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Preface

The contributions of this thesis that are original to the author’s knowledge are as follows.

• Chapter 3

– A systematic approach to modelling LIDAR range uncertainty is described and a

model of the RP-LIDAR is experimentally obtained.

• Chapter 5

– The point-to-point WOLATE algorithm is presented.

– A point-to-plane WOLATE algorithm is derived.

– A point-to-line WOLATE algorithm is derived.

– The Total Registration algorithm, which combines point-to-point, point-to-plane

and point-to-line registration is presented.

– A constrained variant of the OLATE/WOLATE algorithm is derived.

All text, plots, illustrations, and numerical and experimental results in this thesis are

produced by Duowen Qian. James R. Forbes and Tim D. Barfoot derived the original

point-to-point Weighted OLATE registration method which is in turn based on [1]. Duowen

Qian modified this Weighted OLATE method for application to point-to-plane and point-

to-line registration. This led to a combined registration algorithm that is linear and easily

implementable in feature-based scan matching algorithms.
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Abstract

This thesis investigates the design of an accurate autonomous navigation strategy for both

ground and aerial vehicles in GPS-denied environments. Current methods for Simultaneous

Localization and Mapping (SLAM) are often situation specific with performance dictated by

the environment in which it operates. The proposed approach uses accurate LIDAR-based

scan-matching and attempts to be more adaptive to different environments by matching

different types of feature points. A novel weighted optimal linear attitude and translation

estimator (WOLATE) is first derived and used as the backbone point cloud registration al-

gorithm. Specifically, point-to-point, point-to-plane, and point-to-line variants of WOLATE

are derived and are shown to each be suitable for different types of points, be it feature

points, surface-points, or edge-points. This suite of registration algorithms are embedded

into the standard Iterative Closest Point (ICP) framework and shown to outperform stan-

dard registration methods in terms of accuracy. In particular, when combined with a feature

extractor capable of extracting edge and surface features, the point-to-point, point-to-plane,

and point-to-line algorithms, when working in tandem, not only ensure that each data point

is paired with its most suitable cost function, but also allows the distribution of weights to

each point. Furthermore, the linear nature of the solution makes it easy to constrain certain

states for which a reliable estimate is already available a priori. This approach is shown

to be more adaptive to different types of incoming point-cloud data and less prone to drift

when used for long trajectory estimation. The resulting local SLAM pipeline is tested on

simulated 2D data where the scene can be controlled and where groundtruth is available.

The pipeline is then validated on experimental 3D data.

xiii



Résumé

Ce mémoire étudie la conception d’un système de navigation autonome précis pour les

véhicules terrestres et aériens dans les environnements sans GPS. Les méthodes actuelles

de localisation et cartographie simultanées (SLAM) sont souvent appliquées à des situations

spécifiques et leurs performances sont dictées par l’environnement qui est exploré. L’approche

proposée utilise une correlation précise des balayages LIDAR et tente de mieux s’adapter à

différents environnements en reliant différents types de points d’intérêt. Un nouvel estimateur

optimal linéaire d’attitude et de translation utilisant des poids (WOLATE) est d’abord

dérivé et utilisé comme algorithme de base pour enregistrer des nuages de points. Plus

spécifiquement, les variations point-à-point, point-à-plan, et point-à-ligne de WOLATE ont

été dérivées et ont été demontrées comme étant applicables à différents types de points

d’intérêt, qu’il s’agisse de points individuels, de points de surface ou de points de coin.

Cet ensemble d’algorithmes d’enregistrement est intégré au cadre ICP (Iterative Closest

Point) et est démontré supérieur, en terme de précision, aux méthodes d’enregistrement

de référence. En particulier, lorsqu’ils sont combinés avec un extracteur de point d’intérêt

capable d’extraire des points de coin et de surface, les algorithmes point-à-point, point-à-plan

et point-à-ligne fonctionnant en tandem ne garantissent pas seulement que chaque point est

associé à la fonction de cot la plus appropriée, mais garantissent également la répartition des

poids pour chaque point. De plus, la nature linéaire de la solution facilite la contrainte de

certains états pour lesquels une estimation fiable est déjà disponible. Cette approche s’avère

plus adaptable à différents types de nuages de points et moins sujette à la déviation lorsqu’elle

est utilisée pour l’estimation d’une longue trajectoire. Le processus SLAM résultant est testé

sur des données 2D simulées dans lesquelles l’environment peut être contrôlé et où la vraie

trajectoire est connue. Le processus est ensuite validé sur des données 3D expérimentales.

xiv



Chapter 1

Introduction

Robotics is arguably the study of giving life, or autonomy to machines. For a robot to

realize autonomy, it must solve the navigation, guidance, and control problems. Navigation

answers the questions “where is the robot”. Guidance answers the question “where should

the robot go or what path must the robot follow, given its current location”. Control answers

the question “what inputs must be applied to the robot in order to follow the desired path”.

Information from each stage of this problem is passed onto the next stage. Thus, errors

made earlier on can have irreparable impact. Ensuring that the navigation problem is solved

accurately and efficiently is therefore of crucial importance to the quality of the solution to

the overall autonomy problem.

Simultaneous Localization and Mapping (SLAM) is a general term to describe the suite

of methods and algorithms used to solve a more sophisticated navigation problem, that

being estimation of where objects in the environment are located relative to each other, and

estimation of where the robot is located relative to the objects.

Many roboticists consider SLAM to be a solved problem [3]. Though this may be true

on a case-by-case basis, much research still needs to be conducted to obtain a solution that

is robust to different type of sensor measurements, arrangements, scenes, and environment

conditions. For example, a ground vehicle equipped with wheel encoders and GPS can

attain fairly accurate pose estimates while operating outdoors, but if given only a monocular

camera and an IMU while operating indoors, the pose estimate of the robot can be very

poor. Similarly, there exist many low-drift visual odometry solutions using stereo or RGBD

cameras, but these algorithms will break under poor lighting conditions. Another example

would be the suite of feature-based visual odometry methods that will fail in featureless

environments, such as a long road or corridor. Furthermore, all sensor measurements are

corrupted by noise, and in the event where the noise is sufficiently large, any SLAM solution

will be affected. As described in Cadena et al. [3], we are entering the robust-perception-
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age characterized by robustness to different environments and scenarios, resource awareness,

and task-driven perception. In this thesis, special attention is paid to UAVs operating in

both GPS-available and GPS-denied environments where odometry is difficult to obtain.

This motivates the development of a reliable scan-matching algorithm. Furthermore, the

inherent noise in all measurements is recognized and utilized to improve current state of the

art LIDAR-based SLAM methods to be less affected by poor measurement conditions.

1.1 Thesis Objectives

The objective of this thesis is to design a LIDAR-based scan-matching method that is

more accurate than existing methods. The contribution of this thesis is the derivation of a

novel point cloud registration method, henceforth called Total Registration, that leverages

different types of points, such as feature, surface, and edge points, and can weigh individual

point uncertainty on a component level to achieve greater accuracy.

A major contribution of this thesis is the derivation of the standalone registration methods

that lead up to the formulation of the Total Registration algorithm. These include the point-

to-point Weighted Optimal Linear Attitude and Translation Estimator (WOLATE), point-

to-plane WOLATE, and point-to-line WOLATE. Individual points in a point cloud originated

from a LIDAR or a camera are always accompanied with varying uncertainties. WOLATE

provides a way to account for these uncertainties, something current-day methods tend to

ignore. Furthermore, a constrained variant is derived to account for prior state estimates.

Another contribution of this thesis is the fusion of a wide variety of methods designed to

tackle different parts of the SLAM problem into a cohesive local SLAM pipeline. To perform

SLAM from start to finish is not a trivial task. In fact, the majority of SLAM resources are

in the form of conference and journal papers that tackle only a small piece of the SLAM

pipeline or describe a particular application. This thesis will offer an overview of what a

common LIDAR-based SLAM pipeline would look like and present tools that are tailored to

weighted point cloud scan matching.

1.2 Thesis Overview

The remainder of Chapter 1 will offer a brief overview of SLAM history and introduce

both classical and new methods for the front and back-end of SLAM.

Chapter 2 will cover basic mathematical notation and concepts that will be applied

throughout this paper.

In Chapter 3, measurements from a commercial-grade LIDAR is modelled in order to

2



simulate noise in later simulations.

In Chapter 4, data preprocessing techniques are introduced and a strategy is offered to

tackle different data inputs.

In Chapter 5, the local scan matching strategy for both 2D and 3D LIDAR data is

presented. In particular, the novel point-to-plane WOLATE registration method and its

point-to-plane and point-to-line variants will be derived. The Total Registration algorithm

will also be outlined.

In Chapter 6, comparison results between WOLATE and existing registration methods

are provided. Tests conducted on simulation data across a wide range of scenarios will show

accuracy improvements compared to traditional methods.

Chapter 7 concludes the thesis along with recommendations for future work.

1.3 A Brief History of SLAM

Early formulation of the SLAM problem within a probabilistic framework is generally

attributed to Smith, Self, and Cheeseman [4] who showed that as a mobile robot moves

through an unknown environment, taking relative landmark measurements, the estimates of

these landmarks are correlated with each other because of the common error in estimated ve-

hicle location. Since then, a number of solutions to the SLAM problem have been presented,

most of which differ in either the front-end data-association approach or the back-end esti-

mation approach used. The data-association problem deals with the correct identification of

constraints based on the acquired sensor measurements. For image data, this is a computer

vision problem solved with feature matching whereas for laser range-finder data, laser scan

matching or point-cloud alignment are popular methods. The back-end estimation problem

deals with solving for the configuration of the robot states that maximizes the likelihood of

the measurements taken. The full SLAM solution is a marriage between the front-end and

back-end methodologies. Each problem will now be introduced separately, starting with the

front-end.

1.3.1 The SLAM Front-End

The first step of SLAM involves processing incoming noisy sensor data and interpreting

it in a meaningful and useful way. Most importantly, the relationship between each measure-

ment, be it taken immediately after one another, or taken in between long periods of time,

must be established such that their information can be optimized later on. These tasks are

collectively referred to as the SLAM front-end.
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In the case of UAVs, pose-to-pose constraints that can be obtained via wheel odometry for

ground vehicles is no longer an option. Instead, dead-reckoning, which involves integrating

linear acceleration and angular velocity obtained via an Inertial Measurement Unit (IMU)

is a potential odometry method, though the 3D transformation obtained this way can be

heavily biased, noisy, and prone to drift. A common way to mitigate this drift is to use

the gravity vector obtained through the accelerometer and a heading obtained through the

magnetometer of an IMU to correct accumulating errors. Instruments that perform this

correction are known as attitude and heading reference systems (AHRS).

Visual odometry (VO) refers to the suite of methods that aim to obtain a good local

estimate of successive pose-to-pose measurements via camera images. VO is often used to

mitigate the drift problem of dead reckoning. Visual odometry estimate pose changes by

analyzing the change in subsequent camera images as the camera is in motion [5]. Vi-

sual odometry methods can be broadly categorized into feature-based methods and direct

methods. Feature-based methods detect and extract features of interest from an image and

track them through subsequent frames, thus estimating camera motion. Early features were

merely image patches with high gradiants such as corners and edges. More sophisticated

features descriptors such as SIFT [6] features that are scale invariant were soon established

as more robust and reliable features to track. Other feature descriptors such as SURF [7],

ORB [8] or BRIEF [9] features were also devised to be more efficient or have better scale and

orientation invariance. Perhaps the most ground-breaking paper in feature-based VO is that

of Parallel Tracking and Mapping (PTAM), which makes use of the FAST corner detector as

well as the novel idea of separating feature tracking and mapping into separate threads [10].

Another well-known feature-based VO method is RGB-D SLAM [11], which detected SIFT,

SURF, and ORB features, projected them to 3D using the depth measurement of the RGB-

D camera, and performed 3D point cloud registration. State of the art feature-based VO

methods such as ORB-SLAM [12] and ORB-SLAM2 [13] have since become the benchmark

in feature-based VO while more recently, point and edge-based methods such as PL-SLAM

[14] and EdgeSLAM [15] have seen a surge in interest. In general, feature-based VO methods

operate on a subset of pixels and can thus run efficiently in real-time. Furthermore, they can

utilize bag-of-words [16, 17] techniques to characterize features for loop-closure detection.

On the other hand, direct methods operate directly on the image pixels and extract image-

to-image transforms by minimizing the photometric error between reprojected pixels and

their reference pixels. Early direct methods such as DTAM [18] sparked interest in the field

of direct VO due to its ability to reconstruct the entire image and function under featureless

environments. Later, methods such as SVO [19] popularized the use of a sparse subset of all

the available pixels of the image instead of the entire image. Some state-of-the-art methods
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in recent years such as LSD-SLAM [20] and DSO [21] can run in real-time and outperform

feature-based methods in certain conditions. To conclude, these vision-based methods can be

applied to monocular, stereo, or RGBD cameras, but because these sensors obtain depth via

intermediate reprojection steps, the raw data must be constantly maintained to ensure that

no outliers corrupt the motion estimate. Furthermore, all camera-based visual-odometry

methods are affected by lighting conditions and can outright fail in poorly lit indoor areas.

Another alternative to obtaining pose-to-pose constraints is to use laser scan-matching

of LIDAR data. Because LIDAR measure the depth of the environment directly, they are

considered more accurate than visual reconstruction, and are even lighting-independent. This

comes at the cost of losing measurement correspondences. Specifically, points measured

at a subsequent step do not correspond to points in the previous step and there is not

even any guarantee that the same scene is being measured. Scene overlap is implicitly

assumed and scan-matching methods are relied upon to reconstruct the scene and obtain pose

estimates. When using 3D LIDAR such as the Velodyne Puck, methods such as LOAM [22]

and V-LOAM [23] are among the best performing algorithms reported on the popular KITTI

[24] benchmark datasets. Google Cartographer [25], a popular open-source package, uses

Ceres [26], an open-source nonlinear optimization solver, coupled with Real-time Correlative

Scan Matching [27] as the backbone scan matching algorithms. Although occupancy-grid

methods such Olsons method [27] has recently taken a front seat for 2D scan-matching,

they tend to treat measurement uncertainty on the occupancy grid level, abstracting away

component-based uncertainty to a point uncertainty. Traditional Iterative Closest Point

(ICP)-based methods, or variants thereof, are still preferred in many applications, especially

in 3D scan-matching, due to their versatility and ease of use. Some recently developed

ICP-variants include point-to-plane ICP [28], Iterative Closest Line (ICL) [29], Iterative

Dual Correspondence (IDC) [30], Probabilistic Iterative Correspondence (pIC) [31] or Polar

Scan Matching (PSM) [32]. The Weighted OLATE method to be derived in this thesis is a

novel point registration method that falls in this category of algorithms. Unlike some of its

predecessors, it can weigh measurement uncertainty and embed point cloud features into a

combined linear formulation.

1.3.2 The SLAM Back-End

Once pose-to-pose constraints have been established, uncertainties and bias can be miti-

gated if given additional exteroceptive information. This is commonly known as the back-end

of SLAM.

The first attempt at solving the SLAM back-end is using a nonlinear version of the

canonical Kalman Filter (KF) [33], which employs a prediction-correction strategy to in-
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corporate lower frequency exteroceptive measurements into higher frequency odometry pre-

dictions. In particular, its nonlinear variants, the Extended Kalman Filter (EKF) and the

Unscented Kalman Filter (UKF), are used in 2D or 3D navigation. These filter-based meth-

ods performed well for a wide range of linear and nonlinear problems, and later on, with

advancements made in the field of Sparse Matrices, methods such as the Sparse Extended

Information Filter (SEIF) [34] were also employed to take advantage of the sparsity of the

information matrix to solve each iteration effectively. However, filter methods come with

a set of inherent problems [35]. Researchers soon realized that filter-based algorithms can-

not effectively update past estimates given new information. This is because filter-based

algorithms marginalize away old robot poses and, to make matters worse, they destroy the

sparse structure of the information matrix in doing so [36]. To get around this problem,

researchers found that for a fixed amount of computing time, batch methods that keep

some or all parts of the robot’s old poses, can perform more accurately than filter-based

approaches. Batch methods are more popularly known as graph-based methods. They were

coined as such because the nodes and edges in factor graphs [37] were used to represent

the interdependence between robot and landmark poses [11]. The goal of all graph-based

methods is therefore “to jointly optimize the poses of the nodes so as to minimize the error

introduced by the constraints” [38]. Graph-optimization was historically regarded as too

computationally expensive for real-time implementation. However, recent advancements in

the field of direct linear solvers coupled with insights on the naturally sparse structure of

the factor graph paved way for a resurgence in these methods. Many approaches to solving

this graph optimization problem have since been proposed. The graph optimization problem

is most popularly formulated as a least-squares problem and can be solved using methods

such as Gauss-Newton (GN) or Levenberg-Marquardt (LM), a middle-ground between GN

and gradient descent. Specifically, methods such as GraphSLAM [39] solve the direct lin-

earized problem whereas smoothing methods such as rootSAM [40] iSAM [36], iSAM2 [41]

and SPA [38] factorize the sparse information matrix first via either QR or Cholesky decom-

position. The sparse structure of the factors are then maintained while periodic batch steps

and variable reordering are used to relinearize the system and avoid error build-up.

6



Chapter 2

Preliminaries

The contents of this thesis, namely estimation, involves aspects of linear algebra, vector

operations, kinematics, optimization, and matrix Lie groups. As such, an overview of the

most relevant topics is presented in this chapter.

2.1 Physical Vectors and Reference Frames

A physical vector v−→ is an element of physical space P that has a magnitude and a

direction. Note that the definition of a physical vector does not involve any reference frame.

Physical vectors can be used to denote the relative position between two points. Given

points p and q, r−→
qp denotes the position of point q relative to point p.

A reference frame F is composed of three orthonormal physical vectors that are called

basis vectors. The basis vectors can be written together in a column matrix as

F−→a =

 a−→
1

a−→
2

a−→
3

 .
This is also known as a vectrix because it is a column matrix of physical vectors.

A vector r−→
qp resolved in frame Fa is thus

r−→
qp = F−→

T
a rqpp

where rqpa is the column matrix whose elements represent the components of the physical

vector r−→
qp resolved in Fa.
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2.2 Direction Cosine Matrices and Rotations

Given a physical vector r−→ resolved in frames Fa and Fb,

r−→ = F−→
T
a ra = F−→

T
b rb,

by taking the dot product from the left by Fb it follows that

rb = F−→b · F−→
T
a ra.

where

Cba = F−→b · F−→
T
a .

The matrix Cba is known as the Direction Cosine Matrix (DCM). When interpreted as a

change of perspective, Cba changes the perspective of any vector as seen from (resolved in)

Fa to a new perspective as seen from (resolved in) Fb. Put another way, Cba resolves any

vector in Fa to a new frame Fb. When interpreted as a rotation, Cab, Cba, or simply C, is

an orthogonal matrix that rotates any physical vector by a new attitude, regardless of what

frame it is resolved in. When this rotation is applied to the basis vectors of an arbitrary

frame Fa, the resulting rotated basis vectors will form a new frame that can be denoted

as Fb. Throughout this thesis, DCMs will be the preferred choice of interpreting attitude

changes between a robot-centered frame and some datum reference frame.

Note that

Cba = CT
ab.

2.3 Angular Velocity

Given Poisson’s equation,

Ċba + ωbab
×Cba = 0,

where the × operator is the skew-symmetric operator for so(3) given by

v× =

 0 −v3 v2

v3 0 −v1

−v2 v1 0

 ,
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and where ωbab denotes the angular velocity of Fb relative to Fa resolved in Fb. Poisson’s

equation can also be written as

Ċab = Cabω
ba
b

×
. (2.1)

Equation (2.1) is sometimes more useful if given a T = tk − tk−1, where the relative

orientation between Fbk−1
and Fbk can then be computed as

Cabk = Cabk−1
eψ
×
k−1

where

ψk−1 = ωbab T.

2.4 Rigid-Body Transformation Matrices and Poses

A rigid-body transformation is composed of a translation and a rotation, which can be

carried out in any order. Denoted T, the transformation matrix “translates” a vector to a

new location and then rotates it. To be more accurate, “translate a vector” is the act of

adding a vector with another vector, yielding a new vector. Specifically,

Tab =

[
Cab rbaa
0 1

]

contains both a rotation Cab that rotates a physical vector to a new orientation, and a

translation rbaa that transforms a physical vector resolved in Fa to a new vector via vector

addition. Thus, the product of a rigid body transformation matrix and a vector r−→
pb resolved

in Fb is

Tabrpbb =

[
Cab rbaa
0 1

][
rpbb
1

]
= Cabrpbb + rbaa = rpaa .

2.4.1 Robotics Convention Regarding Poses [2]

The pose of a robot can be described using a transformation matrix. Specifically, the

pose of a robot is defined as

Tiv =

[
Civ rvii
0 1

]
.
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Figure 2.1: Robotics convention for a 2D planar robot [2].

The frame Fi is the inertial or datum frame, and Fv is the vehicle frame. Referring to Fig.

2.1, the position of the robot resolved in Fi is

rvii =

xy
0

 .
The orientation of the robot, that being the orientation of frame Fv relative to frame Fi,
can be described by the DCM

Cvi =

 cos θvi sin θvi 0

− sin θvi cos θvi 0

0 0 1

 .
It is more natural to use θvi as it represents the heading of the robot. However, the pose of

a robot is defined by Civ, the rotation matrix of θvi. Thus to keep using θvi instead of θiv,

Civ = CT
vi =

cos θvi − sin θvi 0

sin θvi cos θvi 0

0 0 1

 .
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In some situations, it is preferred to write the state of a robot as

Tvi = T−1
vi =

[
Cvi −Cvirvii
0 1

]
.

2.5 Matrix Lie Groups [2]

The special orthogonal group, denoted SO(3), is the set of all matrices C ∈ R3×3 that

satisfy CCT = 1 and det C = 1.

The special euclidian group, denoted SE(3), is the set of all transformation matrices

T ∈ R4×4 where C ∈ SO(3) and r ∈ R3.

Associated with every matrix Lie group is a matrix Lie algebra, that is a vector space.

The vector space of a Lie algebra is the tangent space of its associated Lie group at identity,

and perfectly describes the local structure of that group.

The Lie algebra of the SO(3) group, denoted so(3), is the vector space Φ = φ∧ ∈ R3×3

where φ ∈ R3.

Note that we have adopted the (·)∧ skew-symmetric operator that maps R3 → R3×3 .

Given a column matrix φ =
[
φ1 φ2 φ3

]T
, φ∧ is given by

φ∧ =

 0 −φ3 φ2

φ3 0 −φ1

−φ2 φ1 0

 .
Similarly, the (·)∨ operator maps a R3×3 skew-symmetric matrix back to R3 and (φ∧)∨ is

given by

(φ∧)∨ =

 0 −φ3 φ2

φ3 0 −φ1

−φ2 φ1 0


∨

=

φ1

φ2

φ3

 = φ.

The Lie algebra of the SE(3) group, denoted se(3), is the vectorspace Ξ = ξ∧ ∈ R4×4

where ξ ∈ R6.

For the SE(3) case, the (·)∧ skew-symmetric operator maps R6 to a R4×4 of the form

ξ∧ =

[
ρ

φ

]∧
=

[
φ∧ ρ

0 0

]
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2.6 Exponential Map

The exponential map relates elements of a Lie group to its associated Lie algebra.

For rotations, the matrix exponential maps elements of so(3) to SO(3) via

exp(φ∧) = C,

φ = ln(C)∨.

For poses, the matrix exponential maps elements of se(3) to SE(3) via

exp(ξ∧) = T,

ξ = ln(T)∨.

2.7 Solving Linear Least Squares Problems

The standard form of any optimization problem is

x̂ = arg min
x

J(x)

where J(x) is the objective or cost function to be minimized, and x are the design variables.

One specific type of optimization problems, called least squares problems, take the form

x̂ = arg min
x
‖e(x)‖2

2

because the objective function J(x) is the square of a residual e(x). In particular, if the

residual can be written in the form e(x) = b − Ax, the problem becomes a linear least

squares problem.

Given a set of measurements b corrupted by identically distributed noise v ∼ (0, σ21)

with zero mean and variance σ2, and a model matrix A that relates the measurements to

the unknown states x, the least squares estimator of x in the model

b = Ax + v

is

x̂ = (ATA)−1(ATb). (2.2)

This also turns out to be the best linear unbiased estimator of x [42].

12



There are a number of ways to solve for x̂ without the need to compute an expensive

matrix inverse. The normal equation method for computing x̂ is as follows.

1. Form ATA and ATb,

2. Perform the Cholesky factorization ATA = LLT where L is lower triangular,

3. Rewite in the form L LTx̂︸︷︷︸
z

= ATb. From here, solve LTx̂ = z via back substitution.

4. Solve Lz = ATb via forward substitution.

2.8 Taylor-Series Expansion

The Taylor-series expansion of a nonlinear function f(x) about an operating point xop is

given by

f(xop + δx) = f(xop) +
∂f(x)

∂x

∣∣∣∣
xop
δx +

1

2
δxT∂

2f(x)

∂xT∂x

∣∣∣∣
xop
δx + (H. O. T.)

where H.O.T. stands for the Higher Order Terms. This is useful in optimization methods

that require approximating a nonlinear cost function with a linear one about some operating

point.

2.9 Solving Nonlinear Least Squares Problems

Nonlinear least squares problems retain the form

x̂ = arg min
x
‖e(x)‖2

2 (2.3)

where the residual e(x) is nonlinear. One way to solve this problem is via the Gauss-Newton

method, that itself can be derived from Newton’s method for solving general nonlinear

optimization problems.

2.9.1 Newton’s Method [2]

Newton’s method iteratively approximates a nonlinear cost function, computing the opti-

mal perturbation δx that minimizes the approximated cost function at each step. Suppose an

initial guess for the states xop is available. In each iteration, the cost function at x = xop+ δx
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is approximated using the first three terms of the Taylor series expansion. The result is a

quadratic cost function in δx,

J(x) = J(xop + δx) ≈ J(xop) +

(
∂J(x)

∂x

∣∣∣∣
xop

)
δx +

1

2
δxT

(
∂2J(x)

∂xT∂x

∣∣∣∣
xop

)
δx

Finding the δx that minimizes this approximated cost function is then equivalent to minimiz-

ing the original cost function. This can be done by computing the derivative of J(xop + δx)

with respect to δx and setting to zero, that is

∂J(xop + δx)

∂δx
=

(
∂J(x)

∂x

∣∣∣∣
xop

)
+ δxT

(
∂2J(x)

∂xTx

∣∣∣∣
xop

)
= 0.

This leads to (
∂2J(x)

∂xTx

∣∣∣∣
xop

)
δx = −

(
∂J(x)

∂x

∣∣∣∣
xop

)T

,

which is a linear equation. After solving for δx the operating point can be updated via

xop ← xop + δx. Successive iterations of this algorithm can typically lead to convergence of

the solution.

2.9.2 Gauss-Newton Method [2]

The Gauss-Newton method tackles the special case of (2.3) where the cost function is a

nonlinear least-squares problem. In such a case, the cost function can be written as

J(x) = e(x)Te(x) = e(xop + δx)Te(xop + δx).

Applying the Taylor series expansion on e(x) the cost functon becomes

J(x) =

(
e(xop) +

(
∂e(x)

∂x

∣∣∣∣
xop

)
δx

)T(
e(xop) +

(
∂e(x)

∂x

∣∣∣∣
xop

)
δx

)

= e(xop)Te(xop) + e(xop)T
(
∂e(x)

∂x

∣∣∣∣
xop

)
δx + δxT

(
∂e(x)

∂x

∣∣∣∣
xop

)T

e(xop)

+ δxT

(
∂e(x)

∂x

∣∣∣∣
xop

)T(
∂e(x)

∂x

∣∣∣∣
xop

)
δx.
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Minimizing the cost function with respect to δx, it follows that

∂J(xop + δx)

∂δx
= 2e(xop)T

(
∂e(x)

∂x

∣∣∣∣
xop

)
+ 2δxT

(
∂e(x)

∂x

∣∣∣∣
xop

)T(
∂e(x)

∂x

∣∣∣∣
xop

)
= 0.

Transposing both sides, the least-squares solution becomes(
∂e(x)

∂x

∣∣∣∣
xop

)T(
∂e(x)

∂x

∣∣∣∣
xop

)
δx = −

(
∂e(x)

∂x

∣∣∣∣
xop

)T

e(xop) (2.4)

or simply

(HTH)δx = −HTe(xop)

where H = ∂e(x)
∂x

∣∣∣∣
xop

.

2.9.3 Levenberg-Marquardt Method

The Levenberg-Marquardt method is a more conservative variant of the GN method. In

practical applications, certain states are only observed once. This can lead to the system to

become ill-conditioned. For this reason, it is often desirable to regularize the linear system

with a damping factor λ such that the new system

(HTH + λ1)δx = −HTe(xop),

is well-conditioned. Put another way, when the damping factor λ >> ‖H‖F where ‖·‖F is

the Frobenius norm,

δx ≈ −1

λ
HTe(xop),

which corresponds to the gradient-descent method, that is, taking a very small step in the

direction of the gradient. When λ << ‖H‖F, the standard GN method is recovered. This

allows the algorithm to adjust the rate of descent based on how the error term evolves. If

at any given time, the new error obtained through incorporating a computed δx∗ is larger

than the error before incorporating the new δx∗, the step taken is likely too large and δx∗

is recomputed with a larger λ. On the other hand, if the new error is indeed less than the

error before incorporating the new δx∗, λ can be decreased to help speed up convergence.
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2.9.4 Basic Statistics Concepts

The mean or expected value of a random vector x with a discrete set of outcomes ui and

associated probabilities pi is defined as

E[x] =
∞∑
i=1

uipi

The covariance matrix of a random vector x is defined as

Σx = E[(x− E[x])(x− E[x])T]

When a random state vector xa resolved in an arbitrary frame Fa is rotated such that

xb = Cbaxa, the resulting covariance matrix of the same state vector resolved in the new

frame Fb, that being xb, is

Σxb = E[(x̄b − xb)(x̄b − xb)T]

= E[(Cbax̄a − Cbaxa)(Cbax̄a − Cxa)T]

= CbaΣxaCT
ba
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Chapter 3

Sensor Modelling

To make use of the Weighted OLATE algorithm to be derived in Chapter 5, it is important

to characterize the uncertainty of a given sensor. In this chapter, focus will be placed on the

modelling of LIDAR sensors, but concepts carry over to other time-of-flight sensors such as

certain RGBD cameras.

3.1 Time-of-Flight Sensors and their Sources of Uncertainty

Time-of-flight sensors such as LIDAR estimate distance by emitting a laser and measuring

the time of arrival of its reflection. The principal equation is thus

distance =
c · TOF

2
(3.1)

where c is the speed of flight, and TOF is the time of flight [43]. Equation (3.1) indicates

that uncertainty in time of flight propagate to the range measurement. The longer the

time of flight, the greater the uncertainty in range. In reality, a number of other external

factors such as temperature, reflectivity of the surface being measured, surface roughness,

and incidence angle can all affect the quality of the measurement. Data taken by Lichti et al.

[44] suggest that angle of incidence plays the largest role in LIDAR uncertainty, while the

other aforementioned factors are unobtainable in practical situations. Because the actual

uncertainty of the range component of a LIDAR measurement depend on the electronics and

various other internal components and because every sensor is different, it should be in the

user’s interest to model their own sensors. In the following section, one particular approach

is offered.
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3.2 2D LIDAR Characterization

The task at hand is to build a model that is representative of measurement variances

experienced by a real 2D LIDAR. Specifically, the following experiment will analyze the

measurement variance of a RP-LIDAR.

The RP-LIDAR is an inexpensive hobby-grade lidar intended for short-range scan match-

ing and mapping. It consists of a laser mounted on a rotating platform that rotates at roughly

10Hz. Manufacturer data-sheets indicate an operational range between 0.15m and 8m. The

angular resolution can be varied between 0.45deg and 1.35deg. Because the manufacturers

provide neither range nor bearing uncertainty information, they are modelled as follows.

Note that the coordinate frame of the RP-LIDAR is shown in Fig. 3.1.

Figure 3.1: RP-LIDAR coordinate frame.

First, range-induced variance in LIDAR range measurements is modelled. This type

of variance is affected by the way that time-of-flight measurements are taken. For this

experiment, the LIDAR is positioned along a narrow corridor, facing the end of the corridor,

and left stationary to collect data for roughly five minutes. This can typically yield 2000

points per LIDAR beam. The data is fit to a Gaussian distribution as shown in Fig. 4.5

and the variance is computed. The LIDAR is then repositioned further away from the end

of the corridor and this process is repeated until a sufficient number of ranges between the

operational ranges are sampled. This experimental setup is displayed in Fig. 3.3.

Notice from Fig. 3.4a that the error in range measurements increase linearly with distance

up until ≈ 4m, which is in line with Eq. (3.1). However, error begins to grow following an
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Figure 3.2: Normally distributed range measurements.
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Figure 3.3: Test setup for range variance vs. distance.

exponential function as the distance is further increased, suggesting that other factors are

at play.

The other and perhaps largest source of error is the variation in bearing measurements.

This variation can be a direct result of the synchronization of measurements, that is, if a

certain measurement frequency is required, the LIDAR must time the firing of its laser based

on encoder readings that are in turn uncertain.

It is observed that bearing variance directly translates to range variance depending on

the incidence angle of observed surfaces. This phenomenon is known as bearing-induced

range uncertainty. Referring to Fig. 3.5, it can be seen that if the incidence angle ψ is small,

bearing uncertainty does not contribute significantly to range uncertainty. As the incidence

angle approaches 90deg error in range increases drastically and must be accounted for. In

the same experiment, measurements of a section of the wall at different incidence angles are

taken at approximately the same ranges. In application, it is more convenient to work with
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Figure 3.5: Bearing-induced uncertainty. The same bearing variance has a larger effect on
range variance at larger incidence angles.

θ = π
2
− ψ, which is the angle between the laser beam and the surface. The relationship

between variance and angle-to-surface θ is an inverse exponential shown in Fig. 3.4b.

When plotting range variance as a function of both range and angle-to-surface as seen

in Fig. 3.6, an additional relation between the two variables is noticed. At smaller ranges,

variance decreases quickly with decreasing angle-to-surface. At larger ranges, variance de-

creases at a much slower rate with decreasing angle-to-surface. It can be hypothesized that

this inverse relation is of the form

σ2 = a

(
r

sin(θ)

)b
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where r ∈ R+ is range and θ ∈ [0, π
2
] is the angle between the laser beam and the sur-

face. In other words, as angle-to-surface approaches 0deg, bearing-induced range variance is

magnified whereas if the angle-to-surface is large, bearing-induced range variance is minimal.
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Figure 3.6: Range variance as a function of both range and angle-to-surface.

Fitting this model to the data of Fig. 3.6 using nonlinear least-squares optimization yields

a and b values of

a = 2.277× 10−5, b = 1.841.

The model describing range variance as a function of range and angle-to-surface is thus

σ2 = 2.277× 10−5

(
r

sin(θ)

)1.841

,

and can be visualized in Fig. 3.7. This model will be directly used in Chapter 5 to inject

noise of realistic magnitudes into simulated LIDAR data.
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Figure 3.7: Model of range variance as a function of both range and angle-to-surface.

22



Chapter 4

Local SLAM Strategy - Data

Pre-Processing

Local SLAM, as the term suggests, deals with solving the SLAM problem locally in both

a spatial and temporal sense. Local SLAM encompasses methods such as dead-reckoning -

integrating acceleration and angular velocity, wheel odometry - tracking wheel revolutions and

steering angles, visual odometry - matching subsequent images or projections thereof, and

scan-matching - matching subsequent LIDAR scans, to obtain the transformation between

successive poses. The underlying assumption is that Local SLAM is locally consistent with

minimal drift. This assumption allows it to be decoupled from the Global SLAM problem

and solved separately.

In this thesis, focus will be placed on methods of dead-reckoning and Scan-Matching

to obtain pose-to-pose transformations. Before introducing Scan-Matching in detail, it is

important to understand that the quality and type of the data given to the Scan Matching

step often determines what kind of Scan Matching algorithm to use. As such, in this chapter,

an overview of the commonly used pre-processing steps required for effective Scan Matching

will be offered.

4.1 Processing and Unwarping of LIDAR Data

As mentioned in Chapter 3, LIDAR data is measured in terms of range measurements

taken at known times with a constant angle between successive points. If the range is infinite

or greater than the hardware’s max range, a default value is returned. These points are often

classified as “misses”. The remaining points that fall within the hardware’s operating range

are classified as “hits”.
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The next detail to note is that the points of a LIDAR sweep are never taken simultane-

ously. This is because LIDAR points are derived from a rotating beam that, upon completing

a 360deg revolution, form a “sweep”. This means that if a robot carrying a LIDAR is in

motion, the resulting point-cloud of a LIDAR scan will be distorted or warped if resolved in

the sensor frame. This is especially true if the LIDAR in question has a slow sampling rate.

However, scan matching must occur in the vehicle’s body frame in order to infer the relative

transformation between two scans. It is therefore imperative that this distortion be corrected

and projected back into the vehicle’s body frame before carrying on with scan matching. To

simplify the situation, first assume that the sensor frame and the vehicle’s body frame are

the same. Given a distorted set of points rpksksk
where k = 1, . . . , N , a common way to extract

the real scene points is as follows.
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Figure 4.1: Range data accumulation process. Data is taken from the sensor frame at
different poses.

Referring to Fig. 4.1, assume that the array of poses Tlsk is known, where hits in the

sensor frame and in the local frame are defined as

hit = rpksksk
,

hit in local frame = rpkll = Tlskrpksksk
.

In this case, the local frame is any arbitrary datum frame that is stationary with respect to

the sensor frames. In practice, it can be initialized at the first sensor frame. Note that at

this stage, rpkll contains the corrected LIDAR points in the local frame. Since scan matching
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must be applied to the vehicle’s body frame, or in this case, the sensor frame, project rpkll

back into the last sensor frame of the current sweep, yielding rpksNsN
.

Fsk

Fvk

r
�!

pksk

r
�!

pkvk

Tvksk

pk

Figure 4.2: Sensor frame being offset from vehicle’s body frame.

4.2 Sensor Level Arm

On a robotic system such as that of Fig. 4.2, the LIDAR sensor is usually offset from

the vehicle’s base frame, which is typically the IMU frame. This transformation, namely

Tvksk , also known as the sensor level arm, must be taken into account when computing the

positions of measured points since it is ultimately rpkvkvk
that is sought.

Assume now that the level arm Tvksk and the array of vehicle poses Tlvk is known. The

position of the LIDAR points resolved in the local frame is simply

rpkvkvk
= Tvkskrpksksk

rpkll = Tlvkrpkvkvk

and the same points resolved in the last sensor frame of the current sweep is

rpkvNvN
= T−1

lvN
rpkll .
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4.3 Additional Considerations

The array of poses Tlvk is not easy to obtain but given an IMU with a fast enough

sampling rate, it is possible to estimate it via dead-reckoning. Another way to estimate Tlv

is to assume constant motion, that is, vvkvk−1/i
i = vvk−1vk−2/i

i where

vvk−1vk−2/i
i =

rvk−2i
i − rvk−1i

i

T
.

Doing so allows the relative pose-to-pose translation δrvkvk−1
vk to be simply computed with

the velocity estimate given T = tk − tk−1. Throughout the rest of this thesis, whenever

LIDAR odometry results are presented, it is implied that any given LIDAR sweep is already

unwarped via a similar procedure where Tlvk are assumed to be obtained from either an

accurate INS, RTK, or high-rate IMU.

Additionally, the relative orientation change between the two frames, Cvk−1vk , is sought.

To this end,

ψk−1 = ωvk−1a
vk−1

T

δCvk−1vk = eψ
×
k−1

where

eψ
×
k−1 = cosψk−11 + (1− cosψk−1)

(
ψk−1

ψk−1

)(
ψk−1

ψk−1

)T

+ sinψk−1

(
ψk−1

ψk−1

)×
represents the small rotation between the previous orientation and the new orientation as

expected from the most recent angular velocity measurement.

4.4 Projecting LIDAR Data to a Common Frame

For 2D scan matching on flat terrain such as the floor of a building, all scans are taken at

the same pitch and roll, with only yaw varying in time. However, when the terrain is uneven,

each scan is taken at a different orientation. To get around this problem without actually

estimating pitch and roll, it is common practice to project every scan to a common reference

frame before scan matching. The gravity-aligned frame is often chosen to be the common

reference frame for scan projection because an onboard IMU can measure the gravity vector

directly and because it does not suffer from drift when the robot is stationary. The gravity

orientation Cgvk can be computed as follows.
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Given a prior gravity vector vgvk−1
vk−1 the new gravity vector can be computed via

vgvkvk
= δCvkvk−1

vgvk−1
vk−1

,

and the transform between the gravity-aligned and the vehicle frame can be computer via

Tgvk =

[
Cgvk rvkgg

0 1

]
.

The LIDAR points resolved in the local frame can now be transformed to a new gravity

aligned frame via

Tgl = TgvkTlvk
−1 = TgvkTvkl

rpkgg = Tglrpkll

4.5 Predicting Pose-to-Pose Transformations for Scan Matching

Scan matching is how pose-to-pose constraints are formed. Scan matching requires solving

an optimization problem. Before performing scan matching, any scan matching algorithm

requires a good prediction of the relative transformation between the two scans to initialize

the optimization problem. A good prediction of this transformation can be obtained if one

has access to an IMU, INS, or RTK.

4.6 Feature Extraction from LIDAR Data

The term feature extraction is often attributed to computer vision methods where high

gradient pixels such as corners or edges are detected and tracked through subsequent frames

for motion estimation. This technique can also be extended to LIDAR scans. LIDAR point

clouds differ from point clouds obtained via stereo cameras because they sample the world

with a rotating laser beam. This means that they have a 360 degree Field Of View (FOV)

on a single plane. In a 3D LIDAR, many lasers are arranged along the axial direction on

an arc/fan such that when rotated, many scan planes are generated, giving a 3D view of

the scene. Because the resolution along the direction of rotation is much higher than the

resolution between scan planes, the resulting point cloud is sparse in the axial direction but

dense radially, producing a series of scan rings as seen in Fig. 4.3. The high resolution of each

scan ring allows one to extract features from coplanar points. One method to accomplish

this is by following the approach described in [22] where the local curvature of each point is
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Figure 4.3: A typical point cloud obtained from a single sweep of a Velodyne LIDAR
simulated in Gazebo.

computed based on nearby points via

s =
1

Np · ‖rpisksk ‖

∥∥∥∥∥∥
i+Np∑

j=i−Np,j 6=i

rpisksk
− rpjsksk

∥∥∥∥∥∥ ,
where Np is the number of nearby points used to evaluate point curvature. However, this

method does not account for cases where the sum of points with varying spread along a line

result in a large vector in the direction of that line. An alternative is therefore proposed

where Principle Component Analysis (PCA) is used to compute local curvature. Refer to

Appendix A for a derivation of PCA. Specifically, when computing the covariance matrix of

a cluster of points pj with respect to their centroid, normalize each error residual such that

Σ =
1

N − 1

N∑
j=1

(
rpjaa − r̄a∥∥rpjaa − r̄a

∥∥
)(

rpjaa − r̄a∥∥rpjaa − r̄a
∥∥
)T
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(a) An edge as observed from a Velodyne LIDAR.

(b) Corresponding a corner
point ej to its closest edge.

Figure 4.4: Corner points and edge geometry.

where r̄a is the centroid, that is, r̄a = 1
N

∑N
j=1 rpjaa and where a is an arbitrary point with

associated frame Fa. Once the principle components are extracted, the eigenvector corre-

sponding to the smallest eigenvalue is the normal direction of the line and the curvature can

be represented by

s =
λmin

λmin + λmax
.

Points with a high s value corresponds to regions of high curvature such as corners whereas

points with a low s value correspond to regions of low curvature such as flat surfaces. Sorting

these curvature values allows the extraction of feature points from a single scan ring.

When looking at multiple scan rings in 3D, each ring having their own set of corner and

surface points, it then becomes possible to extract edges or planes. For example, sometimes

it is of interest to correspond an extracted corner point with the nearest edge. Referring to

Fig. 4.4b, suppose that point ejk is a corner point measured in Fvk . Let pj be the nearest

corner point from the closest scan ring and let pn be the nearest corner point from the second

closest scan ring in the point cloud taken at Fvk−1
. The unit vector a−→

j of the line or edge

formed by these two points that are closest to edge point ej is simply

a−→
j =

r−→
pjsk − r−→

pnsk∥∥∥ r−→pjsk − r−→
pnsk

∥∥∥ .
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Figure 4.5: Surface points and plane geometry.

Other times, it is of interest to correspond an extracted surface point with the nearest

surface. Referring to Fig. 4.5b, suppose that point sj is a surface point measured in Fvk .

Again, let pj be the nearest surface point from the closest scan ring and let pm be the second

nearest surface point from the same scan ring in the point cloud taken at Fvk−1
. Also let pn

be the closest surface point from the second closest scan ring. The plane with unit normal

n−→
j formed by these three points that are closest to surface point sj is simply

n−→
j =

( r−→
pmsk − r−→

pjsk)× ( r−→
pnsk − r−→

pjsk)∥∥∥( r−→
pmsk − r−→

pjsk)× ( r−→
pnsk − r−→

pjsk)
∥∥∥ .

In Chapter 5, these unit vectors will be used to define point-to-line and point-to-plane

distances.

An additional consideration to be made before feature extraction is which areas of a scan

should be avoided altogether. As mentioned in Chapter 3, surfaces that form a small angle

with the LIDAR ray tend to produce unreliable measurements. Additionally, measurements

that are occluded by objects in the foreground are also unreliable as regular points can appear

as corners as seen in Fig. 4.6. To filter out unreliable measurements that fall in these two

categories, compute the angle δθ formed between rpjss and rpjpj+1
s as seen in Fig. 4.7. Points

that surpasses a certain threshold are considered unreliable. Finally, it is also desirable to

sample the environment uniformly and a simple solution is offered in [22] where points near

30



unreliable point

δθ

due to small
ray-to-surface angle

unreliable point
due to occluded
region

Figure 4.6: Unreliable points to be filtered out prior to feature extraction.
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Figure 4.7: Process of filtering unreliable points. Compute δθ and check if it surpasses a
threshold.

Figures 4.8 and 4.9 show results of this feature extraction tactic applied to simulated 2D

and 3D data respectively. Note that this method works best in urban environments that

have an abundance of edges and flat surfaces. Figure 4.10 shows that feature extraction,

when performed on such an urban environment, can find many edges and surfaces.
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Figure 4.8: Feature points extracted from a 2D LIDAR sweep of a simulated room.
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Figure 4.10: Feature points extracted from a 3D LIDAR sweep of a simulated urban area.
Red points are sharp corners. Green points are flat surfaces.
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4.7 Downsampling Point Clouds

Downsampling incoming point cloud data is a widely applied strategy, especially consid-

ering that some 3D LIDAR can measure up to half a million points per second. A simple yet

effective method is Voxel Filtering, which involves dividing the subspace into 3D volumes

known as voxels of a set dimension and averaging every point found in each voxel. Because

some maps require a resolution of at least 1cm, it becomes evident that a brute force sorting

strategy is impractical. Instead, tree data structure, such as Quadtree for 2D or Octree for

3D is popularly used to sort and downsample point clouds. Surface normal information can

be averaged as well, though averaging covariance matrices is not as straight forward.

Consider that there are two point measurements,

r̃paa = rpaa + va, and r̃pbb = rpbb + vb

where v is noise and where a and b are some arbitrary points with associated reference frames

Fa and Fb respectively. The residual of each measurement is simply equal to the noise. In

other words,

ea = r̃paa − rpaa = va, and eb = r̃pbb − rpbb = vb.

The covariance matrix of each measurement is thus

Σa = E[eaeTa ], and Σb = E[ebeTb ].

The average of the two measurements can then be computed as

r̃paa + r̃pbb
2︸ ︷︷ ︸

r̃avg

=
rpaa + rpbb

2︸ ︷︷ ︸
ravg

+
ea + eb

2︸ ︷︷ ︸
eavg

.

It follows that the covariance matrix of the averaged measurement is

Σavg = E[eavgeTavg]

= E[
1

4
(ea + eb)(ea + eb)T]

=
1

4
(E[eaeTa ] +����

E[eaeTb ] +����
E[ebeTa ] + E[ebeTb ])

=
1

4
Σa +

1

4
Σb.
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It has been assumed that the two measurements are uncorrelated, that is, E[eaeTb ] = E[ebeTa ] =

0. From here, generalizing for N points,

Σavg =
1

N2

N∑
i=1

Ri. (4.1)

4.8 Propagation of Uncertainties

Before continuing, it is worth noting that in practice, covariance matrices do not come

in the desired x, y, and z components but rather, in spherical coordinates corresponding to

a LIDAR’s range, azimuth, and elevation, measurements, denoted r, α, and ψ respectively.

To convert covariance matrices to the desired Cartesian coordinates, first note thatxy
z

 = f(r, α, ψ) =

r cosψ sinα

r cosψ cosα

r sinψ

 .

Let x1 =
[
r α ψ

]T
and let f(x1) = x2 =

[
x y z

]T
. The mapping of x1 to x2 can be

approximated using a Taylor series expansion about an equilibrium point x̄1 such that

x2 ≈ f(x̄1) +
∂f(x1)

∂x1

∣∣∣∣
x̄1

(x− x1).

Given a point x = x̄1 + v1, the resulting propagated mean and noise is

x̄2 = f(x̄1)

v2 =
∂f(x1)

∂x1

∣∣∣∣
x̄1︸ ︷︷ ︸

F

v1.

Noting that e1 = x− x̄1 = v1, the propagated covariance matrix is thus

Σ2 = E[e1eT1 ]

= E[(Fv1)(Fv1)T]

= FE[v1vT
1 ]FT

= FΣ1FT (4.2)
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where

F =

cosψ sinα r cosψ cosα −r sinψ cosα

cosψ cosα −r cosψ sinα −r sinψ cosα

sinψ 0 r cosψ


in this particular case.

4.8.1 A Practical Consideration

Storing a 3×3 covariance matrix for every point in a point cloud is not always necessary.

In fact, the covariance matrix can be extracted from the range, azimuth, and elevation

variances when needed. Even if points were to be downsampled, an approximation exists

that makes it possible to compute the averaged covariance from the averaged variances of

range, azimuth, and elevation. Specifically, note that (4.1), when applied to two points for

example, can be rewritten as

Σavg =
1

4
Σ1 +

1

4
Σ2

=
1

4
F1

r1 0 0

0 α1 0

0 0 ψ1

FT
1 +

1

4
F2

r2 0 0

0 α2 0

0 0 ψ2

FT
2

≈ 1

4
Favg


r1 0 0

0 α1 0

0 0 ψ1

+

r2 0 0

0 α2 0

0 0 ψ2


FT

avg

where

Favg =
F1 + F2

2
.
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Chapter 5

Local SLAM Strategy - Incremental

Motion Estimation via Local Scan

Matching

Finding the relative rigid-body transformation between a reference point cloud and an-

other point cloud is a common problem encountered in robotics. Consider that a mobile robot

measures a point cloud that is representative of the environment at a particular instance in

time, and at a particular location, using an on-board sensor such as a camera or a LIDAR. At

a later time, when the robot has moved to a new location, it will take a similar measurement

of the environment. Provided that the two measurements have some overlap, matching or

stitching these two point-cloud measurements in the frame of the reference point cloud is

then possible. The resulting rigid-body transformation is equivalent to the motion of the

robot as it travels from the first location to the second. Obtaining this relative pose-to-pose

transformation is desirable because it provides the robot an exteroceptive visual odometry

measurement more robust to error than odometry or dead-reckoning. These visual odometry

estimates can then be fused with other sensor measurements in a Simultaneous Localization

and Mapping (SLAM) framework to obtain even more accurate pose and mapping estimates

for the robot.

Scan matching refers to the solving of this problem when the point cloud measurement,

either 2D or 3D, is exclusively obtained via LIDAR. The challenge of scan matching is to not

only minimize runtime but also be sufficiently accurate and robust to poor initialization and

measurement noise. Most existing methods do not account for the inherent noise present in

all LIDAR measurements, or the fact that some points may be more important than others.

For instance, measurements of points far from the sensor have greater uncertainty than

points closer to the sensor. Furthermore, points that appear as sharp edges of buildings
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or surface patches of walls provide more information to the relative transformation than

points from tree foliage or unstructured objects. This chapter presents a novel weighted

point-cloud registration method that takes measurement uncertainties and feature points

into account during the registration step of Iterative Closest Point (ICP)-based methods.

In the following section, an overview of the most popular scan matching methods will be

presented. A derivation of the weighted OLATE-based point-to-point, point-to-plane, and

point-to-line registration methods will be presented followed by an algorithm that we term

Total Registration, which solves all three problems at once. Finally, implementation details

within an ICP-based framework are also presented.

5.1 Iterative Closest Point and Variants Thereof

Iterative Closest Point (ICP) is perhaps the most popular method for point-cloud regis-

tration. First introduced in Besl and McKay’s seminal paper, the ICP algorithm has become

popular amongst the robotics and computer vision community and is widely used in many

applications. Although more accurate and robust algorithms have recently been developed

for matching 2D scans [27], ICP still remains the defacto method for matching 3D data [45].

The ICP algorithm can be broadly divided into six steps, namely, 1) point selection from

the point cloud to be matched, 2) point correspondence of these points with the reference

point cloud, 3) weighting of the corresponding pairs, 4) rejection of outliers, 5) assigning

of an error metric, and 6) minimization of the error metric via iteration. Because the ICP

algorithm is more accurately a framework rather than a single algorithm, many variants

of ICP have been developed that target some of the aforementioned steps. Some of these

variants are detailed in [46]. The ICP method is far from perfect. One disadvantage of ICP

is that it is known to converge slowly. This can be attributed to the point correspondence

step, which generally takes the longest time. Specifically, Lu and Milios identified that “when

the model is curved, the correspondences found by the closest-point rule may contain little

information about the rotation”, thus requiring additional iterations for convergence [30]. In

light of this, they developed a new method named Iterative Dual Correspondence (IDC) that

computes the translation estimate based on closest point correspondence and the rotation

component based on a newly defined matching-range-point rule that responds more strongly

to orientation changes.

ICP is also ill-suited to work with point clouds in the shape of non-uniform scan rings

such as those obtained from Velodyne LIDARs [45]. This is true unless additional steps are

taken to pre-process the data as mentioned in Chapter 4.
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Figure 5.1: ICP procedure. a) Two point clouds rpis1s1
and rqis2s2

are taken in the sensor
frame at different times. b) Apply an initial transformation of Ts′2s2

to rqis2s2
, find points in

rpis1s1
that are closest to rqis

′
2

s′2
and establish point-point correspondence, noting that multiple

points from rpis1s1
can correspond to the same point in rqis

′
2

s′2
. Compute Ts′′2 s

′
2

using a

registration algorithm. Transform point cloud rqis
′
2

s′2
to obtain rqis

′′
2

s′′2
= Ts′′2 s

′
2
rqis

′
2

s′2
. c) Repeat

the same procedure as step b) to obtain Ts∗2s
′′
2

and rqis
∗
2

s∗2
. d) Compute the total

transformation via Ts∗2s2
= Ts∗2s

′′
2
Ts′′2 s

′
2
Ts′2s2

.
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5.2 Establishing Point Correspondence

Given a reference point cloud and a target point cloud to be matched, if point-to-point

association is not provided a priori, it must be established. This is known as the point-

correspondence step.

The most common point correspondence strategy is the closest point correspondence.

This involves corresponding each point in the target point cloud with the closest point in

the reference point cloud in terms of Euclidean distance. In the event where an initial pose

prediction is given, the correspondence is between the transformed target point cloud and

their closest neighbouring point in the reference point cloud. In practice, this is done by

ordering the point cloud into a k-dimensional (kd) tree structure to speed up the search.

Another way to establish point correspondence is taking the point in terms of an angular

distance [30]. This is motivated by the fact that the further an observed point, the further

it will be to its corresponding point given some rotation.

5.3 Point Cloud Registration

The registration method is at the heart of the ICP algorithm and is responsible for

obtaining the relative transformation between two point clouds given their point-to-point or

point-to-feature correspondence. The first attempt at solving the registration problem was

to formulate it as a Wahba’s problem [47]. Both Horn [48] and Arun et al. [49] posed the

problem this way in 1987 and to date, this remains the de facto registration method. For

the formulation of Wahba’s problem and a derivation of point cloud registration via SVD,

refer to Appendix A.

5.3.1 The Optimal Linear Attitude and Translation Estimator

The original Optimal Linear Attitude and Translation Estimator (OLATE) from [1, 50,

51] is rederived here with the difference that corresponding points are not assumed to be the

same point.

Consider the diagram in Fig. 5.2 where point pj is seen at timestep k− 1 and point qj, a

point near point pj, is seen at timestep k. Let sk−1 and sk be the position of an exteroceptive

sensor such as a LIDAR at timestep k−1 and k and let Fsk−1
and Fsk be the vehicle’s sensor

frame at those times.

First, note that e−→
j can be written as

ej−→ = r−→
qjsk − r−→

pjsk−1 + r−→
sksk−1 .
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Figure 5.2: A wall as seen from two poses.

Resolving each physical vector in their respective frames yields

eqjpjsk
= rqjsksk

− Csksk−1
rpjsk−1
sk−1

+ rsksk−1
sk

. (5.1)

To simplify presentation, the s from the subscripts sk and sk−1 will be henceforth dropped

and written as simply k and k− 1 respectively. Superscripts will be kept as is to distinguish

between the measured points q or p. Furthermore, eqjpjsk will be written as ejk for simplicity.

The position rsksk−1

k and attitude Ckk−1 of the vehicle is sought such that ej−→
· ej−→

, the

distance between points pj and qj, is minimized. An optimization problem can be formulated

where the cost function is defined as

Jk(rsksk−1

k ,Ckk−1) =
M∑
j=1

1

2
ejk

T
ejk. (5.2)

Note that this is a least squares problem.

Using the Caley Transformation [52], the DCM Ckk−1 can written as

Ckk−1 = (1 + p×k )−1(1− p×k ), (5.3)

where pk = ak tan
(
φk
2

)
are the classic Rodriguez parameters, also called Gibbs parame-
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ters [53]. This allows (5.1) to be rewritten as

ejk = rqjskk − (1 + p×k )−1(1− p×k )rpjsk−1

k−1 + rsksk−1

k . (5.4)

It is worth mentioning that a perceived drawback of choosing this particular parametrization

of the DCM is that Rodriguez parameters suffer from a singularity at 180◦. However, using a

Rodriguez parameter is inconsequential as most modern day robots tend to either limit such

a high angular velocity via an on-board controller or avoid such manoeuvres in the guidance

algorithm. Continuing, define a new residual ējk = (1 + p×k )ejk, that becomes

ējk = (1 + p×k )rqjskk − (1− p×k )rpjsk−1

k−1 + (1 + p×k )rsksk−1

k

= (rqjskk − rpjsk−1

k−1 )−
(
− p×(rqjskk + rpjsk−1

k−1 )−(1 + p×k )rsksk−1

k︸ ︷︷ ︸
+tk

)
= (rqjskk − rpjsk−1

k−1 )−
(
(rqjskk + rpjsk−1

k−1 )×pk + tk
)

= (rqjskk − rpjsk−1

k−1 )︸ ︷︷ ︸
bk

−
[
1 (rqjskk + rpjsk−1

k−1 )×
]

︸ ︷︷ ︸
Aj
k

[
tk
pk

]
︸ ︷︷ ︸

xk

(5.5)

= bjk − Aj
kxk

Proposition 5.1. If a matrix A is skew symmetric, then (1 + A) is invertible.

Proof. See Appendix A.

Applying proposition 5.1, (1 + p×k ) is shown to be invertible, and using the relationship

ejk = (1 + p×k )−1ējk

the cost function defined in (5.2) can be rewritten as

Jk(rsksk−1

k ,Ckk−1) =
M∑
j=1

1

2
ējTk (1 + p×k )−T(1 + p×k )−1︸ ︷︷ ︸

Wj
k

ējk

=
1

2
(bk − Akxk)TWk(bk − Akxk) (5.6)
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where

bk =



b1
k
...

bjk
...

bMk


, Aj

k =



Aj
k

1

...

Aj
k

...

Aj
k

M


, Wk = diag

{
W1

k, · · · ,W
j
k · · · ,W

M
k

}
.

The weight Wj
k depends on the rotation. Noting that

(1 + p×k )(1 + p×k )T ≥ 1.(
(1 + p×k )(1 + p×k )T

)−1 ≤ 1,

setting W̄j
k = 1 leads to a new cost function

J̄k(rsksk−1

k ,Ckk−1) =
1

2
ēTk W̄kēk ≥

1

2
ēTkWkēk = Jk(rsksk−1

k ,Ckk−1).

Thus, J̄k overbounds the cost function of (5.6).

The solution to this optimization is then as follows. First, set W̄j
k = 1 and proceed to

solve the modified cost function J̄k(rsksk−1

k ,Ckk−1) which is an ordinary least squares problem

with the normal solution outlined in (2.2). The solution is thus[
tk
pk

]
= (Aj

k

T
Aj
k)
−1(Aj

k

T
bk). (5.7)

After solving for tk and pk, the relative transformation of interest can be extracted via

rsksk−1

k = −(1 + p×k )−1tk,

Ckk−1 = (1 + p×k )−1(1− p×k ).

Once an estimate for pk has been obtained, substitute into (5.6) and iterate to obtain a

better estimate for the desired states.

In practical applications, when ICP scan matching is used for consecutive pose-to-pose

scan matching, the rotation between each pose is small and using a small angle approx-

imation, Wj
k ≈ 1, meaning that the unweighed solution is generally valid, especially if a

good initial prediction is given. However in the case of an aggressive turn, and with noise

corrupting heading estimates, a reliable heading estimate can no longer be provided and the
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expected heading error can be much larger. When ICP is used for loop closure, one can

expect arbitrarily large rotations and therefore, the small angle approximation is no longer

valid. In such a case, there is ample motivation to compute the weight matrix Wk.

5.3.2 Weighted OLATE
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Figure 5.3: A wall as seen from two poses.

Taking the previous idea of weighing the error residuals of the cost function further, it is

possible to introduce additional weights into Wk that correspond to the uncertainty of the

measurements. Suppose that the measurements rqjskk and rpjsk−1

k−1 are no longer deterministic,

but rather are corrupted by noise of the form

r̃qjskk = rqjskk + wqj
k , (5.8)

r̃pjsk−1

k = rpjsk−1

k−1 + wpj
k−1. (5.9)

where wpj
k−1 ∼ N (0,Rj

k−1) and wqj
k ∼ N (0,Rj

k). Define a new error term

ẽjk = r̃qjskk − (Ckk−1r̃pjsk−1

k−1 − rsksk−1

k )

= rqjskk − (Ckk−1rpjsk−1

k−1 − rsksk−1

k ) + wqj
k − Ckk−1wpj

k−1,

= ejk + wqj
k − Ckk−1wpj

k−1.
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It is common to set the weight as the inverse of the covariance matrix Σj
k associated with

the error, where

Σj
k = E[ẽjkẽ

j
k

T
]

= E[(ejk + wqj
k − Ckk−1wpj

k−1)(ejk + wqj
k − Ckk−1wpj

k−1)T]

= E[ejke
j
k

T
] + E[ejkw

j
k

T
] + E[wj

kejk
T
]− E[ejkwj

k−1

T
]CT

kk−1 − Ckk−1E[wj
k−1ejk

T
]

+ E[wj
kwj

k

T
]− E[wj

kwj
k−1

T
]CT

kk−1 − Ckk−1E[wj
k−1wj

k

T
]

+ Ckk−1E[wj
k−1wj

k−1

T
]CT

kk−1.

At this stage, it is clear that ejk is correlated with the noise vectors wj
k−1 and wj

k. Because

there is no information about the actual value of ejk, this becomes an unsolvable problem.

If however we make the assumption that point pj and qj are the same point, it follows that

ejk = 0 and we can continue to solve for the error covariance, yielding

Σj
k = �����

E[ejke
j
k

T
] +�����

E[ejkw
j
k

T
] +�����

E[wj
kejk

T
]−

���������

E[ejkwj
k−1

T
]CT

kk−1 −���������

Ckk−1E[wj
k−1ejk

T
]

+ E[wj
kwj

k

T
]− E[wj

kwj
k−1

T
]CT

kk−1 − Ckk−1E[wj
k−1wj

k

T
]

+ Ckk−1E[wj
k−1wj

k−1

T
]CT

kk−1

= Rj
k + Ckk−1Rj

k−1CT
kk−1.

The point cost function is thus

J jk(rsksk−1

k ,Ckk−1) =
1

2
ẽjk

T
Σj
k

−1
ẽjk.

5.3.2.1 Using the Cayley Transformation to Rewrite the Cost Function

Applying the previously shown Cayley transform to Ckk−1 and using the relationship

ẽjk = (1 + p×k )−1ējk,

as in Section 5.3.1, the point cost function can be written as

J jk(rsksk−1

k ,Ckk−1) = 1
2
ẽjk

T
Σj
k

−1
ẽjk

= 1
2
ējk

T
(1 + p×k )−TΣj

k

−1
(1 + p×k )−1ējk

= 1
2
ējk

T (
(1 + p×k )Σj

k(1 + p×k )T
)−1

ējk
= 1

2
ējk

T
Wj

kējk
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where

Wj
k =

(
(1 + p×k )Σj

k(1 + p×k )T
)−1

. (5.10)

5.3.2.2 Weight Simplification and Overbounding the Cost Function

It turns out that the weight matrix Wj
k can be overbounded. First, simplify the weight,

letting

W̄
j
k = (1 + p×k )Σj

k(1 + p×k )T

= (1 + p×k )
(
Rj
k + Ck k−1Rj

k−1CT
k k−1

)
(1 + p×k )T

= (1 + p×k )Rj
k(1 + p×k )T + (1 + p×k )Ck k−1Rj

k−1CT
k k−1(1 + p×k )T.

Using Equation (5.3),

(1 + p×k )Ck k−1 = (1 + p×k )(1 + p×k )−1(1− p×k )

= (1− p×k ),

CT
k k−1(1 + p×k )T =

(
(1 + p×k )Ck k−1

)T
= (1− p×k )T

= (1− p×k
T
).

Therefore, the weighting matrix W̄
j
k can be expanded and written as

W̄
j
k = (1 + p×k )Rj

k(1 + p×k )T + (1− p×k )Rj
k−1(1− p×k

T
)

= Rj
k + Rj

kp×k
T

+ p×k Rj
k + p×k Rj

kp×k
T

+ Rj
k−1 − Rj

k−1p×k
T − p×k Rj

k−1 + p×k Rj
k−1p×k

T

= p×k
(
Rj
k + Rj

k−1

)
p×k

T −
(
Rj
k−1 − Rj

k

)
p×k

T − p×k
(
Rj
k−1 − Rj

k

)
+
(
Rj
k + Rj

k−1

)
.

Letting

S =
(
Rj
k + Rj

k−1

)
,

T =
(
Rj
k−1 − Rj

k

)
,

U =
(
Rj
k + Rj

k−1

)
,

Θ = p×k
T
,
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W̄
j
k can be written and simplified via the following identity outlined in [54] where

W̄
j
k = ΘTSΘ− TΘ−ΘTTT + U

=
(
Θ− S−1T

)T S
(
Θ− S−1T

)
+ U− TTS−1T

≥ U− TTS−1T

=
(
Rj
k + Rj

k−1

)
−
(
Rj
k−1 − Rj

k

) (
Rj
k + Rj

k−1

)−1 (
Rj
k−1 − Rj

k

)
= W̄j

k,

which is also to say that W̄j
k ≥ Wj

k = W̄
j
k

−1
, Then, by defining J̄ jk(rsksk−1

k ,Ckk−1) =
1
2
ējk

T
W̄j

kējk it follows that

J jk(rsksk−1

k ,Ckk−1) = 1
2
ējk

T
Wj

kējk ≤ 1
2
ējk

T
W̄j

kējk = J̄ jk .

Thus, J̄ jk(rsksk−1

k ,Ckk−1) overbounds J jk(rsksk−1

k ,Ckk−1). Moreover, by minimizing J̄k(rsksk−1

k ,Ckk−1),

an upper bound on Jk(rsksk−1

k ,Ckk−1) is minimized.

5.3.2.3 Optimal Pose Using the New Cost Function

Given that J̄k(rsksk−1

k ,Ckk−1) overbounds Jk(rsksk−1

k ,Ckk−1), the optimal rskzk−1
k and Ckk−1

can be obtained as follows. First, solve the weighted least squares problem

J̄k(rsksk−1

k ,Ckk−1) =
M∑
j=1

J̄ jk(rsksk−1

k ,Ckk−1)

=
M∑
j=1

1
2
ējk

T
W̄j

k

−1
ējk

= 1
2
(bk − Aj

kxk)TW̄−1
k (bk − Aj

kxk)

= 1
2
bT
k W̄−1

k bk + bT
k W̄−1

k Aj
kxk + 1

2
xT
kAj

k

T
W̄−1

k Aj
kxk.

Where the expressions for bk and Aj
k are given in (5.5). The solution, after simplification, is

xk = (Aj
k

T
W̄−1

k Aj
k)
−1W̄−1

k Aj
k

T
bk, (5.11)

where the states of interest can be extracted via

rsksk−1

k = −(1 + p×k )−1tk, (5.12)

Ckk−1 = (1 + p×k )−1(1− p×k ). (5.13)
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Because an estimate for Ckk−1 is now available, in practice, one would go back to (5.10) to

compute a better estimate for the weight, Wj
k and iterate until convergence.

5.3.3 Point-to-Plane Registration Using OLATE

The standard approach to solving point-to-plane registration was first proposed by Chen

and Medioni in [28] and later derived in detail in [55]. This method involves linearizing the

problem by making small angle approximations. For a derivation of this method, please see

Appendix A. Another method is just to leave the cost function in its nonlinear form and

apply GN or LM. As noted in [46], at the time the paper was written, there were no closed-

form solutions to the point-to-plane problem. In recent years, a closed-form solution has been

found in [56] though this method solves a linear system of 12 parameters. Furthermore, when

measurements are noisy, the rotation matrix obtained in [56] is not necessarily orthogonal

so an additional SVD step is needed to enforce orthogonality.

The solution obtained via OLATE is not only a closed-form solution but also solves for

3 parameters of the Rodriguez parameter p that can be mapped back directly to SO(3),

thereby naturally guaranteeing orthogonality of the rotation matrix.
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Figure 5.4: Point-to-plane registration problem statement. Left: Frame-centric view before
registration completion. Right: After point qj has been registered.

Consider the diagram in Fig. 5.4 where point pj is seen at timestep k − 1 and point qj,

a point near point pj, is seen at timestep k.

Instead of minimizing the euclidean distance between the measured points pj and qj,

that is e−→
j· e−→

j, the new objective is to minimize the distance between point qj and the local
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surface around point pj, that is e−→
j· n−→

j. Let êjk = njk
T

ejk, then, the new cost function to

minimize is

Jk(rsksk−1

k ,Ckk−1) =
M∑
j=1

1
2
êjk

2

=
M∑
j=1

1
2
ejk

T
njknjk

T
ejk

=
M∑
j=1

1
2
ejk

T
Nj
kejk (5.14)

where just as before, the residual is

ejk = rqjskk − Ckk−1rpjsk−1

k−1 + rsksk−1

k

= rqjskk − (1 + p×k )−1(1− p×k )rpjsk−1

k−1 − rsksk−1

k .

Note that Nj
k is a projection matrix that is always singular, which brings forth complications

when attempting to invert the weight associated with this point-to-plane problem.

Next, define a new residual ējk = (1+p×k )ejk, and after the same simplification steps made

in (5.5), the expression for ējk becomes

ējk = (1 + p×k )r̃jkk − (1− p×k )r̃jk−1
k−1 − (1 + p×k )rkk−1

k

= bjk − Aj
kxk.

Using the relationship

ejk = (1 + p×k )−1ējk

equation (5.14) can be rewritten as

Jk(rsksk−1

k ,Ckk−1) =
M∑
j=1

1
2
ējTk (1 + p×k )−TNj

k(1 + p×k )−1︸ ︷︷ ︸
Wj

k

ējk.
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Since (1 + p×k )−TNj
k(1 + p×k )−1 ≤ Nj

k = W̄j
k, it follows that

Jk(rsksk−1

k ,Ckk−1) =
M∑
j=1

1
2
ējTk (1 + p×k )−TNj

k(1 + p×k )−1ējk

≤
M∑
j=1

ējTk Nj
kējk = J̄k(rsksk−1

k ,Ckk−1).

In other words, J̄k overbounds Jk(rsksk−1

k ,Ckk−1) and minimizing J̄k minimizes an upper

bound of Jk(rsksk−1

k ,Ckk−1). The solution procedure follows similar steps as those derived

for point-to-point WOLATE. Namely, solve (5.11) and (5.13), then recompute Wk = (1 +

p×k )−TNj
k(1 + p×k )−1 and iterate until convergence.

5.3.4 Weighted OLATE-Based Point-to-Plane Registration
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Figure 5.5: Point-to-plane registration problem statement.

Consider now the weighted case where the measurements are no longer deterministic,

that is

r̃qjskk = rqjskk + wqj
k ,

r̃pjsk−1

k = rpjsk−1

k−1 + wpj
k−1.

51



where wpj
k−1 ∼ N (0,Rj

k−1) and wqj
k ∼ N (0,Rj

k).

The cost function to minimize is given by

Jk(rsksk−1

k ,Ckk−1) =
M∑
j=1

1

2
(ẽjk

T
njk︸ ︷︷ ︸

êjTk

)2 (5.15)

where êjk = njk
T

ẽjk = ẽjk
T

njk is the projection of vector ẽjk along the normal direction njk of the

plane.

At this point, it is worth deriving the covariance matrix associated with this error where

the covariance is defined as E[êjk
2
]. First note that the error residual and noise vectors are

related via

ẽjk = r̃qjskk − (Ckk−1r̃pjsk−1

k−1 − rsksk−1

k )

= rqjskk − (Ckk−1rpjsk−1

k−1 − rsksk−1

k ) + wqj
k − Ckk−1wpj

k−1

= ejk + wqj
k − Ckk−1wpj

k−1.

The variance associated with the error is then

σjk
2

= E[êjk
2
]

= E[(njk
T

ẽjk)(ẽjk
T

njk)]

= E[njk
T
(ejk + wqj

k − Ckk−1wpj
k−1)(ejk + wqj

k − Ckk−1wpj
k−1)Tnjk].

Notice that njk
T

ejk = ejk
T

njk = 0. Continuing,

σjk
2

= E[njk
T
(wj

kw
j
k

T − wj
kwj

k−1

T
CT
kk−1 − Ckk−1wj

k−1wj
k

T
+ Ckk−1wj

k−1wj
k−1

T
CT
kk−1)njk]

= njk
T
E[wj

kwj
k

T
]njk − njk

T
E[wj

kwj
k−1

T
]CT

kk−1njk
− njk

T
Ckk−1E[wj

k−1wj
k

T
]njk + njk

T
Ckk−1E[wj

k−1wj
k−1

T
]CT

kk−1njk
= njk

T
Rj
knjk + njk

T
Ckk−1Rjk−1

k−1 CT
kk−1njk

= njk
T
(Rj

k + Ckk−1Rjk−1
k−1 CT

kk−1)njk

It is possible to derive an expression for the error covariance, or more accurately, variance in

this case, without making the point-to-point association assumption made during the point-

to-point WOLATE derivation. This is a critical piece of information that arises naturally

in our derivation. It implies that in cases where there is no guarantee that points observed

at one instance are the same points observed in another instance, such as the case with
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LIDAR measurements, point-to-plane registration should always be chosen over point-to-

point registration.

The cost function of (5.15) can now be rewritten as

Jk(rsksk−1

k ,Ckk−1) =
M∑
j=1

1

2σjk
2 ê

j
k

2

=
M∑
j=1

1
2
êjk(njk

T
(Rj

k + Ckk−1Rjk−1
k−1 CT

kk−1)njk)
−1êjk

=
M∑
j=1

1
2
ẽjTk njk(njk

T
(Rj

k + Ckk−1Rjk−1
k−1 CT

kk−1)njk)
−1njk

T
ẽjk

Rewriting the Cost Function Using the Caley Transformation

Applying the Cayley Transformation (5.3) to Ckk−1, the error residual term that was

previously defined as

ẽjk = r̃qjskk − (Ckk−1r̃pjsk−1

k−1 − rsksk−1

k )

can be rewritten as

ẽjk = r̃qjskk −
(
(1 + p×k )−1(1− p×k )r̃pjsk−1

k−1 − rsksk−1

k

)
.

Similarly, by defining a new residual ējk = (1 + p×k )ẽjk

ējk = (1 + p×k )r̃qjskk − (1− p×k )r̃pjsk−1

k−1 − (1 + p×k )rsksk−1

k

= bjk − Aj
kxk.

Using the relationship

ẽjk = (1 + p×k )−1ējk
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The above cost function can be rewritten as

Jk(rsksk−1

k ,Ckk−1) =
M∑
j=1

1

2
ẽjTk njkσ

j
k

−1
njk

T
ẽjk

=
M∑
j=1

1

2
ējTk (1 + p×k )−Tnjkσ

j
k

−1
njk

T
(1 + p×k )−1ējk

=
M∑
j=1

1

2
ējTk Wj

kējk

where Wj
k = (1 + p×k )−Tnjkσ

j
k

−1
njk

T
(1 + p×k )−1.

5.3.5 Point-to-Line Registration Using OLATE

To the knowledge of the author, the only known mention of 3D point-to-line registration

in literature is provided in [22], which formulates the point-to-line distance using a cross

product and requiring nonlinear optimization to solve. In [57] a 2D point-to-line registration

method is described that is solved by enforcing the constraint sin θ2 + cos θ2 = 1 using the

Lagrange Multiplier method. However, no 3D solution is provided. The Iterative Closest

Line (ICL) approach described in [29] is in fact a line-to-line registration method but is likely

the most similar method to the method presented in this section. In deriving the OLATE-

based point-to-line method, it will be shown that the 2D version is actually equivalent to 2D

point-to-plane registration. Because no literature available to date describes 3D point-to-line

registration in a rigorous way, the derivation provided in this section is particularly novel.

In the point-to-line formulation, the objective is to minimize the euclidean distance be-

tween qj and the line formed by point pj and pl. Let êjk = ejk − ajkajk
T

ejk. The cost function

to minimize is

Jk(rsksk−1

k ,Ckk−1) =
M∑
j=1

êjk
T

êjk

=
M∑
j=1

(ejk − ajkajk
T︸ ︷︷ ︸

Dj
k

ejk)
T(ejk − ajkajk

T︸ ︷︷ ︸
Dj
k

ejk)

=
M∑
j=1

ejk
T
(1− Dj

k)
T(1− Dj

k)ejk (5.16)
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Figure 5.6: Point-to-line registration problem statement. Left: Frame-centric view before
registration completion. Right: After point qj has been registered.

where the residual is

ejk = rqjskk − (1 + p×k )−1(1− p×k )rpjsk−1

k−1 − rsksk−1

k ,

Just as before, define a new residual ējk = (1 + p×k )ejk, and after the same simplification steps

made in (5.5), the expression for ējk becomes

ējk = (1 + p×k )r̃qjskk − (1− p×k )r̃pjsk−1

k−1 − (1 + p×k )rsksk−1

k

= bjk − Aj
kxk.

Using the relationship

ejk = (1 + p×k )−1ējk,

the cost function of (5.16) becomes

Jk(rsksk−1

k ,Ckk−1) =
M∑
j=1

ējk
T
(1 + p×k )−T(1− Dj

k)
T(1− Dj

k)(1 + p×k )−1ējk

=
M∑
j=1

ējk
T
(1 + p×k )−T(1− Dj

k)(1 + p×k )−1ējk,
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where (1 − Dj
k)

T(1 − Dj
k) = (1 − Dj

k). For the 2D case, (1 − Dj
k) = Nj

k because every

unit vector parallel to a line has a unique orthonormal complement that happens to be the

normal vector of that line. This statement is no longer valid for the 3D case where planes

and lines are different geometric entities and where every unit vector has an infinite number

of orthonormal complements.

5.3.6 Weighted OLATE-Based Point-to-Line Registration

Fsk−1
Fsk

r
�!

sksk−1

r
�!

qjsk

~e
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j

pj qj

sk−1 sk
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j

~r
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qjsk~r
�!

pjsk−1

r
�!

pjsk−1

e
�!

j

~e
−!

j
− ( ~e

−!

j
· a
−!

j) a
−!

j

Once again, in the weighted formulation, probabilistic measurements are assumed, that

is

r̃qjskk = rqjskk + wqj
k ,

r̃pjsk−1

k = rpjsk−1

k−1 + wpj
k−1

where wpj
k−1 ∼ N (0,Rj

k−1) and wqj
k ∼ N (0,Rj

k).

Given the unit vector a−→
j parallel to the line of interest, the cost function to minimize

can be formulated as follows.

Jk(rsksk−1

k ,Ckk−1) =
M∑
j=1

1

2
(ẽjk − ajkajk

T
ẽjk)

T︸ ︷︷ ︸
êjTk

(ẽjk − ajkajk
T

ẽjk︸ ︷︷ ︸
êjk

)
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where êjk = ẽjk − ajkajk
T

ẽjk is the projection of vector ẽjk along the direction normal to the line

direction ajk.
Next, derive the covariance matrix associated with this error where the covariance is

defined as E[êjkêjTk ]. First note that

ẽjk = r̃qjskk − (Ckk−1r̃pjsk−1

k−1 − rsksk−1

k )

= rqjskk − (Ckk−1rpjsk−1

k−1 − rsksk−1

k ) + wqj
k − Ckk−1wpj

k−1

= ejk + wqj
k − Ckk−1wpj

k−1.

The covariance associated with the error is then

Σj
k = E[êjkêjTk ]

= E[(ẽjk − ajka
j
k

T
ẽjk)(ẽjk − ajka

j
k

T
ẽjk)

T]

= E[ẽjkẽjk
T − ẽjkẽjk

T
ajka

j
k

T︸ ︷︷ ︸
Dj
k

− ajka
j
k

T︸ ︷︷ ︸
Dj
k

ẽjkẽjk
T

+ ajkajk
T︸ ︷︷ ︸

Dj
k

ẽjkẽjk
T

ajkajk
T︸ ︷︷ ︸

Dj
k

]

= E[(ejk + wj
k − Ckk−1wj

k−1)(ejk + wj
k − Ckk−1wj

k−1)
T

− (ejk + wj
k − Ckk−1wj

k−1)(ejk + wj
k − Ckk−1wj

k−1)
T

Dj
k

− Dj
k(ejk + wj

k − Ckk−1wj
k−1)(ejk + wj

k − Ckk−1wj
k−1)

T

+ Dj
k(ejk + wj

k − Ckk−1wj
k−1)(ejk + wj

k − Ckk−1wj
k−1)

T
Dj
k]

= E[ejkejk
T

+ ejkwj
k

T
+ wj

ke
j
k

T
+ ejkwj

k−1

T
CT
kk−1 + Ckk−1wj

k−1ejk
T

+ wj
kwj

k

T −��������
wj
kw

j
k−1

T
CT
kk−1 −��������

Ckk−1wj
k−1wj

k

T
+ Ckk−1wj

k−1wj
k−1

T
CT
kk−1]

− E[ejkejk
T

+ ejkw
j
k

T
+ wj

kejk
T

+ ejkwj
k−1

T
CT
kk−1 + Ckk−1wj

k−1ejk
T

+ wj
kwj

k

T −��������
wj
kw

j
k−1

T
CT
kk−1 −��������

Ckk−1wj
k−1wj

k

T
+ Ckk−1wj

k−1wj
k−1

T
CT
kk−1]Dj

k

− Dj
kE[ejkejk

T
+ ejkwj

k

T
+ wj

ke
j
k

T
+ ejkwj

k−1

T
CT
kk−1 + Ckk−1wj

k−1ejk
T

+ wj
kwj

k

T −��������
wj
kwj

k−1

T
CT
kk−1 −��������

Ckk−1wj
k−1wj

k

T
+ Ckk−1wj

k−1wj
k−1

T
CT
kk−1]

+ Dj
kE[ejkejk

T
+ ejkwj

k

T
+ wj

ke
j
k

T
+ ejkwj

k−1

T
CT
kk−1 + Ckk−1wj

k−1ejk
T

+ wj
kw

j
k

T −��������
wj
kwj

k−1

T
CT
kk−1 −��������

Ckk−1wj
k−1wj

k

T
+ Ckk−1wj

k−1wj
k−1

T
CT
kk−1]Dj

k

At this stage, it was possible to cross out terms using the assumption that the two noise

vectors are uncorrelated, that is E[wj
kwj

k−1

T
] = E[wj

k−1wj
k

T
] = 0. Also note that ejk

T
Dj
k = ejk

T

and Dj
kejk = ejk, allowing an additional simplification to take place, that being
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Σj
k = E[

�
�
�

ejkejk
T

+����ejkwj
k

T
+����wj

kejk
T

+��������
ejkwj

k−1

T
CT
kk−1 +��������

Ckk−1wj
k−1ejk

T

+ wj
kwj

k

T
+ Ckk−1wj

k−1wj
k−1

T
CT
kk−1]

− E[
�
�
�

ejkejk
T

+����ejkwj
k

T
+����wj

ke
j
k

T
+��������

ejkwj
k−1

T
CT
kk−1 +��������

Ckk−1wj
k−1ejk

T

+ wj
kwj

k

T
+ Ckk−1wj

k−1wj
k−1

T
CT
kk−1]Dj

k

− Dj
kE[

�
�
�

ejke
j
k

T
+����ejkwj

k

T
+����wj

kejk
T

+��������
ejkw

j
k−1

T
CT
kk−1 +��������

Ckk−1wj
k−1ejk

T

+ wj
kwj

k

T
+ Ckk−1wj

k−1wj
k−1

T
CT
kk−1]

+ Dj
kE[

�
�
�

ejkejk
T

+����ejkwj
k

T
+����wj

kejk
T

+��������
ejkwj

k−1

T
CT
kk−1 +��������

Ckk−1wj
k−1ejk

T

+ wj
kwj

k

T
+ Ckk−1wj

k−1wj
k−1

T
CT
kk−1]Dj

k

= (Rj
k + Ckk−1Rjk−1

k−1 CT
kk−1)− (Rj

kD
j
k + Ckk−1Rjk−1

k−1 CT
kk−1Dj

k)

− (Dj
kRj

k + Dj
kCkk−1Rjk−1

k−1 CT
kk−1) + (Dj

kRj
kD

j
k + Dj

kCkk−1Rjk−1
k−1 CT

kk−1Dj
k)

= (1− Dj
k)(Rj

k + Ckk−1Rjk−1
k−1 CT

kk−1)(1− Dj
k).

where terms that cancel with each other have been color coded for clarity.

Note that unlike the point-to-plane case where the variance σjk is a scalar and therefore

invertible, the covariance Σj
k in the point-to-line case is a matrix. Because the matrix Dj

k is

a projection matrix, 1−Dj
k is singular, which is to say Σj

k is also singular and non-invertible.

To get around this problem, simply perturb Σj
k with a small Symmetric Positive Definite

matrix ∆, effectively rendering it invertible. Note that the two matrices to the left and right

of the inverse covariance matrix, namely, (1− Dj
k)

T and (1− Dj
k) must not be perturbed as

they serve to project the weight matrix into the correct subspace.

Adding the aforementioned perturbation to the covariance matrix allows the cost function

to be rewritten as

Jk(rsksk−1

k ,Ckk−1) =
M∑
j=1

1
2
êjTk (Σj

k + ∆)−1êjk

=
M∑
j=1

1
2
êjTk
(

(1− Dj
k)(Rj

k + Ckk−1Rjk−1
k−1 CT

kk−1)(1− Dj
k) + ∆

)−1

êjk

=
M∑
j=1

1
2
ẽjTk (1− Dj

k)
T
(

(1− Dj
k)(Rj

k + Ckk−1Rjk−1
k−1 CT

kk−1)(1− Dj
k) + ∆

)−1

(1− Dj
k)ẽjk
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Rewriting the Cost Function Using the Caley Transformation

Applying the Cayley Transformation (5.3) to Ckk−1, the error residual term that was

previously defined as

ẽjk = r̃qjskk − (Ckk−1r̃pjsk−1

k−1 − rsksk−1

k )

can be rewritten as

ẽjk = r̃qjskk −
(
(1 + p×k )−1(1− p×k )r̃pjsk−1

k−1 − rkk−1
k

)
.

Similarly, by defining a new residual ējk = (1 + p×k )ẽjk

ējk = (1 + p×k )r̃qjskk − (1− p×k )r̃pjsk−1

k−1 − (1 + p×k )rsksk−1

k

= bjk − Aj
kxk.

Using the relationship

ẽjk = (1 + p×k )−1ējk

The above cost function can be rewritten as

J =
M∑
j=1

1

2
ẽjTk (1− Dj

k)
T
(
Σj
k + ∆

)−1
(1− Dj

k)ẽjk

=
M∑
j=1

1

2
ējTk (1 + p×k )−T(1− Dj

k)
T
(
Σj
k + ∆

)−1
(1− Dj

k)(1 + p×k )−1ējk

=
M∑
j=1

1

2
ējTk Wj

kē
j
k

where Wj
k = (1 + p×k )−T(1− Dj

k)
T
(
Σj
k + ∆

)−1
(1− Dj

k)(1 + p×k )−1.

5.4 Total Registration Using WOLATE

Now that the point-to-point, point-to-plane, and point-to-line WOLATE algorithms have

been derived, an algorithm that encompasses all three problems into a single problem can

be formulated. This method is termed Total Registration as it performs registration an all

point types simultaneously. Before proceeding, a table summarizing the three methods is

provided in Table 5.1.
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Table 5.1: Summary of OLATE and WOLATE-based registration cost functions

Regular Cost Function Weighted Cost Function

pt-pt 1
2ejk

T
ejk

1
2 ẽjk

T
Sj
k

−1
ẽjk

pt-line 1
2ejk

T
(1− Dj

k)ejk
1
2 ẽjk

T
(1− Dj

k)T
(

(1− Dj
k)Sj

k(1− Dj
k) + ∆

)−1

(1− Dj
k)Tẽjk

pt-plane 1
2ejTk Nj

kejk
1
2 ẽjk

T
nj
k

(
nj
k

T
Sj
knj

k

)−1

nj
k

T
ẽjk

where Sjk = Rj
k + Ckk−1Rjk−1

k−1 CT
kk−1 and ∆ is a small Positive Definite matrix.

Consider that for a given transformation between two poses Tibk−1
and Tibk , the point

clouds viewed from the two poses, namely rpjbk−1

bk−1
and rpjbkbk

are given. Also suppose that

after undergoing the feature extraction steps defined in Section 4.6, the edge points e
qjbk
bk

,

surface points s
qjbk
bk

, and feature points rqjbkbk
along with their corresponding line vectors

ajk, normal vectors njk, and points rpjbk−1

bk−1
are available. Note that here, the term “feature

points” refers to points of interest that can be corresponded exactly to some other feature

point. In 2D SLAM, these can be corner points. Finally, suppose that the uncertainty

of the sensor used has been modelled according to Chapter 3 and the covariance matrices

Rjk−1
k−1 and Rjk

k of feature points, the covariance matrices Ejk−1
k−1 and Ejkk of edge points, and

the covariance matrices Sjk−1
k−1 and Sjk

k of surface points have been retrieved. The Total

Registration algorithm is given in Algorithm 5.1.
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Algorithm 5.1

1: function Ckk−1, rkk−1
k = TotalRegistration(rqjbkk , s

qjbk
k , e

qjbk
k , rpjbk−1

k−1 , s
pjbk−1

k−1 , e
pjbk−1

k−1 , njk,
ajk, Rjk−1

k−1 , Rjk
k ,Sjk−1

k−1 , Sjk
k ,Ejk−1

k−1 , Ejkk )

2: Form the column matrix vk =

vr
k

vs
k

ve
k

 =

rpjbk−1

k−1 + rqjbkk

s
pjbk−1

k−1 + s
qjbk
k

e
pjbk−1

k−1 + e
qjbk
k


3: Form the matrix Ak where Ak =

Ak
r

Ak
s

Ak
e

 =

1 vjk
r×

1 vjk
s×

1 vjk
e×


4: Form the column matrix bk where bk =

br
k

bs
k

be
k

 =

rpjbk−1

k−1 − rqjbkk

s
pjbk−1

k−1 − s
qjbk
k

e
pjbk−1

k−1 − e
qjbk
k


5: iteration = 0
6: while condition > ε do
7: for all feature points do
8: if iteration == 1 then
9: Compute Σj

k = Rjk
k + Rjk−1

k−1

10: Wj
k ← Σj

k

−1

11: else
12: Compute Σj

k = Rjk
k + Ckk−1Rjk−1

k−1 CT
kk−1

13: Wj
k ← (1 + p×k )−TΣj

k

−1
(1 + p×k )−1

14: end if
15: end for
16: for all surface points do
17: if iteration == 1 then
18: Compute σjk = njk

T
(Sjk

k + Sjk−1
k−1 )njk

19: Wj
k ← njkσ

j
k

−1
njk

T

20: else
21: Compute σjk = njk

T
(Sjk

k + Ckk−1Sjk−1
k−1 CT

kk−1)njk
22: Wj

k ← (1 + p×k )−Tnjkσ
j
k

−1
njk

T
(1 + p×k )−1

23: end if
24: end for
25: for all edge points do
26: if iteration == 1 then
27: Compute Σj

k = (1− Dj
k)

T(Ejkk + Ejk−1
k−1 )(1− Dj

k) + ∆

28: Wj
k ← (1− Dj

k)
TΣj

k

−1
(1− Dj

k)
29: else
30: Compute Σj

k = (1− Dj
k)

T(Ejkk + Ckk−1Ejk−1
k−1 CT

kk−1)(1− Dj
k) + ∆

31: Wj
k ← (1 + p×k )−T(1− Dj

k)
TΣj

k

−1
(1− Dj

k)(1 + p×k )−1

32: end if
33: end for
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34: Wk =

Wk

Wk

Wk


35: x =

[
tk
pk

]
= (AT

kWkAk)
−1AT

kWkbk

36: rsksk−1

k = −(1 + p×k )−1tk
37: Ckk−1 = (1 + p×k )−1(1− p×k )
38: condition ← ComputeConvergenceCondition()
39: iteration++
40: end while
41: end function

For 2D LIDAR odometry, it is recommended to treat corner points as feature points

with point-to-point correspondence since the same point will appear as a corner regardless

of pose. For 3D LIDAR odometry, only edge points and surface points should be used since

regular points have no guarantee of being associated with their closest-neighbour.

5.4.1 Constrained OLATE

Another useful feature of a linear solution to the pose estimation problem, that being

OLATE or WOLATE, is that it becomes easy to introduce constraints to the problem.

Suppose the same least squares problem as the previous section, namely, min ‖Ax− b‖2
2

where A ∈ Rm×n now has an equality constraint Bx = d, so that the optimization problem

can be written as

min ‖Ax− b‖2
2

s.t. Bx = d.

Such a constraint can arise when a better estimate for one of the states is available. For

example, segmenting the ground plane from a point cloud and separately performing point-

to-plane scan matching can yield a more accurate estimate of the z translation component.

If this were the case, the predicted pose would be initialized with the a-priori known rsksk−1

k

and the constrained would then be B =
[
0 0 0 0 0 1

]
and b = (1 + p×)rsksk−1

k = 0.

Note that since this is usually applied within an ICP algorithm where the pose estimate is

incrementally computed, setting d to zero is equivalent to preventing any translation in the

z direction throughout the course of the ICP iterations.

This equality-constrained least squares problem can be solved a number of ways. The

easiest and most natural way is via the Lagrange Multiplier method [58]. First, form the
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Lagrangian function as

L(x,λ) = ‖Ax− b‖2
2 + λT(Bx− d)

= xTATAx− 2bTA− bTb + λTCx− λTd.

Next, minimize the Lagrangian with respect to x and λ.

δL

δx
= 2xTATA− 2bTA + λTC = 0

δL

δλ
= Cx− d = 0.

Transposing and then simplifying this system of linear equations leads to[
2ATA CT

C 0

][
x
λ

]
=

[
2ATb

d

]
, (5.17)

yielding the Lagrange Multiplier solution, also known as the KKT solution to the equality-

constrained least squares problem of constrained OLATE.

Another way to solve this equality-constrained least squares problem is to derive an

equivalent unconstrained least squares problem of lower dimension. Using the method of

direct elimination [42], first compute a QR decomposition of B. Specifically, there exists an

orthogonal matrix Q and a permutation matrix P such that

QTBP =

[
R11 R12

0 0

]

where R11 ∈ Rr×r, r = rank(B).

We can then substitute the factorized form of B into the equality constraint to obtain

Q

[
R11 R12

0 0

]
PTx = d,

which can be simplified to [
R11 R12

0 0

]
x̄ = d̄
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where

d̄ = QTd =

[
d̄1

d̄2

]
, d̄1 =

[
R11 R12

]
x̄ , and x̄ = PTx. (5.18)

The matrix A can then be permutated by substituting the expression for x̄, namely

Ax− b = APx̄− b = Āx̄− b =
[
Ā1 Ā2

] [x̄1

x̄2

]
− b. (5.19)

Equation (5.18) can then be substituted into (5.19) to eliminate the x̄1 variables. Noting

that x̄1 = R−1
11 (d̄1 − R12x̄2), proceed to isolate for x̄2 to get

Ax− b = Ā1(R−1
11 (d̄1 − R12x̄2)) + Ā2x̄2 − b

= (Ā2 − Ā1R−1
11 R12)x̄2 − (b− Ā1R−1

11 d̄1).

The reduced unconstrained least squares problem is thus

min
x̄2

∥∥∥Â2x̄2 − b̂
∥∥∥2

(5.20)

where

Â2 = Ā2 − Ā1R−1
11 R12 and b̂ = b− Ā1R−1

11 d̄1

If B has linearly independent rows, that is, rank(B) = p and rank

(
A
B

)
= n, it is possible to

compute the QR decomposition of Â2 to get

Â2 = Q

[
R22

0

]
, QTb̂ =

[
c1

c2

]
.

Next, solve for x̄ via [
R11 R12

0 R22

]
x̄ =

[
d̄1

c1

]
.

Finally, x = Px̄. After solving for x, rsksk−1

k and Ckk−1 can be retrieved as usual.

More commonly, it is possible to obtain accurate pitch and roll estimates via an IMU.

In such a case, it may be advantageous to constrain the rodriguez parameters associated
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with roll and pitch. To do this, first convert the desired Euler angles to a DCM, followed by

another conversion to Rodriguez parameters. In the case where roll and pitch are constrained,

yaw = ψ, pitch = θ = 0, roll = φ = 0

Their respective basic rotation matrices being

C1(φ) =

1 0 0

0 cosφ − sinφ

0 sinφ cosφ

 , C2(θ) =

 cos θ 0 sin θ

0 1 0

− sin θ 0 cos θ

 ,

C3(ψ) =

cosψ − sinψ 0

sinψ cosψ 0

0 0 1

 .
The full DCM is thus

Cab = C3(ψ)C2(θ)C1(φ) =

cosψ − sinψ 0

sinψ cosψ 0

0 0 1

 .
From the DCM, the Rodriguez parameters can be obtained as

φ = cos−1

(
C11 + C22 + C33 − 1

2

)
= ψ

a1 =
C32 − C23

2 sin(φ)
= 0

a2 =
C13 − C31

2 sin(φ)
= 0

a3 =
C21 − C12

2 sin(φ)
= 1

5.5 Outlier Rejection

Outlier rejection addresses the fact that every LIDAR sweep may contain unreliable

points. These are typically removed altogether in the preprocessing step but in the event

they are not, a number of additional methods can be used.

For a single registration step, the most common method is to evaluate the distance of

point-to-point correspondences and to establish a threshold for this distance, typically set

near the expected translation. Corresponding points with point-to-point distances greater
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than this threshold are rejected. This method can work reliably if there is no significant

change in measurement uncertainty with respect to range but if further away points have

consistently higher uncertainty, these points will always be rejected, a feature that is not

always desired.

Another common method is to use a RANSAC scheme. Pick a random subset of points

and, along with their correspondences, compute the relative transformation. Re-project all

points in the matching point cloud using the estimated transform and compute all error

residuals. Iterate until a desired residual has been attained, at which point outliers have

been identified and disregarded during the computation of the transform. However, since

ICP is already an iterative scheme, adding an additional iterative algorithm within it may

not be computationally ideal.

For multiple ICP registration steps, it is more difficult to reject outliers based on point-

to-point distances as these are generally small for every incremental transformation. Instead,

one method involves accepting that a certain percentage of points are outliers and always

picking the top percentile of points with the least point-to-point residual. In reality, the

percent of outliers is never constant and with no reliable way of dynamically varying this

percentage, important measurements can be left out if the threshold is set too low or outliers

can be left in if the threshold is set too high.

As mentioned earlier, outlier rejection is performed naturally when using the Weighted

OLATE method. During the pre-processing step, unreliable points are attributed a greater

uncertainty and will hence play less of a role in the registration process. However, all the

aforementioned outlier rejection methods can still be applied for robustness.

5.6 LIDAR Odometry and Mapping

Odometry refers to the estimation of pose over time and is the next step of accomplishing

local SLAM. A naive approach to LIDAR Odometry is to string pose-to-pose estimates

obtained from the ICP algorithm described in the previous section together. However, since

each pose-to-pose estimate is inaccurate, errors are accumulated over time and drift, much

like drift encountered in IMU integration. One way to mitigate drift is to build a local map

of points and scan match every new sweep with that map, initializing the pose with pose-

to-pose scan matching estimates. The point cloud representing the local map needs to be

filtered regularly such that its size grows linearly with motion and not with time. This can

be achieved by using a Voxel Filter. The general procedure of LIDAR Odometry is shown in

Fig. 5.7. To begin, always use the first scan to initialize the local map. This can be done by

setting the first body frame Fv1 as the local frame Fi and setting the pose of the robot at the
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first timestep to zero. Next, perform pose-to-pose scan matching between the second point

cloud and the previous point cloud using the ICP algorithm to obtain T̃v1ṽ2 , a rough estimate

of the pose of the robot at the second timestep. Because the map currently contains only

the first point cloud, T̃v1ṽ2 = Tv1v2 . Project the second point cloud into the local map frame

and use a Voxel filter to downsample the map point cloud. With an incoming third scan,

perform pose-to-pose scan matching once again, this time between the third point cloud and

the previous point cloud using ICP to obtain T̃v2ṽ3 . At this point, use this pose estimate to

initialize the pose-to-map scan matching by projecting the third point cloud into the local

map frame and use ICP to compute Tv2v3 . Finally, reproject the third point cloud into the

local map frame and merge it with the map point cloud via voxel filtering.
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Figure 5.7: Lidar Odometry procedure. a) Initialize first scan at local map origin. b)
Compute T̃v1ṽ2 using pose-to-pose scan matching via ICP. c) Project the second scan onto
the local map using T̃v1ṽ2 and downsample and merge with map point cloud. d) Compute
T̃v2ṽ3 via pose-to-map scan matching. e) Project third scan onto map using T̃v2ṽ3 , perform
pose-to-map scan matching to obtain Tv2ṽ3 . f) reproject third scan onto map using Tv2ṽ3 ,

downsample and merge with map point cloud.
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Chapter 6

Results and Discussions

The registration algorithms derived in Chapter 5 are tested in simulation, and then in

an experimental setting. Testing in both simulation and in an experimental setting is done

for a number of reasons. Though the underlying principle of WOLATE, that is weighted

least squares, should theoretically provide a more accurate estimate than its unweighed

counterpart, the magnitude of these gains when applied to realistic measurements corrupted

by realistic levels of noise can only be assessed using experimental data. There is also never

any guarantee that LIDAR points correspond to close-by points in a subsequent scan, even

when features are extracted. In the best of cases, one can be fairly certain that a feature point,

such as a surface point, most likely corresponds to a nearby surface point, and thus belong

to the same plane. Furthermore, the addition of weights introduces a number of parameters

that need to be tuned to optimize performance. Testing in simulation provides a means

to tune parameters and also provides groundtruth data that are more difficult to obtain in

real-life. Experimental testing is also necessary to provide more realistic measurement noise

and outliers that are difficult to model in a simulation setting.

6.1 Simulation Results

In this section, WOLATE is rigorously tested such that the degree of improvement over

Horn’s registration method and the linearized point-to-plane registration method can be

better understood. First, point clouds having perfect point-to-point correspondences will

be assumed. This case can arise in visual odometry applications using camera features

assuming correct feature correspondence and no outliers. Next, WOLATE’s performance

within an ICP framework will be evaluated in the case where point-to-point correspondences

are not assumed. This is the more realistic case encountered by LIDAR-based scan-matching

methods that extract features as described in Chapter 4.

69



0

1

2

3

4

5

6

7

8
X

 (
m

)

0 1 2 3 4 5 6 7 8

Y (m)

Figure 6.1: Simulated LIDAR measurement of a room.

6.1.1 2D Registration with Perfect Correspondence

The simulation and test setup is as follows. A virtual map resembling the floor of a

building with many rooms such as the one in Fig. 6.1 is created. A LIDAR scan is taken and

is subsequently transformed to mimic motion, assuming that each point is somehow tracked,

thus yielding perfect point-to-point correspondence. This is analogous to a case where a

camera tracks feature points as it moves. Range and incidence angle of each LIDAR beam

is computed and Gaussian noise with zero mean and covariance as modelled in Chapter 3 is

injected into each point cloud. Fig. 6.2 compares the performance of point-to-point Horn’s
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Figure 6.2: Point-to-point registration: Rotation and Translation error for 1000 runs.
θtrue = 10◦ ttrue = 1m.

Method, Horn’s Method with scalar weights, and WOLATE on this point-cloud pair. It

can be seen that although rotation errors for WOLATE and weighted Horn’s are similar,

WOLATE estimates the translation more accurately, thus making it a better estimator for

overall pose.

For the point-to-plane case, a similar trend is observed though the benefits are more

pronounced, as shown in Fig. 6.3. This is in large due to the fact that the standard linearized

point-to-plane registration method makes the small angle approximation that point-to-plane

WOLATE does not make. Recall that the 2D point-to-line problem is equivalent to the

point-to-plane problem so its results are omitted from this analysis.

These results suggest that if a good initial point correspondence is provided a priori,

then point-to-plane WOLATE-based ICP will be more accurate than standard point-to-

plane ICP. To test this theory, a new simulation scenario is constructed where the matching

point cloud is no longer obtained by transforming the reference point cloud but is itself, a

unique measurement taken at a different pose, much like what one would expect with a real

LIDAR.

6.1.2 2D Registration with Realistic Conditions

Before commencing the more realistic simulations, a way is needed to simulate initializa-

tion noise for the ICP algorithm. Suppose a LIDAR is mounted on a UAV with a maximum

angular velocity of 100◦/sec and a sampling speed of 600RPM or 10sweeps/sec. A single

sweep has a period of 0.1sec, which is enough time for the UAV to rotate no more than

10◦. Similarly, assuming a maximum operational speed of 5m/s, in the same time frame,
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Figure 6.3: Point-to-plane registration: Rotation and Translation error for 1000 runs.
θtrue = 10◦ ttrue = 1m.

Table 6.1: IMU measurement noise

acceleration
(m
s2

)
gyroscrope
(rad/sec)

magnetometer
(Gauss)

bias [x y z] [0.2 -0.38 0.14] [0.02 -0.01 0.05] [0.015 0.25 -0.12]
covariance 0.75 5e-4 1e-6

the UAV will have travelled no more than 0.5m. Suppose now that the UAV is operating

indoors and thus does not have GPS measurements to correct IMU bias and error. The

IMU itself has a sampling rate of 1000 Hz for the accelerometer and gyro and 50 Hz for the

magnetometer. The expected translation and yaw error are simulated by keeping the UAV

fixed and observing the sweep-to-sweep drift in yaw and translation when the measurements

are corrupted with worse case bias and noise typically observed in practice. The worse case

bias and noise values in Table 6.1 were provided by ARA Robotique.

Figure 6.4 shows that the accrued drift in yaw is mostly contained within its 3σ-bounds

of ±1.2678deg while Fig. 6.5 shows that the accrued drift in x and y position is mostly

contained within its 3σ-bounds of ±0.78m and ±0.84m respectively. In other words, the

pose prediction supplied by this simulated IMU should not deviate beyond these 3σ-bound

values.
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Figure 6.4: Yaw drift accrued over 0.1sec, the sweep-to-sweep time for this particular
LIDAR.
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(a) Drift in x-position.
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(b) Drift in y-position.

Figure 6.5: Accrued position drift accrued over 0.1sec, the sweep-to-sweep time for this
particular LIDAR.

.

Next, the error in scan matching is evaluated when the sweep to be matched is initialized

with the mean and standard deviations for translation and yaw drift between successive

sweeps obtained in Fig. 6.4, 6.5a, and 6.5b. Specifically, 1000 sweep-to-sweep LIDAR scan

pairs are generated with translation and rotation randomly selected within the aforemen-

tioned worst cases, namely, 10◦ yaw and 0.5m translation. The results of Fig. 6.6 indicate

that point-to-plane WOLATE is generally more accurate in translation and yaw estimates

compared to its linearized counterpart and also has less error variation. Further simulation
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with different sweep-to-sweep pairs validate these results and are presented in Fig. 6.7.
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(a) Sweep-to-sweep yaw error.
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(b) Sweep-to-sweep translation error.

Figure 6.6: Scan matching error using ICP between two scan pairs, where points do not
necessarily correspond with each other and where each try uses a randomly generated pose

prediction that falls within worse case IMU estimates of 10◦ yaw and 0.5m translation.

Scan-to-scan registration alone is not enough to construct a cohesive trajectory estimate.

In most cases, the transformation obtained through scan-to-scan registration is only used to

initialize scan-to-map registration. The next test focuses on LIDAR-based odometry, where

scan-to-map registration is performed to obtain pose estimates over time.

6.1.3 2D LIDAR Odometry

As previously introduced, LIDAR odometry involves two point cloud registration steps.

Scan-to-scan matching is performed to obtain a rough estimate of the next pose while scan-

to-map matching uses the rough pose estimate as an initialization to refine the pose estimate

with respect to a locally built map. Since ICP is used twice in the LIDAR odometry method,

there are two opportunities where the use of WOLATE-based point-to-plane ICP, which was

shown to be more accurate than its linearized counterpart, can make a difference in terms

of accuracy of the overall odometry solution. In light of this, the point-to-plane WOLATE

algorithm of Section 5.3.4 is directly implemented within the odometry method described

in Section 5.6 and applied to a series of simulated maps and trajectories. Some popular

benchmark maps such as the Intel Lab dataset and the ACES3 Austin dataset were recreated

in Matlab. Each test is repeated ten times, with different randomly generated noisy pose

predictions that fall within worse case IMU estimates of 10◦ yaw and 0.5m translation.

To gauge performance, for the set of results presented in Table 6.2, both rotation and

translation errors with respect to the groundtruth have been extracted from the average of
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(b) Sweep-to-sweep translation error.
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(c) Sweep-to-sweep yaw error.
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(d) Sweep-to-sweep translation error.
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(e) Sweep-to-sweep yaw error.
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Figure 6.7: Comparison between linearized and WOLATE-based point-to-plane registration for
three other scan pairs.
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Table 6.2: Performance comparison of different registration methods in LIDAR odometry.

Linearized
pt-to-plane
translation
error averaged
over 10 runs
(m)

WOLATE
pt-to-plane
translation
error averaged
over 10 runs
(m)

Linearized
feature-based
pt-to-plane
translation
error averaged
over 10 runs
(m)

Total-reg
translation
error averaged
over 10 runs
(m)

Linearized
pt-to-plane
yaw
error
averaged
over 10 runs
(rad)

WOLATE
pt-to-plane
yaw
error
averaged
over 10 runs
(rad)

Linearized
feature-based
yaw
error
averaged
over 10 runs
(rad)

Total-reg
yaw
error
averaged
over 10 runs
(rad)

Corridor
dataset

0.3547 0.2306 0.2067 0.1454 0.0176 0.0167 0.0116 0.0108

Intel lab
dataset

0.1502 0.1985 0.1746 0.2200 0.0069 0.0139 0.0143 0.0092

ACES3
Austin

0.3858 0.3499 0.4559 0.3510 0.0156 0.0119 0.0219 0.0189

the pose estimate from ten separate tests, and accumulated over the entire trajectory via

e =

√√√√ 1

M

M∑
j=1

eTj ej

ej =
∥∥r̂vii,j − rvii,j

∥∥2

ej =
∥∥∥ln (Ĉ

−1

iv,jCiv,j)
∨∥∥∥2

.
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Figure 6.8: A simulated 2D corridor with rooms and square columns as features and the
trajectory shown in red.
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(a) LIDAR odometry using Linearized point-to-plane ICP.

(b) LIDAR odometry using Total Registration.
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(c) Translation error along trajectory.
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(d) Rotation error along trajectory.

Figure 6.9: Rotation and Translation error comparison between different registration
methods.
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Figure 6.10: A reconstruction of the Intel dataset with trajectory shown in red.
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(a) LIDAR odometry using linearized
point-to-plane ICP.

(b) LIDAR odometry using WOLATE
point-to-plane ICP.
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(c) Translation error along trajectory.
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(d) Rotation error along trajectory.

Figure 6.11: LIDAR odometry performed on the reconstructed Intel dataset.
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Figure 6.12: A reconstruction of the ACES3 Austin dataset with trajectory shown in red.
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(a) LIDAR odometry using Linearized
point-to-plane ICP.

(b) LIDAR odometry using WOLATE
point-to-plane ICP
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(c) Translation error along trajectory.

0 50 100 150 200 250 300 350 400
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Linearized pt-to-plane ICP

WOLATE pt-to-plane ICP

Feature-based pt-to-plane ICP

Total Registration ICP

(d) Rotation error along trajectory.

Figure 6.13: Rotation and Translation error comparison between different registration
methods.
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Results indicate that for the Corridor dataset and the Austin dataset, shown in Fig. 6.8

and Fig. 6.12, either point-to-plane WOLATE or Total Registration accumulate less rotation

and translation drift than their counterparts while for the Intel dataset show in Fig. 6.10,

the Linearized point-to-plane registration method accumulates less rotation and translation

error over the prescribed trajectory. This is likely because the Intel dataset is feature-rich

compared to the other two datasets while inaccurate corner-point detection and matching of

Total Registration hinders its performance. Indeed, depending on the noise that is injected,

Total Registration can sometimes outperform the other methods, as seen in Fig. 6.11b.

Nevertheless, WOLATE-based registration tends to accrue less rotation error as evidenced

by Fig. 6.9d, Fig. 6.11d and Fig. 6.13d, thanks to the fact that WOLATE point-to-plane

registration does not make the small angle approximation that Linearized point-to-plane

registration makes.

6.2 Experimental Results

To conclude the experiments, Total Registration is applied on experimental data for

validation. A Velodyne Puck LITE LIDAR, an ARA SkymateTM, that houses an INS, and

an RTK are mounted on a push-cart and rolled around a city block while collecting data.

For this test, the 3D Total Registration algorithm of Algorithm 5.1 is used for scan-to-

scan and scan-to-map matching. Notice from Fig.6.14b that without constraining certain

states with priors, drift along the z-direction will occur, primarily due to drift in pitch and

roll. Because the on-board INS can estimate roll and pitch with minimal drift, thanks to

the Kalman Filter correction step, and because the RTK can provide drift-free z-position

estimates, it is possible to constrain roll, pitch and z-position using these estimates as priors.

Using the constrained formulation described in Section 5.4.1, notice from Fig. 6.15b that

the constrained Total Registration-based LIDAR odometry no longer suffers from z-position

drift. Also note that the resulting map is a more accurate representation of the intersection

than the Google Earth image of Fig. 6.16 that was reconstructed using bundle adjustment

of aerial images.

In a separate test, LIDAR data was gathered using an ARA Robotique drone flying

along a predetermined GPS-guided path above a quarry plateau. Reconstructing the map

using RTK and INS pose estimates produced suboptimal results as seen in Fig. 6.17a due

to the vibration-sensitive gyroscope that produced inaccurate attitude estimates. Because

the position estimates of the RTK are a lot more reliable, this is a suitable scenario where

constrained OLATE can be used to constrain x and y positions. Plotting the point-to-map

error where the groundtruth map is built using Bentley [59], a powerful post-processing
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software that uses RTK/INS and camera images, reveals that using Constrained OLATE

in ICP scan matching produces a more accurate map than using pure RTK/INS estimates

Fig. 6.17.

(a) Isometric view

(b) Side view.

Figure 6.14: 3D LIDAR odometry using unconstrained Total Registration with estimated
Trajectory in red.
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(a) Isometric view.

(b) Side view.

Figure 6.15: 3D LIDAR odometry using constrained Total Registration with estimated
Trajectory in red.
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Source: Google Earth. Version 9.2.64.2. Montreal, Canada. 45◦28′22′′N, 73◦34′57′′W.
August 14, 2018.

Figure 6.16: Google Earth 3D reconstruction of the same intersection.
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(a) Plateau reconstructed using RTK pose estimates.

(b) Plateau reconstructed using Constrained OLATE.

Figure 6.17: Reconstructed map of quarry plateau using RTK and Constrained OLATE
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Chapter 7

Closing Remarks and Future Work

7.1 Conclusions

This thesis has contributed to the field of point-cloud registration and LIDAR-based nav-

igation. Thanks to a clever application of the Cayley transform, the traditionally nonlinear

point cloud registration problem can be converted to a linear least squares problem. Building

on this idea, the novel point-to-point, point-to-plane, and point-to-line WOLATE registra-

tion algorithms have been rigorously derived. These registration methods are shown to attain

greater registration accuracy compared to Horn’s method or linearized point-to-plane regis-

tration, mostly because WOLATE takes measurement uncertainty into account and partly

because it naturally rejects outliers. To test the effectiveness of WOLATE-based registration,

a model of 2D LIDAR uncertainty was formulated based on the RP-LIDAR. This model was

used to inject noise into simulated point cloud pairs, which were subsequently registered.

Registering point clouds with both perfect and imperfect point-to-point correspondence us-

ing WOLATE resulted in more accurate pose estimates. Incorporating WOLATE within

an ICP algorithm also produced similar results. Finally, WOLATE-based ICP was applied

within a LIDAR odometry simulation and shown to outperform standard point-to-point and

point-to-plane ICP, in terms of accuracy, in most situations. Specifically, because WOLATE

is linear, the three aforementioned registration methods were elegantly combined into a single

registration algorithm, Total Registration, which when used alongside a feature extraction

algorithm, ensured better point correspondence with their respective pair. WOLATE-based

registration has also been shown to be more versatile than its counterparts, not only because

different types of points can be leveraged in different situations, but also because it can

be easily constrained when reliable priors are available, as seen from the experimental test.

These properties make WOLATE-based ICP and Total Registration excellent alternatives

to standard ICP registration methods when individual point uncertainties can be estimated
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and when the robot frequently rotates. As mentioned in the introduction, the robotics field

is entering a new age characterized by robustness to unpredictable real-world environments.

The Total Registration approach is one that attempts to tackle this problem by being adap-

tive to different feature types and perform registration by incorporating as much information

as possible under the bounds described in this thesis.

7.2 Recommendations for Future Work

The proposed LIDAR odometry method is still prone to drift after extended periods of

time. In practice, old scans are kept in memory so that when the robot arrives at a previously

visited location, loop closure can be detected. A loop closure algorithm can then be used to

globally optimize all prior pose estimates. A future study should evaluate whether WOLATE

has a place in the loop closure scan matching step of global optimization.

Though Chapter 3 presents a way to model 2D LIDAR uncertainty, modelling of 3D

LIDAR should also be studied. As range uncertainty is mostly affected by angle of incidence

in the 2D case, it is expected that the same holds for the 3D case, though the angle of

incidence is between the LIDAR beam and the normal vector of the local surface of contact.

The corner detection method described in Section 4.6 cannot always accurately find

corners, particularly those that are further away. This is because the radial resolution of the

LIDAR beams is sometimes not enough to accurately capture the exact location of a corner

along a scan ring. Recently, Ji and Cheng [60] proposed fitting line segments and extracting

corner points by finding the intercept between these line segments. This method deserves

further investigation as it is more robust to scale change and potentially more accurate than

the corner extraction method proposed in this thesis.

Due to a lack of experimental data with groundtruth, such as that obtained using motion

capture systems, the proposed WOLATE-based algorithms were not rigorously tested in a

controlled experimental setting. A study using experimental data with groundtruth can yield

valuable information on real-life accuracy improvements, which in turn can dictate whether

it is suitable for applications that require a certain level of accuracy.

The presented simulations were coded in Matlab and thus, runtime comparisons between

WOLATE-based ICP and standard ICP were not considered. A future study should code the

WOLATE-based algorithms derived in this thesis in C++ and perform a runtime analysis.

In particular, it is hypothesized that WOLATE requires less ICP iterations to attain the

same level of accuracy as standard ICP methods. This is however potentially offset by the

fact that WOLATE requires additional iterations to estimate the weight matrix.

The simulated 2D LIDAR odometry results were sensitive to the voxel filter size as well
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as corner point registration. This is primarily because the corner detection method used in

this study was suboptimal. In a future study, corner detection within a LIDAR scan should

be improved, which in turn will aid Total Registration. Furthermore, an adaptive voxel filter

should be used when dealing with maps of varying scale.
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Appendix A

Miscellaneous Derivations

A.0.1 Principle Component Analysis

Suppose 2D measurement data in the form of a point cloud is correlated in x and y.

Principle Component Analysis is a method that converts this set of correlated variables into

linearly uncorrelated ones, thereby extracting a set of principle axes. The first axis is along

the direction that produces the most variance in the data in the squared error sense and

subsequent axes are orthogonal to the previous axis. The procedure of PCA is as follows.

First, compute the centroid of the data. Next compute the distance to the centroid of each

point along with the covariance matrix of these distances, given by

Σ =
1

N

N∑
i=1

(pi − p̄)(pi − p̄)T

where there are N points in the data set and p̄ is the centroid. The resulting covariance

matrix will most likely show a correlation in x and y. By performing an Eigen decomposition

on Σ, two eigenvalue-eigenvector pairs can be found such that

Σvj = λjvj

for j ∈ 1, 2. The eigenvector of the smallest eigenvalue corresponds to the principle axis along

which there is the least variance in the data, which is coincidentally the normal direction of a

line observed as discrete point measurements. In practice, PCA is useful in computing local

surface normals for point-to-plane registration. It can be also applied as a measure of local

surface curvature by analyzing the magnitude of the eigenvector along the normal direction.
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A.0.2 Proof of Proposition 5.1

These two additional propositions will be needed to prove proposition 5.1.

Proposition A.1. If two matrices A and B are simultaneously diagonalizable, then the

eigenvalues of (A + B) is the sum of the diagonal matrices containing the eigenvalues of each

individual matrix.

Proof. If A and B are simultaneously diagonalizable, there exists a common matrix P such

that

A = P−1DAP, B = P−1DBP

where DA and DB are diagonal matrices contain the eigenvalues of matrices A and B respec-

tively. Then,

A + B = P−1(DA + DB)P

Proposition A.2. The eigenvalues of a real skew-symmetric matrix are either zeros or

complex numbers.

Proof. If matrix A is skew symmetric, then

AT = −A.

Furthermore, the eigenvalues λ and eigenvectors x of matrix A are related via

Ax = λx.

Multiply the left side by x̄T, the complex conjugate of x. This leads to

x̄TAx = λx̄Tx = λ ‖x‖2 (A.1)

where the left hand side can be simplified to

x̄TAx = (Ax)Tx̄ = xTATx̄ = −xTAx̄. (A.2)

Taking the complex conjugate of Ax = λx, the expression

Ax̄ = λ̄x̄,
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can be substituted into (A.1) and (A.2) to obtain

x̄TAx = −xTAx̄ = −λ̄xTx̄ = −λ̄ ‖x‖2 = λ ‖x‖2 .

Since x is a non-zero eigenvector, it can be concluded that −λ̄ = λ implies that λ is either

zero or a complex number.

Using A.1 and A.2, the eigenvalues of (1 + A) are of the form 1 + λ = 1 + ib 6= 0. Since

(1+A) has no zero eigenvectors, it follows that (1+A) is nonsingular and therefore invertible.

A.0.3 Wahba’s Problem and Point-to-Point Registration via SVD

Wahba’s Problem, first formulated by Grace Wahba [47], is an optimization problem

where the design variables are elements of SO(3). Specifically, given a set of vectors r−→
piw

resolved in Fa and Fb, rpiwa and rpiwb respectively, Wahba’s Problem is to find Cba ∈ SO(3)

that minimizes

J(Cba) = 1
2

N∑
i=1

wi (rpiwb − Cbarpiwa )T (rpiwb − Cbarpiwa ) (A.3)

where 0 < wi <∞ are positive weights for i = 1, 2, . . . , N . Notice that

J(Cba) = 1
2

N∑
i=1

wi (rpiwb − Cbarpiwa )T (rpiwb − Cbarpiwa )

= 1
2

N∑
i=1

wi

(
rpiw

T

b rpiwb − 2rpiw
T

b Cbarpiwa + rpiwT

a CT
baCbarpiwa

)
= 1

2

N∑
i=1

wi

(
rpiw

T

b rpiwb − 2rpiw
T

b Cbarpiwa + rpiwT

a rpiwa
)

= 1
2

N∑
i=1

wi

(
rpiw

T

b rpiwb + rpiwT

a rpiwa
)
−

N∑
i=1

wirpiw
T

b Cbarpiwa

where CT
baCba = 1. Since only the last term is a function of Cba, minimizing J(Cba) is

equivalent to maximizing Ĵ(Cba) where

Ĵ(Cba) = tr
[
CbaBT

]
and

BT =
N∑
i=1

wirpiwa rpiw
T

b .

Now, consider N physical vectors r−→
piw, r−→

piz ∈ P and r−→
zw ∈ P resolved in Fa, Fb, and
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Fa, yielding rpiwa , rpiza , and rzwa respectively. The Point Could Alignment problem is to find

Cba ∈ SO(3) and rzwa ∈ R3 that minimizes

J(Cba, rzwa ) = 1
2

N∑
i=1

wi (rpizb − Cba (rpiwa − rzwa ))T (rpizb − Cba (rpiwa − rzwa )) (A.4)

where 0 < wi <∞ are positive weights for i = 1, 2, . . . , N .

This optimization problem, sometimes referred to as “Horn’s method”, was posed by

Horn (1987) [48, 61] as well as Arun, Huang, and Blostein (1987) [49]. Note that

rzwa = −CT
bar

piz
b + rpiwa ,

N∑
i=1

wirzwa =
N∑
i=1

wi
(
−CT

bar
piz
b

)
+

N∑
i=1

wirpiwa ,

Let

w =
N∑
i=1

wi, rb =
1

w

N∑
i=1

wirpizb , ra =
1

w

N∑
i=1

wirpiwa , (A.5)

so that

rzwa = −CT
barb + ra.

The objective function can then be written as [48, 61]

J(Cba, rzwa ) = 1
2

N∑
i=1

wi (rpizb − Cba (rpiwa − rzwa ))T (rpizb − Cba (rpiwa − rzwa ))

= 1
2

N∑
i=1

wi
(
rpizb − Cba

(
rpiwa + CT

barb − ra
))T (rpizb − Cba

(
rpiwa + CT

barb − ra
))

= 1
2

N∑
i=1

wi ((rpizb − rb)− Cba (rpiwa − ra))T ((rpizb − rb)− Cba (rpiwa − ra))

The objective function is now no longer a function of rzwa explicitly,, allowing the cost function

to be written as

J1(Cba) = 1
2

N∑
i=1

wi ((rpizb − rb)− Cba (rpiwa − ra))T ((rpizb − rb)− Cba (rpiwa − ra)) .
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This form of J1(·) is of the same form as the objective function associated with Wahba’s

Problem. Minimizing J1(·) as a function of Cba ∈ SO(3) is equivalent to maximizing Ĵ1(·)
as a function of Cba ∈ SO(3) where

Ĵ1(Cba) = tr
[
CbaBT

]
and

BT =
N∑
i=1

wi (rpiwa − ra) (rpizb − rb)T .

After finding the optimal Cba, the optimal rzwa is given by

rzwa = −CT
barb + ra,

where rb and ra are given in Equation (A.5).

A.0.3.1 Solution via SVD [62, 63, 64, 65]

Solving for Cba involves maximizing Ĵ(·) as a function of Cba ∈ SO(3) where

Ĵ(Cba) = tr
[
CbaBT

]
.

Consider a SVD of B, namely,

B = VΣUT,

where VTV = 1, UTU = 1, and Σ = diag {σ1, σ2, σ3} where σ1 ≥ σ2 ≥ σ3 ≥ 0. Matrices

V and U are not elements of SO(3), rather they are elements of O(3). As such, although

VTV = 1 and UTU = 1, the determinants are det V = ±1 and det U = ±1. Note that

det B = det V det Σ det UT = σ1σ2σ3 det V det U. Because σ1 ≥ σ1 ≥ σ3 ≥ 0, when σ3 > 0

(i.e., rank B = 3) it follows that sign[det B] = det V det U. When det B > 0, det V det U =

+1; when det B < 0, det V det U = −1.

Consider the modified SVD of B,

B = V̄Σ̄ŪT
,

where V̄ = Vdiag {1, 1, det V}, Ū = Udiag {1, 1, det U}, Σ̄ = diag {σ̄1, σ̄2, σ̄3} and σ̄1 = σ1,

σ̄2 = σ2, σ̄3 = σ3 det V det U. Now V̄ and Ū are elements of SO(3).

For the reminder of the derivation it is assumed that det B ≥ 0 so that σ̄3 = σ3 det V det U ≥
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0.

Rewrite the objective function as

Ĵ(Cba) = tr
[
CbaŪΣ̄V̄T

]
= tr

[
V̄TCbaŪΣ̄

]
= tr

[
SΣ̄
]

where S = V̄TCbaŪ.

Notice that

STS = ŪTCT
baV̄V̄TCbaŪ = 1,

det S = det(V̄TCbaŪ) = det(V̄T
) det Cba det Ū = +1,

and thus S ∈ SO(3).

It is possible to show that S = 1 maximizes Ĵ(Cba) = tr
[
SΣ̄
]
. First, write Σ̄ as

Σ̄ =
3∑
j=1

σ̄j1j1T
j ,

where 1T
1 = [1 0 0], 1T

2 = [0 1 0], 1T
3 = [0 0 1]. Then,

Ĵ(Cba) = tr
[
SΣ̄
]

= tr

[
S

3∑
j=1

σ̄j1j1T
j

]
= tr

[
3∑
j=1

σ̄jS1j1T
j

]

= tr

[
3∑
j=1

σ̄j1T
j S1j

]
=

3∑
j=1

σ̄j1T
j S1j.

The Cauchy-Schwarz inequality, |uTv| ≤ ‖u‖2 ‖v‖2, and σ̄1 ≥ σ̄2 ≥ σ̄3 ≥ 0, gives

Ĵ(Cba) = tr
[
SΣ̄
]

=
3∑
j=1

σ̄j1T
j S1j ≤

3∑
j=1

σ̄j ‖1j‖2 ‖S1j‖2 .

Because S ∈ SO(3),

‖S1j‖2 =
√

1T
j STS1j =

√
1T
j 1j = 1,

and as such,

Ĵ(Cba) = tr
[
SΣ̄
]
≤

3∑
j=1

σ̄j ‖1j‖2 ‖S1j‖2 =
3∑
j=1

σ̄j = trΣ̄.
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Therefore, S = 1 maximizes Ĵ(·).
Now, recall that S = V̄TCbaŪ. Thus,

1 = V̄TCbaŪ,

Cba = V̄ŪT
= V

 1 0 0

0 1 0

0 0 det V det U

UT.

A.0.4 Point-to-Plane Registration via Linearization

Given rpjzkzk and rqjzk−1
zk−1 the cost function to minimize is

Jk(rsksk−1
k ,Ckk−1) =

M∑
j=1

(ejk
T

njk)
2

where the residual, ejk is

ejk = rqjzkzk
− (Ckk−1rpjzk−1

zk−1
− rzkzk−1

zk
), (A.6)

Notice that this is a nonlinear least squares problem and therefore requires Jacobian compu-

tation to solve. If the rotation is small however, i.e. cos(θ) ≈ 1 and sin(θ) ≈ 0, the problem

can be converted to a linear least squares problem as follows.

Ckk−1 ≈

 1 −ψ θ

ψ 1 −φ
−θ φ 1

 (A.7)
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where ψ, θ, φ are yaw, pitch, roll respectively. Substitute A.7 into A.0.4 to obtain

J jk(rsksk−1
k ,Ckk−1) =


rqjzkzk

− (

 1 −ψ θ

ψ 1 −φ
−θ φ 1

 rpjzk−1
zk−1

− rzkzk−1
zk

)


T

njk


2

=

 qjx − (pjx − pjyψ + pjzθ − tx)
qjy − (pjxψ + pjy − pjzφ− ty)
qjz − (−pjxθ + ∂jyφ+ pjz − tz)


T njxnjy

njz


= njxqjx − njxpjx + njxpjyψ − njxpjzθ + njxtx

+ njyqjy − njypjxψ − njypjy + njypjzφ+ njyty

+ njzqjz + njzpjxθ − njzpjyφ− njzpjz + njztz

= [(njypjz − njzpjy)φ+ (njzpjx − njxpjz)θ + (njxpjy − njypjx)ψ

+ njxtx + njyty + njztz]

− [njxpjx − njxqjx + njypjy − njyqjy + njzpjz − njzqjz] .

Considering that there at M total pairs of point correspondences, stack all the point costs

into the matrix expression

Jk(rsksk−1
k ,Ckk−1) = Ax− b

where

A =


(n1yp1z − n1zp1y) (n1zp1x − n1xp1z) (n1xp1y − n1yp1x) n1x n1y n1z

(n2yp2z − n2zp2y) (n2zp2x − n2xp2z) (n2xp2y − n2yp2x) n2x n2y n2z

...
...

...
...

...
...

(nMypMz − nMzpMy) (nMzpMx − nMxpMz) (nMxpMy − nMypMx) nMx nMy nMz



b =


n1xp1x − n1xq1x + n1yp1y − n1yq1y + n1zp1z − n1zq1z

n2xp1x − n2xq2x + n2yp2y − n2yq2y + n2zp2z − n2zq2z

...

nMxpMx − nMxqMx + nMypMy − nMyqMy + nMzpMz − nMzqMz

 ,

x =
[
φ θ ψ tx ty tz

]T
.
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