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Abstract 

Bread wheat (Triticum aestivum L. em. Thell.) is the most important 

cultivated crop in Canada. Fusarium head blight (FHB), caused by Fusarium 

graminearum Schwabe [teleomorph Gibberella zeae (Schwein) Petch] is the 

principal disease of wheat in North America, causing severe losses in grain yield 

and quality.  Breeding for cultivar resistance is considered the most practical way 

to manage this disease. High spatiotemporal variance makes screening for 

disease resistance based on visual assessment of symptoms slow, difficult, and 

expensive. Development of a cheaper, rapid, accurate, and high throughput tool 

for screening resistance is the highest priority for wheat breeders.  

A novel method based on metabolite profiling technology was applied to 

discriminate resistance in wheat genotypes against FHB. The present 

investigation reports on three linked studies. The first study involved the detection 

and application of metabolites to distinguish susceptible (Roblin) and resistant 

(Sumai3) wheat cultivars. In the second study, cultivars varying in level of 

resistance were discriminated (descending order: Wangshubai, AW488, Nobeoka 

Bozu, BRS177, Frontana, CEP24). Finally, biomarker metabolites related to 

susceptible and resistant near isogenic lines (NILs) with alternate alleles for FHB 

resistance on the 2DL chromosome were identified. The metabolites were 

extracted from spikelets in a mixture of methanol-water/chloroform, and analyzed 

using GC-ion trap-MS (studies 1-2) or GC-TOF-MS (study 3). Compound 

identification and quantification was achieved manually and/or using automated 

software for peak deconvolution (AMDIS), library search (MSRI and NIST 

libraries), and peak alignment and quantification (MET-IDEA).  

Several hundred peaks were detected, but only 55, 79, and 120 

metabolites were identified in studies 1, 2, and 3, respectively. The metabolites 

significantly varied in abundance among cultivars/NILs varying in resistance. A 

resistance biomarker metabolite was defined based on univariate analysis or with 

high factor/canonical loading to vectors that discriminated resistant genotypes or 

groups of genotypes. The resistance biomarker metabolites included metabolites 

related to the phenylpropanoid pathway such as p-coumaric acid, cinnamic acid, 
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several coumarins, and benzoic acid; important signaling molecules such as 

myo-inositol; signal-related metabolites including hexadecanoic/octadecanoic 

acid; and other resistance-related metabolites such as aminobutyric acid. 

Metabolite profiling technology has enormous potential as a high throughput tool 

for screening resistance to FHB in wheat genotypes. 
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Résume 

Le blé à pain (Triticum aestivum L. em. Thell.) est la culture la plus 

importante au Canada. Le flétrissement des plantules des céréales causé par 

Fusarium graminearum Schwabe [teleomorph Gibberella zeae (Schwein) Petch] 

est la maladie du blé la plus dévastatrice en Amérique du Nord. Elle cause des 

pertes tant dans le rendement que dans la qualité du grain. La résistance est le 

moyen le plus efficace pour gérer cette maladie. Une variabilité spatio-temporelle 

élevée rend difficile et coûteuse l’évaluation de la résistance basée sur les 

symptômes. Le développement de moyens abordables, rapides, et à haut débit 

pour le criblage de la résistance est la priorité des sélectionneurs.  

Une nouvelle méthode s’appuyant sur le profilage métabolique a été 

utilisée pour déterminer la résistance à la fusariose dans des lignées de blé. 

Trois études ont été accomplies lors de la présente investigation : 1) la détection 

et l’usage de métabolites afin d’identifier les cultivars de blé étant sensibles 

(Roblin) et résistants (Sumai3) 2) l’identification de cultivars variants dans leur 

résistance 3) l’identification de biomarqueurs métaboliques dans des lignées 

isogéniques ayant un contraste d’allèles au locus quantitatif (LQ) FHB-résistant, 

sur le chromosome 2DL. Les métabolites ont été extraits dans des épillets dans 

une mixture de méthanol, d’eau et de chloroforme et analysés par CG-piège à 

ions-SM (étude 1-2) ou par CG-temps de vol-SM (étude 3). L’identification et la 

quantification des composés ont été accomplies manuellement et/ou en utilisant 

un logiciel automatisé pour la déconvolution des pics (AMDIS), pour la recherche 

dans la librairie (NIST) et pour l’alignement et la quantification des pics (MET-

IDEA). 

Plusieurs centaines de pics ont été détectés mais seulement 55, 51 et 120 

métabolites ont été identifiés dans les études 1, 2, et 3, respectivement. Afin 

d’évaluer la résistance, nous avons considéré comme composés biomarqueurs 

les métabolites variants significativement en abondance parmi les cultivars/NILs 

variant en résistance. Ces composés étaient soit reliés aux voies 

phénylpropanoïdes, soit d’importantes molécules de signal ou encore d’autres 
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métabolites reliés à la résistance. Le potentiel du profilage métabolique comme 

technique permettant le criblage à haut débit pour l’évaluation des 

cultivars/lignées de blé variant dans leur résistance au FHB est discuté.  
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Chapter 1  
Introduction 

Common wheat (Triticum aestivum L. em. Thell.) is one of the most 

important cultivated plants. It is a cool season crop grown in various climatic 

regimes. The range of annual precipitation required for wheat cultivation is 

from 250 to 1750 mm. However, in most wheat-growing areas the annual 

precipitation ranges from 375 to 875 mm (Hyena, 1987).  

 The principal cultivated food crop in Canada is wheat. Canadian wheat 

is well known for its high protein content. Canada’s wheat production in 2006 

was 27.276 million metric tons (Statistics Canada, 2006). On a global scale, 

Canada ranks third among major wheat producers and second among wheat 

exporters, following the USA. Canadian farmland area is only 7 percent of the 

total land area of 2,272 million acres available.   

 One of the most important diseases of wheat in Canada is fusarium 

head blight (FHB) caused mainly by Fusarium graminearum Schwabe 

(Schroeder and Christensen, 1963; Sutton, 1982; Clear and Abramson, 1986; 

Wong et al., 1992; Bai and Shaner, 1994; Parry et al., 1995). Hard red spring 

and durum wheat are the common hosts, but it can infect corn, barley, and 

oats. The main symptom of the disease is whitening of infected spikelets 

leading to eventual death. Under humid conditions, salmon-pink to orange 

masses of spores (spordochia) develop on the glumes. Besides large yield 

losses in years with severe epidemics, F. graminearum produces several 

mycotoxins in wheat kernels, including deoxynivalenol (DON) or vomitoxin and 

zearalenone, both of which are hazardous to human and livestock health. 

DON is produced in the wheat grains before they are harvested. Frequent 

outbreaks of FHB in eastern Canada and in Manitoba have threatened 

Canadian wheat production, and the pathogen has continued its spread 

towards the west (Fernando, 1999). As a result, FHB reduces both the 

quantity and quality of the wheat yield and has some indirect effects on the 

dairy production of animals fed with toxin-contaminated wheat (Bai and 

Shaner, 1994). Reduced seed germination and seedling blight of infected 

seeds are other effects of the disease. Human and animals consuming toxin-
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contaminated wheat may suffer serious health threats. It is believed that some 

Fusarium mycotoxins may be associated with human alimentary toxic aleukia. 

Vaginal prolapse and vulva vaginitis of female pigs due to consumption of 

cereals contaminated with F. graminearum or F. culmorum have also been 

documented. The symptoms on poultry that are fed such grains are stunting 

and poor feathering (Bai and Shaner, 1994; Parry et al., 1995).  

 The FHB pathogen reproduces both asexually and sexually in nature. It 

can survive as mycelium, ascostroma, and chlamydospores. Ascospores, the 

propagules of the sexual stage, develop in the perithecia on the host debris. 

The macroconidia, mycelia, and chlamydospores survive in the soil and 

microconidia are not produced. During the saprophytic phase, the pathogen 

can develop on plant debris and initiate infection. The pathogen first initiates a 

biotrophic relationship with the host. Within a short time after infection, the 

host tissues are killed and the spike turns white because of the necrotrophic 

growth of the pathogen (Bushnell et al., 2003). Several weed species, 

including species of Agropyron, Agrostis, Avena, Bromus, Cenchrus, Lolium, 

Medicago, and Trifolium, harbor Fusarium species. Continuous cropping of 

wheat or a wheat-maize rotation favors severe epidemics because of 

improved pathogen survival due to an increased availability of nutrients, as 

well as greater inoculum production by the fungus. Temperature and moisture 

are two key environmental factors influencing FHB epidemics. The optimum 

conditions for infection of heads by F. graminearum are 25 oC and saturation 

humidity for at least 24 h. Under such conditions, FHB is capable of destroying 

a wheat field in a few weeks (Sutton, 1982; Clear and Abramson, 1986; 

Abramson et al., 1987; McMullen et al., 1997a).  

 Current disease management includes the use of resistant cultivars, 

fungicides, and cultural practices. These measures are inadequate in years 

with severe epidemics. Effective fungicides for foliar application are limited. 

Folicur 432F (tebuconazole) was introduced for controlling FHB in the Prairies 

in 1999 (McMullen, 1999; Fernando, 1999). Biological control of FHB is in its 

formative years. The logic behind biological control is to advance the 

decomposition of infected residue on the soil to decrease the primary 

inoculum for the next year. Burying infected residue by plowing promotes the 
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rapid decomposition of the residue. This results in the reduction of pathogen 

spore load in the spring.  

 The consensus is that resistance is central in any integrated FHB 

management program (Gilbert and Tekauz, 1999). Chinese breeders have 

screened more than 30,000 wheat cultivars, lines, and accessions in order to 

find resistance to FHB. Researchers have found the well known Sumai3 and 

Ning derivatives, which are currently widely used in breeding programs 

(Weizhong, 1999).  

There are two main classes of resistance to FHB in wheat (Mesterhazy, 

1995). Passive resistance involves passive mechanisms associated with 

phenotypic traits such as plant height, presence of awns, spikelet density, time 

of flowering, length of flowering, anther morphology, diversity of florets, and 

the length of time that flowers remain open (Miedaner, 1997).  

Active resistance of wheat to FHB is more complicated and includes 

five proposed types of mechanisms: type I, resistance to initial infection; type 

II, resistance to the spread of infection in the spike; type III, resistance to 

kernel infection; type IV, tolerance (tolerant wheat plants show the same level 

of disease severity but vary in grain yield); and type V, resistance to mycotoxin 

accumulation. Resistance types III and IV are generally undefined (Schroeder 

and Christensen, 1963; Mesterhazy, 1995) and not much is known about them 

(Stack, 1997). The first two types of resistance are the most widely used by 

breeders and type II resistance is the most studied. In general, manipulation of 

resistance types III, IV, and V is very difficult and their use as a screening tool 

in breeding is expensive. Wheat resistance to FHB is quantitatively inherited 

and controlled by 2-5 major genes (Miedaner, 1997; Fernando, 1999; Gilbert 

et al., 2000).  

 The following factors make the breeding for FHB resistance in wheat 

very challenging:   

1. There is a lack of precise knowledge about the genetic mechanisms of 

resistance, including the number of genes and their different 

chromosomal locations (Parry et al., 1995; Miedaner, 1997; Gilbert et 

al., 2000) 

2. The fungus can infect wheat during a very short temporal window, 

between anthesis and the soft dough stage of kernel development 
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(10-20 days after anthesis) (Schroeder and Christensen, 1963; Sutton, 

1982). The earlier the spike is infected, the more severe the disease. 

When scoring spikes for disease symptoms as a measure of 

resistance, lack of flowering uniformity of the spikelets at the time of 

inoculation can cause errors in disease assessment.  

3. There is no wheat cultivar immune to FHB and most existing wheat 

cultivars are susceptible. A few wheat cultivars are relatively resistant. 

All durum (a tetraploid wheat lacking the D genome) wheat cultivars are 

more susceptible to FHB than the common wheat cultivars (Parry et al., 

1995).  

4. There is no conclusive evidence about race-specific (vertical) 

resistance to FHB in wheat (Parry et al., 1995). 

5. Resistance to FHB is a quantitative trait and controlled by several QTL 

(Bai and Shaner, 1994; Feredric et al., 1999; Waldron et al., 1999; 

Anderson et al., 2001; Kolb et al., 2001; Bai et al., 2003a; Somers et 

al., 2003; Yang et al., 2005) 

6. Although trichothecenes are phytotoxins, their production is not 

required for the appearance of disease symptoms. DON is a virulence 

factor and it is possible to reduce FHB severity by introducing genes for 

resistance against trichothecenes. However, attempts to correlate DON 

content and disease resistance scores were not conclusive (Leonard 

and Bushnell, 2003; Lemmens et al., 2005). 

 Conventional methods currently being used to evaluate quantitative 

resistance to FHB in wheat cultivars are time consuming and expensive. 

These methods are principally based on the visual assessment of disease 

severity (Parry et al., 1995). Double haploid and marker assisted selection 

using molecular markers such as RFLP, AFLP, and RAPD have recently been 

used to study FHB resistance (Feredric et al., 1999; Waldron et al., 1999; 

Anderson et al., 2001; Kolb et al., 2001; Shen et al., 2003). DNA molecular 

techniques are rapid and require only a small amount of plant tissue at any 

growth stage. With all of these techniques, existing polymorphisms among 

different cultivars, if any, are revealed. The limited knowledge of the 

mechanism of resistance, the number of genes involved, and their functions 

prevent molecular techniques alone from resolving the dilemma of FHB 
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resistance. The number of resistance genes has been estimated based on a 

number of studies to vary between one and six (Bai et al., 1989; Snijder, 

1990). In different varieties, resistance genes have been reported to be on 

different chromosomes (Waldron et al., 1999; Weizhong, 1999; Ban and 

Watanabe, 2001; Kolb et al., 2001). In Sumai3, resistance genes were 

suggested to be on chromosomes 1B, 2A, 5A, 6D, 7D, 2B, 3B, 6B, and 7A 

(Weizhong,1999; Kolb et al., 2001). A recent study has shown the involvement 

of seven QTLs for type I resistance on chromosome arms 2DS, 3AS, 3BS, 

3BC (centromeric), 4DL, 5AS, and 6BS, and four QTLs for type II resistance 

on chromosomes 2DS, 3BS, 6BS, and 7BL, suggesting a pleotrophic effect for 

QTL on the 2DS chromosome. The most successful and widely used source 

of FHB resistance is the 3BS QTL of Sumai3 and its derivatives that explain 

15-60 percent of phenotypic variation of type II resistance in different studies 

(Waldron et al., 1999; Shen et al., 2003; Somers et al., 2003; Zhou et al., 

2003; Yang et al., 2005). The importance of the D genome of Sumai3 in 

conferring resistance to FHB was emphasized in one study (Ban and 

Watanabe, 2001), but rejected in other studies (Gilbert et al., 2000; Kolb et al., 

2001). In addition to 3BS, 5A and 6BS are also likely locations for FHB 

resistance genes from Sumai3.  More recently a study on 174 DH lines from a 

cross between DH181 (resistant) and AC Foremost (susceptible), showed the 

involvement of the D genome (QTL on 2DS chromosome) in both types I and 

II resistance against FHB (Yang et al., 2005). 

 The impacts of the environment on disease symptoms are magnified 

when challenged with such a resistance controlled by multiple QTLs, with 

conceivable mixed small to large effects expressing in various ways that 

demonstrate as different resistance types.  

 Our knowledge of the mechanisms of resistance to FHB is limited. 

Although modern approaches, such as molecular assisted selection, 

combined with conventional methods, have enhanced the throughput of 

screening methods, they remain slow and have contributed very little to our 

knowledge about the mechanisms of resistance. Genes are upstream of a 

continuous flow of encrypted information from genotype to deciphered visible 

phenotype of the FHB-wheat pathosystem. There is less inconsistency in 

DNA-marker-based disease resistance selections. Unlike DNA markers, the 
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phenotype is influenced and masked by the external microclimate so DNA 

markers are preferable for breeding purposes. The key to the FHB resistance 

puzzle lies in the parallel studies of the FHB resistance genome, 

transcriptome, proteome, and metabolome. 

In the post-genomic era, there is an urgent need to assign functions to 

genes in order to pyramid genes controlling suitable traits for crop 

improvement. Metabolomics, an evolving field of systems biology, aims to 

decipher gene function at the metabolite level (Fihen et al., 2000; Dixon, 2001; 

Fiehn, 2002; Sumner et al., 2003; Goodacre et al., 2004). Metabolomics 

generates large data matrices with astronomical dimensions. However, often 

only a few metabolites relate to the function of a gene or a trait (Goodacre et 

al., 2004). The identification of a set of metabolites that can explain the 

functions associated with a gene is a big challenge in systems biology. 

 There has been enormous progress in recent years in the development 

of new tools to study genetic diversity in plants based on their secondary 

metabolites. Metabolite profiling enables us to discriminate genetic variation 

within plants (Roessner et al., 2001), and combined with mRNA and protein 

analyses, provides deeper insight into complicated regulatory processes and 

mechanisms in resistance and can be used accurately for resistance 

evaluation (Fiehn et al., 2000a). According to the gene expression concept, 

FHB resistance genes are transcribed into mRNA (transcriptome) and 

subsequently translated into enzymes. These enzymes may play a direct role 

in defense (PR proteins) or contribute in setting metabolic pathways through 

which the dynamics of metabolic networks are modified in a manner to 

prepare for an enhanced defensive state. A sufficient knowledge about the 

pathways contributing to FHB resistance will help reveal the unknown aspects 

of the underlying mechanisms of the resistance and improve the efficiency of 

screening germplasm. It may be possible to quantify resistance by measuring 

the amount of these hypothetical biomarker metabolites in wheat cultivars 

varying in resistance to FHB as an indicator of the functional level of 

resistance gene(s).  

 The general assumption is that the quality and quantity of these 

resistance biomarker metabolites vary among cultivars of wheat with different 

types and levels of resistance to FHB. Based on this assumption, it may be 
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possible to develop and use metabolic criteria to distinguish disease 

resistance by means of metabolite profiling. To date, no one has used this 

novel approach to discriminate FHB resistance in different wheat genotypes.  

1.1. General hypothesis 

It is hypothesized that wheat cultivars varying in resistance to FHB 

have different metabolite profiles. The null hypothesis states that, “There is no 

difference in the metabolite profiles of different wheat cultivars known to vary 

in their resistance to FHB”. 

  

1.2. Objectives 

 1. To identify metabolites produced in the wheat-FHB pathosystem.   

 2. To classify selected cultivars varying in the level of FHB resistance 

based on their metabolic profiles. 

 3. To establish metabolite phenotypes for selected susceptible and 

resistant near isogenic lines with alternate alleles for FHB resistance 

QTL in order to identify resistance-related biomarker metabolites.  
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Chapter 2  
General literature review 

2.1. Wheat 

Bread wheat (Triticum aestivum L. em. Thell.) is the staple crop for 

many people around the world. It is one of the best examples of an 

allopolyploid agricultural plant. An allopolyploid is an organism that has two or 

more complete sets of chromosomes derived from different species, with 

chromosome sets that are not fully homologous. Tetraploid wheat (4n=28, 

AABB) evolved from a cross between two different diploids (2n=14, AA and 

BB). Wild emmer (T. dicoccoides) is the ancestor of tetraploid wheat (as well 

as emmer and durum wheat). Hybridization between two diploid wild grasses 

(T. urartu) and a wild goat grass such as Aegilops searsii or A. Speltoides 

resulted in wild emmer. This hybridization occurred in the wild, long before 

domestication of wheat. Some 8000 years ago hexaploid wheat (6n=42, 

AABBDD) evolved from diploid and tetraploid ancestors (Griffiths et al., 1999). 

Bread wheat has several hundred varieties that can be grouped in one of eight 

classes according to kernel hardness, color, size, shape, milling and baking 

quality, and food application (Hyena, 1987). 

 Bread wheat has the capacity to grow in relatively different climates 

ranging from the Arctic Circle to the equator. However, most of its production 

is between latitudes 30-60oN and 27-40oS. Canada has long cold winters and 

short hot summers that support the culture of spring wheat. Limited rainfall 

affects the amount of grain yield. However, Canadian wheat grain is well 

known worldwide for its high protein content. Another attribute for grouping 

wheat cultivars into classes is the time of planting and harvesting (Hyena, 

1987). Wheat may grow in winter and/or spring seasons. The planting and 

harvesting time of winter wheat are the fall and the spring/summer 

respectively, while those of spring wheat are the spring and the summer/fall.  

Canadian wheat is also categorized into six classes as follows (Ontario 

Wheat Board, 2002): 
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 1) Canada western red spring (CWRS) wheat is a hard wheat with superior 

milling and baking quality.  

2) Canada western amber durum (CWAD) wheat has a high yield and an 

excellent pasta-making quality. Durum or Macaroni wheat is the only tetraploid 

species of wheat widely cultivated today. High protein content and gluten 

strength of durum wheat make it good for pasta. 

 3) Canada prairie spring red (CPSR) wheat has medium hard kernels and 

medium dough strength.  

4) Canada western red winter (CWRW) wheat is a hard wheat with excellent 

milling quality.  

5) Canada prairie spring white (CPSW) wheat is suitable for making various 

types of flat breads. 

6) Canada western soft white spring (CWSWS) wheat with low protein content 

is suitable for making cake and cookies (Ontario Wheat Board, 2002). 

 Wheat is the most important cultivated crop in Canada and the country 

is third among major wheat producers and second among wheat exporters 

following the USA (Statistics Canada, 2002a; Wainio and Zahniser, 2002). 

During the last decade, total Canadian wheat production has decreased 24 

percent. About 40 percent of Canada’s total crop area is devoted to wheat 

production. Almost 80 percent of Canadian wheat is produced in the Prairie 

Provinces of Alberta, Saskatchewan and Manitoba (Statistics Canada, 2003).  

 The land area occupied by wheat fields in Canada in the last two 

decades has varied between 10 to more than 14 million ha, most of which 

have been seeded to spring wheat. Between 32,000 and 40,000 hectares of 

the total land cultivated with wheat are in Quebec, which is less than 4 percent 

of the total area that wheat is grown on in Canada (Statistics Canada, 2002b).   

 A short growing season forces growers to plant high quality spring and 

durum wheat. Red spring wheat is the most common class of wheat planted in 

the Prairie Provinces. Soft white winter wheat is mainly produced in Ontario 

and across other eastern provinces in small quantities. The durum wheat 

share is only 5 percent of the total wheat grown in the Prairie Provinces. 

However, it is an important component of Canadian wheat exports.  
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2.1.1. Growth stages of wheat 

 Some systems have been created to describe the growth and 

developmental stages of wheat among which the Zadok’s scale (Zadoks et al., 

1974) is the most widely used. This scale has a two-digit code for each stage. 

The major growth stages of the wheat plant are seed germination, seedling, 

tillering, stem elongation or jointing, booting, heading, flowering or anthesis, 

milk, dough, and ripening. There are ten major stages from 0-9 with each main 

stage subdivided into ten (0-9) minor stages (Zadoks et al., 1974). 

At the apex of each tiller, one inflorescence appears. The inflorescence 

of wheat is a spike with a main axis called a rachis. The rachis bears spikelets 

at the internodes. Each spikelet contains two to five florets borne on a short 

axis (rachilla) (Fig. 2.1).Two sterile bracts (glumes) surround each spikelet 

and each floret has two bract-like structures - a lemma and a palea. Three 

stamens with large anthers and a pistil with two styles each having feathery 

stigma branches are present inside each of the florets (Fig. 2.1).  

Two important factors influencing the number of initiated spikelets are 

temperature and photoperiod. The longer the photoperiod the earlier the 

spikelet is initiated. Any increase in day or night temperatures raises the 

spikelet initiation rate. The differentiation of florets inside the spikelets begins 

in the lower-central portion of the spike and develops in both up and down 

directions. Inside each spikelet, up to 12 florets may be produced but five or 

fewer will result in kernel production. At the base of the ovary in the wheat 

floret are two lodicules that swell during anthesis and cause the flower to open 

and the anthers to protrude. Within 20 minutes after lodicules swell, anthesis 

will be completed by the closing of the lemma and palea. 

2.2. Wheat fusarium head blight   

 One of the most important diseases of wheat in Canada is fusarium 

head blight (FHB), which is also commonly known as wheat scab or 

tombstone disease. The principal causal agent of the disease is Fusarium 

graminearum Schwabe (teleomorph: Gibberella zeae (Schwein.) Petch). Hard 

red spring wheat and durum wheat are the most frequently infected, but the 

disease is not just confined to wheat. Other small grain crops, including corn, 

barley and oats, are also susceptible to infection. Spikelets in diseased heads 
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are killed, whitened and if enough humidity is provided, salmon-pink to orange 

spore (macroconidia) masses develop on the edges of the glumes. The 

disease is sometimes called tombstone disease because of the development 

of white to pink shriveled, scabby kernels. Severe yield losses may be 

observed in years with an epidemic of FHB.  Besides yield losses, F. 

graminearum also often produces several mycotoxins in wheat seeds, which 

are harmful to human and livestock. Deoxynivalenol (DON) is one of the major 

toxins, which has raised much concern because it is produced in wheat seeds 

before harvest.  

The importance of FHB, as a major plant disease, is now increasing 

throughout the world, especially in North America. Recent epidemics of FHB 

have drawn the interest of researchers (McMullen et al., 1997a). The disease 

has been frequently reported in most wheat growing areas of the world and at 

least 17 Fusarium species have been associated with this disease. Although 

F. graminearum is the major pathogen of the disease in many countries 

(Schroeder and Christensen, 1963; Sutton, 1982; Clear and Abramson, 1986; 

Wong et al., 1992; Bai and Shaner, 1994; Parry et al., 1995), other species 

such as F. culmorum, F. avenaceum (Gibberella avenaceum), F. poae, and 

Microdochium nivale have also been cited as the causal agents of FHB. 

However, F. graminearum and F. culmorum have been reported to be the 

main causal agents for FHB (Parry et al., 1995).  

2.2.1. Situation of the disease worldwide and in Canada  

 FHB has become a prevalent and major threat to wheat production 

worldwide (Snijders, 1990; Sutton, 1982; Bai and Shaner, 1994; Gilbert et al., 

2000). FHB infections have been reported from most places where cereals are 

grown (McMullen et al., 1997a) including Canada (McMullen et al., 1997a), the 

USA (Bai and Shaner ,1994), Australia (Burgess et al., 1987), Bulgaria, 

Czechoslovakia, France, Germany, Hungary, Italy, the Netherlands, Romania, 

Switzerland, Yugoslavia, England, China, India, and Japan (McMullen et al., 

1997a). F. graminearum causes epidemics over large areas but shows local 

variability in severity. This variability is due to differences in cultivars planted, 

crop rotations, date of anthesis, and microclimate. In severe epidemics, all 

heads in the field may show symptoms (Bai and Shaner, 1994).  
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 The first record of heavy infection of wheat by this fungus was from 

southern Manitoba (Red River Valley) in 1984 (Clear and Abramson, 1986). In 

1993, the highest level of the disease was observed in southeastern Manitoba 

where Roblin, a highly susceptible cultivar, was most widely grown. F. 

graminearum has also been reported from southeastern Saskatchewan in 

durum wheat. Severe epidemics of FHB have occurred in spring wheat fields 

in Manitoba and some Northern states of the USA (Bai and Shaner, 1994). It 

is believed that increasing interest in FHB research in Canada has its roots in 

the 1993 epidemic (Gilbert et al., 2000). In the western Prairies, a high level of 

F. graminearum was observed for the first time in west central Alberta in 

Canada Prairie Spring wheat samples. Since then, low levels of Fusarium 

diseased kernels (FDK) have been observed mainly due to drought. The 

disease was well established in Saskatchewan by 1998. Wheat scab 

epidemics during 1927-1980 have occurred approximately once every 9 years 

in wheat fields in Ontario. It has been observed in Ontario, Quebec, the 

Maritime Provinces, Manitoba, and the Peace River region of Alberta (Sutton, 

1982). FHB has spread toward the west from southeastern Manitoba to 

Saskatchewan and Alberta, replacing less pathogenic species of Fusarium 

(Clear and Patrick, 2000).  

2.2.2. Potential damage of FHB 

 FHB reduces both the quantity and quality of the grain. Direct damage 

is due to weight reduction of the grains while indirect damage results from 

production of two important mycotoxins called DON and zearalenone (Bai and 

Shaner, 1994). There is a reduction of seed germination and seedling blight of 

infected grains. Scabby head incidence in China varies from 50 to 100 

percent, with 20-40 percent grain loss in severe epidemic years (Bai and 

Shaner, 1994). FHB is the second among leading wheat diseases in China 

after stripe rust (Puccinia striiformis), infecting roughly one quarter of the 

country’s total wheat production area, making China the largest wheat scab-

infected region of the world. Favorable climatic conditions for FHB epidemics 

in the soft red winter wheat areas of the USA caused the development of scab 

damage averaging of 25 percent or 2.72 million tons of grain yield reduction 

on 6.1 million ha (McMullen et al., 1997a). Total estimated loss from wheat 
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scab in Minnesota, North and South Dakota and Manitoba was reported to be 

about US$1 billion in the 1993 epidemic. This is one of the highest annual 

economic losses ever, due to a plant disease in North America. The amount of 

wheat lost in Manitoba in 1992 was 176 million bushels (worth $704 million), 

20 million bushels more than the sum of all losses in Minnesota, North and 

South Dakota. 

2.2.3. The pathogen 

Fusarium graminearum Schwabe (teleomorph: Gibberella zeae 

(Schwein.) Petch) is considered the principal causal agent of FHB around the 

world. The fungus produces ascospores, macroconidia, and chlamydospores 

in its life cycle. Ascospores are mainly three-septate, hyaline, 17-25.5 µm 

long, and 3-5 µm wide, and formed in purplish-black perithecia. Perithecia are 

developed on stromata on the host tissues and host debris. Microconidia are 

not produced, but macroconidia, chlamydospores, and mycelia are formed in 

soil. The macroconidia are less homogeneous in septation than the 

ascospores and are 3-7-septate with a foot cell varying from 35-62 µm long by 

2.5-5 µm wide (Leonard and Bushnell, 2003).   

Continuous wheat cropping, in wheat-maize and wheat-rice rotations, 

enhances the food resources for better survival and higher inoculum 

production of the pathogen, and eventual development of severe epidemics. 

Perithecia are initiated on crop residues on the soil surface during the 

saprophytic phase. Inoculum is spread mainly by wind and rain splattering, but 

arthropods, such as mites, and systemic growth may also play roles. Several 

weed species, including species of Agropyron, Agrostis, Avena, Bromus, 

Cenchrus, Lolium, Medicago, and Trifolium harbor isolates of the Fusarium 

species. Therefore, the fungus can survive between wheat crops in living or 

dead host tissues. The ascospores are produced after maturation of asci in 

the perithecia and are disseminated by the wind. The ascospores, 

macroconidia, chlamydospores, and hyphal fragments can all serve as 

inocula, although the main initial sources of inocula are considered 

ascospores and macroconidia. Humidity in the form of rain or heavy dew is a 

factor required for initial ascospore release.  
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Following deposition of inocula on spikelets, the pathogen starts its 

pathogenic phase. The germination occurs mainly on anthers during anthesis. 

The fungus can invade the floret through crevices between the palea and 

lemma, directly from epidermal cells of interior floral surfaces, wounds, and 

stomata. Some fungal growth stimulators in glumes like choline chloride and 

betaine hydrochloride may favor the fungus to colonize the host. These two 

important metabolites can also be found in other parts of the plant such as the 

palea, the lemma, the glume, the rachis, and the grain, although compared to 

the anthers there are lower concentrations of these metabolites in these parts 

(Bushnell et al., 2003). 

Several studies have shown that severe FHB epidemics occur 

consistently in wet weather conditions (Sutton, 1982; Clear and Abramson, 

1986; Abramson et al., 1987; Burgess et al., 1987; McMullen, 1997a). FHB 

develops within 3-4 days in warm and humid conditions. The disease 

progression rate of FHB will increase following any rise in humidity (at 25 oC). 

The optimal infection of cereal ears to FHB by F. graminearum occurs after at 

least 24 h of warm (25 oC) and humid (HR=100%) conditions. Within a short 

time after infection, the spikelets start to turn white (Leonard and Bushnell, 

2003).  

2.2.3.1. Variability of F. graminearum  

There is a high genetic diversity among isolates of F. graminearum 

(Mesterhazy, 2003). A number of studies have been carried out on the 

genotypic diversity of G. zeae using different techniques such as the 

vegetative compatibility group (VCG) and RAPD markers. The results have 

shown high levels of diversity in the genotypes of the pathogen from single 

wheat heads or from different fields (Bowden and Leslie, 1992; Ouellet and 

Seifert, 1993; Dusabenyagasani et al., 1999). VCG data must be generated 

via pair wise comparisons among all strains, which tends to lead to an 

exponential increase in the number of tests as the sample size increases. 

Miedaner (1997) believes that the quantitative inheritance of wheat resistance 

lowers the risk of adaptation of G. zeae to host resistance. Until now, there is 

no evidence for race specificity or breakdown of resistance to FHB (Young, 

1996; Gilbert et a., 2000).  
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 Correlation between resistance of wheat to F. graminearum and F. 

culmorum (Fernando, 1999) suggests that the same FHB resistance gene(s) 

may be effective against both species of the pathogen (Mesterhazy, 1995, 

1997). The practical advantage of a general Fusarium resistance in both 

winter and spring types of wheat is that selection against a good pathogenic 

isolate of an important species may lead to FHB resistance to all important 

isolates and species (Mesterhazy, 2003). 

2.2.4. Fusarium head blight control options  

 Cultural practices, biological and chemical control options, as well as 

use of resistance cultivars are different ways of controlling FHB (Gilbert et al., 

2000). The cultural measures include avoidance of such rotations as wheat-

corn or wheat-rice as well as burying plant residues. The biological control of 

FHB relies on adding some species of Trichoderma for residue management 

and promoting residue decomposition. Considering incomplete resistance of 

wheat to FHB and the lack of highly effective fungicides, a key element in FHB 

management is reducing inoculum of F. graminearum in the host debris and 

other reservoirs. Chemical fungicides that farmers could use for this purpose 

in North America are few in number. Folicur (tebuconazole) has been recently 

registered for heading application (McMullen et al., 1997b; McMullen, 1999). 

Despite its immediate action, chemical control is not a long-term option. One 

of the most promising methods for FHB control is genetic resistance, but 

complete resistance in commercially available cultivars is not at hand, 

especially in certain cultivars of winter and durum wheat.  

2.3. Wheat breeding for resistance against FHB 

Scientists, who work on FHB, unanimously believe that breeding for 

resistance is at the core of any integrated FHB management program (Gilbert 

and Tekauz, 1999). The disease has been challenging breeders for a long 

time and many breeding programs are now underway to develop new scab-

resistant varieties by screening cultivars based on scab severity and DON 

production. Resistance or susceptibility of wheat to FHB is determined in a 

relatively short temporal window (10 to 20 days) which is the time between the 

beginning of anthesis and the soft dough stage of kernel development when 
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wheat spikes are susceptible to infection by F. graminearum (Schroeder and 

Christensen, 1963). The earlier the spike is infected in this time span the 

greater is the severity of disease.  

The first efforts to find wheat resistant to FHB commenced in 1941. 

Progress and Haynes Bluestem cultivars were reported to be the most 

resistant wheat cultivars over half a century ago (Hanson et al., 1950).  

Chinese breeders have attempted massive screening of more than 30,000 

wheat genotypes to find resistance to FHB and have achieved great progress. 

One significant problem in screening for FHB resistance and testing its 

components lies in the poor reproducibility of FHB resistance tests, due to the 

significant effect of environmental variability on the expression of symptoms, 

implying a high genotype × environment interaction variance (Dill-Macky, 

2003).  

Many researchers believe that the measurement of the spread of FHB 

in the head presents one of the most reliable estimates of a cultivar’s 

resistance.  Such estimates are generally conducted via visual assessment of 

disease symptoms. In natural infections and field trials, the disease incidence 

is measured as the percentage of infected heads (spikes). Disease severity, 

however is a better indicator of cultivar resistance, and is measured as the 

percentage of infected spikelets in a spike (Wilcoxon et al., 1992). Disease 

index, the product of disease incidence and disease severity, may also be 

used as a measure of cultivar resistance against FHB. These three means of 

evaluation are used by researchers in North America (Groth et al., 1999). Post 

harvest examination of kernels for yield, test weight (kg/hl; weight of grain per 

half liter) and visually scabby kernels are also used for the evaluation of FHB. 

Differences in FHB-resistance between wheat cultivars may also be assessed 

based on DON detoxification in wheat grains. Miller et al. reported that within 

72 h, the relatively resistant cultivar Frontana could degrade 18 percent of 

DON compared with 5 percent in Casavant (a susceptible cultivar) (Miller et 

al., 1986).  

  RFLP, AFLP, and RAPD have been used to study FHB resistance 

(Feredric et al., 1999; Waldron et al., 1999; Anderson et al., 2001; Kolb et al., 

2001). Detection of resistance genes in large populations requires a powerful 

and rapid technology and therefore improving the throughput of screening 
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tools remains an ongoing need. There are two main kinds of mechanisms 

involved in resistance. The passive and active mechanisms are defined as 

those that act dependently or independently of the physiological status of the 

plant, respectively (Mesterhazy, 1995). 

2.3.1. Passive resistance 

Passive resistance involves mechanisms associated with phenotypic 

traits such as plant height, the presence of awns, spikelet density, time of 

flowering, length of flowering, anther morphology, the position and diversity of 

florets, and the length of time that flowers remain open (Miedaner, 1997). Tall 

wheat varieties without awns and varieties that do not protrude their anthers 

have shown reduced susceptibility to the disease. The effect of increasing 

plant height on reducing infection is independent from active resistance 

components (Mesterhazy, 1995). The longer the upper internodes, the less 

likely the heads will be exposed to the inocula of the pathogen carried by 

splashing rainwater (Parry et al., 1995). The presence of awns increases the 

probability of capturing airborne or water splashed spores, thereby increasing 

the chances of exposure to head blight infection (Mesterhazy, 1995). Less 

exposure of the anthers to spores helps the plant to escape infection. The 

betaine- and choline-type metabolites found in the pollen are thought to 

enhance the possibility of the fungal infection (Leonard and Bushnell, 2003). 

The role of passive resistance against heavy epidemics is not significant and 

the real solution is believed to be an increased active resistance (Mesterhazy, 

2003). 

2.3.2. Active resistance 

Resistance to FHB has five components (type I through V) inherited 

independently. These components often show linkage in many genotypes 

(Masterhazy, 2003): 

 Type I is resistance to initial infection (Schroder and Christensen, 1963) 

and is measured as incidence, which is the percentage of heads showing 

symptoms regardless of the number of spikelets in the head. Preformed 

morphological and/or biochemical resistance factors or induced active defense 

responses, are listed as possible operating factors in type I resistance.
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 Type II resistance is resistance to the spread of the disease in infected 

tissue (Schroeder and Christensen, 1963) which is derived from Sumai3 and 

related wheat lines and inherited in a polygenic way. Type II resistance is 

measured by inoculating an individual floret in a spikelet near the middle of the 

spike and observing the spread of symptoms to adjacent spikelets. Symptoms 

are typically visible in the inoculated spikelets within 3-7 d and spread to other 

spikelets by 8 to 12 d. The spikelet-to-spikelet spread occurs through the 

rachis and type II resistance reduces this spread. In a study by Schroeder and 

Christensen (1963) on two susceptible and resistant cultivars, the spread 

rates of the fungus in the rachis were different. There is evidence that the 

fungus induces appositions of highly heterogeneous materials at and around 

the site of entry and intense lignin accumulation in the cell wall of the resistant 

cultivars (Kang and Buchenaur, 2000). While the expression of the type II 

resistance in the floret and rachis does not stop fungal development, it retards 

the growth of the fungus sufficiently to allow the rachis to uphold function in 

support of grain filling in portions of heads above infected spikelets.  

 Type III is resistance against kernel infection (Mesterhazy, 1995, 1997). 

In some cultivars, the kernel colonization rate by the fungus is less than what 

is expected based on visual disease severity assessments. Based on this, 

Mesterhazy (1995) concluded that kernel resistance to infection is different 

from other types of resistance. Some studies propose that in some wheat lines 

resistance factors come into play that reduce kernel infection when other parts 

of the floret are colonized enough to display visible symptoms (Mesterhazy et 

al., 1999). The stage of kernel development, the presence of phenolic 

metabolites, and the resistance of specific layers of the seed coat, as well as 

rate of DON transfer from chaff to kernel (if DON promotes fungal spread in 

the head) are several factors that limit kernel infection.  

 Type IV resistance against FHB, so called tolerance, is resistance to 

yield loss in the presence of disease (Mesterhazy, 1995). FHB causes 

shriveled kernels and reduces kernel weight. Weight loss has a positive 

correlation with disease severity. Type IV resistance was suggested for those 

wheat genotypes showing less kernel weight loss when infected with the 

fungus (Mesterhazy et al., 1999). 
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 Type V is resistance against mycotoxins. This resistance is due to toxin 

degradation, or insensitivity of the plant to toxin and/or limitation of the amount 

of toxin build-up in head tissues. The fungus initially launches a biotrophic 

relationship with the host tissue but later moves to a necrotrophic phase. The 

switch from biotrophy to necrotrophy is mediated by DON and other toxins 

produced by the FHB pathogen.  These toxins inhibit protein synthesis by 

interfering with peptidyl transferase. Several lines of evidence show that DON 

or possibly other related trichothecenes are in part responsible for chlorosis 

and browning of heads in FHB (Bushnell et al., 2003). There are two modes of 

action postulated regarding the role of DON in FHB. DON may promote 

spread of the fungus by limiting activation of defense responses or by direct 

toxic effect on the cells of the rachis. Regardless of any possible role DON 

may have in pathogenesis, resistance leading to lowered toxin accumulation 

in the kernel is important due to end-product quality considerations.  

The rates of spread (type II resistance) and penetration (type I 

resistance) are both accelerated and reduced simultaneously and closely 

related in several synthetic wheat lines carrying the D genome from Aegilops 

squarrosa (Mesterhazy, 2003). However, resistance is better measured by 

evaluating the rate of spread than that of penetration. Tolerance (type IV) is 

also independent from other traits. Tolerant wheat cultivars maintain an 

adequate yield despite the presence of disease. Resistance components, 

despite independent inheritance, have linkage but the genetic basis for the 

close correlation is unknown. One explanation may be that resistance genes 

have pleiotropic effect for all the traits or perhaps different genes for the 

respective traits are linked. Another possibility is that separate genes may 

have modifying effects (Mesterhazy, 2003).  

Type II resistance is the most studied, and much less is known on 

resistance types III and IV. In general, manipulation of resistance types III, IV, 

and V is very difficult and their screening is expensive (Mesterhazy, 2003). 

Therefore, they are not used in current breeding programs. The number of 

genes, the types of resistance, and their different chromosomal locations 

clearly indicate the challenge of breeding wheat varieties for FHB resistance. 
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2.3.3. Genetic complications of resistance to FHB 

 Wheat plants can escape the infection of FHB by early or late heading. 

When most of the susceptible wheat plants are diseased in an FHB epidemic, 

some plants may remain healthy and free from any infection or symptom. The 

genotypes of these plants are susceptible, but their phenotypes are similar to 

resistant ones. This is a passive resistance referred to as apparent resistance. 

This may occur when an aggressive pathogen, susceptible plant, and 

favorable environmental conditions do not coincide (Kolb et al., 2002). 

Tolerance is another form of resistance where the susceptible wheat plant can 

produce a good yield despite an epidemic of FHB. This ability is genetically 

controlled but the mechanisms are not well understood. A pathogen can infect 

a wheat plant but the plant has the ability to resist the damage. As opposed to 

apparent resistance, true resistance is genetically controlled by resistance 

genes. The host-pathogen interaction may be a non-compatible (resistant) or 

a compatible (susceptible) one. The reason(s) for susceptibility may be the 

lack of recognition that is due to a lack of plant receptors (products of 

resistance genes) or pathogen elicitors (products of avirulence genes of the 

pathogen) (Flor, 1971). If both elicitor (i.e., pathogen signal) and receptor 

exist, their binding brings about recognition and thereby triggers intra- and 

inter-cellular signal transduction pathways. Consequently, a non-compatible 

interaction between host and pathogen will result in recognition of the 

presence of the attacking pathogen by the plant. This will lead to preparations 

for defense, which will eventually lead to resistance (Wink, 1999).  Signal 

transduction is the process by which environmental, developmental, and 

hormonal signals regulate cellular responses. In cases where either the 

pathogen lacks elicitor(s) and/or the plant lacks a corresponding receptor(s), 

the recognition of the pathogen by the host plant fails, as does the triggering 

of the cellular defense mechanisms leading to a compatible (susceptible) 

reaction and infection of the plant.  
True resistance can be either vertical or horizontal. A plant genotype 

may be R (resistant) or r (susceptible). Pathogens may also be avirulent (A) or 

virulent (a) (Agrios, 2005). In this simple probability space, there are four 

pathosystem events: AR, Ar, aR and ar. Among these, only the AR gene 

combination is incompatible. The probability of occurrence of each 
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pathosystem in a natural population is related to the frequency of alleles 

involved in that stochastic event.  
 Vertical resistance is monogenic with the disadvantage of it being 

unstable (Agrios, 2005). Horizontal resistance is controlled by many 

resistance genes with small effects and is therefore durable.  In horizontal 

resistance, all plant varieties have the same level of resistance (Agrios, 2005) 

and function equally well against most strains of the pathogen. However, 

working with horizontal resistance in field experiments is very difficult since the 

effect of each minor gene is usually very small and easily masked by the 

experimental error.  

Quantitative resistance has the advantage of durability. However, 

analyzing this kind of resistance is too time and labor consuming. Unlike HR, 

quantitative resistance is not race specific. The most important key step in 

QTL (quantitative trait loci) analysis is discrimination of resistance. If QTLs are 

on different chromosomes, there is no linkage and their inheritance will be 

independent of each other. Otherwise, they may have a loose or tight linkage. 

Sometimes there is a mixture of independent and loosely or tightly linked 

QTLs in the same plant, which increases the complexity and makes the 

analysis of mixed QTLs more difficult (Fig. 2.2) (Xu, 1997). QTLs are highly 

influenced by environment and therefore spatiotemporal variance of the traits 

controlled by them is very high. QTL analysis requires using a series of both 

field and laboratory experiments followed by extensive statistical approaches. 

Relying on polymorphic molecular markers and linkage maps, QTL mapping 

comprises growing and evaluating large populations of plants and applying the 

appropriate statistical tools. Molecular markers such as RFLP and RAPD 

segregate as single genes and unlike QTLs, they seem unaffected by the 

environment. Furthermore, they are highly polymorphic, which implies that 

many QTLs can be mapped in a single cross. They enable breeders to 

develop high quality linkage maps (Kao et al., 1999).  

The inheritance of FHB resistance in wheat is an example of 

quantitative resistance of mixed QTLs (Feredric et al., 1999; Waldron et al., 

1999; Anderson et al., 2001; Kolb et al., 2001; Bai et al., 2003b; Somers et al., 

2003). It contains different forms of passive resistance, apparent resistance 

(tolerance and escape), and true resistance which is expressed in five 
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different types. This makes resistance of wheat to FHB one of the most 

complex and unique types of plant resistance to a disease. 

2.3.4. Sources of resistance 

Chinese plant breeders made a significant contribution in identifying 

highly resistant wheat germplasm, such as Sumai3 and Ning7840, which have 

shown stable resistance to fungal spread in the spike across different 

environments (Bai et al., 2003a). In Canada, the Semiarid Prairie Agricultural 

Center (SPARC) labeled wheat cultivars as “very poor”, “poor”, “fair”, “good”, 

and “very good” for resistance to FHB. Most wheat cultivars that fall in the 

range of “poor” to “very poor” resistance to FHB mature in approximately 100 

days. Some Canadian cultivars such as AC Barrie, AC Cora, Kapetawa, AC 

Majestic, and McKenzie have better tolerance to FHB (AAFC, 2004).  

Despite the fact that increasing numbers of commercial cultivars now 

have some degree of resistance, most available cultivars of wheat with a high 

yield potential are still susceptible. Combining desirable agronomic traits and 

resistance to FHB is a challenge for breeders.  

Spring wheat genotypes such as Sumai3, Nobeoka Bozu, and 

Frontana are some important universal sources of resistance against FHB 

(Mesterhazy, 2003). The breeding of winter wheat is more difficult than spring 

wheat and requires use of spring wheat sources or construction of more 

resistant germplasm from moderately resistant parents by gene pyramiding 

(Mesterhazy, 2003). It was hypothesized that there are one, two and three 

major resistance gene(s) in moderately susceptible to moderately resistant, 

resistant, and resistant to highly resistant wheat cultivars, respectively (Bai 

and Shaner, 1994). Resistance against FHB in Nobeoka Bozu and 

Wangshuibai has been reported to have 5-6 genes with additive dominant 

functions (Bai et al., 2003a).  

  There are hybrids of T. aestivum and other Triticaceae such as 

Rogerun and Leymus that have proved to be more resistant to FHB than 

Sumai3. Within some Triticaceae genera including Hysterix, Agropyron 

(Elymus), Haymaldia (H. villosa), Thinapyrum (T. intermedium) and Hordeum 

(H. californicum) are species with FHB resistance (Mesterhazy, 2003).  
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Several QTLs have been identified for resistance to FHB (Feredric et 

al., 1999; Somers et al., 2003).  In different varieties, the resistance QTLs 

have been observed on different chromosomes. Sumai3 resistance QTLs 

were reported on chromosomes 2A, 5A, 7A, 1B, 2B, 3B, 6B, and 7D 

(Weizhong, 1999). The importance of the D genome in conferring resistance 

in Sumai3 was negated by Gilbert et al. (2000) and Kolb et al. (2001) but 

emphasized by Ban and Watanabe (2001). In another study, the occurrence 

of three QTLs for FHB resistance located on 3BS, 2D, and 6B as together 

accounting for approximately 52 percent of the phenotypic variation was 

reported by Shen et al. (2003). A resistance QTL was detected on the 

chromosome 2DL of a F1-derived DH (double haploid) line from the cross T. 

aestivum ‘Wuhan-1’ × T. aestivum ‘Maringa’ (Somers et al., 2003). In this 

study, a QTL associated with DON level was also detected on the 

chromosome 2DS. A recent study has shown the involvement of 7 QTLs on 

chromosomes 2DS, 3AS, 3BS, 3BC, 4DL, 5AS, and 6BS in type I resistance 

and 4 QTL on chromosomes 2DS, 3BS, 6BS, and 7BL in type II resistance 

(Yang et al., 2005). The most widely used source of resistance is a QTL on 

the 3BS chromosome of Sumai3, which explains 15-60 percent of phenotypic 

variation in type II resistance (Somers et al., 2003; Zhou et al., 2003; Yang et 

al., 2005). In addition to 3BS, the Sumai3 also carries FHB resistance QTLs 

on the 5A and 6BS chromosomes. A summary of some important aspects of 

FHB resistance is listed as follows:  

1) There is no strong evidence about race-specific resistance to FHB   

2) DON contents produced in susceptible cultivars are greater than in 

resistant ones  

3) Resistance in wheat varieties to FHB used in Canadian breeding 

programs can be grouped into three categories (Gilbert et al., 2000; 

Fedak et al., 2002)  

i) Spring wheat from Asia (Chinese cultivars such as Sumai3 and 

Ning derivatives along with the Japanese cultivar Nobeoka Bozu), 

European cultivars such as Ringo Star, Novokrumka, and Frontana, 

which have been used as a source of FHB resistance for winter 

wheat in Canada 

ii)  CIMMYT wheat, such as CIMMYT-1, CIMMYT-11  
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iii)  North American Breeding Lines  

a - Older breeding lines with poor agronomic traits, such as FHB #21, 

and FHB #37  

b - Newer breeding lines, such as AC Voyageur, Alsen, BW278, 

HY644, and Mcvey  

4) To improve the selection of resistant wheat cultivars, a large genetic 

variance of the host population and a small genotype × environment 

(GE) interaction variance are required (Miedaner, 1997)  

2.4. Metabolite profiling as a new approach to study resistance 

2.4.1. Functional genomics 

In the post-genomic era, there is an urgent need to assign functions to 

orphan genes in order to pyramid genes controlling suitable traits for crop 

improvement, such as resistance to plant diseases. Metabolite profiling is an 

approach through which a selected number of metabolites are identified and 

quantified (Fiehn, 2002). The task of functional genomics is analysis at the 

levels of gene expression (transcriptomics), protein translation (proteomics) 

including post-translational modifications, and the metabolic network 

(metabolomics), with the aim of defining the phenotype and bridging the 

genotype-to-phenotype gap (Goodacre et al., 2004). Metabolomics, the 

missing ring of the omic’s chain and an evolving field of systems biology with 

its unique advantages, aims to decipher gene function at the metabolite level 

(Fiehn et al., 2000b; Dixon, 2001; Dixon et al., 2002; Sumner et al., 2003). 

Comprehensive identification and quantification of all the metabolites of an 

organism is a functional genomics methodology that can contribute to our 

understanding of the complex molecular interactions in biological systems 

(Bino et al., 2004). Metabolite profiling has, for instance, enabled the 

classification of two potato tuber systems grown either in vitro or in the soil 

(Roessner et al., 2001), yeast mutants (Allen et al., 2003), genetically modified 

organisms (Choi et al., 2003), salt-stressed tomatoes (Johnson et al., 2003), 

and resistance in plants against disease stress (Hamzehzarghani et al., 2005). 

Metabolite profiling when conducted along with mRNA and protein analysis 

can help to reveal the resistance mechanisms (Fiehn et al., 2000a). Therefore, 
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multi-parallel studies on genome, transcriptome, proteome, and metabolome 

are central to today’s functional genomics (Weckwerth et al., 2004). The future 

is metabolic engineering of natural product pathways as a practical strategy 

for the enhancement of plant disease resistance (Kristensen et al., 2005).  

Plants activate a network of metabolic pathways, rather than a linearly 

linked pathway following pathogen invasion (Barabasi and Oltvasi, 2004).  The 

most important metabolites with antimicrobial and/or signal transduction 

properties that play a role in plant defense are derived from the 

phenylpropanoid, isoprenoid, alkaloid or fatty acid/polyketide pathways. 

Antimicrobial secondary resistance-related metabolites are classified into two 

main groups. Phytoalexins are the metabolites that are synthesized de novo 

and phytoanticipins are those that are formed before infection (Dixon, 2001).  

Pathogen-inoculated wheat spikelets have been shown to induce 

disease response genes, mRNAs, proteins, and metabolites within a few 

hours after pathogen inoculation (Pritsch et al., 2000; Muthukrishnan et al., 

2001). The expressed sequence tags (ESTs) from a cDNA library of spikes of 

Sumai3, a cultivar with resistance type II, when inoculated with F. 

graminearum has been reported to induce a variety of stress-related genes. 

These include genes encoding (pathogenesis-related) PR-1, PR-2 (β-1, 3-

glucanase), PR-3 (chitinase), PR-5 (thaumatinlike-proteins), phenylpropanoid 

pathway enzymes, and oxygen metabolism enzymes. Genes encoding 

proteins implicated in pathogen recognition, signal transduction and induction 

of defense-related gene transcription such as MAP and protein kinases, 

transcription factors, and resistance gene analogues have been detected 

(Kruger et al., 2002). 

A systemic acquired resistance (SAR)-like mechanism has been 

recognized in wheat. The application of salicylic acid (SA)-like metabolites 

such as benzo (l, 2, 3) thiadiazole-7-carbothioic acid S-methyl ester (BTH) has 

also been shown to induce SAR in wheat against powdery mildew (Erysiphe 

graminis) (Gorlach et al., 1996). SAR is associated with the accumulation of 

SA and expression of the PR genes (Ryals et al., 1996). The Arabidopsis 

NPR1 (AtNPR1) gene, a key regulator of SAR, was shown to increase the 

susceptibility or resistance to a variety of pathogens after undergoing loss-of-

function or overexpression mutations, respectively (Durrant and Dong, 2004). 
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The enhanced disease resistance by the overexpression of AtNPR1 was 

related to the faster response of the plant to SA and BTH. The translocation of 

NPR1 into the nucleus and its interaction with the TGA proteins is vital for the 

expression of the PR1 gene and is central in governing disease resistance 

(Durrant and Dong, 2004). Makandar et al. (2006) demonstrated that the 

expression of the AtNPR1 transcript, which regulates the activation of SAR in 

wheat, conferred a heritable, type II resistance to FHB without any change in 

grain yield (Makandar et al., 2006). FHB resistance-related transcripts, 

proteins, and metabolites in wheat, resulting in the detection of disease 

response genes and PR proteins that are induced following pathogen 

inoculation, have been documented (Li et al., 1999; Pritsch et al., 2000; 

Siranidu et al., 2002). The specific activity of guaiacol-peroxidase and 

polyphenol oxidase was reported to be significantly greater in resistant wheat 

cultivars during the milk stage as compared to non-inoculated control plants 

(Mohammadi and Kazemi, 2002). 

In non-stressed wheat plants, there is no thickening of the cell wall or 

any phenolic substance production to limit the pathogen during the first 10 

days of pollination (Bushnell et al., 2003). Flavonoid metabolites protect the 

testa against fungal invasion. Soluble phenolic acids like ferulic acid and p-

coumaric acid accumulate in spikes during testa differentiation. Within 10 days 

after anthesis, the amount of p-coumaric acid accumulates to about 10 

mg/100 kernels, a level that is enough to inhibit the fungal growth in vitro. The 

phenolic substances may contribute to FHB resistance in the testa by binding 

to the cell wall and improving its physical strength. The majority of phenolic 

metabolites are synthesized in the aleuron layer, which is formed 12-25 days 

after anthesis and added to the amounts accumulated during testa 

development (Bushnell et al., 2003).  

Several metabolites have been related to resistance of wheat cultivars 

against disease stresses. The accumulation of phenylpropanoid metabolites 

and phenolic acids also occurs after the infection of wheat by other pathogens 

(Southerton and Deverall, 1990; Kofalvi and Nassuth, 1995; Okazaki et al., 

2004). The total phenolic acids in wheat have a positive correlation with wheat 

resistance to diseases including rust (unidentified), Karnal bunt (Neovossia 

indica) and Take-all (Gaeumannomyces graminis var. tritici)  (Gogoi et al., 
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2001). Higher concentrations of free phenolic metabolites have been found in 

the resistant wheat cultivar Frontana as compared to the susceptible cultivar 

Argent when inoculated with F. graminearum (Siranidou et al., 2002). Mycelial 

growth inhibition of F. graminearum by phenolics such as p-coumaric and 

ferulic acids has been reported in a number of studies (Smart and Flores, 

1997; Russel et al., 1999; McKeen et al., 1999). A significant increase 

occurred in the levels of these phenolics in the glumes of a resistant wheat 

cultivar after inoculation with F. graminearum (Siranidou et al., 2002). The 

common phenolic acids in wheat are cell-bound and in the form of                 

O-[5–O-(trans-feruloyl)-α-L-arabinofuranosryl]-(1   3) –O– β – B – xylopyranosyl-      

(1   4) -D-xylo pyanose (FAXX). The Russian aphid-wheat caused a significant 

increase in SA level in wheat 96 hours after infestation (Mohase and van der 

Westhuizen, 2002). Benzoic acid, another PAL pathway metabolite and the 

immediate precursor to SA and its derivatives, also possesses antifungal 

activity (Bénigne-Ernest et al., 2002).  

2.4.1.1. Technological platform 

The success of any breeding program depends on the screening 

methodologies. In almost all wheat breeding programs up to now, variables 

such as disease severity, DON content, and FDK have been used for 

evaluation of resistance to FHB. Due to the complexity of the genetics of 

Fusarium resistance, a higher screening capacity is required in order to 

accelerate a breeding program (see pages 5-6). 

The advent of new technologies is an opportunity for breeders to adopt 

and integrate new tools into their conventional methods to enhance the 

efficiency of breeding. Enormous advances over the last few years in 

developing new tools to study genetic diversity in plants show that metabolite 

profiling is a way that will enable breeders to develop a comprehensive 

phenotyping of genetically different plants (Roessner et al., 2001). The goal of 

a metabolomic profiling experiment is to quantify all the metabolites in one 

snapshot of a cellular system that represents the cell or tissue in a given state 

at a given point in time (Goodacre et al., 2004). 

Analytical technologies for metabolite profiling vary according to their 

selectivity, speed, and sensitivity. The ability of a technique to separate a 
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desired analyte/signal in a mixture without interference from other analytes is 

referred to as the selectivity. The sensitivity is defined as the ability of a tool to 

detect a low signal level. Some tools have rapidity but lack sensitivity and 

selectivity, such as NMR. Some other tools such as mass spectrometry 

methods, including LC/MS and GC/MS, are good in both selectivity and 

sensitivity but need a relatively longer time for analysis (Sumner et al., 2003). 

Besides a high efficiency in separating complex biological matrices, GC/MS is 

a relatively inexpensive method. However, the problem is that it can only 

analyze volatile metabolites. It is possible to analyze semi to non-volatile 

metabolites, but they must be volatilized through chemical derivatization.  

In GC/MS the components of a mixture are separated while traveling in 

an inert carrier gas (such as helium) through a capillary column in a heated 

oven with a ramping temperature based on their boiling points and affinities to 

a stationary phase that covers the inner surface of the column. The next step 

is the bombardment of the gaseous form of the metabolites in a hot evacuated 

chamber by a beam of electrons possessing energy sufficient to break 

chemical bonds and produce ionized fragments with different mass/charge 

ratios. In other words, the energy of electrons (70eV) is high enough to cause 

both fragmentation and ionization. After mass ions are produced, they are 

separated by means of a device called a mass analyzer or mass spectrometer 

(MS) according to their mass/charge ratios. A quadrupole, an ion trap, and a 

time of flight (TOF) mass spectrometer are well known mass analyzers 

(Mellon et al., 2000). A Quadrupole MS is two pairs of parallel metallic rods, 

each opposite pair with the same polarity while adjacent pairs with the 

opposite polarity. These polarities are created by connecting them to a DC 

voltage source. Another RF voltage is also used at the same time to scan for 

selected ions. Varying RF voltage will create various RF magnetic fields in 

time that will allow only selected mass ions (with certain m/z ratio) to pass 

through. Other mass ions, whose m/z ratios are more or less than the m/z 

ratio of these mass ions, do not have a stable oscillatory trajectory in the 

Quadrupole and so are rejected. As a result, the mass ions with the same 

mass/charge ratio leave the analyzer at the same time, which are eventually 

counted by a detector. In the ion trap MS both ionization and mass analysis 

occur in the same place. The electrons emitted by a filament ionize the 
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molecules of the sample and create the mass ions, which are then scanned 

over a range between 20 and 650 Daltons. The disadvantage of the ion trap 

MS is that the dynamic range has a low “upper limit” of 650 Daltons and that it 

cannot accept large samples.  

In the TOF-MS, the individually charged particles subjected to a 

potential difference V attain the same energy (eV) and therefore the lighter 

particles have a shorter TOF over a given distance. The accelerated particles 

are passed into a field-free region where they are separated in time by their 

m/z values and counted by a detector. Faster electronics are required for 

adequate resolution because the arrival time of successive ions can be very 

short (less than 10-7 second) (Mellon et al., 2000). At the end, a detector will 

count the number of each mass ion at any given time and record it to a 

computer. A detector is a conductive surface where, after collision of mass 

ions with this surface, a certain electric current is generated. The ion current is 

saved on a computer. The computer is previously calibrated and therefore it 

knows which mass ion generates which current and so determines which 

mass ion exists in that certain moment of time.  

LC/MS can analyze the nonvolatile metabolites directly after extraction 

and there is no need for derivatization (Kiston et al., 1996; Mellon et al., 2000; 

Sumner et al., 2003). However, it lacks a mass spectral library and thus its 

application in non-target analysis is limited.  

2.4.1.2. Software platform 

Unlike the significant progress in data acquisition, metabolomics has 

devoted less effort to advance methods of data extraction, visualization, and 

interpretation. Mass spectrometry relies on ion extraction and the use of 

retention times and mass spectra of peaks to find the best targets that fits a 

metabolite, a process called library matching for metabolite identification 

(Duran et al., 2003). If the sample is clean and there are pure standards, this 

will work well, but in most cases, many biological samples are far from pure. 

Before tentative identification (library matching) and quantification of individual 

peaks, there are some problems to be resolved. The migration of the 

metabolites through a column with similar speeds raises the problem of 

"overlapping" peaks or "co-eluting" metabolites. Perhaps one of the biggest 
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challenges in dealing with complex samples is to how quickly and accurately 

separate target signals from background noise. Both identification and 

quantification of metabolites are slowed down by two kinds of noises. The first 

is random noise originating from instruments and the second is matrix-specific 

noise coming from the sample (Dromey et al., 1976; Stein, 1999). The 

subtraction of known patterns of chemical noise (stored in digital files) from 

the sample signal (matrix subtraction) commonly referred to as baseline 

correction can improve the separation of target signals from background 

noise.  

Commercially available software packages to complete automated, 

rapid, and flexible reduction of large complex chromatographic/spectrometric 

data sets are just becoming available. They will assist researchers studying 

metabolomics to generate well-organized, two-dimensional data matrices and 

analyze the GC outputs using statistical software such as SAS and MATLAB 

(Stein, 1999; Tolstikov et al., 2003; Duran et al., 2003; Draper et al., 2004; 

Broeckling et al., 2006). MSFACTs was one of the first software packages 

developed to assist the automated import, reformatting, alignment, and export 

of large chromatographic data sets. This enables a more rapid visualization 

and interpretation of metabolomic data. It aligns integrated chromatographic 

peak lists and extracts information from raw chromatographic ASCII formatted 

data files (Duran et al., 2003). 

 MetAlign is a tool designed for non-targeted data analysis by mass 

spectral fragment detection and alignment across treatments and replicates. It 

corrects baseline noise and aligns retention time of mass spectral fragments 

through multiple iterations of calculations/corrections of shifts in GC/MS 

profiles. Elimination of background noise makes deconvolution and 

identification of peaks/components an easier task.  

The Automated Mass Spectral Deconvolution and Identification System 

(AMDIS) (Stein, 1999) is one of the best software packages. It was developed 

by the National Institute of Standards and Technology (NIST) (Tolstikov et al., 

2003). The software can read most data file formats and perform mass 

spectral “clean up” through mass spectral deconvolution prior to library 

searching. In addition, user library creation is simple and spectra can be 

searched against the NIST or any other user-defined database. AMDIS 
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performs noise analysis, component perception, and spectral deconvolution, 

extracting pure component spectra and related information stored in different 

output files such as “elu” and “fin” file formats (Stein, 1999). 

 Although most of the software packages perform qualitative data 

processing including alignment and deconvolution of overlapping peaks, they 

do not provide quantitative data. MET-IDEA (Metabolomics Ion-based Data 

Extraction Algorithm) is a new tool of choice that has revolutionized the 

application of simple basic algorithms to extract ion abundance data related to 

separate or co-eluting metabolite peaks in complex GC/MS data sets. The 

MET-IDEA software imports raw file in “net.cdf" format and requires an input 

list of a series of ion/retention times (IRt). An IRt list can be manually- 

generated and edited within MET-IDEA. It can also be imported in a tab-

delimited text format from metabolite databases or extracted from AMDIS 

output (“elu” and “fin”) files. MET-IDEA software processes one representative 

TIC from a data folder and extracts the list of retention times and ion markers 

(IRt) for each component. The generated ion list is saved as an “ion” file, and 

subsequently the software continues to the calibration step. It scans the data 

folder and recognizes all “net.cdf” files (samples). The MET-IDEA software 

applies directed extraction of ion intensity values based on a list of IRt values 

and writes the results to a single tab-delimited text file with metabolite 

identifiers as column headings and sample names as rows with a user-defined 

filename (Broeckling et al., 2006).  

2.4.1.3. Data mining 

 Data analysis techniques may be classified into two main groups 

(supervised and unsupervised) that can be predictive and/or descriptive. The 

majority of metabolomics data analyses are based on “unsupervised” 

techniques with the goal of pattern-recognition. Unsupervised methods 

perform the job of clustering while supervised ones classify the data sets. The 

fundamental difference between clustering and classification is that in the 

clustering the data points are unlabelled, assuming no prior knowledge of the 

previous grouping of samples. In classification, the data points have “tags” or 

there are pre-defined groups. For example, hierarchical clustering arranges 

unlabelled data points (samples) from an experiment in a way such that the 
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more similar samples cluster tightly together. In contrast, in a classification 

method, such as support vector machines (SVM) or artificial neural networks 

(Caudill and Butler, 1992), a training set (a portion of data or a different data 

set) is used to discover the pattern. The algorithm will learn to classify the 

labeled data into preset categories (Goodacre et al., 2004).  

2.4.1.3.1. Supervised methods 

Discriminant analysis (DA) and partial least square regression analysis 

are examples of supervised modeling techniques that can be both exploratory 

and explanatory (Goodacre et al., 2004). DA is a multivariate statistical 

technique used to construct a predictive/descriptive model to classify each 

observation into one of the groups based on observed predictor variables. In 

DA, multiple quantitative entries (measured variables such as metabolites) are 

used to discriminate single classification variables (such as a cultivar). DA is 

used to study group differences through identification of significant 

discriminating variables to differentiate groups and classify new observations 

into pre-existing groups (Johnson, 1998; Johnson and Wichern, 2002; 

Goodacre et al., 2004).  

2.4.1.3.2. Unsupervised methods 

 The unsupervised methods such as hierarchical cluster analysis (HCA), 

principal component analysis (PCA), factor analysis (FA), and canonical 

discriminant analysis (CDA) are far more useful than supervised ones 

(Goodacre et al., 2004). Cluster analysis is a completely unsupervised method 

that measures similarity between two clusters or observations and then 

assigns the observation to the cluster to which it has more similarity (Johnson, 

1998). A data matrix, such as a set of metabolites, is used to classify 

observations based on their metabolic profiles by doing HCA to investigate 

differences and/or similarities in the metabolite profiles between the genotypes 

and the treatments. The Euclidean distance between group centers is used to 

construct a similarity measure and a dendrogram is developed using the 

Cluster procedure of SAS.  

 PCA and FA reduce a set of correlated variables (metabolic profiles) 

into a small number of hidden orthogonal (uncorrelated) factors. The principal 
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assumption of factor/principal component analyses is that there exist a 

number of latent variables (factors/PCs) accounting for the correlations among 

observed variables. Variation in all correlated measured response variables 

(metabolites), accounted for by the same latent factor/PC, is summarized in 

the factor in as much as the initial data can be represented using a few new 

uncorrelated variables (factors/PCs) (Johnson, 1998; Johnson and Wichern, 

2002). 

 Canonical discriminant analysis is a dimension-reduction technique 

similar to PCA. CDA develops linear combinations of the measured variables 

(metabolites) or so called CAN-vectors summarizing between-class variation. 

It increases the resolution of the clustering pattern by minimizing within-cluster 

variance and maximizing the between cluster variance (Johnson, 1998). The 

CANDISC procedure of SAS can be used to compute squared Mahalanobis 

distances (distances in variance scale) among samples (cultivars for example) 

means. The values of canonical variables are used to plot all samples in a 

canonical 3D-space of three CAN-vectors, to aid in the visual interpretation of 

group differences/similarities. The loading of a measured variable (metabolite) 

to each CAN-vector is used to explain its influence on grouping criteria (such 

as hidden functions of host-pathogen interaction).   
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Figure  2.1. Wheat inflorescence: 1-2=spike, 3=spikelet, 4=glume, 5=lemma, 

6=palea, 7=lodicules, 8-10=appearance of pistil, 11=pollen on stigma branch, 

12=cross-section of a spikelet (modified from Hyene, 1987). 



 35

 



 36

Figure  2.2. Different kinds of quantitative resistance loci (trait A, independent 

QTL, trait B, loosely linked QTL, trait C, tightly linked or clustered QTL) 

(modified from Xu, 1997).  
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Preface to Chapter 3 

Chapter 3 is the manuscript of a published paper written by 

Hamzehzarghani H., Kushalappa A.C., Dion Y., Rioux S., Comeau A., 

Yaylayan V., Marshall W.D., and Mather D.E. 2005. Metabolite profiling and 

factor analysis to discriminate quantitative resistance in wheat cultivars 

against fusarium head blight.  Physiological and Molecular Plant Pathology 

66,119-133.  

The results of this work, in parts, authored by Hamzehzarghani, H., 

Kushalappa A.C., Dion Y., Rioux S., Comeau A., Yaylayan V., Marshall W.D., 

and Mather D.E. were  also presented as posters with abstracts at the 3rd 

Canadian Workshop on Fusarium Head Blight (2003) and 2nd International 

Symposium on Fusarium Head Blight Incorporating the 8th European 

Fusarium Seminar (2004).  

Hypothetically, any genetic change at the plant cell level can lead to a 

detectable change in the cell metabolite profile. There are many examples of 

using metabolite profiling for discriminating plant systems. Metabolite profiling 

has been used to identify blackcurrant (Ribes nigrum L.) genotypes resistant 

to gall mite (Cecidophyopsis ribis Westw.) (Brennan et al., 1992). Transgenic 

and non-transgenic alfalfa cultivars have been differentiated using principle 

component analysis of their HPLC chromatograms (Chen et al., 2003). 

Roessner and co-workers used GC/MS to identify differences between potato 

tubers grown in vitro or in soil (Roessner et al., 2000). The same technique 

was used to distinguish four distinct genetically modified potato genotypes 

(Roessner et al., 2001). Similarly, control and salt-treated tomatoes of two 

varieties were differentiated on the basis of their metabolic fingerprints 

(Johnson et al., 2003). Metabolic profiles of potato (Solanum tuberosum), 

tobacco (Nicotiana tabacum) and Arabidopsis thaliana have been studied by 

means of GC-electron ionization-time of flight mass spectrometry (GC/EI-TOF) 

(Wagner et al., 2003). Diseases of potato tubers were discriminated using 

volatile fingerprinting and modeling with the aid of a neural network 

(Kushalappa et al., 2002). Fiehn et al. (2000b) were able to identify some new 
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uncommon plant metabolites in Arabidopsis using gas chromatography low-

resolution mass spectrometry (MS). 

 The reproducibility of retention time and the ability to identify 

metabolites in a complex mixture have led Fiehn’s analytical methods (Fiehn 

et al., 2000a) to be used in a number of other studies. 

 In wheat, the role of phenolic metabolites in the plant’s resistance to 

FHB has been revealed through comparative HPLC studies of different 

susceptible and resistant cultivars’ cell wall-bound phenolic metabolites 

isolated from glumes, lemmas and paleas (Siranidou et al., 2002). It is 

plausible to hypothesize that each wheat cultivar has a different pre- and post-

inoculation metabolite profile that could be distinguished using GC/MS 

technology. This technique could be used in discriminating between FHB-

susceptible and resistant wheat cultivars. Consequently, the objective of this 

study was to detect metabolites produced in the wheat-F.graminearum 

pathosystem and to distinguish susceptible and resistant wheat cultivars 

based on their respective metabolite profiles.   
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3.1. Abstract 

Metabolic profiles of spikelets of the wheat cultivars, Roblin and 

Sumai3, the former being susceptible and the latter being resistant to fusarium 

head blight (FHB), were analyzed using GC/MS to develop a technology to 

discriminate FHB resistance. Over 700 peaks were detected and 55 

metabolites were tentatively identified. The abundance of 49 of these 

metabolites increased following pathogen inoculation, including 23 in Roblin 

and 26 in Sumai3. However, only five metabolites were significantly different 

between both cultivars and inoculations. The metabolite m-hydroxycinnamic 

acid was detected in all four treatments. It was six-fold more abundant in 

Sumai3 following pathogen inoculation, with no corresponding change in 

Roblin. The level of myo-inositol in Sumai3 was greater than in Roblin, and 

increased in both following pathogen inoculation. The metabolites common to 

all treatments were subjected to factor analysis to identify, based on 

significant factor loadings, groups of metabolites associated with susceptibility 

or resistance to FHB. Pathogen inoculation of the resistant cultivar Sumai3 

was associated with the highest scores for the first and second factors, which 

therefore can be used to screen for resistance to FHB. The first factor was 

associated with a higher abundance of several fatty acids and aromatic 

metabolites, while the second factor was associated with metabolites such as 

p- and m-coumaric acids, myo-inositol and other sugars, and malonic acid. 

Pathogen inoculation treatments outscored water-inoculated controls for the 

third factor, with the susceptible cultivar Roblin receiving the highest scores. 

Consequently, the third factor may be useful in explaining susceptibility/ 

pathogenesis. The third factor had positive correlation with metabolites from 

different groups, mostly amino acids, fatty acids, and aromatics. The possible 

roles of the various metabolites detected in plant defense against pathogen-

stress, their metabolic pathways of synthesis, and their potential application in 

screening wheat cultivars for resistance to FHB are discussed 

 

Keywords: Factor analysis, functional genomics, Fusarium graminearum, 

Gibberella zeae, horizontal resistance metabolomics, Triticum aestivum, 

Wheat scab 
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3.2. Introduction 

 Fusarium head blight (FHB; scab), caused by Fusarium graminearum is 

ranked as the most important disease of wheat in North America (Comeau, 

1999). Under warm and humid conditions, it can cause severe losses in yield 

and it can significantly reduce grain quality by producing a wide range of 

mycotoxins (Bai and Shaner, 1994; Parry et al., 1995). Control of the disease 

by chemical, cultural or biological methods is very difficult (Liu and Wang, 

1991; McMullen et al., 1997a; Fernando, 1999) and host resistance is 

considered the most promising method (Gilbert et al., 2000). The nature of 

FHB resistance in wheat is considered either passive (associated with 

phenotypic traits) or active (associated with reduction of pathogen 

development or quantitative resistance) (Mesterhazy, 1995). The mechanisms 

of wheat’s resistance to FHB are not well understood, but quantitative trait loci 

associated with resistance have been identified (Bai and Shaner, 1994; Kolb 

et al., 2001). Resistance to FHB is classified into five different types 

(Hammond-Kosack and Jones, 1996): type I = resistance to initial infection; 

type II=resistance to spread of infection in the spike; type III=resistance to 

kernel infection; type IV=tolerance and type V=resistance to mycotoxin 

accumulation. The first two types have received the most research attention 

(Schroeder and Christensen, 1963; Mesterhazy, 1995).  

 Wheat cultivars with improved resistance to FHB have been developed 

based on selection for low disease severity, often using simple disease ratings 

and without prior knowledge of mechanisms involved in resistance (Fedak et 

al., 2002). Thorough assessment of quantitative resistance parameters for 

FHB (e.g. infection efficiency, latent period, sporulation, disease progress over 

time, etc.) in large breeding populations is useful in further improving 

resistance and in advancing the understanding of resistance mechanisms, but  

will be prohibitively costly to conduct in greenhouse or in field environments 

across seasons and regions. Furthermore, breeders are looking for 

mechanisms to pyramid disease resistance genes into an elite cultivar. 

Resistance screening methods that provide an understanding of the disease 

resistance mechanisms are desirable to incorporate quantitative disease 

resistance genes into cultivars.  
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A few studies have been conducted to detect FHB resistance-related 

transcripts, proteins and metabolites in wheat. Several disease response 

genes and pathogenesis-related (PR) proteins induced because of pathogen 

inoculation have been identified (Pritsch et al., 2000; Muthukrishnan et al., 

2001). A greater abundance of free phenolic metabolites (especially p-

coumaric acid) has been detected in the glumes, lemmas and paleas of the 

resistant wheat cultivar Frontana as compared to the susceptible cultivar 

Argent, when inoculated with F. graminearum, (Siranidou et al., 2002). Under 

in vitro conditions, p-coumaric and ferulic acids were observed to have 

synergistic effects in inhibiting mycelial growth of the two isolates of F. 

graminearum (Siranidou et al., 2002).  

A comprehensive metabolite profiling study targeted at the 

discrimination of disease resistance has yet to be reported for wheat, or any 

other plant species. Here, we hypothesize that wheat cultivars that differ in 

resistance to FHB will also vary in their metabolic profiles inherently and/or in 

their early response (24 h) to inoculation with F. graminearum. The objectives 

of this study were to develop a technology to profile metabolites of wheat 

spikelets, with and without pathogen stress, and to identify metabolic criteria 

that might be applied to differentiate FHB resistance in wheat.  

3.3. Materials and methods 

3.3.1. Plant and pathogen production 

  The seeds of spring wheat cultivars Roblin and Sumai3, the former 

susceptible (Fedak et al., 2002) and the latter exhibiting a high level of type II 

resistance to FHB (Liu and Wang, 1991; Shen et al., 2003), were obtained 

from the Centre de recherché sur les grains (CEROM) and Agriculture and 

Agri-Food Canada (AAFC). Wheat was grown from seed in 15 cm pots and 

maintained in a greenhouse at 22 ± 3oC. At tillering (GS 25) and booting (GS 

40) plants were fertilized with 100 ml of a 0.2 percent solution of 20-20-20 

NPK (Zadoks et al., 1974).   

 Seven day old cultures of Fusarium graminearum (isolate 99-15-35) 

(obtained from Dr. S. Rioux, CEROM, QC) were inundated with water and 

filtered through two layers of cheesecloth. Spore suspensions were made in 
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aqueous solutions of 0.02 percent Tween 80. The spore concentration was 

adjusted to 105 macroconidia ml-1.  

3.3.2. Inoculation and incubation 

 At anthesis (GS=60-69) (Zadoks et al., 1974) the spikes were area-

source inoculated by placing 10 µl of the macroconidial suspension into the 

middle floret of each of four spikelets located roughly at mid-spike. To 

evaluate disease severity, a single spikelet located roughly at mid-spike was 

inoculated (Gary et al., 2000). Each sample (i.e., experimental unit) consisted 

of 16 spikelets, made up of four replicate sets of four spikelets, each set being 

represented by a single plant’s spike. Spikelets inoculated with 10µl of distilled 

water containing 0.02 percent Tween 80 served as controls. After inoculation, 

the plants were covered with plastic bags and sprayed inside with water to 

provide a saturated atmosphere. The plants were kept in a greenhouse 

maintained at 20 ± 3 oC. The plastic bags were removed after 24 h. 

3.3.3. Disease severity assessment 

 Spikelets with FHB symptoms were monitored after inoculation, at 4 d 

intervals, until 20 days after inoculation (dai). A spikelet showing discoloration, 

necrosis or visible mycelia was considered diseased. The FHB severity (y) 

was assessed as the number of diseased spikelets in a spike. Several FHB 

severity (y) values over time were used to construct a disease progress curve. 

The disease severity over time was subsequently reduced to a single value by 

calculating the area under the disease progress curve (AUDPC) (Franc and 

Nether, 1997; Shaner and Finney, 1977): 
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i  is the number of the individual observation (i = 1 – n) 

n  is the total number of observations.  

t  is time after inoculation (days), 

y  is the FHB severity, 
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3.3.4. Metabolite extraction and GC/MS analysis 

 Sets of 16 inoculated spikelets, 4 inoculated spikelets from each of the 

four spikes, were harvested at 24 hai, and served as sampling units for 

metabolite extraction and analysis. Immediately after harvesting, samples 

were crushed in liquid nitrogen to suppress hydrolytic activity. Metabolites 

were extracted following the methods developed by Fiehn et al. (Fiehn et al., 

2000a, b), with some minor modifications. The metabolites from the ground 

spikelet samples (300 mg) were first extracted in a mixture of methanol and 

distilled water (28:1, v/v), centrifuged at 12000 g for 5 min, the supernatant 

decanted and 1.4 ml of distilled water added. Chloroform was added to each 

pellet, and this was vigorously resuspended and mixed. The resultant mixture 

was centrifuged at 12000 g for 5 min, and the supernatant added to the water-

methanol fraction. The two fractions (water-methanol and chloroform) were 

separated using centrifugal fractionation at 3500 g for 15 min.  From the top 

portion, 1ml of the methanol-water fraction was removed, concentrated five-

fold using a SpeedVac concentrator, and then freeze-dried. To 1 ml of the 

chloroform fraction, 1 ml of 3 percent v/v H2SO4 in methanol was added to 

transmethylate fatty acids and lipids. The chloroform fraction was washed 3 

times with distilled water, dried by adding anhydrous Na2SO4, and 

concentrated by means of a SpeedVac concentrator. Since most metabolites 

were non-volatile, both fractions were separately derivatized by adding N-

methyl-N-trimethylsilyltrifluoroacetamide (MSTFA) to render them volatile at 

GC oven temperatures. Methoxyamine hydrochloride in pyridine was added to 

the dried residue (methoximation) because direct derivatization of sugars such 

as fructose causes confusing peaks related to hexoses (Roessner et al., 

2000).  

 A 1 µl aliquots of the methanol-water and chloroform fractions of the 

spikelet extract were independently injected into the port of a GC/MS (GC 

3400xc with Voyager® ion trap mass analyzer; Varian®, QC, Canada) 

equipped with an autosampler. The injection port temperature was maintained 

at 230 oC. A capillary DB-5MS column (0.25 µm film thickness, 0.25 mm inner 

diameter and 30 m long, Supelco, Canada) was used with helium as a carrier 

gas (flow rate of 1 ml min-1). The oven temperature was programmed to 

remain at 70oC for 5 min, followed by a 5 oC min-1 rise in temperature up to 
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280 oC, and a further 3 min at 280 oC. The gas was ionized and the 

abundance of mass ions ranging from 45 to 600 m/z was determined using an 

ion trap mass analyzer. The mass ions were scanned at the rate of one 

spectrum s-1. For each scan, the GC/MS output consisted of scans and 

abundance for ions 46-600 m/z.  

3.3.5. Metabolite identification and quantification  

  The GC/MS outputs on scans and mass abundance were processed 

using Saturn Lab software. The metabolites were identified using a NIST 

library mass spectrum search program (version 1.6). For each peak, the 

consistency of major fragments of the spectrum across the four blocks 

(replicates) was manually investigated, using the Pivot Table feature of 

Microsoft Excel, sorting the data based on the retention time. The observed 

spectra of each peak for different blocks were compared with the ten topmost 

choices in NIST to construct the identity of a metabolite using the retention 

time as a reference. Only the metabolites that had detectable peaks in all the 

four blocks, of at least one treatment, were considered for further analysis. 

The peaks, especially those with low abundance, were inconsistent across 

blocks, as they were close to the noise level. In the table of metabolites 

automatically generated by the Saturn software, when peaks were not 

detected in all blocks of a treatment, the corresponding retention time regions 

of the peaks in the chromatograms were inspected for all blocks. When peaks, 

similar in spectra, were detected across all the four blocks, the identities and 

abundance of metabolites were determined using the automated component 

table builder of the Saturn lab software. When no suitable match in the NIST 

hits was found for a certain spectrum of a peak, the peak was designated as 

unidentified, and its first five most abundant mass ions were recorded in a 

descending order of abundance. Compounds that occurred only in one 

(unique), 2 or 3, but not in all four treatments SW, SP, RW and RP 

(Sumai3/Roblin-Water/Pathogen-inoculated, respectively) were considered as 

discriminatory.  
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3.3.6. Experimental design and statistical analysis  

 The experiment was designed as a factorial design randomized in 

complete blocks, with four treatments: two cultivars, Roblin and Sumai3, 

combined with two inoculations, - with water (control) or with the pathogen. 

The evaluations were conducted on four different time occasions - therefore 

four time blocks. The experimental unit for metabolite profiling consisted of a 

pooled sample of 16 inoculated-spikelets harvested 24 h after inoculation. In 

addition, four central spikelets of each of the four spikes from four plants of 

each cultivar were inoculated with the pathogen and were used for disease 

severity assessment. The FHB symptoms on these spikelets were assessed 

non-destructively over a period of 20 d after inoculation to construct disease 

progress curves.  

 Disease severity and AUDPC were subjected to ANOVA, using SAS 

(Khattree and Naik, 2000). The data on metabolic profiles, which consisted of 

several metabolites (55 that were consistent among replicates) and their 

relative abundance (the ion-trap mass analyzer output from the GC/MS 

analyses) were subjected to a univariate analysis of variance using SAS 

(Khattree and Naik, 2000), to identify metabolites with significant (P≤0.05) 

differences between cultivars and between inoculations. The metabolites that 

were significantly induced in their abundance following pathogen inoculation, 

and metabolites deemed novel based on univariate ANOVA, were designated 

as pathogenesis-related (PR) metabolites (SP>SW and RP>RW). The level of 

metabolites that occurred in all the treatments (48 metabolites, 31 from 

methanol-water and 17 from chloroform extracts of the spikelets) were 

subjected to a factor analysis following the FACTOR procedure, using the 

principal components method, implemented in SAS (Johnson, 1998; Johnson 

and Wichern, 2002; Khattree and Naik, 2000). The contribution of each 

metabolite to a treatment and the relationships among treatments were 

investigated using the factor loadings of the metabolites and factor scores of 

the treatments, respectively. The factor scores explained the spatial location 

of treatments, indicating the relationships between treatments where a 

positive factor score was associated with a positive factor loading for 

metabolites.  The values of the factor scores increased with an increase in the 

abundance of the metabolites that loaded to a given factor. 
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3.4. Results 

3.4.1. Disease progress 

 Fusarium head blight symptoms developed in all the pathogen-

inoculated spikes, but not in all the pathogen-inoculated spikelets. Within a 

spike, the infection spread from the pathogen-inoculated spikelets to non-

inoculated spikelets in the susceptible cultivar Roblin but not in the resistant 

cultivar Sumai3. This indicated that the latter cultivar expressed type II 

resistance. The number diseased spikelets (y) at 4, 8, 12, 16 and 20 dai were 

0, 0.25, 0.50, 0.75 and 0.75 in Sumai3 and 1.25, 2.00, 3.00, 7.00 and 8.00 in 

Roblin, respectively. A value of y>1.0 means the infection had spread to 

spikelets beyond the inoculated central spikelet. The area under the disease 

progress curve (AUDPC) was 7.50 in Sumai3 and 39.00 in Roblin, implying 

that Sumai3 was more resistant to FHB than Roblin.   

3.4.2. Metabolic profiles 

3.4.2.1. Metabolites of wheat-FHB system 

 More than 700 peaks were detected in the wheat-FHB pathosystem, 

out of which 55 metabolites were tentatively identified, including 38 and 17 

metabolites from the methanol-water (hydrophilic) and chloroform (lipophilic) 

fractions of plant extracts, respectively (Table 3.1). Of 55 metabolites 

detected, 48 metabolites were common to all treatments. Among the seven 

treatment-discriminatory metabolites only arabinoic acid-gamma lactone; 

ribofuranose; and D-ribose were unique to Sumai3, while the remaining four 

were common to ≤3 treatments. Only 11 and 9 metabolites were significantly 

(P≤0.05) different between cultivars and between inoculations, respectively, 

including five metabolites that were significantly (P≤0.05) different both 

between cultivars and between inoculants (Table 3.1).  The abundance of m-

cinnamic acid was highly significant (P≤0.01) both between cultivars and 

between inoculations. The metabolites detected belonged to diverse functional 

groups such as fatty acids, sugars, aromatics, amino acids, and phenolics 

(Table 3.2).  
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3.4.2.2. Factor analysis of metabolites 

The 48 metabolites common to all treatments, including both the 

methanol-water and the chloroform fractions (Table 3.1), were subjected to 

factor analysis. The first three factors accounted for virtually all (F1=39%; 

F2=36%; F3=25%) the variance in the selection of metabolites with significant 

factor loadings (Table 3.1). Factor scores, showing their association among 

treatments, are presented in Fig. 3.1, while the factor loadings of metabolites 

contributing to factor scores are shown in Table 3.1. The metabolites with 

significant factor loadings to each of the first three factors are listed in Fig. 3.1 

(see caption). A three-dimensional scatter plot (F1 × F2 × F3) of treatments’ 

factor scores indicated a clustering of treatments.  

3.4.2.3. Wheat cultivar-specific metabolites 

 Among the 55 metabolites identified, 54 and 49 were detected in water-

inoculated Sumai3 (SW) and Roblin (RW) cultivars, respectively (Table 3.1). 

This included 11 metabolites, which varied significantly between cultivars, 

irrespective of inoculations. Of the 24 metabolites identified in water-

inoculated spikes, only two, L-proline and butanedioic acid (= Malic acid), were 

at significantly higher levels in Roblin than in Sumai3. Conversely, only 8 

metabolites were significantly higher in water-inoculated Sumai3 than in 

Roblin: butandioic acid; m-cinnamic acid; myo-inositol; D-fructose; 1,2,3-

propanetricarboxylic acid; D-fructose RT2; glucose RT2 and alpha-D-

glucopyranoside. Five metabolites were detected only in Sumai3 but not in 

Roblin: propanoic acid, D-ribose, arabinoic acid-gamma lactone, D-glucuronic 

acid and benzoic acid.  

3.4.2.3.1. Metabolite loading and cultivar discrimination  

The first and second factors differentiated cultivars and treatments, 

respectively. Pathogen-inoculated Sumai3 (SP), compared to SW, had 

positive F1 scores (SP>SW), while inoculated Roblin, (RP) had negative F1 

scores (RW>RP). Irrespective of inoculation, Roblin had a negative F2 score, 

while Sumai3 had a positive F2 score (Fig. 3.1). The metabolites with 

significant factor loadings to these factors can be used to discriminate the 

cultivars (Table 3.1). Roblin, which had a significant positive F1 score, had 
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significant factor loadings for fatty acids. Sumai3, with negative F2 score, had 

significant factor loadings for p-cinnamic acid, galactose and an unidentified 

peak (retention time 23.39-23.43, mass spectra 217, 73, 218, 147, 219, 45, 

and 305). However, there were metabolites with significant negative factor 

loadings for both F1 and F2. Alpha-linolenic acid; an unidentified peak 

(retention time 23.39-23.43, mass spectra 95, 67, 123, 81, 82, 69, and 55); 

octadecanoic acid; L-valine; benzene, 1, 3-bis (1, 1-dimethyethyl)-N, N-bis [2- 

TMS] ethaneamine; 9, 12-octadecadienoic acid (Z, Z)-, and butanoic acid had 

significant negative loadings for F1, indicating a higher abundance of these 

metabolites in Sumai3. Metabolites with significantly more abundance in 

Roblin, such as L-proline; 8, 11-octadecadienoic acid; glycine; phosphoric 

acid; and an unidentified peak (retention time 25.14-25.18, mass spectra 345, 

73, 255, 147, 346, 347, and 45) had negative factor loadings for F2. 

3.4.2.3.2. Wheat-FHB-related metabolites  

 Induced metabolites, novel metabolites or those with elevated 

abundance following pathogen inoculation were classified into three groups. 

R- and S-metabolites were unique to the susceptible cultivar Roblin (RP>RW) 

and the resistant cultivar, Sumai3 (SP>SW), respectively. C-metabolites were 

metabolites in greater abundance in pathogen-inoculated samples of both 

cultivar (RP>RW and SP>SW). The common metabolites were further 

grouped into R>S-C-metabolites (RP>SP), and S>R-C-metabolites (SP>RP) 

(Table 3.1). Among the 49 metabolites, 12, 14, and 23 were R, S and C-

metabolites, respectively. Among common metabolites, 11 and 12 were R>S- 

and S>R-C-metabolites, respectively. The FHB resistance response can as a 

result be differentiated into susceptible and resistant, based on 23 Roblin 

(R/R>S-C) and 26 Sumai3 (S/S>R-C) metabolites induced following pathogen 

inoculation.  

 The metabolites also varied in their abundance following pathogen 

inoculation. Some metabolites whose levels increased more in Sumai3 than in 

Roblin were α-D-glucopyranoside, hexadecanoic acid, octadecanoic acid, 

pentadecanoic acid, m-cinnamic acid, heptadecanoic acid, hexadecanoic acid, 

myristic acid and tetradecanoic acid. The metabolite ribofuranose was the only 

metabolite specific to SP.  Benzoic acid, propanoic acid and D-glucuronic acid 
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were detected in RP, SP and SW but not in RW. The abundance of propanoic 

acid was at least seven times greater in the pathogen-inoculated treatments 

than in the water-inoculated ones.  

 Among the 55 metabolites identified, only 15 were significantly different 

among treatments, including 14 that were induced after pathogen inoculation 

(defense-related or DR metabolites). Among DR metabolites, nine were 

significantly induced. However, only five of these varied significantly among 

cultivars (Fig.3.2). Myo-inositol, m-cinnamic acid, α-D-glucopyranoside and D-

fructose were significant both between cultivars and between inoculants 

(Fig.3.2). The difference in abundance of m-cinnamic acid was highly 

significant (P<0.01) between inoculations (SP>SW) and cultivars (S>R). Myo-

inositol levels were significantly different between SP and RP (SP>RP) and 

between SW and RW (SW>RW). The abundance of α-D-glucopyranoside was 

significantly different between SP and SW, but not between RP and RW. The 

same trend was observed for D-fructose (Fig.3.2). The metabolites L-alanine 

and hexadecanoic acid were significantly different between cultivars 

(Sumai3>Roblin). The metabolites butanedioic acid (= malic acid); 1,2-

ethanediamine; 1,2,3-propanetricarboxylic acid; and glucose RT2 were 

detected in significantly higher quantities in pathogen-inoculated spikelets 

compared to water-inoculated ones, irrespective of cultivar.  

 The levels of several metabolites (15 and 10 metabolites in Sumai3 and 

Roblin respectively) were reduced following pathogen inoculation. However, 

none was significantly different between inoculants, although two were 

significantly different between cultivars. 

3.4.2.4. Factor loadings and resistance discrimination 

The first and second factors had positive factor scores for resistance 

while the third factor had a positive factor score for susceptibility. The 

clustering pattern of treatments, according to the three factor scores, was 

used to explain several possible hidden functions. These included a) 

pathogenesis or susceptibility function and b) defense or resistance function. 

This was done by relating the significant positive factor loadings of metabolites 

to susceptible or resistant cultivars, and to water- and pathogen-inoculated 

treatments, and then clustering of the treatments based on factor scores.  
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3.4.2.5. Pathogenesis/susceptibility function 

Factor scores for F3 discriminated the levels of pathogenesis. A higher 

positive factor score of F3 was associated with i) a pathogen-inoculated (RP, 

SP) vs. a water-inoculated (SW, RW) cluster of treatments, irrespective of 

cultivars; ii) the susceptible cultivar, inoculated with pathogen (RP) vs. the 

resistant one (SP); iii) the resistant cultivar vs. the susceptible one, inoculated 

with water (SW vs. RW). This indicated an association of metabolites with 

significant factor loadings to F3 with pathogenesis or susceptibility of cultivars 

(section 3.1). The metabolites with significant F3 loadings (causing higher 

positive F3 scores) were fatty acids such as 8, 11-octadecadienoic acid and 

phenolic metabolites such as phenol, 2,4-bis (1,1-dimethylethyl-) and 

benzene-related metabolites such as 2,4,6-Tri-t-butylbenzenethiol and amino 

acids such as glutamine. 

3.4.2.6. Defense/resistance function: 

Factor scores for F1 and F2 differentiated the resistant and susceptible 

cultivars (section 3.1). A greater positive F2 score was associated with: i) the 

resistant cultivar cluster of two treatments (SP, SW) as opposed to that of the 

susceptible cultivar (RP, RW), irrespective of inoculation agents; ii) the 

resistant pathogen-inoculated cultivar (SP) as opposed to the susceptible 

pathogen-inoculated cultivar (RP); iii) the resistant water-inoculated cultivar 

(SW) as opposed to the susceptible water-inoculated cultivar (RW). The 

metabolites with high positive F2 loadings that partly (also confounded with 

cultivar-specific metabolites) explained defense functions were m-cinnamic 

acid, (also p-cinnamic acid); myo-inositol; fructose; galactose; glucose; 1,2,3-

propanetricarboxylic acid RT2; α-D-glucopyranoside; malonic acid and an 

unidentified metabolite (retention time: 23.39-23.43 min,  mass spectrum: 217, 

73, 218, 147, 219, 45, and 305).  

 The highest positive F1 score was associated with: i) a pathogen-

inoculated resistant cultivar (SP) as opposed to others (RW, RP, and SW). As 

a result, a higher positive F1 score means a higher level of resistance (note: 

moderately high positive F1 scores for RP and RW and a negative F1 score 

for SW). The metabolites with high positive F1 loadings that partly (also 

confounded with cultivar-specific metabolites) explained defense functions 
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were: benzene, (1-Butylopentyl)-; tetradecanoic acid; pentadecanoic acid; 

heptadecanoic acid; hexadecanoic acid; octadecanoic acid; myristic acid; 

hexadecanoic acid; octadecanoic acid and 2-monostearin.  

 There was a negative association between the factor score and the 

level of the metabolite(s) with negative factor loading(s), which means a 

negative correlation of the F-score (as a measure of resistance) with the level 

of the metabolite. The smaller factor scores were associated with a reduced 

level of defense/resistance and an increased amount of susceptible/PR 

metabolites. The metabolites 9,12-octadecadienoic acid (Z, Z)-,; α-linolenic 

acid; benzene,1,3-bis (1,1-dimethylethyl)-; N,N-bis [2-trimethylsiloxylethyl] 

ethaneamine; L-valine and an unidentified peak at retention time 24.89-24.93 

(mass spectrum 95, 67, 123, 81, 82, 69, and 55) had negative loadings to F1. 

SP and SW had the highest and lowest F1 scores, respectively. Benzoic acid 

had the highest abundance in SW. Glycine, L-proline and 8,11-

octadecadienoic acid had significant negative loadings to F3. Pathogen-

inoculated spikelets of both cultivars (SP and RP) with the highest F3 scores 

compared to the water-inoculated ones (SW and RW), had the lowest 

quantities of these metabolites. These contributed to the greater F3 score, the 

susceptible/pathogenesis factor. 

3.4. Discussion 

  With the progress in initiatives to profile genome and gene 

expression of plant-pathogen interactions, metabolite profiling is increasingly 

in demand in attempts to attain a fuller understanding of plant defense 

mechanisms against various environmental stresses, including pathogen 

stress. Wheat breeders on the other hand are looking for rapid, easy and 

precise tools to screen for resistance to FHB. In addition, a better 

understanding of the functions of FHB resistance genes would help them 

pyramid suitable resistance genes into elite cultivars. In the present study, 

GC/MS metabolite profiling of wheat spikelets at 24 hai allowed the 

identification of several plant-pathogen interaction-specific metabolites, as well 

as a putative relation of induced metabolites to wheat cultivars’ resistance or 

susceptibility to FHB. Many of these are known to play significant roles in the 

metabolism of plants, leading to the production of defense-related metabolites 
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(Fiehn et al., 2000b; Roessner et al., 2000 and 2001; Dixon et al., 2002). The 

technique developed here could be further used to study genetic and/or 

environmental variations in resistance, providing a knowledge base that could 

be used to improve FHB resistance in wheat cultivars. 

 In this study, we discriminated wheat FHB resistance on the basis of 

several metabolite profiling criteria: a) potential DR/PR metabolites 

unique/specific to a cultivar resistant or susceptible to FHB; b) potential 

DR/PR metabolites common to both the susceptible and resistant cultivars but 

in higher abundance in one of these cultivars; c) metabolites with significant 

factor loadings to factor scores or treatments. This approach allowed us to 

suggest possible explanations for between-cultivar differences in resistance 

against FHB.  

 Both susceptible and resistant cultivars either produced some novel 

metabolites or increased the levels of pre-existing metabolites following 

pathogen inoculation. These metabolites were designated here as potential 

PR metabolites, and where the levels of these increased significantly 

(P≤0.05), as PR metabolites, in a manner similar to PR proteins and PR genes 

(Pritsch et al., 2000; Muthukrishnan et al., 2001). In this study, 49 potential 

DR/PR metabolites were identified, including 12 metabolites that were unique 

to Roblin, 13 unique to Sumai3 and 23 common to both cultivars. Of 23 

common metabolites, 11 and 12, respectively, were in higher abundance in R 

and S. There were in total 23 and 26 potential PR metabolites from Roblin 

(R/R>S) and Sumai3 (S/S>R), respectively. These metabolites could be used 

to discriminate FHB-responses between cultivars varying in their resistance 

against FHB. However, of 55 metabolites detected here, only fifteen were 

significantly different between treatments, including nine that were PR- 

metabolites (Table 3.1, Fig. 3.2), such as myo-inositol, m-cinnamic acid, α-D-

glucopyranoside, and D-fructose. Even though m-cinnamic acid was detected 

in all the treatments, its level in SP was about six times greater than that in 

SW. Its levels were low in RW, and only slightly changed following pathogen 

inoculation. A higher abundance of sugars such as myo-inositol, an important 

signal molecule, and glucose, a precursor of shikimic acid and monomer of 

cellulose and hemicelluloses, both at significantly higher levels in Sumai3, 

than Roblin, can also account for the resistance of Sumai3 to FHB (Buchanan 
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et al., 2000). Benzoic acid (BA) was induced in the resistant cultivar Sumai3 

when inoculated with the pathogen. BA was not detected in RW, but was 

detected in low abundance in RP. BA can easily be converted to cinnamic 

acid, a key metabolite in the phenylpropanoid pathway. Decarboxylation of 

trans-cinnamic acid to BA and further 2-hydroxylation of BA to salicylic acid 

(SA) has also been reported (Leon et al., 1995). Some aromatic metabolites 

such as BA and salycilic acid (SA), besides their role in signal transduction, 

are directly antimicrobial (Hammond-Kosack and Jones, 1996). A higher level 

of glutamine helps the plant cell recycle ammonia ions liberated from 

phenylalanine. A higher level of glutamine is therefore considered as 

resistance discriminatory and further evidence for a more active phenyl 

ammonia lyase (PAL) pathway in Sumai3. Glutamine was detected at 

increased levels in pathogen-inoculated plants of both cultivars, but the 

increase was greater in SP.  

 Though the levels of several metabolites detected in this study were 

lower in pathogen- than water-inoculated spikes, they may still be involved in 

plant defense (Dixon et al., 2002; Muthukrishnan et al., 2001). Proline and 

glycine had negative factor loadings to F3 indicating lower abundance of these 

amino acids in pathogen-inoculated spikelets of both cultivars (with high F3 

scores). One class of defense response genes in wheat is a group of 

resistance (R)-genes encoding for proline/glycine rich proteins (Li et al., 1999). 

A lower level of proline and glycine in a resistant cultivar, particularly in a 

defense/induced state, may be due to a higher cellular demand for these 

amino acids, which allows for synthesis of proline/glycine rich R proteins. Fatty 

acids, such as linolenic acid and 9,12-octadecadienoic acid (Z,Z)-, had 

negative F1 loadings, suggesting greater resistance at lower levels of these 

fatty acids in SP. The metabolite α-linolenic acid is the first precursor for the 

production of jasmonic acid (JA) which is a key signal molecule. JA induces 

PAL and several PR proteins (Buchanan et al., 2000; Digiacomo et al., 2002). 

The F1 score was maximum for SP and minimum for SW, which may indicate 

that the high abundance of α-linolenic acid, with negative factor loading in SW, 

was reduced in Sumai3 following pathogen attack, as it was used for the 

synthesis of JA.  
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 A factor analysis of the metabolites, common to all treatments was 

used to explain the hidden (pathogenesis and defense) functions, underlying 

FHB resistance in wheat. The large difference in F1 scores between SP and 

SW indicated an increased level of DR/PR metabolites following pathogen 

inoculation. Such a difference was not as significant in Roblin (Fig. 3.1). Also, 

the highest F2 scores for pathogen-inoculated Sumai3 can partly explain the 

higher level of resistance due to increase in the abundance of metabolites with 

positive and significant factor loading to F2 (Table 3.1), though the effect could 

in part be due to cultivar differences. Therefore, the metabolites with a positive 

and significant factor loading to F1 and F2 can be used to discriminate FHB 

resistance in Sumai3. In contrast, the F3 mainly explained pathogenesis, as 

the pathogen-inoculated spikelets of both cultivars had high positive scores 

with the highest positive factor score for RP. 

 Following pathogen attack, plants switch their metabolic pathways from 

primary metabolite production to an enhanced defense state in order to 

produce more defense-related metabolites (Dixon et al., 2002; Fiehn et al., 

2000b). It appears that PAL is more active in the resistant cultivar Sumai3 

than in the susceptible cultivar Roblin. Following pathogen inoculation, the 

abundance of m-hydroxycinnamic acid (and p-hydroxycinnamic acid) in 

Sumai3 increased to a greater degree than in Roblin. PAL converts 

phenylalanine to trans-cinnamic acid, which is also a precursor for salicylic 

acid. The enzyme cinnamate 4-hydroxylase hydrolyses trans-cinnamic acid 

into 4-coumaric acid, which finally produces coumaric acid, a key metabolite 

that serves as precursor of other phenolic metabolites and monomers of the 

cell wall (Blechert et al., 1995; Blount et al., 2000; Buchanan et al., 2000; 

Dixon et al., 2002). The metabolite 4-hydroxycinnamic acid is a precursor for 

the production of a group of phytoalexins in oat (Avena sativa L.) leaves 

infected with the rust disease (Puccinia coronata f.sp. avenae) (Muthukrishnan 

et al., 2001; Okazaki et al., 2004). The metabolite 4-hydroxy-3-

methoxycinnamic acid (ferulic acid) has a role in polymer cross-linking within 

plant cell walls (Russell et al., 1999).  

 A higher abundance of 4-hydroxycinnamic acid (p-coumaric acid) as 

well as m-coumaric acid was observed in the resistant cultivar (Sumai3). This 

may be attributed to several hypothetical causes. There is evidence that the 
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PAL gene is on chromosome 3B which carries the quantitative treat loci (QTL) 

for resistance to FHB (Li et al., 1999). Therefore, the higher level of m-

hydroxycinnamic acid in Sumai3 may be due to the PAL gene. This gene 

(factor) may be less functional or suppressed in the susceptible cultivar, 

Roblin. A synergistic effect of p-coumaric and ferulic acid in inhibiting mycelial 

growth of two isolates of F. graminearum has been observed under in vitro 

conditions (Smart and Flores, 1997). The accumulation of phenylpropanoid 

metabolites after infection by plant pathogens has been reported (Southerton 

and Deverall, 1990; Smart and Flores, 1997).  Higher concentrations of free 

phenolic metabolites were found in the resistant wheat cultivar Frontana as 

compared to the susceptible cultivar Argent inoculated with F. graminearum. 

This is especially true for p-coumaric acid in the glumes, lemmas and paleas 

(Siranidou et al., 2002).  

 In both cultivars, malonic acid levels were higher in pathogen-

inoculated spikes than water-inoculated spikes. This suggests that following 

pathogen inoculation, both resistant and susceptible cultivars activate the 

malonate pathway, in addition to the PAL pathway. The former is known to 

produce phenolics such as isoflavonoids, though it is not as efficient as the 

PAL pathway for the production of phenolics. Isoflavonoids are important both 

as fungicidal substances and as signal molecules in plant-microbe 

communication (Buchanan et al., 2000; Muthukrishnan et al., 2001; Dixon et 

al., 2002).  

 Higher levels of sugars, such as myo-inositol and glucose, may also 

account for the resistance of Sumai3 to FHB. Following pathogen inoculation, 

the level of myo-inositol in Sumai3 increased to a greater degree than in 

Roblin. A higher factor loading of myo-inositol to F2, which had a high factor 

score for the SP treatment, indicates an important contribution of this 

metabolite in Sumai3’s resistance to the pathogen. Myo-inositol is involved in 

cell signaling in animals and plants (Exton, 1996; Nelson et al., 1998; 

Poovaiah and Reddy, 1993). Plants with higher levels of resistance to 

diseases have shown overexpression of inositol (Berridge and Irvine, 1989; 

Smart and Flores, 1997; Pritsch et al., 2000). A richer pool of inositol-derived 

metabolites in the resistant cultivar (Sumai3) can supply a higher signal 

transduction capacity and a more rapid response to the attacking pathogen. 
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Galactose and glucose had higher factor loadings for F2. A hidden factor may 

cause the production of some enzymes involved in the synthesis or the 

enzymatic hydrolysis of these sugars from their parent glycosides. Sugars 

such as glucose, Galactose, and xylose are all used in the synthesis of 

hemicelluloses with xylose molecules as side chains (Buchanan et al., 2000).  

 The highest F1 scores for SP and lowest scores for SW suggest a 

more active PAL pathway in the Sumai3-FHB system, as opposed to Roblin, 

which appears to suppress PAL, as the factor scores for RP were lower than 

for RW.   

Fatty acid production by the two cultivars appears to be controlled by 

functions hidden mainly in F1 for Sumai3 and in F3 for Roblin. Following 

pathogen inoculation, certain fatty acids appear to increase in both cultivars. 

There is a greater increase in Roblin, as indicated by higher F3 scores for RP 

(Table 3.1). The greater increase, after pathogen inoculation, in F3 scores for 

Roblin vs. Sumai3, implies that Roblin may take greater advantage of the JA 

signal transduction system than Sumai3. The octadecanoic acid pathway 

produces signal molecules with vital roles in regulating secondary pathways 

(Blechert et al., 1995). Despite the response in the production of the JA-

pathway fatty acids, the disease still progressed in the cultivar Roblin.  

Some increase in F3 scores for both SP and RP can be assigned to 

glutamine, which plays an important role in recycling ammonia ions and 

guarantees rapid and appropriate functioning of PAL (Buchanan et al., 2000). 

Greater abundance of glutamine implies greater activity of PAL and 

phenylpropanoid metabolism in the resistant cultivar Sumai3.  

 Metabolite profiling associated with factor analysis can be used as a 

powerful tool in deciphering plant defense responses and for phenotyping 

cultivar resistance, as we have identified several metabolites that are related 

to the resistant cultivar, Sumai3, as opposed to the susceptible cultivar, 

Roblin. There exists a potential to develop this technology for high throughput 

cultivar screening, once the defense metabolites are characterized. This 

technology can also be used to recognize the mode of action of the 

pathotoxin, DON, in pathogenesis, and the five different types of resistance 

mechanisms (Hammond-Kosack and Jones, 1996). The database on 

pathways of plant defense could be further exploited through metabolic 
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engineering. Wheat defense genes against FHB can be identified by relating 

these PR metabolites to PR gene expressions, including transcriptome and 

proteome (Muthukrishnan et al., 2001), and this knowledge could be used to 

pyramid genes into an elite cultivar.  

 While we have detected only a few metabolites in the wheat-FHB 

system, plants are known to produce thousands of metabolites (Fiehn et al., 

2000b; Sumner et al., 2003), However, we have increased the chance of 

identifying PR metabolites by extracting and profiling metabolites following 

pathogen inoculation. In spite of the complexity of resistance in the wheat-

FHB system, we were able to recognize groups of metabolites that 

discriminated resistance and additionally, to explain the possible functions of 

metabolites in wheat plant defense against F. graminearum. However, various 

steps involved in metabolite profiling such as metabolite extraction, metabolite 

identification and the use of suitable wheat and pathogen genotypes to prove 

certain metabolic functions, have to be improved in order to achieve an in 

depth understanding of wheat-FHB interactions. Following pathogen 

inoculation, plants use one or more metabolic pathways to synthesize novel 

metabolites to defend against the attacking pathogen (Kofalvi and Nassuth, 

1995; Fiehn et al., 2000b; Dixon et al., 2002). Though we have profiled 

metabolites only at 24 h following pathogen inoculation, the metabolite 

synthesis and plant defense are dynamic processes. Further studies involving 

temporal assessment of metabolites, different wheat and F. graminearum 

genotypes, and environmental variables are required to recognize metabolite 

function in plant defense. 

 In this study, metabolites were identified based on a NIST library match 

and manual comparison of spectra. Since there was no prior knowledge of 

metabolite identity, GC/MS technology was best suited to this work. However, 

the identity of the metabolites reported here are tentative and further studies 

involving spiking with pure metabolites or use of other instruments to identify 

the metabolite structure are required to authenticate the identities (Sumner et 

al., 2003).The GC/MS system detects only relatively low molecular weight 

metabolites (Shen et al., 2003). Application of other hyphenated equipments 

such as LC/MS/MS, LC/NMR, etc. must be explored (Sumner et al., 2003; 

Roepenack-Lahaye et al., 2004) for more complex molecules. These 
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analytical platforms are relatively cost and time effective methods. Likewise, 

the solvents and extraction methods used in this study were selected to 

achieve the goal of extracting as many metabolites as possible. More than 

one extraction method and analytical instrument is required to detect an 

adequate number of metabolites to explain the nature of resistance in plants 

against diseases. Metabolite profiling, therefore, can help better understand 

the functions of metabolites, assist in selecting and pyramiding of 

suitable/required genes, leading to accelerated wheat-FHB breeding program, 

especially when this knowledge base is coupled with studies on proteins, 

mRNAs and genes.  
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Table  3.2.Total abundance (× 106) of different functional groups of metabolites 

detected in the susceptible (Roblin=R) and resistant (Sumai3=S) cultivars, 

inoculated with the pathogen (P) or water (W).  
 

 

 

 

 

 

Chemical Group RP RW SP SW 

Amine 0.35 0.30 0.38 0.39

Amino acid 0.66 0.61 0.41 0.32

Aromatic 0.48 0.36 0.44 0.58

Fatty acid 16.79 14.70 16.51 7.66

Organic acid 1.87 1.83 2.31 2.53

Sugar 107.80 70.60 181.50 119.60

Unidentified 0.64 1.03 0.83 1.17
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Figure  3.1. Scatter plot, based on projections of three factor scores, of factor 

analysis of abundance of 49 metabolites common to all treatments: Sumai3 

pathogen- (SP=♠), Sumai3 water- (SW=♥), Roblin pathogen- (RP=♣) and 

Roblin water- (RW=♦) inoculated.  The factor loadings of metabolites, to 

different factors, are shown in Table 3.1. The metabolites with significant 

factor loadings to the first three factors were (see the complete names in 

Table 3.1):  F1=tetradecanoic acid; pentadecanoic acid; heptadecanoic acid; 

hexadecanoic acid; octadecanoic acid; myristic acid; monostearin; benzene 

(1-butylopentyl)-; F2=m-coumaric acid; p-coumaric acid; myo-inositol; 

fructose; galactose; glucose; propanetricarboxylic acid; α-d-glucopyranoside; 

malonic acid and butanedioic acid; F3=8,11-octadecadienoic acid; phenol, 2, 

4-bis; glutamine; L-alanine and tri-t-butylbenzenethiol 
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Figure  3.2. Bar graph of the abundance (logarithmic scale) of five PR 

metabolites, significantly (P≤0.05) discriminating treatments (RP and RW= 

Roblin pathogen-/water-inoculated, respectively; likewise SP and SW= 

Sumai3 pathogen/water-inoculated). Error bars are ±root mean square of error 

(root MSE). The complete names of metabolites included here are given in 

Table 3.1. Among nine PR metabolites, only five varied significantly among 

cultivars are shown here. 
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Preface to Chapter 4 

Chapter 4 is a manuscript submitted for publication by Hamzehzarghani 

H., Kushalappa A.C., Dion Y., Rioux S., Comeau A., Yaylayan V., and 

Marshall W.D. 2007. Metabolite profiling techniques coupled with statistical 

analyses for potential high throughput screening of quantitative resistance to 

fusarium head blight in wheat cultivars. Canadian Journal of Plant Pathology, 

in June 2007.  

 The results of the present study, in parts, were also presented at the 

First annual meeting of the metabolomics society held at Kein University, 

Japan, June 20th to 23rd  2005 and 4th Canadian Workshop on Fusarium Head 

Blight, Ottawa, Ontario, Nov. 1st to 3rd 2005, both as poster presentations with 

abstracts. The contribution of the coauthors is described in the “Contribution of 

Authors” section. 

Despite their significantly different pedigrees, the highly resistant (Sumai3) 

and highly susceptible (Roblin) cultivars we used in a previous study (Chapter 

3), were sufficiently different in their resistance to FHB to be easily 

differentiated, even with the masking effect of background genetic noise. In 

the current study, differences in the level of FHB resistance of different 

cultivars were lesser than that of the two cultivars examined in Chapter 3. The 

cultivars in the present study were from different geographical origins and 

therefore had a larger genetic variability than those studied in Chapter 3. This 

experiment presented a good challenge in evaluating the sensitivity, accuracy 

and throughput of the metabolite profiling technique to screen a large number 

of cultivars from different sources. In the present study, the following 

modifications were made to decrease experimental error:  

 

1- GC/MS output files were converted into universal “nef.cdf” format to be 

amenable to reanalysis with the most updated software platform used 

in the last study (Chapter 5).The only difference consisted in running 

the samples in “net.cdf” format with MetAlign to correct for the relatively 

high background noise. This extra step was essential to obtain a data 

set to process in the MET-IDEA software.  
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2- Data processing was improved by deleting metabolites with an 

abundance of less than 5000 instead of 2000. This decision was made 

because the abundance of some metabolites coming from the column 

bleed were higher than 2000. 

3- Both polar and non-polar metabolites were analyzed following a more 

advanced method developed by Fiehn et al. (2000a). The advantage of 

this method was that it allowed additional refinement of the samples, 

and therefore improved the consistency of metabolites.  

4- In the advanced method, the chemical analysis was further improved 

by replacing Speed-Vac drying with successive Speed-Vac and freeze-

drying. This was done to facilitate the dissolution of the remaining 

pellet. 

5- The metabolite identification protocol was improved using the EXCEL 

Pivot procedure to compare the mass spectra of the target components 

with the first fifth NIST hits in order to choose the best match. 

6- Injection temperature was increased from 50 oC to 70 oC, which would 

cause solvents to elute faster and reduce the chance of contamination. 

The maximum temperature was increased from 200 oC to 280 oC and 

was maintained at 280 oC for 5 minutes. A higher temperature enabled 

a better detection of more semi- to non-volatile metabolites with higher 

boiling points. This resulted in a better cleaning of the column, less 

contamination, and, in turn, improved the consistency of metabolite 

elution, allowing a more definitive identification.  

7- Using a water-bath shaker for the derivatization of metabolites instead 

of a still water-bath led to a more steady reaction between reactants 

and metabolites. 

8- Instead of moving the test plants to the growth chamber immediately 

after inoculation, plants were transported there two days before 

inoculation to provide them with more stable light and temperature 

conditions and increase their physiological uniformity.  

In Chapter 3, we established metabolic criteria to distinguish cultivars 

varying in their resistance to FHB. In this study, those criteria were further 

validated and a new set of criteria (based on more cultivars) was defined. We 

hypothesize that cultivars of wheat varying in their levels of resistance to FHB 
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should also vary in their metabolic profiles. Metabolic profiles developed for 

six cultivars were used to discriminate cultivars with different levels of 

resistance, and assess the procedure’s potential future use in high throughput 

screening of breeding lines.  
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4.1. Abstract 

Fusarium head blight (FHB) causes considerable losses in wheat yield and 

grain quality. As conventional screening for disease resistance based on five 

separate types of resistance is inefficient, a metabolomics approach to 

discriminating resistance was investigated. Spikelets of six wheat cultivars 

varying in level of resistance were inoculated with Fusarium graminearum or 

water. The spikelet disease severity was quantified and the metabolic profiles 

were recorded using GC/MS. A total of 214 metabolites were detected, 

including 79 with significant treatment effects. Univariate analysis of variance 

identified 41 resistance-related (RR) metabolites and multivariate analysis 

identified 45 resistance function associated metabolites, including 27 RR 

metabolites that also explained resistance functions. Highly resistant cultivars 

Wangshubai and AW488 had 14 and 22 metabolites, respectively, the highest 

number of constitutive RR and induced RR metabolites. A moderately 

resistant cultivar BRS177 had 12 induced RR metabolites. The RR 

metabolites identified here are potential candidate biomarkers for high 

throughput screening of wheat breeding lines against FHB.  

 

Keywords: Canonical discriminant analysis, disease resistance, functional 

genomics, Fusarium graminearum, metabolomics, phytochemicals, resistance 

biomarker metabolites, Triticum aestivum, wheat scab.  
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4.2. Introduction 

Fusarium head blight (FHB), caused by Fusarium graminearum 

Schwabe [teleomorph Gibberella zeae (Schwein.) Petch], causes serious 

epidemics in wheat leading to severe losses in grain yield and quality. Warm 

and humid weather conditions, especially at wheat anthesis, are conducive to 

the development of a FBH epidemic, leading to the production of mycotoxins 

such as DON in wheat grains (Bai et al., 2001). Genetic resistance is the most 

desirable method to manage FHB. Expression of the resistance to FHB as five 

proposed resistance types and the fact that the pathogenicity and progression 

of the disease are highly influenced by environmental conditions, complicate 

the evaluation of resistance to FHB (Mesterhazy, 1995). The evaluation of 

breeding lines based on disease symptoms can be slow and inconsistent from 

year to year, therefore providing limited information on the mechanism of 

resistance. Molecular markers that are tightly linked to sets of genes that 

confer resistance to FHB, such as amplified fragment length polymorphism 

(AFLP) and simple sequence repeat (SSR), have been used as markers in 

DNA-fingerprinting of wheat genetic materials (Anderson et al., 2001). Yet the 

functions of the resistance genes remain unknown. The top priority in breeding 

wheat for resistance to FHB is the development of a high throughput 

screening method that can also provide information regarding the 

mechanisms of resistance and resistance gene function.  

Metabolomics, an evolving field of systems biology, aims to decipher 

gene function at the metabolite level (Dixon 2001; Fiehn et al., 2000b; Dixon 

et al., 2002; Sumner et al., 2003). As with other ‘omics’ studies, metabolomics 

generates large data sets of metabolites that always display multicolinearity. 

Often just a few orthogonal vectors (linear combinations of the metabolites) 

are available to explain the function of a trait or gene (Goodacre et al., 2004). 

Identification of a set of metabolites that can explain the functions associated 

with a trait/gene remains a challenge in systems biology. Multivariate models 

of metabolite profiles have been used to classify resistance of wheat 

(Hamzehzarghani et al., 2005) and potato plants (Abu-Nada et al., 2007) to 

disease stress. Genetically modified organisms (Choi et al., 2003), yeast 

mutants (Allen et al., 2003), salt-stressed tomatoes (Johnson et al., 2003) and 
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potato production systems (Roessner et al., 2001) have been similarly 

classified.  

 Pathogen-inoculated wheat spikelets have been demonstrated to 

induce disease response genes, proteins and metabolites within a few hours 

of the inoculation (Pritsch et al., 2000; Muthukrishnan et al., 2001; 

Hamzehzarghani et al., 2005). Higher concentrations of free phenolic 

compounds were observed in the pathogen (F. graminearum) inoculated 

resistant wheat cultivar Frontana than in the susceptible cultivar Argent 

(Siranidou et al., 2002). Inhibition of F. graminearum mycelial growth by 

phenolics such as p-coumaric and ferulic acids has been reported in several 

studies (Smart and Flores, 1997; Russel et al., 1999). An accumulation of the 

phenylpropanoid metabolites has been reported after the infection of wheat 

with other pathogens (Southerton and Deverall, 1990; Kofalvi and Nassuth, 

1995; Okazaki et al., 2004).  

To our knowledge, there are no studies concerning the use of 

metabolic profiles and multivariate analysis to discriminate cultivars of plants 

varying in their levels of resistance to disease stress, or with a view to 

explaining the underlying resistance functions. A recent study reported on the 

discrimination of resistant and susceptible wheat cultivars using multivariate 

analysis (Hamzehzarghani et al., 2005). The objective of this study was to 

discriminate levels of FHB resistance in wheat cultivars based on metabolic 

profiles. This study can also provide insights into the possible mechanisms of 

resistance, for potential application in high throughput screening of wheat 

breeding lines. 

4.3. Materials and methods 

4.3.1. Plant and pathogen production 

The seeds of spring wheat cultivars, with varying levels of resistance to 

FHB (cvs. BRS177, Nobeoka Bozu, Wangshubai, Frontana, AW488 and 

CEP24) were obtained from the Centre de recherché sur les grains (CEROM) 

and Agriculture and Agri-Food Canada (AAFC). Cultivar CEP24 was 

considered the least resistant. The seeds were sown in 15 cm pots, and these 

maintained in the greenhouse at 22±3 oC. Plants were twice fertilized with a 



  

 79

0.2 percent solution of 20-20-20 NPK, once at tillering and a second time at 

the boot stage, each time. Seven-day old cultures of F. graminearum 

Schwabe [teleomorph: Gibberella zeae (Schwein.) Petch; isolate 99–15–35; 

obtained from Dr. S. Rioux, CEROM, QC], were inundated with water, and 

then filtered through two layers of cheesecloth. A spore suspension was made 

up in an aqueous solution of 0.02 percent Tween 80, and adjusted to contain 

105 macroconidia ml-1.   

4.3.2. Inoculation and incubation 

 Wheat spikes were area-source inoculated by putting 10 µl of 

macroconidial suspension into the middle florets of each of four mid-spike 

spikelets (Gary et al., 2000). At anthesis (GS=60-69), one such spikelet was 

inoculated for disease severity assessment, (Zadoks et al., 1974). Spikelets 

inoculated with 10 µl of distilled water containing 0.02 percent Tween 80 

served as control. After inoculation, plants were kept under saturated 

atmosphere at 20-25 oC for 24 h. 

4.3.3. Disease severity assessment 

The number of diseased spikelets in a spike was determined at 4 d 

intervals until 20 d after inoculation (dai). The FHB severity was measured as 

the proportion of diseased spikelets, including the inoculated spikelets, within 

a single spike. The area under the disease progress curve (AUDPC) was 

calculated using disease severity data (Hamzehzarghani et al., 2005).  

4.3.4. Metabolite extraction and GC/MS analysis 

Sixteen inoculated spikelets (4 mid-spike spikelets from four wheat 

plants), including the rachis, were pooled as a single sample or experimental 

unit. These were harvested at 24 hai and crushed immediately in liquid 

nitrogen to deactivate any hydrolytic activity. The metabolites were extracted 

according to methods modified from Roessner (Roessner et al., 2000) and 

Fiehn (Fiehn et al., 2000a, b), with minor modifications. These included 

changes in the amount of plant tissue and the volume of solvents used, as 

well as the use of a freeze dryer instead of a SpeedVac to dry the samples. At 

the outset, 50 µl of 0.2 mg ml-1 of ribitol in water or 2 mg ml-1 of nonadecanoic 
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acid in chloroform were added to the polar and non-polar fractions, 

respectively, to serve as internal standards. One microliter aliquots of these 

samples were injected into a gas chromatograph (GC) equipped with an ion 

trap mass analyzer (GC/MS with ion trap analyzer, Varian Inc.) as reported in 

our earlier study (Hamzehzarghani et al., 2005). 

4.3.5. Metabolite profiling  

The GC/MS output of total ion chromatograms (Varian Saturn  

“sms” file format) was converted into a universal “net.cdf” file format using the 

mass spectral file translator (MassTransit version 3.0.1.16, Palisade Corp., 

NY) to render the data compatible with several bioinformatic programs used in 

such studies. The chromatograms were first analyzed using the MetAlign 

software package to compensate for gradual shifts in baseline signal              

or background noise (Tikunov et al., 2005). The baseline-corrected 

chromatograms were analyzed using AMDIS (Automated Mass spectral 

Deconvolution and Identification System; Version 2.64) for the deconvolution 

of the peaks, extraction of the baseline corrected mass spectra of the co-

eluting components and the identification of the retention times of each 

component, or mass spectral tags. A mass spectral tag (MST) was defined as 

a mass spectrum with a consistent fragmentation pattern over scans and 

across replicates. A MST can be considered a true component of a sample 

irrespective of its chemical identity (Kopka et al., 2005). The MSTs were 

tentatively identified by searching MSRI libraries (GOLM metabolome 

database; Kopka et al., 2005) and the NIST library (version 2.0d, 2005, 

Palisade Corp., NY) to identify the optimal spectral match. The observed mass 

spectrum for a peak within the chromatographic profile was compared with 

each of the ten topmost choices in the NIST and MSRI libraries to assign an 

identity to a component using its retention time as a reference. If a given 

spectrum did not provide a suitable fit within the NIST/MSRI libraries across 

the replicates, the peak was designated as unidentified. All the MSTs detected 

here, regardless of their identity, were regarded as metabolites in this study. 
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4.3.6. Data processing 

 The outputs from AMDIS saved as ”elu” and “fin” files, were processed 

using the MET-IDEA software (METabolomics Ion-based Data Extraction 

Algorithm; version 1.2.0) to align the peaks across samples and to calculate 

their abundance (Broeckling et al., 2006). MET-IDEA processed one 

representative master total ion chromatogram from the data folder and 

extracted the list of retention times and ion markers (IRT) for each component 

across the master profile. The generated ion list was saved as an “ion” file and 

used for the calculation of the calibration parameters which were stored in a 

”cal” file. To apply directed extraction of ion intensity values, MET-IDEA 

scanned the data folder and recognized all “net.cdf” profiles, based on a list of 

IRT-values and calibration of the profiles. Finally, the results of the abundance 

of components were stored in a single tab-delimited text file with compound 

identifiers as column headings and sample names as rows.   

The data were copied into an MS-EXCEL spreadsheet, and using the 

Pivot Table procedure, the peaks were filtered to remove any peak with a low 

signal to noise ratio (S/N<20), a low peak purity (<20 percent), peaks from 

column bleed as well as peaks inconsistent across replicates. A metabolite 

profile for a sample consisted of the names, the associated retention times 

and the areas under the peak or the amount of each metabolite relative to the 

total ion current. Ultimately, the abundance of each peak across the study was 

adjusted for inter-sample variations by dividing them by the abundance of 

internal standards as a scaling factor. 

4.3.7. Experimental design and statistical analysis 

 The experiment was designed as a completely randomized block 

design with four replicates of six cultivars inoculated with pathogen (treatment) 

or water (control). Each replicate or experimental unit consisted of a pooled 

sample of 16 spikelets (four spikelets harvested from four spikes of four 

plants). The data on disease severity (proportion of spikelets diseased out of 

ten and AUDPC) and on metabolic profiles (abundance of metabolites) was 

subjected to statistical analyses, using SAS (SAS Institute, 1999).  
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4.3.7.1. Hierarchical cluster analysis of disease severity  

To identify similarities among cultivars and to group them into disease 

severity phenotypes (DSP), data on disease severity (AUDPC) was subjected 

to hierarchical cluster analysis, using the CLUSTER procedure in SAS (SAS 

Institute, 1999). 

4.3.7.2. Univariate analysis of variance of metabolite profiles 

 The metabolite profiles of each of the five resistant cultivars were 

individually compared to that of the least resistant cultivar CEP24. A 

metabolite with a significantly (P≤0.05) or borderline significantly (P≤0.1) 

higher abundance in a resistant cultivar compared to the susceptible cultivar, 

CEP24, was defined as a resistance-related (RR) metabolite. 

4.3.7.3. CANDISC and HCA of metabolite profiles  

Data on the abundance of metabolite profiles with significant treatment 

effects for the six cultivars, inoculated with pathogen or water, were subjected 

to canonical discriminant analysis (CDA). The CANDISC procedure of SAS 

was used to characterize metabolite profile phenotypes (MPP) and to identify 

hidden biological functions. The CANDISC procedure of SAS developed linear 

combinations of the metabolites (CAN-vectors) that summarized between-

class variation. This procedure increased the resolution of the clustering 

pattern by minimizing the within-cluster variance and maximizing the between-

cluster variance (Johnson, 1998). The CANDISC procedure computed 

squared Mahalanobis distances among cultivars using the abundance of their 

metabolites as response variables. The CAN-vectors are classifiers of the 

cultivars into metabolite profile phenotypes. The metabolites significantly 

loaded to each CAN-vector were used to explain the hidden host-pathogen 

interaction functions, taking into consideration the background relation of MPP 

to DSP (the disease severity phenotypes).   

The canonical score of each treatment from CDA was used for cluster 

analysis for further classification of treatments. The Euclidean distance 

between group centers in the canonical space, computed using CAN-scores, 

was used as a measure of the similarity of groups. Using all the significant 

CAN-vectors, this procedure allowed the construction of a similarity measure 
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matrix and a dendrogram, permitting a better visualization of cultivar 

groupings. 

4.4. Results  

4.4.1. Disease severity and the DS phenotypes (DSP) of cultivars  

All pathogen-inoculated spikelets developed FHB symptoms and the 

disease severity varied between cultivars. The means of the proportion of 

spikelets diseased (at 20 dai) and the AUDPCs for the six cultivars, in 

decreasing order of resistance, were AW488, 0.2 and 0.52; Nobeoka Bozu, 

0.233 and 0.60; Wangshubai, 0.267 and 0.62; Frontana, 0.367 and 1.03; 

BRS177, 0.4 and 1.05; and CEP24, 0.867 and 2.08, respectively. The 

correlation coefficient between the two disease parameters was 0.96 

(P≤0.0001). A hierarchical cluster analysis of disease severity in six wheat 

cultivars varying in their level of FHB resistance, based on an AUDPC-based 

classification, yielded three disease severity phenotypes (DSP). The DSPs 

and associated AUDPCs, in decreasing order of resistance, were: i) DSP1 

(resistant, 0.517-0.617): Wangshubai, AW488, Nobeoka Bozu; ii) DSP2 

(moderately resistant, 1.033-1.050): BRS177, Frontana; iii) DSP3 (susceptible 

or slightly resistant, 2.083): CEP24 (Fig. 4.1). The qualitative descriptors of 

DSPs (i.e., the resistance categories) used here were arbitrary and chosen to 

facilitate comparison of DSP to MPP.  

4.4.2. Metabolite profiles 

Of several hundred peaks detected in the polar and non-polar extracts, 

214 MSTs (polar=1-100; non-polar=101-214) consistent across replicates 

were selected as metabolites occurring in the cultivars tested. These 214 

metabolites were tentatively identified using the NIST and MSRI libraries. The 

quantities of these 214 metabolites from water and pathogen inoculations 

were separately subjected to univariate ANOVA to filter out the metabolites 

with less likely significant treatment effects. A total of 79 metabolites had 

significant treatment effects, of which 54 and 46, respectively, were from 

pathogen- and water-inoculated cultivars, including 21 common to both 

treatments. Neither the inoculations nor the cultivars varied in the kind of 

metabolites detected, but the levels of metabolites differed significantly. The 
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abundance of 79 metabolites, including 54 from the pathogen-inoculated and 

46 from the water-inoculated cultivars were separately subjected to univariate 

ANOVA to select RR metabolites (Table 4.1).  

4.4.2.1. Resistance-related constitutive (RRC) metabolites 

RRC metabolites are the homeostatic metabolites from water-

inoculated cultivars showing significantly (P<0.05) higher levels in resistant 

cultivars compared to the susceptible cultivar CEP24 (i.e., RRC=RW>SW). 

Thirteen RRC metabolites identified in this study were myo-inositol; 

octadecanoic acid (=stearic acid); 8,11-Octadecadienoic acid; succinic acid; 

propanoic acid; aspartic acid; galactose; alanine; 2-propenoic acid and four 

unidentified peaks with MSRI hits (metabolite numbers 36, 45, 48 and 65) 

(Table 4.1). Twelve potential RRC metabolites were classified as borderline 

significant RRC metabolites (0.05<P≤0.1). These included 2-butenoic acid; 

2, 3, 4-trihydroxybutyric acid; pentonic acid-1, 4-lactone; cyclohexanol; and 

cadaverine. Twenty-five RRC metabolites were identified. The number of RRC 

metabolites identified in each cultivar were [(P≤0.05)/(P≤0.1)]: Wangshubai= 

12/22 (3, 14, 15, 16, 19, 20, 22, 28, 35, 36, 37, 45, 48, 60, 65, 66, 71, 73, 74, 

76, 95, and 135), AW488=0/1 (60), Nobeoka Bozu=1/2 (20 and 60), 

BRS177=0/0 and Frontana=3/7 (15, 20, 26, 28, 60, 67, and 68). 

4.4.2.2. Resistance-related Induced (RRI) metabolites 

The RRI metabolites were the metabolites at significantly (P≤0.05) 

greater levels in pathogen vs. water-inoculated spikelets of a given cultivar, 

along with those of pathogen-inoculated spikelets of the susceptible cultivar 

CEP24 (RRI = RP>RW>SP).  Among the RR metabolites, eighteen were RRI 

metabolites. These belonged to such chemical groups such as phenolics (61, 

84, 126, 120, and 158), organic acids (14, 16, 21, 66, 73, and 118), sugars 

(55, 60, 82, and 91), ketones (62), and 2 unidentified MSRI hits (59 and 162) 

(Table 4.1). Some important RRI metabolites were trans-p-coumaric acid; p-

cinnamic acid; trans-ferulic acid; benzoic acid (phenolics); myo-inositol; 

glucopyranose; fructose (sugars); fatty acids such as heptadecanoic acid; 

octadecanoic acid; butanedioic acid; 2-butenoic acid; 2-propenoic acid; 

propanoic acid and cyclohexanone. There were four borderline significant 
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(0.05<P≤0.10) RRI metabolites that included scopolin, and an important 

coumarin in the cultivar AW488. Overall, twenty-two RRI metabolites were 

identified, their number varying from cultivar to cultivar. The cultivar specific 

RRI metabolites were [(P≤0.05)/(P≤0.1)]: Wangshubai= 4/6 (66, 73,120, 124, 

126, and 162), AW488=10/14 (14, 19, 21, 55, 59, 60, 61, 62, 77, 84, 158, 162, 

174, and 118), Nobeoka Bozu=3/3 (60, 126 and 162), BRS177=9/12 (14, 16, 

19, 20, 21, 66, 82, 84, 91, 126, 158, and 162) and Frontana=2/6 (14, 66, 124,  

and 126). Some 41 RR metabolites were identified, including 25 RRC 

metabolites and 22 RRI metabolites, with six in common (Table 4.1). 

4.4.3. Metabolite profile phenotypes and metabolic functions  

4.4.3.1. Constitutive metabolite profile phenotypes  

The canonical discriminant analysis of the abundance of 46 metabolites 

measured in the six cultivars following water inoculation summarized 98 

percent of their variance in the first three CAN-vectors (Fig. 4.2, a). The CAN1 

vector explained 81 percent of the variance in the abundance of metabolites 

and classified the six wheat cultivars into two main clusters of constitutive 

metabolic profile phenotypes - CMPP1: AW488, Wangshubai, Nobeoka Bozu 

with high CAN1 scores, and CMPP2, BRS177, Frontana and CEP24 with low 

CAN1 scores (Fig. 4.2, a). The cultivars classified in CMPP1 were quite 

similar to those in the DSP1 and accordingly the CAN1-vector was considered 

to explain high constitutive resistance. The CAN2-vector explained 14 percent 

of the variance and separated the cultivars within the CMPP1. Wangshubai, 

Nobeoka Bozu and AW488 had high, moderate and low CAN2-scores, 

respectively (Fig. 4.2, a). In contrast, the cultivars in CMPP2 were not 

separated across the CAN2-vector.  

A total of 6 and 16 RRC metabolites had high loadings (>0.4) to the 

water-inoculated CAN1- and CAN2-vectors, respectively. The RRC 

metabolites with high loadings to the CAN1- and/or CAN2-vectors were: myo-

inositol; 8,11-octadecadienoic acid; propanoic acid; octadecanoic acid; 

succinic acid; 2-butenoic acid; pentonic acid-1, 4-lactone; cadaverine; 

octadecanoic acid; propanoic acid and the following five unidentified MSTs 

(45, 48, 65, 37, and 71)(Table 4.1; P≤0.05 shown with stars).  
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4.4.3.2. Constitutive and induced metabolite profile phenotypes  

The first three CAN-vectors explained 98 percent of the variance in the 

abundance of 56 metabolites measured in the six cultivars after their 

inoculation with the pathogen. The CAN1-vector explained 62 percent of the 

variance as it classified the six cultivars into three clusters: CIMPP1, AW488, 

BRS177 and Frontana; CIMPP2, Wangshubai and Nobeoka Bozu, and 

CIMPP3, CEP24. The susceptible cultivar CEP24 had the lowest CAN1-score, 

with higher scores for all the resistant cultivars. Therefore, the CAN1 vector 

was considered to explain induced resistance. Among the resistant cultivars, 

BRS177 and Frontana appeared to switch from lower levels of constitutive 

resistance (Fig. 4.2, a) to higher levels of induced resistance (Fig. 4.2, b). 

The CAN2-vector explained 28 percent of the variation and classified 

Nobeoka Bozu with high scores (Fig. 4.2, b; Fig. 4.3). A total of nine and five 

RRI metabolites had high loadings (>0.4) for the pathogen-inoculated CAN1- 

and CAN2-vectors, respectively (Table 4.1). Heptadecanoic acid;  phenol, 2,5-

bis(1,1-dimethyl ethyl)-; cyclohexanone; trans-p-coumaric acid; melezitose 

(11TMS) alpha-D-Glc-(1,3)-beta-D-Fru-(2,1)-alpha-D-Glc); propanoic acid; 

benzoic acid; 2-propenoic acid; butanedioic acid; myo-Inositol; scopolin; 

cadaverine; and one unidentified MSRI component (Table 4.1; P≤0.05 

indicated with stars) are examples of these metabolites.   

4.5. Discussion 

The present study reports on the application of metabolite profiling 

techniques, based on GC/MS coupled with univariate and multivariate 

statistical analyses, to classify quantitative FHB resistance in wheat and to 

identify resistance-related metabolites. Of 214 metabolites detected in six 

cultivars, 41 were identified as RR metabolites based on univariate analysis 

and 45 as resistance function-related metabolites based on multivariate 

analyses, including 27 that were common to both types. These 27 RR 

metabolites, of known resistance function, can be used as biomarkers for 

resistance screening. More stringent screens based on metabolite significance 

and CAN-loadings, should be used to select metabolites that are more 

promising. Among the 27 RR metabolites, 19 and 12 were RRC and RRI 

metabolites, respectively (Table 4.1). The highly resistant cultivar Wangshubai 
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had the greatest number of RRC metabolites, followed by the moderately 

resistant cultivar Frontana. The highly resistant cultivar AW488 had the 

greatest number of RRI metabolites, followed by the moderately resistant 

cultivar BRS177. The highly resistant cultivar Nobeoka Bozu had few RRC or 

RRI metabolites. In addition to the number of RR metabolites, their type and 

quantities may play a significant role in resistance. 

As with proteomics and transcriptomics, one of the major problems in 

metabolomics is data visualization. To select RR metabolites, several filtration 

steps have been used. Only the metabolites that were significant at P≤0.2 

were retained for further statistical analysis to exclude the metabolites with 

high biological variability (outliers) from entering into the multivariate data 

analysis (Sumner et al., 2003). Canonical discriminant analysis was used both 

as a data reduction and as an exploratory technique to enhance the 

transparency and improve the data visualization and excavation of the 

possible mechanisms of FHB resistance in wheat. To classify a metabolite as 

‘RR,’ the criterion of a P≤0.05 significance level was applied to univariate 

ANOVA. However, some known antimicrobial metabolites or their precursor 

molecules were not statistically significant at this level. As a result, metabolites 

of borderline significance (0.05<P≤0.10) were also classified as RR 

metabolites. To assure these potential metabolic biomarkers, associated with 

metabolic functions with high CAN-loadings, could serve as effective criteria 

for screening wheat cultivars for FHB resistance, we searched for their 

mention in reports regarding phytochemicals with antimicrobial or signaling 

properties. Approximately one third of the high CAN-loading metabolites, 

associated with resistance functions, were not classified as RR metabolites 

due to the elevated variance among replicates, as assessed by univariate 

ANOVA. This experimental error might be the result of variations in seed 

population, the use of multiple tissue types within the sample (the lemma, 

palea, rachis, and reproductive parts), variations in anthesis status at 

inoculation and the manual extraction of metabolites.  

The manual processing of GC/MS output data is slow and labor 

intensive. Automation is imperative for practical applications of a metabolomic 

approach to study stresses in plants. The amount of background noise in 

certain chromatograms was elevated so that baseline correction with MetAlign 
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(Tikunov et al., 2005) was unavoidable to process the AMDIS data output 

using MET-IDEA (Broeckling et al., 2006). This enabled the quantification of 

the abundance of metabolites. These bioinformatic tools have reduced the 

error in the manual processing of GC/MS output data, as well as increased the 

speed of processing. The file format limiting the use of these bioinformatic 

tools was overcome by translating the GC/MS output in Saturn “sms” file 

format to “net.cdf” using MassTransit. The NIST library (2005, version 2.0d) 

and the MSRI libraries (Kopka et al., 2005) served as a basis for comparison. 

The latter collection contains mass spectra generated predominantly from 

plant sources (Wagner et al., 2003). Even though several of the 214 MSTs 

were not identified in this study, the MSTs represent analytes that were clearly 

linked to a chemical structure. These MSTs can be treated in a similar manner 

as identified metabolites, a name being assigned to them after their first 

description (Kopka, 2006).  

A further limitation of metabolite profiling is the analytical platform. 

GC/MS was used because the technique has been successfully employed to 

profile various other biological systems (Roessner et al., 2000 and 2001; 

Fiehn, 2002). It is very sensitive and has a high resolving power although it 

lacks the ability to detect non-volatile compounds (Johnson et al., 2003). 

GC/MS is not applicable to certain known plant defense compounds that are 

semi-polar, including flavonoids and saponins. Therefore, the use of liquid 

chromatography and mass spectrometry (LC/MS) might result in a better 

differentiation of resistance (Vorst et al., 2005). A disadvantage of LC/MS is 

the lack of a commercial library necessary to the identification of non-target 

metabolites.  

Canonical discriminant analysis identified two metabolic profile 

phenotypes based on constitutive metabolites, and three based on both 

constitutive and induced metabolites. The metabolite profile phenotypes were 

not identical to the disease severity phenotypes. It may be an indication of the 

existence of more types of resistance mechanisms than the number of 

discernible DSPs. The cultivar AW488 was associated with high CAN-scores 

that identified both constitutive and induced resistance functions, and while 

associated with high numbers of RRI metabolites, had few RRC metabolites, 

based on univariate ANOVA. The cultivar Wangshubai showed high CAN-
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scores, indicating constitutive resistance and had the greatest number of RRC 

metabolites. The cultivars BRS177 and Frontana had low CAN-scores, 

representative of constitutive resistance and high CAN-scores representative 

of induced resistance, respectively. While the former cultivar was associated 

with several RRI metabolites, the latter cultivar was not. Instead, it had 

moderate numbers of both RRC and RRI metabolites. Therefore, the 

mechanism of resistance appears to be complex. Not only may the number of 

RR metabolites play a substantial role in mechanisms of resistance but also 

their type and abundance. 

An unsupervised classification of wheat cultivars using HCA and based 

on disease severity ratings grouped AW488, Wangshubai and Nobeoka Bozu 

as DSP1. Both Wangshubai and Nobeoka Bozu have an Asian origin and 

seem to be related to Sumai3. Wangshubai is a landrace from the Chinese 

province of Jiangsu. There is contradictory information about its resistance to 

FHB. Most likely Wangshubai and Sumai3 have the same major FHB 

resistance QTL on 3BS (Zhou et al., 2003). However, another study reported 

that Wangshubai had no alleles in common with Sumai3 (Gonzalez et al., 

2003). Nobeoka Bozu is highly resistant to FHB (Miedaner, 1997). It harbors 

three resistance genes, including two that are unique and a third that is 

identical to one in Sumai3 (Ban, 2003). In our study, very few RRC and RRI 

metabolites were detected in Nobeoka Bozu. Univariate ANOVA identified 14 

RR metabolites in Wangshubai while only three RR metabolites (two of them 

the key RR metabolites trans-p-coumaric acid and myo-inositol) were found in 

Nobeoka Bozu.  

Frontana and BRS177 originated from Brazilian germplasms used as a 

source of FHB resistance in Canadian winter wheat breeding programs 

(Gilbert and Tekauz, 2000). The two cultivars differ in their constitutive 

resistance despite sharing similar genetic background as a result of their 

common center of origin. Frontana possesses either type I, or type I and II 

resistance to FHB (Kolb et al., 2001). Several studies have demonstrated the 

involvement of at least three additive genes in the resistance of Frontana to 

FHB ( Siranidou et al., 2002).  

Several of the RR metabolites identified here have been reported to 

possess antimicrobial properties, to be involved in signaling pathways or the 
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synthesis of signal molecules. Different types of cinnamic acids, identified as 

RR metabolites, are precursors of lignin, a polymer known to reinforce cell 

walls and help the plant cell resist pathogens (Gogoi et al., 2001; Siranidou et 

al., 2002). The greater abundance of phenolic compounds such as p-coumaric 

and ferulic acids in the glumes of the FHB resistant wheat cultivars (Siranidou 

et al., 2002) and their in vitro antifungal activity against Fusarium spp. 

(McKeen et al., 1999) have been documented.  

Scopolin, classified as a RRI metabolite, has been detected in the 

highly resistant cultivar AW488. The compound 4H-1-benzopyran-4-one had 

high positive loadings on the pathogen-inoculated CAN1-vector but was not a 

RR metabolite. They belong to coumarins, a group of secondary metabolites 

with a 2H-1-benzopyran-2-one nucleus. These compounds have a broad 

spectrum of biological properties against various microorganisms (Daoubi et 

al., 2004). A negative correlation between coumarin content (especially 

scopolin) and Sclerotinia head rot severity of sunflowers has been reported 

(Parts et al., 2005).  

Fatty acids are both antimicrobial compounds and precursors of signal 

molecules such as jasmonic acid. Myo-inositol, a sugar identified here as RR 

metabolite, is also an important sub-cellular signal molecule for jasmonic acid 

synthesis (Exton, 1996; Nelson et al., 1998; Buchanan et al., 2000).  

Among organic acids with high loadings were the constitutive 

metabolites octadecanoic acid (73, 74) and 8, 11-octadecadienoic acid. These 

high molecular weight fatty acids, which are formed via the octadecanoid and 

hexadecanoid pathways, are also precursors of jasmonic acid (Farmer et al., 

1998). Linolenic acid, a precursor of jasmonic acid, had high loadings to the 

water-inoculated CAN2-vector, consistent with its higher cellular demand in 

the synthesis of jasmonic acid. Jasmonic acid plays a key role in the salicylic 

acid independent pathways and activates multiple resistance mechanisms 

(Pieterse and Van loon, 1999). Other organic acids identified as RR 

metabolites were propanoic acid (Strobel, 2006) and butanedioic acid, both of 

which are part of the diterpenoids. These metabolites along with 4-

aminobutyric acid are known to have antimicrobial activity (Walker et al., 2003; 

Xue et al., 2004).  

 Myo-inositol was detected as both a RRI and RRC metabolite. Myo-
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inositol is involved in sub-cellular signaling, gene expression and the control of 

intracellular Ca2+ concentration (Exton, 1996). A positive correlation between a 

plant’s disease resistance level and levels of this unique molecule has been 

demonstrated (Berridge and Irvine, 1989). The higher Ca2+ released in 

response to myo-inositol causes activation of protein kinases mediating 

activation of the NADPH oxidase complex, which in turn catalyses the 

production of superoxide ions from oxygen molecules dismutated to H2O2 by 

superoxide dismutase (Hammond-Kosac and Jones, 1996; Lamb and Dixon, 

1997). 

Two polyamines, cadaverine and 1, 4-butanediamine (putrescine), 

showed high loadings at homeostatic and induced states. These polyamines 

are synthesized through decarboxylation reactions of lysine and ornithine. 

These metabolites are involved in the regulation of DNA replication, cell 

division and the intrinsic signaling network of the extracellular matrix, all of 

which lead to a higher level of resistance. (Galston and Sawhney, 1990).  

We have used a combination of three major criteria in selecting 

resistance-related biomarker metabolites for potential application in high 

throughput screening. These are: a) RR metabolites based on univariate 

ANOVA; b) metabolites with high loading to CAN-vectors associated with 

resistance functions through multivariate analysis; c) metabolites with known 

antimicrobial properties or those that are signaling molecules and precursor of 

these metabolites. This combination of criteria allowed the metabolites 

unrelated to resistance to be filtered out. The abundance of 41 RR metabolites 

identified in this study, especially the 27 that also denoted resistance 

functions, can be applied to high throughput screening of wheat breeding lines 

for FHB resistance. In future testing, the lines with higher abundance of RR 

metabolites can be considered as resistant lines. However, the identification of 

RR metabolites is based on the statistical association of metabolites with 

resistant cultivars and on their putative role as antimicrobial and signaling 

compounds. Further confirmation using near isogenic lines with resistant and 

susceptible alleles for a given metabolite is required to corroborate the 

involvement of these RR metabolites in plant defense (Schauer and Fernie, 

2006).  We have only demonstrated the mechanisms of FHB resistance in 

wheat based on metabolite profiling and statistical analysis. 
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Figure  4.1. Grouping of six wheat cultivars inoculated with F. graminearum (P) 

based on disease severity into disease severity phenotypes (DSPs). Dendrogram 

was generated based on hierarchical cluster analysis of AUDPCs. The scale 

represents the Euclidean distance in canonical space: A=AW488, 

W=Wangshubai, N=Nobeoka Bozu, B=BRS177, F=Frontana, C=CEP24, and the 

numbers following letters are the replicates.  
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Figure  4.2. Scatter plot, based on projections of the first three significant CAN-

vectors of canonical discriminant analysis (CDA) of abundance of 46 and 56 

metabolites in water-inoculated (a) and pathogen-inoculated (b), spikelets 

respectively. The symbols are A=AW488, B=BRS177, C=CEP24, F=Frontana, 

N=Nobeoka Bozu, W=Wangshubai, S=susceptibility, CR=constitutive resistance, 

and IR=induced resistance. The CDA identified two constitutive metabolic profile 

phenotypes (CMPPs) in the water-inoculated group of plants (a) and three 

constitutive and induced metabolite profile phenotype (CIMPPs) in the pathogen-

inoculated plants (b). 
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Figure  4.3. Dendrogram based on hierarchical cluster analysis using the first 

three canonical variables (see Fig. 4. 2) from the canonical discriminant analysis 

of abundance of 54 metabolites detected in six wheat cultivars inoculated with F. 

graminearum (P). The scale represents the Euclidean distance in canonical 

space. The six cultivars were clustered into three constitutive and induced 

metabolic profile phenotypes (CIMPPs): (A=AW488, B=BRS177, C=CEP24 

F=Frontana, N=Nobeoka Bozu, W=Wangshubai, and in all cases, the second 

letter P=pathogen and W=water-inoculated.   
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Chapter 5  
Metabolite profiles of near isogenic lines of wheat with quantitative 
trait loci at chromosome 2DL conferring resistance or susceptibility 
to Fusarium head blight. 

H. Hamzehzarghania, V. Paranidharana, A. C. Kushalappaa, O. Mamerb and 
D. Somersc  
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Preface to Chapter 5 

Chapter 5 is a manuscript submitted for publication by Hamzehzarghani, 

H., Paranidharan, V., Kushalappa, A.C., Mamer, O., and Somers, D. 2007 

Metabolite profiles of two near isogenic lines of wheat with alternate alleles of the 

QTL for resistance or susceptibility to FHB at chromosome 2DL. Journal of 

Experimental Botany. 

In the first (Chapter 3) and second (Chapter 4) studies, we established 

multiple criteria to discriminate FHB resistance in wheat. Metabolite profiling of 

wheat lines with alternate alleles of a known QTL conferring FHB resistance and 

relating such profiles to multiple metabolic criteria will streamline the process of 

discovering the mechanism of resistance. It will help breeders and metabolite 

engineers make intelligent decisions regarding which genes to use for 

pyramiding, so as to obtain greater levels of resistance, as controlled by different 

kinds of metabolites.  

Many QTLs have been identified in various populations of crosses 

between wheat cultivars varying in resistance to FHB (Waldron et al., 1999; 

Feredric et al., 1999; Anderson et al., 2001; Kolb et al., 2001; Somers et al., 

2003; Young et al., 2005). These QTLs have been molecularly mapped and their 

association with quantitative resistance to FHB has been studied. Study of the 

metabolic profiles of these QTLs or segregating populations could provide a 

better understanding of the mechanism of resistance to FHB. 

In this study, both analytical instrument and software platforms underwent 

significant modification. The analytical software platform was improved by 

modifying it with the most recent software developed for metabolomics. A GC 

equipped with a time of flight (TOF) mass spectrometer (HP6890 GC-TOF-MS 

with an autosampler) was used, allowing faster, more sensitive and more reliable 

mass spectra than the quadrupole and ion trap mass spectrometers used in the 

last two studies. After baseline correction and mass spectral deconvolution using 

AMDIS, mass spectral abundance was quantified using MET-IDEA software. This 
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guaranteed a faster, easier and more consistent data generation and analysis 

step. 
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5.1. Abstract 

The resistance to Fusarium head blight (FHB), one of the most destructive 

diseases of wheat, is controlled by several quantitative trait loci (QTLs), which are 

expressed as five various types of resistance. The objective of this study was to 

identify resistance-related metabolites associated with a QTL that confers 

resistance to FHB. To achieve this goal, two near isogenic lines (NILs), with 

alternate alleles for the FHB resistance/susceptibility QTL on chromosome 2DL, 

were grown under greenhouse conditions. At anthesis, four florets in each spike 

were inoculated either with a macroconidial suspension of F. graminearum or 

with water. Metabolites were extracted from the spikelets using a mixture of 

methanol-water and chloroform, and subsequently analyzed using GC-TOF-MS. 

Compound identification and quantification were achieved using AMDIS, the 

MSRI libraries, the NIST library (2005), and MET-IDEA as the software platform. 

A total of 182 components were detected, of which 127 metabolites were 

tentatively identified and 122 showed significant variations related to treatment 

effects. A Student’s t-test of the quantities of these metabolites identified 27 

resistance-related (RR) metabolites (greater abundance in the resistant NIL), 

including 22 constitutive (RRC) and 8 induced (RRI) RR metabolites. There were 

also three metabolites whose levels increased following pathogen inoculation 

(RRCI). Canonical discriminant analysis was used to classify treatments and 

identify metabolic functions. The putative mechanisms of FHB resistance are 

discussed based on the following RR  metabolites: i) phenylpropanoid 

compounds including p-coumaric acid, cinnamic acid, several coumarins, benzoic 

acid and methyl vanillate; ii) important signal or signal-related compounds 

including myo-inositol and octadecanoic acid derivatives. 

 

Key words: Canonical discriminant analysis, functional genomics, Fusarium 

graminearum, metabolomics, resistance-related (RR) metabolites, quantitative 

trait loci (QTL), wheat, wheat scab. 
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5.2. Introduction 

Fusarium head blight (FHB), which is commonly caused by Fusarium 

graminearum Schwabe (teleomorph: Gibberella zeae (Schwein) Petch), is one of 

the most severe diseases of wheat in North America. It can cause huge annual 

losses (Leonard and Bushnell, 2003).  The use of resistant cultivars is considered 

the most practical way to manage this disease. There are five types of resistance 

to FHB: resistance to initial infection (type I), resistance to spread of the pathogen 

within a spike (type II), resistance to kernel infection (type III), yield tolerance 

(type IV) and decomposition or non-accumulation of the fungal toxin 

deoxynivalenol (DON) (type V) (Mesterhazy, 2003). The most studied type of 

resistance, type II resistance is controlled by a few major genes (Bai et al., 

2003b).  

Wheat resistance to FHB is quantitative and its measurement is mainly 

based on the number of spikelets infected within a spike, the spread of disease 

within a spike and by the amount of mycotoxins in kernels (Leonard and 

Bushnell, 2003). A high resistance to initial infection has been described as a 

hypersensitive reaction involving type I resistance, but its association with single 

genes is yet to be demonstrated. Under field conditions, it is often difficult to 

differentiate type I resistance from disease escape. Because of this uncertainty, 

more efforts have been put towards analyzing type II resistance. There is ample 

evidence that resistance is strongly influenced by environmental factors. Type II 

resistance is controlled by several QTLs. QTLs conferring resistance to FHB in 

breeding lines originating from different parts of the world have been identified on 

chromosomes 2DL, 2DS, 3AS, 3BSc, 3BS, 4B, 4DL, 5AS, 6BS, and 7BL (Yang 

et al., 2005). In the Chinese spring cultivar Sumai3, the most widely exploited 

QTL in breeding for resistance to FHB is located on chromosome 3BS and 

explains 15-60% of the phenotypic variation under resistance type II (Yang et al., 

2005). This cultivar also carries FHB resistance QTLs on 5A and 6BS. In order to 

enhance the level of resistance in an elite cultivar, the QTLs must be pyramided 

and this requires the identification of the functions of these QTLs. We 

hypothesize that wheat lines, which differ in QTLs conferring resistance against 
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FHB, vary in their metabolite profiles, and that the metabolites associated with 

these QTLs can explain the mechanisms of FHB resistance in wheat.  

 Several metabolites in wheat cultivars have been associated with 

resistance to disease stresses. The total phenolic acid fraction has been found to 

be associated with cultivars of wheat resistant to various diseases (Gogoi et al., 

2001). The abundance of phenolic compounds, including p-coumaric and ferulic 

acids, has been reported to be greater in the glumes of FHB resistant cultivars of 

wheat (Siranidou et al., 2002). These compounds have shown antifungal activity 

against Fusarium spp. under in vitro conditions (McKeen et al., 1999). Using the 

metabolomics method, 55 metabolites varying in abundance were identified in 

resistant/susceptible wheat cultivars inoculated with F. graminearum 

(Hamzehzarghani et al., 2005).  

 Advances in metabolomics have considerably extended our abilities to 

describe functions of complex biological systems (Schauer and Fernie, 2006). 

We have applied metabolomics methodology to discriminate a plant phenotype 

resistant to a pathogen from that of a susceptible one (Hamzehzarghani et al., 

2005). In that study, several metabolites were detected in higher abundance in 

the resistant wheat cultivar Sumai3 than in the susceptible cultivar Roblin, and 

most of these were constitutive metabolites. A higher abundance of several fatty 

acids, particularly stearic and palmitic acids, aromatic compounds such as p- and 

m-coumaric acids, and sugars such as myo-inositol were associated with the 

resistant cultivar Sumai3. To consider these compounds as resistance-related is 

risky, because the cultivars used in this study were genetically quite different. The 

use of near isogenic lines (NILs) can reduce complex whole genome epistatic 

interactions. 

Consequently, the objective of the present study was to distinguish two 

wheat NILs, susceptible and resistant to FHB, based on their metabolic profiles. 

These NILs differed in having alternate resistance/susceptibility alleles for a QTL 

on chromosome 2DL that confers FHB resistance. The second objective of the 

study was to identify RR metabolites associated with the 2DL QTL, in order to 

characterize the mechanisms of FHB resistance in wheat. 
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5.3. Materials and methods 

5.3.1. Plant production and inoculation 

Seeds of NILs carrying alternate (FHB susceptible/resistant) alleles of the 

QTL on chromosome 2DL (Somers et al., 2003), were derived from the cross 

BW301 × HC374 (Somers et al., 2005), obtained through backcrossing. This QTL 

is considered to contain several genes, including FHB resistance genes. Line 

BW301 is a FHB susceptible hard red spring wheat adapted to western Canada, 

while line HC374, resistant to FHB, is derived from the cross Wuhan1 × Nyubai. 

Line HC374 carries the FHB resistance alleles of Wuhan1 located on 2DL QTL. 

These lines were genotyped with microsatellite markers and homozygous lines 

differing only in the alleles of the 2DL locus were selected and selfed to multiply 

seeds. The resistant NIL expressed high type II resistance, with no spread of 

disease beyond the inoculated spikelets and low DON concentrations, compared 

to the susceptible NIL. Seeds from these lines (obtained from Dr. D. Somers, 

AAFC, Winnipeg, MB) were sown in 6-inch pots, kept in a greenhouse 

maintained at 22±3 oC, and fertilized twice at the tillering and boot stages with a 

0.2 percent solution of 20-20-20 NPK. Seven-day old cultures of Fusarium 

graminearum, isolate 99–15–35 (obtained from Dr. S. Rioux, CEROM, QC) were 

inundated with a 0.02% aqueous solution of Tween 80. The spore concentration 

was adjusted to 105 macroconidia ml-1.  Wheat spikes were area-source 

inoculated by putting 10 µl of macroconidial suspension (approximately 1000 

spores/spikelet) into the middle florets of each of 4 mid-spike spikelets (Gary et 

al., 2000) for metabolite profiling. At anthesis (GS=60-69), a single mid-spike 

spikelet was point inoculated for subsequent disease severity assessment 

(Zadoks et al., 1974). Spikelets inoculated with 10 µl of distilled water containing 

0.02% Tween 80 served as a control. The inoculated plants were covered with 

plastic bags, sprayed inside with water, and kept in the greenhouse at 22±3 oC 

for 24 h. 
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5.3.2. Disease severity assessment 

The number of diseased spikelets in a spike was determined at 4 d 

intervals until day 20 after inoculation (dai), and from this various FHB severity 

parameters were calculated. These parameters were: a) number of spikelets 

diseased per spike on day 20; b) the proportion of spikelets diseased out of ten 

(around the spikelet that was inoculated) on day 20; c) the normalized area under 

the disease progress curve (normalized AUDPC), based on the proportion of 

diseased spikelets. The AUDPC was normalized by dividing it by the maximum 

possible total area of 20 (20 d × maximum disease severity, which was 1.0) 

(Hamzehzarghani et al., 2005).   

5.3.3. Biochemical analysis 

The spikelets were harvested at 24 hai by clipping the rachis on either side 

of the four inoculated spikelets in a spike. The spikelets were immediately 

crushed in liquid nitrogen to minimize any hydrolytic activity, freeze-dried and 

stored at -80oC. Freeze-dried tissue (30 mg) was extracted with methanol-water 

and then with chloroform, according to the methods developed by Roessner et al. 

(2000) and Fiehn et al. (2000a, b), with minor modifications. Supernatants were 

separated from the residue using Ultrafree-CL 0.22 µl microfilters and the volume 

of polar and non-polar extracts reduced from 1 ml to 200 µl (Hamzehzarghani et 

al., 2005). Following this, the extracts were methoximated to stabilize and prevent 

cyclization of carbonyl moieties in the β-position of reducing sugars, and 

derivatized with MSTFA. At the outset, 50 µl of ribitol (0.2 mg ml-1 in water) and 

nonadecanoic acid (2 mg ml-1 in chloroform) were added, respectively, to the 

methanol-water and chloroform fractions, to serve as internal standards. 

Aliquots of 1µl of the extracts were analyzed by electron ionization, using a 

Micromass GCT.  The injection port temperature was maintained at 230 oC. A 

split ratio of 1:50 of the injected sample was used for chromatography with a 

HP-5 capillary column (0.25 µm film thickness, 0.25 mm in diameter and 25 m in 

length, Supelco, Canada) with a helium flow rate of 1 ml min-1 at 70.0 Kpa initial 

pressure. After 1 min at 70 oC, the column temperature was programmed to rise 
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by 5 oC min-1 up to 270 oC, followed by a 7 min bake out at 300 oC. The source 

temperature was 200 oC, and scans in the range of 70-600 m/z were done at a 

rate of 1.1 scans s-1. 

5.3.4. Chromatographic output data processing 

The total ion chromatogram output from the GC-TOF-MS was converted 

into “net.cdf” files using the BRIDGE capability of MassLynx® to make them 

readable by the combination of software subsequently used. AMDIS (Automated 

Mass spectral Deconvolution and Identification System; Version 2.64, Davies, 

1998) was used for the deconvolution of peaks, extraction of the baseline 

corrected pure mass spectra and identification of the retention time of every 

component. A mass spectral tag (MST) is a mass spectrum at a known retention 

time with a consistent fragmentation pattern over scans and replicates (Kopka 

2006). MSTs were tentatively identified by searching MSRI libraries at GMD 

(Kopka et al., 2005) and the NIST library (version 2005, Palisade Corp., NY) to 

determine the best matches. The GC/MS output on scans, mass ions and their 

abundance was processed using the AMDIS software.  The consistency of major 

fragments of mass spectrum for each peak across four replicates was manually 

verified. The MSTs observed in each GC/MS replicate analysis were compared 

with the five best matches in the NIST and MSRI libraries to select the best mass 

spectral match, therefore allowing the assignment of a name to a component. If a 

given spectrum did not suitably find a match in the libraries, the peak was 

designated as unidentified.  

The processed data from AMDIS, saved as “elu” and “fin” files were 

loaded into MET-IDEA (METabolomics Ion-based Data Extraction Algorithm; 

version 1.2.0) to calculate the component abundance and to align the peaks 

across samples (Broeckling et al., 2006). MET-IDEA processed one 

representative total ion chromatogram (TIC) from the data folder and extracted 

the ions and retention time markers (IRTs) for each component. The generated 

IRT list was saved as an “ion” file, and subsequently MET-IDEA executed a 

calibration step, scanned the data folder and recognized all “net.cdf” files 

(samples) to apply a directed extraction of the ion intensity values based on a list 
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of IRT-values. The results were organized into a single tab-delimited text file with 

compound identifiers as column headings and sample names in rows with a user-

designated filename.   

The data was loaded into a MS-EXCEL spreadsheet and, using the Pivot 

Table procedure, the peaks with a signal to noise ratio <20, a peak purity <20%, 

as well as peaks from the column bleed and those not appearing in all four 

replicates were rejected from further consideration. Finally, the peak areas of the 

metabolites and their retention times across the study were corrected for inter-

sample variations relative to the internal standards. The polar and non-polar 

sample profiles were combined and designated as a metabolic profile. 

5.3.5. Experimental design and statistical analysis 

The experiment was designed as a completely randomized block with two 

NILs with alternate alleles of QTL on chromosome 2DL: resistance (R) and 

susceptibility (S). Treatments were inoculations of spikelets with the pathogen (P) 

or with water (W), which served as a control in four replicates. Each experimental 

unit consisted of a pooled sample of 16 spikelets (the rachis with four inoculated 

spikelets harvested from each of four spikes from four plants). For each 

experimental unit a combined metabolite profile (polar and non-polar) was 

established.  

 The data on i) disease severity (number of diseased spikelets per spike; 

proportion of spikelets diseased; normalized area under the disease progress 

curve) and ii) metabolite profiles (abundance of compounds) were subjected to 

ANOVA using SAS (SAS Institute, 1999). Only the metabolites with potential 

significant (P≤0.20) treatment effects were considered for multivariate and t-test 

analyses. A t-test of mean values of the data associated with each treatment was 

used to identify RR metabolites (metabolites with significantly (P≤0.05) greater 

abundance in resistant than in susceptible NILs). To identify metabolite 

phenotypes and to investigate the concealed biological functions, the levels of 

metabolites, with significant treatment effects for the two NILs irrespective of 

inoculum, were also subjected to canonical discriminant analysis using the 

CANDISC procedure of SAS. CANDISC developed linear combinations of the 
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metabolites (CAN-vectors) and summarized between-class variation. The CAN-

scores of individual samples were plotted as coordinates on the axes of a three-

dimensional scatter plot and a graphical illustration of the relationship between 

samples (metabolite profile) in a CAN space was generated. The separation of 

clusters of samples in such a plot illustrates the differences among distinct 

metabolic systems (Morris et al., 2004; Roessner et al., 2001). The CAN-vector 

that classified the metabolite clusters/phenotypes was considered to identify a 

biological system. This was investigated by relating the metabolite phenotypes to 

disease severity phenotypes. The metabolites with high loadings to the CAN-

vector that identified the resistance function were considered to explain the 

resistance functions. A higher loading for a metabolite indicated a bigger weight 

of the metabolite on the magnitude of the CAN-score along the corresponding 

CAN-vector. Additional unsupervised classification of treatments based on their 

metabolite profiles (using canonical scores) was performed with the cluster 

procedure of SAS to identify the pattern similarity of their grouping into metabolite 

phenotypes.    

5.3. Results 

5.3.1. Disease severity  

The two NILs, with alternate alleles for the FHB resistance QTL on 

chromosome 2DL, differed in their disease severity. All the pathogen-inoculated 

spikelets had visible disease-associated discoloration and/or necrosis. At 20 dai, 

the mean number of diseased spikelets per spike was 1.0 and 2.75 for the 

resistant and the susceptible NILs, respectively, with the proportion of diseased 

spikelets per spike being 0.100 and 0.275. This indicates that the disease spread 

beyond the inoculated spikelet in the susceptible NIL, but not in the resistant NIL, 

confirming the absence and presence of type II resistance, respectively. The 

means of disease severity assessed as the normalized AUDPC in the resistant 

and susceptible NILs were 0.023 and 0.047, respectively. The resistant NIL had 

significantly (p<0.001) lower disease severity than the susceptible one, based on 

both the proportion of spikelets diseased and the normalized AUDPC. 
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5.3.2. Metabolic profiles 

GC/MS analyses of the plant extracts yielded 262 and 297 

chromatographic peaks in the polar and non-polar fractions, respectively. Several 

steps of discrimination analysis in the chromatographic data confirmed the 

detection of 182 components or metabolites of which 84 were found in the polar 

fraction and 98 in the non-polar fraction (the mass spectra are available at 

http://www.metabolomics.mcgill.ca). Of 182 metabolites, only 127 metabolites 

were tentatively identified and the remaining 55 unidentified metabolites 

corresponding with those classified as ‘unidentified’ in MSRI libraries (Kopka et 

al., 2005). When the levels of the 182 metabolites were subjected to ANOVA, 

only 122 metabolites demonstrated significant changes related to the treatment 

(P≤0.20). Only these 122 metabolites were further subjected to t-tests and 

canonical discriminant analysis in order to classify the type of resistance with 

which they were associated.  

5.3.2.1. Resistance-related (RR) metabolites 

The metabolites that were in significantly (P≤0.05) higher abundance in 

the resistant NIL than in the susceptible NIL were designated as resistance-

related (RR) metabolites (Table 5.1). The RR metabolites were further classified 

into three groups: i) RRC metabolites: RR metabolites that were constitutive, 

based on a homeostatic state or on the water-inoculated treatment (i.e., with 

significantly higher level in the water-inoculated resistant NIL than the susceptible 

NIL). ii) RRI metabolites: RR metabolites that were induced under the 

stressed/pathogen-inoculated state. In other words, the abundance of a RRI 

metabolite was significantly greater in both the resistant water-inoculated and 

susceptible pathogen-inoculated treatments compared to the pathogen-

inoculated resistant NIL. iii) RRCI metabolites: RR metabolites that were both 

constitutive and induced; these were constitutive RR metabolites that were 

further significantly induced in the resistant NIL, following pathogen inoculation. 

Out of 122 metabolites showing significant variation with treatment, 27 

were identified as RR metabolites, including 22 RRC metabolites and 8 RRI 
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metabolites, with three that were common to both (i.e., RRCI metabolites) (Table 

5.1).  

 The 22 RRC metabolites identified in this study belonged to seven 

different chemical groups: seven organic acids (5, 11, 12, 18, 33, 35, and 36); 

three amino acids (3, 6, and 17); one aromatic (34); eight from unknown groups 

(2, 4, 8, 13, 15, 19, 32, and 37) and three from other groups (7, 14, and 21) 

(Table 5.1). Metabolites that had moderately higher abundance in the resistant 

NIL were myo-inositol, proline, isoleucine, threonine, asparagine, octadecanoic 

acid, pentanedioic acids, and γ-aminobutyric acid (Table 5.1). Benzoic acid was 

only a borderline significant (P≤0.1) metabolite, but its abundance in the water- 

inoculated resistant NIL was twice that of the susceptible NIL. 

 The eight RRI metabolites identified belonged to five chemical groups: one 

phenolic: p-coumaric acid; two amino acids: proline and serine; one sugar: myo-

inositol; one other group: 1-Palmitoylglycerol; and three unidentified from GOLM 

(16, 22, and 27). The levels of all these metabolites, except for myo-inositol, were 

at least two fold greater in the resistant NIL than the susceptible NIL (Table 5.1).  

The three RRCI-metabolites identified in this study belonged to three 

different chemical groups: sugar: myo-inositol; amino acid: proline; alcohol: 1-

Palmitoylglycerol.  

5.3.2.2. Identification of biological functions based on CANDISC analysis 
and metabolite loadings 

To sort metabolites according to treatments (RW, RP, SW, and SP), and 

to identify their possible biological functions, canonical discriminant analysis was 

applied to the 122 metabolites showing significant variation with treatment.  The 

first two CAN-vectors accounted for 98% of the variance in the abundance of the 

122 metabolites (CAN1=85% CAN2=13%; Fig. 5.1). Each CAN-vector is a linear 

combination of 122 metabolites and summarizes part of the variance observed in 

the metabolite profiles of the two NILs. The CAN1-vector grouped the two NILs 

into two separate clusters related to the constitutive resistance function, as the 

pathogen and water inoculations showed little difference in the CAN1-score. The 

CAN2-vector, on the other hand, classified the inoculation treatments. The 
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inoculation treatments were farther apart in the FHB resistant NIL than the 

susceptible NIL; therefore, the CAN2-vector was considered to explain the 

induced resistance function. 

The metabolites with high loadings to the CAN-vectors that identify 

resistance functions were ranked in a descending order of loading within CAN1 

and CAN2 (Table 5.1). Of 122 metabolites twenty-five and sixteen highly loaded 

(L>0.5) to the CAN1 and CAN2-vectors, respectively, with eight being common to 

both. Twenty-one of the 25 metabolites with high loading to the CAN1-vector 

associated with constitutive resistance were also RR metabolites (based on 

univariate ANOVA), of which nineteen and five were RRC and RRI metabolites, 

respectively, including three RRCI metabolites that were common. Some of the 

important metabolites with very high loadings to CAN1 were asparagine; proline; 

γ-aminobutyric acid; isoleucine; threonine; benzoic acid; 1-palmitoylglycerol; 2-

propenoic acid; tetroquinone; myo-inositol; hexadecanoic acid and the 

unidentified compounds (2, 4, and 13) (Table 5.1).  

Among the 16 metabolites significantly loaded to the CAN2-vector, eight 

were RR metabolites, of which seven were RRI and three were RRC, including 2 

RRCI that were common to both. Some of the important metabolites with high 

loadings were serine; p-coumaric acid; xylose; benzoic acid; cinnamic acid and 

myo-inositol.  

5.5. Discussion 

 Of the 182 metabolites detected in wheat spikelets in the present study, 

127 were tentatively identified (i.e., 55 unidentified) and 122 showed significant 

variation with treatment. A student t-test identified 27 RR metabolites, of which 24 

and 8, respectively, were constitutive and induced RR metabolites, including 

three common to both (i.e., RRCI metabolites). Canonical discriminant analysis of 

the abundance of the 122 significant metabolites discriminated the FHB resistant 

NIL (bearing resistance alleles at a QTL on 2DL) from that of the FHB susceptible 

NIL (with alternate susceptibility alleles at a QTL on 2DL). Almost all the RR 

metabolites had high (L≥0.5) CAN-loadings (Table 5.1). These RR metabolites 

can be used to differentiate the NIL with resistance alleles at a QTL on 2DL from 
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that of the NIL with susceptible alleles. The remaining metabolites, even though 

they had high loadings to resistance functions (identified by CAN1 and CAN2), 

were not identified as RR metabolites due to high variances. This is the first study 

where metabolic profiles were used to discriminate resistance in NILs with 

alternate alleles of a QTL for disease resistance. All of the 182 metabolites 

detected in this study, whether identified or unidentified, were consistently 

detected in replicates and as a result represented the metabolic profiles of the 

NILs studied here (Kopka, 2006). 

 The disease severity, measured as the number of diseased spikelets per 

spike, in the NIL with FHB resistant alleles at a QTL on 2DL was 1.0, compared 

to 2.75 for the susceptible NIL. In the resistant NIL disease did not spread 

beyond the spikelet that was inoculated, confirming type II resistance. This NIL 

also exhibited type II resistance under greenhouse conditions (Somers et al., 

2003). 

 Using a metabolomics approach, we consistently detected 182 

metabolites, of which 127 were tentatively identified. This is not considered 

comprehensive, as several metabolites that may have been present in the 

samples were either not extracted with the solvents used, were not capable of 

being extracted efficiently, or were too non-volatile to be gas chromatographed 

(Sumner et al., 2003; Dunn et al., 2005). However, significant biological 

information had previously been reported based on only a few metabolites 

(Hamzehzarghani et al., 2005; Schauer et al., 2006). Manual processing of 

GC/MS output leads to erroneous dataset generation therefore, we applied 

AMDIS and MET-IDEA to process our GC/MS data. AMDIS performs noise 

analysis, component perception, spectral deconvolution and compound 

separation, to provide optimal data for library searching. MET-IDEA was used to 

improve the sensitivity of detection and gas chromatogram alignment and 

quantification (Broeckling et al., 2006). We have used a non-targeted approach to 

detect metabolites. While the RR metabolites reported here were identified using 

comparisons with mass spectral libraries, confirmation by comparisons with 

authentic standards is still required. 
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In metabolomics, both biological and technical variations are generally 

high. We eliminated the metabolites that were not significant at P ≤ 0.2 based on 

univariate ANOVA from further analysis. RR metabolites and respective 

resistance functions were identified based on a student t-test and multivariate 

analysis. The RR metabolites were identified based on a t-test with a varying 

P≤0.05 level of significance. The biological variability may be related to the 

variation in the physiological stage of the spikelets at the time of pathogen 

inoculation and to the use of a mixture of plant parts (the rachis, rachilla, lemma, 

palea and reproductive parts) in one sample. Technical errors may include 

variable metabolite extraction efficiencies. 

Another problem in metabolomics, as in other ‘omics’, is data visualization. 

The ANOVA reduced the number of compounds submitted for further analysis. 

The t-test enabled identification of RR metabolites. The CANDISC analysis 

reduced the dimensionality of the data space and improved the data visualization 

by maximizing the resolution power. In addition, this analytical scheme enabled 

us to illuminate the mechanisms of resistance to FHB in wheat NILs by identifying 

biological functions and associated metabolites. 

Several of the RR metabolites identified here, even though based on 

statistical analyses, have already been reported as antimicrobial compounds, 

signal molecules or their precursors. Plant phenylpropanoids are involved in 

signal transduction, the synthesis of several defense-related metabolites and the 

development of physical barriers (Dixon et al., 2002).  The metabolite p-coumaric 

acid has been reported in wheat (Wu et al., 2001; McKeen et al., 1999). It has 

been found to be in greater abundance in wheat cultivars resistant to FHB than 

those, which are not (Siranidou et al., 2002; Hamzehzarghani et al., 2005). It was 

identified in this study as an RRI metabolite. It is a precursor for the synthesis of 

other defense-related phenolics such as coumarins and monomers of lignin such 

as p-coumaryl, conferyl and sinapyl alcohols. These lignin monomers are used by 

plants for the rigidification of cell walls in order to prevent the spread of the 

pathogen (Fig. 5. 3) (Dixon et al., 2002). 



  

 117

The compound γ-aminobutyric acid, identified here as a RRC metabolite, 

has antimicrobial activity (Walker et al., 2003). It has been shown to accumulate 

in the leaves of Cistus ladanifer after treatment with salicylic acid (Chaves et al., 

2001). It was reported to protect Arabidopsis against the Oomycete pathogen 

Peronospora parasitica through activation of the natural defense mechanisms of 

the plant such as callose deposition, the hypersensitive response, and the 

formation of trailing necroses (even in mutants lacking salicylic acid, jasmonic 

acid, and ethylene signaling pathways) (Zimmerli et al., 2000). 

 Several of the RR metabolites identified in this study were linked to each 

other through different metabolic pathways leading to the production of defense-

related metabolites. The metabolites p-coumaric and benzoic acids, identified 

here as RRI and RRC metabolites, respectively, are produced following 

deamination of phenylalanine (Fig. 5.3). Even though phenylalanine was 

identified here as an RRC metabolite, its abundance in the resistant NIL was 

significantly reduced following pathogen inoculation, suggesting that in the 

resistant NIL it is depleted by other biosynthetic shunts more rapidly than in the 

susceptible NIL (Fig.5.3). Benzoic acid is a precursor for salicylic acid and a key 

signaling molecule implicated in both local and systemic induced resistance 

responses (Pieterse and Van loon, 1999). A constitutive role in defense against 

rice blast (Magnaporthe grisea) has been attributed to salicylic acid in rice (Oryza 

sativa L.) (Silverman et al., 1995). Salicylic acid has also been implicated in the 

resistance response of wheat against Russian wheat aphids (Mohase and van 

der Westhuizen, 2002). The use of salicylic acid-like compounds such as benzo 

(1, 2, 3) thiadiazole-7-carbothioic acid S-methyl ester (BTH) has been shown to 

induce systemic acquired resistance of wheat to powdery mildew (Gorlach et al., 

1996). Salicylic acid was not detected in our study. However, a significantly 

greater abundance of benzoic acid in the resistant (vs. susceptible) NIL (RRC 

metabolite) indicates the existence of a possible array of precursors for salicylic 

acid (Fig. 5.3). In addition, benzoic acid and its derivatives have antifungal activity 

(Bénigne-Ernest et al., 2002). 
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Palmitic and stearic acids were identified as RR metabolites. They are 

required for the synthesis of jasmonic acid that plays a key role in the salicylic 

acid independent pathways and activates multiple resistance mechanisms 

(Pieterse and Van loon, 1999). Jasmonic acid has been detected in the shoots 

and roots of wheat seedlings (Dathe et al., 1994). It increases the synthesis of 

phenolic compounds by stimulating the phenylpropanoid pathway (Gundlach et 

al., 1992; Buchanan et al., 2000). We have detected linolenic acid (18:3) which 

had moderate negative loading to CAN1 (L1=-0.40). However, it was not 

identified in this study as a RR metabolite. Farmer et al. (1998) have reported the 

importance of the hexadecanoic and octadecanoic acid pathways in the synthesis 

of jasmonic acid via synthesis of linolenic acid (Fig. 5.4). 

Plants with higher levels of resistance to diseases have higher levels of 

myo-inositol (Berridge and Irvine, 1989; Hammond-Kosac and Jones, 1996; 

Lamb and Dixon, 1997). Myo-inositol was identified here as a RRC metabolite. It 

is synthesized through the conversion of glucose (Loewus and Murthy, 2000). 

This pathway is implicated in cellular signaling, gene expression and intracellular 

calcium (Ca2+) concentration control mediated by ion channel regulators (Nelson 

et al., 1998; Exton, 1996). It has been shown that the defense response genes 

coding the ion channel regulator are located on the 2D and 3B chromosomes of 

wheat (Li et al., 1999).  

Resistance to FHB in wheat is controlled by several FHB-QTLs (Somers et 

al., 2003; Bai et al., 2003a)  The QTL on chromosome 2DL, used in this study, 

has been identified in Wuhan1 (Somers et al., 2003). The 2DL-QTL has also 

been identified in the Chinese landrace Wangshubai (Mardi et al., 2005), but not 

in Sumai3. Several, though not all, of the RR metabolites identified in this study in 

the NIL with a FHB resistance QTL on 2DL chromosome  had also been 

identified as metabolites related to the resistance function, based on the factor 

analysis in our previous study on Sumai3, even though it lacks the QTL on 

chromosome 2DL (Hamzehzarghani et al., 2005). Some of these were 

phenylpropanoid related metabolites, signal compounds such as myo-inositol, 

fatty acids of the octadecanoid/hexadecanoid pathway, and amino acids. These 
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RR metabolites were common to both Sumai3 and the resistant NIL with QTL on 

2DL from Wuhan1. This means that other FHB-QTLs (3BS and 6BS QTL of 

Sumai3) are also capable of producing these RR metabolites. Alternatively, not 

all the metabolites or their abundance were common to Sumai3 and the NILs 

tested here. Therefore, cultivars such as Sumai3 with several known QTLs seem 

to produce an array of RR metabolites. Unfortunately, because the analytical 

protocol between our two studies was different, a more precise comparison of the 

abundance of metabolites was not possible. A comprehensive study to identify 

the RR metabolites of NILs with different QTLs would be crucial to elucidate the 

specific roles of these QTLs in FHB resistance. 

 A QTL is a polymorphic site on a chromosome comprising alleles that 

differentially control the expression of a continuously distributed trait.  However, 

each QTL may have several genes and each gene may have several alleles, 

occurring in varying combinations in different genotypes, wherein lies the 

polymorphism in wheat resistance to FHB. It is possible that several wheat QTLs 

or genes conferring resistance to FHB, expressed phenotypically as different 

types of resistance, vary in the RR metabolites produced. Additionally, within 

each of these resistance QTLs, the number of alleles determines the abundance 

of the respective RR metabolites they produce. In this study, we have identified 

several RR metabolites associated with the FHB resistance QTL on 2DL 

chromosome. The presence of such a large number of RR metabolites can be 

explained only by the presence of several genes within this QTL on chromosome 

2DL. Metabolic profiling of NILs containing QTLs with fewer or single resistance 

genes and their alleles could lead to the identification of gene specific 

metabolite(s), and the reason for their variation in abundance. This may enable a 

better understanding of resistance mechanisms. Studies based on such a 

hypothesis have recently been carried out on introgression lines (ILs) of tomato in 

order to identify the genomic regions associated with changes in tomato fruit 

metabolites (Schauer et al., 2006). Schauer et al. (2006) did a comprehensive 

metabolic profiling, along with phenotyping of plant characters and a genotyping 

that allowed the development of a cartographic network based on correlation 
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analysis. This led to the identification of nearly 900 quantitative fruit metabolic 

loci, as well as the identification of associated genes. However, this was a long-

term study. Alternatively, similar studies on NILs with different FHB-QTLs can 

identify sets of RR metabolites, the variation in which can explain the 

mechanisms involved in the resistance to FHB. 

The conventional method of screening wheat-breeding lines for resistance 

to FHB involves the visual assessment of spikelet disease incidence, disease 

severity, kernel damage, DON content in grains and grain yield. These 

parameters are also used in identifying the types of resistance. The classification 

of the type of resistance is vague and overlapping. The RR metabolites, which 

were identified in this study, along with their putative roles in plant defense, 

demonstrate the potential of metabolic profiling to explain the mechanism of 

resistance by relating metabolites to resistance QTLs. However, a clear proof of 

the metabolic function of a given metabolite would require similar studies based 

on NILs with single genes or knockout mutants. The physical, chemical and 

biological environmental factors significantly influencing resistance under field 

conditions can be simulated under controlled greenhouse conditions, and their 

effects can be quantified based on the level of RR metabolites. Such an 

approach, can save time involved in the screening of breeding lines based on 

types of resistance, under different geographical locations over years. When 

most significant RR metabolites in selected sources of breeding materials are 

identified, they can be used as biomarker metabolites in screening other breeding 

lines and segregating populations. A greater abundance of RR metabolites, 

relative to a standard(s), can be selected for and further used in breeding, 

pyramiding genes or gene discovery (Schauer et al., 2006). 

The QTL on chromosome 2DL, used in this study, is one of several FHB-

resistance QTLs studied in wheat, and explains only approximately 13% of the 

phenotypic variation in resistance to FHB (Yang et al., 2005). More than ten QTL 

conferring significant levels of resistance to FHB have been identified 

(Mesterhazy 2003).  Similar studies involving several other QTLs are required to 

develop a more comprehensive technology to use metabolomics as a screening 



  

 121

tool. The knowledge base generated here on RR metabolites, after confirmation 

of their identities, can also be used to enhance the resistance level in elite 

cultivars. This would be based on metabolic engineering to overexpress RR 

metabolites, and based on gene pyramiding by accumulating suitable genes with 

known functions. 
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Table  5.1. A selected list of tentatively identified metabolites from a total of 182 

consistently found in replicates, including RR metabolites of two wheat NILs with 

resistance (R) or susceptibility (S) alleles for a QTL on 2DL chromosome, at 24 h 

after inoculation with F. graminearum (P) or water (W). The RR metabolites, 

based on the results of t-test, are constitutive RR (RRC, where RW>SW) or 

induced RR (RRI, where RP>RW>SP). In addition, the metabolites with high 

levels of loadings, in descending order, to two significant CAN-vectors explain 97 

percent of the variance in the abundance of 122 metabolites, based on canonical 

discriminant analysis. 
 

No1 Ref. 
No2 NAME3 CAS4 CAN1 CAN2 RR-M5

1 30 Asparagine EPA41391 0.99 0.11
2 170 EITTMS_N12C_NTAL_1636.8_1135ec07 NA 0.93 -0.37 C
3 22 Proline 30274772 0.87 0.46 CI
4 176 EIQTMS_N12C_LPIL_2255.3_3268AU29 NA 0.83 0.43 C
5 24 γ-Aminobutyric acid  NA 0.83 0.29 C
6 9 Isoleucine 15985010 0.82 0.50 C
7 160 1-Palmitoylglycerol NA 0.80 0.60 CI
8 150 EIQTMS_N12C_LJAN_2420.0_2233bg14_ NA 0.80 0.38 C
9 109 Benzoic acid 23676097 0.78 0.46
10 3 Tetroquinone 319891 0.75 0.66
11 163 2-Propenoic acid EPA221713 0.75 0.60 C
12 158 Hexadecanoic acid 53212934 0.74 -0.15 C
13 164 EIQTMS_N12C_LPAL_1128.1_3268AU16_ NA 0.73 -0.03 C
14 76 Myo-Inositol 33910064 0.72 0.53 CI
15 62 EIQTMS_N12C_LPEFR_2093.3_03363A03_ NA 0.71 0.08 C
16 14 EIQTMS_N12C_LJALM_1344.9_2236bg40_ NA 0.70 0.70 I
17 8 Threonine 7536825 0.69 0.44 C
18 26 Glutaric acid 60022879 0.69 -0.56 C
19 174 EITTMS_N12C_STUO_2121.9_1135ec12_ NA 0.67 0.37 C
20 25 EIQTMS_N12C_LESFR_1555.8_3090AU05_ NA 0.62 -0.58
21 79 Adenosine 53294330 0.61 0.27 C
22 84 EIQTMS_N12C_LPIFR_2730.9_03363A05_ NA 0.27 0.96 I
23 5 Serine NA 0.34 0.93 I
24 119 p-coumaric acid 27798692 0.28 0.90 I
25 12 EITTMS_N12C_ATHL_1326.9_1135ec24_ NA -0.44 0.89
26 77 EIQTMS_N12C_LESFR_2525.2_3090AU09_ NA 0.22 0.88
27 51 EITTMS_N12C_NTAL_1932.2_1135ec26_ NA 0.56 0.83 I
28 132 Cinnamic acid 27798705 0.21 0.79
29 100 6,7-Dimethyl-3H-isobenzofuran-1-one 343852506 -0.61 0.77
30 166 β-Monostearin 621614 0.50 0.63
31 33 Xylose  NA -0.31 0.57
32 45 EIQTMS_N12C_LPIFR_1891.4_03363A05_ NA 0.33 0.48 C
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33 162 Methyl tricosanoate 2433978 0.54 0.43 C
34 108 Methyl vanillate 3943746 0.42 0.41 C
35 140 Stearic acid 57114 0.49 0.06 C
36 142 Pentadecanoic acid 111615 0.13 -0.05 C
37 75 EIQTMS_N12C_LJALD_2396.6_2236bg30_ NA 0.56 -0.59 C

 
1 Compound serial number.  
2 Compound reference number (see supplementary Table 5.1, Appendix 2). 
3  Compound names, or unidentified but detected in GOLM metabolome 

database (Kopka et al., 2005), according to NIST® 2005 and MSRI 

libraries.  
4  Chemical abstract number based on NIST 2005, NA=not applicable.  
5  RR metabolites: Metabolites with significantly (P≤0.05) higher abundance 

in the resistant allele; C = Constitutive = RRC; I = Induced = RRI, IC = 

RRCI. 
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Figure  5.1. Scatter plot, based on projections of first three significant CAN-

vectors of canonical discriminant analysis (CDA) of the abundance of 122 

metabolites for water- and pathogen-inoculated NILs with resistance and 

susceptibility QTL alleles on 2DL. The arrows along CAN1- and CAN2-vectors 

show the direction of increase in resistance (the resistance measured as disease 

severity is associated with CAN-scores) with CAN-scores. CAN1 (constitutive) 

and CAN2 (induced) explained 98 percent of the total variance in metabolite 

profiles. 



  

 125

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

RW 

SW 

SP 

RP 

SS

R

R
CAN2=12.9% 

CAN1=85% 

CAN3=2.1% 



  

 126

Figure  5.2. Cluster tree generated based on hierarchical cluster analysis using 

the first three canonical variables from the canonical discriminant analysis of the 

abundance of 120 metabolites detected in the two wheat NILs (Q and N 

representing NILs with alternate alleles of QTL on chromosome 2DL, 

respectively) inoculated with F. graminearum (P) or water (W). The scale 

represents the Euclidean distance in canonical space. 
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Figure  5.3. Phenylpropanoid pathway in plants drawn from Dixon et al. (2002); 

BA, benzoic acid; BA2H, benzoic acid 2-hydroxylase; CA, tran-cinnamic acid; 4-

CA, 4-coumaric acid; CA2H, cinnamate 2-hydroxylase; PAL, phenylalanine 

ammonia-lyase; L-phe, L-phenylalanine; ShA, shikimic acid; The pathways are 

trimmed. L1 and L2 are loadings of the metabolite on CAN1- and CAN2-vectors, 

respectively.  
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Figure  5.4. A simplified biosynthetic pathway of jasmonic acid (JA) in Arabidopsis 

showing the importance of octadecanoic and hexadecanoic acid pathways in JA 

biosynthesis modified from Farmer et al. (1998), 16:0=hexadecanoic acid; 18:0= 

octadecanoic acid; 16:3=7,10,13-hexadecatrienoic acid; 18:3=9,12,15-octa-

decatrienoic acid and OPC 4, 6, and 8 are oxo(pentenyl) cyclopentane 4, 6, and 

8, respectively. L1 and L2 are loadings of the metabolite on CAN1 and CAN2-

vectors, respectively; numbers=names of the metabolites, full names are given in 

Table 5.1. 
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Chapter 6  
General summary and suggestions for further research 

6.1. General summary 

Fusarium head blight (FHB), caused mainly by F. graminearum, is the 

principal disease of wheat in Canada. The damaging effects of the disease 

include yield and qualitative losses, the latter due to the production of several 

mycotoxins in wheat kernels (Bai and Shaner, 1994; Parry et al., 1995). Among 

the different methods of controlling the disease, breeding for resistance remains 

one of the most promising (Bai and Shaner, 1994).  

Complete resistance in adapted elite cultivars is far from attainable, 

especially in certain cultivars of winter and durum wheat. The disease has been 

challenging breeders for decades and many breeding programs have attempted 

to develop new scab resistant varieties with good agronomic traits.  

One of the most important steps of breeding for FHB resistance is 

screening wheat genotypes for resistance. Resistance is mainly evaluated by 

screening wheat cultivars and lines based on a disease severity scale and/or 

DON content rating of the grain. However, a high spatiotemporal variability of 

FHB symptoms hinders the visual assessment of FHB resistance (Parry et al., 

1995). Furthermore, visual evaluation of FHB resistance is quite time consuming 

and expensive. Development of new high throughput techniques for a more 

accurate, rapid, and less expensive evaluation of FHB resistance in wheat 

germplasm is a top priority of breeding programs. Besides their application in 

screening for FHB resistance, such methods develop our knowledge of the 

functions of the FHB resistance genes and help pyramid suitable FHB-resistance 

alleles into elite cultivars.  

The new era of high throughput functional genome analysis of plants aims 

to assign functions to unknown genes. To help achieve this goal, methods such 

as transcriptomics, proteomics, and metabolomics can be employed. 

Spatiotemporal analysis of the qualitative and quantitative changes of mRNAs, 
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proteins and metabolites can generate the most comprehensive gene expression 

database regarding unknown cell functions.  

Metabolite profiling is a high throughput and unbiased analysis of a wide 

range of metabolites through a single measurement. It is considered a rough 

biochemical snapshot of the cellular metabolome recorded by sophisticated 

hyphenated technologies such as GC/MS. The most attractive feature of 

metabolite profiling is direct detection of a biochemical phenotype through the 

process of relating, combining, and coupling chemical analysis with genetic 

analysis (Holtorf et al., 2002; Bino et al., 2004). Metabolites are the final products 

of gene expression. Therefore, metabolite profiling can be used independently to 

identify and phenotype a trait. As an instrumental platform, spectroscopy-based 

techniques (mainly GC/MS) have recently shown a wide range of applications for 

the profiling of small molecules. This is due to their relatively rapid and easy 

extraction methods, along with simple and cost effective separation protocols. 

Metabolite profiling using GC/MS technology has been used quite effectively for 

profiling various biological systems (Fiehn, 2000a, b; Roessner et al., 2000, 2001; 

Fiehn, 2002). However, despite its high sensitivity, it suffers from a lack of the 

ability to detect non-volatile metabolites (Johnson et al., 2003).  

This study investigated the potential of metabolite profiling technology for 

studying plant disease resistance, using wheat-fusarium head blight as a model 

system. The study was not only undertaken to discriminate wheat genotypes  

varying in resistance to FHB, but also to look at the possible biochemical 

mechanisms of resistance and the association of certain metabolic pathways to 

resistance to FHB. 

It was hypothesized that wheat genotypes varying in resistance to FHB 

carry different genes/QTLs for resistance, and vary in their metabolic profiles. 

The variations in metabolic profiles were subjected to univariate and multivariate 

statistical analyses to define and classify the biochemical phenotypes of the 

genotypes. The metabolite phenotypes were related to the respective disease 

severity phenotypes to identify biological functions. The metabolites loaded to 
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these functions were subsequently used to explain possible mechanisms of 

resistance.  

Knowledge based on plant defense pathways can be further exploited 

through metabolic engineering. Wheat defense genes to FHB can be identified by 

relating resistance-correlated metabolites to databases of resistance gene 

expression, including transcriptome and proteome databases (Muthukrishnan et 

al., 2001). This knowledge can then be used to pyramid resistance genes into an 

elite cultivar.  

Three independent pot experiments were designed: (i) using two cultivars 

Sumai3 (FHB resistant) / Roblin (FHB susceptible); (ii) six cultivars – 

Wangshubai, AW488, Nobeoka Bozu, BRS177, Frontana, CEP24 (in descending 

order of FHB resistance), and (iii) two NILs with alternate (resistant and 

susceptible) alleles on the 2DL QTL. 

In the first study, (Chapter 3) the GC/MS outputs of total ion 

chromatograms were processed using Saturn Lab software. The metabolites 

were identified using a MS search program and the NIST library (version 2.0). 

Peak identification was carried out by manual inspection of the consistency of 

retention times as compared to internal standards and major fragments of the 

mass spectra across the replicates. The observed mass spectra of each peak for 

different replicates were compared with the ten best choices in the NIST library to 

confirm the identity of a component using match factors. Only the metabolites 

that appeared in all four replicates were considered for further analysis. The 

metabolite profiles of different treatments consisted of the names of the 

components, their respective retention times and the areas under the peaks 

(designated as the abundance of metabolites). 

The data of the second study (Chapter 4) was originally processed 

manually, in a manner very similar to the data analysis of the first study. 

However, it was then reanalyzed with a more advanced analytical platform used 

for the third study (Chapter 5). The GC/MS outputs on total ion chromatograms of 

the second study (Varian Saturn ”sms” file format) were converted into a 

universal “net.cdf” file format using the mass spectral file translator (MassTransit 
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version 3.0.1.16, Palisade Corp., NY). The amount of background noise in some 

chromatograms was quite high and required noise reduction prior to any further 

analysis. The chromatograms were subsequently analyzed using the MetAlign 

software package to correct the baseline or the background noise (Tikunov et al., 

2005). The baseline-corrected chromatograms were then analyzed using AMDIS 

(Version 2.64) and MET-IDEA for identification and quantification of mass 

spectral tags as indicated in the third study (see below).  

In the third experiment (Chapter 5), due to the emergence of advanced 

data analysis software, an easier, faster, and more reliable platform for data 

processing was employed. The total ion chromatogram output from GC-TOF-MS 

was converted into “net.cdf” files using the BRIDGE capability of MassLynx® to 

analyze them by AMDIS (Automated Mass spectral Deconvolution and 

Identification System; Version 2.1, DTRA/NIST 2000) (Davies, 1998). The AMDIS 

output was used for the extraction of the baseline-corrected pure mass spectra 

and correction of the retention time of each component. The NIST library (version 

2.0) was then searched with the mass spectra of each component, to find the 

best 10 matches (Halket et al., 1999). The processed data saved as ”elu” and 

“fin” files, were loaded to MET-IDEA (METabolomics Ion-based Data Extraction 

Algorithm; version 1.2.0) (Broeckling et al., 2006). 

MET-IDEA aligned and quantified the peaks and recorded the abundance 

of each peak in a tab-delimited file format that was loaded into an EXCEL 

spreadsheet. Using the Pivot Table procedure, peaks were filtered for signal 

noise ratio (S/N<20), peak purity (<20%), peaks from column bleed, and peaks 

not appearing in all four replicates. The metabolite profiles of different samples 

consisted of retention times and areas under the peaks, designated as the 

abundance of metabolites. This data was submitted to statistical analysis. The 

areas under the peaks were then adjusted for internal variations by dividing them 

by the abundance of the internal standards. 

The first study reported on the identification of several metabolites relating 

to FHB resistance. In this study, many of the 55 plant-pathogen interaction 

metabolites that were tentatively identified, had already been reported to have 
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known significant roles in plant defense  (Fiehn et al., 2000b; Roessner et al., 

2000 and 2001; Dixon et al., 2002).  

 The metabolites 4-hydroxycinnamic acid (p-coumaric acid) and m-

coumaric acid, two important PAL pathway metabolites, had an up to six-fold 

increase in abundance in the resistant cultivar Sumai3 following pathogen 

inoculation (SP/SW>6). No such change in these two metabolites was observed 

in the susceptible cultivar Roblin. The PAL pathway converts phenylalanine to 

trans-cinnamic acid, a precursor for salicylic acid. The enzyme cinnamate 4-

hydroxylase then hydrolyses trans-cinnamic acid into p-coumaric acid, a key 

metabolite that may serve as precursor of the other phenolic metabolites and 

monomers utilized for reinforcement of the cell wall (Blechert et al., 1995; Blount 

et al., 2000; Buchanan et al., 2000; Dixon et al., 2002). The metabolite 4-

hydroxycinnamic acid has also been reported as a precursor of a group of 

phytoalexins in oat (Avena sativa L.) leaves infected with the rust disease caused 

by Puccinia coronata f.sp. avenae (Muthukrishnan et al., 2001; Okazaki et al., 

2004). Following inoculation with F. graminearum the resistant wheat cultivar 

Frontana exhibited higher concentrations of free phenolic metabolites than did 

the similarly inoculated susceptible cultivar Argent (Siranidou et al., 2002). One 

such metabolite was p-coumaric acid, which increased in the glumes, lemmas, 

and paleas. 

Benzoic acid (BA) was induced in SP (Sumai3 pathogen-inoculated), but 

not detected in RW (Roblin water-inoculated). However, it was found in lower 

levels in RP (Roblin pathogen-inoculated). The decarboxylation of trans-cinnamic 

acid to BA and 2-hydroxylation of BA to salicylic acid (SA) have been reported by 

Leon et al. (1995). Aromatic metabolites such as BA and SA, in addition to their 

intra- and inter-cellular signal transduction roles, are antimicrobial (Hammond-

Kosack and Jones, 1996). The quantity of myo-inositol in Sumai3 was 

significantly greater than in the susceptible cultivar, Roblin, and the level 

increased in both cultivars following pathogen inoculation.   

 A factor analysis of metabolites common to all treatments (SP/SW/RP/ 

RW), based on their factor loadings, classified the metabolites into groups 
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according to their association with susceptibility or resistance to FHB. The 

highest scores for the first and second factors (Fig.3.1) were associated with the 

pathogen-inoculated spikelets of the resistant cultivar Sumai3. The first factor 

was associated with a higher abundance of several fatty acids and aromatic 

metabolites, and the second with metabolites such as p- and m-coumaric acids, 

and myo-inositol. 

Following pathogen inoculation, the amounts of certain fatty acids 

increased in both cultivars, but to higher levels in Roblin. When both cultivars 

were inoculated with the pathogen (RP and SP), they demonstrated higher F3 

scores; however, that of RP was significantly greater than that of SP (Table 3.1), 

pointing to the importance of the JA signal transduction system in Roblin. The 

hexadecanoid/octadecanoid pathway has close links to the JA-pathway, and 

plays a vital role in regulating secondary pathways (Blechert et al., 1995). 

However, despite the rapid increase in the production of JA-related fatty acids in 

the susceptible cultivar, Roblin, the pathogen still invaded this cultivar. 

To investigate the throughput of metabolite profiling and potential 

application of the technology for cultivar screening, an experiment was performed 

with a set of six spring wheat cultivars varying in their level of resistance. These 

included the cultivars AW488, Nobeoka Bozu, Wangshubai, Frontana, BRS177, 

and CEP24 (listed in decreasing order of FHB resistance). This second study 

involved the classification of six wheat cultivars varying in their quantitative levels 

of FHB resistance, based on their metabolic profiles, and the assignment of 

potential resistance biomarker metabolites via the identification of RR metabolites 

and FHB resistance biomarker metabolites. 

As the six cultivars had smaller differences in their levels of resistance 

than existed between cultivars Sumai3 and Roblin, this experiment presented 

more of a challenge for the use of metabolite profiling as a tool for differentiating 

wheat genotypes resistant to FHB. 

Univariate ANOVA and HCA of the disease severity of the six cultivars 

classified them into three disease severity phenotypes (DSPs): (i) DSP1 

(resistant), cvs. Wangshubai, AW488, Nobeoka Bozu; (ii) DSP2 (moderately 
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resistant), cvs. Frontana, BRS177; and (iii) DSP3 (susceptible or slightly 

resistant), cv. CEP24 (Fig. 4.1). The classifiers, resistant, moderately resistant, 

and slightly resistant were chosen arbitrarily. The wheat cultivars Sumai3 and its 

derivatives, Nobeoka Bozu, Wangshuibai, and Frontana (Chinese, Japanese and 

Brazilian source of FHB resistance, respectively), are considered as worldwide 

sources of FHB resistance. Progenies from the crosses to such Brazilian, 

Chinese and Japanese cultivars have shown promise (Comeau et al., 2005). 

Unlike Sumai3 and Frontana that possess only two to three resistance genes, 

Nobeoka Bozu and Wangshubai have five to six dominant FHB resistance genes 

with polygenic inheritance. The latter two cultivars have many forms varying in 

resistance (Mesterhazy, 2003).  

Attempts to find any reports on the relative ranking of the six cultivars in 

their resistance to FHB failed. The percentages of FHB measured (based on four 

isolates and three replicates) for Sumai3, Nobeoka Bozu, and Frontana were 

2.00, 4.96, and 7.36, respectively (Mesterhazy, 2003). In another study, a greater 

disease severity (DS), and incidence (DI) was reported for the cultivar CEP24 

(DS/DI=6.5/42), compared to Frontana and BRS177 (5.1/35 and 4.6/35, 

respectively) (Del Ponte et al., 2005). The disease severity measured in these 

two studies was assessed under different environmental conditions and on a 

different scale, than in the present studies. Therefore, the comparison of the 

absolute values of the cultivars’ disease severities may not be valid. It is still 

possible to have a relative ranking of the cultivars in descending order of FHB 

resistance according to the results of ratings drawn from the abovementioned 

studies. The cultivars in descending order of resistance can be ranked as follows: 

Sumai3, Nobeoka Bozu, BRS177, Frontana, and CEP244. This is very similar to 

the ANOVA and HCA based classification of the six cultivars in the second study 

(Chapter 4). In the absence of any numeric records for Wangshuibai and AW488, 

it is not possible to assign a ranking to them. However, they have been 

consistently reported as highly FHB resistant or as resistant as Sumai3 

(Mesterhazy, 2003; Comeau et al., 2005; Ma et al., 2006).  

In the second study, of several hundred detected peaks, 79 metabolites 
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were tentatively identified in plant extracts of the pathogen-/water-inoculated 

spikes of the six wheat cultivars (Table 4.1). Univariate ANOVA identified 41 RR 

metabolites with significant cultivar effect in homeostatic (RRC) and induced 

(RRI) states. An array of the metabolites very similar to those identified in the first 

study, including myo-inositol, some phenolic metabolites and some fatty acids 

were defined as RR metabolites. A metabolite was determined to be a RR 

metabolite if its abundance was significantly (P≤0.05) greater in a resistant 

cultivar than in the control cultivar CEP24.  

One would expect to identify the same set of metabolites as detected in 

the first study, because a similar analytical method was pursued with some minor 

modifications. As the number of cultivars tested increased in the second study, 

modification of analytical platform towards detection of more metabolites for a 

larger coverage of the metabolome was required. This was necessary to increase 

the odds of detecting more potential RR metabolites. On the other hand, 

analytical platform uniformity was essential to keep different related studies 

comparable. In the absence of a comprehensive analytical method to profile and 

determine the metabolite identity of a plant, the technical uniformity requirement 

contradicts the versatility of the experimental technique to guarantee the 

detection of as many metabolites relating to FHB resistance as possible. The 

development of a comprehensive and universal method for extraction, 

identification, and quantification of plant metabolites therefore remains a 

challenge for plant metabolomics (Bino et al., 2004). This limitation is one of main 

obstacles of relating experimental results form various studies and/or different 

laboratories. 

The canonical discriminant analysis identified two constitutive (Fig 4.2, a) 

and three induced-constitutive metabolic profile phenotypes (Fig 4.2, b) that were 

not identical to the disease severity phenotypes. This may indicate that additional 

types of resistance mechanisms are involved and that they may overlap in 

different DSPs. Cultivar AW488 was associated with high CAN-scores that 

identified both constitutive and induced resistance functions. However, it was 

associated only with a high number of RRI, but not RRC, metabolites based on 
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univariate ANOVA. The cultivar Wangshubai was associated with high CAN-

scores that identified constitutive resistance and had the greatest number of RRC 

metabolites. The cultivars BRS177 and Frontana had low CAN-scores associated 

with constitutive resistance and high CAN-scores that identified induced 

resistance. While the former was associated with several RRI metabolites, the 

latter was not. Instead, it had moderate levels of both RRC and RRI metabolites. 

The mechanism of resistance appears to be complex. Not only does the number 

of RR metabolites play a substantial role in the mechanism of resistance to FHB, 

so may the types of metabolites and their levels. The amount of some critically 

important metabolites such as myo-inositol and some phenolic compounds may 

play key roles in the expression of resistance. If this assumption is correct, in the 

absence of key RR metabolites, even a high level of other RR metabolites may 

not significantly change the defense status of the plant.  

Resistance to FHB in wheat is controlled by several FHB-QTLs (Anderson 

et al., 2001; Bai et al., 2003; Somers et al., 2003). Each QTL may be involved in 

the activation of the metabolic pathways leading to shifts in the levels of certain 

combinations of RR metabolites. The cultivars used for the first and second 

studies have different sets of multiple FHB-QTLs. In the first two studies, in spite 

of the confounding effects of wide differences in genetic background, a 

multivariate statistical approach was able to separate resistant genotypes from 

susceptible ones. Metabolite profiling of several FHB resistance QTLs can reveal 

the biochemical basis of gene expression in FHB resistance.   

The third study provided a unique opportunity to approach the goal of 

assigning function(s) through the use of two susceptible and resistant near 

isogenic lines with alternate alleles on the 2DL QTL. The results of the statistical 

approach and knowledge regarding metabolic pathways were combined to 

characterize constitutive and induced resistance-related metabolites. The near 

isogenic lines had practically identical genetic backgrounds and only varied in the 

2DL QTL. The objective of the third study was to investigate the possibility of 

discriminating a resistant NIL from a susceptible one and relating the RR 

metabolites to a QTL.  
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In this study, the analytical platform was improved by shifting from the ion 

trap MS to a time of flight MS that is more sensitive and records ion counts more 

accurately. A more precise and significantly faster automated computation of 

component abundance was done by implementing the MET-IDEA program in the 

software platform to advance the GC/MS output processing. The analytical 

approach remained the same as in the previous studies (see Appendix 3 for 

analytical approach). The data processing involved data filtration based on the 

signal/noise ratio (the signal to noise value of the peak) and the purity of the 

peaks (percentage of the total ion signal at the peak maximum scan belonging to 

the deconvoluted peak). Any metabolite with a signal to noise ratio and purity less 

than 20 was filtered out. In a second step, any metabolite eluting during column 

bleeding, and hence not from the plant, was removed from further consideration. 

The final filter was a statistical univariate ANOVA filtration in which only 

metabolites that were different between resistant and susceptible genotypes at 

P<0.20 level were retained for multivariate analysis. The value of P<0.20 as a 

level of significance was used in a manner similar to stepwise discriminant 

analysis (STEPDISC). In STEPDISC, the significance levels for both the addition 

of variables in the forward selection mode (SLE) and the retention of variables in 

the backward elimination mode (SLS) is 0.15 (Johnson and Wichern, 2002). The 

researcher may increase SLE and reduce SLS to ensure that no potentially 

important variable that can be used for discrimination is erroneously removed 

from the dataset. Therefore, this univariate ANOVA filtration was applied to 

enhance the chance of including as many potential metabolites in CANDISC as 

possible and simultaneously to eliminate as many metabolites with large 

variability from dataset as possible.  

The RR metabolites were selected based on a t-test significant at the 

P≤0.05 level. In order to distinguish it from RR metabolites, a metabolite was 

considered borderline significant when it was only significant at the P≤0.10 level.  

The third experiment provided a complete differentiation of resistant and 

susceptible NILs with alternate alleles on the 2DL QTL. With the use of canonical 

discriminant analysis, many putative resistance biomarker metabolites were 
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assigned to the 2DL QTL. The grouping of the pathogen- and water-inoculated 

NILs was verified by a separate classification of the wheat varieties using 

hierarchical cluster analysis.  

Of several hundred detected peaks 120 metabolites were tentatively 

identified, including 27 resistance-related (RR) metabolites with a significantly 

(P≤0.05) greater abundance in the resistant NILs, including 22 constitutive (RRC) 

and 8 induced (RRI) metabolites, of which three were common, and also 

increased following pathogen inoculation. 

Canonical discriminant analysis of the abundance of the 120 significant 

metabolites discriminated FHB resistance in the resistant and susceptible NILs. A 

total of 25 and 16 metabolites accounted for the constitutive and induced 

resistances, respectively.  

The first two CAN-vectors accounted for 98% of the variance in the 

abundance of the 120 metabolites (CAN1=85% and CAN2=13%) (Fig.5.1). The 

CANDISC of metabolite profiles was applied to distinguish the two NILs with 

alternate alleles on the 2DL QTL, as well as to investigate the metabolic function 

underlying the clustering pattern of the genotypes. The CAN1- and CAN2- 

vectors classified four populations of P- and W-inoculated plants in each of the 

two NILs into separate clusters in a scatter plot and in a dendrogram (Fig.5.1 and 

5.2, respectively). The CAN1-vector classified the two NILs into separate clusters 

with little difference in CAN1-scores between the P- and W-inoculated plants of 

each NIL. This CAN-vector was considered a measure of the constitutive 

resistance function, as the inoculations (W/P) had little effect upon it. The CAN2-

vector classified the W- and P-inoculated plants; therefore, it was considered a 

measure of the induced resistance function.  

The CAN-vectors were screened for metabolites with high loadings and 

ranked in ascending order, along CAN1- and CAN2-vectors (Table 5.1). Out of 

120 metabolites, 22 and 16 metabolites highly loaded (L>0.5) to CAN1- and 

CAN2-vectors, respectively, with eight that were common to both.  

It is significant to note that all 21 metabolites that highly loaded to the 

CAN1-vector (measuring the constitutive resistance), and 25 of the metabolites 
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that highly loaded to the CAN2-vector (explaining the induced resistance), were 

RR metabolites identified based on the t-tests. 

The phenylpropanoid metabolites, including p-coumaric acid, were shown 

to be IRR metabolite markers, while benzoic acid and methyl vanillate were 

constitutive RR marker metabolites. Butanoic acid was identified as a RRC 

metabolite. Its accumulation in the leaves of Cistus ladanifer after treatment with 

SA has been demonstrated (Chaves et al., 2001). It has also been shown to have 

strong antimicrobial activity (Walker et al., 2003). Myo-inositol was significantly 

higher in the NIL with resistance alleles on the 2DL QTL. This compound also 

had a high loading to both CAN1- and CAN2-vectors. Therefore, it was 

determined to be an induced and constitutive RR metabolite.  

Significantly higher levels of different forms of octadecanoic, 

hexadecanoic, and other fatty acids were identified as RRC metabolites. The 

importance of the hexadecanoic (16:0) and octadecanoic (18:0) acid pathways in 

the synthesis of jasmonic acid (JA), through synthesis of linolenic acid (18:3), has 

been documented, and both 16:0 and 18:0 fatty acids have been shown to be the 

original precursors of JA (Fig. 5.4) (Farmer et al., 1998).  

JA is one of the most important fatty acid-derived signal molecules 

involved in plant defense responses. It induces the synthesis of SA-non-inducible 

PR genes and enhances the synthesis of SA (Bohland et al., 1997; Pieterse and 

Van loon, 1999). It also mediates the induction of defense-related genes coding 

for small antimicrobial proteins called plant defensins. JA is known to increase 

the formation of phenolic metabolites by stimulating the phenylpropanoid pathway 

(Gundlach et al., 1992; Buchanan et al., 2000). 

Throughout the three independent studies, a number of important RR 

metabolites, such as the PAL metabolites (cinnamic acid, coumaric acid, 

isoferulic acid, coumarins, and benzoic acid), myo-inositol, the 

hexadecanoid/octadecanoid fatty acids, and butanoic acid, were consistently 

detected in close association with FHB resistance. This consistency in the 

detection of resistance-related metabolites was irrespective of the continuous 

modifications the experimental platform had to undergo. These RR metabolites 



  

 144

can be considered as potential biomarker candidates for screening wheat genetic 

material for FHB resistance. However, verification of their identities after spiking 

with authentic standards is of crucial importance and is emphasized. 

Many of the metabolites identified consistently as FHB resistance-related 

are also well known for their roles in plant defense (Whetten and Sederoff, 1995; 

McKeen et al., 1999; Wu et al., 2000, 2001; Dixon et al., 2002; Siranidou et al., 

2002; Daoubi et al., 2004). Some examples of these metabolites were coumarins 

(Berenbaun and Zangerl, 1996); benzoic acid (Bénigne-Ernest et al., 2002); 

butanoic acid (Chaves et al., 2001; Walker et al., 2003); and important signal 

molecule such as myo-inositol (Berridge and Irvine, 1989; Smart and 

Flores,1997; Nelson et al., 1998); and the JA-related fatty acids such as 

octadecanoic, hexadecanoic and linolenic acid (Gundlach et al., 1992; Dathe et 

al., 1994; Pieterse and Van loon, 1999; Bohland et al., 1997).  

In metabolomics automatic peak detection and identification is necessary 

to perform large-scale metabolite profiling (Duran et al., 2003). The metabolite 

identification in the three studies was tentative. Spiking with authentic standards, 

or the application of other hyphenated instruments such as tandem mass 

spectrometry MS/MS and NMR, are required to validate the chemical identity of a 

metabolite. In the second and third studies, MSRI libraries (GOLM metabolome 

database; Kopka et al., 2005) and NIST library (version 2.0d, 2005, Palisade 

Corp., NY) were used. The former contains the mass spectra of metabolites 

principally of plant origin, and in the new version of the NIST library, there are 

more mass spectra of plant metabolites. This reduced the chance of 

misidentification of metabolites. However, it does not remove the need for more 

rigorous identification of de novo and RR metabolites that are proposed as 

resistance biomarkers.  

Regardless of the crucial importance of metabolite standards, in many 

cases they are difficult to obtain. To overcome the challenge, it is suggested that 

a system be initiated which assists the exchange of purified or synthetic 

reference metabolites between research laboratories. The reference material is a 



  

 145

purified fraction from a plant extract that must be authenticated by NMR and 

MS/MS.  

Yet such a database of authentic annotated plant metabolites has not 

been developed for metabolomics and remains one of the most important limiting 

factors of metabolomics studies. As an example, Arabidopsis has been one of the 

most extensively studied plants by functional genomics researchers (Bino et al., 

2004). Yet of the estimated 5000 metabolites in a typical Arabidopsis leaf, only 

approximately 10% have been annotated using current technologies.  

Metabolomics, while still in its infancy, must still overcome certain 

limitations such as a lack of comprehensiveness (lack of full coverage of the plant 

metabolome), the need to facilitate comparison of the results between 

laboratories and experiments, and the absence of bioinformatic methods to 

integrate metabolomic data with other functional genomic information. The 

definition of common criteria in community-based works, the foundation of 

concerted action directed towards the release of standard reference materials, 

the invention of combined metabolite libraries, and the construction of metabolite-

specific data management systems are practical objectives for metabolomics to 

follow to become a fully accepted branch of science (Bino et al., 2004).  

This study was able to differentiate wheat genetic material varying in 

resistance to FHB and identify resistance biomarker metabolites. However, 

despite what the metabolite profiling technique was able to accomplish in this 

study, when coupled with the data management protocols developed here, the 

method is still in its development phase.  
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6.2. Suggestions for future research 

1. In this study, several RR metabolites were identified. However, the 

identification of the metabolites is not conclusive. For confirmation of the 

identity of these metabolites, the authentic samples must be spiked, and 

matched.  

2. If the match of an unknown metabolite does not coincide with that of the 

authentic sample, the metabolite is probably a novel one. Other 

hyphenated technologies, such as nuclear magnetic resonance (NMR), 

GC/MS/MS, etc. will be required to verify the chemical identity of the 

metabolite.  

3. In our study, biological variation was significant. To reduce this error it is 

recommended to grow plants in a more controlled environment. This 

includes the measurement of soil conditions, watering volume and 

frequency, and the quantity and frequency of fertilization. A non-fertilized 

control must also be included in all experiments. Steps should be 

undertaken to ensure greater flowering uniformity at anthesis. This will 

reduce the error significantly because it will assure a higher degree of 

metabolic uniformity in the spikelets at the time of inoculation, and 

therefore less discrepancy in spikelet metabolite profiles.  

4. There was some technical error in some of the studies. This was mainly 

because of the split GC/MS analyses of samples from the same 

experiment. The samples must be randomized in the autosampler. It is 

strongly recommended to inject all the samples of the same experiment at 

once. For example, we assume a runtime of 1 hour for each sample in a 

small experiment of 24 samples. The waiting time between the first and 

the last samples would be 24 h at ambient temperature.  

5. The metabolites were related to QTL in an attempt to explain possible 

resistance functions. Similar studies with more NILs, each carrying a 

different QTL or knockout gene studies will help to investigate the role of 

each QTL in the resistance of wheat to FHB.   
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6. The QTLs often carry multiple genes, each with several alleles. Genes 

may work qualitatively and alleles may be responsible for quantitative 

changes of metabolites. Some of these resistance QTLs have known 

pleiotropic effects and therefore have multiple effects. Metabolic profiles of 

lines with different genes in segregating populations varying in alleles for 

resistance to FHB would enable the identification of specific functions of 

these genes.  

7. Several RR metabolites were detected, most of which either were 

precursors of antimicrobial metabolites or linked to these metabolites in 

their synthetic pathway. Integration of these metabolites to other omics’, in 

a single study, can significantly increase the chance of identifying the 

genes and enzymes involved in the production of these metabolites. To 

facilitate such a functional genomic project, simultaneous extraction of 

mRNA, proteins, and metabolites is recommended as both Fiehn (2001) 

and Fiehn et al. (2001) have suggested. 
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Chapter 7  
Contributions to knowledge 

The main goal of this study was to investigate the possibility of 

discriminating plant disease resistance using the metabolite profiling technique. 

Metabolite profiling technology was coupled with univariate/multivariate statistical 

modeling. This led to the identification of an association between some 

metabolites and: (a) their metabolic pathways and (b) the quantitative resistance 

of some wheat varieties to FHB. The contributions to knowledge of this study 

were: 

1. Metabolic phenotyping of wheat cultivars resistant/susceptible to FHB is 

possible through intensive chromatographic and univariate/multivariate 

statistical techniques. 

2. Metabolite profiling can be a potentially high throughput, and relatively 

rapid and easy tool for the automation of screening wheat genotypes for 

FHB resistance. 

3. This study reports on the detection and tentative identification of biomarker 

RR metabolites from different chemical groups such as phenolics, fatty 

acids, amino acids, and sugars. These chemical metabolites have the 

potential application for discriminating different wheat cultivars and 

breeding lines for resistance. 

4. PR and RR metabolites were defined based on univariate ANOVA and 

multivariate statistical methods. The same statistical criteria were applied 

to classify RR metabolites into constitutive (CRR) and induced (IRR) RR 

metabolites.   

5. Metabolic profiling was used to differentiate resistant and susceptible 

wheat NILs varying in the alleles of just one resistance QTL at both 

homeostatic and induced states.  

6. There was evidence of a statistical association (P≤0.05) between 

metabolites related to the PAL and hexadecanoid/octadecanoid pathways 

with FHB resistance in wheat. 
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7. Several RR metabolites that have known antimicrobial properties such as 

p-coumaric acid, isoferulic acid, cinnamic acid, benzoic acid, aminobutyric 

acid, propanoic acid and other fatty acids were identified. 

8. This study reports on the application of MetAlign, AMDIS and MET-IDEA 

as an analytical software platform to automate the tasks of mass spectral 

deconvolution, baseline correction and quantification of MS abundance of 

metabolites in wheat. 
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Appendix 3. Analytical method for metabolic profiling of wheat spikelets  

(modified from Fiehn et al., 2000a, b) 

 

 
     30 mg freeze dried tissue + 1.4 ml 100% MeOH 

(Vortex for 20 seconds) 
 

 

                                                Add 50 µl Ribitol (0.2 mg ml-1) 
+ 50 µl Nonadecanoic acid methyl ester (2 mg ml-1 CHCl3), 

                          + 300 µl de-ionized water, (adjust pH~5-6) 
 

 

        Shake at 70 oC for 15 min, centrifuge at 12500 g for 20 min 

    

 

                 

                        Non-polar fraction (pellet) 

                     

 

   

 

Add 750 µl CHCl3 to pellet 
Shake for 10 min at 37 oC 
                   

 

                                                   Centrifuge at 12500 g for 20 min 

 

 

  

         

 

 

          Add 1.4 ml H2O, shake well,  

       Centrifuge at 4000 rpm for 15 min                            2.8 ml Polar fraction  

             800 µl Non-polar fraction  

 

 

Filter the supernatant (polar 
fraction) through Ultrafree-CL 
(0.22 µl) microfilter, centrifuge 
 at 4000 rpm for two min 
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                          Polar fraction (~ 2.8 ml)                              

Freeze dry and store 
the rest (1.8 ml) in                      
-80 oC for LC/MS  

  
   Non-polar fraction                                           Freeze dry 1 ml for GC/MS 
          (~ 800 µl)   
 

Methoximation 
 

Add 50 µl of 20 mg methoxyamine hydrochloride in 1 ml pyridine, 
at 30 oC for 90 min in water-bath shaker 

 
 

Refrigerate                       To the rest (700 μl) add                          
100 μl for LC/MS              900 µl CHCl3 + 1 ml MeOH                                          
                                        (Containing 3% v/v H2SO4)     Sylilation (using MSTFA) at 37 oC 
                                                                                             for 30 min in water-bath shaker 
 
 

        Transmethylation of lipids/free-fatty acids 

 

            Shake in water-bath at 100 oC for 4 h 

 

     Add 4 ml water and vortex for 30 seconds, 
          Centrifuge at 4000 rpm for 15 min, discard H2O phase, 

      Repeat washing phase 3 times               
 

 

 

 

 

           Dry the CHCl3 phase over anhydrous 
        Na2SO4, Transfer supernatant to glass vial, 
     Concentrate ~ 80-μl / Methoxymation / sylilation 

 

Injecting  
1 μl into the injection 

port of a GC/MS 
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