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LOCALIZATION, COMPLETION AND DUALITY IN HNP RINGS

r

ABSTRACT
; / .

This thesis is a study of localization, completion
and duality in HNP rings with results extended to FBN here-
ditary rings where possible. Chapter 1 contains a review of
localization and comp}etion in Noetherian rings with some
special results for FBN hereditary rings. In chapter 2 is

given a new proof of a theorem of Singh on indecomposable

" injectives over HNP rings. This result is then extended to

FBN hereditary rings followed by a discussion of duality
over these rings. A complete semilocallNoetherian hereditary
ring has Morita duality (Theorem 2.1#)[ The presence of this
duality is a p;werful tool in Chapter 3 where the author
investigates the endomorphism rings of certain iﬁjectives
over FBN hereditary'rings‘and shows that if R is a complete
semilocal Noetherian hereditary ring and J(R) is the inter-
gection of a clan, R S'EndR(E(R/J(R)). This leads to a new
proof of a theofém of Michler oﬁ the structure of semi-

perfect Noetherian hereditary rings;
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LOCALISATION, ,CpMPLETION ET DUALITE DANS LES ANNEAUX HNP

) s~ “

L RESUME
© , L] ‘.

e
7

Dans cette th®se, nous étudions la localisation, la

/

+

. . o &
complétion et la dualité pour les anneaux héréditaires
ﬁcethériens et premiers (HNP{. Chapitre 1 contient %&glques

~

résultats sur la localisation et la comp}éfion dans les
anneaux Noethériens et les T-anneaux, Dags chapitre 2 nous
donnons une nouvélle preuve d'un théoréme de Singh sur les:
'R{modules injeétifs indécoéposables ol R est un anneau HNP,
Ce résu}tgt peﬁt étre étendu aux T-anneaux héréditaires
(Théoréme 2.6). Ensuite, nous étudions la dualité géﬁérale
et la dualité de Morita dans les T-anneaux héréditaires: un
anneau Noétﬂérien héréditaire, semi-local et complet posséde
la dualité de Mofita (Théoréme 2.14), Cette dualité est un
outil efficace dans.chapitre 3 ol nous €étudions 1l'anneau .
| A'endomorphisme d'un module injectif sur un T-anneau héré-
~?itaire. éi R %;t un anneau HNP et N un idéal seﬁa-premier et
inversible.'ék = EndR(E(R/N)). Enfin, nous donnons une
nouvelle preuve d'un théoreéme de Michﬁer sur la structure
d'un anneau héréditaiye. Noethérien et semi-parfait.
| Mary H. Upham
Département des Mathématiques J ‘

£

Université McGill
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Montréal, Québec Aout, 1977 .

-
o

[ Y U



DF-T T T BTARTREYL T Ty m v

g
il

x
Stfsetim

-~

v

!

L ¢

In recent years, 1ocalizat10n of ndﬁcommutatlve rings

PREFACE |

'

has been studled exhaustively by Goldie, Lambek, Michler,
Stenstrom, Jategaonkar and many others. A pgrticularly *nice"
method of localiza?ion has been defeloped for a semiprime

ideal N in a Noetherian ring R(such that C(N) = %ce:R\[c]N

is regular in R/N} satisfies ‘the right Ore condition. A

good deal 1s kﬁ@wn about the "localized" ring RN but little

is known in general about its completion in_ the J(RN) -adic -

topology, RN The .main results of this thesis are concerned

with the strmcture and properties of é& where R is a fully :

.
bounded Noetherian (FBN) hereditary ring and N is a localizable ﬁ

’ ?
intersection of non-minimal prime ideals. The problem can be

' ‘reduced to the case where R is a bounded (non-Artinian) HNP

ring and N is“a maximal invertible ideal. ODur most useful
toal is the fact that Ky has Morita duality with Endp (E(R/N)).

| Chapter| 1, $1 ontains a review of some -localization

f
techniques.

ose p ofs which are given are original. §2
answers a. questlon of Muller for FBEN hereditary rings and
23 iswdevoted to a few resultslon completion of which
Lemma 1.12 is believed to be 6rigina1.

The main result of Chapter 2 §1 on the structure of
certain indecomposable injectives over aﬁ HNP ring is due to
S. Singh b gge give an independent proof (Theorem 2.4) and

show how the result extends to FBN heredltary rings (Theorem




»

2.6). _ It is fundamental to all later results. It is used in

’ Chapter 2 £2 to study Morita duality over FBN hereditary

rings and the more general duality theory of Lambek and
Rattray [22, 23) as applied to these rings. In Thedrem 2.1k
we prove that if R is an FBEN hereditary ring and N a local-
1zab1e intersection of non-minimal prime ideals of R, RN is
a Morita ring. Surprlslngly. Morita duality (over any ring)
cannot be described in terms of the Lambek-Rattray theory
as applied to discrete modules (Lemma 2.16).

Theorem 2.6 and the fesulting Morita duality form the
basis for our Qethods in Chapter 3. In 21, we investigate
the properties of the endomorphism- ring, K, of a suitable
injéctive R~-module hn& use these to egtablish gsome properties
of ﬁ&. Then, concentrating on the situat;dh where R is a
bounded HEP ring and N a maximal invertible ideal, we show
£, ¥ End_(E(R/N)) (Theorem 3.11). It is not difficult to
extend to the case where N is a localizable intersection of
non-minimal prime ideals in a FBN hereditdry ring (Theorem
3,13). This result generalizes Matlis' well-known theorem
for commutative Noetherian rings. Using the;saﬁe methods, in |
52 we determine the structure of K = EndR(E(R/N)) and we
obtain from this a new proof of a theorem of Michler on the

structure of an arbitrary semiperfect Noetherian hereditary

ring (Theorem 3.20).

The author is grateful to Professor J. Lambek for his

criticism, encouragement and patience. Thanks are also due
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) . - L NOTATION AND TERMINOLOGY

P

-~ All rings have 1 and all modules are unitary. Morphisms

are always written opposite scalars.

. -- N SM\ means N is a submodule of M; N M means N is an

essential submodule of M.

4 , |

«

\ -- E(M) denotes the injective hull of the module M.

>

-- If I is an indecomposable injective R-module, Ass I

denotes the associated prime ideal of I.

!
‘- RN
§
\

-~ If M is a right R-module, X< M a submodule and A< R@a

TN
/ \L/‘"w

X ={re Rer—o}; Ann, A ={meMima=02,

: right ideal of R, Anng

t—
- £
¢

[y

£
-~ "Ideal" always means a two-s;ded ideal and ring proper-

tles written without the preflx ;?eft“ or "rlghF are under-
stood to méan two-sided.

./

-- A ring is semi-local if R/J(R) is semi-simple/%&tinian -

0 . ' . [

QIR =0

and n
, , /
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Chapter 1
o
oo

81, Localization 'of right Noetherian .
" rings at semiprime ideals

&

In this section, we summarize those definitions
and results on localization in right Noetherian rings
which will be needed later. Proofs are given only where

they cannot readiﬁy be found in the literature.
S '
~/ ) 1

\ 3
ring R, let B(N) = {ceR l[c] is reg\llar in R/N} There

Given a semiprime ideal N in a right Noetherian

is an 1dempotent filter gjh za58001ated wlth tBUQ):
= {1<Rrl Yrerrltnom #43.

bne may also look g/ﬂthe idempotent filter associi ‘i:
with E(R/N)x .
Oy ={1<¢Rr| Hom(R/1, E(R/N)) = o).
Lambek and Michler [21} have shown that i) £> and hence

.

they determine the same torsion theory, called the N-torsion
theory. For any R-module M, T, (M) = {mem |3 I\ea ml = 0
is the N-torsion submodule of M. M is N-torsion if TN(M) = M,

N-torsion free if T\ (M) = 0. M'< M is an\sidense submodule
if M/M* is N-torsion. M' is an N-closed submodule if M/M;
is N-torsion free. Equivalently, M is N-torsion if
Homp (M, E(R/N)) = 03 M is N-torsion free if M is/cogenerated
A by E(R/N)1 M'< M is N-dense if Homp(M/M', E(R/N)) £
“M'¢M is N-closed if M/M' is cogenerated by E(R/N). Thg
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. Lemma 1.1 (Lambek and.Rattray [22])

>t ¥ ‘N‘\s\
3 % .

. ) /
R .

N-closure of M' in M is {meM| 7] IG.@N mI< M'}. M is

J 8

N-divigible if E(M)/M is N-torsion free. This is the same

as saying that whenever A is an N-dense submodule of B,

every R-homomorphism f: A———>M extends to some g: B—>'M.

Every module M has an N-divisible Kull, DN(M), defined by

Dy (/M = T (E(M)/M).,

The module of quotients of M with respéct to N is given by
TMN = Qy (M) = D (M/Ty(M)) |

RN = QN(R) is a ring, the rinf.a,r of guotients of R at N, or .

the N-localization of R. It is clear that a module M is
N-toraion free and divisible if:f QM) = M,

’ There is a more general noti:n of localization
which can bé applied in any complete additive category
(Lambek [20]): if I is an object of a cominlete additive

category A, considgr the pair of functors

The natural transformation 7, defined by nI(A)@.)i f) = f(a)
VA, Yaec A, Vfe HomR(A, I) satisfies the universal property
of a front adjunction. Let QlieUIFI = SI be the equal -

izer f{f Mg SI' SIfq It Sf:‘SIz. The followihg character- &@
ization of X 1s very useful:

. _}\'/i

Bg e o !

K(A) s QI(A)——-—?, SI(A) is the joint equalizezl: of

\’\
PR

14t

A
39 “'g o




ﬂA ) ’ — ‘ ‘ v , 3
"all pairs of maps Y, 3 SI(A):::;I for v:rhich
'\]o,nl,(A) = YA,

b/ -
. ) X '
By thevnaturality of 1y, nI 7 = InI'ﬁI hence
l
3 ?\z1d~—-—>>QI such that K?\. Mqe
Lemma 1,2 shows that this locdlization agrees with the

more usual 1oqa112at'10n in Mod-R.

F- N . . -
+ . . /

. *Lemma 1,2 ‘ S .

JLet I be an injeé:hive R-module. Let Qo be ,the
localization functor obtained from the usual I-torsion
theory on Mod-R and QI the functor defined-above. Then i
Y M\¢ Mod-R, Q (A) = Q (a). "

Eroofs - .
If“ T (K) der;otes the toz:giom submodule of A, we
Jnow QO(A) = QO(A/’C(A)). Also H}ng(’t(!&). I) = 0, hence
Homp(A/v (A), I) = HomR"(A, 1), and so UF (A) = U;F (A (A))
from which follows QI(A) QI(A/’(,“ (A)). Hence, without
loss of. ‘generality, we may assume ”CQA) = 0, By Lemma 1.1
Q:}[‘(A) is the joint ;qualizer of all pairs P ,Y: —szh):j I
such that (.m (A) = Y.1;(A). Since A is I-torsion free,
A 5,.‘3 a submodule of QO(A)Oand qI(A) is a monomorphism.
. By the injectivity of 1'3!}‘ completing the following:

Aﬂ&‘iiox{nﬂ(k‘ gﬁ I ‘u , - e

L3 I -
X IB!P . .

2y (A)

Qb

&
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H iS”uni'que since’ Q (A)/A is I-torsion. Ir LPH # W4 then

since . (A) =Y. qI(A), Pu =W “induces a nonzero homo-

morphism hs Qg (A)/A—->S (A). But this is I’meossible

since Q\o(A)/A is I-torsion. Hence (up to isomorphism)

Q (A) € Q;(4). -0
For the reverse inclusion, note that %(A) N (A) =

L]

‘qI(A) = AN(A)1 A—> QI(A) is a monomorphism and may be

* thought of as inclusion. If 0 # f ¢ Homp(Q (A)/A, 1) and
P QI(A)———? QI(A)/A is the canonical projection

~ HomR(A, I)
, A SR R
* T W ~~39
o BN )
Qp(A) —E—— Q (A)/A—F——1 .

By constmcti;m. gX(A) # 0. Now g K(A)A (A), = fpA(A) =

— L.e. g () = OﬂI(A)a Since X(A): QI(A)——~%>S (A) equal-
izes the pair g, 0: S (A)::}I, g.K(A) =0, contradiction.
Hence QI(A)/A is I-torsion, Since A is a monomorphism,
QI(AV) is therefore clea;rly an essential extension of A,

It follows immediately from the definition of divislble
hull that (up to isomorphism) QI(A)/A Q, (A)/A. Hence
Qr(A) = Q (A). "

Definition: The semiprime {1deal N<R is right localizable

- ,
if YreR Yce B(N) dr'e R de'e GIN) 're' or'.
. Jj
When N is'a right localizable semiprime ideal, Ry .

[
<
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k
g
t
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takes a classical form — i.e. there is a ring homomorphism
ht R——> Ry such that every element of RN can be written
in the form h(r)h(c)'Iﬁfor some re R, ce %(N),and h(r) =
= dce H(N) re = 0. There.are many ways of chéracterizing
fiéht localizable semiprime ioeals. The following are only

some:s

i

Theorem 1.3 ([16],[9])
Let N be a sepiprime ideal of a right Noetherian

ring R. Then the following“are equivalent:

(a) For any R-module A, if A has an essential\and N-dense
submodule B such that ﬁ is a non-singular R/N-moéule; then
AN =0 3

(b) For any oyclio R-module A, if A has an essential and
ﬁédense submodule B isomorphic to a uniform R/N-right ideal,
then AN = O

. (¢) Every haximal N-closed right ideal of R contains Nj

(d) For all maximal N-closed right ideals ] < R, I/\E%(N) = g
(e) The elements of G(N) operate regularly on E(R/N); .

(f) N is right locahizable. \
Proofs
"~ (a) B (b) trivially. ‘ -

For the implications (e) = (f) and.(f) = (a); see

Jategaonkar [16].
(b) = (c)s Let K be a maximal closed right ideal
of R. Let A = R/K. A is N-torsion free but“evéry proper




|
r

Proposition 1.4 [32]

o

factor module of A is N torsion. Since A is cogenerated by
E(R/N) [0 # £ B ———>R/N for some unifﬂrm B<A, If f is

not a monomorphlsm, f(B) = %/ker(f} is N- torsion. contra- -
diction., Hence B is (isomorphic to) a uniform R/N right ideal.
A/B is N-torsion, therefore B is N-dense in A. If B'N B = OHQ
for some B'<{ A then B<s> A/B' which is N-torsion. But B iswfﬁ
torsion free. Hence ﬁﬂ'= 0 and B is essential in A.aéys'.

(b), AN = 0 ° K»N. |

(¢) = (d)s Let'I be a maximal closed right ideal of R‘ .

and suppose IN G (N) # ﬂf By (e¢), I>N, Let N¢N + cR(I
where ¢ € G(N). By Goldie's Theorem applied to R/N, N+cR

is N~dense. Hence I is N-dense./contradictioh.

(d) = (e)i If ec = 0 for some 0 £ ec E, c e B(N), ther
AnnRerﬁlz(N) # f. Hence hnn is no#(contained in any maximal
closed right ideal, and therefore AnnRee.cg)N and TN(E(R/NQ)

# 0, contradiction.

»

Let N be a right'localizable semiprime ideal of a
right Noetherian ring R and let N = {51 P; be its unique”
repreogntation as a finite irredundant intersecéaon of prime
ideals. Let ht R——>Ry define the ring of quotients of R
at N. Then . °

(a) Ry is right Noetherian;

’

(b) J(Ry) = h(N)Ry and ﬁN/J(RN) is semisimple Artinian;

(c) @(N’) =B8N . . . NG(R) and if ey B(Py)




/rf

]
ok .

‘ n
\v, i = 1 2. cno'n then EriER él‘cirié ag(N)' N
(d) The prime ideals of RN are exactly those h(Q)RN such
that Q is a prime ideal of R and Qéfigi Pso

P

The “nPcest" localizations are those which most closely
parallel the commutative situation. This leads one to impose

further conditions on N.

A

t

befinition (Mﬁller)f‘Let N be a right localizable semiprime
ideal of the right Noetherian ring R. Then N is right
classical if NRy = h(N)RN has the right AR-property —-i.e.l
for every right ideal A of Ry, Ine N AN (NR™)< ANRy.

»

Note before Theorem 1,5: The canonical monomorphism
R/NC———aRN/NRN is essential iq Mod-R. Hence ER(RN/NRN) =
ER(R/N). The latter is an Ry-module which is an Ry-essential
extension ofCRN/NRN; therefore, in Mod-Ry, E#RN/NRN)QZ

(RN/NRN). Since ERN(RN/NRN) is clearly an R-essential
/extension of RN/NRN. ER(R/N) = ERN(RN/NRN). '

Theorem 1.5[}6 s 2ﬂ
i For a fight localizable semiprime ideal N in a right

Noetherlan ring(§§8::e following are equlvalent: @
(a) N is right classical;

= = n
(b) E = E(RNN) = n=1AnnEN
(c) For.any cyclic R-mgdule A, if A has an essential




¢
submodule B which is isomorphic to a uniform R/N-right
ideal, then dn AN" = 04 v e } /
(d) For any cyclie RN-module A', if A’ has an essential//
submodule B whileh is—isomorphic to a uniform R./NR -
right ideal, then dn A'NRNn = 0%

(e) Every right iigal of Ry is closed in fhe NRy-adie

topologys nQI(A +NPRY) = A VAcR. . Y
Proof )

For the equivalence of (a), (b) #@nd (e) see Lambek
and Michler [21]."
(b) = (c): see “Jategaonkar [16?.
(¢) = (d): Suppose A' is a cycl%f RN—modgle containing a
submodule B' satisfying the assumptions oé (d): If A' = aRN.
consider the submodule aR< A. Applying (b) to B'/) aR <aR

In  aRN" =0 .".aN" = 0. Hence a(NRN)n= 0, therefore A(NRN)n=Q'

(d) = (e): If not all right ideals of Ry are closed in the
NRNdadic topology, let A be maximal among right igeals which
are not (since RN is right Noetherian). Let B = égl(A + NBNn)
ZA. If C24A then C = Z_i_l(c + NRN“)> f_}i(A + NRl?) = B.
Hence B/A is a simple Ry-module and RN/A is uniform since

A is mee%-irreducible. Now RN/NRﬁ is semisimple Artini%n.
hence B/A is (isomorphic teo) an RN/NRN right ideal which

is essential in the cyclic Ry -module %&ﬂ. By (4), dn
[I]ANRNn = 0 which implies NRaniA, contradiction. ,ﬁ

-

{

£
In keeping with our conventions, a semiprime ideal in

S e . i £ B B i o = TR R AL YR
4 B e iR
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;,Noetherian ring R i; localizable and classical if it is
right and left localizable, right and left classical. Tﬂe
terms "localizable™ and "classical" may also be gpplied
to the set SPl,..., P } where N = BlP is the unique
representation of N as a finite, irredundant intersection
of prime ideals and N is localizable and classical. A ,//
minimal localizable, classical seé of prime ideals is //ﬂ
called a clan. When R is an HNP ring, there is also the '

ﬁotion of a "cycle" of prime ideals introduced by Eisenbud

and Robson [12]. They showed that when R is HNP, X is

makaal among invertible ideals of R iff X is the inter-
gsection of a cycle (see Theorems 2.4 — 2.6 of [13] ).

(Recall that all non-zero primes in an HNP ring are maximal
[2]). Miller has shown that for an HNP ring, the notion

of a clan coincides with that of a cycle. In fact, a semi- o
prime ideal N in an HNP ring is right localizable iff it

is invertible. In that case it is localizable and classical
%2]. In general, two questions naturally arise: (i) are
different clans disjoint? and (ii) does every prime ideal
belong to a clan? Both qﬁestions have been answered for

HNP rings: for any HNP ring, different clans are disjoint
and\if R is right bounded,,évery prime ideal belongs to a

clan (Eisenbud and Robson [12]1 Lenagan [24]). An example-

is known of an HNP ring which is not right bounded and for

wvhich the second queétion has a negative answer (Robson [3#}).
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Definition: A right Noetherian ring ﬁ\ig right fully

bounded (r.FBN) if every ﬁrime factor ring is right bounded.
Equivalently (Krause [17]), the map I—— AssI. of isomorphism ,
classes of indecomposable injective right R-modules to prime

ideals of R is bijective,

Classically, in Noetherian commutative rings, one
: of the uses of localization is to deduce information about’,
R from facts known about all Rp (P a prinie ideal). The b
techniques used can be carried over to non;commutative FBN
rings with enough clans (i.e. every prime ideal belongs to
vaﬂclan). Since all proper factor rings of an HNP ring are
Artinian, any bounded HNP ring is an FBN ring. Thus we haveJ

gome FBN rings with enough clans. This leads naturally W@l
the/questions does every FBN ring have enough c¢lans? In . g
view of Robson's ?xample. we cannot expect to drop the ’
condition of fully boundedness. The next section provideé
a partial answer to this question.
$2. Localization oﬁ Noetherian hereditary
rings

A Noetherian hereditary ring is a direct suffiif/ﬁ\

indecomposable  ideals each of which as a ring is e¥ther -
HNP or Artinian hereditary [3). This prompts us to investigate
localization in a finite product of rings. Let R = Rlﬁ$)R2

AN

e e s NSO oo BARSU  foil et
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n
and let N = {QIPi\be a semiprime ideal. Each prime P,

. contains one of R, or R, and if P, Ry PyN Ry is a prime

jdeal of Rj (possibly 0).

. Proposition 1.6
. Let N be a right idepl of Ry Ny = NAR;. Then

(a) N = Ny

(b) R/N & R1/N1@ Ry/Nys

(¢) EL(R/N) = ERi(\Rl/l\Ti) @ ERZ(Rz/Nz) where each direct

gummand on the right hand side is given an appropriate
N &* |

R-module structure.

~

Proof's .
(a) isclear and (b) follows immediately from (a).
(e)s Let ye Eg (Ri/Nf) and re R. Write r = r, + r, where
i
rie_R.. Define yr = yr;. This agrees with the R-module
structure already operating on R, /Ni‘ For any right ideal
D of R and any fe Homp(D, E (Ri/N )) there exists a g€
Homp (R, E (Ri/Ni)) extendlng f, If g is right R-linear,
i i ’
we are done. Let s, r<R., Write r = ry + e 8 = 54 + Sy

g(s)ri = g(sri) = g(s r, ). On the other hand,

]

gis)r

glsr) = g(syry) + g(szrz)- Now for j # i, if gls,r ) # 0,
:Bt.e Ry g(sjrj)ti is a non-zero element of Ri/N . But
g(sjrj)ti g(sj 3 i) g(o) = o, cog:radiction. Hence
g€ HomR(R. (Ri/Ni)); Ep (Ri/Ni) is R-injective and

is clearly an R-essential extension ‘of Rr/N
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l’ Lemma 1.7 |
on ,
Let N = fQHPi be a semiprime ideal of R = R,® R,. Let
N, = NNR;. If both N; #R;, then (x = x,+ X With x;¢ Ry
\ and x¢ B(N)) & (x;¢ @Ri(wi) for i =1, 2). If N,-= R,

then (x=x, + Xy € G(N)) <= (xy € @Rl(Ni)).
Proof:

Assume both Ny # R; and suppose x = x4+ x,€ G (N).
If for some r.€ R,, X;r;€ N, then xr; = x,r.€ NN =

€ N . Hence Xy e B .). Conversely, if both X € G, (N,)
Ty Ri Ry

and xr ¢ N, then xirieNi for i = 31, 2, hence reN,

i

If N2 = R2' g similar proof works.

( Corollary )
(a) If N, # Ry for i =1, 2, then N is right localizable iff

each N, is right localizabdle in R;. ;
(b) If N, = R,, N is right localizable in R iff N, is.right:
localizable in Rl'
Proofs \
(a): Assume N is right localizable, Let 61€>f3(N1)/aﬁ& ryER,.
By the right Ore condition for & (N), Je'c B(N) and r'e R
7 . .

such that (c;+ e,)r' = r,c’ (where 1 = e;+ e,). By the
uniqueness of representations, clrl' = rlcl' and by the
lemma c,* € Bal(N ).

Conversely, assu?ing each N is right localizable in
Ry» let c € ©(N) and re R. For each i, find c '€ & R, (N;)

Ry

aqd r;'€ Ri such that ciri = rici'. Clearly r' = 1'+ ry'

NIt e ™
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. and ¢' = ¢4 + c, will do, o

13
) j

(b) If N is right localizable and c,¢ &, (N,), r.€ R,,
1 R1 1 1 1 /

let c¢' ¢ G(N) and r'c R be such that e,r' = rc'. Then

clearly, if ¢ =¢cy' + c,' and r' = r,' + r,', we have

cyT 1 = r4c 1 . Conversely, assuming N1 is right localizable

in Ry, given c¢ E(N) and rcR, write ¢ = ¢ + 02 and r = rytr,.

Then ¢, ¢ G(N,) and 3 ry,'e Ry and c,'c ‘6(1\1 ) suéh that

clr1 = rye 1 . Putting r'= £+ 0 and c¢' = cl' ,+ 0,‘we have’ B

et e C(N) and er' = re'.

Lemma 1.8 )
(a) If the right ideal D is N~dense in R, then for each i,
(v) If for each i, Di is an Ni-dense right ideal of Ri' then

t\he right jdeal D = D1 @ Dz‘ is N-dense in R.
Proof:

(a)s ~ Assume ripn Y(N) # 8 YrecR. Given ry€ Rijce G(N)

: - = -1
rjc = r;c; ¢ DNR; (where ¢ = ¢y + c,). Hence r,” "D, N \@(N.l) A8,

(b): Let r = ry + rp. Let r;c; € Dy where( c,€ @Ri(ﬂi).

Then clearly r(c1 +c2) =ryey T ryc, €D,

Corollary 1

If N, #R; for i =1, 2, then Ty ) = Ty (R1)®TN (R,) and
5 2
R/Ty (R) Rl/TNl(Ri) @RZ/.TN (az). if N2 = R,, then
2
Ty(R) = TNl(Rl) @ R, and R/TN(R) = Ri/TNi(Rl).

ie
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) D1 is an R-module in the obvibus way. 'I‘he R-structure on
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Corollary 2
If Ny ¥ Ry TNi(Ri) = TN(Rj:).

Localization preserves finite direct sums. Hence

Dy (R/Ty(R)) = DN(Rl/TNi(RIM)) @ DN(Rz/TNz(Rz))

Lemmg 1. \
Lemma 1.9 y

In Mod-Ry, D (Ri/T (R )) = DNi(Ri/TNi(/i))'
Proof . /
e N /

We shall show /

/
/

(i) Dy (R, /T (R;)) is an Ri—essentlal extensmr; of Ri/TN (Ry),
(i) DI\‘(Ri/'J.‘l (R, ))/(R /T N, (R, )) is N, -torsmn. |
(11i) Dy (R, /'1‘ N (R )) is Ni-dlvismle“in Mod-R, . ‘ j

(i): Given 0 # xe Dy (R, /TNi(R )) Ere RO # xreRi/T i(Ri) |
In that case, 0 # xre. eRi/T j.(R i and\since re; < R,, (i) holds.
(11)s Given x< Dy (R, /'1‘N (Ri)) I pe % such that xDc¢ R. /_T *(‘R )

"Then x(Dn Ry) C Ry/Ty (R ) and DN R,e éD . .

i i

c(1ii)s Let 01 be an Ni-dense right ideal of Ry« Then

D= D, @ ﬁz € @ R/D = RI/D = D, is ‘N-dense in- Ry (consider-
ed as R—modules). Let ft+ D,—> Dy (Rl/TN (Ry)) be R -linear.
DN(Ri/T (R )) has the property that for xc D (Rl/T (Ry))

and r,¢ Rz. xr, = 0 It follows that £ is R-linear, hence
extends to an R-linear g: R,—> DN(RI/TNi(Ri))° Since g

is obviously R,- inear, ,the result is proved.

s

AR PN
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Corollary

If R, #N; for i =1, 2, then Ry ¥ Ryy ® Ry and
L 2

1f Ry = Npu Ry ¥ Ryy ’ -

Proposition 1.10 \
If Elngs R, and R, have enough cl, 8, then R = RfE)Rz

£ {
does also.,

Proof:

"~

Let P be a prime ideal of R. Assume P2R,. Let P,= P/ Ry .

2
Then P, is a prime ideal of R1 so belongs to a clan =

1

Pie. {Pl,Qz....{QﬂE. Then P = Pf@ R2 belongs to the clan
[P @Ry 4P Ryuenes Q@R

¥

Corollary
A fully bounded Noetherian hereditary ring has enough

clans,

5

If R is bounded HNPvand P is a non-zero prime ideal,
we know P belongs to a clan. The primf ideal 0 belongs to
the clan {0} by Goldie's theorem. If R is Artinian hereditary
and indecomposable, J(R) is the only localizablé semiprime
ideal [32] so every nonzero prime belongs to the clan whose

intersection is J(R). Finally, if R is Artinian hereditary

//and already prime, Goldie's theorem shows that {0] is a

clan., Hence if R is a fully bounded Noetherian hereditary

ring, it is a direct sum of rings with enough clans, hence
. TR




’ ;;J'{ /IT has enough clans.

$3. Completions

, ' n
| Assume that R is Noétherian and N = {24P; is a local-

izable classical semiprime ideal;\It follows from the AR~
% N
property of NRN that AQINRNH = 0, Hence the NRN-adic topology

o0

on Ry, whose basic open neéighBpurhoods of 0 are {NRNn}nzl.

A /
. is Hausdorff. Let RN defipte the completion of RN in this

topology. ‘ r

/

Theorem 1.11 (Miller [32]) ,
. n ’
Let N = ,(,P, Dbe a localiszle classical\semiprime

! ideal of R written as a finite irredundant insersection of
prim; ideals. There is a one~one correspondence between
| localizable subsets of §P1.10o, Pn} and central idempﬁtents
of ﬁ& givén by :
o {?11..... Lpié «—> e where TR, +J(R)) :fﬁ\N and =Py n...AP;
/
Co;glla;x ‘ ‘
/ If S = §P1.....Pn} is a localizable classical set of
, priﬁe ideals of R then &f is the disjoint union of clans in’

a unique way. A subset JC,§ is localizable iff it is the

union of ‘some of these clans. o

' A
In particular, when {Pig.... PA} is a eclan, RN is ring- .
- ¥

"WW** T TATRRIRINTMT Y e ¥
1



. ( directly indecc;mposable. . ]
Miller's theorem shows that in some sense the de-"
composition of ﬁ; as a sum of indecompqsable ripgs reflects
the decomposition o%%{Pl..... Pn} into clans. In a similar
vein, Lemma 1,12 shows that if R is a direct sum of rings,
R = Ri @ .. ® R + then in some sense ﬁN also reflects

- that direct sum decomposition. As in section 2, let R=R1@R2

v N= N1@N2 where Ni = NN Ri K

A
~

' Lemma 1.12 o - :

1 4

’ 4 The NR -adic topology on Ry coincides with the product —

topology induced by the NiRiN. -adic topologies on R}l' Rz
: - respectively. ' )
Proof: c ' |
A typiﬂcal,basic open neighbourl;i)od of 0 in the NRy-
’ adic topology on Ry i?js‘oine power NBRN= (NRN)S' A typical -
st element of such a neighbourhood is a finite sum of elements

of the form IyTseeel where each rje NRN. For each j, let

8
rjﬂ Ty j + Taj with rije RiN + Since R‘NLH RZsz 0 and be-
e . cause of the.way.each is.m pﬁm",;g av.n&RwRN b}module. i.t »

is easy to see that FyTpessTo = TyyTy5eeeTyg + r21‘ 22 ...1'2‘s
8

It
T

aore N [y
LYout, @ s

which is an element of N,R,, ° + N.R. . 1.e. we have
1N, 2 °N,
: shown NR ®< N RLNS ® NpRey, ®. The reverse inclusién is
obvious. It follows that \the NRNJ*adic topology is contained
‘in the produé¢t topolo;y ) "

, . ‘ Conversely, a basic eroduct-topo’logy’neighbourhood
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8, 8,
of the form NlRlNL @® NZR‘?NZ
for s> 84, B, Hence the product topology is contained in

the NR -adic. . ;

5 8_yn 8
contains NIRLNL & N2R2N2 "NRN

%

Corollary .

A

- A A A .
Ry ¥ Riy @ RZN where RiN is understood to be the
1

1

completion of R, in the N R, =-adic topology and both
N; i N

Ny # Ryo If N,= Rz. then RN £ RlNl \

Proof: * N
* Assume Ny # Ry for i =1, 2. First we show every

n=1
is a Cauchy sequence in RN' write X, = X, + x5 with X, € RlN

Cauchy sequence in RN has a limit in RlNO RZN . If {x
L 2

'Given s, for sufficiently large n-and m, xn-x € NRN » hence

Xin" Xip€ NiRiy 8, Thus {x1n3n 2y and {x, } "7 =1 are Cauchy

Jsequences with limlts X4 and X, in R‘Nl and RZN respectively.

Clearly x = 1 X, &})Lno X Hence RNQ RLNL® IQ’NZ +» The .
reverse inclusion is trivial. o

If Nz = RZ. the result is obvious.

. % tume out that Fy coincideshith the bicommitatof
of E = E(R/N) [19]. Since E is N-torsion free divisible,
there is a unique \:ay of making E an Ry-module -and because
of the way this is done, it is easy to verify that E is an.
H-Ry-bimodule where H = Endp(E). Ry ;g then naturally

vembedd_ed in S = Bic(E) = Endy(E). There are three topologies

on RN: the NRN-adio described above; the E-adic, whose basic




. ° open neighbourhoods of 0 are of the form ker(f) where
f1 RN—-6>En for some ny and the finite, whose basic open
_ neighbourhoods of 0 are of the form 5qe RN lilq=...=inq=0}
~ . for some set {11....V ianE. By Lambek [1?. Proposition 3],
the finite tg;ologynagrees with the E-adic on S, henée on
" Ry. By Lembek and Michler (21 , Proposition 4.3], since N is

-

localizable and classical, the E-adic topology agrees with xww@
{ 1

the NRy-adic topology on Ry o '

Lemma f.l} . ’ °

Every N-torsion free factor module of (RN)R is d;visible:

-

Proof:
(i): Every N-torsion free factor module of (RN)ﬁ is

an Sfmodule. Indeed, let f3 Rﬁ———4>M be an R-epimorphism.
Let h: R-————>RN define the ring of quotients of R at N.

Define mh(a)h(c)™! = f(qh(a)h(c)-l)where f(q) = m. This is
well defined since if f(q') = 0 and f(q'h(abh(c)-i) £ O
for some h(a),h(c)"1 then f(q'h(a)) # Oisince M is N-torsion

G it @ 4

TR e

free and N is localizable. Hence f(q')h(a) #.0 so f(q') # O.
It is straightforward ¥ check that this makes M into an
Ry-module. ’
(ii): Every N-torsion free Ry-module-is divisible as "
an R-module: Since every element of S(N) becomes invertible
in Ry we have VDQ% R(D)Ry = Ry. Let M be an Ry-module which
is N torsion free as an R-module and suppose fe:HomR(D M) for

gome D¢ @, Extenq f to g1 h(D)Ry—>M by defining o,

|
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&(h(agh(e)™) = f(d)h(a)'gn(a)n(c)‘1= 0% na) =0
Jere B(N) such that de’ 20 B f(d)e' = 0 = f£(d)c T, (M)=0,
Hence g is well defined. Since gﬁl}é h(D)Ry, g(h(1)) is

defined, Define an extension f of f by f(r) = g(h(r)) Vre.R.

Cbzglgg;x ‘
RN is dense iﬁ S,
Proof':

<

The conditions of Lambek HF9' Prop. 2] are satisfied.

It follows immediately that Ry = S = Bic(E). Notice
that if I is any injectivéﬁﬁ-mogule which is embedded in a

. finite direct sum of copies of E and which also cogeﬁerates

the N-torsion theory, then the same arguments show that
ﬁ& = Bic(I).

I - I L L < =
. 4 LG~ al hg R - w L]
. B
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Lemma 2,1

Chapter 2

§}. Indecomposable injectives over bounded

»

HNP rings

ThN—
N
//Q‘ .A%sume‘now that R is a bounded, not primitive, HNP
ring. Théh R is fully bounded. Let I1 be an indecomposable -
injective R-module and let P, = AssI, # 0. By Proposition

1,10, P, belongs to a clan {Pl, Pz....._Pn} whose intersect-

jon is an invertible semiprime ideal.N. Let Ii be the unique

(uﬁ to isomorphism)_indecomposab;e injeétive with associated

prime ideal Pi‘ The main theorem of this section concerns

&

the structure of each Ii'

ApAdT T

Proofs

Each AnQIiN ig:simple and nén-zero.

Let Mi be a maximal right ideal of R containing Pi'
Then I, ¥ E(R/M.). Since (R/Mi)N = 0, AnnI N # 0. Since

Ann, N is an R/N-module and R/N is semlsimple Artinian.

Iy

hnn N is a direct sum of simple R-modules. But Ii is
i
uniform. Hence AnnIiN must be simple.

|

" Lemma 2.2

LN

, - oo ’ n
(a) I = nglmnliN

m notl
(v) AnnIiN ¢ AnnIi

for all m> 0.
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Proof
(a) follows immediately from Theorem 1.5
(b): Suppose Ann, N® = AnnI Nmﬂ. Then for all s mtl,
(A Sy y8-m=1, mtl i, 0. Th if
nnIiN XN XNTT) . Therefore,
(Ann; NSX N 1) Canng N = pnn N®
I ey some1y.m i i \
(Anny N°X N JNT =0
i .
(Anng NEY N®1) =0 SN
i :
ETC. ‘o
Proceeding in this fashi)::;x'one shows IiN = 0., By Goldie's

theorem, let x<N® be a regular element. Given any 0 # je< Ii
map xR——éI.1 by xr———>jr. Extend this to a map h: R—————>Ii

and let h(1) = y. Then yx = O because yeriNm. But yx ;4 0

o

g

because yx = h(x) = j, contradiction:

‘/\’.,'\ Ko\

& E2

Lemma 2.

(a) The submodules of I, are linearly ordered (cf. Singh

[38, theorem 4 1) ps

(b) Ii/Ann N is an mdecomposable\ injective R-module iso-
morphic to one of {1, }3=1. ,
() {Ty4eees 13 —{11/'AnnIl . Ia/lnnIZN...,, In/lnnI N3, ,
Proof: i | \

(a)s It is enough to show that if x, ye¢ Ii then

xR < yR or yR <XR. The ring R = R/Ann(xR+yR) is a proper
factor ring of R, hence is serial (Eisenbud and Griffith
[1_?.] ) which implies that the R-module xR+yR is a direcf sum

of uniserial modules. But xR+yR < I; is uniform. Therefore,
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xR+yR is uniserial and either xR< yR or yRc< xR.

(b)s By (a), Ann. N is meet-irreducible. Hence Ii/Ann N

I
i
is uniform. But over a right hereditary ring, factor modules

of injective modules are injective. Hence I /:“LnnI N'ig an

indecomposable injective. Since (AnnI Nz/Ann N)N 0 and
{Pl...., Pn}are the only primes con‘taining N, the associated

prime ideal of Ii/Ann N must . be P;} for some jc {1..... nj.

Iy R
Since R is FBN, Ii/Ann Ij'

(c)s By (b), 1/Ann11N

ll“—"

I, or Ij’ for some j # 1. In the

IlN = I

By (b) again, Iz/.l\nnI N = I, er I, or (possible after re-
2

second case, re-number if necessary so that”“Ii/Ann 2¢

numbering) 13. Thus it is possible to re-number the Ij 80

that {
1/’Ann 1N = I 12/'AnnIz 3..... IB/Ann 8N = I, for some

s<n. Suppose 8 +n. We shall show that S = P. N ...r\Ps

1
islocalizable by showing that condition (b) of Theorem 1.3

is satisfied. A uniform R/S-right ideal U/S is certainly

a uniform R-module. Hence ER(U/?,) is an indecomposable
injective. Since (U/S)S = 0, the associated prime ideal of
Eg(U/S) is one of Py,P,,ese, Py, Hence Eg(U/S) = I, for gome
3€91, 2,404s 8}, U/S is (isomorphic to) a finitely generated
R-submodule of I so by (a), O £ U/S = yRCIJ. If U/S is

an essential and dense submodule of a ycyclic R-module xR,
we may assume xéIj. Now yS = 0 implies yN = 0 = yR=Ann; N

J
by Lemma 2.1. If xR # yR then, by (b), IJ/AnanNQxR/yR o)

&

Anng N?‘/ArmI N. Hence O # WyR ig N-torsion free, contra-
J b

ARG
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"
diction. It follows that xR = yR and xRS = 0, Thus the
condition for right localizability is satisfied and this
implies S is invertible. Since §P1..... Pn} is a clan,

n = s and (c) is proved.

&

@

Theorem 2.4 3
Let R be a bounded HNP ring, 11 the indecomposable

" injective with associated prime ideal P # 0. Let P, bélong
- n N
to the clan {P,..., P } and N = 24Py« Then I, is the union

of spbmodules. 0B §B,Geun B $B 445 +++ where
(a) By = Ann11

(b) each Bi,/Bi_1 is simple;

Nia ) .

(c) each B; is eyeclics
(@) there are no other submodules of Iys
(e) By/By 4 = Bj/Bj-l iff i = ? (mod n),
Notes S.S Singh has obtained a similar theorem but the present
proof was obtained independently. ‘
Proof:

i T ¥
(a)s If Bi = AnnIlN , We know 11 = n=1Bn and Vi, Bi% Bi+1'
(b) follows from the fact that B-i/Bi_1 is an R/N-module,

{

therefore a finite direct sum of simple.%—modules. But at
the same time.MBi/Bi_1 is a submodule of one of the Ij’
and these are all uniform. )
(c) and (d)s We proceed by inductien. Any 0 f‘yéaBl must
~generat_e 31 by Lemma 2.1. Assume Bi—l = yi_13 and selectl

any y; € By~ By ;. By Lemma 2.3(a), since y;R¢y, ,R, we
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must, have yi_;RS;yiR. ysR = B, now follows from (b).

(e) follows from Lemma 2.3(c). Indeed Bi/Bi_1 = Bj/Bj-l
1ff 1,/By ¥ 1,/B4 4 gnd this happens iff i = §j (mod n).

Corollary i1 g ~

Let I be any finite direct sum of copies of the I,
suchuthat each Ii appears at least once. Then I is Artinian,
I is}also a self-cogenerator — i.e. every submodule, C,
of a factor module of some I is cogenerated by I. In /
particular, HomR(C. I) # 0. ‘
Proof:

That I is Artinian folloys immediately from the
theorem., I" is a direct sum égaEk'wﬁere E, 5 I, for some
iefl, 2,..0y n}. If Y< I then I"/Y isvinjective since R
" is hereditary. It is also Artinian, hence is a finite
diréct sum of indecgmposable injectives: say”Im/Y = Ifg.:.@E't.‘
Let T ImVY———+>13 be the canonical projection and
% E——>I"-the canonical injection with p: I™—> I"/Y
representing the canénical surjection. If 7pX = 0 Vk
then ™p = 0..7%= 0, Hence Jk such that Homp(E,, I',) # 0.
Since I', is indecomposable, since any homomorphic image !

if E, is injectivé, and since the only submodules of E
8 . o~ 8 3
are the fnnEkN E]s I 1--Ek/AnnEkN. Ii for some i€

k

{1, 2,044, ni. Similarly each I'j = Ii(j) for some i(j)e
51, 2y 4oy n}. Hence IQ/YC——%>Ix for-some xc N. It fdiloys
that any submodule, C, of I™/Y is cogenerated by I and

¢ .

ey S N
e e 1 T RN
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HomR(C. I) # 0. |

Corollary 2 .
.Vx <I,, Homp(I,/X, I,) # O.
Proofs
By the theorem, X = ‘A‘"nIINB for some s, hence
W
I,/%X ¥ I, for some ic¢fl, 2, ..+, nh Then I,/Ann. NV % 1,

i, .
Nt &1

for some t and the composite I./XZI,—>1I,/Ann
I i g | Ii 1

is a non-zero homomorphism: Ii/x———-> I,

1

These results can be 'qxtended tou fully bounded
Noe@herian hereditary rings/ as long as we restrict our
attention to non-minimal prime ideals. Recall that in a
Noetherian hereditary ring, any chain of prime ideals

éonsists of at most two elements [2].

Lemma 2,
Let R be a Noetherian hereditary ring and assume

R=R ®R, @ ... DR . \

"where each Ri is either HNP or Artinian hereditary. .Let

{Pyreees Pn} be a clan of prime ideals. s
(a) If P;2 R, then P,Z R, for all i = 1, 2,..., n.
(p) 1f P1 is a min;mal prime, so are all the Pi‘
(e) If Py is a maximal ideal, so are all the P,.

(da) 1t P1 is both minimal and maximal, so0 are all the Pi'

Proof: -

(a)s Suppose Pi;b Ry. Let R = Rz@ oo @ Rm.DBy

-

26
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( n
the corollary to Lemma 1.7, NNR, = '01(1"” R,) is localizable.

Suppose that -only Pl' PZ""' P 2R . Then each contains R',
so il_:l(P NRy) = i=1(P NRy) is localizable and 1(P NR")
= R', By Lemmsa 1.7, iPl..... PB} is localizable a.nd by Theorem
1.11, it follows that s = n. | .

(b): Now assume Py is minimal and suppose PZEQ
where Q is a prime ideal. Since le;9 Ry, .'.Q;éRl .. Q2R'.
Hence F, = (P,NRy) @ R* and @ = (QNR ) @ R' = P,N R 2QANR,.
Since a}l primes of an Artinian ring are maximal, it follows
that R must be HNP and in that case, QN R,= 0 because all
non~zero primes of an HNP ring are maximal, But then
P,AR JQNR, P, = (P,A Ry) ® R'2Q. By minimality of
P,y'Py = Q5 P,. This contradicts the irredundancy of the set
TPyyeees B Y |

(¢)+ Assume P, is maximal and suppose P,§ Q where Q is
a‘ (proper) prime ideal of 'R. Since PZQR' .. Q2R Q;Rl.
Then in R1 we have primes Pzn ngQﬂ Rl and this ‘forces R1

"to be HNP and P,NR; =0 as in (b). Then P, = R'S P which

again contradlcts the irredundancy.

(d) follows 1mmediately from (b) and (c).

£

Since we are assuming R = R, ® ... ®R_ is a-i‘uﬁ/
bounded Noetherian hereditary ring, a non-minimal prime
ideal P, will contain all the direct summands to R except
for (say) Ry, and P, N R, must be a non-zero prime of R,.

Hence R1 must be bounded HNP. If P1 belongs to the clan

P
2, s 4 -, P LA
R AR PO R UL IR T
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n

= N | =
{Pys Pyreens Pn} and N = ,0,P,, we know E_(R/N) ERI(Rl/Nl)

(Prop. 1.6). Applyiné Lemma. 2.3 to ER1(R1/N1)lwe conclude
that if 11 is the indecomposable injective R-module with
associated prime ideal P1 it is also the indecomposable
in jective Rl-module withassociated prime ideal Pif\Rl # 0,
go has as only Ri-submoduleS»the chain \\ *

)n+1c

L2 N )

n
OCAnnllNﬂ RI*...g Il(NﬂRl) gAnnll(Nf\Rl

Ags R-modules, these coincide with the chain

OflAnnI NG ...C’-AnnI N CiAnnI N 1$ e+vs The arguments
1 1

1
used in Lemma 2.3(b) and (c) still work because Lemma
2.5 assures that all the Pi are non-minimal and be-
cause over & FBN ring, every localizable semiprime ideal

is classical [32]. Hence we have

Theorem 2.6

Let R be a FBN hereditary ring and P1 a non-minimal
prime ideal of W. Let 11 be the indecomposable -injective
with associated prime ideal Pl' Then P1 belongs to a clan
{Pi' Pyreees Pﬁ} of non-minimal prime ideals whose inter-.
section is a localigzable (classical) semiprime ideal N. The

only submodules of Iy are Of Anny NG ... & Anng N'¢

Iy= yAnng X I, I,
each Ann, N is cyclicy and the factors Anng N8+1/AnnI 8
1 1 1
and Anng N r+1/'AnnI NT are isomorphic iff s = r (mod n).
1 1
Corollary

If I, is the indecomposable injective R-module with

[y

c

1 , |
N?; each factor Ann; Nn/lnn N+l g simple; !

2
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associated prime ideal Pi and I = Il 1 coe @ L, n for
some §; > 1, the corollaries to Theorem 2.4 still hold.

§2. Duality in FBN hereditary rings
./ ,

N

Definition: Consider arbitrary rings S and T and a bi-
module SIT' For any T-module M (resp. S-module M), define
M* = Homp (M, I) (M* = Homg(M, I)). There is a natural
homomorphism M—" 5M#* where (f)& = £(m), Call an S-module .
M (a T-module MT) reflexive if M¥*= M, If S = Ein(IT).

T = Ends(SI) and oI and Iy are injective cogenerators of
S-Mod and Mod-T respectively, then the functors Homs(_. 1)
and*HomT(_. I) induce a duality between the éategories of
reflexive S-modules and reflexive T-modules. We say that
sIT induces a Morita duality bé@ween S and T and call them
Morita rings. The ?eflexivé.subcategories are closed under
submodules and factor modules and contain SS and TT resp-
sctively [29].

[o}

Let R be a fully bounded Noetherian hereditary ring

and N a localizable semiprime ideal which is an intersection

‘of non-minimal prime ideals Pi.....“Pn. Let Ii be the

unique (up to isomorphism) indecomposable injective with
associated prime Pi and let I = {%111. Denote by I any
f&nite direct sum of copies of the Ii such that I < I -
i.e, I = -Ilsl @ ... @ Insn for some s;>1. Let K = Endp(I )
and.K = ide(I). Let Ry, be the localization of R at N and

R,
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/ ﬁ& the complefion of Ry in the NR -adic topelogy. I can
be View?d as an RN-module in the following way: if ce WG(N)
then cR is N-dense. It is\ihenfgasy to check that if g *
extends the map f(er) = ir té all of R, icl = g(1) is
well def}ned. Now any element qe.§& can be thought of as

= %im q, where g € Ry. Given 0 # i< I, since N is classical,

Ein such that IND = iNRN =0Vny 7n,. Since q = lim q , In,
such that q - q_«< NRN °Ym, n n»n,. Clearly i§ = iq_n = iq,
Vnyn,, and Homé;v(I. I) = HomRN(I. I) = Homp (I, I) = X.
By the remarks following Lemma 1.13, RN EndK( I). Hence
one of the conditions for a Morita duality between K-Mod
and Mod-R, is satisfied.

Proposition 2.7

kI is an injective cogenerator for K-Mod.
Proof ¢ .
Step 1: I is semi-injective (Sandomierski (371).

Let B be a finitely generated left ideal of K. For some m '

there is a surjection KB > B >0, Let Km——5—>(Km)**

and B—2—> B** be the natural hofiomorphisms. Since the

~ sequence 0 > B* > (K®)* ig exact and Ig is injective,

-4

the folldhing‘diagram is commutative with exact rows:

K® B 50
(KM)y## —Spas— 50

But x is an isomorphism, hence 3 is an epimorphism-0n-the

AR B
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?,otiier hand, kB is cogenerated by I — indeed B< K = I*c II

N

-e-aEd it follows that 3 is 2 monomorphism. Hence B ¥ B*¥,.
To show I is semi-injective, it is enough to show that

K* B¥*——0 is exact in Mod-R, If not, let C be such that

K¥¢—03 B*——> C——>0 is exact. Then
=" 0—> Cf——é B#® S K##
, o L O
’ 0—>B— K

has exact ro’vo‘s‘ and commutes. Henqe C* = HomR(C, I) = o0,

But Cp is a factor module of ‘a submodule, B*, of (KT)#!= T,
Since IR is 8 self—cogenerato;‘. cC =0,
| ~ Step 2: I is injective as a K-module. Let B be any
clefet ideal of K, geHomK(B I). Let {B 536 ; be the family
of all finitely’ generated submodules of B. Each giB has 1an
extension to gje HomK(K. °I). Now Ann.B = Anng ( jZJ Bj)

je J.AnnI 3 j€ FWIBj for some finite subset FC J since
Ig is Artinian. Hence Amn;B = 4 pAnn;B; = Ann (FFBJ
Ann Bj for some j € J. Clearly, if B, DBj » then since
. &5 a.nd gj both agree with g on B‘,j ’ wewhave

j ((l)gj (l)g )

But Ann B 3 Ann B < AnnIBJ_A.nnIBj . Thus Bj(%\t)é (1)gj )

= 0. i.e. g lg. = &, |B . Since B =}:B , it followe that
J é® ° B>B°

g ‘l = e Py
jo BT 8
Step 3+ Every simple K~module is cogenerated by gle It
is sufficient to show that if L is a proper maximal left
ideal of K then Hom (K/L, I) # 0. Now £« —£[1] defines an’

~

Y N
ke o éa
e
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L.
isomorphism between HomK(K/L. I) and Ann; L. AnnL = 0
t

N
= 1
I is Artinian, Hence m I—-— 1% defined by m(y) =

ker(f) = 0 = ,Q/ker(f;) = 0 for some f ¢ L since

(f (y), f (y)..... b 4 (y)) is a monnmorphism. Let j =
(31. Joreees Jt) be a map from It to I such that jm = id
(jie.K). For any yc I we have y = jm(y) = {= Jifi(Y).

Hence 1 = f;& J;f; ¢ L, contradiection. The;gfore Ann L #£O

and HomK(K/L. 1) # 0. ‘ -
. @ o
Note that step 3 really shows that if:IR is any
~" Artinian injective module then every simple K-module is
contained in I. If additionally kI is injective, it is an
injective ‘cogenerator. We sha}l see that the conclusion of
Proposition 2.7 is also true for I1 and Kl =_EndR(Il)'
We first need the. following Lemma: )
Lemma 2.8 -
Xy is a local domain. J(Ki) = K,q, for some q,¢ K,

¢

and the only left ideals of K, are Klqlm‘Vm.

Proofs
s ‘K1 is local siﬁce it ig: the éndomorphism ring of an

indecomposable injective. For any té:EhdR(Il). f(Il) is an
injective ¢ I,. Hence f(I,) = I,. If gf =0 and £ # 0, then
g(1,) =-gf(I,) = 0 = g = 0. Hence K, is & domain. If

fe.K1 is not an isomorphism, it 6is not a monomorphism;

-
'y
’

i
A

therefore ker(f)E?AnnI N, hence f induces a map f(i?g/knég;,,xl;

o 1
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g Lo - x
" ,  since Anng Nz/Ann N is simple end not isomorphic- to AnnI
(1), 2 21 (2) 1
ker(f'"’) 2 Anny N /'AnnI N so induces a map £ I /lnnN —s T
i 1

N,

- 1.
Proceeding in this way, we see that in fact, ker(f):>Ann11N .
Hence, if qln I, —> Il/Ann an = 11 denotes the composite,
ker(f):>ker(q1). We may therefore define a map he I,—> Iy
by h(ql(y)) (y) Vy'ell. Thus we have proved J(K,) = K,q,.
Given any bé»Kl. if b is not already a unit, we can write: R

b = uq I for some unit ue K, and some me N . Hence K,b =K q B
*1 1 1" 1*1

The proof is now complete. .

&

Lemng 2.9 )
f Il is injective as a Kl—module.
( Proof:
 If L ie any left ideal of K,, by Lemma 2.8, L .= Klqlm
% K for some m. To show g I, is injective, we need to

show Homﬁfxl' I )-——-—*>HomK (L, I )——>0 is exact. If it

is not, let. K1* > L*~ ~=C >0 be exact where x*-Homﬁfx Il)

Then as in the proof of Proposition 2. 7, = 9 But C is

a factq# module of 1* = Kl* 2 I+ By the Corollary to Theorem 2
2.6, HomR(C, 11) = C* # 0, contradiction. /

Corollary v

Over an FBN hereditary ring R, if I, is an indecompos-

“
1

L

4 -
¢

2

%

able injective with non-minimal associated prime ideal Pi
and K, = End_(I,), then , I, is an injective cogenerator.
1 R'"1 K1 1

\ ‘ :
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Lemma 2.10 (cf. Matlis [261)

With the same assumptiows on R, for any submodule

B, &1

R =°R
(a) AnngB Hom%('I/B, 1),

B =8,

n

(e) AnnpAnng
Proofs

(a): Define ¢: AnngB——> Homy(1/B, I) by @(Z%éi]= ki.
Conversely, given f ¢ Homg(I/B, I), if piI—>1I/B“fs the
canonical projection, define Y(f) = fpe Ann,B. We have
(f(fp){;i]= fpi and Y(W(k)) = ¢(k)p =k kae*AnnKB. and clearly,
¢and Y are K-homomorphisms. ‘

(b)+ Since Ig is injective, the following diagram

-

has exact rows and commutes: .
0—-——>Hme(I/B, I)-—qraHomR(i. I)————;HomR(B, I)—s 0

| n, i |
0 ———5 AnnyB — > K >K/Ann, B——> 0

The two ¥nown isomorphisms induce an isomorﬁhism between
K/AnnyB and Homp(B, I). ‘

(c): Obviously Ann Ann, B> B. If x& AnnjAnn B3,
AnnR{x]B is contained in some maximal right ideal M of R.
Since xN™ = 0 for some m, one of Pyveses PLC M, Since |
is fully bounded and the P; are maximal, E(R/M) = I, for
gome ic$1,2,..., nf. Consider

! (x]JR—E R/MC :IiC————;I

I f PP | :
?\I/B//’;o" ?3 . ‘ -

¥*
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(b) I/Ann,L & Hom, (L, I),

35

where f( [x]Br) = Er]M and g![x]R = f., On the one hand, |
gp(x) =-fp(x) # 0'but on the other, since gp¢ AnnKB and
x € Ann Ann.B, gp(x) = 0, contradiction. ,°

. /

Similarly one proves:

Lemma 2,11

For any right ideal A\é R,
(a) AnnIA = Homp (R/A, I), ‘ ‘ e
(b) I/AnniA = Homg(A, I),
(c) If\ATNm for some m, AnnpAnn A = A,

3

Lemma 2.12

For any left submodule ch kI ’
(a) Anng C & LomK(I/C. 1), ) '
VA ~ “ .
(b) RN/AnnR%C = Homx(C. 1),
(c) AnnIAnan;qC = C.

Lemma 2.13
For any left ideal L<K

(2) Ann;L 2 Homy (K/L, I),

(¢) AnngAnn, L = L. =

Consequently, there are one-one order-inverting cor-

respondences between: (a) right ideals of R containing N®

3
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.dered Yi. Since Vi. Vye Yi' Ky is Artinian (for y< Ann

.36

and left K-submodules of Ann Nm Vm; and (b) left ideals of K
and right R-submodules of I. In particular, Vm (AnnI N™) is
Artlnian and K is left Noetherian. Then in K-Mod, KIEJEYd
where % Y is indecomposable 1naect1ve./&f A is infinite and
Vi=<y;2¢AeI (where all but finitely many y,  are zero) we let '
<y2ed=<0,...,P(x.0N.>. { [e-«]J(R/;\‘)E is an infinite set of ortho-
gonal idempotents in é&/J(ﬁh) = RN/NRN which is a Noetherian
ring — contradiction. Hence kX is a finite direct's$m of in-
debomposable injectives, KI=Y1&L..@HS. By the corollary to

Lemma- 1.2 and since fof an HNP ring Q with invertible semiprime

"ideal S Qg is HNP, Ry is a finite direct sum of HNP rings.

Hence ﬁ&/U(ﬁ&)thN/NRNt is serial Vt. From this we see that the
submodules of eié& are linearly ordered Vi=1.;...s} ByﬂLemmasW
2,12 and 2.13, the K-submodules of Yi are also linearly or-

A" for
some m), KI is Artinian. Applying the argument of Proposition
2.7 to Kt oné sees that Ié& is an injective cogenerator of

Mod-ﬁ; and hence we have

-

Theorem 2,14
Let R be an FBN hereditary ring, N a localizable 1nter-

gsection of non-minimal prlme ideals, I, K, etc. as before.

Then KIRN induces a quita duality between K-ﬁhd and Mod-RN.
{

. |

Definition (Sandomierski [37]): Let X; be an R-module (R any

§ .
ring) and {xj}jeJ a(p?g}ec ion of submodules of X. Then the
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-system of congruences §x§xj (mod Xj)% is finlitely solvable

if for every finite subset FCJ Jxpc X such that Yjc F,
- )

ijxjéixj. The system is solv%ble if.3x06 X such that‘xo-xjﬁxj

v jeJ« X is called linearly compact if every finitely soi@able__

system of congruences in X is solvable. -

4

It is known that in the presence of a Morita duality

between rings S and T, the reflexive modules are exactly\the

linearly compact ones. In particular, in our present situation,

é& is right linearly compact and K is left linearly compact.
Also Fhere are dualities between Noetherian right é&-modules
and”Artinian left K-modules and between Artinian right é;-
modules and Noetherian left K-modules.

\In the following example, we see that such a Morita )

dualityvdoes not necessarily exist for all FBN hereditary

rings.

4

%

Example: P, M. Cohn [8] has shown that there exist division
rings D, < D, such tHat LDZ:DI] £~ 2 and [Dst1]€= o0,

,‘1
D 0 : .
Put R = 1 - R is an Artinian hereditary ring,
Dy Dy ’

hence is\certainly FBN hereditary. &F a left R-module,

\

0 . D2 0 0
\ = ER is indecomposable injective.
0 D2 0 D2 - "
. But it is not finitely generated as a left R-module. Hence
)
no injective cogenerator for R-Mod can be Noetherian. If

R has a Morita duality with'a ring S induces by rEg? then

P
F
F
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4

3: ) since R is Artinian, J(R)™ = 0 for some n. It follows that
t 3(S)™ = Annghnn J(R)™® = 0 (see Miller [29, Lemma 6]). Since
: _ the category of reflexive S-modules is closed under sub- ¢

modules and faéfor modules, J(S)/J(S)z. J(S)?/J(S)B...;

x are reflexive and semi-simple. But reflexive modules must
be finite dimensional (Sandomierski [37]). Hence Sg is Art-
inian and by the duality, RE is Noetherian, contradiction.

- Lambek and Rattray have recently developed a categ-3
orical approach to duality which encompasses many classical
dﬁality theorems [20, 22, 23]. bheir results are generally
important as tools for finding new examples of duality. A
concept fundamental to this ﬁyﬁ%oach is that of a co-small

x-in jective object:s N
/ i

Definition: Let A be a/éamplete additive category, I an

/
object of A. Considgr the functors

/j//= Hom(_, I)
_4/’\ S = sets

. AN 2
Let (‘ » %) be the equealizer of nUiFs UpFppsU P35 (U F) %,
I i8s called x~-injective if V£, Q;(A)——> 1 there exists
g UIFI(A)————?I such that gx(A) = f, I is co-small if FI‘

t

A

: :

{ takes products in A to coproducts in (E-Mod)°P where

% E = A(I, I). Equivalently, I is co-small if \/fiEIAzr———al

¢ te
Ei \% in A, there exists a finite subset F<( X and £’ :T;!:Ai—*—}l
g . > Xe
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~

such that f = f'ﬁF (where7rF is the canonical projection). .

‘'In Cont=R, the category whose objects are topological
Z-madules such that multiplication by elements of R is {
continuous and whose maps are continuousxR-hogomorphisms.
any qﬂagi-injective R-module equipped with the discrete
topology is co-small and x-injective (Lambek [20, Prop. 4.3]).
The following Proposition then applies to the situationvwe

-

have been studying.
Proposition 2.15 (Lambek and Rattray [23]) ,
Let I be an injective Artiﬁian right R-module with the
discPete topology. Let E = Endp(I). Then the adjoint pair
F = Cont (~'f1)1

///”'——jL“““\ss

U= HomE(_. I)

Cont-R (E-Mod) °P

induces a duality between. discrete Artinian R-modules which
are I-torsion free divisible;and finitely generated E-modules
wh;ch are cogenerayed by/EI. Moreover, for any A <Cont-R,

fﬂe following are equivalent: / ' *

(a) A is a filtered limit of discrete Artinian modules which
are I-torsion free divisibles;

(b) A is a 1limit of discrete Artinian modules which are I-
torsion free divisible;

(e) A.eQZ(I). the smallest subcategory of Cont-R containing

I and closed under limits.
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E;émglea Let R be an FBNChereditary ring, N a loWalizable
intersection of non-minimal prime ideals. Let I., I, K ete.
be as before., By Theorem 2.6, I is Artinian. Give it the
discrete topology. Then there is a d&ality between the limit
closure of I in Cont-R and the full subcategory of (K-Mod)
cogenerated by KI. But by Proposition 2,7, the latter is

all of K-Mod. Xlso, by Pror;osition‘ 2.15, L(I) is the set of
ail limits of discrete Artinian modules which are I-torsion
free divisible. But {Ry-modules} = {R-modules which are I-
torsion free divisible}. Hence we have a duality between
K-Mod and pro-Artiniaﬁ RN-moduies (i.e. Ry-modules which
are filtered limits of discrete Artinian modules). Further,

‘if A is a discrete Artinian Ry-module, I n KX P(A)—> 0,

hence A & UP(A)Y——>I" and so YacA JIm aJ(RAN)m =0,

Thus every discrete Artinian RN4module can be viewed as

”6 an ﬁ;-module and as sﬁch, is still discrete Artinian.

Conversely evéry discrete Artinian ﬁ&-module is a discrete

Artinian RN-module because every RN-submodule is already an

ﬁ&-submodule.'Thus we also have a duality between K-Mod and’
pro~-Artinian é&-modules. Similarly. since KI is a cogenerator,
all K-modules are yI-torsion free divisible and there is a
duality between pro-Artinian K-modules and Modrﬁk. The
findings of this chapter on duality for #BN hereditary

rings (and in particular, for bounded HNP rings) are summar-

ized on p. 41,




. -
_ P = Con’cﬁ\N(__. I) U = Homx(__. 1)
Cont-.-l/%\N K\)’ (K-Mod) °P -— Mod-.lft\N
- N
U = Hom (_, I) F' = Homg (_, I)
K H Ry
Pix(UF,m ) = . _
{pro-Artinian R~ —= (Fix(F0,e)°P
modules} S
p v
~ * . N
(Reflexives)®P —— {Reflexives}
1] _ 1]
— (linearly compact {1inearly compact
.
. ! modules)°P modules } -
N I ]
- {Discrete Artinian (finitely generated {submodules of factor
N ’ A L op X /\‘/______———- n
; RN-modules} —_ K-modules) —_— modules of I}
: : X SR RN :
’ (Noetherian K-modules)°P {Artinian RN-modules} -
] S

h
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Our final result in this chapter shows that, strangely
enough, Morita duality in Mod-R carnot be obtained by these

methods. In fact there are no non-trivial co-small injectives

in any module category; . |

Lemma 2,16\ ‘ .
Over any ring R, if I is corsmall and weakly injective
(i.e. VB I®

Proof:
Let 0 # ic I. Consider .the element cc I

' HomR(Ix, I)————>HomR(B, I) is onto), then I=0.
X defined by

wx(c) = i Yxe X where X is an infinite sét and 7, is the

pro jection associated with x. Define ficR + Z;%I————>I by ‘\
f(er + y) = ir. This is well defined since if cre E;;I. say

y = cr, then %ﬁ(y) = 0 for all but finitely many x, hence

X

ir = 0, By the weak injectivity of I, extend £ to g: I"™—>1

and since I is co-small, factor g as g = g“EF where F is a
finite subset of X and‘TF is the canon1cal projection. Let
'} be the canonical injection IE————él » k the canonical

injection IEL———acR'+ ZI and i ‘the inclusion of cR + §: I

xeX xeX™ . =
in Ix. We have - !

»

R + gxl —f 1

3 /«:>MIF/82 , )
Ix /{ | - -
g 5 y
On the oﬂe hand, gik = gj = gl = ¢ # 0 since g = grmpf 0.
On the other hand, gik = 0 by construction, contradiction.
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Chapter 3

§1. Properties of X # Endp(I) ‘

— n

Assume that R is an FBN hereditary ring, N = {glPi
ié a local{zable intersection of non-minimal prime ideals,
I, Io.\K. Koo ete. are as in Chapter 2. Using the Morita
duality between K-lMod and Mod~Ry we shall investigate the
properties of the rings K and ﬁ&. oth turn out to be semi-
perfect{ fully bounded Noetherian heéreditary rings which
are complete and Hausdorff in the-Jacobson radical topology.

A

In fact, K is Morita equivalent) to RN.

Proposition 3,1 (Miller and Turnidge [28])

Let R be a ring, IR an injective self-cogenerator and

K = EndR(I). Then the following are equivalent:

1

(a) K is left semihereditary: ‘
(b) whenever YC I is such that I/Y is embedded in a finite
product of copies of I.iI/Y is injective.

»

| - o

Corollary 1 .
: n :
If R is an FBN hereditary ring and N = (P, is a

localizable intersection of non-minimal prime ideals, then
© i e

K is left hereditary and ék is right hered

- »
' L}B ’ el




is clearly true for Ip. Henée K is left semihereditary.
By Lemma 2.13, since Ip is Artinian, K is left Noetherian,
hence K(is left hereditary. In that case, condition (V)
of Proposition 3.1 holds in K~Mod and KI is an injgctfve

cogenerator. Then as above, ﬁN is right hereditary.

Corollary 2
r?N is left Noetherian and -left hereditary. -

Proofs
Because of the symmetric assumptions on R, RN = NR'
hence RN R which is left Noetherian and left hereditary.

Propogition 3.2

With the same assumptions on R, N, I and K,

n e n A an
Ann N" = Ann.J(K)" = AnnpJ(Ry) Vn.’

Proof: (Miller [29, Lemma 6])

The proof is by induction, When n = 1, by Lemma 2,11,

t
since R/N = l=1R/Mi for :ome maximal right ideals Mi of R,
Ann.N HomR(R/N. I) = HomR(R/M , I) = 1=1 M. Each
Am-xIM:.L is either 81mple or zero as a K-module and AnnIN is ~
a finite direct sum of simple K-modules. Hence Ann,N< Ami,J(K).
Similarly AnnIJ(K)Q;AnnIN.
() = n ne . n

Assunme AnnIJ(K) Ann N", Then J(K) QAnnKAnnIN »
and N%;AnnRAnnIJ(K)n. A typical element r.>15“J(K)m'1 is a
finite Buﬁyof elemeg¥s qf the form st where sc J(K)? and

t <J(K). Then t(AnnN"*!)N ct(ann_N) = 0 and so-




e ———

‘Proof ‘ o
oo

ks

nt+i n ° . n n
t(Ann N ) S Ann;N7. Since s € J(K) < AnngAnn N7,

st(Ann N“+1)c s(annN") = o

J(K)n+1C AImKAm Nn+1 ¢ o % & & & o ¢ & a3 8 . (1)
Similarly. n. 1_. AnnRArmIJ(K)n+1. e 6 o o o+ s & ". * o (2).

n+l n+1 n+1
By (1), Ann,J(K) 7AnnIAnnKAnnI =2Ann N

n+1 nt+1 n+1
By (2}, Ann N DAnnIAnnRAnnIJ(K) 2 Ann J(K) oy
"The statement Ann J(K)" = AnnIJ(RN) Vn is proved similarly.

8

Proposition 3,3

Under the same hypotheses. K is complete and Hausdorff
in, the J (K)-adic topology.

I

oo

By Prbposi'tion 1.5, I = Jiann N = Y ann a(x)™,
follows that ! J(x)nCAnn I = 0, Hence K is Hausdorff in
the J (K)--aa.d.’u:.1 topology. If {kn? n-1 is a Cauchy sequence in
K we want to find a limit ke K, Define k(0) = 0, If 0 # ic I,
there exists a least n, such that ic AnnpJ (K)no and ‘there*
also exists 2 least m_ such that n, m>m = k, - k€ J(K) °

o

Define k(i) = k (i). As in [19. _Prop. 3], k is well defined y
. By /
and Jimk = k. ’

3 ’ -
' That RN isl complete and Hausdorff in the J (RN)-adio
topology was shown in Chapter 1.
We shall assume from now on that {Pl.Pz,.... P nf is
a clan. Then as we have seen, if R = R® ... @ R, (possibly
after re-numbering), Py,eees P 3 R, and R, = RanR:L. Thus

~ -
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, B,
we may also assume without loss of generality that R is

' a non-Artinian bounded HNP ring. Because of: the Morita duality

AN
between K-Mod and Mod-RN. in particular, because I is an
A
injective cogenerator of Mod—RN, Lemma 2.11 holds for a right
ideal A <R without the assumption in (c) that A7 J(Ry)™ for

A

some m. Hence, we have
Y
Lemma 3.4 .
(a) Every non-zero ideal-of I}/?\N contains some J(lﬁn)m.

(b) Every non-zero ideal of K contains some J(K)®,
4
A i

Proof: ’ ‘ .
(a): Work with I = I, @...@I.'If 0 # A is an

ideal of RN and A}?J(Rﬂ)m Vm. by Lemma 2.11, Annp AdAnn J(RN)m
I,
. m
¥ m. Now Ann A= iglAnnI A, and Anng J(RN) & A, J(}g‘)
g0 it follows that for some i, IiA = 0. Say IlA = 0, Let
Pyt Ii————all/ArmI Nlig Ii be the composition and let f.e K ’ l
1 ‘ . h (o]
be defined by the rule fi‘(xlgaoo' %) = (0/.-oop pi(xi)...., O)
Vi, By its construction, fi(Il) = I;. Hence IiA = 0 =
£,(I,A) = 0= £, (I))A =0 ¥i= IA=0= A =0,
(b)s If 0 # B is an ideal of K then Ann;B is a proper
K-ﬁN-submodule of I, hence AnnﬁNAnnIB is a non-zero ideal of
A N AN -
Ry. By (a), AnnﬁNAmIB 2 J(RN) for some m.. HenceQ\nnIB =
[ : m . m .
mnlm%mlbfmnIJ(x) .. B = Ann Ann.B 2 J(K) ",

Corolla
- - . n ' o
If R is an FBN hereditary ring and N ¥ 1911’1 is the

¥

< ]
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L

. ’ A
!' intersection of a,clanggg_ggg-m%nimal prime ideals then Ry
and K are prime, each proper factor ring of K is left Artinian
and Ry is HNP.

Proof:

e

o
By the Lemma, any product of two non-zero ideals of ﬁ&

(resp. K) contains a power of J(ﬁk) (resp. J(K)}, hence is"
non-zero,, Every proper factor ring of K is a factor ring of
K/J(K)® for some m and these are left Ar@ﬁni&n by the duality

(since mﬁnlq(K)m is a Noetherian R-module).

3

-

|

Note that ﬁ& is not primitive. hence is bounded HNP [12, 24].

J tma e

Lemma

n
Write I = éﬁlEs where each E, = I. for some 1ci1,v04, nf,

'If L is an essential left ideal of K, then Ann; L # E_Vs,

¢ Proofs . . ‘
A Let eseK bedefinedby es(xl..... x;)‘-“(O.,.,.. xB,.-.. 0)0 "

o
o
¥
b
£
&
«
%
£
bx
&
i
o
&
=
A
g
A
&

g8

Since L is essential in K, JkcK 0 # ke_¢L. If LE_= 0, then
we have 0 # kes(I)s.LEB= 0, contradiction,

!

-

Corolla ) ”
K is left fully bounded,
Proof: S
. Every proper prime factor ring of K is left Artinian,
. hence left bounded and K itself is left bounded sincL L 'K
o Ann L CAnn I (K)™ for some m = 17 J3(K)™,

-




s g e, a3

¥
%
K
%
\ g‘
¢
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These conditions on_K aré sufficient for us to prove.

directly -that K-is HNP but the following yields a better
result. We specialize further to the case where I = E =
E(R/N) and H = Endp(E). Ve have already noted that E g (R/N) =

(RN/NRN) Since RN/NRN RN/J(RN) and Eﬁﬁ is injective,
we conclude that Eﬁﬁ = ERR(RN/b(RN))‘ We shall therefore
assume without loss of geneﬁallty that R is bounded HNP,
complete and Hausdorff in the J(R)-adic topology anle = J(%)
is the intersection of a c%a; - i,e. ﬁN= R « R has Morita
duality with H induced by HER"In particular, Xh——aAnn( )x
describes a one-one, order—inve%ting correspondence bétween
left ideals of H and R-submodules of E and between right ‘\\\;‘-~
jdeals of R and H-submodules of E, Since ,E is Artinian » -
and H is left Noetherian, we may write “ 1

E=YL,®Y, ... 0

where the H(Yj) are indecomposable injective H-modules, As
each Yj is also Artinian, H(Yj) has unique simple submodule
H(Cj>’ If necessary, re-number the Yj S0 that c, 2 ,,.=0_,

8
-~ ~ tard 1
CB +1 e CB ) see 9 c " 41 = s = C a.nd such that’

1 2 Sm-1
the CB are pairwise non-isomorphic for i = 1. 2y eeoy M.

51 .
+1~ s e ; s )o For each 1 = 1. _2. eseyg Ny,

'

=Y P oo .Y
82 e |
Mi = Ann,C_ is a maximal right ideal of R. If we let

R8s
@C‘-’i' since R = EndH,(E), we have er = cj

i -~ ~
(Since Y; = Ey(Cy) V3, \72 haver ¥, = ... By, Ysl_H_ = ,,.,

Dy =Cq 41 @
81-1
or Car = 0 'for all rcRand-all j =1,..04y 8» Hence DiR = D .

It follows that AnnpD, is a two-sided ideal of R contained in

S
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Mit
Lemma 3,6
{
Yi = 1, 2, seesy my, Ann_D. is a primitive ideal of R

I"i
and these are all the non-zero prime ideals of 'R. , L

L]

Proof: )
Let B¢ Mi be any two-sided ideal. Then AnnEB is a right

_R-su'b.module of E containing Csi. Hence Ann.B > D i+ By Lemma

2,11, B = AnnRAnnEBgAnpRDi. Therefore Qi = AnnR 3 is the
largest ideal contained in Mi' 80 is primitive. Now
s .
< =

J(H)( c ) 0, her;ce .@1Cj\Am; J(H) AnngJ(R). Also
Ann J(H)( Soc E= & 1c , hence 3@10 = AnngJ(H) = AmeJ(g).

N =
We have i_._.lQim<AnnR(j@16j) AnnRAnn J(R) J(R) and
conversely, 121012 J(R). Since all non-zero primes of R are

m
maximal, it follows that fQif i=1 is the set of all non-zero

- prime ideals of R. Henceforth we shall assume Pi=Qi=AnnRDi.

Corellary " | ' A
n X : :
If N= 1211:1 there are exactly n isomorphism classes

of sﬁ.mple H-modules.

Proof:
It follows from the lemme that‘m = n and since E

- is a cogenerator, it contains a éopy of every simple H-module.

\
Le_t (yl..... ys)fj = (O.Qo.! yj..... 0) where YJQJY:].

Then {fl. foresen fB} is a set of local orthogonal idempotents

/ 0
x

1

; s .
R . ..
Eoilat it g L L e
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of R whose sum is 1. By passing to the factor rings R/Jm \
for all m and remembering that proper factor rings of an

HNP ring are seg}al (12], one sees that the only submodules

m+1

of £4R are f.RZFJZ...3 1,0 ¢fjJ Vj |
|

Lemma 3. “ .

[}
5 + P 1~
VY, Jh‘/.ﬁg‘ 1 = g5 ancﬂ E(R/JE B(R/T).
Proof:

|
/T = £ v/, 0 @ L, @1 R/2 ML, since
fiﬁ/flen+1 is uniserial, it has finique simple submodule
+1

{Pil i=1,.04y nf is the set of all non-zerd prime ideals
kn+1)

which is annihilated by J. Now R is FBN and !

of R hence E(fIR/f J = 1, (possidbly after re-numbering).

kn+l =

In particular T R/f J AnﬁI JEL gince it is obviously
: kn We

contained in AnnI kn+1 b t not contained in AnnI J,
17 1

| assume that the other Ii are indexed such that Il/Ann J = 12.
I,/Ann J = Ige o001 /Ann J = I,. By restricting to

f Jkn/f Jim } we have § JkQ/f Jknﬁ* = Ann; J and we also have

induced isomorphisms fiR/f1 = Ann Jkn+1/1nn AnnI JEn
2

£, R/£,571 2 Ann Jk"/mn 7 % Amn, A1
1 I I I
2 2, 1
) * i [ ) m-m+1

(k=1)n+1-
fla/fiJ AnnIn
Proceeding in this fashion, we eventually reach
. fIR/flJ A?nl J /AnnI J = AnnIIJ . Q
Hence fleh/flen+1 s ¥ 1R/f1J and this is 1ndependent of k. »

He
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x - The same argument works 'for all the fj' It follows that
Vk R/TE LREIE ... ®f R/{B
50,000 ® et J/E, Jlm+1
= jin/jimt
E(£,0/2, 0 ® ... @ (£ "/r S
BRI ® L@ E(f R/f,0T) |

~ n+i1
= E J .
E(R/7),

i

| and  E(R/T)

n

~

R Corollary .
Jkn/Jkn+1 = Soc R/Jkn+1). ’

a v

Proof:

kn{,.kn+1 kn+l

By the lemma, \J/J is essential in R/J

contains Soc(R/Jknﬂ). On the other hand, Jm/JM+lis & direct
kn+1)'

» hence

sum of simple modulés. hence is contained in Soc(R/J
‘ ‘ | Y

o5
@f;@ -

Le .8 \
Under the same assumptions, 1 Pe R such that Jt = PR.
Proof: _— | |
By Lemma53.7. since Jn/Jm'1 % R/J dpcR st:ch that
JN= PR + Jn+1. Thén J““'1 = pJd + Jnf?. ;In+2 = pJ2 + .}n+3 etc,
HenceJ‘—pR+J“1=pR+pJ+J“2=pR+J“2=pR+pJ2
+ ™3 =+ ™I, = f.e g0 = m==1(pR + J%), But J
is localizable and classical so by Theorem 1.5, we have
/- =D+ ™) = R,

|

Note tha.tfp is regular since J” is essential. Hence




Clearly f. R/f

J" = pR ¥ R, By symmetry Ip'c R such that J" = Rp' & R,
Also note that J = p(RpX Rp) ... (RP)R<PLPR)+.. PRC PR € J7,

Lemma 73, t , v
(a) Yk, R/FOL & Anng st ‘
(b) Yk, Jn/Jkn+1,§ R/J(k-l)n+1
Proof:
(a): As in Lemma 3.7, R/JO' nLr/f 0 e 8
£ R/e 0 V= 1,000, 8 34(3) such that E(ijfijnﬂr

kn+1 S Ann

I

(j)

it follows that fR/f TR L J
J Ti(3)

JO* ana since(ij/fijn+kunfO

I+l phe result now

‘follows from Lemma 3. 7

ﬂ’

(b) s Consider fi
flprl=[(r]. If pre g+l o (Jn) J =p
= (JM¥1y = gk=1nH L ppie £ is well defined. It is clearly
a surjection and re.J(k°1)n+1 ='(Jn)k'1J = pk'lJ = pre¢ ka =

n/Jkn+1 2L DL L R,

k k k-1

RJ = pJ then rcp J

. Hence f is an isomorphism.

Lemma 3.10 _ ‘
;Hizk | k =‘0,1...5}€;E such that sz = sz =:AnnEJ

ntly

'an.d zkp = Zk_il Vk) 1' zop = 0, X \

Proof:s
The proof is by induction. When k = 0, Lemma 3.8 shows

.Jz,¢ E such that z R = AnnpJ and Annpz = J. Since Anngz
= AnnpHz = J, we have Hz = (AnngJ). Clearly z,P = O,

Agsume that 2z ,..., 2, _, have been found with the

] .
! “

. )
| . ‘ o

i

3




desired properties. Consider the composi:te

ey Jn/Ji‘krd'l R/J(k-l)n‘l-l ‘ AnnEJ(k°1)n+1
(pr]li— [r]; > %y 4T

Extend t, _, to gk:R/J}m_l___;E. Then Im gkgAnn Jhﬂﬂ

Since Jn/Jlm 1 is an essential submodule of R/Jlm"'\1 v if g

t

is not a monomorphism we have ker gkﬂ Jn/Jlm"'1 ker tk-l # 0,
contradiction. Now Aruf\l.::.:rm'ﬂ'1 is the R/Jlcn 1-mgec‘t:ive hull of
R/J s0 by Lemma 3.9, gk(R/JM+1) R/ka‘1 is a direct

summand o\f Ax'mEJlm+1

o If g is not a surjection, this
contradicts the Kmll-Remak—Schmdt-Azumaya theorem, Hence &y
is an isomorphism. Define Zy gk[ﬂ Then by construction

+
2,p = glpl=z, _, and since Anngz, = AnnHz, = st

= kn+1

Notation For all m, denote AnnEJm by Am.

Corollary

J(R)™ = pR = Rp.
Proof
| J(R)™ = pR was shown in Lemma 3.8, Choose any pr<J@.
The map h: z &85z rs of Ay,——5A, is well defined since
Annpz , = J=AnnRz RéAnnRz r. Extend h to h':1 E——E,

" Since WA 4q) €A, '= z2,R, Ir, eR such that h(zi)=zlr1.

Then z,pr = z T = h(z ) = h(zlp) = z1r1p. Hence pr-r1p€

Annpz, = Jn+1. Thus we have shown J" = PRCRp + Jntl,

Since J is left localizable and left classical, by Theorem 1.5,



n":'?:;.‘ N . 3 5“

\

o0
we may conclude J" = 2, (Rp + J™) = Rp,

Theorem 3.11

If R is an fBN hereditary ring and 0 # N = 1n1P is the
intersection of a clan of non-minimal prime 1deals. E = E(R/N)
and H = Endp(E), then HE RN
Proof: (

By the\corollary to Lemma 1.12 and the earlier results
of this chapter, we may\ assume without loss of generality
that R = K, , a bounded HNP ring complete in the J(R)-adic
topology and N = J = J(R) is the intersectio\g of a clan. We
shall construct a consistent system of isomorphisms

ST 72(0) oot SRS VA 13 AL
Given heH, Vk h(&k)é z, R, hence H{rk(k;o,i....} such that

’ h(~2k) = zkrko

Define XO[h]J(H) (r ]J(R). h=-HeJ(H) and h'(z_)=2,5,
= ro-so‘eJ(R). Hence ?‘o is independent of the choite of
representative of [ h) J(y) @nd of the choice of r such that
h(z ) = z r. Obviously X preserves 0, 1, +, -, If h(zo)=z°r°
and h"(z )= zos then hh"(z )—h(z s’ ) zoroso. Hence A
preserves products.. )\o[h] =0 = heJ(H) = mﬂzo, hence
A, is a monomorphism. Finally, given [rleR/J, define a map
hot ZoR—2 R DY h(z s) ="z rs and extend h, to a map

hs E——>E. Clearly \ [h]= Lrl, hence 7\ is a ring isomorphism.

~ To construct ?\k ¥x»1, since PR=Rp, let rkp=ps (k) s(k)p-ps(k)

k-1 k—2

’ a e 03(k£ = ps(k). Define kk[h]J(H)nk‘bl = [B )]J(R.)le"'i .
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) * ,
' We must show that 7‘k is independent of the choice of re-
presentative of [h]J(H)nkﬂ , independent of the choice of
r such that h(zk),.= z, r and independent of the choice of all
the sgk); that it is a ring isomorphism; and that the

following diagram commutess
‘ : ' . >

H/J(H)(k-nnﬂ 1 \R/J(R)(k-i)n+1

Ty T T Tz

H/J(H) 11 — R/J(R)1M*1
) ‘

Now if [h]gpynk*l = [h'] 1 ynk+1 and n'(z)) = z,t,

then (h-h')(z,) = k(::-k-tt) =0 > (r-t)e Jtl e

[ sék) d. Then,rkpk pks(k). Select

.:rlm+1 =

A

be chosen as indicat

kX _ k L
) any ug such that t,p" = puy. Then (z‘k 1 )€

(rk--tk)pk ¢ gekm+l = pk(s(k) uo)e gemtl pZKJ.This

kn+1

implies (s(k) uo)e P J =J « Thus Kk is well defined. 7\

clearly preserves +, -, 0, 1., If h"(z )=z, t; and tf:p = pu,((k%.
(k) (k) (k) - o (k) (k)

ceer Uy = k s+ We have rktl'{p kpuk__1 psk 1%t erer -
sik)uik)p = psg { ((Jk). Hence ) [h][h] = /\k[h] ?vk[h] Thus A,

is a well defined ring.homomorphism. If A [h] [ (k)]- 0
then s(()k)C Jk"“"1 and psok% Jckﬂ)nﬂ: Hence s(k)p s(k)
rpe g(k+lin*l knﬂ'p. It follows| that Iy € gt 1(s;ince P
is regular) and A, is a ring monomorphism. Given any
[s]eR/J(R)lmﬂ. let t,P=ps, t,P=Pt;,eees ‘tkp = pt,., (since
pR=Rp=Jn) Define h, (z ) = 2,4t 2 R— >z R (h is well

ool 4 i R e S R

defined since AnnRzk'—'- Jk""":"C AnnR K k). Extend h, /to some he H,

c,‘ _Then clearly Ak[h]z [s] and so 7\k is a ring isomorphism.
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. Finally we check that T _4A k=7\k__17('}'{_1. Now
Zy_ 151({k>-zkps1({ ]). =z, 1, P=h(z,p)=h(z, _,)=2, 41, ;. Hence

(k) . (k=1)n+1 o (k) kn+1 (k-1), (k)
1 ~Syq €V = (ry_q=8, 1 )P EJ =p(s,_, _2)
¢ Jkn+1 T p(s(k-l) (k))e.Jkn+1 = pJ(k—l)n+1 =

(k"l) (k))€ J(k ‘l)n 1

(s Sy ~since p is regular. Hence we have

/v

My k[h] H)m+i "k-1[ (k)] [S(()k)}](‘k-l)n-l-l:[s(()k-l)]J(k-lh+1

Mee1Ty-q 0] (kL
Since both H and R are complete, H =<l_i£1 /3 (1Tl and

= 1im I’C/J(R)km-1
h
Speciflcally. given he H, we know [h] )Im<+1 [s ] ¥n+1

and the A, induce a ring isomorphism H= R,

(for some s ) and it is easy to verify that {sK} k=0 i8 @

Cauchy sequence in R, It has a 1limit r eR. Then h—->r defines
.3

the isomorphism. \

We would like to extend these results to any localizable
classical intersection of non-minimal prime ideals in an FBN
z n
heredltary ring. If N = i= 1P is such an intersection, then

118 iP syeeey P 3 is uniquely a disjoint union of clans &, 4 e
1
ét with intersections Syse.s, S,c,a:ﬂ’ﬂ E(R/N) =k@1E(R/S )

\

Lemmg 3,12
(a) With the same notation as before, H(E(R/Sk))gE(R/Sk)

Yk=1,2,¢v., t and as an H-module HE HE(R/S )@...@]{E(R/St).
(b) If H = Endp(E(R/S,)), then H 2 H, @ ... @H ‘and each
Hy is a semilocal bounded non-Artinian HNP ring complete and
Hausdorff in the J(I:Ik)-adic topology.

%
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Proof:

(a)r If I

; is a direct summand to EéR/Sk) then Vhe;H.A
In; such that h(I,)5I,/ker h E-’I./AnnIiSk 1 vy Theorem 2.6,
and the latter is also a direct summand to E(R/S ) . Hence
Yk, "H(E(R/S x)) S E(R/S,). K\
(b)s Consider primes Pi and Pj and suppose f1i Ii~-———>Ij !
‘is non-zero. Then f(I ) 2 I, /ker(f) is injective and since
Ij is indecomposable, f(Ii) = j 2 i/ker(f). By the proof of
Lemma 3.2, this would imply P, and Pj belong to the same
clan. Hence if Pi and Pj belong to different clans,
Homg (I, 4 I}) = 0, It follows that HomR(E(R/sk).’E(R/sm)) =0
Vx # meil,.... t}. Hence we have . i
H = End (E(R/N))
€ End (@ E(R/S ))
= él EhdR(E(R/Sk))
=°H,®, oM,
where hk———)(h]E(R/si)...., hlE(R/St))' It is easy to verify -
that this is a ring isomorphism. That each Hy is semilocal
bounded HNP, complete and Hausdorff in the J(Hk)-adic topo-
logy follows from Theorem 3.11 and the corollary to Lemma 3.4,
Proposition 1.8 shoWws that '

W & ng(wslj@...@[tn(wst) ® ER5)D. . GERS,).

Propos;tion 3.13

Under the same assumptiong on R,

=0
n
7
KD+
>

Proofs




By
e

" We know Ry = End,(E(R/N)) and Yk = 1,..., t,
R/\s = Bnd, (E(R/S,)). Now if for k # m, fc Hom (E(R/S,) E(R/S,))
k k-

/s . s = )
and if the identity.of H is written 1 ! °1+“'+et w&;ﬁ\fka Hk'
we have for any yéEgR/Sk) yf = e (yf) = (e y)f = (0)f =
and it follows that HomH(E(R/S )y E(R/S )) = 0 for k # m,

Hence r*‘;‘*(rlE(R/S jreees riE(R/S )) is an isomorphism of
RN-—> kﬁaEnd (E( R/Sk)) as in Lemma 3.12. The result follows._
/‘."
Corollary » ‘
If R is an FBN hereditary ring and N is a localizable
intersection of non-minimal prime ideals, -let E = E(R/N) and
- A -
= EndR(E). Then H = Ry,
Proof:
Let {Pl""' P }be the disjoint unﬁoﬁ of clans
AN
él""’egt with intersections Sl""' St respectively.
Lemma 3,12 H= Hy @ ., @ H, and by Theorem 3.11,Yk,

~§S « In Proposition 3.13 we have just shown that
K

R

é\N s é ﬁ + The Corollary follows.

It was orlginally our purpose to study the properties

8 8-
of K = End, (I) where I = I, e, + I, ™ for some natural

Q

numbers s1 71, In additxon to the properties alre;dy found
in Propositlons 3.2 - 3. 5. we can now say that K is hereditary
Noetherian and (when N is a clan) prime, as a consequence’

of the following theorem due to Vimos [39].

<«

(R

4 - s B Oy
! Tt e i A P R L
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= QaQa C aazc J(q)z_ Hence qa-aq = q'a

*

Theorem 3,14 o o
If R has Morita duality with rings’K and H then K

is Morita equivalent to H,

»

§2. Structure of K and Ry
- n

Let R be a_bounded HNP ring and N = /0, P, the inter-
section of a clan of pri.me‘ ideals (P ;‘0). As always, I,
denotes the indecomposable injective with associated prime
ideal Py, I = I, 1@... @1, °n for some s;7 1 and K==End (1),
Our aim in this section is to describe the ‘structure of K
(Theorem 3.19). This will give as corollary the structure .

of P:\N for any FBN hereditary ring and any localizable

‘intersection of non-minimal prime ideals; gf R. We shall

then extend our results to arbitrary semiperfect HNP rings
thus obtaining a new proof of a theorem of Michler (Theoremk
3020)0 b

LE_@ﬁa}iaul 2& , o
Let Q be a local ring. Suppose Qa = J(Q)_ for some ac Q

‘and that J(Q) is finitely generated as a right ideal. Then

Qa = aQ = J(Q). D
Proofs ‘ , : .
. . .
Consider the right Q-module Qa/aQ. Given any qa < Qa,

either q € J(Q) or t-q eJ(Q). 1f qu(Q) then qa and a,qu(Q)2

2 fgr some Q'€ Q -

&

\,7‘ e ‘
R T
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4 | [anaQ"'Lq a]aQ' If 1-q eJ(Q) then (1 -q)a = a~gacJ(Q)% = Qa?
-i.e. a-qa = q*a® for some q € Q and so [qa] =[-q"a %JaQ
.We have proved Qa/aQ = (Qa/aQX J(Q)). Since Qa is finitely

generated as a right ideal, by Nakayama's lemma Qa=aQ=J(Q).

5

~

let I = El@...%m where for each s = ;.2....; m,
ES = Ii for(some i€§1.2.oo|. n_}c Let es(xlpooo. xn) =
'(0.-7-. Xgreees O). Clearly’e Ke_ = Endp(E,). Since E
_is indecomposable, e Ke ' is local. In fact {ei....', emS

is a set of local orthogonal idempotents fof K whose sum is 1. ¢

Le .16
- Vs. eBKes is a ;::omplete. local Noetherian domain

whose only one-sided i&eals are the J(e Kés)m\‘/’m. Further
3‘1 ¢ e Ke  such that: J(eKe ) = q e Ke, = e Ke a .

¢

Proofs

e Ke, is hereditary by [BLM,“Lgmma 4,4], By Lemma 2.8
we already know that e Ke  is a local domain whose Jacobson
radical is principal ag a left ideal and whose only left
ideals are {J(e gKeg) m} m=1 * Given a right ideal C< e gKege
Let Ce K = x;K + ... + x X since K is right Noetherian. For
each i, we can wfite x; = lg cikestk'for some T < Ko
Then clearly {cikl 1=3,ueont k=1,.,., ni} generates
C in e,Ke . Hence e Ke, is Noetherian.. If J(e_Ke ) =
(e Ke )qs. we s8ee by Lemma 3.15 that J(e Ke, ) = :q (e gke ),
and by the argument used' in Lemma 2.8, _the "'only right ideals .

-

. w
. ey

«
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m (=4
of e _Ke  are {J(esKeB) }m=1‘

In particular, EndR(Il) satisfies these properties.
In the terminology of Lambek and Michler [21], it is a
complete discrete rank-one valuation ring which we shall

. henceforth denote by D. Consider now the ring T of all

v

matrices of the form ' ) .

fli flzn « e flm

f21 f22' . . me

fmi fmzo [ ] [ ] fmm .
M ltiplica‘gion can be defiﬁ{ed‘in the usual way since if

‘where ifstéHomR(Et,‘ Es)Vs. t. . e

. ‘ N
eHomR(Eu* Es) and gut€H°mR(Et' 'Eu) then the composite

u
product (fst)( gst) = ( §21fsp5ut’ is again of the same form.

|

fsugut' Et S E >Es is deftined and the usual matrix

A}

Propo 10 i _
With R, I and K as usual and T as above, K = T, .
Proof g

Let Kyt E,—>I and T,1 I—>E_be the t*" injection-

th projection respectively. Consider the map {), where

and s
P(k) = (T k Kt). Clearly { preserves 0, +, 1. To check whether

or not { preserves products consider {{k)W(k') =

' ,i( ’n{ 'x L T ) T( 'K
TykKy Tk o o TikX 1‘.‘ 1 1’f n

L ] [ ] L ] [ ] * [ ] Q" : : :/T( Q'X
quxl 'kmkxz v s » ’:kaxm "ka Xy mk n
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'8

m
22!~11"1“" mkxy ey T EAT K

) %:ilwlkxujruk'xm
xﬁ?

Since uii‘lxu% =1, we have (k)W(k') =k,0(kk ). If x #0,°
then kX # 0 for some t and ’IfsthD)‘ 0 for some s. Hence Y
is a ring monomorphism. Finally, ‘if (th)e T, define k< K
by the rules ’Nsklfxt = f st and the universal propef%ag\ of
{fgle [xg{s Then clearly {'(k) = (£ )€T and ¢ is a ring
1somorphism: " / :

Proposition 3.18

(a) Vi=1,..., n Ede( 4) ® Endp(I,) as rings;
(b) if 1¢ i<;]<n. HomR(Ii. Ij) = Endp (I ) as Abelian groupsg
(e) it 1< j< 1< n, HmnR I40 I ) J(D) as Abelian groups

(where D = EndR(Ii)). - . ¥

o

Proof: “ ‘ 5 .
- i
(a); Vi, let By AnnIlN and let T 3t 13/By _y—>1,/B;
be the canonical projection. Any map ) Il/ﬁi 1__>11/Bi 1
tinduces a map f'} II/B ———->11/B where f'7 ’Ti = i.f. Since
’Ti is an epimorphism. -f' is uniquely determined by f. Clearly'

o' =0, 1' =1, (f+g)*' = £'+g'. Further (fg)ﬂf =T, (fg) =

, f'Tig = f'g "‘L' = f'g' = (fg)'. Assume that the I, are indexod

such that 11/31..1 I;+ Then f——>f* induces & ring homo- /
morphismi Endp(I,)—>Endp(I,,,) Vi, If £1(1,/B,) = 0 then

* B‘ 1
£(1y/By_4)CBy/By g = £(1)/By )N = 0= I;N* = 0 which is
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" impossible by Lemma 2.2. Hence fr——’ef' is a ring monomorphism

L 4

of Endp(I,)—>Endp(I,,,) Vi
~ The composite Endp(I,)+> Endp(I,)— ... ——>EndR(I1/Bn)
is a ring monomorphism which takes f——>T where »

f’lrnooc,TC =qtn..'7r fo

1 1 .
If o11—> Il/Bn denotes the known isomorphism, recall.

| - o ) |
that q, =M ..My I,—31,/B—>I, generates J(D)
as a left and as a right jdeal (2.8 and 3.16). An R-homo-
morphism g Il/Bn"—>i1/Bn glves rise to'g = «'lg«le'—aIl.
By Lemma 3.16 g* qlg*‘*yl= qu. Then

d.l'k’n.../‘rlg* = q;lg* = qu -‘“-1g0(“-1ﬂn000,’t1
7(“-..7?15* = g’lTn...ﬂ"l
g = g*

This implies f—> f' is a ring isomorphism of

f - ’ . N

Endp(I,) ® Endp(1,/B ;) Endp(1,/B ) ¥ Endp(F).

Similarly Endp(I;) * Endp(Iyyy) ¥ . . . = Endg(Iy) Vi,

2

(v) and (c)+ Por any 1< i, j< n, consider
I./B _F o /B
Tl Ti-1 177 j-1

.1, l \L’/‘t‘n..,ft‘j
I4/B ---~----> I,/B_

By the argunieﬁt used in Lemma 2.8, since ker ’lfn...frjf QBn/Bi_l
f induces f: Il/Bn——%II/Bn such that fﬁ‘noocfmi .ﬂn...ﬂ:jf.

By (a), 3! £'4I—>I, such that T ...T,f' = F1_...7,.

fi— f' clearly preserves 0, +, - 80 that it is an Abelian

7

-group homémorphism of. HomR(Ii. Ij) into EndR(Il). If f* = OP

S N -
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then ¥ = 0, hence lTCnL',"',Iij =0 - {i.e. C[l/Bj_i)r/ih'j -
f(Il/Bi_l)Nn'j= 0 which is impossgible by Lemmak 2.2. Hence
fr——>f' is a monomorphism Homg(I,, I,)—>Endg(I,) = D.
Now assume 1< i< j¢n and g: Il———>I1 is any R-homo-
morphism. Then g induces a homomorphism g¥*: I:‘_/Bn————éll/Br1
such that g»*’]Zn...’lTl‘='II’n... & » If g* = T for some homo- |
morphism f1' I,/B, ;,—> Il/Bj_l' we will know f—>f' is an
isomorphism of Abelian groups: Hom R(Ig0 Ij)——’———>End (1,).
1Define £ by f’ti 1...n = ;) 1...IL1g. This is well defined

‘since xéBi_._1 =B g(x)e 11_B j 1...lt1g(x) = 0, Since

re i e e

I(n...lljf“i;l...ul ’Wn...']fj’rj_l.../frlg £ Trn- ../(i 1'1...71
and since T go1°0y is an epimorphism, %n""‘“jf = g"/Tn...ni.
Hence g* = ¥, It follows that if i< j, f——> F—— £ is an

_ Abvelian group isomorphismi HomR(Ii. Ij)——-,%}.'de(Il) = D,
' . If 1 {j<ig¢n and g:‘If———ell is in J(D) then kerg;Bn.
Hence g induces g+311/81_17-—9 Ii such that g+7fi_1...7t’1 = g,
~ PO ‘ -
Let f = ,(j_iooult—lg 'Ii/Bi_l“_—?Il/Bj 10 If’ g*’rncloﬂi ﬂ‘n--.'ffig
then / g*’ftntootl =7Tnoon j’ri looollg
j . =7 ooowjg’”i 1...,'Tl
= T ...'N‘j’fj 1.-.'7gﬂ'i 1...Tr1
= f "'Wﬁ-—fﬁi—l"'nl'
Since ’T:.L 1...1" is an epimorphism
g*” 900 Too- jf'fﬁ’ "-’Ti
r.} * 8* = ?- 4 ]
Since for j<i, Im(f——>f') ¢J(D), £——>f' is an Abelian group
i somorphism of HomR(Ii. I‘j)-—-——>J(D) = J(EndR(Il).«
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R n
Assuming R=Ry and N= NP,

=1 Fy and assuming {Pl,...; Pn}

is a clan, let I = E1® ...\@Em where
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L Y El = Ez = see = E51= Il
E ; E ":" e e E E ~
81+1 sl+2 ) ‘81“'82 = Ig
: \
E ' = E ’ & e Q’E
Sp-1*1 8p-172 n-1%8n = In*
Let K = EndR(I). Then : \
D J(D) J(D) e « o J(D)
\ 8, X8, ,84X8, 811’83 lesn
K & Dszxsl D82xs2 J(D)szma. o J(D)szxsn
; : T S
( . [ ] L L] L ] [ ] :
D D D - D
snxs1 asnxs2 snx83 o e o ,/snxsn
Proof:

Let W 1Homp(E,, E)—>D (or J(D)) be the Abelian

group isomorphism found in(Proposition 3.18

Wst(f) = f' where | |

. 5 £
1y/Byy = I Ee——E ST, = 1,/By

7~
%n . IL{

Ul ®
v

1,/8, ——, 1,/8,

Tn"'q(i T i = Tﬂ:‘_.",'lrl N ¢

L i I

N
”~

£

C Defihe. Y(foy) = (Yai(2gy)) ‘(rei:a}l that £,

- ine.r

Et———\;Es) .

-

5 A el o e Mg A .
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;'/ -
‘{' Obviously \/ preserves 0, 1, -, +, \
» , i m .
WL X Bgy)) = \P(%»_.Zl f%ugut)
= gst(uz':—'lfsugut)) .
‘\ ‘ ) = (u=1 \V,st(fsug.ut) ). * :
: NOY (fsugut)‘ = (fsu).(gut)' iff (fsugut) = fsugu't‘
~ E ‘(3\& X“ Y 'F é" ~
1y/Byq = 13 BBy LRy MBS 1T, /B
(A \l LI l o o lnn,ij
‘ Ju feu .
Il/Bn 3“ : > Il'éBn ” I1/Bn
3’\ \

. . T = N, o= TS
By'definition. (fBugut)TEn.. -lli T{n.‘.“j fsugutﬂﬁ
. = ’ﬂ'n

- i
| "'szfguxx gutﬁ
' s — i
o . // . | = fsuﬂn...”krg“t@
’ ) , = fsugut,rl,lno . oﬂ/i

m
Hence (fsugut-) = -f-;uEu-t' Hence W((fst)( gst)) = (uélwst(fsugut))
e | .

= (ForVu o Ve Bug)) = W(Eg) Wikgy) = .. W isa ring
homomorphism. By Proposition 3,18, if 1 ¢ sésl. 1< t <8y then \

[P
-

q)at(ﬂomn?ﬁ". Es)) =D. If 1<¢8<8y, 8,%1< t< 8y+s,, then

E,EI, and E =14 50 Ygy(Hom(Ey, E)) = J(D). Similarly,

V> sy and 1 {8<8y, W st(H°mR(Et,Es)) = J(D). If 84+l <8¢ 8,%8,
and 1<t'<s, then E.FI, and E_I,, therefore \{  (Homp(E,, E;))#

; | A D. If 8;+1<¢t<s +s,, then Et;11;Es and so \_, (Hom.(E,, EJ)) =

‘ D. However, if 81"'1\'. ¢ 8¢ 81"‘82' and t>s, then E,2I, for some

¢ 1> 2 while 251, 80 by Proposition 3.18, W, (Homp(E,, Eg)) =
J(D). Proceeding thus, we see

e« s 0 J(D) ‘

T TR T TGRS TP e T T

PP T T
‘ ‘

| ' D J(D) - )
. K ’; BiXS1 aixsz L lesn
( : , D ) I.) e s 0 6
( ansl snxsz . snxsn

[y

BT PR 2% Al

TRt e
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*(That Y is an isomorphism follows immediately from Proposi-

tion 3.18). ;

Corollary o ’ \

n
Let R be an FBN hereditary ring and N = igapi the

7/
intersection of a clan of non-minimal prime ideals. Let
I, be the unique indecomposable injective with associated
prime ideal Pi' Suppose E = E(R/N) = 11t1+ ¢« + o T Int".

Then

Dot T gy TDgge + v v Iy
R = | P, ’.’WJ”D’V D Ty
Poxt, Pt Pt ot Pem,

where D = EndR(Il) is a complete rank-one discrete valuation

ring. If iPl..... Pn} is the disjoint union of clans 5}.....4{r
7

then é& is a product of r such matrix rings.

Egtension to an aéﬁifragx gemiperfect HNP ring Ri _
We sketch here a new proof of a theorem of Michler [2%]
on the structure of an arbitrary semipeffect HNP ring.R. If .
R is primifive. it is already semi-simple Artinian, so is a
full ring of nxn matrices over some dﬁyision ring. If R is not
primitive, it is FBN, hence: QlJ(R)" = 0 and R<>R. Let
1=1,
R. Then the fj remain local orthogonal idempotents ik R
vecause R/J(R) & R/J(R). As usual, let E=E(R/J) and H=Endj(E).

'3

+...+f where the fj are local orthogonal idempotents in

1

| \

(>

il et a

R ol i s ¢
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<1 ¢ng ¢ i.,m finJ—J(flRfl) It is then a matter of straight-
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Y

Since Ep is Artinian, R has Morita duality with 'H induced

yEg (Theorem 2,14 ) . Considered as an H-module, E is a
Finite direct sum of indecomposable injective H-modules,
E = ¥1® cre P ‘rs which give rise to local orthogonal idempo-
tents {ei,l i=1,...,8) in R whose sum is 1. Then D1=e1f2e1 C
Ehd‘H(Yl) is a complete discrete rank-one valuation ring by
Proposition 3.16, and ‘E)y 3,18, D]_?Beiliei Yi=1, 2,..., s.
From the general theory of s'gmiperfect rings (L8, Prop.j,
p. 77]) we also know s=m and Digfjﬁfj V=1, 2,..., m. Let D=f,Rf,.
Clearly I‘)1 is (isomorphic to) the completion of D in the J(D)-
adic topology. It is equally clear that Vi.j = 1,000, M,
f Rf NR =f Rf . Because of the one-one correspondence

173 J
between right ideals of R and left H-submodules of E,

Ann (3;41933) is an indecomposable dlrect,summand of HE 80 '}‘
we may assume without loss of generality that °i=fi and
Y AnnE ,ﬁif R) Vl = lyeeey M Given re flRfl' it may be
viewed as the H-homomorphism yly.__>ylz: of Y1_>Y1 which
induces (yll!ﬁ[yir] from Y /Ann J(H) Y /Ann J(H) s"Lj.

ny
In other words, if Y, = Yl/Ann J(H) * and kplzfl 1 =End (Y, )=
Eng:lH(Y1 "fiﬁfi ig the isomorphism fOund in Proposition 3.18, .
Hence the isomorphisms flRi‘1 = f ini induce isomorphisms
1‘1Ri‘1 = f Rf Vi 1,..., m, Similarly one sees that for
14n,< n; <m .fin.-finl (as Abelian groups) and for

forward verification (cf. Proposition 3.17, 3.19) to see that

|
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for some t,, Y.% .,.=Y Y e s =Y « o e
e 1~ 1 %’ t1+1 ty+t,’ ’

Y =2,,35Y

t._ 4+l tp_y*t, and that ?
D J(D) e s« J(D)
Dtixtl . tlxtz o tIXtr

" toxt,  Tt,xt, . .. J(D) :
R = / 02 1 12 2 e v @ v tZXtr ,

D. D, Crlop
txt, toxt, t Xt

l‘" .
"D is a‘hereditary local Noetherian domain (ef. the proof of

Lemma 3.16) and since e, is a local idempotent. by pa881ng
to the factor rings D/J(D)" it is easy to show that D has
as only one-sided ideals D;I(D)%J(D)zg coe QJ(D)mg. —
It follows from this that J(D)! = pa™= a"D for some (any)
.ae:J(D)\-J(D)zfvThus we have proved
‘ L]
Theorem 3,20 (Michler) ' _
Let R be a semiperfect Noetherian hereditary ring.

Then R is a fipite product of indecomposable rings Ri where
Ry i;‘either a full ringfof*n;n matrices ové: some division
ring V; or R;. has a Di:J(Di)-upper triangular matrix struc-
ture described above for some discrete valuation ring D;. If

R is complete, each Di may be chosen to be complete.

,.
Gt O ¢ o

LTS
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