
Hierarchical text classification of

large-scale topics
a Neural approach

Koustuv Sinha
260721248

School of Computer Science
McGill University, Montreal

November 16, 2018

A thesis submitted to McGill University in partial fulfilment of the requirements of

the degree of Master of Science. c©Koustuv Sinha; November 16, 2018.

i

Acknowledgements

I am deeply grateful to my supervisors Derek Ruths and Joelle Pineau for

their precious insights and encouragement. I am also highly indebted to my

collaborator Yue Dong for helping me shaping up the paper before EMNLP

submission and lots of encouragement and feedback. Special thanks to Nicolas

Angelard-Gontier, Edward Newell and Sumana Basu for their persistence in

constructively challenging my ideas.

I would also like to thank my parents and sister for their constant support

and encouragement from miles away, having their faith in me to pursue research.

Finally, I would like to take this space to thank my sponsors, Pierre Arbour

Foundation and Fonds Nature et Technologies Quebec (FRQNT) for supporting

my research throughout my Masters studies. For an international student, I am

extremely grateful to my sponsors and my supervisors to have faith in my

research and fund my studies in this critical juncture of my career.

ii

Abstract

Topic modelling and classification of documents is a well studied problem in

Natural Language understanding. Deep neural networks have displayed supe-

rior performance over the traditional supervised classifiers in text classification.

They learn to extract useful features automatically when sufficient amount of

data is presented. However, along with the growth in the number of documents

comes the increase in the number of categories, which often results in poor

performance of the multiclass classifiers. In this work, we use external knowl-

edge of topic category taxonomy to aide the classification by introducing a deep

hierarchical neural attention-based classifier. Our model performs better than

or comparable to state-of-the-art hierarchical models with significantly fewer

computational resources while maintaining high interpretability.

iii

Résumé

La modélisation de sujet et la classification de documents est un problème

bien étudié dans la compréhension du langage naturel. Les réseaux de neu-

rones profonds affichent des performances supérieures à celles des classifica-

teurs supervisés traditionnels dans la classification de textes. Ils apprennent

à extraire automatiquement des attributs utils lorsqu’une quantité suffisante

de données est présentée. Cependant, avec la croissance du nombre de docu-

ments vient l’augmentation du nombre de catégories, ce qui entraîne souvent

une mauvaise performance des classificateurs à nombreuses catégories. Dans

ce travail, nous utilisons l’information donné par la taxonomie de catégorie de

sujet pour aider la classification en introduisant un classificateur hiérarchique

basé sur l’apprentissage profond et les systèmes d’attention. Notre modèle est

comparable et peut mieux performer que des modèles hiérarchiques de pointe

tout en utilisant moins de ressources de calcul tout en conservant une haute

interprétabilité.

Contents

Contents iv

List of Figures viii

1 Introduction 1

1.1 Overview of text classification systems 1

1.2 The challenge of large classes . 3

1.3 Hierarchical classification . 3

1.4 Summary of Contributions . 5

2 Literature Review 6

2.1 Text classification literature review 6

2.1.1 Introduction . 6

2.1.2 Classical algorithms . 7

2.1.3 Neural algorithms . 7

2.2 Hierarchical classification : A review 11

2.2.1 Introduction . 11

2.2.2 Categorization . 12

2.2.3 Neural approaches . 13

3 Technical Preliminaries 15

iv

CONTENTS v

3.1 Feedforward Neural Networks . 15

3.1.1 Introduction . 15

3.1.2 Technical details . 16

3.1.3 Training . 17

3.2 Recurrent Models . 18

3.2.1 Introduction . 18

3.2.2 Technical details . 18

3.2.3 Training . 19

3.2.4 Bidirectional RNN . 20

3.2.5 Challenge of Long Term dependencies 21

3.2.6 Long Short Term Memory (LSTM) 21

3.3 Optimization & Regularization . 23

3.3.1 Optimization . 23

3.3.2 Regularization . 25

3.4 Neural representations for text . 26

3.4.1 Overview . 26

3.4.2 Embedding based methods . 27

3.5 Attention . 28

3.5.1 Introduction . 28

3.5.2 Terminologies . 29

3.5.3 Attention Score Functions . 30

3.5.4 Review of Attention architectures 31

4 Model overview 33

4.1 Introduction . 34

4.2 Technical details . 34

4.2.1 Document encoding . 34

4.2.2 Pooling with Attention . 35

CONTENTS vi

4.2.3 Classification . 36

4.3 Training . 37

5 Data collection 38

5.1 Existing Datasets . 38

5.2 Curating Hierarchical dataset . 40

5.2.1 Leveraging topical hierarchies 40

5.2.2 Extracting documents from DBPedia taxonomy 43

6 Baselines 45

6.1 Flat classifier baselines . 45

6.1.1 FastText . 45

6.1.2 BiLSTM with Pooling . 46

6.1.3 Self-attentive classifier . 47

6.2 Hierarchical classifier baseline . 47

6.2.1 HDLTex . 47

7 Empirical Evaluation 49

7.1 Experimental Setup . 49

7.1.1 Hyperparameters . 49

7.1.2 Preprocessing . 50

7.2 Results & Discussion . 50

7.2.1 Comparative results . 51

7.2.2 Classifier complexity . 51

7.2.3 Error Analysis . 52

7.3 Analysis of Attention . 54

7.3.1 Effect of multi-level attention 54

7.3.2 Qualitative Analysis . 55

7.3.3 Semantic analysis . 55

CONTENTS vii

7.4 Ablation Study . 56

8 Conclusion 58

8.1 Summary of Contributions . 58

8.2 Limitations . 59

8.3 Future Work . 59

Bibliography 60

List of Figures

2.1 BiLSTM maxpooling network, figure adapted from Conneau, Kiela, et al.

2017 . 10

2.2 Tree Structure (left) and DAG structure (right), figure adapted from Silla

and A. A. Freitas 2011 . 11

3.1 A fully connected Multi-layer perceptron, with internal composition of a

node. Figure adapted from Ian Goodfellow and Courville 2016 16

3.2 An unfolded view of a recurrent neural network. Figure adapted from Ian

Goodfellow and Courville 2016 . 18

3.3 Block diagram of LSTM cell. Figure adapted from Ian Goodfellow and

Courville 2016 . 22

3.4 Global attention model. Figure adapted from Luong, Pham, and Manning

2015 . 29

4.1 Proposed model architecture . 33

5.1 Wibi Taxonomy hierarchy for the node The Da Vinci Code (film), as

depicted in the website http://wibitaxonomy.org/display.jsp?item=

The_Da_Vinci_Code_(film) . 41

viii

http://wibitaxonomy.org/display.jsp?item=The_Da_Vinci_Code_(film)
http://wibitaxonomy.org/display.jsp?item=The_Da_Vinci_Code_(film)

List of Figures ix

5.2 Wibi Taxonomy hierarchy for the node Earthquake, as depicted in the web-

site http://wibitaxonomy.org/display.jsp?item=Earthquake&lang=EN&

type=page&pageH=5&categH=3 . 42

5.3 Dataset length statistics . 43

6.1 Fasttext model. Figure adapted from Joulin et al. 2017 46

6.2 HDLTex model. Figure adapted from Kowsari, D. E. Brown, Heidarysafa,

Meimandi, et al. 2017 . 48

7.1 WOS dataset attention rereading per level. 54

7.2 Difference in attentions among levels (l2 − l1) using Euclidean distance &

Kurtosis. The bar chart represents number of children within that parent

category. 55

http://wibitaxonomy.org/display.jsp?item=Earthquake&lang=EN&type=page&pageH=5&categH=3
http://wibitaxonomy.org/display.jsp?item=Earthquake&lang=EN&type=page&pageH=5&categH=3

1
Introduction

Text classification has been a core supervised and unsupervised learning problem in

Natural Language Processing (NLP) that has many real-world applications from sen-

timent analysis to biomedical text mining (Allahyari et al. 2017). With the sheer

number of documents that are being generated all over the world every day, auto-

matic text classification has become an essential tool for searching, retrieving, and

managing text. We also face an ever-increasing demand for categorizing documents

into a large number of classes, which poses a unique challenge to classification systems.

Modern neural-based approaches, while handling a large number of documents effi-

ciently by performing automatic feature extraction, also suffer from the same issues.

In this thesis, we look back into traditional methods of dealing with large classes and

hierarchical classification. In light of modern neural-based approaches, we present an

alternative model which is trained to iteratively read and classify a document with

respect to varying class hierarchy.

1.1 Overview of text classification

systems

Traditionally text classification is performed with the use of probabilistic classifiers

such as Naive Bayes (McCallum, Nigam, et al. 1998b), Nearest neighbors (Han,

1

CHAPTER 1. INTRODUCTION 2

Karypis, and Kumar 2001), Decision Trees (Apté, Damerau, and Weiss 1994a), Sup-

port Vector Machines (Lodhi et al. 2002) etc. However, these classical systems often

need extensive hand-held feature extraction methods which tend to not generalize

well on large amounts of data.

With the advent of Neural networks, there has been an increasing trend in de-

veloping data-driven neural text classifiers (Collobert, Weston, et al. 2011; Lai et al.

2015; X. Zhang, Zhao, and LeCun 2015; Yogatama et al. 2017; Conneau, Schwenk,

et al. 2017), due to their ability to handle large-scale corpora and their robustness in

automatic feature extraction. The scalability and flexibility of neural networks allow

these data-driven methods to handle large datasets in the scale of millions easily. In

addition, the robust automatic feature extraction provided by deep neural networks

have been proven to be highly generalizable when trained on large corpora (Conneau,

Schwenk, et al. 2017).

Neural text classifiers use either standard Recurrent Neural Networks (RNN) or

Convolution Neural Networks (CNN) to generate a document representation, which

is then fed to a Multi-layer perceptron (MLP) (Bengio, Ducharme, et al. 2003). With

the increase in individual document sizes, RNN’s tend to lose information as they

encounter more words, and the last hidden state of the RNN fails to combine the

information of the entire document. Hence, attention mechanisms (Bahdanau, Cho,

and Bengio 2014; Z. Lin et al. 2017; Vaswani et al. 2017) have been proposed to

counter this problem which constructs a probability vector over the words in the

document and combine the intermediate hidden representation of the words according

to the probability. These approaches have been proven to be superior to non-neural

classical text classification methods. We discuss these technical preliminaries in detail

in Chapter 3.

CHAPTER 1. INTRODUCTION 3

1.2 The challenge of large classes

Text classification has become increasingly challenging as the number of categories

grows, which is an inevitable consequence of the continually expanding corpora. In

neural text classification, the standard approach is to use a softmax function that

outputs a probability vector over the entire set of classes. This computation becomes

very expensive with the increase in class size, so different workarounds to have been

suggested such as Hierarchical Softmax (Goodman 2001) based on Huffman encoding

Tree (Mikolov, K. Chen, et al. 2013). Even so, the problem remains mostly due to the

significant semantic overlap among the classes which makes the decision boundary of

the classifiers hard to determine.

To alleviate this problem, external knowledge is often used to supplement classifi-

cation, such as language models (Howard and Ruder 2018b). One form of the external

knowledge – class taxonomy – has been introduced to aid the classification in a hi-

erarchical fashion (Koller and Sahami 1997). The intuition is that since the classes

have semantic overlap, we bin the classes according to a semantic taxonomy which

enables the classifier to break down the classification into multiple levels. Various

methodologies have been proposed to perform classification hierarchically.

1.3 Hierarchical classification

In general, hierarchical classifiers can be categorized into two broad approaches: local

and global (Silla and A. A. Freitas 2011). The local approaches create a unique

classifier for each node in the taxonomy which has a subtree (S. Liu et al. 2001; Quinn

and Laier 2006; Vens et al. 2008; Kowsari, D. E. Brown, Heidarysafa, Meimandi, et

al. 2017). They can be further categorized into top-down and bottom-up approaches.

Each classifier depends on the classification of its previous level, and hence is termed

as hierarchical. They differ in the direction of classifier creation: whether to classify

CHAPTER 1. INTRODUCTION 4

starting from from top level nodes of the taxonomy or from leaf level nodes. In

contrast, global approaches create a single classifier for the entire taxonomy (Silla Jr

and A. A. Freitas 2009). They are also termed as big-bang classifiers. We discuss the

hierarchical classification literature in detail in Chapter 2.

The local models, however, suffer an inherited disadvantage: the number of sub-

models required grows equally with respect to the number of sub-trees. In addition,

the top-down based models have no ability to correct mistakes of classification on

the parent level: if the parent class is wrongly predicted, the child level classification

doesn’t even have the right candidates to choose from.

Hierarchical approaches are also used by neural models, such as in image classifi-

cation (Salakhutdinov, Tenenbaum, and Torralba 2013), where the top level task is

to classify between an animal and a vehicle, and the next level the task is to clas-

sify among different types of animals or vehicles. Recently this approach has also

been used in neural text models. Kowsari, D. E. Brown, Heidarysafa, Meimandi,

et al. 2017 proposed the HDLTex model which displays superior performance over

traditional non-neural based models. HDLTex creates an RNN for each parent level

node and thereafter proceeds to create more models per level and per subtree of the

taxonomy.

However, this model suffers the same inherited disadvantage of the top-down ap-

proach where the number of sub-models grows exponentially with respect to the num-

ber of sub-trees when encountered with a larger corpora. This is especially problem-

atic in HDLTex as it uses deep networks with a large number of parameters for the

sub-models and the combined model itself grows exponentially with the depth of

taxonomy. In contrast, we propose a unified global deep neural-based classifier that

overcomes the problem of exploding models.

CHAPTER 1. INTRODUCTION 5

1.4 Summary of Contributions

We propose a global deep neural-based hierarchical classifier which uses an external

taxonomy to predict a large number of classes. In this task, we predict all the levels

of the taxonomy using a single classifier, at the same time. That is, we predict

the parent class, its subclass(es), and the leaf for a given document. The backbone

of our approach is an encoder-decoder structure that sequentially predicts the class

label of the next level, conditioned on a dynamic document representation obtained

from a variant of the traditional attention (Bahdanau, Cho, and Bengio 2015). We

explain the details of our model in Chapter 4. This attention variant constructs the

dynamic document representation based on the predicted class label rather than the

hidden state from the previous layer. Our novel attention mechanism is conditioned

on the predicted label from the previous layer classification to construct a dynamic

document representation that takes into account each level of granularity. Concretely,

our contributions in this work are as follows:

1. We propose an end-to-end global neural attention-based model for hierarchical

classification, which performs better than or comparable to the state-of-the-art

hierarchical classifier with significantly less computational resource.

2. We empirically show that the use of hierarchical taxonomy improves robustness

in classifying large number of classes, by comparing with state-of-the-art flat

classifiers (Chapter 7).

3. We present a new dataset and a methodology to create such hierarchical dataset

with community curated taxonomy (Chapter 5).

2
Literature Review

In the previous chapter, we presented an overview of the problem and our proposed

approach. In this chapter, we look at existing works in text classification and hi-

erarchical classification. In general, text classification can be categorized into two

tasks: flat classification where we classify documents into a number of classes without

any parent-child relationship; and Hierarchical text classification, where hierarchical

information of parent-child relationship is typically incorporated in the classification

process (local and global approaches).

2.1 Text classification literature

review

2.1.1 Introduction

Traditional text classification methods (flat) focus on selecting a good set of features

to represent the documents, usually converted into numeric vectors, termed as Vector

Space Models (VSM) (Turney and Pantel 2010). Here, each word is represented by

a numerical value indicating the importance or weight of the word in the document.

These numeric representations are usually learned from different weight models: 1)

Boolean model where a constant weight is assigned to any word appearing in the doc-

6

CHAPTER 2. LITERATURE REVIEW 7

ument, 2) Bag-of-words model where the words appearing in the document is assigned

a numeric value based on its frequency of occurrence, and 3) Term Frequency-inverse

document frequency (TF-IDF) (Salton and Buckley 1988) where relative weights with

respect to term frequencies are normalized by their frequency across the document

collection. The latter model makes low frequency words more distinctive and hence

provides a powerful way to represent a document.

2.1.2 Classical algorithms

These traditional approaches employ linear to non-linear classifiers such as Naive

Bayes (McCallum, Nigam, et al. 1998a; S.-B. Kim et al. 2006), Support Vector Ma-

chines (SVM) (Dumais et al. 1998; Joachims 1999; Tong and Koller 2001) or Decision

trees (Apté, Damerau, and Weiss 1994b) for text classification. The Naive Bayes clas-

sifier models the distribution of documents in each class into a probabilistic model.

Concretely, this model finds the posterior probability of a class conditioned on the

distribution of the words in the document. Support Vector Machines (SVM) are usu-

ally used when the document vectors of the classes in consideration are not linearly

separable, with the use of kernel functions which transforms the input representation

into a higher dimension where the hyperplane becomes linearly separable. Decision

Trees, on the other hand, recursively partition the training dataset into smaller sub-

divisions based on a decision criterion, thereby converting one linear separable plane

into multiple nested linearly separable planes which provides a non-linear decision

boundary over the text documents.

2.1.3 Neural algorithms

The core of this thesis relies on the recent advancements in Neural Text classification

models. Deep Neural networks merge feature extraction and classification into one

single process, where the parameters can be jointly learned through back-propagation

CHAPTER 2. LITERATURE REVIEW 8

(Xue et al. 2008a; Lai et al. 2015; X. Zhang, Zhao, and LeCun 2015). Instead of build-

ing a numeric vector representation from document statistics, Mikolov, Sutskever, et

al. 2013’s seminal work on word2vec paved the road ahead of neural classification

models by building a fixed-length distributed vector representation for words. This

fixed-length vector representation can then be fed into a Multi-layer perceptron (MLP)

to generate a probability vector over the classification classes (Collobert, Weston, et al.

2011; Iyyer et al. 2014). These recent approaches of distributed sentence representa-

tion again fall into two categories: sequence-based models and tree-structured models.

Sequence-based models construct sentence representations from word sequences by

taking into account the relationship between the successive words (R. Johnson and

T. Zhang 2014). On the other hand, tree-structured models use a syntactic parse tree

and learn sentence representations from the leaves to the root in a recursive fashion

(Socher et al. 2013).

2.1.3.1 Convolution Neural Network Approaches

For both of these types of models, Convolution Neural Networks (CNNs) (LeCun

et al. 1998) and Recurrent Neural Networks (RNNs) are the main architectures used

widely by researchers in NLP. CNNs have recently achieved top performance in text

classification by extracting n-gram features at different positions of a sentence with the

use of convolution filters, and can learn short and long-range relations through pooling

operations (Denil et al. 2014; Kalchbrenner, Grefenstette, and Blunsom 2014; X.

Zhang and LeCun 2015; Mou et al. 2015). CNN with pooling show promising results

on a wide array of tasks, such as document classification (R. Johnson and T. Zhang

2014), text categorization (M. Wang and Manning 2013), sentiment classification

(Kalchbrenner, Grefenstette, and Blunsom 2014; Y. Kim 2014), event detecion (Y.

Chen et al. 2015), paraphrase identification (Yin and Schütze 2015) , and question

answering (Dong et al. 2015) .

CHAPTER 2. LITERATURE REVIEW 9

2.1.3.2 Recurrent Neural Network Approaches

The other popular architecture used in neural text classification is Recurrent Neural

Networks (RNN’s) (Elman 1990). They can handle sequences of any length and cap-

ture long-term dependencies. To avoid the problem of gradient explosion / vanishing

in standard RNN, Long Short-term Memory (LSTM) (Hochreiter and Schmidhuber

1997) and Gated Recurrent Units (GRU) (Cho et al. 2014) are common variants used

in text classification to gain a much superior performance than non-neural models

(Tang, Qin, and T. Liu 2015; Tai, Socher, and Manning 2015; C. Zhou et al. 2015).

In addition, recursive architectures (Goller and Kuchler 1996) allow for working with

tree structures while preserving structural information. RNNs have also shown very

strong results for language modelling (Adel, Vu, and Schultz 2013), sequence tagging

(Irsoy and Cardie 2014), machine translation (Sutskever, Martens, and G. E. Hin-

ton 2011), parsing (Dyer et al. 2015), dialog state tracking (Mrkšić et al. 2015) and

response generation (Sordoni et al. 2015).

2.1.3.3 Pooling & Attention

A common theme in these convolutional neural networks (CNN)-based or recurrent

neural network (RNN)-based approaches are to create a document representation

from either the last hidden state of the RNN or some sort of pooling mechanism. The

most common methods are to form a fixed-size vector representation of the document

either by selecting the maximum value over each dimension of the hidden units of

the word representations, termed as max pooling (Collobert and Weston 2008); or by

considering the average of the word representations (Conneau, Kiela, et al. 2017). A

pictorial representation of a Bidirectional LSTM with max-pooling is given in Figure

2.1.

However, the last hidden state of an RNN might forget most of the discriminative

information about a document and mean/max pooling might not be the best ap-

CHAPTER 2. LITERATURE REVIEW 10

w1 w2 w3 w4

←−
h1

−→
h1

←−
h2

−→
h2

←−
h3

−→
h3

←−
h4

−→
h4

x x x x... ...

x

x

x

x

u

Figure 2.1: BiLSTM maxpooling network, figure adapted from Conneau, Kiela, et al.
2017

proach to combine the features in the document (Sutskever, Vinyals, and Le 2014a).

Furthermore, attention mechanisms (Bahdanau, Cho, and Bengio 2015; Sutskever,

Vinyals, and Le 2014a) have become a common practice to be used on top of the

CNN/RNN structures to enrich the power of sentence/document representation in se-

quential generation tasks. These approaches have been adapted for text classification

too to generate richer document representation than mean/ max pooling (Yang et al.

2016; Conneau, Kiela, et al. 2017; Z. Lin et al. 2017). Since attention computes the

individual weight of the words to form a document representation, they provide high

interpretability and allow us to inspect which parts of the text are discriminative for a

particular classifier. More detailed review of existing attention architectures is given

in Chapter 3.

CHAPTER 2. LITERATURE REVIEW 11

2.2 Hierarchical classification : A

review

2.2.1 Introduction

Hierarchical text classification has been studied extensively in the natural language

processing literature (Silla and A. A. Freitas 2011). Hierarchical classification is a

supervised classification problem where the output of the classification is defined over

a class taxonomy. A class taxonomy can be defined as a tree structured hierarchy of

knowledge concepts. It is defined over a partially order set (C,<), where C is a finite

set that enumerates all class concepts in the application domain, and the relation <

represents a "is-a" relationship (Wu, J. Zhang, and Honavar 2005). This taxonomy

can be organized into a tree or a Directed Acyclic Graph (DAG) (A. Freitas and

Carvalho 2007) (Figure 2.2), in this thesis we consider the case of the former. This

approach has a large number of applications from text categorization (Chakrabarti

et al. 1998; Koller and Sahami 1997), protein function prediction (Clare and King

2003; Kriegel et al. 2004; Otero, A. A. Freitas, and C. G. Johnson 2009), music genre

classification (Burred and Lerch 2003; DeCoro, Barutcuoglu, and Fiebrink 2007) to

image classification (Dimitrovski et al. 2011; Binder, Kawanabe, and Brefeld 2009;

Salakhutdinov, Tenenbaum, and Torralba 2013).

l0

l0.0 l0.1

l0.0.0 l0.0.1 l0.1.0 l0.1.1

l0

l0.0 l0.1

l0.0.0 l0.0.1 l0.1.0 l0.1.1

Figure 2.2: Tree Structure (left) and DAG structure (right), figure adapted from Silla
and A. A. Freitas 2011

CHAPTER 2. LITERATURE REVIEW 12

2.2.2 Categorization

Hierarchical classification can also be categorized into how deep the classification in

the hierarchy is performed. For hierarchical classification, we typically use a fixed

taxonomy of concepts, and each document in the training class is annotated by the

tree to which it belongs in this fixed taxonomy. If the output of the classifier is

at the leaf node of this tree, then it is termed as mandatory leaf node (A. Freitas

and Carvalho 2007) or virtual category node prediction (Sun and Lim 2001). If the

classifier can output the class at any level of the taxonomy tree, then it is referred to as

non-mandatory leaf node (A. Freitas and Carvalho 2007) or category tree prediction

(Sun and Lim 2001). Finally, hierarchical classification is categorized by the type

of algorithm chosen. Broadly, the algorithms can be classified into local and global

approaches. Local approaches typically construct a local classifier at each parent node

of the tree, (Koller and Sahami 1997), and it is also known as top-down approach.

2.2.2.1 Top-down approach

In top-down approach, a classifier is trained with the documents associated with each

node level from the fixed hierarchy. For a given new document, it is first classi-

fied into top-level categories under the root, and then progressively classified in the

next levels, until a stopping condition is met (Koller and Sahami 1997; Bennett and

Nguyen 2009; Cai and Hofmann 2004; T.-Y. Liu et al. 2005; Sun and Lim 2001).

However, this approach has two major disadvantages. Firstly, an error at a certain

class level is propagated downwards in the hierarchy. Several alternatives have been

suggested to counter this issue (Bennett and Nguyen 2009; T.-Y. Liu et al. 2005)

by performing bottom-up training and utilizing cross-validation and meta-features.

Secondly, the top-down approach results in an explosion of models when trained on

larger taxonomies, creating huge computation overhead. To counter some of these

issues, narrow-down approach is used by first cutting down the search space of the

CHAPTER 2. LITERATURE REVIEW 13

entire hierarchy and building a classifier for a small number of resulting categories as

in Xue et al. 2008b. Given an input document, the method uses a search engine to

search for candidate categories in relevant category levels, which results in significant

performance improvement specifically in deeper levels. Narrow-down approaches are

further enhanced by the use of global, local (Oh, Choi, and Myaeng 2010) and path

context information derived from the target hierarchy (Oh, Choi, and Myaeng 2011;

Oh and Jung 2014; Oh and Myaeng 2014; Oh and Jung n.d.). Here, they use label

information to learn a language model which augments the narrow down search by

observing the label terms that are not occurring as frequently as expected.

2.2.2.2 Global approach

Finally, global approaches or big-bang approaches learn a single global model for all

classes in the tree of the hierarchy. This significantly reduces the computation over-

head but suffers from scaling up to large number of concepts (Koller and Sahami 1997;

Costa et al. 2007). Various classification techniques have been used using traditional

Support Vector Machines (Cai and Hofmann 2004; Labrou and Finin 1999; Sasaki

and Kita 1998), Naive Bayes (Silla Jr and A. A. Freitas 2009), Predictive clustering

trees (Blockeel et al. 2006), C4.5 (Clare and King 2003) and rule based classifiers (K.

Wang, S. Zhou, and He 2001).

2.2.3 Neural approaches

While many classical linear or kernel-based expressive models have been explored in

the context of hierarchical text classification, in this thesis we focus on using neu-

ral models to learn to classify documents using hierarchical information. Recently,

Kowsari, D. E. Brown, Heidarysafa, Jafari Meimandi, et al. 2017 have formulated

the hierarchical classification problem as a top-down neural classification approach,

where they use Web of Science1 data and the taxonomy to classify hierarchical con-
1We provide a brief review on available hierarchical text classification datasets in Chapter 5

CHAPTER 2. LITERATURE REVIEW 14

cepts. The model is a local top-down classifier where a new Deep Neural Network

based classifier (DNN) is used in each parent node, and the models at each level are

separately trained. They test a combination of CNN’s and RNN’s as the individual

model and report RNN having the best classification accuracy on each individual

level of the taxonomy. However their model also suffers the inherent problems of local

classifiers: the increasing number of models present an explosion in parameter space,

rendering such a model on corpora with large taxonomies computationally infeasible.

In this thesis, we will thus formulate a global neural model which imbibes the class

taxonomies in classification and achieves superior performance than prior research.

3
Technical Preliminaries

In the previous chapter we went over related work in text classification and hierarchical

classification. In this chapter, we go over some technical preliminaries required to

understand our model.

3.1 Feedforward Neural Networks

3.1.1 Introduction

Feed-forward neural networks, also called multi-layer perceptrons (MLP) are the fun-

damental building blocks of neural models used in deep learning, and they are used

for a wide range of supervised and unsupervised learning problems. The goal of this

network is to approximate a function f ∗(x) = y with a learned non-linear function

f(x; θ), where θ are the parameters of the MLP, x ∈ Rk are the inputs and y ∈ Rl

are the labels of the dataset. These models are called feed-forward because infor-

mation flows through the function being evaluated from x, through the intermediate

computations used to define f , and finally to output y. 1

1http://www.deeplearningbook.org/contents/mlp.html

15

http://www.deeplearningbook.org/contents/mlp.html

CHAPTER 3. TECHNICAL PRELIMINARIES 16

x1 x2

h1 h2

y

x

h

y

W

w

Figure 3.1: A fully connected Multi-layer perceptron, with internal composition of a
node. Figure adapted from Ian Goodfellow and Courville 2016

3.1.2 Technical details

An MLP has multiple layers such that it is formed from the composition of multiple

functions, i.e f(x) = f (n)(f (n−1)(...f (1)(x))...)) for a network with n layers, where the

final layer f (n) is often called the output layer, while the layers f (1), ..., f (n−1) are called

hidden layers as there is no target output for these layers. MLP can be represented

as a directed acyclic graph, which is shown in Figure 3.4.

In practice, a standard formulation for MLP is used for each layer f (i) in the

network:

f (i) = g(Wix+ bi) (3.1)

where Wi is a matrix of real-valued parameters, bi is a vector-valued bias, and Wi

and bi are learned separately for each layer. g(.) is a non-linear activation function,

which is usually chosen as a fixed function for the entire network. Some popular

choices of g(.) include the hyperbolic tangent function tanh = e2x−1
e2x+1 , sigmoid function

σ(x) = 1
1+e−x , and the rectified linear unit (ReLU) ReLU(x) = max(0, x) (Glorot,

Bordes, and Bengio 2011)

The output layer of the neural network depends on the task. For regression tasks,

where the goal is to predict a real-valued outcome, the final layer is often linear,

CHAPTER 3. TECHNICAL PRELIMINARIES 17

omitting g(.):

f (n(x) = W.x+ b (3.2)

For classification tasks where each output neuron represents a class, a softmax

distribution is often used for the non-linearity:

softmax(x) = exj∑
j e

xj
(3.3)

where the sum in the denominator is taken over all of the neurons in the output

layer (i.e over all classes). Thus the output at each neuron represents the probability

that the input x belongs to a certain class. In our application of topic classification,

we will see how this exact same softmax is calculated over a set of classes for each

levels of the taxonomy.

3.1.3 Training

Feedforward neural network weights are usually trained with backpropagation. Often

termed as backprop, it is an algorithm that describes how to update θ of an MLP to

minimize the loss function L with gradient descent. Essentially, it is the application

of chain rule: for each computation layer f (i)(x) = g(Wix + bi) that composes the

neural network, the gradients are calculated by taking first the gradient of the output

layer f (t) in the network with respect to the loss, and then taking the gradient of the

output layer with respect to the parameters θi = {Wi, bi}:

∇θi
L = δL

δf (i)∇θi
f (i) (3.4)

The parameters θi are incrementally updated towards the direction of negative

gradient. Also, a step size α, termed as learning rate, determines how strong the

CHAPTER 3. TECHNICAL PRELIMINARIES 18

x

f

h h(...) h(t−1) h(t+1)h(t) h(...)

x(t−1)
x(t+1)x(t)

Unfold
f f f f

Figure 3.2: An unfolded view of a recurrent neural network. Figure adapted from
Ian Goodfellow and Courville 2016

update is towards the direction.

θi ← θi − α∇θi
L (3.5)

3.2 Recurrent Models

3.2.1 Introduction

Recurrent Neural Networks (RNN) are feedforward neural networks with feedback

loops. Most often, these are self loops from hidden neurons to themselves and to

other neurons in the same layer. To model the data that does not correspond to

the independence assumption we use the recurrent neural networks, which models

the data that is correlated in time. This can take the form of sequences of input

data x1, ..., xm, which is the exact case for natural language, where each token xi

represents a word in some language. An RNN can be represented as a directed cyclic

graph, shown in Figure 3.2.

3.2.2 Technical details

The addition of the feedback loops to the hidden units of an MLP can be thought of

forming a hidden state of the network h(x), corresponding to the vector of activations

(value after the non-linearity) of the hidden neurons, that evolves over time as we

CHAPTER 3. TECHNICAL PRELIMINARIES 19

present inputs to the network. The hidden state is updated at each time step according

to some function f :

ht = f(ht−1, xt) (3.6)

Here, the crucial point is that the parameters of f(.) are the same for all time steps.

This form of parameter sharing forms the critical foundations of RNNs, because if we

had different parameters for each step, not only would the model be much more prone

to overfitting, but it would not be able to generalize to sequence lengths unseen during

training.

More specifically, an RNN is governed by the following update equations at time

t:

ht = g(Wht−1 + Uxt + b), ot = softmax(V ht + c), (3.7)

where W is the hidden-to-hidden matrix of parameters, U is the input matrix, V is

the output matrix, b is the hidden state bias and c is the output bias. The most

common non-linearity g(.) used in RNN is the tanh function. The initial hidden state

h0 can be either set in advance (e.g. a vector of all 0’s), or can be learned during

optimization.

3.2.3 Training

The loss is calculated for a given sequence x paired with corresponding y values. It

can thus be calculated as the sum of loss over all time steps, usually calculated as a

negative log likelihood:

L = −
∑
t

log pmodel(y(t)|x(1), ...x(t)) (3.8)

CHAPTER 3. TECHNICAL PRELIMINARIES 20

To update the weights, the gradient calculation is usually performed as a forward

propagation pass over the unrolled graph and a subsequent backward propagation

pass. This backpropagation applied over the unrolled graph is coined as backpropaga-

tion through time (BPTT). Here, the gradient calculation is started at the last time

step output, and recursively propagated backwards. For the final timestep T , the

gradient is calculated as:

∇h(T)L = V >∇o(T)L (3.9)

Thus when we have an intermediate hidden state ht which has ot and the next

hidden state ht+1 as descendents in the graph, the gradient is calculated recursively

as:

∇h(t)L = (δh
(t+1)

δh(t))>(∇h(t+1)L) + (δo
(t+1)

δh(t))>(∇o(t)L) (3.10)

3.2.4 Bidirectional RNN

Recurrent networks however may want to depend on the entire input sequence, for

example in speech recognition the current sound as a phoneme may depend on the

subsequent phonemes. In text, the linguistic dependencies among words may not

always depend on nearby words but depend on words in the future. For these use

cases, typically in Natural language processing we use Bidirectional recurrent neural

networks (Schuster and Paliwal 1997). These networks combine an RNN which moves

forward in time from start to end of a sequence with another RNN which moves

backwards in time from end to start of a sequence. The resulting hidden state h(t)

contains both the forward view representation and backward view representation.

This enables the model to look at any timestep t the information from both the

directions and hence dependencies allow for long-range lateral interactions (Visin et

al. 2015).

CHAPTER 3. TECHNICAL PRELIMINARIES 21

3.2.5 Challenge of Long Term dependencies

One of the key problems alluding recurrent neural networks is the vanishing or ex-

ploding gradients (Bengio, Frasconi, and Simard 1993; Hochreiter and Schmidhuber

1997; Bengio, Simard, and Frasconi 1994; Pascanu, Mikolov, and Bengio 2013) for

long sequences, making long-term dependencies difficult to train. Here, the error gra-

dients accumulate during an update result in very large gradients, or if the gradients

are small then the accumulated gradient becomes very small by power multiplication.

At these extremes, numerical instability such as overflow and underflow occurs re-

sulting in NaN values. In order to account for long term dependencies in a recurrent

neural network, the gradients almost always reach the parameter space of vanishing

gradients (Bengio, Frasconi, and Simard 1993), making the training very long and

unstable. There are various workarounds suggested to tackle this issue, such as norm

clipping, gradient regularization (Pascanu, Mikolov, and Bengio 2013). Another way

to deal with long-term dependencies is to design a model that operates at multiple

timescales. Approaches such as adding skip connections (T. Lin et al. 1998) through

time and leaky units for different timescales (Mozer 1992) have been proposed to

alleviate this issue. This idea of organizing the RNN into multiple time scales also

arises in the use case of removing connections to force the units to operate on a longer

time scale (El Hihi and Bengio 1996; Pascanu, Mikolov, and Bengio 2013). The most

practical solution to long-term dependencies is the use of gated RNN’s, one of which

we use in our model: long short-term memory.

3.2.6 Long Short Term Memory (LSTM)

Hochreiter and Schmidhuber 1997 introduced the seminal work on long short-term

memory (LSTM) which contains self-loops to produce paths where the gradient can

flow for long durations. This self-loop is controlled or gated, thus introducing dynam-

icity to the time scale integration. LSTM has been found to be extremely successful

CHAPTER 3. TECHNICAL PRELIMINARIES 22

output
input

input gate

output gate

forget gate

state self loop

Figure 3.3: Block diagram of LSTM cell. Figure adapted from Ian Goodfellow and
Courville 2016

on a variety of tasks such as speech recognition, handwriting recognition, machine

translation, image captioning and parsing.

An LSTM cell (Figure 3.3) consists of a cell state which is controlled by several

gates to incorporate and forget the information via self-loops. Concretely, an LSTM

block consists of an inner self-loop, which is controlled by a forget gate f (t)
i , which

sets the gate on or off via a sigmoid unit.

f
(t)
i = σ(bfi +

∑
j

U f
i,jx

(t)
j +

∑
j

W f
i,jh

(t−1)
j) (3.11)

where, x(t) is the current input vector and h(t) is the hidden layer vector. (Ian Goodfel-

low and Courville 2016). The LSTM cell internal state is updated with a conditional

self loop weight f (t)
i

s
(t)
i = f

(t)
i s

(t−1)
i + g

(t)
i σ(bi +

∑
j

Ui,jx
(t)
j +

∑
j

Wi,jh
(t−1)
j) (3.12)

The external input gate unit g(t)
i is computed similarly to the forget gate but having

its own parameters.

g
(t)
i = σ(bgi +

∑
j

U g
i,jx

(t)
j +

∑
j

W g
i,jh

(t−1)
j) (3.13)

CHAPTER 3. TECHNICAL PRELIMINARIES 23

The output of the LSTM h
(t)
i can be calculated with the use of another output gate

q
(t)
i as follows:

h
(t)
i = tanh(s(t)

i)q(t)
i (3.14)

q
(t)
i = σ(boi +

∑
j

U o
i,jx

(t)
j +

∑
j

W o
i,jh

(t−1)
j) (3.15)

LSTM architectures are therefore used to tackle long-term dependency problem

as they have proven to learn better memory capacity than traditional RNN’s (Graves

n.d.; Graves, Mohamed, and G. Hinton 2013; Sutskever, Vinyals, and Le 2014b).

3.3 Optimization & Regularization

3.3.1 Optimization

As we discussed in the previous sections (Section 3.1.3, Section 3.2.3), the objective of

any deep learning model is to get the optimal weights θ by minimizing the loss function

L with gradient descent. For example, the negative conditional log likelihood loss can

be rewritten as:

J(θ) = 1
m

m∑
i=1

L(x(i), y(i), θ) (3.16)

where, L is the per example negative log likelihood loss : L(x, y, θ) = −logp(y|x; θ),

which explains the probability of observing the class y given training data x, which we

want to maximize, therefore we minimize the log of the value to be easily differentiable

to get the cost gradient:

∇θJ(θ) = 1
m

m∑
i=1
∇θL(x(i), y(i), θ) (3.17)

CHAPTER 3. TECHNICAL PRELIMINARIES 24

The parameters θ are incrementally updated towards this negative gradient. This

method is known as gradient descent and we usually use a derivative stochastic gradi-

ent descent (SGD) (Bottou 1998) to update the parameters θ over a minibatch of m

examples. We use a learning rate α which we gradually diminish over time to reduce

oscillations and noise in the learned parameters.

Algorithm 1 The Adam Algorithm
Require: Step size α, default 0.001
Require: Exponential decay rates for moment estimates, ρ1 and ρ2, default 0.9 and

0.999
Require: Small constant δ used for numerical stabilization, default 10−8

Require: Initial parameters θ
Initialize 1st and 2nd moment variables s = 0, r = 0
Initialize time step t = 0

1: while stopping criterion not met do
Sample a minibatch of m examples from the training set x(1), . . . , x(m) with cor-
responding targets y(i)

Compute gradient: g ← 1
m
∇θ

∑
i L(f(x(i); θ), y(i))

t← t+ 1
Update biased first moment estimate: s← ρ1s+ (1− ρ1)g
Update biased second moment estimate r ← ρ2r + (1− ρ2)g � g
Correct bias in first moment: ŝ← s

1−ρt
1

Correct bias in second moment: r̂ ← r
1−ρr

2

Compute update: ∆θ = −α ŝ√
r̂+δ

Apply update: θ ← θ + ∆θ
2: end

This is the simplest optimization algorithm which is very powerful but often re-

garded as slow to arrive to the optimal parameter values, as it heavily depends on the

initial choice of the learning rate and the batch size. We therefore use an extension of

stochastic gradient update training aided by momentum (Polyak 1964) which accu-

mulates the decaying moving averages of the past gradients and continues to move in

the direction of global minima, therefore enabling faster convergence. Also, since the

learning rate is one of the most difficult hyperparameters to tune in a neural network

model, a common trend in optimization is to use adaptive learning rates which makes

use of separate learning rate for each parameters and automatically adapt the rates

CHAPTER 3. TECHNICAL PRELIMINARIES 25

along the course of training.

In this thesis, we heavily use such an adaptive learning rate optimization algorithm

know as Adam (Kingma and Ba 2014), which is presented in algorithm 1. Adam

maintains per-parameter learning rate that improves performance on problems with

sparse gradients such as natural language task. Also, Adam maintains per-parameter

learning rates that are adapted based on the average of recent magnitudes of the

gradient’s, to observe how quickly the weight is changing. This helps Adam to adapt

well on non-stationary and online problems.

3.3.2 Regularization

To restrict a neural network to overfit on the training data we usually employ specific

regularization strategies. Overfitting is a common problem in Machine Learning algo-

rithms where the model performs very well on the training data but fails to generalize

on the testing data. The common approach in regularization is to limit the capacity

of the neural models so that they cannot rote-learn the training data. This is done

by adding a parameter norm penalty ω(θ) to the objective function J (Section 3.16)

Ĵ(θ;X, y) = J(θ;X, y) + αω(θ) (3.18)

where, α ∈ [0, inf) is a weight hyperparameter which controls the contribution of

the norm penalty. For neural networks we typically only penalize the weight of the

affine transformation at each layer keeping the biases unregularized. Now, the choice

of norm can either be an L2 norm or an L1 norm. L2 norm is most common norm

penalty used which is also termed as weight decay. Here, the regularization term is

ω(θ) = 1
2 ‖w‖

2
2, which is also called ridge regression in the literature. Concretely, the

total objective function can be rewritten as:

Ĵ(w;X, y) = α

2w
>w + J(w;X, y) (3.19)

CHAPTER 3. TECHNICAL PRELIMINARIES 26

which has the gradient update in the following equation:

∇wĴ(w;X, y) = αw +∇wJ(w;X, y) (3.20)

which can be updated by regular backpropagation. We use L2 regularization heavily

in our work.

Another popular computationally inexpensive but powerful option is Dropout (Sri-

vastava et al. 2014). Dropout specifically removes certain units from a base neural

network and thereby creates an ensemble of bagged neural networks. This is a power-

ful regularization method as it creates multiple weak networks by iteratively removing

units or connections from a neural network, and then performs an ensemble classifica-

tion with those units, where the individual weak networks focus on different aspects

of the task. Unlike bagged ensemble classifiers, Dropout allows weight sharing among

the weak models, which makes it possible to represent an exponential number of

models with tractable amount of memory. Concretely, Dropout uses a mask vector µ

which applies a binary mask to all input and hidden units in a neural network, and

J(θ, µ) is the cost of the model defined by the parameters θ and the mask. Dropout

training then consists of minimizing EµJ(θ, µ).

3.4 Neural representations for text

3.4.1 Overview

For neural models to understand text we need to look beyond discrete word represen-

tations such as TF-IDF and bag of words used for classical text classification systems

(Chapter 2). Instead, for neural models we use distributional hypothesis of language

(Firth 1957) which states the meaning of a particular word depends on the context

in which it is used. These can be broadly classified into clustering-based methods

(P. F. Brown et al. 1992) and embedding-based (Collobert and Weston 2008; Mikolov,

CHAPTER 3. TECHNICAL PRELIMINARIES 27

Sutskever, et al. 2013) methods. Clustering-based methods assignes similar words to

the same cluster and they represent the words by its cluster ID. Embedding-based

methods, which are more popular with current neural systems, represent each word

as vector such that similar words have similar vectors in cosine space.

3.4.2 Embedding based methods

For embedding-based methods, first all unique words from the document are extracted

and a dictionary is formed, which we term as word2id dictionary, which assignes an

unique identifier digit to each word. If we invert this dictionary then we get the

identifier mapping in id2word dictionary. Then the document is transformed into a

series of identifier digits. Then, we use a lookup table to assign an unique word vector

~wi to all the words in the document, using the identifier. This is usually done in an

embedding layer. The word vectors can be randomly initialized, such as the Word2vec

implementation of Mikolov, Sutskever, et al. 2013, where we uniformly sample random

numbers in the range [− 1
2d ,

1
2d]. There are other initialization options as well, such

as normal initialization, Xavier initialization (Glorot and Bengio 2010), etc. These

word vector representations are learned via backpropagation with the end task, such

as classification for our case.

3.4.2.1 Pretrained word embeddings

We can also use pre-trained word embeddings to initialize the word vectors. The

word2vec family of algorithms use a language modelling setup to predict the next

word given all its neighbouring words in a document, thereby learning the distributed

representation of the words in an unsupervised fashion. Since these are learned over a

large corpora, the word representations which are learned are termed as global repre-

sentations and thus can be re-used in any classification systems. Another advantage

is that it provides vector representations for words that do not appear in the training

CHAPTER 3. TECHNICAL PRELIMINARIES 28

set. Neural models such as RNN’s therefore feed in this word vector representation

and learn dependencies among the words which are used down the pipeline for clas-

sification or language modelling.

However, one needs to be careful while using pre-trained word embeddings as they

incorporate inherent gender/race/religious/occupational bias (Bolukbasi et al. 2016;

Henderson et al. 2017). One way to reduce bias (although not totally eliminate it)

is to just use the pretrained embeddings as an initialization and letting the model

further tune the embeddings with the downstream task.

3.5 Attention

3.5.1 Introduction

From our previous section we learned the tools needed to form a document represen-

tation. One can therefore construct the document vector representation as being the

hidden state of the last step of recurrence. However, we also discussed the issues pre-

sented with long term dependencies, and thus the last hidden state may not contain

the necessary information about a document, especially if the document is long. A

common approach thus in many recurrent methods to represent a document vector

is to create a max or average pooling (Collobert and Weston 2008) from the RNN

hidden states. However these methods also suffer from the fact that these aggrega-

tion methods are inherently biased and they fail to represent the entire document

representation in a fixed size vector.

In essence, the importance of a document lies within a certain set of words for

classification, and for that we introduce the concept of attention, which is a weighted

sum over the hidden states of the recurrent model over all the words in the document.

The weights of this sum are referred to as attention scores and allow the network to

focus on different parts of the input sequence as it generates the output sequences.

CHAPTER 3. TECHNICAL PRELIMINARIES 29

Context vector

Global align weights
ai

hs ht

ht

yt

Figure 3.4: Global attention model. Figure adapted from Luong, Pham, and Manning
2015

Introduced by Bahdanau, Cho, and Bengio 2014 for neural machine translation, where

one recurrent network (typically known as encoder) represents a document into a

set of document vectors, and another recurrent network (typically known as decoder)

predicts the next word given previous predicted words and the encoder representation.

During each decoding step, the decoder uses attention weights to calculate a weighted

sum over the encoder states. Recently, attention has gained popularity for document

classification tasks (Z. Lin et al. 2017), and attention framework is perceived as a

more general one-in-all framework for neural machine translation tasks (Vaswani et

al. 2017). In our work too, we heavily rely on attention mechanisms to generate the

document representation.

3.5.2 Terminologies

Typically to calculate Attention we need three different vector representations, such

as a query vector ~q, key vector k and value vector ~v. ~q generally consists of the

decoder states, ~k as being all encoder states, and ~v also being encoder states. For

CHAPTER 3. TECHNICAL PRELIMINARIES 30

each query-key vector, we calculate the weight using a scoring function a. After

normalization using a softmax function we get the attention weights αi over a set

of words. Finally, these attention weights are multiplied by V to get the weighted

sum of the word vectors. Various attention-based models are also typically classified

into two broad categories, global and local, (Luong, Pham, and Manning 2015) which

differ in terms of whether the attention is placed on all source positions or on only few

source positions based on a context window. Concretely, the document or sentence

representation D is calculated as a weighted sum of the values V :

D(Q,K, V) = ea(~q,~k)∑
w ea(~q,~k)

V (3.21)

3.5.3 Attention Score Functions

Subsequently, there has been a wealth of research into developing efficient attention

score functions. Bahdanau, Cho, and Bengio 2015 introduced a multi-layer perceptron

to calculate the attention weights given a query ~q and key ~k:

a(~q,~k) = w>2 tanh(W1[~q;~k]) (3.22)

where, [~q;~k] depicts the concatenation of query and key vectors. Bahdanau attention

is usually often very good with large amounts of data.

Luong, Pham, and Manning 2015 introduced two new variants of global attention

models, Bilinear and Dot product attention. With Bilinear attention, we can look

into the full set of encoded context vectors instead of the last step context vectors in

the case of Bahdanau, Cho, and Bengio 2014’s model.

a(~q,~k) = ~q>W~k (3.23)

CHAPTER 3. TECHNICAL PRELIMINARIES 31

Dot product attention is however simpler as it doesn’t have any parameters to

learn, although requires the sizes of key and query to be same.

a(~q,~k) = ~q>~k (3.24)

The problem of dot product attention is that the product increases as the dimen-

sions gets larger, while pushing the softmax function into regions with extremely small

gradients. More recently, Vaswani et al. 2017 proposed the use of scaling factor with

the dot product attention to mitigate this issue, where the scaling is done by the size

of the key vector.

a(~q,~k) = ~q>~k√
|~k|

(3.25)

3.5.4 Review of Attention architectures

Various improvements to attention mechanism has been proposed for different tasks.

Gu et al. 2016 introduce a copying mechanism where a separate attention layer gen-

erates a softmax over whether to copy a particular word or not, and combined with

Bahdanau, Cho, and Bengio 2014 attention this model works well for out of vocabu-

lary words. Arthur, Neubig, and Nakamura 2016 uses lexicon-based probabilities to

enhance Neural Machine Translation, where another attention layer is used to focus

on the lexicons to generate the translation. Attention has also been used to focus on

previously generated words (Merity et al. 2016) or previous hidden input or output

states (Vaswani et al. 2017). Yang et al. 2016 propose a hierarchical attention struc-

ture, where first a word level attention is used to calculate sentence representation,

and then a sentence level attention to generate document representation for classifi-

cation. Sentence representations are also formed using an internal attention over its

own hidden states, where each element in the sentence attends to other elements to

form a context sensitive embedding representation (Cheng, Dong, and Lapata 2016;

CHAPTER 3. TECHNICAL PRELIMINARIES 32

Parikh et al. 2016; Y. Liu et al. 2016). Z. Lin et al. 2017 present similar intra attention

with multiple reads over the sentence, essentially converting the attention vector to

an attention matrix, which is also proven powerful for Neural Machine Translation

by Vaswani et al. 2017, where it is termed as Multi-Head attention. The idea here

is instead of using a single attention over the sentence, multiple attention vectors are

trained to look at different aspects of the document or sentence using a penalty to

ensure that each attention spans are mutually exclusive.

In this thesis we also heavily exploit attention to classify documents hierarchically.

Concretely, we define a parent context-sensitive attention which formulates different

attention spans over the document based on the depth of the taxonomy, which we

detail in Chapter 4.

4
Model overview

In the previous chapter, we looked into the technical details required to understand

our model. In this chapter, we dive deep into the proposed deep neural hierarchical

classifier model Hierachical Multi-read Attentive Classifier (HMAC).

w1 w2 w3 w4 w5 w6

The 201
2

Chi
ba

ear
thq

uak
e
occ

urre
d

alon
g

←−
h1

−→
h1

←−
h2

−→
h2

←−
h3

−→
h3

←−
h4

−→
h4

←−
h6

−→
h6

←−
h5

−→
h5

w7

the

←−
h7

−→
h7

w8

nor
the

aste
rn

←−
h8

−→
h8

w9

coa
st

←−
h9

−→
h9

u1

wl1

u2 u3

wl2 wl3

l1 l2 l3

Figure 4.1: Proposed model architecture

33

CHAPTER 4. MODEL OVERVIEW 34

4.1 Introduction

The proposed model (Figure 4.1) consists three parts: 1) A bidirectional LSTM en-

coder (Hochreiter and Schmidhuber 1997) that transforms each word into vector rep-

resentations based on their context. 2) An attention module that aids generation of

dynamic document representations across different level of classification. 3) A multi-

layer perceptron (MLP) classifier that makes the prediction based on this dynamic

document representation and the level masking.

Our hierarchical classification model can be viewed as a sequence-to-sequence au-

toregressive model, where a sequence of word embeddings are used to generate a

sequence of hierarchical class labels. In addition, we employ a modified attention

module from the traditional attention mechanism used in the sequential generation

tasks (Bahdanau, Cho, and Bengio 2015; Sutskever, Vinyals, and Le 2014a) : instead

of computing attention weights conditioned on the hidden state of the decoder at time

step i, we condition on the parent category embedding ck−1. This is intuitive in our

setting as the document representation should depend on the parent class the model

predicted.

4.2 Technical details

4.2.1 Document encoding

Formally, suppose we are given a document with n tokens D = (w1, w2, ..., wn) and

its category labels of m levels C = (c1, . . . , cm), ck ∈ {clk1 , . . . , clksk
} where lk indicates

the k-th level of the class taxonomy and sk represents the number of classes in level.

We suppose wi and ci are word embeddings and class embedding1 respectively, of size

u and v. A bidirectional LSTM is first used to capture the dependencies between
1Each class ci is fed through a trainable lookup table to retrieve an unique embedding vector.

CHAPTER 4. MODEL OVERVIEW 35

adjacent words:
−→
ht = −−−−→LSTM(wt,

−−−→
ht−1),

←−
ht =←−−−−LSTM(wt,

←−−−
ht+1).

(4.1)

where −→ht and
←−
ht are the forward and backward pass representation of size n×u. The

encoder’s hidden states H = (h1, . . . ,hn) are constructed by the concatenation of

(−→ht) and (←−ht) as hi = [−→ht ,
←−
ht]. Thus, the size of hi is n× 2u.

When classifying the class label at level k, we first form the contextual word fea-

tures H̄ by concatenating the previously predicted category embedding ck−1 (parent)

with each of the encoder’s outputs H = (h1, . . . ,hn):

H̄k = H ⊕ ck−1. (4.2)

where, the size of H̄k is n× (2u+ v).

4.2.2 Pooling with Attention

To form a fixed vector document representation D we have the choice of either using

max pooling over the dimensions, or using an attention module. For attention we have

a choice between two recent types of attention architectures, Self attention (Z. Lin

et al. 2017) and Scaled dot product attention (Vaswani et al. 2017), and we employ

the former due to its better empirical results.

For attention, we devise a contextualized self attention which is conditioned over

the parent category embedding ck−1. After we get the document encoding, we trans-

form these n vectors in H̄k into n attention scores (scalars) through a series of linear

and non-linear transformation:

ak = softmax(ws2tanh(Ws1H̄
T
k)). (4.3)

where, Ws1 is a weight matrix of size (2u+ v)× da, ws2 is a weight vector of size da,

and ak is the attention vector for one hop of size n. da is a hyperparameter chosen as

explained in Chapter 7.

CHAPTER 4. MODEL OVERVIEW 36

As one single attention distribution might only focus on a specific component of

the semantics in the document, we follow Z. Lin et al. 2017; Vaswani et al. 2017’s

work to perform m hops of attention and form the multi-head attention matrix Ak

(m× n).

The document representation for level k is obtained by the matrix multiplication

of the multi-head attention matrix and the contextual word features:

Dk = Ws3AkH̄k. (4.4)

where, Ws3 is the weight matrix of size m(2u + v) × dhidden, where dhidden is the size

of document representation Dk.

4.2.3 Classification

Finally, a multi-layer perceptron (MLP) is employed to classify the category at level k.

We concatenate the current document represention Dk with previous level document

representation dk−1.

dk = tanh(WD[Dk, dk−1]),

yk = softmax(Wkdk)
(4.5)

where, WD is the weight matrix of size 2dhidden× dhidden, dhidden is the size of the first

layer of the MLP responsible to create the intermediate document representation dk.

Wk is the weight matrix for the second layer of MLP of size dk × j, where j is the

sum of all classes across all levels.

Usually, the softmax in equation 4.5 is computed over the all the class labels.

For our scenario, we would have to compute the softmax over the entire classes in the

serialized taxonomy. This is not desirable when the taxonomy is deep and the number

of classes is large. We solve this by employing a level masking technique where we

mask out all the classes that are not in the current classification level k. We can

either have one single end classifier MLP to classify all category levels 0 to k, or we

CHAPTER 4. MODEL OVERVIEW 37

can have unique classifier layers for each level in order to learn unique parameters per

level k.

4.3 Training

Loss is calculated as the joint cross entropy loss among all the levels of the taxonomy:

l =
m∑
i=1

li (4.6)

Since we are using multi-hop attention, to encourage the diversity over the multiple

hops of the attention distributions, we employ Frobenius norm penalty (Z. Lin et al.

2017) to force the attention hops focus on different aspects of the semantics.

P =
∥∥∥AkA>k − I∥∥∥2

F
(4.7)

which is added to the loss function. We use the standard Adam optimizer (Kingma

and Ba 2014) to perform gradient descent with momentum to converge to the optimal

parameter space. The details of hyperparameters used in our model is given in Chapter

7.

5
Data collection

In our previous chapter, we looked into the inner workings of our model. In this

chapter, we investigate hierarchical datasets to test our model on. The challenge to

create such a hierarchical dataset is that we need a knowledge-base taxonomy, which

can either be a tree or directed acyclic graph, and we extract the text from the leaf

nodes and try to classify them hierarchically.

5.1 Existing Datasets

However, most of the existing datasets are either not available for research or not

suitable for deep learning models. Open Directory Project (ODP) 1 was used by re-

searchers for most of the hierarchical classification experiments. This was built as a

meta-information aggregator for the entire web and contains hyperlinks of the pages

under a taxonomy. This dataset has a hierarchy of 70,000 categories and 4.5M docu-

ments associated with the nodes. On the top-level, the dataset has 17 categories such

as Adult, Arts, Business, Computer, Games, Health, Home, Kids and Teens, News,

Recreation, Reference, Regional, Science, Shopping, Society, Sports and World. Oh

and Myaeng 2014 used this taxonomy to create a smaller dataset of 65,564 categories

and 607,944 web pages or documents after pruning incoherent nodes. However, the

authors do not make the dataset public. Also, the ODP project was discontinued as
1http://www.dmoz.org

38

http://www.dmoz.org

CHAPTER 5. DATA COLLECTION 39

of March 2017 2, so we have no way to extract the information and taxonomies to

recreate the dataset.

Another source of hierarchical classification data is the Large Scale Hierarchical

Text Classification challenge (Partalas et al. 2015). This challenge was setup in 2015,

and the winning team used Multinomial naive Bayes 3 without any hierarchical in-

formation, and the contest had best Macro F-score of 0.3391 4. The authors used

the ODP taxonomy and DBPedia taxonomy to collect a large scale text classifica-

tion dataset, which consists of 32,056 categories, 2,365,436 training instances, 452,167

test instances. However, the data is presented in a sparse-vector format where the

categories and words of the documents are encoded as integers, and the authors did

not provide any option to recover the original text back from the encoded represen-

tation 5. This makes the dataset unusable for deep learning models and they are not

interpretable.

We therefore used the Web of Science dataset originally curated by Kowsari, D. E.

Brown, Heidarysafa, Meimandi, et al. 2017. Web of Science (Reuters 2012) (WOS)

is a hierarchical two-level taxonomy dataset 6 that contains 46,985 documents and

7 top level categories and 134 leaf level categories. The top-level categories include

topics such as Biochemistry, Civil Engineering, Computer Science, Electrical Engi-

neering, Medical Sciences, Mechanical Engineering and Psychology, which contain

9,11,17,16,53,9, and 19 children respectively. This is a tree based taxonomy as it

does not have multiple parents for a sub-children. We compare this dataset with our

curated data from DBPedia which we describe in the next section.
2https://www.ergoseo.com/blog/dmoz-is-shutting-down/
3https://www.kaggle.com/c/lshtc/discussion/7980
4https://www.kaggle.com/c/lshtc/leaderboard
5We contacted the authors separately and they acknowledged the issue, but they couldn’t provide

the raw text information as the challenge is over 3 years old.
6http://dx.doi.org/10.17632/9rw3vkcfy4.6

https://www.ergoseo.com/blog/dmoz-is-shutting-down/
https://www.kaggle.com/c/lshtc/discussion/7980
https://www.kaggle.com/c/lshtc/leaderboard
http://dx.doi.org/10.17632/9rw3vkcfy4.6

CHAPTER 5. DATA COLLECTION 40

5.2 Curating Hierarchical dataset

As deep learning models usually contain a large number of parameters that need to

be learned, the requirement of large dataset arises and becomes necessary to prevent

over-fitting (Lawrence, Giles, and Tsoi 1997; Srivastava et al. 2014). In order to

collect a text dataset for hierarchical classification, one first needs to use a taxonomy

of categories. We already investigated two such categories before, ODP and LSHTC,

but they are not readily available to extract leaf node information. In the next

subsection, we investigate few other taxonomies one could potentially use to curate

the data.

5.2.1 Leveraging topical hierarchies

To extract topical taxonomies, one needs to go no further than the largest resource of

topics and documents, Wikipedia. Wikipedia articles are themselves tagged with meta

information about its category and related articles, which can be mined to extract a

taxonomy. There are two such existing taxonomies extracted from Wikipedia, Wibi

Taxonomy and DBpedia Taxonomy.

5.2.1.1 Wibi Taxonomy

Wibi Taxonomy, or MultiWibi (Flati et al. 2016) is a multilingual Wikipedia bitax-

onomy. This is an automatic creation of integreated bitaxonomy over Wikipedia for

multiple languages. It is termed as bitaxonomy as it consists of a pair of taxonomies,

one for Wikipedia pages and one for Wikipedia categories. It uses a novel method to

create the taxonomy by parsing the textual definitions of each pages and extracting

and disambiguating the hypernym lemma(s), and then linking those hypernyms back

to the corresponding categories. The taxonomy can be readily downloadable from

their website 7 and which also includes a visual medium to inspect the taxonomies.
7http://wibitaxonomy.org/

http://wibitaxonomy.org/

CHAPTER 5. DATA COLLECTION 41

For example, the node The Da Vinci Code (film) presents a hierarchy as depicted in

Figure 5.1 which is directly extracted from the website.

Figure 5.1: Wibi Taxonomy hierarchy for the node The Da Vinci Code (film),
as depicted in the website http://wibitaxonomy.org/display.jsp?item=The_Da_
Vinci_Code_(film)

Although, we found this taxonomy to be difficult to use to extract a hierarchical

information owing to its directed acyclic graph (DAG) structure. The taxonomy

contains cycles and most of the nodes link back to the universal parent nodes Being,

Concept and Idea. We provide one such sample in Figure 5.2. To make use of this

taxonomy one have to carefully prune it to get a semantically related tree structure.

5.2.1.2 DBPedia Taxonomy

DBPedia 8 is a meta information aggregator service over Wikipedia. It provides a

category taxonomy which is community curated and thus is manually created cov-

ering 2,630,717 Wikipedia pages. Since this is manually created, the size of the
8https://wiki.dbpedia.org/

http://wibitaxonomy.org/display.jsp?item=The_Da_Vinci_Code_(film)
http://wibitaxonomy.org/display.jsp?item=The_Da_Vinci_Code_(film)
https://wiki.dbpedia.org/

CHAPTER 5. DATA COLLECTION 42

Figure 5.2: Wibi Taxonomy hierarchy for the node Earthquake, as depicted in
the website http://wibitaxonomy.org/display.jsp?item=Earthquake&lang=EN&
type=page&pageH=5&categH=3

taxonomies is small but it is tree structured and hence is devoid of any self loops

and missing tags. The extracted ontology has 24 top level categories spanning the

entire Wikipedia, such as Event, SportsSeason, Biomolecule, Work, TopicalConcept,

AnatomicalStructure, GeneLocation, MeanOfTransportation, Food, Species, Place, Ac-

tivity, Device, TimePeriod, UnitOfWork, ChemicalSubstance, SportCompetitionResult,

Agent, PersonFunction, Relationship, Language, Name, Award, and List. Along with

the ontology DBpedia also provides the long abstracts of the corresponding leaf nodes

of these categories.

http://wibitaxonomy.org/display.jsp?item=Earthquake&lang=EN&type=page&pageH=5&categH=3
http://wibitaxonomy.org/display.jsp?item=Earthquake&lang=EN&type=page&pageH=5&categH=3

CHAPTER 5. DATA COLLECTION 43

DBpedia WOS
Level 1 Categories 9 7
Level 2 Categories 70 134
Level 3 Categories 219 NA
Number of documents 381,025 46,985
Mean document length 106.9 200.7

Table 5.1: Dataset Comparison

5.2.2 Extracting documents from DBPedia taxonomy

Thus, we curated a bigger dataset with hierarchical labels from DBpedia owing to its

relative simplicity, ease of use, and absence of cycles. Compared to Web of Sicence,

our DBpedia dataset is larger in two aspects: the number of data instances and the

number of hierarchical levels (Table 5.1). DBpedia ontology was first used in X. Zhang

and LeCun 2015 for flat text classification. We instead use the DBpedia ontology to

construct a dataset with three-level taxonomy of the classes.

((a)) DBpedia ((b)) Web of Science

Figure 5.3: Dataset length statistics

We preprocess the taxonomy to only extract the trees which have more than three

levels. Then, we collapse the leaf levels up so that we only end up with three levels.

Concretely, if we encounter a tree such as l0 → l1 → ... → ln, where n > 3, then we

shorten the tree such that we keep the first top level and keep the last two levels to

form the tree l0 → ln−1 → ln. We end up with 486 unique trajectories from the roots

to the leaf categories. Then, we collect the long abstracts from the leaf nodes of these

CHAPTER 5. DATA COLLECTION 44

trajectories. In order to ensure enough documents are presented per-class, we only

extract leaf-classes with more than 200 documents. We also limit an upper bound of

3,000 documents per category to balance the number of leaf-level categories. We keep

documents having word length less than 1000 in our dataset. This results in 381,025

documents in total, which we split into 90% for training (from which 10% kept aside

for validation) and 10% on testing, on which we report our classification metrics.

Although, since we collect only the long abstracts, the mean length of the doc-

uments is only 100 words, which is about half that of Web of Science (Figure 5.3),

which makes the classification task relatively easier for the flat classifiers, as we see

in Chapter 7. One can therefore choose to include the entire document rather than

the long abstract to make the classification task more challenging.

6
Baselines

In the previous chapter we explained our choice of the datasets and how we curated

them. In this section we will revisit some of the baseline models we would pitch our

model against.

To select a baseline, we have two-fold objective. One, we want to explore whether

using an external knowledge like hierarchical taxonomy helps in classification of large

number of documents. And two, we explore whether our method is better or compara-

ble to other hierarchical classification approaches. For the former, state-of-the-art flat

classifiers such as FastText (Joulin et al. 2017), Bidirectional LSTM with max/mean

pooling (Collobert and Weston 2008; Lee and Dernoncourt 2016) and Self-attentive

classifier (Z. Lin et al. 2017) are used for the comparison. For the latter, we use

the only available neural hierarchical classifier HDLTex (Kowsari, D. E. Brown, Hei-

darysafa, Meimandi, et al. 2017) to compare against our approach.

6.1 Flat classifier baselines

6.1.1 FastText

FastText (Joulin et al. 2017) is a simple yet powerful baseline for text classification

task. Concretely, the model is a one layer multi-layer perceptron which takes averaged

word representations from the document and uses a linear classifier to predict the

45

CHAPTER 6. BASELINES 46

hidden

output

x1 x2 x3 xn−1 xnxn−2...

Figure 6.1: Fasttext model. Figure adapted from Joulin et al. 2017

class. The word representations are typically n-gram features which are represented

as a word embedding similar to Mikolov, Sutskever, et al. 2013. Then, a softmax

function is used to compute probability distribution over predefined classes. When

the number of classes is large, it uses hierarchical softmax (Goodman 2001) based

on Huffman coding tree (Mikolov, Sutskever, et al. 2013). This simple architecture

has been reported to outperform state-of-the-art CNN architectures on various flat

classification tasks.

6.1.2 BiLSTM with Pooling

BiLSTM with mean or max pooling has been used successfully by Collobert and

Weston 2008 to classify documents. Specifically, if we have a sequence of m words,

a bidirectional LSTM computes a set of hidden representations ht for each of those

words in both the directions as depicted in Equation 4.1. Then, for each word we

concatenate the forward −→ht and backward ←−ht to form ht = [−→ht ,
←−
ht]. To get a fixed

size vector, either we can select the maximum value over each hidden units, which is

termed as max pooling (Figure 2.1). Or, we can consider the average over all units

for all dimensions, which is termed as mean pooling. This representation is then fed

to a multi-layer perceptron (MLP) to predict the softmax over the classes. There

is another popular choice of pooling mechanism named concat pooling, which is a

concatenation of max pooled and mean pooled representation: [max,mean].

CHAPTER 6. BASELINES 47

6.1.3 Self-attentive classifier

The self-attentive classifier (Z. Lin et al. 2017) uses an attention mechanism over a

BiLSTM hidden states instead of pooling. Concretely, given the concatenated hidden

representations over n words in H = (h1, h2, ...hn), the self attention mechanism

computes an attention matrix by calculating the following over multiple hops r:

A = softmax(Ws2tanh(Ws1H
T)) (6.1)

where Ws1 and Ws2 are weight matrix. The model also uses Frobenius norm or

L2 penalty to make sure the attention hops are diverse among each other. Since

we heavily use this architecture for our model it makes sense to compare with this

baseline.

6.2 Hierarchical classifier baseline

6.2.1 HDLTex

To compare our model with a hierarchical neural classification model we use HDLTex

(Kowsari, D. E. Brown, Heidarysafa, Meimandi, et al. 2017). HDLTex uses a top-down

classification approach where it creates a neural classifier, either a Convolutional Neu-

ral Network (CNN) or a Recurrent Neural Network (RNN) at each parent node in the

taxonomy, as depicted in Figure 6.2. Thus, each classifier is tasked to predict within

the children of the particular parent node, and the classifiers in combination predict

the leaf nodes. While the parent level Deep neural network (DNN) is trained with all

the documents, the subsequent levels DNN’s are trained only with the documents of

the specified domain. We compare our results with this model in Chapter 7.

CHAPTER 6. BASELINES 48

−→
h0.1

−→
h0.2

−−→
h0.n

−→
h1.1

−→
h1.2

−−→
h1.n

...

...

...

...

x0 x1 xn

y1 y2 yn

−→
h0.1

−→
h0.2

−−→
h0.n

−→
h1.1

−→
h1.2

−−→
h1.n

...

...

...

...

xψ1,0 xψ1,1 xψ1,c

yψ1,1

−→
h0.1

−→
h0.2

−−→
h0.n

−→
h1.1

−→
h1.2

−−→
h1.n

...

...

...

...

...

ψ1 ψk

xψk,0 xψk,1 xψk,c

yψ1,2 yψ1,m yψk,1 yψk,2 yψk,m

Figure 6.2: HDLTex model. Figure adapted from Kowsari, D. E. Brown, Heidarysafa,
Meimandi, et al. 2017

7
Empirical Evaluation

In the previous chapter, we looked into the choice of baselines we want to compare our

model against. In this chapter, we present the empirical results of our model against

the baselines, and we discuss and analyse our results.

7.1 Experimental Setup

7.1.1 Hyperparameters

In our experiments, we use 300-dimensional word embeddings which are randomly

initialized and fine-tuned during training. Two-layer Bidirectional LSTM with 300

hidden units in each layer are employed. In multi-head attention mechanism, we

use 15 heads (hops) with Frobenius norm penalty as it gives the best validation

performance. The final fully-connected MLP layer has 300 hidden units, and in our

best performing model we use individual MLP layer k for each level in the taxonomy

(i.e 2 layers for WOS and 3 layers for DBPedia). In addition, we add 0.2 dropout on

BiLSTM layers and the MLP layers to prevent over-fitting.

For the optimization, we use standard Adam optimizer (Kingma and Ba 2014)

with weight decay of 10−4 and 10−6 for WOS and DBpedia datasets respectively. The

gradients are clipped to 0.5 in order to prevent the gradient from explosion. All the

results are obtained after 20 epochs of training. In addition, weighted loss function is

49

CHAPTER 7. EMPIRICAL EVALUATION 50

utilized to balance the performance on under-represented classes. For learning rate,

we use the Slanted Triangular Learning Rate (SLTR) from Howard and Ruder 2018a;

Smith 2017 which is suitable for quickly converging to a region of parameter space in

the beginning of the training and then refining the parameters. Concretely, the SLTR

uses a maximum learning rate of 0.01 and after a short increase it decays iteratively

to the learning rate of 0.0001.

Detailed ablation study is provided in Section 7.4.

7.1.2 Preprocessing

Preprocessing is very important for any text classification system. We use similar

preprocessing pipeline as Kowsari, D. E. Brown, Heidarysafa, Meimandi, et al. 2017 to

ensure fairness. Concretely, we prune the documents which has more than 1000 words

out of the dataset. Then, we remove special characters such as delimiters, parenthesis,

and mathematical operators. We also remove consecutive spaces, hyperlinks and

trailing / starting whitespace. Finally, we lowercase all the text documents.

7.2 Results & Discussion

DBpedia WOS
Flat Baselines Overall Overall
FastText 86.2 61.3
BiLSTM + MLP + Maxpool 94.20 77.69
BiLSTM + MLP + Meanpool 94.68 73.08
Structured Self Attention 94.04 77.40
Hierarchical Models l1 l2 l3 Overall l1 l2 Overall
HDLTex (5B params [1]) 99.26 97.18 95.5 92.10 90.45 84.66 76.58
Our model (34M params) 99.21 97.12 95.32 93.72 89.32 82.42 77.46

Table 7.1: Test accuracy results on WOS and DBpedia datasets

15B params on the model is for the case of DBpedia dataset

CHAPTER 7. EMPIRICAL EVALUATION 51

7.2.1 Comparative results

Table 7.1 shows the results from our experiments. The flat baseline models are trained

without the hierarchical taxonomy of classes and therefore only have results on the

leaf-node classification. Both hierarchical classifiers (ours and HDLTex) perform com-

parably or slightly better than state-of-the-art flat classifiers, which indicates that the

external knowledge on class taxonomy has the potential to improve the classification

performance marginally.

Interestingly, the class taxonomy seems to be more beneficial in boosting the per-

formance of hierarchical classifiers on DBpedia than WOS. We observe this behaviour

due to the dataset of DBpedia being shorter in average length making it easier to

classify for flat classifiers, hence hierarchical classifiers overfit on the training data.

Compared to HDLTex, our model has a significant performance improvement on the

DBpedia dataset, and comparable performance on the WOS dataset.

7.2.2 Classifier complexity

Moreover, our model takes significantly less time and resources to train, especially

when the dataset is large in terms of the number of taxonomy classes other than the

leaf-node. As HDLTex needs to build one sub-classifier for each parent nodes, the

number of sub-classifiers grows quickly. For example, there are 80 parent nodes in

the taxonomy of the DBpedia dataset and HDLTex needs to build 80 RNNs, where

each sub-classifier contains around 67 million parameters. As a consequence, we can

barely fit the whole model of HDLTex on our CPU 1 because it requires 60 GB RAM

to build these 80 deep neural networks.
1It is not possible to fit the entire model in one GPU as our best GPU has the RAM capacity of

12GB, one needs to have multiple GPU’s and parallel execution for this task.

CHAPTER 7. EMPIRICAL EVALUATION 52

7.2.3 Error Analysis

However, we also analyze the error of the predicted classes and notice a significant ad-

vantage of using a hierarchical approach over flat classification approach. We perform

error analysis in two stages. First, we analyze the hierarchical nature of the errors

in general to qualitatively show how robust our model is. Secondly, we perform hu-

man evaluation over the errors generated by our model and the baseline to assess the

complexity of the test samples from human perspective and compare the performance

with our model and flat classification baseline.

7.2.3.1 Qualitative analysis

Qualitatively, our hierarchical approach outperforms the best performing flat classifier

in terms of getting the correct sub-tree class (Table 7.2). Concretely, since we know

the taxonomy beforehand, we can calculate whether predicted class ck in lk lies in the

same subtree of its parent lk−1. We calculate this in two scenarios: When we know the

correct parent lk−1 class and when the parent class is predicted by our model. In both

the scenarios, our hierarchical approach, while being comparable to a flat classification

approach, is significantly better at its failure cases where it gets the correct subtree

in more number of occasions. While we use the hierarchical taxonomy, since we use

the level masking technique (refer Section 4.2.3), we are not explicitly informing the

classifier of the correct subtree, and its a fair comparison. This is especially important

for production classification systems as they are more sensitive to error handling.

Classifier Correct parent Predicted parent
Flat classifier - BiLSTM Max Pooling 90.74 85.56
Hierarchical approach - Our model 98.33 88.57

Table 7.2: Effect of taxonomy in error analysis on Web of Science dataset among the
two approaches. We analyze the error as number of times the predicted class is within
the same sub-tree as the parent.

CHAPTER 7. EMPIRICAL EVALUATION 53

7.2.3.2 Human Evaluation of Errors

Classifier Approximately correct
Flat classifier - BiLSTM Max Pooling 39.0
Hierarchical approach - Our model 49.25

Table 7.3: Analysis of errors generated by the models according to human evaluation.

Metrics such as accuracy, recall and F-score offer a qualitative evaluation of model

performance. However, these do not give insight into the underlying complexity of

the data. For example, in the Web of Science dataset, a particular topic about Image

processing presented here, which is mis-labeled as Machine Learning by our classifier.

The development of automated morphological classification schemes can suc-

cessfully distinguish between morphological types of galaxies and can be used

for studies of the formation and subsequent evolution of galaxies in our universe.

In this paper, we present a new automated machine supervised learning astro-

nomical classification scheme based on the Nonnegative Matrix Factorization

algorithm. This scheme is making distinctions between all types roughly cor-

responding to Hubble types such as elliptical, lenticulars, spiral, and irregular

galaxies. The proposed algorithm is performed on two examples with different

number of image (small dataset contains 110 image and large dataset contains

700 images). The experimental results show that galaxy images from EFIGI

catalog can be classified automatically with an accuracy of similar to 93% for

small and similar to 92% for large number. These results are in good agreement

when compared with the visual classifications.

When a human reader reads through this example, it is clear that the misclassifi-

cation is not exactly wrong, as the abstract also falls in Machine Learning subclass.

Therefore, to address this data complexity, we perform human evaluation of incorrect

model predictions. We use human annotators to label each prediction from our mod-

els into either of two categories : approximately correct and wrong. We take a sample

of 200 rows from the Web of Science dataset to do this labelling. We find that 39% of

CHAPTER 7. EMPIRICAL EVALUATION 54

the incorrect predictions of the flat classifier are tagged as approximately correct by

our human evaluators, while for our hierarchical classifier the score is 49.25%. This

analysis shows the need to closely examine classifier error : the classifiers often pro-

vide reasonable results even when not perfectly matching test data. Further more,

we find that even in a human evaluation our model achieves a significant advantage

over a flat classifier. We attribute this to it’s hierarchical nature. Even if it fails to

correctly classify an article it still have a higher chance to get the parent class correct

because of the k-step classification. This will lead the classifier to choose the next

semantically best class which lies under the correct parent class.

7.3 Analysis of Attention

((a)) Level 1 - correct class : Medical ((b)) Level 2 - correct class : Crohn’s disease

Figure 7.1: WOS dataset attention rereading per level.

7.3.1 Effect of multi-level attention

The intuition behind building dynamic document representations, using multiple at-

tentions across different hierarchical levels, is to have a re-reading effect over the

taxonomy. When we first encounter an article as humans, we tend to read it carefully,

but on subsequent reads, we can easily identify the key aspects of the article. We find

in our exploratory experiments the attention vectors behave exactly the same. For

the first level, the attention values are more spread out to help our classifier to pick

CHAPTER 7. EMPIRICAL EVALUATION 55

up more important aspects of the article, but on the subsequent levels the attention is

more focused towards specific keywords for that subclass, as the example from WOS

shows 2 in Figure 7.1.

7.3.2 Qualitative Analysis

To qualitatively analyze the focus of attention, we show the difference in mean at-

tentions from parent level to child level using Euclidean distance (L2 norm), and we

observe that trees in the taxonomy having more number of children has higher differ-

ence in attention spread (Figure 7.2). To measure the decrease in spread in the next

level, we turn to statistical metrics like Kurtosis (Mardia 1970) which measures the

tailedness of a distribution, and we show the increase in tailedness of the attentions

in l2 w.r.t l1, quantifying the narrowing of focus throughout the test dataset.

Figure 7.2: Difference in attentions among levels (l2− l1) using Euclidean distance &
Kurtosis. The bar chart represents number of children within that parent category.

7.3.3 Semantic analysis

Finally, we analyze the words focused by our attention mechanism. In Table 7.4, we

show the top 10 highly attended words per category in Web of Science dataset, which

shows that the model is clearly able to pick meaningful discriminative words. We also

further analyze the discriminative words picked up by the next level classification as
2We use the same visualization script as of Z. Lin et al. 2017.

CHAPTER 7. EMPIRICAL EVALUATION 56

CS Civil ECE MAE Medical Psychology Biochemistry
algorithm ambient control aided allergies antisocial cell
computer cablestayed digital computeraided and borderline creatinine
data construction electric fluid angioedema eating enzymology
distributed geotextile electrical hydraulic birth false genetics
network green lorentz industrial digestive gender human
operating rainwater microcontroller machine fungal nonverbal molecular
parallel smart operational manufacturing menopause prejudice northern
relational stealth satellite materials senior prenatal should
software suspension space strength skin problemsolving southern
symbolic water statespace surface weight thirdperson the

Table 7.4: Top 10 words in each domain in WOS having highest attention

Image Processing Relational databases Algorithm design Symbolic computation Parallel computing
algorithm algebra algorithm darboux 06
camera campaign architecture for computer
edges data at inhomogeneous digital
image database attention lie image
imageprocessing distributed can machine machine
images modelling competitiveness maple molecular
malignant nonrelational into model multicore
many problem multistage physical parallel
message reaction stable rational partition
the relational very symbolic rectangular

Table 7.5: Top 10 words in five randomly sampled sub-domain in Computer Science,
having the highest attention

we see a sample of such words in Table 7.5. While being comparatively generic, the

specific level classifier attention module still picks up relevant semantic words for the

subdomain in question.

7.4 Ablation Study

We also perform extensive ablation studies on our model to see the effect of various

components of our architecture. Ablation study provides an unique way to see which

parts of our model could have contributed to enhancing performance of the model,

and we discuss on which structures worked and which did not. The results are given

in Table 7.6. We perform all our ablation studies on Web of Science dataset because

it is proven to be more difficult to classify (Section 7.2).

We test our model selection with various modifications. We experimented with a

one-hot parent encoding which represents the parent class in a vector of size k where

CHAPTER 7. EMPIRICAL EVALUATION 57

WOS
Architecture l1 l2 Overall
Our Model 89.32 82.42 77.46
Attention Without previous layer encoding 88.82 79.21 75.97

Without BiLSTM encoder - pure attention 86.56 79.60 72.09
With single final classifier 86.69 76.78 71.83
With parent encoding 88.57 82.66 76.83
With low attention hops - 2 89.15 78.80 74.99
With high attention hops - 15 88.71 78.62 74.65
With attention penalty 82.09 50.43 45.38

Pooling Without attention - max pooling 88.37 77.39 77.39
Without attention - mean pooling 87.69 73.59 73.59
Without attention - concat pooling 88.63 80.92 77.28
Without BiLSTM encoder - pure concat pooling 85.59 73.01 73.01

Table 7.6: Ablation Study with various architecture changes on WOS dataset

k is the total number of parent classes. We also experimented with increasing and

decreasing attention hops. Lastly we experimented with alternative pooling mecha-

nisms such as max pooling, mean pooling and concat pooling (Collobert and Weston

2008). Refer to Chapter 6 for a review these pooling mechanisms.

We observe that for Web of Science dataset, we only get a marginal gain by using

attention with respect to concat pooling. This can be attributed to the inherent mech-

anism of pooling. Attention mechanisms focus on certain words by either increasing

or decreasing the vector representation of the words, while a pooling mechanism like

concat pooling achieves comparable performance by identifying the discriminative di-

mension of the word representation across all words. Thus, a pooling mechanism

has an advantage of using the raw representations over all the words to identify dis-

criminative signals. Although, we do acknowledge the relatively small size of Web of

Science dataset, which can be a deciding factor why attention mechanisms perform

at most comparably.

8
Conclusion

After presenting our model, experiments and discussing about the results, in this

chapter we conclude our thesis with a short summary of contributions, limitation and

future work.

8.1 Summary of Contributions

In this work, we propose a light-weight neural-based hierarchical classifier that per-

forms better than or comparable to the state-of-the-art hierarchical model with a

significantly fewer computational resources. Our model employs an adapted version

of attention to representing document dynamically throughout the hierarchy, which

provides the additional interpretability with the semantic granularity of the dynamic

document representations. In addition, we explore the possibility of improving flat

text classification using an external knowledge such as a hierarchical taxonomy.

While the hierarchical approach provides limited advantage with respect to a flat

classifier for Web of Science and DBpedia datasets, we empirically show that the error

handling of our hierarchical approach is significantly better as even when the classifier

misses the correct class the prediction is within the subtree of the predicted as well

as the actual parent classes. This shows that our approach is more robust.

58

CHAPTER 8. CONCLUSION 59

8.2 Limitations

One of the major limitations of our model is that it is still not perfectly global, as

we had to employ a per level unique classifier MLP layer. This still makes the model

grow in the number of parameters as we work on deeper and deeper levels, although

magnitudes lesser compared to the state-of-the-art hierarchical models.

8.3 Future Work

A natural future direction would be to advance our model to automatically construct

the hierarchical taxonomy in order to improve text classification with a large number of

classes. This would require building a taxonomy graph from scratch and then perform

classification. Recent advancements in neural graph representation (Hamilton, Ying,

and Leskovec 2017), construction (D. D. Johnson 2016) and decoding (Xu et al. 2018)

can be leveraged to construct an automatic end-to-end hierarchical classifier.

Another future direction would be to explicitly leverage the taxonomy to create

a novel hierarchical loss function. The current approach still uses the negative log-

likelihood loss to increase the softmax probability of the correct class while decreasing

the probability of all classes uniformly. However, this poses a problem when the

number of classes is large and the softmax probabilities are more flat or less peaky.

In order to use the hierarchical information, one possible way would be to explicitly

decrease the probability of the out of subtree classes by rewriting the equation of

log-likelihood loss with an inspiration from maximum margin loss. Alternatively, we

can perform a similar operation by using a non-differentiable auxiliary loss function.

We could use REINFORCE (Williams 1992) to train using temporal difference loss

similar to the approaches commonly used in Reinforcement Learning (Sutton and

Barto 1998).

Bibliography

Adel, Heike, Ngoc Thang Vu, and Tanja Schultz (2013). “Combination of recurrent

neural networks and factored language models for code-switching language mod-

eling”. In: Proceedings of the 51st Annual Meeting of the Association for Compu-

tational Linguistics (Volume 2: Short Papers). Vol. 2, pp. 206–211.

Allahyari, Mehdi et al. (2017). “A brief survey of text mining: Classification, clustering

and extraction techniques”. In: arXiv preprint arXiv:1707.02919.

Apté, Chidanand, Fred Damerau, and Sholom M Weiss (1994a). “Automated learning

of decision rules for text categorization”. In: ACM Transactions on Information

Systems (TOIS) 12.3, pp. 233–251.

— (1994b). “Automated learning of decision rules for text categorization”. In: ACM

Transactions on Information Systems (TOIS) 12.3, pp. 233–251.

Arthur, P., G. Neubig, and S. Nakamura (2016). “Incorporating Discrete Translation

Lexicons into Neural Machine Translation”. In: ArXiv e-prints.

Bahdanau, Dzmitry, Kyunghyun Cho, and Yoshua Bengio (2014). “Neural machine

translation by jointly learning to align and translate”. In: arXiv preprint arXiv:1409.0473.

— (2015). “Neural machine translation by jointly learning to align and translate”. In:

Bengio, Yoshua, Réjean Ducharme, et al. (2003). “A neural probabilistic language

model”. In: Journal of machine learning research 3.Feb, pp. 1137–1155.

60

BIBLIOGRAPHY 61

Bengio, Yoshua, Paolo Frasconi, and Patrice Simard (1993). “The problem of learning

long-term dependencies in recurrent networks”. In: Neural Networks, 1993., IEEE

International Conference on. IEEE, pp. 1183–1188.

Bengio, Yoshua, Patrice Simard, and Paolo Frasconi (1994). “Learning long-term de-

pendencies with gradient descent is difficult”. In: IEEE transactions on neural

networks 5.2, pp. 157–166.

Bennett, Paul N and Nam Nguyen (2009). “Refined experts: improving classification

in large taxonomies”. In: Proceedings of the 32nd international ACM SIGIR con-

ference on Research and development in information retrieval. ACM, pp. 11–18.

Binder, Alexander, Motoaki Kawanabe, and Ulf Brefeld (2009). “Efficient classifi-

cation of images with taxonomies”. In: Asian Conference on Computer Vision.

Springer, pp. 351–362.

Blockeel, Hendrik et al. (2006). “Decision trees for hierarchical multilabel classifica-

tion: A case study in functional genomics”. In: European Conference on Principles

of Data Mining and Knowledge Discovery. Springer, pp. 18–29.

Bolukbasi, Tolga et al. (2016). “Man is to computer programmer as woman is to

homemaker? debiasing word embeddings”. In: Advances in Neural Information

Processing Systems, pp. 4349–4357.

Bottou, Léon (1998). “Online Algorithms and Stochastic Approximations”. In: Online

Learning and Neural Networks. Ed. by David Saad. revised, oct 2012. Cambridge,

UK: Cambridge University Press.

Brown, Peter F et al. (1992). “Class-based n-gram models of natural language”. In:

Computational linguistics 18.4, pp. 467–479.

Burred, Juan José and Alexander Lerch (2003). “A hierarchical approach to automatic

musical genre classification”. In: Proceedings of the 6th international conference on

digital audio effects. Citeseer, pp. 8–11.

BIBLIOGRAPHY 62

Cai, Lijuan and Thomas Hofmann (2004). “Hierarchical document categorization with

support vector machines”. In: Proceedings of the thirteenth ACM international

conference on Information and knowledge management. ACM, pp. 78–87.

Chakrabarti, Soumen et al. (1998). “Scalable feature selection, classification and sig-

nature generation for organizing large text databases into hierarchical topic tax-

onomies”. In: The VLDB journal 7.3, pp. 163–178.

Chen, Yubo et al. (2015). “Event extraction via dynamic multi-pooling convolutional

neural networks”. In: Proceedings of the 53rd Annual Meeting of the Association for

Computational Linguistics and the 7th International Joint Conference on Natural

Language Processing (Volume 1: Long Papers). Vol. 1, pp. 167–176.

Cheng, Jianpeng, Li Dong, and Mirella Lapata (2016). “Long short-term memory-

networks for machine reading”. In: arXiv preprint arXiv:1601.06733.

Cho, Kyunghyun et al. (2014). “Learning phrase representations using RNN encoder-

decoder for statistical machine translation”. In: arXiv preprint arXiv:1406.1078.

Clare, Amanda and Ross D King (2003). “Predicting gene function in Saccharomyces

cerevisiae”. In: Bioinformatics 19.suppl_2, pp. ii42–ii49.

Collobert, Ronan and Jason Weston (2008). “A unified architecture for natural lan-

guage processing: Deep neural networks with multitask learning”. In: Proceedings

of the 25th international conference on Machine learning. ACM, pp. 160–167.

Collobert, Ronan, Jason Weston, et al. (2011). “Natural language processing (almost)

from scratch”. In: Journal of Machine Learning Research 12.Aug, pp. 2493–2537.

Conneau, Alexis, Douwe Kiela, et al. (2017). “Supervised learning of universal sen-

tence representations from natural language inference data”. In: arXiv preprint

arXiv:1705.02364.

Conneau, Alexis, Holger Schwenk, et al. (2017). “Very deep convolutional networks for

text classification”. In: Proceedings of the 15th Conference of the European Chapter

of the Association for Computational Linguistics: Volume 1, Long Papers. Vol. 1,

pp. 1107–1116.

BIBLIOGRAPHY 63

Costa, Eduardo P et al. (2007). “Comparing several approaches for hierarchical clas-

sification of proteins with decision trees”. In: Brazilian Symposium on Bioinfor-

matics. Springer, pp. 126–137.

DeCoro, Christopher, Zafer Barutcuoglu, and Rebecca Fiebrink (2007). “Bayesian

Aggregation for Hierarchical Genre Classification.” In: ISMIR. Vienna, pp. 77–80.

Denil, Misha et al. (2014). “Modelling, visualising and summarising documents with

a single convolutional neural network”. In: arXiv preprint arXiv:1406.3830.

Dimitrovski, Ivica et al. (2011). “Hierarchical annotation of medical images”. In: Pat-

tern Recognition 44.10-11, pp. 2436–2449.

Dong, Li et al. (2015). “Question answering over freebase with multi-column con-

volutional neural networks”. In: Proceedings of the 53rd Annual Meeting of the

Association for Computational Linguistics and the 7th International Joint Con-

ference on Natural Language Processing (Volume 1: Long Papers). Vol. 1, pp. 260–

269.

Dumais, Susan et al. (1998). “Inductive learning algorithms and representations for

text categorization”. In: Proceedings of the seventh international conference on

Information and knowledge management. ACM, pp. 148–155.

Dyer, Chris et al. (2015). “Transition-based dependency parsing with stack long short-

term memory”. In: arXiv preprint arXiv:1505.08075.

El Hihi, Salah and Yoshua Bengio (1996). “Hierarchical recurrent neural networks for

long-term dependencies”. In: Advances in neural information processing systems,

pp. 493–499.

Elman, Jeffrey L (1990). “Finding structure in time”. In: Cognitive science 14.2,

pp. 179–211.

Firth, John R (1957). “A synopsis of linguistic theory, 1930-1955”. In: Studies in

linguistic analysis.

Flati, Tiziano et al. (2016). “Multiwibi: The multilingual wikipedia bitaxonomy project”.

In: Artificial Intelligence 241, pp. 66–102.

BIBLIOGRAPHY 64

Freitas, Alex and André Carvalho (2007). “A tutorial on hierarchical classification

with applications in bioinformatics”. In: Research and trends in data mining tech-

nologies and applications. IGI Global, pp. 175–208.

Glorot, Xavier and Yoshua Bengio (2010). “Understanding the difficulty of training

deep feedforward neural networks”. In: Proceedings of the thirteenth international

conference on artificial intelligence and statistics, pp. 249–256.

Glorot, Xavier, Antoine Bordes, and Yoshua Bengio (2011). “Deep sparse rectifier

neural networks”. In: Proceedings of the Fourteenth International Conference on

Artificial Intelligence and Statistics, pp. 315–323.

Goller, Christoph and Andreas Kuchler (1996). “Learning task-dependent distributed

representations by backpropagation through structure”. In: Neural Networks, 1996.,

IEEE International Conference on. Vol. 1. IEEE, pp. 347–352.

Goodman, Joshua (2001). “Classes for fast maximum entropy training”. In: Acous-

tics, Speech, and Signal Processing, 2001. Proceedings.(ICASSP’01). 2001 IEEE

International Conference on. Vol. 1. IEEE, pp. 561–564.

Graves, Alex (n.d.). “Supervised sequence labelling with recurrent neural networks.

2012”. In: ISBN 9783642212703. URL http://books. google. com/books.

Graves, Alex, Abdel-rahman Mohamed, and Geoffrey Hinton (2013). “Speech recog-

nition with deep recurrent neural networks”. In: Acoustics, speech and signal pro-

cessing (icassp), 2013 ieee international conference on. IEEE, pp. 6645–6649.

Gu, J. et al. (2016). “Incorporating Copying Mechanism in Sequence-to-Sequence

Learning”. In: ArXiv e-prints.

Hamilton, William L, Rex Ying, and Jure Leskovec (2017). “Inductive Representation

Learning on Large Graphs”. In:

Han, Eui-Hong Sam, George Karypis, and Vipin Kumar (2001). “Text categorization

using weight adjusted k-nearest neighbor classification”. In: Pacific-asia conference

on knowledge discovery and data mining. Springer, pp. 53–65.

BIBLIOGRAPHY 65

Henderson, Peter et al. (2017). “Ethical Challenges in Data-Driven Dialogue Systems”.

In: arXiv preprint arXiv:1711.09050.

Hochreiter, Sepp and Jürgen Schmidhuber (1997). “Long short-term memory”. In:

Neural computation 9.8, pp. 1735–1780.

Howard, Jeremy and Sebastian Ruder (2018a). “Fine-tuned Language Models for Text

Classification”. In:

— (2018b). “Fine-tuned Language Models for Text Classification”. In: CoRR abs/1801.06146.

Ian Goodfellow, Yoshua Bengio and Aaron Courville (2016). “Deep Learning”. Book

in preparation for MIT Press.

Irsoy, Ozan and Claire Cardie (2014). “Opinion mining with deep recurrent neural

networks”. In: Proceedings of the 2014 conference on empirical methods in natural

language processing (EMNLP), pp. 720–728.

Iyyer, Mohit et al. (2014). “A neural network for factoid question answering over

paragraphs”. In: Proceedings of the 2014 Conference on Empirical Methods in

Natural Language Processing (EMNLP), pp. 633–644.

Joachims, Thorsten (1999). “Transductive inference for text classification using sup-

port vector machines”. In: ICML. Vol. 99, pp. 200–209.

Johnson, Daniel D (2016). “Learning Graphical State Transitions”.

Johnson, Rie and Tong Zhang (2014). “Effective use of word order for text catego-

rization with convolutional neural networks”. In: arXiv preprint arXiv:1412.1058.

Joulin, Armand et al. (2017). “Bag of Tricks for Efficient Text Classification”. In:

Proceedings of the 15th Conference of the European Chapter of the Association

for Computational Linguistics: Volume 2, Short Papers. Association for Compu-

tational Linguistics, pp. 427–431.

Kalchbrenner, Nal, Edward Grefenstette, and Phil Blunsom (2014). “A convolutional

neural network for modelling sentences”. In: arXiv preprint arXiv:1404.2188.

BIBLIOGRAPHY 66

Kim, Sang-Bum et al. (2006). “Some effective techniques for naive bayes text classifi-

cation”. In: IEEE transactions on knowledge and data engineering 18.11, pp. 1457–

1466.

Kim, Yoon (2014). “Convolutional neural networks for sentence classification”. In:

arXiv preprint arXiv:1408.5882.

Kingma, Diederik P and Jimmy Ba (2014). “Adam: A method for stochastic opti-

mization”. In: arXiv preprint arXiv:1412.6980.

Koller, Daphne and Mehran Sahami (1997). Hierarchically classifying documents using

very few words. Tech. rep. Stanford InfoLab.

Kowsari, K., D. E. Brown, M. Heidarysafa, K. Jafari Meimandi, et al. (2017). “HDL-

Tex: Hierarchical Deep Learning for Text Classification”. In: ArXiv e-prints.

Kowsari, Kamran, Donald E Brown, Mojtaba Heidarysafa, Kiana Jafari Meimandi,

et al. (2017). “HDLTex: Hierarchical Deep Learning for Text Classification”. In:

2017 16th IEEE International Conference on Machine Learning and Applications

(ICMLA), pp. 364–371.

Kriegel, Hans-Peter et al. (2004). “Using support vector machines for classifying large

sets of multi-represented objects”. In: Proceedings of the 2004 SIAM International

Conference on Data Mining. SIAM, pp. 102–113.

Labrou, Yannis and Tim Finin (1999). “Yahoo! as an ontology: using Yahoo! categories

to describe documents”. In: Proceedings of the eighth international conference on

Information and knowledge management. ACM, pp. 180–187.

Lai, Siwei et al. (2015). “Recurrent Convolutional Neural Networks for Text Classifi-

cation.” In: AAAI. Vol. 333, pp. 2267–2273.

Lawrence, Steve, C Lee Giles, and Ah Chung Tsoi (1997). “Lessons in neural network

training: Overfitting may be harder than expected”. In: AAAI/IAAI. Citeseer,

pp. 540–545.

LeCun, Yann et al. (1998). “Gradient-based learning applied to document recogni-

tion”. In: Proceedings of the IEEE 86.11, pp. 2278–2324.

BIBLIOGRAPHY 67

Lee, Ji Young and Franck Dernoncourt (2016). “Sequential short-text classification

with recurrent and convolutional neural networks”. In: arXiv preprint arXiv:1603.03827.

Lin, Tsungnan et al. (1998). Learning long-term dependencies is not as difficult with

NARX recurrent neural networks. Tech. rep.

Lin, Zhouhan et al. (2017). “A structured self-attentive sentence embedding”. In:

arXiv preprint arXiv:1703.03130.

Liu, Shaohui et al. (2001). “An approach of multi-hierarchy text classification”. In:

Info-tech and Info-net, 2001. Proceedings. ICII 2001-Beijing. 2001 International

Conferences on. Vol. 3. IEEE, pp. 95–100.

Liu, Tie-Yan et al. (2005). “Support vector machines classification with a very large-

scale taxonomy”. In: Acm Sigkdd Explorations Newsletter 7.1, pp. 36–43.

Liu, Yang et al. (2016). “Learning natural language inference using bidirectional

LSTM model and inner-attention”. In: arXiv preprint arXiv:1605.09090.

Lodhi, Huma et al. (2002). “Text classification using string kernels”. In: Journal of

Machine Learning Research 2.Feb, pp. 419–444.

Luong, Minh-Thang, Hieu Pham, and Christopher D Manning (2015). “Effective

approaches to attention-based neural machine translation”. In: arXiv preprint

arXiv:1508.04025.

Mardia, Kanti V (1970). “Measures of multivariate skewness and kurtosis with appli-

cations”. In: Biometrika 57.3, pp. 519–530.

McCallum, Andrew, Kamal Nigam, et al. (1998a). “A comparison of event models

for naive bayes text classification”. In: AAAI-98 workshop on learning for text

categorization. Citeseer.

— (1998b). “A comparison of event models for naive bayes text classification”. In:

AAAI-98 workshop on learning for text categorization. Vol. 752. 1. Citeseer, pp. 41–

48.

Merity, Stephen et al. (2016). “Pointer sentinel mixture models”. In: arXiv preprint

arXiv:1609.07843.

BIBLIOGRAPHY 68

Mikolov, Tomas, Kai Chen, et al. (2013). “Efficient estimation of word representations

in vector space”. In: arXiv preprint arXiv:1301.3781.

Mikolov, Tomas, Ilya Sutskever, et al. (2013). “Distributed representations of words

and phrases and their compositionality”. In: Advances in neural information pro-

cessing systems, pp. 3111–3119.

Mou, Lili et al. (2015). “Discriminative neural sentence modeling by tree-based con-

volution”. In: arXiv preprint arXiv:1504.01106.

Mozer, Michael C (1992). “Induction of multiscale temporal structure”. In: Advances

in neural information processing systems, pp. 275–282.

Mrkšić, Nikola et al. (2015). “Multi-domain dialog state tracking using recurrent neu-

ral networks”. In: arXiv preprint arXiv:1506.07190.

Oh, Heung-Seon, Yoonjung Choi, and Sung-Hyon Myaeng (2010). “Combining global

and local information for enhanced deep classification”. In: Proceedings of the 2010

ACM symposium on applied computing. ACM, pp. 1760–1767.

— (2011). “Text classification for a large-scale taxonomy using dynamically mixed

local and global models for a node”. In: European Conference on Information

Retrieval. Springer, pp. 7–18.

Oh, Heung-Seon and Yuchul Jung (n.d.). “Enhancing the Narrow-down Approach to

Large-scale Hierarchical Text Classification with Category Path Information”. In:

— (2014). “External methods to address limitations of using global information on

the narrow-down approach for hierarchical text classification”. In: Journal of In-

formation Science 40.5, pp. 688–708.

Oh, Heung-Seon and Sung-Hyon Myaeng (2014). “Utilizing global and path informa-

tion with language modelling for hierarchical text classification”. In: Journal of

Information Science 40.2, pp. 127–145.

Otero, Fernando EB, Alex A Freitas, and Colin G Johnson (2009). “A hierarchical clas-

sification ant colony algorithm for predicting gene ontology terms”. In: European

BIBLIOGRAPHY 69

Conference on Evolutionary Computation, Machine Learning and Data Mining in

Bioinformatics. Springer, pp. 68–79.

Parikh, Ankur P et al. (2016). “A decomposable attention model for natural language

inference”. In: arXiv preprint arXiv:1606.01933.

Partalas, Ioannis et al. (2015). “LSHTC: A benchmark for large-scale text classifica-

tion”. In: arXiv preprint arXiv:1503.08581.

Pascanu, Razvan, Tomas Mikolov, and Yoshua Bengio (2013). “On the difficulty

of training recurrent neural networks”. In: International Conference on Machine

Learning, pp. 1310–1318.

Polyak, Boris T (1964). “Some methods of speeding up the convergence of iteration

methods”. In: USSR Computational Mathematics and Mathematical Physics 4.5,

pp. 1–17.

Quinn, Michael J and Mary L Laier (2006). Method and apparatus for fast lookup of

related classification entities in a tree-ordered classification hierarchy. US Patent

7,032,072.

Reuters, Thomson (2012). “Web of Science.” In:

Salakhutdinov, Ruslan, Joshua B Tenenbaum, and Antonio Torralba (2013). “Learn-

ing with hierarchical-deep models”. In: IEEE transactions on pattern analysis and

machine intelligence 35.8, pp. 1958–1971.

Salton, Gerard and Christopher Buckley (1988). “Term-weighting approaches in au-

tomatic text retrieval”. In: Information processing & management 24.5, pp. 513–

523.

Sasaki, Minoru and Kenji Kita (1998). “Rule-based text categorization using hierarchi-

cal categories”. In: Systems, Man, and Cybernetics, 1998. 1998 IEEE International

Conference on. Vol. 3. IEEE, pp. 2827–2830.

Schuster, Mike and Kuldip K Paliwal (1997). “Bidirectional recurrent neural net-

works”. In: IEEE Transactions on Signal Processing 45.11, pp. 2673–2681.

BIBLIOGRAPHY 70

Silla Jr, Carlos N and Alex A Freitas (2009). “A global-model naive bayes approach to

the hierarchical prediction of protein functions”. In: Data Mining, 2009. ICDM’09.

Ninth IEEE International Conference on. IEEE, pp. 992–997.

Silla, Carlos N and Alex A Freitas (2011). “A survey of hierarchical classification

across different application domains”. In: Data Mining and Knowledge Discovery

22.1-2, pp. 31–72.

Smith, L N (2017). “Cyclical Learning Rates for Training Neural Networks”. In: 2017

IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 464–

472.

Socher, Richard et al. (2013). “Recursive deep models for semantic compositionality

over a sentiment treebank”. In: Proceedings of the 2013 conference on empirical

methods in natural language processing, pp. 1631–1642.

Sordoni, Alessandro et al. (2015). “A neural network approach to context-sensitive

generation of conversational responses”. In: arXiv preprint arXiv:1506.06714.

Srivastava, Nitish et al. (2014). “Dropout: A simple way to prevent neural networks

from overfitting”. In: The Journal of Machine Learning Research 15.1, pp. 1929–

1958.

Sun, Aixin and Ee-Peng Lim (2001). “Hierarchical text classification and evaluation”.

In: Data Mining, 2001. ICDM 2001, Proceedings IEEE International Conference

on. IEEE, pp. 521–528.

Sutskever, Ilya, James Martens, and Geoffrey E Hinton (2011). “Generating text with

recurrent neural networks”. In: Proceedings of the 28th International Conference

on Machine Learning (ICML-11), pp. 1017–1024.

Sutskever, Ilya, Oriol Vinyals, and Quoc V Le (2014a). “Sequence to sequence learning

with neural networks”. In: Advances in neural information processing systems,

pp. 3104–3112.

BIBLIOGRAPHY 71

Sutskever, Ilya, Oriol Vinyals, and Quoc V Le (2014b). “Sequence to sequence learning

with neural networks”. In: Advances in neural information processing systems,

pp. 3104–3112.

Sutton, Richard S and Andrew G Barto (1998). Reinforcement learning: An introduc-

tion. Vol. 1. MIT press Cambridge.

Tai, Kai Sheng, Richard Socher, and Christopher D Manning (2015). “Improved se-

mantic representations from tree-structured long short-term memory networks”.

In: arXiv preprint arXiv:1503.00075.

Tang, Duyu, Bing Qin, and Ting Liu (2015). “Document modeling with gated re-

current neural network for sentiment classification”. In: Proceedings of the 2015

conference on empirical methods in natural language processing, pp. 1422–1432.

Tong, Simon and Daphne Koller (2001). “Support vector machine active learning with

applications to text classification”. In: Journal of machine learning research 2.Nov,

pp. 45–66.

Turney, Peter D and Patrick Pantel (2010). “From frequency to meaning: Vector space

models of semantics”. In: Journal of artificial intelligence research 37, pp. 141–

188.

Vaswani, Ashish et al. (2017). “Attention is all you need”. In: Advances in Neural

Information Processing Systems, pp. 6000–6010.

Vens, Celine et al. (2008). “Decision trees for hierarchical multi-label classification”.

In: Machine Learning 73.2, p. 185.

Visin, Francesco et al. (2015). “Renet: A recurrent neural network based alternative

to convolutional networks”. In: arXiv preprint arXiv:1505.00393.

Wang, Ke, Senqiang Zhou, and Yu He (2001). “Hierarchical classification of real life

documents”. In: Proceedings of the 2001 SIAM International Conference on Data

Mining. SIAM, pp. 1–16.

BIBLIOGRAPHY 72

Wang, Mengqiu and Christopher D Manning (2013). “Effect of non-linear deep ar-

chitecture in sequence labeling”. In: Proceedings of the Sixth International Joint

Conference on Natural Language Processing, pp. 1285–1291.

Williams, Ronald J (1992). “Simple Statistical Gradient-Following Algorithms for

Connectionist Reinforcement Learning”. In: Reinforcement Learning. Ed. by Richard

S Sutton. Boston, MA: Springer US, pp. 5–32.

Wu, Feihong, Jun Zhang, and Vasant Honavar (2005). “Learning classifiers using

hierarchically structured class taxonomies”. In: International Symposium on Ab-

straction, Reformulation, and Approximation. Springer, pp. 313–320.

Xu, Kun et al. (2018). “Graph2Seq: Graph to Sequence Learning with Attention-based

Neural Networks”. In:

Xue, Gui-Rong et al. (2008a). “Deep classification in large-scale text hierarchies”. In:

Proceedings of the 31st annual international ACM SIGIR conference on Research

and development in information retrieval. ACM, pp. 619–626.

— (2008b). “Deep classification in large-scale text hierarchies”. In: Proceedings of the

31st annual international ACM SIGIR conference on Research and development

in information retrieval. ACM, pp. 619–626.

Yang, Zichao et al. (2016). “Hierarchical attention networks for document classifi-

cation”. In: Proceedings of the 2016 Conference of the North American Chapter

of the Association for Computational Linguistics: Human Language Technologies,

pp. 1480–1489.

Yin, Wenpeng and Hinrich Schütze (2015). “Convolutional neural network for para-

phrase identification”. In: Proceedings of the 2015 Conference of the North Amer-

ican Chapter of the Association for Computational Linguistics: Human Language

Technologies, pp. 901–911.

Yogatama, Dani et al. (2017). “Generative and discriminative text classification with

recurrent neural networks”. In: arXiv preprint arXiv:1703.01898.

BIBLIOGRAPHY 73

Zhang, Xiang and Yann LeCun (2015). “Text understanding from scratch”. In: arXiv

preprint arXiv:1502.01710.

Zhang, Xiang, Junbo Zhao, and Yann LeCun (2015). “Character-level convolutional

networks for text classification”. In: Advances in neural information processing

systems, pp. 649–657.

Zhou, Chunting et al. (2015). “A C-LSTM neural network for text classification”. In:

arXiv preprint arXiv:1511.08630.

	Contents
	List of Figures
	1 Introduction
	1.1 Overview of text classification systems
	1.2 The challenge of large classes
	1.3 Hierarchical classification
	1.4 Summary of Contributions

	2 Literature Review
	2.1 Text classification literature review
	2.1.1 Introduction
	2.1.2 Classical algorithms
	2.1.3 Neural algorithms
	2.1.3.1 Convolution Neural Network Approaches
	2.1.3.2 Recurrent Neural Network Approaches
	2.1.3.3 Pooling & Attention

	2.2 Hierarchical classification : A review
	2.2.1 Introduction
	2.2.2 Categorization
	2.2.2.1 Top-down approach
	2.2.2.2 Global approach

	2.2.3 Neural approaches

	3 Technical Preliminaries
	3.1 Feedforward Neural Networks
	3.1.1 Introduction
	3.1.2 Technical details
	3.1.3 Training

	3.2 Recurrent Models
	3.2.1 Introduction
	3.2.2 Technical details
	3.2.3 Training
	3.2.4 Bidirectional RNN
	3.2.5 Challenge of Long Term dependencies
	3.2.6 Long Short Term Memory (LSTM)

	3.3 Optimization & Regularization
	3.3.1 Optimization
	3.3.2 Regularization

	3.4 Neural representations for text
	3.4.1 Overview
	3.4.2 Embedding based methods
	3.4.2.1 Pretrained word embeddings

	3.5 Attention
	3.5.1 Introduction
	3.5.2 Terminologies
	3.5.3 Attention Score Functions
	3.5.4 Review of Attention architectures

	4 Model overview
	4.1 Introduction
	4.2 Technical details
	4.2.1 Document encoding
	4.2.2 Pooling with Attention
	4.2.3 Classification

	4.3 Training

	5 Data collection
	5.1 Existing Datasets
	5.2 Curating Hierarchical dataset
	5.2.1 Leveraging topical hierarchies
	5.2.1.1 Wibi Taxonomy
	5.2.1.2 DBPedia Taxonomy

	5.2.2 Extracting documents from DBPedia taxonomy

	6 Baselines
	6.1 Flat classifier baselines
	6.1.1 FastText
	6.1.2 BiLSTM with Pooling
	6.1.3 Self-attentive classifier

	6.2 Hierarchical classifier baseline
	6.2.1 HDLTex

	7 Empirical Evaluation
	7.1 Experimental Setup
	7.1.1 Hyperparameters
	7.1.2 Preprocessing

	7.2 Results & Discussion
	7.2.1 Comparative results
	7.2.2 Classifier complexity
	7.2.3 Error Analysis
	7.2.3.1 Qualitative analysis
	7.2.3.2 Human Evaluation of Errors

	7.3 Analysis of Attention
	7.3.1 Effect of multi-level attention
	7.3.2 Qualitative Analysis
	7.3.3 Semantic analysis

	7.4 Ablation Study

	8 Conclusion
	8.1 Summary of Contributions
	8.2 Limitations
	8.3 Future Work

	Bibliography

