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Abstract 

Network topology is an important factor in the performance of any distributed computing 

systems, such as data centers or supercomputers. Because supercomputers are expected to be 

reprogrammable and fulfill multiple tasks, their topologies are likewise typically general 

purpose, favouring no one task. However, certain applications could benefit from more 

specialized network topologies. One solution could be to have dynamic networks that can be 

reconfigured into more task-specific topologies. One way to achieve this is by introducing 

crosspoint switches, such as Reflex Photonics’s Hybrid Optical Bridge, into the network. 

However, determining the placement of these switches is a nontrivial task. In this thesis, I 

wrote a program that determines how to connect crosspoint switches to the various nodes to 

effectuate a desired reconfiguration. The program follows a pipeline architecture that is 

divided into three modules: 1) the link delta acquisition process, 2) the chaining process, and 

3) the selection process. In the link delta acquisition process, the program determines what 

reconfigurations are necessary. In the chaining process, the program creates a list of all 

possible switch configurations that satisfies the necessary reconfiguration. The selection 

process selects the most economical combination of potential switch configurations to 

achieve the desired reconfiguration. By making it possible to tune networks to more specific 

tasks, this could increase the computational efficiencies of servers as well as their power 

efficiency. 
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Résumé 

La topologie d’un réseau est un facteur important dans la performance de tout système de 

calcul distribué, comme les centres de traitement de données ou les superordinateurs. Parce 

que les superordinateurs doivent être reprogrammables et doivent accomplir des tâches 

variées, leurs topologies sont également à usage général, sans favoriser aucune tâche. 

Cependant, certaines applications pourraient grandement bénéficier d’une topologie de 

réseau plus spécialisée. Une solution serait d’avoir un réseau dynamique qui pourrait être 

reconfiguré avec des topologies spécialisées pour chaque tâche. Cela pourrait être accompli 

en introduisant des commutateurs de point de croisement, tels que le Pont Optique Hybride 

de Reflex Photonics, dans le réseau. Cependant, déterminer les emplacements idéaux pour 

ces commutateurs est une tâche non négligeable. Dans cette thèse, j’ai écrit un programme 

qui détermine comment connecter les commutateurs de point de croisement aux différents 

nœuds pour accomplir la reconfiguration désirée. Le programme a une architecture de type 

pipeline divisée en trois modules : 1) la procédure d’acquisition de delta lien, 2) la procédure 

d’enchaînement, et 3) la procédure de sélection. La procédure d’acquisition de delta lien 

détermine quelles reconfigurations sont nécessaires. La procédure d’enchaînement compose 

une liste de toutes les configurations de commutateurs possibles qui satisfont les 

reconfigurations nécessaires. La procédure de sélection choisit la combinaison de 

commutateur potentiel la plus économique qui accomplit la reconfiguration désirée. En 

rendant possible d’accorder les réseaux à leurs tâches, cela devrait augmenter l’efficacité de 

calcul des serveurs et de leur efficacité énergétique. 

  



7 

 

Acknowledgement 

Prof. Odile Liboiron-Ladouceur for her supervision and feedback over the course of the last 

three years, and for her help reviewing this thesis. 

Edwin Pan for answering some questions on software architecture. 

Prof. Michael Rabbat for reviewing and providing feedback on this thesis. 

Dr. Edward Pan for his help in data analysis and for reviewing this thesis. 

 

 

 

Contribution of Author 

All of the work presented in this thesis is my own except where explicitly stated. 

  



8 

 

1 Introduction 

One of the backbone elements of all large-scale internet system is the network 

interconnection topology. For all the performance improvements a single hardware device 

can have, its potential would be stifled should the data flow be bottlenecked by an 

inadequately configured network. This can be seen when one views the results of 

supercomputer performances on Top500, when one compares the theoretical maximum 

performance to the actual performance achieved. The top supercomputer at the time of 

writing, IBM’s Summit, only achieved 148,600 TFlops/s compared to its theoretical 

200,794.9 TFlops/s operation speed [1]. 

Given the importance of the network topology, the question now becomes which one 

to use? Ideally, networks would use a fully connected configuration, where every single node 

is connected to every other node, ensuring the only bottleneck is the capacity of the channel 

itself. However, when dealing with networks where nodes numbers in the hundreds to 

thousands, having a direct connection between all nodes is impractical. Thus, the exercise of 

selecting one of the many proposed network topologies becomes a question of trade-offs 

based on a set of restrictions. 

The trouble arises when one considers the demand. Certain applications work better 

on certain topologies. One research showed that Distributed Machine Learning applications 

works better on a BCube topology than the typical Fat-Tree topology [2]. The purpose of the 

Fat-Tree, meanwhile, is essentially to avoid the issues of bottlenecking by ensuring multiple 

alternate paths are available and that all hosts have the same distance, ensuring a relatively 

robust network [3]. 

So how would one choose? One could take the BCube to do very well with Machine 

Learning applications, but the network would sacrifice its robustness and performance when 

it runs other applications. Would the sacrifice be worth it? 

This thesis wishes to offer an alternative: “Why not both?” A network that can be 

reconfigured between two topologies would enable a more efficient use of computational 
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resources by matching application to a more appropriate topology. Introducing crosspoint 

switches, such as Reflex Photonic’s Hybrid Optical Bridges (HOBs), into a network is one 

way to make it reconfigurable. However, determining where to place these switches in a 

network is nontrivial. 

In this thesis, I describe a program that will determine where to place these 

reconfiguration switches. The program was developed in Matlab, and the code can be found 

both in Appendix 6.1 and on Github [4]. It takes as input two matrices describing the two 

desired configurations of a network and outputs how the reconfiguration switches should be 

connected, such that they can effectuate the transition between the two network topologies. 

The program functions under certain restrictions, which will be discussed in more detail later. 

The key two being that all nodes must maintain their degree and the crosspoint switches must 

not have any empty ports. Failure to meet these restrictions will cause the program to crash. 

Before discussing the technical details of the program, this thesis will review the 

fundamental concepts behind network topologies along with a few popular examples. We 

will then discuss how different applications and synthetic traffic patterns perform under 

different topologies before we briefly discuss the HOB. With the background covered, this 

thesis will then discuss the program and its modules in detail, including their performance, 

known issues, and how they may be resolved in the future. 
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2 Background 

In this chapter, we will first cover a few fundamental concepts of network topologies and 

their graph models. We shall then explore popular topologies commonly used in datacenters 

and supercomputers, their canonical structure, and primary benefits. We shall then cover the 

performance of those network topologies under different traffic patterns. Finally, we shall 

briefly cover the HOB as the means to allow for easy network reconfiguration between 

multiple topologies. 

2.1 Key Concepts 

A network topology is the pattern of physical interconnection between hardware 

resources, whether those resources are processing cores on a chip or server towers in a data 

center [5].  

A network topology can be modeled with a mathematical structure known as a graph, 

denoted as 𝐺(𝑉, 𝐸), which consists of a set of nodes (or vertices) 𝑉 interconnected by a set 

of links (or edges/channels) 𝐸. The elements of 𝐸 consist of pairs (𝑢, 𝑣) of distinct nodes 

𝑢, 𝑣 ∈ 𝑉. Translated into a real-life network, the nodes V typically represent the switches or 

routers in a network while the edges E represent the cables.  

The order of a graph is the number of vertices a graph has, and the size of a graph is 

the number of edges. The number of edges originating from a single node denotes the node’s 

degree (or a switch’s radix). The distance between two nodes indicates the minimum 

number of links a signal needs to traverse (also referred to as hops) for the two nodes to 

communicate. The diameter of a graph indicates the longest distance in the graph. A 

subgraph is a subset of 𝐺, 𝑉, and 𝐸. 

It is also important to note whether a graph is directed, meaning there is at least one 

link that can only be traversed in one direction, or undirected, meaning all links go both 

ways. Given the nature of telecommunication networks, it is safe to assume that all graphs 

are undirected, and thus any pair of connected nodes may communicate back and forth freely. 



11 

 

Two nodes or links are adjacent if they share a single link or node between them, 

respectively. We can therefore map out the full interconnection of a network through an 

Adjacency Matrix 𝐴. In an adjacency matrix, the rows represent the source (or ingress) node 

of a link and the columns represent the destination (or egress) node of that link. As such, the 

entries 𝐴𝑖𝑗 is equal to 1 if there exists an edge starting from vertex 𝑖 and ending in vertex 𝑗, 

or 0 if there does not. In an undirected graph, the adjacency matrix is symmetric. The sum of 

row 𝑖 represents the degree of node 𝑖: 𝑑𝑖. 

There are a few notable kinds of graph, particularly the regular graphs and the 

bipartite graphs. If all vertices in a graph share the same degree 𝑑, then the graph is a regular 

graph, specifically, a 𝑑 -regular graph. If two sets of nodes 𝑉1  and 𝑉2  only have links 

interconnecting between the two sets, but none intra-connecting within either set, as shown 

in the figure below, then these creates a bipartite graph. 

 

Figure 1: Example of a group of four nodes connecting to a group of five nodes in a complete bipartite graph. 

2.2 Network Topologies 

In this subsection, we will go over four popular networks topologies: the Hypercube, 

the Torus, the Fat-Tree, and the Dragonfly. 
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A network topology is usually described by a set of parameters and properties. For 

example, a Fat-Tree network is describe based on the switches’ radix 𝑘 , which then 

determines how large the network can be [3]. In practice, however, implemented networks 

seldom follow their mathematical definition. This can be due to a variety of reasons, 

including maintenance, hardware failure, or simply a desired change by the network 

administrators. All that said, this thesis shall assume that all topologies are implemented in 

their canonical forms. That means the topologies will abide to their definition as described in 

their respective publications as much as possible.  

2.2.1 Hypercube and Torus 

The Hypercube topology and Torus topology are two relatively basic regular network 

topologies in the field. Each node represents a router where servers are connected. 

The Hypercube takes the corners of an 𝑛-dimensional (hyper)cube as nodes in a 

network. The number of nodes increases exponentially (2𝑛) while the diameter increases 

linearly with every axis (value of 𝑛) added to the network, leading to a highly connected 

network with a relatively low diameter, allowing for faster and more reliable communication 

[6, 7]. The nodes of a Hypercube network can in fact be represented by a binary sequence of 

length 𝑛, each bit representing one axis, as shown in the following figure. 

 

Figure 2: Graphs representing the n-D Hypercube with binary notation. (a) 1-D. (b) 2-D. (c) 3-D. (d) 4-D. 
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The main disadvantage of the Hypercube is that it is not scalable, nor is it practical to 

expand an already existing Hypercube network. The order of the network is strictly 

dependent on the degree of each nodes, meaning in order to expand a network from a radix-4 

16-node network to a radix-5 32-node network, one would need to either replace all 16 

radix-4 switches with 32 radix-5 switches, or unplug a host from each switches in order to 

re-assign the port for switch-to-switch communication. At which point, one may as well 

create a new network. 

The Torus network is another relatively simple topology. The torus network can be 

described as a 𝑘-dimensional wrap-around mesh or grid network, where all nodes typically 

have two neighbors in each of the 𝑘 dimensions [8]. Contrary to the Hypercube, the length 

of the Torus in each of the dimensions is arbitrary, yet uniform, meaning one needs not 

change the rest of the network to expand further in any direction. 

The two most common variants of the Torus network seen in the top 20 

supercomputers are the 5D Torus, which was used in the Sequoia, Mira, and JUQUEEN 

supercomputers developed by IBM, and the 6D Torus, which was used in the K Computer 

and SORA-MA supercomputers by Fujitsu [9]. 

The Hypercube and Torus network adjacency matrices can both be described by a 

line of Kronecker products and sums. The Kronecker product is a matrix operation where the 

values of one of the matrices is multiplied and inserted into the other, such that: 

 𝐴𝑚×𝑛 ⊗ 𝐵𝑝×𝑞 = [
𝑎11𝐵 ⋯ 𝑎1𝑛𝐵

⋮ ⋱ ⋮
𝑎𝑚1𝐵 ⋯ 𝑎𝑚𝑛𝐵

]

𝑝𝑚×𝑞𝑛

 (1) 

where 𝑎𝑚𝑛 are the elements of matrix 𝐴. The Kronecker sum is a line or Kronecker 

products such that: 

 𝐴𝑚×𝑚 ⊕ 𝐵𝑝×𝑝 = 𝐴𝑚×𝑚 ⊗ 𝐼𝑝 + 𝐼𝑚 ⊗ 𝐵𝑝×𝑝 (2) 

where 𝐼𝑝 and 𝐼𝑚 are identity matrices of sizes 𝑝 and 𝑚 respectively. Let us define 𝑄𝑛 

as the adjacency matrix of an 𝑛-dimensional hypercube. The Hypercube network adjacency 
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matrix runs on an induction sequence for however many dimensions the Hypercube will 

have. First, we define the 1-D “cube” (where 𝑛 = 1) with the adjacency matrix: 

 𝑄1 = [
0 1
1 0

] (3) 

That will serve as a basis upon which the matrix expands. By observing the adjacency 

matrix of consecutive-dimension hypercubes, we can see that the previous value of 𝑛 

reappears in the next value, as seen the in equations below. 

 𝑄2 = [

0 1 1 0
1 0 0 1
1 0 0 1
0 1 1 0

] → [
[
0 1
1 0

]   [
1 0
0 1

]

[
1 0
0 1

]   [
0 1
1 0

]
] = [

𝑄1 𝐼2
𝐼2 𝑄1

]
4

= 𝑄1 ⊕ 𝑄1 (4) 

 

𝑄3 =

[
 
 
 
 
 
 
 
0 1 1 0 1 0 0 0
1 0 0 1 0 1 0 0
1 0 0 1 0 0 1 0
0 1 1 0 0 0 0 1
1 0 0 0 0 1 1 0
0 1 0 0 1 0 0 1
0 0 1 0 1 0 0 1
0 0 0 1 0 1 1 0]

 
 
 
 
 
 
 

→

[
 
 
 
 
 
 
 
[

0 1 1 0
1 0 0 1
1 0 0 1
0 1 1 0

]

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

[

0 1 1 0
1 0 0 1
1 0 0 1
0 1 1 0

]

]
 
 
 
 
 
 
 

→

[
 
 
 
 
 
 
 [

0 1
1 0

] [
1 0
0 1

] [
1 0
0 1

] 0

[
1 0
0 1

] [
0 1
1 0

] 0 [
1 0
0 1

]

[
1 0
0 1

] 0 [
0 1
1 0

] [
1 0
0 1

]

0 [
1 0
0 1

] [
1 0
0 1

] [
0 1
1 0

]]
 
 
 
 
 
 
 

 

(5) 

 𝑄3 = [

𝑄1 𝐼2 𝐼2 0
𝐼2 𝑄1 0 𝐼2
𝐼2 0 𝑄1 𝐼2
0 𝐼2 𝐼2 𝑄1

] = 𝐼4 ⊗ 𝑄1 + 𝑄2 ⊗ 𝐼2 (6) 

 𝑄3 = 𝑄2 ⊕ 𝑄1 (7) 

As such, we find the recursive formula: 

 𝑄𝑛 = 𝑄𝑛−1 ⊕ 𝑄1 (8) 
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The discovered formula has been implemented in the GenHND.m function found in 

appendix 6.1.2. 

The Torus adjacency matrix will be represented by 𝑇 and can be broken down into a 

set of basis matrices, 𝐵𝑛, where 𝑛 is the dimension or axis. The value of 𝐵𝑛 is the adjacency 

matrix of the nodes in that specific axis, best described as a wrap-around line. For instance, 

if a network has five nodes in the second axis, then we would denote the basis matrix as: 

 𝐵2 =

[
 
 
 
 
0 1 0 0 1
1 0 1 0 0
0 1 0 1 0
0 0 1 0 1
1 0 0 1 0]

 
 
 
 

 (9) 

More generally, the elements of a basis matrix 𝐵𝑛 of size 𝑝𝑛 × 𝑝𝑛 can be described 

as: 

 𝐵𝑛,(𝑖,𝑗) = {

1, 𝑖 = 1, 𝑗 = 𝑝𝑛

1, 𝑖 = 𝑝𝑛, 𝑗 = 1

1, |𝑖 − 𝑗| = 1
0, 𝑒𝑙𝑠𝑒

     where 𝑖, 𝑗 ∈ 1,2, … , 𝑝𝑛 (10) 

With each of the axis length and their corresponding basis matrices defined, then the 

basis will be Kronecker summed, forming the adjacency matrix. 

 𝑇 = 𝐵1 ⊕ …⊕ 𝐵𝑁 (11) 

As an example, the 3 × 4 2D Torus basis matrices and adjacency matrix are the 

following. 

 𝐵1 = [
0 1 1
1 0 1
1 1 0

] , 𝐵2 = [

0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0

] (12) 

 



16 

 

 𝑇 = 𝐵1 ⊕ 𝐵2 =

[
 
 
 
 
 
 
 
 
 
 
 
0 1 1
1 0 1
1 1 0

1 0 0
0 1 0
0 0 1

0 0 0
0 0 0
0 0 0

1 0 0
0 1 0
0 0 1

1 0 0
0 1 0
0 0 1

0 1 1
1 0 1
1 1 0

1 0 0
0 1 0
0 0 1

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

1 0 0
0 1 0
0 0 1

0 1 1
1 0 1
1 1 0

1 0 0
0 1 0
0 0 1

1 0 0
0 1 0
0 0 1

0 0 0
0 0 0
0 0 0

1 0 0
0 1 0
0 0 1

0 1 1
1 0 1
1 1 0]

 
 
 
 
 
 
 
 
 
 
 

 (13) 

This formula has been implemented in the GENTor.m function found in appendix 

6.1.3. 

2.2.2 Fat-Tree 

The Fat-Tree as a data center network topology was initially proposed by Al-Fares, 

et al. [3], which was based on Leiserson’s Fat-Tree designed to interconnect the processors 

of a general-purpose parallel supercomputer [10]. 

The original Fat-Tree takes the concept of a binary tree network and improves upon 

it. The binary tree is a topology where, from an originating “root” node, two nodes “branch” 

out from the root, and from each of those, more pairs of nodes “branch” out, every parent 

node forming two descendent nodes in each layer or generation. The problem occurs when 

two nodes simultaneously try to communicate with two other nodes on the other side of the 

tree due to bandwidth limitations. When the two nodes try to communicate up through the 

tree, there is only enough bandwidth in the cabling wire to handle one such communication, 

meaning that, at best, the performance is reduced by half. The Fat-Tree, therefore, resolves 

that by “thickening the trunk”, by adding more wires in each links the closer to the root the 

topology gets, such that a parent node can freely transmit the information provided by both 

descendent nodes. This is illustrated in figure 3(a).  
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Figure 3: The two different types of Fat-Tree. (a) A 15-processor network. Note that the closer to the root it gets, the 

thicker or more numerous the wires are per channel, increasing bandwidth. (b) A typical 4-ary Fat-Tree network 

supporting 16 terminals at the bottom. 

While it may be possible to reconfigure the nodes of a classic Fat-Tree, this was not 

explored. As such, we move on to the datacenter variant of the Fat-Tree proposed by Al-

Fares, et al. [3]. Technically, the Fat-Tree is a “special instance” of a Clos network. The Clos 

topology is named after Charles Clos, who initially proposed a multi-stage and multi-leveled 

approach to configure switches for telephone networks [11]. Telephone networks rely on 

constant uninterrupted signals rather than the scattering of data packets across a network, 

meaning that most networks based on Clos’s network are robust and consistent. 

The premise behind the Clos version of the Fat-Tree is that instead of “thickening” 

the wires to a single parent node, the network splits that parent node into multiple “core” 

nodes. The cores are still connected “fully” to the individual nodes in the next layer in a 

bipartite graph. 

Formally, the Clos Fat-Tree is defined as a 𝑘-ary Fat-Tree, where 𝑘 is the radix of the 

individual switches or nodes of the network. The topology is split into three layers: the Core 

layer and the Pod layer, which is subdivided into the Aggregation layer, and the “Edge” layer 

which includes the terminals, as shown in figure 3(b). For the sake of clarity, in this 

subsection, “edge” will refer to this layer, rather than a topology’s channel or link. 

The Clos Fat-Tree consists of 𝑘 pods containing two layers of 
𝑘

2
 nodes each connected 

in a bipartite subgraph. For the edge layer’s switches, 
𝑘

2
 ports connect to the hosts while 

𝑘

2
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ports connect to the aggregation layer. In the aggregation layer, 
𝑘

2
 ports are connected to the 

edge layer while 
𝑘

2
 ports connect to the core layer outside the pods. The core layer consists of 

(
𝑘

2
)
2

 nodes, each connecting to one of the aggregation nodes of every pods. In the figure 

below, we see an example of a 6-ary Fat-Tree. 

 

Figure 4: A 6-ary Fat Tree supporting 54 terminals (represented by squares). Note that there are 6 pods, each containing 6 

routers (represented by circles) connected in a bipartite subgraph. 

This results in a topology with a diameter of six hops, an order of 
5

4
𝑘2, and capable 

of supporting 
𝑘3

4
 hosts or terminals. This means that while the topology makes use of a fairly 

large number of routers, it should have very reliable throughput performance in exchange. 

In summary, the Binary Tree topology consists of a parent node splitting into two (or 

more) descendent nodes at every “generation” layers. The “classic” Fat-Tree “thickens the 

trunk” by adding more bandwidth in the older generations, typically by adding more wires 

between nodes. The Clos Fat-Tree returns to the uniform inter-nodal connection of the binary 

tree by splitting the Fat-Tree’s single core into multiple core nodes, forming the backbone of 

the topology. 

2.2.3 Dragonfly and its Variants 

The original Dragonfly topology had been proposed by Kim, et al. [12] in 2008. The 

purpose of the dragonfly topology is to address two issues in optical networks: the limited 

radix capabilities of optical switches and the high cost of optical cables required in a system, 

as shown in the following figure. 
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Figure 5: Two 64-node networks. (a) is an ideal network with each node separated by 2 hops. One can see how there are 

therefore 64 long global channels which can get expensive. (b) The Dragonfly network is a more practical implementation 

of the desired network, where a cluster of shortrange cables and routers creates the 8 “supernodes” and reduces the 

number of global channels needed to 28. 

At present, optical switches typically work by cascading several dynamic optical 

couplers (effectively 2-by-2 switches for optics) in a manner to allow for switching at a higher 

effective radix. This means that the larger the radix, the more switches are cascaded. Because 

these switches use thermal-optic effects, each coupler can experience switching times in the 

microseconds, which when cascaded would be unsuitable for switching on short packet 

timescales. Thus, the maximum radix of an optical switch is widely considered 16 [13]. 

As such, the Dragonfly topology seeks to resolve that by creating high-radix virtual 

routers by grouping up low-radix routers. In other words, using a group of small routers to 

effectively create large “virtual” routers. For example, with four radix-8 switches, one can 

effectively form a single radix-20 node by reserving 3 ports on each of the switches for intra-

group connection, as seen in figure 6. The other five may be used either connect to hosts or 

other such clusters. This results in a “virtual” fully connected network of a much smaller 

order. 



20 

 

 

Figure 6: A Virtual Radix-20 Node created by 4 radix-8 switches. Black lines are short range intra-connection while Red 

lines are global inter-connections. While no port is dedicated to terminals in this example, one could easily have 

reallocated one of the global channels to terminal connections. 

The Dragonfly topology is divided into three hierarchical levels. First, we have the 

individual routers with a radix of 𝑘. Those ports are divided into three purposes: 𝑝 ports are 

reserved for the hosts/terminals, (𝑎 − 1)  ports are reserved for the local, short-ranged 

channels, and ℎ ports are reserved for global channels, such that 𝑘 = 𝑝 + ℎ + 𝑎 − 1. 

One level higher, we have the Group, which consists of 𝑎  routers. A group is 

connected to 𝑎𝑝 hosts/terminals and has 𝑎ℎ global channels. This results in an effective 

virtual radix of 𝑘′ = 𝑎(𝑝 + ℎ), where 𝑘′ ≫ 𝑘. This is the key property of a given dragonfly 

network, because it defines how the smaller routers (nodes) creates the larger virtual routers 

(supernodes). Canonically, the routers within the groups are fully connected, meaning that 

for a terminal to reach the appropriate global channel, only a single small hop is needed. 

Finally, there is the System level. Here, the Groups typically form a fully connected 

global network, resulting in a global diameter of 1. In a canonical Dragonfly, there are 𝑔 =

𝑎ℎ + 1 groups, with only one connection between groups, which can support up to 𝑁 =

𝑎𝑝(𝑎ℎ + 1) terminals. 

It should be noted that while the original proposal uses electrical cables for short-

distance communications, namely in the intra-group communications, short optical cables 
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can still be used. Even if this negates the benefit of reducing the cost of optical cables, it still 

addresses the issue of the limited radix of an optical switch. 

While Kim, et al. recommend enforcing the restrictions of 𝑎 ≥ 2ℎ and 2𝑝 ≥ 2ℎ in 

order to ensure traffic performance does not suffer, in 2017, Teh, et al. have conducted a 

study on the effect of varying the parameters of a Dragonfly network [14]. 

One notable variant of the Dragonfly topology was Shpiner, et al.’s Dragonfly+. 

While in the original Dragonfly, each level is fully connected, in the Dragonfly+, the intra-

group connection takes a Clos-like topology [15]. 

The Dragonfly+ can best be summed up by a Fat-Tree topology but without a core 

layer. Rather than have a fully connected uniform cluster of routers within each group, they 

are now organized in two bipartite layers: spine and leaf. This resembles the pods of a Fat-

Tree topology. As such, one could even reconfigure a Fat-Tree to a Dragonfly+ topology for 

the sake of bypassing or decreasing the load on the core routers in lower density traffic and 

even disabling the core routers for maintenance purposes as shown in the following figure. 

 

Figure 7: A 4-ary Fat-Tree network (a) reconfigured to a pseudo-Dragonfly+ network in (b). The Core routers are 

highlighted. 
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2.3 Traffic Patterns and Applications in Various Topologies 

In this section, we shall examine the recorded operational performance in the 

November 2017 Top500 supercomputer competition, which is compiled in appendix 6.2. 

This contest was significant because it was the first time an alternate supercomputer 

benchmark test was also used. We examine the top 20 supercomputers of each list, noting 

their performance in each benchmark test. We then note whether a particular topology does 

better than the average in one test while another does better than the average in another test. 

Afterwards, we examine Jyothi, et al.’s experiments and their results for the relative 

performance of various topologies in data centers. 

2.3.1 Performance of Supercomputer Processors 

Supercomputers are typically identified by the sheer power and number of processing 

cores they possess, and have their performance measured by the number of Floating-point 

Operations they can perform per second (Flops/s). 

At present, there are three high-performance (HP) benchmark tests executed on 

general-purpose supercomputers: Linpack, Congruent Gradient, and Green.  

The High-Performance Linpack (HPL) benchmark test was the original standard 

supercomputer test for the Top500 supercomputer list since its creation in June 1993 [16]. It 

tests the performance of supercomputers when solving general dense matrix problem 𝐴𝑥 =

𝑏 for three problem sizes: 100 by 100 (inner loop optimization), 1000 by 1000 (full program 

with three loop optimization), and a scalable parallel problem [17]. The loop refers to the 

process in which the large matrix is broken down and Basic Linear Algebra Subroutines 

(BLAS) are called to solve them in more manageable forms [18]. In other words, the Linpack 

primarily tests the supercomputer’s ability to factor and solve a large dense system of linear 

equations using Gaussian Elimination with partial pivoting [19]. Dongarra, et al. refer to the 

traffic pattern of the HPL, with its relatively low need to access data, as a Type 2 pattern. 

The High-Performance Conjugate Gradient (HPCG) test serves a similar purpose as 

the Linpack test; however, it was meant to better reflect modern real-life applications by 
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focusing more on Partial Differential Equations (PDEs), which better model aspects of the 

physical world. To solve those problems, the HPCG program uses iterative methods, which 

slowly approaches a solution, assuming it converges for a given initial value. Specifically, 

the program primarily measures how quickly it executes Krylov subspace solvers on 

distributed memory hardware [19]. Key to our purposes was that it was meant to serve as a 

complementary benchmark test to the HPL with different demands on the system. Many 

important scientific calculations have low computation-to-data-access ratios, meaning that 

most scientific calculations require a lot of data access (Dongarra, et al. refer to this traffic 

pattern as Type 1). In other words, there are more frequent network demands in the HPCG 

test while HPL focuses more on the individual core’s ability to execute floating point 

operations [19]. Despite the difference in emphasis, both test programs still distribute their 

operations throughout the network. With its different demand, it would result in a different 

traffic pattern. As such, one may find a correlation between a type of topology and the relative 

performance. 

The Green test evaluates the power efficiency of a supercomputer, namely the number 

of Flops it can perform for every Watt of power. While important, the Green test shall be 

mostly disregarded in this thesis because we focus more on the effect of the network topology 

on the performance. While it may be possible for topologies to be a factor in power 

consumption, that has not been examined. 

The importance of a good topology becomes very evident when one examines the 

performance of some of the top supercomputers. In 2017, the Sunway TaihuLight 

supercomputer possesses 10,649,600 cores distributed over 40,960 CPUs (each with 260 

cores) with a theoretical maximum performance of 125,436 TFlops/s, yet it only managed to 

achieve 93,014.6 TFlops/s in the HPL test (74.2% efficiency) and 481 TFlops/s in the HPCG 

test (0.4% efficiency). The average performance in the rest of the top 10 supercomputers of 

2017 was 65.3%, ranging from 50.3% to 93.2%. As such, much of Sunway’s position as top 

supercomputer of 2017 can be attributed to the sheer quantity of processing power the system 

possessed and not its overlap performance. The significant difference in performance can 
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also be attributed to the tendencies of supercomputer engineers to design their 

supercomputers around the HPL test, where it primarily exhibits the Type 2 traffic pattern 

while having little of the Type 1 traffic patterns, and thus will not account for any programs 

that do exhibit Type 1 traffic patterns in their designs. The issue is further exacerbated with 

the development of accelerators, which makes CPUs extremely effective with Type 2 

patterns, but only barely support Type 1. Dongarra, et al. brought up the Oak Ridge National 

Laboratory’s Titan system passing its floating point operations to its GPU as an example of 

the use of accelerators [19]. 

What remains is determining how much of an impact the different topologies have on 

the relative performance of the HPL and HPCG tests. To determine this, I took the top 20 

supercomputers in both the HPL list and HPCG list of 2017 and noted their topology 

archetype, the number of CPUs (nodes) in the system, the theoretical maximum processing 

speed (Rpeak), and the achieved processing speed (Rmax or R). The performance efficiency 

is determined by how much of the theoretical maximum speed the system has achieved in 

percentage. The compiled data obtained from the Top500 website [9] are shown in Appendix 

6.2. 

The average efficiency of the HPL test is 70.3% with a standard deviation of 16.1% 

while the average efficiency of the HPCG test is 1.7% with a deviation of 1.0%. Due to the 

high disparity between the performance of supercomputers running the HPL test versus the 

HPCG test, it is a bit more difficult to compare the results. As such, we compared the relative 

performance to the test average, which is determined by the efficiency compared to the 

average efficiency. Based on that, we determined whether a particular topology is better for 

a particular benchmark test. The following graphs shows the efficiencies and the average 

values. 
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Figure 8: Relative Efficiencies of Top 20 supercomputers with respect to their maximum Flops/s performance under HPL 

and HPCG benchmark test with average line and standard deviation marked. 

Unfortunately, no clear correlation between topology types and benchmark test could 

be established. In fact, one could even make the determination that the Torus 6D topology 

simply outperforms all others. The average for most topologies maintains its position relative 

to the average performance. While the Sunway has a significant drop when going from the 

HPL to HPCG test, its topology is unique (or at the very least, unknown since no publication 

detailing its structure could be found) so we cannot make any empirical determination from 

it. 

Likely, the sample is also too small to truly determine whether the topology was the 

main factor or if some other property of the supercomputer itself was detrimental to its ability 

to process either benchmark test. It is also possible that despite the differences in tasks the 

HPL and HPCG benchmark tests each have, their traffic demand may be similar enough to 

experience relatively no difference in performance efficiency from a topological perspective. 

2.3.2 Performance in Data Center Networks 

Jyothi, et al. conducted a study on the throughput performance of various network 

topologies under different traffic patterns [20]. They were attempting to find a standardized 

method to measure all network topologies.  One of their main challenges was the lack of 
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access to data from real-life data center networks, specifically on the type of traffic and the 

structure. 

As such, the authors simulated various synthetic traffic patterns on multiple 

topologies to create a “near-worst-case” traffic matrix that will yield the lowest throughput. 

Similar to the adjacency matrix, the Traffic Matrix 𝑇 (TM) defines a traffic demand, where 

in 𝑇(𝑖, 𝑗), node 𝑖 requests a certain amount of flow to node 𝑗. The TM is usually normalized 

such that ∀𝑖, ∑ 𝑇(𝑖, 𝑗)𝑗 ≤ 1 and 𝑇(𝑗, 𝑖) ≤ 1. Note that the capacity of a single link is 1. As 

such, the throughput is the maximum value 𝑡 for which 𝑇 ∙ 𝑡 is feasible in the network graph. 

This is usually formulated and solved as a Linear Program, an optimization problem. 

The three synthetic traffic pattern the authors used were the All-to-All, where all 

nodes tries to communicate with all other nodes at the same time; Random Matching, where 

each node tries to communicate with another randomly assigned node such that every node 

has one input and one output signal; and Longest Matching, assigns to each node whichever 

node has the longest distance. The results of their simulations, shown in the table below, are 

of interest to us because they demonstrate our premise.  

Table 1 Relative Throughput at the Largest Size tested under Different TMs (recreated from [20].) 

Topology Family All-To-All Random Matching Longest Matching 

BCube (2-ary) 73% 90% 51% 

BCell (5-ary) 93% 97% 79% 

Dragonfly 95% 76% 72% 

Fat-Tree 65% 73% 89% 

Flattened BF (2-ary) 59% 71% 47% 

Hypercube 72% 84% 51% 

 

The relative throughput is meant to represent the throughput quality compared to a 

random graph with similar resources to nullify the basic advantage of simply having a higher 

connectivity within a graph. In other words, they generated a random graph with the same 

number of nodes and each of them with the same number of links [20]. The key results here 
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are the Dragonfly under All-to-All traffic, 5-ary BCell under Random Matching traffic, and 

Fat-Tree under Longest Matching traffic. They show that under very different traffic 

demands, certain topologies are more efficient for certain traffic patterns, or applications. 

The structure of BCell and Fat-Tree networks both have restrictions in the server 

placement [20], and to a lesser extent, so does the Dragonfly (specifically, the Dragonfly+ 

case). Because both have server placement restrictions, reconfiguring from one to the other 

should still be practical to achieve. 

2.4 The HOB Device 

For the most part, this thesis does not concern itself with the technical details of the 

devices to be utilized, only in its operation and how it may affect the topological 

interconnection of a system. Nevertheless, it is still important to have a general understanding 

of the devices involved, including how it can be expanded upon in the future. 

The Hybrid Optical Bridge (HOB) is a 12-by-12 optical signal regenerator and 

redistributor developed by Reflex Photonics. In other words, it is a 12-by-12 optical 

crosspoint switch, as shown in the following figure. However, it is worth keeping in mind 

that it is also a signal regenerator, meaning that it converts an optical signal to electric signals 

and then recreates it as a fresh, retimed non-degraded optical signal. That means variations 

with higher or lower numbers of ports and capacity are entirely possible. 

 

Figure 9: Schematic of the HOB base design provided by Reflex Photonics [21]. Optical signals are converted into 

electrical signals before being sent through a crosspoint switch. Then the signal is regenerated and transmitted as fresh, 

retimed non-degraded optical signals. 

The configuration of the crosspoint switch is controlled via either a USB or WiFi 

controller, which would allow multiple switches to be controlled simultaneously from a 

single control terminal. As such, an operator or a centralized controller can remotely 
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reconfigure the network to better suit their purposes. These purposes can be to better 

accommodate a task for supercomputer networks, to better accommodate traffic demands in 

a data center network, or even to temporarily reroute traffic and isolate specific routers for 

the sake of maintenance. 

The HOB had a throughput of 336 Gbps across the 12 channels back in 2017 [22], 

meaning each channel has a capacity of 28 Gbps. In order to achieve higher capacities, 

multiple channels can be bundled into a single larger channel. In fact, Reflex Photonics 

proposed a 3-port configuration where a port consists of four channels providing 112 Gbps 

of throughput between any two ports, as shown in the following diagram [21]. 

 

Figure 10: Reflex Photonic’s proposed 3-port HOB configuration [21]. Four channels are reserved for each port and can 

be freely interconnected to any ports. 

Such a configuration would allow for a much simpler “Port A connects exclusively 

either to Port B or Port C” setup. In other words, one would only need to place the HOB at 

every reconfiguration event (places where reconfiguration would occur) to achieve 

topological reconfiguration. However, this would leave four channels idle, wasting 112 Gbps 

of its potential throughput. The goal then is to configure the switch in such a way that all 

channels will always be used. 

As such, while this may decrease the bandwidth of the individual connections to three 

channels (84 Gbps), we would recommend at least a 4-port (or radix-2) configuration, such 
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that Port A and Port B can freely connect between Port C and Port D, as shall be discussed 

later in this thesis. 

One thing that should be clarified, the earlier diagram of the 3-port configuration 

implies that the crosspoint switch within the HOB is used unidirectionally. In other words, 

each port has to connect on both sides of the crosspoint switch in order to have both an input 

and output. However, by most conventions, crosspoint switches are bidirectional meaning 

that even when diagrams show only one channel, there are two, one for each direction.  

In this thesis, we shall assume that all crosspoint switches are bidirectional, as this is 

a requirement to the algorithm that will be presented. However, even if unidirectional 

switches are used, it is possible to emulate bidirectional switches by reserving half the ports 

of a unidirectional crosspoint switch for backwards communications which effectively halves 

the radix, as shown in the following figure. In 11(a) all lines are bidirectional while in 11(b), 

communication can only occur from left to right, or right to left, but still allows for the same 

connectivity as in 11(a). A consequence of emulating bidirectional switches with 

unidirectional switches is that they could allow for connection of nodes that in a bidirectional 

switch are located on the same side. For our purposes, this will be disregarded. Since 

bidirectional switches have no true input or output ports, we shall refer to either side of the 

switches simply as the left or the right side.  

 

Figure 11: Comparison of (a) two-way and (b) one-way crosspoint switch configuration.  

Bundled channels are shown as only one link in diagram. 

Finally, while Reflex Photonic’s HOB currently only possesses 12 channels, it is 

entirely possible to resize the HOB to a larger radix. Recall that one of the main limitations 

to optical switching was the relatively slow switching speed of the thermal-optic effects. With 
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the electrical crosspoint switch at the core of the HOB, we remove the optical limitations and 

thus allow for a greater number of channels to be connected at once, giving us more options. 

As such, we shall assume the following: the reconfiguration switches can be of any 

size, the reconfiguration switches will be bidirectional, and the two sides of the switch will 

be interconnected in a bipartite manner.  
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3 Implementation of the Node Group Synthesis 

Program 

To reconfigure a network from one network topology to another, the HOB or similar 

crosspoint switches can be used. To determine where best to place the reconfiguration 

switches, I have written a program that will analyze a set of adjacency matrices representing 

the desired topology configurations and return a list of Node Group Pairs (NGPs, 

shorthanded as Group Pairs or GPs). Each GPs represents a crosspoint switch and a group 

of nodes connected into each side. 

The program follows a pipeline architecture, where the program is divided into 

independent and replaceable parts or modules arranged in a chain such that the output of a 

preceding module acts as the input of the following module. In this case, the program is 

divided into three modules: 1) the Link Delta Acquisition Process, where multiple adjacency 

matrices of the same order are evaluated to determine the potential and necessary changes in 

links to effectuate a reconfiguration from one described topology to another; 2) the Chaining 

Process, where the link deltas from the previous step are iteratively chained together to form 

a list of every possible non-redundant Group Pairs; and 3) the Selection Process, where a 

final set of Group Pairs is selected based on the amount of necessary link contributions and 

non-overlapping links each Group Pairs contribute. The program also has an optional fourth 

and final stage helpful in the visualization of the final reconfiguration, where the selected 

Group Pairs are drawn on both a system-wide basis and the individual switch configurations. 

The operational conditions at this point of the program’s development are as follows:  

1. There can only be two topologies. The current methodology the program uses can 

only handle systems swapping between two topologies. This is due to the implementation of 

the program, which will be discussed in more details in section 3.2. While it may be possible 

to achieve network reconfigurations comprising of more than two topologies by having 

reconfiguration switches interconnect with other reconfiguration switches, this feature is not 

yet supported. At present, the program treats the HOB crosspoint switches as an invisible 
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component in the network—a component meant only to reconfigure a network. It does not, 

therefore, handle situations where the HOB devices themselves are nodes in the network. 

These would only occur in situations where a group of nodes must be able to freely 

interconnect with another group of nodes, such as in reconfigurable optical dragonfly 

proposed by Samadi, et al., where any node in a supernode can connect to any node in another 

supernode [23], as shown in the following figure. 

 

Figure 12: In Samadi, et al.’s reconfigurable dragonfly, the central four switches connect to  

each other, and thus would likely need to be mapped as nodes of the network. 

2. All nodes must maintain their degree. All used ports on a router or server must be 

used and remain used, and therefore all links must go somewhere when reconfigured. In other 

words, if a server was connected to two other servers in the first topology, it must be 

connected to two servers in the second topology. This reflects both the reality that routers 

have a finite and constant number of ports and the practicality of making use of all available 

resources; there is no point in leaving a cable or port idle simply to fit the canonical 

description of a specified topology, excepting scenarios where one splits a larger network 

into sub-networks as described earlier. 

3. All relevant edges must be defined. There is no point in defining a network by the 

likelihood that there is a link between two nodes. We are dealing with manually reconfiguring 

a network between two specific topologies and the necessary link reconfigurations to make 

that happen. 
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4. All GPs must be full. More specifically, a user must use a radix value such that it 

can be filled without leaving any empty ports. This is a consequence of the implementation 

of the program, where the Chaining Process would deem any GP combination incapable of 

reaching the desired radix unviable and thus not forward it to the next module. 

There is also a fifth non-critical condition, in that the program would still function, 

but the result becomes significantly less efficient. The number of necessary link changes (or 

link deltas as we will call them later) must be a multiple of the radix of the switch. For 

example, if a system requires 16 reconfiguration events (link deltas, which will be defined in 

the next section), reliable radix values are 2, 4, 8, and 16. 

3.1 Link Delta Acquisition 

The first step is the Link Delta Acquisition Process, implemented in GenConnList.m 

(appendix 6.1.4). We define a link delta (𝑑𝐿) as a pair of adjacent links where one is unique 

to topology A and one is unique to topology B relative to their common node (referred to as 

source node). For instance, suppose that we have a network with nodes {1,2,3,4} as shown 

in the following figure. In topology A, we have links (1,2) and (3,4). In topology B, we have 

links (1,4) and (3,2). The link delta would then be notated as (1, 2 ↔ 4) where source node 

1  links to destination node 2  in topology A and destination node 4  in topology B, and 

(3, 4 ↔ 2) where node 3 links to node 4 in topology A and node 2 in topology B. Note that 

we can also define the link deltas relative to all source nodes. For example, we can also 

describe (2,1 ↔ 3), which is also a valid link delta. 

 

Figure 13: Topology reconfiguration of four nodes with links (1,2) and (3,4) being reconfigured to (1,4) and (2,3) 
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It is worth clarifying that a link delta merely describes a potential way for a link to be 

reconfigured for every node. It does not necessarily refer to the exact reconfiguration that 

occurs in the final setup. In cases where each node requires multiple link reconfigurations, 

there will most likely be more link deltas than necessary to effectuate the network 

reconfiguration. To demonstrate, suppose we have a network with nodes {1,2,3,4,5}  as 

shown in the next figure. In topology A, we have links (1,2) and (1,4), while in topology B, 

we have links (1,3) and (1,5). As such, there are four possible link deltas: (1, 2 ↔ 3), 

(1, 2 ↔ 5), (1, 4 ↔ 3), and (1, 4 ↔ 5), even though only two are necessary to go from 

Topology A to Topology B. 

 

Figure 14: A demonstration of all possible link deltas dL, even if only two reconfigurations would occur. 

At this point in the process, we only concern ourselves with generating a 

comprehensive list of potential link deltas 𝑑𝐿 for every node of a topology. The specific 

selection of which to use will be decided at a later stage. 

The program code is included in appendix 8.1.4. It takes a three-dimensional matrix 

as input, each layer representing the adjacency matrix of each desired network configuration. 

The process then identifies and extracts the links common to all topologies and therefore do 

not require any reconfigurations. This allows the process to then identify the links exclusive 

to each topology. 

Once every link exclusive to each topologies have been identified, we then scan 

through each node, or rows or columns in the adjacency matrices, and identify their 

respective exclusive links. Each topology has a set of destination nodes, and we create a set 

product (or cartesian product) that provides every possible combination of link deltas. 
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The set product or cartesian product is a set theory operation where the elements of 

two (or more) sets are combined into every possible ordered pairs (or n-tuple). In 

mathematical notation, 𝐴 × 𝐵 = {(𝑎, 𝑏)|𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵}. 

While the setprodcell.m function (appendix 6.1.5) can cross-product a multitude of 

sets (i.e., possible configurations), the program should only take two adjacency matrices as 

input, otherwise it will fail to give an appropriate output. 

Finally, GenConnList.m outputs a list of potential link deltas (dL) and necessary links 

(Nec). The necessary links list is a list of every link in every link delta. This serves as a list 

the program will check against to ensure that every needed links has been effectuated in case 

the program needs to compromise and create new links that have not been defined explicitly. 

This was originally meant to remove the necessity of explicitly defining all links and allow 

the program to autonomously create “dummy” links, which would allow the program to 

direct incomplete link deltas that have nowhere to go. Such a feature was unfortunately not 

implemented, but we shall still cover the intent. 

Suppose we take the earlier subset of nodes {1,2,3,4,5} illustrated in figure 13, but 

this time, we do not define (1,5) as a link explicitly part of Topology B, as shown in the 

figure below. In other words, the link (1,5) is not a necessary link in this topology. That 

means that when it comes time to select link deltas, we will be forced to select both (1, 2 ↔

3) and (1, 4 ↔ 3), which is redundant since both contributes the link (1,3). As such, we can 

still create a “dummy” link (a link that does not exist in the formal definition of either 

topologies, but does exist as a fully functional link in practice in order to satisfy the second 

condition) of (1,5) which allows us to create the “dummy” link deltas of (1,2 ↔ 5) and 

(1,4 ↔ 5) which will only be selected if it allows for a better selection at the end. 
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Figure 15: Two link deltas colliding when link (1,5) is absent.  

Could be resolved by adding a dummy link between 1 and 5. 

As the program is currently, the necessary link component only serves to verify the 

results. However, the data is available for future expansion. Additionally, this process can 

only reliably manage two topologies. While the function is capable of handling more, the 

program has not yet been designed to handle such a scenario. 

3.2 Chaining Process 

The second step is the Chaining Process implemented in ChainPairs2.m (appendix 

6.1.6). This is where a comprehensive list of every possible Node Group Pairs is generated. 

Recall, the Node Group Pair refers to the set of nodes connected to each sides of a 

reconfiguration crosspoint switch (i.e., the HOB), such that the left Node Group refers to the 

nodes connected to the left side of a switch and the right Node Group refers to the nodes 

connected to the right side of a switch. A GP will be called full when every port on both sides 

are connected to a node. 

The goal is to create a comprehensive list of every possible full GPs that will 

contribute to effectuating the network reconfiguration, a master set. One can then select a 

subset from this master set to create a solution set based on specified restrictions or 

requirements. 

The function generates each GPs by chaining a collection of link deltas. By following 

the ‘flow’ of changing links, one can chain together a sequence of link deltas that eventually 

loops back to the ‘initial’ link, as shown in figure 16. The idea is to configure crosspoint 

switches that need only shift its link over by one port to effectuate the desired network 

reconfiguration. In other words, in Topology A, all ports on the left side of the crosspoint 
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switch would connect to the ports across them horizontally, and in Topology B, they shift 

their connection to the next port, except for the bottom left port, which would loop back 

around to connect to the top right port. The program will arrange the order of the nodes 

chosen on both sides of the switch such that all switches only need to follow this connection 

shift pattern to effectuate the network reconfiguration.  

 

Figure 16: A Node Group Pair with its chaining sequence highlighted. Note how when the network reconfigures from 

Topology A (in blue) to Topology B (in red), all of the blue links are “shifted” by one node to become the red links in this 

set, the bottom right node (node 7) looping back around to the top of the right set (node 3). 

The function works as follows. Given switches with a radix N and a full list of link 

deltas, the function picks a starting node, designated as the Root (usually node 1). It then 

finds all link deltas with a source (or starting) node matching the Root node, and those 

potential link deltas (called Root 𝑑𝐿) are compiled into a Root List. The function will then 

pick one of the Root 𝑑𝐿 and note the two destination nodes, designating topology A (or the 

old topology) as the Head and topology B (or the new topology) as the current Tail. It then 

searches the link delta list for any link deltas where topology 1 matches the current Tail. This 

creates a second list of prospective “links” in the chain. The process selects one of these 

chains and, much like it did with the Root, designates a new Tail. Note that if the new Tail 

matches the Head, then the Group Pair so far is saved as a “minichain”, meaning that it was 

possible to create a Group Pair using a smaller radix switch. The process repeats until the 

chain reaches a length of N-1. At which point, it will search for prospective links with the 

addendum that the Tail must also match with the Head to close the chain. If there are more 
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than one link delta that can close the chain, then both are recorded and added to the final GP 

set. Figure 17 demonstrates one such cycle.  

We begin by picking node 1 as the Root, bringing up a full list of link deltas whose 

source node matches the Root as a prospective Root List (first column in the figure). We will 

eventually go through all of them, but we start with the first entry of the list, (1,3 ↔ 4), and 

note the Head of the chain, 3, and the current Tail of the chain, 4. As such, we compile all 

link deltas that starts with 4 in their destination pairs (i.e., connects to 4 in topology A) into 

a list (second column in the figure). Like the Root List, we will eventually go through all of 

them, but we begin with the first link delta of column 2, (2,4 ↔ 3). Here, we technically 

completed a chain because the new Tail matches the Head of the chain (node 3), but we have 

not achieved the desired radix. As such, we record this minichain in a separate location and 

continue to the third column.  

In the third column, we experience the effects of a few filters that will be explained 

in more details later, but in short, they serve to prevent redundancies within the prospective 

GP. In this case, when we compiled a list of all link deltas with node 3 in their destination 

pairs, we found that (1,3 ↔ 4) and (1,3 ↔ 13) have a redundant link, specifically (1,3) 

which can be found in the link delta we started with in column 1, (1,3 ↔ 4). As such, those 

two link deltas are discarded, and we move on with the rest of the list. We select link delta 

(11,3 ↔ 7). 

At this point, we have a chain of length 3. To form a GP for a radix-4 switch, our next 

link delta must close out the chain in a loop. In other words, the link delta must start with 

node 7 and end with node 3 in its destination pair. Here, the only link delta that satisfies this 

condition is (15,7 ↔ 3). We have thus formed a link delta chain consisting of (1,3 ↔ 4), 

(2,4 ↔ 3), (11,3 ↔ 7), and (15,7 ↔ 3). We record this completed GP and move on back a 

column to explore the rest of its list, namely (11,3 ↔ 10). Once that is complete, we reach 

the end of the list in column 3 and move on to the next entry in column 2, (2,4 ↔ 14). This 

cycle continues iteratively until all branching lists have been explored. 
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Figure 17: The chaining sequence the Root link (1, 3↔4) would undergo to create a GP of Radix 4.  

Note that two link deltas are skipped in the third column due to overlap of link contribution. 

Once we have found all GPs that originates from the current Root node, we move on 

to the next Root and start over until all Root nodes have been explored. The entire process is 

summarized in the flow chart that follows. 

 

Figure 18: Chaining Process Flow Chart with filter blocks highlighted in yellow. 

The process is refined through filters that catches GPs that would be redundant with 

previously generated GPs. There are two in-process filters, designated Stepback Filter and 

Overlap Filter, and one post-process filter, designated Equivalence Filter. It should be noted 
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that two features in the flow chart are either not implemented or not used. They were meant 

to assist in the creation of GPs possessing dummy links, however, the feature has not been 

implemented. 

3.2.1 Stepback Filter 

The Stepback Filter is the first filter in the system. It ensures that no Roots designated 

in the previous section reappear in later iteration of the scanning process. In other words, 

once the program has finished using node 1 as the Root node to create potential Group Pairs, 

node 1 will never again reappear in later iterations, whether as a source or destination. This 

is to prevent essentially creating the same group from the tail end. This is most obviously 

exemplified in the radix-2 case, as seen in the following figure. However, even in larger 

radices, one can recognize the redundancy if one compares the elements of each Node 

Groups. 

 

Figure 19: Example of three Radix-2 GPs generated with no Stepback Filter. Each expressed differently yet creating 

identical networks. The left GP would be the original. The middle has node 1 reappearing as a source node. The right has 

node 1 reappearing as a destination node in their link deltas.  

3.2.2 Overlap Filter 

The Overlap Filter was originally two separate filters: The Looping Filter and the Semi-

Overlap Filter. The Looping Filter was a basic filter that detected instances of repeated link 

delta. For example, in the example demonstrated in figure 16, it would only catch the repeated 

instance of (1,3 ↔ 4) in column 3, because it only searches instances where a link delta is 

used multiple times in a chain. The Semi-Overlap Filter was intended to find instances of 

redundant link contributions in every GP. Specifically, it finds instances where a source and 

destination node are “flipped”. For example, suppose for some reason, a GP contains the link 
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deltas (1,3 ↔ 4) and (3,1 ↔ 15), it would realize that (1,3) from the first link delta and 

(3,1) from the second link delta are the same link. Due to their different intended purposes, 

it was not immediately obvious on initial design that the Semi-Overlap Filter would achieve 

the same task as the original Looping Filter, and thus they were combined into a single filter. 

Integrating the Overlap Filter to run in-process required a change in methodology. 

Rather than scanning the completed Group Pair on a column-wise basis, the program instead 

compares the prospective Link delta to be added to the at-this-point incomplete Chain and 

checks for redundancies. It is more efficient this way because with this in-process filter in 

place, it can be assumed that all prior chained Link deltas are not redundant. Should a 

redundancy be detected, then the current chain is aborted, and the process moves on to the 

next prospective Link delta (demonstrated in column 3 of Figure 17). 

3.2.3 Equivalence Filter 

The Equivalence Filter is the final filter for the chaining process. It is a post-process 

filter that scans through the potential solution set and detects all equivalent elements. In other 

words, it searches for two GPs that possess the same node groups. Unfortunately, all attempts 

at integrating this filter as an in-process subroutine to cut down on computational time have 

failed to yield a complete potential solution set.  

The only way for such a filter to be in-process would be to be able to recognize a 

redundant pattern early during the Chaining Process. For example, given a GP chain with 

eight dLs, we may start another GP chain that turns out is the same as the first GP but 

backwards. The in-process filter should be able to recognize that pattern and stop it early, 

saving up a lot of computational time. Unfortunately, on testing the in-process vs. the post-

process filters, there was a discrepancy where the in-process would abort too many chains 

too early, leading to missing GPs compared to the more comprehensive list having this filter 

post-process would provide. 

It was eventually determined that further attempts at trying to refine the process or 

otherwise tune the sensitivity would be a poor investment of time when the other filters do a 

sufficient job at reducing the program’s runtime. 
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3.3 Selection Process 

With a comprehensive list of potential Group Pairs, it is now time to choose a set that 

will effectuate the necessary changes in links to reconfigure a network. Here, we enter the 

Selection Process (appendix 6.1.9). As an aside, it should be noted that the following method 

is more easily comprehensible from a visual and therefore “human” perspective, however, it 

is probably very inefficient from a computational or analytical point of view. The main 

challenge is to select the smallest number of GPs that can effectuate the reconfiguration of 

the network. That means that there should be as few redundant bridging links amongst the 

selected GPs as possible. As such, it is important to then know which GPs can and cannot be 

taken simultaneously. To do that, we create a similarity or overlap matrix. This is similar to 

the adjacency matrix, except this time, the “nodes” correspond to their respective elements 

in the potential GP set. The similarity matrix will thus list out the relationship between every 

GP element and indicate the number of common essential link contributions. 

Once a similarity matrix is fully established, we create an adjacency matrix by 

establishing a tolerance value, which indicates how many overlaps in nodal links provided 

by each GPs will be permitted before a similarity link is established. Suppose we take a 

tolerance of zero, then there is a link between GP nodes that has any common link 

contribution as shown in the following figure. As such, we create a similarity graph where 

all sufficiently overlapping GPs are interconnected. 
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Figure 20: The Similarity Graph of a 16-node Hypercube-Torus system with Radix-2 reconfiguration switches, where all 

nodes with at least a single overlapping link contribution is interconnected. The selected GPs are circled, indicating a set 

of GPs that could be selected without any link contribution overlap. For example, GPs H2 and H3 were selected, while H1 

has a single link overlap with either other two (H1-H2 both contributes link (1,3) while H1-H3 both contributes (1,4)). 

The goal then is to choose a set of nodes where each node is not interconnected with 

another member of the selected set. From a graph perspective, that means all nodes must have 

an even number of hops in between each other. 

To accomplish this computationally, it is necessary to create a distance matrix. From 

that, to increase the likelihood the final selection will not miss any necessary links, we start 

with a random GP with the greatest number of viable nodes. Viable nodes being nodes an 

even number of hops away from the reference. We select the next node by likewise ensuring 

that the number of overlapping viable nodes is maximized. This continues until all viable 

nodes have been collected or rejected. 

Once a selected set is established, then the GPs the selected nodes correspond to 

represent the selection and configurations of the HOB devices needed to reconfigure the 

network from topology A to topology B.  
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4 Program Performance Analysis 

In this section, we shall examine the program’s performance in converting a 16-node 4D 

Hypercube (H4D) to a 4×4 Torus network (T4×4). For radices ranging from 2 to 16, we shall 

evaluate the accuracy and the resource efficiency of the solution the program provides and 

measure the computation time at which this was found. 

4.1 Preliminary Examination 

This scenario was selected for its overall simplicity and small size. I was able to 

manually solve the radix-2 and radix-4 case and thus would be able to verify the accuracy of 

the program’s results. It also served as a good starting point for the development of this 

program, because it possessed favourable properties. I decided that only once the program 

can reliably handle the baseline easy scenario will development move on to more complex 

cases. 

An important property to note about the 4D Hypercube and the 4×4 Torus is that they 

are uniformly isomorphic. In other words, by simply rearranging the node designation 

without changing the interconnection, a Hypercube can become a Torus. Conversely, by 

rearranging the relevant links, one can achieve the desired reconfiguration. It should be noted 

that isomorphism by itself is insufficient to ensure the program would work; we need to 

ensure that each node has a constant degree. As such, while we do not necessarily need to 

stick to a traditional mapping of a topology (i.e. node 1 does not necessarily need to connect 

to node 2) it is important to keep track of the node designation in order to ensure the degree 

is preserved. In this case, the three conditions for the use of the program are satisfied: We 

have only two topologies of interest. All nodes maintain a constant degree of 4. All links are 

defined. 

Of the four links each node possesses, two of them need reconfiguration, yielding a 

total of 64 potential link deltas, with four link deltas associated with every node. This 

conveniently uniform distribution allows us to predict the maximum number of GP 

combinations since, at every layer of the iteration, there are certainly four potential link deltas 
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to branch off to. In other words, with no filters, the number of GPs the program could 

theoretically generate can be estimated by the following formula: 

 𝑃 = 𝐿 × 𝑙𝑟−2 (14) 

where 𝑃 is the unfiltered number of Pairs of Node Groups the system may generate, 𝐿 is the 

number of link deltas dL the system has, 𝑙 is the number of link deltas per nodes, and 𝑟 is the 

radix of the reconfiguration crosspoint switch. The reason for the -2 in the 𝑙’s power is due 

to the fact that it starts with all potential link deltas and that when you reach the end of the 

chain, there is usually only one possible link delta that could be used to complete the chain. 

While this formula has not been exhaustively verified, this gives us an idea of the 

scale of the work the program needs to run through. The number of potential chain 

combinations could reach upwards to 17.2 billion for the radix-16 case with an estimated 

22.9 billion calls on the ChainNext.m function, yet there is only a single non-redundant 

solution. The table below demonstrates why the redundancy filters are critical to run this 

program with a reasonable memory requirement. 

Table 2: Estimated Number of Unfiltered GPs and ChainNext.m calls vs Filtered values (no composite GP). 

Radix No Filter GPs Est. Filtered GPs No Filter Calls Est All Filters Calls 

2 64 16 64 24 

4 1,024 80 1,344 214 

6 16,384 176 21,824 1,388 

8 262,144 233 349,504 7,172 

10 4,194,304 176 5,592,384 26,542 

12 67,108,864 88 89,478,464 68,517 

16 17,179,869,184 1 22,906,492,224 157,966 

 

4.2 Speed of Solution 

The primary purpose of the filters is to weed out redundant outcomes. That can 

theoretically be easily achieved by allowing the program to run and then check the results. 

However, the average iteration of the ChainNext.m function has a duration of around 3 ms, 
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thus a system that needs to over 17 billion iterations would be computing for more than 

1.6 years. As such, the real purpose of those filters is to reduce the number of necessary 

iterations by catching or preventing redundancies early. 

With the reduction in place, we can now run the program and measure the time 

elapsed. For reference, the program was executed on my personal computer, which runs on 

an AMD Ryzen 7 1700 (8 cores, 16 threads), 32GB of RAM and an EVGA GeForce GTX 

1080 graphics card. The runtimes measured are compiled in Table 3. The most obvious 

feature of the timed table is the expected scaling of the Chaining Process, with it taking up 

more and more time the larger the radix gets. 

Table 3: Timed Program Execution with percentage distribution (leftover time goes to all other process).  

Also noted are the number of composite (comp) GPs in the total GP count. 

Radix GP 

(comp) 

Full 

Time 

dL 

Acquisition  

Chain 

Process 

Selection 

Process 

Draw 

Time 

2 16 (0) 1.141s 0.029s 

(2.54%) 

0.088s 

(7.71%) 

0.223s 

(19.54%) 

0.787s 

(68.97%) 

4 120 

(40) 

5.908s 0.029s 

(0.49%) 

0.990s 

(16.76%) 

4.357s 

(73.75%) 

0.519s 

(8.78%) 

6 288 

(112) 

29.614 0.027s 

(0.09%) 

4.700s 

(15.87%) 

23.860s 

(80.57%) 

1.014s 

(3.42%) 

8 365 

(132) 

61.769s 0.029s 

(0.05%) 

22.537s 

(36.49%) 

38.783s 

(62.79%) 

0.407s 

(0.66%) 

10 244 

(68) 

98.906s 0.025s 

(0.03%) 

81.029s 

(81.93%) 

17.439s 

(17.63%) 

0.398s 

(0.40%) 

12 116 

(28) 

219.195s 0.027s 

(0.01%) 

214.375s 

(97.80%) 

4.094s 

(1.87%) 

0.677s 

(0.31%) 

16 2 (1) 485.574s 0.055s 

(0.01%) 

485.041s 

(99.89%) 

0.096s 

(0.02%) 

0.360s 

(0.07%) 

 

The dL Acquisition process is relatively steady because it is unaffected by the 

inputted radix. Instead, the dL Acquisition process scales quadratically with the order of the 



47 

 

network (𝑂(𝑁2)) because it needs to compare the link status between every pair of nodes in 

the network. 

The Chaining Process has an exponential complexity 𝑂(𝑙𝑟), where 𝑙 is the number of 

link deltas per nodes and 𝑟 is the radix value, due to how the problem grows by the same 

factor at every layer of the chain the process needs to run through. While the filters do reduce 

the runtime, I do not believe it reduces the complexity of the problem. 

The selection process meanwhile grows before hitting a peak at the median radix and 

falling. This pattern is matched by the number of GPs generated by the Chaining Process. 

This implies that the problem grows about linearly with the number of GPs inputted into the 

process (𝑂(𝐺𝑃)). This is consistent with the fact that the most computationally heavy part of 

this process is the generation of the graph and the GP comparison to generate the similarity 

matrix. The comparison aspect scales quadratically with both the radix (𝑂(𝑟2)) and the 

number of GPs inputted (𝑂(𝐺𝑃2)) for similar reasons as the dL Acquisition process; it needs 

compare each pairs of GPs for their similarity. 

The draw time is the least important section to examine because it does not contribute 

to finding a solution set. That said, there are still a few key observations to make. The drawing 

program simply takes the final list of GPs and draws both a wide graph showing each node 

connected to their corresponding reconfiguration switches as well as the configurations for 

each of the individual reconfiguration switches. Consequently, the more GPs the program 

needs to draw, the longer it takes. As such, the larger the radix, the less GPs the system will 

need to effectuate the desired reconfigurations. This means that the Drawing Process scales 

linearly with the number of GPs inputted (𝑂(𝐺𝑃)). What is worth noting then is that the time 

recorded does not necessarily reflect that (specifically radix 6 takes longer than radix 2). This 

has to do with the quality of the solution, which will be discussed in the next section. 

4.3 Quality of Solution 

The primary function relevant to the quality of the solution is the Selection Process. 

Due to how the program functions, it is not possible to have unused ports on a reconfiguration 
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switch in the final solution set. As such, the quality of the solution is determined by whether 

it uses as few crosspoint switches as possible, which consequently will minimize the number 

of wasted ports or links if any, and whether it effectuates all link deltas necessary for the 

reconfiguration. 

The smallest chain that can be achieved with these topologies is a radix-2 chain, 

suggesting that the best radix to use would be some factor of 2. Empirically, it was determined 

that for the 16-node Hypercube-Torus conversion, the best radices to use are 2, 4, 8, and 16 

which uses 8, 4, 2, and 1 switch(es) respectively. In these cases, the link deltas fit perfectly 

with no redundant or missing links. 

As shown in Table 2 though, the pattern does not necessarily hold true in the case of 

radices 6, 10, and 12. That is because in its current state, the program’s decision is based 

simply on the “spacing” with no account to actual content of GP. Should the preliminarily 

selected solution not cover all necessary links, the similarity graph would then be adjusted 

by loosening the tolerance value, such that a similarity link may need more GP similarity to 

exist. The idea was that by allowing a limited amount of overlaps between the selected GP 

(which would inevitably occur when using imperfect radix), one would then get the next best 

solution.  

Unfortunately, due to not attempting to maximize the contribution of the next 

randomly selected GP, it may not contribute all necessary links to then finalize the selection. 

The program then mistakenly believes there is no solution at the current tolerance level and 

loosens it even further. Consequently, due to the random selection involved, the result is also 

inconsistent. As such, the selection process will need to be significantly revised and improved 

in order to ensure reliable and robust results. 

4.4 Potential Improvements 

Due to time constraint and a particular focus on ameliorating the Chaining Process 

such that it could even finish, there are a series of features and improvements that could not 

be implemented. With that said, there are still plenty of improvements the program could 
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have. The main weakness to the Chaining Process is its exponential time factor. 

Unfortunately, there are very little additions that can be made to Chaining Process in its 

current form, in that I could not find any ways of adding more in-process filters to reduce the 

computational time. As such, any improvements would require a fundamental change in the 

process’s structure. For instance, instead of initializing the ChainNext inner looping for each 

individual link delta, one could attempt to parallelize the process by scanning through all link 

deltas simultaneously, identify equivalent tail ends (i.e. all link deltas ending with 4 and so 

on) and then simultaneously attach the next link delta. While at each layer of the chain, there 

will be an exponential number of link deltas to evaluate, the number of chaining to occur at 

each layer should be reduced to, at most, the order of the system (in this case 16). This may 

be incompatible with certain filters in their current implementation, but should it work 

correctly, this may reduce the problem size from 𝑂(𝑙𝑟) to 𝑂(𝑟2). Additionally, one can 

consider transferring this process to C or another programming language that may perform 

this task faster than MatLab.  

Another issue with the Chaining Process is its inability to give a good output when 

given a radix value that does not resolve the chain. More specifically, in the Hypercube Torus 

case, it will not have any GPs listed if a user enters a radix of 3 because no chain of that 

length exists. As such, the proper solution here would be to either deliberately leave a port 

empty (i.e. not connected) on both sides of the switch or to have the program automatically 

correct the impossible parameter. Either way, adjusting the program to be capable of handling 

this will make the program more robust. 

With the runtime and robustness issues mostly resolved, it is time to resolve the 

solution accuracy problem. The primary difficulty in designing the selection process is that 

it needs a “whole picture” view. It needs to be able to start from a point that will not prevent 

an optimal solution. To use an oversimplified example, suppose we have a set of pairs: 

{(1,2), (2,3), (3,4), (4,5), (5,6)}. The program needs to be able to recognize that starting 

from (2,3) would prevent it from acquiring 1, and 4 or 6, since the only pairs that would 

have no overlap would be (4,5) or (5,6). As such, unless one were to replace the similarity 
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graph with another method of getting the “whole picture,” any future developments will have 

to focus on the specifics of how the process decides which GP to choose. 

In the program’s current iteration, the selection process starts with and subsequently 

selects the GP with the maximum number of other GPs that are an even number of hops 

away. This is because those GPs are more likely to be on the “edge” of any chains. To use 

the earlier example, (1,2) would have two other GPs while (2,3) would only have one. 

Sadly, the principle no longer applies when there are no other GPs that are two hops away 

under the zero-overlap setting, such as would be the case for radix-10. The radix-6 case would 

reach a similar situation when it acquires two GPs.  

The main issues then are that the selection is otherwise blind and that the program 

loosens its tolerance value when the process encounters failure without attempting the 

alternative solutions. While the idea of loosening tolerance is a requirement to allow for 

imperfect radix fits has merit, the method is flawed. 

A feature that was missing is the ability to bias the selection, to evaluate the individual 

GPs and assign a score to them. The original “maximum options” property will instead add 

to those GP’s score rather than be the sole factor and it would allow for other factors to be 

considered, such as the proximity of the nodes in a GP, or that a GP has a favourable 

characteristic that would decrease the chance of inefficient coverage. Finally, it can evaluate 

the prospective GP’s link delta contribution such that it will cover any leftover links when a 

preliminary list has been established. In other words, it would be better to remove the blind, 

random element of the selection process and instead use an evaluative approach. Future 

developers will have to determine whether it is sufficient to evaluate once at the start and 

once to finish up, or if evaluating after adding any GP to the solution list will not slow down 

the program by an unreasonable degree. 

Alternatively, any future developers can change the approach altogether and 

formulate this as a discrete optimization problem. It has unfortunately never occurred to me 

to try this approach nor was I familiar enough with optimization to attempt in the time I had 

left. 
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Additionally, the program should be more extensively tested on other topology 

combinations, with efforts to reduce or even eliminate the necessary conditions. 

4.5 Results 

For the sake of not overloading this section with results, we shall focus only on the 

radix-8, and radix-12 cases. One for when all conditions are satisfied, and one where the fifth 

condition is ignored. The similarity graphs are too visually dense to glean anything 

meaningful and thus will not be presented here, however, the Group Pair Relations (GR) are 

included in the ChainResults_20200915.mat file uploaded with the rest of the program.  

4.5.1 Radix-8 Results 

The Radix-8 switches satisfy all conditions of the program, and thus the results are 

consistent and reliable. Out of the 365 possible GPs, two are always selected, and they are 

random enough to not easily yield the same result which is consistent with the intended 

design. 

 

Figure 21: H4D (blue lines) to T4×4 (red lines) system placed in a circular pattern and how their servers would connect to 

the radix-8 switches (H1 and H2) to each other. Also included are the internal configurations of the individual switches 

Thicker lines represents multiple connections in between nodes while faded lines represent non-reconfiguring links. 
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Presented in Figure 21 on the previous page are the results the program would 

generate for radix-8 switches. 

4.5.2 Radix-12 Results 

The Radix-12 switch does not satisfy the fifth condition, seeing as there are 16 link 

deltas needed to reconfigure a 16-node Hypercube to a 4×4 Torus. At this moment, however, 

the program struggles to handle situations where GPs are not filled up perfectly. 

Optimally, the solution should pick two GPs out of the 116 possible combinations. 

However, due to the current approach of loosening the tolerance uniformly and allowing for 

more overlap to occur per GP, the program will end up selecting four GPs, as shown in the 

following figure. 

 

Figure 22: Suboptimally selected radix-12 configuration. Follows same line convention as previous figure. Note that there 

are several redundancies in the link contributions; (1, 3 ↔ 4) & (2, 4 ↔ 3) appears multiple times. 

The less efficient solution provided when the fifth condition is not satisfied has two 

main consequences. The program will execute more slowly because it spends more time 

trying to select GPs that may not provide the maximum link contribution. This leads to the 

second consequence where the solution will be more expensive because it introduces 

unnecessary switches.  
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5 Conclusion 

In this thesis, we have covered a few of the fundamentals of network topologies and graph 

models, followed by four examples of popular topologies: Hypercube, Torus, Fat-Tree, 

Dragonfly. 

With the context in place, we then examined the performance of various application 

and traffic patterns on various network topologies. We began by examining the two 

benchmark tests typically used on supercomputers, the Linpack and Conjugate Congruent 

tests. Unfortunately, no clear conclusions could be drawn from the test results of the top 20 

supercomputers. As such, we moved on to Jyothi, et al.’s examination of synthetic traffic 

pattern on various network topologies. Their results demonstrated that Dragonfly had the best 

result for All-to-all traffic, the 5-ary BCell had the best result for Random Matching, and the 

Fat-Tree had the best result for Longest Matching. 

Having established that specific traffic patterns (or applications) may benefit from 

certain topologies, we address how to implement a reconfigurable network. While the Hybrid 

Optical Bridge (HOB) was brought up as the crosspoint switch to use both for its remote 

capabilities and for its lack of radix limit, the principles offered in this thesis can apply to 

any crosspoint switch. 

Thus, I proposed my program to evaluate two desired topologies and offer a solution 

to the placement of crosspoint switches to allow for reconfiguration. The process was divided 

into four modules: link delta acquisition process, the chaining process, the selection process, 

and the presentation process. The modularity of the designs allows for the individual 

alteration or amelioration of the individual parts without needing to alter the others, assuming 

compatible input and output format. 

The main work in the proposed process is ensuring that the program would finish in 

reasonable time via the use of filters in the chaining process. Consequently, the quality of the 

solution was not sufficiently refined to be wholly robust. As such, there is much that still 

needs to be done.  
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5.1 Future Works 

Any future work building upon this thesis will most likely be building upon the 

program or researching traffic patterns various applications may have and how different 

topologies handle them. 

The link delta acquisition and chaining process can be revamped to allow the program 

to handle three or more topologies. That way, a three-way reconfiguration between the BCell, 

Fat-Tree, and Dragonfly+ may become feasible. This would require a much more elaborate 

methodology than to only shift the switches’ configuration one port down to effectuate the 

topology reconfiguration since 2 topologies may share a link while the third does not. 

Similarly, works can be directed towards loosening or even removing some of the 

conditions the program have in order to run. The program can be made to be able to handle 

undefined links, or handle situations where the node degree is not maintained as is currently 

required. 

Despite the filters, the chaining process is still the slowest part in this program. One 

potential approach in improving the computation speed is to modify the currently sequential 

process to run in parallel, such that all GPs are generated simultaneously. The filters are still 

compatible since they only limit potential options for a given Root link delta or prevent 

overlap. Should a method be found, this will reduce the current exponential growth of the 

problem size to be linearly proportional to the radix. 

The selection process will likely be the core of any future development though. The 

process currently uses a blind, semi-random approach to finding a solution set. It does not 

truly “know” what makes a good GP to use. As such, an examination of how best to optimize 

GP selection would prove beneficial. A system to bias or otherwise add weight to specific 

desirable GPs would also greatly ameliorate the program. 

On the traffic-topology side, one could conduct a survey on the full 500 

supercomputers of a top500 list and to determine whether certain topologies are associated 

with higher performance efficiency in certain benchmark tests.  
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6 Appendix 

6.1 Codes 

6.1.1 TestScript.m 

  1 % Test Script for Node Group Synthesis Algorithm 

  2 % Edgar Pan 

  3 %% 

  4 %Settings - ONLY CHANGE VALUES HERE 

  5 %Topology Data 

  6 H4D = GenHND(4); 

  7 T2D = GENTor(4,4); 

  8 M(:,:,1) = H4D; 

  9 M(:,:,2) = T2D; 

 10 %ChainPairs Setting 

 11 radix = 2; %Be aware that increasing this increases runtime exponentially 

 12 filters = [1 1 1]; %Not recommended to deactivate in higher radix 

 13 %Selection Process 

 14 ForceTolerance = 0; 

 15 tolerance = 0; 

 16 %Drawing Process 

 17 DrawGraphs = 1; 

 18 DrawCommon = 1; 

 19 ActiveTopology = 0; 

 20 HOBLabel = 1; 

 21 %Run Profiler 

 22 RunProfiler = 1; 

 23 %% 

 24 %Start Timer 

 25 if RunProfiler 

 26     profile on 

 27 end 

 28 tic 

 29 %% 

 30 %Generates Connectivity (Link Delta) List 

 31 [dL,Nec,Common] = GenConnList(M); 

 32 %% 

 33 %ChainPairs 

 34 if radix > 0 

 35     [CL,filt_met] = ChainPairs2(dL, radix, filters); 

 36 else 
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 37     [CL2,filt_met2] = ChainPairs2(dL, 2, filters); 

 38     [CL4,filt_met4] = ChainPairs2(dL, 4, filters); 

 39     [CL6,filt_met6] = ChainPairs2(dL, 6, filters); 

 40     [CL8,filt_met8] = ChainPairs2(dL, 8, filters); 

 41     [CL10,filt_met10] = ChainPairs2(dL, 10, filters); 

 42     [CL12,filt_met12] = ChainPairs2(dL, 12, filters); 

 43     [CL16,filt_met16] = ChainPairs2(dL, 16, filters); 

 44 end 

 45 %% 

 46 %Selection Process 

 47 if ForceTolerance 

 48     tol = tolerance; 

 49 else 

 50     tol = []; 

 51 end 

 52 if radix > 0 

 53     [Selected,SelectedIndex] = SelectionProcess(CL,Nec,tol); 

 54 else 

 55     [Selected2,SelectedIndex2] = SelectionProcess(CL2,Nec,tol); 

 56     [Selected4,SelectedIndex4] = SelectionProcess(CL4,Nec,tol); 

 57     [Selected6,SelectedIndex6] = SelectionProcess(CL6,Nec,tol); 

 58     [Selected8,SelectedIndex8] = SelectionProcess(CL8,Nec,tol); 

 59     [Selected10,SelectedIndex10] = SelectionProcess(CL10,Nec,tol); 

 60     [Selected12,SelectedIndex12] = SelectionProcess(CL12,Nec,tol); 

 61 end 

 62 

 63 %% 

 64 %Find Missing Links 

 65 if radix > 0 

 66     Missing = FindMissing(Nec,Selected); 

 67 

 68     if ~isempty(Missing) 

 69     %     CL = FillMissing(CL,Missing); 

 70         disp('Warning: Not all Necessary Links have been completed.') 

 71         disp('Recommend not forcing the tolerance.') 

 72     end 

 73 end 

 74 %% 

 75 %Drawing Process 

 76 if DrawGraphs && radix > 0 

 77     GraphOrder = size(M,1); 

 78     if DrawCommon 
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 79         DrawHobSystem(GraphOrder,Selected,ActiveTopology,HOBLabel,Common) 

 80     else 

 81         DrawHobSystem(GraphOrder,Selected,ActiveTopology,HOBLabel) 

 82     end 

 83 end 

 84 %% 

 85 %Measure Elapsed Time 

 86 ElapsedTime = toc; 

 87 if RunProfiler 

 88     p = profile('info'); 

 89     profile viewer 

 90 end 
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6.1.2 GenHND.m 

  1 function [ Aj ] = GenHND( N ) 

  2 %GENHND 

  3 %   Author: Edgar Pan (edgar.pan@mail.mcgill.ca) 

  4 %   Generates a Hypercube of N dimensions 

  5 %Base Adjacency 

  6 Q1 = [0 1 ; 1 0]; 

  7 Aj = Q1; 

  8 if N >= 2 

  9     for n=2:N 

 10         Q = Aj; 

 11         Aj=kron(Q,eye(2)) + kron(eye(2^(n-1)),Q1); 

 12     end 

 13 end 

 14 end 
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6.1.3 GENTor.m 

  1 function [ T_Aj ] = GENTor( X, varargin ) 

  2 %GENTor Generate a Torus Function 

  3 %   Given a set of dimensions, generates a Torus graph. 

  4 %   Does not work for any dimensions lower than 2. 

  5 %-------------------------- 

  6 % Define the adjacency matrix of the n-D Torus. 

  7 %   Input length of each dimension separated by commas. 

  8 %   Example: GENTor(4,4,2) 

  9 % 

 10 %   Additional options - Add specific tags after list of dimensions 

 11 %       'noloop' - Creates a mesh matrix with no wraparound 

 12 %       'sglloop' - Creates a torus matrix with only a maximum of single 

 13 %            link during wraparound. 

 14 %       'dblloop' - Default. Creates Torus matrix with maximum of double 

 15 %            loop. Only applicable for any dimension of length 2. 

 16 %   Example 

 17 %       GENTor(4,4,2,'noloop') - 4x4x2 Mesh with no looping 

 18 % 

 19 % 

 20 %   Written by Edgar Pan 

 21 %   Version 2.0.0 

 22 %   Created 2019-05-10 

 23     %% 

 24     %Parses the inputs 

 25     if any([cellfun('isclass',varargin,'cell') 

cellfun('isclass',varargin,'struct')]) 

 26         error(' GENTor only supports numeric/character arrays ') 

 27     end 

 28     N = nargin; %Full n arg in 

 29     %Finds where options arguments, if any, begins 

 30     optIdx = cellfun(@ischar,varargin); 

 31     if any(optIdx) 

 32         optStart = find(optIdx,1); 

 33         vars = varargin(1:optStart-1); 

 34         opts = varargin(optStart:N-1); 

 35         n = optStart; 

 36         %Number of numeric entries, including X. The index shift cancels. 

 37     else 

 38         vars = varargin; 

 39         opts = []; 
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 40         n = N; 

 41     end 

 42     %Catches input errors, any vectors/matrices. 

 43     if any([length(X)>1 cellfun(@(x) length(x)>1,vars)]) 

 44         error('GENTor: Please do not enter any matrices. Separate dimensions 

with commas.') 

 45     end 

 46     %Catches input errors, anything with 0-length dimension 

 47     if (X < 1) || any(cellfun(@(x) x<1,vars)) 

 48         error ('GENTor: Please input dimensions for an existing graph.'); 

 49     end 

 50     %% 

 51     %Parses the options 

 52     optLoop = -1; 

 53     if ~isempty(opts) 

 54         if any(cellfun(@(x) strcmpi(x,'noloop'),opts)) 

 55             optLoop = 0; 

 56         elseif any(cellfun(@(x) strcmpi(x,'sglloop'),opts)) 

 57             optLoop = 1; 

 58         elseif any(cellfun(@(x) strcmpi(x,'dblloop'),opts)) 

 59             optLoop = 2; 

 60         end 

 61     end 

 62     %% 

 63     %Start Compiling all the numbers in. 

 64     T_Aj = GetTorusBasis(X,optLoop); 

 65     for d = 2:n 

 66         if vars{d-1} > 1 

 67             Y = GetTorusBasis(vars{d-1},optLoop); 

 68 %             T_Aj = kronSum(T_Aj,Y); 

 69    T_Aj = kronSum(Y,T_Aj); %Keeps original numbering 

orientation. 

 70         else 

 71             disp('GENTor: WARNING - Dimension of length 1 detected and 

ignored.') 

 72         end 

 73     end 

 74     %% 

 75     %Internal Functions 

 76     function B = GetTorusBasis(y,optLoop) 

 77         B = zeros(y); 

 78         B(2:y+1:end) = 1; 
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 79         B(y+1:y+1:end) = 1; 

 80         if nargin < 2 

 81             optLoop = 2; 

 82         end 

 83         %Asks whether double looping allowed. 

 84         if optLoop == 0 

 85             %Does nothing 

 86         elseif optLoop == 1 

 87             B(y,1) = 1; 

 88             B(1,y) = 1; 

 89         else 

 90             B(y,1) = B(y,1) + 1; 

 91             B(1,y) = B(1,y) + 1; 

 92         end 

 93 

 94     end 

 95 

 96     function KS = kronSum(A,B) 

 97         if size(A,1) ~= size(A,2) || size(B,1) ~= size(B,2) 

 98             error('GENTor - kronSum: Invalid Input. Must be square matrices') 

 99         end 

100         KS = kron(A,eye(length(B))) + kron(eye(length(A)),B); 

101     end 

102 end 
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6.1.4 GenConnList.m 

  1 function [ NC, Nec, Common ] = GenConnList( M ) 

  2 %GenConnList Creates list of switching connections between topologies. 

  3 %   Author: Edgar Pan (edgar.pan@mail.mcgill.ca) 

  4 %     The program scans through the adjacency matrices of the various 

  5 %     network configurations. The adjacency matrices are listed as a single 

  6 %     3D matrix, with each pages representing a specific configuration. 

  7 %     The program is capable of handling more than two configurations, 

  8 %     however, that is not recommended, since it has not been fully tested 

  9 %     nor explored (i.e. useful output format?) 

 10 % 

 11 %   Input: 

 12 %       M - 'Adjacency Matrices' describing the topologies. 

 13 %    3 Dimensional Array. [Rows, Columns, Topology] 

 14 %     Every layer of array indicates a new topology 

 15 %     Square matrix 

 16 %     Mn: Number of Matrices (minimum 2) 

 17 %  Output: 

 18 %   NC - "Node Connection" (Note: Old term for Delta Link) 

 19 %    1 + Mn columns, ? rows 

 20 %     [SrcNod (Column/Row), Topo1Node, Topo2Node, … 

TopoMnNode] 

 21 %       Nec - "Necessary Connections" 

 22 %           Lists all node connections necessary to fully describe all 

 23 %           topologies 

 24 %       Common - "Common Links" 

 25 %           List of all Common links filtered out due to being irrelevant 

 26 %           to the process. 

 27     %% 

 28     %Basic dimension data 

 29     sizeM = size(M); 

 30 

 31     %% 

 32     %Ensures there are multiple topologies entered. 

 33     if sizeM(3)<2 

 34         NC = 0; 

 35         Nec = []; 

 36         Common = M; 

 37         disp('No changing connection required for a single topology') 

 38         return 

 39     end 
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 40 

 41     %% 

 42     %Common Link Filtering Process 

 43 

 44     Common = all(M,3); 

 45 

 46     %Allocating Switching Link space 

 47     dM = zeros(sizeM); 

 48 

 49     %Filters out all common links from individual layers 

 50     for k = 1:sizeM(3) 

 51         dM(:,:,k) = xor(M(:,:,k),Common); 

 52     end 

 53 

 54     %% 

 55     %Finding maximum radix of every columns 

 56     %By first going through each topologies and finding how many links 

 57     %each columns have. Then comparing every column's value and 

 58     %then picking the highest one of all of them. 

 59     max_radix = max(sum(dM),[],3); 

 60 

 61     %Preallocating NC space 

 62     NC = zeros(sum(max_radix.^sizeM(3)),1+sizeM(3)); 

 63     %row = highest radix to the power of the number of topologies 

 64     %column = number of topologies + 1 to indicate source 

 65 

 66     %The reasoning behind squaring the maximum radix is to have room to 

 67     %place 0's in order to represent Loose/Ghost Links. 

 68 

 69     for j = 1:sizeM(2) 

 70         %% 

 71         %Version 2 (variable topology compatibility) 

 72         %Allocates cell space for the connection data 

 73         xCell = cell(1,sizeM(3)); 

 74 

 75         for k = 1:sizeM(3) 

 76             y = find(dM(:,j,k)); 

 77             xCell{k} = y; 

 78         end 

 79         z = setprodcell(xCell); 

 80 

 81         %% 
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 82         %Compilation process. Puts the returned cross products into a 

 83         %single list. 

 84         sizeZ = size(z); 

 85         z = cat(2,j*ones(sizeZ(1),1),z); %Creates a column for source idx 

 86         shift = sum(max_radix(1:(j-1)).^sizeM(3)); 

 87         NC(1 + shift : sizeZ(1) + shift,:) = z; 

 88     end 

 89 

 90     %% 

 91     %Section for Listing out all Necessary Connections 

 92     dM_flat = any(dM,3); 

 93     [a,b] = find(dM_flat); 

 94     Nec = [a,b]; 

 95     Nec = Nec(a<b,:); 

 96 end 
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6.1.5 setprodcell.m  

(Original program written by Mukhtar Ullah, adapted for our purposes here by Edgar Pan) 

  1 function C = setprodcell(X) 

  2 % SETMATPROD product of multiple columns of a matrix. 

  3 % 

  4 %   This version of the code setprod takes a Cell array directly. 

  5 % 

  6 %   For X = {A, B, C} 

  7 %   C = setprodcell(X) returns the cartesian product of the sets 

  8 %   A,B,C, etc, where A,B,C, are numeric or character arrays. 

  9 % 

 10 %   Example: A = [-1 -3 -5];   B = [10 11];   C = [0 1]; 

 11 % 

 12 %   X = SETPROD(A,B,C) 

 13 %   X = 

 14 % 

 15 %     -5    10     0 

 16 %     -3    10     0 

 17 %     -1    10     0 

 18 %     -5    11     0 

 19 %     -3    11     0 

 20 %     -1    11     0 

 21 %     -5    10     1 

 22 %     -3    10     1 

 23 %     -1    10     1 

 24 %     -5    11     1 

 25 %     -3    11     1 

 26 %     -1    11     1 

 27 % Mukhtar Ullah 

 28 % mukhtar.ullah@informatic.uni-rostock.de 

 29 % September 20, 2004 

 30 % Adapted into Cell version by Edgar Pan 

 31 % edgar.pan@mail.mcgill.ca 

 32 % January 18, 2019 

 33 args = X; 

 34 if any([cellfun('isclass',args,'cell') cellfun('isclass',args,'struct')]) 

 35     error(' SETPROD only supports numeric/character arrays ') 

 36 end 

 37 % n = nargin; 

 38 n = length(args); 



65 

 

 39 [F{1:n}] = ndgrid(args{:}); 

 40 for i=n:-1:1 

 41     G(:,i) = F{i}(:); 

 42 end 

 43 C = unique(G , 'rows'); 
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6.1.6 ChainPairs2.m 

  1 function [ CL, filter_meta ] = ChainPairs2( dL, radix, filters ) 

  2 %ChainPairs v2 Synthesizes list of potential node groups by chaining 

  3 %connection pairs. At present only handles 2 topology systems. 

  4 %   Author: Edgar Pan (edgar.pan@mail.mcgill.ca) 

  5 %   Initially written: 2019-12-18 

  6 %     In essence, this program takes a list of potential link 

  7 %     reconfigurations and "chains" them into the two sides of a crosspoint 

  8 %     switch. It does this by first selecting a "Root" Index, determined by 

  9 %     the source node of a particular reconfiguration pair (dL). 

 10 %     Next, designating the Destination Node for Topology 2 as the "Tail", 

 11 %     it finds a dL pair with the "Head" or Destination Node for Topology 1 

 12 %     that matches the Tail of the previous dL. 

 13 %   Input: 

 14 %       dL - Changes in Links list. 

 15 %           Formerly "Node Connection", 

 16 %           most likely generated by GenConnList.m 

 17 %               Format: [SourceNode Topology1Node Topology2Node ...] 

 18 %       radix - determines the number of ports on a one side of a switch. 

 19 %       filters - Manually selects which filters to use. Default: All 

 20 %           active. 

 21 %               Format: [Stepback Overlap/Looping Equivalence] 

 22 %               crosspoint switch. 

 23 %               -Stepback - Prevents process from scanning through prior 

 24 %               columns/rows. 

 25 %               -Overlap/Looping - Scans for contributed Link redundancies 

 26 %               -Equivalence - Scans for GPs that are equivalent 

 27 %   Output: 

 28 %       CL - "Chain List" 

 29 %           Cell Array 

 30 %           {1} = Completed GroupPair List 

 31 %           {2} = Minimum Chain List 

 32 %           {3} = Split Chain-Composite List 

 33 %               {1} Chains that are perfect fit for given Radix size. 

 34 %               {2} Composite Blocks composed of Minimum Chain List 

 35 %           {4} = Incomplete Chain List 

 36 %       filter_meta - Metadata generated by the process filters. 

 37 %           {1} = Record Metadata. If no variable records the metadata in 

 38 %           output, then metadata will not even be processed. Will be 

 39 %           equals to [1] if filter_meta exists as an output variable. 

 40 %           {2} = Metadata for Stepback Filter 
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 41 %               Rows correspond to the completed Root_Index node. 

 42 %               Column 1 corresponds to the number of completed chains 

 43 %                   compiled so far. 

 44 %               Column 2 corresponds to a list of Delta Links at end of 

 45 %                   corresponding Root_Index. 

 46 %           {3} = Metadata for Equivalence Filter 

 47 %               {1} list - full unfiltered list 

 48 %               {2} ia - Index kept from original list. 

 49 %                       i.e. filtered_list = list(:,:,ia). 

 50 %               {3} ic - Index to recreate original list. 

 51 %                       i.e. list = filtered_list(:,:,ic) 

 52 %               {4} filtered_index - List of indices that has been 

removed. 

 53     %%Initialization 

 54     %Current iteration of acceptable Delta Links 

 55     dL_List = dL; 

 56 

 57     %Number of vertices in the graph (Order). Used to set Loop Limit 

 58     Graph_Order = max(max(dL)); 

 59 

 60     %Initializes Connection Chain as empty sets. 

 61     CL = cell(4,1); 

 62 

 63     %%Filters 

 64     %Development constant: How many filters were implemented 

 65     Filters_Constant = 3; 

 66 

 67     %Activation of Composite Group Pair generation (manual activation) 

 68     CompGPActive = true; 

 69 

 70     %initialize the filters' meta data 

 71     if nargout < 2 

 72         filter_meta = {0}; 

 73     else 

 74         filter_meta = {1, cell(Graph_Order,2) ,[]}; 

 75     end 

 76 

 77     if nargin < 3 || length(filters) ~= Filters_Constant 

 78         use_filters = ones(1,Filters_Constant); 

 79         disp('ChainPairs2.m: Default Filter used') 

 80     else 

 81         use_filters = filters; 
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 82     end 

 83 

 84     %% 

 85     %Scans through Node Connection List 

 86     for j = 1:Graph_Order 

 87         %Generate Potential Root List (Starting Points) 

 88         Root_Index = dL_List(:,1)==j; %Creates logic array 

 89         Root_List = dL_List(Root_Index,:); %Which then this scans faster 

 90         Root_Length = size(Root_List(:,1),1); 

 91 

 92         %Cycle through Root List 

 93         for i = 1:Root_Length 

 94             %Creates a template with the Chain's current Progress 

 95             ChainProgress = Root_List(i,:); 

 96             %Feeds the Chain template into the recursive system. 

 97             [CL,filter_meta] = ChainNext2(dL_List,radix,... 

 98                 CL,ChainProgress,... 

 99                 use_filters,filter_meta); 

100         end 

101 

102         %% 

103         %Stepback Filter 

104         if use_filters(1) 

105             %Filter Meta Data 

106             %Saves the removed value in the debug output 

107             if filter_meta{1} 

108                 %Saves length of potential GP list at end of 

109                 %each Root_Index. 

110                 %In other words, "when" the stepback has occurred. 

111                 filter_meta{2}{j,1}=size(CL{1},3); 

112 

113                 %Saves removed value into metadata 

114                 if isempty(filter_meta{2}{j,2}) 

115                     filter_meta{2}{j,2} = dL_List(any(dL_List==j,2),:); 

116                 else 

117                     filter_meta{2}{j,2} = ... 

118                         cat(1, filter_meta{2}{j,2},... 

119                         dL_List(any(dL_List==j,2),:)); 

120                 end 

121             end 

122 

123             dL_List = dL_List(~any(dL_List==j,2),:); 
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124             %Finds every instance of the first column and the first row 

125             %And removes them from the list 

126         end 

127     end 

128 

129     %% 

130     %Reorganize CL{1} 

131     CmpltChains = CL{1}; 

132 

133 

134     %% 

135     %Create Composite GroupPairs 

136     if CompGPActive && ~isempty(CL{2}) 

137         Comp = CreateCompGP(CL{2},radix,filters); 

138         CompMat = cell2mat(reshape(Comp,1,1,[])); 

139         FullList = cat(3,CmpltChains,CompMat); 

140     else 

141         FullList = CmpltChains; 

142     end 

143 

144     %% 

145     postprocequivfil = filters(3); 

146 

147     %Post-Processing Equivalence Filter 

148     if postprocequivfil 

149         %Finds the amount of possible group pairs and creates a cell array 

for 

150         %it. Also creates a reordered version of the list. 

151         list = FullList; 

152         sizeList = size(list,3); 

153 

154         %Limit of when Chains end and Composite Groups start 

155         sizeSplit = size(CmpltChains,3); 

156         %Method: Take every group pair pages, line it up into a single row. 

157         %Then reorder it from smallest to largest. Then find any duplicates 

158         %with unique(). 

159         sortedList = sort(reshape(list,[],sizeList))'; 

160             %In this case, lists out all Group Pairs in an array of 

161             %columns. Then transposes the list so that each ROWS represents 

162             %a group pair 

163         [~, ia, ic] = unique(sortedList,'rows','stable'); 

164 
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165         %insert filter metadata 

166         filter_meta{3}{1} = list; 

167         filter_meta{3}{2} = ia; 

168         filter_meta{3}{3} = ic; 

169         filter_meta{3}{4} = setdiff(1:sizeList,ia); %What was removed 

170         %Uses the index for unique values returned from uniqueness scan 

171         %To select which group pairs to keep. 

172         FullList = list(:,:,ia); 

173         CmpltChains = list(:,:,ia(ia<=sizeSplit)); 

174         CompMat = list(:,:,ia(ia>sizeSplit)); 

175     end 

176     CL{1} = FullList; 

177     CL{3} = {}; 

178     CL{3}{1} = CmpltChains; 

179     CL{3}{2} = CompMat; 

180 end 
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6.1.7 ChainNext2.m 

  1 function [ CL, filter_meta_update ] = ChainNext2( dL, radix, List, Chain, ... 

  2     filter, filter_meta ) 

  3 %ChainPairs Synthesizes list of potential node groups by chaining 

  4 %connection pairs. At present only handles 2 topology systems. 

  5 %   Author: Edgar Pan (edgar.pan@mail.mcgill.ca) 

  6 %   Input: 

  7 %       NC - "Node Connection" list, most likely generated by GenConnList.m 

  8 %               Format: [SourceNode Topology1Node Topology2Node ...] 

  9 %       radix - determines the number of ports on a one side of a 

 10 %               crosspoint switch. 

 11 %       List - The Completed Chain List that's been fed in. 

 12 %       Chain - The Node Group Template Fed in. i.e. Current Chain. 

 13 %       filter - Settings input for filter activation 

 14 %       filter_meta - Metadata for filters. 

 15 %   Output: 

 16 %       CL - "Chains List" A returned list of the node groups 

 17 

 18     %Default Safety Response 

 19     CL = List; 

 20     filter_meta_update=filter_meta; 

 21 

 22     %Check Tail end of current Chain 

 23     Tail = Chain(end); 

 24     Head = Chain(1,2); 

 25 

 26     %Generate Potential Links List 

 27     Link_Index = dL(:,2)==Tail; %Creates logic array 

 28     Link_List = dL(Link_Index,:); %Which then this scans faster 

 29     Link_Length = size(Link_List(:,1),1); 

 30 

 31     %The amount of topologies system will switch between. Should be 2. 

 32     Modes = size(Chain,2)-1; 

 33 

 34     %Preallocation 

 35     %Allocating Reference to store all Mismatched Combinations 

 36     Mismatch = []; 

 37 

 38     %Variable for checking any occurrence of a Complete List 

 39     Disable_Mismatch = false; 

 40 
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 41     %List Data 

 42     sizeList = size(List{1}); 

 43 

 44     %Filter Settings 

 45     OverlapFil = filter(2); 

 46     EquivFil = filter(3); 

 47 

 48     %Catching Minimum Chains, puts them in a cell array for variable sizes 

 49     %Put in this early stage such that it will not account for "Completed" 

 50     %Chains 

 51     if Head == Tail 

 52         %Number of Minimum GP cases found 

 53         minCases = length(CL{2}); 

 54         CL{2}{minCases+1} = Chain; 

 55     end 

 56 

 57     %Cycle through Link List 

 58     for i = 1:Link_Length 

 59 

 60         skip = 0; 

 61 

 62         %Checks for Overlap Filter 

 63         if OverlapFil 

 64             for m = 2:Modes+1 

 65                 if any(ismember(Chain(:,[1 m]),Link_List(i,[1 m]),'rows')) 

 66                     %Assumption: A specific link will only happen in 

 67                     %specific topology mode. 

 68                     skip = 1; 

 69                     break; 

 70                 elseif any(ismember(Chain(:,[1 m]),... 

 71                         fliplr(Link_List(i,[1 m])),'rows')) 

 72                     %Checks also for cases where a backwards link also 

 73                     %overlaps 

 74                     skip = 1; 

 75                     break; 

 76                 end 

 77             end 

 78             if skip 

 79                 continue; 

 80             end 

 81         end 

 82 
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 83 

 84         %Next Link Selected and Inserted 

 85         %Updates template with the Chain's current Progress 

 86         ChainProgress = cat(1,Chain,Link_List(i,:)); 

 87         %Checks the Chain Length 

 88         Chain_Length = size(ChainProgress,1); 

 89 

 90         %Finds the minimum radix for the minimum Chain cases 

 91         minChainLength = 0; 

 92         if ~isempty(CL{2}) 

 93             minChainLength = min(cellfun('size',CL{2},1)); 

 94         end 

 95 

 96         if EquivFil && Chain_Length > radix - minChainLength && 

~isempty(List{1}) 

 97             %In-process equivalence filter framework (doesn't do anything) 

 98 

 99             %Halfway through the chain, if we notice that it's basically a 

100             %pre-existing chain, but backwards, skip. 

101 

102             %The process is relatively straightforward. Just check the 

103             %first two columns (how to handle larger cases then?). 

104             %Checking only for each Links (i.e. 1 3; 2 4). Then just check 

105             %whether similar patterns occur. 

106             %The real challenge is doing that for all entries in the list 

107             %without needing to iterate through it every time. 

108 

109             %That was the intent, at least. It had not worked as intended. 

110             %As such, the "continue" line is never reached, but to avoid 

111             %bugs, this section was left in. 

112 

113             if length(sizeList)<3 || sizeList(3) < 2 

114                 equiv = [ismember(ChainProgress(:,[1 2]),... 

115                     List{1}(:,[1 2]),'rows'); 

116                     ismember(Tail,List{1}(:,2))]; 

117             else 

118                 %currently brute force solution 

119                 equiv = zeros(2,sizeList(3)); 

120                 for eqIdx = 1:sizeList(3) 

121 %                     ChainProgress(:,[1 2]) 

122 %                     List{1}(:,[1 2],eqIdx) 

123 %                     equiv(:,eqIdx) = [ismember(ChainProgress(:,[1 2]),... 



74 

 

124 %                         List{1}(:,[1 2],eqIdx),'rows'); 

125 %                         ismember(Tail,List{1}(:,2))]; 

126                 end 

127             end 

128 

129             if any(all(equiv)) 

130                 continue 

131             end 

132 

133         end 

134 

135         if Chain_Length < radix 

136             %Feeds the Chain template into the recursive system. 

137             [CL,filter_meta] = 

ChainNext2(dL,radix,CL,ChainProgress,filter,filter_meta); 

138         else 

139             %If we've reached or surpassed the limit of the radix 

140             if Link_List(i,3) == ChainProgress(1,2) 

141                 %Case of Complete List, where the last Tail and the first 

142                 %Head matches up 

143                 CL{1} = cat(3,CL{1},ChainProgress); 

144 

145                 %Disables mismatched case because we know matched exists. 

146                 Disable_Mismatch = true; 

147                 Mismatch = []; 

148             elseif ~Disable_Mismatch 

149                 Mismatch = cat(3,Mismatch,ChainProgress); 

150             end 

151         end 

152     end 

153 end 
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6.1.8 CreatCompGP.m 

  1 function [CLComp] = CreateCompGP(minChains,radix,filters) 

  2 %CreateCompGP Compiles Minimum Chains into composite GP blocks 

  3 %   Author: Edgar Pan (edgar.pan@mail.mcgill.ca) 

  4 %   Basically, this function checks every combination of minimal GPs and 

  5 %   records every resulting composite GP that fills up a switch of the 

  6 %   indicated radix. 

  7 %   Input: 

  8 %       minChains - Full list of minimal chains. Essentially GPs that were 

  9 %       complete before reaching the desired radix. 

 10 %       radix - The radix we want these GPs on. 

 11 %       filters - Default ON. Settings for filter. Function only uses the 

 12 %       Overlap filter which checks for any instance of redundant links in 

 13 %       the generated compGP. 

 14 %   Output: 

 15 %       CLComp - Chain List Composite 

 16 %           The compiled list of Composite Group Pairs. 

 17 % 

 18 %   ASSUMPTION: Minimal Chains creates can also compose higher order 

 19 %   minimum chains as well, hence only deal with Minimal (lowest radix). 

 20 %   Only keeps primes. 

 21 

 22     %Filter Settings 

 23     if nargin < 3 

 24         OverlapFil = true; 

 25     else 

 26         OverlapFil = filters(2); 

 27     end 

 28 

 29     %Finds the list of sizes 

 30     GPlengths = cellfun('size',minChains,1); 

 31 

 32     %Finds the types of lengths in list 

 33     LengthTypes = unique(GPlengths); 

 34 

 35     keepTypes = true(1,length(LengthTypes)); 

 36     %Keeping only Prime Radices 

 37     for L = 1:length(LengthTypes)-1 

 38         if ~keepTypes(L) 

 39             continue; 

 40         end 
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 41         for J = L+1:length(LengthTypes) 

 42             if keepTypes(J) 

 43                 f = factor(LengthTypes(J)); 

 44                 if ismember(LengthTypes(L),f) 

 45                     keepTypes(J) = false; 

 46                 end 

 47             end 

 48         end 

 49         if ~any(keepTypes(L+1:end)) 

 50             break; 

 51         end 

 52 

 53         nextIdx = find(keepTypes(L+1:end),1) + L; 

 54         if ~isempty(nextIdx) 

 55             if nextIdx > length(LengthTypes)-1 

 56                 break; 

 57             end 

 58             L = nextIdx - 2; 

 59         end 

 60     end 

 61 

 62     %Acquires Reduced List 

 63     KeepIdx = ismember(GPlengths,LengthTypes(keepTypes)); 

 64 

 65     ReducedList = minChains(KeepIdx); 

 66     RedGPLength = GPlengths(KeepIdx); 

 67 

 68     %Gonna brute force the solution 

 69     maxIdx = length(ReducedList); 

 70 

 71     %Creates an array of binary numbers counting from 1 to however many 

 72     %minimum Chains combos there are, representing the use of a particular 

 73     %minChain on a switch block (HOB in context of creation) iteration. 

 74     a = mat2cell([false(1,maxIdx);true(1,maxIdx)],2,ones(1,maxIdx)); 

 75     iteration = setprodcell(a); 

 76 

 77     ptnlIte = size(iteration,1); %List of potential iterations 

 78     keepIte = false(ptnlIte,1); %Pre-allocation of valid iteration space 

 79 

 80     for i = 1:ptnlIte 

 81         ite = iteration(i,:); 

 82         iteLength = sum(RedGPLength(ite)); 
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 83         if iteLength == radix 

 84             keepIte(i) = true; 

 85         else 

 86             keepIte(i) = false; 

 87         end 

 88     end 

 89 

 90     keptIte = iteration(keepIte,:); 

 91     nkeptIte = length(keptIte); 

 92 

 93     %Preallocating 

 94     unfiltCLComp = cell(1,nkeptIte); 

 95     for c = 1:nkeptIte 

 96         CellBlocks = ReducedList(keptIte(c,:)); 

 97         CellBlocks = reshape(CellBlocks,[],1); 

 98         unfiltCLComp{c} = cell2mat(CellBlocks); 

 99     end 

100 

101     if OverlapFil 

102         %number of unfiltered Composite Blocks 

103         nComp = length(unfiltCLComp); 

104 

105         %number of topological configuration 

106         modes = size(minChains{1},2); 

107         overlapIdx = false(1,nComp); 

108         for f = 1:nComp 

109             for m = 2:modes 

110                 ovlpcheck = unfiltCLComp{f}(:,[1 m]); 

111 

112                 %Finds indices where for proper IDing of Links, flip the 

113                 %node designations 

114                 flipIdx = ovlpcheck(:,1)>ovlpcheck(:,2); 

115                 ovlpcheck(flipIdx,:) = fliplr(ovlpcheck(flipIdx,:)); 

116 

117                 ovlptest = unique(ovlpcheck,'rows'); 

118                 if size(ovlptest,1) ~= radix 

119                     overlapIdx(f) = true; 

120                 end 

121             end 

122         end 

123         CLComp = unfiltCLComp(~overlapIdx); 

124     else 
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125         CLComp = unfiltCLComp; 

126     end 

127 end 

 

Published with MATLAB® R2019a 

 

  

https://www.mathworks.com/products/matlab/


79 

 

6.1.9 SelectionProcess.m 

  1 function [FinalSelection, SelectedIndex] = SelectionProcess(CL, Nec, 

ForceTol) 

  2 %SelectionProcess Selects Node Groups based on their similarity 

  3 %   INPUT 

  4 %       CL - Chain Lists from which data will be extracted. 

  5 %       Nec - List of Necessary Connections 

  6 %       ForceTol - OPTIONAL A setting to force a certain tolerance setting. 

  7 %       Faster, but may not give complete solution. 

  8 %   OUTPUT 

  9 %       FinalSelection - List of the GPs selected 

 10 %       SelectedIndex - Index of the selected GPs in the CL list. 

 11 

 12     if nargin < 3 

 13         ForceTol = []; 

 14     end 

 15 

 16     %Get Group Relations 

 17     [GR, RelData] = GetGroupRelation(CL{1}); 

 18 

 19     %Get Potential Tolerance Levels 

 20     tolLvls = unique([0;GR{1}(:)]); 

 21 

 22     %Start Acquiring Indices Selection based on tolerance 

 23     if ~isempty(ForceTol) 

 24         if ForceTol < 0 

 25             %lower cap 

 26             tolerance = 0; 

 27         elseif ForceTol > length(tolLvls) - 2 

 28             %upper cap 

 29             tolerance = length(tolLvls) - 2; 

 30             % -2 to prevent self-connection 

 31         else 

 32             tolerance = ForceTol; 

 33         end 

 34 

 35         SelectedIndex = GroupRelationSelection(GR{1},tolerance); 

 36         FinalSelection = CL{1}(:,:,SelectedIndex); 

 37         if ~isempty(FindMissing(Nec,FinalSelection)) 

 38             disp('SelectionProcess.m Warning: ') 

 39             disp('Forced Tolerance Selection yielded incomplete solution.') 
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 40         end 

 41     else 

 42         for tolerance = 0:length(tolLvls)-2 

 43             SelectedIndex = GroupRelationSelection(GR{1},tolerance); 

 44             Selected = CL{1}(:,:,SelectedIndex); 

 45 

 46             stillMissing = FindMissing(Nec,Selected); 

 47 

 48             if isempty(stillMissing) 

 49                 break; 

 50             elseif tolerance == 0 

 51                 disp('SelectionProcess.m: Zero tolerance failed.') 

 52             end 

 53         end 

 54 

 55         if ~isempty(stillMissing) 

 56             %Extracting Link Data 

 57             Links = RelData{1,1}; 

 58             RelLength = length(GR); 

 59             for g = 2:RelLength 

 60                 Links(:,:,g) = RelData{g,g}; 

 61             end 

 62 

 63             while ~isempty(stillMissing) 

 64                 %Preallocate contribution count memory, 

 65                 %clear out NewIndex selection in case of new iteration. 

 66                 contribution = zeros(RelLength,1); 

 67                 NewIndex = []; 

 68 

 69                 %Scans through for number of potential link contributions 

 70                 %in each GroupPairs. 

 71                 for c = 1:RelLength 

 72                     intersection = 

intersect(stillMissing,Links(:,:,c),'rows'); 

 73                     contribution(c) = size(intersection,1); 

 74                     if contribution(c) == size(stillMissing,1) 

 75                         %If a GroupPair has all links missing, just pick 

 76                         %this quick. 

 77                         NewIndex = c; 

 78                         break; 

 79                     end 

 80                 end 
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 81                 if isempty(NewIndex) 

 82                     %If no single GroupPair has all missing links, then 

 83                     %pick the one that contributes the most, then ready for 

 84                     %new iteration. 

 85                     NewIndex = find(contribution == max(contribution)); 

 86                 end 

 87                 NewSelectedIndex = [SelectedIndex NewIndex]; 

 88 

 89                 %Updates 

 90                 Selected = CL{1}(:,:,NewSelectedIndex); 

 91                 stillMissing = FindMissing(Nec,Selected); 

 92             end 

 93             SelectedIndex = NewSelectedIndex; 

 94         end 

 95         FinalSelection = Selected; 

 96     end 

 97 

 98 

 99 end 
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6.1.10 GetGroupRelation.m 

  1 function [ Count, Data ] = GetGroupRelation( NodeGroups ) 

  2 %GraphNodeGroup Takes a list of NodeGroups and Graph their relation to each 

  3 %other 

  4 %   Simply takes of list of Node Group Pairs (probably generated by 

  5 %   ChainPairs.m) and creates 2 relations matrices. 

  6 %   Input 

  7 %       NodeGroups - List of Node Group Pairs 

  8 %   Output 

  9 %       Count - Cell containing 

 10 %           {1} - the intersection matrix (how alike two groups pairs are) 

 11 %           {2} - the difference matrix (how different two group pairs are) 

 12 %       Data - Cell containing 

 13 %           {1} - Cell matrix containing the actual intersecting links 

 14 %           {2} - Cell matrix containing the actual differing links 

 15     %% 

 16     %Initialization 
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 17     sizeNG = [size(NodeGroups,1), size(NodeGroups,2), size(NodeGroups,3)]; 

 18     LinkCount = sizeNG(1)*(sizeNG(2)-1); 

 19     NGCount = sizeNG(3); 

 20 

 21     %Preallocates Link Data Space 

 22     Links = zeros(LinkCount, 2, NGCount); 

 23 

 24     %Preallocates difference and intersection cell space 

 25     Diff = cell(NGCount); 

 26     Intersection = cell(NGCount); 

 27 

 28     %% 

 29     %Extract Link Data from Node Groups 

 30     for g = 1:NGCount 

 31         Links(:,:,g) = GetGroupLinks(NodeGroups(:,:,g)); 

 32     end 

 33 

 34     %% 

 35     %Create the Difference and Intersection Table 

 36     for i = 1:NGCount 

 37         for j = i:NGCount 

 38             %Only compares upper triangle of matrix to save computation 

 39             %time 

 40             intersection = ... 

 41                 intersect(Links(:,:,i),Links(:,:,j),'rows'); 

 42             diff = ... 

 43                 setdiff(Links(:,:,i),Links(:,:,j),'rows'); 

 44 

 45             if size(diff,1) + size(intersection,1) ~= LinkCount 

 46                 disp('GetGroupRelation.m: Link Count Mismatch') 

 47                 disp([i j]) 

 48                 disp(size(diff,1) + size(intersection,1)) 

 49             end 

 50 

 51             if i == j 

 52                 Intersection{i,i} = Links(:,:,i); 

 53             else 

 54                 Intersection{i,j} = intersection; 

 55                 Intersection{j,i} = intersection; 

 56                 Diff{i,j} = diff; 

 57                 Diff{j,i} = diff; 

 58             end 
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 59 

 60         end 

 61     end 

 62 

 63     IntersectCount = cellfun('size',Intersection,1); 

 64     DiffCount = cellfun('size',Diff,1); 

 65 

 66     %% 

 67     %Output compilation 

 68     Count = cell(2,1); 

 69     Count{1} = IntersectCount; 

 70     Count{2} = DiffCount; 

 71 

 72     Data = cell(2,1); 

 73     Data{1} = Intersection; 

 74     Data{2} = Diff; 

 75 end 
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6.1.11 GroupRelationSelection.m 

  1 function [ NodeGroupList, gGraph ] = GroupRelationSelection( GNGCount, 

tolerance ) 

  2 %GroupRelationSelection Selects Node Groups based on their relationship 

  3 %   INPUT 

  4 %   GNGCount - Matrix of similarity relationships between NodeGroups in a 

  5 %   NodeGroupList. 

  6 %   tolerance - Tolerance level. 0 for no similarity. 1 for next minimum 

  7 %   similarity. 

  8 %   OUTPUT 

  9 %   NodeGroupList - Output of the index for the Node Groups 

 10 %   gGraph - Similarity graph as per the tolerance value. 

 11 

 12     %Rather than having the user manually entering the exact similarity 

 13     %values that are tolerated, system finds the key tolerance values and 

 14     %user picks "first tolerance values" or so on. 

 15     tolLvls = unique([0;GNGCount(:)]); 

 16 

 17     if nargin < 2 || isempty(tolerance) || tolerance < 0 
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 18         tolerance = 0; 

 19     elseif tolerance > length(tolLvls) - 2 

 20         disp('GroupRelationSelection.m Warning: ') 

 21         disp('Tolerance value exceeds levels available in system.') 

 22         tolerance = length(tolLvls) - 2; %-2 to prevent self-connection 

 23     end 

 24 

 25     %First, convert the relationship data to graph format based on the 

 26     %tolerance value. The default state is tolerance 0, meaning that for 

 27     %ANY common links between the Node Groups, there is a link. 

 28     gGraph = graph(GNGCount>tolLvls(tolerance+1)); 

 29 

 30     %Identifies isolated components (subgroup of nodes) in graph 

 31     [bins,binsizes] = conncomp(gGraph,'OutputForm','cell'); 

 32     subList = cell(1,length(bins)); 

 33 

 34     for i=1:length(bins) 

 35         %Extracts subgraph 

 36         subgGraph = subgraph(gGraph,bins{i}); 

 37         gdist = distances(subgGraph); 

 38 

 39 

 40         %List of Node Groups to use. Logic Array format. 

 41         shortlist = false(1, length(gdist)); 

 42         priorlist = shortlist; %stores prior shortlist state before any 

changes 

 43         %Selection of Initial Node Group 

 44         potStartIdxList = find( 

sum(rem(gdist,2)==0)==max(sum(rem(gdist,2)==0)) ); 

 45 %         potStartIdxList = find( 

sum(rem(gdist,2)==0)==min(sum(rem(gdist,2)==0)) ); 

 46 

 47         startIndex = potStartIdxList(ceil(rand*length(potStartIdxList))); 

 48         %of the possible options, randomly selects one. 

 49 

 50         shortlist(startIndex) = 1; 

 51         unchanged = isequal(shortlist, priorlist); 

 52         while ~unchanged 

 53             priorlist = shortlist; 

 54             %tdist: test gdist that will get further and further reduced 

 55             %Resets the reduced gdist matrix 

 56             tdist = -ones(length(gdist)); 
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 57             %Creates list of potential Next Indices 

 58                 %The rem(gdist([shortlist,:),2)==0) part creates a matrix 

 59                 %where every row represents one of the prospective indices. 

We 

 60                 %find every index that is a multiple of 2 steps away. 

 61                 %The all is an "and" for every rows. the &~prospective 

removes 

 62                 %past indices from the potential Index list. 

 63             ptnlIdx = rem(gdist(shortlist,:),2)==0; 

 64 

 65             if size(ptnlIdx,1)>1 

 66                 ptnlIdx = all(ptnlIdx) & ~shortlist; 

 67             else 

 68                 ptnlIdx = ptnlIdx & ~shortlist; 

 69             end 

 70 

 71             %Creates a reduced gdist matrix while maintaining size (and 

index) 

 72             tdist(ptnlIdx,:) = gdist(ptnlIdx,:); 

 73             tdist(:,ptnlIdx) = gdist(:,ptnlIdx); 

 74             %Selection of Next Node Group 

 75             if any(ptnlIdx) && max(sum(rem(tdist,2)==0))>0 

 76 %             if any(ptnlIdx) && min(sum(rem(tdist,2)==0))>0 

 77                 potNextIdx=ptnlIdx; 

 78                 potNextIdx(ptnlIdx) = 

sum(rem(tdist(ptnlIdx,ptnlIdx),2)==0)==... 

 79                     max(sum(rem(tdist(ptnlIdx,ptnlIdx),2)==0)); 

 80                 potNextIdxList = find(potNextIdx & ptnlIdx); 

 81                 if ~isempty(potNextIdxList) 

 82                     nextIndex = 

potNextIdxList(ceil(rand*length(potNextIdxList))); 

 83                     %Once selected, modifies the shortlist 

 84                     shortlist(nextIndex) = 1; 

 85                 end 

 86             end 

 87             unchanged = isequal(shortlist, priorlist); 

 88         end 

 89         subList{i} = find(shortlist) + sum(binsizes(1:i-1)); 

 90     end 

 91     %Finalizes the shortlist as output 

 92     NodeGroupList = cell2mat(subList); 

 93 end 



86 

 

 

Published with MATLAB® R2019a 

 

6.1.12 FindMissing.m 

  1 function [ Missing ] = FindMissing( Nec, SelectedGroups ) 

  2 %FindMissing Finds any Links not provided by the so-far selected Groups. 

  3 %   Author: Edgar Pan, McGill University. edgar.pan@mail.mcgill.ca 

  4 

  5     %% 

  6     %Early catch for Empty SelectedGroup 

  7     if isempty(SelectedGroups) | ~any(SelectedGroups) 

  8         Missing = Nec; 

  9         return; 

 10     end 

 11 

 12     %% 

 13     %Extracts essential data from Groups 

 14     Links = GetGroupLinks(SelectedGroups); 

 15 

 16     %% 

 17     %The actual list comparison 

 18     Missing = setdiff(Nec,Links,'rows'); 

 19 

 20     if isempty(Missing) 

 21         Missing = []; %turns any empty row matrix into simple empty value. 

 22     end 

 23 

 24 end 
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6.1.13 GetGroupLinks.m 

  1 function [ Links ] = GetGroupLinks( GP ) 

  2 %GetGroupLinks Extracts the information on what Links are provided by a set 

  3 %of Group Pairs 

  4 %   Output 

  5 %       Links - List of All Links provided by the Group Pairs inputed 

  6 %   Input 

  7 %       GP - Group Pairs 

  8     %% 

  9     %Extracts essential data from Groups 

 10     [radix, topoLength, HOBs] = size(GP); 

 11 

 12     List = permute(GP,[1 3 2]); 

 13     List = reshape(List,[],topoLength,1); 

 14 

 15     Links = []; 

 16     for i = 2:topoLength 

 17         %Creates a list of all links established by kept GPs 

 18         Links = cat(1,Links,List(:,[1 i])); 

 19     end 

 20     %Re-orders links such that smaller number comes first. 

 21     %i.e. [2 1] becomes [1 2] 

 22     Links(Links(:,1)>Links(:,2),:) = fliplr(Links(Links(:,1)>Links(:,2),:)); 

 23 

 24     %% 

 25     %Verifies the values of Links 

 26     uLinks = unique(Links,'rows','stable'); 

 27 

 28     if (size(uLinks,1)~= radix*(topoLength-1)*HOBs) 

 29         disp('GetGroupLinks WARNING: Link Overlap has occurred') 

 30         disp('Recommend verify Group Pair List.') 

 31     end 

 32 end 
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6.1.14 DrawHobSystem.m 

(Extra programs to visualize the results. Minimal Comment because not important to function 

of main program) 

  1 function DrawHobSystem (N, Selected, ActiveTopology, HOBLabel, Common) 

  2     if nargin < 5 

  3         DrawHobNetwork(N,Selected,[]) 

  4     else 

  5         DrawHobNetwork(N,Selected,Common) 

  6     end 

  7     for i = 1:size(Selected,3) 

  8         figure('Position',[270 400 250 250]) 

  9         hold on 

 10         axis([-5 5 -5 5]) 

 11         DrawHobSwitch(Selected(:,:,i),0,ActiveTopology) 

 12         if HOBLabel 

 13             title(['H' num2str(i)]) 

 14         end 

 15         hold off 

 16     end 

 17 end 

 

Published with MATLAB® R2019a 

 

  

https://www.mathworks.com/products/matlab/


89 

 

6.1.15 DrawHobNetwork.m 

(Extra Programs, a few parts based on code provided by Prof Odile Liboiron-Ladouceur) 

  1 function DrawHobNetwork( N, GroupPairs, inCommon, varargin ) 

  2 %DrawHobNetwork Draws in a circle a network system interconnected via HOB 

  3 %switches. 

  4 %   Author: Edgar Pan (edgar.pan@mail.mcgill.ca) 

  5 

  6     %% 

  7     %CONSTANTS 

  8     Radius_Outer = 10; 

  9 

 10     %% 

 11     %Graph Parameters 

 12     params = struct(); 

 13     for var = 1:2:length(varargin)-1 

 14         params.(varargin{var}) = varargin{var+1}; 

 15     end 

 16 

 17     if isempty(inCommon) 

 18         Common = zeros(N); 

 19     else 

 20         Common = inCommon; 

 21     end 

 22 

 23     %% 

 24     %Reads the Numbers of Nodes present and draws out their coordinates 

 25 

 26     V = 2*pi/N*(0:N-1); 

 27     XY_N = Radius_Outer*[cos(V); sin(V)]'; 

 28 

 29     %Analyzes the Group Pairs data. 

 30     sizeGP = [size(GroupPairs,1), size(GroupPairs,2), size(GroupPairs,3)]; 

 31     U_init = 2*pi/sizeGP(3)*(0:sizeGP(3)-1); 

 32 

 33     %Breaks alignment of nodes between Servers and HOBs 

 34     divisor = 1; 

 35     limit = 100; 

 36     U_shift = U_init; 

 37     while any(ismember(U_shift,V)) && divisor < limit 

 38         U_shift = U_init + pi/divisor; 

 39         divisor = divisor + 1; 



90 

 

 40     end 

 41     U = U_shift; 

 42 

 43     XY_H = Radius_Outer*1/2*[cos(U); sin(U)]'; 

 44 

 45     %Unifies the coordinate lists of Servers and HOBs 

 46     W = cat(2,V,U); %list of angles 

 47     XY = cat(1,XY_N,XY_H); %list of XY coordinates 

 48 

 49 %     disp(W) 

 50 

 51     %% 

 52     %Generates the Matrix Data 

 53     A = zeros(N+sizeGP(3)); 

 54         %The first N nodes represents the Server Nodes 

 55         %The additional sizeGP(3) nodes represents the HOB blocks. 

 56     A(1:N,1:N) = eye(N); 

 57         %Marks the Servers as Self Connecting. 

 58         %This is just a notation in order to ID and distinguish Servers 

 59         %from HOBs 

 60     for i = 1:sizeGP(3) 

 61         for r = 1:sizeGP(1) 

 62             A(N+i,GroupPairs(r,1,i)) = A(N+i,GroupPairs(r,1,i)) + 1; 

 63             A(GroupPairs(r,2,i),N+i) = A(GroupPairs(r,2,i),N+i) + 1; 

 64         end 

 65     end 

 66 

 67     %% 

 68     %Parsing the Matrix Data 

 69 

 70     %Self-connecting edges. 

 71     Serv = diag(diag(A)); 

 72     HOBs = diag(~diag(A)); 

 73 

 74     %Stores HOBs only links. Remove the self-connection. 

 75     hA = A - diag(diag(A)); 

 76 

 77     %Stores the Adjacency Matrices for "left" and "right" side of HOB for 

 78     %infrastructure purposes. Not really used. Potential for future 

 79     %expansion. 

 80     HOB_In = tril(hA,-1); 

 81     HOB_Out = triu(hA,1); 
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 82 

 83     %Permanent Connections 

 84     %Creates a larger Adjacency matrix and inserts the Common Links in. 

 85     Perm = zeros(N+sizeGP(3)); 

 86     Perm(1:N,1:N) = Common; 

 87 

 88     %Compile the full Adjacency matrix between the Server nodes and the 

 89     %HOB nodes. 

 90     Full = hA + Perm; 

 91 

 92     %% 

 93     %Splitting the thicker connections into separate matrices 

 94     hiBWs = hA + hA' > 1; 

 95 

 96 

 97     %% 

 98     %Convert to Plot form 

 99     [hiBWX,hiBWY] = makeXY(hiBWs,XY); 

100     [ServX,ServY] = makeXY(Serv,XY); 

101     [HOBsX,HOBsY] = makeXY(HOBs,XY); 

102     [PermX,PermY] = makeXY(tril(Perm,0),XY); %Permanent Connection coord 

103     [HOBIX,HOBIY] = makeXY(HOB_In,XY); 

104     [HOBOX,HOBOY] = makeXY(HOB_Out,XY); 

105 

106 

107     %% 

108     %Initialization of the figures 

109     figure 

110     hold on 

111 

112     %% 

113     %With the Servers and HOBs marked, now it's just a matter of drawing 

114     %the lines representing the connections. 

115     %Note: The earlier line is plotted, the lower in layer it is. 

116 

117     plot(PermX,PermY,'-','Color',[0.8 0.8 0.8],params) 

118 

119     plot(hiBWX,hiBWY,'-','Color',[0.75 0.75 0.75],'Linewidth',2.5,params) 

120 

121 %     plot(HOBIX,HOBIY,'-','Color',[0.9 0.5 0.7],params) 

122 %     plot(HOBOX,HOBOY,'-','Color',[0.4 0.8 0.8],params) 

123     plot(HOBIX,HOBIY,'-','Color',[0.4 0.4 0.4],params) 
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124     plot(HOBOX,HOBOY,'-','Color',[0.4 0.4 0.4],params) 

125 %     plot(HOBIX,HOBIY,'-','Color','K',params) 

126 %     plot(HOBOX,HOBOY,'-','Color','K',params) 

127 

128     %% 

129     %With the Coordinates set, now it's a matter of marking them on a map. 

130     plot(ServX,ServY,'o','Color',[.3 0 0],params) 

131     plot(HOBsX,HOBsY,'s','Color',[.3 0 0],params) 

132 

133 

134     %% 

135     %Labeling 

136     for G = 1:N 

137      text(XY_N(G,1),XY_N(G,2),['  S' 

num2str(G)],'Color','G','FontSize',12,'FontWeight','b') 

138     end 

139     for G = 1:sizeGP(3) 

140      text(XY_H(G,1),XY_H(G,2),['  H' 

num2str(G)],'Color','C','FontSize',10,'FontWeight','b') 

141     end 

142     hold off 

143 

144     %% 

145     function [x,y] = makeXY(A,xy) 

146         if any(A(:)) 

147             [J,I] = find(A'); 

148             m = length(I); 

149             xmat = [xy(I,1) xy(J,1) NaN(m,1)]'; 

150             ymat = [xy(I,2) xy(J,2) NaN(m,1)]'; 

151             x = xmat(:); 

152             y = ymat(:); 

153         else 

154             x = NaN; 

155             y = NaN; 

156         end 

157     end 

158 end 
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6.1.16 DrawHobSwitch 

  1 function DrawHobSwitch( GroupPair, shift, topoSet ) 

  2 %DrawHobSwitch Draws the internal configuration of the individual switches 

  3 %   Author: Edgar Pan (edgar.pan@mail.mcgill.ca) 

  4     %% 

  5     %Initialization 

  6     sizeGP = size(GroupPair); 

  7     radix = sizeGP(1); 

  8 

  9     if nargin < 2 || isempty(shift) 

 10         shift = [0 0]; 

 11         disp(topoSet) 

 12     end 

 13     %% 

 14     %Drawing the Base Rectangle, representing the Physical Case. 

 15     boxCorn = [-1.5 -2.5] + shift; 

 16     boxSize = [3 5]; 

 17     rectangle('Position', [boxCorn boxSize]) 

 18 

 19     %% 

 20     %Setting the Vertical Coordinates for the Ports 

 21     portGap = boxSize(2)/(radix+1); 

 22     portVert = boxCorn(2):portGap:(boxCorn(2)+boxSize(2)-portGap); 

 23     portVert = flip(portVert(2:length(portVert))); 

 24 

 25     portCoordL = [ones(radix,1)*boxCorn(1) portVert']; 

 26     portCoordR = [ones(radix,1)*(boxCorn(1)+boxSize(1)) portVert']; 

 27 

 28     %% 

 29     %Draws out the ports and labels them. 

 30     portSize = [min(portGap/6, 1) min(portGap/2,1)]; 

 31     portLabelL = GroupPair(:,1); 

 32     portLabelR = GroupPair(:,2); 

 33     %Left 

 34     for L = 1:radix 

 35         rectangle('Position', [portCoordL(L,1)-portSize(1) ... 

 36             portCoordL(L,2)-portSize(2)/2 portSize]) 

 37         text(portCoordL(L,1)-portSize(1)-0.2,portCoordL(L,2),... 

 38             ['S' num2str(portLabelL(L))],'Color','G',... 

 39             'FontSize',12,'FontWeight','b','HorizontalAlignment','Right') 

 40     end 
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 41     for R = 1:radix 

 42         rectangle('Position', [portCoordR(R,1) ... 

 43             portCoordR(R,2)-portSize(2)/2 portSize]) 

 44         text(portCoordR(R,1)+0.5,portCoordR(R,2),... 

 45             ['S' num2str(portLabelR(R))],'Color','G',... 

 46             'FontSize',12,'FontWeight','b') 

 47     end 

 48 

 49     %% 

 50     %Goes through the GroupPair list and draws out each links 

 51     RGB = [0 0 0]; 

 52     for j = 2:sizeGP(2) 

 53         available = true(radix,1); 

 54         if j == 2 

 55             RGB = [0 0 1]; %Blue 

 56         elseif j == 3 

 57             RGB = [1 0 0]; %Red 

 58         end 

 59         if topoSet + 1 == j 

 60             style = '-'; 

 61         else 

 62             style = '--'; 

 63         end 

 64         for i = 1:sizeGP(1) 

 65             %Connecting GP(i,1) to GP(i,j) 

 66             Source = portCoordL(i,:); 

 67             DestPotentIndex = (portLabelR == GroupPair(i,j)) & available; 

 68             selectedDest = find(DestPotentIndex,1); 

 69             available(selectedDest) = 0; 

 70             Destination = portCoordR(selectedDest,:); 

 71 

 72             plot([Source(1) Destination(1)],... 

 73                 [Source(2) Destination(2)],style,'Color',RGB) 

 74         end 

 75     end 

 76 end 
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6.2 Tables 

(Tables in next few pages) 
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6.2.1 Top 20 HPL and HPCG (November 2017 Results) – Part 1 Supercomputer Backgrounds 

Topology

Year Mo Name

1 5 Sunway TaihuLight Sunway MPP NRCPC 2016 06 Sunway NRCPC

2 2 Tianhe-2 (MilkyWay-2)TH-IVB-FEP Cluster NUDT 2013 06 TH Express-2

7 3 Trinity Cray XC40 Cray Inc. 2017 11 Cray Aries

4 - Gyoukou ZettaScaler-2.2 HPC sys ExaScaler 2017 11 InfiniBand EDR

8 7 Cori Cray XC40 Cray Inc. 2016 11 Cray Aries

5 9 Titan Cray XK7 Cray Inc. 2012 11 Cray Gemini

3 4 Piz Daint Cray XC50 Cray Inc. 2017 06 Cray Aries

9 6 Oakforest-PACS PRIMERGY CX1640 Fujistu 2016 11 Intel Omni-Path

6 8 Sequoia IBM BlueGene/Q IBM 2013 06 BG/Q

12 - Stampede2 PowerEdge C6320P/C6420 Dell EMC 2017 11 Intel Omni-Path

14 28 Marconi CINECA Cluster, Lenovo SD530Lenovo 2017 11 Intel Omni-Path

13 10 TSUBAME3.0 SGI ICE XA, IP139-SXM2 HPE 2017 11 Intel Omni-Path

10 1 K Computer K Computer Fujistu 2011 11 Tofu Interconnect

16 15? MareNostrum Lenovo SD530 Lenovo 2017 11 Intel Omni-Path

11 12 Mira IBM BlueGene/Q IBM 2012 06 BG/Q

18 - Theta Cray XC40 Cray Inc. 2017 06 Cray Aries

- 18 Stampede PowerEdge C8220 InfiniBand FDR

15 - - Cray XC40 Cray Inc. 2016 11 Cray Aries

19 14 Hazel Hen Cray XC40 Cray Inc. 2015 11 Cray Aries

20 16 Shaheen II Cray XC40 Cray Inc. 2015 06 Cray Aries

17 11 Pleiades SGI ICE X HPE 2016 11 InfiniBand FDR

21 13 Pangea SGI ICE X HPE 2016 06 InfiniBand FDR

22 19 JUQUEEN BlueGene/Q IBM 2013 06 BG/Q

24 20 Cheyenne ICE XA HPE 2016 11 InfiniBand EDR

38 17 SORA-MA Fujitsu PRIMEHPC FX100 Fujistu 2016 06 Tofu Interconnect 2

Latest
H

P
L

H
P

C
G

Name Computer Company
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6.2.2 Top 20 HPL and HPCG (November 2017 Results) – Part 2 Supercomputer Processor and Topologies 

Name Cores Speed

1 5 Sunway TaihuLightSunway SW26010 260 1.45GHz 15,371 10,649,600 125,435.9 11.778

2 2 Tianhe-2 Intel Xeon E5-2692 12 2.20GHz 17,808 3,120,000 54,902.4 17.597

7 3 Trinity Intel Xeon Phi 7250 68 1.40GHz 3,844 979,968 43,902.6 44.800

4 - Gyoukou Xeon D-1571 16 1.30GHz 1,350 19,860,000 28,192.0 1.420

8 7 Cori Intel Xeon Phi 7250 68 1.40GHz 3,939 622,336 27,880.7 44.800

5 9 Titan Opteron 6274 16 2.20GHz 8,209 560,640 27,112.5 48.360

3 4 Piz Daint Xeon E5-2690v3 12 2.60GHz 2,272 361,760 25,326.3 70.009

9 6 Oakforest-PACS Intel Xeon Phi 7250 68 1.40GHz 2,719 556,104 24,913.5 44.800

6 8 Sequoia Power BQC 16 1.60GHz 7,890 1,572,864 20,132.7 12.800

12 - Stampede2 Intel Xeon Phi 7250 68 1.40GHz - 368,928 18,215.8 49.375

14 28 Marconi Intel Xeon Phi 7250 68 1.40GHz - 314,384 15,372.0 48.896

13 10 TSUBAME3.0 Xeon E6-2680v4 14 2.40GHz 792 135,828 12,127.1 89.283

10 1 K Computer SPARC64 VIIIfx 8 2.00GHz 12,660 786,432 11,280.4 14.344

16 15 MareNostrum Xeon Platinum 8160 24 2.10GHz 1,632 153,216 10,296.1 67.200

11 12 Mira Power BQC 16 1.60GHz 3,945 786,432 10,066.3 12.800

18 - Theta Intel Xeon Phi 7230 64 1.30GHz 1,087 231,424 9,627.2 41.600

- 18 Stampede - 522,080 9,000.0 17.239

15 - - Xeon E5-2695v4 18 2.10GHz - 241,920 8,128.5 33.600

19 14 Hazel Hen Xeon E5-2680v3 12 2.50GHz 3,615 185,088 7,403.5 40.000

20 16 Shaheen II Xeon E5-2698v3 16 2.30GHz 2,834 196,608 7,235.2 36.800

17 11 Pleiades Intel Xeon E5-2670/E5-2680v2-4 2.4—2.8 4,407 241,108 7,107.1 29.477

21 13 Pangea Xeon E5-2670/E5-2680v3 8&12 2.6/2.5 4,150 220,800 6,712.3 30.400

22 19 JUQUEEN Power BQC 16 1.60GHz 2,301 458,752 5,872.0 12.800

24 20 Cheyenne Xeon E5-2697v4 18 2.30GHz 1,727 144,900 5,332.3 36.800

38 17 SORA-MA SPARC64 Xifx 32 1.98GHz 1,652 110,160 3,481.1 31.600

Rpeak

(Tflops/s)

Rpeak/Cores

(Gflops/s)H
P

L

H
P

C
G

Name
Processor

Total Cores
Power

(kW)
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6.2.3 Top 20 HPL and HPCG (November 2017 Results) – Part 3 Topology and HPL and HPCG Results 

Rmax Rpeak% R Rpeak%

1 5 Sunway TaihuLight 260 Sunway 10,649,600 40,960.0 125,435.9 93,014.6 74.2% 481 0.4%

2 2 Tianhe-2 12 Fat Tree 3,120,000 260,000.0 54,902.4 33,862.7 61.7% 580 1.1%

7 3 Trinity 68 Dragonfly 979,968 14,411.3 43,902.6 14,137.3 32.2% 546 1.2%

4 - Gyoukou 16 Switched Fabric 19,860,000 1,241,250.0 28,192.0 19,135.8 67.9% - -

8 7 Cori 68 Dragonfly 622,336 9,152.0 27,880.7 14,014.7 50.3% 355 1.3%

5 9 Titan 16 Torus 3D 560,640 35,040.0 27,112.5 17,590.0 64.9% 322 1.2%

3 4 Piz Daint 12 Dragonfly 361,760 30,146.7 25,326.3 19,590.0 77.4% 486 1.9%

9 6 Oakforest-PACS 68 Switched Fabric 556,104 8,178.0 24,913.5 13,554.6 54.4% 385 1.5%

6 8 Sequoia 16 Torus 5D 1,572,864 98,304.0 20,132.7 17,173.2 85.3% 330 1.6%

12 - Stampede2 68 Switched Fabric 368,928 5,425.4 18,215.8 8,317.7 45.7% - -

14 28 Marconi 68 Switched Fabric 314,384 4,623.3 15,372.0 7,471.1 48.6% 69 0.4%

13 10 TSUBAME3.0 14 Switched Fabric 135,828 9,702.0 12,127.1 8,125.0 67.0% 189 1.6%

10 1 K Computer 8 Torus 6D/Mesh 786,432 98,304.0 11,280.4 10,510.0 93.2% 603 5.3%

16 15? MareNostrum 24 Switched Fabric 153,216 6,384.0 10,296.1 6,470.8 62.8% 122 1.2%

11 12 Mira 16 Torus 5D 786,432 49,152.0 10,066.3 8,586.6 85.3% 167 1.7%

18 - Theta 64 Dragonfly 231,424 3,616.0 9,627.2 5,884.6 61.1% - -

- 18 Stampede Switched Fabric 522,080 9,000.0 5,168.0 57.4% 97 1.1%

15 - - 18 Dragonfly 241,920 13,440.0 8,128.5 7,038.9 86.6% - -

19 14 Hazel Hen 12 Dragonfly 185,088 15,424.0 7,403.5 5,640.2 76.2% 138 1.9%

20 16 Shaheen II 16 Dragonfly 196,608 12,288.0 7,235.2 5,537.0 76.5% 114 1.6%

17 11 Pleiades Switched Fabric 241,108 7,107.1 5,951.6 83.7% 175 2.5%

21 13 Pangea 8&12 Switched Fabric 220,800 6,712.3 5,283.1 78.7% 163 2.4%

22 19 JUQUEEN 16 Torus 5D 458,752 28,672.0 5,872.0 5,008.9 85.3% 95 1.6%

24 20 Cheyenne 18 Switched Fabric 144,900 8,050.0 5,332.3 4,788.2 89.8% 87 1.6%

38 17 SORA-MA 32 Torus 6D/Mesh 110,160 3,442.5 3,481.1 3,157.0 90.7% 110 3.2%

HPCG
H

P
L

H
P

C
G

Name
Total

Cores

Cores

/CPU

Topology

Type

CPU

(Nodes)

Rpeak

(Tflops/s)

HPL
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