Risk Prediction of Anterior Cruciate Ligament Injuries: A New Model

Nicolaos Karatzas

Faculty of Medicine, Division of Experimental Medicine McGill University, Montreal June 2019

A thesis submitted to McGill University in partial fulfilment of the requirements of the degree of Master of Science

©Copyright by Nicolaos Karatzas 2019

Table of Contents

1.0 Abstract	3
2.0 Résumé	4
3.0 Acknowledgements	5
4.0 Dedication	7
5.0 Introduction	7
5.1 Anatomy of the ACL	9
5.2 Why is the ACL particularly susceptible to injury?	11
5.3 ACL injury etiology	11
Contact vs non-contact	11
5.3.1 Grades 1,2,3	12
5.4 Diagnosis	12
5.5 Risk Groups for ACL injury	16
5.6 Treatment for ACL tears	17
5.7 Prevention: Predictive methods	17
5.7.1 Motion analysis	17
5.7.2 Biomechanical assessment	19
5.7.3 Imaging methods	21
6.0 Methodology	
6.1 Ethics Approval	22
6.2 Athlete Cohort	23
6.3 Shriners Validation: Motion Analysis	23
6.4 Experimental Validation system: Kinect Analysis	24
6.5 Data Analysis	25
6.5.1 Kinect device Validation	25
6.5.2 Kinect Injury Prediction	25
6.5.3 Data analysis of pre-season assessment	28
7.0 Results	
7.1 Demographics of Shriners participants	
7.2 Results for in-field testing	
7.2.1 Demographics of in-field testing cohort	
7.3 Medical charts	
7.3.1 Results for Comparison with current medical assessment	
7.4 Other data captured	
8 0 Discussion	33
8.1 Kinect device Validation	
8.2 Injury prediction	36
8 3 Pre-nhysical assessment	
9.0 Limitations	
10.0 Conclusion	
11.0 References	
12.0 Supplemental Materials	52

1.0 Abstract

It is estimated that a quarter of a million anterior cruciate ligament (ACL) injuries occur each year in Canada and in the United States. Injuries lead to time away from sports and physical activity, which has obvious health disadvantages and also causes a great deal of personal suffering (Dallinga, Benjaminse, & Lemmink, 2012). The real solution to this problem does not lie in improvement of surgical techniques but in prevention of ACL injuries altogether. The challenge is identifying individuals that are at an increased risk. The current methods to assess ACL injury risk include motion analysis. Motion analysis systems have shown that jumping dynamics can reliably predict the risk of knee injury, but such systems are expensive and are only available in well-equipped research centers (Hewett, Roewer, Ford, & Myer, 2015a). Our goal is to develop a tool that will predict at-risk athletes based solely on a jumping movement they can perform anywhere. Through the integration of modern tools and technologies, we created an injury prevention application that is powerful, easy to use, and can be downloaded on any computer with a 3-D capture camera. This low-cost tracking application will record, identify and analyze an individual's movements and determine their likelihood of injury based on known prognostic jumping angles.

Our data has shown comparable results with the motion analysis system. Therefore, providing a cheaper alternative to assessing athletes risk of an ACL injury. The practicality and ease of use of our system will support an injury prevention program in order to have more people assessed for ACL injury.

2.0 Résumé

Il est estimé qu'un million de déchirures de ligaments croisés antérieurs (LCA) surviennent chaque année au Canada et aux États-Unis. Ces blessures résultent en une diminution de participation des athlètes à leur sport ainsi qu'une diminution des niveaux d'activité physique de manière globale, ce qui présente non-seulement des désavantages sur la santé physique, mais qui cause aussi de la souffrance personnelle (Hewett, Roewer, Ford, Myer, 2015). À l'encontre de plusieurs cadres de pensé actuels, la solution à ce problème se trouve dans la prévention primaire des blessures et non dans l'innovation de nouvelles techniques chirurgicales pour assurer une bonne guérison des blessures. Un des grands enjeux dans la prévention primaire est l'identification des individus à risque élevé. Une des méthodes utilisées pour l'évaluation des blessures du LCA est l'analyse du mouvement, qui est réalisée dans des laboratoires précis à ces fins. L'analyse du mouvement a déjà démontré que la biomécanique observée lors des sauts standardisés peut prédire, de manière fiable, le risque de blessure au genou. Ces systèmes sont malheureusement très dispendieux et sont seulement disponibles dans des centres de recherche de haut calibre (Hewett, Roewer, Ford, & Myer, 2015). Notre but est de développer un outil qui peut prédire le risque de blessure du LCA, ce qui permettrait d'identifier les athlètes qui présentent un risque élevé de blessure du LCA. En intégrant les atouts de la technologie moderne avec celles de la médecine actuelle, nous avons développé une application électronique facile d'accès et d'utilisation, qui peut être téléchargée sur n'importe quel ordinateur à condition qu'il soit équipé d'une caméra avec capture 3-D. Cette application à bas coût peut enregistrer, et analyser les mouvements biomécaniques d'un individu et, à l'aide d'angles pronostiques de sauts, déterminer le risque de blessure. Nos données ont démontré de résultats comparables au système d'analyse du mouvement, fournissant une méthode d'évaluation alternative pour la détermination du risque de blessure

du LCA. Notre système pourra éventuellement informer des programmes de prévention, dans le but de réduire le nombre de blessures du LCA subit chaque année.

3.0 Acknowledgements

I would like to thank my supervisor and mentor Dr. Martineau for his guidance during these last two years. The experiences he provided me with in a clinical setting have shaped the career choices I have made. I would like to thank him for giving me the opportunity to work on this project and for his trust in letting me take the lead on this exciting work. His continuous support and advice not only for this project but in general have helped me grow as a student and person. I would like to thank Dr. Veilleux and Enrique Villalobos for training me with the motion analysis equipment and for trusting me to use their lab. I would like to thank Dr. Veilleux for helping in determine the best methodology for the first part of my thesis. I would like to thank Enrique for the continuous training and the invaluable conversations regarding this project as well as the field of sports medicine in general. I would like to thank all members from the lab for accommodating our after-hours schedules and always being available and willing to discuss roadblocks along the way.

I would like to thank Dr. Bergeron for taking time out of his busy schedule to help with the statistics and data analysis of our entire project. Taking the time to meet with me to discuss the best approach for our statistical analysis along with how to perform the analysis allowed for me to better understand the complexity of our data and how to manage it accordingly.

I would like to thank Dr. Rivaz and Dr. Fevens for teaching me the basics of the coding for this software in order to be able to manipulate it in a way to make it useable for the purpose of this project. I would also like to thank Tom Babouras who made tremendous contributions in fixing certain parts of the code to make it more user friendly and for troubleshooting bugs in the software.

I would like to thank the entire team at the McGill Sports Medicine Clinic, specifically Franca Poliziani and Julie Gardiner for helping us with the data collection and enabling us to use their facilities to test athletes for this project.

I would like to thank Dr. Jason Corban who has now become a friend and mentor to me. His dedication to this project has been incredible, especially his commitment to meeting with me late at night after his busy shifts at the hospital to come and review athlete files. We spent hours discussing the project in a critical way in order to help make it better and more clinically applicable. His view from a clinical standpoint shed a new light on this project and allowed for us to improve it tremendously.

I would like to thank my mom for the immense help with this thesis, from proofreading to discussions about the best approach for various stages of this project. Your guidance shaped the direction I took with this project. I would like to thank my dad for his critical analysis of this project which only helped improve this work. I would also like to thank my siblings and my significant other for their emotional support and continued encouragement during these two years of work.

I would like to thank all the members from my committee: Dr. Weber, Dr. Pearsall & Dr. Rak for all their contributions and for pushing me to strive towards bigger goals with this project. The constructive feedback following my first committee meeting really pushed me to think outside the box and bring the project to greater heights.

I would also like to acknowledge the financial support I received from the department of Experimental Medicine at McGill University along with the Max E. Binz fellowship which enabled me to pursue graduate studies in the department.

4.0 Dedication

I would like to dedicate this thesis to my mom, dad, brother, sister and grandmother for their continuous support and unconditional love. Their emotional support and guidance helped shape this work. You keep pushing me every day to be a better version of myself and I am forever grateful for this.

5.0 Introduction

Six million Canadian adults and five million Canadian youth participate in sports activities (Mullholland, 2008). Given their competitive nature, team sports often involve body contact and aggressive behaviour leading to injuries (Coakley, Donnelly, & Coakley, 2009). Consequently, 18% of Canadians stop participating in sports due to injuries. With an increase in the prevalence of obesity among the youth, encouraging participation in sports without increasing the risk of injury, is of prime importance. Injuries lead to time away from sports and physical activity, which has obvious health disadvantages and also causes a great deal of personal suffering (Dallinga et al., 2012). Furthermore, the economic costs of these sport injuries (i.e. medical consultations, medications, medical devices and productivity loss) have been estimated at 10.1 billion USD/year and are increasing (Rush, 2013), reinforcing the knee; other types of sports injuries. Forty-four percent of sports injuries are injuries to the knee; other types of sports injuries can be seen in Figure 1 (Noyes, Mooar, Matthews, & Butler, 1983). Taking a closer look at sport-specific injuries, high injury rates are observed amongst individuals participating in basketball, soccer, and football as seen in Figure 2 (AmericanSportsData, 2006).

In recognition of this alarming incidence, numerous training programs have been developed have implemented preventive measures and guidelines seeking to reduce the occurrence of these injuries (Campbell et al., 2014). In the face of this unfortunate sport-related epidemic, the Canadian Academy of Sport and Exercise Medicine (CASEM) has proposed the adoption of injury prevention programs, ranging from sport-specific injury prevention programs to those who target injury prevention more globally. Sport-related injuries and their physical, psychological, economical and societal consequences can dissuade people from participating in sports as a whole, which as a plethora of evidence demonstrates, is deleterious to maintaining a healthy lifestyle. Moving forward, it will be of prime importance to enable early identification and correction of possible injuries with the help of injury prevention programs to prevent consequences in sports participation, health and social activities.

Injuries that is on the rise across all sports are anterior cruciate ligament (ACL) injuries. It is estimated that a quarter of a million ACL injuries occur each year in Canada and in the United States (Noyes et al., 1983). Given the nature of the sports, individuals playing either competitive or non-competitive sports in football, basketball, soccer or alpine skiing are at a higher risk of anterior cruciate ligament (ACL) injuries (Gornitzky et al., 2016).

To better understand ACL injuries the following will be described: 1. the anatomy of the ACL; 2. the susceptibility of the ACL to damage; 3. ACL injury aetiology; 4. diagnosis of ACL injury; 5. current treatment and prevention methods, and 6. current challenges and gaps in the diagnosis and prevention

5.1 Anatomy of the ACL

The knee is made up of three primary bones including the femur, the tibia and the patella. The femur, more commonly known as the thighbone, lies superior to the knee while the tibia, referred to as the shinbone, lies inferior to the knee. In front of these two structures lies the patella, which provides protection to the structures beneath it (Purnell, Larson, & Clancy,

2008). The anterior cruciate ligament (ACL) is one of the four main ligaments in the knee that is responsible for maintaining stability in this joint. There are two ligaments on each side of the knee, known as collateral ligaments, which support against sideways motion of the knee. The other two ligaments, one being the ACL and the other being the posterior cruciate ligament (PCL), support against forward and backward movement of the knee, respectively. Anatomically, the PCL and ACL form a cross, which further provides stability when the knee performs rotational movements. The ACL is responsible for preventing the tibia from sliding forward in front of the femur, while the PCL is responsible for preventing the tibia from sliding backward, relative to the femur. In addition, the ACL is also responsible for preventing internal rotation of the tibia. The ACL originates from the lateral condyle of the femur and inserts itself into the anterior side of the tibia. The PCL originates from the medial condyle of the femur and inserts into the posterior part of the tibia. The ACL has been further subdivided into the anteromedial (AM) and posterolateral (PL) bundles. These bundles are different in that they insert into different locations of the anterior tibia. The PL bundle resists tibial rotation while the AM bundle resists against translation of the tibia (Amis & Dawkins, 1991).

The ligaments within the knee are made up of dense type I collagen fibres which form a ropelike structure (Petersen & Tillmann, 1999). The vascularization of these cruciate ligaments gives insight into their ability to heal. A study by Petersen et al. demonstrated that the ACL and PCL both have areas that are not vascularized. Coincidentally, these avascular areas are composed of fibrocartilage. It is believed that these fibrocartilaginous regions have developed due to shearing and compressive stress when the knee is full extended. Consequently, this avascular region of the ligament indicates the poor ability of these ligaments to heal (Giori, Beaupre, & Carter, 1993).

5.2 Why is the ACL particularly susceptible to injury?

The PCL is a much broader and therefore stronger ligament than the ACL (Peterson, 2017). The cross-sectional area of the PCL is 140% greater than that of the ACL (Trilha Junior, Fancello, Mello Roesler, & Ocampo More, 2009). For this reason, PCL injuries make up a smaller percentage of total knee injuries (Naraghi & White, 2014). The location of the ACL causes for it to be fully tensed when the knee is extended and fully relaxed when the knee is flexed. Conversely, the PCL is tightened when the knee is flexed and loosened when the knee is extended. Given the biomechanical nature of these ligaments and the fact that most non-contact knee related injuries occur while the knee is extended (such as when an athlete is kicking a soccer ball), there is an increased incidence of ACL injuries compared to PCL injuries.

Of equal importance are the muscles surrounding and supporting the knee, which include the quadriceps and the hamstring muscle groups. Acting together, these muscles play an important role in decreasing an individual's likelihood of injury. Athletes often make quick changes in direction during sports play, which significantly increases the amount of force placed on the knee, increasing the likelihood of injury. If the surrounding muscles are not strong enough to compensate for the tension within the ligaments, this generates additional strain on the knee joint.

5.3 ACL injury etiology

Contact vs non-contact

Before diving into the etiology of an ACL injury it is important to differentiate between an injury that is a direct cause of some external force and one that is caused by one's own movement. In the literature, this has been distinguished by classifying the injuries as either

contact or non-contact ACL injuries. A direct contact ACL injury, as the name suggests, is an injury that occurs when the knee joint, or region surrounding the knee is "forcefully struck, leading to an injury" (Marshall, 2010). A non-contact/indirect contact (NCIC) ACL injury is defined as "an injury as a result of an athletes own movement which is typically disturbed by a physical or cognitive perturbation during or immediately before the injury event" (Marshall, 2010). Understanding this difference in the mechanism of injury is very important especially since it has been reported that non-contact knee injuries occur in 78% of all sport related knee injuries (Noyes et al., 1983). Thus, implying that the athletes themselves can possibly help prevent this injury.

5.3.1 Grades 1,2,3

Ligament related injuries are considered sprains and they are typically classified as grade 1, 2, or 3. A grade 1 sprain implies that the ligament has been stretched beyond the natural ability but it still provides enough stability to the joint. A grade 2 sprain refers to an ACL that has been stretched and is partially torn. Finally, a grade 3 sprain of the ACL is denoted to one that has been completely torn and no longer provides any stabilisation of the knee (JohnsHopkins, 2018). Interesting to note is another, less commonly addressed type of ACL injury, called a tibial spine avulsion ACL injury. This type of injury occurs when the insertion point of the ACL, on the anterior side of the tibia, is torn off. This is an uncommon injury that is seen among children, usually due to the weakness of their incompletely ossified tibia relative to the strength of their ligaments (POSNA, 2018).

5.4 Diagnosis

The diagnosis of an ACL injury is done following a thorough history of the mechanism of injury as well as a number of tests. The health care practitioner begins by examining the injured

knee, while comparing it to the uninjured side. They will look for deformities, swelling and any other evidence that can give insight into the mechanism of the injury. Additionally, the injured individual will be asked to specify if they heard the infamous "pop", a sound commonly associated with a torn ACL. Before ordering further tests, the physician might perform one of the following four physical assessments:

A. Anterior drawer test

During the early phase of the injury, the inflammation causes swelling and pain which leads to the patient guarding their knee (Malanga, Andrus, Nadler, & McLean, 2003). This makes the anterior drawer test (ADT) a difficult assessment to perform during the acute phase of an ACL injury. The ADT is a physical exam performed with the patient lying on their back with the hip flexed to 45 degrees and the knee flexed at 90 degrees. The examiner sits on the subjects' foot in order to stabilize the subject's leg, while placing their thumbs on the subject's tibial plateau and hands behind the tibia. A force is then applied anteriorly to assess the translation of the tibia over the femur, in order to test if the ACL offers any resistance (Malanga et al., 2003). If one side demonstrates more anterior displacement than the other, this is indicative of an ACL that is torn. The ADT has demonstrated a sensitivity between 22% and 40% (Tanaka et al., 2017).

B. Lachman test

The Lachman test is the most reliable test for diagnosis of ACL injury in the acute phases of the injury (Tanaka et al., 2017). The subject lies on their back with their knee flexed between 10 and 20 degrees. The femur is then held with one hand while the other is placed on the posterior side of the tibia. Force is applied to the posterior aspect of the tibia, attempting to translate the tibia anteriorly, the exact movement the ACL resists (Malanga et al., 2003). When

there is anterior translation of the tibia with a "soft" endpoint, this indicates a ruptured ACL. This subjective judgment of a "soft endpoint" leads to inevitable discrepancies between trained physicians and less experienced residents. Nevertheless, the Lachman test has demonstrated a sensitivity of 80% to 99% (Tanaka et al., 2017).

C. Pivot shift test

For the pivot shift test, the leg is picked up at the level of the ankle and the knee is flexed. As the knee is being extended, the tibia is exposed to a valgus strain. At 30 degrees of flexion, the tibia will suddenly reduce if the ACL is in fact torn. Although the pivot shift test has shown sensitivity of only 32%, the specificity of the test is 98%, the highest of all physical assessments (Prins, 2006).

D. Lever sign test

The lever sign test, also known as the Lelli's test, is a recently developped assessment for ACL injury. For this assessment, the subject lies flat on their back. The examiner places a closed fist beneath the proximal third of the tibia and the other hand applies a force on the distal third of the subjects' quadriceps muscle. An intact ACL will lead to extension of the knee and the subject's heal will rise up off the examination table. A partially torn or fully torn ACL will cause the heal to not rise as the femur will simply slide below the tibia. Although the lever sign test is a more recent test, studies have shown that it has a specificity of 90% with a sensitivity of only 63% (Jarbo, Hartigan, Scott, Patel, & Chhabra, 2017).

Other tools such as instrumented arthrometers can also be used for to diagnose an ACL injury. The KT-1000, KT-2000, and the Rolimeter are example of such devices. These tools measure the laxity of the ACL which provides an objective assessment of the anterior translation of the tibia while maintaining the femur in a neutral position (Genourob, 2018). These devices however, have been shown to not agree with radiographic measurements and more significantly, clinical outcomes (Tanaka et al., 2017). Furthermore, newer devices such as the Telos and Genourob (GNRB) have been developed which have automated these older devices. Studies have shown that some of these newer automated devices provide better diagnostic values than the preferred Lachman test (Ryu, Na, & Shon, 2018).

Following these physical exams and objective assessments, the physician has the option of ordering a magnetic resonance imaging (MRI). This scan images the soft tissue as well as the bone, which will give further indication on the integrity of the ACL. The MRI is currently a physician's best tool given the high tissue contrast and high spatial resolution (Li et al., 2017). However, there is evidence that the overuse of the MRI as a diagnostic technique for ACL injury has led to misdiagnosis in 47% of cases (Orlando Junior, de Souza Leao, & de Oliveira, 2015). Furthermore, MRI costs in Canada are between 300-650\$ with an average wait time of 10.8 weeks (Fraser, 2017). Despite this, the MRI is the number one choice for physicians to make a diagnosis of an ACL injury, in combination with the rest of the clinical history and a careful physical examination. Another alternative test is a knee arthroscopy, which is the gold standard for ACL tear diagnosis. Knee arthroscope) into the knee in order to view and explore the area. This method remains the most accurate and precise for knee injury diagnosis (Orlando Júnior, de Souza Leão, & de Oliveira, 2015). However, it costs 1,300\$ per procedure, which makes it less available to the public.

5.5 Risk Groups for ACL injury

There are different demographic groups at higher risk of ACL injury, including, but not limited to women, younger individuals, and athletes playing football, basketball, soccer, or alpine skiing. There is a notable difference between sexes, with regards to ACL injuries. Female athletes are more prone to ACL injuries, tearing their ACL two to eight times more frequently than male athletes (Ireland, 2002). Factors associated with a higher risk of ACL injury in women athletes include hormonal status and increased knee laxity. Other risk factors that have been associated with ACL injury include the size of the femoral notch, the diameter of the ACL, the mechanical axis of the lower extremities and other specific anatomical features (Ireland, 2002). Although these factors are not amendable to change, other factors, such as core stability, quadriceps dominance and jumping/landing mechanics are.

A recent study conducted by Tompkins et al. concluded that peak incidence of ACL injuries occurs when individuals are in high school between the ages of 14-18 years old (Beck, Lawrence, Nordin, DeFor, & Tompkins, 2017). More specifically it was found that girls are at an increased risk at the age of 16 while for boys it is at 17.

Individuals playing either competitive or non-competitive sports in football, basketball, soccer or alpine skiing are at a higher risk of anterior cruciate ligament (ACL) injuries (Gornitzky et al., 2016), with soccer remaining the sport with the highest risk for an ACL injury (Agel, Rockwood, & Klossner, 2016). The one commonality between these sports in terms of the movements performed is that they require a lot of quick cutting and rapid changes of direction. This unnatural and repetitive stress on the ACL is what leads to noncontact ACL injury. By planting one foot on the ground during a rapid change of direction, the femur typically wants to continue its forward motion due to its momentum, but the planted tibia wants to go in an

opposite direction. If the surrounding muscles are not strong enough to buffer the force of these displacements as well as the shear stress being placed on the ACL, injury may result.

5.6 Treatment for ACL tears

Depending on the severity of the ACL injury there are a number of possible options. Minor ACL injuries or Grade 1 sprains can be treated by icing the knee and resting it for a given period of time. A physician might also prescribe anti-inflammatory medication to help reduce any swelling or pain that might be felt. If the injury is more severe, physical therapy might be necessary in order to strengthen the muscles surrounding the knee. If the ACL has been torn completely (grade 3), surgery might be the only option to regain proper function. The surgery most commonly performed is ACL reconstruction, where the ACL ligament is rebuilt using a graft. It is important to note that it is not uncommon to sustain damage to other ligaments in the knee when the ACL is torn (Naraghi & White, 2014).

5.7 Prevention: Predictive methods

The assessments described in the *diagnosis* section only work when the athlete is injured. They do not inform the physician or physiotherapist whether or not the individual is at a high risk of obtaining an ACL injury in the future; they are not predictive tools. In order to accurately predict injury risk, a full in-depth analysis of an individual's jump must be performed. This is currently only performed at dedicated motion analysis laboratories.

5.7.1 Motion analysis

The only current method to assess risk of ACL injury is motion analysis. Motion analysis systems have shown that jumping dynamics can reliably predict the risk of knee injury, but such systems are expensive and are only available in well-equipped research centers (Hewett

et al., 2015a). As photography and filming started to see advancements in the 1970s, this technology started to be used to visualize human locomotion as it has never been seen before. With the subsequent introduction of infrared cameras and the computational power of computers in the 1980s, motion analysis exploded. The motion system used for this study made use of 10 infrared cameras. These cameras identify a set of markers that are placed on different anatomical locations of the subject being tested (Arneja & Leith, 2009). This specific system has the ability to identify these markers in space at a rate of 120Hz (Vicon, 2018). The system captures all the markers in space and then with the help of the Vicon® Bodybuilder™ software, angles of each joint are extracted based on where they were at a given point in time. This allows for the user to obtain angles at each frame of the movement. In addition to being extremely accurate with a precision of less than 2mm, this motion analysis system is very costly with a price tag of 400\$ per individual tested (Merriaux, Dupuis, Boutteau, Vasseur, & Savatier, 2017). Testing takes 2 hours to perform and analysis of the data takes a trained individual approximately 2 hours to obtain meaningful results (Tombrowski, 2014).

Research has been conducted using such systems to assess an individual's knee angles when they perform a jump. There is currently one set of parameters present in the literature that seems to be validated (Hewett et al., 2015a). The study by Hewett et. al demonstrated that individuals with greater initial knee coronal angle and smaller peak knee sagittal angles, when performing a standardized drop vertical jump, have a decreased risk of injury (Hewett et al., 2015a). In order to evaluate these angles, the motion analysis system was used. Coronal angles are the angles also referred to as varus and valgus, or simply how much the knee moves medially and laterally. Conversely, sagittal angles refer to the angles of flexion and extension. Initial and peak angles are referring to the angle of the knee during initial contact with the floor and the peak angle during the jump, respectively (Hewett et al., 2015a). The angles considered to indicate an individual's risk of ACL are initial coronal, peak coronal and peak sagittal angles. The study done by Hewett et al., used the Drop Vertical Jump (DVJ), which is the gold standard for physical ACL injury risk assessment. This jump is an assessment that is often times used in the literature as it is has been validated for prediction of ACL injury. A drop vertical jump (DVJ) test is a standardised test where individuals leap down from a 31cm block and then proceed to jump as high as they can while reaching up with their arms. The theory being that this jump displays those individuals who demonstrate poor lower extremity biomechanics, therefore placing them at higher risk of ACL injury (Redler, Watling, Dennis, Swart, & Ahmad, 2016). This is a great tool that can be used by many individuals seeing as it has proven good inter- and intra-rater reliability, and can be performed without significant training (Redler et al., 2016).

5.7.2 Biomechanical assessment

The biomechanical assessment done by a trained coach is the easiest and most cost-effective analysis of jumping mechanics. Experts in biomechanics such as trained strength and conditioning coaches or kinesiologists will likely be able to identify which athletes are at an increased risk of injury based on a number of parameters that they have learned through years of experience. This technique has not been extensively studied but there is evidence that trained professionals in sports medicine are in fact able to assess with a high degree of certainty whether or not an athlete is prone to ACL injuries. The anecdotal evidence suggest that said professionals do so by observing stability of the knee during movements where the knee is near end range of motion.

Furthermore, physical performance tests (PPTs) have been created. These tests are easy to administer assessment tools that can be performed with little amounts of training. They are

practical assessment tools with an instruction guide explaining the steps necessary to complete the test. There is however, conflicting evidence in the literature regarding the reliability and validity of such tools (Hegedus, 2015). Following analysis and risk of ACL injury the athletes are provided with feedback on exercise and muscle strengthening regimens based on their risk. This is the only currently available prophylactic method and it is solely based on the trained biomechanics expert's opinion and judgment.

Typically, if an athlete has been identified as being at a high risk of ACL injury, they will be put on a specific exercise training program. This exercise program is designed by a trained strength & conditioning coach or kinesiologist. These exercise programs focus on strengthening muscles of the quadriceps and hamstrings, which as previously described, contribute to the stability of the knee. Strengthening those muscles serves to alleviate the amount of stress being put on the ligaments of the knee, thus reducing the chance of tearing the ACL due to an indirect force. Numerous studies have reported the effects of neuromuscular training to reduce ACL injuries (Benjaminse, Otten, Gokeler, Diercks, & Lemmink, 2017; Ericksen et al., 2016; Hewett, Ford, Xu, Khoury, & Myer, 2016; Liebert, 2016; Lopes et al., 2017; Pappas et al., 2015; Rodriguez, Echegoven, & Aoyama, 2017; Shultz, Silder, Malone, Braun, & Dragoo, 2015; Sugimoto et al., 2017; Whyte, Richter, O'Connor, & Moran, 2017; Zebis et al., 2016; Zhiyu et al., 2015). Furthermore, recent studies have found that instability in the trunk predicts ACL injury (Whyte, Richter, O'Connor, & Moran, 2018). There has been substantial evidence indicating that injury prevention programs focusing on core stability reduces injury rates (Whyte et al., 2018). Following the increase in non-contact ACL injury, in 2009, the Fédération Internationale de Football Association (FIFA), created an injury prevention program (FIFA, 2007). This program was designed as a warmup prior to sport participation in order to decrease the incidence of injury. This was done by incorporating core

stabilisation, eccentric training of thigh muscles, proprioceptive training, dynamic stabilisation and plyometrics with straight leg alignment (FIFA, 2007).

5.7.3 Imaging methods

As mobile health begins to emerge as a field, sports teams are looking to incorporate more medical technology with regards to testing and assessing their athletes. This provides a quick and easy method of obtaining results on the sideline without requiring intensive resources. One such device is Microsoft's Xbox Kinect camera. This device, equipped with infrared depth sensors and a skeletal tracker has proved to be convenient and inexpensive for kinematic imaging (Livingston, Sebastian, Ai, & Decker, 2012). Although originally designed for gaming, Microsoft's open source software development kit known as Kinect V2, has allowed programmers to use the built in skeleton tracking for a number of healthcare applications including, stroke rehabilitation, Parkinson's disease rehabilitation, at-home cardiovascular rehabilitation, and now athlete kinematics (Gray et al., 2017; Park, Lee, Lee, & Lee, 2017; Shih, Wang, Cheng, & Yang, 2016; Vieira, Gabriel, Melo, & Machado, 2017).

Given these advancements with the motion analysis capabilities of the Microsoft Kinect camera and the advancements in injury prediction, it only makes sense that the next step would be to integrate the two together. Currently there is one such company that has used this avenue to attempt to address this issue. A company known as *Virtusense Technologies*, has created a software that was aimed at assessing jumping angles for athletes. Following preliminary testing of their platform, it was determined that their algorithm and approach caused for a lack in precision between the system and clinical examination. This project was discontinued and focus was rerouted into fall prevention as an alternative. The biggest challenge with the gold standard of motion analysis, is that it is a system that is extremely expensive, requires a trained professional to run the test, takes thirty minutes to set up markers on the individual being tested, and the data processing and analysis takes several hours. The injury prevention community needs a tool/system that can screen athletes at high risk in order to get them into a prevention program as fast as possible to avoid injury and other associated repercussions. The poor natural history of the ACL injured knee and failure of current surgical techniques to overcome longterm deterioration suggest research should be directed at injury prevention and prediction of susceptibility for improved long-term patient outcome.

6.0 Methodology

Throughout this report, the motion analysis system will be referred to as the Vicon system or motion lab. Both terms are used interchangeably. It must be noted that a motion analysis system by itself does not have the ability to assess the risk of an ACL injury. The system, coupled with other criteria allows the estimation of angles in order to provide a risk score. In this report when referring to the results of a motion analysis system it is implied that this has been coupled with an analysis method. Angles of interest refer to initial coronal angle, peak coronal angle, and peak sagittal angle.

6.1 Ethics Approval

This is a prospective unblinded randomized clinical trial that was performed at McGill University and the Shriners hospital for kids. Ethics approval was obtained by McGill University's Research Ethics Board (see Appendix 1: Protocol). The first version of the protocol only included registered McGill athletes, however to increase our enrollment we amended the protocol to include non-McGill athletes. After consultation with the coaches and training staff, all participants were approached during predetermined times. Informed consent was obtained from all participants in this study (Appendix 2: Informed Consent Form).

6.2 Athlete Cohort

One hundred and fourteen athletes were consented for all studies described. Both men and women from McGill's Varsity Sports Program were recruited. Exclusion criteria included those aged less than 18 years of age and greater than 30 years of age, lower limb injury at time of consent, and non-athletic defined as less than 150 minutes of exercise per week. The participants included McGill athletes and athletes from the general population. Each McGill athlete was followed till the end of the season. Data collection included injury reports and clinical data, shown in table 1.

Table 1: Clinical Data Collection
Gender
Age
BMI
Sport Played
Previous knee Injury
Previous knee Surgery
Abnormal Knee Exam
Knee laxity (KT-1000)
Oral Contraceptive Pill use

6.3 Shriners Validation: Motion Analysis

The motion analysis facility at the Shriners Hospital for Children (Montreal, Quebec) was used, under the supervision of Dr. Veilleux. The analysis was performed as described in the protocol from the "LABORATOIRE DU MOUVEMENT – Centre de réadaptation Marie-Enfant". The system includes 10 cameras shooting at a frame rate of 120 Hz. The 34 markers are placed according to the above-mentioned validated protocol. After the markers were attached to the participant they performed a static trial, for marker identification. They then performed three drop vertical jumps off of a 31cm box and the data was recorded. Their skeletal model was then labeled and reconstructed in order to extract usable angles using Mokka: Motion

Kinematic & Kinetic Analyzer (Mokka, 2013). Two angles (coronal and sagittal) from two different time points (initial and peak) were used for analysis. An example of data is shown in table 2 of the supplemental materials.

6.4 Experimental Validation system: Kinect Analysis

This system makes use of a 3-dimensional video recording input device along with a laptop computer. The specifications of the laptop computer can be found in table 3.

		Minimum	Ideal	Maximum			
Central	Physical Cores	2	4	N/A			
Processing	Clock Speed	1.5GHz	3.1 GHz	N/A			
Unit	Instruction set	Intel x86_64 with su	pport for Streaming SIMI	D Extensions (SSE2) instructions			
Graphics	Memory	1GB	4GB	N/A			
Processing	Clock Speed	1.1GHz	1.8GHz	N/A			
Unit	API Compatibility	DirectX11					
Output Screen	Device Resolution	1024 x 768 pixels	1600 x 900 pixels	1920 x 1080 pixels			
Power Input	Voltage	120 volts AC @ 60Hz					
	Amperage	3 amps					
Connectivity USB 3.0 625 MBps				IBps			
F	RAM	4GB	8GB	N/A			
Available Ha	ard Drive Space	e Space 512MB 10GB N/A					

 Table 3: Computer Specifications from Dr. Fevens and Dr. Rivaz

Microsoft's Xbox Kinect (Microsoft, 2013) system was used as the alternative capture device connected to a personal computer. In collaboration with Dr. Rivaz and Dr. Fevens from Concordia University a list of specifications was established in order to ensure that the software functioned adequately during the testing. Seeing as these details are out of the scope of the Experimental Medicine thesis submission, the specifications are outlined in appendix 3 but will not be further explored.

Testing was performed at two different sites. First, the Kinect system was tested simultaneously

with the Motion Analysis system at the Shriners Hospital, allowing for a head to head comparison. The second site consisted of the McGill Currie Gymnasium (Montreal, QC) where the athletes were tested during their respective practice sessions.

The Kinect was mounted onto a tripod and from a distance of 2.5 meters, each participant performed a drop vertical jump, off of a 31cm high box, similar to during the motion analysis. The software then generated an excel file with two angles (coronal and sagittal) from two different time points (initial and peak) and one for the coronal (peak). An example of data is shown in the supplemental materials of table 4.

6.5 Data Analysis

6.5.1 Kinect device Validation

The statistical component of the program was run using SAS 9.3 statistics software. This was done with the help of Dr. Stephane Bergeron. For the DVJ a difference was calculated between the angles measured from the Kinect and Vicon for each participant. This led to 11 data sets being generated per jump per angle of interest. A Shapiro-Wilk test was performed to determine whether the data was normally distributed or not. This then informed whether or not a one-tailed student t-test on the data could be run. The significance value of the t-test was then used to determine the presence or absence of a significant difference between the tested method of screening and that of the motion lab. Skewness and kurtosis were also examined in order to inform on the distribution of the data and the presence of outliers.

6.5.2 Kinect Injury Prediction

To begin the Kinect testing, the user must input their login credentials to gain access to the list of participants and the testing interface. A new participant is then created, or an existing one is selected from the list. The user then begins a new recording and selects which test will be performed by the participant by using the drop-down menu. The system is now ready to record. Following the recording, the system displays a screen where the recording can be re-watched. Additionally, important parameters such jump angles from different frames are presented as well as the injury risk score prediction. Screen captures from the system used are shown in Appendix 4. Knee angles were calculated using vectors from the knee to the hip (femur) and from the knee to ankle (tibia) as seen in Equation 1. Sagittal angles were calculated using Equation 2 while the coronal angles were calculated using Equation 3.

Equation 1: Vector Definition of tibia and femur

 $\overrightarrow{tibia} = P_{knee} - P_{hip}$ $\overrightarrow{femur} = P_{knee} - P_{ankle}$

Equation 2: Sagittal Angle Calculation

$$\theta_{sagittal} = 180^{\circ} - a\cos\left(\frac{\overrightarrow{t\iotab\iotaa} \cdot \overrightarrow{femur}}{\|\overrightarrow{t\iotab\iotaa}\|\|\overrightarrow{femur}\|}\right)$$

Equation 3: Coronal Angle Calculation

x = RotationAxis.x * sin(RotationAngle / 2) y = RotationAxis.y * sin(RotationAngle / 2) z = RotationAxis.z * sin(RotationAngle / 2) w = cos(RotationAngle / 2)

The system then provides a risk score based on an algorithmic analysis. The risk score is calculated based on the parameters mentioned above and outlined in table 5.

	Initial Coronal Angle		Peak Coronal Angle		Peak Sagittal Angle	
Injured Athletes	3.4°		1.4°		82.4°	
Not Injured Athletes	5°		9°		71.9°	
	Angle	Risk	Angle	Risk	Angle	Risk
	3°	100%	1°	100%	85°	100%
Injured Athletes Angle	3.4°	100%	1.4°	100%	82.4°	100%
	3.9°	69%	3°	79%	79°	68%
	4.2°	50%	4.5°	59%	75.5°	34%
Worsening	4.6°	25%	7°	26%	73°	10%
Not Injured Athletes Angle	5°	0%	9°	0%	71.9°	0%
Worsening	5.5°	31%	10°	13%	70°	18%

Table 5: Risk Score Calculation based on Hewett et al.

These parameters were established based on a previous pilot project along with data from a study conducted by Hewett et al. In order to perform this analysis, the software must first identify the important jump frames (i.e. initial landing frame and peak landing frame). To identify the initial landing frame the system, the system identifies when the ankle joint stops travelling in a downward direction, indicating that the ankle has made contact with the floor. The peak landing frame is determined to be the moment when the ankle joint and the hip joint are closest to each other. The system calculates the distance between these two joints at each frame and the frame with the smallest distance is taken as the peak landing frame. Finally, the risk score is calculated by using the angles from the Hewett study, used in an algorithm described below, to find the likelihood of injury based on proximity to injured and non-injured angles. Hewett et al identified joint angles which placed the participants at increased risk of ACL injury. The equation used to calculate the predictive risk score determines the similarity between the jump angle (testing of the participant) and the values obtained in the Hewett et al study. The more the angles resemble each other (i.e. the closer the values), the greater the risk score of ACL injury. Equation 4 summarizes this calculation.

Equation 4: Risk Calculation

risk score = min
$$\left(\frac{|\theta - \alpha|}{|\beta - \alpha|}, 100\%\right)$$
 β = injury angle θ = measured angle

Based on the literature, low risk was defined as a greater initial knee coronal angle and a smaller peak knee sagittal angle, whereas high risk was the opposite. The parameters for the risk prediction tool were the peak sagittal knee angles, the peak coronal knee angles, initial sagittal knee angles, and initial coronal knee angles. The motion analysis generated a series of angles which were then extrapolated to determine the risk score. Similarly, the Kinect device generated a series of angles which were also extrapolated to determine the risk score. The angles obtained the motion analysis system and those obtained from the Kinect system were then compared.

6.5.3 Data analysis of pre-season assessment

The final component involved comparing the device to the current assessment method used for athletes at McGill University's Sports Medicine Clinic. The method performed at the Sports Medicine Clinic involves a pre-season physical exam where the team physician and healthcare staff assess the athletes on their physical readiness to participate in the season. Any unusual physical exam result is noted in the athletes' charts. An unusual physical exam refers to a positive test result from the knee assessments described in the introduction. Author JC analyzed the files of the tested athletes to pull out any relevant information regarding their risk of an ACL injury. The criteria for injury is based on risk factors that are known to increase one's risk of an ACL injury. These factors include previous knee injury, previous knee surgery, abnormal knee exam, family history of ACL injury, gender, sport, and BMI. These risk factors gave one point while negative risk factors gave

zero points. The score was then converted into a percentage in order to compare with the percentages outputted by the Kinect system. In addition, the results from the pre-season assessment were also compared to the results obtained by the device.

7.0 Results

7.1 Demographics of Shriners participants

A total of 11 participants were recruited for this component of the study; six females and five males. The average age was 21.64 years (± 2.06), the average height was 1.74 meters (± 0.115), the average weight 68.41 (± 9.45), and the average BMI 22.64 (± 3.16). Demographic distribution of the participants is summarized in table 7.

Table 7: Demographics of Participants (n=11)						
Gender	5 males	6 females				
Age	21.64 (± 2.06)					
Height (m)	1.74 (± 0.12)					
Weight (kg)	68.42 (± 9.45)					
BMI (kg/m ²)	22.64 (± 3.16)					
*Data are shown as mean and standard deviation						

The analysis was performed on three drop vertical jumps, while looking at each leg independently and analyzing coronal and sagittal angles at three different time points (peak coronal angle, peak sagittal angle, and initial coronal angle) as seen in table 8.

Table 8: Angles of Interest						
	Initial Coronal Angle	Peak Coronal Angle	Peak Sagittal Angle			
Injured Athletes	3.4°	1.4°	82.4°			
Uninjured Athletes	5°	9°	71.9°			

The Shapiro-Wilk test showed the data as being normally distributed for 17 of the 18 dependent variables (or data sets). In light of this, a student t-test was performed for 17 of the 18 data sets, while a Wilcoxon Sign Rank test was performed on the remaining sets, allowing the

comparison of two non-parametric samples in the event that the data is not normally distributed. The Shapiro Wilk test values are shown in Table 9.

Table 9: Shapiro Wilk-test data									
	leftpeaksag1	leftpeaksag2	leftpeaksag3	rightpeaksag1	rightpeaksag2	rightpeaksag3	leftpeakcor1	leftpeakcor2	leftpeakcor3
Shapiro-	0.6505	0.3895	0.3646	0.5724	0.2328	0.7812	0.4368	0.6246	0.0602
Wilk Test	rightpeakcor1	rightpeakcor2	rightpeakcor3	leftinitialcor1	leftinitialcor2	leftinitialcor3	rightinitialcor1	rightinitialcor2	rightinitialcor3
	0.9341	0.3361	0.0685	0.4781	0.4746	0.7078	0.5873	0.0016	0.9176

The results from the student t-test show that 14 of the 17 data sets have a p-value greater than 0.05 demonstrating that there is no significant difference between the Kinect device and the motion lab. The remaining 2 data sets show a significant difference between these two systems. The student t-test results are illustrated in table 10. Of the non-normally distributed data, the Wilcoxon Signed Rank test shows no significant difference between the motion lab and the Kinect data. This result is presented in Table 10.

Table 10: Student t-test data and Wilcoxon signed rank test data									
	leftpeaksag1	leftpeaksag2	leftpeaksag3	rightpeaksag1	rightpeaksag2	rightpeaksag3	leftpeakcor1	leftpeakcor2	leftpeakcor3
	0.0337	0.0418	0.1799	0.0564	0.0956	0.1549	0.6916	0.9767	0.3765
Student t-test	rightpeakcor1	rightpeakcor2	rightpeakcor3	leftinitialcor1	leftinitialcor2	leftinitialcor3	rightinitialcor1	rightinitialcor3	
	0.0338	0.5827	0.6382	0.8105	0.2824	0.8565	0.1506	0.8788	
Wilcox	on Signed	rightinitialcor2							
Ran	k Test	0.2208							

7.2 Results for in-field testing

7.2.1 Demographics of in-field testing cohort

A total of 114 participants were recruited; 69 males and 45 female athletes. The average age was 22.02 years (± 2.19), the average height was 1.79 meters (± 0.12), the average weight 77.90 kilograms (± 9.45), and the average BMI 24.23 (± 3.76). Demographic distribution of these participants is summarized in table 11.

Table 11: Demographics of McGill					
Participants (n=114)					
Gender	69 males	45 females			
Age	22.02 (± 2.19)				
Height (m)	1.79 (± 0.12)				
Weight (kg)	77.90 (± 16.70)				
BMI (kg/m^2)	24.23 (± 3.76)				
Knee Injuries 5 non-contact					
*Data are shown as mean and standard deviation					

Of the 114 athletes that were recruited, 40 athletes were identified as having a high-risk score (risk score greater than 55%), as determined by the Kinect device (using the methods described above). Of those 114 athletes, five (4.39%) sustained an ACL injury by the end their respective sport seasons. All the injured athletes had previously been identified by the device as having a high-risk score of ACL injury. Two male and two female basketball players along with one male soccer player incurred non-contact ACL injuries.

The breakdown by sport participation can be seen in Figure 3.

Given that all five of the injured athletes were captured in the predicted 40 high risk athletes by the Kinect, this yields a sensitivity of 100% for the device. As for the specificity, the Kinect computed 35 false positives therefore yielding a specificity of 68%. This has been outlined in Table 6.

Table 6: Sensitivity & Specificity Table					
of	Kinect device	e			
N=114	ACL tear	No ACL			
		tear			
Kinect					
positive	5	35			
prediction					
Kinect					
negative	0	74			
prediction					
Sensitivity: 100%					
Specificity: 68	%				

7.3 Medical charts

7.3.1 Results for Comparison with current medical assessment

We compared the pre-season assessment from the Kinect injury score to the pre-season medical assessment (described above). An orthopedic resident reviewed the athletes pre-season medical files for any indications from the primary care physicians that might indicate a concern of injury. Using a full patient history and the physicians notes on the pre-season physical knee exam, it was then determined whether or not each athlete was at an increased risk of an ACL injury before starting their respective seasons. Results from this physician reported activity were then compared to the results from the Kinect system.

For this analysis, only McGill athletes having complete medical records (n=96) were used. The resident identified 36 athletes as being high risk of ACL injury and 60 being low risk of ACL injury. Of the 36, four had an ACL injury identified in their medical charts. Furthermore, four of the total five injured athletes were captured by this assessment method. This yielded a sensitivity of 80% and a specificity of 65%.

7.4 Other data captured

Objective measurements of knee laxity were also captured using a KT-1000 arthrometer in order to compare with the Kinect data (n=25). The laxity results are presented in table 12 of the supplemental materials. We looked to see if those individuals with a difference of greater than 3mm of laxity between left and right leg had any predictive value when it came to injury outcome. No correlation was found between objective measurements of knee laxity and the results from the Kinect or injury outcome.

8.0 Discussion

8.1 Kinect device Validation

The identification/development of a system that can be quick, portable and reliable for ACL injury detection is urgently needed. The gold standard, Vicon motion analysis, despite having a high sensitivity and specificity, is not practical for coaches to use on a routine basis for assessing their athletes. The present study compared and validated the Kinect device to the gold standard Vicon motion analysis. Angles at initial and peak points of the drop vertical jump were compared. One data set did not demonstrate normal distribution, and demonstrated high skewness and high kurtosis values. It was noted that one of the collection points from the motion lab was in fact greater than that captured by the Kinect device. The Wilcoxon signed rank test that was performed on this data set yielded a p-value greater than 0.05. This can be due to a number of factors including, light interference or vibration during the jump. Nevertheless, this data point was not excluded.

The hypothesis testing for the 18 data sets yielded p-values greater than 0.05 in 15 of 18 situations. The three other data sets had p-values of 0.03, 0.04, and 0.03. These results suggest that the there is no significant difference in the angles that are being measured by the Kinect

system and the angles being measured by the Vicon motion analysis system. Two of the three other data sets which yielded significant p-values were in the peak sagittal plane which measures large angle values. It is less surprising that the larger angles yielded significant differences because the angles vary more at the extremes of the jumps. As for the third data set, the significant difference was for the peak coronal angle. Seeing as this is only one of the results, no conclusions could be drawn from this single finding.

Furthermore, as can be seen in Graph 2, the overall pattern between both graphs is quite similar. The Kinect does however, have a less smooth curve than the motion lab in all instances. This is especially obvious in the coronal plane. This can be attributed to the fact that the Kinect is trying to identify relatively small angles of about 4 degrees. It is important to note that these angles are barely noticeable to the naked eye, but are still being picked up by the Kinect system, laying claim to its accuracy. The motion lab is able to confirm these minute angular changes.

Of further interest is the close association of the curves in the sagittal plane (Graph 3). As has been previously mentioned, the Kinect is a front facing single camera system. Nevertheless, it still has the ability to capture sagittal angles quite precisely. The angles of flexion/extension are very similar between both systems. This is likely also attributed to the fact that much larger angles are now being observed and the attention to minute angle changes is not as significant. These data would suggest that the Kinect device is much more valuable when it comes to measuring larger angles. This finding can be used for future studies where this type of device is to be used, for example for rehab where smaller angles may not be captured as precisely as larger ones.

Another reason explaining the difference between the curves is attributed to the rate at which the Kinect captures data as opposed to that of the motion lab. The Kinect has the ability to capture at a maximum of 30 Hz which is the equivalent of 30 frames per second. The motion lab however, record at 100 Hz or 100 frames per second. This creates a much smoother curve as more points are being captured in a given period of time. This precision is something the Kinect device lacks and results in the rough curves that can be observed.

All the above-mentioned findings propose that a portable Kinect system such as the one developed for this study can be used to capture coronal and sagittal angles with sufficient accuracy during a drop vertical jump.

8.2 Injury prediction

The injury prediction component involved testing the device in a cohort of athletes and following-up with the team's strength and conditioning coach as well as therapists throughout their playing season. Their injury status was determined at the end of the season and compared to the pre-season results of the Kinect device. Sensitivity and specificity analysis was performed on this data to determine the predictive strength of the device. Average risk scores were calculated based on the methods described above. Injury risk was stratified as either high risk or low risk. Forty athletes were deemed high risk from the Kinect system, leaving 74 as being low-risk (appendix 5). ACL injuries were determined based on physicians' interpretation and diagnosis from magnetic resonance imaging. Five athletes had a complete ACL tear. All five of these injuries had a non-contact mechanism of injury (appendix 6). The five athletes represent 4.39% of the participant pool. This is in line with the likelihood of injury among competitive athletes present in the literature. Furthermore, the sports which these athletes participated in (basketball and soccer) are not surprising as they are two of the highest risk sports for non-contact ACL injury. Upon confirmation of the injuries, their data was crosschecked to see whether or not the system had predicted these athletes as being high risk. The five injured athletes were captured in the 40 high risk predictions.

In all 40 of the high-risk athletes, the first of three jumps they perform yielded a higher risk score. This is likely attributed to the fact that their jumping mechanics start to improve as they continue jumping. They receive biomechanical feedback from their muscles and make minor adjustments for subsequent jumps. For this reason, their last of three jumps consistently shows a smaller risk score than their first jump. The first jump was mainly used to classify risk score, regardless of their decreasing score due to biomechanical feedback throughout the jumps.
Additionally, 41 athletes from the cohort yielded risk scores of zero in one or more jumps. According to the parameters set for injury risk prediction (table 5), a risk score of 0% was indicative of a result that was off of the measurable charts. Upon investigating the injury history of those 41 athletes, it can be noted that 21 (51.2%) of them have some form of diagnosed knee pathology. Knee pathology refers to previous knee surgery (ACL, PCL, meniscus, or MCL), or other injuries such as patellofemoral syndrome, knee sprains, patellar dislocations etc.. These results are not strong enough to indicate any conclusive evidence. However, what was observed was that these athletes who have knee pathologies seem to be jumping in a way that the Kinect system is identifying them as outlying the set parameters. Further investigation is warranted to make additional conclusions.

8.3 Pre-physical assessment

To date, risk score stratification based on athlete preseason physical assessment and athlete history has never been explicitly studied in order to predict future injury outcome. A review of the literature was conducted to establish a list of risk factors, these are outlined in the methods section above.

The risk factor of family history of ACL injury was excluded from the present analysis as this data was not available from the pre-season assessments provided to us from the McGill Varsity Sports Medicine Clinic. Of the five athletes that had a season ending ACL injury, 4 were captured by this analysis. One athlete who had an ACL injury was not captured as being high risk based on the assessment. Although 1 of the 5 athletes was not captured by the chart analysis it did yield a sensitivity of 80%. When it comes to injury prediction, it is preferred to have a high sensitivity even if the specificity is slightly lower as this ensures that all athletes who are at risk will be captured by the device and none will be missed. The downside to this is that

athletes who are at the cutoff of being injured or not, are pooled in the high-risk category. As mentioned above, the chart analysis provided one false negative and led to missing one high-risk athlete who ended up getting injured. For this reason, it can be believed that the Kinect system provides a slightly better predictive analysis than the chart review. Nevertheless, the chart analysis does have an impressive predictive ability however, this is not something that most athletes who are playing sports are privileged to have. A trained orthopaedic surgical resident accessed these charts and each chart analysis took an estimated time of 8-10 minutes per athlete. This makes for a slightly longer analysis process than the Kinect device which takes an average of 5 minutes as mentioned previously.

9.0 Limitations

One of the limitations of this system is that an Xbox Kinect device is not a readily available tool that coaches at all levels have access to. Albeit the low cost of this device, offering this platform on mobile devices would facilitate widespread access of this tool to sport teams that can afford a Kinect device. Furthermore, another limitation to this study is that the evaluation was done using the drop vertical jump which requires the use of a 31-centimeter block. The requirement for extra equipment does not make this test very practical. A future consideration for this would be to test other jumps including a single leg hop jump and/or a tuck jump. These tests have not yet been validated for ACL injury prediction and further research is therefore warranted.

10.0 Conclusion

The results have demonstrated that the Kinect system measures jumping angles comparable to the expensive, technologically advanced gold standard motion analysis systems. The software used has shown to predict those athletes that are at an increased risk of obtaining an ACL injury with a sensitivity of 100%. The Kinect system has the ability to decrease the incidence of noncontact ACL injuries by predicting which athletes are at an increased risk. This would further inform which athletes need further attention with their physiotherapists, strength and conditioning coaches as well as potential assessment at a motion lab.

11.0 References

- Agel, J., Rockwood, T., & Klossner, D. (2016). Collegiate ACL Injury Rates Across 15 Sports: National Collegiate Athletic Association Injury Surveillance System Data Update (2004-2005 Through 2012-2013). *Clin J Sport Med, 26*(6), 518-523. doi:10.1097/jsm.00000000000290
- AmericanSportsData. (2006). Sports Injury Study. Retrieved from http://www.familiesafield.org/pdf/injury_page.pdf
- Amis, A. A., & Dawkins, G. P. (1991). Functional anatomy of the anterior cruciate ligament.
 Fibre bundle actions related to ligament replacements and injuries. *J Bone Joint Surg Br*, 73(2), 260-267.
- Arneja, S., & Leith, J. (2009). Review article: Validity of the KT-1000 knee ligament arthrometer. J Orthop Surg (Hong Kong), 17(1), 77-79. doi:10.1177/230949900901700117
- Beck, N. A., Lawrence, J. T. R., Nordin, J. D., DeFor, T. A., & Tompkins, M. (2017). ACL Tears in School-Aged Children and Adolescents Over 20 Years. *Pediatrics*, 139(3). doi:10.1542/peds.2016-1877
- Benjaminse, A., Otten, B., Gokeler, A., Diercks, R. L., & Lemmink, K. (2017). Motor learning strategies in basketball players and its implications for ACL injury prevention: a randomized controlled trial. *Knee Surgery, Sports Traumatology, Arthroscopy, 25*(8), 2365-2376. Retrieved from http://mcgill.on.worldcat.org/atoztitles/link?sid=OVID:medline&id=pmid:26259551
 <u>&id=doi:10.1007%2Fs00167-015-3727-0&issn=0942-</u>2056&isbn=&volume=25&issue=8&spage=2365&pages=2365
 - 2376&date=2017&title=Knee+Surgery%2C+Sports+Traumatology%2C+Arthroscop

y&atitle=Motor+learning+strategies+in+basketball+players+and+its+implications+fo r+ACL+injury+prevention%3A+a+randomized+controlled+trial.&aulast=Benjaminse https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5522510/pdf/167_2015_Article_3727.pdf. doi:https://dx.doi.org/10.1007/s00167-015-3727-0

- Campbell, C. J., Carson, J. D., Diaconescu, E. D., Celebrini, R., Rizzardo, M. R., Godbout, V.,
 ... Cote, M. (2014). Canadian Academy of Sport and Exercise Medicine position statement: Neuromuscular training programs can decrease anterior cruciate ligament injuries in youth soccer players. *Clin J Sport Med*, 24(3), 263-267. doi:10.1097/jsm.000000000000068
- Coakley, J. J., Donnelly, P., & Coakley, J. J. (2009). Sports in society : issues and controversies. Toronto: McGraw-Hill Ryerson.
- Dallinga, J. M., Benjaminse, A., & Lemmink, K. A. (2012). Which screening tools can predict injury to the lower extremities in team sports?: a systematic review. *Sports Med*, 42(9), 791-815. doi:10.2165/11632730-00000000-00000
- Ericksen, H. M., Thomas, A. C., Gribble, P. A., Armstrong, C., Rice, M., & Pietrosimone, B. (2016). Jump-landing biomechanics following a 4-week real-time feedback intervention and retention. *Clinical Biomechanics, 32*, 85-91. Retrieved from http://mcgill.on.worldcat.org/atoztitles/link?sid=OVID:medline&id=pmid:26859853
 <u>&id=doi:10.1016%2Fj.clinbiomech.2016.01.005&issn=0268-</u>
 <u>0033&isbn=&volume=32&issue=&spage=85&pages=85-</u>
 <u>91&date=2016&title=Clinical+Biomechanics&atitle=Jump-landing+biomechanics+following+a+4-week+real-time+feedback+intervention+and+retention.&aulast=Ericksen</u>
 <u>https://www.clinbiomech.com/article/S0268-0033(16)00021-8/fulltext.</u>

doi:https://dx.doi.org/10.1016/j.clinbiomech.2016.01.005

- FIFA. (2007). The 11 injury prevention programme. Retrieved from <u>https://www.fifa.com/development/news/y=2007/m=5/news=the-injury-prevention-</u> programme-513868.html.
- Fraser. (2017). Waiting Your Turn: Wait Times for Health Care in Canada, 2017 Report. Retrieved from <u>https://www.genourob.com/diagnostic-ligaments_news_kt1000-</u> arthrometer-test-knee-laxity.phtml.
- Genourob. (2018). KT100 Arthrometer: Test Knee Laxity. Retrieved from https://www.genourob.com/diagnostic-ligaments_news_kt1000-arthrometer-test-knee-laxity.phtml.
- Giori, N. J., Beaupre, G. S., & Carter, D. R. (1993). Cellular shape and pressure may mediate mechanical control of tissue composition in tendons. *J Orthop Res, 11*(4), 581-591. doi:10.1002/jor.1100110413
- Gornitzky, A. L., Lott, A., Yellin, J. L., Fabricant, P. D., Lawrence, J. T., & Ganley, T. J. (2016). Sport-Specific Yearly Risk and Incidence of Anterior Cruciate Ligament Tears in High School Athletes: A Systematic Review and Meta-analysis. *Am J Sports Med*, 44(10), 2716-2723. doi:10.1177/0363546515617742
- Gray, A. D., Willis, B. W., Skubic, M., Huo, Z., Razu, S., Sherman, S. L., . . . Siesener, N. J. (2017). Development and Validation of a Portable and Inexpensive Tool to Measure the Drop Vertical Jump Using the Microsoft Kinect V2. *Sports Health*, 9(6), 537-544. doi:10.1177/1941738117726323
- Hewett, T. E., Ford, K. R., Xu, Y. Y., Khoury, J., & Myer, G. D. (2016). Utilization of ACL
 Injury Biomechanical and Neuromuscular Risk Profile Analysis to Determine the
 Effectiveness of Neuromuscular Training. *American Journal of Sports Medicine*,
 44(12), 3146-3151. Retrieved from
 http://mcgill.on.worldcat.org/atoztitles/link?sid=OVID:medline&id=pmid:27474385

&id=doi:10.1177%2F0363546516656373&issn=0363-

5465&isbn=&volume=44&issue=12&spage=3146&pages=3146-

3151&date=2016&title=American+Journal+of+Sports+Medicine&atitle=Utilization+

 $\underline{of+ACL+Injury+Biomechanical+and+Neuromuscular+Risk+Profile+Analysis+to+De}$

termine+the+Effectiveness+of+Neuromuscular+Training.&aulast=Hewett

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5513480/pdf/nihms873393.pdf.

doi:https://dx.doi.org/10.1177/0363546516656373

Hewett, T. E., Roewer, B., Ford, K., & Myer, G. (2015). Multicenter trial of motion analysis for injury risk prediction: lessons learned from prospective longitudinal large cohort combined biomechanical - epidemiological studies. *Brazilian Journal of Physical Therapy*, 06, 06. Retrieved from http://mcgill.on.worldcat.org/atoztitles/link?sid=OVID:medline&id=pmid:26445418
<u>&id=doi:10.1590%2Fbjpt-rbf.2014.0121&issn=1413-</u>
<u>3555&isbn=&volume=19&issue=5&spage=398&pages=&date=2015&title=Brazilian</u>

+Journal+of+Physical+Therapy&atitle=Multicenter+trial+of+motion+analysis+for+i njury+risk+prediction%3A+lessons+learned+from+prospective+longitudinal+large+c ohort+combined+biomechanical+-+epidemiological+studies.&aulast=Hewett. doi:https://dx.doi.org/10.1590/bjpt-rbf.2014.0121

Jarbo, K. A., Hartigan, D. E., Scott, K. L., Patel, K. A., & Chhabra, A. (2017). Accuracy of the Lever Sign Test in the Diagnosis of Anterior Cruciate Ligament Injuries. *Orthopaedic Journal of Sports Medicine*, 5(10), 2325967117729809-2325967117729809. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/29051898

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5639970/. doi:10.1177/2325967117729809

JohnsHopkins. (2018). Anterior Cruciate Ligament (ACL) Injury or Tear. Retrieved from https://www.hopkinsmedicine.org/health/conditions-and-diseases/acl-injury-or-tear.

Li, K., Du, J., Huang, L.-X., Ni, L., Liu, T., & Yang, H.-L. (2017). The diagnostic accuracy of magnetic resonance imaging for anterior cruciate ligament injury in comparison to arthroscopy: a meta-analysis. *Scientific Reports*, 7(1), 7583-7583. Retrieved from <u>https://www.ncbi.nlm.nih.gov/pubmed/28790406</u>

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5548790/. doi:10.1038/s41598-017-08133-4

Liebert, R. (2016). Establishment and Evaluation of an Anterior Cruciate Ligament Injury Prevention Program. *Orthopaedic Nursing*, *35*(3), 161-171. Retrieved from <u>http://mcgill.on.worldcat.org/atoztitles/link?sid=OVID:medline&id=pmid:27187221</u> <u>&id=doi:10.1097%2FNOR.0000000000245&issn=0744-</u> <u>6020&isbn=&volume=35&issue=3&spage=161&pages=161-</u> *71&date=2016&title=Orthopaedic+Nursing&atitle=Establishment+and+Evaluation+* of+an+Anterior+Cruciate+Ligament+Injury+Prevention+Program.&aulast=Liebert.

doi:https://dx.doi.org/10.1097/NOR.00000000000245

- Livingston, M. A., Sebastian, J., Ai, Z., & Decker, J. W. (2012, 4-8 March 2012). Performance measurements for the Microsoft Kinect skeleton. Paper presented at the 2012 IEEE Virtual Reality Workshops (VRW).
- Lopes, T. J. A., Simic, M., Myer, G. D., Ford, K. R., Hewett, T. E., & Pappas, E. (2017). The Effects of Injury Prevention Programs on the Biomechanics of Landing Tasks: A Systematic Review With Meta-analysis. *American Journal of Sports Medicine*, 363546517716930. Retrieved from http://mcgill.on.worldcat.org/atoztitles/link?sid=OVID:medline&id=pmid:28759729 &id=doi:10.1177%2F0363546517716930&issn=0363-5465&isbn=&volume=&issue=&spage=363546517716930&pages=36354651771693 0&date=2017&title=American+Journal+of+Sports+Medicine&atitle=The+Effects+of +Injury+Prevention+Programs+on+the+Biomechanics+of+Landing+Tasks%3A+A+S

ystematic+Review+With+Meta-analysis.&aulast=Lopes.

doi:https://dx.doi.org/10.1177/0363546517716930

- Malanga, G. A., Andrus, S., Nadler, S. F., & McLean, J. (2003). Physical examination of the knee: a review of the original test description and scientific validity of common orthopedic tests. *Arch Phys Med Rehabil, 84*(4), 592-603. doi:10.1053/apmr.2003.50026
- Marshall, S. W. (2010). Recommendations for defining and classifying anterior cruciate ligament injuries in epidemiologic studies. *Journal of Athletic Training*, 45(5), 516-518. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/20831401

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2938327/. doi:10.4085/1062-6050-45.5.516

- Merriaux, P., Dupuis, Y., Boutteau, R., Vasseur, P., & Savatier, X. (2017). A Study of Vicon System Positioning Performance. *Sensors*, 17(7). doi:10.3390/s17071591
- Microsoft. (2013). Microsoft Kinect. Retrieved from https://www.microsoft.com/en-us/
- Mokka. (2013). Mokka: Motion Kinematic & Kinetic Analyzer Retrieved from http://biomechanical-toolkit.github.io/docs/Mokka/index.html
- Mullholland, E. (2008). WHAT SPORT CAN DO.
- Naraghi, A., & White, L. M. (2014). MR imaging of cruciate ligaments. *Magn Reson Imaging Clin N Am, 22*(4), 557-580. doi:10.1016/j.mric.2014.07.003
- Noyes, F. R., Mooar, P. A., Matthews, D. S., & Butler, D. L. (1983). The symptomatic anterior cruciate-deficient knee. Part I: the long-term functional disability in athletically active individuals. *J Bone Joint Surg Am*, 65(2), 154-162. doi:10.2106/00004623-198365020-00003
- Orlando Junior, N., de Souza Leao, M. G., & de Oliveira, N. H. (2015). Diagnosis of knee injuries: comparison of the physical examination and magnetic resonance imaging with

the findings from arthroscopy. *Rev Bras Ortop*, 50(6), 712-719. doi:10.1016/j.rboe.2015.10.007

Orlando Júnior, N., de Souza Leão, M. G., & de Oliveira, N. H. C. (2015). Diagnosis of knee injuries: comparison of the physical examination and magnetic resonance imaging with the findings from arthroscopy. *Rev Bras Ortop*, 50(6), 712-719. Retrieved from <u>https://www.ncbi.nlm.nih.gov/pubmed/27218085</u>

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4867911/. doi:10.1016/j.rboe.2015.10.007

Pappas, E., Nightingale, E. J., Simic, M., Ford, K. R., Hewett, T. E., & Myer, G. D. (2015). Do exercises used in injury prevention programmes modify cutting task biomechanics? A systematic review with meta-analysis. *Br J Sports Med*, 49(10), 673-680. Retrieved from

http://mcgill.on.worldcat.org/atoztitles/link?sid=OVID:medline&id=pmid:25492646 &id=doi:10.1136%2Fbjsports-2014-093796&issn=0306-

3674&isbn=&volume=49&issue=10&spage=673&pages=673-

80&date=2015&title=British+Journal+of+Sports+Medicine&atitle=Do+exercises+us ed+in+injury+prevention+programmes+modify+cutting+task+biomechanics%3F+A+ systematic+review+with+meta-analysis.&aulast=Pappas

- https://bjsm.bmj.com/content/49/10/673.long. doi:https://dx.doi.org/10.1136/bjsports-2014-093796
- Park, D. S., Lee, D. G., Lee, K., & Lee, G. (2017). Effects of Virtual Reality Training using Xbox Kinect on Motor Function in Stroke Survivors: A Preliminary Study. *J Stroke Cerebrovasc Dis*, 26(10), 2313-2319. doi:10.1016/j.jstrokecerebrovasdis.2017.05.019
- Petersen, W., & Tillmann, B. (1999). Structure and vascularization of the cruciate ligaments of the human knee joint. *Anat Embryol (Berl)*, 200(3), 325-334.

- Peterson, C. S. (2017). Posterior Cruciate Ligament Injury. Retrieved from https://emedicine.medscape.com/article/90514-overview
- POSNA. (2018). Tibial Spine Fractures. Retrieved from <u>https://posna.org/Physician-</u> Education/Study-Guide/Tibial-Spine-Fractures.
- Prins, M. (2006). The Lachman test is the most sensitive and the pivot shift the most specific test for the diagnosis of ACL rupture. *Aust J Physiother*, *52*(1), 66.
- Purnell, M. L., Larson, A. I., & Clancy, W. (2008). Anterior Cruciate Ligament Insertions on the Tibia and Femur and Their Relationships to Critical Bony Landmarks Using High-Resolution Volume-Rendering Computed Tomography. *Am J Sports Med, 36*(11), 2083-2090. Retrieved from <u>https://doi.org/10.1177/0363546508319896</u>. doi:10.1177/0363546508319896
- Redler, L. H., Watling, J. P., Dennis, E. R., Swart, E., & Ahmad, C. S. (2016). Reliability of a field-based drop vertical jump screening test for ACL injury risk assessment. *The Physician and Sportsmedicine, 44*(1), 46-52. Retrieved from https://doi.org/10.1080/00913847.2016.1131107.

doi:10.1080/00913847.2016.1131107

Rodriguez, C., Echegoyen, S., & Aoyama, T. (2017). The effects of "Prevent Injury and Enhance Performance Program" in a female soccer team. *Journal of Sports Medicine* & *Physical Fitness, 21, 21.* Retrieved from <a href="http://mcgill.on.worldcat.org/atoztitles/link?sid=OVID:medline&id=pmid:28222578&did=doi:10.23736%2FS0022-4707.17.07024-4&dissn=0022-4707&disbn=&volume=&dissue=&spage=&date=2017&ditle=Journal+of+Sports+Medicine+%26+Physical+Fitness&atitle=The+effects+of+%22Prevent+Injury+and+Enhance+Performance+Program%22+in+a+female+soccer+team.&aulast=Rodriguez.doi:https://dx.doi.org/10.23736/S0022-4707.17.07024-4

- Rush. (2013). New Study Reveals Economic Benefit of ACL Surgery. Retrieved from https://www.rush.edu/news/press-releases/new-study-reveals-economic-benefit-acl-surgery
- Ryu, S. M., Na, H. D., & Shon, O. J. (2018). Diagnostic Tools for Acute Anterior Cruciate Ligament Injury: GNRB, Lachman Test, and Telos. *Knee Surgery & Related Research*, 30(2), 121-127. Retrieved from <u>https://www.ncbi.nlm.nih.gov/pubmed/29554717</u>

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5990229/. doi:10.5792/ksrr.17.014

- Shih, M. C., Wang, R. Y., Cheng, S. J., & Yang, Y. R. (2016). Effects of a balance-based exergaming intervention using the Kinect sensor on posture stability in individuals with Parkinson's disease: a single-blinded randomized controlled trial. *J Neuroeng Rehabil*, *13*(1), 78. doi:10.1186/s12984-016-0185-y
- Shultz, R., Silder, A., Malone, M., Braun, H. J., & Dragoo, J. L. (2015). Unstable Surface Improves Quadriceps:Hamstring Co-contraction for Anterior Cruciate Ligament Injury Prevention Strategies. *Sports Health*, 7(2), 166-171. Retrieved from <u>http://mcgill.on.worldcat.org/atoztitles/link?sid=OVID:medline&id=pmid:25984263</u> <u>&id=doi:10.1177%2F1941738114565088&issn=1941-</u> <u>7381&isbn=&volume=7&issue=2&spage=166&pages=166-</u>

71&date=2015&title=Sports+Health&atitle=Unstable+Surface+Improves+Quadricep s%3AHamstring+Co-

<u>contraction+for+Anterior+Cruciate+Ligament+Injury+Prevention+Strategies.&aulast</u> =Shultz

- https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4332646/pdf/10.1177_1941738114565088.p df. doi:https://dx.doi.org/10.1177/1941738114565088
- Sugimoto, D., Mattacola, C. G., Bush, H. M., Thomas, S. M., Foss, K. D., Myer, G. D., & Hewett, T. E. (2017). Preventive Neuromuscular Training for Young Female Athletes:

Comparison of Coach and Athlete Compliance Rates. Journal of Athletic Training,52(1),58-64.Retrievedfromhttp://mcgill.on.worldcat.org/atoztitles/link?sid=OVID:medline&id=pmid:27977300&id=doi:10.4085%2F1062-6050-51.12.20&issn=1062-6050&isbn=&volume=52&issue=1&spage=58&pages=58-64&date=2017&title=Journal+of+Athletic+Training&atitle=Preventive+Neuromuscular+Training+for+Young+Female+Athletes%3A+Comparison+of+Coach+and+Athlete+Compliance+Rates.&aulast=Sugimoto

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5293519/pdf/i1062-6050-52-1-58.pdf. doi:https://dx.doi.org/10.4085/1062-6050-51.12.20

- Tanaka, K., Ogawa, M., Inagaki, Y., Tanaka, Y., Nishikawa, H., & Hattori, K. (2017). Human knee joint sound during the Lachman test: Comparison between healthy and anterior cruciate ligament-deficient knees. J Orthop Sci, 22(3), 488-494. doi:10.1016/j.jos.2016.12.023
- Tombrowski, A. (2014). Lab Rat: 3D Gait Analysis. Retrieved from https://runningmagazine.ca/health-nutrition/body-work/lab-rat-3d-gait-analysis/.
- Trilha Junior, M., Fancello, E. A., Mello Roesler, C. R. d., & Ocampo More, A. D. (2009). Simulação numérica tridimensional da mecânica do joelho humano. *Acta Ortopédica Brasileira*, 17(2).

Vicon. (2018). Vicon Configuration. Retrieved from https://www.vicon.com/visualization.

- Vieira, A., Gabriel, J., Melo, C., & Machado, J. (2017). Kinect system in home-based cardiovascular rehabilitation. *Proc Inst Mech Eng H*, 231(1), 40-47. doi:10.1177/0954411916679201
- Whyte, E. F., Richter, C., O'Connor, S., & Moran, K. A. (2017). Effects of a dynamic core stability program on the biomechanics of cutting maneuvers: A randomized controlled

trial. *Scand J Med Sci Sports, 12*, 12. Retrieved from <u>http://mcgill.on.worldcat.org/atoztitles/link?sid=OVID:medline&id=pmid:28605148</u> &id=doi:10.1111%2Fsms.12931&issn=0905-

7188&isbn=&volume=&issue=&spage=&pages=&date=2017&title=Scandinavian+J ournal+of+Medicine+%26+Science+in+Sports&atitle=Effects+of+a+dynamic+core+ stability+program+on+the+biomechanics+of+cutting+maneuvers%3A+A+randomize d+controlled+trial.&aulast=Whyte

https://onlinelibrary.wiley.com/doi/abs/10.1111/sms.12931.

doi:https://dx.doi.org/10.1111/sms.12931

<u>ce-</u>

- Whyte, E. F., Richter, C., O'Connor, S., & Moran, K. A. (2018). Effects of a dynamic core stability program on the biomechanics of cutting maneuvers: A randomized controlled trial. *Scand J Med Sci Sports, 28*(2), 452-462. Retrieved from <u>https://doi.org/10.1111/sms.12931</u>. doi:10.1111/sms.12931
- Zebis, M. K., Andersen, L. L., Brandt, M., Myklebust, G., Bencke, J., Lauridsen, H. B., . . . Aagaard, P. (2016). Effects of evidence-based prevention training on neuromuscular and biomechanical risk factors for ACL injury in adolescent female athletes: a randomised controlled trial. *Br J Sports Med*, *50*(9), 552-557. Retrieved from <u>http://mcgill.on.worldcat.org/atoztitles/link?sid=OVID:medline&id=pmid:26400955</u> <u>&id=doi:10.1136%2Fbjsports-2015-094776&issn=0306-</u> <u>3674&isbn=&volume=50&issue=9&spage=552&pages=552-</u> <u>7&date=2016&title=British+Journal+of+Sports+Medicine&atitle=Effects+of+eviden</u>

<u>based+prevention+training+on+neuromuscular+and+biomechanical+risk+factors+for</u> <u>+ACL+injury+in+adolescent+female+athletes%3A+a+randomised+controlled+trial.</u> <u>&aulast=Zebis</u> https://bjsm.bmj.com/content/50/9/552.long. doi:https://dx.doi.org/10.1136/bjsports-2015-094776

Zhiyu, H., Griffin, J., Babiuch, R., Gray, A., Willis, B., Marjorie, S., & Shining, S. (2015). Examining the feasibility of a Microsoft Kinect TM based game intervention for individuals with anterior cruciate ligament injury risk. Conference Proceedings: ... Annual International Conference of the IEEE Engineering in Medicine & Biology 2015, 7059-7062. Retrieved Society, from http://mcgill.on.worldcat.org/atoztitles/link?sid=OVID:medline&id=pmid:26737918 &id=doi:10.1109%2FEMBC.2015.7320018&issn=1557-170X&isbn=&volume=2015&issue=&spage=7059&pages=7059-62&date=2015&title=Conference+Proceedings%3A+...+Annual+International+Confe rence+of+the+IEEE+Engineering+in+Medicine+%26+Biology+Society&atitle=Exa mining+the+feasibility+of+a+Microsoft+Kinect+TM+based+game+intervention+for +individuals+with+anterior+cruciate+ligament+injury+risk.&aulast=Griffin https://ieeexplore.ieee.org/document/7320018/.

doi:https://dx.doi.org/10.1109/EMBC.2015.7320018

12.0 Supplemental Materials

Appendix 1: Protocol Risk prediction of ACL injuries: A New Model

Principal Investigator: Dr. Paul-André Martineau – Associate Member - Division of Experimental Medicine McGill University

Co-Investigators:

Dr. Thomas Fevens - Associate Professor, Computer Science and Software Engineering Concordia University Dr. Hassan Rivaz - Assistant Professor, Electrical and Computer Engineering Concordia University Dr. Louis-Nicolas Veilleux Department of Surgery McGill University; Shriners Hospital for Children

McGill student (MSc. Candidate): Nicolaos Karatzas, Division of Experimental Medicine, McGill University

Study Purpose and Rationale

Anterior cruciate ligament (ACL) tears are frequent injuries making ACL reconstruction one of the most commonly performed orthopaedic surgeries^(Garrett et al., 2006). Despite the significant advances in surgical techniques over the years, it remains fraught with frequent complications such as graft rupture, clinical failure and ultimately osteoarthritis. Risk factors that have been associated with ACL injury include the size of the femoral notch, the diameter of the ACL, the mechanical axis of the lower extremities and other specific anatomical features(Alentorn-Geli et al., 2014). Female athletes are more prone to ACL injuries and tear their ACL two to eight times more frequently than male athletes(Ireland, 2002). Factors associated with a higher risk of ACL injury in women athletes include hormonal status and increased knee laxity. Although many of the aforementioned factors are not modifiable, others like core stability, quadriceps dominance and jumping/landing mechanics are. In fact, neuromuscular training programs have shown decreased injury rates in the order of 39% in female athletes, but their adoption is far from uniform nor widespread in Canada(Sugimoto, Myer, Barber Foss, & Hewett, 2014). The poor natural history of the ACL injured knee and failure of current surgical techniques to overcome long-term deterioration suggest research should be directed at injury prevention for improved long-term patient outcome.

Motion analysis systems have shown that jumping dynamics can reliably predict the risk of knee injury, but such systems are expensive and are only available in well-equipped research centers(Hewett, Roewer, Ford, & Myer, 2015b). The only current method to assess risk of ACL injury is the Gait analysis. This motion analysis system uses a number of high definition motion and infrared cameras to pick up a number of angles and points in space during a biomechanical movement(Arneja & Leith, 2009). A study by Hewett et. al demonstrated that individuals with greater initial knee coronal angle and smaller peak knee sagittal angles when performing a standardized drop vertical jump have a decreased risk of injury(Hewett et al., 2015b). This method requires a unique testing lab with specialized equipment and is very costly. Following analysis and risk of ACL injury the athletes are provided with feedback on exercise and muscle strengthen regimens based on their risk. This is the only currently available prophylactic method.

In the study proposed, we will not be able to predict risk. At the completion of this study, we are establishing which parameters (i.e. angles) could indicate a high risk of ACL injury. Future studies would then be proposed to further validate this system in a predictive fashion.

Hypothesis and Project Objectives:

The goal of this proposal is to create an injury prevention application that is powerful, easy to use and adopt using commercially available motion capture hardware and downloadable on most smartphones.

Our proposed system is based on the Xbox Kinect system that has infrared depth sensors with the ability to measure joint angles, similar to those detected and measured with the Gait analysis. We have created an algorithm to pick up these angles with our Xbox Kinect system. This low-cost tracking program records, identifies and analyzes individual's angles of jumps at many time points. The specific angles focused on are initial knee coronal angle and peak knee sagittal angles during a standardized vertical jump. It then computes the data of a patient's jump and calculates a risk score for ACL injury. This proposed research project will focus on establishing accurate parameters for analysis, the validation and implementation of this system.

The overall objective of our research is organized into two phases:

- Phase 1: Pilot study to establish parameters. Participants will perform both the Gait analysis (Gold Standard) and then tested using our single camera kinect system. We will test different movement parameters (i.e. jumping, lunging, drop and jump etc.), measure the different angles of these jumps at multiple time points and then we will calculate a risk score for ACL injury. Upon establishing the most relevant parameters (peak vs initial sagittal and coronal knee angles) the next step will be to determine a risk score threshold that we can dichotomize into categories that will be useful to the end users (patients, athletes, etc.). The two categories will be based on high risk or low risk depending on the peak vs initial sagittal and coronal knee angles. Based on the literature⁵ we will set a low risk if there is greater initial knee coronal angle and smaller peak knee sagittal angles and a high risk reflecting the opposite. The parameters for our risk prediction tool are: peak sagittal knee angle, peak coronal knee angle, initial sagittal knee angle, initial coronal knee angle. The gait analysis will generate a series of angles which we will then extrapolate to determine the risk score. Similarly, the Kinect device will generate a series of angles which we will also extrapolate to determine the risk score. Our data will then be compared to the angles calculated by the Gait analysis in order to refine out high and low risk score angles and establish the most sensitive and specific parameters. We will then perform a chi squared test to determine whether there are significant differences between the Kinect system and the gait analysis.
- Phase 2: Validation phase. This phase will be a head to head comparison of our Kinect system to the Gait analysis. Once again, a chi squared test will be performed to establish the difference between the two systems. In this phase, we will also validate our system with both injured and healthy patients.

• Phase 3: Mobile application phase. This phase will involve moving the Kinect based system to a mobile device.

Furthermore, participants recruited to this study will be re-analyzed at a later time point, to reassess their performance. This will allow us to follow participants should they incur an ACL injury and calculate accuracy and sensitivity of this method. For those participants that had previous ACL injuries we will follow them to assess the method as well.

Our research is built on the hypothesis that a prophylactic approach, through the identification of individuals predisposed to ACL injury will reduce the number of ACL procedures and mitigate long term joint destruction.

We hypothesize that our Kinect/mobile application will be comparable to the gait analysis as an effective early screening tool to help identify athletes at risk for ACL injury.

Clinical outcomes/potentials:

A successful outcome of the proposed research will lead to a decrease in the deleterious effects of ACL injury through injury prevention by creating an easy to use smartphone app to identify patients at risk of injury. The mobile application would serve as a screening tool for therapists, coaches, medical professionals, even parents to identify individuals with specific imbalances predisposing them to ACL injury. This low-cost tracking program will record, identify and analyze individual's angles of jumps at multiple time points. It will then compute the data of a patient's jump and calculate a risk score for ACL injury. The development of novel Canadian health care technology can have an important economic impact for Canada through the training of the next generation of health prevention researchers.

Study Design

This is a prospective unblinded non-randomized clinical trial that will recruit participants from McGill University's student body. The project consists of two phases: Phase 1: referred to our pilot phase for the establishment of optimal parameters (i.e. jumps, lunges, angle calculations) to assess the ACL risk score and benchmark it to the gold standard (gait analysis). Phase 2: Once completed a power analysis will be performed to assess the number of participants required for validation of our system on a larger cohort of participants for the direct comparison of the performance of this to test the gold standard: Gait analysis.

Study Population

The participating population will include active individuals between the ages of 18 and 30. We propose to recruit individuals who are at high risk of ACL injury (varsity athletes). Phase 1: The pilot study will consist of 10-20 students, which will help establish baseline parameters and logistics. Phase 2: Once the pilot study is completed a power analysis will be performed, taking all the parameters in consideration at which time we may need to increase our participants. All participants will be approached by the study coordinator who will present the research initiative. A consent form will be provided to them outlining the research project as well as what they need to do in order to participate. Should the participants wish to explore this, they will then meet with the graduate student working on this project.

- Inclusion:
 - Individuals competing in sports (years of participation will be noted)
- Exclusion:
 - Ages less than 18 and greater than 30,
 - lower limb injury at time of consent
 - non-athletic (less than 150 minutes of exercise/week)

Methodology

The ideal time for recruitment and testing will be determined with the coaching staff of McGill University's varsity teams so as to not interfere with their training schedule. We will first approach the head coach and/or strength and conditioning coach of the teams to receive their approval, prior to approaching the athletes. As part of the pilot study, 10-20 participants will be chosen to test out the Kinect/mobile application as well as perform a gait analysis in order to compare results and calibrate the application. In order to reach 10-20 participants for the pilot we will be contacting individuals by word of mouth through personal networks. The research component will include about 200 athletes being tested with the Kinect/mobile application. This is determined using 95% confidence level with a confidence interval of 5 and estimating a population of 400 McGill Varsity athletes. Due to the mobility of the system, the tests will be done at the McGill Currie Gymnasium where the athletes train.

Study Procedures/Schedule

i. Participants will be presented with study and consented as soon as ethics approval has been granted from the McGill Research Ethics Board (REB). Estimated date of February 2018.

ii. Basic data will be collected (see CRF attached) to allow for statistical analysis. Data will also be obtained from their pre-season assessments that were completed by the trained strength and conditioning coach. This is to happen immediately following REB approval.

iii. Ten to twenty participants will be asked to attend a 1 hour session where they will come to the Shriners Lab for testing using 3-dimensional optical motion capture (Qualisys) sampled at 100 Hz and floor mounted and step mounted force plates (AMTI) sampled at 2000. Reflective markers will be attached to participants over anatomic landmarks according to previous guidelines(Collins, Ghoussayni, Ewins, & Kent, 2009). Data collection will begin with a static trial. The static trial will be used to determine joint centres and as an anatomic calibration. This is a non-invasive test with no discomfort. They will perform 1-2 dynamic knee assessments (drop jump test, or single leg hop test) while being monitored by the gait analysis system followed by our novel low-cost tracking application. A drop jump test is a standardised test where individuals leap down from a 31cm block and then proceed to jump as high as they can while reaching up with their arms. A single leg hop test consists of standing on one leg and attempting to jump to a maximum forward distance. The remainder of the participants (about 180 individuals) will only be assessed on the Kinect/mobile application. For all trials, they will perform 2 practice trials of each activity. Testing will proceed until 5 successful trials of each activity are collected. The timeline for this pilot testing period is anywhere between 3-5 weeks depending on athletes' availability. The timeline for the participants that are only part of the Kinect/mobile application testing will be between 2-3 months given the large number of participants. Estimated date for pilot study is March 2018 followed by mobile application study May 2018.

iv. After 6 months, the research team will contact the medical staff from the teams to confirm if any injuries have occurred. This long-term tracking will be made clear to the team staff at the initiation of the study. Should our tool prove to be effective we will be contacting the strength and conditioning coaches to inform them of our findings. They will then use their judgment and expertise to determine the appropriate exercise prevention program for that specific athlete. The athletes will not be contacted directly by our research team. Measurements

Joint laxity will be measured with a non-invasive KT 1000 device. This is an arthrometer that was developed to measure anterior tibial motion relative to the femur in millimeters(Arneja & Leith, 2009). This will provide us with objective data for our analysis. Basic demographic and clinical data such as age, sex, health status, height, weight, previous knee injuries, smoking habits will be collected. Health status will be determined based on participants disclosure of previous health issues preventing them from exercise. This information will be collected in

order to determine other possible links between injured and un-injured athletes throughout our study. See table attached.

Data analysis plan

The results from the Kinect software testing will be compared to the gait analysis. This will give grounds to calibrating our Kinect software and application. Furthermore, data collected during the validation phase will establish the accuracy of ACL risk prevention by performing statistical analysis on the different parameters captured as described above. The Kinect system records a video of the movements which it then uses measure joint angles. Following a jump, the only data that is captured is the vectors moving in space.

Confidentiality

In order to maintain confidentiality while still being able to compare individual's longitudinally, participants will be given a unique code (double coding system) in order to track whether or not they had an injury and go back to their baseline measures to determine biomechanical discrepancies. We will use a double coding system where each participant is given a random 4 digit number and only the director of the study will hold the key. The data will be password-protected and maintained on an external hard drive in the lab of Dr Martineau. Data will be stored for 25 years after study closure should further analysis be required. For example, if the participant has consented to having his data accessible for future studies they will then be used to any follow up studies.

Ethical considerations

This study will be conducted according to ethical principles stated in the Declaration of Helsinki (2013), ethics approval will be obtained before initiating study, consent forms will take into consideration the well-being, free-will and respect of the participants, including respect of privacy, etc. It will be conducted in accordance with the policies and procedures governing the ethical conduct of research involving human participants at McGill University.

References

- Agel, J., Rockwood, T., & Klossner, D. (2016). Collegiate ACL Injury Rates Across 15 Sports: National Collegiate Athletic Association Injury Surveillance System Data Update (2004-2005 Through 2012-2013). *Clin J Sport Med, 26*(6), 518-523. doi:10.1097/jsm.00000000000290
- Alentorn-Geli, E., Mendiguchia, J., Samuelsson, K., Musahl, V., Karlsson, J., Cugat, R., & Myer, G. D. (2014). Prevention of anterior cruciate ligament injuries in sports. Part I: systematic review of risk factors in male athletes. *Knee Surg Sports Traumatol Arthrosc, 22*(1), 3-15. doi:10.1007/s00167-013-2725-3
- AmericanSportsData. (2006). Sports Injury Study. Retrieved from http://www.familiesafield.org/pdf/injury_page.pdf
- Amis, A. A., & Dawkins, G. P. (1991). Functional anatomy of the anterior cruciate ligament.
 Fibre bundle actions related to ligament replacements and injuries. J Bone Joint Surg Br, 73(2), 260-267.
- Arneja, S., & Leith, J. (2009). Review article: Validity of the KT-1000 knee ligament arthrometer. *J Orthop Surg (Hong Kong), 17*(1), 77-79. doi:10.1177/230949900901700117
- Beck, N. A., Lawrence, J. T. R., Nordin, J. D., DeFor, T. A., & Tompkins, M. (2017). ACL Tears in School-Aged Children and Adolescents Over 20 Years. *Pediatrics*, 139(3). doi:10.1542/peds.2016-1877
- Benjaminse, A., Otten, B., Gokeler, A., Diercks, R. L., & Lemmink, K. (2017). Motor learning strategies in basketball players and its implications for ACL injury prevention: a randomized controlled trial. *Knee Surgery, Sports Traumatology, Arthroscopy, 25*(8),

2365-2376. Retrieved from

http://mcgill.on.worldcat.org/atoztitles/link?sid=OVID:medline&id=pmid:26259551 &id=doi:10.1007%2Fs00167-015-3727-0&issn=0942-

2056&isbn=&volume=25&issue=8&spage=2365&pages=2365-

2376&date=2017&title=Knee+Surgery%2C+Sports+Traumatology%2C+Arthroscopy& atitle=Motor+learning+strategies+in+basketball+players+and+its+implications+for+A CL+injury+prevention%3A+a+randomized+controlled+trial.&aulast=Benjaminse

- https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5522510/pdf/167_2015_Article_3727.pdf. doi:https://dx.doi.org/10.1007/s00167-015-3727-0
- Campbell, C. J., Carson, J. D., Diaconescu, E. D., Celebrini, R., Rizzardo, M. R., Godbout, V., . .
 . Cote, M. (2014). Canadian Academy of Sport and Exercise Medicine position statement: Neuromuscular training programs can decrease anterior cruciate ligament injuries in youth soccer players. *Clin J Sport Med*, *24*(3), 263-267. doi:10.1097/jsm.0000000000068
- Coakley, J. J., Donnelly, P., & Coakley, J. J. (2009). *Sports in society : issues and controversies*. Toronto: McGraw-Hill Ryerson.
- Collins, T. D., Ghoussayni, S. N., Ewins, D. J., & Kent, J. A. (2009). A six degrees-of-freedom marker set for gait analysis: repeatability and comparison with a modified Helen Hayes set. *Gait Posture*, *30*(2), 173-180. doi:10.1016/j.gaitpost.2009.04.004
- Dallinga, J. M., Benjaminse, A., & Lemmink, K. A. (2012). Which screening tools can predict injury to the lower extremities in team sports?: a systematic review. *Sports Med*, 42(9), 791-815. doi:10.2165/11632730-00000000-00000

Ericksen, H. M., Thomas, A. C., Gribble, P. A., Armstrong, C., Rice, M., & Pietrosimone, B. (2016). Jump-landing biomechanics following a 4-week real-time feedback intervention and retention. *Clinical Biomechanics, 32*, 85-91. Retrieved from <u>http://mcgill.on.worldcat.org/atoztitles/link?sid=OVID:medline&id=pmid:26859853</u> <u>&id=doi:10.1016%2Fj.clinbiomech.2016.01.005&issn=0268-</u> 0033&isbn=&volume=32&issue=&spage=85&pages=85-91&date=2016&title=Clinical+Biomechanics&atitle=Jumplanding+biomechanics+following+a+4-week+realtime+feedback+intervention+and+retention.&aulast=Ericksen

- https://www.clinbiomech.com/article/S0268-0033(16)00021-8/fulltext. doi:https://dx.doi.org/10.1016/j.clinbiomech.2016.01.005
- FIFA. (2007). The 11 injury prevention programme. Retrieved from <u>https://www.fifa.com/development/news/y=2007/m=5/news=the-injury-prevention-programme-513868.html</u>.
- Fraser. (2017). Waiting Your Turn: Wait Times for Health Care in Canada, 2017 Report. Retrieved from <u>https://www.genourob.com/diagnostic-ligaments_news_kt1000-arthrometer-test-knee-laxity.phtml</u>.
- Garrett, W. E., Jr., Swiontkowski, M. F., Weinstein, J. N., Callaghan, J., Rosier, R. N., Berry, D. J., . . Derosa, G. P. (2006). American Board of Orthopaedic Surgery Practice of the Orthopaedic Surgeon: Part-II, certification examination case mix. *J Bone Joint Surg Am*, 88(3), 660-667. doi:10.2106/jbjs.e.01208
- Genourob. (2018). KT100 Arthrometer: Test Knee Laxity. Retrieved from <u>https://www.genourob.com/diagnostic-ligaments_news_kt1000-arthrometer-test-knee-laxity.phtml</u>.

- Giori, N. J., Beaupre, G. S., & Carter, D. R. (1993). Cellular shape and pressure may mediate mechanical control of tissue composition in tendons. *J Orthop Res, 11*(4), 581-591. doi:10.1002/jor.1100110413
- Gornitzky, A. L., Lott, A., Yellin, J. L., Fabricant, P. D., Lawrence, J. T., & Ganley, T. J. (2016).
 Sport-Specific Yearly Risk and Incidence of Anterior Cruciate Ligament Tears in High School Athletes: A Systematic Review and Meta-analysis. *Am J Sports Med*, 44(10), 2716-2723. doi:10.1177/0363546515617742
- Gray, A. D., Willis, B. W., Skubic, M., Huo, Z., Razu, S., Sherman, S. L., . . . Siesener, N. J. (2017). Development and Validation of a Portable and Inexpensive Tool to Measure the Drop Vertical Jump Using the Microsoft Kinect V2. *Sports Health*, 9(6), 537-544. doi:10.1177/1941738117726323
- Hewett, T. E., Ford, K. R., Xu, Y. Y., Khoury, J., & Myer, G. D. (2016). Utilization of ACL Injury Biomechanical and Neuromuscular Risk Profile Analysis to Determine the Effectiveness of Neuromuscular Training. *American Journal of Sports Medicine*, 44(12), 3146-3151. Retrieved from

http://mcgill.on.worldcat.org/atoztitles/link?sid=OVID:medline&id=pmid:27474385 &id=doi:10.1177%2F0363546516656373&issn=0363-

5465&isbn=&volume=44&issue=12&spage=3146&pages=3146-

3151&date=2016&title=American+Journal+of+Sports+Medicine&atitle=Utilization+o f+ACL+Injury+Biomechanical+and+Neuromuscular+Risk+Profile+Analysis+to+Determ ine+the+Effectiveness+of+Neuromuscular+Training.&aulast=Hewett

- https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5513480/pdf/nihms873393.pdf. doi:https://dx.doi.org/10.1177/0363546516656373
- Hewett, T. E., Roewer, B., Ford, K., & Myer, G. (2015a). Multicenter trial of motion analysis for injury risk prediction: lessons learned from prospective longitudinal large cohort combined biomechanical - epidemiological studies. *Brazilian Journal of Physical Therapy, 06,* 06. Retrieved from

http://mcgill.on.worldcat.org/atoztitles/link?sid=OVID:medline&id=pmid:26445418 &id=doi:10.1590%2Fbjpt-rbf.2014.0121&issn=1413-

<u>3555&isbn=&volume=19&issue=5&spage=398&pages=&date=2015&title=Brazilian+J</u> ournal+of+Physical+Therapy&atitle=Multicenter+trial+of+motion+analysis+for+injur y+risk+prediction%3A+lessons+learned+from+prospective+longitudinal+large+cohor t+combined+biomechanical+-+epidemiological+studies.&aulast=Hewett

- http://www.scielo.br/pdf/rbfis/v19n5/1413-3555-rbfis-20140121.pdf. doi:https://dx.doi.org/10.1590/bjpt-rbf.2014.0121
- Hewett, T. E., Roewer, B., Ford, K., & Myer, G. (2015b). Multicenter trial of motion analysis for injury risk prediction: lessons learned from prospective longitudinal large cohort combined biomechanical - epidemiological studies. *Braz J Phys Ther*, 19(5), 398-409. doi:10.1590/bjpt-rbf.2014.0121
- Ireland, M. L. (2002). The female ACL: why is it more prone to injury? *Orthop Clin North Am,* 33(4), 637-651.
- Jarbo, K. A., Hartigan, D. E., Scott, K. L., Patel, K. A., & Chhabra, A. (2017). Accuracy of the Lever Sign Test in the Diagnosis of Anterior Cruciate Ligament Injuries. Orthopaedic Journal of Sports Medicine, 5(10), 2325967117729809-2325967117729809. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/29051898

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5639970/.

doi:10.1177/2325967117729809

- JohnsHopkins. (2018). Anterior Cruciate Ligament (ACL) Injury or Tear. Retrieved from <u>https://www.hopkinsmedicine.org/health/conditions-and-diseases/acl-injury-or-tear</u>.
- Li, K., Du, J., Huang, L.-X., Ni, L., Liu, T., & Yang, H.-L. (2017). The diagnostic accuracy of magnetic resonance imaging for anterior cruciate ligament injury in comparison to arthroscopy: a meta-analysis. *Scientific Reports, 7*(1), 7583-7583. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/28790406
- https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5548790/. doi:10.1038/s41598-017-08133-4
- Liebert, R. (2016). Establishment and Evaluation of an Anterior Cruciate Ligament Injury Prevention Program. Orthopaedic Nursing, 35(3), 161-171. Retrieved from <u>http://mcgill.on.worldcat.org/atoztitles/link?sid=OVID:medline&id=pmid:27187221</u> <u>&id=doi:10.1097%2FNOR.000000000245&issn=0744-</u> <u>6020&isbn=&volume=35&issue=3&spage=161&pages=161-</u> <u>71&date=2016&title=Orthopaedic+Nursing&atitle=Establishment+and+Evaluation+o</u> <u>f+an+Anterior+Cruciate+Ligament+Injury+Prevention+Program.&aulast=Liebert.</u> doi:https://dx.doi.org/10.1097/NOR.0000000000245
- Livingston, M. A., Sebastian, J., Ai, Z., & Decker, J. W. (2012, 4-8 March 2012). *Performance measurements for the Microsoft Kinect skeleton*. Paper presented at the 2012 IEEE Virtual Reality Workshops (VRW).
- Lopes, T. J. A., Simic, M., Myer, G. D., Ford, K. R., Hewett, T. E., & Pappas, E. (2017). The Effects of Injury Prevention Programs on the Biomechanics of Landing Tasks: A Systematic Review With Meta-analysis. *American Journal of Sports Medicine*, 363546517716930. Retrieved from

http://mcgill.on.worldcat.org/atoztitles/link?sid=OVID:medline&id=pmid:28759729 &id=doi:10.1177%2F0363546517716930&issn=0363-

5465&isbn=&volume=&issue=&spage=363546517716930&pages=36354651771693 0&date=2017&title=American+Journal+of+Sports+Medicine&atitle=The+Effects+of+I njury+Prevention+Programs+on+the+Biomechanics+of+Landing+Tasks%3A+A+Syste matic+Review+With+Meta-analysis.&aulast=Lopes. doi:https://dx.doi.org/10.1177/0363546517716930

- Malanga, G. A., Andrus, S., Nadler, S. F., & McLean, J. (2003). Physical examination of the knee: a review of the original test description and scientific validity of common orthopedic tests. *Arch Phys Med Rehabil, 84*(4), 592-603. doi:10.1053/apmr.2003.50026
- Marshall, S. W. (2010). Recommendations for defining and classifying anterior cruciate ligament injuries in epidemiologic studies. *Journal of Athletic Training, 45*(5), 516-518. Retrieved from <u>https://www.ncbi.nlm.nih.gov/pubmed/20831401</u>

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2938327/. doi:10.4085/1062-6050-45.5.516

Microsoft. (2013). Microsoft Kinect. Retrieved from <u>https://www.microsoft.com/en-us/</u> Mokka. (2013). Mokka: Motion Kinematic & Kinetic Analyzer Retrieved from

http://biomechanical-toolkit.github.io/docs/Mokka/index.html

- Mullholland, E. (2008). WHAT SPORT CAN DO.
- Naraghi, A., & White, L. M. (2014). MR imaging of cruciate ligaments. *Magn Reson Imaging Clin N Am, 22*(4), 557-580. doi:10.1016/j.mric.2014.07.003

- Noyes, F. R., Mooar, P. A., Matthews, D. S., & Butler, D. L. (1983). The symptomatic anterior cruciate-deficient knee. Part I: the long-term functional disability in athletically active individuals. *J Bone Joint Surg Am*, 65(2), 154-162. doi:10.2106/00004623-198365020-00003
- Orlando Junior, N., de Souza Leao, M. G., & de Oliveira, N. H. (2015). Diagnosis of knee injuries: comparison of the physical examination and magnetic resonance imaging with the findings from arthroscopy. *Rev Bras Ortop, 50*(6), 712-719. doi:10.1016/j.rboe.2015.10.007
- Orlando Júnior, N., de Souza Leão, M. G., & de Oliveira, N. H. C. (2015). Diagnosis of knee injuries: comparison of the physical examination and magnetic resonance imaging with the findings from arthroscopy. *Rev Bras Ortop, 50*(6), 712-719. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/27218085

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4867911/. doi:10.1016/j.rboe.2015.10.007

Pappas, E., Nightingale, E. J., Simic, M., Ford, K. R., Hewett, T. E., & Myer, G. D. (2015). Do exercises used in injury prevention programmes modify cutting task biomechanics? A systematic review with meta-analysis. *British Journal of Sports Medicine, 49*(10), 673-680. Retrieved from

http://mcgill.on.worldcat.org/atoztitles/link?sid=OVID:medline&id=pmid:25492646 &id=doi:10.1136%2Fbjsports-2014-093796&issn=0306-

3674&isbn=&volume=49&issue=10&spage=673&pages=673-

80&date=2015&title=British+Journal+of+Sports+Medicine&atitle=Do+exercises+use d+in+injury+prevention+programmes+modify+cutting+task+biomechanics%3F+A+sy stematic+review+with+meta-analysis.&aulast=Pappas

- https://bjsm.bmj.com/content/49/10/673.long. doi:https://dx.doi.org/10.1136/bjsports-2014-093796
- Park, D. S., Lee, D. G., Lee, K., & Lee, G. (2017). Effects of Virtual Reality Training using Xbox Kinect on Motor Function in Stroke Survivors: A Preliminary Study. *J Stroke Cerebrovasc Dis, 26*(10), 2313-2319. doi:10.1016/j.jstrokecerebrovasdis.2017.05.019
- Petersen, W., & Tillmann, B. (1999). Structure and vascularization of the cruciate ligaments of the human knee joint. *Anat Embryol (Berl), 200*(3), 325-334.
- Peterson, C. S. (2017). Posterior Cruciate Ligament Injury. Retrieved from https://emedicine.medscape.com/article/90514-overview
- POSNA. (2018). Tibial Spine Fractures. Retrieved from <u>https://posna.org/Physician-</u> <u>Education/Study-Guide/Tibial-Spine-Fractures</u>.
- Prins, M. (2006). The Lachman test is the most sensitive and the pivot shift the most specific test for the diagnosis of ACL rupture. *Aust J Physiother*, *52*(1), 66.
- Purnell, M. L., Larson, A. I., & Clancy, W. (2008). Anterior Cruciate Ligament Insertions on the Tibia and Femur and Their Relationships to Critical Bony Landmarks Using High-Resolution Volume-Rendering Computed Tomography. *Am J Sports Med*, *36*(11), 2083-2090. Retrieved from <u>https://doi.org/10.1177/0363546508319896</u>. doi:10.1177/0363546508319896

Redler, L. H., Watling, J. P., Dennis, E. R., Swart, E., & Ahmad, C. S. (2016). Reliability of a field-based drop vertical jump screening test for ACL injury risk assessment. *The Physician and Sportsmedicine*, 44(1), 46-52. Retrieved from https://doi.org/10.1080/00913847.2016.1131107. doi:10.1080/00913847.2016.1131107

- Rodriguez, C., Echegoyen, S., & Aoyama, T. (2017). The effects of "Prevent Injury and Enhance Performance Program" in a female soccer team. *Journal of Sports Medicine* & *Physical Fitness, 21*, 21. Retrieved from <u>http://mcgill.on.worldcat.org/atoztitles/link?sid=OVID:medline&id=pmid:28222578</u> &id=doi:10.23736%2FS0022-4707.17.07024-4&issn=0022-4707&isbn=&volume=&issue=&spage=&pages=&date=2017&title=Journal+of+Sport s+Medicine+%26+Physical+Fitness&atitle=The+effects+of+%22Prevent+Injury+and+ Enhance+Performance+Program%22+in+a+female+soccer+team.&aulast=Rodriguez. doi:https://dx.doi.org/10.23736/S0022-4707.17.07024-4
- Rush. (2013). New Study Reveals Economic Benefit of ACL Surgery. Retrieved from <u>https://www.rush.edu/news/press-releases/new-study-reveals-economic-benefit-acl-surgery</u>
- Ryu, S. M., Na, H. D., & Shon, O. J. (2018). Diagnostic Tools for Acute Anterior Cruciate Ligament Injury: GNRB, Lachman Test, and Telos. *Knee Surgery & Related Research*, 30(2), 121-127. Retrieved from <u>https://www.ncbi.nlm.nih.gov/pubmed/29554717</u>

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5990229/. doi:10.5792/ksrr.17.014

- Shih, M. C., Wang, R. Y., Cheng, S. J., & Yang, Y. R. (2016). Effects of a balance-based exergaming intervention using the Kinect sensor on posture stability in individuals with Parkinson's disease: a single-blinded randomized controlled trial. *J Neuroeng Rehabil*, 13(1), 78. doi:10.1186/s12984-016-0185-y
- Shultz, R., Silder, A., Malone, M., Braun, H. J., & Dragoo, J. L. (2015). Unstable Surface Improves Quadriceps:Hamstring Co-contraction for Anterior Cruciate Ligament Injury Prevention Strategies. *Sports Health, 7*(2), 166-171. Retrieved from <u>http://mcgill.on.worldcat.org/atoztitles/link?sid=OVID:medline&id=pmid:25984263</u> <u>&id=doi:10.1177%2F1941738114565088&issn=1941-</u> <u>7381&isbn=&volume=7&issue=2&spage=166&pages=166-</u>

71&date=2015&title=Sports+Health&atitle=Unstable+Surface+Improves+Quadriceps %3AHamstring+Co-

contraction+for+Anterior+Cruciate+Ligament+Injury+Prevention+Strategies.&aulast= Shultz

- https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4332646/pdf/10.1177_194173811456508 8.pdf. doi:https://dx.doi.org/10.1177/1941738114565088
- Sugimoto, D., Mattacola, C. G., Bush, H. M., Thomas, S. M., Foss, K. D., Myer, G. D., & Hewett, T. E. (2017). Preventive Neuromuscular Training for Young Female Athletes: Comparison of Coach and Athlete Compliance Rates. *Journal of Athletic Training*, 52(1), 58-64. Retrieved from

http://mcgill.on.worldcat.org/atoztitles/link?sid=OVID:medline&id=pmid:27977300 &id=doi:10.4085%2F1062-6050-51.12.20&issn=1062-

6050&isbn=&volume=52&issue=1&spage=58&pages=58-

64&date=2017&title=Journal+of+Athletic+Training&atitle=Preventive+Neuromuscul ar+Training+for+Young+Female+Athletes%3A+Comparison+of+Coach+and+Athlete+ Compliance+Rates.&aulast=Sugimoto

- https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5293519/pdf/i1062-6050-52-1-58.pdf. doi:https://dx.doi.org/10.4085/1062-6050-51.12.20
- Sugimoto, D., Myer, G. D., Barber Foss, K. D., & Hewett, T. E. (2014). Dosage Effects of Neuromuscular Training Intervention to Reduce Anterior Cruciate Ligament Injuries

in Female Athletes: Meta-and Sub-group Analyses. *Sports Med, 44*(4), 551-562. doi:10.1007/s40279-013-0135-9

- Tanaka, K., Ogawa, M., Inagaki, Y., Tanaka, Y., Nishikawa, H., & Hattori, K. (2017). Human knee joint sound during the Lachman test: Comparison between healthy and anterior cruciate ligament-deficient knees. J Orthop Sci, 22(3), 488-494. doi:10.1016/j.jos.2016.12.023
- Tombrowski, A. (2014). Lab Rat: 3D Gait Analysis. Retrieved from https://runningmagazine.ca/health-nutrition/body-work/lab-rat-3d-gait-analysis/.
- Trilha Junior, M., Fancello, E. A., Mello Roesler, C. R. d., & Ocampo More, A. D. (2009). Simulação numérica tridimensional da mecânica do joelho humano. *Acta Ortopédica Brasileira, 17*(2).
- Vicon. (2018). Vicon Configuration. Retrieved from <u>https://www.vicon.com/visualization</u>.
- Vieira, A., Gabriel, J., Melo, C., & Machado, J. (2017). Kinect system in home-based cardiovascular rehabilitation. *Proc Inst Mech Eng H, 231*(1), 40-47. doi:10.1177/0954411916679201
- Whyte, E. F., Richter, C., O'Connor, S., & Moran, K. A. (2017). Effects of a dynamic core stability program on the biomechanics of cutting maneuvers: A randomized controlled trial. *Scandinavian Journal of Medicine & Science in Sports, 12*, 12. Retrieved from

http://mcgill.on.worldcat.org/atoztitles/link?sid=OVID:medline&id=pmid:28605148 &id=doi:10.1111%2Fsms.12931&issn=0905-

7188&isbn=&volume=&issue=&spage=&pages=&date=2017&title=Scandinavian+Jou rnal+of+Medicine+%26+Science+in+Sports&atitle=Effects+of+a+dynamic+core+stabil ity+program+on+the+biomechanics+of+cutting+maneuvers%3A+A+randomized+con trolled+trial.&aulast=Whyte

- https://onlinelibrary.wiley.com/doi/abs/10.1111/sms.12931. doi:https://dx.doi.org/10.1111/sms.12931
- Whyte, E. F., Richter, C., O'Connor, S., & Moran, K. A. (2018). Effects of a dynamic core stability program on the biomechanics of cutting maneuvers: A randomized controlled trial. *Scand J Med Sci Sports, 28*(2), 452-462. Retrieved from <u>https://doi.org/10.1111/sms.12931</u>. doi:10.1111/sms.12931
- Zebis, M. K., Andersen, L. L., Brandt, M., Myklebust, G., Bencke, J., Lauridsen, H. B., . . .
 Aagaard, P. (2016). Effects of evidence-based prevention training on neuromuscular and biomechanical risk factors for ACL injury in adolescent female athletes: a randomised controlled trial. *British Journal of Sports Medicine, 50*(9), 552-557. Retrieved from

http://mcgill.on.worldcat.org/atoztitles/link?sid=OVID:medline&id=pmid:26400955 &id=doi:10.1136%2Fbjsports-2015-094776&issn=0306-

3674&isbn=&volume=50&issue=9&spage=552&pages=552-

<u>7&date=2016&title=British+Journal+of+Sports+Medicine&atitle=Effects+of+evidenc</u> <u>e-</u>

based+prevention+training+on+neuromuscular+and+biomechanical+risk+factors+for +ACL+injury+in+adolescent+female+athletes%3A+a+randomised+controlled+trial.&a ulast=Zebis

https://bjsm.bmj.com/content/50/9/552.long. doi:https://dx.doi.org/10.1136/bjsports-2015-094776 Zhiyu, H., Griffin, J., Babiuch, R., Gray, A., Willis, B., Marjorie, S., & Shining, S. (2015). Examining the feasibility of a Microsoft Kinect TM based game intervention for individuals with anterior cruciate ligament injury risk. *Conference Proceedings: ... Annual International Conference of the IEEE Engineering in Medicine & Biology Society, 2015*, 7059-7062. Retrieved from http://mcgill.on.worldcat.org/atoztitles/link?sid=OVID:medline&id=pmid:26737918 &id=doi:10.1109%2FEMBC.2015.7320018&issn=1557-170X&isbn=&volume=2015&issue=&spage=7059&pages=7059-62&date=2015&title=Conference+Proceedings%3A+...+Annual+International+Confer ence+of+the+IEEE+Engineering+in+Medicine+%26+Biology+Society&atitle=Examinin g+the+feasibility+of+a+Microsoft+Kinect+TM+based+game+intervention+for+individ uals+with+anterior+cruciate+ligament+injury+risk.&aulast=Griffin https://ieeexplore.ieee.org/document/7320018/. doi:https://dx.doi.org/10.1109/EMBC.2015.7320018

Appendix 2: Informed Consent Form

W. McGill Division of Experimental Medicine – Department of Medicine

Participant Consent Form

Risk prediction of ACL injuries: A New Model

Researchers: Dr. Paul-André Martineau - Associate Member - Division of Experimental Medicine

Dr. Thomas Fevens - Associate Professor, Computer Science and Software Engineering Concordia University

Dr. Hassan Rivaz - Assistant Professor, Electrical and Computer Engineering Concordia University

Dr. Louis-Nicolas Veilleux Department of Surgery McGill University; Shriners Hospital for Children

Nicolaos Karatzas MSc Candidate, Department of Experimental Medicine McGill University **Purpose of the Study:** You are being invited to participate in our Anterior Cruciate Ligament (ACL) injury prevention research project. The purpose of this study is to evaluate an Xbox Kinect or smartphone application as a tool to assess your jumping technique. This information will then be analyzed in order to determine if you are at a higher risk of having an ACL injury **Study Procedures**: You will be asked to spend an hour session with a representative from our research team in order to perform a few jumping exercises while being recorded by our Kinect system. If you are part of the pilot study you will be asked to do so at the Shriners Hospital of where two systems will assess your jumps. If you are not part of the pilot study the jumping tests can be done at the McGill Currie Gymnasium at a time which will be arranged with our research team. Both these systems will be recording your jump and collecting other information about the location of your joints. The jumps you will have to perform are a vertical drop jump where you will drop down from a 31cm block and then jump up as high as you can and a single leg hop test where you will stand on one leg and jump forward as far as you can. This will be performed 1-5 times while being recorded by our systems.

Voluntary Participation: Participating in this study is completely voluntary. You may withdraw from the study at any time, for any reason. Should you withdraw from the study your data will be destroyed unless you specify otherwise. Your choice to participate will not result in any loss or

benefit from the McGill Sports team you are a part of.

Potential Risks: There are no potential risks to participating in this study.

Potential Benefits: Participating in the study might not benefit you directly but you will have the opportunity to be a part of a new system that could help prevent ACL injury. Furthermore, there is the potential to see certain issues with your jumping mechanics which could be improved to improve your athletic performance.

Compensation: There will be no compensation for participation in this study.

Confidentiality: We will be collecting personal information such as your date of birth, email address and other data (height, weight, past ACL injury, years of competition etc.). This data will be linked to a unique code that is non-identifiable. We will use a double coding system where each participant is given a random 4 digit number and only the director of the study will hold the key. This unique identifier with your data and recordings will be kept on an external drive that will be password protected and only accessible by Dr. Martineau and his graduate student. Data will be stored for 25 years after study closure should further analysis be required. Video taping of the testing session may be used to show the system during conferences or thesis presentations. You have the right to ask that your session not be videotaped. A member of the McGill Institutional Review Board, or a person designated by this Board, may access the study data to verify the ethical conduct of this study.

If you have any questions or comments about this study, please do not hesitate to contact Nick Karatzas at nicolaos.karatzas@mail.mcgill.ca.

If you have any ethical concerns or complaints about your participation in this study, and want to speak with someone not on the research team, please contact Ms. Ilde Lepore, Ethics Officer, McGill Institutional Review Board, at 514-398-8302 or ilde.lepore@mcgill.ca.

I have read this consent form, or I have had the purpose of the study, the activities, and risks and benefits of the study explained to me. Any questions that I had were answered. I am aware that I can stop being in this study at any time. I agree to take part in this study. I do not give up any of my rights by taking part in this study. I will receive a signed and dated copy of this consent form. PLEASE WRITE YOUR INITIALS NEXT TO THE YES OR NO OPTION OF YOUR CHOICE

Yes: No: You consent to be video- taped.

Yes: _____No: ____You consent for the video-tape to be played publically during the dissemination of results.

Yes: _____No: ____You can identify me in the video-tape if shown publically Yes: _____No: ____You consent to have your data accessible following study closure for future studies.

Participant's Name: (please print)

Participant's Signature:

Date:

Please save or print a copy of this document to keep for your reference.

Appendix 3: Specifications of software

	Minimum	Ideal	Maximum
User Distance from Device	2m	2.5m	5m
User Distance from surrounding objects	0.5m	1m	N/A
User height	0.5	N/A	2.2m
Device height with respect to ground	1m	0.6m	1.5m
Software Analysis Latency		< 1 minute	
Frames Captured per Second		30 Hz	

Appendix 4: Screenshots of system

🕉 Kinetic Intelligent Trackin	g System (KITS)	-	×
File Help			
Login			
	Input your credentials below to begin using	KITS	
Email			
Password			
	Sign in		
Registration			
	For first time users, fill in the details below		
First Name			
Last Name			
Email			
Password			
Confirm Password			
	Register Clear Data		

Appendix 5: Athlete Injury Prediction

Identification	Left	Right	Combined	<u>Risk</u>
97VR	32.91	38.28	35.595	Low
58DE/004	93.65	55.19	74.42	High
41KU	28.9	40.65	34.775	Low
39MA	4.49	33.79	19.14	Low
49AL	26.4	37.89	32.145	Low
55CA	23.33	59.77	41.55	High
69SO	7.04	3.61	5.325	Low
75CO	6.86	7.97	7.415	Low
81PA	12.16	0	6.08	Low
82ND	54.73	30.59	42.66	Low
AE_f14	27.72	31.16	29.44	Low
AM_f04	23.33	30.76	27.045	Low
AP_f21	24.87	21.72	23.295	Low
AM_f05	23.33	95.5	59.415	High
DM_f15	40.23	41.89	41.06	Low
AS_f06	6	39.33	22.665	Low
FP_f23	0	48.46	24.23	Low
FB_b01	23.33	26.57	24.95	Low
JH_f12	29.84	37.15	33.495	Low
GB_f07	51.7	23.98	37.84	Low
VD_f16	33.56	39.88	36.72	Low

YR f13	45.3	48 16	46.73	Low
MP f18	7 69	41 7	24 695	Low
 TT_f22	19 74	18.5	19.12	Low
 ML f20	20.56	41.13	30.845	Low
KB f03	20.86	11.54	16.2	Low
 KK_f09	32.08	25.12	28.6	Low
JW_f08	37.96	38.94	38.45	Low
JH_f19	0	0	0	Low
JS_f17	23.33	23.44	23.385	Low
GQ_SF02	50.79	48.39	49.59	Low
NB_SF04	91.77	15.26	53.515	High
ED_SF02	70.14	92.35	81.245	High
OL_SF06	35.77	84.51	60.14	High
RZ_SF07	16.79	22.55	19.67	Low
RS_SM01	2.29	18	10.145	Low
MM_SM02	23.33	32.96	28.145	Low
SV_SM03	18.68	59.36	39.02	High
TM_SM04	47.07	72.17	59.62	High
NC_RW02	6.8	21.45	14.125	Low
CW_RW03	86.73	63.83	75.28	High
MM_RM01	0	0	0	Low
CC_WH01	76.19	100	88.095	High
ND MR02	52.42	25	44.21	Low
	53.42	35	44.21	Lon
IC_MB03	53.42 23.33	35 35.33	29.33	Low
IC_MB03 AB_MB04	53.42 23.33 14.1	35 35.33 75.81	29.33 44.955	Low High
IC_MB03 AB_MB04 AC_MB05	53.42 23.33 14.1 73	35 35.33 75.81 63.5	29.33 44.955 68.25	Low High High
IND_INB02 IC_MB03 AB_MB04 AC_MB05 SJ_MB06	53.42 23.33 14.1 73 23.33	35 35.33 75.81 63.5 85.04	29.33 44.955 68.25 54.185	Low High High High
IC_MB03 IC_MB03 AB_MB04 AC_MB05 SJ_MB06 BL_MB08	53.42 23.33 14.1 73 23.33 26.23	35 35.33 75.81 63.5 85.04 56.82	29.33 44.955 68.25 54.185 41.525	Low High High High High
IC_MB03 AB_MB04 AC_MB05 SJ_MB06 BL_MB08 KL_MB09	53.42 23.33 14.1 73 23.33 26.23 25.52	35 35.33 75.81 63.5 85.04 56.82 81.96	44.21 29.33 44.955 68.25 54.185 41.525 53.74	Low High High High High High
IC_MB03 AB_MB04 AC_MB05 SJ_MB06 BL_MB08 KL_MB09 GT_MB10	53.42 23.33 14.1 73 23.33 26.23 25.52 45.21	35 35.33 75.81 63.5 85.04 56.82 81.96 60.82	44.21 29.33 44.955 68.25 54.185 41.525 53.74 53.015	Low High High High High High
IC_MB03 AB_MB04 AC_MB05 SJ_MB06 BL_MB08 KL_MB09 GT_MB10 QW_MB14	53.42 23.33 14.1 73 23.33 26.23 25.52 45.21 72.8	35 35.33 75.81 63.5 85.04 56.82 81.96 60.82 56.98	44.21 29.33 44.955 68.25 54.185 41.525 53.74 53.015 64.89	Low High High High High High High
IND_INB02 IC_MB03 AB_MB04 AC_MB05 SJ_MB06 BL_MB08 KL_MB09 GT_MB10 QW_MB14 JD_MB17	53.42 23.33 14.1 73 23.33 26.23 25.52 45.21 72.8 12.28	35 35.33 75.81 63.5 85.04 56.82 81.96 60.82 56.98 26.98	44.21 29.33 44.955 68.25 54.185 41.525 53.74 53.015 64.89 19.63	Low High High High High High High High Low
IND_INB02 IC_MB03 AB_MB04 AC_MB05 SJ_MB06 BL_MB08 KL_MB09 GT_MB10 QW_MB14 JD_MB17 RO_MB18	53.42 23.33 14.1 73 23.33 26.23 25.52 45.21 72.8 12.28 36.95	35 35.33 75.81 63.5 85.04 56.82 81.96 60.82 56.98 26.98 31.33	29.33 44.955 68.25 54.185 41.525 53.74 53.015 64.89 19.63 34.14	Low High High High High High High Low Low
IND_INB02 IC_MB03 AB_MB04 AC_MB05 SJ_MB06 BL_MB08 KL_MB09 GT_MB10 QW_MB14 JD_MB17 RO_MB18 GH_BW01	53.42 23.33 14.1 73 23.33 26.23 25.52 45.21 72.8 12.28 36.95 13.18	35 35.33 75.81 63.5 85.04 56.82 81.96 60.82 56.98 26.98 31.33 35	44.21 29.33 44.955 68.25 54.185 41.525 53.74 53.015 64.89 19.63 34.14 24.09	Low High High High High High High Low Low
IC_MB02 IC_MB03 AB_MB04 AC_MB05 SJ_MB06 BL_MB08 KL_MB09 GT_MB10 QW_MB14 JD_MB17 RO_MB18 GH_BW01 GC_BW05	53.42 23.33 14.1 73 23.33 26.23 25.52 45.21 72.8 12.28 36.95 13.18 37.25	35 35.33 75.81 63.5 85.04 56.82 81.96 60.82 56.98 26.98 31.33 35 61.74	29.33 44.955 68.25 54.185 41.525 53.74 53.015 64.89 19.63 34.14 24.09 49.495	Low High High High High High High Low Low High
IC_MB03 IC_MB03 AB_MB04 AC_MB05 SJ_MB06 BL_MB08 KL_MB09 GT_MB10 QW_MB14 JD_MB17 RO_MB18 GH_BW01 GC_BW05 RT_BW07	53.42 23.33 14.1 73 23.33 26.23 25.52 45.21 72.8 12.28 36.95 13.18 37.25 73.57	35 35.33 75.81 63.5 85.04 56.82 81.96 60.82 56.98 26.98 31.33 35 61.74 72.91	29.33 44.955 68.25 54.185 41.525 53.74 53.015 64.89 19.63 34.14 24.09 49.495 73.24	Low High High High High High High Low Low High High
IC_MB03 IC_MB03 AB_MB04 AC_MB05 SJ_MB06 BL_MB08 KL_MB09 GT_MB10 QW_MB14 JD_MB17 RO_MB18 GH_BW01 GC_BW05 RT_BW07 CC_BW08	53.42 23.33 14.1 73 23.33 26.23 25.52 45.21 72.8 12.28 36.95 13.18 37.25 73.57 23.12	35 35.33 35.33 75.81 63.5 85.04 56.82 81.96 60.82 56.98 26.98 31.33 35 61.74 72.91 48.7	44.21 29.33 44.955 68.25 54.185 41.525 53.74 53.015 64.89 19.63 34.14 24.09 49.495 73.24 35.91	Low High High High High High High Low Low High High Low
IC_MB03 IC_MB03 AB_MB04 AC_MB05 SJ_MB06 BL_MB08 KL_MB09 GT_MB10 QW_MB14 JD_MB17 RO_MB18 GH_BW01 GC_BW05 RT_BW07 CC_BW08 KO_BW09	53.42 23.33 14.1 73 23.33 26.23 25.52 45.21 72.8 12.28 36.95 13.18 37.25 73.57 23.12 17.14	35 35.33 75.81 63.5 85.04 56.82 81.96 60.82 56.98 26.98 31.33 35 61.74 72.91 48.7 10.85	29.33 44.955 68.25 54.185 41.525 53.74 53.015 64.89 19.63 34.14 24.09 49.495 73.24 35.91 13.995	Low High High High High High High Low Low High High Low Low
IC_MB03 IC_MB03 AB_MB04 AC_MB05 SJ_MB06 BL_MB08 KL_MB09 GT_MB10 QW_MB14 JD_MB17 RO_MB18 GH_BW01 GC_BW05 RT_BW07 CC_BW08 KO_BW09 SM_BW12	53.42 23.33 14.1 73 23.33 26.23 25.52 45.21 72.8 12.28 36.95 13.18 37.25 73.57 23.12 17.14 7.48	35 35.33 35.33 75.81 63.5 85.04 56.82 81.96 60.82 56.98 26.98 31.33 35 61.74 72.91 48.7 10.85 35	44.21 29.33 44.955 68.25 54.185 41.525 53.74 53.015 64.89 19.63 34.14 24.09 49.495 73.24 35.91 13.995 21.24	Low High High High High High High Low Low High High Low Low Low
IC_MB03 AB_MB04 AC_MB05 SJ_MB06 BL_MB08 KL_MB09 GT_MB10 QW_MB14 JD_MB17 RO_MB18 GH_BW01 GC_BW05 RT_BW07 CC_BW08 KO_BW09 SM_BW12 SD_BW13	53.42 23.33 14.1 73 23.33 26.23 25.52 45.21 72.8 12.28 36.95 13.18 37.25 73.57 23.12 17.14 7.48 33.49	35 35.33 35.33 75.81 63.5 85.04 56.82 81.96 60.82 56.98 26.98 31.33 35 61.74 72.91 48.7 10.85 35 78.7	44.21 29.33 44.955 68.25 54.185 41.525 53.74 53.015 64.89 19.63 34.14 24.09 49.495 73.24 35.91 13.995 21.24 56.095	Low High High High High High High Low Low High Low Low Low Low Low
IND_INB02 IC_MB03 AB_MB04 AC_MB05 SJ_MB06 BL_MB08 KL_MB09 GT_MB10 QW_MB14 JD_MB17 RO_MB18 GH_BW01 GC_BW05 RT_BW07 CC_BW08 KO_BW09 SM_BW12 SD_BW13 ER_BW14	53.42 23.33 14.1 73 23.33 26.23 25.52 45.21 72.8 12.28 36.95 13.18 37.25 73.57 23.12 17.14 7.48 33.49 59.5	35 35.33 35.33 75.81 63.5 85.04 56.82 81.96 60.82 56.98 26.98 31.33 35 61.74 72.91 48.7 10.85 35 78.7 20.2	29.33 44.955 68.25 54.185 41.525 53.74 53.015 64.89 19.63 34.14 24.09 49.495 73.24 35.91 13.995 21.24 56.095 39.85	Low High High High High High High Low Low High Low Low Low Low Low

NH_BW16	0	0	0	Low
DS_BW16	50.1	66.42	58.26	High
TV_BW17	0	14.87	7.435	Low
GD_SW03	4.94	36.18	20.56	Low
IP_SW15	17.8	19.21	18.505	Low
MC_SW25	12.83	31.77	22.3	Low
AG_SW29	37.18	56.8	46.99	High
LD_WH10	34.13	56.41	45.27	High
SC_WH12	39.83	28.93	34.38	Low
KD_WH16	15.4	5.02	10.21	Low
NH_WH17	45.79	90.2	67.995	High
LJ_WH22	53.62	62.85	58.235	High
TF_MH02	47.57	35.65	41.61	Low
AP_MH06	23.33	45.18	34.255	Low
FG_MH07	0	0	0	Low
JF_MH11	35.34	23.33	29.335	Low
NP_MH23	4.59	19.17	11.88	Low
BJ_SM07	1.35	77.21	39.28	High
CF_SM08	0	6.27	3.135	Low
RT_SM09	37.41	67.1	52.255	High
CB_SM10	60.2	37.27	48.735	High
DS_SM12	43.3	59.56	51.43	High
JL_SM14	24.84	39.65	32.245	Low
SC_SM16	16.22	15.2	15.71	Low
ME_SM17	3.82	48.84	26.33	Low
JM_SM18	34.19	32.66	33.425	Low
JE_SM19	25.21	47.46	36.335	Low
JM_SM21	46.91	100	73.455	High
FB_SM22	74.73	62.23	68.48	High
AW_SM24	35	35	35	Low
TF_SM25	25.07	32.6	28.835	Low
CC_SM26	7.72	11.78	9.75	Low
SB_SF18	10.14	26.96	18.55	Low
OT_SF19	16.26	17.16	16.71	Low
TL_SF03	55.56	78.51	67.035	High
KV_GP02	84.98	69.78	77.38	High
013	36.46	47.9	42.18	Low
014	44.48	36.36	40.42	Low
KV_GP01	37.15	23.72	30.435	Low
011	54.31	28.28	41.295	Low
012	NA	NA	NA	NA
GH_GP04	7.24	22.85	15.045	Low

CM_GP05	0	14.45	7.225	Low
JA_SM15	0	0	0	Low
010	47.5	91.5	69.5	High
009	79.07	13.25	46.16	High
003	47.77	61.69	54.73	High
005	84.3	54.46	69.38	High
008	26.36	32.81	29.585	Low
006	25.73	60.76	43.245	High
001	23.33	39.17	31.25	Low

Appendix 6: Injured athlete information

ID	Gender	Height (m)	Weight (kg)	$\frac{BMI}{(kg/m^2)}$	Sports Played
BL MB08	М	1.98	86.18	21.98	Basketball
GT_MB10	M	1.88	82.55	23.25	Baskethall
BT BW07	F	1.80	78.02	23.23	Basketball
$\frac{\mathbf{RI}_{\mathbf{DW0}}}{\mathbf{EP}_{\mathbf{DW14}}}$	Г	1.0	01.62	24.08	Dasketball
ER_BW14	Г	1.88	91.05	23.92	Basketball
FB_SM22	Μ	1.82	82	24.75	Soccer

Table 2: Vicon Lab Data Example (Single jump for 1 participant)

Fra mes	Ti me (s)	Х	Y	Z	Х	Y	Z	DEG to RAD	Left adjus	ted angle	DEG to RAD	Right adjusted angle	
0.30	2.7 5	27.17 3	- 24.3 125	0.2230 28	9.532 05	- 26.5 241	16.7 217	0.42433 3174	- 0.03496 9087	- 2.00358 1119	0.46293 2876	0.01644 3005	0.94211 4779
0.60	2.7 6	24.68 19	- 24.3 802	- 0.1112 33	10.89 08	- 26.2 547	17.8 463	0.42551 4762	- 0.03378 4225	- 1.93569 3504	0.45823 0959	0.01263 5144	0.72394 0422
0.9	2.7 7	23.24 7	- 24.4 729	- 0.3116 63	13.27 49	- 25.7 973	19.2 502	0.42713 2683	- 0.03215 9607	- 1.84260 9744	0.45024 7823	0.00620 941	0.35577 2963
1.20	2.7 8	22.98 11	- 24.5 532	- 0.3263 96	16.77 04	- 25.2 261	20.7 117	0.42853 4182	- 0.03075 0233	- 1.76185 8551	0.44027 8502	- 0.00174 6478	- 0.10006 583
1.5	2.7 9	23.93 17	- 24.5 956	- 0.1888 22	21.37 84	- 24.6 441	21.9 423	0.42927 4202	- 0.03000 5277	- 1.71917 5755	0.43012 0686	- 0.00977 6072	- 0.56012 7677
1.80	2.8	26.07 5	- 24.5 841	- 0.0236 997	27.01 94	- 24.1 294	22.6 933	0.42907 3489	- 0.03020 7382	- 1.73075 5503	0.42113 7477	- 0.01681 4001	- 0.96337 1299
2.1	2.8 1	29.32	- 24.4 995	- 0.0021 3665	33.52 67	- 23.6 942	22.8 323	0.42759 694	- 0.03169 2954	- 1.81587 2507	0.41354 1804	- 0.02271 9513	- 1.30173 2218
2.40	2.8 2	33.52 34	- 24.3 136	- 0.2615 81	40.60 53	- 23.2 76	22.3 621	0.42435 2373	- 0.03494 9846	- 2.00247 8695	0.40624 2837	- 0.02835 5885	- 1.62467 251
2.70	2.8 3	38.49 8	- 24.0 04	- 0.8487 16	47.77 77	- 22.7 587	21.4 365	0.41894 8834	- 0.04035 1136	- 2.31194 9768	0.39721 4248	- 0.03527 6677	- 2.02120 4721
3	2.8 4	43.99 62	- 23.5 819	- 1.7221 4	54.40 76	- 22.0 268	20.3 584	0.41158 1799	- 0.04766 9603	- 2.73126 7061	0.38444 0184	- 0.04497 3873	- 2.57681 3126
3.30	2.8 5	49.68 56	- 23.0 978	- 2.7779 6	59.87 8	- 21.0 401	19.4 865	0.40313 266	- 0.05599 9087	- 3.20851 1366	0.36721 902	- 0.05787 6574	- 3.31608 3417

3.6	2.8	55.15		-	63.83	-	19.0	0 39469	_	_	0 34673	_	_
5.0	6	86	22.6 143	3.8716 6	15	19.8 663	74	3993	0.06425 0872	3.68130 3807	2345	0.07298 0759	4.18148 9494
3.90	2.8 7	60.00 94	- 22.1 713	- 4.8476 2	66.29	- 18.6 497	19.1 572	0.38696 2184	- 0.07175 3081	- 4.11114 8705	0.32549 867	- 0.08836 7229	- 5.06306 9246
4.2	2.8 8	63.94 41	- 21.7 803	- 5.5773 6	67.58 97	- 17.5 531	19.5 684	0.38013 7947	- 0.07832 8843	- 4.48791 2099	0.30635 9389	- 0.10201 2956	- 5.84491 1854
4.50	2.8 9	66.85 41	- 21.4 441	- 5.9891 2	68.22	- 16.7 112	20.0 372	0.37427 015	- 0.08394 8998	- 4.80992 3264	0.29166 5462	- 0.11235 2012	- 6.43729 6094
4.80	2.9	68.81 36	- 21.1 772	- 6.0830 3	68.65 43	- 16.2	20.3 082	0.36961 1866	- 0.08838 8511	- 5.06428 8664	0.28274 3339	- 0.11857 3696	- 6.79377 2322
5.1	2.9 1	70.02 1	- 21.0 085	- 5.9317 1	69.21 51	- 16.0 172	20.2 299	0.36666 7496	- 0.09118 4553	- 5.22449 007	0.27955 2877	- 0.12078 8433	- 6.92066 7398
5.40	2.9 2	70.72 29	- 20.9 668	- 5.6629 8	70.00 61	- 16.0 855	19.7 953	0.36593 9694	- 0.09187 4497	- 5.26402 0909	0.28074 4937	- 0.11996 1551	- 6.87329 0549
5.7	2.9 3	71.14 85	- 21.0 657	- 5.4262 4	70.93 58	- 16.2 883	19.1 281	0.36766 5824	- 0.09023 7387	- 5.17022 143	0.28428 4465	- 0.11750 1996	- 6.73236 8471
6.00	2.9 4	71.46 63	- 21.2 986	- 5.3497	71.81 23	- 16.5 228	18.4 224	0.37173 0696	- 0.08637 1612	- 4.94872 884	0.28837 7262	- 0.11464 9845	- 6.56895 2243
6.3	2.9 5	71.76 43	- 21.6 442	- 5.5045 3	72.45 13	- 16.7 454	17.8 606	0.37776 2554	- 0.08060 7754	- 4.61848 4079	0.29226 2365	- 0.11193 4275	- 6.41336 1557
6.60	2.9 6	72.05 41	- 22.0 757	- 5.8895 3	72.74 39	- 16.9 765	17.5 507	0.38529 365	- 0.07336 4812	- 4.20349 4107	0.29629 582	- 0.10910 6524	- 6.25134 3354
6.90	2.9 7	72.29 59	- 22.5 711	- 6.4403	72.67 47	- 17.2 712	17.5 042	0.39394 0011	- 0.06498	- 3.72336	0.30143 9306	- 0.10548 7882	- 6.04401 0407
7.2	2.9 8	72.43 1	- 23.1	- 7.0555 7	72.30 22	- 17.6 756	17.6 529	0.40343 8093	- 0.05569 9161	- 3.19132 6872	0.30849 7417	- 0.10049 8781	- 5.75815 6017
7.50	2.9 9	72.40 9	- 23.6 959	- 7.6283	71.72 33	- 18.1 993	17.8 839	0.41357 1474	- 0.04569 8192	- 2.61831 3508	0.31763 7707	- 0.09399 6858	- 5.38562 3251
7.8	3	72.20 32	- 24.2 957	- 8.0717 3	71.04 47	- 18.8 158	18.0 754	0.42403 9959	- 0.03526 2904	- 2.02041 5583	0.32839 7661	- 0.08628 2161	- 4.94360 3701
8.10	3.0 1	71.81 23	- 24.8 884	- 8.3345 8	70.35 75	- 19.4 723	18.1 311	0.43438 4526	- 0.02484 6147	- 1.42357 9342	0.33985 5748	- 0.07799 2993	- 4.46866 9346
8.4	3.0 2	71.25 48	- 25.4 416	- 8.4080 4	69.71 32	- 20.0 974	18.0 079	0.44403 9687	- 0.01502 8054	- 0.86104 4056	0.35076 5801	- 0.07002 7531	- 4.01228 1958
8.70	3.0 3	70.56 09	- 25.9 234	- 8.3221 1	69.11 41	- 20.6 143	17.7 241	0.45244 8683	- 0.00640 0985	- 0.36674 9447	0.35978 7408	- 0.06338 587	- 3.63174 2829
9.00	3.0 4	69.76 57	- 26.3 091	- 8.1336	68.52 81	- 20.9 618	17.3 403	0.45918 0418	0.00055 7016	0.03191 466	0.36585 2427	- 0.05889 2292	- 3.37427 98
9.3	3.0 5	68.90 46	- 26.5 825	- 7.9088 6	67.91 89	- 21.1 142	16.9 246	0.46395 2148	0.00551 7221	0.31611 3472	0.36851 2309	- 0.05691 4244	- 3.26094 5983
9.60	3.0 6	68.01 07	- 26.7 362	- 7.7063 9	67.27 4	- 21.0 92	16.5 234	0.46663 4719	0.00831 6045	0.47647 4294	0.36812 4846	- 0.05720 2665	- 3.27747 1298
9.9	3.0 7	67.11 24	- 26.7 722	- 7.5642 9	66.61 31	- 20.9 563	16.1 534	0.46726 3038	0.00897 2668	0.51409 5999	0.36575 6434	- 0.05896 3595	- 3.37836 5115
10.2 0	3.0 8	66.23 04	- 26.7 026	- 7.4963 4	65.97 11	- 20.7 861	15.8 155	0.46604 8289	0.00770 3566	0.44138 1813	0.36278 5884	- 0.06116 7192	- 3.50462 195
10.5	3.0 9	65.37 66	- 26.5 504	- 7.4957 9	65.37 42	- 20.6 515	15.5 097	0.46339 1898	0.00493 3628	0.28267 6068	0.36043 667	- 0.06290 5936	- 3.60424 4637

10.8	3.1	64.55	-	-	64.82	-	15.2	0.45988	0.00128	0.07361	0.35941	-	-
0		56	26.3 493	7.5426 8	87	20.5 93	41	2041	4885	8489	5653	0.06366 0552	3.64748 0961
11.1 0	3.1 1	63.76 82	- 26.1 407	- 7.6111 7	64.31 71	- 20.6 178	15.0 259	0.45624 1284	- 0.00248 6593	- 0.14247 1273	0.35984 8495	- 0.06334 0726	- 3.62915 6277
11.4	3.1 2	63.01 54	- 25.9 68	- 7.6733 6	63.80 82	- 20.7 078	14.8 912	0.45322 71	- 0.00559 8764	- 0.32078 5575	0.36141 9291	- 0.06217 9082	- 3.56259 8974
11.7 0	3.1 3	62.30 2	- 25.8 682	- 7.7020	63.27 48	- 20.8	14.8 633	0.45148 5262	- 0.00739 3017	- 0.42358 8673	0.36360 4443	- 0.06056 0529	- 3.46986 2718
12	3.1 4	61.63 75	- 25.8	- 7.6743	62.71 49	- 20.9 653	14.9 518	0.45139 4504	- 0.00748 6421	- 0.42894 0313	0.36591 3514	- 0.05884 6915	- 3.37167
12.3 0	3.1 5	61.03 81	- 25.9 523	- 7.5775 3	62.16 18	- 21.0 867	15.1 373	0.45295 3083	- 0.00588 1231	- 0.33696 9704	0.36803 2343	- 0.05727 1508	- 3.28141 572
12.6	3.1 6	60.52 61	- 26.1	- 7.4132	61.66 65	- 21.1	15.3 821	0.45577 5281	- 0.00296	- 0.17007	0.36984 225	- 0.05592	- 3.20418 2168
12.9 0	3.1 7	60.12 67	- 26.3	- 7.1948	61.27 34	- 21.2	15.6 51	0.45921 5325	0.00059 3216	0.03398 8794	0.37132 2289	- 0.05481	- 3.14093
13.2 0	3.1 8	59.86 34	- 26.5	- 6.9417	61.00 3	- 21.3	15.9 238	0.46254 8904	0.00405 6121	0.23239 8613	0.37240 6138	- 0.05401	- 3.09456
13.5	3.1 9	59.75 49	- 26.6	- 6.6743	60.84 97	- 21.3	16.2 015	0.46512 3264	0.00673 8175	0.38606 8995	0.37287 9123	- 0.05365	- 3.07432
13.8 0	3.2	59.81 01	496 - 26.7	- 6.4075	60.79 07	- 21.3	16.5 019	0.46648 4621	0.00815 9246	0.46749 035	0.37237 9959	- 0.05402	- 3.09568
14.1	3.2 1	60.02 88	- 26.7	- 6.1466	60.80 28	- 21.2	16.8 527	0.46644 0988	0.00811 3669	0.46487 8989	0.37053 8636	9964 - 0.05540	- 3.17443
14.4 0	3.2 2	60.40 34	- 26.6	5 - 5.8864	60.87 81	- 21.0	17.2 783	0.46510 5811	0.00671 9969	0.38502 5843	0.36719 4585	4317 - 0.05789	- 3.31712
14.7	3.2 3	60.92 04	- 26.5	6 - 5.6141	61.03 6	- 20.7	17.7 864	0.46287 528	0.00439 5773	0.25185 9239	0.36254 8519	- 0.06134	4562 - 3.51469
15.0 0	3.2 4	61.56 09	- 26.3	- 5.3149	61.32 4	- 20.4	18.3 582	0.46038 4695	0.00180 6654	0.10351 3636	0.35722 0029	- 0.06528	- 3.74033
15.3 0	3.2 5	62.30 33	- 26.2	3 - 4.9776	61.80 13	- - 20.1	18.9 544	0.45843 5163	- 0.00021	- 0.01235	0.35211 3195	- 0.06903	1247 - 3.95563
15.6	3.2 6	63.12 48	- - 26.2	2 - 4.5967	62.50 98	746 - 19.9	19.5 343	0.45788 5384	5566 - 0.00078	105 - 0.04498	0.34808 1485	8777 - 0.07199	0536 - 4.12495
15.9 0	3.2 7	64.00 27	- 26.3	7 - 4.1730	63.44 75	436 - 19.7	20.0 767	0.45952 9484	514 0.00091 9077	5208 0.05265 922	0.34556 9956	4045 - 0.07383	4909 - 4.23014
16.2	3.2 8	64.91 31	- 26.5	- 3.7128	64.56 06	- 19.7	20.5 888	0.46396 9602	0.00553 5407	0.31715 5433	0.34444 2473	- 0.07465	- 4.27730
16.5 0	3.2 9	65.83 33	- 27.0	- 3.2315	65.76 66	- 19.7	21.0 9	0.47145 0083	0.01335 878	0.76540 1728	0.34418 7655	- 0.07483	- 4.28795
16.8	3.3	66.74 11	- 27.6	8 - 2.7543	66.98 25	- 19.7	21.5 894	0.48174 2289	0.02421 8072	1.38759 3292	0.34423 6524	- 0.07480	- 4.28590
17.1 0	3.3 1	67.61 15	- 28.3	- 2.3118	68.13 7	- 19.7	22.0 711	0.49410 2711	0.03740 7274	2.14327 8943	0.34415 2749	- 0.07486	- 4.28940
17.4 0	3.3 2	68.41 18	- 29.0	8 - 1.9335	69.17 09	- 19.6	22.4 953	0.50736 8959	0.05174 5048	2.96477 2854	0.34368 6746	- 0.07520	- 4.30888
17.7	3.3 3	69.09 92	- 29.8 047	- 1.6370	70.03 21	- 19.6 385	22.8 173	0.52019 0148	0.06578 3561	3.76912 038	0.34275 6485	- 0.07588 2162	- 4.34772 764
		1	UT/	4	1	202			I		I	2102	707
10.0	2.2	(0, (1)			70 (7		22.0	0.52122	0.07011	4 47500	0.24140		
-----------	----------	------------------	------------------	-------------------	------------------	------------------	-------------	-----------------	----------------------	----------------------	-----------------	----------------------	----------------------
18.0 0	3.3 4	97	- 30.4 425	- 1.4193 1	/0.67 06	- 19.5 609	23.0 149	0.53132 1858	0.07811 9068	4.47589 2889	0.34140 211	- 0.07686 8352	- 4.40423 2128
18.3	3.3 5	69.91 12	- 30.9 33	- 1.2537	71.03 54	- 19.4 645	23.1 067	0.53988 2698	0.08769 962	5.02481 8074	0.33971 9612	- 0.07809 1934	- 4.47433 823
18.6 0	3.3 6	69.90 96	- 31.2 549	- 1.0941	71.07 41	- 19.3 558	23.1 498	0.54550 0912	0.09403 1803	5.38762 5428	0.33782 2439	- 0.07946 9613	- 4.55327 3402
18.9	3.3 7	69.55 57	- 31.4 169	- 0.8856 06	70.74 59	- 19.2 479	23.2 128	0.54832 8346	0.09723 2041	5.57098 5577	0.33593 9229	- 0.08083 5039	- 4.63150 6555
19.2 0	3.3 8	68.80 07	- 31.4 533	- 0.5789 09	70.03 63	- 19.1 671	23.3 416	0.54896 3646	0.09795 2353	5.61225 6438	0.33452 9003	- 0.08185 6154	- 4.69001 2124
19.5 0	3.3 9	67.60 83	- 31.4 131	- 0.1440 12	68.95 72	- 19.1 534	23.5 396	0.54826 2023	0.09715 687	5.56667 8593	0.33428 9893	- 0.08202 9172	- 4.69992 5344
19.8	3.4	65.94 96	- 31.3 472	0.4206 93	67.52 39	- 19.2 483	23.7 726	0.54711 1851	0.09585 4038	5.49203 1854	0.33594 621	- 0.08082 9981	- 4.63121 6757
20.1 0	3.4 1	63.79 07	- 31.2 94	1.0876 5	65.72 55	- 19.4 765	23.9 884	0.54618 3336	0.09480 3377	5.43183 339	0.33992 9052	- 0.07793 9713	- 4.46561 6608
20.4	3.4 2	61.07 97	- 31.2 692	1.8093 7	63.51 82	- 19.8 418	24.1 29	0.54575 0494	0.09431 3929	5.40379 0056	0.34630 474	- 0.07329 3265	- 4.19939 4751
20.7 0	3.4 3	57.73 82	- 31.2 635	2.5342 8	60.83 42	- 20.3 323	24.1 362	0.54565 1011	0.09420 1464	5.39734 6329	0.35486 558	- 0.06701 5535	- 3.83970 7323
21	3.4 4	53.66 49	- 31.2 449	3.2217	57.58 52	- 20.9 255	23.9 563	0.54532 6379	0.09383 4554	5.37632 3891	0.36521 8873	- 0.05936 2779	- 3.40123 6695
21.3 0	3.4 5	48.75 09	- 31.1 667	3.8483 1	53.66 21	- 21.5 89	23.5 438	0.54396 1532	0.09229 3254	5.28801 3909	0.37679 9132	- 0.05072 2592	- 2.90619 0463
21.6 0	3.4 6	42.91 17	- 30.9 809	4.4024 7	48.94 14	- 22.2 863	22.8 648	0.54071 871	0.08863 962	5.07867 6141	0.38896 9313	- 0.04154 8194	- 2.38053 6189
21.9	3.4 7	36.13 23	- 30.6 539	4.8678 8	43.31	- 22.9 923	21.9 069	0.53501 1484	0.08223 8114	4.71189 6836	0.40129 1338	- 0.03215 8366	- 1.84253 867
22.2 0	3.4 8	28.51 79	- 30.1 792	5.2064 9	36.71 44	- 23.7 17	20.6 969	0.52672 6406	0.07300 9997	4.18316 4704	0.41393 9739	- 0.02241 1144	- 1.28406 3974
22.5	3.4 9	20.34 7	- 29.5 813	5.3580 2	29.24 67	- 24.5 163	19.3 137	0.51629 1082	0.06149 5233	3.52341 731	0.42789 0155	- 0.01152 9072	- 0.66056 7144
22.8 0	3.5	12.10 54	- 28.9 008	5.2607 6	21.24 52	- 25.4 59	17.8 873	0.50441 4116	0.04853 5083	2.78085 5415	0.44434 3374	0.00148 834	0.08527 5592
23.1	3.5 1	4.459 47	- 28.1 706	4.8854	13.34 27	- 26.5 291	16.5 661	0.49166 9722	0.03479 83	1.99379 5735	0.46302 0143	0.01651 3842	0.94617 3454
23.4 0	3.5 2	- 1.867 03	- 27.4 143	4.2666 5	6.392 48	- 27.5 331	15.4 513	0.47846 9797	0.02075 3227	1.18907 2324	0.48054 3248	0.03086 1192	1.76821 6031
23.7 0	3.5 3	- 6.288 47	- 26.6 813	3.5165 9	1.261 34	- 28.1 562	14.5 449	0.46567 6534	0.00731 5482	0.41914 6235	0.49141 8395	0.03989 1275	2.28560 1721
24	3.5 4	- 8.540 61	- 26.0 856	2.8049 3	- 1.441 52	- 28.1 862	13.7 935	0.45527 9607	- 0.00348 0538	- 0.19942 0109	0.49194 1994	0.04032 8524	2.31065 4208
24.3 0	3.5 5	- 8.758 11	- 25.7 867	2.2948 3	- 1.588 65	- 27.6 964	13.1 955	0.45006 2818	- 0.00885 5982	- 0.50741 0365	0.48339 3371	0.03321 8309	1.90326 893
24.6	3.5 6	- 7.417 51	- 25.8 971	2.0653 2	0.404 757	- 26.9 873	12.8 265	0.45198 9662	- 0.00687 3756	- 0.39383 7184	0.47101 7241	0.02303 1008	1.31957 9561
24.9 0	3.5 7	- 5.186 41	- 26.3 861	2.0871 1	3.712 79	- 26.3 468	12.7 725	0.46052 4322	0.00195 1636	0.11182 0479	0.45983 8407	0.01393 499	0.79841 6126

25.2	3.5	-	-	2.2708	7.369	-	13.0	0.47252	0.01448	0.83009	0.45154	0.00724	0.41522
	8	2.742	27.0 737	4	9	25.8 714	826	5206	7959	8887	1112	7054	5623
25.5	3.5	-	-	2.5302	10.56	-	13.7	0.48391	0.02652	1.51987	0.44506	0.00206	0.11821
0	9	0.628	27.7	6	88	25.5	437	697	6819	4761	4195	3271	6721
25.8	3.6	74 0.820	- 264	2.8067	12.84	-	14.6	0.49174	0.03487	1.99818	0.43925	-	-
0		276	28.1		58	25.1	367	1281	4944	7128	3994	0.00255	0.14666
26.1	3.6	1.482	- 14/	3.0588	14.09	6/4 -	15.5	0.49507	0.03845	2.20332	0.43435	-	-
	1	36	28.3	7	28	24.8	255	835	5263	4271	8346	0.00643	0.36873
26.4	3.6	1.409	- 659	3.2468	14.44	- 869	16.1	0.49464	0.03799	2.17667	0.43146	- 5574	-
0	2	84	28.3	4	9	24.7	402	5509	0198	799	459	0.00871	0.49951
26.7	36	0 768	411	3 3281	14 16	- 211	16.3	0 49179	0.03493	2.00140	0.43127	8122	-
2017	3	89	28.1	8	15	24.7	07	3641	1029	0541	2603	0.00886	0.50817
27.0	3.6	_	777	3 2628	13.47	101	16.0	0.48771	0.03057	1 75168	0.43349	9339	5671
0	4	0.225	27.9	8	62	24.8	175	6552	2649	3754	2662	0.00711	0.40789
27.2	26	146	441	2.0226	12.59	373	15.4	0.49221	0.02577	1 17691	0.42710	9059	2058
27.5	5.0 5	- 1.363	- 27.6	5.0226 7	12.58	25.0	027	0.48521	5835	6587	8985	0.00426	0.24408
27.6	2.6	03	859	2 5007	11.00	445	14.6	0.47002	0.02114	1 21127	0.44007	0164	9421
27.6 0	5.6 6	- 2.477	- 27.4	2.5997 6	26	- 25.2	14.6 551	0.47883 6316	0.02114 073	4581	0.44097 6634	- 0.00119	- 0.06828
		56	353			661	10.0					1791	4616
27.9 0	3.6 7	- 3.456	- 27.2	2.0117 7	10.61 49	- 25.4	13.9 517	0.47510	0.01719 8492	0.98540	0.44425 4362	0.00141 7371	0.08120 9366
		06	213		-	539		-					
28.2	3.6 8	- 4 235	- 27.0	1.3012	9.671 86	- 25 5	13.4 063	0.47247 2846	0.01443 2938	0.82694 6453	0.44651 98	0.00322 5472	0.18480 5942
	0	25	707	5	00	837	005	2040	2750	0435	70	5472	5742
28.5	3.6	- 1 788	-	0.5317	8.819 8	-	13.0	0.47125	0.01315	0.75364	0.44768	0.00415	0.23796
0	7	5	009	/1	0	502	552	4000	3004	0017	0444	5522	7845
28.8	3.7	-	-	-	8.106	-	12.8	0.47146	0.01337	0.76613	0.44781	0.00426	0.24420
		74	128	0.2184	90	23.0 58	070	23	1005	0330	0379	222	7231
29.1	3.7	-	-	-	7.581	-	12.7	0.47277	0.01475	0.84523	0.44709	0.00368	0.21117
0	1	5.233 19	27.0 881	0.8659	95	25.6 167	//6	6533	2096	2849	5/58	5/81	9686
29.4	3.7	-	-	-	7.283	-	12.7	0.47463	0.01670	0.95696	0.44578	0.00263	0.15110
	2	5.180 39	27.1 943	1.3343 6	28	25.5 415	224	0073	2145	2426	3271	/203	0589
29.7	3.7	-	-	-	7.226	-	12.6	0.47637	0.01853	1.06214	0.44423	0.00140	0.08049
0	3	5.005 17	27.2 941	1.5684	3	25.4 53	732	1911	7949	6256	8655	4847	1833
30.0	3.7	-	-	-	7.394	-	12.6	0.47743	0.01966	1.12652	0.44291	0.00035	0.02009
0	4	4.759 73	27.3 551	1.5475	53	25.3 772	504	6562	1598	6601	5695	0775	7933
30.3	3.7	-	-	-	7.739	-	12.7	0.47750	0.01973	1.13064	0.44230	-	-
	5	4.490 08	27.3 59	1.2923 1	95	25.3 421	157	463	3479	5037	3084	0.00013 6877	0.00784 2448
30.6	3.7	-	-	-	8.193	-	12.9	0.47655	0.01873	1.07343	0.44280	0.00026	0.01492
0	6	4.228 17	27.3 048	0.8620 36	45	25.3 707	451	8662	4962	428	2249	0448	2565
30.9	3.7	-	-	-	8.681	-	13.3	0.47481	0.01689	0.96823	0.44458	0.00167	0.09620
	7	3.990 07	27.2 05	0.3431	49	25.4 727	937	6823	8818	0949	2484	9012	0294
31.2	3.7	-	-	0.1688	9.142	-	14.0	0.47264	0.01461	0.83713	0.44750	0.00401	0.23004
0	8	3.779 99	27.0 804	89	72	25.6 403	678	2143	0848	9914	7656	5126	979
31.5	3.7	-	-	0.5872	9.538	-	14.9	0.47042	0.01228	0.70381	0.45115	0.00693	0.39756
	9	3.595 52	26.9	74	59	25.8	116	5575	3881	4519	714	8847	6675
31.8	3.8	-	-	0.8482	9.855	-	15.8	0.46848	0.01024	0.58721	0.45492	0.00996	0.57106
0		3.431	26.8	11	02	26.0	159	3023	8778	17	356	6987	6291
32.1	3.8	-	421 -	0.9186	10.09	- 052	16.6	0.46700	0.00870	0.49873	0.45818	0.01259	0.72167
0	1	3.282	26.7	67	51	26.2	448	6475	4498	0976	209	5658	8043
		22	3/3	I	I	519				l			

32.4	3.8	-	-	0.7962	10.26	-	17.2	0.46606	0.00771	0.44211	0.46044	0.01442	0.82634
	2	3.140 48	26.7 033	51	8	26.3 813	709	0506	6322	2699	0546	2424	4025
32.7 0	3.8 3	- 2.997 07	- 26.6 784	0.5038 4	10.38 03	- 26.4 4	17.6 066	0.46562 5919	0.00726 2655	0.41611 9489	0.46146 5054	0.01525 2422	0.87389 9388
33	3.8 4	- 2.841 98	- 26.6 781	0.0814 226	10.43 31	- 26.4 317	17.6 209	0.46562 0683	0.00725 719	0.41580 6386	0.46132 0192	0.01513 5012	0.86717 2338
33.3 0	3.8 5	- 2.663 97	- 26.6 962	- 0.4214 41	10.42 46	- 26.3 759	17.3 42	0.46593 6588	0.00758 6943	0.43469 9841	0.46034 6298	0.01434 6111	0.82197 1627
33.6	3.8 6	- 2.452 88	- 26.7 253	- 0.9528 23	10.35 15	- 26.3 036	16.8 474	0.46644 4479	0.00811 7315	0.46508 7894	0.45908 4425	0.01332 5039	0.76346 8481
33.9 0	3.8 7	- 2.202 66	- 26.7 584	- 1.4637 9	10.21 08	- 26.2 477	16.2 441	0.46702 2183	0.00872 0914	0.49967 1579	0.45810 8786	0.01253 6433	0.71828 4676
34.2 0	3.8 8	- 1.915 25	- 26.7 895	- 1.9121 8	9.998 54	- 26.2 332	15.6 454	0.46756 498	0.00928 8357	0.53218 3647	0.45785 5713	0.01233 1996	0.70657 1324
34.5	3.8 9	- 1.602 46	- 26.8 143	- 2.2660 8	9.708 65	- 26.2 72	15.1 505	0.46799 7822	0.00974 107	0.55812 2198	0.45853 2901	0.01287 9152	0.73792 1059
34.8 0	3.9	- 1.285 72	- 26.8 294	- 2.5055 7	9.331 86	- 26.3 639	14.8 302	0.46826 1366	0.01001 6809	0.57392 0876	0.46013 6859	0.01417 6552	0.81225 6615
35.1	3.9 1	- 0.992 18	- 26.8 319	- 2.6238	8.856 8	- 26.5 007	14.7 219	0.46830 5	0.01006 2468	0.57653 695	0.46252 4469	0.01611 1566	0.92312 4754
35.4 0	3.9 2	- 0.748 073	- 26.8 203	- 2.6267 9	8.274 92	- 26.6 706	14.8 315	0.46810 2541	0.00985 0627	0.56439 9325	0.46548 9783	0.01852 103	1.06117 6871
35.7	3.9 3	- 0.570 207	- 26.7 924	- 2.5328	7.586 88	- 26.8 617	15.1 423	0.46761 5595	0.00934 1285	0.53521 621	0.46882 5108	0.02123 9479	1.21693 2533
36.0 0	3.9 4	- 0.459 364	- 26.7 448	- 2.3683	6.810 68	- 27.0 628	15.6 256	0.46678 4818	0.00847 2868	0.48545 9574	0.47233 4965	0.02410 9777	1.38138 8445
36.3 0	3.9 5	- 0.394 175	- 26.6 746	- 2.1594 2	5.990 82	- 27.2	16.2 492	0.46555 9597	0.00719 3438	0.41215 3637	0.47582 5623	0.02697 4205	1.54550 812
36.6	3.9 6	- 0.325	- 26.5 811	- 1.9238	5.206 87	- 27.4	16.9 829	0.46392 7714	0.00549 1762	0.31465 4756	0.47909 1134	0.02966 282	1.69955 4407
36.9 0	3.9 7	- 0.173 222	- 26.4 665	- 1.6664 8	4.581 16	- 27.6 101	17.7 981	0.46192 7566	0.00340 9814	0.19536 7931	0.48188 7152	0.03197 18	1.83184 9192
37.2	3.9 8	0.174 955	- 26.3 366	- 1.3777 9	4.281 86	- 27.7 237	18.6 588	0.45966 0384	0.00105 4882	0.06044 0275	0.48386 9846	0.03361 3017	1.92588 4014
37.5 0	3.9 9	0.860 095	- 26.2 011	- 1.0372 4	4.516 86	- 27.7 621	19.5 134	0.45729 5463	- 0.00139 5958	- 0.07998 2484	0.48454 0052	0.03416 8527	1.95771 2403
37.8	4	2.039 95	- 26.0 718	- 0.6207 09	5.512	- 27.6 864	20.2 925	0.45503 8752	- 0.00372 9327	- 0.21367 47	0.48321 8838	0.03307 3775	1.89498 7699
38.1 0	4.0 1	3.866 7	- 25.9 609	- 0.1121 24	7.472 91	- 27.4 54	20.9 166	0.45310 3182	- 0.00572 6513	- 0.32810 5053	0.47916 2693	0.02972 1834	1.70293 5659
38.4 0	4.0 2	6.457 72	- 25.8 774	0.4829 39	10.53 19	- 27.0 318	21.3 134	0.45164 5832	- 0.00722 7744	- 0.41411 9215	0.47179 3913	0.02366 667	1.35600 0288
38.7	4.0 3	9.866 06	- 25.8 212	1.1242 6	14.68 25	- 26.4 105	21.4 387	0.45066 4957	- 0.00823 694	- 0.47194 1893	0.46095 0182	0.01483 5199	0.84999 4283
39.0 0	4.0 4	14.05 85	- 25.7 785	1.7308 3	19.72 24	- 25.6 058	21.2 937	0.44991 9701	- 0.00900 3062	- 0.51583 746	0.44690 5518	0.00353 3712	0.20246 6758
39.3	4.0 5	18.90 96	- 25.7 226	2.1935 1	25.24 65	- 24.6 413	20.9 361	0.44894 4062	- 0.01000 5169	- 0.57325 3965	0.43007 1817	- 0.00981 4518	- 0.56233 0467

-			1			r	1						1
39.6 0	4.0 6	24.22 39	- 25.6 203	2.4178 8	30.73 31	- 23.5 298	20.4 98	0.44715 859	- 0.01183 6589	- 0.67818 6622	0.41067 2482	- 0.02493 9707	- 1.42893 9944
39.9	4.0 7	29.79 13	- 25.4 436	2.3739 5	35.71 59	- 22.2 854	20.1 838	0.44407 4594	- 0.01499 2389	- 0.85900 0625	0.38895 3605	- 0.04156 0099	- 2.38121 8273
40.2 0	4.0 8	35.44 26	- 25.1	2.0937 7	39.96 33	- 20.9 742	20.1 776	0.43969 2072	- 0.01946	- 1.11500 6686	0.36606 8848	- 0.05873 1517	- 3.36506 8042
40.5 0	4.0 9	41.06 93	- 24.9	1.6282 9	43.57 15	- 19.7 516	20.5 1	0.43493 954	- 0.02428 4278	- 1.39138	0.34473 0453	- 0.07444 2843	- 4.26526
40.8	4.1	46.60 27	- 24.7	1.0269	46.90 4	- 18.8 271	21.0 253	0.43162 3415	- 0.02763	- 1.58347 3523	0.32859 4884	- 0.08614 0135	- 4.93546 6173
41.1 0	4.1 1	51.97 08	- 24.7	0.3476 88	50.38 34	- 18.3	21.4 689	0.43165 4831	- 0.02760 5117	- 1.58165 6672	0.32048 6084	- 0.09196 1065	- 5.26898 088
41.4	4.1 2	57.06 55	- 24.9 785	- 0.3344 22	54.24 15	- 18.3 742	21.6 209	0.43595 7067	- 0.02325 3393	- 1.33232 1284	0.32069 0287	- 0.09181 4939	- 5.26060 8504
41.7 0	4.1 3	61.74 21	- 25.4	- 0.9353	58.38 16	- 18.7	21.4 09	0.44385 6427	- 0.01521 5273	- 0.87177	0.32652 3178	- 0.08763 0918	- 5.02088
42	4.1 4	65.85	- 25.9	- 1.3801	62.43 73	- 19.1	20.9 533	0.45326 5497	- 0.00555	- 0.31851 7286	0.33339 803	- 0.08267	- 4.73688
42.3 0	4.1 5	69.26 79	- 26.4	- 1.6221	65.96 72	- 19.3	20.5 076	0.46148 9489	0.00295 4369	0.16927 2889	0.33690 7887	- 0.08013	- 4.59128
42.6 0	4.1 6	71.92 62	- 26.7	- 1.6556	68.65 76	- 19.1 702	20.3 155	0.46611 9847	0.00777 8284	0.44566 284	0.33474 1933	- 0.08170 205	- 4.68118
42.9	4.1 7	73.81 39	- 26.6	- 1.5198	70.42 36	- 18.7	20.4 775	0.46568 0024	0.00731 9125	0.41935 4982	0.32718 6403	- 0.08715	- 4.99355 2745
43.2 0	4.1 8	74.98 01	- 26.3	- 1.2889	71.38 74	- 18.1	20.9 198	0.45990 9966	0.00131 3865	0.07527 8941	0.31632 3474	- 0.09493	- 5.43935 2058
43.5	4.1 9	75.52 95	- 25.7	- 1.0485	71.78 25	- 17.4 641	21.4 641	0.44972 0734	- 0.00920 7506	- 0.52755 1205	0.30480 6046	- 0.10311 1472	- 5.90785
43.8 0	4.2	75.60 41	- 25.0 327	- 0.8670 27	71.85 36	- 16.8 063	21.9 283	0.43690 3036	- 0.02229	- 1.27735	0.29489 6066	- 0.11008	- 6.30762
44.1	4.2 1	75.35 49	- 24.2 737	- 0.7751 91	71.79 62	- 16.5 037	22.1 947	0.42365 5987	- 0.03564 7537	- 2.04245 3448	0.28804 3904	- 0.11488 2481	- 6.58228 1303
44.4 0	4.2 2	74.91 26	- 23.6	- 0.7628 76	71.73 17	- 16.3	22.2 332	0.41204 7802	- 0.04720 8218	- 2.70483	0.28486 2169	- 0.11709	- 6.70933 2467
44.7 0	4.2 3	74.36 91	- 23.1 244	- 0.7930 03	71.70 36	- 16.3 468	22.0 924	0.40359 6918	- 0.05554 3165	- 3.18238 8938	0.28530 5482	- 0.11679 1299	- 6.69164 8528
45	4.2 4	73.77 45	- 22.8 645	- 0.8238 41	71.69 2	- 16.5 52	21.8 716	0.39906 0807	- 0.05998 9119	- 3.43712 332	0.28888 6898	- 0.11429 4079	- 6.54856 8355
45.3 0	4.2 5	73.14 65	- 22.8 292	- 0.8258 14	71.63 77	- 16.8 949	21.6 83	0.39844 4706	- 0.06059 148	- 3.47163 6095	0.29487 1632	- 0.11010 5979	- 6.30860 7875
45.6	4.2 6	72.48 37	- 22.9 849	- 0.7872 1	71.46 77	- 17.3 273	21.6 15	0.40116 2183	- 0.05793 192	- 3.31925 4519	0.30241 8435	- 0.10479 7402	- 6.00444 8834
45.9 0	4.2 7	71.77 57	- 23.2 745	- 0.7104 17	71.11 89	- 17.7 991	21.7 022	0.40621 6657	- 0.05296 6634	- 3.03476 4563	0.31065 2899	- 0.09896 9686	- 5.67054 5333
46.2	4.2 8	71.00 71	- 23.6 284	- 0.6030 02	70.56 49	- 18.2 648	21.9 081	0.41239 3377	- 0.04686 5933	- 2.68522 0169	0.31878 0897	- 0.09318 0349	- 5.33884 0748
46.5 0	4.2 9	70.15 92	- 23.9 749	- 0.4724 79	69.81 98	- 18.6 891	22.1 438	0.41844 0943	- 0.04085 7358	- 2.34095 4177	0.32618 6329	- 0.08787 3077	- 5.03475 6423

46.8	4.3	69.21	-	-	68.91	-	22.3	0.42326	-	-	0.33249	-	-
0		23	24.2 514	0.3270 85	5	19.0 503	158	6778	0.03603 7269	2.06478 3425	0458	0.08333 0151	4.77446 596
47.1	4.3 1	68.14 75	- 24.4 148	- 0.1771 82	67.87 98	- 19.3 445	22.3 646	0.42611 8646	- 0.03317 8141	- 1.90096 7433	0.33762 5217	- 0.07961 2708	- 4.56147 214
47.4 0	4.3 2	66.95 08	- 24.4 467	- 0.0322 12	66.73 53	- 19.5 84	22.2 748	0.42667 5406	- 0.03261 9036	- 1.86893 3089	0.34180 5281	- 0.07657 4897	- 4.38741 8436
47.7	4.3 3	65.61 67	- 24.3 546	0.1046 97	65.49 12	- 19.7 903	22.0 703	0.42506 7958	- 0.03423 2428	- 1.96137 3635	0.34540 5895	- 0.07394 9804	- 4.23701 1651
48.0 0	4.3 4	64.15 02	- 24.1 667	0.2373 79	64.14 55	- 19.9 877	21.8 026	0.42178 8484	- 0.03751 6206	- 2.14952 027	0.34885 1175	- 0.07143 0624	- 4.09267 3266
48.3	4.3 5	62.56 7	- 23.9 255	0.3712 62	62.69 44	- 20.1 978	21.5 313	0.41757 875	- 0.04171 6147	- 2.39015 9167	0.35251 8112	- 0.06874 1421	- 3.93859 3283
48.6 0	4.3 6	60.89	- 23.6 802	0.5063 12	61.14 46	- 20.4 384	21.3 057	0.41329 7458	- 0.04596 9918	- 2.63388 2314	0.35671 7374	- 0.06565 1672	- 3.76156 3729
48.9	4.3 7	59.14 47	- 23.4 794	0.6344 9	59.51 2	- 20.7 229	21.1 624	0.40979 2836	- 0.04943 8907	- 2.83264 07	0.36168 2836	- 0.06198 4032	- 3.55142 3454
49.2 0	4.3 8	57.35 12	- 23.3 663	0.7434	57.81 44	- 21.0 577	21.1 248	0.40781 8869	- 0.05138 7636	- 2.94429 4635	0.36752 6198	- 0.05764 8101	- 3.30299 2874
49.5	4.3 9	55.51 63	- 23.3 76	0.8236 56	56.06 48	- 21.4 391	21.2 021	0.40798 8166	- 0.05122 0649	- 2.93472 7	0.37418 2884	- 0.05268 2155	- 3.01846 5161
49.8 0	4.4	53.63 33	- 23.5 343	0.8758 93	54.26 98	- 21.8 543	21.3 875	0.41075 1022	- 0.04849 1631	- 2.77836 5801	0.38142 9491	- 0.04724 3535	- 2.70685 5177
50.1	4.4 1	51.69 04	- 23.8 553	0.9145 95	52.43 41	- 22.2 871	21.6 587	0.41635 3529	- 0.04293 5296	- 2.46001 1267	0.38898 3276	- 0.04153 7612	- 2.37992 9885
50.4 0	4.4 2	49.67 7	- 24.3 39	0.9669 91	50.56 74	- 22.7 24	21.9 811	0.42479 5687	- 0.03450 5456	- 1.97701 6985	0.39660 8619	- 0.03573 8916	- 2.04768 9054
50.7	4.4 3	47.58 78	- 24.9 698	1.0681 2	48.68 39	- 23.1 562	22.3 158	0.43580 5224	- 0.02340 7295	- 1.34113 9232	0.40415 1932	- 0.02996 3655	- 1.71679 0981
51.0 0	4.4 4	45.42 46	- 25.7 164	1.2515 5	46.79 59	- 23.5 771	22.6 3	0.44883 5852	- 0.01011 6256	- 0.57961 8768	0.41149 8023	- 0.02430 1523	- 1.39237 4703
51.3	4.4 5	43.19 78	- 26.5 344	1.5407 9	44.91 07	- 23.9 797	22.9 016	0.46311 2645	0.00464 2861	0.26601 6367	0.41852 4719	- 0.01885 0026	- 1.08002 691
51.6 0	4.4 6	40.92 59	- 27.3 716	1.9438 6	43.03 24	- 24.3 57	23.1 203	0.47772 4542	0.01996 574	1.14395 2656	0.42510 9846	- 0.01370 9063	- 0.78547 145
51.9	4.4 7	38.63 3	- 28.1 744	2.4519	41.16 22	- 24.7 004	23.2 851	0.49173 6045	0.03486 9336	1.99786 5796	0.43110 3307	- 0.00900 2662	- 0.51581 4545
52.2 0	4.4 8	36.34 48	- 28.8 946	3.0411	39.30 32	- 25.0 01	23.3 997	0.50430 5906	0.04841 7709	2.77413 0402	0.43634 9766	- 0.00486 1172	- 0.27852 4659
52.5 0	4.4 9	34.08 69	- 29.4 947	3.6781 8	37.46 56	- 25.2 521	23.4 662	0.51477 9627	0.05983 7375	3.42842 9041	0.44073 2288	- 0.00138 5973	- 0.07941 0427
52.8	4.5	31.88 33	- 29.9 514	4.3257 9	35.66 37	- 25.4 507	23.4 842	0.52275 0546	0.06860 8687	3.93098 8225	0.44419 8512	0.00137 2844	0.07865 8184
53.1 0	4.5 1	29.75 64	- 30.2 566	4.9469 7	33.90 96	- 25.6 009	23.4 53	0.52807 729	0.07450 9428	4.26907 5775	0.44681 9996	0.00346 5359	0.19855 0452
53.4	4.5 2	27.72 76	- 30.4 158	5.5070 2	32.21 05	- 25.7 124	23.3 728	0.53085 5855	0.077 <u>59</u> 991	4.44614 7335	0.44876 6039	0.00502 2106	0.28774 55
53.7 0	4.5 3	25.81 57	- 30.4 451	5.9736 9	30.57 05	- 25.7 982	23.2 432	0.53136 7236	0.07816 9636	4.47879 0201	0.45026 3531	0.00622 2005	0.35649 4619

54	4.5	24.03	-	6.3167	28.99	-	23.0	0.53002	0.07667	4.39337	0.45157	0.00727	0.41659
	4	79	30.3 684	6	11	25.8 731	643	8569	8855	4/8/	0783	08/5	0448
54.3	4.5	22.40	-	6.5099	27.46	-	22.8	0.52735	0.07370	4.22288	0.45291	0.00834	0.47828
0	5	75	30.2	1	64	25.9	398	1233	3281	6912	1196	7717	8963
			15			499							
54.6	4.5	20.92	-	6.5382	25.97	-	22.5	0.52384	0.06982	4.00040	0.45442	0.00956	0.54827
	6	55	30.0	7	93	26.0	789	6612	0295	8201	9632	9253	7784
			142			369							

Table 4: Kinect Data Example

Frame	Left	Right	Left	Right
	Coronal:	Coronal:	Sagittal:	Sagittal:
1	-2	17.04	27.5	35.94
2	-2.05	16.92	32.23	50.56
3	-3.79	16.88	56.67	68.95
4	0.57	15.91	62.94	87.18
5	0.12	14.41	94.35	93.57
6	0.66	-7.2	101.18	100.47
7	0.4	-5.7	102.4	102.55
8	0.5	-4.65	101.96	102.04
9	1.5	-4.74	101.25	101.14
10	2.62	-2.4	93.72	98.78
11	3.54	-2.61	87.58	94.31
12	2.9	-2.62	89.49	96.79
13	3.54	-1.88	49.15	105.31
14	3.62	-2.56	51.56	102.69
15	-2.02	-2.39	98.78	99.53
16	-0.41	-2.54	95.51	99.97
17	-2.51	-0.91	97.89	99.93
18	-0.92	-2.52	102.81	98.25
19	4.76	0.98	75.04	92.57
20	5.27	-0.91	91.28	92.1
21	5.57	0.13	73.2	72.65
22	3.83	-0.86	57.28	50.57
23	4.1	-2.18	25.87	36.24
24	-0.99	2.57	11.15	9.22
25	0.93	2.16	6.83	4.87
26	2.98	-0.71	4.93	10.05
27	3.19	-1.64	3.08	12.87
28	0.41	-2.74	6.81	9.08
29	0.43	-1.79	13.22	7.04
30	-2.53	-1.81	12.19	7.01
31	-0.26	0.3	4.82	4.73
32	0.02	0.55	3.69	6.24
33	0.62	0.24	5.3	4.49
34	-0.08	0.65	4.3	5.75
35	-2.97	0.33	6.89	5.57
36	-3.04	2.13	8.34	4.85
37	-2.83	2.54	6.25	3.73
38	-1.76	1.78	5.96	5.07
39	-2.03	1.16	15.32	15.77

40	-3.55	-0.52	35.03	33.87
41	-3.3	-3.36	59.67	53.02
42	-1.83	-0.94	59	71.33
43	1.89	-0.23	87.58	84.21
44	0.49	-4.23	102.1	102.42
45	0.24	-5.08	103.25	102.78
46	-1.04	-4.99	87.03	102.18
47	-1.2	-4.29	102.87	101.99
48	-0.94	-3.39	101.98	99.71
49	-1.77	-2.02	94.48	92.02
50	-1.58	-1.33	90.56	89.07
51	-0.95	-2.29	81.89	80.87
52	-0.25	-1.61	77.16	75.44
53	0.72	-1.98	69.79	68.78
54	1.23	-2.52	63.74	62.33
55	-4.09	-0.66	58.94	47.6
56	-0.26	-0.24	32	32.14
57	-1.2	0.06	20.5	19.68
58	-1.27	-0.21	18.86	16.4
59	-0.35	0.3	14.96	9.53
60	-0.85	-0.16	13.02	7.26
61	-1.44	-0.62	8.81	6.64
62	-2.22	-0.68	7.22	5.68
63	-2.29	-0.85	6.15	5.43
64	-2.25	-0.83	4.79	5.24
65	-2.06	-0.78	4.64	5.23

Table 12: Knee laxity data

Identification	KT 1000 Re	sults (mm)
97VR	R: 6.5	L: 7
58DE/004	R: 4	L: 3
41KU	R: 6	L: 5.5
39MA	R:2	L:2.5
49AL	R:2	L:2
55CA	R:5	L:5
69SO	R:2	L:5
75CO	R:2	L:6
81PA	R:8	L:5
82ND	R:3	L:6
AP_f21	R:5	L:8
AM_f05	R:7	L:6.5
AS_f06	R:10	L:4
FP_f23	R:3	L:6
GB_f07	R:5	L:3
VD_f16	R:6	L:6
YR_f13	R:2	L:2

MP_f18	R:1	L:6
TT_f22	R:3	L:3
ML_f20	R:8	L:5
KB_f03	R:4	L:1
KK_f09	R:4	L:5
JW_f08	R:6	L:4
JH_f19	R:3	L:6
JS_f17	R:4	L:3