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Abstract 
 

Microarrays are a powerful tool for multiplexed analysis of DNA, RNA, proteins and EVs. They 

involve microarray designing, manufacturing, incubation with sample and fluorescent detection 

reagents, scanning, image processing, and data analyzing. Once the microarray images related to 

a particular experiment are produced, we follow a process of image analysis that is organized into 

three steps: gridding, segmentation, and intensity calculation. Ideally, the analysis would be much 

easier without noise sources that is mostly due to inhomogeneous spots intensities, dust, slides 

inhomogeneity and bias, as well as other challenges such as spots with noncircular shape or similar 

size, which require additional processing steps in order to accurately analyze the microarray data. 

Different software packages are available to analyze microarray data and overcome some of the 

traditional image analysis issues, such as ScanAlyze, and GenePix Pro6, or Array pro Analyzer. 

Unfortunately, these software require manual intervention to achieve accurate gridding, signal and 

background separation, as well as precise expression levels estimation, and they are “black boxes” 

which produce the final microarray image quantification results without showing most 

preprocessing or analysis steps such as channels splitting, or the denoising phase which is 

unsatisfactory and limits the ability to diagnose and correct image analysis errors. In this work, we 

developed an automated image analysis pipeline for microarray images, with emphasis on 

exosomes and EV analysis. The process of automation includes (1) gridding based on projection 

techniques (2) a thresholding image segmentation, and (3) an algorithm for intensity calculation. 

Different gridding parameters have been benchmarked based on the processing time, and accuracy 

of correctly gridding the spots, and its noise removal ability. We also explored the use of machine 

learning for microarray research by implementing k-means clustering algorithm on similar 

microarray images. We compared our data processing pipeline to Array Pro by using real 

microarray data from EV analysis experiments. Our automated pipeline, which is fast, effective 

with a gridding accuracy that gets to 97.5% and a segmentation similarity of 98%, can improve 

our understanding of the image analysis steps of many software used to analyze microarray data, 

and offer a universal way for more accurate analysis of microarray data and EVs, by assessing 

different quality metrics of any type of microarray, and therefore help in answering different 

biological questions. 
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Résumé 

 
La technologie des micropuces est un outil essentiel utilisé pour l'analyse multiplexée de l'ADN, 

d’ADN, l'ARN, l'analyse des protéines et les biopuces à anticorps. Ils impliquent la conception, la 

fabrication, l'incubation avec des échantillons et des réactifs de détection fluorescents, la 

numérisation, le traitement d'images et l'analyse des données. Une fois que les images de 

micropuces liées à une expérience particulière sont produites, Nous utilisons un pipeline d'analyse 

d'images organisé en trois étapes: le maillage, la segmentation et calcul d'intensité. Idéalement, le 

processus d'analyse d'image serait beaucoup plus facile, si l'arrière-plan était dépourvu de sources 

de bruit sont principalement due à des intensités de points non homogènes, à la poussière, à 

l'inhomogénéité et au biais, et si tous les points avaient des formes circulaires, une taille similaire 

qui nécessitent des étapes de traitement supplémentaires afin d’analyser avec précision les données 

des micropuces. Différents logiciels sont disponibles pour analyser les données des micropuces et 

surmonter certains des problèmes d'analyse d'image traditionnels, tels que ScanAlyze et GenePix 

Pro6 ou Array Pro Analyzer. Malheureusement, ces logiciels nécessitent une intervention manuelle 

pour obtenir un maillage précis, une séparation du signal et de l'arrière-plan, ainsi qu'une 

estimation précise des niveaux d'expression, et ce sont des ’boîtes noires’ qui produisent les 

résultats finaux de quantification d'images de micropuces sans montrer la plupart des étapes de 

prétraitement ou d'analyse telles que la séparation des canaux, ou la phase de débruitage qui n'est 

pas satisfaisante et limite la capacité de diagnostic et de correction des erreurs d'analyse d'images. 

Dans ce travail, nous avons développé un pipeline d'analyse d'image automatisé en mettant l'accent 

sur les exosomes et l'analyse des EV qui permettra de lier les résultats du diagnostic à des 

paramètres de traitement d'image spécifiques. Le processus d'automatisation comprend (1) un 

maillage basé sur des techniques de projection (2) une segmentation d'image de seuillage, et (3) 

un algorithme de calcul d'intensité. Différents paramètres de cette approche ont été évalués tels 

que le temps de traitement, la précision de quadrillage et sa capacité d'élimination du bruit de fond.  

Nous avons également exploré l’impact de l'apprentissage automatique sur la recherche liée aux 

micropuces en implémentant l'algorithme k-means sur des images de micropuces similaires. Nous 

avons comparé notre pipeline de traitement de données à Array Pro en utilisant des données 

micropuces réelles issues d'expériences d'analyse EV. Notre pipeline, qui est rapide, efficace et 

avec une précision de maillage atteignant 97,5 % et une similarité de segmentation de 98 %,  peut 

améliorer notre compréhension des nombreux logiciels utilisés pour analyser les données des 

micropuces et offrir un moyen universel pour une analyse plus précise des données des micropuces 

et des EV, en évaluant différentes métriques de qualité de tout type de micropuces, et donc aider à 

répondre à différentes questions biologiques. 
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Chapter 1: Introduction 

 

Array based technology represents a powerful tool to analyze data generated from experiments on 

DNA, RNA, protein analysis, and the expression levels of several molecules of interest [1]. The 

technology is a multiplex lab-on-a-chip, a two-dimensional array consisting of a solid surface, onto 

which molecules of interests such as antibodies or DNA molecules are chemically bound. The 

platform assays large amounts of biological material using high-throughput screening 

miniaturized, multiplexed, and parallel processing and detection methods[2]. Any reaction 

between the probe and the immobilised molecule of interest emits a fluorescent signal that is read 

by a laser scanner [3]. The result is a set of microarray images related to a particular experience 

that require a pipeline of image analysis. The process is organized in three steps: gridding, 

segmentation and intensity calculation [4]. Ideally, the image analysis procedure would be much 

easier, if the background was noise and artifact-free and all the spots had circular shapes, similar 

size, and homogeneous intensity. However, this is not the case, and the quality of microarrays we 

usually encounter makes the analysis more challenging since there are various noise sources, 

including slide inhomogeniety and bias that require a lot of flexibility and adjustments in order to 

accurately analyze the microarray data [4]. We first start the image analysis by locating the spots 

from the scanned images using a gridding technique. Next, we segment each spot individually into 

regions of two classes: foreground and background, and finally, the expression levels will be 

computed using the segmentation results.  

During the preparation of microarrays gridding, a lot of parameters need to be taken into 

consideration, such as the total count of spots and their dimension, the total count of associated-

grids and their position, and while trying to evaluate these parameters, we often have to deal with 

obstacles such as noise, or improper alignment, that can make it hard to locate the correct location 

of the spots, which affects the gridding results[5] The gridding step is an essential part of the image 

analysis process, and when it is done manually, it could cause variations of the expression 

results[6]. After the gridding step is done, we move to the segmentation phase. The purpose of this 

step is to prepare the image for future feature extractions analysis. Segmentation can be seen as 

the classification of each image pixel to be assigned to one of the image compositions[7]. It was 

also shown that the method chosen for the segmentation significantly affects the precision of the 

microarray data, so it is essential that the step of segmentation is carefully done for an accurate 

quantification[8].The last step of the image analysis process is to extract intensity values and 

expression levels based on the results of the previous processing stages (gridding and 

segmentation) [9]. The numerical results will have to undergo a data analysis procedure. 

Extracellular vesicles (EVs) are small phospholipid membrane-enclosed entities secreted 

by cells, they come in three different subtypes, which are microvesicles (MVs), exosomes, and 

apoptotic bodies, and are distinguished by their biogenesis, release pathways, size, content and 

function  [10, 11] Exosomes are the smallest (30–150 nm) of these EVs secreted and are present 

in all body fluids, they form a mean of intercellular communication and of transmission of sensitive 

molecules such as nucleic acids, lipids and proteins between cells [12] Proteins embedded in the 
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membrane of exosomes are also involved in the interaction with recipient cells, and can identify 

the physiological and pathological states of their parental cells or indicate their preferential target 

cells or tissues [13] For instance, alterations in protein profiles of exosomes in plasma correlate 

with pathological processes of many diseases including cancer[14]. In neurodegenerative diseases, 

exosomes have been implicated in the trafficking of prion proteins, such as prion protein, β-

amyloid which is the main reason behind Alzheimer diseases (AD) and tau [15] Researchers have 

come up with different biomedical techniques to analyze these exosomal proteins. Once the 

vesicles are purified, it becomes easier to detect and identity their proteins and use them to answer 

different biological questions. 

 

In recent years, researchers have been using different methods and software packages that 

are available to analyze microarray data and deal with some of the issues that can be encountered 

during the image analysis process such as ScanAlyze (Buckly 2000), and GenePix Pro6 (Axon 

Instruments Inc. 2004), but the problem is that these software and others tend to require a certain 

amount of human intervention to achieve a good result that enables the biologist to come up with 

a more accurate and logical analysis of the data [7]  

The Micro ana Nano bioengineering laboratory at McGill University has been using Array 

Pro Analyzer as a software to analyse different types of microarray images in order to characterize 

exosomes. Array-Pro Analyzer is an indispensable tool for the nascent microarray and high-

throughput screening research that is fueling the genomics, proteomics, drug discovery, and 

bioinformatics revolution. The software is well designed for microarray gene expression, and 

sequencing analyses, and it has the ability to detest low-level expression using extensive 

background and signal options to optimize results. It can characterize data more precisely through 

grouping by cells, grids, and images[16]. Despite its efficiency, the software also has some 

downsides, for example it requires manual input to identify the spots from the background signal,  

making the process of gridding, which is the basis of the whole image analysis manual,  and this 

may cause a lot of inaccuracies. Besides, this can be time-consuming, especially if we are dealing 

with a lot of data to process. Moreover, the software is only able to provide numerical values 

without any interpretation, and the user will have to look at the raw data and intellectually make 

sense of it. Finally, Array Pro and other microarray data analysis software are ‘black boxes’ that 

produce the final microarray image quantification results without showing any preprocessing or 

analysis steps, which limits the ability to diagnose and correct image analysis errors when they 

occur.  

Therefore, we noticed a need to come up with a new pipeline to analyze microarray images 

from the Micro and Nano bioengineering lab in a more accurate and convenient way, while 

optimizing the whole image analysis process. Array-Pro analyzer is going to be used as one of the 

ways to test the efficiency of the developed pipeline Besides, given the importance of exosomes 

in medical settings and their relevance to the type of EVs research and analysis conducted at the 

lab, those molecules are selected as a main model to test the pipeline developed in this work, by 

using images of antibody microarrays, which is the most polyvalent approach within the 

multiplexed immunoassay technologies, as they allow the detection and study of protein function, 

pathways and other characteristics[17] The analysis method developed in this work, will also be 

validated on different types of microarray data to demonstrate that the model used is universal. 
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Furthermore, it is known that microarray experiments usually provide huge amounts of data, that 

requires the right methodology and the scientific tools to understand and explore any hidden 

knowledge and uncover biological patterns The need to manage and handle large data sets, leads 

us to think about adapting data mining and machine learning approaches on the microarray data 

we will be using for this project and assess whether those approaches add any scientific value to 

our analysis[18, 19]. 

The pipeline consists of developing several algorithms for automatic gridding, 

segmentation methods based on machine learning and thresholding, and intensity calculation. In 

summary the objectives of this project are the following: 

• Develop an automatic gridding method, and measure its parameters such as time of 

processing, and accuracy. 

• Develop an automatic segmentation based on thresholding and assess its scores. 

• Explore the effect of machine learning on the segmentation results, and on research on 

microarray data in general. 

• Understand the mechanism of functioning of microarray image analyzing softwares. 

• Calculate the spots intensities and expression levels. 

• Measure the statistical parameters to determine microarray experiment quality. 

• Demonstrate the universality of the developed pipeline by validating used pipeline on 

different microarray data. 

• Understand the different noise sources in microarray images.  

• Test and evaluate the performance of the proposed pipeline by comparing quantification 

results with ArrayPro, and other data. 

 

Having a better approach for analyzing microarray images can improve our understanding of 

the many software used to analyze microarray data and offer a universal way for more accurate 

analysis of microarray data and EVs, and therefore a better understanding of several illnesses 

including tumor invasion. 
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Chapter 2: Literature review 

 

2. Introduction 
Array technology is an essential tool to analyze data generated for multiplexed analysis of DNA, 

RNA, proteins and EVs.  In this chapter, we define the microarray technology and go through the 

image analysis pipeline along with different approaches to improve the image analysis process. 

We also provide an overview to EV analysis since the pipeline being developed in this work uses 

exosomes a model to validate the different conclusions[20]. The importance of extracellular 

vesicles (EVs) in cell-cell communication has long been recognized due to their ability to transfer 

important cellular cargoes such as DNA, mRNA, miRNAs, and proteins to target cells. Among 

those EVs exosomes constitute potential biomarkers for cancers due to their abundance in 

biological fluids, ease of uptake, and cellular content. Therefore, the use of exosomes in diagnosis 

and prognosis can revolutionize patient care[21] Finally, we discuss machine learning techniques 

and how they could be applied to microarray data management. 

2.1 Microarray data processing 
A microarray is a powerful tool and is widely used in many research areas. For biologists, genetic 

research, understanding, and diagnosis of cancer and many other dangerous diseases. Once the 

experimental design of the microarray is set up, the next step will be to produce an image, where 

the microarray is scanned by a laser.  The expression process consists of three steps: grinding, 

segmentation, and intensity calculation that we are going to explore in this paper.[22]. Figure 1 

shows the general workflow of a DNA microarray experiment. 

 

 

 

Figure 1 Work flow of a typical DNA microarray experiment [24] 

2.1.1 Gene expression using microarray technology 

In this section, we try to understand one important genomic application of microarray technology, 

along with its different steps. Microarray gene expression data have usually information regarding 

expression levels of the genes in certain tissue and cell, and it is useful to compare those expression 

levels to identity diseased genes which can lead to accurate production of a therapeutic drug for 

that particular disease.. This type of data can be leveraged in different medical studies and can 
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eventually help in the field of tumor and cancerous gene detection[23]. The microarray technology 

has the advantage of measuring the expression level of thousands of genes in a sample and in a 

rapid and efficient way[22]. A DNA microarray or DNA chip consists of a solid surface or glass 

slides, onto which thousands of DNA sequences have been chemically bounded. Each slide 

contains several sub-grids that are two-dimensional arrays of DNA spots. The technology enables 

the detection of the presence and abundance of labeled nucleic acids in a specific biological sample 

that is going to hybridize to the DNA on the array, and which can be detected via the label. Figure 

2 details the steps of a DNA experiment. 

 

 
 
Figure 2 Individual steps of a DNA microarray experiment. After isolation of sample mRNA (1) synthesis 

of cDNA chains by addition of oligo(dT) primers (2) cDNA amplification (3) fragmentation (4) 

Hybridization of CRNA with microarray probes (5) The final staining press (6) [24] 

 

In the microarray experiment ribonucleic acid (RNA) is first isolated from both control and 

experimental samples of the cells of interest. The extracted RNAs are then converted into cDNA. 

Usually, the labeled nucleic acids are derived from the mRNA of a sample of tissue. Typically, 

control and test RNA samples are processed on the same array using two different dye-tagged 

probes (e.g., the red fluorescent dye Cy5 and green fluorescent dye Cy3)[22, 25] Those two 

populations are usually labeled with fluorescent dyes such as Cy3 (green) and Cy5 (red). The 

mixture of these samples is then hybridized to a glass slide that will be later scanned with red and 

green laser. The relative difference of gene expression between the two sources is shown by the 

observed difference in fluorescence between the two-color channels, which will give a scanned 

array image that is going to be used to derive data for analysis. The images that are obtained from 

microarray experiments are usually represented as an RGB image with blue being zero. The images 

have several blocks that are called sub-grids that have several spots with varying intensities. Those 

spots are placed in rows and columns and are also spaced such as shown by figure 3[25]. 
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Figure 3 A typical microarray image, containing 6000 spots, arrayed in a set of 4 × 4 subarrays each 

containing 21 × 18 spots. The spots are printed with ∼130 μm center-to-center distances.[28] 

2.1.2 Scanning  

Once the hybridized arrays are ready, they need to be passed by a scanner to measure the 

fluorescence intensities of the different spots related to each sample. The original images that are 

scanned   are stored as a pair of 16-bit TIFF files, ranging from 2.5 to 20MB in size. Usually, one 

file corresponds to the testing sample and the other to the reference sample. The spots are separated 

based on their individual size, so that the spots can be hybridized, washed, and scanned. These 

principles of microarray production, lead to the fact that spots are not of the same size and some 

spots have high or low intensity[26]. 

 

2.1.3 Pre-analysis issues of microarrays  

Before analyzing microarray data, it is common to encounter several pre-analysis issues that need 

to be addressed mostly in the preprocessing steps. These challenges may influence the stability 

and reproducibility of the microarray platform and affect the whole process of the image 

analysis[27]. The following table summarizes the most common pre-analysis issues encountered 

while working with microarray platform: 
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Table 1 Summary of most common pre-analysis issues for microarray images along with their description 

The pre-analysis issue Description 

Image reading Usually, the microarray image is stored as J-

PEG file, and that’s why it is usually bigger 

than the screen. Scaling down the size of the 

image is necessary for the analysis, and this 

can be done using different functions in 

Matlab for example such as imshow( ) 

function [28] 

Cropping It is essential to use a programming function 

such as imcrop( ) to crop a particular section 

of the microarray image and focus on it [29] 

RGB separation The microarray image is stored in a RGB 

format, to study the red and green plans, 

since each plan is represented with a color 

[30]. A simple indexing step is needed. The 

shape of the spots is always the same. 

Greyscale conversion Once the microarray image is cropped, the 

RGB image may go through a conversion to 

the grayscale to be prepared for spot finding 

and an easier gridding [31] 

 

Global thresholding Distinctive distribution of brightness   of 

objects and background pixels require a 

global thesholding to the entire image so that 

all spots are detected equally[32] 

Local thresholding Applying global thresholding for the 

brightness issue may not be enough, since 

some weak spots can still be missed, that’s 

why a local thresholding is also required, and 

the bounding boxes can be used to determine 

local threshold values for each spot [33] 

Transformations Before the analysis and comparison between 

the expression data extracted from the spots, 

a number of transformations must be 

conducted to remove low-quality 

measurements and adjust the measured 

intensities to improve the study[34].  

 

 

2.2. Gridding  
Microarray image gridding is the first step in the image analysis process and it is essential to 

determine 2D image coordinates of the spots by putting each spot into an individual 

comportment.[35] Being able to accurately identity the exact location of a spot in a specific sub 
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grid is an important step for a more smooth image analysis process. An error in this task can create 

other issues for analysis and may alter the truthfulness and exactness of the study [36] Usually a 

gridding technique should be able to grid images that include spots of various shapes, sizes and 

intensities while being robust to noise and artefacts introduced by the experiment [37] There are 

in generally three types of gridding depending on the level of human intervention required. 

 

• Manual gridding 

• Semi-automatic gridding 

• Automatic gridding 

 

Figure 4 describes a microarray image before and after the gridding process. The next section 

explores the different gridding methods that are common. 

 

 
 

Figure 4 An associated-grid of a typical microarray image: (a) before gridding and (b) after gridding 

[41] 

 

2.2.1 Subgridding 

This method is based on the identification of the sub-grids by identifying first the probable 

rotations of the image, and applying the radon transform, and smoothing the sums of the horizontal 

or vertical pixel intensities. One of the downsides of this technique is that it is not able to detect 

the accurate count of associated grids automatically. Another technique for associated-gridding is 

to carry out a sequence of phases with rotation to identify the rotated spots and evaluates the 
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horizontal or vertical sums of the uppermost and lowermost parts of a particular microarray image, 

and this helps in detecting the rotated direction with respect to either of the axes[38] 

2.2.2 The bayesien model 

This method is based on the use of a the Bayesian probabilistic model which is becoming ever 

more popular in applied and fundamental research, including image processing to locate the exact 

location of spots[39]. It uses the posterior probability model to correctly adjust the grid spots. The 

technique can be done in two steps: first, it is essential to use an orientation matching and radon 

transform to generate a preliminary grid. Once this is done, the grid nodes are adjusted based on 

local spot deformations. In this technique, there is a still a possibility of misalignments between 

the actual sub-grid and the matched grid, and this issue should be resolved before measuring the 

intensity level of each spot [38]. 

2.2.3 Genetic algorithms 

A genetic algorithm (GA) is a powerful tool that suitable for optimization problems. A typical GA 

searches for the optimal solution is required. First, it creates a finite number of potential solutions 

encoded as alpha-numerical sequences called chromosomes. Chromosomes represent a possible 

solution for the gridding process. These chromosomes constitute an initial population Pop. Another 

population of chromosomes is created. This evolutionary cycle from one population to the next 

continues until a specific termination criterion is satisfied, such as meeting the minimum required 

gridding parameters. Each potential solution is evaluated using a fitness function. This function 

measures the quality of a gridding solution that those chromosomes represent. Therefore, the 

essential elements of the GA are chromosome representation, chromosome evaluation, the 

evolutionary cycle, and the termination criteria.[40] This kind of algorithm can differentiate 

between the different grids and identify the location of the spots. The method consists of finding 

the lines that separate between the spots. The population of chromosomes are encoded as triplets 

that have three real values: the first two values are the y coordinates, and the third value is the 

space between neighboring spots. A separating line should be contained in an empty area between 

adjacent spots.  [38] The method seems to be efficient for gridding, even if the image seems to be 

contaminated by noise or artifact[41] and even though genetic algorithms are widely used in the 

estimation of expression profiles from microarrays data. This kind of approaches are unable to 

produce stable and robust solutions suitable to use in clinical and biomedical studies[42]  

2.2.4 Optimal multilevel thresholding gridding 

This method showed success in microarray image gridding, and particularly in DNA images with 

different configurations. It used thresholding without input parameters. It locates the spots in a 

recursive way for each possible threshold, and then uses an objective function to assess to set the 

best number of thresholds. This method showed success in microarray image gridding, and 

particularly in DNA images with different configurations. It used thresholding without input 

parameters. It locates the spots in a recursive way for each possible threshold, and then uses an 

objective function to assess to set the best number of thresholds. It is essential to find thresholds 

in typical DNA microarray image. to do so, this method relies on the use of radon transform as a 

preface stage. To find the amount of spots in each sub-grid the same procedure is followed along 

with using an index of validity.[38] 
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2.2.5 Grid alignment algorithm 

The method starts by locating a 2 D array of rows and columns of the image, along with its 

rotational and translational offsets. The spot center is represented by the intersection between two 

rows and columns. This method however performs badly when it comes to noise removal. Figure 

5 shows the diagram of the different steps of the algorithm[5] 

 

 

Figure 5 Grid alignment algorithm diagram detailing the different steps [47] 

 

2.2.6 Support victor machine 

This type of grinding is based on the use of a common machine learning algorithm called the 

support victor machine (SVM). The technique relies on the use of a soft-margin SVMs to predict 

the lines of the microarray grid by finding the maximum between the lines and the spots. In order 

to maximize the margin between the spots and the lines, it is essential to automatically set the 

separation line between consecutive rows and columns. Once the separation step is done, a 

detection step is followed by selecting the place of the microarray grid that has specific properties 

before filtering out any anomalies and artifacts. Finally, the rest of the spots are automatically split 

into rows and columns by calculating the distance between two consecutive rows and columns of 

spots, as well as the image rotation angle [5] 

2.2.7 Otsu method 

This method consists of converting a greyscale microarray image into a binary image. Once the 

conversion is done, the pixels are grouped into two separate categories: background and 

foreground image. It is essential to carefully use a threshold value to get the best separation 

possible. The method takes into consideration the removal of unwanted parts using an edge 

processing step, before the grid can be calculated, and in case of dealing with a colour microarray 

image, converting it to the greyscale should be the first step to be done[5]  

 

As we have seen in this section, there are several gridding methods that require manual to 

semi automatic human intervention, and this can delay the image analysis process, and cause some 
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accuracies issues. In this project, we will be presenting an automatic gridding method, and we will 

assess its effectiveness by measuring the processing time that the algorithm requires to perform 

the gridding operation, as well as the accuracy of correctly gridding and locating the spots. This 

will be described in more details in chapter 3. The following part of this chapter addresses the 

segmentation phase of the microarray images. 

 

2.3 Segmentation  
Medical applications are essential to the healthcare industry, and therefore, it requires correct and 

fast segmentation associated with medical images for correct diagnosis, but the process of using 

the right segmentation method remains challenging[43] Once the microarray image gridding step 

is done, the next step in the microarray image pipeline is the segmentation of the spots, which is 

still a problem because of the variations of spots qualities such as spots shapes and sizes[44] 

Segmentation is defined as the segregating of the microarray image into multiple fundamental 

fragments, So that the image pixels are separated in two classes, whether they belong to 

background or spots.[45, 46]. Researchers have come up with several methods to segment 

microarray images, among these techniques, we have the followings: 

 
 

2.3.1 Fixed circle segmentation 

This method fits a circle to all the spots in the image. The method is easy to implement and gives 

good results when applied to a microarray image that has spots of similar size and circular shape. 

In this technique, and in the case where the background affects the foreground value, and the 

background value can be estimated then, it is possible to use a very large fixed diameter to cover 

the entire spot in this situation [47] 

2.3.2 Adaptive circle segmentation 

This method looks closely at each spot. It considers the shape of each spot as a circle, where the 

center and the diameter of the circle can be estimated. The first step consists of estimating the 

center of each spot, and then the diameter of the circle will be adjusted [48] 

2.3.3 Thresholding segmentation 

In this method, the first thing to do is to apply a single threshold level to the entire image in order 

to detect all the spots equally. One of the challenges that can be encountered while applying this 

method is the large differences in the spot brightness, Therefore, the intensity values of the spots 

need to be transformed to logarithmic space or go through other type of image processing 

transformations, in order to boost the effectiveness of the technique. Using different ways of 

applying the thresholding process using combinations may boost the segmentation process[48]. 

2.3.4 Seeded region growing 

Seeded region growing (SRG), is robust, rapid, that does not require any tuning of particular 

parameters. The algorithm could be applied to various images. It can be particularly relevant for 

semantic image segmentation that requires high knowledge of image components in the seed 

selection procedure. One of the algorithm downsides, is the problems of automatic seed generation 

and pixel sorting orders for labeling. However, there are still several ways available to improve 

the algorithm performance[49]. 
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2.3.5 Mann-Whitney 

This method can be used to compute a specific segmentation threshold iteratively with Mann–

Whitney test, which is a non-parametric test used to assess for large differences in a scale or ordinal 

dependent variable using a single dichotomous independent variable, and it has several similarities 

to the statistical non-parametric t-test[4, 50] The method consists of providing a hypothesis test 

and confidence interval to quantify the significance of observed differences in expression ratios. 

So basically, the probability density of the ratio and the maximum-likelihood estimator for the 

distribution is derived, and an iterative procedure for signal calibration is developed[51]. 

2.3.6 Model-based segmentation (MSB) 

The method usually reports better stability than a fixed-circle segmentation method or the seeded 

region growing method. The first step of this method is to apply model-based clustering to the 

distribution of pixel intensities, using the Bayesian Information Criterion (BIC) to choose the 

number of groups up to a maximum of three, then next find the large spatially connected 

components in each cluster of pixels, and therefore this method can be considered as  clustering 

model of pixels and extraction of connected components to perform segmentation[52]. 

2.3.7 Matarray (MA) 

This method is usually presented as an integrated image analysis package for cDNA microarray 

technology. It relies on an iterative algorithm that use both intensity characteristics and spatial 

information of the grid spots to achieve the segmentation. The technique defines five quality scores 

for each spot to record irregularities in spot intensity, size, and background noise levels. These are 

the important parameters of the segmentation procedure [53] 

 

2.4 Intensity calculation 
Microarray technology has given a way to quantify the simultaneous expression of a large number 

of genes, and the approach is dependent on reproducible, accurate quantitation of spot intensities, 

which is the last step of the image processing pipeline.[54, 55] We usually, crop a particular area 

of the microarray image, we measure the intensities of the spots in that particular cropped region, 

and then we compute all the intensities, several transformations could be applied to better interpret 

the meaning of the immense amount of biological information formatted in numerical matrices by 

the microarray[28]. The following table summarizes the main transformations along with their 

advantages and shortcomings:  

 

 
Table 2 Type of intensity transformations along with their advantages and inconveniences  

 

Transformation Strength Weakness 

Logarithmic Dynamic range compression The compressed value needs to 

be brought back to its initial 

value in times of display 
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Gamma Decent results if the value of 

the parameter gamma doesn’t 

exceed 1 

Limited if terms of 

improvements: unless the value 

of gamma is superior to 1, the 

results remain the same. 

Contrast stretching Increasing the value of E, 

improves the results 

Limited by thresholding 

techniques for binary images 

 

2.5  Extracellular Vesicles (EVs): an overview 
Extracellular vesicles (EVs) are lipid bound vesicles secreted into extracellular space and can be 

categorized into three main subgroups: exosomes, microvesicles (MVs), and apoptotic bodies. 

These three categories of EVs differ in size, origin, molecular composition, and function. 

Exosomes are the smallest EVs, ranging from 30-150 nm in diameter, while MVs range from 100-

1000 nm and apoptotic bodies range between 50-5000 nm in diameter[56]. Exosomes are derived 

from early endosomes and are enriched in proteins from the endosomal sorting complexes required 

for transport (ESCRT) pathway, while MVs and apoptotic bodies are formed at the plasma 

membrane[11]. In this section we present the different types of EVs by describing their size, origin, 

composition, biological purpose as well as their applications and use clinical settings. Figure 6 

summarizes some important information about EVs that we mentioned before, 

 

Figure 6 Overview of the different types of EVs and their origin [66] 

 

2.5.1 Apoptotic Bodies 

Apoptotic bodies are released from dying cells into extracellular space, and their size range from 

50 nm up to 5000 nm. Once the cell contracts, there is an increase in the hydrostatic pressure which 

lead to the separation of the cell's plasma membrane from the cytoskeleton and therefore apoptotic 

bodies are formed. These vesicles are made of intact organelles, chromatin and small amounts of 

glycosylated proteins, and their proteomic profiles[11] 
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2.5.2 Microvesicles 

Mvs form by direct outward budding, or pinching of the cell's plasma membrane, their size range 

from 100 nm to 1um in diameter. As for their composition, it is thought to require cytoskeleton 

components such as actin and microtubules, along with molecular motors and fusion machinery. 

Since MVs form by an outward budding of the cell’s plasma membrane, it is understood that MVs 

contain mainly cytosolic and plasma. Moreover, there are several proteins that were identified in 

MVs that include  cytoskeletal proteins, heat shock proteins, integrins, and proteins containing 

post-translational modifications, such as glycosylation and phosphorylation[11] As for the 

biological purpose of MVs, it was concluded that these EVs are involved in cell–cell 

communication between local and distant cells, and their ability to alter the recipient cell was well 

demonstrated. The, particularly of MVs along with other EVs, is their ability to package active 

cargo (proteins, nucleic acids, and lipids) and deliver it to another cell, neighboring or distant, and 

alter the recipient cell’s functions with its delivery. The fact that cancerous cells also package their 

active machinery in EVs and transport it to other cells, just like other healthy cells function, open 

the door for a better understanding of cancer development and progression and provide better 

therapies option[11] 

2.5.3 Exosomes 

Exosomes are a subtype of EVs that secreted by all cell types and have been found in plasma, 

urine, semen, saliva, bronchial fluid, cerebral spinal fluid (CSF), breast milk, serum, and other 

body fluids. They are formed by an endosomal route and are typically 30–150 nm in diameter. 

Exosomes are formed by inward budding of the limiting membrane of early endosomes, which 

mature into multivesicular bodies (MVBs) during the process. MVBs are usually either sent to the 

lysosome to be degraded along with all of its components or fused with the cell’s plasma membrane 

to release its content, including exosomes, into the extracellular space. The regulation of MVB and 

exosome formation and release is through the endosomal sorting complexes required for transport 

(ESCRT) pathway, and it is understood that the formation of MVBs can be stimulated by growth 

factors and the cell adjusts its exosome production according to its needs[11] 

 

Figure 7 Process of formation of Extracellular Vesicles EV[67] 
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Since exosomal formation and MVB transportation are regulated by ESCRT proteins, these 

proteins and its accessory proteins (Alix, TSG101, HSC70, and HSP90) which are called " 

exosomal marker proteins" are expected to be found in exosomes regardless of the type of cell. 

[11] The main biological function of exosomes is to participate in cell–cell communication, cell 

maintenance, and tumor progression. In the nervous system, exosomes help in tissue repair and 

regeneration by promoting neurite growth and neuronal survival. They also contain pathogenic 

proteins, such as beta-amyloid peptide that is the main reason behind Alzheimer's disease (AD). 

Another common interest in exosomal research is in studying their ability to act as carriers of 

biomarkers for different type of diseases[11]. 

2.6 Exosome array-based capture and detection techniques  
 

This section explores the different ways of the use of array technology to capture and detect 

exosomes for different medical applications. 

2.6.1 Surface Plasmon Resonance Imaging  

In a study by Yang et al. presented a method called iPM to detect, visualize and analyze exosomes 

using interferometric plasmonic imaging. The technique is based on the Kreschemenn 

configuration, where a later light is collimated and illuminated a AU chip at a highly inclined 

incident angle, stimulating the surface plasmons (SPs) on the AU surface, the reflective light along 

with the light scatted by the object will be then collected and imaged onto a CMOS camera. The 

capability of iPM in sizing and tracking single exosomes enables the quantitative study of 

membrane fusion between exosomes and liposomes, as well as the exosome–antibody 

interaction[57]. Figure 8 shows the main principle of surface plasmon resonance imaging. 
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Figure 8 The process of capturing and detecting exosomes using surface resonance imaging. (A) 

Schematic of iPM. (B) Interferometric scattering model of iPM. (C) Images of a 100-nm silica 

nanoparticle without and (D) image-reconstruction process. (E) k-space image by taking 2D-FFT of C. 

(F) Longitudinal intensity profile across the particle in C, and D (red). (G) SNR in iPM detection of 100-

nm silica nanoparticles. [57] 

 
 

2.6.2 Protein microarray technology 

A highly sensitive extracellular vesicle EV array that has the ability to detect and phenotype 

exosomes along with other extracellular vesicules in a high-throughput manner was presented in 

literature[58]. In the research conducted, the team has used a cocktail of antibodies against the 

tetraspanins CD9, CD63 and CD81, in order to solely detect the captured exosomes, which helped 

in excluding other types of microvesicles. In this research, two kinds of microarrays have been 

used. The first one was made of similar spots containing several exosome markers such as anti-

CD9, CD63, and CD81. While the other array was made of 21 capture antibodies on different 

spots.  For the second microarray, there was a panel of antibodies against 21 different cellular 

surface antigens and cancer antigens. For each donor, there was considerable heterogeneity in the 

expression levels of individual markers. Besides, the protein profiles of the exosomes (defined as 

positive for CD9, CD63 and CD81) revealed that the expression level of CD9 and CD81 was equal 

in the 7 donors, which made the team question the use of CD63 as a standard exosomal marker, 

because its expression level was very low. 
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Figure 9 Protein microarray for exosome characterization. (A) Multiplexed exosome protein analysis 

using the EV array. (B) EV Array workflow. Two distinct microarrays are used, one for semi-

quantification and one for protein analysis; exosomes capture for semiquantification. 

2.6.3 Detection by interferometric imaging 

A microarray-based solid phase chip was used along with a single particle interferometric 

reflectance imaging sensor (SP-IRIS) in order to achieve multiplexed phenotyping and digital 

quantification of various populations of individual exosomes (>50 nm) that were captured and 

characterized directly from a very small human cerebrospinal fluid volume (hCSF). The method 

enables the capture of other nanoparticles similar in size to exosomes, using antibodies that are 

directed against tetraspanins, which will help in improving the diagnosis of different disorders [2]. 

2.7 Introduction to machine learning (ML) and data mining 
Machine learning has become a pivotal tool for many projects in computational biology, 

bioinformatics, and health informatics [59] In this section we provide an overview of the most 

common machine learning algorithms and some of the technique to handle data using machine 

learning such as feature extractions and so on. Figure 10 shows the general model of ML. 
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Figure 10 Machine learning model applied to biological applications [60] 

 

 

2.7.1 Common machine learning algorithms  

 

Machine learning algorithms are separated into supervised methods and clustering or unsupervised 

methods. The first one consists of designing a predictor that uses samples that have known class 

labels as training data to predict the class of a new testing sample, and we call this process 

classification when the output label is discreet or categorical, while we call it regression when it is 

continuous. [61]  In the clustering algorithms, there are no outputs to predict. Instead, we look to 

find occurring patterns or groupings within the data[62] In more details these are the class of 

machine learning algorithms: 

 

1. Classification: High-throughput technologies such as DNA, RNA, protein, antibody and 

peptide microarrays are usually used to distinguish between patterns in diseases, drug treatment 

and other applications, and this requires the training of a classification system or a 

classification algorithm to achieve this task, by gathering large amount of data that can be used  

to feed the classification system [63] 

 

2. Regression: Regression is often used in cancer biology, to predict of the time for a tumour to 

recur after surgery. The data used for that represents the expression levels of several  genes on 

around a hundred or so tumours, and the time of the recurrence of the cancer for each particular 

patient. The regression algorithm would aim to identify a small number of genes whose 

expression values can enable a correct and reliable prediction of the recurrence time [64] 

 

3. Clustering: Clustering is a popular exploratory technique, and it deals mostly with high 

dimensionality data such as microarray data. The main purpose behind this unsupervised 

approach is to divide objects into different clusters or groups using some similarity parameters 

such as one minus correlation or Euclidean distance[65].    
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The following chart (figure 11) summarizes the most useful machine learning algorithms along with 

their learning method: 

 

 

 

 

 

 

Figure 11 Most common machine learning algorithms [66] 

 

Since we will be exploring machine learning as a way to segment our microarray images, 

we will be using k-mean clustering method, that we briefly describe. k-mean clustering is 

considered one of the simplest approaches when It comes to solving clustering problems [67]. The 

technique begins by initiating the centroid of the spots and the background, and then each pixel is 

assigned to the closest cluster.  Once all the pixels are clustered, a new centroid is calculated and 

the process goes on, just like the figure below shows.[5] The mechanism of the algorithm is 

illustrated in figure 12. 
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Figure 12 K-means clustering algorithm mechanism [49] 

 

Machine learning algorithms require features to properly function. In general, we define a 

feature as an individual measurable property of the process being observed. Machine learning 

algorithms are able to solve classification problems using a combination of different sets of 

features[68] It is important to understand the notion of feature extraction and feature selection 

while dealing with large data. 

 

2.7.2 Feature extraction applied on microarray data  

 

When dealing with DNA chips, the gene expression data is often large and hard to 

processed, which requires its transformation onto a reduced representation of those genes, which 

is the main goal of feature extraction[69] There are many options for the implementation of feature 

extraction and gene clustering programs to help reduce the size of the data [70] 

 

2.7.3 Feature selection applied on microarray data  

 

Feature selection is currently a good choice for dimensionality reduction for microarray 

data, and they can help in making the data easier to analyze and translate into useful information. 

[68, 71] The main reason behind the feature selection algorithms is to remove any redundant or 

irrelevant feature from the inputs while maintaining or even improving performance[72, 73] 

Usually feature selection methods contain two essential aspects: the first one is to evaluate the 
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goodness of the feature subset and the second aspect is to search through the feature 

space[74].There are three types of feature selection techniques 

 

Filter methods: this kind of methods perform the feature selection independently of construction 

of any classification model that requires those features to achieve the classification or clustering 

task [75] there are basically two types of filters that can be used: the first one is called the univariate 

feature filters, and they usually rank a single feature, while the other type of filters is called 

multivariate filter, and this one evaluates an entire feature subset, and feature subset generation for 

multivariate filters depends on the search strategy [76]. The subset is basically generated using 

specific type of searching algorithms that are categorized into three categories: exponential 

algorithms, which is an exhaustive optimized search that guarantees the best solution or the best 

subset[77], sequential algorithms, that constitute a  family of greedy search algorithms that reduce 

an initial d-dimensional feature space to a k dimensional feature subspace where k < d [78] and 

finally random algorithms, and this one use its randomness to avoid the algorithm to stay on a local 

minimum and to allow temporarily moving to other states with worse solutions and can provide 

several optimal subsets as solution. [79, 80]. The table below summarizes the most common search 

algorithms used to achieve feature selection: 

 

Wrapper method: this kind of methods estimate the merit of a given subset of features or a set of 

attributes.[81] a wrapper approach suffers from high computational complexity in high dimension, 

but it has ability to increase the accuracy of a classification algorithm[82] 

 

Embedded method: this kind of methods inject the selection process into the learning of the 

classifier [83] the goal of this method is to search for an optimal subset of features while building 

the classifier, and its main advantage the fact that it is far less computationally intensive compared 

to wrapper methods[84]. 

 

 

2.7.3 Machine learning segmentation methods  

 

Image segmentation is an essential area  and computer vision with applications such as  medical 

image analysis, and image compression, among many others[85]. The following chart summarizes 

the most used algorithms when it comes to microarray segmentation. In this project we will be 

exploring the segmentation using K-means and we will be describing this algorithm and its details 

in the next chapters. 
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Figure 13 Chart showing different types of machine learning based segmentation methods [86] 
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Chapter 3 : Materials and Methods 
 

3.1 Production of the microarray images 
To test the efficiency of our pipeline, we choose exosomes and EV analysis as a model to validate 

our findings. Different real microarray data have been obtained from the Juncker lab. The 

microarray image used in this project were generated following an experiment that was conducted 

with the goal to simultaneously detect intra and extravesicular proteins using antibody microarray, 

Previous experiences from the lab have focused solely on surface and internal proteins. Assessing 

detection markers alone separately to study the impact of a combined detection, and if it is effective 

to use those multiple detections in analyzing co-expression values was also explored. In order to 

make sure two different proteins can still be detected in the same well, with minimal cross-

reactivity, the following materials have been used: 

• Mouse or rat antibodies for capture. 

• Biotinylated antibody 1 + streptavidin-AF488. 

• Rabbit antibody 2 + fluorescent anti-rabbit secondary-AF647. 

• Separate wells for CFSE stain. 

So basically, an assay of antibodies was inkjet-printed and on which EVs were incubated 

overnight, then fixed and heat treated. Once this preparation step is done, primary and secondary 

antibodies/streptavidin were flown in succession. The primary detection is used by a specific 

antibody for the target, while the secondary antibody/streptavidin is the labeled antibody that 

detects the first one. The antibody system used is very similar to ELISA system, except that the 

capture antibody and the detection antibody don’t necessarily recognize the same target since we 

are dealing with EVs, for example we can capture based on CD63, yet detect based on CD81. In 

order to obtain microarray images from the experiment, we use 3 different slides, each one has the 

goal to target specific exosomal protein: 

• Slide 1: Alix 

• Slide 2: Individual targets 

• Slide 3: Hsp70 

For each slide 16 conditions were studied. Each condition represents a different pair of primary 

and secondary detection antibodies. 

3.2 Features of the microarray data 
Those microarray images were stored as TIFF files. The image we obtained have various kinds of 

noise and artifacts. In this project, we are going to rely on Matlab for data analysis and other 

computational tasks, given its high performance and power[87] Each TIFF file has two greyscale 

images per slide. Each of those images represent a channel, and that’s how usually the scanner 

saves the images. The first channel is red, while the second one is blue for the purpose of our study. 

The images we obtained have been already previously analyzed using Array Pro analyzer by the 

lab. The results will be used as a benchmark to compare against the results we obtain using the 

proposed pipeline. They image we obtained have different scanning resolutions, and different 

noise types, which is a good opportunity in order to study the flexibility of the proposed pipeline 
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to analyze spots with different sizes and features. Figure 14 shows a sample of the type of 

microarray images we had from the previous experience that was conducted, while trying to target 

Alix protein: 

 

              

Figure 14 Red channel ( left) and blue channel( right) microarray image extracted from slide 1 of the 

antibody microarray experiment 

 

The microarray image in hands has 16 sub grids spaced, in each sub grid we have vertical 

lines of spots or columns. Each column represents a different capture antibody, while each subgrid 

represents one detection cocktail ( one specific condition as described above). The pixel size is 5 

µm. Figure 15 shows a closer look at slide 1 of the antibody experiment slide. 
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Figure 15 Cropped view of a microarray image generated from slide 1 of the antibody microarray 

experiment 

 

A difference in brightness between the different lines in each particular sub grids, and 

across the entire microarray image was observed, and that’s mainly due to having a different 

capture antibody from one column to the other among the subgrid. We also notice some weak 

brightness in some areas of the grid. Some subgrids look identical since they represent the same 

experimental condition, or they were conducted using the same antibody cocktail. 

3.3 Preprocessing 
Preprocessing microarray image is required before applying the gridding step. Preprocessing 

includes reading the image, cropping it, changing its size so that it can fit the screen and noise 

removal operations. In order to read the TIFF file, we will be using the image processing toolbox 

command of Matlab that treats an image as a matrix. MATLAB version 9.8 (R2020a) on a 

windows 7 platform was used for this project. The first step is to  split the TIFF file after we read 

it, into two separate grey channels, before feeding them to the algorithm. In order to split the TIFF 

files into two separate pages, we use the open source software ImageJ, which is a great tool for 

data visualization and  advanced image processing [88]. Splitting the TIFF file into two different 

channels ( two different colors) will make it easier to process separately for the final stages of the 

image process such as intensity calculation and expression levels estimations, and  It provides an 

intuitive and powerful ways to conduct analyses and make conclusions based on comparisons that 

might otherwise wouldn’t be possible if we are dealing with the entire image at once[89]. 

To remove noise, we design a morphological filter based on the mathematical notion of 

structing elements. The denoising technique will be required for a smooth gridding, as it is going 

to be used to remove the background noise from the intensity profile of the image projection that 

we will be using to perform the gridding step. A top hat morphological filter need to be used, 

because this kind of filters can be a classical way to remove imperfections and provide a good 

information on the form and structure of the image being denoised, it mostly helps in removing 
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small objects from an image, while being faithful to the shape of larger objects in the image. A top 

hat transformation is a denoising process that computes the difference between the microarray 

image f(x,y) and its opening.[90, 91] An opening for an image f(x,y) by a structuring element is 

an erosion followed by a dilation[92]. The opening operator therefore requires two inputs: an 

image to be opened, and a structuring element[93]. Opening removes small objects from the 

foreground of an image, placing them in the background[94] In other words. Image opening 

manipulates the process of erosion and dilation to improve the quality of the image, which is the 

goal of the denoising step we are conducting here.[95] So basically, the opening operation starts 

with eroding the microarray image, then dilates it using the same structuring element for both 

operations. Mathematically, a white top-hat filter of an image f is given by the following definition: 

F:  E → R  be a grayscale image, mapping points from a Euclidean space or discrete grid E, into 

the real line, let b(x) be a structuring element of grayscale. Then, the white top-hat transform of f is 

given by: 

𝑇𝑤(𝑓) = 𝑓 − 𝑓𝑜𝑏 

  𝑜 denotes the opening operation.  

 To apply morphological operations, we usually require gray scale or binary images. 

Besides, one characteristic of mathematical morphology is that it requires exact specification of 

the structuring element [96] Usually structing elements are smaller than the image being processed, 

and they focus on specific parts of the image [97] We typically choose a structuring element with 

the same size and shape as the objects we want to process in the input image[98]. Given the nature 

of the microarray image we are processing in this project, we choose a one-line 1D structure.  

The chart below explains the denoising process using the morphological filter we described 

above. Another preprocessing step that should be taken into consideration is to convert any image 

that is stored in RGB format to the grey scale. The RGB image has different color plans that we 

are interested in. To extract the first plan, we index the first later, otherwise we can index other 

layers, using some mathematical functions of the image processing tool of Matlab. It is essential 

to observe that the spot shapes isn’t necessary the same in both colors. Since we are already dealing 

with a greyscale images, we won’t need to do this conversion step, and the analysis process should 

be the same. 

 

https://en.wikipedia.org/wiki/Grayscale
https://en.wikipedia.org/wiki/Euclidean_space
https://en.wikipedia.org/wiki/Lattice_graph
https://en.wikipedia.org/wiki/Opening_(morphology)
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Figure 16 Charts describing the design of a top-hat filter used in the preprocessing step of the pipeline 

3.4 Automatic gridding algorithm 
A gridding method using projection technique is proposed in this project. This method is entirely 

based on computing image projections. One of the benefits of the horizontal and vertical profiles 

of a particular image is that they help with removing the noise, and can offer an easy way to get 

the distance between the spots. Mathematically speaking, the horizontal and the vertical 

projections of a microarray image f(x, y) can be defined as: 

 

𝑃ℎ=
1

𝑋
∑ 𝑓(𝑥, 𝑦)𝑋−1

𝑋=0  

𝑃𝑣=
1

𝑌
∑ 𝑓(𝑥, 𝑦)𝑌−1

𝑌=0  

Where 𝑃ℎ is the horizontal profile of the microarray image 𝑓(𝑥, 𝑦), and 𝑃𝑣 is the vertical projection. 

X, Y represents the number of spots along the x-axis (rows) and vertical directions or y-axis 

(column) respectively. The actual image we are dealing with has noise and other artifacts, so it 

would be necessary to apply a denoising step to refine the projection profile we first obtained. This 

will ensure that there won’t be any missing or redundant grid lines and ensures a smooth gridding 

image. The denoising is going to be done using the same morphological filter used before. Once 

the denoising steps and the horizontal profile is computer, we follow the following steps that 

summarizes the algorithm: 
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1. Compute the mean values of the horizontal projection of the image 𝑀𝑃ℎ, give its equation  

 

𝑀𝑃ℎ=
1

𝑋
∗ ∑ 𝑓(𝑥, 𝑦)𝑋−1

𝑋=0  

Where 𝑀𝑃ℎ  represents the mean horizontal profile of the image, 𝑓(𝑥, 𝑦) , and X is the horizontal 

dimension, following the x-axis and the couple (x,y) represents a specific pixel  

2. Get the maximum peak indices from the 𝑀𝑃ℎ 

1. Assess the periodicity of the spots 𝑇𝑆𝑝𝑜𝑡𝑠, by calculating the period between two adjacent spots 

centers, this helps locating the spot spacing using the statistical properties of the 

autocorrelation function. 

2. Segment peaks and locate centers. 

3. Draw horizontal bounding box. 

4. Calculate the mean values of the vertical projection of the image 𝑀𝑃𝑣, defined by 

 

𝑀𝑃𝑣=
1

𝑌
∗ ∑ 𝑓(𝑥, 𝑦)𝑌−1

𝑌=0  

Where 𝑀𝑃ℎ  represents the mean horizontal profile of the image, 𝑓(𝑥, 𝑦) , and X is the horizontal 

dimension, following the x-axis and the couple (x,y) represents a specific pixel  

7. Display the gridding results 

The following charts summarizes the main steps of the algorithm 
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Figure 17 Chart describing the gridding steps used for the proposed pipeline 

3.5 Evaluating the efficiency of the gridding method 
In order to assess the performance of the suggested gridding method, we rely on three important 

parameters: the accuracy, the processing time and the noise removal ability of the modality.The 

accuracy (Ac) of the proposed gridding method can be defined as : 

Ac= (
 𝑁𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝑆𝑝𝑜𝑡𝑠

𝑁𝑇𝑜𝑡𝑎𝑙 𝑆𝑝𝑜𝑡𝑠
) * 100 % 

𝑁𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝑆𝑝𝑜𝑡𝑠 :  The number of the spots correctly gridded 

𝑁𝑇𝑜𝑡𝑎𝑙 𝑆𝑝𝑜𝑡𝑠: The total number of spots in a particular microarray image 

While the speed of the gridding is the processing time the gridding technique takes to be fully 

executed by the software. Finally, having a noise resistant gridding approach is essential for the 

rest of the image analysis process, and therefore, it is important to address and comment on the 

algorithm behavior in regards to the different types of noise[99].  

3.6 Automatic Segmentation using thresholding approach 
The second step in our pipeline is to apply image segmentation. We need to differentiate between 

areas that are considered the spot signal and areas that are considered the background signal to 

carry on the analysis. There are several methods that can be used to automatize the segmentation 

process, and in this project we use thresholding approach given the advantages of this approach 

that we discussed in the previous chapter. We start by applying a threshold level to the entire 

microarray image in order to detect all spots equally. We need to carefully observe the image in 

hands, as we may encounter a pre-analysis issue that was previously described, which is the 

difference in the spot brightness across the grid. If we encounter this issue then we try to apply 

logarithmic transformation to equalize large variations in magnitude is by transforming intensity 

values to logarithmic space, and then apply the global transformation again. This will help 

detecting all spots. However, some weak spots may still be missed, and that’s why we try to 

determine local thresholding values as a first variant to segment those weak spots. 

To understand more the thresholding segmentation, we use another variant of the 

thresholding methods which is the multilevel thresholding technique, and it is pretty much a 

method that is based on segmentation, where two levels of thresholds can be chosen. The process 

segments a gray level image into several distinct regions. This technique determines segments the 

image into certain brightness regions using the two threshold values, which correspond to one 

background and several signals[100] We assess the performance of each method separately using 

the results we obtain, and the segmentation score Jaccard, which indicated the similarity between 

the ground truth and the segmented image. The score is calculated by dividing the number of 

observations in both sets by the number of observations in either set.[101]. 
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. 

3.7 Exploring the effect of machine learning on segmentation  
We will be using an unsupervised machine learning method, we choose the K-mean clustering 

algorithm that we described in the previous chapter, because we are mostly dealing with pixel-

wise segmentation. 

The steps that we are going to follow to perform the K-Means algorithm are: 

1. We start by choosing the number of clusters K. 

2. Automatically calculate the centroids 

3. Form k clusters, by assigning each data point to the closest centroid. 

4. Computer and place the new centroid of each cluster. 

5. Reassign each data point to the new closest centroid. 

6. Assess the readiness of the algorithm. 

3.8 Intensity extraction and expression level 
This step seeks to calculate the intensity value of each spot. We measure the intensity levels of all 

spots for a given greyscale image or channel separately. In order to calculate the spot intensities, 

it is essential to understand that we need to define a mask around each spot, this masks is chosen 

based on the different regions of interests that we define using a microarray image. Once the mask 

is defined, we compute either the median or the mean value of the pixels that make that particular 

mask. The value that we get is considered the spot intensity for that spot in the particular channel. 

Once those intensities are calculated, we compute the expression levels for each specific spot and 

the entire image using the following equation: 

 

 

Expression level = 
Log (Intensity (First channel)

Intensity (Second channel) 
 = 

Log (Intensity (Red))

Log(Intensity (Blue))
   

 

 
 

3.9 Data analysis 
Calculating the spots intensities for both channels for the previous model, as well as the expression 

levels using the previous equation is the final step in the pipeline. It would be essential to assess 

the performance of the pipeline. First of all, comparing the quantification results generated using 

ArrayPro Analyzer versus the one calculated using the pipeline is helpful. Calculating other 

statistical parameters such as the mean, median and standards deviations of some ROI would be a 

plus as well. Evaluating the effect of removing the morphological filters on the spot intensities 

would be also addressed. Once this is done, we feed the pipeline two different models of 

microarray images that are going to be used for validating that the pipeline is applied for any type 

of microarray data. The second model is simply different proportions of 3 different colours of 

fluorescent streptavidin printed on a slide, which is a multiple channels model that could help with 

the testing and colocalization. The last model is a two-channel microarray image with different 

dyes for each channel that was taken from a random biology experiment will be used for validation 
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as well. Finally, to get a more objective evaluation of the performance of the pipeline, we rely on 

simulation using ImageJ. Using the third model, we compare the true value of the intensities given 

by the software versus the ones obtained using the pipeline, and we make conclusions. The last 

part of the data analysis would be to test the robustness of the pipeline to different levels of 

Gaussian noise, and the impact of logarithmic transformation on the segmentation results and the 

reconstruction of weak spots. 
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Chapter 4: Results and Discussion 

 

4.1 Automatic gridding of microarray images 

4.1.1 Addressing pre-analysis issues 

The first step is feeding the microarray images we have to MATLAB. The images used for this 

project are stored as TIFF files, which means each image is composed of two pages or two 

channels, the first one is the red channel and the second one is the blue channel in the case of the 

main data used. In order to better analyse the microarray images. For each slide, we split each 

channel separately and process it as a unique image. To do so we use ImageJ, which is an open 

source software, pretty effective when it comes to processing microarray images[102]. After 

loading each TIFF file that represents a different slide to the program, the channels could be 

splitted using the following command: Image->Stacks >Images to Stack. Figure 18 shows the 

interface of ImageJ. 

 

 

Figure 18 Display of the interface of ImageJ software used to split the TIFF files of the microarray 

images used in this project 

 

It is important to note that it is still possible to use the entire TIFF image for each slide, 

instead of using the channels separately, since the main focus of the pipeline is to locate the spots, 

and this shouldn’t affect the image analysis steps. However, it would be challenging to measure 

the spot intensities or the expression levels in the last part of the pipeline without separating the 

channels. The results of the splitting for each slide are shown in figures 19, 20 and 21. 

 

 

 

 

 

 



33 
 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

Figure 19 Channels splitting for slide 1 of the antibody microarray experiment using ImageJ. Red 

channel (left) and blue channel(right) of the microarray image. 
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Figure 20 Channels splitting for slide 2 of the antibody microarray experiment using ImageJ. Red 

channel (left) and blue channel(right) of the microarray image. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 21 Channels splitting for slide 3 of the antibody microarray experiment using ImageJ. Red 

channel (left) and blue channel (right) of the microarray image. 

Once the TIFF files are processed and the channels are successfully splitted. The next step 

would be to input each image representing a particular channel of each slide separately into 

MATLAB. This requires the use of the function imread, and since the size of the images is too big 

for the screen, the function imshow was used to reduce the size. Visualizing a particular area of 

the image and cropping sections of it to further observe how the subgrids are aligned, along with 

getting an idea of the variation in the spots intensities is helpful to get a more concrete 

understanding of our data.  Figure 22 shows a cropped section of the microarray image from the 

first channel of slide 1 showing how the subgrid organizes in that microarray. 
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Figure 22 Cropped view of a microarray image taken from slide 1 of the antibody microarray experiment 

used for a better understanding of the data. 

Before running the gridding algorithm, evaluating the mean intensity of the microarray 

image or the horizontal profile for each microarray image is needed. This is done by averaging the 

intensities of every column. Assessing the horizontal profile can help in locating the centers of the 

spots, as well as the spacing between those spots within the same sub grid and throughout the 

entire microarray image. This information will be used to build separations between the spots, and 

the entire gridding process relies on an accurate and smooth horizontal and vertical profile of the 

image. The figure below shows the horizontal projects for each slide. The Horizontal profiles on 

figure 23 seem to be uneven across slides, this is mainly due to the presence of noise, also in 

practice the spots tend to have different sizes and intensities, that could be presented in the form 

of irregularities in the horizontal/vertical profiles. 
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Figure 23 Horizontal profile of the microarray images for slides 1, 2 and 3 of the antibody microarray 

experiment 

 

The next step is to apply the autocorrelation of the projection profile (figure 25), this allows 

the estimation of the period between different spots in one sub grid, which is basically the spacing 

value between spots. The value of the period provides useful information that can be used in 

correctly drawing the grids later on and achieving a successful gridding process.  A possible 

limitation which could make the autocorrelation function prone to errors is the case where the 

microarray image is rotated such that the grid is not aligned with the x and y axes. One of the 

possible ways to solve challenge would be to manually point with the mouse two spots from the 

same column to calculate the rotation angle. For example, it could be possible to choose the center 

of the uppermost left spot and the center of the lowest left spot. Figure 24 shows an example of 

how the two points can be selected from any subgrid. The arrows indicate the points, as well as 

the order at which they have been selected. 
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Figure 24 Rotation correction for a random microarray image [103] 

 

 After doing so, we calculate the image projections, estimate spot periodicity, and continue 

with the gridding steps of the proposed algorithm. This solution could be time consuming, 

especially when dealing with large data, and it wouldn't be the best as the entire goal of the pipeline 

is to automatize the image analysis process [103, 104] The second possible solution would be to 

first distinguish between the conventional x and y axis, from the x’ and y’ axis of the rotated image. 

We identify the main axes (x’,y)’ of the image using an iterative algorithm. Once those axes are 

identified, we compute the mean of the difference of the correlation values with respect to the 

maximum. Next, by using trigonometric operations, it is possible to find the angle relative to the 

conventional axes (x, y). The usual rotation methods (linear, bilinear..etc) can not be used to correct 

the rotation because  they change the value of the pixels which could alter the quantification step 

of the pipeline[105, 106] Once this is done, we proceed to computing the spacing between the 

spots and follow the gridding algorithm steps. 

It is essential to note that the images we are dealing with don’t present such angles, and 

thus, we won’t be addressing such scenario in this work, otherwise, the rotation would translate to 

having an autocorrelation function that is blurred, which require more adjustments for a successful 

gridding. 
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Figure 25 Autocorrelation function of the microarray images for slides 1, 2 and 3 of the antibody 

microarray experiment used to improve the self similarity of the horizontal projection 

Table 3 presents the estimated value of the spacing between spots for each channel and for 

each slide. The values of the spacings are pretty much the same between two different channels 

for each slide, because basically the physical feature of the spots is conserved from one channel to 

the other. 

Table 3 Summary of estimated spacing between spots or periodicity for both channels and for slide 1, 2 

and 3 of the antibody microarray experiment 

Number of 

slides 

 

Tspot x axis (µm) 

 

Tspot y axis (µm) 

 

Slide 1 63 40 

Slide 2 25 15 

Slide 3 22 15 

 

The next step is to improve the horizontal profile and make it more regular by removing 

background noise using morphological filters. The first filter would be a 1D line shaped structure 

given the form of the projection signal. Besides, cropping and observing the images for the three 

slides has demonstrated that the area near some spots, which belongs to the background part had 
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some intensity values, and this could create a bias in the gridding results and the rest of the pipeline 

analysis. Therefore, instead of only filtering the background intensities from the projections 

profiles, another preprocessing step was added to remove those surrounding background 

intensities, by using another morphological with a 2D structing element to subtract the 

neighbouring background intensities [107].  After applying both morphological filters, a more 

regular and smooth profile compared to the initial calculated horizontal profile is obtained, 

presented in figure 26. 

 

Figure 26 Enhanced horizontal projection for slide 1 of the antibody microarray experiment, after 

applying two morphological filters to the horizontal profile signal. The signal shows more regularity in 

after filtering. 

4.1.2 Building horizontal and vertical projections of the microarray image 

Once the spacing between spots is obtained using the autocorrelation function, the locations of the 

spots regions (SR), or the peaks that indicate the presence of a spot were determined. Figure 27 

provides a visualization on where  the peaks are located on the autocorrelation graph. Having a 

separation between spots is required, which lead to segmenting the previous peaks to clearly 

differentiate between an SR and a background. The peaks were segmented using a thresholding 

value of  118  for slide 1,  91.50   for slide 2 and finally   110.50 for slide 3. The thresholding 

values for each slide were calculated using the statistical properties of the data, and it was a global 

threshold obtained using the function graythresh that calculate the value of the threshold for those 

peaks. The threshold was applied for all the peaks of a particular slide. Once the peaks are 

segmented, it became easier to obtain the center of each spot using feature extraction. The 

horizontal projection and the corresponding autocorrelation function were used to get the 

horizontal centers (HC), while using the vertical projection gave the values of the centers of the 

spots that were organized on the columns, or the vertical centers (VC). 



40 
 

 

 

Figure 27 Peaks regions finding using autocorrelation signal for slide 1 of the antibody microarray 

experiment. 

After the peaks are segmented, we obtain clear peak regions that we label, and it became 

easier to obtain the center of each spot using feature extraction (figure 28). The horizontal 

projection and the corresponding autocorrelation function were used to get the horizontal centers 

(HC), while using the vertical projection gave the values of the centers of the spots that were 

organized on the columns, or the vertical centers (VC). 
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Figure 28 Determination of the centers of the horizontal spots after segmenting the peaks into labeled 

regions. The analysis consists of applying a feature extraction task that extracts the centroids of the peaks 

or spot centers, from slide 1 of the antibody microarray experiment. 

Once the information about the spots centers is obtained, the next step is to build vertical 

separations as a first step of building the actual gridding separators. The centroids coordinates 

calculated before, are used to calculate gap between each spot, that can be given by the equation 

below, Where ∆𝑥 is the difference between two adjacent centers following the x-axis. 

 

Gap= 
∆𝑥

2
 

Once the gab values are obtained, we draw the vertical separations between the different 

lines of the microarray image, which is basically the division between the spots are determined, 

this is necessary to know how to draw the vertical lines or the boxing step for the gridding. 

 

 

Figure 29 Vertical divisions between peaks regions for slide 1 of the antibody microarray. The midpoints 

between adjacent peaks provides grid point locations that is the basis of building the divisions. 

Now that the vertical separations are determined and drawn on the grids of the microarray 

image, we repeated the same steps to complete the grid. Starting by transposing the input signal, 

and computing the vertical projection this time, along with its autocorrelation function as presented 

by figure 30. More points are shown as there are more spots that are aligned on the columns 

compared to the lines of the image. 
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Figure 30 vertical profile of the microarray images along with the corresponding autocorrelation signal 

for slides 1 of the antibody microarray experiment 

Similarly, we enhance the enhanced profile, we locate the peaks, segment those peaks and 

label them to determine the center of the spots, to calculate the gaps between the spots following 

the y-axis using the previous formula: 

Gap= 
∆𝑦

2
 

Figure 31 shows the results of the horizontal divisions between spots from the first slide. 
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Figure 31 Horizontal divisions between peak regions from slide 1 of the antibody microarray experiment. 

The midpoints between adjacent peaks provides grid point locations that is the basis of building this 

divisions 

The process of the gridding is finalized, by drawing the horizontal separations on the grid 

and putting bounding boxes around each spot to have it confined. The final result of the gridding 

for the first slide are shown on figure 32 below: 
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Figure 32 Results of the automatic gridding for slide 1 of the antibody microarray experiment 

 

The following table represents the gridding parameters that were implemented in order to 

assess the efficiency of this method. Some spots seemed to have centers that are connected to other 

adjacent centers, which made obtaining a correct estimation of their centers a bit challenging, these 

spots were mostly inaccurately gridded, which explains a lower gridding accuracy for slide 2. The 

execution time of the algorithm is short, and the main timing difference between each slide is due 

to the fact that some slides have more spots compared to the others, and also because of the 

presence of different background levels. The difference in the accuracy is also related to the quality 

of the image. For instance, the image quality for slide 1 is better than the one of slide 3, since for 

slide 1 the variations in the spot intensities is not as large as the one from slide 3, so there is less 

probability to mistake the spots from slide 1 with the background, and therefore, the gridding 

accuracy is expected to be higher on slide 1, as demonstrated by the table 4. 

Table 4 The gridding accuracy and the processing time for the automatic gridding of all the three slides 

of the antibody microarray experiment 

Slide number Accuracy Processing time 

1 97.5% 4s 

2 66.25% 3s 

3 92.35 6s 
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Exploring the effect of the preprocessing and the denoising on the gridding results and the 

gridding parameters is an interesting aspect to look at. To do so, we compared the gridding results 

with denoising versus the case where no background noise filters were implemented. The accuracy 

and speed of the gridding were reported in table 5. 

Table 5 Comparison between the gridding parameters for all the three slides of the antibody microarray 

experiment in the case of background removal using morphological filters, versus the case of keeping the 

background noise. 

 

Slide number 

Accuracy Processing time 

Without 

denoising 

With denoising Without 

denoising 

With denoising 

1 85.94% 97.5% 4.50s 4s 

2 88.00% 66.25% 4.48s 3s 

3 83.91% 92.35% 6.26s 6s 

 

We observe a displacement of the entire grid towards the right as figure 33 and 34 show, 

this means the spots that were situated in sub grids where there was a noticeable shift in the 

coordinates of the grids were more exposed to gridding errors. 
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Figure 33 Displacement of the grid of slide 1 of the antibody microarray experiment due to removing the 

presence of background noise as a result of removing the morphological filters 

Besides, the accuracy results have dropped for both slide 1 and slide 3, the gridding still 

effective despite the percentage of error, and this is mostly due to the fact that half of the sub grids 

for slide 1 and 3 were situated in the right corner of the platform, so more spots would be 

incorrectly gridded as a result of the grid displacement towards the right, and therefore the accuracy 

drops. For slide 2 however, we notice that the accuracy improved, that’s mostly due to the fact that 

one of the denoising steps may haven’t been necessary. Although refining and regulating the 

horizontal and vertical profile would have been useful for estimating the spacing, trying to remove 

the intensities around the spots using the second morphological filter may have missed with the 

spacing values between some adjacent spots, and therefore the entire organization of the grid. 

The processing time is slightly higher in both slide 1 and 2 as it would be more challenging 

to analyze the horizontal profile when it is not regular, and thus more time is required to estimate 

the spacing, complete the gridding steps and build both the horizontal and vertical grids. The time 

of the gridding is still low and the process is still fast despite removing both layers of the 

morphological filters. 

There are different numbers of grids between channel 1 and channel 2 for each slide 

because the spacing between the spots is not exactly the same in general, even when the denoising 

is applied, since the spots tend to have different shape from one channel to the other, and therefore 

we could expect a slight different in the number of grids. 
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Figure 34 Results of the gridding method applied on slide 1 of the antibody microarray experiment 

without background filtering, showing a displacement of the grid creating a misalignment issue and more 

spots to be inaccurately gridded.  

Comparing the previous results showed the importance of the preprocessing in obtaining a 

better image projection. Without background noise subtraction, it is still possible to get decent 

gridding results, as even without morphological filters being added, most of the spots were still 

correctly gridded. However, the grid was still displaced, and this has been observed in all three 

slides, causing gridding errors for the spots that are situated far in both the right side and left side 

of the microarray image. Another issue is that some of the spots with low level of brightness were 

more easily missed, as they were mistaken as background intensities. Basically, the estimation of 

the spacing between spots is biased, which leads to more errors in detecting the peak values and 

areas around spots, and therefore it becomes more challenging to correctly build the grids and the 

boxes that contain the spots. The execution times increased since we removed the denoising layers 

from the gridding algorithm. 

The proposed gridding method relies mostly on the autocorrelation function to define the 

grid first, then segments the spots in the grid. Alternatively, one could identify and segment the 

spots using a Lorentzian of Gaussian filter, and then use the spot centroids to define the grid or 

rely on other techniques or algorithms that could enable the grid definition, using a different 

approach, or a mechanism that serves a similar goal while performing the gridding steps in a 

relatively different order. 

 

 The gridding technique is expected to be more robust. First, the method doesn’t require a 

lot of processing steps or computational power, as most operations as already available in the form 

of simple functions under the image processing toolbox of MATLAB. Besides the gridding 

method, relies on feature extraction, which helps in improving the accuracy of calculating the 

centroids, as it was used in the automatic gridding algorithm of this pipeline. The information 

about the centroid is essential since it is the basis of the calculation of the gap between the spots 

across the grid and therefore the horizontal and vertical divisions that build the boxes around the 

spots. Determining the value of the centroids using feature extraction reduces the size of the 

dataset, speeds up the algorithm [108], but also shows that there is always a room for improvement 

since research is always trying to come up with ways to improve feature extraction techniques, 

which means the first step of our pipeline could always be optimized for a more regular grid, with 

a better control of any misalignment that could occur[109]. The gridding steps makes no 

assumptions about the size of the spots, rows, and columns in the grid, which gives it a more 

universal usage compared to other algorithms that may require to input parameters or some level 

of human intervention. Finally, applying a two steps denoising at the early stage of the 

preprocessing phase helps with having an accurate definition of the grid, since removing the 

morphological filters created misalignment and displacement of the grid as seen before. Defining 

the grid before segmenting the peak regions could help with the segmentation score, as it adds an 

additional layer of background separation from the spot regions, which therefore improve the 

quantification results that follows the segmentation. In other words, basing the entire the pipeline 

on the autocorrelation could build a solid foundation for the remaining image processing steps. 
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4.2 Image segmentation based on thresholding methods and machine learning 

approach 

4.2.1. Segmentation using thresholding techniques 

After successfully gridding the previous microarray images, we proceed into the second step of 

the pipeline, which is the segmentation. The method consists of applying a global threshold to the 

entire image as explained before in the previous chapter, the value of the threshold is 

computationally chosen using MATLAB in a way that all the spots are detected equally. The 

threshold values obtained were the following: 0.17 for slide 1, a value of 0.23 for slide 2, and 0.086 

for slide 3. Figure 35 displays the results for the first slide. 

     

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 35 Results of the global thresholding segmentation with a threshold value of 0.17 for slide 1 of the 

antibody microarray experiment 

For slide 1 some spots are missed, this is due to the variation in the level of brightness 

between spots, especially between those in two different columns within a specific subgrid. The 

main reason behind the brightness variation is the fact that the capture antibody that was used in 

the experience that led to generating these slides differs from one column to the other, and as 

mentioned in the previous chapter, each column represented a different capture antibody. 

Therefore, the brightness varies within the same subgrid, and across the entire image, making some 

weak spots miss the threshold value. Table 6 summarizes the values of the segmentation score 

Jaccard, in comparison to the ground truth for all of the three slides [110]. 



49 
 

Table 6 Segmentation scores for global thresholding segmentation method for all the three slides of the 

antibody microarray experiment. 

Slide number Jaccard 

1 0.27 

2 0.51 

3 0.38 

 

There are different ways to perform a segmentation based on thresholding. The following 

section investigates the effect of some variations of the thresholding technique and reports the 

segmentation scores for each one of them. First, for adaptive segmentation, a locally adaptive 

threshold for 2-D grayscale image is used, with a value that is based on the local mean intensity or 

the first-order statistics in the neighborhood of each pixel. The threshold is then used to binarize 

the image. Using MATLAB, and the function adaptthresh, the values of the first-order statistics 

are shown in figure 36 below, while the result of the image reconstruction are illustrated in figure 

37. 

 

 

Figure 36 Values of first-order statistics in the neighborhood of each pixel for slide 1 of the antibody 

microarray experiment calculated for the adaptive thresholding method. 
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Figure 37 Results of the adaptive thresholding segmentation for slide 1 of the antibody microarray 

experiment. Spots are indicated with the big white pixels. 

 

Unlike the global thresholding technique, the local adaptive thresholding calculates 

different values of thresholds for every pixel in the microarray image based on the analysis of its 

neighboring pixels. The technique is mostly useful when dealing with images with different levels 

of contrasts, and usually as an alternative whenever the global segmentation isn’t giving interesting 

results[111] In this work, and despite having a low segmentation score using the global 

thresholding method, it stills better than the adaptive local thresholding given the type of 

microarray image used given the segmentation score (Table 7) and the quality of the images 

obtained by each segmentation modality comparing to the ground truth. More white pixels were 

observed as and the contours seem to be affected as well, this is because local properties of 

different regions of the microarray image are usually not homogeneous at the same scale, which 

makes it difficult to estimate the local parameters with satisfactory accuracy without incorrectly 

affecting other spots[112]. 

Table 7 Segmentation scores of the adaptive thresholding method for all slides of the antibody 

microarray experiment 

Slide number Jaccard 

1 0.2606 

2 0.3288 

3 0.2794 
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We also use a different variant of the global thresholding method which is the multilevel 

thresholding based on the otsu method that was described above. The results are shown in figure 

38. Basically, several weak spots were correctly shown, providing high segmentation scores for 

all the slides as mentioned in table 8. The method seems to be faithful to uniformity after 

reconstruction of the image, as well as to shape measures of the different stops [100] 

 

 

 

 

  

 

 

 

 

 

 

 

 

Figure 38 Results of the multilevel segmentation with two levels for slide 1 of the antibody microarray 

experiment 

Table 8 Segmentation scores for the multilevel thresholding for all the slides of the antibody microarray 

experiment 

Slide number Jaccard 

1 0.9131 

2 0.8700 

3 0.8656 

 

4.2.2 Segmentation based on k-means algorithm offers better quality scores 

In traditional clustering algorithms, the number of clusters and initial centroids are randomly 

selected by the user. The most important input for any clustering algorithm is the number of 

clusters K. It is a difficult task to estimate the value of clusters that could easily generate accurate 

segmentation results, and this applies for any data[113]. The k-means algorithm was first executed 

using 2 clusters (k=2) This number was chosen, while the initial centroids values were 
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automatically calculated[114] Setting the number of clusters and evaluating the segmentation 

scores would be an alternative in choosing an optimal value of clusters for this segmentation task. 

The results of the segmentation are shown in figure 39. 

 

Figure 39 Results of machine learning based segmentation with the number of cluster equal to 2 (k=2) 

for slide 1 of the antibody microarray experiment. The cluster number was chosen randomly. 

 

Table 9 Segmentation scores for k-means method with the number of clusters equal to 2 for all the three 

slides of the first microarray image model 

Slide number Jaccard 

1 0.9131 

2 0.9999 

3 0.8700 

 

The Jaccard similarity is pretty high for most of the slides (table 9), which shows that the 

segmentation was faithful to the ground truth. Trying to expand the number of clusters to K=4 

instead of two clusters, showed a difficulty in segmenting the spots, and more spots were missed 

(figure 40). Therefore, for the rest of this work, the algorithm will be run with two clusters only.  
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Figure 40 Results of machine learning based segmentation with K=4 of slide 1 of the antibody 

microarray experiment showing a decrease in the quality of the reconstruction of some weak spots 

 

Table 10 Segmentation scores for k-means method with the number of clusters equal to 4 for all the slides 

Slide number Jaccard 

1 0.9131 

2 0.8700 

3 0.8655 

 

Table 11 summarizes the segmentation scores for all the methods that have been used. The 

table showed that using a multilevel thresholding with two levels is superior to the other variants 

of the thresholding method. The results also demonstrated the power of machine learning in 

providing an effective segmentation. It is also essential to note that the application of the K-Means 

algorithm is restricted by the fact that the number of clusters should be known beforehand, and 

that for other microarray images and in other settings, more values of clusters should be tested 

before choosing the optimal one that could offer an accurate segmentation.[115] 
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Table 11 Segmentation scores for all thresholding methods of the slides from the antibody microarray 

experiment. 

Slide number Global 

thresholding 

Adaptive 

thresholding 

Multilevel 

thresholding (2 

levels) 

k-Mean 

clustering (2 

clusters) 

1 0.27 0.2606 0.9131 0.9131 

2 0.51 0.3288 0.8700 0.9999 

3 0.38 0.2794 0.8656 0.8700 

 

4.3 Microarray image quantification 

4.3.1 Intensity extraction and expression levels estimation 

Calculating the intensity of the spots for the previous three slides, requires focusing on the 

intensities of each channel individually. The algorithm applies a mask to capture each spot 

separately, each mask captures a spot that is represented with different coordinates on the slide, 

forming a region of interest (ROI). The mean value of the pixels within each mask represents the 

intensity of the spot assigned to that ROI. The expression levels of the spots were calculated using 

the method described in the previous chapter by taking the division of the logarithmic of intensities 

of the first channel on the intensities of the second channel, as indicated with this equation: 

 

Expression level = 
Log (Intensity (First channel))

Log(Intensity (Second channel)) 
 = 

Log (Intensity (Red))

Log(Intensity (Blue))
 

 

The tables below summarize the different intensities for different regions of interests for 

both channels for the three slides, along with the expression levels at that particular region of 

interest. The ROI were selected randomly, but the method can compute ROI across all the images.  

Table 12 Intensity of spots and expression level calculation from 20 random ROI for slide 1 of the 

antibody microarray experiment. 

ROI Intensity of first 

channel 

Intensity of second 

channel 

Expression level 

1 2408.3 7311.3 -0.482 

2 266.839 5922.2 -1.346 

3 322.302 1530.9 -0.676 

4 306.881 1388.5 -0.655 

5 248.204 1.663.2 -0.826 

6 496.253 1399.2 -0.450 

7 395.930 1512.7 -0.582 

8 190.556 1406.4 -0.868 

9 80.166 1367.0 -1.231 

10 1198.4 1455.6 -0.084 

11 213.415 1508.4 -0.849 
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12 71.415 1468.3 -1.313 

13 126.304 1569.7 -1.094 

14 253.654 1560.0 -0.788 

15 101.155 1627.1 -1.206 

16 1034.6 1495.9 -0.160 

17 90.866 1518.7 -1.223 

18 98.355 1774.2 -1.256 

19 78.539 2092.4 -1.425 

20 168.778 1643.4 -0.988 

 

Table 13  Intensity of spots and expression level calculation from 20 random ROI for slide2  of the 

antibody microarray experiment. 

ROI Intensity of first 

channel 

Intensity of second 

channel 

Expression level 

1 1950.7 101.305 1.284 

2 1596.6 7047.2 -0.644 

3 68.272 1531.7 -1.350 

4 77.217 1454.8 -1.275 

5 78.746 1542.8 -1.292 

6 75.041 1547.7 -1.314 

7 126.194 1594.9 -1.101 

8 192.751 1427.7 -0.869 

9 84.276 1391 -1.217 

10 1127.0 1458.8 -0.112 

11 262.442 7047.2 -1.428 

12 65.201 1545 -1.374 

13 1096 1468.5 -0.127 

14 134.393 1315.8 -0.990 

15 1356.4 1424.1 -0.021 

16 86.731 1573.6 -1.258 

17 80.072 1310 -1.213 

18 106.215 1347.7 -1.103 

19 100.087 1669.9 -1.222 

20 102.944 1888.7 -1.263 

 

Table 14 Intensity of spots and expression level calculation from 20 random ROI for slide 3 of the 

antibody microarray experiment. 

ROI Intensity of first 

channel 

Intensity of second 

channel 

Expression level 

1 123 108.712 0.053 

2 1350.8 5069 -0.574 

3 165.534 1595 -0.983 

4 84.010 1610.1 -1.282 
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5 336.374 1551.8 -0.664 

6 87.779 1557.9 -1.249 

7 80.549 1566.1 -1.288 

8 114.273 1478.7 -1.111 

9 422.68 1472.6 -0.542 

10 82.001 1495.2 -1.260 

11 1350.8 5097 -0.576 

12 97.215 1323 -1.133 

13 94.401 1465.6 -1.191 

14 878.54 1449.2 -0.217 

15 145.415 1443.8 -0.996 

16 76.453 1467.1 -1.283 

17 78.175 1392.9 -1.250 

18 79.413 1381.5 -1.240 

19 169.457 1419 -0.922 

20 86.834 1524.1 -1.244 

 

Testing the effect of the background removal on the intensity level is also important. Five 

different regions of interests were selected and their intensities were calculated with denoising and 

without it. The background removal was conducted using both morphological filters described 

before. Figure 41 demonstrates that the values of the intensities were reduced for both channels 

where the noise wasn’t removed, since the background values usually negatively add to the signal 

intensity. 

  

 

Figure 41 Background removal effect on intensity levels of 5 different ROIs taken from slide 1 of the 

antibody microarray experiment 
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Another way to compute the spot intensities is to take the median value of the pixels within 

a spot mask such as shown by table 15. In a normal distribution, the mean and the median are equal 

[116]. We notice that the values of the intensities computed using the mean are different from 

those calculated using the median for the first channel, while the intensities for some ROI such as 

number 3 is a bit close for the second channel. This is due to the fact that the intensities distribution 

is considered to be skewed for both channels. 

 

Table 15 Mean versus Median for the spots quantification using 3 ROIs taken from slide 1 of the antibody 

microarray experiment 

 

ROI 

Intensity 

calculated using 

the mean for 

first channel 

Intensity 

calculated using 

the mean for 

second channel 

Intensity 

calculated using 

the median for 

first channel 

Intensity 

calculated using 

the median for 

second channel 

1 2408.3 7311.3 235 10688 

2 266.839 5922.2 68 2469 

3 322.302 1530.9 85 1486 

 

Given that the spot intensities for both channels were already estimated using the mean 

values with ArrayPro Analyzer, all the intensities calculations in this work will be based on the 

mean calculation. This could be helpful in drawing conclusions by comparing the quantification 

results generated by ArrayPro Analyzer versus the ones obtained using the method proposed in 

this work. The expression levels for seven ROI that were selected randomly are illustrated in figure 

42. A large difference in the expression results for those ROI, which could be difficult to 

objectively evaluate without knowing the true value of the spot intensities. It would be also helpful 

to look at the expression levels across the entire image to get a better idea on how other ROI 

performed. The difference in expression levels could be due to several things, such as the fact that 

the gridding using ArrayPro was conducted manually, and it is not clear how the segmentation was 

also conducted using the software. Other processing steps such as intensity transformations using 

the software may have been applied to the intensities. The mechanism of background subtraction 

using the software is an essential variable that is unknown as well. In the next section of this 

chapter, an alternative way to objectively assess the proposed pipeline will be presented.  
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Figure 42 Comparing expression levels generated by ArrayPro Analyzer and the ones obtained using the 

proposed pipeline for 7 different ROIs from slide 1 of the antibody microarray experiment 

In order to further compare the proposed pipeline with Arraypro Analyzer, we calculate 

more statistical parameters, such as the mean of the intensities, the standards deviations using the 

intensities for the same random regions of interests. Some parameters seem to be close for some 

channels when computed with the results of the pipeline or ArrayPro, but it still not enough to 

determine how good the quantification of the pipeline was, as the most accurate statistical 

behaviors of the intensities isn’t known, as the true values for the experiment weren’t given. 

Table 16 Comparison between three different statistical parameters: mean, standard deviation and the 

median calculated using intensities generated from ArrayPro Analyzer versus the one obtained using the 

proposed pipeline from different ROIs of slide 1 of the antibody microarray experiment 

Statistical 

parameter 

First channel 

using the 

pipeline 

First channel 

using ArrayPro 

Second channel 

using the 

pipeline 

Second channel 

using ArrayPro 

Mean of the 

intensities 

 

407.545 

 

585.037 

 

2060.8 

 

12670 

Standard 

deviation of the 

intensities 

 

559.83 

 

1160 

 

1582.6 

 

15290 

Median of 

regions of 

interests 

230.81 147.74 1524.8 3079.2 

 

4.3.2 Pipeline validation using other microarray data models and simulation 

The previous results have showed that the proposed pipeline works well with the slides we have 

been analyzing for the antibody microarray experiment. Applying the pipeline in one type of 
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microarray images, and three different slides is a good start, but it would be more interesting to 

show that the pipeline is universal by validating it on different models of microarray image. The 

first model represents microarray images taken from three different colours of fluorescent 

streptavidin printed on a slide that was previously analyzer at the Micro and Nano Bioengineering 

lab. Figure 43 shows the results of the enhanced horizontal projection as well as the peak location 

using the autocorrelation function that was used before. The estimated values of the spacing are 

49 µm following the x-axis and 45 µm following the y-axis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

Figure 43 Horizontal profile along with the corresponding autocorrelation signal of a multiple channels 

model representing three different colors of fluorescent streptavidin printed on a slide 

 

It is expected to have a more regular grid compared to the antibody microarray model, 

since the gap between the horizontal and vertical spacings is smaller. The gridding procedure is 

the same as before, and after creating the vertical separations, we transpose the signal and repeat 

the same steps, and finally draw the boxes around the spots. The gridding accuracy was excellent 

for this model 100%, so all the spots were correctly gridded, with a processing time of 6.51 

seconds. The gridding results are shown in figure 44 
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Figure 44 Gridding results for a microarray image, with an accuracy of 100% and a processing time of 

6.51s, of a multiple channels model representing three different colors of fluorescent streptavidin printed 

on a slide 

Now let’s perform the segmentation using a global threshold with a value of 0.902. Figure 

45 presents the results: 
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Figure 45 Results of the global thresholding segmentation of a multiple channels model representing 

three different colors of fluorescent streptavidin printed on a slide 

 

 

Table 17 Segmentation scores for multiple channels model representing three different colors of 

fluorescent streptavidin printed on a slide 

Segmentation score 

parameter 

Global 

thresholding 

Adaptive 

thresholding 

Multilevel 

thresholding (2 

levels) 

k-Mean 

clustering ( 

2 clusters) 

Jaccard 0.17 0.1680 0.8351 0.8351 

 

 

It would be interesting to calculate the spots intensity for each channel (Table 18). In this 

model, it wouldn’t be possible to apply the previous method to calculate the expression levels, as 

we are dealing with three different channels. 
 

Table 18 Spots quantification of multiple channels model representing three different colors of 

fluorescent streptavidin printed on a slide 

 

ROI Intensity of first 

channel 

Intensity of second 

channel 

Intensity of third 

channel 

1 207 1042 444 

2 10 69 400 

3 10 50 335 

4 589.577 1039.1 1161.4 

5 585.955 938.655 1131.9 

6 538.230 976.679 1009 

7 434.754 972.653 435.228 

8 674.111 1044.6 1029.9 

9 875.470 2552 1714.3 

10 435.289 1430.2 1322 

11 16.019 72.841 412.574 

12 192.126 148.749 1107.7 

13 188.287 159.483 877.406 

14 62.277 1065.3 588.737 

15 31.233 42.321 309.212 

16 449.988 270.140 1140.6 

17 110.459 1186 477.200 

18 91.653 1227.5 915.302 

19 98.208 1441.7 418.879 

20 103.332 1341 876.141 
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The third model that will be used for pipeline validation, is a two-channels microarray 

taken from a random experiment where the Cy3-green/Cy5-red. Figure 46 shows the enhanced 

profile along with the autocorrelation function. After following the remaining steps of the gridding, 

the results were an accuracy of 97.98% and a processing time of: 02:08 seconds. In this case 

Tx=Ty= 11 µm. As for the global segmentation, the result was similar to previous models (figures 

47 and 48), with Jaccard score of 0.1881, this makes sense as this slide seemed to have more weak 

spots, so it would be more challenging to segment and properly reconstruct all of them. The local 

adaptive threshold offered a slightly better results with a score of 0.2619. Finally, the multilevel 

thresholding with level equal 2 and k-mean algorithm offered the best similarity values of 0.9400 

and 0.9792. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

Figure 46 Horizontal profile of the microarray images along with the corresponding autocorrelation 

signal of a two-channel microarray image with different dyes for each channel taken from a random 

biology experiment 
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Figure 47 Automatic gridding results for a slide representing a two-channel microarray image with 

different dyes for each channel taken from a random biology experiment 
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Figure 48 Closer look at the gridding results showing a high gridding accuracy of 97.98% and a 

processing time of 02:08 seconds of a two-channel microarray image with different dyes for each channel 

taken from a random biology experiment 

 

 

The expression levels are given by the following equation: 

 

Expression level = 
𝐿𝑜𝑔 (𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 (𝐹𝑖𝑟𝑠𝑡 𝑐ℎ𝑎𝑛𝑛𝑒𝑙))

𝐿𝑜𝑔(𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 (𝑆𝑒𝑐𝑜𝑛𝑑 𝑐ℎ𝑎𝑛𝑛𝑒𝑙)) 
 = 

𝐿𝑜𝑔 (𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 (𝐺𝑟𝑒𝑒𝑛))

𝐿𝑜𝑔(𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 (𝑅𝑒𝑑))
 

 

 
Table 19 Intensity of spots and expression level calculation from 20 random ROI taken from of a two-

channel microarray image with different dyes for each channel taken from a random biology experiment 

 

ROI Intensity of first 

channel 

Intensity of second 

channel 

Expression levels 

1 882 550 0.205 

2 861.500 610.500 0.149 

3 922 685.500 0.128 

4 1536.1 1322.2 0.065 

5 1025.9 882.180 0.066 

6 685.902 680.583 0.003 

7 1205.3 944.430 0.105 

8 1106.1 1075.9 0.034 

9 767.298 766.131 0.001 

10 817.347 781.263 0.019 

11 963.833 739.583 0.115 

12 897.294 814.173 0.042 

13 1251.6 973.138 0.109 

14 797.222 813.854 -0.008 

15 1367.8 1186.5 0.061 

16 1005.6 912.777 0.420 

17 1808 1375.8 0.118 

18 1298.2 1169.4 0.045 

19 805.840 759.576 0.025 

20 1767.4 1438.8 0.089 

 

 

 

As seen before, trying to compare the quantification results for the first model by referring 

to the data generated by ArrayPro Analyzer wasn’t informative for the reasons that were previously 

mentioned. Therefore, a simulation experiment using ImageJ where the true values of the ratios 

between channels or the spots intensities are known, could help one to evaluate the quantification 

method of the pipeline in a more objective way. The first step is to open the file and load it to the 

software as presented by figure 46. 
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Figure 49 Loading a microarray image of a two-channel microarray image with different dyes for each 

channel taken from a random biology experiment using ImageJ software 

 

 

We then measure the spot intensities. To measure the intensity of a specific spot, it should 

be first outlined, then we use the Analyze/Measure command.  Before estimating this parameter, 

it would be helpful to perform a background correction, by subtracting the value of the background 

using the command Process/Subtract Background. We set the rolling ball radius to 25 pixels. 

It would be helpful to visualize the plot profile to make sure the background is indeed subtracted. 

To do so, we select a random subgrid as shown in figure 50, and then use the Analyze/Plot Profile 

command on ImageJ to display the profile of that particular grid before and after the background 

subtraction as presented by figure 51, to make sure the command was correctly executed. 
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Figure 50 Subgrid selection using ImageJ for profile plot calculation of a two-channel microarray image 

with different dyes for each channel taken from a random biology experiment 

 

 
 

Figure 51 Profile plot using ImageJ for the slide representing a two-channel microarray image with 

different dyes for each channel taken from a random biology experiment (A) Before the background 

subtraction. (B) After background subtraction 
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Now that the background is subtracted for a correction calculation, we enable the "Mean" 

in Analyze/Set Measurements, to quantify the spots and to measure the values of this parameter we 

create a circular selection on different spots with known coordinates or regions of interests. We 

make sure to choose a similar region of interests that we calculated before using our pipeline to 

have a more objective comparison. Table 22 shows the true value for the different ROIs, along 

with the values of the intensities for the same ROIs that were obtained using the pipeline described 

in this work. The percentage error was also calculated using the following formula, where 𝑉𝐴 is 

the actual observed value, calculated using the pipeline, and 𝑉𝑇 is the true value. 

 

Percentage error = |
𝑉𝐴−𝑉𝑇

𝑉𝑇
|. 100% 

 

 
Table 20 Calculation of the percentage error for the spot quantifications of 20 random ROIs of a two-

channel microarray image with different dyes for each channel taken from a random biology experiment. 

The true values of the spot’s intensities were obtained using ImageJ 

 

 

ROI 

Intensity of 

first channel 

using 

pipeline 

 

True value 

 

Percentage 

error for 

first 

channel 

Intensity 

of second 

channel 

using 

pipeline 

 

True value 

 

Percentage 

error for 

second 

channel 

1 882 972.722 9.3% 550 518.042 6.16 % 

2 861.500 848,6 1.52% 610.500 585.03 4.35% 

3 922 971.551 5.10% 685.500 708.51 3.24% 

4 1536.1 1555,040 1.22% 1322.2 1258.690 5.04% 

5 1025.9 914.809 12.14% 882.180 787.58 12.01% 

6 685.902 518.439 32.29% 680.583 498.17 36.61% 

7 1205.3 1015.699 18.66% 944.430 836.250 12.93% 

8 1106.1 1024.527 7.96% 1075.9 953.850 12.79% 

9 767.298 604.708 26.88% 766.131 549.300 39.47% 

10 817.347 650.75 25.60% 781.263 583.960 33.78% 

11 963.833 692.037 39.27% 739.583 537.200 37.67% 

12 897.294 741.192 21.06% 814.173 698.692 16.52% 

13 1251.6 1175.576 6.46% 973.138 890.12 9.32% 

14 797.222 645.618 23.48% 813.854 663.42 22.67% 

15 1367.8 1262.902 8.30% 1186.5 1098.090 8.05% 

16 1005.6 910.124 10.49% 912.777 754.733 20.94% 

17 1808 1742.570 3.75% 1375.8 1255.230 9.60% 

18 1298.2 1092.818 18.79% 1169.4 988.925 18.24% 

19 805.840 677.852 18.88% 759.576 675.670 12.41% 

20 1767.4 1351.925 30.73% 1438.8 1097.812 31.06% 

 
The spots with quantification error below 15% are considered to be correctly quantified. 

Some other spots weren’t correctly quantified as the error value was high. The difference in the 
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error percentage between channels is mostly due to the difference in the value of the estimated 

spot spacing, that could slightly change how the spots are placed in regard to the grid. 

 
Another way to test the method robustness to noise is to add noise with different levels and 

compute the gridding and segmentation parameters. Gaussian noise was added with standards 

deviations of 25, 150 and 350. Adding noise doesn’t seem to affect the accuracy of gridding that 

much, as the results are still pretty good. The processing time is still short in general, which is a 

promising, the results are summarized in table 21. 

 
 

Table 21 Effect of different levels of Gaussian noise on the gridding accuracy and the processing time of 

a two-channel microarray image with different dyes for each channel taken from a random biology 

experiment 

 

Noise standard 

deviation value 

 

Accuracy of 

gridding 

 

Processing time (s) 

25 94.38% 01.95 

150 93.73% 02.03 

350 92% 02.12 

 

 
Having a large variation in the spots intensities could make it challenging to correctly 

segment some weak spots, as seen in the previous segmentation results from the different models. 

One of the ways to compensate for that variation is by applying a logarithmic transformation to 

the base 2 on the data to equalize and minimize large variations in magnitude between the different 

spots. The transformation was applied on the third model, and the new data is shown in figure 52 

[117] The global segmentation threshold value moved from 0.03 before applying the logarithmic 

transformation to 0.63, and the Jaccard parameter moved from 0.18 to 0.40. A lot of weak spots 

that were previously missed during the global segmentation, were reconstructed after applying the 

logarithmic transformation (figure 53). Even though there were other weak spots that were still 

missed, there was still an improvement. 
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Figure 52 Display of a two-channel microarray image with different dyes for each channel taken from a 

random biology experiment after applying logarithmic transformation to improve the segmentation 

results and restore some missed weak spots 

 

  

 

 

 

 

 

 

Figure 53 Results of the global segmentation after applying the logarithmic transformation. on a two-

channel microarray image with different dyes for each channel taken from a random biology experiment 

(left) global segmentation without logarithmic transformation. (right) global segmentation without 

logarithmic transformation 
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Chapter 5: Conclusion 
 

5.1 Summary  
 

An automated pipeline to study microarray data was presented in this project. The pipeline was 

first developed to analyze microarray images generated from an experiment based on antibody 

microarray to capture and investigate different types of exosomal proteins. The data were obtained 

from three different slides, and ImageJ software was used in the early stages of the image 

preprocessing, and as a tool to adjust some relevant parameters such as noise level and intensity 

values. 

 

We first developed a gridding algorithm based on image projection techniques, and we 

measured different gridding parameters such as accuracy and processing time. The method showed 

a high gridding accuracy, as well as a short processing time in all of the three slides. The effect 

that the preprocessing step or the background removal had on the gridding results was also 

investigated, by running the algorithm without using any morphological filter. A decline in the 

accuracy results was observed when removing the filters, as more spots were missed, or 

inaccurately gridded, which showed the importance of the denoising step while analyzing 

microarray images. 

 

After gridding the microarray images, for each slide, the background needed to be 

separated from the intensity signals by exploring different thresholding-based segmentation 

methods by implementing global thresholding, adaptive thresholding, and multilevel thresholding 

with two levels. In order to assess the segmentation performance, the similarity parameter Jaccard 

was used. When using the global segmentation, a lot of spots with weak intensities were missed, 

and even though the thresholding techniques that were used had a similar working mechanism in 

general, the segmentation results showed that their impact on signal and background separation 

was different, and a comparison between the segmentation scores for these methods showed better 

results when using multilevel thresholding modality. The previous issues that were encountered 

using segmentation methods have led to exploring the use of the k-mean algorithm, which is a 

clustering machine learning method. We performed the segmentation using a different number of 

clusters while observing the effect of this parameter on the segmentation scores. Using a low 

number of clusters was more effective for the segmentation of the microarray images for all the 

microarray images of the slides from the antibody microarray experiment. After a set of 

comparisons with the previous segmentation methods that were presented, it seemed that using 

machine learning for segmentation had dramatically improved the segmentation scores, which 

proved the utility of machine learning in microarray data research.  

 

Different regions of interests (ROI) were selected to calculate the intensities of random 

spots with known coordinates, as well as their expression levels under two scenarios: the case 

where the background noise was removed using morphological filters, and the case where those 

filters weren’t implemented. The results showed that not subtracting the background contributed 

to having lower values of the spot intensities. Besides, the statistical behavior of some ROI was 

also studied, using the intensities calculated from the pipeline versus the one generated by 

ArrayPro Analyzer, to get a better idea of the quality of the experiment. While some values were 

close for ROI of the first channel from the first slide of the antibody microarray experiment, it was 
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challenging to determine which quantification was better without knowing the true value of the 

intensities. This has led us to explore more ways to objectively assess the effectiveness of the 

proposed pipeline through simulation using ImageJ. 

 

To validate that the proposed pipeline was universal and to assess its performance, other 

data generated from the Juncker lab were used. The first model was a multiple channel slide 

consisting of different proportions of three different colours of fluorescent streptavidin printed on 

a slide. We reported an accuracy of 100%- and 6.51-seconds processing time, which was very 

good. Another model for validation, was a two-channel microarray image (Cy3-green/Cy5-red) 

images from a random experiment. We used the second model to test the application of the 

logarithmic transformation to compensate for the variation in the spot intensities, this has given us 

better segmentation results as many spots that were missed before were properly reconstructed 

after applying the transformation on the data. As for the quantification evaluation, the previous 

two channel model was used in combination with ImageJ to locate the true values and compare 

them with the ones obtained using the proposed pipeline. For some ROIs, we obtained promising 

quantification values with error percentage as low as 1.52%. We also demonstrated the robustness 

of the proposed methods to noisiness by adding Gaussian noise with different standard deviations 

values. The gridding results were promising despite observing a slight decline in the gridding 

accuracy when using higher standards deviations of noise. 

 

 

5.2 Future work  
 

Despite the high values of the gridding accuracy that were obtained across the several 

models that were used to validate the pipeline, and the positive result of the pipeline analysis, it is 

still essential to describe some limitations of the pipeline before fully adopting it. For instance, 

some user assistance may be required in the case of processing rotated images, which could reduce 

the level of automatization of the pipeline and delay the processing time. In the case of relying on 

the K-means clustering algorithm for the segmentation step, choosing the right number of clusters 

could be tricky sometimes, since the pipeline relies on a random selection of the number of clusters, 

which is a process of trailer and error that could be computationally time consuming, especially 

when dealing with images with large data points such as microarray images. and the application 

of the algorithm itself is limited by knowing an optimal number of clusters. Therefore, exploring 

ways to automate the selection of the number of clusters K would help with saving more time[109]. 

Besides, the ability of the gridding method to remove background noise using the morphological 

filters wasn’t extensively explored. For instance, removing those filters created some grids 

displacements as seen before, which proved the efficiency of the denoising step, and the image 

projections were visually enhanced compared to the initial profiles that were computed, but the 

pipeline doesn’t rely on a specific metric to evaluate and quantify the noise removal ability of the 

gridding, which could be another limitation of the method. 
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Important next steps would be to test the pipeline on other simulated data to assess its robustness 

while dealing with other type of contaminations such as non-specific hybridizations and dust, by 

computing the previous gridding parameters and segmentation score. Measuring the performance 

of microarray segmentation algorithms is a challenging issue and lacks research. In general, the 

most natural way for evaluating the segmentation algorithms is by measuring the segmentation 

error on a pixel-level, which can't be achievable in several microarray experiments[4]  This could 

be done by evaluating the pixel accuracy by finding the values of the following: the true positive, 

true negative, false positive, and false negative values. This helps with reporting the percent of 

pixels in the image which were correctly classified [118] Therefore, it would be also helpful to use 

more similar metrics to evaluate the performance of the segmentation methods used in this work. 

The analysis could also include microarray images that are rotated in different directions 

following different angles and study the behavior of the autocorrelation function, and what the 

gridding results would look like in that case. The angle could be considered as a different feature 

that could be fed to the algorithm. As far as features extraction is concerned, it is considered to be 

a very time-consuming in some cases, and this problem has been successfully resolved by 

implementing various deep neural networks[119], which could enable the extraction of 

new features that have never been discovered before while analyzing the data, such as  spot centers, 

spots diameter, shape and other features that can ameliorate the segmentation phase, and since 

deep learning doesn’t require any manual feature extraction, there won’t be concerned when it 

comes to the processing time, and so basically exploring the use of deep learning while using the 

proposed pipeline and data from this project could be interesting [120]. 

 

Furthermore, there are several variations of K-means clustering algorithms in literature 

such as Fuzzy C-Means. The two algorithms have similarities in their working mechanism when 

it comes to image segmentation, so it could be possible to explore how they would perform when 

presented with similar microarray images that were used in this work. It would be interesting to 

combine the k-means algorithm with other stages of pre-processing and post-processing used to 

provide maximum segmentation results[121]  

 

Other adjustments may be needed, such as using different type of transformations such as 

the one listed on the pre analysis issues section of the second chapter and compare it with the 

logarithmic transformation that was used in this work, to better assess which transformation is 

better when it comes to dealing with missed spots and similar data. The work has also presented 

both the global threshold and local thresholding methods separately, and each method has failed 

to reconstruct all the images that had weak intensities. Besides, the global properties of the image 

are characterized by the mean values of different pixel classes and the boundary of the different 

regions, while the local properties are characterized by the interactions of neighboring pixels and 

the image edge, as shown by the adaptive local thresholding method used before[112]. It could be 

possible to try a logical combination of both segmentations to get the best of both of both 

thresholding variations and assess the results. 

 

Microarray data comes in different qualities, in this project the quality of the images were 

almost the same, so using low, medium and high-quality images to compare would strengthen the 

proposed pipeline. Most of the available microarray gridding approaches require human 
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intervention; to specify landmarks, or to precisely locate individual spots [122].  Comparing the 

proposed gridding method with those methods, as well as with other automated methods from the 

literature, to make more objective assessment of its efficiency could also be added to the results 

section of the project. 
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6.  Abbreviations 
 

Ac   Accuracy 

AD    Alzheimer disease 

BIC      Bayesian Information Criterion  

CFSE    Carboxyfluorescein succinimidyl ester 

CSF    Cerebral spinal fluid  

CMOS              Complementary metal-oxide-semiconductor 

ESCRT   Endosomal sorting complexes required for transport  

ELISA   Enzyme-linked immunosorbent assay 

EVs    Extracellular vesicles 

GA    Genetic algorithm  

hsc70                 Heat-shock cognate protein 70  

Hsp70:              Heat Shock Protein 70 

Hsp90               Heat shock protein 90 

HC    Horizontal centers  

hCSF    Human cerebrospinal fluid volume  

ML    Machine learning 

MA    Matarray  

MSB    Model-based segmentation  

MVs    Microvesicles  

MVBs    Multivesicular bodies  

ROI    Region of interest  

SRG              Seeded region growing  

SP-IRIS  Single particle interferometric reflectance imaging sensor  

SPs    Stimulating the surface plasmons  

SR               Spots regions  

SVM    Support victor machine  

TSG101              Tumor Susceptibility 101 

VC               Vertical centers  
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