The rapldity with which a problem is fixed depends largely on the 

quality of thi~ proce~~. Telephone companies have regulated deadlines to meet regarding -epair 

wOJ'k and cu~tomer ~ati~factlOn increases when problems are resolved faster. 

Anothcr factor to consider is the organizational division of the repair work force. Repair 

pcr!'\onncl arc typically organized into outside plant group, central office group, and customer 

prcllli~c!'\ group. Smcc the performance of each of these organizations is normally evaluated 

according to the numbt!r of troubles received, how man y that were solved, etc., it is important to 

know the exact location of the fault in order to route the problem to the proper group. 

The ohjective of this research work was to assess the feasibility of using neural net­

works to carry out telephone access network fault identification and localization tasks. The fol­

lowlllg section pre~cnts what type of data was avmlable to that end. 

5.2 Input Data Available 

The information availuble for subscriber loop fault diagnosis currently stems from five sources: 

the cu~tomcr, the trouble report files and line records, billing information, network elements and 

test head~. 

5.2.1 The Customer 

ln the present mode of operation, known as the reactive mode, the customer triggers the mainte­

nance proccss hy calling the Repair Service Bureau to report a problem. The answer c1erk, who 

grects the cu~tomer, is responsible for getting the customer's phone number, verifying the coor­

dmutcs, and rcgistcring the reported problem. Subscribers typically report problems such as "1 
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cannot cali", "1 cannat receive caUs", "1 keep on reaching the wrollg Ilumhcr", "1 hem Illmc on 

the tine", "The wire outside was accidentally ruptured by a truck", cIl'. Wnh 111I~ "-md of lIlhlt­

mation as a starting point, an experienced human tester l'an then lI11tlate the dlagllo~IS pWl'l'~" 

and request more information from the subscriber if nccd he. 

The information provided by the suhscriber IS of sigl11ficant Importance ~1Ill'l' Il I~ l'LII­

rently the only means of probing what is happenmg at the l'al' end of the loop. 

5.2.2 Customer Line Records and Trouble Report .'i1cs 

Each customer has a line record. This record indicates when the installallOll wa~ dOliC. whkh 

equipment in the central office serves the hne, and Idcntifies the cOl11ponclll~ (cahle.,. lunclloll 

boxes, protection devices, etc.) that make up the loop. 

If a customer has called the Repair Service Bureau in the pa~t to repolI a pmhlell1. Ihe 

type of trouble reported, the problem found, and the solution used to t,x It ale ~Iored 111 the llOu-­

ble report history file. This can be used to correlate new troubles with rcpmr or IIlstallatioll WOI k 

done in the past. Similarly, active trouble report files can be uscd to correlatc pJ'Ohlclll~ thal have 

a common source and thus need only a single dispatch (15 H2l ](T! 1. 

5.2.3 Billing Information 

Billing records often serve as a point of reference when trying to ~olve a prohlem. ClI .. lo/11el .. 

may cali the Repair Service Bureau to report a complete service outage or the ah!o.cncc of a call­

mg feature they have ordered. In sorne instances, after If ha~ been verified that ~ervjcc from a 

Hne has indeed been purpo~ely removed or that the ~witch ha .. not been provi!o.loned for a partIC­

ular calling feature, the tester will consult thc ~ubscriber\ hJlling rccord. Thc bJllmg rccord can 

show whether service was removed becau~e of non-paymcnt or upon cu~tomcr rcquc"t. and 1/ 

there is a subscription to one or more calling fcaturc~. 
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5.2.4 Network Elements 

Nclwork c1cmcnt~ now have a more active role in acce~s network maintenance. Even though a 

,cparale tc~l card is often used to collect electrical measurements from the loop, today's switch­

ing dcvlce~ can now carry out thelr own tests on subscnber loops. They can also provide infor­

mation about thc current ~tate of a subscnber loop and its provisioned features. As network 

clement ... are hecoming increa'iingly "intelligent", more and more consideration is given to their 

potcntlUl for access network maintenance. 

5.2.5 Test Heads 

Tcst hcads arc stand-alone devices that can receive commands from Operational Support Sys-

tCI1l~ and perform the functions requested. The most commonly found test head in the Repair 

Service Bureau environment is the type that can perform electrical measurements on subscriber 

loops. Thcse test heads can measure AC and OC voltages, resistances, and capacitances. They 

arc abo capable of a number of other functions, such as [19][24][25][28][36][49]: 

• connection/disconnection commands; 

• monitor or talk on line under test; 

• look il. toward central office, look out toward subscriber, or bridge across line 
lIndcr test~ 

• transfcr test connection to another operator; 

• breakdown test, Le. application of high voltages to dry out wet pairs; 

• release lines that have a permanent signal condition, i.e. that have been seized 
by the switching eqllipment; 

• ring slIbscriber; 

• vcnfy subscriber equipment capability to produce acceptable Dual-Tone Multi-
Frcqucncy (DTMF) tones~ 

• te~t rotary dials; 

• apply howlcr tone to notify subscriber of a phone that is off hook; 

• apply sOllnder tone for cable localizing; 
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• set loop current to test coin telephone operation; 

• apply transmitter current 10 measure ClIITent through trall~mitter 1\1 ~uhs~nhcl 
telephone; 

• reverse tip and ring; 

• test ability of subscriber line to obtain dial tone l'rom central oflice \VIth optlOl1 
to insert additional impedance on the line; 

• dial on a subscriber line; 

• send on hook signaI toward central office on sub~cnbcr 1 me; 

• check subscriber line card in central office; 

• verify office equipment to find if tine is a up or llng party, or PBX huntlllg 
group; 

• verify ringer presence; 

• detect voice. 

With the increased power of digital switching systems, the functionulity provldcd by tradlllOnal 

test heads can be replicated by the switch hardware and associatcd softwarc. Wlth thc~c l'apahll-

ities, one can look forward to a preponderant role of intelligent nctwork clcmcnts, ~lIl'h as IIIlHl-

ern digital switching systems, in future access network maintenance systcm!'.. 

5.3 A Neural Network for Fault Identification and Localization 

5.3.1 Selection of Data for the Neural Network 

Out of the five sources of information mentioned earlier, only one wa~ u~cd: thc trouhle repo!'t 

This choice is not as restrictive as il appears since much informatIOn commg l'rom other sourcc\ 

is transcribed into the trouble report. The problem reported by the cu\tomer I~ entered m, code!'. 

in the trouble reports and sorne free-format informatIOn i~ abo storcd in remark ficld~. Informa­

tion about subscriptions to different services i~ taken from the billing ~y~tcm and copied onto 

the customer line record, even though it is sometImes outdated. Re~ult~ rcturncd by tC\t hc •• J:-. 

are appended to trouble reports and available for future refcrence. Finally, network clcmcnt\ 
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can carry out ~ome tc~ts of their own and provide a ~napshot of the calling features of a particu­

lar tclephonc line. Unfortunatcly. thi~ information is not currently integrated to the customer 

1 inc record. 

Human te!o.ters seem to base their decision on a few data fields only. They typically con-

~jder the following [18][19][24][25][49][66][73][80][81]: 

• the description of the problem entered by the answer clerk; 

• the addttional remark the answer cIerk may have entered; 

• the 12 electrical measurements returned by the test head; 

• the verify code which is a machine interpretation of the electrical measure­
ments. 

Othcr fields may be exceptionally considered. As the first two items have free formats 

on the trouble report and are of a subjective nature. the y were not considered in the experimen-

tation. The verity code is in fact one of the items this research work is looking to improve and 

will serve as a measure of comparison. Finally, the electrical measurements returned by the test 

hcads are without a doubt the most objective information available. These measurements con­

sist of four groups of three measurements taken between tip and ring, tip and ground. and ring 

and ground. The four groups are AC voltages, DC voltages, resistances, and capacitances. 

5.3.2 Preprocessing the Data 

A selection of 5.335 trouble reports was available for experimentation. Out of these, 891 

werc hand-picked and labelled. The machine-generated verify code indicates if the problem was 

diagnosed as a short, an open, etc. However. the exact nature of the problem is contained in the 

last remark field where the dispatcher enlers the cause of the fault. along with the solution used 

10 fix it. berore cIosing the report. This remark field had to be read for each trouble report and 

CIH:odcd mto a l'orm acceptable to a neural network. The categories of problems for the data 

smnplcs used were: 
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• good lines; 

• open circuits; 

• lines affected by a dead left-in wire. Such Imes appcar to he short-clrclIt(cd; 

• lines affected by noise. Such lines are typically affected hy t'list. Thc rcslstam.'c 
measurement taken between tip and ring typically shows a value around 5 Mn 
instead of the normal 9.999 MU Conversation is slill posslhle under these con­
ditions; 

• lines affected by rust. Such lines are affected hy rustto a hlgher dcgrcc \VhclC 
drawing dial tone and conversation are no longer posslhlc; 

• short-circuits. This category includes short-circuitcd lines whcrc drawing dial 
tone and conversation are not possible but for which no causc was provldcd 111 

the trouble report; 

Values of resistance measurements ranged l'rom 0 n to 9.999 Mn wherca~ the otllcr 

measurements covered only 2 or 3 orders of magnitude. ln order to resolve this di~panty, the 

logarithm of the se resistance measurements were taken and t'cd to thc neural net WOI k. FlIlally, 

capacitances were sometimes not measured because of the presence of high voltage thal rouIt! 

have damaged the test equipment. Capacitance measurements wcrc lhus pleproccs~ed to 

replace missing values with -1 entries (val id values being positive). 

AlI the data samples were dlvided among three equal suh~ets, each one conlallllllg an 

equal number of samples from a particular category. Three dlfJ'erent training/leslmg pairs of 

data sets were then formed by taking two subsets to form the training set, leaving one oul for Ihe 

test set and performing permutations. 

5.3.3 Dividing the Fault Identification Task into Sm aller Problcms 

A tirst attempt was made at building a neural network to handle the ~ix categorie., II~ted ahove 

with the result that the network never complcted the learning stage ~ucce~~fuIly. The prohlcm 

with this approach is that the six fault categorIes de!lcribcd abovc werc not cqually rcprc.,cnled 

in the sample data set. There were 15 "Hnes affected by nobc", 36 "Iinc~ affcctcd hy a dead Ich­

in wire", 128 "lines affected by rust", 150 "open clrcuit~", 263 "good Itnc~", and 303 '\hort Clf-

65 



CUlt~". For a ~ingle network to handle ail cases, duplication of samples or production of samples 

u~lng common ~en~e would have been necessary to make up for the smaU number of samples of 

certain fault categories. In!\tcad of doing this, it seemed more appropriate to approach the prob­

lem the same way human te!\ters do, i.e. by proceeding step by step and first trying to eliminate 

lhe obviou!\ cases. 

The ta~k was thu~ divided lOto smaller problems, each one handled by a specifie neural 

network. Figure 5.1 ~hows the architecture of neural networks used to identify faults. A first 

ncural nelwork cla~sifies incorning patterns into two categories: that of tines affected by open 

cm;ulls and that of Imes not affected by open circuits. If a line is tagged as affected by an open 

circuit, the fauU is found and the process stops there. Otherwise, the 12 measurements are sub­

Illilted lU another neural network that discriminates between good tines and tines affeeted by 

problcrns other than open circuits. If the line is tagged as being a good line, no fault is found and 

thc proccs~ stops. Otherwise, the 12 rneasurements are passed to a last network that classifies 

lines inlo 4 categories: those affected by short circuits, by noise, by rust, and by dead left-in 

wires 

5.3.4 Training the Neural Networks 

The package used to carry out the experiments IS NeuralWorks developed by NeuralWare [82]. 

This software allows one to set up learning sehedules. Using these, one can specify how the var­

ious back-propagation parameters are to behave as training progresses. 

NeuralWorks allows the specification of a back-propagation neural network with up to 3 

hidden layers. Neural networks with one and two hidden layers were investigated in this 

reseurch and Tables 5.8 and 5.9 show the results. The number of neurodes in the input layer was 

sel to 12 in every case since ail electrical measurements were used as inputs in each problem. 

Even though some rneasurements are known to be irrelevant to identify sorne fauIts, they were 

nevcrtheless left in to study how the neural networks would react to inputs that do not carry use-
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Figure 5.1: Neural network architecture for identifying faults. 

fui information. The number of neurodes in the hidden layer was set to 4, K, and 12. '1l1hles 5.6 

and 5.7 detail how the number of neurodes in the hidden layer affects the ahility of the neural 

network to generalize. The number of neurodes in the output laycr wa~ ~ct acconling 10 Ihe 

number of categories expected for each problem. 

Each one of the hidden layers and the output layer can havc thcir own Icarning coeffi­

cient. The Iearning coefficient controis the speed of Iearning of a neurode. The biggcr lhl~ coef­

ficient is, the faster a neurode Iearns. However, a large learning coefficlCnl may Icatl 10 

oscillatory behavior. Learning coefficients are typically set to O.] and arc dccrca~cd over llllle 

during Iearning. Experimentation has shown that starting with a low Icarnmg coefflcienl for the 

output layer, e.g. 0.1, and slightly smaller ones for the following hiddcn laycr~ gave be~t rcsult~. 

The momentum term was set to 0.4 and the first transition pomt to 10,000. After 10,000 trainlllg 

passes, NeuralWorks switches to the next ~tage in the learmng ~chedulc, i.e. il multlplic~ the 
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Icarning coefficient of each layer and the momentum term by the learning coefficient ratio, 

whH.:h wa!'. ~et tu 0.5. Thi~ allows the neural network to refine its learning as time progresses. 

The learning rule u~ed was the normalized cumulative delta rule which is a derivative of 

the cumulative delta rule. The cumulative delta rule accumulates the weight changes over a cer­

tain number of traIning pas~e~ called an epoch and then make the application aIl at once. The 

problclll with thl~ approach i~ that changing the epoch affects the learning coefficients. The nor­

rnalizcd cumulative delta ru le takes care of this by automatically divlding the learning coeffi­

cients hy the square root of the epoch. Epoch sizes of 1, 4, 8, 16, 32, and 64 were investigated. 

Table 5.10 ~how~ the results. The transfer function that was selected is the hyperbolic tangent, 

which is more suited to input values with a range of -1 to + 1. 

Figure 5.2 shows the "BackProp Builder" dialog box which pops up when creating a 

hack-propagation neural network. ft is interesting to go over each of the parameters of this dia­

log hox. A number of check boxes allows the user to specify various configurations and the 

inclusion of certain tools. The Connect Bias check box connects an input bias to each neurode 

111 the neural nctwork. This is similar to providing a ground path in an electrical circuit. The 

Conncct Prior check box fully connects the input layer to each neurode in aU other layers. 

Leaving this check box blank defaults to the configuration where the input layer is fully con­

ncctcd to the tirst hidden layer only. NeuralWorks allows the user to add or remove any single 

conncction in uny layer. Chee king the Functional Links box creates another layer in parallel 

wlth the input layer to compute second order iterations. This second layer acts as a second set of 

inputs ror the rest of the network. The Auto-Associative box when checked sets the number of 

output new'odes equal to the number of input neurodes and forces the neural network to use 

input data as desired output during training. As the problems under investigation aU fall under 

the hctcro-associative c1ass (i.e. input patterns are mapped to categories), this feature was not 

lIscd. The Linear Output check box allows the user to override the selected transfer function 

and forces the network to use a simple linear transfer function for the output layer. The Gauss­

ian Noise check box toggles between Gaussian noise when turned on to uniform noise when 
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turned off. The Tolerant Error check box forces thc nctwork to consldcr a parameter 100l11d 111 

the LearninglReeall Schedule dialog box as an error value 10 he con~idered as n. Whl'Il thl~ 

value is reached, learmng stops. Learning can also be stopped hy sctting applOprÏ&lh.' COIlVl'I-

gence criterions in tools such as thc RMS Error Graph. 
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() 1 ()()() () .:; ()() 

o Connect Bias 0 Fast Learning 
o Connect Prior 0 Minimal Config. 
o Funet. Links 0 Default Sehedule 
o Auto-Assoc. 0 Default 10 Files 
o Linear Output 0 MinMax Table 
o Gaussian Noise 0 RMS Error Graph 
o Tolerant Error 0 Weight Histogram 

o Confusion Matrix 

Figure 5.2: BackProp Builder dialog box. 

Lcarn Transfcr 

Learn Rclrre~t 

OK Cancel 1 Help 1 

The Fast Learning check box permlts the user to switch to a t~l~tcr vanant of the hack-

propagation learning algorithm. The Minimal Configuration check box tells NeuralWorh to 

eliminate less critical parameters such as the momentum term when computer rnemory I~ lim-

ited. Checking the Default Schedule box instructs the software to u~e a dcfault learnmg sched­

ule for alllayers whereas leaving 1t blank lets the neural nctwork designer use it~ own ~dlcdl1le. 

The Default 1/0 Files check box allows onc ta dIrect NeuralWorks to u~c dcfauIt flle nalllc~ 

instead of the ones specified under Learn and Recallffest. Chccking the Min Max Table hox 

permits the user ta get a minmax table automattcally creatcd whllc train1l1g data b bcmg rcad 111 

This must be used if one wants to take advantage of the automatic Iwear normaltzation feature 

provided by NeuralWorks. 
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The lu!-.t threc check hoxc~ ullow~ the u!-.er to specIfy which standard instruments are to 

he u~ed during the !-.IITIulution. The RMS Error Graph instrument ~hows a graph of the RMS 

error at the output of the neural network with re~pect to the number of training passes. The 

Wcight Histogram in~trument dl~play~ a normalized histogram of ail variable weight~ in the 

neural network. F1I1ally, the Confusion Matrix instrument creates a confusion matrix for each 

output neurodc Figure 5.3 ~how!-. a confu~ion matrix. Desired outputs are mapped onto the x 

aXI!-. whllc actllal output~ arc mapped on the y axis. Each axi~ is divided 1I1to bins. A network 

that ha~ ~lIccc~~fully learncd will have bins fully or partIally filled on the lower left/upper right 

dIagonal. 

~ ... ---------... 
~r----------' ~ 

0 .... -----------1' 
'dt------------1 
<1---------4 

Desired 

Conf. Matrix 1 

Figure 5.3: Confusion matrix. 

5.3.5 Testing and Evaluation 

For l11\'c~tigation pm'poses, a certain c1ass of problems was selected. In this section, the. experi­

mental rC~lIlt!> arc dcscnbed. A brief overview of the method used to validate the result~1 is given 

IiI st. 
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Validation and Qualification of Results 

In order to validate the results obtalllcd durtng the experimentallon. the /t'tl\'('-f..-tlill Illethlld \\ .1' 

applied [104]. USlIlg this method, one takes k ~amplc.., out of a total M~t of N ~alllpll', lOI tl"tlllg 

(N-k) samples are thus available for trailllng. Onc then rcpeats thl~ proccdllle NIf.. 1IIlll',. c.tch 

time takmg out a different set of k ~al11plcs for tc~ting Ali !o.uch ~et!o. of f.. sLlmpk.., lIlu..,t he 1I\lllu 

ally exclusive. When deahng with a vely IlI11Ited Humher of !o.<lmpll's. o Ill' typlcally ,l'I~ thl' 

value of k to 1. The size of the set of s:unplc!-o used for thi~ rcscarch made a latlo 01 NIf.. l'quai to 

3 (N/k = 8911297) seem reasonable. Three groups of 297 ~a1l1p)c~ weIl' 1'01 mcd and 3 "IUIl," 

were performed for each type of neural netwolk. In each l'un, one group of 297 ~all\pk~ V"l' kil 

out for testing and the other two groups wcre used for training the nctwork. Thl~ plOccdlllc W,I~ 

repeated three t;mes per network, each time leaving a dilferent glOup or 297 ..,all\plc~ out 101 

testing and using the other two for trallling. 

Results were qualified according to three factor!-o: 

• Fa/se recognition rate: the ratio of mcorrcct diagno!-ocs to the total Illllllhcl 01 

ca~es. 

• Rejectioll raIe: the ratio of diagno~cs whcrc nonc of the nctwolk output nClI­
rodes could provide a value greater than 0 (in a range 01 -) to +) l-

• Recognition raIe: the ratio of correct dtagnoses to thc total numbcl of ca!-oc'" Il 
is equal to (1 - (false recogllitioll rate + rejectioll raIe»). 

5.4 Experimentation Results 

5.4.1 Performance of the Proposed Neural Networks 

Neural networks were designed to handle the followmg pr()blem~: 

• open-circuit vs. not open-circuit (re!-oult'i are in Table 5.1), 

• good line v~. short-circuit (Table 5.2); 

• Type of short-circuIt: dead left-in, nOl!-oy, ru!-ot, "hort-cm:Ult (Table 5.3), 

• Type of short-circuit: dead left-in, ru~t, ~hort-clrcult (Tahle 5.4); 
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• Type of ~hort-circuit: ru~t and ~hort-circuit (Table 5.5). 

Some verify code ... in the trouble reports coyer open-circuit and short-circuit problems. 

Howcver, lherc are no codc~ la differentiate between types of short-circuits. The last column in 

Tahlc~ 5.1 and 5.2 ~how the performance of verify codes for the same problem diagnosed using 

neural network~. Neural nctwork performance when diagnosing open-circuits (98.3%) is simi­

lar lo lhat of venfy code!> (98.5%). However, there is a significant difference in performance 

when ~horl circuits arc considered. Neural networks offer a 96.8% performance in correct clas­

~lficatlOn compared ta 67.3% for verify code - an increase of nearly 30%. 

Tables 5.3, 5.4, and 5.5 show the result of neural networks when trying to categorize 

~hort-circuit type of problems mto subcategories. Results will not be compared with the present 

system as thcrc do not eXlst verify codes to differentiate among cdtegories of short-circuits. The 

!ifS! of thesc neural nctworks had to c1assify problems into 4 categories and offered an average 

performance of 60.8%. The "noise" category was then removed due to its very small number of 

samples ( 15). A second neural network was then trained on the 3 remaining categories and per­

formance rose to 63.0%. Another c1ass with a small number of samples - "de ad left-in" with 

36 samples - was then removed to leave only 2 categories: "rust" with 126 samples and "other 

shOJ't-circuit~" with 303 samples. Performance for this two-category neural network was 69.2%. 

Rcsults l'rom these three neural networks are encouraging but a more rigorous study would need 

10 he carncd out llsing trouble reports filled following strict rules. To achieve this, technicians 
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would be instructed to carefully ldentify the type of prohlem round and where It WOlS localed 

-'-

Parameters 1 ~t Run 2nd Run 3rt! Run AWlagc 
Vctify Code 
PetiOt manee 

# of input neurodes 12 12 12 
-----------

# of hidden neurodes 8 8 8 

# of output neurodes 1 1 1 

Palse recognition rate 2.4% 0.3% 2.4(J!c, 1.7% 1.5(//, 

Rejection rate 0.0% 0.0% 0.0% O.Oitr, (U)(!c, 

Recognition rate 97.6% 99.7% 97.6% 98.Y'!c1 98.5% 

Table 5.1: Results for the identification of Iincs affccted by open cm:uil çomhlioll~ 

Parameters 1 st Run 2nd Run 3rd Run Average 
Vent y Colle 
Performal\\:C 

# of input neurodes 12 12 12 

# of hidden neurodes 8 8 8 

# of output neurodes 1 1 1 

False recognition rate 1.6% 2.4% 5.7% 3.2(/(, 32.7% 
--

Rejection rate 0.0% 0.0% 0.0% 0.0% O,()(Yr, 

Recognition rate 98.4% 97.6% 94.3% 96.8% 67.'YYo 

Table 5.2: Result~ for the identification of tines affected by short-circuit type of prohlcm ..... 

Parameters lst Run 2nd Run 3rt! Run Avelagc 

# of input neurodes 12 12 12 

# of hidden neurodes 8 8 8 

# of output neurodes 4 4 4 

False recognition rate 36.9% 41.9% 38.1 (ft) 39.0% 

Rejection rate 0.0% 0.6% 0.0% O. 2 (ft) 

Recognition rate 63.1% 57.5% 61.9% 60.X% 

Table 5.3: Results for the identification of lines affcctcd by vaflou .... .,hort-clrcult condItiOn.,. 
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Parameter~ l"t Run 2nd Run 3rd Run Average 

# of input neurode~ 12 12 12 

# of hidden neurodes 8 8 8 

# of output neurode .. 3 3 3 

Fal~è recognition rate 34.8% 39.4% 36.1% 36.8% 

Rcjcction rate 0.6% 0.0% 0.0% 0.2% 

Recognition rate 64.5% 60.6% 63.9% 63.0% 

Tahlc 5.4: Rc~ults for the identification of lines affected by the following short circuit 
conditions: dead left-in, rust, and short-circuit. 

Parameters l~t Run 2nd Run 3rd Run Average 

# of input ncurodes 12 12 12 

# of hiddcn neurodes 8 8 8 

# of output neurodes 2 2 2 

False recognition rate 30.0% 32.9% 29.4% 308% 

RejectlOn rate 0.0% 0.0% 0.0% 0.0% 

Recognition rate 70.0% 67.1% 70.6% 69.2% 

Table 5.5: R("sults for the identIfication of tines affected by the following short circuit 
conditions: rust and short-circuit. 

5.4.2 Erfect of Certain Parameters on Performance 

Somc paramctcrs were varicd to observe how they affect diagnosis performance. Tables 5.6 and 

5.7 show the effect of the number of hidden layer neurodes on performance. The "open-circuit! 

not open-circuit" and "type of short-circuit" problems were studied. The performance on recall 

is the performance obtained on the training set once the network has successfully completed 

training. The performance on test is the performance on the testing set once the network has 
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successfully completed training. As results show, the Humber of hidden layer ncul"odes docs Ilot 

seem to affect the classification performance. Selecting the appropriatc numhcr of hiddcn layer 

neurodes is a subject of research of lts own. Rules of thumh me given hy the Va1l01l~ neuralnct­

work package vendors but they are not lIniversally apphcahle. In gcncml, a nclwOl k \VIth too 

few hidden layer neurodes will not satisfactorily extract the fealllles l'rom a scl of salllpk~ On 

the other hand, a network with too many hidden layer neurodcs will simply I11cmori/e ail the 

cases it is presented instead of extracting common features. 

Tables 5.8 and 5.9 show the effect of the number of hiddcn laycrs on perl 011 Il a Ill:e . 

Varying the number of hidden layers and the number of neurodcs that populatc thcsc laycl~ do 

not seem to affect the performance for the "open-circuit/not opcn-circuit" prohlcm. Ilowcver, 

the performance for the "type of short-circuit" problem varies slightly acconJmg to the configu­

ration used. The partitioning of the initial problem into suh-problcms rcsllltcd in neural nel­

works easier to train because of the reduced problem complcxity. ThiS is why adding hldden 

layers does not significantly impact the performance of the ncuralnctwork. Addmg hidden lay­

ers 10 a neural network is like adding levels of abstraction. Complcx prohlcms may hencfil tWill 

multiple hidden layers but it does not neces~arily bring more value for smallcr prohlcms 

Finally, Table 5.10 shows the effect of thc epoch sizc on performance. ThiS patamclcl 

does not seem to have any effect on the performance for thc "opcn-circuit/not open-clrcuil" 

problem except when the epoch size is 64, in which ca~e, the neural network docs not Icach ~al­

isfactory learning. This parameter, along with others like thc lcarning con~tant and the IllOl1lcn­

tum term, does not typically affect the performance of the network on rccall and tc~l. However, 

it may have an impact on the learning lime of the neural nctwork. 
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1 st 2nd 3rd 

configuration configuration configuration 

Input layer neurodes 12 12 12 

HIdden layer neurodes 12 8 4 

Output layer neurodes 1 1 1 

Performance on Recall 99.1% 99.3% 99.1% 

Performance on Test 97.6% 97.6% 97.6% 

Table 5.6: Effect of the number of hidden layer neurodes on the "open-circuit/not open-circuit" 
problem. 

1 st 2nd 3rd 

configuration configuration configuration 

Input layer neurodes 12 12 12 

Hidden layer neurodes 12 8 4 

Output layer neurodes 4 4 4 

Performance on Recall 62.8% 63.1% 63.1% 

Performance on Test 62.5% 63.1% 63.1% 

Table 5.7: Effect of the number of hidden layer neurodes on the "type of short-circuit" problem. 

1 st 2nd 3rd 

configuration configuration configuration 

Input layer neurodes 12 12 12 

1"1 hidden layer neurodes 12 8 8 

2nd hidden layer neurodes 4 8 4 

Output layer neurodes 1 1 1 

Performance on Rccall 99.7% 99.7% 99.3% 

Performance on Test 97.6% 97.6% 97.6% 

Table 5.8: Effect of the number of hidden layers and hiddcn layer neurodes on the "open-circuit/ 
not open-circuit" problem. 
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1 st .,nd JIll 

configuration configllfi.ltll' '1 con figurat ion 

Input layer neurodes 12 12 12 

1 st hidden layer neurodes 12 8 8 
,.-

2nd hidden layer neurodes 4 8 4 

Output layer neurodes 4 4 4 

Performance on Recall 57.8% 60.6% 62.5(71, 

Performance on Test 56.2% 64.3% 62.5% 

Table 5.9: Effect of the number of hidden laycrs and hiddcn laycl ncurodcs on the "type of 
short-circuit" problcm. 

l!>t conf. 2nd conf. 3rt! conf. 4th conf. sth conf. 6th conf 

Epoch Size 4 8 16 32 64 

Performance on Recall 97.4% 99.7% 99.5% 99.3% 99.7% N/A+ 

Performance on Test 96.0% 97.6% 97.6% 97.6% 98.0(}'c, N/A~ 

Table 5.10: Effect of epoch size on the "open-circuit/not opcn-clIclIit" prohlclll. 

*. Neural network dld not learn satistactorily. 
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s.s Discussion and Future Extensions 

Neural networh offer a performance !.imilar If not superior to what is currently achieved by 

humam. as~i~ted by traditional Operational Support Systems. One may question the complexity 

of the deci~lon!. arrived at by neural networks in this research. However, in the context of tele­

phone acccs~ network mmntenance, due to the high volume of trouble reports processed, deci­

sIon" that can be made without human assistance eventually add up to considerable savings. 

Expectations were high when this research project was initiated. With time, it became 

dear that data to perform more advanced fault identification was insufftcient and that informa­

tIOn needed lo perform fault localization was simply not being stored by conventional Opera­

tlOnal Support Systems. One can expect from neural networks a diagnosis performance only as 

good a~ the data available to train them. 

An avenue certainly worth exploring for the continuation of this research consists in 

gathering new data that has simply not been collected up to now. Two sources of data are 

rcadily identifiable. First, a neural network based system should take advantage of the informa­

tion cxchanged during the interaction between the customer and the answer c1erk. Currently, 

only the result of this interaction - a description code and a succinct remark - is kept in the 

tlOuble report. Projects are underway in telephone companies to replace the answer c1erk posi­

tion by an interactive voice response system. Such a system wou Id allow the customer to enter a 

description of the problem affecting his or her line by going through a set of dialogues. Data 

collected in that manner would certainly pro vide opportunities to improve the access network 

maintenance process. 

A second source of information resides in the many Operational Support Systems 

deployed in telephone companies. For instance, it is known that some provisioning systems 

have a record of th\.! computed length (in capacitance) of the pair of wires composing the sub­

scriber loop when it was originally installed. Such systems also store information regarding the 

specifications of the subscnber loop, such as wire gauge, etc. This type of information would 
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definitely help in creating better automated fault localizution systcm~. Howcycr. us the rl'Mllt of 

the last twenty years of loose mechanization that took place in tclcphonc company O(X'latloIlS. 

aIl these Operational Support System~ are not yet integrated. Telephonc l'ompalllCs aIL' hCl'om­

ing more concerned about obtaining an end-to-end view of theil nctwork and Ml arl' thCIl cu~­

tomers. An integration of these systems and the benetlts of II1formation ~hal1ng :lIe thu, 

foreseeable. 

Parameters, such as temperature and the occurrence of 111111 l'ail and ~now stOlI1l~, play a 

considerable role in today's mode of maintenance operations. A field trial 01 an intclacllvL' 

voice response system such as the one described above could provide the OppOl'tlllllty to colket 

such data. CUITent automated maintenance systems could al~o he programll1ed to test suhsl'I ihL'r 

loops at night to gather a set of measurements descrihing each suhscriher loop when they ale 111 

good condition. Data collected that way would open up mleresting ncw posslhl"tic~ lOi auto­

mated diagnosis based on neural networks. 

Other neural network architectures are also certainly worth inve~tigatlIIg. Sclf-OIgalllz­

ing neural networks could serve as tools 10 study potential clusters of patterns. Prohahlll:-.tic 

neural networks could also be lIsed to take advantage of the various statistic~ collectcd 011 l'all­

ures over the years. Temporal neural networks could perhap~ he utilizcd to detcct cl'rtam typc~ 

of noise, such as impulse noise on telephone lines. Hardware advances in p<.uallcl procc~slllg 

should also open the door to other interesting applicatIons of neural nctworh in the dOlllam of 

maintenance diagnosis. 

The coming of new telecommunications equipmcnt will al~o change the way mall1tc­

nance has traditionally been done. Intelligent customer providcd cquipmcnt WIll hccolllc capa­

ble of performing maintenance on the customer'~ end of the ~uh~crihcr loop thu ... hclping 

maintenance systems at the other end, such as providing additional data for a ncural nctwork 

based diagnosis systems for in~tance. Remotc bolation Device~ (RID) arc qUlckly hccoming a 

reality. By listening to high-voltage pulses on the ~ub~criber loop on which thcy arc in~tallcd, 

these devices can perform interesting functions, ~uch a~ dbconnecting the cu\tomcr\ prc/lIl\c", 

79 



from the loop and providing a ~tandard "quiet termination" for testing purposes. Such devices 

will reducc the complexity of the fault localization problem. 

However, ju~t a~ one ~hollid not con~ider network maintenance only at the access net­

work level hut rather with a perspective of the network as a whole, one should aiso view neural 

nctwork~ a~ one of a number of tools for network maintenance. Interesting investigation needs 

10 be donc in the domain of hybrid sy~tems. Automated decision-making systems based on a 

mixture of neural networh, fuzzy logic, and expert systems seem to be the most promising for 

~()pllJstlcated maintenance diagnosis applications. 
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Chapter6 Conclusion 

In this thesis manuscript, the feasibility of cmploying neural nctwmks in the domalll of t'.lult 

identification and localization in the telephone acccss network was IIlvcstigated. The al'l:cs~ Ill't­

work itself and the present mamtenance environmcnt wcrc tirst descrihed. 1\ lirst lilclalllil' 

review covering experimental and deployed automated mamtenance systems ha~cd l'Ill the 

majority on expert systems followed. Neural networks were thcn introduccd and the hack-plOp 

agation learning algorithm was detailed. A second literature rcview prcscnted dlagnosl~ ~y~tcllh 

based on neural networks. The approach used to evaluatcd neural nctwOlks l'or the ta~k 01 idl'II­

tifying and localizing faults was then covered. A discussion of the CXpCllIllentat ion 1 csults and 

possibilities for future extensions to this work concluded thls thesis. The IIlstallallon 01 a lIc1d­

trial automated maintenance system will provide the opportulllty to collect the data nccdcd to 

investigate more advanced automated f<lult location and identification lISlllg nClIwl network~ 
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