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Abstract 

The space elevator offers an altemate and very efficient method for space travel. 

It will have two main components. The first component is the tether (or the ribbon), 

which extends from the Earth to an equatorial satellite at an altitude of about 100,000 

kilometres, and is fixed to a base on the surface of the Earth at its lower end. The second 

component is the climber, which scales the ribbon, transporting payloads to space. An 

important issue for effective operation of the space elevator will be to understand its 

dynamics. This thesis attempts to develop a realistic and yet simple planar model for 

this. Both rigid and elastic ribbon models are considered. Their response to ascending 

climbers and to aerodynamic loads is studied. Specifie climbing procedures are devised 

based on these results. The effect of the space elevator' s motion on the orbit of a 

launched satellite is also examined. 
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Resumé 

L'ascenseur spatial offre une option différente et très efficace pour le voyage dans 

l'espace. Il consiste en deux composantes principales. La première composante est le 

câble (ou ruban), qui s'étend de la Terre à un satellite équatorial à une altitude d'environ 

100,000 kilomètres, et est fixée à une base terrestre à son extrémité inférieure. La 

deuxième composante est le grimpeur, qui monte le ruban, transportant des charges utiles 

dans l'espace. Un aspect important pour le fonctionnement efficace de l'ascenseur spatial 

dépend sur la compréhension de sa dynamique. Cette thèse tente de développer un 

modèle planaire simple, mais réaliste, pour étudier ce système. Des modèles de ruban 

rigide et de ruban élastique sont considérés et leurs réponses aux grimpeurs montants et 

aux charges aérodynamiques sont étudiées. En se basant sur ces résultats, des procédures 

spécifiques pour l'escalade de la corde sont conçues. L'effet du mouvement de 

l'ascenseur spatial sur l'orbite d'un satellite lancé est également examiné. 
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Chapter 1: Introduction 

1.1 Motivation for a Space Elevator 

In the 1950s, when the challenge of exploring space was taken on, the only 

method that current technology could provide was the use of rockets. However, this 

method of space travel is very inefficient. Since the method of propulsion uses fuel, this 

fuel must travel with the rocket. In order to escape the pull of the Earth, more than ninety 

percent of a rocket's original mass must consist of fuel. Another loss of efficiency occurs 

in the energy conversion process itself. The rocket must travel at several kilometres per 

second in order to escape the pull of the Earth, and engines operate very inefficiently at 

su ch high velocities. Finally, traveling at such high velocities within the atmosphere 

causes large drag forces, and high rates of heat transfer must be imposed upon the rocket. 

As the number of satellite launches increases, the implementation of an alternative, more 

efficient method of space travel becomes very desirable. One alternative method to 

escape the pull of the Earth that has been proposed is the use of a 'canon-like' launch 

pro vi ding a single, very substantial impulse. However, the successor to rockets as the 

main method of space travel employed by man will most likely be the space elevator. 

The space elevator provides a much more elegant avenue to space than do rockets. The 

climber ascending the ribbon carries no excess mass, is powered by an electric motor, and 

can ascend (or descend) the ribbon however slowly it desires. By not having any ofthe 

aforementioned constraints of rockets, missions using the space elevator would cost 
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around one hundredth of those using rockets. Its usefulness extends beyond transporting 

payloads efficiently to various positions along the ribbon. The space elevator could be 

used to retrieve disabled satellites from past missions that are currently c1uttering the 

space surrounding the Earth. A conceptual drawing of the space elevator is shown in 

Figure 1.1. The principal parameters of the space elevator are displayed in Figure 1.2. 

Figure 1.1: The space elevator (http://www.isr.uslSEGallery.asp?m=6) 

~ \ a \ Tapered l'ibboll 

V========7====:;"-! ====/==============/======;0 
Geosynclm.lllous ! Coullterweight 
altitude 

Figure 1.2: Schematic diagram of the space elevator in the equatorial plane 
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1.2 History of the Space Elevator 

The concept of the space elevator originated in the late nineteenth century. 

Konstantin Tsiolkovsky was the first to document it (1895). The first modem ideas of the 

space elevator came from Yuri Artsutanov (1960). However, not much attention was 

paid to the subject until Jerome Pearson (1975) published his paper about the 'orbital 

tower'. Nearly aIl papers about the space elevator written since 1975 refer to Pearson's 

paper. It also inspired engineer and author, Arthur C. Clarke, to write "Fountains of 

Paradise" (1978); this nove1 about space elevators introduced the futuristic concept to the 

general population. Clarke (1979) also published a paper summarizing the work that had 

been done on the subject until then. 

Still, it was made clear in Pearson's paper that for the space elevator to ever 

become a reality, the use of a material having a much higher strength to density ratio than 

that of steel would be necessary. So, although Pearson laid the foundation for the 

properties of a space elevator, there was little continuation of this research for many 

years, until Sumio Iijima (1991) discovered a new material composed of hexagonal 

arrays of carbon atoms. The material is known as carbon nanotube. The discovery of 

carbon nanotubes, which might be a suitable material for the space elevator, has 

increased the likelihood that a space elevator will be constructed in the foreseeable future, 

and has thus prompted mu ch more research in this area. Brad Edwards (2000) performed 

an overall analysis of the space e1evator and proposed a detailed design and a method of 

deployment. He concluded that the space elevator' s construction and operation required 
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no new technology, only progression in our ability to synthesize carbon nanotubes. So, 

although there are still many challenges facing the implementation of a space elevator, 

the major challenge is to develop a carbon nanotube lattice, having a sufficient material 

strength to density ratio, with which to construct the ribbon. With the progression of this 

technology, studying other aspects of the space elevator, such as its dynamics, becomes 

appropriate. 

1.3 Review of Literature on the Space Elevator 

1.3.1 Review of Literature on General Concepts of the Space Elevator 

In a paper by Pearson (1975), many useful properties of the space elevator were 

derived. Pearson showed that the 'orbital tower' would not buckle because it would be 

built under tension and would remain so. In fact, the counteracting gravitation al and 

centripetal loads would cause a great deal of tension to manifest within the ribbon. 

Pearson derived the taper function for the cross-sectional area of the ribbon that would 

minimize its maximum stress by making it constant throughout. The taper was found to 

depend on only one parameter, which he referred to as the characteristic height, which is 

proportional to the nominal strength to density ratio of the ribbon. The maximum cross­

section al area of the ribbon would be located at the geosynchronous altitude, and the 

minimum, at the surface of the Earth. The taper ratio, which is the quotient of the se two 

values, is a function of the characteristic height of the ribbon material. The taper ratio 

was used as a design parameter throughout the paper. Pearson showed that for the taper 
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ratio to be in a reasonable range, the characteristic height of the material used to construct 

the ribbon would have to be thousands of kilometres. Steel has a value of about 50 km; a 

steel ribbon would require the impossibly high taper ratio of exp(99) to have constant 

stress throughout it. 

Pearson examined the longitudinal modes of the ribbon excited by the tidal forces 

of the Moon. He noted that for a taper ratio as small as three, the first longitudinal mode 

of the ribbon would have the same vibration period as that of the Moon (12.5 hours). He 

concIuded that for this reason, such a low taper ratio should not be used. He also 

speculated that su ch a taper ratio was not feasible due to the high characteristic height it 

would require. Pearson also examined the transverse modes excited by cIimbers 

traversing the ribbon at a constant cruise speed. He found that for any taper ratio, no 

transverse modes would resonate due to the motion of a cIimber as long as its cruise 

velocity was less than 1 km/s. 

Finally, Pearson showed that the deployment of the space elevator would be very 

difficult due to the immense volume of material that would need to be transported to 

geostationary orbit. The total transport effort would require thousands of separate rocket­

powered trips. In the analysis, Pearson assumed that the deployed ribbon would not be 

altered over time, and thus needed to be reasonably thick to enable it to support the 

additional weight of reasonably large climbers. 
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About twenty-five years after the publication of Pearson's paper, Edwards (2000) 

published the next significant work on the space elevator. This paper examined many 

aspects of the space elevator' s design and deployment in a mu ch more detailed sense than 

had ever been done before. It was an in-depth feasibility analysis of the space elevator. 

Problems facing the space elevator such as environmental hazards and rupture due to 

space debris were dealt with. The overall conclusion was that none of these secondary 

problems were unsolvable using CUITent or near-future technology. The primary problem 

was still, of course, the development of a material suitable for the ribbon. 

The most important point in this paper was made in discussing the deployment of 

the space elevator. Edwards explained that the initial ribbon could be very thin, requiring 

just one single rocket for transport of the original ribbon mass. Then, lightweight 

climbers could gradually thicken this ribbon proportionally over time. This method of 

construction tackled the issue of deployment raised by Pearson, where thousands of 

rockets would be required to transport material to space. Instead, the space elevator is 

'used' hundreds of times for its own construction. The fact that the space elevator could 

only be constructed feasibly using itself as a means of transporting mass into space 

illustrates why it would be such a useful too1. It should be mentioned that Artsutanov 

(1960) proposed this solution in his paper about fort y years earlier. Pearson (1975) did 

not know of this solution wh en he wrote his paper, perhaps because it was published in 

Russia. 
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Edwards followed up this paper with a book (2002), which elaborates on all of the 

elements discussed in the paper. The book also discusses the space elevator' s possible 

construction schedule, deployment costs and ability to generate profits. Finally, it 

describes the various impacts the space elevator would have on society. 

1.3.2 Literature Review of Space Elevator Dynamics 

Only a few dynamical studies of the space elevator exist. McInnes (2005) 

obtained analytical results for the simplest case of a space elevator: a climber traversing a 

stationary ribbon. The resulting non-linear equation of motion describing this scenario 

was reduced to a first order equation. It was c1ear that this simple model had one 

equilibrium position. The position, which was unstable, occurred at the geosynchronous 

altitude. AIso, a phase plane diagram was obtained. The effect of friction between the 

climber and the ribbon was also examined. 

Patamia (2005a, 2005b) developed an analytical model for studying the lateral 

displacement of the tether. With sorne approximation, he obtained the mode shapes of its 

lateral displacement. The mode shapes were sinusoidal in nature. Patamia used this 

model to determine how these transverse modes would be excited by solar radiation 

pressure (2005a) and magnetospheric forces (2005b). He determined that such forces 

could cause the tether to deviate by tens of kilometres. While this is small compared to 

the length of the tether, deviations of this order would further complicate the task of 

removing the tether from the path of orbital debris using the mobile base. 
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Lang (2005a, 2005b) used tether simulation software to obtain numerical results 

for the motion and internaI stress of the ribbon in response to ascending climbers in the 

first paper, and aerodynamic loads in the second. The space elevator model he used 

differs from the convention al model where the climber has a motor that propels it along 

the ribbon. In Lang' s model, the climbers are fixed to the ribbon, which functions like a 

con veyer be1t. Though the mechanism used to move the climbers is different, the system 

behaves much like the conventional model (which is considered in this thesis), and thus, 

sorne of the results obtained in this thesis may be compared to those found in his work. 

In the first of Lang's papers (2005a), which studied the response of the system to 

ascending climbers, the main conclusion was that the principal operational effect of a 

climber transit was due to the Coriolis force. The Coriolis effect caused the ribbon to 

rotate in the direction opposite to that of the spin of the Earth. This angle of rotation was 

referred to as the libration angle. In general, higher climber cruise velocities resulted in 

greater libration angles. Upon climber arrest, the ribbon oscillated about its final 

libration angle. Lang proposed that with proper speed modulation, a climber might be 

able to induce no residual libration angle when ascending from point A to B. He also 

found that longitudinal string modes of the ribbon were easily excited by climber 

acceleration and deceleration. Finally, he showed that sudden climber arrest could cause 

enough stress to rupture the ribbon, and concluded that the possibility of such an event 

must be eliminated. 
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In Lang' s second paper (2005b), which studied the response of the system to 

aerodynamic loading, he showed that the ribbon was not very resistant to being driven 

out horizontally. Doubling the effective aerodynamic width exposed to winds resulted in 

the more than tripling of the lateral deflection of the ribbon. More disturbingly, doubling 

the wind velocity caused the lateral deflection of the ribbon to increase one hundredfold. 

Another important result was that wh en a climber was stationed at a low-Earth orbit, the 

effect of aerodynamics was amplified twenty five times from that of the unoccupied 

tether case. He concluded that the degree to which the system was susceptible to 

horizontal displacement was dependant upon the presence and location of a climber. A 

final conclusion was that a strong wind could potentially create near horizontal ribbon 

departure angles at the base. It was recommended that the space elevator be anchored in 

a location where very strong winds do not typically occur. 

1.4 Objectives of the Thesis 

There are three primary objectives of this thesis. The first objective is to 

understand the basic dynamic behaviour of the space elevator. This entails finding the 

equations of motion for the system,developing accurate closed form solutions to its 

response to climber transit and verifying these solutions using numerical tools. This is 

carried out first by ignoring the structural deformation of the ribbon, and then it is 

repeated with its inclusion. The space elevator's response to aerodynamic loading is to 

be analyzed in a similar fashion. 
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The second objective is to develop climber motion guidelines to minimize the 

deviation of the space elevator from its nominal state. This is accompli shed through 

analysis of the closed form solutions. 

The third objective is to examine the dynamics associated with satellite placement 

via the space elevator. This is realized by analyzing the launch from both a statie ribbon 

and a dynamic one. 

1.5 Outline of the Thesis 

Throughout the thesis, only the pl anar motion of the space elevator is considered. 

In Chapter 2, the fundamentals of the mechanics associated with the space elevator are 

introduced. Key space elevator properties are derived in terms of the design parameters, 

and sorne of its basic dynamic properties are outlined. In Chapter 3, equations of motion 

are developed for the space elevator model where the ribbon is assumed to be rigid, and 

the base is given the freedom to translate. In Chapter 4, the basic dynamic behaviour of 

the space elevator is explored through simplification of the equations. From these 

analytical results, climbing procedures to avoid inducing oscillatory libration angles and 

to eliminate residual ones are proposed. The accuracy of the closed form solutions is 

determined through comparison with the results obtained numerically. AIso, order of 

magnitude effects of aerodynamic forces are obtained. For the space elevator model 

considered in Chapter 5, the ribbon is assumed to be elastie, undergoing longitudinal and 

lateral deformations. Here, to simplify the analysis, the small movement of the base is 
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ignored. Analytical and numerical results are obtained for this depiction of the space 

e1evator, which is a more accurate one than that considered in Chapter 3. Chapter 6 deals 

with launch dynamics, and the effect that the space elevator' s motion will have on the 

orbit of launched satellites. Finally, Chapter 7 contains a summary of the findings of the 

thesis, and suggestions for future work in this area. 
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Chapter 2: Fundamentals of the Space Elevator 

2.1 Fundamentals of Space Elevator Design 

2.1.1 The Ribbon 

The main component of the space elevator is a very long tether. The cross-section 

of the tether will be rectangular, with one dimension mu ch greater than the other 

(Edwards, 2000). For this reason, the tether is referred to as the ribbon. This particular 

choice of cross-section will be used to facilitate cIimbing and to avoid complete rupture 

when inevitable collisions with small space debris occur. This ribbon is attached to the 

base on the Earth. The base, located on the equator, may sit on land or water. It is likely 

that the base will be placed in an ocean, and will resemble an anchored oil tanker. One 

reason for this is that a mobile base would offer a means of control for the space elevator. 

For example, translation of the base could be used to remove the ribbon from the path of 

satellites or large space debris detected via radar. 

The first criterion that the space elevator must satisfy is that its net load in the 

vertical direction should be zero without the presence of a climber (unoccupied state). As 

shown by Pearson (1975), this may be accompli shed by using a nominally stretched 

ribbon length L, of about 144,000 km. It would be self-balanced. The ribbon is 

nominally stretched because, in its unoccupied state, the ribbon experiences a nominal 

strain due to gravitational and centripetal forces acting in opposite directions. The value 
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of L is found by forcing the net load on the ribbon to be equal to zero. The net load on 

the ribbon is the integral of the two loads acting on it. The gravitational force per unit 

mass acting on a ribbon element in the vertical direction is given by -f.4 r 2 
, where f.L is 

the gravitation al constant of the Earth, and r is its radial position. The centripetal force 

per unit mass acting on the ribbon element in the vertical direction is given by Q 2r, 

where Q is the spin rate of the Earth. Figure 2.1 shows how these and the net force per 

unit mass vary with radial position. 
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Figure 2.1: Centripetal, gravitational and net load per unit mass vs. radial position 

The net load is zero at the geosynchronous radius of about 42,200 km. Below this radial 

position, the gravitational load dominates heavily, whereas the centripetal one begins to 
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dominate beyond it. A ribbon with uniform bulk density and cross-sectional area along 

its stretched length L must satisfy 

(2.1) 

or 

(1 1) n? [ 2 2J Ji ---- -- (R+L) -R =0 
R R+L 2 ' 

(2.2) 

where Ris the radius of the Earth. The value of L satisfying Eq. (2.2) is given by 

(2.3) 

where Re is the geosynchronous orbit radius of the Earth. It is the radial position at 

which the orbital period is equal to the period of the Earth's rotation and is given by 

(2.4) 

At this altitude, the magnitudes of the gravitational and centripetalloads are equal. For a 

space elevator built on Earth, the nominally stretched length of a self-balanced ribbon is 

L = 144,206 km, or L + R = 3.565Re . 

Since the aforementioned loads act in opposite directions, the static ribbon is in 

tension. The tension varies throughout the ribbon's length with the highest value 

occurring at the geosynchronous radius. For this reason, Pearson (1975) suggested 

tapering the cross-sectional area appropriately to ensure constant stress throughout the 

static unoccupied ribbon of the space elevator. 
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Wh en Pearson (1975) developed the tapering function that ensures constant stress 

across the ribbon, he did not take the longitudinal extension caused by the tension in the 

static ribbon into account. The tension in the static ribbon will cause it to ex tend 

longitudinally from its unstressed state by u(s), where s is a measure of the position of a 

ribbon element. Letting 8 denote the strain in the ribbon, 

8(S) = du = O"(s) , 
ds E(s) 

(2.5) 

where O"(s) and E(s) are the stress and modulus of elasticity of the ribbon, respectively. 

The modulus of elasticity is assumed constant throughout the ribbon. Recalling that the 

static ribbon has constant stress throughout it, the strain of the static ribbon is a constant, 

80 = 0"0 / E. Using zero deformation at the base as a boundary condition, the deformation 

of the static ribbon from its nominal, unstressed state is given by 

u(s) = 80S. (2.6) 

Thus, if the nominally stretched ribbon is to have length L, its original length Lu must be 

given by 

(2.7) 

Lu is the nominallength of the ribbon. It is noted that ev en for a small nominal strain, the 

difference between the ribbon length before and after deployment would be thousands of 

kilometres. 

Consider an element dm at a distance r from the center of the Barth. Assume that 

the ribbon is designed su ch that the stress is uniform throughout and is given by 0"0' The 

forces acting on the element are shown in Figure 2.2. 
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Figure 2.2: Free body diagram of a ribbon element 

T is the tension in the ribbon, A is its cross-sectional area, and dFg is the gravitational 

force acting on the element. From Newton's second law, 

(2.8) 

Substituting values for tension, gravitational force and acceleration, 

(2.9) 

dm is the pro du ct of the bulk density, r, and the infinitesimal volume given by Ads, 

where s is a ribbon coordinate. The spatial coordinate r and the ribbon coordinate sare 

related by 

r=R+s+u(s), (2.10) 

where u(s) is the longitudinal displacement of a ribbon element located at s. As a result, 

dr = ds (1 + du/ ds). As the ribbon taper will be designed to have constant stress, it will 
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also have constant strain, such that du/ ds = so. Therefore, for the derivation of the cross-

sectional area, the following substitution is made: 

ds = dr/{l + So). (2.11) 

The bulk density is assumed constant throughout the ribbon. Making the above 

substitutions and simplifying, 

[
rA(r)dr](_n,2 / 2) = d'A 
( ) 

.lolo r + J1 r (Jo n, 
1+6'0 

(2.12) 

or, 

(2.13) 

It is now useful to introduce the characteristic height of the ribbon, which is given by 

(2.14) 

go is the surface gravit y of the Earth, and is given by 

(2.15) 

The characteristic height is the strength to density ratio of the ribbon material, with a 

built-in safety factor, which is scaled with respect to the surface gravit y of the Earth to be 

a measure of length. Clearly, materials with higher strength to density ratios have higher 

characteristic heights. The characteristic height is essentially a measure of the feasibility 

of constructing a space elevator out of a given material. If the nominal stress is equal to 

the maximum stress (no safety factor), Pearson (1975) defines h as " ... the height to 

which a constant-cross-section ribbon of the material could be built in a uniform one-g 

field without exceeding the stress limit of the material at the base." Substituting 
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.Q2 = Ji/ R~ , Ji = gOR2 , and 0"0 = ïï ygo into Eq. (2.13) and then simplifying, one arrives 

at 

(2.16) 

Integrating Eq. (2.16) results in 

[ 
R2 [1 r

2 Jl A(r) = cexp ( ) -+-3 ' 
Il 1 +6'0 r 2RG 

(2.17) 

where c is a constant of integration. The boundary condition for the ribbon is that the net 

force acting on its free end must be equal to the tension in it at that point. As there is no 

force acting at that point, this boundary condition could be satisfied by having the cross-

sectional area equal zero at the tip (this would ensure zero tension). However, from Eq. 

(2.17), it is apparent that the cross-sectional area of the ribbon cannot be zero at any 

location if it is to have constant stress. Thus, in order to satisfy the boundary condition at 

the tip of the ribbon, a mass me, called the counterweight, must be attached there. The 

forces acting on the counterweight can be made equal to the tension at the tip by forcing 

(2.18) 

Through differentiation of Eq. (2.17), it may be shown that the maximum value of cross-

sectional area occurs at the radial position r = RG • Therefore, A(RG ) may be set to the 

useful design parameter Am, which is the maximum cross-sectional area of the ribbon. 

Then, after sorne manipulation, the cross-sectional area profile may be expressed as 

A(r) = An exp[ F(r)], (2.19) 

where 
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(2.20) 

An almost identical solution was obtained by Pearson (1975). The only difference is that 

the (1 + Eo) term did not appear in his solution. This is because the nominal longitudinal 

extension was not considered in his taper function derivation. AIso, in his derivation, the 

boundary condition at the tip of the ribbon was not satisfied. It is essential that there be a 

counterweight placed at the free end, and it is given by 

m = O"oAmexp[F(r)]LR+L 

C {Q2{R+L)-,u/{R+L)2}· 
(2.21) 

Including a counterweight in the design does not affect the taper function of the ribbon. 
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Figure 2.3: Cross-sectional area of ribbon vs. radial position for ïï = 2,750 km 
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The resulting taper ratio of the ribbon, which is the quotient of Am, and the cross-

sectional area at the Earth's surface, Ao, is given by 

[ [ )
2 [ )] 

R R R 
A 1 An = exp 1-- 1+-

m h (1 + t'o ) RG 2RG· 
(2.22) 

Inputting values for Rand RG, the taper ratio is given by about exp (0.776R 1 h). For a 

material with h = 2,750 km, the taper ratio is about 6. The taper function of a material 

having this characteristic height is plotted in Figure 2.3. The density of carbon nanotubes 

is 1,300 kg/m3 and the theoretical value for its maximum tensile strength is 130 GPa 

(Yacobson et al, 1997). However, this strength property has yet to be attained in 

practice. Still, if the maximum strength of the ribbon material were only 70 GPa, its 

characteristic height would be 2,750 km using a safety factor of two (i.e., 0"0 = 35 GPa), 

and its cross-sectional area variation would be as plotted in Figure 2.3. 

The nominal tension in the ribbon may now be expressed as: 

(2.23) 

The taper has no effect on the required stretched length of a self-balanced ribbon, since it 

can be shown numerically that the solution to 

(2.24) 

is also given in Eq. (2.3). However, it has been shown that for a ribbon of any length 

(even a self-balanced one) to have uniform stress, it must have a counterweight attached 

at its free end. The mass of the ribbon ml, is given by 
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4, 

ml =rAm fexp[F(s)]ds, (2.25) 
o 

where 

(2.26) 

2.1.2 The Counterweight 

As shown in Section 2.1.1, a counterweight is a necessary component of the space 

elevator, as without one, the ribbon could not satisfy the boundary condition at the free 

end. Through manipulation of Eq. (2.21), the equation for the required counterweight 

may be expressed as 

exp [ F (s )1"=4) ] 
(2.27) 

Clearly, the required counterweight is proportional to the maximum cross-sectional area 

of the ribbon, and also depends on the ribbon' s other design and material parameters. 

Placing a counterweight at the space end of the ribbon allows the stretched ribbon 

length L to be a design parameter, which must only satisfy L + R > RG in order to have a 

balanced ribbon. However, if L > 144,206 km, unnecessary additional tension will 

manifest at the base of the ribbon. The freedom to choose a nominally stretched length of 

ribbon is useful from a design standpoint. It is c1ear from Eq. (2.27) that as L approaches 

its minimum acceptable value of RG - R, the required value of me approaches infinity. 
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As will be seen in Chapter 6, it is desirable to have a ribbon that extends far beyond the 

geosynchronous altitude so that payloads may be sent to planets other than the Earth. 
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Figure 2.4: Ribbon, counterweight and total mass per unit area (Am) of ribbon vs. 
stretched ribbon length; taper ratio = 6 

Figure 2.4 illustrates how massive the space elevator will be. The ribbon's bulk 

density and modulus of elasticity are assumed to be 1,300 kglm3 and 1 TPa, respectively. 

If the ribbon were to have a taper ratio of about 6 (0"0 = 35 GPa) and a stretched ribbon 

length of 100,000 km, and if its maximum cross-sectional area were only 10 mm2
, its 

mass would be about 990 tons. The corresponding counterweight mass would be about 

330 tons. A lower taper ratio does not affect the counterweight mass by much, but does 

increase the ribbon mass slightly for the same value of Am. The advantage of a ribbon 

having a lower taper ratio is seen in its lifting capability; this is discussed later. 
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A counterweight is also a necessary component of the design because it will 

consist initially of the original spacecraft that transported the wound ribbon to the 

geosynchronous altitude for earthward and spaceward deployment (Edwards, 2000). 

Equations (2.25) and (2.27) are important to consider wh en planning for the deployment 

of the space elevator. Furthermore, early operation of the space elevator will involve 

sending climbers that gradually thicken the ribbon to increase the maximum climber mass 

that it can support (Edwards, 2000). These climbers will end their trajectories at the 

space end of the ribbon, becoming part of the counterweight. The mass of these climbers 

will be such that their presence at the space end of the ribbon balances the offset caused 

by the additional material they added to it. It follows that if a climber is to thicken the 

tapered ribbon during its ascension by a certain percentage, the mass of the climber must 

be the same percentage of the mass of the CUITent counterweight. 

2.1.3 The Climber 

As the balanced, tapered ribbon is deployed from the geosynchronous altitude in 

both the Earthward and spaceward directions, the transport spacecraft will concuITently 

ascend the ribbon to become the counterweight of the space elevator. Then, the ribbon 

may be connected to the base on the surface of the Earth. This will complete the 

deployment phase of the space elevator. At this point, climbers may move to any 

position along the ribbon, and launch their payload in its desired trajectory, be it to an 

Earth orbit, or to another destination in the solar system. 
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The presence of a climber will cause an additional tension gradient across the 

ribbon. The magnitude of this addition al tension gradient is related to the position and 

acce1eration of the climber. Assuming that the acceleration of the climber is not too 

large, the rise in tension will be mainly due to the gravitational and centripetal forces 

acting on the climber. Letting me be the mass of the climber (elevator), the increase in 

stress caused by the climber, CYe , as a function of radial position ris given by 

(2.28) 

The maximum increase in stress occurs at the base (r = R), where the load acting on the 

climber is the highest (see Figure 2.1), and the cross-sectional area of the ribbon is the 

lowest, due to the taper. Letting the maximum allowable increase in stress due to the 

climber's load be a fraction, V, of the nominal stress, CYa, the maximum permissible 

climber mass is gi ven by 

(2.29) 

If the constraint given by Eq. (2.29) is not respected, the ribbon will rupture. It is 

therefore useful to minimize the taper ratio, because for a given Am, both the cross-

section al area at the base Ao and the nominal stress CYa would increase as a result, thereby 

increasing the maximum allowable climber mass. It can be shown that as the taper ratio 

decreases, the percentage increase in me,max is mu ch greater than that of the ribbon mass. 

Of course, the minimum allowable taper ratio is related to the strength limitations of the 

ribbon material. Also, as stated by Pearson (1975), a taper ratio in the neighbourhood of 

three should be avoided due to resonance with the frequency of the moon. 
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For a space elevator having the numerical values, y= 1,300 kg/m3
, Am = 10 mm2

, 

and 0"0 = 35 GPa (taper ratio of about six), the maximum climber mass is roughly 5.9v 

tons. If the stress in the ribbon is only allowed to increase from its nominal amount by 

10% due to the presence of a climber, then the climber must satisfy Ine :::; 0.59 tons. As 

previously stated, a nominally stretched ribbon measuring 100,000 km having the 

aforementioned properties will have a mass of about 990 tons, and will require a 330-ton 

counterweight connected to its free end. Clearly, if the constraint given by Eq. (2.29) is 

to be satisfied, the mass of the climber will be very small compared to that of the ribbon 

and counterweight. This fact will be used while deriving closed-form solutions. 

2.2 Comparison with Typical Tethered Satellite Systems 

The dynamics of a space elevator resemble those of a standard two-satellite space 

tethered system, but with several major differences. A standard tethered satellite system 

consists of two satellites connected by a long tether pointing in the radial direction, with 

one point of the tether (not necessarily the center of mass of the system) in a circular 

orbit. The most notable difference between this system and that of the space elevator is 

the length of the tether. Long tethers in space are of the order of 100 km end to end; the 

space elevator will be roughly one thousand times this length. 

Often, with tethered satellite systems, the dynamics can be weIl modeled by 

neglecting the mass of the tether, as it is small with respect to the two end masses. For 
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the space elevator, the tether is in fact mu ch more massive than the climbers it will 

support (as shown in Section 2.1.3), and is of the same order as the end mass. Therefore, 

in parts of the analysis in this thesis, the mass of the climber will actually be neglected. 

The long tether causes other differences to arise. Climbers traversing the entire ribbon 

will do so in weeks rather than hours. Also, because the radius of the Earth is actually 

mu ch smaller than the length of the tether, the gravitational potential en erg y expressions 

for the space elevator may not be approximated using a binomial expansion as is usually 

done. 

Another major difference between the two systems is the fact that the space 

elevator ribbon/tether is connected to a base on the surface of the Earth (not a second 

satellite). One consequence of this difference is that other than structural deformation, 

the nominal length of the tether will not change. For tethered satellites, the deployment 

and retrieval of a satellite involves deploying and retrieving the tether itself. These types 

of dynamics will occur only during the deployment of the space elevator, and not during 

general operation, which is what this thesis aims to examine. 

Like typical tethered satellite dynamic models, the libration angle of the space 

elevator is its most important degree of freedom. However, for these typical models, this 

angle refers to the rotation of the tether about its center of mass. For the space elevator, 

the libration angle refers to the rotation of the ribbon at the base located on the surface of 

the Earth. 
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Although there appear to be many factors distinguishing the space elevator from a 

typical tethered two-satellite system, it will be observed that the governing dynamics of 

the two systems are quite similar. 

2.3 Operational Costs 

From a business standpoint, the primary motivation for the implementation of a 

space elevator is that it would drastically reduce the cost of satellite placement and space 

missions. Its construction costs, which are heavily dependent upon the cost of carbon 

nanotube synthesis, have been approximated in the tens of billions of dollars (USD) 

(Edwards et al, 2002). While this may seem expensive, with frequent use, the savings 

incurred during the space elevator's operation could be enough to recover these setup 

costs rather quickly. 

The case where a payload is carried inside a climber from the surface of the Earth 

to sorne altitude, dj , below the geosynchronous orbit is examined. The climb beyond this 

altitude is propelled by the spin of the Earth, the effect of which is greater than that of the 

gravitational force beyond the geosynchronous altitude. If the climb is done at a constant 

speed, and the ribbon remains in its nominal position, the required thrust by the climber, 

FT, is given by 

(2.30) 

where de is the position of the climber. The work done by the climber, WT, is found by 

integrating the product of climber thrust and differential climber position: 
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(2.31) 

The work per unit mass do ne by the motor to move the climber from the surface of the 

Earth to sorne altitude below the geosynchronous orbit, dj , is then given by 

Wr = J1[ d f J- .Q2 [(R+d )2 _R2]. 
m R d +R 2 f 

e f 

(2.32) 

Therefore, the work per unit mass done by the motor to move the climber from the 

surface of the Earth to the geosynchronous altitude is about 48.5 Ml/kg. An apparent 

anomaly occurs when examining the change in the energy per unit mass of the climber 

before and after transit, EH2' given by 

(2.33) 

or 

(2.34) 

The increase in the total energy per unit of mass of the climber in moving from the 

surface of the Earth to the geosynchronous altitude is about 57.7 Ml/kg. This result begs 

the questions, "How did the climber gain more energy than the work the motor put into 

it?" and "Where did this free energy come from?" Thefree energy came from the spin of 

the Earth. For a transit to the altitude dj. the energy per unit mass extracted from the 

Earth is given by .Q2 [( d f + R) 
2 

- R 2 
] ; for this particular case, it is .Q2 (R~ - R 2

). The 

slowing of the spin of the Earth due to this energy extraction is negligible. The situation 

is analogous to that of gravit y assist. This result implies that even if a rocket were made 

to function with the same overall efficiency as that of the space elevator, it would still be 
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less efficient, as it could not extract this free energy. It is however somewhat of a moot 

point, as these savings are small compared to those incurred due to the actual difference 

in the overall efficiency between the two methods of space travel. 

The fuel cost for a typical shuttle launch to the geosynchronous orbit is around 

$210 per kilogram of payload (Edwards et al, 2002). The required energy cost in order to 

accomplish this same feat with the space elevator, CSE, is given by 

(2.35) 

Ce is the co st of electricity per MJ, and 17 is the overall efficiency of the energy 

conversion process, which inc1udes that of the transmission from Earth via laser (which is 

quite low) and that of the climber's motor. M p is the ratio of the payload mass to that of 

the entire mass being lifted, me. If reasonable values are assumed for these parameters 

(Ce = 0.012 $IMJ, 17 = 0.3 and M p = 0.65), the cost for transport to the geosynchronous 

orbit using the space elevator is around $3 per kilogram of payload. 

It is c1ear that the space elevator could bring space travel costs down by two 

orders of magnitude. If power-beaming technology were to progress greatly, this 

decrease in operation al costs would be even greater. Also of interest is the fact that 

climbers ascending the ribbon at constant speed beyond the geosynchronous altitude 

would be required to brake, and could actually generate en erg y in doing so. A more 

detailed cost analysis of the space elevator is provided by Edwards (2002). 
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Chapter 3: Rigid Tether, Mobile Base Model 

3.1 Description of the System 

The physical model used to de scribe the space elevator is in the equatorial plane. 

The model, seen in Figure 3.1, is simplified in this chapter (and the next) by assuming the 

ribbon to be rigid. To depict this mathematically, the modulus of elasticity of the ribbon 

material is set to infinity. As such, the ribbon experiences no strain, and its unloaded 

length La and deployed length Lare identical. 
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Figure 3.1: Space elevator components and degrees of freedom 
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The base is allowed to move to inc1ude the scenario of the space elevator floating in the 

ocean. The Earth has a uniform radius R, and rotates with angular velocity Q. The center 

of the Earth is assumed to be inertially fixed. The origin of the inertial frame coincides 

with this point. The rotating unit vectors ev and eh point in the local vertical and 

horizontal directions, respectively. Unit vector i is along the ribbon. The unit vectors i 

and j are obtained by rotating ev and eh through an angle a. s is the coordinate measured 

along the ribbon. As shown in Section 2.1.1, the relationship between radial position r 

and ribbon coordinate s is given by r = R + s + u(s) , where u(s) is the longitudinal elastic 

displacement of an element at s. For aIl derivation and analysis in Chapters 3 and 4, the 

longitudinal extension, u(s), is zero, because there is zero strain. Non-zero u(s) is 

considered in Chapter 5. 

The base, having mass mb, is free to translate horizontally; the translational 

displacement is denoted by db. The translation of the base from its nominal position is 

likely to be small compared to the radius of the Earth, and hence allowing it to slide only 

in the eh direction is a good assumption. The ribbon, extending from the base to the 

counterweight, rotates in the vertical plane by an angle a, this is defined as the libration 

angle. The elevator, having mass me, can move along the ribbon; its distance from the 

base is denoted by de. Generalized co-ordinates db, a, and de describe the three-degree­

of-freedom system. 
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The counterweight has mass me, and the ribbon's lineal density, p(s), varies 

across its length, as p(s)=Pmexp[F(s)]. Pm is the maximum lineal density and 

corresponds to the density at the geosynchronous altitude. It is the product of the 

ribbon's bulk density, y, and its maximum cross-sectional area, Am. The ribbon's taper 

function defined by F(s) was given in Chapter 2 (Eq. (2.26». 

Items not shown in Figure 3.1 are spring and damping constants kb and Cb, which 

emulate an an ch or restricting the motion of the base. There is also a torsion al spring 

constant kt, restricting the rotation of the ribbon. 

3.2 Energy Expressions and Equations of Motion 

Equations governing the motion of the system are derived using the Lagrange 

approach. In order to use this approach, expressions for the kinetic and potential energy 

of the system are needed. 

The position vectors for the various space elevator components are given by 

f B = dbeh + Re v ' 

f E =fB +dei, 

f R (s) = f B + si, and 

fc =fB +~i. (3.1) 

Here, the subscripts B, E, Rand C stand for the base, elevator, ribbon and counterweight, 

respectively. The velocity vectors are given by 
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V B = (db sin a+ RQsina-dbQcosa)i 

+ (db cosa+ RQcosa+dbQsina)j, 

vE = vB +dei+[(Q+a)de ]j, 
v R (s) = vB +[( Q +a)s ]j, and 

V c = vB +[(Q+a)4]j· 

The total kinetic energy of the system can be written as 

where 

The total potential energy of the system is 

where 

(3.2) 

(3.3) 

(3.4) 

PEL is the elastic potential energy associated with the anchor of the base and the ribbon 

attachment system, respectively. 
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Lagrange' s equations can be written as 

(3.5) 

In Eq. (3.5), qi is a generalized coordinate, and Qi is the corresponding generalized force. 

By substituting the energy expressions from Eqs. (3.3) and (3.4) into Eq. (3.5), one 

obtains, after considerable algebra, 

de _(Q+à)2 de +( db -Q2db )sina-Q( 2db + RQ )cosa 

,li(de+Rcosa+dbsina) Qde + -------'--'-------'----'---~3 =-

(R 2 +d; +d; +2Rde cosa+2dbde sina)2 

m/nt (db -Q2db )+(I2 +mJ.1J +mede){acosa-(Q+àt sin a} 

+2mede (Q+à)cosa+mede sina 

,limbd
b 

4J

f 
p(s)(db+ssina) 

+ 3 +,li 3 ds 

(R2+d;P: 0 (R 2+d;+s2+2Rscosa+2dhssina)2 

,lime (db + La sin a) 
+ 3 

(R 2 + dl; +~ +2RLa cosa+2dbLa sina)2 

,lime (db +de sina) 
+ 3 + kbdb + cbdb = Qdb ' 

(R 2 +d; +d; +2Rde cosa+2dbde sina)2 

and 
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(3.6) 

(3.7) 



ii(mc~ +med; +I3)+2medede (n+à) 

+ (m)'Q + me de + 12)( db cosa+ 2ndb sina-n2db cosa+Rn2 sin a) 

Lo

J 
p(s)s(dbcosa-Rsina) 

+p 3 ru 
o (R 2 +d; +S2 + 2Rscosa+ 2dbssinaF 

pmJ~ (db cosa-Rsina) 
+ 3 

(R 2 +d; +~ +2R4 cosa+ 2db4 sinaF 

pmede (db cosa-Rsina) 
+ 3 +kta=Qa' (3.8) 

(R 2 +d; +d; + 2Rde cosa+2dhde sinaF 

In the equations of motion, 

L" 

Ii = J p(S)Si-1ds, i = 1,2,3 ... (3.9) 
o 

and mtot is the total mass of the system, given by 

(3.10) 

The equations of motion contain mainly inertial, centrifugaI and gravitational terms. 

There are also two elastic, one viscous and sorne mixed terms inc1uding the Coriolis 

force. 

For convenience of analysis, these equations are non-dimensionalized. Non-

dimensional masses are defined by 

(3.11) 

The distances are also non-dimensionalized, and are defined by 

(3.12) 
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Here, h is an appropriate scaling factor for the small displacements of the base, to be 

chosen when doing numerical computations. Other useful distance ratios are given by 

Non-dimensional time 't is defined by 

The equations of motion can now be written in non-dimensional form as: 

D; + hLD; sina-(1 +a')2 De -hLDb sina-{2hLD; + RL}cosa 

{De + RL cosa+hLDb sin a} 
+Â 3 

[{(hL/RJDb sina+cosa+(1/RJDJ
2 

+ ((h)RJ Db cosa-sina)2]ï 

(3.13) 

(3.14) 

= QdJm/~Q2 , (3.15) 

" M" 1 ( A ) " 2 (1 + a') , Db+-e Desina+- M/2+MeDe+Mc a cosa+ MeDecosa 
~ ~ ~ 

(1 +a')2 A D 
- (M/2 + MeDe +Mc)sina-Db +ÂMb h 3 

hL {(hL/ RJ2 D; + 1? 
{Db + (l/hL) De sin a} 

+ÂMe 3 

[{( hL/ RJ Db sin a+cos a+ (1/ RJ De r +{( hL/ RJ Db cosa-sin ar T 

If exp [ F (;) ] { Db + (1/ hL) ; sin a} 
+ÂMp 3d; 

o [{(h)RJDb sina+cosa+(ljRJ;}2 + {(h)RJ Db cosa-sina}2T 

{Db +(l/hL)sina} 
+Wc 3 

[{(hL/RJDb sina+cosa+(1/RJ}2 + {(h)RJDb cosa-sina}2]ï 

+KbDb + CbD; = Qdb/ mtotQ2h , (3.16) 
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and 

+(M/2 +MeDe +Mc ) {-hLDb cosa+2hLD; sin a+RL sin a} 

De {hLDb cosa- RL sina} 
+ÀMe 3 

[{(hL / RJDb sin a+cosa+(11 RJ De}2 +{(hL / RJDb cosa-sinarT 

1 JI exp[F(~)g{hLDbcosa-RLsina} ~ 
+/I,M p 3 d~ 

o [{( hL / RL) Db sin a+cosa+(l/ RL) ~}2 +{ (hL / RL) Db cos a- sin a}2T 

{hLDb cosa-RL sin a} 
+mc 3 

[{( hLI RL) Db sin a+ cosa+ (II RL)}2 +{( hLI RL) Db cosa- sin a}2T 

(3.17) 

In Eqs. (3.15), (3.16) and (3.17), prime denotes differentiation with respect to r. Non-

dimensional spring and damper constants are defined as 

(3.18) 

The Earth's gravitational constant is scaled to 

(3.19) 

Finally, non-dimensional integrals appearing in the equations are 

(3.20) 

where 

(3.21) 
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3.3 Generalized Forces 

To complete the problem formulation, the generalized forces Qi must be 

expressed in terms of the system's extemalloads and states. For p differential forces dFj 

acting at a point located a distance fj from the origin of the inertial frame, the generalized 

forces are found using 

(3.22) 

There are two extemal forces to examine. The first is the driving force of the motor 

acting on the c1imber. The thrust FT exerted by the c1imber' s motor will act in the 

direction of its motion so that 

FT = 1';.i = 1';. ( cos ae v + sin aeh ) • (3.23) 

The other extemal load is due to aerodynamic effects. Aerodynamic forces act on the 

ribbon as a distributed force in the vertical and horizontal direction as 

(3.24) 

The aerodynarnic forces acting on the c1imber itself are not studied in this thesis, as they 

are not as important to consider as those acting on the ribbon. The ribbon is always 

present in the lower atmosphere of the Earth, where aerodynamic forces are large. The 

c1imber will pass through, but probably not rest at ribbon positions of such low altitudes. 

The position vectors of the point of application of the distributed force on the ribbon and 

the point force on the c1imber are listed in Eq. (3.1). The generalized forces can now be 

found using Eq. (3.22), and are presented in Table 3.1. 

49 



Table 3.1 Generalized forces for rigid ribbon, mobile base model 

From motor thrust on c1imber From aerodynamic force on ribbon 

Fr sina 

o 

3.4 Aerodynamic Forces 

Fh 

f S ( cos adFh - sin adFv ) 

o 

The segment of ribbon within the atmosphere of the Earth will expenence 

aerodynamic forces. For this thesis, only the first one hundred kilometres of atmosphere 

are considered, as the density of air becomes negligible by comparison beyond this point. 

So, the region of altitude of interest may be defined as 0 ~ alt ~ hatm' where hatm = 100 

km. In this region, air may be treated as a continuum (Regan et al, 1993). The aim is to 

find accurate expressions for the vertical and horizontal components of the aerodynamic 

forces, dFv and dFh, respectively. In Figure 3.2, Vrel is the velocity of air relative to that 

of an arbitrary point P on the ribbon. The velocity of air in the atmosphere is the sum of 

Vatm, a constant velocity representing the rotating atmosphere and Vwind, the wind 

velocity, which incorporates any deviations from this. Therefore, 

V rel = vatm +vwind -vP ' (3.25) 

and 
V atm = nxrp. (3.26) 

dFL and dFD are the lift and drag components of the aerodynarnic force applied at point 

P. The drag acts in the direction of the relative velocity vector, and the lift acts 

perpendicular to it. 
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dFD 

Figure 3.2: Variables for aerodynamic force calculation 

In a continuum, a good approximation for the differential lift and drag forces are 

(Hoemer, 1958) 

(3.27) 

and 
(3.28) 

where ~is the angle between Vrel and unit normal n. The latter is given by 

n = - sin ae v + cos aeh • (3.29) 

The dynamic pressure q is given by 
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(3.30) 

Furthermore, CD is the coefficient of aerodynamic drag, and dA is the infinitesimal 

surface area exposed to the relative velocity. The cosine and sine of fjJ are obtained from 

(3.31) 

The lift and drag forces both have components in the local vertical and horizontal 

directions. Through an appropriate transformation of the lift and drag forces, the vertical 

and horizontal components of the aerodynamic force, which are required for generalized 

force computation, may be found: 

dFv = CDqlcos fjJl dA {2sin fjJcosfjJcos a+( 1- 2cos2 fjJ )sin a} , 

dF" = CDqlcos fjJl dA {( 2cos2 fjJ-1)cosa+ 2sinfjJcos fjJsin a}. 

(3.32) 

(3.33) 

The above expressions are only valid for the rigid ribbon model of the space elevator. 

The density of air in the atmosphere, Pair, is a function of altitude, and may be 

approximated by an exponentially decaying function given by (Regan et al, 1993) 

-aY; 
Pair = POe H, (3.34) 

where 

(3.35) 

U sing atmospheric data for the first 100 km of altitude compiled in (Hanwant, 1995), a 

best-fit exponential curve yielded Po = 1.3 kg/m3
, H = 7074 m. 
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3.5 Prescribed Motion of the Climber 

To examine the effect of the c1imber on the space elevator system, its motion 

De (r) is prescribed. The expression for De (r) is obtained for a particular type of 

ascension from its initial non-dimensional altitude Di to its final one Dl; Like De, these 

values are non-dimensionalized with respect to Lo. The motion that will be used for aIl 

numerical simulations, shown in Figure 3.3, has three phases of non-dimensional duration 

Ta, Tc and Td, respectively. 

1\ 

\ 
\ 

Ta --+------ T c-----+--T d 

Figure 3.3: Velocity profile of c1imber, n:(T) 

In phase one, the c1imber accelerates as a half-sinusoid curve from rest to its 

cruise ve1ocity, which is non-dimensionalized with respect to Lof:! to Vc. In phase two, 

the c1imber maintains this cruise velocity. In the final phase, the c1imber decelerates as a 
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half-sinusoid to rest as it reaches DJ. This velocity profile is convenient because the 

resulting acceleration profile has no discontinuities. D; = 0 initially, at both breakpoints, 

and at the end of the motion. 

For this thesis, the acceleration and deceleration phases are assumed to take equal 

amounts of time, so that Ta = Td • Then, the prescribed motion is defined by just four 

parameters: Di, Ta, Tc and Vc. The motion can be written mathematically in terms of 

these parameters as 

(3.36) 

Velocity and acce1eration expressions can be found through differentiation. 

The four motion parameters are useful for expressing the motion, but not useful 

for conducting a parametric analysis. For this, the parameter TR = Ta /~ (time of 

acceleration to time of cruise ratio) is introduced, and will be referred to as the climbing 

time ratio. The prescribed motion from one ribbon position to another may now be 

defined by the four motion parameters: Di, DJ, Vc and TR . Tc may be ca1culated from 

T = (Di -Di) 
c V

c 
(1 +T

R
) • 

(3.37) 
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Chapter 4: Basic Dynamical Behaviour of the Space Elevator 

4.1 Equilibrium and Stability 

To understand the nature of the dynamics of the space elevator, its equilibrium 

configurations are first investigated. For this section only, the degree of freedom de is 

non-dimensionalized with respect to the radius of the Earth: De = de / R . 

First, the simplest case is considered. The base and the ribbon are forced into 

their nominal positions. The equation of motion for a climber on a vertical ribbon is 

given by 

-H _ Â 
r = r - -2 . 

r 
(4.1) 

In Eq. (4.1), non-dimensional r = De + 1, and Â is the non-dimensional gravitational 

constant defined in Eq. (3.19). Prime denotes differentiation with respect to non-

dimensional time T defined in Eq. (3.14). Of course, the equilibrium position for the 

climber is at the geostationary altitude, given by 

(4.2) 

or 

D- =1X_l e,eq /1, • (4.3) 

Equation (4.1) can be integrated to yield 
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(4.4) 

where V = r is the non-dimensional velocity of the c1imber and c is a constant of 

integration. The interested reader is referred to McInnes (2005) for a discussion of the 

nature of these trajectories. An important observation is that the equilibrium point is a 

saddle point and is unstable. 

In the second case, the system of a climber and a freely rotating ribbon is 

considered. The two-degree-of-freedom system of De and ais obtained by setting 

Db = 0 in Eqs. (3.15) and (3.17), and making the substitution, De = RLDe' It is given by 

D;=(l+aYDe+cosa-1L (De+cosa) 3' (4.5) 

[ 1 + ( De r + 2 ( De ) cos a J 
and 

{MeRiD; +Mc +MJ3}a" = -RL {MJ2 + MeRL De +Mc} sina-2Ri (l+a')Me DeD; 
2- . 1 F(q) 

ILMeRLDe sma 1M' R f e q d,!: + 3 + /1, p sm a L 3 <;, 

[1+(De)2 +2(De)cosa J 0 [1+{q/RJ2 +2{q/RJcosa J2 
ILMcRLsina 

+ 3 -Kta. (4.6) 

[1+ {l/RJ2 +{2/RJcosa J 
For this two-degree-of-freedom system to be in equilibrium, 

D 2 + 2D cos a = IL.% -1 
e e ' 

(4.7) 

must be satisfied, along with 
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M . j1Jl exp [F(ç)]Ç dJ:_IA ! 
Ji sma .fi., 3 ':t 2 

o [1+(Ç/RL)2 +2(ç/RJcosa J2 

+Mc Sinaj Â, 3 -1!-{l/RJKta=o. 
[1+ {l/RJ2 + 2 {l/RJ cos a r (4.8) 

De + cos a = 0 is another possibility for equilibrium, but it will never be satisfied since 

De :::::: 0, and the expected range for the libration angle is -5 < a < 5 degrees. One 

equilibrium configuration for this system (the one with practical importance) is 

De = Â,X -1 (c1imber at geosynchronous altitude) and a = 0 (vertical ribbon). This 

result was expected from examination of the simpler c1imber case. Infinite 

configurations satisfying Eq. (4.7) exist. It would seem that if the design parameters are 

carefully chosen, Eq. (4.8) could also be satisfied for a variety of a (assuming small a). 

However, doing so is akin to forcing the libration angle of the space elevator to be 

neutrally stable. Regardless, for any reasonable values of the ribbon length and taper 

ratio, Eq. (4.8) cannot be satisfied unless the tower is vertical. As such, practically 

speaking, the system does not have an equilibrium position other than 

(4.9) 

Linearization about xeq yields the following equations of motion, valid only in its 

vicinity: 

SDe" = ASDe + BSa', 

Sa" = CSa+DSDe', 
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where 

A=3, 

B=2(ÂX-1), 

R [M {ÂJ exp[F(q)g dq-Î }+M { À l}-Kt] 
L p 0 [1 + ; (l/RJJ 2 c [1+l/RJ3 

C=--=---~--~----------~------~--------~ 

{ M eR2 ( ÀX -Ir + Mc + M )3 } 

and 

(4.10) 

The coefficient Chas a negative value. It is zero only for the limiting case, where the 

1ength of the ribbon extends only up to the geosynchronous altitude and Kt = O. For 

realistic ribbon lengths, say from 75 000 km to 120000 km, -0.036 < C < -0.03. C is 

negligibly influenced by design parameters me and Am. The coefficient D has a negative 

value, which resembles the shape of C as Lo is increased. D is proportional to the mass of 

the c1imber me and inversely proportion al to the maximum cross-sectional area Am, but is 

always several orders of magnitude smaller than C, since Me is much sm aller than Mc or 

Mp. An eigenvalue analysis of the system shows that the equilibrium position [De' a]eq = 

[ÀX-1,0] is unstable. The four eigenvalues are E=[±ER,±iEI ], whereER=-.J3, 

varying slightly in response to changes in D, and El =- 0.18, varying slightly in response 

to changes in C. The coupled motion of the ribbon libration and c1imber position is 

unstable; what this means is that if the c1imber is given a displacement from its 

equilibrium position, it will continue to further di spI ace. However, the a motion is 

stable (the space elevator structure is stable). 
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4.2 Closed Form Solution for Libration Angle due to Climber Transit 

The aim of this section is to obtain a c1osed-form solution for the libration angle 

response of the space elevator ribbon due to c1imber transit. If the translation of the base 

is ignored in Eq. (3.17), the second order non-linear ordinary differential equation 

describing the libration angle response to a traversing c1imber is given by 

(Me D; +Mc +Mp~)a" = -RL (Mp~ + MeDe +Mc)sina-2(1+a')MeDeD; 

ÂMeRLDe sina 1M R' If exp [ F(ç»); dl: 
+ 3 + /1, p L sm a 3 '=' 

[1+ {De/RJ2 +2{De/RL)cosa J 0 [1 + {ç/RJ2 +2{ç/RJcosa J 
sina 

+ÂMcRL 3 Kp. (4.11 ) 

[1+ {l/RJ2 +2{l/RJcosa J 
It is assumed here that the c1imber position De is prescribed as a function of time. Since 

the libration angle will be less than one degree even in a worst case-excitation scenario 

(this assumption will be validated later), the equation can be easily linearized by letting 

cos a = 1 and sin a = a. The linearized equation is given by 

(4.12) 

The above equation can be expressed as 

a" + g(r)a' + h(r)a = -g(r) , (4.13) 

where 
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and 

(4.14) 

FinaIly, noting that the mass of the ribbon and counterweight are much larger than the 

mass of the climber, Eq. (4.13) can be weIl approximated as: 

a" + g(r)a' + W 2a = -g(r) , (4.15) 

where W is a constant and is given by 

W= (4.16) 

W is the non-dimensional natural frequency of oscillation of the libration angle 

a. It depends mainly upon the length of the ribbon and its taper ratio. In Figure 4.1, the 

non-dimensionalized natural frequency of libration for a nominally stretched ribbon 

measuring 100,000 km is plotted for a wide range of taper ratios. The non-dimensional 

period of libration is given by 21r /W. Since W is non-dimensionalized with respect to 

the spin rate of the Earth, the dimensional period of oscillation of a in days is given by 

1/w. For anticipated numerical values of the space elevator (L "" 1 00,000 km and 

3 < A,n/ Ao < 10), this period will be about five days. 
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Figure 4.1: Non-dimensional natural frequency of libration (W) vs. taper ratio; 

L = 100,000 km 

An analytical expressIOn for a(r) may be found for a c1imber transit with 

constant speed. If the c1imber goes from Di to Dj with constant velocity Vc. its position, 

velocity and acceleration are given by 

De = '-':1"+ Di 

D; =Vc ' 

and 
D"=ü e • (4.17) 

In reality, the c1imber will experience sorne form of ramp up and down in velocity. 

However, if the c1imber is to move a long distance, this ramp up and down time will be 

short in comparison to the cruising time. Thus, to simplify the analysis, c1imber 

acceleration and deceleration are approximated as being instantaneous for this analysis. 
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In other words, the time ratio introduced in Section 3.5 is taken as zero. For a climber 

with uniform motion, Eq. (4.15) has a closed form solution. It may be found using the 

substitution: 

(4.18) 

Then, 

zn + f(r)z = -2MeDeD;, 

where 

(4.19) 

Inputting the prescribed climber velocity and acceleration given in Eq. (4.17), and using 

the space elevator property that the climber mass is very small compared to that of the 

ribbon and counterweight, 

where 

Ni e = 2M e / ( Mc + M p Î 3 ) • (4.20) 

The following observations of the values making up f (r) are made: 

1. 0'5. De '5.1 

111. For a high cruise speed (say, 500 kmlhr), non-dimension al Vc = 0(10-2
) 

Based on these observations, fer) == W 2
• The closed form solution to the libration angle 

excited by constant climber speed may be easily found: 
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where 

(M D 2 M M lA )( MeVcDi J 
Cl = e i + C + p 3 ao + W 2 ' 

and 

(4.21) 

ao and a~ are the initial libration angle and rate, respective1y. From Eq. (4.21), the 

libration angle is the sum of oscillatory terms and a linear term in time. The oscillatory 

terms decay when the c1imber ascends, but grow when it descends. This result is due to 

the rate-dependent term that is present in the equation of motion (4.15). However, 

because this term is small, the decay/growth of the oscillations that occur during a 

c1imber's ascent/descent is also small; the fraction al decay/growth is of the order of Me. 

This is small enough to be neglected. It may be conc1uded that the space elevator 

dynamics due to an ascending or descending c1imber are well behaved. This good 

behaviour is attributed to the fact that the c1imber mass is small with respect to the rest of 

the space elevator structure and that the ribbon itself is not actually being deployed or 

retrieved. 

Equation (4.21) may be well approximated by 

a(T) " a, cos (WT) + ~ sin(WT)+ ~;' [D;{COS(WT)-I}+V, {sin fT) T} l (4.22) 

The above expression is useful for devising c1imbing procedures. It may be noted that 

the additional libration introduced by a c1imber is of the order of if e Vc (D f - Di ) /W 2 
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radians, which, based on earlier observations, is on the order of 10-3 radians. In general, 

this additionallibration is proportional to the c1imber mass, the cruising velocity and the 

distance traveled. It is important to note that aIl three of these parameters have upper 

bounds. Even if aIl three of them approach their respective maximum values, the 

libration induced by c1imber transit will still be of the order of milliradians. Still, in 

general, minimizing the c1imber mass and cruise velocity serves as a general guideline for 

minimizing c1imber transit effects. 

When the c1imber is stationary, the libration angle is excited only by the initial 

conditions. It then behaves much like a pendulum, oscillating about its vertical 

equilibrium position. If a(rf ) = a f and a/(rf ) = a; at the moment a c1imber arrives at 

its destination, the libration that would ensue is given by: 

a(r) = ares cos(Wr-If/), where 

ares = ~ a~ + ( a; /W t ,and 

If/ = tan -1 ( a; /W a f ) . (4.23) 

It is important to note that in the absence of aerodynamic forces, the oscillatory motion of 

the ribbon is entirely undamped. 

The complete c1osed-form solution for the response of the libration angle to 

c1imber transit can be shawn by cansidering bath Eqs. (4.22) and (4.23). Let 

r f = ( D f - Di ) IVe. Then, the response to a c1imber having constant speed Vc, beginning 

its motion at Di when r = 0, and arri ving at Df when r = r f ' is weIl approximated by: 
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a(r) = a o cos (Wr) + a~ sin(Wr) 
W 

M v { (sin(Wr) + ~/ Di (cos(Wr)-l)+Vc W 

a( r) = ares COS [ W ( r - r f ) -Ij/ ] 

O::;r<rr 

(4.24) 

Figure 4.2 shows the effect of a climber's as cent from the surface of the Earth to 

the tip of the ribbon on the libration of the ribbon. The analytical results are compared 

with those from a numerical simulation. The numerical simulation was run using the 

Matlab software. The ode45 function was used to integrate Eqs. (3.16) and (3.17) using a 

relative tolerance of 10-5
. The absolute tolerance for the libration angle and rate were 10-7 

rad and 10-10 rad/s, respectively. The absolute tolerance of the base position and velocity 

were 10-3 m and 10-6 mis, respectively. The base position scaling factor, h, was set to 10 

m. The design components of the space elevator that were used are La = 100,000 km, 

0"0 =35 GPa, y= 1300 kg/m3
, E = 1 TPa and Am = 10 mm2

. The c1imber mass was 800 

kg. As a result, Me =0.0013 and W = 0.183. The mass of the base was set to 50,000 

tons (an approximate value for an oil tanker). At the beginning of the simulation, the 

space elevator was in its nominal configuration (zero initial conditions). The motion 

parameters of the c1imber were set to Di = 0, Df = 1, Vc = 0.0111 (280 kmlhr), and TR = 

0.1. The torsion al spring constant is man y orders of magnitude too small to have mu ch 

effect. AIso, the spring and damper constants to hold the base in place were set to zero 

(no anchor). 

Once the c1imber begins its as cent, Coriolis effects excite the libration angle by a 

sum of oscillatory terms and a first order polynomial. The Earth spins towards the east. 
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Since the libration angle is negative (against the spin of Earth) during transit, it can be 

conc1uded that the Coriolis effects push the ribbon westward. Upon c1imber arrest, the 

residuallibration (libration amplitude) is a function of the final libration state. Here, the 

residual libration is about 0.81 mrad. Clearly, the ensuing oscillatory motion with this 

amplitude is undamped. 
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Figure 4.2: The effect of a climber ascending from the bottom of the ribbon to the top 
on the space elevator: (a) Climber velocity; 

(b) Libration angle obtained numerically and analytically; (c) Base position 

In Figure 4.2-b, the analytical solution shown in Eq. (4.24) is plotted alongside 

the numerical ones. There is sorne phase error in the analytical solutions, but the 

amplitudes are similar. The phase error cornes from assuming the acceleration and 

deceleration of the c1imber to be instantaneous for the analytical solution; both processes 
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took 32 hours in this simulation. Thus, there is approximately a one-day shift in the in­

transit solutions, and a two-day shi ft in the steady-state solutions. AIso, the numerical 

solutions, which correspond to a high climbing ratio, have a lower residuallibration than 

that which the analytical one, having a zero time ratio, predicts. The reason for this is 

explained in Section 4.3.1. If a numerical simulation is run with a much lower value of 

TR, the analytical solutions are practically indecipherable from the numerical ones. 

In Figure 4.2-c, it is observed that the base motion in response to an ascending 

climber is similar to that of the libration angle. However, even without an an ch or, the 

displacement of the base is only a few meters. It can thus be concluded that climber 

transit has little effect on generalized coordinate db. 

The libration response for climber descent is different than that for c1imber ascent. 

Figure 4.3 shows the libration response from a numerical simulation where a climber 

descends from the top of the ribbon to the bottom (in the same manner with which it 

ascended in the previous example). Coriolis effects act in the opposite direction, pushing 

the ribbon eastward. However, as the climber moves downward, its force causes a 

smaller moment about the base, allowing the ribbon to return west. Greater libration 

oscillations are experienced du ring climber transit for descent than for ascent. 
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Figure 4.3: The effect of a climber descending from the top of the ribbon to the 
bottom on its libration: 

(a) Libration angle obtained numerically; (b) Climber position 

It can be shown that a single ascending or descending c1imber having constant 

cruise speed will always induce a residuallibration angle into a statie ribbon. In order for 

a single c1imber to indu ce no libration angle, both the libration angle and rate must be 

zero wh en the c1imber reaches its destination. The response to a constant rate of c1imb is 

given by 

a(~) ~a,cos(W~)+ ~ sin(W~)+ ~;, [D;{OOS(WT)-l}+ V, {Sin~r) ~ n 
a'(r) = -Wao sin (Wr) + a~ cos (Wr) + ~;c [ -WDj sin(Wr)+ Vc {cos (Wr)-l}]. (4.25) 
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An initially static ribbon has an initial libration angle and rate of zero. It is not difficult 

to ensure that a' (rf ) = O. This may be accompli shed by choosing a value of cruise speed 

such that the trigonometric components are in phase with each other. However, for an 

ascending climber, it is impossible to ensure that a(rf ) = O. For a climber ascending an 

initially static ribbon, 

a(r) = ~; [Di {cos(Wr)-l}+ ~ {sin(Wr)-wr}]. (4.26) 

The excitation to the libration angle caused by the climber is clearly the sum of two 

terms: the first is :s; 0, and the second is < 0 because Wr> sin (W r) for aIl time. Since 

a( r f ) < 0, a climber ascending at a constant rate will always induce a residual libration 

angle. 

For a descending climber, Di> 0, and Vc can be rewritten as -IVel, and so the 

closed-form solution becomes 

a(T)~- M~I~,I[ D,{COS(WT)-1)-1v,l{sin;;T) TH 
a'(r) =- M;~cl [-WDi sin (Wr)-IVel{cos(Wr)-l}] . (4.27) 

To make both the libration angle and rate equal zero at r = r f , the fol1owing two 

conditions must be satisfied: 

(
l-.COSX) =~, 

smx 2 
(4.28) 

where x = Wrf , and 

(4.29) 
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If Eq. (4.29) is satisfied, Df = Di -IVJrf = -Di. Since 0 ~ DJr) ~ 1, Df = -Di may 

only be satisfied if both Di and Df are zero. Therefore, as is the case with an ascending 

cIimber, descent at a constant rate will always induce a residuallibration angle. 

4.3 Recommended Climbing Procedures 

In general, reducing cIimber mass and cruise velocity reduces the libration angle 

upon arrivaI. Still, it has been shown that a single cIimber ascending or descending the 

ribbon at a constant cruise speed will introduce non-zero libration that will cause 

undamped oscillations on the order of milliradians. It is thus desirable to minimize the 

effects of a cIimber transit on the libration angle. In this section, three climbing 

procedures are proposed. The first procedure is a means of passive control through 

choosing an appropriate time ratio. The second procedure involves using the Coriolis 

effect of the climber to bring an oscillating ribbon to rest. The third and most general 

climbing procedure involves the proper phasing of multiple cIimbers so that a static 

ribbon is returned to equilibrium after aH of the cIimber transits are complete. 

4.3.1 Increasing the Time Ratio to Minimize Transit Effects 

The analytical results have been obtained by taking the acceleration and 

deceleration of the climber to be instantaneous. However, varying the time ratio has a 

profound effect on the residual libration of the ribbon that is induced through climber 

transit. This can be shown by running numerical simulations. The time ratio used for the 
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simulation in Section 4.2 was 0.1. These simulations have been repeated varying only 

the time ratio of the climber, keeping Vc fixed. As a result, the total time of the transits 

vary as well. In Figure 4.4, the residual libration due to climber transit is plotted against 

time ratio values ranging from 0.001 to 1.5. Clearly, the residual libration is lower for 

climber transits having larger time ratios. Using a time ratio of 1.5 instead of 0.001 

decreases the residual libration upon arrivaI by 30 times. The increase in the time ratio 

adds only 9 days to the transit, which, for TR = 0.001, would be a lengthy 15 days 

anyway. 
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Figure 4.4: Residuallibration of ribbon for Earth to tip transit for various time 
ratios; transit at 280 km/hr 

The reason for the decrease in residual libration for a high time ratio is not 

intuitive. A quick ramp up and down in velocity does not cause a sudden growth in 
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libration. The decrease in residuaIIibration is accompli shed through graduaI deceleration 

of the climber (and its corresponding decrease in applied Coriolis force), which allows 

the libration angle to return slowly back towards zero as the climber undergoes the 

deceleration phase of its motion. So, the rate of c1imber deceleration is significant as far 

as libration is concerned, whereas that of acceleration is not. 

4.3.2 Eliminating Residual Libration with a Single Climber 

A single climber, going from Di to D f can be used to eliminate an existing 

residual libration angle, ares' as long as a specific cruise speed and corresponding 

c1imber mass is chosen. ares may have been originally induced by a previous climber, 

but aiso by aerodynamic forces, or another form of excitation. 

If ares * 0, and a climber is sent from Di to D f at the moment when a = +ares 

(i.e. maximum eastward displacement), the state equations are: 

N(~ [ {sin(Wr) }] a(r)=arescos(Wr)+~ Dj{cos(Wr)-l}+Vc W r, 

a'(r) = -Wares sin (Wr) + ~;: [ -WDi sin (Wr) + Vc {cos (Wr) -Il]. (4.30) 

Forcing r f = 27rn 1 W , n = 1, 2, 3 ... , results in the final libration state: 

(4.31) 

For a constant cruise speed given by 
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(4.32) 

zero residuallibration occurs if 

(4.33) 

Substituting for Me using Eq. (4.20), and then for each mass ratio, the appropriate 

climber mass, expressed in terms of ares' is given by 

(4.34) 

Therefore, if a climber going from Di to Df is released at the moment when the ribbon, 

oscillating with amplitude ares' has libration a = +ares ' there are several climber mass 

and velocity pairings one can choose to ensure that the ribbon returns to equilibrium upon 

its arrivaI. These pairings, given by Eqs. (4.32) and (4.34), are dependent on which value 

of n is chosen. Since the climber mass has an upper bound, large values for n 

(corresponding to slower transits) may not be available. Similarly, a maximum allowable 

cruise velo city may limit the available values of n. 

The appropriate climber mas s/vel ocit y pairings detailed above may be useful 

whenever a single climber 1S sent from one position on the ribbon to another. It applies 

for both climber as cent and descent. 
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4.3.3 Not Introducing Libration into a Static Ribbon Using Multiple Climbers 

Multiple c1imbers undergoing the same prescribed motion can induce no 

oscillatory libration angle into a static ribbon if they begin their respective trajectories a 

specifie number of days apart. 

Let p c1imbers go from one point to another on the ribbon in the same fashion. 

Regardless of what kind of prescribed motion is taken in the c1imbing phase, each 

approximately independent equation will yield its own nearly identical residual libration 

angle, ares' and phase shift, If/, causing the ribbon to oscillate upon its arrivaI. There is a 

simple method to ensure that the net residuallibration angle is zero. 

For p c1imbers having the same prescribed motion (not limited to constant speed 

trajectory), but leaving sorne time, Ti after r = 0, the libration after the final climber 

cornes to rest is found using Eq. (4.23) and is given by 

a(r) = ares f[ cos{ W (r-rf -Ti) -If/} J. 
I=l 

(4.35) 

Again, r
f 

is the time it takes for each c1imber to complete its transit. Forcing a(r) = 0, 

the appropriate times for the ith c1imber to begin its respective ascent (or des cent) in order 

ta force a net residuallibration of zero, Ti* , may be determined: 

A* 21l" (i -1)( pn + 1 ) 
ri = for n = 0,1,2 ... 

pW 
(4.36) 
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What this means, is that in order to avoid inducing a residual libration angle in a static 

ribbon when sending p climbers, one must simply send each climber with the same 

prescribed motion, (pn + 1) / p W days apart, where n = 0,1,2... (noting that the non-

dimensional time r is 21r times the number of days). A desirable consequence of this 

motion guideline is that for the case where n = 0, aIl of the oscillatory behaviour of the 

ribbon vanishes for the period of time when aIl p climbers are in transit. So, for this case, 

if there are only a few climbers climbing a long stretch of the ribbon, there is a smooth, 

linear response to the libration angle for the majority of the transit. 
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Figure 4.5: The effect of three appropriately spaced c1imbers ascending from the 
bottom to the top of the ribbon on the libration angle of the space elevator 

(a) Libration angle (b) Ribbon position of each c1imber 
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For simulations involving more than one climber, the equations of motion change. 

Any terms containing the climber mass must be replaced by a sum of terms from 1 to p, 

with climber mass, position, velocity, and acceleration indexed for each individual 

climber. The multiple climber (with n = 0) case is illustrated in Figure 4.5. In this 

simulation, run in the same fashion as the previous ones, three climbers are sent from the 

Earth to the tip of the space elevator using a time ratio of 0.1. The spacing between the 

climbers is exactly 1/(PW), or about 1.82 days. Due to this proper phasing, the libration 

angle retums to zero once the final climber reaches its destination, as predicted by the 

climbing procedure. It is observed that in transit, the maximum libration of the ribbon is 

nearly three times the residual libration caused by a single climber. That is because the 

effect of each of the climbers is summed. AIso, as predicted, the sinusoidal components 

of the libration angle vanish once aIl of the climbers are cruising; since the climbers have 

constant velocity, the libration angle response varies linearly with time for much of the 

transit. The progression of the libration angle back to zero appears to be linear as weIl. 

This multiple climber procedure will be particularly useful during the initial phase 

of the space elevator's operation, when a new climber is sent up the ribbon every so often 

(hours apart) to thicken it. In the previous literature (Edwards, 2000), the time between 

climber ascents was determined based only on when the addition al ribbon stress due to 

the additional climber would be acceptable (a climber adds only a small amount of stress 

to the ribbon once it is sufficiently high). The above conclusion shows that the specific 

time between sent climbers is crucial in avoiding the induction of a potentially large 

libration angle. If each climber induces approximately 1 milliradian of libration, the 

hundreds of climbers that it will take to thicken the ribbon sufficiently could add over 0.1 
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radians (6 degrees) of libration collectively (if phased improperly), which is 

unacceptable. Equation (4.36) offers a method of avoiding such an occurrence. 

The ability to eliminate any residual libration with one climber, and to not 

introduce libration into a static ribbon by using multiple climbers, forms a basis for the 

control of ribbon libration through climber ascent or descent. The methods illustrated 

here will yield nearly perfect results for a rigid ribbon. Modifications to these climbing 

procedures due to the fact that the ribbon will undergo elastic deformation are discussed 

in Chapter 5. 

4.4 Rotation of the Ribbon due to Aerodynamic Forces 

Another major source of ribbon libration will come from aerodynamic forces in 

the lower atmosphere of the Earth. This section aims to determine the order of magnitude 

that su ch forces will have on the ribbon. Since the libration angle is very small, cos a == 1 

and sin a == O. The wind is assumed invariant, blowing in the local horizontal direction 

(eh), and the relative velocity of air is taken as the wind velocity, VW ' As a result, the 

angle c/J becomes zero. The effective width of the ribbon exposed to aerodynamic forces 

is taken as the constant, beff: Using Eqs. (3.32) and (3.33), the vertical component of 

aerodynamic force is zero, and the horizontal one is given by 

(4.37) 

Inputting the air density function derived in Section 3.4, 
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(4.38) 

The generalized moment due to aerodynamics applied on the generalized coordinate a is 

then given by 

(4.39) 

Since H « hatm ' 

(4.40) 

The simplified, non-dimensionalized second order differential equation describing the 

libration angle of the rigid tether in response to aerodynamic loading is given by 

(4.41) 

Thus, the libration response to an invariant horizontal wind can be approximated by 

(4.42) 

As one would expect, the libration response is proportion al to the effective width of the 

ribbon and the square of the wind velocity. The ribbon is modeled as a thin flat plate 

here, so the coefficient of aerodynamic drag, Cn, is set to 1.18 (Hoemer, ]958). The 

atmospheric constants are Po = 1.3 kg/m3 and H = 7074 m. Substituting the space 
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elevator parameters y= 1,300 kg/m3
, E = 1 TPa, (Jo = 35 GPa, Am = 10 mm2

, and L = 

100,000 km, the response becomes 

a(r) ~ 8_10-5 
beJ! V:'illd {1- cos (Wr)} . 
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Figure 4.6: Libration response to worst-case-scenario wind loading; 
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16 

(4.43) 

Finally, a worst-case-scenario is examined for the libration response to 

aerodynamic loading. Although the cross-sectional area of the ribbon is of the order of 

mm2
, one of its rectangular dimensions will be of the order of centimetres. Thus, in this 

example, the effective width is set to 5 cm. The constant wind is taken as 30 mis, 

blowing westward, which is an extremely high wind, especially since the space elevator 

willlikely be stationed in a location where high winds are uncommon. Figure 4.6 shows 
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the libration response to this worst-case-scenario for wind loading. The amplitude of 

oscillations in libration is of the order of milliradians. It can thus be conc1uded that 

aerodynamic effects on libration will only be as great as c1imber transit effects in a worst­

case-scenario. Winds of such high magnitudes are unlikely to arise, and would certainly 

not remain constant for a period of days. Aerodynamic effects may be decreased if a 

cord-like cross-section, were used for the portion of ribbon in the lower atmosphere of 

the Earth, rather than a rectangular one. Then, the effective width would be of the order 

of millimetres at most. 

The aerodynamic analysis in this section was do ne in an order of magnitude 

sense. To get a more accurate depiction of the effect of aerodynamic loading on the 

ribbon, its structural deformation must be taken into account. 
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Chapter 5: Elastic Tether, Stationary Base Model 

5.1 Description of the System 

The space elevator model studied in this chapter differs from the one considered 

in Chapter 3 in two ways: the ribbon has a finite modulus of elasticity such that it may 

now undergo structural deformation, and the base is fixed in place to simplify the model. 

The motion of the base was found to be negligible in Chapter 4, and has little effect on 

the rest of the system; hence it is ignored here for simplicity. 

Lo 

v~\ 
~~ -- \ 

\ v(s) 
1 

.X _ o(s) 
~./ 

Figure 5.1: Dynamics model of the space elevator with an elastic ribbon 
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Figure 5.1 shows the dynamics model considered in this chapter. The generalized 

coordinates de and a are as previously defined in Chapter 3. Generalized coordinate db 

vanishes in this mode!. The longitudinal and lateral displacements of the ribbon are 

denoted by u and v, respectively, as functions of the position on the ribbon. The assumed 

modes method (Meirovitch, 1997) is used to describe these displacements: both Tt and v 

are discretized as products of generalized coordinates and spatial basis functions. The 

longitudinal extension is assumed to be a polynomial of s as follows: 

N 

U = IaJt)si . (5.1) 
;=1 

N generalized coordinates, ai, are used to describe this extension. The basis function l is 

not used so that the boundary condition, u = ° for s = 0, is satisfied at aIl times. 

Polynomials are particularly good basis functions as their integration is not computation 

intensive. The lateral displacement is assumed to be a sum of sinusoidal terms of s as 

V = Ibi(t)sin - . M (i1lS) 
;=1 4 

(5.2) 

M generalized coordinates, bi, are used to describe this displacement. The sinusoidal 

basis functions satisfy the boundary conditions: v(O, t) = v(4, t) = o. Generalized 

coordinates de, a, ai and b i full Y define this N+M+2 degree-of-freedom system. 

5.2 Additional Lateral Extension Term for Aerodynamic Loading 

As observed from the aerodynamic study conducted by Lang (2005b), sinusoidal 

modes alone cannot fully describe the lateral displacement of the ribbon due to 

aerodynamic loading. The distributed force caused by the atmosphere of the Earth causes 
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pronounced lateral displacement in the lower portion of the ribbon. As a resuIt, if the 

lateral displacement of the ribbon in the presence of aerodynamic forces is to be well-

modelled, an additional generalized coordinate and corresponding basis function need to 

be used. The basis function may be chosen by examining the goveming equation of the 

lateral displacement of a ribbon, and neglecting all other generalized coordinates. For a 

ribbon having a constant cross-sectional area, the lateral extension v of a ribbon element 

at time t and space coordinate s is govemed approximately by 

(5.3) 

where f is an applied force and k is a constant. The cross-sectional area of the ribbon 

varies very little across the region where the aerodynamic forces are considered. Since a 

basis function is a function of s alone, the steady state (a 2v/at2 = 0 ) solution of Eq. (5.3) 

to aerodynamic loading is sufficient. The forcing function for constant wind loading is 

proportional to exp (-s / H) (Section 3.4). Since the shape of the basis function is all 

that is of interest (not the constants attached to it), it may be found using 

a2v 
-f=exp(-s/ H). as (5.4) 

Applying the boundary conditions that Va = 0 for s = 0 and s = Lo, the solution to Eq. (5.4) 

is 

v" = H' [exp ( -slH)-I-~ (exp( -4 1 H)-Il]. (5.5) 

Again, the H 2 multiplier is irrelevant because only the shape of the basis function is 

important. Since exp ( -Ln / H)« 1, the additional spatial basis function that will be 

used to describe the lateral extension response of the space elevator is given by 
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S 
Va = exp ( -si H)-l+-. 

4 
(5.6) 

As seen in Figure 5.2, the basis function given by Eq. (5.6) has a bubb1e. After 

the bubb1e, the function moves back to a value of zero at the tip in a quasi-linear fashion. 

This basis function is very useful because it allows for near-horizontal ribbon departure 

angles, which are predicted by the ribbon snapshots obtained numerically by Lang 

(2005b). The maximum value of this basis function occurs at the ribbon position 

and is given by 

o 

,,// 

~ [ I-ln ( ~) ]- 1 -+----===-,---- / 

-Hln(H/4) 
Ribbon position 

(5.7) 

(5.8) 

/' 
/ 

/' 
/' 

Figure 5.2: Shape of the aerodynamic lateral basis function Va with ribbon position 
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H is four orders of magnitude smaller than Lo. As a result, s * :::; 0.0014. The 

bubble will thus occur at a mu ch lower ribbon position than indicated by Figure 5.2. 

For numerical simulations involving non-zero aerodynamics, the lateral 

displacement of the system will be defined by 

(5.9) 

where c is another generalized coordinate. As such, the dynamics model describing the 

space elevator in such a situation will have N+M+3 degrees of freedom. 

5.3 Energy Expressions and Equations of Motion 

The same method as that employed in Section 3.2 is used to obtain the equations 

of motion of this more complex system. The radial positions of the various system 

components are now given by 

rE = (Rcos a+ de + ude)i + (Vde - Rsin a)j, 

rR (s) = (Rcosa+s +u)i +( v- Rsina)j, and 

rc = (Rcosa+4 +uJi-Rsin aj. 

The velocity components are given by 

(5.10) 

VE ={ RQsina+de +ûde -(Q+a)vde}i +{ RQcosa+vde +(Q+ a)(de +Ude )} j, 

vR Cs) = {RQsin a+u -(Q+a)v}i +{RQcosa+v+(Q+ a)(s +u)} j, and 

Vc ={RQsina+uJi+{RQcosa+(Q+a)(4 +uJ}j. (5.11) 

In Eq. (5.11), 
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(5.12) 

and 

M [. J . '. urs . 
V= LbisIll - +CVa • 

i=l La 
(5.13) 

Expressions for the kinetic and potential energy functions are obtained as III 

Section 3.2, with one exception: the elastic potential energy term is now given by 

A spring and damper, previously used to model the effects of an anchor restricting the 

motion of the base, are no longer required. However, because the system may now 

undergo structural deformation, Eq. (5.14) contains a strain energy term. The strain 

energy expression, which omits fifth order terms and higher, is derived in (Min et al, 

1999). A linear stress-strain relation was assumed in deriving it. Since the longitudinal 

expression includes the nominal extension caused by the nominal strain in the ribbon, the 

general strain energy term incorporates the nominal strain energy. 

The N+M+3 equations of motion are obtained using the Lagrange equation. For 

the generalized coordinates de, a, ak (k = 1 ... N), bk (k = 1 ... M) and c, the equations of 

motion are, respectively, 
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= (Q+a)vde - RQacosa+{RQsina+ûde -(Q+a)vde}{û* -(Q+a)v*} 

+{RQcosa+vde +(Q+a)(de +Ude)}{V* +(Q+a)(l+u*)) 

(Rcosa+de +ude )(1+u*)+(Vde -Rsina)v* Qde 
-f.l 7'i +-, 

[(Rcosa+de +Ud.)2 +( Vde - Rsina)2}2 me 

Ii[ m, {(d, + uS + v;, }+ J P(s){ (s +u)' + v' }ds+ m, (4 + u,)'] 

41 41 

+me fVde (de + Ud.) - vdede - vdeiide } + f p(s) (s + u) iids - f p(s)viids 
o 0 

=md 
. [v* {de +Ûde -2(Q+a)vde +RQsina}-v* (de +Ude )] 

e e -U' {li de + 2 ( Q + a)( de + U de) + RQ COS a} + Li * V de 

(5.15) 

~2(n+a{ m, {( d, + u,J( u" + d,) + v"v,,} + J p(sl{(s+u)û + vV}ds+ m, (4 +u,)u, ] 

~Rn' [cosa{ m,v" + J p(s)vds }+sin a{ m, (d, + u,J+ J p(s)(s+u) ds +m, (l" +u,)} 1 
f.lRme {( de +Ude )sin a+vde cos a} 41

J 
p(s){(s +u )sin a+ vcosa} 

+ 3 + f.lR 3 ds 

{(Rcosa+de +Ude )2 + (vde -Rsina)2p 0 {(Rcosa+s+u)2 +(v-Rsina)2p 

(4 +uL)sina 
+f.lRmc 3 -k(a+Qa' (5.16) 

{(Rcosa+4 +uJ2 +(Rsina)2p 
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1( p( s)i t. ii,s' ) d<i + t. ii, ( m ,d ;,' + m J.;'" ) + m,d ; d, - [ m,d; v" + 1 p( s ),,'vd<i }x 
= -mekded;-I {RQsina+de +Ûde -(Q+a)vde } +meded; {(Q+a)v* -û*} 

~ 

+ f p(s)i {2v(Q+a) +(Q+ a)2 (s +u)+ RQ2 cos a}ds 
o 

+me {2vde (Q+a)+(Q+a)2 (de +Ude ) + RQ2 cos a}d; 

+mc {(Q+a)2 (4 +UJ+RQ2 cos a} ~ 

3 

~f p(s)(Rcosa+s+u)sk 
# 3~ 

{(Rcosa+de +Ude f +( Vde - Rsina)2p o {(Rcosa+s+u)2 +(v-Rsina)2p 

#mc(Rcosa+4+11JL~ ~f k-I[ (1 ) 2} 
- 2 2 2 -kE 0 A(s)s Us + 2-us v, s+Qa(k)' (5.17) 

{ ( R cos a + 4 + u J + ( R sin a) } 2 

J p(s) sin (k~S JlV +ii(s+u)}d<i + m, sin (k;:, J{ v" + ii( d, +u,,)} 

~ -m,d, ~ cos( k;:, J{RQCOsa+v" +(Q+6:)(d, +u,,)} 

d· . (kJrd J{.* (Q .) *} -me e sm 4 v + + a U 

lp (S)Sin( k~S J[(Q+6:)' v-2(Q+6:)u-RQ' sina Jd<i 

+m, Sin[ k;:, J{(Q+6:)' v" -2(Q+6:)(ti, +ti" )-RQ' sin al 

and 
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4J 

f p(S)Va {v+a(s+u)}ds+me Va Ide {Vde +a(de +Ude )} 
o 

=-mede ~:al {RQcosa+vde +(Q+a)(de +ude)}-mede Va Ide {V* +(Q+a)u*} 
oS de 

4J f p(S)Va {(Q+a)2 V- 2(Q+a)û - RQ2 sina}ds 
o 

+me Va Ide {(Q + a)2 Vde - 2(Q +a)( de + Ûde ) - RQ2 sin a} 

J.Lme (vde - RSina)val"e 4J

f 
p(s)( v- Rsin a) va 

-------------------=------3-J.L 3ds 

{(Rcosa+de +u"J
2 +( Vde - Rsin a)2p· 0 {(Rcosa+s +U)2 + (V- Rsina)2y 

(5.19) 

In Eqs. (5.15) through (5.19), 

v, = av =~ f{ibiCOs(i1lS]}+c(_1 __ 1 e-~], 
as La i=1 La La H 

* aUd LN. d i 1 d U = _e = la. - an ad . 1 e ' 
e 1=1 

* - aVde _ ~ i1l b (i1lde ] (Il-dit] v --- L..,.- .cos --- +c ---e . 
ade i=! La 1 La La H 

(5.20) 

Similarly, 

N 

.* '\'''di-l d U = L..,.lai e ,an 
i=1 

.* _ ~ i1lb' (i1lde ].[ Il-dit] v - L..,.- . cos --- +c ---e . 
i=1 La 1 La La H 

(5.21) 

Also, the total mass, m/ot, no longer inc1udes the mass of the base, as it not part of the 

dynamics system. 
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Again, for convenience, the equations describing the elastic tether space elevator 

are non-dimensionalized. AlI non-dimensional lengths introduced in Chapter 3 remain 

valid. In addition to those, 

N 

U = LAiÇi =u/La, (5.22) 
i=! 

where 
(5.23) 

Also, 
M 

V = L Bi sin(iJrç) + CVa = v/ La ' (5.24) 
i=! 

where 
(5.25) 

and 

Va = exp[ -(La/H)ÇJ-l+Ç. (5.26) 

In non-dimensional form, the equations of motion are given by 

D; + U~e - VDea
H 

= {1 + a')V~e - RLa' cosa+{ RL sin a+U~e -(1 + a')vDJ{ U'· -(1 + a')v*} 

+{RL cosa+ V~e +(1 +a')(De +U De n{V" +(1 +a')(1 +U·)} 

(De + RL cos a+ U De )(1 + U*) + (VDe - RL sin a)V* Qde 
-Â, 3 + 2' 

[{ }2 { }2Jz men La cosa+(l/RJ(De +UDe ) + (l/RL)VDe -sina 

(5.27) 
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[

Me {(De +UDJ2 
+V;e}+Mc (1+UI)2 1 

(

N N N M M J aH-MeVDeD; 
+Mp Î3 +2~AJ+2 + ~~AiA/+j+1 + ~~BiBJ"(i,j 

+M ,t,B{Î", + t,AJ,." J-M ,t,A{ t,BJ ... " J+ M, (D, +U'N)V';:' - MY&U';:' 

= MeD:[V* ~D; ~U;e -2(1 :a')VDe + RL sin a}-V" (D:. +UDJ] 

-U {VDe +2(1+a )(De +UDJ+RL cosa}+U VDe 

-RL {M/2 +MPtAJ+I +Me (De +UDe)+Mc (1+UI)}sina 

-RL( MYDe+MptB)I,i)cosa 

{

Me (De +U DJ(D; +U;)e) +MeVDeV~e + Mc (1 +UI)U:} 

-2 (1 + a') ( N N N M M J 
+Mp LA;Îi+2 + LLAiA/i+j+l + LLBiB;Ki,j 

i=1 i=1 j=1 i=1 j=1 

{(De +U De )sin a+ VDe cos a} 
+ÂMeRL 3 

[{cos a+(l/RJ (De +UDe )}2 + ((l/RJVDe -sina)2J 

IS exp [ F (ç) ] { ( ç + U) sin a + V cos a} 
+ÂMpRL 3dÇ 

o [{cosa+(1/RJ(ç+u)f +((l/RJV -sina)2J 

1 (1+UI)sina K Qa 
+/I"McRL 3 la+ 2 2 ' 

[{cos a+(1/RJ (1 + U1)}2 +sin2 a J mlOp· Là 
(5.28) 
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MPt A;1;+k+1 + tA;(MeD~+k +Mc)+MeD:D; -( MeD:VDe +MPtBJk+I,;)a" 

= 2M p (1 + a') t B;J k+1,i + M p (1 + af ( Îk+2 + t A;tk+1 ) 

+RL{MpÎk+1 + MeD: +Mc)cosa 

+Me {2V~e (1 + a') +(1 +a,)2 (De +U De)} D: + MeD;D: {(1 +a')V· -U'·} 

-kMeD;D;-1 {RL sin a+ D; +U;e -(1 + a')vD.} + Mc (1 + a,)2 (1 +U1) 

(RL cosa+ De +U De)D; 
-ÂM --------~~----~~~~------~ 

e 3 

[{cosa+(ljRJ(De +UDe )}2 + {(ljRJVDe -sina}2J2 

-ÂM
p 
f exp[F(ç)](RLcosa+ç+U)çk 3

d
Ç 

o [{cosa+(ljRJ(ç+U)}2 + {(ljRJV -sina}2J 
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1 

Ml' Jexp[ F(;) ]sin(kJr;){V
If +a

lf
(; +V)}d;+ Me sin (kJrDe){V;e +(De +V De ) a"'} 

o 
1 

= Ml' Jexp[ F(;) ]sin (kJr;) { (1 + a')2 V - 2(1 + a')V' - RL sin a}d; 
o 

+Me sin (k.7Z'De){ (1 +a')2 VDe - 2(1 +a')(D; +V~e) -RL sina} 

-MeD; [ kJrcos( kJZ'D.) { RL cos a+ V~e +(1 + a')( De +V De )}+sin (kJZ'D.){V" + (1 + a') v*}] 
(RL sin a-VDe )sin (kJ[De) 

+We 3 

[{cos a+ (l/RL)(De +VDe )}2 + ((l/RL)VDe -sina)2J 

1 IJ exp [F(;)]( RL sin a - V) sin (kJ[;) j: 
+AMp 3 d~ 

o [{cosa+(l/RJ(;+V)}2 + ((l/RJV -sina)2J 

-kJ[Q; Jexp[ F(;)]cos(kJ[;)(V;V; + V! -V;V; )d; + Qb(k1 ' 
o ~n4 

(5.30) 

and 

1 

Ml' Jexp[F(;)]Va {V'" +alf(;+V)}d;+Me Va IDe {V;e +(De + VDJa
lf
} 

o 
1 

= M p Jexp[ F(;) ]Va {(1 + a')2 V - 2(1 + a')V' - RL sin a}d; 
o 

+Me Va IDe {(1 + a')2 VDe - 2(1 + a')( D; + V;e) - RL sin a} 

-M,D:[ ~il~ {R, cosa+V';' +(1 +a')(D, +U ~)}+v"I~ {v" +(1 +a')U'} 1 
+ÂM (RLsina-VDe)VaIDe 

e 3 

[{cosa+(l/RJ(De +V DJ}2 + ((l/RJVDe -sina)2J 

1 IJ exp[F(;)](RLsina-V)Va j: 
+AM l' 3d~ 

o [{cosa+(IjRJ(;+V)}2 + ((IjRJV -sina)2T 

-Q~ Jexp[ F(;)] aVa (V~V; + V! -V;V; )d;+ QC2 . 
o a; mtotn 4 

(5.31) 
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In Eqs. (5.27) through (5.31), 

Similarly, 

·N 

U'" - " 'A'D i-1 d -L..Jl; e ,an 
;=1 

The frequency ratio associated with axial elongation is defined as 

Qa = JEA",/(mt0l4) . 
Q 

Non-dimensional integrals 1; are as defined in Eq. (3.20). 

integrals are given by 

Î;,j = 1 exp[ F(ç) W-1 sin (j;rç) dç , and 

Î(,j = 1exp[F(Ç)] sin (i;rç) sin (j;rç)dç. 

5.4 Generalized Forces 

(5.33) 

(5.34) 

Other non-dimensional 

(5.35) 

The generalized forces coming from the motor thrust acting on the climber and 

aerodynamic forces acting on the ribbon are shown in Table 5.1. They are computed as 
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they were in Chapter 3. However, sorne new generalized coordinates have been added, 

and one has been removed compared to Chapter 3. AIso, the position vectors (locations 

of applied forces) are now given by Eq. (5.10). 

Table 5.1: Generalized forces for elastic ribbon, stationary base model 

From motor thrust on climber 

F;Vde 

Qa(k) 

o 

o 

5.5 Analytical ResuIts 

5.5.1 Equilibrium and Stability 

From aerodynamic force on ribbon 

J -{(S+U)Sina+vcosa}dFv ] 

J l + { ( S + u) cos a - v sin a} dF;, 

o 

J Sk ( cos adFv + sin adF" ) 

JSin( kZS }cosadF, -sinadF,) 

J v a ( cos adF;, - sin adFv ) 

As already shown, the ribbon is norninally stretched by the nominal strain ëo 

when in equilibrium. The equilibrium position of the space elevator (nominally stretched 

vertical ribbon, climber at the geosynchronous altitude) expressed in terms of its 

generalized coordinates is given by 
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Xeq =[De' a, A{l, 2, 3 ... }, B{I, 2, 3 ... }, Clq 

=[ RL(...tX' -1)/(1+Eo), 0, A{Eo, 0, O",}, B{O, 0, O ... } , ° l (5.36) 

Equations (5.27) through (5.31) are satisfied if the generalized coordinates are given by 

Eq. (5.36), and aIl their derivatives are set to zero. As with the rigid tether system, the 

c1imber sits at a saddle point. If the c1imber's position is fixed, this equilibrium position 

is stable. 

5.5.2 Modal Analysis for the Longitudinal Extension of the Ribbon 

The longitudinal extension of the ribbon is now examined by neglecting its lateral 

displacement and libration. Climber effects are also omitted from the analysis. If this is 

done, Eq. (5.29), which governs generalized coordinates Ak, becomes 

i=l i=1 

(5.37) 

For the analysis, it is useful to transform generalized coordinate Ai to a new generalized 

coordinate, 1\, using the following substitution: 

(5.38) 

From Section 5.5.1, A1,eq = Eo and Ai.eq = 0, for i = 2, 3, 4 .... As a result, 

(5.39) 

where 
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N 

U= LAiÇi. (5.40) 
i=l 

If the terms associated with the gravitational force are expanded binomially ignoring 

second order terms and above, the equations describing the longitudinal extension of the 

ribbon may be expressed as 

(5.41) 

where 

and 
1 

K:i =ikQ: Jexp[F(ç)]Çi+k-2dÇ-(M/+k+1 +Mc) 
o 

(5.42) 

The general eigenvalue problem in Eq. (5.41) is solved using Matlab, for a 100,000 km 

ribbon having a taper ratio of six. Table 5.2 shows the non-dimensional frequencies of 

the longitudinal modes for N = 3, 4 and 5. The frequencies are non-dimensionalized with 

respect to.Q. For values of N (number of longitudinal modes) greater than five, sorne of 

the eigenvalues are negative. This result occurs because matrices MA and KA bec orne 

very ill-conditioned as the value of N increases. The matrices become ill-conditioned 

because, as will be observed, the polynomial basis functions differ greatly from the actual 

modes. The results for the longitudinal modal analysis are reliable only for N < 6. 

From Table 5.2, the first mode of longitudinal extension has a frequency of 4.41, 

i.e., a period of approximately five and a half hours. The frequencies of mode 2 through 

mode 5 increase in a quasi-linear fashion. It can be seen in Table 5.2 that the frequencies 

converge fairly weIl when N is increased. 
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Table 5.2: Frequencies of longitudinal modes 

Mode # 1 2 3 4 5 

Non-dimensional 

frequency (N = 3) 
4.52 12.85 24.76 NIA NIA 

Non-dimensional 

frequency (N = 4) 
4.45 12.82 24.43 38.04 NIA 

Non-dimensiona1 

frequency (N = 5) 
4.41 12.73 24.36 37.70 57.80 

For the N = 5 system, the corresponding matrix of normalized eigenvectors (along 

the columns) is given by 

-0.11 -0.12 -0.22 -0.06 0.02 
0.34 0.38 0.67 0.36 -0.21 
-0.67 -0.64 -0.21 -0.73 0.61 
0.61 0.62 -0.59 0.56 -0.71 
-0.21 -0.23 0.34 -0.13 0.29 

Clearly, the basis functions (powers of ;) chosen to approximate the longitudinal 

extension, or, assumed modes, do not correspond to the actual modes. Odd1y, the first 

two modes are quite similar. 

5.5.3 Modal Analysis for the Lateral Displacement of the Ribbon 

The lateral extension of the ribbon is now examined by neglecting its longitudinal 

extension (other than its nominal amount given by U = &0;)' and again, ignoring c1imber 

effects. The generalized coordinate associated with aerodynamic loads is also neglected. 

However, the libration of the ribbon must be inc1uded in the analysis. This is because it 
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represents the zeroth mode of Iateral motion. If this is done, and higher order terms and 

damping terms are neglected, the coupled system of equations governing the libration 

(Eq. (5.28)) and generalized coordinates Bk (Eq. (5.30)) may be written as 

(5.43) 
where 

ffil,l ffil,i+l 
1 

kl,l 
1 --1-----

1 
and 

--1-----

1 
ffik+-l,l 1 ffik+-l,i+l kk+-l,l 1 kk+l,i+l 

1 1 

where both indexes i and k = 1,2, 3 ... M, and 

A 

mko=M Kko, ,1 p ,1 

and 
1 

kk,i = 1l'2 (.sa -.sg) ikQ; fexp[ F(q)] COS (i1l'q) COS (k1l'q) dq 
a 

(5.44) 
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Again, the generalized eigenvalue problem in Eq. (5.43) may be solved using 

Matlab. This time, the results seem reliable for a high number of modes. Table 5.3 

contains the non-dimensional natural frequencies for the first one hundred modes of the 

lateral extension of the ribbon. 

Table 5.3: Non-dimensional frequencies of lateral modes 

Mode # Frequency Mode # Frequency Mode # Frequency 

0 0.16 33 72.77 66 148.28 
1 2.32 34 73.17 67 150.22 
2 4.66 35 78.19 68 155.17 
3 6.93 36 86.26 69 161.50 
4 9.20 37 88.60 70 170.12 
5 11.48 38 89.12 71 172.98 
6 13.75 39 91.09 72 174.73 
7 16.02 40 91.36 73 176.09 
8 18.30 41 92.28 74 177.85 
9 20.57 42 93.89 75 180.41 
10 22.85 43 95.75 76 182.44 
11 25.12 44 97.97 77 183.91 
12 27.40 45 101.77 78 186.93 
13 29.67 46 102.61 79 188.97 
14 30.53 47 104.82 80 189.20 
15 31.96 48 107.12 81 191.36 
16 34.23 49 109.37 82 191.53 
17 36.51 50 111.61 83 193.73 
18 38.78 51 111.79 84 196.28 
19 41.06 52 113.75 85 198.30 
20 43.33 53 114.15 86 202.39 
21 45.60 54 114.57 87 207.41 
22 47.88 55 115.87 88 209.73 
23 50.11 56 118.82 89 210.58 
24 51.86 57 120.23 90 211.98 
25 52.50 58 122.09 91 214.26 
26 54.61 59 123.13 92 216.55 
27 55.67 60 126.25 93 218.83 
28 57.17 61 130.69 94 221.12 
29 59.35 62 136.36 95 223.99 
30 61.87 63 142.24 96 225.69 
31 63.90 64 144.70 97 229.76 
32 67.67 65 145.15 98 231.21 

99 232.57 
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The first frequency (zeroth mode) is that of the libration (a). It has a value of about 

0.16. This is reasonably close to the value of W = 0.18 obtained in Chapter 4, when the 

ribbon was assumed to be rigid. The corresponding difference in the period of libration 

for the rigid and elastic ribbon is nearly 20 hours (the elastic ribbon has the longer 

period). The first sinusoidal mode of transverse vibration has a period of about ten hours. 

The frequencies of the sinusoidal modes increase in a quasi-linear fashion. The 

deviations from the linear relationship may be due to the taper function of the ribbon. 

The modal matrix consisting of normalized eigenvectors is approximately 

equivalent to the identity matrix. This means that the assumed sinusoidal modes for the 

lateral extension are approximately the actual modes for the lateral motion of the ribbon. 

Patamia (2005a, 2005b) discusses the sinusoidal mode shapes associated with the lateral 

displacement of the ribbon. His results for transverse mode shapes are sin ( i1rÇ) , where 

i == 1,2,3 ... , as the results of this study suggest. Strangely, the frequency of the libration 

mode, or pendulum mode of the ribbon in his study was found to be about one day. This 

study (and that of Lang (2005a)) has found the librational frequency to be around five 

days. 

5.5.4 Steady State Lateral Displacement due to Aerodynamic Loading 

The effect of wind on the lateral extension of the ribbon is now considered. If all 

other generalized coordinates assume their respective equilibrium values, Eq. (5.31) 

becomes 
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1 

MpC" Jexp[ F(q)]V}dq 
o 

1 1 ex [F(q)]v 2 

= Ml'C Jexp[F(q)]Va2dq-ÂRiMI'C J p a 3dq 

o 0 [{RL +q{1+Eo)}2 +(CVJ2J 

-n;CfexP [F(4)ei)' {eo-eg+c'(~i )}4+ m",,~'4' (5.45) 

The approximate steady state solution to the effect of wind on the lateral extension of the 

ribbon, Css, may be found by setting C" = 0 and inputting (from Table 5.1) 

(5.46) 

Then, assuming Css«RL' and retaining only first order strain energy terms, 

(5.47) 

where 

(5.48) 

Since it is assumed that the wind acts in the horizontal direction, the differential 

horizontal component of the aerodynamic force is simply the drag force, which is given 

in Eq. (3.28). Assuming very small libration, and setting bel] to be the effective width 

exposed to aerodynamic winds, and Vw to be the uniform horizontal wind, 

(5.49) 

The negative sign appears because the wind is assumed to point westward (-eh direction). 

The flight path angle of the horizontal wind, fjJ, varies along the ribbon because of 

the non-linear aerodynamic basis function. It is observed from Figure 5.3 that fjJ is 

102 



highest in the lower atmosphere, where air density is the highest. This phenomenon 

should result in lower lateral displacement. Due to the horizontal wind, tan t/J is simply 

the derivative of the Iateral displacement: 

tant/J=c -=c, ---exp{-s/H) ==c., l--exp{-s/H) . aVa 
[ 1 1 J [La ] 

ss as ss La H S,\ H 

Icos t/JI is obtained by using the trigonometric identity: 

o 

'f 
/ 

10 

1 

20 30 40 50 60 70 80 90 
Ribbon position [km] 

Figure 5.3: Aerodynamic basis function and wind force variation 
vs. ribbon position 
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100 



The approximate steady state solution for the lateral extension of the ribbon may be 

found by solving the following implicit equation: 

(5.52) 

Equation (5.52) is implicit because the flight path angle of the wind depends on Css. The 

equation does not have an analytical solution, but it may be solved numericaIly. Using 

space elevator parameters assumed earlier, standard atmospheric values, and an effective 

width of 5 cm, the steady state value for the generalized coordinate associated with 

aerodynamic loads may be determined for a range of wind velocity values. Their 

relationship is plotted in Figure 5.4. 
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Figure 5.4: Steady state value for generalized coordinate associated with basis 
function Va vs. wind velocity 
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In Figure 5.4, the standard quadratic relationship exists for small winds. 

However, since Css appears in the denominator of Icos~l, the plot becomes quasi-linear 

for high winds. In general, high winds will cause tens of kilometres of lateral 

displacement in the ribbon in the first one hundred kilometres of its length. 

5.6 Effect of the Climber on the Elastic Ribbon Model 

In this section, Matlab is used to simulate the effect of a c1imber transit on the 

ribbon of the space elevator. Its effect on the libration of the ribbon is compared to the 

results obtained in Chapter 4, when the ribbon was assumed to be rigid. Equations (5.28) 

through (5.30) are solved using ode45. Aerodynamic loads are ignored, and so Eq. (5.31) 

is not used. The motion of the c1imber is prescribed, and so Eq. (5.27) is only used to 

ca1culate the required force or thrust of the c1imber. Again, the space elevator parameters 

used here are L = 100,000 km, 0"0 = 35 GPa, r = 1300 kg/m3
, E = 1 TPa and Am = 10 

mm2
. The c1imber has a mass of 800 kg. The ribbon begins in its equilibrium 

configuration. The c1imber proceeds from the bottom of the ribbon to the top with a 

cruising velocity of 280 km/hr, and has a time ratio of O.l. Three basis functions (or 

assumed modes) are used to approximate each of the longitudinal and lateral motion of 

the ribbon (N = M = 3). Therefore, along with the libration, the system being simulated is 

represented by seven coupled second-order equations. A relative tolerance of 10-3 is used 

for the ode45 solver. The absolute tolerance for a, a', Ak, A;, Bk and B; is 10-6
• 
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Figure 5.5: Libration response vs. time for (a) elastic and rigid ribbon models to 
(b) prescribed c1imber transit 

Figure 5.5 compares the libration response of the elastic ribbon model to the rigid 

one. Clearly, the responses are quite similar. One notable difference between the two is 

in the frequency. The elastic ribbon clearly has a longer period, which is expected from 

the observation made in the modal analysis of the lateral motion of the ribbon. Another 

difference is that the in-transit response of the elastic ribbon has a greater sinusoidal 

component than the rigid one, causing slightly greater fluctuations in libration. To know 

the particular reason for this, one must find a closed form solution to the equations of 

motion for the libration of the elastic ribbon; this has not been attempted in this thesis. 
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For this particular case, the elastic model experiences less residual libration. However, 

the elastic model could just as easily experience more residual libration than that 

predicted by the rigid one for a different prescribed motion. 
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Figure 5.6: Ribbon extension vs. time 
(a) Longitudinal extension generalized coordinates; 

(b) Lateral displacement generalized coordinates; (c) Prescribed c1imber transit 
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Figure 5.6 shows how the aforementioned c1imber transit will influence the 

longitudinal and lateral extension of the ribbon. The three non-dimensionalized 

generalized coordinates for longitudinal extension (Ak) and lateral motion (Bk) are plotted 

against time. The effect of c1imber transit at constant speed on these generalized 

coordinates is minimal. Since the assumed sinusoidal modes for the lateral displacement 

of the ribbon correspond roughly to the actual modes, the response of Bl is greater than 

that of B2, and the response of B2 is greater than that of B3. As the assumed modes 

attached to Ak do not correspond to modes, the same may not be said for their responses. 

It is noted that for aIl time, the values of aIl Ak (variations from equilibrium) are much 

less than Eo' which is about 0.035. 

In Chapter 4, c1imbing procedures to minirnize and/or control ribbon libration 

were derived assurning the ribbon to be rigid. In general, aIl three of the c1imbing 

procedures hold good for the elastic ribbon space elevator. The transverse modal analysis 

has revealed that the period of libration for the elastic ribbon case is longer than that of 

the rigid ribbon case. The numerical results in this section confirm that result. As such, 

when using the c1imbing procedures, the non-dimensional frequency derived in Chapter 

4, W, should be replaced by the non-dimensional frequency of the zeroth mode found 

from the transverse modal analysis in Section 5.5.3. The multiple-c1imber c1imbing 

procedure should work very well with this modification to the phasing. The procedure 

where a single c1imber returns an oscillating ribbon to equilibrium will contain sorne 

error due to the additional in-transit ribbon oscillations seen in the elastic ribbon. 

108 



Chapter 6: Launch Dynamics 

This chapter considers the launch of a payload from a climber. Once a climber 

reaches a desired launch altitude, do, the satellite it contains may be released. If no 

additional velocity impulse is added to the satellite, it will have used no fuel to arrive in 

orbit. These orbits will be called 'free Earth orbits'. 

At the time of launch, the climber (and the satellite it contains) will have radius ra, 

magnitude of velocity va, and flight path angle /30 , The values of VI) and flo may be 

modified by an applied velocity impulse. The semi-major axis and eccentricity of the 

orbit that the satellite will fall into are given by (Kaplan, 1976) 

(6.1) 

(6.2) 

6.1 Ideal Launch Scenario 

IdeaIly, at the moment of satellite launch, the space elevator will be static, and in 

its nominal configuration. If this is the case, and no additional impulse is applied to the 

satellite, then ro = R + do, Vo = Q ( R + do) and /30 = O. The resulting semi -major axis and 

eccentricity pairings are plotted in Figure 6.1 with aIl lengths non-dimensionalized with 

respect to the radius of the Earth. 
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Figure 6.1: Orbit parameters vs.launch altitude: (a) semi-major axis, (b) eccentricity 

It is observed that the geosynchronous altitude is the only point on the ribbon that is in a 

natural circular orbit (shown by a bullet in Figure 6.1). If a mass is released from any 

other altitude in the range shown above, it will be in an elliptical orbit. The minimum 

launch altitude considered is 23,500 km, because at any point below this, the perigee of 

the elliptical orbit of the satellite will be within 100 km from the surface of the Earth. 

The maximum launch altitude considered here is about 42,000 km, because the semi-

major axis of the resulting orbit for launches at altitudes beyond this point is very large. 

Though not seen from Figure 6.1, do = 7.345R, or about 46,850 km, is a criticallaunch 

altitude, which places payloads in a parabolic orbit. Therefore, for satellite placement in 

free Earth orbits, the launch altitude will be in the range given by 23,500 < do < 46,850 
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km. AIso, any natural (~v = 0) launch in the range given by 46,850 km < do < L will 

send the payload into a hyperbolic orbit, as it will have a velocity greater than the escape 

velocity given by Vesc = ~2f1/ ro. These trajectories are the starting point for planning 

interplanetary space missions using the space elevator, but are not discussed further, as 

this discussion is limited to the placement of satellites into Earth orbits. 
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Figure 6.2: Free Earth orbits using the space elevator 

A better picture of what has been called the free Earth orbits available to satellites 

using the space elevator is shown in Figure 6.2. Since the flight path angle of the climber 

at the time of launch is zero, the point of launch can only be the apogee or the perigee of 

the orbit. Since the portion of ribbon below the geosynchronous altitude is traveling 
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slower than it would in a natural circular orbit, launches below this altitude commence at 

the apogee of the orbit. Similarly, for launches above the geosynchronous altitude, the 

initial radius becomes the perigee of the orbit. 

While Figure 6.2 shows the spectrum of free orbits available to Earth satellites, 

there are a wide range of reasonably low cost orbits that may be reached by transferring 

from the free orbits with a small impulse, Llv. For ex ample, if a particular circular orbit 

having rc *- RG is desired, a certain Llv will be required. The most efficient elliptical to 

circular orbit transfer occurs at the perigee of an elliptical orbit if rc < RG' and at its 

apogee if rc > RG . These transfers are essentially the second impulse of a Hohmann 

transfer. It is noted that in either case, the impulse takes place at the side of the orbit 

opposite that which it was originally launched from. In Figure 6.3, the minimum 

required impulse and the launch altitude of the original elliptical orbit are plotted against 

a wide range of desired circular orbits. The required impulse for a geosynchronous orbit 

is zero, as it should be. The only circular orbits that require large impulses are those at 

low altitudes (altitude in the hundreds of kilometres). The benefits of using the space 

e1evator to reach orbits in this range are diminished; the required impulse using the space 

elevator as a platform actually exceeds 3 kmls. The space elevator would not be used to 

transport satellites to circular orbits of such low altitudes, because rockets can accomplish 

this task rather inexpensively. A more positive result is that every circular orbit having a 

radius in the range given by 30,300 < rc < 43,500 km may be arrived at with an impulse 

of less than 100 mis. 

112 



(a) 
4000 

\ 

3000 
\ 

\ CI) 

---.s 2000 \ 
\ 

> \ <l \ 
1000 ~ ", -~----

~.~ ~---

0 ~._~ 
._~ 

0 5 10 15 20 25 

(b) 
7,---------~---------_,----------,_--------_,--------~ 

3~--------~--------~----------~--------~--------~ 
o 5 10 15 20 25 

Circular orbit radius [Earth radii] 

Figure 6.3: Minimum cost (top) and originallaunch altitude (bottom) to arrive in 
circular orbits of various radii 

8000 

7000 

6000 

5000 

Ui' 
E 4000 

~ \ 3000 
\ 
\ 

2000 

1000 

0 
0 

More expensive 
circularization 

\ 
\ 

\ 
\ 

~ 
''---~-,------

2 4 6 8 10 12 

/ 
/ 

/ 
/ 

/ 

/ 
/ 

/ 

Less expensive 
circularization 

14 16 18 
Circular orbit radius [Earth radii] 

/ 
/ 

/ 

20 

Figure 6.4: Required impulse for two methods of circularizing orbits of various radii 

113 



If the orbit of a satellite is circularized at the moment of launch instead of waiting 

until the other si de of the elliptical orbit is reached, the required impulse is mu ch higher. 

The required impulses associated with both methods are illustrated in Figure 6.4. 

6.2 Non-Ideal Launch Scenario 

Now, the fact that the space elevator may not be static at the time of launch is 

taken into account. The required impulse to counter perturbations from the ideal case 

may be calculated. Also, if these perturbations are not taken into account, their effect on 

the orbit of a launched satellite is determined. 

As shown in Chapter 4, a residual oscillatory libration angle may be introduced to 

a static space elevator by the Coriolis acceleration of a c1imber or aerodynamics within 

the atmosphere. In the case of c1imber transit, the amplitude of the residual libration, 

ares' will likely be in the range of milliradians. It is unlikely that any other excitation 

will cause a residual libration greater than this. Although a method of eliminating such 

residual oscillations has been proposed, it is prudent to assume ares *- 0 at the time of 

launch, and devise a method to deal with it. In this section, the structural deformation of 

the ribbon is ignored. This is a reasonable assumption because the structural deformation 

of the ribbon will be damped by the material's visco-elastic properties (which will 

probably be of the order of 1-2% of critical damping). As higher modes tend to 

experience the most damping, the structural deformation of an excited ribbon will 

eventually dissipate, leaving libration as the only perturbation of the space elevator from 
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its nominal state. In any case, libration represents the most significant perturbation of the 

ribbon from equilibrium. 

If the ribbon is oscillating, its maximum libration rate occurs when the ribbon is 

vertical (a = 0 ). This is an ideal moment to launch, because ra is unchanged from the 

ideal case. This libration rate is given by à = .Q Wares ' where W is the non-dimensional 

natural frequency of libration, which was derived in Chapter 4. The perturbation velocity 

caused by this libration rate, which points in the transverse direction and is, of course, 

equal to the required impulse to counter it, is given by 

(6.3) 

.QW will have a value of about 1.5.10-5
• AIso, as aIready mentioned, for satellite 

placement, 23,500 < do < 42,000 km. So, if a satellite is launched from a ribbon that is 

oscillating with amplitude on the order of milliradians, at the moment when it is vertical, 

applying the correct impulse on the order of metres per second will eliminate the effect of 

oscillation. The required impulse is proportion al to the amplitude of oscillation. Thus, it 

has been shown that for amplitudes of libration in the milliradians range, the effect of 

libration on the orbit of a launched satellite may be zeroed with a reasonably small 

impulse. 

Conversely, the non-zero libration rate may be used to generate two new figures 

for free Earth orbits; one for when the ribbon is headed westward, and one when it is 

headed eastward. However, if the libration rate is low, the new figures will not change 

greatly, and the simplest solution may be to apply the small impulse as suggested above. 

115 



Finally, as shown in Figure 6.5, if the effect of libration on the order of 

milliradians is simply ignored, and a satellite is launched from the geosynchronous 

altitude at the moment when the ribbon is vertical, the semi-major axis of the orbit of the 

satellite will change by tens of kilometres, and its eccentricity by the order of 10.3. If the 

ribbon is not vertical at the time of launch, then in addition to the change in these two 

orbital parameters, the argument of the perigee of the orbit will be slightly modified, 

because /30 '* 0 . 
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Figure 6.5: Deviation in (a) semi-major axis and (b) eccentricity ofthe 
geosynchronous circular orbit due to residuallibration angle for launch at moment 

when the ribbon is vertical 
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Chapter 7: Conclusions 

7.1 Summary of Findings 

This thesis has studied several aspects of the dynamics of a space elevator. The 

most important findings in the thesis are summarized below. 

Due to the nominal stretch that the space elevator ribbon will experience, the taper 

function ensuring uniform stress throughout is slightly different from the one that has 

been derived in the previous literature. Also, the space elevator must have a 

counterweight, having a specific mass based on the ribbon's material and design 

parameters, attached to its free end to satisfy the boundary condition there. The presence 

of a climber will cause an additional tension gradient across the ribbon. As a result, the 

mass of a climber has an upper bound. 

A dynamics model using a rigid ribbon assumption has been used to study the 

basic dynamic behaviour of the space elevator. The primary response of the ribbon to 

ascending climbers is to rotate in the opposite direction as that of the Earth. This 

westward propagation is due to the Coriolis force on the moving climber. For a climber 

transit at constant speed, the response is a sum of oscillatory terms (which decay for 

as cent and grow for des cent) and a linear term. However, due to the relatively small 

mass of the climber and the fact that the ribbon itself is not actually deployed or 

retrieved, the decay or growth of the oscillatory terms will be negligible. This result 
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distinguishes the dynamics of the space elevator from those of a typical tethered satellite 

system, where the growth of tether oscillations during constant rate retrieval can be very 

large. Also, for constant speed transits, the amount of libration induced on the ribbon is 

proportional to the mass of the c1imber, its cruise velocity, and the distance it travels. 

Since aIl of these values have upper bounds, the ribbon libration they cause is bounded as 

weIl; it will be of the order of milliradians at most. Still, the ribbon will experience 

undamped oscillations about its vertical equilibrium position. The period of such 

oscillations would be about five to six days. Even though the amplitude of these 

oscillations is smaIl, it is desirable to minimize, and if possible, eliminate it. 

Three simple c1imbing procedures that aim to minimize or eliminate residual 

oscillation upon c1imber arrivaI have been presented. The first procedure is to decelerate 

the c1imber very gradually following a half sine function as it approaches its destination. 

This can reduce (though not entirely eliminate) the residuallibration caused by a single 

c1imber. The second c1imbing procedure aims to eliminate ribbon oscillations. It is 

applicable for the case where a single c1imber is sent from one point on the ribbon to 

another at a constant speed. If the c1imber is sent at the moment when the ribbon reaches 

its maximum eastward propagation with a specific c1imber mass and velocity pairing, the 

ribbon will reach equilibrium at the moment when the c1imber arrives at its destination; 

the oscillation can be eliminated by llsing the Coriolis force on the c1imber. The third 

c1imbing procedure, which allows for the ribbon to begin and end in equilibrium, requires 

that multiple c1imbers undergo the same transit, and be separated by a specifie amount of 

time. This c1imbing procedure illustrates the danger of phasing c1imbers inappropriately: 
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just as proper phasing can cancel the effect of each climber, improper phasing can add the 

adverse effect of each climber. 

A more realistic dynamics model of the space elevator, one with an elastic ribbon, 

was also studied. The assumed modes method was used to discretize the space and time 

variables of the ribbon. The spatial basis functions used to approximate the longitudinal 

extension of the ribbon were polynomials, whereas sinusoidal functions were used to 

accomplish this for the lateral displacement. A modal analysis was conducted separately 

for each of the longitudinal and lateral motion of the ribbon. Due to poor conditioning of 

the inertia and stiffness matrices associated with the longitudinal extension equations for 

a high number of basis functions, only the first five modes could be analyzed accurately 

using numerical techniques. The first five modal natural frequencies were ca1culated. 

The same approach was taken for the modal analysis of the lateral motion. The analysis 

included the libration of the ribbon, as it is the zeroth mode of lateral vibration. The 

inertia and stiffness matrices for lateral motion were well-conditioned, and the first one 

hundred modal natural frequencies were calculated. The matrix composed of the 

eigenvectors along the columns was close to the identity matrix. Thus, it was concluded 

that after the zeroth mode, aIl subsequent mode shapes are approximately equal to 

sin (i1rç) , where ç is the non-dimensional ribbon material coordinate ranging from 0 to 

1 and i = 1, 2, 3 ... 

Numerical simulations of the climber ascending the elastic ribbon reveals that the 

recommended climbing procedures derived using the rigid ribbon model will, in general, 
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hold good for the actual, elastic ribbon case. The main change is that the period of 

libration that must be used for the climbing procedures corresponds to the period of the 

zeroth mode obtained from the lateral motion modal analysis, and not the one obtained 

using the rigid ribbon assumption. 

A simplified case of aerodynamic loading was investigated in the thesis: a 

westward-facing wind, uniform in space and time. The rigid ribbon model was used to 

gauge the effect that such a wind would have on the libration of the ribbon. It was found 

that a high velocity wind could cause the ribbon to rotate by several milliradians. An 

addition al lateral motion basis function was derived to study the steady-state effect that 

su ch a wind would have on the elastic ribbon model. The basis function allowed for near 

horizontal ribbon departure angles as observed in the previous literature. It was found 

that high winds could cause a bubble of lateral displacement tens of kilometres long 

within the first one hundred kilometres of the ribbon. 

The spectrum of free Earth orbits available to satellites released from the climber 

is quite broad. Impulse manoeuvres will be required to reach any orbit not falling within 

this spectrum. Such fuel costs will be very small compared to what is normally required 

for a rocket to attain such orbits without the aid of the space elevator. For example, 

although there is only one free circular Earth orbit (at the geosynchronous altitude), there 

is a wide range of low-cost «100 mis) circular high-altitude orbits. The space elevator 

will probably not be used for the placement of satellites in circular low Earth orbits, as 

the additional impulse required to arrive there is of the order of kilometres per second. 
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The fact that the ribbon will be in motion when the satellites are launched is not 

likely to play a major role in such launches. The launch from a ribbon experiencing 

simple pendulum motion has been considered. It has been shown that the steady state 

motion of the ribbon due to c1imber transit or aerodynamic excitation will be undamped 

rotational oscillations of the order of milliradians. The effect of such dynamics may be 

countered by impulses of the order of metres per second. Even if this ribbon motion were 

not accounted for in the launch, its effect on the orbit of the launched satellite would be 

small: the semi-major axis would change by only tens of kilometres, and the eccentricity 

by the order of 10-3
. 

In general, an aspects of the dynamics of the space elevator are fairly well­

behaved. The system is stable, and no reasonable climber transit or aerodynamic effects 

will push it undesirably far from equilibrium. No results from this study indicate that 

space elevator operation will be infeasible. 

7.2 Suggestions for Future W ork 

The analysis in this thesis was limited to the equatorial plane of the Earth. A 

more complete dynamic analysis could be done by studying the general three­

dimensional motion of the space elevator. This would allow certain other aspects of the 

space elevator's dynamics to be studied. In particular, the way in which the system 

behaves when the base moves away from the equator could be studied. Off-equator 
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space elevator operation will be very important because the equatorial plane of the Earth 

is overcrowded with man-made space debris. Out of plane motion of the base will be 

required to remove the ribbon from the orbital path of any large objects. 

A future model of the space elevator should allow for more complex structural 

deformation. For instance, the twisting of the ribbon could be studied. AIso, the visco­

elasticity of the ribbon could be inc1uded in the dynamic model. Certain basic aspects of 

control conceming the climber were presented in this thesis, but more complex active 

control systems for the climber should be analyzed. Control systems for the base as a 

means of ribbon control should be studied for reasons given above. AIso, a more in­

depth analysis of the effects of aerodynamics should be performed numerically. 

This thesis exarnined the operational phase of the space elevator. The dynamics 

goveming the deployment of the space elevator are more complex. A complete dynamic 

analysis of this phase should be proposed and optimized. 

This thesis discussed the placement of satellites using the space elevator as a 

platform. The same should be done for interplanetary missions. The almost free escape 

from the Earth would change the approach to such missions significantly. They could 

occur much more frequently, and at a much lower cost. 

Further study of space elevator dynamics may seem premature, as a material 

meeting the requirements of the ribbon has yet to be synthesized. However, material 
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technology will be propelled forward because of demand coming from a wide range of 

terres trial applications. A carbon nanotube lattice reaching its theoretical strength would 

be very useful in many industries, from sports to aeronautics. So, as thousands strive to 

improve the strength of such materials, a handful may continue to study the dynamics of 

the space elevator. 

An operational space elevator will completely alter space travel. It will, quite 

literally, bridge the gap between man and space. 
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