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ABSTRACT 

A projective method is developed for the solution 

of differential equations which uses different finite 

dimensional spaces to approximate the domain and the range 

spaces of the differential operator. It is shown that 

rectangular matrices are equivalent to analytic operators 

i 

in these spaces. Using Lagrangean interpolation polynomials, 

simple numerical matrix equivalents are evaluated for the 

two,operators %x and f(x). From these two types of matrices 

and a third projection matrix, the discretization of any 

differential equation is performed by ordinary matrix 

addition and multiplication. The result of suchdiscreti~ation 

is a rectangular matrix equation that is solved using the 

generalized inverse of the matrix to obtain an approximate 

general solution of the rlifferential equation. Two computer 

programs using this procedure are presented, one of which 

solves arbitrary linear ordinary differential equations and 

the other for the solution of arbitrary linear two-dimensional 

partial differential equations. The input to these programs 

is a new computer language for the representation of 

differential equations called DECL, defined in this thesis. 

Several applications of the programs to engineering problems 

are demonstrated. In addition, numerical experiments are 

performed using the ordinary differential equation program 

in conjunction with Newton's method to solve nonlinear 

ordinary differential equations. 
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CHAPTER 1 

INTRODUCTION 

In recent years, considerable progress has been 

made in developing direct numérièal methods for the 

solution of differential equations. To a large extent, 

this advance is the result of improvements in computer 

systems, enabling computationally lengthy algorithms 

to be handled with comparative ease. However, in addition 

to the procedural refinements which naturally accompany 

increased usage, the~e has also been a major change in the 

type of numerical methods used. A de cade ago, the most 

common method of solving partial differential equationsin 

engineering applications was by means of finite difference 

formulaei today, for many engineering problems, use of the 

finit~ element method is standard. 

The effect of the new procedures has been to enlarge the 

role of projective methods in the numerical solution of 

differential equations. These methods, of which the RaYleigh

Ritz method, the Galerkin method and the least-squares method 

occupy a dominant role, are thoroughly treated in standard 

boa~s by M1khlin [1], r~ikh11n. and Smolitskiy [2] and, . 

Kantorovich and Krylov [3]. The basic idea in projective 

methods is to express the solution of a boundary value problem 

1 

as a sum of known functions with undetermined coefficients. A 

matrix equation for the unknowns is then derived by requiring the 

approximate solution to satisfy certain minimality conditions. 

Provided that the functions and the approximation criteria 



are chosen judiciously, highly accurate approximate 
solutions result. 

As originally conceived, classical projective 

2 

methods were designed to solve a single boundary value 
problem:in a single geometric region. In recent times, however, 
it has become apparent that the geometric limitations of 
these methods can be eased by defining new sets of trial 
functions which are non-zero only over small, standard 
subregions. The equations for the solution of a boundary 
value problem in a complicated~region can then be easily 
determined by evaluating the conditions on a projective 
solution in each of the sUbregions under specified 
continuity conditions. The technique of obtaining 
solutions by this procedure is commonly called the finite 
element method. 

The use of the finite element method was first 
promoted as a distinct and generally applicable procedure 
for the solution of structural mechanics pr.oblems by Turner, 
Clough, Martin and Topp [4] in 1956. Its further 
application in structural mechanics and plate bending 
analysis was developed in the early 1960's by Clough [5J, 
by Adini and Clough 16J and by Gallagher [7]. In the 
mid 1960~. Argyris made extensive studies of aeronautical 
structures using the finite element method [8J. At 
the same time, Zienkiewicz and Cheung I9,10] developed 
finite element methods for problems occurring in civil 
engineering. To a large extent, the early popularity 
of the finite element method in mechanical and civil 
engineering is due to the considerable work of two groups, 



one in aeronautica1 structures in which the work of 

Argyris predominates and the other in civil engineering, 

1ed by Zienkiewicz. 

The application of the finite e1ement method to 

other engineering disciples quick1y fo110wed. In the 1ate 

1960's, Oden [11,12] deve10ped finite e1ement methods for 

non1inear e1asticity and thermomechanica1 prob1ems. In 

e1ectrica1 engineering, the first use of the finite e1ement 

method was the analysis of electromagnetic wave 

propagation in homogeneous waveguides by Silvester [13] 
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in 1968 and by Ahmed and Da1y [14] in 1969. This was 

fo110wed in 1970 by the non1inear finite element ana1ys1s 

of e1ectric machine problems by Silvester and Chari [15] 

and the vector finite e1ement formulation of die1ectric 

10aded waveguides by Csendes and Silvester [16] and by 

Da1y [17]. 

Applied mathematicians became interested in the 

finite element method in 1968 with the publication of 

theoretica1 pa pers by ~lama1 [18] and by Birkhoff, Schultz 

and Varga [19]. Further theoretica1 treatment from the 

point of view of error bounds for the finite e1ement method 

was given by Babuska [20] and by Schultz [21]. 

In the past two to three years, the number of papers 

appearing on the finite e1ement method has been increasing at 

an explosive rate. A large part of the engineering 

applications of these methods is contained in two recent books 

on the finite e1ement method, one by Zienkiewicz I22] and 

the other by Oden [23]. However, there is a1ready so much 



literature 011 the subject that, on many topics, these 

books are limited to mere surveys of the material or, 

in sorne cases, to just citing bibliographical references 

of the original papers. 

A similar situation also exists in the theoretical 

analysis of the finite element method, as evidenced 

by a recent survey paper by Zlamal [24]. This paper, 

along with one by Whiteman [25], provides an extensive 

bibliography of finite element methods. A more reasonably 

self-contained treatment of the mathematical implications 
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of the finite element method, including rigoro~s convergence 

proofs of the method, may be found in a monograph by Varga [26]. 

Another development of importance to the finite element 

method, but not directly related to it, is the study of 

optimal finite difference schemes made by Babuska, Prager 

and Vitasek [27]. They prove that the consistent Galerkin 

approximation of a boundary value problem salves the 

problem" Of minimizing the norm of the error operator for 

finite difference methods. Since this is the criterion 

by which finite element formula are established, it 

implies that finite element solutions are in general more 

accurate than the corresponding finite difference solutions. 

As originally conceived, the term - the finite 

element method-had a ràther narrow definition. To many 

early workers, such as Argyris and Zienkiewicz, it meant 

using basis functions that had local support, were 

interpolatory at the edges of the elements and resulted in 

piecewise continuous solutions. However, as in all 

" . 



successful areas in which many people work, with every 

new development, the scope of the finite element 

method has become enlarged. Silvester and Hsieh [28] 

have used the term when working with an exterior pro

blem in an infinite region to define finite elements of 

infinite size;Brauchli and Oden [29] employ conjugate 

approximation functions in the finite element method 

which are non-zero over the entire solution region; 

Hazel and Wexler [30] have formulated finite element 

solutions in terms of non-interpolatory basis functions; 

and Reichert and Vogt [31] provide such a general 

definition of the finite element method that it includes 

almost any method in which pieces are connected together, 

specifically including the five point finite difference 

operator. (On the other hand, Babuska, Prager, and 

Vitasek [27], and more recently Miranker [32], have 

adopted such a general definition of the finite difference 

method that it includes virtually all finite element 

methods!) 

In view of this altering usage and common confusion 

over notation, it is necessary to examine those 

properties which specifically characterize the finite 

element method and to define the method accordingly. 

First of all, a finite element method must be projective. 

This property implies that there is sorne kind of corres

pondence between the analytic space of approximating 

functions and a finite dimensional vector space. It 
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therefore distinguishes the finite element method 

from the more general definition of finite difference 

methods given by Babuska, Prager and Vitasek [27] 

in which no analytic function space is defined. Second, 

in a finite element method, one or more element shapes 

must be specified over which a standard set of basis 

functions is defined. Third, the finite element solOtion 

of a boundary value problem in a region that is a union 

of elements must be given as a combination of the solutions 

of the corresponding elemental boundary value problems. 

These three conditions correspond closely to the properties 

by which the finite element method was originally developed 

and yet provide a flexible definition well-suited to 

contemporary usage. 

Within this general definition of finite element 

methods there coexist several widely different procedures 

of developing and using the method, its elements and 

their basis functions. Most of the early work [33] 

developed finite element procedures using linear 

approximation polynomialsbetween the function values 

at the vertices of triangular or rectangular elements. 

With these simple approximating functions, the matrix 

elements of the discretized equation can be evaluated 

analytically for finite elements of a" general shape. 

The resulting algebraic formulae are then used to generate 

the elements of a matrix equation for the solution in 

specifie cases. 

However, in quest of higher solution accuracies, more 

sophisticated finite elements have been introduced. 
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Among the large number of element shapes and basis functions 

that have been tried, two types of fin1te elements predominate. 

One is the isoparametric elements described by Zienkiewicz [22] 

in which the basis functions are Cartesian products of one -

dimensional interpolation polynomials in curvilinear 

coordinates. The others are the high-order symmetric 

triangular interpolation polynomial elements discovered 

independently and with entirely different approaches by 

Silveste~ 134] and by Irons I35]. 

An undesirable byproduct of the use of high-order finite 

elements is an increase in the level of complexity in the 

procedures used to evaluate the matrix elements. W1th 

isoparametric elements, the technique of evaluating general 

algebraic formulae for the elements of finite element matrices 

has been abandoned entirely and all calculations are performed 

from first principles using numerical methods [22]. With 
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the high-order triangular finite elements, it is possible to 

retain the efficient algebraic approach for generating matrix 

elements, but the required analytic calculations ar~ lengthy 

and difficult. Thus, at the present time, the main short

coming of projective methods is the complicated and expensive 

calculations needed to discretize each separate type of 

differential equation. 

The primary concern of this thesis is to derive an efficient 

and accurate algebraic procedure for the discretization of 

arbitrary differential equations. In order to do so, it will 

be necessary to devise discrete matrix opera tors which have 

analogous combinatorial behavior to the elementary components 
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of analytic operators. Once such matrix operators are 

developed, the matrix equivalent of any differential equation 

can be determined by simply combining the elementary matrix 

operators algebraically. 

The chief obstacle to forming matrix equivalents of the 

elementary components of analytic opera tors is the fact that 

classical projective methods treat differential equations 

and boundary conditions as an inseparable unit called a 

boundary value problem. In these formulations, it is not 

possible to develop an atomic approach to discretizing 

differential equations because the entire boundary value 

problem is fused together. Consequently, in this thesfs, the 

extension of projective methods to solve differential equations 

which are independent of boundary conditions will be considered. 

It will be shown that the formulation obtained from this 

approach yields, for the first time by the direct application 

of a numerical method, general solutions of differential 

equations instead of particular ones. 

There is, however, in addition to the theoretical limit

ations mentioned above, a major practical drawback in applying 

projective methods to solve many common engineering problems. 

The use of a projective method to solve a differential 

equation generally r~quires the development of an extremely 

complicated and expensive compQter~ptogram. An indication 

of the extensive labor sometimes required t9 provided by the 

analysis of the Boeing model 747 aircraft wing-body inter

section by finite element methods I36]. For this problem, 

approximately one hundred man-months of effort and about twenty-

8 



eight hours of CDC 6600 computer time were required to convert 

existing theory into a working computer program. Clearly, 

although many engineering problems would benefit from analysis 

by projective methods, very few of them generate sufficient 

interest to merit this kind of individual attention. 

Consequently, in order for a discretization procedure 

for arbitrary differential equations to have maximum impact 

it must be coupled with the development of an efficient 

computer implementation of the method. By providing a general 

computer program which performs each of the discretilation 

steps for differential equations automatically, both the 

difficulty of discretizing arbitrary differential equations 

and program developmènt costs can be eliminated. For this 

reason, the ultimate objective of this thesis is to develop 

general computer procedure~ by which large classes of differ

ential equations can be solved with a minimum of analysis and 

data preparation. 

In pursuit of this objective, a special purpose computer 

language has been developed for the symbolic representatio~ 

of differential equations and two computer programs based on 

this language - one for the solution of arbitrary linear 

ordinary differential equations and the other for arbitrary 

linear two-dimensional partial ~G·iff-e .. ent1al equations - have 

been written. In addition, the linear ordinary differential 

equation program has been adapted to solve nonlinear ordinary 

differential equations by means of Newton's method. 

9 

l 
~ 

1 

1 
\ 

1 

1 

l 
1 
J 

1 
i 

1 

1 
1 

1 
1 

l 
1 



Listings of these computer programs will be presented 
in the thesis along with numerous examples of their 
operation. Although many of the problems selected can be 
solved by using alternative methods, it will be demon
strated that none of these alternatives can furnish 
solutions as profitably as the present programs, in terms 
of accuracy, computing speed and, especially, unitsof an 
engineer's time. 

In summary form, the major original contributions 
of this thesis are: 

(1) The development of a purely algebraic 
discretization procedure fOM arbitrary 
linear ordinary and partial differential 
equations. 

(2) The definition and evaluation of rectangular _ 
matrix equivalents for the three elementary 
components of differential equations 

(3) The application of matrix generalized 
inversion to determine approximate general 
solutions of differential equations. 

(4) The development of a computer language and 
computer programs for the automatic solution 
of arbitrary linear ordinary and two
dimensional partial differential equations 
and for the solution of many nonlinear ordinary 
differential equations by Newton's method. 
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CHAPTER II 

ELEMENTARY OPERATORS 

The first step in developing a projective procedure cap

able of discretizing arbitrary differential equations is to 

devise a simple method for obtaining their numerical equiva

lents. In order to do this, it is important to observe that 

11 

with an~lytic formulations, any differential equation is simply 

an algebraic combination of functions with the differential 

operator. It follows that the construction of a numerical 

equivalent of a differential equation is most easily accomplished 

by recognizing the primary numerical constituents of the 

method used and assembling complicated matrix equations from 

these components. 

In order to proceed, it will be helpful to define the 

term elementary opera tors to tefer' only to those operators 

which cannot be decomposed Turther into sums or products of 

other operators. Although other possibilities exist, for dif

ferential equations the simplest and most generally applicable 

quantities to designate as elementary opera tors are ~ and f(re). 

Any operator that is composed of a product of elementary oper

ators will be called a simple operator, and operators containing 

a sum of simple operators will be referred to as compound oper

ators. As an example, the compound operator D=i:2 + k 2 

consists of two simple operators' '~2 and k 2 • These two simple 

opera tors, are compas ed of the el ementa ry opeY' ... cors' '~re and k. 

The use of matrices to replace the process of different

iation in finite element discretization has been independently 

11 

j 

l 
f 
i 
1 

\ 

,\ 

\ 
1 
l 
'1 
'1 
" 
;1 

:~ 

. ~ 

, , 
, . 
1'5 



advocated by Boisserie 137] and by Silvester 138]. In the first 

case, the differentiation matrices are square and corresponded 

to one-dimensional differentiation, with matrix products gener

eting two and three dimensional finite elements. In the second, 

rectangular matrices are used to differentiate Newton-Cotes 

interpolation polynomials over triangu1ar regions. However, 

neither paper properly develops a complete, consistent approach 

for obtaining discretized forms of compound opera tors from these 

matrix factors. 

2.1 DIEEERENTIATION MATRICES 

The e1ementary factor d~ is the most basic operator in the 

theory of differentia1 equations. As is wel1 known, its custom

ary definition is 

Dy = ~ = (2.1.1) 

where Yl and Y2 are the values of a function y(x) at the points 

Xl and X2 ,respectively. Definition (2.1.1) is on1y va1id if 

the 1imit exists and is unique for bath X2>X l and Xl>~2. In 

this equation, the fol10wing convention, whiëh wirlb' .. ::.~ursu·ed 

throughout this thesis, has been introduced: wherever practica1, 

functions are denoted by lower case 1etters and operators by 

capital 1etters; itali ·cs are Llsed··to:·.à1.C~t()te analyt1c ~x~ré'S-S

ions whi1e Roman type denotes discrete representations. 

The standard numerical equivalent of (2.1.1) is ta write 
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a finite difference approximation [39] 

Dy 
(2.1.2) 

which converges to (2.1.1) as the length of the finite inter

val L = x 2 Xl tends to zero. It is apparent that this 

procedure is equivalent to approximating the function y on 

the interval 1 = [ X1 ,X2 ] by the linear polynomial which 

passes through Yl and Y2 at the endpoints of the interval. 

error introduced b~ using (2.1.2) instead of (2.1.1) in the 

The 

interval 1 is therefore related to the accuracy with which the 

function y may be approximated by a linear pOlynomial in 1. 

It is well known that given a finite number of values, a 

function can be approximated much more accurately by a few high 

order polynomials than by many low order ones. Therefore, 

1 3 

it is reasonable to seek more accurate finite difference rep-. 

resentations of (2.1.1) by approximating y with high order pnly

nomials and then determining the corresponding finite difference 

formula. Since these formulae are to be in terms of point 

values, the approximating polynomials should be expressed in 

terms of an interpolatory basis and may be written as follows 

n 
y .l (2.1.3) 

-z,=o 
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where the { zIn)(x) } are the n'th order Lagrange interpolation 

polynomials 

Here 

= 

= 

p. (n) 
-z, 

p • (n) 
'l.. 

(x) 

(x .) 
-z, 

n 
Tt 

m=o 
(x - x.) 

-z, 

m~i 

(2.1.4) 

(2.1.5) 

The key to forming high order discrete representations of 

the differential operator (2.1.1) is obtained by recognizing 

that if an n 'th order polynomial is used to approximate y , the 

function generated by the process of differentiation will be 

a polynomial of Cn-,J) Ist order. Therefore, whenevery is an 

n 1 th order pOlynomi al, the functi on Dy may be wri tten as 

Dy = 
n-l_ 

= L 
i=o 

Cn-l,) 
2.' Z • Cx) '. -z, 'l.. (2.1.6) 

where again, since point values are desired, the expansion 

'functions are Lagrange interpolation polynomials. Equations 

(2.1.1), (2.1.3), and (2.1.6) yield 

= y. 
'l.. 

d Z~n)(x) 
'l.. (2.1.7) 

dx 



Now 

So that 

z . :; 

n 
= I: 

i=o 

In matrix form this is 

z· = Dy 

j=OJ ••• Jn (2.1.8) 

Yi j = 0" •• ." n- 1 (2. 1 .9) 

dre 

(2.1.10) 

where z is an n-component vec~ùr containing the numbers zi' 

y is an ( n+7) component vector containing the numbers Yi and 

D is the nx (n+ 1) 'I1Iatrix with e1ements 

d ."rn ) (x(n-1)) 
-z, :; (2.1.11) 

Di+1" j+1 = 

dre 

n 
1? Jn) (X~n-1)) I: 'm -z, m-a 

m'F:; if 
x (n-1):I (n) 

(xrn- 1 ) x ~n) ) .p~n) (x ~n) ) 
i x:; 

--z, :; :; :; 
= j=o J ••• "n 

p (n){x(n)) 

1 5 

1 
k k 

xin-1)=x~n):lxJn) 
x(n) x~n) p (nJ (x(n)) 

if 

k :; :; :; 
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if x(n-l) 
i 

As introduced here, in this thesis, non-subscripted 10wer case 

1etters will indicate vectors having as components the corre

sponding subscripted discrete values of a function. Simi1ar1y, 

non-subscripted capital 1etters will refer to matrices which 

give the discrete representation of an operator. 

The simp1est interpolation po1ynomia1s are the Lagrangian 

polynomials in which the roda1 points are equi-spaced in the 

interva.l 1 of length L. Taking 

L • = -'{, 
n-l i=o., ••• .,n-l 

j=o., ••• ., n 

for n~2 the components of the matrix D become 

1 n (n-l) 
L ni- (n-l)j 

~ (_l)j-m (n-m)lml 
m~3 (n-j)ljl 

Di +1.,j+l= nL((k-_l~J)·-k (n-k)lkl 
u ~(n;';"'-"';'J:-::· )~l~j ~/ 

n + 1: "7"L 
m-a J-m 
mFJ 

(2.1.12) 

(2.1.13) 

if x(n-l)lx(n) 
-z.. J 

j=o J ••• ., n 

16 

11 
i 

l 

1 , 
,) 
~ 

1 
j 



The differentiation matrices ( or 0 matrices ) corre

sponding to equi-space~ L~grangean polynomials have been 

evaluated exactly uSing Formac symbol manipulator language [4ru' 

for polynomial orders ranging from one to nine and are presented 

in Table 2.1.1. In this table, the following antisymmetry 

property 

o .. = -0 . . 
~J n+2-~3 n+l-J 

(2.1.14) 

is evident. The lowest order case, with n=1, yields for equa-

tion (2.1.10). 

[z.] = + [-1 1] [~~ (2.1.15) 

This is equation (2.1'. 2) 'ag"in, only in matrix forme Tne 'next 

higher approximation of (2.1.1) results when y is approximated 

by a quadratic (n=2) in which case equation (2.1.10) is 

-1] [Yl] 3, Y2 
Ya' 

(2.1.16) 

The higher order approximations produce similar rectangular 

matrix equations. 

The elements of the 0 matrices possess a number of inter

esting and potentially useful properties. First, it may be 

noted that the rank of each matrix is one less than the dimen-

sion of its domain and that, in fact, the row sums of each and 

every one of the se matrices are zero. This is a necessary 

consequence of the fact that differentiating a constant, in 

17 
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which case all of the y are equal, resu1ts in zero. Thus the 
i 

nu11space of a 0 matrix corresponds to the nU11space of the 

operator d~' 
Similarly, by noting that the n'th order 0 matrix differ

entiates p01ynomia1s of degree 1ess th en or equa1 ton, one 

surmises from the equation 

that 

= 
P-1 

p(x(n-l) ) 
1.. 

i=o J ••• J n-l 
p=o, ••. ,n 

(2.1.17) 

(2.1.18) 

This resu1t is va1id for gen~ra1 differentiation.matrix e1e

ments. In particu1ar, with the Lagrangean matrix e1ements 

(2.1.13), the following formu1ae are obtained. 

n 
L 

j=l 

(_l)j+l nI jp-1 =0 

(n-j) 1 j 1 

p=o, ... ,n (2.1.19a) 

(_l)j-m (n-m)lml 

(ni-(n-l)j) (n-j)ljl 

j p 
(-) 
n 

n ~ 1 1 {( -1 ) j - n n 1 (J..) p } = p 
j=o n-j . (n-j) 1 j 1 n + 1. n 

(2.1.19b) 
i=.1 J ••• J n-2 

p=o, ..• ,n 

p=o, ... ,n (2.1.19c) 
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Here, equation (2.1.12) and 'the' fact'th,lt re.(Jre j unless i:i=j=O 

or i=n-l and j=n has been used. These formulae may also be 

proved by induction. 

It is also interesting to note in passing that the dif

ferentiation matrices (2.1.10) may be used to provide an alt

ernative definition of differentiation. First note that equa

tion (2.1.1) may be written as 

1 
Dy = Zim r 

L+o 
(2.1.20) 

where 0(1) indicates the first order 0 matrix. One may a1so 

write 

_lL [-3, Dy = Zim 
L+o 

which will converge faster, but under similar conditions as 

(2.1.20). Formulae of this type are essentially the same as 

(2.1.1) since differentiable functions may be approximated 

by straight lines in the limit as 

sequence of functions 

n 
2 (n) = .I: 

i=o 

defined by the equations 

L+O. Consider, however, the 

(2.1.22) 
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(2.1.23) 

An alternative definition of the derivative of y is provided 

by 

y'(~) = lim z(n)(~) (2.1.24) 
n-+oo 

whenever the sequence {z(n)} is uniformly convergent. 

2.2 SIMPLE OPERAIORS 

In this section, methods of developing matrix representa

tions of simple opera tors will be considered. These will be 

obtained by taking products of the elementary D matrices of 

the previous section and sorne new elementary matrices which 

correspond to functions. 

Fortunately, as each elementary operator d~ of a product 

d
P
p acts on a polynomial expression, it generates a pOlynomial 

da: 
of one lower degree. Therefore, high order differentiation 

matrices can be obtained by simply multiplying together the 

succession of matrices which corresponds to the range of po1y

nomials upon which the elementary opera tors act. For example, 
2 , , 'd 

to obtain the quadratic equivalent of ----z" one forms 
aa: 
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(1) (2) (2) 
1 1 [ 4 -1] [~:l 

l?' D Y = [[ -1 1] [ -~ 
-4 3 (2.2.1) 

= 4 
'["T [1 -2 1] 

[~:l 

This equation is identica1 to the well known finite difference 
2 

formu l a for d~2 139]. 

In a simi1ar manner, by using the matrix values given in 

Table 2.1.1, high-order polynomial representations of any dif

ferentia1 operator of degree 1ess than ten may be formed. 

These high-order D matrices have similar properties to low 

order ones. For examp1e, the dimensiona1ity of the nu11space 
d 2 

of the D matri ces correspondi ng to dx 2 i s equa l to two, wi th 

row sums and 1inear1y weighted row sums equa1 to zero. 

It remains to deve10p matrix representations for simple 
1 

opera tors which contain functions. In order to do this, con-

sider the expression 

2 ex) = f (x) y (:x:) (2.2.2) 

where .y(x) is given by an n'th order polynomial 

= (2.2.3) 

and assume that a(x) is to be approximated by an m 'th order 

polynomial 

22 
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m 
= L 

i=o 
(2.2.4) 

The prob1em is to determine the matr;x operator F which pro

duces the mapping 

z = Fy 

corresponding to (2.2.1). 

Taking 

j=o, ••• ,n 

in (2.2.5) produces the n sets of m equations 

z(m) = F 
" . . 
" 1-J 

i=o, ..• , m 
j=o, ••• , n 

(2.2.5) 

(2.2.6) 

(2.2.7) 

Now if z(m) is taken to be the value of the function f(x)y (x) 
1-

at the point x (m), then, using (2.2.6) 
1-

F .. 
1-J 

= z(m) 
1-

= f ex . Cm) ) Z ~ n) (x ~ m) ) 
1- J 1- . 

(2.2.8) 

Not i ce, fi r s t 0 f al l, th a tif f (x) =1 and n~m the n (2. 2 . 7) de fin es 

an operator which maps a function into a higher or a lower order 

space. The raising operator with m>n is exact and provides a 

convenient method for imbedding a low order polynomial into ~ 
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higher order space. Table 2.2.1 contains the values of this 

ma tri x wi th m =n+l for po l ynomi al orders ra ng i ng from zero to 

eight. 

The most useful form of (2.2.7) arises, however, wh en n=m 

since then z.~n)(xrm)) =ô .• and 
1- 1- "'.J 

(2.2.9) 

Thus, in order to find the product of a function y(n) expressed 

in terms of n'th order interpolation polynomials and an arbi

trary function f(~j~it is only necessary to multiply the vector 

of coefficients of y by a diagonal matrix contailling the values 

of the function f(œ)at the interpolation nodes. This procedure 

has the same effect as weigh·ting the vector y by the nodal 

values of !(x). 

2.3 COMPOUND OPERATORS 

Before the matrix equivalent of an arbitrary differential 

operator can be determined, the effect of additions on the 

discretization procedure of the previous sections must be deter

mined. That such operations may not be performed in a straight

forward manner may be seen by considering the compound operator 
, 'd 

D = .~-Y. If' Y is approximated by a quadratic, then the first 

term in this expression is a linear polynomial having a two 

component vector representation while the second term is a 

quadratic having a three component representation. Clearly, it 

is not possible to add these two vectors. 
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Table 2.2. l 
The first nine FU matrices for equi-spaced Lagran!Jean polynomials. 

1 ST ORoER 

0.1000000E 01 
0.1000;'00E Dl 

Z NO ORoER 

0.100JOOO: Dl 
C.500JOOOE 00 
0.0 

3 Tri ORi)ER 

0.1000000e Dl 
0.Z22Z222E 00 
O.HUlllE 00 
0.0 

7 TH OROER HATRIX 

0.1000000: Dl 
0.3253'746E-Ol 

·0.1172980E-Ol 
0.63~pe93E-02 

·0.7442292E-02 
0.U131l3E-01 
0.39 .. SP5E-Ol 

-0.3 .. 7..:,ez:-cl 

e TH CReER HATRIX 

0.100COCOE 01 
0.239'119iE-01 

-0.75S7433E-02 
0.3~4~"el:-02 

-0.244i40bE-02 
0.9:"97918E-02 
0.188 .. 092E-01 

-0.216"62 .. E-01 
0.1I205067E-02 

0.0 
0.5000000E 00 
0.10COOOOE Dl 

0.0 
0.8888888E 00 
0.8888888E 00 
0.0 

0.0 
0.1171349E 01 
0.1689092E 00 

-0.6242297E-ol 
0.3929992E-01 

-0.3470582E-ol 
0.3480585E-01 

-0.1716632E 00 

0.0 
0.1175603E 01 
0.1239281E 00 

-0.4120275E-ol 
0.2392578E-ol 

-0.11053304E-01 
0.6205067E-02 

-0.1689447E 00 
0.867535'E-ol 

9 TH OR~ER ~A'RIX 

0,10COjOO. 01 0,0 
O.18363 41E-Ol 0.1l7!'258E III 

-0.'147~loO~-C'2 O.9 411728E-1'1· 
O,22~1Sél=-(I2 -0.21117998E-01 

-J.131~57=:-02 0.1 4646Z0E-n1 
;:.2: .. 2225:-(\2 -0.1001270F.-1'I1 

-c.Ja .. :a-'COf-~2 0.921?·)S8E-C\2 
-:.91!:1!l62F-(l2 -0.8b'15211F-n2 
~.:2-;:;::'7:"!'1 0.S3720~3E-(\1 

-:.:J~;5211~-~2 -0.49714:101:-1)1 

0.0 
-0.1111111E 00 

0.2222222E 00 
0.1000000E 01 

0.0 
-0.3660464E 00 

0.1055682E 01 
0.4291579E 00 

-0.1716632E 00 
0.1319603E 00 

-0.1331078E 00 
0.0 

0.0 
-0,3918679E 00 
0.11153'3E 01 
0.3213S14E 00 

-0.1196289E 00 
0.8675355E-Ol 

-0.9033471E-Ol 
0.1212236E 00 
0.5981445E 00 

0,0 
-0,4113403E 00 

o .11'2937E Dl 
0.2465748E 00 

-0.9421564E .. Ol 
0.5383047e-01 

-0.4971430E-01 
0.616145lE-01 

-0.9Z75264E-Ol 
.. 0.la13976E 00 

4 TH ORoER HATRIX 

0.1000000e Dl 0.0 0.0 0.562!1000E 00 
0.1171875E 00 0.1054688E Dl -0.2109375e 00 0.1049805E 00 

-0.6250000e-Ol 0.5625000E 00 0.5625000E 00 -0.6250000E-Ol 
0.~049805e 00 -0.2109375E 00 0.1054688E 01 0.1171875e 00 
0.,625000E 00 0.0 0.0 0.1000000E 01 

5 TH OROER HATRIX 

0.1000000e 01 0.0 0.0 0.0 
0.7040000E-Ol 0.1126400e 01 -0.2816000e 00 0.1023999E 00 

-0.3360000E-Ol 0.3584000E 00 0.8063999E 00 -0.1536000E 00 
0.275b096E-01 -0.1536000e 00 0.8063999E 00 0.3584000E 00 

-0.2841344e-Ol 0.102399ge 00 -0.2816000e 00 0.1126400e 01 
-0.1536000E 00 0.0 0.0 0.0 

6 TH OROER HATRIX 

0.1000000E Dl 0.0 0.0 0.0 
0.4632309E-Ol 001158076E Dl -0.3308792E 00 0.17I1l6"! 00 

-0.1920439E .. Ol 0.2400548E 00 0.9602194E 00 -0.2400548E 00 
0.1171875E-01 -0.9765625E-01 0.5859375E 00 0.5859375E 00 

-0.3249779E-Ol 0.5733449E-ol -0.24005481: 00 0.9602194E 00 
-0.932208ge .. Ol -0.3380900E-ol 0.1781657E 00 -0.3308792E 00 

0.'733449E-Ol 0.58593751: 00 0.0 0.0 

0.0 0.0 "0.1716632E 00 -0.31070582E-01 
0.2602997E 00 -0.1'31078E 00 0.3480585E-Ol 0.3948175E-01 

-0.3127948E 00 0.1319603E 00 -0.3470582E-01 0.1173713E-ol 
0.7629474E 00 -0.17166321: 00 0.3929992E-Ol -0.7442292E-02 
0.7629474E 00 0.4291579E 00 -0.6242297E-01 0.6357893E-02 

-0.3127948E 00 0.1055687.E Dl 0.1689092E 00 -0.1172980E-ol 
0.2602997E 00 -0.3660464E 00 0.1171349E 01 0.3253746E-ol 
0.0 n.o 0.0 0.1000000E 01 

0.0 0.0 0.5981445E 00 0.867535'E-ol 
0.3457658E 00 -0.23'1207E 00 0.1212236E 00 -Ool689447E 00 

-0,3717842E 00 n.2065468E 00 "0.9033471E .. 01 0.6205067E-02 
0.8927263E 00 -0.2434108E 00 0.867!>355E-Ol -0.1453304E-ol 
0.5981445E 00 0.5981445E no "0.1196289E 00 0.2392578E-ol 

-0,243470IlE 00 0.8927263E 00 0.3213814E 00 -0.4120275E-01 
0.2065468E 00 -n.3717842E 00 0.111:l353E 01 0.1239281E 00 

-0.23'1207E 00 0.3457658E 00 -0.39111679E 00 0.1175603E nI 
0.0 n.o 0.0 0.0 

0,0 O~O 0,0 -0.1 11 13876E 00 
0.4329898f 00 -0~3672681E 00 0,2223461E 00 -0.9Z75264E_n1 

-0.4192498E 00 0.21182342E 00 -0.1'90258E 00 0,61614511'-1)1 
O.9862995F 00 -0,3082185e 00 O.1408999E 00 -0.4't171430F-~1 
0,4716078E 00 0.7368872E 00 -O.1813876E 00 0.5 3B3')47F._r.l 

-0.1813a76E 00 0.736'!872E 00 0,4716078E 110 -0.6 4 215641'-1)1 
0,1408999F. 00 .. 0.3082185E 00 0.'tI862995E 00 0.246514BE nO 

-0.1590258f 00 0~2882342E 00 -0. lt 192498E 00 0.1152937E nI 
0,22234"1E 00 -0.367Z681E 00 0.43298981: 00 -0.41 D403E ~II 
0.0 0.0 0,0 0.0 

-o. U36000E 00 
-0.21141344e-Ol 
0.2756096e-Ol 

-0.3360000e-Ol 
0.7040000e-ol 
0.1000000E 01 

0.51159375e 00 0.,733449E-01 
-0.3380900E-Ol -0.93220!9E_Ol 

0.5133449E-Ol -0.32497791:_01 
-0.9765625E-Ol 0.U 71875E-Ol 

0.2400548E 00 -0 .1920439E-0 1 
0.1158076E Dl 0.463~309ë-Ol 
0.0 0.10COOCOE :'1 

0,6Z05067E-02 
-0.2166624E-Ol 

0.11184082E-01 
0.9497818E-02 

-0.2441406:-02 
0.36103781E-02 

-0.7587433E-02 
0.2399191E-Ol 
0.1000000E 01 

.. 0.4971430E_01 .. 0.169'211[_02' 
0,8372003E"Ol 0.124900'7f_el, 

-0.8695211E-02 .. 0.9161662F_"Z: 
0.9212058E-02 _n.~1I4~ .. PlOE_e2' 

-0.10C127OE-Il1 0,20"22~5F_~2 
0.14610620E-01 -0.13lsa"'E-~2: 

-0.281799&E-01 C.22:1S~lF-~2: 
C.941172&e-Ol -0.Sllo"Olo::F-e2' 
0.11752S9E 01 0,183631oU-"1: 
0,0 O.10C~:;'''!~E : 1: 



A way out of this di1emma is to form two separate approxi

mations of y, one in the quadratic space and another in the 

1inear space 

y ~ 
(2 ) = l y(2)Z(2)(X) Y • 1- 1-1-=0 

(2.3.1a) 

(1 ) 1 
Y ( 1 ) Z (1) (X) 

Y ~ Y = E 
i=o 1- 1-

(2.3.1b) 

Then, using (2.3.1a) for the first term of D and (2.3.1b) for 

the second, this yie1ds, just as before 

D 
__ 1 (-3 4 -1

3
) 

[ 1 :"4 (2.3.2) 

Now, a1though the terms of the matrix expression (2.3.2) 

are consistent in that they are both two component vectors, 

the expression can be further simp1ified by defirijng a re1ation

ship between the two approximations (2.3.1a) and (2.3.1b). One 

such re1ationship is provided by (2.2.5) with m=2 and ~=o 

= (2.3.3) 

However, since this re1ationship 1s obtained by matching the 

function values at the endpoints of the interval, it provides a 

very crude method of approximating a quadratic by a linear 

polynomial. 
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A much better approximation is obtained by determining 

the best 1inear approximation to a quadratic in a least squares (L
2

) 

sense in the interva1 1. Under this condition, the norm of the 

difference of the two functions y(l) and y(2) 

Q = J 1 y ( 2) ... y ( 1) 1 2 dx 

1 

must be a minimum. Using (2.3.1), this means that 

(2.3.4) 

= 

(2.3.5) 

0=- ~ y(2) IZ(l)Z(2)dx + ~ y(l)IZ(l)Z(l)dx 
j =0 J 'l, J j =0 J 'l, J 

i=o,l 

Written in matrix form, this equation is 

(2.3.6) 

where the e1ements of Sand Tare 

S •• = J Z ~ 1 ) Z ( 2 ) dx 
'l,J 'l, J 

(2.3.7) 

l 
T .• . ë= . r Z r Il Z ( 1 ) dx 
. 'l,J J 'l, J 

1 
Since the {Z(l)} are linear1y independent, the metric T is 

'l, 

non-singu1ar and may.be inverted to yield 

(2.3.8) 

; 
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where 

(2.3.9) 

Equation (2.3.8) gives the coefficients of the approximation 

(2.3.1a) and has the effect of projecting the second order 

polynomial y(2) into the best linear polynomial in the.,f/2 sense. 

Using (2.3.8), equation (2.3.2) may be written as 

l (-3 4 -1) 
Dy = r l -4 3 

(2.3.10) 

The projection matrix ( or P matrix) given in equation 

(2.3.9) may also be defined between polynomial spaces of dif

fering degree and have been evaluated using the Formac language 

for all polynomial orders ran~lng from one to nine. These 

values are presented in Table 2.3.1. The P matrices have an 

ana1ogous topo1ogica1 behavior to the differentiation matrices, 

a1though their physica1 interpretation is different. They are 

symmetric about their centroids 

P .. = P 2' l' (2.3.1 1) 
~J. n+ -~3 n+ -J 

and not anti-symmetric, as were the D matrices. Their rank is 

again one less than the dimension of their domain .space, how

evey', in this case, the nu1lvectors of Pare symmetric about 

y = 0 in an L2 sense. 

As wa s the cas e w i th di f fer e n t i a t ion mat ri ces ,. p ''0 j e c t ion 

matrices between spaces.differing by more than one order·can be 

determilled by or.dinary matrix multiplication of the corresponding 

29 



elementary P matrices. For example, the best possible zeroth 

order polynomial approximation cf the quadratic y(2) is given by 

[y~O)l 1 
(1 1 ) 

1 (-~ 2 -1) r(2
)] = '2 3" 2 2 y! 2) 

y; 2) 

[y(2
)] 

(2.3.12) 

= 1 (1 4 1 ) '6 y! 2) 

y' 2) 

In a point matching sense, the equation corresponding to 

(2.3.12) would be from (2.2.5) 

(2.3.13) 

where the interpolation "node" of the zero th order polynomial 

is taken in the midpoint of the interval. Therefore, for the 

differential operator 

2 

D = ~~~ + y (2.3.14) 

the following two finite difference representations are obtained 

(2.3.15a) 
D = 4 

[ Yi-l - 2Yi + Yi+l ] + l [Y i -.1 + 4Yi + Yi+1 ] 
~ 6 

and 

D = 4 
[Yi-..1 - 2y i + Y i+.1 ] + y. (2.3.15b) 

~ 1-

Equation (2.3.15b) is the standard finite difference formula 

for (2.3.14) while (2.3.15a) is the lIasymptotically optimal" 

30 



finite difference formula for (2.3.14) derived by 

Miranker [32] using a more circuitous theory. The 

only difference between the two is in the type of 

approximation made between the polynomial spaces. 

Miranker compared the formulae (2.3.15) computationally 

[32] and found that the L2 projective approximation 

was as much as lO~ times more accurate in the Euclidean 

error norm of point values than the point matching 

approximation. 
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CHAPTER III 

PROJECTIVE APROXIMATION 
In the preceding chapter, the elementary matrix concept 

wa~ introduced by using heuristic arguments. In this chapter, 

elementary matrices will be developed more formally, using 
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the theory of projective approximation. The procedures outlined 

in Chapter 2 will thus be established rigorously here, resulting 

in a foolproof algorithm for the solution of differential 

equations. 

Somewhat surprisingly, very little work has been done in 

the area of projective approximations of pure differential equa

tions, considering the wealth of similar material on boundary 

value problems. The only reference available in the literature 

on this subject appears to be a paper by Locker [41], who con

siders the problem of determining the least-squares solution of 

an ~'th order differential equation to which k boundary~conditions 

have been added, with k not necessarily equal to n. Unfortunately, 

the theory developed in this paper has several limitations to 

practical application of the method. It assumes that the homo

geneous soluti~ns of the differential equation are known, a con-

dition very rarely occurring in practice, and concentra tes: on 

determining only the inhom~geneous solution. Moreover, th~ pro

cedure is theoretically proved to converge to a uriiqu~ inhomo-

geneous solutio~, but the ·paper'do~s not specify how,the com-

, 
l 
1 

" 
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putation should be constructed numerically. 

3.1 GALERKIN'S METHOD 

ln this section, the basic mathematical equations for the 
projective solution of differential equations will be given. 
These equations are related to the classically used Galerkin's 
method, except that the procedure will be applied to differ
ential equations independently of boundary conditions. The 
main result of this section will be to determine a unique 
range space for differential operators which result in approx
imate general solutions of differential equations. 

1 

I~ a projective method, the objective of the analysis 
is to determine an approximatp. solution of the equation 

Dy = f (3.1.1) 
by replacing the function y, which belongs to a real-valued , 
H i l ber t spa ceE w i th no rm 1 1 fil = < f 1 f > 2, W i th a fun c t ion 
y(f) in a finite dimensional subspace E(f) of E. In the 
present case, D is taken to be a linear differential operator 
defined over a geometric region 1 and f is a given function 
of E which lies in the range of D. In the following analysis, 
it will be helpful to decompose the differential operator D 

into ~ sum of simple operators Ds 

S 
D = E Ds 

5=1 (3.1.2) 



and to consider the range spaces L(s) generated by each of 
these operators separate1y. These range spaces are defined 
by the equations 

34 

L(s) = { 2 :2 = Dsf'y(f), y(f)€ L(f) } (3.1.3) 

Here and in the fo11owing, subscripts on an operator indicate 
that 

Range(A .. ) = L(i) 
lJ 

Domain(A .. ) = L(j) 
lJ 

Domain(A i ) = L 

(3.1.4a) 

(3.1.4b) 

(3.1.4c) 

Now, it is necessary to provide a genera1 definition 
of the projective mapping introducted in section 2.3. This is 
done as fo11ows. A projection operator P ij is defined to be 
an operator which maps any e1ement of a space L(j) into the 
c10sest (in the norm sense) element of L(i) 

(3.1.5) 
=> 1 1 y ( i) - y ( j) 1 1 =m i ni mu mil 2 ( i) - y ( j ) Il} 

(i) .... (i) 
2 €t.. 

Projection operators are we11 known in the theory of 1inear 
spaces [ 42,43 ] and have a number of interesting properties. 
The most important of these are that they are 1inear 

P •• (y (j) + .,(j) ) = P y(j) + P oy(j) lJ '" ij ij ~ (3.1.6) 

and that for three nested 5ubspaces L(i), E(j), L(k) with 
L(i) C L(j) C L(k) 

(3.1.7) 



Note, however, that in the event that the space E(i) is 

larger than the space E(j), Pij is not equal to the identity 

operator, as is commonly assumed, since the projective 

embedding of a smaller space into a larger one is not unique. 

The underlying idea of many projective methods 

is to replace the problem of solving equation (3.1.1) by 

the task of solving the equation 

35 

(3.1.8) 

where ,(0) = Po , and E(O) is sorne finite-dimensional subspace 

of E that is called the range space of the approximation. 

If E(O) is taken to be equal to E(f) then (3.1.8) yields the 

Bubnov-Galerkin method, while the Galerkin-Petrov method 

resu1ts if E(O) does not coincide with E(f) [2]. 

Unfortunately, however, the usual choices for E(O) 

that appear in the literature have a major flaw: they do not 

preserve the dimension of the nul1space of the differential 

operator D. As a result, with these projective methods, it 

is not possible to obtain the genera1 solution of the 

differential equation (3.1.1), but only particular solutions 

to specified boundary value problems. In order to ·produce 

finite-dimensiona1 equations of the form (3.1.8) which behave 

in a manner ana10gous to that of (3.1.1), a space E(O) must 
S 

be found such that the operator E POs Dsf has approximately 
s=l 

the same nullspace as the original operator D. For ordinary 

differentia1 equations, this imp1ies that the range space E(O) 

\ 
l 
j 

~ 
1 

1 

-l 
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should be of dimension 

Di m ( L ( 0 )) = Di m ( L'( f )) - Nu 11 i ty (D ) (3.1.9) 

where the nullity of a compound ordinary differential operator 

is given by the highest power of differentiation among its 

simple components. Extension of this concept to partial 

differential equations will be considered in section 3.5. 

A comparison can be made between the method contained 

in equation (3.1.8) and the asymptotically optimal finite 

difference formulations of Babuska, Prager and Vitasek [27] 

and of Miranker [32]. In their theory, the criterion for 

establishing the asymptotic optimality of a finite difference 

formula is to determine whether or not it minimizes the norm 

of the residual of the Galerkin process: 

(3.1.10) 

In the method developed in this thesis, solutions are obtained 

by saying that functions in the space L(O) are the best 

possible approximations of functions in the spaces L(S). 

When the differential equation (3.1.1) has only two terms, 

as in equation (2.3.14), the two approaches yield identical 

results; if the equation has more than two terms, they do 

note The advantage of the present formulation is the ease 

with which numerical matrix equivalents can be generated for 

arbitrary differential equations, compared to the difficulty 

of evaluating asymptotically optimal finite difference formula. 
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3.2 INTRQPUCING BASIS EUNCTIONS 

The first ,step in discretizing equation (3.1.8) is to 

introduce a set of basis functions fb(f)} in the space L(f) 
1-

and a basis . {b~o)} in L(O/ Then 
1-

y Cf) 
n 

y .b ~f ) = L 
i=l 1- 1-

(3.2.1) 

!(o) m 
f.b(o) = L 

i=l 1- 1-
(3.2.2) 

and (3.1.8) becomes 

n S 
b (f ) m 

L 'V i s~lPos Dsf = L f .b ~o) 
i=l 1- i=l 1- '(, 

(3.2.3) 

Taking the sca1ar product of this equation with each functio,n in a 

conjugate basis set { b~O) } in L(O) resu1ts in the equation 

S 
L AsY = Bf 

s=l 
(3.2.4) 

Here, as before, y and f are vectors containing the coefficients 

of the expansion (3.2.1) and (3.2.2), respective1y, the As are 

m X n matrices with elements 

and B is an m Xm matrix with e1ements 

B - lb i Ib(o)\ 
ij - \ (0) j / 

(3.2.5) 

(3.2.6) 

Hence, in a finite dimensiona1 subspace, a differentia1 equa

tion is equiva1ent to a rectangu1ar matrix equation with ana1ytic 

op~rators rep1aced by rectangular matrices and functions by 

vectors. The correspondence between the vectors and the con-
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tinuous functions is provided by equation (3.2.1) 

Consider now the prob1em of determining the function t(o), 

the besi approximant to the function t in the space ECo). This 

prob1em is treated in 1inear ana1ysis and the presentation be10w 

draws from references [42,43,23]. Using (3.1.5) the definition 

of f( 0) given by (3.2.2) imp1ies that 

(3.2.7) 
Ilt~f.roJI12 = <f - t(O)1 t - f(O) 

= {f -
m ( m () 

E f .b. 0) 1 f - E f.b. 0 ) 
. 1 7.. 7.. • 1 7.. 7.. 

7..= 7..-

m (0) m (0) 1 (0) 
= {f 1 t) - 2 E fi {b. 1 t~ + E f . f . If,. b . ) 

• ., 7.. • • 1 7.. J'7.. J 

= mi(nimum ) t a) ~-[( 0 

7..= v 7..~J= 

Differentiating this with respect to f
k 

yie1ds 

where 

{ (0) \ m 
bk If! = E. Tk.f. 

i=.1 7.. 7.. 

Therefore 

where 

i 
h(o) = 

k=l~ ••• ~m 

and Tij are the e1ements of the inverse of T 

(3.2.8) 

. (3.2.9) 

(3.2.10) 

. (3.2~11) 



m 
I: Tij T

jk = ôik 
j=l 

Using this result, the function ,(0) becomes 

Consequently, the operator Po may be written as 

p = o 
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(3.2.12) 

(3.2.13) 

(3.2.14) 

where the open inner product is understood to be completed with 
whatever .function Po acts on. Although (3.2.14) has been derived 
specifically between the spaces I: and I:(o), it is clear that the 
projection operator 'P

ij 
between any two spaces I:(1;l'and I:(j) 

will have the same form, with thQ basis {b(o)} replaced by {b(i)}. 

The projective property of the ope.rator p$ is demonstrated 

in the following manner. If a function ,is decomposed into 
two functions, one in I:(o) and the other in I:(:X:) = I:\I:(0) 

(3.~ .• 15) 

then, taking the scalar product of this with b(o) and using -z, 

(3.2.2) gives 

(3.2.16) 

Together with (3.2.10), this implies that 

i=l, •.. ,m (3.2.17) 

As a result, when the fi are chosen as in (3.2.10), the opera
tor ;P separates any function in I: into a function ,(0) in I:(o) 

and a function ,(:x:) which is orthogonal to ,(0). 
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The functions {h(o~} in (3.2.11) are biorthogonal to the 

basis set {b~o)} in r,(o) since 
'l. 

(3.2.18) 

In terms of finite element ana1ysis, their use has been intro

duced by Brauchli and Oden [29] and cultivated by Oden [23]. Since' 

(3.2.10) states that the best approximation of a function fin 

the space r,(o) occurs when the expansion coefficients .fi equal 

the inner products of f with the biorthogonal basis functions 

in r,(o! their application in approximating functions cannot be 

avoided. However, in determining the optimal solution of dif

ferential equations, it is fortunate1y not necessary to restrict 

the conjugate functions {b (o~} to be biorthogonal. In order to 

see why, note that a typica1 entry of the term Bf in equation' 

(3.2.4) is 

t i = r, B·· f· = r, Bi~ T
jk <b~o) If> 

j 'l.J J jk tJ 
(3.2.19) 

Since both sets {b~o)}and {b i} form a basis in r,(o), they 
'l. (0) 

are related by a linear transformation G 

b(o'l.)· = r, Gij b~o) 
j J 

The elements of the matrix Bmay th en be written 

B < il (0» .. = br) b. 'l.J () J 

and equation (3.2.19) becomes 

(3.2.20) 

(3.2.21) 
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t . = }:; GiZ TZj Tjk {bkoJ If ) '1, Zjk 

= }:; Gik {b (oJ If ) (3.2.22) 

~b (o~ 
k 

= If> 

In this equation, the relationship (3.2.20) between the bases 

{bio J } and {b(o~} is immaterial. Therefore, in order to obtain 

the best approximation of f in (3.2.4), the components of the 

term Bf must simply equal the sca1ar products of the conjugate 

basis functions {b(o~} with the function f. Provided that all 

terms of (3.2.4) use it consistently, any conjugate basis set 

pair will generate an opt.imal approximation of f. 
S 

The evaluation of the remaining terms }:; AsY of equation 
s=l 

(3.2.4) will now be examined in terms of the elementary matrix 

concept. First of all, each simple differential operator PlsDsf 

may be factored into a sequence of elementary openatprs 

000 E f-l.f (3.2.23) 

and a sequence of spaces }:;(iJ with basès {b(iJ} can be defined 

by 
(3.2.24) 

}:;(i-1J = {z : z = E. 1 . Y , Y e:}:;(iJ} i=l, ••• ,f 
'1,- , '1, 

The matrix elements in (3.2.5) may be written 



= 

= L <b (O~ 

= L 

<b(O~ 

JE, 
0..1 

JE 
Dl 

E 000 
.12 

(f) 

Ef fb. ) 
-1 J 

000 Ef-2,f-1Pf~1,f.l 

(f - ) TPq G 
000 Ef -

2
,f-

1
bp l qr 

r 
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(3.2.25) 

Ef -1 , fb Jf) 

(br li b~f.) 
(f -1 ) f- l , f J 

b~l) TPq Gqr (b(l) IE12 b(2) 

000 
tu < v (f) 

T Guv b(f-1)1 Ef_ 13 fb j 

In the event that 'the basis functions {b(P)} and {b(q)} are 

biorthogonal 

(3.2.26) 

and the calculation of As may be performed by multiplying 

together the sequence of elementary matrices formed by the ele

mentary opera tors 

f 
A = TI E 

s k=o k \ 
(3.2.27) 

where 

E = < b i 1 E b (k +-a. ) > 
k. • (k) k k + l 
~J .J 

(3.2.28) 

Otherwi se, the ma tri x products T -'G -, '~us t be i nserted between 

1. 
i 
1 , 
: 
j 
i 
l 

1 
! 
i 

·1 

\ 

l 
l 
1 
1 
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the e1ementary matrices as shown in section (3.2.2). 

3.3 RELATION TO THE ENERGY NORM APPROXIMATION 

It is we11 known that an energy norm can be defined 
for every boundary value prob1em such that the extremization 
of this energy norm in a projective subspace results in a 
1e~st residua1 approximation [43]. It is therefore instructive 
to compare the conditions in equation (3.2.4) with the 
conditions obtained from energy norm extremization. 

In order to do this, the differentia1 equation (3.1.1) 
must be rep1aced by a variationa1 functiona1. Of the common1y 
used variationa1 princip1es, the most generally applicable 
15 the one contained in the following theorem. 

THEOREM 3.3.1 [43]. Let D be an arbitrary differentia1 opera
* tor and Dits adjoint 

* < } < (3.3.1) D = {A: Aw Iy· = w/ Dy}, y e:Domain(D)" w e:Range(D)} 

Then the solutions of the pair of equations 

Dy = f 
(3.3.2) 

and 

(3.3.3) 

are the one and only pair of functions in a Hilbet space E 
which makes the functiona1 
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(3.3.4) 

stationary. 

The proof of this theorem may be found in reference [43]. Note 

that the functional 

(3.3.5) 

often used with symmetric opera tors (D* = D) is a special case 

of (3.3.4) with the arbitrary function v set equal to 2. 

Approximate solutions of the differential equation (3.3.1) 

are obtained from the functional (3.3.4) by determining.those 

elements yff) and u(l)of the finite dimensional subspaces ~(f) 

and ~(1) which make F stationary. These approximate solutions 

will converge to the exact solution of (3.3.2) as the space ~('f) 

is enlarged to ~. As before, let {br!')} be the basis in ~(f) 
1-

and {b(l~} be the conjugate basis of {b(li} in ~(1). Then 

tf f ) 

v( 1) 

and 

:v. 

= 

m 
~ 

i=l 

n 
~ 

i=l 

m 
~ 

i=l 

b ff) z. 
1- 1-

vib(l~ 

n 
= ~ 

i=l 
m <. (f) > ~. z. V. b(l iJ) IDb. 

j=l 1- il 1-

V <b i If> - ~ 7.'<b(.f) If> 
i ( 1)· i~/' 1- 1-

(3.3.6a) 

(3.3.6b) 

(3.3.7) 

Differentiating this with respect· to the coefficients z and 
k vk 

gives 

\ 
1 , 
l 

1 
1 
î 

l 



'èJF 
aBk 

m 
= L 

j=l 

é).!' - = 0 = 
'ètV k 

(3.3.8) 

(3.3.9) 

Equation (3.3.9) differs from (3.2.4) only in that (3.3.9) 

does not contain the projection opera tors Pose Provided 

that these projection operators are added to the operator 

D in the above equations, (3.3.9) will result in the 

same rectangular matrix equation for (3.3.2) as is obtained 

from Galerkin's method. Equation (3.3.8) needs to be solved 

only if a solution to the adjoint problem (3.3.3) is 

desired. 

3.4 ELEMENTARY MATRICES REVISITED 

In this section, the elementary matrices of Chapter 2 

will be derived from the expressions contained in section: 
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3.2. The chief impediment to doing this is to determine 

functions {b(kJ}which possess the sifting property in (2.1.9). 

Fortunately, Brauchli and Oden give finite dimensional delta 

functions with this property in reference [29]. These finite 

dimensional delta functions may a1so be produced by projecting 

1 
1 

1 



the Dirac delta function into a finite dimensional subspace 

by using (3.2.14). let ~(x - xo) be the Dirac delta function 

(3.4.3) 

and define â(x _ x) to be the function obtained by acting 
u 

â(x-xo) 

(3.4.4) 

where 

(3.4.5) 

The remarkable property of the function â is that while 
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it is a smooth, well-defined function in the finite dimensional 

subspace E(l), it has preserved the important sifting property 

of the Dirac delta function for the space E(l). For example. 

let y(l) be an arbitrary function in E(l). Then 

= E Y b ~ l) (xo) Tij Tik (3.4.6) .. k k J 1"J 

= E Yk b (l) (xo) = y(l){XO) 
k k 

Now let y(l) be equal to the basis function Z(l) which 
1" 



interpolates on the set of points {x). Then 
J 
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(3.4.7) 

Consequentlj, the finite dimensional delta functions {â(l)(X _ x.)} 
1-

form a biorthogonal set to the interpolatory basis functions. 

Using the delta functio~s for the conjugate basis set 

{b(k)} in (3.2.2 ), the element5 of the matrix Ek ar~ 

= E l (k+l) 1 
k,k+l J x=x. 

1, 

If Ek,k+l is equal to ~x or to f(x), this expression reduces 

to (2.1.11) or to (2.2.8), in that order. Note that this 

result is independent of the norm used to define the space. 

If Ek,k+l is equa1 to Pk,k+l and an L2 norm is taken 

E = E b (x . ) T
ml < b (k) Ibjk+l) > k .. ml m 1- Z 

1-J 

Ti Z 
(3.4.9) 

E SZj 
Z 

This resu1t is the same as (2.3.9). Therefore, the elementary 

matrices of Chapter 2 are identical to those obtained from 

(3.2.2 ). 

The general form of the elementary'matrix in equation 

(3.2.2:) permits, however, many other basis functions to be 

used, besides the interpolatory basis of section 2.2, and sorne 

of these will be considered here. The most obvious such set 

i s, ,of course, the monomi al s 

i 
= x (3.4.'10) 
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With the conjugate functions being the biorthogonal set, the 

following elementary D and P matrices are obtained 

0 l l Pl 
2 l P2 

l 3 l Ps 
D = r .' P = (3.4~11) 

n l Pn 

where the Pi depend on ~he order of the approximation and all 

blank entries are zero. The function matrix in this case requires 

the expansion of the function in a T~ylor series. 

Another set of b~sis functions for which the D and P 

matrices generate simple forms are the Legendre polynomials. In 

this case 

o l 0 l 0 0 0 1 ) l 0 

3 0 0 0 
> ' 

l 0 0 0 

0-1 50 0 0 5 l 0 
-r 0 P= 0 0 (3.4'. l 2) 

0 0 0 

0 0 0 

an-l, l 0 

Again, however, the function matrix must be eva,l ua ted analyti-

cally to obtain the Legendre 'polynomial expression of the func-

tion. With 'a non-interpolatory basis, it is not possible to 

obtain a purely numerical method to generate function matrices. 
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3.5 MULTI-DIMENSIONAL REGIONS 

In section 3.2, the technique for obtaining the 
approximate solution of a differential equation in a projective 
subspace was restricted to ordinary differential equations. 
Here, the extension of this method to partial differential 
equations will be made in a simple and natural way. 

In order to retain the usage of the ordinary elementary 
matrices in the discretization of partial differential equa
tions, it is necessary to use multi-dimensional basis functions 
which are separable into a product of one-dimensional Newton
Cotes interpolation polynomials. There are two known sets of 
multi-dimensional functions in two different geometric regions 
having this property. In N-rlimensional cubes, the product 
separable multi-dimensional functions are 

N 
b • • = 11 

1- l' • .1- N k= 1 

where the {xk } are N independent variables and the {Zin)} 
are, as before, the equi-spaced Lagrangean interpolation poly
nomials 

z~n) (x) = 
1-

z(o)(X) = 1 

(_l)n-l 

i/(n-i)! 
(Lnœ - m) (3.5.2) 

In N-dimensional simplexes, the required functions are given by 
[45 ] 
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(3.5.3) 

with 

(3.5.4) 

Here h'k} are homogeneous coordinates [4s]. The spaees gener

ated by the functions (3.5.1) will be called cI>(nt···n ) and 
N 

those generated by (3.5.3) $(n). If N=l, th en the two spaces 

coincide 

(3.5.5) 

since the one-dimensional form of both the cube and of the 

simplex is a linesegment. 

Of the two spaces cI> and $,only $ contains polynomials of 

degree n which are complete in every monomial of ~ of degre~ 

less or equal to n. (This is not to be confused with complete

ness in the sense of a Hilbert space;both (3~5.1) and (3.5.3) 

form a complete set of basis functions since any polynomial in 

~k may be obtained by taking n
k 

large enough). However, in 

the functions (3.5.3), products of polynomials of different 

degree are ,UR~voidable;with (3.5.1) all the n
k 

may be taken to 

be equal. This, plus the fact that the independent variables 

in a differential equation must be transformed into homogeneous 

1 
l 
J 

1 
1 
1 

1 
'1 
1 
'/ 
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coordinates when using (3.5.3), make the cubic basis functions 

the easier of the two to work with. 

The ability of ordinary elementary matrices to generate 

derivatives, projections and function multiplications on the 

functions (3.S.1) and (3.S.3) is a result of both of these 

function sets defining an equi-spaced, right-angled grid of 

interpolation nodes in their respective coordinate systems. On 

this grid of points may be superimposed the coefficients of the 

expansion of a function in these bases as shown in Figure 3.5.1 

for a three-dimensional space. The effect of an elementary 

operator acting on this function will be equivalent to a matrix 

multiplication of this cubic block of coefficients by the ele

mentary matrices in the proper direction. Thus, if a function 

y(xlJ •.. ~xN) is expanded in either the functions (3.S.1) or 

(3.S.3) 

N 
II 

k=l 
(3.S.6) 

then the elements of the matrix equivalentof the equation 

2 (x 1 ~ • • • ~ ~) = E (Xp ) y (Xl' ... - .. ~ ~ ) (3.5.7) 

are 

where E is the n~th order elementary matrix of E(xp). Here E(x ~ 

may act only on the variable xp• 

For the case N=2, equation (3.S.8) provides a particularly 

,: 
1 
J 

1 
l 
! 

i 
j 

1 
i 

! 
1 
1 

1 

l 
1 
; 
i 
,t 

i 
1 

l 
! 
i 
1 
j 
l 

1 

1 
1 
1 
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XI 

Figure 3.5.1 

Nodal points where b . .. = 0 if n1 = 1, n2 = land n
3 

=2. 
. 'Z- l'Z- 2'Z- 3 

The numbers in the circles designate the values of il~ i 2 
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useful result. in this case for an elementary operator acting 

purely in the direction ~1' the matrix elements Z become 

z· •. = 
'tJ 

n 1 
LE. YqJ. 

q=l 'tq 
(3.5.9) 

and for an elementary operator acting in the direction x 2 

= ~2E. n 2 ET. 
q=l Jq Yiq = q~l Yiq qJ 

Z •• 
'tJ 

(3.5.1'0) 

where ET is the transpose of the matrix E. Therefore, in dis

cretizing equations in two dimensional spaces, opera tors acting in 

the directiQn'~1 result in multiplication of the coefficient 

matrix from the left by the matrix equivalent of the operator , 

and opera tors acting in the direction ~2 result in multiplica

tion of the coefficient matrix from the right by the transpose 

of the matrix equivalent of the operator. 

Now, any partial differential equation can be reduced 

to an ordinary differential equation by holding all but 

one of the independent variables constant. Thus, along the 

line 

k = 1, ••. ,i-l,i+l, ••• ,N (3.5.11) 

the partial differential equation 

(3.5.12) 

reduces to the ordinary differential equation 

y ( al, •• • , ~ i' ... , aN ) 
(3.5.13) 

= f(a1, .•• ,xi,···,aN) 

-"ï 
"1 

j 
1 

l 
! 
1 , 
~ 

1 
\ 

1 
i 
! 
j 



The approximate range space L(O) can be easily determined 

for this equation and will be called L~O). An N-dimensional 
1, 

partial differential equation will generate N such spaces 

L~O) and, since the partial differential equation (3.5.12) 
1, 
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is a combination of the N equations (5.3.13), the approximation 

range space L(O) of a partial differential equation must 

coincide with the intersection of the range spaces L~O) 
1, 

N 
n 

i=l 
(5.3.14) 

An example will help to fix these ideas. Consider the two 

dimensional Helmholtz equation in Cartesian coordinates 

(3.5.15) 

and let the domâin of the opErator (v 2- k 2 ) be approximated by 

the spaces ~ (2,2). Then Z may be expanded in the functi ons 

(3.5.1) 

2 
z(xJy) = L 

i,j=o 
(3.5.16 ) 

The first simple operator ~in (3.5.15) acting on this space 
a X2 

gives 

a 2 S 
2 

t:(1.)(y) ~ 
(2) 

= L Zi,j t'. (x) 
a~x2 i"j=o J a,x 2 1, 

(3~S.17) 

0 2 (2) (0) 

= L L W'k' ti (y) t' (x) = 7.tJ(x"y) 
k=o j=o J k 

; 
j 

! 
1 
1 
J 

1 

1 

1 
1 

1 
.1 

1 

1 
l 



the space L(ll of equation (3.1.3) is 

L (0) = = (3.5.1S) 

Therefore, according to equation (5.3.14), the solution of 

(3.5.15) in the subspace ~(2~2) is given by the solution of the 

equation 

(3.5.19) 

Now p( ) ( 2) is a function of y only since it must leave 
o~o ~ o~ 
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functions in x intact. Similarly, P is only a func-
(o~o)~ (2~o) 

tion of x. Consequently, acrcrding to the methods of section 

3.2 and equations (3.5.9) and (3.5.10), the discretized form of 

(3.5.15) is 

DZpT + PZDT :II k2PZpT (3.5.2U) 

where 

D = 4 
CT [1 -2 1 ] (3.5.2la) 

p = 1 [1 4 1 ] 6" (3.5.2lb) 

~) 
y 

z Z 12 1 3 
Z = X Z Z Z 21 22 23 (3.5.21c) 

Z Z Z 31 32 33 

l 
/1 
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The x and y coordinate axes have been drawn on equation (3.5.2lc) 

to indicate how the coefficients are related to the coordinates 

of the corresponding interpolation nodes. 

Of course, many multi-dimensional functions cannot be sep

arated into a product of functions of one independent variable. 

For the se functions'multi-dimensional function matrices are 

defined by 

= f 
Ci) (x • , .•• , 

1,.1 

)( ~N) ) 
l.. N 

The function muliplication z = fy is then given by 

Z •• =F •• y .• 
1, 1 • • • l..N 1, 1 • • • l..N 1, 1 • • • l..N 

(3.5.221 

(3.5.23) 

In order to facilitate the evaluation of the matrix 

product (3.5.23), and also the solution of equations such 

as (3.5.20), it is necessary to introduce the Kronecker 

product of matrices. This is done as follows. Let A be 

an m x n matrix and B be an s x t matrix. The Kronecker 

product of A and B is defined to be the ms x nt matrix [46] 

AllB 0 0 0 AlnB 
0 0 

A ® B = 0 0 (3.5.24) 
0 0 

A miB 0 0 0 A B mn 

It is known to obey the following associative and distrib

utive laws [46] 

:i 

1 

l 
,1 

1 

J 

1 
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( A ® B) (C ® D) = (AC) ® (BD) (3. 5.25 a) 

( 3 • 5.25 b) 
( A + B) ® (C + D) = A ® C + A ® D + B ® C + B ® D 

In addition, let Aj denote the j'th column of A and define 

the matrix operation vec A to give the fOllowing mn component 

vector [47] 

o 

vec A = o 

o 

'A 
n 

The application of Kronecker products to matrix 

equations of the form (3.5. 20) is a result of the following [47] 

vec (AB) = (I ® A) vec B = (B T ® I ) vec A 
p m (3.5.27) 

By using this equation and property (3.5.25a), an equation~f 

the form 

(3.5.?R) 

where the Ak are mXn matrices, Z is an nxt matrix of unknown 

coefficients, the Bk are sxt matrices and F is a specified mxs 

matrix, yields 

(3.5.29 ) 

where the Bk ·® Ak are ms x nt matri~es, vec Z is an nt 

component vector and vec F is an ms component vector. Equation 

(3.5.29) is a standard rectangular matrix equation in terms 

j 
1 

1 
1 
1 
1 

1 



of the unknown coefficients Z ... 
?-J 
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In terms of the Helmholtz equation (3.5.15), the above 

result means that the discretized form of the equation (3.5.20) 

may be written as 

(P ® D + D ® P) vec Z = k2 (p ® p) vec Z 

From (3.5.25b) and the identity 

(A + B)2 = A2 + A ® B + B ® A + B2 

(3.5.30) 

( 3 . 5 .31 ) 

equation (3.5.30) may be written in the symmetric forms 

[ (D + P) 2 - D 2] V e c Z = (1 + k 2) P 2 V e c Z ( 3 . 5 .32 a) 

[ (D + P) 2 + (D - P) 2 ] V e c Z = 2 k2 P 2 V e c Z ( 3 . 5.32 b) 

These results are valid for all D and P matrices of second 

degree. If a biquadratic approximation is used for the 

unknown, equation (3.5.30) becomes 

4 3fT [ l l l l -8 l l l l ] vec Z 

(3.5.33) 

.=.~ [ l 4 l 4 l 6 4 l 4 l ] v e c Z 

For two-dimensional matrix products of the form 

(3.5.23), equation (3.5.27) implies that 

(3.5.34) 
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Therefore, as in the one-dimensional case, the function 

matrix for two-dimensional problems is a diagonal matrix of the 

two interpolation point values of the multiplying function. 

. 1 , 

j 

j 
] 

i 
l 
J 

1 
\ 

1 
1 



CHAPTER IV 

DISCRETIZATION OF ARBITRARY DIFFERENTIAL EQUATIONS 

I~ the numerical solution of differential equations, the 

step that has always been the most laborious and time consuming 

has been the discretization process. Aside from a single known 

attempt at automation [48], the usual procedure has been to 

churn throu~h either Taylor series expansions or tables of 

integration formulae by hand or in sophisticated cases with 

the aid of computational machinery until the coefficients in 

the discretization process were evaluated for the particular 

differential equation of interest. 

The most automatic discretization procedure presently 

available is the Taylor series method of producing finite dif

ference equations. In this m9thod [49], the differential terms 

in the Taylor series expansion of the solution of a differential 

equation are matched to the components of the differential 
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operator on an arbitriry set of points. Since a general expression 

for the Taylor series expansion of an arbitrary function is 

known, the procedure does not require algebraic manipulation 

once the point set is chosen. 

Silvester has reported a fully automatic computer program 

for discretizing arbitrary differential opera tors by this method 

[48]. However, since its discretization accuracy depends upon 

the locations of the point set, and since there is no a p~tori 

way of determining good locations, th~s "au tomatic" procedure 

is a hit or miss approach. 
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Using the elementary matrix concept of Chapter 2, the 

automatic discretization of any differential equation can be 

accomplished in a direct manner. First, it is necessary to 

break the operator into its elementary analytic factors and to 

form the corresponding elementary matrices. The assembly of 

these matrices to form simple operators is performed according 

to (3.2.27) by multiplying the elementary matrices together, 

keeping in mind that the degree of the range space of each 

operator ~ust coincide with the degree of the domain of the 

next elementary operator acting upon it. Provided that the 

simple matrices are augmented by the proper projection mat

rices, the compound operator is assembled according to (3.2.4) 

by adding the matrices corresponding to the simple operators. 

Finally, the forcing function in equation (3.2.4) is added by 

evaluating the analytic function on the interpolation point 

set for the space L(O) as given by (3.2.22) and (3.4.6). Thus, 

the method of assembling elementary matrix factors to form a 

discrete matrix equation is completely analogous to the mathe

matical operations performed on the parent operators in the 

analytic differential equation. 

This chapter contains the steps required to convert this 

procedure into a direct numerical algorithm for the automatic 

discretization of arbitrary differential equations. The dis

cussion is complemented by listings of Fortran subroutines for 

the generation of matrix equivalents of ordinary and two-dimen

sional partial differential equations. The aim of these pro

grams is to provide a very simple, accurate, and efficient 
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method of discretizing differential equations for anyone 

having acces~ to a Fortran compiler. 

4.1 COORDINATE-INDEPENDENT FACTORS 

Since discretized equations are often used repeatedly 
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in different locations, a major practical consideration in 

developing a discretization algorithm is to separate the co

ordinate-dependent factors from the coordinate-independent ones. 

Of the three elementary matrices, only the function matrix is 

entirely dependent on coordinate information, although the 

different1ation matrix do es depend on the length of the interval 

taken. This suggests that the discretization process should be 

pursued on two levels~the high-order differentiation and 

projection matrices should be evaluated and stored separa tel y 

from the function matrices, which should be generated only when 

needed in a specifie location. 

In order to avoid the time-consuming and involved comput

ations required for generating the elementary D, P and FU matrices, 

it is natural to store the numbers in computer programs which use 

them. Figure 4.1.1 contains one method for storing these matrices. 

It is a Fortran block data subprogram in which the matrix elements 

given in Chapter 2 are stored in hexadecimal units for a 32-bit 

word computer. Due to the symmetry properties of these matrices, 

only the top halves of even rowed matrices and the top halves 

plus one line of odd rowed matrices are stored. This requires 

535 memory locations for all matrices corresponding to the 

polynomials of degrees one through nine. 
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--- -----_ .. _------------ ._--- . 

Figure 4.1.1b 

DATA 09 IZC?1975Fl, ZC0720R5E, Z3FB9~P32, ZDFl12A5B, 

1 Z,lt251dOOO, ZC1Eil6 C)24, 7lP()E60n4, ;:.~F.\9f,16F., Z3F'.11bOB, 

2 Z42lCElEA , ZC1R6C~F8, Zl 0145A50, lCnlFE4CC, Z42FCUOOO, 

3 Z4ll11R77, ZC1AB417A, Z40CEB8no, ZC311SBOO, Z421B~260, 

4 Z td C fV. 3 C 7, Z C l A E 6 i.i 40 , Zlt t. E 2 CCc C, 7. C ? 13 F B fl E,U. 1 5 1 Il..\ 8 5 1 

5 Z41AEvi340, ZC?7!:'}QOO, Z4!f,7F[\C)C.' 2C126 1.1;96, Z41102J~\5, 

b Z422E4924, ZC1~~b673, Z40C98ECE, 7cn4912A91 Z401F~4CC, 

7 7.40CA3876, Z(112BFCD8, Z::HO[),\043c), 7.BFi.l16013, Z41100000, 

8 l3~3D643R, ZBF133239, 23[460000/ 
DATA FUH IZ41100000, ZJr4~376D, ZBFl515101 Z3E904012, 

l lOOOOOOOO, l'tt12CDOtl, Z401B1812, ï.BF736CDn, Z3F3BrO;\8, 

2 Z C 06') 4 :) C) C) , Z 4 1 1 2 ., (; 6 E 1 Z 't 0 :3 F 1 F iP, 7 C n 1 5 fi r: 2 B , Zoo 0 0 0 0 0 0 ) 

3 ZCObR,3F5} Z4~FC7EIF, Z407RBB4A} 7.00000000, ZCo5E0548} 

4 ZC04E~769} Z4r[\C~4A3, zoooooooo, Z4n30EBAC, ZC028B5EA~ 

5 ZC02EbF6R , znoooonoo, ZC016E45R} Z3FF8RC89, ZRFC9FE7F, 

6 ZOOOOOOOO} Z3F57R650, ZBF396Âh2J Z3F2C64F1, ZBF2Cb264, 

7 ZG~966EDA, Z3E606U4A, ZBË482409, Z3E44FD4E/ 
END 

..... _._- ....... - ----... - .. _.-. . _ ....... _- --'----' . 

li' : 
! 

ZAr·460000JDECLQA55 
7. C ;' f, 2 0000, nEC 1. <) A 60 
lC? lCC02CJ .. DECI.9A65 
ZC!6c)C44D,DECL~870 

ZC'2E~26A,OECLQR75 

ZCrCE~ijOO/DECL9q90 

ZC!A20000/DECL0R85 
le (' 13!j UO, OEC l,C1B90 

OECLQA95 
ZBE56]CA2,DECL9QOO 
ZOnQOOOOO,DECLryQ05 
Z4r6E036B,OECL9910 
Z4r.49C9U81 DEC L CJC) 15 
Z4r24l204,OECL Q 920 
Z!FOD831Z/DECL9925 
ZOoOOOOOO/OECL9930 

DEC V~935 
DECL9940 
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A program for building up matrix operators of an arbitrary 

order from the block data subprogram is given in Figure 4.1.2. 

Written in Fortran, the program is in the form of a subroutine 

called OPRATR, the input to which is an NC by ND array in OP 

which may contain any elementary matrix, including the identity 

matrix. It returns an NR by ND array in OP which is equal to 

the product of the original matrix times (NC - NR) successive 

elementary matrices. The type of matrix used de pends upon the 

value of KIND;if KIND = 0, differentiation matrices are used; 

KIND = l results in the application of projection matrices; 

KIND = 2, the FU matrices .. Thus, if on input OP is a 6 x 6 

identity matrix, NR is equal to 3 and KIND equal to 0, on out

put OP would contain the 3 x 6 matrix which differentiates the 

coefficients of fifth order polynom1als into se~ond order ones. 

The subroutine OPRATR uses the symmetry or antisymmetry 

properties of the elementary matrices to speed up the computa

tion. This means that an additional index called IEO must be 

supplied to OPRATR to designate whether the input matrix is 

symmetric ( IEO =1) or antisymmetric (IEO = -1) about the 

matrix centroid. 

In order to use the subroutine OPRATR to generate the co

ordinate-independent matrices for ordinary differential equa

tions automatically, a method of separating these opera tors in 

the differential equation must be devised. On a computer, one 

method of distinguishing the mathematical components of a dif

ferential equation is to assign each mathematical entity in 

the equation a numerical code. If the code is chosen cleverly, 
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Figure 4.1.2 

SJ5RCU7INE CP~ATR(~?IEO,NR,NC,ND'KlND) 

U ~AT~ 6UILCS uP E~EME~TARV DIFFFRF~TIATION AND PROJECTION 
;-- 7~IC 5 1';'.:::-- \'ùl'!::5 STORED IN THE CO~IHOtl BLOCK DPFUI. THE 
• ?UT ~ C=KAT~ ~UST BE AN 'NC' ~v IND' ARRAV IN 'oP' ~HICH IS 
C "VE~ :;) T;: A"; ";=\' SV ':-lD' ARRAV Sv THE PRE-r1ULTIi'LIC ATI'1N OF 
, ~. ~ ~H 7~E APr~~~RI'TE ELEMENTARY "ATRlx. IKINO = 0: 
;: :.;JEC le:;; Ki:ID = 1: JIFFEi\ErnIA 7 IO:-l; KIND = 2: R~!SHlG) 

::J5L~ ~RE !S!:~ vEC TOR(5) 
;;!.:E~.S:J~: DIll 
Ul 5~SiJN ~~(9),OI535) 
C: .:::;' 1 :J Ful 1 ~'::!A,D 

l~ ~~ .~~. ~Cl RET~RN 
"5 ::;". = l 
~F Kr'.:J .F.j. l} l:S!GN - 1 

I!~5CIC - ',Rl 
'''- ..... 
J: ~ ". = 11 ~ 
:.c : .. '<. 

IA~~ 15 THE LOCATION OF THE ELEMENT BEFORE THE FJR5T ELEMENT 
~F THE ~EQuIRED EL:"ENTARV "ATRIX IN OPFUl 

iF:KI~J .EQ. 21 G~ TO 3 
:.? .. = '.r: - 1 
:Ll:"\Ii " I".R .. 1)/2 
,!:D : ~~At~~) + lLIMI1*NC*KIND 
t,;: TO -t 

3 ;'R : \k + l 
IL!HIT = I~R .. 1)/2 
iA:~ NMAI~Cl + CNR/2l*NR*2 

4 J 1" ': .. t~C 

Jl:.R " - ~R 

TH~ AR~AY ICPI 15 ~ULTIPLIED SV oNE HALF OF THE ELEMENTARV 
MATRIX 

DO 2 J = 1,:-"0 
J 1:::; J 1NC .. t,C 
.i!:.R • JlI;R + r·:R 
ua 1 1 • 1,ILIMIT 
vECTD~IIl : 0.00 
!K = ! + I~nn - ILIMIT 
Je l 0( 'i 1. ~.C 
lK = I~ + ILI~IT 

1 ~ECTwRtIl = VECTQRCll .. OSLEIOIIKl*OPIK + JINC» 
DD 2 1 a 1,ILIHlT 

2 OPll .. Jl~R) = SNGL(VECTORIIl) 
iF: ILl.:IT .GE. NP. 1 GO iO 6 

iH~ S~C:NO ~ALF O~ .OPI 15 5:T EOUAL TO + OR - TIMES THE FiR5T 
H:'LF 

DECL7525 
DECL7530 
OECL7535 
DECL7540 
DECL7545 
DECL 7550 
DECL7555 
LlECL75bO 
DECL7565 
DECL7570 
DECL7575 
D"CL7560 
DECLï5S5 
DECL7590 
DECL7595 
DECL7600 
OECL76Q5 
DECL7610 
nECL 7615 
OECL7620 
DECL7625 
OECL7630 
DECL7635 
OECL7640 
OECL7645 
OECL7650 
DECL7655 
DECL7660 
DECL7665 
OECL7670 
DECL7b75 
DECL7bSO 
DECL7665 
DECL7b90 
DECL7b'l5 
OECL7700 
OECL7705 
OECL77l0 
OECL7715 
DECL 7720 
DECL7725 
DECL7730 
DECL7735 
DECL7740 
OECL 7745 
DECL7750 
OECL7755 
DECL77bO 
OECL77b5 
LlECL 7770 
0:C\.7775 
DECL 7760 
OECL 7765 
OECL7790 

IEe = ;~SIG!l:lcIEn 
SIGN = FLDaTIIEOl 
JHJR : - Nf'. 
Jl~C : NR*C~D .. Il + l 
UO 5 J = 1,~D 
Jli'iR JW,," nR 
Jl~C " JlNC - HR 
UO 5 1 a 1,ILI~IT 

5 UPIJINC - Il = 5IGN#ODCl + J1NRl 
b COiiTINUE 

RETURN 
èNiJ 

:,~:..:, . .::.: .. :":"'-""c . .;:,;;.:.~~:..:~<·-.L---'-~~''';'~~'''-'·_':;'··'''~-;''''''''''''''''·''';---..:.~---- - .• --...... "-------~ ... ;"." ... -,.~. -_.,~--'.:. ." ...... , .. _ .... _"-- '~-- .. ~.- ~ 

en 
en 

!::CL""-;5 
:=:::.-=:~ 
:::Cl"'a::5 
~~~L""?:O 
:::L'""e:! 

--
--- -
--
~-

::: .... 
-,:: 

""-_ .. ~,"J 



tnen certain ranges of values will indicate the proper algebraic 

steps to be followed. Consider, for example, the following coding 

procedure 

NUMBER 

3000 

2000 

1000 

200 

-1 

o 

o 

o 

-9 

OPERATION 

end 

minus sign 

plus sign 

y ( the unknown function ) 

cl 
~ 

o 

o 

o 

67 

With this code, a number greater than or equal to 1000 designates 

the separation locations for :imple operators, the presence of the 

number 200 in a simple operatoy' indicates that the term contains the 

unknown while its absence signifies that the quantity is a known 

function, and the absolute values of the numbers from -1 to -9 

indicate the corresponding orders of differentiation. Furthermore, 

the number of derivatives in a simple operator may be obtained by 

adding the magnitudes of the numbers between -1 and -9 for that 

operator. The order of the projection matrix to be used in each 

simple operator is then found by sUbtracting each of these numbers 

from their largest value. 

A subroutine OPGENl has been designed to operate on the 
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Figure 4.1.3 

suaROUTINE CPGeNI CiHSTR,ISTART,NR,ND,LOC,LO,LFCN,LF, 
OPS,LqC~,LPOnER,OP,IPRnJ> 

'~:5 S~3R~J~!~E E";LUA1ES T4E COGR~IHATE-INDEPENDENT FACTorS 
F:;:: To.;~ Di5nEnZ!'TI:J~; OF Uf:E.\R O:<OINARV DIFFEi:ENTIAL 
"::L·.!TL:';S. '!'IE EQI' '.TI[l'l DiS':f1.ETizEn IS CODE!) Itl THE ARRAV 
• ,';57:;.' S7,,"T:·.G T:; ';.jE • !S7,"p'T' '.rCt.Tlm:. THE MATRIX t:ACTr'RS 
è;V;U;':' ::D 1,:le ~CT!·?:!ED y:: THE ':'RP.Av 'OPS' ~IITH THE NU~:GER GF 
R~n5 1·, E~C~ ~~TRIx BEING GIVE~ RV THE ARRAV 'LROW'. 

Cl!~E~5IJN ISST~Cll,LOClll,LPOWER(l)~LFCN(ll,OPSCl),LROW(l)iOP(ll 
L: = ~ . 
L;::: C 
L~:L IST.:.F.T 
!.:J::' iSTAil.T 

Fi;ST i~E L~CATIDN ~F THE + DR - SIGNS !S DETERMINED 

L<:::S = LOCS + 1 
IF(l~srRCLDCSl .L'. 1000> GO Tn 1 
SI:':l = 1. 
!F.!~S;~(L:CL) .ED. ZOOO> SIGN = - 1. 
t-J:L = i.CC5 
L = L::-:S - ~ 
IF(I~S-~CL - l! .EC. ZOOl L L - 1 
iF.I::S;~(Ll .E~. Z::JOl GiJ TO 3 

T4~ CU~RE~T TEP" IS A KNOWN FUNCTlnN - ITS LOCATION AND SIeN 
;RE ST~RED IN .LFCN' . 

LF = L;: + 1 
LF:~:L~, = L*IFIxISIGNl 

2 L L - l 
IFd~;SrRCll .LT. 1000l GD TO Z 
LF = !oi' + 1 
LFCN(LF) = L + 1 
IF(!NSTR(LOCSl .GE. 3000l RETURN 
c'û T: l 

T~E S!~~LE :PERATO~ ENCOU~TERED COHTAINS THE UNKNOWN v 

3 M = N~ 
ID? = l 

:. L:: = Lù + i 
LJctL~l = i.. - 1 
LP[]WER(LOl • 0 
:, = ~ 
Nivi~S" ,. 1'*'" 

T~E !~PRO?RIATE U~IT ~ATRIX IS CREATED 

~J 5 l • 1,~TV~SH 
5 Ci' ( I) = O. 

:.'~ = N ... l 

DECL6655 
OECL66!>O 
DECL6665 
D::CL667 0 
DECl.6!>7;; 
DECL66S0 
DECl.f:6S5 C 
DECL6690 C 
DECLb695 C 
DECL67 00 
DECl6705 
D:Cl6710 
DECl.!>715 
DECL67Z0 
DECL6725 
DECL6730 
OECL6735 
DECL67 40 
DECL67:.5 
DECL6750 
DECl.6755 
DéCl.!>760 C 
DErL!;,7!:5 C 
DECLf,770 C 
DECL!>775 
DECLfl780 
DECL67S5 
DECL6790 
DECL6795 
DECL6S00 
DECLéB05 
OECl6P.IO 
DëCL6B15 
OECL68Z0 C 
DECL6BZ5 C 
DECL6f130 C 
DECL68?-5 
DECLflFi:'O 
DECL6B45 
DECL6850 
DECL6S55 
DECL6S!;'0 
DECL6Bb5 
DECl6B70 
D!:CL6R75 
DECL68eO 
DECLf>RE5 
DECLf.?90 
D!:CL6/!'75 
DECLt>ClCO 
OECL6 0 05 
o:CL6ClI0 
DECL6 Cl 15 
DECL6ClZO 

DO 6 1 • 1,I'TVMSN,~H 
!> UP(I) = 1 •• SIGN 

IEO = 1 
l'~N = N 
IFtN .c;E. II~) r.0 TO 9 
IF,IPRQJ .EQ. l' ~ = N~ 
THE REQUIRED P?DJECTION MATRIX IS EVALUkTED 

1 = LOCS 
7 1 = 1 - 1 

1;:(INSiR(ll .EG. 300l IOP = -
IF(IP~~J .~~. 1> Go TO 8 
IF(lA:S(Ir:STRCIll .GE. 10) GO TO 8 
'·1 = :\ - 1!:STRCil 

3 IFcINSïfUIl .LT. 10001 GD TO 7 
IF( IPRiJJ .U:. l' fia TO 9 
CALL OPRAT~(Oi',IEO,H'M~/N,Ol 
:1N = M 

9 L = L - 1 
IF:lt3SIIN5TR(L" .GE. 101 GO TO 10 

THE RE~UIREn DIFFERENTIATIDN MATR!X IS EVALUATED 

LPiJWERiLOl c lPO~!:R(LOl - I"STR(Ll 
rol = Mrl'" Il,STRIll 
CALL D~RA7~IDP,IE~,M/MN,N,1) 
w~ = M 
GD TD 9 

10 IFcINSTR(Ll .GE. 1000 .OR. Ia8SCINsTR(Ll) .LT. 10) GO ~o li 
L = L - 1 
GD TO 10 

llL=L+l 

THE MAïRIX CO~PUTED IS STORED IN 'oP, 

LQC(L8J = !vP*LOC(LO> 
LR:;;'I( L:J) = toi 
i"ITYMSN = ~""~J 
[FILO .EC. Il LOPS = - MTV~SN 
LOi'S = LOPS + xTVMSN 
DO lZ l = 1,~TYKSN 

12 UPS(I + LOPS) = OP(Il 
LO = LO + 1 
LOC(LOl = L 
SIGN " 1. 
IF,IN5IR(L - 1) .Li. 1000 ) GO TO 4 
LDC(LO, = - LOC(lOI 
IF;INS1R(LuCSI .GE. 3000' RETURN 
(,0 TO 
c~:j) 

en 
co 

ecu,:: 5 
::- ::'7': : 
: ::'1>" -
~ .: :...::!!-: 
~ .- :"'0:=-; 
.... r 1 ~::;: 

:; 
c :..~~~ ... 
D L~ _J 

: ~f. -:: 
:..!- -; 

: :': .. !'- -: - ~ 

~~~L;~~~ 
:=::..~::;:: 
~~:L-~~~ 
~ .,: 5 -. -. ~ 
;., '.~ 
D ~:5 

::~L":":~~: 
~E~:..-~':;: 
:::!..--::: 
~::~-:-:5 

C=CL-:-: 
!:EC. "'::.;.5 
D=~~-::=~ 
i::C'_ 7,::5 
C 7:- ..... 
~ 7:-:;;' 
~ ir:-: 
~=':L~~:: 

~~~~ ~;~~. 
CL~~ 

CL"O 
CL"~ 
CL 7: 

~ , ., 
.' '-
~ C ., 
: c -; 
... , ., - .. 
- ,.., c .., ~ -
:) C 7 C 
'}:t:~'7! .. 5 ... -r. -. : ... _= ... L.' ... ~ 

:: ::..~:; 

~ :~-:..., 

~ ::!..;-~ '; 
:: :L-;:-:-
:; .: .... .,~~ 

J 



above principles and is presented in Figure 4.1.3. The 

instructions for the differential equation to be discretized are 

contained in the array INSTR with the first instruction in 

location ISTART. The numbers NR and ND give the number of 

interpolation points (degree of the interpolation polynomial 

plus one) in the range and domain spaces of the operator, res

pectively. During execution, the program checks successive 

values of INSTR, noting the starting and ending locations of 

simple operators in LOC and of functions in LFCN. As differ

ential and projection operators are detected, their matrix 

equivalents are generated by calling OPRATR and stored consecut

ively in OPS. The arrays LROW and LPOWER give the number of 

rows in these matrices and the power to which the quantity (l/L) 

in the differentiation matrix is to be raised. 

4.2 COORDINATE-DEPENDENT FACTORS 

69 

OPGENl completes the first level of the discretization process 

by evaluating all of the numbers in the matrix equivalent of a 

differential equation that are independent of coordinates. The 

second stage of the process, adding the coordinate dependent 

factors, is accomplished by the companion subroutine OPGEN2 

shown in Figure 4.2.1. This subroutine takes each simple opera

tor separately and evaluates the function matrices at the inter

polation nodal coordinates given in XD. The previously calcu

lated differentiation and projection matrices are th en combined 



Figure 4.2.1 

SU3RDU7INE (~GEN2IINSTR~CCHST3LnC,LPOWER~LROW3LINDI 
• XD~~T~N.NPT.OPS3LOPS30P3TEMPl 

E SU=~OUT!~E OPGE;~2 TAKES THE cOnROI~ATE-INDEPENDENT FACTORS 
S :RE~ I~ '~E ARR~y 'OPS' AND MULTIPLIES THEM WITH THE 
1 =R~~ IAT~ C GRDI~ATE DEPENDE~T PARAMETERS. THE POINT 
L ~~~! ATES t Z C2~TA!NED I~ THE ARRAY 'XO' WITH THE QUANT!Ty 

iL) TCREP :; t· .... TI. 

CI~E~S~~~ I~STRIl:.CDNST(ll~LOClll~(PDWERlll,LRDW(ll, 
= XD(ll~~T(1)~OPS(1)~O~ll)3TEMPlll 
C~~aLE ~RECISIDN nüU3LE 
p~ = ~D 
H = LR2~CL) 
L~PS ~ LG~5 + M$~~J 

IF{~~ .EC. Nn, G~ 70 4 

IF ~ ~~TRlx 15 AL~EAOY STOREO IH THE ARRAY 'OP', IT IS 
HULiI?LIED av THE MEXT HATRIX FACT~R 

IJ = C 
L:J:.: = ,-!JPS - M 
J l ~~~~ - ~!~; 

llO 3 ,J ~ 1~1I;" 
J V:!Il Jl'l'; + HN 
;J:; 3 " l,~ 

iJ I .. ~ ... ~ 

:!< 1 + Lev. 
-<.J = J l:-\~J 

U;}J5LE " o.co 
:.ï:::! 2 !( • 1.1·~ 
l K :: I:\. + ~~ 

KJ = K.; + 1 
2 cc~eLE c O:LELE + DBLE(OPSIIK)*OPIKJl) 
3 rE~PIIJ) = SNGLIDOUBLE) 
4 LG~L = I~;SILOC(L:) 

LGCLl = IA"SIL:CCL + l)l 

THE NJJAL ~nINTS ARE STEPPED OFF 

wE GHT " HTr~) •• LPOwERILl 
IF M .EQ. il G~ TO 5 
ST P Il 1.D/(FL;1AT'r: - ll*WT(f~)l 
A XD(~PT) - STE? 
G~ TJ ;) 

5 STEP c O.5i~T(~1 
X :: XDl~rï} 

~ DO BIll l," 
x = x + ST"l' 

THE Ve~u[ OF THE FUNCTIDN AT THE N~DAL POINT IS EVALUATEO 

r~:;CT = FC:;!X3INS7R.,CD;IIST.LOCL~LOCLll*l~EIGHT 
jJ=I~i-i 

OECL71S0 
OECL7185 
OECL7!.90 C 
DECL 7195 C 
DECL7200 C 
DECL72C5 
DECL7210 
DECL7215 
DECL7220 
D:CL7225 
DECL7230 
DECL7235 
DECL7240 
OECL7245 
OECL7250 
DECL7255 
DECL7Z60 
DECL72é5 
DECL7270 
DECL7275 
OECL 7280 
DECL77.85 
OECL7290 
OECL7295 
DECL7300 
DECL7305 
DECL7310 
DECL7315 
DECL7320 
DECL7325 
DECL7330 
DECL 7335 
CECL7340 
DECL7345 
DECL 7350 
OECL7355 
DECL7360 
DECL7365 
OECL7370 
OECL7375 
OECL73BO 
DECL73B5 
DECL7390 
O:CL7395 
OECL7400 
DECL740S 
DECL?410 
OECL7415 
DECL7:'20 
DECI.7425 
DECL 7430 
OECL71.35 
DECL?440 
OECL7445 

DO 8 J .. l~NO 
IJ 1.; + :·1 

THE COi-1PUTEr. MATRIx IS STORED IN THE ARRAY 'op' 

IF(MN .EQ. ~O) GO TD 7 
L!~:IJ) :: Fu~:CT", TE:·:PIIJ) 
GO TO 1> 

7 U?IIJ) = FU~CT.OPS(IJ + LDPSl 
8 C.O:lTlIliUE 

IFILOCIL + 1) .LT. 0) RETURN 
MN = M 
L = L + 2 
GO TO 
END 

CECL"'4 ~ 
!::c i.. 7 .. 5 
c=c~?.:. : 
'E~:,,"'.:.~5 
::CL-:';'-: 
:=::..-~-5 
~~::~--~: 
C:C:"-:-.;.55 
C=C:.,'"='':'';: 
~:C~"~:;5 
!:ECL-'::;: 
ùECL 75:·5 
CECL"'5::> 
::CL"'5:5 
--~L~5';;: 

'-l 
o 

j 



with the function matrices in the specified order to produce, 

in the array OP, the matrix corresponding to the simple operator. 

The function values used by OPGEN2.are computed by the sub

program FCN given in Figure 4.2.2. This program requires the 

following extension of the instruction code 

NUMBER 

600 

500 

400 

300 

100 

19 _ 15 

14 

13 

12 

11 

-101 _ -199 

-201 _ -299 

OPERATION 

- sign within a function 

+ sign within a function 

) 

( 

X ( the independent variable) 

auxiliary functions 

~ogarithmic function 

exponential function 

cosine function 

sine function 

constants 

exponentiation 

With this code, FCN can generate the point values of any func

tion configuration. The numerical values of constants and the 

powers to which an ar§ument are to be raised are contained in 

the array CONST. 

In order to permit the use of functions different from 

the four standard functio~s sine, cosine, exponential and log-

71 



Figure 4.2.2 

FU~CTION FC~(X~INSTR~CONST~LOCl~LOC2) 

THiS FJNC7I:~ SU~P~QGRAM RETURNS THE VALUE OF A FU~CTION STORED 
l~ L2C_T;J';S 'LDC2- 70 'LOCI' OF THE ARRAV 'INSTR' AT THE 
L~CAT!J~ 'Xl 

!~7ëG=~~2 r~ST?~LEVEL~IOP 
Dr':E~;S IJtJ !~;ST? (1' ,CONST< 1) ~ F (20)J lEVEL< 20) ~ IDP (20) 
i = 0 
1::> ;.iO. = 0 
L = LSt:l + 1 

:H5 vt_UE ~~ ~~E ~G~C~I~N 15 DETERMINED av READING THE INSTRUC-
7I~SS F~C~ ~IG~T TQ LEFT 

L = L - 1 
i\S7R4 = I-_ST~!L) 
1:, = ~'''';:l( !'.S7i\4~ 1(0) 
IF{I~ .~;~. C) GO TJ 9 
!~ = !·.ST~4 1 100 
G2 T: :2~2,3~6,7,e,22),IN 

2i=I·1 

THé FU~CTIJ~ 'x' DRIGINATES A NEw TERM 

F:Il : X 
ID?(I) z 0 
G~ TQ Z2 

3 I~ = l5VEL(IPARA: + 1 

A CLOSING ~AREI.THESIS MEANS THAT THE FUNCTION WITHIN NEEDS TO 
SE ~Và~UATED 

IF.IN .EQ. Il GC Ta 22 
1 = 1 - 1 
00 5 ô( = l ~~I l 
IFtlJP:K) .:Q. 0) GO TC 4 
F,l;") = FC,{ + 1) .. IOP(K)*FCINI
GJ Hl 5 

4 FC!~) = FCK + 1) • FCINI 
5 C!J:.TI\JE 

r = i~. 

HPlll " 0 
I~:.R! = IPt.RA -
G~ TD 22 

b IP:.?'A = IP~RA + 

OP5~I~G PARENTESlS ARE NOTED 

LEVELliPARA) SI 

GD TD 22 
-; l .. \~ill = 

G:J TO 22 
;;; ID?C!1 = 

. -------_. 

DECL7855 
OECL7B60 
OECL 7865 
OECL7870 
OECL7a75 
DECt.7830 
DECL7885 
DECL7690 
DEC L 7P.95 
oECL 7900 
DëCL7905 
DECL7910 
DECL 79:5 
D~C L 7Cl20 
OECL7925 
DECL7930 
D:C\."?Cl?5 
DECL7Q40 
DECL 7Cl45 C 
DECL 7Q50 C 
DEC\. 7955 C 
DECL7960 
OECL7965 
DEC\.7970 
!)ECL7975 
DECL 7980 
OECL7Qa5 
DEC\'7090 
DECL7995 
DECLBOCO 
DECLBCl05 
DECU!010 
DECLB015 
DECLB020 
OECLB025 
OECLB030 
DECLBC35 
DECI.'3040 
DECL8045 
DECLa050 C 
D::CLB055 C 
DECI.ô060 C 
DECLeCb5 
0::C1.8070 
OECI.'3075 
DECL80eo 
D::C1.3095 
DECLa090 
OECL5095 
DECLineo 
D=CL8105 
::'ECLB~:O 
~ECL5!13 
O:CUl:C20 

C 
C 
C 

C 
C 
C 

GO TO 22 
9 IFcINSïR4 .GT. - 2001 GO TO 10 

THE ARGUME~T IS TO BE RAISED TO SOKE POWER 

F(II ~ F(I)**CONSTC- 200 - lNSTR4) 
GO TO l2 

10 IFClNSiR4 .GT. - 100) GO TO 12 
IF(IN5TR4 .LT. - 150) GO TO 22 

CO~ST4HTS 4LSO ORIGINATE A NEW TE RH 

l = 1 .. 1 
F(II = CONST( - 100 - INSTR41 
IOP(l) " 0 
GO TO 22 

12 IN = IHSTR4 - 10 
GO TO C13,14,15~lb,17,18'19,20,21), IN 

ONE OF THE FOLLOwI~G FUNCTIONS HAS BEEN ENCOUNTEREo 

13 f(Il • SINIFCI)1 
GO TO 22 

14 F(II : caSCFC!» 
GO TO 22 

15 F(l) • EXP(F(I» 
GC TO 22 

lb F(I) • ALOG(F(I)1 
GO TO ~2 

17 F(II = FNIIF(III 
GO TD 22 

16 FIl) • FN2IFCI)1 
GO TO 22 

19 FIII ~ FN3CFCI)1 
GO TO 22 

20 FIII : FN4CFIIll 
GO TO LZ 

21 F(II c FN5cFCIIl 
22 IFCL ,GT. LOC21 GO TO 

IF L IS LESS DR EQUAL TO LDC2JRETURN THE VALUE OF THE FUNCTION 

FCli = Flll 
IFII ,EQ. Il RETu~N 
UO 23 L = 2/! 

23 FCN = Fel) ~ FCN 
REïUR~J 

END 

,.. ~ = :.. - .... 
~ , 
"" --
~ : : 
,.., .. "" - '- .. -. 
[) C : .. 5 
D:C'..~:== 
::"CL5:5: 
n=Ci.?l~~ 
C:Ct.=!-:5 
~ , 

~E~L?!=5 
::C~t;:;: 

n ~ ~ 

~ c ,., , -
..; .. ;, 

D::~ez:; 
F"':~,.. - ..... 1: 
.. _ .... I. . ..,~.i. ~ 

:=CL~?2-; 
CE :'52Z; 
CE LêZ;: 
DE L52::3 
C5 Le2':'~ 
0= L!!2 S := L::? : 
c= L~2 5 

: 5 
~ L ~ 
!: L S 
~ L j 
:: L 5 
D L 0 
:l :.. 5 
C=~L:'3:: 
C~::: :.~;.::: 
n ' 1 .. *' .J __ '- _ '<1 

~ Ct :5 
:: CL 20 
C CL 2S 
o CL. :;C 
o Ct :5 " ~. . "\ _ \. L ... .., 

D::I. 5 
C Ct :-
C CL 5 
o CL 0 

--! 
N 

.-= __ ---" ___ -....., ___ ... ___ .~_ ........ _____ • ____ .,_~ __ ~ _____ •• ~_"""-"_,,, -' _______ " _____ .~ •• : .. ~ .. c_·~ '" _____ "''''_''_~'_ -'" '-'- ---"-'-_._"-'~"--~-' 
-_._- ._-_-.._--- -. ".-- --~_._----.1 



arithm included in the program, the numbers 15 to 19 are 

reserved for the auxiliary functions FNt to FN5. These auxi

liary functions allow users of FCN to specify any desired func

tion by supplying separate Fortran function subprograms called 

FNl ~ FN5 to generate them. In this way, the statements in 

FCN never need to be altered. 

Finally, the full matrix equivalent of an ordinary differ

ential equation can be obtained by adding together the set of 

simple matiices generated by OPGEN2 and setting the result equal 

to the forcing function values at the interpolation nodes. This 

operation is performed by the subroutine DIFFEQ given in Figure 

4.2.3. DIFFEQ is a master subroutine that requires as input 

only the correct values in the instruction code, plus a few 

other constants, and generates by calling OPGENl and OPGEN2 

the matrix equivalent of any differential equation. Sorne addi

tional features of DIFFEQ, which have not been theoreti-

cally explained at this point, will be described in the next 

chapter. 

The use and operation of the automatic discretization sub

routine package'will now be illustrated by a simple example. 

Consider the differential equation 

g. 
dx sin (x) y = cos (1.2 + sin (x)) (4.2.1) 

where y is to be approximated by a sixth order polynomial in 

the interval 0 to 1. The instruction code corresponding to 

(4.2.1) is 
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Figure 4.2.3 

SU3RJUll~" ~IFFEC!~NJMDNJ~TJNELKT5,INSTR,CONSTJXD/NR,NDI 
~; • ..I!.LJ.r ~'-t!..~ V 1 ~ ':!iDA) 

~i :,,- ;v T4E HATRIX EDUIVALENT OF AN ARBITRARY 
~~. ·;'1:: ~F TU.L EQU!TIO~~ Ar;D RETlJlWS 'NELMTS' SECTIO~:AL 
,,: _ ç t. T - • ""'"HE [;iFFEREt:T!AL EQUHION 15 OEFINEn IN THE 
'-'? '1:;:; ~I THE SOl~lTiON '5 P.ETUkNED IN 'ON'. 

OECL2810 
OECL281 5 
OECL2SZ0 
OECL2825 C 
0:CLZE30 C 
DECLZ835 C 
DECL2~40 
DECL2!145 

U! ':::.5 i;:; :-~.( ;J:', 1lJ INS;R( 1 )JCn~,5T[ ll.1XO[ il OECL2850 
:;r:E',S: :r, ::! 3 ,:!, 0.1 (10), JCOLC30 l, LDC (100) J LPOWER (100 l J LRr1~1 (100), 01:C1.2855 

;C~ OO)JQP(lCOIJTFMp(lODlJD?Sll) OECI.2660 
(:,~J~ ~J:::~ JC: ,~QC,LPG~ERJlROW,LFCNJOPJTEKP/OPS DECL2et5 
L::-!C.!_ Li. i"! ~ECL7.B70 

:;~~=; .. !\:: -i-E cc:~:r~ATE-I~DEPENDE~T FaCTORS IN THE MATRIX 
::Q:.;I·,/t.;..:~.T 

CALL :~~~!.lII~STGJ:JNR,ND,LQCJlO.LFCN,LF.OPSzLROWJlPOWERJOr,l) 
!F,LO .LE. C .~R. ~O .GT. 100 .OR. LF .GT. 100) GO TO 990 

L~~-=?.\·~\2 -!-~ ~ATRIX SIZE PARAHETERS 

.. ;:'.' ... ::\ + 

·~S:~~ = :~~=\' 
~3_~~.~ c ~5!~E 
.';:::. = ;;:l 
I.T:;7.!L:: .. !. 

+ ~;~ 

:, _LV = :':.;dJ .. 1 
.• ,,;" L-~'~:"; G::J 

~ _~~< = 2 = R5IZ[ 
!'.:-. = ~=~~:; 

·.T:ï.!~ = 2 • ';~. 
".",.;_L '.t !":;". _ :.?. 

TO 2 

2 ;·:5!Z~ s ~':\:~\I;LLV 

JECL2575 
D:::Cl2~SO 
OECL21385 C 
OECL2890 C 
DECL2!l95 C 
0"CL2000 C 
1'"CL2'105 
D:::CI2<:10 
OECL2~15 
OECL2920 
0:CL2925 
0:::CL2930 
OECL2935 
OECL2940 
DECI.2 Q 45 
DECL2950 C 
OECL2';55 C 
D:CLi~o~O C 
J:a?%5 
D:CL2'HO 
D=C 1. 2 '?75 
OEC1.2°90 
O:CL20e5 
OECL2°90 C 
DECL2995 C 
OECI.3ncO C 
DECL3G05 
0;:CL:'I010 
D:CL3015 
DECL3020 
IJECL3025 
0:C1.3030 
OECL3035 
OECL3C40 
r,EC L3045 
C:::L3050 
~ECL3n55 
CECL3~60 
O::C 1.30::5 
0"CL3('70 
DECL3075 

:.?7 = - ~D • 
~~=~O~ a ~ 

ïA~E E~CH ELEv~NT SEPARATELY 

;;J 10 ;, II ~;=:..M'!S 
r.?; .;)T .. '.:J 
U~ 3 z ~,vaL~NK 

3 CI:l O. 
~~~S ~ L;:~(l)=ND 

TAKE E~CH SIuPLE O~ERATDR SEPARATElY 

ù:J 4 L s :,Ln,2 

'::J T;"E (;:~:;<" l· . .l TE-DEPENDEt:-" FACTORS 

CALL C?~Er;~(I~ST~JCJ~STJLQC,LPnWER,LROW/L.NDzXD,WT,NJNPT, 
= C~S,LGPS,OPJiEHP) 

; J 0 

IFCLQCIL) .LT. 0' IJ 
UO 4 1 = 1.~SIZE· 
1J = IJ + 1 

~SIZE 

AOD TW[ SI~PlE OPERATORS IN A CO"PCU~C O?E~lT~~ 7~~ETY2R 

4 il II J) = 0 Cl J l + OP [ Il 
IFtLF .EQ. C) GO 70 8 
IF(LA4~A) GD Tn 9';0 
IF(NR .EQ. 1) C.O TG 5 
STE? = 1.O/IFLrAT(':R - ll~~;i(N» 
X = XD(~PT) - STE~ 
GO TO b 

5 STE? = O.5/~T(~) 
X = X~;'~P,l 

,HE HA1RIX !S ~UG"ENTED WITH THE SUM OF T~E FORCING F~~rTlr~ 
POINT VALUES 

6 UO 7 L = l LF'2 
lOCL = IA~ ILFCNILll 
LOeLl = LF NIL + 1) 
~E!GHT = F CATILCCL)/FLOATClFC"IL)l 
XR X 
UO 7 1 = IJI\:R 
XR = X~: + :;TEP 
1J = 1 + /'~SIZE 

7 UIIJ) = DIIJ) + FCNIXRJ!NSTRJCnNST,LnClJLOCLll=WEIGHT 

UETERHINE THE GENERAL SOLUTION IN EACH ELEMENT 

ê CAL L '!UL l ( :!~ /:'" Nn, ;jTOTAl' l R:'; iK~ ! P.O":, JC GLJ ;);.;, '~J!;~ ~H':L LV, ,.~,:, ~C~~'ll 
iF(l!UflK .U:. ~:Rl GO TD 991 
rlAûiJDN = !--:l.I.rH)D~! + i~D!:J 1 ZE 

10 CO:;T!:,.;!: 
RETU":,, 

ERRORS ENCJUHTEREO 

990 ~RrTE(~/200) lAMD',lOJLF 
~D = 0 
RETUR~ 

991 ~RITE(b/201) IRANK,NR 
~D = 0 
kETUR~ 

200 FG~MAT(/-S~RRV, THIS EQUATION CANNOT BE SDLVED SY THIS PRC~R.lu,. 

* 315: 
201 FORMATt/-THE CALCULATEO RANK'/I3J' DDES NO, ~CUAL T~E ,RUE R:'~~I, 

* 13l 
LNJ 

""='" '2"':" --~_. _ ... -., 

~~~=~~:: 
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:=:L:-:~_· 
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:-=~L;':":~ 
:=:L::~; 
.... _r ...... ~ .. _---_ .. ... 
~ ~ 

g~~t~~~; 
l. 2 :: 
L ., ~ 

~ -
L Z ~ 

~=:L3;.Z5 
:=::"::2~: 
~:::;::-!; 

:=:~;,--: 
~=~t..3:-::-5 
'"" ...... 
~ .. ! .. , 
~ ,~ 

: CL :-

i-

l 

;~~~;~~; 
~=':L::-:"': 

.... : ... ""-
~~CL3 
~=~L:' 
J:C:":: 
:::t.: 

~ 

+::-

:: 
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1 INSTR (I) 1 INSTR (I) 

1 1000 11 12 
2 -3 1 2 300 
3 200 13 -101 
4 2000 14 500 
5 11 1 5 11 
6 300 1 6 300 
7 100 1 7 100 
8 400 18 400 
9 200 19 400 

10 2000 20 3000 

In the above instructions, the function on the right hand side 
of eqution (4.2.1) has been transferred to the 1eft hand side. 
A1so, the constant 1.2 of instruction 13 is to be stored in 
CON ST (1). 

Given these instructions, the subroutine OPGENl performs 
the fol1owing operations. It detects the four simple operator 
separation locations - numbers 1, 4, 10 and 20 - and determines, 
by looking for the number 200, that in the first and second 
group of instructions (numbers 1 to 3 and 4 ta 9 l,the 
unknown y appears but that it is absent in the 1ast group 
( numbers 10 to 19). This information is stored in the arrays 
LOC and LFCN as fo11ows 

LOC (1) = 1 

LOC (2) = 3 

LOC (3) = 4 

LOC (4) = 9 

LFCN ( 1) = 10 

LFCN (2) = 19 
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Consequently, coordinate-independent matrix opera tors need to be 76 

evaluated only with the first two groups of instructions. Since 

there is a -3 in the first group and no negative numbers whatsoever 

in the second, and since sixth order polynomials are to be used, 

the values of NR and ND become 4 and 7, respectively. Furthermore, 

the first simple operator stored in OPS is the 4 x 7 projection 

matrix. 

Upon completion of these calculations, th~se numbers are 

returned to DIFFEQ which then calls OPGEN2 twice, first with 

instruction numbers l to 3 and then with instruction numbers 4 to 9. 

Since there are no functions in instructions l to 3, OPGEN2 only 

multiplies the elements of the first simple matrix by (1/L)3 with 

L=l.O. However, in the next case, according to statements 5 to 8, 

the rows of the second simple matrix are multiplied by the value of 

sin(x) at the four points x. = i/3, i=0,1,2,3. 
~ 

As these two 4 x 7 matrices are produced, they are added 

together in the subroutine DIFFEQ and stereo in the array D. 

Fo11owing this, the function in instructions 10 to 19 is augmented 

to the matrix D calling FCN at the aforementioned four points x .. 
~ 

This problem was run on an IBM 360/75 computer to detc~~;ne 

an estimate of the computation times required by the programs. 

The generation of the 4 x 7 third order differentiation and 

projection matrices by the subroutine OPRATR required 16 

msec each. Including this time, the complete determination of 

the coordinate-independent components by the subroutine OPGENl 

took 33 msec. In performing its computations for the single 

region considered above, OPGEN2 used 16 msec. A1together 



the complete discretization process, including all of the rele

vant operations performed by DIFFEQ, required 67 msec. 

4.3 TWO-DIMENSIONAL EQUATIONS 

Considering the physical differences between ordinary 

differential equations,and two-dimensional partial differential 

equations, the formation of matrix equivalents for the two types 

of problems is remarkably similar. As explained in section 3.5, 

in a product separable space, the matrix equivalent of a two

dimensional coordinate-independent differential operator factors 

into two one-dimensional matrix equivalents, one of which 

multiplies the matrix of unknown coefficients from the right and 

the other multiplies it transposed from the left. As a 

consequence of this reliance upon one-dimensional matrices, 

computer programs for the discretization of partial differential 

equations by the methods of Chapter 3 can be constructed by 

properly adapting the one-dimensional programs given in the 

preceding section. 

In fact, the generation of the high-order one-dimensional 

differentiation and projection matrices needed for two

dimensional partial differentia1 equations can be performed 

without modification by the subroutine OPRATR in Figure 4.1.2. 

The essentia1 difference in the two-dimènsional case is that 

OPRATR needs to be ca1led twice, once for the x-dependent 

operators and once for the y-dependent operators. A sub

routine, OPG2Dl, which has been designed to perform this 

operation for any linear two-dimensional partial differential 
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equation, is given in Figure 4.3.1. OPG2Dl is very similar 

in form to OPGENl and, as a result, large blocks of statements 

which are identical to the original one-dimensional program have 

not been repeated. In their place, comment statements have 

been inserted to indicate the statement numbers deleted. 

Thus the comment between statement numbers 3175 and 3185 

of OPG2Dl indicates that Fortran statements 6715 through 6860 

of OPGENl should appear in that location. This method of 

shortening program listings will be used wherever possible 

in this thesis. 

OPG2Dl requires the following modification of the 

instruction code given in sections 4.1 and 4.2 

200 Z (the unknown function) 

78 

101 Y (one of the independent variables) 

100 X (the other independent variable) 
9-1 D9/DY9 D/DY 

-1--9 D/DX D9/DX9 

&iven a set of instructions according to this code for a partial 

differential equation, OPG2Dl determines the number of x-dependent 

differential opera tors and the number of y-dependent differentia1 

opera tors in each term of the equation. It then eva1uates the 

corresponding matrix equivalents and app1ies the proper 

projection matrices to both the x-dependent and the y-dependent 

operators to keep the polynomial orders of their spaces consistent. 

i 
,1 
i 
j 



SUBKOUTINE CPG20!(I~STR,ISTART/NRX;NRY.ND,(aC,La,LFCNJLF, 
• QPS/LRCW,LPQdER/OPX.QPY~IPRnJ) 

THIS SuBROUTI~E EV~LUATES THE COQKnI~ATE-INoEPENoENT FACTORS 
FD~ THE oISCRETIZ~TION CF LINEAR TUD-oIMENSIONAL PARTIAL 
UIFFERE~TIAL EQU~T!ONS. 

3 MX .. ND 
"'y • ND 
I~~ • 1 

4 La • LO ... 1 
LOl • LO ... 1 
LaC(~OI • L - 1 
LPD'IE~(i.a) • 0 
LP'J~ER (LOU • 1) 

"X Il ,~X 
:;Y .. MY 
MTy~S~ .. ~x •• 2 

CREAT T~a uNIT MATRICES 

DO ~ 1 • l,MTYMSN 
, OPX(I) • O. 

~"IX ; !IX ... 1 
OJ Ole 1/~TYHS~.MNX 

6 UPX(!1 .. 1 •• SIGN 
HTy;'IS'l • tlV •• Z 
DO 7 1 .. l,I'Ty"So.; 

7 (;?Y(I) .. O. 
~";V ~ rlV ... l 
DO d 1 = l,"'TYUS~.~NY 

S Q?Y\1l .. 1. 
IEalt • l 
1:0Y .. l 
w,x ~ :IX 
I1:'lY c ilY 

oECL 6715-6860 

1F(1~STR(L) .hE. 2~O) GO TO 13 
1 c L::!CS 

9 l " ! - l 
IF(lNSTR(II .E~. 3001 lOP ... 
1F(I?~OJ .~E. 1) G~ Ta 11 
1F(113S(I~sTR(!I) .G~. 10 ) GO Ta li 
IF(I~ST~(I) .GE. 01 G~ TU 10 
~X .. ~X ... !~STP(!) 

GU Ta 11 

ADD TnE ?~OJFCTIGN MATRICES 

10 MY • MY - 1~ST~(11 
11 IF(I~.STRt11 .LT, 10001 GU TD 9 

1F(~X .EQ. ~RXI ~D TO 12 
... x • "~)( • ~.l' - uX 

Figure 4.3.1 

DE2D3145 
oE203150 
oE2D3155 
oE7.D3160 
oE2D31b5 
oE201170 
oEZD3175 
DE2D:lPO 
DE203135 C 
DE2D11QO C 
DE2o,195 C 
DE2DJ200 
DE2D12:)5 
oE?03210 
OE2D3215 
DE2D3220 
DE2D32~5 
DE20n JO 
DE20'215 
DE2rl"'240 
DE2U3245 
DE20:l2~0 
11E2D1255 
DElD3260 
DEZI13Zo5 
DE2D32 70 e 
DEZD3275 C 
DE2n321l0 C 
DE2n;\2il5 
DE2nn90 
DE213Z')5 
DE2D3300 
DE2D33;)5 
DE2;J:l310 
DE203315 
DE20:l320 
DE2D3325 
oE2D3330 
DE2D33~5 
DE2D3340 
DE2D3345 
DE2D3350 
DE2r.3355 C 
DE2D33bO C 
DE7.r.3365 C 
Dt?03370 
DE2D3375 
DE2[13380 
oE2[l;l385 
DE?fl33')0 
DE2P33')!> 
oE2il3400 
DE20:;405 
nE2n3410 

CALL OPRATP(QPX,IEOX,MX,MNX,NK,O) 
MNX • I-IX 

12 IF(MY .EQ. ~PY) GO TO 13 
MY " NRY + ~n _ ~Y 
CALL OPRATP'(OPY,IEOy,MY,MNV,NY.O) 
MNY • MY 

13 L = L - 1 
1FnABS( IIISTRIL) .GE. 10 ) Gn TO 15 

ADo ThE DIFFFKEHTIAT10N MATRICES 

IF(lNSTR(L) .GE. 0) GO TU 14 
LPOWER(LOI • LPnWER(~O) - INS1R(Cl 
MX " MilX ... l',ISTR 1 L 1 
CILL DPRATR(npx,IEnX,MX,MNXINXI1) 
MNX • i1X 
GU Ta 13 

14 LPD~ER(L01) • LPOWER(L01) ~ IHSTRIC) 
IW " !1'1Y - JtISTR (L) 
CALL OPRATK(OPY,IEaY/MV,MNy,NV.l1 
!-lijy :0 ;w 
GU Ta 13 

l~ 1FtiNSTiUL) .GE. 1000 .DR. IAflSCINSTR(LI) .LT. 10) GO TO 16 
L ,. L - 1 
GO TO 15 

BUTH MATRICES A~E STOREo IN ,UPS' 

16 L " L + 1 
~OC(La) • lep. LOC(LOI 
LKOi/(Ln) a "Ix 
LRO\1 (LIa' • ,~v 
MTV:1Si: .. l'X .. l,X 
1F(LO .~Q. Il Laps .. 0 
DO 17 1 .. l, MTYMSN 

17 11PS(1 + LOr-S) c ':'PX{11 
LOP:' • LOPS + :' rYI·S:~ 
MTyt1S:j ,. IW • ' .. 1 
00 18 1 • 1/4Tv~SN 

lB OPSII + LorSl = r?Y(11 
LUPS ,. LOP5 + f.'TY::S:·j 
LU = Lol 

I:No 

DECL 7150~117, 

DE20:l4i5 
oE2D34Z:l 
QE2r:3425 
DE2n,430 
DE2D:'435 
oE7.D144 J 
DE2r'3445 
oE?:l345J 
DE2!:3455 
DE2f'34b:1 
DE2D3 .. !>5 
DE2~:>1,7J 

DE2r'~4 7; 
OE2D'49'J 
oE2~'.:,S5 
OE2n,49v 
DE2;))4C;; 
DE?[\3_~:,J 

oE~~3505 
DE?D:!510 
DE?J:!;l5 
C~?:":!~2J 
DE?';:3!i25 
DE2n3530 
DE2;J3535 
DE?'):'!~t,O 

DE~Y~~45 
DE;>;),!i~J 

DE?'[1~~55 
0,,2[133/,:1 
DE?tJ35b5 
[lE7:J,~7J 

DE';1,Q5 
DE.'i:,sa: 
DEz:n595 
DEi'r.359;) 
DE2;~~:''l5 
OE;i3t-l)v 
DE~fl~6('5 
DE211~61J 
oEZP3/>15 
D:2~3e>20 
DE~~'eo25 
DE2::~t-30 
DE;>r'3b35 
OE2r.3/>40 

-.....J 
\.0 



The coordinate-dependent factors of two-dimensional 
equations are added to the system by the subroutine OPG2D2 
in Figure 4.3.2. OPG2D2 is patterned after the one-dimensional 
program OPGEN2 and, again, many statements in ,OPG2D2 are 
similar to those in OPGEN2. The basic difference 
between the two programs is that OPG2D2 must cooYe~t the 
pair of one-dimensional matrices obtained from OPG2Dl for each 
differential operator into a single coefficient matrix by 
taking the Kronecker product cf the matrices. This operation 
is performed by the subroutine KRON given in Figure 4.3.3. 

The major new problem encountered when changing from one 
to two-dimensional differential equations is the rapid growth 
in the size of the matrix equivalents of the operators. In 
the one-dimensional program, the largest possible matrix 
equivalent of a differential operator results when a ninth 
order polynomial approximation is made of a first order 
differential operator and produces a matrix with 90 elements. 
With two-dimensional problems, the Kronecker product of t~o 
of these one-dimensional matrices results in a matrix with 
90 2 = 8100 elements. Although matrices of this size are 
within the limits of the storage capacities of modern computers, 
they require a sizable fraction of core memory and operations 
with them consume considerable computational time. Therefore, 
the generation of very high-order matrix equivalents for two
dimensional problems requires much more consideration than 
is necessary in the one-dimensional case. Since the number 
of matrix elements in a two-dimensional problem varies 
approximately as nIf where n is the order of the approximating 
polynomial, it is often wise to use a lower order element, 
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SUBROUTI~E nPG20Z(INSTR~CONST~LOe~(PDWER;LROW~L~ND~XD~VD;WTX~WTVI • ~/N?T~~PS~LOPX~OP~TEHPI 

THE SU8RC~TINE OPG2J2 TAKES THE r.OORDINhTE-INDEPENDENT FACTORS OF A TilO.DIH~·.SIO·!AL PARTIAL DIFFF.RENTIAL EQUATION AND MULTIPLES THEM IiITH TI'E t.I'PROPRIATE COaRDIIIATE.DEPENOENT PARHAMETEP.S. 
DOUBLE ?RECISI(lN DOUBLE 
DIMENSION I~STP(1)/CONSTI11/~OCI1)~LPOWER(11/LROW(1), * X~ll),VDI11/ATXI1'/WTVI1)/nPSI11~OPI1)/TEHP(11 
~I:-"X • Il;) 
M'IV a 110 
1.1 " L • 1 
MX .. LRO:': ( LI 
MV • LRiJw(Ll1 
1.0PY • LOPX • ~X • MNX 
IF(~NX .EO. ND .AND. MNV .EQ~ NOl GO TO 4 
EVALUA7~ THE NEXT HATRIX OPERATOR 

CALL KRO~I~PS/~X/MNX~LOPX/OPS,MV;HNV;LOPY/TEMP~HOP,HNOP/O) IJ s 0 
KJ • 0 
00 3 J • l~~Op 
KJ • KJ • 'lIlOP 
00 3 1 • l~/(OP 
IJ • IJ • 1 
IK • 1 • HrlP 
00 Z K • 1,~'NOF 
lK • IK • ;'CP 

2 OOU=~E • DOLôLE • DBLE(TEMP(IKI * OPiK • KJ)) 3 OP!ZJI • SIIGL!QUUBLE) 
GO TO 10 

4 CALL ~R~NIOPS,~X,HNXILOpX~OPS/HY~HNV;LOPV,OP/HOP/NOP/OI 10 LiJ~X • LDPV • ~V * M~Y 
LeeL. IA9SCLD:llII 
LOCLl m IABSCLrCIL111 

THE NiJDAL PCI~TS ARE STEPPFO OFF 

~EIGHT • (~TX(hl *~ LPOWERcLl1 * (WTV(N) ** LPOWER(Ll)1 IFIMX .EQ. II GO Ta 5 
STEPX • 1.0 1 r(~x - II * ~TX(N)I x • XOI:IPTI • STEPx 
G:; Ta 6 

, ~TEPX • 0.5 1 ~TX(~I 
x = x:JI"'PT) 

6 IF(~I .EQ. II GO Tn 7 
STEPV " 1.r. 1 C l''v - 11 * L:rvltl) 1 vs • V~I~PT) ~ STEPV 
(,0 TC tI 

7 STEPV • 0.5 1 ~TVINI 
vs • YDWPT) 

~ IK • ~ 

Fiaure 4.3.2 

DElD364' 
OEi!D3b50 
DE2!l3C>55 
DE2D'I660 
DE2D3665 
DE2D3670 C 
DE2113675 C 
DE2D3b80 C 
DE2D3685 
DE2n3690 
DE?n3b95 
DE2D3700 
DE?!l37n5 
DE2r.3710 c 
DE2D~ 715 C 
DE2D3720 C 
DE2D3725 
DEZD37?O 
DE2D?735 
DE2D3740 
OE2D3745 
DE2D3750 
DE2D3755 
DE2fJ3760 
OE2fJ3765 
OE2D3770 
DE2fJ3775 
DE2D3780 
DE2D3785 
DEZ03790 
DEZ03795 
DE2il3800 
DEZfJ::IB05 
DE203810 
DE2D'I815 
DE?03820 
DE?Ll3625 
DEZù3830 
DE201835 
DE2[13840 
DEZ03R45 
DEZlna50 
DEln3855 
OE2D3360 
DEzn3c1!>5 
OE?IJ:!870 
OEZO.'1875 
DEZJ3S80 
DE?;)3~85 
OEZi138C)O 
DE?[l3ri95 
DE7.n3'lOO 
DE?:13'1C15 
OE2nH10 

00 9 1 • l,foIX 
X " X • STEPX 
y • vs 
DO 9 K • l,~V 
v " y • STEPV 

EVA~UATE THE FUNCTION AT THE NODAL POINT 

FU1lCT • FCtl20IX,V,INSTR,CONST,LOCL~LOCL1) IK .. IK .. l 
1 J • IK • Mr.P 
KJ • IJ 
IFII.OCIL1) .GE. 01 KJ Il IJ • HOP 

THE COMPUTED MATRIx IS STOREO IN 'np, 

DO 9 J • 1,I-OP 
1 J Il IJ + rH1P 
KJ • KJ ... ~Inp 

9 OP(KJI 3 FUNeT • OPIIJI 
IFILOCIL11 .LT. 01 RETURN 
HNX ;: ;.JX 
HNV • MV 
L .. L • 7. 
GO TO 
END 

* WEIGHT 

DEZ~3Q15 
DE203 QZO 
OEZD39Z5 
DE2D~930 
DE2~3035 
DE2n3~40 
DE2D3945 
JE?;J;l950 
OE2n39~5 
OE1:l39!l0 
DE2J3?:.5 
DE?1~070 
DE2['l'l975 
OE2~~9t10 
DE2ù3~35 
DE2:l3990 
OEZ;)3995 
DE2C4000 
OEZr:4~(\5 
DE?::4010 
DE2C4015 
DE2fJ4C20 
OE2D40Z5 
DEZ)4030 
Dn::4035 
OE204040 

CX> 



Figure 4.3.3 

SUBKOUTINE KROP·(~,MAINA/lAADO,R,MB;NB/IBADO/C,MC,NC,ICAOO) 

KRDN TAKE5 THE KRO~ECKER PRODUCT OF THE IMAI BY INAI MATRIX lAI 
Mm T";E "'1::.' av IfjElI nATRIX Idl ANI) RETURI~S THE ReSU~TING 'MC' 
o y 1 Ne 1 MATR 1 X I!\I 1 C ' • 

OIMtNSIO~ A(1),Bell,CC1) 
He Il r.1A * !1R 
Ne :1 NA * N8 
IJC = ICADn 
IBA :1 IBADn + Ma * NB + MB + 1 
JACUL CI IAAnD ~ HA 
OU l J A CI 1 , 1-1 A 
JACUL = JACGL + MA 
JBCUI. = IBt, 
DO 1 JE\ CI l,NB 
JBCUL = J~COL ~ HB 
IJA CI JACOL 
Uo lIA = 1 .. ~lA 
IJA :1 IJA ... l 
UO l I~ = 1,MB 
IJC = IJC ... l 

l CCIJCI = A(lJA) a:c B(JBCOL .. lB) 
KETURt l 

END 

Figure 4.3.4 

1 C FUNCT!O~ FC~ZD(X,V,I'ISTR'COI~ST,Lnr.i,(OC21 
. C THIS FUNCTION sU~p~aGRAM RETUKNS THE VALUE OF A TWO~OIME~StONAL 

C FUNCTla~ STOREO IN LUCATIONS 'LOC2 1 TO 'LOC1' OF THE ARRAY 
C 'IN~TR' AT THE LOCATION '(X,Y)', 
C 
e D~CL 7890.7940 
C 

IF(JNSTR4) ,EQ, 101) GO TO 24 
c 
C OECL 7945 .. 7995 
C 

c 

24 1 ::1 1 + 1 
FOI. V 
IOP(I) :; 0 
GO To 22 

C OECL 6000"8360 
C 

END 

DE?D4045 
DE2[)4050 
DE?D4055 
DE2D4060 
DE7.040~5 
DE204070 
DE7.04075 
DE2D40ao 
DE2040a5 
DE 2D'-090 
DE2D4095 
DE2D4100 
DE2D4105 
DE 204110 
DE20 /tl15 
DE211 4120 
OE204125 
DE2P.4130 
DE2D4135 
DE2D4l40 
DE2D4145 
DE2n41~0 
DE2D4155 
DE2D4160 
OE204165 

DE204170 
I)E2D4175 
OE?D41QO 
DE2041SS 
OE204190 
OE2D41C)5 
OE204200 
OE2n4205 
OE21l42l0 
OE204215 
01:204220 
OE2042Z5 
OE204230 
DE204235 
OE204240 
OE204245 
OE2D4250 
01:204255 
OE204260 
OE204265 
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particularly if several different matrix equivalents are 

needed simultaneously. 

After converting the matrix of unknown coefficients into 

vector form by applying the Kronecker product, OPG2D2 

multiplies the resulting product matrices by any necessary 

function matrices, as specified by equation (3.5.30). The 

function values are obtained from the function subprogram 

FCN2D given in Figure 4.3.4. FCN2D is similar to FCN except 

that it has two independent variables and calls auxiliary 

functions FN2Dl - FN2D5, which are dependent on both X and Y. 

Last, Figure 4.3.5 contains DIFF2D, the two-dimensional 

version of the subroutine DIFFEQ. The principles of operation 

of DIFF2D are identical to those of DIFFEQ, although a large 

number of indexing changes have been made. By calling DIFF2D 

with a suitable set of instructions in the array INSTR, 

the matrix equivalent of any two-dimensional partial differential 

equation may be obtained. 
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c 
c: 
c 
c: 

c: 
C 
C 

c 

1 ~ 
1 

! 
c 
C 
C 

SUBROUTI~E CIFFZO(D~,HON,WTX,WTV;N~LMTS,INSTR,CONST/XD,VD, • HRX/fIRV 1 ~DINULLD,NULLVI (AMuA 1 

oIFFZD oETERMI~E5 T~E MATRIX EOl/rVALENT OF AN ARBJT~ARV LINEAR TWC·DIME~SID~AL PARTIAL OIFFERENTIAL EQUATION. 

DI~ENSIa~ n~ll)/~TX(1I'WTvllj,INSTPC1'ICCNsT(1'IXD(11/VD(1) DIMENSION D(4C961/I~OWIIOO)/JCnL13nO)/LCC(100I,LPOWER(100I, • LROUCIOOI,LFCNC100),OP(4096),TEMP(4096)/OPsI1) COHMO~ DII~C~,JCrL,LOC'LPOwER,LPnW.LFCNIOP,TEHP/OPs CALL OPG201(I~sTP'l/NRX/NRv/~D,LnC,LnILFCN/LF/npS/LROW,LPOHER, • OP,TE'·.P,ll 
IF(LO .LE. 0 '''R. LO .GT, 100 .OP., LF .GT. 1001 GO TC '190 ~RZU • ~RX * ~~y 
NoZU • :10 •• Z 
r.ULi.O .. t:CZC ~ ilP20 
HsIlE a HRZC ~ No20 
HBLA~K a HsIZE • NRZO 
HO', • t.no 
~T~TAL • ~~20 + 1 
hULi.V • NULLO • 1 
IF(.~OT, LAMOA) GD TO Z 
MBLA~K .. 2 ~ X5IZE 
Ho~ .. Z • r.n20 
NTnTAL • H~N 
NULLV .. 110:, • I:RZD 

2 NOS IZE • MC~.NULLV 
~PT • ~ NoZD • 1 

NPT • IlPT • /0,020 

LOPS • 0 
DO 4 L • l,LO,z 

DECL 2985.31)0' 

OECL 3010.3015 

CALL :PGZ02CINSTp,CO~ST,LOC,LPnWER.LROW/L,NO/XO/VO,WTX.WTV, • N/NPT,OPs'LDPS'OP/TE~P) 

IF(LF .EQ. 01 GO TO 11 
IF(LAHOA) GG TC 990 
IF(N~X ,EQ, 1) G~ TO 5 

DECL 3075.3110 

srEPx • 1.0 1 ((~RX - 1) • WTX(N» 
X • XJI~PT) • STepx 
GO ':: 6 
5TEPX • 0.5 1 ~TX(~) 
.( 2 X;J('lPT) 

~ IF(~RY ,EQ; II G~ TJ 7 
STEPy '" 1.(' 1 (( ';~V • 11 • WTVI~I,) ys = YJ(!lPT) • STEPy 
t,:.; T: a 

Figure 4.3.5 
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OE2D140S 
OE201410 
OEZ01415 
OE201420 
OE2014Z5 
OE201430 
0i:Z01435 
OE201440 
OE20144S 
OE201450 
OEZ01455 
0[201460 
0~20146S 
OE201470 
OEZ[l~47S 
OE201480 
OE201485 
DE201490 
DE201495 
cEZn1500 
DE 2f1 ISO!! 
DEZD1510 
OE201515 
Cë2fj15Z0 
DEZ!i15l5 
CEZIJ1530 
CEZ01535 
DE2n1540 
ûEl01545 
DEl015S0 
OE2n1555 
~EZr.1560 
DEl01565 
DE201570 
ûE?01S75 
tiE?f!IS90 
CE2n15as 
CEZr.t590 
DE2!:Jl59S 
DEZfjlbOO 
OEZr.16~5 
Dë2D1610 
OE2û1615 
!lë2D1620 
~=2n1625 
OE2:/1630 
I)E~r;1635 
OEi!01640 
DE7.[l1645 
CE7.01650 

C 
C 
C 

C 
C 
C 

7 STEPV • 1,0 1 WTV(N) 
vs .. YOINPTl 

a DO 9 L c l,LF,2 

DO 9 1 • l~NRX 
X z: X + STE Px 
V • vs 
Uo 9 J • l,"'RV 
y • v - sTEPV 
IJ • IJ + 1 

OECL 3180.319' 

9 O(IJ) • OIIJ) • FCN20(X,V,INSTR,CONST/LOCL'LOCLll • WEIGHT 11 CJrITI~~UE 
CALL ~ULL(~,NR2DIN020,NTOTALIIPANK,IROWIJCOL/ON~HDN/NULLV/HADOONI IF(IRANK .4E. NR201 Go TU 991 

OECL 3245.3320 
END 

DEl016S5 
OE2n1660 
OE2r:~665 
OE20'.670 
DE2Dt675 
DE~[l1680 
OE2:11685 
DE201690 
DE~[l1695 
DE201 7ec 
OE?n17':~ 
DE70~710 
OE2il!715 
OE2n! 72C 
[lE201725 
OE2Dl73:: 
ûE?01735 
OEZn174C 
vEl01745 
!iEZD175C 
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·CHAPTER V 

SOlUTION TECHNIQUES 

There are two possible approaches for solving the rectang

ular matrix equations which result from the discretization of 

differential equations by the projective method in Chapter 3. 

In one, boundary conditions are added to the system until the 

coefficient matrix becomes non-singular. This matrix equation 

may then be solved using standard methods to yield an approxi

mate particular solution of the differential equation. In the 

other, the matrix equation is solved by using the matrix gen

eralized inverse concept to determine the approximate general 

solution of the differential equation. Boundary conditions are 

added subsequently if a particular solution is desired. Since 

the latter method is applicable to a much wider range of prob

lems than the first, it is' the approach followed in this thesis. 

The general solutions which result from the application of 

matrix generalized inversion to the singular matrix equations 

of Chapter 3 are completely analogous to the general solutions 

encountered classically in the anal y tic theory of differential 

equations. In both cases, the general solution of an operator 

equation is given by an inhomogeneous solution and a set of 

homogeneous solutions which .form a basis in the nullspace of 

the operator. Furthermore, the procedures used to obtain both 

types of general solutions are independent from the addition 

of boundary conditions. The numerical method developed in this 

thesis is unique in this feature among all of the available 
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approximate solution techniques for the solution of differential 

equations. 

In addition to the ability to produce approximate general 

solutions, a further advantage of applying matrix generalized 

inversion to the projective solution of differential equations 

is the highly efficient matrix solution algorithm that results. 

This·efficiency is derived from substituting manipulations on 

several small full matrices in multi-regional solutions for 

the more costly treatment of one large sparse matrix. 

The only published work which uses matrix generalized 

inversion with a finite element type of formulation is a paper 

by 8erkovic [50]. However, since this paper does not deal with 

diffarential equations but rather the algebraic Hooke's law 

equation, the extremely beneficial results which follow from 

its application to differential equations are not evident there. 

5. 1 GENERAI 1 ZEP MATR 1 X 1 NVERS 1 ON 

Let A be an m X n matrix of rank r and suppose that all 

vectors y satisfying the equation 

Ay = f ( 5 • 1 • l ) 

are desired. The simplest method of determing these vectors is 

to decompose A by the Gaussian elimination process, interchanging 

rows and columns as needed, until only zero pivots remain [48, 
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51]. Then Amay be factored as 

A = LU = [~:J [U, U,] 

where LI and U1 are non-singular. 

( 5 . l . 1) may be wr i t ten 

-1 -1 -1 

YI = U1 LI fI - U1 U2 Y2 

(5.1.2) 

With this factorization 

(5.1.3a) 

(5.1.3b) 

Equation (5.1.3a) contains all of the useful information from 

(5.1.1);{5.1.3b) merely indicates that solution is possible 

only if no conflicts arise. Consequently, (5.1.3a) together 

with the equation Y2 = Y2 gives 

- 1 

LI 

Since the columns of the second matrix in (5.1.4) form (n-r) 

independent nullvectors of the matrix A, a general solution of 

(5.1.1) is given by [5i1 

+ 
Y = A f + Nz (5.1.5) 

where A+ and N are the row and column reinterchanged forms of 
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- 1 - 1 

[U l a 
LI 

:] A+' = (5.1.6) 

- 1 

N = 
(-U'j U2] 

(5.1.7) 

and the (n-r) components of z are arbitrary. 

The matrix A~ is called a weak generalized inverse of A 

[53] and satisfies the following two properties 

(5.1.8a) 

(5.1.8b) 

However, the products 

( 5 . l . 9a ) 

- l 

U; a U] 
(5.1. 9b) 

are not symmetric in general. 

The significance of equation (5.1.3b) may be understood by 

considering the vector norm 1.1 of the residual vector 

+ IAy - fi = IAA f + ANz - fi 
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:: 1· (AA t - 1) f' 1 

= L,O -1 -~l [::1 (5.1.10) 
LI 

= [L'O -1 f, -f,l LI 

Therefore, if (5.1.3b) holds, the solution y will be exact; 

if (5.1.3b) is not true, y will satisfy (5.1.1) only approxi

mately, the amount of error being dependent on the values of 

fI and fz. 

ln most physical problems that are properly formulated, 

f € Range(a) so that (5.1.3b) will be satisfied. However, if 

this is not true, a more ac~urate approximate solution to 

(5.1.1) is provided by the Moore-Penrose inverse of a matrix 

[54J which minimizes the norm (5.1.10) in an Lz sense. The 

Moore-Penrose inverse is related to the weak generalized inverse 

(5.1.6) by [55J 

(5.1.11) 

where A* is the transpose conjugate of A. 

It is also of interest to determine the solution of a sys

tem of equations part of which has already been solved in the 

form (5.1.5). Suppose, for example, that the system of equa

tions (5.1.1) is augmented by another matrix equation 

By = 9 (5.1.12) 
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where B is an mb x n matrix of rank r b. Inserting (S.l.S) into 

(S.1.12) gives 

BA 1= + BNz = 9 (S.1.13) 

The solution of this equation is 

z = (BN )+.. (g - BA+'f) + Mu (S.1.14) 

where the (n - r) x (n - r - r b) matrix M is in the nu11space 

of the matrix (BN) and the vector u is arbitrary. It fol1ows 

that the solution of (S.l.l) together with (S.1.12) is 

(S.1.1S) 

It may be observed from (S.1.1S) that each time an independ

ent equation is added to the system, the solution contains one 

less unknown. Initially, wh en the n dimensional space of the 

vector y is created, a11 of its camponents are arbitrary. 

Then as conditions are imposed in the form (S.l.l), unwanted 

vector behavior is filtered out, leaving a solution of the kind 

(S.l.S). As more equations are added, fewer degrees of free-

dom remain, unti1, when n linear1y independent conditions are 

imposed, only one particular vector survives. 

In actual computation of the genera1 solution of the matrix 

equation (S.l.S), the most economica1 procedure is to augment 

the matrix A with the forcing function f ta form the new matrix 

e qua t ion [S 6 ] 
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Figure 5.l.la 

5ü3't::JUT lr~E ~ULL (A, ;", N, NTOTAL, IRANK, lROW, JCOL~ AN~ MAN, NA~h MAnDA~) 

.~LL C2~PU~ES A LI~EARLY INOEPENDENT SET OF NULlVECTORS FO~ THE 
,~. 5Y IN' ~AT~Ix 'A' AND STORES THE RESULT AS AN 'HAN' BY~NAN' 
~!~~rX I~ T~E ARR:V 'A~" IT ALSO RETURNS THE PRODUCT (A+)F IN 
T~E L!~T ',~T:T!L - I~A~Kl' COLU~NS OF 'AN', WHERE 'F' 15 A 
=:~~I'~ F~·.CT::~ ~!TRIX AUG~ENTEO TO 'A', 'IROW' AND 'JCOL~ ARE 
AJ~~ ~~~!VS c= ::J!~E~SI8N 'H' AND 'NI. 

J~J3~E ?RE:1SI:~ C:~BLE 
J!~!'SiJS ~(12:'IR:~(2),JCOLCb),ANC12) 

T~E R:, ,~~ COLUP~ vEcrCRS ARE FIRST INITIALIZED 

Ga 1 1 = l,M 
IR:;;;,I! " ! 
:~ 2 • 1,KT::JT~L 

2 ..:::t.CJ} = ~ 
~ 1-.., = \). 
! J = ~I 

THE L!~~EST ELEMENT IN THE MATRIX IS LOCATED 

J;) 3 J a lIN 
û:l 3 l '1 lIt! 
IJ 1: I~ + 1. 
l~(ABSCA(I~l) .LE. ABs(pIV» GO TD 3 
Pr.' = -!IJl 
IR = l 
~C " J 

3 C::J~HI~ùE 
T~L = 1.5E-~*AeSCPIV) 
~·<;!Zë = M.~ 
l:i;.SK = 0 
\);) ., ~COL ., ll'l 
IF'~ê5;PIV} .LE. TOL) GO TO 10 

iF ~N ELE~E~T LARGER THAN ITOLI HAS BEEN FOUND, THE RANK OF THE 
~!TRIX 15 uPOATED 

lR!NK = IRA~K + 1 
IF(IR .EQ. IRA~K) GO TO 5 

T~E I~~NKIT~ R:;W !S INTERCHANGED WITH THE ROW CONTAINING THE 
lAi'GES~ ELE~ENT 

1 = IR:NK - li 
IJ = IR - li 
DO 4 JJ = l/NTDTAL 
! :: 1 + M 
IJ=IJ+!': 
ST2RE :: A( il 
!(rJ " ACIJ) 

4 t.( IJ) = Sïr.~E 

DECLB3b5 
DECLE\370 
DECL8375 
DECL8380 
DECLB3B5 C 
DECL8390 C 
O"CLS395 C 
DECL8400 C 
DECL8405 
DECL8410 
DECL6415 
OECL!!420 
OECLIl425 
DECL8430 
DECL8435 
DECLIl440 
DECLR445 
DECLB450 
OECUl455 
DECL8460 
DECLB4b5 
DECLS470 
DECL8475 
DECLB4BO 
DECL8465 
DECL8490 
OECL8495 C 
OECLB500 C 
DECL8505 C 
DECL8510 
DECL8515 
DECLB520 
DECLB525 
DECLR530 
DECL8535 
CECL8S40 
DECL8545 
DECL8S50 
DECL8555 
DECLB5bO 
DECL85b5 
DECLR570 
DECLB575 
DECLRS80 
DECI.R5B5 
DECLB590 
DECL8595 
DEC:L8bOO 
DECLRb05 
DECL!lblO C 
DECL8bl5 C 
DECLRb20 C 
DECL!lb25 
DECL8b30 

IJ = IRDWCIRANK) 
IRCWCIRANKl " IRONCIR) 
1RûilC I~) :: IJ 

5 IF(JC .EC. IRAllK) GO TO 7 

THE IRANKIT~ CrLU"N 15 INTERCHANGED WITH THE COLUMN CDNTAI~ING 
THE LAkGEST ELEMENT 

J :: (IRANK R l)~H + 

JJ J'" H .. 1 
IJ = (JC - l)>l<M 
UO b l " J1JJ 
IJ = IJ + 1 
STORE" A(i) 
A(Il = A(IJ) 
t.c IJ) = STiJ!! E 

b COtlTIr!UE 
IJ = JCOL(JC) 
JCQLCJCl = JCOL(IR~NK) 
JCGLCIRANK) = IJ 

7 IF(IRAilK .GE. Ml GO TD 10 
Il = IRANK ... 1 
IPIV :: M*CIRANK R 1) + IRANK 
12 = IPIV 
STORE = Plv 
PlV = O. 

THE GAUSS!AN ELIMINATION STEP lS PERFORMEO NEXT 

00 9 l II! ll/M 
12 = 12 + 1 
FACTOR II! A(I2),STORE 
A(I2) = FACTOR 
IFCIRAWK .GE. NTOTAL) GO TO 9 
JJ IPIV 
1 J 12 
DO B J = I1/NToTAL 
1 J " 1 J + -j 

JJ = JJ + Il 
A(iJ) = A(IJ) - FACTOR*ACJJ) 
IF(ABS(A(IJ» .LE. ABS(PIV) .OR. J .GT. N) GO TO 8 
PlV = A!IJ) 
IR = l 
JC " J 

8 CmiTINUE 
9 CO:'llHJIJE 

10 IFClRANK .EC. 0 .OR. IRANK .GE. NTOTAL) RETURN 
J 1 = 1 RA1~K • 1 
Il = IRANK*~ + Jl 

NOW THE BACK S~BSTITUTION STEP JS PERFORMED 

UO 14 1 l/IRANK 
12 = Il - ft 

JEC 
"'-, ... :--
CEC 
CFC 
n::c 

EL -, 
~'" 
EC 

:.:: 1. 

:!:::: 
~:~ 
~-r ' .. c __ 

DEe ,,-, 
"c:~ 

~~=~ 
~t-.:..= 
50;.5 
;:;b:~ 

~~:: 

t.-~~ 

~== 
:--~ 

o,!>":"; 
~~::. .... 
~=:5 
~:-; 

;~:; 

il"": 
~:CL:;":,S 

C=CL~-:: 
:~C~:--:= 
~=:' .. -:-,: 
:~~~:"' 5 
:::L=;"'! ~ 
OE~L;"7 5 
O:CLp'"7 0 
vECLB~ :: 
:iE:LF~ 0 
DECL F"? 5 
C=C!..E~~: 
C:CL~7!;S 
~=CL.C'7"'~ 
C=C~r:77~ 
OECL5~=C 
DECLA7;S 
OECLE"790 
DECL;"795 
CECU:3::0 
DE 
C: 
0: 
.. c: 
CE 
DE 
OE 
0: 
DE 
DE 
~: 
~: 
!)i:CL =c5 
De:t.. 2"'7~ 
OECL !FS 
C:C~ E :' 
~:~!.. 5 
~=~L:O? ~ 
:~:~::~ 5 
ü=:t.~; , 

\0 
-" 

.. ~: ..... 
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IPIV ;: Il - 1 DECl.fl90S 00 13 J = .J l, NrOTl\L rH:(t. Be) JO 
12 = l ? + :\ DECl.fl<J15 
JJ ;: 1 j) 1 V DEi.l.BQ?O 
LI. = Il OECI.RQ?;; 
UUJBL~ ;: 0.00 OECI.ArnO 1 F (1 , t: Q , l ) GU Tn 20 OEr.I.!lC'/35 
IJO l2 1\ = 211 Or: C 1. flQt.O 
JJ = JJ - Il OEC 1. !lC)4!5 

1 
LL = 1.1. - 1 DECl,nC'/,o 

12 DOUBLE :3 D:Jl)OI.E - OOLE(ALJJ )*A(I.I.) 1 OE;r.LflC)5.5 1 20 JJ = JJ - il DEC L!iQ60 

1 

LL ;: LL - l OEC 1. f\C)65 
13 A (LL 1 ;: ( S r.J(; L ( 0 (j U BLE 1 - A(LLl )/J\(JJl DEC 1. ng70 

1 

1ft COI'lT HIUE DECI.B cn5 
JJ = ( 1 RANK - 1 ) *~I nECl.f\(~i30 i LL = i'\i~DDù;; - ~IAN DEr. L.!1')f) 5 le 

nF.Cl.flQ90 !c THE NULL '1Ee TORS I\RE TR~\NSr:[P.EO Tn THE ARRAY 'AN', DEC 1. Hq95 le K E 1 NT E R C 11/\ : ; (j 1 N r, e CI 1. ut'IN S If1 THF. PRnr.F,SS f)~e1.9()OO ie OECl.CJOO5 
1 00 l7 J = .11, rnOTAl. [) E C 1. C) 0 1 0 

1 

JJ ;: JJ + " DEC 1. go 15 
LL :: LL + 'IMI DEC1.9020 

i UA l7 1 = li M:HI OECI,C)o?5 1 
1 J ,1 \; U L ( ! 1 1.1. (lECl.C)OJO = + 
1 F ( 1 .liT. IRMIKl GO Ta l~ OfCLC)()'3S 
Ml( 1 J ) :: A ( X + ,JJ 1 DEC 1.9040 GO TO 17 OF.CI,!)045 

15 iF ( 1 ,EQ. J) G[) TiJ 16 or:Cl. l1 nso 
Ml( 1 J) ::1 U, DECI.I"J()5S 
GO Ta 17 DECl.')('l60 

16 AN ( 1 J ) .. le DEl.l.t'J065 
17 CUiIT HJlJE nF.Cl.ClO70 
lil t.fJ:lTINlJE DECI.S07!) 

I{ETURN DF.CVlOflO 
END o E C VJ 0 ~j;:; 

Figure 5.1.1b 



[ A f] (-;-] = [0] (5.1.16) 

- 1 
ln this way, on1y the quantity U1 U2 needs to be eva1uated 

for the augmented matrix and, provided that interchanges are 

not a1lowed on the 1ast co1umn, the product A+f will appear in 

it. If the actua1 matrix A+ is required, it can be obtained 

by augmenting to A the identity matrix instead of f. It must 

be stressed however, that the inverse A+ shou1d never be com

puted purely for the purpose of determining the solution of a 

matrix equation since this operation alone requires more com

putation than is needed to find the product A+f. 

Figure 5.1.1 contains a Fortran subroutine NULL which 

opera tes on the above princip1es. The input to the program is 

the M x NTOTAL array A of which N co1umns belong to the coeffic

ient matrix and the rest are forcing functions. It returns 

the nul1vectors of the system in the array AN, storing them as 

MAN component vectors, where MAN need not equal N. 

5.2 GENERAI SOI UII ONS 

The simi1arity of solutions produced by genera1ized inver

sion of the matrix equivalent of a differential equation and 

by the analytic theory of differentia1 equations is established 

in the fol1owing two theorems. 
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THEOREM 5.2.1 (PISCRETE EORM OE THE EIRST EUNDAMENTAI THEOREM 

OE CAl CIII US) , Let D+ be the genera 1 i zed inverse of a di ffer

entiation matrix as defined by (2.1.11) and suppose that y is 

given by y = D+z. Then 

Dy = z ( 5 . 2. 1 ) 

PROOE: In the definition of D, r = m sa that 

Cl] =z 

THEOREM 5.2.2 (OISCRETE EORM JE THE SECOND EUNDAMENTAI THEOREM 

DE CAl CIlIIlS) , Let z be any vector such that z = Dy where D 

is a differentiation matrix as defined by (2.1.11). Then 

D+z = y + C (5.2.2) 

where c is a vector with arbitrary but equal components. 

PRQOE: This result is a direct conseque~ce of equation (5.1.5) 

and the fact that the nullspace of D contains equi-component 

vectors. 

The relationship between the discrete and the continuous 

forms of these theorems will be illustrated by the following 
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simple example. Consider the problem of determining the general 

solution of the matrix equivalent of the equation 

~ = f (5.2.3) 

when y is approximated by a quadratic polynomial. According to 

(2.1.16), the rectangular matrix equation is 

l 
r 

= 
(5.2.4) 

This coefficient matrix may be decomposed as 

so that 

l 
r 

[

-3 4 -1] 

l -4 3 

= [~ ~1 
Consequently, the general 

Yl 
l l 

-2 -2 

Y2 = L l 3 
-8 -8 

Ys 0 0 

(5.2.5) 

= l 
r 

[ : 0] [-3 : -:] 
-3 l 0 -3 3 

(5.2.6) 

= [-: -: 

-8 

solution of (5.2.4) i s 

[: :] 
l 

+ l c (5.2.7) 

l 
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where the constant c is arbitrary. By the second fundamental 
theorem of calculus, the general solution of (5.2.3) is 

y = ! f da; + c' (5.2.8) 

where c'is an arbitrary constant. It can be easily verified 
t h atm u l t i ply i n 9 (5. 2 • 7) b Y the mat r i x (5. 2 . 4) 0 r mu l .~'i ply i n 9 
(5.2.8) by d~ returns each of these equations to their ori
ginal forms. Hence, Theorems 5.2.1 and 5.2.2 imply for dis
crete representations of differential equations the same pro
perties that are obtained for continuous spaces from the two 
fundamental theorems of calculus. 

Consider next the differential equation 

éd.. = y da; (5.2.9) 

According to (2.3.10), the discretized form of this equation 
in a quadratic space is 

Using 

l 
r 

(5.1.5), 

(H = 

"f-3 4 -1] [Yl] l 1 -4 3 Y2 

Ys 

the homogeneous 

1 
L 2 _ 6L + 12 

(5.2.10) 

= 
1 [:2 2 -1] 
3' -1 2 2 

solution of (5.2.10) i s 

(L 2 - 6L + 12] [c] 
-1/2 L2 .+ 12 
L 2 + 6L + 12 
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Equation (5.2.11) gives all of the possible quadratics which 

have their derivatives equal to their L2 projections on the 

space of linear polynomials in an interval of length L. 

From (5.1.5), the coefficients of the approximate general 

solution of the arbitrary differential equation (3.1.1) will 

be given by 

(5.2.12) 

Here, for a p'th order differential equation, z is in general 

a vector of p arbitrary constants. However, if an interpola-
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tion point happens to coincide with a singular point in the 

differential operation, the rank of the matrix Amay be decreased 

by one and the number of arbitrary constants in (5.2.12) increased 

by one. In this case, it is best to add a boundary condition 

equation at the singular point to the d1fferential equation in 

order to remove the undesired ambiguity. 

A feature of the subroutines DIFFEQ and DIFF2D that has 

not 'yet been described is the fact that they call the subroutine 

NULL near the end of the programs. The effect of this call 

statement is to generate solutions of the form (5.2.12) for each 

of the matrix equivalents developed. Thus, DIFFEQ and DIFF2D 

not only evaluate matrix equivalents for arbitrary differential 

equations, but determine their general solutions as well. 
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5. 3 pARII CUI AR SOI !JI IONS 

One of the most important features of the analytic theory 

of differential equations is that particular solutions of dif

ferential equations may be obtained by adding boundary condi

tions to general solutions. This procedure will now be derived 

for the numerical solution of differential equations using the 

approximate general solution technique of the preceding section 

and equation (5.1.15). 

In general, a b~undary condition for a p'th order ordin

ary differential equation is an equation of the form 

B 
L 

k=l 
g (x ) 

o (5.3.1) 

where the {Bk} are linear operators of order less than P, 

g is a given function and the {x
k } are specified points in an 

interval 1. If Y is the projective solution of a differential 

equation, then it 1s given by 

n. 
y = L 

i=o 
y. b. 

'l, 'l, 

Therefore, (5.3.1) becomes 

B n 
L L bk y. 

k=l i=o 'l, 

i 

(5.3.2) 

= g' 
0 

(5.3.3) 
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where 

(5.3.4) 

9 = g(x ) o (5.3.5) o 

The numbers bk • are easi1y. eva1uated by using the e1ementary 
'l, 

differentiation and function matrices of Chapter 2. 
If q independent boundary conditions are specified for a 

differentia1 equation, then q independent equations of the kind 

(5.3.3) are produced. These may be written in matrix form as 

By = 9 (5.3.6) 

In conjunctionwith the genera1 soution (5.2.12), this yie1ds, 
equation (5.1.15) 

(5.3.7) 

where u has (p - q) arbitrary components. Thus, as long as it 
does not overspecify the problem, any number of boundary con
ditions may be added to the genera1 solution (5.2.12) at one 
time. With each equationadded, the vector of unknown coeffic
ients becomes shorter unti1, when enough conditions are imposed, 
only a particular solution remains. 

It is important to observe that any particu1ar solution 
obtained from a genera1 solution of a differential equation by 
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this procedure will satisfy both the differential equation and 

the boundary conditions, irrespective of what they might be. 

Hence, the locations of the points xk where the boundary con

ditions (5.3.1) are applied is immaterial. If the point loca-

tions do not coincide with the endpoints of the interval, then 

the solution reg1~n will overlap the interval defined by the 

boundary conditions. However, this will n1t affect the va1idity 

or the accuracy of the particu1ar solution within the confines 

of the specifie boundary value prob1em. 

This deve10pment is in sharp contrast to the solutions 

obtained by the finite e1ement method or by ordinary projective 

methods in general where the solution region invariab1y Goin

cides with the region defined by the.bou~dary conditions. In 

fact, a large part of the difficu1ties and complications 

encountered in ordinary finite e1ement ana1ysis [22,23 ] is a 

direct result of defining unwie1dy e1ements, such as the tri

angu1ar, tetrahedra1 and iso-parametric e1ements, which are 

used to form comp1icated geometric shapes. With the necessity 

of matching boundary and solution regions ·removed, simple ele

ment shapes such as the rectangle and cube have an obvious 

ad~antage. 

The procedure of specifying boundary conditions by 

restricting the behavior of the genera1 solution of a differ

ential equation is imp1emented for ordinary differentia1 

equations by the subroutine BOUND, shown in Figure 5.3.1. 

This subroutine accepts any number of arbitrary boundary con

ditions of the type (5.3.1) and generates particular solutions 
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in the form (5.3.7) from the genera1 solutions produced by the 

subroutine DIFFEQ. In defining the boundary operators Bk' 

SOUND uses the same instruction code as DIFFEQ and a1so relies 

on the subroutines OPGEN1 and OPGEN2 to generate their matrix 

equivalents. 

The point,locations xk in equation (5.3.1) are specified 

in SOUND by adding an extra instruction at the end of the 

instructions for each simple operator. This instruction must 

have a value of -(200 + n) where n is the location in the 

array XD of the coordinate of the point of application of the 

simple operator. This coordinate need not be equa1 to that of 

an interpolation node. 

The principles developed in this section for the specifi

cation of boundary conditions are a1so applicable to partial 

differentia1 equations in N-dimensional space, except that the 

points xk in equation (5.3.1) need to be rep1aced by (N - 1)

dimensiona1 surfaces. As discussed earlier, the logical solu

tion region for these prob1ems is the N-dimensional cube with 

the basis functions of equations (3.5.6) and (3.5.1). In this 

case, the number of linear1y independent functions in the 

domain space of the equation is 

N 
Il 

k=l 
(5.3.8) 

Acting on this basis with a partial differentia1 equation 

having on1y a Pi'th order differentia1 operator in the x, dir

ection, yields a range space of dimension 



Nr = (n. - p. + 1) 
1.- 1.-

N 
TI .(n

k 
+ 1) 

k=l 
k:/:i 
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(5.3.9) 

Consequently, the number of arbitrary constants in the solution 

i s 

N = p. n 1.-

N 
TI 

k=l 
k:/:i 

(5.3.10) 

This is exactly p. times the number of interpolation nodes in 
1.-

an (N - 1) - dimensional surface orthogonal to the xi direction. 

Therefore, if Pi boundary conditions are spect~ied on this set 

of interpolation nodes, the particular solution of the differ

ential equation will be unique. 

In general, the dimensionality of the null space of an 

approximate general solution of a partial differential equation 

wi 11 be 

N 
N = n 

TI (n k + l) 
k=l 

N 
TI 

k=l 
(5.3.11) 

where Pk is the order of the differential equation in the x k 
direction. Therefore, a unique solution of a differential 

equation will result when Nn linearly independent equations are 

added to its general solution. This is most readily accomplished 

by enforcing the boundary conditions at a sufficient number of 

distinct points in each of the (N - 1)- dimensional subregions. 

The subroutine BOUN2B shown in Figure 5.3.2 performs this 

boundary condition procedure for two-dimensional partial dif-

l 
1 
1 
î 

j 
j 
1 



Figure 5.3.2 
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LPQWER,np,TEHP,O) 

UECL 4915-496n 

LOPS • 0 
UO 17 L • l,LO,Z 

QECL 4975.5005 

1 • 1 • NOSQ 
IFIXBCINBCPT) .GE. XDII) .AND. XRCINRCPT) .LE. XDII • NDSQI 

• .ANO. XRCINPCPT) .GE. VOII) .ANO. VBCINBCPTI .LE. VOC! 
111 )) GO Tr) ~ 

20 CONTI:,uE 
~ tALL QPG20211~~TR,CONST,LOC,LPnwER,LROW/L,NO,XD,VO,WTX,WTV, 

• ~EL,KJ,npS,LGPS,OP,TE~P) 

XO • X:>IKJ) 
YO a VDIK,JI 
WX • ~TXrrlFL) 

IoOV • ,:TVI:IEL) 
MX • LRJ'<iILl 
MV • LRQWCL .. 1) 
K • 0 
DO ~ 1 • 1, ~X 
VALUE • ALPhAIXO!~PT"I,HX,XO,WXI 
Oll !i J • 1,""V 
K • K .. 1 

5 YIIK) • VAL~E * ALPHAIVOINPTI/J,HY,YO,WV) 

1,J • - K 
O~ 30 J • 1,~OSQ 
OûUtlLE • D.!),) 
IJ J IJ .. 1( 

!lû CI 1 • l,~ 

~ DüUtlLE • D~~6L[ • ~SLEIVIII) • OrlI • IJ)) 
30 BI,JI • SNGLI'J~aLE) 

IJ • IE~ - l'uL 
KJ • I(J • 1 
IFILA~~l) KJ • Z • I(J 

DE202245 
OE20?250 
DE?O?255 
DE?02260 
DE2D2265 
DE20l'Z70 
DE20?275 
DE20Z280 
DE207.285 
OE?0?290 
OE?D?Z95 
DEZD2300 
DE2D7.305 
DE20nlO 
DEZ023l5 
OE202320 

• NOSQDE7.07325 
DEi:ilZ330 
DE2D?335 
DE?D?340 
DE2D2345 
OE207350 
OEZ07355 
DE2073bO 
DE20?365 
OE202370 
DE2D?375 
DE2023BO 
DE2023B5 
DE?02390 
I)E?07.395 
DE?O?400 
DE7.07.4Q5 
DEZ1I2410 
DE207.4l5 
DE?D?420 
DE?'(l2425 
DEiW7.430 
DE?'I1?435 
DE20244D 
DE?P.?445 
DE7.07.450 
DE202455 

L 1. 
-_ ....• - ----

C 
C 
C 

C 
C 
C 

C 
C 
C 

c 
C 
C 

C 
C 
C 

KJ • KJ • /lDPTS 
KJl • KJ • NOPTS/Z 
DO ~7 J • l/NOMHOM 
1 Jal J • !IUL 
IJl • IJ .. NlILLD 
KJ • KJ .. UOPTS 
KJl • KJl .. NDPTS 
DOUBLE • OBLeCYIIJ)) 
UOUD2 • OBLEIVIIJ1)1 
uu 1ft K • I/IlDSQ 

DECL 5195';'52Z0 

IFC,NOT. LAHOA) GO TO 17 

DECL 5Z30-5290 

• * FCNZDIXOIHPTI,YDC~PTI,INSTR;CnNST,LOCL1,LFCN(L • 111 

DECL !53nO-5~35 

IJ •• NDSQ 
LO • NWBC ~ NELHTS • NDSQ 

1.1 • IJ • NOSQ 
DO 10 LOCLl • 1,LF 
DO ~O 1 • 1,IIDSQ 

END 

DcCL 5345-5'n5 

DECL 'ltOo .. 5535 

DE2D~1t6C 
DE20Z4b! 
OE?D?47C 
OE20247! 
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DE~D257C 
OE20257! 
DE?Ll25S: 
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OE2!'7.595 
DE207.60C 
OE2D7.605 
OE~026lC 
OE20261~ 
OE20?62C 
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ferential equations. In most operations, BOUN2D is similar to 

BOUND. However, BOUN2D requires two coordinates for every 

boundary condition point location and these are stored in the 

arrays XD and YD. 

Fi na 11 y , note th a tif. e qua t ion (5. 3 . 6) i· s sol v e d 

directly, it yields 

y = (5.3.12) 

This equation defines a function space in which every function 

satisfies the boundary conditions. Hence, matrix generalized 

inversion can be used to advantage in conventional projective 

methods where such function spaces are often desired. In parti

cular, many finite element formulations result in a matrix 

e qua t ion 0 f the f 0 rm 12 2 ] 

Ay = f (5.3.13) 

where A is a symmetric matrix. Consequently, inserting (5.3.12) 

into (5.3.13) and pre-multiplying by N~ to retain symmetry of 

the coefficient matrix, gives 
T T T + NB A NBW = NBf - NB AB 9 (5.3.14) 

When solved for w, (5.3.14) yields, in cbnjunction with ([.3.12), 

a solution of the boundary value problem whfch satisfies the 

boundary conditions (5.3.6). 

The above process is generally performed implicitly in the 

finite element method [22] by numbering adjacent points with 

the same number and by eliminating rows and columns in the 

coefficient matrix in order to specify Dirichlet boundary con

ditions. Equation (5.3.14) explains why the procedures work 

and extends them to problems involving mixed boundary condition. 



5.4 SOlUTION IN MUITIPI E REGIONS 

Since the accuracy of numerical approximations such as 

(5.2.11) increases as the size of the interval used decreases, 

a basic method for obtaining highly accurate solutions of dif

ferential equations over a large region is to determine the 

general solution of the equation in several adjacent sub-regions 

or elements and then to tie these solutions together with con

tinuity conditions. Provided that the continuity requirements 

are sUfficiently stringent and of the right number, the composite 

solutionobtained in this way will provide a good approximation 

of the general solution over the entire region. 

In forming such composite solutions for a differential 

equation, one must be aware that they are, in general, not 

optimal in the sense of definition (3.1.3). This is because 

the projection matrices in a multi-regional solution are designed 

to minimize the residual function in each element separately 

and not in the overall region. If it is desired, the optimal 

approximate solution of a differential equation can be deter

mined by evaluating the projection matrix (2.3.9) for every· 

multi-regional combination of basis functions used. However, 

this procedure is not recommended as a practical solution 

technique for differential equations because the evaluation of 

complicated projection matrices requires considerable computa

tion while the projection matrices for individual elements are 

pre-calculated. Thus, in most cases, given equal amounts of 

computer time, a much more accu rate solution will result if in 

the place of evaluating fancier projection matrices, more ele-
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ments are used. 

In many respects, these ideas are similar to those encountered 

in ordinary finite element analysis. The main difference is that 

while in the finite element method continuity conditions are 

usually satisfied implicitly by using compatible elements, with 

the piecewise general solution procedure, the requirements are 

best imposed explicit~y. The superiority of using overall con

jugate approximation basis functions to local ones has, how-

ever, already been established in finite element analysis by 

Brauchli and Oden [29]. 

The most obvious method of obtaining a consistent set of 

continuity requirements for the overall solution of a p'th order 

differential equation is to set the solution and its (n - l)'st 

derivatives equal across inter-element boundaries. This pro

cedure has the effect of transforming the distinct sets of 

interpolatory basis functions in each of the elements into a 

single set of spline-like functions in the overall region. 

Therefore, for an ordinary p'th order differential equation that 

has had its solution region divided into m elements, the follow-

ing p(rn 1) boundary conditions areimposed 

= y (:x;s-l) 
o 

osis.P-l 

l'ss srn-l 
(5.4.1) 

where the index s designates the element from which the approxi

mate value of y should be taken. Wh en assembled for the entire 

region, these conditions yield the matrix equation 

Cy = 0 (5.4.2) 



where C is a p(m -1) x (mn) matrix with components 

D(~) if j is in element 8 
nJ 

C .. i::' "-D(~) if j is in element 8+1 
1.,J ", 1.,J '(5.4.3) 

0 otherwise 

Together with (5.2.12), this gives, from (5.1.15) 

(5.4.4) 

where 'M is a pm X p matrix of the nullvectors of C and u is an 

arbitrary p component vector. Equation (5.4.4) gives the general 

solution of the differential equation, including an approximate 

inhomogeneous solution and p approximate homogeneous solutions, 

each of which is Cp-l continuous in the entire region. 

The continuity conditions (5.4.1) are closely associated 

with the theory of spline approximation [57]. In this theory, 

interpolating polynomials are defined in which some of the fun~

tion specifying parameters are the values of the derivatives of 

the function at the endpoints of the interval. For example, in 

the case of cubic splines, the four parameters defining the 

polynomial are the function and derivative values at the end

points of the interval. When applied to approximating functions, 

derivative continuity of cubic splines are established by setting 

adjacent derivative parameters equal, leaving two free para

meters in each interval. 

The functions corresponding to the solution (5.4.4) also 
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satisfy the continuity conditions (5.4.1) at the edges of ele-

ments and are, therefore, similar to spline functions. In fact, 

when both sets of functions are n'th order polynomials, they 

span identical function spaces, although their representations 

are different. In the case of cubic equi-spaced lagrangean 

interpolation polynomials, for example, the four function 

specifying parameters are the nodal point values Yi = y(x i ), 

x. = x + (l/3)i , i=O,1,2,3. When this polynomial is required 
1" 0 

to satisfy derivative continuity at both ends, the nodal values 

will be given by 

y = Gu (5.4.5) 

where G is a 4 x 2 matrix and u is an arbitrary two component 

vector. Here, as with the cubic splines, there are two 

independent parameters in each element, although in this case 

the components of u do not equal the values of the function at 

the endpoints of the interval. 

The advantage of using the second type of polynomial instead 

of the first, is that the equi-spaced lagrangean interpolation 

polynomials, as well as the procedures in equations (5.4.2) 

to (5.4.4), are both simple to define algebraically and easy 

to work with computationally - even in high order cases. By 

comparison, the calculation and use of general high order spline 

functions requires exceedingly complicated algebraic manipulation 

[57 J. 

As an illustration of the procedure, suppose that the dif

ferential equation (5.2.9) is solved in n consecutive intervals 
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of length L. In the i'th interval, the solution is given by 

(5.2.11) with c = According to (5.4.2), in this case CN=O c .. 
1, 

and this yields 

b -a Cl 

b -a C2 

0 0 0 

0 0 0 = 0 (5.4.6) 
0 0 0 0 

b -a Cn 

where 

6L + 12 

(5.4.7) 
b = L 2 + 6L + 12 

Consequently 

(5.4.8) 

and the entire solution contains on1y one arbitrary constant. 

The solution (5.2.11) with (5.4.8) can be shown to con

verge to the exact solution of (5.2.9) by observing that 

(5.4.9) 
1imit + ... = enL 

Thus the value of the approximate solution at the third point 

in the n'th element is 
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Ic 
IC 
:C 
;c 
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:C 

I~ 
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: C 
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c 

* 
SU5ROUTI~E CONTINeDN,HR,NO,MON,NDN;C,NDPTS,NONHOM,NULLD,NUCLV, 

~ELXTSIWT,LAMDA,RITEG) 

C~:;TI~i T~KES TI-jE GE'IER.lL SOLUTIOtl OF A DIFFERENTIAL EQUATI:1N 
:~ , \~L"TS' SEPAR:TE REG!O~~ AND FSTBLISHES CONTINUITy OF THE 
I·U·.:'I..}'. :.~;: ITS :~.ULLn - 11 DER!VATIVES ACCROSS THE ELEHE'lT 
2~~~J!~IES. THE CJ':~I~UGUS S~LUTION rS RETURNED IN THE 'HDpTS' 
ôY '~l='·,-;::·" !'.lTRIX ,C" "'IE'l.E 'f'W:>TS' IS THE NUMBER OF ELEr:ENTS 
l~ THE SOL~Tla~ VECTOR ANn 'NONHOX' IS THE NUMBER OF SOLUTIONS. 

DI~ENSIJN C~(1),C(1),WT(1: 
G!~E~SlaN lRc~e3DOI,JCOL(30D),OP(1) 
C:~~2~ tRO~,JCDL,OP 

L:J5LE ~R~(!SI~N aJU5LE,00UB2 
LC::'IC~J.,. LA·!O"',.d~ITEG 
1 :;:'. = l 
: F i. t.! 'f~;:, ) l G E"~ = 2 
:':>EREL • ~~LLD 
IF;LA~:A) ~~EREL = NULLV 
',u';C,;\ Il t;~EREL*~iELMTS 

THE C: 'TI"l'tTY CQ~DITIONS GENERATED ARE STORED IN THE 'MC' SV 
'~:' ).\.:.TRI:< 'C' 

PC • I~:~~~ULLD*(~5LMTS - II 
\C = ~~~~~\ • 2 - IGEN 
~.~·~Ma~·~ : Ne - ~IC 

Il = t~C .. ~C 
~: 3 1( • 1,:-

3 c (" 1 • o. 
i = 0 
i"(~EL;TS .EQ. II GO TO 28 
f4 :: ~~i)::*2 

i": n;:::ERE',TI.lTIC'; Ht,TRlx IS SToREO IN 'OP' 

DO l 0( • 1,~. 
C~\K: = o. 
J " NO .. l 
:J;J 2 K • 1,fI:,J 

2 :J?;Kl = l, 
1 E: = ~ 
; :>:;, = 0 
::CC Ij 
~c:- = :tJ~::J('I~.c:-·c 

I~ EIG~NVALUE pR03LE"S, THE CONTINuITV CONDITIONS ARE IMPOSED 
iW!CE 

~ :J :7 ~ 1,IGEN 
! -

,::,", - f~~·. 

lFt~ .~~. 2) ~JN - NJ 
~C = - ~C 

Figure 5.4.1a 

DECL3330 C 
DECL3335 C 
OECL3340 C 
DECL3345 
DECL3350 
DECL3355 
OECL.:;360 
DECL:;365 
DECL3370 
DECL3375 
DECL3380 
OECL3385 
DECI.3390 
DECD395 
DECL3400 
DECL3405 
DECL3410 C 
DECL3415 C 
DECL3420 C 
DECL.3425 C 
DEC1.34)0 
DECL3435 
DECL3440 
DECL3 ...... S 
DEC L?450 
OECL3455 
OECL3460 
OECL3465 
OECL3470 
DECL3475 
DEC 1.3480 
DECL3485 
DECL3"'90 
DECL3495 
DECL3500 
DECL3505 
DECL3510 
DECL3515 
DECL3520 
DECL3525 
OECL3530 C 
DEC 1.3535 C 
DECL3540 C 
DEC L3545 C 
OECl.35S0 
DECL3555 
DECL3560 
DECL3565 
DECL3570 
DECL3575 
D:CL3560 
DECL35fl5 
DECL35'JO 
OECL3595 

EACH ELEMENT IS TA~EN SEPARATELV 

DO 17 N = 1 ,NELMTS 
1 = 1 .. 1 
WEIGHT D WT(NI.*IPO~ 

UO 6 J " 1,I\DN 
JO!: = JON .. HD~l 
IFe.NOT, L~HOA .AND. J .EQ. NON) Go TO 24 
JC = Je .. ilC 
IJ = l .. JC 
GO TO 25 

24 IJ = 1 .. JCP 
25 IJ1 = IJ • 1 

K1 = 1 .. Nec 
K2 = 0 

THE FU;lCTliJN M.D THE APPROPRIATE DERIVATIVES ARE EVUU.:.TED 
AT 60TH END5 OF EAeH ELEMENT 

DOUBLE a OBLEICIIJ» 
UOUB2 = D8LE(CIIJ11) 
DO 12 K = liNO 
1'.1 = K1 + 'zec 
1'.2 " K2 .. :;CC 
ONW = ~~IK • JONI~KEIGHT 
IF(N ,EQ. 1) GD TO 20 
~OUBLE ~ DOUBLE • OBLE(OPIK11~DNw) 

20 IF eN .!:Q. 1:F.LHTS) GO TD lZ 
UOUB2 = DOU~2 - DBLE(OPIKZI*ONW) 

12 C.O;HP'IIE 
IF(N ,tQ. 1) G8 TD 5 
C(!JI = SN~LID8UBLEI 

5 lF(N ,::Q. _F.L:!TS: G~ TJ 6 
e( iJll c SI'GLI[;OUI'21 

6 eO'H 1 l'luE 
17 eOi;TI~!UE 

IJ = NCC 
tlCC = ,:CC - 1 
IFeNCC .EQ. NRI GO TO 28 

IN EACH PAS5, THE OROER OF THE DIFFERENTIAT!ON ~ATRIX :S 
!NeREASED hY ONE 

CALL OPRAT~(OP,IEO,NCC,IJ,ND,l) 
IPU~: • IP~.lI + 1 
GO TO '+ 

19 CAL L NUL LI C, MC, NU~JO\~N, Ne, l R ~~JK, l P.OI·I, J COL, OP, Nuno:.l:-.l, j,iOt"iCM, (\) 
lF(!R~il!( .'·'E.Pel GO TO 990 
IPuw • NDPTS*~nNHO~ 
DO 7 1 = 1,I:>Q;·: 

7CIIl=O. 
I~ec = rlDtlu .ilt: 
IFCLA~UA) Gn Tn 9 

:l cu!:> 
iJ CL3!: 
:l cu!: 
: CL;~ 

:=:L3:=,2 
:::C~::~! 
J~:!..~~: 
::CL3::3 
C=CL:é~ 
;):CL3~~ 

D:CL3~5 
:=CL3~: 
~:CL3~:: 
:::~~;~.:

C:C:..::-:":' 
~=~:...:~~ 
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c :: 
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c 
C 
C 
C 

~S:NG THE EQUATION 'C(LAST COLUMN) = ONILAST COLUMN), THE 
THE I~ri~M~GENE~US SOLUTION YS EVALUATEO 

IJ • N~~TS~~PERE~ 

'::'i = !:O~;"';i'::"~L- 'iCC 
t: 8 ~ = lJ~ELMTS 
JO'; :' JiJ~~ + ~~CC 
00 Il 1 • 1J~Oti 
iJ :: 1,1 + 1 
Cil J) = D',! 1 + J D~l) 
IP:~ = ~DPT5.~~ + ~aN 
IJ = ~~i'TS.\ULLV - IPOd 
,;0', = ',;)~:"';l;LLii - !iCC 
C:; 10 'l = I/NELMTS 
1 J = 1 J + 1 ~IJ'" 
JO": = JO:~ + t-:ee 
IJ1 = iJ - ~ûPTS 
IJJ~ " JD~, 
O~ 10 J = 1/1!~ 
1,11 = lJl + 1:C"TS 
D: le 1 = 1/~D': 
IJ::-" • IJ:l', + 1 

l~ c:: + IJ1) " C\(IJD~) 
'? le .. c 

~SI~G THE ~CutTICN 'C 
5CLUTIU~ IS EV~LVl7EO 

JO', - Nec 
!p:,': ... r,p: L 
:.::; II " = 11 ~~ITS 
..,!:J". = ~·O~~4o C 
:p~~ • IPD. ~PEREL 
ü::: 11 : = 11 ~', 
:J;~. 1: 1 • J~:'" 
:C .. te + l 
lE::; = IPC~ - ~U~~~N 
IJ • 1'; - ·~i)iS 
~: li J = :J'.~·.H~~ 
1 J = 1 ~ + ',r.;.75 
,:~ = Lee + !~,.:',~,~~: 
IJ: = :JO~: ~ ~~l'~~ 
ü:JJ3LE • ~?LE(C(IJ) 
~: 13 ~ = 1/~?EREL 
1,1: " :Jl .. I~D'; 

ON * OP, (OP C+)'I THE HOMOGENEOUS 

13 :~jaLE • ~-~ELE .. JSLE'DNCIJl
'
''''OPCK .. IEO» 

l~ CC!J) = S'".l,(:J~UiIL~) 
G: iJ ~4 

~5 );:;1 ,'':T. :-1 G:' T:::J 19 

:~ T~5~E :~ ~\~V ~~E ELE~E~T, THE 50LUiIC~ IS SIMPLV TRANS~EREO 
r~:'1 O •• T~ C 

Figure 5.4.1b 

DECL3870 
OECL3B75 
DECL3980 
ûECL3RE5 
DECL38'J0 
DECL3S95 C 
DECL30~0 C 
DEC L 3905 C 
DECL3910 
DECL3915 
DëCL3920 
DECL3925 
nECL3930 
DECL3935 
DECL3940 
OECL3945 
DECL3950 
OECL3955 
DECL:;9"O 
OECL39b5 
DEC L3'l70 
OECL3975 
DëCL39BO 
OECL3°SS 
OECL3Q90 
DECL?>9Q5 
OECL4000 
DECL4()C5 
OECL4010 
ûECL4015 
D~CL4020 
OëCL407.5 
OECLl.O::O 
ûE~L4035 
OECL4040 
OEC 1. 40.:.5 
~ECL4050 
OëCL4055 
0;:CL4060 
OECLl.O"S 
DECL4~70 
DECL4073 
D:CL40AO 
DECL4085 
OECL4090 
OECL4005 
DECL41fJO 
DECL4105 
0:CL4110 
DECL4~15 
DECl4t2() 
OeCL41Ô 
OECL4130 
DEC 1.4135 

IJ = MDN*NDN 
DO 18 1 ;, I/IJ 

1 a CI Il = ON C Il 
14 WRITECb/1ClO) 

IF(LAMJA .Q~, .NOT. RITEG) RETURH 

THE GE~ERAL SOLUTION IS PRINTEû 

CALL RITECC/NDPTS,NONHOM'O,LAMDA) 
ReTURN 

990 WRITECb,200) IRANK,NM 
ND = 0 
RETUR~ 

100 FOR~AT(lHl/1HO,54XJITHE GENERAL Sn(UTICII') 
200 FORMAT(I-TfIE CALcULATeO RANK',I4,'DO~S NOT EQUAL THE TRUE ~A~~', 

# 14) 
END 
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limit (5.4.10) 
n + 00 

L + 0 

where x = nL. 

The subroutine DIFFEQ in Figure 4.2.4 has been designed 

with multi-element solutions in mind. The program calculates 

the matrix equivalent of a differential equation in NELMTS 

consecutive intervals and evaluates the general solution of 

the equation in each of these separately. The continuous gen

eral solution is produced from these sectional solutions by 

the subroutine CONTIN shown in Figure 5.4.1. By calling DIFFEQ 

and CONTIN in succession, highly accurate, continuous multi

element general solutions of ordinary differential equations 

can be obtained. 

The procedure of imposing continuity requirements on multi

element solutions of partial differential equations is very 

similar to that used with ordinary differential equations except 

that it must be done repeatedly and in different directions. 

For two-dimensiona1 problems, the region is divided into match

ing rectangles in each of which the interpolation polynomials 

are of the same degree. The derivative continuity conditions 

(5.4.1) are imposed along each line of interpolation nodes in 

both the x and the y directions. These must be sufficient to 

satisfy the continuity requirements of the partial differ

ential equation in a direction normal to the edge of a rec

tangle. Derivatives tangent to an edge are, of course, equal 

whenever the function is made equal on both sides of the edge. 

The degree to which cross derivatives are continuous is given 

in the following theorem. 
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II:IEOREM 5.4.1. Let two functions z(x"y) and w(x"y) 

by 

m n 
7,(m) (x) 7, (n) z (x" y) = E E Z " " (y) 

i=o j=o 'tJ 't J 

m n 
Z (m) 7, (n) w(x"y) = E E W ij (x) (y) 

i=o j=o 't J 

where 7,(m) is defined in (3.5.2). Then, whenever 
't 

= i=o" .•. " P 

be given 

(5.4.11a) 
dSxs,b 
dsyse 

(5.4.11b) 
bsxsc 
dsyse 

(5.4.12) 

ap+q 
the cross derivatives 

axP ay q 
and are continuous 

across the 1ine x=b 

= q=O, ••• ,n (5.4.13a) 
x=b x=b 

(5.4.13b) 
= q=O, ••• ,n 

x=b x=b 

PROPE: 
aP 

u -- a xP 

The elements of the bottom row of the matrix form of 

( ~ 1 are 
ay q 

m n 
U "= E E 

m-p, J k=o 7,=0 
O 

(p) 7l- T ( q ) 
k "1 D "1J" , m-p" '" '" 

(5.4.14) 
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where D(P) is the p'th order differentiation matrix. Simi1ar1y, 
_
Cl P [a qw 1 the e1ements of the top row of the matrix form of v = 
axP ay q are 

Hence 

v . = 
IJ 

m 
L 

k=o 

n 
L 

1,=0 

r. = U • - V • J m-p"J IJ 

m 
= L 

k=o ~ { Z=o 

Now (S.4.12) imp1ies that 

m 
D(P} L Zk1, k=o m-p,k 

m 
= L 

k=o 

so that r. = o and (S.4.13a) is 
J 

is simi1ar. 

D(P) 
lk 

WkZ 

true. The proof 

(S.4.1S) 

(S.4.16) 

} 

DT(q} 
1,j 

(S.4.17) 

of (S.4.13b) 

As was the case with DIFFEQ, the two-dimensiona1 version 
of the program DIFF2D a1so computes the general solution of a 
differentia1 equation in NELMTS separate e1ements. These must 
be p1aced in a matching pattern as described earlier. These 
e1ementa1 genera1 solutions are then made continuous by the 
subroutine CONT2D shown in Figure S.4.2. CONT2D imposes Cp-1 
continuity on the solution of a partial differentia1 equation 
in the x direction and cq-1 continuity in the y direction, 
where p and q are the highest orders of the x and y derivatives 
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Figure 5.4.2 

SUBROUTINE CONT2"(ON,NRX,NRV,Nn,~O~,NDN,C,NDPTS,NONHOH.NULLV, DE2D1755 JCAOD • MCNON * Hl DE2DZ"25 
• ~CCON~,IELCX,IELCV,NELHTS,~TX,WTV,LAHDA,RITEG) DE2D17bO NUNA • ISTART • ~HON • Nl DEZOZ030 

e DE2Dt7b5 JLINE • NO"A • Ll~ADD DEZIlZ03S 
e CoNT2D TA~ES THE GENERAL S~LuTrON nF A TWO-DIHENSIoNAL PARTIAL DEZD1770 DO 6 NLINE • l,~1) DEZOZOIoO 
e DIFFERE~TIAL EOUATION IN I~!ELMTSI SEPARATE REGIONS AND ESTABLISHESDEZD1775 JLINE • JLINE + llNADD DEZOZOlo5 
e C~~rI~UITY OF T~E FUNCTIO~ A~D ITS DERIVATIVES ACROSS THE DEZ01780 JON • JLINE • Mn~ DE202050 
C ELE"f~T BOuNDAPIES. DEZDt785 JC • JCADO .. MON DEzozn55 
C DE2n1790 1 • 1 + 1 DE2D20~0 

DIHENSlaN O~(l"C(l),WTX(l"WTY(l),IELCX(l).IELCY(l) DEZ0179~ C DE20Z0b5 
C DEZOlaoO C DEeL 3630.3705 OE20Z070 
C DECL 33135-3410 D:201805 C DEZD207S 
C DEZ01810 KJ • JD~ - KAOO OE2021)~0 

LOG'CAL LAHDA,FIPST,LAST,RITEG DEZOlAI5 C OE2n?C195 
NPEREL • ND •• 2 - NRX • NRY DEZD16Z0 C DEeL 3710 .. 3720 OEZD2::l9:J 

C DEZOt8Z5 C DE2:17.'1?5 
C DECL 3420-3445 DEznl8~0 KJ • KJ • KAOO QE2~2100 
C DEZ01835 ONW • O~(KJI • WEIGHT DE2D2105 

~C • IGEN * ~CCO~O DEZOIB40 IF(FIRSTI GO Ta 20 CE20Z110 
Ne .·NUNOWN • Z • IGEN DEZD1645 DOUSLE • DOUBLE. OBLEIOP(Kl).ONwl CE2Di'115 
HNDN • MON. NDN D~201e50 ZO IF(LAST) GO To 12 DEZOZ1Z0 
~CNON • HC • N~N DEZD1B55 OOUSZ " COUBZ - DBLE(OP(KZ)*oNW) DEZDZ1Z5 

C DE20lBbO 12 CUNTINUE OE20Z130 
C OECL 34bO_3485 DEZ01Ab5 IF(~IRST) GC Ta 5 OE?OZ135 
C O;2~le70 

NR • ~RX DE2D1B75 
C(IJ) c SHGL(DQUBLEI C'E202140 

5 IF(LASTI GD TO 6 01:2:12145 
LHlAOO • 1 OEZIHBBO C(IJ1I • S~GLIDOUBZ) 0l:Z02150 
KAOO • ~D OE20l1385 Il COtHIr-;UE OEZDZ155 
GO Ta 31 DE20l1390 FIRS'i JO .FALSE. DEZ02160 

30 NR • NRY OEZOlll95 GO TO 33 DEZ021b5 
LHlt.OO • N~ DEZOl900 C OEZOZ170 
KAOO • l DE?Ol905 C DECL 3780.4215 OEZOZ17S 

31 ItONT • 0 DEZOl910 :: OEZ02180 
C DE2D1915 END DEZOZ1!!5 
C DECL 3490-3580 OEZOl9Z0 
C OEZ019Z5 

ISTART • 1 DEZI)1930 
IF(L .EQ. z) IsTART • 1 • IIDIJ / Z OE?01935 

32 F IR!!T •• TRUE. OEZ01940 
LAST •• FALSE. OE20l945 

33 IC~~T • IC~~T • 1 OEZ01950 
IF(KA~D .fO. 11 GO TO 34 OE201955 
~ c IELCX(ICa~T) OEzDl9bO 
IF(N .LT. 0) Ge TO 30 OE2Dl965 
IF(N .EQ. 0) Ge TJ 32 OE?01970 
NI • IELCXIICO~T • II OEZUl975 
WEI~HT • ~TX(N) ** IPoW OEZ01980 
GU TD 3S DE201985 

3~ N • IELCY(ICn~T) DEZDl990 
IF(~ .LT. c) Gn TO 17 DE~U1995 
IF(~ .EQ. 01 G~ TO 32 OEZDZOOO 
I.l " IELCVIICDI:T .. II DE2ilZ005 
~~IG~T " ~TVI~I ~" IPQW OE202010 

35 IF(~l .EC. al LA~T " .TRUE. OEZ'ZOI5 -.1 

';~ " ~. - l OEZ:JZ02D -.1 

co 
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in the equation, respectively. 

5.5 EIGENVAIUE pROBIEMS 

The procedures developed thus far are not capable of solving 

eigenvalue problems. These are problems of the form 

(5.5.1) 

that are accompanied by homogeneous boundary conditions. The 

difficulty stems from the fact that the constant k in this 

equation is not determined until all of the boundary conditions 

are specified. Therefore, it is not possible to treat differ

entia1 equation eigenvalue problems independently from the 

boundary conditions with a numerical method and only particular 

solutions can be obtained directly. Of course, if a complete 

set of independent particular solutions of a differential equa

tion are determined, together they constitute its general solu

tion. 

Despite the impossibi1ity of separating the differential 

equation (5.5.1) from its boundary conditions, it is still 

extreme1y desirable to evaluate each contribution in the dis

cretization process independently. A simple but effective device 

for developing such a procedure is to write the matrix equi

valent of (5.5.1) in each e1ement as 
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Az = 0 (5.5.2) 

where A is the m x2n matrix 

(5.5.3) 

(5.5.4) 

Equation (5.5.2) can be easily solved for z using (5.1.5) 

z = Nu (5.5.5) 

where u has (2n -m) arbitrary elements. The (n - m) continuity 

and boundary conditions can then be imposed on both the top and 

the bottom halves of z. Since these conditions are all homo

geneous, they will reduce the number of arbitrary constants in 

(5.5.5) to m but will not alter its form: 

z = Mw (5.5.6) 

Consequently, setting the bottom half of z equal to -k times 

the top half results in the rectangular matrix eigenvalue pro

blem 

(5.5.7) 

where Mb and Mt are n X m matrices of rank m. Thompson and 

Weil have proved [58] that the rank reducing numbers of this 
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equation are identical to the eigenvalues of the standard, 

square matrix eigenvalue equation 

Lw = -kW (5.5.8) 

o 

where Lis the m x m matrix 

(5.5.9) 

Equation (5.5.8) may be solved by using standard techniques to 

determine the eigenvalues -k and the eigenvectors w. Then the 

vector y is found by using (5.5.6) and (5.5.4). 

A simple problem will illustrate these properties. Consider 

the boundary value problem 

~= -À 2y 
dx 2 

(5.5.10) 

y ( 0) = 0 ~ dx ( l ) = 0 

For the sake of simplicity, let y be approximated by a single 

quadratic element. Equation (5.5.10) becomes 

[4 -8 4 ] [H (5.5.11) 

The scheme is to solve the equation 

[1 -2 l l 4 l ] z = 0 (5.5.12) 
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with 

The solution of (5.5.12) is 

2 1 -1 -4 -1 
1 

1 

Z = 1 u 
1 

1 

",,"~re u is a vector of five unknowns. 

imp1y that 

Z 1 = [ 2 -1 -1 -4 -1 ] u 

z .. = [ 0 0 1 0 o ] u 

dZ 3 = [ 1 -4 3 ] ( ~ -1 -1 -4 
Ox 

1 

dZ6 = [ 1 -4 3 ] 

[ 
0 0 1 

1 1 u 
(fi' 

1 

Thus 

(5.5.13) 

(5.5.14) 

The boundary conditions 

= 0 (5.5.15a) 

= 0 (5.5.15b) 

(5.5.15c) 

-1 r = 

[ -2 2 -1 -4 -i ]u 

=0 

(5.5.15d) 
= [ 0 0 1 -4 3 ] u=O 
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.6 

8 

u = 0 w (5.5.16) 

3/4 
1 

and (5.5.14) becomes 
(5.5.17) 

2 -1 -1 -4 -1 6 0 
, 1 8 6 

z = 1 0 w = 8 w 

1 3/4 0 

1 1 3/4 
1 1 

Imposing (5.5.13) resu1ts in 

(5.5.18) 

Th i 5 i 5 e qui va l,e nt t 0 the 5 tan d a rd mat r i x e i 9 env a 1 u e e qua t ion 

[ 0 o W = [ 8,)W = 24 W 
",Ill 

(5.5.19) 

Therefore the approximate eigenva1ue is À = n = 1.73 and the 

approximate eigenvector is 

y = [.H c (5.5.20) 
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This is to be compared to the exact solution À 
7T = = '2 1.57 and 

7T 
Y = c 'sin - x 

2 

It may be added that the above proéedure is not stationary 

in the eigenvalues so that their accuracy will be of about the 

same precision as that of the eigenvectors. If more accurate 

eigenva1ues of (5.5.1) are desired, they can be obtained by 

inserting the eigenvectors ca1culated .by the method of this sec

tion into the Rayleig~ quotient [43] 

(5.5.21) 

In the above examp1e, for instance, using (5.5.20) in (5.5.21) 

results in À = 1.65 - a 50% decrease in the error of the eigen

value. It is interesting to note, however, that the new eigen

value-eigenvector combination resu1ts in a much 1arger residual 

function than the original pair. 

All of the computer programs for the discretization of dif

ferential equations given in the preceding sections of this 

thesis have been designed with the capability of handling differ

ential equation eigenvalue problems in addition to the standard 

ones. Therefore, computer programs of all of the operations 

described for the solution of differential equation eigenvalue 

problems up to equation (5.5.7) are already available. The 

remaining steps are performed for both ordinary and partial 

differential equations by EIGE'N .shown in Figure 5.5.1. In 
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~U3Ro~rl~:E ~IGEN(Y,NO,NELMTS,NOPTS,NWBC#C#YRIYIIROOTR#ROOTII 
·<~IG=·.l 

THIS S~3Rr.T!~~ E~lLUATES THE E!CENVALUES AND EIGENVECTORS 
~;: THE ~~C";-:,';G;JLt.~ ~AïRICES STOREO IN THE ARRAY 'Y'. THE Nt'MBER 
~F EIGE~VECT~RS P~I~ïED IS 'NEIGEN'. 

UluEHSI~N vIl:,C:ll#YRI1'#YII1,#ROOTR(11#ROOTIt1) 
u L!:,:S i::; !;;~f, (10~:, JCOLt 200)' LOC C, DOl #B (1001,OP (1) 
C:~)·:C~.; I~: .. JC!':L.I LCC.lB.lOP 
u:~3~E ~RE, SI~N C~USLE,O~U32 
.~~:L 75 2 !;E U7S /.:' -:0 

,'3 14 = ~· •.• 3t=·. EL 7S 

iHE LE fT H~~;D SIeE OF THE MATRIX NEEOS TO BE STDREO FOR LATER 
uS~GE 

ri 19 r = I!J 
., (!) = y ( ) 

:.. 2*~:i; C 

7H~ XA7~IX 5Y§TEP !5 FIRSï REOUCED TO STANDARD FORM 

C~LL ~ULLCYI~~ELTS,N~BC#NEL,L,IROK,JCOL#CIN~BC#NWBC,Ol 
lE;, = :; ... 5C 
IF(L .I.e. If .. SC) GO TO 991 
~!: = !I;'.5C 

7H~ E!SE~V~LUES AND EIGENVECTORS OF THE SINGLE STANDARD SQUARE 
~'i~!X ARE FV!LUATED 

C~~L ~IL"AT{C,~,RJOTl,VI,NWSC,NWBC,O,LO) 
Du 20 ! = llLJ 

2e Le.:(I) = t 
;F(LO .EQ. 1) GO TG 27 
r; = L~ ... 1 

THE EIGE~V~LUE5 ~RE ORDERED ACCOROING TO THEIR MAGNITUDES • 
~~~LLE~T ?i~ST 

r:c 21 1 = l/!( 
~A~UE = ABS(~:CTI(LOC(I)l) 
~J = 1 • 1 
Ci:: 21 J " IJ,L:: 
lF(AèSiR~~TI{~:C(Jjl} .GE. VALUE) GO TO 21 
~!~UE = '~5(R~nTI(LOC{J»)) 
i. = LJd I} 
L::': (II II: L"C 1 J) 
LC:{~l • l 

2~ Lc;·;TI"uE 
2i ~D 22 1-= I/Lw 
22 ~8JT~',l " ~O~TI(L8C:I)1 

!J: 23 l = llLO 
2? KûJTIIIl = VIILOC!:ll 

--- --- --"--- -- --_ .. _---. 

Figure 5.5.la 
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DECL5575 
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DECL561S 
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DECLS670 
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DECL5725 
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DECL5735 
DECL5740 
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DECL5750 
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DECL5iS5 
DECL5790 
DECL5i95 
DECLSBOO 
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DECL5B10 

ALL OF THE EIGENV~LUES ARE PRINTED 

WRITE(o,lO!) 
CALL RITEI~OOTR,LO,l,O,l} 
CALL RITE(~r.nTI'LQ,l'O,l} 
IFINEIGEN .EO. o} ~EIGEN = 5 
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IJ = 0 
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DO 29 J = I/LO 
B(J} = O. 
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WRITE(6,l(l2) l 
CALL RIT~(Y/NDELTS,l'IJ,ll 

2& CALL RITE(~!,~~ELTS,l,IJ'l) 

~~_L ; 
~ _0: .. ~ 

... -- . ""= ...... ~ 

::::~~ 
~ - . 

f'-~ • -= ... - , 
::~~ : 
:;:CL ë-=-; 
:::i.. Ë:: 
:=: . =::5 
:::_~=':':. 
:::~::;:; 

~:·:!..3:": 
C:C~::;-5 
D • 
: !. 5 
C L ~ 

~ 

C ~ 

, ~ 

'- -
~~CL~:;:5 

c ~:i 
C :: 5 
C "::l 
:: Cl 5 

:::~5~.;,.-: 
:~c :~-; 
~~: ~::;: 

:=: 5:;:3 
::C :::::~ ,=C :=.=~5 
~:~ =~-: 
~=C 5:::,5 
:iEC ==f.: 
:::L5:::5 
:::t;::;: 
::Cl.:=;'; 
:E:L~~:~ 
:::: ~~~ 5 
~: L~: : 
D: L~~ 5 
CE u·:- : 
CE Lt-: 5 
:E :..~: : 
C:CLf-~35 
r' ~~~:-: 
~ ~~:-:"'-: 
: CL~~· ... 
~ c~~:"' ; 
... ri '-'" f"': 
o,J ... _-- .. 

--' 
N 
U'1 

c _______ • _______ • ___ • ___ -------••• "- - ---- ----, .-•••• -'--.~- •• ---,- .• ~---'-'-.,-.~-~_ .• _.,-J 



rH'~BC :: LO 
KETUR!~ 

991 ~RITE(bI202) L,NwaC 
110 = 0 
REïUR:'J 
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END 
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Figure 5.5.lb 

i :.: '~ 
'.' ,.,. 

126 



order to solve the standard matrix eigenvalue problem, these 

subroutines call a single precision version of the program 

RILMAT, published in the Union Carbide programming handbook 

[59]. Since the eigenvalues and eigenvectors of a general, 

real matrix may be complex, all of these programs have two arrays 

for each of these quantities, one for the real and one for the 

imaginary part. 

5.6 NONLINEAR EQUATIONS 

The techniques develop~ thus far provide a powerful 

method for solving linear differential equations. In this 

section, the application of this method to problems involving 

nonlinear differential operators will be considered. The 

procedure used is the well-known Newton~s method for solving 

nonlinear operator equations and the discussion will draw 

heavily from reference [60J. In this procedure, the solution 

of a nonlinear equation is obtained by solving a sequence of 

linear equations, the solutions of which converge to the 

solution of the original equation. 

The first concept which needs to be introduced when dealing 

with nonlinear differential equations is the Fr~chet derivative 

of an operator. This may be given as follows [60]: 

Definition '5.'6.1. Let A(y) be a nonlinear operator. The 

Fréchet derivative of A(y) at the point Yo will be a linear 

operator A'(yo) such that 

l i mit liA' (y 0) !:ly - A (y 0 + !:ly) + A (y 0) 1 1 = 0 (5.6.1) 
Il!:ly Il +0 Il !:ly Il 

1.\ 
1 
1 

i 
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provided that su ch an operator exists. 

As a consequence of this definition, the quantity 

r(y,z) = A(y) - A(z) - A'(z) (y - z) 

will have the property that 

limit 

Ily-zll+o 
Il r(Yl z ) Il 

Il y - z Il 
= 0 

(5.6.2) 

(5.6.3) 

Thus, if the two functions y and z.a~e sufficiently close, 

the norm of the expression (5.6.2) approach~s zero at least as 

quickly as the square of the norm of the difference of the 

two functions y and z. 

Consider now the problem of solving the nonlinear 

differential equation 

A (y) = 0 (5.6.4) 

and suppose that sorne function Z€L is given. Then, from 

(~.6.2), 

A(y) = A(z) + A'(y - z) + r(y,z) = 0 (5.6.5) 

In Newton's method, it is assumed that a function z can be 

found sufficiently close to the solution y of (5.6.4) so 

that, by virtue of (5.6.3), the quantity r(y,z) in (5.6.5) 
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can be neglected [60J. If this is done, then (5.6.5) yields 

A'(a) y ~ A'(a) a - A(a) (5.6.6) 

This equation is linear in the unknown yand can be solved 

by the methods in the previous section. However, since 

(5.6.6) is an approximation, the solution obtained in this 

way will not satisfy (5.6.4) exactly. PresumablJ, though, 

it will be closer to the correct solution y than was the 

function a in (5.6.6) and can be used as a in (5.6.6) to obtain 

an equation having an even better approximate solution. By 

repeating the above steps enough times, the solution of the 

linear equation (.5.6.6) can be made arbitrarily close to the 

solution of the nonlinear equation (5.6.4). The conditions on 

the functi on a and on the operator A (y) for thi s procedure 

to converge ar~ discussed in reference I60]. 

The effectiveness of Newton's method in treating nonlinear 

differential equations is limited by two principal defects. 

The first of these occurs whenever the Fréchet derivative of 

the operator A(y) does not exist in a neighborhood of the 

solution y. In these cases, Newton's method is invalid and 

cannot be applied to determine the solution. The other 

defect in Newton's method is the difficulty of determining 

an initial function a within the radius of convergence of the 

solution for sorne problems. Unless an a priori estimate 

of such a function is known, the problem of finding a 

useful initial function may require considerable effort and 

ingenuity. 
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In evaluating the Fréchet derivative A'(y) in 

(5.6.6) for arbitrary nonlinear differential equations, it 

is profitable to use the following two properties [60] 

(A(y) + B(y))'ly=z = A'(z) + B'(z) (5.6.7a) 

(A(B(y)))'ly=z = A'(B(z)) B.'(z) (5.6.7b) 

These properties permit one to form the Fréchet derivative of 

a differential operator by using the ordinary rules of 

differentiation, treating the unknown y as the independent 

variable 

A ' (z) = dA (y) 1 
dy Y=Z (5.6.8) 

In this way, the Fréchet derivative of an arbitrary differential 

operator can be easily determined. 

As a simple illustration of the procedure, consider the 

initial value problem 

d 3u d 2 u 
A(y) = ~ + y ~ = 0 

Y (O) = ~(O) = 0 dœ (5.6.9) 

which governs the flow of a laminar boundary layer on a flat 

plate parallel to the stream [49J. The Fréchet derative of 

this operator is 

A' (z) (5.6.10) 
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Consequently, equation (5.6.6) becomes 

(5.6.") 

Given an initial value for z,say z = 0, this equation 

may be solved by using the subroutines DIFFEQ, CONTIN and 

BOUND to obtain an approximate solution of (5.6.9). This 

approximate solution may then be used for z in (5.6.11) 

and the process repeated. It will be shown in the next chapter 

that after several interations, a highly accurate solution 

of (5.6.9) is obtained. 

There are two minor program modifications of the 

linear subroutine package which increase their efficiency 

with nonlinear problems. One of these is to store the 

coordinate independent factors obtained from OPGENl in the 

first iteration. Since these factors contain no fonctions, 

they are unchanged by the iteration procedure and may be used 

repeatedly. Consequently, the step, CALL OPGEN1, may be 

skipped after the first iteration. The second modification is 

to place the z function values in a labëled common block 

accessible to subprogram FCN and the auxiliary functions FNl -

FN5. Then, whatever the value of z in the current iterate, 

the values of the functions dependent on z can be easily 

generated. 
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CHAPTER VI 

AUïOMAÏÏë' 'SOLÜtION' 'OF' 'bIËËËRËNTIAL 'EQUAttONS 
The computer programs given in preceding chapters 

provide a computationally efficient means of solving any 

ordinary or two-dimensional partial differential equation. 

However t in their present formt these programs are impractical 

for everyday use by a wide spectrum of engineers because of 

their special input and output characteristics. This chapter 

presents the results of a major effort to write a differential 

equation solving program which is compatible with ordinary 

engineering training and experience. In order to do so, it has 

been necessary to develop a special-purpose computer language 

which is capable of deciphering mathematical statements and 

generating computer understandable instructions according to 

the code given in Chapter 4. By incorporating this special

purpose language and the programs given previously, the 

solution of any linear ordinary or two-dimensional partial 

differential equation requires no analysis beyond the ability 

to write the differential equation on a standard keypunch or 

teletype terminal. In addition, with the simple modifications 

described in section 5.6, many nonlinear differential 

equations can be solved simply by evaluating the Fréchet 

derivative of the differential operator analytically and 

forming equation (5.6.6) beforehand. 

,.,' 
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The use of the automatic differential equation solving 

programs will also be illustrated in this chapter by solving 

numerous examples from linear and nonlinear ordinary differential 

equations and from linear two-dimensional partial differential 

equations. Whenever possible, the results from the programs 

will be checked with analytical solutions or with previously 

computed answers. These comparisons will indicate the 

extremely accurate solutions obtained by using high-order 

polynomial matrix equivalents for differential operators. 

The development of convenient computer languages for 

differential equations has attracted considerable interest in 

recent years. The main impetus behind this movement has been 

a desire to free the numerical solution of differential 

equations from cumbersome Fortran programming. However, since 

all of the languages developed to date have been tied to 

inefficient finite difference formulae, none of these languages 

has received widespread acceptance. 

For initial value problems, a formal computer language 

and associated program compiler has been designed by Barton, 

Willers and Zaher [61J. With this system, commands such as 

INTEGRATE, WITH INITIAL CONDITIONS, END and the mathematical 

symbols + - * 1 t ' define the operations to be performed by 

the computer. As described in [61], the language is capable 

of handling arbitrary systems of ordinary differential 

equations for which initial conditions are known. 

A language has also been written for partial differential 

equations, this one by Cardenas and Karplus I62]. Called 

PDEL, the language is a superset of PLIl and may be mixed 
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with it. There are ten functionally different types of 

statements in PDEL and the syntactic definition of each has 

been designed to simplify coding procedures for differential 

equations. At the time reference [62] was written, the PDEL 

translator was able to handle five different types of 

differential equations. 

A second language for partial differential equations 

has been written by Roberts and Boris using a symbolic 

style of Algol [63]. In this language, real procedures such 

as CURL, CROSS and DELSQ are defined which produce the 

numerical operations corresponding to their analytic or 

algebraic counterparts. By providing a library of such 

procedures, Symbolic Algol allows three dimensional partial 

differential equations to be written in a form yery closely 

resembling the formalism of mathematical physics. 

6.1 SIMPLIFIED INPUT AND OUTPUT PROCEDURES 

In this section, computer programs are described which 

provide a convenient engineer-to-computer interfacing for the 

programs given in Chapters 4 and 5 .. With these additions, the 

operation of the differential equation solving programs in this 

thesis is made extremely easy: the user simply writes the 

differential equation and associated boundary conditions on a 

standard keypunch or teletype terminal in easily recognizable 

mathematical form and the computer automatically returns its 

general and particular solutions in both analytical and 

graphical forms. 

The input portion of the new programs 1s based upon a new 
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symbolic computer language for the representation of 

differential equations. Called DE CL for Differential 

Equation Computer Language, this language has been designed 

to maintain the free-form writing of differential equations 

as far as is possible on a computer. Accordingly, the elementary 

units of the language are taken to be the standard ASCII 60 

character set, with numbers obeying the same syntax rules as 

numbers in Fortran. The characters X, Y and Z are reserved 

to represent the dependent and independent variables of 

differential equations in the following way 

one dimension 

<independent variable>::=X 

<dependent variable>::=Y 

two dimensions 

<independent variables>::=XIY 

<dependent variable>::=Z 

The metalinguistic notation used here is that of reference [64]. 

When any of the remaining letters is used by itself, it denotes 

a numerical constant 

<constant>::= < any individual letter except X,Y or Z> 

In DECL, multi-literal names are not allowed. 

Functions are represented in DECL by the following 

character strings 

<sin ~>::= SIN(X) 
<oos ~>::= COS(X) 
<Zog ~>::= LOG(X) 
<exp ~>::= EXP(X) 
<au~iZiary funotions>::= FN1(X) ~ FN5(X) 
<xnumber>::= POW<number>(X) 
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The use of the auxi1iary functions FN1 to FN5 has already been 

exp1ained in Chapter 4. The reason for adopting the above 

notation for exponentiation is that DECL, in contrast to such 

number manipulation languages as Fortran and Algol, is a 

symbo1 manipulation language. Thus, whi1e the double star in 
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the Fortran expression X**2 or the up arrow in the Algol 

~xpression X+2 means that the numerica1 value of X is to be 

squared, the DECL expression POW2(X) refers to the functiona1 

operation of mu1tip1ying the function X with itse1f. Accordingly, 

the form of exponentiation in DECL is chosen to be the same as 

for other functiona1 operations with the function preceding 

its argument. 

In DECL, the arguments of functions may be composed of 

any combination of the independent variab1e{s), constants, 

numbers, other functions, and the symbo1s +-*{). In eva1uating 

a function with a compound argument, DECL fo11ows the same 

structural conventions as Fortran. Note that the symbol / 

may not appear in a functiona1 expression in DE CL and, as a 

resu1t, division can only be obtained by app1ying the function 

POW-1. 

Differentia1 operators are specified in DECL by the 

fo11owing expressions 

< ~ or ~x>::= D/DX 

< ~y >::= D/DY 

< dn or an ;n = 2, ... ,9 >::= D<n>/DX<n> 
dxn axn 

< an ;n = 2, ..• ,9 >:':= D<n>/DY<n> 
ayn 

Any va1id DECL expression may follow a differential operator 

symbo1 . 



A DE CL statement is a string of valid DECL expressions 

in a predefined and proper order. DECL statements may be 

written anywhere on an 80 column computer card with the first 

character appearing in column one. Blanks may be inserted 

between any two DECL expressions in a DE CL statement as long 

as they do not alter the appearance of the expressions them

selves. 

There are six functionally different statements in DECL: 

(1) Control Statement 

<control statement>::=*<number><title> 

The number in a control statement may be any integer from 

l to 9 and specifies the order of the approximating polynomial 

to be used in the solution. The characters given in the title 

will be used to provide a heading for the output. An example 

of a control statement is 

* 9 TITLE 

(2) Differential Equation Statement 

<differential equation statement>::= 

DE:<any valid DECL differential equation> 

A DECL differential equation is any DECL expression containing 

at least one differential operator and one and only one equal 

signe Differential equation statements may be continued on 

consecutive computer cards provided that the letters DE:begin 

each one of them. A typical differential equation statement is 

DE: D2/DX2(V) = K* SIN (X) * V 

(3) Boundary Condition Statement 

<boundary condition statement>::= 

BC:<any valid DE CL boundary condition> 
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A DE CL boundary condition is any DECL expression containing one 

equal sign in which each of the dependent and independent 

variables is followed by a number or pair of numbers in 

parenthesis. These numbers provide the coordinatè values of 

the boundary condition locations. An example of a boundary 

condition statement is 

BC: D/DX(V(O.O» + EXP(l.S) * V(l.S) = P 

(4) Constant Specification Stàtement 

<constant specification statement>::= 

CST:<constant>=<number> 

Constant specification statements are used to provide 

numerical values for known constant parameters in differential 

equation or boundary condition statements. A typical constant 

specification statement is 

CST:P=3.141S92 

Any constant in a differential equation statement which does 

not have its value defined by a constant specification 

statement is assumed to be a symbo1 for an eigenva1ue. 

Although they may appear repeated1y in a differentia1 equation 

statement, only one eigenva1ue symbo1 may be used per 

differential equation. Eigenvalue symbols are not a110wed in 

boundary condition statements. 

(S) Geometry Statement 

one dimension 

<geometry statement>!:= 

X=<number>,<number>«integer>ELEMENTS) 

j 
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two dimensions 

<geometry statement>::= 

REC: X=<number>,<number>«integer>SUBDIVISIONS), 

V=<number>,<number>«integer>SUBDIVISIONS) 

In one dimension, the geometry statement specifies the end

points of a line segment to be used in the solution and provides 

the number of equal elements to be taken in that segment. In 

two dimensions, it specifies the edges of the rectangular 

region to be used and the number of equal elemental sub

divisions in each direction. If the number of elements or the 

number of subdivisions to be used is not specified, one element 

or one subdivision is assumed. Unequal one-dimensional 

elements or irregular two-dimensional regions~may be defined 

by using more than one geometry statement. Examples of 

geometry statements are 

X=O.O, 1.0 (2 ELEMENTS) 

REC:X=O.O, 1.0 (2 SUBDIVISIONS), ~0.0,2.0 

(6) Output Statements 

regular problems 

where 

<output statement #l>::=WRITE<parameters>SOLUTIONS 

<output statement #2>::=PLOT<parameters>SOLUTIONS 

<parameter #l>::=GENERAL 

<parameter 12>::=AND 

<parameter #3>::=PARTICULAR 

eigenvalue problems 

<output statement #l>::=WRITE<number>EIGENVECTORS 

<output statement #2>::=PLOT<number>EIGENVECTORS 
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Output statements control the manner in which the resu1ts 

are disp1ayed by the computer. Typica1 output statements are 

WRITE GENERAL AND PARTICULAR SOLUTIONS 

PLOT 

WRITE 

PLOT 

PARTICULAR SOLUTION 

10 EIGENVECTORS 

2 EIGENVECTORS 

A DECL program consists of DECL statements in the 

order, given above. Each program must contain one control 

statement, one differential equation statement (which may 

be continued on any number of cards), any number of boundary 

condition statements, the number of constant specification 

statements required by the differentia1 equation and boundary 

condition statements, one or more geometry statements and two 

output statements. For programming convenience, the two output 

statements may be replaced by a single blank cardo In this case, 

the default option of the program is to write and plot both the 

general and particu1ar solutions of ordinary differentia1 

equations, write and plot on1y the particu1ar solution of partial 

differentia1 equations, and to write and plot the first five 

eigenvectors of eigenva1ue prob1ems. Examp1es of va1id DECL 

programs will be given in the fo110wing sections. 
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Computer programs which read boundary value prob1ems 

written in DECL and translate them into instructions for the 

differentia1 equation solving programs given ear1ier are presented 

in Figures 6.1.1 and 6.1.2. The first of these is the Fortran 

subroutine INSTR for use with ordinary differentia1 equations 

and the second is INST2D for use with two-dimensiona1 partial 

differentia1 equations. These compi1ers are written in Fortran 

instead of a machine language so that they are machine 
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.. SU;Ro~~r~E I~STRcINSTR,CONST,NUMDE,XnC,XD,WT/NELMTS, ',~AHGE,NDDM,L~MDA,RITE~,RITEG,PLOTP,PLOTG,NEIGWR,NEIGPL) 

TH:S S~~RnuTI~E RE_QS DIFFERENTIAL EeUATIONSI BOUNQARy CONn
ITiC~S A~D GEO'!ETRICAL DATA AND CONVERTS THEM INTO CODED 

I~STRU~TI~':5. THE DIFFERENTIAL EOUATION AND 10UNDARV CUNDITIONS 

~R~ RE;UR~~C I~ THE ARRAY 'INSTR' AND THE POINT LOCATIONS ARE 
~T:RE: IH 'XO'. 

1~7 E~~2 i~STR 
üi:. S;:N !~STRC1l,CONST(1),XBCIl),XDI1),WTC1) 
DI' s;~~ ~RRAYI~nl,ISKIP(100I,IHERE(100),IPAR(100),TYPEIBI 
LC~ A~ RS:ce,YC~D,FCNCND,PARCND,ARGUEJLAMDA,RITEP,RITEG,PCOTP, 

.. P~~TG,CHhRTF 

.. 

C:··~:~ AR~~Y,ISKI~,IHERE'IPAR 
~~_~ L'~!C~/~i'US 

~Q~l/!_~~r~ (TVPE:ll,STARI, (TyPE(2),DEEI, (TYPEI3I,BEf), 
1 yPE:",GE:), lTYPEC5',EXI, (TYPEe6I,OBLU), eTvPE(7I, 
~EAI, eTVPE(Bl,9LANKI 

G~~A 5~A~~,LBR~CY,R9RACK'~LUS,MINt~/STAR,SLASH,EQUAL 
.. IIH ,1HCIIH',lH+,lH-,lH~,lH/,lHal 

.. .. .. 
~A7A 5iE,CrE,OeE,EEE,EF ,GEE,EVE,EL ,EN ,PEAAOH ,ARE,ES,D8LU,EX 

'uV 
Il,':!,l;,C, 1 ... 0,1 'lE' IHF, 1HG, IHI, IHL, IHN, IH:l, IHO, IHR, H1S,lHW, IHX, 

IdY 1 

kE~D TnE D~TA CARDS 

~E~ùI9/110,ENO~999l ARRAY 

GO TO THE LCCATiQN INOICATED BY THE TYPE OF CARO 

~c 2 1 • l,B 
iF:AR~~Ylll .Ea. TYPEII» GD Tn (3,15,13,4,7,82,84,86),1 

2 C:~TI\0E 
GJ TD 990 

3 PRCARO • STAR 

UE7ER~~NE 7~E OROER OF ELEMENT REQuESTED AND PRINT THE TITeE 

r.C:;:-I • IFIXIFII;:JMI~RRAV,2'Ill + .1) 
IF(NO~.1 .GE. lOI GJ TO 990 
IF;I1 .~T. Rnl Il = 80 
"RrTElolllll 
"R:ïElé,102) IARRAveII,I .. Il,ao) 

INITIALIZE THE PARA~ETERS-

W:EX 0 
:.C~ TS 0 
~·SCPT 0 
!P.:.RA 0 

-----:-:-=_-::-::::-:~:::.-:-.:-:-:::~------.. -.-

- .... _- -------------------

OECL 340 
DECL 345 
DECL 350 
OECL 355 
OECL 360 
oeCL 365 
DECL 370 
DECL 375 
OECL 380 
OECL 385 
DECL 390 
DECL 395 
OECL 400 C 
OECL 405 C 
OECL 410 C 
DECL 415 
DECL 420 
OECL 425 
OECL 430 
DECL 435 
OECL 440 
DECL 445 
OECL 1.50 
DECL 455 
DECL 460 C 
DECL 465 C 
DECL 470 C 
OECL 475 
DECL 48Q 
OECL 485 
DECL 490 
OECL 495 
OECL 500 
OECL 505 
OECL 510 C 
DECL 515 C 
DECL 520 C 
DECL 525 
DECL 530 
DECL 535 C 
DECL 540 C 
DECL 545 C 
OECL 550 
DECL 555 
OECL 560 
DECL 565 
OECL 570 
DECL 575 
DECL 580 C 
DECL 585 C 
DECL 590 C 
DECL 595 
DECL 600 
DECL 605 

NPROD = 0 
LASIGN .. 0 
NSKIP :: 0 
ISIGN :: 1 
LA~10A :: .FALSE. 
EVALUE • BLANK 
RSIUE :: .F/.LSE. 
F-C:ICND Il • FALSE. 
PA~ÇNQ ... ~ALSE. 
ARGUE:: .TRl!E. 
~IIUTEI6,1001 
GO TO 1 

A BOUNDARV CONDITION CARO HAS REEN READ 

13 IFIPRCARD .EQ. STAR .OR. PRCARD .Eo. EXl GD TO 990 
liRITE(6,106) 
INoEx " ltJ<;EX + l 
INSTRIINOEx) Il 4000 
NU;·10E = 1!Jfl!:X 

14 INDEX ·INDE~ + 
INSTRIINDeX) • 3000 
IFI,NOT. RSIDEl GO TO 990 
RSIOE :: .FALSE. 

A DIFFERENTIAL EQU~TION CARO HAS BEEN READ 

15 vcrlo " .FALSE. 
IFIIPARA .NE. C .DR. FCNCNO .OR. PARCNDI CO Ta 990 
PRCARD " A~RAYll) 
INuEX :: INDEX + 1 
INSTRIINDFX) • 1000 
IATS •• 1 
WRITE(6,102) IARPAYII),I =4,80) 

'l' INOICATES THE LOCATION ON THE DATA CARO 

1 :: 3 
16 1 :: 1 + 1 

IF SOME LOCATIONS WERE sKIPPED ON THE DATA CARO, RETUR~ TC THE:' 

IFINSKIP .EO. 0) GO TO 58 
DO 57 M :: ~START,~PROD 
IF(I .wE. ISKlpeHl1 GO TO 57 
1 :: IIiEREUI) 
IFeARRAVI! ~ II .EQ. MINUS) ISIGN 

57 CO:HINUE 

BLANKS AND ASTERIses ARE IG~ORED 

SB IF(ARR~VII) .EC. BLANK) GO TO lB 
IF(ARR~YII) .E~. SjARI GO TO 54 
INcEx = I~~EX + 1 
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CH:CK F~R: 'C' 

1~:A~t;YeIl .NE. ~3RAC~1 GO TD '6 
l?_RA = I~~PL • l 
I~ST~eINCExl = 300 
IF:FC~C~D .CR. ~ARCNDI GO TO 54 
~ = 1 
to = IP':'Rl. 

S9 ~, = M + 1 
IF:A~RMYeHI .Eo. ~HY .OR. ARRAY(MI .EQ. SI.ASHI GO TO 60 
1=.A;~.:.yeMl .~c. LSRACKI N N + 1 
IF(l.R~~Y(~1 .E~. ~9RACK) N = N - 1 
'F:~ ,~:. :~AP.~I GJ TD 59 
IF(FC~t~D) G~ TO 54 
FC';C;N~ • ,il\uE. 
;'R.:'U~ :; .F_:"S:. 
IF;:A~t. a I:Jt.RA 
GO TD 54 

b~ PA;C~O •• r~UE. 
IA7P • 1 
G;j ia j't 

'l' 
S6 IF:ARRAyell .~E, P.BRACK) GO TO 17 

IPARA :; IPt.R.A - 1 
I~STRe!NDEx) • 400 
iF(IPA~A .~C. IFP~RA) FCNCND • .FALSE. 
GD TD 55 

'v' 

17 IF:AR~,V(I) .~E. KHY) GO TD 22 
IF(FC~C~D) GO TD 990 
vC~;D • ,TR·JE. 
':'RjUE = .i~LE. 
::.STRC; 'iDE:x) • 2eO 
iF(ARR!Yell .Ea. ~EEI GO TO 55 
~iS:PT = ~:BCPT ... l 
;o.a:n'3Cnl CI F"U1-!':'RRAY,I2,I3) 
1 = 13 
l~CEX = IH'~X • 1 
l~STRel~OEx) .. - (300 • NBCPTI 
GD TO 55 

'X' 

22 IFtAR~~Ye!1 .~E. Ex) GO TO 23 
I~STRCI~OEx) • 10a 
':'R~UE •• T~LE. 
GQ TC S4 

,.' 

" ..... 4 

.' 
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DECI. BBO C 
DECL BB5 
DECI. 890 
DECI. 895 
DECL 900 
DECI. 905 
DECI. 910 C 
DECI. 915 C 
DECL 920 C 
DECI. 925 
DECL 930 
DECI. 935 
DECL 940 
DECI. 945 
DECI. 950 
DEC!. 955 
DECI. 960 
DECI. 965 C 
DECL 970 C 
DECL 975 C 
DECI. 990 C 
DECI. 965 
CECL 990 
DECI. 995 
DECL1000 
DECLI005 
DECLl010 
DECL1015 
DECLl020 
DECLl025 
DECL1030 
DECLl035 
DECL1040 
DECLl045 
DECLl050 
DECLlnS5 
DECL1060 
nECLl065 
0€CLl070 C 
DECLl075 C 
DECLIOBO C 
DECLlOB5 
DECL1090 
DECLl095 
D:CL1100 
DECI.1105 
DECL1110 
DECI.1115 C 
DECLl120 C 
DECU125 C 
DECLl130 
DEC L 1135 
DECL1140 
DECI.1l45 

23 IFIARRAyeII .NE. EOUALI GO TO 24 
IFePARCNDl GO rD 50 
IFIRSIUE) GO TD 990 
RSIDE = .TRUE. 
ARil.AY(I) = PLUS 

'.' OR '-' 

._----- -- - ---_._---

24 IF(ARRAveIl .NE. PLUS .AND. ARRAY(I) ,NE. MINUSI GO TO 32 
50 IFI,NOï. A~r,UEl GO TO 990 

IFe,NGï, FCNC~"' GD TO 25 
INSTRelNDExl ~ 500 
IF(ARRAYeII .EO. HINUSl INSTRIINDEX) 600 
GO TO ~5 

25 IFI,NOT. YCND .CR. IPARA .NE. 0) Gn TO 26 
YCND :; ,FALSE. 

IF THE + O~ - IS WITH!N A PARENTHESIS, THE REMAINING TERHS NEED 
TO BE SKI?PED 

26 IFt.N01. PARCNnl GO TO 30 
INOEx :; INOEX - 1 
IFtIPAKA .EQ. 01 GO TO 63 
IF(NSKIP .iiE. Dl GO TO 2B 

27 NPROD = NPRnn • 1 
ISKIP(kPROu) = IATp • 
IHERE(!IPR[]fJ) = 1 + 1 
IPARCNPROOI • IPARA 
LASIGN • NPRO<> 
GU TO 62 

28 UO 29 ~ = l/NP~OD 
IFIl ,LT. ISKIPCNIl GO TO 61 

29 COtHINJE 
Il = N + 1 

61 LASIGN = N - 1 
ILASlN ~ I 

62 1 = 1 + 1 

LOCATE THE END OF THE PARENTHESIS CO~DITION 

IF(I ,GT. 771 GO TD 990 
IFeARRAyeIl .EC. LBRACKI IPARA • IPARA • 1 
IFeARR~yell .Eo. R3RACKI IPARA • IPARA - 1 
IFeIPA~A .GE. IPAR(LASIGNII GO TO 62 
GO TO 16 

63 IFeLASIGN .EQ. 01 CO TO 65 

DETERMINE THE SIGN OF rHE CURRENT SIMPLE OPERATOR 

IFtNSKIP .EC. Dl NSKIP 
NSTART • NPROD - NSKIP • 
1 = IATS 
lHERE(LASIGNl = ILASIN • 

• .~ ''l .""\ , .' .. 

:J:CLll~C 
DECU:::5 
!:'~':Ll:~: 
:':CLll~5 
:):CLl170 
O:C"~17~ 
O:CLl,;O 
OECL1!E5 
"ECL1~;O 
o~!::..~~':5 
:l:CL!2:: 
:ECL!2:;; 
r;ECL~2:0 
::ECl.12.5 
DECL1220 
0:CL1225 
C:CL12:;C 
:::CLlZ::5 
CE~Ll2": 
C:CL:~,"5 
O~CL~2:=' 
:l:CL12::5 
OECL12~C 
OEC1.12,:5 
DECL:Z7: 
!:lëCLl2"5 
~ECL12~C 
~ECL:'2ES 
CECL12<;O 
D:e Ll2'15 
OECL!3C~ 
~E~Ll;=S 
DECL1310 
OECLl31S 
DECL!32~ 
~ECL13,5 
CECL!33C 
r:=CL~3::5 
DE~L13':'= 
C:t:L:~"S 
CECLl350 
DECL1355 
DECLI3!lO 
D:CLl3!:5 
OcCL137C 
::l:CL~37S 
OECI.!;!:: 
::CL!:;:5 
c·ECL13';C 
OC~ L 1:;;5 
DECL!':':C 
nE:Ll.:.:; 
nECL1':':C 
CECU4:5 

-' 
~ 
N 



C 
C 

!C 

C 
. : C 

C 

'C 
I·C 
.~ 

!'" 
1 

C 
C 
C 

IF(LAS ~N .EQ. NP~ODl GO TO 55 
~SKIP NS<lp. l 
'1 = LA 1 G'I + l 
~'J f,4 = ",:I:>:.C~ 

b .. iH,,;\:(, 1 c IsK:":.") 
~: T: ,5 

b5 '.S·,lD = 0 
';~;.~j " 0 
IS1G:; c l 
P~~CHO •• =ALS • 
1~:EX = I~OEX 1 
IF;:'itR.::.VtI 1 .E • E';:'JAL) GO TO 23 

3~ IFII~SliU!·.::EX - 1) .EQ. 1000) INDEX 
iA"'S = 1 
I~STitll~:Exl " 10CO 

INDEX - 1 

S!~~5 J~ 7~E ~zG~7 SInE OF AN ~QuATION ARE REVERSED 

IF(,~ 7, ~SI:E .A~J. ARRAV(Il .EC. PLUS) GO TO 55 
iFIRS DE .~~D. AR~~Y(1) .EQ. MINUS) GO TO 55 
I~STR I~DE') " ZOC~ 
!SZGN ! • ISI~~ 

t<:i T!J 55 
32 Il "1 + 

:2 = :~ + 
13 ,. 12 + 
14 " D + l 
IF:14 .GE. Bal GD TO 49 

'C/!jXI 

IF(ARR:'YII) .~E. OEE .OR. ARRAVeIl) .NE. SLASH 
v ,C~. ,PRAVeIZI .NE. OEE .OR. ARRAV(13) .NE. EX) Go TO 33 

F(FC\C~~) G~ rD 990 
NSTRe!~OE~) • - 1 
= 13 

Û TO 34 

'C'I;/O)C~p 

33 :Fe.\RR,;YCI) .,~. t'EE .OR. ARRAY(12) .NE. SLASH 

Figure 6.1.1c 

CONSTINCSTSI = FNUM(ARRAV.I3.14) 
IFeI4 .EQ. 13) GO TO 990 
1 = 14 .. 1 
(,0 TO 53 

'SH:' 

42 IFeARRAyeI) .NE. ES .oR. ARRAVe!l! ,NE. EVE 
* .OR. ARRAv( 12) .NE. EN) GO T[1 43 

INSTR(INDExl c Il 
GO Ta :)Z 

'cos' 

43 IFeARRt.YI!) .NE. CEE .OR. ARRAVeIl) .NE. OH 
* .OR. AP.RA Vi1Z) .NE. ES) GO TO 44 

INSTRI[NDEx) = 12 
GO Ta !12 

'EXP' 

44 IFIARRAyII) .NE. EEE .OR. ARRAVell) .NE. EX 
* .OR, AP'RAVIIZ) .NE. pEA) GD TO 45 

INSTRIINDExl " 13 
GO Ta !1Z 

'LOG' 

45 IFeARRAVIIl .NE. EL .OR. ARRAVeIl) .NE. OH 
* .OR. ARPAV(IZ) .NE. GEE) GO TO 4b 

INSTRIINDExl " 14 
GO TO 5Z 

'FN' 

46 IFeARRAY(1) .NE. EF .OR. ARRAVeIl) .NE. EN) GO TO 49 
Il = 1FIXeFNUHIARRAV'IZ.13) •• 1) 
IFII3 .NE. Iz + 1 .OR. Il .GT. 5) GO TO 990 
INSTRIINDExl = 14 + Il 
GU Ta 52 

• .O~. A~Rt.v. 13) .NE. DEE .nR. ARRAY(14) .NE. EX) GO TO 3& 

OECL1420 
DEC Ll4Z5 
OECL1430 
OECL1435 
DECL1440 C 
DECLl445 C 
DECLl450 C 
DECLl455 
OECL14bO 
DECL14b5 
OECL1470 
OECL1475 C 
OECL14s0 C 
OECLlt.85 C 
DECLl490 
DECLl495 
DECLlSCO 
DECLlS05 
DECLl510 C 
OEC LlS15 C 
DECL1520 C 
OECLl525 
DECLl530 
OECL1535 
DECLl540 
DECLl545 C 
OECL1550 C 
OECL1555 C 
DECL15bO 
DECLl5t;.5 
OECLl570 
OECL1575 
DECL15BO C 
DECLl~e5 C 
OECL1590 C 
DECLlS9S 
OECLl6CO 
OECLlb05 
DECLlb10 
DECLlb15 
DECLlbZO C 
CEC L 1(;)25 C 
DECLlb30 C 
OECLlb35 
DECLIMO 
DECLlb45 
OECLlb50 
DECLlb55 
OECLlbbO 
OECLl665 
D:CLlb70 C 
DECL1675 C 
OECLlbSO C 
DECLlbS5 

1 A tlUMBER' 

iF;FCNC'OI Gn 70 990 
INSTRl1~OExl a - 1F1XeFNUMeARRAY.Il/1Z) + .1) 
IFtI2 .~E. Il • Il GO TO 990 
1 = 14 • 1 
GO Ta 54 

, DO:" 

3~ IF\A~i\_yn) .~E. °:1 .OR. ARRAVIIl) .NE. OH 
JI: ,UR • .:RR.WII2i .NE. DBLU) GO TO 42 

"CSTS " NC~TS • 1 
INSTRII~OE~, = - ;200 • NCSTS) 

49 NCSTS " NCSTS + 1 
ARGUE = • nUE. 
INSTRelNDExl = - (100 + NCSTS) 
COtlSTltlCSTsl = FulJiHARRAVIl.Ill 
IFeIl .EQ. 1) GO TO 47 
1=11-1 
GO TO 54 

~HATEVER RE~ArNS MUST BE A CONSTA~T 

47 IF(FCNCND) Go TO 990 

DECL1690 
DECL1!l~5 
CECL!"~O 
D:C~:-:OO5 

:i:~~:-:= 

~E~L:"":5 
:'::CL!"Z: 
':::CL1-:',S 
~=C!..: ... ::;; 
D=CL~"3S 
CECL1"c.: 
~=Cl~":'45 
O:CLl ":'5': 
~:::LP:5 
::CL!"':'~: 

~=C~:...,~; 

C:CL!'"77: 
~=Cl.l":5 
DëCL1"~·~ 
C:CL!":':5 
:l:CL 1"';0 
O:CL!ï:;S 
~=~!.:5,:~ 

c:::.!:": 
:=~~:;:: 
~:éL~Ei5 
OECLIF,20 
DECL!?Z5 
~:CL!ê30 
~=CL:'~3; 
C~C!..!? ... : 
C:CL:~:..; 

C:'L:S:: 
~:~Ll~55 
C:CL~::::l 

C=CL:E~5 
D:CL:Sï~ 

~ëCL1B":'5 
;'ECL~i!:O 
CEC:"~R~; 
~=C~.::~~ 

::C~:R;5 

DECL::::O 
~:CLl;~5 

~=CL~~10 
:::C:'::;:5 
~EC.,-:Q2C 
C~CL::>25 

:':Ct.:::;: 
~:C~:-:35 

:::-:= = 
:~C~:~ 

CECL~~ : 
CECLl:; 5 

--' 
~ 
tA) 



I~STR!r~D~X) = 8DJ 
~D:I~:~X) = ARRIV(r) 
.::.~~u= • i~:UE. 
uW !D 54 

52 = 12 
53 ~4~: = .F~LS=. 

F(FC~~~O) GO TO 55 
r-:C~~CN~ = • ":'P.UE. 
:F:~~! :: !~A:C! 

5 IF(YCNJ) G~ T~ ,ça 
= Lc .... r!a.:~E 

~F;I ... T. SC) GO TJ 16 
G~ T;:J l 

tV~~UL;E T~~ C~NST~NT SPECIFICATION STATEMENT 

~ IF:?~C~RC .EQ. CEE) Go TO 5 
!F(?RC~R~ .EQ. 5Ta~ .OR. PRCARD .EO. EX) GO TD 991 
~~::!.~: C~~ 
,,::, FE (C'~ ~o l 

5 ~: 75 l = ,SO 
IF(a~;~V(1 .~E. SLAMK) GO TO 76 

75 ~C"~ïI~·;~= 
G:i Ta 991 

76 l = l ... 1 
A~UE = F~U~(A~RAV,Il,!2) 
Fe:l .EC. lZ1 GO iO 991 

ftRITE(o~lC!) CARR!~CI3),I3=1,IZ) 
~J 77 i3 = 1,!~nEX 
!F:XO(!3) .EC. AP.R~VCI3)l GO TD 78 

ïï L:r,TH··_'E 
Ga TD l 

73 ~CSTS = NCSTS ... 1 
I~STRI!3) • - clCO ... NCSTS) 
C.;:;:.Sil',CSTS) = VALvE 
GD TJ 71 

EV~LUA-E THE GEG~E7RY STATEMENT 

7 IFcPRC~RD .EQ. Ex) GO iD 71 
IF:PRC~RD .EO. STA~) G~ TO 991 

DETERMINE IF iHE ~~08LEH IS AN EIGENVALUE PRDBLEM 

UC 79 l = 1/I~~Ex 
IF(I~STReI) .E:. eOO) GO TO 80 

7; LG:.TIo.; ... ë 
GD Ta :il 

80 IFeLAu~A .A~D. XCeI) .~E. EVALU) Go TO 991 
IF:LA~JA) G:J Ta 79 
lA:.·:J! = .ï;).l;E. 
EV;.LU = XD:I) 
G:J TO 79 

s! IF:I~C~X .LE. Z) GD TO 991 

Figure 6.1.1d 

DECL1960 
DECL196S 
DECL1970 
CECLl975 
DECL19S0 
DECLI Q s5 
DECL1990 
DECLl995 C 
DECL2000 C 
DECL2005 C 
DECLZOIO 
OECLZ015 
DECL2020 
OECLZOz5 
DëCL2030 
DECL2035 
OECL2040 
DECL2045 
OECL20S0 
DECLZOS5 
OECL20f:O 
OECLZ065 
OëCL2070 
OECL2075 
DECLZOSO 
DECL?os5 
CECLZ090 
DECL2095 
DECL21~0 C 
DECLZ1CS C 
DECLZUO C 
DECL211S 
OECL2120 
OECL21Z5 
DECLZ130 
DECL213S 
DECLZ140 
DECL2J45 
DECLZlS0 C 
DëCL21S5 C 
OECL2160 C 
DëCL216S 
DECL2170 
DECL2175 
DECLZ1SO 
DECL2185 
DECL2190 C 
DECLZ195 C 
DECL2200 C 
OECLZZOS 
DECLZ210 
DECL?215 
OECLZ220 
OECL2225 

NUMDE = NU"CE • 1 
IN~EX = I~"EX • 1 
INSTRei~O~~1 = 4000 
WRITEeb,lO.l II,INSTReI),I : 1,IHDEX) 

8 1 = 1 
NRANGE • NDOH 

9 N = 0 

DETERMINE TrE ORDER OF THE RINGE SPACE 

10 1 = 1 + 1 
IFcINsrReI) .GE. 10) GD TD Il 
IFclNS7RIIl .LE. -10) GD TD Il 
N = N + INSTRCI) 

11 IFtINSTReI) .LT. 1000) GO TD 10 
NRANGE • MINOINRANGE,NDOH + N) 
IFtIt:S',!UIl .LT. 4000) GO TC 9 
IFtNRAi.GE .GE. 0) Ga rD 12 
NoaH • ~DO~ - NRANGE 
NR .. NGE = Cl 

12 l'iRITElbl10sl t'OO,",,!IRANGE 
:~EU1TS .. 0 
NPT = 0 

71 UO 72 ! = 2/80 
IFCARRdYIIl .ED. EOUAL) Go TO 73 

72 CONTINUE 
GD TD ')91 

73 1 = 1 • 1 

FINO THE LOCATIONS OF THE ENDPOINTS OF THE ELEMENTS 

Xl = FHUM(ARRAV,I,I1) 
IFtl1 .EQ. 1) GO TO 991 
IFeNELnTS .NE. 0 .AND. xl .NE. XZI GO TO 991 
1=11+1 
X2 = FHUHeARRAV/I,Il) 
IFlII .EQ. 1) GO TD 991 
1=11+1 

READ THE NU~SER CF ELEMENTS IN THE INTERVAL 

NEL = IFIXIFNUHeARRAV,I,Il) + .1) 
1FcNEL .LE. 0) NEL = 1 
XLi:GTH • (x2 - X1)/NEL 
STO' • XLt!GTH· 1 e NùOM - 1) 
XPT = ;'1 

DETERMiNE THE INTERPOLATION POINTS 

DO 74 i = 1.,NEL 
NELMTS c ~ELHTS + 1 
WT(NELilTS) • 1.0 1 XLNGTH 
XPT = APT - STEP 
DO 74 Il = 1I1-;n 

------------ .. 

0 ·1" .-" :\,0 _ Go;'" 

~E=:" 2:: 
", ... ~ r - -
:..:-'- ~--

&:;ECL '.:..! 
::CL 250 
::E~L 2S5 
:;EC~ 2=0 
~ECL 2~5 
::ECL 2':':) 

~::t. z-s 
:=~~,~~: 
:=·:L~Z~5 
~ECl22:j 
C:::L2Z,S 
::~i..2::0 
DECL23:5 
!)E=L2~:: 
~E:~2::S 
:E~:"Z::: 
:=:L2?~; 
t'::L2;.?: 
CEC:'2!-:: 
~E:!..::3 .. " 
:J CL 5 
~ Cl ~ 
:l CL 5 
C CL '; 
~ : L S 
C Cl : 
~ C~ -; 
C CL ?:l 
~:L =5 
~ ~L ~~ 

C CL ?S 
:=C~~!.:~ 

C' , :: - . -
CL .:.. : 
:L :. 5 
CL:' :> 
Ct. 1.. S 
CL .:. :l 
CL t. 5 
" • A 

",L., __ _ 

CL G.-5 
";:CL2:..5C 
::~LZ.:..=S 
:ECL;:-:-~ 
:ECLZ-::5 
~ECL2 .. ~~ 
!::Cl2':'~S 

:::C~::- ~ 
~:~i..2 ... 5 
~:CLZ:. : 
CECL2:''lS 

-..1 

~ 
~ 



xp, = Â~T + STeP 
~·iPT = :;;)T + l 

74 xO:~?~) = x~T 
P5:t!;ARD • EX 
Ge' TD l 

DEFI~E THE CUTPUT ~ROCEDURE 

BZ IF(PRC~RO .~E. EXl GO TO 991 
P~~~RJ = DSLU 
IF(L~~~Al ~c TJ al 
RI~:P = C~~~TF(ARR~VIPEAl 
~I7EG = CH~PTF(ARR~VIGEEl 
G: T3 l 

53 ~EIG~~ • IFIX(FNU~(ARRAYlbIIl + 0.1) 
IF:l .ËQ. bl GO TD 991 
Ge TD l 

54 iFiP~C~~D .~E. DSLUl GO TO 991 
!F:L~Y~~l ~~ TG es 
;L:T? = C~_~TF'A~~~vIPEAl 
JL:7G = CM~~7F(AR~kYIGEE) 
G~ ïC dS 

85 ~E:G?L • HiNOtIFIX(FNUM(ARRAV,5,I) • O.l),NEIGWR) 
IF:I .EQ. 5) G~ TO 991 
G~ TD dô 

8! IF:PRC~RD .~E. Ex) GO TO 991 
IF:~~uJA) Gr. T~ e7 
;;'I7EP .T;:üE. 
i<IïEG = .~ .. i: • 
"LSTP = • ;~lJ • 
~L:TG = • T~l,; • 
~o TO co 

87 :;El:;.,,1\ .. 5 
;;EIGPL .. 5 

6S ;'R!TECo,HHl 
·,iI.!TE C :1,101) 
CALL l\!TE(ÂC,~pT,tIO'll 
~ETUR-': 

ERR ORS IN ThE EQUATION 

90 ~.R!TE(o,l03) 
tiRrTE(6,1041 
Ge TO 1 

ARRAVCI),I,IPARA,RSIOE,VCND,FCNCND6PARCNDIARGUE 
(I,INSTR(I),I=l,INDEXl 

91 ''RITE(06109) 
~,R i TE (0/102) 
GO T<: l 

laP.RAV 

9'J STùP 
00 F~ .. I1AT 
01 F:i\~:'i 

IH-151X,THE DIFFERENTIAL EQUATION 15'//) 
IH-ISSXI'THE POINT COORDINATES'I/) 

02 
:i3 

F~rJ~~T 
;:CR~AT 

lHOI2SXlaC~1) 
I-E;ROR IN OIFFERENTIAL EOUATION: '661,713l 

--------_. ---------. 

Figure 6.l.le 

DECL2S00 
DECL250S 
OECL2510 
CECL251S 
OECL2520 
OECL2525 
OECL2530 
OECL253S 
DECL2540 
DECL2545 
DECL25S0 
DECL255S 
DECL25f:O 
DECL256S 
DECL2570 
DECL257S 
DECL2580 
OECL25BS 
DECL2590 

104 FORMAT(lH-,S4XI 'THE INSTRUCTION cDnE IS'I/(!H 12SX,SCIlOII6lI1 
105 FDRMAT(lHl,27XI'THE POLyNOMIAL DRDFR OF THE DOI~IN SPACE 15') 

* 121' AND THE OROER OF THE RA~GE 15',12l 
106 FORMAT(lH-151x,'T~E 80UNDARV CONDITIO~S ARE'/Il 
107 FO~MAT(lHOI52X,'CONsT SPECIFICATIOH LIST'/II 
108 rORHAT(SbXI 7SAll 
109 FO?MAT(I-E~P.OR:') 
110 FORMAT(SOA1) 
III FO~MAT(lHl1 

END 

DECL259S ______________________________________________ _ 

0:CL2600 
DECL2605 
DECL2610 

FUNCTION CHARTF(A,Cl 

CHARTF DETERHINES MHETHER OR NDT CHARACTER 'C' 15 CONTAINE~ IN 
T~E ARRAV 'A'. 

LOGICAL CHARTF 
Dl r·IENS 1 ON A III 
CHARTF = ,TRUE. 
llO l 1 • 1,80 
IF(A(Il .EQ. Cl RETURN 

DECL261S 
DECL2620 
DECL262S C 
OECL2630 C 
DECL263S C 
DECL2640 C 
DECL264S 
DECL26S0 
DECL26SS 
DECI:.2660 
DECL266S 
DECL2670 
DECL2675 
DECL26!:10 
DECL26BS 
OECL7.690 

1 CO~lTIr-;UE 

DECL269S 
DECL2700 
DECL270S 
OECL2710 
DECL2715 
OECL2720 
DECL2725 
DECL2730 
DECL273S 
DECL2740 
OECL274S 
OECL27S0 
OECL27S5 

iPP. 

CHARTF = .FALSE. 
RETURN 
END 

CECL27== 
OECl2;~S 
~ECi.277:: 
!)ECL2775 
0:CL2-5: 
CECL2'SS 
=:=lZ"!":;~ 
=:CL2~;~ 

~ECt.'=:: 
CECL2S:5 

OECLbSS: 
OECL6::j:; 
~EC ~65~.5. 
~=~L~!;:-: 
C:C~:,~~3 
iiECL~6!C 
CECL=~:S 
DEU!:!:,: 
DEC!..:~25 
OECL6!:::~ 
C:CL~6;5 
O:C:..~~~: 
D-~ L' ..... 3 
OECL;~;: 

..... 

.;:. 

Cl J 



Fiaure 6.1.2a 

SUBROUTINE IHST2~!INSTR,COHST,NUMOF,XBC,VBC,XO,VO,WTX,WTV, DE2D 200 C OECL 1140.1570 DUO 4'70 
* IELCX,IELCV,~CCOND,NELMTS,N~AHGX,NRANGV,NOOH,LAHOA,RITEP, OE20 205 C OEZO 1075 
II' RITEG,PLOTP,PLOTG,NEIG~R,HEIGPL) DE20 210 • '.OR. ARRAVeI2) .NE. DEEI GO TO 36 DE2D 480 

C DE20 215 IF(~CNCNDI GO TD 990 DE20 4U 
C THIS SUBROUTtNE PEADS LINEAR TWO.DIHENSIONhL PARTIAL DIFFERENTIAL DEZO 220 1 • J3 DE20 490 
C tQUATIO:IS, eOlmOARV CONOITIDtlS MID GEoHETRICAL DATA AND COUVERTS DE2D 225 IF(ARRAY(131 .~E. EXI GD TO 90 DE20 495 
C TIiEM IrITO CODED INSTRUCTlOfIS. DEZD 230 INSTR(INDEXI ... 1 DEZn 500 
C DEZD 235 IiU TO 54 DE21) 5!)5 

DI~~NSION YBC!1I,V~(1)'WTY!1),IELCX!1),lELCY(11 DEZD 240 C DE2D 510 
oIM~~SION I~STR(l),CU~ST'l),XBC(ll,XI)(ll,WTX(ll DE2D 245 ·C 'D/DYI OEZD 515 
OIMéNSlûN ARRAY(60),ISKIP(100),IHEREI10OI,IPAR(100),NELC(391, OE2D 250 C OEZO 5Z0 

CI TVPE(lOI DEZO 255 90 IF(ARRAYeI31 .NE. WHYI GO TD 990 DE2D 525 
C OEZO 260 INSTR( INDEXI • 1 DE2:! 530 
C DECL 410"430 DEZn 265 C DE2D 535 
C DEZD 270 C OECL 1600;U20 DE~D 540 

" (TYPE(4I,CEE), ITVPE(5),APE), (TYPE(6"DBLUlI (TYPE(71,DEZD 275 C DEZD 54! 
• PEAI, (TYPE(S),EX), (TYPE 1 9" WHY), (TYPE (10 IIBLANK 1 DE2D 280 • .OR. ARRAYeI3) .NE. DEEI GO TO 36 DHn 550 

C DE2D 285 IF(fCNCNDI GO TO 990 DE2!) 555 
C DECL 445-455 DE2D 290 1 • 14 + 1 DEZI) 560 
C DE2D 295 IF(ARRAY(I4) .NE. EX) GO TO 91 DE21) 565 

* ljHy,ZEE DEZD 300 C DEZn 570 
C DE2D 305 C DECL 1635 .. 1640 DE2D 575 
C DECL 465 .. 465 DE21) 310 C DE20 5S0 
C DEZD 315 GO TO 54 DEZD 585 • lHY,lHZ 1 DEZD 320 91 1F(ARRAY(141 .NE, WHV) GO TO 990 DEZD 590 
C DEZD 325 INSTR(INDEXI • IFIX(FNUH(APRAV'!1112) + 0.11 DE2n 595 
C DECL 475,,50, OE?D 330 IFel2 .NE. Il • 1) GO TO 990 DEZO 600 
C DElD 335 C DElD 605 

DO 2 1 • 1,10 DE2D 340 C DECL 1650.2150 DEZD 610 
IF(ARKAY(l) ,EO. TVPE(I) GO TU (3,l"4,7,82,84,150,150,92,,Z DEZt"I 345 C DEZO bi5 

C DE zn 350 7 IF(PRCARD .EO. ARE) GO TD 71 DE2D 620 
C DECL 52n .. Cl?'5 DE2D 355 C DE2D 625 
C DEZD 360 C DéCL 2160 .. 2250 DE2D 630 

IF(ARRAV(MI ,EO. ZeE .OR. ARRAV(H) .EQ. SLASHI GO TO 60 DEll) 365 C DE2!) 635 
I C DE2n 370 NRANGX • NDOH DElD 640 
1 C DE2n 37!1 NKANGV • NDnH DE2C 645 
I~ DECL 935"1025 CElD 380 9 N • 0 DE2D 650 

'Z' DEln 385 H • 0 DE2D 655 
C DE2D 390 C DE20 660 

11 IFCA~RAYCI) .NE. ZEE) GO TO 22 DEZD 395 C DECL 2265 .. 2290 DEZD 6b5 
C DE2D 400 t DE2n 670 
C DECL 1050';'1115 DE2n 405 IF(lNSTR(I) .GE, 0) GO TD 92 CEzn 675 
C DE2D 410 N • N + INSTR(I) DEZD beo 

IF(ARRAYII) .NE. EX) GO TD 89 DE2D 415 GU TO 11 OEZ=-' 695 
C DE2D 420 92 H = H + INSTR(ll DE2[l 690 
C DECL 1125.1135 DE2D 425 11 IF(lNSTR(I) .LT, 1000) GD TO 10 0=2., 695 C DE2n 430 NRANGX .. HlM WRAt;r.X,.NDOM + ~II DEZD 700 
C 'v' DEZD 435 NRANGV B HI~O(~RANGV,NDJM .. N) DEZr. 705 
C DE20 1,40 IF(lNSTR(I) .LT, 4000) GO TO 9 DE20 710 89 IF(ARRAY(I) ,NE. ~HY) Go TO 23 DE20 445 IF(t;RAtiGX .CiE. li) GO TO 93 DE2e 715 

I~STR(INDExl • 101 DE21l 450 NODt! = NOua - tRl.IIGX DE2G 720 
A'lGUE •• T~UE. DE2D 455 NRMIGV 1: IlF<M·:GV - "RANGX OE2:: 72~ 
(j~ Ta 54 DE2D 460 IlRAi"IGX " 0 DE?:: 730 

C DE20 465 93 IF(r-lRAI1GY .GF. Ct) Ga TO 12 DElD 735 
--' 
~ 

-------- ... ------------_ .. _a_. _. _o. a .• _ .. 0' .. 



L 

C 
C 
C 
C 
c . 

c 
C 
C 

C 
C 
C 

~DOM • NDOH - NRANGV 
N~ANGX • NRANGx .. NRANGy 
t.RANGV • 0 

12 WRITE(6/1051 NDD~/NRANGX/NRANGV 
ND - NO::J11 .. 1 
t'OSQ • NO •• 2 
IioRITEC6/1011 

DECL 2335 .. Z430 

FINO THE NU'SER ~F ELEMENTS IN THE X DIRECTION 

NE LX • IFIX(FNUH(ARRAV/l/l11 .. O~ll 
IFCNELX .LE, 01 NELX • 1 
XL~GTH • (xZ - XlI 1 NE LX 
OC 94 1 • Il,80 
IF(ARRAVCII ,Ea. EQUALI GO TO 95 

94 CQ':TI:IUE 
GO T:3 991 

95 1 _ 1 .. l 
Yi • FIIUH(ARRAv,!,Ill 
IF(ll ,EQ, Il GO Ta 991 
1-11+1 
YZ - F~U~CARRAY,I,lll 
IF(ll ,EQ, Il GO TO 991 
1·11+1 

FINO THE Nu~8ER OF ELEMENTS IN THE Y DIRECTION 

~ELY .·IFIX(FNUH(ARRAY,I/Il) .. O~l) 
IF(NELY .LE. 0) hELV • l 
VL~GTH • (Yz - y!) 1 NELY 
XZ • Xl .. XLtlGTH 
00 '17 J • 1/~ELX 
X2 - xz .. XL~GTH 
Yl • VZ .. YL"GTH 
00 '17 1 - 1,r:ELY 
vl • Vl .. YL>;GTH 
~ELMTS • ~EL~TS .. l 
WTXC~ELHTS) • l.~ 1 XLNGTH 
~TYINEL~TS) • 1.0 1 VLNGTH 
XSTI:P • XL:.GT.l 1 /liDJM 
YS1ï:P • YL',Ci"T l '\vJH 
XZZ • XZ - lISTEP 

AJJ THE POI~TS 1~ EACH ELEHENT SEPARATELY 

DO 96 J1 • l,N!) 
xzz • xzz .. XSTEF 
V11 - Vl .. VSTF.P 
0;:1 '16 Il • 1/ \:: 
v11 - Vl1 - vSTE~ 
~,PT "' :,PT • 1 
XJ(:.PTI - XZZ 

Figure 6.1.2b 

OEZD 740 
DEZD 745 
DEZD 750 
DEZD 755 
CEZD 760 
DEZD 765 
DEZD 770 
DEZD 775 
DEZO 780 
OEZD 785 C 
DEZD 790 C 
DEZD 795 C 
DEZD 800 
OE2D 805 
DEZO 810 
OEZD 815 
DE2D 820 
DEZD 8Z5 
DEZD 830 
DEZD 835 
DEZD 840 
DEZO 845 
DEZO 850 
DE20 855 
DEZD 860 
OEZD 865 
OEZD 870 
OEZD 875 
OEZD 880 
DEZD 885 
DElfl 890 C 
DEZD 895 C 
OE2n 900 C 
OE2D 905 
DeZD 910 
DEZ!l 915 
DEZD 9Z0 
DEZO 9Z5 
DEZO 930 
DEZO 935 
DEZD 940 
DEZD 94S C 
DEZD 950 C 
DEZD 955 C 
DEZD 960 
DEZD 965 
DEZ!l 970 
DEZD 975 
DEZ!l 'J80 
DEZD <lRS 
DE?O ')90 
CE?!l 995 
DEzrJ1uOO 
OEZD1M5 

96 VO(NPT) • vu 
NPTl • NPT .. NDSQ .. 1 
WRITEI6/11Z) NEL~TS, IXO(Jl, J • NPTI/NPT,NDI 
NPTl • NPTl .. l 
00 97 Il • l,ND 
NPTl • NPTl .. l 

97 WRITE(u/113) YD(NPTl, IJI J • NPT1,NPT/NDI 
PRCARil • ME 
GO Ta 1 

A CONTINUITY STATEMENT HAS BE EN RE AD 

150 JF(PRCARO ,NE, AREI GO TO 151 
PRCARO • EL 
1 = 0 
,J " 0 
NCCUNt; • 0 
WRITEC6/1l4) 

151 IF(PRCARD .NE, EL) GO Ta 991 
13 :a 0 
00 152 Il • b,eD 
13 • 13 .. 1 
NELC(131 • IFIXIFNUMIARRAY/Il/12i • 0.1) 
11 • lZ 

152 COIITINUE 
NELCCI3 + 11 • 0 
WRITE(6/116) ARRAV(1),NELC 
NCCONO • NCCONO • ND 
INOt:X • 1 
IF(ARRAYC11 .EOI WHY) GO TO 1'4 

PUT T~E X CDHTINUITY CONDITIONS IN THE ARRAY IIELCXI 

153 nCCUND a NCCOND ~ NO 
J " J + 1 
lELCXIJ) • NELC(INDEXI 
I~OEX " INDEX + 1 
IF(NELC(IHnEXI .~E, 01 GO Ta 153 
J = J + 1 
IELCXCJ) • 0 
GO TO 1 

PUT TIiE Y C[;NTINlIlTV CONUITIONS IN THE ARRAV IIELCVI 

154 NCCUNQ. NCCO~C + ~D 
1 • 1 + 1 
IELCY(I) • NF.LCIINDEX) 
INDEX" IrmEX + 1 
IF(~ELCII~nEX) .HE, 01 GO Ta 154 
1 = 1 + 1 
IELCYII),,0 
GJ Ta 1 

82 IFIPRC~RO ,NE, AREI Co TO 155 
1 .. 0 

--------------------_._------ --- -_._--_ .. 

DE2DlGIO 
DE2D1015 
DE2D1020 
DE2D1025 
DE2D1030 
DEznl035 
DE2!l1040 
DE2011'145 
DEZD1050 
DE2D1055 
DE201060 
OE201Q65 
DE2DI070 
OElOI075 
DEzno~o 
DElDlne5 
DE 2'11!J90 
DEZ(H~95 

OE2C110C 
DE2Cllo5 
DE?DlllC 
DEZOl1l5 
DEZD1l20 
DEi![llLZ5 
DEZD113C 
DE2Dl135 
DElOI140 
OE20Ü45 
DE201l5C 
DEZOl1" 
DEZD1l6C 
DE'-D116' 
DElnl17C 
DE2:n175 
OE2:l119~ 
DE2011(!~ 

DElO1l9C 
OE2D1l9! 
DE2D120C 
DEZD120! 
DElDIZ1: 
DE2i1l21! 
DEZ0122C 
DE2:l12Z! 
DEZ:l123C 
DEZOIZ3! 
DEl!l1Z4~ 
CE~!llZIo! 
DEZI)125C 
OEZD125! 
CE<'l12bC 
DE2:l1Z6! 
D1!2D127: 
DElDI27! 

-' 
.;:. 
"-J 



C 

J Il 0 
NCCUND • 0 
GO TO 156 

155 IF(PRCARO .NE. EL) GO TO 991 

C UPON COMPLETICM, AOC ENOING VALUES Tn IIELcxI AND 'lELCV' 
C 

c 

156 J Il J + 1. 
IELCX(J) • .. l 
1 Il 1 + 1 
lELCV(l) ... 1 
IF(ARRAVel) .EO, BLANK) GO TD 86 

C OECL 2545"Zaoo 
c 

112 FORMAT(lHO,bOX,IELEHENT NUHBERI,13 1 ~HO,20X,lOG11.3) 
113 FURMAT(lHO,9X,r.ll.3,16,9Ill) 
114 FORMAT(lHl 1 lHO,42X,ITHE FOLLOWyNG ELEMENTS ARE TAKEN TC RE 

*tNTI 1 lHû,7X,ITVPEI,12X, IELMEIJTSIII, 
116 FORMA~(lH ,6X, A2,IONT',3X,3913) 

END 

Figure 6.1.2c 

3136 

148 

OE2D1280 
OE?D1285 
DE7.01290 
OEl01295 
DE201300 
oE?01305 
OElOl310 
OE?0l315 
DEl0l3Z0 
DE2D1325 
OE201330 
OE?01335 
OElD1340 
OE2D1345 
OE2Dl~50 
OE?Dt355 
OE2D13bO 

ADJACOE201365 
OE7.D1370 
DE2D1375 
OEl013BO 



independent and can be taken to any comp~ter insta1·1ation 
which accepts Fortran programs. 

149 

In defining the instructions for a differentia1 equation 
statement or a boundary condition statement, INSTR and 
INST2D operate by eva1uating the branching structure and 
syntax tree of the statement by noting the number and locations 
of the symbo1s +, -, (, and ). The syntax tree is then reduced 
to the canonita1 form 

S 
E Ds y = f (6.1.1) s=l 

by app1ying the distributive 1aw to compound operators enc10sed 
in parentheses. Instructions generated by this procedure are 
compatible with the subroutines DIFFEQ and DIFF2D. 

A separate subprogram FNUM, given in Figure 6.1.3, is 
ca11ed by the subroutines INSTR and INST2D to determine the 
value of a number stored in Hollerith form in the Fortran 
language. FNUM establishes the machine-independent, free-format 
feature of numbers in DECL since it accepts numbers in any 
Fortran permissible form and in any location. 

The diagnostic capabilities of INSTR and INST2D have 
been designed to detect most errors in DECL that lead to 
logical inconsistency. For this purpose, a number of para
meters and conditions are checked in the programs after each 
symbol in a statement has been translated. If an error is 
spotted, the programs write an appropriate message and proceed 
to the next DECL program. 

Conversational versions of the programs INSTR and 
INST2D for use in time-sharing situations have also been 



:C 
'r 

r 
. ~ 

,C 

c 

: 

C 
r ... 

c 
C 

:C 
C 

op ... 

~U~CTI~~ F~UKCARRAY/I/J) 

i~IS F0~CTiCN SUpPPOGR~H RETURHS THE NUMERICAL VALUE OF A 

.U.dE~ STG~En !N "OLLE~ITH FORM IN IARRAVI STARTING IN LOCATION 
, t 1 

_ ·.u,aF.~."\I S/EXPO!;,jEC~:AL/ONLVE 

d 'E~; i!;f\ :.c:.R:'yCF 141:J~\(151 

ù:'7A :.UM / IH 11 ,1H1.1H2.1H3.1H4.tH5,lHb.1H711HB,lH9, 

u iH.,l~E,lH-, 4+ 1 

iNITIILIZE THE TY~5S CF NUMBERS POSSIBLE 

~J'~aE:( c .HLSE. 
,'.;;5 = .Ft.lS:. 
x:.'~~: : .!=ilL5E. 
E:~··.l~ = .; t.I_SE. 
~j~ YE = .F!.~SE. 

:,;~' C 

v = 1 

~E7ER~i~[ 7~E TVPE OF CHIRACTER IN LOCATION J 

: 2 ~.; • 1,15 
F ;ARil:.V(J) .EI). AN'JtHN» GO Ta B 

2 G;.ïI' .. ;.:E 

3 F:EXPJ~)~: T~ b 

~ F(.~:·. Nj~~ER) GO TO 990 
5 N"",M = ~~U!"\ 

:':J:; :. ;;I~:US S!GN 

:F(~!\ SI ~hU~ = - FNU~ 

,F:.~~ • D[rN:'LI RETUR~ 

&0 7: 
~ IF(.~~ • ~~~aE~) GO TO 5 

ACD T~~ EXPONE~T 

LPO~E~ c LPr~E • NU~ 

.:F·~l\JSI LPn~ R = LPD~ER - 2 * NUH 
F~;.;:-: = Ft::;:· '" 0.0 ** LPO~~ER 

~EiUR'" 
S ~ = J • l 

lF(J ,':'T. Hll GO TO 3 
!~t~ .~Q. 1) G~ TO 9 
iFIN ,GT. 11) GO rD 10 
iFCCNLYEl G~ Tn , 

~H:: CU;;~E:1T C>i:.R!CTER 15 t. ~:U:~BEP. 

rl~.j'~BE~ •• 7"tiE. 
f 'U~: = lO .. ~.U" + t: - 2 
lFt,N:T, DLCHALI ~a Ta 

Figure 6.1.3 

DECl6115 
DECLb120 
DECLb125 C 
OEClb130 C 
DEClbD5 C 
llECl6140 
OECL61105 
OEClb150 
OECL6!55 
OEClb160 C 
DECLb165 C 
OEClb170 C 
DECLb1i5 
DEClblBO 
DECLb!85 
OEClb190 
DEClb195 C 
DEC Lb200 C 
DECLb205 C 
OECL6210 
DECLb215 
DECL6220 
OEClb225 
OECLb230 
DECLb235 
DEClb240 
D:CL6245 
DECl6250 
DECLb255 C 
DEClb2bO C 
OEClb2b5 C 
DECLt:270 
DECL6275 
DECL62l10 
DECLb2B5 C 
DECL6290 C 
OEC 1.6295 C 
OECl63CO 
OECU'305 
oECLb310 
DECL6315 
[)ECLb320 
DECL6325 
OECLb330 
O::CLb335 
DECl6340 
DECI.b345 
[)ECL6350 
DECL6355 
DECL6360 
DEClb3C,5 
OECLb370 
DECLb37' 
DECL6380 

LPDWER ~ LPOWER -
GO TO l 

BL~NKS HAY NeT APPEAR IN A NUMBE~J EXCEPT BEFORE AN E 

9 IFtNUHllER) (;tlLvE = .TRUE • 
GO TD l 

10 !, = N - II 
GO TO lll.1?',13'13),N 

THE DECIMAL POINT IS lOCATED 

11 OECMAL = .TRUE. 
lPDWER = 0 
GO TO l 

12 IFt~XPUN .OR •• NOT. DECMAl .OR •• NnT. NUHBE~l GO TO 990 

THE CUKRENT CHARaCTER 15 AN E 

~Xi'ON = .Ti<IJE. 
FNuH = NUI\ 
IFIMINJSl FNUH - FNUM 
MI!<U5 = .F:'lSE. 
~l'J;·:BER = .l'ILSE. 
:JNLVE = .Ft.L5E. 
t,U:1 = \) 
GO TO l 

13 IFtNUM~ER) GD TO 3 

fHE CUKRENT CHARACTER 15 A PLUS nR MINUS SIG~ 

IF lN • Q. 4) Gn TC 1 
i"I Ir,US • T;WE. 
Go Ta 

rHE INPUT ARRAV ODES NOT CON,TAIN A NU~\BER 

990 J = l 
RETURN 
I:NO 

------------_ .. _ .•. - ...... . 

nEC" 
::: 

:: 

:;=':L~;' 
.., 
CEe:..:",,:, 

----
::: ::. ;'1-

- C ~ ~ .. ,,; 
: .: =-~.'-:. 
~ : 1.~!.-

!: C L ~~ ':" 
C C L~.:. 
J :L.c..:,. 
:"to -: L ~:_ 
C ~ ~::.:.. 
:: ::i.':-:;: 
~ r~~:--
~ :!..é5 
c c!.~:: 
::l ~~~::'-

--' 
c..n 
o 

~:::; 

t-5~ 
: :. 

'oC 

;.. 

"; 

~ 
4", ... 
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written. However, since the programming changes required 

for this type of operation are minor, the listings of these 

versions of the programs are not presented here. The 

modificatio'ns are designed to make the input procedures more 

convenient in on-line operation. For example, the programs 

will prompt the user with the following statements 

WHAT IS THE DIFFERENTIAL EQUATION? 

STATE A BOUNDARY CONDITION 

WHAT IS THE VALUE OF THE CONSTANT pJ 

IN REGION 1, WHAT ARE THE LIMITS OF THE 

X COORDINATE? 

HOW MANY ELEMENTS ARE TO BE USED? 

In this way, the operation of the pr~gram is made virtually 

foo1proof and requires very litt1e specia1ized knowledge. 

Output pr~grams have a1so been developed which write 

l 51 

and graph the solutions of a differential equation in terms of 

their numerica1 values at the interpolation nodes. The 

program which writes the solutions is called RITE and is given 

in Figure 6.1.4. This subroutine has already been called by 

sorne of the programs in Chapter 5. A program to graph the 

solutions of ordinary differential equations is presented in 

Figure 6.1.5. Called GRAPH, the subroutine can plot up to ten 

functions simultaneous1y. Finally, Figure 6.1.6 contains a 

plotting pr~gram called PICT for use with two-dimensional partial 

differential equations. Typical output from these programs 

is shown in the following sections. 



C 
C THIS Sl.'BRClUTINf: \.!RITES THE It·" IW ,IJI ,·'t\TlÜX 'AI FOR OuTPUT av 
C THE P R li G R AI ~ • 1 F '1 r ART' l S F,\ L SE, TH fI N THE L A 5 T C Dl. U f·l N 0 FIA 1 

I~ 15 ASSUNeo Tll BE MI INHO~'OG[NenUS SOl.UTION ,'\ND IS :'jRITTEN FIRST 

1 . 

1 

1 

L(lCICAL IP,iRT 
DI:IENSION 1',(1) 
NN l ::: l'~ 
IF(IPART .NE. 01 GO TO 2 
wR ITE (6/100) 
NMI ::: Il - 1 
lAOD c MAODA + M.NMI 
~"RlTE(6,101) q,/HI + lADOl,I c 1/M) 
lF(NNl .E(~. 01 RETlJRN 
WRITE(oJ102) 

2 IADD ::: MADIlA - M 
ua 1 J = 1,I'!Hl 
IADU = IAOO + t~ 

1 VI RITE ( 6, 1 0 1) (111\ r 1 + lA 0 ()) , 1 ::: l , H ) 
ReTURN 

1 00 r· 0 I{ r'\ A T ( L H -, 53 x, , TH 1; 1 N H 0 "H] G F. H E 111 J S SOL U T 1 (] N ' 1 ) 
101 FORNAT(lHO,lOor5X,.5rI(pF.18.61/1l1 Il 
10? 1: DiHIAT ( 1 H-,!5 4X, 1 l'HE HOi'lrJliEtIEOUS SOL UT! [lN' Il 

lND 

Figure 6.1.4 

i ..... ____ . __ . __ . _____ ....... _ .. _. __ . __ ....... , ................ . 

DECL9Q90 
OECLQ095 
IlF.CLQ100 
DF.CLC'l105 
DECL9110 
DECLQllS 
OECL Q t20 
DECL9125 
DECL9130 
DECL913S 
DECL9140 
DECL9145 
DECL9150 
DECL9155 
DEC1,9160 
OECL9165 
OECI.9170 
OECl.9175 
DECLQl!~O 
DECL9J.85 
DECl.l')lCJO 
DECL9195 
DECLnoo 
DF.CLt)7,o5 
DECL Q210 

l 
j 

152 1 



c 
C 

: C 
. C 
C 
c 

c 
;:\ : ~ 

, , 

~i 
~: 
::Il 

1 
1 
: C 
Ic 
~ C 
! 

. ~ 

5ua~OUTIN: GRApHCX,V,N,NPER) 

TH:S SJ5R~~TI~E GR ~HS THE 'N' POINTS IX,V) ON A STANDARD (INE 
?RFllë", ï!"!r. ~;VI"9= 't.J' ~AV BE ANV ~ULTIPLE OF NP ER, THE N!lMBER 
OF 'X' COC~~I~ATE ~INTS' 50 THAT SEVERAL FUNCTIONS CAH BE 
GR:'i'HEJ Aï r.':ë TI~' • 

.Jl;:EIlSl:;1: il 1 l,ve Il, Ive l', IXe5001,cH,~Re 1l1l,ANUI1(6I,SVI·~ROLi 10) 
CC':':::!" CHA?, 1 X; 1 V 
~A7A SLA~~,vE~T/W~~,PLUS,Sv~aOL / lH ,1HI,lH-,lH+,lHl,lH2,iH31 

• lH4,l,"5,,~ib;lH7,lHBIlH9,lHO 1 
I;:e:-O;)('l,t::>::~.) .!::., 0) R~TU~!J 

1=(Xe~~ER) .E~. X!l» ~ETURH 

iHé P~;~TS ARE SCA~ED PRUPE~Lv AND PUT IN THE INTEGER ARRAvS 
• ! \' A',;) • IV. 

SC LEX. 110.1/eXeNPER) - Xel» 
'!' X. 'l'Ill 
y': :. • V( 11 
...,..1 lIe ll~ 
IFeVII: .:iT. V~'AX) 'l'MAX Ir 'l'CIl 
IFtVI! •• LT, V~!~l VMI'l = VII) 
lF:V~:." .E·:. V':I~,i RET:j~N 
SCl.LEv " 5.',1/cV~A.< - \"lIN) 
:::0 15 ! = ~/~,?<:R 

15 lXcI! = IF:XI eXIIl - XIll )*SCALEXI + 1 
.;:l 2 1 • l,:" 

2 IVe 1) = IFIXe IVII) - VI1I~) *SCALEvl + 1 

'IXO, :.~O 'IVO, ARE THE LOCATIONS OF THE COORDINATE AXES 

IXO = ,'AxOeIcIxe -Xel)*SCALEX + 1.IIU 
IVJ ='AXOcIFIxl -V~IN~SCALEV + 1.),1) 
IFCIXO .GT. Ill) IxO = 1 
iFe IVC ,GT. 511 IIf:) = 1 
.. RITEI:',lOOl 
SC~LEX " IX(~PER) - XI1I)/S. 
SC:.LEV = eVUAX - 'l'MIN) /5. 
VV:'LUE " V~AX + SCALEv 
LI:;E • 52 

3 L! ',E • LI ~jE - 1 
lF:LI~ë .E~. IvO) GO TO 16 
IFcL!~ë .EQ. IvO - 1) GO TO la 
IFeLI~E .LE. 91 REruRN 

TH: CH~~ACTER ARRAV 'CHAR' IS INITIALIZED 

lJ:J 4 1 la 1,111 
4 CH~ReI) = BLA~K 

CH~~:lxOl = VERT 
:,: T~ é 

lb ~J ~ 1 • 1~11l 
5 CH:'RtIl = ;.lep. 

-------------- ------_. 
.. _._0>._. __ .... ____ _ 

Figure 6.1.5 
------------------------- ._-- _._-

DECL422S 
DECL4230 
OECL4235 
DECL4240 
DECL 42'.5 
i>=CL47.50 C 
DECl.42!1S C 
OECL42~O C 
D2C L.{.2~5 
DéCL4270 
i>:CL.47.7S 
DECL4230 
C:CL 4235 
CECL.47,90 
CEC L42?!; 
DEC L 4:,:! oC C 
DEC L4 30S C 
CECL 4310 C 
DECL431S C 
DECL4?20 C 
D:CL 4 3<:S 
DëCL4330 
f):CL4335 
!:~CL4340 
OËCI.4345 
CECL4350 C 
DECL435S C 
DEC 1.4350 C 
DECL4365 
DECL4370 
DECL4375 
DECL438C 
DëCL43SS 
DECL439~ 
DECL43SlS 
OECL4400 
DECL4405 
DECL44l0 
DECLt.415 
DECL4420 
OECI.4425 
CEC 1.'.4:: ~ 
DECL4435 
DECL.4440 
DECL4445 
OECL4450 
DECL4455 
CECL4460 
OECL.4t.65 
DECL4470 
OECL4t.75 
OECL448C 
DECL448S 
DECL4490 

DO 12 ! 
12 CHAReIl 

6 1 = a 
J2 = C 

7 1 = 1 + 

1/111'22 
PLUS 

'1' IS THE Nur~BER OF THE FU'lCTI(j~1 GRAPHED 

IF(! ,GT. 
Jl z Ji! + 
J2 " J2 + 
JX " 0 

la) 1 
1 
IlPER 

LlO 14 J JI/J2 
JX .. ,JX + 1 
IFelVIJI .~E. LINEl Go TO 14 

IF TI'iE Y c;:nRD!Nt.'E OF THE POIlo/ï C'lRRESPONOS TO THE LI':;: T~ :lE 
PRINTEU, THE FuNCTtON NUHaER IS PLACEe IN THE APPROPRIATE 
LOCATIDt-l 

CH:.RtIX(JXlI .. SV~:BOL(Il 
14 COt:TINUE 

IFeJ2 .LT. ~) GO Ta 7 
!FcLIN~ .~~. 2~) GO TO B 
IFtHOOeLIIJE - l'la) .EQ. al GO TC 9 

THE ARRAV 'CHAR' !S WRITTEN USING THE PROPER FORMAT 

WRITE(6,101l CkAR 
GO TO 3 

a ~RITE(b,1021 CHAP 
GO TO 3 

9 vV:'LUF. • 'l'vALUE - SCALEV 
IF(CHAK(IXO) .NE. VERT) Go Ta 13 
CHAReIAO) = PLUS 

13 WRITE(b,1031 VVALUE,CHAR 
GO rD :l 

le ANUNIll = XII) 
DO 11 1 = 2,6 

11 ANUNel1 = ,NUMel - 1) + SCALEX 
WRITElo,1041 ANU~ 
(,0 TO 3 

100 FO~MATclHl/1HO,55X~IGRAPH OF THE SOLUTION'//Il 
101 ~ORNATtlH ,l5X,l11~1) 
102 FORMATCIH ,lOx,lHY,4X,lllAl) 
103 ~ORMATelH ,5X,G9.2,lX,l11Al) 
104 FORMATe1H ~10X~G9.2.2e13x'G9.2)~bX,lHX'6X'2eG9.2'13X),G9.21 

END 

----------_._--- _.-." " .... 
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Figure 6.1.6 

SUBROUTINE PICTIx,v,Z,N,NUHBER) 

THIS SU6~OUTINE PRCDUCES A PERSPECTIvE GRAPH OF THE 'N' POINTS 
'(X,V,Z)' éjl\ A STA~!OARO LINE PP.II!TER: THE INTEGER 'NUM!lER' 
I~DICATES ~~ICH OF SEVERAl SOLUTIONS STeREO IN THE ARRAV 'Z' IS 
Ta BE GRAP IEO. 

UIHENSIJN Xll),Yll),Z(l) 
OIM~NSI~N X~E~I~OOl,ZNEW(5~O),IXl500j,IYI500),IZI5001 
OI~ENSIJN C~ARllll)ISyMDDLI10) 
COMMO!I CHAR, XNb., V'jEW, Ix' IY, 1 Z 
UATA BLA"K,VERT,WOq,PlUS,SlASH,WHV , 1H ,l~I,lH./1H./1H,/1HV , 
UATA SV~BOL 1 1~r.'lHl,lHZ,lH3,lH4'lH5,lH6,lH7,lHB'lH9 , 
~Zl • N • l~u~~ER - 1) • 1 
hZN • "Zl • N - 1 

THE POI~TS ARE SCALED P~UPERLV AllO PUT IN THE INTEGER ARRAvS 
'IX'I 'IV' A~D 'IZ' 

CALL SCAlEIX,I,N,X~AX,XHIN,B,.I,xSCALEI 
GALL SCALEIV,I,N,V~AX,VHIN,25.0,VSCA(E) 
CALL SC ALE 1 Z, l'll, :.Z'~, ZMAX, VHN,2!!, t, ZSCALE) 
IFCXSCALE .F.~. O •• OR. ySCALE .E~. 0: .OR, ZSCALE .Ea. O~I 

• GO TO 99(; 
XSTt;P • IX':A>: - XMI'II • ,259 
',Zl • ;IZl • 1 
UJ Z 1 • lJ~ 
VDIFF • IVlt) • VMI~) • VSCACE 
IXI') n IFIXllxCt) • XMIN) • XSCALE • VOIFF) • 1 
IZI') • IFIXI(Z(l • HZ1) - ZHI"' • ZSCALE • YOIFF) • 1 

2 IVIII • IFIXIVOIFF * 0.395) • 1 
t.~!TE(6,10û) 
ZSCALE • CZ~AX p Z~I~I , Z.5 
~YALUE • 2. • ZMAX • zSCALE 
LIllE. 52 

3 LI::!: • LI:IE - 1 
IFCLI~E ,E~, 11 GO TO 16 

THE C~ARACTER ARR AV 'CHAR' IS INjTIALIZED 

DO ft 1 • l,Ill 
4 CHAK(II 8 ~LAI\K 

CHAKI11 • VEf:T 
(i0 T::; b 

l~ 00 ~ 1 • l,Ill 
, CI-iAKI 1) • H:P 

00 12 1 • 1/111/22 
12 CMAK( 1) • PLUS 

6 IFILI~E ,EO, 27) C~AR1271 • WhY 
IFCLI~E ,GT. Z51 G~ TO 7' 
CM~~ILI~EI • 5LA5n 

IF THE Z C~CgOINATE JF A prlHT C~RPESPONDS TO THE LINE TO RE 
p~I~TEn, A v C~OR~I~ATE DEPENDEI\T SVMBOL IS PLACEO IN THE 

DE2D2625 
DEZD2630 
DE2D?635 
DEZ[l2640 
DE?02645 
DE?D?650 
DE2D?655 
DEZ02660 
OEZ[lZM5 
DE2D2670 
DEZ02675 
DE?D?6BO 
DE?D7.M5 
DE?O?690 
DEZO?695 
DE2DiI700 
OEZ02705 
DEZD?710 
DEZ[l?715 
DE2D?720 
DEZ027Z5 
OE2[l2730 
DE2[lZ735 
DEZn2140 
DE?02745 
OE20Z750 
OEZD7.755 
DE2D?760 
DE21l2765 
DEZIlZ770 
DEzn?775 
DE2nZ1BO 
OEZn2785 
DEZ02790 
DEZn2795 
DEZnZ800 
DEZIl7.805 
DEZOZB10 
DEZD2B15 
OE20ZBZO 
OEZ(jZ8Z5 
DEZ[lZR30 
DEZO?fl:35 
DE202R40 
DEZO?1I45 
DEZD?B50 
DEZOZ855 
DEZDZ660 
DEZliZ865 
DE21)2S70 
DEZ02B75 
DEZfl7.BBO 
DEzn2BR5 
DEZI12090 

c 
C 

C 
C 
C 

c 
C 
C 
C 

APPROPRIATE LOCATI~N 

'7 UO 14 J • liN 
IF('ZIJI ,NE. LINE) GO TO 14 
CHAK1IX(J)) • SY~BOL(IYIJ') 

14 cOr:TINUE 

8 

9 

13 

1') 

11 

99n 

10':: 
101 
102 
103 
104 

IFILINE ,EO. Z5) GO TO B 
IFIMODILIhE - 1/10) ,EQ, 01 GO TO 9 

THE ARRAV 'CHA~' 15 WRITTEN USING THE PROPER FORHAT 

W~ITE(6,lOl) CHAR 
GO TO 3 
WRITEI6,10Z) C~AR 
GU TO :3 
ZVALUE • lVALUe • ZSCALE 
IF(tHAR(l) .!lE. VERT) GO TO 13 
CHAKell Il PLUS 
WRITeC6,lu3) ZVALUE,CHAR 
IFILINE ,EO, 11 GO TO 10 
GO TO 3 
CHARI11 .. Xf'.H' 
UO 11 1 • z,6 
CHAKII) D C~AR(l - 11 • XSTEP 
~RITEC6,104, (CHAReI),1 • 1,6) 
KETURN 
N = 0 
RETURN 
FORMAT(lHl'lHO,5~X,IGRAPH rF THE SOLUTION'/'" 
FURMATI1H ,15X,lllA1) 
FUR MAT( lH ,lox, lIlZ,4X,111Al) 
FORMATllH ,5X,~q.2,lX,111Al) 
FORMATI1H 'l~X/G~.Z,2113X,G9,2)/hX,lHX,6X'2IG9,2/13XI,G9,2) 
~ND 

5U6ROUTINE SfALEIX,Nl,NZ/XMAX,XHyN,SIZE,XSCALEI 

THIS SIJBROUTINE DETEPMINES THE MyNIMUM AMD MAXIMUM VALUES AND 
A SCALE FACTnR FrR THE ARRAY 'X'~ 

Ut:1ENSION X(1) 
X:"AX • XINll 
X~lIN • XII,ll 
XSCAI,E • O. 
UO 1 1 • NIl 112 
IFCXII) .GT, X~AX) XMAX • XII) 
lFIXII) ,LT, X~I") XMIN D XII) 
lF(XMAX .EQ. X~INI RETURN 
XSCALE " SI l.F 1 ! X!~AX - XIII:" 
k!iTURI, 
t:ND 

-----------------------_._----- ._--_. 

DE202!95 
DE202900 
DE2D2905 
OEZOZClI0 
DE2!l29l5 
DEZr.Z9Z0 
DEZD29Z5 
OE2DZ930 
DEzDZ935 
DEZD2910C 
DE2D29105 
OEZD2950 
OEZnZ955 
DE2DZ960 
OEZD~965 
DE2D2970 
OEZD7.915 
DEZD?9RO 
DE~n29!15 
DEZD?9C;O 
OEZn~ClC;5 
DEZO ~O·)O 
DE2r.1ntlS 
DE2D10l0 
DE20101S 
DE2~102:l 
DEZ03CZ5 
DE2U1030 
DE20101S 
DE20~040 
DE21130,.5 
DEZII10~O 
DEzil10,5 
DEZ030bO 

OE2('130b5 
OE~[l3C70 
OEZfl3075 
OEZ[130nO 
DE:!n'loe5 
OE2[)3090 
DE2D30?5 
DE20:H1)0 
OEZ1131:l5 
DEZil3110 
DEZO'lt5 
OE?:JHlO 
DEZ!1:H25 
DEZ:''H10 
DEZf'''1~5 
DE?fl3140 

--' 
U1 
~ 



6.2 ORDINARY DIFFERENTIAL EQUATIONS 

A computer program for the automatic solution of 

arbitrary linear ~rdinary differential equations is now 

virtually complete. The only remaining step is to provide a 

main program to link the various subprograms together in 
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the proper order. Such a main program is given in Figure 6.2.1. 

The complete program package, including this main program and 

twenty-one independent subprograms,requires 190 K bytes 

of core storage. A large part of these memory requirements is 

for the three arrays D, C and COM in which all of the major 

matrix operations are performed. 

The program has been extensively tested with both 

standard differential equations and eigenvalue boundary value 

problems and sorne of these results will be presented here. 

For the first example, consider the differential equation 

(5.2.3), the solution of which is the exponential function. 

A complete DECL program listing for this problem is as 

follows 

* 8 DIFFERENTIAL EQUATION WITH EXPONENTIAL SOLUTION 

DE: D/DX{Y) = y 

BC: Y{O.O) = 1.0 

x = 0.0, 10.0 (4 ELEMENTS) 

WRITE PARTICULAR SOLUTION 

GRAPH PARTICULAR SOLUTION 

(6.2.1) 

(6.2.2) 

(6.2.3) 

This program specifies that equation (5.2.3) is to be solved 

using four equal eighth order elements in the interval 

[0.0, 10.0]. 

The above program was run on an IBM 360/75 computer 

(aswere all examples in this thesis) and required 1.8 seconds 
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THIS 'ROGR," WAS ~RITTEN ev ZOLTAN CSENDES OF MCGILL UNIVE~SITV 
~O\TRE~L , QUEBEe, TD SOLVE ARBITRARv LINEAR ORDINARV 
OIFFE~ENTIAL EeUATIONS. THE OIFFERENTIAL EQUATIONS ARE REAn IN 
TH~ OECL eG~PUTE~ LANGUAGE AND THEIR GENERAL SOLUTIONS ARE 
ME7U~~~D I~ TE~HS 8F ~OTH POINT VALUES AND A GRAPHIeAL PLOT. 
;.>!.;;.TICULAR S:lL\JT!O"jS t.il." ALSO PROO!JeED, IF BourmARv eDtlDITIONS 
~~E S;:cCIFIED. 

CI~ENS ~N NSTc500:,COHsr(500),XOC500),WTCI00),DNISOOOI,eIAOO01, 
* e ~19 OOl,YRC4000l,VII39001,ROQTRII001,RDOTIII001,XBCi3001 
~~JIVA ENC IYRll 1,e(40011), CRnOTRCll,DNI390111, 

* ROO Ill1,D~C4001l', cYIll1,DNI4101" 
COAHJ\ COH 
LCGiCAL LA~CA,RITEP,RITEG,PLOTP,pLOPG 

C ~5!~ T,iE C:FFE~E~TIAL EQUATION, nDuNDARV CONDITIONS AND 
: G,,:~ET~IC I~FCRMATIQN 

:c 

.C 

CAL~ 1 STRCI~ST,CD~ST,NUMDE,XBC,xO,WT,NELMTSINRANGE/NDOH, 
L ~OA,R~TEP,~ITeG.PLOTP,PLOTG,NEIGWR,NEIGPLI 

~R = ~ A~GE • 1 
~c = \ ~M • l 
~ULLn = NO - ~~ 

C S~~VE THE DIFFERE~TIAL EQUATION IN EACH ELEMENT SEPARATELV 
c 

: c 
:c 

CALL DIFFECID~,MO~.wT,NELMTS,I~ST,CONST,XO,NR,NO, 
• NULLCINULLV,LAHOA) 

IF(NO .EQ. 01 GO TO 1 
~C~TS = HO~ .• ~ELHTS 

~A~E THE ELEHENTAL SOLUTICNS cnNTINUOUS AND PRINT THE GENERAL 
·c SOU);::J:'; .,. 

\. 

IC 
ic 
jC 

i~ 
C 

2 

C!LL CC~Ti:jCON,NR,SO,HON,NULLV,C,NOPTS,NONHOM~NULLO,NULLVI 
* ~~LM7SlwT~L~~rA,RITEG) 

* 

IF Ne .EQ. 01 cO TO 1 
IF L~~~A .~R •• N~T. PLOTG, GO TO 2 
~. ~;CPTS.·.ULL V 

C~~PH THE ~E~E~AL SOLUTION 

CALL G~APH(XO,C,N,NDPTSI 

ACJ T~~ BDU~~A~V CO~DITIONS 

CALL BJUND(C,~DPTS,NONHOM,NULLO,NU(LV,ON,NWBC,NR,NO, 
INST,CCNST,X~C,NU~DE,xO,NELHTSlwT~LAMDA,RITEPl 

F:~~ .EQ. Cl GO TO 1 
:~~ a ·~o • ~ELMTS ,. ;:T \f ~~ ... éC 
C( .N T. L!~~A~ ~~ TO 3 

Figure 6.2.1 

OECL 5 
OeCL 10 
OEeL 15 
DECL 20 
OECL 25 
DECL 30 
OECL 35 
DECL 40 
OECL 45 
OECL 50 
OECL 55 
DECL 60 
OECL 65 
OECL 70 
DECL 75 
DEeL 80 
DECL e5 
DEeL 90 
DEeL 95 
OECL 100 
DECL 105 
OECL 110 
OECL 115 
DECL 120 
OECL 125 
OEeL 130 
OEeL 135 
OECL 140 
OECL 145 
OEeL 150 
OECL 155 
OEeL 160 
OEeL 165 
OECL 170 
DECL 175 
OECL 180 
OECL 185 
OECL 190 
OECL 195 
OECL 200 
DECL 205 
OECL 210 
DECL 215 
DEeL 220 
DeCL 225 
OECL 230 
OECL 235 
OECL 240 
OECL 2/,5 
GEeL 250 
OECL 255 
DECL 260 
~ECL 265 
DECL 270 

C 
C 

C 
C 
C 

CALCULATE THE EIGENVALUES AND EIGENVECTORS 

CALL EIGENCDN,NO,NELMTS,NOPTS,NWeC,C,YR,VI,ROOTR,ROOTI,NEIGWRI 
IFIND .EQ. 01 GO TO 1 
N = ND~T * ~EIGPL 
GO TO ~ 

3 IFe.NOï. PLCTPI GO TO 

GRAPH THE PARTICULAR SOLUTION 

4 CALL GKAPHeXO,ON,N,NDPTl 
GO TD 1 
I:NO 

L 2 5 
L 2 :: 
L 2 5 
L 2 : 
~ : 

3~: 
:.. 3:5 
~ 3: ': 
L 3:5 
L 32: 
L 323 
L 33:: 
L 335 

-' 
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of C.P.U. time for solution. The value of the solution 

at x=lO.O was 22025.7, which is correct to five significant 

figures. This value is considered to be round-off error limited 

since the IBM 360/75 has a 24-bit mantissa in single precision. 

Equation (6.2.2) has also been solved with the differential 

equation solving program using first, second, fourth and 

eighth order polynomial approximations and one, two and four 

element subdivisions in the interval [0.0, 10.0]. In each 

case, the difference between the answer and the exact solution 

was calculated and the L2 norm of ~his difference function 

was evaluated. A similar analysis was performed for the initial 

value problem. 

DE: D2/DX2(Y) = -y (6.2.4) 

BC: Y(O.) = 0.0 (6.2.5) 

BC: D/DX(Y(O.)) = 1.0 

using second, fourth and eighth order polynomials in the 

interval [0.0, 10.OJ. Figure 6.2.2 contains a plot of the L 2 

norm of the computed error functions against the number of 

interpolation nodes for these problems. The lower limiting 

value 'of approximately 10- 4 is interpreted to be the result 

of round-off error accumulation. The convergent behavior of 

these error norms can be approximated fairly well with the 

following empirical formula 

Il y - y appox Il = (n~~+l)g (~)n (6.2.6) 

where n is the polynomial order, p is the order of the 

of the differential operator and N is the total number of 

points. This behavior indicates that higher order polynomials 

result not only in more accurate solutions for a given number 
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Figure 6.2.2 

L 2 norm of the error in the solution. (6.2.1) ___ ; 
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of points but a1so in a faster convergence rate. 

As a practical examp1e of the utility of the 

differential equation solving program in finding general 

solutions for engineering problems, consider the equation 

DE: D3/DX3{Y)+{A+B*SIN{X))*D2/DX2{Y) 
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+{C+D*SIN{X)+B*COS{X))*D/DX{Y)+E*Y = 0 (6.2.7) 

which governs the behavior of hydraulic copying mechanisms 

used in metal cutting [65]. If the homogeneous solutions 

of this equation decay, the mechanism is stable, if they grow, 

it is unstable. 

Solutions of this problem have been obtained by choosing 

three linearly independent initial conditions, integrating 

(6.2.7) numerically for each case, and analyzing the resu1ts to 

determine their growth or decay [65]. When solved with the 

differential equation solving program of this thesis, none of 

these complicated procedures is necessary;the equation is simp1y 

read in as it appears in (6.2.7), and no boundary conditions 

are specified. The program automatical1y returns a full set 

of homogeneous solutions and, provided the region used 

encompasses several periods, it is only necessary to observe 

the shape of the solution in order to determine its stability. 

To be specifie, let the values of the constants 

in (6.2.7) be 

CST:A = 0.55 

CST:B = 0.08 

CST:C = 0.825 

CST:D = 0.004 

CST:E = 0.34 



The general solution of the equation in the interval 

X=O. to 30. is shown in Figure 6.2.3. It is obviously 

stable. If, however, the value of E is 

CST:E = 0.76 

the unstable behavior given in Figure 6.2.4 results. These 

conclusions are confirmed by referencè [65]. The graphs in 

Figures 6.2.3 and 6.2.4 were taken directly from the program 

output and each analysis, using five ninth order elements, 

required only 3.0 seconds on an IBM 360/75. 

The next examples will indicate the application of 

the automatic differentia1 equation solving program to 

eigenvalue boundary value problems. Consider, first, the 

Mathieu equation 

DE: D2/DX2(V) -2. *Q*COS(2.*X)*V = A*V (6.2.8) 
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where Q is a parameter. The solution interva1 of interest is 

[0,2~] and, in order to obtain a complete set of particular 

solutions, both the Dirichlet and the Neumann boundary 

conditions need to be specified at the endpoints. Table 6.2.1 

contains the first three eigenvalues ca1cu1ated for these 

problems by the program in single precision on an IBM 360/75 

along with the exact eigenvalues for several values of Q. In 

these calculations, two ninth-order elements were used and 

each computation required 3.3 seconds of execution time 

Note that all eigenvalues produced by the program are aceurate 

to at least four significant figures. The corresponding 

eigenvectors displayed similar accuracy. Two of the graphs 

of the approximate eigenvectors which were produced 

automatically by the subroutin~ GRAPH for the Mathieu equation 
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The DECL computer program graph of the solution of the copying problem. 

E = 0.34 

0.6~ .. 

0.32 

1 \/ ~ \ /'2 
1 
1 
1 
1 

1 2 _ 1 /3 1 
! 1 t (l-ï 1-2 

1 (33, \ lX \ 
y 1 3 3 1 3~..... / 

1 3 1 3 -3..... 1 2 1 2 1 

3_3 3 3;3 l '3...3.,..3 1 
2 \..,/ 3-3 ~ 1 1 

3-3 1 l 'zI 1 /2 

• 1 1 2 11 / V 

f \ 2 1 \j \/ 
.O.3~ 

~O.70 .. 

--' 
m 
--' 

',,,. ,-' -- _ .. _-,,-,.,,-,,,,,-,,~J 



Figure 6.2.4 

The DECL computer program graph of the solution of the copying problem. 
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TABLE 6.2.1 

EIGENVALUES OF THE MATHIEU EQUATION N = NEUMANN, D = DIRICHLET 

q Boundary Number 1 Number 2 Number 3 
Conditions 

x=O x=L Calculated Exact (6{) Calculated Exact (6~ Calculated 

1 N N -.4545 -.4551 4.37137 4.37130 16.0332 

D N - .1093 -.1102 9.0503 9.0477 25.0178 

N D 1.8577 1.8591 9.0770 9.0784 25.0205 

0 0 3.9181 3.9170 16.0306 16.0330 36.0120 

10 N N 7.7163 7.7174 -13.9359 -13.9369 21.1046 

0 N 7.9855 7.8861 -13'.9351 -13.9365 26.7693 

N 0 -2.3994 -2.3991 15.5006 15.5028 27.6989 

0 0 -2.3824 -2.3822 17.3761 17.3814 37.4167 

20 N N 1.1577 1.1543 27.5919 27.5946 -31.3087 

0 N 1.1638 1.1607 28.4692 28.4682 -31.3084 

N 0 -14.487 -14.491 15.3736 15.3958 36.6396 

0 0 -14.488 -14.491 15.4662 15.4940 40.5943 

Exact (6ê 

16.0338 

25.0208 

25.0208 

36.0143 

21.1046 

26.7664 

27.7038 

37.4199 

-31.3134 

-31.3134 

36.6450 

40.5897 
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are presented in Figures 6.2.5 and 6.2.6. 

The next examp1e presented is the ana1ysis of the 

longitudinal vibrati~n of a non-prismatic rod. This examp1e is 

used because it is a semi-c1assica1 prob1em fami1iar" to most 

engineers and yet presents difficu1t differentia1 equations 

to solve in a11 but a few special cases. In addition, it is 

a1so a prob1em of considerable practica1 importance in 

ultrasonic processing and has a number of known solutions which 

may be used to assess the accuracy of the results [67]. 

The four shapes solved were the conica1 rod, the 

exponentially tapered rod, the catenoidal rod and a non

uniform1y tapered rod having no simple analytical description. 

For the conica1 vibrating rod, the differential equation to 

be solved is 

DE: D2/DX2(Y) + 2.0*POW-l(X-0.4)*D/DX(Y)=K*Y (6.2.9) 

and the boundary conditions are 

BC: Y(O.O) = O. 

BC: D/DX(Y(l.O» = o. 
In this case, the solution interval [0.0, 1.0] 

into two equa1 ninth order elemènts. 

(6.2.10) 

was divided 

The problem required 3.8 seconds of execution time to 

solve for the eigenvalues and eigenvectors of the system, in

c1uding a graphical plot of the eigenvectors. The eight lowest 

eigenvalues are presented in Table 6.2.2 a10ng with their 

analytical1y computed values. Notice that the first seven 

eigenva1ues are accurate to four significant figures and have 

an apparent1y random error distribution. These errors can be 

attributed directly to round-off error accumulation in the 
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The first four eigenvectors of the Mathieu equation. Y(O) = 0, D/DX(V(L))=O. 
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TABLE 6.2.2 

Longitudinal Vibration Eigenvalues of Non-uniform Rods 

Cone Shaped Exponential 

Eigenvalue 
Cale. Exact. Cale. Exact 

Number 

1 0.80996 0.80976 .77317 .77310 

2 20.7603 20.7654 21.2535 21.2583 

3 60.2590 60.2520 60.750 60.745 

4 119.473 119.472 119.967 119.964 

5 198.39 198.43 198.921 198.922 

6 297.04 297.13 297.76 297.62 

7 415.62 415.56 415.99 416.05 

8 554.7 553.7 555.0 554.2 

~'.~~-;'; .. ,,~~,-~,:;~-:.;;. :,.., :.:...oc;~:;:.....~~_::::.:. ~,:,~:'~.!..Y::'. ~.-", ... ..L'; ........ ..-... ~.r::. ...... ~..ô:'P<-, __ , __ ~~ •. '" -~"T;:: ..... ~·_~~i:.,..; :.... .• ::.' .. ~.:;..".~,~,;;::,.:~:" .;...:..'. _"".'. _,.;', ~_. < .. :,.~ ~.--' 

Catenoidal 

Cale. 

6.1751 

25.9185 

65.387 

124.611 

203.557 

302.11 

420.67 

560.7 

Exact 

6.1730 

25.9122 

65.390 

124.608 

203.565 

302.26 

420.70 

558.9 
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computation. The eighth eigenvalue is, however, slightly 

worse, as were the successively higher ones, and in these 

the discretization error is dominant. 

The eigenvectors exhibited a similar behavior. The 

accuracy of the first to seventh eigenvectors was limited 
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by round-off error to four significant figures while eigenvectors 

higher than the seventh were less accurate. It would appear 

that above the seventh eigenvector two ninth-order polynomials 

cannot approximate the ~r~ solution with this accuracy. 

Consequently, if for sorne reason more accuracy is desired 

with these high-order eigenvalues and eigenvectors, the problem 

should be run with the solution region divided into more than 

two sections. 

The exponentially tapered rod and the catenoidal rod 

were solved using similar data sets, except that their 

differential equation statements were [68J 

DE: D2/DX2(Y) -2.5055 *D/DX(Y) = K*Y (6.2.11) 

for the exponentially tapered rod and 

DE: D2/DX2(Y) -2.*B*(EXP(B* (l-X»-EXP(-B*(l-X») 

* POW-l(EXP(B*(l-X» +EXP(-B*(l-X»)*D/DX(Y) 

= K * Y 

CST: B = 1.925 

for the catenoidal rode 

(6.2.12) 

The eight lowest eigenvalues of these problems are also given in 

Table 6.2.2, alpng with the exact values. The agreement is 

similar to the conical rode 

, , , 
.~ 



The non-uniform1y tapered rod shown in Figure 6.2.7 

was a1so solved. In this case the differentia1 equation was 

specified by 
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DE: 02/ DX2(V)+FN1 (X) *D/DX (V) = -K*V (6.2.13) 

The function FN1 (X) was supp1ied by providing the numerica1 

values of the curve in Figure 6.2.7 at the nodal points of 

two ninth-order interpolation po1ynomia1s. 

Part of the output from the computer program is shown 

in Figures 6.2.8 and 6.2.9. The eigenva1ues and eigenvectors 

are given by two sets of numbers, the first of which gives the 

rea1 part of the solution and the second the imaginary part. 

In this case, the prob1em is self-adjoint and the imaginary 

r 

3R 

Figure 6.2.7 
Profile of the non-uniform1y tapered rod ana1yzed in 
Figures 6.2.8 and 6.2.9. 

L 



Figure 6.2.8 
Part of the computer program output for the vibrating rod of Figure 6.2.7. 

•••• 'COKE BOTTLEI SHAPED VIBRATING ROD •••• 
THE DIFFERENTIAL EQUAT1~N 15 

D2/DXZCV) • FN1CXI • D/DXIY) • ; K • Y 

THE BOUNOARV CONDITIONS ARE 

Vil) • 0 

D/DXCVI3" • 0 

THE GENE~AL SOLUTION 

THE EII:ENVALUES 

1 O,33Z'95E Dl 2 0~2660B7E 02 3 0.612339E 02 4 O.122639E 03 !! O,201319E 03 

6 0.3C0963E 03 ., O'.415225E 03 8 o,5SZ151E 03 9 O',738636E 03 10 O,934256E 03 

1 0.0 2 O~O 3 0.0 4 O~O 5 0.0 

6 0.0 ., O~O 8 0.0 9 0.0 ln 0,0 

EIGENVECTOR NUMBER 1 

1 O,12240SE';'06 2 0~111557E 00 3 O.2Z4610E on 4 0.336.,8RE 00 5 0.45356SE 00 

6 O,5111Blt3E 00 ., 0.721721E 00 8 0.86572lE 00 9 0~lno463E 01 ln O,l132Z9E 01 

11 O,113229E 01 12 0~lZ4178E 01 13 0.133161E 01 14 O'.140701E 01 15 O,147181E 01 

16 O,l!!2740E 01 1" 0.lS7367E 01 18 0.160931E 01 19 0.163?znE 01 ln 0.16402lE 01 

1 0,0 2 0.0 3 0.0 4 0,0 5 0,0 

6 0.0 7 0'.0 8 0.0 9 0'.0 ln 0,0 

11 0.0 12 0'.0 13 0.0 14 0',0 15 0,0 

16 0.0 1" O~O 18 0.0 19 0.0 2n 0,0 

EIGENVECTOR NUMBER l 

1 O.656569E .. 06 2 .. 0.3B1497E 00 3 .. o,741593E on 4 .0.104507E 01 5 .. O,128131E 01 

6 .. O.143!154E 01 7 ':'O~ 149311E 01 8 .. o,14Z665E 01 9 .. 0.124162~ 01 ln .. 0.95685"E 00 

11 ~O.9c;6f!56E 00 1l! .. O',61l743E 00 13 .0.l436Z9E 00 14 O'.143087E on 15 O,539966E 00 -J 

16 C.9:;11725E 00 17 0.129451E 01 18 0.159634E 01 19 O,lR0062E 1'1 zn O,187432E 01 '-1 
0 

1 0.0 2 O~O 3 0,0 4 0',0 ., 0,0 

6 O. O. 
., 0:0 8 0.0 Q 0',0 ln 0.0 

11 C.O 12 O~O 13 0.0 14 0.0 15 0.0 

16 C.O 17 0.0 lB 0.0 19 0.0 zn 0.0 

J 
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parts of the eigenvalues and eigenvectors are zero. (Non

self-adjoint problems may yield complex eigensystem solutions). 

Figure 6.2.9 contains the graph of the eigenvectors which 

was automatically produced by the program. 

The differential equation which appears in the analysis 

of the transverse vibration of a beam is generally regarded 

to be a more difficult equation to solve than the longitudinal 

equation because of the higher order derivatives involved. 

Coded in DECL, the equation which governs the transverse 

vibrations of a non-prismatic beam is [68] 

DE: D2/ DX2(FNl (X)*(D2/ DX2(Y») = K *FN2 (X)*Y (6.2.14) 

where FNl (X) is the product of Youngs modulus and the moment 

of inertia of the beam and FN2(X) is the product of the 

longitudinal density of the beam and its cross-sectional 

area. The boundary conditions of interest are those of simply 

supported beams 

BC: Y(O) = O. 

BC: y ( l ) = O. 

BC: D2/DX2(Y(O.» = O. 

BC: D2/DX2(Y(1.» = o . 
and beams with clamped ends 

BC: y (O. ) = o. 
BC: y ( l . ) = o. 
BC: D/DX(Y(Q. » = o. 
BC: D/DX(Y(l.» = O. 

In order to demonstrate the accuracy of the program with 

this prob lem ,the fi rs t case solved was that of a uniform 



Figure 6.2.9 

Graphical output from the DE CL computer program showing the first four modes 
1.9 7 of vibration of the rod in Figure 6.2.7. z~2 
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2h 

Figure 6.2.10 

. 1 

t 
h 

-1 

Profile of the haunched beam corresponding to Table 6.2.3. 
h = L/10.0. 
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beam. Again using two ninth-order elements, the problems 

required 3.5 seconds of execution time on the IBM 360/75 and 

the first four eigenvalues are presented in Table 6.2.3. 

This time it was found that only the first six eigenvalues 

were accurate to four significant figures. 

The program was also used to analyze the vibration of 

the haunched beam [69] shown in Figure 6.2.10. The resulting 

eigenvalues with both sets of boundary conditions are giver. 

in Table 6.2.3. 

Longitudinally accelerated transversely vibrating 

uniform beams with clamped ends were also analyzed with the 

program. In this case, the differential equation card 

read by the program was 

DE: D4/DX4(Y)+A*D/DX((B-X)*D/DX(Y)) = K*Y (6.2.15) 

The eigenvalues generated by the program are presented in 

Table 6.2.4 along with vériationally derived approximate 

? 
1 

1 

i 
1 

1 

~ 
! 
1 
1 



TABLE 6.2.3 

Natural Frequencies of Vibrating Beams 

Prismatic Beam 

Mode Simply Supported C lamped Ends 
Number 

Calculated Exact (n'Ir) Calculated Exact 

3.1434 3. 1415 4.7295 4.7300 

2 :.: 6.2838 6.2832 7.8539 7.8532 

3 9.4241 9.4247 10.9949 10.9956 

4 12.5673 12.5664 14. 1387 14.1372 

5 15.719 15.708 17.295 17.279 

6 19.01 18.85 20.73 20.42 

Haunched Beam 

Simply Clamped 
Supported Ends 

.50089 .75222 

.91343 1.17049 

1.38097 1.63003 

1.82442 2.07074 

2.29374 2.51808 

2.7978 3.0434 

--' 
'-1 
~ 

j 
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TABLE 6.2.4 

Eigenvalues of Accelerated Clamped Beams 

Constant Eigenvalue Program Rayleigh-Ritz Solution by Kato's 
Values Number Results Solution [6J Method [6 1 

A = 25.0 261.14 264.34 241.50 
B = 0.25 2 2934.3 2932.2 2881.4 

3 12,757.8 12,756.1 12,669.1 
4 36,734. 1 36,720.5 36,635.3 

A = 25.0 1 102.64 104.34 51.29 
B = 0.75 2 2354.61 2349.54 2237.66 

3 11,534.2 11.519.0 11 .337.2 
4 34,586.8 34,574.8 34,344.0 

A = 100.0 1 464.24 464.42 349.23 
B = -0.50 2 3739.95 3738.80 3492. 14 

3 14,553.6 14,536.3 14,210.1 
4 39,854.8 39,855.6 39,429.1 



lower and upper bounds [70J for sorne value of the 

constants A and B. 

6.3 NONLINEAR ORDINARY DIFFERENTIAL EQUATIONS 
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It was shown in section 5.6 that the solution of many 

nonlinear differential equations can be accomplished via 

Newton's method by solving a sequence of linear differential 

equations. Since a computer program has been developed in 

this thesis which is able to solve any linear ordinary 

differential equation, the extension of this program to solving 

nonlinear ordinary differential equations is straightforward. 

By converting the program to iterative uaage, it is possible 

to determine the Newton sequence of solutions which converge, 

if they do, to a solution of the original nonlinear equation. 

In order to make the linear program suitable for solving 

a sequence of linear differential equations, the existing 

programs need to be modified slightly, as has already been 

described in section 5.6. Figure 6.3.1 .contains a main 

program which incorporates these modifications. This program 

has been designed to call the subroutines DIFFEQ, CONTIN and 

BOUND repeatedly, until the successive particular solutions 

generated by BOUND have converged satisfactorily. 

In defining the instructions which Jetermine the 

differential equation to be solved, the new program calls the 

subroutine INSTR, which was used in the otiginal non-iterative 

program. The only additional data that need to be specified 

~ 
\ 

1 
1 

1 
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Figure 6.3.1a 

THIS PROGR~K WAS WRITTEN av lOLTA~ CSENDES OF MeGILL UNIVERSITY, 

Ho~rREAL QUEBECI TO 5~LVE ARBITRARV NOMLINEAR OROINARY 
OIFfERENTIAL EQ~ATIONS aY ~JEWTON ITERATION. THE QUASI-LINEAR 

FCitH ~F THE DIFFERENTIAL EQUATIDH MUST BE READ IN THE OECL 

COHPUTER LANGUAGE, FOLLOWED eY A DATA CARO GIVING THE NUMBeR 

OF ITERATIOhS, THE NUH9E~ OF niE M~DE THE SOLUTION IS TO CONVERGE 

TO 1 ONLY IN EIG~NVALUE PR~BLE~Si, AND THE INITIAL VALUE OF THE 

50LUTIO~, 

DECL SO~75 

DIHENSION ENOR~1100' 
COHMON IANSI AA,NEADOll01, EI30001,EDERIVl30001 
LOGICAL LAST 

DECL BO~120 

REAUI5,lOOl LAS,IGENUM,AA 
WRIHI6,1011 AA 
UER. 0 
LAST • ,FALSE. 
NU"liJES • tW"'DE 
NOPTS • ND*"ELUT5 
NEA~~11I • 4*NDPTS 
h • NO • 1 
DO !i 1 • l,NULL[I 
N = ~! - 1 

, hEAiJOII • 1) & NFAOOIII • N • NElHTS 
J • NEADDC~OLLO • II • NR • NELMTS 

I~ITIALIZE THE SDLUTION 

DO 1) 1 • l, J 
~!:lll·AA 
9 IlER • ITER • 

MO • "lOOIITER - l,51 
NEA~Olll • "'0 • ~OPTS 

N\JI::>E A t:U:~CES 

• IGE~OH'LASTI 

IF(HO .EO. 0) GU Ta 
!:"OKMIITERI • O. 
~ • MEAOOll) - hCPTS 

DECL 125 .. 290 

IFCJ ,LT, 01 J a 4 • NOpTS 

EVALUATE THE DIrFERENCE NORM 

llO 7 1 • l,r,OPTs 
~"~KMIITERI • fN~KQIITERI • ABSCDNIII - EII • JI: 

., l'II. 1l!:AO')(Ul" 1)':111 
Er;CK"I1 ITEi(1 = F:iCR'!( ITER) l':ODT5 

------------- -----

DENL 5 
DENL iD 
DENL 15 
DENL 20 
DENI. 25 
DENI. 30 
DENL 35 
DENI. 40 
DENL 45 
DENL ';0 
DENI. 55 
DENL bD 
DENL 65 
DENL 70 
DENL 75 
DENL 80 
DENI. 85 
DENL 90 
DENL 95 
DENL 100 
DENL 105 
DE~'L 110 
DENL Il!i 
DENL 120 
DENL 125 
DENL 130 
DENL 135 
DENL 140 
DENL 145 
DENL 150 
DENL 155 
DENL IbO 
DENL 165 
DE~IL. 170 
DENL 175 
DENL 180 
DENL 185 
DEll\. 190 
DENI. 195 
DEHL 200 
DENL ?05 
DENL 210 
DENL 215 
DEI-lL nO 
DENl 7.75 
DENL 230 
DENL 235 
DEtll. 240 
DENL 7.45 
DPIL 250 
DENI. 255 
DEIIL 7.60 
DENI. i:b5 
DEIIL 270 

c 
C 
C 

C 
C 
C 

N .. ND •• Z 
DO 8 1 • 11 N 
COMIII • o. 

8CIIl"O, 
J .. NO + 1 
DO 9 1 • l,N'J 
COHIII • 1. 

9 C(Il • l, 
lE • NEADO(j!l 
K .. ND 

12 L • K 
K • K ~ 1 

~INU THE DERIVATIVE OF THE SOl.UTION 

CALI. OPRATRIC~l,K,L,ND.OI 
IFIL .EQ, NRl GO TC 15 
IEO Il 1 
CALI, (lPRATrtICC/', IEO,K,L,ND~OI 
IFII. .t!E, 'lOI GU TO 15 
1 .. NEAOD(ll + 1 
J .. NEA~D(1) • NDPTS 
DO 16 Il = Il J 

16 ~UEKIV(~) • FI~1 

GO TC 17 
15 CALL OPR.ATP.ICOI~Il~n,K,I.,NO,ll 

17 COr:TIIlUE 
JEO = - NO • NFADDll1 
ou 10 H .. l,HELHTS 
JE:> • JED + UD 
UO lO 1 • l/K 
lE = lE + l 
EII!:I .0, 
EDERIV( lE) • O. 
IJ .. 1 - K 
ua 10 J Il 111'10 
IJ .. IJ • K 

EOEKIVIIE ) .. EOERIVIIEI + cOH1IJl • EDERIVIJ • JEDI 
10 E(!EI .. EIIEl • CIIJI • EIJ + JEDI 

1 c: NEAilOC':D - K + 11 
J Il NELi1TS=K 
IFIK ,GT, I;RI (,Q 1[1 12 

UET!:RMI~E IF THt J!ERATIONS ARE tOHPCETED 

IFCMO .EQ .... rR, LASTI GO TO 14 
1, IFII:NOk~(ITER) ,LT, 1.E-71 LAST •• TRUE, 

IFIITER .LT. LASI G~ TU 9 
LAST = .TRuE. 
GO TO 'J 

14 '" = NùPTS >1< ""flC • (lin. 1) 
CALL RITEIE,~OPTs,M~ + 1,0,1) 

-=-:::----------------------------- ------ ----

OENL 275 
DEllI. 280 
DENL 285 
DENI. 290 
DENL 295 
OE':L 300 
DE'lI. 3n5 
DE"L 31;) 
DE'JL 315 
DE'!l 320 
Dë'~L 325 
DE~;L 330 
DE'IL 335 
DENL 340 
DE"'L 345-
DE"l. 350 
DP-L 355 
DE'!L BD 
OE'IL 365 
DEIIL 370 
DE'IL 375 
DE'IL 380 
DE'IL 395 
DEIIL 390 
D:'IL 395 
OE'!L 4:0 
OE'I:' 4~:î 

DE'iL 410 
DE'IL 4!5 
DE11L 420 
OE11L 425 
DE'IL 430 
OE'!L .. 35 
DE'iL 440 
DE!IL 445 
DE'IL 450 
DE':L .. 55 
DE':L 4bO 
DE"L ':'65 
DE'L 470 
DE'JL 475 
OE':L 48;) 
DEt'L 485 
DEt!L 490 
DE':L 495 
DEIIL 5CO 
CE"L 51" 
DE'!L 510 
DE'IL 515 
DE"L 520 
DE':L ';25 
CE"L 53~ 

....... 
-...J 
-...J 



CALL &KAPH(Xn,e,N,NOPTS) 
IF(.N~T. LAST) GD Ta 13 

11 CœHIiWE 
~i R n E ( 0, l 0 2) CI .. E NOR 1\ ( 1 ) "1 III 1" IT ER) 
GO TO l 

100 fDRMAT(I2,12"E20.10) 
1 0 l r ù R ~i A TC l H .. " 40 X , 'T fi E 1 N IT 1 A L V l\ l (1 E OF THE S 1Jl. U T tON 1 S , , G 1 :3 • 4 ) 
102 rORHAT(lH-,,45X,,'ITERATIDN',,5X"~nRM nF THE RESIDUAL'II 

* lOC(l~ ,4~X/15"15X,G15.5/» 
ENO 

Figure 6.3.1b 
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DENI. 535 
DEt-:L 540 
DENL 545 
DEtll. 550 
DENI. 555 
DENL ~60 
DENl 565 
DENL 570 
OENL !I75 
DENL 580 



to the program are the maximum permissible number of 

iterations in the solution process and the initial value 
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of the function z of equation (5.6.6 ) on the interpolation 

point set. These function values are stored in the array Z, 

which shares common storage locations with the function 

subprograms FCN and FN1-FN5. Since the function z and its 

derivatives often need to be approximated by several different 

orders of polynomials in a single equation, provision has been 

made in the program to store the numerical values of up 

to ten different functions. 

Using the initial values in the array Z the program 

calls the subroutines DIFFEQ, CONTIN and BOUND in succession, 

in exactly the same manner as they were called by the non

iterative program. The particular solution obtained in 

this way is then compared to the function z. If the Ll norm 

of the difference of the point values of these two functions 

N 
LI = L 1 Y(I) - Z(I) 1 

1=1 
(6.3.1) 

is less than a pre-defined value, the solution is assumed to 

have converged and the results printed. If, however, the 

LI norm is too large, the array Z is updated with the new 

particular solution values and the process repeated. The 

iterations stop whenever the LI norm of the difference function 

is sufficiently small or wh en the number of iterations 

exceeds the specified value. In most cases, it is found 

that if the procedure is convergent, about five iterations 

are sufficient to produce a solution limited only by round-off 

error. 
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The convergence of the above process in five 

iterations can be explained theoretically by noting that 

according to equations (5.6.3) and (5.6.6), convergence 
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of Newton 1 s method is quadratic. This means that the 

accuracy of the solution in each successive iterate is twice 

as good as the accuracy in the preceding iterate. Therefore, 

if the initial function contains one correct binary digit~ 

the fifth iterate will contain 25 =32 correct binary digits. 

Since this is more than the wo)'dlength of the computer used, 

with most initial functions, five iterations are sufficient. 

The operation of the program will now be illustrated by 

solving severa1 representative nonlinear differential 

equations. Consider, first, the differential equation (5.6.9) 

which was used as an example in section 5.6. The sequence 

of linear differential equations to be solved in this case 

is, from (5.6.11), in DECL, 

where 

DE: D3/DX3(V) +FN1(X)*V 

+FN2(X)*D2/DX2(V)=FN1(X)*F~2(X) (6.3.2) 

FN1(X)=D2/DX2(Z) 

FN2(X)=Z 

The boundary condition statements for this problem are 

BC: V(O.O)=O.O 

BC: D/DX(V(O.O))=O.O (6.3.3) 

BC: D2/DX2(V(O.O))=1.O 



la 

LI 

10 

o 
Xxo 

10L---------~--~--~~~~~---

1 2 3 4 5 6 7 89 
ITERATION NUMBER 

Figure 6.3.2 
Convergence of Newton's method to the solution of (6.3.2). 

x one element 
o two elements 
6 three elements 

181 



\ . -. f 

x 
0.33333 

0.5 

0.66667 

1 .0 

1.33333 

1 .5 

1.66667 

2.0 
2.33333 

2.5 

2.66667 

3.0 \ 

TABLE 6.3.1 

Solution of a nonlinear third order differential eguation. 

Projective Method Runge-Kutta [49] 

1 el ement 2 el ements 3 -el eme-nls - - h=T.O h=0.5 

(6 iterations)(4 iterations)(4 iterations) 

0.0553901 

0.220251 

0.489594 
0.851949 

1.28903 

1.77900 
2.30135 

2.84065 

3.38751 

0.0555265 

0.124789 

0.221253 

0.492254 
0.856874 

1.06869 

1.29656 

1.78976 
2.31563 

2.58561 

2.85832 

3.40822 

0.0557907 

0.222116 

0.494041 
0.859315 

1.29853 

1.78989 
2.31214 

2.84920 

3.39273 

6 

O. 125 

6 

0.491425 
6 

1 .06863 

6 

1.78738 
6 

2.57913 

6 

3.37957 

6 

0.124739 

6 

0.491908 
6 

1.06792 

6 

1.78792 

6 

2.58121 

6 

3.40061 

--' 
co 
N 

J 
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In this case, the initial value of z was taken to be the zero 

function and the problem was solved in the interval [0,3] 

using one, two and three ninth-order elements. 

Figure 6.3.2 contains a graph of the logarithm of the Ll 

norm of the error in the approximate solution versus the 

logarithm of the number of iterations for this problem. Notice 

that the LI norm decreases until the sixth iterate in the one 

element solution and until the fourth iterate in the two and 

three element solutions. In this region, the convergence is 

seen to be approximately quadratic. Beyond these iterations, 

the change in the solution appears to be random and, as a 

result, can be attributed to round-off error. Table 6.3.1 

contains the solutions obtained from the computer program in 

these cases. The solution values converge to an accuracy of 

about four significant figures as the number of elements used 

increases. 

As a check on the results, included in Table 6.3.1 are 

two Runge-Kutta calculations of fifth-order accuracy for the 

differential equation (5.6.9)[49]. It may be observed that 

there is good agreement between the projective solutions 

and those obtained by Runge-Kutta integration. 

For the next example, consider the initial value problem 
2 

~ - (1 + Y ) = 0 
dx 

y(O) = 0 

(6.3.4) 

which has the solution y=tan x. In applying Newton's method 

to this problem, the sequence of linear initial value problems 



where 

DE: D/DX(Y) - 2.0*FN1(X)*Y = 1.0 - POW2(FN1(X)) 

BC: Y(O.) = O. 

FN 1 (X) = Z 
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(6.3.5) 

needs to be solved. Using zero as the initial solution function, 

the sequence of solutions obtained from this procedure is 

known to converge to the solution of (6.3.4) in the interval 

Osx<TI [60]. 
"T 

Équations: (6.3.5) were s01ved with the iterative computer 

program of this section in the interval [0.0, 1.5] by using 

two ninth-order approximating functions. In this case, 

since a much more rapid variation was expected in the, 

solution near x=1.5 than, at x=O.O, the first element was 

chosen to span the interval from z=O.O to x=l.O and the second 

from x=l.O to x=1.5. Figure 6.3.3 presents the graph of the 

solutions optained from the program for the first five 

equations in the sequence (6.3.5). It can be seen that each 

successive solution rises above the preceding one and provides 

a better approximation to the exact solution y=tan x. For 

this problem, the LI norm of the difference function,decreased 

until the eighth iteration and the solution obtained on this 

iterate is given in Table 6.3.2 along with the exact values. 

It is observed from this table that while the approximate 

solution in the first element from x=O.O to x=l.O is accurate 

to at least four significant figures, the solution in the second 

element from x=l.O to x=1.5 becomes progressively less accurate 

until, at x=1.5, there is a 6% error. This behavior is the 

result of the singularity of the solution at x=TI/2. 
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Figure 6.3.3 
Convergence of Newton's method to the solution of (6.3.5). 
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1 5_5- . 
5~5~-S=====+--~---------.--------+----~---------~------+---------------------+---------------------+ 

0~3n 0.60 x 0.90 1.2 1.5 

Table 6.3.2 

Solution of Equation (6.3.5). 
Ca1culated 

-0.5Q"n4 .... E-07 2 I)~ 111551E 00 3 0.2259;::lE ('0 4 0.346233E on 5 0.47620()E 00 Il.6:107!!lE 00 7 O~7A6A13E 00 8 O.9A4837E CIO 9 O.17.3174E 01 10 0.155737E 01 Ool~57:n(; 01 li! 0.1736921: 01 13 0.199219E 01 14 0.2'3002111: 01 15 0.2703Z5E 01 C.3;>4714ë 01 17 0.40275"1(; 01 18 0.57.6841E 01 19 0.750886E 01 20 0.131613E 02 

Exact 
0,0 z 0:U1571E 00 3 0.225954E 00 4 0~346Z54E oa 5 O,476221E 00 0.620775E 00 '1 0~786e43E 00 8 0.984874E 00 9 0,lZ3180E 01 10 0.155741E 01 0,155741E 01 12 0~176597E 01 13 U.201997E 01 14 0.233825E 01 15 O.275168E 01 0.331450E 01 17 O'.413171E 01 lB 0.543649E 01 19 0.7B7214E 01 2n 0.141010E 02 
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A third examp1e of a non1inear initial value prob1em 

that has been solved with the iterative differentia1 

equation solving computer program is provided by 

~= y - ~ âx y (6.3.6) 

y(O) = l 
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In this case, the quasi-1inearized form of the differentia1 

equation is 

DE: D/DX(Y) -Y-2.0*X*POW2(FN1(X))*Y 
(6.3.7) 

=-4.0*X*FN1(X) 

where 

FN1(X) = 1.0/Z 

and Z is taken to be equal to 1.0 initia11y. Table 6.3.3 

contains the solution of this problem using two equa1 ninth

order e1ements after five iterations. The execution time 

required for this prob1em was 5.6 seconds. Comparison with 
, , 

the exact solution y=(2x+l)1 [49], also given in Table 6.3.3, 

shows that the projective solution is accurate to at 1east four 

significant figures everywhere. The' error remaining is 

Table 6.3.3 
Solution of Equation (6.3.6). 

Calculated 

0,100000E 01 2 0~110"2E 01 , O',120182E 01 
0,145Z9'lE 01 '7 0~152748E 01 8 0,159855E 01 
0.173197[ 01 12 O'.179494E 01 13 0.185578E 01 
0.202734E 01 17 0~208136E 01 18 0.213401E 01 

Exact 
O.100000E 01 z O~ 110554E 01 :3 0.120185E 01 
0,145297E 01 '7 O'.152752E 01 8 0.159861E 01 
0,173205E 01 12 0.179505E 01 13 0.165592E 01 
0.202759E 01 17 O~206167E 01 18 0.213437E 01 

4 O',129096E 01 , 0,13'7.33E 01 ., O',166660E 01 10 0,173197& 01 
14 O',191468E 01 1!1 0,197182E 01 
19 0~218'36E 01 20 0.22355ZE 01 

,. 0.129099E 01 , 0.131437E 01 
9 0.166667E 01 1" o .173205E 01 

14 Il,191465E 01 15 0.197203E :11 
19 0~218'81E 01 2n 0,223607E 01 
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again attributed to round-off error accumulation on the 

IBM 360/75. 

value 

Consider now the prob1em of solving non1inear boundary 

prob1ems by Newton's method, instead of initial value 

prob1ems. In form, the procedures used are identica1 in both 

cases. As an i11u~~ration of the technique, the non1inear 

boundary value problem 

~3 CJ"XZ" == '2 y2 

y(O) = 4 

Y (1) = 

(6.3.8) 

will be solved and the resu1ts compared with the exact 

solution [49J 
4 

(6.3.9) 

The quasi-1inearized form of (6.3.8) is 
(6.3.10) 

DE: D2/DX2(V) - 3.0* FN1(X)*V=-1.5*POW2(FN1(X)) 

where 

FN1(X) = Z 

The interva1 [0.0, 1.0] was divided into two equa1 ninth

order e1ements. After five iterations, the solution had 

0.400000E 01 
0.Z449BIE 01 
0.1777S6E 01 
O.lz6554E 01 

0.400000E 01 
0.Z44991E 01 
0.177778E 01 
o • 126563E 01 

2 
7 

12 
17 

2 
7 

12 
11 

Table 6.3.4 

Solution of Equation (6.3.8). 

0.3S9003E 01 
0.Z249B71: 01 
0.1652BBE 01 
0.1l9001E 01 

0~359003E 01 
0~225000E 01 
0~165306E 01 
O~1l9008E 01 

Calcu1ated 

3 
B 

13 
lB 

3 
e 

13 
18 

0.3Z3999E 01 
0.207343E 01 
0.1540B7E 01 
0.11Z106E 01 

Exact 
0.324000E 01 
O.Z07360E 01 
0.154102E 01 
O.112111E 01 

" 9 
14 
19 

ft 
9 

14 
19 

0.293B74E 01 
0.191697E 01 
0.1439B7E 01 
0.105793E 01 

0.Z93B7SE 01 
0~191716E 01 
0.144000E 01 
0.105796E 01 

5 
10 
l' 
20 

5 
ln 
15 
zo 

0.Zb7762E 01 
0.1777S6E 01 
0.134B49E 01 
O.lOOOOOE 01 

0.Z67769E 01 
Cl.177776E 01 
O.134660E 01 
O.100000E 01 
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converged satisfactorily and this answer is presented in 

Table 6.3.4. The C.P.U. time used in this solution was 

4.8 seconds. Once again, the solution values are accurate to 

four or more significant figures. 

Another example of a nonlinear boundary value problem 

solved with the iterative computer program is 

y ( 0) = y ( 2rr ) 

dy(O) = dy(2rr) 
dx dx 

-3 cos x 
2" 

(6.3.11) 

Although the exact solution of (6.3.11) is not known, 

Collatz has ex~anded the solution in terms of a Fourier series 

and obtained the following approximate solution [49J 

.Y:- 32~000 (805.5 + 32240 cos x + 2418 cos 2x 
(6.3.12) 

-240 cos 3x - 2.7 cos 4x) 

In solving (6.3.11) using Newton's method, the fo11owing 

sequence of 1inear boundary value problems need to be solved 

Table 6.3.5 

Solution of Equation (6.3.12). 

Ca1cu1ated 

.. O,33033BE 00 Z .. O~307B83E 00 3 .. O,Z44160E 00 1\ .. O,14969t1E 00 , ... (I,400719E';'01 

O,671440E-Ol ., 0;157045E 00 8 O,Z21138E 00 9 0',25793BE 00 10 O,26971RE 00 

O,269717E 00 12 0',257938E 00 13 O,Z21139E 00 14 O,15704!1E 00 15 O,671473E .. Ol 

.. O,400692E-Ol 17 .. 0~149697E 00 18 .. O,Z44181E 00 19 .. O,307883E 00 zo .. O,33033t1E 00 

Exact 
.. O,330195E 00 2 ..0~307809E 00 3 .. O,Z44174E 00 ,. .. O,149605E (10 5 .. O,398413E .. Ol 

O,673786E-Ol ., 0:157144E 00 8 O,Z21149E 00 9 0~257984E 00 10 O,269805E 00 

O,269t10'E 00 12 0:Z57985E 00 13 O~221150E 00 14 O,157145E 00 l' O,673801E .. Ol 

.. O,398399E"01 11 .. O~149604E ()O 18 .. O,Z441.73E 00 19 .. O~307809E 00 20 .. O,330195E 00 
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DE: D2/DX2(V) + 6.0*V + FN1(X)*(V) 
(6.3.13) 

where 

Using 

= POW2(FN1 (X)) - 1.5*COS(X) 

BC: V(O.) = V(6.283184) 

BC: D/DX(V(O.)) = D/DX(V(6.283184)) 

FN1(X) =Z. 

two equa1 ninth-order e1ements and the zero function 

as Z on the initial iterate, the sequence of solutions of 

these boundary value prob1ems converge very rapid1y with 

the LI norm of the difference between iterates decreasing 

to 3.6 x 10- 7 on the fourth iterate. Table 6.3.5 contains 

the values of the solution from the fourth iterate as we11 

as the values of the function (6.3.12) on the set of 

interpolation points. It can be seen that the two approximate 

solutions agree very c1osely. 

6.4 PARTIAL DIFFERENTIAL EQUATIONS 

The technique and required subprograms for the 

solution of 1inear two-dimensiona1 partial differentia1 

equations have a1ready been described. A main computer 

program which connects these iubprograms together in 

the proper orderis presented in Figure 6.4.1. When this 

main program is used with the overlay procedure in 

Figure 6.4.2, the entire two-dimensional program 

package requires 194K bytes of core memory. In this way, 

the arrays ON, C and COM which contain the large two

dimensional coefficient matrices are enlarged without 

increasing the memory requirements of the program. 
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Figure 6.4.1 
C DE2D 5 \ 

C THIS PRQGRAM ~AS ~RITTEN BV ZOLTAN CSENDES OF MCGILL UNIVE~SITV, DE2D 10 . , 
C flUNTREAl., OUFOFC, TO SJLVE ARBITRARV LINEAR Twn.DIMENSIONAL DE2:> 15 C ~ARIIAL DIFFE~EN~IAL EQUATIONS. DElD 20 C DE21) 25 

li HI!: N 5 1 :J N V [) C 5 CO) , 1., T Y ( 10 (\ ) .. 1 E Le Xc t no; ,lE Ley ( l 00 ) 1 Y ~ C ( :3 0 0 , DE?D 30 UIM!:NSION 1 N.5 T ( 5 (' 0 ) " C (J 'l 5 T ( 501') ) , X n c ~ 0 n ) , H T X ( l 00 ) ION ( a 000 ) , C ( BOO a ) 1 DE2D 35 
* COM(190COl,YRCll,YJ(ll"RUnTR(lOOl"ROOTI(lOO),XBC(300) DElD 40 C DE2!) 45 C DECL 60-95 DEZD 50 C DElD 55 1 CALL 1 NST2 0 ( It~ST .. C :J~lST .. t;IJ~'~E" Xf'C ~ vRC ~ XD" VD" WTX" WTV .. t ELCX, 1 FLev, DE2D 60 
* NC C OtlD, NE LMT 5 II~RAr~Gx"IJR.\r~î, V .. rJno~,,, LAHOA, RIT E fi" R 1 TEG, P LOTP 1 DE?D 65 
* PLOTG"NFIGWn,,~EIGPL~ DE20 70 

tlRX = tl~MIGX + 1 DEZO 75 t4RV = IJRAIIGV + 1 DE20 80 rw =f\;DOM + 1 DEZD 85 
CALL OIFF2D(nN"Mr~ .. WTX"WTV .. NELMTS/INST .. CONST,XD,VD/NRX,NRV,NOl DE20 90 

* NULLD,NULLV,LAMDA) DEZD 95 C DE2D 100 C DECL 150 .. 17.5 DE20 105 C DE2D 110 CALL C ONTZrl (N4" NF Xi NRy .. ND, 1),OIJ, tIULl.V, C, NDPT S .. NOHHOM .. rWLL V, DE?D 115 
* ~CCO~D,tE:LCX"tELCY,NELMTS .. WTX .. WTV .. LAMDA .. RITEG' . DE2D ll0 C DE2D 125 C DECL 190"'210 DEZD 130 C DE2D 13!) DU ~ 1 = l .. NULLV DE20 lit 0 

5 CALL PICTcxr."Yn,c .. nDPTS .. I) DE2D 145 
2 CALL 6UUN? i) 1 C, ~![Jr T 5, NnNHU:':' tlUl. LDï NIIL LV .. DN, NWBC, NRX, NRV, NO, OE2D 150 

ICC INST,CONST,NUMDE .. XU,YD,NEL~TS,WTX,WTY,LAMDAIRITEPIVI) DE?D l55 C DE2D 160 C OE:CL 250,..320 OE20 165 C OE2D 170 IF(l.AMOA) : l\'iA C = t~E 1 G?l. DE20 175 00 4 1 = l, Nl~BC DE2D 180 4 CALI. PICT(XI1,Yn'r'IJ,NDPT .. I) DE2D 185 GO TO 1 DE2D 190 eND DElD 195 

Figure 6.4.2 

1 E ' 1 T p. V t1 AIN 
? l ~.! 5 F. R T 1"1 A 1 I~ .. N lJ L l" P. l T E 
~ fJ \1 E PLA V A L P HA 

. 4 INSERT INST2D .. CHARTF,FNUM"PICT"SCALE 
-, OVERLAy ALPHA 

6 INSERT O)FF2D J CnNTln,eOUN20,OPG201,OPG2D2,OPRATR,FCN2D"KRON,OPFIJ1/ALPHA 
7 UVt::RLAV Al.PHA 
A ! ,~ S F. RTE 1 GE N .. R 1 L f~ AT .. E 1 G Q R .. D Q R T 



In order to illustrate the operation of the program, 

consider the elliptic partial differential equation 

~2z=_2 sin x sin y (6.4.1) 

with the boundary conditions 

Z(O~y)=ZC'JT~y)=Z(X~O)=Z(X~7T)=O (6.4.2) 

Using one seventh-order element, a working DECL computer 

program to solve this problem is 

* 7 POISSON'S EQUATION IN A RECTANGLE 

DE: D2/DX2(Z)+D2/DY2(Z)=-2*SIN(X)*SIN(Y) 

BC: Z(O.O, 0.0)=0.0 

BC: Z(g.O, 0.449)=0.0 

BC: Z(3.14, 3.14)=0.0 

REC: X=O.O, 31.41592, Y=O.O, 3.141592 

In this program, the boundary conditions (6.4.2) have 

been translated into twenty-eight separate boundary 

condition statements specifying the solution value at 

each of the twenty-eight nodal points on the perimeter 
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of the element. Due to the interpolatory nature of the 

approximating functions b ij the twenty-eight boundary 

conditions in the above statements are linearly ~ndependent 

and completely equivalent to (6.4.2) in the approximating 

space. Although it would be a desirable extension of 

the DECL language, present program capabilities do= not 

include generation of the above buundary condition 

statements from compact statements such as 

BC: Z(O.O, Y)=O.O 



The above DECL program was run on the IBM 

360/75 and required 18.1 seconds of C.P.U. time for 

execution. The nontrivial solution values are given 

in Table 6.4.1 for one half-quadrant of the solution 

region along with the corresponding values of the exact 

solution. 

z=sin x sin y (6.4.3) 

Taking advantage of the symmetry in the above problem, 

equation (6.4.1) was also solved using one seventh-order 

element in the rectangle x=[0,w/2],y=[0,w/2] with 

Neumann boundary conditions along the lines x=w/2 and 

y=w/2 and this solution is also presented in Table 6.4.1. 

Notice that the solution obtained without using the 

192 

symmetry properties of the problem is accurate to about three 

significant figures and that the solution obtained by using 

symmetry is accurate to about fo~r significant figures. 

Table 6.4.1 

Solution point values for 'Poi sson l
.5 equation in a rectangle. 

x y Numerical Numerical Exact 

without 

using symmetry using symmetry 

w/7 w/7 0.188149 0.188239 0.188256 

w/7 2'1f/7 0.339105 0.339204 0.339224 

'If/7 3w/7 0.422871 0.422955 0.423005 

2'1f/7 2'1f/7 0.611182 0.611237 0.611261 

2w/7 3'1f/7 0.762153 0.762205 0.762230 

3'1f/7 ~7!/ 7 .. 0 .. 950418 ... ... ' 0.9.50470 0.950485 . .. .. 
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Table 6.4.2 

Point values of the solution of parabo1ic partial 

differentia1 equations. 

Point coordinates (6.4.4) (6.4.6) 

x y Numerica1 Exact Numerica1 Exact 

'fT/7 'fT/7 0.27704 0.27699 0.67997 0.67965 

'fT/7 47T/7 0.072070 0.072066 2.6128 2.6123 

'fT/7 'fT 0.018739 0.018750 10.002 10.040 

2'fT/7 'fT/7 0.49917 0.49912 1.2251 1.2247 

2'fT/7 4'fT/7 0.12989 0.12986 4.7081 4.7071 

2'fT/7 'fT 0.033774 0.033786 18.049 18.092 

3'fT/7 'fT/7 0.62235 0.62239 1.5273 1 .5272 

3'fT/7 4'fT/7 0.16203 0.16193 5.8704 5.8697 

3'fT/7 'fT 0.042142 0.042131 22.546 22.561 

Figure 6.4.3 contains the graph produced of the solution 

in the first case by the subroutine PICT. Smooth lines ~ave 

been drawn by hand on this figure to round out the surface 

contours between point values. 

The next example presented is the two-dimensional 

parabo1ic partial differentia1 equation 

DE:D2/DX2(Z)= D/DY(Z) (6.4.4) 

with 

Z(O,y)=Z('fT,y) = 0 

z(:x;,O)=sin :x; 

A single seventh-order element was used in the rectangle 

x=IO,'fT],y=IO,'fT]. The DECL computer program for this problem 

contained twenty-two boundary condition statements and 
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figure 6.4.3 

Solution of the e11iptic partial differentia1 equation (6.4.1). 
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required 15.3 seconds of C.P.U. time to pro duce a solution. 

Selected point values of this solution are given in 

Table 6.4.2 along with values of the exact solution 

2=sin x e-Y (6.4.5) 

This table also contains the values of the solution of 

the complementary problem 

DE: D2/DX2(Z)= - D/DY(Z) ,(6.4.6) 

which has the exact solution 

2=sin x e y (6.4.7) 

Both numerical solutions agree with the exact solutions 

to three or four significant figure~. The graph produced 

by the program witb the solution of equation (6.4.6) is shown 

in Figure 6.4.4. 

For the third example, consider the eigenvalue boundary 

value, problem 

DE: D2/DX2(Z)' + D2/DY2(Z) = K*Z 

~ Co J Y ) = 2 (x J 0 )=~x~ (.1 J Y ) =~Y 2 (x J l ) =0 

The eigenvalues of this problem are known to be 

K=(~)2I(2n-l )2+ (2m-l )2] n,m=l ,2, ... 

and the eigenfunc~ions are 

. (n~ )' (m~ ) 
2=s~n ~ x s~n ~ y 

(6.4.8) 

(6.4.9) 

(6.4.10) 

(6.4.11) 

Equation (6.4.8) was solved using one sixth-order element 

and required 25.5 seconds of C.P.U. time for solution. It 

is of interest to note that in this problem the solution was 

comprised of 49 independent point values but that with the 

procedure of Section 5.5, the order of the matrix eigenvalue 

problem solved was only 25. Table 6.4.3 contains the values 

of the first eight eigenvalues produced by the program as 

\ 



Figure 6.4.4 

Solution of the parabolic equation (6.4.6). 
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seen that the first three eigenvalues are accurate to four 

significant figures but that the higher eigenva1ues became 

progressively less accurate with a 1.5% error in the eighth 

eigenvalue. Computer plots of the first and fourth modes of 

this problem are shown in Figures 6.4.5 and 6.4.6. 

Table 6.4.3 

Eigenvalues of the Helmholtz equation in a rectangle. 

Eigenvalue Numerical Exact 

number 

l 4.93452 4.93480 

2 24.6784 24.6740 

3 24.6793 24.6740 

4 44.426 44.413 

5 65.49 64.15 

6 65.49 64.15 

7 85.24 83.89 

8 85.24 83.89 

All of the examples shown up to this point have been 

two-dimensional partial differential equations in rectangular 

regions for which the locations of the boundary conditions 

coincided with the edges of the elements. Consider now 

the problem of solving Helmholtz'~ equation{6.4.8) in a 

circular region where 

z(ro
2 + y2 = 1)=0 (6.4.12) 

: 
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One quadrant of the fourth mode of vibration in a rectangle. 
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In this problem, the projective solution region will not 

match the region defined by the boundary conditions for 

any rectangle or combination of rectangles. Consequently, 

a method for specifying boundary conditions at locations 

other than the edges of the elements must be employed. 

As pointed out in section 5.3, equations (5.3.3) and 

(5.3.4) may be used to determine the numerical conditions 

on a projective solution for it to satisfy any boundary 

condition in any geometric location. However, as was the 
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case with rectangular regions, wh en working with an irregular 

region it is wise to take advantage of the orthogonality 

properties of the interpolation polynomials bij in choosing 

boundary condition point locations. In the case of the circular 

boundary condition (6.4.l2), for example, a sixth-order 

element may be super-imposed on the circle as shown by the 

-----~------~-------+------~~~-x 

One quadrant of a sixth order element super-imposed on a 

circular boundary. 

Figure 6.4.7 
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quadrant in Figure 6.4.7. The straight lines drawn on this 

figure indicate the locations of the zeros of the interpolation 

polynomials bij and the crosses denote the points of inter

section of these lines with the circular boundary. 

In analogy with the rectangular boundary value problem 

(6.4.9), it is natural to take these points of intersection 

to be the locations on the circle where the approximate 

solution is made equal to zero. This procedure has the 

effect of shifting the four boundary condition locations 

A,B,D and E used in the rectangular case to the locations 

A', B', D' and E' on the circular boundary. However, a 

simple count of the number of arbitrary constants in the 

general solution reveals that one additional boundary 

condition needs to be specified besides the six imposed at 

the crosses in Figure 6.4.7. 

The addition of this extra boundary condition is, 

however, unusual in the sense that it is not used to restrict 

the behavior of the solution on the circular boundary but 

rather as a means of redefining the basis functions in the 

domain space of the differential operator. In the above 

problem, the complete set of basis functions bij which 

interpolate over the entire square region in Figure 6.4.7 

does not constitute a satisfactory basis set with the circular 

boundary conditions (6.4.12) because it contains an extraneous 

function. The extraneous function in this case is the 

interpolation pOlynomial which has a unit value at point C 

in Figure 6.4.7 and governs the solution behavior in the 

corners of the element. By defining a new set of basis 

functions in which this interpolation pOlynomial does not 

, 1 

l 
" ) 



exist, a basis is formed in which the number of arbitrary 

constants in the general solution equals the number of 

intersection points of the nodal lines with the circle. 

It is important to note in this analysis that the 
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new set of basis functions is derived from the established 

set by eliminating sorne of its members. In the present case, 

this is most easily accomplished by setting the coefficient 

of the unwanted corner interpolation polynomial equal to 

zero with the boundary condition statement 

BC: Z(l.O, 1.0)=0.0 (6.4.13) 

In this way, the solution of problem (6.4.12) can be obtained 

directly from the DECL computer program without performing 

any program modifications. 

There are, of course, sorne disadvantages to using 

the elimination procedure described above to solve problem 

(6.4.12) with rectangular elements instead of defining special 

circular elements which fit the geometry exactly. Solutions 

obtained with the above proced~re are optimized over the entire 

element and not in the smaller circular region. Furthermore, 

the DECL computer pro gram will perform unnecessary 

arithmetic operations with function coefficients which will 

be eliminated. However, in most engineering applications, the 

resulting inefficiencies are not serious enough to justify 

solving the problem with special techniques. 

A DECL computer program was written to solve problem 

(6.4.12) using the boundary condition statements described 

above. The program required 27.1 seconds of C.P.U. time for 

execution and the first eight eigenvalues produced are given 

in Table 6.4.4. The problem was also solved in one quarter 



of the region using a sixth-order e1ement and Neumann 

boundary conditions a10ng the axes. These resu1ts are 

a1so presented in Table 6.4.4 a10ng with the exact 

eigenva1ues. A comparison of the answers shows that 
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the 10wer order eigenva1ues are accurate to two or three 

significant figures. Bearing in mind that the solutions are 

not stationary in the eigenva1ues, this accuracy is quite 

acceptable. It is somewhat 10wer than was the case with 

the rectangu1ar prob1em (6.4.9), however, since in that case 

a 1arger and more suitab1e basis set was used. Plots of the 

first and sixth modes for the circu1ar Helmholtz boundary value 

prob1em are shown in Figures 6.4.8 and 6.4.9. 

Table 6.4.4 

Eigenva1ues of the Helmholtz eguation in a circ1e. 

Eigenva1ue Numerica1 Numerica1 Exact 

number full circ1e quarter circ1e 

1 2.389 2.393 2.405 

2 3.877 3.832 

3 3.877 3.832 

4 5.110 5.137 5.135 

5 5.260 5.135 

6 5.638 5.524 5.520 

7 5.712 5.520 

8 7.705 7.609 7.016 

In order to demonstrate the feasibi1ity of solving 

two-dimensiona1 partial differentia1 equations in comp1icated 

regions with the DECL program, He1mho1tz·s equation was a1so 
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Figure 6.4.8 

Dominant mode in a circular clamped vibrating membrane. 
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Figure 6.4.9 

Sixth mode of a circular clamped vibrating membrane. 
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sixth-order element was used in the approximation with 

boundary condition point locations chosen as indicated 
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the 

by 

the circles in Figure 6.4.10. Here Neumann conditions were 

used for points along the coordinate axes and Dirichlet 

conditions were imposed elsewhere. The first eigenvalue for 

this problem was equal to 2.027 with the corresponding 

eigenvector behaving similarly to the dominant eigenvéctor 

in the circular case. These results agree with an analysis 

of this problem using ordinary finite elements to approximately 

three significant figures I71]. 
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Finally, consider the following two-dirnensional 

Bessel-type equation 

DE: POW2(X) * (D2/DX2(Z) + D2/DY2(Z)) 

DE: +X*D/DX(Z) -Z = K*POW2(X)*Z 
(6.4.14) 

which governs the behavior of the azirnuthal electric and 

rnagnetic fields in a rotationally syrnrnetric resonant cavity. 

The boundary conditions of interest are 

a (boundary)=O.0 (6.4.15) 

for electric fields and for magnetic fields 
dz da x dn(boundary)=-a(boundarY)dn (6.4.16) 

where n is the direction normal to the boundary. This 

boundary value problern has been solved with the DECL prograrn 

and sorne of these results will be presented here. Consider 

first a rectangular toroidal cavity with x=[2,5] and y=[-~,~]. 

Table 6.4.5 

Resonant frequencies of a rectangular toroidal cavity with 

x=[2,5], y =[~,~]. 

Eigenvalue E1ectric field Magnetic field 

number 

Nurnerica1 Exact* Numerica1 Exact* 

1 3.32117 3.32150 1 .03668 1.03660 

2 3.' 78948 3.78526 2.08585 2.08868 

3 4.475 4.451 3.14177 3.13768 

4 6.397 6.375 3.30820 3.30820 

5 6.655 6.629 3.77096 3.77250 

6 7.068 7.030 4.588 4.440 

* These numbers were computed by A. Konrad. 
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The resonant frequencies of the electric and magnetic 

fields obtained for this cavity from the DECL program 

using one sixth-order element are presented in Table 6.4.5 

along with the exact values. There is excellent agreement 

with all low order eigenvalues. In addition, Figures 6.4.11 

and 6.4.12 contain two tif the field plots produced by the 

DECL program. 

Now consider a right cylindrical cavity in which 
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the solution of equation (6.4.14) is required in the region 

x=[0,3], y=[-~,~J. Unfortunately, equation (6.4.14) has a 

singularity along the line x=O.O due to the 1/x 2 coefficient 

in Bessel's equation and function values along this line 

cannot appear in the solution vector. Consequently, in 

order to obtain meaningful results, the solution region must 

be made to overlap the line x=O.O. It is not necessary to 

avoid the line x=O.O wh en specifying boundary conditions 

however, since the boundary conditions (6.4.15) and (6.4.16) 

are valid in any location. 

The calculation of the electric and magnetic fields 

in the right cylindrica1cavity has been performed by the 

DECL program using a sixth-order e1ement in the region 

x=[-0.05, 3.0J, y =[-0.5, 0.5] and the eigenva1ues produced 

r 
1 

1 
1 

1 

1 
l 
1 

1 
! 

are given in Table 6.4.6. In this calculation, the boundary ~ 

conditions were app1ied along the lines x=0.O,x=3.0, y=-0.5 

and y=0.5. The eigenvalues have approximate1y the same 

accuracy as in ·the previous examp1e. Figures 6.4.13 and 

6.4.14 contain examples of the field plots produceâ by the 

DECL program for this problem. 
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Figure 6.4.11 

The fifth resonant mode of the e1ectric field in a rectangu1ar toroida1 cavity. 
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Figure u.4.12 

The fifth resonant mode of the magnetic field in a rectangular toroïdal cavity. 
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Figure 6.4.lj 

The second resonant mode of the electrJc field in a right cylfnderical cavity. 
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Figure 6.4.14 

The third resonant mode of t~: 
.~/ 

field in a right cylindrical cavity. 
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Table 6.4.6 

Resonant frequencies of a right cy1indrica1 cavity with 

x=[0,3], y=[-~,~]. 

Eigenvalue E1ectric field Magnetic field 

number 

Numerical Exact* Numerical Exact* 

1 3.39112 3.39130 0.80129 0.80160 

2 3.92052 3.91649 1 .8201 1 .8400 

3 4.847 4.623 2.9437 2.8845 

4 6.433 6.412 3.242 3.152 

5 6.728 6.704 3.631 3.641 

6 6.975 7. 140 4.305 3.931 

* These numbers were computed by A. Konrad. 
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CHAPTER 7 CONCLUSIONS 
In this thesis, two different but nevertheless 

interrelated themes have been developed. The first and 

perhaps primary theme has been the introduction of a 

discretization procedure which uses different orders of 

polynomials to approximate the domain and the range spaces 

of differential equations. The notion of assem~ling 

complicated operators from simple ones, using projection 

operators between different spaces, and employing generalized 

matrix inversion to solve the resulting rectangular matrix 

equations are all logical consequences of this numerical 

approach. The second theme has been the development of 

differential equation solving programs with versatile and 

easy to use input and output characteristics. This development 

essentially constitutes the creation of a new special purpose 

computer language which makes it possible to solve many 

differential equations automatically. 
• 

The advantages of using the discretization procedure 

developed in this thesis are numerous. First of all, 

it is computationally efficient. The method relies 

primarily on matrix addition and multiplication for 

its execution, a trait well-suited to the operating 

characteristics of digital computers. Second, the method 

is highly accurate. In addition to providing numerical 

procedures of up to ninth-order sectional polynomial 

accuracy, the solutions are optimized in a least squares 

sense in their respective approximation spaces. 'Third, 

{ 
:~ 
j 
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the method produces general solutions of differential 

equations as well as particular ones. With these general 

solutions, it is possible to solve a differential equation 

separately in many regions using relatively small matrices, 

the connecting inter-element conditions being added 

subsequently. Further, unlike most ordinary projective 

methods where the boundary conditions are located at 

the edges of the region considered, general solutions 

allow boundary conditions to be specified anywhere. 

As for the development of the automatic differential 

equation solving programs in this thesis, these too 

have been highly successful. As shown by the examples 

in Chapter 6, the DECL computer programs provide a 

practical alternative for solving many ordinary and 

two-dimensional partial differential equations to established 

methods. The program is sufficiently, accurate for most 

engineering applications and their computational times 

are also acceptable, considering the general nature of 

the programs. Most importantly, however, the programs 

have a simple input and output structure that allows 

many differential equations to be solved with a minimum 

of analysis and data preparation. 

It must be mentioned, however, that although 

the theory and the computer programs in this thesis 

have many attractive features, they also have several 

serious shortcomings. On the theoretical side, the 

most prominent of these is the neglect of this thesis 

to provide a rigorous error bound for the solutions 



generated. As a result, in those cases where the accuracy 

of the solution mus~be defined precisely, the user is 

required to examine the convergence of the solution 

using previously established procedures. In addition to 

requiring a further knowledge of numerical analysis, 

these procedures often magnify the computation required 

to treat a differential equation by an order of magnitude. 

Sorne of the other mathematically unavoidable 

deficiencies in the method are the large sizes of matrices 

which result with high-order, two-dimensional elements, 

the failure of Newton's method to converge in all cases, 

and the necessity of avoiding singular points in the 

calculations. Fortunately, however, while these problems 

are troublesome, they do not preclude alternative form

ulations of the differential equation to avoid the 

occurence of these problems. 

The DECL computer programs also have sorne limitations 

which are not based on theoretical reasons. Among these 

program limi~ations are the cumbersome technique used 

to sp'ecify two-dimensional boundary conditions, the lack 

of double pr.ecision versions of the programs, and the 

necessity of evaluating the quasi-linear form of a non-

linear differential equation by hand, instead of having 

the DECL compiler do it automatically. In terms of 

future development, these areas indicate sorne of the 

features of the DECL computer programs and of the DECL 

computer language which should be improved. Hopefully, 

in a continuing evolutionary development, newer, more 

216 



sophisticated procedures will eventually replace the 

inadequate ones existing presently in DECL. Thus, while 

the DECL computer programs given in this thesis are 

insufficient for sorne purposes, they do constitute an 

important first step in the development of a general 

computer language for the automatic solution of differen

tial equations. 
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Even in their present form, however, the overall 

performance of the DECL programs in treating most ordinary 

and two-dimensional partial differential equations 

accurately and efficiently indicates that these programs 

can be a valuable tool'in 'engineering applications. By 

taking advantage of the ability of these programs ta 

solve a large variety of problems without modification, 

it is often possible for practicing engineers to bypass 

the difficulty and expense of writing a special computer 

program to solve each separate type of differential 

equation. In this way, the valuable skills of many 

engineers who out of necessity are presently part-time 

numerical analysts and programmers can be deployed more 

efficiently. 
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