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ABSTRACT 

There has been considerable growth in the statistics literature on methods for 

estimating causal effects from randomized controlled trials in which non-

compliance occurs. However, the focus has been limited to all-or-none 

compliance. This thesis develops new methodology to estimate causal effects in a 

randomized trial setting in which non-compliance can be better classified as “full-

partial-none” compliance and where subjects in both the experimental and control 

arm could receive experimental treatment to varying degrees regardless of 

treatment assignment. This new approach to address the problem is based on 

principal stratification theory. We define compliance stratification effects as a 

special case of principal stratification and use dual propensity scores (propensity 

scores estimated under both possible treatment assignments) to estimate 

compliance principal effects. We demonstrate that dual propensity scores have 

many of the attractive properties of the ordinary propensity score and that 

compliance stratification effects become estimable by adjusting for the estimated 

dual propensity scores using stratification, matching or regression. We apply our 

methodology to a breastfeeding promotion intervention trial and assess the causal 

effects of prolonged and exclusive breastfeeding on infant growth (weight or 

length) at one year of age. 
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ABRÉGÉ 

La littérature statistique a connu un important essor en ce qui concerne les méthodes 

employées pour estimer les effets causaux à partir d’essais sur des échantillons aléatoires 

contrôlés en présence de la non-conformité. L’attention a toutefois été portée sur la 

présence ou l’absence totale de la conformité. Ce mémoire élabore une nouvelle 

méthodologie qui sert  à estimer les effets causaux d’essais sur des échantillons aléatoires 

où la « non-conformité » est remplacée par une conformité « Totale-partielle-absente » et 

où les sujets, à la fois des côtés de l’expérimentation et du contrôle, pouvaient recevoir 

des traitements expérimentaux à différents degrés, indépendamment de l’application du 

traitement. Cette nouvelle façon d’aborder le problème se base sur la théorie de 

stratification principale. Nous définissons les effets de la stratification de la conformité 

comme étant un cas particulier de la stratification principale et utilisons des scores de 

propension duaux (estimés au-dessous des deux applications du traitement possibles) 

pour estimer les effets principaux de la conformité. Nous démontrons que les scores de 

propension duaux conservent beaucoup de propriétés intéressantes du score de 

propension normal et qu’ils peuvent servir à estimer les effets de  stratification de la 

conformité. Nous appliquons notre méthodologie à l’allaitement naturel et évaluons les 

effets causaux d’un allaitement naturel exclusif et prolongé sur la croissance (le poids et 

la taille) du nourrisson à l’âge d’un an. 
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Chapter 1 INTRODUCTION 

 Non-compliance is not uncommon in randomized controlled trials (RCTs) in 

which study subjects are randomly assigned to different treatment groups. Non-

compliance occurs when subjects fail to adhere to their assigned treatment, partially or 

completely. Often non-compliance does not occur randomly. It may be associated with 

prognostic factors and treatment response, and may represent an intrinsic characteristic of 

subjects. Historically, causal inference from randomized trials with non-compliance has 

been viewed as problematic (Goetghebeur and Shapiro, 1996). The problem arises when 

attempts are made to estimate the treatment effect that would have been reached if there 

had been perfect compliance. Criticism of these attempts includes shifting the focus from 

a pragmatic to an explanatory question, and biased selection of the treatment group based 

on post hoc features observed after randomization (Armitage, 1998).  

 The most popular analysis for RCTs with non-compliance is the intention-to-treat 

(ITT) approach (Sheiner and Rubin, 1995). This method ignores observed compliance 

information and compares those assigned to the treatment group to those assigned to the 

control group. This procedure provides a valid estimate of the effect of treatment 

assignment on the outcome. ‘As-treated’ (AT) and ‘per protocol’ (PP) are two other 

popular ways to analyze the data. AT analysis compares those who received the 

experimental treatment with those who received the control treatment, ignoring treatment 

assignment. PP analysis compares those who were assigned to and received the 

experimental treatment with those who were assigned to and received the control 

treatment, in other words, subjects who comply with the protocol. However, AT and PP 



 

 14

estimates generally do not estimate true causal effects because they compare groups of 

subjects who are fundamentally different - they are actually different mixtures of some 

unidentifiable subpopulations (Imbens and Rubin, 1997b). On the other hand, the ITT 

estimate compares two groups with the same expected mixture of some subpopulations; 

that is, the proportion of those subpopulations on average will be the same in the 

treatment and control groups.   

 Fundamentally, the ITT approach retains the benefit of randomization and 

therefore is considered to provide a true causal effect estimate. Critics of this approach 

point out that ITT focuses on the effect of assignment of treatment rather than the effect 

of receipt of treatment, and that comparison of treatment assignment is attenuated relative 

to the true causal effect of treatment received, because non-compliers will dilute 

whatever effect might have been revealed by compliers (Levis and Machin, 1993; 

Sheiner and Rubin, 1995).  The latter argument is especially appealing when interest 

centers on biological efficacy and/or non-compliance is substantial, and ITT is likely (but 

not certainly) to underestimate the true treatment effect.  

 There has been considerable growth in the statistics literature on methods for 

estimating causal effects from RCTs in which non-compliance occurs. However, these 

methods have been limited to all-or-none compliance (see, for example, Angrist, Imbens 

and Rubin, 1996; Yau and Little, 2001; Frangakis, Rubin, and Zhou, 2002). This research 

project extends the methodology of estimating causal effects in the presence of all-or-

none treatment compliance to a situation in which non-compliance is better classified as 

full, partial, or no treatment compliance.  Compliance can be ‘partial’ in the sense that a 

fraction of an assigned treatment is taken. In this thesis, we use the propensity score 
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method to construct a situation where treatment received is unconfounded even though it 

is not randomly assigned. We define propensity scores under both possible treatment 

assignments (i.e., the treatment group and the control group) and call them the dual 

propensity score (DPS).  We demonstrate that the DPS in an RCT has many of the 

attractive properties of the propensity score.  We define compliance principal strata based 

on principal stratification theory and estimate the principal effects (the effects of 

treatment based on principal strata) using DPS stratification and matching.   

 This dissertation is organized as follows: Chapter 2 reviews the causal inference 

literature relative to non-compliance in RCTs.  Chapter 3 introduces the Promotion of 

Breastfeeding Intervention Trial (PROBIT) and reviews results on breastfeeding on infant 

growth from three published papers based on PROBIT. Chapter 4 develops the DPS 

methodology and focuses on DPS stratification algorithms. Chapter 5 defines compliance 

principal stratification in the presence of partial compliance and focuses on DPS 

matching algorithms.  Chapter 6 evaluates the newly developed methods with simulation 

studies. Finally, Chapter 7 reviews the contributions and limitations of the DPS 

methodology, and concludes this dissertation. 
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Chapter 2 LITERATURE REVIEW 

 This chapter provides a brief review of the literature on causal inference in the 

fields of statistics, epidemiology and clinical research, with a focus on methods based on 

the Rubin Causal Model (RCM) (Holland, 1986). We organize this chapter as follows.  

First, we introduce the concept of causality in clinical studies. Second, we define causal 

effects in clinical studies via potential outcomes and the counterfactual framework.  

Third, we review approaches that have been used to define and estimate causal effects in 

RCTs in the presence of non-compliance, including instrumental variable approach, 

complier average causal effect, principal stratification, G-estimation of structure nested 

models, as well as other approaches not formally based on the RCM framework.  Fourth, 

we review propensity score methodology, since our new estimation approach (dual 

propensity score) will be based on propensity score methods. Last, we review the 

limitations of existing approaches and conclude this chapter with a brief summary. 

 

2.1 Introduction of Causal Inference 

The central aim of clinical studies is to establish a cause-effect relationship 

between an agent or treatment and an outcome.  However, the appropriate methodology 

for extracting such relationships from data has been fiercely debated (Little and Rubin, 

2000).  In general, causality denotes a necessary relationship between one event (cause) 

and another event (effect), which is the direct consequence of the first. There are two 

fundamental questions of causality (Pearl, 2000): 1) what empirical evidence is required 

for legitimate inference of cause-effect relationship? And 2) given that we are willing to 
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accept causal information about a phenomenon, what inference can we draw from such 

information, and how?  These questions have been without satisfactory answers for 

centuries. The modern analysis of causation can be traced back at least to philosophers in 

the eighteenth and nineteenth centuries (Rubin 1990; Sobel, 1995), but it was not until the 

1920s that a formal statistical model for causal inference was proposed by Neyman 

(1923) for randomized experiments. Subsequently, the last half century witnessed a rapid 

increase in the use of formal methods for the analysis of causal effects (Greenland, 

2000b). 

  Of the methods that appear in clinical studies and health sciences on causal 

inference, most can be identified with three approaches: counterfactual (potential 

outcomes) models, graphical models, and structural equation models (Greenland, 2000b).  

We focus our review and discussion on the counterfactual or potential outcomes 

framework, which has been a well-established and popular framework of causal inference 

in evaluation of treatments in health science. Little and Rubin (2000) argued that there 

were three formal statistical modes of causal inference in clinical and epidemiological 

studies via counterfactual models: one model-based and two randomization-based 

(Fisher’s randomization-based inference and Neyman’s randomization-based inference). 

They argued that Fisher’s approach is the more direct conceptually and it is closely 

related to the mathematical idea of proof by contradiction. Neyman’s approach, 

alternatively,  can be viewed as drawing inferences by evaluating the expectations of 

statistics over the distribution induced by the assignment mechanism to calculate a 

confidence interval for the typical causal effect (Little and Rubin, 2000).  Our focus is on 

Neyman’s randomization-based inference approach.  
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2.2 Causal Inference in Clinical Studies via Potential Outcomes 

The definition of cause is complex and challenging, but the idea of the causal 

effect of a treatment seems more straightforward and practically useful. A key concept of 

this view of causation is the so called counterfactual element: a certain event would not 

have occurred, if, contrary to fact, an earlier event had not occurred.  Actually, this 

intuitive idea can be found in the empirical research literature in several fields, including 

economics (e.g., Heckman, 1996), epidemiology, (e.g., Robins, Hernan, and Brumback, 

2000), the social and behavioural sciences (e.g., Sobel, 1990; Sobel, 1995), and statistics 

(e.g., Cox, 1992; Rubin, 1978). This intuitive definition of causal effects was first 

presented by Neyman (1923) for randomized experiments and randomization-based 

inference and later advocated by Rubin (1974; 1978) for nonrandomized observational 

studies, an approach also known as the Rubin Causal Model (Holland, 1986). 

There are two essential parts of the RCM framework: one is potential outcomes, 

another is the assignment mechanism (Rubin, 2007b). Potential outcomes are all the 

outcomes that would be observed if each of the treatments could be applied to each of the 

units.  The causal effects are then defined as comparisons of potential outcomes among a 

common set of units. The assignment mechanism describes how units were assigned the 

treatment they received.  To describe this theory, suppose we want to study the effect of 

an experimental intervention S on a subsequent outcome Y on a population U.  Let Y(S = 

s) be the outcome of an experimental unit within the population U under an experimental 

condition S = s.  Y(S = s) represents the value that Y would take had S been s.  Assume 

that there are two levels of the experimental intervention: S = 1 for experiment treatment 
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(E) and S = 0 for control treatment (C).  In this case there are two ‘potential versions’ of 

Y; Y(S = 1) and Y(S = 0). Y(S = 1) represents the value of Y that would have occurred had 

the individual received E, and Y(S = 0) represents the value of Y that would have occurred 

had the individual received C.  Under the RCM framework, the causal effect on a single 

individual is then defined as the comparison (e.g., difference) between Y(S = 1) and Y(S = 

0).  However, the fundamental problem of this theory is that it is impossible to observe 

the value of Y(S = 1) and Y(S = 0) on the same unit at the same time. The statistical 

solution for the fundamental problem is to use the population U to estimate the average 

causal effect (ACE) over U (Holland, 1986).  

One key assumption of the RCM is the Stable Unit Treatment Value Assumption 

(SUTVA) (Rubin, 1978).  This assumption has two parts: 1) there is no interference 

between study units such that the treatment received status of one unit does not influence 

the outcome or treatment received status of another unit; and 2) only one of the potential 

outcomes will be observed for each unit, also known as the consistency assumption.  

Under SUTVA, individual-level causal effects can be defined without reference to other 

individuals in the study.  Another assumption is the randomization assumption, which 

requires that treatments are randomly assigned to units and that all baseline variables are 

independent of treatment assignment.  A weaker form of the randomization assumption 

requires that the potential outcomes are independent of treatment assignment given 

baseline covariates.  For a randomized experiment, the treatment is randomly assigned 

and thus all measured and unmeasured confounders should be equally distributed 

between two treatment groups. For nonrandomized studies (or randomized studies with 

non-compliance), the treatment assignment (or receiving) generally are not independent 
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of all potential outcomes (Rubin, 2005), and thus a model is needed for the assignment 

mechanism so that all measured and unmeasured confounders are equally distributed 

between the two treatment groups given baseline covariates.  

The RCM framework derives the cause and effect in simple terms of interventions 

and potential outcomes, rather than leaving them informal. However, because only one of 

the treatments can be administrated to a unit, for each unit only one potential outcome 

will be observable; the rest will remain counterfactual. Hence, it has been criticized by 

some authors for including structural elements that are unidentifiable by randomized 

experiments alone (Dawid, 2000).  For example, the correlation among potential 

outcomes cannot be observed on one unit; therefore, nothing about the correlation of Y(S 

= 1) and Y(S = 0) can be inferred from observing interventions and outcomes alone.  

Nevertheless, the RCM framework provides conceptual clarification and highlights the 

limits of what statistical analyses can show without background theory about causal 

mechanisms (Greenland, 2000b).  

 

2.3 Causal Inference in RCTs in the Presence of Non-compliance 

2.3.1 Causal Inference in RCTs  

The definition of causal effects via potential outcomes and the formal 

consideration of the assignment mechanism clarify the roles of two design features of 

clinical studies: the inclusion of a control group and the randomization of treatment 

assignment (Little and Rubin, 2000).  This is the reason why RCTs (randomized 

controlled trials) with an intention-to-treat (ITT) analysis are considered to be the gold-

standard, and causal conclusion can be drawn solely based on the distribution of statistics 
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induced by a randomized assignment without any additional assumptions.  Under perfect 

treatment compliance, the standard ITT approach provides unbiased estimates of the 

effect of randomization (effectiveness), which is the same as the efficacy.  Formally, 

efficacy can be defined as the etiological impact of actually receiving a treatment on an 

outcome of interest (Last et al., 2000), and it can be interpreted as the effect if everyone 

in the population were to take the treatment. It is also referred to as the explanatory 

approach in the sense that it seeks to provide evidence in choosing one treatment over 

another when both are administered under optimal conditions (Armitage, 1998).  

However, in the presence of treatment non-compliance, the effectiveness may differ from 

the efficacy. Therefore, new methods are needed for RCTs with non-compliance to allow 

researchers to compare treatments and to answer the question of efficacy while validly 

taking into account factors measured after randomization.  

 

2.3.2 RCTs with Non-compliance 

Non-compliance in RCTs occurs when subjects randomly assigned to treatment 

groups fail to adhere to their assigned treatment. For instance, subjects who are assigned 

to the control group receive the experimental treatment, or subjects who are assigned to 

the experimental group refuse the experimental treatment.  In such cases, the analysis and 

interpretation for causal effects becomes complicated.  A fundamental principle in RCTs 

in comparing treatment groups is that groups must be from the same population; so that 

they are alike in important aspects and differ only in the treatment received.  

An approach that has been applied to estimate the causal effect of a treatment in 

RCTs with non-compliance is the instrumental variables (IV) approach, which treats 
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randomization as an instrumental variable (to be defined below).  The IV technique has 

been known for decades and is widely used in econometrics (Greenland, 2000a). In a 

series of influential papers (Imbens and Angrist, 1994; Angrist, Imbens and Rubin, 1996; 

Imbens and Rubin, 1997b; Hirano et al., 2000), Rubin and his colleagues reinterpreted 

the IV estimator in the RCM framework and laid out the assumptions under which this 

estimator has causal interpretation. The idea behind the IV approach is to estimate the 

effect of a variable correlated with the error term in a regression by using another 

variable that is correlated with the response, but that does not directly affect the response.  

The traditional definition qualifies a variable Z as instrumental (relative to the pair (X, 

Y)) if Z is associated with X but not associated with Y except through its association with 

X.  Formally, suppose X and Y are the exposure and outcome of interest, and we can 

observe their relation to a third variable Z.  Let V be the set of all variables that affect X 

and Y.  The variable Z is called an instrument or instrumental variable relative to the total 

effect of X on Y if the following criteria hold: (i) Z is independent of V; (ii) Z is 

correlated with the error terms of X; and (iii) Z is independent of Y given X and V 

(Greenland, 2000a). Note the last assumption implies that Z has no direct effect on Y.   

In a randomized trial with non-compliance, Z becomes treatment assignment, 

which is randomized and so fulfills assumption 1; X becomes treatment received 

(compliance), which is affected but not fully determined by assignment Z.  Y is the 

outcome, which is affected by X but not directly affected by Z.  The IV estimator corrects 

the ITT estimator for non-compliance and yields a direct estimate of treatment efficacy. 

Therefore, the potential outcome definition of causal effects together with IV technique 
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provide a useful basis for understanding non-compliance problems and assumptions 

implied by various estimation strategies (Little and Rubin, 2000).  

 

2.3.3 Complier Average Causal Effect 

Angrist, Imbens, and Rubin (1996) use an IV formula to estimate the causal effect 

in a randomized study with non-compliance, according to which the ITT measure should 

be divided by the fraction of subjects who comply with the treatment assigned to them in 

the experimental group. A simple version of this approach was first proposed by Sommer 

and Zeger (1991).  Angrist, Imbens, and Rubin (1996) showed that the corrected formula 

is valid for the subpopulation of “responsive” subjects - subjects who would have 

changed treatment status if given a different assignment. They called this estimate the 

local average treatment effect (LATE) (Imbens and Angrist, 1994). LATE is the average 

treatment effect among compliers (those who both comply with their actual assignment 

and who would comply with the assignment not assigned). Unfortunately, this 

subpopulation cannot be identified.  Subsequently, Imbens and Rubin (1997a; 1997b) 

extended this work, applying likelihood and Bayesian procedures to estimate LATE; they 

referred to LATE as complier average causal effect (CACE).  Hirano et al. (2000) 

developed methods to allow for the presence of pre-treatment variables (covariates).  

When outcomes are continuous, Little and Yau (Little and Yau, 1998; Yau and Little, 

2001) extended the method to a longitudinal study and estimated CACE by maximum 

likelihood.  Frangakis and Rubin (Frangakis and Rubin, 2002; Frangakis, Rubin, and 

Zhou, 2002) addressed the issue of non-compliance by generalizing the instrumental 
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variables approach to principal stratification and using a full Bayesian approach to 

estimate the effect of treatment.  

Robins and Greenland (1996) in their comment on the paper by Angrist, Imbens, 

and Rubin (1996) argued that three different treatment effects (TE) could be defined in 

RCTs with non-compliance: ATE (the global average treatment effect), which is the 

average effect of treatment in the entire study population; LATE or CACE, which is the 

ATE in the subpopulation of compliers; and ITT, which is the average effect of treatment 

assignment. The ATE is the difference between the mean outcome if all individuals had 

been assigned and complied with the treatment and the mean outcome if all individuals 

had been assigned and complied with the control treatment. Robins and Greenland (1996) 

showed that all three TE would equal zero under the sharp null hypothesis of no 

treatment effect. Further, they argued that under the alternative, the ATE can be of 

greater public health interest than the CACE or ITT. In the absence of covariates, the 

ATE and CACE are the same if the ATE is the same for compliers as for non-compliers 

if they had in fact complied. When this assumption does not hold, the ATE and CACE 

differ, but additional information is needed to estimate the difference (Little, Long, and 

Lin, 2008). Robins (1994) also introduced the class of structural nested mean models (see 

Section 2.3.5 for detailed review) for the average treatment effect on the treated (ATT) 

and showed that ATT is the IV estimand by assuming that the average treatment effect in 

the untreated equals that in the treated (Robins and Greenland, 1996). Imai et al. (2008) 

give a comprehensive review of terminology and definitions for causal effects. 

In addition to the assumptions of SUTVA and randomization, use of the CACE 

requires the following assumptions (Angrist, Imbens, and Rubin, 1996): 1) Exclusion 
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restriction assumption implies that any effect of treatment assignment on the potential 

outcomes must be exclusively through the actual treatment received for the whole 

population; 2) Monotonicity assumption rules out the existence of subjects who take the 

opposite treatment to that assigned; 3) Nonzero denominator assumption implies that 

there exists at least one complier.  

 

2.3.4 Principal Stratification 

Based on the work presented in Angrist, Imbens, and Rubin (1996), Frangakis and 

Rubin (2002) introduced the principal stratification theory to estimate the causal effects 

within separate partially observed subpopulations.  The primary goal is to compare the 

effects of treatments, adjusting for post-treatment characteristics such that the adjusted 

estimands are causal effects.  The principal stratification model stratified the population 

into latent classes or principal strata based on the potential values of a post-treatment 

variable Sobs, under the randomized treatment assignment. The post-treatment variable 

Sobs is considered to encode characteristics of the unit as well as of the treatment.  

Because these principal strata are based on potential outcomes for Sobs under different 

randomized treatment conditions for each individual, treatment effects on outcome within 

each principal stratum can be interpreted causally (Frangakis and Rubin, 2002; Frangakis, 

Rubin, and Zhou, 2002; Jin and Rubin, 2008). The key property of principal strata is that 

they are not affected by treatment assignment and therefore can be used just as any pre-

treatment covariate, such as age category.  Adjusting for the post-treatment variable 

within principal strata always generates causal effects because it always compares 

potential outcomes for a common set of people.  
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In RCTs in the presence of all-or-none treatment non-compliance, principal 

stratification models have been used to estimate the effects of the randomized treatment 

assignment within principal strata based on each subject’s prospective compliance 

behaviour under each treatment assignment (Frangakis and Rubin, 1999; Frangakis).  

Such compliance principal strata are not affected by actual treatment assignment.  When 

the control group does not have access to the experimental treatment (e.g., Frangakis and 

Rubin, 1999; Frangakis and Rubin, 2002), there are two compliance principal strata: 

compliers and never-takers.  Compliers are those subjects who would take the 

experimental treatment only when assigned to it. Never-takers are those who would 

refuse the experimental treatment regardless of treatment assignment. When the control 

group does have access to the experimental treatment, there are two more compliance 

principal strata: always-takers and defiers.  Always-takers are those who would take the 

experimental treatment regardless of treatment assignment. And defiers are those would 

do the opposite of what they are assigned.  

When only compliers and never-takers exist, both Bayesian (e.g., Hirano et al., 

2000; Imbens, Rubin, and Zhou, 2000) and likelihood approaches (e.g., Little and Yau, 

1998; O’Malley and Normand, 2005; Yau and Little, 2001) have been used.  Peng et al. 

(2004) compared Bayesian methods to likelihood methods and concluded that both 

methods yield similar results. When there exist three or four compliance principal strata, 

to our knowledge only the Bayesian approach (e.g., Barnard et al., 2003) has been used.   

However, the fundamental problem is that the principal stratum to which a subject 

belongs cannot be observed directly. Inference about principal effects requires prediction 

of the subject’s missing membership in the principal strata (Frangakis and Rubin, 2002; 
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Frangakis, Rubin, and Zhou, 2002; Jin and Rubin, 2008).  Under the likelihood approach 

and assuming there are no always-takers and defiers, the EM algorithm is used by 

treating the unobserved compliance strata in the control group as missing (Little and Yau, 

1998).  Under the Bayesian approach, the Markov chain Monte Carlo (MCMC) technique 

has been use to implement the mixture distribution estimation with the specification of 

prior distributions (Hirano et al., 2000; Ten Have et al., 2004).  All approaches classify 

non-compliance as either all or none. In the cases of partial compliance, only the 

Bayesian approach with full likelihood has been developed very recently (Jin and Rubin, 

2008).  

The principal stratification approach requires the same set of assumptions as in 

the CACE. These assumptions are as follows. 1) SUTVA - potential outcomes do not 

depend on the treatment status of other individuals. 2) Randomization - the treatment 

assignment is randomized so that principal effects can be expressed as the comparison 

between two treatment groups.  3) Exclusion restriction (ER) assumption of treatment 

assignment given treatment received - the assigned intervention cannot operate through 

other means apart from the treatment receiving, therefore, the causal effects are zero for 

compliance principal strata (i.e., always-takers and never-takers) in which subjects 

receive (or do not receive) the experimental treatment regardless of their treatment 

assignment.  4) Monotonicity assumption of treatment assignment and treatment received 

- there are no defiers when controls have access to the experimental treatment. 5) 

Nonzero denominator assumption - the population includes some compliers.  
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2.3.5 Other Approaches 

The compliance as an explanatory variable approach is a model-based 

approach to estimating efficacy in RCTs with non-compliance (Efron and Feldman, 

1990).  Efron and Feldman (1990) brought this new idea to model the causal effect of an 

experimental treatment in a placebo-controlled trial. They treated compliance as a 

continuous explanatory variable so that mean effect is modeled as a linear function of the 

percentage of assigned experimental treatment that is actually taken.  They considered 

compliance with assigned treatment is an attribute of the subject, and compares subjects 

who received a treatment dose on the treatment group with comparable subjects on the 

placebo group who took an equal amount of placebo. The key assumptions of this 

approach include 1) no contamination - subjects randomized to the control group have no 

access to the experimental treatment; 2) perfect blinding - the placebo presents an 

identical challenge for compliance does as the experimental treatment.  The second 

assumption states that compliance subgroups observed in both treatment groups are 

comparable when they have the same position on the compliance distributions within 

each randomized group. The assumption is usually inconsistent with data and was 

criticized by Albert and Demets (1994), who showed how sensitive the estimator is to 

this assumption.  

 

Structural Nested Mean Models (SNMMs) have been proposed to analyze 

randomized trials with continuous outcomes and non-compliance (Robins, 1994; Fischer-

Lapp and Goetghebeur, 1999; Moodie et al., 2008; Greenland, 2009) in longitudinal 

settings.  The estimators avoid the assumption of comparability between compliance on 
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the placebo and the treatment, and analyze the causal effects as a function of subject 

characteristics (see, e.g., Goetghebeur and Shapiro, 1996; Zeger, 1998). SNMMs 

incorporate post-baseline information into the modeling of the association between the 

exposure variable and compliance. In the placebo-controlled setting, SNMMs introduce 

parameters expressing the causal effect of exposure in compliance selected subgroups, 

and model the causal effect in function of variables observed on the experimental group 

(Fischer-Lapp and Goetghebeur, 2004).  The average treatment effects are estimated for 

subpopulations characterized by baseline covariates as well as the experimental treatment 

actually received and the treatment-free response that they would experience on placebo 

(Fischer and Goetghebeur, 2004). The basis of this model is G-estimation, which assumes 

that the potential outcome variable is independent of the assignment when treatment is 

not taken (Robins, 1997).   

SNMMs have been used to analyze data from longitudinal studies with time-

varying treatment regimes.  The difficulty arises because a time-varying regime may not 

only be influenced by antecedent causes of the outcome but may also influence later 

causes, which in turn may influence the treatment regime. Under the assumption of no 

unmeasured confounders of compliance behaviour, these semi-parametric models specify 

a functional form for the difference between the mean responses under the different 

treatments and define a causal contrast at interval as a conditional expected difference 

between two counterfactual outcomes, given history. More precisely, SNMMs describe 

the effect on response of a particular treatment (versus none, or some standard treatment) 

at a particular treatment interval before following a particular treatment regimen in all 
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subsequent intervals, conditioning on variables measured up to that treatment interval 

(Moodie et al., 2008). 

 

Marginal Structure Models (MSMs) are an alternative to SNMMs for 

estimating the causal effect that observed exposure levels could have on the entire study 

population. These methods use inverse-probability-of-treatment-weighted (IPTW) 

estimation (Robins, Hernan, and Brumback, 2000; Hernan, Brumback, and Robins, 

2001), i.e. weighting observations by inverse probability of treatment received, and 

allowing causal inferences under much less restrictive independence assumptions than 

those required by standard methods (Greenland, 2000b). MSMs can provide valid effect 

estimation even when treatment compliance and confounders vary over time and 

treatment affects the confounders.  MSMs approximate RCT estimate by re-weighting 

observations of a non-randomized study based on the observed covariates history of the 

subjects. Application of an MSM requires specifying a nuisance model for the probability 

of treatment assigned conditional on past confounder history. Then, an unadjusted 

weighted model for the effect of treatments on the outcome is fitted, where the weights 

are defined as the products of inverse probabilities of treatment. If the treatment models 

are appropriate, i.e., describe correctly the true conditional probability of being assigned a 

treatment given the confounders, then the estimates of the marginal effects of treatments 

can be interpreted causally.  

 

Doubly Robust (DR) estimation builds on the propensity score approach and the 

IPTW approach of Robins and his colleagues (Robins, 1998a; 1998b; 1999a; 1999b; and 
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Robins, Hernan, and Brumback, 2000). DR estimation combines inverse probability 

weighting by a propensity score with regression modeling of the relationship between 

covariates and outcome in such a way that as long as either the propensity score model or 

the regression model is correctly specified, the effect of the exposure on the outcome will 

be correctly estimated, assuming that there are no unmeasured confounders (Robins, 

Rotnitzky, and Zhao, 1994; Robins, 2000; Bang and Robins, 2005). Specifically, one 

estimates the probability that a particular subject receives a given treatment as a function 

of that individual’s covariates (propensity score). Each individual observation is then 

given a weight equal to the inverse of this propensity score to create two pseudo-

populations of exposed and unexposed subjects that now represent what would have 

happened to the entire population under two treatment conditions.  Maximum likelihood 

regression is conducted within these pseudo-populations with adjustment for confounders 

and risk factors. Results from extensive simulations by Lunceford and Davidian (2004) as 

well as Bang and Robins (2005) confirm the theoretical properties of this estimator.  

While DR estimators have been shown to be powerful tools for modeling, they are not in 

common usage yet, in part because they are difficult to implement.  The DR estimator 

procedure runs two sets of models: one for the probability of receiving a dichotomous 

treatment or exposure, and another to predict either the probability of the outcome (for a 

dichotomous outcome) or its mean value (for a continuous outcome) within strata of the 

exposure. Often the causal effect of interest is the difference in means if everyone in the 

population received the experimental treatment versus everyone receiving no treatment.  

The calculation of the estimator and its standard error can be found in Lunceford and 

Davidian (2004). 
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There are still many other approaches have been proposed in the recent years to 

estimate causal effects in general, and to address non-compliance in RCT settings in 

particular, including the compliance scores approach (Follmann, 2000; Joffe et al., 2003), 

likelihood methods (e.g., O’Malley and Normand, 2005), multiple imputation methods 

(e.g., Taylor and Zhou, 2008), structural equation models (e.g., Robins, Greenland, and 

Hu, 1999), non-parametric bounds models (e.g., Balker and Pearl, 1997), and nested 

compliance class models to model time-varying non-compliance (e.g., Lin et al., 2008). 

We will not review these methods in this thesis. 

 

2.4 Propensity Scores 

Propensity score methods have been used in many fields to reduce the bias 

inherent in nonrandomized observational studies. A propensity score is the conditional 

probability of exposure to treatment, rather than control, given the observed covariates 

(D’Agostino, 1998).  The propensity score was originally proposed as a method for 

balancing many covariates between two groups (Rosenbaum and Rubin, 1983; 

Rosenbaum and Rubin, 1984; Rubin 1997).  The propensity score provides an 

unconfounded mechanism whereby subgroups of units with the same distribution of the 

covariates involved in the assignment mechanism can be fairly compared to estimate the 

effect on outcomes. This is because the two subgroups appear to have been created by 

randomization, conditionally on measured covariates. This method can potentially 

balance a very large number of covariates by estimating the probability (propensity) of 

assignment given those covariates. The basic idea is to replace the collection of 

covariates with one function of these covariates. For observed covariates, theory assures 
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that, given any value of the propensity score, the subgroups of treated and untreated have 

the same joint distribution in all the covariates that were used to estimate that propensity 

score (Rosenbaum and Rubin, 1984). This is one of the main advantages of propensity 

score methods over multiple linear regression that include all the covariates contributing 

to the estimation of propensity score. It allows a straightforward check for whether the 

adjustment has made the subgroups comparable with respect to the observed covariates. 

Another advantage is that when covariate balance is achieved and no further regression 

adjustment is necessary, the propensity score method does not rely on the correct 

specification of the function form of the relationship (e.g., linearity or log linearity) 

between the outcome and the covariates (Dehejia and Wahba, 1999; Rubin, 1997). 

Furthermore, propensity score methods can be objective in the sense that propensity score 

modeling and sub-classification can be completed without ever looking at the outcomes. 

The propensity score is often used for matching (e.g., Heckman et al., 1996), 

stratification (e.g., Rosenbaum and Rubin, 1984), regression (e.g., D’Agostino, 1998), or 

weighting adjustment (e.g., D’Agostino, 1998).  In an empirical examination, Austin and 

Mamdani (2006) compared the estimated treatment effect using these different propensity 

score methodologies. In the following two sections, we briefly review matching and 

stratification methods on propensity scores.  
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2.4.1 Matching on the Propensity Score 

Propensity score matching methods have been widely used in the statistical 

literature but are relatively new to the settings of RCTs (Austin, 2008). This approach 

attempts to create pairs of treated and untreated subjects that closely resemble each other, 

with respect to the distributions of their observable characteristics related to the treatment 

exposure prior to the treatment. Then, the outcomes between two groups are compared to 

estimate the average treatment effect for the treatment. Most propensity score matching is 

based on 1-1 matching without replacement (Austin, 2008).  In 1-1 matching, pairs of 

treated and untreated subjects are formed with a similar propensity score.  In matching 

without replacement, an untreated subject who has been matched with a treated subject is 

no longer available for consideration as a potential match for other treated subjects.  

There are different types of matching algorithms for pair matching, including greedy 

matching (Austin, 2009), optimal matching (Rosenbaum, 1989), and 5→1 digit matching 

(Parsons, 2001).  With greedy matching, a treated subject is selected, and then a nearest 

untreated subject is selected for matching to this treated subject. The alternative to greedy 

matching is optimal matching (Rosenbaum, 1995).  With optimal matching, pairs of 

treated and untreated subjects are formed so as to minimize the total within-pair 

difference in the propensity score. For computation reasons, optimal matching can be 

difficult to implement in medium to large datasets (Austin, 2009).  Most methods for 

propensity score matching used in the medical literature are based on greedy nearest-

neighbour matching within fixed caliper widths, which attempt to match each treated 

subject to the nearest untreated subject within a specific caliper width.  A competing 

method of matching that is common in the medical literature is 5→1 digit matching 
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(Parsons, 2003).  Using this approach, treated subjects are first matched to untreated 

subjects on the first five digits of the propensity score. For those treated subjects that 

remain unmatched, matches with untreated subjects are then attempted by matching with 

remaining untreated subjects on the first four digits of the propensity score. This process 

proceeds until unmatched treated subjects are matched to untreated subjects on the first 

digit of the propensity score. Treated and untreated subjects that remain unmatched are 

then discarded. Austin (2008) conducted a systematic review of propensity score 

matching that was employed in the medical literature and found eight different methods 

that accounted for the methods that were used in 83 percent of the studies.  Austin (2009) 

then compared the performances of different methods of propensity score matching 

through simulation and found that eight different matching methods resulted in a similar 

number of matched pairs and that qualitatively similar balance in measured baseline 

variables between treated and untreated subjects was observed in the different sample.  

Austin (2009) also provided recommendation on how to choose caliper width under 

different scenarios.   

 

2.4.2 Stratification on the Propensity Score 

The idea of stratification is to partition propensity scores into a set of intervals 

(strata). This method is also known as interval matching, blocking, and sub-classification 

(Rosenbaum and Rubin, 1983). Imbens (2000) suggests that under normality, the use of 

five strata for propensity score removes most of the bias associated with all covariates, 

since all bias under unconfoundedness is associated with the propensity score. 
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2.5 Discussion 

We by no means provide a comprehensive review of the vast literature on the 

causal inference. For example, we have not reviewed the extensive literature on structure 

equation modeling (e.g., Duncan, 1974; Sobel, 1990), and modeling through causal 

diagrams (e.g., Greenland, Pearl, and Robins, 1999), although these subjects are closely 

related (Pearl, 2000).  For deep and intensive review on these two fields, Greenland 

(2000b) recommends Sobel’s (1995) discussion of the connections among causal 

concepts in philosophy, statistics, and social sciences, and Pearl’s (2000) unified 

approach to counterfactual, graphical and structural equations models.  

Although the RCM framework has been resisted by some authors (e.g., Dawid, 

2000), we believe it derives the cause and effect in simple terms, and provides conceptual 

clarity and a set of tools for estimating causal effects from RCTs in the presence of non-

compliance. Many methods have been developed for addressing the issue in recent years, 

starting with work by Robins and Greenland (1994), Angrist, Imbens and Rubin (1996), 

Imbens and Rubin (1997a; 1997b), and Frangakis and Rubin (2002). However, the focus 

of these contributions has been limited to situations where subjects in the treatment group 

can either take or not take the treatment, and subjects in the control group have no access 

to the experimental treatment. The objective of this thesis is to develop new methodology 

to address more complex non-compliance issues in RCT settings.  
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Chapter 3 BREASTFEEDING AND INFANT GROWTH: THE 

PROBIT STUDY 

 The Promotion of Breastfeeding Intervention Trial (PROBIT) is a cluster-

randomized trial conducted in the Republic of Belarus (Kramer et al., 2001). A cluster-

randomized trial is one in which clusters of individuals, rather than individuals 

themselves, are randomized to different experimental groups (Donner and Klar, 2000). 

Cluster randomization is preferred over individual randomization in this case because of 

the nature of the intervention.  This trial originally randomized 34 maternity hospitals and 

one each of their affiliated polyclinics (i.e., the outpatient clinics in which children are 

followed for routine health care) either to receive a breastfeeding promotion intervention 

(experimental group) or to continue the maternity hospital and polyclinic practices 

(control group). One of 34 study sites was removed from the trial because of documented 

falsification of outcome data in the first wave of the study, and two sites were unwilling 

to participate after they learned of their allocation (one experimental and one control). 

This left a sample size of 17,046 randomized mother-infant pairs. The experimental 

intervention was modeled on the WHO/UNICEF Baby-Friendly Hospital Initiative 

(BFHI), which comprises ten steps that maternity hospitals must implement to become 

certified as “baby-friendly.”  The control intervention consisted of the continued current 

maternity hospital and polyclinic practices that existed at the time of randomization, 

which were characterized by delayed onset of breastfeeding, routine separation of mother 

and infant, scheduled feeding, frequent supplementation with formula and other liquids, 

and early introduction of solid foods (Kramer et al., 2001).  
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 Healthy breastfed newborn infants weighing at least 2,500 grams at birth were 

enrolled during their postpartum hospital stay. Follow-up data on infant feeding, 

infections, and growth were collected at polyclinic visits at 1, 2, 3, 6, 9, and 12 months. A 

total of 17,046 infants were recruited from the 31 randomized sites, with only 555 (3.3 

%) lost to follow-up prior to 12 months.  Study sites were stratified by region (West 

[Brest and Grodno regions] versus East [all other regions]) and urban versus rural 

location, because women in the West and in rural areas have traditionally breastfed for 

longer duration and more exclusively than those in the East and those in urban regions. 

However, no attempts were made to standardize the measurements on weight, length, and 

head circumference across the study sites.   

 As reported in the main initial report of the trial (Kramer et al., 2001), the 

experimental intervention was successful in prolonging the duration of any breastfeeding. 

Infants were classified as exclusively breastfed at 3 months if the cross-sectional feeding 

information obtained at 1, 2, and 3 months indicated that no liquid or solid foods other 

than breast milk were being administered to the infant. An infant was considered to be 

exclusively breastfed at 6 months if, in addition to the above criteria, he/she was not 

receiving any other liquid or solid foods at the 6-month visit. The proportions of women 

still breastfeeding (to any degree) in the experimental group versus control group were 70 

% versus 60 % at 3 months and 48 % versus 36 % at 6 months. The intervention was 

particularly effective in increasing the degree of breastfeeding as well.  The proportion of 

women who were exclusively breastfeeding was seven-fold higher in the experimental 

group at 3 months (44.7 % versus 6.4 %) and even higher at 6 months (6.7 % versus 0.7 

%).  
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 Four papers based on PROBIT were published during 2002-2004 (Kramer, Guo, 

Platt et al., 2002, 2003, 2004a, and 2004b), in which I conducted all of the statistical 

analyses and am the second author. Among those four papers, three focused on 

breastfeeding and infant growth. These three papers motivated this research project and 

the dissertation, and are summarized in the following three subsections of this chapter.  

 

3.1 Breastfeeding and Infant Growth: Biology or Bias? 

3.1.1 Introduction 

 Available evidence suggested that prolonged and exclusive breastfeeding is 

associated with lower infant weight and length by 6 to12 months of age (see, for 

example, Dewey et al., 1992).  That evidence was based on small observational studies 

with considerable potential for bias, including confounding, reverse causality and 

selection bias.  With respect to confounding, breastfeeding mothers in developed 

countries differ considerably from formula-feeding mothers.  In particular, they tend to be 

of higher socioeconomic status and are probably more “nutrition-conscious.”  As a result, 

they may be less likely to over-feed their infants independently of the choice of feeding 

mode.  Reverse causality can create a bias in the opposite direction: slow-growing infants 

who are “falling off” their growth curve trajectories may be deliberately supplemented or 

weaned in an effort to reverse those trends. Selection bias is another concern.  

Breastfeeding is a “one-way street;” once breast-fed infants are weaned, they seldom if 

ever return to breastfeeding. Fast-growing infants may outstrip their mothers’ milk 

supply; their hunger may then lead to crying and poor sleeping, which may subsequently 

lead to supplementation.  Once supplementation begins, it is difficult to discontinued and 
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the mother cannot return to exclusive breastfeeding for some infants, leading to reduced 

suckling, a reduced milk supply, and the hastening of weaning.  Thus, infants who 

continue breastfeeding may be a select subgroup whose modest growth does not tax their 

mothers’ milk supply.   

3.1.2 Methods 

 The statistical analysis of PROBIT used an ITT approach with adjustment for 

both cluster-level and individual-level covariates. To assess the potential for bias in 

observational studies of breastfeeding, analyses were also carried out as if an 

observational study had been conducted. Infants who were weaned in the first month (n = 

1378) were used to approximate a formula-fed cohort and compared with those breastfed 

(to some degree) for the full 12 months of follow-up with either at least 3 months 

(n=1271) or at least 6 months (n=251) of exclusive breastfeeding. At the time of the trial, 

this roughly corresponded to the feeding recommendation of WHO and UNICEF 

respectively. 

3.1.3 Results for Weight and Length 

 The intervention resulted in higher infant weight and length gain in the first 3 

months but no discernible differences by 12 months of age. The observational analyses 

suggested that prolonged and exclusive breastfeeding led to slower weight and length 

gains between 3 and 12 months. The weight in the experimental group was significantly 

higher than that of the control group at 1 month (61 g), and the difference increased 

through 3 months (88 g at 2 months and 106 g at 3 months), declined somewhat 

thereafter (89 g at 6 months and 58 g at 9 months, and then disappeared by 12 months (-7 

g at 12 months). Length followed a similar pattern (0.16, 0.32, 0.50, 0.46, 0.31 and 0.18 
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cm at 1, 2, 3, 6, 9, 12 months, respectively). In the observational analyses, infants weaned 

in the first month were slightly lighter and shorter at birth and their weight and length 

declined by 1 month, but they caught up to both the experimental and other observational 

groups by 6 months, and were heavier and longer by 12 months.  Among infants in the 

two prolonged and exclusive breastfeeding groups, weight fell slightly between 3 and 12 

months; length fell below the reference by 6 months with catch-up to the reference by 12 

months.  

3.1.4 Conclusions 

 The ITT results suggest that prolonged and exclusive breastfeeding may actually 

accelerate weight and length gain in the first few months, with no deficit detectable by 12 

months of age.  The early difference between the two groups may reflect the seven-fold 

higher proportion of experimental versus control infants who were exclusively breastfed 

at 3 months and the acceleration in growth from birth to 3 months among exclusively 

breastfed infants. The observational data showing faster weight and length gains with 

early weaning and slower gains with prolonged and exclusive breastfeeding may reflect 

selection bias, unmeasured confounding differences or a true biological effect of formula 

feeding. 

 

3.2 Three versus Six Months of Exclusive Breastfeeding: Does It Matter? 

3.2.1 Introduction 

 Although the health benefits of breastfeeding are widely acknowledged, opinions 

and recommendations have been strongly divided on the optimal duration of exclusive 

breastfeeding. Until recently, the WHO recommended exclusive breastfeeding for 4 to 6 
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months with the introduction of complementary foods thereafter, whereas UNICEF 

recommended exclusive breastfeeding for about 6 months. Few published studies, 

however, have directly compared the infant and maternal health consequences of these 

two feeding policies. 

3.2.2 Methods 

 Of the entire randomized cohort, 2,862 infants exclusively breastfed for 3 months 

with continued mixed breastfeeding through at least 6 months were compared with 621 

infants who were exclusively breastfed for 6 months.  These two sub-cohorts comprised 

the subjects studied in this observational analysis and are referred to as the 3-month and 

6-month groups, respectively.  

3.2.3 Results for Weight and Length 

 Monthly weight gain from 3 to 6 months was slightly greater in the 3-month 

exclusively breastfed group [difference = 29 g per month (95 % confidence interval = 13 

to 45 g per month)], as was length gain during the same period [difference = 1.1 mm per 

month (95 % confidence interval = 0.5 to 1.6 mm per month)].  No significant differences 

were observed in weight or length gain from 6 to 9 months, but the 6-month group had a 

faster length gain from 9 to 12 months [difference = −0.9 mm per month (95 % 

confidence interval = −1.5 to −0.3 mm per month)].  

3.2.4 Conclusions 

 Complementary feeding between 3 and 6 months led to increases in both weight 

gain and length gain during that period, suggesting a “dilution” of the earlier effect by the 

end of the first year and/or compensatory “catch-up” or “catch-down” growth.   
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3.3 Feeding Effects on Growth during Infancy 

3.3.1 Introduction 

 Previous studies have consistently reported higher weight and length gains in 

infants fed formula and/or other milks compared with infants following WHO/UNICEF 

recommendations for prolonged and exclusive breastfeeding.  Despite the general 

consistency of the studies, many questions remain unanswered concerning the effects of 

specific aspects of infant feeding on growth during infancy and beyond.  Considerable 

recent interest has also been generated by the suggestion of growth effects attributable to 

differences in protein content between breast milk and most infant formulas, and the even 

higher protein concentrations of whole cow’s milk and other milks.  

3.3.2 Methods 

 We conducted an observational cohort study nested within PROBIT.  Infant 

growth was compared during the intervals 1 to 3, 3 to 6, 6 to 9, and 9 to 12 months, using 

hierarchical multivariate regression to control for size at the beginning of each interval, 

maternal education, geographic region, and urban versus rural location. 

3.3.3 Results 

 Mixed breastfeeding and formula/other milk (versus breast milk only) were 

associated with significantly higher length gain from 1 to 3 months. In the 3- to 6-month 

interval, mixed breastfeeding and formula/other led to significantly higher weight and 

length, whereas cereal intake was associated with large and highly significant reductions 

in both measures. Mixed breastfeeding and formula/other milk continued to have positive 

albeit smaller associations with weight and length gains in the 6- to 9-month and 9- to 12-

month intervals.     
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3.3.4 Conclusions 

 The results confirm the growth-accelerating effects of formula and other milks 

(versus breast milk) on weight and length gain throughout infancy, with a dose-response 

gradient and largest association observed at 3 to 6 months. However, this analysis 

remains an observational (cohort) analysis and therefore does not benefit from the 

randomized trial design.  

 

3.4 Discussion 

 Previous observational studies of breastfed versus formula-fed infants have 

reported reduced weight gain and length gain in infants who receive exclusive and 

prolonged breastfeeding (see, for example, Dewey et al., 1992; Nielsen et al., 1998).  

Those studies have been limited by several important methodologic problems common in 

observational studies of infant feeding and growth, including inadequate control for 

socioeconomic status, regression to the mean (smaller infants tend to “catch up,” whereas 

larger infants tend to “catch down”), and reverse causality (the feeding given is 

dependent on growth up to the time of the feeding decision, so that feeding can be a 

consequence of growth, as well as growth being a consequence of feeding).  

 In contrast, ITT results of breastfeeding on infant growth, as shown in Section 

3.1, offered no support to the prevailing premise that prolonged and exclusive 

breastfeeding inexorably leads to deficits in weight and length during the first year of life.  

Instead, the results show that infants in the experimental group grew more rapidly for the 

first 3 months in both weight and length than did those in the control group, but that the 

differences disappeared by 12 months of age.  However, the observational results in 
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infants weaned within the first month suggest that these infants were selected by virtue of 

their falling growth trajectories; these infants grew faster in weight and length even 

beyond the time of “catch-up,” suggesting either intentional over-feeding by their 

mothers to promote maximal growth or a true biological effect of formula feeding (with 

supplementation by solids) in accelerating growth trajectories in the first 12 months of 

life. Similarly, those infants with prolonged and exclusive breastfeeding showed growth 

patterns similar to those reported in previous observational studies with a rise through 3 

months and a fall thereafter.  Again, these data cannot distinguish whether the observed 

growth trajectories represent a true biological effect of prolonged breastfeeding or reflect 

a selection bias as confounding differences in preference for thinner infants among 

mothers who practice exclusive and prolonged breastfeeding. 

 ITT attempts to overcome the methodologic problems discussed above. However, 

ITT could not compare breastfeeding versus not breastfeeding, nor more prolonged and 

exclusive breastfeeding versus shorter and less exclusive breastfeeding. Rather, it 

assessed the effect of an intervention to promote longer and more exclusive 

breastfeeding. The experimental intervention increased infants average breastfeeding 

duration and degree. More prolonged and exclusive breastfeeding must have resulted in a 

larger effect than the average effect observed for the entire experimental group when 

analyzed by ITT. Therefore, more in-depth analyses are needed to estimate the efficacy 

of treatment itself, rather than the effectiveness of the treatment assignment based on 

ITT. 
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Chapter 4 CAUSAL EFFECTS IN RCTS WITH ALL-OR-NONE 

COMPLIANCE  

4.1. Introduction 

 Since it was introduced by Rosenbaum and Rubin in 1983, the propensity score 

technique has been used in many fields to adjust for nonrandom treatment assignment 

and to make causal inferences.  However, it has not been popularly used in randomized 

controlled trials (RCTs) for an obvious reason -- randomization has achieved what 

propensity scores intend to achieve: specifically, to balance observed and unobserved 

covariates and thus to reduce confounding bias.  In RCTs with imperfect compliance, 

however, treatment received is not necessarily the same as treatment assigned; therefore, 

treatment receipt can no longer be considered as independent of covariates, and 

estimation of the causal effect of treatment receipt on outcome is subject to bias. In a 

recently published paper (Rubin, 2007a), Rubin advocated the position that observational 

studies can and should be designed to approximate randomized experiments as closely as 

possible. He also promoted the use of propensity score methods to objectively create the 

subgroups of similar treated and untreated units, which are balanced with respect to 

covariates.  

 In this chapter, we examine an extension to the propensity score method in an 

RCT setting in the presence of all-or-none treatment compliance. We attempt to 

reconstruct a situation where treatment received is free of confounding bias even though 

it is not randomly assigned. In a way, this is similar to the role that propensity scores 

have played in observational studies and enable us to model the relationship between 
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observed exposure and observed covariates in order to solve complex problems of non-

compliance. 

 Following the paper by Rosenbaum and Rubin (1983) and most of the literature 

on propensity scores, we make an assumption of unconfoundedness. Then, we define 

propensity scores under both possible treatment assignments (i.e., treatment and control) 

and call them the dual propensity score (DPS).  We demonstrate that the DPS has many 

of the attractive properties of the propensity score in that, under unconfoundedness, 

adjusting for these two-dimensional scalar functions of the covariates removes all biases 

associated with differences in the measured or observed covariates.  We estimate the 

complier average causal effect (CACE) by adjusting for the estimated dual propensity 

scores using two standard approaches: stratification and regression.  We also show results 

from a naive approach: we classify subjects in both treatment and control arms as 

compliers based on their observed exposure under actual assignment and their estimated 

counterfactual propensity scores under alternative assignment. Then, we estimate the 

CACE based on the subset of newly identified compliers.  Finally, we apply this 

methodology to PROBIT (see Chapter 3) and assess the causal effect of prolonged and 

exclusive breastfeeding on infant growth. 

 

4.2. The Basic Framework 

4.2.1 Notation and Assumptions 

 Consider a randomized controlled trial with two arms -- experimental (E) and 

control (C).   Following the notation of classical causal inference and potential outcomes 

(for example, Holland, 1986), for each subject i, i = 1, …., n, let Zi (zi = 0,1) be an 
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indicator of treatment assignment, which is random; let Si(z) be an indicator of treatment 

received for z = 0,1; and let Yi(Zi, Si(z)) be the outcome, which we assume to be 

continuous for simplicity.  Further, we assume that compliance to treatment assignment is 

either all or none so that Si(z) can only be 1 or 0, with 1 denoting treatment receipt and 0 

no treatment receipt.  

 For each subject i, i = 1, …., n, we observe: the treatment assignment Zi (1 for 

assigned to E and 0 to C), the actual treatment received Si
* (1 if experimental treatment 

received and 0 otherwise),  the observed outcome Yi
* and a p-dimensional vector of 

pretreatment covariates Xi.  Xi includes baseline covariates and demographic 

characteristics, and the elements of Xi are assumed to have been measured prior to receipt 

of treatment. 

 It is important to distinguish between observed versus potential outcomes.  

Potential outcomes are all the outcomes that would be observed if each of the treatments 

could be applied to each of the units.  Then, a comparison of the potential outcomes of 

the same group of units under the two treatment conditions can be interpreted as a causal 

comparison. Let Si(z) and Yi(Zi, Si(z)) denote potential outcomes, which are hypothetical 

and cannot be observed at the same time (counterfactual) for both z = 1 and z = 0.  For 

instance, if Si(1) is observed then Si(0) becomes counterfactual, and if Si(1) is observed 

then Si(0) becomes counterfactual.  We use the ‘star’ superscript (e.g., Si
*) to denote 

observed, and we use the ‘pound’ superscript (e.g., Si
#) to denote not observed.  These 

can be formally be defined as Si
* = Si(z) and Si

# = Si(1 - z) for z = 0 and 1.  And Si
* = 

Si(1) if z  = 1, which is a form of the consistency assumption due to Rubin.  
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 We assume that groups E and C are exchangeable owing to randomization. We 

further assume that the population consists of different subpopulations that determine 

their receipt of treatment under both E and C assignments. Each subject’s membership to 

the subpopulation is an inherent characteristic and determines his/her exposure to 

experimental treatment under both assignments. Although only one assignment and 

corresponding exposure can be observed and subpopulations cannot be identified, we 

assume that all covariates related to exposures are observed and the probability of 

exposure to treatment under alternative assignment can therefore be predicted. These 

assumptions are analogous to and consistent with the theory of principal stratification laid 

out by Frangakis and Rubin (2002). 

4.2.2 Complier Average Causal Effect 

 We start from the assumption of ‘no interference between units’ - the Stable Unit 

Treatment Value Assumption (SUTVA) of Angrist, Imbens, and Rubin (1996). The idea 

is that the causal effect of treatment for a particular individual does not depend on 

assignment of treatment to other individuals. Under SUTVA, we can define the causal 

effect as the difference between two potential outcomes: 

 

DEFINITION 1: CAUSAL EFFECTS OF Z ON S AND Z ON Y.  The causal effect for 

individual i of Z on S is Si(1) – Si(0) and the causal effect of Z on Y is Yi(1, Si(1)) - Yi(0, 

Si(0)).   
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 Assuming further that the exclusion restriction holds, that is, Yi(1, s) =Yi(0, s) = 

Yi(s) for s = 0, 1 (Angrist, Imbens, and Rubin, 1996), we define the causal effect of 

treatment receipt S on outcome Y (efficacy) as follows: 

 

DEFINITION 2: CAUSAL EFFECT OF S ON Y.  The causal effect of S on Y for 

individual i is Yi(1) – Yi(0).   

 

 With assumptions of SUTVA and exclusion restriction, Angrist, Imbens, and 

Rubin (1996) defined the average causal effect of treatment assignment (effectiveness) as   

   ΔITT = E[Yi(1, Si(1)) - Yi(0, Si(0))].    [4.2.1] 

where ITT denotes intention-to-treat. 

 

 Further, Angrist, Imbens, and Rubin (1996) defined the complier average causal 

effect (CACE) as the average causal effect of S on Y for a group of subjects called 

compliers and showed that  

   ΔITT = E[(Yi(1,1) – Yi(0,0)) · (Si(1) – Si(0))]  

          = ΔCACE · Pr[Si(1) – Si(0) = 1]    [4.2.2] 

where   ΔCACE = E[(Yi(1,1) – Yi(0,0)) | Si(1) – Si(0) = 1]   [4.2.3] 

 

DEFINITION 3: COMPLIER. A subject is a complier if and only if Si(z) = z for z = 0, 1, 

or the exposure vector Si = [Si(1), Si(0)] = [1,0]. 
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 A subject is a complier if and only if he/she takes the treatment he/she was 

assigned to take and he/she would have complied with the assignment had he/she been 

assigned to the other group. In other words, compliers are subjects who are induced to 

take the treatment because they are assigned to that treatment.  Randomization of 

assigned treatment therefore is equivalent to randomization of treatment received. 

Consequently, CACE is an unbiased estimate of the average treatment effect among 

compliers and has a causal interpretation.  

 

DEFINITION 4: CACE. The compliers average causal effect is E[(Yi(1,1) – Yi(0,0)) | Si = 

[1,0]].  

 In an RCT with perfect compliance, Si(z) = z holds for each and every subject, 

and Pr[Si(1) – Si(0) = 1] = 1.  Therefore, ΔCACE = 
]1)0()1(Pr[ =−

Δ

ii

ITT

SS
 = ΔITT.  In an RCT 

with all-or-none compliance, the following table (Table 4-1) defines four subpopulations, 

or four types of compliance strata: never-taker (n), always-taker (a), defier (d) and 

complier (c). 

 

Table 4-1 Compliance Stratification 

Compliance stratum For z = 0,1, if Si =[Si(1),Si(0)] 

Never-takers (n) Si(z) = 0 [0,0] 

Always-takers (a) Si(z) = 1 [1,1] 

Defiers (d) Si(z) = 1- z [0,1] 

Compliers (c) Si(z) = z [1,0] 
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 Never-takers do not receive the treatment even if they are assigned to it; always-

takers receive the treatment regardless of their assignment; defiers always do the opposite 

of their assignment; and compliers are fully co-operative, i.e., they do what they are 

assigned to do. As did Angrist, Imbens, and Rubin (1996), we assume there are no 

defiers. Since Si(1) and Si(0) can never be jointly observed for the same subject at the 

same time, we cannot directly observe a subject’s compliance type.  Therefore, at least 

some compliers are unidentifiable without assumptions.   

 As shown in the Table 4-2, for each combination of observed zi and Si, there can 

be as many as two different potential compliance strata, even assuming there are no 

defiers (Si = [0,1]).  

 

Table 4-2 Compliance Strata by Observed Exposure 

Compliance stratum zi S*
i S#

i [S*, S#] 

c or n 0 0 0 or 1 [0,?] 

a 0 1 1 [1,1] 

n 1 0 0 [0,1] 

c or a 1 1 1 or 0 [1,?] 

 

 However, we notice in the table that always-takers (a) under z = 0 and never-

takers (n) under z = 1 are both identifiable. If we can build two predictive models Pr[S*
i = 

1|X, z = 1] and Pr[S*
i = 0|X, z = 0] in which these two subpopulations are identified 

through the models under observed assignment, we can then resolve the rest of the 

identification problem by classifying a under z = 1 and n under z = 0 using the predicted 

values from Pr[S#
i = 1|X, z = 1] and Pr[S#

i = 0|X, z = 0]. Notice that these two models 

Pr[S*
i = 1|X, z = 1] and Pr[S*

i = 0|X, z = 0] are exactly the same as those used in 
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propensity score methodology. Thus, we use propensity scores to estimate the causal 

effect in RCTs with all-or-none treatment compliance. 

4.2.3 Dual Propensity and Counterfactual Propensity Scores 

 The propensity score is the conditional probability of exposure to treatment, rather 

than control, given the observed covariates (Rosenbaum and Rubin, 1983).  The 

propensity score was originally proposed as a method for producing balance of many 

covariates between two groups (Rosenbaum and Rubin, 1983, 1984) .  This method can 

potentially balance a very large number of covariates by estimating the probability 

(propensity) of assignment given those covariates. The basic idea of the propensity score 

method is to replace the collection of covariates with one function of these covariates. As 

a scalar summary of multidimensional covariates, the propensity score is often used for 

matching, stratification, or weighting adjustments. 

In this section, we define separate propensity scores for each individual i under 

two different treatment assignments. At this stage, we assume that individual i is 

potentially assigned to both groups at the same time, and that the two propensity scores 

are known.  To simplify the notation, we will drop i where it is obvious. 

 We start from a strong assumption that outcome and treatment receipt are 

independent given the observed covariates and treatment assignment. 

 

DEFINITION 5: WEAK UNCONFOUNDEDNESS. For all z, treatment receipt S(z) is 

weakly unconfounded given covariates X and treatment assignment z if   

  Y(Z, S(z)) ⊥ S(z) | X  for z ∈ {0, 1}     [4.2.4] 

where ⊥ denotes statistical independence. 
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 In other words, the covariates X strongly predict who will receive treatment under 

z = 1 and who will not receive the treatment under z = 0.  The definition of weak 

unconfoundedness follows from the definition in Imbens (2000) and is similar to the 

assumption of ‘no unmeasured confounders’ made by Robins (1994). Note that the same 

set of covariates X has been used to predict the probability of exposure under both 

treatment assignments. 

 

DEFINITION 6: DUAL PROPENSITY SCORES.  Let rz(X) be the conditional 

probability of receiving the assigned treatment given the covariates X and treatment 

assignment Z: 

  rz(X) = Pr[S(z) = z | X]  for z ∈ {0, 1}    [4.2.5] 

The dual propensity scores (DPS) R are pair of scores [r1(X), r0(X)] where 

 r1(X) = Pr[S(1) = 1 | X, Z = 1] and  r0(X) = Pr[S(0) = 0 | X, Z = 0]  [4.2.6] 

  

 This definition is also in line with the definition of the generalized propensity 

score of Hirano and Imbens (2004) and Imbens (2000). Recall that S(1) and S(0) cannot 

both be observed at once in the same individual.  We observe exposure under the actual 

assignment, S* = S(z).  We do not observe exposure under the alternative assignment, S# 

= S(1 - z).  Consequently, only one of the dual propensity scores is observable 

(observable in the sense that all covariates that generate the propensity score are 

observable).  We call the observed one the ‘actual’ propensity score, and the 

unobservable one the ‘counterfactual’ propensity score. 
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DEFINITION 7: ACTUAL AND COUNTERFACTUAL PROPENSITY SCORE. The 

actual propensity score is r* = r1(X)Z + r0(X)(1-Z), and the counterfactual propensity 

score is r# = r1(X)(1-Z) + r0(X)Z. 

  

 The actual propensity score is the propensity score under actual treatment 

assignment and is observable, while the counterfactual propensity score is the propensity 

score under the alternative treatment assignment and is unobservable.  The dual 

propensity scores can be written as the pair (r*, r#) and will be denoted as a two-

dimensional vector r. 

 Next, we show that if treatments received with two assignments are weakly 

unconfounded given observed covariates, then they are weakly unconfounded given the 

dual propensity scores. The proof follows the method for the generalized propensity score 

of Hirano and Imbens (2004) and Imbens (2000). 

  

THEOREM 1: WEAK UNCONFOUNDEDNESS GIVEN DUAL PROPENSITY 

SCORES. Suppose that treatment receipt is weakly unconfounded given covariates X, 

then Y(Z, S(z)) ⊥ S(z) | rz(X)  for z ∈ {0, 1} 

Proof:  We need to show that Pr[S(z) = z | Y(Z, S(z)), rz(X)] = Pr[S(z) = z | rz(X)] 

From Definition 6 [4.2.5], we know  

 Pr[S(z) = z | X, rz(X)]  

 = Pr[S(z) = z | X]  

 = rz(X). 

Then,  Pr[S(z) = z | rz(X)]  
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 = Ex[Pr[S(z) = z | rz(X)] |X]] 

 = Ex[ rz(X)]  

 = rz(X). 

By the weak unconfoundedness assumption [4.2.4],  

 Pr[S(z) = z | Y(Z, S(z)), rz(X), X]  

 = Pr[S(z) = z | Y(Z, S(z)), X]  

 = Pr[S(z) = z | X]  

 = rz(X), 

so  Pr[S(z) = z | Y(Z, S(z)), rz(X)]  

 = Ex[Pr[S(z) = z | Y(Z, S(z)), rz(X), X]] 

 = Ex[rz(X)] 

 = rz(X). 

Hence, Pr[S(z) = z | Y(Z, S(z)), rz(X)] = Pr[S(z) = z | rz(X)]. 

 

 Theorem 1 shows that if the outcome and the receipt of treatment are independent 

given the observed covariates, then it is independent of outcomes given the individual’s 

DPS. Within strata with the same pair of values of (r1(X), r0(X)), the probability of being 

a complier (i.e., Si = [0,1]) is independent of potential outcomes given the observed 

covariates; i.e., the treated and untreated groups are balanced with respect to covariates.  

In other words, that treatment receipt is unconfounded given the DPS.  

 It is easy to show that treatment receipt under the alternative assignment is weakly 

unconfounded given the counterfactual propensity score (CPS).  For a subject actually 

assigned to the experimental treatment E (z = 1), his/her outcome Y given treatment 
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receipt S and actual propensity score is observed, so we show that the observed treatment 

receipt S* is independent of the outcome given the actual propensity score.  Because of 

randomization, we assume the same would have been true had the subjects assigned to 

the control treatment C (z = 0) been assigned to E (z = 1).  The reverse argument holds 

true for subjects actually assigned to C.  

 Formally, under z = 1,   

 Y(1, S(1)) ⊥ S(1) | r1(X) ⇒ Y*⊥ S* | r* and Y# ⊥ S# | r#  (due to randomization). 

 Under z = 0,   

 Y(0, S(0)) ⊥ S(0) | r0(X) ⇒ Y*⊥ S* | r* and Y# ⊥ S# | r#  (due to randomization). 

 

 In summary, (Y*, Y#) ⊥ (S*, S#) | (r*, r#); that is to say, observed and unobserved 

treatment receipt is independent of the outcome given the dual propensity scores. 

 In an observational study, treatment exposure is usually self-selected and thus S 

may not be independent of the potential outcome. Indeed, the same characteristics that 

lead an individual to be exposed to a treatment may also be associated with his/her 

potential outcome (confounding by indication).  The causal effect of Si on Yi cannot be 

estimated without bias unless we can assume no unmeasured confounders. In contrast, 

Rosenbaum and Rubin (1983) showed that X is independent of S given any value of the 

propensity score r(X), so individuals from either treatment group with the same 

propensity score are balanced in the sense that the distribution of X is the same regardless 

of treatment status.   

 As a one-dimensional summary of multidimensional covariates, the propensity 

score is often used for matching (e.g., Heckman et al., 1996), stratification (e.g., 
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Rosenbaum and Rubin, 1984), regression (e.g., D’Agostino, 1998), or weighting 

adjustment (e.g., D’Agostino, 1998).  We intend to use the two-dimensional DPS to 

estimate the CACE in the same way that the propensity score has been used in 

observational studies. By adjusting for the DPS, we can estimate the efficacy of treatment 

itself, rather than the conventional ‘effectiveness’ of the treatment assignment based on 

ITT. We focus primarily on stratification, where individuals are stratified based on 

estimated dual propensity scores and the difference is estimated as the average of within-

stratum effects; and on regression, where the DPS are used as regressors in the model. 

  

THEOREM 2: BIAS REMOVAL WITH DUAL PROPENSITY SCORES. Suppose that 

treatment receipt is weakly unconfounded given covariates X and treatment assignment z. 

Then, 

 (i) μ(z, s) = E[Y(Z, S(z))| Z = z, S(z) = s] = E[Y* | Z = z, S* = s ] and  

 (ii) ΔCACE = E[μ(1,1) - μ(0,0) | r] where r is the dual propensity score. 

Proof:  To prove (i), we show the case for z = 1, s = 1. The other cases follow. 

 Under z =1, we have S* = S(1) and Y* = Y(1, S(1)). Hence,  

 μ(1,1) = E[Y(1, S(1))| Z = 1, S(1) = 1] 

 = E[Y* | Z = 1, S* = 1] 

which proves part (i). 

 To prove part (ii), we start from the definition of the CACE [Definition 4],  

  ΔCACE = E[Y(1,1) - Y(0,0) | Si = [1,0]]  

            = E[Y(1,1) | Si = [1,0]] - E[Y(0,0) | Si = [1,0]], 

where  
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 E[Y(1,1) | Si = [1,0]]  

         = E[Y(1,1) | Z = 1, S(1) = 1, S(0) = 0] 

         = E[Y* | Z = 1, S* = 1, S# = 0] 

         = Er[E[Y* | Z = 1, S* = 1 ]|r]  (due to Theorem 1) 

         = Er[μ(1,1) | r]    (part (i)) 

Similarly, we show  

 E[Y(0,0) | Si = [1,0] 

         = E[Y(0,0) | Z = 0, S(1) = 1 and S(0) = 0]  

         = Er[μ(0,0) |r]. 

Hence,  

 ΔCACE = E[Y(1,1) - Y(0,0) | Si = [1,0]]  

           = Er[μ(1,1) | r] - Er[μ(0,0) | r] 

           = Er[μ(1,1) - μ(0,0) | r]. 

 

4.3. Models 

4.3.1 Estimating Dual Propensity Scores 

 Estimation of the DPS is straightforward using the Logit model, among other 

techniques.  Since propensity scores are usually unknown, they are typically estimated 

from the observed data (z, S*, X) by assuming that rz(X) follow parametric models, e.g., a 

logistic regression model.   

 Recall that the dual propensity scores R are [r1(X), r0(X)] with 

r1(X) = Pr[S(1) = 1 | X, z = 1] and  r0(X) = Pr[S(0) = 0 | X, z = 0]. 
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 Consider r1(X), and let 
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β , where βz = 1 is (p × 1) 

vector.  From the observed data (z = 1, S*, X), βz = 1 can be estimated by the maximum 
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 Then, the estimated propensity score is 
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which is the probability of receiving the experimental treatment if assigned to the 

experimental group among subjects who were actually assigned to that group. 

 Applying the same model to the subjects with z = 0, we can estimate the 

counterfactual propensity score as
)ˆexp(1

1)0,ˆ,(ˆ
1

1
#

=
= −+

==
z

T
i

zi X
zXr

β
β , which is the 

probability of receiving the experimental treatment if assigned to the experimental group 

among subjects who were assigned to the control group. 

 Similarly, let
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β , and βz = 0 can be estimated the 

same way as in [4.3.1], assuming the model is correctly specified: 
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 Then, we estimate the actual propensity score as 

)ˆexp(1
1)0,ˆ,(ˆ

0
0

*

=

=
−+

==
z

T
i

zi X
zXr

β
β , which is the probability of not receiving the 

experimental treatment if assigned to the control group among subjects who were actually 

assigned to the control group. 
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 Applying the same model to the subjects with z = 1, we estimate the 

counterfactual propensity score as
)ˆexp(1

1)1,ˆ,(ˆ
0

0
#

=

=
−+

==
z

T
i

zi X
ZXr

β
β , which is the 

probability of not receiving the experimental treatment if assigned to the control group 

among subjects who were actually assigned to the experimental group. We now have an 

estimate of dual propensity score ]ˆ,ˆ[ˆ #* rrr = . 

4.3.2 Estimating CACE Using a Naive ‘Plug-in’ Approach 

 Assume that models exist under both assignments z =1 and z = 0, respectively, 

where the actual propensity scores for subjects who comply with their assignment are all 

higher than the scores for subjects who fail to comply under both treatment assignments. 

In this case, compliers become identifiable. In other words, there are two ‘cut-off’ points 

for r* and r#, respectively, such that compliance is more likely to occur when r* ≥ r0
cut-off 

(or r1
cut-off) and at the same time r# ≥ r1

cut-off (or r0
cut-off), while  non-compliers (i.e., always 

takers and never takers) tend to have the opposite, i.e., r* < r0
cut-off (or r1

cut-off) and at the 

same time r# < r1
cut-off (or r0

cut-off)r#. 

 Formally, there exist functions that  

  rz
i∈{S* = z)  > rz

j∈{S* = 1 - z)  for z ∈ [0, 1] 

 Then, subject i is a complier if S* = z and r# > min (r1-z
i∈{S* = z)) for z = 0, 1. 

 We can show that  

 CACE = E[Y(1,1) – Y(0,0) | S(1) -S(0) = 1]  

 = E[Y(1,1) | S(1) - S(0) = 1] - E[Y(0,0) | S(1) - S(0) = 1]  

 = E[Y* | z = 1, S* = 1, S# = 0] - E[Y| z = 0, S* = 0, S# = 1] 

 = E[Y* | z = 1, S* = 1, I{r# > min(r0)}] - E[Y* | z = 0, S* = 0, I{r# > min(r1)}] 
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where I {} is the index function, and min(r0) and min(r1) are two cut-off points based on 

the predictive models.  

 In reality, a set of clear cut-offs may not exist. However, is it reasonable to 

believe that certain degrees of misclassification may still yield estimates of the CACE 

that are only mildly biased.   These questions are evaluated in a simulation to assess the 

robustness of CACE estimates with respect to the degrees of compliers misclassification 

in Chapter 6.  

 In order to identify compliers, we follow steps shown as below: 

1. Estimate βz = 1 as in (4.3.1) and βz = 0 as in (4.3.2). 

2. Calculate estimated dual propensity scores )ˆ,(ˆ 1
1

=ziXr β  and )ˆ,(ˆ 0
0

=ziXr β for all 

subjects. 

3. Sort all observations on )ˆ,(ˆ 1
1

=ziXr β for S* = 1. 

4. Define a cut-off point as min(r1). 

5. Identify subjects with predicted r# > min(r1) (assigned to z =0). 

6. Keep only subjects with S* = 0 and r# > min(r1) under z  = 0. 

7. Repeat steps 3-6 and keep only subjects with S* = 1 and r# > min(r0) under z  = 1. 

8. Compute the differences between the two treatment groups. 

 Formally, the estimate is  
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 Sensitivity analyses are conducted by using different cut-offs to evaluate how 

sensitive the estimate is to the choice of cut-off. 
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4.3.3 Estimating CACE Using DPS Stratification 

 Stratification classifies subjects into strata determined by observed background 

characteristics, or by a scalar score of all the observed background covariates (propensity 

score). One outstanding question is how many propensity-score strata should be used in 

empirical analysis. Cochrane (1968) has shown that five subclasses are often enough to 

remove 95 percent of the bias associated with a single covariate. Imbens (2000) suggests 

that under normality the use of five strata for propensity score removes most of the bias 

associated with all covariates, since all bias under unconfoundedness is associated with 

the propensity score. Following the same argument, we classify subjects into 25 (5x5) 

‘compliance’ strata (5 strata for each dual propensity score) based on DPS.  Recall that 

the DPS are the probability of receiving the experimental treatment in the experimental 

group and the probability of not receiving the experimental treatment in the control 

group. So the higher the scores, the higher the rank (from one to five) of the stratum, and 

the more likely the subject is a complier. Once the strata are defined, the treatment effect 

is evaluated by comparing subjects directly between the two treatment groups within each 

stratum. Then, the mean of the differences across strata is summarized using different 

weighting schemes, as shown below.  

 The technique used for determining strata is straightforward and consists of the 

following steps: 

1. Estimate βz = 1 as in (4.3.1) and βz = 0 as in (4.3.2). 

2. Calculate estimated dual propensity scores )ˆ,(ˆ 1
1

=ziXr β  and )ˆ,(ˆ 0
0

=ziXr β for all 

subjects. 

3. Sort all observations on )ˆ,(ˆ 1
1

=ziXr β . 
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4. Create m (e.g., 5) strata according to the sample quantiles of the 1r̂ , where the jth 

sample quantile mjq j ,...,1,ˆ1 = is such that the proportion of 11 ˆˆ jqr ≤ is roughly j/m 

with 0ˆ1
0 =q and 1ˆ1 =mq . 

5. Sort all observations on )ˆ,(ˆ 1
0

=ziXr β  . 

6. Create m (e.g., 5) strata according to the sample quantiles of the 0r̂ , where the kth 

sample quantile mkqk ,...,1,ˆ 0 =  is such that the proportion of  00 ˆˆ kqr ≤ is roughly 

k/m with 0ˆ 0
0 =q and 1ˆ 0 =mq . 

7. Create m × m (e.g., 25) relatively homogeneous strata mkj
q
q

k

j ,...,1,,
ˆ
ˆ

=⎥
⎦

⎤
⎢
⎣

⎡
. 

8. Calculate the difference of the sample means of E[Y*| z =1] and E[Y*| z =0] 

within each of the m × m strata. 

9. Compute a weighted average of the differences across strata, using three different 

weighting strategies; 1) equal weight, 2) the proportion of observations falling in 

its stratum, and 3) the compliance strata ranks. 

 Formally, the estimator is 
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4.3.4 Estimating CACE Using DPS Regression 

 Propensity scores can also be used in regression (covariate adjustment), in which 

the propensity score is included into the regression model as a regressor to adjust the final 

estimate of the treatment effect. D’Agostino (1998) argued that if one stratifies and then 

uses regression adjustment within the strata, then the estimated treatment effect is a more 

efficient estimator than one based on matching. Estimating procedures based on matching 

will be presented in the next chapter.  

  The approach consists of the following steps: 

1. Estimate βz = 1 as in (4.3.1) and βz = 0 as in (4.3.2). 

2. Calculate the estimated dual propensity scores )ˆ,(ˆ 1
1

=ziXr β  and )ˆ,(ˆ 0
0

=ziXr β for 

all subjects. 

3. Include the two propensity scores and their interaction term into the regression of 

response on treatment received. 

 In practice, the resulting estimate is often similar to the one for DPS stratification. 
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4.4. Application: PROBIT 

4.4.1 PROBIT 

 The Breastfeeding Promotion Intervention Trial (PROBIT) was conducted in the 

Republic of Belarus. Details of the study methods are outlined in Kramer et al. (2001), 

and related analyses (summarized in Chapter 3) have been reported in Kramer, Guo, Platt 

et al. (2002, 2003 and 2004) and elsewhere.  The experimental intervention of PROBIT 

was successful in prolonging the duration and exclusivity of breastfeeding (BF).  As 

shown in Kramer et al. (2001), however, a key feature of the trial is the substantial 

overlap in breastfeeding duration and exclusivity in the two randomized groups.  As 

expected, many women in the experimental group did not exclusively breastfeed for 3 

months or continue breastfeeding for 6 months, while some women in the control group 

did.  Hence, the standard ITT analysis substantially underestimates the differences in 

outcome due to prolonged, exclusive breastfeeding versus a shorter duration and/or lesser 

degree of breastfeeding.  

 We classified infants as exclusively breastfed at 3 months if the cross-sectional 

feeding information obtained at 1, 2, and 3 months indicated that no liquid or solid foods 

other than breast milk were being administered to the infant. The proportions of infants 

still breastfeeding (to any degree) in the experimental groups as compared to those in the 

control groups were 70 versus 60 % at 3 months and 48 versus 36 % at 6 months, 

respectively. The proportion of infants still breastfeeding exclusively in the experimental 

versus control groups were 43.7 % versus 6.4 % at 3 months, 6.7 % versus 0.7 % at 6 

months, respectively. Mothers’ breastfeeding behaviour can also be described as all or 

none: mothers who exclusively breastfed for the first 3 months and continued 
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breastfeeding for at least 6 months were considered as having had prolonged and 

exclusive breastfeeding, or fully compliant, and otherwise as non-compliant. There are a 

total of 3,072 (34.7 %) prolonged and exclusive breastfeeders in the experimental group 

versus 408 (5.0 %) in the control group. 

4.4.2 Methods 

 Two propensity scores are estimated: one under the experimental arm and one 

under the control arm, using logistic regression models. Covariates with a large impact on 

the exposure were selected, as well as the interactions between the selected covariates 

and the interactions between the selected covariates and other covariates (Austin, 2007). 

Covariates selected include region (West versus East and urban versus rural), maternal 

age (<20, 20-34, and >=35 years), maternal education (incomplete secondary, complete 

secondary, partial university, and complete university), prior history of having breastfed 

an infant for >=3 months (yes/no), caesarean delivery (yes/no), maternal smoking during 

pregnancy (yes/no), other children living in the household (0,1, >=2), gender (male 

versus female), gestational age (completed week), birth weight (g), birth length (cm) and 

birth head circumference (cm). Initially, all covariates were included in the models as 

main effects, then the interaction terms between variables showing significant effect (p-

value ≤ .05, confirmed by the stepwise model selection procedure) were included with 

the rest of variables as well.  

 Table 4-3 shows the frequency distribution, means and standard deviations of the 

estimated DPS by observed breastfeeding behaviour under actual treatment assignment. 

The last row shows the overall means and standard deviations of the estimated DPS and 

the predicted counterfactual DPS. These statistics are almost identical (i.e., 
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35.0)0(ˆ)1(ˆ 11 ==== zrzr , 40.0)0(ˆ 0 ==zr  and 41.0)1(ˆ 0 ==zr ), confirming our 

belief that the subjects in two groups are exchangeable in terms of DPS because of 

randomization. 

Table 4-3 Frequency of DPS and Summary Statistics 

r1 in Experimental Group 
(n = 8865) 

r0 in Control Group 
(n = 8181) 

Frequency 

S*= 0 
(5793) 2 

S*= 1 
(3072) 

S*= 0 
(7773) 

S*= 1 
(408) 

0.0 ≤ r̂ < 0.1 64 4 0 0 
0.1 ≤ r̂ < 0.2 596 114 0 0 
0.2 ≤ r̂ < 0.3 1830 644 0 0 
0.3 ≤ r̂ < 0.4 1976 1054 0 0 
0.4 ≤ r̂ < 0.5 907 733 0 0 
0.5 ≤ r̂ < 0.6 357 417 0 1 
0.6 ≤ r̂ < 0.7 53 92 3 0 
0.7 ≤ r̂ < 0.8 8 12 57 12 
0.8 ≤ r̂ < 0.9 0 1 936 132 
0.9 ≤ r̂ < 1.0 0 1 6777 263 
Mean r̂ (std)1 0.33 (.109) 0.38 (.114) 0.95 (0.046) 0.90 (.049) 

Overall Mean r̂ (std)1 0.35 (.114) 
r1(z = 0) : 0.36 (.114) 

0.95 (.0.047) 
r0(z = 1) : 0.95 (.0.047) 

 1 std = standard deviation 2 2 missing values of r1 

4.4.3 Results 

 Table 4-4 shows the baseline comparison of the ‘compliers’ identified using the 

naive plug-in approach (cut-offs: min(r1) = 0.25 and min(r0) = 0.92). The groups were 

relatively comparable. However, the differences between the two distributions of 

Hospital Region appear to be substantial (e.g., 50.8 % vs. 33.5 % in Eastern urban 

region). Similarly, there are meaningful differences in Maternal Education (e.g., 44.2 % 

vs. 54.3 % in advanced secondary or partial university) and, to a lesser extent, in 
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Breastfed History (26.0 % vs. 31.2 %).   Given those observed differences, we still 

consider the two groups to be comparable. 

Table 4-4 Baseline Characteristics for Compliers 

Variable Experimental 
N = 2151 

Control 
N = 5338 

Hospital region   
    East Belarus (urban) 1092 (50.8) 1786 (33.5) 
    East Belarus (rural) 360 (16.7) 1150 (21.5) 
    West Belarus (urban) 239 (11.1) 668 (12.5) 
    West Belarus (rural) 460 (21.4) 1734 (32.5) 
Maternal age (yr)   
     <20 293 (13.6) 639 (12.0) 
   20-34 1730 (80.4) 4472 (83.8) 
     ≥35 128 (6.0) 227 (4.3) 
Maternal education   
   Incomplete secondary 49 (2.3) 146 (2.7) 
   Complete secondary 819 (38.1) 1559 (29.2) 
   Advanced secondary or 
     Partial university 

951 (44.2) 2899 (54.3) 

   Complete university 332 (15.4) 734 (13.6) 
Breastfed history 560 (26.0) 1664 (31.2) 
Caesarean 286 (13.3) 523 (9.8) 
Maternal smoking during 
  pregnancy 

50 (2.3) 73 (1.4) 

Number of other children 
  in household 

  

     0 1273 (59.2) 3016 (56.5) 
     1 714 (33.2) 1839 (34.5) 
    ≥2 164 (7.6) 483 (9.0) 
Male sex 1114 (51.8) 2762 (51.7) 
Gestational age (wk) 39.5 39.3 
Birth weight (g) 3478 3431 
Birth length (cm)  52.4 52.1 
Birth head circumference 
(cm) 

35.2 34.9 
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 Tables 4-5 and 4-6 present the CACE estimates of prolonged and exclusive 

breastfeeding on infant weight and length gains, respectively using the cut-offs of min(r1) 

= 0.25 and min(r0) = 0.92) and the sensitivity analyses using three different sets of cut-

offs (min(r1) = 0.18, 0.20, 0.30; and min(r0) = 0.90, 0.91, 0.94, respectively) for dual 

propensity scores. The results show that the estimates are not very sensitive to the 

different cut-offs. One explanation is that, given only 5 % of subjects with S* =1 (‘non-

compliance’) under the control arm, the predictive model may not be very powerful to 

identify non-compliers. 

 

Table 4-5 Effect of BF on Weight Gain (g) through 12 Months -- Naive Plug-in 

Approach 

Sensitivity Analyses (SE)    

Time 

 

Main (SE) 

(0.25,0.92) 

Cut-off 

(0.18,0.90) 

Cut-off 

(0.20,0.91) 

Cut-off 

(0.30,0.94) 

1 m 126 (22.37) 111 (23.17) 111 (22.87) 130 (25.85) 

2 m 183 (22.39) 165 (23.18) 165 (22.88) 190 (25.86) 

3 m 186 (22.36) 164 (23.15) 166 (22.86) 198 (25.84) 

6 m 96 (22.38) 67 (23.17) 75 (22.88) 106 (25.86) 

9 m 1 (22.42) -14 (23.21) -12 (22.91) 7 (25.91) 

12 m -110 (22.40) -112 (23.18) -114 (22.89) -106 (25.87) 
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Table 4-6 Effect BF on Length Gain (cm) through 12 Months -- Naive Plug-in 

Approach 

Sensitivity Analyses (SE)  

Time 

 

Main (SE) 

(0.25,0.92) 

Cut-off 

(0.18,0.90) 

Cut-off 

(0.20,0.91) 

Cut-off 

(0.30,0.94) 

1 m 0.24 (0.151) 0.19 (0.137) 0.18 (0.141) 0.20 (0.149) 

2 m 0.36 (0.151) 0.29 (0.137) 0.27 (0.141) 0.29 (0.149) 

3 m 0.43 (0.151) 0.35 (0.137) 0.33 (0.141) 0.35 (0.149) 

6 m 0.21 (0.151) 0.11 (0.137) 0.11 (0.141) 0.16 (0.149) 

9 m -0.02 (0.151) -0.08 (0.137) -0.10 (0.141) -0.09 (0.150) 

12 m -0.21 (0.151) -0.24 (0.137) -0.27 (0.141) -0.31 (0.150) 

  

 Figure 4-1 shows the stratified effects and their 95 % confidence intervals for 

prolonged and exclusive breastfeeding on weight gain at 1 month using forest plots, 

which have been popularly used in meta-analysis. The DPS strata are listed as [q1, q0] and 

are partially sorted by compliance rank from top to the bottom; e.g., stratum [5, 5] 

comprises subjects with the highest DPS who are more likely to be compliers. The forest 

plots of the stratified effects on weight and length gains through 12 months can be found 

in Appendix 1. The plots are quite consistent and no strong patterns were observed.  
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Figure 4-1 Effect of Prolonged and Exclusive BF on Weight Gain (g) at 1 month 

 

 Tables 4-7 and 4-8 show the effects of prolonged and exclusive breastfeeding on 

weight and length gains through the first 12 months of life. The first column is the intent-

to-treat causal effect estimate of the experimental intervention, while the second column 

is the CACE based on the naive plug-in approach. The third column is the estimated 

causal effect of prolonged and exclusive breastfeeding adjusted with dual propensity 

scores as regressors in the models. The last three columns show the causal effects of 
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prolonged and exclusive breastfeeding stratified by dual propensity scores using three 

different weighting schemes. Since variance estimates for the effect of treatment received 

may be inaccurate (because the dual propensity scores are estimated from the same set of 

data), bootstrap standard errors are provided.  We used a nonparametric bootstrap (Efron 

and Tibshirani, 1998) in which we sampled subjects with replacement and used the 

bootstrap samples to recalculate the treatment effects adjusted for the dual propensity 

scores. 

Table 4-7 Effect of Prolonged and Exclusive BF on Weight Gain (g) through 12 

Months 

Stratification Δ (SE) Weight by Time ITT Naive 

Plug-in1 

Regression 

Δ (SE) Equal Weight Proportion Strata 

1 m 61 126 62 (5.8) 62 (7.2) 63 (7.2) 75 (8.8) 

2 m 88 183 89 (7.0) 89 (8.0) 89 (8.0) 98 (10.2) 

3 m 106 186 108 (8.8) 108 (9.8) 108 (9.8) 110 (12.3)

6 m 89 96 91 (12.1) 92 (13.0) 91 (12.7) 85 (16.4) 

9 m 58 1 60 (13.5) 63 (14.5) 62 (14.2) 56 (18.2) 

12 m -7 -110 -5 (15.1) 2 (15.8) 1 (15.5) 3 (20.3) 
1 cut-off min(r1) = 0.25 and min(r0) = 0.92 
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Table 4-8 Effect of Prolonged and Exclusive BF on Length Gain (cm) through 12 

Months 

Stratification Δ (SE) Weight by Time ITT Naive 

Plug-in1 

Regression

Δ (SE) Equal Weight Proportion Strata 

1 m 0.16 0.24 0.16 (0.02) 0.13 (0.03) 0.13 (0.03) 0.07 (0.04) 

2 m 0.32 0.36 0.31 (0.03) 0.28 (0.03) 0.27 (0.03) 0.18 (0.04) 

3 m 0.50 0.43 0.49 (0.03) 0.44 (0.04) 0.44 (0.04) 0.32 (0.05) 

6 m 0.46 0.21 0.45 (0.04) 0.40 (0.04) 0.40 (0.04) 0.29 (0.05) 

9 m 0.31 -0.02 0.30 (0.04) 0.26 (0.04) 0.25 (0.04) 0.17 (0.05) 

12 m 0.18 -0.21 0.17 (0.04) 0.14 (0.05) 0.13 (0.05) 0.08 (0.06) 
1 cut-off min(r1) = 0.25 and min(r0) = 0.92 

4.4.4 Discussion of PROBIT Results 

 As shown in Tables 4-7 and 4-8, the regression approach produced very similar 

results to those of the ITT analysis, while the naive plug-in approach yielded the most 

‘inflated’ results compared to the ITT analysis. Nevertheless, the direction of the effects 

was the same. Because the naive approach excluded observed ‘noncompliant’ subjects 

from the analysis plus the ‘predicted’ always-takers and never-takers, it is, in a way, close 

to a ‘per-protocol’ approach. The approaches based on regression and stratification with 

weighting by proportion also yielded similar results. Using different weighting schemes, 

especially the scheme with stratum ranking, we estimated CACE by overweighting the 

differences over the subset of ‘compliers’ and underweighting the differences for the rest 

of the strata. As will be shown later in simulations, the estimates from weighting methods 

will be considered less-reliable. The detailed discussion will be presented in Chapter 6 

Section 6.3. 
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 Several limitations of our analysis require discussion. One such limitation is our 

simplified classification of prolonged and exclusive breastfeeding as either all or none. 

The ‘none’ group in fact comprises a mixture of different breastfeeding behaviour, 

including mothers who stopped breastfeeding during the first month, mothers who 

breastfed for at least 6 months but with lesser exclusivity, and mothers who breastfed 

exclusively for at least 3 months but stopped breastfeeding by 6 months. Only 5 % of 

mothers in the control arm met the criteria of prolonged and exclusive breastfeeding, 

which led to low power in the predictive models. This issue will be addressed in the next 

chapter, where breastfeeding is classified as prolonged and exclusive, mixed, or none. 

Another limitation is the assumption of weak unconfoundedness, or ‘no unmeasured 

confounding.’ This is an untestable assumption, and it is not known whether all relevant 

covariates that could confound the effect of breastfeeding on infant growth were 

collected. In fact, it is likely that breastfeeding is a dynamic process and that baseline 

characteristics alone are not sufficient to fully capture compliance. Potential unobserved 

confounding (e.g., maternal depression) may result in biases in either direction. The 

measurement error for infant weight and length and for covariates may also have 

impacted on our analysis. Finally, measurements of weight and length were not 

standardized among the study sites.  However, measurement errors are likely to be 

nondifferential with respect to prolonged and exclusive breastfeeding and therefore 

should bias the results toward the null. 
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4.5. Discussion 

 Non-compliance and causal inference for efficacy in RCTs have received 

considerable recent attention from researchers. However, from Sommer and Zeger (1991) 

to Angrist, Imbens and Rubin (1996) to Yau and Little (2001), most have assumed that 

subjects in the control group have no access, and hence no exposure, to the experimental 

treatment.  The implications of this assumption are that 1) there are no always-takers and 

that subpopulations in the experimental group are observable (i.e., exposed = compliers, 

unexposed = never-takers), 2) the ‘complier’ indicator is missing in the control group, 

and 3) a single causal effect is defined for compliers and can be easily estimated as the 

ratio between the ITT estimate and the proportion of compliers in that population, i.e., as 

an instrumental variables estimate (Yau and Little, 2001). 

 Without denying the existence of always-takers, we addressed non-compliance 

utilizing propensity score methodology to correct the effect attenuation due to non-

compliance.  We developed a dual propensity scores approach, which can be used as a 

tool to identify compliance strata and subpopulations simultaneously, and to estimate the 

CACE using different weighting strategies without attempting to definitively and 

accurately identify the compliers.  However, we have to acknowledge that in most 

placebo-controlled trials of drugs or other new treatments, the subjects in the control 

group have no access to the experimental treatment. Moreover, in active-controlled trials 

of two different drugs, often neither group will have access to the ‘other’ drugs. That 

means there are no always-takers in many drugs trials, which apparently will limit the 
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range of potential applications of the proposed methods (See Chapter 7 for more 

discussion).  

Our approach was to obtain the potential treatment-free outcome through 

stratification, and to estimate CACE by weighting based on each subject’s likelihood of 

compliance (i.e., by stratum ranking). Weighting is key to producing a LATE-type 

estimate without explicitly identifying the principal compliance strata, and it is very close 

to the inverse-probability-of-treatment weighting (IPTW) used in observational studies.  

We can either weight the strata as shown in this chapter, or match using DPS as shown in 

the next chapter.  

 In summary, we believe the dual propensity scores approach is an innovative and 

useful tool to estimate the causal effect in RCTs with all-or-none compliance.   
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Chapter 5 CAUSAL EFFECTS IN RCTS IN THE PRESENCE OF 

PARTIAL COMPLIANCE  

5.1. Introduction 

There has been considerable growth in the statistics literature on methods for 

estimating causal effects from RCTs in which non-compliance occurs, however, the focus 

of these contributions has been limited to all-or-none compliance. Our research project 

extends the methodology of estimating causal effects to a situation in which non-

compliance is better classified as full-partial-none treatment compliance.  Compliance 

can be ‘partial’ in the sense that a fraction of an assigned treatment is taken. We make use 

of statistical techniques developed in the previous chapter to address the issue of 

nonrandom treatment receipt.  Specifically, we implement the dual propensity score 

(DPS) matching method to estimate the compliance stratification effects based on 

principal stratification. DPS matching, or matching by the predicted conditional 

probabilities of treatment exposure under both assignments, allows the identification of 

the compliance principal stratification so the principal effects become estimable.  

In an RCT setting with partial non-compliance, our approach attempts to obtain 

information on the counterfactual outcome for each compliant subject in the experimental 

group (or in the control group) has been by creating a comparison group from the control 

group based on their DPS and classifying them into predefined compliance principal 

stratifications.  A control subject with the closest estimated DPS is selected for each 

complier. We focus on one-to-one matching without replacement, using caliper matching 

and a variation of nearest-neighbour matching. In case of ties (i.e., more than one match), 

one control subject is chosen randomly from the set of possible matches. 
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This chapter is organized as follows. In Section 2, we introduce the theory of 

principal stratification and, based on this theory, we define compliance principal 

stratification and compliance stratification effects in an RCT setting with partial 

compliance. Furthermore, we show that compliance stratification effects are principal 

effects.  In Section 3, we focus on the statistical models to estimate the newly-defined 

compliance principal effects by introducing the DPS and its matching strategies. In 

Section 4, we focus on the implementation steps of DPS matching, using an ordinal 

logistic regression model, and provide details on estimating procedures. In Section 5, we 

apply the methodology to PROBIT and assess the causal effects of prolonged and 

exclusive breastfeeding on infant growth. Finally, Section 6 summarizes and concludes 

the chapter. 

 

5.2. Compliance Principal Stratification 

5.2.1 Principal Stratification 

 Consider a group of units i = 1, ..., n where each can be potentially assigned either 

an experimental treatment (z = 1) or a control treatment (z = 0). Let Si(z) be a post-

treatment variable measured in addition to outcome Y and let Si(z) = s for z = 0, 1. Let 

Yi(z, si(z)) be the outcome if unit i is assigned treatment z with post-treatment value of 

si(z).  Formally, principal stratification has been defined by Frangakis and Rubin (2002) 

as follows: 
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DEFINITION 1: BASIC PRINCIPAL STRATIFICATION. The basic principal 

stratification P0 with respect to post-treatment variable S is the partition of units i = 1, 2, 

…, n such that within any set of P0, all units have the same vector [Si(1), Si(0)]. 

 

DEFINITION 2: PRINCIPAL STRATIFICATION. A principal stratification P with 

respect to post-treatment variable S is a partition of the units whose sets are unions of 

sets in the basic principal stratification P0. 

 

DEFINITION 3: PRINCIPAL EFFECT. Let P be a principal stratification with respect 

to the post-treatment variable S and let Si
P indicate the stratum of P to which unit i 

belongs. Then a principal effect with respect to that principal stratification is defined as a 

comparison of potential outcomes under a control versus experimental condition within a 

principal stratum k in P, i.e., a comparison between the ordered sets {Yi (1,1) : Si
P = k } 

and {Yi (0,0) : Si
P = k }.  

  

 A principal effect has the following properties: 1) the stratum Si
P to which unit i 

belongs is unaffected by treatment for any principal stratification P; and 2) any principal 

effect, as defined in Definition 3, is a causal effect within the principal stratum. 



 

 81

5.2.2 Compliance Principal Stratification with All-or-None Compliance 

 Imbens and Rubin (1997b) describe the compliance behaviour by one of the four 

mutually exclusive compliance strata: compliers (c); never-takers (n); always-takers (a); 

and defiers (d).  In other words, a complier takes his/her assigned treatment no matter 

what that assignment is; an always-taker always takes the experimental treatment; a 

never-taker always takes the control treatment; and a defier always does the opposite of 

what he/she is told.  We assume there are no defiers (d), as did Angrist, Imbens and 

Rubin (1996). 

 

THEOREM 1: COMPLIANCE STRATIFICATION P IS A BASIC PRINCIPAL 

STRATIFICATION. 

Proof:  Let the treatment compliance indicator Si(z) be a  post-treatment variable where 

Si(z) = 0 or 1, and i = 1, 2, …, n, and z = 0, 1. The compliance stratification P is defined 

as: if [Si(1), Si(0)] = [0,0], then Pi = n; if [Si(1), Si(0)] = [1,1], then Pi = a; if [Si(1), Si(0)] 

= [1,0], then Pi = c; if [Si(1), Si(0)] = [0,1], then Pi = d.  Each subject i belongs to one and 

only one compliance stratm Pi = k for k ∈ {a, n, c, d}. Within each stratum k, all units 

have the same vector [Si(1), Si(0)]. Therefore, compliance stratification P is a basic 

principal stratification. 

 

THEOREM 2: CACE IS A PRINCIPAL EFFECT. 

Proof:  CACE is defined as the difference of two potential outcomes within the principal 

stratum Pi = c or the vector [Si(1), Si(0)] = [1,0]. Therefore, by definition, CACE is the 

principal effect with respect to treatment receipt Si(z), for z = 1, 0. 
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5.2.3 Compliance Principal Stratification with Full-Partial-None Compliance 

 We extend the description of compliance behaviour from a dichotomous 

classification (all-or-none treatment compliance) to a trichotomous classification (full-

partial-none treatment compliance) by considering partial compliance.  It is often the case 

that subjects are exposed to different levels of treatment, even though the treatment 

assignment is binary. An example would be full-dose, partial-dose or no-dose compliance 

with a test drug in a placebo-controlled trial. 

 Extending the work of Imbens and Rubin (1997b), we define compliance 

behaviour by the values of the vector Si(z) with Si(z) = 0, ½, 1, for z = 0, 1.  The 

trichotomous treatment compliance indicator Si(z) denotes the receipt of treatment given 

assignment z; Si(1) = 1 if subject i receives a full dose, Si(1) = ½ if subject i receives a 

partial dose and Si(1) = 0 if subject i does not receive any dose, given i is assigned to 

receive the treatment; and Si(0) = 1, ½ or 0  if i receives a full/partial/no dose given 

subject i is assigned not to receive the treatment.  In contrast to the random assignment of 

Zi, subject i chooses whether or not to comply with the treatment assigned.  This self-

selection is a nonrandom process and may introduce bias between treatment received and 

response to treatment.  

 In particular, subject i will be in one of the nine (32) mutually exclusive 

compliance strata P:  partial-none-complier (denoted by pnc); full-none-complier (fnc); 

full-partial-complier (fpc); none-partial-defier (npd); none-full-defier (nfd); partial-full-

defier (pfd); partial-taker (p); never-taker (n); and always-taker (a). The naming 

convention is based on the amount of treatment taken if assigned to treatment (the first 

letter) and amount of treatment taken if assigned to the control group (the second letter) if 
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the amounts of treatment taken are assumed to differ under the two assignments. In other 

words, an always-taker, a never-taker and a partial-taker always receive the same amount 

(all, none, or partial, respectively) of experimental treatment regardless of whether or not 

treatment has been assigned. A defier (a nfd, a pfd, or a npd) always does the opposite, to 

various degrees, of what he/she is assigned to do. A complier (a pnc, a fnc, or a fpc) 

increases his/her exposure to experimental treatment to various degrees if he/she is 

assigned to the experimental group relative to the control group. To simplify our 

discussion, we define all three types of defiers (npd, nfd and pfd) as defiers (d); later, we 

assume that there are no defiers. The compliance strata can be summarized in Table 5-1: 

Table 5-1 Compliance Stratum by Observed Exposure 

Compliance stratification P [Si(1), Si(0)] =  If For 

Pi = n [0,0] Si(z) = 0 z = 1,0  

Pi = p [½,½] Si(z) = ½  z = 1,0  

Pi = a [1,1] Si(z) = 1 z = 1,0  

Pi = d [0,1], [½,1], [0, ½]  Si(1) < Si (0)  

Pi = pnc   [½,0] Si(z) = z/2  z = 1,0  

Pi = fnc [1,0] Si(z) = z z = 1,0  

Pi = fpc [1,½] Si(z) = ½ + z/2 z = 1,0  
*Pi = c [1,0], [1,½], [½, 0]  Si(1) > Si(0)  

 *c is the combination of pnc, fnc and fpc. 

 For example, a pnc complies fully when he/she is assigned to the control group 

and takes only partial treatment when assigned to the experimental group; a fnc complies 

fully under both assignments; a fpc complies fully when he/she is assigned to the 

experimental group but takes partial treatment when assigned to the control. Finally, we 
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combine all three types of compliers (pnc, fnc and fpc) into one group and call them 

‘compliers (c).’   

 

THEOREM 3: COMPLIANCE STRATUM P IS A PRINCIPAL STRATIFICATION. 

Proof:  Let treatment compliance indicator Si(z) be the post-treatment variable and Si(z) = 

0, ½, and 1, where i = 1, 2, …, n, and z = 0, 1.  For each subject i¸ the value of the 

ordered pair [Si(1), Si(0)] is fixed; that is to say, there is one and only one compliance 

stratification Pi = k to which subject i belongs.  And for each compliance stratification k, 

all units either have the same vector of [Si(1), Si(0)] (for k ∈ {a, n, p, pnc, fnc, fpc}) or 

have unions of the same vector of [Si(1), Si(0)] (for k ∈{d, c}, e.g., c = pnc U fnc U fpc or 

[Si(1), Si(0)] = [1,0] U [1,½] U [½, 0]). 

  

DEFINITION 4: The full complier average causal effect (FCACE), the partial complier 

average causal effect (PCACE) and the full-partial-complier average causal effect 

(FPCACE). The full-complier average causal effect is E[(Yi(1,1) – Yi(0,0)) | Pi = fnc], the 

partial-complier average causal effect is E[(Yi(1,½) – Yi(0,0)) | Pi = pnc], and the full-

partial-complier average causal effect is E[(Yi(1,1) – Yi(0,½)) | Pi = fpc]. 

  

 FCACE is the average difference in expected outcome between the two treatment 

groups in the subpopulation of full-none-compliers (we refer to them as ‘full compliers’). 

Similarly, PCACE is the average difference in outcome between the two treatment 

groups in the subpopulation of partial-none-compliers. Lastly, FPCACE is the average of 

difference in outcome between the two treatment groups in the subpopulation of full-
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partial-compliers.  We refer to the three effects as compliance stratification effects. Since 

all three compliance stratification effects are defined as comparisons of potential 

outcomes under different treatment levels within a compliance stratum that are unaffected 

by treatment assignment, they are unconfounded treatment effects and may be interpreted 

causally.  

 

THEOREM 4: COMPLIANCE STRATIFICATION EFFECTS ARE PRINCIPAL 

EFFECTS. 

Proof:  FCACE, PCACE and FPCACE are defined as the difference in two potential 

outcomes within the principal stratum Pi = fnc, pnc, and fpc respectively, or equivalently, 

with the same vector [Si(1), Si(0)] = [1,0], [½, 0] and [1, ½]. Therefore, by definition, 

FCACE, PCACE and FPCACE are the principal effects with respect to treatment receipt 

Si(z), for z = 0, 1. 

 

DEFINITION 5: REVISED CACE (RCACE under partial compliance). The complier 

average causal effect is E[(Yi(Si(1),1) – Yi(Si(0), 0)) | Si(1) > Si(0)].  

  

 RCACE is the average difference in outcome between two treatment groups in the 

subpopulation of compliers: subjects who would have increased their exposure to the 

experimental treatment at least to a pre-defined degree had they been assigned to the 

experimental group.  As noted in Table 5-1, there are three groups, i.e., [Si(1), Si(0)] = 

[1,0], [1,½], or [½, 0], with Si(1) > Si(0) or Si(1) - Si(0) ≥ ½.  These are three groups of 
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subjects who comply with assigned treatment to various degrees, and we refer to them as 

‘complier.’ 

 

THEOREM 5: REVISED CACE IS A PRINCIPAL EFFECT. 

Proof:  The RCACE is defined as the difference in two potential outcomes within the 

principal stratum Pi = c. Therefore, by definition, RCACE is the principal effect with 

respect to treatment receipt Si(z), for z = 1 and 0. 

 

5.3. Statistical Models 

 As we have shown, adjustment for treatment non-compliance based on principal 

stratification methodology always generates causal effects, because it compares potential 

outcomes for a set of subjects with common compliance behaviour. However, the 

fundamental problem is that the principal stratum Pi to which a subject belongs cannot be 

observed directly, since for each subject i, only one of the pair [Si(1), Si(0)] can be 

observed. As shown in Table 5-2, for every observed zi and Si combination, there can be 

two or three different potential values for Pi, assuming there are no defiers. 

Table 5-2 Potential Compliance Strata Based on Observed Exposure 

zi Si
obs

 Potential values of Pi 

0 0 pnc,  fnc, n 

0 ½  fpc,  p 

0 1 a 

1 0 n 

1 ½  p, pnc  

1 1 a, fnc, fpc 

  



 

 87

 Inference about compliance stratification effects requires prediction of the 

subject’s missing membership within the compliance strata, as determined by Si
mis. To 

simplify the notation, we will drop i where it is obvious.   

5.3.1 Dual Propensity and Counterfactual Propensity Scores 

 Since we cannot identify the compliance strata, or more generally, principal strata, 

we use the newly developed dual propensity scores to address the issue of identification 

problems. We define the dual propensity score in an RCT setting with two treatment 

assignments and in the presence of all-or-none treatment compliance. Two propensity 

scores are calculated under both possible assignments for all subjects. For detailed theory 

of dual propensity score methods, please refer to Chapter 4.   

Recall that S(1) and S(0) cannot both be observed at once.  We observe treatment 

under the actual assignment, S* = S(z).  We do not observe treatment under the alternative 

assignment, S# = S(1 - z). Consequently, only one of the dual propensity scores is 

observable.  We call the observed one the ‘actual’ propensity score, and the unobservable 

one the ‘counterfactual’ propensity score. 

5.3.2 Compliance Stratification Effects through Matching 

 There are three commonly used propensity score methods: covariate adjustment, 

stratification or subclassification and matching (D’Agostino, 1998). Stratification and 

covariate adjustment have been discussed in the previous chapter; in this chapter we 

focus our discussion on matching. 

 For each subject in the experimental group, we find a matched subject in the 

control group who is likely to belong to the same compliance stratum, based on the 
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estimated DPS ]ˆ,ˆ[ˆ 01 rrr = . The matched pairs are then classified into the compliance 

strata defined in Section 3 based on their observed exposure levels under both the 

experimental and control conditions. The advantage is that instead of classifying each 

individual into compliance strata, we classify each matched pair of subjects into 

compliance strata, with potential outcomes available under both conditions. Compliance 

stratification effects are estimated based on these newly identified strata.  

 Assuming that the propensity score is known for each subject, and for each 

subject i under z =1, there exists i’ as its matched pair under z = 0. From Definition 4,  

 FCACE = E[(Yi(1,1) – Yi(0,0)) | Pi = fnc] 

    = E[(Yi(1,1) – Yi(0,0)) | [Si(1), Si(0)] = [1, 0]] 

    = E[(Yi
*(1) – Yi

#(0)) | [Si
*, Si

#] = [1, 0]] 

    = E[(Yi
*(1) – Yi’(0)) | [Si

*, Si’] = [1, 0]] 

where Yi
*(1) is the observed outcome when Si(1) = 1, Yi

#(0) is the missing outcome when 

Si(0) = 0 (which is not observable under z = 0), and Yi’(0) is the outcome from the 

matched subject under z = 0 with Si’ = 0.  

Similarly, from Definition 4,  

 PCACE = E[(Yi(½,1) – Yi(0,0)) | Pi = pnc] 

    = E[(Yi(½,1) – Yi(0,0)) | [Si(1), Si(0)] = [½, 0]] 

    = E[(Yi
*(½) – Yi

#(0)) | [Si
*, Si

#] = [½, 0]] 

    = E[(Yi
*(½) – Yi’(0)) | [Si

*, Si’] = [½, 0]] 

where Yi
*(½) is the observed outcome when Si(1) = ½, Yi

#(0) is the missing outcome 

when Si(0) = 0 (which is not observable under z = 0), and Yi’(0) is the outcome from the 

matched subject under z = 0 with Si’ = 0.  
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 FPCACE = E[(Yi(1,1) – Yi(½,0)) | Pi = fpc] 

      = E[(Yi(1,1) – Yi(½,0)) | [Si(1), Si(0)] = [1, ½]] 

      = E[(Yi
*(1) – Yi

#(½)) | [Si
*, Si

#] = [1, ½]] 

      = E[(Yi
*(1) – Yi’(½)) | [Si

*, Si’] = [1, ½]] 

where Yi
*(1) is the observed outcome when Si(1) = 1, Yi

#(½) is the missing outcome 

when Si(0) = ½ (which is not observable under z = 0), and Yi’(½) is the outcome from the 

matched subject under z = 0 with Si’ = ½. 

 

Lastly, from Definition 5,  

 RCACE = E[(Yi(Si(1),1) – Yi(Si(0),0)) | Pi = c] 

   = E[(Yi(Si(1),1) – Yi(Si(1),0)) | Si(1) > Si(0)]] 

   = E[(Yi
*( Si

*) – Yi
#( Si

#)) | Si
* > Si

#] 

   = E[(Yi
*( Si

*) – Yi’(Si’)) | Si
* > Si’] 

where Yi
*( Si

*) is the observed outcome when Si(1) = Si
* (Si

* = 1 or ½), Yi
#( Si

#) is the 

missing outcome when Si(0) = Si
#(Si

# = ½ or 0) (which is not observable under z = 0), 

and Yi’(Si’) is the outcome from the matched subject under z = 0 with Si
* > Si’.   

 

 It is easy to show that RCACE is actually a weighted average of FCACE, PCACE 

and FPCACE, since the three conditions with Si
* > Si’ are [Si

*, Si’] = [1,0] ∪ [½, 0] ∪ 

[1,½], which are partitions for FCACE, PCACE and FPCACE, respectively. 

 RCACE = E[(Yi
*( Si

*) – Yi’(Si’)) | Si
* > Si’] 

  = E[(Yi
*( Si

*) – Yi’(Si’)) | [Si
*, Si’] = [1,0] ∪ [½, 0] ∪ [1,½]] 

  = E{E[(Yi
*(1) – Yi’(0)) | [Si

*, Si’] = [1, 0]]  
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        + E[(Yi
*(½) – Yi’(0)) | [Si

*, Si’] = [½, 0]] 

        + E[(Yi
*(1) – Yi’(½)) | [Si

*, Si’] = [1, ½]]} 

  = E{FCACE + PCACE + FPCACE} 

5.3.3 Dual Propensity Score Matching Algorithm 

 In the next three sections, we assume that the dual propensity scores are known. 

For the dual propensity score matching and counterfactual propensity score matching, we 

focus on one-to-one matching without replacement to match each ‘compliant’ (e.g., Si(1) 

= 1 or ½) subject in the experimental group to a single subject in the control group. If 

more than one subject has been identified as a match with the same distance, only one is 

selected at random. The subjects left unmatched are dropped from the analysis.  

 Many different matching algorithms have been published, including nearest-

neighbour (NN) matching, caliper and radius matching, stratification and interval 

matching, and weighting. The most straightforward matching estimator is NN matching 

where an ‘untreated’ subject is chosen as a matching partner for each and every ‘treated’ 

subject who is closest in terms of matching variables.  

 In our case of DPS matching, for each subject i in the experimental group, NN 

searches for the subject i’
 in the control group with the closest distance Dii’. The Dii’ can 

be defined in multiple ways. Common choices include the Euclidean distance and the 

weighted sum of the absolute differences between the DPS. The two-dimensional 

Euclidean distance can be defined as the following expression:  

  ⎟⎟
⎠

⎞
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⎝

⎛
−+−==

∈

200211
' )()(|' min jiji

Jj
ii rrrrjiD    [5.3.1] 
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where i’ the subject matched with subject i from a set of controls J. When an exact match 

has been found for i, then Dii’ = 0. 

 The Dii’ can be calculated by matching with or without replacement. In matching 

with replacement, a subject in the control group can be used more than once as a match, 

whereas in the matching without replacement, a subject is considered only once; that is, if 

a subject j is chosen as a match it will be removed from the set J.  Matching with or 

without replacement involves a trade-off between bias and variance. It is believed that 

matching with replacement improves the average quality of matching while increasing 

the variance of the estimator; on the other hand, matching without replacement may lead 

to more poor matches but increase the number of distinct subjects in the control group 

used to construct the counterfactual outcome (Smith and Todd, 2005). One way to 

improve the quality of matches while using matching without replacement is to impose a 

tolerance level on the maximum propensity score distance (caliper). Propensity score 

calipers are discussed in Rosenbaum and Rubin (1985b) and Rosenbaum (1989). 

Imposing a caliper works similarly as allowing for replacement; bad matches are avoided 

and hence the matching quality rises. Formally, the caliper matching selects the nearest 

neighbour within a caliper of width δ and can be stated as follows: 

⎟⎟
⎠

⎞
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⎝

⎛
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∈

δ200211200211
' )()(&)()(|' min jijijiji

Jj
ii rrrrrrrrjiD  [5.3.2] 

 As Smith and Todd (2005) note, a possible drawback of caliper matching is that it 

is difficult to know a priori what choice of the tolerance level (δ) is reasonable. Another 

drawback is the loss of many unmatched subjects from analysis. 



 

 92

5.3.4 Counterfactual Propensity Score Matching Algorithm 

 As a sensitivity analysis, we use the one-to-one NN matching without 

replacement to seek the nearest match based on the absolute differences Dii’ between the 

counterfactual propensity score: 

   ⎟⎟
⎠

⎞
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 We implement a matching algorithm as the following: for each subject i in the 

experimental (or control) group, the algorithm searches for the exact match from the 

control (or experimental) group with the same CPS and then randomly selects one match. 

Once a match is made, the match is not reconsidered. The algorithm starts with the first 

five digits of the CPS.  If an appropriate control cannot be selected, then a four-digit 

match on the CPS is attempted. If an appropriate match cannot be formed on the first four 

digits, then a three-digit match is attempted. This process is repeated until matches are 

attempted on the first two digits. If subject i cannot be matched to any control subject, 

then the subject is left unmatched and dropped from the analysis.  

5.3.5 Stratification Algorithm 

 The idea of stratification matching is to partition the DPS into a set of intervals 

(strata). This method is also known as interval matching, blocking, and subclassification 

(Rosenbaum and Rubin, 1983).  The detailed algorithm can be found in Section 4.3.3. 
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5.4. Estimation 

5.4.1 Ordinal Logistic Regression 

 We propose using the ordinal logistic regression model to estimate the propensity 

to receive the ordered exposure of treatment. The ordinal logistical regression model is a 

natural extension of binary logistic regression; it models the cumulative logit of the 

probability (Agresti 2002) and uses maximum likelihood methods to estimate summary 

odds ratios. There are two popular forms of the ordinal logistic regression model: the 

proportional odds (PO) model and the continuation ratio (CR) model. Both the PO and 

CR ordinal regression models are linear and additive on the logit scale, and both are 

estimated using maximum likelihood methods. The PO model is sometimes referred to as 

the ‘ordinal logistic’ model; it is also referred to as a ‘cumulative odds’ model because it 

is defined by the log odds of the cumulative probabilities.  

 We model an ordinal exposure (3 levels) using the proportional odds (PO) form of 

an ordinal logistic model to predict the exposure of treatment using baseline covariates. 

Using the same notation in Section 5.3 and 5.4, let S* be the observed ordinal exposure or 

doses with three possible categories (0, ½, 1), which correspond to three exposure levels 

(none, partial and full).  For such an ordinal logistic model, there are two cumulative 

logits in descending order: 
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Or in the reverse order: 
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The model is formulated under z = 1 as  
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where X is a vector of predictors. 

The model is formulated under z = 0 as   
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i X
jSP

jSP
β   for j = 0 and ½  [5.4.6] 

where X is a vector of predictors. 

  

 There is an implicit assumption that the regression coefficients β are independent 

of j, the cut-off level for S. A homogeneity of effect across ‘cut-points’ is assumed, with 

a single odds ratio summarizing the effect of interest over all cut-points. The assumption 

may be informally tested by fitting separate logistic models to see whether the 

coefficients look similar or very different. It is common practice in a ‘single’ propensity 

score approach to include all available covariates that might affect the exposure as 

predictors, with the objective of capturing the exposure propensity precisely (Austin, 

2007; D’Agostino, 1998). Others argue that one should instead concentrate only on those 

variables with a large impact on both the exposure and the outcome under scrutiny 

(Rubin, 1997; Brookhart et al., 2006). However, consistent estimation of the propensity 

score might require including variables that affect treatment receipt but have little if any 
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affect on the outcome. In this chapter, covariates with a large impact on the exposure 

were selected, as well as some of their interactions (Austin 2007). 

5.4.2 Estimating Dual Propensity Scores Using the Ordinal Logistic Model 

 Recall that dual propensity scores are r1(X) = Pr[S(1) = 1 | X, z = 1] and  r0(X) = 

Pr[S(0) = 0 | X, z = 0]. As proposed in the previous section, we use the ordinal logistic 

regression model to predict the propensity for ordinal treatment categories. The parameter 

estimates from the models are used to calculate the DPS for each subject. Specifically, we 

model S ≥ j under z = 1 and S ≤ j under z = 0 to predict the exposure under both treatment 

assignments using baseline covariates. Using the fitted models, we predict binary events 

S =1 under z =1 and S = 0 under z = 0 with the corresponding predicted probabilities  

   
]ˆexp[1
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=
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β
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and    
]ˆexp[1
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.     [5.4.8] 

 

5.4.3 Estimating Principal Compliance Effects Based on DPS Matching 

 We implement a caliper matching based on the Euclidean distance, with a caliper 

with a width of 0.6 of the larger standard deviation of the dual propensity scores, i.e., δ = 

0.6*(max(std(r1), std(r1)) (Austin, 2009). If no member of the control group falls within 

the caliper for subject i, then the subject is left unmatched and dropped from the analysis. 

We follow the steps shown below:  

1. Estimate βz = 1 as in (5.4.5) and βz = 0 as in (5.4.6). 

2. Estimate the dual propensity scores )ˆ,(ˆ 1
1

=ziXr β  and )ˆ,(ˆ 0
0

=ziXr β for all subjects. 



 

 96

3. For subject i, calculate the Dij as defined in 3.2 for all subjects in the control 

group J. 

4. Find the match i’ with smallest Dij, then drop the subject i’ from the set of 

controls J. If more than one match is found, randomly select one. 

5. Repeat steps 3-4 for each and every subject with S* = 1 (or ≥ ½) under z =1. 

6. Classify the matched pairs into compliance strata as defined in Table 5-2. 

7. Compute differences between the two treatment groups conditional on the newly 

identified subgroups, i.e., [Si
*, Si’] = [1, 0]. 

5.4.4 Estimating Principal Compliance Effects Based on CPS Matching 

 We implement a matching algorithm (from 5 digits to 2 digits, see Section 5.3.4) 

to seek the nearest match based on the absolute differences of the counterfactual 

propensity score. We start with the first 5 digits of the CPS, then the first 4 digits of the 

CPS, then the first 3 digits of the CPS, and finally the first 2 digits of the CPS. Subject i 

from the experimental group is matched with a subject from the control group based on 

)ˆ,(ˆ 0
0

=ziXr β . We implement the same algorithm to match subjects from the control 

group to subjects from the experimental group based on )ˆ,(ˆ 0
1

=ziXr β . The steps are 

exactly the same. We show only steps for the CPS based on )ˆ,(ˆ 0
0

=ziXr β  as below: 

1. Estimate βz = 1 as in (5.4.7) and βz = 0 as in (5.4.8). 

2. Estimate the counterfactual propensity score )ˆ,(ˆ 0
0

=ziXr β for all subjects. 

3. Sort subjects with S* = 1 (or ≥ ½) in the experimental group by )ˆ,(ˆ 0
0

=ziXr β . 

4. Sort all subjects in the control group by )ˆ,(ˆ 0
0

=ziXr β . 

5. For subject i, search the exact match from the control set J with the same CPS. 
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6. Find the exact match i’ and drop the subject i’ from the set of controls J. If more 

than one match is found, select one randomly. 

7. Repeat steps 5-6 for each subject with S* = 1 (or ≥ ½) under Z =1. 

8. Classify the matched pairs into compliance strata as defined in Table 5-2 

9. Compute differences between the two treatment groups conditional on the newly 

identified subgroups, i.e.,  [Si
*, Si’] = [1, 0]  

5.4.5 Estimating Principal Compliance Effects Based on DPS Stratification 

 The detailed estimation procedure can be found in Section 4.3.4. Subjects are 

classified into compliance strata based on their estimated DPS.  Once the strata are 

defined, the treatment effect is evaluated by comparing subjects directly between the two 

treatment groups within each stratum. Then, the mean of the differences across the strata 

is summarized using three different weighting schemes.  

 

5.4.6 Estimating Standard Errors 

 Computing the standard error for the estimator of the causal effect is not 

straightforward.  The estimated variance of the compliance stratification effects should 

also include the variability due to the estimation of the propensity scores. These 

estimation steps add variation beyond normal sampling variation (Heckman, Ichimura 

and Todd, 1998). Bootstrapping can be a useful technique for estimating standard errors 

where analytical estimates are biased or unavailable (Efron and Tibshirani, 1998). The 

basic strategy follows these steps: 1) sample with replacement N records from the 

identified subpopulation, where N is the number of units in the analysis data set; 2) 

calculate and save the statistic of interest, say Δ̂ , in this sample; and 3) repeat steps 1 and 
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2 many times (usually 1000 times, we used 500 repetitions due to the large sample size). 

This produces an empirical distribution for Δ̂ , which approximates the sampling 

distribution and thus standard error of the population mean of the parameter of interest.  

 

5.5. Application: PROBIT 

 The Breastfeeding Promotion Intervention Trial (PROBIT) was conducted in the 

Republic of Belarus. Details of the study methods are outlined in Kramer et al. (2001), 

and related analyses (summarized in Chapter 3) have been reported in Kramer, Guo, Platt 

et al. (2002, 2003, and 2004) and elsewhere. The experimental intervention was 

successful in prolonging the duration of any breastfeeding and in increasing the degrees 

of breastfeeding. Infants were classified as exclusively breastfed at 3 or 6 months if the 

cross-sectional feeding information obtained at the first 3 or 6 months indicated that no 

liquid or solid foods other than breast milk were being administered to the infant.   

 Regardless of the assignment to the experimental group or control group, 

mothers’ breastfeeding behaviour can be classified into three mutually exclusive and 

clinically distinct categories: 1) Early weaners (EW): mothers who stopped breastfeeding 

during the first 3 months; 2) Partial/mixed breastfeeders (MBF): mothers who breastfed 

for ≥ 3 months but either failed to exclusively breastfeed during the first 3 months or 

failed to continued breastfeeding for at least 6 months; 3) Full breastfeeders (FBF): 

mothers who exclusively breastfed for the first 3 months and continued breastfeeding for 

the first 6 months. We refer to this group as prolonged and exclusive breastfeeders.  
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Table 5-3 Frequency of Breastfeeding Behaviour 

Number of Subjects 

n (%) 

Experimental 

(n = 8865) 

Control 

(n = 8181) 

Early weaner 2632 (29.7) 3313 (40.5) 

Mixed breastfeeder 3161 (35.7) 4460 (54.5) 

Full breastfeeder 3072 (34.7) 408    (5.0) 

 

 We consider exclusive breastfeeding for at least 3 months and continued 

breastfeeding for at least 6 months to be the measure of ‘compliance’ in the experimental 

arm, and weaning during the first 3 months as the measure of ‘compliance’ in the control 

arm. As the subjects with high probability of doing both are more likely to be 

‘compliers,’ we try to identify these individuals. 
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5.5.1 Results 

 Two propensity scores are estimated: one under the experimental arm and one 

under the control arm, using ordinal logistic regression models.  Covariates with a large 

impact on treatment receipt were selected, as well as some of their interactions. 

Covariates selected include region (West versus East and urban versus rural), maternal 

age (<20, 20-34, and >=35 years), maternal education (incomplete secondary, complete 

secondary, partial university, and complete university), prior history of having breastfed 

an infant for >=3 months (yes/no), caesarean delivery (yes/no), maternal smoking during 

pregnancy (yes/no), other children living in the household (0,1, >=2), gender (male 

versus female), gestational age completed (weeks), birth weight (g), birth length (cm) and 

birth head circumference (cm). Covariates were initially included into the models as main 

effects, and then interaction terms between variables having shown a significant effect (p-

value < .05, confirmed by the stepwise model selection procedure) and the remaining 

variables were included as well. 

5.5.1.1 FCACE of Prolonged and Exclusive BF on Infant Growth 

 In this section, DPS have been estimated as predicted probabilities of binary 

events S =1 under z =1 and S = 0 under z = 0. Correspondingly, FCACE is estimated 

using the different approaches described in the previous sections. Table 5-4 shows the 

frequency distribution and means and standard deviations of the estimated DPS by 

observed breastfeeding behaviour under actual treatment assignment. The most frequent 

scores fall between 0.2 and 0.5, with a trend that the higher the estimated score 

percentile, the higher the proportion of the observed ‘compliers’ (i.e., S* = 1 under the 

experimental group and S* = 0 under the control group).  The last row shows the overall 
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means and standard deviations of the estimated DPS and the predicted counterfactual 

DPS. These statistics are almost identical (i.e., 35.0)0(ˆ)1(ˆ 11 ==== zrzr , 

40.0)0(ˆ 0 ==zr  and 41.0)1(ˆ 0 ==zr ), confirming our belief that, owing to 

randomization, subjects in two groups are exchangeable in terms of DPS.  

Table 5-4 Frequency Distribution of DPS Percentile and Summary Statistics 

r1 in Experimental Group 

(n = 8865) 

r0 in Control Group 

(n = 8181) 

Frequency 

S*= 0 

(2630) 2 

S*= ½ 

(3161) 

S*= 1 

(3072)

S*= 0 

(3313) 

S*= ½ 

(4460) 

S*= 1 

(408) 

0.0 ≤ r̂ < 0.1 64 14 6 1 8 3 

0.1 ≤ r̂ < 0.2 385 228 113 92 389 88 

0.2 ≤ r̂ < 0.3 852 848 625 407 989 112 

0.3 ≤ r̂ < 0.4 904 1178 1087 724 1244 122 

0.4 ≤ r̂ < 0.5 321 591 756 862 1003 61 

0.5 ≤ r̂ < 0.6 89 242 377 717 571 16 

0.6 ≤ r̂ < 0.7 14 51 95 362 204 6 

0.7 ≤ r̂ < 0.8 1 8 12 107 39 0 

0.8 ≤ r̂ < 0.9 0 1 1 38 13 0 

0.9 ≤ r̂ < 1.0 0 0 0 3 0 0 

Mean r̂ (std)1 0.30 

(.107) 

0.34 

(.109) 

0.38 

(.113) 

0.45 

(0.142) 

0.38 

(.134) 

0.30 

(.120) 

Overall Mean 

r̂ (std)1 

0.35 (.115) 

r1(z = 0) : 0.35 (.114) 

0.40 (.143) 

r0(z = 1) : 0.41 (.138) 

 1 std = standard deviation 2 2 missing values of r1 

Figures 5-1 and 5-2 show the scatter plots of 1r̂  versus 0r̂  by treatment groups.  



 

 102

Figure 5-1 Distribution of Dual Propensity Scores - Experimental Group 

 

Figure 5-2 Distribution of Dual Propensity Scores - Control Group 
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 DPS caliper matching was performed using Euclidean distance, as described in 

Section 5.3.3, with a caliper with a width of δ = 0.86 (calculated as 0.6*(max {0.115, 

0.143})).  Each of the 3,072 full breastfeeders in the experimental group was matched 

with one subject in the control group with the smallest Dii’. Only one pair was dropped 

from the analysis because their calculated distance Dii’   was greater than the caliper of 

width δ (0.86).  Among 3,071 matched controls, 1,190 (38.8 %) stopped breastfeeding 

prior to 3 months (‘compliers’ in the control group). Thus, these 1,190 matched-pairs 

were identified as the full compliers - the subpopulation on which FCACE is defined. 

Table 5-5 shows the baseline comparison of these full compliers.  The two matched 

groups are comparable in terms of baseline characteristics.  The last row also shows the 

summary statistics of the calculated Euclidean distance Dii’. The mean is 0.0035 and the 

median is 0.0026. 
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Table 5-5 Baseline Characteristics for the Full Compliers 

Variable Experimental 
N = 1190 

Control 
N = 1190 

Hospital region   
    East Belarus (urban) 492 (41.3) 448 (37.7) 
    East Belarus (rural) 211 (17.7) 260 (21.9) 
    West Belarus (urban) 268 (22.5) 196 (16.5) 
    West Belarus (rural) 219 (18.4) 286 (24.0) 
Maternal age (yr)   
     <20 179 (15.0) 182 (15.3) 
   20-34 950 (79.8) 952 (80.0) 
     ≥35 61 (5.1) 56 (4.7) 
Maternal education   
   Incomplete secondary 53 (4.5) 34 (2.9) 
   Complete secondary 421 (35.4) 371 (31.2) 
   Advanced secondary or 
     Partial university 

535 (45.0) 625 (52.5) 

   Complete university 181 (15.2) 160 (13.5) 
Prior breastfeeding history 297 (25.0) 264 (22.2) 
Caesarean 161 (13.5) 123 (10.3) 
Maternal smoking during 
  pregnancy 

24 (2.0) 22 (1.9) 

Number of other children 
  In household 

  

     0 709 (59.6) 704 (59.2) 
     1 356 (29.9) 370 (31.1) 
    ≥2 125 (10.5) 116 (9.8) 
Male sex 610 (51.3) 615 (51.7) 
Gestational age (wk) 39.4 39.3 
Birth weight (g) 3405 3414 
Birth length (cm)  51.9 52.1 
Birth head circumference (cm) 35.2 34.9 
Summary statistics for Dii’ Mean:0.0035; STD: 0.0037; Median: 0.0026; 

Max: 0.0377; Min: 0.0 
  

 CPS matching was also performed using the algorithm described in Section 5.3.4. 

The matching procedure was performed in two ways: matching each full breastfeeder in 

the experimental group to one subject in the control group (CPS Matching E), or 

matching each earlier weaner in the control group to one subject in the experimental 
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group (CPS Matching C). A total of 1,146 matched pairs resulted from CPS Matching E 

(Two subjects were unmatched and dropped from the analysis), and 1,072 matched pairs 

from CPS Matching C (Twenty subjects were unmatched and dropped from the analysis).  

 Table 5-6 and Table 5-7 show the effects of prolonged and exclusive 

breastfeeding compared to early weaning on infant weight and length gains respectively, 

through the first 12 months of life. The first column is ITT effect of the experimental 

intervention, while the next three columns are the FCACEs based on the full compliers 

identified following the matching procedures described in Sections 5.4.3 and 5.4.4.  

 

Table 5-6 Effect of Prolonged and Exclusive BF on Weight Gain (g) through 12 

Months 

FCACE Δ (SE*) Time ITT 

DPS Caliper 

Matching 

CPS Matching 

E 

CPS Matching 

C 

1 m 61 153 (14.8) 172 (15.6) 132 (11.0) 

2 m 88 209 (18.0) 218 (18.5) 186 (12.9) 

3 m 106 161 (22.8) 194 (25.0) 168 (15.5) 

6 m 89 15 (31.7) 5 (30.6) 10 (22.0) 

9 m 58 -86 (35.3) -92 (34.6) -46 (24.8) 

12 m -7 -164 (38.5) -145 (37.4) -104 (25.9) 

 *SE: bootstrap standard errors.  
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Table 5-7 Effect of Prolonged and Exclusive BF on Length Gain (cm) through 12 

Months 

FCACE Δ (SE*) Time ITT 

DPS Caliper 

Matching 

CPS Matching 

E 

CPS Matching 

C 

1 m 0.16 0.22 (0.07) 0.28 (0.06) 0.21(0.04) 

2 m 0.32 0.31 (0.08) 0.41 (0.07) 0.21 (0.05) 

3 m 0.50 0.26 (0.09) 0.40 (0.09) 0.29 (0.06) 

6 m 0.46 0.03 (0.10) 0.10 (0.11) -0.08 (0.08) 

9 m 0.31 -0.23 (0.11) -0.16 (0.11) -0.31 (0.07) 

12 m 0.18 -0.18 (0.11) -0.23 (0.11) -0.26 (0.07) 

*SE: bootstrap standard errors. 

 

5.5.1.2 RCACE of Prolonged and Exclusive BF on Infant Growth 

 In this section, the DPS have been estimated as predicted probabilities of binary 

events S ≥ ½ under z =1 and S = 0 under z = 0. Since more than 95 % of subjects have S 

≤ ½ under z = 0, we decided to model S = 0 instead. Correspondingly, RCACE is 

estimated in the same way that the FCACE is estimated.  Table 5-8 shows the frequency 

distribution and means and standard deviations of the estimated DPS by observed 

breastfeeding behaviour under actual treatment assignment. The last row shows the 

overall means and standard deviations of the estimated DPS and the predicted 

counterfactual DPS. Notice that the numbers for r0 in the control group are the same as in 

Table 5-4. 
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Table 5-8 Frequency of DPS Percentile and Summary Statistics 

r1 in Experimental Group 

(n = 8865) 

r0 in Control Group 

(n = 8181) 

Frequency 

S*= 0 

(2630) 2 

S*= ½ 

(3161) 

S*= 1 

(3072) 

S*= 0 

(3313) 

S*= ½ 

(4460) 

S*= 1 

(408) 

0.0 ≤ r̂ < 0.1 4 1 0 1 8 3 

0.1 ≤ r̂ < 0.2 10 1 0 92 389 88 

0.2 ≤ r̂ < 0.3 28 4 4 407 989 112 

0.3 ≤ r̂ < 0.4 48 27 5 724 1244 122 

0.4 ≤ r̂ < 0.5 234 103 64 862 1003 61 

0.5 ≤ r̂ < 0.6 345 275 166 717 571 16 

0.6 ≤ r̂ < 0.7 858 954 729 362 204 6 

0.7 ≤ r̂ < 0.8 867 1241 1267 107 39 0 

0.8 ≤ r̂ < 0.9 233 532 792 38 13 0 

0.9 ≤ r̂ < 1.0 3 23 45 3 0 0 

Mean r̂ (std)1 0.66 

(.125) 

0.71 

(.102) 

0.74 

(.096) 

0.45 

(0.142) 

0.38 

(.134) 

0.30 

(.120)

Overall Mean r̂ (std)1 0.71 (.108) 

r1(z = 0) : 0.70 (.112) 

0.40 (.143) 

r0(z = 1) : 0.41 (.138) 

 1 std = standard deviation 2 2 missing values of r1 

 

Figures 5-3 and 5-4 show the scatter plots of 1r̂  versus 0r̂  by treatment groups.  
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Figure 5-3 Distribution of Dual Propensity Scores - Experimental Group 

 

Figure 5-4 Distribution of Dual Propensity Scores - Experimental Group 
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 DPS caliper matching was performed using a tolerance level of δ = 0.86.  Each of 

the 6,233 full and mixed breastfeeders in the experimental group was matched with one 

subject in the control group with the smallest Dii’. Two pairs were dropped because their 

calculated distance Dii’ was greater than the tolerance level of δ (0.86).  Among the 6,233 

matched controls, 2,491 (40.0 %) discontinued breastfeeding prior to 3 months 

(‘compliers’ in the control group). Thus, these 2,491 matched pairs were identified as the 

compliers: subjects who would have been early weaners had they been assigned to the 

control group and would have been full or mixed breastfeeders had they been assigned to 

the experimental group, i.e., the combination of the two subpopulations fnc and pnc. 

Table 5-9 shows the baseline similarity of these compliers. 
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Table 5-9 Baseline Characteristics for the Full Compliers 

Variable Experimental 
N = 2491 

Control 
N = 2491 

Hospital region   
    East Belarus (urban) 1053 (42.3) 914 (36.7) 
    East Belarus (rural) 365 (14.7) 519 (20.8) 
    West Belarus (urban) 652 (26.2) 469 (18.8) 
    West Belarus (rural) 421 (16.9) 589 (23.7) 
Maternal age (yr)   
     <20 367 (14.7) 394 (15.8) 
   20-34 2000 (80.3) 1977 (79.4) 
     ≥35 124 (5.0) 120 (4.8) 
Maternal education   
   Incomplete secondary 112 (4.5) 86 (3.5) 
   Complete secondary 859 (34.5) 810 (32.5) 
   Advanced secondary or 
     Partial university 

1169 (46.9) 1257 (50.5) 

   Complete university 351 (14.1) 338 (13.6) 
Prior breastfeeding history 520 (20.9) 485 (19.5) 
Cesarean 321 (12.9) 278 (11.2) 
Maternal smoking during 
  pregnancy 

76 (3.1) 48 (1.9) 

Number of other children 
  In household 

  

     0 1524 (61.2) 1457 (58.5) 
     1 746 (30.0) 796 (32.0) 
    ≥2 221 (8.9) 238 (9.6) 
Male sex 1305 (52.4) 1289 (51.8) 
Gestational age (wk) 39.4 39.3 
Birth weight (g) 3415 3412 
Birth length (cm)  51.8 52.0 
Birth head circumference (cm) 35.2 34.8 
Summary statistics for Dii’ Mean:0.0050; STD: 0.0069; Median: 0.0031; 

Max: 0.0846; Min: 0.0 
 

 Tables 5-10 and 5-11 show the effects of breastfeeding (full and mixed) on infant 

weight and length gains respectively, compared to early weaning through the first 12 

months of life. The first column is the intent-to-treat causal effect of the experimental 

intervention. The next three columns are the RCACEs based on the compliers identified 
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using the previously described matching procedures. A total of 2,456 and 2,243 matched 

pairs are identified as compliers from CPS Matching E and C respectively. The last three 

columns are the RCACEs based on stratification. 

Table 5-10 Effect of BF on Weight Gain (g) through 12 Months 

RCACE Δ (SE) (by Matching and Stratification) Time ITT 
DPS 

Caliper 
CPS 

Matching 
E 

CPS 
Matching 

C 

Equal 
Weight 

Weight by 
Proportion 

Weight 
by Strata

1 m 61 124 
(11.0) 

135   
(10.9) 

126   
(11.3) 

68 
(10.3) 

68      
(7.0) 

88 
(12.7) 

2 m 88 158   
(12.9) 

171   
(13.3) 

173    
(14.1) 

94 
(11.6) 

93      
(7.9) 

112 
(15.5) 

3 m 106 133   
(15.5) 

154     
(17.1) 

157  
(16.8) 

114 
(13.5) 

112    
(9.5) 

118 
(18.1) 

6 m 89 16   
(22.0) 

35   
(23.1) 

40    
(22.9) 

116 
(17.0) 

93    
(12.1) 

135 
(23.6) 

9 m 58 -39   
(24.8) 

-54   
(25.6) 

-14     
(25.3) 

75 
(20.2) 

62    
(13.8) 

91 
(27.2) 

12 m -7 -100   
(25.9) 

-102   
(27.4) 

-54     
(27.3) 

5   
(21.3) 

-1     
(14.8) 

33 
(29.5) 

 

Table 5-11 Effect of BF on Length Gain (cm) through 12 Months 

RCACE Δ (SE) (by Matching and Stratification) Time ITT 
DPS 

Caliper 
CPS 

Matching 
E 

CPS 
Matching 

C 

Equal 
Weight 

Weight by 
Proportion 

Weight 
by Strata

1 m 0.16 0.24 
(0.04) 

0.27   
(0.04) 

0.23   
(0.05) 

0.10 
(0.04) 

0.14    
(0.03) 

-0.004  
(0.05) 

2 m 0.32 0.29 
(0.05) 

0.37   
(0.05) 

0.31   
(0.06) 

0.26  
(0.04) 

0.29    
(0.03) 

0.12 
(0.06) 

3 m 0.50 0.32 
(0.06) 

0.44   
(0.06) 

0.37   
(0.06) 

0.46  
(0.05) 

0.45    
(0.04) 

0.32  
(0.06) 

6 m 0.46 0.23 
(0.08) 

0.33   
(0.07) 

0.19   
(0.08) 

0.45  
(0.06) 

0.41   
(0.04) 

0.38  
(0.09) 

9 m 0.31 0.02 
(0.07) 

0.11   
(0.07) 

-0.03    
(0.08) 

0.28  
(0.06) 

0.26   
(0.04) 

0.27  
(0.09) 

12 m 0.18 0.03 
(0.07) 

0.03 
(0.07) 

0.003    
(0.08) 

0.15  
(0.06) 

0.13   
(0.05) 

0.24  
(0.09) 
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5.5.2 Discussion of PROBIT Results 

 The FCACE estimates were larger than the CACE estimates but in the same 

direction. For weight gain, the matching approach yielded results that were 

approximately double the magnitude of results from the ITT analysis at first 2 months, 

comparable at 3 month, and much smaller at 9 and 12 months. In contrast, the 

stratifications approach yielded results very close to the effects from ITT analysis 

throughout the one year period. The same trend is observed for length gain as well. 

Overall, infant growth varied significantly in early infancy but the differences were not 

evident at one year of age.  

 One limitation of our analysis is that measurement error for infant weight and 

length and for covariates may impact our findings. Because the primary hypotheses of 

PROBIT were not related to infant growth outcomes, measurements of weight and length 

were not standardized among the study sites.  However, the impact should have been 

non-differential with respect to treatment assignment and actual breastfeeding behaviour, 

and therefore should have biased effects on infant growth toward the null. The negative 

correlation between the dual propensity score is observed in Figures 5-1 to 5-4.  This 

reflects mothers’ breastfeeding behaviour under both assignments (see Table 5.8), the 

definition of the dual propensity score, and the underline distributions of the compliance 

strata.  

 

5.6. Discussion 

 In an RCT with partial treatment compliance, compliant subjects usually differ 

systematically from subjects who are not compliant in terms of their observed and 
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unobserved covariates.  In this chapter, we define compliance stratification effects based 

on principal stratification theory and present theoretically justified strategies to estimate 

compliance stratification effects. In particular, DPS and CPS matching strategies allow 

the identification of pre-defined compliance stratification and lead to estimation of the 

corresponding compliance stratification effects. Using data from the PROBIT study, we 

apply this theory in practice.  

 An important feature of matching approaches is that the goal is to construct pre-

defined principal strata. After subjects are matched, their membership in compliance 

strata is identified. A drawback is that the unmatched subjects were discarded. Those 

subjects are not directly used in estimating the pre-defined compliance stratification 

effects. 

 Several other limitations of our analysis require discussion. One such limitation is 

the assumption of ‘no unmeasured confounders.’ This is a strong and untestable 

assumption, and it is not known whether all relevant covariates that could confound the 

effect of breastfeeding on infant growth were collected. In fact, it is likely that 

breastfeeding is a dynamic process and that baseline characteristics alone are not 

sufficient to fully capture compliance. DPS methods (matching or stratification) can lead 

to valid principal stratification only when the assignment mechanism is truly 

unconfounded given the observed covariates. 
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Chapter 6 SIMULATION STUDIES 

 Monte Carlo simulation studies are conducted to evaluate the performance of the 

proposed estimators in Chapter 4 and 5, including intention-to-treat (ITT), naive plug-in 

(NPI), regression (REG), stratification with equal weight (SEW), proportion weight 

(SPW) and strata rank weight (SRW), and matching by dual propensity score (MDPS) 

and by counterfactual propensity score (MCPS).  The primary objective is to estimate 

CACE (as discussed in Chapter 4) and FCACE (as discussed in Chapter 5) over randomly 

generated samples from simulated populations, which vary dual propensity score 

distributions and the proportions in the principal compliance strata, to examine 

performance of the proposed estimators and to identify estimators that perform well 

across populations. 

 

6.1 CACE in RCTs with All-or-none Compliance  

6.1.1 Simulation Specifications 

In this section we describe the design of Monte Carlo simulations. A Monte Carlo 

simulation study involves random sampling techniques to generate a series of random 

samples from distributions that represent the study population of interest (Burton et al. 

2006).  For each generated random sample, different algorithms are applied and summary 

statistics are calculated. Then, empirical estimates of characteristics of the sampling 

distribution are obtained and compared to the known truth. 

Under the situation in RCT with all-or-none treatment compliance, as we have 

described in Chapter 4, we assume that the population consists of three different 
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subpopulations or compliance strata (P): always-taker a, never-taker n, and complier c. 

These three populations can be identified based on subjects’ status of the experimental 

treatment receipt under two treatment assignments, but only one of the treatment receipt 

(i.e., S(1) and S(0)) can be observed. We assume that all covariates related to either Si(1) 

(if subject i is assigned to the treatment group) or Si(0) (if subject i is assigned to the 

control group) are correctly collected (no unmeasured confounders assumption) and dual 

propensity scores, r1 and r0, can be estimated for each subject, regardless his/her 

treatment assignment. We further assume r1 follows uniform distribution U [a1, b1] and r0 

follows uniform distribution U [a0, b0].   The distributions are assumed to be different for 

the three compliance strata a, n, and c, therefore, there are a total of six uniform 

distributions, presented as U [a1a, b1a] (r1 for always-taker a), U [a1n, b1n] (r1 for never-

taker n), U [a1c, b1c] (r1 for complier c), and U [a0a, b0a], U [a0n, b0n] and U [a0c, b0c]. We 

randomly sample r1 and r0 directly from pre-specified uniform distributions for three 

compliance strata as an alternative way of estimating r1 and r0 by building predictive 

models based on covariates.  

Our simulations also reflect the notion of counterfactual, as described in the 

previous chapters. Specifically, for each subject i, there are two potential outcomes; Yi(1, 

s) and Yi(0, s)  exist for each subject i, but only one of the pair can be observed and the 

other becomes counterfactual.  We assume that Yi(1, s) and Yi(0, s) follow normal 

distributions with a mean μk,s and a variance σ2
k,s, where k ∈ {a, n, c} and s = 1 or 0. 

Further, we assume that Yi(1, s) and Yi(0, s) are independent for subject i (Jin and Rubin, 

2008). Therefore, there are total of six different distributions for three compliance strata. 

Following the exclusion restriction assumption for always-takers and never-takers from 
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Angrist, Imbens, and Rubin (1996), we assume Yi(1,1) = Yi(0,1) for always-takers and 

Yi(1,0) = Yi(0,0) for never-takers. 

We consider nine (9) sets of simulation scenarios, as shown in Table 6-1. Some 

parameters are considered to be fixed across experimental conditions and some are 

varied. The parameters that we fix are outcome distributions Yi(1, s) and Yi(0, s). The 

parameters that we vary are the distributions of dual propensity scores r1 and r0, and the 

proportions of the principal compliance strata pk (where k ∈ {a, n, c}).   

Table 6-1 Simulation Specifications for All-or-none Compliance 

S# P S(1) S(0) Y(1, s) ~ Y(0, s) ~ r1 ~ r0 ~ pk 
n 0 0 N(0, 52) N(0, 52) U [0,¾] U [¼,1] 1/4 
a 1 1 N(8, 52) N(8, 52) U [¼,1] U [0,¾] 1/4  

1 

c 1 0 N(5, 52) N(0, 52) U [¼,1] U [¼,1] 1/2 
n 0 0 N(0, 52) N(0, 52) U [0,⅔] U [⅓,1] 1/4 
a 1 1 N(8, 52) N(8, 52) U [⅓,1] U [0,⅔] 1/4  

2 

c 1 0 N(5, 52) N(0, 52) U [⅓,1] U [⅓,1] 1/2 
n 0 0 N(0, 52) N(0, 52) U [0,½] U [½,1] 1/4 
a 1 1 N(8, 52) N(8, 52) U [½,1] U [0,½] 1/4  

3 

c 1 0 N(5, 52) N(0, 52) U [½,1] U [½,1] 1/2 
n 0 0 N(0, 52) N(0, 52) U [0,¾] U [¼,1] 1/8 
a 1 1 N(8, 52) N(8, 52) U [¼,1] U [0,¾] 1/8 

4 

c 1 0 N(5, 52) N(0, 52) U [¼,1] U [¼,1] 3/4 
n 0 0 N(0, 52) N(0, 52) U [0,⅔] U [⅓,1] 1/8 
a 1 1 N(8, 52) N(8, 52) U [⅓,1] U [0,⅔] 1/8 

5 

c 1 0 N(5, 52) N(0, 52) U [⅓,1] U [⅓,1] 3/4 
n 0 0 N(0, 52) N(0, 52) U [0,½] U [½,1] 1/8 
a 1 1 N(8, 52) N(8, 52) U [½,1] U [0,½] 1/8 

6 

c 1 0 N(5, 52) N(0, 52) U [½,1] U [½,1] 3/4 
n 0 0 N(0, 52) N(0, 52) U [0,¾] U [¼,1] 1/20
a 1 1 N(8, 52) N(8, 52) U [¼,1] U [0,¾] 1/20

7 

c 1 0 N(5, 52) N(0, 52) U [¼,1] U [¼,1] 9/10
n 0 0 N(0, 52) N(0, 52) U [0,⅔] U [⅓,1] 1/20
a 1 1 N(8, 52) N(8, 52) U [⅓,1] U [0,⅔] 1/20

8 

c 1 0 N(5, 52) N(0, 52) U [⅓,1] U [⅓,1] 9/10
n 0 0 N(0, 52) N(0, 52) U [0,½] U [½,1] 1/20
a 1 1 N(8, 52) N(8, 52) U [½,1] U [0,½] 1/20

9 

c 1 0 N(5, 52) N(0, 52) U [½,1] U [½,1] 9/10
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In Table 6-1, S# is the scenario number (from 1 to 9), P is the indicator of 

compliance strata, and the rest of the columns are defined in the previous section and will 

be explained in detail in the following section. One variable not listed in the table is the 

treatment assignment Z. Z is randomly generated in a way so that compliance strata 

across all scenarios are well balanced in terms of assignment to the treatment groups.  

For outcome distributions across all scenarios, we set Yi(1,0) and Yi(0,0) ~ N(0, 

52) for never-takers, Yi(1,1) and Yi(0,1) ~ N(8, 52) for always-takers, and Yi(1,1) ~ N(0, 52) 

and Yi(1,1) ~ N(0, 52) for compliers. We set all variances as equal for simplicity, i.e., σ2
k,s 

=  52 where k ∈ {a, n, c} and s = 1 or 0. We set the mean as 0 for distributions with s = 0 

regardless of treatment assignment, which implies that compliers and never-takers have 

the same distribution in the control group (‘no compliance effect for controls’ (NCEC) 

assumption, Little, Long and Lin, 2008).  For always-takers, we assume they have a 

larger mean than compliers do in the experimental group, implying that always-takers are 

the group who benefit most from treatment (e.g., sicker patients) so they take 

experimental treatment regardless of their treatment assignment (Jin and Rubin, 2008).  

The choices of μc,1 = 5 and σ2
c,1 = 52 are arbitrary. Initially, we set both as unity (1), but 

under partial compliance, some of μk,s have to be different fractions. To avoid fractions, 

we set all μk,s between 0 and 10 so μc,1 = 5, μn,1 = 0, and μa,1 = 8.  Although the means 

(e.g, 0, 5 and 8) and variance we choose are arbitrary, there is no reason to believe that 

other choices would lead to a different conclusion. However, we have to acknowledge 

that different relationships between μk,s could yield different evaluation statistics but it 

would not change relative performance for those eight different estimators.  
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For dual propensity scores r1 and r0, their distributions are varied from Scenario 

#1 to #3 (we will refer to them as Scenario Group 1); the same pattern repeats from 

Scenario #4 to #6 (Scenario Group 2) and from Scenario #7 to #9 (Scenario Group 3). As 

we have discussed in Chapter 4, always-takers are observable under Z = 0, but never-

takers and compliers cannot be differentiated. Therefore, we set U [a0n, b0n] and U [a0c, 

b0c] identically as U [a0,1] to take into consideration that two distributions cannot be 

identified, and at the same time, set U [a0a, b0a] differently as U [0, b0].  We define 

overlap d as d = b0 - a0 and consider three different levels of overlap: substantial (d = ½), 

moderate (d = ⅓) and none (d = 0).  Similarly, never-takers are observable under Z = 1, 

but not always-takers and compliers. Therefore, we set U [a1a, b1a] and U [a1c, b1c] 

identically as U [a1,1] and set U [a1n, b1n] differently as U [0, b1]. We consider three 

different levels of overlap as well (substantial d = ½, moderate d = ⅓ and none d = 0), 

and define overlap similarly as d = b1 - a1. Notice that when there is no overlap (d = 0), 

compliers, in theory, can be identified in both the control and experimental group and the 

models can correctly predict the dual propensity scores.  

We consider three different cases regarding the proportions of the compliance 

strata pk, where pk = Pr(P = k), k ∈ {a, n, c}, and pa + pn + pc = 1.  These three cases are 

as follows: 1) compliers compose only half of population with substantial non-

compliance (50 %); 2) compliers consist of three quarter of population with moderate 

non-compliance (25 %); and 3) compliers make up nine-tenth of population with mild 

non-compliance (10 %).  In all three cases, never-takers and always-takers evenly make 

up the rest of population.  Therefore, in the first case we set pc = 1/2 and pn = pa = 1/4; in 

the second case we set pc = 3/4 and pn = pa = 1/8; and in the last case we set pc = 9/10 and 
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pn = pa = 1/20.  We expect all estimators would perform better when there is very mild 

non-compliance (Scenario Group 3) than where there exists substantial (Scenario Group 

2) or moderate non-compliance. 

 

6.1.2 Data-generating Process 

Data are generated separately for each compliance stratum a, n, and c, all 

including the following variables: si
1, si

0, Yi(1, s), Yi(0, s), ri
1, ri

0, and Zi. For instance, 

under Scenario #1 and for complier c, first we set si
1 = 1 and si

0 = 0, next we randomly 

generate two independent outcomes Yi(1,1) and Yi(0,0), where Yi(1,1) ~ N(5, 52) and 

Yi(0,0) ~ N(0, 52), then we randomly generate two propensity scores ri
1 and ri

0, where ri
1 

and ri
0 ~ U [¼,1],  and finally we randomly generate treatment assignment variable Zi (z 

= 0,1). We set Pr (Zi = 1) = 0.5 so each subject is randomly assigned to either the 

treatment group or control group. Then, the true CACE in this case is 5.  Keep in mind 

that only one of outcomes Yi(1,1) and Yi(0,0) are included in estimating the CACE, 

depending on Zi, reflecting the counterfactual nature of the design.  

Data are generated in the same way for each scenario and for each compliance 

stratum according to the specifications in Table 6-1.  In each scenario, a total of 10,000 

subjects are generated and evenly randomized to either the treatment group or control 

group. The sample size of 10,000 is chosen arbitrarily but it is considered sufficiently 

large for our purpose and it is in agreement with several published simulation studies 

conducted by other researchers on propensity score (e.g., Austin 2007 and Austin et al. 

2007a; 2007b), on principal stratification (e.g., Gallop et al. 2009), and in other fields 

(e.g., Lefebvre, Delaney, and Platt, 2008).  Because of varying proportion of compliance 
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strata, different numbers of subjects are generated for each stratum and scenario 

combinations, but the total sample size is fixed at 10,000. For example, under Scenario 

#1, we generate 5,000 compliers (Nc = 5000), 2,500 never-takers (Nn = 2500) and 2,500 

always-takers (Na,= 2500).   

Each simulation scenario uses 1,000 replications. The number of simulations to 

perform is calculated based on the equation in Section 2.6 of the paper by Burton et al. 

(2006). A sample size of 500 is determined based on 80 % of power to detect a mean 

difference of 1 (with a standard deviation of 4) from the true value (which equals 5) as 

significant. The calculation is based on the assumption that the test statistics follows an 

approximately normal distribution.  We also run a power analysis, as shown in Figure 6-

1, in which we set a mean difference as 3, 2 and 1 each, with standard deviations as 4, 3, 

and 2, respectively.  We finally double the number of simulated datasets needed to 1,000 

to follow what have been used by Austin (Austin 2007) and his colleagues (Austin et al. 

2007a; 2007b) in their simulations. 

In summary, 1,000 datasets are randomly generated consisting of 10,000 subjects 

for each of nine simulation scenarios. The data-generating process and analyses are 

conducted using SAS version 9.1 (SAS Institute Inc., Cary NC). 

 

6.1.3 Estimating CACE 

Using each of the 1,000 simulated datasets, we estimate CACE using each of the 

eight methods described in Chapter 4 and 5, namely, ITT, NPI, REG, SEW, SPW, SRW, 

MDP, and MCPS.  In the following section, we briefly review these estimators and their 

expected performances from the study design point of view.  
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ITT is the intention-to-treatment estimator, which ignores the compliance 

information so as to the dual propensity scores. ITT is considered to be the gold standard 

for estimating effectiveness.  However, ITT usually underestimates efficacy (the true 

CACE).  We expect the bias to be substantial.  

NPI is the naive plug-in estimator, which identifies compliers based on observed 

treatment receipt and their counterfactual propensity score.  NPI selects observed 

‘compliant’ subjects first (e.g, a and c in the experimental group), and then removes the 

ones whose estimated counterfactual propensity score is below the pre-specified certain 

cut-off (e.g., r0
 < 0.5) so being considered as either n or a. For example, in the 

experimental group z =1, the compliers are identified by the following conditions: s1 = 1 

and r0
 ≥ 0.5. Only the identified ‘compliers’ are included in the analysis to estimate the 

CACE. We use a cut-off of 0.5 based on the study design so we expect the NPI estimator 

to yield results close to the truth when there is no overlap (Scenario #3, #6, and #9).  

REG is the regression estimator, estimated by fitting the regression model with 

treatment assignment z, dual propensity score r1 and r0, and the interaction between r1and 

r0.  We expect REG to yield results close to the ITT estimates since both are considered 

as a measure of marginal causal effect (MCE), whereas CACE is considered as a 

conditional causal effect (CCE) for the subpopulation of compliers (Angrist, Imbens and 

Rubin, 1996) 

SEW, SPW, and SRW are three estimators based on stratification. First, strata are 

constructed based on the quintiles of dual propensity score, then subjects are classified 

into 25 (5x5) ‘compliance’ strata.  Once the strata are defined, the treatment effect is 

evaluated by comparing subjects directly between the two treatment groups within each 
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stratum. Then, the mean of the differences across strata is summarized using three 

different weighting schemes: equal weight, weight by the proportion (sample size of each 

stratum), and by the rank.  We expect SEW and SPW would yield results close to ITT 

since both weighting schemes are standard strategies and do not give more weights to 

‘compliers’ and less weights to ‘non-compliers.’  Recall that dual propensity scores are 

the probability of being treated in the experimental group and the probability of not being 

treated in the control group. The higher the scores, the higher the stratum rank, and the 

more likely the subject is a complier. Using the scheme with stratum ranking, SRW 

estimates CACE by overweighting the differences over the subset of ‘compliers’ and 

underweighting the differences for the rest of the strata.  Therefore, we expect SRW 

would yield results less biased than results from SEW and SPW.  

  Last, MDPS and MCPS are two estimators created through matching.  We use 

DPS and CPS matching to create a matched sample.  For each subject in the experimental 

group, a control subject with the closest ‘distance’ is selected from the control group 

based on either DPS (MDPS, using caliper matching; caliper is calculated as 0.6 of the 

standard deviation of r1 and r0; see Austin, 2009) or CPS (MCPS, using a variation of 

nearest-neighbour matching.). Then, matched pairs are classified into predefined 

compliance principal stratifications. Finally, differences between the two treatment 

groups are computed conditional on the newly identified subgroups of ‘compliers.’  

Therefore, we expect both MDPS and MCPS to yield results close to the true CACE.  
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6.1.4 Evaluation of Estimator Performance 

For each method, we calculate the mean of estimated CACE (as the average of 

CACE over the 1,000 replications) and its standard deviation, using the standard two-

sample procedure.  Furthermore, we evaluate the performance of the eight methods 

against the true CACE by determining bias, relative bias (percentage bias and 

standardized bias), coverage of 95 % confidence intervals, and mean squared error (MSE) 

(see Burton et al. 2006 for computational details and additional performance measures).  

The bias is defined as the difference between the average estimate of CACE and 

the true CACE.  The percentage bias is defined as the percentage of bias over the truth. 

The standardized bias is calculated as the empirical bias divided by the standard error 

(estimated by standard deviation of simulated estimates).  We refer to both the percentage 

bias and the standard bias as relative bias.  The coverage of 95 % confidence intervals is 

the proportion of times that the estimated 95 % confidence interval contains the true 

CACE; that is to say, the proportion of the replications where the estimate of CACE is 

within 1.96 estimated standard errors from the truth. Since 95 % confidence intervals are 

calculated using 1,000 independent simulations, coverage between 0.936 and 0.964 is 

considered acceptable (Burton et al. 2006).  Last, the MSE is calculated as the sum of the 

square of the bias and the empirical variance of an estimator over all simulations. 

Therefore, MSE allows one to quantify the variance-bias trade-off (Burton et al. 2006).  
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6.1.5 Simulation Results 

Results of the Monte Carlo simulations are reported in Table 6-2 to 6-5, and are 

discussed in the following section. In general, simulation results indicate a common 

pattern shared by different evaluations with respect to the performance of the eight 

estimators, and the findings confirm our expectation of the relative performance between 

them.  

The mean estimated CACE for each method are reported in Table 6-2.  In all 

scenarios, ITT is underestimated true CACE roughly by the fraction of the proportion of 

compliers (pc).  It is not surprising because we assume that causal effects for always-

takers and never-takers are zero; therefore, ITT is estimated as CACE but over the total 

population, which is set up as one time (pc = 1/2), or one-third (pc = 3/4), or one-tenth (pc 

= 9/10) larger than the sample size of compliers, respectively.  In scenarios with the same 

pc (e.g., Scenario #1 - #3), ITT estimations remain identical and show that the varying 

overlaps of dual propensity scores have no impact on the ITT estimator because ITT 

ignores compliance information completely.   

In contrast to the ITT estimator, NPI generates better results compared to the true 

CACE with negligibly higher values. As we have discussed in the previous section, one 

reason is that the cut-off (=0.5) we use in our simulation is known to be the ‘best’ based 

on the study design. That will not be granted in reality, since the cut-off is ‘unknown’ and 

has to be figured out one way or another.  Especially in the cases of no overlap (Scenario 

#3, #6, and #9), compliers are identifiable through their dual propensity scores (e.g., in 

the treatment group, s1 = 1 and r0
 ≥ 0.5), so NPI is estimating the true ‘compliers average 

causal effect.’ In the cases of substantial and moderate overlap, NPI overestimates the 
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true CACE but with a different amount, e.g. 5.43 and 5.60 (pc = 1/2), 5.15 and 5.22 (pc = 

3/4), and 5.05 to 5.08 (pc = 9/10), respectively.  The magnitude of overestimation 

increases when there is more overlap but shrinks when the proportion of compliers 

increases.   

REG and two ‘standard’ stratification estimators, SEW and SPW, yield essentially 

identical results to ITT, confirming our belief that all three estimators provide marginal 

causal effects across all compliance strata as ITT does, where CACE is a conditional 

causal effect for the subpopulation of compliers. To facilitate our discussion, we refer to 

ITT, REG, SEW and SPW as the ITT-type estimators, and refer to NPI, SRW, MDPS and 

MCPS as the LATE-type estimators (LATE stands for local average causal effect). 

 The last stratification estimator, SRW, which uses ranks of the compliance strata 

as weight, also underestimates the true CACE but by a smaller amount compared with 

ITT and two other standard stratification estimators.  The mean estimates range from 3.12 

(Scenario #1 when there is substantial overlap and substantial non-compliance) to 4.82 

(Scenario #9 when there is no overlap and mild non-compliance).   

Two matching estimators, MDPS and MCPS, overestimate the true CACE as NPI 

does, and turn out to be the best estimators, as we expected. Both produce identical 

results, ranging from 5.71 (Scenario #1) to 5.00 (Scenario #9), regardless of whether DPS 

or CPS is used for the matching algorithm. 
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Table 6-2 Estimation of CACE (True CACE = 5) 

# d =  pc ITT NPI REG SEW SPW SRW MDPS MCPS 

1 ½ 1/2 2.51 5.60 2.50 2.52 2.50 3.13 5.71 5.71 

2 ⅓ 1/2 2.51 5.43 2.51 2.56 2.51 3.45 5.54 5.55 

3 0 1/2 2.51 5.00 2.50 2.82 2.50 3.97 5.04 5.01 

4 ½ 3/4 3.75 5.22 3.75 3.75 3.75 4.15 5.30 5.29 

5 ⅓ 3/4 3.75 5.15 3.75 3.76 3.75 4.33 5.23 5.22 

6    0 3/4 3.75 5.00 3.75 3.79 3.75 4.57 5.02 5.00 

7 ½ 9/10 4.50 5.08 4.50 4.50 4.50 4.68 5.11 5.10 

8 ⅓ 9/10 4.50 5.05 4.50 4.50 4.50 4.75 5.08 5.08 

9 0 9/10 4.50 5.00 4.50 4.50 4.50 4.82 5.00 5.01 

Note: Each cell contains the mean estimated CACE. 

 

The bias and relative biases for each method are reported in Table 6-3.  The bias 

is substantial when there is a substantial overlap and/or substantial non-compliance.  The 

bias decreases as the overlap and the proportion of the non-compliance decrease.  In all 

scenarios, each of the four ITT-type estimators (ITT, REG, SEW and SPW) result in 

negatively biased estimation, with a bias ranging from -2.5 to -0.5.  As expected, among 

the four estimators, the estimated CACE are biased substantially but comparable. On the 

other hand, three of the four LATE-type estimators (NPI, MDPS and MCPS) result in 

slightly upwards biased estimation, with a bias ranging from 0.7 to 0. The SRW results in 

minor negative bias when substantial overlap and non-compliance exist.  As expected, the 

bias is negligibly different than zero in the cases of no overlap (Scenario #3, #6, and #9). 

Across all scenarios, the NPI is the best estimator among the four, and the SRW is the 

worst performer.  
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The relative bias decreases with increasing the proportion of the compliers in the 

populations or with decreasing the overlap.  When the proportion of compliers consists of 

90 % of the population, the relative bias ranges from -10 % to zero %; this is expected 

because all of the estimators are quite similar by design to the ITT estimator in this 

setting.  For the ITT-type estimators, the relative bias ranges from a low of -50 % (- 22 % 

with the standardized bias) to a high of -10 % (- 5 % with the standardized bias). For the 

LATE-type estimators other than SRW, the relative bias ranges from a high of 14 % (5 % 

with the standardized bias) to a low of 0 % (0 % with the standardized bias).  The SRW 

has a relative bias ranging from -37 % (-14 % with the standardized bias) to - 3.5 % (-1.5 

% with the standard bias).   

To summarize in terms of bias, the four LATE-type estimators result in unbiased 

estimations of the true CACE, while the four ITT-type estimators result in downwards 

biased estimations.  
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Table 6-3 Biases of the Estimated CACE (True CACE = 5) 

# D = pc ITT NPI REG SEW SPW SRW MDPS MCPS 
1 ½ 1/2 -2.49  

-49.9 
-22.0 

0.60    
12.1 
4.0 

-2.49  
-49.9 
-22.0 

-2.50  
-49.9 
-22.9 

-2.48  
-49.6 
-22.5 

-1.87  
-37.4 
-14.4 

0.71 
14.1 
5.2 

0.71 
14.2  
5.1 

2 ⅓ 1/2 -2.49  
-49.9 
-22.0 

0.43    
8.5 
2.9 

-2.49  
-49.9 
-23.0 

-2.44  
-48.8 
-22.9 

-2.49  
-49.9 
-22.9 

-1.55  
-30.9 
-12.1 

0.54 
11.0  
3.9 

0.55 
11.0  
4.1 

3 0 1/2 -2.49  
-49.9 
-22.0 

0.00 
0.02 
0.01 

-2.49  
-49.9 
-22.0 

-2.50  
-49.9 
-22.9 

-2.48  
-49.6 
-22.5 

-1.87  
-37.4 
-14.4 

0.04 
0.73  
0.26 

0.01 
0.27  
0.09 

4 ½ 3/4 -1.25  
-25.0 
-11.9 

0.22    
4.5 
1.7 

-1.25  
-25.0 
-12.0 

-1.25  
-25.0 
-12.0 

-1.25  
-25.0 
-12.0 

-0.85  
-16.9 
-7.0 

0.30    
6.0 
2.6 

0.29    
5.9 
2.4 

5 ⅓ 3/4 -1.25  
-25.0 
-11.9 

0.15 
3.1 
1.2 

-1.25  
-25.0 
-12.1 

-1.24  
-24.9 
-12.0 

-1.25  
-25.0 
-12.1 

-0.67  
-13.5 
-5.4 

0.23 
4.6 
1.9 

0.22 
4.3 
1.8 

6 0 3/4 -1.25  
-25.0 
-11.9 

0.0     
-0.1 
-0.03 

-1.25  
-25.0 
-12.5 

-1.21  
-24.3 
-12.0 

-1.25  
-25.0 
-12.4 

-0.43  
-8.6 
-3.5 

0.02    
0.32 
0.14 

0.00    
0.04 
0.02 

7 ½ 9/10 -0.50  
-10.1 
-5.0 

0.08    
1.5 
0.6 

-0.50  
-10.1 
-5.0 

-0.50  
-10.1 
-4.9 

-0.50  
-10.1 
-5.0 

-0.32  
-6.4 
-2.6 

0.11    
2.23 
1.04 

0.10    
2.08 
0.93 

8 ⅓ 9/10 -0.50  
-10.1 
-5.0 

0.05    
1.0 
0.4 

-0.50  
-10.1 
-5.0 

-0.50  
-10.1 
-5.0 

-0.50  
-10.1 
-5.0 

-0.25  
-5.0 
-2.0 

0.08   
1.7 
0.8 

0.08   
1.6 
0.7 

9 0 9/10 -0.50  
-10.1 
-5.0 

0.00    
-0.09 
-0.04 

-0.50  
-10.1 
-5.0 

-0.50  
-10.0 
-5.0 

-0.50  
-10.1 
-5.0 

-0.18  
-3.5 
-1.5 

0.01   
0.11 
0.05 

0.00   
0.02 
0.01 

Note: Each cell contains the bias, the percentage bias and the standardized bias in order. 

 

Moreover, we report the empirical coverage of 95 % confidence intervals of the 

estimators in Table 6-4.  It is not a surprise to see that the ITT-type estimators provide no 

coverage at all across all scenarios, given the small amount of variance implied by the 

study design relative to the substantial bias. The same argument applies to the poor 

coverage of the LATE-type estimators as well. For the LATE-type estimators other than 

SRW, coverage is only acceptable in the cases of no overlap (Scenario #3, #6, and #9).  

In the cases of mild non-compliance, LATE-type estimators other than SRW maintain 
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considerable coverage from .816 to .950. However, when non-compliance is substantial, 

all estimators grossly undercover the true value with less than 5 % when the overlaps are 

not zero.  

Table 6-4 Coverage of 95 Percent Confidence Intervals for CACE 

# d =  pc ITT NPI REG SEW SPW SRW MDPS MCPS 

1 ½ 1/2 .000 .022 .000 .000 .000 .000 .001 .001 

2 ⅓ 1/2 .000 .022 .000 .000 .000 .000 .019 .024 

3 0 1/2 .000 .947 .000 .000 .000 .000 .954 .947 

4 ½ 3/4 .000 .360 .000 .000 .000 .000 .629 .305 

5 ⅓ 3/4 .000 .545 .000 .000 .000 .000 .777 .530 

6    0 3/4 .000 .975 .000 .000 .000 .000 .963 .950 

7 ½ 9/10 .002 .835 .020 .000 .000 .007 .915 .816 

8 ⅓ 9/10 .002 .886 .001 .000 .000 .029 .930 .864 

9 0 9/10 .002 .936 .000 .000 .000 .085 .950 .938 

Note: Each cell contains the coverage of 95 % confidence intervals 

 

Table 6-5 shows the MSE of the estimated CACE.  It is obvious that all MSEs for 

LATE-type estimators are considerably smaller than the corresponding MSEs for ITT-

type estimators, which are consistent with the pattern of the biases demonstrated in the 

previous sections.  Since the four ITT-type estimators are severely biased, their MSEs are 

overwhelmingly dominated by the bias while the standard errors of the estimators are 

negligibly small. The NPI, MDPS and MCPS perform equally well with the smallest 

MSEs in all settings. This is because for larger sample sizes, the biases have a larger 

contribution to the MSEs as the standard errors of the estimators are smaller. 
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Table 6-5 Mean Squared Error of Estimated CACE 

# d =  pc ITT NPI REG SEW SPW SRW MDPS MCPS 

1 ½ 1/2 6.21 0.38 6.26 6.16 6.26 3.51 0.52 0.52 

2 ⅓ 1/2 6.21 0.21 6.21 6.00 6.21 2.42 0.31 0.32 

3 0 1/2 6.21 0.02 6.26 4.76 6.26 1.08 0.02 0.02 

4 ½ 3/4 1.57 0.07 1.57 1.57 1.57 0.74 0.10 0.10 

5 ⅓ 3/4 1.57 0.04 1.57 1.55 1.57 0.46 0.07 0.06 

6    0 3/4 1.57 0.01 1.57 1.47 1.57 0.20 0.01 0.01 

7 ½ 9/10 0.26 0.02 0.26 0.26 0.26 0.12 0.02 0.02 

8 ⅓ 9/10 0.26 0.02 0.26 0.26 0.26 0.08 0.02 0.02 

9 0 9/10 0.26 0.01 0.26 0.26 0.26 0.05 0.01 0.01 

Note: Each cell contains the mean squared error of estimated CACE. 

 

In summary, the results obtained from the LATE-type estimators are performed 

well in terms of bias and coverage, whereas results from the ITT-type estimators are 

performed poorly with negatively biased estimations.  Among the LATE-type estimators, 

the NPI, MDPS and MCPS perform equally well with minimal biases and the smallest 

mean of squared errors when there are moderate and mild non-compliance.  The NPI is a 

slightly better performer than MDPS and MCPS when there is substantial non-

compliance.  The SRW is the worst performer among the four in all settings. 
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6.1.6 Sensitivity Analyses of NPI Using Different Cut-offs  

Sensitivity analyses are conducted by using different cut-offs (0.3, 0.4, 0.6, and 

0.7 for both r1 and r0) to evaluate how sensitive the NPI estimate is to the choice of cut-

offs. Tables 6-6 presents the estimations of CACE using NPI with different cut-offs. The 

results show that the estimates are closer to the true value when there is mild or no 

overlap with mild non-compliance. For each scenario, the estimates are centred at the one 

using the 0.5 cut-off, with a deviation less than 10 %. The estimates using 0.7 as the cut-

off are closer to the true value compared to the estimates using 0.3 as the cut-off. One 

explanation is that fewer always-takers would be misclassified as compliers in the 

experimental group with a larger cut-off, which would result in a smaller mean in the 

experimental group. On the other hand, fewer never-takers would be misclassified as 

compliers in the control group with a larger cut-off, which would have a neutral impact 

on mean estimation in the control group. 

Table 6-6 Estimation of CACE Using NPI with Different Cut-offs 

Cut-off # d = pc 

0.5 0.3 0.4 0.6 0.7 

1 ½ 1/2 5.60 5.73 5.68 5.48 5.23 

2 ⅓ 1/2 5.43 5.65 5.55 5.23 5.00 

3 0 1/2 5.00 5.50 5.27 5.00 5.00 

4 ½ 3/4 5.22 5.29 5.26 5.17 5.07 

5 ⅓ 3/4 5.15 5.25 5.21 5.08 5.00 

6 0 3/4 5.00 5.18 5.09 5.00 5.00 

7 ½ 9/10 5.08 5.10 5.09 5.06 5.02 

8 ⅓ 9/10 5.05 5.09 5.07 5.02 5.00 

9 0 9/10 5.00 5.06 5.03 5.00 4.99 

Note: Each cell contains the mean estimated CACE. 
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Table 6-7 presents the bias and relative biases for each cut-off. The bias and 

relative bias are noticeable when there is substantial overlap and/or substantial non-

compliance.  The biases decrease as the overlap and the proportion of the non-compliance 

decrease.  The relative bias ranges from a high of 15 % (6 % with the standardized bias) 

to a low of 0 % (0 % with the standardized bias).   

Table 6-7 Biases of the Estimated CACE Using NPI with Different Cut-offs 

Cut-off # d = pc 

0.5 0.3 0.4 0.6 0.7 

1 ½ 1/2 0.60   
12.1 
4.0 

0.73   
14.6 
5.9 

0.68   
13.6 
5.1 

0.48    
9.6 
2.7 

0.23    
4.6 
1.1 

2 ⅓ 1/2 0.43   
8.5 
2.9 

0.65   
13.0
5.4 

0.55   
11.0 
4.2 

0.23    
4.6 
1.4 

0.0    
0.0 
0.0 

3 0 1/2 0.0 
0.02 
0.01 

0.50 
10.0 
4.0 

0.27 
5.4 
2.0 

0.0 
0.0 
0.0 

0.0 
0.0 
0.0 

4 ½ 3/4 0.22   
4.5 
1.7 

0.29   
5.8 
2.6 

0.26   
5.2 
2.2 

0.17    
3.4 
1.1 

0.07    
1.4 
0.4 

5 ⅓ 3/4 0.15 
3.1 
1.2 

0.25   
5.0 
2.3 

0.21   
4.2 
1.8 

0.08    
1.6 
0.5 

0.0    
0.0 
0.0 

6    0 3/4 0.0    
-0.1 
-0.03 

0.19 
3.8 
1.7 

0.09 
1.8 
0.8 

0.0 
0.0 
0.0 

-0.01 
-0.2 
-0.1 

7 ½ 9/10 0.08   
1.5 
0.6 

0.10   
2.0 
1.0 

0.09   
1.8 
0.8 

0.06    
1.2 
0.4 

0.02    
0.4 
0.1 

8 ⅓ 9/10 0.05   
1.0 
0.4 

0.09   
1.8 
0.9 

0.07   
1.4  
0.6 

0.02    
0.4 
0.1 

-0.01 
-0.2 
-0.1 

9 0 9/10 0.01 
-0.1 
-0.0 

0.06
1.2  
0.6 

0.03 
0.6 
0.3 

0.0 
0.0 
0.0 

-0.01 
-0.2 
-0.1 

Note: Each cell contains the bias, the percentage bias and the standardized bias in order. 

Table 6-8 presents the empirical coverage of 95 % confidence intervals of the 

estimators. In the cases of mild non-compliance, coverage ranges from .844 to .959. In 
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the cases of moderate non-compliance, coverage ranges from 0.294 to 0.963. When non-

compliance is substantial and overlap is substantial (Scenario #1), coverage ranges from 

0 to .815.  The best coverage is observed for estimates with 0.7 cut-offs, ranging from 

.815 to .961.   

 

Table 6-8 Coverage of 95 % CI of CACE Using NPI with Different Cut-offs 

Cut-off # d = pc 

0.5 0.3 0.4 0.6 0.7 

1 ½ 1/2 .022 .000 .001 .234 .815 

2 ⅓ 1/2 .194 .001 .016 .763 .960 

3 0 1/2 .954 .024 .489 .959 .955 

4 ½ 3/4 .629 .294 .435 .801 .938 

5 ⅓ 3/4 .777 .395 .584 .913 .948 

6    0 3/4 .963 .608 .871 .955 .961 

7 ½ 9/10 .915 .844 .884 .929 .959 

8 ⅓ 9/10 .930 .869 .895 .944 .933 

9 0 9/10 .950 .910 .947 .953 .954 

Note: Each cell contains the coverage of 95 % confidence intervals 
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Table 6-9 shows the MSE of the estimated CACE.  The MSEs are relatively small 

in all settings, ranging from 0.55 to 0. The smallest MSEs are observed for estimates 

using the cut-off of 0.7, and the largest MSEs are observed for the cut-off of 0.3. 

 

Table 6-9 Mean Squared Error of CACE Using NPI with Different Cut-offs 

Cut-off # d = pc 

0.5 0.3 0.4 0.6 0.7 

1 ½ 1/2 0.38 0.55 0.48 0.26 0.10 

2 ⅓ 1/2 0.21 0.44 0.32 0.08 0.04 

3 0 1/2 0.02 0.27 0.09 0.02 0.03 

4 ½ 3/4 0.07 0.10 0.08 0.05 0.04 

5 ⅓ 3/4 0.04 0.07 0.06 0.03 0.03 

6    0 3/4 0.01 0.05 0.02 0.02 0.02 

7 ½ 9/10 0.02 0.02 0.02 0.03 0.03 

8 ⅓ 9/10 0.02 0.02 0.02 0.02 0.03 

9 0 9/10 0.01 0.01 0.01 0.01 0.02 

Note: Each cell contains the mean squared error of estimated CACE. 

 

In summary, the sensitivity analyses for NPI using different cut-offs show that the 

estimates are not sensible to different cut-offs. The relative performance is also based on 

the outcome distributions of always-takers, never-takers and compliers. One limitation is 

that we use the same cut-offs for r1 and r0. 
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6.2 FCACE in RCTs with Full-Partial-None Compliance  

6.2.1 Simulation Specifications 

In this section, we use the same definitions, notations, and assumptions as 

described in Section 6.1.1, unless specified otherwise.  Under the settings in RCT in the 

presence of partial compliance as described in Chapter 5, we assume that the population 

consists of six different compliance strata P (assuming there are no defiers): partial-none-

complier pnc, full-none-complier fnc, full-partial-complier fpc, partial-taker p, never-

taker n, and always-taker a. Under two treatment assignments, S(1) and S(0) can be 1, ½, 

or 0. Accordingly, there will be three possible outcome distributions for each of two 

assignments. We maintain the assumption of the exclusion restriction for always-takers, 

never-takers and partial takers. Therefore, the causal effects are all zero for a, n, and p. 

Further, we assume that the causal effects for three compliers groups, fnc, pnc, and fpc, 

are none-zero; that is, FCACE, PCACE and FPCACE are not zero. In this simulation 

study, we focus on FCACE as we did in Chapter 5. 

We consider six sets of simulation scenarios as shown in Table 6.6.  We define 

overlap d the same way as in Section 6.1.1 and consider three different levels of overlap: 

substantial (d = ½), moderate (d = ⅓) and none (d = 0), under both treatment assignments.  

Given there are six compliance strata, let pk
i = Pr (Pi = k) for k ∈ {fnc, pnc, fpc, a, p, n} 

and assume pa + pp + pn + pfnc + ppnc + pfpc = 1.  We consider two settings: in the first, 

compliers compose half of population (50 %), and in the second, compliers consist of 

three quarters of the population (75 %).  In both cases, the five strata other than the 

complier evenly make up the rest of the population.  We do not consider the case in 

which compliers make up nine-tenths of population, as there then would be very few 
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subjects for each of the five other strata, and the ordinary ITT estimator is expected to be 

nearly equivalent to the CACE. Specifically, we set pfnc = 1/2 and pa = pp = pn = ppnc = 

pfpc = 1/10 in the first case; we set pfnc = 3/4 and pa = pp = pn = ppnc = pfpc = 1/20 in the 

second case.  Table 6-10 summarizes the data structure of our simulation studies. 

Table 6-10 Simulation Specifications for Partial Compliance 

# P S(1) S(0) Y(1, s) ~ Y(0, s) ~ r1 ~ r0 ~ Pr 
n 0 0 N(0, 52) N(0, 52) U [0,¾] U [¼,1] 1/10 
a 1 0 N(8, 52) N(8, 52) U [¼,1] U [0,¾] 1/10 
p ½  ½  N(3, 52) N(3, 52) U [¼,¾] U [¼,¾] 1/10 
fpc 1 ½ N(5, 52) N(3, 52) U [¼,1] U [¼,¾] 1/10 
pnc ½ 0 N(3, 52) N(0, 52) U [¼,¾] U [¼,1] 1/10 

1 

fnc 1 0 N(5, 52) N(0, 52) U [¼,1] U [¼,1] 1/2 
n 0 0 N(0, 52) N(0, 52) U [0,⅔] U [⅓,1] 1/10 
a 1 0 N(8, 52) N(8, 52) U [⅓,1] U [0,⅔] 1/10 
p ½  ½  N(3, 52) N(3, 52) U [⅓,⅔] U [⅓,⅔] 1/10 
fpc 1 ½ N(5, 52) N(3, 52) U [⅓,1] U [⅓,⅔] 1/10 
pnc ½ 0 N(3, 52) N(0, 52) U [⅓,⅔] U [⅓,1] 1/10 

2 

fnc 1 0 N(5, 52) N(0, 52) U [⅓,1] U [⅓,1] 1/2 
n 0 0 N(0, 52) N(0, 52) U [0,½] U [½,1] 1/10 
a 1 0 N(8, 52) N(8, 52) U [½,1] U [0,½] 1/10 
p ½  ½  N(3, 52) N(3, 52) U [⅓,⅔] U [⅓,⅔] 1/10 
fpc 1 ½ N(5, 52) N(3, 52) U [½,1] U [⅓,⅔] 1/10 
pnc ½ 0 N(3, 52) N(0, 52) U [⅓,⅔] U [½,1] 1/10 

3 

fnc 1 0 N(5, 52) N(0, 52) U [½,1] U [½,1] 1/2 
n 0 0 N(0, 52) N(0, 52) U [0,¾] U [¼,1] 1/20 
a 1 0 N(8, 52) N(8, 52) U [¼,1] U [0,¾] 1/20 
p ½  ½  N(3, 52) N(3, 52) U [¼,¾] U [¼,¾] 1/20 
fpc 1 ½ N(5, 52) N(3, 52) U [¼,1] U [¼,¾] 1/20 
pnc ½ 0 N(3, 52) N(0, 52) U [¼,¾] U [¼,1] 1/20 

4 

fnc 1 0 N(5, 52) N(0, 52) U [¼,1] U [¼,1] 3/4 
n 0 0 N(0, 52) N(0, 52) U [0,⅔] U [⅓,1] 1/20 
a 1 0 N(8, 52) N(8, 52) U [⅓,1] U [0,⅔] 1/20 
p ½  ½  N(3, 52) N(3, 52) U [⅓,⅔] U [⅓,⅔] 1/20 
fpc 1 ½ N(5, 52) N(3, 52) U [⅓,1] U [⅓,⅔] 1/20 
pnc ½ 0 N(3, 52) N(0, 52) U [⅓,⅔] U [⅓,1] 1/20 

5 

fnc 1 0 N(5, 52) N(0, 52) U [⅓,1] U [⅓,1] 3/4 
n 0 0 N(0, 52) N(0, 52) U [0,½] U [½,1] 1/20 
a 1 0 N(8, 52) N(8, 52) U [½,1] U [0,½] 1/20 
p ½  ½  N(3, 52) N(3, 52) U [⅓,⅔] U [⅓,⅔] 1/20 
fpc 1 ½ N(5, 52) N(3, 52) U [½,1] U [⅓,⅔] 1/20 
pnc ½ 0 N(3, 52) N(0, 52) U [⅓,⅔] U [½,1] 1/20 

6 

fnc 1 0 N(5, 52) N(0, 52) U [½,1] U [½,1] 3/4 
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6.2.2 Data-generating Process 

Data are generated separately for each of the six compliance strata in the same 

way as done in the previous section.  The true FCACE in this case is 5, and the true 

FPCACE and PCACE are 1 and 2 respectively. 1,000 datasets are randomly generated 

consisting of 10,000 subjects for each of six simulation scenarios. The data-generating 

process and analyses are conducted using SAS version 9.1 (SAS Institute Inc., Cary NC). 

 

6.2.3 Estimation of FCACE 

Using each of the 1,000 simulated datasets, we estimate FCACE using each of the 

eight methods described in Chapter 4 and 5.  All the algorithms remain the same as 

described in the previous section and consistent with our discussion in Chapter 5.  

 

6.2.4 Evaluation of Estimator Performance 

 For each method, we calculate the mean of estimated FCACE (as the average of 

FCACE among the 1,000 simulated datasets) and its standard deviation.  Furthermore, we 

evaluate the performance of the eight methods against the true FCACE by determining 

bias, relative bias (percentage bias and standardized bias), coverage of 95 % confidence 

intervals, and mean squared error, all defined in Section 6.1.4. 

 

6.2.5 Simulation Results 

The results of the Monte Carlo simulations are reported in Table 6-11 - 6-14, and 

are discussed in the following sections. Simulation results indicate a common pattern 
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shared by different evaluations with respect to the performance of the eight estimators, 

and the findings confirm our expectation of the relative performance between them.  

We report the mean estimated FCACE for each method in Table 6-11.  In all 

scenarios, ITT underestimates true FCACE by a fraction of 3/5 and 4/5 respectively, 

which no longer equals the populations’ proportions of compliers as shown in Table 6-2.  

This is because of the existence of two other complier groups, fpc and pnc, with causal 

effects (FPCACE and PCACE) of 1 and 2 respectively.  We observe the ITT estimation 

remain identical when pc is constant since the ITT ignores compliance information so that 

varying dual propensity scores have no impact on the estimation.  Not surprisingly, the 

REG, SEW and SPW yield almost exactly identical results to the ITT.  They all 

underestimate the true FCAC (which equals 5), by a fraction of 3/5 (~ 3.00 for the first 

three scenarios) and 4/5 (4.00 for the last three scenarios). Moreover, the SRW also 

underestimate the true FCACE but with a smaller amount than ITT and the other two 

standard stratification estimators.  The estimations range from 3.42 (Scenario #1) to 4.62 

(Scenario #6).   

In contrast to the ITT estimator, the NPI overestimates the true FCACE in at least 

five scenarios ranging from 5.23 to 5.00, with one 4.99 essentially identical to the true 

value.  The magnitude of overestimation decreases with a decreasing overlap or an 

increasing proportion of compliers.  Two matching estimators, MDPS and MCPS, 

overestimate the true FCACE as NPI does. Both yield identical results, ranging from 5.27 

(Scenario #1) to 4.99 (Scenario #3), regardless of whether DPS or CPS is used for the 

matching algorithm. No biases are observed when there is no overlap for all three 

estimators.  
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Table 6-11 Estimation of FCACE (True FCACE = 5) 

# d = pc ITT NPI REG SEW SPW SRW MDPS MCPS 

1 ½ 1/2 2.99 5.23 2.99 2.99 2.99 3.45 5.27 5.26 

2 ⅓ 1/2 2.99 5.16 2.99 3.00 2.99 3.67 5.19 5.18 

3 0 1/2 2.99 4.99 2.99 3.04 2.99 4.10 4.99 4.99 

4 ½ 3/4 4.00 5.09 4.00 4.00 4.00 4.30 5.12 5.11 

5 ⅓ 3/4 4.00 5.06 4.00 4.00 4.00 4.44 5.09 5.08 

6 0 3/4 4.00 5.00 4.00 4.00 4.00 4.62 5.00 5.00 

Note: Each cell contains the mean estimated FCACE. 

 

We report the bias and the relative biases in Table 6-12.  The bias is substantial 

when there are substantial overlaps and/or substantial non-compliance.  The bias 

decreases as the overlap and the proportion of the non-compliance decrease.  In all 

scenarios, each of the four ITT-type estimators (ITT, REG, SEW and SPW) result in 

negatively biased estimation, with a bias either -2 or around -1.  The NPI, MDPS and 

MCPS result in slightly upwards biased estimation, with a bias ranging from 0.27 to 0. 

The SRW results in minor negative bias when substantial overlap and non-compliance 

exist, ranging from -1.55 to -0.38.   

The relative bias decreases with increasing the proportion of the compliers in the 

populations or with decreasing the overlap.  For the ITT-type estimators, the relative bias 

ranges from a low of -50 % (- 22 % with the standardized bias) to a high of -10 % (- 5 % 

with the standardized bias). For the LATE-type estimators other than SRW, the relative 

bias ranges from a high of 14 % (5 % with the standardized bias) to a low of 0 % (0 % 

with the standardized bias).  The SRW has a relative bias of either -40 % (about -20 % 

with the standardized bias) or - 20 % (about -10 % with the standard bias).   
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As observed in Section 6.1.5, the four LATE-type estimators result in unbiased 

estimations of the true FCACE, while the four ITT-type estimators results in downwards 

biased estimations.  

 

Table 6-12 Biases of the Estimated FCACE (True FCACE = 5) 

# D = pc ITT NPI REG SEW SPW SRW MDPS MCPS 
1 ½ 1/2 -2.01  

-40.2 
-18.9 

0.23    
4.5 
1.4 

-2.01  
-40.2 
-19.1 

-2.01  
-40.1 
-19.0 

-2.01  
-40.2 
-19.1 

-1.55  
-31.0 
-12.1 

0.27    
5.4 
1.9 

0.26    
5.2 
1.8 

2 ⅓ 1/2 -2.01  
-40.2 
-18.9 

0.16    
3.2 
1.1 

-2.01  
-40.2 
-19.2 

-2.01  
-40.0 
-19.1 

-2.01  
-40.2 
-19.2 

-1.33  
-26.6 
-12.1 

0.19 
3.8  
1.4 

0.18 
3.6  
1.3 

3 0 1/2 -2.01  
-40.2 
-18.9 

-0.01  
-0.18 
-0.07 

-2.01  
-40.1 
-19.6 

-1.96  
-39.2 
-19.1 

-2.01  
-40.2 
-19.5 

-0.90  
-17.9 
-7.4 

-0.01  
-0.15 
-0.05 

-0.01  
-0.15 
-0.05 

4 ½ 3/4 -1.00  
-20.0 
-9.8 

0.09    
2.8 
0.7 

-1.00  
-20.0 
-9.8 

-1.00  
-20.0 
-9.8 

-1.00  
-20.0 
-9.8 

-0.70  
-14.0 
-5.6 

0.12    
2.4 
1.1 

0.11 
2.2 
0.9 

5 ⅓ 3/4 -1.00  
-20.0 
-9.8 

0.06 
1.1 
0.4 

-1.00  
-20.0 
-9.8 

-1.00  
-20.0 
-9.8 

-1.00  
-20.0 
-9.8 

-0.56  
-11.2 
-4.6 

0.09 
1.7 
0.7 

0.08 
1.8 
0.7 

6 0 3/4 -1.00  
-20.0 
-9.8 

0.0     
-0.04 
-0.02 

-1.00  
-20.0 
-9.9 

-1.00  
-20.0 
-9.8 

-1.00  
-20.0 
-9.8 

-0.38 
-7.7 
-3.2 

0.00    
-0.04 
-0.01 

0.00    
-0.04 
-0.02 

Note: Each cell contains the bias, the percentage bias and the standardized bias in order. 

 

We report the empirical coverage of 95 % confidence intervals of the estimators 

in Table 6-13.  Once more, ITT-type estimators, as well as the SRW, provide no coverage 

at all across all scenarios, given the small amount of variance implied by the study design 

relative to the substantial bias that exists. For the LATE-type estimators other than SRW, 

coverage is acceptable (between 0.942 and 0.970) when there is no overlap.  In the cases 

of moderate non-compliance, LATE-type estimators other than SRW maintain 
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considerable coverage from .808 to .948.  Poor coverage is observed when there are both 

substantial overlap and substantial non-compliance. 

Table 6-13 Coverage of 95 Percent Confidence Intervals for FCACE 

# d = pc ITT NPI REG SEW SPW SRW MDPS MCPS 

1 ½ 1/2 .000 .692 .000 .000 .000 .000 .544 .592 

2 ⅓ 1/2 .000 .817 .000 .000 .000 .000 .748 .798 

3 0 1/2 .000 .961 .000 .000 .000 .000 .962 .970 

4 ½ 3/4 .000 .897 .000 .000 .000 .000 .808 .852 

5 ⅓ 3/4 .000 .926 .000 .000 .000 .000 .882 .888 

6 0 3/4 .000 .948 .000 .000 .000 .002 .942 .948 

Note: Each cell contains the coverage of 95 % confidence intervals 

 

We report MSE of the estimated FCACE in Table 6-14.  Since the four ITT-type 

estimators are severely biased, their MSEs are overwhelmingly dominated by the bias 

while the standard errors of the estimators are negligibly small, as we previously 

discussed. Therefore, we observe much higher MSEs for ITT-type estimators. The NPI, 

MDPS and MCPS perform equally well with the lowest MSEs in all settings.  

Table 6-14 Mean Squared Error of Estimated CACE 

# d = pc ITT NPI REG SEW SPW SRW MDPS MCPS 

1 ½ 1/2 4.05 0.08 4.05 4.05 4.05 2.42 0.09 0.09 

2 ⅓ 1/2 4.05 0.05 4.05 4.05 4.05 1.79 0.06 0.05 

3 0 1/2 4.05 0.02 4.05 3.85 4.05 0.83 0.02 0.02 

4 ½ 3/4 1.01 0.03 1.01 1.01 1.01 0.51 0.03 0.03 

5 ⅓ 3/4 1.01 0.02 1.01 1.01 1.01 0.33 0.02 0.02 

6 0 3/4 1.01 0.01 1.01 1.01 1.01 0.16 0.01 0.01 

Note: Each cell contains the mean squared error of estimated FCACE. 
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As summarized in the previous section, the LATE-type estimators performed well 

in terms of bias and coverage, whereas the ITT-type estimators performed poorly with 

negatively biased estimation.  Among the LATE-type estimators, the NPI, MDPS and 

MCPS perform equally well with minimal biases and the smallest mean squared errors 

when there is moderate non-compliance.  The NPI is a slightly better performer than 

MDPS and MCPS when there is substantial non-compliance.  The SRW is the worst 

performer among the four in all settings.  

 

6.3 Conclusions and Limitations  

In this chapter, we investigate the behaviour of the eight estimators under 

different scenarios using simulated data. The objective is to compare the performance of 

the proposed methods in estimating CACE and FCACE with respect to bias, mean-

squared error of the estimators, and the empirical coverage of confidence intervals. We 

summarize our finding as follows.  We demonstrate that three LATE-type methods (NPI, 

MDPS, and MCPS) result in estimation with minimal bias across all scenarios under both 

settings of all-or-none compliance and partial compliance. In the cases of substantial 

overlaps and/or non-compliance, they tend to overestimate the true values (see detailed 

discussions in the following section). In contrast, the ITT-type estimators (ITT, REG, 

SEW, and SPW) yield a very conservative and negatively biased estimate, as expected in 

all scenarios. The magnitude of bias increases with an increasing of overlap and/or non-

compliance. The SRW estimator results in estimations not substantially biased in the 

cases of no overlap or moderate/mild non-compliance. Therefore, we recommend that 

MDPS and MCPS should be used in RCTs in the presence of partial non-compliance.    
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Several reasons contribute to our recommendation of the matching based 

algorithms. First, as we have shown in the simulation studies, MDPS and MCPS result in 

estimation with the least bias and smallest mean squared error. Second, it is attractive to 

applied researchers to be able to directly compare baseline characteristics of ‘compliers’ 

between the experimental group and the control group in the matched sample to assess 

the comparability between the two. Third, matching algorithms do not require that an 

outcomes model be correctly specified.   

Although simulation shows that NPI performs similarly to (if not better than) 

MCPS and MDPS, in practice there is no way to verify the cut-offs of NPI. Therefore, 

sensitivity analysis must be used for inference purposes. 

   

6.3.1 Limitations 

We evaluate the performance of eight methods over a variety of populations and 

subsequently identify methods that seem to perform well under most scenarios. However, 

we must acknowledge that many key assumptions have been made throughout the 

simulation and there are many limitations to the current simulation studies. For instance, 

we do not simulate the performance of the methods when the key assumptions (e.g., 

SUTVA, exclusion restriction, no unmeasured confounders) are violated. These 

assumptions were made when the foundations of this methodology were developed, and 

will be reviewed in detail in Chapter 7.  Since the primary goal of the simulation studies 

is to compare the relative performance for the proposed methods, we think it is 

reasonable to test them under a set of commonly accepted assumptions. There are also 

assumptions made specifically for the simulation studies, including the assumption of 
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equal variances for potential outcomes and equal proportion for strata other than 

compliers. Some of these assumptions may be overly simplistic and are reviewed in 

details as follow: 

1. Assumption of normal distributions with a common variance for all potential 

outcomes across principal strata.  We assume that all potential outcome variables 

follow normal distributions with a mean μk,s and a variance σ2
k,s, where k ∈ {c, 

pnc, fpc, a, p, n} and s = 1, ½, or 0 (we use c to replace fnc to simplify the 

notation for this discussion).  We set σ2
k,s = 52  for all k and s. Since our focus is 

to assess the accuracy of our estimation procedures, we feel confident that 

relaxing this assumption and allowing heterogeneity in the variance will not affect 

the relative performance of the eight estimators.  

2. Assumption of ‘no compliance effect for controls’ (NCEC) (Little, Long and Lin, 

2008). We assume that the mean outcome under the control treatment is the same 

(and equals zero) for compliers and never-takers, i.e., μn,0 = μc,0 = 0.  This 

assumption implies that the mean outcomes are the same for subjects who do not 

receive the experimental treatment regardless of their compliance membership. 

NCEC has been considered strong and unacceptable in some cases because 

compliers and never-takers may differ on various characteristics related to the 

outcome under the control treatment. However, in our case, it is reasonable to 

assume that μn,0 = μc,0 = 0.  

3. Relaxing the assumption of ‘no compliance effect for treatment’ (NCET) (Little, 

Long and Lin, 2008).  This assumption asserts that the mean outcome under the 

experimental treatment is the same for compliers and always-takers. We do not 
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make this assumption in our simulation.  Instead, we set μa,1 = 8 and μc,1 = 5, so 

always-takers have a larger mean than compliers do in the experimental group. 

We follow the argument of Lin and Rubin (2008) that always-takers might be the 

group who benefit most from treatment (e.g., sicker patients), so they take 

experimental treatment regardless of their treatment assignment. 

4. Assumption of independence of potential outcomes. We assume that the 

correlation between Yi(1, s) and Yi(0, s) is zero given s. Jin and Rubin (2008) 

conducted a sensitivity analysis with different values of correlation and concluded 

that the results changed only slightly compared with the results assuming no 

correlation.   

5. Assumption of uniform distribution of r1 and r0.  We assume that r1 and r0 follow 

uniform distributions under each principal stratum and we randomly sample r1 

and r0 directly from pre-specified distributions rather than estimated from 

predictive models based on simulated covariates. Our reason for not simulating 

covariates directly is that the focus of the simulations is to validate and compare 

the proposed methods. We believe that the whole process of simulating covariates 

and exposure, building up the predictive models, and estimating the dual 

propensity scores, will add another layer of complexity and my weaken the 

evidence and interpretation of the results. Relaxing this assumption will increase 

the variability of r1 and r0 and impact the performance of all estimators except 

ITT. However, we evaluate the cases of ‘substantial overlap’ scenarios in our 

simulations, which consider r1 and r0 are mixed for different principal strata. So 

there is no reason to believe that the conclusion will be different and we believe 
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matching-based algorithm may still be the best choice. Another limitation is that 

we use the same cut-off (e.g., 0.5) for r1 and r0. In practice, the cut-offs have to be 

determined based on the distributions of r1 and r0, respectively. And it is likely 

that they would differ from each other.  

6. Assumption of an equal proportion. We set pa = pp = pn = ppnc = pfpc under the 

partial compliance and pa = pn under all-or-none compliance for simplicity. 

Relaxing this assumption may affect the estimates of CACE and FCACE when 

there is substantial misclassification. However, we do not expect any significant 

impact on the relative performance of eight estimators. 

In conclusion, DPS- and CPS-based methods allow one to estimate CACE and 

FCACE in the presence of all-or-none compliance or partial compliance, and with 

always-takers.  We recommend that matching-based estimators (MDPS and MCPS) be 

used in RCTs with complicated non-compliance issues.  
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Figure 6-1 Power versus Sample Size for Simulation Study 
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Chapter 7 CONCLUSIONS 

In this thesis, we have demonstrated the use of dual propensity scores and 

principal stratification theory in RCTs in the presence of partial non-compliance. First, 

we defined compliance stratification effects based on principal stratification theory and 

presented theoretically justified strategies to estimate the compliance stratification 

effects.  Second, we developed the dual propensity scores approach as a tool to identify 

compliance strata and to estimate the compliance stratification effects.  Third, we 

evaluated the performance of eight methods through simulations and identified that a 

matching-base algorithm performed well across different scenarios. In addition, we 

applied newly developed methods to PROBIT and concluded that prolonged and 

exclusive breastfeeding had positive effects on infant growth for the first 3 months, but 

that differences disappeared (or even reversed) by 12 months of age. 

 

7.1 Contributions 

This research project focuses on a situation in RCTs where non-compliance 

occurs in the form of partial compliance and can occur in both treatment groups - subjects 

in the experimental group may take only a portion of the experimental treatment, while 

subjects in the control group may somehow also obtain the experimental treatment, fully 

or partially. This would not be the case in many clinical trials of new drugs or other 

experimental treatments in which subjects randomized to either group usually have no 

access to the ‘other’ treatment. Often, non-compliance only occurs in the treatment arm, 

while subjects in the control group (i.e., placebo group) have no choice but to comply 
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because it is extremely unlikely those subjects would receive the experimental treatment.  

Although we agree that it is one of the key limitations of our proposed DPS methods, we 

consider it as a strength rather than weakness. Actually, many experimental studies face 

the situation where non-compliance can occur in either treatment group, especially 

studies with so-called encouragement design (e.g., Hirano, Imbens et al., 2000; Ten Have, 

Elliott et al., 2004).  In addition, our methods are not limited to estimating ‘compliance’ 

principal effects; they can be easily apply to estimate general principal effects with a 

post-treatment variable Sobs no longer ‘compliance.’  In those cases, it is common that a 

subgroup, which is equivalent to always-takers, does exist. 

The original methodological contributions of this thesis include: adapting the 

principal stratification to partial compliance and defining compliance principal strata; 

developing the innovative dual propensity score framework to identify compliance 

principal strata; determining proofs of sub-theorems related to the properties of the 

proposed estimators, adapting ordinal logistic regression to dual propensity score 

estimation; developing weighting by stratum ranking and matching the algorithm to 

identify compliance principal strata with dual propensity scores and to estimate principal 

effect. Weighting is key to producing a LATE-type estimate without explicitly 

identifying the principal compliance strata, and it is very close to the inverse-probability-

of-treatment weighting used in observational studies, which links to structural nested 

mean models (Robins et al., 2004). On the other hand, matching strategies allow the 

identification of pre-defined compliance strata and lead to the estimations of LATE-type 

estimators (i.e., CACE and FCACE). 
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 The DPS methodology is quite different from the standard propensity score 

approaches in many ways. First, the aim of the single propensity score is to balance all 

observed and relevant covariates while the aim of the DPS is to identify compliance 

strata. Second, the DPS is two-dimensional and contains two scores - actual and 

counterfactual - for each subject while the single propensity score is one-dimensional, 

with a single score for each subject. Third, conventional propensity score methodology in 

RCTs ignores treatment assignment (randomization) and focuses on the observed 

treatment exposure directly (as-treated approach), while DPS methodology considers the 

treatment assignment as an instrumental variable and keeps randomization intact. Finally, 

the ultimate interest in estimating of propensity scores is the marginal causal effect (ITT-

type) while the ultimate interest of DPS is the conditional causal effects (CACE or 

FCACE). We think ITT-type estimate alone may be  inadequate to answer explanatory 

questions regarding efficacy. Sheiner and Rubin (1995), among others, go even further by 

claiming that assessment of efficacy that accounts for subject compliance is more 

important than an assessment of effectiveness by an ITT analysis, and that the latter 

provides a biased estimate of the former. 

 

7.2 Assumptions and Limitations  

Although we conclude that the DPS-based methods offer a practical technique for 

assessing principal effects, there are many assumptions being made and certain 

limitations exist. Similar to all models based on potential outcomes framework and 

principal stratification theory, our methods require strong assumptions to be appropriately 
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specified, including SUTVA, randomization, exclusion restriction, monotonicity, weakly 

unconfoundedness, among others. We review the key assumptions as following:   

1. SUTVA. The assumption of ‘no interference between units,’ part of SUTVA is 

needed to define compliance principal effects for individual units without 

reference to other individuals in the study. Departure from this assumption may 

occur when treatments are administrated at the provider level, such as in the 

PROBIT study. The consistency assumption of SUTVA is needed for estimating 

the effects by linking the potential outcomes to the observed outcomes.  It implies 

that the observed outcome variable will equal one of the potential outcome 

variables even if the administration of treatment assignment and treatment itself 

vary slightly (Rubin, 1986). Violations of this assumption may occur when there 

are different forms of treatment administration and/or treatment itself.  Although 

SUTVA is implausible for most of RCTs, it is not clear how to address violations 

of SUTVA and little research about this has been done.   

2. Randomization. The randomization assumption is necessary for estimation of 

compliance principal effects in combination with SUTVA, and to relate the 

models for the observed outcomes to the models of their respective potential 

variables.  The DPS-based methods retain the randomization and comparisons are 

always made between two randomized (sub-) groups.  In RCT settings, this 

assumption always holds true. 

3. The exclusion restriction (ER) assumption. This assumption implies that any 

effect of treatment assignment on the potential outcomes must be exclusively 

through the actual treatment received for the whole population. ER is required so 
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that the causal effects are zero for always-takers, never-takers and partial takers. 

When the ER is unlikely, the causal effect of treatment becomes unidentifiable 

(Robins and Rotnitzkv, 2004). However, using DPS matching methods, relaxing 

this assumption may not be so critical as long as the matching is successfully done 

and principal strata can be identified.   Nonzero causal effect in one stratum (e.g., 

always-takers) would not affect the causal effect in other strata (e.g., compliers).  

4. Monotonicity assumption. This assumption is required to rule out the existence of 

defiers. Relaxing this assumption increases the number of the compliance 

principal strata, especially under partial compliance, and makes the complier 

stratum unobservable. It is reasonable to believe that this assumption holds true 

for most RCTs. However, Ten Have et al. (2004) indicated that departure from 

this assumption may exist, as they showed with their examples. 

5. Weak unconfoundedness assumption.  This assumption states that if receipt of 

treatment and outcome are independent given the observed covariates, then 

treatment receipt and outcome are independent given dual propensity score. This 

is the key assumption to allow the efficacy of a treatment to be able to be 

estimated by adjusting for DPS.  This assumption is an equivalent to a commonly 

made ‘no unmeasured confounder’ assumption.  

6. Correctly specified models assumption.  Even when all relevant confounders have 

been measured, an unbiased estimate can be obtained only if the model itself 

reflects the true relationship among treatment exposure and confounders. Outside 

of simulation studies, we can never know whether or not the model we have 

constructed accurately depicts those relationships.  Therefore, correct 
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specification of predicted model to estimate DPS is typically an unverifiable 

assumption. On the other hand, the DPS methods use the exact same model for 

outcomes as the ITT does.  Therefore, the DPS methods do not require an 

additional outcomes model be ‘correctly’ specified. However, when covariates 

need to be included, the DPS methods also require a correctly specified model for 

the outcome with respect to covariates, especially when specific principal strata 

are expected to have a different outcome: covariates and treatment relationship 

compared with the relationship among the whole population. 

7. Free-of-measurement-error assumption. The DPS methods entail additional and 

accurate information about compliance or treatment exposure, and covariates. 

Without the correct information, the DPS methods will not be able to provide 

reliable statistical estimates as they are supposed to. 

 

The DPS methods require strong assumptions and the fact that most of these 

assumptions are unverifiable suggests caution should be taken in the implementation of 

the proposed methods.  In addition, there are other limitations.  One limitation is that the 

DPS methods are mostly useful when there are complicated non-compliance issues.  

However, in many drug trials, non-compliance only occurs in the treatment arm, while 

subjects in the control group have no access to the experimental treatment.  In this case, 

CACE can be estimated more straightforwardly or even be identifiable, and the new 

methods may not be useful. Another limitation is that so far we ignore sampling 

variability by restricting attention to estimands, so any extrapolation from the individuals 

in the trial sample to the population may be questionable.  One point we want to 
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emphasize is that the DPS methods work only when the assignment mechanism is truly 

unconfounded, given the observed covariates and all covariates related to the treatment 

receipt should have been collected. Therefore, plan should be in place at the design stage 

in order to use the DPS-based approaches at the analysis stage.  

 

7.3 Applications and Extensions  

DPS methodology can be generalized to all applications of principal stratification, 

including surrogate endpoints, biomarkers, direct and indirect causal effects, and 

censoring by death. In the recent work, other than the non-compliance issue using 

principal stratification, Barnard et al. (2003) estimate effects of school vouchers in 

student performance; Hill et al. (2003) evaluate the effects of high participation in an 

early intervention for low-birth-weight premature infants; and Zhang and Rubin (2003) 

show how to address censoring of outcomes by death.  

Extensions to binary and survival outcomes will be straightforward. Once the 

principal strata have been identified, the same model which is used to obtain the ITT 

estimator can be easily applied to the newly identified subgroups.  Another extension of 

DPS methods is to model time-varying or dynamic treatment receipt. One possible 

approach is to model DPS at each interval over time, using baseline covariates and 

covariates observed prior to this interval. Thus, a sequence of DPS, instead of one set of 

DPS at the baseline, will be used to estimate the principal compliance effects at each time 

interval. For each subject, the membership to compliance strata may change from one 

time to another.  Recently, Moodie et al. (2008) reanalyzed PROBIT data using methods 



 

 155

related to optimal dynamic treatment regimes in order to consider the effect of 

breastfeeding on infant growth at one year of age.  

In conclusion, DPS- and CPS-based methods allow one to estimate CACE and 

FCACE in the presence of all-or-none compliance or partial compliance, and with 

always-takers.  We recommend that matching-based estimators (MDPS and MCPS) be 

used in RCTs with complicated non-compliance issues.  We believe the dual propensity 

score approach is an innovative and useful tool to estimate the principal compliance 

effects in RCTs with partial non-compliance.   
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APPENDIX: FIGURES - FOREST PLOTS BY MONTH  

Figure A1-1 Effect of Prolonged and Exclusive BF on Weight Gain (g) at 1 Month 
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Figure A1-2 Effect of Prolonged and Exclusive BF on Weight Gain (g) at 2 Months 
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Figure A1-3 Effect of Prolonged and Exclusive BF on Weight Gain (g) at 3 Months 
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Figure A1-4 Effect of Prolonged and Exclusive BF on Weight Gain (g) at 6 Months 
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Figure A1-5 Effect of Prolonged and Exclusive BF on Weight Gain (g) at 9 Months 
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Figure A1-6 Effect of Prolonged and Exclusive BF on Weight Gain (g) at 12 Months 
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Figure A1-7 Effect of Prolonged and Exclusive BF on Length Gain (cm) at 1 Month 
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Figure A1-8 Effect of Prolonged and Exclusive BF on Length Gain (cm) at 2 Months 
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Figure A1-9 Effect of Prolonged and Exclusive BF on Length Gain (cm) at 3 Months 
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Figure A1-10 Effect of Prolonged and Exclusive BF on Length Gain (cm) at 6 

Months 
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Figure A1-11 Effect of Prolonged and Exclusive BF on Length Gain (cm) at 9 

Months 
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Figure A1-12 Effect of Prolonged and Exclusive BF on Length Gain (cm) at 12 

Months 

 


