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INTRODUCTION 

Although much has been written and a great deal of elegent theory 

developed for numbers of the form x 4- iy, where i^ = -1 and x and y 

are real numbers, viz, the ordinary complex .numbers; very little has been 

said concerning an analogous system of numbers of the form x + jy where 

.2 

j =? 1. This system we shall term the "Hyperbolic Complex Numbers", due 

to their connection with the hyperbola and the hyperbolic functions. 

The purpose of this paper will be to develop the number theory properties 

of this system. 

However, before proceeding to the direct investigation of this 

theory, it is perhaps advisable to develop some of the geometric and 

trigonometric aspects of these numbers in the manner which is usually 

followed in the introduction to ordinary complex numbers, tfe first 

build up the algebra of these numbers by the use of number couples; 

then proceed to develop a representation of those numbers in terms of 

hyperbolic functions, prove a theorem analogous to that of De Lloivre for 

ordinary complex numbers, and finally outline a trigonometry for these 

hyperbolic numbers. For convenience, in the subsequent discussion we 

shall employ Roman letters for real numbers (including rational numbers 

and rational integers), and Greek letters for hyperbolic numbers (and 

also for hyperbolic integers). 



Part 1 

Some Aspects of Hyperbolic Trigonometry 

1. ARITHMETICAL DEFINITION OP HYPERBOLIC C0i0?L£i JuK32RS. 

The following purely arithmetical theory of couples or bipartite 

numbers of the form (ax , a?), where ax and ZQ are real numbers, lays a 

logical foundation for theso hyperbolic numbers. 

Definition of equal! t?/ of number counles :- Two couples (ai_ , a^ 

snd (^ , b2) are equal if and only if a1 - bx and ^ -=. b 2 . 17e notice 

that (a^ , a2) ̂  (ag , ai_) unless a-i = ag • 

Definition of the negative of a number couple :- If o C ^ ^ , 82), 

then, by definition -<*.= -(ax , ag) - (- ax ,~ a 2). 

Addition, subtraction and multiplication of two couples and of a 

scalar by a number couple are defined by the following formulae, 

<*••+• (3 = (&i , a2) -4-(b1 , b2) = (a-ĵ  4-b2 , a2-4-b2) 

oc—13 -(ai , s^i — (bx , b2) = (ax , c^) 4- (- b 1 ,~- b2) 

Oi.. (3 -(ax » agj . (bx , b2) = ( a ^ •+-ag^ t a^bg 4- a ^ ) 

K . <*- = k W » ̂  - (kal * k a2^ 

Addition is seen to be commutative and associative : 

oL 4- (5 =• (S -t- oC , and ( W ( 3 ) 4- ^ - ©C -H (#+^) where 

cc,(3 , ̂  are any number couples. Moreover, it is easy to show that 

multiplication is commutative, associative and distributive with respect 

to addition : 

<*.(P + J>) = <*(3 + <*-]f 

Furthermore, for the sum of a number and its negative we have, 

(&1 > a^ + (- &i ,- ag) - (0 , 0) and further 

oC + (0 , 0) = (ai , ag$ " ^ ^ » °) ' = <al • *2* ~ ^ • 

Hence, in view of these relations, we shall write (0 , 0) = 0 when there 

is no possibility of misunderstanding. Also, 



oL . ( 1 , o) =• ( a x , a 2 ) . ( l , 0) = (a x , a ^ ; 

thus (1 , 0) has the property of uni ty and we wri te 1 for i t . 

Division i s defined as tho operation inverse to mul t ipl icat ion. 

Division, except by (0 , 0) and any multiple of ( l , 1 ) , i s always 

possible and unique as follows, 

( b l »b2^ _ (*>! .^z) (ag ' • " a 2)_/^ b l a l — ^2^ » ^ l — a 2 b l \ 

( a 1 . ^ (a x ,a2!) (a x ,-32) \ ^I'-^Z'
 a l 2 — ^ / 

In p a r t i c u l a r , we have 

(a x , 0 ) ± (b x ,0) = U x ± \ , 0 ) ; (aL ,0) .(b1 ,0)_-r ( a ^ ,0) ; 

^ b l »0^ _ / * 1 » ° \ provided 'a- i^ 0. 

(ax ,0) \ a 1 / 

Hence, the couples (a ,0) combine under the above def in i t ion of addition, 

mul t ip l ica t ion , e t c . exactly as the r e a l numbers combine under ordinary 

addit ion, mul t ip l i ca t ion ,e t c . Thus we see that there i s an isomorphism 

between the set of a l l couples (a , 0) whose second element i s zero 

and the set of a l l r ea l numbers a. Thus there i s no ambiguity in 

wri t ing a in place of (a , 0) for a l l r ea l numbers a. Por brevi ty , 

we wr i te j - (0 , l ) then 

i2~ (0 , 1) . (0 , 1) = (1 , 0 ) = 1 

(a x , a 2 ) = ( & i , 0 ) 4 - (6 , a 2 ) = £^4- a
2 . (0 , l ) = s^ + a9 j 

The r e su l t i ng symbol a_-j- a
2 j i s cal led a hyperbolic "complex number. 

The above def in i t ions now assume the form: 

( a l + " a 2 J ) ± ( * 1 + ^ 2 J ) = (&{£ \ ) + ( a 2 ± b 2 ) j . 

( o 1 4 - a 2 j ) . ( b x 4 - ^ ) = W ^ l 4 " *&V + W b 2 + Bzbl** 

*1 -f-^J \. \ \ ~ ^2 \h2 - a 2 * 
• ~* 2 2 ? P 

^ 4 . a2J &1 - 82 a ^ _ a 2
d j 

where in the l a t t e r case, (a, 4- Spj) ^ 0 and a. r̂  a 



2 . GEOlffiTRIC REPRESENTATION AND CONSEqUENCES, De MOIVRE'S THEOREM. 

These numbers admit of a representa t ion in a plane jus t as do ordinary 

complex numbers. Thus, i f in the couple (ax t^) we put x = ax and y = ^ 

then ( a 1 , a 2 ) becomes a point in tho plane. 

Prom the adjoining figure we notice that 

(\ » a
2) and (ag , a ) where (a, =£ a ) 

are obtained from one another by reflexion 

about the l ino y =r x. 

We know that ordinary complex numbers 

represented in terms of the arguments and moduli are unique up to the 

multiples of 2 TT . In seeking similar r e su l t s for hyperbolic complex 

numbers we may wri te tenat ively oL = a 4 b j = r(cosh u 4- j sinh u) the 

conjugate of which i s * = a -*J « r(cosh u - j sinh u) end i f we multiply 

these two numbers together we obtain 

2 "F 2 2 2 
° ^ * = r - a - t therefore so long as | al y> \o[ 

•eal 
we 

shal l havo a rea l pos i t ive value for r = / / a 2 ~ b 2 

/ In view of t h i s we divide the plane into 

/ a * 4 quadrants by the l ines y = x a n d y = - x 

as in the adjoining f igure . This shows 

tha t the point ( a , b) in the case above 

l i e s in quadrant A , f and we shal l 

r e s t r i c t ourselves to th i s quadrant in the 

subsequent trigonometric discussion, 

although the extension to the other quadrants i s not d i f f i c u l t . Upon 

equating the r ea l and j - p a r t s we obtain a = r cosh.u b = r sinh u , 

therefore tanh u =x b / a . This gives 

6 * ^ = ^ a = k w h e n c e e 2 ^ 1 4 - k > 0 so that there ex i s t s a 

1 - k e u - t -5 u 

unique real angle u which satisfies this equation. 



This shows that there i s a unique representat ion of oC as 

r(cosh u 4- j sinh u) where r and u are r e a l , and tha t , since the 

hyperbolic functions are periodic in 2 H i , i f we wish to include 

imaginary angles, then 

r(cosh(u 4- 2pTYi) 4- j sinh(u 4- 2p7Ti)}, 

where p i s any ra t iona l in teger . The quantity r which appears, we may 

term the pseudo-distance from the or ig in to the point ( a , b) since i t 

plays a r o l e analogous to the modulus i n the case of ordinary complex 

numbers, which i s the dis tance from a point in the complex plane to the 

or ig in . Clearly, r i s independent of d i rec t ion . Now we examine 

mul t ip l ica t ion and d iv i s ion of hyperbolic numbers expresses! in t h i s 

representat ion and wr i te 

oL •=. r(cosh u-f j sinh u) and (3 - s(cosh * 4- j sinh v) 

CL and (5 being any two hyperbolic numbers in quadrant A. Then 

od.(3=rs (cosh u coslr-v 4- sinh u sinh v) 4- j(cosh u sinh v 4- sinh u cosh v) 

= rs[cosh ( u + v) f j sinh (u 4 v ) j . 

Similarly, for d iv is ion we have 

od r(cosh u f j sinh u) m (cosh v — j sinh v) 
"A *" s(cosh v f j sinh v) (cosh v — j sinh v) 

=. r / s (cosh u cosh v — sinh u sinh v) 4- j U i n h u cosh v — cosh u sinh v) 

=*• r / s (cosh (u — v) 4- j sinh (u — v ) , 

These expressions for hyperbolic numbers in terms of hyperbolic functions 

are similar to those for ordinary complex numbers in terms of c i rcu la r 

functions. Since we r e s t r i c t ourselves to quadrant A, r and s wi l l be 

pos i t ive and rea l in every case, and u and v are unique rea l angles. 

Theorem A : - The representat ion of <*•= a 4 - b j in terms of 

r(cosh u - h j sinh u) i s unique up to multiples of 2TTi 

Proof :- If poss ib le , l e t there be two representat ions of the same 

number, 06,= a 4-bj - r(cosh u 4- j sinh u) = r(cosh v 4 - j sinh v ) , so that 

r((cosh u — cosh v) 4- j (s inh u - sinh v)] ~ 0. Since r ^ 0 , then 
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cosh u = cosh v and sinh u •=• sinh v iDy equating the ree l and j - p a r t s . 

Hence u =. v + 2n1f i where n i s any ra t iona l in teger . Therefore the 

representat ion i s unique, mod 27Ti, since the hyperbolic functions are 

periodic with period 27f i . 

Furthermore, in view of the ru les of mul t ip l ica t ion and divis ion given 

above, we may s t a t e the following analogue to De Moivre's Theorem, v iz-

Theorem B :- I f ol - a + bj = r(cosh u 4 j sinh,u) and l i e s in quadrant A, 

then oCa= ( a 4 - b j ) a r = r n (cosh nu 4- j sinh nu) . 

Proof : - By the mul t ip l ica t ion ru l e we have, 

c^«/? ~ rs(cosh (u 4- v) 4 - j sinh (u-4- v)) 

so tha t , i f o( = /3 t h i s becomesy 

oiX - ( a 4 - b j ) 2 - r 2 ( c o s h 2 u 4 j sinh 2u). 

Continuing in t h i s manner, we obtain for a l l pos i t ive in tegra l values 

of n, the formula,-

oL = [r(cosh u 4" j sinh u)J == rn(cosh nu 4 - j sinh nu) 

which i s the hyperbolic analogue of De Moivre's formula for ordinary 

complex numbers. 

I t i s c lear from these considerations that the hyperbolic numbers are 

associated with the hyperbolic functions in a similar manner to that in 

which the ordinary complex numbers are associated with the c i rcu la r functions; 

hence the nomenclature adopted at the beginning of t h i s paper. 

3 . DEFINITION OF THE HYPERBOLIC FUNCTIONS OF ANGLES IN QUADRANT A. 

17e now proceed to define the hyperbolic functions of angles in quadrant A, 

in a manner analogous to~ the def in i t ion of the c i rcu la r functions in the 

f i r s t quadrant, i . e . in terms of the sides of a r ight t r i ang le . Let us 

consider any two points P and Q, in quadrant A. Then the vectors OP az*l OQ, 

may be expressed as a 4 -b j and c 4-dj respect ively, where a > | b ) <£ 0 and 

c > / d j £ 0 as in the figure below. 



Through Q, draw QjP' parallel to OQJ, 

the reflection of 00, in the line y = x, 

) 
so that Qp1 meets OP at P». The vector 

OP* is easily seen to be the vector k(0P) 

&(6-kLj) o r k ( a + ^ w h e r e k _ c - d2 which is 

ac — bd 
^^always positive in virtue of the above 

conditions. 

W e see farther that the pseudo-length (P.L.) of QJ>» is given by 

d I, a — c __ 
\ac bd j 

b - d 

J 

2 = i lbc - adl 4c2 - d2 

ac — bd ^ac bdy V l\ac bd 

the absolute value of be - ad bfeing taken since t h i s expression may be 

pos i t ive or negative. Furthermore, we define the directed pseudo-length 

(D.P.L.) of QJ>« as i ( b c - a d ) J c 2 - d 2
 # ^ q u a a t i t y ^ _ ^ ±Q 

ac — bd 
double the area of the t r iangle OQP, being pos i t ive i f the vector OP; hence 

also OP, l i e s above Gq, and negative when OP l i e s below OQ. Let us consider 

the following r a t i o s of the sides of the t r iangle OQp'-

C = (P.L.) 0% _ -2 m_ — bd 
(P.L.) 0P» "fa* - d£j ^ _ b^ 

S —-1 (B.P.L.) QJP' - be - ad 
(P.L.) OP' " ^ - d V a ^ - b Z 

Upon squaring and subtracting, we get C2 — S 2 = 1; whence C2 ~ S2 + 1 . 

Now, by definition, C is always positive and therefore must be ̂  1. S 

is positive or negative according as P1 is above or below the vector OQ; 

i.e. according as u is measured a counterclockwise or clockwise direction. 

On this basis, we may write C » cosh u and S = sinh u and state the 

Theorem C :- If OP and 0<q are any two vectors in quadrant A; there is 

a triangle OOJP' such that P and P« are collinear and QP' is the product of 

OQ, by a scalar multiple of j. Furthermore, there is a uniquely determined 

real number u such that 

and cosh U r=(P.L.) OQ , 
'I • *. • » 

(P.L.) OP' 

sinh us-t'X(D.P.L.) opt 
(P.L.) OP' 



Thus we see that QJP' plays the same role in hyperbolic trigonometry 

as the perpendicular in ordinary trigonometry, and, for this reason, we 

say that QJP1 is pseudo-perpendicular to OQ,. This enables us to develop 

hyperbolic trigonometry in quadrant A in a manner analogous to the usual 

development of the trigonometry of the circular functions in the first 

quadrant. 

However, as the purpose of this paper is to develop the number theory 

of this system of numbers, we shall conclude our discussion of hyperbolic 

trigonometry at this point and proceed to tho main topics. 



Part 2 

The Number Theory of Hyperbolic Complex Numbers. 

INTRODUCTION :- tfe now proceed to the investigation of the number 

theory problems connected with hyperbolic integers, and attempt, wherever 

possible, to establish results analogous to those for ordinary complex 

integers. As distinct from ordinary complex numbers, we note that the 

j-numbers do not form a field; but rather a ring since there are proper 

divisOrs of zero. In this system we have, as we saw previously, the two 

well defined operations of addition and multiplication; and, if we exclude 

zero and all the divisors of zero, we saw that a third operation,-division-

was also possible. The ring consisting of all the hyperbolic complex 

numbers we denote by F(j). In the course of the subsequent discussion, we 

shall first establish several theorems concerning the whole ring.f£j); 

define a convenient system of integers in F(j) and investigate their 

properties, and finally add a few remarks concerning a generalization of 

the quadratic reciprocity lsw to this system of integers. 

1. NUMBERS OF F(j),- CONJUGATE AND NORM OF A NUMBER. 

As we saw previously, any number of F( j) may be written in the form 

a4-bj where j satisfies the equation x^ — 1 = 0 , but no meaning is 

attached to j 'per se1 , since this equation is clearly reducible in 

the real field, R. ffe say that the ring F(j) is characterized by this 

equation, and every number of F( j) is a rational function of j with real 

coefficients; and, since j /=-1, its degree in j may be reduced so as not 

to be higher than the first, 

Definition :- The number a — bj obtained by putting . — j for j in the 

number oC - a 4-^j of P(j)f is by definition the conjugate of od , and is 

denoted by od . Thus 3 "T*2j and 3 -~ 2j are conjugate in F(j). Clearly a 

real number in this system, as in K(i), is its own conjugate. 

Theorem 1 :- The conjugate of a product is equal to the product of 

the conjugates of the separate factors, i.e., if M~ck(?> then Z[yi=£B• 



Proof:- For i f / ^ / ^ a + bj)(c + dj) ~ (ac + bd)-f-(be 4-ad)j, 

then we have /t = (ac 4- bd) - (be 4- ad) j = (a - bj)(c - dj) = hZ R ;' 

hence the desired result. 

Definition :- We define the product of any number ot of F( j) by its 

conjugate, as the norm of 06 and denote it by n(c* ). Thus 

n(a4-bj) = (a4- bj)(a - bj) = a2 - b2 

Hence, the norm of a hyperbolic number a4-bj is zero if and only if the 

number itself is zero, or a divisor of zero; i.e. a multiple of 1 4- j or 

2 2 
1 - j. In fact a — a = 0 is the norm of a + aj =. a(l 4- j) which is 

zero or a divisor of zero according as a is or is not equal to zero itself. 

Further, the. norm of a number of F( j) may be any positive or negative real 

number or zero, as distinguished from the norms of ordinary complex 

numbers which are "> D 

Examples :- n(3 4- 2j) = (34- 2j)(3 -2j) =* 9 - k - 5 

a(2-t3jJ = (2+3j)(2-3j)=s ^ - 9 = - 5 ' 

n(q(l 4- ĵ )= 0 3 as we noted above. 

Theorem 2 :- The norm of a product is equal to the product of the 

norms of its factors, i.e. n(<*.|3)=z n(oC).n(/3). 

Proof:- Por n(<* .^3) = ecQ Sgr^M=n(ol).n( |3) . 

Further, the cancellation law, viz, oift -^"jl implies that Q-i , is 

valid unless oc is zero or a divisor of zero, for then it possesses an inverse 

loL (division being defined if oC^ 0 or a divisor of zero). Multiplying 

the equation <*j3 = o(V by this inverse, we get (5~jl ; howver, no such 

inverse exists if oi is. a divisor of zero or zero itself, and the following 

example shows the result of using the law on divisors of zero. For 

(l-j)2 =(l - j K l - 3 ) , but 2 ^ 1 - j 

2. EQUATION SATISFIED BY THE RATIONAL NUMBERS OF F(j). 

Definition :- A rational number of F(j) is one of the form a 4-bj 

where a and b are rational numbers;. 
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Every ra t iona l number 06 of F( j ) s a t i s f i e s a r a t iona l equation whose 

degree i s the same as tha t of the r ing i t s e l f , tha t i s the second, and whosê  
the 

remaining root isAconjugate of oC . The equation having as roots 

oCand oL i s ( x - ( a - + - b j ) ) . ( x - ( a - b j ) ) =• x 2 - 2ax 4- a2 - b 2 and i s 

2 ' * therefore of the form x 4 px 4- q = 0 with p and q ra t iona l numbers. 

I f b = 0,so that oL-cL , t he equation i s reducible i n R being jus t (x - a) = 0 

and the equation of the lowest degree sa t i s f ied by °c i s x — c* = 0. If 

b -p 0, tha t i s c< -f. cL , the second degree equation reducible, or not, over R 

sa t i s f ied by oL i s x 2 -u 2ax 4 a2 - b 2 =r 0. 

Hence the numbers of F(j) f a l l in to two classes according as the 

equation sa t i s f ied by them i s of the f i r s t or second degree. Those which 

sa t i s fy equations of the same degree as that of the r ing F ( j ) , are called 

pr imit ive numbers of the r ing . Those wMch sa t is fy equations of lower degree 

than that of the r ing are called imprimitive numbers of the r ing . Clearly 

the imprimitive numbers of F ( j ) , are j u s t the r a t iona l numberSjand they are 

said to form a subfield of F ( j ) . F( j) may be defined by one of i t s primitive 

numbers, but by none of i t s imprimijiive ones. The middle and constant 

terms in the ra t iona l equation of lowest degree sa t i s f ied by c<. are seen to 

be t race c< and norm oC , where t race <^C = at -j- tZ and norm c* - oC.&Z, . 

3 . INTEGERS OF F ( j ) . 

To determine which numbers of F(j) are to take the place of integers, 

we must consider both the primitive and the imprimitive numbers of F(j), 

the latter being disposed of at .once since a rational number is an algebraic 

integer if and only if it is a rational integer. To decide when a primitive 

number of F(j) is an integer, we shall, by definition, say that the necessary 

and sufficient condition that oC be an integer of F(j), is that it satisfy an 

equation with integral coefficients of the form, 

2 _ — __ 
x 4- px Hr q = 0 where - p s.<^ -H<X_ , q - <* u. ; that is, o<-f-c< and o<.<5 

must be rational integers. 



a - a 
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If we write o< (oC not a divisor of zero) in the form a-+ bj, where 

" / C l and b =s / C l
 ; ^^ bx» cl » b e i aS positive rational integers 

with no common factor, these conditions become, 

(•) sdLSi + auzM = sa rational int 
C I C l Cl 

(b) /^al + *1 J \ / a l - " b l J \ a i 2 - b i 2 

\ c j / * [ 5J = — ^ Z 1 " - a r a t i o n a l integer. 

Thus, there aro the following three p o s s i b i l i t i e s , 

W c x > 2 ( i i ) c 1 = : 2 ( i i i ) c x c l 

( i ) . If c x > 2, then, in virtue of (a) , â^ and c1 would possess a common 

factor which, by (b) , would be contained in b x also; a fact which i s contrary 

to the hypothesis that ^ i s p r i m e to c l f and bx i s prime to C l . Thus, this 

case i s impossible. 

( i i ) . If c x = 2, then ax
2 - b x

2 must be div is ib le by 2 2 , so that ^ 

and b x must be either both even or both odd. The case of both even i s 

clearly inadmissible since then v^ and b x would possess a factor in common 

with c ^ contrary to the hypothesis that ax and b x were both prime to c x . 

On the other hand, the case of ax and h1 both being odd integers clearly 

sa t i s f i e s both (a) and (b) above, and thus i s possible. 

( i i i ) . If c ^ 1 then both ax and bx are rational integers, and hence 

this case i s also clearly possible. 

We may summarize the above three cases in the following definition, -

Definition :- A number of the form a 4 - b j shall be an integer of F(j) 

i f and only i f a and b are rational integers, or bothshalves of odd rational 

integers. This definit ion, although arbitrary in a sense, gives a nugber 

theory quite analogous to that for the rational integers. 

If b = 0, we obtain the rational integers. Just as for the rational 

integers, i t i s easy to see that the sum and product of two integers of F(j) 

are again integers, and hence they form a subring of F( j ) . 
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k. NEW NOTATION FOR INTEGERS. ;-

At this point we introduce a notation which will have far-reaching 

implications in, and will also simplify considerably,the proofs of many 

of the subsequent theorems. If we denote 1 + .i by OJ and l r ^ by uj 

2 2 ' 
then we may establish the following, 

Theorem 3, :- Any integer of F( j) may be expressed in one and only 

one way in the form rod 4- s£3> where r and s are rational integers. 

Proof :- We first consider the case of a 4- bj where a and b are 

rational integers. Then -

a 4 - b j - rco-r suj ~ r ( l 4 - . j ) 4. s ( l - i ) 
2 2 

Therefore 2a -f 2bj =• r + s - h ( r - s ) j so tha t , by equating rea l and j - p a r t s , 

we have r 4 - s = 2a and r - s ='2b ; thus 2r =• 2a -f-2b and also 

2s = 2a —2b, which give r = a - f b and s = a —b, so that both r and s 

are r a t i ona l in tegers since a and b a re . 

Similar ly, i f a and b are both halves of odd in tegers , we have 

E.-4-3J = a,4-bj. _. r u / + s w = r ( l + .i) L. s ( l - fi) 
2 2 2 2 

where p and q are odd r a t iona l i n t ege r s . Thus p 4. qj - r-f- s -t ( r — s ) j 

and therefore as above we get , r -I- s = p and r - s = q, hence i t 

follows tha t r - T> + Q and s - T> -- q . Now p 4- q and p - q are 
2 S 

both even, since p and q are both odd, and hence d iv i s ib l e by 2; so tha t , 

as i n the previous case, both r and s are in tegers . Thus any integer of 

P ( j ) , say a - f -b j , may be expressed in the form rco-f su> where r and s 

are r a t iona l in tegers . That t h i s representat ion i s unique i s c lear as 

follows- for l e t rco-f- soo and u o o + vCo be two representations of 

a-f b j , so that a4 - b j = rUj -4- sou ~ uc«J4 vuj ; whence ( r — u)u)= (v — s)67. 

But oJ and to are mutually perpendicular uni t vectors lying along y = x 
and y ~ - x respect ively , so that the equation above i s true only i f 

r — u = 0 and v - s s O . From these i t follows that r = u, v ^ s , 

and thus the representat ion i s unique. 



13 

The advantages of this notation are mainly in multiplication since the 

cross product terms are all zero, viz to u3 ~ 0, since (l4-j)(l-,j) — 0 

and Oo-f cozri. Also it possesses the advantage that con=:oo , andco a-u), 

so that to multiply two integers together we merely multiply the 60 and co 

parts separately and add the results (i.e.(a6J4 bu5)(c604.dw)= (acu)-f-bdt3). 

Since W and w are conjugates, the conjugate of an integer aU)4 bu5 is 

clearly formed by writing to for uJ and to for LZ giving conjugate 

(atJ4- b<-o)=- a u 4-b t-*> • The norm also assumes an especially simple form , 

as for example, 

n(aw4- b Co) = (a Ui 4-b co)( a to 4- b w ) = (ab) (cu 4 ZZ )=ab 

and so a number cannot have norm zero unless either of the coefficients 

of co or 60 are zero or is simply zero itself (i.e. the divisors of zero 

are multiples of to end t*J.). 

5. BASIS OF F(j). 

Two in tegers o ^ and oc are said to form a bas is of the in tegers P ( j ) , 

i f every in teger can be represented in the form ax 0C,H*a 6C where a,and a 

are r a t i ona l in tege r s . (Clearly numbers of t h i s form must be in tegers ) . 

For example:- 3 UJ-t C5 , and 2tc>4-ui form such a bas i s , for i f 

aCO 4-b to zz a 1 (2 to+oo ) 4 a (3u>-*-u3 ) 

t n e n 2a14-3a2 = a; ^ 4 - a g - b and solving these we find that 

a^ and a- are ra t iona l in tegers as was required. We observe that the 

determinant of the coeff ic ients of the basis i s 

3 1 
=• l,or -1 if we reverse the order of the elements in the basis. 

Theorem k. If <* ± and at 2 be a basis of F( j), a necessary and 

sufficient condition that 
/ 

(1) ^ l ^ 8 ! * ! 4 - ^ 0 ^ 
/ , ^ , ̂  where a-, a , 0 \>, 

cv — b a' 4- b a/ -»• 2 1* < < X 2 - l l ^ ° 2 a : 2 
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are rational integers, shall be also a basis of F( j ) i s 

(2) 
a l ± 1 

Proof :- The necessity; for i f oC , oC be a basis we have 

(3> 

where a ( , a ' , b ' b ' are rational integers and substituting the values 

of <*' oC,'P
 f r o m t1' i a t 0 O ) w e n a v e 

(55 oC =(*& ^V o C l + < 1 , i% + 1 , 2 1 ) 2 J o C a 

from which i t follows that 

a ^ 4- a2bx s 1 ; a ^ 4- a^b2 = 0 

whence 

*1 a 2 

'1 *2 

therefore 

°1 

b j 

a^ax-t-a^bx ^ a ^ ^ l 1 0 

0 1 
= 1 

a1 a2 =: ±1 

The condition i s also sufficient; for solving ( l ) for c*^ and oL ^ 

we have, i f (2) be sat i s f ied , that , 

^ ( b ^ ^ a ^ ) 

o £ 2 =• ^ x ^ l - 4 - ^ ^ 

and hence i f od-= cx<*x + c2o C2 * e s n y i n t e ^ e r o f *W t n e a 

<X = ( c x V ^ V ^ i + K ^ - V i 5 0 ^ 
That i s oL =• d n o ^ 4 d.o^ / where d and d are integers . -Sinc^H&ere i s an 

1 1 2 2 1 
•infinite number of;dlffereat sets of rational integers a l t a2, b ^ 02, satis

fying the relation Sir 

±1 
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there i s an i n f i n i t e number of bases of F ( j ) . 

As an example of t h i s we may consider the change from the a 4 b j 

notat ion to the r u j + s u notat ion ^as* change of b a s i s . For then we have 

a4- bj = r ( c « J 4 OCi) 4- s(0(V4Co ) , and the determinant of the coefficients 

is 
= 1 

as it should if w and u> are to be a basis of the integers of F( j). 

6. DISCRIMINANT .OF F(j). 

The square of the determinant, 

oC 

OC 

oC 

oc. 1 ^ 2 

formed from two bas is numbers and t he i r conjugates i s called the discriminant 

of F ( j ) , and i s denoted by d. We eas i ly verify that d i s independent of the 

bas is as fol lows,- for i f oClfoc2 and oC^rsn^. c*^ 4- agoCg , 

oi2 •=• b^ OC ^ 4- b 2 oC 2 be any two bases, then 

oC± oC2 

S l ^ 2 

a l o 6 1 4 - a 2 o d 2 t^oC +T> 2 e* 2 

a. l ^ l + a 2 ° ^ 2 \ ^ l + \ ^ 2 i 

*1 a2 OC±c^2 

OC1 <y>2 

2 2 

06x <X2 

^ X o22 

In f ac t , since 2 Lo+ u> , and 3 Co 4 Co form a bas i s , then we have 
2 

= 1 
2 6u4to 3 U1 + 00 

2 6 3 4 L O 3£3 4.̂ 0 

so that any two integers F(j) siich that their discriminant is unity form 

a basis of F( j). 

J. DIVISIBILITY OF INTEGERS; UNITS MD ASSOCIATED INTEGERS OF F(j). 

Definition:- As in the case of rational integers, we say that 

°<-divides j3 oriotis a factor of f? (U and ̂  both hyperbolic integers) if there 

exists another integer V (***& *-~9 &ot divisors of zero) such that oiY = (I ; 

and we write oL\A . As usual, we do not define division by zero or by a 

divisor of zero. We now establish the, 

Theorem 5 :- If o^ be divisible by (3 , then n(*) is divisible by n(tf). 

Proof :- If oi -zfi V , it follows from theorem 1 that n(o< )=r n( (? ),n( V ) / 
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and hence that a(c(.) i s d iv is ib le by a ( ( 3 ) . However,the converse of 

this theorem i s not, in general, true^as may "be seen from the following 

simple example,- l e t oC= 2U/-f-w and (3= UJ+. 2Co , then n(<*) = 2 and 

n((3 ) = 2 but oc i s not div is ible by (3 . 

Moreover, we cannot infer from the fact that n(oC) divides n((3) 

that oC or oCis necessarily a factor of (3 . a?0 show this , i t w i l l suffice 

to give a counter example, as fol lows,- l e t n(c* ) = 3.2 = 6 , and 

n((3) = 6.5 = 3 0 . . Then 00=30*4. 2u> and $ = 6 ^ 4 5 5 and i t may 

be shown by actual div is ion that neither 36u4- 2co or 2co 43L0 i s a 

factor of 6 w + 5oJ # 

In the rational f i e ld the integers ± 1, called uni ts , are such that 

they divide every integer of the f i e ld . Obviously this property of ± 1 

i s carried over into F ( j ) , however we must see whether there are any other 

integers in F(j) possessing this property. If there are any others, they 

must clearly be divisors of 1, and conversely, every divisor of 1 i s a 

unit . Let g = a6c;4buS be a unit of F( j ) ; then <*.. £ = Oc where oc i s an 

integer of F ( j ) . I t follows that n(o<:)n(£ ) - n(<*); hence n (£ ) = 1 

and further n(£ ) = ab = 1 . That n( £ ) = l i s not only necessary but 

also sufficient for £ to be a unit , i s "evident from the fact that from i t 

follows £ £ r 1 and hence £ i s a divisor of 1# From the equation ab =. 1 

above,it follows that a = ± 1 and b ~ ± 1 whence the units are 

UJ-4-C3 , - 6 u - t o , c o - u3 , - c O 4 U J t which are just 1, - 1, j , - j 

respectively. We observe that the above leads to three equivalent 

definit ions of un i t s : -

( i ) They are divisors of 1 . 

( i i ) They are integers whose reciprocals are integers. 

( i i i ) They are integers whose norms a r e i 1 . 

Definition :- Two integers oC and (3 with no common divisors other than 

the units are said to be prime to each other. 

Definition :- In the rational f i e ld , two integers m and - m that 
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differ by a unit factor are said to be associated and similarily in F(j) , 

the four integers (a60 4 b to) , - (a to-boo) , ( a o j - b u j ) , — (acu4bu5 ) , 

obtained by multiplying the integer OL b y t h e four units are called 

associated integers. Any integers d iv i s ib le by oC i s clearly also 

div is ib le by the associates of oC . 

S. PRIME NUMBERS OF F( j) AND SIMPLE FACTORIZATION. 

By definit ion, an integer of F(j) that i s not a unit and has no 

divisors other than i t s associates and the units , i s called a prime number 

of F( j ) ; a l l others being composite numbers. To determine whether an integer 

06 , not a unit , i s composite or prime; we need only examine i t s norm and 

we say that every number whose norm i s a rational prime i s a prime in F ( j ) . 

For If we consider to 4- puJ where p i s a rational prime, and assume that^ 

i t admits a decomposition into a to 4- bu>, and CCAJ 4 dco , then 

U>H- p to = ( a t u 4 boo )(ctO -+ dto ) , so that 

n(OJ4 pLo ) = p = n ( a w + bto )(cCo 4-dco )[ =r abed and one of a,b,c, or.'< 

i s equal to p and each of the others i s either 1 or — 1. 

Similarly i t may be shown that p to 4-co i s also a prime of F ( j ) , 

which i s merely the conjugate of 604 pco . These results give the 

following 

Theorem 6 :- A necessary and sufficient condition that an integer of 

F( j ) , should be a prime i s that i t possess a norm which i s a rational prime. 

That this condition i s necessary has been shown above. 

That i t i s also sufficient i s evident since a rational prime possesses no 

factor other than i t s e l f and units , and the only integers having this typef 

of norm are of the form 6 J - f - p u T o r p t o 4 c o t which i s of the form of the 

primes we considered above. 

Thus we see that any rational prime may be factored into two j-primes, 

these being the two primes which have p as their norms. Thus p may be 

written as (p to 4 £3)X to 4- p u3 ) t the only two primes which, except for 
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associates, possess p as norm. 

Also composite integers of F(j), are very simply factored, for if we ' 

consider ado + bco where a = pq and b ~ rs then aw + b w = (pw+pw)(^+si3. 

and since the cross product terms clear out, we can carry out this process 

in general by factoring each of the parts as above and then forming the 

factors. By a slight generalization of this process we shall be enabled 

to establish a unique factorization theorem for F(j)# As an example of this 

wo may consider the following:-

Factorize 10 to 4 IS to . Now 10 = 5x2 and IS = 2x3x3 whence we have the 

essentially unique factorization as 

10 to 4 IS to = (5co4- 2co)(2<*J4.-3lo ) ( to 4 3 63 ). 

9. UNIQJJE FACTORIZATION THEOREM FOR F( j ) # " 

We shall f i r s t establish the existence of a division algorithm, that i s , 

a process such that ©c = <$ p 4 p where n(tf ) ^ o, a(«* ) / o and 

\a( f ) \ A \ n( (J) | f 0, and then 

proceed to derive a Euclidian algorithm or a process of determining the 

greatest common divisor of two integers of F( j ) , and finally establish a 

unique factorization theorem. 

In the subsequent discussion we shall employ the term'regular) 

hyperbolic integer to denote the fact that an integer i s neither zero nor 

a divisor of zero. I f therefore, oC = o^co 4- agCo and (3 - b^to 4 b2<-o are 

any two regular hyperbolic integers we may prove the following , 

Theorem 7 5- A necessary and sufficient condition that G>/°̂  i s that 

o^/a. and ^/°-2 

P r o o f : - We may write /Q _ B^J+J 4 &
2u> _ \ Ux, * -$ » 

bxcu4 b2C3 &JL ^j 
so that i f bx /a | and bp/ag, t h e n i* is clear that G/oL . Conversely 

if b /a , then a ==• c x \ t an<i *~ ^2^a2 • t h e n a2 = C2D2* therefore 
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oC = a^uj + a2C3 ~ (c^co 4- c b ui) = (c cu 4- c ui )(b a) 4- b to) = (o^ 

where j = c ^ 4- ĉ uS . Therefore ^ /<*. hy our'previous theorem on 

divisibility. 

We now proceed to establish the existence of a division algorithm 

for F(j), in the following:-

Theorem 8 :- There exist two regular hyperbolic integers, 9 and (f 

such that 

(1) oC = <rfi 4- j) 

(2) 0 < |n(f )1 41 |a((3)\ 

Proof:- l * \ \ \ * \ } a . w© have by'the division algorithm 

for real numbers that a = s b 4- r and a = s b 4- r 
l ! l l 2 2 2 2 

w h e r e 0 ^ r < b a n d O < r ^ b . 
1 1 2 2 

Choosing tf r= s cu + s co and P = r to 4- r Co 

we clearly have the conditions ( l ) and (2) sat i s f ied . 

If however, b 4 a , hut b / a , we have a = s b 4- r 
•*• ' A 2 2 1 1 1 1 

and a 2 - afb ± b ; O ^ r ^ l ^ where s f = S 2 - 1 or s 4- 1 

according as «2 i s not or i s unity and the 4- or — sign. 

So that s ' ± 1 = & • Therefore choosing 
2 

C = SCO 4 - s «to J ̂  = T (X 4 b CO , 

we have the condition sat i s f ied . 

The case b / a^ , b / a can obviously be treated similarly and 

the proof i s thus complete. 

Following the method of Theorem 8 we have , 

' « • = <T(3 + f . | n ( f ) | < _ | «C p >| 
(1,

 p =<rif"+ fl ° < W i < l^fJl 
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A - l " Ot+1 /%+ /t+1 • o <|n( / t + 1 ) | < \ n(ft)J. 

/ t - = G t + 2 f t + l + / t + 2 0 < c | n C f t + 2 ) | ^ n ( f t + l ) l 

This process can be continued so long as we find no remainder J i 4 1 

which i s a factor of the previous one (i.e. f±). If such a case were 

never encountered, we should have an inf ini te sequence of decreasing positive 

integers |n(oc) | , | ( n ( ^ ) ] , | n C J ^ . . . . Hence we must 

eventually reach the equality, say at the ( t 4- 2) step, then 

j t - (Tt 4- 2 Jt 4 1 where j n( ft + 2) I = 0. from equations(l). 

111113 /t4 2 = ° s i n c e d i v i sors .o f zero are excluded by the nature of the 

division algorithm. Hence f t + 1 / f t . 

In fact from the f i r s t of the above equations ( l ) , every common 

factor of oc and P i s a factor of P . ; from the second we see that every 

common factor of p and f i s a factor P • and so on. Finally we sec that 

every common factor of p and f> i s a common factor of P . Hence 
J t-M Jt J t 4 1 

every common factor of oC and S i s a factor of f • 

On the other hand we see that from the las t of the equations ( l ) , , . 

every factor of P i s a factor of P , and from the proceeding equation, 

that every common factor of P . and p i s a factor of Q and so on. 
I t 4 l J t J t - 1 

Finally, every common factor of p , and P, i s a factor of Q , and that 

every common factor of P and & i s a factor of oC . Hence, every factor 

of f^ + i i s a common factor of oc and p . Since the largest factor of 

P i s f-fik i t se l f ,we have the result , 

Theorem 9:- In Euclid's Algorithm ( l ) the greatest common divisor of 

OC and (B 1 . ft+l. 

This method i s purely formal in character and the following shorter 

method leads most direct ly to the familiar expression of the greatest 

common divisor of oC and (3 in the l inear form A<< 4- M. p . Thus we have; 
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Theorem 10 :- Corresponding to two regular hyperbolic integers 

06 and (3 of F(j), there exists another integer S with the properties 

(i) cV|°Cand §\f*> 

(ii) (f= V+-A p 
for a proper choice of in tegers y\ and M.of F ( j ) , not d iv isors of zero. 

Proof : - Let us consider two hyperbolic in tegers OC- a^tu 4-apCo, 

and (i - " b x ^ +- *>2^ and a thi rd in teger d = dxU) 4- d2co , such that 

d . ^ g .c .d . (a-ĵ  , b ^ , and d 2 = g .c .d . ( a 2 , b 2 ) , where these two g . c . d . ' s 

are defined as in R, since ax,a2,bx,b 2 , are a l l r a t iona l in tegers . Now J 

divides bothoC and |3 , as we may see from 

<X axc*j 4 &?C5 a-i ap — 

6 *!<** 4-d2 w 5 d2 

and since dx —g.c .d . (ax , bx) , i t must divide ax» and similarly d2 must 

divide a ^ so that a\&\; a similar argument w i l l show that a l p , and any 

other d iv i sor of o< and ft i s also a d iv isor of & £. 3-For since d^ •*. g .c .d . ( a - , ^ ) 

any d iv i sor of both ax and \ w i l l divide dx by i t s def in i t ion . Also, any 

common d iv i so r of 82 and b 2 w i l l divide d2 , and these care the conditions that 

an in teger dividing both oc and 6 should divide 0 by Theorem 7. Thus, every 

d iv isor of oC and/? by the same reasoning i s seen to be a divisor of o , So 

that f now s a t i s f i e s the tv/o condit ions, ( i ) i t i s a divisor of U and /3 and 

( i i ) every other d iv isor 6f oc and/3 i s a divisor of a . Hence, a must be 

the g rea tes t common d iv i sor of oL and S as calculated above by means of the 

d iv is ion algorithm. 

In conclusion, we sha l l show that 0 as defined above, may be expressed as 

a l i nea r expression in o< and A , with coeff icients /> and K which are not 

d iv isors of zero. Por since 

d 1=: g .c .d . (ax , b x) and - d 2 = g .c .d . (a^ , b 2) 

then d-^rr c 1 a 1 4- e ^ and d 2 ~ c2a2 4- e 2b 2 

where Cx» c 2 , ex, e 2 , are ra t iona l in tege r s . Therefore, on mult ipl icat ion 
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of d^ by co and d„ by co , we have, 

<3-x6U 4- d 2 to r=. Cxaxto 4-c^bx^O 4- Cĵ apjlo 4-e2b2U0 

which may be wr i t ten in the form; 

dxto»4- d2co =. (CXC<J4- c 2 uj)(a 1 u^ 4 a ^ ) 4- (e^co 4- e2to )(b-jCo 4- b2Co)f 

since the ierms i n tolo vanish. In terms of hyperbolic integers, ' t h i s 

becomes o = / W 4 A P where X and u, are regular hyperbolic i n t ege r s , 

since CxtC 2 , e , , e 2 , are a l l def in i te ra t iona l in t ege r s . 

As an example, we may calcula te the g .c .d . of 10t*J-4-Sto and 25Cu4 22uJ. 

The g . c .d . of 10 and 25 i s 5, and that of S and 22 i s 2 . So that the 

g.c.d. (IO604 Sco , 25 60-4 22co)=. 5 co 4 2co . 

Now 5 = 25 - 2(10) and 2 = 3(8} - 22, so that 

5 c u 4 2uJ = 25co - 2 ( l0) to 4- 3(S)to — 22 co 

which we may wri te as , 

56J-4-2C3 = (CO- co )(25UJ4- 22w)4- (-2 co 4 3 to) ( l0 to 4-Soo ) 

We demonstrated previously that any integer of the form P604L0 or 

k j 4 pui i s a prime in F( j ) ,by showing that i t possessed proper t ies 

analogous to r a t iona l primes in so far as i t could not be factored into 

simpler in tege r s . Making use of t h i s property, we now establ ish a unique 

fac to r iza t ion theorem for F ( j ) . 

Theorem 11 : - Every integer of F( j ) can be represented in one and only 

one way as the product of prime factors(except , of course, for assoc ia tes ) . 

Proof : - If we consider an in teger oc = a^co-f. a^co , then, according 

to the corresponding theorem for R, ax and s^t i f they are not already 

primes , can be factored in a unique manner into the product of ra t iona l 

primes^ since they are ra t iona l in tegers . So that if, 

*1 - P l *2 • ••Pp r ^ a2 " h \ ' • ' % S 

where the p*s and q f s are ra t iona l primes, so tha t -

— / e l e 2 e r f l f 2 f 
oL = ^ -*- a

2°° = VPI p 2 . . . p r )co4- (qx q2 . . . q s
 S ) u , 

since to to" i s zero1and t h i s may be wr i t ten"as-
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f 

axcg 4- ap6o =. (Px^tt; 4-co )....(pr
ert<j4.co )(to 4-qx 1 ^ )....(tu4qs

 SC3 ) 

Therefore, 

a1LJ4- a2uJ = (p Co4-u> )
 1....(pr

,co4- to) r(U/4- q ^ ) ,...(t04- qs^")
 S 

where each of the factors on the right hand side is a prime by our definition, 

and thus we have factorized any composite integer of F(j), into primes or 

powers of primes of F(j), in a unique manner^except obviously for associates, 

since the factorization of â^ and a2 is unique. We note, however, that we 

must distinguish between primes such as pu/4to and to 4- pto which, 

although they possess the same norm, must be treated as different in this 

connection. 

10. FACTORIZATION AND REPRESENTATION OF INTEGERS AS THE DIFFERENCE 

OF SQUARES. 

Tihile in the field of ordinary complex numbers only certain rational 

integers can be represented as the sum of two squares, and hence factorable, 

every rational prime may be factored in F(j). In fact, it is.evident that 

any rational prime p is the product of yvu 4^3 and to 4 yuJ. 

As in K(i), where the number of representations of an integer as the sum 

of two squares is investigated; here we seek the number of different 

representations of a positive rational integer as the difference of two 

squares. This is equivalent to finding the number of different hyperbolic 

numbers a, 4-a?j, where a and a are rational integers which possess the 

given integer as norm. To this end we first establish the -

Theorem 12:- Every odd rational prime may be represented as the 

difference of two rational integral squares in one and only one way. 

Proof:- If a hyperbolic integer oc =r a^ 4- a 2j(a 1> 0, * ^ 0) 
2 2 

has p as its norm, then a. — a p - ( a 4 - a ) ( a — a_) = p. Thus one'f actor 
x c 1 2 1 2 

is p and the other 1. '.Thence y^fy 4 ~ | , p**-l j \ /pH" 1__P —1 j \ . 
\ 2 + ~ T ~ / ("~2 ~ ) 

This shows that the factorization of an odd prime p as the product of 
conjugate hyperbolic integers i s (apart from associates) unique. 
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furthermore, each p t l + ( p - l ) j i s a prime and the fac tor iza t ion 

cannot be carr ied fu r the r . In fac t , i f p 4- 1 + (p - l ) j ^ t f where ocand R 

are i n t ege r s , then p = n ( © 0 . n( /? ) . Thus e i ther n(<*5 or n( &) i s = + 1 

and e i the r cC or p i s a u n i t . In l i k e manner p 4 1 p - 1 j i s a prime. 

Further , by t h i s method i t may be seen that the ra t iona l prime 2 cannot 

be so represented. For i f 2 were the difference of 2 in tegra l squares, 
2 2 

v iz- a 1 — a2 , one of a^ 4- a2 or a — a would be odd and the other even; 

whereas t h e i r sum 2 a 1 , i s even. We proceed to es tab l i sh the, 

Theorem 13 :- The number of representat ions of p e (p being an odd prime, 

and e > 1) i s exactly e + 1 but they are not necessar i ly a l l d i s t i n c t . 

Proof:- We may wr i te , p e = ( ^ 4- a2 j ) 6 ^ - ag j ) e , since 

( a x 4 - a 2 j ) ( a 1 — a 2 j ) - p . I f we further wr i te , ^ 4 a j =.oC and(a, — ap j ) -oZ 

we have p e = (oC)e ( c£) e . In view of the unique fac tor iza t ion theorem, 

the only in t eg ra l fac tors (apart from associates) of p e are evidently 

e- i — x , 
OC oC Where ( i = 0 , 1 , 2 . . . , e ) . 
Therefore,there are exactly e 4-1 different expressions of pe in the form 

(3^4- a j)(a — â j) and therefore exactly e 4-1 expressions of pe inlthe 

? * 2 ' form a^ — a2 wnere a. and a are rational integers. This leads at once to, 

Theorem lU;- If a rational integer m —p^ p2
 2p,6^...p Ga (pfs all odd 

primes) then the total number of distinct representations of m as the 

differences of squares is M e ^ l)(0o 4- l)(e^ 4- l)..(e 4- l) 4- £ (J) when 

£. =; 1 or 0 according as all the efs are even or at least one e is odd. 

Proof:- We may write, 

V1
ei=(ocfl-i{U.)i, (1 -0,1,2 .^ 

P2
e2=(f?)C2~'i(f ) J , (J = 0.1.2,.....J" 

P3
e3 = ( y ) e 3 _ k ( y ) k , (k= 0.1.2 e3) 

Pn
6n 1 (5}Vn'"'<1( ̂  , ll'= Q ' , 1 . 2 , . ' . . ,ej' 

where, as before, we have the number of representations of 

Piei=*ei+1. P2
e2= e24-l ... Pa

en=; en4:.l 
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and therefore, the total number of expressions of the form (ai 4- a g j ) ^ - a ^ 

obtained in * this way are (^ 4 lXe2 4 l)(e3 4 l) (en 4 1), where' 

each will be of the form 

d?r^ ^ ff^ ~^j^ j ^ wfff^ 
Now a term is its own conjugate, if and only if i = fi j - e2 k - e3 

e 2 2 

... , <1 - _£ . If elt e2, e^,... , ea, are all even, then we have 

(e14l)(e24-l)(e^4 l) (e a4 l) of the expressions given above; one 

and only one of which is its own conjugate, the rest appearing in pairs. 

Therefore, the number of pairs is (e14-l)(e? 4-l)(e^4-l) (e n4 1) - 1 
2 . 

and since either one of a pair of conjugates gives the same representation 

of m as the difference of two integral squares, and these are distinct 

representations of m. Also the one expression which is its own conjugate 

gives one representation, therefore the total number of distinct expressions 
816 - (ei+ l)(e2+l)(e 4 1) ...(ea+ l) - 1 

• J . — — , x 
2 - + 

= l(e14-l)(e24- 1) ... (en4 l)4-i 

Per contra, if any e is odd, then no term is its own conjugate and 

therefore -the number of pairs, or distinct representations is, 

-aUi-t- l)(e_4- l)(e_+ l) ... (e 4- l). 
<- 3 n 

" Thus in all cases the number of distinct representations of 

m = p lp 2 ,#p
 en (pts QXX odd primes) is, 

l(e14- l)(e24- l) ... (en4- l), •+• £ J where £ - 0 or 1 

according as at least one of the e!s is odd or the e*s are all even. 

We now seek the number of representations of 2 e which gives the following 

Theorem 15 :- The number of distinct representations of 2 e as the 

difference of two integral squares is e — 1 4. £ J- where £ = 1 or 0 

according as e is even or odd. 
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Proof :- Since 2 =2_±J..l_j. , we aajr write 2 e -
2 2 

or again as cc e 5 . e , w h e r e el.sl±2 and J = i-j. , B 0 t h a / « i w 2. ' 
2 2 

As before, we factor t h i s expression in to hyperbolic numbers having 2 e as 

norm as fol lows,- \eX)e ~ ^ J 1 , w h e r e j , „ D , l , 2 , . . . , e . F 
Pron 

3 "^ ,1 = 2; to 4- 6o , we have 
2 

JSX21 / o i . . . . - \ n „ n . , — 

which i s of the form a 4 - b j , where a and b a re^dd ra t ional in tegers . 
. 2 

likewi tolse tljzj)a
= 2±+_L _ 2 a - l j . How i f 0 <. i < e . we can write 

ocx5Ce ~ x i n one of the forms (o£<2) k oC a
 0 E u ( o c ^ ) k < J m , w h e r e k ^ m. 

Hence, each of these may. be expressed in the form zH__±__))'s 2*"^^+^ 

where ax and s^ are r a t i ona l in tegers . We thus have, a representation of 

? e- (?k ~ 1 \2 . k — 1 s2 

- ^ s^j — (2 82) for each value of i from 1 to e — 1 inclusive. 

Thus, there will be exactly e - 1 of these, and, following the same argument 

as before, the number of these representations that are distinct is 
a(e - l)4 £ i where £ = 1 or 0 according as e is even or odd. 

Combining this with the previous results, we have that the number of 

distinct representations of m = p 1
el p

 e2 . # # # p
 en 2

e
 i s 

1, (0 if at least one e is odd. 
2^x4- D(e 24l) ....(ea4-l)(e-l)4-£i ; where £ = < 

(.1 1^ all the e's are even. 

This formula shows immediately the fact that no odd multiple of 2 can 

be represented as the difference of squares, but every other rational number 

may be so represented. 

11. CONGRUENCES IN F(j). 

As in the case of r a t i ona l in tegers , i f ot/(3 we say that [3 i s congruent 

zero, mod 06, and wr i te (3 = 0, modoC. Similarly, i f A / ( c * - ( 3 ) , then 

say that oC i s congruent to G , mod/<, , and wri te c?<=/3, mod A • This 

l a s t equation may be wr i t t en as o<-6=K/\ where K. may or may not be a divisor 

of zero. 

to 

we 
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The importance of t h i s statement w i l l become apparent when we consider 

the t r a n s i t i v i t y of the congruence r e l a t ion ; oc and (3 may or may not be 

divisors of zero. 

We sha l l show tha t a l l the in tegers of F ( j ) , f a l l into classes with 

respect to a given regular modulus A. , and that we place two integers in the 

same or d i f fe ren t c lass according as they are, or are not congruent to each 

other, mod u . In our development of the theory of congruences, we shall 

attempt to preserve as many of the corresponding proper t ies of congruences 

in the f i e ld R as poss ib le . 

We sha l l f i r s t of a l l demonstrate that congruence i s an equali ty 

r e l a t ion , and finally. , tha t we may perform the elementary ari thmetical 

operations on congruences. 

1. Reflexive :- If ocbe any integer of F ( j ) , then cer tainly oc =? o£,mod A, 

2. Symmetric : - If cK and £& be any two integers of F ( j ) , then 

oc=./3 .mod^ implies c<-j3 - (CyK. or (3 -oc -AyK 'or fi^dL »*od /A* 

3 . Transi t ive : - I f oC , ft and \) are any three integers of F ( j ) , 

then U^ft , mod /<. implies J- £ - f ^ K * * * £ - ^ ,mod^ impliei (? = ^ + K : 2 / K 

Therefore <* = / + ( K l ~ " K2),M.and so <X = y .mod/*. I t i s c lear 

that in order to preserve t h i s property we require d iv isors of zero as 

coeff ic ients of//< . For example, i f our modulus i s 3cu-f 2 £ and 

cK — S u / - 3 to , ft- 2CO-CO , and ^ =— cu - 3c3 t then we have 

oCS-S*100^ 3 Co 4-2 to as (cA— $ ) - (6 Co- 2uS) - (3cu •+- 2co). 

(2 U/ - c o ) "S. O.mod 3 CO 4- 2 co . 

(?=>| ,mod 3co4- 2 co as ( / J - ^ ) =: (3C04 2to) - (3 uj 4- 2^3). 

(co-f-£o ) ^.o,mod 3 co 4-2~U) 

"but « ^ J i f we do not include zero d i v i s i r s , since o< — \) =. 9co =: 0,mod 3co4 2cj 

Thus in order to have a d ivis ion of our numbers into classes with respect 

to a given modulus as in R we must admit d iv isors of zero. 
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J7e can now also add and multiply congruences for if, 

^ ^ ^ o d ^ t h e n ^ ^ p ^ ^ ^ 

<̂  2 s (3 2 . ^ A t h e n ^ 2 - (32 + K2/< 
then we can write down the following:-

* l + 0 £ 2 3 f l + ? 2
 + ( k r k 2 ) A ° r

K ^ l + ^ 2 - (3X + (3 2 . ® ° a ^ « * 

Ibus congruences in l ( j ) possess a l l the properties associated with 

congruences in E and we now prove the important theorem 

Theorem 16 :- If / C be any integer of « j ) , the number of numbers in a 

complete residue system.mod u, i s exactly n ( A ) . 

Proof :- I f we write a^-f- a ^ = tojfcj + b£C3 .mod ^ O J + ' C t3 ,then 

(.e^-h^U-j- (a - t Ju ^ ( i u + r 5 ) (c w + » u ) - i c w t y o w . 
*- 2 1 2 

So that a ^ b ^ xc^or a ^ b^mod c foad a - b = y c or a, ^ b mod c , 

that is. b x ranges over a complete residue system.mod ^ and b2 ranges over 

a complete residue system,mod c 2 so that by talcing a l l possible combinations 

of these, there wi l l be c^ c 2 numbers of the form a-604- a co where 

*1T 0.1»2»«.« c 1 - l,and a 2 ~ 0 , 1 , 2 , . . . , c 2 - l^giving c r c 2 - n^k ) integers 

in a complete residue system,modM and these wi l l include zero divisors . 

That these n(y^ ) residues are a l l incortgruent to each other,mod A i s 

clear from the following7 Let us suppose that two of them were congruent,mod/i, 

so that <* = j?tmod/*5or ( a ^ - b ^ t o -4 (a 2 ~b 2 )u i - 0,mod c^us-x- c2u7 and 
therefore a^-b l E £ 0 ,mod ^ a n d ' a ^ b ^ s 0,mod c 2 ;and we have that either 

\ - ^ or a^ ~ b^mod o1 and similarly for s^ and b 2 ; so that no two members 

of a residue system can be congruent to each other unless they are equal. 

In particular, i f one member of a residue c lass be prime to the, modulus , 

a l l the other members of that class are prime to the modulus also. 

Analogous to the theory for rational integers, we have the, 

Definition :- The set of a l l integers incongruent to each other with 
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respect to a given m o d u l u s A , and.prime to i t , l 5 a reduced residue system, modA. 

12. THE <§ - FUNCTION IN F ( j ) . 

Defini t ion : - As i n R, we define § ( ^ 0 , where /K i s an integer of 

P ( j ) , as the number of in tegers in a reduced residue system.mod/t . We 

shal l show tha t t h i s de f in i t ion preserves many of the propert ies possessed 

by the 0 -function i n R and K(i) .X We use a cap i ta l <§ to dist inguishclhe 

function i n F ( j ) ; from tha t in R5since they are two different quant i t ies as 

we shal l i l l u s t r a t e in the example following the 

Theorem 1 7 . There are exactly c ^ ) . ^ ) integers in a reduced 

residue system,mod^ , where ^^e^uj-j- *2& and (pi^) and ^ ( a g ) mean 

the same as i n R, since a. and a are ra t iona l in tege r s . 

Proof, : - Put ^ = r a cu-f- a2co where a, and ap̂  are ra t iona l in tegers , 

then there are exactly ^ j (ax) in tegers in a reduced residue .system,mod a, 

and (jD(a2) in a reduced residue system, mod a~ , so that i f we consider a l l 

possible combinations of these, there w i l l be exactly (p Ui)<$(&£) integers 

in a reduced residue system, mod^A . I f a 1 and &2 are r e l a t ive ly prime 

ra t ional in tegers , then we can wri te </)(a1),^(a2) = ( ^ . a g ) =* $ ( n ( / < ) ) j 

and in t h i s case there are <$(n(/<)) in tegers in a reduced residue 

system, m o d ^ . However, in anycasewe can always wr i te c6 ( A ) = <p{0^)cp{a^ 

where f^-. a ^ C J 4 a ^ c o . Further we see that the cj-function for negative ' 

integers i s evidently the set of a l l r a t iona l in tegers i n a reduced residue 

system, mod ( - a ) , and i s the same as the set of in tegers of a reduced 

residue system, mod ( a ) . 

Thus the ( 5 - function for the associates of any integer K. i s the same 

as that foru I t s e l f , and similarly c j (/C) - < & ( / 0 . 

TO see the e s sen t i a l difference between J and $>we have only to 

consider any hyperbolic in teger , say 7 cu 4 7co. Here we have 

_ 07CU+- 7<?) = <t> ( 7 ) ^ ( 7 ) - 6 x 6 = 3 6 
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^ < M 7 u , + - , 7 c 3 ) = 0 7 ( 0 ^ ) = 0 ( 7 ) = 6 s i a c e w + G - l 

Thus, in order to employ the theory developed here, we must e g r e s s every 

integer of i - ( j ) i n the <u and £ form. Sence for a rational integer a, we 

have $ ( a W + - k C ) ^ W ( 0 ( a ) ^ n o t . u s t ^ ( a ) ^ w e s h Q u i d ^ ^ ^ 

However, to see the analogy between the <§ - function in P(j) and that 

for K(i) , we state and prove the following corollary to the theorem given 

above, v iz -

Corollary :- I f oc-TT e l 7T e 2 . . . TT en u ^ Tr * —^ 1 ' 1 2 * *" # 7Ta
 a where the 7T *s are 

primes in F( j ) , then § (oC) - n(o6 ) Y Y ( l - i U ^ A 

Proof :- In virtue of the unique factorization theorem, we may write 

= (piCu-M3 ) e l (p 2 to4uS ^ . . . . ( ^ . j i o ^ C i ^ - ^ ^ ^ j e r ^ 

•••• (cJ4-pntO)en 

where ^ = P i ^ uJ , ( i - 1 . 2 , . - . ; p - l ) ; T T ^ U i + P j U , (j-= i , r 4 l , - ; n ) 

Therefore we may write 

«• = (PI% 2
6 2 - • • -pr_ ^ - W P , 6 * - • • .p^) a 

By the previous theorem we have 

$ C ^ ( p 1
e l . . . . F r _ i e r - l ) , ^ ( p r e r . . . . P n e n ) ; 

Since P l , p 2 2( e t c # ^ g j ^ reiatively prime, this may be written'as 

<$ (*O=0( P l
el) <6(p2

e2)--..0(pr_ier-l)^(prer)....^(piie11) 

= ^ 1 ( 1 -yP2 e 2 ( 1 -^) - -P^( 1 - l ) 
= P i e i p 2 e £ . . . . p n e n ( l - j ^ l - f e ) - . - . ( 1 - & ) 

How n(o4 ) = P l
e l p 2

e 2 . . . . p / n and nCTty = P l , • • • • ,n(7T )̂ =r p n , whence 

\t 

Example :- To show that the two processes are equivalent, we may 

consider the following example, 

$ (12CU4 2kf3) - Cp {12).(p {2k) a k x g ~ 32. 

tut 126<J4 2^co =. (2c^4co ) (3u/-f.co ) ( tu4- 2o)->( cu-f-3Z0) 
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therefore $ (12 CO 4 2^ to) =s (12) (2*0 h - | \ A _ l \ | i _ lXA _ 1^ 

a(12)(AJ^)(J)ai^ ?A 3 ; 

Since 0(l) = l, w e note tha t , as in R,when we are dealing with a prime 

v iz , p i o 4 C o , every in teger in the residue system i s of the form a t u 4 c o , 

and also belongs to the reduced residue system, mod (p iu+uS ) . since a 

in every case i s r e l a t i v e l y prime to p . 

13. THE ANALOGS FOR F( j ) OF FERI/AT'S THEOREM. 

Before proceeding to the theorem, we require the following, 

Defini t ion : - 0?wo hyperbolic in tegers oc=a1co4- a2uJ and 

$ a bxCo4- b2C3 are r e l a t i v e l y prime to each other i f they possess only 

the factor co+u> = l and i t s associates in common and no others . For i f 

we consider two hyperbolic integers oc^axco 4 - ^ 0 7 and (3 = bjtu 4- b2C3 

where & 1 i s prime to b 2 and e^ i s prime to b 2 , then *jU;4- b2tp ^ b ^ 

&x co 4- apG? a^ a2 

The only common factoroof ax and b x i s 1, and s imilar ly for ^ and b 2 , so that 

the only common factor of *Cand |3 i s C J 4 ^ - 1 or i t s associates , which 

i l l u s t r a t e s the def in i t ion given above,,and i s analogous to the condition 

for r a t i ona l in tegers to be r e l a t i ve ly prime. I t i s c lear that i f the norms 

of two in tegers are r e l a t i v e l y prime, then the in tegers themselves are 

r e l a t i v e l y prime. However, the fact that the norms are not r e l a t ive ly 

prime does not mean that the in tegers are not r e l a t i v e l y prime, since a, 

could be a factor of b 2 so long as i t was not a factor of bX and similarly 

for ap. 

Now we proceed to es tab l i sh a theorem analogous to the generalized 

Fermat Theorem for r a t i ona l integers for those of F( j ) , but the method wi l l 

d i f fer since we must take into account the fa i lure of"the cancellat ion law 

for zero d iv i so r s . 

Theorem I S ; - I f /<. be any regular integer of F ( j ) , and oc any integer 

r e l a t i ve ly prime to U, then 06 sl .modyH. 

Proof:- Choose ^ = bxCo 4- b2Z3 and 0* = *^+ ^ w h e r e _ i g & 



.ember of the reduce residue system, m o d ^ . so that a, i s p r lme to b , ^ 

and a ^ i s prime to b 2 . Now 

^ H ( a i W + ^prH Wu/+ njfcwife) 

But by Permatfs Theorem for H, sin6e & 1 is prime to b ^ then 

^ lJ~llh^ *_ so that (a ^ W * ) (( MTDMlJ 
1 1 „-l> V ,J, .= l.mod b 

and similarly, since a i s prime to be b_ we have 'a j^ V = x mo& „ * .. . 

2 * « / t 2 "J - = l , m o d b . 
Thus we have (a,U) -+- a„C3 f >™- f i , , x n i , , • , 2 

therefore (a iu/+. a ^ f r - ^ l f m o d y M _ # -

Example:- l e t ^ 3UJ+ 2 * B 0 t h a t a 0 0 D p l e t e r e s i d u e B y s t e n ^ ^ 

follows O.W, 2 W , C . UJ+K . and 2 U,^u3 . The elements of a reduced ' 

residue system axe clearly Uj+ * . and 2 ca+Z by definition. The 

number of these i s 2 = cfi <3) 0 < 2 ) . ^ t o t a l n u Q b e r rf ' ^ ^ ^ 

6 = n£/() = 3 x 2 as i t should be. 'Also 

( 2 « o + W - ) J ^ = < 2 u , + C T ) 2 = ( 1 U ^ W A S 1 > m o d A ^ 

i t . PKIMITIVE HOOTS OP COHGEOMCES. 

def in i t ion! - As in E, we say that an integer in a reduced residue 

system, m o d ^ , i s a primitive root of a congrftence.mod/K. i f $ ( * 0 i s 

the least exponent for which i t i s true that a ^ ^ W UJ+C5 = l . m o d ^ . 

Ehat not every member of a reduced residue system, mod/t i s a primitive 

roofobviouBlfrom the fo l l owing , - u,*<3 i s a member of a reduced residue 

system, mod 3u/+ 2w but 

U»+£S = 1 , mod J,u>+ 2C5 , b u t § ( 3 w - ( - 2 2 ) = 2 so that u , + £ l B M t 

a primitive root of 3 w + 2C3 , since i t s f i r s t power i s congruent to l.mod/t. 

Theorem iq, :- • ?A; necessary condition that a ^ - f a£Co should be a 
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primitive root of b ^ t-b^is that ^ be a primitive root of bx and ^ 

a primitive root of b2. 

Proof :- By the definition of a primitive root af ^ L l.mod b is 

the equation satisfied by ^ and (p{^) i s the least power for which this 

is true. Similarly a2
 b 2 = l.mod b2.* But fO^co 4- ^00 )^cf{Dl)<tt0 ).4 

So that if a1 is a primitive root of bx and ^ a primitive root of b2,then 

= l,mod (b-jCU -f b2Co)# 

This condition is only necessary, but the following theorem gives the 

sufficiency condition. 

Theorem 20. A sufficient condition that t^uj ~h a to should be a 

primitive root of ̂ cJ-f- b ^ is that g.c.d. (^(bx),^(b2))^l. 

Proof :- Let us consider the case where (p^) and4(b2) are not prime 

to each other, so that they possess an l.c.m. , say c. 

Then c = c1^)(b1) and c = c2<£(b2) So that 

which is congruent to l.mod'^co H-"T>^o) but c < (ptio^.cftb ) 9 therefore 

â co-f- a2co is not a primitive root of bxta-f-b?co • 

Hence a necessary and sufficient condition that a hyperbolic integer 

^co -h "brp should possess a primitive root ajto 4- a^Co is that a should 

be prime to bx and a- prime to b 2 and that <̂ >(bx) ,$bp) are co-prime. 

(In order for a number to possess a primitive root at all, it mast be of 

the form a2nu/ 4- b2mco (a,b odd integers) just as we have for R). 

15. QUADRATIC RESIDUES AKD REMARKS ABOUT QUADRATIC RECIRROCITx", 

ffith respect to a given hyperbolic integer/( , all the integers are 

divided into three sets. The first set is composed of all the integers 

not relatively prime toy^. The second set is composed of those integers 

prime t o ^ , which are residues, mod M of squares; and are called quadratic 

residues; that is, integers x satisfying the equation K 2 = 2, mod/v # 
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The th i rd set i s composed of those integers prime to At but which are not 

congruent to squares ,mod u t and are called quadratic non-residues of ft. 

Theorem 21 . The quadratic residues of an odd prime p coincide with 

the res idues , moduloo p,of the even powers of a pr imit ive root r of p ; the 

quadratic non-residue of p coincide with the residues of the odd powers of r . 

Proof:- Any quadratic residue k i s congruent modulo p to a square x2 

where x i s an integer prime to p . Thus x =2 r^mod p ( t h i s corresponds to 

the theorem i n R tha t the powers of a primitive root range over a complete 

residue system.mod p and hence, one of the powers must be congruent to x as 

stated above). Hence, k ^ r 2 l
f mod p . Conversely every even power of r i s 

a square and hence congruent to a quadratic residue of p . 

Also by a theorem t rue for R, r s =£ r*, mod p i f and only i f s = t,mod p - 1 . 

since p - 1 i s even we cannot have s odd whentt i s even. Hence, no odd 

power of r i s congruent, mod p to an even power of r . Thus the residue of 

the odd powers of r give a l l the quadratic non-residues of p . As an example 

of th i s we may consider the following- l e t p =: U/-f- 5 £5 so that the residues 

are (^6^4-Co , co4-2to, Uj-jr 3c7, Ur + kuJ , of which C04 cu , and oo-hk^ 

are the quadratic res idues . The only primit ive root of co4- 5 to i s ta 4 - 2*o 

the even powers of which correspond to the quadratic residues found above; 

and the odd powers correspond to the quadratic non-residues as the should. 

As in R we can s t a t e the following- that an integer R not d iv i s ib le 

by p i s a quadratic residue i f and only i f S s l,mod p wherefh= J(p-l)H; 

an integer 17 not d i v i s i b l e by p i s a quadratic non-residue of p , i f and only 

i f U ^ s l,mod p . For example, i f we consider any integer aCj-4 b <-o", i t 

wi l l be a quadratic residue of tc/4-pco" or yLu+00 according as b or a 

i s a quadratic residue of p since the second factor i n each case i s simply 

congruent to zero. 

Legendre's Symbols;- If TT = pco4uJ i s any prime and i f m i s any 

integer not d iv i s ib l e by p , the symbol (m/p) i s defined to have a.value 4 1 or - 1 . 
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according as m i s a quadratic residue or non-residue of p, s o tha t using 

our previous example ^e have (CO H-c^ / c^4- 5 c^ ) = ( 6 o 4 U i3/ Co 4 5 c3)= 4 1 

** . ( C c / 4 2 w y W 5 Z>) = {La-r-3Z / t u 4 - 5 c o ) = - i 

^ note that (m/p)(n/p) = (mn/p) as in R and W p ) = m i ( p - l ) , modf . ' 

Ve now add a remark concerning a theorem, termed ^y Gauss, 

" The Gem of Higher Arithmetic," namely, 

^ M r a t i c ^ e ^ i p ^ c i t j r . Although no formal theorem coneerhingrqua4?aUc 

rec iproci ty may be proved for in tegers F ( j ) , * e conclude th i s paper by ~ 

some general remarks concerning quadratic reciproci ty i n F ( j ) . 

Por i f 60 4-pco and co 4- q£> are d i s t i nc t primes in F( jJ , then 

co 4- pco wi l l or w i l l not be a quadratic residue of to -*- quT depending on 

whether or not p i s a quadratic residue or non-residue*lad conversely. 

For i f UJ ~h puo i s a quadratic residue of C04 qto then 

(c->-4 a x t ^ ) 2 = Cu+ytS ,mod i o - + - q c ^ 

2— — — 
Uj -f- â ^ co =r tO4P^-f-b1Cj-f-b2qC0 . 

Therefore, by equating u> and Coparts we have 1 3 l,mod 1 : 

3X — p- f -b 2 q . o r ^ s P.mod q so tha t p must be a quadratic residue of q 

and conversely. 

So tha t we may say tha t the quadratic character of 00 4 pw with respect 

to to 4 quo i s the same as the quadratic of p with respect to q. That i s 

ftiJlI^\/j^±±^l/^/jA = Kp-D&(q-1) 

ty the theorem for r ea l numbers. This applies only to primes which 

possess the <same form, viz both of the form Lu-hyC3 o r p w + co . This 

i s clear from the fact that in the contrary case the Legendre S^bol 

has then no meaning; tha t i s / pcu+-o3~\ i s nei ther ± 1 

__ \ Co4- q £ j / 

since the prime to 4- qco could not have a residue of the form y UJ-t 00 

unless p = 1, and hence p Us f £3 could not be a quadratic residue of uj 4- q£7 

except i n the simple.case discussed above. 
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