
PROGRAM ANALYSIS USING BINARY DECISION DIAGRAMS

by

Ondfej Lhotdk

School of Computer Science

McGill University, Montreal

January 2006

A THESIS SUBMITTED TO Mc GILL UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS OF THE DEGREE OF

DOCTOR OF PHILOSOPHY

Copyright © 2006 by Ondfej Lhotak

1+1 Library and
Archives Canada

Bibliothèque et
Archives Canada

Published Heritage
Branch

Direction du
Patrimoine de l'édition

395 Wellington Street
Ottawa ON K1A ON4
Canada

395, rue Wellington
Ottawa ON K1A ON4
Canada

NOTICE:
The author has granted a non­
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell th es es
worldwide, for commercial or non­
commercial purposes, in microform,
paper, electronic and/or any other
formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

ln compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,
their removal does not represent
any loss of content from the
thesis.

• ••
Canada

AVIS:

Your file Votre référence
ISBN: 978-0-494-25195-9
Our file Notre référence
ISBN: 978-0-494-25195-9

L'auteur a accordé une licence non exclusive
permettant à la Bibliothèque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par télécommunication ou par l'Internet, prêter,
distribuer et vendre des thèses partout dans
le monde, à des fins commerciales ou autres,
sur support microforme, papier, électronique
et/ou autres formats.

L'auteur conserve la propriété du droit d'auteur
et des droits moraux qui protège cette thèse.
Ni la thèse ni des extraits substantiels de
celle-ci ne doivent être imprimés ou autrement
reproduits sans son autorisation.

Conformément à la loi canadienne
sur la protection de la vie privée,
quelques formulaires secondaires
ont été enlevés de cette thèse.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

Abstract

A fundamental problem in interprocedural program analyses is the need to repre­

sent and manipulate collections of large sets. Binary Decision Diagrams (BDDs) are

a data structure widely used in model checking to compactly encode large state sets.

In this dissertation, we develop new techniques and frameworks for applying BDDs

to program analysis, and use our BDD-based analyses to gain new insight into factors

infiuencing analysis precision.

To make it feasible to express complicated, interrelated analyses using BDDs,

we first present the design and implementation of JEDD, a Java language extension

which adds relations implemented with BDDs as a datatype, and makes it possible

to express BDD-based algorithms at a higher level than existing BDD libraries.

Using JEDD, we develop PADDLE, a framework of context-sensitive points-to and

calI graph analyses for Java, as weIl as client analyses that make use of their results.

PADDLE supports several variations of context-sensitive analyses, including the use

of calI site strings and abstract receiver object strings as abstractions of context.

We use the PADDLE framework to perform an in-depth empirical study of the

effect of context-sensitivity variations on the precision of interprocedural program

analyses. The use of BDDs enables us to compare context-sensitive analyses on much

larger, more realistic benchmarks than has been possible with traditional analysis

implementations.

Finally, based on the calI graph computed by PADDLE, we implement, using JEDD,

a novel static analysis of the cfiow construct in the aspect-oriented language AspectJ.

Thanks to the JEDD high-level representation, the implementation of the analysis

closely mirrors its specification.

11

Résumé

Un problème fondamental en analyse interprocédurale des programmes est le be­

soin de représenter et manipuler des collections de grands ensembles. Les diagrammes

de décision binaires (DDB) sont une structure de données largement utilisée dans

la vérification de modèles pour coder de grands ensembles d'états. Dans cette thèse,

nous développons de nouvelles techniques pour appliquer les DDB à l'analyse des

programmes, et nous utilisons nos analyses basées sur les DDB pour acquérir des

connaissance sur les facteurs qui influencent la précision des analyses.

Pour qu'il soit faisable d'exprimer des analyses compliquées et interdépendantes

en utilisant les DDB, nous présentons d'abord JEDD, une extension du langage Java

qui ajoute des relations implantées avec des DDB comme un type de données, et

permet l'expression des algorithmes basés sur les DDB à un niveau plus haut qu'avec

les bibliothèques de DDB existantes.

En utilisant JEDD, nous développons PADDLE, un système d'analyses de pointeur

et de graphe d'appel sensibles au contexte pour Java, ainsi que des analyses client qui

exploitent leurs résultats. PADDLE comprend plusieurs variantes d'analyses sensibles

au contexte, y compris des analyses qui utilisent des chaînes de sites d'appel et des

chaînes d'objets récepteurs abstraits en tant qu'abstractions de contexte.

Nous utilisons le système PADDLE pour effectuer une étude expérimentale de l'ef­

fet de la sensibilité au contexte sur la précision des analyses interprocédurales des

programmes. L'utilisation des DDB nous permet de comparer des analyses sensibles

au contexte sur des programmes plus grands et plus réalistes que ce qui a été possible

avec les implantations traditionnelles des analyses.

Finalement, utilisant le graphe d'appel calculé par PADDLE, nous développons, en

utilisant JEDD, une analyse statique originale de la construction cflow dans le langage

orienté-aspect AspectJ. Grâce à la représentation JEDD de haut niveau, l'implantation

de l'analyse suit directement sa spécification.

III

IV

Acknowledgements

First, 1 would like to thank my advisor, Laurie Hendren. Throughout my time at

McGill, her constant encouragement kept me going. This work benefited significantly

from her thoughtful suggestions for improvement. Useful suggestions for the final

version were also provided by the examination committee, particularly the external

examiner Nelson Amaral.

The seed that eventually grew into this dissertation, the idea of using BDDs for

points-to analysis, originated from a blackboard discussion between Feng Qian, Marc

Berndl, and me. 1 thank them and the rest of the Sable group, as weIl as Oege

de Moor and the abc team at Oxford and Arhus, for aIl the productive discussions

and co-operation. 1 am particularly grateful to Bruno Dufour for his help proofreading

the French translation of the abstracto Thank you also to Gordon Cormack for his

guidance and support, and to the WatForm group for showing me BDDs from a

verification perspective.

The software developed as part of this work builds on the work of others. The

JEDD framework is built on the excellent Polyglot Java front-end by Andrew Myers,

Nathaniel Nystrom, Stephen Chong, and others, and can make use of sever al BDD

libraries, notably BuDDY by J0rn Lind-Nielsen, and SAT solvers, particularly zChaff

from Princeton University. PADDLE builds on SOOT, started by Raja Vallée-Rai and

developed by the Sable group. The AspectJ part of this work builds on the abc

compiler built by the abc team, spread between McGill, Oxford, and Arhus. The

dynamic calI graphs for the empirical study were collected using Bruno Dufour's

excellent * J tool. 1 am grateful to Manu Sridharan, the first external user of JEDD

and PADDLE, for his bug reports, fixes, and suggestions.

v

This work was supported financially by NSERC, by an IBM Ph.D. fellowship, and

by a Richard H. Tomlinson fellowship.

A big thank you to Jennifer for sticking it out with me in Montreal, and for her

constant love, help, encouragement, and patience.

VI

Contents

Abstract

Résumé

Acknowledgements

Contents

List of Figures

List of Tables

List of Abbreviations

1 Introduction

1.1 Motivation .

1.2 Challenges .

1.3 Contributions

1.4 Organization

2 Background: BDDs and Points-to Analysis

2.1 Subset-based Points-to Analysis

2.2 Binary Decision Diagrams . .

2.3 BDD-based Points-to Analysis

2.4 Conclusion

vu

i

iii

v

vii

xiii

xvii

XIX

1

1

2

3

5

7

7

9

17

23

3 Extending Java with Relations 25

3.1 JEDD Motivation and Overview 26

3.2 Relations. 30

3.2.1 Definitions . 30

3.2.2 Encoding relations in BDDs 31

3.2.3 Manipulating relations in BDDs 32

3.3 JEDD Language . 33

3.3.1 Grammar 35

3.3.2 Domains, attributes, physicai domains, and numberers 40

3.3.2.1 Domains. 40

3.3.2.2 Attributes . 41

3.3.2.3 Physicai domains 41

3.3.2.4 Numberers 42

3.3.2.5 Specifying physical domain ordering 43

3.3.3 Extracting information from relations . 44

3.3.4 Type checking . 45

3.4 Complete Example 46

3.5 Assigning Physical Domains to Attributes 54

3.5.1 Objectives . .. 56

3.5.2 FormaI physicai domain assignment requirements 58

3.5.3 Physical domain assignment algorithm 61

3.5.3.1 Additional optimizations . 69

3.5.4 Error reporting 70

3.6 JEDD Runtime 72

3.6.1 Backends 72

3.6.2 Memory management issues 72

3.6.3 Profiler. 74

3.7 JEDD Performance 80

3.8 Related Work 85

3.8.1 Languages with relations 85

3.8.2 Interfacing with BDDs 86

viii

3.8.3 Relations with BDD back-ends

3.9 Conclusion................

4 Applying BDDs to Interprocedural Program Analysis

4.1 Background and Related Work

4.1.1 Points-to analysis and calI graph construction

4.1.2 Context sensitivity

4.1.2.1 CalI site context-sensitive analyses

4.1.2.2

4.1.2.3

Object-sensitive analyses

Zhu/ Calman/Whaley /Lam algorithm .

4.1.3 BDD-based program analyses

4.1.3.1 Points-to and calI graph analyses

4.1.3.2 Other program analyses ...

4.2 Key Contributions of the PADDLE Framework

4.3 Points-to Analysis and CalI Graph Construction

4.3.1 High-Ievel structure ...

4.3.2 CalI graph construction.

4.3.3 Points-to constraint generation

4.3.4 Points-to set propagation

4.3.4.1 Basic propagation algorithm .

4.3.4.2 IncrementaI propagation algorithm

4.3.5 Virtual calI resolution

4.3.6 Reusing an existing calI graph

4.4 Client Analyses

4.4.1

4.4.2

4.4.3

Monomorphic calI sites

Cast safety analysis .

Side-effect analysis

4.4.4 Escape analysis

4.5 Conclusions

ix

87

88

89

90

90

94

96

99

104

106

107

107

108

110

110

114

119

124

125

129

130

136

139

139

140

141

142

143

5 Empirical Study of Context Sensitivity 145

5.1 Benchmarks 146

5.2 Context Abstractions 149

5.3 N umber of Contexts 154

5.3.1 Total number of contexts . 155

5.3.2 Equivalent contexts . . 158

5.3.3 Distinct points-to sets 165

5.4 CalI Graph 166

5.4.1 Reachable methods 168

5.4.2 CalI edges 173

5.5 Virtual CalI Resolution . 173

5.6 Cast Safety 177

5.7 Related Work 179

5.8 Conclusions 181

6 Analyses for AspectJ 183

6.1 Background 183

6.1.1 AspectJ background 183

6.1.2 abc background 189

6.2 Cfiow Analysis 191

6.2.1 Desired optimization 191

6.2.2 Analysis prerequisites . 192

6.2.3 Desired analysis results . 193

6.2.4 Computing analysis results . 194

6.3 Experimental Results 197

6.4 Related Work 202

6.5 Conclusions 203

7 Conclusions and Future Work 205

7.1 The JEDD Language and Compiler 205

7.2 The PADDLE Interprocedural Analysis Framework 206

x

7.3 Empirical Evaluation of Context Sensitivity

7.4 Analysis of the cfiow Construct

7.5 Future Work.

A Proofs

B Jedd Usage Notes

B.1 Example

B.2 JEDD Source Files

B.3 Selecting a Backend .

B.4 Compiling JEDD Code

B.5 Using the Profiler .

C Paddle User's Guide

C.1 Invoking PADDLE .

C.I.1 General options

C.I.2 Analysis implementation options

C.I.3 Paddle context sensitivity options

C.1.4 BDD backend options

C.I.5 Miscellaneous analysis precision options.

C.2 Analysis Results

Bibliography

Xl

207

207

208

211

217

217

217

218

218

219

221

221

222

222

225

226

227

228

231

Xll

List of Figures

1.1 Summary of contributions

2.1 Example pointer propagation statements

2.2 Unreduced BDD for points-to example

2.3 Reduced BDD for points-to example

2.4 BDD for points-to sets using alternative ordering

2.5 Points-to set propagation in BDDs

4

8

10

11

13

16

2.6 BDD code for propagating points-to sets along assignment constraints 18

2.7 The four kinds of points-to constraints 18

2.8 Inference rules 19

2.9 Basic BDD-based points-to analysis algorithm from [BLQ+03]

3.1 Overview of JEDD system

3.2 Example relations

3.3 JEDD implementation of simple points-to set propagation

3.4 JEDD grammar productions

3.5 Chain of expression precedences in Java and JEDD .

3.6 Grammar transformations to keep JEDD grammar LALR(l)

3.7 Example domain declaration .

3.8 Example attribute declaration

3.9 Example physical domain declaration

3.10 Example numberer

3.11 Example of setting the bit position ordering

3.12 Example use of single-attribute iterator

Xlll

21

29

30

34

36

38

39

40

41

41

42

44

45

3.13 Example use of multi-attribute iterator 46

3.14 Typing rules .. 47

3.15 Complete JEDD code for points-to analysis of [BLQ+03] (part 1 of 5) 48

3.16 Complete JEDD code for points-to analysis of [BLQ+03] (part 2 of 5) 50

3.17 Complete JEDD code for points-to analysis of [BLQ+03] (part 3 of 5) 52

3.18 Complete JEDD code for points-to analysis of [BLQ+03] (part 4 of 5) 53

3.19 Complete JEDD code for points-to analysis of [BLQ+03] (part 5 of 5) 55

3.20 Example of physical domain assignment constraints 63

3.21 Complete formula for physical domain assignment problem in CNF 68

3.22 Overall profile view 76

3.23 Graphical representation of BDD in replace operation 77

3.24 Example shape graph . 78

3.25 Example shape graph . 79

3.26 Example shape graph . 81

3.27 Example shape graph . 82

3.28 Size of SAT formula. 84

3.29 SAT solving time . . 84

4.1 Imprecision of context-insensitive analysis 97

4.2 Imprecision of 1-call-site context-sensitive analysis 97

4.3 Imprecision of context-insensitive modelling of abstract heap objects. 99

4.4 Example code illustrating l-object-sensitive analysis 100

4.5 Example code illustrating k-object-sensitive analysis. . . .

4.6 Example code illustrating object-sensitive heap abstraction

4.7 Steps of Zhu/Calman/Whaley/Lam algorithm

4.8 Very high level overview of caU graph and points-to analyses

4.9 Components in on-the-fly call graph configuration .

4.10 Basic propagation algorithm for simple assignments

4.11 Basic propagation algorithm for field loads and stores

4.12 IncrementaI propagation algorithm for simple assignments

4.13 IncrementaI propagation algorithm for field loads and stores

XIV

102

103

105

111

113

126

127

131

132

4.14 JEDD code for virtual call resolution 133

4.15 Example of resolving virtual method calls . 134

4.16 Components in ahead-of-time call graph configuration. 136

4.17 Summary of PADDLE configurations 138

5.1 Example context-sensitive points-to relation 159

5.2 BDD for relation from Figure 5.1 .. 161

6.1 Base code for AspectJ cfiow example 186

6.2 Dynamic trace of method call join points 187

6.3 High-level structure of the abc AspectJ compiler. 190

6.4 JEDD code to compute mayCfiow for one update shadow 195

6.5 JEDD code to compute mayCfiow for all update shadows at once. 196

6.6 JEDD code to compute mustCfiow 198

6.7 JEDD code to compute necessaryShadows . 198

xv

XVI

List of Tables

2.1 Encodings of elements in terms of physical domains 12

3.1 Running time comparison of points-to analysis 83

5.1 Benchmarks 147

5.2 Total number of abstract contexts 157

5.3 Number of equivalence classes of abstract contexts . 162

5.4 Total number of distinct points-to sets in points-to analysis results . 167

5.5 Number of reachable benchmark (non-library) methods in caU graph . 169

5.6 Total number of reachable methods in caU graph . 172

5.7 Total number of caU edges in caU graph. 174

5.8 Total number of potentiaUy polymorphie caU sites 175

5.9 N umber of casts potentiaUy failing at run time . 178

6.1 Benchmarks 199

6.2 Statie interprocedural optimization counts 200

6.3 Benchmark running times (seconds) 202

xvii

XVlll

List of Abbreviations

AST abstract syntax tree

BDD binary decision diagram [Bry92]

CFA control fiow analysis [Shi88]

CG 1 common gateway interface

CHA class hierarchy analysis [DGC95]

CNF conjunctive normal form

DAG directed acyclic graph

DFS depth-first search

DNF disjunctive normal form

JNI Java native interface

RTA rapid type analysis [BS96]

SAT boolean satisfiability problem

SQL structured query language

SSA static single assignment [AWZ88]

VM virtual machine

VTA variable type analysis [SHR+OO]

XML extensible markup language

ZCWL Zhu/Calman/Whaley /Lam algorithm [ZC04, WL04]

XIX

xx

1.1 Motivation

Chapter 1

Introduction

Existing and new applications of program analysis demand increasingly precise, yet

efficient, interprocedural analyses. A program analysis conservatively estimates the

possible run-time behaviour of a program by analyzing the program without executing

it. Traditionally, results of program analyses have been used to justify compiler

optimizations. More recently, pro gram analysis has found important applications in

software engineering tools which help developers understand, maintain, and verify

programs. These applications depend on the availability of precise, efficient program

analyses. Imprecision in analysis results restricts the code optimizations that can be

safely performed by compilers, and reduces the amount of information available to

software engineering tools. The popularity of object-oriented languages has increased

the importance of interprocedural program analysis in particular. The context of our

work is the effort to improve the precision of interprocedural program analyses while

making them efficient enough to be practical.

A fundamental challenge in the design of precise interprocedural program anal­

yses is the need to represent and manipulate collections of large sets. In sorne pro­

gram analyses, much of the complexity stems not from the analysis itself, but from

data structures carefully customized to be efficient enough for the particular analysis.

Therefore, a general data structure which would make it easier to write reasonably

1

Introduction

efficient analyses would be very useful for experimenting with new, more precise pro­

gram analyses.

BDDs [Bry92] have been found to be a very effective representation of state sets

in the area of model checking, where they have made it feasible to exhaustively check

large state spaces. Could BDDs also be useful in the area of program analysis? The

present dissertation develops the thesis that BDDs are an effective representa­

tion of collections of large sets in interprocedural program analyses, and

their use facilitates the development of and experimentation with new,

precise, efficient analyses.

Context-sensitive analyses are widely believed to significantly improve program

analysis precision, particularly when analyzing object-oriented programs. However,

until now, detailed empirical evidence for this belief has been scarce, because context­

sensitive analyses have so far been too expensive to be feasible for programs of rea­

sonable size. We show that the use of BDDs can make context-sensitive analyses

efficient enough to be feasible for realistic programs.

New programming paradigms, such as Aspect-Oriented Programming, require the

design of new interprocedural program analyses. BDDs enable analysis designers to

build prototypes of such analyses quickly, without requiring them to devise clever

data structures to make the prototypes efficient enough to experiment with. We

demonstrate this with a BDD-based implementation of a static analysis of the cfiow

construct in the aspect-oriented programming language AspectJ.

1.2 Challenges

Our work shows how to overcome the following challenges inherent in the use of BDDs

for interprocedural program analysis.

Program analyses and model checkers differ significantly in the forms of data

that they manipulate. A model checker uses BDDs to explore the reachable state

space of a finite state machine, storing sets of states in the BD D. Program analyses

manipulate a much wider variety of data, and it is not obvious how to encode them

2

1.3. Contributions

or manipulate them in BDDs. We suggest relations as an abstraction over raw BDDs,

and demonstrate how to express program analyses in terms of relations.

Program analyses are often interdependent, and the low-level nature of current

BDD libraries makes it very difficult to manage a large code base of multiple interde­

pendent analyses. In our experience, implementing program analyses directly using a

BDD library such as BuDDY [LN] or CUDD [Som] is both tedious and error-prone,

to the point that it is not feasible to implement analyses consisting of more than

about 30 BDD operations. Higher-level tools for writing analyses with BDDs are

therefore necessary.

Details of how data is encoded in BDDs can affect analysis cost by orders of

magnitude, so support for careful tuning of the encoding is crucial. The two factors

affecting performance the most are the BDD variable ordering and the assignment

of attribut es to BDD variables. Finding an optimal variable ordering even for a

single BDD is already an NP-complete problem, and we need orderings that are

simultaneously good for the many BDDs in a system of interrelated analyses. Effective

heuristics are known for sorne applications, but they have yet to be developed for

program analyses. Therefore, tools are required to enable programmers to easily

experiment with these design variations and to provide detailed feedback about their

actual effect on the BDDs.

1.3 Contributions

This work contributes to the development of BDD-based program analysis in four

ways. Figure 1.1 summarizes how these four contributions build on each other.

First, we have developed JEDD, a language extension to Java which makes it

feasible to write complicated, interrelated, BDD-based program analyses. In JEDD,

BDDs are abstracted as relations. JEDD code is written at a high level in terms of

relations, and the JEDD compiler translates it to low-level Java code with caUs into

a BDD library to implement the BDD operations. Since design of JEDD is guided by

the need to experiment with the encoding of relations in BDDs, JEDD provides ways

3

Introduction

Jedd
(Chapter 3)

"
Paddle

(Chapter 4)

1 \
empirical study of analyses for
context sensitivity AspectJ

(Chapter 5) (Chapter 6)

Figure 1.1: Summary of contributions

for the programmer to try different encodings and observe the resulting BDDs. We

describe JEDD in detail in Chapter 3.

Second, we have used JEDD to implement PADDLE, a flexible framework of BDD­

based call graph and points-to analyses and the various prerequisite analyses needed

to compute them. PADDLE supports several variations of context sensitive analysis,

including using strings of call sites [Shi88] and of abstract receiver objects [MRR02] as

the context abstraction. While traditional implementations of these context-sensitive

analyses generally do not scale beyond very small programs, our BDD-based imple­

mentation successfully analyzes significant Java applications in conjunction with the

large Java class library. We present our analyses in more detail in Chapter 4.

Third, we have used PADDLE to perform an empirical study of the effects of

different variations of context sensitivity on the precision of call graph and points­

to analysis, and of client analyses that depend on their results. To the best of our

knowledge, this is the first comprehensive comparison of these context sensitivity

variations on Java programs of this size. We present our empirical study of context

sensitivity in Chapter 5.

Fourth, we have developed a novel interprocedural analysis of the cflow construct

in the aspect-oriented language AspectJ. The analysis is implemented in the JEDD

4

1.4. Organization

language and uses the calI graph constructed by PADDLE. The BDD-based implemen­

tation of the analysis follows its specification almost exactly, without any additional

implementation-specific clutter. The use of BDDs and the high-level JEDD language

made it easy to experiment with the analyses without having to spend much time

on tuning implementation details of each variation of the analysis. We describe the

cfiow analysis in Chapter 6.

1.4 Organization

The remainder of this dissertation is organized as follows. We begin by providing

background information about BDDs in the next chapter. The following four chap­

ters describe in detail each of the four contributions listed above. The JEDD language

and translator are presented in Chapter 3. The PADDLE interprocedural analysis

framework is described in Chapter 4. In Chapter 5, we report the results of our em­

pirical study of variations of context sensitivity and their effect on analysis precision.

The cfiow analysis for AspectJ is presented and evaluated in Chapter 6. Finally, in

Chapter 7, we conclude and suggest directions for further research.

This thesis makes contributions to three areas of knowledge: Chapter 3 on JEDD

contributes to the application of BDDs to program analysis, Chapters 4 and 5 on PAD­

DLE and context sensitivity contribute to the design and implementation of precise

interprocedural analyses for Java, and Chapter 6 contributes to analysis of AspectJ.

Therefore, we have included a section on related work for each contribution within

the corresponding chapter (Sections 3.8, 4.1, 5.7, and 6.4).

5

Introduction

6

Chapter 2

Background: BDDs and Points-ta Analysis

In this chapter, we provide the background information about BDDs [Bry92] that

will be necessary to understand the remainder of this thesis. Since the topic of this

thesis is the use of BDDs to implement set-based interprocedural program analyses,

we will use one such analysis, subset-based points-to analysis [EGH94, And94], and

our BDD-based implementation of it [BLQ+03], as an example to illustrate the BDD

concepts.

In Section 2.1, we give a brief introduction to subset-based points-to analysis.

In Section 2.2, we introduce BDDs, and describe how BDD operations are used in

implementing a subset-based points-to analysis. In Section 2.3, we show the complete

BDD-based analysis that we developed in [BLQ+03], and briefiy comment on the

tuning that was required to make it efficient.

2.1 Subset-based Points-to Analysis

Analyses of programs with pointers to memory must estimate the effects of operations

performed through pointers. A points-to analysis approximates, for each pointer in

the program, the set of objects to which the pointer may point. In our example points­

to analysis, we represent each object by the allocation site at which it is allocated. The

analysis tracks the fiow of objects from their allocation sites along pointer assignments

in the program. For each pointer p, the analysis computes a points-ta set of the

7

Background: BDDs and Points-to Analysis

allocation sites whose objects may flow to p. Therefore, if the program contains an

allocation site S of the form p : = new 00, then the pointer p may point to the

objects allocated at site S, so the analysis generates the constraint SE points-to(p).

The analysis is subset-based in that it models data flow between pointers using subset

constraints between their points-to sets. Suppose that p and q are pointers, and

the assignment p : = q appears in the program. Since q is assigned to p, after the

assignment, p may point to any object to which q was pointing. This is modelled in

the analysis with the subset constraint points-to(q) ç points-to(p).

X: a = new DO;

Y: b new 00;

Z: c = new 00;

a = b· ,

b a· ,

c = b·

Figure 2.1: Example pointer propagation statements

To use a concrete example, con si der the program statements shown in Figure 2.l.

The first three statements are allocation statements, which would cause the analysis

to initialize the points-to sets of a, b, and c to {X}, {Y}, and {Z}, respectively. The

fourth line would be modelled by the subset constraint points-to(b) ç points-to(a),

which would be processed by propagating the points-to set of b into the points­

to set of a, making points-to(a) = {X, y}. The fifth line would be processed by

propagating points-to(a) into points-to(b) , making points-to(b) also {X, y}. Finally,

the sixth line would cause points-to(b) to be propagated into points-to(c), making

points-to(c) = {X, Y, Z}. The final points-to sets for the example would be

points-to(a)

points-to(b)

points-to(c)

8

{X,Y}
{X,Y}
{X,Y,Z}

2.2. Binary Decision Diagrams

When analyzing large programs, a key problem is that the number of points-to sets

and the size of each set may become very large. Various techniques [DasOO, FFSA98,

HT01, Lho02, LH03, LPH01, RMR01, SH97, WL02] have been studied for compactly

representing the points-to sets and efficiently solving the subset constraints. In this

chapter, we review one such technique [BLQ+03] that we have developed, which is to

use BDDs to compactly represent the points-to sets and BDD operations to efficiently

propagate them along subset constraints.

2.2 Binary Decision Diagrams

A BDD [Bry92] is a representation of a boolean-valued function of n boolean BDD

variables. Equivalently, it can be thought of as representing a set of binary vectors

of length n; the set includes precisely those vectors which the function maps to the

value 1.

Physically, a BDD is a trie-like rooted directed acyclic graph (DAG) of nodes. The

DAG has two terminal nodes @] and ITJ with no successor, and every non-terminal

node has two successors called the O-successor and the l-successor. As in a trie, to

determine whether a given binary vector is in the set represented by the BDD, one

starts at the root node ofthe BDD, and follows either the 0- or l-successor depending

on the value of each bit in the vector. If the traversaI ends at the ITJ node, the vector

is in the set; if the traversaI ends at the @] node, the vector is not in the set.

To use a concrete example, we will now show how the points-to sets computed for

the statements in Figure 2.1 can be encoded in a BDD. We could write the points-to

sets as a set of points-to pairs, with each pair indicating that a given pointer may

point to a given object, as follows:

{(a,X), (a, Y), (b,X), (b, Y), (c,X), (c, Y), (c,Z)}

Using 00 to represent a and X, 01 to represent b and Y, and 10 to represent c and Z,

we can encode these points-to pairs as the set of binary vectors

{OOOO, 0001, 0100, 0101, 1000, 1001, lOlO}

9

Background: BDDs and Points-to Analysis

A BDD representing this set of binary vectors is shown in Figure 2.2. The pointers

a, b, and c are encoded in first two bit positions of the BDD, and the objects X, Y,

and Z are encoded third and fourth bit positions. We follow the common convention

of drawing the O-successor of each node as a dashed arrow, and the l-successor as a

solid arrow.

bit 1 (V1d

bit 2 (VIa)

bit 4 (HIa)

Figure 2.2: Unreduced BDD for points-to example

The nodes marked x, y, and z in Figure 2.2 are at the same bit position and have

the same successors, because they aIl represent the same subset of objects {X, y}.

Since these nodes are the same, they could be merged into a single node, making the

BDD sm aller without changing the set that it represents. Furthermore, since their 0-

and l-successor are the same (the [] node), the value of the bit that they test does

not affect the successor, so the bit does not need to be tested and the nodes could be

removed entirely. If we repeatedly reduce the BDD in this way by fin ding mergeable

and unnecessary nodes, we obtain the reduced BDD shown in Figure 2.3. The BDD

represents the same set as the original unreduced BDD, but it is sm aller.

For the purposes of our discussion, we presented an unreduced BDD first, then

reduced it. In actual BDD implementations, however, the reduction rules are applied

to each node as the BDD is being constructed. Therefore, in a real implementation,

every BDD is kept fully reduced at aIl times.

10

2.2. Binary Decision Diagrams

bit 2 (V1 a)

bit 4 (H1a)

Figure 2.3: Reduced BDD for points-to example

It is convenient to group the bit positions representing a given element under a

common name. Throughout this thesis, we will use the term physical domain l

to refer to a collection of bit positions representing an element such as a pointer or

object. For example, the first two bit positions represent a pointer variable, so we calI

them the physical domain V1. Similarly, we call the third and fourth bit positions

Hl, because they represent an abstract heap location. We use a subscript to denote

a specific bit within a physical domain. For example, V1 a denotes the zeroth (least

significant) bit in the V1 physical domain, which in this case is the second bit in the

BDD.

In our discussion so far, we have presented the encoding of points-to sets in a

BDD interpreted as a set of binary vectors. For completeness, we now also present

the equivalent boolean function. Following our earlier choice of binary encodings of

the pointers and abstract objects, the boolean functions representing these elements

are shown in the third column of Table 2.1. A points-to pair is represented by the

conjunction of the pointer and the abstract object to which it points. For example, b

pointing to Z is represented by the formula V1 1 = 0/\ V1 a = 1/\ H11 = 1/\ H1a = o.

1 In BDD literature, a physical domain is often called just "domain". However, the same word is
used in relation al database literature with a different meaning (we will define it in Section 3.2.1). To
distinguish the two, we use the term "physical domain" for a domain in the BDD sense, and simply
"domain" for a domain in the relational database sense.

11

Background: BDDs and Points-to Analysis

element binary encoding boolean formula

a 00 VII = 0/\ V10 = 0

b 01 VII = 0/\ V10 = 1

c 10 VII = 1/\ V10 = 0

X 00 H11 = 0/\ H10 = 0

y 01 H11 = 0/\ H10 = 1

Z 10 H11 = 1/\ H10 = 0

Table 2.1: Encodings of elements in terms of physical domains

A set of points-to pairs is represented by the disjunction of their formulas. So, the

points-to sets from our running example would be represented by the formula

POINTSTO 6

(VII = 0/\ V10 = 0/\ H11 = 0/\ H10 = 0) V

(VII = 0/\ V10 = 0/\ H11 = 0/\ H10 = 1) V

(VII = 0/\ V10 = 1/\ H11 = 0 /\ H10 = 0) V

(VII = 0/\ V10 = 1/\ H11 = 0/\ H10 = 1) V

(VII = 1/\ V10 = 0/\ H11 = 0/\ H10 = 0) V

(VII = 1/\ V10 = 0/\ H11 = 0/\ H10 = 1) V

(VII = 1/\ V10 = 0/\ H11 = 1/\ H10 = 0)

This formula is equivalent to the set of binary vectors given earlier.

In the BDDs that we have seen so far, the bits have always been tested in the

same order, VII V1oH11H10. However, any ordering can be used, as long as it is used

consistently. For example, if the bits were tested in the order H10 V1oH11 VII, the

BDD for our ex ample set would look like Figure 2.4. Although this BDD represents

the same set as the BDD in Figure 2.3, it has 8 nodes rather than 5. When using

BDDs, it is important to find an ordering which keeps the BDDs small. Unfortunately,

finding the optimal ordering is NP-hard in general [BW96, THY93]. In [BLQ+03], we

found an ordering that works weIl for points-to analysis. The JEDD system, which we

12

2.2. Binary Decision Diagrams

(HIa)

(VIa)

(H1d

Figure 2.4: BDD for points-to sets using alternative ordering HIa V1aH11 VII

present in Chapter 3, provides a profiling and visualization tool intended to help find

good orderings for specifie analyses by identifying the BD Ds that affect performance

the most, and showing their shape under a given ordering.

The basic set operations (union, intersection, complement, set difference) on the

sets represented by BDDs are implemented using a recursive algorithm [Bry92] which

traverses the argument BDDs and builds up the resulting BDD. The co st of these

operations depends on the number of nodes in the BDDs involved, not the sizes of

the sets that they represent. Therefore, large sets represented by small BDDs can be

manipulated efficiently.

Like the points-to sets, the subset constraints induced by the pointer assignments

in the program can be encoded in a BDD. We reuse the physical domain VI to

represent the source of each assignment, and introduce a new two-bit physical domain

V2 to represent the target of each assignment. Thus, the three assignments from our

example, a=b, b=a, and c=b, are encoded by the BDD representing the function

ASSIGN t;

(VII = 0/\ VIa = 1/\ V21 = 0/\ V2a = 0) V

(VII = 0/\ VIa = 0/\ V21 = 0/\ V2a = 1) V

(VII = 0/\ VIa = 1/\ V21 = 1/\ V2a = 0)

13

Background: BDDs and Points-to Analysis

To propagate points-to sets, three additional BDD operations are needed, exis­

tential quantification, relational product, and replace.

The existential quantification operation makes a given BDD f independent

of a given bit position b by constructing a function that is true whenever there exists

a value of b (either 0 or 1) that makes f true. By applying existential quantification

to aIl the bit positions of a physical domain, we make a BDD independent of the

physical domain. For example, if we existentially quantify the POINTSTO BDD

defined earlier with respect to the VI domain, we obtain the boolean function in

which each clause is made independent of Vl:

This formula simplifies to

::JvlPOINTSTO =
(H1l = 0/\ HIa = 0) V

(H1 l = 0/\ HIa = 1) V

(H1l = 0/\ HIa = 0) V

(H1l = 0/\ HIa = 1) V

(H1 l = 0/\ HIa = 0) V

(H1 l = 0/\ HIa = 1) V

(H1l = 1/\ HIa = 0)

::JvlPOINTSTO =

(H1 l = 0/\ HIa = 0) V

(H1 1 = 0/\ HIa = 1) V

(H1 l = 1/\ HIa = 0)

The resulting function represents the set containing every abstract object for which

there exists a pointer that points to it (that is, the union of an the points-to sets).

The relational product operation is equivalent to performing set intersection

(boolean conjunction) followed by existential quantification, but is implemented more

efficiently than when these operations are performed separately. We illustrate the

relational product operation using the points-to set propagation example. Consider

the BDD representing the original points-to pairs {(a, X), (b, Y), (c, Z)} induced by the

14

2.2. Binary Decision Diagrams

three allocation statements in Figure 2.1:

ORIG-POINTSTO ~

(VII = 0/\ VIa = 0/\ H11 = 0/\ HIa = 0) V

(VII = 0 /\ VIa = 1/\ H11 = 0 /\ HIa = 1) V

(VII = 1/\ VIa = 0/\ H11 = 1/\ HIa = 0)

We would like to propagate the points-to pairs across the pointer assignments encoded

in the ASSIGN BDD shown earlier. Since the VI physical domain is common to both

BDDs, a conjunction will find all pairs of clauses from the two formulas which match

in the VI physical domain:

ORIG-POINTSTO /\ ASSIGN =

(VII = 0/\ VIa = 0/\ V2 1 = 0/\ V2a = 1/\ H11 = 0/\ HIa = 0) V

(VII = 0/\ VIa = 1/\ V2 1 = 0/\ V2a = 0/\ H11 = 0/\ HIa = 1) V

(VII = 0/\ VIa = 1/\ V2 1 = 1/\ V2a = 0/\ H11 = 0/\ HIa = 1)

After existentially quantifying with respect to VI, we obtain

NEW-POINTSTO ~

relprod(ORIG-POINTSTO, ASSIGN, VI) =
:3VI (ORIG-POINTSTO /\ ASSIGN) =

(V21 = 0/\ V2a = 1/\ H11 = 0/\ HIa = 0) V

(V2 1 = 0/\ V2a = 0/\ H11 = 0/\ HIa = 1) V

(V2 1 = 1/\ V2a = 0/\ H11 = 0/\ HIa = 1)

This formula encodes the new points-to pairs {(b, X), (a, Y), (c, y)} arising from prop­

agating the original points-to pairs along the pointer assignments. Figure 2.5 shows

the effect of the relational product operation on the BDD representation. The ORIG­

POINTSTO and ASSIGN BDDs are shown in parts (a) and (b), respectively, and

the result of the relational product is shown in part (c) of the figure.

Next, we would like to find the union of the set of new points-to pairs and the

original set. However, the original points-to pairs are encoded using the physical

domains VI and Hl, while the new points-to pairs are encoded using the physical

15

Background: BDDs and Points-to Analysis

V1 0

V20

H10

(a) (b) (c)

V1 0

V20

H10

(d) (e)

Figure 2.5: BDD representation of (a) ORIG-POINTSTO (b) ASSIGN (c) NEW­

POINTSTO (d) REPLACED-POINTSTO (e) PROPAGATED-POINTSTO

16

2.3. BDD-based Points-t~ Analysis

domains V2 and Hl. Before we can find the union, we must use the replace operation

to replace the V2 physical domain with VI in the NEW-POINTSTO BDD, to make

its physical domains match the ORIG-POINTSTO BDD :

REPLACED-POINTSTO ~

replace(NEW-POINTSTO, V2, VI) =

(VII = 0/\ VIa = 1/\ H11 = 0/\ HIa = 0) V

(VII = 0/\ VIa = 0/\ H11 = 0/\ HIa = 1) V

(VII = 1/\ VIa = 0/\ H11 = 0/\ HIa = 1)

The BD D representation of this function is shown in Figure 2.5 (d).

Finally, we can now compute the union

PROPAGATED-POINTSTO ~

ORIG-POINTSTO V REPLACED-POINTSTO

This gives the points-to sets after one step of propagation. The BDD representation

is shown in Figure 2.5(e). To obtain the final points-t~ set BDD that we showed in

Figure 2.3, the propagation step must be repeated a second time.

The pro cess of propagating points-to sets using the three operations that we have

just described (relational product, replace, and union) is summarized in the BDD code

snippet shown in Figure 2.6, which calls into the BuDDY library to implement each

operation. Line 4 performs a relational product of the edgeSet and pointsTo BDDs

with respect to the VI physical domain. Line 5 replaces the physical domain V2 with

VI in the result. Finally, line 6 adds the new points-t~ pairs into the pointsTo BDD.

The operations are enclosed in a loop which iterates until a fixed point is reached.

2.3 BDD-based Points-to Analysis

Having illustrated the key BDD operations, we can now present the complete im­

plementation of our original BDD-based points-to analysis [BLQ+03]. The analysis

is a subset-based, fiow- and context-insensitive, but field-sensitive points-to analysis

for Java, based on the analyses that we implemented in the SPARK [Lho02, LH03]

17

Background: BDDs and Points-to Analysis

1 repeat

2 oldPt : [VlxHl] = pointsTo: [VlxHl];

3

4 /* (c) */ newPti: [V2xHl] = relprod(edgeSet: [VlxV2], pointsTo: [VlxHl] , Vi);

5 /* (d) */ newPt2: [VlxHl] = replace (newPti: [V2ToVl], V2ToVi);

6 /* (e) */ pointsTo: [VlxHl] = pointsTo: [VlxHl] U newPt2: [VlxHl];

7

8 until pointsTo: [VlxHl] == oldPt: [VlxHl]

Figure 2.6: BDD code for propagating points-to sets along assignment constraints

framework. Like the SPARK analyses, this analysis pro cesses four kinds of constraints,

shown in Figure 2.7. The allocation and simple assignment constraints are the same

as in Section 2.1. The new field store and load constraints model stores and loads to

fields of heap objects.

allocation a: l:= new C Oa E points-to(l)

simple assignment l2:= h h ---+ l2

field store g.f:= l l ---+ g.f

field load l := p.f p.f ---+ l

Figure 2.7: The four kinds of points-to constraints

In our original implementation, we assume that aIl the constraints have been

generated before the points-to analysis begins. In Chapter 4, we will extend the

analysis to handle new constraints generated while the analysis proceeds.

In addition to computing points-to sets for pointer variables, the analysis also

computes points-to sets for pointers in fields of heap objects. That is, the points-to

fact 01 E points-to(02.f) means that the field f of an object allocated at allocation

site 02 may point to an object allocated at allocation site 01.

The points-to constraints are solved using the inference rules shown in Figure 2.8.

The rules are implemented in BDDs, and are applied iteratively until a fixed point is

18

2.3. BDD-based Points-to Analysis

reached. The first rule models simple assignments: if II points to 0, and is assigned to

l2, then l2 also points to o. The second rule models field stores: if l points to 02, and

l is stored into q.f, then for each 01 pointed to by q, 01.f also points to 02. Similarly,

the third rule models field loads: if l is loaded from P.f, and p points to 01, then l

points to any 02 that 01.f points to.

h --+ l2 0 E points-to(ll)

o E points-to(l2)

02 E points-to(l) l --+ q.f 01 E points-to(q)

02 E points-to(Ol.f)

p.f --+ l 01 E points-to(p) 02 E points-to(Ol.f)

02 E points-to(l)

Figure 2.8: Inference rules

(2.1)

(2.2)

(2.3)

For the simple points-to set propagation in Section 2.2, we needed three physical

domains, VI, V2, and H1. To represent the constraints and points-to sets of a field­

sensitive analysis, two additional physical domains are needed: a second physical

domain of objects (H2) to represent points-to facts of the form 01 E points-to(02.f),

which have two objects, and a physical domain of fields, F D.

We now describe the most important BDDs used in the algorithm, along with the

physical domains in which they are encoded.

• pointsTo ç VI x Hl is the set of points-ta pairs for simple variables, of the

form 0 E points-to(l).

• fieldPt ç (Hl x F D) x H2 is the set of points-to facts for fields of heap objects,

of the form 01 E points-to(02.f).

• edgeSet ç VI x V2 is the set of simple assignment constraints of the form

II --+ l2'

• stores ç VI x (V2 x F D) is the set of field store constraints of the form

h --+ 12.f.

19

Background: BDDs and Points-to Analysis

• loads ç (VI x F D) x V2 is the set of field load constraints of the form ll.f ---+ l2 .

• typeFilter ç VI x Hl is a set of constraints specifying which objects each

pointer can point to based on its declared type. This is used to restrict the

points-to sets for pointers to only contain objects of compatible type.

The full algorithm is given in Figure 2.9. The algorithm consists of an inner loop

nested within an outer loop. We have annotated each BDD in the algorithm with

the physical domains that it uses. Lines 1.1 to 1.2 implement the first inference rule.

In line 1.1, the edgeSet and pointsTo BDDs are combined. This relational product

operation computes the set of facts satisfying the first rule:

{(l2, 0) 1 ::Jit : it ---+ 12 /\ 0 E points-to(ld}

In line 1.2, the set is converted to use physical domains VI and Hl rather than V2

and Hl, and in line 1.4, it is added into pointsTo. Line 1.3 will be explained later.

Lines 2.1 to 2.3 implement the second rule. Line 2.1 computes the intermediate

result of the first two pre-conditions:

tmpRell = {(02, q.f) 1 ::JI : 02 E points-to(l) /\ 1 ---+ q.f}

In line 2.2, tmpRell is changed to physical domains suit able for the next computation.

In li ne 2.3, the resulting set of facts satisfying aH three pre-conditions is computed as

{02 E points-to(Ol.f) 1 ::Jq: (02, q.f) E tmpRell/\ 01 E points-to(q)}

In a similar way, lines 3.1 to 3.3 implement the third rule. Again, the first two

pre-conditions are first combined to form a temporary BDD (li ne 3.1), then combined

with the results from the second rule (line 3.2). After changing the result to the

appropriate physical domains (line 3.3), we obtain new points-to pairs, which are

added into the pointsTo BDD in line 4.2.

In our earlier work [Lho02, LH03] with the SPARK points-to analysis framework,

we observed that limiting points-to sets to include only objects of a type compatible

with the declared type of the pointer significantly improves both analysis precision

20

2.3. BDD-based Points-to Analysis

1 repeat

2 outerOldPt : [VlxHl] = pointsTo: [VlxHl];

3

4 repeat

5 innerOldPt : [VlxHl] = pointsTo: [VlxHl];

6

7 rule 1 --- *1

8 1* 1.1 *1 newPti:[V2xHl] relprod(edgeSet:[VlxV2], pointsTo:[VlxHl], V1);

9 1* 1.2 *1 newPt2: [VlxHl] replace (newPti: [V2ToVl], V2ToVi);

10

11 apply type filtering and add into pointsTo BDD --- *1

12 1* 1.3 *1 newPt3: [VlxHl] = newPt2: [VlxHl] n typeFil ter: [VlxHl];

13 1* 1.4 *1 pointsTo: [VlxHl] = pointsTo: [VlxHl] U newPt3: [VlxHl];

14 until pointsTo: [VlxHl] == innerOldPt: [VlxHl]

15

16 1* --- rule 2 --- *1

17 1* 2.1 *1 tmpRel1: [(V2xFD)xHl] = relprod(stores: [Vlx(V2xFD)], pointsTo: [VlxHl] , Vi);

18 1* 2.2 *1 tmpRe12: [(VlxFD)xH2] = replace (tmpRel1: [(V2xFD)xHl], V2ToV1 & HiToH2);

19 1* 2.3 *1 fieldPt: [(HlxFD)xH2] = relprod(tmpRe12: [(VlxFD)xH2], pointsTo: [VlxHl], V1);

20

21 1* --- rule 3 --- *1

22

23

24

25

26

27

1*

1*

1*

1*

1*

3.1

3.2

3.3

4.1

*1 tmpRe13: [(HlxFD)xV2] = relprodUoads: [(VlxFD)xV2], pointsTo: [VlxHl] ,

*1 newPt4: [V2xH2] relprod(tmpRe13: [(HlxFD)xV2], fieldPt: [(HlxFD)xH2],

*1 newPtS: [VlxHl] = replace (newPt4: [V2xH2], V2ToV1 & H2ToH1]);

apply type filtering and add into pointsTo BDD --- *1

*1 newPt6: [VlxHl] = newPtS: [VlxHl] n typeFilter: [VlxHl];

28 1* 4.2 *1 pointsTo: [VlxHl] = pointsTo: [VlxHl] U newPt6: [VlxHl];

29 until pointsTo: [VlxHl] == outerOldPt: [VlxHl]

V1);

H1xFD);

Figure 2.9: Basic BDD-based points-to analysis algorithm from [BLQ+03]

21

Background: BDDs and Points-to Analysis

and efficiency. To implement this type filtering in the BDD algorithm, we use the

typeFilter BDD, which is precomputed to contain all pairs (p,o) of pointers p and

objects 0 such that the run-time type of 0 is compatible with the declared type of p.

In lin es 1.3 and 4.2, the sets of new points-to pairs are intersected with the typeFilter

set, so that only type-compatible points-to pairs are added to pointsTo.

The algorithm in Figure 2.9 is very similar to our actual C++ code implementing

the analysis using the BuDDY [LN] BDD library. The main difference is that the

actual code lacks the physical domain annotations, although we have documented the

physical domains of the most important BDDs in comments.

In order to make the implementation reasonably efficient, we had to tune it in

two key ways. First, different bit orderings affected analysis time by multiple orders

of magnitude. vVe observed that the relational product operation in line 1.1 of the

algorithm took the vast majority of the computation time. After experimenting with

different orderings, we found one which made this key operation fast: first testing the

bits of physical domains VI and V2 interleaved, then testing the bits of the physical

domain Hl.

Second, we obtained an additional two- to ten-fold speedup by incrementalizing

the algorithm. In the algorithm as shown in Figure 2.9, all points-to facts are propa­

gated in every iteration. We transformed the algorithm to avoid propagating points­

to facts known to have been propagated in an earlier iteration. We refer the reader

to [BLQ+03] for details. The resulting incremental implementation is about twice as

long as the basic version in Figure 2.9, and appears in [BLQ+03, Appendix A].

After these two optimizations were applied, the BDD-based implementation was

measured to be nearly as fast as the highly-tuned traditional points-to analysis imple­

mentation in the SPARK [Lho02, LH03] framework, and significantly better in terms

of memory requirements. Therefore, we conjectured that BDD-based implementa­

tions would make it possible to study analyses that have so far required too much

memory to be feasible for large programs, such as context-sensitive analysis.

22

2.4. Conclusion

2.4 Conclusion

In this chapter, we have provided background information about BDDs, and re­

viewed how they were used to implement a basic subset-based points-to analysis

for Java [BLQ+03J. The techniques that we have presented here are sufficient for

implementing analyses of similar complexity as the simple points-to analysis. In the

next chapter, we will explain sorne of the difficulties that arise when attempting to

implement more complicated BDD-based analyses, and present a system to make it

possible to implement them. In Chapter 4, we will complement the points-to analysis

with a framework of other related BDD-based interprocedural analyses, and extend

it to deal with new constraints introduced while the analysis executes, and to be

context-sensiti ve.

23

Background: BDDs and Points-to Analysis

24

Chapter 3

Extending Java with Relations

In this chapter, we present JEDD, a language that we have developed for ex­

pressing program analyses in terms of relations, and a system for implementing the

analyses using BDDs. We first provide the motivation for and an overview of our

approach in Section 3.1. In Section 3.2, we present relations, and show how they

can be represented by BDDs. Then, in Section 3.3, we provide details about our

design of the JEDD language. In Section 3.4, we illustrate the overall pro cess of using

JEDD to implement a program analysis by walking through a complete JEDD reimple­

mentation of the original BDD-based points-to analysis [BLQ+03] that we showed in

Figure 2.9 of Chapter 2. The most significant challenge in generating an efficient BDD

implementation of a JEDD program is the assignment of physical domains to relation

attributes; we provide our solution to this problem in Section 3.5. In Section 3.6,

we discuss the JEDD runtime system, and in Section 3.7, we compare the execution

speed of JEDD-generated and hand-coded BDD code, and provide measurements of

compile-time speed. We survey work related to JEDD in Section 3.8, and conclude in

Section 3.9.

25

Extending Java with Relations

3.1 Jedd Motivation and Overview

The simple points-to analysis we described in Section 2.3 and in more detail

in [BLQ+03] was our first experiment in using BDDs to implement pro gram anal­

yses. Encouraged by the performance of this analysis, we decided to express more

complicated program analyses for Java. As we began this work, we quickly found

that implementing our analyses directly in terms of a BDD library was not a good

solution, for sever al reasons. First, because the interface provided by a BDD library

is very low level, understanding and maintaining our code became difficult as it grew

larger than our initial points-to analysis. Moreover, programming at such a low level

was error prone, and the BDD library did not check for many of the errors; instead,

our errors caused the library to either crash, or, worse, to execute successfully but

produce incorrect results. The implicit nature of the BDD representation made the

errors difficult to track down. Although BDD libraries include garbage collectors for

the BDD nodes, they require the programmer to manage the root set explicitly using

reference counts, and this burden becomes significant in larger programs. Although

BDD libraries make it easy to vary the BDD variable ordering, the physical domain

assignment is inherent in the code and difficult to change. Both of these parameters

have an enormous effect on the performance of relation-based analyses, so we needed

to be able to experiment with both of them. Tuning a BDD-based algorithm requires

profiling information about the size and shape of the underlying BDDs at each pro­

gram step. We had previously developed sorne ad hoc methods for visualizing this

information, but a more automated approach was needed.

Our solution to these problems, which we calI JEDD, consists of several parts.

1. We have defined an extension to the Java language by adding relations and re­

lational operations, so that we can express program analyses as relations within

the Soot framework, which is written in Java.

2. We have developed a translator which automatically translates JEDD code to

Java code that implements the high-level relational operations by calling into a

low-level BDD library.

26

3.1. JEDD Motivation and Overview

3. We have developed a run-time support library for interacting with the BDD

back-end, which provides automatic memory management and facilities for de­

bugging and profiling BDD operations.

We now briefly describe the key features and contributions of our approach.

BDDs abstracted as relations: Rather than expose BDDs and their low-Ievel op­

erations directly, our JEDD language makes possible a more abstract representa­

tion using relations and relational operations. In developing program analyses

using BD Ds, we have found this to be an appropriate level of abstraction.

Static and dynamic type checking: Wh en using a BDD library directly, there is

very little type information to help the programmer determine whether BDD

operations are used in a way that makes sense. In JEDD, each relation has a

type specifying its schema, and aU operations on relations are checked staticaUy

to ensure that the schemas of their operands are compatible. Properties that

cannot be checked staticaIly, such as the number of bits required to represent

aIl elements of a domain, are enforced by runtime checks. Together, the static

and dynamic checks catch many programmer errors that would otherwise make

a complicated BDD-based analysis infeasible to implement correctly.

Code generation strategy: JEDD generates low-Ievel BDD code automatically

from program analyses expressed at a high level in terms of relations.

Aigorithm for physical domain assignment: When programming directly with

BDDs, the programmer must explicitly specify a physical domain for every at­

tribute of every relation in the program. This is a tedious process. Furthermore,

a small change in physical domain assignment may require many changes in the

program. When specifying a pro gram analysis using the JEDD language, the

user need provide only a minimal amount of input about the desired assign­

ment, and the translator automatically generates a reasonable assignment for

the whole program. However, the programmer retains complete control over the

assignment. In those parts of the program where it is desired, the programmer

27

Extending Java with Relations

can provide a more detailed specification to carefully tune the physical domain

assignment for efficiency. The problem of assigning physical domains turns out

to be NP-complete. We provide an algorithm to express it as an instance of

the BAT problem, and we show that, using modern BAT sol vers , the time to

find a solution is a negligible part of the compilation process. In cases where no

solution exists, we provide detailed information precisely indicating the source

of the error to the programmer.

Run-time support for memory management: Unlike low-Ievel BDD libraries,

which require the programmer to explicitly manage the root set of live BDDs

using reference counts, JEDD reclaims BDD nodes automatically as soon as it

is safe to do so using a combinat ion of static analysis and interaction with the

Java garbage collector.

BDD profiler: In our work with BDDs, we found that to tune the BDD-based

algorithms, we needed profile information about the size and shape of the BDD

data structures at each pro gram point. Our JEDD system automatically collects

this information, and allows the programmer to browse it in an organized way

using a web browser. JEDD reports the time taken and number of BDD nodes

involved in each operation, and provides graphical figures showing the size and

shape of the BDDs at each program point.

A high-level overview of the complete JEDD system is given in Figure 3.1. JEDD

programs are written in the JEDD language, an extension of Java, and are provided

as input to the j eddc compiler. The j eddc compiler is composed of a front-end

(parser and semantic analysis) and a back-end (physical domain assignment and code

generation). The physical do main assignment module uses an external BAT solver.

The output of j eddc is in the form of standard Java files which can be incorporated

into any Java project. The Java files produced by jeddc, along with other ordinary

Java source making up a project, are compiled to class files using a standard Java

compiler such as javac. Unless the code written in JEDD is modified, jeddc is

not needed when recompiling the Java part of the project. The resulting class files

28

3.1. JEDD Motivation and Overview

C "jedd tn
jeddc •

parser
semantic analysis

physical domain assignment '-+-Jt~ SAT solver J
code generation I-______J

• .java [.java

BDD library interface
14--~

profIler

JVM
SOL database

+ CGI scripts
+ t

solution
HTML browser

f'l + . pro 1 er vlews

Figure 3.1: Overview of JEDD system

contain calls to the JEDD runtime library, which interfaces using the Java Native

Interface (JNI) to a BDD package. A Java Virtual Machine (VM) is used to execute

the classes along with the JEDD runtime. The runtime also includes a profiler, which

writes profile information into a Structured Query Language (SQL) database. When

combined with Common Gateway Interface (CGI) scripts accessing the database, a

web browser can be used to navigate profiler views of BDD operations.

29

Extending Java with Relations

3.2 Relations

In JEDD, BDDs are abstracted as relations, and JEDD code is written in terms of

relations, rather than directly in terms of BDDs. In this section, we define the

terminology we will use to talk about relations, and show how relations are encoded

and manipulated in BDDs.

3.2.1 Definitions

We generally follow the accepted terminology used in relational database work (see,

for example, [GMUWOl, Section 3.1]).

To illustrate the terms on a concrete example, in Figure 3.2, we present two

relations representing (a) the initial points-to pairs and (b) the assignment constraints

from our points-to analysis example from Chapter 2.

pointer object source dest

a X b a

b Y a b

c Z b c

(a) (b)

Figure 3.2: Example relations (a) initial points-to pairs (b) assignment constraints

A do main 1 is a set of basic elements from which we construct relations. In our

points-to analysis, we use a domain of pointers, {a, b, c}, and a domain of abstract

objects, {X, Y, Z}.

An attribute is a domain along with an associated name. We use attribut es to

distinguish different instances of the same domain. For example, in the assignment

constraints relation in Figure 3.2(b), source and dest are two attribut es with the same

domain, pointers.

IThe term "domain" is used in both the BDD literature and database literature with two different
meanings. In this thesis, we say "physical domain" when we mean the BDD sense of the word, and
sim ply "domain" for the database sense.

30

3.2. Relations

A tuple is a collection of elements indexed by attribute. The element correspond­

ing to each attribute is in the domain of that attribute. In Figure 3.2, each row of

each relation is a tuple. For example, the first tuple in Figure 3.2(a) contains the

element a in the pointer attribute and the element X in the object attribute.

A relation is a set of tuples, each with the same attributes. This common set of

attributes is the schema of the relation. The relations in Figure 3.2 have schemas

{pointer, object} and {source, dest}.

3.2.2 Encoding relations in BDDs

To prepare for encoding relations in BDDs, we first assign to each element of every

domain a binary vector which is unique within the domain. Within each domain,

every binary vector must be of the same length. Continuing with our example from

Chapter 2, we may, for instance, assign the binary vector 00 to a and X, 01 to b and Y,

and 10 to c and Z.

To represent a relation by a BDD, we first asslgn a physical domain to each

attribute of the relation. Recall that each tuple contains an element for each attribute.

To represent an element, we express its binary vector in the physical domain that was

assigned to its attribute; we combine the vectors of the elements into a single binary

vector for the whole tuple. For example, if we assigned the attributes source and de st

of the assignment constraint relation in Figure 3.2(b) to the physical do mains VI

and V2, respectively, the first tuple (b, a) would be represented by the binary vector

0100, with 01 in the VI physical domain, and 00 in V2. A relation is represented

by the BDD encoding the set of bit vectors representing its tuples. Therefore, the

relations in Figure 3.2 would be encoded by the same BDDs as in Figures 2.5(a)

and (b) in Chapter 2, provided that the attributes were assigned to the appropriate

physical domains (pointer and object to VI and Hl, and source and dest to VI and

V2, respectively).

31

Extending Java with Relations

3.2.3 Manipulating relations in BDDs

Given two relations with the same schema, the operations union, intersection, set

difference, and equality testing are defined on them as the corresponding opera­

tions on the set of their tuples. In BDDs, these relational operations are implemented

directly by the corresponding BDD operations. However, each of these operations

requires that its operand relations be encoded with the same physical domain assign­

ment. When this is not the case, a replace BDD operation must first be performed

to make the physical domain assignments consistent.

The projection, attribute renaming, and attribute copying operations mod­

if Y the schema of a relation.

The projection operation selects a subset of the attributes from the relation and

removes an other attributes. Within each tuple, only the elements associated with the

projected attributes are kept; an other elements are removed. Recall that relations

are sets of tuples with no duplicates. Since removing an attribute from two tuples

that differ only in that attribute makes the tuples equal, a projection may reduce

the number of tuples in a relation. Projection is implemented in a BDD by applying

the existential quantification operation to each bit position of every physical domain

corresponding to an attribute not present in the projection.

Attribute renaming substitutes one attribute for another, without changing the

element for the attribute in each tuple. Renaming an attribute of a relation requires

no change to the BDD representing it. Only the mapping from attribute to physical

do main needs to be updated, with the new attribute replacing the old.

Attribute copying adds a new attribute to a relation, copying the elements of an

existing attribute into it. That is, within each tuple, we make a copy of the element for

the attribute being copied, and the copy becomes the element for the new attribute.

Attribute copying is implemented by first constructing a BDD for the identity relation

on the physical domains of the old and new attributes, and intersecting it with the

original BDD.

The join operation combines the information from two relations into a single

relation. Given input relations R, R' and an arbitrary user-specified condition on

32

3.3. JEDD Language

tuples, a general join computes the relation consisting of all the tuples of the cross

product R x R' that satisfy the given condition. A common example of such a

condition is that the elements of a given list of attributes from R be respectively

equal to the elements of a given list of attributes from R'. For example, given the

relations shown in Figure 3.2, we may wish to find all tuples in their cross product

which match in the pointer and source attributes. A join with this kind of condition

is an equijoin. In applying BDDs to program analysis, we limit ourselves only to

equijoins rather than general joins. Because the elements of the attributes being

compared in an equijoin always appear twice in the resulting relation (once coming

from an attribute of R and once from the corresponding attribute of R'), we omit the

copy coming from R'.

To implement a join in BDDs, we must first carefully set up the physical domain

assignment. The attribut es being compared must be assigned to the same physical

domains in the left and right relations. The remaining attributes must be assigned

to physical domains not used by the other relation, so that their elements do not

interfere with each other. Assuming we have such a physical do main assignment, the

join is computed as the intersection of the BDDs representing the relations.

The composition operation is similar to join, but while a join omits one copy of

each attribute being compared to an attribute of the other relation, a composition

omits both copies. Therefore, a composition is equivalent to a join followed by a

projection of the appropriate attributes, and indeed can be implemented this way. We

mention it separat81y for two reasons. First, it tends to be very common in program

analyses. Second, it can be implemented by the relational product BDD operation,

which is more efficient than an intersection followed by an existential quantification.

3.3 Jedd Language

In this section, we describe the JEDD language for expressing program analyses using

relational operations and implementing them using BDDs. To give an ide a of what

JEDD code looks like, we begin by showing, in Figure 3.3, the JEDD implementation

33

Extending Java with Relations

of the points-to set propagation example from Section 2.2. This JEDD code performs

the same propagation as the BDD code that we saw in Figure 2.6.

1 <pointer:Vl, object:Hl> pointsTo;

2 <source, dest:V2> assign;

3

4 <pointer, object> oldPt;

5

6 do {

7 oldPt = pointsTo;

8 <dest, object> tmp = pointsTo{pointer} <> assign{source};

9 pointsTo 1= Cdest=>pointer) tmp;

10 } whileC oldPt != pointsTo);

Figure 3.3: JEDD implementation of simple points-to set propagation

Several characteristics of JEDD are apparent from the example. First, JEDD code

is written in terms of relations and the relational operations explained in Section 3.2,

rather than directly in terms of BDDs and BDD operations. The composition opera­

tion is denoted by <> (see line 8), union is denoted l, and an assignment of the form

pointsTo = pointsTo 1 ... can be abbreviated as pointsTo 1 = ... (see line 9).

Second, the schema of each relation variable is explicit in its declared type. This makes

it possible for the JEDD translator to check that the schemas of the relations involved

in each operation are consistent. Third, physical domains can be specified for sorne

attributes; in this case, they are specified for three of the attributes (pointer and

object in line 1 and dest in li ne 2). The JEDD translator automatically finds a rea­

sonable2 physical domain assignment for those attributes for which physical domains

are not explicitly specified. In particular, this includes the various subexpressions

within each expression. Each physical domain to be used in the assignment must be

mentioned explicitly at least once in the program, but the programmer may choose

to make the assignment explicit in additional key relations where desired. A typical

2We will give a precise definition of a reasonable physical domain assignment in Section 3.5.3.

34

3.3. JEDD Language

system of program analyses, such as the PADDLE system described in Chapter 4, con­

tains on the order of twenty physical domains and thousands of attribute instances ,3

so the requirement to explicitly mention each physical domain at least once is not a

significant burden. In comparison, an implementation using a low-Ievel BDD library

directly would have to specify a physical domain for every attribute instance.

3.3.1 Grammar

Because JEDD is an extension of Java, we used the Java grammar [GJS96, ch. 19] as

a starting point for a JEDD grammar, and removed and added sorne alternatives and

productions. The changes to the grammar are shown in Figure 3.4. Non-terminaIs

from the original Java grammar appear in italics.

First, we added a relation schema as a new kind of type specification. A relation

schema consists of a set of attributes, optionally with physical domains to which they

are to be assigned. Both attributes and physical domains are specified by class names.

Second, we added the various relational operations. The original Java gram­

mar contains a chain of non-terminaIs representing different kinds of expres­

sions at successive levels of precedence. For JEDD, we have inserted two

kinds of expressions, {Rel Expr Joi n} and {Rel Expr }, with precedence in between

{UnaryExpressionNotPlusMinus} and {PostfixExpression}. The complete chain of

non-terminaIs for expressions is shown in Figure 3.5. A {RelExpr Join} can be a join

or composition (denoted with the symbols >< and <>, respectively, suggested by the

standard notation !Xl and 0), or an expression of higher precedence. Join and compo­

sition have equal precedence. A {ReIExpr} can be an attribute operation (projection,

renaming, or copy) , or an expression of higher precedence. The attribute opera­

tions are expressed as a li st of replacements. Each replacement specifies the original

attribute to be affected, followed by the symbol =>, followed by zero, one, or two at­

tributes, indicating that the attribute be removed, renamed to a different attribute,

3We use the term attribute instance to distinguish the instances of the same attribute appearing
in different relations. For example, the code in Figure 3.3 contains two instances of the attribute
dest, in the relations assign and tmp.

35

Extending Java with Relations

Added alternatives and productions:

(Type) ::= (standard Java alternatives) l '<' (AttributePhys) (',' (AttributePhys)) * '>'

(AttributePhys) ::= (Attribute) 1 (Attribute) ':' (Attribute)

(Attribute) ::= (ClassOrInterfaceType)

(UnaryExpressionNotPlusMinus) ::= (standard Java alternatives) 1 (ReIExprJoin)

(ReIExprJoin) ::= (ReIExpr) 1 (Join)

(Join) ::= (ReIExprJoin) (AttrList) (JoinSym) (ReIExpr) (AttrList)

(AttrList) ::= '{' (Attribute) (, " (Attribute)) * '}'

(JoinSym) ::= '>' '<' l '<' '>'

(ReIExpr) ::= (Replace) 1 (PostfixExpression)

(Replace) ::= '(' (Replacement) (',' (Replacement))* ')' (RelationExpr)

(Replacement) ::= (Attribute) '=>' 1 (Attribute) '=>' (Attribute)

1 (Attribute) '=>' (Attribute) (Attribute)

(Literal) ::= (standard Java alternatives)

l 'new' '{' (LiteraIPiece) (',' (LiteraIPiece)) * '}' l'OB' l 'lB'

(LiteraIPiece) ::= (Expression) '=>' (AttributePhys)

Removed alternative:

(UnaryExpressionNotPlusMinus) ::= (PoslfixExpi ession)

(other standard Java alternatives)

Figure 3.4: JEDD grammar productions

36

3.3. JEDD Language

or co pied to two attributes, respectively. Because the attribute operations change the

type of a relation, the replacement li st is enclosed in parentheses, like a Java cast.

Third, we added two new kinds of literaIs. The constant literaIs OB and 1B

represent the empty relation and the full relation (containing all possible tuples

of the schema), respectively. Much like Java's null constant, they are com­

parable and assignable to any relation type, and assume the schema imposed

by the type to which they are compared or assigned. JEDD also provides an

easy way to create new tuples from Java objects. For example, the expression

new {srcPtr=>source, dstPtr=>dest} creates a relation consisting of one tuple,

with the Java objects srcPtr and dstPtr in the attributes source and dest, respec­

tively.

Unfortunately, Java's C roots make it difficult to write a clean LALR(l) grammar

for it; sorne of the necessary workarounds are discussed in the introduction to the

grammar itself [GJS96, ch. 19]. Keeping the JEDD extension of the grammar LALR(l)

proved to be difficult as weIl. If we applied the changes in Figure 3.4 directly to

the original Java grammar, it would no longer be LALR(l). The operands of a

join or composition can be primaries, which in Java include class instance creation

expressions, which have an optional trailing class body enclosed in curly braces. A

LALR(l) parser cannot distinguish this body from the attribute list following the

operand in the join or composition. However, the type of a class instance creation is

never a relation type, so a class instance creation is never a legal operand to a join

or composition, so we can exclude it in this case. Therefore, prior to applying the

changes in Figure 3.4, we performed a series of language preserving transformations,

removing class instance creation expressions from primaries, and adding them in all

places where primaries can occur (except the join production that we added). These

modifications are listed in Figure 3.6. The result is a LALR(l) grammar for JEDD

which extends Java in a natural way.

37

Extending Java with Relations

{ Expression} ::::?

{ AssignmentExpression} ::::?

{ ConditionalExpression} ::::?

{ ConditionalOrExpression} ::::?

{ ConditionalAndExpression} ::::}

{ InclusiveOrExpression} ::::?

{ Exclusive Or Expression} ::::?

{ A ndExpression} ::::?

{ EqualityExpression} ::::?

{ RelationalExpression} ::::?

{ ShiftExpression} ::::}

{ AdditiveExpression} ::::}

{MultiplicativeExpression} ::::}

{ UnaryExpression} ::::}

{ UnaryExpressionN otPlusMinus} ::::?

{Rel Expr Joi n } ::::?

{ReIExpr} ::::}

{ P ostfixExpression} ::::?

{Primary} ::::?

{ PrimaryN oN ewA rra y } ::::?

{ Literal}

Figure 3.5: Chain of expression precedences in Java and JEDD

38

3.3. JEDD Language

Added alternatives:

(ArmyAccess) ::= (standard Java alternatives)

1 (ClasslnstanceCreationExpression) '[' (Expression) 'J'

(ExplicitConstructorlnvocation) ::= (standard Java alternatives)

1 (ClasslnstanceCreationExpression) , . ' 'this' '(' (ArgumentListOpt) ')' ';'

1 (ClasslnstanceCreationExpression) , . ' 'super' '(' (ArgumentListOpt) ')' ';'

(ClasslnstanceCreationExpression) ::= (standard Java alternatives)

(ClasslnstanceCreationExpression) " 'new' (SimpleName) '('

(ArgumentListOpt) ')'

1 (ClasslnstanceCreationExpression)
, ,

'new' (SimpleN ame) '('

(ArgumentListOpt) ')' (ClassBody)

(FieldAccess) ::= (standard Java alternatives)

1 (ClasslnstanceCreationExpression) , .' IDENTIFIER

(Methodlnvocation) ::= (standard Java alternatives)

1 (ClasslnstanceCreationExpression) '.' IDENTIFIER' (' (ArgumentListOpt) ')'

(UnaryExpressionNotPlusMinus) ::= (standard Java alternatives)

1 (ClasslnstanceCreationExpression)

Removed alternative:

(PrimaryNoNewArmy) ::= (Otuss.bzslunceC, eulionExpi ession)

(other standard Java alternatives)

Figure 3.6: Grammar transformations to keep JEDD grammar LALR(l)

39

Extending Java with Relations

3.3.2 Declaring domains, attributes, physical domains, and num­

berers

All domains, attributes, physical domains, and numberers used in a JEDD pro­

gram must be declared by the programmer. Each of these entities is declared

by writing a class implementing, respectively, the j edd. Domain, j edd. Attribute,

j edd. PhysicalDomain, or j edd. Numberer interface. The interfaces ensure that the

required information about each entity is available at run time. However, for do­

mains, attributes, and physical domains, sorne of the information is required by the

JEDD translator, and must therefore be available at compile time. We have slightly

extended the syntax of class declarations to allow the programmer to annotate do­

mains, attributes and physical domains with this compile-time information. 4

3.3.2.1 Domains

To declare a domain, the programmer must specify the number of BDD bits that will

be required to encode each element of the domain, and the mapping between Java

objects and binary vectors. An example domain declaration for the domain of pointer

variables in our points-to analysis example is shown in Figure 3.7.

1 public class VarDomain(2) extends Domain {

2 public Numberer numberer() { return new VarNodeNumberer(); }

3 }

Figure 3.7: Example domain declaration

The number of bits (two, in our example) is specified in parentheses immediately

after the name of the domain. The JEDD translator ensures that any physical domain

in which elements of the domain may be encoded contains at least this many bits.

4If JEDD were based on Java 1.5, it would be appropriate to use the standard Java annotation
mechanism to specify these annotations. However, JEDD was written before Java 1.5 was defined, so
we had to add an annotation syntax of our own. As soon as Polyglot [NCM03] supports Java 1.5-style
annotations, we anticipate that it will be a simple task to modify JEDD to use them instead.

40

3.3. JEDD Language

The JEDD run-time system ensures that the binary-vector encoding of any element

of the domain consists of at most this many bits.

The mapping between Java objects and binary vectors is only needed at run­

time. It is specified for the domain by implementing the numberer 0 method to

return a numberer object that will convert between Java objects and binary-vector

representations. In our example, the method returns a VarNodeNumberer object,

which we will implement below in Section 3.3.2.4.

3.3.2.2 Attributes

An attribute declaration must specify the domain of the attribute in parentheses after

the attribute name. Figure 3.8 shows an example declaration of the src attribute

from our running example, with the domain VarDomain.

1 public class srcCVarDomain) extends Attribute {}

Figure 3.8: Example attribute declaration

3.3.2.3 Physical domains

A declaration of a physical domain does not require any additional information besides

its name. An example declaration of the Vi physical domain from our running example

is shown in Figure 3.9.

1 public class ViC) extends PhysicalDomain {}

Figure 3.9: Example physical domain declaration

41

Extending Java with Relations

3.3.2.4 Numberers

The purpose of a numberer is to map Java objects to the binary vectors that encode

them in BDDs, and vice versa. The jedd.Numberer interface requires a numberer to

implement two methods:

• Ob j ect get (long) takes a binary vector stored as a 64-bit integer and returns

the corresponding Java object, and

• long get(Object) takes a Java object and returns the corresponding binary

vector in a 64-bit integer.

The example numberer shown in Figure 3.10 implements the numbering of pointer

variables in our running example. The pointer variables a, b, and c are mapped to

the binary vectors 00 (0), 01 (1), and 10 (2), respectively.

1 public class varnodenumberer implements numberer {

2 public object get(long number) {

3 switch(number) {

4 case 0: return varnode.v("a");

5 case 1: return varnode. v ("b") ;

6 case 2: return varnode.v("c");

7 }

8 }

9 public long get(object 0) {

10 if(o.equals(varnode.v("a"») return 0;

11 if(o.equals(varnode.v("b"») return 1;

12 if(o.equals(varnode.v("c"») return 2;

13 }

14 }

Figure 3.10: Example numberer

42

3.3. JEDD Language

3.3.2.5 Specifying physical damain ardering

The order of the bit positions of physical domains in the BDDs manipulated by

JEDD is specified by calling the method j edd. Jedd. setOrder (j edd. order. Order).

This method takes as its argument a tree data structure representing the desired

ordering. Each subtree of the tree specifies a sequence of the bit positions of the

physical domains; the complete tree specifies the complete sequence of all physical

domains. Each leaf of the tree is a physical domain, and each internaI node is one

of the implementors of the j edd. order . Order interface, each of which specifies a

different way to order the bit positions of its subtrees relative to each other. The

following five node implementations are included in JEDD because they were found

to be use fuI in developing the pro gram analyses described in this thesis. JEDD users

can implement additional kinds of nodes as needed by implementing the interface,

which requires writing a method to generate the desired ordering of bits.

Seq: The Seq node arranges the bit positions of its subtrees sequentially. All bits of

the first subtree are placed first, followed by all bits of the second subtree, then

all bits of the third subtree, and so on.

Interleave: The Interleave node interleaves the bit positions of its subtrees. It

first returns the first bit of every subtree, followed by the second bit of every

subtree, then the third bit of every subtree, and so on.

Rev: The Rev node has exactly one child. It returns the bit positions of its subtree

in reverse order.

Asymlnterleave: Like the Interleave node, the Asymlnterleave node interleaves

the bit positions of its subtrees. However, rather than taking one bit from each

subtree at a time, it can take different numbers of bits from different subtrees.

Each subtree is annotated with the number of bits that should be taken from

it on each iteration. For example, if an Asymlnterleave node has two subtrees

annotated two and three, it constructs an order consisting of bits one and two

of the first subtree, followed by bits one, two, and three of the second subtree,

43

Extending Java with Relations

1 Jedd.v().setOrder(new Seq(FD.v(),

2 new Interleave(Vi. vO,

3 V2.v(»,

4 H1.vO,

5 H2.v(»);

Figure 3.11: Example of setting the bit position ordering

followed by bits three and four of the first subtree, followed by bits four, five,

and six of the second subtree, and so on.

Permute: Like the Rev node, the Permute node has exactly one child, but additionally

takes an integer argument k. It constructs a permutation of the bit positions

of its subtree by taking every kth bit until the end of the bit sequence, then

starting again from the first bit that has not yet been taken. For example, if k is

three, the resulting sequence consists of bits one, four, seven, ... of the subtree,

followed by bits two, five, eight, ... , followed by bits three, six, nine,

At run time, JEDD checks that the tree passed to the setOrder 0 method contains

exactly one instance of every physical domain declared in the program.

Figure 3.11 shows an example of setting the bit position ordering to the ordering

that we found to work weIl for points-to analysis [BLQ+03]. The bits of the FD

physical domain are tested first, followed by the bits of the Vi and V2 physical domains

interleaved, followed by the bits of the Hi physical domain, and finally the bits of the

H2 physical domain.

3.3.3 Extracting information from relations

An important part of a language extension integrating relations into Java are facilities

for extracting information from relations back to Java. JEDD provides two versions

of java. util. Iterator for iterating over the tuples of a relation. The first works on

relations with a single attribute, and in each iteration returns the single object in

44

3.3. JEDD Language

each tuple. The example code in Figure 3.12 shows how this iterator is used to print

the points-to set for a given pointer variable. The second iterator works on relations

of any size, and iterates over the tuples, returning each tuple as an array of objects.

An example of how this iterator is used to iterate over the simple assignment relation

of subset constraints is shown in Figure 3.13. These iterators are used to implement a

toStringO method on relations, which is very useful for debugging JEDD programs.

Without such a method, it would be very difficult to interpret the structure of a BDD

to determine the relation it represents.

1 1** Prints the targets of the pointer variable represented by vn. *1
2 void printPointsToSet«pointer, object> pointsTo, VarNode vn) {

3 Il extract points-to set for pointer vn

4 <object> pointsToSet = pointsTo{pointer} <> new{vn=>pointer}{pointer};

5

6 Il iterate over points-to set

7 Iterator it = pointsToSet.iterator();

8 while(it.hasNext()) {

9 AllocNode an = (AllocNode) it.next();

10 System.out.println(an.toString());

11 }

12 }

Figure 3.12: Example use of single-attribute iterator

JEDD also provides a sizeO method that returns the number of tuples in a rela­

tion. JEDD provides additional statistics about the BDD representations of relations

as part of its profiling framework, which is described in Section 3.6.3.

3.3.4 Type checking

Polyglot includes a complete semantic checker for Java. We extended this checker to

infer the schemas of relational expressions from their subexpressions, and statically

enforce the properties shown in Figure 3.14. The most important properties are that

45

Extending Java with Relations

1 1** Prints the pointer assignment edges. *1
2 void printEdges«source, dest> edges) {

3 Il Iterate over assignment edges, specifying that

4 Il the source attribute to be the zeroth array element, and

5 Il the dest attribute to be the first array element.

6 Iterator it = edges.iterator(new Attribute[] {source.v(), dest.v()});

7 while(it.hasNext()) {

8 ObjectE] edge = (Object[]) it.next();

9 System. out. println("Pointer assignment from "+edge [0] . toStringO +

10 " to "+edge [1] . toStringO);

11 }

12 }

Figure 3.13: Example use of multi-attribute iterator

no relation may have more than one instance of the same attribute, that operands

of set and comparison operations have compatible schemas, and that the attributes

mentioned in attribute manipulation, join, and composition expressions exist in the

corresponding operands.

3.4 Complete Example

We now illustrate aIl the steps in the development of a JEDD program by walking

through a complete reimplementation in JEDD of our original BDD-based points­

to analysis solver [BLQ+03]. While Figure 2.9 showed only the core of the BDD­

based implementation of the points-to set propagation algorithm, in this section, in

Figures 3.15 through 3.19, we present the entire JEDD implementation. The code

shown in these figures can be run through the JEDD translator, and the resulting

Java bytecode can then be executed by a Java virtual machine. SpecificaIly, the

JEDD code shown in Figure 3.16 of this section corresponds to the portion of the

BuDDY code that was shown in Figure 2.9.

46

3.4. Complete Example

ai = aj =? i = j ai <: jedd.Attribute [L· 1]
Itera

new {Ol =>al, ... ,On=>an} : {al, ... , an}

x:T aET a<:jedd.Attribute[p .]
(a=»x:T\{a} rOJect

X: T a E T b rJ- T a,b <: jedd.Attribute[R]
ename

(a=>b)x : (T \ {a}) U {b}

X : T a E T b, c rJ- T \ {a}

b =J. c a, b, c <: jedd.Attribute

(a=>b c)x: (T\ {a}) U {b,c} [Copy]

X : T y: T [SetOp]
X 0 y: T where 0 E {&, l, -}

X : T y: T V Y E {OB, 1B} .
--------------=-----='---- [Assign 1
X 0 Y : T where 0 E {=, &=, 1 =, -=}

X : T V x E {OB, 1B} y: T V Y E {OB, 1B} [C]
ompare

x 0 y : boolean where 0 E {==, ! =}

x : T y: U U' = U \ {bl , ... bn} T n U' = 0
{al, ... ,an}ÇT {bl, ... ,bn}ÇU

ai = aj =? i = j bi = bj =? i = j

ai, bi <: jedd. Attribute
------;----=-------;-----::----- [Join]

x{ al, ... , an}><y{bl , ... , bn} : TU U'

x : T y: U T' n U' = 0
T' = (T\ {al, ... ,an}) U' = (U \ {bl , ... bn})

{al, ... ,an} ÇT {bl, ... ,bn} ç U

ai = aj =? i = j bi = bj =? i = j
ai, bi <: jedd. Attribute

------:-----::--------::-----::-------[Compose]
x{al, ... , an}<>y{bl , ... , bn} : T'U U'

Figure 3.14: Typing rules

47

Extending Java with Relations

1 import jedd.*;

2 import jedd.order.*;

3

4 class Propagator {

5 public static <pointer,object> propagateC

6 <source,dest> assign,

7 <object,pointer> allocs,

8 <source,field,dest> stores,

9 <source,field,dest> loads,

10 <pointer,object> typeFilter

11) {

12 <pointer,object> pointsTo = allocs;

13 <pointer,object> outerOldPt;

14 <pointer,object> innerOldPt;

Figure 3.15: Complete JEDD code for points-to analysis of [BLQ+03] (part 1 of 5)

We begin the presentation of the solver in Figure 3.15. Lines 1-2 import the pack­

ages of the JEDD run-time library. In line 4, we begin a Propagator class containing

a static method propagate (), which will implement the points-to set propagation

algorithm. The method takes relations containing the points-to set constraints to be

solved as parameters. The return value of the method is a relation that will con­

tain the computed points-to relation. In lines 12-14, we declare three local relation

variables for use by the propagation algorithm. The pointsTo variable will store the

points-to relation computed so far. We initialize it in li ne 12 with the initial points-to

pairs due to allocation statements. The other two variables will be used to save the

old points-to relation at the beginning of each loop of the algorithm; at the end of

each loop, they will be used to determine whether the points-to relation has changed

in the current iteration.

Figure 3.16 shows the JEDD implementation of the core points-to set propagation

algorithm. The abstract algorithm is the same as in the BuDDy implementation in

Figure 2.9, but now it is expressed in terms of JEDD relational operations, which are

48

3.4. Complete Example

independent of any specifie BDD implementation details. SpecificaIly, each relation is

defined over a set of abstract attributes, and at this point, we have not specified the

physical domain of BDD variables in which each attribute instance will be encoded.

In the BuDDY implementation, we had to in sert BDD replace operations to move

attributes to specifie physical domains required by each BDD operation. In the JEDD

version, we express only the relational operations that we want performed, and leave

it to the JEDD translator to allocate the attribute instances to appropriate physical

domains, and move them with replace operations when necessary.

From the high-level JEDD code shown in Figure 3.16, the JEDD translator will

automatically generate low-level BDD code like the code we showed in Figure 2.9.

In Figure 3.17, we show how to define the numberer, domains, and attributes used

by the JEDD implementation of the algorithm in Figure 3.16.

The numberer defines a bijective mapping between the Java objects that we

want to store in relations and long integers. Our original points-to constraint

solver [BLQ+03] read points-to constraints from an input file in which each pointer

variable, abstract heap object, and field was designated by a unique integer. There­

fore, for this particular pro gram , the Java objects to be stored in relations are aIl

of type java. lang. Long, and the bijection is easy to define: each java .lang. Long

object is mapped to the long returned by its longValue 0 method. In general, any

Java objects could be stored in relations. Indeed, the PADDLE framework which we

describe in Chapter 4 uses different types of Java objects for each kind of element that

it stores in relations. Each numberer must define two get () methods, one to convert

a long integer to the corresponding Java object, and the other to convert a Java

object to the corresponding long integer. The implementation of these two methods

for the points-to set propagation example is shown in lines 56 and 57, respectively.

In lines 62 through 67, we define the three domains used in the algorithm: pointer

variables, abstract heap objects, and fields. We specify that up to 10 bits may be

required to encode fields, and up to 20 bits may be required to encode objects in the

other two domains. In general, the Java objects to be stored in each domain could

use a distinct numberer, but in this example, we reuse the same numberer for an four

domains.

49

Extending Java with Relations

15

16 do {

17

18

outerOldPt pointsTo;

19 do {

20 innerOldPt = pointsTo;

21

22 1* --- rule 1 --- *1
23 <pointer,object> newPt = pointsTo{pointer}

24 <> (dest=>pointer) assign{source};

25

26 1* --- apply type filtering and add into pointsTo BOO --- *1
27 newPt &= typeFilter;

28 pointsTo 1= newPt;

29 } while(pointsTo != innerOldPt);

30

31 1* --- rule 2 --- *1
32 <object,pointer,field> objectsBeingStored = (dest=>pointer) stores{source}

33 <> pointsTo{pointer};

34 <base,field,object> fieldPt = objectsBeingStored{pointer}

35 <> (object=>base) pointsTo{pointer};

36

37 1* --- rule 3 --- *1
38 <base,field,dest> loadsFromHeap = loads{source}

39 <> (object=>base) pointsTo{pointer};

40 <pointer,object> newPt = (dest=>pointer) loadsFromHeap{base,field}

41 <> fieldPt{base,field};

42

43 1* --- apply type filtering and add into pointsTo BOO --- *1
44 newPt &= typeFilter;

45 pointsTo 1= newPt;

46 } while(pointsTo != outerOldPt);

47 return pointsTo;

48 }

49 }

Figure 3.16: Complete JEDD code for points-to analysis of [BLQ+03] (part 2 of 5)
50

3.4. Complete Example

Finally, in lines 71 through 78, we associate the attributes used in the points-to

set propagation algorithm with their domains. The attributes source, dest, and

pointer are of the domain Var of pointer variables, the attributes object and base

are of the domain Obj of abstract heap objects, and the attribute field is of the

do main Field of fields.

In Figure 3.18, we begin to connect the high-level relational specification of our

algorithm with an actual BDD representation. In lines 82 through 86, we declare the

five physical domains of BDD variables in which the relations will be encoded. These

are the same five physical domains that we used in the BDD implementation of the

algorithm in Figure 2.9. In line 88, we begin the class Main which will contain the

main () method, and also generate the input points-to set constraints to be solved.

The relations to store the input points-to set constraints are declared in lines 89

through 93.

At this point, we have decided to specify the physical domains in which sorne of

the attribute instances will be encoded (Vi, V2, Hi, and FD in lines 89 through 91).

We expect the JEDD translator to automatically find a reasonable assignment of

physical domains to all other attribute instances of all relations in the program,

including all the relations in the propagation algorithm in Figure 3.16. However, if

we run the JEDD translator on the program in its current form, it will output an

error indicating a problem with the f ieldPt relation declared on line 34, namely

that the attributes base and object must be assigned to distinct physical domains,

but only the Hi physical domain is available for both of them. Recall that every

physical domain that JEDD is to use in its assignment must be explicitly specified

at least once in the program. 80 far, we have not yet explicitly specified the H2

physical domain for any attribute instance, so it cannot be used. Therefore, in light

of the error report at line 34, we decide to explicitly assign the obj ect attribute of

the fieldPt relation to the H2 physical domain by modifying line 34 as shown at

the bottom of Figure 3.18. In general, once we have defined a high-level relational

implementation of an algorithm, finding a physical domain assignment is an iterative

process: we first specify physical domains for a small number of attribute instances,

then run the JEDD translator to find relations for which it cannot find a reasonable

51

Extending Java with Relations

50

51 // Define numberer

52 //

53 class LongNumberer implements Numberer {

54 private static LongNumberer instance = new LongNumberer() ;

55 public static LongNumberer v() { return instance; }

56 public Object get(long number) { return new Long(number); }

57 public long get(Object 0) { return «Long) 0) .10ngValue(); }

58 }

59

60 // Define domains

61 //

62 class Var(20) extends Domain

63 { public Numberer numberer() { return LongNumberer.v(); } }

64 class Obj(20) extends Domain {

65 { public Numberer numberer() { return LongNumberer.v(); } }

66 class Field(10) extends Domain {

67 { public Numberer numberer() { return LongNumberer.v(); } }

68

69 /1 Define attributes

70 //

71 class source(Var) extends Attribute {}

72 class dest(Var) extends Attribute {}

73 class pointer(Var) extends Attribute {}

74

75 class object(Obj) extends Attribute {}

76 class base(Obj) extends Attribute {}

77

78 class field(Field) extends Attribute {}

79

Figure 3.17: Complete JEDD code for points-to analysis of [BLQ+03] (part 3 of 5)

52

3.4. Complete Example

80 // Define physical domains

81 //

82 class ViC) extends PhysicalDomain {}

83 class V2C) extends PhysicalDomain {}

84 class HiC) extends PhysicalDomain {}

85 class H2C) extends PhysicalDomain {}

86 class FDC) extends PhysicalDomain {}

87

88 public class Main {

89 <source:Vl,dest:V2> mAssign;

90 <object:Fll,pointer> mAllocs;

91 <source,field:FI>,dest:V2> mStores;

92 <source,field,dest> mLoads;

93 <pointer,object> mTypeFilter;

94

95 public static final void mainC String args) {

96 Jedd. vO. setBackendC"buddy");

97 Jedd.v().setDrder(

98 new Seq(FD.v(), new Interleave(Vi.v(), V2.v()), Hi.v(), H2.v()));

99

34 <base,field,object:Fl2> fieldPt objectsBeingStored{pointer}

Figure 3.18: Complete JEDD code for points-to analysis of [BLQ+03] (part 4 of 5)

53

Extending Java with Relations

physical domain assignment, and add explicitly specified physical domains for those

relations. In the case of our points-t~ set propagation example, a single iteration

of this pro cess is enough: the physical domains that we have specified in lines 89

through 91 and in li ne 34 are sufficient for JEDD to automatically find a reasonable

physical domain assignment for all other relations in the program. In case we are not

satisfied with sorne part of the physical domain assignment (for example, if we find a

performance bottleneck using the profiler), we could constrain it further by continuing

to specify additional physical do mains explicitly, and using JEDD to automatically

find a reasonable physical domain assignment for the rest of the pro gram.

The main 0 method begins in line 95. First, in line 96, it initializes JEDD and

selects the BuDDy backend. In lines 97 through 98, the mainO method sets the

relative ordering of physical domains. The FD physical domain appears first in each

BDD, followed by the Vl and V2 physical domains interleaved, followed by Hl and

H2. This was the physical do main ordering that we found to be most efficient for

points-to set propagation [BLQ+03].

Figure 3.19 shows the remainder of the mainO method and Main class. The

mainO method generates a sample set of input points-to constraints (li ne 101), calls

the propagation algorithm to solve them (lines 102 through 103), and prints out the

resulting points-t~ relation (lines 105 through 106). The ini tializeConstraints 0
method in lines 109 through 130 loads the points-t~ constraints of one of our test

cases into the points-to constraint relations in the Main class.

3.5 Assigning Physical Damains ta Attributes

As we have seen in the example in the previous section, one important problem

when implementing algorithms using BDDs is deciding how to assign each attribute

instance to a physical domain of BDD variables. We now show how JEDD automates

this task. First, in Section 3.5.1, we present the objectives which motivated the

design of the physical do main assignment algorithm. In Section 3.5.2, we formalize

these objectives as explicit constraints that a reasonable assignment must satisfy.

54

3.5. Assigning Physical Domains to Attributes

100 Main m = new Main();

101 m.initializeConstraints();

102 <pointer,object> pointsTo = Propagator.propagate(

103 m.mAssign, m.mAllocs, m.mStores, m.mLoads, m.mTypeFilter);

104

105 System. out. println("Points-to relation:") ;

106 System.out.println(pointsTo.toString());

107 }

108

109 private void initializeConstraints() {

110 mAllocs 1= new{new Long(l)=>object, new Long(l)=>pointer};

111

112

113

114

115

116

117

mAllocs

mAllocs

mAllocs

mAllocs

mAllocs

mAllocs

1= new{new Long(2)=>object, new Long(l)=>pointer};

1= new{new Long(2)=>object, new Long(2)=>pointer};

1= new{new Long(3)=>object, new Long(2)=>pointer};

1= new{new Long(3)=>object, new Long(3)=>pointer};

1= new{new Long(4)=>object, new Long(3)=>pointer};

1= new{new Long(5)=>object, new Long(5)=>pointer};

118 mAssign 1= new{new Long(3)=>source, new Long(4)=>dest};

119 mAssign 1= new{new Long(7)=>source, new Long(4)=>dest};

120

121 mStores 1= new{new Long(4)=>source, new Long(l)=>dest, new Long(l)=>field};

122 mStores 1= new{new Long(5)=>source, new Long(2)=>dest, new Long(l)=>field};

123 mStores 1= new{new Long(6)=>source, new Long(3)=>dest, new Long(l)=>field};

124

125 mLoads 1= new{new Long(l)=>source, new Long(l)=>field, new Long(7)=>dest};

126 mLoads 1= new{new Long(2)=>source, new Long(l)=>field, new Long(8)=>dest};

127 mLoads 1= new{new Long(3)=>source, new Long(l)=>field, new Long(9)=>dest};

128

129 mTypeFilter = lB;

130 }

131 }

132

Figure 3.19: Complete JEDD code for points-to analysis of [BLQ+03] (part 5 of 5)

55

Extending Java with Relations

Next, in Section 3.5.3, we present our algorithm for solving the constraints. Finally,

in Section 3.5.4, we present the error recovery mechanism which provides meaningful

error messages to the programmer.

3.5.1 Objectives

Our objectives for the design of the physical domain assignment algorithm fall into

three main categories. First, we aimed to minimize the amount of work required of

the programmer. Second, we wanted to make it possible to precisely specify different

physical domain assignments, and to easily change them, with the overall goal of

finding assignments that make the analysis execute efficiently. Third, we wanted an

algorithm which could be practically implemented in a usable tool. In the rest of this

section, we explain these objectives in more detail.

The first two objectives seem contradictory, since a very flexible system can be

obtained by requiring the user to specify every detail, while an automatic system

offering no choices requires little from the user. Therefore, one of the challenges was

to find a reasonable compromise between these two extremes.

A programmer using a BDD library directly must map each attribute instance to

a physical domain by hand, and write the program in terms of the physical domains,

rather than attributes. For simple programs of sever al BDD expressions with two

or three attributes, this is acceptable. However, for more complicated programs,

assigning a valid physical domain to each attribute of every subexpression is both

tedious and error-prone. It is tedious because there are so many attribut es to which

physical domains must be assigned, and it is error-prone because the many replace

operations which move data to the assigned physical domains must be inserted by

hand, with no automatic verification of their correctness, either at compile time or

run time. This makes it easy to make mistakes, and difficult to find the sources of the

errors that do occur. Therefore, we would like JEDD to relieve the user from having

to perform the full assignment by automatically generating a reasonable assignment

from a minimum amount of user input. To prevent errors, we would like JEDD to

automatically insert the correct replace operations to implement the assignment.

56

3.5. Assigning Physical Domains to Attributes

Since JEDD is a tool designed mainly for research into implementing program

analyses using BDDs, it should make it possible to experiment with different phys­

ical do main assignments. It has been widely noted that the ordering of variables

in a BDD determines its size, and therefore the speed of operations performed on

it. The variable ordering is closely related to the physical domain assignment, since

physical domains are groups of BDD variables; the combinat ion of the assignment

of attributes to physical domains and the ordering of the variables of those physical

domains together determine the relative ordering of the BDD variables implementing

the attributes. Therefore, the physical domain assignment chosen has an important

effect on the performance of algorithms implemented with BDDs. Unfortunately,

with our currently limited knowledge of implementing program analyses using BDDs,

we do not know of any easy ways to determine a near-optimal physical domain as­

signment even by hand, let alone automatically. Sorne input from the programmer

about the desired physical do main assignment is therefore necessary. Indeed, it is

desirable to allow the researcher to specify the assignment, to make it possible to

experiment with different assignments. These experiments are necessary to improve

our knowledge of what makes a good assignment, and will hopefully one day lead to

a fully automated physical domain assignment algorithm. However, we must remem­

ber to balance fiexibility with ease of specification. Ideally, JEDD would allow the

program to initially contain a minimum of physical domain information, and would

automatically generate a reasonable complete assignment. Later, based on profiling

information, the programmer would tune the critical parts of the program and specify

the assignment for those parts in more detail.

In or der for the physical domain assignment algorithm to be useful, it must be im­

plemented in a practical tool that is us able by programmers. When the programmer­

specified part of the physical do main assignment contains errors (i.e., part of the

physical domain assignment is inconsistent), the algorithm should be able to indicate

the source of the error with meaningful error messages. In the absence of errors, the

algorithm should always find a reasonable assignment; it should not be a heuristic

that fails for certain difficult inputs, since these difficult problems are likely to also be

difficult for the programmer to solve by hand. Since JEDD will be run each time the

57

Extending Java with Relations

program is compiled, and since the point of JEDD is to make it easier to implement

non-trivial program analyses using BDDs, the algorithm should be able to pro cess

these non-trivial programs in a reasonable amount of time.

JEDD addresses these objectives in the following ways. For each attribute in­

stance, the programmer may optionally specify a physical do main assignment, and

JEDD automatically inserts the correct replace operations to implement the assign­

ment. This makes it easy to tweak the assignment without having to rewrite the

replace operations. When the programmer specifies physical domains for only a small

subset of the attributes, JEDD automatically completes the assignment using the al­

gorithm described in the next section. Should the programmer not be satisfied with

specifie parts of the automatically generated assignment, physical domains may be

specified for these expressions explicitly, and JEDD will find a reasonable assignment

for the rest of the program. If the programmer-specified portion of the physical do­

main assignment contains an inconsistency and an assignment cannot be found, JEDD

reports the specifie expression and attributes to which physical domains cannot be

assigned, as described in section 3.5.4.

3.5.2 Formai physical domain assignment requirements

In or der to correctly implement a JEDD program in BDDs, a physical domain assign­

ment must satisfy the following constraints:

1. [conflict] Within every relation, each attribute must be assigned to a distinct

physical domain.

2. [equality] Each relational operation implemented using BDDs requires certain

attributes of its operands to be assigned to the same physical domain. In

particular,

• set union, intersection, and difference operations, relation comparison,

and assignment of relations an require corresponding attributes of their

operands to be assigned to the same physical domains, and

58

3.5. Assigning Physical Domains to Attributes

• composition and join require the attributes being compared to be assigned

to the same physical domains. 5

We adopt the term valid for a physical domain assignment satisfying these con­

straints. Finding a valid assignment for a JEDD program usually requires the operands

of sorne operations to be wrapped in BDD replace operations in order to move them

to physical domains that satisfy the constraints. It is always possible to construct a

valid assignment if all operands of aIl operations are wrapped in replace operations.

Although a valid physical domain assignment is sufficient for a correct implemen­

tation of a JEDD program, it may not necessarily lead to an efficient implementation.

In particular, the requirement that an assignment be valid does not limit the number

of physical domains used, or the number of expensive BDD replace operations needed

to implement it. To obtain reasonably efficient physical domain assignments, we must

impose additional constraints.

We define a physical domain assignment to be reasonable if it is valid, and if

every attribute is assigned to its physical domain for a reason, rather than arbitrarily.

Specifically, the following are the allowed reasons for assigning a physical domain P

to an attribute instance A:

1. The physical domain P was explicitly specified for the attribute instance A in

the JEDD program.

2. A is involved in an operation requiring it to have the same physical domain as

another attribute instance A', and A' has already been assigned the physical

domain P. If we were to assign a physical domain other than P to A, a replace

operation would have to be introduced before the operation to move A and A'

into the same physical domain.

A reasonable physical domain assignment has several desirable properties.

5Composition and join aiso require the attributes not being compared to be assigned to physicai
domains distinct from any used in the other operand. However, this constraint is implied by the
conflict constraints on the operands and resuit of the composition or join, so we need not consider
it explicitly.

59

Extending Java with Relations

First, the set of physical domains allowed to be used is limited to those explicitly

mentioned somewhere in the program. The physical domain assignment algorithm

cannot introduce additional physical domains not mentioned by the programmer.

This is important because the programmer must specify a BDD variable ordering of

aIl the physical domains, and therefore must be aware of aIl the physical domains

that are used.

Second, every replace operation implied by the physical domain assignment is

necessary in the following sense. Suppose that attribute instances A and A' are

assigned distinct physical domains P and P', but are involved in an operation that

requires a replace between them. Then there is a reason that A and A' were assigned

distinct physical domains: specificaIly, there is a chain C (C') of operations from A

(A') to sorne attribute instance to which the programmer has explicitly assigned the

physical domain P (P'). In order for the physical do main assignment to be valid,

there must be a replace operation somewhere along the combined chain consisting of

C, the operation involving A and A', and C'. Although it is not necessary for the

replace to be in the specifie position that it is, a replace is necessary somewhere along

the chain.

Third, requiring a reason to assign a physical domain rather than doing so arbi­

trarily maintains control over fine-tuning the assignment in the hands of the program­

mer. Specifically, the programmer can explicitly force a desired attribute instance to

a physical domain, and other attribute instances involved in operations with it are

likely to be assigned to the same physical domain.

A reasonable physical domain assignment does not necessarily have the minimum

possible static number of replaces. However, the static number of replaces is a poor

predictor of run-time performance, because different replaces may be executed a very

different number oftimes and have very different costs. Furthermore, for typical JEDD

programs, there are often many valid assignments with the minimum static number

of replaces but very different performance. If JEDD relied on a global property such

as the total number of replaces, it could not allow the programmer local control over

specifie expensive replaces. The fiexibility to tune the run-time behaviour of the few

expensive replaces is more important to us than the static total number of replaces.

60

3.5. Assigning Physical Domains to Attributes

3.5.3 Physical domain assignment algorithm

Unfortunately, finding a reasonable physical domain assignment for a JEDD pro gram

is not easy.

Proposition 1 The problem of fin ding a reasonable physical do main assignment is

NP-complete.

Proof: See Appendix A.

Several heuristics that we implemented to solve this NP-complete problem failed

on common example programs. More importantly, an incomplete heuristic (which

may fail to find a solution even wh en one exists) is undesirable for this problem. The

case when a heuristic would fail to find a solution is precisely when the programmer

very much wants to know whether a solution exists (and is therefore worth searching

for by hand) or does not exist (and the code must therefore be modified so that

a solution does exist). Therefore, the potentially very high cost of an exhaustive

search is justified, and our intuition told us that although the problem in general

is NP-complete, typical instances would be relatively easy to solve. However, we

realized that implementing a smart exhaustive solver that would handle the easy

cases efficiently would be difficult, and we would be duplicating much of the work

that has been done on the boolean satisfiability (SAT) problem. We therefore encode

the physical domain assignment problem as a SAT problem, and call a SAT solver to

solve it for us.

Given a boolean formula over a set of variables, a SAT solver finds a truth as­

signment to those variables that makes the formula evaluate to true. We therefore

encode the physical domain assignment problem into a boolean formula in such a

way that we can recover a physical domain assignment from a truth assignment of

its variables, and such that the formula evaluates to true exactly wh en the physical

domain assignment satisfies our constraints.

Most SAT solvers require the input boolean formula to be in Conjunctive Normal

Form (CNF). A formula in CNF is a conjunction of disjunctions of literaIs, where each

literaI is a variable or a negated variable. In the discussion that follows, we present our

61

Extending Java with Relations

formula for the physical domain assignment problem in the form of clauses (conjuncts)

of a CNF formula. However, in the interest of clarity, we do not immediately convert

each clause into a disjunction of literaIs. We defer this conversion until Figure 3.21

at the end of this section, in which we show all the clauses fully converted to CNF.

Our initial encoding of the physical domain assignment problem as a SAT formula

was presented in [LH04]. This simple encoding worked well for several months of our

work with JEDD. However, as we implemented more and more program analyses, the

complexity of our code eventually caused the SAT formula to become prohibitively

large. The problem was not that the SAT solver could not solve the formula; rather,

the formula itself was too large for the JEDD translator to generate it. Therefore, we

have devised an improved encoding which guarantees a SAT formula with a number

of literaIs quadratic in the program size in the worst case, and typically linear. We

now present the improved encoding.

We represent the constraints in an attribute def-use graph. For each attribute

instance of each subexpression in the program, this graph contains two vertices, a

def vertex and a use vertex. The def vertex represents the attribute instance in the

subexpression itself. Each subexpression can potentially be wrapped in a BDD replace

operation, and the use vertex represents the attribute instance after this potential

replace. After the algorithm assigns a physical domain to each vertex, it must wrap

a replace operation around each subexpression for which the use vertex has been

assigned to a different physical domain than the def vertex. The vertices of the graph

are connected by three kinds of edges. A conflict edge between two vertices indicates

that they must be assigned to distinct physical domains. An equality edge between two

vertices indicates that they must be assigned to the same physical domain. These two

kinds of edges generated to enforce the constraints for the physical domain assignment

to be valid, as defined in Section 3.5.2. Finally, an assignment edge between two

vertices indicates that they should be assigned to the same physical domain. An

assignment edge is generated between each def vertex and its corresponding use vertex.

As long as both vertices are assigned to the same physical domain, no replace is

needed.

The attribute def-use graph for the example JEDD code from Figure 3.3 is shown

62

p intsTo use

object pointer

Hl VI
1 1
1 1
1 1
1 1

p~intsTo ~ef

object pointer

Hl VI

3.5. Assigning Physical Domains to Attributes

lmp use

object de st

Hl VI
1 1

1 1
1 1
1 1

~mp def:

object dest

Hl V2
1

assign u e

source dest

VI V2

1
1
1 1

a~sign d~f

source de st

VI V2

Figure 3.20: Example of physical domain assignment constraints

63

Extending Java with Relations

in Figure 3.20. Equality constraints are shown as solid lines and assignment constraints

as dashed lines. Confliet constraints exist between the two attribute instances that

compose each definition and each use, but they are not shown in the figure to avoid

clutter. The physical domains shown in each vertex form a valid physical domain

assignment with no unnecessary replaces. The three physical domains that were

specified in the code in Figure 3.3 are indicated in boldo The assignment contains

only one assignment edge that will generate a replace, namely the edge between the

use and def vertices of the dest attribute in the tmp relation. This replace is necessary

because it is on the path from the def vertex of the pointer attribute of the pointsTo

relation and the def vertex of the dest attribute of the assign relation, for which the

programmer has specified the physical domains VI and V2, respectively.

To obtain a valid physical domain assignment, we must assign a physical do main

to each vertex of the graph in a way that satisfies the constraints imposed by the

edges of the graph. Since an equality edge requires its endpoints to be assigned to

the same physical domain, every vertex in a component connected by equality edges

is assigned the same physical domain. 6 We therefore merge aIl vertices in each such

connected component into a single vertex. In the discussion that foIlows, we refer

only to the simplified graph that results from this merging. For each vertex v in the

simplified graph, and for each physical domain p, we define a SAT variable for the

pair (v: p). If the satisfying assignment found by the SAT solver sets this variable to

true, v is assigned to the physical domain p.

To ensure that any satisfying assignment of the SAT formula corresponds to a

valid physical domain assignment, the foIlowing clauses are needed. In the clauses

below, we use V to denote the set of aIl vertices, P to denote the set of aIl physical

domains,

6It is not possible for multiple vertices for which the programmer has specified distinct physical
domains to be connected by equality edges, as a consequence of the following two facts. By con­
struction of equality edges, at least one endpoint of every equality edge is a use vertex generated by
JEDD, for which the programmer cannot have specified a physical domain. In addition, each such
use vertex has at most one outgoing equality edge. Therefore, every path of equality edges starting
at a vertex for which a physical domain has been specified has a generated use vertex as its very
next vertex, and cannot continue any further from it.

64

3.5. Assigning Physical Domains to Attributes

Each vertex is assigned to sorne physical domain.

1\ V (v:p) (3.1)
vEV pEP

No vertex is assigned to multiple physical domains.

1\ 1\ -, ((v: p) 1\ (v: p')) (3.2)
vEV p,p'EP,popp'

Any attribute with an explicitly specified physical domain is assigned that physical

domain.

1\ (v:p) (3.3)
(v,p)ESPECIFIED

For each conflict edge between v and v', the vertices v and v' must not be assigned

to the same physical domain.

1\ 1\ -, ((v: p) 1\ (v' : p)) (3.4)
(v,v')ECONFLICT pEP

The clauses 3.1 through 3.4 together express the requirement that the physical domain

assignment be valid.

Encoding the requirement that the assignment be reasonable is less straightfor­

ward, because the definition of reasonable implicitly relies on the or der in which

attributes are assigned to physical domains, but the SAT sol ver computes a variable

assignment which simultaneously satisfies aIl clauses of the formula. A vertex A can

be assigned to the physical domain P if it is connected by an assignment edge to

A', and A' has previously been assigned to P. Without the ordering requirement, it

would be permitted to assign an arbitrary domain P' to both A and A', since each of

them is connected to the other, and the other is also assigned P'. We must therefore

con si der the order when encoding the problem as a SAT formula.

We encode the reasonableness requirement in sever al steps, which we detail in

the following paragraphs. First, we define a relation -<, such that a -< b if and only

if the reason for assigning bits physical domain was that a was assigned the same

physical domain before it, and an assignment edge exists between a and b. We give

65

Extending Java with Relations

the SAT solver constraints that force it to compute such a relation -<. We also create

constraints which ensure that there exists a total order ::; in which the vertices may

have been assigned physical domains which is consistent with the physical domain

assignment and the computed -< relation. More precisely, the SAT solver outputs

enough information to prove the existence of a total order ::; for which a -< b =} a < b.

Since we are interested in the physical domain assignment itself, rather than the

or der in which the vertices were assigned physical domains, the SAT solver need not

compute::; itself (which would require a larger SAT formula), but only provide enough

information to prove its existence.

For each assignment edge (v, Vi), we define a pair of SAT variables (v -< Vi) and

(Vi -< v). If (v -< Vi) is true in the satisfying assignment, it indicates that v -< Vi.

We use the following clause to ensure that (v -< Vi) and (Vi -< v) cannot both be true

simultaneously:

1\ ----, ((v -<Vi) 1\ (Vi -<v)) (3.5)
(v, v') EAS SIG N MENT

Since v -< Vi indicates that Vi was assigned a physical domain because v had

already been assigned the same physical domain, we ensure that Vi is assigned the

same physical do main as v:

1\ 1\ (v -< Vi) =} ((v: p) =} (Vi: p)) (3.6)
(v,v')EASSIGNMENT pEP

If the programmer did not specify a physical domain for Vi, there must be sorne v

such that v -< Vi:

1\ v (v-<v') (3.7)
v'EV 1 =jp:(v',p)ESPECIFIED vEV 1 (v,v')EASSIGNMENT

To prove the existence of a total order in which the vertices may have been assigned

physical domains, we make use of the following proposition. For now, we will make

use of only the equivalence of statements 2 and 3 of the proposition.

Proposition 2 Let G be an attribute def-use graph, and let -< be an antisymmetric

binary relation on its vertices such that a -< b implies that a and b are connected by

an assignment edge in G. Then the following four statements are all equivalent:

66

3.5. Assigning Physical Domains to Attributes

1. -< is a well-founded relation.

2. There exists a total order ::; such that a -< b :::} a < b. (This is the order in

which physical domains could be assigned the vertices.)

3. There exists a total antisymmetric relation ç such that a -< b :::} a C band

there is no triple of distinct vertices a, b, c such that a -< b CcC a.

4· On the vertices of every biconnected component C = (Vc , Ec) of the graph

formed by assignment edges, there exists a total antisymmetric relation Çc su ch

that Va, b E Vc.a -< b :::} a Cc band there is no triple of distinct vertices a, b, c

such that a -< b Cc c Cc a.

Proof: See Appendix A.

To prove the existence of the total order ::; (statement 2 of the proposition), the

SAT solver need only produce the total relation ç (proving statement 3), which can

be specified with a much smaller SAT formula.

For every unordered pair {v, v'} of distinct vertices, we arbitrarily choose one of

the vertices (say v), and define a single SAT variable (v C v') indicating that v C v'

if the variable is true, and v' C v if it is false. For convenience, we permit ourselves

to write (v' Cv) to mean -,(v C v'), but note that (v C v') and (v' Cv) both refer to

the same physical SAT variable, possibly negated. This definition ensures that the ç

relation found by the SAT solver is total and antisymmetric.

Next, we encode the requirement that a -< b:::} a C b:

/\ (a-<b) :::} (acb) (3.8)
(a,b)EASSIGN MENT

Finally, we encode the requirement that there be no triple of distinct vertices a, b, c

such that a -< b CcC a:

/\ /\ -, ((a-<b) 1\ (bCc) 1\ (cCa)) (3.9)
(a,b)EASSIGN MENT cEV\ {a,b}

This clause completes the SAT formula. Figure 3.21 shows all the clauses of the

formula converted to CNF.

67

Extending Java with Relations

1\ V (v:p) (3.1)
vEV pEP

1\ 1\ -, (v: p) V -, (v: p') (3.2)
vEV p,p'EP,p=fp'

1\ (v:p) (3.3)
(v,p)ESPECIFIED

1\ 1\ -, (v : p) V -, (Vi: p) (3.4)
(v,v')ECONFLICT pEP

1\ -,(v-<v') V -,(v' -<v) (3.5)
(v,v')EASSIGN MENT

1\ 1\ -, (v -< Vi) V -, (v : p) V (Vi: p) (3.6)
(v,v')EASSIGNMENT pEP

1\ V (v -< Vi) (3.7)
v'EV l ';lp:(v',p)ESPECIFIED vEV 1 (v,v')EASSIGNMENT

1\ -'(a-<b) V (aCb) (3.8)
(a,b)EASSIGN MENT

1\ (3.9)
(a,b)EASSIGN MENT cEV\ {a,b}

Figure 3.21: Complete formula for physical domain assignment problem in CNF

68

3.5. Assigning Physical Domains to Attributes

3.5.3.1 Additional optimizations

The asymptotically largest number of literaIs in the SAT formula cornes from this

last clause, which introduces 3m(n - 2) literaIs, where m is the number of assignment

edges and n is the number of vertices. In typical attribute def-use graphs, m is

approximately equal to n. In the program analyses for which JEDD is intended, n

and m can be up to 1000, leading to 3 million literaIs in the SAT formula. Based on

our experience with the zChaff SAT solver, it is capable of working with a formula of

this size. However, we can make the formula significantly sm aller still by making use

of the fourth statement of Proposition 2.

The properties required of the relations Çc in statement 4 of the proposition

are similar to those required of ç in statement 3, but Çc is only defined on the

much smaller biconnected components of the graph, rather than on the whole graph.

Therefore, if we change the SAT formula generated by JEDD to construct Çc rather

than ç, the size of a SAT formula can be made proportional not to the square of

the size of the entire graph, but to the sum of squares of the sizes of the biconnected

components. In our experience, most biconnected components are no larger than ten

edges, with the largest being on the or der of 100 edges. The SAT formula is therefore

significantl y smaller.

To find the biconnected components of the graph, JEDD uses the well-known

algorithm [Tar72] based on depth-first search (DFS). To construct Çc rather than ç,

only clauses 3.8 and 3.9 of the SAT formula need to be modified, and the necessary

modification is quite simple. Only the vertices over which the clauses range are

modified; the bodies of the clauses are not changed. The pairs (a, b) in both clauses,

which range over all assignment edges, are changed to range over only those assignment

edges whose endpoints are in the same biconnected component. The vertex c in

clause 3.9, which ranges over all vertices in the graph except a and b, is changed to

range over all vertices in the same biconnected component as a and b exclu ding a and

b themselves.

JEDD performs one additional optimization to make the SAT formula smaller.

Several of the clauses (3.1, 3.2, 3.4, and 3.6) quant if y over all physical domains defined

69

Extending Java with Relations

for the JEDD program. However, because a reason is required to assign a physical

domain p to a vertex v, v can never be assigned p unless v is connected by sorne

path of assignment edges to sorne vertex v' to which p has been assigned explicitly

in the JEDD program. JEDD partitions the graph of assignment edges into connected

components using a DFS, and for each connected component, collects the set of all

physical domains explicitly assigned to a vertex in the component. The SAT variable

(v: p) cannot be true if p is not in this set for the connected component containing

v. Therefore, (v: p) is removed from all clauses (disjunctions), since it cannot make

them true. In addition, all clauses (disjunctions) containing -, (v: p) are necessarily

true, so they are removed from the overall conjunction. The connected components

are also used in error reporting, which we discuss next in Section 3.5.4.

3.5.4 Errar reparting

One challenge with using a black box such as a SAT solver in a compiler is reporting

errors to the user. When the SAT solver determines that no reasonable physical

do main assignment exists, it reports that the boolean formula is unsatisfiable. While

this fact is useful for the programmer to know, it is not very helpful in pinpointing

the cause of the error.

To improve the error reporting, we took advantage of a new feature recently

implemented in the zChaff SAT solver, unsatisfiable core extraction [ZM03]. When

the SAT solver determines that the boolean formula is unsatisfiable, it also outputs

a small subset of the clauses whose conjunction is still unsatisfiable.

There are two potential reasons why no reasonable physical domain assignment

may exist. First, there may be a vertex v not connected by any path to any other

vertex for which a physical domain has been specified. In this case, the list of explicitly

assigned physical domains for the connected component containing v is empty, and

JEDD detects this when constructing the SAT formula. Second, it may not be

possible to assign physical domains to the vertices in a way that respects all the

conflict constraints. In this case, the SAT formula is unsatisfiable. The following

proposition suggests a way to report the source of the problem to the programmer.

70

3.5. Assigning Physical Domains to Attributes

Proposition 3 When the BAT formula produced for the physical domain assignment

problem is unsatisfiable, every unsatisfiable core contains at least one clause of type 3.4

(confiict clause).

Proof: See Appendix A.

Therefore, the small unsatisfiable core returned by the SAT solver must contain at

least one clause of type 3.4. From this clause, JEDD extracts the attribute instances

to which physical domains could not be assigned, and the physical domain(s) that

were considered for assignment. This information is reported to the programmer

along with the position of the expression in the source file. An easy way for the

programmer to fix the problem is to introduce a new physical domain, and explicitly

assign it to one of the attributes of the unsatisfiable conflict constraint.

To illustrate the error reporting with a typical error, consider what would happen

if the attribute dest of the relation assign in line 2 of the code in Figure 3.3 were

not explicitly assigned a physical domain. As a result, there would be no reasonable

physical domain assignment for the program, since there would be only two physical

domains, Hi and Vi, but the composition in line 8 requires three. JEDD would output

the following error message:

1 Prop.jedd:8: Conflict between attributes dest and source of replaced version

2 of

3 <dest, object> tmp = pointsTo{pointer} <> assign{source};

4

5 over physical domain Vi

The error message indicates the location of the error, the expression in question

(assign), the attributes to which a physical domain could not be assigned (dest and

source), and the single physical domain which is available for the two attributes (Vi).

To fix this error, the programmer would specify that one of the attributes should be

assigned to a new physical domain. For example, in the original code in Figure 3.3,

dest was explicitly assigned to the physical domain V2.

71

Extending Java with Relations

3.6 Jedd Runtime

3.6.1 8ackends

One of the benefits of expressing BDD algorithms in JEDD is that these algorithms

can be executed, without modification, using various BDD libraries as backends.

This allows us to compare the performance of different backends on the same prob­

lem. JEDD can currently use the BuDDy [LN], CUDD [Som], SableJBDD [Qia], or

JavaBDD [Whab]libraries as backends. Because BuDDy and CUDD are written in

C, they are called from JEDD using the JNI.

3.6.2 Memory management issues

BDD libraries use reference counts of external references to identify unused BDD

nodes to be reclaimed. A disadvantage of this approach is that a programmer us­

ing the library is required to explicitly increment and decrement the reference count

whenever BD Ds are assigned or a reference to a BD D goes out of scope. In C++,

it is possible to use overloaded assignment operators and destructors to relieve the

programmer of much of this burden. The lack of operator overloading makes this

impossible in Java. If JEDD were a library rather than a language extension, the

programmer would have to explicitly manipulate reference counts. Memory manage­

ment is yet another tedious and error-prone aspect of working with BDDs. Since

JEDD is an extension to the language, we can design it to update reference counts

automatically, without any help from the programmer.

For performance reasons, it is particularly important that the reference count be

decremented as soon as possible after a reference becomes unreachable, because it

may be the root of a BDD consisting of many other nodes. When dead nodes are not

freed in a garbage collection, fewer nodes remain for future computation, so garbage

collection is required more frequently. In addition, BDD libraries use a cache to

speed up the basic operations on nodes. Large numbers of unfreed obsolete nodes

may pollute this cache. In general, we cannot rely solely on the Java garbage collec­

tor to determine when relations are unreachable, particularly short-lived temporary

72

3.6. JEDD Runtime

relations. This is because unlike allocations of Java objects, an allocation of a BDD

node will not trigger a Java garbage collection when no more memory is available.

It is possible to allocate many large temporary BDDs in several iterations of a loop

and have the BDD library run out of memory without a Java garbage collection ever

being triggered.

A BDD can become unreachable in one of four ways. First, a subexpression of

an expression becomes unreachable wh en the overall expression is evaluated. Second,

the BD D may be stored in a local variable or field, and be overwritten by another

BDD. Third, the BDD may be stored in a local variable which goes out of scope.

Fourth, the BDD may be stored in a field, and the object containing the field may

become unreachable. For temporary values, the first two cases are the most common

and therefore the most important.

To handle the first case, we implement the convention that each BDD operation

decrements the reference count of its arguments and increments the reference count

of its result before returning it. Therefore, the reference count of a subexpression is

decremented as soon as it is used in the overall expression. This convention is partly

imposed by the requirement of the BDD libraries that any BDDs passed to library

functions have non-zero reference counts.

For a clean implementation of the remaining cases, we create a relation container

object for each local variable and field of relation type. In the generated Java code,

the corresponding variable or field points to its relation container throughout its entire

lifetime; this is enforced by making the generated variable or field final. The BDD

itself is stored as a private field of the relation container, and can be updated only

through an assignment method which also updates the reference counts. This ensures

that when a BDD is overwritten by another, the reference count of the overwritten

BDD is immediately decremented.

To handle the third and fourth cases, the finalizer of every relation container

(which is called when the relation container is garbage collected) decrements the

reference count of the BDD stored in it. In the case of a local variable going out

of scope, the finalizer of the relation container ensures that the reference count will

eventually be decremented, but this may be a significant amount of time after the

73

Extending Java with Relations

variable goes out of scope. To improve on this, we perform a static liveness analysis

on aH relation variables, and at each point where a variable may be live and is known

to become dead, we decrement the reference count of any BDD it may contain and

remove the BDD from the container. In the face of exceptional interprocedural control

flow, this is not always possible. We assume such control flow to be unusual, and faH

back on the finalizer to decrement the reference count in such cases.

In the case of an object containing a BDD becoming unreachable, the relation

container is normally garbage collected in the same garbage collection as the object

containing it. 7 The finalizer decrements the reference count in the same garbage

collection.

To summarize, JEDD manages BDD reference counts automatically without any

help from the programmer. In aIl four cases, it frees BDDs as soon as it becomes safe

to do so, so its performance should be no worse than that of a hand-coded reference

counting solution.

3.6.3 Profiler

A common problem when tuning any algorithm using BDDs is choosing an efficient

variable ordering, the relative order of the individu al bits of the physical domains. In

complicated programs with many relations and attributes, a related problem is tuning

the physical domain assignment, and the replace operations which it implies. Specif­

ically, we are interested in removing those replace operations which are particularly

expensive by modifying the physical domain assignment to make them unnecessary.

For these tuning tasks, we need sorne insight into the runtime behaviour of our pro­

gram. In particular, we want to know which operations are expensive in terms of

time and BDD size (and therefore space), in order to either remove them, or make

them cheaper by modifying the variable ordering. For tuning the variable ordering,

knowing the shape of the BDDs involved in the operation is also useful, as we will see

7Here, we assume that the garbage collector collects aIl unreachable objects in each collection.
However, even when this is not true in general, such as in a generational collector, it is very likely that
the object containing the field and the relation container will be reclaimed in the same collection,
since they are allocated close together: the latter is allocated in the constructor of the former.

74

3.6. JEDD Runtime

with several examples at the end of this section. The shape of a BDD is the number

of nodes at each level (testing each variable) of the BDD.

In the code generated by JEDD, relational operations are implemented as calls

into the JEDD runtime library. The runtime library optionally makes calls to a pro­

filer which records, for each operation, the time taken and the number of nodes and

shape of the operand and result BDDs. This information is written out as a SQL

file to be loaded into a database, which provides a flexible data store on which arbi­

trary queries can be performed to present the data to the user. JEDD also includes

CGI scripts to provide access to the profiling data through a web browser. We use

SQLite [Hip] for the database and thttpd [Pos] for the web server because of their

ease of installation, but in principle, any SQL database and any web server would

work. The overall profile view shows, for each relational operation in the program,

the number of times it was executed, the total time taken, and the maximum size of

the BDDs involved (see Figure 3.22). Clicking on an operation brings up a detailed

view with a line of information for each time the operation was executed. Clicking

on a specifie execution of the operation generates a graphical representation of the

shape of the BDDs involved in the operation. Figure 3.23 shows an example of this

graphical representation for a typical replace operation. In this case, the relation

consists of two attributes, the first mapped to the physical domain VI ranging from

levels 20 to 39 of the BDD, and the second being moved from the physical domain

H2 at levels 80 to 99 of the BDD to a different physical domain Hl at levels 60 to 79.

Once an unacceptably large BDD has been identified, its shape often provides

insight into why it is so large, and how the pro gram can be changed to make it

sm aller. In Figures 3.24 to 3.27, we present sorne typical BDD shapes that may be

observed when tuning a JEDD program, and explain what they suggest about the

physical domain assignment and bit ordering. The shape graphs in these figures are

of BDDs synthesized to highlight patterns that were observed during tuning of the

PADDLE framework described in Chapter 4.

When a relation has a large number of attributes, often only sorne of the attributes

are responsible for making the BDD large. The physical domains to which these

important attributes are been assigned affect the BDD size the most. For example, in

75

Extending Java with Relations

TygAA,j!tii~~;~":.i çoyHllmme: ".w~51Bg~tt&~ IOgut. Et;:m~tLiiittJ!rii1ij~i~'11"~;.,,,.· ,f. . t·,'

côrrll?pseI~~HJJ, 2344;O:im~j~.~§:t~~j ar~Ô53. 0 10107 ,qat prop\propaQate(Prop;~èva:24'j)'
replâ~~;.. . 120J7Q,)..56. ornslolô'j','o' f' .' 0.0 l()i();li~ iI~;~tap;;!:JWbgâgate(prop. java:247)
COrnRP:~~ .. "+ll'~~ ;':" 9'4,OJfi~: ~~.§~~10 jl;?795.6·5~~~~·Q '~·t~rôLi:propàgatê(pror;na\ia~267·~
corriR~i~J}i.f;j ' ..•. ~.~ !~I§~~.O. ms '5a~io .' .435~~g; tli~~ii! IillHf.o'lïl"iAt!œrop.jiva: ijô)"

>:: < \"K0'\-~~f0:~, ,(-' < <f:~;:;:;:'<>·\,~ "'"'>"", ": > ,,",' "("»',é"';':;~:lflf17>;'1'f~<~'" ;'" < < ,F''''',: '~«< :'" "','~"r<t<""'·('>":TJ;~·Y'{f;;~:~?;::~:t~.'t:f'~\::'ii.é .;.>:",:. ",
com~aèb;'" ;·,1.0 .0, ~.!;·Ji1:9·;·Oms· ;·,4215·,0' 15;7·'51'0 h3,9Z.6 .• .of.lt~pr;QG.PDa9Jtdpropf,a\(a'l2561'1

'[!lPI~~I)ii .i9~~Jii~;Q· rns 1'5795.0 . .:di~iiÎi~f~o'~t~êfqpr6HgplgillrêŒ,~iva: ZS9)· ..
êPropose"Rjir a:;~o, 0 '"!J}!lilQt1ml? .3,'lJi.Q:~i~Y!ô' K*4353.0 et erop.prQpagite(PPêw1il~)25i~~
,replâEe·l\jjL"l~. 5853.0 . àf P":ôp,'p":dp~gitlfP(êp3lava :2,70),

cgrnpose~j~a~;[\2.0 .. 57.0 et prop,garselnpùt(prôl~iitt~1\G:!1
[~pl'acen~~if~ î:,\s5, 0 aîtpcôp;·prQpagf.ltlf~41'l3iWB~~1~l
eq'~nlpn ." 15aO~+g~lr2F~tilrgt1lagi!t:e'(Prôa~lavlTâî~j:~
eqla~ps'e~ ég~,iI' ~.i. .~25â51' làiilIJJgi.fiàt:e(PFop,j~va iaZll.

Figure 3.22: Overall profile view

the BDD in Figure 3.24, the vast majority of BDD nodes test physical domains PD3,

PD4, and PD5, and very few nodes test physical domains PDI and PD2. Therefore,

changing the relative ordering of the bit positions in PD3, PD4, and PD5 will have a

much st ronger effect on the BDD size than changing the relative ordering of the bit

positions in PDI and PD2.

In sorne BDD shape graphs, the number of nodes testing each bit position of

a physical domain remains constant or nearly constant, as for the PD2 domain in

Figure 3.25(a). This suggests that testing a bit of the physieal domain provides litt le

information about whether a given binary veetor is in the set represented by the

BDD. In the BDD of Figure 3.25(a), information about bits in both PDI and PD3

is required to decide whether a binary veetor is in the set. Therefore, to test a given

binary vector, the information about PDI must be earried through PD2 to PD3,

leading to a large number of nodes in PD2. If the bit ordering is changed so that

PD2 no longer separates PDI and PD3, the BDD beeomes mueh smaller, as shown

in Figure 3.25(b).

76

3.6. JEDD Runtime

r- h.cq; (PNGlma e 640:-:480 IXels)· Mozilla Flrefoll "'('1
... Help

III 0 httP:/;12;.0.0.1:aOBo/graPh:Cgi?eVer .:JI
replace ~at Prop.propagate(Prop.java:270)

250
V1

1 f-I ----'V .. 2'--_-----i1
f-I __ --'H"'1~_--j1

f-I __ ..!.H..,2~_--j

200

150

100

o 20 40 60 ao 100

level

Input R -- Input R + Input B -- Input B

Figure 3.23: Graphical representation of BDD in replace operation

77

Extending Java with Relations

10000
1 1 PD2

1 1 PD3
1 1 PD4

1 1 PDS
1 1

8000

r
6000

4000

2000

a .+trrnITIIIII! 1111 1111 1111 1111 III! Ik
o 20 40 60 80 100

Level

Total nodes: 411791

Figure 3.24: Example shape graph in which most of the nodes test physical domains

PD3, PD4, and PD5

78

3.6. JEDD Runtime

12000
PD2

PD3

10000

8000

'" Ql
"0 6000 0 z

4000

2000

0 ct r r 1 Ir t
0 10 20 30 40 50 60

level

Total nodes: 344846

(a)
12000

PD3
PD2

10000

8000

lfl
"0 6000 0 z

4000

2000

0 et r r Iht
0 10 20 30 40 50 60

level

Total nodes: 145929

(b)

Figure 3.25: Example shape graph in which the number of nodes testing each bit of

PD2 is high and constant

79

Extending Java with Relations

Sorne BDDs exhibit a sharp spike near the boundary of two physical domains,

as in Figure 3.26(a). After the bits of PD1 have been tested, many BDD nodes

are required to remember which of the many distinct binary sub-vectors has been

observed in PD1. As soon as a few bits of PD2 have been tested, however, the

number of distinct states that must be remembered quickly goes down. This suggests

that if sorne bits of PD2 were tested earlier, the BDD may not grow as wide. The

example relation represented by the BDD of Figure 3.26(a) can be represented by the

much smaller BDD in Figure 3.26(b) if the bits of PD2 are interleaved with the bits

of PD1, rather than being tested after aIl the bits of PD1.

However, when certain attributes of a relation are not closely correlated, inter­

leaving their physical domains is a mistake. A symptom of this problem is a sharp

spike in the shape graph within an area of interleaved physical domains, as shown

in Figure 3.27(a). Each BDD node in the spike carries information about sorne of

the bits of PD1 as weIl as about sorne of the bits of PD2. Instead, if we first test aIl

the bits of one physical domain and then the other, as in Figure 3.27(b), the BDD

is much smaller. Note that in this case, the BDD in Figure 3.27(b) is smaller by so

much that we have magnified the scale of the y axis by 100 to make its shape visible.

3.7 Jedd Performance

We have implemented in JEDD several test examples, our BDD points-t~ analysis

algorithm from [BLQ+03], and the PADDLE framework of interrelated whole-program

analyses that we describe in Chapter 4. Without JEDD, the latter would not have

been feasible, since it would require us to assign physical domains by hand to the

attributes of thousands of relation instances, with no automated way to verify that we

had not made mistakes. We first wrote the analyses without specifying any physical

domains at aIl, and when it came time to compile, we assigned only enough attributes

to physical domains to allow the physical domain assignment algorithm to find a

reasonable assignment for the rest. In this process, JEDD'S error reporting pointed us

directly to the expressions that needed to have physical domains assigned by hand.

80

3.7. JEDD Performance

120000
1 1 PD2

1 1

100000

80000

"' " "0 60000 0
z

40000

20000

0 ttrl J r t j

0 5 10 15 20 25 30 35 40
Level

Total nodes: 806506

(a)
120000

POl

100000

80000

"' " "8 60000
z

40000

20000

0 +tttrriill
0 5 10 15 20 25 30 35 40

Level

Total nodes: 102503

(b)

Figure 3.26: Example shape graph with a spike at the boundary of PD1 and PD2

81

Extending Java with Relations

140000
1

1

120000

100000

80000

'" al
"0
0
z

60000

40000

20000

0
o 5

1400
1

1200

1000

800

'" al

"8 z
600

400

200

0 tri
o 5

+tri
10 15

PD'

20

Level

25

Total nodes: 896905

(a)

1
1

1 r r t
30

PD2

r T t t dt
10 15 20

Level

25

Total nodes: 3918

(b)

30

1
1

35 40

1

hti
35 40

Figure 3.27: Example shape graph in which unrelated physical domains are inter­

leaved

82

3.7. JEDD Performance

To measure the runtime overhead of JEDD compared to using a BDD library

directly from C++ code, we timed the C++ and JEDD versions of our analysis from

[BLQ+03] on five benchmarks. Both versions used the BuDDY BDD library as the

backend. The timings are shown in Table 3.1. The overhead varied from 0.5% to 4%,

which we attribute to having to have the Java virtual machine in memory, and to the

internaI Java threads that run even when not executing Java code.

Benchmark Std. lib. verSIOn C++ JEDD

javac 1.1.8 3.4 s 3.5 s

compress 1.3.1 21.7 s 22.4 s

Javac 1.3.1 25.3 s 26.3 s

sablecc 1.3.1 25.4 s 26.1 s

jedit 1.3.1 41.1 s 41.3 s

Table 3.1: Running time comparison of hand-coded C++ [BLQ+03] and JEDD points­

to analysis

To evaluate the compile-time performance of the physical domain assignment algo­

rithm, we used JEDD to compile each revision in the source repository of the PADDLE

framework. We will describe the PADDLE framework in detail in Chapter 4. Here, we

use PADDLE only as a benchmark to evaluate the compile-time performance of JEDD.

The PADDLE framework was developed over a period of two years, with new features

and analyses being added to it throughout this time. Figure 3.28 shows the growth

in the size of the SAT formula (measured as the total number of literaIs) compared

to the growth of the PADDLE framework (measured as the total number of attribute

instances in the code). The size of the SAT formula increases predictably and linearly

with the size of the code.

Figure 3.29 shows the time taken by the zChaff [MMZ+01] SAT solver to solve the

SAT formula derived from each revision of the PADDLE framework, again compared

to the number of attribute instances in the code. These times were measured on a

machine with a 1833 MHz AMD Athlon CPU and 512 MB of RAM. Although the SAT

solver is very fast when compiling revisions of PADDLE with up to 10000 attribute

83

Extending Java with Relations

350000 1 1 1 1 1 1

300000 f-
++ -

+
250000 f- ++ +=r- -

UJ
200000 f- +*'*" ..- -cO +

Cl)
+0 150000 f- -.....::l

100000 f- -
+

50000 f- +1- -

0 1 1 1 1 1 1

0 2000 4000 6000 8000 10000 12000 14000
Attribute Instances

Figure 3.28: Size of SAT formula

16 1 1 1 1 1

Ji 14 f- -

12 1- -----UJ +1F-'--"

Cl) 10 - -
El i+

+0 8 - -
bD
i=: *+ .S; 6 - -..-
0

r.n
4 -

trï' -

2 - +. -

0 1 1 1
...LI * 1 ~

0 2000 4000 6000 8000 10000 12000 14000
Attribute Instances

Figure 3.29: SAT solving time

84

3.8. Related Work

instances, it starts to take significantly more time when PADDLE grows beyond this

size. Because the physical domain assignment is an NP-complete problem, this growth

is to be expected.

In order for JEDD to be practical for programs much larger than the current PAD­

DLE framework, it is likely that further improvements in SAT solving will be needed.

However, the current version of the PADDLE framework includes aIl of the analyses

that we had planned to implement using BDDs, including client analyses for both

Java and AspectJ. The 15 seconds required to find a physical domain assignment for

this large collection of analyses is only a small part of the overall 5 minute compilation

time of the SOOT framework in which PADDLE has been implemented.

Therefore, we conclude that JEDD makes it practical to develop analysis frame­

works as complicated as PADDLE.

3.8 Related Work

We have organized related work into three categories. We first sample the abundance

of work on languages for expressing relational computation. In Section 3.8.2, we

present various tools that have been written to interface with BDDs at a low level.

Finally, sorne work has been done on abstracting BDDs as relations, and we compare

this work with JEDD in Section 3.8.3.

3.8.1 languages with relations

The relational data model based on relational algebra was proposed by Codd [Cod70],

and has since been used for many applications, particularly as the basis of relational

databases. SQL has become a standard way of expressing relational operations in

database systems, and snippets of SQL code are often embedded in programs written

in other languages. Prolog [CM87] and its derivatives are based on querying and

updating a database of lacts, which are analogous to relational tuples. Relations

as first-class objects have appeared in many general-purpose languages ever since

the days of SETL [SDDS86], which included binary relations as one of its basic

85

Extending Java with Relations

data types. Support for n-ary relations is often present in languages for writing

"glue" code between database systems and client interfaces, such as the <bigwig>

project [BMS02]. The increasing popularity of Extensible Markup Language (XML)

is fuelling work on adapting languages for manipulating XML fragments, which often

resemble tuples, but are generally less homogeneous. Two recent examples of this

work are the JWIG project [CMS03], which integrates the <bigwig> programming

model into Java, and an extension to C# for expressing both relational and XML

data [MS03].

JEDD is similar to these languages in that it adds relations as a data type to Java.

In contrast to these languages whose primary goal is to provide access to relations,

the primary focus of JEDD is to enable program analysis developers to exploit the

compact data representation provided by BDDs, using relations as an abstraction to

make programming with BDDs manageable.

3.8.2 Interfacing with BDDs

JEDD is built on top of the BuDDy [LN] and CUDD [Som] BDD libraries, which

provide a low-Ievel interface to a BDD implementation. These libraries implement

the basic operations on BDDs, with few higher-Ievel abstractions. The finite damain

blacks of BuDDy are one small exception; they provide a convenient way to group

together BDD variables, much like the physical domains in JEDD.

Several small interactive languages have been developed for experimenting with

BDDs directly. One example is BEM-II [MS97], designed for manipulating Arithmetic

BDDs and solving 0-1 integer programming problems. Another is IBEN [Beh], which

provides a command-line user interface to directly call the BuDDy library functions,

as well as BDD visualization facilities.

The JNI allows Java code to use BDD libraries written in C through specially

written wrappers. We have found it very convenient to use the wrapper generator

Swig [Bea96] to automatically generate these wrappers for us. However, others have

chosen to write such wrappers by hand, resulting in JBDD [Vah], a Java interface

to both BuDDy and CUDD, later extended and renamed JavaBDD [Whab]. Unlike

86

3.8. Related Work

JEDD, these JNI wrappers provide no abstraction over the underlying BDD libraries.

They simply allow the library functions to be called from Java.

3.8.3 Relations with BDD back-ends

Although relations have been included in many languages, and several BDD im­

plementations and interfaces exist, the use of BDDs as back-ends for implementing

relations has been comparatively rare.

The RELVIEW system is an interactive manipulator of binary relations with a

graphical user interface for visualizing them. It supports multiple back-ends, and

one of the newer back-ends stores relations in BDDs [BLM02]. The fundamental

difference between RELVIEW and JEDD is that RELVIEW is designed around binary

relations, while much of the complexity of JEDD stems from the need to represent

n-ary relations. As pointed out by Fahmy, Rolt, and Cordy [FRCOl], binary relations

are insufficient for expressing certain problems in representing and querying graphs.

Even in the case of pro gram analysis problems which can be represented by binary

relations, such a representation may be more cumbersome than with n-ary relations.

GBDD [Nil] is a C++ library providing an abstraction of BDDs based on relations

of integers. Although it has partial support for n-ary relations, sorne operations (such

as composition) require binary relations. Compared to JEDD, GBDD lacks static type

checking (the type of a relation is not known until run-time), the concept of abstract

attribut es to be assigned to physical domains, automatic memory management, and

a profiler.

The language most closely related to JEDD is CrocoPat [BNL03], a tool for query­

ing relations representing software architecture extracted from source code. Like

JEDD, CrocoPat is based on n-ary relations. CrocoPat uses a declarative, Prolog-like

syntax in which attributes are identified implicitly by their position, rather than ex­

plicitly by name, as in JEDD. CrocoPat also differs from JEDD in that it is primarily

a query language rather than an extension of a general-purpose language. The issue

of assigning attribut es to physical domains is not discussed in the CrocoPat paper.

87

Extending Java with Relations

The bddbddb tool [Whaa, WL04] approaches the same problem as JEDD- the

need for a high-level notation for BDD-based pro gram analyses - in a different way.

The bddbddb language is based on Datalog [UIl88, UIl89]. A bddbddb program

is a set of potentially recursive subset constraints on relations. For example, the

constraint C (x, y) : - A (x, z), B (z, y) states that the relation C is a superset of the

composition A 0 B. Given such a system of constraints, bddbddb generates BDD code

to find their least fixed point. The key difference between bddbddb and JEDD is that

a JEDD program expresses relational operations, while a bddbddb program expresses

subset constraints. If a problem has already been expressed as a system of subset

constraints, it is easy to encode it in bddbddb. However, encoding aIl the details of

a complicated program analysis problem (such as the interrelated analyses presented

in Chapter 4) purely in terms of subset constraints may be difficult or impossible.

Therefore, the requirement for a system of subset constraints is a key limitation of

bddbddb. In contrast, JEDD programs can express arbitrary algorithms composed

of relational operations and Java code, seamlessly integrated. The current version of

bddbddb requires the programmer to assign attributes to physical domains by hand;

the JEDD physical domain assignment algorithm described in Section 3.5 could be

adapted to bddbddb to greatly reduce this burden.

3.9 Conclusion

In this chapter, we have presented JEDD, a language, compiler, and mn-time system

for expressing program analyses at a high level in terms of relations, and implement­

ing them efficiently using BDDs. JEDD makes it feasible to implement complicated

BDD-based analyses by providing static type checking and an algorithm for assigning

attributes of relations to physical domains of BDDs. The JEDD runtime automati­

cally manages the memory storing BDD nodes, and includes a profiler for tuning the

BDD representation of relations. In the following chapters, we discuss the program

analyses that JEDD has made it possible for us to develop.

88

Chapter 4

Applying BDDs ta Interpracedural Pragram

Analysis

In this chapter, we describe PADDLE, a framework of context-sensitive interpro­

cedural program analyses for Java implemented in JEDD. The design of PADDLE

was infiuenced by our earlier SPARK framework [Lho02, LH03], which was context­

insensitive and did not make use of BDDs, and by our initial BDD-based points-to

analysis [BLQ+03]. This initial work showed that BDDs can effectively represent the

large sets that are needed to perform subset-based points-to analyses, and suggested

that BDDs may make context-sensitive analyses feasible for programs of significant

size. The key improvement of PADDLE over our earlier work is its support for vari­

ations of context sensitivity, including caU site context sensitivity [SP81, Shi88] and

object sensitivity [MRR02, MRR05]. In Chapter 5, we will use PADDLE to perform

a study of the effect of context sensitivity variations on analysis precision.

This chapter is structured as foUows. We begin in Section 4.1 by positioning

PADDLE in the context ofrelated work on interprocedural program analysis of object­

oriented languages, particularly context-sensitive and BDD-based analysis. Then, in

Section 4.2, we outline the key contributions of the PADDLE framework. In Sec­

tion 4.3, we present the most significant part of PADDLE, the points-to analysis and

caU graph construction. We first give a high-level overview of its overaU structure,

then discuss sorne of its key components in more detail. The points-to information

89

Applying BDDs to Interprocedural Program Analysis

and caU graph are used by several client analyses, which we describe in Section 4.4.

We conclude in Section 4.5.

4.1 Background and Related Work

4.1.1 Points-to analysis and cali graph construction

Program analyses for languages with pointers to memory must take into account

the effects of operations performed through pointers. Sorne estimate of the possible

targets of pointers is therefore necessary. The purpose of a points-to analysis [EGH94]

is to approximate, for each pointer in the pro gram , the set of locations to which it

could point at run time. Points-to analysis has been the subject of a large body

of existtng work, which has been surveyed by Hind [HinOl]. To classify the many

variations of points-to analysis that have been studied, Ryder [Ryd03] proposes a set

of dimensions of analysis variations which determine the relative precision and co st

of analyses. We now position PADDLE within the body of work on points-to analysis

by specifying where it fits with respect to each of these dimensions.

Flow sensitivity: A flow-sensitive analysis considers the or der in which statements

may be executed, and computes possibly different analysis information for each

point in the program. In contrast, a flow-insensitive analysis computes a sin­

gle analysis result valid for the entire program. PADDLE uses a hybrid ap­

proach [HH98] of first converting the pro gram into an intermediate representa­

tion in which the control flow dependencies are captured in data dependencies,

then performing a flow-insensitive analysis. SpecificaUy, PADDLE can use ei­

ther the Jimple or Shimple intermediate representations, in which variables are

split along DU-UD webs [Muc97, Section 16.3.3] or converted to static single

assignment (SSA) form [AWZ88], respectively. Thanks to these representa­

tions, PADDLE achieves the same precision [HH98] as an analysis which treats

local variables in a flow-sensitive way (such as [VROl, WR99, WL02]) with the

simplicity of a flow-insensitive analysis. However, sorne flow-sensitive analyses

90

4.1. Background and Related Work

(e.g. [EGH94]) additionally maintain must-points-to information, which can be

used to further improve precision: when a pointer p is known to point to a

unique memory location that holds a pointer q, the points-to set of q can be

destructively updated at an indirect write through p.

Context sensitivity: A context-insensitive analysis pro duces a single analysis result

for each procedure in the program. However, a given procedure may have differ­

ent behaviours each time it is invoked. Therefore, a context-sensitive analysis,

which pro duces possibly multiple analysis results for each procedure depend­

ing on how it is invoked, is potentially more precise. PADDLE supports several

variations of context sensitivity. We defer a detailed discussion to Section 4.1.2.

Call graph construction: 1 In object-oriented languages with virtual dispatch, the

method to be invoked at a virtual call site depends on the run-time type of

the receiver object pointed-to by the call site. A points-to analysis is therefore

required in or der to construct a call graph; however, most points-to analyses

in turn require a call graph, so a cyclic dependency exists. A simple way to

break the cycle is to first use trivial points-to information to build an imprecise

call graph (for example, using Class Hierarchy Analysis [DGC95]), then use the

call graph to perform the points-to analysis. A preferred [Ryd03, GCOl], more

precise alternative is to perform call graph construction on-the-fiy as the points­

to analysis proceeds and new points-to pairs are discovered. PADDLE is the first

BDD-based analysis which implements call graph construction in BDDs, and

can therefore use the preferable on-the-fiy calI graph construction.

Sorne analyses [RMR01, WL04] construct a calI graph only partly on-the-fiy in

that they require an initial calI graph to determine which methods are reach­

able, but construct a second, more precise call graph as the points-to analysis

proceeds. These partly on-the-fiy analyses generate intraprocedural points-to

constraints at the very beginning to model all assignments within methods

1 In [Ryd03], this dimension is called "Program representation (calling structure)".

91

Applying BDDs to Interprocedural Program Analysis

reachable in the initial calI graph, but they generate interprocedural points­

to constraints as they add calI edges to the more precise calI graph that they

built. Therefore, the precision of partly on-the-fiy analyses is in between that of

ahead-of-time and fully on-the-fiy calI graph analyses; they model intraproce­

duraI pointer fiow like the ahead-of-time analyses, and interprocedural pointer

fiow like the fully on-the-fiy analyses.

In PADDLE, the calI graph is constructed fully on-the-fiy in the default setting,

but PADDLE can also use a calI graph constructed ahead-of-time for comparison

purposes.

Object representation: A points-to analysis manipulates a static abstraction

of each object that may be pointed to by a pointer at run time. Two

commonly-used abstractions are the run-time type of the object (e.g. [BS96,

SHR+OO, DMM96]), and the allocation site at which the object was allocated

(e.g. [RMR01, LH03, WL02]). PADDLE supports both of these abstractions

(allocation site being the default setting), and provides fiexibility for defining

others. Furthermore, while many context-sensitive analyses use context to re­

fine only the pointer representation, PADDLE can additionally use context to

refine the object representation, a technique sometimes called heap specializa­

tion [BCCH97, NKH04].

Reference (pointer) representation: A pointer abstraction represents each

pointer that may occur at run time with sorne static abstract pointer; a points­

to analysis computes a points-to set for each such abstract pointer. A common

pointer abstraction is to use an abstract pointer for each variable of pointer type

appearing in the program. However, sorne less precise abstractions have been

studied, such as Rapid Type Analysis (RTA) [BS96], which uses a single abstract

pointer to represent aIl pointers in the program. Several variations in between

these two choices were studied by Tip and Palsberg [TPOO]. PADDLE directly

supports both RTA and using an abstract pointer for each Jimple or Shimple

variable (which is slightly more precise than one for each pointer variable, since

92

4.1. Background and Related Work

a variable in the original program may be split into multiple Jimple or Shimple

variables). The design of PADDLE is flexible in terms of pointer abstraction, so

other variations (such as those studied in [TPOO]) could be implemented.

Field sensitivity: Certain fields of objects in the heap are also pointers, and field

sensitivity defines how they are abstracted. In a field-sensitive analysis, each

run-time field f of run-time object 0 is abstracted as the pair (A(o), 1), where

A(0) is the object abstraction of o. Either of the two components may be ig­

nored in the abstraction, resulting in either a field-based analysis (in which f
alone is used as the abstraction) or a field-insensitive analysis (in which f is

ignored and only A(o) is used). Field-insensitive analysis is used for ana­

lyzing languages such as C who se type-unsafe pointer operations make it diffi­

cult to determine the field being aceessed. In the context of Java, our earlier

work [Lho02, LH03] showed that field-sensitive analysis is more precise but more

costly than field-based analysis. PADDLE implements both field-sensitive and

field-based analysis.

Directionality: An assignment of the value of a pointer p to another pointer q con­

strains the points-to set of p to be a subset of the points-to set of q, sinee q may

point to any object to which p was pointing. A subset-based analysis [And94]

solves only these neeessary constraints. One can sacrifiee precision to reduee

analysis cost with an equality-based analysis [Ste96], in which the neeessary sub­

set constraints are strengthened to be bidirectional (equality constraints). As a

consequence, any two points-to sets in the solution are either equal or disjoint,

and a fast union-find [Tar75] algorithm can be used to compute equivalence

classes of points-to sets. On Java programs, subset-based analysis has been

observed [LPHOl] to be significantly more precise than equality-based analy­

sis, and efficient implementation techniques [HTOl, LH03, Lho02, PKH04] have

made subset-based analyses sufficiently fast for most applications. PADDLE im­

plements subset-based analysis. The lower precision of equality-based analysis

could be simulated in PADDLE by making the subset constraints bidirectional.

93

Applying BDDs to Interprocedural Program Analysis

Type filtering: 2 When analyzing languages which enforce declared types of point­

ers, such as Java, a points-to analysis can filter the elements of points-to sets to

exclude those incompatible with the declared type of the pointer. Our earlier

work showed that type filtering both improves precision and reduces co st in

both traditional [Lho02, LH03] and BDD-based [BLQ+03] points-to analyses.

PADDLE performs type filtering by default, but provides an option to disable it

so that its effect on precision and analysis cost can be measured.

4.1.2 Context sensitivity

Interprocedural program analyses model the effects of not only individual methods,

but also of the interactions between methods. A context-insensitive analysis com­

putes, for each method, a single analysis result that holds for all executions of the

method. Because different invocations of a method may have different behaviours, it

may be more precise to perform a context-sensitive analysis, which can pro duce

different analysis results for different invocations. In general, a context is some static

abstraction of a set of run-time invocations of a method. A context-sensitive analysis

pro duces an analysis result for each pair of method and context. Different levels of

context sensitivity can be achieved by choosing different abstraction functions to ab­

stract run-time invocations as static contexts. Two common choices of context are the

call site from which the method is called, and a static abstraction of the parameters

passed to the method.

In general, traditional implementations of context-sensitive analyses have been too

costly to scale to programs as large as recent versions of the Java standard libraries.

BDD-based analyses make it feasible to study the effects of context sensitivity on

these realistic programs.

Sharir and Pnueli [SP81] defined two approaches to performing context-sensitive

program analysis, the functional approach and the call-strings approach. The

approaches vary in two ways: in the algorithm used to compute the analysis, and in

2Type filtering was not included as a dimension in [Ryd03], but it has been shown [Lho02, LH03]
to significantly affect analysis precision and cost.

94

4.1. Background and Related Work

the context abstraction that was chosen for use with each approach. In the functional

approach, the effect of each method is first captured in a summary function which

maps each context to the effect of the method on the analysis facts in that context.

The summary function is then evaluated for each context in which the method is

invoked. In the caU-strings approach, the facts processed by the analysis are tagged

with context, and the analysis propagates the tagged facts along the fiow graph of the

program. Sharir and Pnueli present their two approaches using two specifie context

abstractions: method arguments for the functional approach and strings of caU sites

for the caU string approach. Analyses using caU site strings as context are often caUed

k-CFA analyses (where k is an integer limit on the length of each context string), a

term coined by Shivers [Shi88]. We explain caU site string context-sensitive points-to

analysis in detail below in Section 4.1.2.1.

The PADDLE BDD-based encoding of context-sensitive program analyses shares

sorne characteristics of both approaches. Like in the functional approach, PADDLE

first captures the data fiow graph of each method, independent of context, in a BDD

analogous to the summary function. Next, the BDD is joined with the set of aU

contexts in which the method may be executed to form a new BDD representing the

(context-sensitive) subset constraints. FinaUy, the subset constraints are solved to

compute a points-to set for each pair of pointer and context, as in the caU-strings

approach. The PADDLE implementation is parameterized to aUow any context ab­

straction to be used, including both method arguments and caU sites.

In the specifie area of points-to analysis, researchers have experimented with sev­

eral different context abstractions. The initial points-to work by Emami, Ghiya,

and Hendren [EGH94] used a string of caU sites as context. They did not limit the

length of each caU string, but truncated the string at the first repetition of a call

site in the case of recursion. Their analysis was fiow sensitive, and computed an

intraprocedural fixed point within each procedure; in the case of recursion, this fixed­

point computation was performed over each cluster of mutuaUy recursive procedures

rather than a single procedure at a time. Another context abstraction particularly

popular in alias analyses for Chas been the set of alias relationships at the call

95

Applying BDDs to Interprocedural Program Analysis

site of the procedure [WL95, LRZ93]. More recently, Milanova, Rountev, and Ry­

der [MRR02, Mi103, MRR05] argued that for analyzing object-oriented languages

such as Java, a representation of the receiver object of each method caU would be a

more appropriate context abstraction. We explain object-sensitive points-to analysis

in detail below in Section 4.1.2.2. Like object sensitivity, the Cartesian Product AI­

gorithm [Age95, WSOl] uses abstract objects as the context abstraction, but includes

aU method parameters as context, rather than only the receiver parameter.

4.1.2.1 Cali site context-sensitive analyses

The example code shown in Figure 4.1 illustrates why context-insensitive points­

to analysis can be imprecise. In the example, the id () method simply returns its

argument. The method f () creates two objects and assigns them to a and b. It

then assigns the object in a to c and the object in b to d indirectly through the

id 0 method. A precise analysis would determine that c may point to the object

allocated in line 5 but not to the object allocated in line 6, and vice versa for d.

However, a context-insensitive analysis cannot determine this because it models the

parameter and return value of the idO method using a single points-to set, which

is shared by both invocations of the method. This points-to set contains both the

objects aUocated at lines 5 and 6, and it is assigned to both c and d, so the analysis

conservatively computes that each of c and d may point to either of these objects.

A context-sensitive analysis overcomes the problem by modeUing each method

separately for each abstract context in which it is caUed. The caU site from which

the method is caUed is a popular choice of context abstraction. When analyzing the

example in Figure 4.1, a calI site context-sensitive analysis would analyze the idO

method twice as if it were two separate methods, one called from line 7 and the other

from line 8. In the first context, the parameter and return value of id () would point

only to the object allocated in line 5, and in the second context, they would point only

to the object allocated in line 6. Therefore, the analysis would be able to determine

that c points only to the object allocated in line 5 and d points only to the object

allocated in line 6.

96

4.1. Background and Related Work

1 Object id(Object 0) {

2 return 0;

3 }

4 void fO {

5 Object a = new Objecte);

6 Object b = new Objecte);

7 Object c = id(a);

8 Object d = id(b);

9 }

Figure 4.1: Imprecision of context-insensitive analysis

1 Object id(Object 0) {

2 return id2(0);

3 }

4 Object id2(Object 0) {

5 return 0;

6 }

7 void fO {

8 Object a = new Objecte);

9 Object b = new Objecte);

10

11

12 }

Object c = id(a);

Object d = id(b);

Figure 4.2: Imprecision of 1-call-site context-sensitive analysis

97

Applying BDDs to Interprocedural Program Analysis

The example in Figure 4.2 shows that sometimes, using a single caU site as context

is insufficient. This example adds an extra layer of indirection in the idO method.

Instead of returning its argument directly, it returns it indirectly through the id2 ()

method. A caU site context-sensitive analysis will analyze the id () method twice,

once for each of the call sites from which it is called. However, the id20 method is

only called from a single call site (line 2), so it will be analyzed only once, and both

objects will again be mixed together in the points-to set of its argument.

A solution to this imprecision is to use strings of multiple call sites as the context

abstraction, rather than just a single call site. Wh en analyzing id2 (), we can inc1ude

in its context not only the site that it was called from, but also the site that its caller,

in turn, was called from. In general, the strings of call sites can be of any length. In

our example, the id2 () method would be analyzed twice, in the two contexts:

1. (i dO called from line 10, i d2 0 called from line 2) and

2. (i d 0 called from line 11, i d2 0 called from li ne 2).

In each context, only one of the objects would appear in the points-to set of the

parameter and return value of id20, and the analysis could again determine that c

points only to the object allocated in line 8, and d points only to the object allocated

in line 9.

80 far, we have been specializing pointers and their points-to sets for different

contexts. The example in Figure 4.3 illustrates why we may also want to specialize

abstract heap objects. The code creates two objects, and assigns one to a and the

other to b. The object creation has been encapsulated in the alloc 0 method.

Therefore, in an analysis that models objects simply by their allocation site, both

objects are represented by the same abstract object, namely the allocation site in

line 2. Therefore, the analysis cannot determine that a and b point to distinct objects.

To eliminate this imprecision, objects may be modelled not only by their allocation

site, but by a combination of the allocation site and the calling context in which the

method containing it is called [BCCH97, NKH04]. Thus, in the example in Figure 4.3,

the object assigned to a would be modelled by the allocation site in line 2 in the

98

1

2

3

4

5

6

7

4.1. Background and Related Work

abject allocO {

return new Objecte);

}

void fO {

abject a = allocO;

abject b = alloc();

}

Figure 4.3: Imprecision of context-insensitive modelling of abstract heap objects

context of the call site in line 5, while the object assigned to b would be modelled by

the same allocation site in the context of the call site in line 6. Thus, the two objects

would be distinguished by the analysis.

4.1.2.2 Object-sensitive analyses

Milanova, Rountev, and Ryder [MRR02, MRR05] noted that when analyzing an

object-oriented language such as Java, an abstraction of the receiver object of a

method call may be a better choice of context abstraction than the call site. Specif­

ically, they suggested using the allocation site of the receiver object as the context

abstraction. They proposed a collection of such object-sensitive analyses parame­

terized according to which pointers and abstract heap objects are to be modelled

context-sensitively, and how long a context string of receiver objects may be used for

each of them.

We will illustrate object-sensitive analysis using the example shown in Figure 4.4.

The code contains a Container class, which can store sorne Item in its field item. A

setter method is provided to store an item into the field. The go () method creates

two containers and two items, and stores the first item in the first container and the

second item in the second container. A context-insensitive analysis would analyze the

setItemO method only once, so its parameter i would be deemed to possibly point

to both the Items. As a result, the points-to sets of the field item in both Container

objects would contain both Item objects.

99

Applying BDDs to Interprocedural Program Analysis

1 class Container {

2 private Item item;

3 public void setItem(Item i) {

4 this.item = i;
5 }

6 }

7

8 void goO {

9 Container ci = new Container();

10 Item il = new Item();

Il cl.setItem(il);

12

13 Container c2 = new Container();

14 Item i2 = new Item();

15 c2.setItem(i2);

16 }

Figure 4.4: Example code illustrating l-object-sensitive analysis

100

4.1. Background and Related Work

In a l-object-sensitive analysis, each method would be analyzed in the context of

the allocation site of the receiver object on which it was called. In particular, the

setItemO method would first be analyzed in the context of the Container object

allocated in li ne 9. In that context, the parameter of setItemO would be the Item

allocated in line 10. Therefore, only this Item would be added to the points-to set of

the field item of Container objects allocated in line 9. The setItem 0 method would

then be analyzed a second time in the context of the Container object allocated in

line 13. In this case, the parameter to setItemO would be the Item allocated in

line 14, so only this Item would be added to the points-to set of the field item of the

Container object allocated in line 13. Thus, the analysis would be able to show that

cl. item and c2. item point to distinct Items.

Now consider the slightly modified version of the code that appears in Figure 4.5.

The difference compared to the previous example is that the assignment to the field

item has now been delegated to an ItemSettingVisi tor implementing the visitor

design pattern [G HJV95]. The go 0 method now applies the visitor to each container,

and the visitContainer 0 method in the visitor stores the Item in the container. A

l-object-sensitive analysis would not be able to distinguish the two Items stored in

the item field of the two Containers, because both are written into the field inside the

visi tContainer 0 method called on the same receiver object, namely the visi tor.

In a 2-object-sensitive analysis, each method would be analyzed in the context of

strings of up to two receiver object allocation sites. Specifically, the applyO method

in the Container class would be analyzed twice, once for each of the Container allo­

cation sites. Then, because the visitContainerO method is called from applyO,

it would also be analyzed twice, in the contexts of the following two receiver object

strings:

1. (Container allocated in line 21, Visitor allocated in line 11) and

2. (Container allocated in li ne 25, Visitor allocated in line 11).

In each of these contexts, only one of the Item objects would be passed through

the arg parameter of the applyO and visitContainerO methods. Therefore, the

analysis would distinguish the two Item objects stored in the two Container objects.

101

Applying BDDs to Interprocedural Program Analysis

1 interface Visitor {

2 public void visitContainer(Container c, Object arg);

3 }

4

5 class ItemSettingVisitor implements Visitor {

6 public void visitContainer(Container c, Object arg) {

7 c.item = (Item) arg;

8 }

9 }

10

Il static Visitor visitor new ItemSettingVisitor();

12

13 class Container {

14 Item item;

15 public void apply(Visitor v, Object arg) {

16 v.visitContainer(v, arg);

17 }

18 }

19

20 void go() {

21 Container ci = new Container();

22 Item ii = new Item();

23 ci.apply(visitor, ii);

24

25 Container c2 = new Container();

26 Item i2 = new Item();

27 c2.apply(visitor, i2);

28 }

Figure 4.5: Example code illustrating k-object-sensitive analysis

102

4.1. Background and Related Work

The example in Figure 4.6 is another small variation of Figure 4.4. In this case,

the item field of the Container object has been replaced with an array. A similar

pattern is commonly used in the collections classes in the Java standard library.

In a points-to analysis that models heap objects by their allocation site only, all

instances of the Item [] array would be modelled as a single object, because they are

all allocated at the same allocation site, in line 4. Therefore, all Item objects stored

in any Container would be added to the single points-to set representing the contents

of the Item [] array, and the analysis would not be able to distinguish Item objects

added to different Containers.

1 class Container {

2 private Item[] item;

3 public Container() {

4 item = new Item [1] ;

5 }

6 public void setItem(Item i) {

7 this.item[O] = i;
8 }

9 }

10

11 void go() {

12 Container cl = new Container();

13 Item il = new Item();

14 cl.setItem(il);

15

16 Container c2 = new Container();

17 Item i2 = new Item();

18 c2.setItem(i2);

19 }

Figure 4.6: Example code illustrating object-sensitive heap abstraction

To eliminate this imprecision, an analysis must distinguish the instances of the

Item [] array allocated for different instances of Container. This can be do ne by

103

Applying BDDs to Interprocedural Program Analysis

modelling the Item [J array not only by its allocation site, but by its allocation site

annotated with the allocation site of the receiver object of the method in which the

array is allocated. In the example, the Container constructor is called on two receiver

objects, namely the Container object allocated in line 12 and the Container object

allocated in line 16. Therefore, each of the Item [J arrays allocated in the constructor

of one of these objects can be abstractly represented by its allocation site annotated

with the allocation site of the receiver of the constructor, namely the Container

object to which the array corresponds. This abstract representation of heap objects

distinguishes the two Item [J arrays created for the two different Container objects,

and therefore makes it possible for the analysis to distinguish Items stored in the two

different Containers.

4.1.2.3 ZhujCalmanjWhaley jLam algorithm

Zhu and Calman [ZC04] and Whaley and Lam [WL04] have developed an algorithm

for efficiently representing k-CFA call graphs in BDDs, where k is the depth of the

longest possible non-recursive call chain in the program. The algorithm takes a com­

plete context-insensitive call graph constructed ahead-of-time as input, and trans­

forms it into a k-CFA context-sensitive one. The pro cess consists of the following

steps, which we illustrate in Figure 4.7.

1. An arbitrary context-insensitive call graph such as the one shown in Fig­

ure 4.7(a) is made into a DAG by merging every strongly-connected component

into a single node. The DAG resulting from merging the strongly-connected

component consisting of nodes D and E is shown in Figure 4. 7(b).

2. Every node in the DAG with multiple incoming edges is cloned once for ev­

ery incoming edge. This is performed recursively until every node has at

most one incoming edge (i. e. the result is a tree). The tree resulting from

our example is shown in Figure 4.7(c). Since the tree contains a cloned

node for every path through the DAG, it may be very large. However, the

ZhujCalmanjWhaley jLam algorithm constructs a compact BDD representa­

tion of the tree. The key to constructing this representation quickly is a special

104

4.1. Background and Related Work

(a) (b)

(c) (d)

Figure 4.7: Steps of ZhujCalmanjWhaleyjLam algorithm applied ta example graph

105

Applying BDDs to Interprocedural Program Analysis

BDD operation based on a binary adder circuit, which is described in detail by

Zhu and Calman [ZC04, Section 4.2].

3. The strongly-connected components are un-merged into their original methods.

The context-insensitive calI edges that were originally within each strongly­

connected component in the context-insensitive graph are reintroduced into

each clone of the component. Every calI edge that led into or out of a method

of a strongly-connected component in the original caU graph now just leads into

or out of a clone of the strongly-connected component as a whole. When the

strongly-connected component is un-merged, these cloned edges are made to

lead into or out of the clone of the specifie method that they led into or out of

in the original calI graph. The resulting calI graph for our example is shown in

Figure 4.7(d). Although this final step was not mentioned explicitly by Whaley

and Lam [WL04], it is a crucial part of the algorithm.

Once a context-sensitive calI graph such as the one in Figure 4. 7(d) has been

constructed, it can be used to perform a points-to analysis. Whaley and Lam [WL04]

used the context-sensitive calI graph to generate subset constraints for a field-sensitive

subset-based analysis. Their points-to analysis modelled pointer variables context­

sensitively using the k-CFA context strings from the calI graph, and heap objects

context-insensitively using only their allocation site. For comparison with the other

variations of context sensitivity, we have implemented the Zhu/Calman/Whaley /Lam

algorithm within PADDLE.

4.1.3 BDD-based program analyses

Several researchers have recently used BDDs to implement program analyses, includ­

ing both points-to analyses similar to our work, as weIl as very different kinds of

analyses.

106

4.1. Background and Related Work

4.1.3.1 Points-to and cali graph analyses

Concurrently with our initial BDD-based points-to analysis for Java [BLQ+02,

BLQ+03], Zhu [Zhu02] devised a similar BDD-based points-to analysis for hard­

ware synthesis programs written in C. Zhu and Calman [ZC04] and Whaley and

Lam [WL04] designed an algorithm for computing k-CPA call graphs from context­

insensitive call graphs using BDDs. We described this algorithm in detail above in

Section 4.1.2.3. Both groups performed points-to analysis on the resulting context­

sensitive call graph: Zhu and Calman applied Zhu's [Zhu02] points-to analysis for C,

while Whaley and Lam applied our [BLQ+02, BLQ+03] points-to analysis for Java.

4.1.3.2 Other program analyses

In a very different use of BDDs, Ball and Rajamani [BROI] lifted a flow-sensitive

finite-set dataflow analysis to keep track of a set of dataflow sets for each pro gram

point, in order to track correlations between elements of dataflow sets, achieving a

path-sensitive analysis. They used BDDs to compactly represent the large sets of

sets.

Sagiv, Reps, and Wilhelm [SRW02] have constructed a framework based on three­

valued logic for expressing program analyses, particularly heap shape analyses. AI­

though very expressive, this framework has memory requirements that are often pro­

hibitive when analyzing non-trivial programs. Manevich et al. [MRP+02, Man03]

compared the original representation of these data structures in their Three-Valued

Logic Analysis (TVLA) framework with two new representations, one using BDDs,

and one using a novel BDD-like data structure that they developed for representing

maps [Man03, Section 3.2.3]. The memory requirements of both new representations

were found to be about an order of magnitude lower than the original representation.

Analysis times were found to be about the same with all three representations.

Sittampalam, de Moor, and Larsen [SdML04] formulated program analyses using

conditions on control flow paths. These conditions contain free metavariables cor­

responding to program elements (such as variables and constants). To perform an

107

Applying BDDs to Interprocedural Program Analysis

analysis, these metavariables were instantiated with specific elements from the par­

ticular program being analyzed. BDDs were used to efficiently represent and search

the large space of possible instantiations.

4.2 Key Contributions of the Paddle Framework

Having placed PADDLE in the context of existing work, we now outline the key con­

tributions of the PADDLE framework.

On-the-fly call graph construction: Object-oriented languages such as Java sup­

port virtual method dispatch, which means that the method invoked from a call

site depends on the run-time type of the receiver. The run-time type, and there­

fore the caU target, can be approximated precisely using a points-to analysis.

However, performing an interprocedural points-to analysis requires a caU graph

of call site targets, so there is a circular dependence between call graph con­

struction and points-to analysis. Existing work on BDD-based Java points-to

analysis [BLQ+03, WL04] resolves this cyclic dependence by first constructing

a call graph based on conservative, imprecise assumptions about receiver types,

using the call graph to generate points-to constraints and encode them in BDDs,

and finally performing the points-to analysis by solving the constraints. It is

generally accepted [Ryd03, GeOl] that this approach is significantly less precise

than the alternative approach of iterating both the call graph construction and

the points-to set propagation together until an overall fixed point is reached. In

PADDLE, we have implemented the latter, more precise approach. We have also

implemented the less precise ahead-of-time call graph construction for compar­

ison.

BDD-based prerequisite and client analyses: In previous work on BDD-based

points-to analysis, only the points-to set propagation was performed using

BDDs. However, points-to analysis relies on other prerequisite information

about the program being analyzed, which was previously computed using tra­

ditional analyses. In PADDLE, we show how these prerequisite analyses can

108

4.2. Key Contributions of the PADDLE Framework

be implemented in BDDs as well. In particular, in PADDLE, we use a BDD

representation to compute subtype relationships, resolve virtual method caUs,

keep track of caU edges between methods, and determine which methods are

reachable in the call graph. In addition, we have implemented BDD-based client

analyses that make use of the points-to and call graph information once it has

been computed. We present the client analyses for Java in Section 4.4 of this

chapter, and the client analyses for AspectJ in Chapter 6.

Reducing the cost of encoding prerequisite analysis results in BDDs:

The pro cess of converting traditional representations of large relations into

a BDD representation is very costly in terms of execution time. Wh en large

relations such as the call graph and subtype relationships are constructed

using traditional analyses and later converted to BDDs, as is done in existing

BDD-based points-to analyses, the conversion often takes more time than the

subsequent points-to analysis itself. Encoding this required information in

BDDs is therefore an important barrier to the overall efficiency of the analysis.

However, as described ab ove , PADDLE computes these large prerequisite

relations in BDDs, rather than using traditional analyses. Therefore, only the

small, initial relations needed by these analyses need to be converted from

traditional representations to BDDs, greatly reducing the conversion cost.

Parameterized context sensitivity: While existing work [ZC04, WL04] has

shown that context sensitivity is feasible in BDD-based analyses, litt le is known

about how different variations of context sensitivity affect the precision of anal­

ysis results on benchmarks of significant size. BDDs make context sensitiv­

ity feasible, but is it worthwhile? PADDLE makes it possible to experi­

ment with different variations of context sensitivity, including object sen si­

tivity [MRR02, MRR05], a form of context sensitivity which promises to be

particularly effective for object-oriented languages such as Java. We have used

PADDLE to perform an in-depth study of the effects of context sensitivity vari­

ations on analysis precision; we discuss the study and its results in Chapter 5.

109

Applying BDDs to Interprocedural Program Analysis

Modular design: The PADDLE framework is designed as a collection of simple com­

ponents connected by worklists. This modular design makes it easy to modify

the system to implement new analyses by adding or replacing sorne of the com­

ponents. Each component is implemented in both a BDD-based version and

a traditional version. Normally, aIl components are instantiated in the same

version to avoid the cost of repeatedly converting between BDD-based and tra­

ditional representations. For debugging purposes, a mixture of BDD-based and

traditional components can be instantiated to help locate the cause of any dis­

crepancies between the two versions of the analysis.

4.3 Points-to Analysis and Cali Graph Construction

In this section, we present the core part of PADDLE, the points-to analysis and calI

graph construction. We first give a high-Ievel overview of its structure in Section 4.3.l.

In Sections 4.3.2 to 4.3.5, we provide more detail about its key parts. Finally, we dis­

cuss using an existing calI graph instead of constructing one on-the-fly in Section 4.3.6.

4.3.1 High-Ievel structure

A very high level view of the analyses and their dependencies is shown in Figure 4.8.

CalI graph construction determines which methods of the program are reachable

during execution, and the possible targets of each calI site. Points-to constraints are

generated to model the effects of each reachable method and the flow of parameters

and return values along each calI edge. Points-to sets are propagated along the

constraints. The computed points-to sets of calI site receivers are used to resolve

virtual caUs, generating additional calI edges and reachable methods.

At a finer level of detail, each of the boxes of Figure 4.8 is implemented in PAD­

DLE as a collection of components, each performing sorne basic analysis, connected by

worklists expressing the dependencies between the analyses. We will present the full

list of components later in Figure 4.9 and Sections 4.3.2 through 4.3.5. Each compo­

nent defines an update () method which pro cesses the new analysis facts appearing

110

4.3. Points-t~ Analysis and Call Graph Construction

CaU
Graph

Construction

Points-to
Constraint
Generation

Points-to
Set

Propagation

Figure 4.8: Very high level overview of caU graph and points-to analyses

on its input worklists, uses them to compute new analysis facts, and adds the new

facts to its output worklists for other components to use.

A separate scheduler maintains a global worklist of components which need to be

updated, and caUs their update () methods in turn, until an overaU global fixed point

is reached. A component is added to the global worklist whenever an analysis fact is

added to one of its input worklists.

A given worklist may have multiple components adding facts into it. For exam­

pIe, the fact that a given pointer points to a given object may be generated by the

component that pro cesses simple pointer assignments, or by the component that pro­

cesses loads from fields of heap objects. A worklist may also be the input to multiple

components. Every analysis fact added to the worklist is seen by aU components that

read from it, as if each of these components had their own worklist, and each analysis

fact were added to aU of them. This is needed because sorne facts must be processed

by several components. For example, a new call edge added to the caU graph must be

processed both by the component which creates points-to constraints modelling the

fiow of the parameters and return value of the call, and the component which keeps

track of which methods are reachable in the call graph.

Each component and the worklists are implemented in two versions, a traditional

version and a BDD-based version. Since BDD operations pro cess an entire relation at

a time, a BDD component generally pro cesses the whole batch of new analysis facts

appearing on its input worklist in one step, producing a batch of new analysis facts

111

Applying BDDs to Interprocedural Program Analysis

to be added to its output worklist. A traditional component pro cesses one analysis

fact at a time. In normal operation, components and worklists are instantiated either

all in their BDD-based version, or all in their traditional version. However, the two

versions share the same interfaces, so it is possible to mix traditional and BDD-based

versions. Therefore, if a user of PADDLE prototypes a new component in only one of

the versions, it can interoperate with both versions of the other components. Mixing

traditional and BDD-based versions of components is also use fuI for tracking down

any discrepancies in the outputs of the two versions.

The BDD-based version of a worklist is implemented as a JEDD relation, with

each tuple representing an analysis facto Components add relations of new facts to it

using the union operation, and a component that reads the whole worklist resets the

relation to the empty relation. When multiple components are reading a worklist, a

separate relation is maintained for each reader.

The traditional version of a worklist is implemented as a chunked array. A pointer

is maintained to the first free element of the array,3 where new analysis facts are added.

Each component reading from the worklist maintains a pointer to the next element

to be read. Thus, all the readers can share the same chunked array. When all readers

have read the elements of a chunk, there are no longer any references to it, and the

chunk is automatically reclaimed by the garbage collector.

Figure 4.9 shows the specific components and connecting worklists which make

up the caU graph and points-to analyses of PADDLE. Each component is shown as

an oval, and each worklist as a rectangle. The names of components and worklists

correspond to the names in the PADDLE code. Each worklist stores analysis facts

encoded as tuples of a single type. In the figure, the type of the tuples stored in each

worklist is given by the sequence of letters under the worklist name, with each letter

representing a given type. For example, the worklist named receivers contains tuples

consisting of a local variable (L), method (M), statement (S), method signature (1),

and kind (K).

3Since Java do es not allow pointers to individu al array elements, the pointer is implemented as
a reference to the chunk, along with an integer index into the chunk.

112

4.3. Points-to Analysis and Call Graph Construction

Components:

Re reachable contexts

SCGB
CSCGB

VCR
SCM
VCM
CG
MPB

CEH
MPC

CEC
PAG
PROP

FPROP

Tuple types:

static calI graph builder

context-sensitive calI graph

builder

virtual cali resolver

static context manager

virtual context manager

cali graph

method points-ta

assignmcnt graph builder

call edge handler

method points-ta assignment

graph contextifier

caU edge contextifier

points-ta assignment graph

simple assignment

propagator

field assignment propagator

A allocation site

C context

F field

l rncthod signature

K cali edge kind

L local variable

M method

S statement

T type

Figure 4.9: Components of call graph and points-to analyses in the default on-the-fly

call graph configuration of PADDLE

113

Applying BDDs to Interprocedural Program Analysis

CaU graph construction, which is discussed in detail in Section 4.3.2, is performed

by the reachable contexts (RC), static caU graph builder (SCGB), context-sensitive

caU graph builder (CSCGB), virtual caU resolver (VCR), static context manager

(SCM), virtual context manager (VCM), and caU graph (CG) components. Points­

to constraints, discussed in detail in Section 4.3.3, are generated by the method points­

to assignment graph builder (MPB), caU edge handler (CEH), method points-to

assignment graph contextifier (MPC) and caU edge contextifier (CEC) components.

Propagation of points-to sets, discussed in Section 4.3.4, is performed by the points-to

assignment graph (PAG) , simple assignment propagator (PROP) and field assign­

ment propagator (FPROP) components.

4.3.2 Cali graph construction

A key problem in context-sensitive caU graph construction is that the number of

contexts can grow intractably large. BDDs help by representing the sets of contexts

implicitly. In designing a BDD-based context-sensitive analysis, we must be careful to

keep the sets of contexts implicit in the BDDs, and not explicitly enumerate them dur­

ing the analysis. Although the PADDLE framework constructs a context-sensitive caU

graph, sorne operations in the overaU analysis require caU graph information to be ex­

tracted from the BDDs and made explicit. To do this efficiently, PADDLE constructs a

context-insensitive view of the caU graph within BDDs, makes this context-insensitive

view explicit, uses it to perform the operation and encode its result in BDDs, then

specializes the BDD-encoded results of the operation for the relevant contexts. We

will see examples of this technique later in this section and in Section 4.3.4.

We start our discussion of caU graph construction with the reachable contexts

(RC) component. This component keeps track of the set of methods that have so

far been found to be reachable through the caU graph, and the contexts in which

they are reachable. It pro duces output into two worklists. Each pair of method and

context in which it is reachable is added to the rcout worklist. Each unique method

found to be reachable, regardless of context, is added to the rmout worklist, which

is a context-insensitive view of the rcout worklist for those operations that require

114

4.3. Points-to Analysis and CalI Graph Construction

it. At the beginning of the analysis, the reachable contexts (RC) component is

initialized with the entry points of the program in the null context. The component

then pro cesses newly discovered calI edges from the egout worklist to find newly

reachable method-context pairs, and adds them to its output worklists.

The static calI graph builder (SCGB) is one of the components that require a

context-insensitive view of the calI graph. The component processes each reachable

method from the rmout worklist, extracts information about calI sites from its Jimple

representation, and encodes it into tuples added to its output worklists. This must be

done without context to avoid re-processing the Jimple code of the method multiple

times for the many contexts in which it may be called. Later, in the context-sensitive

calI graph builder (CSCGB) and virtual calI resolver (VCR) components, the call

site information generated by the static call graph builder (SCGB) component will

be specialized for the contexts in which the method is called.

At some call sites (see below), the target of the call is independent of the context

of the call; these call sites are resolved immediately, and the resulting call edge is

inserted into the segbout worklist. Call sites whose target depends on information

about some object (such as the receiver of the call) may have different targets in

different contexts, since the relevant object may be different in different contexts.

Therefore, these call sites are not resolved immediately, but information about them

is inserted into the reeeivers and specials worklists, to be processed later when

points-to information is available.

Call sites whose target is independent of context include:

• staticinvoke instructions,

• implicit calls to static initializers from instructions that may trigger static ini­

tialization,

• implicit calls to any finalizeO methods of every object allocated, and

• at a call to Class . newInstance (), implicit calls to constructors of any classes

that the user has specified as potentially loaded by refiection.

115

Applying BDDs to Interprocedural Program Analysis

CaU sites whose target depends on the actual type of the receiver, which are added

to the reeeivers worklist, include:

• virtualinvoke and interfaceinvoke instructions,

• implicit caUs to Thread. run () at caU sites of Thead. start () ,

• implicit caUs to the runO method of PrivilegedAction and PrivilegedEx­

ceptionAction at caU sites of AccessGontroller . doPri vileged (), and

• implicit caUs to the static initializer of classes loaded refiectively using

Glass. forName 0 (the specific class can be determined if the argument to

Glass. forName 0 is known to point to a constant string).

The specialinvoke instruction is treated differently than other method caUs. AI­

though the target of a specialinvoke is independent of the run-time type of the receiver,

the caU only succeeds if the receiver is non-null. Therefore, if the points-to set of the

receiver of a specialinvoke is empty, the specialinvoke can never caU its target, so

analysis precision can be improved by excluding the caU from the caU graph. There­

fore, the static caU graph builder (SCGB) immediately resolves the targets of special

caUs, but the caU edges are not added to the segbout worklist. Instead, they are

added along with their receiver to the separate specials worklist, so that they can

later be added to the caU graph only when the points-to set of the receiver, in the

relevant context, is determined to be non-empty.

The context-sensitive caU graph builder (CSCGB) composes the context­

independent caU edges generated by the static caU graph builder in the segbout

worklist with the reachable method-context pairs in the reout worklist. Each context­

independent caU edge from a given method is thereby implicitly cloned once for each

context in which the method is reachable. The resulting context-sensitive edges are

added to the staticealls worklist.

The virtual caU resolver (VCR) combines points-to information (computed using

points-to set propagation, which we will discuss in Section 4.3.4) with the information

about caU sites in the reeeivers and specials worklists to determine the targets of

116

4.3. Points-to Analysis and Call Graph Construction

these calls. Depending on the kind of call site, the points-to information determines

the target of the call in one of three ways. First, for virtual calls, the target is deter­

mined based on the run-time type of the receiver object according to the procedure

specified in the Java Virtual Machine Specification [LY99 , Chapter 6J. Second, for

special calls, the target has already been determined in the static call graph builder,

and is available in the specials worklist. As soon as the points-to set of the receiver

is non-empty, the call edge is copied to the virtualcalls worklist. Third, for implicit

invocations of static initializers caused by calls to Class. forName 0, the call target

depends on the parameter passed to Class. forName O. If the points-to set of the

parameter contains only string constants, each constant specifies the name of the

class whose static initializer is called. If the points-to set contains an object that is

not known to be a string constant, it could be an arbitrary string, so the analysis

generates call edges to the static initializers of all classes that the user has specified as

possibly loaded by refiection (using the Soot command-line switch -dynamic-class).

Because the virtual call resolver must implement the complicated resolution pro­

cedures of the Java Virtual Machine Specification and handle all the special kinds of

call edges, it is one of the most complicated components of PADDLE. Therefore, we

will return to it in more detail in Section 4.3.5, and explain how it is implemented in

terms of JEDD BDD operations.

The call edges generated by the context-sensitive call graph builder (CSCGB)

and the virtual call resolver (VCR) are stored in the staticcalls worklist if their

target method is static, or the virtualcalls worklist if their target method is an

instance method. At this point, each call edge has a context associated with its

source call site, but not with its target method. The static context manager (SCM)

and virtual context manager (VCM) determine the context to be associated with

the target of the call, which depends on the context abstraction being used. PADDLE

contains the following implementations of the context managers, each implementing

a different context abstraction. We described the different context abstractions in

detail in Section 4.1.2.

117

Applying BDDs to Interprocedural Program Analysis

1. The context-insensitive context managers assign each call target the null con­

text.

2. The call-site (l-CFA) context managers select the source statement (call site)

of the call as the context for the target method.

3. The object-sensitive virtual context manager selects the abstract object repre­

senting the receiver of the call as the context for the target method. For static

methods, there is no receiver object, so the object-sensitive static context man­

ager just copies the context of the source method as the context for the target

method.

4. The call-site-string (k-CFA) context managers copy the context of the source

method, append the source statement of the call, then truncate the resulting

call string to at most k entries.

5. The object-string (k-object-sensitive) virtual context manager copies the con­

text of the source method, appends the abstract object representing the receiver

of the call, then truncates the resulting call string to at most k entries. The

object-string static context manager just clones the source context as the con­

text for the target method.

6. The unique-object-string (unique-k-object-sensitive) virtual context manager

copies the context of the source method and appends the abstract object rep­

resenting the receiver of the call, but only if the context string does not already

contain it. Thus, within every object string, each abstract object is unique.

The object-string static context manager just clones the source context as the

context for the target method. Wh en analyzing calls on the this pointer, which

are very common in Java programs, unique-object-string context sensitivity is

more precise than object-string context sensitivity. The target of the call on

the this pointer has the same receiver as the caller, so the same abstraction of

the receiver object is added twice to the context string. Since the length of the

context string is limited, this redundant abstract receiver object causes sorne

118

4.3. Points-to Analysis and CalI Graph Construction

other, potentially useful, abstract receiver to be pushed out from the context

string. In a unique-object-string context-sensitive analysis, however, each ab­

stract receiver is added to the string at most once, so other abstract receivers

are not needlessly pushed out.

The resulting complete, context-sensitive calI edges are inserted into the esedges

worklist.

The calI graph (CG) component stores aIl the context-sensitive calI edges and

indexes them to support queries for aIl edges originating from a given method or

statement, or aIl edges whose target is a given method. Each context-sensitive calI

edge is inserted into the egout worklist if the same edge has not been inserted into it

before. Therefore, the egout worklist contains aIl calI edges in the context-sensitive

calI graph, with each calI edge appearing exactly once. This worklist is used as input

to the reachable contexts (RC) component to find method-context pairs that become

reachable through the calI graph. The calI graph (CG) also maintains a context­

insensitive view of the calI graph in the eesout worklist. For each context-sensitive

calI edge processed, the context is removed, and the resulting context-insensitive edge

is added to the eesout worklist if the same edge has not been added into it before.

This context-insensitive view of the calI graph will be needed to generate points-to

constraints to model pointer fl.ow through method parameters and return values, as

discussed in the next section.

4.3.3 Points-to constraint generation

Points-to constraints are generated to model the fl.ow of objects along assignments be­

tween pointers in the program. Each of these assignments is either intraprocedural in

that it is implied by the execution of sorne method (for example, by an explicit assign­

ment statement in the method), or interprocedural due to parameter and return value

passing at a method calI. The constraints modelling the former are generated by the

method points-to assignment graph builder (MPB), and the constraints modelling

the latter are generated by the calI edge handler (CEH).

119

Applying BDDs to Interprocedural Program Analysis

In both cases, each statement of the program being analyzed and each call edge

must be processed individually to generate the specifie constraint that it induces. It is

important that this processing only be do ne once for each method or call edge, rather

than once for each context in which the method is reachable or in which the call may

occur. The number of contexts may be very large, and it would be prohibitively costly

to reexamine the code for each context. Instead, PADDLE first generates context­

insensitive versions of the points-to constraints for each method and for each context­

insensitive call edge, encodes them in BDDs, than specializes the constraints for the

relevant contexts by implicitly making a copy of them for each context in which the

method is reachable or in which the call edge occurs. The context specialization is

do ne as a BD D operation for all the relevant contexts at once; it does not have to be

do ne one context at a time. Intraprocedural points-to constraints are specialized by

the method points-to assignment graph contextifier (MPC). Interprocedural points­

to constraints are specialized by the call edge contextifier (CEC).

When specializing points-to constraints for different contexts, it is important to

distinguish local (stack-allocated) variables, whose lifetime is a single method call, so

they are necessarily distinct variables in distinct calling contexts, from global vari­

ables (such as static fields), whose values persist between method calls and therefore

between different contexts. It would be unsound to model global variables as sep­

arate variables in different contexts, because values written to them in one context

persist and may be read out of them in any other context. Milanova, Rountev,

and Ryder [MRR02, MRR05] suggest that the set of variables modelled context­

sensitively may be varied to achieve different tradeoffs between analysis efficiency

and precision. lndeed, each local variable may be modelled context-sensitively or

context-insensitively according to the wishes of the analysis designer without sac­

rificing soundness, but global variables must be modelled context-insensitively. In

PADDLE, the following are treated context-sensitively:

1. each local variable,

2. for each method, the parameters and return value, and, in the case of an instance

method, the implicit this parameter, and

120

4.3. Points-to Analysis and Call Graph Construction

3. each temporary variable generated by PADDLE to hold the result of each cast ex­

pression and the intermediate arrays created by each mul tianewarray bytecode

instruction.

The following are treated context-insensitively:

1. static fields and, in a field-based analysis, instance fields,

2. the global variable representing all exceptions potentially thrown,

3. the finalizer queue to which the garbage collector adds finalizers to be executed,

and

4. the temporary variables generated by PADDLE to hold

(a) each string constant,

(b) the default class loader, main thread group, and main thread instantiated

by the VM,

(c) the string created by the VM containing the name of the main class,

(d) the array of command-line arguments created by the VM and the string

arguments that it contains,

(e) the abstract object representing all objects potentially instantiated using

refiection.

Like pointer variables, sorne abstract heap objects can also be distinguished by

the context in which they are allocated, if it is known. In PADDLE, abstract heap

objects representing explicit allocation sites in the program are modelled context­

sensitively. The following abstract heap objects are treated as global and always

modelled context-insensitively:

1. the abstract object representing each string constant,

2. each abstract object representing the run-time type of the object rather than

its allocation site.

121

Applying BDDs to Interprocedural Program Analysis

3. the default class loader, main thread group, and main thread instantiated by

the VM,

4. the string created by the VM containing the name of the main class,

5. the array of command-line arguments created by the VM and the string argu­

ments that it contains,

6. the abstract object representing all objects potentially instantiated using reflec­

tion.

The method points-to assignment graph builder (MPB) pro cesses each method

in the rmout worklist of unique reachable methods, and inserts the corresponding

context-insensitive points-to set constraints into the simple, alloc, store, and load

worklists. The simple worklist holds simple subset constraints between pairs of

pointer variables. The alloc worklist ho Ids allocation site constraints of the form

o E pt(v), where 0 is an abstract object and v is a pointer variable. The store and

load worklists hold field-sensitive field store and load constraints of the form v ç b.f

and b.f ç v, respectively, where v and b are pointer variables, f is a field, and b.f

is a field dereference expression. The method points-to assignment graph contextifier

(MPC) takes these worklists as input, along with the rcout worklist of all method­

context pairs in which each method is reachable. Each points-to constraint involving

a local pointer variable or abstract object is implicitly copied for each context in

which the method is reachable. Global pointer variables and global abstract heap

objects are always assigned the single global null context. The resulting context­

sensitive points-to constraints are added to the context-sensitive constraint worklists,

csimple, calloc, cstore, and cload.

The call edge handler (CEH) reads the ecsout worklist of context-insensitive call

edges. For each call edge, it generates points-to assignment constraints modelling the

flow of method parameters into the called method, and of the return value out of

the called method, and inserts them into the parms and rets worklists, respectively.

Each tuple representing a constraint also contains the context-insensitive call edge

that induced the constraint. The call edge contextifier (CEC) matches each of these

122

4.3. Points-to Analysis and CalI Graph Construction

context-insensitive calI edges against aIl the context-sensitive calI edges in the egout

worklist to find aIl the contexts in which the calI occurs. The points-to constraints are

then specialized for these contexts (by adding context to aIl local pointer variables),

and inserted into the esimple worklist.

Separating the constraints modelling method parameters and method return val­

ues into the two worklists parms and rets is necessary because they must be spe­

cialized differently. In a constraint representing a method parameter, the source of

the pointer flow is the argument being passed in from the caller, and is assigned the

context of the caller, while the destination of the pointer flow is the parameter in the

callee, and is assigned the context of the callee. In a constraint representing a return

value, it is the opposite. The source of the pointer flow is the return value in the

callee, so it is assigned the context of the callee. The destination of the pointer flow

is the variable in the caller to which the return value is stored, so it is assigned the

context of the caller.

The receiver of a virtual method calI, passed to the implicit this variable of the

called method, may be modelled in one of two ways. First, it may be modelled like

any other method parameter, by a subset constraint indicating flow from the receiver

at the caU site to the this pointer of the callee. A second, more precise alternative is

to limit the objects that flow from the receiver at the call site to the this pointer of

the callee to only those whose run-time type causes that specific callee to be resolved.

This second alternative has been observed to be more precise [Buc04], but it is more

complicated, because it cannot be modeUed with a simple subset constraint. In

addition, the second alternative is applicable only when the call graph is generated

on-the-fly as the points-to analysis proceeds, rather than ahead-of-time, because it

depends on each call edge being annotated with the specific abstract heap objects

(from the points-to analysis) that caused the call target to be resolved. In PADDLE,

we have implemented both alternatives of modelling the receiver because we wish

to experiment with both on-the-fly and ahead-of-time call graph construction. To

implement the first alternative, the caU edge handler (CER) has a setting which

causes it to generate points-to constraints for the receiver in the same way as for the

explicit method parameters. The second alternative requires information about the

123

Applying BDDs to Interprocedural Program Analysis

specific object that caused each context-sensitive call edge to be added. In PADDLE,

this information is available only in the virtualcalls worklist when it is processed

by the virtual context manager (VCM), so we have added code to generate the

relevant context-sensitive points-to constraints in the virtual context manager. The

constraints are of the form 0 E points-to(p), much like the constraints generated

at object allocation sites, so the virtual context manager adds them to the calloc

worklist. The objects passed from the receiver to the this pointer may be different in

different calling contexts, so these constraints cannot be generated once in a context­

insensitive way, and specialized later. The additional complexity of the more precise

alternative is compounded by context sensitivity, and the precision improvement that

it brings cornes at a significant co st in the complexity and reduced modularity of the

analysis.

4.3.4 Points-to set propagation

The context-sensitive points-to constraints generated by the method points-to as­

signment graph contextifier (MPC) and the call edge contextifier (CEC) are read

into the points-to assignment graph (PAG), which indexes them in order to answer

queries such as finding all the assignment edges originating at a given variable. The

points-to set propagator can obtain the points-to constraints from two sources. First,

it can issue queries to the points-to assignment graph, which yield information about

all the constraints that have been generated so far that involve a given variable. Sec­

ond, the propagator reads constraints from the context-sensitive constraint worklists,

csimple, calloc, cload, and cstore. By reading all constraints from these worklists

whenever it is executed, the propagator obtains a li st of all new constraints that were

generated since the last time that the propagator ran.

Points-to sets are propagated using two components, the simple assignment propa­

gator (PROP), which pro cesses simple subset constraints from the csimple worklist

and allocation constraints from the calloc worklist, and the field assignment prop­

agator (FPROP), which pro cesses field store and load constraints from the cstore

124

4.3. Points-to Analysis and Call Graph Construction

and cload worklists. For each propagation algorithm, the simple assignment propa­

gator (PROP) and field assignment propagator (FPROP) components are designed

to work together, so we implement both in a single class. The update () method

is called to update the simple assignment propagator (PROP) component, and a

separate fieldUpdateO method is called to update the field assignment propagator

(FPROP) component. Each of these methods returns a boolean value indicating

whether it produced any new output (points-to pairs). A true return value indicates

to the scheduler that other components that depend on points-to information should

also be updated.

The PADDLE framework contains three traditional and two BDD-based imple­

mentations of points-to set propagation algorithms. The traditional algorithms are

based on the iterative, incremental worklist, and incremental alias edge propaga­

tion algorithms that we described in detail in [Lho02]. The BDD-based algorithms

are derived from the basic and incremental BDD algorithms that we developed and

described in detail in [BLQ+02, BLQ+03]. Compared to these simpler algorithms,

the algorithms implemented in PADDLE have two significant extensions. First, they

have been extended to handle new points-to constraints being introduced as a result

of constructing the call graph on-the fly. Second, they have been extended to be

context-sensitive. In this chapter, we limit our detailed discussion ta the two BDD

based points-to propagation algorithms.

In practice, the incremental BDD-based propagation algorithm is the most efficient

when PADDLE is using BDD-based versions of its other components, and the worklist

propagation algorithm is the most efficient when PADDLE is using traditional versions

of its other components.

4.3.4.1 Basic propagation algorithm

The PADDLE implementation of the basic propagation algorithm is presented in Fig­

ures 4.10 and 4.11. The algorithm maintains two fields, pt storing the points-to

relation for simple variables, and fieldPt storing the points-to relation for fields of

125

Applying BDDs to Interprocedural Program Analysis

1 <vare,var,obje,obj> pt = OB;

2 <basee,base,fld,obje,obj> fieldPt OB;

3

4 boolean update() {

5 <vare,var,obje,obj> oldPt = pt;

6 pt 1= ealloe.get();

7 pt 1= propSimple(pt, pag.allSimple() .get(»;

8 return pt != oldPt;

9 }

10 <vare,var,obje,obj> propSimple(

Il <vare,var,obje,obj> pt,

12 <sree,sre,dste,dst> simple) {

13

14 <vare,var,obje,obj> ret = OB;

15 while(true) {

16 pt = (dstc=>varc, dst=>var)

17 simple {sree, sre}

18

19

<> pt {vare,var};

pt -= ret;

20 if(pt == OB) break;

21 ret 1= pt;

22 }

23 return ret;

24 }

Figure 4.10: JEDD code for basic propagation algorithm for simple assignments

126

4.3. Points-to Analysis and CalI Graph Construction

1 boolean fieldUpdate() {

2 <varc,var,objc,obj> oldPt = pt;

3 fieldPt 1= propStore(pt, pag.allStore() .get(), pt);

4 pt 1= propLoad(fieldPt, pag.allLoad() .get(), pt);

5 return pt != oldPt;

6 }

7 <basec,base,fld,objc,obj> propStore(

8 <varc,var,objc,obj> pt,

9 <srcc,src,fld,dstc,dst> store,

10 <varc,var,objc,obj> storePt) {

11

12 <objc,obj,varc,var,fld> objectsBeingStored =

13 (dstc=>varc, dst=>var) store {srcc,src}

14 <> pt {varc,var};

15 return objectsBeingStored {varc,var}

16 <> (objc=>basec, obj=>base) storePt {varc,var};

17 }

18 <varc,var,objc,obj> propLoad(

19 <basec,base,fld,objc,obj> fpt,

20 <srcc,src,fld,dstc,dst> load,

21 <varc,var,objc,obj> loadPt) {

22

23 <basec,base,fld,dstc,dst> loadsFromHeap;

24 loadsFromHeap = load{srcc,src}

25 <> (objc=>basec, obj=>base) loadPt{varc,var};

26 return (dstc=>varc, dst=>var) loadsFromHeap {basec,base,fld}

27 <> fpt {basec, base, fld};

28 }

Figure 4.11: JEDD code for basic propagation algorithm for field loads and stores

127

Applying BDDs to Interprocedural Program Analysis

heap objects. The update method first reads any new allocation edges from the cal­

loc worklist. Since an allocation edge is a constraint of the form 0 E points-to(p) ,

the set of allocation edge tuples is added directly to the points-to set relation. The

second step in the basic propagator is to propagate points-to sets along all sim­

ple assignment edges. Each simple assignment edge is a constraint of the form

points-to(p) ç points-to(q), so the points-to set of p must be added into the points-to

set of q. The propSimple method takes two relations as parameters, a points-to rela­

tion, and a relation of simple assignment edges, and propagates the points-to relation

along the assignment edges iteratively until a fixed-point is reached. The propagation

is implemented by the composition operation in line 18, much like in the simple ex­

ample we showed in Figure 3.3 of Chapter 3. An important difference in the PADDLE

version of the implementation is that each variable and object now has an associated

context, which is stored in a separate attribute of each relation. For example, the

assignment edges relation simple now has the additional attributes srcc and dstc to

store the context for the source and destination pointer variable, respectively. In the

basic propagation algorithm, on each update, the propSimple method is called with

the complete points-to set and the complete set of assignment edges from the points­

to assignment graph. In the incremental propagation algorithm, we will improve on

this by propagating only the new part of the points-to relation.

The fieldUpdate method first propagates points-to sets along store edges (us­

ing the propStore method) to the field points-to relation, then propagates the field

points-to relation along load edges (using the propLoad method) back to the points­

to sets for simple variables. The field points-to relation represents facts of the form

o E points-to(b.J), indicating that field f of the object b may point to the object o.

The propStore method takes three relation parameters. The pt relation contains

the points-to pairs to be propagated along stores. The store relation contains the

store edges, with each edge representing a store instruction of the form Vd.f := VS'

Finally, the storePt relation is the points-to relation used to determine the potential

objects that the target of the store (Vd) may point to. The stores are processed in two

steps. First, in line 14, the sources of the store edges are looked up in the points-to

relation, yielding a relation of tuples of the form (0, Vd, f) indicating that the object

128

4.3. Points-to Analysis and Call Graph Construction

o is being stored into Vd'f. In the second step, in line 16, Vd is looked up in storePt

to determine which objects are being stored into.

The propLoad method also takes three relation parameters. The fpt relation

contains the points-to sets of fields of heap objects. The load relation contains the

set of load edges of the form Vd := vs.f. The loadPt relation is the points-to relation

used to determine the objects that the source of the store (vs) may point to. Like

stores, loads are processed in two steps. First, in line 25, the load sources are looked

up in loadPt, giving a relation of tuples of the form (b, f, v), indicating that the

points-to set of b.f is being propagated into the points-to set of v. Second, in line 27,

the points-to set of b.f is looked up and added into the points-to set of v in the fpt

relation.

Like the propagation along simple assignment edges, the heap field propagation

code has an extra attribute for each variable and object to store its context.

4.3.4.2 Incrementai propagation algorithm

The PADDLE implementation of the incremental propagation algorithm is presented

in Figures 4.12 and 4.13. The incremental algorithm reuses the propagation methods

propSimple, propStore and propLoad of the basic propagation algorithm, but they

are called to propagate only the new points-to tuples, instead of propagating all tuples

in every iteration.

In addition to the pt and f ieldPt fields of the basic propagation algorithm, the

incremental propagation algorithm maintains a third field ptFromLoad, which acts as

a worklist for the fieldUpdate method to communicate new points-to pairs resulting

from field loads to the update method.

The update method pro cesses new information from three sources. First, for each

newly introduced allocation edge, a tuple is stored into the ptFromAlloc relation.

Second, all newly introduced simple assignment edges must be processed. Specifi­

cally, the update method propagates the full points-to relation along only the newly

introduced simple assignment edges. The points-to pairs resulting from this propa­

gation are stored in the ptFromSimple1 relation. Third, the update method must

129

Applying BDDs to Interprocedural Program Analysis

also process any new points-to pairs that were generated in the fieldUpdate method

due to field loads since the last execution of update. These points-to pairs are re­

trieved from the ptFromLoad field, and the field is then cleared. FinaUy, the three

kinds of new points-to pairs must be propagated along all existing simple assignment

edges. The resulting points-to pairs are saved in the ptFromSimple2 relation. Fi­

naUy, aU the new points-to relations except ptFromLoad (that is, the ptFromAlloc,

ptFromSimplel, and ptFromSimple2 relations) are added to the pt output worklist.

The ptFromLoad relation does not need to be added, because it is already added to

pt in the fieldUpdate method.

The fieldUpdate method in the incremental propagation algorithm performs the

same operations as in the basic propagation algorithm. The only difference is that

in addition to adding new points-to pairs from field loads to the pt relation, it also

adds them to the ptFromLoad relation for use by the update method.

4.3.5 Virtual cali resolution

The virtual caU resolver is one of the most complicated components of PADDLE,

because it must implement the complicated resolution procedures defined by the

Java Virtual Machine Specification, as weU as handle the special kinds of implicit caU

edges. To our knowledge, this is the first time that virtual method resolution has

been implemented in BDDs. In this section, we present a simplified version of the

virtual caU resolver to demonstrate how it is implemented using JEDD and BDDs. The

simplified virtual caU resolver presented in this section resolves only explicit virtual

caUs due to virtualinvoke and interfaceinvoke instructions. The complete virtual caU

resolver4 actuaUy implemented in PADDLE resolves not only these caUs, but also aU

the special kinds of caUs that were described in Section 4.3.2.

For a given method signature and actual receiver type, the virtual caU resolver

determines which method will actuaUy be invoked. This is done by searching the class

hierarchy from the receiver type upwards for a class implementing a method with the

4The virtual caU resolver is implemented in the class BDDVirtualCalls.

130

4.3. Points-to Analysis and CalI Graph Construction

1 <varc,var,objc,obj> pt = OB;

2 <basec,base,fld,objc,obj> fieldPt = OB;

3 <varc,var,objc,obj> ptFromLoad = OB;

4

5 boolean update() {

6

7 <varc,var,objc,obj> oldPt = pt;

8

9 <varc,var,objc,obj> ptFromAlloc = calloc.get();

10 <varc,var,objc,obj>

11 ptFromSimplel = propSimple(pt, csimple.get());

12 <varc,var,objc,obj>

13 ptFromAllocAndSimplel = ptFromAlloclptFromSimplel;

14 <varc,var,objc,obj>

15 ptFromSimple2 = propSimple(ptFromAllocAndSimplellptFromLoad,

16 pag.allSimple().get());

17 ptFromLoad = OB;

18 pt 1= ptFromAllocAndSimplellptFromSimple2;

19 return pt != oldPt;

20 }

Figure 4.12: JEDD code for incremental propagation algorithm for simple assignments

131

Applying BDDs to Interprocedural Program Analysis

1 final boolean fieldUpdate() {

2 <varc,var,objc,obj> oldPt = pt;

3

4 fieldPt = propStore(pt, pag.allStore() .get(), pt);

5 <varc,var,objc,obj> ptFromThisLoad 1=
6 propLoad(fieldPt, pag.allLoad().get(), pt);

7 pt 1= ptFromThisLoad;

8 ptFromLoad 1= ptFromThisLoad;

9

10 return pt != oldPt;

11 }

Figure 4.13: JEDD code for incremental propagation algorithm for field loads and

stores

given signature. The PADDLE virtual call resolver does this for an entire relation of

receiver types and method signatures at once.

The JEDD code for the algorithm is shown in Figure 4.14. We will walk through

the code, explaining how it would resolve the example virtual calls shown in the

relations in Figure 4.15. The algorithm starts with the relation recei verTypes, with

each tuple specifying a receiver type and a method signature. An ex ample of such

a relation is shown in Figure 4.15(a), specifying the receiver type B at two call sites

with signatures fooO and barO. Before starting to walk up the hierarchy starting

from the receiver type, the algorithm first saves a copy of the original receiver type in

each tuple using the attribute copying operation in line 6. In the resulting toResol ve

relation, each tuple contains the method signature and two copies of the receiver type

(see Figure 4.15(b)). As the algorithm searches for the target method, one copy (in

tgttype) of the receiver type will be moved up the class hierarchy, while the other

copy (in rectype) will be kept unchanged to keep track of the original receiver type.

The next step is to determine whether the class of the receiver type implements

a method with the signature. This is done by joining the toResol ve relation with

the implementsMethod relation shown in Figure 4.15(c), which keeps track of the

132

4.3. Points-to Analysis and CalI Graph Construction

1 <rectype, signature, tgttype, method> answer OB;

2

3 public void resolve(<rectype, signature> receiverTypes,

4 <subtype, supertype> extend) {

5

6 <rectype, signature, tgttype> toResolve =

7 (rectype=>rectype, rectype=>tgttype) receiverTypes;

8

9

10

11

12

13

14

15

16

17

18 }

do {

<rectype, signature, tgttype, method> resolved =

toRe solve {tgttype, signature} ><

declaresMethod{type, signature};

answer 1= resolved;

toResolve -= (method=» resolved;

toResolve = (supertype=>tgttype)

(toResolve{tgttype} <> extend{subtype});

} while(toResolve != OB);

Figure 4.14: JEDD code for virtual calI resolution

133

Applying BDDs to Interprocedural Program Analysis

type signature

(a) B fooO

B barO

rectype signature tgttype

(h) B fooO B

B barO B

type signature method

(c) A fooO A.fooO

B barO B.barO

(d)
rectype signature tgttype method

B barO B B.barO

(e)
rectype signature tgttype

B fooO B

(f)
subtype supertype

B A

(g)
rectype signature supertype

B fooO A

(h)
rectype signature tgttype method

B fooO A A.fooO

Figure 4.15: Example of resolving virtual method caUs

(a) receiverTypes (b) toResolve in line 6 (c) implementsMethod (d) resolved in

first iteration (e) toResolve in line 15 (f) extend (g) result of composition in li ne 15

(h) resol ved in second iteration

134

4.3. Points-to Analysis and Call Graph Construction

methods implemented by each class and their signatures. This join, which appears

on li ne lI, matches the current class (tgttype attribute of toResolve) with the class

implementing the method (type attribute of implementsMethod), and the method

signature (signature attribute of toResol ve) with the method signature of the im­

plemented method (signature attribute of implementsMethod). For each class and

method signature being resolved, if the class implements a method with the match­

ing signature, then the resulting relation resol ved contains a tuple with the method

signature, two copies of the receiver type, and the target method. In our example,

the only match is type B and signature barO, resulting in the resol ved relation in

Figure 4.15(d). In general, these are the method calls that we have just resolved by

finding a method with the desired signature, so in line 13, we add them to our answer.

The next step is to remove the resolved caU sites from the set of sites left to

resolve. The resol ved relation has the method attribute which toResol ve lacks, so

it is removed using projection in line 14 before the resolved caU sites are subtracted.

After doing this to our example, we obtain the toResolve relation in Figure 4.15(e).

The final step is to move up the class hierarchy by replacing each class in the

tgttype attribute with its immediate superclass. This is done with a composition

(in line 15) of the toResolve relation with the extend relation passed in from the

class hierarchy, which encodes the immediate superclass (extends) relationship. In

our example, as Figure 4.15(f) shows, B is a subclass of A. The tgttype attribute

is matched with the subtype attribute in the extend relation, and a composition

rather than a join is used because the attributes being compared (the subtype) are

not needed; from the extend relation, only the supertype attribute is needed. The

resulting relation has replaced each object in the tgttype attribute of toResol ve with

its immediate superclass, as shown in Figure 4.15(g). Before it can be assigned to

toResol ve, the supertype attribute must be renamed to tgttype to match the schema

of toResol ve. FinaUy, if the set of caU sites to be resolved is not yet empty, the

algorithm starts another iteration of the loop to resolve them. Figure 4.15(h) shows

the call resolved in the second iteration. Together, the relations in Figures 4.15(d)

and (h) show the final result: the targets of calling fooO and barO with a receiver of

type B are AJooO and B.barO.

135

Applying BDDs to Interprocedural Program Analysis

Components:

Re reachable contexts

CG caU graph

MPB method points-to

assignment graph builder

CER calI edge handler

MPC method points-to assignment

graph contextifier

CEC calI edge contextifier

PAG points-ta assignment graph

PROP simple assignment

propagator

FPROP field assignment propagator

'!UpIe types:

A allocation site

C context

F field

1 method signature

K caU edge kind

L local variable

M method

S statement

T type

Figure 4.16: Components of caU graph and points-to analyses in the ahead-of-time

caU graph configuration

4.3.6 Reusing an existing cali graph

The default configuration of PADDLE as shown in Figure 4.9 builds a caU graph on­

the-fly as the points-to analysis proceeds. PADDLE can also be configured to use an

existing call graph to compute only points-to information. This makes it possible to

compare the results of PADDLE against the results of other context-sensitive analysis

techniques which inherently require the caU graph to be built ahead-of-time in a

separate step, such as the technique of Zhu and Calman [ZC04] and Whaley and

Lam [WL04].

The ahead-of-time caU graph configuration of PADDLE is shown in Figure 4.16.

It is similar to the on-the-fly caU graph configuration in Figure 4.9, but lacks the

SCGB, CSCGB, VCR, SCM and VCM components and associated worklists.

The edges of the ahead-of-time caU graph must be inserted into the csedges worklist

136

4.3. Points-to Analysis and CalI Graph Construction

before PADDLE begins processing. One additional difference is that in the ahead­

of-time calI graph configuration, PADDLE cannot implement the precise propagation

of method calI receiver objects to this pointers that was described at the end of

Section 4.3.3, because it depends on building the calI graph on-the-fiy. Instead, the

calI edge handler treats this pointers like any other parameter, and generates simple

assignment constraints from each receiver to the this pointer of each method that

may be invoked on it.

The initial calI graph can be constructed by running PADDLE in the on-the-fiy

calI graph configuration. Thus, an ahead-of-time calI graph analysis involves two

separate instances of PADDLE, the first in the on-the-fiy calI graph configuration,

and the second in the ahead-of-time calI graph configuration. After the first instance

finishes, the resulting points-to sets are discarded, and the resulting calI graph is used

as input to the second instance. The results (points-to sets and calI graph) of the

second instance are deemed the results of the overall analysis.

In between the two instances of PADDLE, the initial calI graph may be made

context-sensitive using the algorithm proposed by Zhu and Calman [ZC04] and Wha­

ley and Lam [WL04] that we described in Section 4.1.3. This setup implements the

Zhu/Calman/Whaley/Lam analysis within the PADDLE framework, so its results can

be readily compared with the default configuration of PADDLE. We explained the

Zhu/Calman/Whaley/Lam algorithm in detail in Section 4.1.2.3.

Implementors of the Zhu/ Calman/Whaley /Lam analysis may be interested in con­

structing the initial calI graph using Class Hierarchy Analysis [DGC95] to avoid having

to perform the points-to analysis twice (once to construct the initial calI graph, and a

second time for the final context-sensitive analysis). To measure the precision of this

approach, the instance of PADDLE building the initial calI graph can be configured to

simulate Class Hierarchy Analysis by assuming that every pointer can point to every

object.

Figure 4.17 summarizes the possible configurations of PADDLE. As shown on the

le ft , the default configuration is the on-the-fiy calI graph version of PADDLE detailed

in Figure 4.9. The dashed box on the right contains the ahead-of-time calI graph

variations. First, the initial context-insensitive calI graph may be constructed either

137

Applying BDDs to Interprocedural Program Analysis

~----------------------------------~

on-the-fly cali graph

PADDLE (Fig. 4.9)
or

on-the-fly

cali graph

PADDLE (Fig. 4.9)

CS cali graph

ahead-of-time

cali graph

PADDLE (Fig. 4.16)

Class Hierarchy

Analysis

PADDLE

WhaleyjLam

algorithm

--------------- ------------------~

final points-to sets

and cali graph

Figure 4.17: Summary of PADDLE configurations

138

4.4. Client Analyses

using an on-the-fly calI graph version of PADDLE, or using a version of PADDLE

simulating Class Hierarchy Analysis. The resulting initial calI graph can either be

used as is, or it can be made context-sensitive using the Zhu/Calman/Whaley /Lam

algorithm. FinalIy, the calI graph is used by the ahead-of-time calI graph variation of

PADDLE detailed in Figure 4.16 to compute points-to sets.

4.4 Client Analyses

In this section, we describe client analyses which use the points-to sets and calI graph

computed by PADDLE to generate additional analysis information useful for program

optimization and for program understanding. In Chapter 5, we will explore the effects

of differences in the precision of the points-to sets and calI graph on the precision of

these client analyses. AlI of the client analyses have been implemented within PADDLE

in terms of BDDs, using the JEDD language.

The calI graph and points-to sets computed by PADDLE are context-sensitive.

Where applicable, the client analyses are also performed context-sensitively. However,

aIl context information is removed from the final results of the client analyses, because

practical applications require the properties determined by the client analyses to ho Id

in an contexts. In addition, we wish to compare the precision of the client analyses

when using points-to sets and calI graphs computed with different variations of context

sensitivity, so the context information must be removed for the client analysis results

to be comparable.

4.4.1 Monomorphic cali sites

In object-oriented languages such as Java, the target of a method invocation depends

on the run-time type of the receiver object on which the method is invoked. Deter­

mining and invoking the correct method can be a major source of run-time overhead.

Moreover, the uncertainty about which method will be invoked hinders interproce­

duraI optimizations such as method inlining. In typical programs, most invocation

sites actualIy only invoke a single target method during execution. Various techniques

139

Applying BDDs to Interprocedural Program Analysis

have therefore been proposed to determine the targets of these monomorphie calI sites

(e.g. [SHR+OO, IKY+OO, TLSS99, GDDC97]).

The calI graph generated by PADDLE can be used to staticalIy determine the

targets of monomorphic calI sites. Since a calI site must calI the same target method

in every context to be considered monomorphic, the monomorphic calI site analysis

considers the context-insensitive can graph edges from the ecsout worklist. The

analysis iterates through alI virtual and interface edges in the calI graph. The first

time a calI edge originates at a given calI site, the calI site is marked as having one

target method. Wh en another calI edge originates at a calI site that has already been

marked, the caH site is marked as polymorphie. AH caH sites that are not found to

be polymorphie are considered monomorphic.

4.4.2 Cast safety analysis

In Java, a cast expression (Type) 0 checks that the run-time type of the object

pointed to by 0 is a subtype of Type. If it is, the cast expression evaluates to the

object 0, but has compile-time type Type; otherwise, evaluating the cast raises a

ClassCastException. An analysis whieh staticalIy proves that 0 is always a subtype

of Type is use fuI both for optimizing away the run-time type check, and for informing

the programmer whether the cast may fail at run time.

The points-to sets computed by PADDLE can be used to conservatively estimate

the set of casts that must always succeed at run time. The points-to set for each

pointer represents alI possible targets of the pointer, and each target has a fixed

run-time type. If the run-time types of an the objects in the points-to set of 0 are

subtypes of Type, then the cast (Type) 0 cannot fail at run time.

To perform points-to analysis in PADDLE, we consider the points-to set computed

for each pointer that is the argument of a cast. If the points-to set contains an

abstract object whose type is not a subtype of the declared type of the pointer, the

cast is marked as potentialIy failing; otherwise, the cast cannot fail.

140

4.4. Client Analyses

4.4.3 Side-effect analysis

A side-effect analysis computes, for each instruction in the program, an abstraction

of the set of memory locations that may be read and written during the execution

of the instruction. SpecificalIy, for Java programs, a side-effect analysis determines

which static fields and which instance fields of which abstract objects may be read

and written by each instruction.

In general, a side-effect analysis requires both points-to sets and a calI graph. For

an instruction reading or writing a static field, the field can be determined directly

from the instruction. An instruction reading or writing an instance field expression

of the form v.f reads or writes the field f of every abstract object 0 E points-to(v) ,

so the points-to set of v is needed to compute the side-effects. The side-effect of a

method invocation instruction is the union of the side-effects of aIl the instructions of

aIl the methods possibly invoked from the instruction, including any methods invoked

transitively from those methods. Therefore, to compute the side-effects of method

invocation instructions, a calI graph is required.

The side-effect analysis implemented in PADDLE is the same as the one we imple­

mented in SPARK and described in detail in [Lho02, LLH05], except that it is written

in JEDD, and the side-effect sets are represented using JEDD relations. Since the

side-effect sets are very large and many of them are similar or equal, manipulating

them in BDDs reduces the cost of the analysis. The analysis first computes an in­

traprocedural side-effect set for each instruction, which includes only the effects of

the instruction itself, and does not include any side-effects due to methods that may

be called from the instruction. The PADDLE points-to sets are used to determine the

side-effects of reads and writes of instance field expressions. Next, for each method,

the union of the side-effects of aIl the instructions in the method is computed as the

overall side-effect for the method. FinaIly, the transitive closure of the calI graph is

computed, and the side-effects of aIl methods transitively callable from each method

invocation instruction are added to the side-effect of the instruction.

141

Applying BDDs to Interprocedural Program Analysis

4.4.4 Escape analysis

As described by Rountev, Milanova, and Ryder [RMR01, Sections 3.3 and 3.4], points­

to sets can be used to prove that certain objects do not escape the method in which

they are created (i. e. no references to them exist wh en the method returns), and that

certain objects do not escape the thread in which they are created (i. e. they cannot

be accessed during the execution of any other thread). SpecificaHy, objects which are

not reachable through the points-to graph from any static field or any field of any

class implementing java .lang . Runnable cannot escape their creating thread and are

said to be thread-local. A thread-local object which is additionally unreachable from

the parameters and return value of the method in which it is allocated cannot escape

the method and is said to be method-local.

The results of escape analysis are useful for optimization [ACSE99, Bla99, BH99,

CGS+99, GSOO, RufO 0 , WR99]. In particular, method-local objects can be allocated

more efficiently on the stack rather than the heap, and reclaimed immediately wh en

the method returns, rather than later by the garbage collector. The synchronization

operations required by the Java Virtual Machine Specification [LY99] can be opti­

mized away for objects known to be thread-Iocal. In addition, programmers may

find information about which objects are method-local and thread-local useful for

understanding their programs.

In PADDLE, escape analysis is implemented according to the specification

in [RMR01]. The set of thread-escaping objects is first initialized to the points-to

sets of static fields and fields of classes implementing java. lang. Runnable. Its clo­

sure under the field points-to relation is then iteratively computed. All objects not

found to be thread-escaping are identified as thread-local. Next, the set of method­

escaping objects is initialized as the set of aH thread-escaping objects. AH objects

in the points-to sets of method parameters and return values are added as method­

escaping. Finally, the set of method-escaping objects is closed under the field points­

to relation. The result is the complete set of method-escaping objects as defined by

Rountev, Milanova, and Ryder [RMR01].

142

4.5. Conclusions

4.5 Conclusions

In this chapter, we have presented the PADDLE BDD-based interprocedural analysis

framework. The core part of PADDLE computes points-to sets and constructs a call

graph. Because the analyses are implemented in terms of BDDs, which represent

contexts implicitly, PADDLE makes it feasible to perform context-sensitive analyses

on large Java programs. In PADDLE, the call graph is constructed precisely, on-the-fiy

as the points-to analysis proceeds. PADDLE supports different variations of context

sensitivity, including strings of call sites and strings of abstract receiver objects. We

have implemented four client analyses that make use of the points-to sets and call

graph computed by PADDLE.

In the next chapter, we will use PADDLE to perform an empirical study of the

effect of variations of context sensitivity on the precision of points-to analysis, call

graph construction, and the client analyses we described in Section 4.4. In Chapter 6,

we will apply PADDLE to an analysis for optimizing the cfiow construct in AspectJ

programs.

143

Applying BDDs to Interprocedural Program Analysis

144

Chapter 5

Empirical Study of Context Sensitivity

In this chapter, we report on an in-depth empirical study of several varia­

tions of context sensitivity, including object sensitivity [MRR02, MRR05], calI site

strings as the context abstraction [SP81, Shi88], and the contexts generated by the

Zhu/Calman/Whaley/Lam algorithm [ZC04, WL04]. Our goal in this study is to

evaluate the effect of these variations of context sensitivity on analysis precision, in

order to guide future research. Specifically, we would like to determine which anal­

yses are use fuI (in the sense that they improve precision) so that we can focus our

future attention on practical implementation of only the useful analyses. Practical

implementation of a useful context-sensitive analysis is our long-term goal, but not a

direct goal of the present study.

Nevertheless, in order to be able to perform our study, our implementations ofthe

analyses must be scalable enough to be able to analyze the significant benchmarks on

which we will evaluate them. lndeed, the lack of scalable implementations of these

analyses is what has prevented researchers from performing this study in the pasto It

is the use of BDDs and the PADDLE framework that finally makes this study possible.

Moreover, sorne of the characteristics of the analysis results that we are interested in

would be very costly to measure on an explicit representation. We have found ways

to perform these measurements directly on the BDD representation of the analysis

results.

145

Empirical Study of Context Sensitivity

In our study, we compare the relative precision of analyses both quantitatively,

by computing summary statistics about the analysis results, and qualitatively, by

examining specific code patterns for which a given analysis variation pro duces better

results than other variations. Context-sensitive analyses have been associated with

very large numbers of contexts. We want to also determine how many contexts each

variation of context sensitivity actually generates, how the number of contexts relates

to the precision of the analysis results, and how feasible it is likely to be to implement

practical context-sensitive analyses that scale to large benchmarks.

This chapter is organized as follows. In Section 5.1, we list the benchmarks that we

used in our study. In Section 5.2, we specify the variations of context sensitivity that

we have studied. We have already explained the variations in detail in Section 4.1.2 of

Chapter 4. We discuss the number of contexts and its implications on precision and

scalability in Section 5.3. In Section 5.4, we examine the effects of context sensitivity

on the precision of the call graph. We evaluate opportunities for static resolution of

virtual calls in Section 5.5. In Section 5.6, we measure the effect of context sensitivity

on cast safety analysis. We surveyed related work on context-sensitive analysis in

general in Section 4.1 of Chapter 4; in addition, we compare our empirical study of

to other experimental evaluations of context sensitivity in Section 5.7 of this chapter.

Finally, we draw conclusions from our experimental results in Section 5.8.

5.1 8enchmarks

We evaluated the different variations of context sensitivity on programs from the

JOlden [CM01, CM] benchmark suite, the SpecJVM 98 benchmark suite [St a], the

DaCapo benchmark suite, version beta050224 [DaC], and the Ashes benchmark

suite [VR], and on the Polyglot extensible Java front-end [NCM03]. Most of these

benchmarks have been used in earlier evaluations of interprocedural analyses for Java.

A list of the benchmarks appears in Table 5.1. For each benchmark, the middle section

146

5.1. Benchmarks

Total number of Executed methods

Benchmark classes methods benchmark +library

bh 9 86 54 459

bisort 2 14 12 414

em3d 5 31 18 425

health 8 38 26 435

mst 6 32 31 434

perimeter 10 56 42 443

power 6 51 29 427

treeadd 2 10 5 407

tsp 2 12 12 404

voronoi 6 84 44 450

compress 41 476 56 463

db 32 440 51 483

jack 86 812 291 739

javac 209 2499 778 1283

jess 180 1482 395 846

mpegaudio 88 872 222 637

mtrt 55 574 182 616

raytrace 54 570 180 611

soot-c 731 3962 1055 1549

sablecc-j 342 2309 1034 1856

polyglot 502 5785 2037 3093

antlr 203 3154 1099 1783

bloat 434 6125 138 1010

chart 1077 14966 854 2790

jython 270 4915 1004 1858

pmd 1546 14086 1817 2581

ps 202 1147 285 945

Table 5.1: Benchmarks

147

Empirical Study of Context Sensitivity

of the table shows the total number of classes and methods comprising the bench­

mark. These numbers exclude the Java standard libraryl (which is required to run the

benchmark), but include aIl other libraries that must accompany the benchmark for it

to run successfully. The right-most section of the table shows the number of distinct

methods that are actually executed in a run of the benchmark, both excluding and

including methods of the Java standard library, in the columns labelled "benchmark"

and "+library", respectively. The run-time calI graphs were collected using the * J

tool [Duf04, DDHV03]. About 400 methods of the standard library are executed even

for the smallest benchmarks for purposes such as class loading; sorne of the larger

benchmarks make heavier use of the standard library.

The first ten benchmarks (bh through voronoi) are the JOlden suite [CM01, CM].

The suite originated as a collection of pointer-intensive C programs, which were later

translated to Java. As can be seen from Table 5.1, each of these benchmarks is fairly

small.

The next eight benchmarks (compress through raytrace) are the SpecJVM 98

suite [Sta]. The purpose, origins and sizes of these benchmarks vary. Compress is

an implementation of LZW compression [WeI84] ported to Java from C. Db is a pro­

gram that performs searches and updates on a memory-resident address database.

Jack is a parser generator that generates Java code from a description of a grammar.

Javac is the Java source to bytecode compiler from the Java Development Kit version

1.0.2. Jess is an expert shell system. Mpegaudio is a decompressor for MPEG Layer-3

sound files. Ray trace and mtrt are two versions of a raytracer; raytrace uses a single

thread, while mtrt is multi-threaded.

The next three benchmarks, soot-c, sablecc-j, and polyglot are examples of large ap­

plications that make significant use of the object-oriented features of Java. Soot-c and

sablecc-j are from the Ashes suite, and polyglot is version 1.0.0 of Polyglot [NCM03]

applied to its own source code. Soot-c is an early version of the SOOT [VRGH+OO]

Java bytecode analysis and optimization framework. Sablecc-j is the SabieCC [GMN+]

parser generator. Given a grammar, SabieCC generates not just a parser, but also a

1 AH of the measurements in this chapter were done with version 1.3.1_01 of the Sun Java standard
class library.

148

5.2. Context Abstractions

collection of classes for representing and traversing parse trees. The SableCC gram­

mar parser (for grammar input files) is itself generated by SableCC. Polyglot is an

extensible Java front-end that performs aIl required type checking on Java source,

and pretty-prints the final abstract syntax tree. It is intended for the development of

extensions to the Java language, and achieves its extensibility through heavy use of

object-oriented design patterns.

The final six benchmarks (antlr through ps) are from version beta050224 of the

DaCapo suite [DaC], a collection of programs intended to make significant use of

the memory management system at run time. From a more static point of view,

the benchmarks are examples of large applications that use the object-oriented fea­

tures of Java. Antlr generates lexers and parsers from a grammar. Bloat is a Java

bytecode analysis and optimization system. (hart is a pro gram that plots charts us­

ing the JFreeChart [Gil] library. Jython is a compiler from a variant of Python to

Java bytecode. Pmd is an extensible code style checker for Java. Ps is a postscript

interpreter.

5.2 Context Abstractions

Before we li st the specifie variations of context sensitivity that we evaluated in our

study, we invite the reader to read Section 4.1.2 of Chapter 4, in which we explained

the different approaches to context sensitivity in detail with examples.

Context-insensitive analysis variations: In our earlier work [Lho02, LH03] on

SPARK, a predecessor of the PADDLE framework, we empirically evaluated

context-insensitive analyses to find good tradeoffs between analysis precision

and efficiency. Based on this earlier work, we have selected two context­

insensitive analyses to serve as a baseline for our measurements of the effects of

context sensitivity.

The first configuration was identified as very fast and also quite precise. In

the SPARK work, it was denoted ot-aot-fs, indicating on-the-fly enforcement of

149

Empirical Study of Context Sensitivity

declared types, ahead-of-time call graph construction, and field-sensitive mod­

elling of fields. We include it as an example of a practical context-insensitive

configuration. In this configuration, three separate steps are performed. First,

a call graph is constructed using Class Hierarchy Analysis [DGC95]. Second,

subset constraints are generated between pointer variables to model flow of

pointers between them. For each method reachable in the call graph, a con­

straint is generated for every pointer assignment appearing in the method. For

each call edge in the call graph, constraints are generated to model pointer flow

through method parameters and the return value. Third, a points-to set is com­

puted for every pointer by propagating sets of allocation sites (the abstraction

of heap objects) along the subset constraints. Whenever a pointer p may point

to an object allocated at allocation site a at run-time, the points-to set of p

contains a. Fields of objects are modelled field-sensitively. That is, the analysis

maintains a separate points-to set points-to(a.f) for every allocation site a and

every field f to represent pointers stored in the field f of any object allocated

at allocation site a. Declared types of pointers are enforced. That is, an allo­

cation site a allocating an object of run-time type t is not propagated into the

points-to set of p unless the declared type of p is a supertype of t. Throughout

this chapter, we denote this first context-insensitive analysis AOT. In this con­

figuration, client analyses use the call graph computed in the first step and the

points-to sets computed in the third step of the analysis as described above.

The second context-insensitive configuration is similar to but even more precise

than ot-otf-fs, the most precise configuration that we studied in the work on

SPARK. We include this configuration as the most precise context-insensitive

configuration, to serve as a baseline for comparing the precision of context­

sensitive configurations. Like in the AOT configuration, heap objects are mod­

elled by their allocation site, fields are modelled field-sensitively, and declared

types are enforced. Instead of using an initial call graph, however, the analy­

sis constructs a call graph on-the-fly as the points-to set propagation proceeds.

The three steps - call graph construction, subset constraint generation, and

150

5.2. Context Abstractions

points-to set propagation - are cyclically dependent. Subset constraints are

generated only for the rnethods reachable through the partial call graph gener­

ated so far, and only for call edges already present in the call graph. Points-to

sets are then propagated along subset constraints that have been generated so

far. Each virtual call in the reachable rnethods is resolved using the types of

the objects in the points-to set of the receiver. New call edges are added to

the call graph, which causes new rnethods to becorne reachable. The whole

pro cess is repeated until an overall fixed point is reached. Client analyses use

the resulting call graph and points-to sets. Throughout this chapter, we refer

to this configuration as OTF.

There is a subtle detail that rnakes the OTF analysis more precise than

sorne other analyses that have been called "on-the-fiy" in earlier work, includ­

ing our own work on SPARK [Lho02, LH03], Rountev, Milanova and Ryder's

work [RMROl], and Whaley and Larn's BDD-based analysis [WL04]. These

analyses are only partly on-the-fiy, in the following sense. In the OTF analysis,

subset constraint generation depends on the call graph in two distinct ways.

First, the set of rnethods reachable in the call graph is required to generate

subset constraints for pointer assignrnents within those rnethods. Second, the

set of call edges in the call graph is required to generate subset constraints for

pararneters and return values of those calls. In the partly on-the-fiy analyses,

however, the first kind of subset constraints are generated at the very beginning

for all rnethods, and only the second kind of subset constraints are actually

generated on-the-fiy as call edges are added to the call graph. Therefore, the

points-to sets of the partly on-the-fiy analyses refiect the effects of rnethods that

can never execute because they are not reachable in the call graph. The OTF

analysis, however, is more precise because it rnodels the effects of only those

rnethods reachable through the call graph.

All of the context-sensitive analyses described below, except the ZCWL analysis,

construct the call graph cornpletely on-the-fiy like the OTF analysis.

151

Empirical Study of Context Sensitivity

Call site string context-sensitive variations: In Section 4.1.2.1 of Chapter 4, we

described how to use call sites as the context abstraction, and provided motivat­

ing examples for using strings of multiple call sites, and for modelling abstract

heap objects context-sensitively, in addition to pointer variables.

In our present study of context sensitivity, we include three variations of call

site string context-sensitive analysis. All three are similar to the more precise

context-insensitive variation OTF in that the call graph is constructed on-the­

fly as the points-to analysis proceeds, fields are modelled field-sensitively, and

declared types are enforced. In the first two variations, which we denote 1 call

site and 2 caU site throughout this chapter, context strings are limited to a

length of one and two, respectively, and only pointers are modelled with context,

while heap objects are modelled only by their allocation site, without context.

We have included these two variations to measure how much lengthening the

context strings improves precision, and to determine how lengthening strings of

call sites compares with lengthening strings of receiver object allocation sites.

In the third variation, which we denote IH call site throughout this chapter,

context strings are limited to a single call site, and both pointers and abstract

heap objects are modelled with context. We have included this variation to

measure the effect of modelling abstract heap objects with context on analysis

precision, and to compare the effectiveness of call sites and abstract receivers

as the context abstraction for abstract heap objects.

Object-sensitive analysis variations: In Section 4.1.2.2 of Chapter 4, we ex­

plained the use of allocation sites of method call receiver objects as the context

abstraction. We also provided motivating examples for using strings of mul­

tiple receiver object allocation sites, and for modelling abstract heap objects

context-sensitively, in addition to pointer variables. In our empirical study, we

evaluate the effects of these variations.

Specifically, we include five variations of object-sensitive analysis in our study.

All of them are similar to the more precise context-insensitive variation OTF in

that the call graph is constructed on-the-fly as the points-to analysis proceeds,

152

5.2. Context Abstractions

fields are modelled field-sensitively, and declared types are enforced. In the

first three variations, which we denote throughout this chapter as l-object­

sensitive, 2-object-sensitive, and 3-object-sensitive, aIl pointer variables

are modelled with context strings of up to one, two, and three abstract re­

ceiver objects, respectively. Heap objects are modelled only by their allocation

site, without context. We use these three variations to evaluate how the length

of the context string affects precision. The fourth variation, which we denote

IH-object-sensitive, is like the 1-object-sensitive variation, but we addition­

ally model heap objects context-sensitively using the allocation site annotated

with one abstract receiver object. We include this variation to evaluate the

effect of modelling abstract objects with context on analysis precision. The

fifth variation, which we denote 2U-object-sensitive is included to compare

unique object sensitivity to normal object sensitivity. It is just like the 2-object­

sensitive variation, except we do not add receiver allocation sites to a context

string if they are already present in the string. By not adding duplicate ab­

stract receivers, we prevent other, potentially useful, abstract receivers from

being forced out of the context string of limited length.

ZhujCalmanjWhaley jLam algorithm: In Section 4.1.2.3 of Chapter 4, we de­

scribed the Zhu/Calman/Whaley /Lam algorithm [ZC04, WL04] in detail. Re­

calI that the algorithm requires an initial context-insensitive calI graph to be

constructed before it can be applied. In contrast, in aIl of the variations that

we have defined so far except the AOT context-insensitive variation, the calI

graph has been built on-the-fiy as the points-to analysis proceeds. Thus, in the

dimension of calI graph construction, the Zhu/ Calman/Whaley /Lam algorithm

is most like the AOT context-insensitive variation.

A key parameter is the precision of the initial calI graph, which depends on how

it is constructed. An obvious choice would be to construct the initial calI graph

using Class Hierarchy Analysis [DGC95], because it does not require points-to

analysis. Recall that when using the Zhu/Calman/Whaley /Lam algorithm, the

153

Empirical Study of Context Sensitivity

initial context-insensitive calI graph is first made context-sensitive, and points­

to analysis is performed afterwards using the resulting context-sensitive call

graph. Therefore, if we also used points-to analysis for the initial call graph

construction, we would be performing points-to analysis twice. However, when

we applied the Zhu/Calman/Whaley /Lam algorithm to a call graph constructed

using CHA, it failed to complete in the available memory2 on the larger bench­

marks, despite extensive tuning of the BDD variable ordering. Therefore, like

Whaley and Lam [WL04], we instead evaluated the algorithm using the much

more precise call graph constructed by the OTF context-insensitive variation

described above. That is, we first performed points-to analysis together with

on-the-fly call graph construction to get the same calI graph and points-to sets

as in the OTF variation. We then discarded the points-to sets, and used the

call graph as input to the Zhu/Calman/Whaley /Lam algorithm to construct a

context-sensitive call graph. Finally, we performed points-to analysis a second

time using the resulting context-sensitive calI graph. Like in the other vari­

ations, the points-to analysis was field-sensitive and enforced declared types.

Pointer variables were modelIed with context, but abstract heap locations were

modelled context-insensitively, like in the work of both Zhu and Calman [ZC04]

and Whaley and Lam [WL04]. Throughout the rest of this chapter, we refer to

this analysis variation as ZCWL.

5.3 Number of Contexts

Context-sensitive analysis is often considered intractable mainly because, if contexts

are propagated from every call site to every called method, the number of resulting

context strings grows exponentialIy in the length of the call chains. The purpose

of this section is to shed sorne light on two issues. First, of the large numbers of

contexts, how many are actually useful in improving analysis results? Second, why

2 AU of the results presented in this chapter were obtained with PADDLE using the BuDDy [LN]
backend. BuDDy was aUowed to aUocate a maximum of 41 million BDD nodes (820 million bytes).

154

5.3. Number of Contexts

can BDDs represent such seemingly large numbers of contexts, and how much hope

is there that they can be represented with more traditional techniques?

In the foUowing three subsections, we perform three measurements of the numbers

of contexts. First, we measure the total number of abstract contexts that arise with

each context abstraction. Second, we define a notion of contexts that are equivalent

in the sense that it is not useful to distinguish them, and measure the number of

equivalence classes of contexts for each context abstraction. FinaUy, we measure the

number of distinct points-t~ sets generated with each context abstraction.

5.3.1 Total number of contexts

We begin by comparing the numbers of abstract contexts that arise when a context­

sensitive analysis is performed with the different context abstractions. More precisely,

we measure the number of contexts that appear in the context-sensitive points-t~

relation. For the purpose of this measurement, we consider the method to which a

context string applies as part of the context, and count the contexts rather than just

the context strings. For example, if caU sites are being used as the context abstraction,

and a given virtual caU site has two potential target methods, each of these methods

invoked with the caU site as the context string is considered a separate context.

Measuring the number of contexts in the context-sensitive points-to relation is

straightforward when the relation is encoded in a BDD. First, we join the points-t~

relation with a relation that specifies for each pointer variable the method containing

it. Next, we perform a projection keeping only the context and the method, to obtain

a BDD representing the set of aU contexts with their final target methods. FinaUy,

the size of the set is found by calling the size () method (provided by JEDD) on the

relation.

The measurements of the total numbers of contexts are shown in Table 5.2. Each

column lists the number of contexts produced by one of the variations of context­

sensitive analyses described in Section 5.2. Please refer to that section for an ex­

planation of the analyses denoted by the column headings. The columns labeUed

155

Empirical Study of Context Sensitivity

"context-insensitive" show the absolute number of contexts (which is also the num­

ber of methods, since in a context-insensitive analysis, every method has exactly one

context). AU the other columns, rather than showing the absolute number of contexts,

which would be very large, instead show the number of contexts as a multiple of the

"context-insensitive OTF" column (i. e. they show the average number of contexts per

method). For example, for the bh benchmark, the total number of l-object-sensitive

contexts is 2583 x 13.5 = 3.48 x 104 . The empty spots in the table (and in other

tables throughout this chapter) indicate configurations in which the analysis did not

complete in the available memory, despite being implemented using BDDs.

The generaUy large numbers of abstract contexts explain why an analysis that

represents each context explicitly cannot scale to the programs that we analyze here.

While a l-call-site-sensitive points-t~ analysis requires 6 to 9 times more data to be

stored and processed than a context-insensitive analysis, the ratio grows to 1500 times

for a 3-object-sensitive analysis.

Wh en context strings are limited to a length of 1, the l-object-sensitive analysis

pro duces about twice as many contexts as the l-call-site-sensitive analysis. However,

as the context strings grow longer, the number of contexts in the object-sensitive

analyses grows more slowly than in the caU site string analyses. This is because it is

common in Java programs to invoke a method on the this pointer; in this common

case, the receiver object of the called method is the same as at the call site, so in

many context strings, the same abstract receiver objects are repeated. Notice that

in the unique-object-sensitive analysis, in which repeated receiver objects are filtered

out, the number of contexts grows much more quickly (compare the l-object-sensitive

column first to the 2-object-sensitive column, then to the 2U-object-sensitive column).

The ZhujCalmanjWhaley jLam algorithm effectively performs a k-CFA analysis

in which the value of k is the maximum eall depth in the original call graph after

strongly connected components have been merged. This maximum call depth is shown

in parentheses in the ZCWL eolumn of Table 5.2. Because k changes from one

benchmark to another, the total number of eontexts is mueh more variable than in

the other variations of context sensitivity. On the javac, soot-c, sablecc-j, chart, and

pmd benchmarks, the algorithm failed to complete in the available memory.

156

5.3. Number of Contexts

context-insens. object-sensitive calI site

Benchmark AOT OTF 1 2 3 1H 2U 1 2 1H ZCWL (k)

bh 3160 2583 13.5 111 1491 13.2 1225 6.2 233 6.2 2601 (17)

bisort 3115 2541 13.6 112 1516 13.4 1245 6.2 237 6.2 2042 (14)

em3d 3147 2552 13.6 112 1509 13.3 1239 6.2 236 6.2 1824 (14)

health 3131 2556 13.6 112 1507 13.3 1237 6.2 235 6.2 1914 (14)

mst 3132 2558 13.6 112 1525 13.3 1243 6.2 235 6.2 1665 (14)

perimeter 3143 2568 13.5 111 1500 13.2 1231 6.2 234 6.2 1594 (14)

power 3132 2558 13.6 112 1507 13.3 1236 6.2 235 6.2 2623 (18)

treeadd 3108 2534 13.7 113 1521 13.4 1248 6.2 237 6.2 1565 (14)

tsp 3140 2545 13.6 112 1513 13.3 1243 6.2 236 6.2 2585 (15)

voronol 3162 2589 13.5 111 1490 13.2 1222 6.2 232 6.2 2464 (15)

compress 10989 2596 13.7 113 1517 13.4 1231 6.5 237 6.5 2.9 x 104 (21)

db 10993 2613 13.7 115 1555 13.4 1239 6.5 236 6.5 7.9 x 104 (22)

jack 11245 2869 13.8 156 1872 13.2 1149 6.8 220 6.8 2.7 x 107 (45)

javac 12120 3780 15.8 297 13289 15.6 1489 8.4 244 8.4 (41)

jess 11620 3216 19.0 305 5394 18.6 1415 6.7 207 6.7 6.1 x 106 (24)

mpegaudio 11198 2793 13.0 107 1419 12.7 1148 6.3 221 6.3 4.4 x 105 (31)

mtrt 11115 2738 13.3 108 1447 13.1 1170 6.6 226 6.6 1.2 x 105 (26)

raytrace 11115 2738 13.3 108 1447 13.1 1170 6.6 226 6.6 1.2 x 105 (26)

soot-c 5502 4837 11.1 168 4010 10.9 847 8.2 198 8.2 (39)

sablecc-j 12816 5608 10.8 116 1792 10.5 660 5.5 126 5.5 (55)

polyglot 6204 5616 11.7 149 2011 11.2 797 7.1 144 7.1 10130 (22)

antlr 4493 3897 15.0 309 8110 14.7 1715 9.6 191 9.6 4.8 x 109 (39)

bloat 6496 5237 14.3 291 14.0 8.9 159 8.9 3.0 x 108 (26)

chart 14804 7069 22.3 500 21.9 1413 7.0 335 (69)

jython 5274 4401 18.8 384 18.3 2264 6.7 162 6.7 2.1 x 1015 (72)

pmd 8497 7219 13.4 283 5607 12.9 1196 6.6 239 6.6 (55)

ps 11744 3874 13.3 271 24967 13.1 1543 9.0 224 9.0 2.0 x 108 (29)

Table 5.2: Total number of abstract contexts

157

Empirical Study of Context Sensitivity

5.3.2 Equivalent contexts

Next, we con si der that many of the large numbers of abstract contexts are equivalent

in the sense that the points-to relations computed in many of the abstract contexts are

the same. More precisely, we define two method-context pairs, (ml, Cl) and (m2, C2)

to be equivalent if ml = m2, and for every local pointer variable p in the method,

the points-to set of p is the same in both contexts Cl and C2.

We illustrate context equivalence with a concrete example. Consider a method

M with four pointer variables a, b, c, and d, which is called in four abstract contexts

P, Q, R, and S. Suppose that the points-to sets for these methods in these contexts

are found to be as shown in Figure 5.1. In this example, the contexts Rand Sare

equivalent for the method M, because the points-to sets of each of the four pointers

a, b, c, and d are the same in the two contexts. Therefore, there are three equivalence

classes of contexts, namely {(M, P)}, {(M, Q)}, and {(M, R), (M, S)}.

When two contexts are equivalent, there is no point in distinguishing them, be­

cause the resulting points-to relation is independent of the context. In this sense,

the number of equivalence classes of method-context pairs refiects how worthwhile

context sensitivity is in improving the precision of points-to sets.

The number of equivalence classes of contexts can be measured directly on the

BDD representing the context-sensitive points-to relation by performing the following

two steps. First, the variable ordering of the BDD must be arranged with the context

attribute at the beginning of the BDD, followed by the pointer variable and abstract

heap object attributes. We do this in JEDD by copying the points-to relation into

a relation for which we have explicitly specified the physical do main assignment.

Second, we count the number of BDD nodes strictly below the context attribute (i. e.

those that test a bit of the pointer variable or abstract heap object attribut es , as

well as the two terminal nodes) that have one or more incoming edges from a BDD

node testing a bit of the context attribute. This count is exactly the number of

equivalence classes of contexts. To see why this is the case, note that each unique

context-insensitive points-to relation is represented by a unique BDD node below

the context attribute, and an incoming edge from a BDD node testing the context

158

5.3. Number of Contexts

In context P, points-to(a) = {X, Y}

points-to(b) = {X, Y}

points-to(c) = {X, Y}

points-to(d) = {X, Y}

In context Q, points-to(a) = {X, Y}

points-to(b) = {X, Y}

points-to(c) = {X, Y, Z}

points-to(d) = {}

In context R, points-to(a) = {X, Y, Z}

points-to(b) = {}
points-to(c) = {X, Y, Z}

points-to(d) = {}

In context S, points-to(a) = {X, Y, Z}

points-to(b) = {}
points-to(c) = {X, Y, Z}

points-to(d) = {}

Figure 5.1: Example context-sensitive points-to relation

159

Empirical Study of Context Sensitivity

attribute indicates that it is the points-to relation for one or more contexts.

To illustrate, let us return to our concrete example. The BDD representing the

context-sensitive points-to relation from Figure 5.1 is shown in Figure 5.2. We have

used the following assignment of bit strings to contexts, pointer variables, and abstract

heap objects:

POO a 00 X 00

Q 01 bOl Y 01

R 10 c 10 Z 10

Sl1 d11

The top two levels of the BDD (nodes a and b) test the two bits of the context, the

next two levels (nodes c and d) test the two bits of the pointer variable, and the

final two levels (nodes e, J, and g) test the two bits of the abstract heap object.

Recall that there are three equivalence classes, namely {(M, pn, {(M, Qn, and

{(M, R), (M, Sn. As expected, in the BDD, there are also three nodes that satisfy

the criterion, namely nodes c, d, and e. Each of these nodes tests a bit strictly below

the context bits, and each has an incoming edge from anode testing a context bit.

When the context is P (00), a traversaI of the BDD goes through node e, which

represents the context-insensitive points-to relation for the context P, namely every

pointer having the points-to set {X, Y}. Wh en the context is Q (01), a traversaI of the

BDD goes through node c, which represents the context-insensitive points-to relation

for that context. Finally, when the context is either R or S, a traversaI of the BDD

goes through node d, which represents the context-insensitive points-to relation that

is common to those two contexts and makes them equivalent, namely the points-to

set {X, Y, Z} for pointers a and c, and the empty points-to set for pointers band d.

The measurements of the number of equivalence classes of contexts are shown in

Table 5.3. Again, the "context-insensitive" columns show the actual number of equiv­

alence classes of contexts, while the other columns give a multiple of the "context­

insensitive OTF" number (i. e. the average number of equivalence classes per method).

160

5.3. Number of Contexts

Contexts

Pointer Variables

Pointer Targets

1 1 /
1 1 /
1//
1 1 /
Il //

d1
Figure 5.2: BDD for relation from Figure 5.1

161

Empirical Study of Context Sensitivity

context-insens. object-sensitive caU site

Benchmark AOT OTF 1 2 3 IR 2U 1 2 IR ZCWL

bh 3161 2584 8.3 9.3 10.3 11.9 11.2 2.4 3.9 4.7 3.3

bisort 3116 2542 8.4 9.4 10.4 12.0 11.3 2.4 3.9 4.7 3.3

em3d 3148 2553 8.3 9.4 10.4 12.0 11.3 2.4 3.9 4.7 3.3

health 3132 2557 8.3 9.4 10.4 12.0 11.3 2.4 3.9 4.7 3.3

mst 3133 2559 8.3 9.4 10.4 12.0 11.3 2.4 3.9 4.7 3.3

perimeter 3144 2569 8.3 9.4 10.3 11.9 11.2 2.4 3.9 4.7 3.3

power 3133 2559 8.3 9.4 10.3 12.0 11.2 2.4 3.9 4.7 3.3

treeadd 3109 2535 8.4 9.5 10.4 12.1 11.3 2.4 3.9 4.7 3.3

tsp 3141 2546 8.3 9.4 10.4 12.0 11.3 2.4 3.9 4.7 3.3

voronoi 3163 2590 8.3 9.4 10.3 11.9 11.2 2.4 3.9 4.7 3.3

compress 10990 2597 8.4 9.9 11.3 12.1 12.2 2.4 3.9 4.9 3.3

db 10994 2614 8.5 9.9 11.4 12.1 12.3 2.4 3.9 5.0 3.3

jack 11246 2870 8.6 10.2 11.6 11.9 12.3 2.4 3.9 5.0 3.4

javac 12121 3781 10.4 17.7 33.8 14.3 41.3 2.7 5.3 5.4

jess 11621 3217 8.9 10.6 12.0 13.9 12.9 2.6 4.2 5.0 3.9

mpegaudio 11199 2794 8.1 9.4 10.8 11.5 11.7 2.4 3.8 4.8 3.3

mtrt 11116 2739 8.3 9.7 11.1 11.8 12.0 2.5 4.0 4.9 3.4

raytrace 11116 2739 8.3 9.7 11.1 11.8 12.0 2.5 4.0 4.9 3.4

soot-c 5503 4838 7.1 13.7 18.4 9.8 15.6 2.6 4.2 4.8

sablecc-j 12817 5609 6.9 8.4 9.6 9.5 10.0 2.3 3.6 3.9

polyglot 6205 5617 7.9 9.4 10.8 10.2 12.4 2.4 3.7 4.7 3.3

antlr 4494 3898 9.4 12.1 13.8 13.2 14.7 2.5 4.1 5.2 4.3

bloat 6497 5238 10.2 44.6 12.9 2.8 4.9 5.2 6.7

chart 14805 7070 10.0 17.4 18.2 21.4 2.7 4.8

jython 5275 4402 9.9 55.9 15.6 60.0 2.5 4.3 4.6 4.0

pmd 8498 7220 7.6 14.6 17.0 11.0 19.2 2.4 4.2 4.2

ps 11745 3875 8.7 9.9 11.0 12.0 16.0 2.6 4.0 5.2 4.4

Table 5.3: Number of equivalence classes of abstract contexts

162

5.3. Number of Contexts

The relatively small size of these numbers compared to the total numbers of con­

texts in Table 5.2 explains why a BDD can effectively represent the analysis infor­

mation, since it automatically merges the representation of equal points-to relations,

so each distinct relation is only represented once. If we had sorne idea before design­

ing an analysis which abstract contexts are likely to be equivalent, we could define

a new context abstraction in which these equivalent contexts are merged. That is,

each equivalence class of old abstract contexts would be represented by a single new

abstract context. If we had such a new context abstraction, the context-sensitive

analysis could be implemented without the need for BDDs.

It is interesting to note that in the 1-, 2-, and lR-object-sensitive analysis, the

number of equivalence classes of contexts is generally about 3 times as high as in

the corresponding 1-, 2-, and lR-call site string analysis. This indicates that receiver

objects better partition the space of concrete calling contexts that give rise to distinct

points-to relations. That is, if at run time, the run-time points-to relation is different

in two concrete calls to a method, it is more likely that the two calls will correspond

to distinct abstract contexts if receiver objects rather than call sites are used as the

context abstraction. This observation leads us to hypothesize that object-sensitive

analysis should be more precise than the call site string analysis; we will see more

direct measurements of precision in the upcoming sections.

In both object-sensitive and call site string analyses, making the context string

longer increases the number of equivalence classes of contexts by only a small amount,

while it increases the absolute number of contexts much more significantly. Therefore,

increasing the length of the context string is unlikely to result in a large improvement

in precision, but will significantly increase analysis cost.

In the two analysis variations in which abstract heap objects are modelled with

context (IR-object-sensitive and lR-call-site), the number of equivalence classes of

contexts per method is slightly higher than in the analyses that model abstract heap

objects context-insensitively. This is because the abstract heap objects in the points­

to sets are annotated with abstract contexts, so it is more likely for two points-to

relations to be distinct.

163

Empirical Study of Context Sensitivity

The 2-unique-object-sensitive analysis results in more equivalence classes of con­

texts than even the 3-object-sensitive analysis. This suggests that retaining a second

distinct receiver object in the context string is more useful than retaining the receiver

objects of even two additional calls for the purpose of distinguishing (in the abstract)

contexts that have different run-time points-to sets.

It was initially rather surprising that III the analysis using the

ZhujCalmanjWhaleyjLam algorithm, the number of equivalence classes of ab­

stract contexts is so small, often even sm aller than in the 2-call-site-sensitive

analysis. The algorithm effectively performs a k-CFA analysis, where k is the maxi­

mum call depth in the original call graph; k is likely to be much higher than 2. The

number of equivalence classes of contexts when using the ZhujCalmanjWhaley jLam

algorithm is small because the algorithm merges strongly connected components

in the call graph, and models all call edges in each such component in a context­

insensitive way. In contrast, the 2-call-site-sensitive analysis models all call edges

context-sensitively, including those in strongly connected components. Indeed, a

very large number of methods are part of sorne strongly connected component. The

initial call graph for each of our benchmarks contains a large strongly-connected

component of 1386 to 2926 methods, representing 36% to 53% of all methods in

the call graph. In particular, this strongly-connected component always includes

many methods for which context-sensitive analysis would be particularly use fuI ,

such as the methods of the String class and the standard collections classes. These

methods are used extensively within the Java standard library, and contain many

calls to each other. We examined this large strongly-connected component and found

many distinct cycles; there was no single method that, if removed, would break the

component. In summary, the reason for the surprisingly small number of equivalence

classes of abstract contexts when using the Zhuj CalmanjWhaley jLam algorithm is

that it models a large portion of the call graph context-insensitively.

164

5.3. Number of Contexts

5.3.3 Distinct points-ta sets

Finally, we measure the number of distinct points-to sets that appear in the points-to

analysis result. This number is an indication of how difficult it would be to efficiently

represent the context-sensitive points-to sets in a non-BDD-based analysis impIe men­

tation, assuming there was already a way to represent the contexts themselves. An

increase in the number of distinct points-to sets also suggests an increase in precision,

but the connection is very indirect [Hin01, Section 3.2]. We therefore present the

number of distinct points-to sets primarily as a measure of analysis cost, and pro­

vide more direct measurements of the precision of clients of the analysis later in this

chapter. In traditional, context-insensitive, subset-based points-to analyses, the rep­

resentation of the points-to sets often makes up most of the memory requirements of

the analysis. If the traditional analysis stores points-to sets using shared bit-vectors

as suggested by Heintze [Hei99], each distinct points-to set need only be stored once.

Therefore, the number of distinct points-to sets approximates the space requirements

of such a traditional representation.

The number of distinct points-to sets can be measured on the points-to relation

BDD using a technique similar to the one we used to measure the number of equivalent

contexts. The BDD must first be arranged so that the attribute of abstract heap

objects is assigned to the very bottom physical domain of the BDD. In particular,

the physical domain assignment that we used to measure the number of equivalent

contexts satisfies this requirement. The number of distinct points-to sets is then equal

to the number of BDD nodes that test a bit of the abstract heap object attribute or are

terminal nodes, and that have one or more incoming edges from a BDD node testing

a bit strictly above the abstract heap object attribute. Each such node represents a

unique points-to set, and for each points-to set in the points-to relation, there is such

a node in the BDD.

To illustrate this, we return to our example points-to relation from Figure 5.1

and the BDD representing it from Figure 5.2. The points-to relation contains three

distinct points-to sets, namely Ü, {X, Y}, and {X, Y, Z}. As expected, the BDD

contains three nodes satisfying the requirement, namely e, f, and the zero terminal

165

Empirical Study of Context Sensitivity

node. Note that node 9 does not satisfy the requirement because it does not have

any incoming edges from anode strictly above the abstract heap objects attribute.

The node e represents the points-to set {X, Y}. The node f represents the points-to

set {X, Y, Z}. The zero terminal node represents the empty points-to set.

The measurements of the number of distinct points-to sets arising with each con­

text abstraction are shown in Table 5.4. In this table, all numbers are the absolute

count of distinct points-to sets, not multiples of the "context-insensitive" calumn.

The numbers of distinct points-to sets are fairly constant in most of the analy­

sis variations, including object-sensitive analyses, call site string analyses, and the

analysis using the Zhu/Calman/Whaley/Lam algorithm. Therefore, in a traditional

points-to analysis implemented using shared bit-vectors, representing the individu al

points-to sets should not be a source of major difficulty even in a context-sensitive

analysis. Future research in traditional implementations of context-sensitive analyses

should therefore be directed at the problem of efficiently representing the contexts,

rather than representing the points-to sets.

However, wh en abstract heap objects are modelled context-sensitively, the ele­

ments of each points-to set are pairs of abstract object and context, rather than

simply abstract abjects, and the number of distinct points-to sets increases about 11-

fold. In addition, it is likely that the points-to sets themselves are significantly larger.

Therefore, in order to implement such an analysis without using BDDs, it would be

worthwhile to look for an efficient way to represent points-to sets of abstract objects

with context.

5.4 Cali Graph

We now turn our attention to the effect of context sensitivity on call graph construc­

tion. For the purposes of comparison, we have constructed context-sensitive call

graphs, removed their contexts, and measured differences in their context-insensitive

projections. We adopted this methodology because context-sensitive call graphs using

different context abstractions are not directly comparable. Each node in the graph

166

5.4. CalI Graph

context-insens. ob ject-sensitive call site

Benchmark AOT OTF 1 2 3 IH 2U 1 2 IH ZCWL

bh 3466 3192 3143 3230 3251 34239 4356 3229 3125 36784 3115

bisort 3410 3136 3101 3187 3206 34047 4309 3185 3084 36671 3071

em3d 3446 3152 3111 3200 3220 34080 4323 3199 3096 36708 3087

health 3434 3158 3120 3205 3224 34110 4327 3206 3103 36710 3089

mst 3419 3145 3112 3201 3221 34094 4329 3193 3091 36673 3080

perimeter 3422 3148 3109 3197 3217 34040 4326 3196 3094 36807 3083

power 3436 3162 3118 3206 3226 34072 4329 3206 3101 36699 3094

treeadd 3414 3140 3101 3189 3209 34017 4313 3188 3085 36673 3075

tsp 3434 3140 3100 3188 3208 34019 4311 3188 3085 36678 3073

voronoi 3440 3166 3124 3212 3232 34251 4341 3212 3108 36774 3112

compress 10574 3178 3150 3240 3261 34355 4371 3227 3125 38242 3139

db 10590 3197 3170 3261 3283 34637 4401 3239 3133 38375 3173

jack 10847 3441 3411 3507 3527 37432 4704 3497 3377 40955 3541

Javac 11789 4346 4367 4579 4712 55196 16397 4424 4303 54866

jess 11340 3834 4433 4498 4514 51452 6537 4589 4426 42614 4644

mpegaudio 11627 4228 4179 4272 4293 36563 5402 4264 4157 67565 4175

mtrt 10739 3349 3287 3377 3396 35154 4531 3387 3263 38758 3282

raytrace 10739 3349 3287 3377 3396 35154 4531 3387 3263 38758 3282

soot-c 4937 4683 4565 4670 4657 45974 7400 4722 4550 52937

sablecc-j 12308 5753 5777 5895 5907 52993 7893 5875 5694 59748

polyglot 5774 5591 5556 5829 5925 50587 8120 5682 5516 59837 5575

antlr 4792 4520 5259 5388 5448 54942 7388 4624 4535 54176 4901

bloat 5853 5337 5480 5815 55309 5452 5342 49230 6658

chart 16136 9608 9914 10168 233723 16610 9755 9520

jython 5128 4669 5111 5720 74297 21546 4968 4857 46280 8587

pmd 7980 7368 7679 7832 7930 94403 16706 7671 7502 103990

ps 11796 4610 4504 4639 4672 47244 22670 4656 4521 58513 4802

Table 5.4: Total number of distinct points-ta sets in points-ta analysis results

167

Empirical Study of Context Sensitivity

represents a pair of method and abstract context, but the set of possible abstract

contexts is different in each context variation. In the context-insensitive projection,

each node is simply a method, so the projections are directly comparable. Projecting

away context discards sorne information from the call graph, but only the information

which is not directly comparable between different context abstractions. In partic­

ular, the context-insensitive projection preserves the set of methods reachable from

the program entry points, as well as the set of possible targets of each call site in

the program; it is these sets that we measure. The set of reachable methods is par­

ticularly important because any conservative interprocedural analysis must analyze

all of these methods, so a small set of reachable methods reduces the cost of other

interprocedural analyses.

In our study of call graph construction, it does not make sense to include the

Zhu/Calman/Whaley /Lam algorithm because the context-sensitive call graph it pro­

duces is only as precise as the original context-insensitive call graph that it is given as

input. That is, the context-insensitive projection of the context-sensitive call graph

produced by the Zhu/Calman/Whaley/Lam algorithm is identical to the context­

insensitive OTF call graph that we used as input.

5.4.1 Reachable methods

Table 5.5 shows the number of methods reachable from the program entry points when

constructing the call graph using different variations of context sensitivity, excluding

methods from the standard Java library. In Table 5.5 and all subsequent tables in

this chapter, the most precise entry for each benchmark has been highlighted in boldo

In the case of a tie, the most precise entry that is least expensive to compute has

been highlighted.

For most of the benchmarks, the call graph generated with OTF context­

insensitive points-to analysis is much more precise (smaller) than one generated with

Class Hierarchy Analysis (in the AOT column). Any further improvements due to

context sensitivity are relatively small. The JOlden benchmarks are so simple that

168

5.4. CalI Graph

context-insens. object-sensitive call site actually

Benchmark AOT OTF 1 2 3 1R 2U 1 2 1R executed

bh 60 57 57 57 57 57 57 57 57 57 54

bisort 14 14 14 14 14 14 14 14 14 14 12

em3d 21 21 21 21 21 21 21 21 21 21 18

health 28 27 27 27 27 27 27 27 27 27 26

mst 32 32 32 32 32 32 32 32 32 32 31

perimeter 44 43 43 43 43 43 43 43 43 43 42

power 31 31 31 31 31 31 31 31 31 31 29

treeadd 6 6 6 6 6 6 6 6 6 6 5

tsp 15 15 15 15 15 15 15 15 15 15 12

voronoi 61 60 60 60 60 60 60 60 60 60 44

compress 90 59 59 59 59 59 59 59 59 59 56

db 95 65 64 64 64 64 64 65 64 65 51

jack 348 317 313 313 313 313 313 316 313 316 291

Javac 1185 1154 1147 1147 1147 1147 1147 1147 1147 1147 778

jess 683 630 629 629 629 623 629 629 629 629 395

mpegaudio 306 255 251 251 251 251 251 251 251 251 222

mtrt 217 189 186 186 186 186 186 187 187 187 182

raytrace 217 189 186 186 186 186 186 187 187 187 180

soot-c 2395 2273 2264 2264 2264 2264 2264 2266 2264 2266 1055

sablecc-j 1904 1744 1744 1744 1744 1731 1744 1744 1744 1744 1034

polyglot 2540 2421 2419 2419 2419 2416 2419 2419 2419 2419 2037

antlr 1374 1323 1323 1323 1323 1323 1323 1323 1323 1323 1099

bloat 2879 2464 2451 2451 2451 2451 2451 2451 138

chart 3227 2081 2080 2080 2031 2080 2080 2080 854

jython 2007 1695 1693 1693 1683 1694 1694 1693 1694 1004

pmd 4997 4528 4521 4521 4521 4509 4521 4521 4521 4521 1817

ps 840 835 835 835 835 834 835 835 835 835 285

Table 5.5: Number of reachable benchmark (non-library) methods in calI graph

169

Empirical Study of Context Sensitivity

a context-insensitive OTF analysis already generates a call graph that is almost per­

fectly precise. These call graphs are not much larger than the number of methods

actually executed during a run of the benchmark, shown in the right-most column.3

For most of the more significant benchmarks, call graph construction benefits

slightly from l-object sensitivity. The largest difference is 13 methods, in the bloat

benchmark. All of these methods are visit methods in an implementation of the

visitor design pattern, in the class AscendVisi tor. This class traverses a parse tree

from a starting node upwards toward the root of the tree, visiting each node along the

way. Sorne kinds of nodes have no descendants that are ever the starting node of a

traversaI, so the visit methods of these nodes can never be called. However, in order to

prove this, an analysis must analyze the visitor dispatch method context-sensitively

in order to keep track of the kind of node from which it was called. Therefore, a

context-insensitive analysis fails to show that these visit methods are unreachable.

In jess, sablecc-j, polyglot, chart, jython, pmd, and ps, modelling abstract heap ob­

jects object-sensitively further improves the precision of the call graph. In the sablecc-j

benchmark, an additional 13 methods are proved unreachable. The benchmark in­

cludes its own implementation of maps similar to those in the Java standard library.

The maps are instantiated in a number of places, and different kinds of objects are

placed in the different maps. Methods such as toStringO and equalsO are called

on sorne of the maps but not others. As a result, toStringO and equalsO are called

on sorne of the objects placed in the maps, but not on others. However, the objects

stored in every map are placed in map entry objects, which are allocated at a single

point in the map code. When abstract heap objects are modelled without context, all

map entries are modelled by a single abstract object, and the contents of all maps are

confiated. When abstract heap objects are modelled with context, the map entries

are treated as separate objects depending on which map they were created for. Note

3The perfectly precise caU graph would contain the union of aU methods and caU edges executed
when the program is run on aU inputs. The static caU graphs overestimate the perfect caU graph,
while the dynamic caU graphs underestimate it (because they are observed while running the program
on only one input). For example, although we do not know the perfect caU graph for the bh
benchmark, we know that it must contain between 54 and 57 non-library methods. Therefore, we
know that the OTF caU graph, with 57 non-library methods, is not much bigger than the perfect
caU graph.

170

5.4. CalI Graph

that successfully distinguishing the map entries requires receiver objects to be used

as context, rather than call site strings. The code that allocates a new entry is in a

method that is always called from the same calI site, in another method of the map

class. In general, although modelling abstract heap objects with context improved

the calI graph for sorne benchmarks in an object-sensitive analysis, it never made

any difference in analyses using calI site strings as the context abstraction (i. e. the

1-call-site and 1H-call-site columns are the same).

Overall, object-sensitive analysis results in slightly smaller calI graphs than calI

site string analysis. The l-object-sensitive call graph is never larger than the 1-

call-site-sensitive call graph, and it is sm aller on db, jack, mtrt, raytrace, 500t-c, and

jython. On the db, jack, and jython benchmarks, the call-site-sensitive call graph can

be made as small as the l-object-sensitive call graph, but it requires 2-call-site rather

than 1-call-site analysis.

The cost of client interprocedural analyses depends on the number of methods in

the whole call graph, not just the subset excluding the Java standard library. The

number of methods in the whole call graph is shown in Table 5.6. All variations of

using points-to analysis to construct the call graph result in a mu ch smaller call graph

than when using CHA, and therefore are likely to speed up client interprocedural

analyses. However, compared to a context-insensitive points-to analysis, the various

context-sensitive analyses have little effect on the overall size of the call graph.

Notice that even the most precise context-sensitive analyses pro duce a call graph

much bigger than the set of methods actually executed, shown in the rightmost column

of the table. This difference is due not to remaining imprecision in the static call graph

construction, but to limited coverage by the benchmarks of rarely-used features of the

standard Java library. For example, one cause of a large number of methods in the

static call graphs is Java's Jar File signing feature. The Jar Files containing classes to

be executed may be cryptographically signed. If they are, the Java VM automatically

loads and runs a large amount of cryptography code to verify the signatures. Since it is

possible for the the cryptography code to run, it must be included in any conservative

call graph. However, none of the runs of any of our benchmarks actually run the

cryptography code, because their Jar Files are not signed.

171

Empirical Study of Context Sensitivity

cantext-insens. abject-sensitive call site actually

Benchmark AOT OTF 1 2 3 1H 2U 1 2 1H executed

bh 3425 2694 2643 2643 2643 2608 2645 2647 2643 2647 459

bisort 3377 2649 2598 2598 2598 2563 2600 2602 2598 2602 414

em3d 3407 2657 2606 2606 2606 2571 2608 2610 2606 2610 425

health 3391 2662 2611 2611 2611 2576 2613 2615 2611 2615 435

mst 3393 2665 2614 2614 2614 2579 2616 2618 2614 2618 434

perimeter 3405 2676 2625 2625 2625 2590 2627 2629 2625 2629 443

power 3394 2666 2615 2615 2615 2580 2617 2619 2615 2619 427

treeadd 3367 2639 2588 2588 2588 2553 2590 2592 2588 2592 407

tsp 3402 2652 2601 2601 2601 2566 2603 2605 2601 2605 404

voronoi 3427 2701 2649 2649 2649 2614 2651 2653 2649 2653 450

compress 11492 2706 2655 2655 2655 2620 2657 2659 2655 2659 463

db 11499 2725 2671 2671 2671 2636 2673 2678 2671 2678 483

jack 11750 2980 2943 2943 2943 2885 2945 2962 2943 2962 739

javac 12627 3900 3832 3832 3832 3797 3834 3841 3834 3841 1283

jess 12130 3338 3285 3285 3285 3244 3287 3292 3286 3292 846

mpegaudio 11706 2911 2850 2850 2850 2815 2852 2853 2850 2853 637

mtrt 11621 2858 2801 2801 2801 2766 2803 2809 2802 2809 616

raytrace 11621 2858 2801 2801 2801 2766 2803 2809 2802 2809 611

soot-c 5789 4964 4922 4922 4922 4873 4924 4938 4922 4938 1549

sablecc-j 13306 5776 5686 5686 5686 5622 5688 5713 5695 5713 1856

polyglot 6441 5737 5679 5679 5679 5636 5681 5703 5680 5703 3093

antlr 4775 4006 3950 3950 3950 3915 3952 3958 3950 3958 1783

bloat 6824 5375 5325 5325 5271 5341 5326 5341 1010

chart 15488 7302 7228 7228 7137 7238 7252 7235 2790

jython 5587 4542 4503 4503 4442 4509 4525 4503 4525 1858

pmd 8905 7371 7328 7328 7328 7285 7330 7344 7330 7344 2581

ps 12240 4017 3944 3944 3944 3904 3946 3987 3945 3987 945

Table 5.6: Total number of reachable methods in call graph

172

5.5. Virtual CalI Resolution

5.4.2 Cali edges

Table 5.7 shows the size of the calI graph in terms of calI edges rather than reachable

methods. Only calI edges originating from a benchmark (non-library) method are

counted.

In general, context sensitivity makes little difference to the size of the calI graph

wh en measured this way, with one major exception. In the sablecc-j benchmark, the

number of calI edges is 17925 in a context-insensitive analysis, but only 5175 in a 1-

object-sensitive analysis. This could make a significant difference to the cost of a client

analysis whose complexity depends on the number of edges in the calI graph. The

large difference is caused by the following pattern of code. The sablecc-j benchmark

contains code to represent a parse tree, with many different kinds of nodes. Each

kind of node implements a method called removeChild O. The code contains a large

number of calls of the form this. getParent 0 . removeChild(this). In a context­

insensitive analysis, getParent () is found to possibly return any of hundreds of

possible kinds of nodes. Therefore, each of these many calls to removeChild(this)

results in hundreds of calI graph edges. However, in a context-sensitive analysis,

getParent 0 is analyzed in the context of the this pointer. For each kind of node,

there is a relatively small number of kinds of nodes that can be its parent. Therefore,

in a given context, getParent 0 is found to return only a small number of kinds of

parent node, and therefore each calI site of removeChildO adds only a small number

of edges to the calI graph.

5.5 Virtual Cali Resolution

Table 5.8 shows the number of virtual calI sites for which the calI graph contains

more than one potential target method. CalI sites with at most one potential target

method can be converted to cheaper static instead of virtual calls, and they can

be inlined, possibly enabling many other optimizations. Therefore, an analysis that

proves that calI sites are not polymorphie can be used to significantly improve run­

time performance.

173

Empirical Study of Context Sensitivity

context-insens. object-sensitive call site actually

Benchmark AOT OTF 1 2 3 1H 2U 1 2 1H executed

bh 354 187 187 187 187 187 187 187 187 187 129

bisort 57 57 57 57 57 57 57 57 57 57 30

em3d 162 78 78 78 78 78 78 78 78 78 43

health 234 90 90 90 90 90 90 90 90 90 70

mst 177 82 82 82 82 82 82 82 82 82 50

perimeter 113 105 105 105 105 105 105 105 105 105 65

power 108 108 108 108 108 108 108 108 108 108 54

treeadd 32 32 32 32 32 32 32 32 32 32 19

tsp 60 60 60 60 60 60 60 60 60 60 36

voronoi 206 201 201 201 201 201 201 201 201 201 92

compress 456 270 270 270 270 270 270 270 270 270 118

db 940 434 427 427 427 427 427 434 427 434 184

jack 1936 1283 1251 1251 1251 1250 1251 1276 1251 1276 833

Javac 13146 10360 10296 10296 10296 10296 10318 10318 10301 10318 2928

jess 4700 3626 3618 3618 3618 3571 3618 3618 3618 3618 919

mpegaudio 1182 858 812 812 812 812 812 812 812 812 400

mtrt 925 761 739 739 739 739 739 746 746 746 484

raytrace 925 761 739 739 739 739 739 746 746 746 478

soot-c 20079 14611 14112 14112 14112 13868 14160 14185 14112 14185 2860

sablecc-j 24283 17925 5175 5140 5140 5072 5140 5182 5140 5182 2326

polyglot 19898 11768 11564 11564 11564 11374 11537 11566 11566 11566 5440

antlr 10769 9553 9553 9553 9553 9553 9553 9553 9553 9553 4196

bloat 36863 18586 18143 18143 17722 18166 18143 18166 477

chart 24978 9526 9443 9443 9178 9443 9443 9443 2166

jython 13679 9382 9367 9367 9307 9374 9367 9365 9367 2898

pmd 29401 18785 18582 18582 18580 18263 18587 18601 18599 18601 3879

ps 13610 11338 11292 11292 11292 10451 11298 11298 11292 11298 705

Table 5.7: Total number of call edges in call graph originating from a benchmark

(non-library) method

174

5.5. Virtual Call Resolution

context-insens. abject-sensitive caU site

Benchmark AOT OTF 1 2 3 1R 2U 1 2 1R

bh 17 7 7 7 7 7 7 7 7 7

bisort 0 0 0 0 0 0 0 0 0 0

em3d 20 0 0 0 0 0 0 0 0 0

health 10 0 0 0 0 0 0 0 0 0

mst 1 0 0 0 0 0 0 0 0 0

perimeter 16 16 16 16 16 16 16 16 16 16

power 0 0 0 0 0 0 0 0 0 0

treeadd 0 0 0 0 0 0 0 0 0 0

tsp 0 0 0 0 0 0 0 0 0 0

voronoi 2 0 0 0 0 0 0 0 0 0

compress 16 3 3 3 3 3 3 3 3 3

db 36 5 4 4 4 4 4 5 4 5

jack 474 25 23 23 23 22 23 24 23 24

javac 908 737 720 720 720 720 720 720 720 720

Jess 121 45 45 45 45 45 45 45 45 45

mpegaudio 40 27 24 24 24 24 24 24 24 24

mtrt 20 9 7 7 7 7 7 8 8 8

raytrace 20 9 7 7 7 7 7 8 8 8

soot-c 1748 983 913 913 913 913 913 938 913 938

sablecc-j 722 450 325 325 325 301 325 380 325 380

polyglot 1332 744 592 592 592 585 592 592 592 592

antlr 1086 843 843 843 843 843 843 843 843 843

bloat 2503 1079 962 962 961 962 962 962

chart 2782 254 235 235 214 235 235 235

jython 646 347 347 347 346 347 347 347 347

pmd 2868 1224 1193 1193 1193 1163 1193 1205 1205 1205

ps 321 304 303 303 303 300 303 303 303 303

Table 5.8: Total number of potentially polymorphie eall sites in benehmark (non­

library) eode

175

Empirical Study of Context Sensitivity

For all but two of the JOlden benchmarks, even a call graph based on context­

insensitive points-t~ analysis is sufficient to devirtualize all the calls. Note, however,

that Class Hierarchy Analysis is insufficient to devirtualize many of these call sites.

In the benchmarks written in an object-oriented style, notably javac, soot-c,

sablecc-j, polyglot, bloat, and pmd, a further significant number of call sites can be de­

virtualized using object-sensitive analysis (compared to context-insensitive analysis).

In sorne cases, call site string analysis gives the same improvement, but never any

more, and in the case of soot-c and sablecc-j, the improvement from l-object-sensitive

analysis is much greater than from l-call-site string analysis.

In sablecc-j, there are three key sets of call sites that can be devirtualized using

context-sensitive analysis. Any context-sensitive analysis is sufficient to devirtualize

the first set of call sites. Devirtualization of the second set of call sites requires an

object-sensitive analysis; an analysis using call sites as the context abstraction cannot

prove them to be monomorphic. Devirtualization of the third set of call sites not only

requires an object-sensitive analysis, but it also requires that abstract heap objects

be modelled with context.

The first set of call sites contains the calls to the removeChild () method men­

tioned in Section 5.4.2. Object sensitivity reduces the number of potential target

methods at each of these call sites. At many of them, it reduces the number down to

one, so the calls can be devirtualized. The same improvement can be obtained with

call site string context sensitivity.

The second set of call sites are calls to methods of iterators over lists. The sablecc-j

benchmark contains several implementations of lists similar to those in the standard

Java library. A call to i terator () on any of these lists invokes i terator () on

the AbstractList superclass, which in turn invokes the listlteratorO method

specific to each list. The actual kind of iterator that is returned depends on which

listlteratorO was invoked, which in turn depends on the receiver object of the

call to iteratorO; it is independent of the call site of listlteratorO, which is

always the same site in iteratorO. Therefore, calls to hasNextO and nextO on

the returned iterator can be devirtualized only with an object-sensitive analysis.

The third set of call sites are calls to methods such as toString () and equals ()

176

5.6. Cast Safety

on objects stored in maps. As we explained in Section 5.4.1, object-sensitive mod­

elling of abstract heap objects is required distinguish the internaI map entry objects

in each separate use of the map implementation. The map entry objects must be

distinguished in or der to distinguish the objects that are stored in the maps. There­

fore, devirtualization of these calls to methods of objects stored in maps requires an

object-sensitive analysis that models abstract heap objects with context.

5.6 Cast Safety

We evaluated the precision of the cast safety analysis implemented in PADDLE and

described in Section 4.4.2 on the different variations of context sensitivity. Table 5.9

shows the number of casts in each benchmark that cannot be statically proven safe

by the cast safety analysis.

Context sensitivity improves precision of the cast safety analysis in the bh, jack,

javac, mpegaudio, mtrt, raytrace, soot-c, sablecc-j, polyglot, antlr, bloat, chart, jython,

pmd, and ps benchmarks. Object sensitive cast safety analysis is never less precise and

often significantly more precise than the call site string context sensitive variations.

The improvements due to context sensitivity are most significant in the polyglot and

javac benchmarks. In voronoi, db, jack, javac, jess, soot-c, sablecc-j, polyglot, antlr,

bloat, chart, jython, pmd, and ps, modelling abstract heap objects with receiver object

context further improves precision of cast safety analysis.

The polyglot benchmark contains a hierarchy of classes representing different kinds

of nodes in an abstract syntax tree. At the root of this hierarchy is the Node _ c class.

This class implements a method called copy () which, like the clone () method of

java.lang.Object, returns a copy of the node on which it is called. In fact, the

copyO method first uses cloneO to create the copy of the node, and then performs

sorne additional processing on it. The static return type of the copy 0 method is

java. lang. Object, but at most sites calling it, the returned value is immediately

cast to the static type of the node on which it is called. In the PADDLE framework, the

clone 0 method is modelled as returning its receiver; that is, the original object and

177

Empirical Study of Context Sensitivity

cantext-insens. abject-sensitive caU site

Benchmark AOT OTF 1 2 3 1H 2U 1 2 1H ZCWL

bh 14 9 8 8 8 8 8 8 8 8 8

bisort 4 4 4 4 4 4 4 4 4 4 4

em3d 13 3 3 3 3 3 3 3 3 3 3

health 19 14 14 14 14 14 14 14 14 14 14

mst 3 3 3 3 3 3 3 3 3 3 3

perimeter 3 3 3 3 3 3 3 3 3 3 3

power 5 5 5 5 5 5 5 5 5 5 5

treeadd 3 3 3 3 3 3 3 3 3 3 3

tsp 3 3 3 3 3 3 3 3 3 3 3

voronoi 7 7 7 7 7 6 7 7 7 7 7

compress 25 18 18 18 18 18 18 18 18 18 18

db 32 27 27 27 27 21 27 27 27 27 27

jack 151 146 145 145 145 104 145 146 145 146 146

javac 412 405 370 370 370 363 389 391 370 391

jess 137 130 130 130 130 86 130 130 130 130 130

mpegaudio 56 42 38 38 38 38 38 40 40 40 42

mtrt 36 31 27 27 27 27 27 27 27 27 29

raytrace 36 31 27 27 27 27 27 27 27 27 29

soot-c 972 955 932 932 932 878 933 932 932 932

sablecc-j 385 375 369 369 369 331 369 370 370 370

polyglot 3583 3539 3307 3306 3306 1017 3314 3526 3443 3526 3318

antlr 296 295 275 275 275 237 275 276 275 276 276

bloat 1355 1241 1207 1207 1160 1233 1207 1233 1234

chart 1979 1097 1086 1085 934 1086 1070 1070

jython 599 501 499 499 471 499 499 499 499 499

pmd 1477 1427 1376 1375 1375 1300 1394 1393 1391 1393

ps 692 641 612 612 612 421 631 612 612 612 612

Table 5.9: Number of casts potentially failing at run time

178

5.7. Related Work

the cloned version are represented in PADDLE by the same abstract object. Therefore,

given a program that caUs clone 0 directly, the cast safety analysis in PADDLE

correctly determines that the run-time type of the clone is the same as that of the

original. However, in polyglot, the caU to clone 0 is wrapped inside copy 0, and the

casts appear at sites caUing copy O. When copy 0 is analyzed in a context-insensitive

way, it is deemed to possibly return any of the objects on which it is called throughout

the program, so the casts cannot be proven to succeed. In an object-sensitive analysis,

however, copyO is analyzed separately in the context of each receiver object on which

it is called, and in each such context, it returns only an object of the same type as

that receiver object. Therefore, the cast safety analysis proves statically that the

casts of the return value of copy () cannot fail.

The number of potentially failing casts in the polyglot benchmark decreases signif­

icantly between the l-object-sensitive and 1H-object-sensitive columns of Table 5.9,

from 3307 to 1017. The vast majority of these casts are in the parser generated by

JavaCUP [Ana]. Specifically, the parser uses a java. util. Stack as the LR parse

stack. Each object popped from the stack is cast to a Symbol. The generated poly­

glot parser contains about 2000 of these casts. The java. util. Stack class extends

java. util. Vector, which uses an internaI elementData array to store the objects

that have been pushed onto the stack. In or der to prove the safety of the casts, the

analysis must distinguish the array implementing the parse stack from the arrays of

other uses of java. util. Vector in the program. Since the array is aUocated in one

place, in si de the java. util. Vector class, the different array instances can only be

distinguished if abstract heap objects are modeUed with context. Therefore, mod­

elling abstract heap objects with object sensitivity is necessary to statically prove

that these 2000 casts cannot fail.

5.7 Related Work

We refer the reader to Section 4.1 of Chapter 4, in which we presented related work

on context-sensitive points-to analysis and call graph construction. In this section,

179

Empirical Study of Context Sensitivity

we specifically compare our empirical study of the effects of context sensitivity to

related experiments performed by others.

The work most closely related to our empirical evaluation of context-sensitive

interprocedural analyses for Java is the pioneering work on object-sensitive analysis by

Milanova, Rountev, and Ryder [MRR05, MRR02]. They implemented a limited form

of object sensitivity within their points-to analysis framework based on annotated

constraints [RMR01] and built on top of the BANE toolkit [AFFS98]. In particular,

they selected a subset of pointer variables (method parameters, the this pointer, and

the method return value) which they modelled context-sensitively using the receiver

object as the context abstraction. All other pointer variables and all abstract heap

objects were modelled in a context-insensitive way. The precision of the analysis

was evaluated on benchmarks using version 1.1.8 of the Java standard library, and

compared to a context-insensitive and to a call site context-sensitive analysis, using

call graph construction, virtual call resolution, and mod-ref analysis as client analyses.

Our BDD-based implementation of object-sensitive analysis has made it feasible to

evaluate it on benchmarks using the much larger version 1.3.1_01 of the Java standard

library. Thanks to the better scalability of the BDD-based implementation, we have

performed a much broader empirical exploration of the design space of object-sensitive

analyses. In particular, we have modelled aIl pointer variables context-sensitively,

rather than only a subset, we have used receiver object strings of length up to three,

rather than only one, and we have modelled abstract heap objects context-sensitively.

Whaley and Lam [WL04] suggest several client analyses of the

Zhu/Calman/Whaley /Lam algorithm, but state that "[a]n in-depth analysis of

the accuracy of the analyses ... is beyond the scope of this paper." They do,

however, provide sorne preliminary data about thread escape analysis and "type

refinement analysis", an analysis for finding variables whose declared type could

be made more specifie. In this chapter, we have compared the precision of

the Zhu/Calman/Whaley /Lam algorithm against object-sensitive and call site

string context-sensitive analyses using several client analyses, namely call graph

construction, virtual call resolution, and cast safety analysis.

180

5.8. Conclusions

5.8 Conclusions

We have performed an in-depth empirical study of the effects of variations of context

sensitivity on the precision of call graph construction, points-to analysis, and related

client analyses. In particular, we studied five variations of object-sensitive analysis,

three variations of context-sensitive analysis using call sites as the context abstraction,

and the Zhu/Calman/Whaley /Lam algorithm. We evaluated the effects of these

variations of context sensitivity on the number of contexts generated, the number of

distinct points-to sets constructed, and on the precision of call graph construction,

virtual call resolution, and cast safety analysis. We performed our experiments on a

collection of 27 Java benchmarks.

Overall, we found that context sensitivity improved call graph precision by a small

amount, improved the precision of virtual call resolution by a more significant amount,

and enabled a major precision improvement in cast safety analysis.

Object-sensitive analysis was clearly better than the other variations of context

sensitivity that we studied, both in terms of analysis precision and scalability. Client

analyses based on object-sensitive analyses were never less precise than those based

on call site string context-sensitive analyses or on the Zhu/Calman/\"Ihaley /Lam al­

gorithm, and in many cases, they were significantly more precise. As we increased

the length of context strings, the number of abstract contexts produced with object­

sensitive analysis grew much more slowly than with the other variations of context

sensitivity, so object-sensitive analysis scaled better. However, the number of equiv­

alence classes of contexts was greater with object sensitivity than with the other

variations, which indicates that object sensitivity better distinguishes contexts that

give rise to differences in points-to sets.

Of the object-sensitive variations, extending the length of context strings caused

very few additional improvements in analysis precision compared to l-object-sensitive

analysis. However, modelling abstract heap objects with context did improve preci­

sion significantly in many cases. Therefore, we conclude that l-object-sensitive and

IH-object-sensitive analyses provide the best tradeoffs between precision and analysis

181

Empirical Study of Context Sensitivity

efficiency. Our measurements of the numbers of abstract contexts and distinct points­

to sets suggest that it should be feasible to implement an efficient non-BDD-based

l-object-sensitive analysis using current implementation techniques such as shared bit

vectors. Efficiently implementing a 1H-object-sensitive analysis without BDDs will

require new improvements in the data structures and algorithms used to implement

points-to analyses, and we expect that our results will motivate and help guide this

future research.

Although the Zhu/Calman/Whaley /Lam algorithm constructs call site strings of

arbitrary length, we observed that client analyses based on it were never more precise

than those based on object-sensitive analysis. In many cases, analyses based on the

Zhu/ Calman/Whaley /Lam algorithm were even less precise than those based on 1-

call-site-sensitive analysis. We found that the key cause of the disappointing results of

this algorithm was its context-insensitive treatment of calls within strongly connected

components of the initial call graph - a large proportion of call edges were indeed

within such strongly connected components.

182

Chapter 6

Analyses for AspectJ

In this chapter, we use JEDD and PADDLE to implement a novel analysis and

optimization for the aspect-oriented programming language AspectJ. In many cases,

our analysis completely eliminates the run-time overhead of the cfiow construct, which

has been measured [DGH+04] to be very significant in programs that use cfiow.

Our analysis is implemented in the abc [abc, ACH+05a] compiler, which is based on

Soot [VRGH+OO]. The analysis is written in JEDD, and makes use of a call graph

constructed using PADDLE.

We first provide sorne background about aspect-oriented programming, AspectJ,

and the abc compiler in Section 6.1. Next, in Section 6.2, we present the cfiow analysis

and optimization, and provide experimental results in Section 6.3. We present related

work in Section 6.4. Finally, we conclude and suggest an area of future work in

Section 6.5.

6.1 Background

6.1.1 AspectJ background

The purpose of aspect-oriented programming [KLM+97] is to improve modularity

by separating the implementation of cross-cutting concerns from other parts of the

program. For example, in a non-aspect-oriented program, logging code is typically

183

Analyses for AspectJ

spread out in each method whose actions are to be logged. In an aspect-oriented

program, however, the logging code could be consolidated into a separate logging

aspect, which would contain a declarative specification of the places in which it should

apply.

An aspect is a unit of code, much like a class, intended to encapsulate a concern.

The key components of an aspect are pointcuts cou pIed with advice. Each pointcut

is a predicate on joinpoints, which are certain intervals in the dynamic execution

trace of the program. Advice is the code to be executed before, after, or instead of

each joinpoint matching the pointcut expression. A joinpoint shadow is the static

projection of a pointcut. That is, a shadow consists of a consecutive region of one or

more instructions in the code, and each joinpoint is the dynamic interval spanning

the time in which these instructions are executed. Note that if the shadow contains

an instruction that invokes a method, the execution of the invoked method is included

in the joinpoint, although the instructions of the called method are not generally part

of the shadow.

AspectJ is a popular aspect-oriented extension of the Java programming lan­

guage. Two compilers for AspectJ currently exist: the aj c [ajc] compiler formerly

developed at Xerox PARC and currently managed under the Eclipse project, and

abc [abc, ACH+05a], a joint project of the Sable Research Group at McGill Univer­

sity and the Programming Toois Group at the University of Oxford. The analyses and

optimizations discussed in this chapter have been implemented in the abc compiler.

In AspectJ, each pointcut is specified by an expression consisting of pointcut

designators combined using boolean operators. Each pointcut designator expresses

a desired property of the joinpoints to be matched. The AspectJ language defines

about 17 pointcut designators1 for expressing both static and dynamic properties of

joinpoints. For example, the call pointcut designator specifies a pattern of method

signatures, and matches all instructions invoking methods whose signature matches

the pattern. A pointcut designator p is static if there is a set of shadows such that

a joinpoint matches p if and only if its shadow is in the set. Adynamie pointcut

IThe AspectJ language is still in development, so the number of pointcut designators changes
from version to version.

184

6.1. Background

designator may or may not match joinpoints at a given shadow depending on run­

time conditions. To implement static pointcut designators, an AspectJ compiler

computes, at compile-time, the set of shadows that it matches. Implementing dynamic

pointcut designators requires the compiler to insert adynamie residue into the

generated code to test whether the run-time conditions required for the pointcut

designator to match have been satisfied. The overall motivation of our work is to

eliminate these dynamic residues where possible to reduce the overhead of aspect­

oriented programming. We perform analyses to find instances of pointcut designators

which are dynamic in general, but static in the specific instance.

In this chapter, we focus particularly on the cftow pointcut designator, along

with the related designator cftowbelow. Each of these pointcut designators takes a

pointcut p as an argument, and matches all joinpoints contained within a joinpoint

mat ching p. Recall that a joinpoint is an interval in the execution trace of the

program; the pointcut cfiow(p) matches the joinpoint j if the interval of j is included

in the interval of sorne joinpoint j' matched by the pointcut p. The difference between

cfiowbelow and cfiow is that cfiowbelow requires the interval containment to be strict,

whereas cfiow(p) also matches every joinpoint matched by p.

We will use the code in Figure 6.1 as a running example to illustrate the cfiow

pointcut designator and our cfiow analysis. Since pointcuts are predicates on join

points, which are intervals in the dynamic execution trace, we show the dynamic

execution trace for the ex ample code in Figure 6.2, on the right side. The trace

records all events during the execution of the code. To avoid cluttering the trace, in

Figure 6.2, we have shown only two kinds of events: the beginning and end of each

method call. To the left of the trace, we have delimited eight join points (intervals in

the trace), each corresponding to a method execution.

We will now present three sample pointcuts, and explain which join points in the

example trace they match. The pointcut call CC. cO) matches all calls to the method

C. cC). Therefore, in the example trace, it matches the join points numbered 4 and 6.

The pointcut cflowCcall CC. cO» matches all join points inclusively nested within

a join point mat ching call CC. cO). These are the join points numbered 4 and 5,

because they are nested within join point 4, and the join points 6 and 7, because they

185

Analyses for AspectJ

1 class C {

2 void mainO {

3 aO; Il update shadow 1

4 cO; Il update shadow 2

5 dO; Il update shadow 3

6 zO; Il query shadow 1

7 }

8 void aO {

9 bO;

10 }

11 void bO {

12 cO; Il update shadow 4

13 }

14 void cO {

15 zO; Il query shadow 2

16 }

17 void dO {

18 zO; Il query shadow 3

19 }

20 void zO {

21 }

22 }

Figure 6.1: Base code for AspectJ cfiow example

186

6.1. Background

begin caU method mainO

begin caU method aO

begin call method bO

begin caU method cO

5 [begin
call method zO

2 3 4

end call method zO

end call method cO

end call method bO

end call method aO

begin call method cO

1 7 [begin
call method z 0

6

end call method z 0
end call method cO

begin caU method dO

9 [begin
caU method zO

8

end caU method zO

end caU method dO

[bcgin caU method zO

10

end call method zO

end caU method mainO

Figure 6.2: Dynamic trace of method caU join points

187

Analyses for AspectJ

are nested within join point 6. The pointcut cf lowbelow (call (C . c ())) matches aIl

join points strictly nested within a join point matching call (C . c ()). These are the

join point numbered 5, because it is strictly nested within join point 4, and the join

point numbered 7, because it is strictly nested within join point 6.

In the aj c and abc compilers, cfiow(p) is implemented by inserting two kinds

of code sequences into the generated code. Before and after each shadow that may

match p at runtime, code is inserted to record that a joinpoint mat ching p has been

entered and exited. If the pointcut p is dynamic, this code is made conditional on

the dynamic residue of p. We calI this shadow an update shadow. At each shadow

at which cfiow(p) is to be tested, code is inserted to test whether the execution is

currently inside a joinpoint matching p. We calI a shadow at which cfiow(p) is tested

a query shadow.

We illustrate this using the slightly more complicated pointcut

1 call(void C.z())

2 && cflow(call(void C.a()) 1 1 call(void C.c()) 1 1 call(void C.d()))

which will be our running example for the remainder of this chapter. The pointcut

matches every calI to the method C. z () which occurs nested within a calI to one

of the methods C. a 0, C. cO, or C. dO. We leave it as an exercise to the reader

to confirm that in the trace in Figure 6.2, the pointcut matches join points 5, 7,

and 9 In the code in Figure 6.1, the static shadows which may match the argument

of the cfiow at run-time are the calI sites of methods a 0, cO, and dO at lines 3,

4, 5, and 12. We have therefore marked them in the code with comments as update

shadows 1, 2, 3, and 4, respectively. Because the && operator in pointcut expressions

is short-circuiting, the cfiow is tested at aIl shadows that may match the left operand

of the && operator, namely call(void C.zO). Therefore, the query shadows for the

cfiow are the caU sites of z () in lines 6, 15, and 18 of the example code.

In general, joinpoints matching the argument p of cfiow(p) may ne st recursively,

so the update shadows must maintain a nesting count. In addition, AspectJ allows

each pointcut to bind values from the joinpoint it matches, and these values may

be used inside the advice. If the pointcut p binds values, the generated code must

188

6.1. Background

maintain a stack of the bound values of all nested joinpoints mat ching p. In early

implementations of aj c, all cfiow designators were implemented with a stack of bound

values. In the common case of a pointcut binding no values, aj c created an empty

array at each update shadow and pushed it onto the stack. In abc, a much faster

counter is used when p does not bind any values. The aj c compiler has also adopted

this optimization as of version 1.2.1. Nevertheless, in programs that use cfiow, the

overhead of updating and checking the counter or stack can be significant. The goal

of the optimizations presented in this chapter is to eliminate this overhead.

6.1.2 abc background

Development of the abc compiler was motivated by the need for a flexible work­

bench for experimenting with new language features to be added to AspectJ, and

with aspect-oriented analyses and optimizations. The implementation of abc takes

advantage of two existing compiler toolkits. Like PADDLE, abc is a built on top of the

Soot [Soo, VRGH+OO] Java analysis and optimization framework. Soot itself uses the

Polyglot [NCM03] extensible Java frontend to perform semantic checks on Java source

code, then converts it to its Jimple intermediate representation. The flexible design

of Soot and Polyglot made it possible to develop the abc compiler for AspectJ as a

modular extension of what is usually a compiler for Java. Moreover, because we built

abc on top of Soot, we can take advantage of the analyses and optimizations already

implemented, including, in particular, the PADDLE framework which was presented

in Chapter 4.

The high-Ievel structure of abc is shown in Figure 6.3. AspectJ source code

is parsed and analyzed by the Polyglot-based frontend. The front end performs the

semantic checks for Java included with Polyglot, as well as additional AspectJ-specific

checks that were added as part of abc. The final pass in the frontend separates the

AspectJ abstract syntax tree (AST) into a pure Java AST, and an aspect information

data structure containing all the AspectJ-specific information present in the original

code. The Java AST is passed to Soot to be converted to Jimple using Soot's standard

JavaToJimple module. The matcher finds all the shadows in the Jimple code at which

189

Analyses for AspectJ

Bytecode

Generator

"

Weaving

Instructions -1,--_O_P_t,i m_i_ze_r_---J
t

----------1,-__ A_n_a I_y_se_s ______

.....

Dava

Decompiler
1

t
Java Source 1

Figure 6.3: High-level structure of the abc AspectJ compiler

190

6.2. Cfiow Analysis

each pointcut may match, and pro duces weaving instructions prescribing where the

code for each dynamic residue and advice should be woven. The weaver interprets

the weaving instructions and generates the Jimple code to implement the aspects.

FinalIy, Soot converts the Jimple into Java bytecode (or, optionalIy, decompiles it to

Java source code using the Dava [MH02] decompiler).

In designing abc for analyzing and optimizing AspectJ code, we wanted to lever age

the many analyses existing for Java code, without having to rewrite aIl ofthem to be

specifie to AspectJ. Therefore, abc includes a hook to perform analyses on the Jimple

code produced immediately after weaving, optimize the naive weaving instructions

originally produced by the matcher, and then repeat the weaving pro cess on the

original code using the optimized weaving instructions. This is important because

the weaving process may change properties on which the optimizations depend. For

example, the cfiow analysis which we present in this chapter requires a calI graph

which must refiect caUs in the woven code, so the caU graph must be constructed after

weaving. Because the code being analyzed is standard Jimple with no AspectJ-specific

constructs, it is possible to apply standard analyses already in Soot and PADDLE. Of

course, we also implement analyses and optimizations specifie to AspectJ, but these

are greatly simplified by being able to use the results of Java analyses.

6.2 Cflow Analysis

6.2.1 Desired optimization

The customary implementation of a cfiow pointcut expression cfiow(p) incurs over­

head at two kinds of shadows. First, at each shadow matching p, a cfiow stack

is pushed and popped to indicate when we are in the dynamic scope of the cfiow.

We denote these shadows with the term update shadow. Second, at each shadow

where the cfiow pointcut could possibly match, we insert adynamie residue to test

whether the cfiow stack is non-empty. We denote these shadows with the term query

shadow.

191

Analyses for AspectJ

We wish to perform two kinds of optimization. First, if we can determine cflow

stack emptiness at a query shadow staticalIy, we can remove the dynamic residue at

the query shadow, and possibly other code that becomes unreachable. In our running

example, whose code was shown in Figure 6.1, query shadow 1 on line 6 can never

execute within the cfiow of a call to method a 0, cO, or dO, so we can statically

determine that the cflow stack will be empty, and remove the dynamic check at that

line. On the other hand, query shadow 3 on line 18 is in the cflow of method d ()

every time it executes, so the cfiow stack is never empty, and we can remove the

dynamic check. Second, if we can prove that a cflow stack update operation will not

be observed by a stack query within the dynamic scope of a given update shadow,

we can remove the stack update operations at the update shadow. In our running

example, after we have removed the dynamic check at query shadow 3 in line 18, there

are no remaining dynamic checks during any execution of method dO, so the stack

update operations at update shadow 3 in line 5, a call site of dO, can be removed.

6.2.2 Analysis prerequisites

Because the cflow analysis estimates the calling contexts in which cflow shadows

execute, a calI graph is a key prerequisite. To construct the calI graph, we use PADDLE

in its default configuration, and obtain the context-insensitive calI graph from the calI

graph (CG) component. SemanticalIy, cfiow queries are to be evaluated at run-time

on the woven code, so the call graph is built for the woven Jimple code after the

initial weaving. In AspectJ, a method m is considered be within the cflow of another

method m' whenever m executes during the execution of m', regardless of whether m

is invoked by an explicit invoke instruction, or implicitly by the VM for one of the

reasons listed in Section 4.3.2. Therefore, aIl the edges in the calI graph are relevant

to the cflow analysis, including the implicit kinds of edges. There is one exception:

when a method starts a new thread, the new thread is not considered to be in the

cflow of the method that started it. Therefore, the cfiow analysis checks the kind

of each caU edge, and ignores those edges marked as representing implicit caUs to

Thread. run () from Thread. start () .

192

6.2. Cfiow Analysis

The abc compiler must communicate to the cfiow analysis the locations of the

query and update shadows. For each query and update shadow that it weaves, the

weaver records the Jimple instructions that were woven for it. This mapping of

shadows to Jimple instructions is passed to the cfiow analysis to indicate the locations

of the shadows in the Jimple code.

6.2.3 Desired analysis results

For each update shadow sh in the program, we define two sets of instructions to

be computed, mayCfiow(sh) and mustGfiow(sh). The set mayCfiow(sh) contains

every instruction i in the pro gram such that when i is executed, we may be in the

dynamic scope of sh. That is, i may execute after the push operation of sh has been

performed, but before the corresponding pop operation has been performed. The set

mustCfiow(sh) contains every instruction i in the program such that whenever i is

executed, we must be in the dynamic scope of sh.

Whenever a query shadow is not in mayCfiow(sh) , we replace the dynamic test

with a constant false pointcut designator. 2 Any query shadow in mustCfiow(sh) is

replaced with a constant true pointcut designator.

In addition, we calculate a subset necessaryShadows of update shadows whose ef­

fect may be observed at a query shadow. Each update shadow sh E necessaryShadows

satisfies two properties. First, sorne query shadow qsh that has not been resolved stat­

ically may occur in the dynamic scope of sh (i.e. qsh E mayCfiow(sh)). Second, sh

may occur outside the dynamic scope of all update shadows for the same cfiow stack

(i.e. ~sh'.sh E mustCfiow(sh')). This second condition enables us to mark as unnec­

essary those update shadows at which the stack is always already non-empty. In our

running example, update shadow 4 in line 12 is in the cfiow of a call to method aO

every time it executes, so the stack is never empty, and the stack update operation

at update shadow 4 can be removed.

2The cfiow designator may be part of a more complicated pointcut expression. Constant folding
of pointcut expressions is done in a separate phase prior to weaving.

193

Analyses for AspectJ

The optimizations become more complicated when the cfiow binds arguments

because, in this case, each query shadow not only tests whether the stack is non­

empty, but also observes the entry at the top of the stack. We can still resolve

statically those query shadows not in mayCfiow(sh), since we know that the stack

would always be empty when they are executed. However, at the query shadows

where we know the stack is non-empty, we must keep the dynamic residues which

read the entry from the stack. In addition, we can no longer remove update shadows

just because they are in the mustCfiow of some other update shadow which will make

the stack non-empty, because we also need the correct entry to be pushed onto the

stack in addition to the stack being non-empty.

Defining sets of program statements known to execute possibly or definitely within

the cfiow is a natural way of specifying the analysis. However, these sets can be quite

large, and it may be prohibitively costly to express them explicitly in an implemen­

tation of the analysis. Devising a more compact representation could be difficult. We

implement our analysis in the JEDD language and store the sets of program state­

ments in BDDs, which automatically share the representation of common subsets of

statements. BDDs provide us with a compact representation of sets of statements

without any added complexity in the analysis itself.

6.2.4 Computing analysis results

The exact extent of a cfiow shadow depends on subtle details of advice precedence

and the distinction between cfiow and cfiowbelow, and the weaver must respect these

details wh en weaving in the cfiow stack update operations. Because we perform the

analysis on the woven code, we need not consider these details; we simply consider

each cfiow shadow to start immediately after the point where the weaver wove the

cfiow push instruction, and end immediately before the corresponding cfiow pop

instruction. We need to unambiguously classify every instruction in the method as

being either within or outside the cfiow shadow. This requires that there be no jumps

into or out of the shadow, which would bypass the push or pop instruction.

194

6.2. Cfiow Analysis

Due to details of the weaving process, this requirement is always satisfied, except in

the case wh en the argument p of the cfiow expression cfiow(p) is not entirely static,

and requires a dynamic residue. In this case, the weaver generates the dynamic

test at the update shadow. If the pointcut p does not match, we do not enter the

dynamic scope of the cfiow, so a conditional jump skips the stack update operations.

Therefore, when p is not entirely static, the instructions between the push and pop

may execute within or outside the dynamic scope of the cfiow. Since no instruction

can be guaranteed to execute only in the dynamic scope of the cfiow, mustGfiow(sh)

is the empty set in this case.

The JEDD code to compute mayCfiow(sh) for an update shadow sh is shown in

Figure 6.4. The mayCflow set is initialized with the set of statements intraprocedu­

rally within the shadow in line 2. Line 6 queries the call graph for the target methods

of all call statements in the mayCflow set. Line 7 adds all statements in those methods

to the mayCflow set. This pro cess is repeated until a fixed point is reached.

1 <stmt> mayCfIow(Shadow sh) {

2 <stmt> mayCfIow = stmtsWithin(sh);

3 do {

4 old = mayCfIow;

5

6 <method> targets = mayCfIow{stmt} <> caIITargets{stmt};

7 mayCflow 1= targets{method} <> stmtsln{method};

8

9 } whiIe(mayCfIow != old);

10 return mayCfIow;

11 }

Figure 6.4: JEDD code to compute mayGfiow for one update shadow

A cfiow pointcut designator may have many update shadows, and the code in

Figure 6.4 has to be executed separately for each one. We can improve on this

by computing the mayCfiow sets for all the update shadows at once, as shown in

Figure 6.5. The key modification is that a shadow attribute has been added to the

195

Analyses for AspectJ

mayCflow and targets relations, so that instead of storing a single mayCfiow set, they

instead store a relation of all the mayCfiow sets, indexed by shadow. Specifically, the

mayCflow relation contains all pairs (sh, st) such that st E mayCfiow(sh). Computing

the mayCfiow sets all at the same time allows the BDDs to take advantage of any

similarities in the sets. This modification is an example of a general approach often

applicable when expressing computation relationally; rather than writing algorithms

that manipulate a single fact at a time, we write them to manipulate relations of

many facts in a single operation.

1 <shadow, stmt> mayCflow() {

2 <shadow, stmt> mayCflow = OB;

3 for(Shadow sh : shadows) {

4 mayCflow 1= new {sh=>shadow}{} >< stmtsWithin(sh){};

5 }

6 do {

7 old = mayCflow;

8

9

10

11

<shadow, method> targets = mayCflow{stmt} <> callTargets{stmt};

mayCflow 1= targets{method} <> stmtsln{method};

12 } while(mayCflow != old);

13 return mayCflow;

14 }

Figure 6.5: JEDD code to compute mayCfiow for all update shadows at once

Like the mayCfiow sets, mustCfiow is also computed for all the update shadows

at once. However, in this case, the analysis only needs to know that there is sorne

update shadow in whose cfiow the query must be, but it does not need to know

which update shadow it is. That is, the analysis only needs to compute the set

{st 1 3sh : st E mustCfiow(sh)}. Since the mustCfiow algorithm does not need to

keep track of the update shadows, its relations do not need a shadow attribute.

196

6.3. Experimental Results

We show the JEDD code for computing mustGfiow in Figure 6.6. If the cfiow

argument has a dynamic residue, the mustCfiow set is empty (li ne 2), as discussed

earlier. Otherwise, the code first initializes shadowStmts with aIl the statements

intraprocedurally within sorne update shadow (lines 4 to 6), which definitely are in

the mustGfiow. The mustCflow set starts with aIl the statements in the pro gram

(line 7); the loop in lines 10 to 19 will eventually remove aIl statements that can be

reached without passing through a statement in shadowStmts. The badMethods set

stores the methods found not to be in the mustGflow. In line 8, it is initialized to

the entry points of the program. The badStmts set stores the statements found not

to be in the mustGflow. These are the statements in the badMethods (line 13), but

not any of the statements in shadowStmts (line 14), since those are in the cflow. The

badStmts are removed from mustcflow (line 16), and any methods called from them

become badMethods (line 17). The pro cess repeats until a fixed point is reached.

The JEDD code to compute necessaryShadows is shown in Figure 6.7. It begins

with the set of aIl query statements (line 2). On line 3, it removes those known

statically to be false (those which are not in the mayCfiow of any update shadow).

On line 4, it also removes those known statically to be true (those in the mustGfiow

of sorne update shadow), unless the cflow binds arguments. This leaves the query

statements that will be tested dynamicaIly. The necessary shadows are those update

shadows in whose mayCflow any dynamic query statement appears (line 5). Unless

the cfiow binds arguments, we can also remove those update shadows which are

already in the mustGflow of another update shadow (line 6).

6.3 Experimental Results

We evaluated the cfiow optimizations on benchmarks from a wide range of sources.

The benchmarks are listed in Table 6.1. The figure benchmark is a demo from the As­

pectJ programming guide [Asp]. The quicksort benchmark is the example from [Sd03]

with modifications suggested by Gregor Kiczales. The sablecc benchmark is a com­

piler written using the SableCC [GMN+] compiler generator, with an aspect applied

197

Analyses for AspectJ

1 <stmt> mustCfIow() {

2 if(dynamicArgument) return OB;

3 <stmt> shadowStmts = OB;

4 fore Shadow sh : shadows) {

5 shadowStmts 1= stmtsWithin(sh);

6 }

7 <stmt> mustCfIow = lB;

8 <method> badMethods = entryPoints;

9 <stmt> old;

10 do {

Il old mustCfIow;

12

13 <stmt> badStmts = badMethods{method} <> stmtsln{method};

14 badStmts -= shadowStmts;

15

16 mustCfIow -= badStmts;

17 badMethods = badStmts{stmt} <> caIITargets{stmt};

18

19 } whiIe(old != mustCfIow);

20 return mustCfIow;

21 }

Figure 6.6: JEDD code ta compute mustGfiow

1 <shadow> necessaryShadows() {

2 <stmt> queryStmts = aIIQueryStmts;

3 queryStmts &= (shadow=» mayCfIow();

4 if(!bindsArgs) queryStmts -= mustCfIow();

5 <shadow> necessaryShadows = mayCfIow{stmt} <> queryStmts{stmt};

6 if(!bindsArgs) necessaryShadows -=

7 mustCfIow{stmt} <> shadowOfStmt{stmt};

8 }

Figure 6.7: JEDD code ta compute necessaryShadows

198

6.3. Experimental Results

to count memory allocations in each of its phases. The ants benchmark is a simu­

lator of an ant colony designed completely in an aspect-oriented style. The bench­

marks LoD-sim and LoD-weka consist of the Law of Demeter [LLW03] style-checking

aspect applied to two base programs, Certrevsim, a discrete event simulator for cer­

tificate revocation simulation [Am], and Weka, part of the Weka machine leaming

library [WFOO]. Cona [SL04] is a framework for specifying and checking pre- and

post-conditions using aspects. It was applied to the stack example from the Cona

paper, and to Certrevsim.

1 Benchmark Source Lines of Code 1

figure 94

quicksort 72

sablecc 31233

ants 939

LoD-sim 1586

LoD-weka 3912

Cona-stack 291

Cona-sim 1942

Table 6.1: Benchmarks

Static results of our interprocedural cfiow analysis are shown in Table 6.2. The

"query shadows" column shows, for each cfiow pointcut designator, the total number

of query shadows and, of those, how many the analysis determined to be unreach­

able, how many are determined to never or always match, and how many cannot be

determined statically and therefore still require a dynamic test. The "update shad­

ows" column shows the total number of update shadows and the number that the

analysis determines to be necessary, and must remain as dynamic updates even after

the analysis.

With the exception of one cfiow pointcut designator in sablecc, the analysis was

able to statically determine the outcome of aH cfiow queries, and therefore entirely

199

Analyses for AspectJ

Benchmark Query shadows Update shadows

Total Unreach. Never Always Dynamic Total Dynamic

figure 6 0 2 4 0 6 0

quicksort 6 0 2 4 0 3 0

sablecc 985 388 299 298 0 698 0

985 388 332 260 5 1 1

ants 84 0 84 0 0 1 0

LoD-sim 1313 798 515 0 0 41 0

LoD-weka 7031 3501 3530 0 0 41 0

Cona-stack 16 0 14 2 0 27 0

Cona-sim 2 0 2 0 0 2 0

3 3 0 0 0 18 0

4 3 1 0 0 31 0

0 0 0 0 0 2 0

7 5 2 0 0 20 0

0 0 0 0 0 6 0

4 0 4 0 0 5 0

0 0 0 0 0 3 0

Table 6.2: Static interprocedural optimization counts

200

6.3. Experimental Results

remove the dynamic updates and queries of the cfiow stacks or counters. The im­

precision in the sablecc case is due to query shadows in a static initializer. Since any

instruction that uses a class could potentially cause the class to be initialized, the

static initializer could be called from many different places in the pro gram.

Even though the cfiow pointcut in ants binds an argument, it can be eliminated

because it is never queried. This is because the pointcut is being used as an assertion

to find an error condition. By determining that the cfiow never matches, we have

statically verified the assertion.

We were pleasantly surprised that the interprocedural analysis was so effective in

resolving cfiow staticaIly. To confirm that these analysis results are indeed correct,

we ran an the benchmarks with a special dynamic residue woven in to check that the

static analysis results always agreed with the run-time behaviour.

We compiled and timed the benchmarks on a machine with two AMD Athlon

MP 2000+ CPUs running at 1667 MHz, with 2 GB RAM, running Linux version 2.4.20

and the Sun Java HotSpot Client Virtual Machine version 1.4.2-b28. The benchmark

running times are presented in Table 6.3. The three middle columns show the running

times of the benchmarks when compiled with the latest version of the aj c compiler,

the abc compiler in its default configuration (without interprocedural cfiow optimiza­

tions), and the abc compiler with the -03 fiag, which enables the interprocedural cfiow

optimizations. The default configuration of abc includes aIl of the intraprocedural

techniques to reduce the cost of cfiow described in [ACH+05b]; notice that it already

significantly outperforms aj c on most of the benchmarks. The right-most column

shows the additional speedup provided by the interprocedural cfiow optimizations

compared to the default configuration of abc.

The largest speedups are in the figure benchmark, which makes very significant

use of cfiow, and in the ants benchmark, in which the cfiow binds an argument, and

must therefore be tracked with a stack instead of a counter. The speedups on the

other benchmarks are also significant, except for quicksort, in which the overhead of

cfiow is smaIl, and Cona-sim, which becomes slightly slower when the cfiow operations

are removed from it, presumably due to chaotic interactions with the virtual machine

and hardware.

201

Analyses for AspectJ

ajc 1.2.1 abc 1.0.2

Benchmark default default 1 -03 Speedup

figure 167.7 20.3 1.96 936.%

quicksort 28.9 27.4 27.3 0.366%

sablecc 24.2 22.5 20.4 10.3%

ants 32.9 17.9 13.1 36.6%

LoD-sim 35.3 26.2 23.7 10.5%

LoD-weka 113.5 75.2 66.3 13.4%

Cona-stack 56.0 27.4 23.1 18.6%

Cona-sim 69.0 72.0 73.6 -2.17%

Table 6.3: Benchmark running times (seconds)

6.4 Related Work

The work described in this chapter was motivated by an empirical study measuring

the run-time overheads of aspect-oriented features [DGH+04]. The study showed

that this overhead can be very significant, particularly in programs containing cfiow

pointcuts and around advice. We therefore focused on reducing the overhead of

these two constructs [ACH+05b] by devising intraprocedural techniques that reduce

the overhead of cfiow, the interprocedural analyses presented in this chapter that

eliminate cfiow overhead entirely, and efficient implementation techniques for around

advice.

The cfiow analyses presented in this chapter were inspired by earlier work by

Sereni and de Moor [Sd03] on a simple procedurallanguage. For each shadow testing a

cfiow-like pointcut designator, they computed a regular language over-approximating

the set of all call stack configurations possible at the shadow. The pointcut designator

was tested against these call stacks; if it matched all of them or none of them, it could

be resolved statically.

Costanza [Cos03] noted the resemblance between cfiow pointcuts and dynamically

scoped functions in languages such as Lisp. The state captured at a cfiow update

202

6.5. Conclusions

shadow is made available at queries within its dynamic scope. In the same way, state

stored in variables of dynamically scoped functions is available throughout the dy­

namic scope of the function. Neubauer and Sperber [NS01] presented a dynamic scope

analysis intended for automatic pro gram translation from Emacs Lisp to languages

without dynamically scoped variables.

6.5 Conclusions

We have presented an interprocedural analysis and optimization for cfiow pointcuts in

AspectJ. In cases where the analysis resolves all cflow queries statically, it removes all

overhead of dynamic cfiow tests. In our experiments, the analysis did indeed resolve

all queries statically in all but one benchmark. In six of our eight benchmarks, the

cflow overhead that was removed accounted for over 10% of execution time, even after

all intraprocedural techniques for reducing the cost of the cflow tests from [ACH+05b]

had been applied.

Our implementation of the cflow analysis relies on both JEDD and PADDLE. The

JEDD implementation of the cflow analysis is concise, and takes advantage of BDDs

to efficiently represent the large sets of statements that may or must execute within

a given cfiow pointcut. The PADDLE framework is used to construct the call graph

needed by the cflow analysis.

The remarkable static precision of the cfiow analysis suggests an area of future

work in extending AspectJ to allow "dynamic" pointcuts such as cflow to be used in

contexts where currently only "static" pointcuts are allowed, such as in the declare

error construct. Currently, this construct allows programmers to specify very sim­

ple program-specific properties to be verified at compile time. Allowing additional

pointcut designators would make it possible to specify more interesting properties. A

sufficiently precise analysis could check the properties at compile time. Should the

analysis fail to verify a property statically, it could pro duce a warning and weave in

an assertion to check the property at run time.

203

Analyses for AspectJ

204

Chapter 7

Conclusions and Future Work

Compilers and software engineering tools require increasingly precise and efficient

interprocedural program analyses. A key problem in implementing these analyses is

representing the collections of large sets that these analyses manipulate. We have

shown that BDDs are a general-purpose data structure for compactly storing and

efficiently manipulating these sets. In particular, we have shown that a BDD-based

implementation makes it possible for context-sensitive analyses to scale to large Java

programs. In addition, the use of BDDs frees analysis designers from having to design

special-purpose data structures customized for each program analysis, and therefore

makes it easier to develop and experiment with new analyses.

7.1 The Jedd Language and Compiler

We have presented JEDD, a programming language and compiler that makes it feasible

to implement complicated, interrelated program analyses using BDDs. In the JEDD

language: program analyses are expressed at a high level in terms of relations, and

the JEDD compiler translates the relational operations into low-Ievel BDD operations.

In the process, JEDD performs static and dynamic type checking to catch the incon­

sistent uses of relations that would make it infeasible to write the analyses in terms

of BDDs directly. We have designed and implemented within JEDD an algorithm for

fin ding a reasonable assignment of relation attribut es to BDD physical domains. The

205

Conclusions and Future Work

programmer may specify part of the physical domain assignment by hand to tune

performance-critical computations, and use the algorithm to automatically complete

the assignment for the rest of the program. JEDD also provides support for tuning the

BDD representation, including a profiler that graphicaUy displays the shapes of the

BDDs that are constructed during execution. We have identified several patterns of

the BDD shapes associated with common inefficiencies, and suggested techniques for

tuning the physical domain assignment and BDD variable ordering wh en these pat­

terns are observed. FinaUy, we have shown that JEDD introduces almost no overhead

into the performance of program analyses (compared to program analyses imple­

mented directly in terms of BDD operations), and that the JEDD translator scales to

programs as large as our PADDLE interprocedural analysis framework.

In summary, we have shown that BDDs are a flexible way to prototype and ex­

periment with novel interprocedural program analyses.

7.2 The Paddle Interprocedural Analysis Framework

Using JEDD, we have implemented PADDLE, a framework of interrelated interprocedu­

raI program analyses. PADDLE consists of a BDD-based implementation of points-to

analysis with on-the-fly caU graph construction, and related prerequisite and client

analyses. PADDLE supports several variations of context sensitivity, including using

strings of caU sites and strings of receiver objects as the context abstraction. Because

PADDLE represents context information using BDDs, these context-sensitive analyses

scale to much larger Java programs than earlier implementations.

The two key analyses in the PADDLE framework, points-to analysis and caU graph

construction, are prerequisites for many interprocedural program analyses for Java

required by optimizing compilers and software engineering tools. For example, opti­

mizing compilers can make use of interprocedural analysis information to reduce the

overhead of virtual caUs and remove redundant heap accesses. Software engineering

206

7.3. Empirical Evaluation of Context Sensitivity

tools such as bug detectors, program verifiers, and race detectors make use of call

graphs and points-to information.

7.3 Empirical Evaluation of Context Sensitivity

We have used PADDLE to perform an empirical evaluation of the effect of variations of

context-sensitive analyses on the precision of call graph construction, points-to analy­

sis, and related client analyses. Thanks to our use of BDDs to implement the analyses,

we were able to include in our study variations of context sensitivity that could not

be included in earlier studies because their non-BDD implementations were not suf­

ficiently scalable. We showed that object sensitivity [MRR02, MRR05] in particular

does significantly improve precision of interprocedural program analyses. Among

the variations of object sensitivity, extending the length of context strings beyond

one receiver object does not further improve precision of client analyses. However,

modelling abstract heap objects with context does improve precision compared to an

analysis that models only pointer variables with context, although it also increases

the co st of the analysis. Therefore, we conclude that l-object-sensitive analyses, with

or without context-sensitive modelling of abstract heap objects, are the best tradeoffs

between analysis precision and cost.

7.4 Analysis of the cflow Construct

We have designed and implemented in the JEDD language a static analysis of the

cfiow construct in the aspect-oriented language AspectJ. The analysis builds on top

of the call graph constructed by PADDLE. By implementing the analysis at a high

level in JEDD and deferring low-Ievel concerns about efficient data representation

to BDDs, we were able to easily experiment with variations of the analysis during

its development. The final implementation of the analysis very closely resembles its

specification.

207

Conclusions and Future Work

The analysis itself was very successful. In seven of our eight benchmarks, the

analysis resolved all cfiow queries statically, removing all overhead due to the cfiow

construct. In six of the eight benchmarks, this overhead due to cfiow represented

over 10% of execution time.

The high precision of the analysis results suggests that it could be used not only

for reducing the overhead of cfiow, but for statically verifying program specifications

expressed using the cfiow construct.

7.5 Future Work

The JEDD system that we have developed and presented in Chapter 3 provides an

ideal platform for prototyping program analyses. In the future, we will continue to

use it to experiment with new static analyses, particularly for emerging languages

such as AspectJ.

The PADDLE framework that we have developed is a key foundation for appli­

cations of precise interprocedural analyses for Java. We plan to continue to use it

to develop new compiler optimizations, particularly for new language features being

proposed. For example, we recently defined tracematches [AAC+05] as a mecha­

nism for expressing sequences of events in program traces, and for triggering actions

when these sequences are observed. In order to be efficient enough to be practical,

tracematches are likely to require sophisticated interprocedural analyses and opti­

mizations. Furthermore, PADDLE will serve as the foundation of software engineering

tools, including visualizers and verifiers. A simple example of such a tool would be

to integrate the cast safety analysis described in Section 4.4.2 into an Integrated De­

velopment Environment, where it would warn programmers about potentially failing

casts during program development.

In our study of the effects of context sensitivity on analysis precision, we have

identified object sensitivity as a technique deserving further research. In particular,

we have shown that object-sensitive analyses are more precise than other variations,

and that it is likely that efficient implementations of object-sensitive analyses can be

208

7.5. Future Work

found. Our search for these efficient implementations will be guided by the observa­

tions from our study.

The very high precision of our analysis of the cfiow construct in AspectJ suggests

a new area of application of aspect-oriented techniques: static verification of program

properties expressed using aspects. In aspect-oriented languages, aspects are a natural

way for programmers to express assertions about the intended behaviour of their

programs. In current aspect-oriented systems, these assertions can be checked at

run time. By developing precise analyses of aspect-oriented features, we will make it

possible to check these assertions statically.

209

Conclusions and Future Work

210

Appendix A

Proofs

Proposition 1 The problem of fin ding a reasonable physical do main assignment is

NP-complete.

Proof: We prove that the problem is NP-hard by constructing a polynomial reduc­

tion of the NP-complete graph vertex k-colouring problem to it. For a given graph

G, we construct a JEDD program for which a reasonable physical domain assignment

exists if and only if G has a k-colouring.

Let G = (V, E) be a graph for which a k-colouring is to be found. Construct a

JEDD program from it as follows:

1. Declare attributes a, b, and c.

2. Declare k + 1 physical domains do . .. dk .

3. For each vertex Vi E V, declare a JEDD relation variable Xi with schema <a, b>,

and no physical domains specified.

4. For each j with 1 :s; j :s; k and for each Vi E V, add an assignment of a relation

literaI:

Xi = new {o1=>a:d j , o2=>b:do}.

5. For each edge (Vi, Vj) E E, add a statement computing

xi{b} <> ((a=>c) Xj){b}.

211

Proofs

Now, if G has a k-colouring, the following physical do main assignment is reason­

able. For each Vi coloured C(Vi), assign the physical do main dc(vi) to the following

attribute instances:

1. attribute a of Xi,

2. attribute a of the literaI with a explicitly specified to be assigned to dei'

3. attribute a of the result of each composition having Xi as its left argument, and

4. attribute c of the result of the composition having ((a=>c) Xj) as its right

argument.

Conversely, suppose a valid physical domain assignment with no unnecessary re­

places has been found for the JEDD program. Attribute a of each Xi must be assigned

to sorne physical domain, and there is a reason to assign it to any of the physical

domains dl, ... ,dk because of the k literaIs. Attributes a and c of the result of each

composition can only be assigned with reason to the same physical domain as the

corresponding operand. Each composition with arguments Xi and Xj therefore forces

attribute a of Xi and Xj to be assigned to distinct physical domains. Now, whenever

attribute a of Xi is assigned to dj , we colour Vi with the colour j. For each edge

(Vi, Vj) in G, the corresponding composition ensures that Vi and Vj are coloured with

different colours, so we have obtained a k-colouring of G.

Therefore, Gis k-colourable if and only if a reasonable physical domain assignment

exists for the constructed JEDD program, so the physical domain assignment problem

is NP-hard.

Given a physical domain assignment, it can be checked in polynomial time that it

is reasonable. Therefore, finding a reasonable physical domain assignment is in NP.

Since it is also NP-hard, it is NP-complete. 0

Proposition 2 Let G be an attribute def-use gmph, and let -< be an antisymmetric

binary relation on its vertices su ch that a -< b implies that a and b are connected by

an assignment edge in G. Then the foilowing four statements are ail equivalent:

212

1. --< is a well-founded relation.

2. There exists a total order ~ such that a --< b ::::} a < b. (This is the order in

which physical domains could be assigned the vertices.)

3. There exists a total antisymmetric relation ç su ch that a --< b ::::} a C band

there is no triple of distinct vertices a, b, c su ch that a --< b CcC a.

4· On the vertices of every biconnected component C = (Vc , Ec) of the graph

formed by assignment edges) there exists a total antisymmetric relation Çc su ch

that Va, b E Vc.a --< b ::::} a Cc band there is no triple of distinct vertices a, b, c

su ch that a --< b Cc c Cc a.

Proof:

1 ::::} 2:

Suppose --< is a well-founded relation, so that every non-empty subset of vertices

contains a minimal element. Define recursively the sequence of sets Sl, S2, ... ,Sn = 0
by Sl = V, the set of all vertices, and for each i 2 1, Si+1 = Si \ {ai}, where ai is a

minimal element of Si. Then let ~ be the total order defined by i ~ j {:} ai ~ aj.

If ai --< aj, then since aj is a minimal element of Sj, ai cannot be in Sj. But since

Sj = V \ {ak 1 k < j}, it must be the case that ai E {ak 1 k < j}. Therefore, i < j,
so ai < aj. So, for all a, b, a --< b ::::} a < b, satisfying statement 2.

2 ::::} 3:

The total order ~ satisfies the properties required of the relation ç by statement

3. It is a total antisymmetric relation, and a --< b ::::} a < b. Given any triple of

distinct vertices a, b, c, it is not the case that a ~ b ~ c ~ a, since transitivity and

antisymmetry would imply a = b = c. Since a --< b ::::} a ~ b and a < b ::::} a ~ b, it is

also not the case that a --< b < c < a.

3 ::::} 4:

Let ç be a relation satisfying statement 3. Given a biconnected component C =

(Vc, Ec) ofthe graph formed by assignment edges, let Çc be the relation {(a, b) 1 a, b E

Vc 1\ a ç b}. Then Çc satisfies the required conditions of statement 4.

4 ::::} 1:

213

Proofs

We prove this by contradiction. Suppose that statement 4 holds, yet -< is not

well-founded, so there exists an infinite descending chain ... -< a2 -< al -< ao. Since

the number of attribute instances is finite, sorne ai must be repeated; that is, there

exist indices i and j, j < i, with aj = ai.

Let n = j - i and define bk = ai+k for all k, giving the cycle bo = bn -< bn - l -<
... -< bo. Without loss of generality, we can choose the smallest cycle, so that all

the bi 's from bl to bn are distinct. Since every pair x -< y implies an assignment edge

between x and y, the b/s form a cycle in the graph of assignment edges, so they are

all in the same biconnected component. Because -< is antisymmetric, the length of

the cycle, n, is at least 3.

Let ç::;;c be the relation that satisfies statement 4 on the biconnected component

containing the b/s. We show by induction on i that bi Cc bo for all 1 ~ i ~ n - l.

When i = 1, bi Cc bo follows from bl -< bo. Suppose that for sorne k with 2 ~ k <
n - 2, bk Cc bo· It cannot be the case that bo Cc bk+l , since ç::;;c satisfies statement 4,

which states that there is no triple bk+l , bk , bo for which bk+1 -< bk Cc bo Cc bk+l.

Since ç::;;c is total, it must be the case that that bk +1 Cc bo. Therefore, bk Cc bo

implies bk+l Cc bo· By induction, bi Cc bo for all 1 ~ i ~ n - l.

Now we have bn - l Cc bo = bn , but bn -< bn - l implies bn Cc bn - l . This contradicts

antisymmetry of Cc. D

Proposition 3 When the SAT formula produced for the physical domain assignment

problem is unsatisfiable, every unsatisfiable core contains at least one clause of type 3.4
(confiict clause).

Proof: The key idea of the pro of is that if clauses of type 3.4 are removed, the SAT

formula ignores the requirement that conflict edges be respected. We will show that it

is always possible to find a reasonable assignment if all conflict edges are removed, and

such a physical domain assignment therefore corresponds to a satisfying assignment

of the remaining clauses.

We will first construct the total order ~ in which physical domains are assigned to

vertices. We represent the or der by numbering the vertices with consecutive natural

numbers. To each vertex v, we assign a natural number o(v) and define o(v) ~

214

o(V') {::} V ::; V'. We begin by assigning the lowest natural numbers arbitrarily to

the vertices with explicitly specified physical domains. Define the sequence of sets

Ai = {v 1 o(v) ::; i}, so Ai is the set of the first i vertices to be assigned a physical

domain. Let k be the number of vertices with explicitly specified physical domains, so

Ak is the set of these vertices. Recall that there exists a path of assignment edges from

every vertex to a vertex in Ak. Therefore, for all i > k, there must be an assignment

edge from sorne vertex v in V \ Ai to sorne vertex v' in Ai (as long as V \ Ai is not

empty). Otherwise, there would be no path from any vertex in V \ Ai to any vertex

in Ai, but there has to be a path from every vertex in V \ Ai to Ak, and Ak ç Ai'

Having defined the sets Ai, we can inductively number all the vertices in the following

way: for each i > k, find a vertex v E V \ A such that an assignment edge connects

v to sorne vertex in Ai, and define o(v) = i + 1.

Having thus defined the order in which physical domains are to be assigned to

vertices, we can construct a reasonable assignment following the order. We first

assign physical domains to the k vertices for which they have been explicitly specified.

Then each vertex v with o(v) > k has at least one neighbouring vertex v' E Ao(v)-l

connected by an assignment edge. Since v' E Ao(v)-l, o(v') ::; o(v) - 1 < o(v).

Therefore, if we assign physical domains in order, v' will be assigned a physical domain

before v, so there is a reason to assign v the same physical do main as v'.

It can be checked that a physical domain assignment constructed in this way

satisfies clauses 3.1, 3.2, and 3.3. Define v' -< v if and only if o(v') < o(v), and v is

assigned the same physical domain as v'. By the definition of -<, SAT clauses 3.5,

3.6, and 3.7 are satisfied. Since -< satisfies statement 1 of Proposition 2, statement

4 also holds. By statement 4, there exists a relation Çc such that -< and Çc satisfy

SAT clauses 3.8 and 3.9.

We have constructed an assignment satisfying all clauses except those of type 3.4.

Therefore, every unsatisfiable subset of clauses must contain a clause of type 3.4. 0

215

Proofs

216

Appendix B

Jedd Usage Notes

This appendix provides additional practical information for programmers intend­

ing to write JEDD code. Programmers should first read Chapter 3 to learn about

the JEDD system in general. The appendix contains implementation-specifie details

about using the JEDD translator and runtime system.

B.1 Example

The JEDD distribution includes a direct ory called examples containing sample JEDD

code. The direct ory examples/pointsto contains a complete JEDD implementation

of the BDD-based points-to analysis from [BLQ+03J.

B.2 Jedd Source Files

Source files to be processed by JEDD must have one of the extensions . j edd or

. java. It is customary to use the extension . j edd for files containing JEDD-specific

constructs, and . java for files containing plain Java.

JEDD files should import the package j edd. * from the JEDD runtime library. This

package contains interface classes with methods that can be called by JEDD programs.

In particular, the j edd . J edd class is a singleton containing methods affecting the

217

J edd Usage Notes

behaviour of JEDD in general, and jedd.Relation is an interface listing the methods

that can be called on any JEDD relation type. JEDD files should not import the

package j edd. internal. *.

B.3 Selecting a Backend

JEDD currently supports four different BDD libraries as backends: BuDDy, CUDD,

SableJBDD, and JavaBDD. BuDDy is the backend which has the most complete

support in JEDD, which is the most tested, and which tends to perform best. BuDDy

and CUDD are C libraries, so they require that their shared hbrary (. so or . dll) files

be available on the LD_LIBRARY_PATH. Before the program instantiates any relations,

it must must select one of the backends by calling j edd . J edd . v () . setBackend () .

The argument to this method should be one of "buddy", "cudd", "sablejbdd" or

"javabdd".

B.4 Compiling Jedd Code

The JEDD compiler is invoked with the command java jedd.Main. It uses the same

command-line format as Polyglot, with two additional switches for specifying the path

to a SAT solver (-s) and a SAT core extractor (-sc). The simplest way to compile

a project is to list aH the . j edd files on the command line. This will compile them

to . java files, and run j avac on them to compile them to classfiles. The -c switch

disables the j avac pass. If your project consists of both . j edd and . java files, you

can put them aH on the command hne, but be warned that Polyglot will overwrite

your . java files unless you specify an alternate output direct ory with the -d switch.

The points-to analysis example provided with JEDD includes a simple Ant build

file which can be modified for use in other projects.

218

B.5. Using the Profiler

B.5 Using the Profiler

To use the profiler, it must be enabled before the computation to be profiled be­

gins by calling jedd. Jedd. vO . enableProfilingO with a java. io. PrintStream

to which the profile will be written. At the end of the computation, the pro­

file file must be closed by calling jedd.Jedd.vO .outputProfileO. See the file

examples/pointsto/src/Prop. jedd for an example use of the profiler.

Viewing the profile data requires a SQL database and a web server supporting the

CG!. The CGI scripts (found in the profile_ view directory in the JEDD distribu­

tion) are specific to SQLite, but should work with any web server. They expect the

profiling data in a database called profile. db, in the same direct ory as the scripts.

This file can be generated by piping the SQL file generated by the JEDD runtime to

SQLite with the command:

cat profile.sql 1 sqlite profile.db

The web server can be started with the command:

/usr/sbin/thttpd -d /directory/with/cgi/scripts -p 8080 -c '*.cgi'

This starts the web server on port 8080. To view the profiling data, point yOuf web

browser to:

http://127.0.0.1:8080/main.cgi.

219

J edd Usage Notes

220

Appendix C

Paddle User's Guide

This appendix describes how to invoke the PADDLE framework and how to retrieve

the analysis results that it generates in a client analysis. Before reading this appendix

and using PADDLE, users are encouraged to read Chapter 4 which explains the features

and design of PADDLE in detail.

C.1 Invoking Paddle

PADDLE is implemented as a SOOT whole-program phase, and is invoked from the

SOOT command line. The PADDLE phase is caUed cg. paddle, and appears within

SOOT'S caU graph construction pack, cg. In or der to run PADDLE or any other

interprocedural analysis, SOOT must be told to run in whole-program mode using the

-w co mm and line switch. The PADDLE phase can then be enabled using the phase

switch -p cg. paddle on.

The following example command line invokes PADDLE with its default settings on

the Java program whose main class is Main:

java soot.Main -w -p cg.paddle on Main

In the rest of this section, we describe the command line options that control

features of the PADDLE framework. A quick summary of aU the options can be

obtained from SOOT using the command:

java soot.Main -phase-help cg.paddle

221

Paddle User's Guide

Like all SOOT phase options, PADDLE options are given on the SOOT command

line following the phase option switch -p cg. paddle. The option name and its cor­

responding value are separated with a colon. For example, the verbose option is

enabled by ad ding -p cg. paddle verbose: true to the command line.

C.1.1 General options

verbose (default value: f alse)

The verbose option causes Paddle to print detailed information about its exe­

cution.

C.1.2 Analysis implementation options

bdd (default value: false)

PADDLE contains both BDD-based and traditional implementations of each

of its components. The bdd option controls which of these implementations

will be instantiated. Setting the option to true instantiates the BDD-based

implementation of each component; setting the option to false instantiates

the traditional implementation.

propagator (default value: auto)

The propagator option controls which points-to set propagation algorithm will

be instantiated.

Allowed values:

auto By default, the propagation algorithm is selected based

on the value of the bdd option. When BDD-based compo­

nents are being used, the incremental BDD-based prop­

agation algorithm that was described in Section 4.3.4 is

used. When traditional components are being used, the

worklist propagation algorithm is used.

222

bdd

incbdd

iter

worklist

alias

C.l. Invoking PADDLE

The bdd setting causes PADDLE to use the basic BDD­

based propagation algorithm that was described in Sec­

tion 4.3.4.

The incbdd setting causes PADDLE to use the incremen­

tal BDD-based propagation algorithm that was described

in Section 4.3.4.

The i ter setting causes PADDLE to use the naive iter­

ative propagation algorithm based on the iterative algo­

rithm in SPARK [Lho02].

The worklist setting causes PADDLE to use the fast

worklist propagation algorithm based on the worklist al­

gorithm in SPARK [Lho02].

The alias setting causes PADDLE to use the alias-edge

propagation algorithm base on the alias-edge alias-edge

in SPARK [Lho02].

conf (default value: of cg)

The conf option determines how the components of PADDLE should be con­

nected together, in order to either construct the caU graph on-the-fly as the

points-to analysis proceeds, use an existing caU graph, or use the algorithm of

Zhu, Calman, Whaley and Lam [ZC04, WL04] to construct a context-sensitive

caU graph from an existing context-insensitive one. These configurations were

discussed in detail in Section 4.3.6 and summarized in Figure 4.17.

AUowed values:

ofcg The default ofcg setting causes PADDLE to build the caU

graph on-the-fly as the points-to analysis proceeds.

223

Paddle User's Guide

cha-aot

ofcg-aot

cha-context-aot

The cha-aot setting causes PADDLE to

1. first build a call graph using Class Hierarchy Anal­

ysis [DGC9S],

2. then perform a points-to analysis using this call

graph constructed ahead-of-time.

The ofcg-aot setting causes PADDLE to

1. first build a call graph on-the-fly as a points-to anal­

ysis proceeds, as with the of cg option,

2. then discard the computed points-to sets,

3. and finally perform a second points-to analysis using

the call graph constructed ahead-of-time.

The cha-context-aot setting causes PADDLE to

1. first build a call graph using Class Hierarchy Anal­

ysis [DGC9S],

2. then make the call graph context-sensitive using the

algorithm of Zhu, Calman, Whaley, and Lam [ZC04,

WL04],

3. and finally perform a points-to analysis using the

context-sensitive call graph constructed ahead-of­

time.

224

C.l. Invoking PADDLE

ofcg-context-aot The ofcg-context-aot setting causes PADDLE to

1. first build a call graph on-the-fiy as a points-to anal­

ysis proceeds, as with the of cg option,

2. then discard the cornputed points-to sets,

3. then rnake the call graph context-sensitive using the

algorithrn of Zhu, Calrnan, Whaley, and Lam [ZC04,

WL04],

4. and finally perforrn a points-to analysis using the

context-sensitive call graph constructed ahead-of­

tirne.

C.1.3 Paddle context sensitivity options

The following options control which variation of context sensitivity PADDLE uses in

its analyses.

context (default value: insens)

The context option contraIs which kind of context abstraction PADDLE will use.

The supported context abstractions were described in detail in Section 4.3.2.

Allowed values:

insens

1cfa

kcfa

The insens setting causes PADDLE to perforrn context­

insensitive analyses.

The 1cfa setting causes PADDLE to perforrn 1-

CFA [Shi88] context-sensitive analyses.

The kcfa setting causes PADDLE to perforrn k­

CFA [Shi88] context-sensitive analyses, for sorne fixed

value of k. See the k option below to set the value of

k.

225

Paddle User's Guide

objsens

kobjsens

uniqkobjsens

k (default value: 2)

The objsens setting causes PADDLE to perform l-object­

sensitive [MRR02] analyses.

The kobj sens setting causes PADDLE to perform k­

object-sensitive [MRR02] analyses, for sorne fixed value

of k. See the k option below to set the value of k.

The uniqkobjsens setting causes PADDLE to perform

unique-k-object-sensitive analyses, for sorne fixed value

of k. See the k option below to set the value of k.

The k option controls the maximum length of a calI string or receiver object

string used as the context abstraction when the context option is set to kcf a,

kobjsens, or uniqkobjsens.

context-heap (default value: false)

The context-heap option causes PADDLE to model abstract heap locations in

a context-sensitive way. When the context-heap option is false, only pointer

variables are modelled context-sensitively.

C.1.4 BDD backend options

The following options control the BDD backend used by PADDLE.

backend (default value: buddy)

The backend option selects which BDD library will be used to implement BDDs.

Allowed values:

buddy

cudd

The buddy setting causes PADDLE to use the

BuDDy [LN] BDD library as the backend.

The cudd setting causes PADDLE to use the CUDD [Som]

BDD library as the backend.

226

C.l. lnvoking PADDLE

sable The sable setting causes PADDLE to use the Sable­

JBDD [Qia] BDD library as the backend.

javabdd The javabdd setting causes PADDLE to use the Jav­

aBDD [Whab] BDD library as the backend.

profile (default value: false)

The profile option turns on the JEDD profiler to profile all PADDLE BDD

operations. The profiler output is compressed and written to a file named

profile. sql. gz in the current working directory.

C.1.5 Miscellaneous analysis precision options

this-edges (default value: false)

When PADDLE is building a call graph on-the-fiy, it models the fiow of objects

from the receiver of a method call to the this pointer of the called method

precisely, by propagating only those abstract objects whose type would cause

that particular method to be invoked. The this-edges option causes PADDLE

to instead model this fiow using the simpler technique of adding a subset con­

straint between the receiver and the this pointer. The effects of this option

were discussed in detail in Section 4.3.3.

field-based (default value: false)

The field-based option causes PADDLE to perform a field-based rather than

field-sensitive points-to analysis. In a field-based analysis, each field of a class

is modelled as a single pointer, corresponding to all instances of the field in

all objects of the class. A field-sensitive analysis uses points-to information

to distinguish provably distinct objects, and models their fields separately. A

field-sensitive analysis is more precise but generally more expensive to perform

than a field-based analysis.

types-for-si tes (default value: false)

227

Paddle User's Guide

The types-for-si tes option causes PADDLE to abstractly model each object

using the run-time type of the object, rather than its allocation site. Using

allocation sites is more precise but generally more costly than using run-time

types to abstractly model objects.

C.2 Analysis Results

After PADDLE constructs a calI graph and performs points-to analysis, it stores these

analysis results into the singleton class soot. j imple. paddle. Resul ts, so they can

be retrieved by client analyses.

The analysis results are returned in the form of readers, a generalization of

iterators that can be used by both traditional and BDD-based client analyses. Each

reader represents a relation of analysis results. The get () method of the reader

returns a BDD representation of the relation for use by BDD-based client analyses.

The i terator () method of the reader returns an iterator over the tuples of the

relation for use by traditional client analyses.

This soot. j imple. paddle. Resul ts class contains the following three methods:

public AbsCallGraph callGraph()

The AbsCallGraph object represents the calI edges in the calI graph. Its

csEdges () method returns a reader ofthe set of aIl context-sensitive calI edges.

The edgesOutOf (Context, SootMethod) method returns a reader of only the

context-sensitive calI edges originating from the specified method in the speci­

fied context.

The AbsCallGraph object can also provide a context-insensitive projection of

the calI edges by removing the context. The ciEdges () method returns a

reader of the context-insensitive projection of the set of aIl calI edges, and the

edgesOutOf (SootMethod) method returns a reader of the context-insensitive

projection of only the calI edges originating from the specified method.

public AbsReachableMethods reachableMethods()

The AbsReachableMethods object represents the set of methods reachable

228

C.2. Analysis Results

through the calI graph, and the contexts in which they are reachable. The

contextMethods () method returns a reader of all the method and context pairs

in which each method is reachable. The methods () method returns a reader of

the set of all methods reachable through the calI graph in any context.

public AbsP2Sets p2sets()

The AbsP2Sets object represents the points-to sets computed by PADDLE. Its

getReader 0 method returns a reader of the context-sensitive points-to relation

of all points-to pairs. It also provides a fieldPt 0 method, which returns a

reader of the context-sensitive field points-to relation describing the points-to

sets of fields of heap objects.

229

Paddle User's Guide

230

Bibliography

[AAC+05] Chris Allan, Pavel Avgustinov, Aske Simon Christensen, Laurie Hen­

dren, Sascha Kuzins, Ondfej Lhotiik, Oege de Moor, Damien Sereni,

Ganesh Sittampalam, and Julian Tibble. Adding trace mat ching with

free variables to AspectJ. In OOPSLA '05: Proceedings of the 20th an­

nual ACM SIGPLAN conference on Object oriented programming sys­

tems languages and applications, pages 345-364, New York, NY, USA,

2005.

[abc] abc: The AspectBench Compiler for AspectJ.

http://aspectbench.org/.

[ACH+05a] Pavel Avgustinov, Aske Simon Christensen, Laurie Hendren, Sascha

Kuzins, Jennifer Lhotak, Ondfej Lhotak, Oege de Moor, Damien Sereni,

Ganesh Sittampalam, and Julian Tibble. abc: an extensible AspectJ

compiler. In AOSD '05: Proceedings of the 4th international conference

on Aspect-oriented software development, pages 87-98. 2005.

[ACH+05b] Pavel Avgustinov, Aske Simon Christensen, Laurie Hendren, Sascha

Kuzins, Jennifer Lhotak, Ondfej Lhotak, Oege de Moor, Damien Sereni,

Ganesh Sittampalam, and Julian Tibble. Optimising AspectJ. In PLDI

'05: Proceedings of the 2005 ACM SIGPLAN Conference on Program­

ming Language Design and Implementation, pages 117-128, New York,

NY, USA, 2005.

231

Bibliography

[ACSE99] Jonathan Aldrich, Craig Chambers, Emin Gün Sirer, and Susan J. Eg­

gers. Static Analyses for Eliminating Unnecessary Synchronization from

Java Programs. In Agostino Cortesi and Gilberto Filé, editors, Static

Analysis, 6th International Symposium, SAS '99, Venice, Italy, Septem­

ber 22-24, 1999, Proceedings, volume 1694 of Lecture Notes in Computer

Science, pages 19-38. 1999.

[AFFS98] A. Aiken, M. Faehndrich, J. S. Foster, and Z. Su. A Toolkit for Con­

structing Type- and Constraint-Based Program Analyses. In Types in

Compilation: Second International Workshop, TIC'98, volume 1473 of

Lecture Notes in Computer Science, pages 78-96, 1998.

[Age95] Ole Agesen. The Cartesian Product Aigorithm. In ECOOP '95, Object­

Oriented Programming: 9th European Conference, volume 952 of Lecture

Notes in Computer Science, pages 2-51, 1995.

[ajc] ajc: The Eclipse AspectJ Compiler.

http://www.eclipse.org/aspectj/.

[Ana] C. Scott Ananian. JavaCUP.

http://www.cs.princeton.edu/~appel/modern/java/CUP/.

[And94] L. O. Andersen. Program Analysis and Specialization for the C Pro­

gramming Language. PhD thesis, DIKU, University of Copenhagen, May

1994. (DIKU report 94/19).

[Arn] André Arnes. PKI Certificate Revocation.

http://www.pvv.ntnu.no/~andrearn/certrev/.

[Asp] AspectJ Team. The AspectJ Programming Guide.

http://eclipse.org/aspectj.

[AWZ88] B. Alpern, M. N. Wegman, and F. K. Zadeck. Detecting equality of vari­

ables in programs. In Proceedings of the 15th ACM SIGPLAN-SIGACT

Symposium on Principles of Programming Languages, pages 1-11. 1988.

232

Bibliography

[BCCH97] M. Burke, P. Carini, J. Choi, and M. Hind. Interprocedural Pointer

Alias Analysis. Technical Report RC 21055, IBM T. J. Watson Research

Center, December 1997.

[Bea96]

[Beh]

[BH99]

[Bla99]

[BLM02]

D. M. Beazley. SWIG: An Easy to Use Tool for Integrating Scripting

Languages with C and C++ In Proceedings of the 4th USENIX Tcl/Tk

Workshop, pages 129-139, July 1996.

Gerd Behrmann. The Interactive BDD Environment.

http://iben.sourceforge.net/.

Jeff Bogda and Urs Hülzle. Removing unnecessary synchronization in

Java. In Proceedings of the 1999 ACM SIGPLAN Conference on Object­

Oriented Programming Systems, Languages, and Applications, pages 35-

46. 1999.

Bruno Blanchet. Escape analysis for object-oriented languages: appli­

cation to Java. In Proceedings of the 1999 ACM SIGPLAN Conference

on Object-Oriented Programming Systems, Languages, and Applications,

pages 20-34. 1999.

R. Berghammer, B. Leoniuk, and U. Milanese. Implementation of re­

lational algebra using binary decision diagrams. In 6th International

Conference RelMiCS 2001, volume 2561 of LNCS, pages 241-257, De­

cember 2002.

[BLQ+02] Marc Berndl, Ondrej Lhotak, Feng Qian, Laurie Hendren, and Navindra

Umanee. Points-to analysis using BDDs. Technical Report 2002-10,

McGill University, Sable Research Group, 2002.

http://www.sable.mcgill.ca/publications/techreports.

[BLQ+03] Marc Berndl, Ondrej Lhotak, Feng Qian, Laurie Hendren, and Navin­

dra Umanee. Points-to analysis using BDDs. In Proceedings of the ACM

SIGPLAN 2003 Conference on Programming Language Design and Im­

plementation, pages 103-114. 2003.

233

Bibliography

[BMS02]

[BNL03]

[BROl]

[Bry92]

[BS96]

[Buc04]

Claus Brabrand, Anders MÇ7llIer, and Michael 1. Schwartzbach. The

<bigwig> project. ACM Transactions on Internet Technology (TOIT),

2(2):79-114,2002.

Dirk Beyer, Andreas Noack, and Claus Lewerentz. Simple and Efficient

Relational Querying of Software Structures. In Arie van Deursen, Eleni

Stroulia, and Margaret-Anne D. Storey, editors, 10th Working Confer­

ence on Reverse Engineering (WCRE 2003), 13-16 N ovember 2003, Vic­

toria, Canada, pages 216-227. 2003.

Thomas BalI and Sriram K. Rajamani. Bebop: a path-sensitive inter­

procedural dataftow engine. In Proceedings of the 2001 ACM SIGPLAN­

SIGSOFT Workshop on Program Analysis for Software Tools and Engi­

neering, pages 97-103. 2001.

Randal E. Bryant. Symbolic Boolean manipulation with ordered binary­

decision diagrams. ACM Comput. Surv., 24(3):293-318, 1992.

David F. Bacon and Peter F. Sweeney. Fast static analysis of C++

virtual function calls. In Proceedings of the Eleventh Annual Conference

on Object-Oriented Programming Systems, Languages, and Applications,

pages 324-341. 1996.

Thorsten Buckley. KABA aIs Fallstudie für das Soot-Framework. Mas­

ter's thesis, Universitiit Passau, November 2004.

[BW96] Beate Bollig and Ingo Wegener. Improving the Variable Ordering of

OBDDs Is NP-Complete. IEEE Trans. Comput., 45(9):993-1002, 1996.

[CGS+99] Jong-Deok Choi, Manish Gupta, Mauricio Serrano, Vugranam C. Sreed­

har, and Sam Midkiff. Escape analysis for Java. In Proceedings of the

1999 ACM SIGPLAN Conference on Object-Oriented Programming Sys­

tems, Languages, and Applications, pages 1-19. 1999.

234

Bibliography

[CM] Brendon Cahoon and Kathryn S. McKinley. JOlden Benchmarks.

ftp://ftp.cs.umass.edu/pub/osl/benchmarks/jolden.tar.gz.

[CM87]

[CMOl]

[CMS03]

[Cod70]

[Cos03]

[DaC]

[DasOO]

W. F. Clocksin and C. S. Mellish. Programming in Pro log. Springer­

Verlag New York, Inc., 1987.

Brendon Cahoon and Kathryn S. McKinley. Data Flow Analysis for Soft­

ware Prefet ching Linked Data Structures in Java. In PACT '01: Proceed­

ings of the 2001 International Conference on Parallel Architectures and

Compilation Techniques, pages 280-291, Washington, DC, USA, 2001.

Aske Simon Christensen, Anders M011er, and Michael 1. Schwartzbach.

Extending Java for high-Ievel Web service construction. ACM Transac­

tions on Programming Languages and Systems, 25(6):814-875, Novem­

ber 2003.

E. F. Codd. A relational model of data for large shared data banks.

Communications of the ACM, 13(6):377-387, 1970.

Pascal Costanza. Dynamically scoped functions as the essence of AOP.

SIGPLAN Not., 38(8):29-36, 2003.

DaCapo Project. The DaCapo Benchmark Suite.

http://www-ali.cs.umass.edu/DaCapo/gcbm.html.

Manuvir Das. Unification-based pointer analysis with directional as­

signments. In Proceedings of the ACM SIGPLAN '00 Conference on

Programming Language Design and Implementation, pages 35-46. 2000.

[DDHV03] Bruno Dufour, Karel Driesen, Laurie Hendren, and Clark Verbrugge.

Dynamic metrics for Java. In Proceedings of the 18th Annual ACM SIG­

PLAN Conference on Object-Oriented Programing, Systems, Languages,

and Applications, pages 149-168. 2003.

235

Bibliography

[DGC95] Jeffrey Dean, David Grove, and Craig Chambers. Optimization of

Object-Oriented Programs Using Static Class Hierarchy Analysis. In

ECOOP '95, Object-Oriented Programming: 9th European Conference,

volume 952 of Lecture Notes in Computer Science, pages 77-101, 1995.

[DGH+04] Bruno Dufour, Christopher Goard, Laurie Hendren, Oege de Moor,

Ganesh Sittampalam, and Clark Verbrugge. Measuring the dynamic be­

haviour of AspectJ programs. In Proceedings of the 19th Annual ACM

SIGPLAN Conference on Object-Oriented Programming Systems, Lan­

guages, and Applications, pages 150-169. 2004.

[DMM96] Amer Diwan, J. Eliot B. Moss, and Kathryn S. McKinley. Simple and ef­

fective analysis of statically-typed object-oriented programs. In Proceed­

ings of the Eleventh Annual Conference on Object-Oriented Program­

ming Systems, Languages, and Applications, pages 292-305. 1996.

[Duf04]

[EGH94]

Bruno Dufour. Objective Quantification of Program Behaviour using

Dynamic Metrics. Master's thesis, McGill University, June 2004.

Maryam Emami, Rakesh Ghiya, and Laurie J. Hendren. Context­

sensitive interprocedural points-to analysis in the presence of function

pointers. In Proceedings of the ACM SIGPLAN '94 Conference on Pro­

gramming Language Design and Implementation, pages 242-256. 1994.

[FFSA98] Manuel Fahndrich, Jeffrey S. Foster, Zhendong Su, and Alexander Aiken.

[FHC01]

Partial online cycle elimination in inclusion constraint graphs. In Pro­

ceedings of the ACM SIGPLAN '98 Conference on Programming Lan­

guage Design and Implementation, pages 85-96. 1998.

Hoda Fahmy, Richard C. Holt, and James R. Cordy. Wins and Losses of

Aigebraic Transformations of Software Architectures. In 16th IEEE In­

ternational Conference on Automated Software Engineering (ASE 2001),

26-29 November 2001, Coronado Island, San Diego, CA, USA, pages 51-

62. 2001.

236

[GCOl]

Bibliography

David Grove and Craig Chambers. A framework for call graph construc­

tion algorithms. A CM Transactions on Programming Languages and

Systems, 23(6):685-746, November 2001.

[GDDC97] David Grove, Greg DeFouw, Jeffrey Dean, and Craig Chambers. Call

graph construction in object-oriented languages. In Proceedings of the

1997 ACM SIGPLAN Conference on Object-Oriented Programming Sys­

tems, Languages and Applications, pages 108-124. 1997.

[GHJV95] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. De­

sign Patterns: Elements of Reusable Object-Oriented Software. Addison­

Wesley, Reading, Mass., 1995.

[Gil] David Gilbert. JFreeChart.

http://www.jfree.org/jfreechart/index.php.

[GJS96] James Gosling, Bill Joy, and Guy L. Steele. The Java Language Specifi­

cation. The Java Series. Addison-Wesley, Reading, MA, USA, 1996.

Etienne M. Gagnon, Ben Menking, Mariusz Nowostawski, Komivi Ag­

bakpem, and Kis Gergely. SableCC parser generator.

http://sablecc.org/.

[GMUWOl] Hector Garcia-Molina, Jeffrey D. Ullman, and Jennifer Widom. Database

Systems: The Complete Book. Prentice Hall PTR, Upper Saddle River,

NJ, USA, 2001.

[GSOO] David Gay and Bjarne Steensgaard. Fast Escape Analysis and Stack

Allocation for Object-Based Programs. In International Conference

on Compiler Construction (CC'2000), volume 1781 of Lecture Notes in

Computer Science. 2000.

[Hei99] Nevin Heintze. Analysis of large code bases: the compile-link-analyze

model, 1999.

http://cm.bell-labs.com/cm/cs/who/nch/cla.ps.

237

Bibliography

[HH98]

[HinOl]

Rebecca Hasti and Susan Horwitz. Using static single assignment form

to improve fiow-insensitive pointer analysis. In Proceedings of the ACM

SIGPLAN '98 Conference on Programming Language Design and Im­

plementation, pages 97-105. 1998.

Michael Hind. Pointer analysis: haven't we solved this problem yet? In

Proceedings of the 2001 ACM SIGPLAN-SIGSOFT Workshop on Pro­

gram Analysis for Software Tools and Engineering, pages 54-6l. 200l.

[Hip] D. Richard Hipp. SQLite: An Embeddable Database Engine.

http://www.sqlite.org/.

[HTOl]

[IKY+OO]

Nevin Heintze and Olivier Tardieu. Ultra-fast aliasing analysis using

CLA: a million lines of C code in a second. In Proceedings of the A CM

SIGPLAN'01 Conference on Programming Language Design and Imple­

mentation, pages 254-263. 200l.

Kazuaki Ishizaki, Motohiro Kawahito, Toshiaki Yasue, Hideaki Ko­

matsu, and Toshio N akatani. A study of devirtualization techniques

for a Java Just-In-Time compiler. In Proceedings of the Conference

on Object-Oriented Programming Systems, Languages, and Applications,

pages 294-310. 2000.

[KLM+97] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda,

Cristina Lopes, Jean-Marc Loingtier, and John Irwin. Aspect-Oriented

Programming. In ECOOP'97 - Object-Oriented Programming: 11th

European Conference, volume 1241 of Lecture Notes in Computer Sci­

ence, pages 220-242, 1997.

[LH03] Ondfej Lhotak and Laurie Hendren. Scaling Java Points-to Analysis

Using Spark. In G. Hedin, editor, Compiler Construction, 12th Inter­

national Conference, volume 2622 of LNCS, pages 153-169, Warsaw,

Poland, April 2003.

238

[LH04]

[Lho02]

[LLH05]

[LLW03]

[LN]

[LPH01]

[LRZ93]

[LY99]

Bibliography

Ondfej Lhotâk and Laurie Hendren. Jedd: a BDD-based relational ex­

tension of Java. In Proceedings of the ACM SIGPLAN 2004 Conference

on Programming Language Design and Implementation, pages 158-169.

2004.

Ondfej Lhotâk. Spark: A flexible points-to analysis framework for Java.

Master's thesis, McGill University, December 2002.

Anatole Le, Ondfej Lhotâk, and Laurie Hendren. Using inter-procedural

side-effect information in JIT optimizations. In R. Bodik, editor,

Compiler Construction) 14th International Conference, volume 3443 of

LNCS, pages 287-304, Edinburgh, April 2005.

Karl Lieberherr, David H. Lorenz, and Pengcheng Wu. A case for stat­

ically executable advice: checking the law of demeter with AspectJ.

In Proceedings of the 2nd International Conference on Aspect-Oriented

Software Development, pages 40-49. 2003.

J0rn Lind-Nielsen. BuDDy, A Binary Decision Diagram Package.

http://www.itu.dk/research/buddy/.

Donglin Liang, Maikel Pennings, and Mary Jean Harrold. Extending and

evaluating flow-insenstitive and context-insensitive points-to analyses for

Java. In Proceedings of the 2001 ACM SIGPLAN-SIGSOFT Workshop

on Program Analysis for Software Tools and Engineering, pages 73-79.

2001.

William Landi, Barbara G. Ryder, and Sean Zhang. Interprocedural

modification side effect analysis with pointer aliasing. In Proceedings of

the ACM SIGPLAN 1993 Conference on Programming Language Design

and Implementation, pages 56-67. 1993.

Tim Lindholm and Frank Yellin. The Java Virtual Machine Specifica­

tion. Addison-Wesley, Reading, MA, USA, second edition, 1999.

239

Bibliography

[Man03]

[MH02]

[Mi103]

Roman Manevich. Data Structures and Algorithms for Efficient Shape

Analysis. Master's thesis, Tel-Aviv University, School of Computer Sci­

ence, Tel-Aviv, Israel, January 2003.

Jerome Miecznikowski and Laurie Hendren. Decompiling Java Bytecode:

Problems, Traps and Pitfalls. In Compiler Construction: llth Interna­

tional Conference, CC 2002, volume 2304 of Lecture Notes in Computer

Science, pages 111-127, 2002.

Ana Milanova. Precise and Practical Flow Analysis of Object-Oriented

Software. PhD thesis, Rutgers University, August 2003.

[MMZ+01] Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang,

and Sharad Malik. Chaff: engineering an efficient SAT solver. In Pro­

ceedings of the 38th Conference on Design Automation, pages 530-535.

2001.

[MRF+02] R. Manevich, G. Ramalingam, J. Field, D. Goyal, and M. Sagiv. Com­

pactly Representing First-Order Structures for Static Analysis. In Static

Analysis: 9th International Symposium, SAS 2002, volume 2477 of Lec­

ture Notes in Computer Science, pages 196-212, 2002.

[MRR02]

[MRR05]

[MS97]

Ana Milanova, Atanas Rountev, and Barbara G. Ryder. Parameter­

ized object sensitivity for points-to and side-effect analyses for Java. In

Proceedings of the 2002 ACM SIGSOFT International Symposium on

Software Testing and Analysis, pages 1-11. 2002.

Ana Milanova, Atanas Rountev, and Barbara G. Ryder. Parameterized

object sensitivity for points-to analysis for Java. A CM Trans. Softw.

Eng. Methodol., 14(1):1-41,2005.

S. Minato and F. Somenzi. Arithmetic Boolean Expression Manipulator

Using BDDs. Formal Methods in System Design, 10(2/3):221-242, 1997.

240

[MS03]

[Muc97]

[NCM03]

Bibliography

Erik Meijer and Wolfram Schulte. Unifying Tables, Objects, and Doc­

uments. In Workshop on Declarative Programming in the Context of

Object-Oriented Languages, pages 145-166, August 2003.

Steven S. Muchnick. Advanced Compiler Design and Implementation.

Morgan Kaufmann Publishers, 1997.

N. Nystrom, M. R. Clarkson, and A. C. Myers. Polyglot: An Extensi­

ble Compiler Framework for Java. In 12th International Conference on

Compiler Construction, volume 2622 of LNCS, pages 138-152, 2003.

[Nil] Marcus Nilsson. GBDD - A package for representing relations with

BDDs.

http://user.it.uu.se/~marcusn/projects/rmc/docs/gbdd/index.html.

[NKH04]

[NSOl]

[PKH04]

Erik M. Nystrom, Hong-Seok Kim, and Wen-mei W. Hwu. Importance

of heap specialization in pointer analysis. In Proceedings of the ACM­

SIGPLAN-SIGSOFT Workshop on Program Analysis for Software Tools

and Engineering, pages 43-48. 2004.

Matthias Neubauer and Michael Sperber. Down with Emacs Lisp: dy­

namic scope analysis. In ICFP '01: Proceedings of the Sixth ACM SIG­

PLAN International Conference on Functional Programming, pages 38-

49, New York, NY, USA, 2001.

David J. Pearce, Paul H. J. Kelly, and Chris Hankin. Efficient field­

sensitive pointer analysis for C. In Proceedings of the ACM-SIGPLAN­

SIGSOFT Workshop on Program Analysis for Software Tools and Engi­

neering, pages 37-42. 2004.

[Pos] Jef Poskanzer. thttpd: tiny jturbojthrottling HTTP server.

http://www.acme.com/software/thttpd/.

[Qia] Feng Qian. SableJBDD, a Java Binary Decision Diagram Package.

http://www.sable.mcgill.ca/~fqian/SableJBDD/.

241

Bibliography

[RMR01]

[RufOO]

[Ryd03]

Atanas Rountev, Ana Milanova, and Barbara G. Ryder. Points-to analy­

sis for Java using annotated constraints. In Proceedings of the OOPSLA

'01 Conference on Object-Oriented Programming Systems Languages and

Applications, pages 43-55. 2001.

Erik Ruf. Effective synchronization removal for Java. In Proceedings of

the ACM SIGPLAN '00 Conference on Programming Language Design

and Implementation, pages 208-218. 2000.

Barbara G. Ryder. Dimensions of Precision in Reference Analysis of

Object-Oriented Programming Languages. In Garel Hedin, editor, Com­

piler Construction, 12th International Conference, CC 2003, volume

2622 of Lecture Notes in Computer Science, pages 126-137. 2003.

[Sd03] Damien Sereni and Oege de Moor. Static analysis of aspects. In Proceed­

ings of the 2nd International Conference on Aspect-Oriented Software

Development, pages 30-39. 2003.

[SDDS86] J. T. Schwartz, R. B. K. Dewar, E. Dubinsky, and E. Schonberg. Pro­

gramming with Sets - an Introduction to Setl. Springer, New York, 1986.

[SdML04] Ganesh Sittampalam, Oege de Moor, and Ken Friis Larsen. Incremen­

taI execution of transformation specifications. In Proceedings of the

31st ACM SIGPLAN-SIGACT Symposium on Principles of Program­

ming Languages, pages 26-38. 2004.

[SH97]

[Shi88]

Marc Shapiro and Susan Horwitz. Fast and accurate flow-insensitive

points-to analysis. In Proceedings of the 24th ACM SIGPLAN-SIGACT

Symposium on Principles of Programming Languages, pages 1-14. 1997.

O. Shivers. Control flow analysis in scheme. In Proceedings of the ACM

SIGPLAN 1988 Conference on Programming Language Design and Im­

plementation, pages 164-174. 1988.

242

Bibliography

[SHR+OO] Vijay Sundaresan, Laurie Hendren, Chrislain Razafimahefa, Raja ValIée­

Rai, Patrick Lam, Etienne Gagnon, and Charles Godin. Practical vir­

tuaI method calI resolution for Java. In Proceedings of the Conference

on Object-Oriented Programming Systems, Languages, and Applications,

pages 264-280. 2000.

[SL04]

[Som]

[Soo]

[SP81]

[SRW02]

Therapon Skotiniotis and David H. Lorenz. Cona: aspects for con­

tracts and contracts for aspects. In Companion to the 19th Annual ACM

SIGPLAN Conference on Object-Oriented Programming Systems, Lan­

guages, and Applications, pages 196-197. 2004.

Fabio Somenzi. CUDD: CU Decision Diagram Package.

http://vlsi.colorado.edu/~fabio/CUDD/.

Soot: a Java Optimization Framework.

http://www.sable.mcgill.ca/soot/.

Micha Sharir and Amir Pnueli. Two approaches to interprocedural data

flow analysis. In Steven S Muchnick and Neil D Jones, editors, Pro­

gram Flow Analysis: Theory and Applications, chapter 7, pages 189-233.

Prentice-HalI, 1981.

Mooly Sagiv, Thomas Reps, and Reinhard Wilhelm. Parametric shape

analysis via 3-valued logic. ACM Transactions on Programming Lan­

guages and Systems, 24(3):217-298, May 2002.

[Sta] Standard Performance Evaluation Corporation. SPEC JVM98 Bench­

marks.

[Ste96]

http://www.spec.org/osg/jvm98/.

Bjarne Steensgaard. Points-to analysis in almost linear time. In Proceed­

ings of the 23rd ACM SIGPLAN-SIGACT Symposium on Principles of

Programming Languages, pages 32-41. 1996.

243

Bibliography

[Tar72]

[Tar75]

[THY93]

[TLSS99]

[TPOO]

[Ull88]

[Ull89]

R. E. Tarjan. Depth First Search and Linear Graph Algorithms. Journal

of Computing, 1(2):146-160, 1972.

Robert Endre Tarjan. Efficiency of a good but not linear set union

algorithm. Journal of the ACM (JACM), 22(2):215-225, 1975.

Seiichiro Tani, Kiyoharu Hamaguchi, and Shuzo Yajima. The Com­

plexity of the Optimal Variable Ordering Problems of Shared Binary

Decision Diagrams. In ISAAC '93: Proceedings of the 4th International

Symposium on Algorithms and Computation, pages 389-398, London,

UK,1993.

Frank Tip, Chris Laffra, Peter F. Sweeney, and David Streeter. Practical

experience with an application extractor for Java. In Proceedings of

the 1999 ACM SIGPLAN Conference on Object-Oriented Programming

Systems, Languages, and Applications, pages 292-305. 1999.

Frank Tip and Jens Palsberg. Scalable propagation-based call graph

construction algorithms. In Proceedin9s of the Conference on Object­

Oriented Programming Systems, Languages, and Applications, pages

281-293. 2000.

Jeffrey D. Ullman. Principles of Database and Knowledge-Base Systems,

Volume 1. Computer Science Press, 1988.

Jeffrey D. Ullman. Principles of Database and Knowledge-Base Systems,

Volume II. Computer Science Press, 1989.

[Vahl Arash Vahidi. Arash's Java interface to BDDs.

http://www.chl.chalmers.se/~vahidi/bdd/bdd.html.

[VR] Raja Vallée-Rai. Ashes Suite Collection.

http://www.sable.mcgill.ca/ashes/.

244

[VROl]

Bibliography

Frédéric Vivien and Martin Rinard. Incrementalized pointer and es­

cape analysis. In Proceedings of the ACM SIGPLAN JOl Conference on

Programming Language Design and Implementation, pages 35-46. 2001.

[VRGH+OO] Raja Vallée-Rai, Etienne Gagnon, Laurie J. Hendren, Patrick Lam,

Patrice Pominville, and Vijay Sundaresan. Optimizing Java bytecode

using the Soot framework: is it feasible? In Compiler ConstructionJ 9th

International Conference (CC 2000), volume 1781 of Lecture Notes in

Computer Science, pages 18-34, 2000.

[WeI84]

[WFOO]

[Whaa]

[Whab]

[WL95]

[WL02]

[WL04]

Terry A. Welch. A Technique for High-Performance Data Compression.

IEEE Computer, 17(6):8-19, 1984.

Ian H. Witten and Eibe Frank. Data Mining: Practical Machine Learn­

ing Tools and Techniques with Java implementations. Morgan Kaufmann

Publishers, Los Altos, CA 94022, USA, 2000.

John Whaley. bddbddb.

http://bddbddb.sourceforge.net.

John Whaley. JavaBDD.

http://javabdd.sourceforge.net.

Robert P. Wilson and Monica S. Lam. Efficient context-sensitive pointer

analysis for C programs. In Proceedings of the Conference on Program­

ming Language Design and Implementation, pages 1-12. 1995.

John Whaley and Monica S. Lam. An Efficient Inclusion-Based Points­

To Analysis for Strictly-Typed Languages. In Static Analysis: 9th Inter­

national Symposium, SAS 2002, volume 2477 of Lecture Notes in Com­

puter Science, pages 180-195, 2002.

John Whaley and Monica S. Lam. Cloning-based context-sensitive

pointer alias analysis using binary decision diagrams. In Proceedings of

245

Bibliography

[WR99]

[WSOl]

[ZC04]

[Zhu02]

[ZM03]

the ACM SIGPLAN 2004 Conference on Programming Language Design

and Implementation, pages 131-144. 2004.

John Whaley and Martin Rinard. Compositional pointer and escape

analysis for Java programs. In Proceedings of the 1999 ACM SIGPLAN

Conference on Object-Oriented Programming Systems, Languages, and

Applications, pages 187-206. 1999.

Tiejun Wang and Scott F. Smith. Precise Constraint-Based Type In­

ference for Java. In ECOOP 2001 - Object-Oriented Programming:

15th European Conference, volume 2072 of Lecture Notes in Computer

Science, pages 99-117, 2001.

Jianwen Zhu and Silvian Calman. Symbolic pointer analysis revisited.

In Proceedings of the ACM SIGPLAN 2004 Conference on Programming

Language Design and Implementation, pages 145-157. 2004.

Jianwen Zhu. Symbolic pointer analysis. In Proceedings of the 2002

IEEE/A CM International Conference on Computer-Aided Design, pages

150-157. 2002.

L. Zhang and S. Malik. Validating SAT Solvers Using an Independent

Resolution-Based Checker: Practical Implementations and Other Ap­

plications. In Proceedings of Design, Automation and Test in Europe

(DATE2003), pages 880-885, 2003.

246

