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ABSTRACT

A projective method is developed for the solution
of differential equations which uses different finite
dimensional spaces to approximate the domain and the range
spaces of the differential operator. It is shown that
rectangular matrices are equivalent to analytic operators
in these spaces., Using Lagrangean interpolation polynomials,
simple numerical matrix equivalents are evaluated for the
two.operators %y and f(x), From these two types of matrices
and a third projection matrix, the discretization of any
differential equation is performed by ordinary matrix
addition and multiplication. The result of such discretization
is a rectangular matrix equation that is solved using the
generalized inverse of the matrix to obtain an approximate
general solution of the differential equation. Two computer
programs using this procedure are presented, one of which
solves arbitrary Tinear ordinary differential equations and
the other for the solution of arbitrary linear two-dimensional
partial differential equations. The input to these programs
is a new computer language for the representation of
differential equations called DECL, defined in this thesis.
Several applications of the programs to engineering problems
arevdemonstrated. In addition, numerical experiments are
performed using the ordinary differential equation program
in conjunction with Newton's method to solve nonlinear

ordinary differential equations.
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INTRODUCTION

In recent years, considerable progress has been
made in developing direct numerical methods for the
solution of differential equations. To a large extent,
this advance is the result of improvements in computer
systems, enabling computationally lengthy algorithms
to be handled with comparative ease. However, in addition
to the procedural refinements which naturally accompany
increased usage, there has also been a majov change in the
type of numerical methods used. A decade ago, the most
common method of solving partial differential equations -in
engineering applications was by means of finite difference
formulae; foday, for many engineering problems, use of the
finit2 element method is standard.

The effect of the new procedures has been to enlarge the
role of projective methods in the numerical solution of
differential equations. These methods, of which the Rayleigh-
Ritz method, the Galerkin method and the least-squares method
occupy a dominant role, are thoroughly treated in standard
boaks by Mikhlin [1], Mikh1in . and Smolitskiy [2] and -
Kantorovich and Krylov [3]. The basic idea in projective
methods is to express the solution of a boundary value problem
as a sum of known functions with undetermined coefficients. A
matrix equation for the unknowns is then derived by requiring the
approximate solution to satisfy certain minimality conditians.

Provided that the functions and the approximation criteria



are chosen Judiciously, highly accurate approximate
solutions result.

As originally conceived, classical projective
methods were designed to solve a single boundary value
problem:in a single geometric region. In recent times, however,
it has become apparent that the geometric Timitations of
these methods can be eased by defining new sets of trial
functions which are non-zero only over small, standard
subregions. The equations for the solution of a boundary
value problem in a complicated.region can then be easily
determined by evaluating the conditions oh a projective
solution in each of the subregions under specified
continuity conditions. The technique of obtaining
solutions by this procedure is commonly called the finite
element method.

The use of the finite element method was first
promoted as a distinct and generally applicable procedure
for the solution of structural mechanics Phob]ems by Turner,
Clough, Martin and Topp [4] in 1956. 1Its further
application in structural mechanics and plate bending
analysis was developed in the early 1960's by Clough [5],
by Adini and Clough 61 and by Gallagher [7]. In the
mid 1960"s Argyris made extensive studies of aeronautical
structures using the finite element method [8]. At
the same time, Zienkiewicyz and Cheung [9,10] developed
finite element methods for problems occurring in civil
engineering. To a large extent, the early popularity
of the finite element method in mechanical and civil

engineering is due to the considerable work of two groups,



one in aeronautical structures in which the work of
Argyris predominates and the other in civil engineering,
led by Zienkiewicz.

The application of the finite element method to
other engineering disciples quickly followed. In the late
1960's, Oden [11,12] developed finite element methods for
nonlinear elasticity and thermomechanical problems. In
electrical engineering, the first use of the finite element
method was the analysis of electromagnetic wave
propagation in homogeneous waveguides by Silvester [13]
in 1968 and by Ahmed and Daly [14] in 1969. This was
followed in 1970 by the nonlinear finite elemant analysis
of electric machine problems by Silvester and Chari [15]
and the vector finite element formulation of dielectric
lToaded waveguides by Csendes and Silvester [16] and by
Daly [17].

Applied mathematicians became interested in the
finite element method in 1968 with the publication of
theoretical papers by Zlamal [18] and by Birkhoff, Schultz
and Varga [19]. Further theoretical treatment from the
point of view of error bounds for the finite element method
was given by Babuska [20] and by Schultz [21].

In the past two to three years, the number of papers
appearing on the finite element method has been increasing at
an explosive rate. A large part of the engineering
applications of these methods is contained in two recent books
on the finite element method, one by Zienkiewicz [22] and

the other by Oden [23]. However, there is already so much
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Titerature on the subject that, on many topics, these
books are limited to mere surveys of the material or,
in some cases, to just citing bibliographical references
of the original papers.
A similar situation also exists in the theoretical
analysis of the finite element method, as evidenced
by a recent survey paper by Zlamal [24]. This paper,
along with one by Whiteman [25], provides an extensive
bibliography of finite element methods. A more reasonably
self-contained treatment of the mathematical implications
of the finite element method, including rigorous convergence
proofs of the method, may be found in a monograph by Varga [26].
Another development of importance to the finite element
method, but not directly related to it, is the study of
optimal finite difference schemes made by Rabuska, Prager
and Vitasek [27]. They prove that the consistent Galerkin
approximation of a boundary value problem solves the
problem of minimizing the norm of the error operator for
finite difference methods. .Since this is the criterion
by which finite element formula are established, it
implies that finite element solutions are in general more
accurate than the corresponding finite difference solutions.
As originally conceived, the term - the finite
element method- had a rather narrow definition. To many
early workers, such as Argyris and Zienkiewicz, it meant
using basis functions that had local support, were
interpolatory at the edges of the elements and resulted in

piecewise continuous solutions. However, as in all




successful areas in which many people work, with every
new development, the scope of the finite element

method has become enlarged. Silvester and Hsieh [28]
have used the term when working with an exterior pro-
blem in an infinite region to define finite elements of
infinite size;Brauchli and Oden [29] employ conjugate
approximation functions in the finite element method
which are non-zero over the entire solution region;

Hazel and Wexler [30] have formulated finite element
solutions in terms of non-interpolatory basis functions;
and Reichert and Vogt [31] provide such a general
definition of the finite element method that it includes
almost any method in which pieces are connected together,
specifically including the five point finite difference
operator. (On the other hand, Babuska, Prager, and
Vitasek [27], and more recently Miranker [32], have
adopted such a general definition of the finite difference
method that it includes virtually all finite element
methods:)

In view of this altering usage and common confusion
over notation, it is necessary to examine those
properties which specifically characterize the finite
element method and to define the method accordingly.
First of all, a finite element method must be projective.
This property implies that there is some kind of corres-
pondence between the analytic space of approximating

functions and a finite dimensional vector space. It




therefore distinguishes the finite element method

from the more general definition of finite difference
methods given by Babuska, Prager and Vitasek [27]

in which no analytic function space is defined. Second,

in a finite element method, one or more element shapes

must be specified over which a standard set of basis
functions is defined. Third, the finite element solution
of a boundary value problem in a region that is a union

of elements must be given as a combination of the solutions
of the corresponding elemental boundary value problems.
These three conditions correspond closely to the properties
by which the finite element method was originally developed
and yet provide a flexible definition well-suited to
contemporary usage.

Within this general definition of finite element
methods there coexist several widely different procedures
of developing and using the method, its elements and
their basis functions. Most of the early work [33]
developed finite element procedures using linear
appkoximation polynomials between the function values
at the vertices of triangular or rectangular elements.

With these simple approximating functions, the matrix
elements of the discretized equation can be evaluated
analytically for finite elements of a general shape.

The resulting algebraic formulae are then used to generate
the elements of a matrix equation for the solution in
specific cases.

However, in quest of higher solution accuracies, mofe

sophisticated finite elements have been introduced.
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Among the large number of element shapes and basis functions

that have been tried, two types of finite elements predominate.
One is the isoparametric elements described by Zienkiewicz [22]
in which the basis functions are Cartesian products of one -
dimensional interpolation polynomials in curvilinear
coordinates. The others are the high-order symmetric
triangular interpolation poiynomia] elements discovered
independently and with entirely different approaches by
Silvester [34] and by Irons [35].

An undesirable byproduct of the use of high-order finite
elements is an increase in the level of comp1exfty in the
procedures used to evaluate the matrix elements. With
isoparametric elements, the technique of evaluating general
algebraic formulae for the elements of finite element matrices
has been abandoned entirely and all calculations are performed
from first principles using numerical methods [22]. With
the high-order triangular finite elements, it is possible to
retain the efficient algebraic approach for generating matrix
elements, but the required analytic calculations are lengthy
and difficult. Thus, at the present time, the main short-
coming of projective methods is the complicated and expensive
calculations needed to discretize each separate type of
differential equation.

The primary concern of this thesis is to derive an efficient
and accurate algebraic procedure for the discretization of
arbitrary differential equations. In order to do so, it will
be necessary to devise discrete matrix operators which have

analogous combinatérial behavior to the elementary components




of analytic operators. Once such matrix operators are
developed, the matrix equivalent of any differential equation
can be determined by simply combining the elementary matrix
operators algebraically.

The chief obstacle to forming matrix equivalents of the
elementary components of analytic operators is the fact that
classical projective methods treat differential equations
and boundary conditions as an inseparable unit called a
boundary value problem. In these formulations, it is not
possible to develop an atomic approach to discretizing
differential equations because the entire boundary value
problem is fused together. Consequently, in this thesis, the
extension of projective methods to solve differential equations
which are independent of boundary conditions will be considered.
It will be shown that the formulation obtained from this
approach yields, for the first time by the direct application
of a numerical method, general solutions of differential
equations instead of particular ones.

There is, however, in addition to the theoretical limit-
ations mentioned above, a maior practical drawback in applying
projective methods to solve many common engineering problems.
The use of a projective method to solve a differential
equation generally requires the development of an extremely
complicated and expensive compiiter’program. An indication
of the extensive labor sometimes required is provided by the
analysis of the Boeing model 747 aircraft wing-body inter-
section by finite element methods [36]. For this problem,

approximately one hundred man-months of effort and about twenty-



eight hours of CDC 6600 computer time were required to convert
existing theory into a working computer program. Clearly,
although many engineering problems would benefit from analysis
by projective methods, very few of them generate sufficient
interest to merit this kind of individual attention.

Consequently, in order for a discretization procedure
for arbitrary differential equations to have maximum impact
it must be coupled with the development of an efficient
computer implementation of the method. By providing a general
computer program which performs each of the discretization
steps for differential equations automatically, both the
difficulty of discretizing arbitrary differential equations
and program developmeént costs can be eliminated. For this
reason, the ultimate objective of this thesis is to develop
general computer procedures by which large classes of differ-
ential equations can be solved with a minimum of analysis and
data preparation.

In pursuit of this objective, a spetia] purpose computer
language has been developed for the symbolic representatio.
of differential equations and two computer programs based on
this language - one for the solution of arbitrary linear
ordinary differentia1'equations and the other for arbitrary
linear two-dimensional partial differential equations - have
been written. In addition, the linear ordinary differential
equation program has been adapted to solve nonlinear ordinary

differential equations by means of Newton's method.
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Listings of these computer programs will be presented
in the thesis along with numerous examples of their
operation. Although many of the problems selected can be
solved by using alternative methods, it will be demon-
strated that none of these alternatives can furnish
solutions as profitably as the Present programs, in terms
of accuracy, computing speed and, especially, units of an
engineer's time. '

In summary form, the major original contributions
of this thesis are:

(1) The development of j purely algebraic
discretization procedure forlarbitrary
linear ordinary and partial differential
equations. ,

(2) The definition and evaluation of rectangulér .
matrix equivalents for the three elementary

components of differential equations

(3) The application of matrix generalijzed
inversion to determine approximate general
solutions of differential equations.

(4) The development of a3 computer language and
computer programs for the automatic solution
of arbitrary linear ordinary and two-
dimensionai partial differential equations
and for the solution of many nonlinear ordinary

differential equations by Newton's method.



ELEMENTARY OPERATORS

The first step 1ﬁ developing a projective procedure cap-
able of discretizing arbitrary differential equations is to
devise a simple method for obtaining their numerical equiva-
lents. In order to do this, it is important to observe that
with analytic formulations, any differential equation is simply
an algebraic combination of functions with the differential
operator. It follows that the construction of a numerical
equivalent of a differential equation is most easily accomplished
by recognizing the primary numerical constituents of the
method used and assembling comp]icéted matrix equations from
these components.

In order to proceed, it will be helpful to define the

term elementary operators to refer only to those operators

which cannot be decomposed further into sums or products of
other operators. Although other possibilities exist, for dif-
ferential equations the simplest and most generally applicable
quantities to designate as elementary operators are %5 and f(x).
Any operator that is composed of a product of elementary oper-

ators will be called a simple operator, and operators containing

a sum of simple operators will be referred to as compound oper-

22
ators. As an example, the compound operator D= ggf + k2

. .22
consists of two simple operators %Ez and k2. These two simple
operators-are composed of the elementary opev,cors'%g and k.
The use of matrices to replace the process of different-

iation in finite element discretization has been independently
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advocated by Boisserie [37] and by Silvester [38]. In the first
case, the differentiation matrices are square and corresponded
to one-dimensional differentiation, with matrix products gener-
eting two and three dimensional finite elements. In the second,
rectangular matrices are used to differentiate Newton-Cotes
interpolation polynomials over triangular regions. However,
neither paper properly develops a complete, consistent approach

for obtaining discretized forms of compound operators from these

matrix factors.,

2.1 DIFFERENTIATION MATRICES

The elementary factor Zz%1‘5 the most basic operator in the

theory of differential equations. As is well known, its custom-

ary definition is

Dy (2.1.1)

s

where y, and y, are the values of a function y(x) at the points
x; and x, , respectively. Definition (2.1.1) is only valid if
the 1imit exists and is unique for both X,>x, and x,>x,. In
this equation, the following convention, Whiéh will b®:pursued
throughout this thesis, has been introduced: wherever practical,
functions are denoted by lower case letters and operators by
capital letters; itali s are used ‘to donote analytic express-
jons while Roman type denotes discrete representations,

The standard numerical equivalent of (2.1.1) is to write

)

Y e A e bt ot s Wt et b e e s e
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a finite difference approximation [ 39]

Dy ~ Yz = ¥

— (2.1.2)

which converges to (2.1.1) as the length of the finite inter-
val L = x, =~ x, tends to zero. It is apparent that this
procedure is equivalent to approximating the function y on
the interval I = [ x,,x, ] by the linear polynomial which
passes through y, and y, at the endpoints of the interval. The
error introduced by using (2.1.2) instead of (2.1.1) in the
1ntervé1 I is therefore related to the accuracy with which the
function , may be approximated by a linear polynomial in I.

it is well known that given a finite number of values, a
function can be approximated much more accurately by é few high
order polynomials than by many low order ones. Therefore,
it is reasonable to seek more accurate finite difference rep-.
resentations of (2.1.1) by approximating y with high order pnly-
nomials and then determining the corresponding finite difference
formula. Since these formulae are to be in terms of point
values, the approximating polynomials should be expressed in

terms of an interpolatory basis and may be written as follows

' n
v L oyaiMe (2.1.3)
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where the { Zé")(x) } are the n'th order Lagrange interpolation

polynomials

1(n) ) o _Pi () (2.1.4)
T pi(n) (xi)
Here
n
pi™ (x) = 1 (x- X;) (2.1.5)
m=o
m#i

The key to forming high order discrete representations of
the differential operator (2.1.1) is obtained by recognizing
that if an» 'th order polynomial is used to approximatey » the
function generated by the process of differentiation will be
a polynomial of (n-.2 'st order. Therefore, whenevery is an

n 'th order polynomial, the functionpy may be written as

n-1 (n-1.)
=0

where again, since point values are desired, the expansion
‘functions are Lagrange interpolation polynomials. Equations

(2.1.1), (2.1.3), and (2.1.6) yield

(n)
n-1 n d 1.7 (x)
i=0 i=0 * da



Now
(n) (n) _ .
So that
(n) (n-1)
" d_zi "(xj ) y
2. = I ' 7
J i=0 de

In matrix form this is

z- = Dy

._’n

(2.1.8)

cesm=1 (2.1.9)

15

(2.1.10)

where z is an n-component vector containing the numbers Z.,

y is an (n+1) component vector containing the numbers y, and

D is the #nx(n+1) matrix with elements

(n-1 ) )

(n)
d Zi (xj

dax

1 k

p Iin)(x(n))

(n) (m) _ (n)
o S B

(n)
(xj )

(2.1.11)

if x{n-l)¢ x§n)

(2

C J=0s000M

if Xz

n=-1)__(n)
* "'_xk

#

x(n/
J

i G 2

S o s e



n
% ;——%—;— if xé"'l) ;
nzg 7 m

As introduced here, in this thesis, non-subscripted lower case
letters will indicate vectors having as components the corre-
sponding subscripted discrete values of a function. Simi]ar]y,
non—sdbscripted capital letters will refer to matrices which
give the discrete representation of an operator.

The simplest interpolation polynomials are the Lagrangian
polynomials in which the nodal pbints are equi-spaced in the

interval I of length L. Taking

x(n=1) _ _L_ £=04444yn=1
1 n-1
(2.1.12)
xgn{ = -%— J J=0s¢0.ym
for n22 the components of the matrix D become
~ , (2.1.13)
(1 n(n-1) n g-m (n-m)lm! . (n=-1),,(n)
L ni-(n=1)j m;a(”l) (m-grtgr o X AT
J

J=0,44..,5m

0—k
D. coa=d n(=1)9 (n-k)I1k! e W (n=1)_(n) ., (n)
CLItl Te-gT (n=glig] Of Xy T TEX A

n

L b S L

d

n
z
| 7#g

16
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The differentiation matrices ( or D matrices ) corre-
sponding to equi-spaced Lagrangean polynomials have been
evaluated exactly using Formac symbol manipulator Tanguage [ 40]
for polynomial orders ranging from one to nine and are presented
in Table 2.1.1. 1In this table, the following antisymmetry
property

ii ° Dnroei, nr1-j (2.1.14)

is evident. The lowest order case, with n=y, yields for equa-

tion (2.1.10).

(2.1.15)
Yo

[2:] = =~ [-11] [y]
This is equation (2.7. 2) aguin, only in matrix form. The next
higher approximation of (2.1.1) results when y is approximated

by a quadratic (3=2) in which case equation (2.1.10) is

Zyfl. _1 -3 4 1| ly 2.1.16
[Zz] L 4[1 -4 3.] Vo ( )
VER

The higher order approximations produce similar rectangular
matrix equations.

The elements of the D matrices possess a number of inter-
esting and potentially useful properties. First, it may be
noted that the rank of each matrix is one less than the dimen-
sion of its domain and that, in fact, the row sums of each and
every one of these matrices are zero. This is a necessary

consequence of the fact that differentiating a constant, in
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which case all of the y are equal, results in zero. Thus the
(2

nullspace of a D matrix corresponds to the nullspace of the

a
dx’

Similarly, by noting that the x'th order D matrix differ-

operator

entiates polynomials of degree less then or equal to #xn, one

surmises from the equatibn

2 aP o pegP] (2.1.17)
that
n ) p-1 .
(n) (n=1) 1=0,.403n=~1
z o o . = . ) ) . .
im0 ng (XJ ) p(xz ) D=0, .. (2.1.18)

This result is valid for genasral differentiation matrix ele-
ments. In particular, with thé Lagrangean matrix elements

(2.1.13), the following formulae are obtained.

(-1)7*1

n L (2.1.19a)
i=1 (n-g)t 1
X (2.1.19b)
non (DT (nem)tm i g i
z v — = e et——— , LN I ,
j=o g=a (ni-(n-1)j) (n-j)1jl n n (n=-1)P p=o0,...,n

Osevss? (2.1.19¢)

o
1

-1 an P
1 (-1) nl (4 _ P
jio n-j{ (n=-gll 4! [n] * 1}. T n
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Here, equation (2.1.12 ) and ‘the fact ‘that xs e, unless izj=0
or Z=n-1 and j=n has been used. These formuiae may also be
proved by induction.

It is also interesting to note in passing that the dif-
ferentiation matrices (2.1.10) may be used to provide an alt-
ernative definition of differentiation. First note that equa-

tion (2.1.1) may be written as

.1 . ; (1)
Dy = lim + [-1 11 [y,) 2im D (1) (2.1.20)
’ Lo b - [y;}=L+o Y

1
where D( ) indicates the first order D matrix. One may also

write

- (2)
= 14 1 (-3 Yi| - . (2)
Dy = 1lim T [ | -4 3] lyz} Eig D y (2.1.21)

which will converge faster, but under similar conditions as
(2.1.20). Formulae of this type are essentially the same as
(2.1.1) since differentiable functions may be approximated

by straight lines in the 1imit as L»0. Consider, however, the

sequence of functions

(n) _

i

3

RE]

(n) ,(n)
. z, Zi (x) (2.1.22)

defined by the equations

20
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2(n=1) _ p(n) y(n) (2.1.23)

An alternative definition of the derivative of y is provided
by

y'(x) = 1im 2™ (a) (2.1.24)
9+

whenever the sequence {z(")} is uniformly convergent.

2.2 SIMPLE OPERATORS

In this section, methods of developing matrix representa-

tions of simple operators will be considered. These will be

obtained by taking products of the elementary D matrices of

the previous section and some new elementary matrices which
correspond to functions.

Fortunately, as each elementary operator 2% of a product

=P acts on a polynomial expression, it generates a polynomial
z

of one lower degree. Therefore, high order differentiation

matrices can be obtained by simply multiplying together the

succession of matrices which corresponds to the range of poly-

nomials upon which the elementary operators act. For example,
2

to obtain the quadratic equivalent of -, one forms
dx



1 2 2
oy ) L 1 13 %[-3 4 -1] [yll
]

-4 Y2 (2.2.1)
Ya
= %T [1 -2 1] {yll
Y2
Y3

This equation is jidentical to the well known finite difference
2

formula foragr f39].

In a similar manner, by using the matrix values given in
Table 2.1.1, high-order polynomial representations of any dif-
ferential operator of degree less than ten may be formed.
These high-order D matrices have similar properties to low
order ones, For example, the dimensioné1ity of the nullspace
of the D matrices corresponding toE%; is equal to two, with
row sums and linearly weighted row sums equal to zero.

It remains to develop matrix representations for simp]F
operators which contain functions. In order to do this, con-

sider the expression

2lx) = flx)y(x) (2.2.2)

where yx(x) is given by an x'th order polynomial

. 7

n
y ™) = 1 yir2in) o) (2.2.3)
=0

and assume that z(xz) is to be approximated by an m'th order

polynomial

22
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2(Me) = 3 zém)lgm)(x) (2.2.4)
i=0

The problem is to determine the matrix operator F which pro-

duces the mapping

z = Fy (2.2.5)

corresponding to (2.2.1).
Taking

yfn) = §

i Iy J=0,...,1m (2.2.6)

in (2.2.5) produces the = sets of m equations

z(m) = F 7:-:0,-..,”1

1 'I:j j=0,...,n (2.2.7)

Now if ng) is taken to be the value of the function f(x)y(x)
at the point x M) then, using (2.2.6)

i

_(m) _ (m), % (n),, (m)
Fij'zi = Fx; )J_Eoyj (X;"7) , (2.?.8)

_ (m) ,,(n),, (m)
= fx, )Zj (x;"7)

Notice, first of all, that if f(x)=1 and n#m then (2.2.7) defines
an operator which maps a function into a higher or a lower order
space. The raising operator with m>n is exact and provides a

convenient method for imbedding a Tow order polynomial into ¢



higher order space. Table 2,2.1 contains the values of this
matrix with m=n+1 for polynomial orders ranging from zero to

eight.

The most useful form of (2.2.7) arises, however, when y=pm

since then 2"/ (x(M)) _s .. and
1 2 1d

_ (m)

Thus, in order to find the product of a function y(”) expressed
in terms of n'th order interpolation polynomials and an arbi-

trary function f(xj,it is only necessary to multiply the vector
of coefficients of y by a diagonal matrix containing the values
of the function f(x)at the interpolation nodes. This procedure

has the same effect as weighting the vector y by the nodal
values of frx).

2.3 COMPOUND OPERATORS

Before the matrix equivalent of an arbitrary differential
operator can be determined, the effect of additions on the
discretization procedure of the previous sections must be deter-
mined. That such operations may not be pefformed in a straight-
forward manner may be seen by considering the compound operator
D = %§=y. If y is approximated by a quadratic, then the first
term in this expression is a linear polynomial having a two
component vector representation while the second term is a
quadratic having a three component representation. Clearly, it

is not possible to add these two vectors.
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1 ST ORDER

0.1000000& 01
0.1090200& 01

2 NDORDER

0.1000000¢ o1
g.gDOOQOOE 00

3 Td ORIER

0.1000000¢ 01
0.22222228 00
g.élllllls oo

7 TH ORDER MATRIX

0.10000008 01
0.3253746E=01
*0.11729680£=01
0.6357893E=02
"0.7442292E=02
0.1173713E=01
0.29¢3175c=01
=0.347.582E=01

The first nine FU matrices for equi-spaced Lagrangean

0.0
0.5000000E 00
0+10C00GOE OL

0.0
0.8888888E 00
0.8888888E 00
0.0

0.0
0+1171349E ol
0.1689092E 00
=0.6242297E-01
03929992E=01
=0+3470582E-01
0.3480585E=-01
=~0.1716632E 00

8§ Th CRUER MATRIX

0.l00c000¢ 01
0.2399191z-01
«0.7587433=02
0.35617815=02
«0,2461406E=02
0.9497818E=02
0.1884382E=01
=0,2162524E=01
0.6205067E=02

0.0
0.1175603E ol
0.1239281lE 00
=0.4120275E=01
0.2392578E-01
=0+1453304E-01
0.6205067E-02
=0.1689447E 00
0.86753556~01

9 TH DROER WATRIX

0.1000300¢ 0}
0,183634)Ee01}
*0,316473405e02
0.22315¢61zm02
*J3,13153752=02
Calle2285za02
«C,32434008m02
=C.T161582F=02
02633072 an)

=C,3535211F=02

0.0
0¢1175258E ol

049411728E=p1’

=0.2817998E=0]
0¢l464620Ea01
=0+1001270F=n1
049212988E=02
=0.8635211F=n2
0+¢5372003E=-p1
=0+4971430E=n1

°o°
=0.,1111111E 00
0.2222222€ 00
0.1000000E 01

0.0
=0.3660464E 00
0.1055682€ 01
0.4291579E 00
=0.1716632E 00
0.1319603E 00
«0.1331078E 00
0.0

0.0
~0,3918679E 00
0.1115353E 01
0.3213814E 00
~0.1196289E 00
0.8675355€-01
-0.9033471E-01
0.1212236E 00
0.5981445E 00

°.°
=0,4113403E 00
0,1152937E 0}
0,2465748E 00
=0,3621564E=01
0.5383047E=0)
»0,4971430E=01
0.,5161451€+0]
~0,9275264E+0)
=0,1313876€ 00

Table 2.2.1

& TH ORDER MATRIX

0.1000000€ 01
0.1171875E 00
=0,6250000E=01
0.i049805E 00
0.5625000€ 00

0.0
0.1054688E 0l
0.5625000E 00
=0.2109375E 00
0.0

3 TH ORDER MATRIX

0.1000000¢ 01
0.7040000E=01
=0.3360000E=01
0.2756096E~01
=0.2841344E=01
«0.1536000E 00

O'O
0+1126400E 01
0.3584000E 00
~0.,1536000E 00
0+1023999E 00
0.0

6 TH ORDER MATRIX

0.1000000€ o1
0.4632309E=01
=0,1920439E=01
0.1171875€=01
=0,3249779E=01
*0.9322089E=01
0.5733449g=01

°l°
0.2602997€ 00
=0,3127948E 00
0,7629474E 00
0.7629474E 00
~0.3127948E 00
0.2602997E 00
€.0

0.0
0,3457658E 00
-0.,3717842E 00
0.8927263E 00
0.5981445E 00
=-0.,2434708E 00
0.2065468E 00
=0.2351207€ 00
0.0

0.0
0.4329898F 00
~0,4192498E 00
0.9862995¢ 00
0.4716078E 00
=0,1813376€ 00
0,1408999F 00
-0,1590258E 060
0,2223441E 00
0.0

0.0
0.1158076E ol
0.2400548E 00
=0.9765625E=01
0.5733449E=pn1
=0+3380900E~p1
0.5859375€ o0

0.0
-0.1331078E 00
0.1319603E 00
=0.1716632E 00
0.4291579E 00
0.1055682E 01
=0.3660464E 00
0.0

0.0
=0.2351207€E 00
0.2065468E 00
=~0.2434T08E 00
0.59B1445E 00
0.8927263E 00
=0.3717842E 00
0.3457658€ 00
0.0

0,0
=0,3672681€ 00
0,2882342E 00
=0,3082185€ 00
0,7368872€ 00
0.7368872¢ 00
=0,3082185¢ 00
0,2882342F 00
=0,3672681E 00
0.0

0.0
-0.210937%€ 00
0.5625000E 00
0.1054688E 01
0.0

0.0
-0.2816000E 00
0.8063999E 00
0.8063999E 00
~-0.2816000E 00
0.0

0.0
=0.3308792E 00
0.9602194E 00
0.5859375E 00
=0.240054BE 00
0.1781637€ 00
o'o

=0.1716632E 00
0.3480585E=01

=0.34705682E=01
0.3929992E=01
=0.6242297E~01
0.1689092E 00
0.1171349€ 01
0.0

0.3981445E 00
0.1212236F 00
=0,9033471E~01
0.8675355e=01
=0.1196289E 00
0.3213814E 00
0.1115353€ o1
=0.3918679¢ 00

0.0
0,2223461E 00
=0,1590258¢ 00
0,1408999¢ 00
=0,1813876E 00
0,4716078E 00
0.9862995¢ 00
=0,4192498E 00
0,4329898% 00
0,0

polynomials.

0.5625000€ 00
0.1049805E 00
«0.6250000E-01
0.1171875€ 00
0.1000000E 01

0.0
0.1023999E 00
=~0.1536000E 00
0.3584000E€ 00
0.1126400€ 01
0.0

o.o
0.1781637¢ 00
=0.,2400548E 00
0.5859373€ 00
0.9602194E 00
«0.3308792E 00
0.0

=0.3470582E=01
0.3948175E-01
0+1173713E=0]
=0.7442292E~02
0.6357893E-02
«0.1172980E~01
0.3253746E-01
0.1000000E o1

0.8675355E=01
=0:1689447E 00
0+6205067E-02
=0+1453304E=-01
0.2392578€-01
=0.4120275€-01}
0.1239281€ 00
0+1175603E 01}
0.0

=0+1813876E 00
*0¢9275264%E=n]
0:6161451Fanl
*0:4971430F=n1
0+5383047Emn)
©0:5421564F=n]
042465748E n0
0+,1152937¢ nl
®=0:4112403F nn
0.0

=0,1536000E 00
=0.2841344E=D]
0.2756096E=01
=0.3360000E~0}
0.70640000E~01
0.1000000E 0}

0.3859375€ 00
=0.3380900E=01
0.5733449E=0]

=0.9765625E=01

0.2400548E 00
0.1158076E 0}
0.0

0.6205067E=-02
«0.2166624E-01
0.1884082E=-01
0.9497818E=02
=0.2641406E=02
0.3642781E-02
=0.7587433E-02
0.2399191E-01
0.1000000€ 01

«0,4971430E=0]
0,8372003E~01
»0,8695211E02
0.9212058E-02
*0,10C1270E.0]
0.1464462CE-0]
=0,2817996E01
C.9411728E«01
0,1175253¢ o1}
0.0

0.3733449¢0]
=0.9322089¢-~01
*0.3249779Ee01
0.1171875z=21
=0,192043%9E=0]1
0.4632309z-01
0.10CC0C0E 51

«0,8695211E02
0,1269007F0}:
«0,91061662Fen2
=N, 38424008422
0,2062245¢F .42
«0,1315273¢ca
C.22C1551¢
«0,516704CFat2
0,1835341Fan);

0.10002%28 sl
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A way out of this dilemma is to form two separate approxi-
mations of ,, one in the quadratic space and another in the

linear space

2 2 2 2
y=y( ) =1yl ) (2.3.1a)
1=0
1 1 1 1
y=y' )= nyl el ) (2.3.1b)
1=0

Then, using (2.3.7a) for the first term of p and (2.3.1b) for

the second, this yields, just as before

(%) y(l) '

L)) - [ ;1)] (2.3.2)
2

(2)

3

1[-3 4 -1] y
D = :
CL1 -4 3 y
y

Now, although the terms of the matrix expression (2.3.2)
are consistent in that they are both two component vectors,
the expression can be further simplified by defining a relation-
ship between the two approximations (2.3.7a) and (2.3.1b). One

such relationship is provided by (2.2.5).w1th m=2 and m=o

y{ 1 0 0 y{*
1 = 2 2.3.3
[y£ ’] [o 0 1] y(* - (2.3.3)

y(?)

3

However, since this relationship is obtained by matching the
function values at the endpoints of the interval, it provides a
very crude method of approximating a quadratic by a linear

polynomial.

R . . o i T
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A much better approximation is obtained by determining
the best Tinear approximation to a quadratic in a least squares (L2)
sense in the interval I. Under this condition, the norm of the

(1) (%)

difference of the two functions y and y

2 1 2
e = | 1 -y de (2.3.4)
I

must be a minimum. Using (2.3.1), this means that

(2.3.5)
2 1
—Q%TT = 0=-13yl2 Zé‘)z(Z)dx + I yél) zél)zgl)dx
3y j=o 7 I j=
i=0,1
Written in matrix form, this equation is
sy(2) = 1y | (2.3.6)
where the elements of S and T are
a (,),(,)
Sij = [ Zil ij de (2.3.7)
1
Tos o= [ 2fr)g00) gy
] j v d
I

Since the {zil)} are linearly independent, the metric T is

non-singular and may .be inverted to yield

y(1) o pyla) - (2.3.8)

o e e s a2
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where

P = T-1S (2.3.9)

Equation (2.3.8) gives the coefficients of the approximation
(2.3.7a) and has the effect of projecting the second order
polynomial y(Z) into the best linear polynomial in the. I, sense.

Using (2.3.8), equation (2.3.2) may be written as

1 [-3 4 -1] vi? 1 [ 2 2 -1] yi?
Dy "T L1-4 3 ygz) -3 l-1 2 2 ygz)
ygz) ygz) (2.3.10)

The projection matrix ( or P matrix) given in equation
(2.3.9) may also be defined between polynomial spaces of dif-
fering degree and have been evaluated using the Formac language
for all polynomial orders ranjing from one to nine. These
values are presented in Table 2.3.1. The P matrices have an
analogous topological behavior to the differentiation matrices,
although their physical interpretation is different. They are

symmetric about their centroids

Pig = Puioi, nii-j (2.3.11)
and not anti-symmetric, as were the D matrices. Their rank is
again one less than the dimension of their domain space, how-
ever, in this case, the nullvectors of P are symmetric about
y =0 1in an L. sense.

As was the case with differentiation matrices,.pnojection
matrices between spaces.differing by more tﬁan one order can be

determined by ordinary matrix multiplication of the corresponding
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elementary P matrices. For example, the best possible zeroth

order polynomial approximation c¢f the quadratic y(2) is given by

(5)
to)y _ 1 1 (2 2 -1 yi
[y1 ] =z (1 1] 3 [-1 2 2] ey
.ng)
(2.3.12)
(2)
_ ] [ ] Ya
S
6 yi2/
y{2/

In a point matching sense, the equation corresponding to

(2.3.12) would be from (2.2.5)

[y{Z’] =0 1 o] [y{*
y2? (2.3.13)

where the interpolation "node" of the zeroth order polynomial

is taken in the midpoint of the interval. Therefore, for the

differential operator

2
d
D = #+ y (2.3.14)

the following two finite difference representations are obtained

(2.3.15a)
- _4 1
D = Ez'[ Yo7 = Zyi + 2 ] + . [yi-l + 4yi + Y501 ]
and
= 4
D=z [y;og -2y, *+yzg 1ty (2.3.15b)

Equation (2.3.15b) is the standard finite difference formula

for (2.3.14) while (2.3.15a) is the "asymptotically optimal®
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finite difference formula for (2.3.14) derived by
Miranker [32] using a more circuitous theory. The

only difference between the two is in the type of
approximation made between the polynomial spaces.
Miranker compared the formulae (2.3.15) computationally
[32] and found that the L, projective approximation

was as much as 10" times more accurate in the Euclidean
error norm of point values than the point matching

approximation.

e e e e e e vt .
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CHAPTER TI1

PROJECTIVE APROXIMATION

In the preceding chapter, the elementary matrix concept
was introduced by using heuristic arguments. In this chapter,
elementary matrices will be developed more formally, using
the theory of projective approximation. The procedures outlined
in Chapter 2 will thus be established rigorously here, resulting
in a foolproof algorithm for the solution of differential
eﬁuations. |
Somewhat surprisingly, very little work has been done in
the area of projective approximafions of pure differential equa-
tions, considering the wealth of similar material on boundary
value problems. The only reference available in the literature
on this subject appears to be a paper by Locker [41], who con-
siders the problem of determining the least-squares solution of
an n'th order differential equation to which k& bourdary.conditions
have been added, with k¥ not necessarily equal to n. Unfortunately,
the theory developed in this paper has several limitations to
practical application of the method. It assumes that the homo-

geneous solutions of the differential equation are known, a con-

dition very rarely occurring in practice, and concentrates on

determining only the inhomogeneous solution. Moreover, the pro-

cedure is theoretically proved to converge to a unique inhomo-

geneous solution, but the -paper ‘does not specify how the com-

et e et e e e A . it S e et i ot 25t o s ot 20
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putation should be constructed numerically.

3.1 GALERKIN'S METHOD

In this section, the basic mathematical equations for the
projective solution of differential equations will be given.
These equations are related to the classically used Galerkin's
method, except that the procedure will be applied to differ-
ential equations independently of boundary conditions. The
main result of this section will be to determine a unique
range space for differential operators which result in approx-
imate gﬁnera] solutions of differential equations.

Iq a projective method, the objective of the analysis
is to determ1ne an approximate solution of the equation

Dy = f (3.1.1)
by replacing the function ¥Y> which belongs to a real-valued
Hilbert space & with norm || f | =<7 | f >%, with a function
y(f) in a finite dimensional subspace Z(f) of Z. In the
present case, D is taken to be a linear differential operator
defined over a geometric region I and f is a given function
of Z which lies in the range of D. In the following analysis,
it will be helpful to decompose the differential operator D

into a sum of simple operators D

S
D= % p (3.1.2)
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and to consider the range spaces Z(s) generated by each of

these operators separately. These range spaces are defined
by the equations

Z(S) = {2z :2 = Dsf‘y(f), y(f)e Z(f) } (3.1.3)
Here and in the following, subscripts on an operator indicate
that

Range(Aij) = z(i) (3.1.4a)
Domain(4, ;) = (3 (3.1.4b)
Domain(Ai) = 3 (3.1.4c¢)

Now, it is necessary to provide a general definition
of the projective mapping introducted in section 2.3. This is
done as follows. A projection operator Pij is defined to be
an operator which maps any element of a space Z(j) into the

closest (in the norm sense) element of Z(i)

py= Cag () o () G), 40)
(3.1.5)
=> I| y(1) - y(J) H =T, imum Iz(1) _ y(J) II}

Projection operators are well known in the theory of linear
spaces [ 42,43 ] and have a number of interesting properties.

The most important of these are that they are linear

P'ij (y(J) + z(‘]) ) = P'ij y(J) + P'ij z(J) (3',1°6)

and that for three nested subspaces z(i), z(j), Z(k) with
2(1) ¢ 3(3) ¢ 5(K)

Pik =z=1.‘j ij (3.1.7)
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Note, however, that in the event that the space Z(i) is

larger than the space Z(j), Pij

operator, as is commonly assumed, since the projective

is not equal to the identity

embedding of a smaller space into a larger one is not unique.
The underlying idea of many projective methods

is to replace the problem of solving equation (3.1.1) by

the task of solving the equation

Pos Dop y' 1) = £(0) (3.1.8)

ne~wm

s=1

where f(o) =Py f and 2(0) is some‘finite-dimensiona1 subspace
of I that is called the range space of the approximation.
If 2(0) is taken to be equal to Z(f) then (3.1.8) yields the
Bubnov-Galerkin method, while the Galerkin-Petrov method
results if Z(O) does not coincide with Z(f) [2].
Unfortunately, however, the usual choices for Z(O)
that appear in the literature have a major flaw: they do not
preserve the dimension of the nullspace of the differential
operator D. As a result, with these projective methods, it
is not possible to obtain the general solution of the
differential equation (3.1.1), but only particular solutions
to specified boundary value problems. In order to -produce
finite-dimensional equations of the form (3.1.8) which behave
in a manner analogous to that of (3.1.1), a space Z(O) must
be found such that the operator ; éOS Dgs has approximately
the same nullspace as the origin:;1operator D. For ordinary

differential equations, this implies that the range space 2(0)

s

bt S kg i

e st o 8 e s e
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should be of dimension

pim(¢?) = pim(z{T)) - NulTity (D) (3.1.9)

where the nullity of a compound ordinary differential operator
is given by the highest power of differentiation among its
simple components. Extension of this concept to partial
differential equations will be considered in section 3.5.

A comparison can be made between the method contained
in equation (3.1.8) and the asymptotically optimal finite
difference formulations of Babuska, Prager and Vitasek [27]
and of Miranker [32]. In their theory, the criterion for
establishing the asymptotic optimality of a finite difference
formula is to determine whether or not it minimizes the norm

of the residual of the Galerkin process:

(f

veld = g ) gy -

minimum || pa'f) -f |}
2 (F) 5 (F)

(3.1.10)

In the method developed in this thesis, solutions are obtained
by saying that functions in the space 2(0) are the best
possible approximations of functions in the spaces Z(S).

When the differential equation‘(3.1.1) has only two terms,

as in equation (2.3.14), the two approaches yield identical
results; if the equation has more than two terms, they do

not. The advantage of the present formulation is the ease

with which numerical matrix equivalents can be generated for
arbitrary differential equations, compared to the difficulty

of evaluating asymptotically optimal finite difference formula.
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3.2 INTRODUCING BASIS FUNCTIONS

The first step in discretizing equation (3.1.8) is to
introduce a set of basis functions {bgf)} in the space z(f’

and a basis '{b£°)} in 2% Then

n
y - 1oy plP (3.2.1)
i=1
plo) o % ¢ p00) (3.2.2)
=1 t1 o
and (3.1.8) becomes
n (F) T
T ¥, I P, gb; = T f plo) (3.2.3)
i=1 ¥ s=1 Ps i=1 2°1

Taking the scalar product of this equation with each function in a

conjugate basis set { b 2(0)

(0) } in results in the equation

'Asy = Bf (3.2.4)

Here, as before, y and f are vectors containing the coefficients

of the expansion (3.2.7) and (3.2.2), respectively, the Ag are

m X n matrices with elements

;
Aig = (Pto) Pos Dt

() ) (3.2.5)

and B is an m xm matrix with elements

[y i (o)\ ' (3.2.6)
Bij b(o) lb
Hence, in a finite dimensional subspace, a differential equa-
tion is equivalent to a rectangular matrix equation with analytic
operators replaced by rectangular matrices and functions by

vectors. The correspondence between the vectors and the con-
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tinuous functions is provided by equation (3.2.1)

‘Consider now the problem of determining the function f(0),
the best approximant to the function f in the space 2(0). This
prob]ém is treated in linear analysis and the presentation below
draws from references [ 42,43,23]. Using (3,1.5) the definition

(0

of f given by (3.2.2) implies that

(3.2.7)
|1£-pl¢’ | - ‘(f _ f(°)| f - f(°)>

m
T=

mo (0 m (0) |, (0)
{(f If) -2 iiz fo (b, 1f) + g_lfifj<@£0 ‘bjo )

Tsd=

.

Differentiating this with respect to fk yields

(0) |, o
<bk If) = .Z Tk?:f'l: k=1_,..._,m (3-2.8)
1=1
where
_ (o), (o) ,
Tii = (b} I ) (3.2.9)
Therefore
- 1g (o) _ i
£, = jilT B0 15y = ) 1) o (.20)
where
.. m . . .
PR id 4 (o) , '

J=1

and Tij are the e1ements’of the inverse of T
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m . .
4 -
jil T Tjk 6ik (3.2.12)

Using this result, the function f(O) becomes

glo) Pf= 3 b£0) T%J <b;°)| £) (3.2.13)

]

Consequently, the operator IB may be written as

p= 1 p{% 18 (3(0) (3.2.14)

o P J
1J

where the open inner product is understood to be completed with
whatever»fhnction JB acts on. Although (3.2.14) has been derived
specifically between the spaces I and Z(O), it is clear that the
projection operator Pij between any two spaces Z(£L and z(j)
will have the same form, with the basis {b(°)} replaced by {b(i)},

The projective property of the operator P0 is demonstrated

in the following manner. If a function f is decomposed into

two functions, one in (%) and the other in (%) - z\x (0
f = f(O) + f(x), f(w)ez(x) (3.2.15)

then, taking the scalar product of this with b£°) and using
(3.2.2) gives

(fo) |5} = DTy (pfo) | f=)) (3.2.16)
J

Together with (3.2.10), this implies that
(Bfo) |7y = p i=1,...,m (3.2.17)

As a result, when the fi are chosen as in (3.2.10), the opera-
tor P separates any function in I into a function f(O) in z(o/

and a function 7% which is orthogonal to slo),
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The functions {h(oi} in (3.2.11) are biorthogonal to the
basis set {béa)} in 279 since

A (o) _ ik _
(h(o) v} ) = i L PR (3.2.18)

In terms of finite element analysis, their use has been intro-
duced by Brauchli and Oden [29] and cultivated by Oden [23]. Since
(3.2.10) states that the best approximation of a function s in

the space 2(0) occurs when the expansion coefficients fi equal

the inner products of fwith the biorthogonal basis functions

in 2(03 their application in approximating functions cannot be
avoided. However, in determining the optimal solution of dif-
ferential equations, it is fortunately not necessary to restrict

the conjugate functions {b(of} to be biorthogonal. In order to

see why, note that a typical entry of the term Bf in equation
(3.2.4) is

= = gk ¢, (o)
By 3By T BBy T (8,°7 £ (3.2.19)

Since both sets {b£°)}and {b(of} form a basis in 2(0), they

are related by a linear transformation G

T _ tj 4 (o) ’
,b(o) = § G bj (3.2.20)

The elements of the matrix B may then be written
_ i (0)y _ 1 '
JP (b g7 B > = ALY (3.2.21)

and equation (3.2.19) becomes
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- i1 gk (o)
£, = ng 6 | T T {ofo) 15 )
= 1 6%k (fo? 17 ) (3.2.22)
‘
= ?b(o) If>

In this equation, the relationship (3,2.20) between the bases
{b£°)} and {b(of} is immaterial. Therefore, in order %o obtain
the best approximation of fF in (3.2.4), the components of the
term Bf must simply equal the scalar products of the conjugate
basis functions {bfof} with the function f. Provided that all
terms of (3.2.4) use it consistently, any conjugate basis set
pair will generate an optimal approximation of f.

The evaluation of the remaining terms ; Ay of equation
(3.2.4) will now be examined in terms of th:-llementary matrix
concept. First of all, each simple differential operator Plstf

may be factored into a sequence of elementary operators

Pis Dgg = E12 Eag coo Ee q,f (3.2.23)

and a sequence of spaces 5 (%) with baseés {b(i)} can be defined

by
(3.2.24)

Z(i_l) Y s ¥ eZ(i)} i=1,...,f

={Z * 3=Ei_1,1:

The matrix elements in (3.2.5) may be written
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(f)

- i .2.25
A .. (b(o) 1B, B ,o00 Ep_ gbs ) (3.2.25)

S1g vl

= i ocoo 4 - ()
<b(0) ]Eol Ef'zaf'inf]sf’] Ef-1,fbj ))

(f-1)\ 1Pq r (f)
RISETO AN NV NI )

{
¥ Trf-1)

1
= z <b(o) lEnl 000 Ef_z’f_

r
_ i (1) q (2)
=z (pgyE ') TP G, (b1y 175, 227

01

tu v (f)
ocoo T GUV (b(f-l)l Ef-l,fbj >

In the event that the basis functions {b(p)} and {b(q)} are

biorthogonal

<bcp§ chg)) - ¢ gP9 7 (3.2.26)

=5’
q ar

pr
and the calculation of As may be performed by multiplying
together the sequence of elementary matrices formed by the ele-
mentary operators
f :
As = Ek \\ (3.2.27)

k=0

where

{1 (% +2) o
44 ={b) | Fp ke +17 ) (3.2.28)

Otherwise, the matrix products T'JG'J'bust be inserted befween

i e ks can
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the elementary matrices as shown in section (3.2.2).

3.3 RELATION TO THE ENERGY NORM APPROXIMATION

It is well known that an eénergy norm can be defined
for every boundary value problem such that the extremization
of this energy norm in a projective subspace results in a
least residual approximation [43]. It is therefore instructive
to compare the conditions in equation (3.2.4) with the
conditions obtained from energy norm extremization.

In order to do this, the differential equation (3.1.1)
must be replaced by a variational functional. Of the commonly
used variational principles, the most generally applicable
is the one contained in the following theorem.

THEOREM 3.3.1 [43]. Let

D be an arbitrary differential opera-
*
tor and p jtg adjoint

(3.3.1)

. .
D' = {4; 4w |y) = (wl y), y <Domain(p), , eRange(p)}

Then the solutions of the pair of equations

Dy = f (3.3.2)

and

which makes the functional
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F(v,z) = {v| Da) - {v + 2z |f) (3.3.4)

stationary.
The proof of this theorem may be found in reference [43]. Note

that the functional

F(z) = <z| Dz) - 2( 3| f> (3.3.5)

often used with symmetric operators (p* =p) is a special case

of (3.3.4) with the arbitrary function » set equal to ;.
Approximate solutions of the differential equation (3.3.1)

are obtained from the functional (3.3.4) by determining.those

(f)

elements y and »/?’of the finite dimensional subspaces g(f)

and z(z)which make 7 stationary. These approximate solutions

will converge to the exact solution of (3.3.2) as the space 3(f/

Is enlarged to 1. As before, Tet (,f/}be the basis in z(F/
1
and {b(lﬁ}be the conjugate basis of {b(lf} in (1), Then
7

n

27 o 3 2, (P (3.3.6a)
i=1 v

(1) _ 3 i

A N 3.3.6b

2 Vb ( )
and
n m .
OIE IO S v boyd 1 ")

i=1 g=1 *

m M n (3.3.7)

- 1
LA

. i=1

{ (F)
L 2,6l 1)

Differentiating this with respect to the coefficients zk and vy

gives

. 5
e e L e T
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m .
. J (f) (f)
g_gk 0= I Bysd 105y - BT 1)
. (3.3.8)
(fF) % i (f)
=3 v.b Do plY - (b IF)
RS PRI (1>) B s
o _ B k (f) Lk
';\'I—k- = 0 = ?:5__1 Z'l:<b(1)| Db’l: ) - (b(1)| f> (3.3.9)

Equation (3.3.9) differs from (3.2.4) only in that (3.3.9)
does not contain the projection operators Pgs- Provided
that these projection operators are added to the operator

D in the above equations, (3.3.9) will result in the

same rectangular matrix equation for (3.3.2) as is obtained
from Galerkin's method. Equation (3.3.8) needs to be solved

only if a solution to the adjoint problem (3.3.3) is

desired.

3.4 ELEMENTARY MATRICES REVISITED

In this section, the elementary matrices of Chapter 2
will be derived from the expressions contained in section
3.2. The chief impediment to doing this is to determine
functions {b(k)}which possess the sifting property in (2.1.9).
Fortunately, Brauchli and Oden give finite dimensional delta
functions with this property in reference [29]. These finite

~dimensional delta functions may also be produced by projecting




46

the Dirac delta function into a finite dimensional subspace

by using (3.2.14). Let (g - x,) be the Dirac delta function

(3.4.3)
(1|a(x - xo))= 1

and define aA(y - x,) to be the function obtained by acting

with 2 on g§(x - x,)

Ma-xo) = £ bS8 18 (5 (1)) sz - xo))
id J
=z bl gt (1) (xy) (3.4.4)
N J
)
=LA4, b,

1
where

8y = 2189 5110 ¢xy) | (3.4.5)
J
The remarkable property of the function A is that while
it is a smooth, well-defined function in the finite dimensional
subspace £(1), it has preserved the important sifting property
of the Dirac delta function for the space 501, For example.

- let y(l) be an arbitrary function in (!’ ., Then

(80 amxod) 407y = 5 18 500 1) (B g p (1))

4k
= %y, b1 (x,) TP T, (3.4.6)
 idk J v
= i A bél) (xo) = y(l)(xo)

: 1 ’ ) » :
Now let y( ) be equal to the basis function Z£ ) which
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interpolates on the set of points {xj}. Then

(a0 (g - x.) 12017} = 1 (x;) = 8, (3.4.7)

Consequently, the finite dimensional delta functions {A(l)(x w X.)}
7
form a biorthogonal set to the interpolatory basis functions.

Using the delta functions for the conjugate basis set

by} in (3.2.2 ), the elements of the matrix E, are
k (k+1)
g = (87 - x)) Bpxer Ly )
i
- (k+1)
= By ke1 by | 2= x,
d

If Ek,k+1 is equal to = °F to f(x), this expression reduces
to (2.1.17) or to (2.2.8), in that order. Note that this
result is independent of the norm used to define the space.

If Ek,k+1 is gqua] to Pk,k+1 and an L, norm is taken

- mi{ (k) (k+1)
Ekij ;z b, (xi) T A by ij )
X (3.4.9)
=5 Tl S,
A Jd

This result is the same as (2.3.9). Therefore, the elementary

matrices of Chapter 2 are identical to those obtained from
(3.2.2 ).

The general form of the elementary matrix in equation
(3.2.2°) permits, however, many other basis functions to be
used, besides the interpolatory basis of section 2.2, and some
of these will be considered here. The most obvious sﬁch set

is, .of course, the monomials

(k) 4 | o
b'l: = o . (3.4.]0)
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With the conjugate functions being the biorthogonal set, the

following elementary D and P matrices are obtained

(0 1 ) (1 P:)

2 1 P2
3 1 p '
p=1 ) p = . . (3.4.11)
| n) ! T,

where the P; depend on the order of the approximation and all
~blank entries are zero. The function matrix in this case requires
the expansion of the function in a Taylor series. |

Another set of basis functions for which the D and P

matrices generate simple forms are the Legendre polynomials. 1In

this case
fo1o1oooﬂ}, 1 0)
3 00 o 0o 1 0
] Bo o o 5 ] 0
D=r ° P= 0 ° (3.4'.]2)
| an-1] . 1 0)

Again, however, the function matrix must be evaluated ahalyti-
cally to obtain the Legendre polynomial expression of the func-
tion. With'a non-interpolatory basis, it is not possible to

obtain a purely numerical method to generate function matrices.
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3.5 MULTI-DIMENSIONAL REGIONS

In section 3.2, the technique for obtaining the
approximate solution of a differential] equation in a projective
subspace was restricted to ordinary differential equations.
Here, the extension of this method to partial differential

equations will be made in a simple and natural way.

In order to retain the usage of the ordinary elementary
matrices in the discretization of partial differential equa-
tions, it is necessary to use multi-dimensional basis functions
which are separable into a product of one-diménsiona] Newton-
Cotes interpolation polynomials. There are two known sets of
multi-dimensional functions in two different geometric regions

having this property. 1In N-dimensional cubes, the product

separable multi-dimensional functions are

o
I
L ==

(n,) . _
Zikk (xk) ,zk—o,...,nk (3.5.1)

.1. -.N k1

where the {a } are N independent variables and the {Zé")}

are, as before, the equi-spaced Lagrangean interpolation poly-
nomials

ne~1 n
1" (a) = L~ (e - m) (3.5.2)
ti(n-2)! =29

Z(O)(x) =1

In N-dimensional simplexes, the required functions are given by

[45 ]
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N+1 (ik) )
b. . o= I 1. (v To=0y00es
T eatly i k k=2 ) (3.5.3)
. N k=1 "k
with
N+1
L od =mn (3.5.4)
k=1

Here {wk} are homogeneous coordinates [45]. The spaces gener-
ated by the functions (3.5.1) will be called Q("x"'"N) and
those generated by (3.5.3) w("). If N=1, then the two spaces

coincide

1" (w) = 1{%) (@) 177 - e ~ (3.5.5)

since the one-dimensional form of both the cube and of the
simplex is a line segment.
0f the two spaces ¢ and y,only y contains polynomials of

degree » which are complete in every monomial of %, of degree

less or equal to n. ( This is not to be confused with complete-

ness in the sense of a Hilbert space;both (3.5.1) and (3.5.3)
form a complete set of basis functions since any polynomial in
@, may be qbtained by taking ny, large enough). However, in
the functions (3.5.3), products of polynomials of different
degree are umavoidablejwith (3.5.1) all the Mg may be taken to
be equal. This, plus the fact that the independent variables

in a differential equation must be transformed into homogeneous




51

coordinates when using (3.5.3), make the cubic Basis functions
the easier of the two to work with.

The ability of ordinary elementary matrices to generate
derivatives, projections and function multiplications on the
functions (3.5.1) and (3.5.3) is a result of both of these
function sets defining an equi-spaced, right-angled grid of
interpolation nodes in their respective coordinate systems; On
this grid of points may be superimposed the coefficients of the
expansion of a function in these bases as shown in Figure 3.5.1
for a three-dimensional space. The effect of an elementary
operator acting on this function will be equivalent to a matrix
multiplication of tRis cubic block of coefficients by the ele-
mentary matrices in the proper direction. Thus, if a function

y(wla---:xN) is expanded in either the functions (3.5.1) or
(3.5.3)

nk b
TRy, ., b, .
1 ’Z:.k=1 tlolo’tN 'Llono'I’N,

==

y(acl,...,a‘N) = (3.5.6)

k
then the elements of the matrix equivalent of the equation

z(ml,...,xN) =E(mp) y(xl_,.‘.,,xN) (3.5.7)

are

z, . . o= P (3.5.8)

Y. . . .
Toeeetpeenty g=1 ‘pT tp e tpig@pugecty

where E is the "Eth order elementary matrix of E(xp). Here E(x H

may act only on the variable e

For the case N=2, equation (3.5.8) provides a particularly
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3.5.1

Figure
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useful result. in this case for an elementary operator acting

. purely in the direction T the matrix elements Z become

?11 .
Z,,= I E, y._. (3.5.9)
1 q.-_-] 1q " qJ
and for an elementary operator acting in the direction T
Nney . n
Z,, = °E, y. = 1%y, E, (3.5.10)
v g=1 99 74 4oz "tq qd

where ET is the transpose of the matrix E. Therefore, in dis-

cretizing equations in two dimensional spaces, operators acting in
the direction,zn result in multiplication of the coefficient
matrix from the left by the matrix equivalent of the operator,
and operators acting in the direction “g result in multiplica-
tion of the coefficient matrix from the right by the transposé

of the matrix equivalent of the operator.

Now, any partial differential equation can be reduced
to an ordinary differential equation by holding all but
one of the independent variables constant. Thus, along the
Tine

a k= 1,000,2=-1,2+1,...,N (3.5.11)
thg partial differential equation

D(x;,...,xN) y(ml,...,xN) = f(ml,...,xN) | (3;5.]2)
reduces to the ordinary differential equation |

D(a1_,..._.xi,..-,aN) y(ala"'-’mi""’aN) (3.5.]3)

= f(al,...,xi,...,aN)
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The approximate range space 2(0) can be easily determined
(0)
7

partial differential equation will generate N such spaces

for this equation and will be called I . An N-dimensional
Z&O) and, since the partial differential equation (3.5.12)

is a combination of the N equations (5.3.13), the approxihation
range space Z(O) of a partial differential equation must
coincide with the intersection of the range spaces Zio)

N

2(0) o

0
) 2{0) (5.3.14)

1

An example will help to fix these ideas. Consider the two

dimensional Helmholtz equation in Cartesian coordinates

2 2
9°.8 " 9 - =
dx? dy?

= k? .z (3.5.15)

and let the domain of the opevator (y2- k2 ) be approximated by
the spaces ¢(2,2)_ Then z may be expanded in the functions
(3.5.1)

alz,y) = I .. Zi2 (x) 1, (y) (3.5.16)
1sJ=0 v )
The first simple operator 32 in (3.5.15) acting on this space
3 22
gives
2 2 2 (2)
878 _ ¢ oz, 1.y Y 1 (w)
yw? i,=0 I 7 Y '
(3.5.17)
0 2 (2) %) -
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Since w(w,y)e¢(°:2) » the space 5(1) of equation (3.1.3) is
p(0s2), Similarly, if 5(f) _ ¢(2:2), the range spaces of the

second and third simple operators, a_%;.and -k2, in (3.5.15)

are 2(2) = @(2,0) and 2(3) - Q(Z:Z)

g (o) o gla) 5le) (50a) _ ylos0) (3.5.18)

Therefore, according_to equation (5.3.14), the solution of

(3.5.15) in the subspace @‘2’2) is given by the solution of the
equation

(3.5.19)
Plo,0), (0,2) %%% + P 322 g2
3T s (0,0), (2,0) 3y Z?o,o), (2,2)3

Now P(O,o), (0,2) 152 function of y only since it must leave

functions in x intact. Similarly, P(o’o), (2,0) is only a func-

tion of . Consequently, acccrding to the methods of section

3.2 and equations (3.5.9) and (3.5.10), the discretized form of
(3.5.15) is

DZPT + PzDT & %2pzp! (3.5.20)
where
D = —2 |
2 1 -2 1] ' (3.5.217a)
P = % [1 4 1] (3.5.21b)
>y
Z Z ¥4
11 12 13 '
1= x|z z z - (3.5.21¢)
21 22 23 o
z p p ‘

81 32 33
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The x and y coordinate axes have been drawn on equation (3.5.21c)
to indicate how the coefficients are related to the coordinates
of the corresponding interpolation nodes.

0f course, many multi-dimensional functions cannot be sep-
arated into a product of functions of one independent variable.

For these functions multi-dimensional function matrices are
defined by

fyee. ty = F (xf“,...,xF:)) (3.5.22)

(3.5.23)

In order to facilitate the evaluation of the matrix
product (3.5.23), and also the solution of equations such
as (3.5.20), it is necessary to introduce the Kronecker
product of matrices. This is done as follows. Let A be
an m X n matrix and B be an & x t matrix. The Kronecker

product of A and B is defined to be the ms x nt matrix [46]

[N

AyiB o o o AynB

AeB = o o (3.5.24) :
, AmiB ° e AmnB é

/

It is known to obey the following associative and distrib-
utive Taws [46]
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(AeB) (CeD)= (AC) e (BD) (3.5.25a)

(3.5.25b)
(A+B)e (C+D)=AeC+Ae@D+BeC+Belbd

In addition, let Aj denote the j'th column of A and define
the matrix operation vec A to give the following mn component
vector [47]

A,

vec A = ( 3.5.26)

>0 0 o

The application of Kronecker products to matrix

equations of the form (3.5.20) is a result of the following [47]

vec (AB) =(1, @ A) vec B = (B' o 1, ) vec A  (3.5.27)

By using this equation and property (3.5.25a), an equation of

the form

Z. B.' = F (3.5.78)

where the Ak are mxn matrices, Z is an nxt matrix of unknown

coefficients, the Bk are sxt matrices and F is a specified mxs
matrix, yields

)X (Bk ® Ak) vec Z = vec F (3.5.29)
k .

where the Bk'a A are me X nt matrices, vec Z is an nt

k
component vector and vec F is an me component vector. Equation

(3.5.29) is a standard rectangular matrix equation in terms
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of the unknown coefficients Zij’

In terms of the Helmholtz equation (3.5.15), the above

result means that the discretized form of the equation (3.5.20)

may be written as

(P®D+0DeP)vecZ=k2 (P P) vec Z (3.5.30)
From (3.5.25b) and the identity

(A+B)2=A2+AeB+BoA+ B2 (3.5.31)
equation (3.5.30) may be written in the symmetric forms

[ (D+ P)% -D2] vec Z = (1 + k2) P2 vec Z (3.5.32a)
[ (D+P)2+ (D - P)2 Jvec Z = 2k%*P2 vec 7 (3.5.32b)

These results are valid for all D and P matrices of second

degree. If a biquadratic approximation is used for the

unknown, equation (3.5.30) becomes

e L1111 811117 vee 2

(3.5.33)
c 9,2
0141416414717 vec 2

For two-dimensional matrix products of the form

(3.5.23), equation (3.5.27) implies that

vec Z = vec (FY) = (FT®IN) vec Y (3.5.34)
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Therefore, as in the one-dimensional case, the function
matrix for two-dimensional problems is a diagonal matrix of the

two interpolation point values of the multiplying function,.

e aeahe
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CHAPTER 1V
DISCRETIZATION OF ARBITRARY DIFFERENTIAL EQUATIONS

In the numerical solution of differential equations, the
step that has always been the most laborious and time consuming
has been the discretization process. Aside from a single known
attempt at automation [48], the usual procedure has been to
churn through either Taylor series expansions or tables of
integration formulae by hand or in sophisticated cases with
the aid of computational machinery until the coefficients in
the discretization process were evaluated for the particular
differential equation of interest.

The most automatic discretization procedure presently
available is the Taylor series method of producing finite dif-
ference equations. In this method [49], the differential terms
in the Taylor series expansion of the solution of a differential
equation are matched to the components of the differential
operator on an arbitrary set of points. Since a general expression
for the Taylor series expansion of an arbitrary function is
known, the procedure does not require algebraic manipu]atfon
once the point set is chosen.

Silvester has reported a fully automatic computer program
for discretizing arbitrary differential operators by this method
[48]. However, since its discretization accuracy depends upon
the locations of the point set, and since there is no a prniori
way of determining good locations, this "automatic" procedure

is a hit or miss approach.
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Using the elementary matrix concept of Chapter 2, the
automatic discretization of any differential equation can be
accomplished in a direct manner. First, it is necessary to
break the operator into its elementary analytic factors and to
form the corresponding elementary matrices. The assembly of
these matrices to form simple operators is performed according
to (3.2.27) by multiplying the elementary matrices together,
keeping in mind that the degree of the range space of each
operator must coincide with the degree of the domain of the
next elementary operator acting upon it. Provided that the
simple matrices are augmented by the proper projection mat-
rices, the compound operator is assembled according to (3.2.4)
by adding the matrices corresponding to the simple operators.
Finally, the forcing function in equation (3.2.4) is added by
evaluating the analytic function on the interpolation point
set for the space £(0) as given by (3.2.22) and (3.4.6). Thus,
the method of assembling elementary matrix factors to form a
discrete matrix equation is completely analogous to the mathe-
matical operations performed on the parent operators in the
analytic differential equation.

This chapter contains the steps required to convert this
procedure into a direct numerical algorithm for the automatic
discretization of arbitrary differential equations. The dis-
cussion is complemented by listings of Fortran subroutines for
the generation of matrix equivalents of ordinary and two-dimen-
sional partial differential equations. The aim of these pro-

grams is to provide a very simple, accurate, and efficient
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having access to a Fortran compiler.

4.1 COORDINATE-INDEPENDENT FACTORS

Since discretized equations are often used repeatedly
in different locations, a major practical consideration in
developing a discretization algorithm is to separate the co-
ordinate-dependent factors from the coordinate-independent ones.
0f the three elementary matrices, only the function matrix is
entirely dependent on coordinate information, although the
differentiation matrix does depend an the length of the interval
taken. This suggests that the discretization process should be
pursued on two levels:the high-order differentiation and
projection matrices should be evaluated and stored separately
from the function matrices, which should be generated only when
needed in a specific location.

In order to avoid the time-consuming and involved comput-
ations required for generating the elementary D, P and FU matrices,
it is natural to store the numbers in computer programs which use
them. Figure 4.1.1 contains one method for storing these matrices.
It is a Fortran block data subprogram in which the matrix elements
given in Chapter 2 are stored in hexadecimal units for a 32-bit
word computer. Due to the symmetry properties of these matfices,
only the top halves of even rowed matrices and the top halves
plus one line of odd rowed matrices are stored. This requires
535 memory locations for all matrices corresponding to the

polynomials of degrees one through nine.

A b o A At o, i e e e,



Figure 4.1.1a
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DECL9320
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;;MTH DPDER. THE NUMBERS ARE STORED IN HEXADECIMAL DECL9330
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DECL935S
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1 Z4232.930, 205005500, 2003656000, 240900002, Z000000G0» 23FA00000,DECLI490
2 II0lz.a5hy DECLI455
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2 24093-FF4, 2C0Bu656F, 213F485A99, ZCO18FFFE, 240147474, ZBr788D00»DECLS510
2 ZI3F2220107 DECLO515
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2 sl 350, 231640000, 740D7A000, 2C0535555, 241100000, ZChlE7555:DE§L95Bg
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’CA a4 4'6 /261!0G300: 74012058C, ZBF89A027, 200000000, Z411205BC,50ECL9540
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1 22013:4FC, 2C110D4C5, Z4047531E, Z40BEBBB3, 241167105, ZBRFTEFCSE,DECLISH0
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LiTa 26 /IC:£33333, 7C0443C64s Z3F2CB20F, 242240000, 2ZC17F24D8sDECLO575
1 Z3F42.3F6F, ZCZZLoooD, 261C452E7, 2C16E15CA, 242280000, ZC1622E5D,DEZCLA580

-

2 Z417DCSC4, 2C2168000,
3 Z403F1€75, 2C11¢5000,

DATA FU5 /241100000,
1 261122778, 24030D743C,
2 240960000, 290000900,
3 IBFF9:535, Z40118:2gC,
4 Z3F3020000/

GATA P?7 /24nF3C=2A7,
1 Z40D6GT9F, Z2CnlC2395,
2 LCOLE~NDO3, Z4114L5BE,
2 2C0203C14, Z3FEES616B,
4 ICO1E£Q02» Z2C05551438,
5 13F223DB2, ZBF173656,

DATA D7 /721C2122666-
1 ZC19F..587, 2Cn2D<:43,

2 240BEcAAl, 242514 A»A,
3 Z416FaFC5, 2C12652390,
4 LCOBEEAAA, ZC1B2ALAA,
5 ZCC17CAE3, 23F5B357D,

DATA FU6 /241100900,
1 241128008, Z4G2B30p2,
2 24060UD48, 206003000,
3 Z{022:354, 746210326,
4 I3FAS7162, Z000000090»

DATA
140258121,
Z{022C573,
ZLQ4FAT29,
I3E3A0500.,
Z3FE30D40,
Z3EB37C50/

UATA
1C1C20E23,
2402D93EE,
ZalEAZ2SEG,
ZCLl17E5A8,
2ZCOC9E24,
I3F17+8CF/

DATA

1 2:960000C,

2 Z{0645174,

3 Z(05F2D40,

4 ZuQ3E0414,

5 ZL01E200C0,

6 20002009,

DATA
Z403297C1L,
Z24034¢9C3,
Z3FC2nDFD,
2401i6d37E,
240950305,
Z40CLSEBE,
Z5FCn5020,
L5F15298C,
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F8 /Z4nF7H8919,

2C1A6R38,
Z411CF7FU,
Z4G:3E3F4E,
1CnE78=94,
2BFC6OFTE,

D8 /2C2153£28,

2Cn520478,
242955555,
ZC152€EE82,
102255555,
Z4C2E3183,

FUT /Z41100C00»

241121745,
24111087C,
240E4B956,
240952000,
160000200,
Z3£EGSI80,

P9 /Z4gFa60DA,

24gDA2401,
Z4GEBT3E2,
Z4QF784F3,
ZGOSROL]F,
ZC11c8327,
24n2R9243,
Z3FBIDES0,
23E0D1C56,

Z412CD5F9,
740143801,
Z3FpD5DAT,
2C0190000,
Z50209C44,
zceiscone,

IBTeE438F,
237620011,
23Fs49CCh,
140951FF5,
ZBFp1564D,
21BEIFEFEO/
ZCQ547254,
200112665,
IC1840%04,
Ze1235%C

Z40CAnaANA,
ZGE14C0007
137554600,
IE=FFAF3A,
245424300,
ZC523F21E,
I57 1563655,
ZeT57uCA3,
2372643953,
140146873,
146580658,
2Co2E2D21,
23F28203F,

2Cn67514AF,
23F1A3CFQ>
202124441,
Z“xn,0073)
241359EEC,
z2C01030C7,

13F624558,
2401F35C0y
24052460F,
242992000,
28¢000000,
787757218,
ZBEASCO0N,
LBF43E654,
ZL0157732
2C035FASS,
2C02274246,
2412C443F,
20062171F,
20252582,
1BT734F 04,
13Ez2FD60O/

201135732,
28F6Z5CE5/
I83F4E209435,
P v tokeikoisls B)

¢

. N

23765n2C3,
20765020,
26386285,
247156555,
20337622,

73F3508%7,
700827509,
7CnE27 352,
200330007,

ZCJE7(CC9
Zanlfa2324,
741 1CFT7F5,
24n2572C1,
ZBFB«6HTED,

23F7:z0E27,
2C27:7006s
241077040,
147579992,
ZCND35C9¢C,
2011770020,

28F1F1400»
IBFLala32,
ZCOIEADNN,
7000925020,
24n155C0E,
23F5334C0.,
13E8F478C»
Z3F20E571,
Z3FB8394F8,
Z3c€8L€105,
IC12C44BF,
760806189,
Z40520£657,
Z471CECER,
Z37 195000,

241732333,

Z3F3270CO,
202563475,
Z409627207%,
13F25%2:7,

fac2ec321,
23F62.500,

240116566,

Z3FlapiBC,
ZC0504538,
74635085,
Z3FLS7 62,

[ vt
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Gow o

IBE7C=42C.
Z6216722

2055573,
21882355,
24052356862,
240157483,

Z3EEECC30,s
Z3F622CC0»
¢e 3"“5:
2C03C2C50F
ZCO15¥5L0.
;DF GZOS:
IBEEAQZICC
ZHF135078,
I8F195145,
24110£32%,
ZC060%51S,
2€0857:2C,
2C03C 237,
I3FEB3IC40
137537165,

WYY o
vie

IERE RN SN R

rINIEArI ™

LA B ¢

[AVI N SUN SF N SN ¥

-a
v

\

RERTINT]

PoiNi i ra e ra g
WHIY Y B B P Yt




DATA
242510000,
1421CE\ER,
242111877,
141CR43CT,
LalAEoR40,
1622E49264.,
L4OCAS876,
L3F3D643R,

DATA
200000000,
100694099,
2C06823F5,
ZCO4EET69,
LCO2E6OF6R,
200000000,
LBE9HLOLEDA,

END
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D9 /ZC21975F1,

2C1E86924,
ZC1B6CAFB,
ZC1ABGLTA,
ICLAE6H40,
ZC2TENDQO,
1013r65673,
ICN2BFECNS,
28FK133239,

FUB /7241100000,

Z6112C008,
26112726E,
L4cFCTELF,
74cBCAGAS,
206000000,
13Fr57R650,
13E606044A,

Figure

2C0720B4E,
7CO6E6DNG,
ZL0145A50Q,
Z40CERBOON,
Z42e2CCCC,
I4VATFBOC,
Z40CYBECE,
723¥DA0439,
7136460000/
235403760,
740181812,
724031:1Fa7,
740780BB4A,
200000000,
ZCn16E458,
7BF356A62,
18E482409,

4.1.1b

723F893R32,
TARAVALGER,
7C0LFE4CC,
2C3L1BEQOS
7C213FRBE,
2161261696,
700497279,
ZBF411608,

ZBF1515100
7.BF736CDR,
700158128,
7200000000,
24038EBAC,
23FF8AC8EY,
73F2C64F 1,
L3E44FD4E/

IBFL12A58,
Z3F4116048,
242FC0O000,
262184260,
241510A85,
141102275,
1601FE4CC,
241100000,

L3E904812,
Z3F38BrDAB,
200000000,
2C05E0548,
ZCO28BSEA,
ZRFCIFETF,
IBF2Cb6264,

ZRr 469000, DECLOA55
2C2A20000,DECLSA60
ZC21CC029,DECLYRGS
2C1869C44D,0DECLA870
ZC12E826B,DECLOARTS
ZCrCENADO,DECLYAB0
1C1A20000,DECLOABS
ICCL38E7000DECLOA90

NECLARYS
ZBE563CA2,DECLO900
2000000004 DECLT905
747 6ED36BIDECLYI10O
146490988, DECLO913
1402412042DECLAG20
Z3r0B8312,NDECLI925
200000000, DECL9930

DECL9935

DECL9940

64



A program for building up matrix operators of an arbitrary
order from the block data subprogram is given in Figure 4.1.2.
Written in Fortran, the program is in the form of a subroutine
called OPRATR, the input to which is an NC by ND array in OP
which may contain any elementary matrix, including the identity
matrix. It returns an NR by ND array in OP which is equal to
the product of the original matrix times (NC - NR) successive
elementary matrices. The type of matrix used depends upon the
value of KIND;if KIND = 0, differentiation matrices are used;
KIND = 1 results in the application of projection matrices;
KIND = 2, the FU matrices. .Thus, if on input OP is a 6 X g
jdentity matrix, NR is equal to 3 and KIND equal to 0, on out-
put OP would contain the 3 x 6 matrix which differentiates the
coefficients of fifth order po1ynomials into second order ones.

The subroutine OPRATR uses the symmetry or antisymmetry
properties of the elementary matrices to speed up the computa-
tion. This means that an additional index called IEO must be
supplied to OPRATR to designate whether the input matrix is
symmetric ( IEO =1) or antisymmetric (IEO = -1) about the
matrix centroid.

In order to use the subroutine OPRATR to generate the co-
ordinate-independent matrices for ordinary differential equa-
tions automatically, a method of separating these operators in
the differential equation must be devised. On a computer, one
method of distinguishing the mathematical components of a dif-
ferential equation is to assign each mathematical entity in

the equation a numerical code. If the code is chosen cleverly,

e e P AL e




Figure 4.1.2

SUSRCUTINE GPRATRILP, IEDsHR,NCsNDsKIND) DECL7525 IEC = NSIGN®IED rz 5
DECL7530 SIGN = FLOAT(IED) RZri~gon
UPRATR aUILrp§ 1P ELEMENTARY DIFFFRENTIATION AND PROJECTION DECL7535 JINR = = MR 5;5{ 5
#:TRICES FAsH vall'Es STORED IN THE COMMON BLOCK DPFUL. THE DECL7540 J15HC = NR¥(ND + 1) + 1 nIrL"z:0
inPUT T OSEATR MUST BE AN INC' RY IND' ARRAY IN 'OP! WHICH IS DECL7545 pg 5 J = 1,ND 2Iz e
e VEITES To A4 'MR 8Y 'ND' ARRAY By THE PRE-MULTIPLICATIAN BF  DECL7559 JINR = ylhiz + MR lZe azin
APPRIORIATE ELEMENTARY MATRIX. (KIND = O: DECL7555 JINCG = JlnC - MR z =
InD = 1: JIFFERENTIATIONS KIND = 2¢ RAISING) DECL7560 DO 5 1 a 1,ILINIT .
DECL7565 5 UP(JINC - J) = SIGNxDP(I + J1NR) 2
:,3LE PRECISICN VELTOA(D) DECL7570 6 CONTINUE ~
an el DECL7575 RETURN z
1IN M2(5),6(535) DECL7580 END P
DpFul / MitasD DECL7S585 -
. MNC) RETURN DECL7590
DECL7595
£37. 1) mSIGN = - 1 DECL7600
L - NRY DECL7605
DECL7610
1, DECLT6H15
DECL7620
. DECL7625
IA5D 15 TH: LGCATION OF THE ELEMENT BEFORE THE FIRST ELEMENT DECL7630
4F THE REQUIRED ELEMENTARY MATRIX IN DPFUL DECL7635
DECL7640
IFIKIND JEQe 2) GT 7O 3 DECL7645
R E AR e DECL7550
ILIMIT 3 R+ 1)/2 DECL7655
1270 = NMAIMR) + ILIMIT#NCxKIND DECL7660
G2 T0 o DECL7665
SR o= NKR 4+ 1 DECL7670Q
ILIMIT = (LR + 13/2 DECL7675
1420 = NMA(NC) + (NR/2)%=NR%2 DECL7680
J1'% = a NC DECL7685
JIR = « NR DECL7690
DECL7695
THZ LRFAY $CP' IS MULTIPLIED BY oNE HALF OF THE ELEMENTARY DECL7700
HATRIX psCL7705
DECL?710
GO 2 J s 1sND DECL7715
91l = JINC + ne DECLT720
J1%R = JINR + MR DECL7725
LI 1 ! = 1,ILINIT - DECL7730
VECTOREI) = 0.p0 DECL7735
IK = [ + 14DD - ILIMIT DECL7740
01 X 5 1.8 DECL7745
IK = jr + 1LIMIT DECL7750
JECTOR(I) = VECTOR{I) + DBLE(O(IK)=0OP(K + J1NC)) DECL7755
32 1 s 1,ILISIT DECL7760
ar(! & JINR) = SMGL(VECTOR(I)? DECL7765
iFIILTLIT JGE. NRY GD TO 6 DECL7770
DECL7775
THZ SECSND RALE QF «OP1 IS SET EQUAL TO + OR - TIMES THE FIRST DECLT778D
HALF DECL7785
DECLT790 §R
»,/:;_‘.‘_;:..-_‘l_;m-;.;;_zﬂ.&du;x—.;«@-o‘44‘.3&»-—As'~\\-’«-‘w~‘<-”‘ ot A i e gk et e e S0k < e S et e 6o o e A e S8 et s v e Lt e e e T i J




then certain ranges of values will indicate the proper algebraic 67

steps to be followed. Consider, for example, the following coding

procedure

NUMBER OPERATION
3000 end
2000 minus sign
1000 plus sign
200 y ( the unknown function )
-1 d
dx
-9 d°
da®

With this code, a number greater than or equal to 1000 designates
the separation locations for simple operators, the presence of the
number 200 in a simple operator indicates that the term contains the
unknown while its absence signifies that the quantity is a known
function, and the absolute values of the numbers from -1 to -9
indicate the corresponding orders of differentiation. Furthermore,
the number of derivatives in a simple operator may be obtained by
adding the magnitudes of the numbers between -1 and -9 for that
operator. The order of the projection matrix to be used in each

simple operator is then found by subtracting each of these numbers

from their largest value.

A subroutine OPGENI has been designed to operate on the

e
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Figure 4.1.3

-

=

SUBRGUTINE CPGENL(INSTR, ISTART,NRsND,LOC,LO,LFCNSLF,
DPSsLRCH, LPOWER,OP, IPRDY)

LLUATES THE COSRRINATES-INDEPENDENT FACTORS
Oi OF LINEAR ORDINARY DIFFERENTIAL

N DiSTRETIZEDR IS CODED IN THE ARRAY
VISTARTY LPCATION. THE MATRIX FACTrRS

SED I THE ARRAY '10PS' WITH THE NUNBGER GF
BZING GIVEM RY THE ARRaY 'LROW!,

FIRST THE LCCATIGN OF THE +« DR - SIGNS IS DETERMINED

L3ZS = LOCS + 1

IF(INSTR{LACS)Y .LT. 1000C) 60 TO 1

SISZN = 1.
IR INS:R(LSELY JEQ. 2000) SIGN = - 1.
«3IL = 20

L = LZ0S = .
IF(INSTR(L = 1) LEC, 2000 L =L -1
IF.INSTR(L) .E%. 200) &3 7O 3

THZ CU-RENT TEFM IS A KNOWN FUNCTION - ITS LOCATION AND SIGN
4RE STCURED IM 'LFCN!

LF = LF + 1
LFIN{LF) = L=IFIX(SIGN

L L -1

IFVINSTR(L) .LT. 1000) GD Tg 2
LE = L + 1

LFCN(LF) = L + 1
IF(INSTRILOES) «GE. 3000) RETURN -
GG TG 1

4z SIHPLE TPERATOR ENCOUNTERED CONTAINS THE UNKNOWN Y

v "~

NTVISN 2 PN .

THZ ASPROPRIATE UNIT MATRIX IS CREATED
S35 1 s 1,4TVESH

gP(ly = 0.
MN =N e L

DECL6655
DECL6660
DECL6662
DsCL5670
DECL&sTS
DECLA6SO
DECLEAS]S
DzCL66S0
DECLS695
DECLO7CO
DECL6705
psCLe719
DECLSTLS
DECL6720
DECL67ZS
DECL6730
DECL6733

ECL6T40
DECL6745
DECL6750
DECL6755
CECLE760
DECL5745
DECLETTO
DECL&77S5
DECLA7E0
DECL6785
DECL679D
DECL6795
DECL68SO
DECLEBOS
DECLAR1O
DECL68B1S
DCL6820
DECL6R25
DECL6R3D
NDECL6835
DECLERSLD
DECLE&B4S
DECL6850
DECL6355
DECL6ESO
DECL6B6ES
DECL6BTO
DECL&RTS
DECLARED
DECL&ARES
DECL6290
DECLARGS
DECLS9GO
DECL&2OS
pECLS910
DECL6915
DECL6S2D

[aNaNel

[aXalal

[aXaNal

10

12

DO 6 1 = 1,MTYMSN,HN
SR ] 1.%SIGN

1E0 =

BN = N

IF{N wEe 1D]) 6D 7D 9
IF{IPRDY +EQ. 1) ™ = MR

1

THE REQUIRED PROJECTION MATRIX IS EVALUATED

I LGCS

1 1 -1

IFLINSTRII) .Eg. 300) IDP = -~ 1
IF{IPRuy «nE. 1) Gg Tg 8
IF(IASS(INSTR(IY)) .GE. 10) GO TG 8
Ho= M~ INSTRII)

IFLINSTR(IY ,LT. 10001 GO TO 7
IF(IPRY nE, 1) 60 70 9

CALL CPRATR(OP, IED,MoMNIN,0)

MN = M

L=t -1

IF{IA3S(INSTRILY) JGE, 10) 6O T0O lo

THE REGUIRED DIFFERENTIATION MATRIX IS EVALUATED

LPOWERILD) = LPOXER(LE) = INSTR(L)
M = MH + ILSTR(L)

CALL CrRATH(GP,IED,MoMN,N,1)

My o= M

62 T0 9
IF{INSTR(L)
L =L -1
GO 7O 1i0

L =L +1

.GE. 1000 .OR, T1ABS(INSTR(L)) .LT., 10) GO -0 1i

THE MATRIX COMPUTED IS STORED IN '0OP1

LaciLd: = 10PxLOCI(LY)

LROGW(LU) = M

MTYMSM = MxN

iF(LD .2Q. 1) LOPS = - MTYMSN
LOPS = LOPS + MTYMSN

00 12 I = 1,MTYMSN

GPS(I + LOPS) = OP(I)

LG = L0 + 1}

Laocleg) =

SIGN = 1.

IF(INSIR(L =~ 1y LT, 1000) 60 TD &
LOCILD) = « LGC(LD)
IFCINSTR(LLCSY -GE. 3000} RETURM
L0 TO :

END

<
-
-
>
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v
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-
-
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69

above principles'and is presented in Figure 4.1.3. The
instructions for the differential equation to be discretized are
contained in the array INSTR with the first instruction in
location ISTART. The numbers NR and ND give the number of
interpolation points (degree of the interpolation polynomial
plus one) in the range and domain spaces of the operator, res-
pectively. During execution, the program checks successive
values of INSTR, noting the starting and ending locations of
simple operators in LOC and of functions in LFCN. As differ-
ential and projection operators are detected, their matrix
equivalents are generated by calling OPRATR and stored consecut-
ively in OPS. The arrays LROW and LPOWER give the number of

rows in these matrices and the power to which the quantity (1/L)

in the differentiation matrix is to be raised.

4.2 COORDINATE -DEPENDENT EACTORS

OPGEN1 completes the first level of the discretization process
by evaluating all of the numbers in the matrix equivalent of a
differential equation that are independent of coordinates. The
second stage of the process, adding the coordinate dépendent
factors, is accomplished by the companion subroutine OPGEN2
shown in Figure 4.2.1. This subroutine takes each simple 6pera-
tor separately and evaluates the function matrices at the inter-
polation nodal coordinates given in XD. The previously calcu-

lated differentiation and projection matrices are then combined



Figure 4.2.1

PN VYN Y]

ui

¥ 3

KO XK WDVOM WNee X

SUSROIITINE CPGEN2{INSTR,CONSTsLOC 1. POWER, LROWS LaND,
E] XDs=ToNsNPT,0PS,LOPS, TP, TEMP)

IHZ SUJROUTINE OPGEN2 TAKES THE CANRDINATE~INDEPENDENT FACTORS
STZRED IN ThE ARRAY 'OPS' AND MULTIPLIES THEM WITH THE
ABSRDPRIATE CCORDINATE DEPENDENT PARAMETERS. THE POINT
CToRDIMATES ARD CONTAINED IN THE ARRAY 'XD' WITH THE QUANTITY
(i/0) SYCRED IN *WTt.

CI~ENSIoN INSTR(II,CONST(1),L0C(1), PONER(L1)SLROW(1)S
= XD{1),w8T(1),0PS(1),0P (1), TEMP(L)

LCOIUBLE PRECISION CODUSBLE

PN o= ND

M = LRIX(L)

L3S = L OFS + M3MN

IF{MN LEQ. NDY G2 70 4

12 A +aTRIX IS ALREADY STORZp IM THE ARRAY 'OP', IT IS
HULTIPLIED BY THE NEXT MATRIX FACTOR

1J=¢

LS = JJPS = M

J18N = e Ny

L0 2 J§ = 1,ND

JinN = J1Hs + #N

83 3 1 & 1,M

g o= iy o+ L

IK = ] & LCY

4 = g1HN

L3AGBLE a 0.00

U2 2 X = 1,PN

IK = In + 8

Kj = Kg + 1

DOUBLEZ = DZULELE « DBLE(OPS(IKI*OPIKJY))
TEMP{IJ) = SNGL(DTUBLE)
LoCL = JABS(LOC(LY)
LSCLL = faaSeL=C(L + 1)

THE NIJJAL POINTS ARE STEPPED OFF
3 ¥TINY2xPOYER(L)

ZQ. 1} 63 70 5
1.0/{FLIAT 1t = L)F4TIN))

=~ nin

[T FIRy

THE V&LUL oF THE FUNCTIGN AT THE NnDaL POINT IS EVALUATED

€T = FLutX, INSTR,CONST,LOCL,LOCLYY*WEIGHT
=1 -#

DECL7180
DECL7185
DECL7190
DECL7195
DECL7200
DECL72C5
pECL7210
DECL7215
pECL7220
pECL7225
DECL7230
DECL7235
DECL7240
DECL7245
DECL7250
DECL7255
DECL7260
DECL7265
DECL7270
DECL7275
DECL7280
DECL7285
DECL7290
DECL7295
DECL7300
DECL7305
DECL7310
DECL7315
DECL7320
DECL7325
DECL7330
DECL7335
CECL7340
DECL7345
DECL7350
DECL7355
DECL7360
DECLT7365
DECL7370
DECL7375
DECL7380
DECL7385
neECL7390
DECL7365
DECL7400
DECL7405
DECL7410
pECL7415
DECL7420
DECL7425
DECL7430
DECL7435
DECL7440
DECL7445

[ XaKal

DO 8 J 3 1,ND
Iy = 1o + ¢

THE COMPUTED MATRIX IS STORED IN THE ARRAY '0OP!

IF(MN .EQ. kD) GO TO 7

LPe1J) = FUNCT= TE&D(IJ)

GC T0 &

Up(Id) = FUNCT=OPS(IJ + LGP3)
CGRTINUE
IF(LOC(L + 1)
MN = M
L =t
G0 70
END

.LTe 0) RETURN

+ 2
1

0L
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with the function matrices in the specified order to produce,

in the array OP, the matrix corresponding to the simple operator.
The function values used by OPGEN2.are computed by the sub-

program FCN given in Figure 4.2.2. This program requires the

following extension of the instruction code

NUMBER OPERATION
600 - sign within a function
500 + sign within a function
400 )
300 (
100 X ( the independent variable )
19 . 15 auxiliary functions
.14 logarithmic function
13 exponential function
12 cosine function
11 sine function
-101 . -199 constants
=201 . -299 exponentiation

With this code, FCN can generate the point values of any func-
tion configuration. The numerical values of constants ard the
powers to which an argument are to be raised are contained in
the array CONST.

In order to permit the use of functions different from

the four standard functions sine, cosine, exponential and log-



Figure 4.2.2

ooy

FUNCTION FCN(X, INSTR,CONST,LO0C1,L0c2) DECL7855
DECL7860

THIS FUNCTION SURPIOGRAM RETURNS THE VALUE OF A FUNCTION STORED DECL7855
IN LOCoTISZHS *1BC2+ 7o 'LOCL' DF THE ARRAY tINSTR!' AT THE DECL7870
LICATIIN 'x! DECL7875
DECL7820

INTEGER%2 INSTR,LEYEL,IDP DECL7885
DINENSIIN INSTR{1Y,CONST(1),F(20),LEVEL(20),10P(20) DECL7890
i =0 DECL7895
125RA = 0 DECL7200
L = LOC)l + 1 DECL7305
DECL7910

N 1S DETERMINED BY READING THE INSTRUC-  DECL79:5

DECL7920

DECL7925

L 1 DECL7930
INET = I°.873¢L) DECL79235
in = MUD(IWSTRGs120) DECL7540
IFCIN LNE, €)Y GO T3 9 DECL7945
iN = $1".8TR& / 100 DECL7350
G2 TC (240253,6,758,22)51IN DECL7955
i=1-1 DECL7369
DECL7965

THE FURCTISN 'x' ORIGINATES A NEW TERM DECL7970
DECL7975

F{1) = X DECL7980
Igr(1y = 0 DECL7985
G2 TG z2 DECL7090
IN = LEVEL(IPARAY + 1 DECL7995
DECLBOCO

£ CLOSING PARELTHESIS MEANS THAT THE FUNCTION WITHIN NEEDS TO DECLBOOS
38 EVALUATED - DECL2010
' DECLBOLS

IF(IN LEQ. 1) 60 TO 22 DECLBN20
I=1-1 DECLBO25
T8 5 K = Ingl DECLBO30
IFL137(K) LEQ. 0) 6O TO 4 DECLBE35
FLIN) = FIK + 1) + IOPIKI*F(IN). DECLB040
62 T3 5 DECLB045
FLINy = F(K + 1) * F(IN) DECL3O0SD
CoLTINGE DECLBOSS
[ = Iy : DECL306D
Ig2(1) =2 0 - DECL2C6S
1P:R4 = IPaRA - 1 ) DECLBO7O
G2 10 22 DECLSD75
1PARA = IPaRA + 1 pECL8DEO
D=CL3083

GPENING PARENTESIS ARE NOTED DECLB0SO
DECL5093

i DeECLAIC0

LEVEL(IPARA) = I

5ECl3108

62 70 22

geiiy = 1 DECLE1L0
61 TO 22 A LECLBLLD
InP{I) 2 - } 2ECL8:20

(aNaNal

[a N aXal

[aXaXal

[aNaNal

10

12

13
16
15
16
17
18
19
20

21
22

23

GO TO 22
1F(INSTR4 ,GT. =~ 200) GO 7D 10

THE ARGUMENT IS TO BE RAISED To SOME POWER

F(i) = F(1)#=CONST(- 200 - INSTR4)
GO TO 22

IF(INSTR4 .GT. - 100) GO TD 12
IF{INSTR4 .LT. - 150) GB 7O 22

CONSTANTS 4LSO ORIGINATE A NEW TERM

I =1+1

F{I) = CONST( - 100 - INSTR4)

Igp(I) s O

GO TO 22

IN = INSTR4 - 10

GD TO (13,14515,16,17,18219,20,21), 1IN

ONE OF THE FOLLDWING FUNCTIONS HaS BZEN ENCOUNTERED

F(I) = SIN(FC(IN)
GO TO 22

F(I) = COS(F(IN}
GO TO 22

F(I) = EXP(F(I))
Gp To 22

F(I) = ALGG(F(1))
GD TO 22

F(I) = FNU(F(I))
GO 7O 22

F(I) = FN2(F(I))
G0 70 22

FCI) = FN3(F(I))
GO 70O 22

FLI) = ENG(F(I))
GO TO 22

F(I) = FRS(F(I))
IF(L ,GT. t0C2) GO YO 1

IF L IS LESS OR EQUAL TQ LDC2,RETURN THE VALUE OF THE FUNCTION

FCH = F(1)
1F(1 ,EQ. 1) RETURN
Up 23 L = 251

FCN = F(L) * FCN
RETURN

END
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arithm included in the program, the numbers 15 to 19 are
reserved for the auxiliary functions FNT to FN5. These auxi-
liary functions allow users of FCN to specify any desired func-
tion by supplying separate Fortran function subprograms called
FNT = FN5 to generate them. In this way, the statements in

FCN never need to be altered.

Finally, the full matrix equivalent of an ordinary differ-
ential equation can be obtained by adding together the set of
simple matrices generated by OPGEN2 and setting the result equal
to the forcing function values at the interpolation nodes. This
operation is performed by the subroutine DIFFEQ given in Figure
4.2.3. DIFFEQ is a master subroutine that requires as input
only the correct values in the instruction code, plus a few
other constants, and generates by calling OPGENl and OPGEN2
the matrix equivalent of any differential equation. Some addi-
tional features of DIFFEQ, which have not been theoreti-
cally explained at this point, will be described in the next
chapter,

The use and operation of the automatic discretization sub-
routine package will now be illustrated by a simple example.

Consider the differential equation

Q:L:g
8] w

- 8in (x) y = cos (1.2 + sin (z)) (4.2.1)

where y is to be approximated by a sixth order polynomial in

the interval 0 to 1. The instruction code corresponding to
(4.2.1) is



Figure 4.2.3

SU3R3U: INE “IFFEC'“N:MDNJaT;NELMTq,INSTR:CDNST;XD:LR;ND; DECL2810 IF(LOC(L)Y .LT. O0) 1IJ = MSIZE
= NJLLDsNULIV, L 2DA) DECL2815 vy 4 1 = 1,MSIZE "
DECL2820 1 =15 + 1
MATRIX EQUIVALENT OF AN ARBITRARY DECL2825 €

Al EQUATIDN ALD RETURNS 'MELMTS' SECTIGHAL D=CL2830 ¢ ADD TWE SI#PLE DPERATORS IN A COMPOUND OPERATER TIZETHER

CIFFERENTIAL EQUATION IS DEFINED IN THE DECL2835 C
SQLUTION 1S RETURNED IN fDN', DECL234D 4 B(Id) = DCiJd) + $P(I)

DECL2845 IF(LF .EQ. ©) 60 °C 8
(1:0%T 01, INSTRI1)LCONST1)»XD(12 DECL2850 IF(LAMGAY G T 930
241,120W(10),4C0L(30),LAC(100),LPOKER(100),LROW(100),DECL2555 IF(NR .EQ. 1) 60 73 5
= +2€0.1100),0P (100, TEMP(206Y,0PS(1) DECL2860 STEP = 1.0/{FLPAT{NR - 1)3KET(N))
C2-3% 0515Cwrl0l,LOCs LPOWERS LAGH, LFCN, OGP TENP,OPS pefiLze X = XDiNPT) - §TE?
LoTIgAL LL T "—ngaﬂo G0 70 o
SELL2873 5 STEP = D.5/75T()
R COSRDINATE~INDEPENRENT FaCTORS IN THE MATRIX ozCLzes0 A = XCINPT)
DECL28B5 C
DECL2890 C THE MAIRIX 1S AUGHENTED WITH THE SUM OF THE FORCING FURCTICN
CALL 2233030 1%STR, 1, NRSND, LDCs LDy LFCNs LF,0PS LROW, LPOWER,GF 1) BECL2895 C POINT VALUES
IF.L0 LLE. € .7R. 0 .GT. 100 .0OR. LF .GT. 100} GO VO 990 DECL2200 C
DECL2205 5 00 7 L = i:LFs2
LETEIRVINI TRE vATRIX SIZE PARAMETERS pECl2610 LGCL = JASS(LFCN(LY)
. DECL2315 LOCLl = LFIHIL + 1)
DzCL2929 WEIGHT = FiDAT(LECL)/FLDAT(LFCN(L))
pDsCL2c25 XR = X
D=ECL2930C DO 7 1 = i,NR
DECL2935 XR = XK + STEP
DECL2940 19 = 1 4+ MBSIZE
DECL2945 7 DO1J) = D(iJ) + FCHIXRsINSTR,CONST,LOCL,LOCLL)=WEIGHT
DECL2950 C
DECL2355 C ETERMINE THE GENERAL SOLUTION IN EACH ELEMENT
nICL2e60 C
DELL2965 a Cart “dLL(“:FR,Nq;;TUIHL:IR_.<, PO JCOL» DN, 0N, NUL LV, 20D N
pzCL2970 IF(IRANK .0F. MRy 60 T2 991
2 DsCL20975 MADDDWN = Hnnsan + LDSIZE
peCl.2e80 10 CONTINUE
pzCL2085 RETURN
DECLze30 C
DECL2995 C ERRADRS ENCSUNTERED
DECL3nCO C
GECL3GGS 990 WRITE{5,200) LAMDA,LO,LF
DECLAGLO ND = O
i = DICL3015 RETURMN
3 =0 CECL3020 991 WRITE(0,201) IRANK,NR
WOFS = = LxT4{3)aND DECL3025 ND =D
DECL3030 KETURN
TAKE £agH SIVPLE DOERATCR SEPARATELY gegtanag 200 “Bpnarcr-sqpav, THIS EQUATION CANNOT BE SOLVED BY THIS PRCARAVY,
zCL304 315
vl & L = 1,L732 DECL3345 201 FD“HAT('~TU: CALCULATED RANK'»I3,' DOES NOT SQUAL THE TRUE RiNkt,
£EiL3050 * 13)
132 TRE CUZRDIGATE-DEPENDENT FACTORS DECL303S END
CECL2550
CALL TPGENZIINSTR,CINST,LIC, LPOWER,LROW,LoNDs XD WT NS NPT, DCi3055
= £R5,1L0PS,0Ps TEMP) peECL3070
P DECL3075 ~
S




1 INSTR (I 1 INSTR (I
1 1000 1 12
2 -3 12 300
3 200 13 -101
4 2000 14 500
5 11 15 1
6 300 16 300
7 100 17 100
8 400 18 400
9 200 19 400
10 2000 20 3000

In the above instructions, the function on the right hand side
of eqution (4.2.1) has been transferred to the left hand side.
Also, the constant 1.2 of instruction 13 is to be stored in
CONST (1).

Given these instructions, the subroutine OPGEN1 performs
the following operations. It detects the four simple operator
separation locations - numbers 1, 4, 10 and 20 - and determines,
by looking for the number 200, that in the first and second
group of instructions ( numbers 1 to 3 and 4 to 9 ), the
unknown y appears but that it is absent in the last group

( numbers 10 to 19 ). This information is stored in the arrays

LOC and LFCN as follows

Loc (1)

n
S

]

1 LoC (3)
3 LoC (4)

LFCN (1) 10

LoC (2)

1
O

LFCN (2)

19

75



Consequently, coordinate-independent matrix operators need to be 76
evaluated only with the first two groups of instructions. Since
there is a -3 in the first group and no negative numbers whatsoever
in the second, and since sixth order polynomials are to be used,
the values of NR and ND become 4 and 7, respectively. Furthermore,
the first simple operator stored in OPS is the 4 x 7 projection
matrix.
Upon completion of these calculations, these numbers are

returned to DIFFEQ which then calls OPGEN2 twice, first with

instruction numbers 1 to 3 and then with instruction numbers 4 to 9.

Since there are no functions in instructions 1 to 3, OPGEN2 only
multiplies the elements of the first simple matrix by (1/L)% with
L=1.0. However, in the next case, according to statements 5 to 8,
the rows of the second simple matrix are multiplied by the value of
sin(x) at the four points X, = /3, i=0,1,2,3.

As these two 4 x 7 matrices are produced, they are added
together in the subroutine DIFFEQ and stored in the array D.
Following this, the function in instructions 10 to 19 is augmented
to the matrix D calling FCN at the aforementioned four points X

This problem was run on an IBM 360/75 computer to detcrwine
an estimate of the computation times required by the programs.

The generation of the 4 x 7 third order differentiation and
projection matrices by the subroutine OPRATR required 16

msec each. Including this time, the complete determination of
the coordinate-independent components by the subroutine OPGEN]
took 33 msec. In performing its computations for the single

region considered above, OPGEN2 used 16 msec. Altogether
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the complete discretization process, including all of the rele-

vant operations performed by DIFFEQ, required 67 msec.

4.3 TWO-DIMENSIONAL EQUATIONS

Considering the physical differences between ordinary
differential equations.and two-dimensional partial differential
equations, the formation of matrix equivalents for the two types
of problems is remarkably similar. As explained in section 3.5,
in a product separable space, the matrix equivalent of a two-
dimensional coordinate-independent differential operator factors
into two one-dimensional matrix equivalents, one of which
multiplies the matrix of unknown coefficients from the right and
the other multiplies it transposed from the left. As a
consequence of this reliance upon one-dimensional matrices,
computer programs for the discretization of partial differential
equations by the methods of Chapter 3 can be constructed by
properly adapting the one-dimensional programs given in the
preceding section.

In fact, the generation of the high-order one-dimensional
differentiation and projection mat%ices needed for two-
dimensional partial differential equations can be performed
without modification by the subroutine OPRATR in Figure 4.1.2.
The essential difference in the two-dimessional case is that
OPRATR needs to be called twice, once for the x-dependent
operators and once for the y-dependent operators. A sub-
routine, OPG2D1, which has been designed to perform this

operation for any linear two-dimensional partial differential
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equation, is given in Figure 4.3.1. OPG2D1 is very similar

in form to OPGEN1 and, as a result, large blocks of statements
which are identical to the original one-dimensional program have
not been repeated. In their place, comment statements have
been inserted to indicate the statement numbers deleted.
Thus the comment between statement numbers 3175 and 3185
of OPG2D1 indicates that Fortran statements 6715 through 6860
of OPGENT should appear in that location. This method of
shortening program listings will be used wherever possible
in this thesis.

OPG2D1 requires the following modification of the

instruction code given in sections 4.1 and 4.2

200 Z (the unknown function)

101 Y (one of the indepeﬁdent variables)
100 X (the other independent vafiab]e)
971 D9/DY9 ~ D/DY

-17-9 D/DX ~ D9/DX9

Given a set of instructions according to this code for a partial
differential equation, OPG2D1 determines the numbef of x-dependent
differential operators and the number of y-dependent differentfa]
operators in each term of the equation. It then evaluates the
corresponding matrix equivalents and applies the proper

projection matrices to both the y-dependent and the y-dependent

operators to keep the polynomial orders of their spaces consistent.




Figure 4.3.1

SUBROUTINE 0PG2D1(INSTR, ISTART,NRX,;NRY,ND,LOC,LOsLFCHILF,
= GPS)LREKSLPOWER2OPX20PY, IPROM)

THIS SUBROUTIME EVALUATES THE COORNIMATE~-INDEPENDENT FACTORS
FOR THE DISCRETIZATION CF LIMEAR TUQ-DIMENSIONAL PARTIAL
DIFFERENTIAL EQUATIONS.,

DECL 6715-6860

MX & ND

MY = ND

197 =

Lg = Ln ¢ ]

LOL =10+ 1
LOC(LOy = L = 1
LPCHER(LD) = O
LPGWER(LOL) = 0
NX B 42X

NY = MY

MTYMSN = hX »%x 2

CREAT TAO UNIT MATRICES

03 5> I = 1,MTYMSN

0Px(1} = 0,

HNX = HX +

03 6 1 s L)MNTYHMSNsMNX
UPX(1) = 1, *= SIGN
MTyiiS% = Ny =% 2

0D 7 1 a 1,BTYNSN
Cpv(l) = O,

FNY 3 NY + )

Lo 8 ] = 1,MTYPSHyUNY
ary{l) = ],
1ECX = }
1E3Y =
MiX = UX
MNY = @Y
IF(INSTR(L)
1 = L2CS

I 1 =1
IF(INSTR(l) LEQy 300) I0P = = 1
IF(IPROY JNE, 1) GO 7D 11 B
IF(JA3S(INSTRII)Y LGE, 10) GO TO 1}
IF(INSTR(I) .GE, O0) G2 TI 10

EX % »X ¢ INSTR(!)

+NEy 200) GO TO 13

.60 T3 11

ADD Tng PROJECTICK MATRICES

MY 3 MY @ INSTR(I)

IFCINSTREI) LT, 1000) GU TO 9
1F(MX .EQ, hRX) GO TO 12

MX ® NRX & D = uX

DE2D3145
DE2D3150
DE2D3155
DE2N3160
DE20N3165
DE2D3170
DE2D3175
DE2N317”0
DE203135
DE2D3190
DE2D3195
DE2D3200
DE2D3295
DE?N3219
DE2D3215
DE2D3220
DE2D3225
DE2n32130
DE2DP?2135
DE2D1240
DE2013245
DE2N3250
DE2D3255
DE2N3250
DE2D1265
DE2N3270
DE2N327%
DE203280
DE2N3245
DE203290
DE2N3295
DE2N3300
DE2D3335
DE203310
DE2D3315
DE2N3320
DE2D3325
DE203330
DE2D3335
DE2N3340
DE2D3345
DE2D3350
DE2L3355
DE2D3360
DE2[3365
DE2N3370
DE2N3375
0E2R3380
0E2D3385
DE?N2390
DE2M3395
DE2D3400
DE2D3405
NE2n3410

[aNaXal

[a B aXe)

[a X Xal

12

13

16

19

16

17

18

CALL OPRATP(DPY,IEDXsMX,)MNX,NX20)
MNX 8 MX

IF(MY +EQ, MRY) 6D TO 13

MY = NRY « ND = MY

CALL GPRATR(OPY,IEDYsMY,MNY,NY,0)
MNY = MY

L= -1

IF(IABS(INSTR(L)) .GE, 10) 60 TD 15

ADD THE DIFFEKENTIATION MATRICES

IF(INSTR(L) JGE, O) GO TU 14
LPOWER(LV) = LPOWER(LD) = INSTR(L)
MX = MiiX + IMSTR(L)

CALL OPRATK(NPX, IENXsMXsHNXsHX, 1)
MNX = X

GO TO 13

LPOWER(LRLY = LPOWER(LOLl) & INSTR(L)
MY = MY - INSTR{L)

CALL OPRATR(OPY,IEOYsMY,MNY,NY,1)
MNY =2 AY
Gu TO 13
IF(INSTRIL)
L= -1
GO ¥O 15

.GEs 1000 ,OR, [ABS({INSTR(L)) ,LT. 10} GO TO 16

BOUTH MATRICES ARE STURED IN t0PSH
Lzt +1

LGC(LD) a ICP & LOC(LO)
LROA(LD) = MX

LROW{LEL) = MY

MTYMSI: = HX ¥ KX

IF(LD ,EQ, 1) LIPS = 0
DD 17 I = 1, MTYMSH
0pPS{1 + LORSY = OPX(ID)
LOPS = {0OPS + Iyi.SN
MTYHS: a MYy & nY

D 18 I = 1,MTYMSH
DPS(I + LOFS) = rPY(l)
LUPS = LOPS + MTVISH

Lo = Lol

DECL 7150~7173

END

DE2D341S
DE2D34290
DE2R3425
DE2D3430
DE203435
DE2D34¢9
DE2P3445
DE?0345)
DE2D2455
DE2N34690
DE203445
DE2D247
DE2M 2475
PE2D3489
DE2D3485
DE2N3493
DE2D3455
DE2D352D
DE2D3505
DE2D3510
DE?]2515
Ce203s52)
DE203525
DE2N35390

DE?733540
DE?33545
DE223552
DE2N1555
DE2N336D
DE2D3565
PE2D3ST0
DE?13575
DE>{13532
DEZD3585

23593

EF036NT
DE?N3LCS
DEZ2N36LY
DE2N36LS
DE2n3620
DE2N3n25
DE2113430
DE2N3635
DE203640

t
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The coordirate-dependent factors of two-dimensional

equations are added to the system by the subroutine 0PG2D2

in Figure 4.3.2. O0PG2D2 is patterned after the one-dimensional
program OPGEN2 and, again, many statements in :0PG2D2 are
similar to those in OPGEN2. The basic difference

between the two programs is that OPG2D2 must convert the

pair of one-dimensional matrices obtained from OPG2D1 for each
differential operator into a single coefficient matrix by
taking the Kronecker product ¢f the matrices. This operation
is performed by the subroutine KRON given in Figure 4.3.3.

The major new problem encountered when changing from one
to twe-dimensional differential equations is the rapid growth
in the size of the matrix equivalents of the operators. 1In
the one-dimensional program, the largest possible matrix
equivalent of a differential operator results when a ninth
order polynomial approximation ig made of a first order
differential operator and produces a matrix with 90 elements.
With two-dimensional problems, the Kronecker product of twa
of these one-dimensional matrices results in a matrix with
902 = 8100 elements. Although matrices of this size are
within the Timits of the storage capacities of modern computers,
they require a sizable fraction of core memory and operations
with them consume considerable computational time. Therefore,
the generatton of very high-order matrix equivalents for two-
diménsiona] problems requires much more consideration than
is necessary in the one-dimensional case. Since the number
of matrix elements in a two-dimensional problem varies
approximately as =»n" where »n is the order of the approximating

polynomial, it is often wise to use a lower order element,
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SUBROUTINE QFG?DZ(INSTRJCDNSTJLDC)ﬂPUHER:LRDH;L:ND:XD:YD;HTXJHTYa DE2D3645

™~ n‘h"l?T)Q’SlLQPX}UP)TE”P)

THE SUBRCUTINE 0PG2D2 TAKES THE CONRDINATE~INDEPENDENT FACTORS QOF
A THO=DIMZNSIOMAL PARTIAL DIFFERENTIAL EQUATION AND MULTIPLES

THEM W1TH THE APPROPRIATE COORDINATE-DEPENNENT PARMAMETERS,

DOUBLE PRECISION DOUBLE

DIMENSION INSTP(I)JCUNST(I)JKUCII);LPDHER(I)JLRDN(I):
- XD(l)pYD(l):wTX(l):NTY(l)JﬂPS(I)JDP(1))TEHP(1)
MNX = M)

MMy = MND

L=+

MX = LRG2(L)

MY = LROW(L])

LOPY = (OPX « uwX * uNX

IF(MNX ,EQ, ND ,AND, MNy ,EQ, NDY GO TO 4

EVALUATI THE NEXT MATRIX DPERATCR

fALL KRQN(SPS;HX;MNx:LUPX;UPS;NY}HNY;LDPYJTEHP;HUP;HNDPaO)
Jy =0

KJ = 0 ’

00 3 §y = 1,NCp

KJ ® KJ & HNOP

00 3 1 = 1,rop

1= 19 ¢y

IK 5 1 « Hnp

00 2 K » 1,MNOF

IK = IK « ;'CP

DQUSLE = DOLSLE » DBLE(TEMP(IK) % OPK KJ})

Op(ly) = SUGL(PUYBLE)

G3 TO 12

CALL KRDH(GPS;VX;HNX:LDPX;CPS;HY,HNY;LDPY)UP:HDP:NDP;O)
LOPX = LCPY + ryY % MmNy

LECL = JABS(LEC(L))

LCCLLl = I1aBS(LDC(LY))

THE NODAL PCINTS ARE STEPPED OFF

WEIGHT = (uTX(n) #x LPOWER(L)) * (HTY(N) #= LPOWER(L1))
IF(HX ,EQ. 1) 60 To S

STEPX = 1,0 / ((FX =~ 1) * uTX(N))
X ® XD(iIPT) = STEPX

GZ T2 6

STEPX = 0.5 / +TX(4)

X = XD(%PT)

IF(-f EQ, 1) 6O TR 7

STEPY = 1.6 /7 ((+Y = 1) = vry(ty))
YS = vYD(MPT) + STEpPY

0 TC 3 .

STEPY = 0,5 /7 +Ty(M)

YS & YD(NPT)

IK s 5

DE2N3650
DE2D3655
DE2D3660
DE2D3665
DE2N3670
DE2D3675
DE2D3680
DE2D3685
DE2N3690
DE2N3695
DE203700
DE2D37n5
DE2D3710
DE2D2715
DE2n3720
DE2D3725
DE2N3720
DE2D2735
DE2D3740
DE2D3745
DE2D3750
DE2D3755
DE2N3760
DE2D3765
DE2D03770
DE2D3775
DE203780
DE2N3785
DE2D3790
DE2D3795
DE2D3800
DE2N3805
DE2N3810
DE2D3815
DEZ2D3820
DE2D3825
DE2D3830
DE2N3813S5
DE2N3840
DE2N3R45
DE203350
DE2D3855
DE2N3360
DE2D34a%5
DE2N3870
DE2N3375
DE233380
DE2D3385
DE2D3890
DE203895
DE2D3900
DE203905
DE2D3910

[aXaXse]

[z Xz X3l

D0 9 [ = I,MX
X & X + STePX
Y = Y$

00 9 K = ],MY
Y 3 Y « STEPY

EVALUATE THE FUNCTION AT THE NODAL POINTY

FUNCT = FCH2D (XY, INSTR,CONSTLLOCL,LOCLY) * WEIGHT
IK 8 IK + )

IJ 3 IK = uiip

KJ = 1y

TF(LOCILY) +GE, 0) KJ = Iy + MDP

THE COMPUTED MATRIX IS STORED IN 1nP¢

009 J = 1,MP

1J s 1J + npp

Ky ® KJ » MGP

OP(KJ) = FUNCT # OP(1y)
IF(LOC(LLl) LT, 0) RETURN
HNX = X

MNY = MY

Lag +2

GO 1o}

END

DE233915
Dg2D3220
DE2D3925
DE2D3930
DE2D3035
DE203340
DE223545
JE?D3850
DE2N3955
DE2D3950
DE2239a5
DE?)26870
DE2D3975
DE2M3gad
DE2039735
DE223950
DE203995
NE2C4000
DE2R42n5
DE2D24010
DE2C40L5
DE2N4020
DE2DR4025
DE224030
DE204035
DE2D4040

L8
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Figure 4.3.3

SUBROUTINE KROM(A,MASNA, LAADN,R,MB,NB, IBADD,C,MCaNC, ICADD)

KROM TAKES THE KROMECKER PRONDUCT OF THE tMAt1 BY INAY MATRIX tA¢

AND THE 'S0 3y ITNBI MATRIX 18! AND RETURNS THE RESULTING tMC!
BY INCY MATRIX IN (!,

DIMENSTION A(Ll),B(l)sC(l)

MC 3 MA % 4R

NC = NA % NB

1JC = I1CADD

IBA = IBADD « MB % NB + MB 4+ )
JACUL = IAADND « HA

DU L JA = 1pHMA

JACUL = JACGL + MA

JBCUL = IBA

DO L JBR = 1,NB

JBCUL = JRCGL ~ MB

1JA = JACOL

LD 1 1A = 1,MA

IJA = IJA + )

DO L IB = 1yMB

Id€ = 1JC « )

C(IJVC) = A(lJA) = B(JBCOL « IB)
RETURM

END

Figure 4.3.4

FUNGTION FCN2D(X,Y, INSTRoCONST,LOCT,10C2)
THIS FUNCTION SURPROGRAM RETURNS THE VALUE OF A TWO~DIMENSTONAL
FUNCTION STORED IN LUCATIONS 'i0C2' TO 'LOCYL' OF THE ARRAY
VINSTR! AT THE LDCATION '"(X,Y)!,

DECL 78907940
IF(INSTR4) ,EQ, 101) GO TO 24

DECL 7945-7995%

24

DECL 6000~8360
END

DE2D4045
DE2N4050
DE2D4055
DE2D4060
DE2D40KS
DE2N4070
DE2D&4075
DE2N4030
DE2D4035
DE2P4090
DE2D4095
DE2D4100
DE2D4105
DE2D4110
DE2DA11S
DE2N4120
DE2N4125
DE2N4130
DE2D6135
DE2N4140
DE2D4145
DE2N4150
DE2D4155
DE2D4160
DE2D4165

DE2N4170
NDE2D4175
DE2D4180
DE2D4135
DE2D4190
DE2D4195
DE20D4200
DE2N4205
DE214210
DE204215
DE2D4220
DE2D4225
DE2D4230
DE2N4235
DE2D4240
DE2N4245
DE2D4250
DE2N4255
DE2D4260
DE2D4265

82
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particularly if several different matrix equivalents are
needed simultaneously.

After converting the matrix of unknown coefficients into
vector form by applying the Kronecker product, OPG2D2
multiplies the resulting product matrices by any necessary
function matrices, as specified by equation (3.5.30). The
function values are obtained from the function subprogram
FCN2D given in Figure 4.3.4. FCN2D is similar to FCN except
that it has two independent variables and calls auxiliary
functions FN2D1 - FN2D5, which are dependent on both X and Y.

Last, Figure 4.3.5 contains DIFF2D, the two-dimensional
version of the subroutine DIFFEQ. The principles of operation
of DIFF2D are identical to those of DIFFEQ, although a large
number of indexing changes have been made. By calling DIFF2D

with a suitable set of instructions in the array INSTR,

the matrix equivalent of any two-dimensional partial differential

equation may be obtained.
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Figure 4.3.5

[aXaXa¥a)

[aXaKal

[aXaNal

(aNaXal

SUBROUTINRE chFZD(DuaHoN;wrx.wrv;NELMTs,XNsTR,CUNST,XD;YD,
* NRX2HRY,NDANULLD, NULLY, LAHMDA)

OIFF2D DETERMINES THE MATRIX EOUIVALENT OF AN ARBJTRARY LIMEAR
TWO=DIMENSICNAL PARTIAL DIFFERENTIAL EQUATION,

DIvENSIOH DN(I)JRTX(I)JWTV(1511NS7P(1):CDNST(1):XD(l)JYD(l)

DIMENSIQM 0(6696):IRUw(100);JCCL?300):LUC(100):LPUWER(100):
- LRJ(100) 4 LFCH(100),0P(4096)s TEMP (4096),0PS{1)

couMo 22 18CH, JCOL, LUCS LPOYERS LA, LFCN, 0P, TEMP,DPS

caLy GPGZDl(IhSTP;1,NRX;NRV,ND:LnC;Lﬂ:LFCN:LF;HPS:LRUW;LPUHERJ
- UP,TEP,1)

IF(LO ,LE. 0 ,5iR, L0 ,GT,

NR2D = NPX ® NRY

ND2D = 4D ux

MULLD = n02C = irR20

MSIZE = MR20 = Np2p

MBLANK 3 MSIZE « NR2D

HDY = %D20

NTOTAL = K520 o |

NULLY = HULLD + ¢

IF(.n3T, LAMDA) GO YO 2

MBLANK = 2 ® YS]ZE

HMDN = 2 ¥ nn2p

NTOTAL = MIN

NULLV = MDY - 1R2D

NDSIZE = MONsNULLY

HPT 3 = 3D2D « ]

100 .0R¢ LF «GT. 160) GO TO 990

DECL 2985=3n0%
NPT = IPT o ND2D
DECL 2010~3013

LCPS = ¢

0C 4 L = 1,L0,2

caLL ZPGZDZ(XNSTP;CO“ST;LEC‘LPUNER,LRDH;L;ND;XD;VDJWTX,WTY,
= HaNPT)IPS»LOPSITP, TEUP)

CECL 3075-3110

IF(LF (EQ, 0) 6D TQ 1}

IF(LAMDA) GG TC 990

IF(NRX ,EQ, 1) G2 T3 5

STEPX = 1,0 / ((MRX = 1) & WTX(N))
X = XJ(NPT) = STEPX

G 2 6

STEPX = 0,5 4 »TX(N)

X = X3(NPT)

IF(NRY LEQ, 1) 67 7D 7

STEPY = 1,0 /7 (( “RY = 1) # WTY(M))
¥YS = YI(NPT) & STEPY

LT 12 38

DE2D1385
DE2D1390
DE2D1395
DE2D1400
DE2D1405
DE2D14310
DE2D1415
DE2D1420
DE2ND1425
DE2D1439
DE2D1435
DE2D1440
DE2D1445
CE2D1450
DE2D1455
Dg2N1460
DE2D1465
DE2D1470
DE2D 475
CE2D1480
DE2D1485
DE2D1490
DE2D1495
CE2P1500
DE2[;1505
LE2D1510
DE2D1515
Ce201520
CE201525
CE2N01530
CE2D1535
CE21'1540
DE2D1545
DE2N1550
DE2N1555
DE21560
0g2D1565
DE2N1570
Gg201575
DE2N1580
CE201585
CE201590
DE2D1595
DE201600
DE2R16N5
DE2D1610
DE2C1615
Dg2l1620
22201625
CE2D1630
NE2N1635
DE2D1640
CE2D1645
CE20)650

[aNaXel

(s X2 Xg)

STEPY = 1,0 / WTY(N)
YS = YD(NPT)
D0 9 L = 1,LF,2

DECL 31803195

D0 9 I = },NRX

X = X + STePx

Y = Y§

03 9 J = 1,NRY

Y 2 Y = STEPY

I = 1§ ¢+

D(Id) = D{IJy + scho(x,v,INSTn,chsv,LDCLoLUCLl) * WEIGHT
CITINUE

CALL HULL(Q;NaszNDZD;NTDTAL,IPANK,XRDH;JCOL;DN,HDN,NULLV;MADDDN)
IF(IRANK HE, NR2D) GO TU 991

DECL 3245.332¢0
END

DE2D1655
DE2D1660
DE201665
BE201670
DE201675
DE2G1680
DE201685
DE2D1£90
DE25169S
DE2D1720
DE2N170E
DE201710
DE2D1715
DE2D172C
DE2D1725
DE2G173C
DEPD1735
DE2N174C
DE201745
DE2D175C

b8



SOLUTION TECHNIQUES

There are two possible approaches for solving the rectang-
ular matrix equations which result from the discretization of
differential equations by the projective method in Chapter 3.
In one, boundary conditions are added to the system until the
coefficient matrix becomes non-singular. This matrix equation
may then be solved using standard methods to yield an approxi-
mate particular solution of the differential equation. In the
other, the matrix equation is solved by using the matrix gen-
eralized inverse concept to determine the approximate general
solution of the differential equation. Boundary conditions are
added subsequently if a particular solution is desired. Since

the latter method is applicable to a much wider range of prob-

lems than the first, it is the approach followed in this thesis.

The general solutions which result from the application of
matrix generalized inversion to the singular matrix equations
of Chapter 3 are completely ana]ogoﬁs to the general solutions
encountered classically in the analytic theory of differential
equations. In both cases, the general solution of an operator
equation is given by an inhomogeneous solution and a set of
homogeneous solutions which form a basis in the nullspace of
the operator. Furthermore, the procedures used to obtain both
types of general solutions are independent from the addition
of boundary conditions. The numerical method developed in this

thesis is unique in this feature among all of the available
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approximate solution techniques for the solution of differential
equations.

In addition to the ability to produce approximate general
solutions, a further advantage of applying matrix generalized
inversion to the projective solution of differential equations
is the highly efficient matrix solution algorithm that results.
This-efficiency is derived from substituting manipulations on
several small full matrices in multi-regional solutions for
the more costly treatment of one large sparse matrix.

The only published work which uses matrix generalized
inversion with a finite element type of formulation is a paper
by Berkovic [50]. However, since this paper does not deal with
differential equations but rather the algebraic Hooke's Taw
equation, the extremely beneficial results which follow from

its application to differential equations are not evident there.

5.1 GENERALIZED MATRIX INVERSION

Let A be an m X n matrix of rank r and suppose that all

vectors y satisfying the equation

Ay = f (5.1.1)

are desired. The simplest method of determing these vectors is

to decompose A by the Gaussian elimination process, interchanging

rows and columns as needed, until only zero pivots remain [48,



51]. Then A may be factored as

A =1LU = (L] [U; U,] (5.1.2)
[‘-2

where L, and U, are non-singular. With this factorization

(5.1.1) may be written

-1 -1 -1

Y1 = Ul LI fl - U] Uz Y2 (5.].33)

-1
fa L L. Fa (5.1.3b)

Equation (5.1.3a) contains all of the useful information from
(5.1.1)3(5.1.3b) merely indicates that solution is possible
only if no conflicts arise. Consequently, (5.1.3a) together

with the equation y, = y. gives

-1 -1 -1

AEY N A R |
= + (5.1.4)
Yo 0 0 fa 0 I N

Since the columns of the second matrix in (5.1.4) form (n-r)
independent nullvectors of the matrix A, a general solution of

(5.1.1) dis given by [ 52]

y = AT f o+ Nz (5.1.5)

where AT and N are the row and column reinterchanged forms of
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-1 -1
U, L, 0
At =  (5.1.56)
0 0
=1
Uy, U,
N = (5.1.7)
I

and the (n-r) components of z are arbitrary.
+
The matrix A" is called a weak generalized inverse of A

[53] and satisfies the following two properties
+
AA“A = A (5.1.8a)

ataat = At (5.1.8b)

However, the products

+ - 1 0
AR = o (5.1.9)
L, L, O
".1
I U, U
AR = (5.1.9b)
0 0

are not symmetric in general.
The significance of equation (5.1.3b) may be understood by

considering the vector norm |.| of the residual vector

|Ay - f| = |AA"F + ANz - f|




89

= | (AAY - 1) f']

0 0 1
-1
L, Ly -1 fa
0
-1
L L, f1 -f2

Therefore, if (5.1.3b) holds, the solution y will be exact ;

(5.1.10)

if (5.1.3b) is not true, y will satisfy (5.1.1) only approxi-
mately, the amount of error being dependent on the values of
f, and fa.
In most physical problems that are properly formulated,

f ¢ Range(a) so that (5.1.3b) will be satisfied. However, if
this is not true, a more accurate approximate solution to
(5.1.1) is provided by the Moore-Penrose inverse of a matrix
[54] which minimizes the norm (5.1.10) in an L, sense. The
Moore-Penrose inverse is related to the weak generalized inverse

(5.1.6) by [55]

aMP = ak (A% AA*)Y Ax (5.1.11)

where A* is the transpose conjugate of A.

It is also of interest to determine the solution of a sys-
tem of equations part of which has already been solved in the
form (5.1.5). Suppose, for example, that the system of equa-

tions (5.1.1) is augmented by another matrix equation

By = ¢ (5.1.12)

s e

R P o =
5 1 2 R S e S R
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where B is an my X n matrix of rank ry-. Inserting (5.1.5) into
(5.1.12) gives

BAF + BNz = g (5.1.13)

The solution of this equation is

z = (BN)™ (g - BA"f) + Mu (5.1.14)

where the (n - v) x (n - r - rb) matrix M is in the nullspace
of the matrix (BN) and the vector u is arbitrary. It follows
that the solution of (5.1.1) together with (5.1.12) is

+

y = (A" - neen)t BAR)F + nN(BN)Tg + NMu (5.1.15)

It may be observed from (5.1.15) that each time an independ-
ent equation is added to the system, the solution contains one
less unknown. Initially, when the »n dimensional space of the
vector y is created, all of its components are arbitrary.

Then as conditions are imposed in the form (5.1.1), unwanted
vector behavior is filtered out, leaving a solution of the kind
(5.1.5). As more equations are added, fewer degrees of free-
dom remain, until, when »n linearly independent conditions are
imposed, only one particular vector survives.

In actual computation of the general solution of the matrix
equation (5.1.5), the most economical procedure is to augment

the matrix A with the forcing function f to form the new matrix

equation [5¢]



Figure 5.1.1a

SU3SROUTINE NULL(A,a,N,NTDTAL;IRANK,IRuw,quLsAN,MAN,NAN;MAnDAN) DECL8365 1J = IROW(IRANK)
DECL2370Q IRCW{IRANK) = IROW(IR)
LJLL COMPUTES A LINEARLY INDEPEMDENT SET OF NULLVECTORS FOFE THE DECL8375 IRGH(IRYy = 1J
MAT2IX 'A' AND STORES THE RESULT AS AN 'MAN® BY'NAN! DECLB8380 5 IF(JC .EQ. IRANK) GO TO 7
X N THE aRmav 'aNv. IT ALSO RETURNS THE FRODUCT (A+)F IN DECLB385 C
1 (NTSTAL - Ix4NK)' COLUENS OF ‘ANT, WHERE *F!' IS A DECLB3%0 C THE IRANK'TH COLUMN IS INTERCHANGED WITH THE COLUMN CONTAINING
SEClne FLe.LTITN “ATRIX AUGMENTED TO ‘'a'. !'IROW! AND *JCOLY ARE DzCi8335 C THE LAKGEST ELEMENT
#JRK AZRRAYS OF 2I%ENSION 'M! AND 'MV, DECLB4OO €
DECLB4OS J = (IRANK =~ 133M + 1
DECLB410 JJ = J ¢ B, 1
DECLBL15 1J = (JC - L)=M
psCigs20 DO 6 I = Jrdd
DECLA425 =10 +1
DECLB430 STORE = A(])
211 = 1,M DECLBG3S ACI) = A(LY)
TRoR(IY = 1 DECLB440 &11J) = STORE
20 2 ! = 1,NTOTAL DzCLB4eS & CONTINUE
2 GIILiyY = 9 DECLB4SO g = Jiaresdy
S1y = O DECLB455 Jeal(Jc) = JCOLIIRANK)
1y =0 DECLB46&Q JCGLCIRANK) = 1J
DECLB46S 7 1F(IRAIK .GE. M) GO TO 10
THZ LaRGEST ELEMENT IN THE MATRIX IS LOCATED DECLB470 I1 = IRANK + 1
DECLB47S IPIV = M%(IRANK = 1) + IRANK
233 J s 1,N peCL8e4sd 12 = 1PV
0331 s 1HN pECL84BS STORE = Plv
id = 10 + 1 DECLB4S0 PIV = 0,
IF¢ABS(A(IN)) .LE. aBS(PIV)) GO 10 3 CECL8495 C
Fiv o= o L1I0) pectgseo C THE GAUSSIAN ELIMIMATION STEP IS PERFORMED NEXT
iRz 1 DECLB505 C pECLATTS
Co=d DECLB510 DO 9 1 = I10M pECLsTEL
canTiNue DECLB515 12 =12 +1 pDECLB725
T3L = 1,5E-TxABS(PIV? DECLB520 FACTOR = A(12)/STORE DsCLET90
¥QIZE = MmN DECLB525 A(12) = FACTOR DECL2738
iRaNK = 0 DECLA530 IF(IRANK .GE. NTQTAL) GO ToO 9 BzCLE3SS
99 9 NCOL = 1»% DECLB535 JJ = Irlv
IF{AESS.PIV) . LE. TOL) GO TO 10 DECLB540 10 =12
DECLB545 D0 8 J = I1sNTDTAL
iF AN ELEMENT LARGER THAN :1TQL: HAS BEEN FOUND, THE RANK OF THE DECLB550 I = 1d + 1
»ATRIX 1S UPDATED DECL8555 Jd = JJ +
DECL8560 A{id) = A(1J) - FACTOR*A(JJ)
IRANK = JRANK + 1 DECLE565 IF(ABS(A(I4)) .LE. ABS(PIV) .OR, J (GT. N) GO TO 8
1F(IR .EQ. IRANK) 50 TO 5 DECLA57Q PIV = A(IJ)
DECLBSTS IR =1
THZ IRANK'TH RZW IS INTERCHANGED WITH THE ROW CONTAINING THE DECLASRQ J¢ = J
LARGEST ELEVENT DECLR585 8 CONTINUE
DECLB590 9 CONTINUE
1 = IRANK = M DECLB595 10 IF(IRANK .EQ. 0 .OR, IRANK ,GE. NTOTAL) RETURN
Id = IR = % DECLB600 J1 = IRARK + 1
CJ & JJ = 1aNTOTAL DECLBKOS I1 = IRANK=M + J1
1 =1+ M DECLB610 C
1d = 1g + & DECL8615 C NOW THE BACK SuBSTITUTION STEP IS PERFORMED
STORE = A(1) DECLBK20 C
A1) = ALIY) DECLB625 DO 14 I = 17IR&NK
e A(IJ) = STCRE DECL8630 12 = {1 = n




OO0

14

15

16

18

[PIV = 11 - [
00 13 y = JL,NTOTAL

12 = 12 + 1
JJd = [Py
LL = T2

DOUBLE = 0.00

IF(l EQs 1) GU TD 20

LO 12 K = 2,1

Jd = JJ - it

LL = L =1

VOUBLE = DOUBLE ~ DBLE(AGIJ)®A(LL))
Jd = Ju - i}

LL = Lk - g

ACLL) =(SHGLIDGURLE)Y - ACLLY)/ZACJd)
CONTINUE

JJ ( LRANK = 1)#%M

LL MADDAL = MAN

THE NULL VECTORS ARE TRANSFERED TN THE ARRAY 'AN?,

REINTERCHALGING COLUMNS 1t THE PROCESS

Do 17 4 JLsNTOTAL
Jd = JJ Al

LL = LL + "AN

U0 17 I = 1sMAY

[J = JegLeny + Lo
IFCI L6T. TRAMK)Y 60 TO 1
ANCLYY = A(T + 4y)

GO TO 17

IF(T ,EQ. J) GO TO 16
AM(IJ) = 0,

G "0 17

AN(IJ)Y) = 1},

CUNTIMUE

CONTINUE

RETURN

END

+

Figure 5.1.1b

DECLBOOS
DECLB9O)O
DECLAB9LS
NECLAY20
DECLR92S
DECLAN30
DECLB935
DECLB940
DecCl, 8945
DECL 8950
NECLAASS
DECLBE9LO
NDECLRAGS
DECILBO70
DECL. 8975
nECLAa9s0
DECLBOBS
NECLHO90
DECLB9YS
DECL9000
DECLOINOS
DECL9010
DECLO01S
DECLON20
NECLAN25
DECLO03D
DECLOO3S
nECLO040
DECLON4GD
NECLYNS50
DECLAOSH
NECLOO60
DECLO06S
NECLANT0
DECLSDTS
DECL90A0
DECLYOYS
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[ A F] [x] = [0] (5.1.16)
1

In this way, only the quantity Uzl U, needs to be evaluated
for the augmented matrix and, provided that interchanges are
not allowed on the last column, the product AT will appear in
it. If the actual matrix A+ is required, it can be obtained
by augmenting to A the identity matrix instead of f. It must
be stressed however, that the inverse A* should never be com-
puted purely for the purpose of determining the solution of a
matrix equation since this operation alone requires more com-
putation than is needed to find the product Atr.

Figure 5.1.1 contains a Fortran subroutine NULL which
operates on the above principles. The input to the program is
the M x NTOTAL array A of which N columns belong to the coeffic-
ient matrix and the rest are forcing functions. It returns
the nullvectors of the system in the array AN, storing them as

MAN component vectors, where MAN need not equal N.

5.2 GENERAL SOQLUTIONS

The similarity of solutions produced by generalized inver-
sion of the matrix equivalent of a differential equation and
by the analytic theory of differential equations is established

in the following two theorems.

LAt it e
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THEOREM 5.2.1 (DISCRETE FORM OF THE FIRST FUNDAMENTAL THEQOREM
OF cAlculus), Let p* be the generalized inverse of a differ-
entiation matrix as defined by (2.1.11) and suppose that y is

D+z. Then

given by y

Dy

i
N

(5.2.1)

PROOE: In the definition of D, r = m so that

-1
Dy = pp*z = [Li] Cur V2] (U Ly [2] =z

0

THEOREM 5.2.2 (DISCRETE EQRM JF THE SECOND FUNDAMENTAL THEOREM
QF cAlculus), Let z be any vector such that z = Dy where D

is a differentiation matrix as defined by (2.1.11). Then

D'z =y+c (5.2.2)

where ¢ is a vector with arbitrary but equal components.

PROOF: This result is a direct consequence of equation (5.1.5)
and the fact that the nullspace of D contains equi-component
vectors.

The relationship between the discrete and the continuous

forms of these theorems will be illustrated by the following
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simple example. Consider the problem of determining the general

solution of the matrix equivalent of the equation
dy _
e = F (5.2.3)

when y is approximated by a quadratic polynomial. According to

(2.1.16), the rectangular matrix equation is

-3 4 "‘]] Y = fi
1 -4 3 Y2 fz (5’2.4)

Ys

=

This coefficient matrix may be decomposed as

(56.2.5)
1 -3 4-1} = 1 1T 0 -3 4 -
L L
1 8 8
1 -4 3 -3 1 0 "3 3
so that
(5.2.6)
o R T R :
[_1 = Ull = U2 =
1
= 1 3 8
3 0 -3 3
Consequently, the general solution of (5.2.4) is
. \
Y1 "']2‘ '17 fa 1
- 1 3
yo| =L |1 3 fFal + |1 ¢ (5.2.7)
Y3 \ O 0 ) ' 1




where the constant ¢ is arbitrary. By the second fundamental

theorem of calculus, the general solution of (5.2.3) is
y =/ fdz + ¢! (5.2.8)

where ¢! is an arbitrary constant. It can be easily verified
that multiplying (5.2.7) by the matrix (5.2.4) or multiplying
(5.2.8) by 3% returns each of these equations to their ori-
ginal forms. Hence, Theorems 5.2.1 and 5.2.2 imply for dis-
crete representations of differential equations the same pro-
perties that afe obtained for continuous spaces from the two
fundamental theorems of calculus.

Consider next the differential equation

s
|

= y | (5.2.9)

According to (2.3.10), the discretized form of this equation

in a quadratic space is

(5.2.10)
1 f-3 4 Y1 2 2 -1 Y1
. [ 1 -4 3] y2f = % {41 2 2 ya
Y3 Y

Using (5.1.5), the homogeneous solution of (5.2.10) is

Y, L2 - 6L + 12 [c]
ya| = — “1/2 L2+ 2
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Equation (5.2.11) gives all of the possible quadratics which
have their derivatives equal to their L, projections on the
space of linear polynomials in an interval of length L.

From (5.1.5), the coefficients of the approximate general
solution of the arbitrary differential equation (3.1.1) will

be given by

y = AtF + Nz (5.2.12)

Here, for a p'th order differential equation, z is in general
a vector of p arbitrary constants. However, if an interpola-
tion point happens to coincide with a singular point in the
differential operation, the rank of the matrix A may be decreased
by one and the number of arbitrary constants in (5.2.12) dincreased
by one. In this case, it is best to add a boundary condition
equation at the singular point to the differential equation 1in
order to remove the undesired ambiguity.

A feature of the subroutines DIFFEQ and DIFF2D that has
not yet been described is the fact that they call the subroutine
NULL near the end of the programs. The effect of this call
statement is to generate solutions of the form (5.2.12) for each
of the matrix equivalents developed. Thus, DIFFEQ and DIFF2D
not only evaluate matrix equivalents for arbitrary differential

equations, but determine their general solutions as well.

Y b e bR 1 b e AN i i
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5.3  PARTICULAR SOLUTIONS

One of the most important features of the analytic theory
of differential equations is that particular solutions of dif-
ferential equations may be obtained by adding boundary condi-
tions to general solutions. This.procedure will now be derived
for the numerical solution of differential equations using the

approximate general solution technique of the preceding section

and equation (5.1.15).

In general, a boundary condition for a p'th order ordin-

ary differential equation is an equation of the form

[ e W v~

By y(%,) =g (X,) (5.3.1)

k=1

where the {Bk} are linear operators of order less than P
g is a given function and the {xk} are specified points in an

interval I. If y is the projective solution of a differential

equation, then it is given by

n.
y= % y.b. (5.3.2)

n
Iob oyt (5.3.3)
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where

o
]

X Bk bi (xk) (5.3.4)

«Q
)
1]

gix ) (5.3.5)
0

The numbers bk are easily evaluated by using the elementary
; :
differentiation and function matrices of Chapter 2.
If q independent boundary conditions are specified for a

differential equation, then q independent equations of the kind

(5.3.3) are produced. These may be written in matrix form as

By = g (5.3.6)

In conjunction with the general soution (6.2.12), this yields,

equation (5.1.15)

+

y = (A" - N(BN)"BAY)F + N(BN)¥g + NMu (5.3.7)

where u has (p - q) arbitrary components. Thus, as long as'it
does not overspecify the problem, any number of boundary con-
ditions may be added to the general solution (5.2.12) at one
time. With each equation added, the vector of unknown coeffic-
ients becomes shorter until, when enough conditions are imposed,
only a particular solution remains.

It is important to observe that any particular solution

obtained from a general solution of a differential equation by
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this procedure will satisfy both the differential equation and
the boundary conditions, irrespective of what they might be.
Hence, the locations of the points X2 where the boundary con-
ditions (5.3.1) are applied is immaterial. If the point loca-
tions do not coincide with the endpoints of the interval, then
the solution regioan will overlap the interval defined by the
boundary conditions. However, this will not affect the validity
or the accuracy of the particular solution within the confines
of the specific boundary value problem.

This development is in sharp contrast to the solutions
obtained by the finite element method or by ordinary projective
methods in general where the solution region invariably coin-
cides with the region defined by the boundary conditions. In
fact,'a large part of the difficulties and complications
encountered in ordinary finite element analysis [22,23 ] is a
direct result of defining unwieldy elements, such as the tri-
angular, tetrahedral and iso-parametric elements, which are
used to form complicated geometric shapes. With the necessity
of matching boundary and solution regions -removed, simple ele-
ment shapes such as the rectangle and cube have an obvious
advantage. |

The procedure of specifying boundary conditions by
restricting the behavior of the general solution of a differ-
ential equation is implemented for ordinary differential
équations by the subroutine BOUND, shown in Figure 5.3.1.

This subroutine accepts any number of arbitrary boundary con-

ditions of the type (5.3.1) and generates particular solutions



Figure 5.3.1a

SUSROUTINE ASUND(C,MDPTSs NONHOM, NULLDNULLY, Y, HWBC, NRSND, DECL&4735 DC 20 NEL = 1,NELMTS
= 1 i3TR,CONST, XSCsNUMs XD, HELMTS,, WTS LANDALRITEP) 0eCL4740 I =1+ NG
DECL4745 IF(XBC(NBCPT) .LE. XD(I)) 60 7O 5
S0UND 20035 THE 80UNuDARY CONDITICMS TO A GENERAL SGLUTION SYORED DECL4750 20 CONTINUE
IN THZ ARR.Y 'C', =Y NUMBER OF sOUNDARY CONDITIONS MAY BE DECL4755 C
SPECi®i1zs R OF sgLUTIGHS Fnund IS DESIGNATED BY DECL4760 C NOW ADD TH: CODRCINATE-DEPENDEMT FACTORS
tNL3C. TR v CONDITION INSTRUCTIOMS NEED TO BE STOPED DECL&TES €
IN THE ARR Rts> STARTING I3 LOCATICN 1NUit?, DECL&770 CALL OPGEX2(IN5TR,CANST,LGC, LPOWER, LROE, LaN0s XD, W T, HEL, NPT,
DECL&T7TS * 0PS,LSPS, 0PI TEXP)
SY(1, INSTRE1ICONSTI1),XDE1),WT(1)2XRCLLY DECL6730 X0 = Xp(NPT)
11053 ,4C0L1260)5L0C 1002, LPOWER(100),LRON (100D, DECL4785 MX = LROQW(L)
160),2(1023,0P(100),TEMP(100),0PS(1) DECL4T90 B0 21 1 = 128X
Col,inCsL2CWER- LROW, LFCNs B OP> TENP,0PS DECL&4TI5 21 TENP(1: = aLPHA{XBC(MNBCPT),I,MX,X0,WT(NEL))
1uN ToyBLE,DQUB2 DECL4800 C
~PasRITE? peCLsgo5 C THE BOUNDARY CANpITION OPERATOR IS STORED IN THE ARRAY 'B!
pECL4810 C
DECL4B15 IJ = = MX
DECL4R20 00 23 ¢ = 1sND
LORHEGM DECL48ZS BJUBLE a 2.09
La¥tay 63 701 DECL4B30 iJ = 1y + X
DECL4B35 00 22 1 = 1sHX
] i DECL4B40 22 DQUBLE = DRUBLE + DBLE(TEMP(IN®QP(I + IN))
LIELELMTS DeCL4845 23 B(J) = SHGL(DTSUBLE)
DECL4850 IJ = 1&Q - NUL
peCL4855 KJ = N#T = 1
iNE 1F THERE ARE MORE BOUNDARY CONDITIONS psCL4260 IF{LAMJA) R = 2 * K
DECL4BES Ky = Ky - PT
TR{Ng¥) .NE. 4000) GO TB 4 DECL4B70 vg 6y
(EQ. ©) RETURN DECL4BTS Id = 1J |3
13 DECL488D IJi = 1J + KuLLD
WU+ 1 DECL488B5S KJ = XJ + 0PTs
DECL48S0 KJl = kJ + Kb
F ST THE CCORDINATE-INDEPENDENT FACTORS OF THE CURRENT DECL48B95 C
5I5NDARY CrNDITIZN ARE FOUND D=CL4%00 € THE CODITILNS OM THE ARBITRARY COWSTANTS IN THE GENERAL
peCL4an05 C SOLUTIUN &%& STORED IN THE ARRAY ‘y!
cait C=GEh1lIﬂsTF:HUN;ND:ND;LUC:LU;LFCN:LF;DPS:LRDH;LPUHER;UPJO) DECL4910 C
(L3 .LE. ! LiRD. LF oLE, 1) 60 70 992 DECL4915 POGBLE = DRLE(Y(IJ))
.LE. 1) GO TC 11 DECL4920 DOUB2 = DRALE(Y(IJ1)?
TABS(LFCI(LF - 1)) + 1 DECL4925 g 14 K = 17i0
LALE. 1Y 60 YO 12 DECL4930 DOYBLE a DCULBLE + DBLE(B(K) * C(K + KJ)?
SAXDAUM, TABS(LOC(LO -~ 1)) + 3) DECL&O35 IF{«N37, La¥Di) 6O TO 14
1ZQ + 1 pECL4940 DOUB2 = DUURB2 + D3LE(B(K! * C(K + KJ1))
iF{1EQ L6567, 1) GN 73 32 DECL4945 14 CONTINUE
DT 31 I = 1¢™SIZE DECL4950 L Y(IJ) = SilGL(DIUBRLE)
31 ‘{1 = Q. DECL4S55 IF{«NGT, La¥DA: 63 TO 6
32 IF(L3 .EQ. €) ¢O 70 7 DECL4960 Y(id1) = SnGL(DOUB2)
LGPY = & LROW({1)2ND DECL4SSS 6 COnLTINUVE
Co 6L s 1,L352 DECL4STO 7 1IF(LF .EQ. & 3R, LAMDA) GO TO 9
IF(L3C(L) .LT. 0) GO TI 990 DECL4975 C
DECL4980 C THE MATRIX IS aUGMENTED BY THE PRINT VALUES OF THE BOUNDARV
THE ELEMENT “UMBEP OF THE BOUMDARY CONDITION POINT IS 'NEL» DECL49ES C COiDITIDN FORCING SUNCTICN
DECL4950 C
MNECPT = MNBLPT + 1 DECL4995 DO 8 L = 1,LFs2
DECLS0O0 HPY = i

I =0
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LSCLl = IASS(LFONIL))
IF:INSGTR(LACLLIY oLT. =1000) NPT = — INSTR{LOCLL) = 1000
13 = 12Q + NuL=x
viId) = Y(Ig - (FLOAT(LOCLL) /FLOATI(LFCN(L)))
=FC(XD(NPT), INSTR,CONST,LOCLISLFCN(L + 1))
1F7IEQ LLT. NULlp) 60 70 3
- p;l!L

iTiLa¥za) IEQ =
430 = NOMSCM -
Cali dobl{vyNULeN
IFeL LB, UL A%

NDNHOM, Ly IR04, JCOL> B, NONHOM,NWBC50)
#DA)Y GO TO 991

THE FRuQUCT 'C * B' IS EVALUATED
iJ = = ND

LT = NDELTSaNwSC
LtF = 1

IZtLavaA) LF = 2
K0 T = NIUHOM
1310 o o= laierC
Ky = Ky + ulnuAcM

L =0

L2 10 1 = 1MELMTS
id = IJ + ud

G i1C L3CL: = 1sLF
U2 10 1 = 1280

e =L +1

Ik = L e 7PT5
v3.8LE = C.002

5 15 Kk = 1,00 HRN

L09TS
T3JBLE = ODUALE + DBLE(CC(IKI*B(K + KJ1)
IF(LBCLy .EC. 1} GJ TO 16

“{] + 1J + LC) =-SNGL{DGUBLE)

GC 7O 19

{1 + iJ) = SNGL{DOUBLE)

CONTINGE

IF{Lar=4 o3R. WNCT, RITEP) RETURN

iN NON-EI1GENVALUE PROBLEMS, THE PARTICULAR SDLUTION IS PRINTED

#RITE(5,100)

CALL RITE(Y;NDPTS:NNBC:OILAMDA)
69 T3 1

«RA1TE(0,201)

DECL5275
DECL5280
DECL5285
DECL5290
DECL5295
DECL5300
DECL5305
DECL5310
CECL5315
DECL5320
pDECLS5325
DECL5330
DECL5335
DECL5340
DECL5345
DECL5350
DECL5355
peCL5260
DECL5363
pECL5370
DECL5375
DECLS380
DECL5385
DECLS5390

DECL5395

DECL5400
DECL.5405
DICL5410
DECL5415
DECLS420
DECL5425
DECLS5430
DECL5435
DECL5440
DECL54645
DECL5450
DECL5L55
DECL5460
DECL5465
DECL5470
DECL5475
DECL5480
DECL5485
DECL5490

991

100
201
20z

ND =0
RETURN
WRITE(6p202) L,IERQ

"RD = ¢

%*

RETURY
FORMAT (1H1/1HO0, 43X, 'THE SOLUTION W1TH BOUNDARY CONDITIONS':
FORMAT(1-E2R0P IN 3DUNDARY CONDITINN INSTRUCTICNS':

FORHMAT (1-THE CalCcU-ATED RANK',12,' DDE5 NOT EQUAL THE TRUE RANK!,

i2)
END

[aXaRaNalal

FUNCTION ALPHA(X,1,ND,X0s¥T)

THE ALPHA FUNCTIOM RETURNS THE VALUE AT X OF THE I'TH NEWT"N-
COTES INTERPOLATICN PpLYNOMIAL (I = 1,ND) OF (ND = 1)!'TH C=QEF
(ND «LE, 10) IN AN INTERVAL OF LENGTH 1./WT STAZRTING AT %0,

DIMENSICN FAC(10)

CATA FaC / 1..v],-32.16.124.)120.)720-)5040.}‘00320!)3628800
Q@ = (ND - 1) % WT = ARS(X - X0}

ALPHA = 1.0 7 (FACCI) * Fac(id = I &+ 1)
IF(MOD(ND ~ Is2) oNE. 0) ALLPHA = ~ ALPHA
bop 1 M = 1,ND

IF(M (tQ. 1) GO TO 1

ALPHA = ALPHA %= (Q - (M = 1))

COUTINUE

KETURN

END
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in the form (5.3.7) from the general solutions produced by the
subroutine DIFFEQ. In defining the boundary operators Bk’
BOUND uses the same instruction code as DIFFEQ and also relies
oh the subroutines OPGEN1 and OPGEN2 to generate their matrix
equivalents. .

The point‘locations X2 in equation (5.3.1) are specified
in BOUND by adding an extra instruction at the end of the
instructions for each simple operator. This instruction must
have a value of -(200 + n) where »n is the location in the
array XD of the coordinate of the point of application of the
simple operator. This coordinate need not be equal to that of
an interpolation node.

The principles developed in this section for the specifi-
cation of boundary conditions are also applicable to partial
differential equations in N-dimensional space, except that the
points x, in equation (5.3.1) need to be replaced by (N - 1)-
dimensional surfaces. As discussed earlier, the 1ogica1 solu-
tion region for these problems is the N-dimensional cube with
the basis functions of equations (3.5.6) and (3.5.1). In this
case, the number of ]ineér]y independent functions in the

domain space of the equation is

Nd = (nk+1) (5.3.8)

==

k=1

Acting on this basis with a partial differential equation
having only a p;'th order differential operator in the Xg dir-

ection, yields a range space of dimension
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N
Nr = (ni -p; 1) E -(nk + 1) (5.3.9)
' #

Consequently, the number of arbitrary constants in the solution

is

N
2 kzl (nk + 1) (5.3.10)
k#

This is exactly P; times the number of interpolation nodes in

an (N - 1) - dimensional surface orthogonal to the z; direction.

Therefore, if p; boundary conditions are spectfied on this set
of interpolation nodes, the particular solution of the differ-
ential equation will be unique.

In general, the dimensionality of the null space of an

approximate general solution of a partial differential equation
will be

(ny - by + 1) (5.3.11)

=
it
L=

' N
(nk+1)' E

k=1 k=1

where Pz is the order of the differential equation in the 2
direction. Therefore, a unique solution of a differential

equation will result when N, linearly independent equations are

added to its general solution. This is most readily accomplished

by enforcing the boundary conditions at a sufficient number of
distinct points in each of the (N - 1)- dimensional subregions.
The subroutine BOUN2R shown in Figure 5.3.2 performs this

boundary condition procedure for two-dimensional partial dif-

I

e
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[aXaTaNalal

(s X2 X3) [a X2 Xl

[aXaXal

SUBROUTINE BOUM2D (¢, NDPTS, HONHNH; NULLD, NULLVS YsNWBC ) NRXJHRY)NDy

[ INSTR,CDNS7;NUM1XD:VD:NELHTS)HTX:HTV:LAHDAJR!TEPIY!?
BOUN2D ADDS THE BOUMDARY COHDITICNS TO A THWO=DIMENSTIONAL

DE2D2190
DE2D2195
DE2D2200
DE2N2205

GEMERAL SOLUTION OF A PARTIAL DIFFERENTIAL EQUATION STURED IN THE DE2D2210

ARRAY (!, DE2N2215
DE202220

DIMERSION c(l);Y(l):INSTR(!)aCnNST(1);XD(1):YD(l)awTX(l):HTY(l): DE202225

- vYi(l) DE2D2230
DIMENSION TRON(100),JCO0L(200),1L0C(100),LPONER(100),LROK(100) DE2D2235

= LFCH{100),B(4066),0P{4096),TEMP14096),0PS(1) DE2N2240
HDSQ = ND =% 2 DE2N2245
DE2D?250

DECL 4810-4905 DE2N2255

DE202260

CALL UPGZDl(INSTQJNUH:NUIND;NUJLDC;LDJLFCNpLFlDPS)LRUNJ DE2D2265

= LPAWER,OP, TENP,0) DE202270
DE2D2275

DECL 4915=4560 DE202280

DE2D2285

L0PS = 0 DE202290
Vo 17 L = 1201052 DE2D2295
DE2D2300

DECL 4975-5C05 DE2D2305

DE202310

! = 1 & NOSQ DEZN2315
IE(XBCINBCPT) .GE. XD(I) ,AND. XBC(NBCPT) ,LE. XD{I & NDSQ) DE2D2320

= JAND, XRC(NPCPT) .GE, YR(I) ,AND, YBC(NBCPT} .LE. YD(1 « NDSQDE2D2325
" )) 6O 10 & DEZN2330
20 CONTINUE DE2D2335
& CALL 0PG2D2(INSTR,CINST,LGC,LPOKER, LROW,LsNDs XD, YD, WTX,HTY, DE2D2340
= NEL2KJpOPS,LEPS2OP, TEMP) DE2D2345
X0 s X3(KJ) nE2p2350
Y0 2 YD (KJ) DE2N?355
WX ® WTXC(NEL) DE2N2360
wY & 2TY(LEL) DE202365
MxX & LRIW(L) DE202370
MY = LROW(L + 1) DE2D2375

K =0 DE2D2380
DO S I = 1,MX DE2D2385
VALYE = ALPhA(XDINPT),1,MXsX0sHX) DE2N2390
00 5 J = 1My NDE2D2395
Ks X+l DE2D2400

8 YI{K) » VALLE * ALPHA{YD(NPT)»JaMY,YOsWY) DE2N2405
s =K DE2L2410
00 30 ¢ = 1,NDSQ DE2D2415
COuBLE = 0,09 DE2D2420
1J « 1 ¢« DE2N2425
V3 6 1 = 1,K DE2N2430

4 DUUBLE = DTUALE + NBLELYI(I) * OP(1 + 1J)) DE2D2635
39 B({J} = SHGL(DJUBLE) DE2D2440
1J = JEQ = UL DE2N2445
Ky 8 KJ w1 DE2D2450
IF(LAYDA) KJ = 2 = KJ DE2D2455

[aXal sl [aXalXal [aXeaNal [aXaX2)

(2 Xa el

KJ & KJ = }iIDPTS

KJ1 = KJ ¢ NDPTS/2
00 17 4 = 1,NOMHOM
1 8 1J ¢ nuul

1J1 = IJ « NuLLD

Ky = KJ + 40PTS

KJ1 = Kyl « HDPTS
DouBLe s DSLE(Y(IJ))
DOyB2 = DBLE(Y(IJL))
DO 14 Kk = 1,1DSQ

DECL 5195-5220
IF(oNOT, LAMDA) GO TO 17
DECL 5230=329%90
* % FCN2D(XD(NPT),YD(NPT), INSTR;CANST,LOCLLSLFEN(L & 1))
DECL 5300-5335

1J » « NDSQ
L0 = NWBC = NELMTS % NDSQ

DECL 5345=-5375
1J = 1J ¢ NDSQ

00 16 LOCLY = 1sLF
0D 1o 1 s 1,M0SQ

DECL 3400-5535
END

DE2D246(
DE2D246%
DE2D247(
DE2D247¢
DE2N245C
DE20248%
DE20249¢C
DE2D249¢
DE2D250C
DE2C250¢
DE20251¢
DE2D251¢
DE20252¢
DE2D252%
DE2D253¢C
NDE2D253%
DE2D254C
DE2DZ54%
DE2D255¢
DE2D255%
nNEan2sel
CE2N256%
DE2N257C
pDE2D257E
DE20258%
gcsansses
pE20259¢C
DE2N259%
DE2D260C
DE2D2605
DE2D261C
DE2D261S
DE2D262C

901
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ferential equations. In most operations, BOUN2D is similar to
BOUND. However, BOUN2D requires two coordinates for every
boundary condition point location and these are stored in the
arrays XD and YD.

Finally, note that if equation (5.3.6) is solved
directly, it yields

y = B g+ Ny (5.3.12)
This equation defines a function space in which every function
satisfies the boundary conditions. Hence, matrix generalized
inversion can be used to advantage in conventional projective
methods where such function spaces are often desired. In parti-
cular, many finite element formulations result in a matrix
equation of the form [22 ]

Ay = f : (5.3.13)
where A is a symmetric matrix. Consequently, inserting (5.3.12)
into (5.3.13) and pre-multiplying by NE to retain symmetry of
the coefficient matrix, gives

T = nJ T st
Ng A Ngw = Ngf - NB AB'g (5.3.14)

When solved for w, (5.3.14) yields, in conjunction with (5.3.12),
a solution of the boundary value problem which satisfies the
boundary conditions (5.3.6).

The above process is generally performed implicitly in the
finite element method [22] by numbering adjacent points with
the same number and by eliminating rows and columns in the
coefficient matrix in order to specify Dirichlet boundary con-
ditions. Equation (5.3.14) explains why the procedures work

and extends them to problems involving mixed boundary condition.
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5.4 SOLUTION IN MUILTIPLE REGIONS

Since the accuracy of numerical approximations such as
(8.2.11) increases as the size of the interval used decreases,

a basic method for obtaining highly accurate solutions of dif-
ferential equations over a large region is to determine the
general solution of the equation in several adjacent sub-regions
or elements and then to tie these solutions together with con-
tinuity conditions. Provided that the continuity requirements
are sufficiently stringent and of the right number, the composite
solution obtained in this way will provide a good approximation
of the general solution over the entire region.

In forming such composite solutions for a differential
equation, one must be aware that they are, in general, not
optimal in the sense of definition (3.1.3). This is becaﬁse
the projection matrices in a multi-regional solution are designed
to minimize the residual function in each element separately
and not in the overall region. If it is desired, the optimal
approximate solution of a differential equation can be deter-
mined by evaluating the projection matrix (2.3.9) for every:
multi-regional combination of basis functions used. However,
this procedure is not recommended as a practical solution
technique for differential equations because the evaluation of
complicated projection matrices requires considerable computa-
tion while the projection matrices for individual elements are
pre-calculated. Thus, in most cases, given equal amounts of
computer time, a much more accurate solution will result if in

the place of evaluating fancier projection matrices, more ele-
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ments are used.

In many respects, these ideas are similar to those encountered
in ordinary finite element analysis. The main difference is that
while in the finite element method continuity conditions are
usually satisfied jmpiicitly by using compatible elements, with
the piecewise general solution procedure, the requirements are
best imposed explicitly. The superiority of using overall con-
jugate approximation basis functions to local ones has, how-
ever, already been established in finite element analysis by
Brauchli and Oden [29].

The most obvious method of obtaining a consistent set of
continuity requirements for the overall solution of a p'th order
differential equation is to set the solution and its (n - 1)'st
derivatives equal across inter-element boundaries. This pro-
cedure has the effect of transforming the distinct sets of
interpolatory basis functions in each of the elements into a
single set of spline-like functions in the overall region.
Therefore, for an ordinary p'th order differential equation that
has had its solution region divided into m elements, the follow-
ing p(m - 1) boundary conditions are .imposed

—‘% y(ad) = —d—z y(z®"1) 0sisp-1 (5.4.1)

dx dx 0 I<g<m-1 :
where the index s designates the element from which the approxi-
mate value of y should be taken. When assembled for the entire

region, these conditions yield the matrix equation

Cy =0 (5.4.2)

s b v ki o




where C is a p(m -1) x (mn) matrix with components

. () . . os s
( Dnj if § is in element s
oy (1) . . e s )
C..=®¢=-D.% if § is in element s+1 (5.4.3)
id | 2
L 0 otherwise

Together with (5.2.12), this gives, from (5.1.15)

y = AtF - ne(en)t catE + nMu (5.4.4)

where 'M is a pm x p matrix of the nullvectors of C and u is an
arbitrary p component vector. Equation (5.4.4) gives the general
solution of the differential equation, including an approximate
inhomogeneous solution and p approximate homogeneous solutions,
each of which is ¢P~! continuous in the entire region.

The continuity conditions (5.4.1) are closely associated
with the theory of spline approximation [57]. 1In this theory,
interpolating polynomials are defined in which some of the func-
tion specifying parameters are the values of the derivatives of
the function at the endpoints of the interval. For example, in
the case of cubic splines, the four parameters defining the
polynomial are the function and derivative values at the end-
points of the interval. When applied to approximating functions,
derivative continuity of cubic splines are established by setting
adjacent derivative parameters equal, leaving two free para-

meters in each interval.

The functions corresponding to the solution (5.4.4) also
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satisfy the continuity conditions (5.4.1) at the edges of ele-
ments and are, therefore, similar to spline functions. In fact,
when both sets of functions are »n'th order polynomials, they
span identical function spaces, although their representations
are different. In the case of cubic equi-spaced Lagrangean
interpolation polynomials, for example, the four function
specifying parameters are the nodal point values y; = y(Xi),

X, = X, + (L/3)2 , 2=0,1,2,3. When this polynomial is required
to satisfy derivative continuity at both ends, the nodal values

will be given by

y = Gu (5.4.5)

where G is a 4 x 2 matrix and u is an arbitrary two component
vector. Here, as with the cubic splines, there are two
independent parameters in each element, although in this case
the components of u do not equal the values of the function at
the endpoints of the interval.

The advantage of using the second type of polynomial instead
of the first, is that the equi-spaced Lagrangean interpolation
polynomials, as well as the procedures in equations (5.4.2)
to (5.4.4), are both simple to define algebraically and easy
to work with computationally - even in high order cases. By
comparison, the calculation and use of general high order spline
functions requires exceedingly complicated algebraic manipulation
[57].

As an illustration of the procedure, suppose that the dif-

ferential equation (5.2.9) is solved in »n consecutive intervals
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of length L. 1In the 7'th interval, the solution is given by

(5.2.11) with ¢ = C;- According to (5.4.2), in this case CN=0
and this yields

(b -a 9 ) (¢, ) ( ]
b -a C,
o o o | = 0 (5.4.6)
0 ° ° o
L b -a ] ) S
where
a = L% - 6L + 12
(5.4.7)
b = L2 + 6L + 12
Consequently
_ (b)t-1
e; = (8 e (5.4.8)

and the entire solution contains only one arbitrary constant.

The solution (5.2.11) with (5.4.8) can be shown to con-
verge to the exact solution of (5.2.9) by observing that

- o s (5.4.9)
Timit ¢ = 1 + oL + 2L% 4 27L° ... o= ettt
nroo n 2! 3!
L0

Thus the value of the approximate solution at the third point

in the n'th element is



Figure 5.4.1a

[aXaNaXhNaRaKalal

Y YCIL Y

€Y eren

(AN NaNal

SUSROUTINE CONTINCDNsNR,ND,MON, NDN; €5 NDPTS, NONHOM» NULLD, NUTLY,
= NELMTS, WY, LAMDASRITEG)

CONTIN TAKES THE GEMERAL SOLUTIOM OF A DIFFERENTIAL EQUATINN
NP NEZLNTSY SEPARMTE REGION3 AND ESTBLISHES CONTINUITY OF THE
FUSSTION AT ITS TnULLD = 1) DERIVATIVES ACCROSS THE ELEMEnT
2IUNJA~1ES, THE C2.:TINUGUS SOLUTION 1S RETURNED IN THE 'MOpTS!
BY 'NDSTM0 PATRIX 1Cey WHERE WNDPTSY IS THE NUMBER OF ELENENTS
IN THE SOLUTIOM VECTOR AND 'HONHOM' IS THE NUMBER GF SOLUTIONS.

OIVENSION ON(L)sC{1YouT(L)
GIMENSITN I1RCW(300),J9C0L(3001,0P(1)
: IRQ,JCCL, 0P

1SInN DJUSLE,DOUB2
LadasRITES

LCSIcaL

_y-l:
dFLAvIA) IGEN = 2
NPEREL = NuLLD

IF{LaMA) “PEREL = NULLV
SUNONN 8 KPERELXNELMTS

THE CLTINUITY CONDITIONS GENERATED ARE STORED IN THE 1MCt BY
N MITRIX 1Co

SRELULLD*(NELNTS = 1)
+ 2 - IGEN
NCHOM 2 NC - MC

o= MCENC

2 3 K s I,N

Ci~) = 0.
i =0
iF(NEL TS
ND=%2

.EQ. 1) GO TO 28

ti =
THI DIFFERENTIATICH

MATRIX IS STDRED IN 'Op!

nee
oCF

¢J|ha~3\c

Eﬂ EIGZINVALUE PRO3BLEMS, THE CONTINUITY CONDITIONS ARE IMPOSED

12 IGEN

DECL3330
DECL3335
DECL3340
DECL3345
DECL3350
DECL3355
DECL3360
DECL3365
DECL3370
DECL3375
DECL3380
DECL3385
DECL3390
DECL3395
DECL3400
DECL3405
DECL3410
DECL3415
DECL3420
DECL.3425
DECL 3430
DECL3435
DECL3420
DECL3645
DECL34350Q
DECL3455
DECL3460
DECL3465
DECL3470
DECL3475
DECI.3480
DECL3485
DECL3600
DECL3495
DECL3500
DECL3505
DECL3510
DECL3515
psCL3520
DECL3525
DECL3530
DECL.3535
DECL3540
DECL3545
DECL3550
DECL3555
DECL3560
DECL3565
DECL3570
BDECL3575
DECL3S60
DECL3583
DECL3590
DECL3595

OO0

OO0

[« XaNaNal

24
25

20
12

13

EACH ELEMENT IS TAXKEN SEPARATELY
1 SNELMTS

WEIGHT a WT(MN)x*x1P0OYW

L0 6 J = 1,NDN

JpK = JpN + MDN

IF(«NOT, L&MDA .AND, J .EQ. NDM} GO TO 24
J¢ = JC + nC

I =1« JC

GO 1O 25

Iy =1 4 y4cpP

1J1 = 1y + 1

Kl = 1 = HRCC

Kg = 0

THE FUXCTION AND THE APPROPRIATE DERIVATIVES ARE EVALULTED
AT B8DTH ENDS OF EACH ELEMENT

DOUBLE = DBLE(C(II))
UOUB2 = DBLE(C(IJL))

DO 12 K = i,MD

K1l = K1 + :CC

K2 = K2 + n(C

DNW = LN{(K & JDN)I=YEIGHT

IF(N ,£Q. 1) GO TO 20

UOUBLE = DGURLE + DALE(OP(K1)*DNy)

IF(N ,EQ. RELMTS) GO TO 12
bOUB2 = DOUR2 - DBLE(OP(K2)%DNW)
COUTIRIE

IF(N +£Qe 1) GO TO 5

C{1J) = SHGL(DIUBLE)

IF(N +2Qs «ELNTS) 60 T3 6
C(iJdl) = SiGL(COUR2)
CONTINUE

CORNTINUE

1Jd = NCC

NCC = i:C - 1

IF(NCC ,EQ. NR) 6O 70 28

IN EACH PASS, THE ORDER OF THE DIFFERENTIATION MATRIX IS
INCREASED uY ONE

CALL OPRATR(OP,IED,NCCsIJd,ND,1)

IPOY = IPh + 1

G0 T0 o

CALL NULL{CpHC,NUNOWN,NCs TRANK, IROW,) JCOL»OP,NULIOWN, NONHCM, 0)
TFUIRANIK LR MC) GO TR 990

IPUW = NDPTS WNpDS

tn 71 = 1,190

Ct1) = o,

NCC = MDN% DN

IF(LAMUA) GO TN 9

JECL363C
DECLB‘”S
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Timit y = ¢; e% (5.4.10)

n > ©

L >0

where x nL.

The subroutine DIFFEQ in Figure 4.2.4 has been designed
with multi-element solutions in mind. The program calculates
the matrix equivalent of a differential equation in NELMTS
consecutive intervals and evaluates the general solution of
the equation in each of these separately. The continuous gen-
eral solution is produced from these sectional solutions by
the subroutine CONTIN shown in Figure 5.4.1. By calling DIFFEQ
and CONTIN in succession, highly accurate, continuous multi-
element general solutions of ordinary differential equations
can be obtained.

The procedure of imposing continuity requirements on muiti-
element solutions of partial differential equations is very
similar to that used with ordinary differential equations except
that it must be done repeatedly and in different directions.
For two-dimensional problems, the region is divided into match-
ing rectangles in each of which the interpolation polynomials
are of the same degree. The derivative continuity conditions
(5.4.1) are imposed along each line of interpolation nodes in
both the x and the y directions. These must be sufficient to
satisfy the continuity requirements of the partial differ-
ential equation in a direction normal to the edge of a rec-
tangle. Derivatives téngentto an edge are, of course, equal
whenever the function is made equal on both sides of the edge.

The degree to which cross derivatives are continuous is given

in the following theorem.




THEOREM 5.4.1. Let two functions z(x,y) and w(x,y) be given
by

(5.4.11a)
m n (m) (n) asgsh
z(x,y) = I L, 1™ ozl gy
i=o gj=o 9 ¥ J dsyse
(5.4.11b)
wizy) = 5 5 W, 2(m (g 1(n) (,,  bsasc
Y im0 jeo i T J Y dsyse
where Zém) is defined in (3.5.2). Then, whenever
tz = w i=0y .. ,P (5.4.12)
dx® _ da®
x=ph x=b
) . 3p+q 3P+q .
the cross derivatives ———— and —%—— are continuous
azP y9 ay oxP
across the line x=b
p+q p+q
—33——56 = 3 z 9=0,...,7n (5.4.13a)
AN P 8% BY T | g=p
5.4.13b
3p+qg 3P+qw ( )
B R 9705+
%" da x=b 9y " o= x=b

PROQF: The elements of the bottom row of the matrix form of

p q
u =-J15 [ é—f ] are
9 x 9y

m (q)
- (p) T
u 0. ° ki E p%p,%kz Dzj (5.4.14)
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Where D(p) is the p'th order differentiation matrix. Similarly,

, P )
the elements of the top row of the matrix form of » = &— [ —_— ]

are Sxp Byq
m n (Q)
v.=3 3 plp) My, DI (5.4.15)
1 k=0 1=0 1k J
Hence
rj - m"p.uj 1
(5.4.16)
- 3 (p) 7 pe) | pT(®)
k=0 1=0 m=p,k "kl 1k ki 14
Now (5.4.12) implies that
m ( m
p) - (p)
kio Dm-p,k Zp, kﬁo D % .wkz (6.4.17)

so that re = 0 and (5.4.13a) is true. The proof of (5.4.13b)
is similar.

As was the case with DIFFEQ, the two-dimensional version
of the program DIFF2D also computes the general solution of a
differential equation in NELMTS separate elements. These must
be placed in a matching pattern as described earlier. These
elemental general solutions are then made continuous by the
subroutine CONT2D shown in Figure 5.4.2. CONT2D imposes Cp']
continuity on the solution of a partial differential equation
in the x direction and c9~! continuity in the y direction,

where p and q are the highest orders of the «x and y derivatives
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CUNTINUE

IF(FIRST) GC TO 5
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END
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in the equation, respectively.

5.5 FIGENVALUE PROBLEMS

The procedures developed thus far are not capable of solving

eigenvalue problems. These are problems of the form
D, y=k02y (5.5.])

that are accompanied by homogeneous boundary conditions. The
difficulty stems from the fact that the constant x in this
equation is not determined until all of the boundary conditions
are specified. Therefore, it is not possible to treat differ-
ential equation eigenvalue problems independently from the
boundary conditions with a numerical method and only particular
solutions can be obtained directly. Of course, if a complete
set of independent particular solutions of a differential equa-
tion are determined, together they constitute its general solu-
tion.

Despite the impossibility of separating the differential
equation (5.5.1) from its boundary conditions, it is still
extremely desirable to evaluate each contribution in the dis-
cretization process independently. A simple but effective device
for developing such a procedure is to write the matrix equi-

valent of (5.5.1) in each element as



Az = 0 (5.5.2)

where A is the m x2n matrix

A =D, : D, ] (5.5.3)
y

Z = {---] (5.5.4)
-ky

 Equation (5.5.2) can be easily solved for z using (5.1.5)

z = Nu (5.5.5)

where u has (2n -m) arbitrary elements. The (n - m) continuity
and boundary conditions can then be imposed on both the top and
the bottom halves of z. Since these conditions are all homo-
geneous, they will reduce the number of arbitrary constants in

(5.5.5) to m but will not alter its form:

z = Mw (5.5.6)

Consequently, setting the bottom half of z equal to -k times

the top half results in the rectangular matrix eigenvalue pro-

blem
Mbw = -k Mt w (5.5.7)

where Mb and Mt are n x m matrices of rank m. Thompson and

Weil have proved [58] that the rank reducing numbers of this
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equation are identical to the eigenvalues of the standard,

square matrix eigenvalue equation

bw = -xw (5.5.8)

where L is the m» xm matrix

£+ b (5.5.9)

Equation (5.5.8) may be solved by using standard techniques to
determine the eigenvalues -x and the eigenvectors w. Then the
vector y is found by using (5.5.6) and (5.5.4).

A simple problem will illustrate these properties. Consider

the boundary value problem

!

g—h: _Azy
dx2

(5.5.10)
y(0) = 0 ¥ (1) =0

For the sake of simplicity, let y be approximated by a single

quadratic element. Equation (5.5.10) becomes

[4 -8 41 (n)= -2 (5 & & (v (5510
Y2 Y2
Ys Ys

The scheme is to solve the equation

[T -2 17 1 4 1]z = 0 (5.5.12)

e e T e i e
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with

Zy Zy

z, |= 2% | z, (5.5.13)
)\2

Z3 Zg

The solution of (5.5.12) is

(2 1 -1 -4 -1)

z = 1 u (5.5.14)

where u is a vector of five unknowns. The boundary conditions
imply that
z, =[2 -1 -1 -4 -1 Ju = 0 (5.5.15a)
z, =[0 O 1 0 O0Ju =0 (5.5.15b)
(5.5.15¢)
dz = - - - - - = -2 2 -1 -4 -
Fra [1 -4 31 % 1 -1 -4 -1ju=1L 1 Ju
1 =0
(5.5.15d)

d2s . [ 1 -2 3] [ 0 01 ]u [0 0 1 -4 317 u=0
1

Thus




0 | 0

6l x =22 | 3/4 | w
)\2

8 1

[0 0 11(0)w=10[81w=2

Therefore the approximate eigenvalue is M\
approximate eigenvector is
0

y = .75 c
1.

(5.5.16)

(5.5.17)

n
—_— N~ O O O O
=

(5.5.18)

eigenvalue equation

(5.5.19)

=

=/ 3 =1.73 and the

(5.5.20)
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This is to be compared to the exact solution X = % = 1.57 and

y = ¢ '§in < x (y(%) = ,707).
2

It may be added that the above procedure is not stationary
in the eigenvalues so that their accuracy will be of about the
same precision as that of the eigenvectors. If more accurate
eigenvalues of (5.5.1) are desired, they can be obtained by
inserting the eigenvectors calculated .by the method of this sec-

tion into the Rayleigh quotient [43]

k =%HJ|—Z—1-H% (5.5.21)
Y 2y

In the above example, for instance, using (5.5.20) in (5.5.21)
results in A = 1.65 - a 50% decrease in the error of the eigen-
value. It is interesting to note, however, that the new eigen-
value-eigenvector combination results in a much larger residual
function than the original pair.

A1l of the computer programs for the discretization of dif-
ferential equations given in the preceding sections of this
thesis have been designed with the capability of handling differ-
ential equation eigenvalue problems in addition to the standard
ones. Therefore, computer programs of all of the operations
described for the solution of differential equation eigenvalue
problems up to equation (5.5.7) are already available. The
remaining steps are performed for both ordinary and partial

differential equations by EIGEN.shown in Figure 5.5.1. In
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RETURN
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Hp = 0
RETURM

FURMAT( IH=5 56X, "EIGENYECTOR HUNMBERY ) 12)
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12)
END

Figure 5.5.1b
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order to solve the standard matrix eigenvalue problem, these
subroutines call a single precision version of the program
RILMAT, published in the Union Carbide programming handbook

[59]. Since the eigenvalues and eigenvectors of a general,

real matrix may be complex, all of these programs have two arrays
for each of these quantities, one for the real and one for the

imaginary part.

5.6 NONLINEAR EQUATIONS

The techniques developed thus far provide a powerful
method for solving linear differential equations. In this
section, the application of this method to problems involving
nonlinear differential operators will be considered. The
procedure used is the well-known Newton's method for solving
nonlinear operator equations and the discussion will draw
heavily from reference [60]. In this procedure, the solution
of a nonlinear equation is obtained by solving a sequence of
linear equations, the solutions of which converge to the
solution of the original equation.

The first concept which needs to be introduced when dealing
with nonlinear differential equations is the Fréchet derivative
of an operator. This may be given as follows [60]:

Definition 5.6.1. Let A(y) be a nonlinear operator. The

Frachet derivative of 4(y) at the point y,will be a lTinear

operator A'(y,) such that

limit Ll A'(yo) Ay - Alyo + Ay) + Alyo) ||
| 1Ay | |+0 |l 2y ||

=0 (5.6.1)

. o e S i i S et
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'provided that such an operator exists.

As a consequence of this definition, the quantity

r(y,z) = A(y) - A(z) - A'(3) (y - z) (5.6.2)
will have the property that

'l-imit || r(y,z) ll = 0

(5.6.3)
[ly-zll-0 |l y - = || '
Thus, if the two functions y and z.are sufficiently close,

the norm of the expression (5.6.2) approaches zero at least as
quickly as the squaré of the norm of the difference of the

two functions y and =z.

Consider now the problem of solving the nonlinear

differential equation

Aly) =0 (5.6.4)

and suppose that some function zer 1is given. Then, from

(5.6.2),

Aly) = A(z) + A'(y - 2) + »(y,z) = 0 (5.6.5)

In Newton's method, it is assumed that a function z can be
found sufficiently close to the solution y of (5.6.4) so
that, by virtue of (5.6.3), the quantity »(y,z) in (5.6.5)
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can be neglected [60]. If this is done, then (5.6.5) yields

A'(3) y = A'(3) 2 - A(z) (5.6.6)

This equation is Tinear in the unknown yand can be solved

by the methods in the previous section. However, since
(5.6.6) is an approximation, the solution obtained in this

way will not satisfy (5.6.4) exactly. Presumably, though,

it will be closer to the correct solution , than was the
function z in (5.6.6) and can be used as z in (5.6.6) to obtain
an equation having an even better approximate solution. By
repeating the above steps enough times, the soiution of the
Tinear equation (5.6.6) can be made arbitrarily close to the
solution of the nonlinear equation (5.6.4). The conditions on
the function z and on the operator A(y) for this procedure

to converge aré discussed in reference [60].

The effectiveness of Newton's method in treating nonlinear
differential equations is limited by two principal defects.
The first of these occurs whenever the Fréchet derivative of
the operator A(y)does not exist in a neighborhood of the
solution y. In these cases, Newton's method is invalid and
cannot be applied to determine the solution. The other
defect in Newton's method is the difficulty of determining
an initial function z within the radius of convergence of the
solution for some problems. Unless an a priori estimate
of such a function is known, the problem of finding a
useful initial function may require considerable effort and

ingenuity.

e e e e s o s o 0



In evaluating the Fréchet derivative 47(y) in 130
(5.6.6) for arbitrary nonlinear differential equations, it

js profitable to use the following two properties [60]

(A(y) + B(y))' = A'(z) + B'(z) (5.6.7a)

|y=2

(A(B(y)))' = A'(B(z)) B'(z) (5.6.7b)

|y==

These properties permit one to form the Frachet derivative of
a differential operator by using the ordinary rules of

differentiation, treating the unknown y as the independent

variable
, _ dA(y)
Al(a) = =35 =z (5.6.8)
In this way, the Fréchet derivative of an arbitrary differential
operator can be easily determined.

As a simple illustration of the procedure, consider the

initial value problem

_ 4 d?
A(y) = d_xg- + Yy -d_xg- =0
d
y(0) = o) =0 (5.6.9)
dZ
Tt = 1

which governs the flow of a laminar boundary layer on a flat

plate parallel to the stream [49]. The Fréchet derative of
this operator is
3 d2

A'(z) = %ET + %;% t a2 g (56.6.10)
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Consequently, ecuation (5.6.6) becomes

dd d?s d*y _ d*z '
#'ﬁ?ﬁz‘y',‘zdxg—zdmg (5-6']1)

Given an initial value for 2z,say =z = 0, this equation
may be solved by using the subroutines DIFFEQ, CONTIN and
BOUND to obtain an approximate solution of (5.6.9). This
approximate solution may then be used for =z in (5.6.11)
and the process repeated. It will be shown in the next chapter
that after several interations, a highly accurate solution
of (5.6.9) is obtained.

There are two minor program modifications of the
linear subroutine package which increase their efficiency
with nonlinear problems. One of these is to store the
coordinate independent factors obtained from OPGEN1 in the
first jteration. Since these factors contain no fanctions,
they are unchanged by the iteration procedure and may be used
repeatedly. Consequently, the step, CALL OPGEN1, may be
skipped after the first iteration. The second modification is
to place the z function values in a labeléd common block
accessible to subprogram FCN and the auxiliary functions FN1 -
FN5. Then, whatever the value of z in the current iterate,

the values of the functions dependent on z can be easily

generated.
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The computer programs given in preceding chapters
provide a computationally efficient means of solving any
ordinary or two-dimensional partial differential equation.
However, in their present form, these programs are impractical
for everyday use by a wide spectrum of engineers because of
their special input and output characteristics. This chapter
presents the results of a major effort to write a differential
equation solving program which is compatible with ordinary
engineering training and experience. In order to do so, it has
. been necessary to develop a special-purpose computer language
which is capable of deciphering mathematical statements and
generating computer understandable instructions according to
the code given in Chapter 4. By incorporating this special-
purpose language and the programs given previously, the
solution of any linear ordinary or two-dimensional partial
differential equation requires no analysis beyond the ability
to write the differential equation on a standard keypunch or
teletype terminal. 1In addition, with the simple modifications
described in section 5.6, many nonlinear differential
equations can be solved simply by evaluating the Fréchet
derivative of the differential operator analytically and

forming equation (5.6.6) beforehand.
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The use of the automatic differential equation solving
programs will also be illustrated in this chapter by solving
numerous examples from linear and nonlinear ordinary differential
equations and from linear two-dimensional partial differential
equations. Whenever possible, the results from the programs
will be checked with analytical solutions or with previously
computed answers. These comparisons will indicate the
extremely accurate solutions obtained by using high-order
polynomial matrix equivalents for differential operators.

‘The development of convenient computer languages for
differential equations has attracted considerable interest in
recent years. The main impetus behind this movement has been
a desire to free the numerical solution of differential
equations from cumbersome Fortran programming. However, since
all of the languages developed to date have been tied to
inefficient finite difference formulae, none of these languages
has received widespread acceptance.

For initial value problems, a formal computer language
and associated program compiler has been designed by Barton,
Willers and Zaher [61]. With this system, commands such as
INTEGRATE, WITH INITIAL CONDITIONS, END and the mathematical
symbols + - * / 4 * define the operations to be performed by
the computer. As described in [61], the language is capable
of handling arbitrary.systems of ordinary differential
equations for which initial conditions are known.

A language has also been written for partial differential
equations, this one by Cardenas and Karplus [62]. Called
PDEL, the language is a superset of PL/1 and may be mixed
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with it. There are ten functionally different types of
statements in PDEL and the syntactic definition of each has
been designed to simplify coding procedures for differential
equations. At the time reference [62] was written, the PDEL
translator was able to handle five different types of
differential equations.

A second language for partial differential equations
has been written by Roberts and Boris using a symbolic
style of Algol [63]. 1In this language, real procedures such
as CURL, CROSS and DELSQ are defined which produce the
numerical operations corresponding to their analytic or
algebraic counterparts. By providing a library of such
procedures, Symbolic Algol allows three dimensional partial

differential equations to be written in a form very closely

resembling the formalism of mathematical physics.

6.1 SIMPLIFIED INPUT AND QUTPUT PROCEDURES

In this section, computer programs are described which
provide a convenient engineer-to-computer interfacing for the
programs given in Chapters 4 and 5. With these additions, the
operation of the differential equation solving programs in this
thesis is made extremely easy: the dser simply writes the
differential'equation and associated boundary conditions on a
standard keypunch or teletype terminal in easily recognizable
mathematical form and the computer automatically returns its
general and particular solutions in both analytical and

graphical forms.

The input portion of the new programs is based upon a new

i e o o L et
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symbolic computer language for the representation of
differential equations. Called DECL for Differential
Equation Computer Language, this language has been designed
to maintain the free-form writing of differential equations
as far as is possible on a computer. Accordingly, the elementary
units of the language are taken to be the standard ASCII 60
character set, with numbers obeying the same syntax rules as
numbers in Fortran. The characters X, Y and Z are reserved
to represent the dependent and independent variables of
differential equations in the following way

one dimension

<independent variable>::=X

<dependent variable>::=Y

two dimensions

<independent variables>::=X]Y

<dependent variable>::=Z
The metalinguistic notation used here is that of reference [64].
When any of the remaining letters is used by itself, it denotes
a numerical constant

<constant>::= < any individual letter except X,Y orZ>
In DECL, multi-literal names are not allowed.

Functions are represented in DECL by the following

character strings

<gin x>i:= SINéX;
<eog x>::= COS(X
<log x>::= LOGixg
<exp x>::= EXP(X

<auxiliary funetions>::= FN1(X) ~ FN5(X)
<g™¥MbeTs 2 PO W<number> (X)
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The use of the auxiliary functions FN1 to FN5 has already been
explained in Chapter 4. The reason for adopting the above
notation for exponentiation is that DECL, in contrast to such
number manipulation languages as Fortran and Algol, is a
symbol manipulation language. Thus, while the double star in
the Fortran expression X**2 or the up arrow in the Algol
expression X+2 means that the numerical value of X is to be
squared, the DECL expression POW2(X) refers to the functional
operation of multiplying the function X with itself. Accordingly,
the form of exponentiation in DECL is chosen to be the same as
for other functional operations with the function preceding
its argument.

In DECL, the arguments of functions may be composed of
any combination of the independent variable(s), constaﬁts,
numbers, other functions, and the symbols +-*(). 1In evaluating
a function with a compound argument, DECL follows the same
structural conventions as Fortran. Note that the symbol /
may not appear in a functional expression in DECL and, as a
result, division can only be obtained by applying the function

POW-1.

Differential operators are specified in DECL by the

following expressions

d 9 ..o
<ZEOY' 'B—x->.. D/DX
a '.:
<'87>.. D/DY
<d" or 3" n=2,...,9 >::= D<n>/DX<n>
da" Fr
<3 sn=2,...,9 >r1= D<n>/DY<n>
9y

Any valid DECL expression may follow a differential operator

symbol.
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A DECL statement is a string of valid DECL expressions
in a predefined and proper order. DECL statements may be
written anywhere on an 80 column computer card with the first
character appearing in column one. Blanks may be inserted
between any two DECL expressions in a DECL statement as long
as they do not alter the appearance of the expressicns them-
selves.

There are six functionally different statements in DECL:
(1) Control Statement |

<control statement>::=*<number><title>
The number in a control statement may be any integer from
1 to 9 and specifies the order of the approximating polynomial
to be used in the solution. The characters given in the title
will be used to provide a heading for the output. An example
of a control statement is

* 9 TITLE
(2) Differential Equation Statement

<differential equation statement>::=

DE:<any valid DECL differential equation>

A.DECL differential equation is any DECL expression containing
at least one differential operator and one and only one equal
sign. Differential equation statements may be continued on
consecutive computer cards provided that the letters DE:begin
each one of them. A typical differential equat%on statement is

DE: D2/DX2(Y) = K* SIN(X) * Y
(3) Boundary Condition Statement

<boundary condition statement>::=

BC:<any valid DECL boundary candition>

aieab b a2 o



A DECL boundary condition is any DECL expression containing one
‘equal sign in which each of the dependent and independent
variables is followed by a number or pair of numbers in
parenthesis. These numbers provide the coordinate values of
the boundary condition locations. An example of a boundary
condition statement is

BC: D/DX(Y(0.0)) + EXP(1.5) * Y(1.5) =P
(4) Constant Specification Statement

<constant specification statement>::=

CST:<constant>=<number>

Constant specification statements are used to provide
numerical values for known constant parameters in differential
equation or boundary condition statements. A typical constant
specification statement is

CST:P=3.141592
Any constant in a differential equation statement which does
not have its value defined by a constant specification
statement is assumed to be a symbol for an eigenvalue.
Although they may appear repeatedly in a differential equation
statement, only one eigenvalue symbol may be used per
differential equation. Eigenvalue symbols are not allowed in
boundary condition statements.
(5) Geometry Statement

one dimension

<geometry statement>::=

X=<number>,<number>(<integer>ELEMENTS)

. 138




two dimensions
<geometry statement>::=
REC: X=<number>,<number>(<integer>SUBDIVISIONS ),
Y=<number> ,<number>(<integer>SUBDIVISIONS )

In one dimension, the geometry statement specifies the end-
points of a line segment to be used in the solution and provides
the number of equal elements to be taken in that segment. In
two dimensions, it specifies the edges of the rectangular
region to be used and the number of equal elemental sub-
divisions in each direction. If the number of elements or the
number of subdivisions to be used is not specified, one element
or one subdivision is assumed. Unequal one-dimensional
elements or ifregu]ar two-dimensional regions:may be defined
by using more than one geometry statement. Examples of
geometry statements are

X=0.0, 1.0 (2 ELEMENTS)

REC:X=0.0, 1.0 (2 SUBDIVISIONS), Y=0.0,2.0
(6) Output Statements

regular problems

<output statement #1>::=WRITE<parameters>SOLUTIONS

<output statement #2>::=PLOT<parameters>SOLUTIONS
where

<parameter #1>::=GENERAL

<parameter #2>::=AND

<parameter #3>::=PARTICULAR

eigenvalue problems

<output statement #1>::=WRITE<number>EIGENVECTORS

<output statement #2>::=PLOT<number>EIGENVECTORS

139
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Output statements control the manner in which the results
are displayed by the computer. Typical output statements are
WRITE GENERAL AND PARTICULAR SOLUTIONS
PLOT  PARTICULAR SOLUTION
WRITE 10 EIGENVECTORS
PLOT 2 EIGENVECTORS

A DECL program consists of DECL statements in the -
order given above. Each program must contain one control
statement, one differential equation statement (which may
be continued on ahy number of cards), any number of boundary
condition statements, the number of constant specification
statements required by the differential equation and boundary
condition statements, one or more geometry statements and two
output statements. For programming convenience, the two output
statements may be replaced by a single blank card. In this case,
the default option of the program is to write and plot both the
general and particular solutions of ordinary differential
equations, write and plot only the particular solution of partial
differential equations, and to write and plot the first five
eigenvectors of eigenvalue problems. Examples of valid DECL
programs will be given in the following sections.

Computer programs which read boundary value problems
written in DECL and translate them into instructions for the
differential equation solving programs given earlier are presented
in Figures 6.1.1 and 6.1.2. The first of these is the Fortran
subroutine INSTR for use with ordinary differential equations
and the second is INST2D for use with two-dimensional partial
differential equations. These compilers are written in Fortran

instead of a machine language so that they are machine
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G 21 = 1,8

éF{:?:LY(I} «EQe TYPE(I)) 6O TN (351551354,7282584,86),1
SWTINGE

G3J TO 990

FRCARD =& STAR

UETER¥INE THE QRDER OF ELEMENT REQUESTED AND PRINT THE TITLE

HOSM = IFIX(FNUM(ARRAY»2-11) + 1)
IFiND2.t LGE, 10) GI TD 990

iF{il .5T. RAY I1 = 80
~RITE(0s111)

ARITE(&9102) (ARRAV(I)»1 = [1,80)
INITIALJZE THE PARAMETERS- -
INZEX = O

“C8TS = 0

NSCPT = O

IPiRA = 0

DECL
DECL
DECL
DECL
DECL
DECL
DECL
DECL
DECL
DECL
DECL
DECL
DECL
DECL
DECL
DECL
DECL
DECL
DECL
DeCL
DECL
DECL
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DECL
DECL
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DECL
DECL
DECL
DECL
DECL
DECL
DECL
DECL
DECL
DECL
DECL
DECL
DECL
DECL
DECL
DECL
DECL
DECL
DECL
DECL
DECL
DECL
DECL

340
345
350
355
360
365
370
375
380
385
390
395
400
405
410
415
420
425
430
435
440
445
450
455
460
465
470
475
489
485
490
495
500
505
510
515
520
525
530
535
540
545
550
555
5690
565
570
575
580
585
590
595
600
605

(aNalal

[aXaXe)

[aNaXal

aoo

aNalal

13

16

15
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57

58

NPROD = © .2
LASIGN s 0 H
NSKIP = 0 -
ISIGN = 1 -
LAMDA = LFALSE. :
EVALUE = BLAMK T2
RSIVE = FALSE. .

FCNCND = oFALSE.
PARCND = ,FALSE.
ARGUE = TRUE,
WRITE(6,100)

GO 7O 1

"o
(DRI T

A BOUNDARY CONDITION CARD HAS BEEN READ

i

IF(PRCARD .EQ. STAR «DR, PRCARD .EQ, EX) GO TO 990
WRITE(62106)

INGEX = INBEX + )

INSTRCINDEXY = 4000

NUHDE = IRNEX

INDEX =INDEX + 1

INSTR{INDEX) = 3000

IF(«NOT, RSIDE) GG TO 990

RSIDE = ,FALSE,

A DIFFERENTIAL EQUATION CARD HAS BEEN READ

st aan g

A en

[N
R ISR

YCHD = ,FALSE.
IF(IPARA .HE. ¢ .OR. FCNCND .OR, PARCND) 63 TO 990
PRCARD 3 AKRAY(1) .

O R N R B HY R R R D A D R D O G R e A G NS R A 4
PO f e . [ -

INGEX = INDEX + 1
INSTRINDFX) = 1000
IATS = » 1

WRITE(6,102) (ARRAY(I)»I =4,80)

N AT RN R aN

'Iv INDICATES THE LOCATION ON THE DATA CARD
I1=z3
I =1+ 1

IF SOME LOCATIONS WERE SKIPPED OM THE DATA CARD, RETURN TC THE:
IF(NSKIP .EO. 0) GD TD 58

D0 57 M = NSTART,NPROD

IF{l ,NE. ISKIP(HM)) GO TO 57

I = IHERE(#)

IF (ARRAY(I =~ 1)
CONTINUE

MINUS) ISIGN =

«EQ. -1 = ISIGN

BLANKS AMD ASTERISCS ARE IGNORED

IF(ARRAY(I) .EG. 8LANK) GO TO 18
IF(ARRAY(I) .E2s STAR) GO TO 54
INGEX = INpEX + 1
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NBIPT = MBOPT &+ L
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IF{ARRAY(I) J“Ee. EX) GO TO 23
INSTR(NDEX) = 100

ARGUE = +TRUE.
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DECL 895
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+EQ. SLASH) GO TO 60 DECL 930
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1F(ARRAY(I) .NE. EQUAL) GO TO 24
IF(PARCND) GO TO 50

IF(RSIDE) GO TD 990

RSIDE = ,TRUE.

ARRAY{I) = PLUS

140 OR t=!

IF(ARRAY(I) .NE. PLUS .AND. ARRAY(!) (NE. MINUS) GO TO 32
1F(4NOT, ARGUE)Y 6C TO 990

IF(,N37, FCNCNP) GD TO 25

INSTRCINDEX) = 500
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YCND = ,FALSE.
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IF(.NO%, PARCND) GO TO 30
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CONTINUE
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1F(14 .EQ. 13) GO 70 990

1 =14 =1
6Q TO 53
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tcas!
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G TO i

CYALULTE THE CONSTANT SPECIFICATION STATEMENT

{F(PILiRD .EQ. CEE: GO TO 5
IF{PRCZRD .EQ. STAR .OR, PRCARD .E0, EX) GO TO 991

> = LEE

5480
«NE. BLANK) GOQ TD 76

i1 =1+1

VALUE = FNUM(ARRAV,1I1,12}

IF(Il .28, 12) G0 70 991
~RITE(O»108) (ARRAY(I3),I3=21,12)
5277 i3 = 1,108

1F{XD{!3) JEQ. ARRAY(13)) G0 TO 78
CONTIMGE

53 T3 1

LISTS = NCSTS + 1

InSTR(:I3) = - (100 + NCSTS)
CIuST(:CSTS) = VALUE

60 T3 77

EVALUATE THE GEGMETRY STATEMENT

IF(PRCARD .EQ. EXx) 60 70 71
1F:PRCLRD .EQ. STAR) G3 TD 991

DETERMINE IF THE PROBLEM IS AN EIGENVALUE PROBLEM

©C 79 I = 12I%3EX

IF¢INSTR(IY .EZ. €00) GO TD 80
CONTINGE

GZ 10 351

IF(Lavza .akg, Xp(i)
IFLLAMDA) G2 T3 79
LADA = LTRULE.

Evalyu = XD¢1y

63 TG 73

PF(INGE

.NEe EVALU) GO TOD 991

.LE. 2) 63 To 991

DECL1960
DECL1%65
DECL1970
BECL1975
DECL1980
DECL1985
DECL1990
DECL1995
DECL2000
DECL2005
DECL2010
DECL20i5
DECL2020
DECL2025
DECL2030
DECL2035
DECL2040
DECL2045
D£C1L2050
DECL2055
DECL20€0
DECL2065
DECL2070
DECL2075
DECL2080
DECL2085
DECL2090
DECL2095
DECL2190
DECL2105
DECL2110
DECL2:15
DECL2120
DECL2125
DECL2130
DECL2135
DECL2140
DECL2145
DECL2150
DeCL2155
DECL2160
DECL2165
DECL2170
DeCL2175
DECL2180
DECL2185
DECL2190
DECL2165
DECL2200
DECL2205
DECL2210
DECL2215
DECL2220
DECL2225

OO0

[aXaXal

11

12

71
72
73

NUMDE = NUMRE + 1

INDEX = IWDEX + 1

INSTR(INDEX) = 4000

KRITE(65104) (I,INSTR(I)2I = 1,INDEX)
I =1

NRANGE = NDOM

N =0

"DETERMINE THE ORDER OF THE RANGE SPACE

I =1+1
IF(INSTR(I) .GE. 10) GO TO 11
IF(INSTR(I) .LE. -10) GO TO 11

N = N + INSTR(])

IF(INSTR(I) .LT. 1000y GU TO 10
NRANGE = MINO(NRANGEoNDOM + N)
IF(INS'R(I) .LTe 4000) GD T3 9
IF(NRAIGE .GE. 0) 63 70 12

NDOM = NDD# =~ NRANGE

NRLNGE = G

KRITE(6,105) NDDOM,HRANGE

NELMTS = 0

NPT = O

bD 72 1 = 2,80

IF(ARRAY(I) .EN. EQUAL) Gpg Tp 73
CONTINUE -

GO TO 991
I =1+

FIND THE LGCATIONS OF THE ENDPOINTS OF THE ELEMENTS

X1 = FHUM(ARRAY»1,11)
IF(I1 .EQ. 1) 6O Tp 991
IF(NELiTS .NE. O .aND, x1
I =11 +1

X2 = FHYM(ARRAY,I»I1)
IF(I1 .EQ. 1) 60 TD 991

I =11 +1

«NE«. X2) GO 7O 991

READ THE WUMBER CF ELEMENTS IN THE INTERVAL

NEL = IFIX(FMUHM(ARRAY,I,I1) + .1}
IF(NEL ,LE. 0) NEL =1

XLi:GTH s (x2 = X1)/MEL

STEP = XLNGTH 7 (NdgH - 1)

XPT = £}

DETERMINE THE INTERPOLATION POINTS

DD T4 i = 1sMEL

NELMTS = HELMTS + 1
WT{NELATS) = 1,0 / XLNGTH
XPT = aPT - STEP

D0 74 I3 = 1,ND

CIQICIEILICILILIL) CILICTI O
o l!l NN LN IR R (NI TRL KL N

A an g

.« .
MM OV DDV OAONOMOUO WL

TR

A% 05500 03 Ls LY 10 L ) LI LD Lk 0 tah e

LI UIIOICI IO
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A R N R R I I IETt RN I TTON TV
VO VOVIOM IV MO

ERROTY 200 PN 000 400 00 FF) 200 09 I00 400 £10 139 61 £10 493 ¢}
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33

"
3

85

87

68

S0

91

93
00
0l
G2
23

XpT APT + STeP
NPT 9T & 2
XDIN?T) = XPT
FRCARD = EX

GT 70 1

DEFINE THE CUTPUT PROCEDURE
IF{PRCZRD NE. EX) 6O 70 991
FRIAR2 = DSLU

IFtia~3a) 50 73 23

RITEP = ChiRTF{ARRAYSPEA)

RITEG = CHARTFIARRaYsGEE)

GZ TG 1

MEIGHR = IFIX(FNUM(ARRAY26,1) + 001)
IF{l ,22. &) GO TO 991

[ § I
IF{PRCoRD
IF;LavC4) 3T TG 85

SLITP = (H_RTFrA2R5Y»PEA)
“LZ7G = CHIRTF{ARRLY,GEE!
SC 7C 8§

NEIGPL = HINO(IFIX(FNUM(ARRAY»551) & 0.1)sNEIGHR)

¥z, DgLu) GO 10 991

IF{I LEQ. 5) GZ TO 993
GZ TO ¢d
& IF{PRC=RD .NE. Ex) GO TO 991
IF.Levu3a) GO 7C 87
RITEP = ,TFUE.,
XITEG = oTxizs
“LITP = (TRUE.
PL3ITG = .T3LE.
G0 T ¢5
NEIGAR = 5

NEIGPL 3 5

“RITElos101)
AaRITE(5,101)

CaiL RITE(40,NPT,1,5001)
RETURN

ERRORS % ThE EQUATION

ARRAY({1),1,IPARASRSIDE,YCND, FCNCNDsPARCND, ARGUE

wRITE(6,103)
(15 INSTR(IY2 121, INDEX)

»RITE(65104)
GC 101
“RITE(55109)
“RiTElos102)
6o TC

STaP
FGaMAT(lH=,51X'TRE DIFFERENTIAL EQUATION IS'//)
FCRMAT(1H=-,55%X, '"THE POINT COORDINATES'//)
FSRMATI1HO,25X,8¢041)

FORMAT(1=-EAROR I DIFFERENTIAL EQUATION:

&RRAY

12A1,713)

DECL2500
DECL2505
DECL2510
DECL2515
DECL2520
DECL2525
DECL2530
DECL2535
DECL2540
DECL2545
DECL2550
DECL2555
DECL2560
DECL2565
DECL2570
DECL2575
DECL2580
DECL2585
DECL2590
DECL2595
psCL2600
DECL2605
DECL2610
DECL2615
DECL2620
DELL2625
DECL2630
DECL2635
DECL2640
DECL2645
DECL2650
DECL2655
DECL2660
DECL2665
DECL2670
DECL2675
DECL2590
DECL2685
DECL2690
DECL2695
DECL2700
DECL2705
DECL2710
DECL2715
DECL2720
DECL2725
DECL2730
DECL2735
DECL2740
DECL2745
DECL2750
DECL2755

104 FORMAT(1He,54X, 'THE INSTRUCTIOM COBE IS'//{1H ,25X,5(1:05141)) pzCLzTsl
105 FORMAT(1H1,27X,'THE POLYNOMIAL CPDFR OF THE pOnalIN SP4CE IS7) DECL27%S
12,' AMD THE QRDER OF THE RANGE 1S',12) psCie7”e
106 FORMAT(1H=-,51X, 'TRE BOUNDARY CONDITIONS ARE*//) psCL277s
107 FORMAT(1HO,52X, 'CONST SPECIFICATION LIST'//) nzeL2732
108 FORMAT(56X,75A1) pECL2735
1G9 FORMAT(!-ERRDOR:")
110 FORMAT(80AY)
111 FORMAT(1H1)
END
FURCTION CHARTF(A,C) DECL655E
[ DECLESIS
c CHARTF DETERMIMES wHETHER DR NOT CHARACTER 'C' IS CONTAINE~ IN RECLES2S
c THE ARRAY ‘A, : SELiLssTe
c CELL5635
LOGICAL CHARTF DECLESIT
DIHMENSION A{1) PECLESLS
CHARTF = ,TRUE, pecL :
b0 11 s 1,80 pDECLESZS
IF(A(I) +EQe C) RETURN 134 2
1 CONTINUE . BECL&&3S
CHARTF = .FALSE. ’ DZlL 8642
RETURN PEART.ES
END DECLSA3T

vl

i%n
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SUBROUTINE IMST2D(INSTR,COMSTsNUMDE,XBC)YBCIXDs YOI WTXSWTY,
TELCX, TELCY,NCCOND, NELMTS»NRANGX S NRANGY s NDOMs LAMDA,RITEP,

RITEG,PLOTP,PLOTGSNEJGWRINE]GPL)

THIS SUBROUTINE READS LINEAR TwD=-DIMENSIONAL PARTIAL DIFFERENTIAL
tQUATIDNS, BOUNDARY CONDITIONS AMD GEOMETRICAL DATA AND CONVERTS

THEM INTO CCDED INSTRUCTIQHS,

DIMENSION YBC(1)sYD(1yowTY ()0 IELCX (1) TELCY(L)
DIMENSION INSTR{1),CUNST(1),XBC(1),XND{1),HTX())

DIMENSION ARRAY(E0),ISKIP(100),IHERE(100),IPAR(100),NELC(39),

TYPE(10)
DECL 410=~430

(TYPE(4),CEE), (TYPE(5),ARE),
PEA), (TYPE(BI,EX),

(TYPE(9)sWHY),
DECL 445~455

WHYs ZEE
DECL 465465

1HY, IHZ /
DECL 475»50%

bg2tlsl,

(TYPE(6),08LU),
(TYPE(10)sBLANK)

10
IF(ARRAY(Ll) oEQs TYPE(I)) GO TO (3,15,4,7282584,150,150582),1

DECL 520=025

IF(ARRAY(M) (EQ, ZEE ,ORs ARRAY(M)} .EQ, SLASH) GO TD 60

DECL 935-1025
iz

17 IF(ARRAY(I) (NEe ZEE} GD TO 22

DECL 1050-1115
IF(ARRAY(l) .NE, EX) GO TD 89
DECL 1125-1135

i

89 IF(ARRAY(Il) (NEe 4HY) GO TD 23

INSTROINGEX) = 101
ARGUE = ,TRUE,
62 TO 54

DE20D
DE2D
DE2D
DE2D
DE2D
DE2D
DE2D
DE2D
DE2D
DE2D
DE2D
DE2D
DE2D
DE2D
DE2D

(TYPE({7),DE2D

DE2D
DE2D
DE2D
DE20
DE2D
DE2D
DE2D
DE2D
DE2D
DE2D
DE2D

200
205
210

220
225
230
235
240

245 -

250
255
260
265
270
275
280
285
290
295
300
305

315
320
325
330
335
340
345
350
355
360
365
370
375
380
385
390
395
400
405
410
415
420
425
430
435
440
445
450
455
460
465

OO0

o000 (2 ¥ sXs] OO0 (2 Xl gl

OO0

DECL 1140=1570

" *sORy ARRAY(12) «NE, DEE) GO TD 36
IF(FCNCND) GO TO 990
1 =13
IF(ARRAY(13) ,NE, EX) GD TD 90
INSTR{INDEX) & = ]
GO TO 54

'p/0Y1

90 IF(ARRAY(13) +MNE, WHY) GO TO 990
INSTR(INDEX) = }

DECL 1600»1520

* «ORy ARRAY(13) oNE, OEE) GO TO 36
IF(FCNCND) GO TO 990
114+ 1
IF(ARRAY{14) <HE, EX) GO TO 91

DECL 1635~1640

GO TO 54

91 LF(ARRAY(I4} ,NE, WHY) GO TO 990
INSTR{INDEX) = IFIX(FNUM(ARRAY,I1712) ¢ 0,1}
IF(12 (NE, I1 + 1) GO TD 990

DECL 16502150
7 IF(PRCARD ,EQ, ARE) GO TO 7}
DECL 2160«2250

NRANGX s NDOM

NRANGY s NDOM
9 N=soQ

Mz 0

DECL 2265=2290

IF(INSTR(I) «GE, 0) GO TO 92
N = N « INSTR(])
GO T0 11

92 M = M +« INSTR(1)

11 IF(INSTR{I) ,LLT, 1000) GO TO lO
NRANGX = MINO(NRANGXsNDOM + N}
NRANGY = MINO(MRANGYSNEOM w 1)
IF(INSTR(I) LLT. 4000) GU TO 9
IF(NRANGX ,GE. 0) GO TO 93
ROON 3 DU = PRANGX
NRAHGY = HRKAMGY = MRANGX
HRATIGX = O

93 IF(rR&NGY ,GF. 0) 6O TO 12

470
©73
480
485
490
495
500
595
510
515
520
525
530
535
540
545
550
585
560
565
570
575
580
585
590
595
600
605
610
515
620
625
630
635
640
645
659
655
660
665
670
675
680
685
690
695
700
7235
710
715
720
725
730
735
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12

94
95

HDOM = NDOM « NRANGY

NRANGX s NRANGX = NRANGY

NRANGY = O

wWRITE(6,105) NOO4sNRANGXsNRANGY
ND 3 NDOM « )

NDSQ = Np we 2

WRITE(6,101)

DECL 2335=2430
FIND THE NUMBER OF ELEMENTS IN THE X DIRECTION

NELX = IFIX(FNUH(ARRAYsI211) + 0,1y
IF(NELX 4LEs 0) NELX = )

XLYNGTH s (X2 = X1) / NELX

0C 94 1 = 11,80

1F(ARRAY(I) EGs EQUAL) GO TD 95
CCuTINUE

GO T2 991

I a1+l

Yl s FUUM(ARRAY,1,11)

IFtl1 +EQ, 1) 6O TO 991

Il =11 +1

Y2 s FNUM(ARRAY, 1211}

IF(ly LEQ. 1) GO TO 991

1 a1l +1}

FIND THE NUMBER OF ELEMENTS IN THE Y DIRECTION

NELY = JFIX{FNUM({ARRAYs[211) ¢ 0,1)
IF(NELY ¢LE¢ 0) HELY s 1
YLNGTH = (Y2 = YY) / NELY
X2 = X1 XLHGTH

o0 97 J 1oMELX

X2 = X2 XL2GTH

Yl = v2 ¢ YL"GTH

oo 97 1 1oNELY

Y] = V] YLNGTH

MRELMTS = KLELMTS ¢ 1
WIX(NELMTS) = 1,0 /7 X{NGTH
ATY{NELMTS) = 1,40 / YLNGTH
XSTEP = XL:GTA / NDOQM
YSTEP = YL“.GHKY / NOJM

X22 = X2 = XSTEP

T neent

409 THE POINTS Ik £ACH ELEMENT SEPARATELY

DO 36 J1 = 1,ND
X22 s X22 & XSTEF
Y1l = YL ¢ YSTEP
03 96 11 = 1,\3
Yll = Y11l = VSTEF
SWPT = 1PT & )
XJ(NPT) = X22

DE2D
DE2D
DE2D
DE2D
DE2D
DE2D
DE2D
DE2D
pe2b
DE2D
DE2D
DE2D
DE2D
DE2D
DE2D
DE2D
DE2D
DE2D
DE2N
nE2D
DE2D
DE2D
DE2D
DE2D
DE2D
DE2D
DE2D
DE2D
DE2D
DE2D
DE2D
DE2D
DE2D
DE2D
DE2D
DE2D
DE2D
DE2D
DE2D
DE2D
DE2D
DE2D
DE2D
DE2D
DE2D
DE2D
DE2D
DE2D
DE2D
DE2D
DE2D
CE2D

740
745
750
755
760
765
770
775
780
785
790
795
800
805
810
815
820
825
830
835
840
845
850
855
860
865
870
875
880
885
890
895
900
905
910
915
920
925
930
935
940
945
950
955
960
2635
970
975
980
985
990
Q95

DE2D1000
DE2D1005

[aXalael

(s X2 X al

[a¥aXsl

96

97

150

151

152

153

154

YO(NPT) = v}

NPTl = NPT = NDSQ ¢

WRITE(6s112) NELMTS, (xo(J): J = NPT1,NPT,ND)
NPTl = NPT]l = 1

DO 97 I} = 1,ND

NPTl = NPT1 ¢ 1

WRITE(62113) YD(NPT)2 (J» J = NPTL,NPT,ND)}
PRCARD = ARE

GO 1D 1

A CONTINUITY STATEMENT HAS BEEN READ

1F(PRCARD NE, ARE) GO TO 151
PRCARD = EL

1 =0

=0

NCCUNL = O

WRITE(6s114)

IF(PRCARD .NE, EL) GO TO 991

13 2 0

DD 152 I1 = 6,80

13 s 13 ¢} .
NELC(I3) = IFIX(FNUM{ARRAY,I1012) & 0.1}
11 s 12

CONTINUE

NELC(I3 + 1) = O

HRITE(6,116) ARRAY{1),NELC
NCCUND = NCCONp = ND

INODEX = )

IF(ARRAY(1) ,EQy WHY) GO TO 154

PUT THE X COMTINUITY CONDITIONS IN THE ARRAY 'IELCX!

MCCUND 3 NCCOND + ND

Jd=J o+ )

JELCX(J) = NELC{INDEX)

INDEX = INDEX + 1}

IF(NELC(INNEX) 4NE, 0) GO TO 153
J=Jd+ 1

IELCX(J) = O

GO To 1

PUT THE Y CEMTINUITY CONUITIONS IN THE ARRAY 'IELCY!

MCCUND .« NCCONG + ND

1 =1+

IELCY(I) = NELC(INDEX)

INDEX = INDEX + 1

IF(NELC{INDEX) »ME, O) GD TO 154
1 =1+1

JIELCY(L) = O

GJ 7O}

IF({PRCARD NE. ARE) CD TO 155

1 229

DE2016G10
DE2D10L5
DE201020
DE2D1025
DE2D1030
DE201035
DE201040
DE2D1045
DE201050
DE201055
DE2D1060
DE2D1065
DE2D01070
DE201075
DE251030
DE2D10A5
DE211090
DE201995
DE2C1168
DE2CL165
DE2D111C
DE2D1115
DE2D1123
DE201125
DE2D113C
DE2D1135
DE2D1140
DE2N1145
DE20115¢
DE2D1155
DE20116€C
DE2D1165
DE2N117¢
DE20117S
DE20118%
DE2N113%
DE2M119¢
DE2D119¢
DE2D125¢C
DE2D129¢
DE2D121¢
DE2pl21¢
DE2D122(
DE2D122¢
DE2D123¢
DE2D123}
DE2D1 248
CE2N124¢
DE2D125%
DE2D125¢
CE2N125C
DE2D126¢
DE2D127:
DE20127!

o

E-)
~
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148
Jaso DE2D1280
NCCOND = © DE2D1285
G0 TO 156 DE2D1290
155 IF(PRCARD ,NE. EL) GO TO 991 DE2D1295
c DE2D1300
c UPON COMPLETIOM, App ENDING VALUES Tn 'IELCX' AND t1ELCY! DE2p1305
c DE2D1310
156 J s J + ) DE2N1315
IELCX(J) & » ) DE2D1320
[ a1+ DE2D1325
1ELCY(I) » = ) DE2D1330
IF(ARRAY(1) ,E0, BLANK) GO TO 86 DE2N1335
c DE2D1340
¢ pECL 2545~2800 DE2D1345
c DE2D1350
112 FORMAT(1HO, 60X, 'ELEHMENT NUMBER',13 / 1H0»20Xs10611.3) DE2D1355
113 FURMAT(1HO,9Xs611.3,1609111) DE2D1360
114 FORMAT(LHY / 1H0,42%sVTHE FOLLOWING ELEMENTS ARE TAKEN TO BE ADJACDE2D1365
SENT? / LHO,7Xs ' TYPE1212Xs VELMENTSY//) DE2D1370
116 FORMAT(LH »6X» A2, 10NT Y, 3X,3913) NE2D1375
END DE2D1380

3136
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independent and can be taken to any computer installation
which accepts Fortran programs.

In defining the instructions for a differential equation
statement or a boundary condition statement, INSTR and
INST2D operate by evaluating the branching structure and
syntax tree of the statement by noting the number and locations
of the symbols +, -, (, and ). The syntax tree is then reduced

to the canbnical form
S
ZDSy=f (6.1.])
s=1]

by applying the distributive law to compound operators enclosed
in parentheses. Instructions generated by this procedure are
compatible with the subroutines DIFFEQ and DIFF2D.

A separate subprogram FNUM, given in Figure 6.1.3, is
called by the subroutines INSTR and INST2D to determine the
value of a number stored in Hollerith form in the Fortran
Tanguage. FNUM establishes the machine-independent, free-format
feature of numbers in DECL since it accepts numbers in any
Fortran permissible form and in any lbcation.

The diagnostic capabilities of INSTR and INST2D have
been designed to detect most errors in DECL that Tead to
Togical inconsistency. For this purpose, a number.of para-
meters and conditions are checked in the programs after each
symbol in a statement has been translated. If an error is
spotted, the programs write an appropriate message and proceed
to the next DECL program.

Conversational versions of the programs INSTR and

INST2D for use in time-sharing situations have also been



Figure 6.1.3

XS EAEsEn

A XEXal [N a W]

(A XaNal

[aXaNal

(s X aKal

%«

o

W wWwnN

FUNCTION FHUMCARRAY, I, )

THIS FUNCTIGN SUPPROGRAM RETURNS THE NUMERICAL VALUE OF

A
WA3ER STHREDR IN HOLLERITH FORM IN tARRAY! STARTING IN LOCATION

e

WI5ITAL &UHEER:“I*:StEXPGH;DECNAL;ONLYE

CICENSION ARRAY(ED:,ANJNILS)

DATA AWM / 1IH ;1PC,IH1,1H2:1H3;1Hh:lH5;lH6;1H701H8;1H9:
iHep LFEs LH=s 14* /

INITIALIZE THE TvyPss CF NUMRERS POSSIBLE

{ZJBER ¢ FALSE.
SRS .FLLSE,

-zRuiNL THE TYPE OF CHARACTER 1IN LOCATION J

LT 2N s 1,15

{FIARRLY(4) .EGe ANUMINI) 60 TO 8
COLTINUE

IF.EXPUY)Y GC T3 6

iF(.N27, NuMRER) GO TO 990

FHUM = NUM

AD3 A oINUS SIGN

SE{MINGS) ERUM = = FNUY

LF L WNDT, DEOMAL) RETURN
63 73 7
IF(eNJi, Nu¥BER) G2 TO 5

20D THE EXPONENT

wER s LPIWER & NUM

1%0S) LPOWER = LPOWER - 2 % NUM
= FRUr = 10,0 #*= LPOVER

RETURN

v = J =+ 1

IF({J LoT. €0) ¢O TO 3

1F(N ,2Q. 1) G2 7D 9

iF(N ,GT. 11) 6D 7O 10

iF(ONLYE) 6T TO 5

TH: CUKREHT CHIRACTER 1S & MUMBER

1 tBER a o TRUE.
LUY = 10 m UM+ N o= 2
IF(WNOT, DeCMALY GO TO 1

DECL6115
DECL6120
DECLS125
DECL6130
DECL6135
DECLS140
DECL614S
DECL6150
DECL6LSS
DECL6160
DECLO1SS
DECL6170
DECL6175
DECL6189Q
DECL&H1EB5
pDCL6190
DECL61953
DECL6200
DECL6205
DECL6210O
DECL6215
DECL6220
DECL6225
DECL6230
pECL6235
DECL6240
DECL6245
DECL6250
DECL6255
DECL6260
DECL6265
DECL&270
DECL5275
pzCle28C
DECL6285
DECL6290
DECLE295
DECL63C0
DECLA305
pDECL6310
DECL6315
DECL6320
DECL&325
DECL6330
DECL6335
DECLK340
DEC1.6345
DECLE3SO
DECL63SS
DECLE3SO
DECL6365
LECLE3TO
DECL6375
DECL6380

[sXalnl [sXalal

(s Ealal

[aXaNal

s Xalgl

10

11

12

13

990

LPOWER = LPOWER = 1
6o To 1

BLANKS MAY NOT APPEAR IN A NUMBER. EXCEPT BEFORE AN E
IF{NUMBER) (MLYE = ,TRUE.

GC 10 1

o= N - 11

GO YO (11,12,13213),N

THE DECIMAL PDINT IS LOCATED

ODECMAL = JTRUE.

LPDHER = 0

60 7O L

1F(EXPUN .OP. ,NOT, DECMAL ,OR. .NAT. NUMBER) 60 TC S90°

THE CURRENT CH&RACTER IS AN E

EXPON = «TRUE.

FNUM = NUN

IF{MINCS) FNUM = = FNUM
MINUS = oFalLSE,

NUABER = JFALSE.

UNLYE = .FaLSE.

tUt = 0

GG 101

1F(NUMsER) GO 10 3

THE CUWRENT CHARACTER IS A PLUS OR MINUS SIGN
IF(N ,£Q. &) GN TC 1

HINUS = JTRUE.

Gp To &

THE INPUT ARRAY DDES NOT CONTAIN A NUMBER

J = x

RETURN
END

-
wn
o
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written. However, since the programming changes required
for this type of operation are minor, the listings of these
versions of the programs are not presented here. The
modifications are designed to make the input procedures more
convenient in on-line operation. For example, the programs
will prompt the user with the following statements

WHAT IS THE DIFFERENTIAL EQUATION?

STATE A BOUNDARY CONDITION

WHAT IS THE VALUE OF THE CONSTANT P2

IN REGION 1, WHAT ARE THE LIMITS OF THE
X COORDINATE?

HOW MANY ELEMENTS ARE TO BE USED?

In this way, the operation of the program is made virtually
foolproof and requires very little specialized knowledge.
Output programs have also been developed which write
and graph the solutions of a differential equation in terms of
their numerical values at the interpolation nodes. The
program which writes the solutions is called RITE and is given
in Figure 6.1.4. This subroutine has already been called by
some of the programs in Chapter 5. A program to graph the
solutions of ordinary differential equations is presented in
Figure 6.1.5. Called GRAPH, the subroutine can plot up to ten
functions simultaneously. Finally, Figure 6.1.6 contains a
plotting program called PICT for use with two-dimensional partial
differential equations. Typical output from these programs

is shown in the following sections.



aAOOOO

100
10y
102

SUBROUTINE RITECA,M,N,MADDA, IPART)

THIS SUBROUTINE WRITES THE 1Mt BY M+ MATRIX t1A1 FOR QUTPUT BY
THE PRUGRAM, IF 'IPART' IS FALSE, THAN THE LAST COLUMN QOF
IS ASSUMED T BE Anl INHOMOGENEGUS SOLUTION AND 1S WRITTEM FIRST

LOGICAL IPART

DINENSION A(1)

NML = N

IF(IPART «ME. 0) GO TO 2

WRITE(64100)

NMYL = N -

1ADD = MADDA + MwNM1

WRITE(69101) (IsA(I + 1ADD),I = 12M)

[IF(NML +EQ, 0) RETURN

WRITE(62102)

T1ADD = MADDA - M

LD L J = 1,NML

TADD = TADD + M

WRITE(O,LO0L) (1sACT + TADD),I = 10M)

RETURN

FORMAT(LH=,53%X, 'TH: INHOMOGRMEDNS SOLUTION! /)
FORMAT (LHO, 100(5%»5(162F18,6)/1H ))
FORMAT (1H~» 56X, ' THE HOMOGENEQUS SOLUTION'/)
END

Figure 6.1.4

DECL9090
NECL9N9S
NECL9100
DECLO10Q5
NECLO11Q
DECLOLLS
DECL91L20
DECLO125
DECL9130
DECL9135
DECLO140
DECL914S
DECL9150
DECL9155
DECL9160
DECL9165
DECL9170
DECL,9175
DECL9180
DECL9185
DECL9190
NECL9195
DECL9200
DECL9205
DECL9210Q
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Figure 6.1.5

SUBRCUTINE GRAPH(X,YsNsNPER) DECL4225 DO 12 [ = 1,111022 £Ellees
< DECL4230 12 CHAR(I) = pPLUS SECLAES
4 THIS SU3RCYTINE GRAPHS THE 'N' POINTS (XsY) ON A STANDARD LINE DECL4235 61 =0 2zC.433
iC PRINTER, THE NUMBIR IN' MAYy BE ANY MULTIPLE OF NPER, THE NiMBER  DECL4240 J2 = ¢ Dzt
< GF 'X* €OZ2DINATE 20INTS» SO THAT SEVERAL FUNCTIONS CAM BE DECL4245 71=1+1 s
.C GRLPHED AT [uE TIMg, 0zCL4250 C -
4 DECL4255 C 'I' 1S THE NUMBER OF THE FUNCTIGM GRALPHED p
i DINENSIGN £01),Y(1),1v(1),1X(50012CHARC111),ANUMI6),SYHROLT10) DECL425C C
i COnNIN CHAR, IX; 1Y DECLA265 IF(I «GTe 10} 1 =1 :
' JATA BLANKIVERTIHIR,PLUS»SYNE0L /7 1H 21H|s1H=) 1H+» 1H1» 1H2, {H3, DECL4270 Jl = g2 + 1 <
! = iHOy 15,148, 1HT, 1HB, 1H95 1HO / DECL4275 J2 = J2 + NPER o
H IF(MODINSNAER) N2, 0) RETURM DECL4230 JX =0 z
: IZ(X(NPER) JEQ, Xxi1)) RETURN pECL&235 bg 14 J = Jl,92 o
€ DECL4290 X = JK o+ ] z
.C THE PTINTS 2RE SCLLED PRUPERLY AND PUT IN THE INTEGER ARRAVS CECLG296 IFCIY(Y) WNE. LINEY GO 7O 14 !
¢ IR ALY v DECL430O € ol
e DgCLa3sc5 C IF THE Y CONRDINATE OF THE PGINT CARRESPONDS TO THE LIME Tr 3t >
T SCALLEX = 110.1/(x(NPER) = x(1)) DECL2310 € PRINTED, THE FUNCTEON NUMBER IS PLACEC IMN THE 4PPROPRILTE bl
yiX e Y1) DECL4315 C LOCATION 2
YVIN o= Y(1) DECL&4220 C z
- S3 LI = L,N nzlle3zs CHAR(IX({JX)) = Sy¥egl(l) :
B IR(Y(D: oGT. Y&AX) YMAX = y(l) DECL4330 14 CONTINUE 3
- 1 ISEYLL) oLT, YRINY YMIN = y(]) NECL4335 IF(J2 LT. M) g0 T 7
IFIYMAN og3. YUINT RETURN rsCL4340 IF(LING .F, 25) GO 70 8
SCALEY & 5.0,1/7(YMAX = YMIN) DECL4345 IF(MOD(LIME = 1,10) +EQ. 0) GO TC 9
CO 15 ! = 1,NPER CECL4350 €
15 IX({IY = IFIX( (X(I) = X(1) )%SCALEX) + 1 DECL4355 C THE ARRAY 'CHAR' IS WRITTEN USING THE PROPER FORMAT
321 s 1, DECL4350 C
2 IVl = IFIX( (Y(I) = YMIN) #SCALEv) + 1 DECL4365 WRITE(6,101) CHAR
DECL4370 GO 7O 3
R *IXQ1 4ND :1Y0r ARE THE LOCATIONS OF THE COORDINATE AXES DECL4375 8 WRITE(6,102) CHAP
2 DECL&32C GO TO 3
T IXS = CAXOCIFIX( =X(1)%SCALEX + 1e)s1) DECL4385 9 YVALUE a YVALUE ~ SCALEY
e LY3 = JAXQUIFIX( -YMIN®SCALEY + 1.),1) DECL4399 IF(CHAR(IX0) .:E, VERT) GO TO 13
= IF(Ix0 ,G7, 111) Ix0 = 1 DECL4395 CHAR(14Q) = PLUS
x IF¢IYC ,GT, S1) Ivo = 1 DECL4400 13 WRITE(06,103) YVALUE,CHAR
a4 "RITE(D,100) DECL44Q5 GO 1O 4
=8 SCLLEX = (X(NPER) = X(1))/s, DECL4410 1¢ ANUM(1) = xt1)
= SCLLEY = (yvax = yauIN) /5, DECL&4LS 0011 1 = 2,8
| YVLLUZ = YuAX + SCALEY . DECL4420 11 ANUM(I} = aNUK(I = 1) + SCALEX
| LILE » 52 DECL4425 WRITE(52104) ANUM
— 3 LIE = LINE - 1 DECL4G2D 60 TG 3
IF(LINE JE¢e 1Y0) GO TO l6 DECL4A435 100 FORMAT(1H1/1H0,55X, 'GRAPH OF THE SQOLUTION'///) bH
| IF(LINE .EQs IVO - 1) GD TO 10 DECL4440 101 FORMAT(1H ,15X,111a1) bt
i IF(LINE oLE. 0) RETURN DECL4445 102 FORMAT(LH ,10X,1HY,4X,11141) 5s
Y DECL4450 103 FORMAT(IH ,5Xs69.251X,11141) 32
fc THE CH4RACTER ARRAY 'CHAR' IS INITIALIZED DECL4455 104 FORMAT()H 210X%,6902,2013X569.2)56X, 1HX»6X52(69.2513%X)5G9.2) o
H . CECL4460Q END ne
: U2 6 1 3 1,111 DECL446S
; & CHIR(I; = 8lLANK DECL4470
] CHIR{IX0) = VERT DECL4475 —
! 52 TC e DECL4430 s
P15 9251 = 1,111 DECL4485 W
5 CHiIR(I) = KCR " DECL449O
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SUBROUTINE PICTI(X,»V,Z,N,NUMBER)

THIS SU3BRCUTINE PRCOUCES A PERSPECTIVE GRAPH OF THE 'Nt POINTS
Y{X2YsZ)' Gh A STANDARD LINE PRINTER, THE INTEGER TNUMBER!
INDICATES wkICH OF SEVERAL SOLUTINNS STDRED IN THE ARRAY 12!
TQ BE GRAP IED,

DIMENSION X(1),Y(1),2(1)

CIMENSISN XNEWN(5007,INER(500),1X1500)21Y(500),12¢(500)
UIMENSIIN ChAR(111),Sy™BOL(10)

COMMDN CHAR)XNE 2 YiEW) IX21Y)1Z

DATA BLAMK,VERT,=OR,PLUSsSLASHsWHY / 1H »1H|s1Hms1H®sLH/JLHY /
DATA SYMBIL / 1MCs»1H1,1H2,1H321H4p1H551H621HT,1HBs1HS /

Z1 s N * (NUMBER = 1) ¢ }

NZN ® NLZL ¢ N = )

THE POINTS ARE SCALED PRUPERLY AMD PUT IN THE INTEGER ARRAYS
VIXV, PlYY AND V120

CALL SCALE(XsL1sNsXMAX,XMIN,B541s%SCALE)

CALL SCALE(Y,1,N,Y“AX,YMIN, 2540, YSCALE)

CALL SCALE(Z,NZY,NZNsZMAX,21TIN, 25415 2SCALE)

IF(XSCALE ,Fn, O, ,OR, YSCALE .Ef, 0. .ORs ZSCALE .EQ, 0})
= GO Td 994

XSTEP & (X:AY = XMIN) % 4259

N2l = ii2] - )

P 21 = I,N

YDIFF & (Y(1) = YMIY) % YSCALE

IX(I) 8 IFIXU(X(]) ~ XMIN) % XSCALE « YDIFF} 4 1

IZ(1) » JFIX((2(1 & NZ1) = ZMIN) * ZSCALE + YDIFF) ¢ 1

IV(I) = IFIX(YDIFF & 0.,395) ¢ 1

“wRITE(65100)

ISCALE = (ZMAX = IMIN) / 2,5

LVALUE = 2, & ZMAX + ISCALE

LINE = 52

LINE ® LINiE = )

IF(LINE +E2, 1) 6O 7O 16

THE CHARACTER ARRAY 'CHAR' IS INiTIALIZED

DO 4 I = 1,111

CHAR{I) o ALANK

CHAK(1) = VERT

GO TG 6

0051 = 1,111

CHAR(]) = KCP

Bl 12 1 = 1,111,022
CHAR(I) ® FLUS

IF(LINE (EQs 27) CHAR(27) e WHY
IF(LINE «GTe 25) 60 TO 7
CHAR(LINE) = SLASH

IF THE 2 CoDRCINATE JF A PPIMT CORRESPONDS TO THE LINE TD RE
PRINTED) A Y CNOROIMATE CEPENDENT SYMBOL IS PLACED IN THE

DE2D2625
DE2N2630
DE2D2635
DE2N2640
DE2N2645
DE2N2650
DE2D2655
DE2N2660
DE2N266K5
DE2N2470
DE2D2675
DEZD2630
DE2ND268B5
DE2026950
DE2N2695
DE2D?700
DE2N2705
DE2D2710
DE2N2715
DE2N2720
DE2D2725
DE2N2730
DE2N2735
DE2N2740
DE2D2745
DE2N2750
DE2D2755
DE2N2760
DE2M2765
Dg202770
DE2N2775
DE2N2780
DE2N2785
DE2D2790
DE2N2795
DE2N2800
DE21)2805
DE2D2810
pDE2n2815
DE202820
DE2( 2825
DE2N2R30
DE2D2835
DE2D2840
DE2N2845
DE2D2B50
DE2D2855
DE2D28§60
DE2N2865
DE2K2870
DE2N2875
De2n2880
pDE2N2885
DE202890

[sX2X )

[a X s XaXa)

14

13

19
1

102
10t
102
103
104

APPROPRIATE LOCATION

00 14 J = 1N

IF({Z(J) «ME, LINE) GO TO 14
CHAR(IX(J)) = syusoLiIv(J})
CONTINUE

IF(LINE ,EOQ, 25) GO TO 8
IF(MOD(LINE = 1210) «EQ, 0) GO TO 9

THE ARRAY ICHAR'Y IS WRITTEN USING THE PROPER FORMAT

WRITE(6,101) CHAR
GO 70 3

WRITE(6,102) CHAR

G0 7O 3

IZVALUE s 2VALUE = ZSCALE
IF(CHAR(1) «!iE, VERT) 6O TO 13
CHAR(1) = PLUS

WRITE(6,1u3) ZVALUE,CHAR
IF(LINE 4EQs L) 6G TO 10

GO 1O 3

CHAR(L) = XIIN

DO 11 1 = 2,6

CHAR(I) = ChAR(] = 1) + XSTEP

WRITE(6,106) (CHAR(1),I = 1,6)

RETURN

Nzo©O

RETURN

FORMAT (JH1/1H0,5%5X, tGRAPH F THE SOLUTION'///)

FURMAT(LH ,15X,111A1)

FORMAT(LIH ,10X, HZ,4X,111A1)

FORMAT(1H ,5X%s069,2,1%X,1114A%)

:URMAT(}H 21NK,694252(13X569,2)26Xs1HX26X22(69,2013%X)269,2)
ND

SUBROUTINE SCALE(X)N1,N2sXMAXs XMIN,S1ZE,XSCALE)

THIS SUBROUTINE DETEPMINES THE MINIMUM AMD MAXIMUM VALUES AND
A SCALE F&CTNR FPR THE ARRAY 'X17,

DIMENSION X(1)

X4AX & X{N1)

XMIN = X(i)

XSCALE = O,

DO L I = N1,H2

IF(X(1) +GTe XMAX) XMAX = X(1}
TF(X{1) oLT¢ XMIN) XMIN 3 x(I}
IF(XMAX ,EN, X4IN) RETURN
XSCALE = SIZF /7 (XMAX = XHI!)
KETURL

EMD

DE2D2895
DE2D2900
DE2D2905
DE202910
DE202915
pDE2p2920
DE2D2525
DE2D2939
DE202935
DE2D294C
DE2D2945
DE2D295Q
DE2D2955
DE2D2950
DE2N2965
DE2D2970
DE2D2975
DE2D?29A0
DE2N2985
DE2D2960
DE2N2965
DE2N3320
DE203nAS
DE2D3010
DE2N3015
DE2D3029
DE2D3g25
DE203030
DE2013035
DE2D3040
DE2(13045
DE2N30SD
DE2113055
DE2N3050

DE2N3065
DE203C70
DE2DP3075
DE203080
DE2D30ES
DE203090
DE2D30%5
DE2N3100
DE213135
DE2D3110
DE2D315
DE2D3120
DE2N3125
DE2031ID
DE2N3135
DE2N3140
—
3,
S
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6.2 ORDINARY DIFFERENTIAL EQUATIONS

A computer program for the automatic solution of
arbitrary linear ardinary differential equations is now
virtually complete. The only remaining step is to provide a
main program to link the various subprograms together in
the proper order. Such a main program is given in Figure 6.2.1.
The complete program package, including this main program and
twenty-one independent subprograms,requires 190 K bytes
of core storage. A large part of these memory requirements is
for the three arrays D, C and COM in which all of the major
matrix operations are performed.

The program has been extensively tested with both
standard differential equations and eigenvalue boundary value
problems and some of these results will be presented here.

For the first example, consider the differential equation
(5.2.3), the solution of which is the ekponentia] function.

A complete DECL program listing for this problem is as

follows
* 8 DIFFERENTIAL EQUATION WITH EXPONENTIAL SOLUTION
DE: D/DX(Y) =Y (6.2.1)
BC: Y(0.0) = 1.0 (6.2.2)
X = 0.0, 10.0 (4 ELEMENTS) (6.2.3)

WRITE PARTICULAR SOLUTION

GRAPH PARTICULAR SOLUTION
This program specifies that equation (5.2.3) is to be solved
using four equal eighth order elements in the interval
[0.0, 10.0]. |

The above program was run on an IBM 360/75 computer

(as were all examples in this thesis) and required 1.8 seconds



Figure 6.2.1

l"f‘f‘;‘ﬂnﬂﬂﬁﬂ

[a XENS Na)

Y eveeyy

N N a  a

[aXaXa)

[ Xakal

«

DECL 5 ¢ CALCULATE THE EIGEMVALUES AMD EIGENVECTORS nzCL 275
THIS PRQGR&M WAS “RITTEN BY 20LTAN CSENDES OF MCGILL UNIVERSITY DECL 10 ¢ 2ECL z2¢
“ONTREAL , QUEBEC, TO SOLVE ARBITRARY LINEAR ORDINARY DECL 15 CALL EIGEN(NN,ND,NELMTS,NDPTSsNKBC,C, YR, Y], RO0TRSROOTI,NEIGHR) 3ICL 233
DIFFERENTIAL ECUATIONS. THE DIFFERENTIAL EQUATIONS ARE READ IN oeCt. 20 IF(ND .EQ. 0) 6D TO 1 L 230
THZ DECL CCMPUTER LANGUAGE AND THEIR GENERAL SOLUTIONS ARE DECL 25 N = NprT * NEIGPL p ]
RETURNZID Iv TERNS OF SO0TH POINT VALUES AND A GRAPHICAL PLOT, DECL 30 GO TO ¢ z 322
PARTICULAR SCLUTICHS ARE ALSO PRODUCED, IF BOUNDARY CONDITIONS DECL 35 3 IF(.N37, PLCTP) GO TO 1 3 5
ARZ SP-CIFIED. DECL 40 € b
: DECL 45 C GRAPH THE PARTICULAR SOLUTION JECL 315
CIMENSION INST(500:,CONST(500),XD(500),WT(100),DN(8000),C(R000), DECL 50 C TI0L 328
® €C4(82601,YR(4000:,Y1(3900),R00TR(100),RO0TI(100),XBC1300) DECL 55 4 CALL GKRAPH(XD,DN,N,NDPT) 2ECL 323
EQJIVALENCE (YR(1),C(4001)), (ROOTR(1),DN(3501)), DECL 60 G0 TOo 1 220t 33¢C
* {(REOTI(1)12DN(40DLY),  (YI(1),DN(4101)) DECL 65 END 22CL 3335
CDAM3N COnM DECL 70
LCCICAL LA=DASRITEP,RITEG,PLOTP,PLOPG DECL 75
) DECL 80
REXD TiHE DIFFERENTIAL EQUATION, ACUNDARY CONDITIONS AND DECL 85
GZINETRIC (NFORMATION DECL 90
DECL 95
1 CALL INSTROINST,CONST,NUMDE,XBC,XD,WToNELMTS, NRANGE, NDOM, DECL 100
= LMD, RITEP,RITEG,PLOTP,PLOTG,NEIGHRINEIGPL) DECL 105
WR = ARANGE + ) DECL 110
MO S ADIM + ) DECL 115
HULLD = ND =~ K2 DECL 120
DECL 125
STLVE THE DIFFERENTIAL EQUATION IN EACH ELEMENT SEPARATELY DECL 130
DECL 135
CALL CIFFEQIDN,MDN,WT,NELMTS, INST,CONST, XD, NR)ND s DECL 140
= NULLCaNULLV, LAMDA) DECL 145
IF(Np .£Q. 03 60 "0 1 DECL 150
NEPTS = MDLeNELMTS DECL 155
DECL 160
BAKE THE ELEMEMTAL SDLUTICNS CONTINUQUS AND PRINT THE GENERAL DECL 165
SQLUTION DECL 170
DECL 175
CALL CONTINCDN,NRsNDsMONSNULLY,C,NOPTS, NONHOM, RULLD, NULLY, DECL 180
® MILMTS)WT L LAYDASRITEG) DECL 185
iF{NS EQ. ) cO TO 1 DECL 190
IF;LaMDA ,0R, NZT, PLOTG) 6D TO 2 DECL 195
N = KRDPTS=.ULLY DECL 200
DECL 205
GRLPH THE GENERAL SOLyTION DECL 210
DECL 215
CALL GRAPH(XD,CoMsNDPTS) DECL 220
DECL 225
AZD THZ BDUNJARY CONOITIONS DECL 230
DECL 235
2 CALL BOUND(C,NDPTS, NONHOM, NULLD,NULLV, DN, NWBCNRIND, DECL 240
= INST,CCNST, X3, NUMDE, XD, NELMTS,WT, LAMDASRITEP) DECL 245
iFIND .EQ. C) 50 701 OECL 250
LITT 3 ND o= NELMTS DECL 255
Nz NOPRY % AWEC DECL 260 -
If(,N3T, LiMDAY 40 TD 3 CECL 265 o
DECL 270 o
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of C.P.U. time for solution. The value of the solution
at x=10.0 was 22025.7, which is correct to five significant
figures. This value is considered to be round-off error Timited
since the IBM 360/75 has a 24-bit mantissa in single precision.

Equation (6.2.2) has also been solved with the differential
equation solving program using first, second, fourth and
eighth order polynomial approximations and one, two and four
element subdivisions in the interval [0.0, 10.0]. 1In each
case, the difference between the answer and the exact solution
was calculated and the L, norm of this difference function
was evaluated. A similar analysis was performed for the initial
value problem.

DE:  D2/DX2(Y) = -Y . (6.2.4)

BC: Y(0.) = 0.0 (6.2.5)

BC: D/DX(Y(0.)) = 1.0
using second, fourth and eighth order polynomials in the
interval [0.0, 10.0]. Figure 6.2.2 contains a plot of the L,
norm of the computed error functions against the number of
interpolation nodes for these problems. The Tower limiting
value of approximately 10™* is interpreted to be the result
of round-off error accumulation. The convergent behavior of
these error norms can be approximated fairly well with the
following empirical formula

1y - yappox || = —emry— (" (6.2.6)

where n is the polynomial order, p is the order of the

of the differential operator and N is the total number of
points. This behavior indicates that higher order polynomials

result not only in more accurate solutions for a given number

ST USSP REUEREV R SRS
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of points but also in a faster convergence rate.

As a practical example of the utility of the
differential equation solving program in finding general
solutions for engineering problems, consider the equation

DE: D3/DX3(Y)+(A+B*SIN(X))*D2/DX2(Y)

+(C+D*SIN(X)+B*COS(X))*D/DX(Y)+E*Y = 0 (6.2.7)
which governs the behavior of hydraulic copying mechanisms
used in metal cutting [65]. If the homogeneous solutions
of this equation decay, the mechanism is stable, if they grow,
it is unstable.

Solutions of this problem have been obtained by choosing
three Tinearly independent initial conditions, integrating
(6.2.7) numerically for each case, and analyzing the results to
determine their growth or decay [65]. When solved with the
differential equation solving program of this thesis, none of
these complicated procedures is necessary;the equation is simply
read in as it appears in (6.2.7), and no boundary conditions
are specified. The program automatically returns a full set
of homogeneous solutions and, provided the region used
encompasses several periods, it is only necessary to observe

the shape of the solution in order to determine its stability.

To be specific, let the values of the constants
in (6.2.7) be

CST:A = 0.55
CST:B = 0.08
CST:C = 0.825
CST:D = 0.004
CST:E = 0.34

e e e A 81 5 ¥ St b+ P 8

bl i (R g Ty S
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The general solution of the equation in the interval
X=0. to 30. is shown in Figure 6.2.3. It is obviously
stable. If, however, the value of E is
CST:E = 0.76

the unstable behavior given in Figure 6.2.4 results. These
conclusions are confirmed by reference [65]. The graphs in
Figures 6.2.3 and 6.2.4 were taken directly from the program
output and each analysis, using five ninth order elements,
required only 3.0 seconds on an IBM 360/75.

The next examples will indicate the application of
the automatic differential equation solving program to
eigenvalue boundary value problems. Consider, first, the
Mathieu equation

DE: D2/DX2(Y) -2. *Q*COS(2.*X)*Y = A*Y (6.2.8)
where Q is a parameter. The solution interval of interest is
[0,27] and, in order to obtain a complete set of particular
solutions, both the Dirichlet and the Neumann boundary
conditions need to be specified at the endpoints. Table 6.2.1
contains the first three eigenvalues calculated for these
problems by the ppogram in single precision on an IBM 360/75
along with the exact eigenvalues for several values of Q. In
these ca1cu1ations; two ninth-order elements were used and
each computation required 3.3 seconds of execution time
Note that all eigenvalues produced by the program are acturate
to at least four significant figures. The corresponding
eigenvectors displayed similar accuracy. Two of the graphs
of the approximate eigenvectors which were produced

automatically by the subroutine GRAPH for the Mathieu equation
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The DECL computer program graph of the solution of the copying problem.
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Figure 6.2.4
The DECL computer program graph of the solution of the copying problem.
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TABLE 6.2.1

 EIGENVALUES OF THE MATHIEU EQUATION N = NEUMANN, p = DIRICHLET

Bounc!a.ry Number 1 Number 2 Number 3
Conditions
x=0 x=L Calculated  Exact (66 Calculated  Exact (66 Calculated  Exact (66

N N -.4545 -.4551 4.37137 4.37130 16.0332 16.0338
D N -.1093 -.1102 9.0503 9.0477 25.0178 25.0208
N D 1.8577 1.8591 9.0770 9.0784 25.0205 25.0208
D D 3.9181 3.9170 16.0306 16.0330 36.0120 36.0143
N N 7.7163 7.7174 -13.9359  -13.9369 21.1046 21.1046
D N 7.9855 7.8861 -13.9351 -13.9365 26.7693 26,7664
N D -2.3994 -2.3991 15.5006 15.5028 27.6989 27.7038
D D -2.3824 -2.3822 17.3761 17.3814 37.4167 37.4199
N N 1.1577 1.1543 27.5919 27.5946 -31.3087 -31.3134
D N 1.1638 1.1607 28.4692 28.4682 -31.3084 -31.3134
N D -14,487 -14.491 15.3736 15.3958 36.63%96 36.6450
D D -14.488 -14.491 15.4662 15.4940 40.5943 40,5897

€91

L
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are presented in Figures 6.2.5 and 6.2.6.

The next example presented is the analysis of the
longitudinal vibration of a non-pri§matic rod. This example is
used because it is a semi-classical problem familiar to most
engineers and yet presents difficult differential equations
to solve in all but a few special cases. In addition, it is
also a problem of considerable practical importance in
ultrasonic processing and has a number of known solutions which
may be used to assess the accuracy of the results [67].

The four shapes solved were the conical rod, the
exponentially tapered rod, the catenoidal rod and a non-
uniformly tapered rod having no simple analytical description.
For the conical vibrating rod, the differential equation to
be solved is

DE: D2/DX2(Y) + 2.0*POW-1(X-0.4)*D/DX(Y)=K*Y (6.2.9)
and the boundary conditions are

BC: Y(0.0) = 0.

(6.2.10)
BC: D/DX(Y(1.0)) = 0.

In this case, the solution interval [0.0, 1.0] was divided
into two equal ninth order elements.

The problem required 3.8 seconds of execution time to
solve for the eigenvalues and eigenvectors of the system, in-
cluding a graphical plot of the eigenvectors. The eight lowest
eigenvalues are presented in Table 6.2.2 along with their
analytically computed values. Notice that the first seven
eigenvalues are accurate to four significant figures and have
an apparently random error distribution. These errors can be

attributed directly to round-off error accumulation in the
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Figure 6.2.5
The first four eigenvectors of the Mathieu equation. Y(0) = 0, D/DX(¥(L))=0.
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Figure 6.2.6
The first four eigenvectors of the Mathieu equation. D/DX(Y(0)) = 0, Y(L) = 0.
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Longitudinal Vibration Eigenvalues of Non-uniform Rods

TABLE 6.2.2

Cone Shaped Exponential Catenoidal
Eigenvalue Calec. Exact. Calec. Exact Cale. Exact
Number
1 0.80996 0.80976 77317 .77310 6.1751 6.1730
2 20.7603 20.7654 21.2535 21.2583 25,9185 25,9122
3 60.2590 60.2520 60.750 60.745 65.387 65.390
4 119,473 119.472 119.967 119.964 124.611 124.608
5 198.39 198.43 198.921 198.922 203.557 203.565
6 297.04 297.13 297.76 297.62 302.11 302.26
7 415.62 415.56 415.99 416.05 420.67 420.70
8 554.7 553.7 555.0 554.2 560.7 558.9

L9l
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computation. The eighth eigenvalue is, however, slightly

DU SIS

worse, as were the successively higher ones, and in these i
the discretization error is dominant.

The eigenvectors exhibited a similar behavior. The
accuracy of the first to seventh eigenvectors was Timited
by round-off error to four significant figures while eigenvectors
higher than the seventh were less accurate. It would appear
that above the seventh eigenvector two ninth-order polynomials
cannot approximate the trug solution with this accuracy.
Consequently, if for some reason more accuracy is desired i
with these high-order eigenvalues and eigenvectors, the problem
should be run with the solution region divided into more than
two sections.

The exponentially tapered rod and the catenoidal rod
were solved using similar data sets, except that their
differential equation statements were [68]

DE: D2/DX2(Y) -2.5055 *D/DX(Y) = K*Y (6.2.11)
for the exponentially tapered rod and

DE: D2/DX2(Y) -2.%B*(EXP(B* (1-X))-EXP(-B*(1-X)))

* pOW-1(EXP(B*(1-X)) + EXP(-B*(1-X)))*D/DX(Y)

= K*Y (6.2.12)

CST: B 1.925

for the catenoidal rod.

The eight lowest eigenvalues of these problems are also given in
Table 6.2.2, along with the exact values. The agreement is

similar to the conical rod.
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The non-uniformly tapered rod shown in Figure 6.2.7
was also solved. In this case the differential equation was
specified by

DE: D2/ DX2(Y)+FN1 (X) *D/DX (Y) = -K*Y (6.2.13)
The function FN1 (X) was supplied by providing the numerical
values of the curve in Figure 6.2.7 at the nodal points of
two ninth-order interpolation polynomials.

Part of the output from the computer program is shown
in Figures 6.2.8 and 6.2.9. The eigenvalues and eigenvectors
are given by two sets of numbers, the first of which gives the
real part of the solution and the second the imaginary part.

In this case, the problem is self-adjoint and the imaginary

3R

Figure 6.2.7

Profile of the non-uniformly tapered rod analyzed in
Figures 6.2.8 and 6.2.9.
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Figure 6.2.8
Part of the computer program output for the vibrating rod of Figure 6.2.7.

LAl sy 1e0KE SOTTLE! SHAPED VIBRATING RQD L

THE DIFFERENTIAL EQUATION IS

D2/DX2(Y) ¢ FN1(X) * D/DX(Y} = wKsY

THE BOUNDARY CONDITIONS ARE

Y(1) = 0
D/0X(Y(3)) = O
THE GENEPAL SOLUTION
THE EIRENVALUES

0,332795E 01 2 0,266087€ 02 3 0,612339€ 02 4 0,122639E 03 5 0,201319€E 03

0.300963E 03 7 0,415225¢ 03 8 0.552151€ 03 9 0,738636E 03 10 0,934256E 03
«0 2 0.0 3 0.0 & 0.0 L) 0.0

0.0 ? 0.0 8 0,0 9 0.0 10 0,0

EIGENVECTOR NUMBER 1

04122605E=06 2 0.111557E 00 3 04224610E 00 4 0433478RE 00 5 0.453565E 00
0.571843E 00 7 0.721721€ 00 8 0.865722E 00 9 0.100463E 01 1 0,113229E 01
0.113229E 01 12 0,124178E 01 13 0.133161E 01 14 0.140701E o1 15 0.147181E 01
6.152740E 01 17 0.157367¢ 01 18 0.160931E 01 19 0.163220E 01 20 0,164022E 01
0.0 2 0,0 3 0.0 4 0.0 5 0.0

0,0 7 0.0 8 0.0 9 0.0 10 0,0

0.0 12 0,0 13 0.0 14 0,0 15 0.0

0.0 17 0.0 18 0.0 19 0.0 20 0,0

EIGENVECTOR NUMBER 2

0.656569E06 2 =0,381497E 00 3 ~0.741593E 00 4 ~0.104507E 01 L] ~0,128131E 01
~0,143F54E 01 7 ~0,149311E 01 8 ~05142665E 01 ] ~0,124162E 01 10 ~0,956854E 00
=C,9<6RS6E 00 12 -0,612743E 00 13 ~0,243629E 00 14 0.143087E 00 15 0.539966E 0O
€.931725E 00 17 0.129451E 01 18 04159634 01 19 0.180062E 01 20 0,187432€ 0}
0.0 2 0.0 3 0.0 4 040 5 0.0

0.0, 7 0.0 8 0,0 9 0,0 10 0.0

C.0 12 0.0 13 0.0 14 0.0 15 0.0

C.0 17 0.9 18 040 19 0,0 29 0.0

0Lt
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parts of the eigenvalues and eigenvectors are zero. (Non-
self-adjoint problems may yield complex eigensystem solutions).
Figure 6.2.9 contains the graph of the eigenvectors which

Was automatically produced by the program.

The differential equation which appears in the analysis
of the transverse vibration of a beam is generally regarded
to be a more difficult equation to solve than the Tongitudinal
equation because of the higher order derivatives involved.
Coded in DECL, the equation which governs the transverse
vibrations of a non-prismatic beam is [68]

DE: D2/ DX2(FN1 (X)*(D2/ DX2(Y))) = K *FN2 (X)*y (6.2.14)
where FN1 (X) is the product of Young$ modulus and the moment
of inertia of the beam and FN2(X) is the product of the
lTongitudinal density of the beam and its cross-sectional

area. The boundary conditions of interest are those of simply

supported beams

BC: Y(0) = 0.
BC: Y(1) = 0.
BC: D2/DX2(Y(0.)) = 0.
BC: D2/DX2(Y(1.)) = o.

and beams with clamped ends
~ BC: Y(0.) = 0.
BC: Y(1.) = 0.

BC: D/DX(Y(0.))

BC: D/DX(Y(1.))

0.

0.
In order to demonstrate the accuracy of the program with

this problem;gthe first case solved was that of a uniform
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Graphical output from the DECL computer program showing the first four modes
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T of vibration of the rod in Figure 6.2.7.
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|
—

V

2h |

Figure 6.2.10

Profile of the haunched beam corresponding to Table 6.2.3.
h =L/10.0.

beam. Again using two ninth-order elements, the problems
required 3.5 seconds of execution time on the IBM 360/75 and
the first four eigenvalues are presented in Table 6.2.3.
This time it was found that only the first six eigenvalues
were accurate to four significant figures.

The program was also used to analyze the vibration'of
the haunched beam [69] shown in Figure 6.2.10. The resulting
eigenvalues with both sets of boundary conditions are given
in Table 6.2.3.

Longitudinally accelerated transversely vibrating
uniform beams with clamped ends were also analyzed with the
program. In this case, the differential equation card
read by the program was

DE: D4/DX4(Y)+A*D/DX((B-X)*D/DX(Y)) = K*Y (6.2.15)
The eigenvalues generated by the program are presented in

Table 6.2.4 along with variationally derived approximate




Natural Frequencies of Vibrating Beams

TABLE 6.2.3

Prismatic Beam

Haunched Beam

Mode . Simply Clamped
Number Simply Supported Clamped Ends Supported Ends
Calculated Exact (nm) Calculated Exact
i 3.1434 3.1415 4.7295 4,7300 .50089 .75222
2 © 6.2838 6.2832 7.8539 7.8532 .91343 1.17049
3 9.4241 9.4247 10.9949 10.9956 1.38097 1.63003
4 12.5673 12.5664 14,1387 14.1372 1.82442 2.07074
5 15.719 15.708 17.295 17.279 2.29374 2.51808
6 19.01 18.85 20.73 20.42 2.7978 3.0434

Al

e i



Eigenvalues of Accelerated Clamped Beams

TABLE 6.2.4

Constant

Eigenvalue Program Rayleigh-Ritz Solution by Kato's
Values Number Results Solution [6] Method [67
A =250 1 261,14 264,34 241.50
B =0.25 2 2934.3 2932.2 2881.4
3 12,757.8  12,756.1 12,669.1
4 36,734.1  36,720.5 36,635.3
A =250 1 102.64 104,34 51.29
B =0.75 2 2354, 61 2349.54 2237.66
3 11,534.2 11.519.0 11.337.2
4 34,586.8 34,574.8 34,344.0
A = 100.0 1 464.24 464.42 349.23
B = -0.50 2 3739.95 3738.80 3492.14
3 14,553.6 14,536.3 14,210.1
4 39,854.8 39,855.6 39,429.1

175
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Tower and upper bounds [70] for some value of the

constants A and B.

6.3 NONLINEAR ORDINARY DIFFERENTIAL EQUATIONS

It was shown in section 5.6 that the solution of many
nonlinear differential equations can be accomplished via
Newton's method by solving a sequence of linear differential
equations. Since a computer program has been developed in
this thesis which is able to solve any linear ordinary
differential equation, the extension of this program to solving
nonlinear ordinary differential equations is straightforward.
By converting the program to iterative usage, it is possible
to determine the Newton sequence of solutions which converge,
if they do, to a solution of the original nonlinear equation.

In order to make the linear program suitable for solving
a sequence of linear differential equations, the existing
programs need to be modified slightly, as has already been
described in section 5.6. Figure 6.3.1 contains a main
program which incorporates these modifications. This program
has been designed to call the subroutines DIFFEQ, CONTIN and
BOUND repeatedly, until the successive particular solutions
generated by BOUNb have converged satisfactorily.

In defining the instructions which Jetermine the
differential equation to be solved, the new program calls the
subroutine INSTR, which was used in the original non-iterative

program. The only additional data that need to be specified
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Figure 6.3.1a

[aXsXa) [aX2Xal [aXa¥sXaKaXaXaXaKaXaRals)

[aXals)

[a X2 Na)

THIS PROGRAM WAS WRITTEN BY ZCLTAN CSENDES OF MEGILL UNIVERSITY,

MOMTREAL QUEBEC, TO SOLVE ARBITRARY NOMLINEAR ORDINARY

DIFFERENT]AL EQUATIONS BY MEWTON ITERATION, THE QUASI=LINEAR
FCRM OF THE DIFFERENTIAL EQUATIOM MUST BE READ IN THE DECL

COMPUTER LANGUAGE, FOLLOWED BY A DATA CARD GIVING THE NUMBER
OF ITERATIONS, THE NUMBER OF THE MNDE THE SOLUTION 1S TO CONVERGE DENL
TO { ONLY IN EIGENVALUE PRPBLEMSi» AND THE INITIAL VALUE OF THE

SOLUTION,
DECL 50-75
DIMENSION ENORM({100)

COMMON /ANS/ AAsNEADD(10), E(3000),EDERI¥(3000}

LOGICAL LAST
DECL 80-~120

REAU(5,100) LAS,IGENUM»sAA
WRITE(6,101) AA

ITER =2 0

LAST s (FALSE.

NUMDES = NUMDE

NDPTS = MD®KRELMTS
NEADDL1) = 4*NDPTS

N = ND + 1
00 5 1 a 1,NULLD
N=Naol

NEADD(I + 1) = KEADD(I) + H % NELMTS
J = NEADD(NULLD + 1) ¢ NR » NELMTS

INITIALIZE THE SCLUTION

DO 61 = 1,¢

E(1) = AA

ITER = ITER & 1

#3 = OD(ITER = 1,5)
NEADD(1) = MO & NOPTS
NUMUE = MNUMDES

DECL 125=290
IGENUM, LAST)
1F (N0 LEQ, 0) GU TG 1
ENORM(ITER) = 0O,
J = NEADD(1) = NCPTS
IF(J +LT, 0) J 3 & % NDPTS
EVALUATE THE DIFFERENCE NORM

D37 1 = 1,5DPTS

ENORMOITER) = EfSRY(ITER) « ABS(DN(I) = E(1 « J)!

E(D + 1iEADD(LYY = on{T)
ENCRMITER) = FLTR(ITER)I/NDOTS

[a KXol 2l

(X2 ¥ 2]

12

16

15
17

19

14

N = NDw#2

Dg 8 | = LyN
CoM(I) = O,
C(1) = 0y

J a ND + 1}

D0 9 1 = 1,Ny»y
coM(I) s 1,
C(I} = 1.

1E s NEADD(2)
K = ND

L =K

K s K=1

FIND THE DERIVATIVE OF THE SOLUTION

CALL OPRATR(CA1sKsLaNDs0O)
IF(L +EQ, WR) GG TO 15

1EQ0 = 1

CALL OPRATRICOM,1ED,K,L,ND, O}
JF(L JMEe 1D) GO TO 15

1 = NEADD(1) + }

J = NEADD(1) + NOPTS

D0 16 N = 12

EDERIV(NY) = E(M)

GO TO 17

CALL OPRATRUCO;:2 1EO,K,LaNDy 1)
CONTINUE

JED = = ND & NFADD(1)

00 10 H = 1,NELMUTS

JED = JED + MND

b0 10 I = 14K

1IE = [E + 1

E(IE) = O,

EDERIV(]JE) = O,

121 +-K

D3 10 4 = 1sND

14 3 1) + K

EDERIV(IE ) = EDERIVIIE) + cOM(I]) * EDERIV(J * JED)}
E(IE) = E(IE) + C{1J)} * E{J + JED)
1 c NEADD(*D = K + 1}

J = NELMTS#K

IF(K 6T, 5:R) 60 Ta 12

DETERMINE IF THE ITERATIONS ARE COMPLETED

IF(MD LE2., & Ry LAST) GO TO 14
IF(ENGRMUITER) 4LT, 1,E=7) LAST = TRUE,
IF(ITER <LT, LAS) G3 TO 9

LAST = (TRUE,

69 70 2

N = NUPTS % N#RC % (MO + 1)

CALL RITE(E,NDPTS,M0 + 120,10

DENL
DENL
DENL
DENL
DENL
DEML
DENL
OEML
DEML
DEML
peL
DEkL
DE'IL
DEML
DENL
DENL
DEML
DE''L
DEML
DENL
DE*L
DEML
DENL
DEML
DEMIL
DE"L
DE'IL
DE'iL
DEML
DEIL
DENL
DEML
DE"IL
DE'iL
DENL
DEIL
DE"L
DE™L

DEVL &

DE' L
CENL
Cent
DENL
OENL
DEML
DENL
CE"L
DE"iL
DE™L
DENL
DE"L
CEML

275

430
635
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CALL GRAPH(XN,EsNy)NDPTS)
IF(«MNIT, LAST) GO TO 13
11 COMTINUE
VRITE(6s102 ENDRN
WRITE l’ ) (1 RM(I)»I = 1,ITER)
ig@ iDRNAT(Iz;IZ;Ezc.lo)
1 FUORMAT(LH=,640X, VTHE INITIAL VALUE DF THE S
aLuUTIO |
102 FURHAT(ZH-;45X)'ITERATIG”':5XJ'NHRM nfF THE RESIéU2L§§/'G‘3.“)
*END 10C(1F 245%215215X2G15.5/))

Figure 6.3.1b

DENL
DEML
DENL
DEHL
DEML
DENMNL
DEMI
DENL
DENL
DENL

535
540
545
550
555
560
565
570
575
580
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to the program are the maximum permissible number of
iterations in the solution process and the initial value
of the function z of equation (5.6.6 ) on the interpolation
point set. These function values are stored in the array Z,
which shares common storage locations with the function
subprograms FCN and FN1-FN5. Since the function z and its
derivatives often need to be approximated by several different
orders of polynomials in a single equation, provision has been
made in the program to store the numerical values of up
to ten different functions.

Using the initial values in the array Z the program
calls the subroutines DIFFEQ, CONTIN and BOUND in succession,
in exactly the same manner as they were called by the non-
iterative program. The particular solution obtained in
this way is then compared to the function z. If the Ly norm

of the difference of the point values of these two functions

L1=

RARICEEION (6.3.1)

1

nmMm=

is less than a pre-defined value, the solution is assumed to
have converged and the results printed. If, however, the

L, norm is too large, the array Z is updated with the new
particular solution values and the process repeated. The
iterations stop whenever the L1 norm of the difference function
is sufficiently small or when the number of iterations

exceeds the specified value. In most cases, it is found

that if the procedure is convergent, about five iterations

are sufficient to produce a solution limited only by round-off

error.
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The convergence of the above process in five
iterations can be explained theoretically by noting that
according to equations (5.6.3) and (5.6.6), convergence
of Newton's method is quadratic. This means that the
accuracy of the solution in each successive iterate is twice
as good as the accuracy in the preceding iterate. Therefore,
if the initial function contains one correct binary digits
the fifth iterate will contain 2%=32 correct binary digits.
Since this is more than the wordlength of the computer used,
with most initial functions, five iterations are sufficient.

The operation of the program will now be illustrated by
solving several representative nonlinear differential
equations. Consider, first, the differential equation (5.6.9)
which was used as an example in section 5.6. The sequence
of Tinear differential equations to be solved in this case
is, from (5.6.11), in DECL,

DE: D3/DX3(Y) +FN1(X)*Y

+FN2(X)*D2/DX2(Y)=FN1(X)*FN2(X) (6.3.2)

where

FN1(X)=D2/DX2(2Z)

FN2(X)=Z
The boundary condition statements for this problem are

BC: Y(0.0)=0.0

BC: D/DX(Y(0.0))=0.0 ' (6.3.3)

BC: D2/DX2(Y(0.0))=1.0



181

1O

'041 | l I T I B

I 2 3 4 56 789
ITERATION NUMBER

Figure 6.3.2
Convergence of Newton's method to the solution of (6.3.2).

x one element
o two elements
A three elements



Solution of a nonlinear t

TABLE 6.3.1

hird order differential equation.

Projective Method

Runge-Kutta [49]

1 element 2 elements 3 elements h=1.0 h=0.5
X (6 iterations)(4 jterations)(4 iterations)

0.33333 0.0553901 0.0555265 0.0557907 6 6
0.5 0.124789 0.125 0.124739
0.66667 0.220251 0.221253 0.222116 6 6
1.0 0.489594 0.492254 0.494041 0.491425 0.491908
1.33333 0.851949 0.856874 0.859315 6 6
1.5 1.06869 1.06863 1.06792
1.66667 1.28903 1.29656 1.29853 6 6
2.0 1.77900 1.78976 1.78989 1.78738 1.78792
2.33333 2.30135 2.31563 2.31214 6 6
2.5 2.58561 2.57913 2.58121
2.66667 2.84065 2.85832 2.84920 6 6
3.0 . 3.38751 3.40822 3.39273 3.37957 3.40061

28l



183

In this case, the initial value of z was taken to be the zero
function and the problem was solved in the interval [0,3]
using one, two and three ninth-order elements.

Figure 6.3.2 contains a graph of the logarithm of the bL:
norm of the error in the approximate solution versus the
logarithm of the number of jterations for this problem. Notice
that the L, norm decreases until the sixth iterate in the one
element solution and until the fourth iterate in the two and
three element solutions. In this region, the convergence is
seen to be approximately quadratic. Beyond these iterations,
the change in the solution appears to be random and, as a
result, can be attributed to round-off error. Table 6.3.1
contains the solutions obtained from the computer program in
these cases. The solution values converge to an accuracy of
about four significant figures as the number of elements used
increases.

As a check on the results, included in Table 6.3.1 are
two Runge-Kutta calculations of fifth-order accuracy for the
differential equation (5.6.9)[49]. It may be observed that
there is good agreement between the projective solutions
and those obtained by Runge-Kutta integration.

For the next example, consider the initial value problem

dy - (1+y) =0
dx (6.3.4)

y(0) =0
which has the solution y=tan x. 1In applying Newton's method

to this problem, the sequence of linear initial value problems

et e e e b
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DE: D/DX(Y) = 2.0*%FN1(X)*Y = 1.0 - POW2(FNT(X)) (6.3.5)
BC: Y(0.) = 0.
where
FN1(X) = Z
needs to be solved. Using zero as the initial solution function,
the sequence of solutions obtained from this procedure is
known to converge to the solution of (6.3.4) in the interval
Osx<g [60]. |
Equations (6.3.5) were solved with the iterative computer
program of tﬁis section in the interval [0.0, 1.5] by using
two ninth-order approximating functions. In this case,
since a much more rapid variation was expected in the .
solution near x=1.5 than at x=0.0, the first element was
chosen to span the interval from 2=0.0 to'x=1.0 and'the second
from x¥1.0 to x=1.5. Figure 6.3.3 presents the graph of the
solutions obtained from the program for the first five
equations in the sequence (6.3.5). It can be seen that each
successive solution rises above the preceding one and provides
a better approximation to the exact solution y=tan x. For
this problem, the L, norm of the difference function decreased
until the eighth iteration and the solution obtained on this
iterate is given in Table 6.3.2“a10ng with the exact values.
It is observed from this table thét while the approximate
solution in the first element from x=0.0 to x=1.0 1is accurate
to at least four significant figures, the solution in the second
element from x=1.0 to x=1.5 becomes progressively less accurate
until, at x=1.5, there is a 6% error. This behavior is the

result of the singularity of the solution at x=1/2.
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Convergence of Newton's method to the solution of (6.3.5).
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Table 6.3.2
Solution of Equation (6.3.5).

Calculated
3 0.225925E
8 0.984837¢
13 0.199219¢
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Exact
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13 04201997
18 04543649E
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A third example of a nonlinear initial value problem
that has been solved with the iterative differential

equation solving computer program is provided by
dy. , . 2x
H%' y -y

y(0) =1

(6.3.6)

“In this case, the quasi-linearized form of the differential
equation is

DE: D/DX(Y) -Y-2.0*%X*POW2(FN1(X))*Y
(6.3.7)

=4, 0*X*FNT (X)
where
FNT(X) = 1.0/Z
and Z is taken to be equal to 1.0 initially. Table 6.3.3
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contains the solution of this problem using two equal ninth-

order elements after five iterations. The execution time

required for this problem was 5.6 seconds. Comparison with

: 1
the exact solution y=(2x+1)2 [49], also given in Table 6.3.3,

shows that the projective solution is accurate to at least

significant figures everywhere. The error remaining is

Table 6.3.3
Solution of Equation (6.3.6).

Calculated
0,100000F 01 2 0}1105525 01 3 0,120182E 0} ] 09129096E 0} L]
0.165292E 01 " 03152748 01 8 0.159855E 01 9 04166660E 01 10
0,173197¢ o1 12 0,179494E 0l 13 0,185578E 01} 14 0.191468E 0} 15
0,202734E 0} 17 0,208136E 01 18 0,213401E 01 19 0,218536E 01 20
Exact
2 0.,110554€ 01 3 0,120185E 01} 4 0,129099E 01 L]
7 0,152752¢ 01} 8 0,159B61E 0O\ 9 0,166667€ 01 1in
12 0.179505€ 01 13 0,185592E Ot 14 Ne191485E 01 13
17 0,208167€ 0} 18 0,213437E 01 19 0,218381E 01 20

four

04137633E
04173197€
04197182€
0,223552€E

0,1374376
0.173205€
0,197203E
0.,223607E
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again attributed to round-off error accumulation on the

IBM 360/75.

Consider now the problem of solving nonlinear boundary
value problems by Newton's method, instead of initial value
problems. In form, the procedures used are identical in both
cases. As an illuctration of the technique, the nonlinear

boundary value probliem

d? )
a§¥ = % Y (6.3.8)
y(0) = 4
y(1) =1

will be solved and the results compared with the exact

solution [49]
_ 4
Y=TT+x)2 (6.3.9)

The quasi-linearized form of (6.3.8) is (6.3.10)
DE: D2/DX2(Y) - 3.0% FNT{X)*Y=-1.5%POW2(FN1(X))

where
FN1(X) = Z
The interval [0.0, 1.0] was divided into two equal ninth-

order elements. After five iterations, the solution had

Table 6.3.4
Solution of Equation (6.3.8).

Calculated
0,400000E 01 2 0.359003€ 01 3 0,323999E 0t [ 0.293874E '
. . . 01 .
g-%;’;ggég g} l;’ g.fz;:ggg g{ 1; g.io"g:BE [+}3 9 0.,191697E 01 lg g.f‘;;;ggg gi
. o +«154087€ 0) 14 0.143987E 01 5 . 8
0.126554E 01 17 0.119001E 0Ol 18 0,112106E 01 19 0.105793E o1 ;0 8.}330335 g{
Exact
0,400000E 01 2 0.,359003E 01} 3 0,324000E 0} 4 0,293878E 01 ] 0.267769E 01
04264991E 01 7 0,225000F 01 8 0,207360E 0} 9 Oil9l7lbﬁ 01 10 0:1777785 01

0,177778€ o1 12 0.,165306E 01 12 0.154102¢ O} 14 04144000E 01 15 0,134860E 0
04126563E 0l 17 0,119008E 01 18 0.112111E 01 19 0:1057965 o1 20 0:1000OOE Ot
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converged satisfactorily and this answer is presented in
Table 6.3.4. The C.P.U. time used in this solution was
4.8 seconds. Once again, the solution values are accurate to
four or more significant figures.

Another example of a nonlinear boundary value problem

solved with the iterative computer program is

%%4 + 6Y A —% cos X (6.3.11)
y(0) = y(2m)

dy(0) = dy(201

dx dx

Although the exact solution of (6.3.11) is not known,
Collatz has expanded the solutiocn in terms of a Fourier series
and obtained the following approximate solution [49]

~ 3
Y- 335000 (805.5 + 32240 cos x + 2418 cos 2% 6.5.12)

-240 cos 3x - 2.7 cos 4x)

In solving (6.3.11) using Newton's method, the following

sequence of linear boundary value problems need to be solved
Table 6.3.5

Solution of Equation (6.3.12).

Calculated
1 «0,330338E 00 2 »0,307883E 00 3 «0,244180E 00 Iy ~0,149698E 00 5 ~0,400719E=
6 0,671440Ew0l 7 0:157045E 00 8 0,221138€ 00 9 0{257938E 00 10 ) 0:2691ing gé
11 0,269717€ 00 12 0,2579385 00 13 0,221139E 00 14 0,157048E 00 15 0,671473E~0)
7 16 «0,400692E=01 17 «0,149697E 00 18 ~0,244181E 00 19 ~0,307883E 00 20 ~(:330330E 00
i
hig Exact
1 «0.330195€ 00 2 ~0,307809E 00 3 =~0,244174E 00 o ~0,149605E 00 5 ~0,39B8413E~01
(] 0,673786E~01 ? 0:.l571‘065 00 8 0,221149€ 00 9 0,257984E 00 10 0.,269805E Q0
11 0,269805E 00 12 0,257985E 00 13 0,221150€ 00 14 0,15T7145E 00 13 0,673801E~01
16 »0,398399E=01 17 w0, 149604E 00 18 ~0,2441732E 00 19 =0,307809E 0O 20 »04330195E 00
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DE: D2/DX2(Y) + 6.0%Y + FNT(X)*(Y)
(6.3.13)

= POW2(FN1(X)) - 1.5*%C0OS(X) :

BC: VY(0.) = Y(6.283184) é
BC: D/DX(Y(0.)) = D/DX(Y(6.283184))

where FNT(X) =Z.

Using two equal ninth-order elements and the zero functfon

as Z on the initial iterate, the sequence of solutions of

these boundary value problems converge very rapidly with

the L, norm of the difference between iterates decreasing

to 3.6 x 1077 on the fourth iterate. Table 6.3.5 contains

the values of the solution from the fourth iterate as well :

as the values of the function (6.3.12) on the set of |

interpolation points. It can be seen that the two approximate

solutions agree very closely.

6.4 PARTIAL DIFFERENTIAL EQUATIONS ?

The technique and required subprograms for the ]
solution of linear two-dimensicnal partial differential
equations have already been described. A main computer

program which connects these subprograms together in !

the proper order is presented in Figure 6.4.1. When this
main program is used with the overlay procedure in

Figure 6.4.2, the entire two-dimensional program

package requires 194K bytes of core memory. In this way, ﬁ
the arrays DN, C and COM which contain the large two-
dimensional coefficient matrices are enlarged without

increasing the memory requirements of the program.
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Figure 6.4.1

THIS PROGRAM WAS WRITTEN BY 2CLTAN CSENDES DF MCGI

g : LL UNIVERSITY
MUNTREAL, QUFBFC, TN SOLVE ARBITRARY LINEAR TWOwDIMEN ’
PARTIAL DIFFERENTIAL EQUATIONS, DeDIMENSIONAL

DIMENSION ¥yD(5003,TY(100), TELCX (100}, IELCY
! (100)yYRC(300)
UIMtNSIQN xNST(SoO),cmusT(soq),xn(son>,wTX(100),0N(3000);C(8000),
* COM(180C0)»YR(L), YT (L),RUGTR(100),RO0TI(100),XBC(300)

DECL 60-95

1 CALL INSTZD(INST:CUNST)VUMWE,XRC;VBC)XD/YD:WTX WTY, 1EL
. t ' L CXJIFLCVJ
] NCCDND}NELMTS)NRANGXJNRANGV,HDDMJLAMDA RI; (4 E T P
* PLOTGONEIGHRSNEIGPL) ’ EFoRITEGPLOTPY
HRX = MRAMGX + 1
NRY = NRANGY + )
HD = NDOM 4+ 1

CALL DIFF2D(DN,MENsWTXsWTY,NELMTS, T DyY
" NULLD,NULLV, LBMDA T ’ 52 INST»CONSTaXDyYDsNRXSNRY, ND»

DECL 150=175

caLL CONT2D (DN, NF X5 NRY s ND, MDN) MULLY, Co NDPTS MONHOM, NUL
\ ILLYV
* NCCUND:IELCX:IELCYaNELMTSaWTX:WTY;LAMDZ:RITEG; =

DECL 190=210

QU o> 1 = 1,NuULLY
] éﬁLt PICT(XU,YDaCoMDPTS, 1)
2 L EUUNZD(C:HUFTS:NQNHUH,HULLD}NULLV:DN:NWBCJNRX NRY, ND
* INST}CUNSTJNUMDEJXDJYDJNELPTSIWTX)WTYJLAMDAJ;ITE;IY;)

DECL 250=320

IF(LAMDA) HWRC = NEJGPL
00 4 1 = 1,NWBC

4 CALL PICT(X[aYnsnlsNDPT,1)
GO TO 1
END

Figure 6.4.2

E'NTRY MAIN

;MSERT MAIN,NULL,RITE

[IVERLAY ALPHA

INSERT INST2D,CHARTF FNUM, P

GVERLAY ALPHA ’ ?PICTsSCALE

DE2D
DE2D
DE2D
DE2D
DE2D
DEZ2D
DE2D
DEZ2D
DE2D
DE2D
DE2D
DE2D
DE2D
DEZ2D
DE2D
DE2D
DE20D
Dg2D
DE2D
DE2D
DE2D
DE2D
DE2D
DE2D
De2D
DE2D
DE2D
DE2D
DE2D
DE2D
DE2D
DE2D
DE2D
DE2D
DE2D
DE20
DE2D
DE2D
DE2D

190

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

100

105

110

115

120

125

130

135

140

145

150

155

160

165

170

175

180

185

190

195

IMSERT DlFFZD:CnNTZD;BDUNZD,DPGZDl:DPGZDZ;OPRATR;FCNzD;KRDN:DPFUI:ALPHA

UV?RLAV ALPHA
[NSERT EIGEM,RILMAT,EIGQR,DQRT
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In order to illustrate the operation of the program,

consider the elliptic partial differential equation
V2z=-2 sin x sin y (6.4.1)

with the boundary conditions
2(0,y)=a(n,yl=2(x,0)=z(x,m)=0 (6.4.2)

Using one seventh-order element, a working DECL computer

program to solve this problem is

* 7 POISSON'S EQUATION IN A RECTANGLE
DE: D2/DX2(Z)+D2/DY2(Z)=-2*SIN(X)*SIN(Y)

BC: z(0.0, 0.0)=0.0

BC: 2(0.0, 0.449)=0.0

BC: Z(3.14, 3.14)=0.0
REC: X=0.0, 31.41592, Y=0.0, 3.1471592

In this program, the boundary conditions (6.4.2) have
been translated into twenty-eight separate boundary
condition statements specifying the solution value at
each of the twenty-eight nodal points on the perimeter

of the element. Due to the interpolatory nature of the
approximating functions bij the twenty-eight boundary
conditions in the above statements are linearly independent
and completely equivalent to (6.4.2) in the approximating
space. Although it would be a desirable extension of

the DECL language, present program capabilities do: not
include generation of the above byundary condition
statements from compact statements such as

BC: 2(0.0, Y)=0.0
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The above DECL program was run on the IBM

360/75 and required 18.1 seconds of C.P.U. time for
execution. The nont?ivia] solution values are given
in Table 6.4.1 for one half-quadrant of the solution
region along with the corresponding values of the exact
solution.

z=gin x sin y (6.4.3)
Taking advantage of the symmetry in the above problem,
equation (6.4.1) was also solved using one seventh-order
element in the rectangle x=[0,n/2],y=[0,w/2] with
Neumann boundary conditions along the lines x=w/2 and
y=un/2 and this solution is also presented in Table 6.4.1.
Notice that the solution obtained without using the
symmetry properties of the problem is accurate to about three
significant figures and that the solution obtained by using

symmetry is accurate to about four significant figures.

Table 6.4.1

Solution point values for .poisson's equation in a rectangle.

X y Numerical Numerical Exact
without
using symmetry using symmetry
/7 /7 0.188149 0.188239 0.188256
/7 2n/7 0.339105 0.339204 0.339224
w/7 3n/7 0.422871 0.422955 0.423005
2n/7 2u/7 0.611182 0.611237 0.611261
2n/7 3w/7 0.762153 0.762205 0.762230
3n/7 3n/7 . 0.950418.. . ..0.950470 0.950485
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Table 6.4.2
Point values of the solution of parabolic partial

differential equations.

Point coordinates (6.4.4) (6.4.6)

X y Numerical Exact 'Numerical Exact
w/7 w/7 0.27704 0.27699 0.67997 0.67965
n/7 4wn/7 0.072070 0.072066 2.6128 2.6123
/7 m 0.018739 0.018750 10.002 10.040
2w/7 w/17 0.49917 0.49912 1.2251 1.2247
2n/7 Aw/7 0.12989 - 0.12986 4.,7081 4.7071
2n/7 mw 0.033774 0.033786 18.049 18.092
3n/7 w/7 0.62235 0.62239 1.5273 1.5272
3n/7 4w/7 0.16203 0.16193 5.8704 5.8697
3n/7 mw 0.042142 0.042131 22.546 22.561

Figure 6.4.3 contains the graph produced of the solution
in the first case by the subroutine PICT. Smooth lines have
been drawn by hand on this figure to round out the surface
contours between point values.

The next example presented is the two-dimensional
parabolic partial differential equation

DE:D2/DX2(Z)= D/DY(Z) (6.4.4)
with

2(0,y)=a(m,y) =0

z(x,0)=8in

A single seventh-order element was used in the rectangle
x=[0,7],y=[0,w]. The DECL computer program for this problem

contained twenty-two boundary condition statements and
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required 15.3 seconds o¥ C.P.U. time to produce a solution.
Selected point values of this solution are given in
Table 6.4.2 along with values of the exact so]ufion

z=gin e-y. (6.4.5)
This table also contains the values of the solution of
the complementary problem

DE: D2/DX2(Z)= - D/DY(Z) (6.4.6)
which has the’exact solution

z=sin x e (6.4.7)
Both numerical so]utions‘agree with the exact solutions
to three or four significant figures. The graph produced
by the program with the solution of equation (6.4.6) is shown
in Figure 6.4.4.

For the third example, consider the eigenvalue boundary
value problem ,
DE: D2/DX2(Z) + pD2/DY2(Z) = K*Z (6.4.8)
_d d
2(0,y)= z(x,0)=%¢z(l,y)=zyz(m,1)=0 (6.4.9)

‘The eigenva1ues'of this problem are known to be

k=(P2L(2n-1)% (2n-1)%1  n,m=1,2,... (6.4.10)
and the eigenfunctions are

a=sin (G- z)ein(3h y) (6.4.11)
Equation (6.4.8) was solved using one sixth-order element
and required 25.5 seconds of C.P.U. time for solution. It
is of interest to note that in this problem the solution was
comprised of 49 independent point values but that with the
procedure of section 5.5, the order of the matrix eigenvalue
problem solved was only 25. Table 6.4.3 contains the values

of the first eight eigenvalues produced by the program as

[ —
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seen that the first three eigenvalues are ac

197

curate to four

significant figures but that the higher eigenvalues became

progressively less accurate with a 1.5% error in the eighth

eigenvalue. Computer plots of the first and fourth modes of

this problem are shown in Figures 6.4.5 and 6.4.6.

Table 6.4.3

Eigenvalues of the Helmholtz equation in a rectangle.

Eigenvalue Numerical Exact
number
1 4.93452 4.93480
2 24.6784 24.6740
3 24.6793 24.6740
4 44.426 44,413
5 65.49 64.15
6 65.49 64.15
7 85.24 83.89
8 85.24 83.89

A11 of the examples shown up to this point have been

two-dimensional partial differential equations in rectangular

regions for which the locations of the boundary conditions

coincided with the edges of the elements.

Consider now

the problem of solving Helmholtz's equation (6.4.8) in a

circular region where

z(m2 + y2 = 1)=0

(6.4.12)
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inant mode of vibration in a rectangle.




Figure 6.4.6.

One quadrant of the fourth mode of vibration in a rectangle.
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In this problem, the projective solution region will not

match the region defined by the boundary conditions for
any rectangle or combination of rectangles. Consequently,
a method for specifying boundary conditions at locations
other than the edges of the elements must be employed.

As pointed out in section 5.3, equations (5.3.3) and
(5.3.4) may be used to determine the numerical conditions
on a projective solution for it to'satisfy any boundary
condition in any geometric location. However, as was the
case with rectangular regions, when working with an irregular
region it is wise to take advantage of the orthogonality
properties of the interpolation polynomials bij in choosing
boundary condition point locations. In the case of the circular
boundary condition (6.4.12), for example, a sixth-order

element may be super-imposed on the circle as shown by the

1 Y

—f—m0—60—0©
7]

AI

One quadrant of a sixth order element super-imposed on a

circular boundary.

Figure 6.4.7
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quadrant in Figure 6.4.7. The straight lines drawn on this
figure indicate the locations of the zeros of the interpolation
polynomials bij and the crosses denote the points of inter-
section of these lines with the circular boundary.

In analogy with the rectangular boundary value problem
(6.4.9), it is natural to take these points of intersection
to be the locations on the circle where the approximate
solution is made equal to zero. This procedure has the
effect of shifting the four boundary condition locations
A,B,D and E used in the rectangular case to the locations
A', B', D' and E’' on the circular boundary. However, a
simple count of the number of arbitrary constants in the
general solation reveals that one additional boundary
condition needs to be specified besides the six imposed at
the crosses in Figure 6.4.7.

The addition of this extra boundary condition is,
however, unusual in the sense that it is not usgd to restrict
the behavior of the solution on the circular boundary but

“rather as a means of redefining the basis functions in the
domain space of the differential operator. In the above
problem, the complete set of basis functions b,y which
interpolate over the entire square region in Figure 6.4.7
does not constitute a satisfactory basis set with the circular
boundary conditions (6.4.12) because it contains an extraneous
function. The extraneous function in this case is the
interpolation polynomial which has a unit value at point C
in Figure 6.4.7 and governs the solution behavior in the
corners of the element. By defining a new set of basis

functions in which this interpolation polynomial does not

e A i ' i

WO
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exist, a basis is formed in which the number of arbitrary

constants in the general solution equals the number of
intersection points of the nodal lines with the circle.

It is important to note in this analysis that the
new set of basis functions is derived from the established
set by eliminating some of its members. In the present case,
this is most easily accomplished by setting the coefficient
of the unwanted corner interpolation polynomial equal to
zero with the boundary condition statement

BC: Z(1.0, 1.0)=0.0 (6.4.13)

In this way, the solution of problem (6.4.12) can be obtained
directly from the DECL computer program without performing
any program modifications.

There are, of course, some disadvantages to using
the elimination procedure described above to solve problem
(6.4.12) with rectangular elements instead of defining special
circular elements which fit the geometry exactly. Solutions
obtained with the above procedure are optimized over the entire
element and not in the smaller circular region. Furthermore,
the DECL computer program will perform unnecessary
arithmetic operations with function coefficients which will
be eliminated. However, in most engineering applications, the
resulting inefficiencies are not serious enough to justify
solving the problem with special techniques.

A DECL computer program was written to solve problem
(6.4.12) using the boundary condition statements described
above. The program required 27.1 seconds of C.P.U. time for
execution and the first eight eigenvalues produced are given

in Table 6.4.4. The problem was also solved in one gquarter
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of the region using a sixth-order element and Neumann
boundary conditions along the axes. These results are

also presented in Table 6.4.4 along with the exact
eigenvalues. A comparison of the answers shows that

the lower order eigenvalues are accurate to two or three
significant figures. Bearing in mind that the solutions are
not stationary in the eigenvalues, this accuracy is quite
acceptable. It is somewhat lower than was the case with

the rectangular problem (6.4.9), however, since in that case
a larger and more suitable basis set was used. Plots of the
first and sixth modes for the circular Helmholtz boundary value

problem are shown in Figures 6.4.8 and 6.4.9.

Table 6.4.4

Eigenvalues of the Helmholtz equation in a circle.

Eigenvalue Numerical Numerical © Exact

number full circle quarter circle
1 2.389 2.393 2.405
2 3.877 - 3.832
3 3.877 - 3.832
4 5.110 5,137 5.135
5 5.260 - 5.135
6 5.638 5.524 5.520
7 5.712 - 5.520
8 7.705 7.609 7.016

In order to demonstrate the feasibility of solving
two-dimensional partial differential equations in complicated

regions with the DECL program, Helmholtz's equation was also



Figure 6.4.8

Dominant mode in a circular clamped vibrating membrane.
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Figure 6.4.9

Sixth mode of a circular clamped vibrating membrane.
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sixth-order element was used in the approximation with the
boundary condition point locations chosen as indicated by
the circles in Figure 6.4.10. Here Neumann conditions were
used for points along the coordinate axes and Dirichlet
conditions were imposed elsewhere. The first eigenvalue for
this problem was equal to 2.027 with the corresponding
eigenvector behaving similarly to the dominant eigenvector
in the circular case. These results agree with an analysis

of this problem using ordinary finite elements to approximately

three significant figures [71].

1.0

Cigar-shaped region showing boundary condition point

Toccations.

Figure 6.4.10
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Finally, consider the following two-dimensional
Bessel-type equation
DE: POW2(X) * (D2/DX2(Z) + D2/DY2(Z))
(6.4.14)
DE: +X*D/DX(Z) -Z = K*POW2(X)*Z
which governs the behavior of the azimuthal electric and
magnetic fields in a rotationally symmetric resonant cavity.
The boundary conditions of interest are
z (boundary)=0.0 (6.4.15)

for electric fields and for magnetic fields

. %%(boundary)=-z(bou”dary)%% (6.4.16)

where n is the direction normal to the boundary. This
boundary value problem has been solved with the DECL program
and some of these results will be presented here. Consider

first a rectangular toroidal cavity with x=[2,5] and y=[-3,2].

Table 6.4.5

Resonant frequencies of a rectangular toroidal cavity with

x=[2,5], y =[%,3].

Eigenvalue Electric field Magnetic fieid
number
Numerical Exact* Numerical Exact*

1 3.32117 3.32150 1.03668 1.03660
2 3.78948 3.78526 2.08585 2.08868
3 4.475 4.451 3.14177 3.13768
4 6.397 6.375 3.30820 3.30820
5 6.655 6.629 3.77096 3.77250
6 7.068 7.030 4.588 4.440

* These numbers were computed by A. Konrad.




The resonant frequencies of the electric and magnetic
fields obtained for this cavity from the DECL program
using one sixth-order element are presented in Table 6.4.5
along with the exact values. There is excellent agreement
with all low order eigenvalues. In addition, Figures 6.4.11
and 6.4.12 contain two of the field plots produced by the
DECL program,.

Now consider a right cylindrical cavity in which
the solution of equation (6.4.14) is required in the region
x=[0,3], y=[-%,%]. Unfortunately, equation (6.4.14) has a
singularity along the line x=0.0 due to the 1/x? coefficient
in Bessel's equation and function values along this line
cannot appear in the solution vector. Consequently, in
order to obtain meaningful results, the solution region must
be made to overlap the line x=0.0. It is not necessary to
avoid the 1§ne x=0.0 when specifying boundary conditions
however, since the boundary conditions (6.4.15) and (6.4.16)
are valid in any location.

The calculation of the electric and magnetic fields
in the right cylindrical cavity has been performed by the
DECL program using a sixth-order element in the region
x=[-0.05, 3.0], y =[-0.5, 0.5] and the eigenvalues produced
are given in Table 6.4.6. In this calculation, the boundary
conditions were applied along the lines x=0.0,%x=3.0, y=-0.5
and y=0.5. The eigenvalues have approximately the same
accuracy as in the previous example. Figures 6.4.13 and
6.4.14 contain examples of the field plots produced by the

DECL program for this problem.
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Figure 6.4.11

The fifth resonant mode of the electric field in a rectangular

toroidal cavity.
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Figure ¢.4.12

The fifth resonant mode of the magnetic field in a rectangular toroidal cavity.
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Table 6.4.6
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Eigenvalue

Electric field

Magnetic field

number

Numerical Exact* Numerical Exact*
1 3.39112 3.39130 0.80129 0.80160
2 3.92052 3.91649 1.8201 1.8400
3 4.847 4.623 2.9437 2.8845
4 6.433 6.412 3.242 3.152
5 6.728 6.704 3.631 3.641
6 6.975 7.140 4.305 3.931

* These numbers were computed by A. Konrad.
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CHAPTER 7 CONCLUSIONS

In this thesis, two different but nevertheless
interrelated themes have been developed. The first and
perhaps primary theme has been the introduction of a
discretization procedure which uses different orders of
polynomials to approximate the domain and the range spaces
of differential equations. The notion of assembling
complicated operators from simple ones, using projection
cperators between different spaces, and employing generalized
matrix inversion to solve the resulting rectangular matrix
equations are all logical consequences of this numerical
approach. The second theme has been the development of
differential equation solving programs with versatile and
easy to use input and output characteristics. This development
essentially constitutes the creation of a new special purpose
computer language which makes it possible to solve many

differential equations automatically.

The advantages of using the discretization procedure
developed in this thesis are numerous. First of all,
it is computationally efficient. The method relies
primarily on matrix addition and multiplication for
its execution, a trait well-suited to the operating
characteristics of digital computers. Second, the method
is highly accurate. In addition to providing numerical
procedures of up to ninth-order sectional polynomial
accuracy, the solutions are optimized in a least squares

sense in their respective approximation spaces. Third,

oo
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the method produces general solutions of differential
equations as well as particular ones. With these general
solutions, it is possible to solve a differential equation
separately in many regions using relatively small matrices,
the connecting inter-element conditions being added
subsequently. Further, unlike most erdinary projective
methods where the boundary conditions are located at
the edges of the region considered, general solutions
allow boundary conditions to be specified anywhere.

As for the development of the automatic differential
equation solving programs in this thesis, these too
have been highly successful. As shown by the examples
in Chapter 6, the DECL computer programs provide a

practical alternative for solving many ordinary and

two-dimensional partial differential equations to established
methods. The program is sufficiently. accurate for most

engineering applications and their computational times
are also acceptable, considering the general nature of
the programs. Most importantly, however, the programs
have a simple input and output structure that allows
many differential equations to be solved with a minimum
of analysis and data preparation.

[t must be mentioned, however, that although
the theory and the computer programs in this thesis
have many attractive features, they also have several
serious shortcomings. On the theoretical side, the
most prominent of these is the neglect of this thesis

to provide a rigorous error bound for the solutions
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generated. As a result, in those cases where the accuracy
of the solution mustwbe defined precisely, the user is
required to examine the convergence of the solution

using previously established procedures. In addition to
requiring a further knowledge of numerical analysis,

these procedures often magnify the computation required

to treat a differential equation by an order of magnitude.

Some of the other mathematically unavoidable
deficiencies in the method are the large sizes of matrices
which result with high-order, two-dimensional elements,
the failure of Newton's method to converge in all cases,
and the necessity of avoiding singular points in the
calculations. Fortunately, however, while these problems
are troublesome, they do not preclude alternative form-
ulations of the differential equation to avoid the
occurence of these problems.

The DECL computer programs also have some Timitations
which are not based on theoretical reasons. Among these
program limitations are the cumbersome technique used
to specify two-dimensional boundary conditions, the Tack
of double precision versions of the programs, and the
necessity of evaluating the quasi-linear form of a non-
linear differential equation by han&, instead of having
the DECL compiler do it automatically. In terms of
future development, these areas indicate some of the
features of the DECL computer programs and of the DECL
computer language which should be improved. Hopefully,

in a continuing evolutionary development, newer, more
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sophisticated procedures will eventually replace the
inadequate ones existing presently in DECL. Thus, while
the DECL computer programs given in this thesis are
insufficient for some purposes, they do constitute an
important.first step in the development of a general
computer language for the automatic solution of differen-
tial equations.

Even in their present form, however, the overall
performance of the DECL programs in treating most ordinary
and two-dimensional partial differential equations
accurately and efficiently indicates that these programs
can be a valuable tool in ‘engineering applications. By
taking advantage of the ability of these programs to
solve a large variety of problems without modification,
it is often possible for practicing engineers to bypass
the difficulty and expense of writing a special computer
program to solve each separate type of differential
equation. In this way, the valuable skills of many
engineers who out of necessity are presently part-time

numerical analysts and programmers can be deployed more

efficiently.
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