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INTRODUCTION

- Although much has been written and a great desl of elegent theory
developed for numbers of the form x + iy, where 1= -1 and x and ¥
are real numbers, viz, the ordinary complex nunmbers; very little has been -
seid concerrning an analogous system of numbers of the form x + jy where
32= 1. This system we shall term the "Hyperbolic Complex Numbers", due
to their connection with the hyperbola znd the hyperbolic functions.

The purpose of this vaper will be to develop the number theory properties
of this systen.

However, before proceeding to the direct investigation of this
theory, it is perhaps advisable to develop some of the geometric aond
trigononetric zspects of these numbers in the menner which is usually
followed in the introduction to ordinsry complex numbers. e first
build up the algebra of these numbers by the use of number couples;
then proceed to develop a representation of these numbers-in terms of
hyperbolic functions, prove a theorem enalogous to that of De loivre for
ordinery complex numbers, and finally outline a trigonometry for these
hyperbolic numbers. TFor convenience, in the subsequent discussion we
'shall erploy Romen letters for real numbers (inciuding rational numbers

and rational integers), znd Greek letters for hyperbolic numbers (and

also for hyperbolic integers).



Part 1

Some Aspects of Hyperbolic Trisornometry

1. ARITHMETICAL DEFINITION OF HYPLNEOLIC COiPLIL LU.BIRS,

The following purely erithmeticel theory of couples or bipartite
mumbers of the forn (a; , ap), where o ead o, are real mumbers, loys a
logical foundation for these hyperbolic numbers,

Definition of equality of number couples i~ Two couples (a1 , 82)
end (by , bp) ere equel if and only if &) = by end o, = b, » We notice
that (a7 , ap) # (ap , a3) wnless a; = an .

Definition of the pesative of a number couple t- If xL=(g , 82)

then, bJ definition — XK= —(""‘l ’ 8;3) (- 8] 4= a,2)

Addition, subtraction and mu.l’ciplication of two‘couples and of a
scelar by a number couple are defined by the following formulae,
o+ 3 =(2 , ae)—l—(bl , ba) = (al +bs , 25 4 by)
o« —@ =(a1, 8] =(by, Bp) = (a1, 2p) (= by = )
oe B=lar s ) o (b, b)) = (agby + asbp , 21Dy + a5by)
k.ot =X (o, 85) = (kay , kap) f

Addition is seen to be commtative and associstive :

ol + (6 = (3 4+ & , &nd (°¢+(5)-+ X = ol + ((3+3) whers
o:,(,’; ’ g are sny number couples. MNMoreover, it is easy to show that

multiplication is commtative, associative and distributive with respect
to sddition :

BBk o @EY - e (py)
d.(p+y):o¢ﬁ+°"y

Furthermore, for the sum of a number and its negative we have,
(a7 , ap) + (- &9 ,~- a,) = (0, 0) and further
oL+ (0,0 =(a1, a5) +(0, 0) =(a7 , a5)= X
Hence, in view of these'relations, we shall write (O , 0) = 0 when thers

is no possibility of misunderstanding. Also, ’



b + (1,0 =(g, a).(1, 0) =(ay , a5) ;
tms (1, 0) has the property of unity snd we write 1 for it.
Division is defined as the operation inverse to multiplication.,
Division, except by (0, 0) end any multiple of (1, 1), is always
rossible and unique as i‘oliows,
(b 4ba) (b3 ,b2) (g "'ae)_C’lal —boap , bpay —aphy
(a 125) ) (21,020 (o "'32)_ ala"a’ae "’12— a22>

In particular, we have

(v, ,0) (bl ,0 provided'al?‘. 0.
(2 ,0) 2y )

Hence, the couples (a ,0) combine under the zbove definition of addition,

mltiplication, etc, exactly as the real numbers combine under ordinary
eddition, miltiplicationyetc, Thus we see that there is en isomorphism
between the set of all couples (a , 0) whose second elegent is zero
and the set of 21l real murbers a, Thus there is no smbiguity in
writing a in place of (a , 0) for all real numbers a., For brevity,
we write j = (0 , 1) then

#=0,1).0,1)=(1,0=1

() 435 = (a, ,0)+ (0 ,2)) = s+ 2, . (0,1) = a -ta, J
The resulting symbol al—-f— 3, J1s called a hyperbolic complex numbers
The above definitions now assume the form:

et ) E (b 29) = (o E b))+ (2, E b5

(o) + 8,3) « (b + b3) = (&b, + 2,0, +(ag by + a,b1)J

by +b25': %bl - azbé+ alb2 —2,b

mted 2% - af  af e
. where in the latter case, (a1+ azj) # 0 and ay + 2,

-~




2, GEQUETRIC REPRESENTATION AND CONSEQUZNCES, De MOIVRE'S THEOREM,
These numbers sdmit of a represcntation in a plane just as do ordinary
complex numbers., Thus, if in the couple (8 +25) we put x = ap and ¥ = ay

then (al ,aa) becomes a poiat in the plene.

1@" \ ’; From the sdjoining figure we notice that
v
¥
A
] Py (81 ,az) and (32 ,al) where (a17_. az)
:"vl/, are obtained from one enother by reflexion
| 7
v " about the line y = x.
| 1Q
1 L o Ve know that ordinary complex mumbers
O f&——a,—— T

represented in terms of the arguments and moduli are unique up to the
miltiples of 2T . In seeking similer results for hyperbolic complex
mumbers we may write tehatively & = a+bj =r(cosh u +Jj sinh u) the

conjugate of waich is of = a -bj = r(cosh u — J sinh u) end if we mmultiply

these two numbers together we obtain

ol L = rPz o° - b2 therefore so long as lal > \b‘ y WO

shall have a rezl positive value for r = a.2 - ‘n2
/f”" ~» In view of this we divide the plane into
N s 2 4 quadronts by the lines y=x and y= — x
B /'/
\ | e es in the adjoining figure., This shows
| S that the point (a , b) in the case above
A ‘
7 : lies in quedrent 4 ., . ond we shall
r/ ’
/ D ‘ restrict ourselves to thig quadrant in the

X subsequent trigonometric discussion,

although the extension to the other quadrants is not difficult. Upon
equating the real and j-parts we obtein a = r cosh u 30 =7 sinh y,

therefore tenh u = °/a. Thisg gives

e — o ___b/a — k whence eeu_ 1+ > 0 so that there exists a

piy

eu-t*éu l1—%

unique real angle wu which satisfies this equation,



This shows fhat there is a unique representation of <X as
r(cosh u -+ j sinh u) where r and u are resl, =nd that, since the
hyperbolic functions are periodic in 27Vi, if we wish to imclude
imaginary angles, then

rcosn(a + 2pTe) + § simh(u +2p7r1)),
where p is 2ny rational integer. The quantity r which eppears, we may
"term the pseudo-distance from the origin to »the point (a , b) since it
plays a role analogous to the modulus in the case of ordinary complex
numbers, which is the distance fvom a point in the complex plane to the
origin., Clearly, r is independent of direction. Now we examine
miltiplication and division of hyperbolic numbers expressed in this
representation and write
o = r(cosh u+ j sinh u) =nd (b’ = s(cosh ¥ +J sinh v)

oL end @being any two hyperbolic numbers in quadrent A. Then
o(.@.—.rs (cosh u cosh'v -+ sinh u sinh v) + j(cosh u sinh v+ sinh u cosh v)

=rs[cosh (u+ v) + j sinh (u + v)];
Similarly, for division we have '

ol _ r(cosh u -+ j sinh u) . (cosh v — j sich v)

-

(f, s(cosh v + j sinh v) (cosh v — j sinh v)

—1r/s (cosh u cosh v — sinh u sinh v) + j(sinh u cosh v —cosh u sinh v)
-%r/s (cosh (u— v) -+ j sinh (v = v),
These expressions for hyperbolic numbers in terms of hyperbolic functioas
are similar to those for ordinary complex numbers in terms of circuler
functions. Since we restrict ourselves to quadreat A, r and s will be
positive and real in every case, eand u and v are unique real angles.
Theorem A := The representation of ¢=a-bj in terms of
r(cosh u -+ j sinh u) is unique up to multiples of 27Ti
Proof :- If possible, let there be two representations of the same
number, o/,= & +bj =r(cosh u-+j sinh u) = r(cosh v-fj sinh v), so that

r((cosh u = cosh v) -+ j (sinh u = sinh v)] == Q. Since r %0, then



cosh u = cosh v and sinh u = sirh v by equating tke resl and j—paxts.
Eence u = v +2nTNi where n is any rational integer. Therefore the
repi‘esen’cation is unique, mod 27Vi, since the hyperbolic functions ere
periodic with period 277i,

Furtherzore, in view of the rules of multiplication znd division glven
sbove, we mey state the follewing analogue to De Moivre's Theorem, viz-

Theorem B - If oé =a +bj = r(cosh u+j sinh,ﬁ) and lies in quadrant 4,
then o®= (a+13)% = r™(cosh nw + j sinh mu).

Proof :- By the multiplication rule we have,

oé.(s’ = rs(cosh (u+ v) 4+ j sinh (u+v))

so that, if o(=@ this becomes, )

A% = (a+ bj)2: re(cosh 2u + j sinh 2u),
Continuing in this manner, we obtain for all poéitive integral values
of n, the formle,- |

o¥ =|r(cosh w +J sinh uan_—. r™(cosh mu + j sinh nu)
vhich is the hyperbolic enalogue of De loivre's formula for ordinary
complex numbers. |

It is clear from these considerations that the hyperbolic numbers are
associated with the hyperbol‘ic functions in 2 similer manner to that in
which the ordinery complex numbers are associated with the circular functions;
hence the nomenclature adopted at the beginning of this peper,

3, DEFINITION OF THE HYPERBOLIC FUNCTIONS OF ANGLES IN QUADRANT A,

We now proceed to define the hyperbolic functionsof angles in quadrant &,
in a2 menner snelogous to“the definition of the circular functions in the
first quadrsnf, l.€s in terms of the sides of a right triengle. Let us
consider exny two points P ornd Q in quedrent A. Then the vectors CP and 0Q
ney be expressed as a+ bj and ¢ +dj respectively, where & > |b) > 0 axd

c > [da] > 0 as in the figure below.



TA ~ Tarough Q draw QP' parallel to 0Q',
/7 the reflection of 0Q in the line y = x,
Q’ / ; ?@*Lj) .
Pt P so that QP' meets OP at P'. The vector
/
e OP' is easily seen to be the vector k(OP)
N 7 . 2 .
AN / Q(_w—d.x) or k(a + bj) where k = ...‘E._";.@E which is
7,
NP : ac — bd
> AN
RN /,x_always positive in virtue of the above
N
nd ' \z\\ conditions.
Ve \k

7 .
We see further that the pseudo-length (P.L.) of QP' is given by

,/\/Kc2 dg)' a_cl?-__ [(-—c-a-——-‘ﬁ>.b.—d]2: 1 \%"—:%,m

oc bd ac bd
the absolute value of be — ad bking taken since this expression may be

positive or negative. Furthermore, we define the directed pseudo-length

(D.P.L.) of QP' as 1 (b = ed)Ne®—a? . The quentity bc — ad is just
ac — bd
double the area of the triangle OQP, being positive if the vector OP; hence

also OR: lies above 0Q, and negative when OP lies below 0Q. Let us consider

the following ratios of the sides of the triengle OQP'-

C = (P.L.)OQ _ -z ®—1d

S —_1i (D.P.L.) QP! - B8 — ad
(P.L.) OP' € a%\[a® — b2

_Upon squering snd subtracting, we get 02 = S2 = 1; whence 02 = §2 + 1.

Now, by definition, C is always positive end therefore rust be Z1l, S
T is positivé or negative esccording as P' is above or below the vector 0Q;
i.e. according as u is measured 2 ccunterclockwise or cloclkwise direction.
Cn this basis, we may write C = cosh u end S = sinh w and state the
Theorem C :~ If OP and OQ are any two vectors in quadrant A; there’ ig
a triengle OQP' such that P and P' are '.bcollinear and QP' is the product of

0Q by a scalar multiple of j. Furthermore, there is a uniquely determined

real mumber u such that

cosh u =(P.L,) 0Q , and sirh w=o(((D,P.L,) QP*

P.L.) OP! (P.L.) OP'



Thus we see that QP' pleys the same role in hyperbolic trigonometry
as the perpemiicular in ordinary trigonometry, emd, for thic reason, we
say that QP' is pseudo-perpendicular to 0Q. This enables us to develop
h&perbolic trigonometry in quadrent A in a manner anzleogous to the usual
development of the trigonometry of the circulzr functions in the first
quadrant,

However, as the purpose of this paper is to develop the number theory
of this system of numbers, we shall conclude our discussion of hyperbolic

trigonometry at this point end proceed to the main topics.



Pert 2

The Mumher Theory of Hyverbolic Complex Numbers.

INTRODUCTION :- Ve now proceed to the investigation of the number
theory problems connected with hyperbolic integers, and attempt, wherever
possible, §o establish results snalogous to those for ordinary complex
integers., As distinct frdm ordinary complex numbers, we note that the‘
J=numbers do not form a field; but rather a ring since there sre proper
divisérs of zero. In this system we have, as we saw previously, the two
well defined operations of eddition and multiplication; and, if we exclude
zero and all the divisors of zero, we saw that a third operation,-division-
was also possible, The ring comsisting of all the hyperbolic complex
numbers we denote by F(j). In the course of the subsequent discussion, we
shall first establish several theorems concerning the whole ring ¥(Ji;
define a convenient system of integers in F(j) ond investigate their
properties, end finally add a few remarks conéerning a'g'eneraiization of
 the quadratic reciprocity law to this system of integers.

1. NULMBERS OF F(j),- CONJUGATE AND NORY OF A KULBZR,

As we saw previously, zny number of F(j) may be written in the form
a-bj where J satisfies the equation ¥ 1= 0, but no meaning is
attached to j 'per se' , since this equation is clearly reducible in
the real field, R. We‘say that the ring F(j) is characterized by this
equation, =nd every number of F(j) is a rational function of j with real
coefficients; and, since 32A= 1, its degree in J may be reduced so as not
to be higher than the first,

Definition :- The number =z — bj obtained by putting —j for j in the
number K& = a -bj of F(j), is by definition the conjugate of oL , and is
denoted by of o Thus 3 +2j and 3 —2j are conjufate in F(j)., Clearly a
real number in this system, as in K(i), is its own conjugaté.

Theoren 1 :~ The conjugate of a _ﬁroduct is equal to the product of

the conjugates of the separate factors, i.e., if /(:ptﬂ then }Z:o?ﬁ,



Proof i~ For if /.(:0([3=(a. +bj)(c +dj) = (ac + vd) + (be + ad)j.
then we have /4. =(ac + bd) = (be 4 2d)j = (a — bj)(c — dj) =L @
hence the desired result. ’ ' '

Definition :- We define the produc{; of any number o of F(j) by its
conjugate, as the norm of oz. and denote it by n(o( ), Thus

n(a +bj) = (a+bj)(a — bj) = a° — e
Hence, the norm of a hyperbolic num’ber"a+bj is zero if and only if the
mumber itself is zero, or a divisor of zero; i.e. a maltiple of 1+ j or
1 - j. In fact a°—a® =0 is the norm of a+ aj = a(l + j) which is
zero or a divisor of zero according as a is -or is not equal to zero itself.
Further, the norm of a number of F(j) may be any posibive or negative real
number or zero, as distinguished from the norms of ordiﬁary complex
numbers which are > D |

Examples i~ n(3+2j)= (3+25)(3 =2j) =9~4 =5

a(2+35) =(2+3)(2-35)=4%-9=-5
n(q(1 + 3)): 0 5 as we noted above.

Theorem 2 :- The norm of a product is equal to the product of the
norns of its factors, i.e. n(<¢, F)“‘ n(X). n(ﬁ)

Proof :~ For n(x. ) oc(g (3 o(olﬁg n(). n(ﬁ)
Further, the cancellation law, viz, o<(3 —O(X implies that 8:8 , is
valid unless ok is zero or a divisor of zero, for then it possesses an inverse
1 (division being defined if o(# 0 or a divisor of zero). Multiplying
the equation d@‘:o(x by this inverse, we get ﬁ‘-‘j; however, no such
inverse exists if & is. a divisor of zero or zero itself, and the following
example shows the result of using the law on divisors of zero. For

(1-3)2=(1-501—y), but 2£1—
| 2. EQUATION SATISFIED BY THE RATIONAL NUMBERS OF F(j).
Definition :~ A rational number of F(j) is one of the form a +b,)

where o and b are rational humbers; .

’
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Every rationzl number oG 6f F(j) sctisfies a rational equation whose
degree is the szme as that of the riﬁg itself, that is the second, =nd whose
renaining root igﬁ%onjugate of o¢ ., The equation having as roots
oLand oL is (x-(a +1j))e(x~(a - bj)) = x2 — 2ax + 2% ~ b° and is
theréfore of the form leﬁ px 4+q =0 with p and q rational numbers.
If b= 0,s0 that A =k ythe equation is reducible in R being just (x'—'a)ez: 0
_and the equation of the lowest degree satisfied by « is x =X = 0, If ’
b # 0, that is d#oz s the second degree equation reducible, or not, over R
satisfied by o 1is xa-h 2ax + 22 — e = Oe

Hence the nuﬁbers of F(j) fall into two classes eccording as the
equation satisfied by thenm is of the fiist or second degree. Those which
satisfy equations of the same degree as that of the ring F(j), are called
primitive numbers of the ring. Those which satisfy equations of lower degree
than that of the ring are called imprimitive numbers of the ring. Clearly
the imprimitive numbers of F(j), are just the rationsal nunbers,end they are
s2id to form a subfield of‘F(j). F(j) may be defined by one of its primitive
numbers, bult by none of its iﬁérimiti%e Qneé. The middle end constant
terms in the rational equation of lowest degree satisfied by o« are seen to
be trace oK and norm o, where trececX T oL +oL and norm Rk = oL

3, INTEGERS OF F(j). |

To determine which numbers of F(j) are to take the place of integers,
we rmust consider both the primitivé apd the imprimitive numbers of F(j),
the latter being disposed of at .once since a rational number is an algébraic
integer if and only if it is a rational integer. To decide when a primitive
number of F(j) is en integer, we shall, by definition, say that the necescary
and sufficient condition that of be an integer of F(j), is that it satisfy zn
equation with integral coefficients of the form,

X2+'p$:+q = Owhere —-Dp=cK +al , @ = xo& ; that is, (+ KX ond o<.§

mst be rationzl integers.



If we write o (X not a divisor of zero) in the form a- bj where
a =21/ c; end b ~Db1/ c1 b 21 by, ¢; , being positive rational integers

with no common factor, these conditions become,

(a) 2241015 | 2 =113 _ 281 _ g rational integer.

c1 Cc1 Cé
a1 4 a3 s L2 .
(v) (_1+ W), (A -ti)\_=a "1° _ & rational integer.
€1 c1 ¢ic

Thus, there are the following three possibilities,
W e>2 (1) =2 (111) ;=1

(1). 1f c1§ 2, then,- in virtue of (a), 8 end ¢y would possess a cormon
factor which, by (b), would be contained in by also; a fact which is conprary
to the hypothesis that &) is prime to c3, and by is prime to ¢y. Thus, this
case 1s impossible.

(i1). 1If ¢y = 2, then alz.- blz mist be divisible by 22, so that 8y
end b must be either both even or both odd. The case of both even is
clearly inadmissible sincé then 2 and by would possess a factor in common
with cq1, contrary to the hypothesis that a3 and by were both prime to cy.

On the other hand, the case of 8 and by both being odd integers clearly
satisfies both (a) and (b) above, and thus is possible,

(1i1). If c;=1 then both 2) =nd by are rational integers, and henée
this case is also clearly p§ssible.

We may summerize the above three cases in the following definition,-
Definition :- A number of the form a--bj shall be en integer of 73)
if and only if a'and b are rational integers, or both:halves of odd rationsl
integers. This definition, although arbitrary in a sense, gives a nupbexr

theory quite analogous to that for the rational integers.

If b = 0, we obtain the rational integers. Just as for the rational
integers, it is easy to see that the sum and product of two integers. of i‘(j)

are again integers, and hence they form a subring of (3.
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4, NEV NOTATION FOR INTEGERS,:-

At this point we introduce g_notation which ﬁill heve far:oréaching
implications in, and will also simplify considerebly,the proofs of many
of the subsequent theorems., If we demote 1+ j by W and 1= j by |,
then we may esisblish the following, ——Z?JL -—1FJL

Theoren 3 :~ Any integer of F(j) mey be expressed in one znd only
one way in the form rwSf 4 s where r end s are rationzl integers.

Proof :- We first consider the case of a+bj where a and b are
retional integers., Then

| at+bj=rw+ sw=r(l+j) (1 -4

Therefore 2a + 2bj = r+ s + (r —8)3 io that, byzengting real and j-perts,
we have r+ s =22 and r—s="2b; thus 2r =2a +2b and also |
2s = 2a —2b, vhich give r= a2 4+b and s =a —b, so that both r and s
are rational integers since a and b are.

Similarly, if a 2nd b are both halves of odd integers, we have

12)_4_%3': &4bj—Tw+ S = r(l_je-__,j)_‘,.s(;_-_é__j_)

where p snd q are odd rational integers. Thus ﬁ.+ Q= r48 +(r - 8)J
end therefore as above we get, r+ s =p and r —s5 = q, hence it
follpws that r - Ma-__q_ end s %-_q,. Now p4+q and p—-gq are
both even, since p and q are both odd, and hence divisible by 2; so that,
as in the previous case, both r and s are integers. Thus any integer of
7(j), say a +bj, may be expressed in the form rwW-+ s where r and s
are rational integers. That this represeatation is unique is clear as
follows~ for let rw + s® and uW+ vio be two representations of
a+ bj, so that a+bj= rs+ s =uw+ vX; vhence (r—u)w= (v~ ).
But & end (O are mutually perpendicular unit vectors lying along y = x |
and y = -x respectively, so that the equation sbove is true only if
r=u=0 eand v —8 =0. From these it follows that r=u, v =s,

and thus the representation is unique.
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The advantoges of this notation are mainly in multiplication since the

cross product terms are all zero, viz w .5:-_0, since (14;12&1 -éj) =0
apd W+W =1, Also it possesses the advantage that W= (L, and D 2= 3,
so that to multiply two integers together we merely mltiply the (W and 53.
parts separately and add the results (i.e.(ald+ bb’é)(cw-pdm):(acw'-#-bda).
Since W and (0 are conjugates, the conjugate of an integer 2l + b is
clearly formed by writing (o for W and W for (J giving conjugate |
(aw+ W)= a5 +b W . The norn also assumes an especially simple form ,
as for example, | | |
nlaw+ dQ) = (aw+bvR)(ald + buw)=(ab)(w+XQ ) =sab

end so a number cennot have norm zero unless »eit‘;her of the coefficients
of W or tJ are zero or is simply zero itself (i.e. the divisors of zero
are miltiples of W and &W,). | |

5. BASIS OF F(j). '

Two integersos; and o, ere sald to form 2 bésis of the integers F(j),
if every integer cen be represented in the form ay o&l-f‘ &, o{_‘ o where alénd a,
are rational integers, (Clearly mumbers of this form must be integers).
For exomple:- 3 W+ 3 , and 2w+ form such a basis, for if

ald+Db = a1(2w+65 )+a2(3w+53)

then 2:m+38, = a; ay+a, = b ond solving these we f£ind that
5 and aa'are rational integers as was required, e oi)serve that the
determinant of the coefficients of the basis is |

3 1
= l,or -1 1if we reverse the order of the elements in the basis,
2 1 '

Theorem 4, If o 1 and o( , be a basis of ¥(j), a necessary end

sufficient condition that -

, whereal.a.b,b
— b 25 "1* "2
- 042__ lo<1+bao<2
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ere rational integers, shall be also a basis of F(j) is

a1 a -
(2) =1

Proof :- The necessity. for if oc o< be a basis we have

(3) = ooy + 0%
3 o o = blo(l +b20(.2

-~

where al' aa bl’ba are rational integers and mbstituting the values

of o(lso(,2 from (1) into (3) we have
() oc, (a a +a'l'b )OC “+ (a.la + azbz)o(.z

(5 o(,2=(b1%1 21)oc + (vfa, + bb,) X 2

-~ ~

from which it follows that

/ / - e n” / —_
a,lal+a2’bl =1 38980 + asby =0
/ ’ e enfs / _
blal +bab1 =0 ; b1a2+ bzba =1
whence

of o) | | |epm+esby by tPiy| |10

—

. = =1
’ 1 N / 7/ / 4
by by | B30 By a8otasbs bysp+bybs| [0 1
therefore
8
% = *1
b
bl 2

The condition is also sufficient; for solving (1) for oy end 0<-2

pe

we have, if (2) be satisfied,that,

~

.= (b + 8 o)
oy = 11T 2%

/ /
oLp = (blo<1+alo<.27

and hence 1f ol= ¢y ] + Crclp be any integer of F(j) then
: / ’ 14
(cyPptCpPr)oq + (cyap—cpa) X o
Thet 18 oL = dloél + dzoé; where dl and da are inteéers . 5;§incé>rbﬁe5e is an
infinite number of;different sets of rational integers 2y, ap, by, bp, satis-

fying the relationv 8,
g 2l =+ 1
: bl ba
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there is an infinite number of bases of F(j). |

4s en example of this we msy consider the change from the a +bj
notation to the rw + s& notatibn’,asﬁchange of basis, For then we have
atbj = r(w+ 0R) + s(oa,u+d), and the determinant of the coefficients

is 1 0

=1

| 0 1

as it should if W and W are to be = basis of the integérs of F(3j)e
6. DISCRIMINANT OF F(j). .
The sguare of the deterzﬁinant,

X, o

1 2

o(-l 04-2

forméd from two basis numbers and their conjugates is celled the discriminsnt

of F(j), ard is denoted by de We easlly verify that d is independent of the

2
I:l Xp
1 %%

In fect, since 2 W+ Co , azd 3w+ o form a basis, then we have

basis as follows,- for if olq, o, 2ad A =200, + a0,

/ .
oLy = blocl + ‘92042 be any two bases, then

> 2 2
’ / .
Ky Xl [Bgg FE0ly Byoty +Dyet, | 2y 31 oy oy

K] | |Pedy +EBFp PRy +Dl o by by

S o

2 W+S JWw+ia L

2lb+tuw 355 +w

so that any two integers F(j) siich that their discriminant is unity form
a basis of F(j). -

7. DIVISISILITY OF INTEGERS; UNITS AND ASSOCIATED INTEGERS OF F(3).

Definitioni- As in the case of rational integer;s, we ssgy that
OCdividesﬁ orelis a factor of ﬁ (¢ and (5 both hyperbolic integers) if there
exists onother integer Y (ol,ﬁ ,? not divisors of zero) such that Yy = p :
end we write o(/ﬁ « As usual, we do not define division by zero or by &
divisor of zero., Ve now estcblish the, _

Theoren § - If o be divisible by ﬂ . theﬁ n(=() is divisible by a(3).

Proof :- If z@X , it follows fron Theorem 1 ?héﬁ: n(eX )= n( ﬁ).n( X ),
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end hence that n(ol) 4s divisible by n(ﬂ). However,the coaverse of

this theorem is not, “in generel, true,as may-‘oe seen from the following
simple example,- let o= 2 W40 and (3: W+ 23, then n(ot) =2 end
n((o') =2 but o is not divisible by @ . ]

Yoreover, we cannot infer from the fact that n(ct ) divides n(p)
that ® or L 1s necessarily a factor of (3 o To show tﬁis, it will suffice
to give a counter example, as follows,~ let n(ot) = 3.2 =6, and
(B) =6.5=30.. Then %=3w+2D eud R=6uS+5D and 1t may
be shown by actual division that neither 3w+ 2W0 or 2wW+3W is a
factor of 6w+ 5& .

In the rational field the 1ntegers s 1, ca;led units, are such that
they divide every integer of the field. Obviously this property of + 1
is carried over into F(j), however we must see whether there are any other
integers in F(j) possessing this property. If there are any others, they
mst clearly be divisors of 1, and conversely, every’ divisor of 1 is a
unit. Let €=aw+ bW be 2 unit of F(j); then «.E= O¢vwhere % is en
integer of F(j)e It follows that n(o¢)n(€) = n(e¢); hence n(E) = 1
and further n(€) = ab=1, That n(€) = 1'is not only necessary but
also sufficient for & to be a unit, is evident from the fzct that from it
follows € & = 1 and hence € is a divisor of 1, From the equation ab = 1
above,it follows thét a=72%12nd b =1 whence the units are
WHES ,=W-W , W=C3 3= +G3. , which are Just 1, -1, j, =~ j
respectively. We observe that the above leads to three equivalent
definitions of units:~

(1) They sre divisors of 1.

(1) They are integers whose reciprocals a.fe integers,

(iii) They are integers whose norms aret 1,

Definition := Two integers oL and (3 with no common divisors other than
the units are said to be prime to each other,

Definition :~ In the rationsl field, two integers m and —m that
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differ by a unit factor are sald to be assoclated and similarily im F(j), -
the four integers (aw + b ®),~(aw-bv&) , (aw-bJ) ,;(aw+b'b3 )y |
obtained by mltiplying the .’[nteger ol ‘oy'the four units are called
assoclated integers. Any integer:. divisible by o« is clearly also
divisible by the associates of <,

8, PRIME NUMBERS OF F(j) AND SIMPLE FACTORIZATION,

By definition, en integer of F(j) that is not a unit and has no
divisors other than its associates and the units, is called a prime number
of F(;j)‘, all others being composite numbers. To determine whether an integer
o, not a unit, is composite or prime; we need only examine its norm and
we say that every number whose norm is a rafional prime 1s a prime in F(;}).
For if we consider w -+ pwW where p is a2 rational prime, and assume that”
it edmits a decomposition into a w + bW, and cw + AW, then
Ww+pW = (aw+ 1D )(cwW+ a0 ), so that

W+ pR)=p = ngaw+ X New +4R )} = zbcd end one of a,b,c, ori
is qual top and each of tl;e others is either 1 or —1,

Similarly it may be shown that pw 4w 1is also a prime of F(j),
which is merely the conjugate of (u+ p(d . These results give the
following

Theorem 6 = A necessary and sufficient condition that en integer of
F( j), should be a prime is that it possess a norm which is a rational prime,.

“That this condition is necessary has been shoen above,
That it is also sufficient is evident since a rational prime possesses no
kfactor other than itself and units, and the only integershaving this typer
of nornm are of the form w + pw or pw+& , which is of the form of the
primes we considered above,

Thus we see that any rationel prime may be factored into two j-primes,
these being the two primes which have p as their nofms. Thus p may be

written as (pw + &3 )(w + p &), the only two primes which, except for

- -
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associates, possess p as norm.

Also composite integers of F(j), are very simply factored, for if we '
consider at + bW where a=pq and b = rs then aw+bw = (pw+rZ)(qu+sw
and since the cross product terms clear out, we can carry out this précess
in generg.l by factoring each of the parts as above and then forming the
factors. By a slight generalization of this process we shall be ensbled
fo eétablish a unique factorization theorem for F(j)e &s an example of this
we may consider the following:- )

Factorize 10w+ 180 , Now 10 = bx2 and 18 = 2x3x3 whence we have the
essentially unique factorization as
10w+ 180 = (Fw+ 20)(2w+ 33 ) (W+3© ).

9. muc,tm FACTORIZATION THEOREM FOR F(j), ~ )

We shall first establish the existence of a division algorithm, that is,.
a process such that oL = GP‘*‘ f where n(¢' ) 750, n( );éo end

ln(p) | L | a(P)] # o, and then
proceed to derive a BEuclidian algorithm or a procesé of determining the
greatest common divisor of two integers of F(j), and finnlly establish a
unique factorization theoren. ]

In the subsequent discussion we shzll employ the term'regular’
hyperbolic inteéer to denote the fact that an integer is neither zero nor
a divisor of zero., If theref\ore, X =gqo + aECS end (3 = by + 'b‘.a‘:5 are
eny two regular hyperbolic integers we may prove the following,

Theorem 7 3= A necessary snd sufficient condition that ‘5/0(« is that

'bll al and bz/ 8.2

ol
Proof :- We moy write /g _ a1w+ a, s R
—_— e, - “)..‘. U.)
(3 blw + 5 5% 5

so that if by/ed end b,/a,, then it is clee.r that (3 [ . Conversely

if blj 2 then & = cyby, eand if bo/a, , then 2, = ¢,b,3 therefore
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o= eyl + S = (erb o+ e b 3) = (e w+ e & )b+ bi0) = @“j
vhere 8 =t + 02(3 « Therefore (‘3 /° by our previous theorem on
divisibility,

We now proceed to esteblish the existence of a division algorithm
~ for F(j), in the following:-
Theoren § := There exist two reguler hyperbolic integers, f and ¢
such that
(1) = ¢ (3 + SD
(2 o < [Pl & | a(f)l
Proofi:- If bl+ a b, -I—aa-', we have by the division algorithm
for real numbers that - al-:.'s b+ T anda=sb +r

11 1 2 2o 2
where 0L r <Y, snd b .
1< P emd0<r, LY
Choosin, =85, W @ =r.Ww rTw
g g 1 +82 and jD rl -+ A

we clearly have the conditions (1) axd (2) satisfied.

If howe bf-a ¢ = sb+r
wever, 1 1 0 but 'b2/ a2 y WE haveal s 1

11
— “+ 1 . y ‘f—_:. —
and B, s'ba_ b2 s 04r1<bl where § 8,—1 or 82_—\— 1l
sccording as 8, 1s not or is unity snd the 4+ or - sign,

So that S'.'ﬁ: 1= 582. Therefore choosing
—_ U7\ e - ‘ vy
a -,slw+s Wi P=r w+ 'bau.\ ,
we have the condition satisfied.
The case bll 8 bzf' 2, can obviously be treated efimila.rly end

the proof is thus complete,
Following the method of Theorem 8 we have,

(o = 6'(3 + 9 _ ‘n(f)‘ <_|n(@)]
=694 p 0 < [a(RI| <& |uC Py

(1) N . .
. f = 02f1 + f2 /a °<|n()02?l < ln(ﬁl)_‘
<F1 =ofetpy o<l gl L Pzil



fei-1 = 042 P+ fir1; 0 <[nl P+ 1)| < \ n(ft)l.

So =0tve frrat frre 02 |u j’t+2)|z \n( Ft+ 1)}

This process can be continmued so long as we find no remdnder fi +1
which is a factor of the previous one (ig, fi) If such a case wers
never encountered, we should have an infinite sequence of decreasing positive
integers n(ot)l !(n(f)] ‘ n( £;) \ «+s . Hence we must
eventually rcech the equality, say at the (t+ 2)1: step, then

fv=0% 4+ 2 )Ot + 1 where |n( ft+2){ = 0. from equations(1).

Thus ft+2 = 0 since divisors.of zero zre excluded by the nature of the
aivision sleorithn, Hemce ft+1 | f4 .

~

In fact from the first of the above equations (1), every common

factor of oL and @ is a factor of f.; from the secox;d we csee that every
common factor of P end P is a factor f , &nd so on. Finalily we see that
every common factor of and is a common factor of 1° Hence
Popr ™ frise fre

every common fc.ctor of & and (3 is a fector of fti-—l

On the other hand we see that from the last of the equations (1),=,.=.,
| . i and q
every factor of ft +1 s a fector of f,t' from the preceeding equation,
that every common factor of . end is a factor of end so on,

¥ ft+ 1 f t F t-1
Finally, every common fector of fl and _}9, is 2 factor of (3 , and that
every common factor of )0 and (Llo is a fector of o , Hence, every factor
T of th-&—l is a cormon factor of o and (3’. Since the largest factor of
] ]

Poypq s Pty 1tself, we ~have the result,

Theorem Qi In Euclid's Algorithm (1) the greatest common divisor of
o .

o (3 s £ t+1°

This method is purely formal in charscter and the following shorter
method leads most directly to the familier expression of the greatest

common divisor of « and (3 in the lineer form Aol + /"t (g, Thus we have;



Theorem 10 :- Corresponding to two regular hyperbolic integers
ol and @ of F(j), there exists another integer d witn the properties
(1) §lcena § 13
(11) = It 4+ p (3
for a proper choice of integers ) and /bLof P(j), not divisors of zero.
Proof :- Let us consider two hyperbolic integers ot = 2y —l—-aau—S,
end (3 =b,W + bR and a third integer d = dyw + 4505 , such that
d, = g.c.d. (81 . bl), and 4y = g.c'.d. (a, , bz), where these two g.c.d.'s
are defined as in R, since a;,8p,by,bs, ore 211 rationel integers. Iow J

divides botho( and (3 , as we may see fronm

X _ Bt S 8 3 —
d G+ I P

end since dy = g.c.d. (a7 , by), it must divide a;, end similerly d, must
divide a,, so that (ﬂd\; 2 similar argument will show that {(6 , and any
other divisor of X and(3 is also a dtviedr .of &' & ‘For sixice d; = g.c.de (el,bl)
eny divisor of both a7 end by will divide dj by its defini'cicn. Also, eny )
common divisor of 2, and bp will divide dp, and thesecare the conditioﬁs that
an integer dividing both oL and (g should divide f by Theorem 7. Thus, every
divisor of o andﬁ by the same reasoning is seen to be a divisor of J’. So
that d(* now satisfies the two conditions, (i) it is a divisor of o and ﬁ end
(11) every other divisor of ¢ and(f\ is a divisor of d . Hence, d’ mst be
the greatest common divisor of ol and F 28 calculated above by means of the
division algorithm.

In t'.;onclusi;on, we shall show that ({q as defined above, may be expressed as
a linear expression in and (3 , with coefficlents 1 and/-& which are not |
divisors of zero. For since ‘

dy = g.c.d. (a7, by)  and — dp= g.c.d. (25, bp)

then dy= ¢y + e9by ) and  dp = Co8p 4 €5bp

where ¢y, Cp, €3, ©p, 2re rational integers. Theréfore, on multiplication
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of 4) by w and d, by & , we have,

Qo+ 40 = ey W+ 6 bW + compls +epbp o
wh;ch may be written in the form;

Qi+ dobe = (ertu—+ cpta )z + a,T0) + (egw + exl )(bylu + bol)y
since the ferms in WG vanisk. In terms of hyperbolic integérs; this ’
becones c§)= ,\0< +,/t4 ﬁ where k and/u. are rcgular hyperbolic integers,
since cl,ca,el,ea, are 2ll definite rationsl integers.

As en example, we may calculate the g.c.d. of 10w+ €5 and 25Lu+ 223,
The g.ceds of 10 and 25 is 5, and that of 8 and 22 is 2, So that the

| geCode (10 + 813, 25 wW+22W)= 5w + 2W
Now 5= 25 — 2(10) and 2 = 3(8) — 22, so that
S+ 23 = 25w < 2(10)w + 3(8)T — 22G3
whi;h we may write as, i i
i+ 25 = (Lo- 5 )(25w+ 22B)+ €2w + 363)(10w —+ 83 )

We demonstrated previously'that any integer of the forn P+ or
g + P& is a prime in F(j),by showing that 1t possessed properties
snalogous to rational primes in so far as 1t could not be factored into
simpler integers. UMaking use of this property, we now establish a unique
fectorization theorem for ?(5).

'I‘heorém 11 :~ Every integer of ¥( j) can be represented in one ond oaly
6ne way as the product of prime i;actors(exéept, of cour‘se, for associates).

Prodf :- If we consider an integer « = a0+ aza," , then, eccording
to the corresponding theorem for R,> = and o, if they are not already
primes , can be factored in a wnique manner into the product of rational
primes; since they are rational integers. So that if,

£
N LA
where the p's end q's are rational primes, so that-
X =W + B = (Plelpaea...érer)w—f- (qlflqafe..Qqsfs)m ,

since (i is zero,and this may be written as- -
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. ' f
b i S
t3 )....(Lu—l—qs @)

- . -

aqw + 248 = (p,"Tw +& ... (pp°reo -HI! (W +qq

Thereforse,

2 W+ 8‘2; = (plbd +& )el....(pi;w—é— o} )e’-”(w+ qla)— )fl....(u)+ qSCJ )fs
~ where each of the factors on the right hend side is a prime by our deﬁﬁition,
end thus we have factorized any composite integer of F(j), into primes or
powers of primes of F(j), in a unlque manner, except obviously for associates,
since the factorization of 2q and a5, is unique. We note, however, that we
mst distixﬁguish between primes such as pw4+ & and W + pid which,

although they possess the same norm, must be treé,ted as different in this

coannection.

10. FACTORIZATION AND REPRESZNTATION OF INTEGERS AS THE DIFFERENCE
OF SQUARES.

Thile in the field of ordinary complex ziwnbers only certain rational
integers can be represented as the sum of two squares, and -heace ‘factora,‘ole,
every rational prime may be factored. in F(j). In fact, it is evident that
any rational prime p is. the product of pw +3 end W+ P .
| As in K(i), where the number of brepresentations of an integer as the sunm
- of two squeres is investigated; here we seek the number of different
represenfations of a positive rational integer as the difference of two
squares. Thls is equivalent to finding the number of different hyperbolic
numbers ay + az,j, w‘nereval and 3'2 ere rational integers which possess the
given integer as norm.  To this end we first establish the -

Theoren 12:- Every odd rational prime may be represented as the
difference of two rational integral squares in one and only one wey,.

Proof:- If a hyperbolic integer ot = ay -+ agj(al> 0, a, >/'40)

. 2 2 ~
hes p as its norm, then &, — a5 = (a1+ 32)(9,1 - a2) = p. Taus one factor

is p and the other 1, Vhence p_[p 4% p—1 p+1 p-13j\.
= +4 » —
2 2 2 2
This shows that the factorization of zn odd prime p as the product of

conjuzate hyperbolic integers is (apart from associates) unigque,
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Furthermore, each p+1 . (p —1)j 1is a prime end tke foctorization
prisezl

cannot be carried further. 1In féct, if p-Jr 1. (p-1); =o<,(3 where o(and,@
2

ere integers, then p = n( (). n(F) Thus either n(0<5 or n( ﬁ) is =t1

a2nd either K or ﬂ is 2 wnit. In like menner -+ 2 —1j is a prime.
Further, by this method it may be seen that the rationel prime 2 cannot

be so represented. For if 2 were the difference of 2 integral squeres,

1 2 8, 2 o by o he ot H

vizg 8, — 5 9 ne o a1+a20r al- a_ would be odd and.teoher even;

2
whereas their sum 231,18 even, Ve proceed to establish the,

Theorem 13 :- The number of representations of p° (p being =n odd prime.
end 8 > 1) :i.s exactly e + 1 but they are not necesssrily all distinct.
o -7 YT
Proofi:- Ve may write ,p® = (a1 + 2, 3) (al -2, j), since
(61+82J)(81 - a,,g) = p. If we further write, al + a J—oL. and(al 32.3)"
we have p® = (0()e (K)®, 1In view of the wnique factorization theorem,

the onl,y' 1ntegral factors (zpart from associates) of p® ere evidently

e-i — i
oC " & where (1 =0, 1,2...,e).

Therefore,there are exasctly e 41 different expressions of p® in the form
(81+a23)(a1 — azj) and therefore exectly e +1 expressions of pe intthe
forn a12 — a22 where o, end , owe rational iantegers. This leads at once to,
Theorem 1U4:~ If a rational integer m -_-—_plelpze?p}e3“_13nen (p's all odd
primes) then the total number of distinct representations of m as the
differences of squeres is (e + l)(62+ 1)(e3+ l)..(en-l-? 1)+ € (3) when
¢ = 1 or O zccording as all the e's are even or at least one e is 5dd.
Proof:~ Ve may write, _
Plel = (04)91 - i(O—Z)i s (1
p;2= <(35°2‘5<@53‘, (3
= (Y)eB (X) y (x=0,1,2,...,e3)

_ (7L) n‘q(fr()q (0= 0,1,2,...,e)

"

0,1,2,...,61)

0,1 2,...,e 5

wvhere, as before, we have the number of representations of

P1%t = e + 1, p262= oot Ly veee es PR e 401



25

and therefore, the total number of expressions of the form (ap + eej)(al —ap,

obtained in’this way are (ey + 1o, + 1)(ez+ 1).....(e  + 1), where

each will be of the form

T I S Py e3=% k ep—a g
oK 1ee0l ol *ch {3(3 (aﬁ..ﬁ XY X E‘X'? seseene ‘Arzq..n'_ﬁ
j=22, k-

Yow & term is its own conjugate, if =nd only if i =f1 |

?

e _, are all even, then we have

e s @ =81, Ir e1, ep, €3s0e0 5 €

2
(el+1)(e2 +- 1)(634- 1).....(en+ 1) of the expressions given above; one

end only one of which is its own cozijugate, the rest appearing in pairs.

Therefore, the mumber of pairs is (eq 4 1)(92+1)(eg+ )e....(ep+1) —1
. 2 . )
and since elther one of a pair of conjugates gives the same representat:.on

of m as the difference of two integral squares, =nd these are distinct
representations of m. Also the one expression which is its own conj@ate’
gives one repr{asentation, therefore the totzl number of distinct expressions
are - (e + l)(e2+l)(ez+ 1) ..(e + 1) —1

- - 2‘ ﬁ
= 3oy +1)(ey+ 1) wuu (e + 1)+ 3

+ 1

Per contrs, if any e ic odd, tlien,nov term is its own conjugate and

therefore .the number of pairs, or distinct representations is,
ey + 1)(e, + 1)(e;+ 1) .ou (e + 1),

" Thus in 211 cases the number of dlctinct representations of

n=p 1p282 .B, ®a (p's all odd primes) is,
Hleg+ (e, + 1) ..u (e + i), + £ Zvwhere £ =0orl

sccording as at least one of the e's is odd or the e's are all even.

We now seek f:he number of representations of 2€ which gives the following,

Theorem 15 :~ The number of d;stinct representations of 2% as the

aif £ inte r’l squares is e—1 % vhere =lor0
ference of two integra q + & €

eccording as e is even or odd.
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‘Proof :- Since 2 .3 —2|— i.3 — i, we may write 2° :(l;tj.)e. = ‘)e
' _ 2 2 2
or again as «®°&° ghere K=3F+] ead =3 —j3, so that o= 2.
2 2

As béfore, we factor this expression into hyperbolic numbers having 2° as
ndrm as follows,- ’(o()e B 3'(o_{)i, where i =0,1,2,...,e. From
.3__-t-__i_= 2 W+, we have

‘(3_%_;1)“: (2ot )P = 2w o 2ne -42—,1)+<1 = j): 2% +1 +22—1 5,

2 2
which is of the forn a+bj, where a and b are odd rational integers.

2 .

Likewise (3 - j)n_: 2%+ 1_2%—1 . Nowif O« i< e, we can write
ize —i 2 2 2 % m ., —%-—n

{"A 7 in one of the forms (X )" A" op. (olat)™ ot ™, where k > m.

Hence, each of these may. be expressed in the form Zk(‘al + ge,j)l.-_- 2k -l(al—}— ag})
e . ' .
where 27 and ap are rationdl integers. Ve thus have a representation of

o® _ (2k—l )2 k=1

%
Thus, there will be exactly e — 1 of these, eand, following the same argument

- (2 32)2 for each value of i from'l to e —1 inclusive.
as before, the number of these representations that are distinpt is
(e - 1)—(- €3 where & =1 or 0 according as e is even or odd. 1
Combining this with the previous results, we have that the number of
distinct representations of m = plelpaeg ....pnenae is
%o if at least one e is odd.

3ley + 1)(est+1) eovole,+1)(e —1)+ €3 ; where £=
, i (1 if 211 the e's are even.

This formula shows immediately the fact that no odd moltiple of 2 can
be represented as the difference of squares, but every other rational number
may be so repre"sented.

11, CONGRUENCES IN F(j).

As in the case of ra’cioﬁal integers, if o(/()’ we say that (5 is congruent
to zero, mod o, and write 3 =0, moaot, Similarly, if f/(x=f3), then
we say that ol is congruent to @, mod/bL , and write o(?.(g, mod/‘( . This
last equation may be written as o(*ﬁ:*(/\ where K, may or ﬁay not be a divisor

of zero,
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The importance of this statement will become apparent whén we consider
the transitivity of the congruence relation; X znd @ mey or may not be
divisors of zero. _
We shall show that all the integers of F(j), fé:_l.l into classes with
respect to a given regular»modulus//( , and that 1{e pj.z{ce two integers in the
séﬁxe or different class according as they zre, or are not congruent to each
other, mod /4 + In our devel9pment of the theory of congrueances, we shall
attempt to pi‘eserve es many of the cofresponding properties of congruences
in the field R as possible,
We shall first of all demonstrate that cdngruence is en equality
relation, axnd finelly,that we moy perform the elenentary arithmetical
operations on congruences. ‘ |
1. Reflexive :- If K be any integer of F(j),' then certainly o = aymod A¢
2. Symmetric i- If X and /3 be any two integers of F(j), then
ocz:-.fj ymod LU i‘mpliges Qx'—ﬁ =M or B=ot- kM ‘or Bzolmod Aq
3« Transitive 1= If & ,F and y are zny three integers of F(j), ‘
then o(‘:_‘-ﬁ ymod Y implies = ﬁ + Ky yend /3;.-_ Y ,xnod/,\ impliieé ﬁ:X"'KE/K
Therefore :X+ (Kl-— Kz)Mand S0 A= y ,mod/u. It is clear

thg.t in order to preserve this property we require divisors of zero as
coefficients of/.«( . .I‘Aor' exerple, if our modulus is 3w+ 24 end
A= 8lu— 35 . ﬁ: 2w-Cy, and f‘—‘-—-w - 34, then we have
o= 70l 3 +25 85 (A—f )= (6w-23) = (3w +20).
(w-®) = 0,mod 3L +2w . ’
(3?:3 y,mod 3tu+ 23 as (ﬁ”‘x )= (Bw+20) = (3W+2§j.
(W+T3 ) =0,m0d 3o +2 5 ’ ’
but o(-;é X if we do not include zero divisirs,since cX*Y = 9W = 0,m0d 3W+25

Thus in order to have a division of our numbers into classes with respect

to a given modulus as in R,we must adpmit divisors of zero.
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We can now also 2dd and mltiply congruences for if,

o(lgﬁl,mod/l(thencz Pl +K1/*
= mod M.then -

a=fy Jetben ot o (324” Ko 1

then we can write down the following:-
}’
&1-(—0(. Fl @2 +(k )/L,(or i @l +(5 ,mod/u\_ and
- )
ﬁl ng-{- ((32 f(j’ ::+ %orqlq ﬁl o00d AL .
Thu.s congruences in F(j) possess all the properties associated with
congruences in R and we now prove the importemt theorem
Theorem 16 :- If /~( be any integer of F(j), the number of numbers in &

complete residue system,mod /( is exactly n(/()

Proof := ' If we write 8y Lo+ a2 = bpo't b5 ,mod cy W+ ‘cac_o »then

(al—-b -+ (a -b )LJ =(xw+yw )(clw-l-cw )= xe L+ e, o

~b. = = b - or a
So that ay 'b xcl or a, = ’bl,mod cl,&nd &, A yc2 ,mod c .

that is bl Tanges over a complete residue system,mod cq and b5 ranges over
a complete residue system,mod c, S0 that by teking all possible combinations

of these, there will be ¢y- ©, mumbers of the form 2+ aaﬁ where

8, = 0,1,2,... ¢, — l,end 8, = 0,1,2,...,65 — 1, giving cjecp = ng/{) integers

in a complete residue system,mod /l( and these will include zero divisors.

That these n(/() residues are 21l incongruent to each other,mod /( is

clear from the folléwing; Let us suppose that two of thenm were congruent,modﬂ

S0 i:hat o(;-‘:ﬁ,mod/t ,oT (al- ‘nl)td -+ (ag"‘bz)‘:‘ = 0,mod ¢y cp and
therefore 8=~ b; = 0,mod cl,imd'aa-%.bé = ,zzlod Co ;and we have that either
8 = by or 8y = by,mod ¢, and similarly for 8, 2nd bo; so that no two members
of a residue system can be congruent to each other unless they are equal,

In particular, if one member of a residue class be prime to the, modulus ,
all the other members of that class are prime to the modulus also,
Analogous to the theory for rational integers, we have the,

Definition :~ The set of 2ll integers incongruent to each other with

b
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respect to a given modulus /L(, and prime to it, a reduced residue system, modj, .
‘12, TEE § - FUNCTION IN F(j).

Definition :- As in R, we define <§ ( /4) » Where M is an integer of
F(j), as the number of integers in a reduc-:ed residue system,mod Me Ve
shall show that this definition preserves many of the properties possessed
by the ¢ -function in R and X(i). We use & capital @ to distingui.,hutne
function in F(J) from that in R,since they are two different quantities as
we shall illustra.te in the example following the -

Theorem 17, There ore exactly ¢(81).¢(a2) integers in a reduced
residue system,mod um , where 4 = alw:+ o Q 2nd P(a) and cj?(az) meen
the same as in R,since 2y and a2 are rational integers.’

Proof := Put M= 2 cu+— aew where &y and a, are rational integers,
then there are exactly ¢ (al) integers in a reduced residue .system,mod 2
and ¢(a ) in a reduced residue system, mod a, » SO that if we consider all
possible combinations of these, thers will be exactly @ (21) P(as) integers
in a reduced residue system, nod /«. If 8y and 8, are relatively pf‘ime
rational integers, then we can write P(a))P(a,) = Pay. a) = P(ar));
and in this case there are @(n(/L&)) integers in a reduced residue o
system, mod 4 . However, in snycase we can slways write é ( /() =¢(0.1)¢)(a2)
where A(= a1w+alc3 . Purther we see that the @-fu.ncticn for negative
integers is evidently the set of all rational integers in a reduced residue
system, mod (—a), and is the same as fhe set of integers of a reduced
residue system, mod (a).

Thus the @-— function for the associates of any integer /‘& is the same
as that for 4 itself, end similerly P (&)= P(M).

T6 see the essential difference between @ end P we have only to

consider any hyperbolic integer, say T7W+ 7. Here we have
D Tw TR =P(NIP(T) =6 x 6 =36



30
but D (w+ 33) = PUD+E) = P(T) =6  since (045=1
Thus, in order to employ the theory developed here, we must express every

- integer of F(j) in the W ond o form. Hence for a rational integer a, we

have @ (aw+ al3)= P(a).(a) and not just @ (a) as we should expcct.
Hovever, to see the analogy between the § - function in F(j) snd that
for X(i), we state end prove the following corollary to the theorem given

ebove, viz - '
COI‘OIIEE - If oL‘TT €1 7T e2 s oo 7'r en where the T\ fg arc
primes in F(j), then @ (L) = nlot) ! [ 1 - "rﬁi»

Proof :- In virtue of the unicue factorization theorem, we may write
Q= 7“161 7r2 ess nnen _ or

— K ~\Cp - — € .
= (le.{-w ) 1(p2w+u.> )92....(pr__1w+w) r 1( W+Pr°0) T,

- ~

000: (w+an)en .

vhere TTy3=pjw+ S , (1=1,2,+++30-1) ; 7Tj=¢u+pj”c3, (j=%,r+1,3n)

- -

Therefore we may write

_ ey e ey — e eny —
OL — (pl lpa 2'.’.Pr..1 r l)W"“(pr r...'Pn n) w

~

By the previous theorem we have |
) (04’¢(p1é1- ceoBp_1T-1), gb (ppTeeeep,™®) !
Since p;°l, paee, etc. are 21l reletively prime, this may be wrltten as
P (€)= B(5,°1) F(p2) e+ (py 1° T=1) B (p,°r)++ - (p,°n)
:'Pll(l—'%l) pzez(l- ).... Pn (1..}_) .
=m €1 ps2eesep O (1 - _p.l)(l— )....(1 l)
Now n(ot) = Plelp?_ez"" pnen and n(TTy) = py, -, (M) = pﬁ, whence
Ppet) = n("‘)(,l“ E(‘lﬂ) ( 71%71’.2) -
: T = H(o¢) TF (l IT(——)
Exemple :< To show that the two processes are equivelent, we may
consider th_e following example,
b (12co+ 24D) =P (12).h (M) = U x & = 32,
but 1204 HT = (2w+@ ) (3iv+ @ J(w+ 25) 5w+ 33)

- -~ - -
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therefore @(12(&1 + 2k ) = (12)(2k) (1— <1 -3>( )( -_
= (12)(24) (% (9—) |

Siace (1) = 1, we note that, as in R,when we are dealing with a prize
viz, plw+ A, every integer in the residue system is of thé form aw+@3,
and also belongs to the reduced residue system, mod (pu+C3 ), since a
in every case is relatively prime to P.
13. THE ANALOGUE FOR F(j) OF FERVAT'S THEORZ,
Before proceeding to the theorem, we require the following,
Definition :~ Two hyperbolic integers K=z + a-ls and
6 = bylu+ bgbo are relatively prime to each other if they possess only
the fector W+0Cd=1 and its associates in common and no others. For if
we consider two hyperbblic integers ol=aju+ a,Co  and P’: b+ b &

where ay is prime to by end a2, is prime to bs, then 1’_1_(";’_‘*_‘_1’_2_6 b1 W bo=.
w + a’:‘I\ al 82

The only common factor:6f al and by is 1, and s:.mlarly for as and b?_, so that
the only common factor of o and ﬁ is W+W=1 or its associates, which
illustrates the definition glven above, ,and is analogous to the copdition
for rational integers to be relatively prime. It is clear that if the norms
of two integers are relatively prime, then the integers themselves are
relatively prime. However, the fact that the noras are not rela’cively
Prime does not mean that the inteﬂ'ers are not relatively prime, since 2
could be a factor of bo so long as it was not a factor of bl 2nd similarly
for 8o

Now we proceed to establish a theorem analogous to the generalized
Fermat Theorem for rational integers for those of F(j), but the method will
differ since we must take into account the failure of the cancellation law
for zero divisors.

Theorem 18:- If M. be eny regular integer of F(j), end o any integer
relatively prime to /4 , then o(,@@):‘—; l,mod/-(.

Proof:- Choose [( = bilw+ Dold amd o(=sjeu+ 8 where of is &
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member of the reduced residue systenm, mod /( s S0 that 8 1is prime to 'ol

and ay is prime to b Now
Q(;:.)(alw+ aw)é(/u)_(alw+ o) ¢§ 1=’)¢('b2?
_(al) §1J¢(b2> e )d>(b21]¢(b1)-

But by Fermatls Theorem for R, since a1 is prime to by, then
(v9) (by).(b (v
2 B s b, 50 that (a )4: 1.4 2)~[ ¢ 1)]¢(‘b o)

&y -
end similarly, since 2, is prime to be b, we have” a2¢( 2

?(v,). qb(b ) @4vy) H1,)
( ) e (a) 2;‘ - =1,m0d ’bz.

Thus we have (alw + a,0o ?W-— (w+w) rod (/q) but W+ =1,

= 1,mod 'bl
= 1,mod b2 s so that

therefore (aw—*— aaw) /& = 1,mod L. '
Ex_agrgle.- Let /L( 3+ 2w so that a complete residue systen i§ as
follows 0,w, 2 w,w Lu+w ’ a::d 2 W+ , The elements of a reduced
residue systen are clearly (45 , ond 2 W+ by definition. The
number of these is 2 = ¢ (3)@(2)e The totel number of residues is
= nsl() 3 %2 as it should be, Also
(&H‘UJ QV‘) (W+D )2“" (W-t+w Jomod w420 = 1.modq,

(2wo+ @ §Q— 9‘*\)

= 2w+ )’z (bw+d) »20d AL = 1,mod M ,

.114. PRIMITIVE ROOTS OF CONGRUENCES, ’

Definition:~ As in R, we say that an integer in 2 reduced residue
system, mod/t s is a primitive root of a congritence ymod A if @W is
the least exponent for which it is true that aéﬁt)" W+ =1 »od A( o
That not every member of a reduced residue systen, mod /1 is a primitive

is - )
root obvicusifrom the following, —~ (U4l is a member of a reduced residue

system, mod 3w+ 20w but
W+ =1, mod 3w+ 23, bub 3w+ 23 ) =2 50 that WD 15 pot
a primitive root of 3w+ 2@ , since its first power is congruent to l,mod/(.

Theorem 19 :~ A necessary condition that 8 - 25.2m should be a
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primitive root of by +bp@Sis that 27 be 2 primitive root of by end &

a primitive root of b2’

by)
Proof :~ By the definition of a prinmitive root ajq_b( 1 = 1l,mod by is

the equation satisfied by & and CP(bl) is the least power for which this

¢ (vp) - —
ls true, Similarly s, 2= 1,mod bys But H(bw + by )= Pl )Jfv,). .

So that if ) is a primitive root of by end a & primitive root of ﬁa,thén
M1y )4(b,) ( 317(171) ¢ (v2) B(v2)p(by) _
) = i w.{.(az) i [%

~ -

(alw ~+ ae-(:') e
= 1,p0d (byu + b,3), |
This condition is only necessery, but the following theorem gives the
sufficiency condition,
Theorem 20 A sufficient condition that - azc"é should be a
rrinitive root of by —+ 'bab—u is that g.c.d. (Cp(bl),gﬁ(be))—:.l.
Proof :- Let us consider the case where 45(‘015 and f(by) are not prime

to each other, so that they possess en 1.c.r. , S8¥ C.

Th = (b;) exd ¢ = (b)) So that
en ¢ =cy(b; c = cp (b, ° :14’(1?1) cop (bp) _
l.:d'——f- 32 w

which is congruent to l,mod-(blw —F’bab':\) but ¢ £ ¢(bl).¢(b2), therefore

| (alw—{- aECJ_ )c=(al) cw-l-(aé)c"::al
80) + 8,05 is not a primitive root of byl b, . ’

Hence a necessary andléufficient condition that a hyperbolic integer
by —+ ‘bELTA should possess a primitive root 8 + 2,0 1is that a, should
be prime to 'bl and & prime to b, and that ¢('b1) ,¢(b2) are co-prime,

(In order for = number to possess a primitive roc;t at ail, it mist be of
the form a2%w -+ 2”45 (a,b odd integers) just as we have for R).

15, QUADRATIC RESIDUES AND REMARKS ABGUT QUADRATIC RECIPROCITY,

With respect to a given hyperbolic integer /‘-( , all the integers are
divided into three sets. The first set is composed of all the integers
not relatively prime to /L’ The second set is composed of those integefs
prime to /( » which are residues, mod /‘1 of squeres; and are called quadratic

residues; that is, integers x satisfying the equation K2 = x, mod/c(,
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The third set is composed of those integers prime to /-L but which are not
congruent to squares ,mod /k( » end are called quadratic non-residues of o
Theorem 21, The quadratic residues of an odd prime p coincide with
the residues, modulo: P,0f the even powers of a primitiwe root r of p; the
quadratic non-residue of p coincide with the residues of the odd powers of r,

Proofi:~ Any guedratic residue k is congruent modulo p to a square x°

where x is an integer prime to p, Thus x = rl

,mod p (this corresponds to
the theorem in R that the povers of a primitive rocot range over a complete
residue system,mod p and hence, one of the powers rust be congruent to x as
stated above), I-ienc_:e,. k= rzi, mod p. Conversely every even power of r is
a square and hence congruent to a quadratic residue of Pe

Also by a theorem true for B, rS= it, mod p if epd only if s=t,mod p-1.
since p—1 is even we cannot have s odd whent is even. Hence, no odd
rower of r is congruent, mod p to an even power of r. Thus the residue of
the odd powers of r give all the quedratic non-residues of f. As an exemple
of this we may consider the following- 1let p= W - 5 so that the residues
ere Qy W+l , W2, luf 3w, W+ Y40, of which w0 , end w+ 4o
are the quadratic residues. The only primitive root of (u- H@ is W+ 2
the even powers of which correspond to the quadratic residues found above;
end the odd powers correspond to the quadratic non-residues as the shotld,

As in R we can state the following- that an integer R not divisible
by p is a quadratic residue if ond only if = 1,z0d p wherech=3(p-1)H;
an integer I not divisible by p ic a quedratic non-residue of p, if and only
if Nh:_—= 1,mod pe For example, if we consider any integer acu+ b:)., it
will be a quadratid residue of W+ pW or pw+w eccerding as b or a
is 2 quadratic residue of p since the second factor in each case is simply
congruent to zero,.

Legendre's Symbols:- If Tl =pw+io is any prime and if m is any

integer not divisible by p, the symbol (m/p) is defined to have a . valus +1 or <1

-
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according as m is a quadratic residue or non-residue of p, so that using
our previous exemple we have (W +3 [ L+ 5% )= ( W+ US) W+ 57)= +1
end | (W+28 Jw+53)= (Lu—f—;w/w—l— 50 )=-1
e note that (a/p)(a/p) = (mn/p) es in R a.nd. (n/p)= ms(p~1), modP ’

We now 2dd & remark concernin;_:, a theorem, termed by Gauss,

" The Gem of Higher Arithnetic," namely,

Quadratic Reciprocity. Although no formal theorenm concerhing ‘quedratic

reciprocity mey be proved for integers ¥(j), we conclude this peper by ~
some general remarks concerning quadratic feciprocity in F(j).
For if (o ~+pQR and w4 q® ere distinet primes in F{j), then
(W —+ pw will or will not be a quadi'atic residue of W -~ qu depending on
whether or not p is a quéd.ratic residue or non-residugig'nd coaversely.
For if w -+ pid is a quadratic residue of w+ qW then |
(+ ala)g.—:'z'. W+ pl3 ,m0d w0 +q i3
W+ 250 = L0 +DE+Dyls ~+ byg 3
Therefore, by equating (W and BOperts we have 1 =1,m0d 1:
312= p+b2q. or 312:_.1_ p,mod g so that p rmust be a quadratic residue of q
and conversely.
So that we mey say that the quadratic character of w +pw with respect
to w + qW is the seme as the quadratic of p with respect to d. mat is

Ld-f'Pw} Aol (q) _ 1—%(:9-1) 3(q-1)
W+ qis w+pw P - -

by the theorem for real numbers. This applies only to primes which

possess the Same form, viz Doth of the form (w4-pid or pw + o . This
is clear from the fact that in the contrary case the Legendre Symbol

has then no mezning; that is( P Ao )is neither t1

————
W+ qis
siace the prime W - @O could not have a residue of the form p W+ &

unless p = 1, and hence p v +i0 could not be a quadratic residue of w - qo

except in the simple.case discussed above.
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