
Crosspoint Switches

for

Reconfigurable Networks

Edgar Pan

Department of Electrical and Computer Engineering

McGill University, Montreal

December 2020

A thesis submitted to McGill University in partial fulfillment of the

requirements of the degree of Master of Engineering

© Edgar Pan 2020

2

Table of Contents

Table of Contents ... 2

Abstract ... 5

Résumé ... 6

Acknowledgement .. 7

Contribution of Author ... 7

1 Introduction ... 8

2 Background .. 10

2.1 Key Concepts .. 10

2.2 Network Topologies ... 11

2.2.1 Hypercube and Torus .. 12

2.2.2 Fat-Tree ... 16

2.2.3 Dragonfly and its Variants ... 18

2.3 Traffic Patterns and Applications in Various Topologies .. 22

2.3.1 Performance of Supercomputer Processors ... 22

2.3.2 Performance in Data Center Networks .. 25

2.4 The HOB Device .. 27

3 Implementation of the Node Group Synthesis Program .. 31

3.1 Link Delta Acquisition ... 33

3.2 Chaining Process .. 36

3.2.1 Stepback Filter ... 40

3

3.2.2 Overlap Filter ... 40

3.2.3 Equivalence Filter .. 41

3.3 Selection Process .. 42

4 Program Performance Analysis ... 44

4.1 Preliminary Examination .. 44

4.2 Speed of Solution ... 45

4.3 Quality of Solution ... 47

4.4 Potential Improvements .. 48

4.5 Results .. 51

4.5.1 Radix-8 Results ... 51

4.5.2 Radix-12 Results ... 52

5 Conclusion ... 53

5.1 Future Works .. 54

6 Appendix ... 55

6.1 Codes .. 55

6.1.1 TestScript.m ... 55

6.1.2 GenHND.m .. 57

6.1.3 GENTor.m ... 58

6.1.4 GenConnList.m ... 61

6.1.5 setprodcell.m ... 64

6.1.6 ChainPairs2.m ... 66

6.1.7 ChainNext2.m .. 71

6.1.8 CreatCompGP.m ... 75

6.1.9 SelectionProcess.m .. 79

4

6.1.10 GetGroupRelation.m ... 81

6.1.11 GroupRelationSelection.m .. 83

6.1.12 FindMissing.m ... 86

6.1.13 GetGroupLinks.m .. 87

6.1.14 DrawHobSystem.m ... 88

6.1.15 DrawHobNetwork.m ... 89

6.1.16 DrawHobSwitch .. 93

6.2 Tables ... 95

6.2.1 Top 20 HPL and HPCG (November 2017 Results) – Part 1 Supercomputer

Backgrounds ... 96

6.2.2 Top 20 HPL and HPCG (November 2017 Results) – Part 2 Supercomputer

Processor and Topologies ... 97

6.2.3 Top 20 HPL and HPCG (November 2017 Results) – Part 3 Topology and HPL

and HPCG Results .. 98

7 Reference ... 99

5

Abstract

Network topology is an important factor in the performance of any distributed computing

systems, such as data centers or supercomputers. Because supercomputers are expected to be

reprogrammable and fulfill multiple tasks, their topologies are likewise typically general

purpose, favouring no one task. However, certain applications could benefit from more

specialized network topologies. One solution could be to have dynamic networks that can be

reconfigured into more task-specific topologies. One way to achieve this is by introducing

crosspoint switches, such as Reflex Photonics’s Hybrid Optical Bridge, into the network.

However, determining the placement of these switches is a nontrivial task. In this thesis, I

wrote a program that determines how to connect crosspoint switches to the various nodes to

effectuate a desired reconfiguration. The program follows a pipeline architecture that is

divided into three modules: 1) the link delta acquisition process, 2) the chaining process, and

3) the selection process. In the link delta acquisition process, the program determines what

reconfigurations are necessary. In the chaining process, the program creates a list of all

possible switch configurations that satisfies the necessary reconfiguration. The selection

process selects the most economical combination of potential switch configurations to

achieve the desired reconfiguration. By making it possible to tune networks to more specific

tasks, this could increase the computational efficiencies of servers as well as their power

efficiency.

6

Résumé

La topologie d’un réseau est un facteur important dans la performance de tout système de

calcul distribué, comme les centres de traitement de données ou les superordinateurs. Parce

que les superordinateurs doivent être reprogrammables et doivent accomplir des tâches

variées, leurs topologies sont également à usage général, sans favoriser aucune tâche.

Cependant, certaines applications pourraient grandement bénéficier d’une topologie de

réseau plus spécialisée. Une solution serait d’avoir un réseau dynamique qui pourrait être

reconfiguré avec des topologies spécialisées pour chaque tâche. Cela pourrait être accompli

en introduisant des commutateurs de point de croisement, tels que le Pont Optique Hybride

de Reflex Photonics, dans le réseau. Cependant, déterminer les emplacements idéaux pour

ces commutateurs est une tâche non négligeable. Dans cette thèse, j’ai écrit un programme

qui détermine comment connecter les commutateurs de point de croisement aux différents

nœuds pour accomplir la reconfiguration désirée. Le programme a une architecture de type

pipeline divisée en trois modules : 1) la procédure d’acquisition de delta lien, 2) la procédure

d’enchaînement, et 3) la procédure de sélection. La procédure d’acquisition de delta lien

détermine quelles reconfigurations sont nécessaires. La procédure d’enchaînement compose

une liste de toutes les configurations de commutateurs possibles qui satisfont les

reconfigurations nécessaires. La procédure de sélection choisit la combinaison de

commutateur potentiel la plus économique qui accomplit la reconfiguration désirée. En

rendant possible d’accorder les réseaux à leurs tâches, cela devrait augmenter l’efficacité de

calcul des serveurs et de leur efficacité énergétique.

7

Acknowledgement

Prof. Odile Liboiron-Ladouceur for her supervision and feedback over the course of the last

three years, and for her help reviewing this thesis.

Edwin Pan for answering some questions on software architecture.

Prof. Michael Rabbat for reviewing and providing feedback on this thesis.

Dr. Edward Pan for his help in data analysis and for reviewing this thesis.

Contribution of Author

All of the work presented in this thesis is my own except where explicitly stated.

8

1 Introduction

One of the backbone elements of all large-scale internet system is the network

interconnection topology. For all the performance improvements a single hardware device

can have, its potential would be stifled should the data flow be bottlenecked by an

inadequately configured network. This can be seen when one views the results of

supercomputer performances on Top500, when one compares the theoretical maximum

performance to the actual performance achieved. The top supercomputer at the time of

writing, IBM’s Summit, only achieved 148,600 TFlops/s compared to its theoretical

200,794.9 TFlops/s operation speed [1].

Given the importance of the network topology, the question now becomes which one

to use? Ideally, networks would use a fully connected configuration, where every single node

is connected to every other node, ensuring the only bottleneck is the capacity of the channel

itself. However, when dealing with networks where nodes numbers in the hundreds to

thousands, having a direct connection between all nodes is impractical. Thus, the exercise of

selecting one of the many proposed network topologies becomes a question of trade-offs

based on a set of restrictions.

The trouble arises when one considers the demand. Certain applications work better

on certain topologies. One research showed that Distributed Machine Learning applications

works better on a BCube topology than the typical Fat-Tree topology [2]. The purpose of the

Fat-Tree, meanwhile, is essentially to avoid the issues of bottlenecking by ensuring multiple

alternate paths are available and that all hosts have the same distance, ensuring a relatively

robust network [3].

So how would one choose? One could take the BCube to do very well with Machine

Learning applications, but the network would sacrifice its robustness and performance when

it runs other applications. Would the sacrifice be worth it?

This thesis wishes to offer an alternative: “Why not both?” A network that can be

reconfigured between two topologies would enable a more efficient use of computational

9

resources by matching application to a more appropriate topology. Introducing crosspoint

switches, such as Reflex Photonic’s Hybrid Optical Bridges (HOBs), into a network is one

way to make it reconfigurable. However, determining where to place these switches in a

network is nontrivial.

In this thesis, I describe a program that will determine where to place these

reconfiguration switches. The program was developed in Matlab, and the code can be found

both in Appendix 6.1 and on Github [4]. It takes as input two matrices describing the two

desired configurations of a network and outputs how the reconfiguration switches should be

connected, such that they can effectuate the transition between the two network topologies.

The program functions under certain restrictions, which will be discussed in more detail later.

The key two being that all nodes must maintain their degree and the crosspoint switches must

not have any empty ports. Failure to meet these restrictions will cause the program to crash.

Before discussing the technical details of the program, this thesis will review the

fundamental concepts behind network topologies along with a few popular examples. We

will then discuss how different applications and synthetic traffic patterns perform under

different topologies before we briefly discuss the HOB. With the background covered, this

thesis will then discuss the program and its modules in detail, including their performance,

known issues, and how they may be resolved in the future.

10

2 Background

In this chapter, we will first cover a few fundamental concepts of network topologies and

their graph models. We shall then explore popular topologies commonly used in datacenters

and supercomputers, their canonical structure, and primary benefits. We shall then cover the

performance of those network topologies under different traffic patterns. Finally, we shall

briefly cover the HOB as the means to allow for easy network reconfiguration between

multiple topologies.

2.1 Key Concepts

A network topology is the pattern of physical interconnection between hardware

resources, whether those resources are processing cores on a chip or server towers in a data

center [5].

A network topology can be modeled with a mathematical structure known as a graph,

denoted as 𝐺(𝑉, 𝐸), which consists of a set of nodes (or vertices) 𝑉 interconnected by a set

of links (or edges/channels) 𝐸. The elements of 𝐸 consist of pairs (𝑢, 𝑣) of distinct nodes

𝑢, 𝑣 ∈ 𝑉. Translated into a real-life network, the nodes V typically represent the switches or

routers in a network while the edges E represent the cables.

The order of a graph is the number of vertices a graph has, and the size of a graph is

the number of edges. The number of edges originating from a single node denotes the node’s

degree (or a switch’s radix). The distance between two nodes indicates the minimum

number of links a signal needs to traverse (also referred to as hops) for the two nodes to

communicate. The diameter of a graph indicates the longest distance in the graph. A

subgraph is a subset of 𝐺, 𝑉, and 𝐸.

It is also important to note whether a graph is directed, meaning there is at least one

link that can only be traversed in one direction, or undirected, meaning all links go both

ways. Given the nature of telecommunication networks, it is safe to assume that all graphs

are undirected, and thus any pair of connected nodes may communicate back and forth freely.

11

Two nodes or links are adjacent if they share a single link or node between them,

respectively. We can therefore map out the full interconnection of a network through an

Adjacency Matrix 𝐴. In an adjacency matrix, the rows represent the source (or ingress) node

of a link and the columns represent the destination (or egress) node of that link. As such, the

entries 𝐴𝑖𝑗 is equal to 1 if there exists an edge starting from vertex 𝑖 and ending in vertex 𝑗,

or 0 if there does not. In an undirected graph, the adjacency matrix is symmetric. The sum of

row 𝑖 represents the degree of node 𝑖: 𝑑𝑖.

There are a few notable kinds of graph, particularly the regular graphs and the

bipartite graphs. If all vertices in a graph share the same degree 𝑑, then the graph is a regular

graph, specifically, a 𝑑 -regular graph. If two sets of nodes 𝑉1 and 𝑉2 only have links

interconnecting between the two sets, but none intra-connecting within either set, as shown

in the figure below, then these creates a bipartite graph.

Figure 1: Example of a group of four nodes connecting to a group of five nodes in a complete bipartite graph.

2.2 Network Topologies

In this subsection, we will go over four popular networks topologies: the Hypercube,

the Torus, the Fat-Tree, and the Dragonfly.

12

A network topology is usually described by a set of parameters and properties. For

example, a Fat-Tree network is describe based on the switches’ radix 𝑘 , which then

determines how large the network can be [3]. In practice, however, implemented networks

seldom follow their mathematical definition. This can be due to a variety of reasons,

including maintenance, hardware failure, or simply a desired change by the network

administrators. All that said, this thesis shall assume that all topologies are implemented in

their canonical forms. That means the topologies will abide to their definition as described in

their respective publications as much as possible.

2.2.1 Hypercube and Torus

The Hypercube topology and Torus topology are two relatively basic regular network

topologies in the field. Each node represents a router where servers are connected.

The Hypercube takes the corners of an 𝑛-dimensional (hyper)cube as nodes in a

network. The number of nodes increases exponentially (2𝑛) while the diameter increases

linearly with every axis (value of 𝑛) added to the network, leading to a highly connected

network with a relatively low diameter, allowing for faster and more reliable communication

[6, 7]. The nodes of a Hypercube network can in fact be represented by a binary sequence of

length 𝑛, each bit representing one axis, as shown in the following figure.

Figure 2: Graphs representing the n-D Hypercube with binary notation. (a) 1-D. (b) 2-D. (c) 3-D. (d) 4-D.

13

The main disadvantage of the Hypercube is that it is not scalable, nor is it practical to

expand an already existing Hypercube network. The order of the network is strictly

dependent on the degree of each nodes, meaning in order to expand a network from a radix-4

16-node network to a radix-5 32-node network, one would need to either replace all 16

radix-4 switches with 32 radix-5 switches, or unplug a host from each switches in order to

re-assign the port for switch-to-switch communication. At which point, one may as well

create a new network.

The Torus network is another relatively simple topology. The torus network can be

described as a 𝑘-dimensional wrap-around mesh or grid network, where all nodes typically

have two neighbors in each of the 𝑘 dimensions [8]. Contrary to the Hypercube, the length

of the Torus in each of the dimensions is arbitrary, yet uniform, meaning one needs not

change the rest of the network to expand further in any direction.

The two most common variants of the Torus network seen in the top 20

supercomputers are the 5D Torus, which was used in the Sequoia, Mira, and JUQUEEN

supercomputers developed by IBM, and the 6D Torus, which was used in the K Computer

and SORA-MA supercomputers by Fujitsu [9].

The Hypercube and Torus network adjacency matrices can both be described by a

line of Kronecker products and sums. The Kronecker product is a matrix operation where the

values of one of the matrices is multiplied and inserted into the other, such that:

 𝐴𝑚×𝑛 ⊗ 𝐵𝑝×𝑞 = [
𝑎11𝐵 ⋯ 𝑎1𝑛𝐵

⋮ ⋱ ⋮
𝑎𝑚1𝐵 ⋯ 𝑎𝑚𝑛𝐵

]

𝑝𝑚×𝑞𝑛

 (1)

where 𝑎𝑚𝑛 are the elements of matrix 𝐴. The Kronecker sum is a line or Kronecker

products such that:

 𝐴𝑚×𝑚 ⊕ 𝐵𝑝×𝑝 = 𝐴𝑚×𝑚 ⊗ 𝐼𝑝 + 𝐼𝑚 ⊗ 𝐵𝑝×𝑝 (2)

where 𝐼𝑝 and 𝐼𝑚 are identity matrices of sizes 𝑝 and 𝑚 respectively. Let us define 𝑄𝑛

as the adjacency matrix of an 𝑛-dimensional hypercube. The Hypercube network adjacency

14

matrix runs on an induction sequence for however many dimensions the Hypercube will

have. First, we define the 1-D “cube” (where 𝑛 = 1) with the adjacency matrix:

 𝑄1 = [
0 1
1 0

] (3)

That will serve as a basis upon which the matrix expands. By observing the adjacency

matrix of consecutive-dimension hypercubes, we can see that the previous value of 𝑛

reappears in the next value, as seen the in equations below.

 𝑄2 = [

0 1 1 0
1 0 0 1
1 0 0 1
0 1 1 0

] → [
[
0 1
1 0

] [
1 0
0 1

]

[
1 0
0 1

] [
0 1
1 0

]
] = [

𝑄1 𝐼2
𝐼2 𝑄1

]
4

= 𝑄1 ⊕ 𝑄1 (4)

𝑄3 =

[

0 1 1 0 1 0 0 0
1 0 0 1 0 1 0 0
1 0 0 1 0 0 1 0
0 1 1 0 0 0 0 1
1 0 0 0 0 1 1 0
0 1 0 0 1 0 0 1
0 0 1 0 1 0 0 1
0 0 0 1 0 1 1 0]

→

[

[

0 1 1 0
1 0 0 1
1 0 0 1
0 1 1 0

]

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

[

0 1 1 0
1 0 0 1
1 0 0 1
0 1 1 0

]

]

→

[

 [

0 1
1 0

] [
1 0
0 1

] [
1 0
0 1

] 0

[
1 0
0 1

] [
0 1
1 0

] 0 [
1 0
0 1

]

[
1 0
0 1

] 0 [
0 1
1 0

] [
1 0
0 1

]

0 [
1 0
0 1

] [
1 0
0 1

] [
0 1
1 0

]]

(5)

 𝑄3 = [

𝑄1 𝐼2 𝐼2 0
𝐼2 𝑄1 0 𝐼2
𝐼2 0 𝑄1 𝐼2
0 𝐼2 𝐼2 𝑄1

] = 𝐼4 ⊗ 𝑄1 + 𝑄2 ⊗ 𝐼2 (6)

 𝑄3 = 𝑄2 ⊕ 𝑄1 (7)

As such, we find the recursive formula:

 𝑄𝑛 = 𝑄𝑛−1 ⊕ 𝑄1 (8)

15

The discovered formula has been implemented in the GenHND.m function found in

appendix 6.1.2.

The Torus adjacency matrix will be represented by 𝑇 and can be broken down into a

set of basis matrices, 𝐵𝑛, where 𝑛 is the dimension or axis. The value of 𝐵𝑛 is the adjacency

matrix of the nodes in that specific axis, best described as a wrap-around line. For instance,

if a network has five nodes in the second axis, then we would denote the basis matrix as:

 𝐵2 =

[

0 1 0 0 1
1 0 1 0 0
0 1 0 1 0
0 0 1 0 1
1 0 0 1 0]

 (9)

More generally, the elements of a basis matrix 𝐵𝑛 of size 𝑝𝑛 × 𝑝𝑛 can be described

as:

 𝐵𝑛,(𝑖,𝑗) = {

1, 𝑖 = 1, 𝑗 = 𝑝𝑛

1, 𝑖 = 𝑝𝑛, 𝑗 = 1

1, |𝑖 − 𝑗| = 1
0, 𝑒𝑙𝑠𝑒

 where 𝑖, 𝑗 ∈ 1,2, … , 𝑝𝑛 (10)

With each of the axis length and their corresponding basis matrices defined, then the

basis will be Kronecker summed, forming the adjacency matrix.

 𝑇 = 𝐵1 ⊕ …⊕ 𝐵𝑁 (11)

As an example, the 3 × 4 2D Torus basis matrices and adjacency matrix are the

following.

 𝐵1 = [
0 1 1
1 0 1
1 1 0

] , 𝐵2 = [

0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0

] (12)

16

 𝑇 = 𝐵1 ⊕ 𝐵2 =

[

0 1 1
1 0 1
1 1 0

1 0 0
0 1 0
0 0 1

0 0 0
0 0 0
0 0 0

1 0 0
0 1 0
0 0 1

1 0 0
0 1 0
0 0 1

0 1 1
1 0 1
1 1 0

1 0 0
0 1 0
0 0 1

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

1 0 0
0 1 0
0 0 1

0 1 1
1 0 1
1 1 0

1 0 0
0 1 0
0 0 1

1 0 0
0 1 0
0 0 1

0 0 0
0 0 0
0 0 0

1 0 0
0 1 0
0 0 1

0 1 1
1 0 1
1 1 0]

 (13)

This formula has been implemented in the GENTor.m function found in appendix

6.1.3.

2.2.2 Fat-Tree

The Fat-Tree as a data center network topology was initially proposed by Al-Fares,

et al. [3], which was based on Leiserson’s Fat-Tree designed to interconnect the processors

of a general-purpose parallel supercomputer [10].

The original Fat-Tree takes the concept of a binary tree network and improves upon

it. The binary tree is a topology where, from an originating “root” node, two nodes “branch”

out from the root, and from each of those, more pairs of nodes “branch” out, every parent

node forming two descendent nodes in each layer or generation. The problem occurs when

two nodes simultaneously try to communicate with two other nodes on the other side of the

tree due to bandwidth limitations. When the two nodes try to communicate up through the

tree, there is only enough bandwidth in the cabling wire to handle one such communication,

meaning that, at best, the performance is reduced by half. The Fat-Tree, therefore, resolves

that by “thickening the trunk”, by adding more wires in each links the closer to the root the

topology gets, such that a parent node can freely transmit the information provided by both

descendent nodes. This is illustrated in figure 3(a).

17

Figure 3: The two different types of Fat-Tree. (a) A 15-processor network. Note that the closer to the root it gets, the

thicker or more numerous the wires are per channel, increasing bandwidth. (b) A typical 4-ary Fat-Tree network

supporting 16 terminals at the bottom.

While it may be possible to reconfigure the nodes of a classic Fat-Tree, this was not

explored. As such, we move on to the datacenter variant of the Fat-Tree proposed by Al-

Fares, et al. [3]. Technically, the Fat-Tree is a “special instance” of a Clos network. The Clos

topology is named after Charles Clos, who initially proposed a multi-stage and multi-leveled

approach to configure switches for telephone networks [11]. Telephone networks rely on

constant uninterrupted signals rather than the scattering of data packets across a network,

meaning that most networks based on Clos’s network are robust and consistent.

The premise behind the Clos version of the Fat-Tree is that instead of “thickening”

the wires to a single parent node, the network splits that parent node into multiple “core”

nodes. The cores are still connected “fully” to the individual nodes in the next layer in a

bipartite graph.

Formally, the Clos Fat-Tree is defined as a 𝑘-ary Fat-Tree, where 𝑘 is the radix of the

individual switches or nodes of the network. The topology is split into three layers: the Core

layer and the Pod layer, which is subdivided into the Aggregation layer, and the “Edge” layer

which includes the terminals, as shown in figure 3(b). For the sake of clarity, in this

subsection, “edge” will refer to this layer, rather than a topology’s channel or link.

The Clos Fat-Tree consists of 𝑘 pods containing two layers of
𝑘

2
 nodes each connected

in a bipartite subgraph. For the edge layer’s switches,
𝑘

2
 ports connect to the hosts while

𝑘

2

18

ports connect to the aggregation layer. In the aggregation layer,
𝑘

2
 ports are connected to the

edge layer while
𝑘

2
 ports connect to the core layer outside the pods. The core layer consists of

(
𝑘

2
)
2

 nodes, each connecting to one of the aggregation nodes of every pods. In the figure

below, we see an example of a 6-ary Fat-Tree.

Figure 4: A 6-ary Fat Tree supporting 54 terminals (represented by squares). Note that there are 6 pods, each containing 6

routers (represented by circles) connected in a bipartite subgraph.

This results in a topology with a diameter of six hops, an order of
5

4
𝑘2, and capable

of supporting
𝑘3

4
 hosts or terminals. This means that while the topology makes use of a fairly

large number of routers, it should have very reliable throughput performance in exchange.

In summary, the Binary Tree topology consists of a parent node splitting into two (or

more) descendent nodes at every “generation” layers. The “classic” Fat-Tree “thickens the

trunk” by adding more bandwidth in the older generations, typically by adding more wires

between nodes. The Clos Fat-Tree returns to the uniform inter-nodal connection of the binary

tree by splitting the Fat-Tree’s single core into multiple core nodes, forming the backbone of

the topology.

2.2.3 Dragonfly and its Variants

The original Dragonfly topology had been proposed by Kim, et al. [12] in 2008. The

purpose of the dragonfly topology is to address two issues in optical networks: the limited

radix capabilities of optical switches and the high cost of optical cables required in a system,

as shown in the following figure.

19

Figure 5: Two 64-node networks. (a) is an ideal network with each node separated by 2 hops. One can see how there are

therefore 64 long global channels which can get expensive. (b) The Dragonfly network is a more practical implementation

of the desired network, where a cluster of shortrange cables and routers creates the 8 “supernodes” and reduces the

number of global channels needed to 28.

At present, optical switches typically work by cascading several dynamic optical

couplers (effectively 2-by-2 switches for optics) in a manner to allow for switching at a higher

effective radix. This means that the larger the radix, the more switches are cascaded. Because

these switches use thermal-optic effects, each coupler can experience switching times in the

microseconds, which when cascaded would be unsuitable for switching on short packet

timescales. Thus, the maximum radix of an optical switch is widely considered 16 [13].

As such, the Dragonfly topology seeks to resolve that by creating high-radix virtual

routers by grouping up low-radix routers. In other words, using a group of small routers to

effectively create large “virtual” routers. For example, with four radix-8 switches, one can

effectively form a single radix-20 node by reserving 3 ports on each of the switches for intra-

group connection, as seen in figure 6. The other five may be used either connect to hosts or

other such clusters. This results in a “virtual” fully connected network of a much smaller

order.

20

Figure 6: A Virtual Radix-20 Node created by 4 radix-8 switches. Black lines are short range intra-connection while Red

lines are global inter-connections. While no port is dedicated to terminals in this example, one could easily have

reallocated one of the global channels to terminal connections.

The Dragonfly topology is divided into three hierarchical levels. First, we have the

individual routers with a radix of 𝑘. Those ports are divided into three purposes: 𝑝 ports are

reserved for the hosts/terminals, (𝑎 − 1) ports are reserved for the local, short-ranged

channels, and ℎ ports are reserved for global channels, such that 𝑘 = 𝑝 + ℎ + 𝑎 − 1.

One level higher, we have the Group, which consists of 𝑎 routers. A group is

connected to 𝑎𝑝 hosts/terminals and has 𝑎ℎ global channels. This results in an effective

virtual radix of 𝑘′ = 𝑎(𝑝 + ℎ), where 𝑘′ ≫ 𝑘. This is the key property of a given dragonfly

network, because it defines how the smaller routers (nodes) creates the larger virtual routers

(supernodes). Canonically, the routers within the groups are fully connected, meaning that

for a terminal to reach the appropriate global channel, only a single small hop is needed.

Finally, there is the System level. Here, the Groups typically form a fully connected

global network, resulting in a global diameter of 1. In a canonical Dragonfly, there are 𝑔 =

𝑎ℎ + 1 groups, with only one connection between groups, which can support up to 𝑁 =

𝑎𝑝(𝑎ℎ + 1) terminals.

It should be noted that while the original proposal uses electrical cables for short-

distance communications, namely in the intra-group communications, short optical cables

21

can still be used. Even if this negates the benefit of reducing the cost of optical cables, it still

addresses the issue of the limited radix of an optical switch.

While Kim, et al. recommend enforcing the restrictions of 𝑎 ≥ 2ℎ and 2𝑝 ≥ 2ℎ in

order to ensure traffic performance does not suffer, in 2017, Teh, et al. have conducted a

study on the effect of varying the parameters of a Dragonfly network [14].

One notable variant of the Dragonfly topology was Shpiner, et al.’s Dragonfly+.

While in the original Dragonfly, each level is fully connected, in the Dragonfly+, the intra-

group connection takes a Clos-like topology [15].

The Dragonfly+ can best be summed up by a Fat-Tree topology but without a core

layer. Rather than have a fully connected uniform cluster of routers within each group, they

are now organized in two bipartite layers: spine and leaf. This resembles the pods of a Fat-

Tree topology. As such, one could even reconfigure a Fat-Tree to a Dragonfly+ topology for

the sake of bypassing or decreasing the load on the core routers in lower density traffic and

even disabling the core routers for maintenance purposes as shown in the following figure.

Figure 7: A 4-ary Fat-Tree network (a) reconfigured to a pseudo-Dragonfly+ network in (b). The Core routers are

highlighted.

22

2.3 Traffic Patterns and Applications in Various Topologies

In this section, we shall examine the recorded operational performance in the

November 2017 Top500 supercomputer competition, which is compiled in appendix 6.2.

This contest was significant because it was the first time an alternate supercomputer

benchmark test was also used. We examine the top 20 supercomputers of each list, noting

their performance in each benchmark test. We then note whether a particular topology does

better than the average in one test while another does better than the average in another test.

Afterwards, we examine Jyothi, et al.’s experiments and their results for the relative

performance of various topologies in data centers.

2.3.1 Performance of Supercomputer Processors

Supercomputers are typically identified by the sheer power and number of processing

cores they possess, and have their performance measured by the number of Floating-point

Operations they can perform per second (Flops/s).

At present, there are three high-performance (HP) benchmark tests executed on

general-purpose supercomputers: Linpack, Congruent Gradient, and Green.

The High-Performance Linpack (HPL) benchmark test was the original standard

supercomputer test for the Top500 supercomputer list since its creation in June 1993 [16]. It

tests the performance of supercomputers when solving general dense matrix problem 𝐴𝑥 =

𝑏 for three problem sizes: 100 by 100 (inner loop optimization), 1000 by 1000 (full program

with three loop optimization), and a scalable parallel problem [17]. The loop refers to the

process in which the large matrix is broken down and Basic Linear Algebra Subroutines

(BLAS) are called to solve them in more manageable forms [18]. In other words, the Linpack

primarily tests the supercomputer’s ability to factor and solve a large dense system of linear

equations using Gaussian Elimination with partial pivoting [19]. Dongarra, et al. refer to the

traffic pattern of the HPL, with its relatively low need to access data, as a Type 2 pattern.

The High-Performance Conjugate Gradient (HPCG) test serves a similar purpose as

the Linpack test; however, it was meant to better reflect modern real-life applications by

23

focusing more on Partial Differential Equations (PDEs), which better model aspects of the

physical world. To solve those problems, the HPCG program uses iterative methods, which

slowly approaches a solution, assuming it converges for a given initial value. Specifically,

the program primarily measures how quickly it executes Krylov subspace solvers on

distributed memory hardware [19]. Key to our purposes was that it was meant to serve as a

complementary benchmark test to the HPL with different demands on the system. Many

important scientific calculations have low computation-to-data-access ratios, meaning that

most scientific calculations require a lot of data access (Dongarra, et al. refer to this traffic

pattern as Type 1). In other words, there are more frequent network demands in the HPCG

test while HPL focuses more on the individual core’s ability to execute floating point

operations [19]. Despite the difference in emphasis, both test programs still distribute their

operations throughout the network. With its different demand, it would result in a different

traffic pattern. As such, one may find a correlation between a type of topology and the relative

performance.

The Green test evaluates the power efficiency of a supercomputer, namely the number

of Flops it can perform for every Watt of power. While important, the Green test shall be

mostly disregarded in this thesis because we focus more on the effect of the network topology

on the performance. While it may be possible for topologies to be a factor in power

consumption, that has not been examined.

The importance of a good topology becomes very evident when one examines the

performance of some of the top supercomputers. In 2017, the Sunway TaihuLight

supercomputer possesses 10,649,600 cores distributed over 40,960 CPUs (each with 260

cores) with a theoretical maximum performance of 125,436 TFlops/s, yet it only managed to

achieve 93,014.6 TFlops/s in the HPL test (74.2% efficiency) and 481 TFlops/s in the HPCG

test (0.4% efficiency). The average performance in the rest of the top 10 supercomputers of

2017 was 65.3%, ranging from 50.3% to 93.2%. As such, much of Sunway’s position as top

supercomputer of 2017 can be attributed to the sheer quantity of processing power the system

possessed and not its overlap performance. The significant difference in performance can

24

also be attributed to the tendencies of supercomputer engineers to design their

supercomputers around the HPL test, where it primarily exhibits the Type 2 traffic pattern

while having little of the Type 1 traffic patterns, and thus will not account for any programs

that do exhibit Type 1 traffic patterns in their designs. The issue is further exacerbated with

the development of accelerators, which makes CPUs extremely effective with Type 2

patterns, but only barely support Type 1. Dongarra, et al. brought up the Oak Ridge National

Laboratory’s Titan system passing its floating point operations to its GPU as an example of

the use of accelerators [19].

What remains is determining how much of an impact the different topologies have on

the relative performance of the HPL and HPCG tests. To determine this, I took the top 20

supercomputers in both the HPL list and HPCG list of 2017 and noted their topology

archetype, the number of CPUs (nodes) in the system, the theoretical maximum processing

speed (Rpeak), and the achieved processing speed (Rmax or R). The performance efficiency

is determined by how much of the theoretical maximum speed the system has achieved in

percentage. The compiled data obtained from the Top500 website [9] are shown in Appendix

6.2.

The average efficiency of the HPL test is 70.3% with a standard deviation of 16.1%

while the average efficiency of the HPCG test is 1.7% with a deviation of 1.0%. Due to the

high disparity between the performance of supercomputers running the HPL test versus the

HPCG test, it is a bit more difficult to compare the results. As such, we compared the relative

performance to the test average, which is determined by the efficiency compared to the

average efficiency. Based on that, we determined whether a particular topology is better for

a particular benchmark test. The following graphs shows the efficiencies and the average

values.

25

Figure 8: Relative Efficiencies of Top 20 supercomputers with respect to their maximum Flops/s performance under HPL

and HPCG benchmark test with average line and standard deviation marked.

Unfortunately, no clear correlation between topology types and benchmark test could

be established. In fact, one could even make the determination that the Torus 6D topology

simply outperforms all others. The average for most topologies maintains its position relative

to the average performance. While the Sunway has a significant drop when going from the

HPL to HPCG test, its topology is unique (or at the very least, unknown since no publication

detailing its structure could be found) so we cannot make any empirical determination from

it.

Likely, the sample is also too small to truly determine whether the topology was the

main factor or if some other property of the supercomputer itself was detrimental to its ability

to process either benchmark test. It is also possible that despite the differences in tasks the

HPL and HPCG benchmark tests each have, their traffic demand may be similar enough to

experience relatively no difference in performance efficiency from a topological perspective.

2.3.2 Performance in Data Center Networks

Jyothi, et al. conducted a study on the throughput performance of various network

topologies under different traffic patterns [20]. They were attempting to find a standardized

method to measure all network topologies. One of their main challenges was the lack of

26

access to data from real-life data center networks, specifically on the type of traffic and the

structure.

As such, the authors simulated various synthetic traffic patterns on multiple

topologies to create a “near-worst-case” traffic matrix that will yield the lowest throughput.

Similar to the adjacency matrix, the Traffic Matrix 𝑇 (TM) defines a traffic demand, where

in 𝑇(𝑖, 𝑗), node 𝑖 requests a certain amount of flow to node 𝑗. The TM is usually normalized

such that ∀𝑖, ∑ 𝑇(𝑖, 𝑗)𝑗 ≤ 1 and 𝑇(𝑗, 𝑖) ≤ 1. Note that the capacity of a single link is 1. As

such, the throughput is the maximum value 𝑡 for which 𝑇 ∙ 𝑡 is feasible in the network graph.

This is usually formulated and solved as a Linear Program, an optimization problem.

The three synthetic traffic pattern the authors used were the All-to-All, where all

nodes tries to communicate with all other nodes at the same time; Random Matching, where

each node tries to communicate with another randomly assigned node such that every node

has one input and one output signal; and Longest Matching, assigns to each node whichever

node has the longest distance. The results of their simulations, shown in the table below, are

of interest to us because they demonstrate our premise.

Table 1 Relative Throughput at the Largest Size tested under Different TMs (recreated from [20].)

Topology Family All-To-All Random Matching Longest Matching

BCube (2-ary) 73% 90% 51%

BCell (5-ary) 93% 97% 79%

Dragonfly 95% 76% 72%

Fat-Tree 65% 73% 89%

Flattened BF (2-ary) 59% 71% 47%

Hypercube 72% 84% 51%

The relative throughput is meant to represent the throughput quality compared to a

random graph with similar resources to nullify the basic advantage of simply having a higher

connectivity within a graph. In other words, they generated a random graph with the same

number of nodes and each of them with the same number of links [20]. The key results here

27

are the Dragonfly under All-to-All traffic, 5-ary BCell under Random Matching traffic, and

Fat-Tree under Longest Matching traffic. They show that under very different traffic

demands, certain topologies are more efficient for certain traffic patterns, or applications.

The structure of BCell and Fat-Tree networks both have restrictions in the server

placement [20], and to a lesser extent, so does the Dragonfly (specifically, the Dragonfly+

case). Because both have server placement restrictions, reconfiguring from one to the other

should still be practical to achieve.

2.4 The HOB Device

For the most part, this thesis does not concern itself with the technical details of the

devices to be utilized, only in its operation and how it may affect the topological

interconnection of a system. Nevertheless, it is still important to have a general understanding

of the devices involved, including how it can be expanded upon in the future.

The Hybrid Optical Bridge (HOB) is a 12-by-12 optical signal regenerator and

redistributor developed by Reflex Photonics. In other words, it is a 12-by-12 optical

crosspoint switch, as shown in the following figure. However, it is worth keeping in mind

that it is also a signal regenerator, meaning that it converts an optical signal to electric signals

and then recreates it as a fresh, retimed non-degraded optical signal. That means variations

with higher or lower numbers of ports and capacity are entirely possible.

Figure 9: Schematic of the HOB base design provided by Reflex Photonics [21]. Optical signals are converted into

electrical signals before being sent through a crosspoint switch. Then the signal is regenerated and transmitted as fresh,

retimed non-degraded optical signals.

The configuration of the crosspoint switch is controlled via either a USB or WiFi

controller, which would allow multiple switches to be controlled simultaneously from a

single control terminal. As such, an operator or a centralized controller can remotely

28

reconfigure the network to better suit their purposes. These purposes can be to better

accommodate a task for supercomputer networks, to better accommodate traffic demands in

a data center network, or even to temporarily reroute traffic and isolate specific routers for

the sake of maintenance.

The HOB had a throughput of 336 Gbps across the 12 channels back in 2017 [22],

meaning each channel has a capacity of 28 Gbps. In order to achieve higher capacities,

multiple channels can be bundled into a single larger channel. In fact, Reflex Photonics

proposed a 3-port configuration where a port consists of four channels providing 112 Gbps

of throughput between any two ports, as shown in the following diagram [21].

Figure 10: Reflex Photonic’s proposed 3-port HOB configuration [21]. Four channels are reserved for each port and can

be freely interconnected to any ports.

Such a configuration would allow for a much simpler “Port A connects exclusively

either to Port B or Port C” setup. In other words, one would only need to place the HOB at

every reconfiguration event (places where reconfiguration would occur) to achieve

topological reconfiguration. However, this would leave four channels idle, wasting 112 Gbps

of its potential throughput. The goal then is to configure the switch in such a way that all

channels will always be used.

As such, while this may decrease the bandwidth of the individual connections to three

channels (84 Gbps), we would recommend at least a 4-port (or radix-2) configuration, such

29

that Port A and Port B can freely connect between Port C and Port D, as shall be discussed

later in this thesis.

One thing that should be clarified, the earlier diagram of the 3-port configuration

implies that the crosspoint switch within the HOB is used unidirectionally. In other words,

each port has to connect on both sides of the crosspoint switch in order to have both an input

and output. However, by most conventions, crosspoint switches are bidirectional meaning

that even when diagrams show only one channel, there are two, one for each direction.

In this thesis, we shall assume that all crosspoint switches are bidirectional, as this is

a requirement to the algorithm that will be presented. However, even if unidirectional

switches are used, it is possible to emulate bidirectional switches by reserving half the ports

of a unidirectional crosspoint switch for backwards communications which effectively halves

the radix, as shown in the following figure. In 11(a) all lines are bidirectional while in 11(b),

communication can only occur from left to right, or right to left, but still allows for the same

connectivity as in 11(a). A consequence of emulating bidirectional switches with

unidirectional switches is that they could allow for connection of nodes that in a bidirectional

switch are located on the same side. For our purposes, this will be disregarded. Since

bidirectional switches have no true input or output ports, we shall refer to either side of the

switches simply as the left or the right side.

Figure 11: Comparison of (a) two-way and (b) one-way crosspoint switch configuration.

Bundled channels are shown as only one link in diagram.

Finally, while Reflex Photonic’s HOB currently only possesses 12 channels, it is

entirely possible to resize the HOB to a larger radix. Recall that one of the main limitations

to optical switching was the relatively slow switching speed of the thermal-optic effects. With

30

the electrical crosspoint switch at the core of the HOB, we remove the optical limitations and

thus allow for a greater number of channels to be connected at once, giving us more options.

As such, we shall assume the following: the reconfiguration switches can be of any

size, the reconfiguration switches will be bidirectional, and the two sides of the switch will

be interconnected in a bipartite manner.

31

3 Implementation of the Node Group Synthesis

Program

To reconfigure a network from one network topology to another, the HOB or similar

crosspoint switches can be used. To determine where best to place the reconfiguration

switches, I have written a program that will analyze a set of adjacency matrices representing

the desired topology configurations and return a list of Node Group Pairs (NGPs,

shorthanded as Group Pairs or GPs). Each GPs represents a crosspoint switch and a group

of nodes connected into each side.

The program follows a pipeline architecture, where the program is divided into

independent and replaceable parts or modules arranged in a chain such that the output of a

preceding module acts as the input of the following module. In this case, the program is

divided into three modules: 1) the Link Delta Acquisition Process, where multiple adjacency

matrices of the same order are evaluated to determine the potential and necessary changes in

links to effectuate a reconfiguration from one described topology to another; 2) the Chaining

Process, where the link deltas from the previous step are iteratively chained together to form

a list of every possible non-redundant Group Pairs; and 3) the Selection Process, where a

final set of Group Pairs is selected based on the amount of necessary link contributions and

non-overlapping links each Group Pairs contribute. The program also has an optional fourth

and final stage helpful in the visualization of the final reconfiguration, where the selected

Group Pairs are drawn on both a system-wide basis and the individual switch configurations.

The operational conditions at this point of the program’s development are as follows:

1. There can only be two topologies. The current methodology the program uses can

only handle systems swapping between two topologies. This is due to the implementation of

the program, which will be discussed in more details in section 3.2. While it may be possible

to achieve network reconfigurations comprising of more than two topologies by having

reconfiguration switches interconnect with other reconfiguration switches, this feature is not

yet supported. At present, the program treats the HOB crosspoint switches as an invisible

32

component in the network—a component meant only to reconfigure a network. It does not,

therefore, handle situations where the HOB devices themselves are nodes in the network.

These would only occur in situations where a group of nodes must be able to freely

interconnect with another group of nodes, such as in reconfigurable optical dragonfly

proposed by Samadi, et al., where any node in a supernode can connect to any node in another

supernode [23], as shown in the following figure.

Figure 12: In Samadi, et al.’s reconfigurable dragonfly, the central four switches connect to

each other, and thus would likely need to be mapped as nodes of the network.

2. All nodes must maintain their degree. All used ports on a router or server must be

used and remain used, and therefore all links must go somewhere when reconfigured. In other

words, if a server was connected to two other servers in the first topology, it must be

connected to two servers in the second topology. This reflects both the reality that routers

have a finite and constant number of ports and the practicality of making use of all available

resources; there is no point in leaving a cable or port idle simply to fit the canonical

description of a specified topology, excepting scenarios where one splits a larger network

into sub-networks as described earlier.

3. All relevant edges must be defined. There is no point in defining a network by the

likelihood that there is a link between two nodes. We are dealing with manually reconfiguring

a network between two specific topologies and the necessary link reconfigurations to make

that happen.

33

4. All GPs must be full. More specifically, a user must use a radix value such that it

can be filled without leaving any empty ports. This is a consequence of the implementation

of the program, where the Chaining Process would deem any GP combination incapable of

reaching the desired radix unviable and thus not forward it to the next module.

There is also a fifth non-critical condition, in that the program would still function,

but the result becomes significantly less efficient. The number of necessary link changes (or

link deltas as we will call them later) must be a multiple of the radix of the switch. For

example, if a system requires 16 reconfiguration events (link deltas, which will be defined in

the next section), reliable radix values are 2, 4, 8, and 16.

3.1 Link Delta Acquisition

The first step is the Link Delta Acquisition Process, implemented in GenConnList.m

(appendix 6.1.4). We define a link delta (𝑑𝐿) as a pair of adjacent links where one is unique

to topology A and one is unique to topology B relative to their common node (referred to as

source node). For instance, suppose that we have a network with nodes {1,2,3,4} as shown

in the following figure. In topology A, we have links (1,2) and (3,4). In topology B, we have

links (1,4) and (3,2). The link delta would then be notated as (1, 2 ↔ 4) where source node

1 links to destination node 2 in topology A and destination node 4 in topology B, and

(3, 4 ↔ 2) where node 3 links to node 4 in topology A and node 2 in topology B. Note that

we can also define the link deltas relative to all source nodes. For example, we can also

describe (2,1 ↔ 3), which is also a valid link delta.

Figure 13: Topology reconfiguration of four nodes with links (1,2) and (3,4) being reconfigured to (1,4) and (2,3)

34

It is worth clarifying that a link delta merely describes a potential way for a link to be

reconfigured for every node. It does not necessarily refer to the exact reconfiguration that

occurs in the final setup. In cases where each node requires multiple link reconfigurations,

there will most likely be more link deltas than necessary to effectuate the network

reconfiguration. To demonstrate, suppose we have a network with nodes {1,2,3,4,5} as

shown in the next figure. In topology A, we have links (1,2) and (1,4), while in topology B,

we have links (1,3) and (1,5). As such, there are four possible link deltas: (1, 2 ↔ 3),

(1, 2 ↔ 5), (1, 4 ↔ 3), and (1, 4 ↔ 5), even though only two are necessary to go from

Topology A to Topology B.

Figure 14: A demonstration of all possible link deltas dL, even if only two reconfigurations would occur.

At this point in the process, we only concern ourselves with generating a

comprehensive list of potential link deltas 𝑑𝐿 for every node of a topology. The specific

selection of which to use will be decided at a later stage.

The program code is included in appendix 8.1.4. It takes a three-dimensional matrix

as input, each layer representing the adjacency matrix of each desired network configuration.

The process then identifies and extracts the links common to all topologies and therefore do

not require any reconfigurations. This allows the process to then identify the links exclusive

to each topology.

Once every link exclusive to each topologies have been identified, we then scan

through each node, or rows or columns in the adjacency matrices, and identify their

respective exclusive links. Each topology has a set of destination nodes, and we create a set

product (or cartesian product) that provides every possible combination of link deltas.

35

The set product or cartesian product is a set theory operation where the elements of

two (or more) sets are combined into every possible ordered pairs (or n-tuple). In

mathematical notation, 𝐴 × 𝐵 = {(𝑎, 𝑏)|𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵}.

While the setprodcell.m function (appendix 6.1.5) can cross-product a multitude of

sets (i.e., possible configurations), the program should only take two adjacency matrices as

input, otherwise it will fail to give an appropriate output.

Finally, GenConnList.m outputs a list of potential link deltas (dL) and necessary links

(Nec). The necessary links list is a list of every link in every link delta. This serves as a list

the program will check against to ensure that every needed links has been effectuated in case

the program needs to compromise and create new links that have not been defined explicitly.

This was originally meant to remove the necessity of explicitly defining all links and allow

the program to autonomously create “dummy” links, which would allow the program to

direct incomplete link deltas that have nowhere to go. Such a feature was unfortunately not

implemented, but we shall still cover the intent.

Suppose we take the earlier subset of nodes {1,2,3,4,5} illustrated in figure 13, but

this time, we do not define (1,5) as a link explicitly part of Topology B, as shown in the

figure below. In other words, the link (1,5) is not a necessary link in this topology. That

means that when it comes time to select link deltas, we will be forced to select both (1, 2 ↔

3) and (1, 4 ↔ 3), which is redundant since both contributes the link (1,3). As such, we can

still create a “dummy” link (a link that does not exist in the formal definition of either

topologies, but does exist as a fully functional link in practice in order to satisfy the second

condition) of (1,5) which allows us to create the “dummy” link deltas of (1,2 ↔ 5) and

(1,4 ↔ 5) which will only be selected if it allows for a better selection at the end.

36

Figure 15: Two link deltas colliding when link (1,5) is absent.

Could be resolved by adding a dummy link between 1 and 5.

As the program is currently, the necessary link component only serves to verify the

results. However, the data is available for future expansion. Additionally, this process can

only reliably manage two topologies. While the function is capable of handling more, the

program has not yet been designed to handle such a scenario.

3.2 Chaining Process

The second step is the Chaining Process implemented in ChainPairs2.m (appendix

6.1.6). This is where a comprehensive list of every possible Node Group Pairs is generated.

Recall, the Node Group Pair refers to the set of nodes connected to each sides of a

reconfiguration crosspoint switch (i.e., the HOB), such that the left Node Group refers to the

nodes connected to the left side of a switch and the right Node Group refers to the nodes

connected to the right side of a switch. A GP will be called full when every port on both sides

are connected to a node.

The goal is to create a comprehensive list of every possible full GPs that will

contribute to effectuating the network reconfiguration, a master set. One can then select a

subset from this master set to create a solution set based on specified restrictions or

requirements.

The function generates each GPs by chaining a collection of link deltas. By following

the ‘flow’ of changing links, one can chain together a sequence of link deltas that eventually

loops back to the ‘initial’ link, as shown in figure 16. The idea is to configure crosspoint

switches that need only shift its link over by one port to effectuate the desired network

reconfiguration. In other words, in Topology A, all ports on the left side of the crosspoint

37

switch would connect to the ports across them horizontally, and in Topology B, they shift

their connection to the next port, except for the bottom left port, which would loop back

around to connect to the top right port. The program will arrange the order of the nodes

chosen on both sides of the switch such that all switches only need to follow this connection

shift pattern to effectuate the network reconfiguration.

Figure 16: A Node Group Pair with its chaining sequence highlighted. Note how when the network reconfigures from

Topology A (in blue) to Topology B (in red), all of the blue links are “shifted” by one node to become the red links in this

set, the bottom right node (node 7) looping back around to the top of the right set (node 3).

The function works as follows. Given switches with a radix N and a full list of link

deltas, the function picks a starting node, designated as the Root (usually node 1). It then

finds all link deltas with a source (or starting) node matching the Root node, and those

potential link deltas (called Root 𝑑𝐿) are compiled into a Root List. The function will then

pick one of the Root 𝑑𝐿 and note the two destination nodes, designating topology A (or the

old topology) as the Head and topology B (or the new topology) as the current Tail. It then

searches the link delta list for any link deltas where topology 1 matches the current Tail. This

creates a second list of prospective “links” in the chain. The process selects one of these

chains and, much like it did with the Root, designates a new Tail. Note that if the new Tail

matches the Head, then the Group Pair so far is saved as a “minichain”, meaning that it was

possible to create a Group Pair using a smaller radix switch. The process repeats until the

chain reaches a length of N-1. At which point, it will search for prospective links with the

addendum that the Tail must also match with the Head to close the chain. If there are more

38

than one link delta that can close the chain, then both are recorded and added to the final GP

set. Figure 17 demonstrates one such cycle.

We begin by picking node 1 as the Root, bringing up a full list of link deltas whose

source node matches the Root as a prospective Root List (first column in the figure). We will

eventually go through all of them, but we start with the first entry of the list, (1,3 ↔ 4), and

note the Head of the chain, 3, and the current Tail of the chain, 4. As such, we compile all

link deltas that starts with 4 in their destination pairs (i.e., connects to 4 in topology A) into

a list (second column in the figure). Like the Root List, we will eventually go through all of

them, but we begin with the first link delta of column 2, (2,4 ↔ 3). Here, we technically

completed a chain because the new Tail matches the Head of the chain (node 3), but we have

not achieved the desired radix. As such, we record this minichain in a separate location and

continue to the third column.

In the third column, we experience the effects of a few filters that will be explained

in more details later, but in short, they serve to prevent redundancies within the prospective

GP. In this case, when we compiled a list of all link deltas with node 3 in their destination

pairs, we found that (1,3 ↔ 4) and (1,3 ↔ 13) have a redundant link, specifically (1,3)

which can be found in the link delta we started with in column 1, (1,3 ↔ 4). As such, those

two link deltas are discarded, and we move on with the rest of the list. We select link delta

(11,3 ↔ 7).

At this point, we have a chain of length 3. To form a GP for a radix-4 switch, our next

link delta must close out the chain in a loop. In other words, the link delta must start with

node 7 and end with node 3 in its destination pair. Here, the only link delta that satisfies this

condition is (15,7 ↔ 3). We have thus formed a link delta chain consisting of (1,3 ↔ 4),

(2,4 ↔ 3), (11,3 ↔ 7), and (15,7 ↔ 3). We record this completed GP and move on back a

column to explore the rest of its list, namely (11,3 ↔ 10). Once that is complete, we reach

the end of the list in column 3 and move on to the next entry in column 2, (2,4 ↔ 14). This

cycle continues iteratively until all branching lists have been explored.

39

Figure 17: The chaining sequence the Root link (1, 3↔4) would undergo to create a GP of Radix 4.

Note that two link deltas are skipped in the third column due to overlap of link contribution.

Once we have found all GPs that originates from the current Root node, we move on

to the next Root and start over until all Root nodes have been explored. The entire process is

summarized in the flow chart that follows.

Figure 18: Chaining Process Flow Chart with filter blocks highlighted in yellow.

The process is refined through filters that catches GPs that would be redundant with

previously generated GPs. There are two in-process filters, designated Stepback Filter and

Overlap Filter, and one post-process filter, designated Equivalence Filter. It should be noted

40

that two features in the flow chart are either not implemented or not used. They were meant

to assist in the creation of GPs possessing dummy links, however, the feature has not been

implemented.

3.2.1 Stepback Filter

The Stepback Filter is the first filter in the system. It ensures that no Roots designated

in the previous section reappear in later iteration of the scanning process. In other words,

once the program has finished using node 1 as the Root node to create potential Group Pairs,

node 1 will never again reappear in later iterations, whether as a source or destination. This

is to prevent essentially creating the same group from the tail end. This is most obviously

exemplified in the radix-2 case, as seen in the following figure. However, even in larger

radices, one can recognize the redundancy if one compares the elements of each Node

Groups.

Figure 19: Example of three Radix-2 GPs generated with no Stepback Filter. Each expressed differently yet creating

identical networks. The left GP would be the original. The middle has node 1 reappearing as a source node. The right has

node 1 reappearing as a destination node in their link deltas.

3.2.2 Overlap Filter

The Overlap Filter was originally two separate filters: The Looping Filter and the Semi-

Overlap Filter. The Looping Filter was a basic filter that detected instances of repeated link

delta. For example, in the example demonstrated in figure 16, it would only catch the repeated

instance of (1,3 ↔ 4) in column 3, because it only searches instances where a link delta is

used multiple times in a chain. The Semi-Overlap Filter was intended to find instances of

redundant link contributions in every GP. Specifically, it finds instances where a source and

destination node are “flipped”. For example, suppose for some reason, a GP contains the link

41

deltas (1,3 ↔ 4) and (3,1 ↔ 15), it would realize that (1,3) from the first link delta and

(3,1) from the second link delta are the same link. Due to their different intended purposes,

it was not immediately obvious on initial design that the Semi-Overlap Filter would achieve

the same task as the original Looping Filter, and thus they were combined into a single filter.

Integrating the Overlap Filter to run in-process required a change in methodology.

Rather than scanning the completed Group Pair on a column-wise basis, the program instead

compares the prospective Link delta to be added to the at-this-point incomplete Chain and

checks for redundancies. It is more efficient this way because with this in-process filter in

place, it can be assumed that all prior chained Link deltas are not redundant. Should a

redundancy be detected, then the current chain is aborted, and the process moves on to the

next prospective Link delta (demonstrated in column 3 of Figure 17).

3.2.3 Equivalence Filter

The Equivalence Filter is the final filter for the chaining process. It is a post-process

filter that scans through the potential solution set and detects all equivalent elements. In other

words, it searches for two GPs that possess the same node groups. Unfortunately, all attempts

at integrating this filter as an in-process subroutine to cut down on computational time have

failed to yield a complete potential solution set.

The only way for such a filter to be in-process would be to be able to recognize a

redundant pattern early during the Chaining Process. For example, given a GP chain with

eight dLs, we may start another GP chain that turns out is the same as the first GP but

backwards. The in-process filter should be able to recognize that pattern and stop it early,

saving up a lot of computational time. Unfortunately, on testing the in-process vs. the post-

process filters, there was a discrepancy where the in-process would abort too many chains

too early, leading to missing GPs compared to the more comprehensive list having this filter

post-process would provide.

It was eventually determined that further attempts at trying to refine the process or

otherwise tune the sensitivity would be a poor investment of time when the other filters do a

sufficient job at reducing the program’s runtime.

42

3.3 Selection Process

With a comprehensive list of potential Group Pairs, it is now time to choose a set that

will effectuate the necessary changes in links to reconfigure a network. Here, we enter the

Selection Process (appendix 6.1.9). As an aside, it should be noted that the following method

is more easily comprehensible from a visual and therefore “human” perspective, however, it

is probably very inefficient from a computational or analytical point of view. The main

challenge is to select the smallest number of GPs that can effectuate the reconfiguration of

the network. That means that there should be as few redundant bridging links amongst the

selected GPs as possible. As such, it is important to then know which GPs can and cannot be

taken simultaneously. To do that, we create a similarity or overlap matrix. This is similar to

the adjacency matrix, except this time, the “nodes” correspond to their respective elements

in the potential GP set. The similarity matrix will thus list out the relationship between every

GP element and indicate the number of common essential link contributions.

Once a similarity matrix is fully established, we create an adjacency matrix by

establishing a tolerance value, which indicates how many overlaps in nodal links provided

by each GPs will be permitted before a similarity link is established. Suppose we take a

tolerance of zero, then there is a link between GP nodes that has any common link

contribution as shown in the following figure. As such, we create a similarity graph where

all sufficiently overlapping GPs are interconnected.

43

Figure 20: The Similarity Graph of a 16-node Hypercube-Torus system with Radix-2 reconfiguration switches, where all

nodes with at least a single overlapping link contribution is interconnected. The selected GPs are circled, indicating a set

of GPs that could be selected without any link contribution overlap. For example, GPs H2 and H3 were selected, while H1

has a single link overlap with either other two (H1-H2 both contributes link (1,3) while H1-H3 both contributes (1,4)).

The goal then is to choose a set of nodes where each node is not interconnected with

another member of the selected set. From a graph perspective, that means all nodes must have

an even number of hops in between each other.

To accomplish this computationally, it is necessary to create a distance matrix. From

that, to increase the likelihood the final selection will not miss any necessary links, we start

with a random GP with the greatest number of viable nodes. Viable nodes being nodes an

even number of hops away from the reference. We select the next node by likewise ensuring

that the number of overlapping viable nodes is maximized. This continues until all viable

nodes have been collected or rejected.

Once a selected set is established, then the GPs the selected nodes correspond to

represent the selection and configurations of the HOB devices needed to reconfigure the

network from topology A to topology B.

44

4 Program Performance Analysis

In this section, we shall examine the program’s performance in converting a 16-node 4D

Hypercube (H4D) to a 4×4 Torus network (T4×4). For radices ranging from 2 to 16, we shall

evaluate the accuracy and the resource efficiency of the solution the program provides and

measure the computation time at which this was found.

4.1 Preliminary Examination

This scenario was selected for its overall simplicity and small size. I was able to

manually solve the radix-2 and radix-4 case and thus would be able to verify the accuracy of

the program’s results. It also served as a good starting point for the development of this

program, because it possessed favourable properties. I decided that only once the program

can reliably handle the baseline easy scenario will development move on to more complex

cases.

An important property to note about the 4D Hypercube and the 4×4 Torus is that they

are uniformly isomorphic. In other words, by simply rearranging the node designation

without changing the interconnection, a Hypercube can become a Torus. Conversely, by

rearranging the relevant links, one can achieve the desired reconfiguration. It should be noted

that isomorphism by itself is insufficient to ensure the program would work; we need to

ensure that each node has a constant degree. As such, while we do not necessarily need to

stick to a traditional mapping of a topology (i.e. node 1 does not necessarily need to connect

to node 2) it is important to keep track of the node designation in order to ensure the degree

is preserved. In this case, the three conditions for the use of the program are satisfied: We

have only two topologies of interest. All nodes maintain a constant degree of 4. All links are

defined.

Of the four links each node possesses, two of them need reconfiguration, yielding a

total of 64 potential link deltas, with four link deltas associated with every node. This

conveniently uniform distribution allows us to predict the maximum number of GP

combinations since, at every layer of the iteration, there are certainly four potential link deltas

45

to branch off to. In other words, with no filters, the number of GPs the program could

theoretically generate can be estimated by the following formula:

 𝑃 = 𝐿 × 𝑙𝑟−2 (14)

where 𝑃 is the unfiltered number of Pairs of Node Groups the system may generate, 𝐿 is the

number of link deltas dL the system has, 𝑙 is the number of link deltas per nodes, and 𝑟 is the

radix of the reconfiguration crosspoint switch. The reason for the -2 in the 𝑙’s power is due

to the fact that it starts with all potential link deltas and that when you reach the end of the

chain, there is usually only one possible link delta that could be used to complete the chain.

While this formula has not been exhaustively verified, this gives us an idea of the

scale of the work the program needs to run through. The number of potential chain

combinations could reach upwards to 17.2 billion for the radix-16 case with an estimated

22.9 billion calls on the ChainNext.m function, yet there is only a single non-redundant

solution. The table below demonstrates why the redundancy filters are critical to run this

program with a reasonable memory requirement.

Table 2: Estimated Number of Unfiltered GPs and ChainNext.m calls vs Filtered values (no composite GP).

Radix No Filter GPs Est. Filtered GPs No Filter Calls Est All Filters Calls

2 64 16 64 24

4 1,024 80 1,344 214

6 16,384 176 21,824 1,388

8 262,144 233 349,504 7,172

10 4,194,304 176 5,592,384 26,542

12 67,108,864 88 89,478,464 68,517

16 17,179,869,184 1 22,906,492,224 157,966

4.2 Speed of Solution

The primary purpose of the filters is to weed out redundant outcomes. That can

theoretically be easily achieved by allowing the program to run and then check the results.

However, the average iteration of the ChainNext.m function has a duration of around 3 ms,

46

thus a system that needs to over 17 billion iterations would be computing for more than

1.6 years. As such, the real purpose of those filters is to reduce the number of necessary

iterations by catching or preventing redundancies early.

With the reduction in place, we can now run the program and measure the time

elapsed. For reference, the program was executed on my personal computer, which runs on

an AMD Ryzen 7 1700 (8 cores, 16 threads), 32GB of RAM and an EVGA GeForce GTX

1080 graphics card. The runtimes measured are compiled in Table 3. The most obvious

feature of the timed table is the expected scaling of the Chaining Process, with it taking up

more and more time the larger the radix gets.

Table 3: Timed Program Execution with percentage distribution (leftover time goes to all other process).

Also noted are the number of composite (comp) GPs in the total GP count.

Radix GP

(comp)

Full

Time

dL

Acquisition

Chain

Process

Selection

Process

Draw

Time

2 16 (0) 1.141s 0.029s

(2.54%)

0.088s

(7.71%)

0.223s

(19.54%)

0.787s

(68.97%)

4 120

(40)

5.908s 0.029s

(0.49%)

0.990s

(16.76%)

4.357s

(73.75%)

0.519s

(8.78%)

6 288

(112)

29.614 0.027s

(0.09%)

4.700s

(15.87%)

23.860s

(80.57%)

1.014s

(3.42%)

8 365

(132)

61.769s 0.029s

(0.05%)

22.537s

(36.49%)

38.783s

(62.79%)

0.407s

(0.66%)

10 244

(68)

98.906s 0.025s

(0.03%)

81.029s

(81.93%)

17.439s

(17.63%)

0.398s

(0.40%)

12 116

(28)

219.195s 0.027s

(0.01%)

214.375s

(97.80%)

4.094s

(1.87%)

0.677s

(0.31%)

16 2 (1) 485.574s 0.055s

(0.01%)

485.041s

(99.89%)

0.096s

(0.02%)

0.360s

(0.07%)

The dL Acquisition process is relatively steady because it is unaffected by the

inputted radix. Instead, the dL Acquisition process scales quadratically with the order of the

47

network (𝑂(𝑁2)) because it needs to compare the link status between every pair of nodes in

the network.

The Chaining Process has an exponential complexity 𝑂(𝑙𝑟), where 𝑙 is the number of

link deltas per nodes and 𝑟 is the radix value, due to how the problem grows by the same

factor at every layer of the chain the process needs to run through. While the filters do reduce

the runtime, I do not believe it reduces the complexity of the problem.

The selection process meanwhile grows before hitting a peak at the median radix and

falling. This pattern is matched by the number of GPs generated by the Chaining Process.

This implies that the problem grows about linearly with the number of GPs inputted into the

process (𝑂(𝐺𝑃)). This is consistent with the fact that the most computationally heavy part of

this process is the generation of the graph and the GP comparison to generate the similarity

matrix. The comparison aspect scales quadratically with both the radix (𝑂(𝑟2)) and the

number of GPs inputted (𝑂(𝐺𝑃2)) for similar reasons as the dL Acquisition process; it needs

compare each pairs of GPs for their similarity.

The draw time is the least important section to examine because it does not contribute

to finding a solution set. That said, there are still a few key observations to make. The drawing

program simply takes the final list of GPs and draws both a wide graph showing each node

connected to their corresponding reconfiguration switches as well as the configurations for

each of the individual reconfiguration switches. Consequently, the more GPs the program

needs to draw, the longer it takes. As such, the larger the radix, the less GPs the system will

need to effectuate the desired reconfigurations. This means that the Drawing Process scales

linearly with the number of GPs inputted (𝑂(𝐺𝑃)). What is worth noting then is that the time

recorded does not necessarily reflect that (specifically radix 6 takes longer than radix 2). This

has to do with the quality of the solution, which will be discussed in the next section.

4.3 Quality of Solution

The primary function relevant to the quality of the solution is the Selection Process.

Due to how the program functions, it is not possible to have unused ports on a reconfiguration

48

switch in the final solution set. As such, the quality of the solution is determined by whether

it uses as few crosspoint switches as possible, which consequently will minimize the number

of wasted ports or links if any, and whether it effectuates all link deltas necessary for the

reconfiguration.

The smallest chain that can be achieved with these topologies is a radix-2 chain,

suggesting that the best radix to use would be some factor of 2. Empirically, it was determined

that for the 16-node Hypercube-Torus conversion, the best radices to use are 2, 4, 8, and 16

which uses 8, 4, 2, and 1 switch(es) respectively. In these cases, the link deltas fit perfectly

with no redundant or missing links.

As shown in Table 2 though, the pattern does not necessarily hold true in the case of

radices 6, 10, and 12. That is because in its current state, the program’s decision is based

simply on the “spacing” with no account to actual content of GP. Should the preliminarily

selected solution not cover all necessary links, the similarity graph would then be adjusted

by loosening the tolerance value, such that a similarity link may need more GP similarity to

exist. The idea was that by allowing a limited amount of overlaps between the selected GP

(which would inevitably occur when using imperfect radix), one would then get the next best

solution.

Unfortunately, due to not attempting to maximize the contribution of the next

randomly selected GP, it may not contribute all necessary links to then finalize the selection.

The program then mistakenly believes there is no solution at the current tolerance level and

loosens it even further. Consequently, due to the random selection involved, the result is also

inconsistent. As such, the selection process will need to be significantly revised and improved

in order to ensure reliable and robust results.

4.4 Potential Improvements

Due to time constraint and a particular focus on ameliorating the Chaining Process

such that it could even finish, there are a series of features and improvements that could not

be implemented. With that said, there are still plenty of improvements the program could

49

have. The main weakness to the Chaining Process is its exponential time factor.

Unfortunately, there are very little additions that can be made to Chaining Process in its

current form, in that I could not find any ways of adding more in-process filters to reduce the

computational time. As such, any improvements would require a fundamental change in the

process’s structure. For instance, instead of initializing the ChainNext inner looping for each

individual link delta, one could attempt to parallelize the process by scanning through all link

deltas simultaneously, identify equivalent tail ends (i.e. all link deltas ending with 4 and so

on) and then simultaneously attach the next link delta. While at each layer of the chain, there

will be an exponential number of link deltas to evaluate, the number of chaining to occur at

each layer should be reduced to, at most, the order of the system (in this case 16). This may

be incompatible with certain filters in their current implementation, but should it work

correctly, this may reduce the problem size from 𝑂(𝑙𝑟) to 𝑂(𝑟2). Additionally, one can

consider transferring this process to C or another programming language that may perform

this task faster than MatLab.

Another issue with the Chaining Process is its inability to give a good output when

given a radix value that does not resolve the chain. More specifically, in the Hypercube Torus

case, it will not have any GPs listed if a user enters a radix of 3 because no chain of that

length exists. As such, the proper solution here would be to either deliberately leave a port

empty (i.e. not connected) on both sides of the switch or to have the program automatically

correct the impossible parameter. Either way, adjusting the program to be capable of handling

this will make the program more robust.

With the runtime and robustness issues mostly resolved, it is time to resolve the

solution accuracy problem. The primary difficulty in designing the selection process is that

it needs a “whole picture” view. It needs to be able to start from a point that will not prevent

an optimal solution. To use an oversimplified example, suppose we have a set of pairs:

{(1,2), (2,3), (3,4), (4,5), (5,6)}. The program needs to be able to recognize that starting

from (2,3) would prevent it from acquiring 1, and 4 or 6, since the only pairs that would

have no overlap would be (4,5) or (5,6). As such, unless one were to replace the similarity

50

graph with another method of getting the “whole picture,” any future developments will have

to focus on the specifics of how the process decides which GP to choose.

In the program’s current iteration, the selection process starts with and subsequently

selects the GP with the maximum number of other GPs that are an even number of hops

away. This is because those GPs are more likely to be on the “edge” of any chains. To use

the earlier example, (1,2) would have two other GPs while (2,3) would only have one.

Sadly, the principle no longer applies when there are no other GPs that are two hops away

under the zero-overlap setting, such as would be the case for radix-10. The radix-6 case would

reach a similar situation when it acquires two GPs.

The main issues then are that the selection is otherwise blind and that the program

loosens its tolerance value when the process encounters failure without attempting the

alternative solutions. While the idea of loosening tolerance is a requirement to allow for

imperfect radix fits has merit, the method is flawed.

A feature that was missing is the ability to bias the selection, to evaluate the individual

GPs and assign a score to them. The original “maximum options” property will instead add

to those GP’s score rather than be the sole factor and it would allow for other factors to be

considered, such as the proximity of the nodes in a GP, or that a GP has a favourable

characteristic that would decrease the chance of inefficient coverage. Finally, it can evaluate

the prospective GP’s link delta contribution such that it will cover any leftover links when a

preliminary list has been established. In other words, it would be better to remove the blind,

random element of the selection process and instead use an evaluative approach. Future

developers will have to determine whether it is sufficient to evaluate once at the start and

once to finish up, or if evaluating after adding any GP to the solution list will not slow down

the program by an unreasonable degree.

Alternatively, any future developers can change the approach altogether and

formulate this as a discrete optimization problem. It has unfortunately never occurred to me

to try this approach nor was I familiar enough with optimization to attempt in the time I had

left.

51

Additionally, the program should be more extensively tested on other topology

combinations, with efforts to reduce or even eliminate the necessary conditions.

4.5 Results

For the sake of not overloading this section with results, we shall focus only on the

radix-8, and radix-12 cases. One for when all conditions are satisfied, and one where the fifth

condition is ignored. The similarity graphs are too visually dense to glean anything

meaningful and thus will not be presented here, however, the Group Pair Relations (GR) are

included in the ChainResults_20200915.mat file uploaded with the rest of the program.

4.5.1 Radix-8 Results

The Radix-8 switches satisfy all conditions of the program, and thus the results are

consistent and reliable. Out of the 365 possible GPs, two are always selected, and they are

random enough to not easily yield the same result which is consistent with the intended

design.

Figure 21: H4D (blue lines) to T4×4 (red lines) system placed in a circular pattern and how their servers would connect to

the radix-8 switches (H1 and H2) to each other. Also included are the internal configurations of the individual switches

Thicker lines represents multiple connections in between nodes while faded lines represent non-reconfiguring links.

52

Presented in Figure 21 on the previous page are the results the program would

generate for radix-8 switches.

4.5.2 Radix-12 Results

The Radix-12 switch does not satisfy the fifth condition, seeing as there are 16 link

deltas needed to reconfigure a 16-node Hypercube to a 4×4 Torus. At this moment, however,

the program struggles to handle situations where GPs are not filled up perfectly.

Optimally, the solution should pick two GPs out of the 116 possible combinations.

However, due to the current approach of loosening the tolerance uniformly and allowing for

more overlap to occur per GP, the program will end up selecting four GPs, as shown in the

following figure.

Figure 22: Suboptimally selected radix-12 configuration. Follows same line convention as previous figure. Note that there

are several redundancies in the link contributions; (1, 3 ↔ 4) & (2, 4 ↔ 3) appears multiple times.

The less efficient solution provided when the fifth condition is not satisfied has two

main consequences. The program will execute more slowly because it spends more time

trying to select GPs that may not provide the maximum link contribution. This leads to the

second consequence where the solution will be more expensive because it introduces

unnecessary switches.

53

5 Conclusion

In this thesis, we have covered a few of the fundamentals of network topologies and graph

models, followed by four examples of popular topologies: Hypercube, Torus, Fat-Tree,

Dragonfly.

With the context in place, we then examined the performance of various application

and traffic patterns on various network topologies. We began by examining the two

benchmark tests typically used on supercomputers, the Linpack and Conjugate Congruent

tests. Unfortunately, no clear conclusions could be drawn from the test results of the top 20

supercomputers. As such, we moved on to Jyothi, et al.’s examination of synthetic traffic

pattern on various network topologies. Their results demonstrated that Dragonfly had the best

result for All-to-all traffic, the 5-ary BCell had the best result for Random Matching, and the

Fat-Tree had the best result for Longest Matching.

Having established that specific traffic patterns (or applications) may benefit from

certain topologies, we address how to implement a reconfigurable network. While the Hybrid

Optical Bridge (HOB) was brought up as the crosspoint switch to use both for its remote

capabilities and for its lack of radix limit, the principles offered in this thesis can apply to

any crosspoint switch.

Thus, I proposed my program to evaluate two desired topologies and offer a solution

to the placement of crosspoint switches to allow for reconfiguration. The process was divided

into four modules: link delta acquisition process, the chaining process, the selection process,

and the presentation process. The modularity of the designs allows for the individual

alteration or amelioration of the individual parts without needing to alter the others, assuming

compatible input and output format.

The main work in the proposed process is ensuring that the program would finish in

reasonable time via the use of filters in the chaining process. Consequently, the quality of the

solution was not sufficiently refined to be wholly robust. As such, there is much that still

needs to be done.

54

5.1 Future Works

Any future work building upon this thesis will most likely be building upon the

program or researching traffic patterns various applications may have and how different

topologies handle them.

The link delta acquisition and chaining process can be revamped to allow the program

to handle three or more topologies. That way, a three-way reconfiguration between the BCell,

Fat-Tree, and Dragonfly+ may become feasible. This would require a much more elaborate

methodology than to only shift the switches’ configuration one port down to effectuate the

topology reconfiguration since 2 topologies may share a link while the third does not.

Similarly, works can be directed towards loosening or even removing some of the

conditions the program have in order to run. The program can be made to be able to handle

undefined links, or handle situations where the node degree is not maintained as is currently

required.

Despite the filters, the chaining process is still the slowest part in this program. One

potential approach in improving the computation speed is to modify the currently sequential

process to run in parallel, such that all GPs are generated simultaneously. The filters are still

compatible since they only limit potential options for a given Root link delta or prevent

overlap. Should a method be found, this will reduce the current exponential growth of the

problem size to be linearly proportional to the radix.

The selection process will likely be the core of any future development though. The

process currently uses a blind, semi-random approach to finding a solution set. It does not

truly “know” what makes a good GP to use. As such, an examination of how best to optimize

GP selection would prove beneficial. A system to bias or otherwise add weight to specific

desirable GPs would also greatly ameliorate the program.

On the traffic-topology side, one could conduct a survey on the full 500

supercomputers of a top500 list and to determine whether certain topologies are associated

with higher performance efficiency in certain benchmark tests.

55

6 Appendix

6.1 Codes

6.1.1 TestScript.m

 1 % Test Script for Node Group Synthesis Algorithm

 2 % Edgar Pan

 3 %%

 4 %Settings - ONLY CHANGE VALUES HERE

 5 %Topology Data

 6 H4D = GenHND(4);

 7 T2D = GENTor(4,4);

 8 M(:,:,1) = H4D;

 9 M(:,:,2) = T2D;

 10 %ChainPairs Setting

 11 radix = 2; %Be aware that increasing this increases runtime exponentially

 12 filters = [1 1 1]; %Not recommended to deactivate in higher radix

 13 %Selection Process

 14 ForceTolerance = 0;

 15 tolerance = 0;

 16 %Drawing Process

 17 DrawGraphs = 1;

 18 DrawCommon = 1;

 19 ActiveTopology = 0;

 20 HOBLabel = 1;

 21 %Run Profiler

 22 RunProfiler = 1;

 23 %%

 24 %Start Timer

 25 if RunProfiler

 26 profile on

 27 end

 28 tic

 29 %%

 30 %Generates Connectivity (Link Delta) List

 31 [dL,Nec,Common] = GenConnList(M);

 32 %%

 33 %ChainPairs

 34 if radix > 0

 35 [CL,filt_met] = ChainPairs2(dL, radix, filters);

 36 else

56

 37 [CL2,filt_met2] = ChainPairs2(dL, 2, filters);

 38 [CL4,filt_met4] = ChainPairs2(dL, 4, filters);

 39 [CL6,filt_met6] = ChainPairs2(dL, 6, filters);

 40 [CL8,filt_met8] = ChainPairs2(dL, 8, filters);

 41 [CL10,filt_met10] = ChainPairs2(dL, 10, filters);

 42 [CL12,filt_met12] = ChainPairs2(dL, 12, filters);

 43 [CL16,filt_met16] = ChainPairs2(dL, 16, filters);

 44 end

 45 %%

 46 %Selection Process

 47 if ForceTolerance

 48 tol = tolerance;

 49 else

 50 tol = [];

 51 end

 52 if radix > 0

 53 [Selected,SelectedIndex] = SelectionProcess(CL,Nec,tol);

 54 else

 55 [Selected2,SelectedIndex2] = SelectionProcess(CL2,Nec,tol);

 56 [Selected4,SelectedIndex4] = SelectionProcess(CL4,Nec,tol);

 57 [Selected6,SelectedIndex6] = SelectionProcess(CL6,Nec,tol);

 58 [Selected8,SelectedIndex8] = SelectionProcess(CL8,Nec,tol);

 59 [Selected10,SelectedIndex10] = SelectionProcess(CL10,Nec,tol);

 60 [Selected12,SelectedIndex12] = SelectionProcess(CL12,Nec,tol);

 61 end

 62

 63 %%

 64 %Find Missing Links

 65 if radix > 0

 66 Missing = FindMissing(Nec,Selected);

 67

 68 if ~isempty(Missing)

 69 % CL = FillMissing(CL,Missing);

 70 disp('Warning: Not all Necessary Links have been completed.')

 71 disp('Recommend not forcing the tolerance.')

 72 end

 73 end

 74 %%

 75 %Drawing Process

 76 if DrawGraphs && radix > 0

 77 GraphOrder = size(M,1);

 78 if DrawCommon

57

 79 DrawHobSystem(GraphOrder,Selected,ActiveTopology,HOBLabel,Common)

 80 else

 81 DrawHobSystem(GraphOrder,Selected,ActiveTopology,HOBLabel)

 82 end

 83 end

 84 %%

 85 %Measure Elapsed Time

 86 ElapsedTime = toc;

 87 if RunProfiler

 88 p = profile('info');

 89 profile viewer

 90 end

Published with MATLAB® R2019a

6.1.2 GenHND.m

 1 function [Aj] = GenHND(N)

 2 %GENHND

 3 % Author: Edgar Pan (edgar.pan@mail.mcgill.ca)

 4 % Generates a Hypercube of N dimensions

 5 %Base Adjacency

 6 Q1 = [0 1 ; 1 0];

 7 Aj = Q1;

 8 if N >= 2

 9 for n=2:N

 10 Q = Aj;

 11 Aj=kron(Q,eye(2)) + kron(eye(2^(n-1)),Q1);

 12 end

 13 end

 14 end

Published with MATLAB® R2019a

https://www.mathworks.com/products/matlab/
https://www.mathworks.com/products/matlab/

58

6.1.3 GENTor.m

 1 function [T_Aj] = GENTor(X, varargin)

 2 %GENTor Generate a Torus Function

 3 % Given a set of dimensions, generates a Torus graph.

 4 % Does not work for any dimensions lower than 2.

 5 %--------------------------

 6 % Define the adjacency matrix of the n-D Torus.

 7 % Input length of each dimension separated by commas.

 8 % Example: GENTor(4,4,2)

 9 %

 10 % Additional options - Add specific tags after list of dimensions

 11 % 'noloop' - Creates a mesh matrix with no wraparound

 12 % 'sglloop' - Creates a torus matrix with only a maximum of single

 13 % link during wraparound.

 14 % 'dblloop' - Default. Creates Torus matrix with maximum of double

 15 % loop. Only applicable for any dimension of length 2.

 16 % Example

 17 % GENTor(4,4,2,'noloop') - 4x4x2 Mesh with no looping

 18 %

 19 %

 20 % Written by Edgar Pan

 21 % Version 2.0.0

 22 % Created 2019-05-10

 23 %%

 24 %Parses the inputs

 25 if any([cellfun('isclass',varargin,'cell')

cellfun('isclass',varargin,'struct')])

 26 error(' GENTor only supports numeric/character arrays ')

 27 end

 28 N = nargin; %Full n arg in

 29 %Finds where options arguments, if any, begins

 30 optIdx = cellfun(@ischar,varargin);

 31 if any(optIdx)

 32 optStart = find(optIdx,1);

 33 vars = varargin(1:optStart-1);

 34 opts = varargin(optStart:N-1);

 35 n = optStart;

 36 %Number of numeric entries, including X. The index shift cancels.

 37 else

 38 vars = varargin;

 39 opts = [];

59

 40 n = N;

 41 end

 42 %Catches input errors, any vectors/matrices.

 43 if any([length(X)>1 cellfun(@(x) length(x)>1,vars)])

 44 error('GENTor: Please do not enter any matrices. Separate dimensions

with commas.')

 45 end

 46 %Catches input errors, anything with 0-length dimension

 47 if (X < 1) || any(cellfun(@(x) x<1,vars))

 48 error ('GENTor: Please input dimensions for an existing graph.');

 49 end

 50 %%

 51 %Parses the options

 52 optLoop = -1;

 53 if ~isempty(opts)

 54 if any(cellfun(@(x) strcmpi(x,'noloop'),opts))

 55 optLoop = 0;

 56 elseif any(cellfun(@(x) strcmpi(x,'sglloop'),opts))

 57 optLoop = 1;

 58 elseif any(cellfun(@(x) strcmpi(x,'dblloop'),opts))

 59 optLoop = 2;

 60 end

 61 end

 62 %%

 63 %Start Compiling all the numbers in.

 64 T_Aj = GetTorusBasis(X,optLoop);

 65 for d = 2:n

 66 if vars{d-1} > 1

 67 Y = GetTorusBasis(vars{d-1},optLoop);

 68 % T_Aj = kronSum(T_Aj,Y);

 69 T_Aj = kronSum(Y,T_Aj); %Keeps original numbering

orientation.

 70 else

 71 disp('GENTor: WARNING - Dimension of length 1 detected and

ignored.')

 72 end

 73 end

 74 %%

 75 %Internal Functions

 76 function B = GetTorusBasis(y,optLoop)

 77 B = zeros(y);

 78 B(2:y+1:end) = 1;

60

 79 B(y+1:y+1:end) = 1;

 80 if nargin < 2

 81 optLoop = 2;

 82 end

 83 %Asks whether double looping allowed.

 84 if optLoop == 0

 85 %Does nothing

 86 elseif optLoop == 1

 87 B(y,1) = 1;

 88 B(1,y) = 1;

 89 else

 90 B(y,1) = B(y,1) + 1;

 91 B(1,y) = B(1,y) + 1;

 92 end

 93

 94 end

 95

 96 function KS = kronSum(A,B)

 97 if size(A,1) ~= size(A,2) || size(B,1) ~= size(B,2)

 98 error('GENTor - kronSum: Invalid Input. Must be square matrices')

 99 end

100 KS = kron(A,eye(length(B))) + kron(eye(length(A)),B);

101 end

102 end

Published with MATLAB® R2019a

https://www.mathworks.com/products/matlab/

61

6.1.4 GenConnList.m

 1 function [NC, Nec, Common] = GenConnList(M)

 2 %GenConnList Creates list of switching connections between topologies.

 3 % Author: Edgar Pan (edgar.pan@mail.mcgill.ca)

 4 % The program scans through the adjacency matrices of the various

 5 % network configurations. The adjacency matrices are listed as a single

 6 % 3D matrix, with each pages representing a specific configuration.

 7 % The program is capable of handling more than two configurations,

 8 % however, that is not recommended, since it has not been fully tested

 9 % nor explored (i.e. useful output format?)

 10 %

 11 % Input:

 12 % M - 'Adjacency Matrices' describing the topologies.

 13 % 3 Dimensional Array. [Rows, Columns, Topology]

 14 % Every layer of array indicates a new topology

 15 % Square matrix

 16 % Mn: Number of Matrices (minimum 2)

 17 % Output:

 18 % NC - "Node Connection" (Note: Old term for Delta Link)

 19 % 1 + Mn columns, ? rows

 20 % [SrcNod (Column/Row), Topo1Node, Topo2Node, …

TopoMnNode]

 21 % Nec - "Necessary Connections"

 22 % Lists all node connections necessary to fully describe all

 23 % topologies

 24 % Common - "Common Links"

 25 % List of all Common links filtered out due to being irrelevant

 26 % to the process.

 27 %%

 28 %Basic dimension data

 29 sizeM = size(M);

 30

 31 %%

 32 %Ensures there are multiple topologies entered.

 33 if sizeM(3)<2

 34 NC = 0;

 35 Nec = [];

 36 Common = M;

 37 disp('No changing connection required for a single topology')

 38 return

 39 end

62

 40

 41 %%

 42 %Common Link Filtering Process

 43

 44 Common = all(M,3);

 45

 46 %Allocating Switching Link space

 47 dM = zeros(sizeM);

 48

 49 %Filters out all common links from individual layers

 50 for k = 1:sizeM(3)

 51 dM(:,:,k) = xor(M(:,:,k),Common);

 52 end

 53

 54 %%

 55 %Finding maximum radix of every columns

 56 %By first going through each topologies and finding how many links

 57 %each columns have. Then comparing every column's value and

 58 %then picking the highest one of all of them.

 59 max_radix = max(sum(dM),[],3);

 60

 61 %Preallocating NC space

 62 NC = zeros(sum(max_radix.^sizeM(3)),1+sizeM(3));

 63 %row = highest radix to the power of the number of topologies

 64 %column = number of topologies + 1 to indicate source

 65

 66 %The reasoning behind squaring the maximum radix is to have room to

 67 %place 0's in order to represent Loose/Ghost Links.

 68

 69 for j = 1:sizeM(2)

 70 %%

 71 %Version 2 (variable topology compatibility)

 72 %Allocates cell space for the connection data

 73 xCell = cell(1,sizeM(3));

 74

 75 for k = 1:sizeM(3)

 76 y = find(dM(:,j,k));

 77 xCell{k} = y;

 78 end

 79 z = setprodcell(xCell);

 80

 81 %%

63

 82 %Compilation process. Puts the returned cross products into a

 83 %single list.

 84 sizeZ = size(z);

 85 z = cat(2,j*ones(sizeZ(1),1),z); %Creates a column for source idx

 86 shift = sum(max_radix(1:(j-1)).^sizeM(3));

 87 NC(1 + shift : sizeZ(1) + shift,:) = z;

 88 end

 89

 90 %%

 91 %Section for Listing out all Necessary Connections

 92 dM_flat = any(dM,3);

 93 [a,b] = find(dM_flat);

 94 Nec = [a,b];

 95 Nec = Nec(a<b,:);

 96 end

Published with MATLAB® R2019a

https://www.mathworks.com/products/matlab/

64

6.1.5 setprodcell.m

(Original program written by Mukhtar Ullah, adapted for our purposes here by Edgar Pan)

 1 function C = setprodcell(X)

 2 % SETMATPROD product of multiple columns of a matrix.

 3 %

 4 % This version of the code setprod takes a Cell array directly.

 5 %

 6 % For X = {A, B, C}

 7 % C = setprodcell(X) returns the cartesian product of the sets

 8 % A,B,C, etc, where A,B,C, are numeric or character arrays.

 9 %

 10 % Example: A = [-1 -3 -5]; B = [10 11]; C = [0 1];

 11 %

 12 % X = SETPROD(A,B,C)

 13 % X =

 14 %

 15 % -5 10 0

 16 % -3 10 0

 17 % -1 10 0

 18 % -5 11 0

 19 % -3 11 0

 20 % -1 11 0

 21 % -5 10 1

 22 % -3 10 1

 23 % -1 10 1

 24 % -5 11 1

 25 % -3 11 1

 26 % -1 11 1

 27 % Mukhtar Ullah

 28 % mukhtar.ullah@informatic.uni-rostock.de

 29 % September 20, 2004

 30 % Adapted into Cell version by Edgar Pan

 31 % edgar.pan@mail.mcgill.ca

 32 % January 18, 2019

 33 args = X;

 34 if any([cellfun('isclass',args,'cell') cellfun('isclass',args,'struct')])

 35 error(' SETPROD only supports numeric/character arrays ')

 36 end

 37 % n = nargin;

 38 n = length(args);

65

 39 [F{1:n}] = ndgrid(args{:});

 40 for i=n:-1:1

 41 G(:,i) = F{i}(:);

 42 end

 43 C = unique(G , 'rows');

Published with MATLAB® R2019a

https://www.mathworks.com/products/matlab/

66

6.1.6 ChainPairs2.m

 1 function [CL, filter_meta] = ChainPairs2(dL, radix, filters)

 2 %ChainPairs v2 Synthesizes list of potential node groups by chaining

 3 %connection pairs. At present only handles 2 topology systems.

 4 % Author: Edgar Pan (edgar.pan@mail.mcgill.ca)

 5 % Initially written: 2019-12-18

 6 % In essence, this program takes a list of potential link

 7 % reconfigurations and "chains" them into the two sides of a crosspoint

 8 % switch. It does this by first selecting a "Root" Index, determined by

 9 % the source node of a particular reconfiguration pair (dL).

 10 % Next, designating the Destination Node for Topology 2 as the "Tail",

 11 % it finds a dL pair with the "Head" or Destination Node for Topology 1

 12 % that matches the Tail of the previous dL.

 13 % Input:

 14 % dL - Changes in Links list.

 15 % Formerly "Node Connection",

 16 % most likely generated by GenConnList.m

 17 % Format: [SourceNode Topology1Node Topology2Node ...]

 18 % radix - determines the number of ports on a one side of a switch.

 19 % filters - Manually selects which filters to use. Default: All

 20 % active.

 21 % Format: [Stepback Overlap/Looping Equivalence]

 22 % crosspoint switch.

 23 % -Stepback - Prevents process from scanning through prior

 24 % columns/rows.

 25 % -Overlap/Looping - Scans for contributed Link redundancies

 26 % -Equivalence - Scans for GPs that are equivalent

 27 % Output:

 28 % CL - "Chain List"

 29 % Cell Array

 30 % {1} = Completed GroupPair List

 31 % {2} = Minimum Chain List

 32 % {3} = Split Chain-Composite List

 33 % {1} Chains that are perfect fit for given Radix size.

 34 % {2} Composite Blocks composed of Minimum Chain List

 35 % {4} = Incomplete Chain List

 36 % filter_meta - Metadata generated by the process filters.

 37 % {1} = Record Metadata. If no variable records the metadata in

 38 % output, then metadata will not even be processed. Will be

 39 % equals to [1] if filter_meta exists as an output variable.

 40 % {2} = Metadata for Stepback Filter

67

 41 % Rows correspond to the completed Root_Index node.

 42 % Column 1 corresponds to the number of completed chains

 43 % compiled so far.

 44 % Column 2 corresponds to a list of Delta Links at end of

 45 % corresponding Root_Index.

 46 % {3} = Metadata for Equivalence Filter

 47 % {1} list - full unfiltered list

 48 % {2} ia - Index kept from original list.

 49 % i.e. filtered_list = list(:,:,ia).

 50 % {3} ic - Index to recreate original list.

 51 % i.e. list = filtered_list(:,:,ic)

 52 % {4} filtered_index - List of indices that has been

removed.

 53 %%Initialization

 54 %Current iteration of acceptable Delta Links

 55 dL_List = dL;

 56

 57 %Number of vertices in the graph (Order). Used to set Loop Limit

 58 Graph_Order = max(max(dL));

 59

 60 %Initializes Connection Chain as empty sets.

 61 CL = cell(4,1);

 62

 63 %%Filters

 64 %Development constant: How many filters were implemented

 65 Filters_Constant = 3;

 66

 67 %Activation of Composite Group Pair generation (manual activation)

 68 CompGPActive = true;

 69

 70 %initialize the filters' meta data

 71 if nargout < 2

 72 filter_meta = {0};

 73 else

 74 filter_meta = {1, cell(Graph_Order,2) ,[]};

 75 end

 76

 77 if nargin < 3 || length(filters) ~= Filters_Constant

 78 use_filters = ones(1,Filters_Constant);

 79 disp('ChainPairs2.m: Default Filter used')

 80 else

 81 use_filters = filters;

68

 82 end

 83

 84 %%

 85 %Scans through Node Connection List

 86 for j = 1:Graph_Order

 87 %Generate Potential Root List (Starting Points)

 88 Root_Index = dL_List(:,1)==j; %Creates logic array

 89 Root_List = dL_List(Root_Index,:); %Which then this scans faster

 90 Root_Length = size(Root_List(:,1),1);

 91

 92 %Cycle through Root List

 93 for i = 1:Root_Length

 94 %Creates a template with the Chain's current Progress

 95 ChainProgress = Root_List(i,:);

 96 %Feeds the Chain template into the recursive system.

 97 [CL,filter_meta] = ChainNext2(dL_List,radix,...

 98 CL,ChainProgress,...

 99 use_filters,filter_meta);

100 end

101

102 %%

103 %Stepback Filter

104 if use_filters(1)

105 %Filter Meta Data

106 %Saves the removed value in the debug output

107 if filter_meta{1}

108 %Saves length of potential GP list at end of

109 %each Root_Index.

110 %In other words, "when" the stepback has occurred.

111 filter_meta{2}{j,1}=size(CL{1},3);

112

113 %Saves removed value into metadata

114 if isempty(filter_meta{2}{j,2})

115 filter_meta{2}{j,2} = dL_List(any(dL_List==j,2),:);

116 else

117 filter_meta{2}{j,2} = ...

118 cat(1, filter_meta{2}{j,2},...

119 dL_List(any(dL_List==j,2),:));

120 end

121 end

122

123 dL_List = dL_List(~any(dL_List==j,2),:);

69

124 %Finds every instance of the first column and the first row

125 %And removes them from the list

126 end

127 end

128

129 %%

130 %Reorganize CL{1}

131 CmpltChains = CL{1};

132

133

134 %%

135 %Create Composite GroupPairs

136 if CompGPActive && ~isempty(CL{2})

137 Comp = CreateCompGP(CL{2},radix,filters);

138 CompMat = cell2mat(reshape(Comp,1,1,[]));

139 FullList = cat(3,CmpltChains,CompMat);

140 else

141 FullList = CmpltChains;

142 end

143

144 %%

145 postprocequivfil = filters(3);

146

147 %Post-Processing Equivalence Filter

148 if postprocequivfil

149 %Finds the amount of possible group pairs and creates a cell array

for

150 %it. Also creates a reordered version of the list.

151 list = FullList;

152 sizeList = size(list,3);

153

154 %Limit of when Chains end and Composite Groups start

155 sizeSplit = size(CmpltChains,3);

156 %Method: Take every group pair pages, line it up into a single row.

157 %Then reorder it from smallest to largest. Then find any duplicates

158 %with unique().

159 sortedList = sort(reshape(list,[],sizeList))';

160 %In this case, lists out all Group Pairs in an array of

161 %columns. Then transposes the list so that each ROWS represents

162 %a group pair

163 [~, ia, ic] = unique(sortedList,'rows','stable');

164

70

165 %insert filter metadata

166 filter_meta{3}{1} = list;

167 filter_meta{3}{2} = ia;

168 filter_meta{3}{3} = ic;

169 filter_meta{3}{4} = setdiff(1:sizeList,ia); %What was removed

170 %Uses the index for unique values returned from uniqueness scan

171 %To select which group pairs to keep.

172 FullList = list(:,:,ia);

173 CmpltChains = list(:,:,ia(ia<=sizeSplit));

174 CompMat = list(:,:,ia(ia>sizeSplit));

175 end

176 CL{1} = FullList;

177 CL{3} = {};

178 CL{3}{1} = CmpltChains;

179 CL{3}{2} = CompMat;

180 end

Published with MATLAB® R2019a

https://www.mathworks.com/products/matlab/

71

6.1.7 ChainNext2.m

 1 function [CL, filter_meta_update] = ChainNext2(dL, radix, List, Chain, ...

 2 filter, filter_meta)

 3 %ChainPairs Synthesizes list of potential node groups by chaining

 4 %connection pairs. At present only handles 2 topology systems.

 5 % Author: Edgar Pan (edgar.pan@mail.mcgill.ca)

 6 % Input:

 7 % NC - "Node Connection" list, most likely generated by GenConnList.m

 8 % Format: [SourceNode Topology1Node Topology2Node ...]

 9 % radix - determines the number of ports on a one side of a

 10 % crosspoint switch.

 11 % List - The Completed Chain List that's been fed in.

 12 % Chain - The Node Group Template Fed in. i.e. Current Chain.

 13 % filter - Settings input for filter activation

 14 % filter_meta - Metadata for filters.

 15 % Output:

 16 % CL - "Chains List" A returned list of the node groups

 17

 18 %Default Safety Response

 19 CL = List;

 20 filter_meta_update=filter_meta;

 21

 22 %Check Tail end of current Chain

 23 Tail = Chain(end);

 24 Head = Chain(1,2);

 25

 26 %Generate Potential Links List

 27 Link_Index = dL(:,2)==Tail; %Creates logic array

 28 Link_List = dL(Link_Index,:); %Which then this scans faster

 29 Link_Length = size(Link_List(:,1),1);

 30

 31 %The amount of topologies system will switch between. Should be 2.

 32 Modes = size(Chain,2)-1;

 33

 34 %Preallocation

 35 %Allocating Reference to store all Mismatched Combinations

 36 Mismatch = [];

 37

 38 %Variable for checking any occurrence of a Complete List

 39 Disable_Mismatch = false;

 40

72

 41 %List Data

 42 sizeList = size(List{1});

 43

 44 %Filter Settings

 45 OverlapFil = filter(2);

 46 EquivFil = filter(3);

 47

 48 %Catching Minimum Chains, puts them in a cell array for variable sizes

 49 %Put in this early stage such that it will not account for "Completed"

 50 %Chains

 51 if Head == Tail

 52 %Number of Minimum GP cases found

 53 minCases = length(CL{2});

 54 CL{2}{minCases+1} = Chain;

 55 end

 56

 57 %Cycle through Link List

 58 for i = 1:Link_Length

 59

 60 skip = 0;

 61

 62 %Checks for Overlap Filter

 63 if OverlapFil

 64 for m = 2:Modes+1

 65 if any(ismember(Chain(:,[1 m]),Link_List(i,[1 m]),'rows'))

 66 %Assumption: A specific link will only happen in

 67 %specific topology mode.

 68 skip = 1;

 69 break;

 70 elseif any(ismember(Chain(:,[1 m]),...

 71 fliplr(Link_List(i,[1 m])),'rows'))

 72 %Checks also for cases where a backwards link also

 73 %overlaps

 74 skip = 1;

 75 break;

 76 end

 77 end

 78 if skip

 79 continue;

 80 end

 81 end

 82

73

 83

 84 %Next Link Selected and Inserted

 85 %Updates template with the Chain's current Progress

 86 ChainProgress = cat(1,Chain,Link_List(i,:));

 87 %Checks the Chain Length

 88 Chain_Length = size(ChainProgress,1);

 89

 90 %Finds the minimum radix for the minimum Chain cases

 91 minChainLength = 0;

 92 if ~isempty(CL{2})

 93 minChainLength = min(cellfun('size',CL{2},1));

 94 end

 95

 96 if EquivFil && Chain_Length > radix - minChainLength &&

~isempty(List{1})

 97 %In-process equivalence filter framework (doesn't do anything)

 98

 99 %Halfway through the chain, if we notice that it's basically a

100 %pre-existing chain, but backwards, skip.

101

102 %The process is relatively straightforward. Just check the

103 %first two columns (how to handle larger cases then?).

104 %Checking only for each Links (i.e. 1 3; 2 4). Then just check

105 %whether similar patterns occur.

106 %The real challenge is doing that for all entries in the list

107 %without needing to iterate through it every time.

108

109 %That was the intent, at least. It had not worked as intended.

110 %As such, the "continue" line is never reached, but to avoid

111 %bugs, this section was left in.

112

113 if length(sizeList)<3 || sizeList(3) < 2

114 equiv = [ismember(ChainProgress(:,[1 2]),...

115 List{1}(:,[1 2]),'rows');

116 ismember(Tail,List{1}(:,2))];

117 else

118 %currently brute force solution

119 equiv = zeros(2,sizeList(3));

120 for eqIdx = 1:sizeList(3)

121 % ChainProgress(:,[1 2])

122 % List{1}(:,[1 2],eqIdx)

123 % equiv(:,eqIdx) = [ismember(ChainProgress(:,[1 2]),...

74

124 % List{1}(:,[1 2],eqIdx),'rows');

125 % ismember(Tail,List{1}(:,2))];

126 end

127 end

128

129 if any(all(equiv))

130 continue

131 end

132

133 end

134

135 if Chain_Length < radix

136 %Feeds the Chain template into the recursive system.

137 [CL,filter_meta] =

ChainNext2(dL,radix,CL,ChainProgress,filter,filter_meta);

138 else

139 %If we've reached or surpassed the limit of the radix

140 if Link_List(i,3) == ChainProgress(1,2)

141 %Case of Complete List, where the last Tail and the first

142 %Head matches up

143 CL{1} = cat(3,CL{1},ChainProgress);

144

145 %Disables mismatched case because we know matched exists.

146 Disable_Mismatch = true;

147 Mismatch = [];

148 elseif ~Disable_Mismatch

149 Mismatch = cat(3,Mismatch,ChainProgress);

150 end

151 end

152 end

153 end

Published with MATLAB® R2019a

https://www.mathworks.com/products/matlab/

75

6.1.8 CreatCompGP.m

 1 function [CLComp] = CreateCompGP(minChains,radix,filters)

 2 %CreateCompGP Compiles Minimum Chains into composite GP blocks

 3 % Author: Edgar Pan (edgar.pan@mail.mcgill.ca)

 4 % Basically, this function checks every combination of minimal GPs and

 5 % records every resulting composite GP that fills up a switch of the

 6 % indicated radix.

 7 % Input:

 8 % minChains - Full list of minimal chains. Essentially GPs that were

 9 % complete before reaching the desired radix.

 10 % radix - The radix we want these GPs on.

 11 % filters - Default ON. Settings for filter. Function only uses the

 12 % Overlap filter which checks for any instance of redundant links in

 13 % the generated compGP.

 14 % Output:

 15 % CLComp - Chain List Composite

 16 % The compiled list of Composite Group Pairs.

 17 %

 18 % ASSUMPTION: Minimal Chains creates can also compose higher order

 19 % minimum chains as well, hence only deal with Minimal (lowest radix).

 20 % Only keeps primes.

 21

 22 %Filter Settings

 23 if nargin < 3

 24 OverlapFil = true;

 25 else

 26 OverlapFil = filters(2);

 27 end

 28

 29 %Finds the list of sizes

 30 GPlengths = cellfun('size',minChains,1);

 31

 32 %Finds the types of lengths in list

 33 LengthTypes = unique(GPlengths);

 34

 35 keepTypes = true(1,length(LengthTypes));

 36 %Keeping only Prime Radices

 37 for L = 1:length(LengthTypes)-1

 38 if ~keepTypes(L)

 39 continue;

 40 end

76

 41 for J = L+1:length(LengthTypes)

 42 if keepTypes(J)

 43 f = factor(LengthTypes(J));

 44 if ismember(LengthTypes(L),f)

 45 keepTypes(J) = false;

 46 end

 47 end

 48 end

 49 if ~any(keepTypes(L+1:end))

 50 break;

 51 end

 52

 53 nextIdx = find(keepTypes(L+1:end),1) + L;

 54 if ~isempty(nextIdx)

 55 if nextIdx > length(LengthTypes)-1

 56 break;

 57 end

 58 L = nextIdx - 2;

 59 end

 60 end

 61

 62 %Acquires Reduced List

 63 KeepIdx = ismember(GPlengths,LengthTypes(keepTypes));

 64

 65 ReducedList = minChains(KeepIdx);

 66 RedGPLength = GPlengths(KeepIdx);

 67

 68 %Gonna brute force the solution

 69 maxIdx = length(ReducedList);

 70

 71 %Creates an array of binary numbers counting from 1 to however many

 72 %minimum Chains combos there are, representing the use of a particular

 73 %minChain on a switch block (HOB in context of creation) iteration.

 74 a = mat2cell([false(1,maxIdx);true(1,maxIdx)],2,ones(1,maxIdx));

 75 iteration = setprodcell(a);

 76

 77 ptnlIte = size(iteration,1); %List of potential iterations

 78 keepIte = false(ptnlIte,1); %Pre-allocation of valid iteration space

 79

 80 for i = 1:ptnlIte

 81 ite = iteration(i,:);

 82 iteLength = sum(RedGPLength(ite));

77

 83 if iteLength == radix

 84 keepIte(i) = true;

 85 else

 86 keepIte(i) = false;

 87 end

 88 end

 89

 90 keptIte = iteration(keepIte,:);

 91 nkeptIte = length(keptIte);

 92

 93 %Preallocating

 94 unfiltCLComp = cell(1,nkeptIte);

 95 for c = 1:nkeptIte

 96 CellBlocks = ReducedList(keptIte(c,:));

 97 CellBlocks = reshape(CellBlocks,[],1);

 98 unfiltCLComp{c} = cell2mat(CellBlocks);

 99 end

100

101 if OverlapFil

102 %number of unfiltered Composite Blocks

103 nComp = length(unfiltCLComp);

104

105 %number of topological configuration

106 modes = size(minChains{1},2);

107 overlapIdx = false(1,nComp);

108 for f = 1:nComp

109 for m = 2:modes

110 ovlpcheck = unfiltCLComp{f}(:,[1 m]);

111

112 %Finds indices where for proper IDing of Links, flip the

113 %node designations

114 flipIdx = ovlpcheck(:,1)>ovlpcheck(:,2);

115 ovlpcheck(flipIdx,:) = fliplr(ovlpcheck(flipIdx,:));

116

117 ovlptest = unique(ovlpcheck,'rows');

118 if size(ovlptest,1) ~= radix

119 overlapIdx(f) = true;

120 end

121 end

122 end

123 CLComp = unfiltCLComp(~overlapIdx);

124 else

78

125 CLComp = unfiltCLComp;

126 end

127 end

Published with MATLAB® R2019a

https://www.mathworks.com/products/matlab/

79

6.1.9 SelectionProcess.m

 1 function [FinalSelection, SelectedIndex] = SelectionProcess(CL, Nec,

ForceTol)

 2 %SelectionProcess Selects Node Groups based on their similarity

 3 % INPUT

 4 % CL - Chain Lists from which data will be extracted.

 5 % Nec - List of Necessary Connections

 6 % ForceTol - OPTIONAL A setting to force a certain tolerance setting.

 7 % Faster, but may not give complete solution.

 8 % OUTPUT

 9 % FinalSelection - List of the GPs selected

 10 % SelectedIndex - Index of the selected GPs in the CL list.

 11

 12 if nargin < 3

 13 ForceTol = [];

 14 end

 15

 16 %Get Group Relations

 17 [GR, RelData] = GetGroupRelation(CL{1});

 18

 19 %Get Potential Tolerance Levels

 20 tolLvls = unique([0;GR{1}(:)]);

 21

 22 %Start Acquiring Indices Selection based on tolerance

 23 if ~isempty(ForceTol)

 24 if ForceTol < 0

 25 %lower cap

 26 tolerance = 0;

 27 elseif ForceTol > length(tolLvls) - 2

 28 %upper cap

 29 tolerance = length(tolLvls) - 2;

 30 % -2 to prevent self-connection

 31 else

 32 tolerance = ForceTol;

 33 end

 34

 35 SelectedIndex = GroupRelationSelection(GR{1},tolerance);

 36 FinalSelection = CL{1}(:,:,SelectedIndex);

 37 if ~isempty(FindMissing(Nec,FinalSelection))

 38 disp('SelectionProcess.m Warning: ')

 39 disp('Forced Tolerance Selection yielded incomplete solution.')

80

 40 end

 41 else

 42 for tolerance = 0:length(tolLvls)-2

 43 SelectedIndex = GroupRelationSelection(GR{1},tolerance);

 44 Selected = CL{1}(:,:,SelectedIndex);

 45

 46 stillMissing = FindMissing(Nec,Selected);

 47

 48 if isempty(stillMissing)

 49 break;

 50 elseif tolerance == 0

 51 disp('SelectionProcess.m: Zero tolerance failed.')

 52 end

 53 end

 54

 55 if ~isempty(stillMissing)

 56 %Extracting Link Data

 57 Links = RelData{1,1};

 58 RelLength = length(GR);

 59 for g = 2:RelLength

 60 Links(:,:,g) = RelData{g,g};

 61 end

 62

 63 while ~isempty(stillMissing)

 64 %Preallocate contribution count memory,

 65 %clear out NewIndex selection in case of new iteration.

 66 contribution = zeros(RelLength,1);

 67 NewIndex = [];

 68

 69 %Scans through for number of potential link contributions

 70 %in each GroupPairs.

 71 for c = 1:RelLength

 72 intersection =

intersect(stillMissing,Links(:,:,c),'rows');

 73 contribution(c) = size(intersection,1);

 74 if contribution(c) == size(stillMissing,1)

 75 %If a GroupPair has all links missing, just pick

 76 %this quick.

 77 NewIndex = c;

 78 break;

 79 end

 80 end

81

 81 if isempty(NewIndex)

 82 %If no single GroupPair has all missing links, then

 83 %pick the one that contributes the most, then ready for

 84 %new iteration.

 85 NewIndex = find(contribution == max(contribution));

 86 end

 87 NewSelectedIndex = [SelectedIndex NewIndex];

 88

 89 %Updates

 90 Selected = CL{1}(:,:,NewSelectedIndex);

 91 stillMissing = FindMissing(Nec,Selected);

 92 end

 93 SelectedIndex = NewSelectedIndex;

 94 end

 95 FinalSelection = Selected;

 96 end

 97

 98

 99 end

Published with MATLAB® R2019a

6.1.10 GetGroupRelation.m

 1 function [Count, Data] = GetGroupRelation(NodeGroups)

 2 %GraphNodeGroup Takes a list of NodeGroups and Graph their relation to each

 3 %other

 4 % Simply takes of list of Node Group Pairs (probably generated by

 5 % ChainPairs.m) and creates 2 relations matrices.

 6 % Input

 7 % NodeGroups - List of Node Group Pairs

 8 % Output

 9 % Count - Cell containing

 10 % {1} - the intersection matrix (how alike two groups pairs are)

 11 % {2} - the difference matrix (how different two group pairs are)

 12 % Data - Cell containing

 13 % {1} - Cell matrix containing the actual intersecting links

 14 % {2} - Cell matrix containing the actual differing links

 15 %%

 16 %Initialization

https://www.mathworks.com/products/matlab/

82

 17 sizeNG = [size(NodeGroups,1), size(NodeGroups,2), size(NodeGroups,3)];

 18 LinkCount = sizeNG(1)*(sizeNG(2)-1);

 19 NGCount = sizeNG(3);

 20

 21 %Preallocates Link Data Space

 22 Links = zeros(LinkCount, 2, NGCount);

 23

 24 %Preallocates difference and intersection cell space

 25 Diff = cell(NGCount);

 26 Intersection = cell(NGCount);

 27

 28 %%

 29 %Extract Link Data from Node Groups

 30 for g = 1:NGCount

 31 Links(:,:,g) = GetGroupLinks(NodeGroups(:,:,g));

 32 end

 33

 34 %%

 35 %Create the Difference and Intersection Table

 36 for i = 1:NGCount

 37 for j = i:NGCount

 38 %Only compares upper triangle of matrix to save computation

 39 %time

 40 intersection = ...

 41 intersect(Links(:,:,i),Links(:,:,j),'rows');

 42 diff = ...

 43 setdiff(Links(:,:,i),Links(:,:,j),'rows');

 44

 45 if size(diff,1) + size(intersection,1) ~= LinkCount

 46 disp('GetGroupRelation.m: Link Count Mismatch')

 47 disp([i j])

 48 disp(size(diff,1) + size(intersection,1))

 49 end

 50

 51 if i == j

 52 Intersection{i,i} = Links(:,:,i);

 53 else

 54 Intersection{i,j} = intersection;

 55 Intersection{j,i} = intersection;

 56 Diff{i,j} = diff;

 57 Diff{j,i} = diff;

 58 end

83

 59

 60 end

 61 end

 62

 63 IntersectCount = cellfun('size',Intersection,1);

 64 DiffCount = cellfun('size',Diff,1);

 65

 66 %%

 67 %Output compilation

 68 Count = cell(2,1);

 69 Count{1} = IntersectCount;

 70 Count{2} = DiffCount;

 71

 72 Data = cell(2,1);

 73 Data{1} = Intersection;

 74 Data{2} = Diff;

 75 end

Published with MATLAB® R2019a

6.1.11 GroupRelationSelection.m

 1 function [NodeGroupList, gGraph] = GroupRelationSelection(GNGCount,

tolerance)

 2 %GroupRelationSelection Selects Node Groups based on their relationship

 3 % INPUT

 4 % GNGCount - Matrix of similarity relationships between NodeGroups in a

 5 % NodeGroupList.

 6 % tolerance - Tolerance level. 0 for no similarity. 1 for next minimum

 7 % similarity.

 8 % OUTPUT

 9 % NodeGroupList - Output of the index for the Node Groups

 10 % gGraph - Similarity graph as per the tolerance value.

 11

 12 %Rather than having the user manually entering the exact similarity

 13 %values that are tolerated, system finds the key tolerance values and

 14 %user picks "first tolerance values" or so on.

 15 tolLvls = unique([0;GNGCount(:)]);

 16

 17 if nargin < 2 || isempty(tolerance) || tolerance < 0

https://www.mathworks.com/products/matlab/

84

 18 tolerance = 0;

 19 elseif tolerance > length(tolLvls) - 2

 20 disp('GroupRelationSelection.m Warning: ')

 21 disp('Tolerance value exceeds levels available in system.')

 22 tolerance = length(tolLvls) - 2; %-2 to prevent self-connection

 23 end

 24

 25 %First, convert the relationship data to graph format based on the

 26 %tolerance value. The default state is tolerance 0, meaning that for

 27 %ANY common links between the Node Groups, there is a link.

 28 gGraph = graph(GNGCount>tolLvls(tolerance+1));

 29

 30 %Identifies isolated components (subgroup of nodes) in graph

 31 [bins,binsizes] = conncomp(gGraph,'OutputForm','cell');

 32 subList = cell(1,length(bins));

 33

 34 for i=1:length(bins)

 35 %Extracts subgraph

 36 subgGraph = subgraph(gGraph,bins{i});

 37 gdist = distances(subgGraph);

 38

 39

 40 %List of Node Groups to use. Logic Array format.

 41 shortlist = false(1, length(gdist));

 42 priorlist = shortlist; %stores prior shortlist state before any

changes

 43 %Selection of Initial Node Group

 44 potStartIdxList = find(

sum(rem(gdist,2)==0)==max(sum(rem(gdist,2)==0)));

 45 % potStartIdxList = find(

sum(rem(gdist,2)==0)==min(sum(rem(gdist,2)==0)));

 46

 47 startIndex = potStartIdxList(ceil(rand*length(potStartIdxList)));

 48 %of the possible options, randomly selects one.

 49

 50 shortlist(startIndex) = 1;

 51 unchanged = isequal(shortlist, priorlist);

 52 while ~unchanged

 53 priorlist = shortlist;

 54 %tdist: test gdist that will get further and further reduced

 55 %Resets the reduced gdist matrix

 56 tdist = -ones(length(gdist));

85

 57 %Creates list of potential Next Indices

 58 %The rem(gdist([shortlist,:),2)==0) part creates a matrix

 59 %where every row represents one of the prospective indices.

We

 60 %find every index that is a multiple of 2 steps away.

 61 %The all is an "and" for every rows. the &~prospective

removes

 62 %past indices from the potential Index list.

 63 ptnlIdx = rem(gdist(shortlist,:),2)==0;

 64

 65 if size(ptnlIdx,1)>1

 66 ptnlIdx = all(ptnlIdx) & ~shortlist;

 67 else

 68 ptnlIdx = ptnlIdx & ~shortlist;

 69 end

 70

 71 %Creates a reduced gdist matrix while maintaining size (and

index)

 72 tdist(ptnlIdx,:) = gdist(ptnlIdx,:);

 73 tdist(:,ptnlIdx) = gdist(:,ptnlIdx);

 74 %Selection of Next Node Group

 75 if any(ptnlIdx) && max(sum(rem(tdist,2)==0))>0

 76 % if any(ptnlIdx) && min(sum(rem(tdist,2)==0))>0

 77 potNextIdx=ptnlIdx;

 78 potNextIdx(ptnlIdx) =

sum(rem(tdist(ptnlIdx,ptnlIdx),2)==0)==...

 79 max(sum(rem(tdist(ptnlIdx,ptnlIdx),2)==0));

 80 potNextIdxList = find(potNextIdx & ptnlIdx);

 81 if ~isempty(potNextIdxList)

 82 nextIndex =

potNextIdxList(ceil(rand*length(potNextIdxList)));

 83 %Once selected, modifies the shortlist

 84 shortlist(nextIndex) = 1;

 85 end

 86 end

 87 unchanged = isequal(shortlist, priorlist);

 88 end

 89 subList{i} = find(shortlist) + sum(binsizes(1:i-1));

 90 end

 91 %Finalizes the shortlist as output

 92 NodeGroupList = cell2mat(subList);

 93 end

86

Published with MATLAB® R2019a

6.1.12 FindMissing.m

 1 function [Missing] = FindMissing(Nec, SelectedGroups)

 2 %FindMissing Finds any Links not provided by the so-far selected Groups.

 3 % Author: Edgar Pan, McGill University. edgar.pan@mail.mcgill.ca

 4

 5 %%

 6 %Early catch for Empty SelectedGroup

 7 if isempty(SelectedGroups) | ~any(SelectedGroups)

 8 Missing = Nec;

 9 return;

 10 end

 11

 12 %%

 13 %Extracts essential data from Groups

 14 Links = GetGroupLinks(SelectedGroups);

 15

 16 %%

 17 %The actual list comparison

 18 Missing = setdiff(Nec,Links,'rows');

 19

 20 if isempty(Missing)

 21 Missing = []; %turns any empty row matrix into simple empty value.

 22 end

 23

 24 end

Published with MATLAB® R2019a

https://www.mathworks.com/products/matlab/
https://www.mathworks.com/products/matlab/

87

6.1.13 GetGroupLinks.m

 1 function [Links] = GetGroupLinks(GP)

 2 %GetGroupLinks Extracts the information on what Links are provided by a set

 3 %of Group Pairs

 4 % Output

 5 % Links - List of All Links provided by the Group Pairs inputed

 6 % Input

 7 % GP - Group Pairs

 8 %%

 9 %Extracts essential data from Groups

 10 [radix, topoLength, HOBs] = size(GP);

 11

 12 List = permute(GP,[1 3 2]);

 13 List = reshape(List,[],topoLength,1);

 14

 15 Links = [];

 16 for i = 2:topoLength

 17 %Creates a list of all links established by kept GPs

 18 Links = cat(1,Links,List(:,[1 i]));

 19 end

 20 %Re-orders links such that smaller number comes first.

 21 %i.e. [2 1] becomes [1 2]

 22 Links(Links(:,1)>Links(:,2),:) = fliplr(Links(Links(:,1)>Links(:,2),:));

 23

 24 %%

 25 %Verifies the values of Links

 26 uLinks = unique(Links,'rows','stable');

 27

 28 if (size(uLinks,1)~= radix*(topoLength-1)*HOBs)

 29 disp('GetGroupLinks WARNING: Link Overlap has occurred')

 30 disp('Recommend verify Group Pair List.')

 31 end

 32 end

Published with MATLAB® R2019a

https://www.mathworks.com/products/matlab/

88

6.1.14 DrawHobSystem.m

(Extra programs to visualize the results. Minimal Comment because not important to function

of main program)

 1 function DrawHobSystem (N, Selected, ActiveTopology, HOBLabel, Common)

 2 if nargin < 5

 3 DrawHobNetwork(N,Selected,[])

 4 else

 5 DrawHobNetwork(N,Selected,Common)

 6 end

 7 for i = 1:size(Selected,3)

 8 figure('Position',[270 400 250 250])

 9 hold on

 10 axis([-5 5 -5 5])

 11 DrawHobSwitch(Selected(:,:,i),0,ActiveTopology)

 12 if HOBLabel

 13 title(['H' num2str(i)])

 14 end

 15 hold off

 16 end

 17 end

Published with MATLAB® R2019a

https://www.mathworks.com/products/matlab/

89

6.1.15 DrawHobNetwork.m

(Extra Programs, a few parts based on code provided by Prof Odile Liboiron-Ladouceur)

 1 function DrawHobNetwork(N, GroupPairs, inCommon, varargin)

 2 %DrawHobNetwork Draws in a circle a network system interconnected via HOB

 3 %switches.

 4 % Author: Edgar Pan (edgar.pan@mail.mcgill.ca)

 5

 6 %%

 7 %CONSTANTS

 8 Radius_Outer = 10;

 9

 10 %%

 11 %Graph Parameters

 12 params = struct();

 13 for var = 1:2:length(varargin)-1

 14 params.(varargin{var}) = varargin{var+1};

 15 end

 16

 17 if isempty(inCommon)

 18 Common = zeros(N);

 19 else

 20 Common = inCommon;

 21 end

 22

 23 %%

 24 %Reads the Numbers of Nodes present and draws out their coordinates

 25

 26 V = 2*pi/N*(0:N-1);

 27 XY_N = Radius_Outer*[cos(V); sin(V)]';

 28

 29 %Analyzes the Group Pairs data.

 30 sizeGP = [size(GroupPairs,1), size(GroupPairs,2), size(GroupPairs,3)];

 31 U_init = 2*pi/sizeGP(3)*(0:sizeGP(3)-1);

 32

 33 %Breaks alignment of nodes between Servers and HOBs

 34 divisor = 1;

 35 limit = 100;

 36 U_shift = U_init;

 37 while any(ismember(U_shift,V)) && divisor < limit

 38 U_shift = U_init + pi/divisor;

 39 divisor = divisor + 1;

90

 40 end

 41 U = U_shift;

 42

 43 XY_H = Radius_Outer*1/2*[cos(U); sin(U)]';

 44

 45 %Unifies the coordinate lists of Servers and HOBs

 46 W = cat(2,V,U); %list of angles

 47 XY = cat(1,XY_N,XY_H); %list of XY coordinates

 48

 49 % disp(W)

 50

 51 %%

 52 %Generates the Matrix Data

 53 A = zeros(N+sizeGP(3));

 54 %The first N nodes represents the Server Nodes

 55 %The additional sizeGP(3) nodes represents the HOB blocks.

 56 A(1:N,1:N) = eye(N);

 57 %Marks the Servers as Self Connecting.

 58 %This is just a notation in order to ID and distinguish Servers

 59 %from HOBs

 60 for i = 1:sizeGP(3)

 61 for r = 1:sizeGP(1)

 62 A(N+i,GroupPairs(r,1,i)) = A(N+i,GroupPairs(r,1,i)) + 1;

 63 A(GroupPairs(r,2,i),N+i) = A(GroupPairs(r,2,i),N+i) + 1;

 64 end

 65 end

 66

 67 %%

 68 %Parsing the Matrix Data

 69

 70 %Self-connecting edges.

 71 Serv = diag(diag(A));

 72 HOBs = diag(~diag(A));

 73

 74 %Stores HOBs only links. Remove the self-connection.

 75 hA = A - diag(diag(A));

 76

 77 %Stores the Adjacency Matrices for "left" and "right" side of HOB for

 78 %infrastructure purposes. Not really used. Potential for future

 79 %expansion.

 80 HOB_In = tril(hA,-1);

 81 HOB_Out = triu(hA,1);

91

 82

 83 %Permanent Connections

 84 %Creates a larger Adjacency matrix and inserts the Common Links in.

 85 Perm = zeros(N+sizeGP(3));

 86 Perm(1:N,1:N) = Common;

 87

 88 %Compile the full Adjacency matrix between the Server nodes and the

 89 %HOB nodes.

 90 Full = hA + Perm;

 91

 92 %%

 93 %Splitting the thicker connections into separate matrices

 94 hiBWs = hA + hA' > 1;

 95

 96

 97 %%

 98 %Convert to Plot form

 99 [hiBWX,hiBWY] = makeXY(hiBWs,XY);

100 [ServX,ServY] = makeXY(Serv,XY);

101 [HOBsX,HOBsY] = makeXY(HOBs,XY);

102 [PermX,PermY] = makeXY(tril(Perm,0),XY); %Permanent Connection coord

103 [HOBIX,HOBIY] = makeXY(HOB_In,XY);

104 [HOBOX,HOBOY] = makeXY(HOB_Out,XY);

105

106

107 %%

108 %Initialization of the figures

109 figure

110 hold on

111

112 %%

113 %With the Servers and HOBs marked, now it's just a matter of drawing

114 %the lines representing the connections.

115 %Note: The earlier line is plotted, the lower in layer it is.

116

117 plot(PermX,PermY,'-','Color',[0.8 0.8 0.8],params)

118

119 plot(hiBWX,hiBWY,'-','Color',[0.75 0.75 0.75],'Linewidth',2.5,params)

120

121 % plot(HOBIX,HOBIY,'-','Color',[0.9 0.5 0.7],params)

122 % plot(HOBOX,HOBOY,'-','Color',[0.4 0.8 0.8],params)

123 plot(HOBIX,HOBIY,'-','Color',[0.4 0.4 0.4],params)

92

124 plot(HOBOX,HOBOY,'-','Color',[0.4 0.4 0.4],params)

125 % plot(HOBIX,HOBIY,'-','Color','K',params)

126 % plot(HOBOX,HOBOY,'-','Color','K',params)

127

128 %%

129 %With the Coordinates set, now it's a matter of marking them on a map.

130 plot(ServX,ServY,'o','Color',[.3 0 0],params)

131 plot(HOBsX,HOBsY,'s','Color',[.3 0 0],params)

132

133

134 %%

135 %Labeling

136 for G = 1:N

137 text(XY_N(G,1),XY_N(G,2),[' S'

num2str(G)],'Color','G','FontSize',12,'FontWeight','b')

138 end

139 for G = 1:sizeGP(3)

140 text(XY_H(G,1),XY_H(G,2),[' H'

num2str(G)],'Color','C','FontSize',10,'FontWeight','b')

141 end

142 hold off

143

144 %%

145 function [x,y] = makeXY(A,xy)

146 if any(A(:))

147 [J,I] = find(A');

148 m = length(I);

149 xmat = [xy(I,1) xy(J,1) NaN(m,1)]';

150 ymat = [xy(I,2) xy(J,2) NaN(m,1)]';

151 x = xmat(:);

152 y = ymat(:);

153 else

154 x = NaN;

155 y = NaN;

156 end

157 end

158 end

Published with MATLAB® R2019a

https://www.mathworks.com/products/matlab/

93

6.1.16 DrawHobSwitch

 1 function DrawHobSwitch(GroupPair, shift, topoSet)

 2 %DrawHobSwitch Draws the internal configuration of the individual switches

 3 % Author: Edgar Pan (edgar.pan@mail.mcgill.ca)

 4 %%

 5 %Initialization

 6 sizeGP = size(GroupPair);

 7 radix = sizeGP(1);

 8

 9 if nargin < 2 || isempty(shift)

 10 shift = [0 0];

 11 disp(topoSet)

 12 end

 13 %%

 14 %Drawing the Base Rectangle, representing the Physical Case.

 15 boxCorn = [-1.5 -2.5] + shift;

 16 boxSize = [3 5];

 17 rectangle('Position', [boxCorn boxSize])

 18

 19 %%

 20 %Setting the Vertical Coordinates for the Ports

 21 portGap = boxSize(2)/(radix+1);

 22 portVert = boxCorn(2):portGap:(boxCorn(2)+boxSize(2)-portGap);

 23 portVert = flip(portVert(2:length(portVert)));

 24

 25 portCoordL = [ones(radix,1)*boxCorn(1) portVert'];

 26 portCoordR = [ones(radix,1)*(boxCorn(1)+boxSize(1)) portVert'];

 27

 28 %%

 29 %Draws out the ports and labels them.

 30 portSize = [min(portGap/6, 1) min(portGap/2,1)];

 31 portLabelL = GroupPair(:,1);

 32 portLabelR = GroupPair(:,2);

 33 %Left

 34 for L = 1:radix

 35 rectangle('Position', [portCoordL(L,1)-portSize(1) ...

 36 portCoordL(L,2)-portSize(2)/2 portSize])

 37 text(portCoordL(L,1)-portSize(1)-0.2,portCoordL(L,2),...

 38 ['S' num2str(portLabelL(L))],'Color','G',...

 39 'FontSize',12,'FontWeight','b','HorizontalAlignment','Right')

 40 end

94

 41 for R = 1:radix

 42 rectangle('Position', [portCoordR(R,1) ...

 43 portCoordR(R,2)-portSize(2)/2 portSize])

 44 text(portCoordR(R,1)+0.5,portCoordR(R,2),...

 45 ['S' num2str(portLabelR(R))],'Color','G',...

 46 'FontSize',12,'FontWeight','b')

 47 end

 48

 49 %%

 50 %Goes through the GroupPair list and draws out each links

 51 RGB = [0 0 0];

 52 for j = 2:sizeGP(2)

 53 available = true(radix,1);

 54 if j == 2

 55 RGB = [0 0 1]; %Blue

 56 elseif j == 3

 57 RGB = [1 0 0]; %Red

 58 end

 59 if topoSet + 1 == j

 60 style = '-';

 61 else

 62 style = '--';

 63 end

 64 for i = 1:sizeGP(1)

 65 %Connecting GP(i,1) to GP(i,j)

 66 Source = portCoordL(i,:);

 67 DestPotentIndex = (portLabelR == GroupPair(i,j)) & available;

 68 selectedDest = find(DestPotentIndex,1);

 69 available(selectedDest) = 0;

 70 Destination = portCoordR(selectedDest,:);

 71

 72 plot([Source(1) Destination(1)],...

 73 [Source(2) Destination(2)],style,'Color',RGB)

 74 end

 75 end

 76 end

Published with MATLAB® R2019a

https://www.mathworks.com/products/matlab/

95

6.2 Tables

(Tables in next few pages)

96

6.2.1 Top 20 HPL and HPCG (November 2017 Results) – Part 1 Supercomputer Backgrounds

Topology

Year Mo Name

1 5 Sunway TaihuLight Sunway MPP NRCPC 2016 06 Sunway NRCPC

2 2 Tianhe-2 (MilkyWay-2)TH-IVB-FEP Cluster NUDT 2013 06 TH Express-2

7 3 Trinity Cray XC40 Cray Inc. 2017 11 Cray Aries

4 - Gyoukou ZettaScaler-2.2 HPC sys ExaScaler 2017 11 InfiniBand EDR

8 7 Cori Cray XC40 Cray Inc. 2016 11 Cray Aries

5 9 Titan Cray XK7 Cray Inc. 2012 11 Cray Gemini

3 4 Piz Daint Cray XC50 Cray Inc. 2017 06 Cray Aries

9 6 Oakforest-PACS PRIMERGY CX1640 Fujistu 2016 11 Intel Omni-Path

6 8 Sequoia IBM BlueGene/Q IBM 2013 06 BG/Q

12 - Stampede2 PowerEdge C6320P/C6420 Dell EMC 2017 11 Intel Omni-Path

14 28 Marconi CINECA Cluster, Lenovo SD530Lenovo 2017 11 Intel Omni-Path

13 10 TSUBAME3.0 SGI ICE XA, IP139-SXM2 HPE 2017 11 Intel Omni-Path

10 1 K Computer K Computer Fujistu 2011 11 Tofu Interconnect

16 15? MareNostrum Lenovo SD530 Lenovo 2017 11 Intel Omni-Path

11 12 Mira IBM BlueGene/Q IBM 2012 06 BG/Q

18 - Theta Cray XC40 Cray Inc. 2017 06 Cray Aries

- 18 Stampede PowerEdge C8220 InfiniBand FDR

15 - - Cray XC40 Cray Inc. 2016 11 Cray Aries

19 14 Hazel Hen Cray XC40 Cray Inc. 2015 11 Cray Aries

20 16 Shaheen II Cray XC40 Cray Inc. 2015 06 Cray Aries

17 11 Pleiades SGI ICE X HPE 2016 11 InfiniBand FDR

21 13 Pangea SGI ICE X HPE 2016 06 InfiniBand FDR

22 19 JUQUEEN BlueGene/Q IBM 2013 06 BG/Q

24 20 Cheyenne ICE XA HPE 2016 11 InfiniBand EDR

38 17 SORA-MA Fujitsu PRIMEHPC FX100 Fujistu 2016 06 Tofu Interconnect 2

Latest
H

P
L

H
P

C
G

Name Computer Company

97

6.2.2 Top 20 HPL and HPCG (November 2017 Results) – Part 2 Supercomputer Processor and Topologies

Name Cores Speed

1 5 Sunway TaihuLightSunway SW26010 260 1.45GHz 15,371 10,649,600 125,435.9 11.778

2 2 Tianhe-2 Intel Xeon E5-2692 12 2.20GHz 17,808 3,120,000 54,902.4 17.597

7 3 Trinity Intel Xeon Phi 7250 68 1.40GHz 3,844 979,968 43,902.6 44.800

4 - Gyoukou Xeon D-1571 16 1.30GHz 1,350 19,860,000 28,192.0 1.420

8 7 Cori Intel Xeon Phi 7250 68 1.40GHz 3,939 622,336 27,880.7 44.800

5 9 Titan Opteron 6274 16 2.20GHz 8,209 560,640 27,112.5 48.360

3 4 Piz Daint Xeon E5-2690v3 12 2.60GHz 2,272 361,760 25,326.3 70.009

9 6 Oakforest-PACS Intel Xeon Phi 7250 68 1.40GHz 2,719 556,104 24,913.5 44.800

6 8 Sequoia Power BQC 16 1.60GHz 7,890 1,572,864 20,132.7 12.800

12 - Stampede2 Intel Xeon Phi 7250 68 1.40GHz - 368,928 18,215.8 49.375

14 28 Marconi Intel Xeon Phi 7250 68 1.40GHz - 314,384 15,372.0 48.896

13 10 TSUBAME3.0 Xeon E6-2680v4 14 2.40GHz 792 135,828 12,127.1 89.283

10 1 K Computer SPARC64 VIIIfx 8 2.00GHz 12,660 786,432 11,280.4 14.344

16 15 MareNostrum Xeon Platinum 8160 24 2.10GHz 1,632 153,216 10,296.1 67.200

11 12 Mira Power BQC 16 1.60GHz 3,945 786,432 10,066.3 12.800

18 - Theta Intel Xeon Phi 7230 64 1.30GHz 1,087 231,424 9,627.2 41.600

- 18 Stampede - 522,080 9,000.0 17.239

15 - - Xeon E5-2695v4 18 2.10GHz - 241,920 8,128.5 33.600

19 14 Hazel Hen Xeon E5-2680v3 12 2.50GHz 3,615 185,088 7,403.5 40.000

20 16 Shaheen II Xeon E5-2698v3 16 2.30GHz 2,834 196,608 7,235.2 36.800

17 11 Pleiades Intel Xeon E5-2670/E5-2680v2-4 2.4—2.8 4,407 241,108 7,107.1 29.477

21 13 Pangea Xeon E5-2670/E5-2680v3 8&12 2.6/2.5 4,150 220,800 6,712.3 30.400

22 19 JUQUEEN Power BQC 16 1.60GHz 2,301 458,752 5,872.0 12.800

24 20 Cheyenne Xeon E5-2697v4 18 2.30GHz 1,727 144,900 5,332.3 36.800

38 17 SORA-MA SPARC64 Xifx 32 1.98GHz 1,652 110,160 3,481.1 31.600

Rpeak

(Tflops/s)

Rpeak/Cores

(Gflops/s)H
P

L

H
P

C
G

Name
Processor

Total Cores
Power

(kW)

98

6.2.3 Top 20 HPL and HPCG (November 2017 Results) – Part 3 Topology and HPL and HPCG Results

Rmax Rpeak% R Rpeak%

1 5 Sunway TaihuLight 260 Sunway 10,649,600 40,960.0 125,435.9 93,014.6 74.2% 481 0.4%

2 2 Tianhe-2 12 Fat Tree 3,120,000 260,000.0 54,902.4 33,862.7 61.7% 580 1.1%

7 3 Trinity 68 Dragonfly 979,968 14,411.3 43,902.6 14,137.3 32.2% 546 1.2%

4 - Gyoukou 16 Switched Fabric 19,860,000 1,241,250.0 28,192.0 19,135.8 67.9% - -

8 7 Cori 68 Dragonfly 622,336 9,152.0 27,880.7 14,014.7 50.3% 355 1.3%

5 9 Titan 16 Torus 3D 560,640 35,040.0 27,112.5 17,590.0 64.9% 322 1.2%

3 4 Piz Daint 12 Dragonfly 361,760 30,146.7 25,326.3 19,590.0 77.4% 486 1.9%

9 6 Oakforest-PACS 68 Switched Fabric 556,104 8,178.0 24,913.5 13,554.6 54.4% 385 1.5%

6 8 Sequoia 16 Torus 5D 1,572,864 98,304.0 20,132.7 17,173.2 85.3% 330 1.6%

12 - Stampede2 68 Switched Fabric 368,928 5,425.4 18,215.8 8,317.7 45.7% - -

14 28 Marconi 68 Switched Fabric 314,384 4,623.3 15,372.0 7,471.1 48.6% 69 0.4%

13 10 TSUBAME3.0 14 Switched Fabric 135,828 9,702.0 12,127.1 8,125.0 67.0% 189 1.6%

10 1 K Computer 8 Torus 6D/Mesh 786,432 98,304.0 11,280.4 10,510.0 93.2% 603 5.3%

16 15? MareNostrum 24 Switched Fabric 153,216 6,384.0 10,296.1 6,470.8 62.8% 122 1.2%

11 12 Mira 16 Torus 5D 786,432 49,152.0 10,066.3 8,586.6 85.3% 167 1.7%

18 - Theta 64 Dragonfly 231,424 3,616.0 9,627.2 5,884.6 61.1% - -

- 18 Stampede Switched Fabric 522,080 9,000.0 5,168.0 57.4% 97 1.1%

15 - - 18 Dragonfly 241,920 13,440.0 8,128.5 7,038.9 86.6% - -

19 14 Hazel Hen 12 Dragonfly 185,088 15,424.0 7,403.5 5,640.2 76.2% 138 1.9%

20 16 Shaheen II 16 Dragonfly 196,608 12,288.0 7,235.2 5,537.0 76.5% 114 1.6%

17 11 Pleiades Switched Fabric 241,108 7,107.1 5,951.6 83.7% 175 2.5%

21 13 Pangea 8&12 Switched Fabric 220,800 6,712.3 5,283.1 78.7% 163 2.4%

22 19 JUQUEEN 16 Torus 5D 458,752 28,672.0 5,872.0 5,008.9 85.3% 95 1.6%

24 20 Cheyenne 18 Switched Fabric 144,900 8,050.0 5,332.3 4,788.2 89.8% 87 1.6%

38 17 SORA-MA 32 Torus 6D/Mesh 110,160 3,442.5 3,481.1 3,157.0 90.7% 110 3.2%

HPCG
H

P
L

H
P

C
G

Name
Total

Cores

Cores

/CPU

Topology

Type

CPU

(Nodes)

Rpeak

(Tflops/s)

HPL

99

7 Reference

[1] (October 12). Top500 List - November 2019. Available:

https://www.top500.org/lists/top500/2019/11/

[2] S. Wang, D. Li, J. Geng, Y. Gu, and Y. Cheng, "Impact of Network Topology on the

Performance of DML: Theoretical Analysis and Practical Factors," in IEEE

INFOCOM 2019 - IEEE Conference on Computer Communications, 2019, pp. 1729-

1737.

[3] M. Al-Fares, A. Loukissas, and A. Vahdat, "A scalable, commodity data center

network architecture," SIGCOMM Comput. Commun. Rev., vol. 38, no. 4, pp. 63-74,

2008.

[4] E. Pan. (2020). NGS. Available: https://github.com/EdgarPan/NGS

[5] W. Dally and B. Towles, Principles and Practices of Interconnection Networks.

Morgan Kaufmann Publishers Inc., 2003.

[6] L. Youyao, H. Jungang, and D. Huimin, "A Hypercube-based Scalable

Interconnection Network for Massively Parallel Computing," Journal of Computers,

vol. 3, no. 10, pp. 58-65, October 2008.

[7] Y. Saad and M. H. Schultz, "Topological properties of hypercubes," IEEE

Transactions on Computers, vol. 37, no. 7, pp. 867-872, 1988.

[8] S. Cheng, W. Zhong, K. E. Isaacs, and K. Mueller, "Visualizing the Topology and

Data Traffic of Multi-Dimensional Torus Interconnect Networks," IEEE Access, vol.

6, pp. 57191-57204, 2018.

[9] (January 15). Top500 List - November 2017. Available:

https://www.top500.org/lists/top500/list/2017/11/

[10] C. E. Leiserson, "Fat-trees: Universal networks for hardware-efficient

supercomputing," IEEE Transactions on Computers, vol. C-34, no. 10, pp. 892-901,

October 1985.

[11] C. Clos, "A study of non-blocking switching networks," The Bell System Technical

Journal, vol. 32, no. 2, pp. 406-424, 1953.

[12] J. Kim, W. J. Dally, S. Scott, and D. Abts, "Technology-Driven, Highly-Scalable

Dragonfly Topology," in 2008 International Symposium on Computer Architecture,

Beijing, China, 2008, vol. 36, pp. 77-88.

[13] I. H. White, Q. Cheng, A. Wonfor, and R. V. Penty, "Large port count optical router

using hybrid MZI-SOA switches," in 2014 16th International Conference on

Transparent Optical Networks (ICTON), 2014, pp. 1-5.

[14] M. Y. Teh, J. J. Wilke, K. Bergman, and S. Rumley, "Design Space Exploration of

the Dragonfly Topology," in High Performance Computing, Cham, 2017, pp. 57-74:

Springer International Publishing.

https://www.top500.org/lists/top500/2019/11/
https://github.com/EdgarPan/NGS
https://www.top500.org/lists/top500/list/2017/11/

100

[15] A. Shpiner, Z. Haramaty, S. Eliad, V. Zdornov, B. Gafni, and E. Zahavi, "Dragonfly+:

Low Cost Topology for Scaling Datacenters," presented at the 2017 IEEE 3rd

International Workshop on High-Performance Interconnection Networks in the

Exascale and Big-Data Era (HiPINEB), 2017, 2017. Available:

https://ieeexplore.ieee.org/document/7885210/

[16] H.-W. Meuer, E. Strohmaier, and J. Dongarra. (1993). Top500 Supercomputer Sites.

Available: http://www.netlib.org/benchmark/top500.html

[17] J. Dongarra, P. Luszczek, and A. Petitet, "The LINPACK Benchmark: past, present

and future," Concurrency and Computation: Practice and Experience, vol. 15, no. 9,

pp. 803-820, July 14 2003.

[18] J. J. Dongarra, "The LINPACK Benchmark: An explanation," Berlin, Heidelberg,

1988, pp. 456-474: Springer Berlin Heidelberg.

[19] J. Dongarra, M. Heroux, and P. Luszczek, "High-performance conjugate-gradient

benchmark: A new metric for ranking high-performance computing systems,"

International Journal of High Performance Computing Applications, vol. 30, no. 1,

pp. 3-10, August 17 2015.

[20] S. A. Jyothi, A. Singla, P. B. Godfrey, and A. Kolla, "Measuring and Understanding

Throughput of Network Topologies," in SC '16: Proceedings of the International

Conference for High Performance Computing, Networking, Storage and Analysis,

Salt Lake City, UT, 2016, pp. 761-772.

[21] ReflexPhotonics, "Hybrid Optical Bridge - Hardware for the Software Defined

Network," ed, 2016.

[22] O. Liboiron-Ladouceur, "Software-enabled energy-efficient hardware infrastructure

for next-generation data centres," 2017.

[23] P. Samadi, K. Wen, J. Xu, Y. Shen, and K. Bergman, "Reconfigurable optical

dragonfly architecture for high performance computing," in 2016 Optical Fiber

Communications Conference and Exhibition (OFC), 2016, pp. 1-3.

https://ieeexplore.ieee.org/document/7885210/
http://www.netlib.org/benchmark/top500.html

