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ABSTRACT 

Promoting the sustainability of dairy farming is imperative not only to meet the projected increase 

in demand for dairy, but also because it holds an important role in food security. Cow longevity 

and animal welfare are important factors associated with the sustainability of the dairy industry. 

Higher longevity, achieved by avoiding culling due to health issues such as mastitis, feet, and legs 

problems, as well as failure to reproduce (i.e., involuntary culling), could be associated with higher 

economic performance of farms, a lower environmental footprint of the milk industry, and a better 

welfare status of the animals. Yet, cow longevity has decreased in most high milk-producing 

countries over the last decades and its relationship with milk yield is not straightforward. While 

strategic culling decisions aiming at keeping cows more likely to avoid involuntary culling could 

help in increasing longevity among herds, the current metrics of longevity are limited to either the 

length of time a cow remains in the herd or if she is still alive at a given time, limiting such strategic 

decision-making. Early life indicators such as calving ease, birth size, and twinning could be used 

to help in the decision process since they are associated with a reduction in the longevity of the 

offspring. Other data such as the occurrence of health events during the pre-weaning period as well 

as failure of the passive immunity transfer do not seem to be considered by farmers to carry out 

culling decisions during the rearing period. Early life management practices regarding colostrum, 

feeding, and housing were also studied, and two distinct clusters of farms were identified: 

production-oriented farms used more modern management practices which were associated with 

increased productivity and profitability but reduced longevity, whereas resource-oriented farms 

used more traditional practices which in turn were associated with increased longevity but reduced 

productivity and profitability. Lastly, different animal welfare profiles were identified when 

investigating the link between herd outcome measures of welfare and both longevity and economic 

indicators, highlighting that management practices should be adjusted to improve animal outcomes 

in those with poorer welfare status. However, the set of solutions and innovations should be 

tailored according to the individual problems present on each farm. The pressing issues associated 

with climate change and competition for resources highlight the need to improve the efficiency of 

animal food production, but both farmers’ and animals’ interests should be aligned to meet the 

increasing demand while ensuring the sustainability of the sector. 
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RÉSUMÉ 

Promouvoir la durabilité de la production laitière est un impératif, non seulement pour répondre à 

l’augmentation prévue de la demande pour les produits laitiers, mais également parce qu’elle joue 

un rôle important dans ce qui a trait à la sécurité alimentaire; à cet égard, la longévité et le bien-

être des vaches laitières sont autant de facteurs importants associés à la durabilité de l’industrie 

laitière. L’atteinte d’une meilleure longévité via une diminution des réformes involontaires, 

souvent liées à des problèmes de santé tels que la mammite, les affections des pieds et membres et 

les trouble de reproduction, pourrait mener à une meilleure performance économique des fermes, 

une diminution de l’empreinte environnementale de la production, et un meilleur statut de bien-

être des vaches. Pourtant, au cours des dernières décennies, la longévité des vaches a diminué dans 

la majorité des pays producteurs de lait, si bien que le lien unissant longévité et productivité ne 

semble pas aussi clair qu’il pourrait l’être. Si des décisions de réforme stratégiques visant à garder 

dans les troupeaux des vaches plus susceptibles d’éviter les troubles menant à une réforme 

involontaire pourraient aider à améliorer la longévité des troupeaux, les données actuelles liées à 

la longévité sont limitées à la durée de temps passée par la vache dans le troupeau, ou à la question 

de sa survie et de sa présence dans le troupeau au moment de l’évaluation, ce qui limite les 

possibilités pour la prise de décisions stratégiques. Puisqu’ils sont associés à une réduction de la 

longévité des vaches, des indicateurs notés tôt dans la vie (ex. : la facilité du vêlage, la taille à la 

naissance et la naissance gémellaire) pourraient servir pour la prise de décisions. D’autres données 

telles que la survenue de problèmes de santé au cours de la période pré-sevrage ou l’échec du 

transfert d’immunité passive ne sont que peu considérés par les producteurs lors de la prise de 

décisions de réforme au courant de la période d’élevage des femelles de remplacement. Lors de 

l’étude des pratiques de gestion en début de vie à la ferme (ex. : gestion du colostrum, logement 

des veaux), deux groupes de producteurs ont été identifiés : des producteurs dont la gestion est 

plus axée sur la productivité, qui utilisent des pratiques modernes de gestion des veaux, et qui 

obtiennent une plus grande productivité des vaches en lactation et une plus grande valeur de lait 

produit, mais une moins grande longévité, et des producteurs dont la gestion est plus axée sur les 

ressources, qui utilisent des pratiques plus traditionnelles de gestion des veaux, et qui ont une 

meilleure longévité du troupeau, mais des niveaux de production et une valeur de lait produit moins 

élevés. Différents profils en fait de bien-être animal ont été identifiés lors de l’investigation du lien 

entre les mesures de bien-être à la ferme et les mesures de longévité ainsi que les indicateurs 
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économiques; ces trouvailles démontrent que les pratiques de gestion de troupeau devraient être 

ajustées pour améliorer le bien-être des vaches chez les troupeaux où cet aspect se révèle plus 

problématique. Toutefois, il n’existe pas d’ensemble unique de solutions applicable à toutes les 

fermes; il serait donc important de prioriser une approche adaptée aux problèmes spécifiques 

identifiés sur chacune des fermes. Le contexte lié aux changements climatiques et à la compétition 

pour les ressources met en lumière un besoin d’améliorer davantage l’efficacité des productions 

animales incluant la production laitière, d’une manière qui respectera à la fois les intérêts des 

producteurs et les besoins des animaux, afin d’augmenter la productivité du secteur et ainsi 

répondre à la demande en augmentation, mais de manière durable. 
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CHAPTER 1 – General introduction 

In simple terms, dairy cow longevity refers to how long a cow lives. Though it may refer 

to a simple concept, its ramifications under current commercial conditions are far from simple. 

The life of a dairy cow can be split into non-productive and productive stages. The non-productive 

stage of a female dairy offspring starts when her dam gets pregnant. Once born, the female calf 

receives a liquid diet up until she is weaned off at about 2 months of age (Vasseur et al., 2010). 

The calf grows into a heifer, which is then artificially inseminated at about 18 months old and 

calves for the first time at 27 months old (Lactanet, 2020). Calving for the first time marks the end 

of the non-productive stage and the beginning of the productive stage. That is when the heifer, 

now a cow, starts to produce milk and enters the lactating herd. The cow will produce milk for 

about a year before she is dried prior to giving birth to another calf (Lactanet, 2020). The lactating-

dry-lactating cycle repeats until she is culled from the herd.  

Culling is the process of removing an animal from the herd due to death, salvage, sale, or 

slaughtering (Fetrow et al., 2006). It is a management decision commonly carried out by farmers 

and the most frequently reported reasons are fertility issues, mastitis, leg problems, and low milk 

yield (Heise et al., 2016, Compton et al., 2017, CDIC, 2021). Regardless of the reason, all cows 

are eventually culled. Though they can live for 20 years (De Vries and Marcondes, 2020), culling 

often happens at a younger age (Dallago et al., 2021) depending on farmers’ production priorities 

(Rilanto et al., 2022). Instead of culling, farmers may decide to try different reproduction 

technologies on cows that have fertility issues and treat the sick ones. Looking at dairy farming as 

a business enterprise, such decision should be based on maximizing profitability. However, 

cumulative costs and profitability of a dairy herd are generally not known or underestimated 

(Vasseur et al., 2012; Duplessis et al., 2021), whereas the past occurrence of costly events such as 

health problems are seldom considered (Beaudeau et al., 2000). 

Removing a cow too early from the herd is not without consequences. Depending on cow 

productive levels, she only becomes profitable from her third lactation onwards, mainly because 

of her rearing costs (Horn et al., 2012, Delgado et al., 2017, Habel et al., 2021). Cows with longer 

longevity are also more environmentally sustainable. Methane emission does not increase as cows 

get older (Grandl et al., 2016) and the longer a cow remains in the herd, the lower the methane 

emission per kg of milk produced (Grandl et al., 2019). Lastly, animal welfare is the primary issue 
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mentioned by consumers thinking towards an ideal dairy farms (Cardoso et al., 2016) and most of 

the reported reasons for culling are associated with diseases, implying a poor animal welfare status. 

Therefore, increasing dairy cow longevity would be beneficial for the dairy industry not only from 

a consumer’s perception, but also from the perspective of animal welfare, while making it more 

profitable for dairy farmers and more environmentally sustainable. 

Reducing the occurrence of both reproduction failures and health issues could potentially 

increase dairy cow longevity as they are the most prevalent reported reasons for culling. In Canada, 

for example, 72.0% of the culling in 2020 were due to reasons other than low milk production 

(CDIC, 2021). One possible strategy to achieve that reduction would be by minimizing the risk 

factors for various undesirable health events. For one, concrete floors (Somers et al., 2003, 

Vanegas et al., 2006) and bed comfort (McPherson and Vasseur, 2020) are some of the risk factors 

associated with the occurrence of lameness, thus acting on those factors could contribute. Another 

strategy to employ would be increasing the cleaning frequency of dairy barns since it improves the 

hygiene scores for the udder (DeVries et al., 2012), which contributes to a decrease in somatic cell 

count (Schreiner and Ruegg, 2003, Reneau et al., 2005) and a reduction of clinical mastitis 

(Santman-Berends et al., 2016).  

Another possibility is to identify and raise resilient animals, which exhibit high adaptability 

to challenges and good cumulative fertility and health, resulting in an increased longevity 

(Adriaens et al., 2020). As opposed to controlling risk factors, much less attention has been drawn 

to the early identification of resilient animals that are more likely to reach their potential. An 

example of this is the occurrence of diarrhea during rearing, which impacts the subsequent milk 

production (Svensson and Hultgren, 2008) and reproductive performance (Aghakeshmiri et al., 

2017). Therefore, efforts to improve cow longevity should be made even before a dairy animal 

enters the lactating herd, maximizing the efficiency in which resources are used to produce milk 

with inherited sustainability. 

Understanding the connections between early life conditions and animal longevity, 

productivity, and performance is fundamental to move towards improving the dairy industry 

sustainability. It provides new insights to develop recommendations for dairy producers to improve 

their ability to keep healthier and comfortable cows longer in their herds. Overall, such an approach 

would contribute to a gain in economic and environmental sustainability of dairy farms, while 
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leading to improvements in animal welfare and creating a more positive public perception of the 

dairy industry. 

1.1. General and specific objectives 

We have hypothesized that early life aspects of dairy cattle influence their subsequent 

longevity, productivity, and profitability. The general objective of this thesis was to test this 

hypothesis from different perspectives. A final objective was to provide insights on the 

sustainability of dairy farming as it is currently practiced based on animal welfare outcome 

measures as well as on longevity, productivity, and profitability. Chapter 2 aimed to provide an 

integrated review of dairy cow longevity by reviewing the most common longevity metrics and 

describing the current state of longevity in high milk-producing countries. Chapters 3 to 5 delve 

deeper into analyzing different early life aspects and their association with longevity, productivity, 

and performance. Both Chapters 3 and 4 used animal-level responses, while Chapter 5 used herd-

level response metrics. Chapter 3 aimed to evaluate the effect of calving ease, calf size, and 

twinning, which are birth conditions routinely collected by Dairy Herd Improvement agencies, on 

subsequent offspring longevity. The objective of Chapter 4 was to analyze the associations 

between early life animal outcomes of body weight, health events, and immune status of dairy 

calves and not only their subsequent longevity, but also their productivity and profitability. In 

Chapter 5, the objective was to characterize dairy herds based on a set of diverse early life 

management practices and to analyze the association between practices and herd longevity, 

productivity, and profitability. Lastly, the objective of the study presented in Chapter 6 was to map 

the sustainability of dairy farming using an animal centric approach based on herd-level indicators 

of animal welfare outcomes, longevity, productivity, and profitability. 
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2.1. Abstract 

The ability of dairy farmers to keep their cows for longer could positively enhance the economic 

performance of the farms, reduce the environmental footprint of the milk industry, and overall help 

in justifying a sustainable use of animals for food production. However, there is little published on 

the current status of cow longevity and we hypothesized that a reason may be a lack of 

standardization and an over narrow focus of the longevity measure itself. The objectives of this 

critical literature review were: (1) to review metrics used to measure dairy cow longevity; (2) to 

describe the status of longevity in high milk-producing countries. Current metrics are limited to 

either the length of time the animal remains in the herd or if it is alive at a given time. To overcome 

such a limitation, dairy cow longevity should be defined as an animal having an early age at first 

calving and a long productive life spent in profitable milk production. Combining age at first 

calving, length of productive life, and margin over all costs would provide a more comprehensive 

evaluation of longevity by covering both early life conditions and the length of time the animal 
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remains in the herd once it starts to contribute to the farm revenues, as well as the overall animal 

health and quality of life. This review confirms that dairy cow longevity has decreased in most 

high milk-producing countries over time and its relationship with milk yield is not straight forward. 

Increasing cow longevity by reducing involuntary culling would cut health costs, increase cow 

lifetime profitability, improve animal welfare, and could contribute towards a more sustainable 

dairy industry while optimizing dairy farmers’ efficiency in the overall use of resources available. 

2.2. Introduction 

Dairy cow longevity is the length of life of the animal, which in turn is determined by either 

culling decision made by the producer or death of the animal. The removal of cows from dairy 

herds due to old age is rare in the modern dairy industry and the economic interest associated with 

farm animals, which require them to achieve expected production levels, to reproduce regularly, 

and stay healthy (Essl, 1998, Fetrow et al., 2006), influences the farmer’s decision regarding the 

optimum moment to cull a cow. It is a complex decision process and a myriad of factors are to be 

considered by the dairy farmer (Roche et al., 2020). Therefore, longevity is a compound feature 

reflecting a successful combination of many different aspects during the lifespan of a cow (Van 

Doormaal, 2009). Dairy cow longevity is linked to the economic performance of farms, the 

environmental footprint of the milk industry, and the welfare status of the animals (Essl, 1998, 

Benbrook et al., 2010, Brickell and Wathes, 2011, Pellerin et al., 2014, Boulton et al., 2017, Grandl 

et al., 2019), and short cow longevity limits the achievement of a sustainable dairy industry. 

The genetic potential for longevity has increased over the years (De Vries, 2017, CRV, 

2020, DairyNZ, 2020) reflecting the inclusion of functional traits in the calculation of estimated 

breeding values (Van Doormaal, 2009). Even though dairy cow have a life expectancy of around 

20 years (De Vries and Marcondes, 2020), this is rarely observed under modern commercial 

conditions. In Canada for example, the average age that Holstein cows die due to natural causes is 

9.1 years (Van Doormaal, 2009). This would represent a productive life (length of time between 

first calving and culling/death) of 6.8 years or about 6 lactations if an average age at first calving 

of 27 months is assumed (Van Doormaal, 2009). This has been appointed as a problem by the dairy 

industry and, contrary to milk recording, there is no standardized approach to measure longevity 

which results in different metrics being used by different countries (Mark, 2004). Increasing dairy 
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cow longevity could be a strategy to improve the efficiency of using resources available to the 

dairy farmer and to produce milk with inherited sustainability. 

The purpose of this critical literature review is to provide an integrated view of dairy cow 

longevity combined with the analysis of its status by focusing on phenotypical aspects of longevity 

rather than its genetic aspects. The objectives were to 1) review metrics commonly used to measure 

dairy cow longevity and, 2) use the most common metric to describe the status of longevity in high 

milk-producing countries. We hypothesized that limitations exist on current longevity metrics such 

as the lack of both a standard metric and reporting by DHI agencies or national databases. The 

significance of this critical review is to overcome these limitations by developing a standard 

methodology to estimate longevity metrics, which allow for a fair comparison between different 

countries, and by demonstrating that dairy cow longevity has decreased over the years in most 

high milk-producing countries. Addressing these two objectives will then lead us to answering the 

following questions: (i) should we improve dairy cow longevity?, and (ii) how can we improve 

dairy cow longevity?, and result in (iii) proposing a more comprehensive definition of cow 

longevity. 

2.3. How can we measure longevity? 

The longevity of dairy cows is influenced by culling decisions made by the dairy farmer 

since culling ultimately defines the total length of time a cow remains in the herd. Therefore, 

common longevity metrics reflect culling strategies as well as the different stages of the life of a 

dairy cow. 

2.3.1. Culling 

Culling is the process of removing an animal from the herd due to death, salvage, sale, or 

slaughtering (Fetrow et al., 2006). Apart from death, culling is a decision usually made by the 

dairy farmer and it is influenced by the economic interest associated with farm animals. Culling 

can be further classified as voluntary or involuntary based on the main reason underlying the 

culling decision. Voluntary culling occurs when a fertile and healthy animal is culled due to low 

milk production (Weigel et al., 2003, Fetrow et al., 2006). On the other hand, an involuntary culling 

happens if low milk production is not the culling reason (Weigel et al., 2003, Fetrow et al., 2006). 
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Involuntary culling accounts for most of the removal of dairy cows with known reasons. 

For example in Canada, the average involuntary culling was 73.6% (Standard deviation; SD = 

0.65) between 2014 and 2019, while the averages of voluntary culling and culling with unknown 

reason were 7.18% (SD = 0.28) and 20.7% (SD = 2.3), respectively, in the same period (CDIC, 

2020a). The high percentage of culling with unknown reason indicates the existence of limitations 

among producers to keep track of culling records within the farm and reporting it. Reproduction 

(16.8%; SD = 0.51), mastitis (10.6%; SD = 0.66), and feet and leg problems (6.88%; SD = 0.33) 

were the main reasons for involuntary culling during this period (CDIC, 2020a). Similarly, 

infertility (20.4%), udder health (14.7%), and leg disorders (12.2%) have been reported as the main 

reasons for involuntary culling in Germany between 2010 and 2013 (Heise et al., 2016). The 

prevalence of the main culling reasons remained stable over time. In a meta-analysis conducted by 

Compton et al. (2017) on 51 published papers regarding 54 studies conducted in 22 different 

countries between 1989 and 2014, the annual incidence risk of culling due to udder and 

reproduction issues did not change for almost two decades starting at the mid-1980s. At the same 

time, there was a decrease in culling due to low milk production (voluntary culling). A similar 

condition was observed in Canada (Figure 2.1), in which the percentage of involuntary culling 

remained stable between 1997 and 2019 (CDIC, 2020a) for reproduction, mastitis, and feet and 

leg problems, while the culling for low milk production decreased up to 2008 after which it was 

seen a slight upwards trend. The main reason for such reduction in the voluntary culling is likely 

due to the genetic selection for high milk-yielding cows, which reduces the relative risk of being 

culled due to low milk production and is likely to continue as an objective of dairy farms (Compton 

et al., 2017). 
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Figure 2.1. Change over time of the top four culling reasons based on the total number of cows culled with a known 

reported reason in Canada between 1997 and 2019 (CDIC, 2020a). 

 

The risk of culling is not constant over the life of a cow. It depends on cow factors such as 

lactation number, stage of lactation, milk yield, and reproductive status as well as environmental 

factors such as season of calving and herd-production needs (Hultgren and Svensson, 2009, Pinedo 

et al., 2010, Pinedo et al., 2014, Heise et al., 2016, Haine et al., 2017). Death, as well as diseases 

and injury, are the main reasons for culling early after the onset of a new lactation (Pinedo et al., 

2010, Pinedo et al., 2014). On the other hand, the risk of culling due to failure to reproduce and 

low milk production increases as the lactation progress and the highest risk is observed at later 

stages of the lactation (Pinedo et al., 2010, Pinedo et al., 2014, Heise et al., 2016). Milk yield and 

reproduction are protective factors against culling, in which pregnant (Hultgren and Svensson, 

2009) and high yielding animals are less likely to be culled compared with its counterpart (Pinedo 

et al., 2010, Stojkov et al., 2020). Death is mostly associated with seasonal effects in which hot 

seasons are associated with a greater risk of dying (Pinedo et al., 2010). Cows are favoured to 

remain in the herd if they are healthy, reproduce regularly, have functional feet, legs, and udders, 

and produce enough milk (Essl, 1998, Fetrow et al., 2006, De Vries and Marcondes, 2020). 

2.3.2. Longevity measures 

Longevity can be categorized as true, functional, and residual longevity. True longevity 

indicates the ability of an animal to delay culling, but it is not adjusted for milk yield (Mark, 2004). 

Functional longevity indicates the ability of an animal to delay involuntary culling, and it is 
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adjusted for milk yield within the herd (Mark, 2004). Lastly, residual longevity represents cow 

longevity after adjusting it for all other traits under consideration in the breeding program (Mark, 

2004). Having culling or death as the endpoint and based on the different stages of the life of a 

dairy cow (Figure 2.2), different longevity metrics have been used (Table 2.1). These metrics can 

be obtained at the herd-level when they reflect the overall prevalence of animals that meet certain 

criteria such as the number of animals on third or greater lactation, or at the animal-level when 

each animal is individually evaluated. 

 

 
Figure 2.2. Schematic representation of the life of a dairy cow according to a chronological sequence of key events 

(conception, birth, weaning, first calving, and culling/death) that prompt a change to the different life status (fetus, 

calf, heifer, and adult cow) and respective life stages (fetal, early, and productive life). The length of the arrows is 

proportional to the duration of each status and stage as seen in the province of Quebec, Canada (Valacta, 2019). 
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Table 2.1. Dairy cow longevity metrics commonly used. 

Measure Unit Time frame Description Reference 

Lactation Count First calving 

to 

culling/death 

Cumulative number 

of lactations 

Essl (1998) 

3+ lactation Herd 

prevalence 

The number at 

a given point 

Percentage of cows 

on the third or 

greater lactation 

Villettaz Robichaud et al. (2018), Villettaz 

Robichaud et al. (2019a), Villettaz 

Robichaud et al. (2019b) 

Culling rate Herd 

prevalence 

The number at 

a given point 

Percentage of 

culling 

Villettaz Robichaud et al. (2018), Villettaz 

Robichaud et al. (2019a), Villettaz 

Robichaud et al. (2019b) 

Length of 

life 

Year Birth to 

culling/death 

Length of time 

between birth and 

culling 

Haworth et al. (2008) 

Length of 

productive 

life 

Year First calving 

to 

culling/death 

Length of time 

between first 

calving and culling 

Ducrocq (1994), Schneider et al. (2007) 

Functional 

longevity 

Rank First calving 

to 

culling/death 

Length of 

productive life 

adjusted for within-

herd milk 

production level 

Sewalem et al. (2008) 

Longevity 

index 

% Birth to 

culling/death 

Lifetime days in 

milk divided by 

length of life 

Haworth et al. (2008), Brickell and Wathes 

(2011) 

 

The different longevity metrics can be classified as stayability metrics or lifetime metrics. 

Stayability metrics have a binary nature and indicate if a dairy cow is alive at a given moment in 

time (van Pelt, 2017) and can be updated as the animal grows. An example would be if the cows 

reach the third or greater lactation (Villettaz Robichaud et al., 2018, Villettaz Robichaud et al., 

2019a, Villettaz Robichaud et al., 2019b). Even though such metrics do not provide a complete 

picture of cow longevity, one of their advantages is that they can be measured at any time (van 

Pelt, 2017). On the other hand, lifetime metrics take into account the completed life stages of the 

animals (van Pelt, 2017). For example, the life of a dairy cow can be split into early life (non-

productive) and productive stages (Figure 2) from a production perspective. Based on that, 

longevity can be measured as the length of the productive life of a dairy cow (Ducrocq, 1994, 

Schneider et al., 2007). Since lifetime metrics take into account the entire stage of life, they can 

only be calculated when such a stage is completed, which is one of the main limitations of such 

metrics. 

Most lifetime metrics of dairy cow longevity do not specifically account for the early life 

stage (Figure 2), since they typically have first calving as the starting point. The longevity index 

(Table 1) is a proposed metric that overcomes such limitation by taking into account both the 
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length of life of an animal and the length of time spent on producing milk (Haworth et al., 2008); 

therefore, accounting for the entire non-productive period of life (early life stage) and days dry of 

a dairy animal.  

2.3.3. Limitation of common longevity measures 

There is no standard metric to measure dairy cow longevity and even though each different 

metric reflects an aspect of dairy cow longevity, they are not comparable since they do not have 

the same meaning (Van Doormaal, 2009). Mark (2004) estimated the correlation between 

longevity metrics used by different Interbull (an international network that carries on genetic 

analysis of livestock animals) member countries. The author reported a low correlation coefficient 

(0.59) and high variability (range = 0.96) among all countries evaluated, regardless of how 

longevity was measured/defined in each country. However, the correlation increased (0.71) and 

the variability decreased (range = 0.51) while analyzing only countries that used comparable 

longevity traits. Differences in how longevity was measured between countries could be partially 

the reason for low correlation and great variability in both cases, but a correlation lower than unity 

among countries that used comparable metrics could also be due to differences in culling reasons 

and trait definitions (Mark, 2004), which indicates a lack of standardization on measuring 

longevity. At the same time, the differences in the environment could be a reason for slight 

differences in traits among different countries as well. 

2.4. What is the current status of dairy cow longevity and milk yield? 

The average length of productive life, which is one of the most common longevity metrics, 

can be estimated based on the culling rate (De Vries, 2013, 2020, De Vries and Marcondes, 2020). 

Since information at country level regarding culling is not available for most countries, a proxy 

can be estimated based on slaughtering data at country level, even though this approach would not 

take into account animals that died in the farm and would assume the accuracy of slaughter records 

reported by each country. Once this information is obtained, it can be used to evaluate the trend 

over time in the status of dairy cow longevity along with milk yield per animal. The following 

methodology was used to identify high milk-producing countries and estimate dairy cow longevity 

at the country level. 
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2.4.1. Sourcing the information 

Countries were first ranked based on total milk production to identify the ones with the 

highest production. As a starting point, the average total whole fresh cow milk was calculated 

based on 2016, 2017, and 2018 information provided by the FAO (2020). The top 21st high milk-

producing countries were kept. Next, we searched for yearly official statistics publications for each 

of these countries regarding the total number of dairy cows, total milk production (kg), average 

milk yield per animal (kg), and the number of slaughtered cows. No date limit was imposed at this 

stage and all information available was gathered and aggregated into a single data file. For 

countries that reported milk production in liters it was converted to kg using the 1.03 conversion 

factor. For countries that did not officially report average milk yield, it was estimated by dividing 

the reported total milk production over the number of dairy cows (Supplementary Table 2.1). 

References and official sources are presented in Supplementary Table 2.1. 

The length of productive life was estimated based on the culling rate. A proxy of the 

average culling rate was estimated at the country level by dividing the number of dairy cows 

slaughtered per year by the total number of dairy cows in each year for the countries that we were 

able to find both information. For countries that did not specify the number of dairy cows 

slaughtered, we used the number of cows slaughtered (Supplementary Table 2.1). The inverse of 

the culling rate was then used as an estimation of the length of productive life (De Vries, 2013, 

2020, De Vries and Marcondes, 2020). 

Once the data was gathered and calculations were completed, two criteria were used in data 

cleaning to define its sufficiency and reliability, respectively. First, only countries that we were 

able to find information for at least two consecutive decades were kept for further steps. Next, 

information from countries in which cows had a length of productive life lower than 1.5 years 

(Argentina, Australia, and Mexico) in earlier decades or greater than 7 years (Turkey and United 

Kingdom) in recent decades were considered unreliable and excluded from further steps in this 

review. After cleaning, information from 10 countries remained (Figure 2.3; Supplementary Table 

2.1). 
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Figure 2.3. Top 10 high milk-producing countries based on total milk production averaged over the years 2016 to 

2018. Columns represent the averages followed by the standard deviation (error bars). The list of countries is limited 

to those for which we were able to provide sufficient and reliable data on the length of productive life. Data sources 

are provided in Supplementary Table 2.1. 

 

Linear regression was used to describe the trend over time in both milk yield and length of 

productive life. For milk yield, we reduced the number of observations to standardize the time 

window interval for all countries. Therefore, we considered only the information ranging from 

1961 to 2018, which represented 96.9% of the data available after cleaning. For the length of 

productive life, it was not possible to establish a standard time window. For some countries, we 

were able to find reliable information only from more recent years while for others the collection 

was more extensive. The following polynomial regression model was used to describe both trends: 

Yj = β
0
 + β

1
Yearj + εj, (1) 

in which Yj represented the milk yield per animal (kg) or length of productive life (year), 

β0 was the intercept, β1 was the linear regression coefficient, Yearj was the value observed in the 

jth year and εj was the residual error ~ N (0, σ2). Statistical significance level was set at α < 0.05. 
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2.4.2. Milk yield and longevity over time 

The average milk yield per animal per year increased in all the countries considered in this 

review (Figure 2.4). However, the magnitude of the increase was not the same across countries. 

The estimated increase ranged from 18.5 kg (Standard error; SE = 1.49) per animal per year in 

Brazil to 129.7 kg (SE = 1.20) kg in the United States both from 1961 to 2018 (Table 2.2). 

 

 
Figure 2.4. The average milk yield (kg) per animal from the top 10 high milk-producing countries over the years. The 

list of countries is limited to the world’s top high milk-producing countries for which we were able to provide sufficient 

and reliable data on the length of productive life. Data sources are provided in Supplementary Table 2.1. 
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Table 2.2. The linear trend of milk yield (kg) per animal per year for each country between 1961 and 2018. The list 

of countries is limited to the world’s top high milk-producing countries for which we were able to provide sufficient 

and reliable data on the length of productive life. 

Country 
Model 1 

R2 3 RSE 4 p-value 5 

Intercept 2 Year 2 

United States of America 
2941.6*** 

(40.6) 

129.7*** 

(1.20) 
0.99 152.5 < 0.001 

Brazil 
451.2*** 

(50.4) 

18.5*** 

(1.49) 
0.73 189.5 < 0.001 

Germany 
2904.6*** 

(83.4) 

81.4*** 

(2.46) 
0.95 313.4 < 0.001 

France 
2103.8*** 

(56.8) 

91.9*** 

(1.68) 
0.98 213.6 < 0.001 

New Zealand 
2419.1*** 

(70.9) 

29.0*** 

(2.09) 
0.77 266.7 < 0.001 

Netherlands 
3485.8*** 

(61.2) 

84.3*** 

(1.80) 
0.97 230.0 < 0.001 

Poland 
1603.6*** 

(107.4) 

65.3*** 

(3.17) 
0.88 403.8 < 0.001 

Italy 
2200.5*** 

(91.3) 

72.5*** 

(2.69) 
0.93 343.1 < 0.001 

Canada 
2081.3*** 

(84.1) 

120.7*** 

(2.48) 
0.98 316.3 < 0.001 

Ireland 
2035.0*** 

(53.3) 

59.9*** 

(1.57) 
0.96 200.5 < 0.001 

1 *** = p-value < 0.01; 2 Estimate (Standard error); 3 R2 = Coefficient of determination; 4 RSE = Residual standard 

error; 5 Model significance. 

 

Improvements in nutrition, genetics, animal health, and management of environmental 

factors contributed to the increase in milk yield (Collier et al., 2006, Shook, 2006). However, the 

relative weight of such factors is likely not the same across countries. For instance, the tropical 

climate in Brazil limits the raising of high yielding animals such as Holstein cows, which are 

particularly susceptible to heat stress (Polsky and von Keyserlingk, 2017) and had their 

susceptibility highlighted due to intensive selection for milk production (Collier et al., 2006). 

Climatic conditions are not as limiting in countries under a similar low input pasture-based 

production system than Brazil but located in a cooler climate zone, such as New Zealand, where 

climatic conditions are adverse towards production for only up to 20% of days in a year (Bryant 

et al., 2007). On the other hand, milk yield increase in typical indoor-housing high input systems 

such as in the Netherlands, United States, and Canada was achieved by intense selection of animals 

based on milk production instead of increasing their resistance to climatic stressors and focused 

on improving nutritional management and developing artificial thermal conditioning systems 

(Collier et al., 2006). 
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Three different status of dairy cow longevity were observed in top high milk-producing 

countries (Figure 2.5). In most countries (6 out of 10), the length of productive life significantly 

decreased over the years, with a total estimated decrease ranging from 0.90 year in Ireland to 3.04 

year in Poland (Table 2.3). New Zealand was the only country in which the length of productive 

life increased over time, with a total estimated increase of 1.85 years (Table 2.3). The length of 

productive life did not change in the United States, Germany, and the Netherlands (Table 2.3) with 

an average of 3.25 (SE = 0.09), 3.24 (SE = 0.07), and 3.14 (SE = 0.17) years, respectively. 

 

 
Figure 2.5. The length of productive life (year) of dairy cows from the top 10 high milk-producing countries on 

different decades. The relative width of each box per country within decades represents the number of observations 

available to generate it. The wider the box, the more observations were available. The list of countries is limited to the 

world’s top high milk-producing countries for which we were able to provide sufficient and reliable data on the length 

of productive life. Full circles (•) represent values above or bellow the interquartile range. Data sources are provided 

in Supplementary Table 2.1. 
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Table 2.3. The linear trend of the length of productive life (year) in each country. The list of countries is limited to 

the world’s top high milk-producing countries for which we were able to provide sufficient and reliable data on the 

length of productive life. 

Country Year 
Model 1 

R2 3 RSE 4 p-value 5 

Intercept 2 Year 2 

United States of America 1980 – 2019 
3.25*** 

(0.10) 

0.0004NS 

(0.004) 
0.0003 0.30 0.92 

Brazil 1997 – 2018 
4.06*** 

(0.24) 

−0.12*** 

(0.02) 
0.67 0.55 < 0.001 

Germany 1993 – 2019 
3.11*** 

(0.07) 

0.01NS 

(0.004) 
0.13 0.18 0.06 

France 1968 – 2019 
3.89*** 

(0.10) 

−0.04*** 

(0.003) 
0.76 0.37 < 0.001 

New Zealand 1982 – 2019 
3.69*** 

(0.19) 

0.05*** 

(0.01) 
0.48 0.56 < 0.001 

Netherlands 1970 – 2019 
3.38*** 

(0.17) 

−0.01NS 

(0.01) 
0.05 0.59 0.12 

Poland 2003 – 2019 
6.81*** 

(0.25) 

−0.19*** 

(0.02) 
0.79 0.50 < 0.001 

Italy 1970 – 2019 
4.26*** 

(0.14) 

−0.02*** 

(0.005) 
0.22 0.49 < 0.001 

Canada 1967 – 2019 
3.38*** 

(0.13) 

−0.03*** 

(0.004) 
0.57 0.47 < 0.001 

Ireland 1974 – 2019 
4.28*** 

(0.21) 

−0.02* 

(0.01) 
0.14 0.70 0.01 

1 NS = Not significant, * = p-value <0.10, *** = p-value < 0.01; 2 Estimate (Standard error); 3 R2 = Coefficient of 

determination; 4 RSE = Residual standard error; 5 Model significance. 

 

In order to look at the relationship between milk yield and longevity, the differences in 

production systems need to be considered since not every country uses the same system. For 

instance, most herds in New Zealand are under a low input pasture-based system while in Canada 

and the Netherlands cows are typically housed indoors. The average milk yield per animal in New 

Zealand in 2018 was 2.3 and 2.1 times lower than in Canada and the Netherlands, respectively 

(Figure 2.4), which was expected since milk yield in a pasture-based system is usually lower 

compared to indoor-housed systems. The opposite was observed for longevity between these 

countries. In the 2010s decade, the average length of productive life in New Zealand was 2.5 and 

1.5 times higher compared to Canada and the Netherlands, respectively (Figure 2.5). 

The highest incidence of involuntary culling due to fertility issues and health problems 

such as mastitis and lameness is one of the main factors responsible for a reduction in dairy cow 

longevity (Rushen and Passillé, 2013). Involuntary culling reduces the ability of dairy farmers to 

select animals based on production once they reach the productive life stage (Berry et al., 2005, 

Pritchard et al., 2013), forcing farmers to cull an animal that would otherwise be kept in the herd. 

However, such high incidence is not a reality in all farms within countries, indicating differences 
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among farmers in their ability to keep animals healthy and comfortable for longer in the herd based 

on adopting management and housing practices that in turn prevent the occurrence of health 

problems associated with involuntary culling (Rushen and Passillé, 2013). 

Differences in production systems could be associated with the longevity status of the 

animals in different countries. Indoor housing and high input milk production system are two of 

the main characteristics shared by most of the high milk-producing countries in this review in 

which the length of productive life decreased over time. In turn, these are also two of the main 

differences compared to the production system in New Zealand, where the length of productive 

life increased. Even though a comparison between systems regarding their effect on the main 

involuntary culling reasons (reproduction, mastitis, and feet and leg problems) would be inevitably 

confounded by milk production and animal characteristics between countries even within the same 

breed, it could be a starting point in exploring the reasons underlying such differences in longevity 

between countries. 

2.4.3. Longevity and involuntary culling 

Information on culling and culling reasons is not available at the country level for most of 

the high milk-producing countries covered in this review. Therefore, we rely on herd prevalence 

reported by epidemiological studies, which are usually conducted on a limited number of animals 

and farms. 

2.4.3.1. Reproduction 

Failure to reproduce is the most frequent reason for involuntary culling worldwide (Pinedo 

et al., 2010, Heise et al., 2016, CDIC, 2020a) and the incidence of uterine diseases have a negative 

effect on animal reproduction, which could lead to a shortened longevity. Endometritis is the most 

prevalent uterine disease in dairy cows. Its prevalence was 27.1 or 25.1%, depending on the 

diagnostic method (degree of purulent vaginal discharge or cytology of the endometrium, 

respectively) in New Zealand (McDougall et al., 2020). In the United States, the prevalence of 

clinical endometritis was 15.0% (Ribeiro et al., 2013) while the prevalence of subclinical 

endometritis ranged from 13.4% (Ribeiro et al., 2013) to 53% (Gilbert et al., 2005). Uterine 

diseases have a negative effect on animal reproduction by increasing the number of artificial 

inseminations per pregnancy, delaying the restart of estrous cyclicity (Ribeiro et al., 2013), and 

reducing the overall pregnancy rate (Gilbert et al., 2005, Dubuc et al., 2011, Giuliodori et al., 
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2013). Therefore, cows with high longevity are likely to have a better reproductive performance, 

such as shorter calving interval, require a lower number of inseminations to become pregnant, and 

reduced number of days to first service (Pritchard et al., 2013). However, having had uterine 

diseases do not put the cow at a greater risk of being culled if she gets pregnant (Dubuc et al., 

2011), which demonstrate the protective effect of a positive reproduction status (being pregnant) 

against involuntary culling. 

The reproductive performance of cows under different production systems has not been 

extensively studied. The reproductive health (calving difficulty, puerperal metritis, and 

endometritis) of seasonally bred dairy cows in a rotational grazing system tended to be better 

compared to cubicle housed cows in Ireland (Olmos et al., 2009b). A multi-year experimental 

study conducted by Washburn et al. (2002) at the North Carolina State University – the United 

States between 1995 and 1998 compared the reproductive performance of seasonally bred Jersey 

and Holstein cows kept under pasture or housed in a free-stall barn. Reproductive performance 

was measured as the percentage of pregnant animals in 75 days after the beginning of the breeding 

season and no difference was observed (P > 0.05) between systems or between breeds. However, 

such results need to be interpreted carefully, especially in places with climatic conditions different 

from those observed in these studies since animals on pasture are more susceptible to the climatic 

environment, which in turn can negatively affect reproduction. During summer months, the 

conception rate of Holstein cows kept in paddocks with little or no shade decreased by 18% in a 

study conducted in Florida, US (Cavestany et al., 1985). In addition, oocyte quality and the 

development of fertilized oocytes are negatively affected by the increase in temperature observed 

during the summer in Holsteins cows under pasture in Louisiana, US (Rocha et al., 1998). Such 

negative effects are likely to be intensified in the future, given the expected changes in climate 

conditions.  

2.4.3.2. Mastitis 

Mastitis is the most common disease in dairy cows and its occurrence varies between 

countries as well as within countries. The average incidence rate of clinical mastitis in Canada 

between November 2003 and July 2005 was 23.0%, but it ranged from 0.7 to 97.4% (Olde 

Riekerink et al., 2008), which indicates great variability between farms. In the Netherlands, the 

incidence of clinical mastitis was 33.8% (95% CI = 31.7 – 36.1) (van den Borne et al., 2010). A 

much lower average incidence rate of 12.7% as well as a narrowed range from 1.9 to 35.8% was 
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observed in New Zealand between July 2004 and June 2005 (McDougall et al., 2007). In Brazil, 

where most of the dairy animals are on a pasture-based system similar to New Zealand, the average 

prevalence of clinical mastitis was 46.4%, but it ranged from 1.45 to 100% (Busanello et al., 2017) 

while in Northern Ireland, where pasture is also largely used, the incidence was 29% between 2010 

and 2015 (Bell and Wilson, 2018). 

Pasture-based systems are often associated with a lower occurrence of mastitis compared 

to indoor-housed cows. For instance, Jersey and Holstein cows housed in a free-stall barn had 1.8 

times more cases of clinical mastitis compared to cows on pasture (P < 0.05), which resulted in 

free-stall cows having a culling rate due to mastitis eight times higher than cows on pasture in the 

United States (Washburn et al., 2002). Regular access to pasture was reported to be a protective 

factor against mastitis since it decreased the odds ratio of veterinary treated mastitis (Odds ratio; 

OR = 0.73, P < 0.05) in Austria (Firth et al., 2019). Indoor housing was also associated with a 4.86 

OR of developing subclinical mastitis during the first 41 days of lactation in Germany (Krömker 

et al., 2012). 

The cleanliness of the animals, which indicates the level of exposure to environmental 

pathogens, seems to be one of the reasons for such a protective factor of pasture. The cleanliness 

of stalls in a free-stall barn was positively correlated with the hygiene scores for udder (DeVries 

et al., 2012), which in turn was associated with increased somatic cell count (Schreiner and Ruegg, 

2003, Reneau et al., 2005). Cows that had access to pasture were 3.75 (SE = 1.89; P < 0.05) times 

less likely to be dirty compared to cows that did not in Danish dairy farms (Nielsen et al., 2011). 

However, the cleanliness of cows on pasture or at outdoor paddocks is directly influenced by 

climatic conditions, which in the rainy season is associated with dirtier cows while the opposite is 

observed during the dry season (Sant'anna and Paranhos da Costa, 2011). In addition, the 

occurrence of mastitis is associated with hygiene practices and improving those are a low-cost 

solution that improves animal performance (Langford and Stott, 2012) and the incidence of 

mastitis. In indoor housing, increasing the frequency of cleaning the barns could be a strategy to 

reduce the level of exposure to pathogens, since that cleaning the floors more than 4 times per day 

was associated with a reduction in clinical mastitis incidence (OR = 0.77; 95% CI = 0.62 – 0.96; 

P < 0.05) in the Netherlands (Santman-Berends et al., 2016). 
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2.4.3.3. Feet and Leg 

The occurrence of lameness is lower in cows on pasture compared to indoor-housed cows. 

The prevalence in New Zealand is 8.1% (Fabian et al., 2014) compared to 22.2% and 24.6% in 

Canada (Higginson Cutler et al., 2017) and the United States (Espejo et al., 2006), respectively. 

Such difference between systems is even present within the same countries. In the UK, Haskell et 

al. (2006) reported that zero-grazing farms had 2.6 more lame cows compared to grazing farms 

while in the United States, Adams et al. (2017) reported that in farms where cows were primarily 

housed in free-stall barns had an 6.9 (SE = 0.60) greater incidence density ratio of severely lame 

cows than in farms where cows were kept mainly in pasture. Concrete floor is a risk factor in 

increasing the incidence of claw lesions (Somers et al., 2003) and lameness (Somers et al., 2003, 

Vanegas et al., 2006). To that end, access to pasture could be beneficial because it has been 

associated with improving hoof health, healing of lesions, and decreasing the incidence of 

lameness (Somers et al., 2003, Hernandez-Mendo et al., 2007, Olmos et al., 2009a). The low 

incidence of lameness in New Zealand could result in a reduction of involuntary culling due to feet 

and leg problems and potentially increase the longevity of dairy cows in this country compared to 

Canada and United States where pasturing cows is seldom practised. However, in addition to 

information on culling not being available at the country level for most countries, failure in 

detecting lameness by farmers is a limiting factor in using herd prevalence as a proxy for culling 

reason. The prevalence of lameness is 3 to 4 times higher than that estimated by farmers (Espejo 

et al., 2006, Fabian et al., 2014, Beggs et al., 2019). In addition, lame cows are not necessarily 

culled since they can be treated if the producer chooses to do so. Lameness is also associated with 

negative reproductive performance and milk production (Huxley, 2013), which in turn might be 

the reason reported for culling by the farmer. 

By itself, the pasture-based system is not responsible for reducing the prevalence of 

lameness in dairy cows. An overall prevalence of 39% was reported by Thompson et al. (2019) 

while evaluating 252 dairy cows from six pasture-based herds in the southern region of Brazil, 

which is higher than that reported in indoor housed animals in Canada (22%) (Higginson Cutler et 

al., 2017) and US (24.6%) (Espejo et al., 2006). Environmental conditions and management 

practices such as the amount of rainfall, condition of tracks to pasture, poor hygiene, and human-

animal relationship are important factors associated with lameness in pasture-based farms (Ranjbar 

et al., 2016, Moreira et al., 2019). In addition, most of the time, farmers can only report one reason 
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for culling, and feet and leg issues may not be the primary reason for culling due to their failure to 

detect lame animals (Espejo et al., 2006, Fabian et al., 2014, Beggs et al., 2019). 

2.5. Should we improve dairy cow longevity? 

Short longevity poses a threat to the sustainability of the dairy industry since it is associated 

with financial losses on farms, increased environmental footprint of milk production, and welfare 

issues for the animals, which in turn is a growing social concern among consumers (Essl, 1998, 

Benbrook et al., 2010, Brickell and Wathes, 2011, Pellerin et al., 2014, Boulton et al., 2017, Grandl 

et al., 2019). Therefore, improving dairy cow longevity would contribute to achieving a more 

sustainable industry, since it would have a positive effect towards the three pillars of sustainable 

agriculture: economic profit, environmental impact, and social concerns. 

2.5.1. Economic profit 

For a dairy farm to be profitable, dairy cows need to be able to reproduce regularly, 

maintain high milk production, and do not fall ill for many years (Mulder and Jansen, 2001). 

Therefore, increasing the length of productive life is a potential option to improve the profitability 

of the dairy activity (Grandl et al., 2019). In fact, it is the second most economically important trait 

in dairy cows, while milk yield is the first most important trait (Komlósi et al., 2010). Short 

longevity indicates that animals are not expressing their maximum potential for productivity and 

profitability, since dairy cows become profitable at their third lactation due to high costs associated 

with the early life non-productive stage (Pellerin et al., 2014, Boulton et al., 2017). In addition, 

more first and second lactation cows are culled as culling rate increases (Dhuyvetter et al., 2007), 

which decreases animal longevity and reduces the profitability of the system. Overall, the most 

common reason for culling of first and second lactation cows is reproduction issues while death is 

the most common reason for third and greater lactation cows (Pinedo et al., 2010). During the 

initial third of the lactation, first calving cows are more likely to be culled due to low milk 

production and milkability while second lactation animals are culled due to the incidence of 

metabolic and other diseases (Heise et al., 2016). However, higher risk of culling due to failure to 

reproduce is observed in the final third of the lactation for both first and second lactation cows 

(Heise et al., 2016). With increasing longevity by decreasing the culling of animals in the 

beginning of their productive life, there will be a high number of cows on more profitable lactations 
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in the herd and the replacement cost per day will be relatively reduced since it would be split into 

more lactations (Essl, 1998). 

Having a greater proportion of mature cows because of increased longevity would reduce 

the number of replacement heifers required to achieve the same milk production since mature cows 

have a relatively higher milk yield compared to young animals. This is particularly relevant under 

a supply-management system such as the one present in Canada (Van Doormaal, 2009), where 

profitability is associated with increased efficiency of using the resources available and reducing 

input costs rather than increasing milk production. However, it would allow for the 

commercialization of extra heifers (Brickell and Wathes, 2011, Pritchard et al., 2013, De Vries, 

2017) and potentially increasing this additional source of income. In addition, increasing longevity 

by reducing involuntary culling would improve lifetime profit (Essl, 1998) especially given the 

negative economic impact of factors underlying health problems associated with involuntary 

culling (Langford and Stott, 2012). 

Even though longer longevity alone does not assure an increase in profitability, a farm with 

short longevity due to a high involuntary culling and its associated diseases is not likely to be 

profitable either (De Vries, 2020). The adoption of management practices and technologies to 

improve cow health and longevity is essential to achieve a profitable dairy industry in the future, 

which is a key factor in achieving sustainability (Walter et al., 2017, Britt et al., 2018). 

2.5.2. Environmental impact 

Increasing longevity would reduce the environmental toll of the dairy industry. Longer 

longevity would reduce the required number the replacement heifers needed on a farm, which 

contribute with 21 to 26% of the total enteric emission of methane in a herd (Wall et al., 2012). At 

the same time, it would reduce the proportional emission from replacement heifers. Assuming an 

age at first calving of 28 months, Knapp et al. (2014) estimated that increasing the length of 

productive life from 2.5 years (40% culling rate) to 4.0 years (25% culling rate) would reduce by 

9.5% the enteric emission contribution of replacement heifers. In addition, methane emission per 

animal does not increase as the animal gets older (Grandl et al., 2016). In fact, an increase in the 

length of productive life was associated with a decrease in methane emission per kg of milk 

corrected for fat and protein (Grandl et al., 2019), which contributes to decreasing the footprint 



24 

associated with milk production (Benbrook et al., 2010) and supports the argument that increasing 

dairy cow longevity would decrease the environmental burden of the dairy industry. 

2.5.3. Social concerns 

Early age at culling is a growing concern among consumers (Berry, 2015), especially 

because cow longevity is a global indicator of animal welfare since higher cow longevity indicates 

that the animal biological functions and health are not impairing the length of its life (Bruijnis et 

al., 2013). In addition, the health issues associated with the most common reasons for involuntary 

culling reported by dairy farmers bring into question the welfare conditions and ethical concerns 

towards dairy farming (De Vries, 2020). 

The high incidence of involuntary culling due to reproduction problems (Pinedo et al., 

2010, Heise et al., 2016, CDIC, 2020a) might hide underlying health problems. For instance, the 

occurrence of reproductive diseases (Gilbert et al., 2005, Dubuc et al., 2011, Giuliodori et al., 

2013, Ribeiro et al., 2013) as well as lameness (Huxley, 2013) and mastitis (Kumar et al., 2017) 

have a negative effect on the ability of an animal to get pregnant and might result in animals being 

culled with failure to reproduce as the reported reason. However, increased longevity is not always 

associated with improved cow welfare. The incidence of health problems is directly associated 

with a poor cow welfare status and older animals are more likely to develop health problems such 

as lameness (Pötzsch et al., 2003) and mastitis (Firth et al., 2019) as well as body injuries (Bouffard 

et al., 2017). Therefore, the increase in cow longevity should be the result of improving the ability 

of dairy farmers to keep animals healthy and comfortable, which in turn improves the overall 

animal welfare status. 

The main reported reasons for involuntary culling imply a lower status of animal welfare, 

which was the primary issue raised by consumers towards an ideal dairy farm (Cardoso et al., 

2016). Leg problems such as lameness or foot disorders are considered the most detrimental 

condition on animal welfare (von Keyserlingk et al., 2009, Bruijnis et al., 2013), while peripartum 

problems such as dystocia and retained placenta, which are associated with decreased reproductive 

performance, can be life-threatening or occur because of chronic stressful conditions (Burnett et 

al., 2015). 

Animal welfare becomes economically important to consumers once they attach 

importance to animal suffering (Molento, 2005). Consumers from Europe (European Commission, 
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2016) and the United States (Wolf and Tonsor, 2017) indicated a willingness to pay more for 

animal-based products obtained from farms with high welfare status. European consumers also 

stated that products imported from other countries should be subject to the same level of welfare 

standards that are imposed on farmers in the European Union (European Commission, 2016), 

which indicates that animal welfare could become a commercial barrier between countries 

(Molento, 2005, Bond et al., 2012). Even though willingness to pay does not always translate into 

action, it would be prudent to expect that future demand for higher welfare status of dairy cattle 

among consumers will remain, including a demand for longer longevity (De Vries, 2020). 

2.6. How can we improve dairy cow longevity? 

Dairy cow longevity is the outcome of decisions made by dairy farmers throughout the life 

of the animal, which dictates the moment and the reason a cow is culled. It is a dynamic process 

where multiple factors and their interactions are to be considered by the farmer (Roche et al., 

2020). Therefore, all aspects of a cow’s life need to be considered to reduce the rate of involuntary 

culling and increase longevity (Essl, 1998). In addition, most lifetime metrics of longevity only 

become available once the animal is culled. To overcome such limitation, a currently rich area for 

research is the identification of metrics available earlier in the life of the animal that, in turn, are 

correlated with lifetime longevity metrics available later in life. 

2.6.1. Early Life Indicators 

2.6.1.1. Age at first calving and its association with longevity metrics 

Age at first calving (AFC) is a relatively early life metric, which has been extensively 

studied. The average AFC between high milk-producing countries is presented in Table 2.4, which 

ranged from 24.6 in the Netherland to 32.6 in Brazil. Age at first calving is associated with the 

ability of cows to remain in the herd and avoid culling, since animals that calved for the first time 

at a young age are less likely to be culled early during the productive life. Based on information 

from 437 herds across the United Kingdom, Sherwin et al. (2016) reported that cows with an AFC 

greater than 30 months were 1.71 times more likely (P < 0.05) of being culled compared to animals 

with an AFC of 23 – 24 months. In another study conducted on 7,768 Holstein heifers born 

between 2004 and 2006 in Spain, Bach (2011) reported that heifers which finished their first 

lactation had an average AFC of 23.8 months compared with an average AFC of 24.2 months of 

animals that did not. 
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Table 2.4. Age at first calving (month) and length of life (year) of dairy cows in high milk-producing countries. The list of countries is limited to the world's top 

high milk-producing countries for which we were able to provide sufficient and reliable data on the length of productive life and recent age at first calving from 

official milk recording agencies. 

Country Year 
Recorded 

herds 

Recorded 

cows 

Percentage of 

recorded cows 
1 

Breed 

Recorded 

1st 

lactations 

Age at 

first 

calving 

Reference 
Length 

of life 2 

United State 

of America 

2019 2,140 --- --- 7 different dairy breeds --- 25.5 4 AgSource (2020) 4.98 

Brazil 2018 334 15,459 3 0.09 Girolando 

(Holstein/Gir 

crossbreed) 

12,384 32.6 GIROLANDO 

(2020) 

4.34 

Germany 2018 --- --- --- 15 different dairy 

breeds 

967,996 27.7 BRS (2019) 5.67 

France 2018 35,253 2,437,250 69.0 20 different dairy 

breeds 

776,679 30.0 5 idele (2019) 4.59 

Italy 2019 15,316 1,351,442 72.7 30 different dairy 

breeds 

321,298 27.3 5 AIA (2020) 5.69 

Poland 2019 20,644 820,653 37.1 12 different dairy 

breeds 

250,159 26.7 PFHBIPM (2020) 6.23 

Netherlands 2019 14,367 1,459,287 91.9 Black-and-white dairy 

breeds, Red-and-white 

dairy breeds, and 

others 

--- 24.6 CRV (2020) 5.88 

Ireland April 

2020 

--- 1,599,498 --- --- --- 26.5 ICBF - Irish Cattle 

Breeding Federation 

(2020) 

6.39 7 

Canada 2019 7,063 658,311 68.0 --- --- 25.0 6 CDIC (2020b), 

Lactanet (2020a, 

2020b) 

3.89 

1 Relative to the total number of cows in the country; 2 Age at first calving plus the length of productive life from each country (Figure 2.5); 3 Number of lactations 

recorded; 4 Average of averages weighted over the number of herds by breed, since the number of recorded 1st lactations was not available; 5 Average of averages 

weighted over the number of recorded 1st lactations; 6 Median; 7 Estimated using the length of productive life of 2018.
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Age at first calving is also associated with the length of productive life. Swedish dairy cows 

that had an AFC of 27 – 28 months were 1.1 times more likely (P < 0.05) to have a shorter length 

of productive life compared to animals with an AFC younger than 25 months (Hultgren and 

Svensson, 2009). Similar results were reported in a study carried out by Nilforooshan and Edriss 

(2004) using production and pedigree data from Iranian Holstein cows collected between 1991 and 

2011 from 45 herds, in which the length of productive life decreased as AFC increased (P < 0.05). 

The opposite was reported in a study using records from a single Australian farm from 1992 to 

2005, in which animals with an AFC greater than 36 months had a longer length of life (P < 0.05) 

compared to animals calving for the first time between less than 24 to 36 months (Haworth et al., 

2008). However, the opposite was observed for the longevity index in the same study (P < 0.05), 

indicating that animals with an older AFC had a longer length of life, possibly because the animals 

were inseminated older for the first time since the number of parities per lifetime did not differ (P 

= 0.28) between animals (Haworth et al., 2008). 

2.6.1.2. Other early life indicators and their association with longevity metrics 

Looking at longevity with AFC as the starting point overlooks early life (Figure 2.2) 

management practices and decisions made by the dairy farmer and their effect on the productive 

life of dairy cows. Even though it has received much less attention in the literature, there is an 

increasing interest in the subject. Housing calves from 3 to 7 months in litter pens with ≤ 12 calves 

resulted in a median increase (P < 0.05) of 18.2 months in the survival time compared to calves 

housed in slatted pens with > 7 calves (Hultgren and Svensson, 2009). The age in which the animal 

first consumed 0.91 kg/d of grain (dry matter basis) was positively associated with the age when 

removed from the herd (Heinrichs and Heinrichs, 2011). Also, housing automatically fed calves 

in small groups (6-9 calves) was associated with a higher growth rate (0.022 cm/day, about 40 

g/day, P < 0.05) compared to calves housed in larger groups (12-18 calves; Svensson and Liberg 

(2006)). In turn, the higher the average daily gain (ADG) of weight in different ages before the 

first calving, the younger (P < 0.05) the AFC (Vacek et al., 2015). In pasture-based dairy herds, 

Chuck et al. (2018) reported a positive association (P < 0.05) between ADG from 1 month of age 

to first breeding on cumulative milk, fat, and protein yield at 100 and 250 days in milk in 

primiparous. Average daily gain from birth to weaning was also negatively associated (P < 0.05) 

with the occurrence of veterinary treated cases of mastitis from 7 to 30 days post-partum in 

primiparous cows (Svensson et al., 2006). 
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Health events in early life, the season of birth, and inbreeding are associated with cow 

longevity. The occurrence of severe calfhood respiratory disease was associated with a 12% 

increase (P < 0.05) in the calving interval of Swedish Red dairy cows (Hultgren and Svensson, 

2010). Fall- and winter-born calves had a higher 8-week calf starter intake (48.3 kg vs 42.75 kg), 

ADG (0.66 vs 0.625 kg/d), and body weight (77.5 vs 75.0 kg) compared to spring- and summer-

born calves (P < 0.05) (Chester-Jones et al., 2017). While using Dairy Herd Improvement (DHI) 

data between 1980 and 2004 from Canadian Holstein cows (n = 1977311), Sewalem et al. (2006) 

reported that animals with an inbreeding coefficient of 6.25 to 12.5% were 1.14 times more likely 

to have a shorter length of productive life, with the likelihood increasing as high as 1.51 times with 

inbreeding coefficient ≥ 25.0%. 

2.6.1.3. Fetal life and its association with longevity metrics 

Birth conditions are other less explored factors. The effect of complications during calving 

on dam longevity is well described in the literature. For instance, Holstein cows  that require a 

hard pull and surgery during calving were 1.27 and 1.92 times more likely of being culled (P < 

0.05), respectively compared to animals with unassisted calving (Sewalem et al., 2008). However, 

the effect on offspring longevity has been less studied. A study conducted by Heinrichs and 

Heinrichs (2011) on 21 dairy farms located in Pennsylvania, US reported that delivery scores 

indicating unassisted, easy pull, hard pull, mechanical extraction, or cesarean section were not 

associated (P = 0.11) with age when the offspring were removed from the herd. However, more 

studies are needed. 

Fetal programming (the effect of dam conditions during conception and gestation on 

offspring performance) has been more extensively studied in beef (Du et al., 2010, Du et al., 2017) 

compared with dairy animals, but a few studies demonstrated associations between the dam’s 

conditions on outcomes observed later in the life of the offspring. For instance, dam’s intrauterine 

conditions associated with milk production seem to have an effect on offspring performance and 

survival (Berry et al., 2008), even though metabolic stress due to milk production might have a 

stronger effect than dam milk production alone (Bach, 2012). In addition, high milk urea nitrogen 

is associated with decreased fertility in dairy cows (Butler et al., 1996, Rajala-Schultz et al., 2001) 

and have a negative effect on early stages of oocyte development (De Wit et al., 2001, Kowsar et 

al., 2018). The longevity of calves originated from oocytes of cows with high milk urea nitrogen 
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before ovulation has not been studied and accounting for the dam condition during pregnancy 

might be a possibility to improve offspring longevity (Opsomer et al., 2017). 

2.6.2. Lack of space and quota constraints 

Dairy cow longevity is not only influenced by intrinsic cow factors, but also by extrinsic 

factors such as availability of space in the farm as well as market characteristics, which could also 

influence the involuntary culling. In a situation where there is a surplus of heifers, farmers would 

decide to cull animals to make space for heifers that just calved (De Vries and Marcondes, 2020). 

In places under a supply management system such as in Canada (Van Doormaal, 2009), it would 

be difficult to accommodate the increase in milk production as a result of having more cows in 

more productive lactations (Brickell and Wathes, 2011) as a result of increased longevity or when 

producers have contracts with dairy processors that limit the amount of milk they can deliver. Both 

conditions would influence decreasing the rate of involuntary culling and increasing longevity. 

A possible alternative would be to combine the use of sexed semen with extending the 

lactation of high-yielding cows by increasing the voluntary waiting period. Such a strategy would 

reduce the frequency that cows undergo the beginning of the lactation, which is associated with 

greater risk for involuntary culling due to death and diseases (Pinedo et al., 2010, Pinedo et al., 

2014, Heise et al., 2016). At the same time, the use of sexed semen would reduce the negative 

effect of extended lactation on the genetic return (Clasen et al., 2019). Extending the duration of 

lactation of high yielding animals was also shown to have no negative effect on the gain of body 

condition score, udder health, milk production, and culling (Niozas et al., 2019a) while improving 

their reproductive performance (Niozas et al., 2019b). 

2.7. Proposing a more comprehensive definition of cow longevity 

Contrarily to milk and milk components, dairy cow longevity is neither routinely measured 

nor reported. This could be partly justified by the lack of a sound definition of the term and, as a 

result, the nonexistence of a standard metric designed to cover all aspects outlined in the definition. 

The definition of longevity should take into account the health, reproductive performance, and 

milk production of any given animal during its entire lifespan, which in turn are key factors 

associated with culling (Heise et al., 2016, Compton et al., 2017, CDIC, 2020a) and the 

profitability of the dairy industry (Essl, 1998, Mulder and Jansen, 2001, Fetrow et al., 2006, De 

Vries and Marcondes, 2020). As much as possible, the definition should allow for the use of 
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metrics that are already routinely collected from either farms or DHI agencies, making it easy to 

be implemented and to increase the chances of being widely adopted. To that end, dairy cow 

longevity could be defined as an animal having an early age at first calving and a long productive 

life spent under profitable levels of milk production. 

This definition covers both early life conditions and the stayability of the animal once it 

reaches the lactating herd as well as its overall health and quality of life. Assuming that an animal 

would be inseminated for the first time as soon as it is ready, early age at first calving would 

indicate that the animal was raised under healthy and favourable early life conditions. Next, a long 

and profitable productive life would imply that the animal produced enough milk to justify keeping 

it under milking, reproduced regularly avoiding a potential extension of the lactation to 

unprofitable levels or unnecessarily long dry periods, and maintained good health since the 

incidence of health issues are directly linked with reproduction failures and reduction in milk 

production. Age at first calving, length of productive life, and margin over all costs are metrics 

that could be used as indicators of early life conditions, length of life, and profitability, 

respectively. Combined, they would provide a more comprehensive approach to measure dairy 

cow longevity (Figure 2.6). 

 

 
Figure 2.6. Relationship between the concepts of profitability, non-productive and productive life stages of dairy cows 

for a more comprehensive definition of cow longevity along with proposed metrics representing each respective 

concept. 
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2.8. Conclusions 

The current metrics available to measure longevity often starts at the first lactation, 

overlooking early life management practices and decisions made by the dairy farmer before that 

point. To overcome such limitation, first, we propose that dairy cow longevity should be defined 

as an animal having an early age at first calving and a long productive life spent under profitable 

levels of milk production. Next, a combination of the metrics age at first calving, length of 

productive life, and margin over all (available) costs would provide a more comprehensive 

evaluation of longevity and cover all aspects of the definition. 

By using a standard methodology, this critical literature review confirms the concerns 

raised by the dairy industry and other stakeholders that dairy cow longevity has decreased in most 

high milk-producing countries. Early life indicators are needed to support farmers in the early 

selection of animals that are more likely to reach their maximum potential. Increasing cow 

longevity due to a reduction in involuntary culling would reduce health costs, increase cow lifetime 

profitability, improve animal welfare and quality of life, and contribute towards a more sustainable 

dairy industry by producing milk with inherited sustainability while optimizing dairy farmers’ 

efficiency in the use of resources.  
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2.10. Supplementary material 

Supplementary Table 2.1. The sources of official statistics published by the top 21 high milk-producing countries regarding the number of dairy cows, total milk 

production, average milk yield per animal per year, and the number of slaughtered cows as well as data availability information. 

Country Number of dairy cows 
Total milk 

production 
Milk yield Number of slaughtered cows 

Specify the 

dairy 

category 

United States 

of America 

FAO (2020), USDA 

(2020a) 

USDA (2020a) USDA (2020a) and 

calculated 

USDA (2020b) Yes 

India --- --- --- Illegal to slaughter cows in most parts of the 

country (Narayanan, 2019) 

--- 

Brazil FAO (2020), IBGE 

(2020b) 

FAO (2020), IBGE 

(2020a) 

Calculated IBGE (2020c) No 

Germany Destatis (2020a) BZL (2020), 

eurostat (2020b) 

BZL (2020) and 

calculated 

Destatis (2020b) No 

China, 

mainland 

--- --- --- Reports the number of slaughtered cattle and 

buffaloes combined and does not specify cows 

--- 

Russian 

Federation 

--- --- --- Reports only the total live weight of 

slaughtered cattle and does not specify cows 

--- 

France eurostat (2020a) eurostat (2020b) Calculated eurostat (2020c) No 

New Zealand LIC & DairyNZ (2019), 

FAO (2020), NZ.Stat 

(2020b) 

LIC & DairyNZ 

(2019), FAO (2020) 

LIC & DairyNZ 

(2019) and 

calculated 

NZ.Stat (2020a) No 

Turkey --- --- --- Only available for years 2015 to 2019 

(eurostat, 2020c) 

--- 

Pakistan --- --- --- Information not freely available --- 

United 

Kingdom 

--- --- --- Not reliable over the years (eurostat, 2020c) --- 

Poland eurostat (2020a), FAO 

(2020) 

eurostat (2020b), 

FAO (2020) 

Calculated eurostat (2020c) No 

Netherlands eurostat (2020a) eurostat (2020b) Calculated eurostat (2020c) No 

Mexico FAO (2020) FAO (2020), 

SIACON (2020) 

Calculated USDA (2020c) No 

Italy eurostat (2020a) eurostat (2020b) Calculated eurostat (2020c) No 

Argentina FAO (2020) MAGyP (2020b) Calculated MAGyP (2020a) No 

Ukraine --- --- Calculated Reports the number of slaughtered cattle --- 

Uzbekistan --- --- Calculated Reports not available --- 

Australia --- --- --- Reports the number of slaughtered cows and 

heifers together  

--- 
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Canada Statistics Canada (2020b) Statistics Canada 

(2020a) 

Calculated USDA (2020c) No 

Ireland eurostat (2020a), FAO 

(2020) 

eurostat (2020b) Calculated eurostat (2020c) No 
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Connecting statement 1 

Avenues requiring further investigation to improve dairy cow longevity were highlighted 

in the critical review. Out of those, the long-term effect of early life conditions was shown to be 

the one least explored. Many early life aspects of a dairy cow could be considered. However, the 

lack of comprehensive data limits the possibilities. One alternative to overcome such limitation, 

while ensuring a significant sample size, is to use data collected by Dairy Herd Improvement 

(DHI) agencies. Lactanet, the Canadian DHI agency, routinely collects birth conditions related to 

calving ease, calf size, and twining. These indicators could be used to improve the understandings 

on the potential relationship between early life and subsequent cow longevity. 
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3.1. Abstract 

Studies of dairy cow longevity usually focus on the animal life after first calving, with few studies 

considering early life conditions and their effects on longevity. The objective was to evaluate the 

effect of birth conditions routinely collected by Dairy Herd Improvement agencies on offspring 

longevity measured as length of life and length of productive life. Lactanet provided 712,890 

records on offspring born in 5,425 Quebec dairy herds between January 1999 and November 2015 

for length of life, and 506,066 records on offspring born in 5,089 Quebec dairy herds between 

January 1999 and December 2013 for length of productive life. Offspring birth conditions used in 

this study were calving ease (unassisted, pull, surgery, or malpresentation), calf size (small, 

medium, or large), and twinning (yes or no). Observations were considered censored if the culling 

reason was “exported,” “sold for dairy production,” or “rented out” as well as if the animals were 

not yet culled at the time of data extraction. If offspring were not yet culled when the data were 

extracted, the last test-day date was considered the censoring date. Conditional inference survival 

trees were used in this study to analyze the effect of offspring birth conditions on offspring 

longevity. The hazard ratio of culling between the groups of offspring identified by the survival 

trees was estimated using a Cox proportional hazard model with herd-year-season as a frailty term. 

Five offspring groups were identified with different length of life based on their birth condition. 

Offspring with the highest length of life [median = 3.61 year; median absolute deviation (MAD) 

= 1.86] were those classified as large or medium birth size and were also the result of an unassisted 

calving. Small offspring as a result of a twin birth had the lowest length of life (median = 2.20 

year; MAD = 1.69) and were 1.52 times more likely to be culled early in life. Six groups were 
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identified with different length of productive life. Offspring that resulted from an unassisted or 

surgery calving and classified as large or medium when they were born were in the group with the 

highest length of productive life (median = 2.03 year; MAD = 1.63). Offspring resulting from a 

mal-presentation or pull in a twin birth were in the group with the lowest length of productive life 

(median = 1.15 year; MAD = 1.11) and were 1.70 times more likely to be culled early in life. In 

conclusion, birth conditions of calving ease, calf size, and twinning greatly affected offspring 

longevity, and such information could be used for early selection of replacement candidates. 

3.2. Introduction 

Dairy cow longevity is a complex functional trait that reflects the culling decisions made 

by a producer while taking into consideration many different aspects of the lifespan of a dairy 

animal (Van Doormaal, 2009). Cow longevity is associated with the overall sustainability of the 

dairy industry since short longevity is associated with financial losses on farms (Brickell and 

Wathes, 2011, Pellerin et al., 2014, Boulton et al., 2017), increased environmental footprint of 

milk production (Benbrook et al., 2010, Grandl et al., 2019), and impaired animal welfare status 

(Berry, 2015, De Vries, 2020). Even though the genetic potential for longevity has increased over 

time since the calculation of breeding values started to incorporate functional traits (De Vries, 

2017, CRV, 2020, DairyNZ, 2020), the phenotypical expression of such potential has been 

identified as a problem requiring further research. 

Longevity has been defined as an animal having an early first calving followed by a long 

productive life under profitable production levels (Dallago et al., 2021). Such definition was 

proposed since longevity is not only influenced by milk production, but also reproduction 

performance, incidence of health issues, and profitability (Compton et al., 2017, De Vries and 

Marcondes, 2020). Even though no metric exists covering all longevity facets outlined in the 

definition, length of life (LL) and length of productive life (LPL) are two of the most common 

(Dallago et al., 2021). While the former accounts for the entire length of time an animal stay in the 

herd (i.e., from birth to culling or death; Haworth et al., 2008), the latter measure the length of 

time between first calving and culling or death (Ducrocq, 1994, Schneider et al., 2007, Haworth et 

al., 2008). 

The study of dairy cow longevity usually begins only after the animal’s first calving, 

mainly focusing on LPL, and less attention has been given to early life conditions. For instance, 
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culling has been extensively studied within lactations. Culling at the beginning of the lactation is 

often related to the incidence of injuries and diseases (Pinedo et al., 2010, Pinedo et al., 2014), 

while culling later in lactation is associated with reproduction problems and low milk production 

(Pinedo et al., 2010, Pinedo et al., 2014, Heise et al., 2016).  

Although studied to a much lesser extent, a few studies indicated the existence of long-

term effects of pre-partum and early life conditions that would affect cow longevity. Offspring 

born to dams exposed to heat stress during dry period had a compromised passive immune transfer 

and weighted less both at birth and weaning (Tao et al., 2012, Monteiro et al., 2016) and also had 

their survival and first lactation milk production negatively affected (Monteiro et al., 2016). The 

occurrences of health problems before the first calving were reported to negatively affect milk 

production (Svensson and Hultgren, 2008) and reproduction (Hultgren and Svensson, 2010) of 

dairy cows. In addition, a high average daily gain from birth to weaning was associated with early 

age at first calving (Vacek et al., 2015), high milk yield in the first lactation (Svensson and 

Hultgren, 2008, Vacek et al., 2015), and low occurrence of veterinarian-treated cases of mastitis 

at the beginning of the lactation of primiparous cows (Svensson et al., 2006). Since failure to 

reproduce, incidence of health issues such as mastitis and feet and leg problems, and low milk 

production are the main reported reasons for culling in high milk-producing countries (Dallago et 

al., 2021), altogether these studies provide evidence that early life conditions - especially during 

the rearing period - have an adverse effect on cow longevity. 

Therefore, it was hypothesized that birth conditions have an effect on offspring longevity, 

and the objective of this study was to evaluate that effect, using birth conditions variables routinely 

collected by Dairy Herd Improvement (DHI) agencies. 

3.3. Material and methods 

3.3.1. Dataset 

A retrospective longitudinal study was conducted using DHI data from dairy herds in the 

province of Quebec, Canada provided by the Canadian DHI agency Lactanet Inc and organized 

into Animal, Lactation, and Test Day data. The Animal data contained animal identification 

variables [offspring identification (ID), offspring registration ID, dam registration ID, and sire 

registration ID], breed (offspring, dam, and sire), birth date, and left herd date of 3,380,326 records 
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on offspring born in 7,660 Quebec dairy herds between September 1961 and December 2015. The 

Lactation data had total lactation performance (i.e., milk, fat, and protein production), lactation 

start date, and birth conditions (calving ease, calf size, and twinning) of 4,698, 162 records on 

offspring that calved in 7,521 Quebec dairy herds between September 1991 and December 2015. 

The Test Day data contained offspring performance similar to the Lactation data but from each 

individual test day (N = 50,368,719 records on offspring with a test day between January 2000 and 

December 2015 on 7,525 herds). 

Birth conditions used in this study were calving ease (unassisted, pull, surgery, or mal-

presentation), calf size (small, medium, or large), and twinning (yes or no). Birth conditions were 

available in the Lactation data file, but they were identified by the dam ID. Offspring ID, on the 

other hand, was available in the Animal data, but associated with the dam registration ID. 

Therefore, to obtain a dam ID associated with the offspring ID, and extract the birth conditions, 

we merged offspring registration ID with dam registration ID from the Animal data (N = 1,684,222 

records with no match and excluded). Duplicated observations on Animal (N = 248 records) and 

Lactation (N = 232,823 records) data files were excluded before both files were merged based on 

dam ID, year, and season of calving/birth. Next, records with missing observations on birth 

conditions were excluded (N = 88,240 records excluded). After the merge, there remained 

1,082,122 records from offspring that were born between April 1997 and December 2015. For all 

cases of duplicated records, both records were excluded. Recorded freemartins (i.e., twin to a bull) 

were removed. In addition, observations were removed where the sex of one of the twins was 

missing to avoid the possible effect of not recorded freemartins. The data was then filtered to 

contain only information about female Holstein offspring and a minimum of three observations 

per Herd-Year-Season of birth. The Figure 3.1 shows a flowchart of the data preparation 

procedures. 
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Figure 3.1. Flowchart of herds and animal selection. Parallelograms represent data input and output, solid-line 

rectangles represent intermediary. Obs = observations. 
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The LL and LPL were the longevity metrics evaluated in this study. The LL was calculated 

as the length of time (year) between birth and death/culling or censoring (Haworth et al., 2008) 

while the LPL was the length of time (year) between the first calving and death/culling or censoring 

(Ducrocq, 1994, Schneider et al., 2007). Time to event was defined as the time between birth and 

culling/death or censoring for LL and between first calving and culling/death or censoring for LPL. 

An observation was considered censored if, at the time that the data was extracted from the DHI 

database, the offspring was not yet culled (N = 321,483 for LL and N = 240,792 for LPL) or if the 

reported culling reason was “exported” (N = 25,297 for LL and N = 13,500 for LPL), “sold for 

dairy production” (N = 49,087 LL and N = 34,517 for LPL), or “rented out” (N = 1,496 for LL 

and N = 1,203 for LPL). If the offspring were not yet culled when the data were extracted, the last 

test day date was considered as the censoring date. For the other cases, offspring were considered 

censored at the date of the reported removal. 

After the data handling and cleaning, there remained data from 712,890 female Holstein 

offspring born between January 1999 and November 2015 in 5,425 herds for LL and from 506,066 

female Holstein offspring born between January 1999 and December 2013 in 5,089 herds for LPL. 

3.3.2. Data analysis 

All statistical analyses were carried out using R version 4.0.2 (https://www.r-project.org/) 

and its packages as follows: coxme (Therneau, 2020a), partykit (Hothorn et al., 2006, Hothorn and 

Zeileis, 2015), survival (Therneau, 2020b), and survminer (Kassambara et al., 2020). The 

statistical significance level was set at α < 0.05. 

Similar to Probo et al. (2018), conditional inference survival trees were used in this study 

to analyse the effect of birth conditions on offspring longevity since it has been shown to be less 

prone to overfitting and more reliable than other survival tree algorithms (Zhou and McArdle, 

2015). In short, this algorithm aims at recursively partitioning the data into different nodes (i.e., 

group of offspring) based on the response variable. At each step, it selects independent variables 

with the highest ability to split the observations of offspring with different longevity. Therefore, 

the earlier a variable is used to split the data and originate a node, the higher it is its ability to 

identify offspring with different longevity. This is repeated until the independence hypothesis 

between the response and any of the independent variables cannot be rejected (Hothorn et al., 

2006). By doing so, the algorithm is able to automatically group offspring separately within the 
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LL and LPL and the independent variables under consideration as well as detecting high-level 

interactions without the need to specify them (Ramezankhani et al., 2017). The trees were created 

having LL and LPL individually as the response variable and using the ctree function (Hothorn et 

al., 2006). The resulting groups of offspring identified by the survival tree were used as a 

categorical variable to estimate the hazard ratio (HR) of culling using a shared frailty Cox 

proportional hazard model. A frailty term for the combined effect of the Herd-Year-Season of birth 

(HYS) of the offspring [HYS ~ N(0, σ2)] was included in the model to account for the shared 

frailty between offspring within the same HYS. The offspring longevity was assumed to be 

independent conditional on the HYS. The group with the lowest culling risk (i.e., highest 

longevity) was used as the reference level. In addition, Kaplan-Meier curves were constructed for 

each of the groups. 

3.4. Results 

Among studied offspring, 321,483 (45.1%) and 240,792 (47.6%) were censored for LL and 

LPL, respectively. Among offspring that were not censored, the overall median LL was 3.53 years 

[median absolute deviation (MAD)= 1.82; 95% percentile compatibility interval (PCI) = 3.53 – 

3.54] and the overall median LPL was 1.98 years (MAD = 1.62; 95% PCI = 1.97 – 1.99). 

Descriptive statistics for the offspring birth conditions are presented in Table 3.1. 

 

Table 3.1. Descriptive statistics showing the prevalence of distinct birth conditions, according to the different 

measures of longevity. 

Birth condition 

Length of life1 

(N = 712,890) 
 

Length of productive life2 

(N = 506,066) 

N %  N % 

Calving ease      

 Mal-presentation 10,068 1.41  7,110 1.40 

 Pull 243,220 34.12  173,303 34.25 

 Surgery 650 0.09  451 0.09 

 Unassisted 458,952 64.38  325,202 64.26 

Calf size      

 Large 119,957 16.83  87,054 17.20 

 Medium 492,852 69.13  351,607 69.48 

 Small 100,081 14.04  67,405 13.32 

Twinning      

 No 701,928 98.46  499,440 98.69 

 Yes 10,962 1.54  6,626 1.31 
1 Length of time between birth and death/culling (Haworth et al., 2008). 
2 Length of time between the first calving and death/culling (Ducrocq, 1994, Schneider et al., 2007). 
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3.4.1. Length of life 

All three offspring birth conditions evaluated in this study were selected by the survival 

tree algorithm to group the offspring (Supplementary Figure 3.1). Calf size was found as the most 

important condition since it was at the top of the tree. Five groups were identified with different 

offspring LL based on their birth condition (P < 0.001; Supplementary Figure 3.1). Offspring with 

the highest LL were those that were classified as of large or medium size at birth and were the 

result of an unassisted calving (node 6; Supplementary Figure 3.1), whereas having a small size at 

birth and being the result of a twin birth (node 9; Supplementary Figure 3.1) were in the group 

with the lowest LL (Table 3.2). Therefore, the HR of culling was the highest for node 9 (Table 

3.2) with node 6 as the reference group (Table 3.2). The Kaplan-Meier curves for these groups are 

shown in Figure 3.2A, where the curve for node 6 was the only one higher than the overall average 

curve, indicating that it covered a low-risk group for culling events. 

 

Table 3.2. Descriptive statistics and hazard ratio of the patterns identified by the conditional inference survival tree 

for the length of life. 

Node1 Cases and 

events2 

Pattern description3 Length of life4 HR 

(95% CI)5 

P-value 

Median 

(MAD) 

95% PCI 

6 384,539; 

212,990 

Calf size = large or medium; calving 

ease = unassisted 

3.61 (1.86) 3.59 – 3.62 Reference --- 

4 8,683; 

5,127 

Calf size = large or medium; calving 

ease = mal-presentation 

3.40 (1.68) 3.35 – 3.46 1.16 

(1.12 – 1.19) 

< 0.001 

5 219,587; 

120,225 

Calf size = large or medium; calving 

ease = pull or surgery 

3.52 (1.77) 3.51 – 3.54 1.02 

(1.01 – 1.03) 

< 0.001 

8 93,254; 

50,500 

Calf size = small; twin = no 3.33 (1.80) 3.31 – 3.35 1.10 

(1.09 – 1.12) 

< 0.001 

9 6,827; 

2,556 

Calf size = small; twin = yes 2.20 (1.69) 2.13 – 2.27 1.52 

(1.45 – 1.59) 

< 0.001 

1 Terminal node identified by the survival tree algorithm for the length of life 
2 Cases = Number of offspring in each node; events = number of offspring in each node with an observed culling event 
3 Simplified pattern description of each terminal node 
4 Median (Median absolute deviation; MAD) and 95% percentile compatibility interval (Greenland, 2019) 
5 HR (95%CI) = Hazard ratio and 95% compatibility interval (Greenland, 2019) 
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Figure 3.2. The Kaplan-Meier survival curves, followed by the 95% compatibility interval (Greenland, 2019), of the 

terminal nodes identified by the survival tree algorithm for the length of life (A) and the length of productive life (B). 

The risk table at the bottom of both plots indicates the number of offspring at risk of being culled at different times. 

In both plots, the solid black line (overall) shows the survival curve of the total population, and the other lines show 

the survival curve of each terminal node. The terminal nodes of graph A represent the following patterns: Node = 6: 

large or medium calf size and unassisted calving ease; Node = 4: large or medium calf size and mal-presentation 

calving ease; Node = 5: large or medium calf size and pull or surgery calving ease; Node = 8: small calf size and no 

twinning; Node = 9: Small calf size and twinning. The terminal nodes of graph B represent the following patterns: 

Node = 8: Surgery or unassisted calving ease and large or medium calf size; Node = 4: mal-presentation calving ease 

and no twin birth; Node = 5: pull calving ease and no twin birth; Node = 6: mal-presentation or pull calving ease and 

twining; Node = 10: surgery or unassisted calving ease, small calf size, and no twinning; Node = 11: surgery or 

unassisted calving ease, small calf size, and twinning. 
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3.4.2. Length of productive life 

Similar to LL, all three offspring birth conditions evaluated in this study were also selected 

by the survival tree algorithm to group the offspring based on LPL (Supplementary Figure 3.2). 

However, calving ease was found as the most important condition in this case and 6 groups were 

identified with different LPL (P < 0.001; Supplementary Figure 3.2). Offspring that resulted from 

an unassisted or surgery calving and were classified as of large or medium size at birth (Node 8; 

Supplementary Figure 3.2) were in the group with the highest LPL, whereas offspring resulting 

from a mal-presentation or pull in a twin birth (Node 6; Supplementary Figure 3.2) ere in the group 

with the lowest LPL (Table 3.3). Accordingly, the HR of culling was the highest for node 6, with 

node 8 as the reference group (Table 3.3). The Kaplan-Meier curves for these groups are shown in 

Figure 3.2, where the curve for node 8 was also the only one higher than the overall average curve, 

indicating that it covered a low-risk group for culling events. 

 

Table 3.3. Descriptive statistics and hazard ratio of the patterns identified by the conditional inference survival tree 

for the length of productive life. 

Node1 Cases and 

events2 

Pattern description3 Length of productive 

life4 

HR 

(95% CI)5 

P-value 

Median 

(MAD) 

95% PCI 

8 275,535; 

147,301 

Calving ease = surgery or unassisted; 

calf size = large or medium 

2.03 

(1.63) 

2.02 – 2.04 Reference --- 

4 6,853; 

3,859 

Calving ease = mal-presentation; twin = 

no 

1.80 

(1.49) 

1.72 – 1.87 1.15 

(1.11 – 1.20) 

< 0.001 

5 170,865; 

89,410 

Calving ease = pull; twin = no 1.93 

(1.62) 

1.92 – 1.94 1.05 

(1.04 – 1.06) 

< 0.001 

6 2,695; 590 Calving ease = mal-presentation or pull; 

twin = yes 

1.15 

(1.11) 

1.03 – 1.21 1.70 

(1.55 – 1.87) 

< 0.001 

10 47,577; 

23,552 

Calving ease = surgery or unassisted; 

calf size = small; twin = no 

1.91 

(1.62) 

1.88 – 1.94 1.05 

(1.04 – 1.07) 

< 0.001 

11 2,541; 562 Calving ease = surgery or unassisted; 

calf size = small; twin = yes 

1.18 

(1.15) 

1.10 – 1.28 1.63 

(1.48 – 1.79) 

< 0.001 

1 Terminal node identified by the survival tree algorithm for the length of productive life. 
2 Cases = Number of offspring in each node; Events = Number of offspring in each node with an observed culling 

event. 
3 Simplified pattern description of each terminal node. 
4 Median (Median absolute deviation) and 95% percentile compatibility interval (Greenland, 2019). 
5 HR (95%CI) = Hazard ratio and 95% compatibility interval (Greenland, 2019). 

 

3.5. Discussion 

Different indicators of birth condition were selected by the machine-learning algorithm to 

first split the observations into groups of Offspring with different LL (Supplementary Figure 3.1) 

and LPL (Supplementary Figure 3.2). The first split contains the indicator with the strongest 
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association with the response variable (Hothorn et al., 2006). The results of our study indicate that 

size at birth is the birth condition with the strongest association with the LL (Supplementary Figure 

3.1). Since the main difference between LL and LPL is the inclusion of the length of the non-

productive life stage of the animal in the former, our results suggest that size at birth had the 

strongest association with the ability of the offspring to avoid herd removal up to the first calving. 

In turn, this would be influenced by the mortality rate since it is higher during the early life stages 

compared to lactating cows (Compton et al., 2017). 

Calf weight at birth, as a proxy for calf size, has been reported to be associated with calf 

mortality. For instance, clinically normal calves that died at birth or within 24 hrs after birth were, 

on average, 6 kg lighter than calves that died due to difficult calving (Berglund et al., 2003), which 

could be because smaller calves would have an undeveloped immune system and low body energy 

reserve, making them more susceptible to hypothermia (Wathes et al., 2008). The growth of small 

calves is also compromised, which negatively influences the age at first calving and the ability to 

remain in the herd. Bodyweight gain is positively associated with birth weight, in which the higher 

the birth weight, the higher the body weight at 6, 9, and 15 months old (Swali and Wathes, 2006). 

Brickell et al. (2007) reported that cows with a higher body weight at 6 months old (183 kg; SD = 

36 kg) had an age at first calving lower than 23 months compared to animals with a lower body 

weight also at 6 months old (162 kg; SD = 35 kg). Additionally, a positive relationship was 

reported between first lactation milk yield and the average daily gain from weaning to first service 

(Svensson and Hultgren, 2008) or conception (Vacek et al., 2015) as well as between the average 

daily gain during the first two months of life and completing the first lactation (Bach, 2011). 

Although the same size at birth, calves with difficult calving had a higher HR of being 

culled compared with offspring with an unassisted birth for both LL (Table 3.2) and LPL (Table 

3.3). In addition to increasing the risk of stillbirths (Berglund et al., 2003, Lombard et al., 2007) 

and mortality during the first 21 days of life (Wells et al., 1996), difficult calving has been 

associated with failure of passive-immunity transfer (Renaud et al., 2020) and with low calf vitality 

(Barrier et al., 2012). Difficult calving also increases the risk of developing respiratory and 

digestive diseases between birth and 120 days of age (Lombard et al., 2007). The negative 

consequences of a difficult calving are likely to have long-term effects. Difficult calving was 

associated with increased age at first calving (Heinrichs et al., 2005), which in turn makes animals 

less likely to complete a first lactation (Bach, 2011, Sherwin et al., 2016). In addition, difficult 
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calving was associated with a reduction in cumulative milk yield in the first lactation of the 

offspring (Eaglen et al., 2011), which would increase the chances of early culling. 

Even though results from this study indicate that calving assistance has negative effects on 

offspring longevity, delivery assistance alone is not likely to be a problem. Systematically assisting 

the delivery of calves that do not present clear signs of dystocia improves the calf vigour and does 

not influence the likelihood of stillbirth (Villettaz Robichaud et al., 2017a) as well as the 

occurrence of pneumonia, diarrhea, and the survival of the offspring up to weaning at 7 weeks old 

(Villettaz Robichaud et al., 2017b). Even though further studies are needed to evaluate the long-

term effects of systematically assisting the delivery on offspring longevity, this would indicate that 

calving assistance as a consequence of dystocia would have a negative effect on offspring 

longevity since this is likely the most prevalent scenario in our study given the rate of assistance 

provided by Canadian farmers (Villettaz Robichaud et al., 2016). 

The occurrence of twinning had a negative effect on offspring longevity measured as LL 

(Table 3.2 and Supplementary Figure 3.1) or LPL (Table 3.3 and Supplementary Figure 3.2). The 

overall twinning rate in dairy cows was estimated to be 4.2% in the US, but it increased with the 

parity of the dam as well as overtime between 1996 and 2004 (Silva del Río et al., 2007). This 

overall prevalence was higher than the values reported here (Table 3.1) most likely because 

freemartins were removed from our study. The negative consequences of twining on the dam’s 

survival are well documented. For example, it increases the hazard ratio of multiparous cows being 

culled within 120 days in milk (Probo et al., 2018). However, twining has also been reported to 

have negative consequences on the offspring. The occurrence of twin births was identified as a 

mortality risk factor within the first 24 hours after birth (Lombard et al., 2007, Silva del Río et al., 

2007) as well as up to 21 days of life (Wells et al., 1996). Twining is also associated with low body 

weight (Windeyer et al., 2014) and average daily gain (Shivley et al., 2018) compared to single 

births. Such consequences are likely to have a cascade effect that compromises the ability of the 

offspring to remain in the herd, resulting in reduced offspring longevity as suggested by the results 

in this study. 

The overall average longevity observed in the present study was low but in agreement with 

results published previously. Hertl et al. (2018) reported similar results with an average LPL of 

approximately 2 years based, on 24,831 Holstein cows from 5 herds in New York State, while 
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Hultgren and Svensson (2009) reported a median length of productive life of 2.1 years among 

2,124 culled dairy cows from 109 Swedish herds. On the other hand, the genetic potential for 

longevity has increased over time since the calculation of breeding values started to incorporate 

functional traits (De Vries, 2017, CRV, 2020, DairyNZ, 2020). Based on a combination of survival 

data and various non-production traits known to be associated with longevity (Beavers and Van 

Doormaal, 2017), the genetic potential for LL of the average Canadian Holstein cow born in 2018, 

for example, was estimated to be of 8.5 years (Lactanet, 2021). This would represent an LPL of 

6.3 years if an average age at first calving of 27 months is assumed. However, the culling rate in 

Canada was 32.36% in 2020 among herds enrolled on a milk recording program (CDIC, 2021). 

This represents an LPL of 3.09 years, which is about half of the genetic potential of the cows. 

Results from the above literature indicate that dairy cows are not expressing their full potential for 

longevity, and the present study provides insights on the adverse effect of birth conditions (i.e., 

calving ease, birth size, and twinning) on offspring longevity, which could be used in replacement 

and culling strategies to select the best candidates for early herd removal. 

Early life indicators of longevity are required to support farmers’ culling and replacement 

strategies. Age at first calving has been proposed as an indicator of longevity since animals that 

calve for the first time at a younger age are less likely to be culled (Bach, 2011, Sherwin et al., 

2016) and more likely to have a long productive life (Hultgren and Svensson, 2009). However, 

much earlier indicators would be desirable since age at first calving only happens at approximately 

two years after birth. The results of the present study indicate that birth conditions could be used 

as early indicators of offspring longevity by identifying offspring during the rearing period that 

are less likely to express their maximum potential and support farmers in the early selection of 

replacement animals. 

The present study focused on indicators of birth conditions that are available in DHI 

databases. Our results are likely to be influenced by the fact that 26.7% of Canadian farmers always 

assist their cows during calving, and 38% always assist all heifers regardless of the necessity to do 

so (Villettaz Robichaud et al., 2016). In addition, a limitation of our approach is the inherited 

subjectivity of the records reported by dairy farmers. For instance, classifying calf size into small, 

medium, and large is, to some extent, subjective to the farmer’s criteria, which is likely to vary 

among different farmers. Even though a certain standardization is present, some heterogeneity is 

present in the way people apply these standards due to their perceptions. Our results provide a 
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strong incentive for farmers to record actual weight at birth, making birth-size information more 

precise given its potential to help identify offspring that may stay longer in the herd and optimize 

replacement and culling strategies. 

3.6. Conclusion 

In conclusion, our results indicate the existence of a long-term effect of birth conditions on 

offspring longevity. Calving ease, birth size, and twinning are associated with a reduction in both 

length of life and length of productive life and affects the ability of the offspring to remain in the 

herd. This information provides insights to optimize replacement and culling strategies in dairy 

herds and propose early indicators for the selection of the best candidates for early herd removal.  
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3.8. Supplementary material 

 

Supplementary Figure 3.1. Conditional inference survival tree of culling events showing the effects of birth conditions on the offspring length of life (total N = 

712,890). Circles represent both the birth conditions and the cut-off values found by the algorithm for splitting the offspring into smaller groups. Numbers in the 

squares on top of the circles indicate the node number. Squares at the bottom represent the terminal nodes. They contain Kaplan-Meier survival curves of each 

group and the sample size on top (n). 
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Supplementary Figure 3.2. Conditional inference survival tree of culling events showing the effects of birth conditions on the offspring length of productive life 

(total N = 506,066). Circles represent both the birth conditions and the cut-off values found by the algorithm for splitting the offspring into smaller groups. Numbers 

in the squares on top of the circles indicate the node number. Squares at the bottom represent the terminal nodes. They contain Kaplan-Meier survival curves of 

each group and the sample size on top (n). 
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Connecting statement 2 

Calving ease, calf size, and twinning were shown to have a long-term effect on offspring 

longevity, which builds on to the scarce body of literature available on the topic. However 

important, they only indicate how a dairy calf comes into existence. After calving, the calf is 

subjected to many other early life conditions that require further investigation. In addition, animal 

lifetime productivity and animal’s lifetime profitability are intertwined with longevity, making 

them important to be considered in simultaneously. The study described in the next chapter was 

conducted with the objective to investigate some of these aspects. It focused on animal-level early 

life outcomes and their relationship with indicators of longevity, productivity, and profitability 

were analysed. 
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4.1. Abstract 

Milk production efficiency and overall profitability can be improved by raising resilient animals 

that are more likely to reach their potential. Identify such animals based on early life outcomes is 

a possibility requiring further investigation. The objective of this study was to analyze the 

associations between early life animal outcomes and their subsequent length of life (LL), length 

of productive life (LPL), lifetime cumulative energy-corrected milk (ECM), and lifetime 

cumulative milk value. Data from two cohorts of animals were analyzed based on the availability 

of lifetime variables. After data cleaning, cohort 1 was composed of 367 calves with LL data that 

were born between June 2014 and November 2015 in 8 dairy herds from New Brunswick (Canada). 

Cohort 2 was composed of a subset of 273 calves from cohort 1 with data on LPL, lifetime 

cumulative ECM, and lifetime cumulative milk value. In addition to herd identification, birth year, 

and birth season, the following early life animal outcomes were evaluated: birth weight, weaning 

weight, weaning age, weaning average daily gain, concentration of serum immunoglobulin G, 

occurrence of navel infection, of scours, and of pneumonia, and if animals received antibiotic 

treatment between birth and weaning. Multiple imputation was used to handle missing data and an 

80:20 split ratio was used to create the training and validation data sets, respectively. For both 

cohorts and lifetime variables, different machine learning algorithms were trained with the training 
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data sets and using 5-fold cross-validation repeated 10 times. The best models, identified based on 

the lowest prediction error in the validation data sets, were used to estimate both variable 

importance and accumulated local effect (ALE) between early life animal outcomes and each 

lifetime variable. On average, prediction errors were relatively high, with a mean arctangent 

absolute percentage error ranging from 33.1% on LL to 49.8% on ECM. Herd was shown to be 

the most important variable and had an average impact of 12%, 11%, 15%, and 14% on LL, LPL, 

lifetime cumulative ECM, and lifetime cumulative milk value predictions, respectively. The 

remaining indicators had, on average, an impact equal to or below to 6% on all lifetime variables. 

Though there was a great variability between herds, the higher the ALEs for LPL, the higher the 

ALEs for both lifetime cumulative ECM and lifetime cumulative milk value. These results 

highlight the importance of herd management decisions at different stage of the animal’s life to 

improve dairy farming efficiency. 

4.2. Introduction 

Milk production efficiency in dairy farms needs to increase to meet the expected demand 

for dairy products. Driven by population growth, urbanization, and economic growth (Vos and 

Bellù, 2019), the consumption of milk and dairy products is expected to increased by 46% by 2050 

compared to 2005/2007 in low- and middle-income countries, and by 19% in high-income 

countries over the same period (Alexandratos and Bruinsma, 2012). Strategic genetic selection, 

improved health practices, improved nutrition, and management of environmental conditions have 

all contributed to increase milk yield in the past (Collier et al., 2006, Shook, 2006). Between 1961 

and 2018, the total increase of milk production per animal per year ranged from 1,055 kg to 7,393 

kg in the different high milk-producing countries (Dallago et al., 2021b). However, both the 

scarcity of resources and the pressure for sustainable intensification impose constraints on further 

milk production increase. Therefore, it is important to continue optimizing management practices 

(Pretty and Bharucha, 2019) to maximize the efficiency in which resources are used to sustainably 

increase milk production and the profitability of dairy farming. 

Efficiency could be improved by identifying and raising resilient animals. Resilient 

animals have a high adaptability to challenges and cumulative good health and fertility, resulting 

in a greater longevity (Adriaens et al., 2020) because cow longevity is associated with the animal’s 

ability to avoid early culling due to health and reproduction issues (Dallago et al., 2021b), which 
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would imply being productive for longer and, therefore, more profitable (Brickell and Wathes, 

2011, Boulton et al., 2017, Habel et al., 2021). Studies on cow longevity often focused on lactating 

cows. However, there is a growing body of literature on the long term effects of early life 

conditions on adult animal performance and productivity. Calving difficulty, birth size, and 

twining were associated with the longevity of Canadian Holstein offspring (Dallago et al., 2021a). 

In addition, the occurrence of calfhood diarrhea had a negative effect on first lactation 305-day 

energy-corrected milk (ECM) in Swedish dairy cows (Svensson and Hultgren, 2008). A negative 

effect of diarrhea during weaning on days to conception and age at first calving was also observed 

(Aghakeshmiri et al., 2017). In turn, age at first calving was shown to be associated with the ability 

of animals to remain in the herd at least until the end of the first lactation (Sherwin et al., 2016). 

Therefore, we hypothesized that early life animal outcomes are associated with the 

subsequent longevity, productivity, and profitability of dairy animals. The objective of this study 

was to analyze the associations between body weight, health events, and immune status of dairy 

calves (i.e., early life animal outcomes) on their subsequent length of life (LL) length of productive 

life (LPL), lifetime cumulative ECM, and lifetime cumulative milk value. 

4.3. Material and methods 

A cross-sectional study was conducted based on early life indicators of a cohort of animals 

born in eight dairy herds from New Brunswick (Canada). Longevity, production, and profitability 

indicators were provided by the Canadian DHI Agency Lactanet (Sainte-Anne-de-Bellevue, 

Quebec, Canada). All statistical analyses were carried out using the R software, version 4.1.1 

(https://www.r-project.org/). The R code that supports the findings of this study can be found in 

the following public GitHub repository: https://github.com/CowLifeMcGill/PEI_cohort_study. 

4.3.1. Dataset 

Early life animal outcomes were available for 463 Holstein claves born in eight dairy herds 

from New Brunswick (Canada), between June 2014 and November 2015. Calves involved in the 

study were monitored from birth to weaning. Blood samples were collected within 24 to 48 h after 

calving according to a protocol approved by the University of Prince Edward Island (UPEI) 

Research Ethics Board (protocol #6006206). Calf serum immunoglobulin G (IgG; mg/dL) was 

measured using infrared spectroscopy (Elsohaby et al., 2014), and body weight (kg) at birth and 

around weaning was measured using an electronic scale. In addition to serum IgG and body weight, 
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the following early life indicators were collected and reported by the farmers: Animal ID, herd ID, 

calving date, weaning date, and occurrence of navel infection (yes or no), scours (yes or no), 

pneumonia (yes or no), and if animals received antibiotic treatment (yes or no) between birth and 

weaning. 

The DHI outcomes of milk production (kg), fat production (kg), protein production (kg), 

milk value ($CAD), culling date as well as animal and herd identification (ID) were provided by 

Lactanet (Sainte-Anne-de-Bellevue, Quebec, Canada) for 439 Holstein cows born in the same 

eight dairy herds from New Brunswick (Canada) between June 2014 and November 2015, and 

which participated in the study. 

4.3.2. Data handling and cleaning 

Cows that were not yet culled at the time of the DHI data extraction were removed (N = 

65), since it was not possible to calculate longevity metrics, lifetime cumulative milk production, 

nor milk value for those animals. Similar to Dallago et al. (2021a), LL (year) and LPL (year) were 

the longevity metrics considered in this study. The LL was calculated as the length of time (year) 

between birth and culling while the LPL was the length of time (year) between the first calving 

and culling. Milk, fat, and protein production as well as milk value were aggregated by calculating 

the sum over the lifetime of the animals. Lastly, lifetime cumulative ECM (kg) was calculated as 

ECM (lifetime cumulative kg) = 12.55 × fat (lifetime cumulative kg) + 7.39 × protein (lifetime 

cumulative kg) + 0.2595 × milk yield (lifetime cumulative kg). 

Duplicate observations on early life indicators (i.e., repeated animal ID, but having 

different entry values) were removed (N = 7). In addition, negative values on serum IgG 

concentration (N = 2) were treated as missing data (Figure 4.1). Body weight was measured twice 

for each animal: it was first measured at birth and a second time around the weaning date (about 2 

months old). Consequently, the model developed by Cue et al. (2012) for Canadian Holstein cows 

was used to estimate the body weight of the animals at the exact weaning date. For animals that 

were weighted at weaning (N = 63), the original recorded body weight was kept. In addition, 

weaning average daily gain (ADG; kg/day) and weaning age (month) were also estimated. 
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Figure 4.1. Flowchart indicating data handling and cleaning steps to create the two cohorts of data submitted for 

statistical analysis. The solid-line rectangles represent the data and the dashed-line rectangles represent processes. 

Obs = Observation. 

 

4.3.3. Creating working data set 

The DHI lifetime variables and early life indicators were merged based on animal ID and 

herd ID (N = 367). It was not possible to calculate LPL, lifetime cumulative ECM, nor lifetime 

cumulative milk value for all animals because some of them were culled before calving for the 

first time (N = 77). Therefore, two cohorts of data were created. The first cohort included data of 

all animals in which there was a match between files (N = 367), and it was used to analyze the LL. 

The second cohort only included information from animals that were not culled before calving for 

the first time (N = 290). Some animals were culled shortly after calving for the first time and did 

not have data on milk production and milk value (N = 17). Data from those animals were also 

removed from the second cohort. Descriptive statistics on both cohorts are shown on Table 4.1 and 

Table 4.2. 
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Table 4.1. Descriptive statistics for numerical indicators and outcome variables of two cohorts of animals from eight 

New Brunswick (Canada) dairy farms. Cohorts were defined based on the availability of the outcome variables length 

of life (Cohort 1), length of productive life (Cohort 2), lifetime cumulative energy-corrected milk (ECM; Cohort 2), 

and lifetime cumulative milk value (Cohort 2). 

Variable 

Cohort 11 

(N = 367) 

Cohort 21 

(N = 273) 

NA Mean SD Min Max NA Mean SD Min Max 

Early life indicators           

Birth weight (kg) 17 41.5 5.21 27.0 59.0 9 41.7 5.03 27.0 59.0 

Weaning weight (kg) 42 91.7 13.2 60.0 130.8 22 92.3 13.6 62.0 130.8 

Weaning age (month) 35 2.13 0.38 1.38 3.65 18 2.13 0.40 1.38 3.65 

Weaning ADG (kg)2 44 0.769 0.099 0.365 1.041 23 0.773 0.102 0.365 1.04 

Serum IgG (mg/dL) 12 1,607.7 833.1 30.6 4,779.4 0 1,604.7 840.8 30.6 4,779.4 

Outcomes           

Length of life (year) 0 3.78 1.63 0.03 6.85 --- --- --- --- --- 

Length of productive 

life (year) 
--- --- --- --- --- 0 2.42 1.23 0.11 4.88 

Lifetime cumulative 

ECM (kg) 
--- --- --- --- --- 0 27,788.6 15,979.9 757.9 67,930.4 

Lifetime cumulative 

milk value ($ CAD) 
--- --- --- --- --- 0 19,474.0 11,399.1 528.0 48,447.8 

1 NA = Missing observations; SD = Standard deviation; Min = Minimum; Max = Maximum. 
2 Average weight daily gain from birth to weaning. 
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Table 4.2. Descriptive statistics of categorical indicators of two cohorts of animals from eight New Brunswick 

(Canada) dairy farms. Cohorts were defined based on the availability of the outcome variables length of life (Cohort 

1), length of productive life (Cohort 2), lifetime cumulative energy-corrected milk (Cohort 2), and lifetime cumulative 

milk value (Cohort 2). 

Early life indicator 

Cohort 1 

(N = 376) 

Cohort 2 

(N = 273) 

N % N % 

Navel infection No 345 94.01 260 95.24 

 Yes 7 1.91 5 1.83 

 Missing 15 4.09 8 2.93 

Scours No 343 93.46 257 94.14 

 Yes 9 2.45 8 2.93 

 Missing 15 4.09 8 2.93 

Pneumonia  No 343 93.46 261 95.60 

 Yes 9 2.45 4 1.47 

 Missing 15 4.09 8 2.93 

Antibiotics1 No 259 70.57 200 73.26 

 Yes 48 13.08 31 11.36 

 Missing 60 16.35 42 15.38 

Year 2014 300 81.7 221 80.95 

 2015 67 18.3 52 19.05 

Season Fall 160 43.6 121 44.32 

 Summer 121 33.0 85 31.14 

 Winter 86 23.4 67 24.54 

Herd 1 41 11.17 34 12.45 

 2 15 4.09 14 5.13 

 3 68 18.53 55 20.15 

 4 52 14.17 34 12.45 

 5 44 11.99 31 11.36 

 6 96 26.16 66 24.18 

 7 29 7.90 25 9.16 

 8 22 5.99 14 5.13 
1 During the weaning period. 

 

Multiple imputation was used to handle missing observations instead of case wise deletion 

to maximize the number of observations. After data cleaning and merging, the percentage of 

missing observations ranged from 3.27% on serum IgG concentration (n = 12) to 16.35% on 

received antibiotic treatment (n = 60). The average percentage of missing observations per herd 

was 4.12% (Standard deviation; SD = 3.56%) and ranged from 1.0 to 12.0%. The function mice 

from the package mice (van Buuren and Groothuis-Oudshoorn, 2011) was used to create 10 

multiple imputed versions of the data using the random forest method. In short, for each numeric 

or categorical indicator with missing data, the remaining indicators were used to create a random 

forest model to impute the missing values. The distribution of the imputed data was visually 

compared to the data with non-missing values. In addition to multiple imputation being a better 

approach compared to other methodologies in order to increase power and accuracy of the data 

analysis (van Buuren, 2019), random forest is able to handle complex interactions between 
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variables even in conditions where there is a high number of missing observations (Tang and 

Ishwaran, 2017). 

4.3.4. Data analysis 

The associations between early life animal outcomes and longevity, productivity, and 

profitability were analyzed using the machine-learning algorithms recursive partitioning and 

regression tree (RPART), gradient boosting machine (GBM), random forest (RF), and support 

vector machine (SVM) with a radial basis kernel. For each of the imputed versions of the data, an 

80:20 ratio was used to create the training and validation data sets, respectively, based on the 

distribution of each lifetime variable (i.e., LL, LPL, ECM, or milk value). All models were trained 

with 5-fold cross-validation repeated 10 times on the training data sets using the caret package 

(Kuhn, 2020) by specifying the methods rpart2, gbm, ranger, and svmRadialSigma, respectively 

for the algorithms RPART, GBM, RF, and SVM. Hyperparameters for these models were tuned 

using adaptive resampling, which resamples the hyperparameter tuning grid by concentrating on 

values closer to the identified optimal setting (Kuhn, 2014, 2020). The models were evaluated 

based on the coefficient of determination (R2), root mean squared error (RMSE), mean absolute 

error (MAE), and mean arctangent absolute percentage error (MAAPE; Kim and Kim, 2016) 

calculated using the validation data sets. The best model was defined as having the highest R2 and 

the lowest RMSE, MAE, and MAAPE averages across all the imputed versions of the data. 

Using the best model, variable importance and accumulated local effect (ALE) were used 

to describe the association between early life animal outcomes (i.e., either numeric or categorical) 

and longevity, productivity, and profitability. Variable importance was calculated using 

permutation. In short, this is a model agnostic approach that measures the prediction error of the 

model after shuffling the values for the early life indicators, which changes the relationship 

between the outcome and early life indicators. Shuffling the values of important early life 

indicators would result in an increase of the error while the error would remain unchanged for 

early life indicators that are not important (Molnar, 2019). Additionally, ALE indicates the average 

influence of the early life indicators in predicting the outcome variables (Molnar, 2019). Variable 

importance and ALE were estimated using the functions FeatureImp and FeatureEffect, 

respectively, from the R package iml (Molnar et al., 2018) and based on each of the complete 

imputed data sets (i.e., training and validation data set combined). Average and standard deviations 
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were calculated to aggregate the results of each early life indicator across all imputed version of 

the data. 

4.4. Results  

A weak relationship was observed between early life animal outcomes and their subsequent 

longevity (i.e., LL and LPL), productivity (i.e., lifetime cumulative ECM), and profitability (i.e., 

lifetime cumulative milk value). Overall, the prediction errors were relatively high, with an 

average MAAPE ranging from 33.1% on LL to 49.8% on lifetime cumulative ECM in the training 

data set whereas it ranged from 39.2% on LL to 53.7% on lifetime cumulative milk value in the 

validation data set. (Supplementary Table 4.1). Based on the training data set, the LL, LPL, lifetime 

cumulative ECM, and lifetime cumulative milk value were best predicted by RF models 

(Supplementary Table 4.1). In the validation data set, however, only LL was best predicted by a 

RF model, with the remaining lifetime variables having no model outperforming the others in most 

of the evaluation metrics (Supplementary Table 4.1). Therefore, the effect of the early life outcome 

measures on all lifetime variables were further described based on the RF models since it had the 

best performance on the training data set. 

Herd, as a categorical variable, was the most important indicator associated with all four 

lifetime variables. It had an average impact of 12%, 11%, 15%, and 14% on LL, LPL, lifetime 

cumulative ECM, and lifetime cumulative milk value predictions respectively, whereas the 

remaining indicators had, on average, an impact equal to or below to 6% on all lifetime variables 

(Figure 4.2).The incidence of diseases were the least important indicators while weight related 

indicators and serum IgG were of intermediate importance (Figure 4.2). 
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Figure 4.2. The importance (x axis) of indicator variables (y axis; from highest to lowest) to predict length of life (LL; 

A), length of productive life (LPL; B), lifetime cumulative energy-corrected milk (ECM; C), and lifetime cumulative 

milk value (D). Mean (•) and standard deviation (bar) were calculated across all 10 multiple imputed versions of the 

data. Variable importance indicates the increase in model error prediction. It is measured as the ratio of root mean 

squared error of the original model and after shuffling the values of the indicators (Molnar, 2019). 

 

The ALE estimated for categorical early life animal outcomes are shown on Table 4.3. 

Surprisingly, the occurrence of navel infection, scours, and pneumonia during the pre-weaning 

period were associated with higher LL, LPL, lifetime cumulative ECM and lifetime cumulative 

milk value. On the other hand, all outcomes evaluated in this study had a lower ALE for animals 

born in the winter compared to animals born in the fall. Though there was a great variability 

between herds, the higher the ALE for LPL, the higher the ALEs for both lifetime cumulative 

ECM and lifetime cumulative milk value. Such results were not observed for LL, in which high 

ALEs in LL were not followed by high ALEs in the other lifetime variables. However, the herd 

with the lowest ALE for LL also had the lowest ALE for LPL, lifetime cumulative ECM, and 

lifetime cumulative milk value, whereas the herd with the highest LL also had the highest LPL, 

lifetime cumulative ECM, and lifetime cumulative milk value. 
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Table 4.3. Accumulated local effect (ALE) of categorical indicators on each of the outcomes evaluated. Means ± 

standard deviations were calculated across all 10 multiple imputed versions of the data. 

Early life indicator 

Outcome 

Length of 

life (year) 

(N = 376) 

Length of 

productive life 

(year) 

(N = 273) 

Lifetime cumulative 

energy-corrected milk 

(kg) 

(N = 273) 

Lifetime cumulative 

milk value ($CAD) 

(N = 273) 

Navel 

infection 

No -0.01 ± 

0.001 

-0.01 ± 0.001 -103.5 ± 8.67 -53.1 ± 8.14 

 Yes 0.38 ± 0.05 0.38 ± 0.05 5,475.2 ± 689.62 2,818.1 ± 522.26 

Scours No -0.01 ± 

0.002 

-0.004 ± 0.0002 -43.5 ± 3.42 -19.7 ± 0.88 

 Yes 0.26 ± 0.07 0.12 ± 0.005 1,442.3 ± 113.15 653.8 ± 29.31 

Pneumonia  No -0.001 ± 

0.002 

-0.002 ± 0.0001 -30.0 ± 1.09 -1.2 ± 0.61 

 Yes 0.05 ± 0.07 0.13 ± 0.004 2,019.0 ± 72.99 79.4 ± 41.33 

Antibiotics1 No 0.002 ± 

0.01 

0.001 ± 0.003 -11.9 ± 34.68 52.3 ± 29.46 

 Yes -0.01 ± 0.03 -0.01 ± 0.02 93.2 ± 261.02 -392.1 ± 215.52 

Birth year 2014 -0.01 ± 

0.001 

-0.02 ± 0.001 -227.0 ± 9.29 -79.9 ± 5.04 

 2015 0.03 ± 0.01 0.08 ± 0.004 964.6 ± 39.47 339.6 ± 21.41 

Birth season Fall 0.03 ± 0.01 0.03 ± 0.002 291.9 ± 19.71 273.6 ± 13.62 

 Summer -0.03 ± 0.01 -0.01 ± 0.004 -39.1 ± 28.36 522.5 ± 22.19 

 Winter -0.01 ± 0.01 -0.04 ± 0.004 -477.6 ± 44.46 -1,157.0 ± 46.16 

Herd 1 -0.01 ± 0.03 0.01 ± 0.01 1,213.8 ± 79.36 408.5 ± 54.15 

 2 0.16 ± 0.06 0.05 ± 0.01 470.8 ± 138.06 166.8 ± 76.00 

 3 0.02 ± 0.03 -0.16 ± 0.01 -1,340.1 ± 219.61 -315.4 ± 130.49 

 4 -0.14 ± 0.03 -0.17 ± 0.01 -984.7 ± 95.48 -1,338.0 ± 78.78 

 5 -0.13 ± 0.03 0.25 ± 0.01 5,385.0 ± 125.37 3,448.4 ± 86.59 

 6 -0.1 ± 0.01 -0.11 ± 0.01 -4,694.9 ± 119.49 -3,302.9 ± 62.69 

 7 0.69 ± 0.04 0.53 ± 0.01 5,995.1 ± 195.30 4,825.8 ± 82.22 

 8 -0.04 ± 0.04 -0.01 ± 0.01 3,741.0 ± 325.53 2,647.0 ± 127.81 
1 During the weaning period. 

 

Animals born with a low or high weight were associated with a reduction on LL, LPL, 

lifetime cumulative ECM, and lifetime cumulative milk value (Figure 4.3). Except for lifetime 

cumulative ECM, a low birth weight had, on average, a more negative ALE as opposed to a high 

birth weight. On the other hand, the higher the weaning weight, the lower the average ALE 

observed for all lifetime variables (Figure 4.4). A high weaning age was associated with a 

reduction on both LL and lifetime cumulative milk value whereas the opposite was observed for 

LPL and lifetime cumulative ECM (Figure 4.5). We found a reduction on all lifetime variables 

starting at the low end of the weaning ADG and going up to 0.800 kg/day, whereas an increase 

was observed thereafter, except for lifetime cumulative milk value (Figure 4.6). Lastly, we found 

that the higher the concentration of serum IgG, the higher the LL, LPL, lifetime cumulative ECM, 

and lifetime cumulative milk value (Figure 4.7). However, the shape of the association was not 
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linear and the ALEs at the high end of the serum IgG values were more than 100% higher than 

what we found at the low end (Figure 4.7). 

 

 
Figure 4.3. The accumulated local effect (ALE) of birth weight on length of life (A; LL), length of productive life (B; 

LPL), lifetime cumulative energy-corrected milk (C; ECM), and lifetime cumulative milk value (D) across all 10 

multiple imputed versions of the data (grey lines) followed by a loess trend line (blue). 
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Figure 4.4. The accumulated local effect (ALE) of weaning weight on length of life (A; LL), length of productive life 

(B; LPL), lifetime cumulative energy-corrected milk (C; ECM), and lifetime cumulative milk value (D) across all 10 

multiple imputed versions of the data (grey lines) followed by a loess trend line (blue). 

 

 

 
Figure 4.5. The accumulated local effect (ALE) of weaning age on length of life (A; LL), length of productive life 

(B; LPL), lifetime cumulative energy-corrected milk (C; ECM), and lifetime cumulative milk value (D) across all 10 

multiple imputed versions of the data (grey lines) followed by a loess trend line (blue). 
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Figure 4.6. The accumulated local effect (ALE) of average daily gain (ADG) of weight from birth to weaning on 

length of life (A; LL), length of productive life (B; LPL), lifetime cumulative energy-corrected milk (C; ECM), and 

lifetime cumulative milk value (D) across all 10 multiple imputed versions of the data (grey lines) followed by a loess 

trend line (blue). 

 

 
Figure 4.7. The accumulated local effect (ALE) of serum IgG on length of life (A; LL), length of productive life (B; 

LPL), lifetime cumulative energy-corrected milk (C; ECM), and lifetime cumulative milk value (D) across all 10 

multiple imputed versions of the data (grey lines) followed by a loess trend line (blue). 



94 

4.5. Discussion 

The associations between early life animal outcomes and longevity (i.e., LL and LPL), 

productivity (i.e., lifetime cumulative ECM), and profitability (i.e., lifetime cumulative milk value) 

were evaluated based on two cohorts of animals from eight dairy herds. Different machine learning 

models were trained and the best ones were used to describe the associations under consideration 

in this study. 

Herd was the most important indicator associated with animal longevity, productivity, and 

profitability. The longevity of dairy cows in high milk producing systems is mostly dictated by 

culling decisions carried out by farmers. Even though longevity has decreased in most high milk 

producing countries in the past decades (Dallago et al., 2021b), increasing cow longevity is a 

strategy to improve dairy farming sustainability since it is associated with its economic efficiency 

(Delgado et al., 2017, Habel et al., 2021) environmental impact (Grandl et al., 2019), and social 

acceptability (Bruijnis et al., 2013, Rushen and Passillé, 2013). Some herds were associated with 

greater longevity in our study, but not all of them, which is in agreement with previous studies 

(Beaudeau et al., 2000). In turn, this highlights unique management styles between farms and the 

consideration of different underlining factors to carry out culling decisions. Previous events are 

often neglected in culling decisions. The occurrence of costly health issues in previous lactations 

of lactating dairy cows, for example, are not usually taken into account by farmers (Beaudeau et 

al., 2000), even though they could compromise the profitability of the current lactation. It was not 

surprising, therefore, to find a weak relationship between the remaining early life animal outcomes 

and subsequent longevity, productivity, and profitability in our study.  

The prevalence of health events observed in the present cohort of animals was low. For 

instance, Medrano-Galarza et al. (2018) reported a 17% prevalence of bovine respiratory diseases 

based on 17 Canadian dairy farms while Karle et al. (2019) reported an overall average of 7% 

based on three farms from California (USA) and Closs Jr and Dechow (2017) reported a 13% and 

9% prevalence of pneumonia and scours, respectively, in a dairy farm in Pennsylvania (USA). 

This could indicate farmers’ inability to properly diagnose health events in dairy calves in our 

study as it was reported in the assessment of other health issues in adult cattle such as lameness 

(Higginson Cutler et al., 2017, Beggs et al., 2019).  
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Contrary to previous studies, the occurrence of all three health issues was associated with 

higher longevity, productivity, and profitability. On Swedish dairy cows, the occurrence of severe 

calfhood respiratory disease was associated with an increase on calving interval of cows on first 

to third or greater lactations (Hultgren and Svensson, 2010) and navel infections was associated 

with negative effect on survival heifer survival up to 96 month of age (Britney et al., 1984). Our 

results might indicate, however, that animals who were properly diagnosed and treated made a full 

recovery, which in turn did not compromise their subsequent adult performance as opposed to 

animals that might have been misdiagnosed. For instance, receiving two or more treatment for 

disease had a negative effect on culling age while no effect was observed in animals receiving only 

one treatment (Closs Jr and Dechow, 2017). In addition, both the occurrence of health events and 

the use of antibiotic treatments were recorded as binary variables (i.e., yes or no) and the effect of 

duration, co-occurrence, and severity of diseases on lifetime traits such as length of productive life 

and lifetime cumulative ECM remains to be evaluated. Reproductive performance, which is one 

of the most prevalent reasons for culling dairy cows (Compton et al., 2017, CDIC, 2021), could 

also provide additional insights on the underlying reasons behind our results in a future study. 

Body weight indicators were previously shown to be associated with animal performance 

and production. Similar to our results, birth size, as a proxy for birth weight, was selected as an 

important birth condition associated with the LL and LPL of Canadian Holstein calves (Dallago et 

al., 2021a). In addition, ADG during weaning was reported to have a positive effect on first 

lactation milk yield was also reported (Svensson and Hultgren, 2008, Soberon and Van Amburgh, 

2013, Vacek et al., 2015). Our results suggest that such positive effect of a high ADG could also 

be extended to the animal lifetime since it was associated with a greater lifetime cumulative ECM. 

However, a potential tradeoff exists between ADG and weight at weaning since we found a 

negative association between lifetime cumulative ECM and weaning weight. Monitoring and using 

body weight as a weaning criterion could be a strategy to avoid negative consequences on adult 

LL, LPL, and lifetime cumulative ECM.  

The efficacy of passive immunity transfer in dairy calves has been shown to be associated 

with animal performance and production. The concentration of IgG in the serum of animals is used 

to determine failure to transfer passive immunity (FTP). In our study, serum IgG was measured 

using Fourier-transform infrared spectroscopy, a rapid and reagent-free methodology (Elsohaby et 

al., 2014), and calves with serum IgG concentration lower than 1,000 mg/dL were considered to 
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be FTP (Lombard et al., 2020). FTP animals were shown to be not only more prone to develop 

diseases and have a high mortality (Cuttance et al., 2018, Lora et al., 2018, Urie et al., 2018), but 

also to have an impaired growth during weaning (Windeyer et al., 2014, Hang et al., 2017) and a 

reduction in both mature equivalent milk and fat production (DeNise et al., 1989). Since we found 

that increased longevity, productivity, and profitability were associated with higher levels of serum 

IgG, our results also indicate the presence of a long-term effect of FTP observed later in the adult 

cattle. 

4.6. Conclusion 

Associations were found between early life animal outcomes of body weight, health events, 

and health status and subsequent longevity (length of life and length of productive life), 

productivity (lifetime cumulative energy-corrected milk), and profitability (lifetime cumulative 

milk value). Herd was shown to be the most important variable. Additionally, herds associated 

with the highest longevity were also associated with the highest productivity and profitability, 

highlighting the importance of managerial decisions at different stage of the animal’s life to 

improve dairy farming efficiency and productivity.  
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4.8. Supplementary material 

Supplementary Table 4.1. Prediction performance of recursive partitioning and regression tree (RPART), gradient 

boosting machine (GBM), random forest (RF), and support vector machine (SVM) with a radial basis kernel models 

on each of the outcomes evaluated. Performance is shown both on training and validation data sets. Means ± standard 

deviations were calculated across all 10 multiple imputed versions of the data. Best results within outcome, data set, 

and metric are bolded. 

Outcome1 Model 
Training2  Validation2 

R2 RMSE MAE SMAPE  R2 RMSE MAE MAAPE 

LL RPART 0.05 

± 

0.00 

1.59 ± 

0.00 

1.33 ± 

0.00 

38.7 ± 

0.00 

 0.02 

± 

0.00 

1.63 ± 

0.00 

1.38 ± 

0.00 

40.0 ± 

0.00 

 GBM 0.18 

± 

0.07 

1.47 ± 

0.07 

1.23 ± 

0.06 

36.8 ± 

1.24 

 0.04 

± 

0.02 

1.61 ± 

0.02 

1.35 ± 

0.02 

39.4 ± 

0.40 

 RF 0.39 

± 

0.09 

1.27 ± 

0.09 

1.06 ± 

0.08 

33.1 ± 

1.65 

 0.06 

± 

0.02 

1.60 ± 

0.01 

1.34 ± 

0.01 

39.2 ± 

0.26 

 SVM 0.11 

± 

0.06 

1.53 ± 

0.05 

1.25 ± 

0.06 

37.1 ± 

1.6 

 0.02 

± 

0.03 

1.63 ± 

0.03 

1.35 ± 

0.03 

39.5 ± 

0.66 

LPL RPART 0.05 

± 

0.00 

1.19 ± 

0.00 

1.00 ± 

0.00 

44.8 ± 

0.00 

 0.059 

± 

0.00 

1.22 ± 

0.00 

1.00 ± 

0.00 

45.2 ± 

0.00 

 GBM 0.16 

± 

0.01 

1.12 ± 

0.01 

0.93 ± 

0.01 

43.0 ± 

0.31 

 0.005 

± 

0.02 

1.25 ± 

0.01 

1.02 ± 

0.01 

45.7 ± 

0.53 

 RF 0.30 

± 

0.004 

1.03 ± 

0.003 

0.87 ± 

0.003 

41.4 ± 

0.11 

 0.060 

± 

0.01 

1.21 ± 

0.004 

1.02 ± 

0.003 

45.9 ± 

0.11 

 SVM 0.10 

± 

0.003 

1.16 ± 

0.002 

0.97 ± 

0.001 

44.0 ± 

0.07 

 0.037 

± 

0.002 

1.23 ± 

0.002 

1.02 ± 

0.003 

46.0 ± 

0.17 

ECM RPART 0.06 

± 

0.00 

15,445.1 

± 0.00 

12,876.4 

± 0.00 

49.8 ± 

0.00 

 0.03 

± 

0.00 

15,907.2 

± 0.00 

12,960.7 

± 0.00 

48.6 ± 

0.00 

 GBM 0.19 

± 

0.01 

14,295.4 

± 49.03 

11,911.7 

± 61.55 

47.9 ± 

0.2 

 0.05 

± 

0.01 

15,746.2 

± 114.52 

12,850.1 

± 99.34 

48.8 ± 

0.29 

 RF 0.32 

± 

0.004 

13,091.3 

± 36.39 

10,867.8 

± 37.12 

45.5 ± 

0.11 

 0.08 

± 

0.01 

15,493.9 

± 48.69 

12,926.1 

± 45.41 

49.3 ± 

0.15 

 SVM 0.14 

± 

0.003 

14,779.4 

± 21.68 

12,086.0 

± 23.37 

48.0 ± 

0.1 

 0.04 

± 

0.004 

15,862.0 

± 35.61 

13,236.8 

± 33.94 

50.0 ± 

0.14 

MV RPART 0.06 

± 

0.00 

10,964.0 

± 0.00 

8,989.3 

± 0.00 

49.1 ± 

0.00 

 0.04 

± 

0.00 

11,483.8 

± 0.00 

9,855.3 

± 0.00 

53.7 ± 

0.00 

 GBM 0.26 

± 

0.10 

9,678.7 ± 

694.56 

7,895.9 

± 614.51 

45.7 ± 

2.22 

 0.06 

± 

0.03 

11,426.8 

± 177.02 

9,724.4 

± 167.40 

52.6 ± 

1.14 

 RF 0.31 

± 

0.003 

9,360.8 ± 

21.22 

7,693.9 

± 17.48 

45.4 ± 

0.07 

 0.08 

± 

0.01 

11,257.3 

± 69.88 

9,704.1 

± 71.43 

53.3 ± 

0.30 
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 SVM 0.20 

± 

0.04 

10,123.8 

± 238.33 

8,024.8 

± 283.37 

45.2 ± 

1.1 

 0.07 

± 

0.02 

11,297.5 

± 91.38 

9,620.3 

± 76.18 

52.4 ± 

0.35 

1 LL = Length of life (year); LPL = Length of productive life (year); ECM = Lifetime cumulative energy-corrected 

milk (kg); MV = Lifetime cumulative milk value ($CAD). 
2 R2 = Coefficient of determination; RMSE = Root mean squared error; MAE = Mean absolute error; MAAPE = Mean 

arctangent absolute percentage error (Kim and Kim, 2016). 
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Connecting statement 3 

Animal outcomes were found to be linked with animal subsequent longevity, productivity, 

and profitability. A strong herd effect was also found, which highlighted the importance of farmers 

as decision-making agents. By choosing which practices to use, farmers are also responsible for 

deciding how to raise dairy animal. Early life management practices adopted during the rearing 

period build up to the conditions to which the calves are exposed, which could not only influence 

early life animal outcomes, but also be reflected in lifetime indicators of longevity, productivity, 

and profitability. The study described in the next chapter was carried out to explore this potential 

influence focusing on the management practices adopted by Quebec dairy herds and herd-level 

indicators of longevity, productivity, and profitability were analysed. 
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5.1. Abstract 

Improving the management of lactating cows to reduce the occurrence of health issues could result 

in increased cow longevity. Though a similar rationale could be extrapolated to calves, the 

potential long-term effect of early life management practices remains unknown. The objectives of 

this study were to characterize dairy farms based on their early life management practices and 

analyze the association between management practices and herd longevity, productivity, and 

profitability. Early life management practices regarding colostrum feeding (11 questions), milk 

feeding (9 questions), solid feed and weaning (13 questions), and housing (12 questions) were 

collected in Quebec (Canada) dairy farms using a questionnaire. The Dairy Herd Improvement 

(DHI) metrics of herd average length of productive life (LPL) and percentage of cows on third or 

greater lactation (3+ lactation) were used as longevity indicators while herd lifetime cumulative 

energy-corrected milk (ECM) and lifetime cumulative milk value were used as indicators of 

productivity and profitability, respectively. After handling and cleaning, there remained answers 

from 2,004 Quebec dairy farms obtained between February 2020 and February 2021 (WD1). The 

WD1 was merged with the DHI outcomes and contained data from 1,658 farms (WD2). Cluster 

analysis was performed using the WD1 to characterize farms based on their early life management 

practices. Cluster stability assessment was used to determine both the best clustering algorithm 

and number of clusters. Different machine learning algorithms were then trained using the WD2 

to evaluate the associations between DHI outcomes and early life management practices that best 

described the clusters. Multiple imputation was used to handle missing data and an 80:20 split ratio 

was used to create the training and validation data sets, respectively. Models were trained with the 

training data sets and using 5-fold cross-validation repeated 10 times. Two distinct clusters were 

identified: production-oriented farms (N = 1,285; 64%) were characterized by using powdered 
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milk replacer, either acidified or non-acidified, and to automatically feed calves housed in groups 

both before and after weaning. Longevity-oriented farms (N = 719; 36%) were characterized by 

not measuring colostrum Immunoglobulin G and using non-pasteurized or non-acidified milk 

(whole or waste) to feed their calves. Both colostrum and milk were fed using buckets without 

teats, and weaned calves were housed individually tied-up in stalls. In addition, practices adopted 

by production-oriented farms were associated with reduced longevity but increased productivity 

and profitability, whereas practices adopted by longevity-oriented farms were associated with 

increased longevity but reduced productivity and profitability. Our results highlighted that early 

life management practices are linked with herd outcomes of longevity, profitability, and 

productivity, but adopting the best practices is not necessarily associated with better herd 

outcomes. 

5.2. Introduction 

Cow longevity is a central component of dairy farming sustainability (Dallago et al., 2021). 

Higher longevity indicates a high proportion of mature cows in more profitable lactations, diluting 

the rearing costs through a longer period (Essl, 1998). Mature cows also produce more milk, which 

in turn reduces the environmental footprint of dairy farms (Benbrook et al., 2010, Grandl et al., 

2019). Though cow longevity is frequently determined by the farmers, since they are responsible 

for deciding when to cull a cow, such a decision is a consequence of underlying cow factors and 

of the farmer’s management style. The occurrence of diseases such as mastitis and lameness impact 

both animal productivity and profitability (Puerto et al., 2021a and 2021b), and they are important 

animal factors associated with culling decisions (Pinedo et al., 2010, CDIC, 2021a). However, 

heath issues can be treated, and the decision process between culling or treating is often not 

objective (Adriaens et al., 2020) and dependents upon the farmer’s production priorities (Rilanto 

et al., 2022). Therefore, cow longevity is a functional trait which has the potential to be maximized 

to improve the sustainability of dairy farming. 

Improving management practices to reduce the occurrence of health problems could be a 

possibility to improve cow longevity. The associations between management practices and the 

occurrence of health issues have been extensively studied. The occurrence of mastitis, for example, 

is associated with hygiene practices. Increasing the cleaning frequency in dairy barns improves the 

hygiene scores for the udder (DeVries et al., 2012), contributing to a decrease in somatic cell 
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counts (Schreiner and Ruegg, 2003, Reneau et al., 2005) and a reduction of clinical mastitis 

(Santman-Berends et al., 2016). On the other hand, concrete floors (Somers et al., 2003, Vanegas 

et al., 2006) and bed comfort (McPherson and Vasseur, 2020) are some of the risk factors 

associated with the occurrence of lameness. 

Since improving the management of lactating cows could reduce the occurrence of health 

issues and potentially increase cow longevity, it would not be unreasonable to argue that early life 

management practices used in raising calves could have a similar ramification. However, 

associations between early life management practices and animal health and performance are often 

analyzed in the short-term. For instance, calves receiving 2 colostrum meals have a greater average 

daily gain (ADG) before weaning and are less likely to have failure of transfer of passive immunity 

(FTP) and to be treated for diseases compared to calves receiving 1 colostrum meal (Abuelo et al., 

2021). A few studies indicate the existence of long-term effects of some rearing factors on cow 

longevity such as the age when calves eat a high amount of concentrate feeding (Heinrichs and 

Heinrichs, 2011), the type of heifer housing (Hultgren and Svensson, 2009), and the age and body 

condition score at first breeding (Hultgren et al., 2011). The long-term link between a broader 

range of early life management practices, such as colostrum feeding and FTP, and adult cow 

performance has not been demonstrated. 

Therefore, the objectives of this study were to characterize dairy farms based on their early 

life management practices and to analyze the association between management practices and herd 

longevity, productivity, and profitability. We hypothesized that the adoption of early life 

management practices varies between herds and that these practices are associated with farm 

outcomes. 

5.3. Material and methods 

A cross-sectional study was conducted using data on early life management practices as 

well as Dairy Herd Improvement (DHI) indicators of longevity, productivity, and profitability 

from Quebec (Canada) dairy farms. All statistical analyses were carried out using the R statistical 

software, version 4.1.1 (https://www.r-project.org/). The R code that supports the findings of this 

study can be found in the following public GitHub repository: 

https://github.com/CowLifeMcGill/early_pract_longevity. 
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5.3.1. Datasets 

Early life management practices were retrospectively collected at farm level using a 

questionnaire. The questionnaire (Annex 5.1) comprised 45 questions and sub-questions divided 

into 4 groups of management practices: colostrum feeding (11 questions), milk feeding (9 

questions), solid feed and weaning (13 questions), and housing (12 questions). Field technicians 

from Lactanet (Sainte-Anne-de-Bellevue, Quebec, Canada), the Canadian DHI agency, conducted 

the survey over phone calls on 2,087 dairy farms from Quebec (Canada), between February 2020 

and February 2021. For each question, farmers were asked to consider the majority of the female 

calves (75%) rather than exceptions. The answers (data) were qualitative nominal (e.g., multiple 

choice), qualitative ordinal (e.g., scale of answers from 1 = less than 50 days to 4 = more than 90 

days), or numeric (e.g., liters of milk fed per day). 

The DHI indicators of milk production (kg), fat production (kg), protein production (kg), 

and milk value ($CAD) as well as the longevity metrics of length of productive life (LPL; years) 

and percentage of animals on third or greater lactations (3+ lactation) were provided by Lactanet. 

Productions and milk value were provided for 209,749 animals from 3,242 farms while LPL and 

3+ lactation were provided for 64,041 animals from 3,242 farms and 32,937 animals from 3,240 

farms, respectively. All DHI indicators were extracted for a 12-month period prior to the date when 

an on-farm welfare assessment was conducted (between December 2015 and December 2019) as 

part of the Animal Care module of the proAction® Quality Assurance Program (DFC, 2021). 

5.3.2. Data handling and cleaning 

Questionnaires from organic farms (N = 70) and questions describing how the management 

of male calves differed from female (N = 2) were excluded. The content of fat (%) and protein (%) 

of milk replacer (Questions 7.1.a and 7.1.b., respectively) had a high percentage of missing values, 

since not all farms use powdered milk replacer. The value zero was imputed to farms that do not 

use powdered milk replacer (N = 723). In addition, farms that do not use powdered milk replacer 

were not differentiated on the binary (i.e., yes or no) question regarding milk replacer being 

medicated (Questions 7.1.c). Therefore, the new level “No milk replacer” was used to indicate 

such differentiation. Since frequency for adding bedding was answered on a daily, weekly, or 

monthly basis, all answers were standardized to a monthly frequency. One farm was excluded 

since they answered that no colostrum was offered to calves. Identified erroneous answers for how 
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much colostrum was offered in the first meal (Question 3.4.1; N = 2) were replaced by missing 

data. 

The following additional changes were made because the frequency of some responses was 

low. The answers “From 7 to 12 hours” (N = 84) and “More than 12 hours” (N = 7) for the question 

“How many hours after birth does the calf receive it’s first meal?” (Question 2) were combined 

into the new level “More than 7 hours”. Next, the milk feeding systems (Question 5) “Group bucket 

with teats” (N = 46), “Floating teat” (N = 10), “Group bucket” (N = 6), and “Nursing cow” (N = 

4) were combined to create the level “Other”. Calf milk state (Question 7) “Non-pasteurized / 

Acidified” (N = 8) and “Pasteurized / Acidified” (N = 1) were combined into the new level 

“Others”. Lastly, weaning ages (Question 12) “From 71 to 90 days” (N = 220) and “More than 90 

days” (N = 43) were grouped into the new level “More than 70”. 

Herd average 3+lactation and LPL as well as cumulative milk production and milk value 

were calculated based on animal level data. Animals with negative LPL were removed (N = 33). 

Next, animals with either missing (N = 12,515) observations on production (milk, fat, and protein) 

and milk value indicators were excluded. For animals that moved between herds, both productions 

and milk value were associated with the herd in which the cow ended each of her lactations for the 

calculation of the cumulative milk, fat, protein, and milk value. Cumulative energy-corrected milk 

(ECM; kg) was then calculated as ECM (lifetime cumulative kg) = 12.55 × fat (lifetime cumulative 

kg) + 7.39 × protein (lifetime cumulative kg) + 0.2595 × milk yield (lifetime cumulative kg). Herd 

averages were calculated for 3+lactation, LPL, lifetime cumulative ECM, and lifetime cumulative 

milk value. 

5.3.3. Working data sets 

Two working data sets were used for statistical analysis. The working data 1 (WD1) was 

composed of the questionnaire on early life management practices. After handling and cleaning, 

there remained data from 2,004 Quebec dairy farms that answered the survey between February 

2020 and February 2021. The percentage of missing data (i.e., questions without answers) ranged 

from 0.1% (N = 2) on when calves are removed after birth to 16.0% (N = 320) on age when 

fermented feed is fist offered. No further steps were necessary to handle the missing data in the 

WD1 as described in the data analyses section. 
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The working data 2 (WD2) was created by merging WD1 with DHI outcomes based on 

herd ID. After the merge, data from farms with the level “Other” for both colostrum feeding system 

(Question 3; N = 6) and colostrum source (Question 3.2; N = 3) questions as well as “Frozen 

pasteurized” (N = 3) for colostrum state (Question 3.2.1) were removed due to their low frequency. 

The final WD2 contained data from 1,658 farms with a percentage of missing data (i.e., questions 

without answers) ranging from 0.1% (N = 1) on when calves are removed after birth to 15.4% (N 

= 255) on age when fermented feed is fist offered. Multiple imputation was used to handle missing 

data in the WD2 instead of case wise deletion to maximize the number of observations. The 

function mice from the package mice (van Buuren and Groothuis-Oudshoorn, 2011) was used to 

create 10 multiple imputed versions of the data using the random forest method. In short, for each 

early life management practice (i.e., either numeric or categorical) with missing data, the 

remaining practices were used to create a random forest model to impute the missing values. The 

distribution of the imputed data was visually compared to the data with non-missing values. In 

addition to multiple imputation being a better approach compared to other methodologies in order 

to increase power and accuracy of the data analysis(van Buuren, 2019), random forest is able to 

handle complex interactions between variables even in conditions where there is a high number of 

missing data (Tang and Ishwaran, 2017). 

5.3.4. Data analyzes 

5.3.4.1. Cluster analysis 

Cluster analysis was performed to characterize farms based on their early life management 

practices using the WD1. The Gower distance (Gower, 1971) was used to calculate the 

dissimilarity matrix since there were both qualitative and numerical type of answers. Though there 

were missing data on WD1, the function daisy from the R package cluster (Maechler et al., 2021), 

which was used to calculate the dissimilarity matrix, automatically handled missing data by not 

including pairwise missing values in the calculation of the dissimilarities matrix. Clustering 

algorithms and the number of clusters were both defined based on cluster quality assessment. 

Cluster quality was evaluated based on the stability of the hierarchical clustering with Ward’s 

minimum variance linkage, partitioning around medoids (PAM), and normal mixture model-based 

clustering algorithms. Cluster stability was assessed based on bootstrapped Jaccard mean distance 

obtained after 100 resamples and with cluster number varying from two to seven (Supplementary 



112 

Table 5.1). This was done using the function clusterboot from the R package fpc (Hennig, 2020). 

The cluster algorithm and number of clusters with the highest overall stability were used for further 

analysis. 

Clusters were described following the methodology described by Husson et al. (2017) and 

using the function catdes from the R package FactoMineR (Sebastien Le et al., 2008). In short, we 

used the v-test as well as chi-squared test and one-way ANOVA to describe the clusters. The v-

test provides a descriptive measure of deviation between practices in the clusters compared to the 

overall distribution, in which the higher the value, the greater the deviation (Husson et al., 2017). 

Therefore, the v-test was used to identify and rank the top 10 qualitative and numerical early life 

management practices that were statistically significant according to the chi-squared test (α < 0.05) 

and the one-way ANOVA (α < 0.05) respectively, to describe each cluster separately. These were 

also further used to analyze the association between early life management practices and herd 

outcomes based on machine learning algorithms. 

5.3.4.2. Machine learning 

The associations between early life management practices and herd longevity (i.e., LPL, 

3+Lactation), lifetime cumulative ECM, and lifetime cumulative milk value were analyzed using 

the machine-learning algorithms recursive partitioning and regression tree (RPART), gradient 

boosting machine (GBM), random forest (RF), and support vector machine (SVM) with a radial 

basis kernel. For each of the imputed versions of the data, an 80:20 ratio was used to create the 

training and validation data sets, respectively, based on the herd outcome (i.e., LPL, 3+Lact, 

lifetime cumulative ECM, or lifetime cumulative milk value) distribution. All models were trained 

with 5-fold cross-validation repeated 10 times on the training data sets using the caret R package 

(Kuhn, 2020) by specifying the methods rpart, gbm, ranger, and svmRadialSigma, respectively 

for the algorithms RPART, GBM, RF, and SVM. Hyperparameters for these models were tuned 

using adaptive resampling, which resample the hyperparameter tuning grid by concentrating on 

values closer to the identified optimal setting (Kuhn, 2014, 2020). The models were evaluated 

based on the coefficient of determination (R2), root mean squared error (RMSE), mean absolute 

error (MAE), and mean arctangent absolute percentage error (MAAPE; Kim and Kim, 2016) 

calculated using the validation data sets. The best model was defined as having the highest R2 and 

the lowest RMSE, MAE, and MAAPE averages across all the imputed versions of the data. 



113 

Using the best model, variable importance was estimated while accumulative local effect 

(ALE) was used to describe the association between the outcomes and the top 5 most important 

early life management practices. Variable importance was calculated using permutation. In short, 

this is a model agnostic approach that measures the prediction error of the model after shuffling 

the values of the early life indicators, which changes the relationship between the outcome and 

early life indicators. Shuffling the values of important early life indicators would result in an 

increase of the error while the error would remain unchanged for early life indicators that are not 

important (Molnar, 2019). On the other hand, ALE indicates the average influence of the early life 

indicators in predicting the outcome variables (Molnar, 2019). Variable importance and ALE were 

estimated using the functions FeatureImp and FeatureEffect respectively, from the R package iml 

(Molnar et al., 2018) and based on each of the complete imputed data sets (i.e., training and 

validation data set combined). Average and standard deviation were calculated to aggregate the 

results across all imputed version of the data. 

5.4. Results 

5.4.1. Early life management practice clusters 

Farms were grouped into two stable clusters based on their adoption of early life 

management practices using the normal mixture model-based clustering algorithm (Figure 5.1). 

Farms in cluster 1 (production-oriented; N = 1,285 farms), composed of 64% of the farms, were 

characterized as adopting more modern early life practices. Farms in this cluster used powdered 

milk replacer, either non-acidified or acidified, through an automatic feeding system to feed their 

calves, which in turn were housed in groups both before and after weaning (Table 5.1). On the 

other hand, farms in cluster 2 (longevity-oriented; N = 719 farms) were mainly characterized by 

adopting more traditional practices. They used non-pasteurized or non-acidified milk (whole or 

waste) to feed their calves, both colostrum and milk were fed using buckets without teats, they did 

not measure the concentration of Immunoglobulin G in the colostrum, and weaned calves were 

housed individually tied-up in stalls (Table 5.2). Overall, farms in cluster 2 fed calves less and 

offered both water and concentrate feeding later than farms in cluster 1 (Table 5.3). 
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Figure 5.1. Multidimensional scaling (MDS) visualization of clusters based on early life management practices from 

2,017 Quebec – Canada dairy herds. Clusters were created using mixed normal model-based algorithm since it 

produced more stable results. Herds are represented by the points and clusters are represented by a combination of 

color and point shape. Cluster 1 (production-oriented) = 1,285 herds, Cluster 2 (longevity-oriented) = 719 herds. 

 

Table 5.1. Top qualitative early life management practices that best describe the production-oriented Quebec – Canada 

dairy farms on cluster 1 (N = 1,285). Practices were selected based on the v-test and chi-squared test (α < 0.05). 

Early life management practice Overall1 V-test Cla/Mod2 Mod/Cla3 P-value4 

Medicated milk replacer = No 59.2 +Inf 100.0 92.4 < 0.001 

Milk state = Non-acidified 51.4 +Inf 100.0 80.2 < 0.001 

Milk source = Powdered milk replacer 64.1 +Inf 100.0 100 < 0.001 

Milk state = Partially acidified 7.6 11.7 100.0 11.8 < 0.001 

Milk feeding system = Automatic 11.7 11.6 94.5 17.3 < 0.001 

Non-weaned housing = Group 39.0 9.4 76.6 46.5 < 0.001 

Milk state = Acidified 5.0 9.3 100.0 7.8 < 0.001 

Medicated milk replacer = Yes 4.9 9.2 100.0 7.6 < 0.001 

Non-weaned housing detail = Pen 38.2 8.8 76.0 45.3 < 0.001 

Weaned housing = Group 67.2 6.8 69.3 72.6 < 0.001 
1 Proportion of farms adopting each one of the listed early life management practices based on all 2,004 farms. 
2 Proportion of farms adopting each one of the listed early life management practices in cluster 1 out of the overall 

number of farms that adopt the same practice (e.g., 100.0% out of 2,004 × 34.3% ≈ 1,186 farms that feed calves with 

non-medicated milk replacer are in cluster 1). 
3 Proportion of farms in Cluster 1 adopting each one of the listed early life management practices out of the number 

of farms in cluster 1 (e.g., 92.4% out of 1,285 farms in cluster 1 feed calves with no-medicated milk replacer). 
4 Overall vs cluster (α < 0.05). 
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Table 5.2. Top qualitative early life management practices that best describe the longevity-oriented Quebec – Canada 

dairy farms on cluster 2 (N = 719). Practices were selected based on the v-test and chi-squared test (α < 0.05). 

Early life management practice Overall1 V-test Cla/Mod2 Mod/Cla3 P-value4 

Medicated milk replacer = No milk replacer 35.9 +Inf 100.0 100.0 < 0.001 

Milk state = Non-pasteurized / non-acidified 34.2 +Inf 100.0 95.3 < 0.001 

Milk source = Whole milk 33.1 +Inf 100.0 92.2 < 0.001 

Milk source = Waste milk 2.8 10.6 100.0 7.8 < 0.001 

Milk feeding system = Individual buckets without 

teats 

23.9 9.5 54.3 36.2 < 0.001 

Weaned housing = Individual tied-up 21.6 7.0 50.3 30.3 < 0.001 

Milk state = Pasteurized / Non-acidified 1.3 6.6 96.3 3.6 < 0.001 

Weaned housing detail = Stall 19.0 6.2 49.9 26.4 < 0.001 

Colostrum IgG assessment = Not evaluated  69.0 6.1 40.2 77.3 < 0.001 

Colostrum feeding system = Buckets without teats 8.7 5.9 56.9 13.8 < 0.001 
1 Proportion of farms adopting each one of the listed early life management practices based on all 2,017 farms. 
2 Proportion of farms adopting each one of the listed early life management practices in cluster 2 out of the overall 

number of farms that adopt the same practice (e.g., 100% out of 719 × 35.9% ≈ 258 farms that do not feed calves with 

powdered milk replacer are in cluster 2). 
3 Proportion of farms in Cluster 2 adopting each one of the listed early life management practices out of the number 

of farms in cluster 2 (e.g., 100%% out of 719 farms in cluster 2 do not feed calves with powdered milk replacer). 
4 Overall vs cluster (α < 0.05). 

 

Table 5.3. Top numeric early life management practices that best describe Quebec – Canada dairy farms on cluster 1 

(N = 1,285) and cluster 2 (N = 719). Practices were selected based on the v-test and one-way ANOVA (α < 0.05). 

Early life management practice Overall1 

Cluster 1 

Production-oriented 

Cluster 2 

Longevity-oriented 

v-

test 

Mean ± 

SD2 

p-

value3 

v-

test 

Mean ± 

SD2 

p-

value3 

Milk replacer protein (%) 15.2 ± 

11.84 

43.1 23.8 ± 

4.01 

< 0.001 -43.1 0.0 ± 0.00 < 0.001 

Milk replacer fat (%) 12.0 ± 9.49 42.2 18.6 ± 

3.97 

< 0.001 -42.2 0.0 ± 0.00 < 0.001 

Daily feeding (L) 8.4 ± 2.28 9.4 8.8 ± 2.33 < 0.001 -9.4 7.8 ± 2.05 < 0.001 

Starter protein (%) 20.6 ± 2.10 2.2 20.6 ± 

1.90 

0.03 -2.2 20.4 ± 2.4 0.03 

Age water is first offered (day) 7.4 ± 10.47 -3.9 6.7 ± 9.61 < 0.001 3.9 8.6 ± 

11.77 

< 0.001 

Frequency of adding bedding 

(month) 

33.2 ± 

22.42 

-4.3 31.5 ± 

22.41 

< 0.001 4.3 36.1 ± 

22.15 

< 0.001 

Age concentrate feeding is first 

offered (day) 

9.2 ± 9.73 -5.3 8.4 ± 9.03 < 0.001 5.3 10.8 ± 

10.68 

< 0.001 

1 Mean ± standard deviation calculated based on all farms. 
2 Mean ± standard deviation calculated based on farms in this clusters. 
3 Overall vs cluster (α < 0.05). 

 

5.4.2. Longevity, productivity, and profitability 

Descriptive statistics for the herd DHI outcomes evaluated in this study are presented in 

Table 5.4. Overall, the prediction errors were within acceptable levels. The highest MAAPE was 

observed for LPL (17.5%) and the lowest was observed for both ECM (10.5%)and milk value 

(10.5%) in the validation data set (Supplementary Table 5.2). The LPL was best predicted by 
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random forest whereas GBM models had the best performance carrying out prediction of 

3+lactation, cumulative ECM, and cumulative milk value (Supplementary Table 5.2). Therefore, 

these models were used to assess the associations between early life management practices and 

herd longevity, productivity, and profitability. 

 

Table 5.4. Descriptive statistics of longevity, production, and profitability considered in this study from 1,658 Quebec 

– Canada dairy farms. 

Herd outcome Mean Standard deviation Minimum Maximum 

Length of productive life (years) 3.3 0.76 1.5 7.9 

3+ lactation (%)1 41.5 8.12 9.8 75.6 

ECM (kg)2 11,300.4 1,574.72 4,244.0 19,010.5 

Milk value ($CAD)3 7,916.4 1,148.48 1,393.2 15,212.0 
1 Herd average percentage of cows on third or greater lactations. 
2 Herd average animal lifetime cumulative energy-corrected milk. 
3 Herd average animal lifetime cumulative milk value. 

 

The importance of the early life management practices in predicting herd LPL, 3+lactation, 

lifetime cumulative ECM, and lifetime cumulative milk value is depicted in Figure 5.2. All 

practices had a small importance on average. However, calf milk feeding system was the most 

important practice in predicting both longevity outcomes, while details about housing of calves 

before weaning and age when concentrate feed was first offered were the most important practices 

associated with both lifetime cumulative ECM and lifetime cumulative milk value. 
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Figure 5.2. The importance (x axis) of indicator variables (y axis; from highest to lowest) to predict herd length of 

productive life (LPL; A), percentage of cows on third or greater lactation (3+lactation; B), energy-corrected milk 

(ECM; C), and milk value (D). Mean (•) and standard deviation (bar) were calculated across all 10 multiple imputed 

versions of the data. Variable importance indicates the increase in model error prediction. It is measured as the ratio 

of root mean squared error of the original model and after shuffling the values of the indicators (Molnar, 2019). 

 

The ALEs between the top important qualitative early life management practices and the 

herd outcomes evaluated in this study are shown in Table 5.5. Feeding colostrum with a bottle or 

through an esophageal tube were both associated with decreased LL. Milk feeding calves using 

individual bucket with teats was associated with high both LPL and 3+ lactation while free feeding 

in a feed line was associated with high lifetime cumulative milk value. Regarding the housing of 

non-weaned calves, using hutch was the only practice associated with high lifetime cumulative 

ECM and lifetime cumulative milk value, whereas pen was the only housing associated with a 

reduction on LL. On the other hand, housing weaned calves grouped in a pen was the only post-

weaning housing type associated with a high lifetime cumulative ECM. 
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Table 5.5. Accumulated local effect (ALE) of early life management practices on length of productive life (LPL), 

percentage of cows on third or greater lactation (3+ lactation), lifetime cumulative energy-corrected milk (ECM), and 

milk value. Means ± standard deviations were calculated across all 10 multiple imputed versions of the data. Ranking 

columns indicates how important each practice was in predicting the outcome. 

Early life management 

practice 

LPL 

(year) 

3+ Lactation 

(%) 

ECM 

(kg) 

Milk value 

($CAD) 

Rank ALE Rank ALE Rank ALE Rank ALE 

Milk feeding system 1º  1º    3º  

 Automatic  -0.03 ± 

0.002 

 -0.27 ± 

0.053 

   -11.7 ± 

1.01 

 Bottle  -0.004 ± 

0.002 

 -0.14 ± 

0.109 

   -11.7 ± 

1.01 

 Feed line (free feed)  -0.04 ± 

0.004 

 -0.27 ± 

0.053 

   295.6 ± 

20.23 

 Individual bucket with 

teats 

 0.02 ± 

0.001 

 0.43 ± 

0.037 

   -11.7 ± 

1.01 

 Individual bucket 

without teats 

 -0.01 ± 

0.001 

 -0.52 ± 

0.064 

   -11.7 ± 

1.01 

 other  0.003 ± 

0.007 

 -0.27 ± 

0.053 

   -69.5 ± 

1.33 

Milk state 2º  4º      

 
Acidified 

 -0.04 ± 

0.005 

 -0.1 ± 

0.028 

    

 
Non-acidified 

 -0.03 ± 

0.005 

 0.0001 ± 

0.028 

    

 Non-pasteurized / non-

acidified 

 0.06 ± 

0.009 

 -0.1 ± 

0.028 

    

 
Other 

 -0.06 ± 

0.008 

 -0.1 ± 

0.028 

    

 
Partially acidified 

 -0.04 ± 

0.006 

 0.54 ± 

0.119 

    

 Pasteurized / non-

acidified 

 -0.06 ± 

0.011 

 -0.1 ± 

0.028 

    

Colostrum feeding system 3º        

 
Bucket with teats 

 0.01 ± 

0.001 

      

 
Bucket without teats 

 0.02 ± 

0.002 

      

 
Esophageal tube 

 -0.04 ± 

0.004 

      

 
Feeding on mother 

 0.05 ± 

0.003 

      

 
With a bottle 

 -0.004 ± 

0.0005 

      

Non-weaned housing 

detail 

4º    1º  2º  

 Box  0.02 ± 

0.003 

   -9.9 ± 

3.46 

 -9.9 ± 

2.83 

 Hutch  0.03 ± 

0.003 

   419.1 ± 

23.58 

 272.9 ± 

26.94 

 Pen  -0.04 ± 

0.004 

   -9.9 ± 

3.46 

 -9.9 ± 

2.83 

 Stall  0.03 ± 

0.005 

   -16.1 ± 

17.9 

 -73.5 ± 

2.45 

 Wall  0.02 ± 

0.004 

   -398.1 ± 

20.73 

 -174.6 ± 

13.29 
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Colostrum IgG 

assessment 

5º      5º  

 Colostrometer  -0.006 ± 

0.002 

     44.0 ± 

6.27 

 Not evaluated  0.002 ± 

0.001 

     -25.9 ± 

2.56 

 Other  -0.075 ± 

0.010 

     44.0 ± 

6.27 

 Refractometer  -0.008 ± 

0.002 

     76.8 ± 

5.94 

 Visual evaluation  0.005 ± 

0.002 

     44.0 ± 

6.27 

Weaned housing detail     4º    

 Box      -63.4 ± 

9.70 

  

 Hutch      -63.4 ± 

9.70 

  

 Pen      33.8 ± 

5.17 

  

 Stall      -63.4 ± 

9.70 

  

 Wall      -63.4 ± 

9.70 

  

 

Small ALEs were also found between the quantitative early life management practices of 

high importance and the herd outcomes evaluated in this study. Daily feeding calves with a low 

milk volume as well as increasing the age when both concentrate feed and water were first offered 

to calves were associated with a higher 3+ lactation (Figure 5.3). On the other hand, daily feeding 

calves with a high milk volume was found to be associated with high lifetime cumulative ECM 

(Figure 5.4). Offering concentrate feed at a young age and using milk replacer with high protein 

percentage were both associated with high lifetime cumulative ECM (Figure 5.4) and lifetime 

cumulative milk value (Figure 5.5). 
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Figure 5.3. The accumulative local effect (ALE) of the early life management practices (A) daily feeding amount, (B) 

age when concentrate feed is first offered, and (C) age when water is first offered on predicting the herd percentage 

cows on third or greater lactation (3+lactation) across all 10 multiple imputed versions of the data (grey lines) followed 

by a loess trend line (blue). Practices shown were selected based on their importance. 

 

 
Figure 5.4. The accumulative local effect (ALE) of the early life management practices (A) age when concentrate 

feed is first offered, (B) protein content concentration of milk replacer, and (C) daily feeding amount on predicting 

herd cumulative energy-corrected milk (ECM) across all 10 multiple imputed versions of the data (grey lines) followed 

by a loess trend line (blue). Practices shown were selected based on their importance. 
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Figure 5.5. The accumulative local effect (ALE) of the early life management practices (A) age when concentrate 

feed is first offered and (B) protein content concentration of milk replacer on predicting herd cumulative milk value 

across all 10 multiple imputed versions of the data (grey lines) followed by a loess trend line (blue). Practices shown 

were selected based on their importance. 

 

5.5. Discussion 

Dairy farms were characterized based on their early life management practices using 

cluster analysis, which allowed to identify two stable clusters of farms that adopted different sets 

of early life management practices. Next, associations between practices that best described the 

cluster of farms and herd longevity (i.e., LPL and 3+ lactation), productivity (i.e., cumulative milk 

production), and profitability (i.e., cumulative milk value) were evaluated using machine learning 

models. 

Early life management practices associated with feeding and housing mostly characterized 

the two clusters of farms identified in this study. Milk source was the main difference between 

them. While the cluster with most farms (64%) reported the use of powdered milk replacer, the 

remaining farms used either whole or waste milk. Cost, simplicity, and perceived calf performance 

are among the factors considered by farmers to choose between feeding practices (Vasseur et al., 

2010, Palczynski et al., 2020). Event though most of the farms used powdered milk replacer, 

feeding whole milk has been shown to promote better growth (Godden et al., 2005), even when 

adjusting for the gross nutrient composition of both sources (Lee et al., 2009). The daily volume 

fed to calves in clusters 1 and 2 differed compared to the overall average, but they were both 

similar to the recommendations outlined in the Canadian Code of Practice (DFC & NFACC, 2009). 
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Housing conditions were also important in differentiating farms from both clusters, in which group 

housing was adopted by cluster 1 while individual housing was used by cluster 2. Housing animals 

in small groups have a beneficial effect on animal welfare, by promoting the expression of positive 

behaviors (Barry et al., 2020), and improve animal performance (Svensson and Liberg, 2006). 

A clear pattern was found between the practices that best described the clusters and the 

outcomes of the farms in each respective cluster. Farms on cluster 1 were characterized as 

production-oriented since the management practices adopted by them were associated with an 

overall increase in both production and profitability but a reduction of herd longevity. The opposite 

was found for farms on cluster 2, which were characterized as longevity-oriented since their 

practices were associated with increased longevity, but reduced production and reduced 

profitability. Though rarely considered, the long-term effect of early life management practices on 

herd longevity, productivity, and profitability have also been shown in previous studies. For 

instance, eating high amounts of concentrate feed at an older age was associated with a greater 

longevity, but also higher lifetime milk, fat, and protein production (Heinrichs and Heinrichs, 

2011). Other early life management practices such as heifer housing (Hultgren and Svensson, 

2009) as well as age and body condition score at first breeding (Hultgren et al., 2011) were 

associated with the risk of culling and lifetime net milk revenue, respectively. However, culling, 

which dictates cow longevity as well as lifetime cumulative milk production and milk value, is a 

management decision often carried out by the farmer considering animal performance ranked 

within-herd (Essl, 1998). Such decision is often subjected to farmers’ production priorities (Rilanto 

et al., 2022) and based on current lactation events alone (Beaudeau et al., 2000). Therefore, rather 

than showing causal effects, our results depict which early life management practices are often 

adopted by herds that are either production-oriented – higher relative production, but lower herd 

longevity – or longevity-oriented – lower relative production, but higher herd longevity. 

Increasing dairy cow longevity is a strategy to achieve an economically sustainable dairy 

farm, mainly because dairy cows become profitable starting from the third lactation due to rearing 

costs (Horn et al., 2012, Delgado et al., 2017, Habel et al., 2021). Contrary to this, our results 

indicated that herds with higher animal lifetime cumulative ECM and milk value were also 

associated with reduced longevity. Milk production is one of the main reasons for culling (CDIC, 

2021a), which in turn influences herd longevity. For instance, the occurrence of even a single case 

of mastitis and lameness are associated with a reduction on milk production (Puerto et al., 2021a, 
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b) and, consequently, milk value due to the amount of sellable milk. However, milk value does not 

consider costs associated with the treatment of health issues as well as reproduction failures 

(Delgado et al., 2017), and does not fully reveal the state of cow profitability. In addition, high 

yielding animals are more likely to develop health issues (Fleischer et al., 2001), which will have 

a negative effect on milk production (Rushen et al., 2008). The reduced production would still 

remain similar to cows with a lower relative yield but that were not affected by any disease (Puerto 

et al., 2021a, b). Therefore, the associations between management practices and herd longevity, 

productivity, and profitability found in our study may reflect that production-oriented farms have 

high yielding animals that produce more milk, resulting in a higher lifetime cumulative ECM and 

milk value, despite the shorter longevity compared to longevity-oriented farms. 

The present study focused on early life management practices and indicators of longevity, 

productivity, and profitability from dairy herds enrolled with the Canadian DHI agency. Though 

about 64% (3,028 farms) of Quebec (Canada) dairy herds are enrolled in milk recording programs 

(CDIC, 2021b, c), the surveyed farms may not be representative of the whole province. More 

specifically, herds with automatic milking system (AMS) are often not part of DHI programs since 

they may chose to rely on the AMS measurements already available. Costs associated with health 

events are important to fully assess the profitability of a dairy farm on top of milk value (Delgado 

et al., 2017). Unfortunately, these are often not quantified in DHI records as the methodology for 

such quantification may not be straightforward since it must consider the milk losses and disease 

severity as well as treatment-associated expenditures, which could come from different databases 

(Dolecheck and Bewley, 2018). Additionally, our study focused on herd-level outcome indicators. 

However, cow-level factors may account for as much as 70% of the profitability measured as net 

lifetime milk revenue (i.e., milk value minus estimated rearing expenses and estimated feed costs), 

while the remaining 30% is accounted for farm-level factors (Hultgren et al., 2011). 

5.6. Conclusion 

Dairy farms were characterized as production-oriented or longevity-oriented based on their 

early life management practices and the associations between practices and the farm outcomes of 

longevity (i.e., LPL and 3+ lactation), productivity (i.e., lifetime cumulative ECM), and 

profitability (i.e., lifetime cumulative milk value). Production-oriented farms were mainly 

described by using powdered milk replacer to automatically feed calves housed in groups before 
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and after weaning. These management practices were associated with an overall increased 

productivity and profitability but reduced longevity. On the other hand, longevity-oriented farms 

did not evaluate colostrum IgG concentration, fed calves with either whole or waste non-

pasteurized/non-acidified milk, and housed weaned calves individually tied up in stalls. In turn, 

these practices were associated with increased longevity but reduced productivity and reduced 

profitability. Our results highlighted that early life management practices are linked with herd 

outcomes of longevity, profitability, and productivity, but the adoption of the best practices is not 

necessarily associated with better herd outcomes.  
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5.8. Supplementary material 

Supplementary Table 5.1. Bootstrap stability assessment of up to 7 clusters obtained after 100 resampling runs of 

the clustering algorithms hierarchical with Ward’s minimum variance method, partitioning around medoids (PAM), 

and normal mixture model-based. Overall and cluster-wise stable results are bolded. 

Clustering algorithm 

Jaccard bootstrap mean distance1 

Overall2  Cluster 

 1 2 3 4 5 6 7 

Hierarchical 0.999  1.00 1.00      

0.922  0.87 1.00 0.90     

0.807  0.87 0.91 0.71 0.75    

0.659  0.87 0.51 0.80 0.81 0.31   

0.761  0.87 0.78 0.75 0.80 0.62 0.74  

0.754  0.88 0.83 0.72 0.79 0.60 0.73 0.74 

PAM 0.978  0.98 0.97      

0.853  0.81 0.98 0.77     

0.693  0.62 0.90 0.72 0.53    

0.638  0.59 0.73 0.72 0.61 0.54   

0.622  0.57 0.71 0.63 0.67 0.61 0.54  

0.583  0.56 0.66 0.64 0.61 0.55 0.54 0.52 

Normal mixture model-

based 

1.000  1.00 1.00      

0.956  0.94 1.00 0.93     

0.877  0.83 0.74 0.99 0.95    

0.645  0.82 0.71 0.60 0.61 0.49   

0.706  0.80 0.71 0.60 0.75 0.52 0.87  

0.633  0.69 0.64 0.43 0.67 0.66 0.54 0.79 
1 Below 0.60: cluster should not be trusted; between 0.60 and 0.75: indication of patterns in the data, but cluster 

membership is doubtful; 0.75 or more: cluster is stable; 0.85 and above: cluster is highly stable (Hennig, 2020). 
2 Calculated as the average of the Jaccard bootstrap mean distances. 
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Supplementary Table 5.2. Prediction performance of recursive partitioning and regression tree (RPART), gradient 

boosting machine (GBM), random forest (RF), and support vector machine (SVM) with a radial basis kernel models 

on each of the outcomes evaluated. Performance is shown both on training and validation data sets. Means ± standard 

deviations were calculated across all 10 multiple imputed versions of the data. Best results within outcome, data set, 

and metric are bolded. 

Outcome1 Model Training2  Validation2 

R2 RMSE MAE MAAPE  R2 RMSE MAE MAAPE 

LPL RPART --- 0.76 ± 

0.0001 

0.59 ± 

0.0001 

18.0 ± 

0.0001 

 --- 0.75 ± 

0.0001 

0.58 ± 

0.0001 

17.5 ± 

0.0001 

 GBM 0.04 ± 

0.002 

0.74 ± 

0.0004 

0.57 ± 

0.0004 

17.6 ± 

0.01 

 0.02 ± 

0.002 

0.75 ± 

0.0007 

0.58 ± 

0.001 

17.4 ± 

0.04 

 RF 0.48 ± 

0.073 

0.67 ± 

0.0128 

0.52 ± 

0.0098 

16.0 ± 

0.28 

 0.03 ± 

0.003 

0.74 ± 

0.001 

0.57 ± 

0.001 

17.3 ± 

0.03 

 SVM 0.05 ± 

0.001 

0.74 ± 

0.0005 

0.56 ± 

0.0002 

16.7 ± 

0.01 

 0.01 ± 

0.001 

0.76 ± 

0.0004 

0.57 ± 

0.001 

16.8 ± 

0.02 

3+ 

Lactation 

RPART --- 8.16 ± 

0.057 

6.30 ± 

0.041 

15.8 ± 

0.09 

 --- 7.88 ± 

0.07 

6.21 ± 

0.04 

15.4 ± 

0.09 

 GBM 0.03 ± 

0.001 

8.08 ± 

0.003 

6.22 ± 

0.005 

15.6 ± 

0.01 

 0.0009 

± 

0.0008 

7.90 ± 

0.01 

6.19 ± 

0.01 

15.4 ± 

0.02 

 RF 0.60 ± 

0.051 

7.23 ± 

0.104 

5.58 ± 

0.082 

14.1 ± 

0.19 

 0.0003 

± 

0.0003 

7.89 ± 

0.013 

6.21 ± 

0.01 

15.4 ± 

0.03 

 SVM 0.06 ± 

0.001 

8.00 ± 

0.003 

6.08 ± 

0.003 

15.2 ± 

0.01 

 0.0007 

± 

0.0007 

7.89 ± 

0.005 

6.22 ± 

0.01 

15.4 ± 

0.01 

ECM RPART --- 1,548.0 

± 7.11 

1,185.7 

± 5.59 

10.7 ± 

0.05 

 --- 1,591.6 

± 7.30 

1,206.4 

± 3.69 

10.8 ± 

0.03 

 GBM 0.07 ± 

0.001 

1,511.1 

± 1.13 

1,156.3 

± 1.34 

10.5 ± 

0.01 

 0.09 ± 

0.005 

1,549.2 

± 2.73 

1,173.4 

± 3.09 

10.5 ± 

0.03 

 RF 0.47 ± 

0.004 

1,354.7 

± 1.73 

1,035.6 

± 1.54 

9.4 ± 

0.01 

 0.09 ± 

0.005 

1,550.8 

± 2.09 

1,174.0 

± 2.50 

10.5 ± 

0.02 

 SVM 0.09 ± 

0.001 

1,496.5 

± 0.84 

1,123.9 

± 0.64 

10.2 ± 

0.01 

 0.08 ± 

0.002 

1,546.9 

± 1.46 

1,175.4 

± 2.67 

10.5 ± 

0.02 

MV RPART --- 1,194.9 

± 6.84 

879.3 ± 

3.48 

11.5 ± 

0.05 

 --- 1,111.4 

± 9.03 

856.8 ± 

10.00 

10.9 ± 

0.14 

 GBM 0.07 ± 

0.001 

1,159.5 

± 0.60 

853.5 ± 

0.47 

11.1 ± 

0.01 

 0.07 ± 

0.004 

1,080.5 

± 1.73 

827.8 ± 

1.90 

10.5 ± 

0.02 

 RF 0.46 ± 

0.048 

1,041.2 

± 15.96 

765.7 ± 

10.75 

10.1 ± 

0.13 

 0.05 ± 

0.004 

1,092.9 

± 1.82 

842.4 ± 

1.33 

10.7 ± 

0.02 

 SVM 0.10 ± 

0.001 

1,147.3 

± 0.62 

828.0 ± 

0.44 

10.8 ± 

0.01 

 0.05 ± 

0.002 

1,087.5 

± 1.11 

834.8 ± 

1.26 

10.6 ± 

0.01 
1 LPL = Herd average length of productive life (year); 3+ lactation = Herd average percentage of cows on third lactation 

or greater (%); ECM = Herd average lifetime cumulative energy-corrected milk (kg); MV = Herd average lifetime 

cumulative milk value ($CAD). 
2 R2 = Coefficient of determination; RMSE = Root mean squared error; MAE = Mean absolute error; MAAPE = Mean 

arctangent absolute percentage error (Kim and Kim, 2016). 
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5.9. Annex 

 

Annex 5.1. Early life management practices questionnaire. 
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Connecting statement 4 

The relationships between early life and longevity, productivity, and profitability have been 

analysed up to this point in this thesis from different perspectives. From an animal centric 

perspective, however, longevity, and both productivity and profitability could be considered 

components of dairy farming environmental and economic sustainability, respectively. Animal 

welfare would make up the remaining social sustainability component. The sustainability of milk 

production is often questioned, especially when considering the increased availability of 

alternative substitutes, which have a similar nutritional composition but are relatively more 

sustainable. Therefore, indicators of longevity, productivity, profitability, and animal welfare 

could be used to assess the sustainability of dairy farming. 

  



143 
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6.1. Abstract 

Animal-sourced foods are criticized for their negative environmental impact, but they play an 

important role in achieving food security. Therefore, promoting their sustainability is imperative. 

From an animal-centric approach, social, economic, and environmental aspects of sustainability 

are based on animal welfare, production, and performance, respectively. Here we identified 

different welfare profiles based on animal welfare outcomes, which were used to describe social 

sustainability of dairy farms. Relationships between welfare profiles and production and 

performance indicators were used to analyze the interdependency between social sustainability 

and economic and environmental sustainability. Three welfare profiles were found and most of the 

herds were in the best welfare profile. Weak relationships between welfare profiles and 

performance and production indicators were found, highlighting that a balance must be achieved 

between the three profiles to sustainably meet the future demand for milk and better indicators are 

needed to fully map the sustainability of dairy farming. 

6.2. Introduction 

A sustainable food production system makes use of renewable resources at a rate that does 

not surpass Earth’s potential to replenish them (Godfray et al., 2010). Such definition can be 

broken down into the environmental, economic, and social pillars (Boogaard et al., 2011) and a 

system is only fully sustainable if sustainability is achieved in all of them. Animal-sourced foods 
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are criticized for their negative environmental impact as they contribute to most of the greenhouse 

gas emissions when compared to substitute vegetable protein sources (Poore and Nemecek, 2018, 

Springmann et al., 2018). Though reducing its amount in human diets has the greatest potential to 

ease the environmental pressure of food production systems (Stehfest et al., 2009, Tilman and 

Clark, 2014, Springmann et al., 2018), dietary change alone would not be enough to keep the 

impact of food systems within planetary boundaries (Springmann et al., 2018). Animal-sourced 

food also play an important role on food security (Tricarico et al., 2020). Dairy farming, specially, 

provides milk, which is a non-luxury rich source of nutrients to infants and adults while being the 

main source of income for many farmers globally (Herrero et al., 2013, Segerkvist et al., 2020). 

Therefore it is imperative to support the sustainability of dairy farming since there is potential to 

reduce its environmental impact (Poore and Nemecek, 2018). 

When studying dairy farming sustainability, the environmental and economic aspects have 

received the greatest attention. (Lebacq et al., 2015, Galloway et al., 2018, Herzog et al., 2018, 

Segerkvist et al., 2020), while the social aspects (Lebacq et al., 2013) as well as relationships 

between all three pillar have been overlooked (Herzog et al., 2018). Animal welfare is a core 

concept of dairy farming sustainability as good welfare status is necessary for animals to be 

productive and profitable (Villettaz Robichaud et al., 2019a, Villettaz Robichaud et al., 2019b). 

For example, the occurrence of diseases such as mastitis and lameness, which are among the most 

prevalent, not only negatively impact the welfare status of cows, but also impact both animal 

production and profitability (Puerto et al., 2021a, b). In addition, the occurrence of health problems 

greatly affect the ability of farmer to keep animals in the herd (Dallago et al., 2021). Therefore, 

sustainability evaluations should be centered on animals rather than the herd, which allow for 

uncovering synergies between sustainability aspects of dairy farming (Hoischen-Taubner et al., 

2021). 

Animal indicators, covering all three pillars of sustainability, should be therefore 

considered. Production and performance metrics are regularly collected and maintained in Dairy 

Herd Improvement (DHI) databases, making it possible to not only obtain both milk production 

and milk values, but cow longevity as well. Milk production and milk value make up the economic 

pillar (Lovarelli et al., 2020, Segerkvist et al., 2020). Cow longevity, which can be measured as 

the length of productive life and the percentage of cows on third or greater lactation (Dallago et 

al., 2021), is an animal centric indicator of environmental sustainability as high cow longevity is 
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associated with a reduction on the emission of methane with each kilogram of milk (Grandl et al., 

2019) as well as total methane emission of the herd (Knapp et al., 2014). Animal welfare outcome 

measures, which are direct indicators of animal welfare (Broom, 1991, Knierim and Winckler, 

2009) and newly routinely collected (DFC, 2019, 2021), comprises the social component of 

sustainability because they not only address ethical concerns raised by the society but they also 

translate the ability of farmers to fulfill the needs of the animals by categorizing management and 

housing styles (Lovarelli et al., 2020, Segerkvist et al., 2020). Therefore, making it possible to map 

the sustainability of dairy farming using an animal centric approach. In this paper, we describe the 

social sustainability profile of dairy farms and analyse its relationship with the economic and 

environmental profiles. 

6.3. Results 

Description of the social profile based on animal welfare outcome measures are reported 

first, followed by its association with the economic and environmental profiles. Descriptive 

statistics of the data analysed in our study is shown in Table 6.1.  
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Table 6.1. Descriptive statistics of welfare and dairy herd improvement indicators as well as supplementary variables 

considered in this study from 2,980 Quebec – Canada dairy farms. 

Measure Mean Standard deviation Minimum Maximum 

Numeric indicators     

BCS ≤ 2 (%)1 1.8 4.10 0.0 39.0 

Hock lesion (%) 17.9 14.91 0.0 91.0 

Knee lesion (%) 7.4 9.06 0.0 71.0 

Neck lesion (%) 4.3 7.31 0.0 61.0 

Lameness (%) 10.4 10.01 0.0 99.0 

Herd status index2 0.52 0.10 0.17 0.80 

ECM (kg)3 11,271.4 1,714.35 4,244.0 23,490.0 

Milk value ($CAD)4 7,950.8 1,256.31 1,393.1 16,685.2 

Length of productive life (years) 3.3 0.77 0.46 7.9 

3+ lactation (%)5 41.3 8.22 7.33 75.8 

Supplementary variables N % 

Barn type   

 Tie-stall 2,412 80.9 

 Free-stall 568 19.1 

Season   

 Winter 736 24.7 

 Spring 727 24.4 

 Summer 649 21.8 

 Fall 868 29.1 

Year   

 2016 2 0.1 

 2017 961 32.2 

 2018 1,781 59.8 

 2019 236 7.9 
1 Prevalence of cows with body condition score lower than or equal to two. 
2 Herd composite indicator for remote assessment of herd welfare status (Warner et al., 2020). 
3 Herd average animal lifetime cumulative energy-corrected milk. 
4 Herd average animal lifetime cumulative milk value. 
5 Herd average percentage of cows on third or greater lactations. 

 

By analyzing animal welfare outcomes, which highlight how the animals respond to their 

environment, we revealed the existence of different animal welfare profiles among dairy herds. 

Even though we identified herds in which the prevalence of all welfare issues was low, there were 

no herds in which all welfare issues had a high prevalence. Instead, each two or three of the welfare 

outcome measures were shown to be problematic for some specific group of farms (Figure 6.1). 

This influenced the number and the type of the clusters identified in our study. Herds were grouped 

into three stable and homogeneous welfare clusters (Figure 6.2 and Table 6.2). Herds on cluster 3 

had the best overall welfare status since it had the lowest prevalence of most welfare issues and 

the highest Herd Status Index (HSI). Cluster 1 was described by a high percentage of cows with 

body conditions score lower than or equal to two, hock lesions, and lameness, whereas cluster 2 

was mostly described by a high percentage of both neck and knee lesions (Figure 6.2 and Table 

6.2). 
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Figure 6.1. Heat maps produced by the self-organizing map algorithm showing the distribution of the six welfare 

indicators collected on 2,982 dairy farms from Quebec – Canada. The map was built in a hexagonal topology with 13 

× 20 units. Using average values of farms assigned to each unit, blue color indicates units with low values (desirable), 

red indicates units with high values (undesirable), and white represent empty units (i.e., units in which no farms were 

assigned). The map provides a visual qualification of relationships between the indicators, allowing to explore the 

value distribution of each welfare outcome in relationship with the other outcomes. For example, farms in the unit 

having the highest prevalence of cows with body condition score ≤ 2 (i.e., bottom left of the heat map) also had a low 

prevalence of neck injuries. 
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Figure 6.2. Self-organizing map with cluster divisions (A) and partial dependency plots (PDP) depicting the marginal 

effect of the herd welfare outcome measures of percentage of cows with body conditions score lower than or equal to 

two (B), hock lesion (C), knee lesion (D), neck lesion (E), lameness (F), and Herd Status Index (G) in each cluster. 

Cluster were created using partitioning around medoids algorithm since it produced clusters more stable and more 

homogeneous. Different classification machine learning models were trained to predict cluster labels based on herd 

welfare outcome measures which in turn were used to create the clusters. The model with the highest accuracy was 

used to generate PDPs to describe the clusters. 

 

Table 6.2. Mean and standard deviation (SD) by clusters for the welfare and dairy herd improvement indicators of 

production and performance from 2,980 Quebec – Canada dairy farms. 

Measure 

Cluster 1 

(N = 717) 

Cluster 2 

(N = 604) 

Cluster 3 

(N = 1,659) 

Mean SD Mean SD Mean SD 

BCS ≤ 2 (%)1 5.2 6.58 1.3 2.51 0.5 1.57 

Hock lesion (%) 28.2 16.85 25.5 14.07 10.7 9.28 

Knee lesion (%) 7.8 8.47 16.2 12.19 4.0 4.74 

Neck lesion (%) 4.1 5.90 9.9 44.59 2.3 4.09 

Lameness (%) 17.3 11.67 13.9 10.01 6.1 6.40 

Herd status index2 0.56 0.09 0.47 0.09 0.52 0.10 

ECM (kg)3 11,459.2 1,637.84 11,047.9 1,650.56 11,271.6 1,760.09 

Milk value ($CAD)4 8,081.3 1,197.99 7,782.4 1,212.72 7,955.7 1,289.75 

Length of productive life (years) 3.4 0.77 3.3 0.76 3.3 0.77 

3+ lactation (%)5 42.3 7.99 40.5 8.23 41.3 8.29 
1 Prevalence of cows with body condition score lower than or equal to two on a 5-point scale. 
2 Herd composite indicator for remote assessment of herd welfare status (Warner et al., 2020). 
3 Herd average animal lifetime cumulative energy-corrected milk. 
4 Herd average animal lifetime cumulative milk value. 
5 Herd average percentage of cows on third or greater lactations. 
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We found a weak relationship between the social and both economic and environmental 

profiles. This was observed based on the overall low accuracy of the models in predicting welfare 

clusters according to the production and performance indicators (Supplementary Table 6.4). 

Cluster 3 was mostly described by high energy-corrected milk (ECM) production, low milk value, 

and higher herd longevity (i.e., percentage of cows on third or greater lactation; 3+ lactation; 

Figure 6.3 and Table 6.2). The opposite was observed for cluster 2, which was described by high 

milk value and low herd longevity (i.e., 3+ lactation; Figure 6.3 and Table 6.2). 

 

 
Figure 6.3. Accumulated local effect (ALE) plots depicting the average influence of production and performance 

indicators in predicting clusters with different welfare profiles. Different classification machine learning models were 

trained to predict cluster labels based on herd averages of cumulative energy corrected milk (kg), cumulative milk 

value ($CAD), length of productive life (years), and percentage of cows on third or greater lactation (3+ lactation; %). 

The model with the highest accuracy was used to generate ALE plots to analyse the relationship between herd welfare 

and both production and performance indicators. 

 

6.4. Discussion 

Animal welfare is composed of the biological functioning, affective state, and natural 

behavior of the animals (Fraser, 2008). Such definition led to the development of indicators 

covering each one of these aspects. Even though all aspects of welfare are correlated, only metrics 

of biological functioning are now routinely measured (DFC, 2019, FARM, 2020, DFC, 2021). 

Body condition score provides an indication of nutrition practices of the farms (Roche et al., 2009) 

and is associated with animal performance and health. Animals being both overly thin or overly 

conditioned are prone to health issues and compromised performance (Roche et al., 2009), which 
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have a negative impacting on their welfare. Health issues and body lesions are a source of distress 

and pain for animals. Lameness, for example, is a major health welfare problem that occur in dairy 

cows (Whay et al., 1998, Rutherford et al., 2009, Popescu et al., 2014). Animals affected by this 

disease have reduced nociceptive threshold (Whay et al., 1998) and redistribute their body weight 

when they are walking, thus reducing the weight placed on the affected limb (Rushen et al., 2007). 

Both situations indicate that these animals are suffering from physical pain and therefore their 

welfare is compromised.  

Animal welfare outcome measures reflect how different housings and management aspects 

affect dairy cows, which was highlighted in our analysis as different welfare profiles were found. 

A high prevalence of both lameness and lean animals were found to best describe one of the farm 

clusters. In fact, low body condition was shown to be one of the risk factors for the development 

of lameness (Jewell et al., 2019). The hoof of overly lean cows has less adipose tissue to support 

it (Bicalho et al., 2009), making for a high prevalence of lameness on lean cows (Espejo et al., 

2006, Randall et al., 2015, Solano et al., 2015). However, this does not mean that a cow with low 

body condition will necessarily become lame, since there are different risk factors that can impact 

animals at the farm level. For instance, hard walking surface (Somers et al., 2003, Vanegas et al., 

2006) and resting area comfort (McPherson and Vasseur, 2020) are direct risk factors associated 

with lameness while inappropriate nutritional status is a risk factor linked with low body condition. 

In addition, lameness could also be a risk factor for low body condition score. Given the painful 

nature of this disease, inflicted animals may have a reduced feed intake and willingness to visit 

feeding bunk (Norring et al., 2014), which will lead to a reduction in their body condition score. 

Our results indicate that there exist similar risk factors associated with both body condition and 

lameness, and that management practices should be adapted accordingly. 

Absence of skin lesions give an indication on how adequate the housing conditions are for 

the animals. Cows spend about 12 to 13 hours a day laid down (Jensen et al., 2005, Fregonesi et 

al., 2007), but since they have little or no ability to change their lying down movement (Österman 

and Redbo, 2001) in the environment they are provided with, it is no surprise that the frequent 

contact with housing structures while lying down lead to an increase of skin lesions. Resting area 

characteristics such as base material (Nash et al., 2016) and bedding (Kielland et al., 2009) are 

management factors associated with the incidence of hock and knee lesions while neck injuries are 

more commonly associated with the dimensions of the resting area (Bouffard et al., 2017, Jewell 
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et al., 2019). The prevalence of different welfare issues on distinct farm clusters indicates that 

targeted management practices and housing conditions must be implemented to further improve 

animal welfare and meet society ethical concerns.  

We found a weak association between the welfare and both the economic (i.e., lifetime 

cumulative ECM and milk value) and environmental (i.e., LPL and 3+ lactation) profiles. 

Identifying and quantifying interdependencies among sustainability pillars is fundamental to seek 

ways to promote it (Segerkvist et al., 2020). Though the link between economic and environmental 

profiles are more commonly explored (Dallago et al., 2021), the link between the social, which is 

represented by animal welfare in an animal centric approach, and the other sustainability pillars 

remains mostly unexplored. The economic and environmental profiles are characterized by the 

productivity and resilience [i.e., high adaptability to challenges and cumulative good health and 

fertility, resulting in a longer longevity (Adriaens et al., 2020)] of an animal, respectively. In turn, 

our results imply that high welfare profile would lead to neither an increase nor reduction in 

production and resilience. Improving the welfare by reducing the occurrence of health issues and 

improving the nutritional status of the animals could actually promote an increase in production. 

However, the intense genetic selection for high milk production, which has occurred, has hindered 

animal reproduction (Bedere et al., 2018), welfare (Oltenacu and Broom, 2010), and overall health 

(Berry et al., 2011). Therefore, high milk production alone does not guarantee good animal welfare 

nor farm profitability, and a balance must be achieved between the three profiles to achieve the 

sustainability of dairy farming. 

The sustainability mapping carried out in this study was as complete as possible given data 

availability. Not all aspects of social sustainability were covered, but also there remain a lack of 

additional indicators that represent both the economic and environmental sustainability in an 

animal centric approach. Milk production and milk value are both important indicators of 

economic sustainability. However, other factors such as feed and reproduction costs as well as 

costs associated with the treatment of diseases are important factors that make up the true 

profitability of dairy cows (Delgado et al., 2017, Puerto et al., 2021a, b). Though the social aspect 

was evaluated here using two of the most common metrics of longevity, different definitions of 

cow longevity exist and there is no single comprehensive metric available (Dallago et al., 2021). 

These could have been the reason for finding only weak links between the sustainability pillars in 

our study. 
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Farmers’ and animals’ interests should be aligned to meet the increasing demand for animal 

food products while ensuring the sustainability of the activity. Historically, increase in production 

has been achieved by intensification of production, driven by an increased use of resources and an 

intense genetic selection for high milk yield. This resulted in animals being more susceptible to 

challenging environments (Blanc et al., 2006) and highly dependent on optimum environmental 

conditions to express their genetic potential (VandeHaar et al., 2016). However, intensifying 

production is limited to resource availability which is becoming scarce and unpredictable (Godde 

et al., 2021). Animal food production efficiency should be achieved by simultaneously pursuing a 

broad range of options, such as improving breeding goals (Oltenacu and Algers, 2005) and 

management practices (Pretty and Bharucha, 2019), to establish a synergy between sustainability 

profiles. Resilient animals remain in the herd for longer, making them more efficient, profitable, 

and more likely to have a better welfare status. The pressing issues associated with climate change 

and competition for resources indicates that a change should occur soon and should no longer 

focus on one sustainability aspect alone but search for an optimum solution across its social, 

environmental, and economic aspects (Godfray et al., 2010). 

6.5. Conclusion 

We found different animal welfare profiles among dairy herds with currently routinely 

collected data. From an animal centric perspective, this not only highlights how the animals 

respond to their surrounding environment, but it also shows that a set of different solutions and 

innovations are needed to adapt management practices and housing conditions to enhance the 

social acceptability of dairy farming. Additionally, more comprehensive indicators of social, 

economic, and environmental profiles are necessary to fully map the sustainability of dairy 

farming. Only with those indicators, it will be possible to fully identify and quantify 

interdependencies among sustainability pillars, making possible to propose concrete strategies to 

sustainably produce milk to meet future demands. 

6.6. Materials and methods 

A cross-sectional study was conducted using welfare outcome measures from Quebec – 

Canada dairy herds that were collected by the Dairy Farmers of Canada as part of the Animal Care 

module of the proAction® Quality Assurance Program (DFC, 2021). Additionally, test day 

performance and production indicators were provided by Lactanet (Sainte-Anne-de-Bellevue, 
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Quebec, Canada). Data handling, cleaning, and modelling were done using the R statistical 

software (R Core Team, 2021) and its specific packages. Self-organizing maps (SOM) were used 

for data dimensionality reduction to describe the herds in a two-dimensional space (Kohonen, 

2001). A hierarchical clustering algorithm was then applied to create groups of herds with similar 

welfare status based on the measured proAction animal response records. Production and 

performance indicators were compared between welfare clusters.  

6.6.1. Dataset 

Five animal-based welfare outcome measures were assessed on 4,730 Quebec dairy herds 

between February 2015 and December 2019 by 31 independent technicians as part of the Animal 

Care module of the proAction® Quality Assurance Program (DFC, 2021). A detailed description 

of the assessment protocol is described in the proAction® reference manual (DFC, 2019). In short, 

a random sample of animals (from 8 to 55 cows) from the lactating herd was drawn on each herd 

based on the average number of lactating cows. Next, body condition score (Vasseur et al., 2013), 

hock, knee, and neck lesions (Gibbons et al., 2012), and lameness (Flower and Weary, 2006, 

Gibbons et al., 2014) were assessed on the sampled animals. Animals were then classified into 

“Acceptable” or requiring “Corrective Action” following a grading scale specific for each welfare 

outcome (DFC, 2019). The prevalence of animals classified as requiring “Corrective Action” in 

the sample was used as a proxy to the herd prevalence of each welfare outcome. 

The dairy herd improvement (DHI) indicators of milk production (kg), fat production (kg), 

protein production (kg), milk value ($CAD), and length of productive life (LPL; years) were 

provided by Lactanet (Sainte-Anne-de-Bellevue, Quebec, Canada). Production indicators and milk 

value were provided for 209,749 animals while LPL was provided for 64,041 animals both from 

3,242 herds. In addition, Lactanet provided the 13 pre-recorded DHI indicators of longevity, 

nutrition, production, profitability, young stock, and reproduction required to calculate the herd 

status index (HSI), which is a composite index to remotely assess the herd welfare status (Warner 

et al., 2020). These indicators were provided for 32,943 animals from 3,240 herds All data were 

extracted from a 12-month period prior to the assessment of the welfare outcome measures 

(between December 2015 and December 2019). 
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6.6.2. Data handling and cleaning 

Herds with two proAction® assessments done on the same day (i.e., duplicated 

observations) were removed (N = 26) as were the data from herds involved in a pilot study (N = 

27). Next, herds with negative values in the prevalence on any of the welfare outcomes were 

excluded (N = 5). Lastly, herds with tie-stall and free-stall housing types were kept for further 

analyses, as they are the most prevalent in the study region, excluding those with different housing 

types (N = 433). 

Cleaning the DHI and calculation of the HSI was done as outlined by Warner et al. (2020). 

In short, the indicators were standardized to percentile ranks and transformed to their additive 

inverse, except for percentage of cows at third or greater lactation, herd management index, and 

the transition cow index, in which higher values are desirable. Lastly, the index was calculated by 

summing all indicators with non-missing values and dividing it by the total number of indicators 

with non-missing values. Therefore, HSI values could ranges from 0 to 1, in which the closer to 1, 

the better the overall herd status(Warner et al., 2020). 

Herd average LPL as well as cumulative production and milk value were calculated based 

on animal level data. Animals with negative LPL were removed (N = 33). Next, animals with 

either missing (N = 12,170) or zero-value (N = 345) observations on production and milk value 

indicators were excluded. For animals that moved between herds, both productions and milk value 

were associated with the herd in which the cow ended each of her lactations for the calculation of 

the cumulative milk, fat, and protein productions and cumulative milk value. Cumulative energy-

corrected milk (ECM; kg) was then calculated as ECM (cumulative kg) = 12.55 × fat (cumulative 

kg) + 7.39 × protein (cumulative kg) + 0.2595 × milk yield (cumulative kg). Lastly, herd 

cumulative averages were calculated for LPL, ECM, and milk value. The percentage of animals 

on third or greater lactations (3+ lactation), which was one of the indicators used in the calculation 

of the HSI, was also used separately as a measure of longevity in this study. 

The final data submitted for analysis was created by merging both welfare outcome 

measures and DHI indicators based on herd number. It contained data measured on 2,980 herds 

which were assessed for welfare outcomes between December 2016 and December 2019. 
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6.6.3. Data analysis 

6.6.3.1. Self-organizing map 

A two-layered SOM was created based on descriptive variables and welfare indicators 

using the function supersom from the R package kohonen (Wehrens and Buydens, 2007, Wehrens 

and Kruisselbrink, 2018). The first layer comprised the barn type (tie-stall or free-stall), year 

(2016, 2017, 2018, or 2019), and season (winter, spring, summer, or fall) in which the welfare 

outcome measures were collected, while the second layer comprised the five welfare outcome 

measures and the HSI. This was done to account for the additional sources of variation other than 

the welfare outcomes in the construction of the SOM vector codebook later used for clustering 

analysis. Barn type was one-hot encoded, and season was cyclic encoded to account for its cyclic 

pattern. Next, variables were scaled to mean = 0 and standard deviation = 1. The number of units 

in the map was set to 260 according to the equation 5×√n, in which n represents the number of 

observations, and were organized in a rectangular grid (Kohonen, 2001). 

The Euclidean distance measure was used, and different weights were assigned to each 

SOM layer during the training to ensure equal contribution of all layers to the final map. Even 

though the supersom function applies internal weights by default to avoid some layers to 

overwhelm other, it was not sufficient in this case. A Bayesian optimization, with expected 

improvement acquisition function, was used to establish the optimum weights given to each layer 

of the SOM using the function bayesOpt from the R package ParBayesianOptimization (Wilson, 

2021). The following metric was used in the optimization to be maximized:  -1 ×√
∑ (L̅- Li)

n
i=1

2

n
, in 

which L̅ represents the average quantization error between both layers; Li represents the 

quantization error in the ith layer, and n represents the number of layers. A combination of 50 

weight values ranging from one to 20 were drawn from a uniform distribution for evaluation and 

used as the initial sampling. In this step, 10,000 iterations were allowed for a fast learning of the 

SOMs (Kohonen, 2001). The optimization algorithm ran for 50 iterations, which was sufficient 

since the utility values of the points approached zero (Wilson, 2021). Once the optimum set of 

weights were identified, the final SOM was trained for 130,000 iterations according to the equation 

500×√unit, in which unit represents the number of units in the map (Kohonen, 2001). 
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6.6.3.2. Clustering 

Cluster analysis was performed to identify groups of herds with similar welfare profiles. 

The codebook vector (i.e., the vector of outcome averages that was mapped to each unit in the 

map) from the SOM layer with the welfare indicators was extracted and used to calculate a 

dissimilarity matrix using the Euclidean distance. The matrix was multiplied by the distances 

between the grid units in the SOM to account for its topographic structure. Cluster quality was 

evaluated using the partitioning around medoids (PAM), hierarchical with Ward’s minimum 

variance linkage, and normal mixture model-based clustering procedures. First, cluster stability 

was assessed based on bootstrapped Jaccard mean distance obtained after 100 resamples and with 

cluster number varying from two to seven (Supplementary Table 6.1). This was done using the 

function clusterboot from the R Package fpc (Hennig, 2020). Next, overall stable clusters were 

subjected to internal quality assessment analysis (Supplementary Table 6.2) using the functions 

cluster.stats and clusterbenchstats both from the package fpc as well (Hennig, 2020). The 

identified best cluster algorithm and cluster number were used for further analysis. 

6.6.3.3. Inferential analysis 

The welfare clusters were described through a machine learning approach. The machine-

learning algorithms recursive partitioning and regression tree (RPART), gradient boosting 

machine (GBM), extreme gradient boosting machine (XGBM), random forest (RF), and support 

vector machine (SVM) with a radial basis kernel were trained in this study. The welfare indicators 

data (i.e., the five welfare outcome measures and the HSI) were randomly split into training and 

validation data sets following an 80:20 ratio, respectively, stratified such to ensure an equal split 

among clusters. All models were trained with 10-fold cross-validation on the training data set using 

the caret package (Kuhn, 2020) by specifying the methods rpart, gbm, xgbTree, ranger, and 

svmRadial respectively for the algorithms RPART, GBM, XGBM, RF and SVM. 

Hyperparameters for these models were tuned using adaptive resampling, which resample the 

hyperparameter tuning grid by concentrating on values closer to the identified optimal settings 

(Kuhn, 2014, 2020). The best model was selected based on overall accuracy calculated on the 

validation data set (Supplementary Table 6.3) and used to describe the welfare clusters. 

The influence of each welfare indicator on the different welfare clusters was analysed using 

partial dependence plots (PDP), which indicates the marginal effect of the welfare indicator on 

each cluster prediction by the model (Friedman, 2001). It depicts the probability shape (i.e., linear, 
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monotonic, or more complex) of predicting a given cluster depending on the welfare indicator 

value (Molnar, 2019). The PDPs were calculated with the function FeatureEffect from the R 

package iml (Molnar et al., 2018) and using the complete welfare indicators data set (i.e., training 

and validation data set combined). 

The relationship between welfare clusters and herd production and performance indicators 

was analyzed using a similar methodology as used to describe the clusters. The production and 

performance data (i.e., ECM, milk value, LPL, and 3+ lactation) were split into training and 

validation data sets following an 80:20 ratio, respectively, stratified such to ensure an equal split 

among clusters. The RPART, GBM, XGBM, RF, and SVM models were trained and evaluated 

using a similar methodology as to describe earlier. The accuracy of the models was relatively low, 

which could had been caused by the imbalanced distribution of cluster labels. Therefore, weighted 

classification, synthetic minority over-sampling technique (SMOTE) (Chawla et al., 2002), and 

up-sampling were also tested. The multiplicative inverse of cluster frequencies was used as 

weights. The best model was selected based on overall accuracy after excluding models in which 

some cluster labels were not predicted (Supplementary Table 6.4). This model was used further to 

analyse the relationship between welfare clusters and both production and performance indicators. 

Accumulated local effects (ALE) plots were used to explain the model predictions using the 

complete production and performance data set (i.e., training and validation data set combined) and 

were also calculated with the function FeatureEffect from the R package iml (Molnar et al., 2018). 

The ALE plots describe the average influence of the variables in the cluster prediction and its use 

is more appropriate when variables are highly correlated (Molnar, 2019), which was observed in 

this study between the production and performance indicators (Supplementary Table 6.5). 

6.7. Data availability 

Dairy producers consented for the use of their data for the research purposes of this study, 

but the data may not be shared without their consent. 

6.8. Code availability 

The R code that supports the findings of this study can be found in the following public 

GitHub repository: https://github.com/CowLifeMcGill/proAction_Sustainability. 
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6.10. Supplementary material 

Supplementary Table 6.1. Bootstrap stability assessment of up to 7 clusters obtained after 100 resampling runs of 

the clustering algorithms partitioning around medoids (PAM), hierarchical with Ward’s minimum variance method, 

and normal mixture model-based. Overall and cluster-wise stable results are bolded. 

Clustering algorithm 

Jaccard bootstrap mean distance1 

Overall 
 Cluster 

 1 2 3 4 5 6 7 

PAM 0.88  0.84 0.91      

0.84  0.80 0.84 0.88     

0.70  0.78 0.75 0.66 0.61    

0.59  0.66 0.70 0.47 0.60 0.51   

0.58  0.62 0.58 0.49 0.52 0.60 0.65  

0.54  0.54 0.63 0.48 0.44 0.52 0.57 0.63 

Hierarchical 0.80  0.78 0.81      

0.67  0.63 0.58 0.80     

0.58  0.62 0.56 0.56 0.59    

0.58  0.56 0.57 0.52 0.60 0.63   

0.60  0.66 0.45 0.70 0.55 0.60 0.65  

0.57  0.67 0.40 0.74 0.36 0.54 0.59 0.66 

Normal mixture model-

based 

0.59  0.50 0.68      

0.49  0.55 0.48 0.45     

0.44  0.53 0.48 0.40 0.33    

0.35  0.43 0.39 0.23 0.32 0.36   

0.43  0.52 0.33 0.43 0.51 0.33 0.45  

0.43  0.54 0.38 0.38 0.39 0.45 0.33 0.52 
1 Below 0.60: cluster should not be trusted; between 0.60 and 0.75: indication of patterns in the data, but cluster 

membership is doubtful; 0.75 or more: cluster is stable; 0.85 an above: cluster is highly stable (Hennig, 2020)  
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Supplementary Table 6.2. Internal quality assessment indexes of different clustering methods considered stable 

based on overall mean bootstrapped Jaccard distance. Best results are bolded within rows. 

Index Clustering method1 

PAM2 PAM3 Hierarchical2 

Calinski–Harabasz index 356 360 284 

Average silhouette width2 1.34 1.05 0.81 

Maximum cluster diameter 2 0.57 2.0 0.38 

Within cluster sum of squares2 0.68 1.4 0.45 

Average distance to cluster centroid2 0.55 1.7 0.09 

Average within-cluster dissimilarities2 0.50 1.4 0.35 

PearsonΓ2 1.32 1.03 0.57 

Bootstab index2 1.90 2.10 2.10 

Separation index2 -0.09 -0.40 -0.26 

Widest within-cluster gap2 0.48 0.44 0.48 

A1 2,3 1.2 1.5 1.0 

A2 2,4 0.76 0.72 0.77 
1 PAM2 = Two clusters based on partitioning around medoids clustering algorithm; PAM3 = Three clusters based on 

partitioning around medoids clustering algorithm; and Hierarchical2 = Two cluster based on hierarchical clustering 

algorithm with Ward’s minimum variance method. 
2 Index values are calibrated relative to a set of random clusterings to allow comparisons between different number 

and clustering methods (Akhanli and Hennig, 2020). 
3 A1 = Calibrated composite index indicating cluster homogeneity by combining the average within-cluster 

dissimilarities, the PearsonΓ, and the Bootstab indexes (Akhanli and Hennig, 2020). 
4 A2 = Calibrated composite index indicating cluster separation by combining the separation index, the widest within-

cluster gap, and the Bootstab indexes (Akhanli and Hennig, 2020). 
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Supplementary Table 6.3. Overall and by cluster performance results of recursive partitioning and regression tree 

(RPART) gradient boosting machine (GBM), extreme gradient boosting machine (XGBM), random forest (RF), and 

support vector machine (SVM) models in predicting cluster labels on the validation data set of welfare indicators. Best 

results are bolded within columns for overall statistics and within columns by cluster label for statistics by cluster. 

Model Overall Statistics  Statistics by cluster 

Accuracy 95% CI  Cluster Sensitivity Specificity F1 Balanced accuracy 

RPART 0.78 0.74 – 0.81  1 0.71 0.91 0.71 0.81 

    2 0.67 0.93 0.69 0.80 

    3 0.85 0.78 0.84 0.82 

GBM 0.83 0.80 – 0.86  1 0.76 0.94 0.79 0.85 

    2 0.74 0.95 0.76 0.84 

    3 0.90 0.81 0.88 0.85 

XGBM 0.84 0.81 – 0.87  1 0.74 0.96 0.79 0.85 

    2 0.73 0.95 0.76 0.84 

    3 0.92 0.79 0.88 0.86 

RF 0.84 0.81 – 0.87  1 0.72 0.95 0.77 0.84 

    2 0.80 0.94 0.79 0.87 

    3 0.91 0.83 0.89 0.87 

SVM 0.85 0.81 – 0.87  1 0.75 0.95 0.78 0.85 

    2 0.80 0.95 0.81 0.88 

    3 0.90 0.83 0.88 0.87 
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Supplementary Table 6.4. Overall and by cluster performance results of recursive partitioning and regression tree 

(RPART) gradient boosting machine (GBM), extreme gradient boosting machine (XGBM), random forest (RF), and 

support vector machine (SVM) models in predicting cluster labels on the validation data set of production and 

performance indicators. Weighted classification, synthetic minority over-sampling technique (SMOTE), and up-

sampling strategies were also employed because of the imbalanced distribution of cluster labels. The model with the 

overall best accuracy is bolded. 

Model 
Overall Statistics  Statistics by cluster 

Accuracy 95% CI  Cluster Sensitivity Specificity F1 Balanced accuracy 

Regular data 

RPART 0.56 0.52 – 0.60  1 0.00 1.00 --- 0.50 

    2 0.00 1.00 --- 0.50 

    3 1.00 0.00 0.71 0.50 

GBM 0.56 0.52 – 0.60  1 0.01 1.00 0.01 0.50 

    2 0.00 1.00 --- 0.50 

    3 1.00 0.01 0.72 0.50 

XGBM 0.56 0.52 – 0.60  1 0.01 1.00 0.01 0.50 

    2 0.00 1.00 --- 0.50 

    3 1.00 0.01 0.72 0.50 

RF 0.52 0.48 – 0.56  1 0.14 0.92 0.20 0.53 

    2 0.05 0.93 0.07 0.49 

    3 0.85 0.18 0.68 0.51 

SVM 0.56 0.52 – 0.60  1 0.00 1.00 --- 0.50 

    2 0.00 1.00 --- 0.50 

    3 1.00 0.00 0.71 0.50 

Weighted 

RPART 0.32 0.28 – 0.36  1 0.42 0.69 0.35 0.56 

    2 0.61 0.52 0.35 0.57 

    3 0.17 0.87 0.27 0.52 

GBM 0.37 0.33 – 0.41  1 0.30 0.73 0.28 0.52 

    2 0.28 0.71 0.23 0.50 

    3 0.43 0.55 0.48 0.49 

XGBM 0.44 0.40 – 0.48  1 0.26 0.78 0.27 0.52 

    2 0.26 0.81 0.25 0.53 

    3 0.58 0.46 0.58 0.52 

RF 0.42 0.38 – 0.46  1 0.27 0.77 0.27 0.52 

    2 0.18 0.80 0.19 0.49 

    3 0.57 0.43 0.56 0.50 

SVM --- ---  1 --- --- --- --- 

    2 --- --- --- --- 

    3 --- --- --- --- 

Synthetic minority over sampling technique (SMOTE) 

RPART 0.26 0.23 – 0.30  1 0.58 0.46 0.35 0.52 

    2 0.41 0.63 0.29 0.52 

    3 0.08 0.93 0.13 0.50 

GBM 0.35 0.31 – 0.39  1 0.35 0.70 0.30 0.52 

    2 0.34 0.68 0.26 0.51 

    3 0.35 0.63 0.43 0.49 

XGBM 0.35 0.31 – 0.38  1 0.26 0.72 0.24 0.49 

    2 0.30 0.67 0.23 0.49 

    3 0.40 0.60 0.47 0.50 

RF 0.36 0.32 – 0.40  1 0.33 0.68 0.29 0.51 

    2 0.34 0.68 0.26 0.51 

    3 0.38 0.67 0.47 0.53 

SVM 0.36 0.32 – 0.39  1 0.42 0.66 0.34 0.54 

    2 0.44 0.66 0.31 0.55 
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    3 0.30 0.74 0.40 0.52 

Up Sampling 

RPART 0.23 0.20 – 0.27  1 0.26 0.81 0.28 0.53 

    2 0.84 0.22 0.34 0.53 

    3 0.00 1.00 --- 0.50 

GBM 0.39 0.35 – 0.43  1 0.27 0.74 0.26 0.50 

    2 0.29 0.74 0.25 0.51 

    3 0.48 0.55 0.52 0.52 

XGBM 0.40 0.36 – 0.44  1 0.23 0.76 0.23 0.50 

    2 0.22 0.76 0.21 0.49 

    3 0.53 0.47 0.54 0.50 

RF 0.45 0.41 – 0.49  1 0.21 0.83 0.24 0.52 

    2 0.12 0.85 0.14 0.48 

    3 0.68 0.33 0.61 0.50 

SVM 0.34 0.30 – 0.38  1 0.38 0.67 0.32 0.53 

    2 0.43 0.63 0.30 0.53 

    3 0.28 0.73 0.38 0.51 
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Supplementary Table 6.5. Correlation matrix of welfare, production, and performance indicators from 2, 980 Quebec 

– Canada dairy farms. 

 
BCS ≤ 

2 (%)1 

Hock 

lesion 

(%) 

Knee 

lesion 

(%) 

Neck 

lesion 

(%) 

Lameness 

(%) 
HSI2 

ECM 

(kg)3 

Milk value 

($CAD)4 

LPL 

(years)5 

Hock lesion 

(%) 
0.17 --- --- --- --- --- --- --- --- 

Knee lesion 

(%) 
0.16 0.24 --- --- --- --- --- --- --- 

Neck lesion 

(%) 
0.08 0.11 0.20 --- --- --- --- --- --- 

Lameness 

(%) 
0.33 0.32 0.26 0.18 --- --- --- --- --- 

HSI2 -0.01 -0.03 -0.15 -0.03 -0.12 --- --- --- --- 

ECM (kg)3 -0.09 0.06 -0.08 -0.06 -0.01 0.20 --- --- --- 

Milk value 

($CAD)4 
-0.07 0.06 -0.08 -0.05 -0.02 0.19 0.93 --- --- 

LPL 

(years)5 0.03 -0.05 -0.01 0.04 -0.01 0.18 0.01 0.03 --- 

3+ lactation 

(%)6 
0.03 -0.08 -0.05 0.07 -0.04 0.33 -0.15 -0.13 0.55 

1 Prevalence of cows with body condition score lower than or equal to two. 
2 Herd composite indicator for remote assessment of herd welfare status (Warner et al., 2020). 
3 Animal cumulative energy-corrected milk. 
4 Lifetime cumulative milk value. 
5 Length of productive life. 
6 Percentage of cows at third or greater lactations. 
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CHAPTER 7  – General discussion 

Throughout this thesis, the intertwined relationships between dairy cow longevity, 

productivity, and profitability were analyzed not only based on a set of diverse indicators from 

different stages of an animal life, but also using various machine learning algorithms and analytical 

techniques. Lastly, an attempt was made to map the sustainability of dairy farming through an 

innovative animal-centered approach. 

Cow longevity was a central focal point throughout this thesis. However, its very definition 

as an animal trait rather than a biological characteristic remains as a complex unanswered question. 

Contrary to milk, for example, which has a relatively straightforward definition, cow longevity is 

very often the consequence of a culling decision made by farmers, as discussed in Chapter 2. 

Unquestionably, the concept of time must be incorporated in the definition, but animal 

performance influences culling decision and should also be incorporated. Existing attempts going 

further from only considering time relied on animal stayability, i.e., the ability of the animal to 

avoid culling due the reproductive problems and sickness (Ducrocq et al., 1988, Ducrocq, 1994), 

or functional longevity, adjusting for the effect of milk yield (Sewalem et al., 2008). Both imply 

that cows are to blame for their own longevity (or lack thereof) when it might not be the case. For 

instance, the intense artificial genetic selection for milk production have had a negative effect on 

reproductive performance (Nebel and McGilliard, 1993, Pryce et al., 2004), though such 

relationship is not the consensus for longevity (Dallago et al., 2021). Therefore, the definition of 

dairy cow longevity should be focused on the animal outcomes as suggested in Chapter 2 but, most 

importantly, it should consider that, as an animal trait, it is the consequence of a decision rather 

than a biological event. Thus, longevity metrics should incorporate both aspects. 

Possibly as a consequence of not having a standard definition, there is a disconnect between 

the idea of longevity and the metrics available to measure it, making it appear as though culling 

decisions are not objective (Beaudeau et al., 2000, Adriaens et al., 2020). This was highlighted in 

Chapters 4 and 5, where it was found that farmers, as decision making agents, hold an important 

role in cow longevity as well as in herd productivity and profitability. Production-oriented farmers 

were associated with shorter herd longevity but produced more sellable milk compared to 

longevity-oriented farmer, which in turn had a greater longevity but lower production of sellable 

milk. It tempts us to take correlation with causation and conclude that a herd should have shorter 
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longevity to be profitable. If that was the case, why should we try to increase cow longevity? 

(would have this thesis been an unjustifiable venture?) Perhaps (hopefully) there is more to it. For 

instance, there is a consensus that, depending on the amount of milk a cow produces, she would 

not be profitable until her third lactation (Horn et al., 2012, Pellerin et al., 2014, Delgado et al., 

2017). In addition, some herds in Chapter 4 were indeed associated with high longevity, 

productivity, and profitability. However, the results of both Chapters 4 and 5 alone do not allow 

us to reach a final answer about how longevity, productivity, and profitability are intertwined. 

What they do allow us to safely conclude, though, is on how important the role played by farmers 

on these outcomes is, especially on longevity. 

A promising conclusion, as it indicates the feasibility of conceiving intervention strategies 

to improve longevity and the sustainability of the industry. In fact, the long-term effects of birth 

conditions on offspring longevity found in Chapter 3 could be incorporated into such strategies to 

identify animals more likely to reach their potential. Additional measures to maintain animals 

healthy and comfortable could also reduce the need for farmers to remove animals early on because 

of these reasons. However, other reasons such as space constraint (De Vries and Marcondes, 2020) 

and quota (Van Doormaal, 2009) could pressure farmers to cull cows. If that was the case, the 

welfare status of these animals is likely not compromised due to sickness at the very least, 

contributing to the social acceptability and sustainability of dairy farming. Though welfare is a 

core component of social sustainability from an animal perspective, large-scale collections of data 

on animal welfare outcomes are still scarce. Perhaps was it taken for granted, as production did 

not seem to be largely compromised or its importance was outweighed compared to other factors 

(e.g., milk yield) with a more straightforward connection with economic returns. However, the 

pressure for sustainable milk production has rightfully increased, and sustainability aspects should 

be met. As highlighted in Chapter 6, the social component seems disconnected from both the 

economic and the environmental components, but more precise indicators are still needed to 

thoroughly evaluate dairy farming sustainability from an animal centric perspective. 

Machine learning algorithms were another core theme in this thesis as they were used to 

analyze the data in all studies (Chapter 3 to 6). Models obtained though this methodology naturally 

handles non-linearity and high order interactions, all while making no assumptions about the data 

distribution to model the relationship between input and output variables. Though they are often 

complex, the interpretation of the results requires shifting the focus from “statistically significant” 
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to “statistically relevant”. As done throughout this thesis, the overall importance of the inputs can 

be determined based on the accuracy of the model, which can be calculated using relative metrics 

(i.e., how good is one algorithm compared to another?) and absolute metrics with known lower 

and upper limits (i.e., percentage). Additionally, we can used them to not only gather insights about 

the overall meaningfulness of input variables, but also to obtain the effect of each one of them 

without any pre-defined assumption about their shape. This analytical framework may provide an 

extra protection layer against statistical flukes such as misinterpretation of p-values (Gelman and 

Stern, 2006, Betensky, 2019), but most importantly, it forces us to interpret the overall practical 

implications of the results. Such a shift becomes even more relevant in the big data era. The high 

volume of data makes it more likely to find statistically significant results given the relationship 

between p-value calculations and sample size, even though they might be of little practical 

significance (Lantz, 2013). As demonstrated throughout this thesis, machine learning algorithms 

are a flexible alternative to overcome such limitations. 

However, the use of machine learning models to obtain insights that are biologically 

meaningful is still on its infant ages. Survival analysis is one of the areas still requiring significant 

development. For instance, data from animals not yet culled, which accounted for about 15 to 20% 

of the data, were removed from the analyses carried out on Chapter 4. Animals in that study were 

born around the same period and such procedure may be a source of bias, since these animals may 

not have been culled yet because they are resilient cows, have a good production level, and/or have 

no reproductive problems. Survival analysis methodologies could be one alternative in cases where 

events of interest (i.e., longevity as well as lifetime cumulative production and profitability) have 

not yet been observed in all animals, which is similar to the methodology adopted in Chapter 3. 

However, the number of machine learning algorithms able to handle such conditions is limited as 

most of them requires data to be observed. In most cases, simple imputations, such as overall mean, 

or data exclusion are used by algorithms said to handle missing data automatically.  

Regardless of analytical limitations, data on dairy production remains a significant 

constraint worldwide. The need for systems to centralize data storage and purposely sharing is not 

recent, and efforts have been made to achieve that (e.g., Dairy Brain; https://dairybrain.wisc.edu/). 

However, those remain as isolated examples and have limited coverage. Data collection is another 

significant limitation, which is also not news and was stated as a limitation in Chapter 3. Farmers 

are often incentivized to collect data based on the assertion that farm management can be improved 
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once data is available. However, including additional tasks to the already overbooked daily 

workload of running of a dairy farm is not simple. Producers’ willingness to keep data records is 

often determined by their perceived short-term benefits such as the case with antibiotic treatments. 

The milk from cows receiving antibiotics cannot the sold while she is under treatment and even 

for a given number of days after the treatment is finished due to residual contamination. Therefore, 

recording such data is clearly beneficial in the short-term. Culling reasons are another example. 

Usually only the last event is recorded, even though culling is most likely due to a combination of 

multiple factors. Reproductive status and milk yield are protective factors against culling (Hultgren 

and Svensson, 2009, Pinedo et al., 2010, Stojkov et al., 2020). A pregnant high producing cow is 

likely to be kept in the herd if she develops mastitis, whereas a low producing cow that is not 

pregnant has a higher chance of being culled in case of a mastitis infection. The reported reason 

for culling of the latter cow will be mastitis, which is an arguably incomplete indication of the true 

culling reason. 

In the (near) future, precision livestock tools are promising to not only automate most of 

the data collection but, most importantly, to broaden the variables measured (Tullo et al., 2019). 

For instance, automated systems are necessary to monitor animal behaviors realistically and 

continuously in farm animals. Once developed and implemented on farms, automated systems 

would not only reduce costs of animal welfare assessments, but it would also allow for increasing 

its frequency and optimizing behavior-based health monitoring. This could be a solution to the 

need for better indicators identified in Chapter 6, making it possible to conceive concrete and 

comprehensive strategies to improve the sustainability of dairy farming while supporting farmers 

to optimize production efficiency.  
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