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Abstract 

A fundamental problem in interprocedural program analyses is the need to repre­

sent and manipulate collections of large sets. Binary Decision Diagrams (BDDs) are 

a data structure widely used in model checking to compactly encode large state sets. 

In this dissertation, we develop new techniques and frameworks for applying BDDs 

to program analysis, and use our BDD-based analyses to gain new insight into factors 

infiuencing analysis precision. 

To make it feasible to express complicated, interrelated analyses using BDDs, 

we first present the design and implementation of JEDD, a Java language extension 

which adds relations implemented with BDDs as a datatype, and makes it possible 

to express BDD-based algorithms at a higher level than existing BDD libraries. 

Using JEDD, we develop PADDLE, a framework of context-sensitive points-to and 

calI graph analyses for Java, as weIl as client analyses that make use of their results. 

PADDLE supports several variations of context-sensitive analyses, including the use 

of calI site strings and abstract receiver object strings as abstractions of context. 

We use the PADDLE framework to perform an in-depth empirical study of the 

effect of context-sensitivity variations on the precision of interprocedural program 

analyses. The use of BDDs enables us to compare context-sensitive analyses on much 

larger, more realistic benchmarks than has been possible with traditional analysis 

implementations. 

Finally, based on the calI graph computed by PADDLE, we implement, using JEDD, 

a novel static analysis of the cfiow construct in the aspect-oriented language AspectJ. 

Thanks to the JEDD high-level representation, the implementation of the analysis 

closely mirrors its specification. 
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Résumé 

Un problème fondamental en analyse interprocédurale des programmes est le be­

soin de représenter et manipuler des collections de grands ensembles. Les diagrammes 

de décision binaires (DDB) sont une structure de données largement utilisée dans 

la vérification de modèles pour coder de grands ensembles d'états. Dans cette thèse, 

nous développons de nouvelles techniques pour appliquer les DDB à l'analyse des 

programmes, et nous utilisons nos analyses basées sur les DDB pour acquérir des 

connaissance sur les facteurs qui influencent la précision des analyses. 

Pour qu'il soit faisable d'exprimer des analyses compliquées et interdépendantes 

en utilisant les DDB, nous présentons d'abord JEDD, une extension du langage Java 

qui ajoute des relations implantées avec des DDB comme un type de données, et 

permet l'expression des algorithmes basés sur les DDB à un niveau plus haut qu'avec 

les bibliothèques de DDB existantes. 

En utilisant JEDD, nous développons PADDLE, un système d'analyses de pointeur 

et de graphe d'appel sensibles au contexte pour Java, ainsi que des analyses client qui 

exploitent leurs résultats. PADDLE comprend plusieurs variantes d'analyses sensibles 

au contexte, y compris des analyses qui utilisent des chaînes de sites d'appel et des 

chaînes d'objets récepteurs abstraits en tant qu'abstractions de contexte. 

Nous utilisons le système PADDLE pour effectuer une étude expérimentale de l'ef­

fet de la sensibilité au contexte sur la précision des analyses interprocédurales des 

programmes. L'utilisation des DDB nous permet de comparer des analyses sensibles 

au contexte sur des programmes plus grands et plus réalistes que ce qui a été possible 

avec les implantations traditionnelles des analyses. 

Finalement, utilisant le graphe d'appel calculé par PADDLE, nous développons, en 

utilisant JEDD, une analyse statique originale de la construction cflow dans le langage 

orienté-aspect AspectJ. Grâce à la représentation JEDD de haut niveau, l'implantation 

de l'analyse suit directement sa spécification. 
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1.1 Motivation 

Chapter 1 

Introduction 

Existing and new applications of program analysis demand increasingly precise, yet 

efficient, interprocedural analyses. A program analysis conservatively estimates the 

possible run-time behaviour of a program by analyzing the program without executing 

it. Traditionally, results of program analyses have been used to justify compiler 

optimizations. More recently, pro gram analysis has found important applications in 

software engineering tools which help developers understand, maintain, and verify 

programs. These applications depend on the availability of precise, efficient program 

analyses. Imprecision in analysis results restricts the code optimizations that can be 

safely performed by compilers, and reduces the amount of information available to 

software engineering tools. The popularity of object-oriented languages has increased 

the importance of interprocedural program analysis in particular. The context of our 

work is the effort to improve the precision of interprocedural program analyses while 

making them efficient enough to be practical. 

A fundamental challenge in the design of precise interprocedural program anal­

yses is the need to represent and manipulate collections of large sets. In sorne pro­

gram analyses, much of the complexity stems not from the analysis itself, but from 

data structures carefully customized to be efficient enough for the particular analysis. 

Therefore, a general data structure which would make it easier to write reasonably 

1 



Introduction 

efficient analyses would be very useful for experimenting with new, more precise pro­

gram analyses. 

BDDs [Bry92] have been found to be a very effective representation of state sets 

in the area of model checking, where they have made it feasible to exhaustively check 

large state spaces. Could BDDs also be useful in the area of program analysis? The 

present dissertation develops the thesis that BDDs are an effective representa­

tion of collections of large sets in interprocedural program analyses, and 

their use facilitates the development of and experimentation with new, 

precise, efficient analyses. 

Context-sensitive analyses are widely believed to significantly improve program 

analysis precision, particularly when analyzing object-oriented programs. However, 

until now, detailed empirical evidence for this belief has been scarce, because context­

sensitive analyses have so far been too expensive to be feasible for programs of rea­

sonable size. We show that the use of BDDs can make context-sensitive analyses 

efficient enough to be feasible for realistic programs. 

New programming paradigms, such as Aspect-Oriented Programming, require the 

design of new interprocedural program analyses. BDDs enable analysis designers to 

build prototypes of such analyses quickly, without requiring them to devise clever 

data structures to make the prototypes efficient enough to experiment with. We 

demonstrate this with a BDD-based implementation of a static analysis of the cfiow 

construct in the aspect-oriented programming language AspectJ. 

1.2 Challenges 

Our work shows how to overcome the following challenges inherent in the use of BDDs 

for interprocedural program analysis. 

Program analyses and model checkers differ significantly in the forms of data 

that they manipulate. A model checker uses BDDs to explore the reachable state 

space of a finite state machine, storing sets of states in the BD D. Program analyses 

manipulate a much wider variety of data, and it is not obvious how to encode them 

2 



1.3. Contributions 

or manipulate them in BDDs. We suggest relations as an abstraction over raw BDDs, 

and demonstrate how to express program analyses in terms of relations. 

Program analyses are often interdependent, and the low-level nature of current 

BDD libraries makes it very difficult to manage a large code base of multiple interde­

pendent analyses. In our experience, implementing program analyses directly using a 

BDD library such as BuDDY [LN] or CUDD [Som] is both tedious and error-prone, 

to the point that it is not feasible to implement analyses consisting of more than 

about 30 BDD operations. Higher-level tools for writing analyses with BDDs are 

therefore necessary. 

Details of how data is encoded in BDDs can affect analysis cost by orders of 

magnitude, so support for careful tuning of the encoding is crucial. The two factors 

affecting performance the most are the BDD variable ordering and the assignment 

of attribut es to BDD variables. Finding an optimal variable ordering even for a 

single BDD is already an NP-complete problem, and we need orderings that are 

simultaneously good for the many BDDs in a system of interrelated analyses. Effective 

heuristics are known for sorne applications, but they have yet to be developed for 

program analyses. Therefore, tools are required to enable programmers to easily 

experiment with these design variations and to provide detailed feedback about their 

actual effect on the BDDs. 

1.3 Contributions 

This work contributes to the development of BDD-based program analysis in four 

ways. Figure 1.1 summarizes how these four contributions build on each other. 

First, we have developed JEDD, a language extension to Java which makes it 

feasible to write complicated, interrelated, BDD-based program analyses. In JEDD, 

BDDs are abstracted as relations. JEDD code is written at a high level in terms of 

relations, and the JEDD compiler translates it to low-level Java code with caUs into 

a BDD library to implement the BDD operations. Since design of JEDD is guided by 

the need to experiment with the encoding of relations in BDDs, JEDD provides ways 
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Jedd 
(Chapter 3) 

" 
Paddle 

(Chapter 4) 

1 \ 
empirical study of analyses for 
context sensitivity AspectJ 

(Chapter 5) (Chapter 6) 

Figure 1.1: Summary of contributions 

for the programmer to try different encodings and observe the resulting BDDs. We 

describe JEDD in detail in Chapter 3. 

Second, we have used JEDD to implement PADDLE, a flexible framework of BDD­

based call graph and points-to analyses and the various prerequisite analyses needed 

to compute them. PADDLE supports several variations of context sensitive analysis, 

including using strings of call sites [Shi88] and of abstract receiver objects [MRR02] as 

the context abstraction. While traditional implementations of these context-sensitive 

analyses generally do not scale beyond very small programs, our BDD-based imple­

mentation successfully analyzes significant Java applications in conjunction with the 

large Java class library. We present our analyses in more detail in Chapter 4. 

Third, we have used PADDLE to perform an empirical study of the effects of 

different variations of context sensitivity on the precision of call graph and points­

to analysis, and of client analyses that depend on their results. To the best of our 

knowledge, this is the first comprehensive comparison of these context sensitivity 

variations on Java programs of this size. We present our empirical study of context 

sensitivity in Chapter 5. 

Fourth, we have developed a novel interprocedural analysis of the cflow construct 

in the aspect-oriented language AspectJ. The analysis is implemented in the JEDD 

4 



1.4. Organization 

language and uses the calI graph constructed by PADDLE. The BDD-based implemen­

tation of the analysis follows its specification almost exactly, without any additional 

implementation-specific clutter. The use of BDDs and the high-level JEDD language 

made it easy to experiment with the analyses without having to spend much time 

on tuning implementation details of each variation of the analysis. We describe the 

cfiow analysis in Chapter 6. 

1.4 Organization 

The remainder of this dissertation is organized as follows. We begin by providing 

background information about BDDs in the next chapter. The following four chap­

ters describe in detail each of the four contributions listed above. The JEDD language 

and translator are presented in Chapter 3. The PADDLE interprocedural analysis 

framework is described in Chapter 4. In Chapter 5, we report the results of our em­

pirical study of variations of context sensitivity and their effect on analysis precision. 

The cfiow analysis for AspectJ is presented and evaluated in Chapter 6. Finally, in 

Chapter 7, we conclude and suggest directions for further research. 

This thesis makes contributions to three areas of knowledge: Chapter 3 on JEDD 

contributes to the application of BDDs to program analysis, Chapters 4 and 5 on PAD­

DLE and context sensitivity contribute to the design and implementation of precise 

interprocedural analyses for Java, and Chapter 6 contributes to analysis of AspectJ. 

Therefore, we have included a section on related work for each contribution within 

the corresponding chapter (Sections 3.8, 4.1, 5.7, and 6.4). 
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Chapter 2 

Background: BDDs and Points-ta Analysis 

In this chapter, we provide the background information about BDDs [Bry92] that 

will be necessary to understand the remainder of this thesis. Since the topic of this 

thesis is the use of BDDs to implement set-based interprocedural program analyses, 

we will use one such analysis, subset-based points-to analysis [EGH94, And94], and 

our BDD-based implementation of it [BLQ+03], as an example to illustrate the BDD 

concepts. 

In Section 2.1, we give a brief introduction to subset-based points-to analysis. 

In Section 2.2, we introduce BDDs, and describe how BDD operations are used in 

implementing a subset-based points-to analysis. In Section 2.3, we show the complete 

BDD-based analysis that we developed in [BLQ+03], and briefiy comment on the 

tuning that was required to make it efficient. 

2.1 Subset-based Points-to Analysis 

Analyses of programs with pointers to memory must estimate the effects of operations 

performed through pointers. A points-to analysis approximates, for each pointer in 

the program, the set of objects to which the pointer may point. In our example points­

to analysis, we represent each object by the allocation site at which it is allocated. The 

analysis tracks the fiow of objects from their allocation sites along pointer assignments 

in the program. For each pointer p, the analysis computes a points-ta set of the 
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Background: BDDs and Points-to Analysis 

allocation sites whose objects may flow to p. Therefore, if the program contains an 

allocation site S of the form p : = new 00, then the pointer p may point to the 

objects allocated at site S, so the analysis generates the constraint SE points-to(p). 

The analysis is subset-based in that it models data flow between pointers using subset 

constraints between their points-to sets. Suppose that p and q are pointers, and 

the assignment p : = q appears in the program. Since q is assigned to p, after the 

assignment, p may point to any object to which q was pointing. This is modelled in 

the analysis with the subset constraint points-to( q) ç points-to(p). 

X: a = new DO; 

Y: b new 00; 

Z: c = new 00; 

a = b· , 

b a· , 

c = b· 

Figure 2.1: Example pointer propagation statements 

To use a concrete example, con si der the program statements shown in Figure 2.l. 

The first three statements are allocation statements, which would cause the analysis 

to initialize the points-to sets of a, b, and c to {X}, {Y}, and {Z}, respectively. The 

fourth line would be modelled by the subset constraint points-to(b) ç points-to( a), 

which would be processed by propagating the points-to set of b into the points­

to set of a, making points-to( a) = {X, y}. The fifth line would be processed by 

propagating points-to(a) into points-to(b) , making points-to(b) also {X, y}. Finally, 

the sixth line would cause points-to(b) to be propagated into points-to( c), making 

points-to(c) = {X, Y, Z}. The final points-to sets for the example would be 

points-to(a) 

points-to(b) 

points-to( c) 

8 
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2.2. Binary Decision Diagrams 

When analyzing large programs, a key problem is that the number of points-to sets 

and the size of each set may become very large. Various techniques [DasOO, FFSA98, 

HT01, Lho02, LH03, LPH01, RMR01, SH97, WL02] have been studied for compactly 

representing the points-to sets and efficiently solving the subset constraints. In this 

chapter, we review one such technique [BLQ+03] that we have developed, which is to 

use BDDs to compactly represent the points-to sets and BDD operations to efficiently 

propagate them along subset constraints. 

2.2 Binary Decision Diagrams 

A BDD [Bry92] is a representation of a boolean-valued function of n boolean BDD 

variables. Equivalently, it can be thought of as representing a set of binary vectors 

of length n; the set includes precisely those vectors which the function maps to the 

value 1. 

Physically, a BDD is a trie-like rooted directed acyclic graph (DAG) of nodes. The 

DAG has two terminal nodes @] and ITJ with no successor, and every non-terminal 

node has two successors called the O-successor and the l-successor. As in a trie, to 

determine whether a given binary vector is in the set represented by the BDD, one 

starts at the root node ofthe BDD, and follows either the 0- or l-successor depending 

on the value of each bit in the vector. If the traversaI ends at the ITJ node, the vector 

is in the set; if the traversaI ends at the @] node, the vector is not in the set. 

To use a concrete example, we will now show how the points-to sets computed for 

the statements in Figure 2.1 can be encoded in a BDD. We could write the points-to 

sets as a set of points-to pairs, with each pair indicating that a given pointer may 

point to a given object, as follows: 

{(a,X), (a, Y), (b,X), (b, Y), (c,X), (c, Y), (c,Z)} 

Using 00 to represent a and X, 01 to represent b and Y, and 10 to represent c and Z, 

we can encode these points-to pairs as the set of binary vectors 

{OOOO, 0001, 0100, 0101, 1000, 1001, lOlO} 

9 
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A BDD representing this set of binary vectors is shown in Figure 2.2. The pointers 

a, b, and c are encoded in first two bit positions of the BDD, and the objects X, Y, 

and Z are encoded third and fourth bit positions. We follow the common convention 

of drawing the O-successor of each node as a dashed arrow, and the l-successor as a 

solid arrow. 

bit 1 (V1d 

bit 2 (VIa) 

bit 4 (HIa) 

Figure 2.2: Unreduced BDD for points-to example 

The nodes marked x, y, and z in Figure 2.2 are at the same bit position and have 

the same successors, because they aIl represent the same subset of objects {X, y}. 

Since these nodes are the same, they could be merged into a single node, making the 

BDD sm aller without changing the set that it represents. Furthermore, since their 0-

and l-successor are the same (the [] node), the value of the bit that they test does 

not affect the successor, so the bit does not need to be tested and the nodes could be 

removed entirely. If we repeatedly reduce the BDD in this way by fin ding mergeable 

and unnecessary nodes, we obtain the reduced BDD shown in Figure 2.3. The BDD 

represents the same set as the original unreduced BDD, but it is sm aller. 

For the purposes of our discussion, we presented an unreduced BDD first, then 

reduced it. In actual BDD implementations, however, the reduction rules are applied 

to each node as the BDD is being constructed. Therefore, in a real implementation, 

every BDD is kept fully reduced at aIl times. 
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bit 2 (V1 a) 

bit 4 (H1a) 

Figure 2.3: Reduced BDD for points-to example 

It is convenient to group the bit positions representing a given element under a 

common name. Throughout this thesis, we will use the term physical domain l 

to refer to a collection of bit positions representing an element such as a pointer or 

object. For example, the first two bit positions represent a pointer variable, so we calI 

them the physical domain V1. Similarly, we call the third and fourth bit positions 

Hl, because they represent an abstract heap location. We use a subscript to denote 

a specific bit within a physical domain. For example, V1 a denotes the zeroth (least 

significant) bit in the V1 physical domain, which in this case is the second bit in the 

BDD. 

In our discussion so far, we have presented the encoding of points-to sets in a 

BDD interpreted as a set of binary vectors. For completeness, we now also present 

the equivalent boolean function. Following our earlier choice of binary encodings of 

the pointers and abstract objects, the boolean functions representing these elements 

are shown in the third column of Table 2.1. A points-to pair is represented by the 

conjunction of the pointer and the abstract object to which it points. For example, b 

pointing to Z is represented by the formula V1 1 = 0/\ V1 a = 1/\ H11 = 1/\ H1a = o. 

1 In BDD literature, a physical domain is often called just "domain". However, the same word is 
used in relation al database literature with a different meaning (we will define it in Section 3.2.1). To 
distinguish the two, we use the term "physical domain" for a domain in the BDD sense, and simply 
"domain" for a domain in the relational database sense. 
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element binary encoding boolean formula 

a 00 VII = 0/\ V10 = 0 

b 01 VII = 0/\ V10 = 1 

c 10 VII = 1/\ V10 = 0 

X 00 H11 = 0/\ H10 = 0 

y 01 H11 = 0/\ H10 = 1 

Z 10 H11 = 1/\ H10 = 0 

Table 2.1: Encodings of elements in terms of physical domains 

A set of points-to pairs is represented by the disjunction of their formulas. So, the 

points-to sets from our running example would be represented by the formula 

POINTSTO 6 

(VII = 0/\ V10 = 0/\ H11 = 0/\ H10 = 0) V 

(VII = 0/\ V10 = 0/\ H11 = 0/\ H10 = 1) V 

(VII = 0/\ V10 = 1/\ H11 = 0 /\ H10 = 0) V 

(VII = 0/\ V10 = 1/\ H11 = 0/\ H10 = 1) V 

(VII = 1/\ V10 = 0/\ H11 = 0/\ H10 = 0) V 

(VII = 1/\ V10 = 0/\ H11 = 0/\ H10 = 1) V 

(VII = 1/\ V10 = 0/\ H11 = 1/\ H10 = 0) 

This formula is equivalent to the set of binary vectors given earlier. 

In the BDDs that we have seen so far, the bits have always been tested in the 

same order, VII V1oH11H10. However, any ordering can be used, as long as it is used 

consistently. For example, if the bits were tested in the order H10 V1oH11 VII, the 

BDD for our ex ample set would look like Figure 2.4. Although this BDD represents 

the same set as the BDD in Figure 2.3, it has 8 nodes rather than 5. When using 

BDDs, it is important to find an ordering which keeps the BDDs small. Unfortunately, 

finding the optimal ordering is NP-hard in general [BW96, THY93]. In [BLQ+03], we 

found an ordering that works weIl for points-to analysis. The JEDD system, which we 
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(HIa) 

(VIa) 

(H1d 

Figure 2.4: BDD for points-to sets using alternative ordering HIa V1aH11 VII 

present in Chapter 3, provides a profiling and visualization tool intended to help find 

good orderings for specifie analyses by identifying the BD Ds that affect performance 

the most, and showing their shape under a given ordering. 

The basic set operations (union, intersection, complement, set difference) on the 

sets represented by BDDs are implemented using a recursive algorithm [Bry92] which 

traverses the argument BDDs and builds up the resulting BDD. The co st of these 

operations depends on the number of nodes in the BDDs involved, not the sizes of 

the sets that they represent. Therefore, large sets represented by small BDDs can be 

manipulated efficiently. 

Like the points-to sets, the subset constraints induced by the pointer assignments 

in the program can be encoded in a BDD. We reuse the physical domain VI to 

represent the source of each assignment, and introduce a new two-bit physical domain 

V2 to represent the target of each assignment. Thus, the three assignments from our 

example, a=b, b=a, and c=b, are encoded by the BDD representing the function 

ASSIGN t; 

(VII = 0/\ VIa = 1/\ V21 = 0/\ V2a = 0) V 

(VII = 0/\ VIa = 0/\ V21 = 0/\ V2a = 1) V 

(VII = 0/\ VIa = 1/\ V21 = 1/\ V2a = 0) 
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To propagate points-to sets, three additional BDD operations are needed, exis­

tential quantification, relational product, and replace. 

The existential quantification operation makes a given BDD f independent 

of a given bit position b by constructing a function that is true whenever there exists 

a value of b (either 0 or 1) that makes f true. By applying existential quantification 

to aIl the bit positions of a physical domain, we make a BDD independent of the 

physical domain. For example, if we existentially quantify the POINTSTO BDD 

defined earlier with respect to the VI domain, we obtain the boolean function in 

which each clause is made independent of Vl: 

This formula simplifies to 

::JvlPOINTSTO = 
(H1l = 0/\ HIa = 0) V 

(H1 l = 0/\ HIa = 1) V 

(H1l = 0/\ HIa = 0) V 

(H1l = 0/\ HIa = 1) V 

(H1 l = 0/\ HIa = 0) V 

(H1 l = 0/\ HIa = 1) V 

(H1l = 1/\ HIa = 0) 

::JvlPOINTSTO = 

(H1 l = 0/\ HIa = 0) V 

(H1 1 = 0/\ HIa = 1) V 

(H1 l = 1/\ HIa = 0) 

The resulting function represents the set containing every abstract object for which 

there exists a pointer that points to it (that is, the union of an the points-to sets). 

The relational product operation is equivalent to performing set intersection 

(boolean conjunction) followed by existential quantification, but is implemented more 

efficiently than when these operations are performed separately. We illustrate the 

relational product operation using the points-to set propagation example. Consider 

the BDD representing the original points-to pairs {(a, X), (b, Y), (c, Z)} induced by the 
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three allocation statements in Figure 2.1: 

ORIG-POINTSTO ~ 

(VII = 0/\ VIa = 0/\ H11 = 0/\ HIa = 0) V 

(VII = 0 /\ VIa = 1/\ H11 = 0 /\ HIa = 1) V 

(VII = 1/\ VIa = 0/\ H11 = 1/\ HIa = 0) 

We would like to propagate the points-to pairs across the pointer assignments encoded 

in the ASSIGN BDD shown earlier. Since the VI physical domain is common to both 

BDDs, a conjunction will find all pairs of clauses from the two formulas which match 

in the VI physical domain: 

ORIG-POINTSTO /\ ASSIGN = 

(VII = 0/\ VIa = 0/\ V2 1 = 0/\ V2a = 1/\ H11 = 0/\ HIa = 0) V 

(VII = 0/\ VIa = 1/\ V2 1 = 0/\ V2a = 0/\ H11 = 0/\ HIa = 1) V 

(VII = 0/\ VIa = 1/\ V2 1 = 1/\ V2a = 0/\ H11 = 0/\ HIa = 1) 

After existentially quantifying with respect to VI, we obtain 

NEW-POINTSTO ~ 

relprod( ORIG-POINTSTO, ASSIGN, VI) = 
:3VI (ORIG-POINTSTO /\ ASSIGN) = 

(V21 = 0/\ V2a = 1/\ H11 = 0/\ HIa = 0) V 

(V2 1 = 0/\ V2a = 0/\ H11 = 0/\ HIa = 1) V 

(V2 1 = 1/\ V2a = 0/\ H11 = 0/\ HIa = 1) 

This formula encodes the new points-to pairs {(b, X), (a, Y), ( c, y)} arising from prop­

agating the original points-to pairs along the pointer assignments. Figure 2.5 shows 

the effect of the relational product operation on the BDD representation. The ORIG­

POINTSTO and ASSIGN BDDs are shown in parts (a) and (b), respectively, and 

the result of the relational product is shown in part (c) of the figure. 

Next, we would like to find the union of the set of new points-to pairs and the 

original set. However, the original points-to pairs are encoded using the physical 

domains VI and Hl, while the new points-to pairs are encoded using the physical 
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V1 0 

V20 

H10 

(a) (b) (c) 

V1 0 

V20 

H10 

(d) (e) 

Figure 2.5: BDD representation of (a) ORIG-POINTSTO (b) ASSIGN (c) NEW­

POINTSTO (d) REPLACED-POINTSTO (e) PROPAGATED-POINTSTO 
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domains V2 and Hl. Before we can find the union, we must use the replace operation 

to replace the V2 physical domain with VI in the NEW-POINTSTO BDD, to make 

its physical domains match the ORIG-POINTSTO BDD : 

REPLACED-POINTSTO ~ 

replace(NEW-POINTSTO, V2, VI) = 

(VII = 0/\ VIa = 1/\ H11 = 0/\ HIa = 0) V 

(VII = 0/\ VIa = 0/\ H11 = 0/\ HIa = 1) V 

(VII = 1/\ VIa = 0/\ H11 = 0/\ HIa = 1) 

The BD D representation of this function is shown in Figure 2.5 ( d). 

Finally, we can now compute the union 

PROPAGATED-POINTSTO ~ 

ORIG-POINTSTO V REPLACED-POINTSTO 

This gives the points-to sets after one step of propagation. The BDD representation 

is shown in Figure 2.5(e). To obtain the final points-t~ set BDD that we showed in 

Figure 2.3, the propagation step must be repeated a second time. 

The pro cess of propagating points-to sets using the three operations that we have 

just described (relational product, replace, and union) is summarized in the BDD code 

snippet shown in Figure 2.6, which calls into the BuDDY library to implement each 

operation. Line 4 performs a relational product of the edgeSet and pointsTo BDDs 

with respect to the VI physical domain. Line 5 replaces the physical domain V2 with 

VI in the result. Finally, line 6 adds the new points-t~ pairs into the pointsTo BDD. 

The operations are enclosed in a loop which iterates until a fixed point is reached. 

2.3 BDD-based Points-to Analysis 

Having illustrated the key BDD operations, we can now present the complete im­

plementation of our original BDD-based points-to analysis [BLQ+03]. The analysis 

is a subset-based, fiow- and context-insensitive, but field-sensitive points-to analysis 

for Java, based on the analyses that we implemented in the SPARK [Lho02, LH03] 
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1 repeat 

2 oldPt : [VlxHl] = pointsTo: [VlxHl]; 

3 

4 /* (c) */ newPti: [V2xHl] = relprod(edgeSet: [VlxV2], pointsTo: [VlxHl] , Vi); 

5 /* (d) */ newPt2: [VlxHl] = replace (newPti: [V2ToVl], V2ToVi); 

6 /* (e) */ pointsTo: [VlxHl] = pointsTo: [VlxHl] U newPt2: [VlxHl]; 

7 

8 until pointsTo: [VlxHl] == oldPt: [VlxHl] 

Figure 2.6: BDD code for propagating points-to sets along assignment constraints 

framework. Like the SPARK analyses, this analysis pro cesses four kinds of constraints, 

shown in Figure 2.7. The allocation and simple assignment constraints are the same 

as in Section 2.1. The new field store and load constraints model stores and loads to 

fields of heap objects. 

allocation a: l:= new C Oa E points-to(l) 

simple assignment l2:= h h ---+ l2 

field store g.f:= l l ---+ g.f 

field load l := p.f p.f ---+ l 

Figure 2.7: The four kinds of points-to constraints 

In our original implementation, we assume that aIl the constraints have been 

generated before the points-to analysis begins. In Chapter 4, we will extend the 

analysis to handle new constraints generated while the analysis proceeds. 

In addition to computing points-to sets for pointer variables, the analysis also 

computes points-to sets for pointers in fields of heap objects. That is, the points-to 

fact 01 E points-to( 02.f) means that the field f of an object allocated at allocation 

site 02 may point to an object allocated at allocation site 01. 

The points-to constraints are solved using the inference rules shown in Figure 2.8. 

The rules are implemented in BDDs, and are applied iteratively until a fixed point is 
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reached. The first rule models simple assignments: if II points to 0, and is assigned to 

l2, then l2 also points to o. The second rule models field stores: if l points to 02, and 

l is stored into q.f, then for each 01 pointed to by q, 01.f also points to 02. Similarly, 

the third rule models field loads: if l is loaded from P.f, and p points to 01, then l 

points to any 02 that 01.f points to. 

h --+ l2 0 E points-to(ll) 

o E points-to(l2) 

02 E points-to(l) l --+ q.f 01 E points-to(q) 

02 E points-to(Ol.f) 

p.f --+ l 01 E points-to(p) 02 E points-to(Ol.f) 

02 E points-to(l) 

Figure 2.8: Inference rules 

(2.1) 

(2.2) 

(2.3) 

For the simple points-to set propagation in Section 2.2, we needed three physical 

domains, VI, V2, and H1. To represent the constraints and points-to sets of a field­

sensitive analysis, two additional physical domains are needed: a second physical 

domain of objects (H2) to represent points-to facts of the form 01 E points-to(02.f), 

which have two objects, and a physical domain of fields, F D. 

We now describe the most important BDDs used in the algorithm, along with the 

physical domains in which they are encoded. 

• pointsTo ç VI x Hl is the set of points-ta pairs for simple variables, of the 

form 0 E points-to(l). 

• fieldPt ç (Hl x F D) x H2 is the set of points-to facts for fields of heap objects, 

of the form 01 E points-to(02.f). 

• edgeSet ç VI x V2 is the set of simple assignment constraints of the form 

II --+ l2' 

• stores ç VI x (V2 x F D) is the set of field store constraints of the form 

h --+ 12.f. 
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• loads ç (VI x F D) x V2 is the set of field load constraints of the form ll.f ---+ l2 . 

• typeFilter ç VI x Hl is a set of constraints specifying which objects each 

pointer can point to based on its declared type. This is used to restrict the 

points-to sets for pointers to only contain objects of compatible type. 

The full algorithm is given in Figure 2.9. The algorithm consists of an inner loop 

nested within an outer loop. We have annotated each BDD in the algorithm with 

the physical domains that it uses. Lines 1.1 to 1.2 implement the first inference rule. 

In line 1.1, the edgeSet and pointsTo BDDs are combined. This relational product 

operation computes the set of facts satisfying the first rule: 

{(l2, 0) 1 ::Jit : it ---+ 12 /\ 0 E points-to(ld} 

In line 1.2, the set is converted to use physical domains VI and Hl rather than V2 

and Hl, and in line 1.4, it is added into pointsTo. Line 1.3 will be explained later. 

Lines 2.1 to 2.3 implement the second rule. Line 2.1 computes the intermediate 

result of the first two pre-conditions: 

tmpRell = {( 02, q.f) 1 ::JI : 02 E points-to(l) /\ 1 ---+ q.f} 

In line 2.2, tmpRell is changed to physical domains suit able for the next computation. 

In li ne 2.3, the resulting set of facts satisfying aH three pre-conditions is computed as 

{02 E points-to(Ol.f) 1 ::Jq: (02, q.f) E tmpRell/\ 01 E points-to(q)} 

In a similar way, lines 3.1 to 3.3 implement the third rule. Again, the first two 

pre-conditions are first combined to form a temporary BDD (li ne 3.1), then combined 

with the results from the second rule (line 3.2). After changing the result to the 

appropriate physical domains (line 3.3), we obtain new points-to pairs, which are 

added into the pointsTo BDD in line 4.2. 

In our earlier work [Lho02, LH03] with the SPARK points-to analysis framework, 

we observed that limiting points-to sets to include only objects of a type compatible 

with the declared type of the pointer significantly improves both analysis precision 
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1 repeat 

2 outerOldPt : [VlxHl] = pointsTo: [VlxHl]; 

3 

4 repeat 

5 innerOldPt : [VlxHl] = pointsTo: [VlxHl]; 

6 

7 rule 1 --- *1 

8 1* 1.1 *1 newPti:[V2xHl] relprod(edgeSet:[VlxV2], pointsTo:[VlxHl], V1); 

9 1* 1.2 *1 newPt2: [VlxHl] replace (newPti: [V2ToVl], V2ToVi); 

10 

11 apply type filtering and add into pointsTo BDD --- *1 

12 1* 1.3 *1 newPt3: [VlxHl] = newPt2: [VlxHl] n typeFil ter: [VlxHl]; 

13 1* 1.4 *1 pointsTo: [VlxHl] = pointsTo: [VlxHl] U newPt3: [VlxHl]; 

14 until pointsTo: [VlxHl] == innerOldPt: [VlxHl] 

15 

16 1* --- rule 2 --- *1 

17 1* 2.1 *1 tmpRel1: [(V2xFD)xHl] = relprod(stores: [Vlx(V2xFD)], pointsTo: [VlxHl] , Vi); 

18 1* 2.2 *1 tmpRe12: [(VlxFD)xH2] = replace (tmpRel1: [(V2xFD)xHl], V2ToV1 & HiToH2); 

19 1* 2.3 *1 fieldPt: [(HlxFD)xH2] = relprod(tmpRe12: [(VlxFD)xH2], pointsTo: [VlxHl], V1); 

20 

21 1* --- rule 3 --- *1 

22 

23 

24 

25 

26 

27 

1* 

1* 

1* 

1* 

1* 

3.1 

3.2 

3.3 

4.1 

*1 tmpRe13: [(HlxFD)xV2] = relprodUoads: [(VlxFD)xV2], pointsTo: [VlxHl] , 

*1 newPt4: [V2xH2] relprod(tmpRe13: [(HlxFD)xV2], fieldPt: [(HlxFD)xH2], 

*1 newPtS: [VlxHl] = replace (newPt4: [V2xH2], V2ToV1 & H2ToH1]); 

apply type filtering and add into pointsTo BDD --- *1 

*1 newPt6: [VlxHl] = newPtS: [VlxHl] n typeFilter: [VlxHl]; 

28 1* 4.2 *1 pointsTo: [VlxHl] = pointsTo: [VlxHl] U newPt6: [VlxHl]; 

29 until pointsTo: [VlxHl] == outerOldPt: [VlxHl] 

V1); 

H1xFD); 

Figure 2.9: Basic BDD-based points-to analysis algorithm from [BLQ+03] 
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and efficiency. To implement this type filtering in the BDD algorithm, we use the 

typeFilter BDD, which is precomputed to contain all pairs (p,o) of pointers p and 

objects 0 such that the run-time type of 0 is compatible with the declared type of p. 

In lin es 1.3 and 4.2, the sets of new points-to pairs are intersected with the typeFilter 

set, so that only type-compatible points-to pairs are added to pointsTo. 

The algorithm in Figure 2.9 is very similar to our actual C++ code implementing 

the analysis using the BuDDY [LN] BDD library. The main difference is that the 

actual code lacks the physical domain annotations, although we have documented the 

physical domains of the most important BDDs in comments. 

In order to make the implementation reasonably efficient, we had to tune it in 

two key ways. First, different bit orderings affected analysis time by multiple orders 

of magnitude. vVe observed that the relational product operation in line 1.1 of the 

algorithm took the vast majority of the computation time. After experimenting with 

different orderings, we found one which made this key operation fast: first testing the 

bits of physical domains VI and V2 interleaved, then testing the bits of the physical 

domain Hl. 

Second, we obtained an additional two- to ten-fold speedup by incrementalizing 

the algorithm. In the algorithm as shown in Figure 2.9, all points-to facts are propa­

gated in every iteration. We transformed the algorithm to avoid propagating points­

to facts known to have been propagated in an earlier iteration. We refer the reader 

to [BLQ+03] for details. The resulting incremental implementation is about twice as 

long as the basic version in Figure 2.9, and appears in [BLQ+03, Appendix A]. 

After these two optimizations were applied, the BDD-based implementation was 

measured to be nearly as fast as the highly-tuned traditional points-to analysis imple­

mentation in the SPARK [Lho02, LH03] framework, and significantly better in terms 

of memory requirements. Therefore, we conjectured that BDD-based implementa­

tions would make it possible to study analyses that have so far required too much 

memory to be feasible for large programs, such as context-sensitive analysis. 
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2.4 Conclusion 

In this chapter, we have provided background information about BDDs, and re­

viewed how they were used to implement a basic subset-based points-to analysis 

for Java [BLQ+03J. The techniques that we have presented here are sufficient for 

implementing analyses of similar complexity as the simple points-to analysis. In the 

next chapter, we will explain sorne of the difficulties that arise when attempting to 

implement more complicated BDD-based analyses, and present a system to make it 

possible to implement them. In Chapter 4, we will complement the points-to analysis 

with a framework of other related BDD-based interprocedural analyses, and extend 

it to deal with new constraints introduced while the analysis executes, and to be 

context-sensiti ve. 
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Chapter 3 

Extending Java with Relations 

In this chapter, we present JEDD, a language that we have developed for ex­

pressing program analyses in terms of relations, and a system for implementing the 

analyses using BDDs. We first provide the motivation for and an overview of our 

approach in Section 3.1. In Section 3.2, we present relations, and show how they 

can be represented by BDDs. Then, in Section 3.3, we provide details about our 

design of the JEDD language. In Section 3.4, we illustrate the overall pro cess of using 

JEDD to implement a program analysis by walking through a complete JEDD reimple­

mentation of the original BDD-based points-to analysis [BLQ+03] that we showed in 

Figure 2.9 of Chapter 2. The most significant challenge in generating an efficient BDD 

implementation of a JEDD program is the assignment of physical domains to relation 

attributes; we provide our solution to this problem in Section 3.5. In Section 3.6, 

we discuss the JEDD runtime system, and in Section 3.7, we compare the execution 

speed of JEDD-generated and hand-coded BDD code, and provide measurements of 

compile-time speed. We survey work related to JEDD in Section 3.8, and conclude in 

Section 3.9. 
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Extending Java with Relations 

3.1 Jedd Motivation and Overview 

The simple points-to analysis we described in Section 2.3 and in more detail 

in [BLQ+03] was our first experiment in using BDDs to implement pro gram anal­

yses. Encouraged by the performance of this analysis, we decided to express more 

complicated program analyses for Java. As we began this work, we quickly found 

that implementing our analyses directly in terms of a BDD library was not a good 

solution, for sever al reasons. First, because the interface provided by a BDD library 

is very low level, understanding and maintaining our code became difficult as it grew 

larger than our initial points-to analysis. Moreover, programming at such a low level 

was error prone, and the BDD library did not check for many of the errors; instead, 

our errors caused the library to either crash, or, worse, to execute successfully but 

produce incorrect results. The implicit nature of the BDD representation made the 

errors difficult to track down. Although BDD libraries include garbage collectors for 

the BDD nodes, they require the programmer to manage the root set explicitly using 

reference counts, and this burden becomes significant in larger programs. Although 

BDD libraries make it easy to vary the BDD variable ordering, the physical domain 

assignment is inherent in the code and difficult to change. Both of these parameters 

have an enormous effect on the performance of relation-based analyses, so we needed 

to be able to experiment with both of them. Tuning a BDD-based algorithm requires 

profiling information about the size and shape of the underlying BDDs at each pro­

gram step. We had previously developed sorne ad hoc methods for visualizing this 

information, but a more automated approach was needed. 

Our solution to these problems, which we calI JEDD, consists of several parts. 

1. We have defined an extension to the Java language by adding relations and re­

lational operations, so that we can express program analyses as relations within 

the Soot framework, which is written in Java. 

2. We have developed a translator which automatically translates JEDD code to 

Java code that implements the high-level relational operations by calling into a 

low-level BDD library. 
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3. We have developed a run-time support library for interacting with the BDD 

back-end, which provides automatic memory management and facilities for de­

bugging and profiling BDD operations. 

We now briefly describe the key features and contributions of our approach. 

BDDs abstracted as relations: Rather than expose BDDs and their low-Ievel op­

erations directly, our JEDD language makes possible a more abstract representa­

tion using relations and relational operations. In developing program analyses 

using BD Ds, we have found this to be an appropriate level of abstraction. 

Static and dynamic type checking: Wh en using a BDD library directly, there is 

very little type information to help the programmer determine whether BDD 

operations are used in a way that makes sense. In JEDD, each relation has a 

type specifying its schema, and aU operations on relations are checked staticaUy 

to ensure that the schemas of their operands are compatible. Properties that 

cannot be checked staticaIly, such as the number of bits required to represent 

aIl elements of a domain, are enforced by runtime checks. Together, the static 

and dynamic checks catch many programmer errors that would otherwise make 

a complicated BDD-based analysis infeasible to implement correctly. 

Code generation strategy: JEDD generates low-Ievel BDD code automatically 

from program analyses expressed at a high level in terms of relations. 

Aigorithm for physical domain assignment: When programming directly with 

BDDs, the programmer must explicitly specify a physical domain for every at­

tribute of every relation in the program. This is a tedious process. Furthermore, 

a small change in physical domain assignment may require many changes in the 

program. When specifying a pro gram analysis using the JEDD language, the 

user need provide only a minimal amount of input about the desired assign­

ment, and the translator automatically generates a reasonable assignment for 

the whole program. However, the programmer retains complete control over the 

assignment. In those parts of the program where it is desired, the programmer 
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can provide a more detailed specification to carefully tune the physical domain 

assignment for efficiency. The problem of assigning physical domains turns out 

to be NP-complete. We provide an algorithm to express it as an instance of 

the BAT problem, and we show that, using modern BAT sol vers , the time to 

find a solution is a negligible part of the compilation process. In cases where no 

solution exists, we provide detailed information precisely indicating the source 

of the error to the programmer. 

Run-time support for memory management: Unlike low-Ievel BDD libraries, 

which require the programmer to explicitly manage the root set of live BDDs 

using reference counts, JEDD reclaims BDD nodes automatically as soon as it 

is safe to do so using a combinat ion of static analysis and interaction with the 

Java garbage collector. 

BDD profiler: In our work with BDDs, we found that to tune the BDD-based 

algorithms, we needed profile information about the size and shape of the BDD 

data structures at each pro gram point. Our JEDD system automatically collects 

this information, and allows the programmer to browse it in an organized way 

using a web browser. JEDD reports the time taken and number of BDD nodes 

involved in each operation, and provides graphical figures showing the size and 

shape of the BDDs at each program point. 

A high-level overview of the complete JEDD system is given in Figure 3.1. JEDD 

programs are written in the JEDD language, an extension of Java, and are provided 

as input to the j eddc compiler. The j eddc compiler is composed of a front-end 

(parser and semantic analysis) and a back-end (physical domain assignment and code 

generation). The physical do main assignment module uses an external BAT solver. 

The output of j eddc is in the form of standard Java files which can be incorporated 

into any Java project. The Java files produced by jeddc, along with other ordinary 

Java source making up a project, are compiled to class files using a standard Java 

compiler such as javac. Unless the code written in JEDD is modified, jeddc is 

not needed when recompiling the Java part of the project. The resulting class files 
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Figure 3.1: Overview of JEDD system 

contain calls to the JEDD runtime library, which interfaces using the Java Native 

Interface (JNI) to a BDD package. A Java Virtual Machine (VM) is used to execute 

the classes along with the JEDD runtime. The runtime also includes a profiler, which 

writes profile information into a Structured Query Language (SQL) database. When 

combined with Common Gateway Interface (CGI) scripts accessing the database, a 

web browser can be used to navigate profiler views of BDD operations. 
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3.2 Relations 

In JEDD, BDDs are abstracted as relations, and JEDD code is written in terms of 

relations, rather than directly in terms of BDDs. In this section, we define the 

terminology we will use to talk about relations, and show how relations are encoded 

and manipulated in BDDs. 

3.2.1 Definitions 

We generally follow the accepted terminology used in relational database work (see, 

for example, [GMUWOl, Section 3.1]). 

To illustrate the terms on a concrete example, in Figure 3.2, we present two 

relations representing (a) the initial points-to pairs and (b) the assignment constraints 

from our points-to analysis example from Chapter 2. 

pointer object source dest 

a X b a 

b Y a b 

c Z b c 

(a) (b) 

Figure 3.2: Example relations (a) initial points-to pairs (b) assignment constraints 

A do main 1 is a set of basic elements from which we construct relations. In our 

points-to analysis, we use a domain of pointers, {a, b, c}, and a domain of abstract 

objects, {X, Y, Z}. 

An attribute is a domain along with an associated name. We use attribut es to 

distinguish different instances of the same domain. For example, in the assignment 

constraints relation in Figure 3.2(b), source and dest are two attribut es with the same 

domain, pointers. 

IThe term "domain" is used in both the BDD literature and database literature with two different 
meanings. In this thesis, we say "physical domain" when we mean the BDD sense of the word, and 
sim ply "domain" for the database sense. 
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A tuple is a collection of elements indexed by attribute. The element correspond­

ing to each attribute is in the domain of that attribute. In Figure 3.2, each row of 

each relation is a tuple. For example, the first tuple in Figure 3.2(a) contains the 

element a in the pointer attribute and the element X in the object attribute. 

A relation is a set of tuples, each with the same attributes. This common set of 

attributes is the schema of the relation. The relations in Figure 3.2 have schemas 

{pointer, object} and {source, dest}. 

3.2.2 Encoding relations in BDDs 

To prepare for encoding relations in BDDs, we first assign to each element of every 

domain a binary vector which is unique within the domain. Within each domain, 

every binary vector must be of the same length. Continuing with our example from 

Chapter 2, we may, for instance, assign the binary vector 00 to a and X, 01 to b and Y, 

and 10 to c and Z. 

To represent a relation by a BDD, we first asslgn a physical domain to each 

attribute of the relation. Recall that each tuple contains an element for each attribute. 

To represent an element, we express its binary vector in the physical domain that was 

assigned to its attribute; we combine the vectors of the elements into a single binary 

vector for the whole tuple. For example, if we assigned the attributes source and de st 

of the assignment constraint relation in Figure 3.2(b) to the physical do mains VI 

and V2, respectively, the first tuple (b, a) would be represented by the binary vector 

0100, with 01 in the VI physical domain, and 00 in V2. A relation is represented 

by the BDD encoding the set of bit vectors representing its tuples. Therefore, the 

relations in Figure 3.2 would be encoded by the same BDDs as in Figures 2.5(a) 

and (b) in Chapter 2, provided that the attributes were assigned to the appropriate 

physical domains (pointer and object to VI and Hl, and source and dest to VI and 

V2, respectively). 
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3.2.3 Manipulating relations in BDDs 

Given two relations with the same schema, the operations union, intersection, set 

difference, and equality testing are defined on them as the corresponding opera­

tions on the set of their tuples. In BDDs, these relational operations are implemented 

directly by the corresponding BDD operations. However, each of these operations 

requires that its operand relations be encoded with the same physical domain assign­

ment. When this is not the case, a replace BDD operation must first be performed 

to make the physical domain assignments consistent. 

The projection, attribute renaming, and attribute copying operations mod­

if Y the schema of a relation. 

The projection operation selects a subset of the attributes from the relation and 

removes an other attributes. Within each tuple, only the elements associated with the 

projected attributes are kept; an other elements are removed. Recall that relations 

are sets of tuples with no duplicates. Since removing an attribute from two tuples 

that differ only in that attribute makes the tuples equal, a projection may reduce 

the number of tuples in a relation. Projection is implemented in a BDD by applying 

the existential quantification operation to each bit position of every physical domain 

corresponding to an attribute not present in the projection. 

Attribute renaming substitutes one attribute for another, without changing the 

element for the attribute in each tuple. Renaming an attribute of a relation requires 

no change to the BDD representing it. Only the mapping from attribute to physical 

do main needs to be updated, with the new attribute replacing the old. 

Attribute copying adds a new attribute to a relation, copying the elements of an 

existing attribute into it. That is, within each tuple, we make a copy of the element for 

the attribute being copied, and the copy becomes the element for the new attribute. 

Attribute copying is implemented by first constructing a BDD for the identity relation 

on the physical domains of the old and new attributes, and intersecting it with the 

original BDD. 

The join operation combines the information from two relations into a single 

relation. Given input relations R, R' and an arbitrary user-specified condition on 
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tuples, a general join computes the relation consisting of all the tuples of the cross 

product R x R' that satisfy the given condition. A common example of such a 

condition is that the elements of a given list of attributes from R be respectively 

equal to the elements of a given list of attributes from R'. For example, given the 

relations shown in Figure 3.2, we may wish to find all tuples in their cross product 

which match in the pointer and source attributes. A join with this kind of condition 

is an equijoin. In applying BDDs to program analysis, we limit ourselves only to 

equijoins rather than general joins. Because the elements of the attributes being 

compared in an equijoin always appear twice in the resulting relation (once coming 

from an attribute of R and once from the corresponding attribute of R'), we omit the 

copy coming from R'. 

To implement a join in BDDs, we must first carefully set up the physical domain 

assignment. The attribut es being compared must be assigned to the same physical 

domains in the left and right relations. The remaining attributes must be assigned 

to physical domains not used by the other relation, so that their elements do not 

interfere with each other. Assuming we have such a physical do main assignment, the 

join is computed as the intersection of the BDDs representing the relations. 

The composition operation is similar to join, but while a join omits one copy of 

each attribute being compared to an attribute of the other relation, a composition 

omits both copies. Therefore, a composition is equivalent to a join followed by a 

projection of the appropriate attributes, and indeed can be implemented this way. We 

mention it separat81y for two reasons. First, it tends to be very common in program 

analyses. Second, it can be implemented by the relational product BDD operation, 

which is more efficient than an intersection followed by an existential quantification. 

3.3 Jedd Language 

In this section, we describe the JEDD language for expressing program analyses using 

relational operations and implementing them using BDDs. To give an ide a of what 

JEDD code looks like, we begin by showing, in Figure 3.3, the JEDD implementation 
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of the points-to set propagation example from Section 2.2. This JEDD code performs 

the same propagation as the BDD code that we saw in Figure 2.6. 

1 <pointer:Vl, object:Hl> pointsTo; 

2 <source, dest:V2> assign; 

3 

4 <pointer, object> oldPt; 

5 

6 do { 

7 oldPt = pointsTo; 

8 <dest, object> tmp = pointsTo{pointer} <> assign{source}; 

9 pointsTo 1= Cdest=>pointer) tmp; 

10 } whileC oldPt != pointsTo ); 

Figure 3.3: JEDD implementation of simple points-to set propagation 

Several characteristics of JEDD are apparent from the example. First, JEDD code 

is written in terms of relations and the relational operations explained in Section 3.2, 

rather than directly in terms of BDDs and BDD operations. The composition opera­

tion is denoted by <> (see line 8), union is denoted l, and an assignment of the form 

pointsTo = pointsTo 1 ... can be abbreviated as pointsTo 1 = ... (see line 9). 

Second, the schema of each relation variable is explicit in its declared type. This makes 

it possible for the JEDD translator to check that the schemas of the relations involved 

in each operation are consistent. Third, physical domains can be specified for sorne 

attributes; in this case, they are specified for three of the attributes (pointer and 

object in line 1 and dest in li ne 2). The JEDD translator automatically finds a rea­

sonable2 physical domain assignment for those attributes for which physical domains 

are not explicitly specified. In particular, this includes the various subexpressions 

within each expression. Each physical domain to be used in the assignment must be 

mentioned explicitly at least once in the program, but the programmer may choose 

to make the assignment explicit in additional key relations where desired. A typical 

2We will give a precise definition of a reasonable physical domain assignment in Section 3.5.3. 
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system of program analyses, such as the PADDLE system described in Chapter 4, con­

tains on the order of twenty physical domains and thousands of attribute instances ,3 

so the requirement to explicitly mention each physical domain at least once is not a 

significant burden. In comparison, an implementation using a low-Ievel BDD library 

directly would have to specify a physical domain for every attribute instance. 

3.3.1 Grammar 

Because JEDD is an extension of Java, we used the Java grammar [GJS96, ch. 19] as 

a starting point for a JEDD grammar, and removed and added sorne alternatives and 

productions. The changes to the grammar are shown in Figure 3.4. Non-terminaIs 

from the original Java grammar appear in italics. 

First, we added a relation schema as a new kind of type specification. A relation 

schema consists of a set of attributes, optionally with physical domains to which they 

are to be assigned. Both attributes and physical domains are specified by class names. 

Second, we added the various relational operations. The original Java gram­

mar contains a chain of non-terminaIs representing different kinds of expres­

sions at successive levels of precedence. For JEDD, we have inserted two 

kinds of expressions, {Rel Expr Joi n} and {Rel Expr }, with precedence in between 

{UnaryExpressionNotPlusMinus} and {PostfixExpression}. The complete chain of 

non-terminaIs for expressions is shown in Figure 3.5. A {RelExpr Join} can be a join 

or composition (denoted with the symbols >< and <>, respectively, suggested by the 

standard notation !Xl and 0), or an expression of higher precedence. Join and compo­

sition have equal precedence. A {ReIExpr} can be an attribute operation (projection, 

renaming, or copy) , or an expression of higher precedence. The attribute opera­

tions are expressed as a li st of replacements. Each replacement specifies the original 

attribute to be affected, followed by the symbol =>, followed by zero, one, or two at­

tributes, indicating that the attribute be removed, renamed to a different attribute, 

3We use the term attribute instance to distinguish the instances of the same attribute appearing 
in different relations. For example, the code in Figure 3.3 contains two instances of the attribute 
dest, in the relations assign and tmp. 
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Added alternatives and productions: 

(Type) ::= (standard Java alternatives) l '<' (AttributePhys) ( ',' (AttributePhys) ) * '>' 

(AttributePhys) ::= (Attribute) 1 (Attribute) ':' (Attribute) 

(Attribute) ::= (ClassOrInterfaceType) 

(UnaryExpressionNotPlusMinus) ::= (standard Java alternatives) 1 (ReIExprJoin) 

(ReIExprJoin) ::= (ReIExpr) 1 (Join) 

(Join) ::= (ReIExprJoin) (AttrList) (JoinSym) (ReIExpr) (AttrList) 

(AttrList) ::= '{' (Attribute) ( , " (Attribute)) * '}' 

(JoinSym) ::= '>' '<' l '<' '>' 

(ReIExpr) ::= (Replace) 1 (PostfixExpression) 

(Replace) ::= '(' (Replacement) (',' (Replacement))* ')' (RelationExpr) 

(Replacement) ::= (Attribute) '=>' 1 (Attribute) '=>' (Attribute) 

1 (Attribute) '=>' (Attribute) (Attribute) 

(Literal) ::= (standard Java alternatives) 

l 'new' '{' (LiteraIPiece) (',' (LiteraIPiece)) * '}' l'OB' l 'lB' 

(LiteraIPiece) ::= (Expression) '=>' (AttributePhys) 

Removed alternative: 

(UnaryExpressionNotPlusMinus) ::= (PoslfixExpi ession) 

(other standard Java alternatives) 

Figure 3.4: JEDD grammar productions 
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or co pied to two attributes, respectively. Because the attribute operations change the 

type of a relation, the replacement li st is enclosed in parentheses, like a Java cast. 

Third, we added two new kinds of literaIs. The constant literaIs OB and 1B 

represent the empty relation and the full relation (containing all possible tuples 

of the schema), respectively. Much like Java's null constant, they are com­

parable and assignable to any relation type, and assume the schema imposed 

by the type to which they are compared or assigned. JEDD also provides an 

easy way to create new tuples from Java objects. For example, the expression 

new {srcPtr=>source, dstPtr=>dest} creates a relation consisting of one tuple, 

with the Java objects srcPtr and dstPtr in the attributes source and dest, respec­

tively. 

Unfortunately, Java's C roots make it difficult to write a clean LALR(l) grammar 

for it; sorne of the necessary workarounds are discussed in the introduction to the 

grammar itself [GJS96, ch. 19]. Keeping the JEDD extension of the grammar LALR(l) 

proved to be difficult as weIl. If we applied the changes in Figure 3.4 directly to 

the original Java grammar, it would no longer be LALR(l). The operands of a 

join or composition can be primaries, which in Java include class instance creation 

expressions, which have an optional trailing class body enclosed in curly braces. A 

LALR(l) parser cannot distinguish this body from the attribute list following the 

operand in the join or composition. However, the type of a class instance creation is 

never a relation type, so a class instance creation is never a legal operand to a join 

or composition, so we can exclude it in this case. Therefore, prior to applying the 

changes in Figure 3.4, we performed a series of language preserving transformations, 

removing class instance creation expressions from primaries, and adding them in all 

places where primaries can occur (except the join production that we added). These 

modifications are listed in Figure 3.6. The result is a LALR(l) grammar for JEDD 

which extends Java in a natural way. 
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{ Expression} ::::? 

{ AssignmentExpression} ::::? 

{ ConditionalExpression} ::::? 

{ ConditionalOrExpression} ::::? 

{ ConditionalAndExpression} ::::} 

{ InclusiveOrExpression} ::::? 

{ Exclusive Or Expression} ::::? 

{ A ndExpression} ::::? 

{ EqualityExpression} ::::? 

{ RelationalExpression} ::::? 

{ ShiftExpression} ::::} 

{ AdditiveExpression} ::::} 

{MultiplicativeExpression} ::::} 

{ UnaryExpression} ::::} 

{ UnaryExpressionN otPlusMinus} ::::? 

{Rel Expr Joi n } ::::? 

{ReIExpr} ::::} 

{ P ostfixExpression} ::::? 

{Primary} ::::? 

{ PrimaryN oN ewA rra y } ::::? 

{ Literal} 

Figure 3.5: Chain of expression precedences in Java and JEDD 
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Added alternatives: 

(ArmyAccess) ::= (standard Java alternatives) 

1 (ClasslnstanceCreationExpression) '[' (Expression) 'J' 

(ExplicitConstructorlnvocation) ::= (standard Java alternatives) 

1 (ClasslnstanceCreationExpression) , . ' 'this' '(' (ArgumentListOpt) ')' ';' 

1 (ClasslnstanceCreationExpression) , . ' 'super' '(' (ArgumentListOpt) ')' ';' 

(ClasslnstanceCreationExpression) ::= (standard Java alternatives) 

(ClasslnstanceCreationExpression) " 'new' (SimpleName) '(' 

(ArgumentListOpt) ')' 

1 (ClasslnstanceCreationExpression) 
, , 

'new' (SimpleN ame) '(' 

(ArgumentListOpt) ')' (ClassBody) 

(FieldAccess) ::= (standard Java alternatives) 

1 (ClasslnstanceCreationExpression) , .' IDENTIFIER 

(Methodlnvocation) ::= (standard Java alternatives) 

1 (ClasslnstanceCreationExpression) '.' IDENTIFIER' (' (ArgumentListOpt) ')' 

(UnaryExpressionNotPlusMinus) ::= (standard Java alternatives) 

1 (ClasslnstanceCreationExpression) 

Removed alternative: 

(PrimaryNoNewArmy) ::= (Otuss.bzslunceC, eulionExpi ession) 

(other standard Java alternatives) 

Figure 3.6: Grammar transformations to keep JEDD grammar LALR(l) 
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3.3.2 Declaring domains, attributes, physical domains, and num­

berers 

All domains, attributes, physical domains, and numberers used in a JEDD pro­

gram must be declared by the programmer. Each of these entities is declared 

by writing a class implementing, respectively, the j edd. Domain, j edd. Attribute, 

j edd. PhysicalDomain, or j edd. Numberer interface. The interfaces ensure that the 

required information about each entity is available at run time. However, for do­

mains, attributes, and physical domains, sorne of the information is required by the 

JEDD translator, and must therefore be available at compile time. We have slightly 

extended the syntax of class declarations to allow the programmer to annotate do­

mains, attributes and physical domains with this compile-time information. 4 

3.3.2.1 Domains 

To declare a domain, the programmer must specify the number of BDD bits that will 

be required to encode each element of the domain, and the mapping between Java 

objects and binary vectors. An example domain declaration for the domain of pointer 

variables in our points-to analysis example is shown in Figure 3.7. 

1 public class VarDomain(2) extends Domain { 

2 public Numberer numberer() { return new VarNodeNumberer(); } 

3 } 

Figure 3.7: Example domain declaration 

The number of bits (two, in our example) is specified in parentheses immediately 

after the name of the domain. The JEDD translator ensures that any physical domain 

in which elements of the domain may be encoded contains at least this many bits. 

4If JEDD were based on Java 1.5, it would be appropriate to use the standard Java annotation 
mechanism to specify these annotations. However, JEDD was written before Java 1.5 was defined, so 
we had to add an annotation syntax of our own. As soon as Polyglot [NCM03] supports Java 1.5-style 
annotations, we anticipate that it will be a simple task to modify JEDD to use them instead. 
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The JEDD run-time system ensures that the binary-vector encoding of any element 

of the domain consists of at most this many bits. 

The mapping between Java objects and binary vectors is only needed at run­

time. It is specified for the domain by implementing the numberer 0 method to 

return a numberer object that will convert between Java objects and binary-vector 

representations. In our example, the method returns a VarNodeNumberer object, 

which we will implement below in Section 3.3.2.4. 

3.3.2.2 Attributes 

An attribute declaration must specify the domain of the attribute in parentheses after 

the attribute name. Figure 3.8 shows an example declaration of the src attribute 

from our running example, with the domain VarDomain. 

1 public class srcCVarDomain) extends Attribute {} 

Figure 3.8: Example attribute declaration 

3.3.2.3 Physical domains 

A declaration of a physical domain does not require any additional information besides 

its name. An example declaration of the Vi physical domain from our running example 

is shown in Figure 3.9. 

1 public class ViC) extends PhysicalDomain {} 

Figure 3.9: Example physical domain declaration 
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3.3.2.4 Numberers 

The purpose of a numberer is to map Java objects to the binary vectors that encode 

them in BDDs, and vice versa. The jedd.Numberer interface requires a numberer to 

implement two methods: 

• Ob j ect get (long) takes a binary vector stored as a 64-bit integer and returns 

the corresponding Java object, and 

• long get(Object) takes a Java object and returns the corresponding binary 

vector in a 64-bit integer. 

The example numberer shown in Figure 3.10 implements the numbering of pointer 

variables in our running example. The pointer variables a, b, and c are mapped to 

the binary vectors 00 (0), 01 (1), and 10 (2), respectively. 

1 public class varnodenumberer implements numberer { 

2 public object get(long number) { 

3 switch(number) { 

4 case 0: return varnode.v("a"); 

5 case 1: return varnode. v ("b") ; 

6 case 2: return varnode.v("c"); 

7 } 

8 } 

9 public long get(object 0) { 

10 if(o.equals(varnode.v("a"») return 0; 

11 if(o.equals(varnode.v("b"») return 1; 

12 if(o.equals(varnode.v("c"») return 2; 

13 } 

14 } 

Figure 3.10: Example numberer 
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3.3.2.5 Specifying physical damain ardering 

The order of the bit positions of physical domains in the BDDs manipulated by 

JEDD is specified by calling the method j edd. Jedd. setOrder (j edd. order. Order). 

This method takes as its argument a tree data structure representing the desired 

ordering. Each subtree of the tree specifies a sequence of the bit positions of the 

physical domains; the complete tree specifies the complete sequence of all physical 

domains. Each leaf of the tree is a physical domain, and each internaI node is one 

of the implementors of the j edd. order . Order interface, each of which specifies a 

different way to order the bit positions of its subtrees relative to each other. The 

following five node implementations are included in JEDD because they were found 

to be use fuI in developing the pro gram analyses described in this thesis. JEDD users 

can implement additional kinds of nodes as needed by implementing the interface, 

which requires writing a method to generate the desired ordering of bits. 

Seq: The Seq node arranges the bit positions of its subtrees sequentially. All bits of 

the first subtree are placed first, followed by all bits of the second subtree, then 

all bits of the third subtree, and so on. 

Interleave: The Interleave node interleaves the bit positions of its subtrees. It 

first returns the first bit of every subtree, followed by the second bit of every 

subtree, then the third bit of every subtree, and so on. 

Rev: The Rev node has exactly one child. It returns the bit positions of its subtree 

in reverse order. 

Asymlnterleave: Like the Interleave node, the Asymlnterleave node interleaves 

the bit positions of its subtrees. However, rather than taking one bit from each 

subtree at a time, it can take different numbers of bits from different subtrees. 

Each subtree is annotated with the number of bits that should be taken from 

it on each iteration. For example, if an Asymlnterleave node has two subtrees 

annotated two and three, it constructs an order consisting of bits one and two 

of the first subtree, followed by bits one, two, and three of the second subtree, 
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1 Jedd.v().setOrder( new Seq( FD.v(), 

2 new Interleave( Vi. vO, 

3 V2.v(», 

4 H1.vO, 

5 H2.v(»); 

Figure 3.11: Example of setting the bit position ordering 

followed by bits three and four of the first subtree, followed by bits four, five, 

and six of the second subtree, and so on. 

Permute: Like the Rev node, the Permute node has exactly one child, but additionally 

takes an integer argument k. It constructs a permutation of the bit positions 

of its subtree by taking every kth bit until the end of the bit sequence, then 

starting again from the first bit that has not yet been taken. For example, if k is 

three, the resulting sequence consists of bits one, four, seven, ... of the subtree, 

followed by bits two, five, eight, ... , followed by bits three, six, nine, .... 

At run time, JEDD checks that the tree passed to the setOrder 0 method contains 

exactly one instance of every physical domain declared in the program. 

Figure 3.11 shows an example of setting the bit position ordering to the ordering 

that we found to work weIl for points-to analysis [BLQ+03]. The bits of the FD 

physical domain are tested first, followed by the bits of the Vi and V2 physical domains 

interleaved, followed by the bits of the Hi physical domain, and finally the bits of the 

H2 physical domain. 

3.3.3 Extracting information from relations 

An important part of a language extension integrating relations into Java are facilities 

for extracting information from relations back to Java. JEDD provides two versions 

of java. util. Iterator for iterating over the tuples of a relation. The first works on 

relations with a single attribute, and in each iteration returns the single object in 
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each tuple. The example code in Figure 3.12 shows how this iterator is used to print 

the points-to set for a given pointer variable. The second iterator works on relations 

of any size, and iterates over the tuples, returning each tuple as an array of objects. 

An example of how this iterator is used to iterate over the simple assignment relation 

of subset constraints is shown in Figure 3.13. These iterators are used to implement a 

toStringO method on relations, which is very useful for debugging JEDD programs. 

Without such a method, it would be very difficult to interpret the structure of a BDD 

to determine the relation it represents. 

1 1** Prints the targets of the pointer variable represented by vn. *1 
2 void printPointsToSet«pointer, object> pointsTo, VarNode vn ) { 

3 Il extract points-to set for pointer vn 

4 <object> pointsToSet = pointsTo{pointer} <> new{vn=>pointer}{pointer}; 

5 

6 Il iterate over points-to set 

7 Iterator it = pointsToSet.iterator(); 

8 while( it.hasNext() ) { 

9 AllocNode an = (AllocNode) it.next(); 

10 System.out.println( an.toString() ); 

11 } 

12 } 

Figure 3.12: Example use of single-attribute iterator 

JEDD also provides a sizeO method that returns the number of tuples in a rela­

tion. JEDD provides additional statistics about the BDD representations of relations 

as part of its profiling framework, which is described in Section 3.6.3. 

3.3.4 Type checking 

Polyglot includes a complete semantic checker for Java. We extended this checker to 

infer the schemas of relational expressions from their subexpressions, and statically 

enforce the properties shown in Figure 3.14. The most important properties are that 
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1 1** Prints the pointer assignment edges. *1 
2 void printEdges«source, dest> edges) { 

3 Il Iterate over assignment edges, specifying that 

4 Il the source attribute to be the zeroth array element, and 

5 Il the dest attribute to be the first array element. 

6 Iterator it = edges.iterator(new Attribute[] {source.v(), dest.v()}); 

7 while( it.hasNext() ) { 

8 ObjectE] edge = (Object[]) it.next(); 

9 System. out. println( "Pointer assignment from "+edge [0] . toStringO + 

10 " to "+edge [1] . toStringO ); 

11 } 

12 } 

Figure 3.13: Example use of multi-attribute iterator 

no relation may have more than one instance of the same attribute, that operands 

of set and comparison operations have compatible schemas, and that the attributes 

mentioned in attribute manipulation, join, and composition expressions exist in the 

corresponding operands. 

3.4 Complete Example 

We now illustrate aIl the steps in the development of a JEDD program by walking 

through a complete reimplementation in JEDD of our original BDD-based points­

to analysis solver [BLQ+03]. While Figure 2.9 showed only the core of the BDD­

based implementation of the points-to set propagation algorithm, in this section, in 

Figures 3.15 through 3.19, we present the entire JEDD implementation. The code 

shown in these figures can be run through the JEDD translator, and the resulting 

Java bytecode can then be executed by a Java virtual machine. SpecificaIly, the 

JEDD code shown in Figure 3.16 of this section corresponds to the portion of the 

BuDDY code that was shown in Figure 2.9. 
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ai = aj =? i = j ai <: jedd.Attribute [L· 1] 
Itera 

new {Ol =>al, ... ,On=>an} : {al, ... , an} 

x:T aET a<:jedd.Attribute[p . ] 
(a=»x:T\{a} rOJect 

X: T a E T b rJ- T a,b <: jedd.Attribute[R ] 
ename 

(a=>b)x : (T \ {a}) U {b} 

X : T a E T b, c rJ- T \ {a} 

b =J. c a, b, c <: jedd.Attribute 

(a=>b c)x: (T\ {a}) U {b,c} [Copy] 

X : T y: T [SetOp] 
X 0 y: T where 0 E {&, l, -} 

X : T y: T V Y E {OB, 1B} . 
--------------=-----='---- [Assign 1 
X 0 Y : T where 0 E {=, &=, 1 =, -=} 

X : T V x E {OB, 1B} y: T V Y E {OB, 1B} [C ] 
ompare 

x 0 y : boolean where 0 E {==, ! =} 

x : T y: U U' = U \ {bl , ... bn} T n U' = 0 
{al, ... ,an}ÇT {bl, ... ,bn}ÇU 

ai = aj =? i = j bi = bj =? i = j 

ai, bi <: jedd. Attribute 
------;----=-------;-----::----- [Join] 

x{ al, ... , an}><y{bl , ... , bn} : TU U' 

x : T y: U T' n U' = 0 
T' = (T\ {al, ... ,an}) U' = (U \ {bl , ... bn}) 

{al, ... ,an} ÇT {bl, ... ,bn} ç U 

ai = aj =? i = j bi = bj =? i = j 
ai, bi <: jedd. Attribute 

------:-----::--------::-----::-------[Compose] 
x{al, ... , an}<>y{bl , ... , bn} : T'U U' 

Figure 3.14: Typing rules 
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1 import jedd.*; 

2 import jedd.order.*; 

3 

4 class Propagator { 

5 public static <pointer,object> propagateC 

6 <source,dest> assign, 

7 <object,pointer> allocs, 

8 <source,field,dest> stores, 

9 <source,field,dest> loads, 

10 <pointer,object> typeFilter 

11 ) { 

12 <pointer,object> pointsTo = allocs; 

13 <pointer,object> outerOldPt; 

14 <pointer,object> innerOldPt; 

Figure 3.15: Complete JEDD code for points-to analysis of [BLQ+03] (part 1 of 5) 

We begin the presentation of the solver in Figure 3.15. Lines 1-2 import the pack­

ages of the JEDD run-time library. In line 4, we begin a Propagator class containing 

a static method propagate (), which will implement the points-to set propagation 

algorithm. The method takes relations containing the points-to set constraints to be 

solved as parameters. The return value of the method is a relation that will con­

tain the computed points-to relation. In lines 12-14, we declare three local relation 

variables for use by the propagation algorithm. The pointsTo variable will store the 

points-to relation computed so far. We initialize it in li ne 12 with the initial points-to 

pairs due to allocation statements. The other two variables will be used to save the 

old points-to relation at the beginning of each loop of the algorithm; at the end of 

each loop, they will be used to determine whether the points-to relation has changed 

in the current iteration. 

Figure 3.16 shows the JEDD implementation of the core points-to set propagation 

algorithm. The abstract algorithm is the same as in the BuDDy implementation in 

Figure 2.9, but now it is expressed in terms of JEDD relational operations, which are 
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independent of any specifie BDD implementation details. SpecificaIly, each relation is 

defined over a set of abstract attributes, and at this point, we have not specified the 

physical domain of BDD variables in which each attribute instance will be encoded. 

In the BuDDY implementation, we had to in sert BDD replace operations to move 

attributes to specifie physical domains required by each BDD operation. In the JEDD 

version, we express only the relational operations that we want performed, and leave 

it to the JEDD translator to allocate the attribute instances to appropriate physical 

domains, and move them with replace operations when necessary. 

From the high-level JEDD code shown in Figure 3.16, the JEDD translator will 

automatically generate low-level BDD code like the code we showed in Figure 2.9. 

In Figure 3.17, we show how to define the numberer, domains, and attributes used 

by the JEDD implementation of the algorithm in Figure 3.16. 

The numberer defines a bijective mapping between the Java objects that we 

want to store in relations and long integers. Our original points-to constraint 

solver [BLQ+03] read points-to constraints from an input file in which each pointer 

variable, abstract heap object, and field was designated by a unique integer. There­

fore, for this particular pro gram , the Java objects to be stored in relations are aIl 

of type java. lang. Long, and the bijection is easy to define: each java .lang. Long 

object is mapped to the long returned by its longValue 0 method. In general, any 

Java objects could be stored in relations. Indeed, the PADDLE framework which we 

describe in Chapter 4 uses different types of Java objects for each kind of element that 

it stores in relations. Each numberer must define two get () methods, one to convert 

a long integer to the corresponding Java object, and the other to convert a Java 

object to the corresponding long integer. The implementation of these two methods 

for the points-to set propagation example is shown in lines 56 and 57, respectively. 

In lines 62 through 67, we define the three domains used in the algorithm: pointer 

variables, abstract heap objects, and fields. We specify that up to 10 bits may be 

required to encode fields, and up to 20 bits may be required to encode objects in the 

other two domains. In general, the Java objects to be stored in each domain could 

use a distinct numberer, but in this example, we reuse the same numberer for an four 

domains. 
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15 

16 do { 

17 

18 

outerOldPt pointsTo; 

19 do { 

20 innerOldPt = pointsTo; 

21 

22 1* --- rule 1 --- *1 
23 <pointer,object> newPt = pointsTo{pointer} 

24 <> (dest=>pointer) assign{source}; 

25 

26 1* --- apply type filtering and add into pointsTo BOO --- *1 
27 newPt &= typeFilter; 

28 pointsTo 1= newPt; 

29 } while( pointsTo != innerOldPt ); 

30 

31 1* --- rule 2 --- *1 
32 <object,pointer,field> objectsBeingStored = (dest=>pointer) stores{source} 

33 <> pointsTo{pointer}; 

34 <base,field,object> fieldPt = objectsBeingStored{pointer} 

35 <> (object=>base) pointsTo{pointer}; 

36 

37 1* --- rule 3 --- *1 
38 <base,field,dest> loadsFromHeap = loads{source} 

39 <> (object=>base) pointsTo{pointer}; 

40 <pointer,object> newPt = (dest=>pointer) loadsFromHeap{base,field} 

41 <> fieldPt{base,field}; 

42 

43 1* --- apply type filtering and add into pointsTo BOO --- *1 
44 newPt &= typeFilter; 

45 pointsTo 1= newPt; 

46 } while( pointsTo != outerOldPt ); 

47 return pointsTo; 

48 } 

49 } 

Figure 3.16: Complete JEDD code for points-to analysis of [BLQ+03] (part 2 of 5) 
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Finally, in lines 71 through 78, we associate the attributes used in the points-to 

set propagation algorithm with their domains. The attributes source, dest, and 

pointer are of the domain Var of pointer variables, the attributes object and base 

are of the domain Obj of abstract heap objects, and the attribute field is of the 

do main Field of fields. 

In Figure 3.18, we begin to connect the high-level relational specification of our 

algorithm with an actual BDD representation. In lines 82 through 86, we declare the 

five physical domains of BDD variables in which the relations will be encoded. These 

are the same five physical domains that we used in the BDD implementation of the 

algorithm in Figure 2.9. In line 88, we begin the class Main which will contain the 

main () method, and also generate the input points-to set constraints to be solved. 

The relations to store the input points-to set constraints are declared in lines 89 

through 93. 

At this point, we have decided to specify the physical domains in which sorne of 

the attribute instances will be encoded (Vi, V2, Hi, and FD in lines 89 through 91). 

We expect the JEDD translator to automatically find a reasonable assignment of 

physical domains to all other attribute instances of all relations in the program, 

including all the relations in the propagation algorithm in Figure 3.16. However, if 

we run the JEDD translator on the program in its current form, it will output an 

error indicating a problem with the f ieldPt relation declared on line 34, namely 

that the attributes base and object must be assigned to distinct physical domains, 

but only the Hi physical domain is available for both of them. Recall that every 

physical domain that JEDD is to use in its assignment must be explicitly specified 

at least once in the program. 80 far, we have not yet explicitly specified the H2 

physical domain for any attribute instance, so it cannot be used. Therefore, in light 

of the error report at line 34, we decide to explicitly assign the obj ect attribute of 

the fieldPt relation to the H2 physical domain by modifying line 34 as shown at 

the bottom of Figure 3.18. In general, once we have defined a high-level relational 

implementation of an algorithm, finding a physical domain assignment is an iterative 

process: we first specify physical domains for a small number of attribute instances, 

then run the JEDD translator to find relations for which it cannot find a reasonable 
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50 

51 // Define numberer 

52 //////////////////////////////////////////////////////////////// 

53 class LongNumberer implements Numberer { 

54 private static LongNumberer instance = new LongNumberer() ; 

55 public static LongNumberer v() { return instance; } 

56 public Object get( long number ) { return new Long(number); } 

57 public long get( Object 0 ) { return «Long) 0) .10ngValue(); } 

58 } 

59 

60 // Define domains 

61 //////////////////////////////////////////////////////////////// 

62 class Var(20) extends Domain 

63 { public Numberer numberer() { return LongNumberer.v(); } } 

64 class Obj(20) extends Domain { 

65 { public Numberer numberer() { return LongNumberer.v(); } } 

66 class Field(10) extends Domain { 

67 { public Numberer numberer() { return LongNumberer.v(); } } 

68 

69 /1 Define attributes 

70 //////////////////////////////////////////////////////////////// 

71 class source(Var) extends Attribute {} 

72 class dest(Var) extends Attribute {} 

73 class pointer(Var) extends Attribute {} 

74 

75 class object(Obj) extends Attribute {} 

76 class base(Obj) extends Attribute {} 

77 

78 class field(Field) extends Attribute {} 

79 

Figure 3.17: Complete JEDD code for points-to analysis of [BLQ+03] (part 3 of 5) 
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80 // Define physical domains 

81 //////////////////////////////////////////////////////////////// 

82 class ViC) extends PhysicalDomain {} 

83 class V2C) extends PhysicalDomain {} 

84 class HiC) extends PhysicalDomain {} 

85 class H2C) extends PhysicalDomain {} 

86 class FDC) extends PhysicalDomain {} 

87 

88 public class Main { 

89 <source:Vl,dest:V2> mAssign; 

90 <object:Fll,pointer> mAllocs; 

91 <source,field:FI>,dest:V2> mStores; 

92 <source,field,dest> mLoads; 

93 <pointer,object> mTypeFilter; 

94 

95 public static final void mainC String args ) { 

96 Jedd. vO. setBackendC"buddy"); 

97 Jedd.v().setDrder( 

98 new Seq(FD.v(), new Interleave(Vi.v(), V2.v()), Hi.v(), H2.v()) ); 

99 

34 <base,field,object:Fl2> fieldPt objectsBeingStored{pointer} 

Figure 3.18: Complete JEDD code for points-to analysis of [BLQ+03] (part 4 of 5) 
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physical domain assignment, and add explicitly specified physical domains for those 

relations. In the case of our points-t~ set propagation example, a single iteration 

of this pro cess is enough: the physical domains that we have specified in lines 89 

through 91 and in li ne 34 are sufficient for JEDD to automatically find a reasonable 

physical domain assignment for all other relations in the program. In case we are not 

satisfied with sorne part of the physical domain assignment (for example, if we find a 

performance bottleneck using the profiler), we could constrain it further by continuing 

to specify additional physical do mains explicitly, and using JEDD to automatically 

find a reasonable physical domain assignment for the rest of the pro gram. 

The main 0 method begins in line 95. First, in line 96, it initializes JEDD and 

selects the BuDDy backend. In lines 97 through 98, the mainO method sets the 

relative ordering of physical domains. The FD physical domain appears first in each 

BDD, followed by the Vl and V2 physical domains interleaved, followed by Hl and 

H2. This was the physical do main ordering that we found to be most efficient for 

points-to set propagation [BLQ+03]. 

Figure 3.19 shows the remainder of the mainO method and Main class. The 

mainO method generates a sample set of input points-to constraints (li ne 101), calls 

the propagation algorithm to solve them (lines 102 through 103), and prints out the 

resulting points-t~ relation (lines 105 through 106). The ini tializeConstraints 0 
method in lines 109 through 130 loads the points-t~ constraints of one of our test 

cases into the points-to constraint relations in the Main class. 

3.5 Assigning Physical Damains ta Attributes 

As we have seen in the example in the previous section, one important problem 

when implementing algorithms using BDDs is deciding how to assign each attribute 

instance to a physical domain of BDD variables. We now show how JEDD automates 

this task. First, in Section 3.5.1, we present the objectives which motivated the 

design of the physical do main assignment algorithm. In Section 3.5.2, we formalize 

these objectives as explicit constraints that a reasonable assignment must satisfy. 
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100 Main m = new Main(); 

101 m.initializeConstraints(); 

102 <pointer,object> pointsTo = Propagator.propagate( 

103 m.mAssign, m.mAllocs, m.mStores, m.mLoads, m.mTypeFilter); 

104 

105 System. out. println( "Points-to relation:") ; 

106 System.out.println(pointsTo.toString()); 

107 } 

108 

109 private void initializeConstraints() { 

110 mAllocs 1= new{new Long(l)=>object, new Long(l)=>pointer}; 

111 

112 

113 

114 

115 

116 

117 

mAllocs 

mAllocs 

mAllocs 

mAllocs 

mAllocs 

mAllocs 

1= new{new Long(2)=>object, new Long(l)=>pointer}; 

1= new{new Long(2)=>object, new Long(2)=>pointer}; 

1= new{new Long(3)=>object, new Long(2)=>pointer}; 

1= new{new Long(3)=>object, new Long(3)=>pointer}; 

1= new{new Long(4)=>object, new Long(3)=>pointer}; 

1= new{new Long(5)=>object, new Long(5)=>pointer}; 

118 mAssign 1= new{new Long(3)=>source, new Long(4)=>dest}; 

119 mAssign 1= new{new Long(7)=>source, new Long(4)=>dest}; 

120 

121 mStores 1= new{new Long(4)=>source, new Long(l)=>dest, new Long(l)=>field}; 

122 mStores 1= new{new Long(5)=>source, new Long(2)=>dest, new Long(l)=>field}; 

123 mStores 1= new{new Long(6)=>source, new Long(3)=>dest, new Long(l)=>field}; 

124 

125 mLoads 1= new{new Long(l)=>source, new Long(l)=>field, new Long(7)=>dest}; 

126 mLoads 1= new{new Long(2)=>source, new Long(l)=>field, new Long(8)=>dest}; 

127 mLoads 1= new{new Long(3)=>source, new Long(l)=>field, new Long(9)=>dest}; 

128 

129 mTypeFilter = lB; 

130 } 

131 } 

132 

Figure 3.19: Complete JEDD code for points-to analysis of [BLQ+03] (part 5 of 5) 
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Next, in Section 3.5.3, we present our algorithm for solving the constraints. Finally, 

in Section 3.5.4, we present the error recovery mechanism which provides meaningful 

error messages to the programmer. 

3.5.1 Objectives 

Our objectives for the design of the physical domain assignment algorithm fall into 

three main categories. First, we aimed to minimize the amount of work required of 

the programmer. Second, we wanted to make it possible to precisely specify different 

physical domain assignments, and to easily change them, with the overall goal of 

finding assignments that make the analysis execute efficiently. Third, we wanted an 

algorithm which could be practically implemented in a usable tool. In the rest of this 

section, we explain these objectives in more detail. 

The first two objectives seem contradictory, since a very flexible system can be 

obtained by requiring the user to specify every detail, while an automatic system 

offering no choices requires little from the user. Therefore, one of the challenges was 

to find a reasonable compromise between these two extremes. 

A programmer using a BDD library directly must map each attribute instance to 

a physical domain by hand, and write the program in terms of the physical domains, 

rather than attributes. For simple programs of sever al BDD expressions with two 

or three attributes, this is acceptable. However, for more complicated programs, 

assigning a valid physical domain to each attribute of every subexpression is both 

tedious and error-prone. It is tedious because there are so many attribut es to which 

physical domains must be assigned, and it is error-prone because the many replace 

operations which move data to the assigned physical domains must be inserted by 

hand, with no automatic verification of their correctness, either at compile time or 

run time. This makes it easy to make mistakes, and difficult to find the sources of the 

errors that do occur. Therefore, we would like JEDD to relieve the user from having 

to perform the full assignment by automatically generating a reasonable assignment 

from a minimum amount of user input. To prevent errors, we would like JEDD to 

automatically insert the correct replace operations to implement the assignment. 
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Since JEDD is a tool designed mainly for research into implementing program 

analyses using BDDs, it should make it possible to experiment with different phys­

ical do main assignments. It has been widely noted that the ordering of variables 

in a BDD determines its size, and therefore the speed of operations performed on 

it. The variable ordering is closely related to the physical domain assignment, since 

physical domains are groups of BDD variables; the combinat ion of the assignment 

of attributes to physical domains and the ordering of the variables of those physical 

domains together determine the relative ordering of the BDD variables implementing 

the attributes. Therefore, the physical domain assignment chosen has an important 

effect on the performance of algorithms implemented with BDDs. Unfortunately, 

with our currently limited knowledge of implementing program analyses using BDDs, 

we do not know of any easy ways to determine a near-optimal physical domain as­

signment even by hand, let alone automatically. Sorne input from the programmer 

about the desired physical do main assignment is therefore necessary. Indeed, it is 

desirable to allow the researcher to specify the assignment, to make it possible to 

experiment with different assignments. These experiments are necessary to improve 

our knowledge of what makes a good assignment, and will hopefully one day lead to 

a fully automated physical domain assignment algorithm. However, we must remem­

ber to balance fiexibility with ease of specification. Ideally, JEDD would allow the 

program to initially contain a minimum of physical domain information, and would 

automatically generate a reasonable complete assignment. Later, based on profiling 

information, the programmer would tune the critical parts of the program and specify 

the assignment for those parts in more detail. 

In or der for the physical domain assignment algorithm to be useful, it must be im­

plemented in a practical tool that is us able by programmers. When the programmer­

specified part of the physical do main assignment contains errors (i.e., part of the 

physical domain assignment is inconsistent), the algorithm should be able to indicate 

the source of the error with meaningful error messages. In the absence of errors, the 

algorithm should always find a reasonable assignment; it should not be a heuristic 

that fails for certain difficult inputs, since these difficult problems are likely to also be 

difficult for the programmer to solve by hand. Since JEDD will be run each time the 
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program is compiled, and since the point of JEDD is to make it easier to implement 

non-trivial program analyses using BDDs, the algorithm should be able to pro cess 

these non-trivial programs in a reasonable amount of time. 

JEDD addresses these objectives in the following ways. For each attribute in­

stance, the programmer may optionally specify a physical do main assignment, and 

JEDD automatically inserts the correct replace operations to implement the assign­

ment. This makes it easy to tweak the assignment without having to rewrite the 

replace operations. When the programmer specifies physical domains for only a small 

subset of the attributes, JEDD automatically completes the assignment using the al­

gorithm described in the next section. Should the programmer not be satisfied with 

specifie parts of the automatically generated assignment, physical domains may be 

specified for these expressions explicitly, and JEDD will find a reasonable assignment 

for the rest of the program. If the programmer-specified portion of the physical do­

main assignment contains an inconsistency and an assignment cannot be found, JEDD 

reports the specifie expression and attributes to which physical domains cannot be 

assigned, as described in section 3.5.4. 

3.5.2 Formai physical domain assignment requirements 

In or der to correctly implement a JEDD program in BDDs, a physical domain assign­

ment must satisfy the following constraints: 

1. [conflict] Within every relation, each attribute must be assigned to a distinct 

physical domain. 

2. [equality] Each relational operation implemented using BDDs requires certain 

attributes of its operands to be assigned to the same physical domain. In 

particular, 

• set union, intersection, and difference operations, relation comparison, 

and assignment of relations an require corresponding attributes of their 

operands to be assigned to the same physical domains, and 
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• composition and join require the attributes being compared to be assigned 

to the same physical domains. 5 

We adopt the term valid for a physical domain assignment satisfying these con­

straints. Finding a valid assignment for a JEDD program usually requires the operands 

of sorne operations to be wrapped in BDD replace operations in order to move them 

to physical domains that satisfy the constraints. It is always possible to construct a 

valid assignment if all operands of aIl operations are wrapped in replace operations. 

Although a valid physical domain assignment is sufficient for a correct implemen­

tation of a JEDD program, it may not necessarily lead to an efficient implementation. 

In particular, the requirement that an assignment be valid does not limit the number 

of physical domains used, or the number of expensive BDD replace operations needed 

to implement it. To obtain reasonably efficient physical domain assignments, we must 

impose additional constraints. 

We define a physical domain assignment to be reasonable if it is valid, and if 

every attribute is assigned to its physical domain for a reason, rather than arbitrarily. 

Specifically, the following are the allowed reasons for assigning a physical domain P 

to an attribute instance A: 

1. The physical domain P was explicitly specified for the attribute instance A in 

the JEDD program. 

2. A is involved in an operation requiring it to have the same physical domain as 

another attribute instance A', and A' has already been assigned the physical 

domain P. If we were to assign a physical domain other than P to A, a replace 

operation would have to be introduced before the operation to move A and A' 

into the same physical domain. 

A reasonable physical domain assignment has several desirable properties. 

5Composition and join aiso require the attributes not being compared to be assigned to physicai 
domains distinct from any used in the other operand. However, this constraint is implied by the 
conflict constraints on the operands and resuit of the composition or join, so we need not consider 
it explicitly. 
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First, the set of physical domains allowed to be used is limited to those explicitly 

mentioned somewhere in the program. The physical domain assignment algorithm 

cannot introduce additional physical domains not mentioned by the programmer. 

This is important because the programmer must specify a BDD variable ordering of 

aIl the physical domains, and therefore must be aware of aIl the physical domains 

that are used. 

Second, every replace operation implied by the physical domain assignment is 

necessary in the following sense. Suppose that attribute instances A and A' are 

assigned distinct physical domains P and P', but are involved in an operation that 

requires a replace between them. Then there is a reason that A and A' were assigned 

distinct physical domains: specificaIly, there is a chain C (C') of operations from A 

(A') to sorne attribute instance to which the programmer has explicitly assigned the 

physical domain P (P'). In order for the physical do main assignment to be valid, 

there must be a replace operation somewhere along the combined chain consisting of 

C, the operation involving A and A', and C'. Although it is not necessary for the 

replace to be in the specifie position that it is, a replace is necessary somewhere along 

the chain. 

Third, requiring a reason to assign a physical domain rather than doing so arbi­

trarily maintains control over fine-tuning the assignment in the hands of the program­

mer. Specifically, the programmer can explicitly force a desired attribute instance to 

a physical domain, and other attribute instances involved in operations with it are 

likely to be assigned to the same physical domain. 

A reasonable physical domain assignment does not necessarily have the minimum 

possible static number of replaces. However, the static number of replaces is a poor 

predictor of run-time performance, because different replaces may be executed a very 

different number oftimes and have very different costs. Furthermore, for typical JEDD 

programs, there are often many valid assignments with the minimum static number 

of replaces but very different performance. If JEDD relied on a global property such 

as the total number of replaces, it could not allow the programmer local control over 

specifie expensive replaces. The fiexibility to tune the run-time behaviour of the few 

expensive replaces is more important to us than the static total number of replaces. 
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3.5.3 Physical domain assignment algorithm 

Unfortunately, finding a reasonable physical domain assignment for a JEDD pro gram 

is not easy. 

Proposition 1 The problem of fin ding a reasonable physical do main assignment is 

NP-complete. 

Proof: See Appendix A. 

Several heuristics that we implemented to solve this NP-complete problem failed 

on common example programs. More importantly, an incomplete heuristic (which 

may fail to find a solution even wh en one exists) is undesirable for this problem. The 

case when a heuristic would fail to find a solution is precisely when the programmer 

very much wants to know whether a solution exists (and is therefore worth searching 

for by hand) or does not exist (and the code must therefore be modified so that 

a solution does exist). Therefore, the potentially very high cost of an exhaustive 

search is justified, and our intuition told us that although the problem in general 

is NP-complete, typical instances would be relatively easy to solve. However, we 

realized that implementing a smart exhaustive solver that would handle the easy 

cases efficiently would be difficult, and we would be duplicating much of the work 

that has been done on the boolean satisfiability (SAT) problem. We therefore encode 

the physical domain assignment problem as a SAT problem, and call a SAT solver to 

solve it for us. 

Given a boolean formula over a set of variables, a SAT solver finds a truth as­

signment to those variables that makes the formula evaluate to true. We therefore 

encode the physical domain assignment problem into a boolean formula in such a 

way that we can recover a physical domain assignment from a truth assignment of 

its variables, and such that the formula evaluates to true exactly wh en the physical 

domain assignment satisfies our constraints. 

Most SAT solvers require the input boolean formula to be in Conjunctive Normal 

Form (CNF). A formula in CNF is a conjunction of disjunctions of literaIs, where each 

literaI is a variable or a negated variable. In the discussion that follows, we present our 
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formula for the physical domain assignment problem in the form of clauses (conjuncts) 

of a CNF formula. However, in the interest of clarity, we do not immediately convert 

each clause into a disjunction of literaIs. We defer this conversion until Figure 3.21 

at the end of this section, in which we show all the clauses fully converted to CNF. 

Our initial encoding of the physical domain assignment problem as a SAT formula 

was presented in [LH04]. This simple encoding worked well for several months of our 

work with JEDD. However, as we implemented more and more program analyses, the 

complexity of our code eventually caused the SAT formula to become prohibitively 

large. The problem was not that the SAT solver could not solve the formula; rather, 

the formula itself was too large for the JEDD translator to generate it. Therefore, we 

have devised an improved encoding which guarantees a SAT formula with a number 

of literaIs quadratic in the program size in the worst case, and typically linear. We 

now present the improved encoding. 

We represent the constraints in an attribute def-use graph. For each attribute 

instance of each subexpression in the program, this graph contains two vertices, a 

def vertex and a use vertex. The def vertex represents the attribute instance in the 

subexpression itself. Each subexpression can potentially be wrapped in a BDD replace 

operation, and the use vertex represents the attribute instance after this potential 

replace. After the algorithm assigns a physical domain to each vertex, it must wrap 

a replace operation around each subexpression for which the use vertex has been 

assigned to a different physical domain than the def vertex. The vertices of the graph 

are connected by three kinds of edges. A conflict edge between two vertices indicates 

that they must be assigned to distinct physical domains. An equality edge between two 

vertices indicates that they must be assigned to the same physical domain. These two 

kinds of edges generated to enforce the constraints for the physical domain assignment 

to be valid, as defined in Section 3.5.2. Finally, an assignment edge between two 

vertices indicates that they should be assigned to the same physical domain. An 

assignment edge is generated between each def vertex and its corresponding use vertex. 

As long as both vertices are assigned to the same physical domain, no replace is 

needed. 

The attribute def-use graph for the example JEDD code from Figure 3.3 is shown 
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Figure 3.20: Example of physical domain assignment constraints 
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in Figure 3.20. Equality constraints are shown as solid lines and assignment constraints 

as dashed lines. Confliet constraints exist between the two attribute instances that 

compose each definition and each use, but they are not shown in the figure to avoid 

clutter. The physical domains shown in each vertex form a valid physical domain 

assignment with no unnecessary replaces. The three physical domains that were 

specified in the code in Figure 3.3 are indicated in boldo The assignment contains 

only one assignment edge that will generate a replace, namely the edge between the 

use and def vertices of the dest attribute in the tmp relation. This replace is necessary 

because it is on the path from the def vertex of the pointer attribute of the pointsTo 

relation and the def vertex of the dest attribute of the assign relation, for which the 

programmer has specified the physical domains VI and V2, respectively. 

To obtain a valid physical domain assignment, we must assign a physical do main 

to each vertex of the graph in a way that satisfies the constraints imposed by the 

edges of the graph. Since an equality edge requires its endpoints to be assigned to 

the same physical domain, every vertex in a component connected by equality edges 

is assigned the same physical domain. 6 We therefore merge aIl vertices in each such 

connected component into a single vertex. In the discussion that foIlows, we refer 

only to the simplified graph that results from this merging. For each vertex v in the 

simplified graph, and for each physical domain p, we define a SAT variable for the 

pair (v: p). If the satisfying assignment found by the SAT solver sets this variable to 

true, v is assigned to the physical domain p. 

To ensure that any satisfying assignment of the SAT formula corresponds to a 

valid physical domain assignment, the foIlowing clauses are needed. In the clauses 

below, we use V to denote the set of aIl vertices, P to denote the set of aIl physical 

domains, 

6It is not possible for multiple vertices for which the programmer has specified distinct physical 
domains to be connected by equality edges, as a consequence of the following two facts. By con­
struction of equality edges, at least one endpoint of every equality edge is a use vertex generated by 
JEDD, for which the programmer cannot have specified a physical domain. In addition, each such 
use vertex has at most one outgoing equality edge. Therefore, every path of equality edges starting 
at a vertex for which a physical domain has been specified has a generated use vertex as its very 
next vertex, and cannot continue any further from it. 
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Each vertex is assigned to sorne physical domain. 

1\ V (v:p) (3.1) 
vEV pEP 

No vertex is assigned to multiple physical domains. 

1\ 1\ -, ((v: p) 1\ (v: p')) (3.2) 
vEV p,p'EP,popp' 

Any attribute with an explicitly specified physical domain is assigned that physical 

domain. 

1\ (v:p) (3.3) 
(v,p)ESPECIFIED 

For each conflict edge between v and v', the vertices v and v' must not be assigned 

to the same physical domain. 

1\ 1\ -, ((v: p) 1\ (v' : p) ) (3.4) 
(v,v')ECONFLICT pEP 

The clauses 3.1 through 3.4 together express the requirement that the physical domain 

assignment be valid. 

Encoding the requirement that the assignment be reasonable is less straightfor­

ward, because the definition of reasonable implicitly relies on the or der in which 

attributes are assigned to physical domains, but the SAT sol ver computes a variable 

assignment which simultaneously satisfies aIl clauses of the formula. A vertex A can 

be assigned to the physical domain P if it is connected by an assignment edge to 

A', and A' has previously been assigned to P. Without the ordering requirement, it 

would be permitted to assign an arbitrary domain P' to both A and A', since each of 

them is connected to the other, and the other is also assigned P'. We must therefore 

con si der the order when encoding the problem as a SAT formula. 

We encode the reasonableness requirement in sever al steps, which we detail in 

the following paragraphs. First, we define a relation -<, such that a -< b if and only 

if the reason for assigning bits physical domain was that a was assigned the same 

physical domain before it, and an assignment edge exists between a and b. We give 
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the SAT solver constraints that force it to compute such a relation -<. We also create 

constraints which ensure that there exists a total order ::; in which the vertices may 

have been assigned physical domains which is consistent with the physical domain 

assignment and the computed -< relation. More precisely, the SAT solver outputs 

enough information to prove the existence of a total order ::; for which a -< b =} a < b. 

Since we are interested in the physical domain assignment itself, rather than the 

or der in which the vertices were assigned physical domains, the SAT solver need not 

compute::; itself (which would require a larger SAT formula), but only provide enough 

information to prove its existence. 

For each assignment edge (v, Vi), we define a pair of SAT variables (v -< Vi) and 

(Vi -< v). If (v -< Vi) is true in the satisfying assignment, it indicates that v -< Vi. 

We use the following clause to ensure that (v -< Vi) and (Vi -< v) cannot both be true 

simultaneously: 

1\ ----, ((v -<Vi) 1\ (Vi -<v)) (3.5) 
(v, v') EAS SIG N MENT 

Since v -< Vi indicates that Vi was assigned a physical domain because v had 

already been assigned the same physical domain, we ensure that Vi is assigned the 

same physical do main as v: 

1\ 1\ (v -< Vi) =} ((v: p) =} (Vi: p)) (3.6) 
(v,v')EASSIGNMENT pEP 

If the programmer did not specify a physical domain for Vi, there must be sorne v 

such that v -< Vi: 

1\ v (v-<v' ) (3.7) 
v'EV 1 =jp:(v',p)ESPECIFIED vEV 1 (v,v')EASSIGNMENT 

To prove the existence of a total order in which the vertices may have been assigned 

physical domains, we make use of the following proposition. For now, we will make 

use of only the equivalence of statements 2 and 3 of the proposition. 

Proposition 2 Let G be an attribute def-use graph, and let -< be an antisymmetric 

binary relation on its vertices such that a -< b implies that a and b are connected by 

an assignment edge in G. Then the following four statements are all equivalent: 
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1. -< is a well-founded relation. 

2. There exists a total order ::; such that a -< b :::} a < b. (This is the order in 

which physical domains could be assigned the vertices.) 

3. There exists a total antisymmetric relation ç such that a -< b :::} a C band 

there is no triple of distinct vertices a, b, c such that a -< b CcC a. 

4· On the vertices of every biconnected component C = (Vc , Ec) of the graph 

formed by assignment edges, there exists a total antisymmetric relation Çc su ch 

that Va, b E Vc.a -< b :::} a Cc band there is no triple of distinct vertices a, b, c 

such that a -< b Cc c Cc a. 

Proof: See Appendix A. 

To prove the existence of the total order ::; (statement 2 of the proposition), the 

SAT solver need only produce the total relation ç (proving statement 3), which can 

be specified with a much smaller SAT formula. 

For every unordered pair {v, v'} of distinct vertices, we arbitrarily choose one of 

the vertices (say v), and define a single SAT variable (v C v') indicating that v C v' 

if the variable is true, and v' C v if it is false. For convenience, we permit ourselves 

to write (v' Cv) to mean -,( v C v'), but note that (v C v') and (v' Cv) both refer to 

the same physical SAT variable, possibly negated. This definition ensures that the ç 

relation found by the SAT solver is total and antisymmetric. 

Next, we encode the requirement that a -< b:::} a C b: 

/\ (a-<b) :::} (acb) (3.8) 
(a,b)EASSIGN MENT 

Finally, we encode the requirement that there be no triple of distinct vertices a, b, c 

such that a -< b CcC a: 

/\ /\ -, ((a-<b) 1\ (bCc) 1\ (cCa)) (3.9) 
(a,b)EASSIGN MENT cEV\ {a,b} 

This clause completes the SAT formula. Figure 3.21 shows all the clauses of the 

formula converted to CNF. 
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1\ V (v:p) (3.1) 
vEV pEP 

1\ 1\ -, (v: p) V -, (v: p') (3.2) 
vEV p,p'EP,p=fp' 

1\ (v:p) (3.3) 
(v,p)ESPECIFIED 

1\ 1\ -, (v : p) V -, (Vi: p) (3.4) 
(v,v')ECONFLICT pEP 

1\ -,(v-<v' ) V -,(v' -<v) (3.5) 
(v,v')EASSIGN MENT 

1\ 1\ -, ( v -< Vi) V -, (v : p) V (Vi: p) (3.6) 
(v,v')EASSIGNMENT pEP 

1\ V (v -< Vi) (3.7) 
v'EV l ';lp:(v',p)ESPECIFIED vEV 1 (v,v')EASSIGNMENT 

1\ -'(a-<b) V (aCb) (3.8) 
(a,b)EASSIGN MENT 

1\ (3.9) 
(a,b)EASSIGN MENT cEV\ {a,b} 

Figure 3.21: Complete formula for physical domain assignment problem in CNF 
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3.5.3.1 Additional optimizations 

The asymptotically largest number of literaIs in the SAT formula cornes from this 

last clause, which introduces 3m(n - 2) literaIs, where m is the number of assignment 

edges and n is the number of vertices. In typical attribute def-use graphs, m is 

approximately equal to n. In the program analyses for which JEDD is intended, n 

and m can be up to 1000, leading to 3 million literaIs in the SAT formula. Based on 

our experience with the zChaff SAT solver, it is capable of working with a formula of 

this size. However, we can make the formula significantly sm aller still by making use 

of the fourth statement of Proposition 2. 

The properties required of the relations Çc in statement 4 of the proposition 

are similar to those required of ç in statement 3, but Çc is only defined on the 

much smaller biconnected components of the graph, rather than on the whole graph. 

Therefore, if we change the SAT formula generated by JEDD to construct Çc rather 

than ç, the size of a SAT formula can be made proportional not to the square of 

the size of the entire graph, but to the sum of squares of the sizes of the biconnected 

components. In our experience, most biconnected components are no larger than ten 

edges, with the largest being on the or der of 100 edges. The SAT formula is therefore 

significantl y smaller. 

To find the biconnected components of the graph, JEDD uses the well-known 

algorithm [Tar72] based on depth-first search (DFS). To construct Çc rather than ç, 

only clauses 3.8 and 3.9 of the SAT formula need to be modified, and the necessary 

modification is quite simple. Only the vertices over which the clauses range are 

modified; the bodies of the clauses are not changed. The pairs (a, b) in both clauses, 

which range over all assignment edges, are changed to range over only those assignment 

edges whose endpoints are in the same biconnected component. The vertex c in 

clause 3.9, which ranges over all vertices in the graph except a and b, is changed to 

range over all vertices in the same biconnected component as a and b exclu ding a and 

b themselves. 

JEDD performs one additional optimization to make the SAT formula smaller. 

Several of the clauses (3.1, 3.2, 3.4, and 3.6) quant if y over all physical domains defined 
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for the JEDD program. However, because a reason is required to assign a physical 

domain p to a vertex v, v can never be assigned p unless v is connected by sorne 

path of assignment edges to sorne vertex v' to which p has been assigned explicitly 

in the JEDD program. JEDD partitions the graph of assignment edges into connected 

components using a DFS, and for each connected component, collects the set of all 

physical domains explicitly assigned to a vertex in the component. The SAT variable 

(v: p) cannot be true if p is not in this set for the connected component containing 

v. Therefore, (v: p) is removed from all clauses (disjunctions), since it cannot make 

them true. In addition, all clauses (disjunctions) containing -, (v: p) are necessarily 

true, so they are removed from the overall conjunction. The connected components 

are also used in error reporting, which we discuss next in Section 3.5.4. 

3.5.4 Errar reparting 

One challenge with using a black box such as a SAT solver in a compiler is reporting 

errors to the user. When the SAT solver determines that no reasonable physical 

do main assignment exists, it reports that the boolean formula is unsatisfiable. While 

this fact is useful for the programmer to know, it is not very helpful in pinpointing 

the cause of the error. 

To improve the error reporting, we took advantage of a new feature recently 

implemented in the zChaff SAT solver, unsatisfiable core extraction [ZM03]. When 

the SAT solver determines that the boolean formula is unsatisfiable, it also outputs 

a small subset of the clauses whose conjunction is still unsatisfiable. 

There are two potential reasons why no reasonable physical domain assignment 

may exist. First, there may be a vertex v not connected by any path to any other 

vertex for which a physical domain has been specified. In this case, the list of explicitly 

assigned physical domains for the connected component containing v is empty, and 

JEDD detects this when constructing the SAT formula. Second, it may not be 

possible to assign physical domains to the vertices in a way that respects all the 

conflict constraints. In this case, the SAT formula is unsatisfiable. The following 

proposition suggests a way to report the source of the problem to the programmer. 
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Proposition 3 When the BAT formula produced for the physical domain assignment 

problem is unsatisfiable, every unsatisfiable core contains at least one clause of type 3.4 

(confiict clause). 

Proof: See Appendix A. 

Therefore, the small unsatisfiable core returned by the SAT solver must contain at 

least one clause of type 3.4. From this clause, JEDD extracts the attribute instances 

to which physical domains could not be assigned, and the physical domain(s) that 

were considered for assignment. This information is reported to the programmer 

along with the position of the expression in the source file. An easy way for the 

programmer to fix the problem is to introduce a new physical domain, and explicitly 

assign it to one of the attributes of the unsatisfiable conflict constraint. 

To illustrate the error reporting with a typical error, consider what would happen 

if the attribute dest of the relation assign in line 2 of the code in Figure 3.3 were 

not explicitly assigned a physical domain. As a result, there would be no reasonable 

physical domain assignment for the program, since there would be only two physical 

domains, Hi and Vi, but the composition in line 8 requires three. JEDD would output 

the following error message: 

1 Prop.jedd:8: Conflict between attributes dest and source of replaced version 

2 of 

3 <dest, object> tmp = pointsTo{pointer} <> assign{source}; 

4 

5 over physical domain Vi 

The error message indicates the location of the error, the expression in question 

(assign), the attributes to which a physical domain could not be assigned (dest and 

source), and the single physical domain which is available for the two attributes (Vi). 

To fix this error, the programmer would specify that one of the attributes should be 

assigned to a new physical domain. For example, in the original code in Figure 3.3, 

dest was explicitly assigned to the physical domain V2. 
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3.6 Jedd Runtime 

3.6.1 8ackends 

One of the benefits of expressing BDD algorithms in JEDD is that these algorithms 

can be executed, without modification, using various BDD libraries as backends. 

This allows us to compare the performance of different backends on the same prob­

lem. JEDD can currently use the BuDDy [LN], CUDD [Som], SableJBDD [Qia], or 

JavaBDD [Whab]libraries as backends. Because BuDDy and CUDD are written in 

C, they are called from JEDD using the JNI. 

3.6.2 Memory management issues 

BDD libraries use reference counts of external references to identify unused BDD 

nodes to be reclaimed. A disadvantage of this approach is that a programmer us­

ing the library is required to explicitly increment and decrement the reference count 

whenever BD Ds are assigned or a reference to a BD D goes out of scope. In C++, 

it is possible to use overloaded assignment operators and destructors to relieve the 

programmer of much of this burden. The lack of operator overloading makes this 

impossible in Java. If JEDD were a library rather than a language extension, the 

programmer would have to explicitly manipulate reference counts. Memory manage­

ment is yet another tedious and error-prone aspect of working with BDDs. Since 

JEDD is an extension to the language, we can design it to update reference counts 

automatically, without any help from the programmer. 

For performance reasons, it is particularly important that the reference count be 

decremented as soon as possible after a reference becomes unreachable, because it 

may be the root of a BDD consisting of many other nodes. When dead nodes are not 

freed in a garbage collection, fewer nodes remain for future computation, so garbage 

collection is required more frequently. In addition, BDD libraries use a cache to 

speed up the basic operations on nodes. Large numbers of unfreed obsolete nodes 

may pollute this cache. In general, we cannot rely solely on the Java garbage collec­

tor to determine when relations are unreachable, particularly short-lived temporary 
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relations. This is because unlike allocations of Java objects, an allocation of a BDD 

node will not trigger a Java garbage collection when no more memory is available. 

It is possible to allocate many large temporary BDDs in several iterations of a loop 

and have the BDD library run out of memory without a Java garbage collection ever 

being triggered. 

A BDD can become unreachable in one of four ways. First, a subexpression of 

an expression becomes unreachable wh en the overall expression is evaluated. Second, 

the BD D may be stored in a local variable or field, and be overwritten by another 

BDD. Third, the BDD may be stored in a local variable which goes out of scope. 

Fourth, the BDD may be stored in a field, and the object containing the field may 

become unreachable. For temporary values, the first two cases are the most common 

and therefore the most important. 

To handle the first case, we implement the convention that each BDD operation 

decrements the reference count of its arguments and increments the reference count 

of its result before returning it. Therefore, the reference count of a subexpression is 

decremented as soon as it is used in the overall expression. This convention is partly 

imposed by the requirement of the BDD libraries that any BDDs passed to library 

functions have non-zero reference counts. 

For a clean implementation of the remaining cases, we create a relation container 

object for each local variable and field of relation type. In the generated Java code, 

the corresponding variable or field points to its relation container throughout its entire 

lifetime; this is enforced by making the generated variable or field final. The BDD 

itself is stored as a private field of the relation container, and can be updated only 

through an assignment method which also updates the reference counts. This ensures 

that when a BDD is overwritten by another, the reference count of the overwritten 

BDD is immediately decremented. 

To handle the third and fourth cases, the finalizer of every relation container 

(which is called when the relation container is garbage collected) decrements the 

reference count of the BDD stored in it. In the case of a local variable going out 

of scope, the finalizer of the relation container ensures that the reference count will 

eventually be decremented, but this may be a significant amount of time after the 
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variable goes out of scope. To improve on this, we perform a static liveness analysis 

on aH relation variables, and at each point where a variable may be live and is known 

to become dead, we decrement the reference count of any BDD it may contain and 

remove the BDD from the container. In the face of exceptional interprocedural control 

flow, this is not always possible. We assume such control flow to be unusual, and faH 

back on the finalizer to decrement the reference count in such cases. 

In the case of an object containing a BDD becoming unreachable, the relation 

container is normally garbage collected in the same garbage collection as the object 

containing it. 7 The finalizer decrements the reference count in the same garbage 

collection. 

To summarize, JEDD manages BDD reference counts automatically without any 

help from the programmer. In aIl four cases, it frees BDDs as soon as it becomes safe 

to do so, so its performance should be no worse than that of a hand-coded reference 

counting solution. 

3.6.3 Profiler 

A common problem when tuning any algorithm using BDDs is choosing an efficient 

variable ordering, the relative order of the individu al bits of the physical domains. In 

complicated programs with many relations and attributes, a related problem is tuning 

the physical domain assignment, and the replace operations which it implies. Specif­

ically, we are interested in removing those replace operations which are particularly 

expensive by modifying the physical domain assignment to make them unnecessary. 

For these tuning tasks, we need sorne insight into the runtime behaviour of our pro­

gram. In particular, we want to know which operations are expensive in terms of 

time and BDD size (and therefore space), in order to either remove them, or make 

them cheaper by modifying the variable ordering. For tuning the variable ordering, 

knowing the shape of the BDDs involved in the operation is also useful, as we will see 

7Here, we assume that the garbage collector collects aIl unreachable objects in each collection. 
However, even when this is not true in general, such as in a generational collector, it is very likely that 
the object containing the field and the relation container will be reclaimed in the same collection, 
since they are allocated close together: the latter is allocated in the constructor of the former. 
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with several examples at the end of this section. The shape of a BDD is the number 

of nodes at each level (testing each variable) of the BDD. 

In the code generated by JEDD, relational operations are implemented as calls 

into the JEDD runtime library. The runtime library optionally makes calls to a pro­

filer which records, for each operation, the time taken and the number of nodes and 

shape of the operand and result BDDs. This information is written out as a SQL 

file to be loaded into a database, which provides a flexible data store on which arbi­

trary queries can be performed to present the data to the user. JEDD also includes 

CGI scripts to provide access to the profiling data through a web browser. We use 

SQLite [Hip] for the database and thttpd [Pos] for the web server because of their 

ease of installation, but in principle, any SQL database and any web server would 

work. The overall profile view shows, for each relational operation in the program, 

the number of times it was executed, the total time taken, and the maximum size of 

the BDDs involved (see Figure 3.22). Clicking on an operation brings up a detailed 

view with a line of information for each time the operation was executed. Clicking 

on a specifie execution of the operation generates a graphical representation of the 

shape of the BDDs involved in the operation. Figure 3.23 shows an example of this 

graphical representation for a typical replace operation. In this case, the relation 

consists of two attributes, the first mapped to the physical domain VI ranging from 

levels 20 to 39 of the BDD, and the second being moved from the physical domain 

H2 at levels 80 to 99 of the BDD to a different physical domain Hl at levels 60 to 79. 

Once an unacceptably large BDD has been identified, its shape often provides 

insight into why it is so large, and how the pro gram can be changed to make it 

sm aller. In Figures 3.24 to 3.27, we present sorne typical BDD shapes that may be 

observed when tuning a JEDD program, and explain what they suggest about the 

physical domain assignment and bit ordering. The shape graphs in these figures are 

of BDDs synthesized to highlight patterns that were observed during tuning of the 

PADDLE framework described in Chapter 4. 

When a relation has a large number of attributes, often only sorne of the attributes 

are responsible for making the BDD large. The physical domains to which these 

important attributes are been assigned affect the BDD size the most. For example, in 

75 



Extending Java with Relations 

TygAA,j!tii~~;~":.i çoyHllmme: ".w~51Bg~tt&~ IOgut. Et;:m~tLiiittJ!rii1ij~i~'11"~;.,,,.· ,f. . t·,' 

côrrll?pseI~~HJJ, 2344;O:im~j~.~§:t~~j ar~Ô53. 0 10107 ,qat prop\propaQate(Prop;~èva:24'j)' 
replâ~~;.. . 120J7Q,)..56. ornslolô'j','o' f' .' 0.0 l()i();li~ iI~;~tap;;!:JWbgâgate(prop. java:247) 
COrnRP:~~ .. "+ll'~~ ;':" 9'4,OJfi~: ~~.§~~10 jl;?795.6·5~~~~·Q '~·t~rôLi:propàgatê(pror;na\ia~267·~ 
corriR~i~J}i.f;j ' ..•. ~.~ !~I§~~.O. ms '5a~io .' .435~~g; tli~~ii! IillHf.o'lïl"iAt!œrop.jiva: ijô)" 

>:: < \"K0'\-~~f0:~, ,(-' < <f:~;:;:;:'<>·\,~ "'"'>"", ": > ,,",' "("»',é"';':;~:lflf17>;'1'f~<~'" ;'" < < ,F''''',: '~«< :'" "','~"r<t<""'·('>":TJ;~·Y'{f;;~:~?;::~:t~.'t:f'~\::'ii.é .;.>:",:. ", 
com~aèb;'" ;·,1.0 .0, ~.!;·Ji1:9·;·Oms· ;·,4215·,0' 15;7·'51'0 h3,9Z.6 .• .of.lt~pr;QG.PDa9Jtdpropf,a\(a'l2561'1 

'[!lPI~~I)ii .i9~~Jii~;Q· rns 1'5795.0 . .:di~iiÎi~f~o'~t~êfqpr6HgplgillrêŒ,~iva: ZS9)· .. 
êPropose"Rjir a:;~o, 0 '"!J}!lilQt1ml? .3,'lJi.Q:~i~Y!ô' K\*4353.0 et erop.prQpagite(PPêw1il~)25i~~ 
,replâEe·l\jjL"l~. 5853.0 . àf P":ôp,'p":dp~gitlfP(êp3lava :2,70), 

cgrnpose~j~a~;[\2.0 .. 57.0 et prop,garselnpùt(prôl~iitt~1\G:!1 
[~pl'acen~~if~ î:,\s5, 0 aîtpcôp;·prQpagf.ltlf~41'l3iWB~~1~l 
eq'~nlpn ." 15aO~+g~lr2F~tilrgt1lagi!t:e'(Prôa~lavlTâî~j:~ 
eqla~ps'e~ ég~,iI' ~.i. .~25â51' làiilIJJgi.fiàt:e(PFop,j~va iaZll. 

Figure 3.22: Overall profile view 

the BDD in Figure 3.24, the vast majority of BDD nodes test physical domains PD3, 

PD4, and PD5, and very few nodes test physical domains PDI and PD2. Therefore, 

changing the relative ordering of the bit positions in PD3, PD4, and PD5 will have a 

much st ronger effect on the BDD size than changing the relative ordering of the bit 

positions in PDI and PD2. 

In sorne BDD shape graphs, the number of nodes testing each bit position of 

a physical domain remains constant or nearly constant, as for the PD2 domain in 

Figure 3.25(a). This suggests that testing a bit of the physieal domain provides litt le 

information about whether a given binary veetor is in the set represented by the 

BDD. In the BDD of Figure 3.25(a), information about bits in both PDI and PD3 

is required to decide whether a binary veetor is in the set. Therefore, to test a given 

binary vector, the information about PDI must be earried through PD2 to PD3, 

leading to a large number of nodes in PD2. If the bit ordering is changed so that 

PD2 no longer separates PDI and PD3, the BDD beeomes mueh smaller, as shown 

in Figure 3.25(b). 
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Sorne BDDs exhibit a sharp spike near the boundary of two physical domains, 

as in Figure 3.26(a). After the bits of PD1 have been tested, many BDD nodes 

are required to remember which of the many distinct binary sub-vectors has been 

observed in PD1. As soon as a few bits of PD2 have been tested, however, the 

number of distinct states that must be remembered quickly goes down. This suggests 

that if sorne bits of PD2 were tested earlier, the BDD may not grow as wide. The 

example relation represented by the BDD of Figure 3.26(a) can be represented by the 

much smaller BDD in Figure 3.26(b) if the bits of PD2 are interleaved with the bits 

of PD1, rather than being tested after aIl the bits of PD1. 

However, when certain attributes of a relation are not closely correlated, inter­

leaving their physical domains is a mistake. A symptom of this problem is a sharp 

spike in the shape graph within an area of interleaved physical domains, as shown 

in Figure 3.27(a). Each BDD node in the spike carries information about sorne of 

the bits of PD1 as weIl as about sorne of the bits of PD2. Instead, if we first test aIl 

the bits of one physical domain and then the other, as in Figure 3.27(b), the BDD 

is much smaller. Note that in this case, the BDD in Figure 3.27(b) is smaller by so 

much that we have magnified the scale of the y axis by 100 to make its shape visible. 

3.7 Jedd Performance 

We have implemented in JEDD several test examples, our BDD points-t~ analysis 

algorithm from [BLQ+03], and the PADDLE framework of interrelated whole-program 

analyses that we describe in Chapter 4. Without JEDD, the latter would not have 

been feasible, since it would require us to assign physical domains by hand to the 

attributes of thousands of relation instances, with no automated way to verify that we 

had not made mistakes. We first wrote the analyses without specifying any physical 

domains at aIl, and when it came time to compile, we assigned only enough attributes 

to physical domains to allow the physical domain assignment algorithm to find a 

reasonable assignment for the rest. In this process, JEDD'S error reporting pointed us 

directly to the expressions that needed to have physical domains assigned by hand. 
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Figure 3.26: Example shape graph with a spike at the boundary of PD1 and PD2 
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To measure the runtime overhead of JEDD compared to using a BDD library 

directly from C++ code, we timed the C++ and JEDD versions of our analysis from 

[BLQ+03] on five benchmarks. Both versions used the BuDDY BDD library as the 

backend. The timings are shown in Table 3.1. The overhead varied from 0.5% to 4%, 

which we attribute to having to have the Java virtual machine in memory, and to the 

internaI Java threads that run even when not executing Java code. 

Benchmark Std. lib. verSIOn C++ JEDD 

javac 1.1.8 3.4 s 3.5 s 

compress 1.3.1 21.7 s 22.4 s 

Javac 1.3.1 25.3 s 26.3 s 

sablecc 1.3.1 25.4 s 26.1 s 

jedit 1.3.1 41.1 s 41.3 s 

Table 3.1: Running time comparison of hand-coded C++ [BLQ+03] and JEDD points­

to analysis 

To evaluate the compile-time performance of the physical domain assignment algo­

rithm, we used JEDD to compile each revision in the source repository of the PADDLE 

framework. We will describe the PADDLE framework in detail in Chapter 4. Here, we 

use PADDLE only as a benchmark to evaluate the compile-time performance of JEDD. 

The PADDLE framework was developed over a period of two years, with new features 

and analyses being added to it throughout this time. Figure 3.28 shows the growth 

in the size of the SAT formula (measured as the total number of literaIs) compared 

to the growth of the PADDLE framework (measured as the total number of attribute 

instances in the code). The size of the SAT formula increases predictably and linearly 

with the size of the code. 

Figure 3.29 shows the time taken by the zChaff [MMZ+01] SAT solver to solve the 

SAT formula derived from each revision of the PADDLE framework, again compared 

to the number of attribute instances in the code. These times were measured on a 

machine with a 1833 MHz AMD Athlon CPU and 512 MB of RAM. Although the SAT 

solver is very fast when compiling revisions of PADDLE with up to 10000 attribute 

83 



Extending Java with Relations 

350000 1 1 1 1 1 1 

300000 f-
++ -

+ 
250000 f- ++ +=r- -

UJ 
200000 f- +*'*" ..- -cO + ..... 

Cl) 
+0 ....... 150000 f- -.....::l 

100000 f- -
+ 

50000 f- +1- -

0 1 1 1 1 1 1 

0 2000 4000 6000 8000 10000 12000 14000 
Attribute Instances 

Figure 3.28: Size of SAT formula 

16 1 1 1 1 1 

Ji 14 f- -

12 1- -----UJ +1F-'--" 

Cl) 10 - -
El i+ ....... 

+0 8 - -
bD 
i=: *+ .S; 6 - -..-
0 

r.n 
4 -

trï' -

2 - +. -

0 1 1 1 
...LI * 1 ~ 

0 2000 4000 6000 8000 10000 12000 14000 
Attribute Instances 

Figure 3.29: SAT solving time 

84 



3.8. Related Work 

instances, it starts to take significantly more time when PADDLE grows beyond this 

size. Because the physical domain assignment is an NP-complete problem, this growth 

is to be expected. 

In order for JEDD to be practical for programs much larger than the current PAD­

DLE framework, it is likely that further improvements in SAT solving will be needed. 

However, the current version of the PADDLE framework includes aIl of the analyses 

that we had planned to implement using BDDs, including client analyses for both 

Java and AspectJ. The 15 seconds required to find a physical domain assignment for 

this large collection of analyses is only a small part of the overall 5 minute compilation 

time of the SOOT framework in which PADDLE has been implemented. 

Therefore, we conclude that JEDD makes it practical to develop analysis frame­

works as complicated as PADDLE. 

3.8 Related Work 

We have organized related work into three categories. We first sample the abundance 

of work on languages for expressing relational computation. In Section 3.8.2, we 

present various tools that have been written to interface with BDDs at a low level. 

Finally, sorne work has been done on abstracting BDDs as relations, and we compare 

this work with JEDD in Section 3.8.3. 

3.8.1 languages with relations 

The relational data model based on relational algebra was proposed by Codd [Cod70], 

and has since been used for many applications, particularly as the basis of relational 

databases. SQL has become a standard way of expressing relational operations in 

database systems, and snippets of SQL code are often embedded in programs written 

in other languages. Prolog [CM87] and its derivatives are based on querying and 

updating a database of lacts, which are analogous to relational tuples. Relations 

as first-class objects have appeared in many general-purpose languages ever since 

the days of SETL [SDDS86], which included binary relations as one of its basic 
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data types. Support for n-ary relations is often present in languages for writing 

"glue" code between database systems and client interfaces, such as the <bigwig> 

project [BMS02]. The increasing popularity of Extensible Markup Language (XML) 

is fuelling work on adapting languages for manipulating XML fragments, which often 

resemble tuples, but are generally less homogeneous. Two recent examples of this 

work are the JWIG project [CMS03], which integrates the <bigwig> programming 

model into Java, and an extension to C# for expressing both relational and XML 

data [MS03]. 

JEDD is similar to these languages in that it adds relations as a data type to Java. 

In contrast to these languages whose primary goal is to provide access to relations, 

the primary focus of JEDD is to enable program analysis developers to exploit the 

compact data representation provided by BDDs, using relations as an abstraction to 

make programming with BDDs manageable. 

3.8.2 Interfacing with BDDs 

JEDD is built on top of the BuDDy [LN] and CUDD [Som] BDD libraries, which 

provide a low-Ievel interface to a BDD implementation. These libraries implement 

the basic operations on BDDs, with few higher-Ievel abstractions. The finite damain 

blacks of BuDDy are one small exception; they provide a convenient way to group 

together BDD variables, much like the physical domains in JEDD. 

Several small interactive languages have been developed for experimenting with 

BDDs directly. One example is BEM-II [MS97], designed for manipulating Arithmetic 

BDDs and solving 0-1 integer programming problems. Another is IBEN [Beh], which 

provides a command-line user interface to directly call the BuDDy library functions, 

as well as BDD visualization facilities. 

The JNI allows Java code to use BDD libraries written in C through specially 

written wrappers. We have found it very convenient to use the wrapper generator 

Swig [Bea96] to automatically generate these wrappers for us. However, others have 

chosen to write such wrappers by hand, resulting in JBDD [Vah], a Java interface 

to both BuDDy and CUDD, later extended and renamed JavaBDD [Whab]. Unlike 
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JEDD, these JNI wrappers provide no abstraction over the underlying BDD libraries. 

They simply allow the library functions to be called from Java. 

3.8.3 Relations with BDD back-ends 

Although relations have been included in many languages, and several BDD im­

plementations and interfaces exist, the use of BDDs as back-ends for implementing 

relations has been comparatively rare. 

The RELVIEW system is an interactive manipulator of binary relations with a 

graphical user interface for visualizing them. It supports multiple back-ends, and 

one of the newer back-ends stores relations in BDDs [BLM02]. The fundamental 

difference between RELVIEW and JEDD is that RELVIEW is designed around binary 

relations, while much of the complexity of JEDD stems from the need to represent 

n-ary relations. As pointed out by Fahmy, Rolt, and Cordy [FRCOl], binary relations 

are insufficient for expressing certain problems in representing and querying graphs. 

Even in the case of pro gram analysis problems which can be represented by binary 

relations, such a representation may be more cumbersome than with n-ary relations. 

GBDD [Nil] is a C++ library providing an abstraction of BDDs based on relations 

of integers. Although it has partial support for n-ary relations, sorne operations (such 

as composition) require binary relations. Compared to JEDD, GBDD lacks static type 

checking (the type of a relation is not known until run-time), the concept of abstract 

attribut es to be assigned to physical domains, automatic memory management, and 

a profiler. 

The language most closely related to JEDD is CrocoPat [BNL03], a tool for query­

ing relations representing software architecture extracted from source code. Like 

JEDD, CrocoPat is based on n-ary relations. CrocoPat uses a declarative, Prolog-like 

syntax in which attributes are identified implicitly by their position, rather than ex­

plicitly by name, as in JEDD. CrocoPat also differs from JEDD in that it is primarily 

a query language rather than an extension of a general-purpose language. The issue 

of assigning attribut es to physical domains is not discussed in the CrocoPat paper. 
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The bddbddb tool [Whaa, WL04] approaches the same problem as JEDD- the 

need for a high-level notation for BDD-based pro gram analyses - in a different way. 

The bddbddb language is based on Datalog [UIl88, UIl89]. A bddbddb program 

is a set of potentially recursive subset constraints on relations. For example, the 

constraint C (x, y) : - A (x, z), B (z, y) states that the relation C is a superset of the 

composition A 0 B. Given such a system of constraints, bddbddb generates BDD code 

to find their least fixed point. The key difference between bddbddb and JEDD is that 

a JEDD program expresses relational operations, while a bddbddb program expresses 

subset constraints. If a problem has already been expressed as a system of subset 

constraints, it is easy to encode it in bddbddb. However, encoding aIl the details of 

a complicated program analysis problem (such as the interrelated analyses presented 

in Chapter 4) purely in terms of subset constraints may be difficult or impossible. 

Therefore, the requirement for a system of subset constraints is a key limitation of 

bddbddb. In contrast, JEDD programs can express arbitrary algorithms composed 

of relational operations and Java code, seamlessly integrated. The current version of 

bddbddb requires the programmer to assign attributes to physical domains by hand; 

the JEDD physical domain assignment algorithm described in Section 3.5 could be 

adapted to bddbddb to greatly reduce this burden. 

3.9 Conclusion 

In this chapter, we have presented JEDD, a language, compiler, and mn-time system 

for expressing program analyses at a high level in terms of relations, and implement­

ing them efficiently using BDDs. JEDD makes it feasible to implement complicated 

BDD-based analyses by providing static type checking and an algorithm for assigning 

attributes of relations to physical domains of BDDs. The JEDD runtime automati­

cally manages the memory storing BDD nodes, and includes a profiler for tuning the 

BDD representation of relations. In the following chapters, we discuss the program 

analyses that JEDD has made it possible for us to develop. 
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Chapter 4 

Applying BDDs ta Interpracedural Pragram 

Analysis 

In this chapter, we describe PADDLE, a framework of context-sensitive interpro­

cedural program analyses for Java implemented in JEDD. The design of PADDLE 

was infiuenced by our earlier SPARK framework [Lho02, LH03], which was context­

insensitive and did not make use of BDDs, and by our initial BDD-based points-to 

analysis [BLQ+03]. This initial work showed that BDDs can effectively represent the 

large sets that are needed to perform subset-based points-to analyses, and suggested 

that BDDs may make context-sensitive analyses feasible for programs of significant 

size. The key improvement of PADDLE over our earlier work is its support for vari­

ations of context sensitivity, including caU site context sensitivity [SP81, Shi88] and 

object sensitivity [MRR02, MRR05]. In Chapter 5, we will use PADDLE to perform 

a study of the effect of context sensitivity variations on analysis precision. 

This chapter is structured as foUows. We begin in Section 4.1 by positioning 

PADDLE in the context ofrelated work on interprocedural program analysis of object­

oriented languages, particularly context-sensitive and BDD-based analysis. Then, in 

Section 4.2, we outline the key contributions of the PADDLE framework. In Sec­

tion 4.3, we present the most significant part of PADDLE, the points-to analysis and 

caU graph construction. We first give a high-level overview of its overaU structure, 

then discuss sorne of its key components in more detail. The points-to information 
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and caU graph are used by several client analyses, which we describe in Section 4.4. 

We conclude in Section 4.5. 

4.1 Background and Related Work 

4.1.1 Points-to analysis and cali graph construction 

Program analyses for languages with pointers to memory must take into account 

the effects of operations performed through pointers. Sorne estimate of the possible 

targets of pointers is therefore necessary. The purpose of a points-to analysis [EGH94] 

is to approximate, for each pointer in the pro gram , the set of locations to which it 

could point at run time. Points-to analysis has been the subject of a large body 

of existtng work, which has been surveyed by Hind [HinOl]. To classify the many 

variations of points-to analysis that have been studied, Ryder [Ryd03] proposes a set 

of dimensions of analysis variations which determine the relative precision and co st 

of analyses. We now position PADDLE within the body of work on points-to analysis 

by specifying where it fits with respect to each of these dimensions. 

Flow sensitivity: A flow-sensitive analysis considers the or der in which statements 

may be executed, and computes possibly different analysis information for each 

point in the program. In contrast, a flow-insensitive analysis computes a sin­

gle analysis result valid for the entire program. PADDLE uses a hybrid ap­

proach [HH98] of first converting the pro gram into an intermediate representa­

tion in which the control flow dependencies are captured in data dependencies, 

then performing a flow-insensitive analysis. SpecificaUy, PADDLE can use ei­

ther the Jimple or Shimple intermediate representations, in which variables are 

split along DU-UD webs [Muc97, Section 16.3.3] or converted to static single 

assignment (SSA) form [AWZ88], respectively. Thanks to these representa­

tions, PADDLE achieves the same precision [HH98] as an analysis which treats 

local variables in a flow-sensitive way (such as [VROl, WR99, WL02]) with the 

simplicity of a flow-insensitive analysis. However, sorne flow-sensitive analyses 
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(e.g. [EGH94]) additionally maintain must-points-to information, which can be 

used to further improve precision: when a pointer p is known to point to a 

unique memory location that holds a pointer q, the points-to set of q can be 

destructively updated at an indirect write through p. 

Context sensitivity: A context-insensitive analysis pro duces a single analysis result 

for each procedure in the program. However, a given procedure may have differ­

ent behaviours each time it is invoked. Therefore, a context-sensitive analysis, 

which pro duces possibly multiple analysis results for each procedure depend­

ing on how it is invoked, is potentially more precise. PADDLE supports several 

variations of context sensitivity. We defer a detailed discussion to Section 4.1.2. 

Call graph construction: 1 In object-oriented languages with virtual dispatch, the 

method to be invoked at a virtual call site depends on the run-time type of 

the receiver object pointed-to by the call site. A points-to analysis is therefore 

required in or der to construct a call graph; however, most points-to analyses 

in turn require a call graph, so a cyclic dependency exists. A simple way to 

break the cycle is to first use trivial points-to information to build an imprecise 

call graph (for example, using Class Hierarchy Analysis [DGC95]), then use the 

call graph to perform the points-to analysis. A preferred [Ryd03, GCOl], more 

precise alternative is to perform call graph construction on-the-fiy as the points­

to analysis proceeds and new points-to pairs are discovered. PADDLE is the first 

BDD-based analysis which implements call graph construction in BDDs, and 

can therefore use the preferable on-the-fiy calI graph construction. 

Sorne analyses [RMR01, WL04] construct a calI graph only partly on-the-fiy in 

that they require an initial calI graph to determine which methods are reach­

able, but construct a second, more precise call graph as the points-to analysis 

proceeds. These partly on-the-fiy analyses generate intraprocedural points-to 

constraints at the very beginning to model all assignments within methods 

1 In [Ryd03], this dimension is called "Program representation (calling structure)". 

91 



Applying BDDs to Interprocedural Program Analysis 

reachable in the initial calI graph, but they generate interprocedural points­

to constraints as they add calI edges to the more precise calI graph that they 

built. Therefore, the precision of partly on-the-fiy analyses is in between that of 

ahead-of-time and fully on-the-fiy calI graph analyses; they model intraproce­

duraI pointer fiow like the ahead-of-time analyses, and interprocedural pointer 

fiow like the fully on-the-fiy analyses. 

In PADDLE, the calI graph is constructed fully on-the-fiy in the default setting, 

but PADDLE can also use a calI graph constructed ahead-of-time for comparison 

purposes. 

Object representation: A points-to analysis manipulates a static abstraction 

of each object that may be pointed to by a pointer at run time. Two 

commonly-used abstractions are the run-time type of the object (e.g. [BS96, 

SHR+OO, DMM96]), and the allocation site at which the object was allocated 

(e.g. [RMR01, LH03, WL02]). PADDLE supports both of these abstractions 

(allocation site being the default setting), and provides fiexibility for defining 

others. Furthermore, while many context-sensitive analyses use context to re­

fine only the pointer representation, PADDLE can additionally use context to 

refine the object representation, a technique sometimes called heap specializa­

tion [BCCH97, NKH04]. 

Reference (pointer) representation: A pointer abstraction represents each 

pointer that may occur at run time with sorne static abstract pointer; a points­

to analysis computes a points-to set for each such abstract pointer. A common 

pointer abstraction is to use an abstract pointer for each variable of pointer type 

appearing in the program. However, sorne less precise abstractions have been 

studied, such as Rapid Type Analysis (RTA) [BS96], which uses a single abstract 

pointer to represent aIl pointers in the program. Several variations in between 

these two choices were studied by Tip and Palsberg [TPOO]. PADDLE directly 

supports both RTA and using an abstract pointer for each Jimple or Shimple 

variable (which is slightly more precise than one for each pointer variable, since 
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a variable in the original program may be split into multiple Jimple or Shimple 

variables). The design of PADDLE is flexible in terms of pointer abstraction, so 

other variations (such as those studied in [TPOO]) could be implemented. 

Field sensitivity: Certain fields of objects in the heap are also pointers, and field 

sensitivity defines how they are abstracted. In a field-sensitive analysis, each 

run-time field f of run-time object 0 is abstracted as the pair (A(o), 1), where 

A( 0) is the object abstraction of o. Either of the two components may be ig­

nored in the abstraction, resulting in either a field-based analysis (in which f 
alone is used as the abstraction) or a field-insensitive analysis (in which f is 

ignored and only A(o) is used). Field-insensitive analysis is used for ana­

lyzing languages such as C who se type-unsafe pointer operations make it diffi­

cult to determine the field being aceessed. In the context of Java, our earlier 

work [Lho02, LH03] showed that field-sensitive analysis is more precise but more 

costly than field-based analysis. PADDLE implements both field-sensitive and 

field-based analysis. 

Directionality: An assignment of the value of a pointer p to another pointer q con­

strains the points-to set of p to be a subset of the points-to set of q, sinee q may 

point to any object to which p was pointing. A subset-based analysis [And94] 

solves only these neeessary constraints. One can sacrifiee precision to reduee 

analysis cost with an equality-based analysis [Ste96], in which the neeessary sub­

set constraints are strengthened to be bidirectional (equality constraints). As a 

consequence, any two points-to sets in the solution are either equal or disjoint, 

and a fast union-find [Tar75] algorithm can be used to compute equivalence 

classes of points-to sets. On Java programs, subset-based analysis has been 

observed [LPHOl] to be significantly more precise than equality-based analy­

sis, and efficient implementation techniques [HTOl, LH03, Lho02, PKH04] have 

made subset-based analyses sufficiently fast for most applications. PADDLE im­

plements subset-based analysis. The lower precision of equality-based analysis 

could be simulated in PADDLE by making the subset constraints bidirectional. 

93 



Applying BDDs to Interprocedural Program Analysis 

Type filtering: 2 When analyzing languages which enforce declared types of point­

ers, such as Java, a points-to analysis can filter the elements of points-to sets to 

exclude those incompatible with the declared type of the pointer. Our earlier 

work showed that type filtering both improves precision and reduces co st in 

both traditional [Lho02, LH03] and BDD-based [BLQ+03] points-to analyses. 

PADDLE performs type filtering by default, but provides an option to disable it 

so that its effect on precision and analysis cost can be measured. 

4.1.2 Context sensitivity 

Interprocedural program analyses model the effects of not only individual methods, 

but also of the interactions between methods. A context-insensitive analysis com­

putes, for each method, a single analysis result that holds for all executions of the 

method. Because different invocations of a method may have different behaviours, it 

may be more precise to perform a context-sensitive analysis, which can pro duce 

different analysis results for different invocations. In general, a context is some static 

abstraction of a set of run-time invocations of a method. A context-sensitive analysis 

pro duces an analysis result for each pair of method and context. Different levels of 

context sensitivity can be achieved by choosing different abstraction functions to ab­

stract run-time invocations as static contexts. Two common choices of context are the 

call site from which the method is called, and a static abstraction of the parameters 

passed to the method. 

In general, traditional implementations of context-sensitive analyses have been too 

costly to scale to programs as large as recent versions of the Java standard libraries. 

BDD-based analyses make it feasible to study the effects of context sensitivity on 

these realistic programs. 

Sharir and Pnueli [SP81] defined two approaches to performing context-sensitive 

program analysis, the functional approach and the call-strings approach. The 

approaches vary in two ways: in the algorithm used to compute the analysis, and in 

2Type filtering was not included as a dimension in [Ryd03], but it has been shown [Lho02, LH03] 
to significantly affect analysis precision and cost. 
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the context abstraction that was chosen for use with each approach. In the functional 

approach, the effect of each method is first captured in a summary function which 

maps each context to the effect of the method on the analysis facts in that context. 

The summary function is then evaluated for each context in which the method is 

invoked. In the caU-strings approach, the facts processed by the analysis are tagged 

with context, and the analysis propagates the tagged facts along the fiow graph of the 

program. Sharir and Pnueli present their two approaches using two specifie context 

abstractions: method arguments for the functional approach and strings of caU sites 

for the caU string approach. Analyses using caU site strings as context are often caUed 

k-CFA analyses (where k is an integer limit on the length of each context string), a 

term coined by Shivers [Shi88]. We explain caU site string context-sensitive points-to 

analysis in detail below in Section 4.1.2.1. 

The PADDLE BDD-based encoding of context-sensitive program analyses shares 

sorne characteristics of both approaches. Like in the functional approach, PADDLE 

first captures the data fiow graph of each method, independent of context, in a BDD 

analogous to the summary function. Next, the BDD is joined with the set of aU 

contexts in which the method may be executed to form a new BDD representing the 

(context-sensitive) subset constraints. FinaUy, the subset constraints are solved to 

compute a points-to set for each pair of pointer and context, as in the caU-strings 

approach. The PADDLE implementation is parameterized to aUow any context ab­

straction to be used, including both method arguments and caU sites. 

In the specifie area of points-to analysis, researchers have experimented with sev­

eral different context abstractions. The initial points-to work by Emami, Ghiya, 

and Hendren [EGH94] used a string of caU sites as context. They did not limit the 

length of each caU string, but truncated the string at the first repetition of a call 

site in the case of recursion. Their analysis was fiow sensitive, and computed an 

intraprocedural fixed point within each procedure; in the case of recursion, this fixed­

point computation was performed over each cluster of mutuaUy recursive procedures 

rather than a single procedure at a time. Another context abstraction particularly 

popular in alias analyses for Chas been the set of alias relationships at the call 
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site of the procedure [WL95, LRZ93]. More recently, Milanova, Rountev, and Ry­

der [MRR02, Mi103, MRR05] argued that for analyzing object-oriented languages 

such as Java, a representation of the receiver object of each method caU would be a 

more appropriate context abstraction. We explain object-sensitive points-to analysis 

in detail below in Section 4.1.2.2. Like object sensitivity, the Cartesian Product AI­

gorithm [Age95, WSOl] uses abstract objects as the context abstraction, but includes 

aU method parameters as context, rather than only the receiver parameter. 

4.1.2.1 Cali site context-sensitive analyses 

The example code shown in Figure 4.1 illustrates why context-insensitive points­

to analysis can be imprecise. In the example, the id () method simply returns its 

argument. The method f () creates two objects and assigns them to a and b. It 

then assigns the object in a to c and the object in b to d indirectly through the 

id 0 method. A precise analysis would determine that c may point to the object 

allocated in line 5 but not to the object allocated in line 6, and vice versa for d. 

However, a context-insensitive analysis cannot determine this because it models the 

parameter and return value of the idO method using a single points-to set, which 

is shared by both invocations of the method. This points-to set contains both the 

objects aUocated at lines 5 and 6, and it is assigned to both c and d, so the analysis 

conservatively computes that each of c and d may point to either of these objects. 

A context-sensitive analysis overcomes the problem by modeUing each method 

separately for each abstract context in which it is caUed. The caU site from which 

the method is caUed is a popular choice of context abstraction. When analyzing the 

example in Figure 4.1, a calI site context-sensitive analysis would analyze the idO 

method twice as if it were two separate methods, one called from line 7 and the other 

from line 8. In the first context, the parameter and return value of id () would point 

only to the object allocated in line 5, and in the second context, they would point only 

to the object allocated in line 6. Therefore, the analysis would be able to determine 

that c points only to the object allocated in line 5 and d points only to the object 

allocated in line 6. 
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1 Object id(Object 0) { 

2 return 0; 

3 } 

4 void fO { 

5 Object a = new Objecte); 

6 Object b = new Objecte); 

7 Object c = id(a); 

8 Object d = id(b); 

9 } 

Figure 4.1: Imprecision of context-insensitive analysis 

1 Object id(Object 0) { 

2 return id2(0); 

3 } 

4 Object id2(Object 0) { 

5 return 0; 

6 } 

7 void fO { 

8 Object a = new Objecte); 

9 Object b = new Objecte); 

10 

11 

12 } 

Object c = id(a); 

Object d = id(b); 

Figure 4.2: Imprecision of 1-call-site context-sensitive analysis 

97 



Applying BDDs to Interprocedural Program Analysis 

The example in Figure 4.2 shows that sometimes, using a single caU site as context 

is insufficient. This example adds an extra layer of indirection in the idO method. 

Instead of returning its argument directly, it returns it indirectly through the id2 () 

method. A caU site context-sensitive analysis will analyze the id () method twice, 

once for each of the call sites from which it is called. However, the id20 method is 

only called from a single call site (line 2), so it will be analyzed only once, and both 

objects will again be mixed together in the points-to set of its argument. 

A solution to this imprecision is to use strings of multiple call sites as the context 

abstraction, rather than just a single call site. Wh en analyzing id2 (), we can inc1ude 

in its context not only the site that it was called from, but also the site that its caller, 

in turn, was called from. In general, the strings of call sites can be of any length. In 

our example, the id2 () method would be analyzed twice, in the two contexts: 

1. (i dO called from line 10, i d2 0 called from line 2) and 

2. ( i d 0 called from line 11, i d2 0 called from li ne 2). 

In each context, only one of the objects would appear in the points-to set of the 

parameter and return value of id20, and the analysis could again determine that c 

points only to the object allocated in line 8, and d points only to the object allocated 

in line 9. 

80 far, we have been specializing pointers and their points-to sets for different 

contexts. The example in Figure 4.3 illustrates why we may also want to specialize 

abstract heap objects. The code creates two objects, and assigns one to a and the 

other to b. The object creation has been encapsulated in the alloc 0 method. 

Therefore, in an analysis that models objects simply by their allocation site, both 

objects are represented by the same abstract object, namely the allocation site in 

line 2. Therefore, the analysis cannot determine that a and b point to distinct objects. 

To eliminate this imprecision, objects may be modelled not only by their allocation 

site, but by a combination of the allocation site and the calling context in which the 

method containing it is called [BCCH97, NKH04]. Thus, in the example in Figure 4.3, 

the object assigned to a would be modelled by the allocation site in line 2 in the 
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abject allocO { 

return new Objecte); 

} 

void fO { 

abject a = allocO; 

abject b = alloc(); 

} 

Figure 4.3: Imprecision of context-insensitive modelling of abstract heap objects 

context of the call site in line 5, while the object assigned to b would be modelled by 

the same allocation site in the context of the call site in line 6. Thus, the two objects 

would be distinguished by the analysis. 

4.1.2.2 Object-sensitive analyses 

Milanova, Rountev, and Ryder [MRR02, MRR05] noted that when analyzing an 

object-oriented language such as Java, an abstraction of the receiver object of a 

method call may be a better choice of context abstraction than the call site. Specif­

ically, they suggested using the allocation site of the receiver object as the context 

abstraction. They proposed a collection of such object-sensitive analyses parame­

terized according to which pointers and abstract heap objects are to be modelled 

context-sensitively, and how long a context string of receiver objects may be used for 

each of them. 

We will illustrate object-sensitive analysis using the example shown in Figure 4.4. 

The code contains a Container class, which can store sorne Item in its field item. A 

setter method is provided to store an item into the field. The go () method creates 

two containers and two items, and stores the first item in the first container and the 

second item in the second container. A context-insensitive analysis would analyze the 

setItemO method only once, so its parameter i would be deemed to possibly point 

to both the Items. As a result, the points-to sets of the field item in both Container 

objects would contain both Item objects. 
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1 class Container { 

2 private Item item; 

3 public void setItem( Item i ) { 

4 this.item = i; 
5 } 

6 } 

7 

8 void goO { 

9 Container ci = new Container(); 

10 Item il = new Item(); 

Il cl.setItem(il); 

12 

13 Container c2 = new Container(); 

14 Item i2 = new Item(); 

15 c2.setItem(i2); 

16 } 

Figure 4.4: Example code illustrating l-object-sensitive analysis 
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In a l-object-sensitive analysis, each method would be analyzed in the context of 

the allocation site of the receiver object on which it was called. In particular, the 

setItemO method would first be analyzed in the context of the Container object 

allocated in li ne 9. In that context, the parameter of setItemO would be the Item 

allocated in line 10. Therefore, only this Item would be added to the points-to set of 

the field item of Container objects allocated in line 9. The setItem 0 method would 

then be analyzed a second time in the context of the Container object allocated in 

line 13. In this case, the parameter to setItemO would be the Item allocated in 

line 14, so only this Item would be added to the points-to set of the field item of the 

Container object allocated in line 13. Thus, the analysis would be able to show that 

cl. item and c2. item point to distinct Items. 

Now consider the slightly modified version of the code that appears in Figure 4.5. 

The difference compared to the previous example is that the assignment to the field 

item has now been delegated to an ItemSettingVisi tor implementing the visitor 

design pattern [G HJV95]. The go 0 method now applies the visitor to each container, 

and the visitContainer 0 method in the visitor stores the Item in the container. A 

l-object-sensitive analysis would not be able to distinguish the two Items stored in 

the item field of the two Containers, because both are written into the field inside the 

visi tContainer 0 method called on the same receiver object, namely the visi tor. 

In a 2-object-sensitive analysis, each method would be analyzed in the context of 

strings of up to two receiver object allocation sites. Specifically, the applyO method 

in the Container class would be analyzed twice, once for each of the Container allo­

cation sites. Then, because the visitContainerO method is called from applyO, 

it would also be analyzed twice, in the contexts of the following two receiver object 

strings: 

1. (Container allocated in line 21, Visitor allocated in line 11) and 

2. (Container allocated in li ne 25, Visitor allocated in line 11). 

In each of these contexts, only one of the Item objects would be passed through 

the arg parameter of the applyO and visitContainerO methods. Therefore, the 

analysis would distinguish the two Item objects stored in the two Container objects. 
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1 interface Visitor { 

2 public void visitContainer( Container c, Object arg ); 

3 } 

4 

5 class ItemSettingVisitor implements Visitor { 

6 public void visitContainer( Container c, Object arg ) { 

7 c.item = (Item) arg; 

8 } 

9 } 

10 

Il static Visitor visitor new ItemSettingVisitor(); 

12 

13 class Container { 

14 Item item; 

15 public void apply( Visitor v, Object arg ) { 

16 v.visitContainer( v, arg ); 

17 } 

18 } 

19 

20 void go() { 

21 Container ci = new Container(); 

22 Item ii = new Item(); 

23 ci.apply(visitor, ii); 

24 

25 Container c2 = new Container(); 

26 Item i2 = new Item(); 

27 c2.apply(visitor, i2); 

28 } 

Figure 4.5: Example code illustrating k-object-sensitive analysis 
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The example in Figure 4.6 is another small variation of Figure 4.4. In this case, 

the item field of the Container object has been replaced with an array. A similar 

pattern is commonly used in the collections classes in the Java standard library. 

In a points-to analysis that models heap objects by their allocation site only, all 

instances of the Item [] array would be modelled as a single object, because they are 

all allocated at the same allocation site, in line 4. Therefore, all Item objects stored 

in any Container would be added to the single points-to set representing the contents 

of the Item [] array, and the analysis would not be able to distinguish Item objects 

added to different Containers. 

1 class Container { 

2 private Item[] item; 

3 public Container() { 

4 item = new Item [1] ; 

5 } 

6 public void setItem( Item i ) { 

7 this.item[O] = i; 
8 } 

9 } 

10 

11 void go() { 

12 Container cl = new Container(); 

13 Item il = new Item(); 

14 cl.setItem(il); 

15 

16 Container c2 = new Container(); 

17 Item i2 = new Item(); 

18 c2.setItem(i2); 

19 } 

Figure 4.6: Example code illustrating object-sensitive heap abstraction 

To eliminate this imprecision, an analysis must distinguish the instances of the 

Item [] array allocated for different instances of Container. This can be do ne by 
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modelling the Item [J array not only by its allocation site, but by its allocation site 

annotated with the allocation site of the receiver object of the method in which the 

array is allocated. In the example, the Container constructor is called on two receiver 

objects, namely the Container object allocated in line 12 and the Container object 

allocated in line 16. Therefore, each of the Item [J arrays allocated in the constructor 

of one of these objects can be abstractly represented by its allocation site annotated 

with the allocation site of the receiver of the constructor, namely the Container 

object to which the array corresponds. This abstract representation of heap objects 

distinguishes the two Item [J arrays created for the two different Container objects, 

and therefore makes it possible for the analysis to distinguish Items stored in the two 

different Containers. 

4.1.2.3 ZhujCalmanjWhaley jLam algorithm 

Zhu and Calman [ZC04] and Whaley and Lam [WL04] have developed an algorithm 

for efficiently representing k-CFA call graphs in BDDs, where k is the depth of the 

longest possible non-recursive call chain in the program. The algorithm takes a com­

plete context-insensitive call graph constructed ahead-of-time as input, and trans­

forms it into a k-CFA context-sensitive one. The pro cess consists of the following 

steps, which we illustrate in Figure 4.7. 

1. An arbitrary context-insensitive call graph such as the one shown in Fig­

ure 4.7(a) is made into a DAG by merging every strongly-connected component 

into a single node. The DAG resulting from merging the strongly-connected 

component consisting of nodes D and E is shown in Figure 4. 7(b). 

2. Every node in the DAG with multiple incoming edges is cloned once for ev­

ery incoming edge. This is performed recursively until every node has at 

most one incoming edge (i. e. the result is a tree). The tree resulting from 

our example is shown in Figure 4.7(c). Since the tree contains a cloned 

node for every path through the DAG, it may be very large. However, the 

ZhujCalmanjWhaley jLam algorithm constructs a compact BDD representa­

tion of the tree. The key to constructing this representation quickly is a special 
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(a) (b) 

(c) (d) 

Figure 4.7: Steps of ZhujCalmanjWhaleyjLam algorithm applied ta example graph 
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BDD operation based on a binary adder circuit, which is described in detail by 

Zhu and Calman [ZC04, Section 4.2]. 

3. The strongly-connected components are un-merged into their original methods. 

The context-insensitive calI edges that were originally within each strongly­

connected component in the context-insensitive graph are reintroduced into 

each clone of the component. Every calI edge that led into or out of a method 

of a strongly-connected component in the original caU graph now just leads into 

or out of a clone of the strongly-connected component as a whole. When the 

strongly-connected component is un-merged, these cloned edges are made to 

lead into or out of the clone of the specifie method that they led into or out of 

in the original calI graph. The resulting calI graph for our example is shown in 

Figure 4.7(d). Although this final step was not mentioned explicitly by Whaley 

and Lam [WL04], it is a crucial part of the algorithm. 

Once a context-sensitive calI graph such as the one in Figure 4. 7( d) has been 

constructed, it can be used to perform a points-to analysis. Whaley and Lam [WL04] 

used the context-sensitive calI graph to generate subset constraints for a field-sensitive 

subset-based analysis. Their points-to analysis modelled pointer variables context­

sensitively using the k-CFA context strings from the calI graph, and heap objects 

context-insensitively using only their allocation site. For comparison with the other 

variations of context sensitivity, we have implemented the Zhu/Calman/Whaley /Lam 

algorithm within PADDLE. 

4.1.3 BDD-based program analyses 

Several researchers have recently used BDDs to implement program analyses, includ­

ing both points-to analyses similar to our work, as weIl as very different kinds of 

analyses. 
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4.1.3.1 Points-to and cali graph analyses 

Concurrently with our initial BDD-based points-to analysis for Java [BLQ+02, 

BLQ+03], Zhu [Zhu02] devised a similar BDD-based points-to analysis for hard­

ware synthesis programs written in C. Zhu and Calman [ZC04] and Whaley and 

Lam [WL04] designed an algorithm for computing k-CPA call graphs from context­

insensitive call graphs using BDDs. We described this algorithm in detail above in 

Section 4.1.2.3. Both groups performed points-to analysis on the resulting context­

sensitive call graph: Zhu and Calman applied Zhu's [Zhu02] points-to analysis for C, 

while Whaley and Lam applied our [BLQ+02, BLQ+03] points-to analysis for Java. 

4.1.3.2 Other program analyses 

In a very different use of BDDs, Ball and Rajamani [BROI] lifted a flow-sensitive 

finite-set dataflow analysis to keep track of a set of dataflow sets for each pro gram 

point, in order to track correlations between elements of dataflow sets, achieving a 

path-sensitive analysis. They used BDDs to compactly represent the large sets of 

sets. 

Sagiv, Reps, and Wilhelm [SRW02] have constructed a framework based on three­

valued logic for expressing program analyses, particularly heap shape analyses. AI­

though very expressive, this framework has memory requirements that are often pro­

hibitive when analyzing non-trivial programs. Manevich et al. [MRP+02, Man03] 

compared the original representation of these data structures in their Three-Valued 

Logic Analysis (TVLA) framework with two new representations, one using BDDs, 

and one using a novel BDD-like data structure that they developed for representing 

maps [Man03, Section 3.2.3]. The memory requirements of both new representations 

were found to be about an order of magnitude lower than the original representation. 

Analysis times were found to be about the same with all three representations. 

Sittampalam, de Moor, and Larsen [SdML04] formulated program analyses using 

conditions on control flow paths. These conditions contain free metavariables cor­

responding to program elements (such as variables and constants). To perform an 
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analysis, these metavariables were instantiated with specific elements from the par­

ticular program being analyzed. BDDs were used to efficiently represent and search 

the large space of possible instantiations. 

4.2 Key Contributions of the Paddle Framework 

Having placed PADDLE in the context of existing work, we now outline the key con­

tributions of the PADDLE framework. 

On-the-fly call graph construction: Object-oriented languages such as Java sup­

port virtual method dispatch, which means that the method invoked from a call 

site depends on the run-time type of the receiver. The run-time type, and there­

fore the caU target, can be approximated precisely using a points-to analysis. 

However, performing an interprocedural points-to analysis requires a caU graph 

of call site targets, so there is a circular dependence between call graph con­

struction and points-to analysis. Existing work on BDD-based Java points-to 

analysis [BLQ+03, WL04] resolves this cyclic dependence by first constructing 

a call graph based on conservative, imprecise assumptions about receiver types, 

using the call graph to generate points-to constraints and encode them in BDDs, 

and finally performing the points-to analysis by solving the constraints. It is 

generally accepted [Ryd03, GeOl] that this approach is significantly less precise 

than the alternative approach of iterating both the call graph construction and 

the points-to set propagation together until an overall fixed point is reached. In 

PADDLE, we have implemented the latter, more precise approach. We have also 

implemented the less precise ahead-of-time call graph construction for compar­

ison. 

BDD-based prerequisite and client analyses: In previous work on BDD-based 

points-to analysis, only the points-to set propagation was performed using 

BDDs. However, points-to analysis relies on other prerequisite information 

about the program being analyzed, which was previously computed using tra­

ditional analyses. In PADDLE, we show how these prerequisite analyses can 
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be implemented in BDDs as well. In particular, in PADDLE, we use a BDD 

representation to compute subtype relationships, resolve virtual method caUs, 

keep track of caU edges between methods, and determine which methods are 

reachable in the call graph. In addition, we have implemented BDD-based client 

analyses that make use of the points-to and call graph information once it has 

been computed. We present the client analyses for Java in Section 4.4 of this 

chapter, and the client analyses for AspectJ in Chapter 6. 

Reducing the cost of encoding prerequisite analysis results in BDDs: 

The pro cess of converting traditional representations of large relations into 

a BDD representation is very costly in terms of execution time. Wh en large 

relations such as the call graph and subtype relationships are constructed 

using traditional analyses and later converted to BDDs, as is done in existing 

BDD-based points-to analyses, the conversion often takes more time than the 

subsequent points-to analysis itself. Encoding this required information in 

BDDs is therefore an important barrier to the overall efficiency of the analysis. 

However, as described ab ove , PADDLE computes these large prerequisite 

relations in BDDs, rather than using traditional analyses. Therefore, only the 

small, initial relations needed by these analyses need to be converted from 

traditional representations to BDDs, greatly reducing the conversion cost. 

Parameterized context sensitivity: While existing work [ZC04, WL04] has 

shown that context sensitivity is feasible in BDD-based analyses, litt le is known 

about how different variations of context sensitivity affect the precision of anal­

ysis results on benchmarks of significant size. BDDs make context sensitiv­

ity feasible, but is it worthwhile? PADDLE makes it possible to experi­

ment with different variations of context sensitivity, including object sen si­

tivity [MRR02, MRR05], a form of context sensitivity which promises to be 

particularly effective for object-oriented languages such as Java. We have used 

PADDLE to perform an in-depth study of the effects of context sensitivity vari­

ations on analysis precision; we discuss the study and its results in Chapter 5. 
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Modular design: The PADDLE framework is designed as a collection of simple com­

ponents connected by worklists. This modular design makes it easy to modify 

the system to implement new analyses by adding or replacing sorne of the com­

ponents. Each component is implemented in both a BDD-based version and 

a traditional version. Normally, aIl components are instantiated in the same 

version to avoid the cost of repeatedly converting between BDD-based and tra­

ditional representations. For debugging purposes, a mixture of BDD-based and 

traditional components can be instantiated to help locate the cause of any dis­

crepancies between the two versions of the analysis. 

4.3 Points-to Analysis and Cali Graph Construction 

In this section, we present the core part of PADDLE, the points-to analysis and calI 

graph construction. We first give a high-Ievel overview of its structure in Section 4.3.l. 

In Sections 4.3.2 to 4.3.5, we provide more detail about its key parts. Finally, we dis­

cuss using an existing calI graph instead of constructing one on-the-fly in Section 4.3.6. 

4.3.1 High-Ievel structure 

A very high level view of the analyses and their dependencies is shown in Figure 4.8. 

CalI graph construction determines which methods of the program are reachable 

during execution, and the possible targets of each calI site. Points-to constraints are 

generated to model the effects of each reachable method and the flow of parameters 

and return values along each calI edge. Points-to sets are propagated along the 

constraints. The computed points-to sets of calI site receivers are used to resolve 

virtual caUs, generating additional calI edges and reachable methods. 

At a finer level of detail, each of the boxes of Figure 4.8 is implemented in PAD­

DLE as a collection of components, each performing sorne basic analysis, connected by 

worklists expressing the dependencies between the analyses. We will present the full 

list of components later in Figure 4.9 and Sections 4.3.2 through 4.3.5. Each compo­

nent defines an update () method which pro cesses the new analysis facts appearing 
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Figure 4.8: Very high level overview of caU graph and points-to analyses 

on its input worklists, uses them to compute new analysis facts, and adds the new 

facts to its output worklists for other components to use. 

A separate scheduler maintains a global worklist of components which need to be 

updated, and caUs their update () methods in turn, until an overaU global fixed point 

is reached. A component is added to the global worklist whenever an analysis fact is 

added to one of its input worklists. 

A given worklist may have multiple components adding facts into it. For exam­

pIe, the fact that a given pointer points to a given object may be generated by the 

component that pro cesses simple pointer assignments, or by the component that pro­

cesses loads from fields of heap objects. A worklist may also be the input to multiple 

components. Every analysis fact added to the worklist is seen by aU components that 

read from it, as if each of these components had their own worklist, and each analysis 

fact were added to aU of them. This is needed because sorne facts must be processed 

by several components. For example, a new call edge added to the caU graph must be 

processed both by the component which creates points-to constraints modelling the 

fiow of the parameters and return value of the call, and the component which keeps 

track of which methods are reachable in the call graph. 

Each component and the worklists are implemented in two versions, a traditional 

version and a BDD-based version. Since BDD operations pro cess an entire relation at 

a time, a BDD component generally pro cesses the whole batch of new analysis facts 

appearing on its input worklist in one step, producing a batch of new analysis facts 
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to be added to its output worklist. A traditional component pro cesses one analysis 

fact at a time. In normal operation, components and worklists are instantiated either 

all in their BDD-based version, or all in their traditional version. However, the two 

versions share the same interfaces, so it is possible to mix traditional and BDD-based 

versions. Therefore, if a user of PADDLE prototypes a new component in only one of 

the versions, it can interoperate with both versions of the other components. Mixing 

traditional and BDD-based versions of components is also use fuI for tracking down 

any discrepancies in the outputs of the two versions. 

The BDD-based version of a worklist is implemented as a JEDD relation, with 

each tuple representing an analysis facto Components add relations of new facts to it 

using the union operation, and a component that reads the whole worklist resets the 

relation to the empty relation. When multiple components are reading a worklist, a 

separate relation is maintained for each reader. 

The traditional version of a worklist is implemented as a chunked array. A pointer 

is maintained to the first free element of the array,3 where new analysis facts are added. 

Each component reading from the worklist maintains a pointer to the next element 

to be read. Thus, all the readers can share the same chunked array. When all readers 

have read the elements of a chunk, there are no longer any references to it, and the 

chunk is automatically reclaimed by the garbage collector. 

Figure 4.9 shows the specific components and connecting worklists which make 

up the caU graph and points-to analyses of PADDLE. Each component is shown as 

an oval, and each worklist as a rectangle. The names of components and worklists 

correspond to the names in the PADDLE code. Each worklist stores analysis facts 

encoded as tuples of a single type. In the figure, the type of the tuples stored in each 

worklist is given by the sequence of letters under the worklist name, with each letter 

representing a given type. For example, the worklist named receivers contains tuples 

consisting of a local variable (L), method (M), statement (S), method signature (1), 

and kind (K). 

3Since Java do es not allow pointers to individu al array elements, the pointer is implemented as 
a reference to the chunk, along with an integer index into the chunk. 
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Figure 4.9: Components of call graph and points-to analyses in the default on-the-fly 

call graph configuration of PADDLE 
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CaU graph construction, which is discussed in detail in Section 4.3.2, is performed 

by the reachable contexts (RC), static caU graph builder (SCGB), context-sensitive 

caU graph builder (CSCGB), virtual caU resolver (VCR), static context manager 

(SCM), virtual context manager (VCM), and caU graph (CG) components. Points­

to constraints, discussed in detail in Section 4.3.3, are generated by the method points­

to assignment graph builder (MPB), caU edge handler (CEH), method points-to 

assignment graph contextifier (MPC) and caU edge contextifier (CEC) components. 

Propagation of points-to sets, discussed in Section 4.3.4, is performed by the points-to 

assignment graph (PAG) , simple assignment propagator (PROP) and field assign­

ment propagator (FPROP) components. 

4.3.2 Cali graph construction 

A key problem in context-sensitive caU graph construction is that the number of 

contexts can grow intractably large. BDDs help by representing the sets of contexts 

implicitly. In designing a BDD-based context-sensitive analysis, we must be careful to 

keep the sets of contexts implicit in the BDDs, and not explicitly enumerate them dur­

ing the analysis. Although the PADDLE framework constructs a context-sensitive caU 

graph, sorne operations in the overaU analysis require caU graph information to be ex­

tracted from the BDDs and made explicit. To do this efficiently, PADDLE constructs a 

context-insensitive view of the caU graph within BDDs, makes this context-insensitive 

view explicit, uses it to perform the operation and encode its result in BDDs, then 

specializes the BDD-encoded results of the operation for the relevant contexts. We 

will see examples of this technique later in this section and in Section 4.3.4. 

We start our discussion of caU graph construction with the reachable contexts 

(RC) component. This component keeps track of the set of methods that have so 

far been found to be reachable through the caU graph, and the contexts in which 

they are reachable. It pro duces output into two worklists. Each pair of method and 

context in which it is reachable is added to the rcout worklist. Each unique method 

found to be reachable, regardless of context, is added to the rmout worklist, which 

is a context-insensitive view of the rcout worklist for those operations that require 
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it. At the beginning of the analysis, the reachable contexts (RC) component is 

initialized with the entry points of the program in the null context. The component 

then pro cesses newly discovered calI edges from the egout worklist to find newly 

reachable method-context pairs, and adds them to its output worklists. 

The static calI graph builder (SCGB) is one of the components that require a 

context-insensitive view of the calI graph. The component processes each reachable 

method from the rmout worklist, extracts information about calI sites from its Jimple 

representation, and encodes it into tuples added to its output worklists. This must be 

done without context to avoid re-processing the Jimple code of the method multiple 

times for the many contexts in which it may be called. Later, in the context-sensitive 

calI graph builder (CSCGB) and virtual calI resolver (VCR) components, the call 

site information generated by the static call graph builder (SCGB) component will 

be specialized for the contexts in which the method is called. 

At some call sites (see below), the target of the call is independent of the context 

of the call; these call sites are resolved immediately, and the resulting call edge is 

inserted into the segbout worklist. Call sites whose target depends on information 

about some object (such as the receiver of the call) may have different targets in 

different contexts, since the relevant object may be different in different contexts. 

Therefore, these call sites are not resolved immediately, but information about them 

is inserted into the reeeivers and specials worklists, to be processed later when 

points-to information is available. 

Call sites whose target is independent of context include: 

• staticinvoke instructions, 

• implicit calls to static initializers from instructions that may trigger static ini­

tialization, 

• implicit calls to any finalizeO methods of every object allocated, and 

• at a call to Class . newInstance (), implicit calls to constructors of any classes 

that the user has specified as potentially loaded by refiection. 
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CaU sites whose target depends on the actual type of the receiver, which are added 

to the reeeivers worklist, include: 

• virtualinvoke and interfaceinvoke instructions, 

• implicit caUs to Thread. run () at caU sites of Thead. start () , 

• implicit caUs to the runO method of PrivilegedAction and PrivilegedEx­

ceptionAction at caU sites of AccessGontroller . doPri vileged (), and 

• implicit caUs to the static initializer of classes loaded refiectively using 

Glass. forName 0 (the specific class can be determined if the argument to 

Glass. forName 0 is known to point to a constant string). 

The specialinvoke instruction is treated differently than other method caUs. AI­

though the target of a specialinvoke is independent of the run-time type of the receiver, 

the caU only succeeds if the receiver is non-null. Therefore, if the points-to set of the 

receiver of a specialinvoke is empty, the specialinvoke can never caU its target, so 

analysis precision can be improved by excluding the caU from the caU graph. There­

fore, the static caU graph builder (SCGB) immediately resolves the targets of special 

caUs, but the caU edges are not added to the segbout worklist. Instead, they are 

added along with their receiver to the separate specials worklist, so that they can 

later be added to the caU graph only when the points-to set of the receiver, in the 

relevant context, is determined to be non-empty. 

The context-sensitive caU graph builder (CSCGB) composes the context­

independent caU edges generated by the static caU graph builder in the segbout 

worklist with the reachable method-context pairs in the reout worklist. Each context­

independent caU edge from a given method is thereby implicitly cloned once for each 

context in which the method is reachable. The resulting context-sensitive edges are 

added to the staticealls worklist. 

The virtual caU resolver (VCR) combines points-to information (computed using 

points-to set propagation, which we will discuss in Section 4.3.4) with the information 

about caU sites in the reeeivers and specials worklists to determine the targets of 
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these calls. Depending on the kind of call site, the points-to information determines 

the target of the call in one of three ways. First, for virtual calls, the target is deter­

mined based on the run-time type of the receiver object according to the procedure 

specified in the Java Virtual Machine Specification [LY99 , Chapter 6J. Second, for 

special calls, the target has already been determined in the static call graph builder, 

and is available in the specials worklist. As soon as the points-to set of the receiver 

is non-empty, the call edge is copied to the virtualcalls worklist. Third, for implicit 

invocations of static initializers caused by calls to Class. forName 0, the call target 

depends on the parameter passed to Class. forName O. If the points-to set of the 

parameter contains only string constants, each constant specifies the name of the 

class whose static initializer is called. If the points-to set contains an object that is 

not known to be a string constant, it could be an arbitrary string, so the analysis 

generates call edges to the static initializers of all classes that the user has specified as 

possibly loaded by refiection (using the Soot command-line switch -dynamic-class). 

Because the virtual call resolver must implement the complicated resolution pro­

cedures of the Java Virtual Machine Specification and handle all the special kinds of 

call edges, it is one of the most complicated components of PADDLE. Therefore, we 

will return to it in more detail in Section 4.3.5, and explain how it is implemented in 

terms of JEDD BDD operations. 

The call edges generated by the context-sensitive call graph builder (CSCGB) 

and the virtual call resolver (VCR) are stored in the staticcalls worklist if their 

target method is static, or the virtualcalls worklist if their target method is an 

instance method. At this point, each call edge has a context associated with its 

source call site, but not with its target method. The static context manager (SCM) 

and virtual context manager (VCM) determine the context to be associated with 

the target of the call, which depends on the context abstraction being used. PADDLE 

contains the following implementations of the context managers, each implementing 

a different context abstraction. We described the different context abstractions in 

detail in Section 4.1.2. 
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1. The context-insensitive context managers assign each call target the null con­

text. 

2. The call-site (l-CFA) context managers select the source statement (call site) 

of the call as the context for the target method. 

3. The object-sensitive virtual context manager selects the abstract object repre­

senting the receiver of the call as the context for the target method. For static 

methods, there is no receiver object, so the object-sensitive static context man­

ager just copies the context of the source method as the context for the target 

method. 

4. The call-site-string (k-CFA) context managers copy the context of the source 

method, append the source statement of the call, then truncate the resulting 

call string to at most k entries. 

5. The object-string (k-object-sensitive) virtual context manager copies the con­

text of the source method, appends the abstract object representing the receiver 

of the call, then truncates the resulting call string to at most k entries. The 

object-string static context manager just clones the source context as the con­

text for the target method. 

6. The unique-object-string (unique-k-object-sensitive) virtual context manager 

copies the context of the source method and appends the abstract object rep­

resenting the receiver of the call, but only if the context string does not already 

contain it. Thus, within every object string, each abstract object is unique. 

The object-string static context manager just clones the source context as the 

context for the target method. Wh en analyzing calls on the this pointer, which 

are very common in Java programs, unique-object-string context sensitivity is 

more precise than object-string context sensitivity. The target of the call on 

the this pointer has the same receiver as the caller, so the same abstraction of 

the receiver object is added twice to the context string. Since the length of the 

context string is limited, this redundant abstract receiver object causes sorne 
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other, potentially useful, abstract receiver to be pushed out from the context 

string. In a unique-object-string context-sensitive analysis, however, each ab­

stract receiver is added to the string at most once, so other abstract receivers 

are not needlessly pushed out. 

The resulting complete, context-sensitive calI edges are inserted into the esedges 

worklist. 

The calI graph (CG) component stores aIl the context-sensitive calI edges and 

indexes them to support queries for aIl edges originating from a given method or 

statement, or aIl edges whose target is a given method. Each context-sensitive calI 

edge is inserted into the egout worklist if the same edge has not been inserted into it 

before. Therefore, the egout worklist contains aIl calI edges in the context-sensitive 

calI graph, with each calI edge appearing exactly once. This worklist is used as input 

to the reachable contexts (RC) component to find method-context pairs that become 

reachable through the calI graph. The calI graph (CG) also maintains a context­

insensitive view of the calI graph in the eesout worklist. For each context-sensitive 

calI edge processed, the context is removed, and the resulting context-insensitive edge 

is added to the eesout worklist if the same edge has not been added into it before. 

This context-insensitive view of the calI graph will be needed to generate points-to 

constraints to model pointer fl.ow through method parameters and return values, as 

discussed in the next section. 

4.3.3 Points-to constraint generation 

Points-to constraints are generated to model the fl.ow of objects along assignments be­

tween pointers in the program. Each of these assignments is either intraprocedural in 

that it is implied by the execution of sorne method (for example, by an explicit assign­

ment statement in the method), or interprocedural due to parameter and return value 

passing at a method calI. The constraints modelling the former are generated by the 

method points-to assignment graph builder (MPB), and the constraints modelling 

the latter are generated by the calI edge handler (CEH). 
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In both cases, each statement of the program being analyzed and each call edge 

must be processed individually to generate the specifie constraint that it induces. It is 

important that this processing only be do ne once for each method or call edge, rather 

than once for each context in which the method is reachable or in which the call may 

occur. The number of contexts may be very large, and it would be prohibitively costly 

to reexamine the code for each context. Instead, PADDLE first generates context­

insensitive versions of the points-to constraints for each method and for each context­

insensitive call edge, encodes them in BDDs, than specializes the constraints for the 

relevant contexts by implicitly making a copy of them for each context in which the 

method is reachable or in which the call edge occurs. The context specialization is 

do ne as a BD D operation for all the relevant contexts at once; it does not have to be 

do ne one context at a time. Intraprocedural points-to constraints are specialized by 

the method points-to assignment graph contextifier (MPC). Interprocedural points­

to constraints are specialized by the call edge contextifier (CEC). 

When specializing points-to constraints for different contexts, it is important to 

distinguish local (stack-allocated) variables, whose lifetime is a single method call, so 

they are necessarily distinct variables in distinct calling contexts, from global vari­

ables (such as static fields), whose values persist between method calls and therefore 

between different contexts. It would be unsound to model global variables as sep­

arate variables in different contexts, because values written to them in one context 

persist and may be read out of them in any other context. Milanova, Rountev, 

and Ryder [MRR02, MRR05] suggest that the set of variables modelled context­

sensitively may be varied to achieve different tradeoffs between analysis efficiency 

and precision. lndeed, each local variable may be modelled context-sensitively or 

context-insensitively according to the wishes of the analysis designer without sac­

rificing soundness, but global variables must be modelled context-insensitively. In 

PADDLE, the following are treated context-sensitively: 

1. each local variable, 

2. for each method, the parameters and return value, and, in the case of an instance 

method, the implicit this parameter, and 
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3. each temporary variable generated by PADDLE to hold the result of each cast ex­

pression and the intermediate arrays created by each mul tianewarray bytecode 

instruction. 

The following are treated context-insensitively: 

1. static fields and, in a field-based analysis, instance fields, 

2. the global variable representing all exceptions potentially thrown, 

3. the finalizer queue to which the garbage collector adds finalizers to be executed, 

and 

4. the temporary variables generated by PADDLE to hold 

(a) each string constant, 

(b) the default class loader, main thread group, and main thread instantiated 

by the VM, 

( c) the string created by the VM containing the name of the main class, 

(d) the array of command-line arguments created by the VM and the string 

arguments that it contains, 

(e) the abstract object representing all objects potentially instantiated using 

refiection. 

Like pointer variables, sorne abstract heap objects can also be distinguished by 

the context in which they are allocated, if it is known. In PADDLE, abstract heap 

objects representing explicit allocation sites in the program are modelled context­

sensitively. The following abstract heap objects are treated as global and always 

modelled context-insensitively: 

1. the abstract object representing each string constant, 

2. each abstract object representing the run-time type of the object rather than 

its allocation site. 
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3. the default class loader, main thread group, and main thread instantiated by 

the VM, 

4. the string created by the VM containing the name of the main class, 

5. the array of command-line arguments created by the VM and the string argu­

ments that it contains, 

6. the abstract object representing all objects potentially instantiated using reflec­

tion. 

The method points-to assignment graph builder (MPB) pro cesses each method 

in the rmout worklist of unique reachable methods, and inserts the corresponding 

context-insensitive points-to set constraints into the simple, alloc, store, and load 

worklists. The simple worklist holds simple subset constraints between pairs of 

pointer variables. The alloc worklist ho Ids allocation site constraints of the form 

o E pt(v), where 0 is an abstract object and v is a pointer variable. The store and 

load worklists hold field-sensitive field store and load constraints of the form v ç b.f 

and b.f ç v, respectively, where v and b are pointer variables, f is a field, and b.f 

is a field dereference expression. The method points-to assignment graph contextifier 

(MPC) takes these worklists as input, along with the rcout worklist of all method­

context pairs in which each method is reachable. Each points-to constraint involving 

a local pointer variable or abstract object is implicitly copied for each context in 

which the method is reachable. Global pointer variables and global abstract heap 

objects are always assigned the single global null context. The resulting context­

sensitive points-to constraints are added to the context-sensitive constraint worklists, 

csimple, calloc, cstore, and cload. 

The call edge handler (CEH) reads the ecsout worklist of context-insensitive call 

edges. For each call edge, it generates points-to assignment constraints modelling the 

flow of method parameters into the called method, and of the return value out of 

the called method, and inserts them into the parms and rets worklists, respectively. 

Each tuple representing a constraint also contains the context-insensitive call edge 

that induced the constraint. The call edge contextifier (CEC) matches each of these 
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context-insensitive calI edges against aIl the context-sensitive calI edges in the egout 

worklist to find aIl the contexts in which the calI occurs. The points-to constraints are 

then specialized for these contexts (by adding context to aIl local pointer variables), 

and inserted into the esimple worklist. 

Separating the constraints modelling method parameters and method return val­

ues into the two worklists parms and rets is necessary because they must be spe­

cialized differently. In a constraint representing a method parameter, the source of 

the pointer flow is the argument being passed in from the caller, and is assigned the 

context of the caller, while the destination of the pointer flow is the parameter in the 

callee, and is assigned the context of the callee. In a constraint representing a return 

value, it is the opposite. The source of the pointer flow is the return value in the 

callee, so it is assigned the context of the callee. The destination of the pointer flow 

is the variable in the caller to which the return value is stored, so it is assigned the 

context of the caller. 

The receiver of a virtual method calI, passed to the implicit this variable of the 

called method, may be modelled in one of two ways. First, it may be modelled like 

any other method parameter, by a subset constraint indicating flow from the receiver 

at the caU site to the this pointer of the callee. A second, more precise alternative is 

to limit the objects that flow from the receiver at the call site to the this pointer of 

the callee to only those whose run-time type causes that specific callee to be resolved. 

This second alternative has been observed to be more precise [Buc04], but it is more 

complicated, because it cannot be modeUed with a simple subset constraint. In 

addition, the second alternative is applicable only when the call graph is generated 

on-the-fly as the points-to analysis proceeds, rather than ahead-of-time, because it 

depends on each call edge being annotated with the specific abstract heap objects 

(from the points-to analysis) that caused the call target to be resolved. In PADDLE, 

we have implemented both alternatives of modelling the receiver because we wish 

to experiment with both on-the-fly and ahead-of-time call graph construction. To 

implement the first alternative, the caU edge handler (CER) has a setting which 

causes it to generate points-to constraints for the receiver in the same way as for the 

explicit method parameters. The second alternative requires information about the 
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specific object that caused each context-sensitive call edge to be added. In PADDLE, 

this information is available only in the virtualcalls worklist when it is processed 

by the virtual context manager (VCM), so we have added code to generate the 

relevant context-sensitive points-to constraints in the virtual context manager. The 

constraints are of the form 0 E points-to(p ), much like the constraints generated 

at object allocation sites, so the virtual context manager adds them to the calloc 

worklist. The objects passed from the receiver to the this pointer may be different in 

different calling contexts, so these constraints cannot be generated once in a context­

insensitive way, and specialized later. The additional complexity of the more precise 

alternative is compounded by context sensitivity, and the precision improvement that 

it brings cornes at a significant co st in the complexity and reduced modularity of the 

analysis. 

4.3.4 Points-to set propagation 

The context-sensitive points-to constraints generated by the method points-to as­

signment graph contextifier (MPC) and the call edge contextifier (CEC) are read 

into the points-to assignment graph (PAG), which indexes them in order to answer 

queries such as finding all the assignment edges originating at a given variable. The 

points-to set propagator can obtain the points-to constraints from two sources. First, 

it can issue queries to the points-to assignment graph, which yield information about 

all the constraints that have been generated so far that involve a given variable. Sec­

ond, the propagator reads constraints from the context-sensitive constraint worklists, 

csimple, calloc, cload, and cstore. By reading all constraints from these worklists 

whenever it is executed, the propagator obtains a li st of all new constraints that were 

generated since the last time that the propagator ran. 

Points-to sets are propagated using two components, the simple assignment propa­

gator (PROP), which pro cesses simple subset constraints from the csimple worklist 

and allocation constraints from the calloc worklist, and the field assignment prop­

agator (FPROP), which pro cesses field store and load constraints from the cstore 
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and cload worklists. For each propagation algorithm, the simple assignment propa­

gator (PROP) and field assignment propagator (FPROP) components are designed 

to work together, so we implement both in a single class. The update () method 

is called to update the simple assignment propagator (PROP) component, and a 

separate fieldUpdateO method is called to update the field assignment propagator 

(FPROP) component. Each of these methods returns a boolean value indicating 

whether it produced any new output (points-to pairs). A true return value indicates 

to the scheduler that other components that depend on points-to information should 

also be updated. 

The PADDLE framework contains three traditional and two BDD-based imple­

mentations of points-to set propagation algorithms. The traditional algorithms are 

based on the iterative, incremental worklist, and incremental alias edge propaga­

tion algorithms that we described in detail in [Lho02]. The BDD-based algorithms 

are derived from the basic and incremental BDD algorithms that we developed and 

described in detail in [BLQ+02, BLQ+03]. Compared to these simpler algorithms, 

the algorithms implemented in PADDLE have two significant extensions. First, they 

have been extended to handle new points-to constraints being introduced as a result 

of constructing the call graph on-the fly. Second, they have been extended to be 

context-sensitive. In this chapter, we limit our detailed discussion ta the two BDD 

based points-to propagation algorithms. 

In practice, the incremental BDD-based propagation algorithm is the most efficient 

when PADDLE is using BDD-based versions of its other components, and the worklist 

propagation algorithm is the most efficient when PADDLE is using traditional versions 

of its other components. 

4.3.4.1 Basic propagation algorithm 

The PADDLE implementation of the basic propagation algorithm is presented in Fig­

ures 4.10 and 4.11. The algorithm maintains two fields, pt storing the points-to 

relation for simple variables, and fieldPt storing the points-to relation for fields of 
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1 <vare,var,obje,obj> pt = OB; 

2 <basee,base,fld,obje,obj> fieldPt OB; 

3 

4 boolean update() { 

5 <vare,var,obje,obj> oldPt = pt; 

6 pt 1= ealloe.get(); 

7 pt 1= propSimple(pt, pag.allSimple() .get(»; 

8 return pt != oldPt; 

9 } 

10 <vare,var,obje,obj> propSimple( 

Il <vare,var,obje,obj> pt, 

12 <sree,sre,dste,dst> simple) { 

13 

14 <vare,var,obje,obj> ret = OB; 

15 while(true) { 

16 pt = (dstc=>varc, dst=>var) 

17 simple {sree, sre} 

18 

19 

<> pt {vare,var}; 

pt -= ret; 

20 if(pt == OB) break; 

21 ret 1= pt; 

22 } 

23 return ret; 

24 } 

Figure 4.10: JEDD code for basic propagation algorithm for simple assignments 
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1 boolean fieldUpdate() { 

2 <varc,var,objc,obj> oldPt = pt; 

3 fieldPt 1= propStore(pt, pag.allStore() .get(), pt); 

4 pt 1= propLoad(fieldPt, pag.allLoad() .get(), pt); 

5 return pt != oldPt; 

6 } 

7 <basec,base,fld,objc,obj> propStore( 

8 <varc,var,objc,obj> pt, 

9 <srcc,src,fld,dstc,dst> store, 

10 <varc,var,objc,obj> storePt) { 

11 

12 <objc,obj,varc,var,fld> objectsBeingStored = 

13 (dstc=>varc, dst=>var) store {srcc,src} 

14 <> pt {varc,var}; 

15 return objectsBeingStored {varc,var} 

16 <> (objc=>basec, obj=>base) storePt {varc,var}; 

17 } 

18 <varc,var,objc,obj> propLoad( 

19 <basec,base,fld,objc,obj> fpt, 

20 <srcc,src,fld,dstc,dst> load, 

21 <varc,var,objc,obj> loadPt) { 

22 

23 <basec,base,fld,dstc,dst> loadsFromHeap; 

24 loadsFromHeap = load{srcc,src} 

25 <> (objc=>basec, obj=>base) loadPt{varc,var}; 

26 return (dstc=>varc, dst=>var) loadsFromHeap {basec,base,fld} 

27 <> fpt {basec, base, fld}; 

28 } 

Figure 4.11: JEDD code for basic propagation algorithm for field loads and stores 
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heap objects. The update method first reads any new allocation edges from the cal­

loc worklist. Since an allocation edge is a constraint of the form 0 E points-to(p) , 

the set of allocation edge tuples is added directly to the points-to set relation. The 

second step in the basic propagator is to propagate points-to sets along all sim­

ple assignment edges. Each simple assignment edge is a constraint of the form 

points-to(p) ç points-to(q), so the points-to set of p must be added into the points-to 

set of q. The propSimple method takes two relations as parameters, a points-to rela­

tion, and a relation of simple assignment edges, and propagates the points-to relation 

along the assignment edges iteratively until a fixed-point is reached. The propagation 

is implemented by the composition operation in line 18, much like in the simple ex­

ample we showed in Figure 3.3 of Chapter 3. An important difference in the PADDLE 

version of the implementation is that each variable and object now has an associated 

context, which is stored in a separate attribute of each relation. For example, the 

assignment edges relation simple now has the additional attributes srcc and dstc to 

store the context for the source and destination pointer variable, respectively. In the 

basic propagation algorithm, on each update, the propSimple method is called with 

the complete points-to set and the complete set of assignment edges from the points­

to assignment graph. In the incremental propagation algorithm, we will improve on 

this by propagating only the new part of the points-to relation. 

The fieldUpdate method first propagates points-to sets along store edges (us­

ing the propStore method) to the field points-to relation, then propagates the field 

points-to relation along load edges (using the propLoad method) back to the points­

to sets for simple variables. The field points-to relation represents facts of the form 

o E points-to(b.J), indicating that field f of the object b may point to the object o. 

The propStore method takes three relation parameters. The pt relation contains 

the points-to pairs to be propagated along stores. The store relation contains the 

store edges, with each edge representing a store instruction of the form Vd.f := VS' 

Finally, the storePt relation is the points-to relation used to determine the potential 

objects that the target of the store (Vd) may point to. The stores are processed in two 

steps. First, in line 14, the sources of the store edges are looked up in the points-to 

relation, yielding a relation of tuples of the form (0, Vd, f) indicating that the object 
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o is being stored into Vd'f. In the second step, in line 16, Vd is looked up in storePt 

to determine which objects are being stored into. 

The propLoad method also takes three relation parameters. The fpt relation 

contains the points-to sets of fields of heap objects. The load relation contains the 

set of load edges of the form Vd := vs.f. The loadPt relation is the points-to relation 

used to determine the objects that the source of the store (vs) may point to. Like 

stores, loads are processed in two steps. First, in line 25, the load sources are looked 

up in loadPt, giving a relation of tuples of the form (b, f, v), indicating that the 

points-to set of b.f is being propagated into the points-to set of v. Second, in line 27, 

the points-to set of b.f is looked up and added into the points-to set of v in the fpt 

relation. 

Like the propagation along simple assignment edges, the heap field propagation 

code has an extra attribute for each variable and object to store its context. 

4.3.4.2 Incrementai propagation algorithm 

The PADDLE implementation of the incremental propagation algorithm is presented 

in Figures 4.12 and 4.13. The incremental algorithm reuses the propagation methods 

propSimple, propStore and propLoad of the basic propagation algorithm, but they 

are called to propagate only the new points-to tuples, instead of propagating all tuples 

in every iteration. 

In addition to the pt and f ieldPt fields of the basic propagation algorithm, the 

incremental propagation algorithm maintains a third field ptFromLoad, which acts as 

a worklist for the fieldUpdate method to communicate new points-to pairs resulting 

from field loads to the update method. 

The update method pro cesses new information from three sources. First, for each 

newly introduced allocation edge, a tuple is stored into the ptFromAlloc relation. 

Second, all newly introduced simple assignment edges must be processed. Specifi­

cally, the update method propagates the full points-to relation along only the newly 

introduced simple assignment edges. The points-to pairs resulting from this propa­

gation are stored in the ptFromSimple1 relation. Third, the update method must 
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also process any new points-to pairs that were generated in the fieldUpdate method 

due to field loads since the last execution of update. These points-to pairs are re­

trieved from the ptFromLoad field, and the field is then cleared. FinaUy, the three 

kinds of new points-to pairs must be propagated along all existing simple assignment 

edges. The resulting points-to pairs are saved in the ptFromSimple2 relation. Fi­

naUy, aU the new points-to relations except ptFromLoad (that is, the ptFromAlloc, 

ptFromSimplel, and ptFromSimple2 relations) are added to the pt output worklist. 

The ptFromLoad relation does not need to be added, because it is already added to 

pt in the fieldUpdate method. 

The fieldUpdate method in the incremental propagation algorithm performs the 

same operations as in the basic propagation algorithm. The only difference is that 

in addition to adding new points-to pairs from field loads to the pt relation, it also 

adds them to the ptFromLoad relation for use by the update method. 

4.3.5 Virtual cali resolution 

The virtual caU resolver is one of the most complicated components of PADDLE, 

because it must implement the complicated resolution procedures defined by the 

Java Virtual Machine Specification, as weU as handle the special kinds of implicit caU 

edges. To our knowledge, this is the first time that virtual method resolution has 

been implemented in BDDs. In this section, we present a simplified version of the 

virtual caU resolver to demonstrate how it is implemented using JEDD and BDDs. The 

simplified virtual caU resolver presented in this section resolves only explicit virtual 

caUs due to virtualinvoke and interfaceinvoke instructions. The complete virtual caU 

resolver4 actuaUy implemented in PADDLE resolves not only these caUs, but also aU 

the special kinds of caUs that were described in Section 4.3.2. 

For a given method signature and actual receiver type, the virtual caU resolver 

determines which method will actuaUy be invoked. This is done by searching the class 

hierarchy from the receiver type upwards for a class implementing a method with the 

4The virtual caU resolver is implemented in the class BDDVirtualCalls. 
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1 <varc,var,objc,obj> pt = OB; 

2 <basec,base,fld,objc,obj> fieldPt = OB; 

3 <varc,var,objc,obj> ptFromLoad = OB; 

4 

5 boolean update() { 

6 

7 <varc,var,objc,obj> oldPt = pt; 

8 

9 <varc,var,objc,obj> ptFromAlloc = calloc.get(); 

10 <varc,var,objc,obj> 

11 ptFromSimplel = propSimple(pt, csimple.get()); 

12 <varc,var,objc,obj> 

13 ptFromAllocAndSimplel = ptFromAlloclptFromSimplel; 

14 <varc,var,objc,obj> 

15 ptFromSimple2 = propSimple(ptFromAllocAndSimplellptFromLoad, 

16 pag.allSimple().get()); 

17 ptFromLoad = OB; 

18 pt 1= ptFromAllocAndSimplellptFromSimple2; 

19 return pt != oldPt; 

20 } 

Figure 4.12: JEDD code for incremental propagation algorithm for simple assignments 
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1 final boolean fieldUpdate() { 

2 <varc,var,objc,obj> oldPt = pt; 

3 

4 fieldPt = propStore( pt, pag.allStore() .get(), pt ); 

5 <varc,var,objc,obj> ptFromThisLoad 1= 
6 propLoad( fieldPt, pag.allLoad().get(), pt ); 

7 pt 1= ptFromThisLoad; 

8 ptFromLoad 1= ptFromThisLoad; 

9 

10 return pt != oldPt; 

11 } 

Figure 4.13: JEDD code for incremental propagation algorithm for field loads and 

stores 

given signature. The PADDLE virtual call resolver does this for an entire relation of 

receiver types and method signatures at once. 

The JEDD code for the algorithm is shown in Figure 4.14. We will walk through 

the code, explaining how it would resolve the example virtual calls shown in the 

relations in Figure 4.15. The algorithm starts with the relation recei verTypes, with 

each tuple specifying a receiver type and a method signature. An ex ample of such 

a relation is shown in Figure 4.15(a), specifying the receiver type B at two call sites 

with signatures fooO and barO. Before starting to walk up the hierarchy starting 

from the receiver type, the algorithm first saves a copy of the original receiver type in 

each tuple using the attribute copying operation in line 6. In the resulting toResol ve 

relation, each tuple contains the method signature and two copies of the receiver type 

(see Figure 4.15(b)). As the algorithm searches for the target method, one copy (in 

tgttype) of the receiver type will be moved up the class hierarchy, while the other 

copy (in rectype) will be kept unchanged to keep track of the original receiver type. 

The next step is to determine whether the class of the receiver type implements 

a method with the signature. This is done by joining the toResol ve relation with 

the implementsMethod relation shown in Figure 4.15(c), which keeps track of the 
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1 <rectype, signature, tgttype, method> answer OB; 

2 

3 public void resolve( <rectype, signature> receiverTypes, 

4 <subtype, supertype> extend ) { 

5 

6 <rectype, signature, tgttype> toResolve = 

7 (rectype=>rectype, rectype=>tgttype) receiverTypes; 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 } 

do { 

<rectype, signature, tgttype, method> resolved = 

toRe solve {tgttype, signature} >< 

declaresMethod{type, signature}; 

answer 1= resolved; 

toResolve -= (method=» resolved; 

toResolve = (supertype=>tgttype) 

(toResolve{tgttype} <> extend{subtype}); 

} while( toResolve != OB ); 

Figure 4.14: JEDD code for virtual calI resolution 
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type signature 

(a) B fooO 

B barO 

rectype signature tgttype 

(h) B fooO B 

B barO B 

type signature method 

(c) A fooO A.fooO 

B barO B.barO 

(d) 
rectype signature tgttype method 

B barO B B.barO 

(e) 
rectype signature tgttype 

B fooO B 

(f) 
subtype supertype 

B A 

(g) 
rectype signature supertype 

B fooO A 

(h) 
rectype signature tgttype method 

B fooO A A.fooO 

Figure 4.15: Example of resolving virtual method caUs 

(a) receiverTypes (b) toResolve in line 6 (c) implementsMethod (d) resolved in 

first iteration (e) toResolve in line 15 (f) extend (g) result of composition in li ne 15 

(h) resol ved in second iteration 
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methods implemented by each class and their signatures. This join, which appears 

on li ne lI, matches the current class (tgttype attribute of toResolve) with the class 

implementing the method (type attribute of implementsMethod), and the method 

signature (signature attribute of toResol ve) with the method signature of the im­

plemented method (signature attribute of implementsMethod). For each class and 

method signature being resolved, if the class implements a method with the match­

ing signature, then the resulting relation resol ved contains a tuple with the method 

signature, two copies of the receiver type, and the target method. In our example, 

the only match is type B and signature barO, resulting in the resol ved relation in 

Figure 4.15(d). In general, these are the method calls that we have just resolved by 

finding a method with the desired signature, so in line 13, we add them to our answer. 

The next step is to remove the resolved caU sites from the set of sites left to 

resolve. The resol ved relation has the method attribute which toResol ve lacks, so 

it is removed using projection in line 14 before the resolved caU sites are subtracted. 

After doing this to our example, we obtain the toResolve relation in Figure 4.15(e). 

The final step is to move up the class hierarchy by replacing each class in the 

tgttype attribute with its immediate superclass. This is done with a composition 

(in line 15) of the toResolve relation with the extend relation passed in from the 

class hierarchy, which encodes the immediate superclass (extends) relationship. In 

our example, as Figure 4.15(f) shows, B is a subclass of A. The tgttype attribute 

is matched with the subtype attribute in the extend relation, and a composition 

rather than a join is used because the attributes being compared (the subtype) are 

not needed; from the extend relation, only the supertype attribute is needed. The 

resulting relation has replaced each object in the tgttype attribute of toResol ve with 

its immediate superclass, as shown in Figure 4.15(g). Before it can be assigned to 

toResol ve, the supertype attribute must be renamed to tgttype to match the schema 

of toResol ve. FinaUy, if the set of caU sites to be resolved is not yet empty, the 

algorithm starts another iteration of the loop to resolve them. Figure 4.15(h) shows 

the call resolved in the second iteration. Together, the relations in Figures 4.15(d) 

and (h) show the final result: the targets of calling fooO and barO with a receiver of 

type B are AJooO and B.barO. 
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Components: 

Re reachable contexts 

CG caU graph 

MPB method points-to 

assignment graph builder 

CER calI edge handler 

MPC method points-to assignment 

graph contextifier 

CEC calI edge contextifier 

PAG points-ta assignment graph 

PROP simple assignment 

propagator 

FPROP field assignment propagator 

'!UpIe types: 

A allocation site 

C context 

F field 

1 method signature 

K caU edge kind 

L local variable 

M method 

S statement 

T type 

Figure 4.16: Components of caU graph and points-to analyses in the ahead-of-time 

caU graph configuration 

4.3.6 Reusing an existing cali graph 

The default configuration of PADDLE as shown in Figure 4.9 builds a caU graph on­

the-fly as the points-to analysis proceeds. PADDLE can also be configured to use an 

existing call graph to compute only points-to information. This makes it possible to 

compare the results of PADDLE against the results of other context-sensitive analysis 

techniques which inherently require the caU graph to be built ahead-of-time in a 

separate step, such as the technique of Zhu and Calman [ZC04] and Whaley and 

Lam [WL04]. 

The ahead-of-time caU graph configuration of PADDLE is shown in Figure 4.16. 

It is similar to the on-the-fly caU graph configuration in Figure 4.9, but lacks the 

SCGB, CSCGB, VCR, SCM and VCM components and associated worklists. 

The edges of the ahead-of-time caU graph must be inserted into the csedges worklist 
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before PADDLE begins processing. One additional difference is that in the ahead­

of-time calI graph configuration, PADDLE cannot implement the precise propagation 

of method calI receiver objects to this pointers that was described at the end of 

Section 4.3.3, because it depends on building the calI graph on-the-fiy. Instead, the 

calI edge handler treats this pointers like any other parameter, and generates simple 

assignment constraints from each receiver to the this pointer of each method that 

may be invoked on it. 

The initial calI graph can be constructed by running PADDLE in the on-the-fiy 

calI graph configuration. Thus, an ahead-of-time calI graph analysis involves two 

separate instances of PADDLE, the first in the on-the-fiy calI graph configuration, 

and the second in the ahead-of-time calI graph configuration. After the first instance 

finishes, the resulting points-to sets are discarded, and the resulting calI graph is used 

as input to the second instance. The results (points-to sets and calI graph) of the 

second instance are deemed the results of the overall analysis. 

In between the two instances of PADDLE, the initial calI graph may be made 

context-sensitive using the algorithm proposed by Zhu and Calman [ZC04] and Wha­

ley and Lam [WL04] that we described in Section 4.1.3. This setup implements the 

Zhu/Calman/Whaley/Lam analysis within the PADDLE framework, so its results can 

be readily compared with the default configuration of PADDLE. We explained the 

Zhu/Calman/Whaley/Lam algorithm in detail in Section 4.1.2.3. 

Implementors of the Zhu/ Calman/Whaley /Lam analysis may be interested in con­

structing the initial calI graph using Class Hierarchy Analysis [DGC95] to avoid having 

to perform the points-to analysis twice (once to construct the initial calI graph, and a 

second time for the final context-sensitive analysis). To measure the precision of this 

approach, the instance of PADDLE building the initial calI graph can be configured to 

simulate Class Hierarchy Analysis by assuming that every pointer can point to every 

object. 

Figure 4.17 summarizes the possible configurations of PADDLE. As shown on the 

le ft , the default configuration is the on-the-fiy calI graph version of PADDLE detailed 

in Figure 4.9. The dashed box on the right contains the ahead-of-time calI graph 

variations. First, the initial context-insensitive calI graph may be constructed either 
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~----------------------------------~ 

on-the-fly cali graph 

PADDLE (Fig. 4.9) 
or 

on-the-fly 

cali graph 

PADDLE (Fig. 4.9) 

CS cali graph 

ahead-of-time 

cali graph 

PADDLE (Fig. 4.16) 

Class Hierarchy 

Analysis 

PADDLE 

WhaleyjLam 

algorithm 

--------------- ------------------~ 

final points-to sets 

and cali graph 

Figure 4.17: Summary of PADDLE configurations 
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using an on-the-fly calI graph version of PADDLE, or using a version of PADDLE 

simulating Class Hierarchy Analysis. The resulting initial calI graph can either be 

used as is, or it can be made context-sensitive using the Zhu/Calman/Whaley /Lam 

algorithm. FinalIy, the calI graph is used by the ahead-of-time calI graph variation of 

PADDLE detailed in Figure 4.16 to compute points-to sets. 

4.4 Client Analyses 

In this section, we describe client analyses which use the points-to sets and calI graph 

computed by PADDLE to generate additional analysis information useful for program 

optimization and for program understanding. In Chapter 5, we will explore the effects 

of differences in the precision of the points-to sets and calI graph on the precision of 

these client analyses. AlI of the client analyses have been implemented within PADDLE 

in terms of BDDs, using the JEDD language. 

The calI graph and points-to sets computed by PADDLE are context-sensitive. 

Where applicable, the client analyses are also performed context-sensitively. However, 

aIl context information is removed from the final results of the client analyses, because 

practical applications require the properties determined by the client analyses to ho Id 

in an contexts. In addition, we wish to compare the precision of the client analyses 

when using points-to sets and calI graphs computed with different variations of context 

sensitivity, so the context information must be removed for the client analysis results 

to be comparable. 

4.4.1 Monomorphic cali sites 

In object-oriented languages such as Java, the target of a method invocation depends 

on the run-time type of the receiver object on which the method is invoked. Deter­

mining and invoking the correct method can be a major source of run-time overhead. 

Moreover, the uncertainty about which method will be invoked hinders interproce­

duraI optimizations such as method inlining. In typical programs, most invocation 

sites actualIy only invoke a single target method during execution. Various techniques 
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have therefore been proposed to determine the targets of these monomorphie calI sites 

(e.g. [SHR+OO, IKY+OO, TLSS99, GDDC97]). 

The calI graph generated by PADDLE can be used to staticalIy determine the 

targets of monomorphic calI sites. Since a calI site must calI the same target method 

in every context to be considered monomorphic, the monomorphic calI site analysis 

considers the context-insensitive can graph edges from the ecsout worklist. The 

analysis iterates through alI virtual and interface edges in the calI graph. The first 

time a calI edge originates at a given calI site, the calI site is marked as having one 

target method. Wh en another calI edge originates at a calI site that has already been 

marked, the caH site is marked as polymorphie. AH caH sites that are not found to 

be polymorphie are considered monomorphic. 

4.4.2 Cast safety analysis 

In Java, a cast expression (Type) 0 checks that the run-time type of the object 

pointed to by 0 is a subtype of Type. If it is, the cast expression evaluates to the 

object 0, but has compile-time type Type; otherwise, evaluating the cast raises a 

ClassCastException. An analysis whieh staticalIy proves that 0 is always a subtype 

of Type is use fuI both for optimizing away the run-time type check, and for informing 

the programmer whether the cast may fail at run time. 

The points-to sets computed by PADDLE can be used to conservatively estimate 

the set of casts that must always succeed at run time. The points-to set for each 

pointer represents alI possible targets of the pointer, and each target has a fixed 

run-time type. If the run-time types of an the objects in the points-to set of 0 are 

subtypes of Type, then the cast (Type) 0 cannot fail at run time. 

To perform points-to analysis in PADDLE, we consider the points-to set computed 

for each pointer that is the argument of a cast. If the points-to set contains an 

abstract object whose type is not a subtype of the declared type of the pointer, the 

cast is marked as potentialIy failing; otherwise, the cast cannot fail. 
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4.4.3 Side-effect analysis 

A side-effect analysis computes, for each instruction in the program, an abstraction 

of the set of memory locations that may be read and written during the execution 

of the instruction. SpecificalIy, for Java programs, a side-effect analysis determines 

which static fields and which instance fields of which abstract objects may be read 

and written by each instruction. 

In general, a side-effect analysis requires both points-to sets and a calI graph. For 

an instruction reading or writing a static field, the field can be determined directly 

from the instruction. An instruction reading or writing an instance field expression 

of the form v.f reads or writes the field f of every abstract object 0 E points-to(v) , 

so the points-to set of v is needed to compute the side-effects. The side-effect of a 

method invocation instruction is the union of the side-effects of aIl the instructions of 

aIl the methods possibly invoked from the instruction, including any methods invoked 

transitively from those methods. Therefore, to compute the side-effects of method 

invocation instructions, a calI graph is required. 

The side-effect analysis implemented in PADDLE is the same as the one we imple­

mented in SPARK and described in detail in [Lho02, LLH05], except that it is written 

in JEDD, and the side-effect sets are represented using JEDD relations. Since the 

side-effect sets are very large and many of them are similar or equal, manipulating 

them in BDDs reduces the cost of the analysis. The analysis first computes an in­

traprocedural side-effect set for each instruction, which includes only the effects of 

the instruction itself, and does not include any side-effects due to methods that may 

be called from the instruction. The PADDLE points-to sets are used to determine the 

side-effects of reads and writes of instance field expressions. Next, for each method, 

the union of the side-effects of aIl the instructions in the method is computed as the 

overall side-effect for the method. FinaIly, the transitive closure of the calI graph is 

computed, and the side-effects of aIl methods transitively callable from each method 

invocation instruction are added to the side-effect of the instruction. 
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4.4.4 Escape analysis 

As described by Rountev, Milanova, and Ryder [RMR01, Sections 3.3 and 3.4], points­

to sets can be used to prove that certain objects do not escape the method in which 

they are created (i. e. no references to them exist wh en the method returns), and that 

certain objects do not escape the thread in which they are created (i. e. they cannot 

be accessed during the execution of any other thread). SpecificaHy, objects which are 

not reachable through the points-to graph from any static field or any field of any 

class implementing java .lang . Runnable cannot escape their creating thread and are 

said to be thread-local. A thread-local object which is additionally unreachable from 

the parameters and return value of the method in which it is allocated cannot escape 

the method and is said to be method-local. 

The results of escape analysis are useful for optimization [ACSE99, Bla99, BH99, 

CGS+99, GSOO, RufO 0 , WR99]. In particular, method-local objects can be allocated 

more efficiently on the stack rather than the heap, and reclaimed immediately wh en 

the method returns, rather than later by the garbage collector. The synchronization 

operations required by the Java Virtual Machine Specification [LY99] can be opti­

mized away for objects known to be thread-Iocal. In addition, programmers may 

find information about which objects are method-local and thread-local useful for 

understanding their programs. 

In PADDLE, escape analysis is implemented according to the specification 

in [RMR01]. The set of thread-escaping objects is first initialized to the points-to 

sets of static fields and fields of classes implementing java. lang. Runnable. Its clo­

sure under the field points-to relation is then iteratively computed. All objects not 

found to be thread-escaping are identified as thread-local. Next, the set of method­

escaping objects is initialized as the set of aH thread-escaping objects. AH objects 

in the points-to sets of method parameters and return values are added as method­

escaping. Finally, the set of method-escaping objects is closed under the field points­

to relation. The result is the complete set of method-escaping objects as defined by 

Rountev, Milanova, and Ryder [RMR01]. 
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4.5 Conclusions 

In this chapter, we have presented the PADDLE BDD-based interprocedural analysis 

framework. The core part of PADDLE computes points-to sets and constructs a call 

graph. Because the analyses are implemented in terms of BDDs, which represent 

contexts implicitly, PADDLE makes it feasible to perform context-sensitive analyses 

on large Java programs. In PADDLE, the call graph is constructed precisely, on-the-fiy 

as the points-to analysis proceeds. PADDLE supports different variations of context 

sensitivity, including strings of call sites and strings of abstract receiver objects. We 

have implemented four client analyses that make use of the points-to sets and call 

graph computed by PADDLE. 

In the next chapter, we will use PADDLE to perform an empirical study of the 

effect of variations of context sensitivity on the precision of points-to analysis, call 

graph construction, and the client analyses we described in Section 4.4. In Chapter 6, 

we will apply PADDLE to an analysis for optimizing the cfiow construct in AspectJ 

programs. 
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Chapter 5 

Empirical Study of Context Sensitivity 

In this chapter, we report on an in-depth empirical study of several varia­

tions of context sensitivity, including object sensitivity [MRR02, MRR05], calI site 

strings as the context abstraction [SP81, Shi88], and the contexts generated by the 

Zhu/Calman/Whaley/Lam algorithm [ZC04, WL04]. Our goal in this study is to 

evaluate the effect of these variations of context sensitivity on analysis precision, in 

order to guide future research. Specifically, we would like to determine which anal­

yses are use fuI (in the sense that they improve precision) so that we can focus our 

future attention on practical implementation of only the useful analyses. Practical 

implementation of a useful context-sensitive analysis is our long-term goal, but not a 

direct goal of the present study. 

Nevertheless, in order to be able to perform our study, our implementations ofthe 

analyses must be scalable enough to be able to analyze the significant benchmarks on 

which we will evaluate them. lndeed, the lack of scalable implementations of these 

analyses is what has prevented researchers from performing this study in the pasto It 

is the use of BDDs and the PADDLE framework that finally makes this study possible. 

Moreover, sorne of the characteristics of the analysis results that we are interested in 

would be very costly to measure on an explicit representation. We have found ways 

to perform these measurements directly on the BDD representation of the analysis 

results. 
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In our study, we compare the relative precision of analyses both quantitatively, 

by computing summary statistics about the analysis results, and qualitatively, by 

examining specific code patterns for which a given analysis variation pro duces better 

results than other variations. Context-sensitive analyses have been associated with 

very large numbers of contexts. We want to also determine how many contexts each 

variation of context sensitivity actually generates, how the number of contexts relates 

to the precision of the analysis results, and how feasible it is likely to be to implement 

practical context-sensitive analyses that scale to large benchmarks. 

This chapter is organized as follows. In Section 5.1, we list the benchmarks that we 

used in our study. In Section 5.2, we specify the variations of context sensitivity that 

we have studied. We have already explained the variations in detail in Section 4.1.2 of 

Chapter 4. We discuss the number of contexts and its implications on precision and 

scalability in Section 5.3. In Section 5.4, we examine the effects of context sensitivity 

on the precision of the call graph. We evaluate opportunities for static resolution of 

virtual calls in Section 5.5. In Section 5.6, we measure the effect of context sensitivity 

on cast safety analysis. We surveyed related work on context-sensitive analysis in 

general in Section 4.1 of Chapter 4; in addition, we compare our empirical study of 

to other experimental evaluations of context sensitivity in Section 5.7 of this chapter. 

Finally, we draw conclusions from our experimental results in Section 5.8. 

5.1 8enchmarks 

We evaluated the different variations of context sensitivity on programs from the 

JOlden [CM01, CM] benchmark suite, the SpecJVM 98 benchmark suite [St a], the 

DaCapo benchmark suite, version beta050224 [DaC], and the Ashes benchmark 

suite [VR], and on the Polyglot extensible Java front-end [NCM03]. Most of these 

benchmarks have been used in earlier evaluations of interprocedural analyses for Java. 

A list of the benchmarks appears in Table 5.1. For each benchmark, the middle section 
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Total number of Executed methods 

Benchmark classes methods benchmark +library 

bh 9 86 54 459 

bisort 2 14 12 414 

em3d 5 31 18 425 

health 8 38 26 435 

mst 6 32 31 434 

perimeter 10 56 42 443 

power 6 51 29 427 

treeadd 2 10 5 407 

tsp 2 12 12 404 

voronoi 6 84 44 450 

compress 41 476 56 463 

db 32 440 51 483 

jack 86 812 291 739 

javac 209 2499 778 1283 

jess 180 1482 395 846 

mpegaudio 88 872 222 637 

mtrt 55 574 182 616 

raytrace 54 570 180 611 

soot-c 731 3962 1055 1549 

sablecc-j 342 2309 1034 1856 

polyglot 502 5785 2037 3093 

antlr 203 3154 1099 1783 

bloat 434 6125 138 1010 

chart 1077 14966 854 2790 

jython 270 4915 1004 1858 

pmd 1546 14086 1817 2581 

ps 202 1147 285 945 

Table 5.1: Benchmarks 
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of the table shows the total number of classes and methods comprising the bench­

mark. These numbers exclude the Java standard libraryl (which is required to run the 

benchmark), but include aIl other libraries that must accompany the benchmark for it 

to run successfully. The right-most section of the table shows the number of distinct 

methods that are actually executed in a run of the benchmark, both excluding and 

including methods of the Java standard library, in the columns labelled "benchmark" 

and "+library", respectively. The run-time calI graphs were collected using the * J 

tool [Duf04, DDHV03]. About 400 methods of the standard library are executed even 

for the smallest benchmarks for purposes such as class loading; sorne of the larger 

benchmarks make heavier use of the standard library. 

The first ten benchmarks (bh through voronoi) are the JOlden suite [CM01, CM]. 

The suite originated as a collection of pointer-intensive C programs, which were later 

translated to Java. As can be seen from Table 5.1, each of these benchmarks is fairly 

small. 

The next eight benchmarks (compress through raytrace) are the SpecJVM 98 

suite [Sta]. The purpose, origins and sizes of these benchmarks vary. Compress is 

an implementation of LZW compression [WeI84] ported to Java from C. Db is a pro­

gram that performs searches and updates on a memory-resident address database. 

Jack is a parser generator that generates Java code from a description of a grammar. 

Javac is the Java source to bytecode compiler from the Java Development Kit version 

1.0.2. Jess is an expert shell system. Mpegaudio is a decompressor for MPEG Layer-3 

sound files. Ray trace and mtrt are two versions of a raytracer; raytrace uses a single 

thread, while mtrt is multi-threaded. 

The next three benchmarks, soot-c, sablecc-j, and polyglot are examples of large ap­

plications that make significant use of the object-oriented features of Java. Soot-c and 

sablecc-j are from the Ashes suite, and polyglot is version 1.0.0 of Polyglot [NCM03] 

applied to its own source code. Soot-c is an early version of the SOOT [VRGH+OO] 

Java bytecode analysis and optimization framework. Sablecc-j is the SabieCC [GMN+] 

parser generator. Given a grammar, SabieCC generates not just a parser, but also a 

1 AH of the measurements in this chapter were done with version 1.3.1_01 of the Sun Java standard 
class library. 
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collection of classes for representing and traversing parse trees. The SableCC gram­

mar parser (for grammar input files) is itself generated by SableCC. Polyglot is an 

extensible Java front-end that performs aIl required type checking on Java source, 

and pretty-prints the final abstract syntax tree. It is intended for the development of 

extensions to the Java language, and achieves its extensibility through heavy use of 

object-oriented design patterns. 

The final six benchmarks (antlr through ps) are from version beta050224 of the 

DaCapo suite [DaC], a collection of programs intended to make significant use of 

the memory management system at run time. From a more static point of view, 

the benchmarks are examples of large applications that use the object-oriented fea­

tures of Java. Antlr generates lexers and parsers from a grammar. Bloat is a Java 

bytecode analysis and optimization system. (hart is a pro gram that plots charts us­

ing the JFreeChart [Gil] library. Jython is a compiler from a variant of Python to 

Java bytecode. Pmd is an extensible code style checker for Java. Ps is a postscript 

interpreter. 

5.2 Context Abstractions 

Before we li st the specifie variations of context sensitivity that we evaluated in our 

study, we invite the reader to read Section 4.1.2 of Chapter 4, in which we explained 

the different approaches to context sensitivity in detail with examples. 

Context-insensitive analysis variations: In our earlier work [Lho02, LH03] on 

SPARK, a predecessor of the PADDLE framework, we empirically evaluated 

context-insensitive analyses to find good tradeoffs between analysis precision 

and efficiency. Based on this earlier work, we have selected two context­

insensitive analyses to serve as a baseline for our measurements of the effects of 

context sensitivity. 

The first configuration was identified as very fast and also quite precise. In 

the SPARK work, it was denoted ot-aot-fs, indicating on-the-fly enforcement of 
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declared types, ahead-of-time call graph construction, and field-sensitive mod­

elling of fields. We include it as an example of a practical context-insensitive 

configuration. In this configuration, three separate steps are performed. First, 

a call graph is constructed using Class Hierarchy Analysis [DGC95]. Second, 

subset constraints are generated between pointer variables to model flow of 

pointers between them. For each method reachable in the call graph, a con­

straint is generated for every pointer assignment appearing in the method. For 

each call edge in the call graph, constraints are generated to model pointer flow 

through method parameters and the return value. Third, a points-to set is com­

puted for every pointer by propagating sets of allocation sites (the abstraction 

of heap objects) along the subset constraints. Whenever a pointer p may point 

to an object allocated at allocation site a at run-time, the points-to set of p 

contains a. Fields of objects are modelled field-sensitively. That is, the analysis 

maintains a separate points-to set points-to(a.f) for every allocation site a and 

every field f to represent pointers stored in the field f of any object allocated 

at allocation site a. Declared types of pointers are enforced. That is, an allo­

cation site a allocating an object of run-time type t is not propagated into the 

points-to set of p unless the declared type of p is a supertype of t. Throughout 

this chapter, we denote this first context-insensitive analysis AOT. In this con­

figuration, client analyses use the call graph computed in the first step and the 

points-to sets computed in the third step of the analysis as described above. 

The second context-insensitive configuration is similar to but even more precise 

than ot-otf-fs, the most precise configuration that we studied in the work on 

SPARK. We include this configuration as the most precise context-insensitive 

configuration, to serve as a baseline for comparing the precision of context­

sensitive configurations. Like in the AOT configuration, heap objects are mod­

elled by their allocation site, fields are modelled field-sensitively, and declared 

types are enforced. Instead of using an initial call graph, however, the analy­

sis constructs a call graph on-the-fly as the points-to set propagation proceeds. 

The three steps - call graph construction, subset constraint generation, and 
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points-to set propagation - are cyclically dependent. Subset constraints are 

generated only for the rnethods reachable through the partial call graph gener­

ated so far, and only for call edges already present in the call graph. Points-to 

sets are then propagated along subset constraints that have been generated so 

far. Each virtual call in the reachable rnethods is resolved using the types of 

the objects in the points-to set of the receiver. New call edges are added to 

the call graph, which causes new rnethods to becorne reachable. The whole 

pro cess is repeated until an overall fixed point is reached. Client analyses use 

the resulting call graph and points-to sets. Throughout this chapter, we refer 

to this configuration as OTF. 

There is a subtle detail that rnakes the OTF analysis more precise than 

sorne other analyses that have been called "on-the-fiy" in earlier work, includ­

ing our own work on SPARK [Lho02, LH03], Rountev, Milanova and Ryder's 

work [RMROl], and Whaley and Larn's BDD-based analysis [WL04]. These 

analyses are only partly on-the-fiy, in the following sense. In the OTF analysis, 

subset constraint generation depends on the call graph in two distinct ways. 

First, the set of rnethods reachable in the call graph is required to generate 

subset constraints for pointer assignrnents within those rnethods. Second, the 

set of call edges in the call graph is required to generate subset constraints for 

pararneters and return values of those calls. In the partly on-the-fiy analyses, 

however, the first kind of subset constraints are generated at the very beginning 

for all rnethods, and only the second kind of subset constraints are actually 

generated on-the-fiy as call edges are added to the call graph. Therefore, the 

points-to sets of the partly on-the-fiy analyses refiect the effects of rnethods that 

can never execute because they are not reachable in the call graph. The OTF 

analysis, however, is more precise because it rnodels the effects of only those 

rnethods reachable through the call graph. 

All of the context-sensitive analyses described below, except the ZCWL analysis, 

construct the call graph cornpletely on-the-fiy like the OTF analysis. 
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Call site string context-sensitive variations: In Section 4.1.2.1 of Chapter 4, we 

described how to use call sites as the context abstraction, and provided motivat­

ing examples for using strings of multiple call sites, and for modelling abstract 

heap objects context-sensitively, in addition to pointer variables. 

In our present study of context sensitivity, we include three variations of call 

site string context-sensitive analysis. All three are similar to the more precise 

context-insensitive variation OTF in that the call graph is constructed on-the­

fly as the points-to analysis proceeds, fields are modelled field-sensitively, and 

declared types are enforced. In the first two variations, which we denote 1 call 

site and 2 caU site throughout this chapter, context strings are limited to a 

length of one and two, respectively, and only pointers are modelled with context, 

while heap objects are modelled only by their allocation site, without context. 

We have included these two variations to measure how much lengthening the 

context strings improves precision, and to determine how lengthening strings of 

call sites compares with lengthening strings of receiver object allocation sites. 

In the third variation, which we denote IH call site throughout this chapter, 

context strings are limited to a single call site, and both pointers and abstract 

heap objects are modelled with context. We have included this variation to 

measure the effect of modelling abstract heap objects with context on analysis 

precision, and to compare the effectiveness of call sites and abstract receivers 

as the context abstraction for abstract heap objects. 

Object-sensitive analysis variations: In Section 4.1.2.2 of Chapter 4, we ex­

plained the use of allocation sites of method call receiver objects as the context 

abstraction. We also provided motivating examples for using strings of mul­

tiple receiver object allocation sites, and for modelling abstract heap objects 

context-sensitively, in addition to pointer variables. In our empirical study, we 

evaluate the effects of these variations. 

Specifically, we include five variations of object-sensitive analysis in our study. 

All of them are similar to the more precise context-insensitive variation OTF in 

that the call graph is constructed on-the-fly as the points-to analysis proceeds, 
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fields are modelled field-sensitively, and declared types are enforced. In the 

first three variations, which we denote throughout this chapter as l-object­

sensitive, 2-object-sensitive, and 3-object-sensitive, aIl pointer variables 

are modelled with context strings of up to one, two, and three abstract re­

ceiver objects, respectively. Heap objects are modelled only by their allocation 

site, without context. We use these three variations to evaluate how the length 

of the context string affects precision. The fourth variation, which we denote 

IH-object-sensitive, is like the 1-object-sensitive variation, but we addition­

ally model heap objects context-sensitively using the allocation site annotated 

with one abstract receiver object. We include this variation to evaluate the 

effect of modelling abstract objects with context on analysis precision. The 

fifth variation, which we denote 2U-object-sensitive is included to compare 

unique object sensitivity to normal object sensitivity. It is just like the 2-object­

sensitive variation, except we do not add receiver allocation sites to a context 

string if they are already present in the string. By not adding duplicate ab­

stract receivers, we prevent other, potentially useful, abstract receivers from 

being forced out of the context string of limited length. 

ZhujCalmanjWhaley jLam algorithm: In Section 4.1.2.3 of Chapter 4, we de­

scribed the Zhu/Calman/Whaley /Lam algorithm [ZC04, WL04] in detail. Re­

calI that the algorithm requires an initial context-insensitive calI graph to be 

constructed before it can be applied. In contrast, in aIl of the variations that 

we have defined so far except the AOT context-insensitive variation, the calI 

graph has been built on-the-fiy as the points-to analysis proceeds. Thus, in the 

dimension of calI graph construction, the Zhu/ Calman/Whaley /Lam algorithm 

is most like the AOT context-insensitive variation. 

A key parameter is the precision of the initial calI graph, which depends on how 

it is constructed. An obvious choice would be to construct the initial calI graph 

using Class Hierarchy Analysis [DGC95], because it does not require points-to 

analysis. Recall that when using the Zhu/Calman/Whaley /Lam algorithm, the 
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initial context-insensitive calI graph is first made context-sensitive, and points­

to analysis is performed afterwards using the resulting context-sensitive call 

graph. Therefore, if we also used points-to analysis for the initial call graph 

construction, we would be performing points-to analysis twice. However, when 

we applied the Zhu/Calman/Whaley /Lam algorithm to a call graph constructed 

using CHA, it failed to complete in the available memory2 on the larger bench­

marks, despite extensive tuning of the BDD variable ordering. Therefore, like 

Whaley and Lam [WL04], we instead evaluated the algorithm using the much 

more precise call graph constructed by the OTF context-insensitive variation 

described above. That is, we first performed points-to analysis together with 

on-the-fly call graph construction to get the same calI graph and points-to sets 

as in the OTF variation. We then discarded the points-to sets, and used the 

call graph as input to the Zhu/Calman/Whaley /Lam algorithm to construct a 

context-sensitive call graph. Finally, we performed points-to analysis a second 

time using the resulting context-sensitive calI graph. Like in the other vari­

ations, the points-to analysis was field-sensitive and enforced declared types. 

Pointer variables were modelIed with context, but abstract heap locations were 

modelled context-insensitively, like in the work of both Zhu and Calman [ZC04] 

and Whaley and Lam [WL04]. Throughout the rest of this chapter, we refer to 

this analysis variation as ZCWL. 

5.3 Number of Contexts 

Context-sensitive analysis is often considered intractable mainly because, if contexts 

are propagated from every call site to every called method, the number of resulting 

context strings grows exponentialIy in the length of the call chains. The purpose 

of this section is to shed sorne light on two issues. First, of the large numbers of 

contexts, how many are actually useful in improving analysis results? Second, why 

2 AU of the results presented in this chapter were obtained with PADDLE using the BuDDy [LN] 
backend. BuDDy was aUowed to aUocate a maximum of 41 million BDD nodes (820 million bytes). 
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can BDDs represent such seemingly large numbers of contexts, and how much hope 

is there that they can be represented with more traditional techniques? 

In the foUowing three subsections, we perform three measurements of the numbers 

of contexts. First, we measure the total number of abstract contexts that arise with 

each context abstraction. Second, we define a notion of contexts that are equivalent 

in the sense that it is not useful to distinguish them, and measure the number of 

equivalence classes of contexts for each context abstraction. FinaUy, we measure the 

number of distinct points-t~ sets generated with each context abstraction. 

5.3.1 Total number of contexts 

We begin by comparing the numbers of abstract contexts that arise when a context­

sensitive analysis is performed with the different context abstractions. More precisely, 

we measure the number of contexts that appear in the context-sensitive points-t~ 

relation. For the purpose of this measurement, we consider the method to which a 

context string applies as part of the context, and count the contexts rather than just 

the context strings. For example, if caU sites are being used as the context abstraction, 

and a given virtual caU site has two potential target methods, each of these methods 

invoked with the caU site as the context string is considered a separate context. 

Measuring the number of contexts in the context-sensitive points-to relation is 

straightforward when the relation is encoded in a BDD. First, we join the points-t~ 

relation with a relation that specifies for each pointer variable the method containing 

it. Next, we perform a projection keeping only the context and the method, to obtain 

a BDD representing the set of aU contexts with their final target methods. FinaUy, 

the size of the set is found by calling the size () method (provided by JEDD) on the 

relation. 

The measurements of the total numbers of contexts are shown in Table 5.2. Each 

column lists the number of contexts produced by one of the variations of context­

sensitive analyses described in Section 5.2. Please refer to that section for an ex­

planation of the analyses denoted by the column headings. The columns labeUed 
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"context-insensitive" show the absolute number of contexts (which is also the num­

ber of methods, since in a context-insensitive analysis, every method has exactly one 

context). AU the other columns, rather than showing the absolute number of contexts, 

which would be very large, instead show the number of contexts as a multiple of the 

"context-insensitive OTF" column (i. e. they show the average number of contexts per 

method). For example, for the bh benchmark, the total number of l-object-sensitive 

contexts is 2583 x 13.5 = 3.48 x 104 . The empty spots in the table (and in other 

tables throughout this chapter) indicate configurations in which the analysis did not 

complete in the available memory, despite being implemented using BDDs. 

The generaUy large numbers of abstract contexts explain why an analysis that 

represents each context explicitly cannot scale to the programs that we analyze here. 

While a l-call-site-sensitive points-t~ analysis requires 6 to 9 times more data to be 

stored and processed than a context-insensitive analysis, the ratio grows to 1500 times 

for a 3-object-sensitive analysis. 

Wh en context strings are limited to a length of 1, the l-object-sensitive analysis 

pro duces about twice as many contexts as the l-call-site-sensitive analysis. However, 

as the context strings grow longer, the number of contexts in the object-sensitive 

analyses grows more slowly than in the caU site string analyses. This is because it is 

common in Java programs to invoke a method on the this pointer; in this common 

case, the receiver object of the called method is the same as at the call site, so in 

many context strings, the same abstract receiver objects are repeated. Notice that 

in the unique-object-sensitive analysis, in which repeated receiver objects are filtered 

out, the number of contexts grows much more quickly (compare the l-object-sensitive 

column first to the 2-object-sensitive column, then to the 2U-object-sensitive column). 

The ZhujCalmanjWhaley jLam algorithm effectively performs a k-CFA analysis 

in which the value of k is the maximum eall depth in the original call graph after 

strongly connected components have been merged. This maximum call depth is shown 

in parentheses in the ZCWL eolumn of Table 5.2. Because k changes from one 

benchmark to another, the total number of eontexts is mueh more variable than in 

the other variations of context sensitivity. On the javac, soot-c, sablecc-j, chart, and 

pmd benchmarks, the algorithm failed to complete in the available memory. 
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context-insens. object-sensitive calI site 

Benchmark AOT OTF 1 2 3 1H 2U 1 2 1H ZCWL (k) 

bh 3160 2583 13.5 111 1491 13.2 1225 6.2 233 6.2 2601 (17) 

bisort 3115 2541 13.6 112 1516 13.4 1245 6.2 237 6.2 2042 (14) 

em3d 3147 2552 13.6 112 1509 13.3 1239 6.2 236 6.2 1824 (14) 

health 3131 2556 13.6 112 1507 13.3 1237 6.2 235 6.2 1914 (14) 

mst 3132 2558 13.6 112 1525 13.3 1243 6.2 235 6.2 1665 (14) 

perimeter 3143 2568 13.5 111 1500 13.2 1231 6.2 234 6.2 1594 (14) 

power 3132 2558 13.6 112 1507 13.3 1236 6.2 235 6.2 2623 (18) 

treeadd 3108 2534 13.7 113 1521 13.4 1248 6.2 237 6.2 1565 (14) 

tsp 3140 2545 13.6 112 1513 13.3 1243 6.2 236 6.2 2585 (15) 

voronol 3162 2589 13.5 111 1490 13.2 1222 6.2 232 6.2 2464 (15) 

compress 10989 2596 13.7 113 1517 13.4 1231 6.5 237 6.5 2.9 x 104 (21) 

db 10993 2613 13.7 115 1555 13.4 1239 6.5 236 6.5 7.9 x 104 (22) 

jack 11245 2869 13.8 156 1872 13.2 1149 6.8 220 6.8 2.7 x 107 (45) 

javac 12120 3780 15.8 297 13289 15.6 1489 8.4 244 8.4 (41) 

jess 11620 3216 19.0 305 5394 18.6 1415 6.7 207 6.7 6.1 x 106 (24) 

mpegaudio 11198 2793 13.0 107 1419 12.7 1148 6.3 221 6.3 4.4 x 105 (31) 

mtrt 11115 2738 13.3 108 1447 13.1 1170 6.6 226 6.6 1.2 x 105 (26) 

raytrace 11115 2738 13.3 108 1447 13.1 1170 6.6 226 6.6 1.2 x 105 (26) 

soot-c 5502 4837 11.1 168 4010 10.9 847 8.2 198 8.2 (39) 

sablecc-j 12816 5608 10.8 116 1792 10.5 660 5.5 126 5.5 (55) 

polyglot 6204 5616 11.7 149 2011 11.2 797 7.1 144 7.1 10130 (22) 

antlr 4493 3897 15.0 309 8110 14.7 1715 9.6 191 9.6 4.8 x 109 (39) 

bloat 6496 5237 14.3 291 14.0 8.9 159 8.9 3.0 x 108 (26) 

chart 14804 7069 22.3 500 21.9 1413 7.0 335 (69) 

jython 5274 4401 18.8 384 18.3 2264 6.7 162 6.7 2.1 x 1015 (72) 

pmd 8497 7219 13.4 283 5607 12.9 1196 6.6 239 6.6 (55) 

ps 11744 3874 13.3 271 24967 13.1 1543 9.0 224 9.0 2.0 x 108 (29) 

Table 5.2: Total number of abstract contexts 
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5.3.2 Equivalent contexts 

Next, we con si der that many of the large numbers of abstract contexts are equivalent 

in the sense that the points-to relations computed in many of the abstract contexts are 

the same. More precisely, we define two method-context pairs, (ml, Cl) and (m2, C2) 

to be equivalent if ml = m2, and for every local pointer variable p in the method, 

the points-to set of p is the same in both contexts Cl and C2. 

We illustrate context equivalence with a concrete example. Consider a method 

M with four pointer variables a, b, c, and d, which is called in four abstract contexts 

P, Q, R, and S. Suppose that the points-to sets for these methods in these contexts 

are found to be as shown in Figure 5.1. In this example, the contexts Rand Sare 

equivalent for the method M, because the points-to sets of each of the four pointers 

a, b, c, and d are the same in the two contexts. Therefore, there are three equivalence 

classes of contexts, namely {(M, P)}, {(M, Q)}, and {(M, R), (M, S)}. 

When two contexts are equivalent, there is no point in distinguishing them, be­

cause the resulting points-to relation is independent of the context. In this sense, 

the number of equivalence classes of method-context pairs refiects how worthwhile 

context sensitivity is in improving the precision of points-to sets. 

The number of equivalence classes of contexts can be measured directly on the 

BDD representing the context-sensitive points-to relation by performing the following 

two steps. First, the variable ordering of the BDD must be arranged with the context 

attribute at the beginning of the BDD, followed by the pointer variable and abstract 

heap object attributes. We do this in JEDD by copying the points-to relation into 

a relation for which we have explicitly specified the physical do main assignment. 

Second, we count the number of BDD nodes strictly below the context attribute (i. e. 

those that test a bit of the pointer variable or abstract heap object attribut es , as 

well as the two terminal nodes) that have one or more incoming edges from a BDD 

node testing a bit of the context attribute. This count is exactly the number of 

equivalence classes of contexts. To see why this is the case, note that each unique 

context-insensitive points-to relation is represented by a unique BDD node below 

the context attribute, and an incoming edge from a BDD node testing the context 
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In context P, points-to(a) = {X, Y} 

points-to(b) = {X, Y} 

points-to(c) = {X, Y} 

points-to(d) = {X, Y} 

In context Q, points-to(a) = {X, Y} 

points-to(b) = {X, Y} 

points-to(c) = {X, Y, Z} 

points-to(d) = {} 

In context R, points-to(a) = {X, Y, Z} 

points-to(b) = {} 
points-to(c) = {X, Y, Z} 

points-to( d) = {} 

In context S, points-to(a) = {X, Y, Z} 

points-to(b) = {} 
points-to(c) = {X, Y, Z} 

points-to(d) = {} 

Figure 5.1: Example context-sensitive points-to relation 
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attribute indicates that it is the points-to relation for one or more contexts. 

To illustrate, let us return to our concrete example. The BDD representing the 

context-sensitive points-to relation from Figure 5.1 is shown in Figure 5.2. We have 

used the following assignment of bit strings to contexts, pointer variables, and abstract 

heap objects: 

POO a 00 X 00 

Q 01 bOl Y 01 

R 10 c 10 Z 10 

Sl1 d11 

The top two levels of the BDD (nodes a and b) test the two bits of the context, the 

next two levels (nodes c and d) test the two bits of the pointer variable, and the 

final two levels (nodes e, J, and g) test the two bits of the abstract heap object. 

Recall that there are three equivalence classes, namely {(M, pn, {(M, Qn, and 

{(M, R), (M, Sn. As expected, in the BDD, there are also three nodes that satisfy 

the criterion, namely nodes c, d, and e. Each of these nodes tests a bit strictly below 

the context bits, and each has an incoming edge from anode testing a context bit. 

When the context is P (00), a traversaI of the BDD goes through node e, which 

represents the context-insensitive points-to relation for the context P, namely every 

pointer having the points-to set {X, Y}. Wh en the context is Q (01), a traversaI of the 

BDD goes through node c, which represents the context-insensitive points-to relation 

for that context. Finally, when the context is either R or S, a traversaI of the BDD 

goes through node d, which represents the context-insensitive points-to relation that 

is common to those two contexts and makes them equivalent, namely the points-to 

set {X, Y, Z} for pointers a and c, and the empty points-to set for pointers band d. 

The measurements of the number of equivalence classes of contexts are shown in 

Table 5.3. Again, the "context-insensitive" columns show the actual number of equiv­

alence classes of contexts, while the other columns give a multiple of the "context­

insensitive OTF" number (i. e. the average number of equivalence classes per method). 
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Contexts 

Pointer Variables 

Pointer Targets 

1 1 / 
1 1 / 
1// 
1 1 / 
Il // 

d1 
Figure 5.2: BDD for relation from Figure 5.1 
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context-insens. object-sensitive caU site 

Benchmark AOT OTF 1 2 3 IR 2U 1 2 IR ZCWL 

bh 3161 2584 8.3 9.3 10.3 11.9 11.2 2.4 3.9 4.7 3.3 

bisort 3116 2542 8.4 9.4 10.4 12.0 11.3 2.4 3.9 4.7 3.3 

em3d 3148 2553 8.3 9.4 10.4 12.0 11.3 2.4 3.9 4.7 3.3 

health 3132 2557 8.3 9.4 10.4 12.0 11.3 2.4 3.9 4.7 3.3 

mst 3133 2559 8.3 9.4 10.4 12.0 11.3 2.4 3.9 4.7 3.3 

perimeter 3144 2569 8.3 9.4 10.3 11.9 11.2 2.4 3.9 4.7 3.3 

power 3133 2559 8.3 9.4 10.3 12.0 11.2 2.4 3.9 4.7 3.3 

treeadd 3109 2535 8.4 9.5 10.4 12.1 11.3 2.4 3.9 4.7 3.3 

tsp 3141 2546 8.3 9.4 10.4 12.0 11.3 2.4 3.9 4.7 3.3 

voronoi 3163 2590 8.3 9.4 10.3 11.9 11.2 2.4 3.9 4.7 3.3 

compress 10990 2597 8.4 9.9 11.3 12.1 12.2 2.4 3.9 4.9 3.3 

db 10994 2614 8.5 9.9 11.4 12.1 12.3 2.4 3.9 5.0 3.3 

jack 11246 2870 8.6 10.2 11.6 11.9 12.3 2.4 3.9 5.0 3.4 

javac 12121 3781 10.4 17.7 33.8 14.3 41.3 2.7 5.3 5.4 

jess 11621 3217 8.9 10.6 12.0 13.9 12.9 2.6 4.2 5.0 3.9 

mpegaudio 11199 2794 8.1 9.4 10.8 11.5 11.7 2.4 3.8 4.8 3.3 

mtrt 11116 2739 8.3 9.7 11.1 11.8 12.0 2.5 4.0 4.9 3.4 

raytrace 11116 2739 8.3 9.7 11.1 11.8 12.0 2.5 4.0 4.9 3.4 

soot-c 5503 4838 7.1 13.7 18.4 9.8 15.6 2.6 4.2 4.8 

sablecc-j 12817 5609 6.9 8.4 9.6 9.5 10.0 2.3 3.6 3.9 

polyglot 6205 5617 7.9 9.4 10.8 10.2 12.4 2.4 3.7 4.7 3.3 

antlr 4494 3898 9.4 12.1 13.8 13.2 14.7 2.5 4.1 5.2 4.3 

bloat 6497 5238 10.2 44.6 12.9 2.8 4.9 5.2 6.7 

chart 14805 7070 10.0 17.4 18.2 21.4 2.7 4.8 

jython 5275 4402 9.9 55.9 15.6 60.0 2.5 4.3 4.6 4.0 

pmd 8498 7220 7.6 14.6 17.0 11.0 19.2 2.4 4.2 4.2 

ps 11745 3875 8.7 9.9 11.0 12.0 16.0 2.6 4.0 5.2 4.4 

Table 5.3: Number of equivalence classes of abstract contexts 
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The relatively small size of these numbers compared to the total numbers of con­

texts in Table 5.2 explains why a BDD can effectively represent the analysis infor­

mation, since it automatically merges the representation of equal points-to relations, 

so each distinct relation is only represented once. If we had sorne idea before design­

ing an analysis which abstract contexts are likely to be equivalent, we could define 

a new context abstraction in which these equivalent contexts are merged. That is, 

each equivalence class of old abstract contexts would be represented by a single new 

abstract context. If we had such a new context abstraction, the context-sensitive 

analysis could be implemented without the need for BDDs. 

It is interesting to note that in the 1-, 2-, and lR-object-sensitive analysis, the 

number of equivalence classes of contexts is generally about 3 times as high as in 

the corresponding 1-, 2-, and lR-call site string analysis. This indicates that receiver 

objects better partition the space of concrete calling contexts that give rise to distinct 

points-to relations. That is, if at run time, the run-time points-to relation is different 

in two concrete calls to a method, it is more likely that the two calls will correspond 

to distinct abstract contexts if receiver objects rather than call sites are used as the 

context abstraction. This observation leads us to hypothesize that object-sensitive 

analysis should be more precise than the call site string analysis; we will see more 

direct measurements of precision in the upcoming sections. 

In both object-sensitive and call site string analyses, making the context string 

longer increases the number of equivalence classes of contexts by only a small amount, 

while it increases the absolute number of contexts much more significantly. Therefore, 

increasing the length of the context string is unlikely to result in a large improvement 

in precision, but will significantly increase analysis cost. 

In the two analysis variations in which abstract heap objects are modelled with 

context (IR-object-sensitive and lR-call-site), the number of equivalence classes of 

contexts per method is slightly higher than in the analyses that model abstract heap 

objects context-insensitively. This is because the abstract heap objects in the points­

to sets are annotated with abstract contexts, so it is more likely for two points-to 

relations to be distinct. 
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The 2-unique-object-sensitive analysis results in more equivalence classes of con­

texts than even the 3-object-sensitive analysis. This suggests that retaining a second 

distinct receiver object in the context string is more useful than retaining the receiver 

objects of even two additional calls for the purpose of distinguishing (in the abstract) 

contexts that have different run-time points-to sets. 

It was initially rather surprising that III the analysis using the 

ZhujCalmanjWhaleyjLam algorithm, the number of equivalence classes of ab­

stract contexts is so small, often even sm aller than in the 2-call-site-sensitive 

analysis. The algorithm effectively performs a k-CFA analysis, where k is the maxi­

mum call depth in the original call graph; k is likely to be much higher than 2. The 

number of equivalence classes of contexts when using the ZhujCalmanjWhaley jLam 

algorithm is small because the algorithm merges strongly connected components 

in the call graph, and models all call edges in each such component in a context­

insensitive way. In contrast, the 2-call-site-sensitive analysis models all call edges 

context-sensitively, including those in strongly connected components. Indeed, a 

very large number of methods are part of sorne strongly connected component. The 

initial call graph for each of our benchmarks contains a large strongly-connected 

component of 1386 to 2926 methods, representing 36% to 53% of all methods in 

the call graph. In particular, this strongly-connected component always includes 

many methods for which context-sensitive analysis would be particularly use fuI , 

such as the methods of the String class and the standard collections classes. These 

methods are used extensively within the Java standard library, and contain many 

calls to each other. We examined this large strongly-connected component and found 

many distinct cycles; there was no single method that, if removed, would break the 

component. In summary, the reason for the surprisingly small number of equivalence 

classes of abstract contexts when using the Zhuj CalmanjWhaley jLam algorithm is 

that it models a large portion of the call graph context-insensitively. 
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5.3.3 Distinct points-ta sets 

Finally, we measure the number of distinct points-to sets that appear in the points-to 

analysis result. This number is an indication of how difficult it would be to efficiently 

represent the context-sensitive points-to sets in a non-BDD-based analysis impIe men­

tation, assuming there was already a way to represent the contexts themselves. An 

increase in the number of distinct points-to sets also suggests an increase in precision, 

but the connection is very indirect [Hin01, Section 3.2]. We therefore present the 

number of distinct points-to sets primarily as a measure of analysis cost, and pro­

vide more direct measurements of the precision of clients of the analysis later in this 

chapter. In traditional, context-insensitive, subset-based points-to analyses, the rep­

resentation of the points-to sets often makes up most of the memory requirements of 

the analysis. If the traditional analysis stores points-to sets using shared bit-vectors 

as suggested by Heintze [Hei99], each distinct points-to set need only be stored once. 

Therefore, the number of distinct points-to sets approximates the space requirements 

of such a traditional representation. 

The number of distinct points-to sets can be measured on the points-to relation 

BDD using a technique similar to the one we used to measure the number of equivalent 

contexts. The BDD must first be arranged so that the attribute of abstract heap 

objects is assigned to the very bottom physical domain of the BDD. In particular, 

the physical domain assignment that we used to measure the number of equivalent 

contexts satisfies this requirement. The number of distinct points-to sets is then equal 

to the number of BDD nodes that test a bit of the abstract heap object attribute or are 

terminal nodes, and that have one or more incoming edges from a BDD node testing 

a bit strictly above the abstract heap object attribute. Each such node represents a 

unique points-to set, and for each points-to set in the points-to relation, there is such 

a node in the BDD. 

To illustrate this, we return to our example points-to relation from Figure 5.1 

and the BDD representing it from Figure 5.2. The points-to relation contains three 

distinct points-to sets, namely Ü, {X, Y}, and {X, Y, Z}. As expected, the BDD 

contains three nodes satisfying the requirement, namely e, f, and the zero terminal 
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node. Note that node 9 does not satisfy the requirement because it does not have 

any incoming edges from anode strictly above the abstract heap objects attribute. 

The node e represents the points-to set {X, Y}. The node f represents the points-to 

set {X, Y, Z}. The zero terminal node represents the empty points-to set. 

The measurements of the number of distinct points-to sets arising with each con­

text abstraction are shown in Table 5.4. In this table, all numbers are the absolute 

count of distinct points-to sets, not multiples of the "context-insensitive" calumn. 

The numbers of distinct points-to sets are fairly constant in most of the analy­

sis variations, including object-sensitive analyses, call site string analyses, and the 

analysis using the Zhu/Calman/Whaley/Lam algorithm. Therefore, in a traditional 

points-to analysis implemented using shared bit-vectors, representing the individu al 

points-to sets should not be a source of major difficulty even in a context-sensitive 

analysis. Future research in traditional implementations of context-sensitive analyses 

should therefore be directed at the problem of efficiently representing the contexts, 

rather than representing the points-to sets. 

However, wh en abstract heap objects are modelled context-sensitively, the ele­

ments of each points-to set are pairs of abstract object and context, rather than 

simply abstract abjects, and the number of distinct points-to sets increases about 11-

fold. In addition, it is likely that the points-to sets themselves are significantly larger. 

Therefore, in order to implement such an analysis without using BDDs, it would be 

worthwhile to look for an efficient way to represent points-to sets of abstract objects 

with context. 

5.4 Cali Graph 

We now turn our attention to the effect of context sensitivity on call graph construc­

tion. For the purposes of comparison, we have constructed context-sensitive call 

graphs, removed their contexts, and measured differences in their context-insensitive 

projections. We adopted this methodology because context-sensitive call graphs using 

different context abstractions are not directly comparable. Each node in the graph 
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context-insens. ob ject-sensitive call site 

Benchmark AOT OTF 1 2 3 IH 2U 1 2 IH ZCWL 

bh 3466 3192 3143 3230 3251 34239 4356 3229 3125 36784 3115 

bisort 3410 3136 3101 3187 3206 34047 4309 3185 3084 36671 3071 

em3d 3446 3152 3111 3200 3220 34080 4323 3199 3096 36708 3087 

health 3434 3158 3120 3205 3224 34110 4327 3206 3103 36710 3089 

mst 3419 3145 3112 3201 3221 34094 4329 3193 3091 36673 3080 

perimeter 3422 3148 3109 3197 3217 34040 4326 3196 3094 36807 3083 

power 3436 3162 3118 3206 3226 34072 4329 3206 3101 36699 3094 

treeadd 3414 3140 3101 3189 3209 34017 4313 3188 3085 36673 3075 

tsp 3434 3140 3100 3188 3208 34019 4311 3188 3085 36678 3073 

voronoi 3440 3166 3124 3212 3232 34251 4341 3212 3108 36774 3112 

compress 10574 3178 3150 3240 3261 34355 4371 3227 3125 38242 3139 

db 10590 3197 3170 3261 3283 34637 4401 3239 3133 38375 3173 

jack 10847 3441 3411 3507 3527 37432 4704 3497 3377 40955 3541 

Javac 11789 4346 4367 4579 4712 55196 16397 4424 4303 54866 

jess 11340 3834 4433 4498 4514 51452 6537 4589 4426 42614 4644 

mpegaudio 11627 4228 4179 4272 4293 36563 5402 4264 4157 67565 4175 

mtrt 10739 3349 3287 3377 3396 35154 4531 3387 3263 38758 3282 

raytrace 10739 3349 3287 3377 3396 35154 4531 3387 3263 38758 3282 

soot-c 4937 4683 4565 4670 4657 45974 7400 4722 4550 52937 

sablecc-j 12308 5753 5777 5895 5907 52993 7893 5875 5694 59748 

polyglot 5774 5591 5556 5829 5925 50587 8120 5682 5516 59837 5575 

antlr 4792 4520 5259 5388 5448 54942 7388 4624 4535 54176 4901 

bloat 5853 5337 5480 5815 55309 5452 5342 49230 6658 

chart 16136 9608 9914 10168 233723 16610 9755 9520 

jython 5128 4669 5111 5720 74297 21546 4968 4857 46280 8587 

pmd 7980 7368 7679 7832 7930 94403 16706 7671 7502 103990 

ps 11796 4610 4504 4639 4672 47244 22670 4656 4521 58513 4802 

Table 5.4: Total number of distinct points-ta sets in points-ta analysis results 
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represents a pair of method and abstract context, but the set of possible abstract 

contexts is different in each context variation. In the context-insensitive projection, 

each node is simply a method, so the projections are directly comparable. Projecting 

away context discards sorne information from the call graph, but only the information 

which is not directly comparable between different context abstractions. In partic­

ular, the context-insensitive projection preserves the set of methods reachable from 

the program entry points, as well as the set of possible targets of each call site in 

the program; it is these sets that we measure. The set of reachable methods is par­

ticularly important because any conservative interprocedural analysis must analyze 

all of these methods, so a small set of reachable methods reduces the cost of other 

interprocedural analyses. 

In our study of call graph construction, it does not make sense to include the 

Zhu/Calman/Whaley /Lam algorithm because the context-sensitive call graph it pro­

duces is only as precise as the original context-insensitive call graph that it is given as 

input. That is, the context-insensitive projection of the context-sensitive call graph 

produced by the Zhu/Calman/Whaley/Lam algorithm is identical to the context­

insensitive OTF call graph that we used as input. 

5.4.1 Reachable methods 

Table 5.5 shows the number of methods reachable from the program entry points when 

constructing the call graph using different variations of context sensitivity, excluding 

methods from the standard Java library. In Table 5.5 and all subsequent tables in 

this chapter, the most precise entry for each benchmark has been highlighted in boldo 

In the case of a tie, the most precise entry that is least expensive to compute has 

been highlighted. 

For most of the benchmarks, the call graph generated with OTF context­

insensitive points-to analysis is much more precise (smaller) than one generated with 

Class Hierarchy Analysis (in the AOT column). Any further improvements due to 

context sensitivity are relatively small. The JOlden benchmarks are so simple that 
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context-insens. object-sensitive call site actually 

Benchmark AOT OTF 1 2 3 1R 2U 1 2 1R executed 

bh 60 57 57 57 57 57 57 57 57 57 54 

bisort 14 14 14 14 14 14 14 14 14 14 12 

em3d 21 21 21 21 21 21 21 21 21 21 18 

health 28 27 27 27 27 27 27 27 27 27 26 

mst 32 32 32 32 32 32 32 32 32 32 31 

perimeter 44 43 43 43 43 43 43 43 43 43 42 

power 31 31 31 31 31 31 31 31 31 31 29 

treeadd 6 6 6 6 6 6 6 6 6 6 5 

tsp 15 15 15 15 15 15 15 15 15 15 12 

voronoi 61 60 60 60 60 60 60 60 60 60 44 

compress 90 59 59 59 59 59 59 59 59 59 56 

db 95 65 64 64 64 64 64 65 64 65 51 

jack 348 317 313 313 313 313 313 316 313 316 291 

Javac 1185 1154 1147 1147 1147 1147 1147 1147 1147 1147 778 

jess 683 630 629 629 629 623 629 629 629 629 395 

mpegaudio 306 255 251 251 251 251 251 251 251 251 222 

mtrt 217 189 186 186 186 186 186 187 187 187 182 

raytrace 217 189 186 186 186 186 186 187 187 187 180 

soot-c 2395 2273 2264 2264 2264 2264 2264 2266 2264 2266 1055 

sablecc-j 1904 1744 1744 1744 1744 1731 1744 1744 1744 1744 1034 

polyglot 2540 2421 2419 2419 2419 2416 2419 2419 2419 2419 2037 

antlr 1374 1323 1323 1323 1323 1323 1323 1323 1323 1323 1099 

bloat 2879 2464 2451 2451 2451 2451 2451 2451 138 

chart 3227 2081 2080 2080 2031 2080 2080 2080 854 

jython 2007 1695 1693 1693 1683 1694 1694 1693 1694 1004 

pmd 4997 4528 4521 4521 4521 4509 4521 4521 4521 4521 1817 

ps 840 835 835 835 835 834 835 835 835 835 285 

Table 5.5: Number of reachable benchmark (non-library) methods in calI graph 
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a context-insensitive OTF analysis already generates a call graph that is almost per­

fectly precise. These call graphs are not much larger than the number of methods 

actually executed during a run of the benchmark, shown in the right-most column.3 

For most of the more significant benchmarks, call graph construction benefits 

slightly from l-object sensitivity. The largest difference is 13 methods, in the bloat 

benchmark. All of these methods are visit methods in an implementation of the 

visitor design pattern, in the class AscendVisi tor. This class traverses a parse tree 

from a starting node upwards toward the root of the tree, visiting each node along the 

way. Sorne kinds of nodes have no descendants that are ever the starting node of a 

traversaI, so the visit methods of these nodes can never be called. However, in order to 

prove this, an analysis must analyze the visitor dispatch method context-sensitively 

in order to keep track of the kind of node from which it was called. Therefore, a 

context-insensitive analysis fails to show that these visit methods are unreachable. 

In jess, sablecc-j, polyglot, chart, jython, pmd, and ps, modelling abstract heap ob­

jects object-sensitively further improves the precision of the call graph. In the sablecc-j 

benchmark, an additional 13 methods are proved unreachable. The benchmark in­

cludes its own implementation of maps similar to those in the Java standard library. 

The maps are instantiated in a number of places, and different kinds of objects are 

placed in the different maps. Methods such as toStringO and equalsO are called 

on sorne of the maps but not others. As a result, toStringO and equalsO are called 

on sorne of the objects placed in the maps, but not on others. However, the objects 

stored in every map are placed in map entry objects, which are allocated at a single 

point in the map code. When abstract heap objects are modelled without context, all 

map entries are modelled by a single abstract object, and the contents of all maps are 

confiated. When abstract heap objects are modelled with context, the map entries 

are treated as separate objects depending on which map they were created for. Note 

3The perfectly precise caU graph would contain the union of aU methods and caU edges executed 
when the program is run on aU inputs. The static caU graphs overestimate the perfect caU graph, 
while the dynamic caU graphs underestimate it (because they are observed while running the program 
on only one input). For example, although we do not know the perfect caU graph for the bh 
benchmark, we know that it must contain between 54 and 57 non-library methods. Therefore, we 
know that the OTF caU graph, with 57 non-library methods, is not much bigger than the perfect 
caU graph. 
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that successfully distinguishing the map entries requires receiver objects to be used 

as context, rather than call site strings. The code that allocates a new entry is in a 

method that is always called from the same calI site, in another method of the map 

class. In general, although modelling abstract heap objects with context improved 

the calI graph for sorne benchmarks in an object-sensitive analysis, it never made 

any difference in analyses using calI site strings as the context abstraction (i. e. the 

1-call-site and 1H-call-site columns are the same). 

Overall, object-sensitive analysis results in slightly smaller calI graphs than calI 

site string analysis. The l-object-sensitive call graph is never larger than the 1-

call-site-sensitive call graph, and it is sm aller on db, jack, mtrt, raytrace, 500t-c, and 

jython. On the db, jack, and jython benchmarks, the call-site-sensitive call graph can 

be made as small as the l-object-sensitive call graph, but it requires 2-call-site rather 

than 1-call-site analysis. 

The cost of client interprocedural analyses depends on the number of methods in 

the whole call graph, not just the subset excluding the Java standard library. The 

number of methods in the whole call graph is shown in Table 5.6. All variations of 

using points-to analysis to construct the call graph result in a mu ch smaller call graph 

than when using CHA, and therefore are likely to speed up client interprocedural 

analyses. However, compared to a context-insensitive points-to analysis, the various 

context-sensitive analyses have little effect on the overall size of the call graph. 

Notice that even the most precise context-sensitive analyses pro duce a call graph 

much bigger than the set of methods actually executed, shown in the rightmost column 

of the table. This difference is due not to remaining imprecision in the static call graph 

construction, but to limited coverage by the benchmarks of rarely-used features of the 

standard Java library. For example, one cause of a large number of methods in the 

static call graphs is Java's Jar File signing feature. The Jar Files containing classes to 

be executed may be cryptographically signed. If they are, the Java VM automatically 

loads and runs a large amount of cryptography code to verify the signatures. Since it is 

possible for the the cryptography code to run, it must be included in any conservative 

call graph. However, none of the runs of any of our benchmarks actually run the 

cryptography code, because their Jar Files are not signed. 
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cantext-insens. abject-sensitive call site actually 

Benchmark AOT OTF 1 2 3 1H 2U 1 2 1H executed 

bh 3425 2694 2643 2643 2643 2608 2645 2647 2643 2647 459 

bisort 3377 2649 2598 2598 2598 2563 2600 2602 2598 2602 414 

em3d 3407 2657 2606 2606 2606 2571 2608 2610 2606 2610 425 

health 3391 2662 2611 2611 2611 2576 2613 2615 2611 2615 435 

mst 3393 2665 2614 2614 2614 2579 2616 2618 2614 2618 434 

perimeter 3405 2676 2625 2625 2625 2590 2627 2629 2625 2629 443 

power 3394 2666 2615 2615 2615 2580 2617 2619 2615 2619 427 

treeadd 3367 2639 2588 2588 2588 2553 2590 2592 2588 2592 407 

tsp 3402 2652 2601 2601 2601 2566 2603 2605 2601 2605 404 

voronoi 3427 2701 2649 2649 2649 2614 2651 2653 2649 2653 450 

compress 11492 2706 2655 2655 2655 2620 2657 2659 2655 2659 463 

db 11499 2725 2671 2671 2671 2636 2673 2678 2671 2678 483 

jack 11750 2980 2943 2943 2943 2885 2945 2962 2943 2962 739 

javac 12627 3900 3832 3832 3832 3797 3834 3841 3834 3841 1283 

jess 12130 3338 3285 3285 3285 3244 3287 3292 3286 3292 846 

mpegaudio 11706 2911 2850 2850 2850 2815 2852 2853 2850 2853 637 

mtrt 11621 2858 2801 2801 2801 2766 2803 2809 2802 2809 616 

raytrace 11621 2858 2801 2801 2801 2766 2803 2809 2802 2809 611 

soot-c 5789 4964 4922 4922 4922 4873 4924 4938 4922 4938 1549 

sablecc-j 13306 5776 5686 5686 5686 5622 5688 5713 5695 5713 1856 

polyglot 6441 5737 5679 5679 5679 5636 5681 5703 5680 5703 3093 

antlr 4775 4006 3950 3950 3950 3915 3952 3958 3950 3958 1783 

bloat 6824 5375 5325 5325 5271 5341 5326 5341 1010 

chart 15488 7302 7228 7228 7137 7238 7252 7235 2790 

jython 5587 4542 4503 4503 4442 4509 4525 4503 4525 1858 

pmd 8905 7371 7328 7328 7328 7285 7330 7344 7330 7344 2581 

ps 12240 4017 3944 3944 3944 3904 3946 3987 3945 3987 945 

Table 5.6: Total number of reachable methods in call graph 
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5.4.2 Cali edges 

Table 5.7 shows the size of the calI graph in terms of calI edges rather than reachable 

methods. Only calI edges originating from a benchmark (non-library) method are 

counted. 

In general, context sensitivity makes little difference to the size of the calI graph 

wh en measured this way, with one major exception. In the sablecc-j benchmark, the 

number of calI edges is 17925 in a context-insensitive analysis, but only 5175 in a 1-

object-sensitive analysis. This could make a significant difference to the cost of a client 

analysis whose complexity depends on the number of edges in the calI graph. The 

large difference is caused by the following pattern of code. The sablecc-j benchmark 

contains code to represent a parse tree, with many different kinds of nodes. Each 

kind of node implements a method called removeChild O. The code contains a large 

number of calls of the form this. getParent 0 . removeChild(this). In a context­

insensitive analysis, getParent () is found to possibly return any of hundreds of 

possible kinds of nodes. Therefore, each of these many calls to removeChild(this) 

results in hundreds of calI graph edges. However, in a context-sensitive analysis, 

getParent 0 is analyzed in the context of the this pointer. For each kind of node, 

there is a relatively small number of kinds of nodes that can be its parent. Therefore, 

in a given context, getParent 0 is found to return only a small number of kinds of 

parent node, and therefore each calI site of removeChildO adds only a small number 

of edges to the calI graph. 

5.5 Virtual Cali Resolution 

Table 5.8 shows the number of virtual calI sites for which the calI graph contains 

more than one potential target method. CalI sites with at most one potential target 

method can be converted to cheaper static instead of virtual calls, and they can 

be inlined, possibly enabling many other optimizations. Therefore, an analysis that 

proves that calI sites are not polymorphie can be used to significantly improve run­

time performance. 
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context-insens. object-sensitive call site actually 

Benchmark AOT OTF 1 2 3 1H 2U 1 2 1H executed 

bh 354 187 187 187 187 187 187 187 187 187 129 

bisort 57 57 57 57 57 57 57 57 57 57 30 

em3d 162 78 78 78 78 78 78 78 78 78 43 

health 234 90 90 90 90 90 90 90 90 90 70 

mst 177 82 82 82 82 82 82 82 82 82 50 

perimeter 113 105 105 105 105 105 105 105 105 105 65 

power 108 108 108 108 108 108 108 108 108 108 54 

treeadd 32 32 32 32 32 32 32 32 32 32 19 

tsp 60 60 60 60 60 60 60 60 60 60 36 

voronoi 206 201 201 201 201 201 201 201 201 201 92 

compress 456 270 270 270 270 270 270 270 270 270 118 

db 940 434 427 427 427 427 427 434 427 434 184 

jack 1936 1283 1251 1251 1251 1250 1251 1276 1251 1276 833 

Javac 13146 10360 10296 10296 10296 10296 10318 10318 10301 10318 2928 

jess 4700 3626 3618 3618 3618 3571 3618 3618 3618 3618 919 

mpegaudio 1182 858 812 812 812 812 812 812 812 812 400 

mtrt 925 761 739 739 739 739 739 746 746 746 484 

raytrace 925 761 739 739 739 739 739 746 746 746 478 

soot-c 20079 14611 14112 14112 14112 13868 14160 14185 14112 14185 2860 

sablecc-j 24283 17925 5175 5140 5140 5072 5140 5182 5140 5182 2326 

polyglot 19898 11768 11564 11564 11564 11374 11537 11566 11566 11566 5440 

antlr 10769 9553 9553 9553 9553 9553 9553 9553 9553 9553 4196 

bloat 36863 18586 18143 18143 17722 18166 18143 18166 477 

chart 24978 9526 9443 9443 9178 9443 9443 9443 2166 

jython 13679 9382 9367 9367 9307 9374 9367 9365 9367 2898 

pmd 29401 18785 18582 18582 18580 18263 18587 18601 18599 18601 3879 

ps 13610 11338 11292 11292 11292 10451 11298 11298 11292 11298 705 

Table 5.7: Total number of call edges in call graph originating from a benchmark 

(non-library) method 
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context-insens. abject-sensitive caU site 

Benchmark AOT OTF 1 2 3 1R 2U 1 2 1R 

bh 17 7 7 7 7 7 7 7 7 7 

bisort 0 0 0 0 0 0 0 0 0 0 

em3d 20 0 0 0 0 0 0 0 0 0 

health 10 0 0 0 0 0 0 0 0 0 

mst 1 0 0 0 0 0 0 0 0 0 

perimeter 16 16 16 16 16 16 16 16 16 16 

power 0 0 0 0 0 0 0 0 0 0 

treeadd 0 0 0 0 0 0 0 0 0 0 

tsp 0 0 0 0 0 0 0 0 0 0 

voronoi 2 0 0 0 0 0 0 0 0 0 

compress 16 3 3 3 3 3 3 3 3 3 

db 36 5 4 4 4 4 4 5 4 5 

jack 474 25 23 23 23 22 23 24 23 24 

javac 908 737 720 720 720 720 720 720 720 720 

Jess 121 45 45 45 45 45 45 45 45 45 

mpegaudio 40 27 24 24 24 24 24 24 24 24 

mtrt 20 9 7 7 7 7 7 8 8 8 

raytrace 20 9 7 7 7 7 7 8 8 8 

soot-c 1748 983 913 913 913 913 913 938 913 938 

sablecc-j 722 450 325 325 325 301 325 380 325 380 

polyglot 1332 744 592 592 592 585 592 592 592 592 

antlr 1086 843 843 843 843 843 843 843 843 843 

bloat 2503 1079 962 962 961 962 962 962 

chart 2782 254 235 235 214 235 235 235 

jython 646 347 347 347 346 347 347 347 347 

pmd 2868 1224 1193 1193 1193 1163 1193 1205 1205 1205 

ps 321 304 303 303 303 300 303 303 303 303 

Table 5.8: Total number of potentially polymorphie eall sites in benehmark (non­

library) eode 
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For all but two of the JOlden benchmarks, even a call graph based on context­

insensitive points-t~ analysis is sufficient to devirtualize all the calls. Note, however, 

that Class Hierarchy Analysis is insufficient to devirtualize many of these call sites. 

In the benchmarks written in an object-oriented style, notably javac, soot-c, 

sablecc-j, polyglot, bloat, and pmd, a further significant number of call sites can be de­

virtualized using object-sensitive analysis (compared to context-insensitive analysis). 

In sorne cases, call site string analysis gives the same improvement, but never any 

more, and in the case of soot-c and sablecc-j, the improvement from l-object-sensitive 

analysis is much greater than from l-call-site string analysis. 

In sablecc-j, there are three key sets of call sites that can be devirtualized using 

context-sensitive analysis. Any context-sensitive analysis is sufficient to devirtualize 

the first set of call sites. Devirtualization of the second set of call sites requires an 

object-sensitive analysis; an analysis using call sites as the context abstraction cannot 

prove them to be monomorphic. Devirtualization of the third set of call sites not only 

requires an object-sensitive analysis, but it also requires that abstract heap objects 

be modelled with context. 

The first set of call sites contains the calls to the removeChild () method men­

tioned in Section 5.4.2. Object sensitivity reduces the number of potential target 

methods at each of these call sites. At many of them, it reduces the number down to 

one, so the calls can be devirtualized. The same improvement can be obtained with 

call site string context sensitivity. 

The second set of call sites are calls to methods of iterators over lists. The sablecc-j 

benchmark contains several implementations of lists similar to those in the standard 

Java library. A call to i terator () on any of these lists invokes i terator () on 

the AbstractList superclass, which in turn invokes the listlteratorO method 

specific to each list. The actual kind of iterator that is returned depends on which 

listlteratorO was invoked, which in turn depends on the receiver object of the 

call to iteratorO; it is independent of the call site of listlteratorO, which is 

always the same site in iteratorO. Therefore, calls to hasNextO and nextO on 

the returned iterator can be devirtualized only with an object-sensitive analysis. 

The third set of call sites are calls to methods such as toString () and equals () 
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on objects stored in maps. As we explained in Section 5.4.1, object-sensitive mod­

elling of abstract heap objects is required distinguish the internaI map entry objects 

in each separate use of the map implementation. The map entry objects must be 

distinguished in or der to distinguish the objects that are stored in the maps. There­

fore, devirtualization of these calls to methods of objects stored in maps requires an 

object-sensitive analysis that models abstract heap objects with context. 

5.6 Cast Safety 

We evaluated the precision of the cast safety analysis implemented in PADDLE and 

described in Section 4.4.2 on the different variations of context sensitivity. Table 5.9 

shows the number of casts in each benchmark that cannot be statically proven safe 

by the cast safety analysis. 

Context sensitivity improves precision of the cast safety analysis in the bh, jack, 

javac, mpegaudio, mtrt, raytrace, soot-c, sablecc-j, polyglot, antlr, bloat, chart, jython, 

pmd, and ps benchmarks. Object sensitive cast safety analysis is never less precise and 

often significantly more precise than the call site string context sensitive variations. 

The improvements due to context sensitivity are most significant in the polyglot and 

javac benchmarks. In voronoi, db, jack, javac, jess, soot-c, sablecc-j, polyglot, antlr, 

bloat, chart, jython, pmd, and ps, modelling abstract heap objects with receiver object 

context further improves precision of cast safety analysis. 

The polyglot benchmark contains a hierarchy of classes representing different kinds 

of nodes in an abstract syntax tree. At the root of this hierarchy is the Node _ c class. 

This class implements a method called copy () which, like the clone () method of 

java.lang.Object, returns a copy of the node on which it is called. In fact, the 

copyO method first uses cloneO to create the copy of the node, and then performs 

sorne additional processing on it. The static return type of the copy 0 method is 

java. lang. Object, but at most sites calling it, the returned value is immediately 

cast to the static type of the node on which it is called. In the PADDLE framework, the 

clone 0 method is modelled as returning its receiver; that is, the original object and 
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cantext-insens. abject-sensitive caU site 

Benchmark AOT OTF 1 2 3 1H 2U 1 2 1H ZCWL 

bh 14 9 8 8 8 8 8 8 8 8 8 

bisort 4 4 4 4 4 4 4 4 4 4 4 

em3d 13 3 3 3 3 3 3 3 3 3 3 

health 19 14 14 14 14 14 14 14 14 14 14 

mst 3 3 3 3 3 3 3 3 3 3 3 

perimeter 3 3 3 3 3 3 3 3 3 3 3 

power 5 5 5 5 5 5 5 5 5 5 5 

treeadd 3 3 3 3 3 3 3 3 3 3 3 

tsp 3 3 3 3 3 3 3 3 3 3 3 

voronoi 7 7 7 7 7 6 7 7 7 7 7 

compress 25 18 18 18 18 18 18 18 18 18 18 

db 32 27 27 27 27 21 27 27 27 27 27 

jack 151 146 145 145 145 104 145 146 145 146 146 

javac 412 405 370 370 370 363 389 391 370 391 

jess 137 130 130 130 130 86 130 130 130 130 130 

mpegaudio 56 42 38 38 38 38 38 40 40 40 42 

mtrt 36 31 27 27 27 27 27 27 27 27 29 

raytrace 36 31 27 27 27 27 27 27 27 27 29 

soot-c 972 955 932 932 932 878 933 932 932 932 

sablecc-j 385 375 369 369 369 331 369 370 370 370 

polyglot 3583 3539 3307 3306 3306 1017 3314 3526 3443 3526 3318 

antlr 296 295 275 275 275 237 275 276 275 276 276 

bloat 1355 1241 1207 1207 1160 1233 1207 1233 1234 

chart 1979 1097 1086 1085 934 1086 1070 1070 

jython 599 501 499 499 471 499 499 499 499 499 

pmd 1477 1427 1376 1375 1375 1300 1394 1393 1391 1393 

ps 692 641 612 612 612 421 631 612 612 612 612 

Table 5.9: Number of casts potentially failing at run time 
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the cloned version are represented in PADDLE by the same abstract object. Therefore, 

given a program that caUs clone 0 directly, the cast safety analysis in PADDLE 

correctly determines that the run-time type of the clone is the same as that of the 

original. However, in polyglot, the caU to clone 0 is wrapped inside copy 0, and the 

casts appear at sites caUing copy O. When copy 0 is analyzed in a context-insensitive 

way, it is deemed to possibly return any of the objects on which it is called throughout 

the program, so the casts cannot be proven to succeed. In an object-sensitive analysis, 

however, copyO is analyzed separately in the context of each receiver object on which 

it is called, and in each such context, it returns only an object of the same type as 

that receiver object. Therefore, the cast safety analysis proves statically that the 

casts of the return value of copy () cannot fail. 

The number of potentially failing casts in the polyglot benchmark decreases signif­

icantly between the l-object-sensitive and 1H-object-sensitive columns of Table 5.9, 

from 3307 to 1017. The vast majority of these casts are in the parser generated by 

JavaCUP [Ana]. Specifically, the parser uses a java. util. Stack as the LR parse 

stack. Each object popped from the stack is cast to a Symbol. The generated poly­

glot parser contains about 2000 of these casts. The java. util. Stack class extends 

java. util. Vector, which uses an internaI elementData array to store the objects 

that have been pushed onto the stack. In or der to prove the safety of the casts, the 

analysis must distinguish the array implementing the parse stack from the arrays of 

other uses of java. util. Vector in the program. Since the array is aUocated in one 

place, in si de the java. util. Vector class, the different array instances can only be 

distinguished if abstract heap objects are modeUed with context. Therefore, mod­

elling abstract heap objects with object sensitivity is necessary to statically prove 

that these 2000 casts cannot fail. 

5.7 Related Work 

We refer the reader to Section 4.1 of Chapter 4, in which we presented related work 

on context-sensitive points-to analysis and call graph construction. In this section, 
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we specifically compare our empirical study of the effects of context sensitivity to 

related experiments performed by others. 

The work most closely related to our empirical evaluation of context-sensitive 

interprocedural analyses for Java is the pioneering work on object-sensitive analysis by 

Milanova, Rountev, and Ryder [MRR05, MRR02]. They implemented a limited form 

of object sensitivity within their points-to analysis framework based on annotated 

constraints [RMR01] and built on top of the BANE toolkit [AFFS98]. In particular, 

they selected a subset of pointer variables (method parameters, the this pointer, and 

the method return value) which they modelled context-sensitively using the receiver 

object as the context abstraction. All other pointer variables and all abstract heap 

objects were modelled in a context-insensitive way. The precision of the analysis 

was evaluated on benchmarks using version 1.1.8 of the Java standard library, and 

compared to a context-insensitive and to a call site context-sensitive analysis, using 

call graph construction, virtual call resolution, and mod-ref analysis as client analyses. 

Our BDD-based implementation of object-sensitive analysis has made it feasible to 

evaluate it on benchmarks using the much larger version 1.3.1_01 of the Java standard 

library. Thanks to the better scalability of the BDD-based implementation, we have 

performed a much broader empirical exploration of the design space of object-sensitive 

analyses. In particular, we have modelled aIl pointer variables context-sensitively, 

rather than only a subset, we have used receiver object strings of length up to three, 

rather than only one, and we have modelled abstract heap objects context-sensitively. 

Whaley and Lam [WL04] suggest several client analyses of the 

Zhu/Calman/Whaley /Lam algorithm, but state that "[a]n in-depth analysis of 

the accuracy of the analyses ... is beyond the scope of this paper." They do, 

however, provide sorne preliminary data about thread escape analysis and "type 

refinement analysis", an analysis for finding variables whose declared type could 

be made more specifie. In this chapter, we have compared the precision of 

the Zhu/Calman/Whaley /Lam algorithm against object-sensitive and call site 

string context-sensitive analyses using several client analyses, namely call graph 

construction, virtual call resolution, and cast safety analysis. 
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5.8 Conclusions 

We have performed an in-depth empirical study of the effects of variations of context 

sensitivity on the precision of call graph construction, points-to analysis, and related 

client analyses. In particular, we studied five variations of object-sensitive analysis, 

three variations of context-sensitive analysis using call sites as the context abstraction, 

and the Zhu/Calman/Whaley /Lam algorithm. We evaluated the effects of these 

variations of context sensitivity on the number of contexts generated, the number of 

distinct points-to sets constructed, and on the precision of call graph construction, 

virtual call resolution, and cast safety analysis. We performed our experiments on a 

collection of 27 Java benchmarks. 

Overall, we found that context sensitivity improved call graph precision by a small 

amount, improved the precision of virtual call resolution by a more significant amount, 

and enabled a major precision improvement in cast safety analysis. 

Object-sensitive analysis was clearly better than the other variations of context 

sensitivity that we studied, both in terms of analysis precision and scalability. Client 

analyses based on object-sensitive analyses were never less precise than those based 

on call site string context-sensitive analyses or on the Zhu/Calman/\"Ihaley /Lam al­

gorithm, and in many cases, they were significantly more precise. As we increased 

the length of context strings, the number of abstract contexts produced with object­

sensitive analysis grew much more slowly than with the other variations of context 

sensitivity, so object-sensitive analysis scaled better. However, the number of equiv­

alence classes of contexts was greater with object sensitivity than with the other 

variations, which indicates that object sensitivity better distinguishes contexts that 

give rise to differences in points-to sets. 

Of the object-sensitive variations, extending the length of context strings caused 

very few additional improvements in analysis precision compared to l-object-sensitive 

analysis. However, modelling abstract heap objects with context did improve preci­

sion significantly in many cases. Therefore, we conclude that l-object-sensitive and 

IH-object-sensitive analyses provide the best tradeoffs between precision and analysis 
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efficiency. Our measurements of the numbers of abstract contexts and distinct points­

to sets suggest that it should be feasible to implement an efficient non-BDD-based 

l-object-sensitive analysis using current implementation techniques such as shared bit 

vectors. Efficiently implementing a 1H-object-sensitive analysis without BDDs will 

require new improvements in the data structures and algorithms used to implement 

points-to analyses, and we expect that our results will motivate and help guide this 

future research. 

Although the Zhu/Calman/Whaley /Lam algorithm constructs call site strings of 

arbitrary length, we observed that client analyses based on it were never more precise 

than those based on object-sensitive analysis. In many cases, analyses based on the 

Zhu/ Calman/Whaley /Lam algorithm were even less precise than those based on 1-

call-site-sensitive analysis. We found that the key cause of the disappointing results of 

this algorithm was its context-insensitive treatment of calls within strongly connected 

components of the initial call graph - a large proportion of call edges were indeed 

within such strongly connected components. 

182 



Chapter 6 

Analyses for AspectJ 

In this chapter, we use JEDD and PADDLE to implement a novel analysis and 

optimization for the aspect-oriented programming language AspectJ. In many cases, 

our analysis completely eliminates the run-time overhead of the cfiow construct, which 

has been measured [DGH+04] to be very significant in programs that use cfiow. 

Our analysis is implemented in the abc [abc, ACH+05a] compiler, which is based on 

Soot [VRGH+OO]. The analysis is written in JEDD, and makes use of a call graph 

constructed using PADDLE. 

We first provide sorne background about aspect-oriented programming, AspectJ, 

and the abc compiler in Section 6.1. Next, in Section 6.2, we present the cfiow analysis 

and optimization, and provide experimental results in Section 6.3. We present related 

work in Section 6.4. Finally, we conclude and suggest an area of future work in 

Section 6.5. 

6.1 Background 

6.1.1 AspectJ background 

The purpose of aspect-oriented programming [KLM+97] is to improve modularity 

by separating the implementation of cross-cutting concerns from other parts of the 

program. For example, in a non-aspect-oriented program, logging code is typically 
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spread out in each method whose actions are to be logged. In an aspect-oriented 

program, however, the logging code could be consolidated into a separate logging 

aspect, which would contain a declarative specification of the places in which it should 

apply. 

An aspect is a unit of code, much like a class, intended to encapsulate a concern. 

The key components of an aspect are pointcuts cou pIed with advice. Each pointcut 

is a predicate on joinpoints, which are certain intervals in the dynamic execution 

trace of the program. Advice is the code to be executed before, after, or instead of 

each joinpoint matching the pointcut expression. A joinpoint shadow is the static 

projection of a pointcut. That is, a shadow consists of a consecutive region of one or 

more instructions in the code, and each joinpoint is the dynamic interval spanning 

the time in which these instructions are executed. Note that if the shadow contains 

an instruction that invokes a method, the execution of the invoked method is included 

in the joinpoint, although the instructions of the called method are not generally part 

of the shadow. 

AspectJ is a popular aspect-oriented extension of the Java programming lan­

guage. Two compilers for AspectJ currently exist: the aj c [ajc] compiler formerly 

developed at Xerox PARC and currently managed under the Eclipse project, and 

abc [abc, ACH+05a], a joint project of the Sable Research Group at McGill Univer­

sity and the Programming Toois Group at the University of Oxford. The analyses and 

optimizations discussed in this chapter have been implemented in the abc compiler. 

In AspectJ, each pointcut is specified by an expression consisting of pointcut 

designators combined using boolean operators. Each pointcut designator expresses 

a desired property of the joinpoints to be matched. The AspectJ language defines 

about 17 pointcut designators1 for expressing both static and dynamic properties of 

joinpoints. For example, the call pointcut designator specifies a pattern of method 

signatures, and matches all instructions invoking methods whose signature matches 

the pattern. A pointcut designator p is static if there is a set of shadows such that 

a joinpoint matches p if and only if its shadow is in the set. Adynamie pointcut 

IThe AspectJ language is still in development, so the number of pointcut designators changes 
from version to version. 
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designator may or may not match joinpoints at a given shadow depending on run­

time conditions. To implement static pointcut designators, an AspectJ compiler 

computes, at compile-time, the set of shadows that it matches. Implementing dynamic 

pointcut designators requires the compiler to insert adynamie residue into the 

generated code to test whether the run-time conditions required for the pointcut 

designator to match have been satisfied. The overall motivation of our work is to 

eliminate these dynamic residues where possible to reduce the overhead of aspect­

oriented programming. We perform analyses to find instances of pointcut designators 

which are dynamic in general, but static in the specific instance. 

In this chapter, we focus particularly on the cftow pointcut designator, along 

with the related designator cftowbelow. Each of these pointcut designators takes a 

pointcut p as an argument, and matches all joinpoints contained within a joinpoint 

mat ching p. Recall that a joinpoint is an interval in the execution trace of the 

program; the pointcut cfiow(p) matches the joinpoint j if the interval of j is included 

in the interval of sorne joinpoint j' matched by the pointcut p. The difference between 

cfiowbelow and cfiow is that cfiowbelow requires the interval containment to be strict, 

whereas cfiow(p) also matches every joinpoint matched by p. 

We will use the code in Figure 6.1 as a running example to illustrate the cfiow 

pointcut designator and our cfiow analysis. Since pointcuts are predicates on join 

points, which are intervals in the dynamic execution trace, we show the dynamic 

execution trace for the ex ample code in Figure 6.2, on the right side. The trace 

records all events during the execution of the code. To avoid cluttering the trace, in 

Figure 6.2, we have shown only two kinds of events: the beginning and end of each 

method call. To the left of the trace, we have delimited eight join points (intervals in 

the trace), each corresponding to a method execution. 

We will now present three sample pointcuts, and explain which join points in the 

example trace they match. The pointcut call CC. cO) matches all calls to the method 

C. cC). Therefore, in the example trace, it matches the join points numbered 4 and 6. 

The pointcut cflowCcall CC. cO» matches all join points inclusively nested within 

a join point mat ching call CC. cO). These are the join points numbered 4 and 5, 

because they are nested within join point 4, and the join points 6 and 7, because they 
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1 class C { 

2 void mainO { 

3 aO; Il update shadow 1 

4 cO; Il update shadow 2 

5 dO; Il update shadow 3 

6 zO; Il query shadow 1 

7 } 

8 void aO { 

9 bO; 

10 } 

11 void bO { 

12 cO; Il update shadow 4 

13 } 

14 void cO { 

15 zO; Il query shadow 2 

16 } 

17 void dO { 

18 zO; Il query shadow 3 

19 } 

20 void zO { 

21 } 

22 } 

Figure 6.1: Base code for AspectJ cfiow example 
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begin caU method mainO 

begin caU method aO 

begin call method bO 

begin caU method cO 

5 [ begin 
call method zO 

2 3 4 

end call method zO 

end call method cO 

end call method bO 

end call method aO 

begin call method cO 

1 7 [ begin 
call method z 0 

6 

end call method z 0 
end call method cO 

begin caU method dO 

9 [ begin 
caU method zO 

8 

end caU method zO 

end caU method dO 

[ bcgin caU method zO 

10 

end call method zO 

end caU method mainO 

Figure 6.2: Dynamic trace of method caU join points 
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are nested within join point 6. The pointcut cf lowbelow (call (C . c () )) matches aIl 

join points strictly nested within a join point matching call (C . c () ). These are the 

join point numbered 5, because it is strictly nested within join point 4, and the join 

point numbered 7, because it is strictly nested within join point 6. 

In the aj c and abc compilers, cfiow(p) is implemented by inserting two kinds 

of code sequences into the generated code. Before and after each shadow that may 

match p at runtime, code is inserted to record that a joinpoint mat ching p has been 

entered and exited. If the pointcut p is dynamic, this code is made conditional on 

the dynamic residue of p. We calI this shadow an update shadow. At each shadow 

at which cfiow(p) is to be tested, code is inserted to test whether the execution is 

currently inside a joinpoint matching p. We calI a shadow at which cfiow(p) is tested 

a query shadow. 

We illustrate this using the slightly more complicated pointcut 

1 call(void C.z()) 

2 && cflow(call(void C.a()) 1 1 call(void C.c()) 1 1 call(void C.d())) 

which will be our running example for the remainder of this chapter. The pointcut 

matches every calI to the method C. z () which occurs nested within a calI to one 

of the methods C. a 0, C. cO, or C. dO. We leave it as an exercise to the reader 

to confirm that in the trace in Figure 6.2, the pointcut matches join points 5, 7, 

and 9 In the code in Figure 6.1, the static shadows which may match the argument 

of the cfiow at run-time are the calI sites of methods a 0, cO, and dO at lines 3, 

4, 5, and 12. We have therefore marked them in the code with comments as update 

shadows 1, 2, 3, and 4, respectively. Because the && operator in pointcut expressions 

is short-circuiting, the cfiow is tested at aIl shadows that may match the left operand 

of the && operator, namely call(void C.zO). Therefore, the query shadows for the 

cfiow are the caU sites of z () in lines 6, 15, and 18 of the example code. 

In general, joinpoints matching the argument p of cfiow(p) may ne st recursively, 

so the update shadows must maintain a nesting count. In addition, AspectJ allows 

each pointcut to bind values from the joinpoint it matches, and these values may 

be used inside the advice. If the pointcut p binds values, the generated code must 
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maintain a stack of the bound values of all nested joinpoints mat ching p. In early 

implementations of aj c, all cfiow designators were implemented with a stack of bound 

values. In the common case of a pointcut binding no values, aj c created an empty 

array at each update shadow and pushed it onto the stack. In abc, a much faster 

counter is used when p does not bind any values. The aj c compiler has also adopted 

this optimization as of version 1.2.1. Nevertheless, in programs that use cfiow, the 

overhead of updating and checking the counter or stack can be significant. The goal 

of the optimizations presented in this chapter is to eliminate this overhead. 

6.1.2 abc background 

Development of the abc compiler was motivated by the need for a flexible work­

bench for experimenting with new language features to be added to AspectJ, and 

with aspect-oriented analyses and optimizations. The implementation of abc takes 

advantage of two existing compiler toolkits. Like PADDLE, abc is a built on top of the 

Soot [Soo, VRGH+OO] Java analysis and optimization framework. Soot itself uses the 

Polyglot [NCM03] extensible Java frontend to perform semantic checks on Java source 

code, then converts it to its Jimple intermediate representation. The flexible design 

of Soot and Polyglot made it possible to develop the abc compiler for AspectJ as a 

modular extension of what is usually a compiler for Java. Moreover, because we built 

abc on top of Soot, we can take advantage of the analyses and optimizations already 

implemented, including, in particular, the PADDLE framework which was presented 

in Chapter 4. 

The high-Ievel structure of abc is shown in Figure 6.3. AspectJ source code 

is parsed and analyzed by the Polyglot-based frontend. The front end performs the 

semantic checks for Java included with Polyglot, as well as additional AspectJ-specific 

checks that were added as part of abc. The final pass in the frontend separates the 

AspectJ abstract syntax tree (AST) into a pure Java AST, and an aspect information 

data structure containing all the AspectJ-specific information present in the original 

code. The Java AST is passed to Soot to be converted to Jimple using Soot's standard 

JavaToJimple module. The matcher finds all the shadows in the Jimple code at which 
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Figure 6.3: High-level structure of the abc AspectJ compiler 
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each pointcut may match, and pro duces weaving instructions prescribing where the 

code for each dynamic residue and advice should be woven. The weaver interprets 

the weaving instructions and generates the Jimple code to implement the aspects. 

FinalIy, Soot converts the Jimple into Java bytecode (or, optionalIy, decompiles it to 

Java source code using the Dava [MH02] decompiler). 

In designing abc for analyzing and optimizing AspectJ code, we wanted to lever age 

the many analyses existing for Java code, without having to rewrite aIl ofthem to be 

specifie to AspectJ. Therefore, abc includes a hook to perform analyses on the Jimple 

code produced immediately after weaving, optimize the naive weaving instructions 

originally produced by the matcher, and then repeat the weaving pro cess on the 

original code using the optimized weaving instructions. This is important because 

the weaving process may change properties on which the optimizations depend. For 

example, the cfiow analysis which we present in this chapter requires a calI graph 

which must refiect caUs in the woven code, so the caU graph must be constructed after 

weaving. Because the code being analyzed is standard Jimple with no AspectJ-specific 

constructs, it is possible to apply standard analyses already in Soot and PADDLE. Of 

course, we also implement analyses and optimizations specifie to AspectJ, but these 

are greatly simplified by being able to use the results of Java analyses. 

6.2 Cflow Analysis 

6.2.1 Desired optimization 

The customary implementation of a cfiow pointcut expression cfiow(p) incurs over­

head at two kinds of shadows. First, at each shadow matching p, a cfiow stack 

is pushed and popped to indicate when we are in the dynamic scope of the cfiow. 

We denote these shadows with the term update shadow. Second, at each shadow 

where the cfiow pointcut could possibly match, we insert adynamie residue to test 

whether the cfiow stack is non-empty. We denote these shadows with the term query 

shadow. 
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We wish to perform two kinds of optimization. First, if we can determine cflow 

stack emptiness at a query shadow staticalIy, we can remove the dynamic residue at 

the query shadow, and possibly other code that becomes unreachable. In our running 

example, whose code was shown in Figure 6.1, query shadow 1 on line 6 can never 

execute within the cfiow of a call to method a 0, cO, or dO, so we can statically 

determine that the cflow stack will be empty, and remove the dynamic check at that 

line. On the other hand, query shadow 3 on line 18 is in the cflow of method d () 

every time it executes, so the cfiow stack is never empty, and we can remove the 

dynamic check. Second, if we can prove that a cflow stack update operation will not 

be observed by a stack query within the dynamic scope of a given update shadow, 

we can remove the stack update operations at the update shadow. In our running 

example, after we have removed the dynamic check at query shadow 3 in line 18, there 

are no remaining dynamic checks during any execution of method dO, so the stack 

update operations at update shadow 3 in line 5, a call site of dO, can be removed. 

6.2.2 Analysis prerequisites 

Because the cflow analysis estimates the calling contexts in which cflow shadows 

execute, a calI graph is a key prerequisite. To construct the calI graph, we use PADDLE 

in its default configuration, and obtain the context-insensitive calI graph from the calI 

graph (CG) component. SemanticalIy, cfiow queries are to be evaluated at run-time 

on the woven code, so the call graph is built for the woven Jimple code after the 

initial weaving. In AspectJ, a method m is considered be within the cflow of another 

method m' whenever m executes during the execution of m', regardless of whether m 

is invoked by an explicit invoke instruction, or implicitly by the VM for one of the 

reasons listed in Section 4.3.2. Therefore, aIl the edges in the calI graph are relevant 

to the cflow analysis, including the implicit kinds of edges. There is one exception: 

when a method starts a new thread, the new thread is not considered to be in the 

cflow of the method that started it. Therefore, the cfiow analysis checks the kind 

of each caU edge, and ignores those edges marked as representing implicit caUs to 

Thread. run () from Thread. start () . 
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The abc compiler must communicate to the cfiow analysis the locations of the 

query and update shadows. For each query and update shadow that it weaves, the 

weaver records the Jimple instructions that were woven for it. This mapping of 

shadows to Jimple instructions is passed to the cfiow analysis to indicate the locations 

of the shadows in the Jimple code. 

6.2.3 Desired analysis results 

For each update shadow sh in the program, we define two sets of instructions to 

be computed, mayCfiow( sh) and mustGfiow( sh). The set mayCfiow( sh) contains 

every instruction i in the pro gram such that when i is executed, we may be in the 

dynamic scope of sh. That is, i may execute after the push operation of sh has been 

performed, but before the corresponding pop operation has been performed. The set 

mustCfiow( sh) contains every instruction i in the program such that whenever i is 

executed, we must be in the dynamic scope of sh. 

Whenever a query shadow is not in mayCfiow(sh) , we replace the dynamic test 

with a constant false pointcut designator. 2 Any query shadow in mustCfiow(sh) is 

replaced with a constant true pointcut designator. 

In addition, we calculate a subset necessaryShadows of update shadows whose ef­

fect may be observed at a query shadow. Each update shadow sh E necessaryShadows 

satisfies two properties. First, sorne query shadow qsh that has not been resolved stat­

ically may occur in the dynamic scope of sh (i.e. qsh E mayCfiow(sh)). Second, sh 

may occur outside the dynamic scope of all update shadows for the same cfiow stack 

(i.e. ~sh'.sh E mustCfiow(sh')). This second condition enables us to mark as unnec­

essary those update shadows at which the stack is always already non-empty. In our 

running example, update shadow 4 in line 12 is in the cfiow of a call to method aO 

every time it executes, so the stack is never empty, and the stack update operation 

at update shadow 4 can be removed. 

2The cfiow designator may be part of a more complicated pointcut expression. Constant folding 
of pointcut expressions is done in a separate phase prior to weaving. 
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The optimizations become more complicated when the cfiow binds arguments 

because, in this case, each query shadow not only tests whether the stack is non­

empty, but also observes the entry at the top of the stack. We can still resolve 

statically those query shadows not in mayCfiow( sh), since we know that the stack 

would always be empty when they are executed. However, at the query shadows 

where we know the stack is non-empty, we must keep the dynamic residues which 

read the entry from the stack. In addition, we can no longer remove update shadows 

just because they are in the mustCfiow of some other update shadow which will make 

the stack non-empty, because we also need the correct entry to be pushed onto the 

stack in addition to the stack being non-empty. 

Defining sets of program statements known to execute possibly or definitely within 

the cfiow is a natural way of specifying the analysis. However, these sets can be quite 

large, and it may be prohibitively costly to express them explicitly in an implemen­

tation of the analysis. Devising a more compact representation could be difficult. We 

implement our analysis in the JEDD language and store the sets of program state­

ments in BDDs, which automatically share the representation of common subsets of 

statements. BDDs provide us with a compact representation of sets of statements 

without any added complexity in the analysis itself. 

6.2.4 Computing analysis results 

The exact extent of a cfiow shadow depends on subtle details of advice precedence 

and the distinction between cfiow and cfiowbelow, and the weaver must respect these 

details wh en weaving in the cfiow stack update operations. Because we perform the 

analysis on the woven code, we need not consider these details; we simply consider 

each cfiow shadow to start immediately after the point where the weaver wove the 

cfiow push instruction, and end immediately before the corresponding cfiow pop 

instruction. We need to unambiguously classify every instruction in the method as 

being either within or outside the cfiow shadow. This requires that there be no jumps 

into or out of the shadow, which would bypass the push or pop instruction. 
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Due to details of the weaving process, this requirement is always satisfied, except in 

the case wh en the argument p of the cfiow expression cfiow(p) is not entirely static, 

and requires a dynamic residue. In this case, the weaver generates the dynamic 

test at the update shadow. If the pointcut p does not match, we do not enter the 

dynamic scope of the cfiow, so a conditional jump skips the stack update operations. 

Therefore, when p is not entirely static, the instructions between the push and pop 

may execute within or outside the dynamic scope of the cfiow. Since no instruction 

can be guaranteed to execute only in the dynamic scope of the cfiow, mustGfiow(sh) 

is the empty set in this case. 

The JEDD code to compute mayCfiow(sh) for an update shadow sh is shown in 

Figure 6.4. The mayCflow set is initialized with the set of statements intraprocedu­

rally within the shadow in line 2. Line 6 queries the call graph for the target methods 

of all call statements in the mayCflow set. Line 7 adds all statements in those methods 

to the mayCflow set. This pro cess is repeated until a fixed point is reached. 

1 <stmt> mayCfIow(Shadow sh) { 

2 <stmt> mayCfIow = stmtsWithin(sh); 

3 do { 

4 old = mayCfIow; 

5 

6 <method> targets = mayCfIow{stmt} <> caIITargets{stmt}; 

7 mayCflow 1= targets{method} <> stmtsln{method}; 

8 

9 } whiIe( mayCfIow != old ); 

10 return mayCfIow; 

11 } 

Figure 6.4: JEDD code to compute mayGfiow for one update shadow 

A cfiow pointcut designator may have many update shadows, and the code in 

Figure 6.4 has to be executed separately for each one. We can improve on this 

by computing the mayCfiow sets for all the update shadows at once, as shown in 

Figure 6.5. The key modification is that a shadow attribute has been added to the 
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mayCflow and targets relations, so that instead of storing a single mayCfiow set, they 

instead store a relation of all the mayCfiow sets, indexed by shadow. Specifically, the 

mayCflow relation contains all pairs (sh, st) such that st E mayCfiow(sh). Computing 

the mayCfiow sets all at the same time allows the BDDs to take advantage of any 

similarities in the sets. This modification is an example of a general approach often 

applicable when expressing computation relationally; rather than writing algorithms 

that manipulate a single fact at a time, we write them to manipulate relations of 

many facts in a single operation. 

1 <shadow, stmt> mayCflow() { 

2 <shadow, stmt> mayCflow = OB; 

3 for( Shadow sh : shadows ) { 

4 mayCflow 1= new {sh=>shadow}{} >< stmtsWithin(sh){}; 

5 } 

6 do { 

7 old = mayCflow; 

8 

9 

10 

11 

<shadow, method> targets = mayCflow{stmt} <> callTargets{stmt}; 

mayCflow 1= targets{method} <> stmtsln{method}; 

12 } while( mayCflow != old ); 

13 return mayCflow; 

14 } 

Figure 6.5: JEDD code to compute mayCfiow for all update shadows at once 

Like the mayCfiow sets, mustCfiow is also computed for all the update shadows 

at once. However, in this case, the analysis only needs to know that there is sorne 

update shadow in whose cfiow the query must be, but it does not need to know 

which update shadow it is. That is, the analysis only needs to compute the set 

{st 1 3sh : st E mustCfiow( sh)}. Since the mustCfiow algorithm does not need to 

keep track of the update shadows, its relations do not need a shadow attribute. 
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We show the JEDD code for computing mustGfiow in Figure 6.6. If the cfiow 

argument has a dynamic residue, the mustCfiow set is empty (li ne 2), as discussed 

earlier. Otherwise, the code first initializes shadowStmts with aIl the statements 

intraprocedurally within sorne update shadow (lines 4 to 6), which definitely are in 

the mustGfiow. The mustCflow set starts with aIl the statements in the pro gram 

(line 7); the loop in lines 10 to 19 will eventually remove aIl statements that can be 

reached without passing through a statement in shadowStmts. The badMethods set 

stores the methods found not to be in the mustGflow. In line 8, it is initialized to 

the entry points of the program. The badStmts set stores the statements found not 

to be in the mustGflow. These are the statements in the badMethods (line 13), but 

not any of the statements in shadowStmts (line 14), since those are in the cflow. The 

badStmts are removed from mustcflow (line 16), and any methods called from them 

become badMethods (line 17). The pro cess repeats until a fixed point is reached. 

The JEDD code to compute necessaryShadows is shown in Figure 6.7. It begins 

with the set of aIl query statements (line 2). On line 3, it removes those known 

statically to be false (those which are not in the mayCfiow of any update shadow). 

On line 4, it also removes those known statically to be true (those in the mustGfiow 

of sorne update shadow), unless the cflow binds arguments. This leaves the query 

statements that will be tested dynamicaIly. The necessary shadows are those update 

shadows in whose mayCflow any dynamic query statement appears (line 5). Unless 

the cfiow binds arguments, we can also remove those update shadows which are 

already in the mustGflow of another update shadow (line 6). 

6.3 Experimental Results 

We evaluated the cfiow optimizations on benchmarks from a wide range of sources. 

The benchmarks are listed in Table 6.1. The figure benchmark is a demo from the As­

pectJ programming guide [Asp]. The quicksort benchmark is the example from [Sd03] 

with modifications suggested by Gregor Kiczales. The sablecc benchmark is a com­

piler written using the SableCC [GMN+] compiler generator, with an aspect applied 

197 



Analyses for AspectJ 

1 <stmt> mustCfIow() { 

2 if(dynamicArgument) return OB; 

3 <stmt> shadowStmts = OB; 

4 fore Shadow sh : shadows ) { 

5 shadowStmts 1= stmtsWithin(sh); 

6 } 

7 <stmt> mustCfIow = lB; 

8 <method> badMethods = entryPoints; 

9 <stmt> old; 

10 do { 

Il old mustCfIow; 

12 

13 <stmt> badStmts = badMethods{method} <> stmtsln{method}; 

14 badStmts -= shadowStmts; 

15 

16 mustCfIow -= badStmts; 

17 badMethods = badStmts{stmt} <> caIITargets{stmt}; 

18 

19 } whiIe( old != mustCfIow ); 

20 return mustCfIow; 

21 } 

Figure 6.6: JEDD code ta compute mustGfiow 

1 <shadow> necessaryShadows() { 

2 <stmt> queryStmts = aIIQueryStmts; 

3 queryStmts &= (shadow=» mayCfIow(); 

4 if(!bindsArgs) queryStmts -= mustCfIow(); 

5 <shadow> necessaryShadows = mayCfIow{stmt} <> queryStmts{stmt}; 

6 if(!bindsArgs) necessaryShadows -= 

7 mustCfIow{stmt} <> shadowOfStmt{stmt}; 

8 } 

Figure 6.7: JEDD code ta compute necessaryShadows 
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to count memory allocations in each of its phases. The ants benchmark is a simu­

lator of an ant colony designed completely in an aspect-oriented style. The bench­

marks LoD-sim and LoD-weka consist of the Law of Demeter [LLW03] style-checking 

aspect applied to two base programs, Certrevsim, a discrete event simulator for cer­

tificate revocation simulation [Am], and Weka, part of the Weka machine leaming 

library [WFOO]. Cona [SL04] is a framework for specifying and checking pre- and 

post-conditions using aspects. It was applied to the stack example from the Cona 

paper, and to Certrevsim. 

1 Benchmark Source Lines of Code 1 

figure 94 

quicksort 72 

sablecc 31233 

ants 939 

LoD-sim 1586 

LoD-weka 3912 

Cona-stack 291 

Cona-sim 1942 

Table 6.1: Benchmarks 

Static results of our interprocedural cfiow analysis are shown in Table 6.2. The 

"query shadows" column shows, for each cfiow pointcut designator, the total number 

of query shadows and, of those, how many the analysis determined to be unreach­

able, how many are determined to never or always match, and how many cannot be 

determined statically and therefore still require a dynamic test. The "update shad­

ows" column shows the total number of update shadows and the number that the 

analysis determines to be necessary, and must remain as dynamic updates even after 

the analysis. 

With the exception of one cfiow pointcut designator in sablecc, the analysis was 

able to statically determine the outcome of aH cfiow queries, and therefore entirely 
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Benchmark Query shadows Update shadows 

Total Unreach. Never Always Dynamic Total Dynamic 

figure 6 0 2 4 0 6 0 

quicksort 6 0 2 4 0 3 0 

sablecc 985 388 299 298 0 698 0 

985 388 332 260 5 1 1 

ants 84 0 84 0 0 1 0 

LoD-sim 1313 798 515 0 0 41 0 

LoD-weka 7031 3501 3530 0 0 41 0 

Cona-stack 16 0 14 2 0 27 0 

Cona-sim 2 0 2 0 0 2 0 

3 3 0 0 0 18 0 

4 3 1 0 0 31 0 

0 0 0 0 0 2 0 

7 5 2 0 0 20 0 

0 0 0 0 0 6 0 

4 0 4 0 0 5 0 

0 0 0 0 0 3 0 

Table 6.2: Static interprocedural optimization counts 
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remove the dynamic updates and queries of the cfiow stacks or counters. The im­

precision in the sablecc case is due to query shadows in a static initializer. Since any 

instruction that uses a class could potentially cause the class to be initialized, the 

static initializer could be called from many different places in the pro gram. 

Even though the cfiow pointcut in ants binds an argument, it can be eliminated 

because it is never queried. This is because the pointcut is being used as an assertion 

to find an error condition. By determining that the cfiow never matches, we have 

statically verified the assertion. 

We were pleasantly surprised that the interprocedural analysis was so effective in 

resolving cfiow staticaIly. To confirm that these analysis results are indeed correct, 

we ran an the benchmarks with a special dynamic residue woven in to check that the 

static analysis results always agreed with the run-time behaviour. 

We compiled and timed the benchmarks on a machine with two AMD Athlon 

MP 2000+ CPUs running at 1667 MHz, with 2 GB RAM, running Linux version 2.4.20 

and the Sun Java HotSpot Client Virtual Machine version 1.4.2-b28. The benchmark 

running times are presented in Table 6.3. The three middle columns show the running 

times of the benchmarks when compiled with the latest version of the aj c compiler, 

the abc compiler in its default configuration (without interprocedural cfiow optimiza­

tions), and the abc compiler with the -03 fiag, which enables the interprocedural cfiow 

optimizations. The default configuration of abc includes aIl of the intraprocedural 

techniques to reduce the cost of cfiow described in [ACH+05b]; notice that it already 

significantly outperforms aj c on most of the benchmarks. The right-most column 

shows the additional speedup provided by the interprocedural cfiow optimizations 

compared to the default configuration of abc. 

The largest speedups are in the figure benchmark, which makes very significant 

use of cfiow, and in the ants benchmark, in which the cfiow binds an argument, and 

must therefore be tracked with a stack instead of a counter. The speedups on the 

other benchmarks are also significant, except for quicksort, in which the overhead of 

cfiow is smaIl, and Cona-sim, which becomes slightly slower when the cfiow operations 

are removed from it, presumably due to chaotic interactions with the virtual machine 

and hardware. 
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ajc 1.2.1 abc 1.0.2 

Benchmark default default 1 -03 Speedup 

figure 167.7 20.3 1.96 936.% 

quicksort 28.9 27.4 27.3 0.366% 

sablecc 24.2 22.5 20.4 10.3% 

ants 32.9 17.9 13.1 36.6% 

LoD-sim 35.3 26.2 23.7 10.5% 

LoD-weka 113.5 75.2 66.3 13.4% 

Cona-stack 56.0 27.4 23.1 18.6% 

Cona-sim 69.0 72.0 73.6 -2.17% 

Table 6.3: Benchmark running times (seconds) 

6.4 Related Work 

The work described in this chapter was motivated by an empirical study measuring 

the run-time overheads of aspect-oriented features [DGH+04]. The study showed 

that this overhead can be very significant, particularly in programs containing cfiow 

pointcuts and around advice. We therefore focused on reducing the overhead of 

these two constructs [ACH+05b] by devising intraprocedural techniques that reduce 

the overhead of cfiow, the interprocedural analyses presented in this chapter that 

eliminate cfiow overhead entirely, and efficient implementation techniques for around 

advice. 

The cfiow analyses presented in this chapter were inspired by earlier work by 

Sereni and de Moor [Sd03] on a simple procedurallanguage. For each shadow testing a 

cfiow-like pointcut designator, they computed a regular language over-approximating 

the set of all call stack configurations possible at the shadow. The pointcut designator 

was tested against these call stacks; if it matched all of them or none of them, it could 

be resolved statically. 

Costanza [Cos03] noted the resemblance between cfiow pointcuts and dynamically 

scoped functions in languages such as Lisp. The state captured at a cfiow update 
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shadow is made available at queries within its dynamic scope. In the same way, state 

stored in variables of dynamically scoped functions is available throughout the dy­

namic scope of the function. Neubauer and Sperber [NS01] presented a dynamic scope 

analysis intended for automatic pro gram translation from Emacs Lisp to languages 

without dynamically scoped variables. 

6.5 Conclusions 

We have presented an interprocedural analysis and optimization for cfiow pointcuts in 

AspectJ. In cases where the analysis resolves all cflow queries statically, it removes all 

overhead of dynamic cfiow tests. In our experiments, the analysis did indeed resolve 

all queries statically in all but one benchmark. In six of our eight benchmarks, the 

cflow overhead that was removed accounted for over 10% of execution time, even after 

all intraprocedural techniques for reducing the cost of the cflow tests from [ACH+05b] 

had been applied. 

Our implementation of the cflow analysis relies on both JEDD and PADDLE. The 

JEDD implementation of the cflow analysis is concise, and takes advantage of BDDs 

to efficiently represent the large sets of statements that may or must execute within 

a given cfiow pointcut. The PADDLE framework is used to construct the call graph 

needed by the cflow analysis. 

The remarkable static precision of the cfiow analysis suggests an area of future 

work in extending AspectJ to allow "dynamic" pointcuts such as cflow to be used in 

contexts where currently only "static" pointcuts are allowed, such as in the declare 

error construct. Currently, this construct allows programmers to specify very sim­

ple program-specific properties to be verified at compile time. Allowing additional 

pointcut designators would make it possible to specify more interesting properties. A 

sufficiently precise analysis could check the properties at compile time. Should the 

analysis fail to verify a property statically, it could pro duce a warning and weave in 

an assertion to check the property at run time. 
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Chapter 7 

Conclusions and Future Work 

Compilers and software engineering tools require increasingly precise and efficient 

interprocedural program analyses. A key problem in implementing these analyses is 

representing the collections of large sets that these analyses manipulate. We have 

shown that BDDs are a general-purpose data structure for compactly storing and 

efficiently manipulating these sets. In particular, we have shown that a BDD-based 

implementation makes it possible for context-sensitive analyses to scale to large Java 

programs. In addition, the use of BDDs frees analysis designers from having to design 

special-purpose data structures customized for each program analysis, and therefore 

makes it easier to develop and experiment with new analyses. 

7.1 The Jedd Language and Compiler 

We have presented JEDD, a programming language and compiler that makes it feasible 

to implement complicated, interrelated program analyses using BDDs. In the JEDD 

language: program analyses are expressed at a high level in terms of relations, and 

the JEDD compiler translates the relational operations into low-Ievel BDD operations. 

In the process, JEDD performs static and dynamic type checking to catch the incon­

sistent uses of relations that would make it infeasible to write the analyses in terms 

of BDDs directly. We have designed and implemented within JEDD an algorithm for 

fin ding a reasonable assignment of relation attribut es to BDD physical domains. The 
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programmer may specify part of the physical domain assignment by hand to tune 

performance-critical computations, and use the algorithm to automatically complete 

the assignment for the rest of the program. JEDD also provides support for tuning the 

BDD representation, including a profiler that graphicaUy displays the shapes of the 

BDDs that are constructed during execution. We have identified several patterns of 

the BDD shapes associated with common inefficiencies, and suggested techniques for 

tuning the physical domain assignment and BDD variable ordering wh en these pat­

terns are observed. FinaUy, we have shown that JEDD introduces almost no overhead 

into the performance of program analyses (compared to program analyses imple­

mented directly in terms of BDD operations), and that the JEDD translator scales to 

programs as large as our PADDLE interprocedural analysis framework. 

In summary, we have shown that BDDs are a flexible way to prototype and ex­

periment with novel interprocedural program analyses. 

7.2 The Paddle Interprocedural Analysis Framework 

Using JEDD, we have implemented PADDLE, a framework of interrelated interprocedu­

raI program analyses. PADDLE consists of a BDD-based implementation of points-to 

analysis with on-the-fly caU graph construction, and related prerequisite and client 

analyses. PADDLE supports several variations of context sensitivity, including using 

strings of caU sites and strings of receiver objects as the context abstraction. Because 

PADDLE represents context information using BDDs, these context-sensitive analyses 

scale to much larger Java programs than earlier implementations. 

The two key analyses in the PADDLE framework, points-to analysis and caU graph 

construction, are prerequisites for many interprocedural program analyses for Java 

required by optimizing compilers and software engineering tools. For example, opti­

mizing compilers can make use of interprocedural analysis information to reduce the 

overhead of virtual caUs and remove redundant heap accesses. Software engineering 
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tools such as bug detectors, program verifiers, and race detectors make use of call 

graphs and points-to information. 

7.3 Empirical Evaluation of Context Sensitivity 

We have used PADDLE to perform an empirical evaluation of the effect of variations of 

context-sensitive analyses on the precision of call graph construction, points-to analy­

sis, and related client analyses. Thanks to our use of BDDs to implement the analyses, 

we were able to include in our study variations of context sensitivity that could not 

be included in earlier studies because their non-BDD implementations were not suf­

ficiently scalable. We showed that object sensitivity [MRR02, MRR05] in particular 

does significantly improve precision of interprocedural program analyses. Among 

the variations of object sensitivity, extending the length of context strings beyond 

one receiver object does not further improve precision of client analyses. However, 

modelling abstract heap objects with context does improve precision compared to an 

analysis that models only pointer variables with context, although it also increases 

the co st of the analysis. Therefore, we conclude that l-object-sensitive analyses, with 

or without context-sensitive modelling of abstract heap objects, are the best tradeoffs 

between analysis precision and cost. 

7.4 Analysis of the cflow Construct 

We have designed and implemented in the JEDD language a static analysis of the 

cfiow construct in the aspect-oriented language AspectJ. The analysis builds on top 

of the call graph constructed by PADDLE. By implementing the analysis at a high 

level in JEDD and deferring low-Ievel concerns about efficient data representation 

to BDDs, we were able to easily experiment with variations of the analysis during 

its development. The final implementation of the analysis very closely resembles its 

specification. 
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The analysis itself was very successful. In seven of our eight benchmarks, the 

analysis resolved all cfiow queries statically, removing all overhead due to the cfiow 

construct. In six of the eight benchmarks, this overhead due to cfiow represented 

over 10% of execution time. 

The high precision of the analysis results suggests that it could be used not only 

for reducing the overhead of cfiow, but for statically verifying program specifications 

expressed using the cfiow construct. 

7.5 Future Work 

The JEDD system that we have developed and presented in Chapter 3 provides an 

ideal platform for prototyping program analyses. In the future, we will continue to 

use it to experiment with new static analyses, particularly for emerging languages 

such as AspectJ. 

The PADDLE framework that we have developed is a key foundation for appli­

cations of precise interprocedural analyses for Java. We plan to continue to use it 

to develop new compiler optimizations, particularly for new language features being 

proposed. For example, we recently defined tracematches [AAC+05] as a mecha­

nism for expressing sequences of events in program traces, and for triggering actions 

when these sequences are observed. In order to be efficient enough to be practical, 

tracematches are likely to require sophisticated interprocedural analyses and opti­

mizations. Furthermore, PADDLE will serve as the foundation of software engineering 

tools, including visualizers and verifiers. A simple example of such a tool would be 

to integrate the cast safety analysis described in Section 4.4.2 into an Integrated De­

velopment Environment, where it would warn programmers about potentially failing 

casts during program development. 

In our study of the effects of context sensitivity on analysis precision, we have 

identified object sensitivity as a technique deserving further research. In particular, 

we have shown that object-sensitive analyses are more precise than other variations, 

and that it is likely that efficient implementations of object-sensitive analyses can be 
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found. Our search for these efficient implementations will be guided by the observa­

tions from our study. 

The very high precision of our analysis of the cfiow construct in AspectJ suggests 

a new area of application of aspect-oriented techniques: static verification of program 

properties expressed using aspects. In aspect-oriented languages, aspects are a natural 

way for programmers to express assertions about the intended behaviour of their 

programs. In current aspect-oriented systems, these assertions can be checked at 

run time. By developing precise analyses of aspect-oriented features, we will make it 

possible to check these assertions statically. 

209 



Conclusions and Future Work 

210 



Appendix A 

Proofs 

Proposition 1 The problem of fin ding a reasonable physical do main assignment is 

NP-complete. 

Proof: We prove that the problem is NP-hard by constructing a polynomial reduc­

tion of the NP-complete graph vertex k-colouring problem to it. For a given graph 

G, we construct a JEDD program for which a reasonable physical domain assignment 

exists if and only if G has a k-colouring. 

Let G = (V, E) be a graph for which a k-colouring is to be found. Construct a 

JEDD program from it as follows: 

1. Declare attributes a, b, and c. 

2. Declare k + 1 physical domains do . .. dk . 

3. For each vertex Vi E V, declare a JEDD relation variable Xi with schema <a, b>, 

and no physical domains specified. 

4. For each j with 1 :s; j :s; k and for each Vi E V, add an assignment of a relation 

literaI: 

Xi = new {o1=>a:d j , o2=>b:do}. 

5. For each edge (Vi, Vj) E E, add a statement computing 

xi{b} <> ((a=>c) Xj){b}. 
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Now, if G has a k-colouring, the following physical do main assignment is reason­

able. For each Vi coloured C(Vi), assign the physical do main dc(vi) to the following 

attribute instances: 

1. attribute a of Xi, 

2. attribute a of the literaI with a explicitly specified to be assigned to dei' 

3. attribute a of the result of each composition having Xi as its left argument, and 

4. attribute c of the result of the composition having ((a=>c) Xj) as its right 

argument. 

Conversely, suppose a valid physical domain assignment with no unnecessary re­

places has been found for the JEDD program. Attribute a of each Xi must be assigned 

to sorne physical domain, and there is a reason to assign it to any of the physical 

domains dl, ... ,dk because of the k literaIs. Attributes a and c of the result of each 

composition can only be assigned with reason to the same physical domain as the 

corresponding operand. Each composition with arguments Xi and Xj therefore forces 

attribute a of Xi and Xj to be assigned to distinct physical domains. Now, whenever 

attribute a of Xi is assigned to dj , we colour Vi with the colour j. For each edge 

(Vi, Vj) in G, the corresponding composition ensures that Vi and Vj are coloured with 

different colours, so we have obtained a k-colouring of G. 

Therefore, Gis k-colourable if and only if a reasonable physical domain assignment 

exists for the constructed JEDD program, so the physical domain assignment problem 

is NP-hard. 

Given a physical domain assignment, it can be checked in polynomial time that it 

is reasonable. Therefore, finding a reasonable physical domain assignment is in NP. 

Since it is also NP-hard, it is NP-complete. 0 

Proposition 2 Let G be an attribute def-use gmph, and let -< be an antisymmetric 

binary relation on its vertices su ch that a -< b implies that a and b are connected by 

an assignment edge in G. Then the foilowing four statements are ail equivalent: 
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1. --< is a well-founded relation. 

2. There exists a total order ~ such that a --< b ::::} a < b. (This is the order in 

which physical domains could be assigned the vertices.) 

3. There exists a total antisymmetric relation ç su ch that a --< b ::::} a C band 

there is no triple of distinct vertices a, b, c su ch that a --< b CcC a. 

4· On the vertices of every biconnected component C = (Vc , Ec) of the graph 

formed by assignment edges) there exists a total antisymmetric relation Çc su ch 

that Va, b E Vc.a --< b ::::} a Cc band there is no triple of distinct vertices a, b, c 

su ch that a --< b Cc c Cc a. 

Proof: 

1 ::::} 2: 

Suppose --< is a well-founded relation, so that every non-empty subset of vertices 

contains a minimal element. Define recursively the sequence of sets Sl, S2, ... ,Sn = 0 
by Sl = V, the set of all vertices, and for each i 2 1, Si+1 = Si \ {ai}, where ai is a 

minimal element of Si. Then let ~ be the total order defined by i ~ j {:} ai ~ aj. 

If ai --< aj, then since aj is a minimal element of Sj, ai cannot be in Sj. But since 

Sj = V \ {ak 1 k < j}, it must be the case that ai E {ak 1 k < j}. Therefore, i < j, 
so ai < aj. So, for all a, b, a --< b ::::} a < b, satisfying statement 2. 

2 ::::} 3: 

The total order ~ satisfies the properties required of the relation ç by statement 

3. It is a total antisymmetric relation, and a --< b ::::} a < b. Given any triple of 

distinct vertices a, b, c, it is not the case that a ~ b ~ c ~ a, since transitivity and 

antisymmetry would imply a = b = c. Since a --< b ::::} a ~ b and a < b ::::} a ~ b, it is 

also not the case that a --< b < c < a. 

3 ::::} 4: 

Let ç be a relation satisfying statement 3. Given a biconnected component C = 

(Vc, Ec) ofthe graph formed by assignment edges, let Çc be the relation {(a, b) 1 a, b E 

Vc 1\ a ç b}. Then Çc satisfies the required conditions of statement 4. 

4 ::::} 1: 
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We prove this by contradiction. Suppose that statement 4 holds, yet -< is not 

well-founded, so there exists an infinite descending chain ... -< a2 -< al -< ao. Since 

the number of attribute instances is finite, sorne ai must be repeated; that is, there 

exist indices i and j, j < i, with aj = ai. 

Let n = j - i and define bk = ai+k for all k, giving the cycle bo = bn -< bn - l -< 
... -< bo. Without loss of generality, we can choose the smallest cycle, so that all 

the bi 's from bl to bn are distinct. Since every pair x -< y implies an assignment edge 

between x and y, the b/s form a cycle in the graph of assignment edges, so they are 

all in the same biconnected component. Because -< is antisymmetric, the length of 

the cycle, n, is at least 3. 

Let ç::;;c be the relation that satisfies statement 4 on the biconnected component 

containing the b/s. We show by induction on i that bi Cc bo for all 1 ~ i ~ n - l. 

When i = 1, bi Cc bo follows from bl -< bo. Suppose that for sorne k with 2 ~ k < 
n - 2, bk Cc bo· It cannot be the case that bo Cc bk+l , since ç::;;c satisfies statement 4, 

which states that there is no triple bk+l , bk , bo for which bk+1 -< bk Cc bo Cc bk+l. 

Since ç::;;c is total, it must be the case that that bk +1 Cc bo. Therefore, bk Cc bo 

implies bk+l Cc bo· By induction, bi Cc bo for all 1 ~ i ~ n - l. 

Now we have bn - l Cc bo = bn , but bn -< bn - l implies bn Cc bn - l . This contradicts 

antisymmetry of Cc. D 

Proposition 3 When the SAT formula produced for the physical domain assignment 

problem is unsatisfiable, every unsatisfiable core contains at least one clause of type 3.4 
(confiict clause). 

Proof: The key idea of the pro of is that if clauses of type 3.4 are removed, the SAT 

formula ignores the requirement that conflict edges be respected. We will show that it 

is always possible to find a reasonable assignment if all conflict edges are removed, and 

such a physical domain assignment therefore corresponds to a satisfying assignment 

of the remaining clauses. 

We will first construct the total order ~ in which physical domains are assigned to 

vertices. We represent the or der by numbering the vertices with consecutive natural 

numbers. To each vertex v, we assign a natural number o( v) and define o( v) ~ 
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o( V') {::} V ::; V'. We begin by assigning the lowest natural numbers arbitrarily to 

the vertices with explicitly specified physical domains. Define the sequence of sets 

Ai = {v 1 o( v) ::; i}, so Ai is the set of the first i vertices to be assigned a physical 

domain. Let k be the number of vertices with explicitly specified physical domains, so 

Ak is the set of these vertices. Recall that there exists a path of assignment edges from 

every vertex to a vertex in Ak. Therefore, for all i > k, there must be an assignment 

edge from sorne vertex v in V \ Ai to sorne vertex v' in Ai (as long as V \ Ai is not 

empty). Otherwise, there would be no path from any vertex in V \ Ai to any vertex 

in Ai, but there has to be a path from every vertex in V \ Ai to Ak, and Ak ç Ai' 

Having defined the sets Ai, we can inductively number all the vertices in the following 

way: for each i > k, find a vertex v E V \ A such that an assignment edge connects 

v to sorne vertex in Ai, and define o( v) = i + 1. 

Having thus defined the order in which physical domains are to be assigned to 

vertices, we can construct a reasonable assignment following the order. We first 

assign physical domains to the k vertices for which they have been explicitly specified. 

Then each vertex v with o( v) > k has at least one neighbouring vertex v' E Ao(v)-l 

connected by an assignment edge. Since v' E Ao(v)-l, o(v' ) ::; o(v) - 1 < o(v). 

Therefore, if we assign physical domains in order, v' will be assigned a physical domain 

before v, so there is a reason to assign v the same physical do main as v'. 

It can be checked that a physical domain assignment constructed in this way 

satisfies clauses 3.1, 3.2, and 3.3. Define v' -< v if and only if o(v' ) < o(v), and v is 

assigned the same physical domain as v'. By the definition of -<, SAT clauses 3.5, 

3.6, and 3.7 are satisfied. Since -< satisfies statement 1 of Proposition 2, statement 

4 also holds. By statement 4, there exists a relation Çc such that -< and Çc satisfy 

SAT clauses 3.8 and 3.9. 

We have constructed an assignment satisfying all clauses except those of type 3.4. 

Therefore, every unsatisfiable subset of clauses must contain a clause of type 3.4. 0 
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Appendix B 

Jedd Usage Notes 

This appendix provides additional practical information for programmers intend­

ing to write JEDD code. Programmers should first read Chapter 3 to learn about 

the JEDD system in general. The appendix contains implementation-specifie details 

about using the JEDD translator and runtime system. 

B.1 Example 

The JEDD distribution includes a direct ory called examples containing sample JEDD 

code. The direct ory examples/pointsto contains a complete JEDD implementation 

of the BDD-based points-to analysis from [BLQ+03J. 

B.2 Jedd Source Files 

Source files to be processed by JEDD must have one of the extensions . j edd or 

. java. It is customary to use the extension . j edd for files containing JEDD-specific 

constructs, and . java for files containing plain Java. 

JEDD files should import the package j edd. * from the JEDD runtime library. This 

package contains interface classes with methods that can be called by JEDD programs. 

In particular, the j edd . J edd class is a singleton containing methods affecting the 
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behaviour of JEDD in general, and jedd.Relation is an interface listing the methods 

that can be called on any JEDD relation type. JEDD files should not import the 

package j edd. internal. *. 

B.3 Selecting a Backend 

JEDD currently supports four different BDD libraries as backends: BuDDy, CUDD, 

SableJBDD, and JavaBDD. BuDDy is the backend which has the most complete 

support in JEDD, which is the most tested, and which tends to perform best. BuDDy 

and CUDD are C libraries, so they require that their shared hbrary (. so or . dll) files 

be available on the LD_LIBRARY_PATH. Before the program instantiates any relations, 

it must must select one of the backends by calling j edd . J edd . v () . setBackend () . 

The argument to this method should be one of "buddy", "cudd", "sablejbdd" or 

"javabdd". 

B.4 Compiling Jedd Code 

The JEDD compiler is invoked with the command java jedd.Main. It uses the same 

command-line format as Polyglot, with two additional switches for specifying the path 

to a SAT solver (-s) and a SAT core extractor (-sc). The simplest way to compile 

a project is to list aH the . j edd files on the command line. This will compile them 

to . java files, and run j avac on them to compile them to classfiles. The -c switch 

disables the j avac pass. If your project consists of both . j edd and . java files, you 

can put them aH on the command hne, but be warned that Polyglot will overwrite 

your . java files unless you specify an alternate output direct ory with the -d switch. 

The points-to analysis example provided with JEDD includes a simple Ant build 

file which can be modified for use in other projects. 
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B.5 Using the Profiler 

To use the profiler, it must be enabled before the computation to be profiled be­

gins by calling jedd. Jedd. vO . enableProfilingO with a java. io. PrintStream 

to which the profile will be written. At the end of the computation, the pro­

file file must be closed by calling jedd.Jedd.vO .outputProfileO. See the file 

examples/pointsto/src/Prop. jedd for an example use of the profiler. 

Viewing the profile data requires a SQL database and a web server supporting the 

CG!. The CGI scripts (found in the profile_ view directory in the JEDD distribu­

tion) are specific to SQLite, but should work with any web server. They expect the 

profiling data in a database called profile. db, in the same direct ory as the scripts. 

This file can be generated by piping the SQL file generated by the JEDD runtime to 

SQLite with the command: 

cat profile.sql 1 sqlite profile.db 

The web server can be started with the command: 

/usr/sbin/thttpd -d /directory/with/cgi/scripts -p 8080 -c '*.cgi' 

This starts the web server on port 8080. To view the profiling data, point yOuf web 

browser to: 

http://127.0.0.1:8080/main.cgi. 
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Paddle User's Guide 

This appendix describes how to invoke the PADDLE framework and how to retrieve 

the analysis results that it generates in a client analysis. Before reading this appendix 

and using PADDLE, users are encouraged to read Chapter 4 which explains the features 

and design of PADDLE in detail. 

C.1 Invoking Paddle 

PADDLE is implemented as a SOOT whole-program phase, and is invoked from the 

SOOT command line. The PADDLE phase is caUed cg. paddle, and appears within 

SOOT'S caU graph construction pack, cg. In or der to run PADDLE or any other 

interprocedural analysis, SOOT must be told to run in whole-program mode using the 

-w co mm and line switch. The PADDLE phase can then be enabled using the phase 

switch -p cg. paddle on. 

The following example command line invokes PADDLE with its default settings on 

the Java program whose main class is Main: 

java soot.Main -w -p cg.paddle on Main 

In the rest of this section, we describe the command line options that control 

features of the PADDLE framework. A quick summary of aU the options can be 

obtained from SOOT using the command: 

java soot.Main -phase-help cg.paddle 
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Like all SOOT phase options, PADDLE options are given on the SOOT command 

line following the phase option switch -p cg. paddle. The option name and its cor­

responding value are separated with a colon. For example, the verbose option is 

enabled by ad ding -p cg. paddle verbose: true to the command line. 

C.1.1 General options 

verbose (default value: f alse) 

The verbose option causes Paddle to print detailed information about its exe­

cution. 

C.1.2 Analysis implementation options 

bdd (default value: false) 

PADDLE contains both BDD-based and traditional implementations of each 

of its components. The bdd option controls which of these implementations 

will be instantiated. Setting the option to true instantiates the BDD-based 

implementation of each component; setting the option to false instantiates 

the traditional implementation. 

propagator (default value: auto) 

The propagator option controls which points-to set propagation algorithm will 

be instantiated. 

Allowed values: 

auto By default, the propagation algorithm is selected based 

on the value of the bdd option. When BDD-based compo­

nents are being used, the incremental BDD-based prop­

agation algorithm that was described in Section 4.3.4 is 

used. When traditional components are being used, the 

worklist propagation algorithm is used. 
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bdd 

incbdd 

iter 

worklist 

alias 

C.l. Invoking PADDLE 

The bdd setting causes PADDLE to use the basic BDD­

based propagation algorithm that was described in Sec­

tion 4.3.4. 

The incbdd setting causes PADDLE to use the incremen­

tal BDD-based propagation algorithm that was described 

in Section 4.3.4. 

The i ter setting causes PADDLE to use the naive iter­

ative propagation algorithm based on the iterative algo­

rithm in SPARK [Lho02]. 

The worklist setting causes PADDLE to use the fast 

worklist propagation algorithm based on the worklist al­

gorithm in SPARK [Lho02]. 

The alias setting causes PADDLE to use the alias-edge 

propagation algorithm base on the alias-edge alias-edge 

in SPARK [Lho02]. 

conf (default value: of cg) 

The conf option determines how the components of PADDLE should be con­

nected together, in order to either construct the caU graph on-the-fly as the 

points-to analysis proceeds, use an existing caU graph, or use the algorithm of 

Zhu, Calman, Whaley and Lam [ZC04, WL04] to construct a context-sensitive 

caU graph from an existing context-insensitive one. These configurations were 

discussed in detail in Section 4.3.6 and summarized in Figure 4.17. 

AUowed values: 

ofcg The default ofcg setting causes PADDLE to build the caU 

graph on-the-fly as the points-to analysis proceeds. 
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cha-aot 

ofcg-aot 

cha-context-aot 

The cha-aot setting causes PADDLE to 

1. first build a call graph using Class Hierarchy Anal­

ysis [DGC9S], 

2. then perform a points-to analysis using this call 

graph constructed ahead-of-time. 

The ofcg-aot setting causes PADDLE to 

1. first build a call graph on-the-fly as a points-to anal­

ysis proceeds, as with the of cg option, 

2. then discard the computed points-to sets, 

3. and finally perform a second points-to analysis using 

the call graph constructed ahead-of-time. 

The cha-context-aot setting causes PADDLE to 

1. first build a call graph using Class Hierarchy Anal­

ysis [DGC9S], 

2. then make the call graph context-sensitive using the 

algorithm of Zhu, Calman, Whaley, and Lam [ZC04, 

WL04], 

3. and finally perform a points-to analysis using the 

context-sensitive call graph constructed ahead-of­

time. 
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ofcg-context-aot The ofcg-context-aot setting causes PADDLE to 

1. first build a call graph on-the-fiy as a points-to anal­

ysis proceeds, as with the of cg option, 

2. then discard the cornputed points-to sets, 

3. then rnake the call graph context-sensitive using the 

algorithrn of Zhu, Calrnan, Whaley, and Lam [ZC04, 

WL04], 

4. and finally perforrn a points-to analysis using the 

context-sensitive call graph constructed ahead-of­

tirne. 

C.1.3 Paddle context sensitivity options 

The following options control which variation of context sensitivity PADDLE uses in 

its analyses. 

context (default value: insens) 

The context option contraIs which kind of context abstraction PADDLE will use. 

The supported context abstractions were described in detail in Section 4.3.2. 

Allowed values: 

insens 

1cfa 

kcfa 

The insens setting causes PADDLE to perforrn context­

insensitive analyses. 

The 1cfa setting causes PADDLE to perforrn 1-

CFA [Shi88] context-sensitive analyses. 

The kcfa setting causes PADDLE to perforrn k­

CFA [Shi88] context-sensitive analyses, for sorne fixed 

value of k. See the k option below to set the value of 

k. 
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objsens 

kobjsens 

uniqkobjsens 

k (default value: 2) 

The objsens setting causes PADDLE to perform l-object­

sensitive [MRR02] analyses. 

The kobj sens setting causes PADDLE to perform k­

object-sensitive [MRR02] analyses, for sorne fixed value 

of k. See the k option below to set the value of k. 

The uniqkobjsens setting causes PADDLE to perform 

unique-k-object-sensitive analyses, for sorne fixed value 

of k. See the k option below to set the value of k. 

The k option controls the maximum length of a calI string or receiver object 

string used as the context abstraction when the context option is set to kcf a, 

kobjsens, or uniqkobjsens. 

context-heap (default value: false) 

The context-heap option causes PADDLE to model abstract heap locations in 

a context-sensitive way. When the context-heap option is false, only pointer 

variables are modelled context-sensitively. 

C.1.4 BDD backend options 

The following options control the BDD backend used by PADDLE. 

backend (default value: buddy) 

The backend option selects which BDD library will be used to implement BDDs. 

Allowed values: 

buddy 

cudd 

The buddy setting causes PADDLE to use the 

BuDDy [LN] BDD library as the backend. 

The cudd setting causes PADDLE to use the CUDD [Som] 

BDD library as the backend. 

226 



C.l. lnvoking PADDLE 

sable The sable setting causes PADDLE to use the Sable­

JBDD [Qia] BDD library as the backend. 

javabdd The javabdd setting causes PADDLE to use the Jav­

aBDD [Whab] BDD library as the backend. 

profile (default value: false) 

The profile option turns on the JEDD profiler to profile all PADDLE BDD 

operations. The profiler output is compressed and written to a file named 

profile. sql. gz in the current working directory. 

C.1.5 Miscellaneous analysis precision options 

this-edges (default value: false) 

When PADDLE is building a call graph on-the-fiy, it models the fiow of objects 

from the receiver of a method call to the this pointer of the called method 

precisely, by propagating only those abstract objects whose type would cause 

that particular method to be invoked. The this-edges option causes PADDLE 

to instead model this fiow using the simpler technique of adding a subset con­

straint between the receiver and the this pointer. The effects of this option 

were discussed in detail in Section 4.3.3. 

field-based (default value: false) 

The field-based option causes PADDLE to perform a field-based rather than 

field-sensitive points-to analysis. In a field-based analysis, each field of a class 

is modelled as a single pointer, corresponding to all instances of the field in 

all objects of the class. A field-sensitive analysis uses points-to information 

to distinguish provably distinct objects, and models their fields separately. A 

field-sensitive analysis is more precise but generally more expensive to perform 

than a field-based analysis. 

types-for-si tes (default value: false) 
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The types-for-si tes option causes PADDLE to abstractly model each object 

using the run-time type of the object, rather than its allocation site. Using 

allocation sites is more precise but generally more costly than using run-time 

types to abstractly model objects. 

C.2 Analysis Results 

After PADDLE constructs a calI graph and performs points-to analysis, it stores these 

analysis results into the singleton class soot. j imple. paddle. Resul ts, so they can 

be retrieved by client analyses. 

The analysis results are returned in the form of readers, a generalization of 

iterators that can be used by both traditional and BDD-based client analyses. Each 

reader represents a relation of analysis results. The get () method of the reader 

returns a BDD representation of the relation for use by BDD-based client analyses. 

The i terator () method of the reader returns an iterator over the tuples of the 

relation for use by traditional client analyses. 

This soot. j imple. paddle. Resul ts class contains the following three methods: 

public AbsCallGraph callGraph() 

The AbsCallGraph object represents the calI edges in the calI graph. Its 

csEdges () method returns a reader ofthe set of aIl context-sensitive calI edges. 

The edgesOutOf (Context, SootMethod) method returns a reader of only the 

context-sensitive calI edges originating from the specified method in the speci­

fied context. 

The AbsCallGraph object can also provide a context-insensitive projection of 

the calI edges by removing the context. The ciEdges () method returns a 

reader of the context-insensitive projection of the set of aIl calI edges, and the 

edgesOutOf (SootMethod) method returns a reader of the context-insensitive 

projection of only the calI edges originating from the specified method. 

public AbsReachableMethods reachableMethods() 

The AbsReachableMethods object represents the set of methods reachable 
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through the calI graph, and the contexts in which they are reachable. The 

contextMethods () method returns a reader of all the method and context pairs 

in which each method is reachable. The methods () method returns a reader of 

the set of all methods reachable through the calI graph in any context. 

public AbsP2Sets p2sets() 

The AbsP2Sets object represents the points-to sets computed by PADDLE. Its 

getReader 0 method returns a reader of the context-sensitive points-to relation 

of all points-to pairs. It also provides a fieldPt 0 method, which returns a 

reader of the context-sensitive field points-to relation describing the points-to 

sets of fields of heap objects. 
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