
Journal of Information Security and Applications 59 (2021) 102828

A
2

M
d
A
M

A

K
M
M
S
A
C

1

d
N
i
b
m
h
m
a
a
h
t
m

h
t
a
t
r
c
b
h
a
o

h

Contents lists available at ScienceDirect

Journal of Information Security and Applications

journal homepage: www.elsevier.com/locate/jisa

alware classification and composition analysis: A survey of recent
evelopments
del Abusitta ∗, Miles Q. Li, Benjamin C.M. Fung
cGill University, Montréal, Canada

R T I C L E I N F O

eywords:
alware analysis
alware classification

ecurity
nti-analysis techniques
omposition analysis

A B S T R A C T

Malware detection and classification are becoming more and more challenging, given the complexity of
malware design and the recent advancement of communication and computing infrastructure. The existing
malware classification approaches enable reverse engineers to better understand their patterns and categoriza-
tions, and to cope with their evolution. Moreover, new compositions analysis methods have been proposed to
analyze malware samples with the goal of gaining deeper insight on their functionalities and behaviors. This, in
turn, helps reverse engineers discern the intent of a malware sample and understand the attackers’ objectives.
This survey classifies and compares the main findings in malware classification and composition analyses.
We also discuss malware evasion techniques and feature extraction methods. Besides, we characterize each
reviewed paper on the basis of both algorithms and features used, and highlight its strengths and limitations.
We furthermore present issues, challenges, and future research directions related to malware analysis.
. Introduction

In the recent years, many cyber-security mechanisms have been
esigned and developed to defend against evolving security threats.
evertheless, recent statistics [1] indicate that malware are still evolv-

ng and becoming more sophisticated than ever. As a result, they
ecome harder to detect and understand their innerworkings. This
ainly stems from two essential reasons. The first is that attackers
ave now become more proficient in launching attacks and hiding their
alicious behavior using anti-analysis techniques such as obfuscation

nd packing. The second reason is that the current communication
nd computing infrastructure is becoming more and more dynamic and
eterogeneous, which enables a single malware to take various forms
hat are semantically but not structurally similar. This, in turn, makes
alware analysis even more challenging.

Malware (or Malicious software) is a software that is designed to
arm users, organizations, and telecommunication and computer sys-
em. More specifically, malware can block internet connection, corrupt
n operating system, steal a user’s password and other private informa-
ion, and/or encrypt important documents on a computer and demand
ansom. For the latest years, malware has been a growing threat to
omputer users and in 2017 the number of new malware increased
y 22,9% over 2016 to reach 8,400,058 [2–5]. Moreover, malware
as become the primary medium to launch large-scale attacks, such
s compromising computers, bringing down hosts and servers, sending
ut spam emails, crippling critical infrastructures and penetrating data

∗ Corresponding author.
E-mail addresses: adel.abusitta@mcgill.ca (A. Abusitta), miles.qi.li@mail.mcgill.ca (M.Q. Li), ben.fung@mcgill.ca (B.C.M. Fung).

centers [6–8]. These attacks lead to severe damage and significant
financial loss [9–11].

Most antivirus engines detect and classify malware by continuously
scanning files and comparing their signatures with known malware
signatures. The malware signatures are typically created by human
antivirus experts (known as malware defenders) who examine the
collected malware samples. These malware signatures can be filename,
text strings, or regular expressions of byte code [12,13]. Obviously,
signature-based methods can only detect traditional malware that do
not change significantly. However, malware can hide its malicious
behavior using anti-analysis techniques such as obfuscation, packing,
polymorphism and metamorphism, in such a way that the code would
look quite different from its original version. Thus, the primary short-
coming of the signature-based method is that they entail high precision
but low recall. Also, the process of creating malware signatures is labor-
intensive. Considering that there is a large number of new malware that
appear every day, there is a pressing need to develop new intelligent
malware analysis methods to tackle the challenges.

To alleviate the burden of manual signature crafting, researchers
propose automatic signature generation methods [14,15]. The content
of the signatures can be Windows system call combinations [16],
control flow graph [15], and functions [14].

Researchers also propose to use machine learning models to de-
tect and classify malware [12,17–27]. Different from other machine
vailable online 26 April 2021
214-2126/© 2021 Elsevier Ltd. All rights reserved.

ttps://doi.org/10.1016/j.jisa.2021.102828

http://www.elsevier.com/locate/jisa
http://www.elsevier.com/locate/jisa
mailto:adel.abusitta@mcgill.ca
mailto:miles.qi.li@mail.mcgill.ca
mailto:ben.fung@mcgill.ca
https://doi.org/10.1016/j.jisa.2021.102828
https://doi.org/10.1016/j.jisa.2021.102828
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jisa.2021.102828&domain=pdf

Journal of Information Security and Applications 59 (2021) 102828A. Abusitta et al.
learning-driven classification tasks, such as image classification, there is
a competition between malware creators and defenders. When malware
defenders propose a new malware analysis system using some features
and machine learning models, malware creators often update their
malware design to avoid being detected. Then malware defenders
would propose new systems to detect and analyze the new generation
of malware and so forth. The race between malware defenders and
attackers may never come to an end.

Recently, many researchers have started to use deep learning mod-
els to enhance the detection and classification accuracy of malware
classification [24–27]. Although promising results have been achieved
through the ability to extract robust and useful features using the
state-of-the-art deep learning architectures, the proposed models were
shown to be highly vulnerable to adversarial examples, which can
be easily designed (simply by perpetuating parts of the inputs) by
attackers to fool Artificial Intelligence (AI)-driven malware analysis
systems and make them generate erroneous decisions [24–29]. As a re-
sult, several methods have been proposed to defend against adversarial
examples [28,29].

In addition to malware classification, researchers in malware analy-
sis have improved new techniques and methods to analyze the com-
position of malware samples by matching their functionalities and
behaviors to multiple known malware families. This, in turn, helps re-
verse engineers discern the intent of a malware sample and the attacker.
Moreover, these composition methods enable the reverse engineers and
organizations to effectively triage their resources.

1.1. The scope

This literature review classifies and compares the recent and main
findings in malware classification. Unlike other similar works which
only focus either on AI-driven malware classification [30–32] or on
non-AI-driven malware classification [33,34], this paper includes both
AI-driven and non-AI-driven recent works. We are also surveying meth-
ods and approaches that recently have been proposed to analyze the
composition of malware samples, in order to understand their function-
alities and behaviors. To the best of our knowledge, this is the first work
that survey the existing composition analysis techniques. This survey
also aims at identifying the main issues and challenges related to recent
malware classification and composition analysis techniques. In partic-
ular, our analysis leads to recognize three major problems to address.
The first is the need to overcome modern evading techniques (or anti-
analysis techniques) such as metamorphism. The second relates to the
efficiency and scalability of malware search engines as the number of
functions in the repository might need to scale up to millions. The third
concerns the vulnerability of malware classification system to evolving
adversarial examples. We also uncover possible topics that need further
study and investigation, such as sustainable malware analysis system.
In this regard, we propose a few guidelines to prepare efficient and
trustworthy malware detection and analysis system.

1.2. Contribution

The main contributions of this survey are:

• Proposing a new taxonomy for describing and comparing the re-
cent and main findings in malware classification and composition
analysis.

• Designing a new framework for analyzing the existing malware
classification and composition analysis techniques.

• Identifying and presenting open issues and challenges related to
malware analysis.

• Identifying a number of trends on the topic, with guidelines on
how to improve existing solutions to address new and continuing
challenges.
2

1.3. Organization

The rest of this paper is organized as follows. In Section 2, we
discuss the related survey papers. In Section 3 and Section 4, we
present the proposed taxonomy for organizing reviewed malware clas-
sification and composition analysis approaches, respectively. Section 5
characterizes reviewed papers according to the proposed taxonomy.
The challenges and current issues are pointed out in Section 6. Section 7
suggests possible research topics in malware analysis. Finally, Section 8
concludes the paper.

2. Related surveys

Other works have already surveyed contributions in malware classi-
fication. For example, Bazrafshan et al. [33] classify malware detection
and classify methods into three types: signature-based, behavior-based
and heuristic-based methods. Also, they recognize five classes of fea-
tures based on the proposed heuristic-based method: opcodes, API
calls, control flow graphs, n-grams, and hybrid features. Another work
presented by Shabtai et al. [34], which studies how to detect malware
using static features. In this paper, we study more features (static and
dynamic features) used for malware classification.

Ucci et al. [30] survey the literature on machine learning ap-
proaches for malware detection and analysis. They classify the surveyed
articles into three categories: objectives (expected output), features,
and algorithm used. They also highlight a set of problems and chal-
lenges and identify the new research directions. Similarly, the survey
presented by [31] presents a comparative analysis on intelligence-
based malware classification. In particular, they report cons, pros and
problems associated with each machine learning-based malware clas-
sification technique. Souri and Hosseini [32] also provide a taxonomy
of AI-driven malware detection techniques. Our paper looks at a larger
range of articles by including many works on malware classification
and composition analysis. We also include other works related to non-
AI-driven classification techniques. Furthermore, We also include new
challenges related to AI-driven malware classification techniques.

Also, Basu et al. [35] study different works relying on AI-powered
malware classification techniques. In particular, they coin five types of
features: a PI call graph, byte sequence, PE header and sections, assem-
bly code frequency and system calls. Also, Ye et al. [36] study many
different aspects of malware classification processes. More specifically,
they spot the light on a number of issues such as incremental learning,
and adversarial learning. Recently, Ori et al. [37] survey the literature
on techniques used for dynamic malware analysis, which includes a
description of each technique. In particular, they present an overview
of machine-learning methods used to improve the capability of dynamic
malware analysis. Compared to the above-motioned works, this paper
determines the main issues and challenges on malware classification
and composition analysis. Also, we identify a number of trends on the
topic, with guidelines on how to improve solutions to address new and
continuing challenges.

In addition, Barriga and Yoo [38] survey the literature on malware
evasion techniques and their impact on malware analysis techniques.
This paper extends beyond that and includes recent AI-driven works
used to overcome malware evasion techniques.

3. Taxonomy of malware classification

We present in this section the taxonomy of malware classification.
We define two categories (or dimensions) to organize the existing
works. The first category presents the features that our work is based
on. In particular, we discuss the different methodologies used for
extracting features, e.g., dynamic and/or static techniques, and what
types of features are used, e.g., assembly code. The second is concerned
with the type of algorithm that is adopted for the detection and

analysis, e.g., artificial inelegance-driven algorithm.

Journal of Information Security and Applications 59 (2021) 102828A. Abusitta et al.

e
m
m
m
r
i
f

p

p
l
o
a
r
w

p
a
o
i
p

B
(
d
s
s
s
b

f
f
t
o
i
m
t
b
c
t

Fig. 1 shows the proposed taxonomy. The rest of this section is orga-
nized as follows (according to the proposed taxonomy). Section 3.1 de-
scribes malware analysis features, while Section 3.2 discusses existing
algorithms.

3.1. Malware analysis features

This subsection presents the features of samples that are used for the
analysis. In Section 3.1.1, we show how features are extracted, while
in Section 3.1.2, we show type of features that are taken into account.

3.1.1. Feature extraction methods
In this section, we review the following three feature extraction

methods: static, dynamic and hybrid methods.

Static method. Static feature extraction is a method to extract features
from the content of the executables without running them [39]. The
static features can be extracted using the file format, e.g., Portable Ex-
ecutable (PE) and Common Object File Format (COFF) [12,18,22,25].
The static features can also be extracted without any knowledge of the
format. Features extracted this way can be byte sequences, file size,
byte entropy, etc. [12,17,20,25]. The advantage of the static feature
extraction method is that it covers the complete binary content. But the
problem is that static features are prone to packing and polymorphism
since most of the features that are statically extracted come from
encrypted contents rather than the original program body [40].

Dynamic method. Dynamic feature extraction consists of running the
xecutable usually in an insulated environment which can be a virtual
achine (VM) or an emulator and then extract features from the
emory image of the executable or from its behaviors [39]. Since
alware equipped with packing and polymorphism has to exhibit the

eal malicious code to achieve their goals, dynamic feature extraction
s more resistant to those malware techniques compared with static
eature extraction method [40].

Anderson et al. [21,41] use Xen1 and Royal et al. [42], Dai et al.
[19], and Islam et al. [22] use VMWare2 to create their VMs and
perform dynamic analysis. Kolosnjaji et al. [27] use Cuckoo sandbox3

which is an open source automated malware analysis system to extract
API calls. Other researchers who work for an anti-virus engine use
the VMs as parts of their anti-virus engines to dynamically extract
features [24,26].

In fact, there are two categories of an emulator: a full-system
emulator and application level emulator. A full-system emulator is
a computer program that emulates every component of a computer,
including its memory, processor, graphics card, hard disk, etc., with the
purpose of running an unmodified operating system. Qemu4 is a full-
system emulator used by several systems [23,40,43]. Considering the
time-consuming of full-system emulator, Cesare and Xiang [15] propose
to use application level emulation to unpack malware more efficiently
so that only the parts which are necessary to execute the file including
instruction set, API, virtual memory, thread and process management,
and OS specific structures are implemented.

One problem of dynamic feature extraction methods is that it does
not reveal all the possible execution paths [40]. Malware may have
detection routines to check whether it is executed in a virtual machine
or emulator. When malware finds itself executing in such an environ-
ment, it will halt its execution so dynamic models will fail to recognize
it as malware. The methods to detect whether an executable is executed
inside a VM can be found from several papers [44,45]. Another problem
of dynamic methods lies in its execution time which takes much more
than static feature extraction [40].

1 https://www.xenproject.org/.
2 https://www.vmware.com/.
3 https://cuckoosandbox.org/.
4

3

https://www.qemu.org/.
Hybrid method. This method is used to achieve higher detection rate by
merging some of the static feature extraction characteristics with some
of the dynamic feature extraction characteristics [39].

Our survey has revealed that most of the surveyed papers were
based on the dynamic feature extraction approach [21,24,46–63].
while the others adopt, in equal proportions, either the static approach
alone [64–83] or a hybrid approach [22,23,41,47,84–86].

3.1.2. Type of features
In this section, we classify the features that are used by mal-

ware analysts and explain how each type is practically extracted and
represented.

Printable strings. A printable string is a sequence of ASCII characters
terminated with a null character. Schultz et al. [12] find that malware
have some similar strings that distinguish it from and that Goodware
also has some common strings that distinguish them from malware.
Printable strings are represented as binary features, where ‘‘1’’ repre-
sents a string that is present in an executable and ‘‘0’’ represents that
it is absent from all systems [12,22,24,26].

Schultz et al. [12] extract printable strings from the headers of PE
files. The extraction is straight-forward since the header is in plain text
format.

Dahl et al. [24] and Huang and Stokes [26] extract null-terminated
objects dumped from images of a file in memory [24,26] as printable
strings. The coverage of their methods is better than just extract print-
able strings from header [12] but their could be some false positive
results.

Islam et al. [22] use the strings utility in IDA Pro5 to extract
rintable strings from the whole file.

Different from other works, Saxe and Berlin [25] do not take
rintable strings as binary features but use their hash values and the
ogarithm of the string lengths to create a histogram and use the counts
f printable strings in each bin of the histogram as features. They take
ll the byte sequences of length six or more that are in the ASCII code
ange as printable strings which is also slightly different from other
orks.

Essentially, the functionality of most malware does not rely on
rintable strings. Thus, when malware creators find that some strings
ccidentally are used by malware detectors, they can eliminate them
r even if the printable strings are necessary, they can break them
nto characters that are distributed in different positions. Therefore,
rintable strings are not reliable features.

yte sequences (byte code). Executable files consist of byte sequences
also known as byte code). A byte sequence may belong to the meta-
ata, code, or data of an executable file. As has been stated, byte
equences are important signatures of malware since malware may
hare some common sequences that are exactly the same or follow the
ame regular expression. Thus, byte sequences are also appropriate to
e features for malware analysis systems [12,17,25,41].

Schultz et al. [12] use bigram byte sequences in the form of binary
eatures and they claim byte sequence feature is the most informative
eature because it represents the machine code in an executable. In fact,
his is not entirely true since some byte sequences come from metadata
r data section. Even if a byte sequence is from code section, since
nstructions have variable length in some architectures, byte sequences
ay not match machine code. And their byte sequence feature has

he problem of dimension explosion since there are too many different
igram byte sequences and it is too large to fit into memory so they
ould only split the byte sequence set into several sets and feed them
o multiple native bayes models.

5 https://www.hex-rays.com/products/ida/.

https://www.xenproject.org/
https://www.vmware.com/
https://cuckoosandbox.org/
https://www.qemu.org/
https://www.hex-rays.com/products/ida/

Journal of Information Security and Applications 59 (2021) 102828A. Abusitta et al.
Fig. 1. The proposed taxonomy.
To solve the dimension explosion problem, Kolter and Maloof [17]
use information gain to select the top 500 informative 4-gram byte
sequences as binary features from 255 million distinct 4-grams.

Different from the above two works, Anderson et al. [41] do not use
byte sequences per se as features but fit byte sequences into a Markov
Model so essentially the feature they use is transition probability from
one byte to another.

Chen et al. [25] use the byte entropy of each 1024 byte window and
the occurrence of each byte to form a histogram and evenly separate
each axis into 16 bins to form a 256 length feature vector.

Nataraj et al. [20] convert the whole byte sequence of a file into a
picture in which each byte represents the gray scale of a pixel. They find
that the malware that belongs to the same family appear very similar
in layout and image. The width of the image that is used to transform
the 1D byte sequence into a 2D matrix is determined by the size of the
file. The image feature of the malware image is computed using the
algorithm proposed by Oliva and Torralbat [87]. The main advantage
of image-based techniques is that they are robust against many types
of obfuscations [88].

Byte sequences are not reliable in most cases. This is due to the fact
that obfuscation techniques such as instruction substitution and register
reassignment can change the opcodes and oprands respectively, which
means that the machine code is changed. In all these works, the byte
code is statically extracted but the main program body encrypted with
different algorithms or keys through Packing and Polymorphism will
change the byte sequences.
4

Assembly code. Machine code and assembly code can be translated to
one another through assembly and disassembly. Assembly code has
some advantages over machine code as a feature for malware analysis.
First, assembly code can be understood by a programmer and therefore
as a kind of feature, assembly code is more convenient to be prepro-
cessed (e.g., grouped into categories according to the function, filtered,
truncated etc.) to appear as a more informative feature. In addition,
malicious code is often encrypted by packing or polymorphism so
it is impossible to get it from the original byte sequence, however,
dynamically extracted assembly code has been decrypted so it includes
the malicious code.

Moskovitch et al. [18] propose that assembly code can be more
robust than machine code for the analysis of malware since the same
malicious engine may locate in different locations of a file, and thus
may be linked to different addresses in RAM or even perturbed slightly
so by dropping the oprands and just using opcode the robustness is
improved. They extract assembly code by dissembling the executables
with IDA Pro. They try both term frequency (TF) and term frequency–
inverse document frequency (TF-IDF) of each opcode n-gram (n=1,2,
. . . ,6) as features and use document frequency (DF), information gain
ratio, or Fisher score to select features. Their best result is achieved
using TF values of opcode bigram as features filtered by Fisher score.
One disadvantage of their method is that it is still prone to dead
code insertion, operation transpositions, packing, and polymorphism.
Another one is dropping operands causes loss of information which may
subsequently lead to loss of precision.

Journal of Information Security and Applications 59 (2021) 102828A. Abusitta et al.

M

o
s
b
t
u
t
t
a
i
e
p

c
f
o

A
e
W
o
d

f
f
a
t

d
t
c
c
e
r
M

T
t
c
t
m

To counter packing and polymorphism, Dai et al. [19] run malware
in a VM and record the sequence of the running byte code which will
be disassembled to assembly code. They use three kinds of two-opcode
combinations: unordered opcodes in a block, ordered but not necessar-
ily consecutive opcodes in a block, consecutive opcodes in a block. This
way their features is more resistant to dead code insertion and reorder
of operations. They use the association between the frequency of a
feature in training dataset and a class as criterion and apply a variant of
Apriori [89] to select top 𝐿 features. Although unordered opcodes and
ordered (but not necessarily consecutive opcodes) in a block improve
the resistance to dead code insertion and reorder of operations, those
features are too flexible so they also bring more false positive situations.

Royal et al. [42] is another work aiming to detect code that is
hidden and can only be seen dynamically. The way they do it is to
store the static code of an executable and check whether each operation
executed is within the stored static code area. If it is not, it is a
part of hidden-code. They claim that the main malware engine should
be in the hidden-code if both of them exist and experiment results
also illustrate the hidden-code enhances the accuracy of ClamAV6 and

cAfee Antivirus.7
Anderson et al. [21,41] use the transition probability from one

pcode to another as features, which is similar to how they use byte
equence feature. In their paper [21], they just extract assembly code
y recording the execution of an executable in a VM which is similar
o the way Royal et al. [42] use. In their second paper [21], they also
se IDA Pro to disassemble the executable, and the assembly code from
he two sources are used as two independent feature sets. In addition,
hey also group instructions into categories in several granularities
ccording to the functions of the instructions to reduce the impact of
nstruction substitution in their second paper [21]. In their preliminary
xperiment, they also find if they use instructions with oprands, the
erformance will be worse [21].

Santos et al. [23] disassemble executables to acquire their assemble
ode and then use weighted opcode n-gram frequencies as one of their
eatures. The weight is the product of the information gain of all
pcodes in the n-gram times the normalized TF of the n-gram.

PI/DLL system call. DLL files and functions of DLL files used by an
xecutable expose the system services they use. Native system calls and
indows API calls an executable invokes are shown by the functions

f DLL files it depends on. Therefore, what behaviors it may intend to
o or what it would be able to do can be inferred.

Schultz et al. [12] extract the DLL files by an executable used, the
unctions in DLL files, and the number of function of each DLL as
eatures from metadata in order to understand how resources affected
n executable’s behavior and how heavily each DLL is used. The first
wo are used as binary features and the third is a real-valued feature.

Bayer et al. [40] and Santos et al. [23] extract calls to Win-
ows API functions dynamically using an emulator. Then, they use
hose API functions to acquire actions of an executable during exe-
ution including I/O activity, registry modification activity, process
reation/termination activity, network connection activity of an ex-
cutable, self-protection behavior, system information stealing, er-
ors caused by the execution, and interactions with Windows Service
anager.

Fredrikson et al. [43] also use an emulator to monitor system calls.
hen, they use the relations between system calls and their parameters
o form a dependency graph in which nodes are system calls and edges
onnect system calls sharing some parameter. They define a behavior
o be a subgraph of it and behaviors that can be adopted to distinguish
alware from Goodware will be mined and used to detect malware.

6 http://www.clamav.net/.
7 https://www.mcafee.com/en-us/index.html.
5

Anderson et al. [41] and Huang and Stokes [26] group the system
calls into high-level categories where each category represents func-
tionally similar groups of system calls, such as painting to the screen
or writing to files. Anderson et al. [41] then feed the trace of groups of
system calls to a Markov chain so that they use transition probability
of system calls to be the feature. Huang and Stokes [26] use those
high-level API call events as binary features.

Islam et al. [22] and Dahl et al. [24] extract Windows API function
calls and their parameters by running an executable in a VM. Islam
et al. [22] treat Windows API functions and parameters as separate
entities and use the occurrence frequency of each entity as their feature.
Dahl et al. [24] use combination of a single system API call, one input
parameter, and API tri-grams which consist of three consecutive API
function calls, as binary features which are subsequently selected using
mutual information.

Kolosnjaji et al. [27] use the dynamic malware analysis system
Cuckoo sandbox to extract the sequence of the Windows system calls
invoked by an executable. They use one-hot representation of them and
feed the full sequence of system calls with the order to a sequential deep
learning model.

Similar to assembly code, Windows API call sequences can also
be obfuscated. For instance, malware authors can make an executable
invoke some irrelevant API calls and submerge the API calls they use
to fulfill their purpose in them. Thus, this feature is not reliable in most
cases.

Control flow graphs. A control flow graph is a directed graph that
represents the flow of the program, where nodes are the instructions
while the edge between two nodes represents the order of sequence
of execution of the two instructions. A vertex in the graph is a basic
block in the middle of which there is no jump or branch instructions.
A directed edge represents jumps in the control flow. Control flow
graphs are used as features or signatures to detect malware in several
papers [15,41].

Cesare and Xiang [15] state that similar malware usually have sim-
ilar high-level structured control flows. They find that compressed and
encrypted data have relatively high entropy so they first use entropy
of byte sequence to detect whether an executable is packed or not.
If so, they use an application level emulator to extract hidden code.
They still use entropy of byte sequence to detect completion of hidden
code extraction. Then the memory image of the binary is disassembled
using speculative disassembly [90]. Finally, they use the process of
structuring to recover high-level structured control flows from control
flow graphs of procedures and represent them using strings of character
tokens. The strings representing control flow graphs are all saved as
signatures. An example of the relation between a control flow graph
and the signature string is shown in Fig. 2.

Anderson et al. [41] also find that it is largely not easy for a
polymorphic virus to build a semantically similar version of itself while
changing its control flow graph enough to avoid detection. Therefore,
they use control flow graphs as features. More specifically, they use the
occurrence frequency of each k-graphlet (a subgraph of k nodes) in the
control flow graph to represent control flow graph.

To counter the detection using control flow graphs, malware authors
can use control flow flattening and bogus control flow obfuscation
techniques to change the control flow without affecting the function-
ality so that the effectiveness of control flow graph feature will be
harmed [91,92].

Function. Some papers (e.g., Islam et al. [22] and Chen et al. [14]) use
function level features for malware classification.

In particular, Islam et al. [22] find function length that consists of
statistically useful information in distinguishing between families of
malware. After obtaining the assembly code of each executable, they
calculate the length of them by measuring the number of bytes of code
and use the occurrence frequency of each function lengths as a feature.
However, obviously, function length is the least robust feature against

http://www.clamav.net/
https://www.mcafee.com/en-us/index.html

Journal of Information Security and Applications 59 (2021) 102828A. Abusitta et al.
Fig. 2. The relationship between a control flow graph, a high level structured graph, and a signature.
obfuscation. Function length can be arbitrarily increased by inserting
dead code or decreased by splitting them into multiple functions.

One should note that two functions which are semantically similar
to each other are considered to be clones of each other. To this end,
Chen et al. [14] assume that some files that belong to the same malware
family share some functions which are connected using clone relation.
So they cluster functions to groups in which any two functions can
be connected directly or indirectly using clone relation and pick one
function from each group as an exemplar to be a signature. They use
NiCad [93] to detect whether two functions are clone to each other.
However, to use one function to represent a group of functions is
problematic. Since the same function evolves over generations, the
newest version may look quite different from the original one. If the
older version is picked as the exemplar, the clone detector may fail
to identify some unknown new generation of it. Although their system
works on Android APK files, the methodology can be directly applied
to classifying executable malware.

Miscellaneous file information. Some miscellaneous file properties can
help engineers distinguish malware from Goodware since the average
or majority values of them are significantly different between the two
groups. So that those properties are also used as features. They are file
size [40,41], exit code [40], time consumption [40], entropy [41,94],
packed or not [41], number of static/dynamic instructions [41], and
number of vertices/edges in control flow graph [41]. These features
may be helpful but obviously not informative enough.

Conclusive remarks. The effectiveness of using all the aforementioned
features can be somehow diminished or they are not informative
enough. So many papers use multiple features [12,22–26,41]. The
intuition is that any single feature source can be obfuscated to evade
the detection but it is extremely difficult to obfuscate all features
simultaneously without hindering the functionality [22,41].

3.2. Malware classification algorithms

The extracted features introduced in the previous section are fed
into malware detection/classification systems. They can be catego-
rized as signature-based approaches and artificial intelligence-based
approaches.

3.2.1. Signature-based approaches
Signature-based detection is the most papular approach used in

most antivirus engines. Those signatures are created by human malware
defenders through examining the collected malware samples [12,13].
6

More specifically, the antivirus engines detect or classify malware by
checking whether the files to be analyzed contain malware signatures.
The signatures of malware can take many formate including filename,
text strings, or regular expressions of byte code [12,13]. Signatures are
usually also hashing of the entire file. One should note that signature-
based techniques can only detect malware originates from known
malware which does not change significantly. As a result, attackers can
exploit these techniques by hiding the malicious behavior of malware
using anti-analysis techniques such as packing, obfuscation, polymor-
phism, and metamorphism (Section 6 provides more details about these
techniques). Therefore, the code looks quite different from its original
version. The main shortcoming of signature-based method is it has high
precision but low recall and the other one is labor-intensive.

Some works [14–16] address the problem of manual signature
crafting by proposing automatic signature generation techniques. The
content of the signatures can be windows system call combinations,
control flow graph, and functions.

3.2.2. Artificial intelligence-based approaches
The section discusses artificial intelligence-based malware classi-

fication approaches. These approaches can be categorized as tradi-
tional machine learning models, deep learning models, association
mining, graph mining and concept analysis, and signature creation and
search methods. The existing artificial intelligence-based approaches
also can be classified according to the learning method used as follows:
supervised, unsupervised or semi-supervised.

In a supervised malware classification model [21–25,46,50,54,55,
57–65,67,69,71,72,74,76,80–82,85,95–99], the classification algorithm
learns on a labeled dataset, which enable the algorithm to evaluate its
accuracy on training data. In contrast, an unsupervised malware classi-
fication model [47,49,53,62,69,75,83,84,100–102], provides unlabeled
data that the algorithm tries to make sense of by extracting patterns
without guidance. Semi-supervised malware classification models [68,
75,78,103] combine both labeled and unlabeled data.

Traditional machine learning models. The most popular traditional ma-
chine learning models used by surveyed papers are Naive Bayes clas-
sifier (NBC) [50,58,60,63–65,81], rule-based classifier [46,59,64,81,
95,96], decision tree (DT) [22,23,50,55,58,60,62,65,72,74,80,82,96],
K-nearest neighbors (K-NN) [22,50,60,62,71,72,96,97], Bayesian Net-
work [23,72,85], Neural Network (NN) [24,25], Random Forest (RF)
[22,54,58,60,63,67,76,80,98,99], Hidden Markov Models (HMM) [9,
104–106] and Support Vector Machine (SVM) [21–23,50,54,57,58,60–
63,65,69,71,72,76,81,96]. Those papers which use traditional machine

Journal of Information Security and Applications 59 (2021) 102828A. Abusitta et al.

t
c
f

𝑃

learning models normally try multiple machine learning models [12,
17–19,22,23].

Below, we briefly introduce the above mentioned machine learning
models.

Naive Bayes Classifier (NBC) An NBC [107] uses Bayes’ theorem
o determine the conditional probability of a sample belonging to a
lass given the input features which can be formally described in the
ollowing equation:

(𝐶𝑖|𝑥) =
𝑃 (𝑥|𝐶𝑖)
𝑃 (𝑥)

𝑃 (𝐶𝑖) (1)

where 𝑥 is a sample and 𝐶𝑖 is the probability the sample belongs to class
𝑖. It is based on the Naive Bayes conditional independence assumption
that all the features are independent to each other given the class it
belongs to:

𝑃 ((𝑥1, 𝑥2,… , 𝑥𝑛)|𝐶𝑗) = 𝑃 (𝑥1|𝐶𝑗)𝑃 (𝑥2|𝐶𝑗)...𝑃 (𝑥𝑛|𝐶𝑗) (2)

where 𝑥𝑗 is a feature of 𝑥. Although the assumption do not hold,
the prediction results are good in many occasions and the result is
explainable which means how much each feature contributes is visible.

Decision Tree (DT) A DT classifier [108] uses a tree structure to
represent the classification process. Internal nodes of a DT are tested
on the values of features and edges correspond to a choice on values
of a variable. Leaf nodes represent the final class of samples fall into
it. The tree structure is constructed based on the informativeness of
each feature conditioned on the current choices such as information
gain ratio and Gini index. A DT is also an interpretable classifier and a
DT can be translated sets of if-else-then rules.

K-Nearest Neighbor (KNN) A KNN [109] is an instance-based
classifier. The model finds the K nearest neighbors of a given sample
with some distance metrics (e.g., Euclidian, cosine), and predict it to be
the (weighted) majority vote of the classes of the k nearest neighbors.

Support Vector Machine (SVM) An SVM [110] is a binary clas-
sifier which calculates a hyperplane that separates samples from two
classes with the largest margin. An important characteristic of an SVM
is it can utilize kernel trick to map samples from the original feature
space to a high-dimensional (even infinite) feature space to perform
non-linear classification.

Bayesian Network (BN) A BN [111] is a probabilistic graphical
model which represents variables as vertices and the dependencies as
directed edges. The graph is used for the inference of probability of any
variable.

Rule-based classifier A rule-based classification [112] refers to
any classification method that allows us to use of IF-THEN rules for
prediction. An example of a rule-based classification is RIPPER [113],
which is used to build a set of rules to classify samples while minimizing
the error of the number of misclassified training samples.

Neural Network (NN) An NN [114] is a biologically-inspired
programming paradigm that allows a computer to learn from obser-
vational data. It consists of a network of functions (i.e., parameters)
which enables the computer to learn, and to fine tune itself, through
analyzing new data.

Random Forest (RF) An RF classifier [115] constructs a set of
DTs from the subset of training set (selected randomly). The votes are
then aggregated from trees in order to decide the final class of the test
sample.

Deep learning models. Deep learning models allow us to automatically
abstract and extract robust and useful features for efficient and reliable
malware classification. This can be done using multiple layers of ab-
straction to learn the ‘‘good’’ representation of the data [116]. An exam-
ple of deep learning models are autoencoder [117], stacked denosing
autoencoder [116], restricted Boltzmann Machine (RBM) [118].

Dahl et al. [24] applies their 179,000 binary features to a deep
learning model. The first layer is a random projection layer which
maps the input features to a much lower dimensional space (4000
dimension). The difference between the random projection layer and
7

a normal fully connected layer is the weight of the projection matrix
is not updated. The entries of it are sampled following an independent
and identically distribution over -1,0,1. On top of that, they apply 1 to
3 fully connected layers with sigmoid activation functions and a 136-
way softmax layer as output. They also try using a Gaussian–Bernoulli
restricted Boltzmann machine (RBM) to pre-train the hidden layers.
The best result is achieved by the model with 1-hidden layer without
pre-training which is 9.53% test error rate. They also find the random
projection performs better than Principal Component Analysis (PCA).

Saxe and Berlin [25] propose a deep feed-forward neural network
consisting of four fully connected layers, where the dimensions of the
first three layers are 1024 followed by a dense layer to get the output.
They apply dropout to the first three layers. The activation functions
of the first two layers are parametric rectified linear units (PReLU) to
yield improved convergence rate without loss of performance and the
activation function of the third layer is sigmoid. They also use Bayesian
Calibration to calculate the unbiased probability that an executable is
malware. They achieve a detection rate of 95% and a false positive rate
of 0.1% on a dataset of 431,926 samples.

Huang and Stokes [26] propose a neural network for multi-task
training. One task is a malware detection to predict whether an un-
known software is malicious or benign and the other is to predict
if it belongs to one of 98 important malware families. Huang and
Stokes [26] also use a random projection layer to reduce the dimension
to 4,000 from 50,000 and then they normalize each of the 4,000
dimension to be zero mean and unit variance. Then they use 4 hidden
layers with dropout and RELU activation. On top of it is two single
layers for each of the two classification task. The final loss function is
a weighted sum of each of the individual loss functions. Experiment
results show that multi-task learning only improve the performance of
malware detection and harm the performance of malware classification
in most experiment settings. Specifically, the best result for malware
detection is 0.3577% test error which uses two hidden layers and
multi-task learning and the best result for malware classification is
2.935% test error which uses one hidden layer and either single task
or multi-task learning.

Kolosnjaji et al. [27] propose a combination of convolutional neural
network (CNN) and Long Short-Term Memory (LSTM) networks to
predict the family of an executable using the dynamically extracted
system call sequence. They first use two convolution layers to capture
the correlation between consecutive API calls and then apply max-
pooling to reduce the dimensionality. The output sequence is fed to a
LSTM layer to model the sequential dependencies of API calls. Then a
mean-pooling layer is used to extract important features from the LSTM
output. They also use Dropout to prevent overfitting and a softmax
layer to output the probability of each class. Their proposed deep
learning model significantly outperforms feed-forward neural networks,
CNN, SVM, and Hidden Markov Model and achieves 85.6% on precision
and 89.4% on recall. The advantage of their model is it can fully utilize
the order of system calls which may also be a drawback if the system
call sequence is obfuscated. One problem of their model is they use
mean-pooling rather than max-pooling to extract features of highest
importance produced by LSTM is not quite reasonable.

Associative classifier. An associative classifier relies on association rules
that can be used to distinguish samples between two classes to perform
classification. It is a special case of association rule mining where
only the class of a sample can be the consequent (a.k.a. right-hand-
side) of a rule. Ye et al. [16] proposes to use hierarchical associative
classifiers (HAC) to classify executables based on API calls. There are
three techniques regarding the creation of an associative classifier:
(1) adopt FP-Growth algorithm to find candidate association rules
(i.e., combination of API calls) (2) prune the candidate rules based on
𝜒2, data coverage, pessimistic error estimation, significance w.r.t to
its ancestors (3) reorder rules: first rank the rules whose confidences
are 100 by confidence support size of antecedent (CSA) and then re-

2
order the remaining rules by 𝜒 measure. Using those three techniques,

Journal of Information Security and Applications 59 (2021) 102828A. Abusitta et al.
they create a 2-level associative classifier to detect malware from a
gray list labeled by a signature-based anti-virus engine. The first-level
associative classifier is aimed for higher recall of malware. It only keeps
the rules of Goodware with 100% confidence and the rules of malware
with confidence greater than a pre-defined threshold; then it uses the
rule pruning technique to decrease the generated rules and create the
classifier; finally uses ‘‘Best First Rule’’ technique to find samples from
the gray list. The samples labeled to be malware by the first associative
classifier are fed to the second level associative classifier which is aimed
at optimizing the precision. It works with the following steps: select
those samples whose prediction rules of malware have 100% confi-
dences, marking them as ‘‘confident’’ malware; ranking the remaining
minority class files in an descending order based on their prediction
rules’ 𝜒2 values; select the first k files from the remaining ranking list
and marking them as ‘‘candidate’’ malware; mark the remaining files
as ‘‘deep gray’’ files. Experiment results show the proposed HAC is
effective. In addition, HAC is also an interpretable classifier which can
be easily represented as simple if-then rules.

Graph mining and concept analysis. Fredrikson et al. [43] extract be-
haviors (dependency graphs of system calls and their parameters)
that can distinguish malware from Goodware using structural leap
mining [119]. Then they use the behaviors to form discriminative
specifications. A specification is a set of behaviors and a characteristic
function that describes one or more subsets of the set. A software
matches a specification if it matches all of the behaviors in at least
one characteristic subset. A specification is entirely discriminative if
it matches malicious software but does not match benign software.
They use formal concept analysis [120] and Simulated Annealing al-
gorithm [121] to find an approximate optimal specification which has
true positive larger than a threshold and lowest false positive among
all specification larger than that true positive rate. During test, if a
program matches a specification, it will be classified to be malware. The
created specification can be used in the detection of unseen malware
with a 86% true positive rate and 0 false positives on a dataset of 961
samples.

Signature search methods. Cesare and Xiang [15] first convert the con-
trol flow graphs of each procedure in an unknown executable to char-
acter strings in the same way they create signatures. Each procedure is
assigned a weight using the length of its string:

𝑤𝑒𝑖𝑔ℎ𝑡𝑥 =
len(𝑠𝑥)

∑

𝑖 len(𝑠𝑖)
(3)

Then they use BK Trees to retrieve the strings in the signature database
which have less Levenshtein distance with strings representing pro-
cedures of the target file than a threshold. For a particular malware,
once a matching graph is found, this graph is ignored for subsequent
searches of the remaining graphs in the input binary. If a graph has
multiple matches in a particular malware and it is uncertain which
procedure should be selected as a match, the greedy solution is taken.
The graph that is weighted the most is selected. For each malware that
has matching signatures, the similarity ratios of those signatures:

𝑤𝑒𝑑 = 1 −
𝑒𝑑(𝑥, 𝑦)

max(len(𝑥), len(𝑦)) (4)

are accumulated proportional to the weights of the procedure. The
final similarity between the unknown executable and a malware in the
database is the product of two asymmetric similarities: a similarity that
identifies how much of the input binary is approximately found in the
database malware, and a similarity to show how much of the database
malware is approximately found in the input binary. If the program
similarity of the examined program to any malware in the database
equals or exceeds a threshold of 0.6, then it is deemed to be a variant.
Experiment results show that their method achieves 86% detection rate
with 0 false positives which is better than 55 for commercial signature-
based antivirus (AV) and 62–64 for behavior-based AV. Since they use
8

Fig. 3. The proposed taxonomy.

a symmetric similarity calculated as the product of two asymmetric
similarities, it cannot handle asymmetric situations. For instance, if
a very large unknown executable contains the whole program of a
malware sample in the database but that malicious program only take
up 1% of its whole content, the similarity would still be small and it
cannot be predicted to be malware.

Chen et al. [14] uses NiCad [93] to detect whether an APK file
contains any function that is clone of an exemplar function which
represents a signature of a malware family. If a match is found, the
file is predicted to be an instance of that malware family. They achieve
96.88% accuracy on a dataset of 1170 APK files from 19 malware
families.

4. Taxonomy of composition analysis techniques

This section introduces the taxonomy of malware composition anal-
ysis techniques. We identify two major dimensions along which sur-
veyed papers can be conveniently organized. The first one shows the
steps used for composition analysis. The second dimension identifies
the objective (i.e., strategy) of the analysis. Fig. 3 shows a graphical
representation of the proposed taxonomy.

4.1. Steps

Composition analysis allows reverse engineers to analyze the com-
position of malware samples in order to understand their functionalities
and behaviors. This, in turn, allows engineers to discern the intent of
malware samples and the attackers. Moreover, it allows reverse engi-
neers to rank the malware by severity and allows them to effectively
triage their resources.

Basically, there are three main steps used for composition analysis:
disassembling, representation, and classification.

Journal of Information Security and Applications 59 (2021) 102828A. Abusitta et al.
4.1.1. Disassembling
Most software programs are delivered to users with compiled ex-

ecutables, rather than source code. Disassemblers make it feasible
for reverse engineers to analyze software programs without source
code. Technically speaking, a disassembler is a process of converting
or translating machine language into assembly language. The inverse
operation of ‘‘disassembler’’ is an ‘‘assembler’’. There are many tools
used for this purpose (e.g., IDA Pr8).

Disassembly methods can be categorized into the following two
classes: static techniques and dynamic techniques. Methods that belong
to the first class analyze the binary components statistically, parsing the
opcodes in the binary file. Methods belong to the second class monitor
the execution traces of a program in order to identify the instructions
and recover disassembled version of the binary.

Both dynamic and static methods have pros and cons. Static analysis
takes into consideration the whole program, while dynamic analysis
can only focus on the executed instructions. As a result, it is not easy
to ensure that the entire executable was visited when adapting dy-
namic analysis. However, dynamic analysis guarantees that the output
(i.e., disassembly output) only contains actual instructions.

Generally speaking, there are two approaches for static analysis
techniques. The first approach is called linear sweep [122]. This ap-
proach begins at the first byte of the binary and starts decoding one
instruction after another. The main shortcoming of using linear sweep
disassemblers is the high probability of errors which result from data
embedded in the program. The second approach is called recursive
traversal [123], which allows engineers to fix the problem of ‘‘em-
bedded data’’ by following the Control Flow (CF) of the program [15,
41]. However, the problem with this approach is that it could fail
to successfully analyze parts (i.e., functions) of the code. This is due
to the fact that a control transfer instruction (e.g., jump) cannot be
determined statically. This problem can be addresses by using a linear
sweep algorithm to analyze unreachable regions in the code [124].

4.1.2. Representation learning
The success of any malware classification and composition analysis

technique generally depends on data representation. Although specific
domain knowledge may help engineers design representations and a
feature vector for an executable, a manual feature engineering process
fail to consider the relationships between features and define those
unique patterns that can distinguish executables.

Indeed, representation learning is a set of methods and/or tech-
niques that enables a system to automatically extract the representation
needed for malware classification from raw data (i.e., assembly code).
This process replaces manual feature engineering and enables a mal-
ware classification system to learn the useful features and integrates
them to perform a classification.

The motivation behind using feature learning is the fact that com-
position analysis methods often need inputs that are robust against
anti-analysis techniques such as obfuscation and packing.

Deep learning approaches (e.g., stacked autoencoders [125], stacked
Denoising autoencoders [116], Deep belief networks [126], . . .) are
known and considered as the (best) approaches for extracting robust
features, which are used for building robust malware and similarity
analysis tools for large-scale heterogeneous environment.

4.1.3. Classification
After disassembling executable samples, the assembly code func-

tions are used to feed a representation learning module in order to
obtain robust features and ‘‘good’’ representation of data. The function
representation are then fed into any classification algorithms such
as Naive Bayes classifier (NBC) [64], rule-based classifier [64], deci-
sion tree (DT) [65], K-nearest neighbors (K-NN) [71], Bayesian Net-
work [85], Neural Network (NN) [24], Random Forest (RF) [67],

8 https://www.hex-rays.com/products/ida/.
9

Hidden Markov models (HMM) [127], and Support Vector Machine
(SVM) [65]. The classification method enables us to identify the re-
lationships between functions taking into account the following three
analysis strategies: variants analysis, similarities analysis, and families
analysis.

Variants Analysis (VA). VA [46,47,59,79,80,83] enables engineers to
realize that a malware sample is actually a variant of a known malware
in the repository. This strategy allows us to understand to which extent
malware have been evolved over time.

Similarity Analysis (SA). SA [48,49,53,56,128] allows engineers to rec-
ognize what parts (i.e., functions) of a malware sample are similar to
known functions in the repository. This strategy allows us to focus only
on new parts and prevent unnecessary investigation.

Families Analysis (FA). FA [22,24,51,55,60–62,70,71,76,97,101,102].
enables engineers to associate undefined malware to defined families.
This strategy works under the assumption that malware from the same
family are similar to each other in terms of functionality. The difficulty
to recognize them comes from the fact that some malware authors use
anti-analysis techniques (e.g., obfuscation, packing, polymorphism, and
metamorphism) to conceal that similarity.

5. Characterization of surveyed papers

In this section, we characterize each reviewed paper. Table 1 pro-
vides information about both algorithms and features used for each
paper and highlights the main limitations. The table also shows the
scalability of each work in terms of its ability to work in the pres-
ence of incremental update of the repository. The last column shows
whether the proposed classification techniques are robust against anti-
analysis techniques or not. As can be seen in Table 1, most of the
works use more than one classification algorithm for detecting and
classifying malware in order to guarantee more accurate results. In
Table 2, different approaches are compared w.r.t the of the main
objective: malware detection and similarity analysis, families analysis
and variants analysis.

6. Challenges and issues

Based on the characterization explained in Section 5, we discuss
here the challenges and/or issues of the surveyed articles.

6.1. Malware evading techniques

In this section, we introduce the common techniques that are used
by malware authors to evade detection.

6.1.1. Obfuscation
The term of obfuscation mainly refers to the techniques that are

used to create a variant of the original code without affecting its
functionality. The purpose of obfuscation is usually to hide the real
logic of the original code or to evade signature-based detector or
function clone detector. A few commonly used obfuscation techniques
are as follows:

1. Dead-Code Insertion [13]: insert useless instructions (e.g., nop)
or insert some instructions that only affect unused variables.

2. Code Transposition [13]: change the order of the independent
instructions.

3. Register Reassignment [13]: exchange the usage of registers for
the storage of data/address in a specific live range.

4. Instruction Substitution [13]: replace an instruction with equiv-

alent instructions.

https://www.hex-rays.com/products/ida/

Journal of Information Security and Applications 59 (2021) 102828

10

A. Abusitta et al.

Table 1
Summary of extraction methods, classification methods, and limitation in malware classification.

Work Classification method Features Limitations Scalability
(Yes/No)

Robust
against noisy
inputs
(Yes/No)

[129] k-NN and SVM Byte Code Not robust against unseen
inputs

Yes No

[130] NN Byte Code Vulnerable to adversarial
attacks

Yes Yes

[131] k-NN and NN Byte Code Vulnerable to adversarial
attacks

Yes Yes

[65] DT, Naïve Bayes, and SVM Byte Code Not robust against noisy
inputs

Yes No

[132] k-NN, NN, and SVM Byte Code Vulnerable to adversarial
attacks

Yes Yes

[73] RF Miscellaneous File Information Needs a large number of
labeled examples (malicious
and benign)

Yes Yes

[74] DT, RF Miscellaneous File Information Works only under the
assumption that the new
samples are not packed

Yes No

[57] SVM Internet Traffic Not scalable (tested using vary
small datasets)

No Yes

[75] Cluster Analysis Miscellaneous File Information Unable to classify new
examples/samples

Yes No

[64] NBC Printable Strings and Byte
Code

Not robust against noisy
inputs

Yes No

[96] DT, NBC, SVM API Not scalable (tested using very
small datasets)

No Yes

[103] BN Miscellaneous File Information Not efficient giving new
samples

Yes No

[50] DT, NBC, SVM, k-NN, NN and
SVM

API and Miscellaneous File
Information

Not scalable (tested using
small datasets)

No Yes

[21] SVM Byte Code and API Not scalable (tested using very
small datasets)

No Yes

[41] SVM Byte Code, Assembly Codes
and API

not scalable (tested using very
small datasets)

No Yes

[85] BN API Not robust against noisy
inputs

Yes No

[23] BN, DT, k-NN classification,
SVM

Assembly Codes and API Not robust against noisy
inputs

Yes No

[58] DT, RF, Naïve Bayes, SVM Byte Code and API Not scalable (tested using very
small datasets)

No Yes

[78] BN Miscellaneous File Information Not robust against unseen
inputs

Yes No

[59] Rule-based classifier API Not scalable (tested using very
small datasets)

No Yes

[98] RF Internet Traffic Not robust against unseen
inputs

Yes No

[99] RF API and Miscellaneous File
Information

Not robust against noisy
inputs

Yes No

[25] NN Printable Strings and
Miscellaneous File Information

Not robust against noisy
inputs and not scalable (tested
using very small datasets)

No yes

[46] Rule based classification API and Miscellaneous File
Information

not scalable (tested using very
small datasets)

No Yes

[47] Cluster analysis API and Miscellaneous File
Information

Requiring user interactions Yes No

[101] Cluster analysis Byte Code Not scalable (tested using
small datasets)

No Yes

[51] Matching (graph theory) API Not robust against noisy
inputs

Yes No

[102] Cluster analysis Assembly Codes Not robust against noisy
inputs

Yes No

(continued
on
next
page)

Journal of Information Security and Applications 59 (2021) 102828A. Abusitta et al.
Table 1 (continued).
Work Classification method Features Limitations Scalability

(Yes/No)
Robust
against noisy
inputs
(Yes/No)

[24] NN Byte Code and API High error rate Yes No

[70] Clustering Assembly Codes Not robust against noisy
inputs

Yes No

[22] DT, k-NN classification, RF,
SVM

Byte Code and API Not robust against unseen
inputs

Yes No

[71] k-NN classification and SVM Assembly Codes and
Miscellaneous File Information

Not robust against unseen
inputs

Yes No

[55] DT Internet Traffic Not scalable (tested using very
small datasets)

No Yes

[76] SVM, RF and DT Internet Traffic and Byte Code,
Assembly Codes and API

Not robust against noisy
inputs

Yes No

[61] SVM, RF and DT Internet Traffic and Byte Code
and API

Not scalable (tested using very
small datasets)

No Yes

[60] DT, RF, k-NN classification
and NBC

API Not robust against unseen
inputs

Yes No

[62] DT, k-NN classification and
SVM

Miscellaneous File Information
and network

Not robust against noisy
inputs

Yes No

[133] k-Means Assembly Codes Not robust against noisy
inputs

Yes No

[48] Hierarchical Clustering API, Miscellaneous File
Information, and Internet
Traffic

Not scalable (tested using very
small datasets). Not robust
against noisy inputs

Yes No

[49] Cluster analysis API Not robust against noisy
inputs

Yes No

[53] Cluster analysis Byte Code and API Not robust against noisy
inputs

Yes No

[56] NN API Not robust against noisy
inputs and not scalable (tested
using small datasets)

No Yes

[72] DT, k-NN classification, BN
and RF

Assembly codes not scalable (tested using very
small datasets)

No Yes

[63] NBC, RF, and SVM Byte Code, API and file system Not robust against noisy
inputs

Yes No

[97] k-NN classification Byte Code Not robust against noisy
inputs

Yes No

[104] HMM opcode sequences Not robust against severe
obfuscations techniques

Yes Yes

[105] HMM mnemonic opcode sequences Not robust against severe
obfuscations techniques

Yes Yes

[106] HMM opcode sequences Not robust against severe
obfuscations techniques

Yes Yes

[9] HMM opcode sequences Not robust against severe
obfuscation techniques

Yes Yes
5. Control Flow Flattening [134]: (1) break up the body of the func-
tion to basic blocks (2) put all basic blocks which were originally
at different nesting levels next to each other (3) encapsulate the
basic blocks in a selective structure (a switch statement in the
C++) (4) encapsulate the selection in a loop.

6. Bogus Control Flow [135]: for a basic block, add a new basic
block which contains an opaque predicate and then make a
conditional jump to the original basic block.

6.1.2. Packing
Packing is a technique to compress/encrypt an executable, where

those packed files will be uncompressed/decrypted during runtime. It
means that a static analyzer cannot see the real code since it does not
run the executable. Packing is used not only for malware but also for
the protection of Goodware schemes [15,41]. According to the statistics
conducted by Anderson et al. [41], 47.56% of the malware are packed
and 19.59% of the Goodware are packed in their dataset.
11
6.1.3. Polymorphism
Polymorphism is also a technique that is based on encryption and

decryption. A polymorphic malware contains two parts: the polymor-
phism engine and the real program which performs the malicious
functions. The former mutates the encryption algorithms and keys
when it replicates and the code of the latter per se is fixed but it is
encrypted by the former in different ways during runtime. This way,
the whole polymorphic malware program would look different at each
generation [136].

6.1.4. Metamorphism
A metamorphic malware re-programs itself when it replicates. Con-

sequently, in each generation, the whole program body is modified
using code obfuscation techniques while the functionality is kept un-
changed [136]. Metamorphic malware is considered to be more diffi-

cult to write than polymorphic malware.

Journal of Information Security and Applications 59 (2021) 102828A. Abusitta et al.
Table 2
Comparison summary (SA: Similarity Analyzes; FA: Families Analysis; VA: Variants
Analysis.

Paper Detection SA FA VA

Schultz et al [64] �
Kolter and Maloof [65] �
Ahmed et al. [96] �
Chau et al. [103] �
Firdausi et al. [50] �
Anderson et al. [21] �
Anderson et al. [41] �
Eskandari et al. [85] �
Santos et al. [23] �
Vadrevu et al. [73] �
Bai et al. [74] �
Kruczkowski and Szynkiewicz [57] �
Tamersoy et al. [75] �
Uppal et al. [58] �
Chen et al. [78] �
Ghiasi et al. [59] � �
Kwon et al. [98] �
Mao et al. [99] �
Saxe and Berlin [25] �
Wuchner et al. [63] �
Raff and Nicholas [97] � �
Gharacheh et al. [79] �
Khodamoradi et al. [80] �
Upchurch et al. [83] �
Liang et al. [46] �
Vadrevu and Perdisci [47] �
Huang et al. [101] �
Park et al. [51] �
Ye et al. [102] �
Dahl et al. [24] �
Hu et al. [70] �
Islam et al. [22] �
Kong and Yan [71] �
Nari and Ghorbani [55] �
Ahmadi et al. [76] �
Lin et al. [61] �
Kawaguchi and Omote [60] �
Mohaisen et al. [62] �
Pai et al. [133] �
Bailey et al. [48] �
Bayer et al. [49] �
Chen et al. [14] �
Cesare and Xiang [15] �
Anderson et al. [41] �
Cordy et al. [93] �
Fredrikson et al. [43] �
Rieck et al. [53] �
Palahan et al. [56] �
Santos et al. [72] �
Egele et al. [128] �
Kolter and Maloof [17] �
Moskovitch et al. [18] �

6.2. Adversarial attack and defense

Since the direction of the recent research is to automate the process
of malware analysis using machine learning techniques, the proposed
solutions should be robust against adversarial examples, which are
inputs designed by an attacker to fool the machine learning models
and make it generate erroneous decisions (e.g., making the malware
analysis tools unable to detect malicious code). It has been recently
shown that machine learning models, including deep neural networks,
are quite vulnerable to adversarial examples. It is easy for an attacker to
create ‘‘adversarial examples’’ [137] to fool a machine learning model
through simply perpetuating parts of the inputs.

6.2.1. Adversarial attack
Adversarial samples are crafted from normal samples with minimum

perturbations on input variables to confuse a classifier without breaking
12
the functionality of the original samples. It is natural that the perturba-
tions should be based on the derivative of the loss function with respect
to the classifier’s input variables since derivatives show the directions
of changes on the input that is the most effective for changing the
output. So a differentiable classifier is required to create adversarial
samples and deep learning models are just differentiable and effective
classifiers. Studies show that adversarial samples generated to fool one
model can fool a totally different model [138,139]. Therefore, as deep
learning models are proposed for the malware detection field, malware
authors have better opportunities to craft adversarial examples to evade
the detection of any machine learning models.

A formal description of the problem to craft an adversarial 𝑥∗ to be
misclassified by a classifier 𝑓 is

𝑚𝑖𝑛 ‖𝛿𝑥‖ (5)
𝑠.𝑡. 𝑥∗ = 𝑥 + 𝛿𝑥, 𝑓 (𝑥∗) ≠ 𝑓 (𝑥) (6)

where ‖ ⋅ ‖ can be any norm and x is the sample to be perturbed.
Goodfellow et al. [140] present a fast gradient sign method in which

the adversarial perturbation is determined by multiplying the gradients’
sign of the sample 𝑆 with some coefficient to control the scale of per-
turbation. Papernot et al. [141] propose a forward derivative method
which evaluates the sensitivity of the output to each input component
using its Jacobian matrix and then constructs adversarial saliency maps
based on the Jacobian matrix, indicating which input features to be
included in the perturbation.

Compared with perturbing an adversarial image sample, there are
some constraints on perturbing a malware sample since most of the
features of malware are discrete rather than real-valued and the func-
tionality should be intact. Thus, previous methods for perturbation
of real-valued features need to be adapted and some binary features
cannot be changed from ‘‘1’’ to ‘‘0’’ since ‘‘1’’ means that the feature
exists and that the change in this direction may break the functionality.

Grosse et al. [28] propose a technique to craft adversarial Android
malware. Inspired by Papernot et al. [28,141] use the Jacobian matrix
to examine which features have the greatest potential to lead to the
prediction of a malicious program as being Goodware. They only allow
distortions to no more than 20 features. All the features are binary
features. To maintain the functionality of the adversarial example,
they add two constraints: (1) only adjust manifest features that relate
to the AndroidManifest.xml file. This file is available in any Android
application; (2) it should be done by adding a single line of code to
it. Using their method, a state-of-the-art feed-forward neural network
which achieves 98% of accuracy on the original dataset is misled by
63% of the adversarial malware samples.

6.2.2. Adversarial defense
Grosse et al. [28] try two methods to defend against adversarial

attack. The first is to apply distillation [141,142] to counter adversarial
samples, which successfully reduces misclassification rate by 38.5%
in some case. The second is adversarial training [140] which consists
of training the model on the original dataset and then training the
model again only on the adversarial samples for a few epochs. The
misclassification rate is reduced to 67% from 73% through adversarial
training.

Wang et al. [29] defend against adversarial attacks by randomly
nullifying input features. Their nullification is similar to dropout since
in both mechanisms some input features are randomly set to 0. The
main difference with dropout is that the model do not drop any
input feature during the test but in nullification some features are still
dropped randomly during the test. Specifically, for each sample in any
dataset, a nullification rate is sampled under a Gaussian distribution
and the dimensions (features) to drop are sampled uniformly. The
intuition is that nullification makes their architecture non-deterministic
so that the attackers cannot examine the importance of features and so

it is hard for them to detect and exploit the ‘‘blind spots’’ of classifiers.

Journal of Information Security and Applications 59 (2021) 102828A. Abusitta et al.
In their experiments, the features are the invoked windows system DLL
files and they use Jacobian-based saliency map to pick up to 10 features
for each sample to perturb. Experimental results show that their method
can improve the resistance to adversarial samples and that the best
resistance is 64.86% and is achieved with a nullification rate of 10%.
However, a theoretic problem of their approach is when adversarial
samples are cross-model [138,139]. Thus, even though nullification can
harm the ability of an adversary to use this model to craft adversarial
samples, the adversary can use other models (i.e., the same neural
network without nullification) to craft adversarial samples which can
also evade the one equipped with nullification. Therefore, there is no
theoretic proof or evidence to show whether nullification can improve
the resistance against adversarial samples crafted from other deep
learning models.

6.3. Efficiency and scalability

A practical malware search engine can help security engineers ob-
tain malware search results on-the-fly when they are making analysis.
Instant feedback provides the engineer the structure of a given malware
that is under investigation [92]. One should note that scalability is an
important factor as the number of malware in the database needs to
scale up to millions. It is also a critical issue for producing a reliable
malware search engine. For practical applications, a malware search
engine’ efficiency and scalability should be evaluated using a large
repository in order to measure both its accuracy and latency.

7. Research direction

The above contributions are effective in addressing some interesting
research gaps in the literature. However, some points still need fur-
ther study and investigation. The following research avenues could be
further explored based on our literature review:

7.1. Robust solutions

Although the discussed solutions in the literature review have paved
the road for a reliable Malware Detection System (MDS) through ex-
tracting robust and useful features, the solution still needs to reduce
human interaction. Thus, an automated system is required to take
the data and automatically abstract and extract robust features from
them. For this purpose, deep learning techniques could be the best
candidate to replace the existing feature extraction approaches. The
solution can be designed and implemented using different Deep Learn-
ing architectures (e.g., Generative Adversarial Networks, Stacked De-
noising Autoencoder, Restricted Boltzmann Machine, and Variational
Autoencoder) for auto-abstraction and extraction of robust features to
significantly enhance the detection under heterogeneous, changing and
noisy environments.

Recently, Ding et al. [143] propose a robust and accurate assembly
clone search platform named Asm2Vec. The proposed platform enables
engineers to automatically learns a vector representation of any as-
sembly function by discriminating it from others functions. Also, the
platform allows engineers to jointly learn the semantic relationships
of assembly functions based on assembly code [143]. This, in turn
enables us to construct useful and robust features to make efficient and
reliable assembly clone search. The proposed learning representation is
inspired by the Distributed Memory Model of Paragraph Vectors (PV-
DM) model, which is used to learn a vectorized representation of a
text paragraph [144]. The PV-DM model is fundamentally based on
Word2Vec [145], which is used to learn vector representation of words.
This is done by enabling words with similar meaning to be mapped to
a similar position in the vector space. For example, ‘‘good’’ and ‘‘great’’
are close to each other, whereas ‘‘great’’ and ‘‘Japan’’ are more distant.
Learning the vector representation of words becomes possible thanks
13

to the concept of Distributed Vector Representation (DVR) of words, a
well known method used for learning the word vectors. In particular,
DVS exploits the power of machine learning models (usually Neural
Networks) by training machine learning models to predict a word
(i.e., target word) given the other words in a context. In the process
of predicting the target word, we learn the vector representation of the
target word.

The PV-DM model is inspired by Word2Vec by using the idea for
learning the word vectors. In the PV-DM model, both word vectors and
paragraph vectors are asked to contribute to the prediction of the target
word given many contexts sampled from the paragraph [144]. This
process (i.e., predicting the target word) allows us to learn the vector
representation of the paragraph. Ding et al. [143] exploit the power
of the PV-DM model to learn the vector representation of assembly
functions based on assembly code. This is done by mapping assembly
function (i.e., repository function) and the function’s input tokens
(i.e., instructions) to a unique vector. The machine learning model is
then trained to predict a target token given the function and its tokens
in a context. This process enables us to learn the vector representation
of the function.

In fact, the solution should be able not only to accommodate un-
known variants of known malware but also to accommodate unknown
variants of unknown malware. These solutions should also be robust
against adversarial attacks. Although some works have already ad-
dressed this problem, these solutions are mostly based on adversarial
training [146] and are not mature enough to combine the extraction
of robust and useful features to protect the system against adversarial
examples. Thus, the solution should not only be robust against complex
and noisy data but also against adversarial examples.

7.2. Collaborative solutions

Computer and communication systems are becoming more and
more complex and vulnerable to intrusions. Cyber attacks are also
becoming more complex and harder to analyze and recognize. In fact,
it became increasingly difficult for a single MDS to recognize all intru-
sions, because of limited knowledge about the evolution of malware.
The recent works in intrusion detection and malware analysis [147–
149] have shown experimentally that the detection accuracy can be
significantly improved, compared to the traditional single MDS, when
MDSs cooperate with each other. In collaborative environment, each
MDS can consult other MDSs about suspicious malware to increase the
decision accuracy. Fig. 4 shows an example of cooperative MDS.

Recently, Man and Huh [147] and Singh et al. [148] design a collab-
orative MDS, which enables malware-detection-alerts to be exchanged
from different distributed detectors. Moreover, knowledge are enabled
to be exchanged between nodes. In addition, Dermott et al. [150]
propose a collaborative MDS in a cloud-computing environment. The
proposed framework use the Dempster-Shafer theory of evidence [151]
in order to combine the decisions form different malware detectors. The
received decisions are aggregated to take the final decision regarding a
suspicious malware. This technique has a shortcoming: its centralized-
based architecture, whereby a reliable third-party is used for combining
feedback and coordinating MDS.

In fact, the design of a cooperative MDS should take into con-
sideration the following three properties (challenges): trustworthiness,
fairness and sustainability. By trustworthiness, we mean that the MDS
should be able to ensure that it will consult, cooperate and share knowl-
edge with trusted parties (i.e., MDSs). By fairness, we mean that the
MDS should be able to guarantee that mutual benefits will be achieved
through minimizing the chance of cooperating with selfish MDSs. This
is useful to give MDSs the motivation to participate in the community.
Finally, by sustainability, we mean enabling an MDS to proactively take
decisions about suspicious attacks, regardless if the complete feedback
have been received from consulted MDSs or not. Thus, the proposed
solution will be applicable in real-time environments, where MDSs

should take decisions about suspicious malware quickly.

Journal of Information Security and Applications 59 (2021) 102828A. Abusitta et al.
Fig. 4. The proposed taxonomy.
7.3. Sustainable solutions

The power of most malware analysis tools is largely based on the
amount of knowledge that they have about Malware and dangerous
attacks. In fact, supervised machine learning algorithms such as SVM,
used by MDS, are heavily dependent on labeled data to learn how to
effectively classify malicious and normal behaviors [152]. However,
obtaining data on malicious behaviors is challenging and dangerous,
especially if we are required to launch real attacks on production
systems and put users, applications and systems at risk. To address this
problem, we may need to have an efficient approach to synthesize new
malware and augment our training data, in order to improve machine
learning-based MDSs.

Generative models such as Generative adversarial Networks
(GANs) [153] can be used to generate synthetic malware and enhance
the detection accuracy of machine learning-based MDS, by augmenting
Malware training sets. We encourage researchers to investigate the
use of GANs, which have shown unprecedented ability in generating
high quality new synthetic data, to generate malware variants. In
particular, they need to design new algorithms to effectively and
efficiently train GANs on the existing malware that are available in
the repository in order to learn how to generate variants of them. To
this end, researchers are required to collect a large volume of malware
samples that consists of different attributes (vulnerabilities, targeted
users, targeted hosts, etc.) from the public domain. Since GANs are only
defined for real-valued, continued data and the design of malware is
based on sequences of discrete tokens (bytes), special extensions should
be applied on the original GANs theory. For example, we may need to
integrate GANs with recurrent neural networks (RNNs) to tackle the
problem of sequenced data [154]. Moreover, to address the problem
of discrete data, we may need to place in parallel a dense layer per
categorical variable, followed by Gumbel-Softmax activation and a
concatenation to get the final output [155].

8. Conclusion

In this paper, we provide a comprehensive survey on publications
that contributed to malware classification and composition analysis.
There are four main contributions in our work. First, we proposed an
organization of reviewed paper according to three dimensions: the pur-
pose of the analysis (malware classification or composition analysis),
14
the type of features obtained from samples, and the algorithms used to
manipulate these features. Second, we provided a comparative analysis
of the existing malware classification and composition analysis tech-
niques, while structuring them according to the proposed taxonomy.
Third, We determined the main issues and challenges associated with
malware classification and composition analysis. Finally, we identified
a number of emergent topics in the discussed field, such as collaborative
malware analysis system, with guidelines on how to improve solutions
to address the new challenges.

The above contributions are effective in addressing some interest-
ing research gaps in the literature. However, some points still need
further study and investigation. The following research avenues could
be further explored in order to achieve better accuracy and efficient
solutions compared to the state-of-the-art. The first avenue is the design
of cooperative MDS to address the problem of limited and incomplete
knowledge about malware. Through collaboration, an MDS can con-
sult other MDSs about suspicious malware and increase the decision
accuracy. To this end, we identify three challenges that should be
addressed in cooperative MDS: trustworthiness, fairness and sustain-
ability. Second, the design of robust MDS by enabling the automatic
extraction of robust features from samples. The solution should be able
not only to accommodate unknown variants of known malware but also
to accommodate unknown variants of unknown malware. Moreover,
the solution should be robust against adversarial attacks. Finally, the
design of sustainable MDS by enabling an MDS to synthetically generate
new malicious and benign code in order to enhance the accuracy of
machine learning-based malware classification methods.

CRediT authorship contribution statement

Adel Abusitta: Conceptualization, Methodology, Data curation,
Writing - original draft, Validation, Writing - reviewing and editing,
Supervision, Visualization, Investigation. Miles Q. Li: Conceptualiza-
tion, Methodology, Data curation, Writing - original draft, Validation,
Writing - reviewing and editing, Visualization, Investigation. Benjamin
C.M. Fung: Conceptualization, Methodology, Supervision, Funding
acquisition, Writing - original draft, Writing - reviewing and editing,
Project administration.

Journal of Information Security and Applications 59 (2021) 102828A. Abusitta et al.
Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgments

This research is supported in part by the DND Innovation for
Defence Excellence and Security, Canada (W7714-207117/001/SV),
NSERC, Canada Discovery Grants (RGPIN-2018-03872), and Canada
Research Chairs Program (950-230623). Any opinions, findings, and
conclusions or recommendations expressed in this material are those
of the authors and do not necessarily reflect the views of the funding
agencies.

References

[1] Malware statistics and facts for 2020. 2020. https://www.comparitech.com/
antivirus/malware-statistics-facts/. [Accessed 17 March 2020].

[2] Malware Numbers 2017. 2019. https://www.gdatasoftware.com/blog/2018/03/
30610-malware-number-2017. [Accessed 17 August 2019].

[3] Suarez-Tangil G, Tapiador JE, Peris-Lopez P, Ribagorda A. Evolution, detec-
tion and analysis of malware for smart devices. IEEE Commun Surv Tutor
2013;16(2):961–87.

[4] Tailor JP, Patel AD. A comprehensive survey: ransomware attacks prevention,
monitoring and damage control. Int J Res Sci Innov 2017;4(15):116–21.

[5] Vignau B, Khoury R, Hallé S. 10 years of IoT malware: A feature-based
taxonomy. In: 2019 IEEE 19th international conference on software quality,
reliability and security companion. IEEE; 2019, p. 458–65.

[6] Xu Z, Wang H, Xu Z, Wang X. Power attack: An increasing threat to data
centers. In: NDSS. 2014.

[7] Kimani K, Oduol V, Langat K. Cyber security challenges for IoT-based smart
grid networks. Int J Crit Infrastruct Prot 2019;25:36–49.

[8] Jakobsson M, Ramzan Z. Crimeware: understanding new attacks and defenses.
Addison-Wesley Professional; 2008.

[9] Wong W, Stamp M. Hunting for metamorphic engines. J Comput Virol
2006;2(3):211–29.

[10] Tariq N. Impact of cyberattacks on financial institutions. J Internet Bank
Commer 2018;23(2):1–11.

[11] Chen L, Ye Y, Bourlai T. Adversarial machine learning in malware detection:
Arms race between evasion attack and defense. In: 2017 European intelligence
and security informatics conference. IEEE; 2017, p. 99–106.

[12] Schultz MG, Eskin E, Zadok F, Stolfo SJ. Data mining methods for detection
of new malicious executables. In: Security and privacy, 2001. S&P 2001.
Proceedings. 2001 IEEE symposium on. IEEE; 2001, p. 38–49.

[13] Christodorescu M, Jha S. Static analysis of executables to detect malicious
patterns. Technical report, Wisconsin Univ-Madison Dept of Computer Sciences;
2006.

[14] Chen J, Alalfi MH, Dean TR, Zou Y. Detecting android malware using clone
detection. J Comput Sci Tech 2015;30(5):942–56.

[15] Cesare S, Xiang Y. Classification of malware using structured control flow. In:
Proceedings of the eighth Australasian symposium on parallel and distributed
computing-volume 107. Australian Computer Society, Inc.; 2010, p. 61–70.

[16] Ye Y, Li T, Huang K, Jiang Q, Chen Y. Hierarchical associative classifier (HAC)
for malware detection from the large and imbalanced gray list. J Intell Inf Syst
2010;35(1):1–20.

[17] Kolter JZ, Maloof MA. Learning to detect malicious executables in the wild. In:
Proceedings of the Tenth ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining. ACM; 2004, p. 470–8.

[18] Moskovitch R, Feher C, Tzachar N, Berger E, Gitelman M, Dolev S, Elovici Y.
Unknown malcode detection using opcode representation. In: Intelligence and
security informatics. Springer; 2008, p. 204–15.

[19] Dai J, Guha RK, Lee J. Efficient virus detection using dynamic instruction
sequences. J Comput Phys 2009;4(5):405–14.

[20] Nataraj L, Karthikeyan S, Jacob G, Manjunath B. Malware images: visualization
and automatic classification. In: Proceedings of the 8th international symposium
on visualization for cyber security. ACM; 2011, p. 4.

[21] Anderson B, Quist D, Neil J, Storlie C, Lane T. Graph-based malware detection
using dynamic analysis. J Comput Virol 2011;7(4):247–58.

[22] Islam R, Tian R, Batten LM, Versteeg S. Classification of malware
based on integrated static and dynamic features. J Netw Comput Appl
2013;36(2):646–56.

[23] Santos I, Devesa J, Brezo F, Nieves J, Bringas PG. Opem: A static-dynamic
approach for machine-learning-based malware detection. In: International joint
conference CISIS’12-ICEUTE 12-SOCO 12 special sessions. Springer; 2013, p.
271–80.
15
[24] Dahl GE, Stokes JW, Deng L, Yu D. Large-scale malware classification using
random projections and neural networks. In: Acoustics, speech and signal
processing, 2013 IEEE international conference on. IEEE; 2013, p. 3422–6.

[25] Saxe J, Berlin K. Deep neural network based malware detection using two
dimensional binary program features. In: Malicious and unwanted software,
2015 10th international conference on. IEEE; 2015, p. 11–20.

[26] Huang W, Stokes JW. MtNet: a multi-task neural network for dynamic mal-
ware classification. In: International conference on detection of intrusions and
malware, and vulnerability assessment. Springer; 2016, p. 399–418.

[27] Kolosnjaji B, Zarras A, Webster G, Eckert C. Deep learning for classification of
malware system call sequences. In: Australasian joint conference on artificial
intelligence. Springer; 2016, p. 137–49.

[28] Grosse K, Papernot N, Manoharan P, Backes M, McDaniel P. Adversarial
examples for malware detection. In: European symposium on research in
computer security. Springer; 2017, p. 62–79.

[29] Wang Q, Guo W, Zhang K, Ororbia II AG, Xing X, Liu X, Giles CL. Adversary
resistant deep neural networks with an application to malware detection. In:
Proceedings of the 23rd ACM SIGKDD international conference on knowledge
discovery and data mining. ACM; 2017, p. 1145–53.

[30] Ucci D, Aniello L, Baldoni R. Survey of machine learning techniques for
malware analysis. Comput Secur 2018.

[31] Sahu MK, Ahirwar M, Hemlata A. A review of malware detection based on
pattern matching technique. Int J Comput Sci Inf Technol 2014;5(1):944–7.

[32] Souri A, Hosseini R. A state-of-the-art survey of malware detection approaches
using data mining techniques. Human-centric Comput Inf Sci 2018;8(1):3.

[33] Bazrafshan Z, Hashemi H, Fard SMH, Hamzeh A. A survey on heuristic malware
detection techniques. In: The 5th conference on information and knowledge
technology. IEEE; 2013, p. 113–20.

[34] Shabtai A, Moskovitch R, Elovici Y, Glezer C. Detection of malicious code by
applying machine learning classifiers on static features: A state-of-the-art survey.
Inf Secur Tech Rep 2009;14(1):16–29.

[35] Basu I, Sinha N, Bhagat D, Goswami S. Malware detection based on source data
using data mining: A survey. Am J Adv Comput 2016;3(1):18–37.

[36] Ye Y, Li T, Adjeroh D, Iyengar SS. A survey on malware detection using data
mining techniques. ACM Comput Surv 2017;50(3):41.

[37] Or-Meir O, Nissim N, Elovici Y, Rokach L. Dynamic malware analysis in the
modern era—A state of the art survey. ACM Comput Surv 2019;52(5):88.

[38] Barriga J, Yoo S. Malware detection and evasion with machine learning
techniques: A survey. Int J Appl Eng Res 2017;12(318).

[39] Damodaran A, Di Troia F, Visaggio CA, Austin TH, Stamp M. A comparison
of static, dynamic, and hybrid analysis for malware detection. J Comput Virol
Hacking Tech 2017;13(1):1–12.

[40] Bayer U, Moser A, Kruegel C, Kirda E. Dynamic analysis of malicious code. J
Comput Virol 2006;2(1):67–77.

[41] Anderson B, Storlie C, Lane T. Improving malware classification: bridging the
static/dynamic gap. In: Proceedings of the 5th ACM workshop on security and
artificial intelligence. ACM; 2012, p. 3–14.

[42] Royal P, Halpin M, Dagon D, Edmonds R, Lee W. Polyunpack: Automating
the hidden-code extraction of unpack-executing malware. In: Computer security
applications conference, 2006. ACSAC’06. 22nd annual. IEEE; 2006, p. 289–300.

[43] Fredrikson M, Jha S, Christodorescu M, Sailer R, Yan X. Synthesizing near-
optimal malware specifications from suspicious behaviors. In: Security and
privacy, 2010 IEEE symposium on. IEEE; 2010, p. 45–60.

[44] Force UA. Analysis of the Intel Pentium’s ability to support a secure virtual
machine monitor. In: Proceedings of the 9th USENIX security symposium. 2000.
p. 129.

[45] Rutkowska J. Redpill: Detect VMM using (almost) one CPU instruction. 2004,
http://invisiblethings.org/papers/redpill.html.

[46] Liang G, Pang J, Dai C. A behavior-based malware variant classification
technique. Int J Inf Educ Technol 2016;6(4):291.

[47] Vadrevu P, Perdisci R. Maxs: Scaling malware execution with sequential multi-
hypothesis testing. In: Proceedings of the 11th ACM on Asia conference on
computer and communications security. ACM; 2016, p. 771–82.

[48] Bailey M, Oberheide J, Andersen J, Mao ZM, Jahanian F, Nazario J. Automated
classification and analysis of internet malware. In: International workshop on
recent advances in intrusion detection. Springer; 2007, p. 178–97.

[49] Bayer U, Comparetti PM, Hlauschek C, Kruegel C, Kirda E. Scalable,
behavior-based malware clustering. In: NDSS, vol. 9. Citeseer; 2009, p. 8–11.

[50] Firdausi I, Erwin A, Nugroho AS, et al. Analysis of machine learning techniques
used in behavior-based malware detection. In: 2010 second international confer-
ence on advances in computing, control, and telecommunication technologies.
IEEE; 2010, p. 201–3.

[51] Park Y, Reeves D, Mulukutla V, Sundaravel B. Fast malware classification by
automated behavioral graph matching. In: Proceedings of the sixth annual
workshop on cyber security and information intelligence research. ACM; 2010,
p. 45.

[52] Lindorfer M, Kolbitsch C, Comparetti PM. Detecting environment-sensitive
malware. In: International workshop on recent advances in intrusion detection.
Springer; 2011, p. 338–57.

[53] Rieck K, Trinius P, Willems C, Holz T. Automatic analysis of malware behavior
using machine learning. J Comput Secur 2011;19(4):639–68.

https://www.comparitech.com/antivirus/malware-statistics-facts/
https://www.comparitech.com/antivirus/malware-statistics-facts/
https://www.comparitech.com/antivirus/malware-statistics-facts/
https://www.gdatasoftware.com/blog/2018/03/30610-malware-number-2017
https://www.gdatasoftware.com/blog/2018/03/30610-malware-number-2017
https://www.gdatasoftware.com/blog/2018/03/30610-malware-number-2017
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb3
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb3
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb3
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb3
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb3
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb4
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb4
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb4
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb5
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb5
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb5
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb5
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb5
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb7
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb7
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb7
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb8
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb8
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb8
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb9
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb9
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb9
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb10
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb10
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb10
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb11
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb11
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb11
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb11
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb11
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb12
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb12
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb12
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb12
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb12
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb13
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb13
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb13
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb13
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb13
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb14
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb14
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb14
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb15
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb15
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb15
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb15
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb15
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb16
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb16
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb16
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb16
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb16
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb17
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb17
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb17
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb17
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb17
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb18
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb18
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb18
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb18
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb18
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb19
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb19
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb19
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb20
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb20
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb20
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb20
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb20
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb21
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb21
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb21
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb22
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb22
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb22
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb22
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb22
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb23
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb23
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb23
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb23
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb23
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb23
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb23
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb24
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb24
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb24
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb24
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb24
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb25
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb25
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb25
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb25
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb25
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb26
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb26
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb26
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb26
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb26
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb27
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb27
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb27
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb27
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb27
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb28
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb28
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb28
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb28
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb28
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb29
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb29
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb29
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb29
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb29
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb29
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb29
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb30
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb30
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb30
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb31
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb31
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb31
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb32
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb32
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb32
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb33
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb33
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb33
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb33
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb33
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb34
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb34
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb34
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb34
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb34
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb35
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb35
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb35
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb36
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb36
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb36
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb37
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb37
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb37
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb38
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb38
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb38
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb39
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb39
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb39
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb39
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb39
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb40
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb40
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb40
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb41
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb41
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb41
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb41
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb41
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb42
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb42
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb42
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb42
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb42
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb43
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb43
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb43
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb43
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb43
http://invisiblethings.org/papers/redpill.html
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb46
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb46
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb46
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb47
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb47
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb47
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb47
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb47
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb48
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb48
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb48
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb48
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb48
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb49
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb49
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb49
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb50
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb50
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb50
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb50
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb50
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb50
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb50
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb51
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb51
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb51
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb51
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb51
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb51
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb51
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb52
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb52
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb52
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb52
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb52
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb53
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb53
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb53

Journal of Information Security and Applications 59 (2021) 102828A. Abusitta et al.
[54] Comar PM, Liu L, Saha S, Tan P-N, Nucci A. Combining supervised and
unsupervised learning for zero-day malware detection. In: 2013 Proceedings
IEEE INFOCOM. IEEE; 2013, p. 2022–30.

[55] Nari S, Ghorbani AA. Automated malware classification based on network
behavior. In: 2013 international conference on computing, networking and
communications. IEEE; 2013, p. 642–7.

[56] Palahan S, Babić D, Chaudhuri S, Kifer D. Extraction of statistically significant
malware behaviors. In: Proceedings of the 29th annual computer security
applications conference. ACM; 2013, p. 69–78.

[57] Kruczkowski M, Szynkiewicz EN. Support vector machine for malware analysis
and classification. In: Proceedings of the 2014 IEEE/WIC/ACM international
joint conferences on web intelligence (WI) and intelligent agent technologies
(IAT)-Volume 02. IEEE Computer Society; 2014, p. 415–20.

[58] Uppal D, Sinha R, Mehra V, Jain V. Malware detection and classification based
on extraction of api sequences. In: 2014 international conference on advances
in computing, communications and informatics. IEEE; 2014, p. 2337–42.

[59] Ghiasi M, Sami A, Salehi Z. Dynamic VSA: a framework for malware detection
based on register contents. Eng Appl Artif Intell 2015;44:111–22.

[60] Kawaguchi N, Omote K. Malware function classification using APIs in initial
behavior. In: 2015 10th Asia joint conference on information security. IEEE;
2015, p. 138–44.

[61] Lin C-T, Wang N-J, Xiao H, Eckert C. Feature selection and extraction for
malware classification. J Inf Sci Eng 2015;31(3):965–92.

[62] Mohaisen A, Alrawi O, Mohaisen M. Amal: High-fidelity, behavior-based
automated malware analysis and classification. Comput Secur 2015;52:251–66.

[63] Wüchner T, Ochoa M, Pretschner A. Robust and effective malware detection
through quantitative data flow graph metrics. In: International conference on
detection of intrusions and malware, and vulnerability assessment. Springer;
2015, p. 98–118.

[64] Schultz MG, Eskin E, Zadok F, Stolfo SJ. Data mining methods for detection of
new malicious executables. In: Proceedings 2001 IEEE symposium on security
and privacy. IEEE; 2000, p. 38–49.

[65] Kolter JZ, Maloof MA. Learning to detect and classify malicious executables in
the wild. J Mach Learn Res 2006;7(Dec):2721–44.

[66] Attaluri S, McGhee S, Stamp M. Profile hidden Markov models and metamorphic
virus detection. J Comput Virol 2009;5(2):151–69.

[67] Siddiqui M, Wang MC, Lee J. Detecting internet worms using data mining
techniques. J Syst Cybern Inform 2009;6(6):48–53.

[68] Santos I, Nieves J, Bringas PG. Semi-supervised learning for unknown malware
detection. In: International symposium on distributed computing and artificial
intelligence. Springer; 2011, p. 415–22.

[69] Chen Z, Roussopoulos M, Liang Z, Zhang Y, Chen Z, Delis A. Mal-
ware characteristics and threats on the internet ecosystem. J Syst Softw
2012;85(7):1650–72.

[70] Hu X, Shin KG, Bhatkar S, Griffin K. Mutantx-s: Scalable malware clustering
based on static features. In: Proceedings of the USENIX annual technical
conference. 2013. p. 187–98.

[71] Kong D, Yan G. Discriminant malware distance learning on structural informa-
tion for automated malware classification. In: Proceedings of the 19th ACM
SIGKDD international conference on knowledge discovery and data mining.
ACM; 2013, p. 1357–65.

[72] Santos I, Brezo F, Ugarte-Pedrero X, Bringas PG. Opcode sequences as rep-
resentation of executables for data-mining-based unknown malware detection.
Inform Sci 2013;231:64–82.

[73] Vadrevu P, Rahbarinia B, Perdisci R, Li K, Antonakakis M. Measuring and
detecting malware downloads in live network traffic. In: European symposium
on research in computer security. Springer; 2013, p. 556–73.

[74] Bai J, Wang J, Zou G. A malware detection scheme based on mining format
information. Sci World J 2014;2014.

[75] Tamersoy A, Roundy K, Chau DH. Guilt by association: large scale malware
detection by mining file-relation graphs. In: Proceedings of the 20th ACM
SIGKDD international conference on knowledge discovery and data mining.
ACM; 2014, p. 1524–33.

[76] Ahmadi M, Ulyanov D, Semenov S, Trofimov M, Giacinto G. Novel feature
extraction, selection and fusion for effective malware family classification. In:
Proceedings of the sixth ACM conference on data and application security and
privacy. ACM; 2016, p. 183–94.

[77] Caliskan-Islam A, Harang R, Liu A, Narayanan A, Voss C, Yamaguchi F, Green-
stadt R. De-anonymizing programmers via code stylometry. In: Proceedings of
the 24th USENIX security symposium. 2015, p. 255–70.

[78] Chen L, Li T, Abdulhayoglu M, Ye Y. Intelligent malware detection based on file
relation graphs. In: Proceedings of the 2015 IEEE 9th international conference
on semantic computing. IEEE; 2015, p. 85–92.

[79] Gharacheh M, Derhami V, Hashemi S, Fard SMH. Proposing an HMM-based
approach to detect metamorphic malware. In: 2015 4th Iranian joint congress
on fuzzy and intelligent systems. IEEE; 2015, p. 1–5.

[80] Khodamoradi P, Fazlali M, Mardukhi F, Nosrati M. Heuristic metamorphic
malware detection based on statistics of assembly instructions using classifi-
cation algorithms. In: 2015 18th CSI international symposium on computer
architecture and digital systems. IEEE; 2015, p. 1–6.
16
[81] Sexton J, Storlie C, Anderson B. Subroutine based detection of APT malware.
J Comput Virol Hacking Tech 2016;12(4):225–33.

[82] Piyanuntcharatsr SSW, Adulkasem S, Chantrapornchai C. On the comparison
of malware detection methods using data mining with two feature sets. Int J
Secur Appl 2015;9(3):293–318.

[83] Upchurch J, Zhou X. Variant: a malware similarity testing framework. In: 2015
10th international conference on malicious and unwanted software. IEEE; 2015,
p. 31–9.

[84] Jang J, Brumley D, Venkataraman S. Bitshred: feature hashing malware for
scalable triage and semantic analysis. In: Proceedings of the 18th ACM
conference on computer and communications security. ACM; 2011, p. 309–20.

[85] Eskandari M, Khorshidpour Z, Hashemi S. HDM-analyser: a hybrid analysis
approach based on data mining techniques for malware detection. J Comput
Virol Hacking Tech 2013;9(2):77–93.

[86] Graziano M, Canali D, Bilge L, Lanzi A, Shi E, Balzarotti D, van Dijk M,
Bailey M, Devadas S, Liu M, et al. Needles in a haystack: Mining information
from public dynamic analysis sandboxes for malware intelligence. Proceedings
of the 24th USENIX security symposium. 2015. p. 1057–72.

[87] Oliva A, Torralba A. Modeling the shape of the scene: A holistic representation
of the spatial envelope. Int J Comput Vis 2001;42(3):145–75.

[88] Bhodia N, Prajapati P, Di Troia F, Stamp M. Transfer learning for image-based
malware classification. 2019, arXiv preprint arXiv:1903.11551.

[89] Agrawal R, Srikant R, et al. Fast algorithms for mining association rules. In:
Proc. 20th Int. Conf. Very Large Data Bases, VLDB, vol. 1215. 1994. p. 487–99.

[90] Kruegel C, Kirda E, Mutz D, Robertson W, Vigna G. Polymorphic worm detection
using structural information of executables. In: International workshop on
recent advances in intrusion detection. Springer; 2005, p. 207–26.

[91] Ding SHH, Fung BCM, Charland P. Asm2vec: Boosting static representation
robustness for binary clone search against code obfuscation and compiler
optimization. In: 2019 IEEE symposium on security and privacy. IEEE; 2019,
p. 472–89.

[92] Ding SHH, Fung BCM, Charland P. Kam1n0: Mapreduce-based assembly clone
search for reverse engineering. In: Proceedings of the 22nd ACM SIGKDD
international conference on knowledge discovery and data mining. ACM; 2016,
p. 461–70.

[93] Cordy JR, Roy CK. The NiCad clone detector. In: Program comprehension
(ICPC), 2011 IEEE 19th international conference on. IEEE; 2011, p. 219–20.

[94] Baysa D, Low RM, Stamp M. Structural entropy and metamorphic malware. J
Comput Virol Hacking Tech 2013;9(4):179–92.

[95] Tian R, Batten LM, Versteeg S. Function length as a tool for malware
classification. In: 2008 3rd international conference on malicious and unwanted
software. IEEE; 2008, p. 69–76.

[96] Ahmed F, Hameed H, Shafiq MZ, Farooq M. Using spatio-temporal information
in API calls with machine learning algorithms for malware detection. In:
Proceedings of the 2nd ACM workshop on security and artificial intelligence.
ACM; 2009, p. 55–62.

[97] Raff E, Nicholas C. An alternative to ncd for large sequences, lempel-ziv jaccard
distance. In: Proceedings of the 23rd ACM SIGKDD international conference on
knowledge discovery and data mining. ACM; 2017, p. 1007–15.

[98] Kwon BJ, Mondal J, Jang J, Bilge L, Dumitraş T. The dropper effect: Insights
into malware distribution with downloader graph analytics. In: Proceedings of
the 22nd ACM SIGSAC conference on computer and communications security.
ACM; 2015, p. 1118–29.

[99] Mao W, Cai Z, Towsley D, Guan X. Probabilistic inference on integrity for
access behavior based malware detection. In: International symposium on recent
advances in intrusion detection. Springer; 2015, p. 155–76.

[100] Polino M, Scorti A, Maggi F, Zanero S. Jackdaw: Towards automatic reverse
engineering of large datasets of binaries. In: International conference on
detection of intrusions and malware, and vulnerability assessment. Springer;
2015, p. 121–43.

[101] Huang K, Ye Y, Jiang Q. Ismcs: an intelligent instruction sequence based
malware categorization system. In: 2009 3rd international conference on anti-
counterfeiting, security, and identification in communication. IEEE; 2009, p.
509–12.

[102] Ye Y, Li T, Chen Y, Jiang Q. Automatic malware categorization using cluster
ensemble. In: Proceedings of the 16th ACM SIGKDD international conference
on knowledge discovery and data mining. ACM; 2010, p. 95–104.

[103] Nachenberg C, Wilhelm J, Wright A, Faloutsos C. Polonium: Tera-scale graph
mining for malware detection. 2010.

[104] Kalbhor A, Austin TH, Filiol E, Josse S, Stamp M. Dueling hidden Markov
models for virus analysis. J Comput Virol Hacking Tech 2015;11(2):103–18.

[105] Raghavan A, Di Troia F, Stamp M. Hidden Markov models with random
restarts versus boosting for malware detection. J Comput Virol Hacking Tech
2019;15(2):97–107.

[106] Annachhatre C, Austin TH, Stamp M. Hidden Markov models for malware
classification. J Comput Virol Hacking Tech 2015;11(2):59–73.

[107] Russell SJ, Norvig P. Artificial intelligence: a modern approach. Malaysia:
Pearson Education Limited; 2016.

[108] Quinlan JR. Induction of decision trees. Mach Learn 1986;1(1):81–106.
[109] Altman NS. An introduction to kernel and nearest-neighbor nonparametric

regression. Amer Statist 1992;46(3):175–85.

http://refhub.elsevier.com/S2214-2126(21)00064-8/sb54
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb54
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb54
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb54
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb54
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb55
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb55
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb55
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb55
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb55
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb56
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb56
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb56
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb56
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb56
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb57
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb57
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb57
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb57
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb57
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb57
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb57
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb58
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb58
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb58
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb58
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb58
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb59
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb59
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb59
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb60
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb60
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb60
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb60
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb60
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb61
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb61
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb61
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb62
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb62
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb62
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb63
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb63
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb63
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb63
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb63
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb63
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb63
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb64
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb64
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb64
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb64
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb64
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb65
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb65
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb65
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb66
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb66
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb66
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb67
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb67
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb67
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb68
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb68
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb68
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb68
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb68
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb69
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb69
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb69
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb69
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb69
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb71
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb71
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb71
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb71
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb71
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb71
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb71
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb72
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb72
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb72
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb72
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb72
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb73
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb73
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb73
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb73
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb73
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb74
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb74
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb74
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb75
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb75
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb75
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb75
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb75
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb75
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb75
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb76
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb76
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb76
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb76
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb76
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb76
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb76
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb77
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb77
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb77
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb77
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb77
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb78
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb78
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb78
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb78
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb78
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb79
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb79
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb79
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb79
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb79
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb80
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb80
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb80
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb80
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb80
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb80
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb80
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb81
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb81
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb81
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb82
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb82
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb82
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb82
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb82
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb83
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb83
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb83
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb83
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb83
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb84
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb84
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb84
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb84
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb84
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb85
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb85
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb85
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb85
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb85
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb87
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb87
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb87
http://arxiv.org/abs/1903.11551
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb90
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb90
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb90
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb90
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb90
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb91
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb91
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb91
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb91
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb91
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb91
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb91
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb92
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb92
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb92
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb92
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb92
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb92
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb92
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb93
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb93
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb93
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb94
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb94
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb94
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb95
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb95
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb95
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb95
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb95
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb96
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb96
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb96
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb96
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb96
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb96
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb96
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb97
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb97
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb97
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb97
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb97
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb98
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb98
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb98
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb98
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb98
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb98
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb98
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb99
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb99
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb99
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb99
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb99
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb100
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb100
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb100
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb100
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb100
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb100
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb100
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb101
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb101
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb101
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb101
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb101
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb101
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb101
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb102
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb102
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb102
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb102
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb102
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb103
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb103
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb103
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb104
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb104
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb104
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb105
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb105
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb105
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb105
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb105
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb106
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb106
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb106
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb107
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb107
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb107
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb108
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb109
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb109
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb109

Journal of Information Security and Applications 59 (2021) 102828A. Abusitta et al.
[110] Boser BE, Guyon IM, Vapnik VN. A training algorithm for optimal margin
classifiers. In: Proceedings of the fifth annual workshop on computational
learning theory. ACM; 1992, p. 144–52.

[111] Jensen FV. An introduction to Bayesian networks, vol. 210. UCL Press London;
1996.

[112] Liu B, Ma Y, Wong CK. Improving an association rule based classifier. In:
European conference on principles of data mining and knowledge discovery.
Springer; 2000, p. 504–9.

[113] Cohen WW. Learning trees and rules with set-valued features. In: AAAI/IAAI,
Vol. 1. 1996. p. 709–16.

[114] Hansen LK, Salamon P. Neural network ensembles. IEEE Trans Pattern Anal
Mach Intell 1990;(10):993–1001.

[115] Pal M. Random forest classifier for remote sensing classification. Int J Remote
Sens 2005;26(1):217–22.

[116] Vincent P, Larochelle H, Lajoie I, Bengio Y, Manzagol P-A. Stacked denoising
autoencoders: Learning useful representations in a deep network with a local
denoising criterion. J Mach Learn Res 2010;11(Dec):3371–408.

[117] Ng A, et al. Sparse autoencoder. CS294A Lecture notes 2011;72(2011):1–19.
[118] Fink O, Zio E, Weidmann U. Fuzzy classification with restricted boltzman

machines and echo-state networks for predicting potential railway door system
failures. IEEE Trans Reliab 2015;64(3):861–8.

[119] Yan X, Cheng H, Han J, Yu PS. Mining significant graph patterns by leap
search. In: Proceedings of the 2008 ACM SIGMOD international conference on
management of data. ACM; 2008, p. 433–44.

[120] Wille R. Restructuring lattice theory: an approach based on hierarchies of
concepts. In: Ordered sets. Springer; 1982, p. 445–70.

[121] Brémaud P. Markov chains: Gibbs fields, Monte Carlo simulation, and queues,
vol. 31. Springer Science & Business Media; 2013.

[122] Kruegel C, Robertson W, Valeur F, Vigna G. Static disassembly of obfuscated
binaries. In: USENIX security symposium, vol. 13. 2004. p. 18.

[123] Cifuentes C, Gough KJ. Decompilation of binary programs. Softw - Pract Exp
1995;25(7):811–29.

[124] Cifuentes C, Van Emmerik M. UQBT: Adaptable binary translation at low cost.
Computer 2000;33(3):60–6.

[125] Shin H-C, Orton MR, Collins DJ, Doran SJ, Leach MO. Stacked autoencoders
for unsupervised feature learning and multiple organ detection in a pilot study
using 4D patient data. IEEE Trans Pattern Anal Mach Intell 2012;35(8):1930–43.

[126] Boureau Y-l, Cun YL, et al. Sparse feature learning for deep belief networks.
In: Advances in neural information processing systems. 2008, p. 1185–92.

[127] Eddy SR. Hidden Markov models. Curr Opin Struct Biol 1996;6(3):361–5.
[128] Egele M, Woo M, Chapman P, Brumley D. Blanket execution: Dynamic similarity

testing for program binaries and components. In: Proceedings of the 23rd
USENIX security symposium. 2014. p. 303–17.

[129] Narayanan BN, Djaneye-Boundjou O, Kebede TM. Performance analysis of
machine learning and pattern recognition algorithms for malware classification.
In: 2016 IEEE national aerospace and electronics conference (NAECON) and
Ohio innovation summit (OIS). IEEE; 2016, p. 338–42.

[130] Kebede TM, Djaneye-Boundjou O, Narayanan BN, Ralescu A, Kapp D. Classifica-
tion of malware programs using autoencoders based deep learning architecture
and its application to the microsoft malware classification challenge (big 2015)
dataset. In: 2017 IEEE national aerospace and electronics conference. IEEE;
2017, p. 70–5.

[131] Messay-Kebede T, Narayanan BN, Djaneye-Boundjou O. Combination of tra-
ditional and deep learning based architectures to overcome class imbalance
and its application to malware classification. In: NAECON 2018-IEEE national
aerospace and electronics conference. IEEE; 2018, p. 73–7.
17
[132] Davuluru VSP, Narayanan BN, Balster EJ. Convolutional neural networks as
classification tools and feature extractors for distinguishing malware programs.
In: 2019 IEEE national aerospace and electronics conference. IEEE; 2019, p.
273–8.

[133] Pai S, Di Troia F, Visaggio CA, Austin TH, Stamp M. Clustering for malware
classification. J Comput Virol Hacking Tech 2017;13(2):95–107.

[134] László T, Kiss Á. Obfuscating C++ programs via control flow flattening. Ann
Univ Sci Budapest Rolando Eötvös Nominatae Sect Comput 2009;30:3–19.

[135] Bogus Control Flow. 2020. https://github.com/obfuscator-llvm/obfuscator/
wiki/Bogus-Control-Flow. [Accessed 10 March 2020].

[136] Li X, Loh PK, Tan F. Mechanisms of polymorphic and metamorphic viruses. In:
Intelligence and security informatics conference, 2011 European. IEEE; 2011,
p. 149–54.

[137] Kurakin A, Goodfellow I, Bengio S. Adversarial examples in the physical world.
2016, arXiv preprint arXiv:1607.02533.

[138] Bruna J, Szegedy C, Sutskever I, Goodfellow I, Zaremba W, Fergus R, Erhan D.
Intriguing properties of neural networks. 2013.

[139] Papernot N, McDaniel P, Goodfellow I. Transferability in machine learning:
from phenomena to black-box attacks using adversarial samples. 2016, arXiv
preprint arXiv:1605.07277.

[140] Goodfellow IJ, Shlens J, Szegedy C. Explaining and harnessing adversarial
examples. 2014, CoRR abs/1412.6572.

[141] Papernot N, McDaniel P, Jha S, Fredrikson M, Celik ZB, Swami A. The
limitations of deep learning in adversarial settings. In: Security and privacy
(EuroS&P), 2016 IEEE European symposium on. IEEE; 2016, p. 372–87.

[142] Hinton G, Vinyals O, Dean J. Distilling the knowledge in a neural network.
2015, arXiv preprint arXiv:1503.02531.

[143] Ding SH, Fung BCM, Charland P. Asm2Vec: Boosting static representation
robustness for binary clone search against code obfuscation and compiler
optimization. In: Proc. of the 40th international symposium on security and
privacy. San Francisco, CA: IEEE Computer Society; 2019, p. 38–55.

[144] Le Q, Mikolov T. Distributed representations of sentences and documents. In:
International conference on machine learning. 2014. p. 1188–96.

[145] Mikolov T, Chen K, Corrado G, Dean J. Efficient estimation of word
representations in vector space. 2013, arXiv preprint arXiv:1301.3781.

[146] Carlini N, Wagner D. Audio adversarial examples: Targeted attacks on speech-
to-text. In: 2018 IEEE security and privacy workshops. IEEE; 2018, p.
1–7.

[147] Man ND, Huh E-N. A collaborative intrusion detection system framework
for cloud computing. In: Proceedings of the international conference on IT
convergence and security 2011. Springer; 2012, p. 91–109.

[148] Singh D, Patel D, Borisaniya B, Modi C. Collaborative ids framework for cloud.
Int J Netw Secur 2016;18(4):699–709.

[149] Fung CJ, Zhu Q. FACID: A trust-based collaborative decision framework for
intrusion detection networks. Ad Hoc Netw 2016;53:17–31.

[150] Mac Dermott A, Shi Q, Kifayat K. Collaborative intrusion detection in federated
cloud environments. J Comput Sci Appl 2015;3(3A):10–20.

[151] Shafer G. Dempster-Shafer theory. Encycl Artif Intell 1992;1:330–1.
[152] Pendlebury F, Pierazzi F, Jordaney R, Kinder J, Cavallaro L. {TESSERACT}:

Eliminating experimental bias in malware classification across space and time.
In: Proceedings of the 28th USENIX security symposium). 2019. p. 729–46.

[153] Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S,
Courville A, Bengio Y. Generative adversarial nets. In: Advances in neural
information processing systems. 2014, p. 2672–80.

[154] Im DJ, Kim CD, Jiang H, Memisevic R. Generating images with recurrent
adversarial networks. 2016, arXiv preprint arXiv:1602.05110.

[155] Jang E, Gu S, Poole B. Categorical reparameterization with gumbel-softmax.
2016, arXiv preprint arXiv:1611.01144.

http://refhub.elsevier.com/S2214-2126(21)00064-8/sb110
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb110
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb110
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb110
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb110
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb111
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb111
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb111
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb112
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb112
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb112
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb112
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb112
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb114
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb114
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb114
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb115
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb115
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb115
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb116
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb116
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb116
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb116
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb116
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb117
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb118
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb118
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb118
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb118
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb118
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb119
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb119
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb119
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb119
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb119
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb120
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb120
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb120
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb121
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb121
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb121
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb123
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb123
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb123
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb124
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb124
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb124
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb125
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb125
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb125
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb125
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb125
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb126
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb126
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb126
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb127
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb129
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb129
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb129
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb129
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb129
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb129
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb129
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb130
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb130
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb130
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb130
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb130
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb130
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb130
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb130
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb130
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb131
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb131
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb131
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb131
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb131
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb131
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb131
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb132
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb132
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb132
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb132
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb132
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb132
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb132
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb133
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb133
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb133
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb134
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb134
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb134
https://github.com/obfuscator-llvm/obfuscator/wiki/Bogus-Control-Flow
https://github.com/obfuscator-llvm/obfuscator/wiki/Bogus-Control-Flow
https://github.com/obfuscator-llvm/obfuscator/wiki/Bogus-Control-Flow
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb136
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb136
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb136
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb136
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb136
http://arxiv.org/abs/1607.02533
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb138
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb138
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb138
http://arxiv.org/abs/1605.07277
http://arxiv.org/abs/1412.6572
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb141
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb141
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb141
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb141
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb141
http://arxiv.org/abs/1503.02531
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb143
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb143
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb143
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb143
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb143
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb143
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb143
http://arxiv.org/abs/1301.3781
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb146
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb146
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb146
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb146
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb146
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb147
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb147
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb147
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb147
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb147
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb148
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb148
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb148
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb149
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb149
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb149
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb150
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb150
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb150
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb151
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb153
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb153
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb153
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb153
http://refhub.elsevier.com/S2214-2126(21)00064-8/sb153
http://arxiv.org/abs/1602.05110
http://arxiv.org/abs/1611.01144

	Malware classification and composition analysis: A survey of recent developments
	Introduction
	The scope
	Contribution
	Organization

	Related surveys
	Taxonomy of malware classification
	Malware analysis features
	Feature extraction methods
	Type of features

	Malware classification algorithms
	Signature-based approaches
	Artificial intelligence-based approaches

	Taxonomy of composition analysis techniques
	Steps
	Disassembling
	Representation learning
	Classification

	Characterization of surveyed papers
	Challenges and issues
	Malware evading techniques
	Obfuscation
	Packing
	Polymorphism
	Metamorphism

	Adversarial attack and defense
	Adversarial attack
	Adversarial defense

	Efficiency and scalability

	Research direction
	Robust solutions
	Collaborative solutions
	Sustainable solutions

	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	References

