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Abstract 

Underground long-term mine planning is based on three main components: stope layout, access 

network design and production scheduling. Due to the complexity of developing a method that is 

generalized for the various underground mining methods and the decisions related to 

underground mine operations, these components are traditionally optimized separately. In 

addition, these traditional frameworks are deterministic, hence geological uncertainty and 

variability of grades and material types are not considered. Once the interactions among the mine 

planning components and the risk related to inherent sources of uncertainty is ignored, the 

optimization process deviates from its main objective, which is to maximize the project’s net 

present value. Recent studies have improved the sequential framework by integrating the stope 

design and production scheduling in one optimization approach, while considering cumulative 

development costs and managing the risk of not meeting production targets, in terms of ore 

quality and quantity. These developments, however, are site-specific and are unable to adapt to 

different mining methods and variants. Additionally, these stochastic approaches use 

geostatistical simulations of the orebody that rely on two-point statistics and Gaussian 

distribution assumptions. Thus, they are not able to properly characterize complex spatial 

geometries, high-grade connectivity or multiple point statistics of non-Gaussian and non-linear 

natural phenomena. This thesis presents a model that follows the integrated stochastic 

framework, by proposing new mathematical formulations and applications for the sublevel 

longhole open stoping mining method, parametrized as per an operating mine. The impacts of 

using high-order sequential simulations, that can reproduce geological patterns and infer high-

order spatial statistics from data — in the proposed optimization approaches are explored. 

The first chapter of the thesis presents a literature review on deterministic and stochastic 

developments for the optimization of stope design and long-term mine production scheduling. It 

also reviews relevant stochastic optimization frameworks for open-pit mine production 

scheduling which are used as state-of-art references for the development of an integrated 

strategic optimization framework. In addition, methods developed for generating geostatistical 

simulations of mineral deposits are presented.  

The second chapter of the thesis presents a new two-stage stochastic integer programming 

formulation for the integrated optimization of stope design and long-term mine production 
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scheduling, considering operational parameters of an operating underground copper mine. The 

mathematical model contains an objective function that aims to maximize the net present value 

of the scheduled stopes, by considering horizontal development and haulage costs for different 

possible haulage systems, while managing geological risk. Backfilling and adjacency criteria are 

included to suit the method to operational and geotechnical requirements according to the mining 

zones. A case study is presented for an operating underground copper mine where orebody 

uncertainty is quantified with geostatistical simulations of copper and related secondary 

elements. A comparison to a sequential stochastic long approach in which stope boundaries limit 

the possible locations and shapes of stopes, shows that physically different stope layouts, 

horizontal networks and extraction sequences are produced. The integrated approach shows a 

substantial reduction in horizontal development costs and a 6% higher net present value 

compared to the sequential approach. 

The third chapter of this thesis enhances the previously mathematical model to incorporate 

stockpiling decisions. In addition, the impacts of using a sequential simulation method that infers 

high-order statistics from available geological data as input for the underground mine production 

schedule is investigated. High-order sequential simulations of copper grades are generated for a 

given mining zone of an operating copper mine.  These simulations as well as provided second-

order sequential Gaussian simulations are used as input to the proposed integrated method. The 

produced extraction sequences and related final stope layouts are shown to be physically 

different. It is seen that the optimization process takes advantage of the better representation of 

high-grade connectivity when high-order sequential simulations are used, allowing a 4% higher 

metal production and a consequent 6% higher net present value. 

Future research may consider expanding these studies for other underground mining methods 

and for mining complexes with multiple processing streams, stockpiles and mines. In addition, 

the impact of using high-order simulations with multiple correlated elements on underground 

productions schedules is a topic for further investigation.  
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Resumé 

La planification minière à long terme en sous-terrain repose sur trois composantes principales: la 

disposition des chantiers, la conception du réseau d'accès et la planification de la production. En 

raison de la complexité de développement d’une méthode généralisée pour les différentes 

méthodes d'exploitation minière souterraine et des décisions liées aux opérations minières 

souterraines, ces composantes sont traditionnellement optimisées séparément. De plus, ces 

cadres traditionnels sont déterministes, c'est pourquoi l'incertitude géologique et la variabilité des 

teneurs et des types de matériaux ne sont pas prises en compte. Une fois ignorés les interactions 

entre les parties composantes de la planification minière et les risques liés aux sources 

d’incertitude, le processus d’optimisation dévie de son objectif principal, qui est de maximiser la 

valeur actuelle nette du projet. Des études récentes ont amélioré ce cadre séquentiel en intégrant 

la conception des chantiers et la planification de la production dans une approche d'optimisation 

unique, tout en tenant compte des coûts de développement cumulatifs et la gestion du risque de 

ne pas atteindre les objectifs de production, en termes de qualité et de quantité du minerai. Ces 

développements sont cependant spécifiques à chaque opération et ne s'adaptent pas aux 

différentes méthodes et variantes d'exploitation minière. En plus, ces études qui prennent en 

compte l’incertitude géologique utilisent des simulations géostatistiques du gisement minéral qui 

s'appuient sur des statistiques à deux points et des hypothèses de distribution gaussienne. Ainsi, 

ils ne sont pas capables de caractériser correctement des géométries spatiales complexes, une 

connectivité des teneurs élevées ou des statistiques à points multiples de phénomènes naturels 

non gaussiens et non linéaires. Cette thèse présente un modèle qui suit cadre intégré, en 

proposant de nouvelles formulations mathématiques et applications pour la méthode 

d'exploitation par sous-niveaux, telle qu'appliquée à une mine en activité. Les impacts de 

l’utilisation de simulations séquentielles d’ordre supérieur, capables de reproduire des modèles 

géologiques et de déduire des statistiques spatiales d’ordre supérieur à partir de données, dans les 

approches d’optimisation proposées sont aussi explorées. 

Le premier chapitre de la thèse présente une revue de la littérature sur les développements 

déterministes et stochastiques pour l'optimisation de la conception des chantiers et de la 

programmation à long terme de la production minière. Il examine également les optimisations 

stochastiques les plus pertinentes de la planification de la production minière en carrière à ciel 
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ouvert, qui sont utilisées comme références pour les développements d'un cadre d'optimisation 

stratégique intégré. De plus, les méthodes développées pour générer des simulations 

géostatistiques des gisements minéraux sont présentées. 

Le deuxième chapitre de la thèse présente une nouvelle formulation de programmation 

stochastique en nombres entiers en deux étapes pour l'optimisation intégrée de la conception des 

chantiers et de la planification de la production minière à long terme, en considérant les 

paramètres opérationnels d'une mine de cuivre souterraine en exploitation. Le modèle 

mathématique intègre une fonction objectif visant à maximiser la valeur actuelle nette des 

chantiers planifiés, en considérant les coûts de développement horizontal et de transport pour 

différents systèmes de transport possibles, tout en gérant les risques géologiques. De plus, il 

contient des critères de remblayage et d’adjacence afin de s’aligner sur les exigences 

opérationnelles et géotechniques spécifiques aux zones minières. Les contraintes opérationnelles 

telles que la proximité et les capacités d'extraction et de traitement sont prises en compte. Pour 

illustrer cela, une étude de cas d’une mine de cuivre souterraine en activité est présentée, où 

l'incertitude du corps minéralisé est quantifiée à l'aide de simulations géostatistiques des teneurs 

en cuivre et d’éléments secondaires associés. Une comparaison avec une approche séquentielle 

stochastique de planification de la production minière à long terme, dans laquelle les limites des 

chantiers restreignent les emplacements et les formes possibles des chantiers, montre que la 

disposition des chantiers, la conception du réseau horizontal et les séquences d'extraction sont 

physiquement différentes. L'approche intégrée montre une réduction substantielle des coûts de 

développement horizontaux et une valeur actuelle nette supérieure de 6 % par rapport à 

l'approche séquentielle. 

Le troisième chapitre de cette thèse améliore la formulation de programmation stochastique en 

deux étapes proposées précédemment en intégrant les décisions de stockage. De plus, l’impact de 

l'utilisation d'une méthode de simulation séquentielle reposant sur l’inférence de statistiques 

d'ordre supérieur est étudié ; l’inférence étant effectuée à partir des données géologiques 

disponibles dans le calendrier de production de la mine souterraine. Des réalisations d’un modèle 

séquentiel d'ordre élevé des teneurs en cuivre sont simulées pour une zone minière donnée d'une 

mine de cuivre en exploitation. Ces simulations ainsi que les simulations gaussiennes 

séquentielles du second ordre sont utilisées comme arguments dans la méthode intégrée 
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proposée. Les séquences d'extraction produites et la disposition des chambres finales révèlent des 

différences physiques. On constate que le processus d’optimisation tire parti de la meilleure 

représentation de la connectivité de haute teneur lorsque des simulations séquentielles d’ordre 

supérieur sont utilisées, permettant une production de métal 4 % plus élevée et, par conséquent, 

une valeur actuelle nette plus élevée de 6 %. 

Les futures recherches possibles incluent l’extension de ces études à d’autres méthodes 

d’exploitation minière souterraine et à des complexes miniers, avec de multiples flux de 

traitement, des stocks et des mines. De plus, l’utilisation de simulations d’ordre supérieur pour 

plusieurs éléments corrélés et ses impacts sur les calendriers de production souterraine est un 

sujet à approfondir. 
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1. Chapter 1 – Introduction and Literature Review 

1.1 Introduction 

Underground mining is described as the extraction of metals and minerals selectively and their 

transportation to the surface where they are processed and transformed into commercially viable 

products (Hartman and Mutmansky 2002). The present work focuses on the sublevel longhole 

open stoping (SLOS) mining method which is based on the definition of mineable shapes that are 

sequentially drilled, blasted, hauled and usually backfilled (Hamrin 2001; Hartman and 

Mutmansky 2002; Pakalnis and Hughes 2011). The associated long-term mine planning process 

generally comprises in the definition of the spatial configuration of stopes with their respective 

accesses and the schedule of development and extraction of these mineable volumes, given the 

primary objective of maximizing the project’s net present value (NPV) (Alford et al. 2007; Fava 

et al. 8-10 June 2011; Hauta et al. 2017; Nehring and Topal 2007; Topal 2003; Topal 2008). 

Conventionally, these components are addressed separately due to the complexity of tailoring the 

various decisions to suit the distinct mining methods and their variations (Alford et al. 2007; 

Bootsma et al. 2018; Morin 2001; O'Sullivan et al. 2015; Trout 1995). This sequential approach; 

however, is not capable of integrating complementary objectives to generate truly optimal 

schedules (Kumral and Sari 2020; Little et al. 2011; Morin 2001). Therefore, joint optimization 

of the underground mine design and schedule have been recent studied, showing the impacts of 

capturing the synergies between these components on the stope layout, on the development 

decisions and costs and on the NPV (Copland and Nehring 2016; Foroughi et al. 2019; Furtado e 

Faria et al. 2022a; Hou et al. 2019; Little et al. 2013). 

Different sources of uncertainty affect the feasibility of a mining project. The orebody material 

variability and uncertainty in pertinent properties have an inevitable impact on the quality, 

quantity, and value of the final products, thus proving to be a critical source of technical risk 

(Dimitrakopoulos et al. 2002; Dowd 1994; Ravenscroft 1992; Vallée 2000). Equiprobable 

geostatistical simulations (Dimitrakopoulos and Yao 2020; Goovaerts 1997; Remy et al. 2009; 

Strebelle 2002) of the orebody are the main inputs to a mine planning framework in which the 

production schedule is given by the maximization of the expected NPV and the simultaneous 

minimization of the risk of not meeting the production targets. Stochastic optimization of mine 
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production schedules has been an extensive topic of study for open-pit mine plans (Goodfellow 

and Dimitrakopoulos 2016, 2017; Leite and Dimitrakopoulos 2007; Montiel and 

Dimitrakopoulos 2017, 2015, 2018; Ramazan and Dimitrakopoulos 2013, 2005). However, 

limited research on stochastic optimization addresses the particularities of underground mine 

designs, production schedules, and their interaction (Carpentier et al. 2016; Dirkx et al. 2018; 

Furtado e Faria et al. 2022a, 2022b; Huang et al. 2020; Montiel et al. 2016; Noriega et al. 2022; 

Villalba Matamoros and Kumral 2018).  In addition, the typically used simulation methods rely 

on assumptions on the data distribution, preventing them from capturing high-grade connectivity 

or reproducing the high-order statistics of the sample data (Chilès and Delfiner 1999; David 

1977, 1988; Goovaerts 1997; Journel 2005; Mariethoz and Caers 2015; Rossi and Deutsch 

2014). Therefore, recent research has expanded on sequential simulation methods that infer the 

conditional probability distribution functions (cpdf) from the available data, showing a better 

reproduction of complex geological patterns.  (de Carvalho et al. 2019; Dimitrakopoulos et al. 

2010; Dimitrakopoulos and Yao 2020; Minniakhmetov and Dimitrakopoulos 2017b; 

Minniakhmetov et al. 2018; Mustapha and Dimitrakopoulos 2011). Although the effect of 

different types of simulations as an input to non-linear transfer functions has been assessed (de 

Carvalho and Dimitrakopoulos 2019; Goodfellow et al. 2012; Qureshi and Dimitrakopoulos 

2005), their impact on the stochastic optimization underground mine productions schedules is a 

topic to be further explored.  

This chapter covers the technical literature in underground mine planning and orebody modelling 

through geostatistical simulation methods. Section 1.2 reviews the sublevel stoping mining 

method, including its main definitions and systems and the most relevant variants. Section 1.3 

outlines the deterministic frameworks for the stope design and the mine production schedule, 

including the review of integrated optimization approaches. Section 1.4 presents traditional 

simulation methods and advances on orebody modelling, using multi-point and high-order 

statistics. Section 1.5 covers stochastic mine planning optimization for open-pit mining and state-

of-the-art simultaneous optimization of mining complexes. Lastly, technical literature on 

stochastic underground mine planning optimizations methods is reviewed. Section 1.6 presents 

the goals and objectives of this thesis, and Section 1.7 outlines the content of this thesis. 
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1.2 Sublevel Stoping Mining Method 

The underground mining process consists of the extraction of metals and minerals without 

contact with the surface. This material is hauled to the surface where it undergoes different 

milling and concentration processes, transforming them into sellable products (Hamrin 2001; 

Hartman and Mutmansky 2002). The feasibility of using underground mining techniques over 

surface mining methods is based on the evaluation of the geology of the deposit, physical and 

economic requirements, and environmental aspects (Nelson 2011). Among the diversity of the 

underground mining methods, the selection of the appropriate method must be done based on the 

orebody characteristics such as its orientation, topology, as well as qualitative and quantitative 

features regarding the mechanics of the in situ rock material (Alpay and Yavuz 2009; Bullock 

2011; Carter 2011; Laubscher 1981). The present work focuses on the sublevel longhole open 

stoping underground mining method. Thus, this section is dedicated to a review of relevant 

technical terms and respective definitions constantly used throughout this thesis, followed by an 

overview of the operational aspects of the sublevel stoping mining method and variants.  

1.2.1 Underground Mining Terms and Definitions 

Underground mining methods are generally divided into caving and stoping methods. Caving 

methods rely on gravity, to intentionally induce the rock material collapse. On the other hand, in 

stoping excavations, the exploitation of ore requires drilling and blasting sequentially selected 

volumes of the rock mass, called stopes, and retrieving this material from previously developed 

drawpoints or drawbells, that control the load and haulage of the fragmented rock. Within the 

stoping methods, there are supported methods and unsupported (or self-supported) methods.  The 

supported methods primarily use artificial supports to guarantee the stability of the openings. In 

the unsupported class the rock material supports the load of the superincumbent load (Hamrin 

2001; Hartman and Mutmansky 2002). For these methods, after the material extraction, light 

structural supports such as rock bolts or posterior filling are commonly applied (Bullock 2011). 

Primary developments directly connect the surface to the orebody. Haulage systems such as 

slopes, shafts, ramps or declines are examples of primary accesses. Levels define horizontal 

excavations that connect the orebody to the primary accesses. Between levels, in certain mining 

methods, sublevels are developed. Those, however, connect the mining area to secondary 
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accesses and define a working horizon. Within levels and sublevels, drifts (horizontal openings 

usually parallel to the strike) and crosscuts (horizontal or nearly horizontal excavations 

perpendicular to the strike) are developed to guarantee access to stopes and enable drilling, and 

blasting, and haulage operations (Hamrin 2001; Hartman and Mutmansky 2002).  

1.2.2 Sublevel Stoping Mining Method and Variants  

Sublevel stoping is an underground mining method in which large vertical stopes are created 

within the orebody (Atlas Copco 2007; Hamrin 2001; Hartman and Mutmansky 2002; Pakalnis 

and Hughes 2011; Soma 2001) as presented in Figure 1-1. The method is applied in lenticular or 

tabular deposits, preferably with regular boundaries. The dip of the deposit must be steep, such 

that it exceeds the angle of repose. The ore and the host rock must be competent as a stable 

footwall and hanging wall are required. Drifts and crosscuts are developed horizontally within 

each sublevel to enable drilling and blasting. It requires minimal labour underneath blasted 

volumes, thus little exposure to hazardous conditions is observed. The unitary operations can be 

developed simultaneously from different levels, which makes this mining method highly 

efficient in terms of productivity (Hartman and Mutmansky 2002). In addition, usually vertical 

and horizontal pillar are left between the stopes to guarantee the stability of the openings. After 

the complete extraction of a stope, rock bolts are usually installed to improve the rock stability. 

Alternatively, backfilling the stopes adds stability and enables the extraction of larger stopes 

following an adjacency rule of primary, secondary, and tertiary stopes (Villaescusa 2014).  

Several variants of the sublevel stoping mining method are presented in the technical literature. 

Their naming and application are variable and are usually adapted to the orebody conditions, 

available equipment and new techniques developed throughout the years. The first variant is 

sublevel open stoping (Bullock 2011), also called sublevel longhole open stoping (SLOS) (Atlas 

Copco 2007; Hamrin 2001; Pakalnis and Hughes 2011; Soma 2001) or the blasthole method 

(Hartman and Mutmansky 2002). On this variation a vertical slot is created at one end of the 

stope and sublevels are excavated horizontally within levels for drilling fan patterns and blasting 

sequentially each section of the stope (i.e., ring). The material is mucked from the draw points 

developed below the stope. Bighole stoping is a large-scale variant of SLOS, in which longer and 

wider blastholes are drilled following a radial pattern (Atlas Copco 2007; Hamrin 2001). 

Although this variant allows larger stopes and the available drilling equipment is more accurate 
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than traditional tophammer drilling, it has a higher risk of damaging the rock structures. The 

second variant of the sublevel stoping method is referred to as the open-ending method by 

Hartman and Mutmansky (2002), also as blasthole stoping or end slicing (Bullock 2011). This 

method consists of developing a drilling level at the top of the stope and drilling the blastholes 

vertically downwards. Subsequently one or several slices are blasted sequentially towards the 

direction of a previously developed open slot at one end of the stope.  

In the following subsections, a general description of the sequence of development with sublevel 

stoping mining as well as the ordering of the unitary operations defining a production cycle and 

alternatives of the backfilling procedure are presented. 

 

Figure 1-1 – Sublevel stoping mining method (Atlas Copco 2007) 

1.2.2.1 Sequence of development 

In order to extract the ore material using the sublevel open stoping it is necessary to develop all 

the preparation with drifts, crosscuts and drawpoint below the targeted stope to allow haulage. In 

addition, raises and wises can be developed for ventilation. For VRC stoping, an undercut is 

developed to allow the initial blasted horizontal slice fall with gravity. For the other variants, 

sublevel crosscuts are developed to create a raise that is enlarged to form a slot. This slot works 
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as a free face allowing blasting of the vertical rings. The blasthole drilling for all methods is done 

through the sublevels’ horizonal developments (Bullock 2011; Hartman and Mutmansky 2002).  

1.2.2.2 Mining cycle  

The mining cycle consists of the preparation of initial vertical and horizontal tertiary 

developments. Reinforcements of the stope walls can be conduced by installing cablebolts. Then, 

drilling according to the pattern related to the mining method variant is performed, followed by 

blasting operations. Loading occurs in the drawpoints below the stopes through gravity flow with 

front-end loaders, LHDs, shovels, slushers or belt conveyors. Finally, the material is hauled 

through the haulage drifts by LHDs, trucks or conveyor belts to the orepass (Hartman and 

Mutmansky 2002). The way this sequence of operations is performed within the stope or the 

orebody depends on the stope geometry. Villaescusa (2014) describes two types of internal 

developments inside a stope that impact its mining cycle: multi-lift and single-lift open stoping. 

On the multi-lift method, several intermediate sublevels are developed within the stope and 

entire mining cycle must occur sequentially for each sublevel as shown in Figure 1-2. On the 

single-lift method, the stope is bounded by the sublevels; thus, the mining cycle is performed 

once to allow the stope extraction, as shown in Figure 1-3.  

In certain applications, once the stope is completely excavated, the backfilling operations are 

performed. Backfilling allows more recovery of ore pillars, while increasing the host rock wall 

support and potentially improving the return of the mine. If backfilling is used for pillar 

recovery, a sequence of extraction of primary, secondary and often tertiary stopes is employed 

(Atlas Copco 2007; Hamrin 2001; Villaescusa 2014). The choice of this type of adjacency that 

will drive the final extraction sequence depends on grade requirements, locations of existing 

developments and induced stress considerations given the maximum void size and filling type 

(Villaescusa 2004). Figure 1-4 shows an example of a sequence of extraction of stopes to allow 

backfilling and Figure 1-5 shows the filling sequence considering primary, secondary, and 

tertiary stopes, difference sequences and precedence rules can be used to guarantee rock-mass 

stability while stopes are progressively mined and backfilled.  
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Figure 1-2 – Multiple-lift open stoping mining cycle (Villaescusa 2014) 

 

Figure 1-3 – Single-lift open stoping mining cycle (Villaescusa 2014) 
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Figure 1-4  –  Conceptual longitudinal view of an extraction and filling sequence using primary and 

secondary stoping geometries (Villaescusa 2004). 

 

Figure 1-5 – Filling sequence of primary, secondary and tertiary stopes using cemented artificial filling 

(CAF) (Atlas Copco 2007) 

1.3 Deterministic stope design and underground mine production schedule 

This chapter reviews traditional deterministic approaches for underground mine planning. It 

starts with a description of stope design methods, then long-term mine production scheduling is 
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presented, and recent deterministic integrated approaches are discussed. In order to have 

complete overview of these developments, this literature review comprehensively describes 

developments that do not apply to a stoping mechanism.  

1.3.1 Stope Layout Optimization 

Stope design optimization consists of defining mineable volumes and their acceptable shapes, 

orientations, and positions within the orebody, as well as the necessary infrastructure to 

guarantee accessibility and stability of the excavation. This optimization proceeds given a 

definition of the mining method, physical constraints, and the objective of maximizing 

undiscounted cashflow (Alford et al. 2007). Although this process can be compared to the 

definition of the ultimate pit limit for an open pit mining problem, few algorithms were 

developed for the definition of stope boundaries, because it is difficult to define a framework that 

applies to all existing mining methods and their variants (Appianing et al. 2018; O'Sullivan et al. 

2015).  

Riddle (1977) presents the first algorithm for the block caving underground mine layout based on 

dynamic programming. The method is performed in 2D cross-sections by defining rows and 

columns based on the drawpoint locations and the vertical allowable boundaries. Initially, the 

profit of each block is calculated individually. Then, moving through the defined columns and 

dropping the profit values of the ones already evaluated, the cumulative profit for mining the 

block is calculated. Although the method is optimal for the 2D problem, the process of 

combining the cross-sections’ results to generate a 3D layout makes it non-optimal and infeasible 

once it is not capable of accommodating the necessary geometrical constraints. In addition, a 

heuristic approach is applied to define the footwall design (Ataee-Pour 2000). Similarly, 

Deraisme et al. (1984) presented the downstream geostatistical approach or mathematical 

morphology approach. The method constructs two algorithms to generate the stope layout for the 

cut-and-fill and sublevel stoping mining methods given a 2D cross-section of the block model. 

The proposed approach transforms the original block model into minable volumes subjected to a 

cut-off grade policy for the mining blocks and stope geometry constraints. In addition to the 

limitations described for the work presented by Riddle (1977), the mathematical morphology 

approach does not take into account the profit related to the designed stopes (Erdogan et al. 

2017).  



 

 

 

 

24  

The Octree Division Approach (Cheimanoff et al. 1989) is a rule-based heuristic approach to 

generate mineable stope shapes. The first step of the method relies on gathering the available 

geological data into a 3D geometric model. Convex mineable volumes are defined such that each 

volume justifies its separate extraction. Each mineable volume is then divided into octants which 

are further divided into new sub-volumes until it reaches the smallest allowable mining volume. 

Throughout this process, the sub-volumes are included or removed from the stope layout 

according to the geometric and geotechnical constraints, and to the profitability considering the 

cut-off grade as well as mining and access development costs. This method, however, is not able 

to analyze the stopes’ profitability jointly. In addition, the approach cannot be considered 

optimal since it is a heuristic (Appianing et al. 2018).  

The Floating Stope Algorithm is a practical heuristic based method developed by Alford (1995). 

This tool has the objective of defining the stope boundaries by maximizing metal grade and 

content, and the undiscounted accumulated value, while minimizing waste content, given the 

orebody model, the stopes’ geometric parameters, a cut-off grade value, and a minimum head 

grade. The algorithm assigns each block above the defined cut-off grade to the stope that takes 

the highest head grade. Thus, two envelopes are generated. The ‘outer’ envelope includes all 

overlapping stopes that contain the blocks above the cut-off grade. The ‘inner’ envelope contains 

all the blocks above the cut-off grade and respective stopes with the highest grades. The final 

stope layout is a trade-off of having the highest grades within the ‘inner’ envelope and the 

operational shapes within the ‘outer’ envelope. The search for non-overlapping stopes, although, 

simplistic, is not able to take into consideration the interaction between stope values and grades, 

once they are evaluated separately and sequentially. Cawrse (2001) expands this work with the 

Multiple Pass Floating Stope algorithm that generates a set of stope envelopes for the different 

input parameters given by the user. This method provides more functionality to the Datamine 

software. The generated three-dimensional boundaries, however, rely on manual manipulation 

and decisions made by the user, not guaranteeing optimality in the process.  

Alford and Hall (2009) extend the original Floating Stope Algorithm by developing a tool for 

automated stope design that better adapts to complex geological boundaries. Mineable zones are 

defined by dividing the orebody model into a regular grid of levels and sections that can 

represent stopes or mining rings. A seed solution is found by identifying the best combinations of 
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sections and levels. Thus, the stope shape annealing process searches for orthogonal slices to 

adjust the shape of the stopes based on geometric requirements, and the economic value based on 

a fixed cut-off grade. The third step adapts the stope layout to satisfy access criteria. The process 

is automated to allow running it for a range of different possible cut-off grades — that generate 

nested stope layouts, from which the best layout can be chosen. The geometric and grade 

outputs, however, do not allow the manual choice to be made in terms of the real stope design 

profit or considering the effect of the time value of money that can effectively impact the actual 

cut-off grade throughout the life of the mine (Little et al. 2011).  

The Maximum Value Neighborhood (MNV) algorithm (Ataee-Pour 2000) is based on finding 

the maximum economic value of a stope, subjected to the minimum allowable stope geometry, 

that defines a block neighborhood. The algorithm evaluates the neighbourhood of each positive 

valued block and selects the one with the highest economic value. The process is repeated 

sequentially for all positive blocks that were not included on the best economic value 

neighborhoods of other blocks, and consequently are not included yet on the stope layout. The 

algorithm is further extended to the multiple-pass MNV (Ataee-Pour 2006), in which the 

boundaries generated by the MVN algorithm are further evaluated in terms of ore blocks 

excluded from the original stope layout, followed by the evaluation of the waste blocks included 

in the previously generated boundary. The final stope boundaries generated by this algorithm are 

affected by the order of evaluation of blocks and respective neighbourhoods. In addition, a fixed 

stope dimension is evaluated, requiring further manual post-processing to generate the actual 

stope shapes.  

Topal and Sens (2010) propose a three-step algorithm to define the stope shapes and locations. 

The first step consists of plotting within the block model all the possible stopes shapes and 

locations. Then, the average value of the stope, given a pre-defined envelope of overlapping 

stopes is calculated and stored with the respective stope. On the third step from a list of all 

possible stopes, the algorithm greedily chooses the stopes based on the profit, either profit per 

square meter or the profit per estimated mining time. Once a stope is selected to be included in 

the final layout, the overlapping stopes are eliminated from the list. This process lacks 

mathematical background and fails to evaluate all the possible combinations of stopes. Thus, a 
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set of non-overlapping stopes might be neglected if they belong to an envelope in which a third 

overlapping stope was selected first.  

A network flow optimization approach is proposed by  Bai et al. (2013) tailored to the sublevel 

open stoping mining method. The block model is converted from the cartesian grid to a 

cylindrical grid centered at the initial development raise location. The algorithm is based on 

graph theory in which the vertical arcs are defined from the center of the block to the footwall 

and hanging wall considering stope wall constraints while horizontal arcs respect stope width 

constraints. The maximum flow problem is then solved considering the undiscounted economic 

values of the blocks.  

In contrast to the heuristic method presented by Topal and Sens (2010) and the MVN algorithm 

(Ataee-Pour 2006) also presented by Sandanayake et al. (2015) is less sensitive to the order in 

which the stopes are evaluated. The method is based on four main steps: combining stopes based 

on their allowable size, assigning attributes such as grade and density, accordingly, discarding 

stopes with negative economic value and generating families of non-overlapping positive stopes. 

The family with overall highest economic value is selected as the best solution. This last step 

allows the interaction of stope values and quality as the stopes are not evaluated individually. 

However, for large-scale applications the method might be inefficient since it requires significant 

computational power (Erdogan et al. 2017).  

The Mineable Shape Optimizer (MSO) (Alford Mining Systems 2022) is a software for stope 

design that is broadly accepted and used by the industry. The software is based on the algorithm 

presented by (Alford and Hall 2009) with its functionalities improved throughout the years. The 

algorithm requires a set of input parameters such as a cut-off grade and respective estimated 

capacities that are not available at the time of the mine design. In addition, only geometric 

parameters are considered, neglecting the developments necessary to allow the feasibility of a 

mine design.  

Lastly, Villalba Matamoros and Kumral (2017) propose a heuristic method that aims to 

maximize the undiscounted profit from selected stopes while minimizing the cost of internal 

dilution, subjected to maximum acceptable dilution, geometric, and precedence constraints. The 

mathematical formulation is based on the selection of slices defined as group of blocks. In 

addition, grades of the slices and their combination into stopes must be above a defined cut-off 
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grade. The heuristic algorithm will evaluate each possible stope configuration starting at any 

block location. This process, however, might get stuck in a local optimal solution. Therefore, 

Villalba Matamoros and Kumral (2018) propose a genetic algorithm that takes this output as an 

initial solution to improve it. In addition, the authors explore the presence of grade uncertainty 

and variability by proposing a stochastic programing formulation to be further discussed on 

Section 1.5.2. 

1.3.2 Underground Mine Production Schedule  

The final step of the conventional production scheduling framework is to define an extraction 

sequence of the mining units based on the defined design while considering geotechnical, 

production, and operational constraints. Similarl to open pit long-term mine production 

scheduling, the general main objective of this process is to optimize the project’s NPV. On the 

other hand, according to the selected mining method, the extraction, preparation, and support 

activities directly affect the yearly production schedule. Therefore, other than just scheduling the 

stope sequence, some approaches take into account the sequence of activities (i.e., developments, 

drilling, blasting, mucking, and backfilling) (Nehring et al. 2010; Sotoudeh et al. 2020). In 

addition, most of the developments are tailored for specific mining methods as they are applied 

in real operations. Thus, they are not directly adaptable to other underground mining method 

variants and applications (Brickey 2015).  

Williams et al. (1973) first explored the optimization of underground production scheduling 

through the development of a linear programing (LP) formulation for the sublevel stoping 

mining method. The method aims to minimize the fluctuations in terms of ore tonnage 

production. The assumption in terms of material homogeneity for each level mischaracterizes the 

selectivity related to the mining method. Early developments presented by Gershon (1983) and 

Barbaro and Ramani (1986) address mine production scheduling through mixed integer 

programming (MIP), generalizable to surface and underground mining by considering discrete 

decisions in terms of the selective mining units. These approaches, however, were not tested for 

underground mining.  

Starting from Trout (1995), a MIP model is proposed to model underground mine production 

scheduling. The mathematical formulation includes four integer decision variables to describe 
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the selection of time periods for preparation, extraction, backfilling, and an intermediate time 

period when there is a production phase scheduled for a stope and it remains void. The objective 

function maximizes the NPV under the production timeframe, capacity, activity precedence, 

adjacency, and production target constraints. The method is applied to Mt. Isa and Cannington 

mines in a two-year timeframe and on a monthly scheduling basis. (Nehring and Topal 2007) 

extend this approach by adding constraints to limit multiple fill mass exposures, such that when a 

stope is being backfilled, a limit of two adjacent stopes are allowed to be under the other three 

production phases.  

Development activities are added to the MIP formulations by Carlyle and Eaves (2001). Binary 

decision variables control the drilling and development activities on a quarterly basis considering 

precedence constraints in order to guarantee the expected operational safety for the cut-and-fill 

plan. The proposed objective is to maximize the discounted metal ounces produced and 

consequently the discounted profit. Although these methods incorporate the main phases of the 

mine production schedule, their application is restricted to limited timeframes since the number 

of decision variables and constraint necessary to the describe the life-of-mine (LOM) production 

schedule increases the problem’s complexity. Besides the work presented by Little et al. (2011) 

and Topal (2008), in order to reduce the number of decision variables of these models, Smith et 

al. (2003) use aggregation of stopes into mining areas or blocks that are scheduled independently 

in a yearly basis. Continuous variables describe the quantities and area mined, while integer 

decision variables control mining and development precedence relationships between blocks and 

potential capital expansion. Although fewer decision variables are required, a set of initial 

assumptions such as a fixed predefined cut-off grade is necessary and heuristics are necessary to 

get a solution in a feasible amount of time. 

Kuchta et al. (2004) propose a model that is based on load-haul-dump-fleet (LHD) allocation for 

long-term sublevel caving production scheduling. The main objective of the method is to 

minimize deviations from ore production targets, subjected to production capacity, vertical and 

horizontal precedence, and physical capacity constraints. Newman and Kuchta (2007) propose an 

aggregation technique in terms of production periods to solve the problems in less of time.  A 

decomposition heuristic is proposed by Martinez and Newman (2011) for solving the scheduling 
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problem for the same mining methods. In this study the equipment allocation is scheduled in 

long term, while the blocks’ production is scheduled in the short term.  

McIsaac (2008) proposed an MIP with the objective of maximizing the cash flow and 

minimizing fixed costs related to development. The author defines a set of independent economic 

sectors or zones which are scheduled such that mill feed requirements are met. Constraints for 

maximum development rate are defined for each zone, while ore production and grade blending 

requirements are applied to all zones simultaneously. The method is applied to a narrow vein 

deposit, and the effect of each objective is evaluated separately and compared to the developed 

mathematical formulation.  

O'Sullivan et al. (2015) proposes an MIP for the production schedule of Lisheen Mine that 

combines room-and-pillar, longhole stoping, and drift-and-fill mining methods. The objective 

function is modeled in terms of maximizing discounted metal production. In fact, no economic 

information is included as the schedule considers the activity sequencing monthly. The mine 

design, the mining method assigned to each mining zone, and the cut-off grade are fixed.  

Similarly to O'Sullivan et al. (2015) and Smith et al. (2003), Brickey (2015) aggregates the stope 

layout into different ventilation domains according to the development design. The domains are 

scheduled in terms of mining activities and resource constraints limit the required airflow for 

each of these activities, while the mine plan accomplishes the objective of maximizing the NPV.  

The Schedule Optimiztion Tool (SOT) developed by Fava et al. (2013) is a software that uses an 

evolutionary algorithm that searches for the sequence of development networks and extraction of 

stopes to maximize the discounted cash flows. Hauta et al. (2017) expands the approach to 

incorporate backfilling requirements and implements the GeoSequencing module that evaluates 

the best stope-to-stope links through an iterative procedure.  

A review of long-term underground mine production schedules is done by Sotoudeh et al. 

(2020). It is seen that most traditional stepwise production scheduling approaches are based on 

activity scheduling given the duration of activities in a monthly or quarterly basis. Therefore, the 

complexity of the mathematical models does not allow an application for the LOM other then 

when aggregation techniques or heuristics are applied. In fact, recent studies (Campeau et al. 

2022) treat these activity scheduling methods as short-term or medium-term approaches. In 
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contrast, integrated approaches (Copland and Nehring 2016; Foroughi et al. 2019; Hou et al. 

2019; Little et al. 2013; Little et al. 2011) that do not assumed a predefined stope layout are able 

to generate a yearly LOM production schedule, and will be reviewed on Section 1.3.3. 

1.3.3 Integrated Optimization of Stope Design and Long-term Mine Production 

Scheduling  

The steps concerning underground mine planning are conventionally addressed in a stepwise 

manner. The previous sections present studies, algorithms and tools that singularly treat the stope 

layout and the underground production schedule. In order to have an operational design and 

extraction sequence, another step is required to generate a network layout that links the 

production areas to the surface. The approaches presented for the network layout optimization 

minimize the undiscounted development and haulage costs (Brazil et al. 2008; Brazil et al. 2003; 

Brazil and Thomas 2007). Therefore, the time value of money and the sequence of development 

corresponding to the mining sequence are neglected when generating this infrastructure layout. 

In order to consider the interaction among these three main components, an iterative procedure is 

commonly used. Starting from a predefined cut-off grade, the stope layout is generated, the 

respective network infrastructure is designed, and the LOM production schedule is optimized 

(Bootsma et al. 2018; Poniewierski et al. 2003). This process is repeated for different cut-off 

grades and usually requires manual intervention as the original stope layout might contain stopes 

with negative economic values or have difficult access when the accesses are considered. 

Although this procedure presents a convenient way of unifying the underground mine planning 

components by using commercially available software, they are repetitive and are unable to truly 

integrate and optimize these interconnected elements (Little et al. 2011). In addition, the 

requirement of a fixed cut-off grade as the first input deviates the mine planning outputs from the 

main objective to maximize the NPV.    

Little et al. (2011) and Little et al. (2013) propose an integrated approach for the stope layout and 

production schedule. The process to generate the necessary inputs follows the same traditional 

stope layout idea in which a set of overlapping stopes is generated. In this approach, the potential 

stopes have different shapes and locations such that all allowable geometries are explored. In 

order to reduce the number of decisions, a preprocessing step eliminates the potential stopes with 

negative economic values. As for the underground scheduling, the proposed mathematical 
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formulation is constructed as an MIP, where a decision variable selects the starting period of a 

stope production, while the NPV is maximized. Non-overlapping, adjacency, geotechnical offset, 

and leveled drawpoint basis constraints to allow an operational design and schedule. An 

application at a gold deposit shows a higher NPV compared to the traditional stepwise approach. 

This approach, however, does not integrate the related discounted development costs and the 

practical cumulative development distances to access the stopes.  

Copland and Nehring (2016) expand the previous proposed MIP by adding a decision variable 

that controls the sequence of each level development. These binary variables define if a level is 

opened, and in which period the level is developed. Each stope is flagged according to its 

extraction level. Therefore, linking constraints ensure that the stope extraction occurs only after 

level access is constructed. Besides the time discounted profit of a stope, the objective function 

accounts for the discounted value of developing a level. Thus, the mathematical formulation 

aims to maximize a better estimate of the actual NPV. The final output accounts for the stope 

layout, stope extraction sequence, and level development sequence. However, the method 

assumes that once the level is developed, all the stopes within that level are accessible, ignoring 

horizontal cumulative development costs of drifts and crosscuts.  

Hou et al. (2019) proposed a joint optimization of the stope layout and scheduling with vertical 

and horizontal access constraints. The proposed MIP takes a set of overlapping stopes that are 

grouped into level subsets, a vertical shaft position, and a piecewise horizontal development for 

each possible level. The decisions variables select when to mine each possible stope, when to 

develop the shaft segments according to each level, and when to develop the horizontal access 

segments according to each level and stope position. A set of constraints ensure that only 

accessible levels can have horizontal access developed and only accessible stopes can be 

extracted. The objective function maximizes the discounted cash flow. Similarly, Foroughi et 

al. (2019) develop a MIP that maximizes two weighted objectives: the NPV and metal recovery, 

while jointly considering the production schedule and stope layout. This work differs for the 

latter, once instead of having fragmented drifts, it is assumed that a single drift is developed at 

each level, connecting the most centralized stope entry to the shaft. In addition, the method is 

applied to a three-dimensional iron ore deposit and is solved using a genetic algorithm. Although 

these methods jointly cover the three main components of the mine planning optimization, they 



 

 

 

 

32  

are still not able to account for the cumulative time-valued horizontal development of drifts and 

crosscuts. Also, the assumption of piecewise shaft development does not correspond with real 

mining practice.  

1.4 Mineral Deposit Modeling 

The previous sections present a review of deterministic approaches for underground mine 

planning. A single estimated orebody model is the considered as the main input for these 

methods, which contains the necessary information of spatially distributed geological attributes 

of the mineral deposit. Consequently, these deterministic approaches fail to incorporate or to 

manage the geological uncertainty and spatial variability of the mineral deposit, which are shown 

to be critical sources of technical risk in a mining project (Baker and Giacomo 1998; Vallée 

2000). This material supply uncertainty is due to the limited amount of sampled data from 

exploration and further grade control sampling that do not provide a full precise knowledge of 

the orebody material characteristics (Goovaerts 1997; Rossi and Deutsch 2014). 

Traditionally used estimation approaches such as kriging provide the minimum-error-variance 

linear unbiased estimate (David 1977, 1988; Goovaerts 1997; Isaaks and Srivastava 1989; 

Journel and Huijbregts 1978). This commonly used method, however, generates a smooth 

representation of mineral deposit. Specifically, the proportions of high and low grades are 

misrepresented. Therefore, this smoothing effect does not allow the reproduction of spatial 

statistics of sample data and underlying geological patterns observed in the ground, generating an 

average-type representation of the orebody (Chilès and Delfiner 1999; David 1977, 1988; 

Goovaerts 1997; Journel and Huijbregts 1978; Rossi and Deutsch 2014). An average input to a 

non-linear transfer function does not generate an average output. Thus, an average-type orebody 

model does not guarantees an average assessment of the long-term production schedule 

(Dimitrakopoulos et al. 2002; Dowd 1994; Qureshi and Dimitrakopoulos 2005; Ravenscroft 

1992).  

Stochastic simulations can be used to generate equally probable representations of the orebody to 

model the spatial uncertainty and variability of material quality and quantity, while reproducing 

spatial statistics (e.g., mean, variance, variograms) of available sample data (David 1977, 1988; 

Deutsch and Journel 1997; Goovaerts 1997; Journel 1994; Mariethoz and Caers 2015; Mustapha 
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and Dimitrakopoulos 2010b). The impact of supply uncertainty on deterministic mine production 

schedules has been evaluated by various authors through risk assessment. It has been shown that 

misleading forecasts are produced in terms of grades, tonnages and cashflows when conventional 

approaches are used (Dimitrakopoulos et al. 2002; Dowd 1994; Ravenscroft 1992). Recent 

studies show similar outcomes for underground mine designs. Dimitrakopoulos and Grieco 

(2009) show how conventional methods for underground mine design are unable to capture the 

upside potential and/or downside risk of meeting forecasts, which are tied to the presence of 

uncertainty and variability of grades and material types. Furtado e Faria et al. (2022b) compare 

the propose stochastic optimization of stope design to a bechmarked deterministic stope layout 

optimization software. Besides the flexibility and the more realistic assumptions of cumulative 

horizontal devlopment costs, a risk analysis shows that there were pontentialy high-grade stopes 

to be included in the laylout that were not included by the determistic approach. It is concluded 

that the somoothing effect underestimates high-grade blocks, therefore this upside potential is 

masked when an average-type block model is given as the input.  

In the following sections, traditional and more recent developments on stochastic simulations of 

mineral deposits are discussed.  

1.4.1 Sequential Simulation Framework  

Conceptually, a random field or a random function (RF) is a set of a random variables over a 

domain and can be fully described by a joint probability density function (jpdf). Geological 

phenomena can be modeled as a stationary and ergodic RF in which the attributes of interest, 

such as grades, densities and material types are described by spatially distributed random 

variables (Chilès and Delfiner 1999; Goovaerts 1997; Journel 1994; Journel and Huijbregts 

1978; Rossi and Deutsch 2014).  

Considering 𝑍(𝒖𝑖) a stationary ergodic RF indexed in 𝑅𝑛, where 𝒖𝑖 represents the location of the 

points 𝑖 = 1…𝑁 of the grid to be simulated in a domain 𝐷 ⊆ 𝑅𝑛 . The set 𝒅𝑛 = {𝑧(𝒖α), α =

1…𝑛}  denotes the original sample data conventionally obtained by exploration data. A set 𝛬𝑖 

represents the conditioning data for each node indexed by i. Therefore, 𝛬0 = {𝒅𝒏} is the 

conditioning data when the first point is simulated and only sample data is available and  𝛬𝑖 =

{𝛬𝑖−1 ∪ 𝑍(𝒖𝑖)} is the conditioning data for the subsequent points being simulated that includes 

the original sample data and previously simulated points. Accordingly, the sequential simulation 
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approach defines that the joint probability density function of the random field 𝑍(𝒖𝑖) can be 

decomposed into the product of conditional multivariate distributions as shown in Eq.1.1 

(Dimitrakopoulos and Luo 2004; Goovaerts 1997; Journel 1994) 

𝑓𝒁(𝑢1, … , 𝑢𝑁; 𝑧1, … , 𝑧𝑁|𝒅𝒏) = 𝑓𝑍1(𝒖1; 𝑧1|𝛬0) × …× 𝑓𝑍𝑁(𝒖N; 𝑧𝑁|𝛬𝑁−1)

=∏𝑓𝑍𝑖(𝒖𝑖, 𝑧𝑖|𝛬𝑖−1)

𝑁

𝑖=1

(1.1)
  

Therefore, the sequential simulation process starts by defining a simulated path to visit the non-

simulated nodes. At each node location, a random value is drawn via Monte Carlo sampling from 

the conditional pdf initially generated based on the original sample data. This new value is added 

to the conditioning data set (𝛬𝑖). The process is repeated for all the nodes of the simulation grid 

by always considering the original samples and previously simulated nodes as conditioning data 

to generate a simulation of the orebody. In order to obtain additional realizations, the same 

process is repeated following a different random path. For any simulation method applied, each 

generated scenario must reproduce the spatial statistics of the original data, including histograms, 

variograms (covariance), and higher-order statistics (Chilès and Delfiner 1999; Dimitrakopoulos 

et al. 2010; Goovaerts 1997; Journel 1994; Mariethoz and Caers 2015; Remy et al. 2009; Rossi 

and Deutsch 2014). 

1.4.2 Sequential Gaussian Simulation Methods 

The sequential Gaussian simulation (SGS) method is a conventionally used approach based on 

the sequential simulation paradigm. This method assumes a multi-Gaussian RF model; thus, each 

univariate distribution is Gaussian. Although natural phenomena might not follow a normal (or 

Gaussian) distribution, this assumption is made because a Gaussian distribution can be fully 

characterized by its mean and variance (first and second order cumulants), since all its higher 

order cumulants equal zero. Therefore, it is called a parametric approach that uses the Kriging 

system to obtain the conditional mean and variance to generate the conditional cumulative 

distribution function (ccdf) from which the simulated values will be randomly sampled. In order 

to use the SGS method, the data must be transformed to normal space prior to following the 

sequential simulation steps. The experimental variogram must be calculated from this 

transformed data and the variogram model must be inferred (David 1977, 1988; Deutsch and 
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Journel 1997; Goovaerts 1997; Isaaks and Srivastava 1989; Journel and Huijbregts 1978; Remy 

et al. 2009). Once the simulated values are available, they are back-transformed to the original 

data space.  

The lower-upper (LU) triangular decomposition technique is proposed to be used for conditional 

simulation (Davis 1987). The method is used to simulate a set of values simultaneously which 

has been shown to be faster than SGS using screen effect approximation (SEA) (Luo 1998), 

which limits the amount of conditioning data to a searching neighbourhood. However, the LU 

simulation technique has a higher memory requirement in order to manage sparce covariance 

matrix. Luo (1998) proves the equivalence of the triangular decomposition method to SGS, 

allowing the development of the generalized sequential Gaussian simulation (GSGS) method 

(Dimitrakopoulos and Luo 2004). The GSGS method takes advantage of overlapping 

neighbourhoods of simulation nodes, by simulating each group of values simultaneously via LU 

decomposition while using SGS assumptions and the sequential simulation process. The 

equivalence of GSGS to the other two described methods is explored by Dimitrakopoulos and 

Luo (2004) by examining the number of nodes to be simulated (𝑁) and the number of nodes in 

the neighbourhood (𝑣). It is shown that GSGS is computationally equivalent to SGS when 𝑣 = 1 

and equivalent to LU simulation if 𝑣 = 𝑁. Thus, the balance between the computational 

efficiency and the effectiveness of the GSGS method related to the group size 𝑣 can be assessed 

through the SEA loss (Benndorf and Dimitrakopoulos 2018).  

Computational improvement in terms of memory handling using the direct block simulation 

algorithm (DBSIM) is proposed by Godoy (2003). The method simulates all the nodes within a 

block simultaneously as in GSGS and only retains the averaged value of these points that 

corresponds to the final simulated block value (Benndorf and Dimitrakopoulos 2018). In contrast 

to the previously discussed methods where the simulations are performed in point support, this 

process eliminates the need of reblocking the simulated values in terms of the size of the 

selective mining unit. All the simulation methods discussed require input data transformation to 

the normal space. It is known, however, that a Gaussian RF has maximum entropy. 

Consequently, the simulated values misrepresent the connectivity of extreme grades. Godoy 

(2003) show improvements in terms of high-grade connectivity when DBSIM is used.  
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Multiple attributes of interest are frequently necessary to describe the important mineral deposit 

characteristics. These attributes’ values are usually correlated and must be simulated jointly to 

improve predictions regarding the mineral deposit. An SGS co-simulation approach is proposed 

by Verly (1993) that integrates the simulation of different types of variables. The necessity of 

modeling the cross-covariances in addition to the covariances and the size increase of the kriging 

systems in terms of the number of variables being simulated make the application of this method 

computationally expensive and impractical. A decorrelation technique using principal component 

analysis (PCA) is proposed prior to simulating each decorrelated factor separately (David 1988). 

This method, however, is based on the decorrelation of the variance-covariance matrix at lag 

zero, which means that the correlation of the spatially distributed data is ignored. Desbarats and 

Dimitrakopoulos (2000) study the use of minimum/maximum autocorrelation factors (MAF) to 

simulate multiple attributes by performing additional PCA decorrelation assuming a small lag 

distance and generating the corresponding number of MAF factors which can be simulated 

individually and then back transformed to the correlation space using the inverse mathematical 

process. In addition, Boucher and Dimitrakopoulos (2009, 2012) propose the DBMAFSIM 

algorithm that uses MAF to generate decorrelated factors that are individually simulated directly 

on block support.  

1.4.3 Geostatistical Simulation Methods that Account for Multiple-point and High-

order Statistics 

The previously reviewed traditional simulation techniques are based on second-order statistics 

that are able to fully characterize Gaussian random functions. It is known, however, that natural 

phenomena do not follow a normal distribution. Therefore, this assumption limits a proper 

characterisation of complex geological patterns in the presence of non-Gaussianity and non-

linearity (Journel and Alabert 1989). In addition, Gaussian RFs maximize the entropy, or spatial 

disorder, especially in terms of high-grade connectivity (Dimitrakopoulos et al. 2010; Journel 

2005; Journel and Deutsch 1993). Thus, methods that can infer the natural spatial connectivity 

and reproduce higher-order statistics are proposed and reviewed in this section, as well as their 

impact on mine production schedules and forecasts.  
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1.4.3.1 Multiple-point simulation methods 

Methods based on multiple-point statistics (MPS) were initially applied to oil and gas reservoir 

modeling of curvilinear structures (Guardiano and Srivasta 1993; Journel 2005; Remy et al. 

2009; Strebelle 2002; Zhang et al. 2006). In contrast to traditional random field simulation 

frameworks, each conditional probability distribution function (cpdf) is inferred from a training 

image (TI), without making any assumptions about it (Guardiano and Srivasta 1993; Journel 

2005; Mariethoz and Caers 2015). TIs represent the complex geological structures but do not 

necessarily contain a local description of the geological attribute of interest. They contain densely 

sampled information acquired from exploration, or grade-control data. Alternatively, they can be 

artificially generated (Osterholt and Dimitrakopoulos 2018; Strebelle 2002). A searching 

neighborhood configuration or spatial template, is used to search for replicates in the TI and 

build the cpdf for the data-event of the center node being simulated. This type of algorithm is 

called ‘pixel-based’ and it follows  the sequential approach described herein (Guardiano and 

Srivasta 1993; Journel and Deutsch 1993). ENESIM (Guardiano and Srivasta 1993), SNESIM 

(Strebelle 2002), Direct Sampling (Mariethoz et al. 2010) and IMPALA (Peredo and Ortiz 2011) 

are exemples of ‘pixel-based’ algorithms. In contrast, ‘pattern-based’ algorithms store different 

patterns found in the TI and compare them with the configuration of the conditioning data using 

a similarity metric to determine the most similar pattern, which is directly pasted to the 

simulation grid. ‘Pattern-based’ methods include SIMPAT (Arpat and Caers 2007), FILTERSIM 

(Zhang et al. 2006), WAVESIM (Chatterjee et al. 2012) and CCSIM (Tahmasebi et al. 2012). 

While ‘pixel-based’ methods are computationally expensive, ‘pattern-based’ algorithms have a larger 

memory requirement. These MPS approaches tend to be limiting in terms of the reproduction of 

sample data statistics. The direct inference of patterns from a TI lead to simulations that 

reproduce the spatial statistics of this TI. A consistent mathematical modeling approach should 

be data-driven (Goodfellow et al. 2012; Osterholt and Dimitrakopoulos 2018; Yao et al. 2018).  

1.4.3.2 High-order simulation methods 

Overcoming the limitations of MPS algorithms coming from the lack of a mathematical 

formalism, Dimitrakopoulos et al. (2010) introduce the use of high-order cumulants to explicitly 

infer high-order statistics from data. Cumulants and moments describe the behavior of a 

distribution. The knowledge of all infinite moments allows the full description of a RF. 
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Therefore, assessing the cumulant values beyond the second-order enables the modelling of non-

linear and non-Gaussian random functions. Studies investigate the suitability of using moments 

and cumulants to describe geological patterns (Dimitrakopoulos et al. 2010; Mustapha and 

Dimitrakopoulos 2010c). The high-order simulation (HOSIM) algorithm uses the concept of 

cumulants and the sequential simulation method to generate stochastic simulations of the mineral 

deposit that show the natural connectivity of high grades and reproduce complex geometries (de 

Carvalho et al. 2019; Dimitrakopoulos and Yao 2020; Minniakhmetov and Dimitrakopoulos 

2017b; Minniakhmetov et al. 2018; Mustapha and Dimitrakopoulos 2010b, 2011; Yao et al. 

2018). HOSIM uses TIs as complementary information to the original exploration data to 

calculate the cpdf. Since no assumptions are made in terms of the data distribution, studies 

propose the use of a series of orthogonal polynomials to approximate the cpdf. Legendre 

polynomial (Mustapha and Dimitrakopoulos 2010b, 2011), Laguerre polynomials (Mustapha and 

Dimitrakopoulos 2010a) and Legendre-like orthogonal splines (Minniakhmetov and 

Dimitrakopoulos 2021; Minniakhmetov et al. 2018) are some of the orthonormal functions 

explored for the mentioned use. Eq. 1.2 shows the approximation of the cpdf using Legendre 

polynomials where 𝑃̅𝑚𝑛  are the normalized Legendre polynomials of order m and 𝐿̅𝑚0,𝑚1…𝑚𝑛  are 

the Legendre coefficients that are inferred by first defining a spatial template based on 

neighbourhood nodes formed by the conditioning data and then searching for replicates in the 

exploration data and in the TI. This approach is shown to be data-driven, reproducing the 

geological patterns as well as the low and high-order statistics of the conditioning data 

(Goodfellow et al. 2012).  

𝑓(𝑢i; 𝑧𝑖|𝛬0, 𝛬𝑖−1) =
∑ ∑ …

𝜔1
𝑚1=0

𝜔0
𝑚0=0

∑ 𝐿̅𝑚0,𝑚1…𝑚𝑛𝑃̅𝑚0(𝑧0)… 𝑃̅𝑚𝑛(𝑧𝑛)
𝜔𝑛
𝑚𝑛=0

∫𝑓(𝑢i; 𝜆0, 𝜆𝑖−1; 𝑧0, 𝛬0, 𝛬𝑖−1)𝑑𝑢𝑖
 (1.2) 

 

Minniakhmetov and Dimitrakopoulos (2017b) expand the proposed method to allow the 

simulation of multiple spatially correlated variables. As MAF relies on multi-Gaussian 

distribution assumption that does not coexist with the proposed simulation method, a diagonal 

domination of high-order cumulants condition is used to decorrelate the attributes, which can 

then be simulated independently. Minniakhmetov and Dimitrakopoulos (2017a) Minniakhmetov 

and Dimitrakopoulos (2021) propose a data-driven high-order simulation method using high-

order indicator moments. The method uses a recursive B-spline approximation to calculate high-
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order spatial cumulants from hard data, showing better computational efficiency than the 

previous implementations. Yao et al. (2018) propose a numerical approximation of the cpdf 

using a multivariate Legendre polynomial series through a recursive approach. This method does 

not need the explicit calculation of cumulants, allowing the parallel computation of replicates. A 

natural extension of these approaches for mining applications through direct block HOSIM is 

proposed by (de Carvalho et al. 2019). The method requires a TI or geological analog both in 

point and block support, as well as the corresponding spatial temples.  

The high-order simulations reproduce low- and high-order spatial statistics of the sample data 

and show better spatial connectivity of high-grade values in comparison to the traditionally used 

SGS method (Mustapha and Dimitrakopoulos 2010b).  In addition, the impact of using different 

simulation algorithms to generate the geological inputs for non-linear transfer functions has been 

studied by Qureshi and Dimitrakopoulos (2005).  de Carvalho and Dimitrakopoulos (2019) 

compare the open-pit mine production schedules and forecasts when SGS and HOSIM are used 

to generate the simulated orebody models that are input to a simultaneous stochastic optimization 

framework. This application has shown that the sequence of extraction of mining blocks favors 

the high-grade continuity area when HOSIMs are used. Also, different pit limits are seen and 

more gold is produced at the end of the life-of-mine (LOM) causes a higher NPV when HOSIMs 

are the given inputs.  

1.5 Long-term Stochastic Mine Planning 

As previously discussed, conventional mine planning frameworks are deterministic. Thus, they 

use a single estimated, or average-type, orebody model as an input to produce mine production 

schedules. It has been shown, however, that these deterministic approaches produce unrealistic 

forecasts in terms of ore production, grades and cashflows (Baker and Giacomo 1998; Dowd 

1994; Ravenscroft 1992; Vallée 2000). The limitations of using a smooth representation of the 

orebody and ignoring the geological uncertainty motivate the development of stochastic 

frameworks. This section starts with a review of open-pit stochastic production scheduling 

studies that lead to state-of-the-art simultaneous stochastic optimization of mining complexes. 

Then, stochastic stope design and underground production scheduling methods are presented.  
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1.5.1 Simultaneous Stochastic Optimization of Open Pit Mine Planning 

The first approach that incorporates geological risk in long-term mine planning is proposed by 

Dimitrakopoulos et al. (2007). The approach generates multiple schedules according to each 

realization of the orebody using a conventional open-pit mine planning method. Subsequently, a 

risk analysis is carried out for each LOM plan in order to assess the maximum-upside potential 

and minimum downside risk, and then select the schedule that shows the best performance based 

on key performance indicators (KPI), such as a minimum acceptable return (MAR) on 

investment. Although this method is simple by allowing the use of an existent deterministic 

scheduling software, it relies on the subjective choice of a KPI that well describes the projects 

performance. In addition, it is not capable of directly incorporating risk management during the 

scheduling decision making process.   

Geological uncertainty is directly incorporated into an MIP by Dimitrakopoulos and Ramazan 

(2004). The method takes a probabilistic orebody model that is built up based on multiple 

simulations and the respective probability of each block showing a certain attribute value, such 

as being within a grade range. The formulated objective function maximizes the probability of 

meeting ore tonnage and grade requirements, while deferring the extraction of areas with lower 

probabilities of having the target properties, introducing the idea of risk discounting. 

Dimitrakopoulos and Grieco (2009) also uses a similar probabilistic framework to generate a 

stope design for a copper mine. This approach is reviewed with more details in the next section. 

Probabilistic methods, however, uses limited information regarding geological variability in the 

deposit. In addition, the assessment of uncertainty is restricted to individual blocks, stopes, or 

panels instead of capturing the joint uncertainty of the combination of these mining units that are 

extracted simultaneously.  

Godoy and Dimitrakopoulos (2004) propose a multi-step mine production scheduling framework 

under geological uncertainty. Initially, the cumulative graph of ore production and waste removal 

is calculated considering the best case (pit-shell-by-pit-shell) and the worst case (bench-by-

bench) scenarios of conventional open-pit mine planning for each orebody simulation, given a 

pit-limit and set of cutbacks. Therefore, a stable solution domain (SSD) can be derived 

considering the inner part of all the cumulative ore and waste graphs. A linear programing (LP) 

formulation is used to optimize the schedule of ore production and waste removal, obtaining 
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the optimal mining rates by maximizing the discounted cashflow. Subsequently, a 

conventional scheduler is used to generate one mining sequence for each orebody simulation, 

using the previously determined optimal mining rates. These extractions sequences are 

combined using a simulated annealing algorithm (Kirkpatrick et al. 1983) that minimizes the 

deviations from ore and waste production targets and produces a single production schedule. An 

application at a gold mine shows an expected improvement of 28% in the NPV compared to the 

conventional deterministic schedule and lower deviations from ore and waste production targets. 

Leite and Dimitrakopoulos (2007) present a case study using this method at a copper deposit in 

which improvements on NPV and ore and waste production are also seen. A study is conducted 

by Albor Consuegra and Dimitrakopoulos (2009) to analyze the impact of the number of 

simulations in the final schedule. It is concluded that 10 to 15 simulations produce stable final 

schedules, justified by the support-scale effects. The authors also investigate the potential of 

having different pit limits than those obtained with conventional ultimate pit limit (UPL) 

optimizers (Lerchs and Grossman 1965), observing larger pit limits and higher NPV when the 

simulated-annealing based method is applied.  

Stochastic integer programming (SIP) has been presented in the technical literature as a 

mathematical background to address strategic mine planning under uncertainty (Birge and 

Louveaux 2011). A two-stage SIP can be defined as follows:  

min z = cTx + Eξ[min q(ω)
Ty(ω)] (1.3) 

𝑠. 𝑡. 𝐴𝑥 = 𝑏 (1.4) 

𝑇(𝜔)𝑥 +𝑊𝑦(𝜔) = ℎ(𝜔) (1.5) 

𝑥 ≥ 0, 𝑦(𝜔) ≥ 0 (1.6) 

Where x represents a vector of the first-stage decision variables and 𝑦(𝜔) are the second-stage 

decision variables. The minimization of the objective value z is presented in Eq. 1.3, with two 

components. The first component 𝑐𝑇𝑥 corresponds to a vector of objective coefficients 

associated with the first-stage decisions. The second component consists in the second-stage 

vectors coefficients 𝑞(𝜔)𝑇 associated with the second stage decision variables 𝑦(𝜔), which are 

function of a random event 𝜔. Eq. 1.4 shows the constraints associated only with the first-stage 

decisions that are taken before the uncertainty is revealed, with the matrices of coefficients A and 
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b. Eq. 1.5 shows the stochastic constraints which allow the second-stage decisions to adapt to the 

first-stage decisions once the random scenarios are observed. Thus, the matrix 𝑇(𝜔) and 𝑊 are 

the matrices of coefficients related to 𝑥 and 𝑦(𝜔), constrained by the random vector ℎ(𝜔). 𝜉 =

[𝑞(𝜔)𝑇, 𝑇(𝜔), ℎ(𝜔)0 ] is, thus, the vector of second-stage coefficients. Lastly, Eq. 1.6 presents 

the non-negativity constraints. In addition, it is mathematically proven that the value of a 

stochastic program (VSP) or value of a stochastic solution (VSS), that is, the difference between 

the expected stochastic programming value solution (ESS) and the deterministic expected value 

solution (EVS) is always non-negative (Birge and Louveaux 2011).  

The first formulation of the stochastic open-pit mine production scheduling using a two-stage 

SIP is presented by Ramazan and Dimitrakopoulos (2005). The objective function considers the 

maximization of the NPV, while managing the risk of not meeting production targets. The 

geological risk management term is multiplied by a geologic risk discounting coefficient (GRD), 

that attributes different penalty costs at different time periods encouraging the schedule to 

postpone the extraction of more uncertain areas. The first stage decision variables are binary and 

define the production period that a block is extracted. The second stage decision variables 

correspond to the deviations from ore tonnage, metal, and grade production targets. The model is 

applied on a two-dimensional gold deposit. Using this mathematical framework, 

Dimitrakopoulos and Ramazan (2008) show through a case study that the VSP for a gold deposit 

corresponds to $64M (9% increase in the original expected NPV) and $60M at a copper deposit 

(25% increase in the original expected NPV). An extension of the mathematical model to include 

stockpiling decisions and reclamation of blocks is presented in Ramazan and Dimitrakopoulos 

(2013).  In order to maintain the linearity of the problem, a fixed yearly grade for the stockpile is 

assumed. Benndorf and Dimitrakopoulos (2013) extend the SIP to incorporate grade blending 

requirements in a multi-element deposit and also implement smoothing operational constraints 

similarly to Dimitrakopoulos and Ramazan (2004). Several applications of this framework show 

generally higher expected NPV, higher recovered metal, and lower deviations from production 

targets compared to deterministic schedules (Benndorf and Dimitrakopoulos 2013; Leite and 

Dimitrakopoulos 2014; Ramazan and Dimitrakopoulos 2013). In addition, the effect on the order 

of magnitude of the per unit penalty costs for each type of deviation is investigated. Besides the 

assumption of perfect homogenization at the stockpiles, this approach is based on economic 
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values of blocks. Therefore, a predefined cut-off grade policy (Lane 1964, 1988; Rendu 2014) 

defines the processing stream destinations of individual blocks, instead of capitalizing on the 

values of products sold.  

Menabde et al. (2007) propose a non-anticipative stochastic model to optimize the cut-off grade 

and the mine production schedule jointly by maximizing the NPV of the project. The proposed 

model does not explicitly integrate risk management. Capacity constraints are thus applied on the 

average outcome of all simulated scenarios. In addition, this approach can only deal with a single 

element. Boland et al. (2008) propose a muti-stage SIP that relies exclusively on scenario 

dependent decision variables where mining and processing decisions can change according to the 

uncertainty. Non-anticaptivity constraints restrict mining decisions to be changed in a one-year 

lag, while processing constraints can change immediately. This approach, however, assumes that 

each geological scenario individually represents reality, which is not true. Thus, it generates a set 

of production schedules which is not possible to be operationally implemented.  

In order to produce a single risk resilient mine production schedule that simultaneously accounts 

for the different processes and the values of products sold, the simultaneous stochastic 

optimization of a mining complex is explored (Goodfellow and Dimitrakopoulos 2016, 2017; 

Montiel and Dimitrakopoulos 2017, 2015, 2018). A mining complex is defined as a mineral 

value chain where various interacting activities allow the extraction and transformation of 

material into sellable products. A ‘global optimization’ of complex operations is proposed by 

Whittle (2007); Whittle (2010) as a commercial tool known as Prober C. This tool allows an 

optimization of the extraction sequences of multiple deposits followed by the definition of the 

processing stream decisions. Although Prober C incorporate various parts of a mining complex 

into its optimization framework, it still relies on a stepwise process that does not optimize all 

components of interest simultaneously. In the past decade, several approaches were presented to 

overcome the limitations of stepwise methods by jointly optimizing the interconnected 

components of mining complexes using  MIP (Hoerger et al. 1999; Stone et al. 2007). 

Nevertheless, these approches are deterministic and rely on simplifications, such as block 

aggregation that missrepresents the materials’ selectivity, unceratinty, and the variability. 

Therefore, two-stage SIPs are proposed for the simultaneous stochastic optimization of mining 

complexes. The objective functions follow the general idea presented in Ramazan and 
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Dimitrakopoulos (2005), which aims to maximize the NPV while mininimizing the deviations 

from production tragets, while simultaneously considering all scenarious that describe supply 

uncertainty as well as other sources of uncertainty. In contrast to the previous propositions based 

on cut-off grade destination policy, block-based (Montiel and Dimitrakopoulos 2017, 2015, 

2018) and clustered-based (Goodfellow and Dimitrakopoulos 2016) destination policies are 

explored. Capital investment (Capex) decisions (Goodfellow and Dimitrakopoulos 2015, Del 

Castillo and Dimitrakopoulos 2019, Farmer 2016), tailing managements (Saliba and 

Dimitrakopoulos 2019), transportantion options and process operating modes (Montiel and 

Dimitrakopoulos 2015) are other components and decisions incorporated in the optimization. 

This stochastic framework is extended to incoporate different sources of uncertainty beyond the 

typical grade uncertainty. Kumar and Dimitrakopoulos (2017) incorporate geo-metallurgical 

uncertainty, commodity price uncertainty is added by Saliba and Dimitrakopoulos (2019) and 

Both and Dimitrakopoulos (2020) include simulated productivity and availability of shovels and 

trucks, respectively. Most of these approaches were not tested or do not suit directly to mining 

complexes with underground operations. 

1.5.2 Stochastic Stope Design and Underground Mine Production Scheduling  

The advances on stochastic optimization for underground mine production scheduling are limited 

compared to those addressing open-pit scheduling. Besides the difficulty of developing a 

mathematical formulation that adapts to all underground mining methods and their variants, a 

large number of operational components must be taken into account that lead to highly complex 

problems (O'Sullivan et al. 2015). In addition, most of the existing stochastic approaches address 

the stope layout or mine production schedule individually. The literature review that follows 

goes beyond the sublevel stoping methods in order to provide an overview on how uncertainty is 

incorporated to underground applications.  

 Grieco and Dimitrakopoulos (2007) propose a probabilistic method to address stope design 

optimization under uncertainty for the sublevel open stoping mining method. First, the block 

model is regularized into mineable rings, which are aligned transversely in terms of panels and 

form horizontal layers bounded by haulage levels. An MIP is developed for the selection of rings 

within a panel, by maximizing the metal content while assuming an average grade of the ring 

above a specified cut-off grade and its respective probability of occurrence. These two values are 
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calculated based on a set of geostatistical simulations of the mineral deposit. Geometric 

constraints are imposed such that a minimum and maximum number of sequential stopes within 

a panel respect the allowable stope size and proportional pillar dimensions. In addition, a 

constraint controls the acceptable level of risk of a ring being above the defined cut-off grade. 

The method is applied to a copper mine considering different levels of acceptable risk. Although 

the design generated with 100% acceptable risk shows better downside potential, it is not able to 

take advantage of blending low and high grades and meeting production demands. The method 

can be used to assist the mine planner to manage project parameters while assessing its upside 

potentials and downside risks. This probabilistic approach, however, is not able to explicitly 

manage the geological risk, or capture the spatial uncertainty and variability.  

Villalba Matamoros and Kumral (2018) propose a stope design framework that incorporates 

geological uncertainty. The method uses the same mathematical background as in Villalba 

Matamoros and Kumral (2017), through an MIP that maximizes the stope profit and minimizes 

the internal sector dilution while a stope layout is obtained through a heuristic approach for each 

geological scenario. Subsequently, a clustering process based on the Euclidian distances, or 

dissimilarities, among the set of stope designs generated on the previous step defines an average 

stope layout. This new layout, however, might violate geotechnical and operational requirements 

regarding stope shapes and adjacencies. Therefore, two additional steps to fix potential constraint 

violations and reduce domain size are performed. Based on the average stope layout, a pool of 

initial feasible solutions is generated and combined using a genetic algorithm (GA) to produce a 

single final stope layout. An application at a gold deposit shows that the GA method is able to 

generate a near-optimal solution in reasonable amount of time. In addition, a comparison of the 

approach with a corresponding deterministic approach shows an improvement of 12% in terms 

of the undiscounted profit and a considerable difference on the internal stope dilution. This 

approach, however, does not directly manage the geological uncertainty. The clustering step, 

instead, smoothes out the uncertainty and variability of grades within stopes that are given as a 

feasible pooling parameter to generate the initial solution candidates to the GA.  

A deterministic two-stage heuristic algorithm is proposed by Nikbin et al. (2020) that combines a 

dynamic programming technique to find the best stopes within different strips and a greedy 

search to combine each strip layout into the final stope boundaries, for the sublevel stoping 
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method. This approach is modified by Wilson (2020) to incorporate grade uncertainty, by first 

defining a stochastic objective function that maximizes the expected economic value of 

individual blocks or potential stopes while minimizing the respective standard deviation 

according to a set of realizations of the orebody and a penalty parameter. Although a set of 

realizations of the orebody is a direct input to this method, the mathematical formulation does 

not allow a true stochastic optimization that is able to manage the uncertainty. The second 

component of the objective function that accounts for the variance minimization does not reflect 

a minimization of risk. Instead, it might lead to an avoidance of high-grade zones and miss 

upside potential in contrast to the downside risk and low tolerance for grade blending. In 

addition, the penalty parameter plays and important role in the heuristic procedure, not 

necessarily representing a financial representation of risk.  

Furtado e Faria et al. (2022b) presents a new SIP for stope design with the sublevel open stoping 

mining method. The proposed method starts with preprocessing steps in which a set of 

overlapping levels and overlapping stopes are generated according to the block model geometry. 

A level and stope adjacency search is also performed in order to define sets in which 

geomechanical constraints will be further imposed. Three main binary decision variables are 

defined to select the type of vertical access, the level positions, and the corresponding stopes. 

The proposed objective function maximizes the undiscounted profit of selected stopes by 

considering the overall vertical and horizontal development costs while minimizing the total 

deviations from the project’s capacities and the difference between the metal content of all 

blocks in a selected level and the recoverable metal within a stope. The minimization terms 

account for an economic penalty applied to each second-stage decision variable associated with a 

geological scenario. Linking, adjacency, and capacity constraints are defined to generate an 

operational stope design. The stochastic method is compared to an industry-standard stope 

design tool, showing the advantages of incorporating grade uncertainty and variability in the 

optimization. In addition, this new method better manages dilution, as it is able to define the 

position of production levels and pillars, which are an input to the benchmark tool. Finally, the 

stochastic optimization produced a layout with 21% higher recoverable metal and 4% higher 

undiscounted profit.  
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Montiel et al. (2016) propose a two-stage SIP to globally optimize mining complexes with open-

pits, underground mines, stockpiles, and processing stream destinations under geological 

uncertainty. Although the method comprises the previously reviewed state-of-the-art 

optimization approaches for mining complexes (Goodfellow and Dimitrakopoulos 2016, 2017; 

Montiel and Dimitrakopoulos 2017, 2015, 2018), it requires a predefined stope design. In 

addition, the general mathematical formulation does not allow a specific application that will 

generate an operational extraction sequence for specific underground mining methods. The lack 

of specific physical and operational constraints allows only a general application in which the 

underground mine within a mining complex is scheduled in terms of production zones.  

Carpentier et al. (2016) propose a two-stage SIP that takes as input mineralized lenses, 

considered as mining units that can be accessed independently through ramps and horizontal 

drifts. A set of grade-tonnage curves represents each lens in considering the information 

contained in the orebody simulations. Three binary decision variables control the time-period 

selection of development and extraction activities, the cut-off grade of each lens, and when the 

lens is mined. Continuous decision variables control the proportion of each activity developed at 

each time-period, the amount of waste moved to and from each mine, and the deviations form 

production targets. It is assumed that each lens belongs to a mine, with a single associated cut-off 

grade. The objective function maximizes the NPV from mining the lenses while also considering 

the minimization of the selected development costs and operational costs. In addition, the last 

component of the objective function minimizes the penalty costs associated with deviations of 

productions targets, thus, managing the geological risk. An application at a nickel mining 

complex that uses the cut-and-fill and sublevel longhole open stoping mining methods shows 

that a deterministic equivalent schedule overestimates the NPV by approximately 47%. The risk 

analysis of both deterministic and stochastic approaches shows that the latter produces a 22% 

higher expected NPV. These results show the advantages of incorporating and managing risk 

through the optimization. This method, however, is only applicable to lenticular deposits with 

predefined boundaries.   

A stochastic optimization framework is proposed for the open-pit to underground mining 

transition by MacNeil and Dimitrakopoulos (2017). The authors propose a sequential 

optimization of the open-pit production schedule followed by the underground optimization for a 
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set of crown pillar candidates. The mathematical formulation model follows the same two-stage 

SIP first proposed by Ramazan and Dimitrakopoulos (2005) with the difference that the first 

stage decisions are made in terms of stopes. The objective function maximizes the NPV while 

maximizing the risk of not meeting production targets, subject to physical, capacity, and 

production target constraints. The stope precedence constraints follow the same mathematical 

implementation of the analog slope constraints. Therefore, a predefined stope design and stope 

precedence rule must be given as input to the model. An application at a gold mine is evaluated, 

in which the selected mining method is cut-and-fill. A comparison with a deterministic 

equivalent for the underground schedule and a commercial software for the open-pit production 

schedule shows 9% higher NPV for the stochastic approach. In addition, a risk analysis shows 

that the NPV of the deterministic approach has 90% probability of being lower than forecasted, 

confirming the inability of deterministic methods to manage geological uncertainty and 

variability, and that an average-type input does not generate average outputs. Besides the limited 

capability of this method to simultaneously evaluate the open-pit and underground production 

schedules and related layouts, the method is incapable of incorporating development costs, 

especially vertical development costs, that are directly associated with the transition depth.  

Dirkx et al. (2018) present a two-stage SIP for the stochastic optimization of underground 

production scheduling assuming a block caving operation. In addition to grade uncertainty, 

delays from hang-ups in draw points represent another source of uncertainty that is modeled 

though a discrete evet simulation. The decision variables select the activities at the draw points, 

the opening of a draw point, the activity in terms of a mining slice, and the percentage of the 

slice extraction at a timeframe. Therefore, the availability and production of a draw point and the 

uncertain obstruction of it directly impact the mine production schedule. The case study at a 

copper mine shows that by incorporating the second source of uncertainty, the optimizer can 

better manage the extraction of slices, avoiding a reduction in the production due to delays 

related to draw point obstruction.  

Another block caving scheduling method is proposed by Sepúlveda et al. (2018), that 

incorporates geological and geometallurgical uncertainties. An SIP is proposed to maximize the 

expected discounted net smelter return (NSR) while minimizing or maximizing a risk measure. 

The defined possible risk measurement is the standard deviation of the NSR, the value at risk of 
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NSR, or the deviations from ore production targets. An integer decision variable controls the 

number of blocks extracted by the available draw points. Capacity constraints control the number 

of blocks extracted at the drawpoints according to upper and lower bounds. Because the ore 

recovery is a non-linear geometallurgical parameter, a genetic algorithm is (GA) is proposed to 

solve the mathematical model. A case study at a multi-element underground mine tests the 

various secondary objectives to assess the different effects on risk descriptions. This method, 

however, requires a predefined layout of drawpoints and a deterministic sequence that defines a 

possible order of extraction of blocks.  

Huang et al. (2020) propose a two-stage SIP tailored to underground production scheduling for 

an operation that uses cut-and-fill. The mathematical programing formulation has three binary 

decision variables that schedule the periods for developing advancements (i.e., crosscuts, 

transport drifts, and ventilation raises) and the periods for extracting stopes. It is assumed that a 

stope can be scheduled in multiple periods, and internal portions of it can be scheduled 

independently. The model aims to maximize the NPV while minimizing deviations from grade 

blending requirements, subject to precedence constraints in terms of advancements and 

extraction of stopes, adjacency and capacity constraints in terms of advancement rates, 

processing and backfilling constraints, as well as stochastic constraints that deal with grade 

blending requirements. An application at a gold mine makes the assumptions of an input stope 

layout and network design. The outputs of this stochastic approach are compared to the 

deterministic equivalent forecast using a single estimated block model. A consistently higher 

NPV is shown for the stochastic case. In addition, the stochastic schedule forecasts higher ore 

production and better grade quality in terms of the production targets.  

Nesbitt et al. (2021) propose a multistage stochastic integer programming (MSIP) model for 

underground mine production scheduling under grade and activity duration uncertainty. 

Although binary, scenario dependent decision variables are proposed to model the scheduling of 

mining activities, they have the ability to adapt to first-stage decision variables that define a 

time-interval baseline for each activity. Therefore, a single baseline schedule of activities is 

produced, generating a practical sequence that can be used during operation. The objective 

function aims to maximize the expected NPV given the adaptative policies. The proposed MSIP, 

however, does not explicitly incorporate risk management. In addition, the method deals with a 
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general activity scheduling under precedence constraints, not considering any specific production 

demands. Due to the computational complexity of scheduling activities, the application of this 

method is restricted to short-term schedules with a predefined mine layout. Although a case 

study is presented for a gold mine, the results focus on the efficiency of the proposed heuristic 

solution approach, not showing forecasts and the capability of the method to adapt to geological 

risk.  

The approaches presented above for the underground mine production scheduling rely on a 

common assumption of an existing underground mine design. Furtado e Faria et al. (2022a) takes 

advantage of the integrated approaches previously reviewed in Section 1.3.3 and truly stochastic 

mathematical formulations for open-pit mine production scheduling to develop a two-stage SIP 

that aims to maximize the expected NPV while minimizing the geological risk (Ramazan and 

Dimitrakopoulos 2013, 2005). The authors use the same inputs and preprocessing steps as in 

(Furtado e Faria et al. 2022b). Also, the mathematical programing formulation is expanded to 

incorporate time-period decisions in terms of scheduled stopes, incremental vertical and 

horizontal development costs, and second stage decision variables related to deviations from 

production targets. This approach, however, assumes that the orebody is accessed through a 

vertical shaft in a predefined position. An application at a gold mine that uses the sublevel open 

stoping mining method with two geotechnical zones and multiple allowable stope shapes shows 

an 11% higher NPV when compared to a stepwise stochastic approach. In addition, physically 

different schedules and layouts are observed. It can be noted that this method is tailored for the 

aforementioned mining method, not presenting a general mathematical formulation that can be 

adapted to other mining methods or variants. Also, the final schedule is mainly guided by the 

relative positions of the selected stopes to the main access and to the footwall. Although sill and 

rib pillar requirements are included in the non-overlapping requirements, no adjacency 

constraints are imposed because the model assumes rock mass stability requirements. Therefore, 

the method is not applicable to mining methods that use pillar recovery or backfilling operations.  
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1.6 Goal and Objectives 

The goal of the research presented in this thesis is to explore the integrated stochastic 

optimization of stope design and long-term mine production scheduling for the sublevel longhole 

open stoping mining method with backfilling, as applied in an operating underground copper 

mine. The following objectives are set to meet this goal:  

• Review the technical literature related to the sublevel longhole open stoping mining 

method, deterministic and stochastic approaches for stope design and mine production 

scheduling, and methods used for simulating mineral deposits. 

• Develop an integrated stochastic optimization model that accounts for geological 

uncertainty and adjacency constraints to allow backfilling and different haulage costs 

according to mining zone characteristics, and implement it with a copper mine. 

• Expand the proposed integrated stochastic optimization model to incorporate stockpiling 

decisions and evaluate the impact of using high-order sequential simulations of the 

mineral deposit as input to the developed mathematical approach. 

• Summarize the contributions and conclusions of this thesis and provide suggestions for 

future research. 
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1.7 Thesis Outline  

This thesis is organized into the following chapters:  

Chapter 1 presents a review of the available literature related to the sublevel stoping mining 

method and variants, deterministic and stochastic advances for the optimization of stope design 

and underground mine production scheduling, and methods related to geostatistical simulation of 

mineral deposits.  

Chapter 2 presents a stochastic optimization mathematical model that integrates the stope design 

and production schedule for an operating copper mine with secondary elements that uses the 

sublevel longhole open stoping mining method. An application for an underground cooper mine 

is compared to a stochastic stepwise approach, showing the benefits of integrating all planning 

components in one optimization framework.  

Chapter 3 expands the proposed stochastic mathematical model to incorporate stockpiling 

decisions. In addition, the same copper mineral deposit is simulated using a high-order sequential 

simulation framework and the schedule and forecast are compared to those generated using 

sequential Gaussian simulation.  

Chapter 4 summarizes the contributions presented in previous chapters and overall conclusions 

and presents suggestions for future work. 
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2. Chapter 2 - Integrated Stochastic Optimization of Stope Design 

and Long-term Mine Production Scheduling at an Operating 

Underground Copper Mine 

2.1 Introduction 

Long-term underground mine production scheduling conventionally consists of the definition of 

the stope layout, the access design, the ventilation system requirements, and the extraction 

sequence (Alford et al. 2007; Appianing et al. 2018; Bootsma et al. 2018; Poniewierski et al. 

2003). Initially, potential mineable volumes are defined based on geomechanical and geological 

properties. This step requires fixed input values for operational parameters, such as mining 

capacity, as well as a cut-off grade in order to maximize the undiscounted profit of the stopes 

(Alford 1995; Alford and Hall 2009; Alford Mining Systems 2022; Cawrse 2001; Erdogan et al. 

2017; Topal and Sens 2010). Subsequently, accesses such as declines, ramps, and shafts 

connecting production areas to main haulage and ventilation systems are defined (Brazil et al. 

2008; Brazil et al. 2003; Brazil and Thomas 2007). The stope layout and network designs are 

used as inputs to the life-of-mine (LOM) production schedule optimization, which maximizes the 

net present value (NPV) of the mining asset under a unit operation timeframe, while considering 

economic and capacity constraints (Brickey 2015; Fava et al. 8-10 June 2011; Fava et al. 2013; 

Hauta et al. 2017; Little et al. 2011; Nehring et al. 2010; Newman et al. 2010; Topal 2003; Trout 

1995). An iterative procedure ensures that these steps are repeated for different cut-off grade 

values until the one that produces a schedule with the highest NPV is found and selected (Alford 

and Hall 2009; Bootsma et al. 2018; Poniewierski et al. 2003). However, by considering 

separately the stope design and extraction sequence, the synergies between these two 

components are not captured in the optimization process. In addition, this traditional approach is 

deterministic in which a single estimated (average type) representation of the orebody is 

considered, which does not quantify geological uncertainty and variability, representing a critical 

source of technical risk for a mining project (Vallée 2000). 

 Little et al. (2011) show that stope boundaries should be an outcome of the production schedule 

so that interdependencies among stope grades, development costs, and the time value of money 

are incorporated into an integrated process. Accordingly,  Little et al. (2011, 2013) propose an 
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integrated underground mine design and production scheduling optimization approach, based on 

a mixed integer programming (MIP) formulation, aiming to maximize the discounted cashflow 

of stopes mined in an extraction sequence accounting for their size and location, while 

constrained by ore production and backfilling capacities. This approach, however, does not 

account for critical costs and decisions associated with the development of main and secondary 

accesses. Copland and Nehring (2016) address the stope boundaries and scheduling with a binary 

integer programming formulation that considers the discounted profit from stopes and 

incorporates level access development decisions. The development of drifts and shafts as one-

time decisions is integrated into the MIP by Hou et al. (2019). Nevertheless, it assumes a 

predefined network design in terms of the position of the longitudinal ore drives and the shaft. In 

addition, the application of the proposed method is restricted to a stratiform two-dimensional 

deposit. Foroughi et al. (2019) develop a MIP that maximizes the NPV and metal recovery, while 

jointly considering the production scheduling and stope layout. The above-mentioned method is 

applied to an iron ore deposit and is solved using a genetic algorithm. The development and 

application of the methods delineated thus far are suited to the sublevel open-stoping (SOS) 

mining method. The development of ventilation systems and the internal accessibility of stopes 

are not thoroughly investigated in the studies previously presented, not allowing the 

generalization to other mining methods or variants of the SOS that require specific backfilling 

practices given different stope types (Villaescusa 2014). In addition, these integrated methods are 

deterministic and are, thus, unable to account for uncertainty.  

Deterministic LOM approaches lead to forecasts and production schedules that devaite from key 

production targets (Dimitrakopoulos et al. 2002; Dowd 1994; Leite and Dimitrakopoulos 2007; 

Ravenscroft 1992). Dimitrakopoulos and Grieco (2009) analyze how conventional methods for 

underground mine design are unable to capture the upside potential and/or downside risk of 

meeting forecasts, which are tied to the presence of uncertainty and variability of grades and 

material types. In order to account for geological uncertainty, stochastic simulations of the 

orebody are used as the main input to probabilistic and stochastic frameworks to generate a stope 

layout (Dimitrakopoulos and Grieco 2009; Furtado e Faria et al. 2022b; Grieco and 

Dimitrakopoulos 2007; Villalba Matamoros and Kumral 2018). The stochastic optimization of 

the underground mine production schedule, given the stope boundaries, is modeled for cut-and-

fill, block-caving, and long-hole stoping mining methods (Carpentier et al. 2016; Dirkx et al. 
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2018; Huang et al. 2020; Noriega et al. 2022). Starting from Brickey (2015) a resource-

constrained project scheduling problem is proposed to adress the selection of undergorund mine 

activities following their related precedeces and duration. Nesbitt et al. (2021) improve this 

previous work by incorporating uncertainty in the activities duration and grades, while Hill et al. 

(2022) address computational techniques to reduce the problem size and algorithms to solve the 

optimization. This activity scheduling approach, however, is suitable for shorter-term planning 

since the duration of each undergorund mining activity cannot be described on a yearly basis. 

Recently, a two-stage stochastic integer programming (SIP) (Birge and Louveaux 2011) 

formulation that jointly optimizes the stope design and production schedule for the SOS mining 

method is developed by (Furtado e Faria et al. 2022a). The mathematical model presented selects 

the stopes’ shapes and locations, and levels of extraction in order to maximize NPV while 

considering effective vertical and horizontal development costs. It also manages the geological 

risk by minimizing deviations from production targets. The related case study shows an 

improvement in the NPV when compared to the sequential framework, where a stope layout is 

given as input to the optimization of the production schedule. Nevertheless, this method is 

tailored for a specific variant of SOS that does not account explicitly for adjacency constraints 

when backfilling is used.  

A new integrated stochastic optimization of stope design and long-term production scheduling is 

proposed herein to go beyond the mining method specificities of previous approaches, in order to 

be applied to the sublevel longhole open stoping (SLOS) mining method with backfilling. A 

variant of the SLOS is considered with assumptions and parameters derived from an existing 

operational mine is considered. Horizontal extraction levels define the vertical boundaries of 

stopes, and sublevel drifts and crosscuts are developed to enable longhole drilling. Primary, 

secondary, and tertiary stopes, which are aligned with extraction and backfilling procedures, and 

are combined with a bottom-up extraction approach to create precedence rules among stopes 

(Hamrin 2001; Hartman and Mutmansky 2002; Pakalnis and Hughes 2011; Soma 2001). In 

addition, geometric parameters for shapes and sizes of stopes are defined for different mining 

zones according to geotechnical characteristics and requirements. 

The proposed integrated optimization is formulated as a two-stage SIP (Birge and Louveaux 

2011). The method considers the selection of the stopes’ period of extraction and mining zone 
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configuration that relates to the definition of stope shape parameters and types, as well as to 

sublevel positions. The maximization of the NPV as per the objective function considers 

cumulative horizontal development costs and different haulage costs for different possible 

network systems. Geological uncertainty is modeled through a set of equiprobable geostatistical 

simulations of the mineral deposit (Goovaerts 1997; Journel and Huijbregts 1978; Rossi and 

Deutsch 2014). The risk of not meeting production targets, which is inherent to geological 

uncertainty, is managed in the objective function through the incorporation of geological risk 

discounting (GRD) (Ramazan and Dimitrakopoulos 2005). This discounting factor is applied to 

the objective function component minimizing deviations from production targets, leading to the 

extraction of more uncertain materials in later periods on the LOM, when more information 

about the mineral deposit becomes available (Ramazan and Dimitrakopoulos 2005, 2013; 

Montiel and Dimitrakopoulos 2013, 2015; Montiel et al. 2016; Goodfellow and Dimitrakopoulos 

2016, 2017). Physical and capacity constraints are included. Precedence rules of stopes defined 

based on geotechnical requirements enable the use of backfill after a stope is extracted. 

The subsequent sections of this chapter progress as follows. First, the main inputs to the 

integrated stochastic optimization for the underground mine production scheduling and the 

correspondent mathematical programming formulation are outlined. Then, a case study at an 

operating underground mine is presented, including a comparison with a sequential stochastic 

framework. Conclusions and future work follow.   

2.2 Methodology 

A method for the integrated stochastic optimization of stope design and mine production 

scheduling for the sublevel longhole open stoping (SLOS) mining method with backfilling is 

considered and presented below. The approach considers that a mining cycle, defined by all unit 

operations, such as drilling, blasting, loading, hauling, and backfilling, is completed for each 

stope on its mining period. A pattern of extraction according to the type of stopes (e.g., primary, 

secondary, and tertiary) ensures that geotechnical constraints are met. Backfilling guarantees the 

stability of stope walls, removing the need for pillars. The sublevels are all aligned with the 

stopes’ lower bounds and can be used as extraction levels.  
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A set of geostatistical simulations 𝑠 ∈ 𝑆 of the orebody describes the geological uncertainty. 

Initially, the orebody is represented in terms of blocks 𝑖 ∈ 𝐼 that are, then, grouped into stopes 

𝑗 ∈ 𝐽. The bottom of the stopes that share the same sublevel 𝑙 ∈ 𝐿 must be vertically aligned in 

order to define the location of developments, such as drifts 𝑑 ∈ 𝐷𝑙. The requirement for the 

creation of possible cross-cuts 𝑐 ∈ 𝐶𝑙 is that the stopes must also be laterally aligned throughout 

a mining direction. A set of possible configurations 𝑏 ∈ 𝐵 of stopes that overlap each other is 

generated, allowing the stopes to have different allowable shapes, locations, and type options 𝑎 ∈

𝐴 that define the ordering of primary, secondary and tertiary stopes. 

The indices, sets, technical, economical, and geometrical parameters as listed in Table 2-1 to 

Table 2-4, respectively. The decision variables of the proposed mathematical formulation are 

shown in  

 

Table 2-5 and Table 2-6. 

 

Table 2-1 – List of indices 

Index Definition 

𝑖 Block index  

𝑗 Stope index  

b Mining zone configuration index  

d Drift direction index 

c Crosscut index 

𝑙 Production level/sublevel index  

a Stope type option  

k Primary, secondary, and tertiary stope index 

𝑠 Index of a scenario quantifying the considered sources of uncertainty  

h Primary access system (shaft or ramp) index 

𝜀 Element (metal) index  

𝑡 Production period index  

Table 2-2 – List of sets 

Index Definition 

H Set of primary access systems (shaft, ramp) 

𝐻𝑟𝑎𝑚𝑝 Sub-set of primary access systems h which are ramps 

𝐻𝑠ℎ𝑎𝑓𝑡 Sub-set of primary access systems h which are shafts 

B Set of all possible configurations b for the mining zone 

𝐵ℎ Set of possible mining zones b using the primary access system h 
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Index Definition 

𝐴𝑏 Set of stope type option a for a mining zone b 

𝐿𝑏 Set of sublevels l for mining zone configuration b 

𝐷𝑙 Set of drift directions d in sublevel l 

𝐶𝑙 Set of potential crosscuts c in sublevel l 

𝐽𝑏 Set of potential stopes 𝑗 in a mining zone configuration b 

𝐽𝑏𝑎 Set of potential stopes 𝑗 in a mining zone configuration b, for stope type 

option a 

𝐽𝑏𝑙 Set of potential stopes 𝑗 in a mining zone configuration b and using 

sublevel l 

𝐽𝑏𝑑𝑙  Set of possible stopes in level l and drift direction d, and in mining zone 

configuration b 

𝐽𝑏𝑐𝑙 Set of possible stopes in level l and cross-cut c and in mining zone 

configuration b 

𝛷𝑗𝑎 Set of predecessors of stope j in stope sequencing option a 

𝐼𝑏 Set of blocks in a possible mining zone configuration b 

𝐼𝑗𝑏𝑎 Set of blocks 𝑖 in stope 𝑗 in mining zone configuration b, for stope type 

option a 

𝑆 Set of scenarios 𝑠 describing the considered sources of uncertainty 

𝑇 Set of mining periods 𝑡  
𝐸 Set of elements 𝜀 
K Set of stope types (primary, secondary, tertiary) 

Table 2-3 – List of technical and economic parameters 

Index Definition 

𝜈𝑖 Volume of block 𝑖  
𝜈𝑗𝑏𝑎 Volume of stope j in mining zone configuration b for stope type option a 

𝜈𝑗𝑏𝑎 = ∑ 𝜈𝑖
𝑖∈𝐼𝑗𝑏𝑎

 

𝑤𝑖𝑠 Tonnage of block 𝑖 in scenario 𝑠  
𝑤𝑗𝑏𝑎𝑠 Tonnage of stope j, in mining zone configuration b, for stope type option 

a and in geological scenario 𝑠 

𝑤𝑗𝑏𝑎𝑠 = ∑ 𝑤𝑖𝑠
𝑖∈𝐼𝑗𝑏

 

𝑔𝑖𝜀𝑠  Grade of element 𝜀 in block 𝑖, in scenario 𝑠  
𝑔𝑗𝑏𝑎𝜀𝑠 Average grade of element 𝜀 within stope j in mining zone b, for stope 

type option a and in scenario 𝑠  

𝑔𝑗𝑏𝑎𝜀𝑠 = ∑ 𝑤𝑖𝑠𝑔𝑖𝜀𝑠/𝑤𝑗𝑏𝑎𝑠
𝑖∈𝐼𝑗𝑏

 

𝜋𝑘𝑗𝑏𝑎 Extraction sequence type indicator (primary, secondary or tertiary)  

𝜋𝑘𝑗𝑏𝑎=1  if stope j is of type k in stope sequencing option a, in mining 

zone configuration b, and  0 otherwise 
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Index Definition 

𝜌𝑗𝑏𝑎 Backfilling density ton/m3  in stope j, in mining zone configuration b, in 

stope sequencing option a 

𝑅𝜀 Processing recovery in percent of element 𝜀 
𝑃𝜀 Metal selling price $/t of element 𝜀 

 

𝑣𝑗𝑏𝑎𝑠 Economic value of stope 𝑗 in mining zone b, stope sequencing option a 

and in scenario 𝑠  

𝐶𝑙
ℎ𝑜𝑟 Unit horizontal development cost in sublevel l in $/km 

𝐶𝑘
 𝑚𝑖𝑛𝑒 Mining cost for type k stopes in $/t  

𝐶𝑝𝑟𝑜𝑐 Processing cost in $/t   

 
𝐶ℎ𝑏
ℎ𝑎𝑢𝑙 

 

Haulage cost from mining zone b to primary access if ℎ ∈ 𝐻𝑟𝑎𝑚𝑝 in 

$/(tons ∙ km) and if ∈ 𝐻𝑠ℎ𝑎𝑓𝑡 in $/t 

𝐹𝑏 Fixed cost for keeping the mining zone configuration b 

𝑓𝑡
𝐸𝐷𝑅 Economic discount factor for period 𝑡 given an economic discount rate  

𝑓𝑡
𝐺𝑅𝐷 Geologic discount factor for period 𝑡 given a geologic discount rate  

𝑈ℎ𝑡
ℎ𝑎𝑢𝑙 Hoisting capacity of primary access system h in period 𝑡 (tons/year).  

𝑈𝑡
𝑝𝑟𝑜𝑐 Processing capacity in period 𝑡 (tons/year).  

𝑈𝜀𝑡  Maximum target of element 𝜀 in period 𝑡 (% element/year).  

𝐿𝜀𝑡 Minimum target of element 𝜀 in period 𝑡 (% element/year).  

𝑈𝑘𝑡
𝑏𝑓

 Backfilling capacity for backfill type associated to k in period t 

(tons/year) 

𝑈𝑡
𝑑𝑒𝑣 Development capacity in period t (m/year) 

𝑐ℎ
ℎ𝑎𝑢𝑙 Penalty costs associated with the surplus deviations from the haulage 

tonnage capacity. 

Table 2-4 – List of geometric parameters 

Index Definition 

γ𝑏,𝑗
𝑥 , γ𝑏,𝑗

𝑦
  Stope 𝑗 ∈ 𝐽𝑏 sizes along direction x and y in the horizontal plane, in 

terms number of blocks for mining zone configuration 𝑏 ∈  𝐵. 

γ𝑏,𝑗
𝑧,𝑚𝑖𝑛, γ𝑏,𝑗

𝑧,𝑚𝑎𝑥
 Stope 𝑗 ∈ 𝐽𝑏 minimum and maximum sizes along direction z (vertical 

plane) and in number of blocks for mining zone configuration 𝑏 ∈  𝐵. 

α𝑏,𝑙
𝑧  Sublevel spacing in z direction, for a mining zone configuration b and 

sublevel l 

𝛿ℎ,𝑏,𝑙 Length in km from the surface to the sublevel l of mining zone 

configuration b for primary access if ℎ ∈ 𝐻𝑟𝑎𝑚𝑝 and 1 if ℎ ∈ 𝐻𝑠ℎ𝑎𝑓𝑡 

δ𝑗,𝑑,𝑙,𝑏
𝑑𝑟𝑖𝑓𝑡

 Distance in a drift from a stope j to the h access point/ ore pass along 

drift direction d in level l, in mining block design b 

δ𝑗,𝑐,𝑙,𝑏
𝑐𝑟𝑜𝑠𝑠𝑐𝑢𝑡 Horizontal distance from stope j to the drift position in the footwall in 

sublevel l under mining zone configuration b 

𝜂𝑏
𝑠𝑢𝑏𝑙𝑒𝑣𝑒𝑙𝑠 Number of sublevels in mining zone configuration b 

𝜂𝑏
𝑠𝑡𝑜𝑝𝑒𝑠

 Number of stopes in mining zone configuration b 
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Table 2-5 – Binary decision variables 

Index Definition 

𝑧𝑏,𝑎 Mining zone selection decision variable, equal to 1 if mining zone 

configuration b using stope type option a is selected, and 0 otherwise 

𝑦𝑗,𝑏,𝑎,𝑡 Stope selection decision variable, equal to 1 if stope 𝑗 in mining zone 

configuration b is selected, for stope sequencing option a, in period 𝑡, and 

0 otherwise 

Table 2-6 – Continuous decision variables 

Index Definition 

ψ𝑑,𝑙,𝑏,𝑡
drift  Drift’s development distance in sublevel l, in mining zone configuration 

b, along with drift direction 𝑑 ∈  𝐷𝑙 in period t 

ψ𝑑,𝑙,𝑏,𝑡
drift∗  Effective drift’s development distance in sublevel l, in mining zone 

configuration b, along with mining directions 𝑑 ∈  𝐷𝑙 in period t  

ψ𝑐,𝑙,𝑏,𝑡
𝑐𝑟𝑜𝑠𝑠𝑐𝑢𝑡 Crosscut’s development distance in sublevel l in mining zone 

configuration b, for crosscut  c ∈  𝐶𝑙 in period t 

ψ𝑐,𝑙,𝑏,𝑡
𝑐𝑟𝑜𝑠𝑠𝑐𝑢𝑡∗ Effective crosscut’s development distance in sublevel l in mining zone 

configuration b, for crosscut  c ∈  𝐶𝑙 in period t 

𝑑ℎ𝑡𝑠
ℎ𝑎𝑢𝑙 Surplus deviation of total hoisting/haulage capacity for the system h, in 

period 𝑡 and scenario 𝑠 

𝑑𝑡𝑠
𝑝𝑟𝑜𝑐

 Surplus deviation of total processing capacity, in period 𝑡, and scenario 𝑠  

𝑑εts
+

 Surplus deviation from the maximum grade target of element 𝜀, in period 

𝑡, and scenario 𝑠  
𝑑εts

−
 Shortage deviation from the maximum grade target of element 𝜀, in 

period 𝑡, and scenario 𝑠 

2.2.1 Input Data Processing 

Figure 2-1 shows the three main steps to generate potential stopes from an orebody model by 

considering a given mining zone; that is, a portion of the deposit that has the same 

geomechanical characteristics. It is assumed that, for a given mining zone, stopes share the same 

geometrical parameters that define their shapes. The first step consists of dividing the orebody 

model into different sublevels and mining fronts. This process is done repeatedly for all 

allowable sublevel spacing and stope widths, producing a set of possible mining zone 

configurations B. Subsequently, stope-type options 𝐴𝑏 are mapped for each configuration 𝑏 ∈ 𝐵. 

Each option 𝑎 ∈ 𝐴𝑏 assign a different type (primary, secondary, or tertiary) to sets of stopes 𝐽𝑏𝑎. 

These stopes undergo an additional stage of processing that determines the stope height that 
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yields a probabilistic highest profitability. Steps 1 and 2 are invariant to the geostatistical 

simulations of the orebody, while step 3 considers all orebody simulations jointly. The output of 

this process defines possible geometries and positions of the stopes and sublevels, which, 

combined with the grade and material type simulations of the orebody, are finally used as inputs 

to the proposed two-stage SIP. 

 

Figure 2-1 – Steps of the stope design and scheduling optimization. 

2.2.1.1 Mapping Configurations of Shapes 

First, starting from a block 𝑖 ∈ 𝐼 in a mining zone, blocks are grouped according to stope 

dimensions, γ𝑏,𝑗
𝑥 , γ𝑏,𝑗

𝑦
 and the sublevel spacing α𝑏,𝑙

𝑧  defined for a given mining zone 

configuration 𝑏 ∈  𝐵, possible stopes 𝐽𝑏 and possible sublevels 𝑙 ∈ 𝐿𝑏within that mining zone 

configuration. This process is repeated for all possible configurations. Figure 2-2 shows two 

different mining zone configurations 𝑏, 𝑏′ ∈  𝐵, where configuration b assumes three equally 

spaced sublevels and configuration b’ has five sublevels. It is worth noting that two different 

indexed mining zone configurations can have an identical structure in terms of number of mining 

fronts and sublevels, as they differ in the assigned haulage system option h in terms of type (i.e., 

shaft of ramp) and position. 

It is important to note that the stope dimensions in the horizontal plane can be variable within the 

mining zone configuration and are directly related to the final possible stope shapes. These 

dimensions follow mainly geotechnical requirements related to minimum and maximum 

dimensions of stopes. The option of having variable shapes considering the horizontal plane is 

critical when there are different mining or backfilling costs for different stope types, as it enables 

the management of these costs according to the stope volume and type. On the other hand, for 

the vertical direction, the distance between sublevels, which are also potential extraction levels, 

1 – Mapping 
Configurations 

of Shapes:

Generate a set of 
mining zone 

configurations 
considering 

different stope 
shapes and 

sublevel spacing 

2 – Mapping 
Stope-type 
Options: 

Define different 
possible 

precedencies 
among stopes

3 – Searching 
Variables Stope 

Heights: 

Evaluate the most 
profitable height 

of each stope 
according to a  

probability 
threshold 

4 – Solve the 
Two-Stage SIP
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is considered. The spacing α𝑏,𝑙
𝑧  only defines the sublevels l bounding the stopes and does not 

determine the final height of the potential stopes. A specific step to determine the actual stope 

height, which considers not only geometric parameters, but the economic profitability of the 

given mineable volume is presented in Section 2.2.1.3. In addition, the total number of blocks in 

a given direction might not be divisible by the stope dimension in that direction. Thus, 

configurations in which the grouping of blocks into stopes starts from different blocks in the 

mining zone can be generated.  

As seen in Figure 2-3, cross-cuts c are developed parallel to a defined mining direction, in order 

to meet ventilation and backfilling requirements. Drifts d are developed perpendicularly to cross-

cuts. The approximated dimensions of crosscuts (δ𝑗,𝑐,𝑙,𝑏
𝑐𝑟𝑜𝑠𝑠𝑐𝑢𝑡) and drifts (δ𝑗,𝑑,𝑙,𝑏

𝑑𝑟𝑖𝑓𝑡−ℎ
) are calculated 

considering the position of the sublevels l. The drift length is always associated with the access 

point of a haulage system h and its respective mining zone configurations 𝑏 ∈ 𝐵ℎ. 

 

Figure 2-2 – Two mining zone configurations 𝑏, 𝑏` ∈  𝐵 generated in the mapping of shapes step. 
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Figure 2-3 – Drifts and cross-cuts distances for a haulage system h, a potential sublevel l (in a plan view) 

for two potential stopes j and j`. 

2.2.1.2 Mapping Stope Type Options 

Once the possible mining zone configurations are defined, for each configuration 𝑏, stope type 

options 𝑎 ∈ 𝐴𝑏 are generated. A pattern of extraction is defined following geotechnical 

constraints. Figure 2-4 shows a stope-to-stope dependency that is adapted from different patterns 

presented by Villaescusa (2014), in which the numbers define the predecessors and the coloring 

defines the stope type. A stope with number 1 has no predecessors, a stope tagged with number 2 

has stopes with number 1 as a predecessor, and those with number 3 have all the previous ones 

as predecessors; this rule follows for all other stopes. Therefore, the adjacencies are mapped, 

such that stopes with lower numbers in Figure 2-4 are predecessors (𝜑 ∈  𝛷𝑗,𝑎) of stopes with 

higher numbers (𝑗 ∈ 𝐽𝑏). It is important to note that this pattern does not predefine the extraction 

sequence and it is used only to define adjacencies for rock mass stability purposes. 

The generated stopes, that are outputs from the previous step, are flagged with an indicator 𝜋𝑘𝑗𝑏𝑎 

type, where 𝑘 ∈ 𝐾 defines the type of a stope j  (i.e. primary, secondary, or tertiary), in a mining 

zone configuration b and considering a type option a that follows a dependency pattern. Thus, 

each type option a shows a different combination of types k and stopes j.  Figure 2-5 represents 

the process of mapping the stope type options. It is observed that different combinations of 

mining zone configurations and stope type options are generated.  
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Figure 2-4 – Two consecutive cross-sections of the stope patter of extraction. 

 

Figure 2-5 – Stope type option for different mining zone configurations. 

 

2.2.1.3 Searching Variable Stope Heights 

In the previous steps, the stopes generated come from the grouping of blocks by considering that 

they fully occupy the space between sublevels. In order to manage dilution, the profitability of 

having stopes with heights that are smaller than the distance between sublevels (α𝑏,𝑙
𝑧 ) and greater 

than the minimum stope height (γ𝑏,𝑗
𝑧,𝑚𝑖𝑛) is evaluated. This means that the alignment of the 

bottom of the stopes according to the sublevel that defines their lower bound is kept. However, 

the height might be variable within the same sublevel, and there may be waste material above 
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certain stopes, being left as pillars. For this variant of SLOS, a sublevel can serve as an 

extraction level. Therefore, it is assumed that stopes above the waste portion can still be mined 

subsequently.   

For a given mining zone configuration b, a stope type option a and a stope j, the economic value 

of each stope is calculated, as shown in Eq. 2.1, for all its possible vertical dimensions and for 

each simulated orebody scenario s of grades of different elements 𝜀 ∈ 𝐸 and stope tonnages 𝑤𝑗𝑏𝑠. 

For each vertical dimension, given a probability threshold, the economic value that defines this 

quantile is calculated (𝑣ℎ𝑒𝑖𝑔ℎ𝑡
% ). For instance, if the P90 defines the probability threshold, there 

will be an economic value associated with a scenario s where 90% of all scenarios will either be 

equal to or will not exceed this value. Then, the economic value associated with different vertical 

dimensions (𝑣ℎ𝑒𝑖𝑔ℎ𝑡
% ) are compared, the dimension associated with the highest economic value is 

retained (γ𝑗,𝑏,𝑎
𝑧,𝑏𝑒𝑠𝑡), defining the final possible stope shape, for that configuration b and the 

associated stope type option a. Figure 2-6 illustrates how the best stope height is chosen. It 

should be noted that the stope type option a definition described on the previous section (i.e., 

step two) does not consider dimensional parameters. However, the mining cost associated to the 

different stope types have an impact while searching for the best stope height. Consequently, on 

this third step, the stope height, volume, weight, and grade will be corelated to its possible type 

and indexed accordingly. 

𝑣𝑗,𝑏,𝑎,𝑠 = 𝑤𝑗𝑏𝑠 (∑𝑔𝑗,𝑏,𝜀,𝑠𝑅𝜀𝑃𝜀
𝜀∈𝐸

− (𝐶
𝑝𝑟𝑜𝑐

+∑𝜋𝑘𝑗𝑏𝑎𝐶𝑘
 𝑚𝑖𝑛𝑒

  

𝑘∈𝐾

)) , ∀ 𝑗 ∈ 𝐽𝑏, 𝑏 ∈ 𝐵, 𝑎 ∈ 𝐴, 𝑠 ∈ 𝑆 (2.1) 
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Figure 2-6 – Example of how to define the stope height considering γ𝑏,𝑗
𝑧,𝑚𝑖𝑛 = 2 and γ𝑏,𝑗

𝑧,𝑚𝑎𝑥 = 4. The $ 

represents the economic value of a stope considering the 𝑣ℎ𝑒𝑖𝑔ℎ𝑡
𝑃90 . The circled stope is the best stope 

height γ𝑗,𝑏,𝑎
𝑧,𝑏𝑒𝑠𝑡

selected. 

 

2.3 Stochastic Integer Programming Formulation  

This section presents a mathematical programming formulation model, which is developed to 

optimize the underground mine production schedule and stope boundaries jointly, while 

considering uncertainty in material supply. Two binary decision variables are shown in  

 

Table 2-5. The mining zone configuration decision variables 𝑧𝑏,𝑎 ∈ {0,1} control which mining 

zone configuration 𝑏 ∈  𝐵 and respective stope type option is selected 𝑎 ∈ 𝐴𝑏. These decision 

variables impact directly the selections of stopes shapes and types. A mining zone configuration 

is always associated with a single haulage system ℎ ∈ 𝐻. This means that identical mining zone 

configuration options (𝑏 and b`) in terms of stope shapes and sublevels can exist, but they will be 

associated with different available haulage systems (𝑏 ∈ 𝐵ℎ, and 𝑏` ∈ 𝐵ℎ`). It is assumed that 

vertical accesses compatible with the haulage systems are already developed, which enables the 
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variable 𝑧𝑏,𝑎 to be time-independent. The stope selection decision variables 𝑦𝑗,𝑏,𝑎,𝑡 ∈ {0,1} 

determine if a stope 𝑗 ∈ 𝐽𝑏 in a mining zone configuration 𝑏 ∈  𝐵, using stope type option 𝑎 ∈ 𝐴𝑏 

is mined in period t. It is assumed that all the unitary operations; that is, development of 

secondary accesses, drilling, blasting, hauling, and backfilling, are ready or done at the period 

scheduled for mining a given stope.   

Two continuous decision variables ψ𝑑,𝑙,𝑏,𝑡
𝑑𝑟𝑖𝑓𝑡

 and ψ𝑐,𝑙,𝑏,𝑡
𝑐𝑟𝑜𝑠𝑠𝑐𝑢𝑡 correspond to the developed distance of 

a drift d or a cross-cut c, for a sublevel l, in a mining zone configurations b, in period t. To take 

into account the available structures developed in previous years, effective development distance 

ψ𝑑,𝑙,𝑏,𝑡
𝑑𝑟𝑖𝑓𝑡∗

and  ψ𝑐,𝑙,𝑏,𝑡
𝑐𝑟𝑜𝑠𝑠𝑐𝑢𝑡∗ are used in practice, they correspond to cumulative horizontal 

development distances. The remaining decision variables presented in Table 2-6 refer to surplus 

deviations from haulage capacities for different haulage systems h (𝑑ℎ𝑡𝑠
ℎ𝑎𝑢𝑙) and processing 

capacity (𝑑𝑡𝑠
𝑝𝑟𝑜𝑐

), and deviations from lower and upper bounds for different elements ε ∈ E 

requirements, 𝑑εts
−

 and 𝑑εts
+

 respectively.  

2.3.1 Objective Function  

This section introduces the objective function of the proposed SIP and describes its main 

components as follows. 

max
1

|𝑆|
∑∑∑ ∑ ∑ 𝑓

𝑡
𝐸𝐷𝑅𝑣𝑗,𝑏,𝑎,𝑠 𝑦𝑗,𝑏,𝑎,𝑡

j ∈ 𝐽𝑏a ∈ 𝐴𝑏𝑏 ∈ B𝑡 ∈ Ts ∈ S⏟                          
𝑷𝒂𝒓𝒕 𝑰:𝐷𝑖𝑠𝑐𝑜𝑢𝑛𝑡𝑒𝑑 𝑅𝑒𝑣𝑒𝑛𝑢𝑒 𝑓𝑟𝑜𝑚 𝑆𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑑 𝑆𝑡𝑜𝑝𝑒𝑠

 

−
1

|𝑆|
∑∑ 𝑓

𝑡
𝐸𝐷𝑅(∑ ∑ ∑ ∑ ∑  𝑦𝑗,𝑏,𝑎,𝑡 𝑤𝑗,𝑏,𝑠 𝛿ℎ,𝑏,𝑙𝐶ℎ,𝑏

ℎ𝑎𝑢𝑙

𝑗 ∈ 𝐽𝑏𝑙a ∈ 𝐴𝑏𝑙∈𝐿𝑏𝑏 ∈ 𝐵ℎℎ∈𝐻

)

𝑡 ∈ 𝑇s ∈ S⏟                                          
𝑷𝒂𝒓𝒕 𝑰𝑰:𝐻𝑎𝑢𝑙𝑎𝑔𝑒 𝐶𝑜𝑠𝑡𝑠

 

−∑∑∑ 𝑓
𝑡
𝐸𝐷𝑅 𝐶𝑙

 ℎ𝑜𝑟

𝑙∈𝐿𝑏𝑏 ∈ Bt ∈ T

(∑ ψ𝑑,𝑙,𝑏,𝑡
𝑑𝑟𝑖𝑓𝑡∗

d ∈ 𝐷𝑙

+ ∑ ψ𝑐,𝑙,𝑏,𝑡
𝑐𝑟𝑜𝑠𝑠𝑐𝑢𝑡∗

c ∈ 𝐶𝑙

)

⏟                                  
𝑷𝒂𝒓𝒕 𝑰𝑰𝑰∶𝐷𝑒𝑣𝑒𝑙𝑜𝑝𝑚𝑒𝑛𝑡 𝐶𝑜𝑠𝑡𝑠 

 

− ∑ ∑ 𝑓
𝑡
𝐸𝐷𝑅𝐹𝑏 𝑧𝑏,𝑎

a ∈ 𝐴𝑏𝑏 ∈ B ⏟            
𝑷𝒂𝒓𝒕 𝑰𝑽:𝐹𝑖𝑥𝑒𝑑 𝐶𝑜𝑠𝑡
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−
1

|𝑆|
∑∑𝑓𝑡

𝐺𝑅𝐷 (𝑐ℎ
ℎ𝑎𝑢𝑙𝑑ℎ,𝑡,𝑠

ℎ𝑎𝑢𝑙 + 𝑐𝑝𝑟𝑜𝑐𝑑𝑡,𝑠
𝑝𝑟𝑜𝑐 +∑ 𝑐𝜀

+ 𝑑ε,t,s
+
+ 𝑐𝜀

−𝑑ε,t,s
−

𝜀∈𝐸

)

t ∈ Ts ∈ S⏟                                            
𝑷𝒂𝒓𝒕 𝑽:𝐺𝑒𝑜𝑙𝑜𝑔𝑖𝑐𝑎𝑙 𝑅𝑖𝑠𝑘 𝑀𝑎𝑛𝑎𝑔𝑒𝑚𝑒𝑛𝑡

 (2.2)
 

The objective function shown in Eq.2.2 has five parts. Part I aims to maximize the discounted 

revenue from scheduled stopes. Part II of the objective function minimizes the haulage cost of 

mined stopes. When a mining zone configuration is associated with a ramp system, the haulage 

cost 𝐶ℎ𝑏
ℎ𝑎𝑢𝑙 is expressed in $/(t*km). Thus, the length 𝛿ℎ,𝑏,𝑙 of the ramp until a sublevel l must be 

taken into consideration, while for the shaft these values will always equal one. Part III of Eq.2.2 

minimizes the horizontal development costs. Part IV minimizes particularly fixed costs 

associated with different mining zone configurations and patterns of extraction. Part V manages 

the geological risk, by minimizing deviations from production targets, related to mining and 

processing capacities and grade blending requirements. For that purpose, penalty costs 𝑐ℎ
ℎ𝑎𝑢𝑙 ,  

𝑐𝑝𝑟𝑜𝑐, 𝑐𝜀
+ and 𝑐𝜀

− are applied correspondently to the production requirements and targets, as they 

are discounted by a geological risk discounting factor 𝑓𝑡
𝐺𝑅𝐷. Therefore, riskier stopes will be 

scheduled in later periods when more information regarding grades and material quality is 

available (2013, 2004). 

2.3.2 Constraints 

The objective function is subjected to the following constraints.  

∑ ∑ 𝑧𝑏,𝑎
a ∈ 𝐴𝑏

 

𝑏∈𝐵

≤ 1 (2.3) 

Eq. 2.3 imposes that a single mining zone configuration with a correspondent stope option is 

selected.  

∑  𝑦𝑗𝑏𝑎𝑡
𝑡 ∈ T

≤  𝑧𝑏𝑎, ∀ 𝑏 ∈ 𝐵, 𝑎 ∈  𝐴𝑏 , 𝑗 ∈  𝐽𝑏𝑎 (2.4) 

Liking constraints (Eq. 2.4) ensure that a scheduled stope belongs to the chosen mining zone 

configuration.  

∑𝑦𝑗𝑏𝑎𝑡
𝑡∈𝑇

≤ 1, ∀𝑏 ∈ 𝐵, 𝑎 ∈  𝐴𝑏 , 𝑗 ∈ 𝐽𝑏𝑎 (2.5) 

Eq.2.5 defines reserve constraints, where the stope can be mined only once. 
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|𝛷𝑗𝑎| 𝑦𝑗𝑏𝑎𝑡 ≤ |𝛷𝑗𝑎| − ∑ ∑ ∑ 𝑦𝜑𝑏𝑎,𝑡′

|𝑇|

𝑡′=𝑡+1𝜑 ∈ 𝛷𝑗𝑎𝑎 ∈ 𝐴𝑏

, ∀ 𝑗 ∈ 𝐽𝑏 , 𝑏 ∈ 𝐵, 𝑡 ∈ 𝑇 (2.6) 

Eq. 2.6 ensures that adjacency constraints are met. The sublevel open stope mining method 

allows that stopes can be mine if their predecessor are mined before or are left unmined. 

Differently from open-pit mine scheduling problems, the set of predecessors 𝛷𝑗,𝑎 of a stope j 

must contain all direct and indirect predecessors. Thus, due to this constraint, the complexity of 

the model is highly impacted by the size of the orebody.  

ψ
𝑑𝑙𝑏𝑡

𝑑𝑟𝑖𝑓𝑡
≥  max

𝑗∈𝐽𝑏𝑑𝑙

(δ𝑗𝑑𝑙𝑏
𝑑𝑟𝑖𝑓𝑡

∑ 𝑦
𝑗𝑏𝑎𝑡

𝑎∈𝐴

)  , ∀𝑏 ∈ 𝐵, 𝑙 ∈ 𝐿𝑏, 𝑑 ∈ 𝐷𝑙, 𝑡 ∈ 𝑇 (2.7) 

ψ𝑑𝑙𝑏1
𝑑𝑟𝑖𝑓𝑡∗

= ψ𝑑𝑙𝑏1
𝑑𝑟𝑖𝑓𝑡

, ∀𝑏 ∈ 𝐵, 𝑙 ∈ 𝐿𝑏 , 𝑑 ∈ 𝐷𝑙 , 𝑡 = 1 (2.8) 

ψ𝑑𝑙𝑏𝑡
𝑑𝑟𝑖𝑓𝑡∗

≥ {[ψ𝑑𝑙𝑏𝑡
𝑑𝑟𝑖𝑓𝑡

− ∑ ψ𝑑𝑙𝑏𝑡′
𝑑𝑟𝑖𝑓𝑡∗

𝑡−1

𝑡′=1

]} , ∀𝑏 ∈ 𝐵, 𝑙 ∈ 𝐿𝑏 , 𝑑 ∈ 𝐷𝑙 , 𝑡 > 1  (2.9) 

Eq. 2.7 to 2.9 show how the drift development costs are calculated. As shown in Figure 2-7 the 

drift development distance ψ
𝑑,𝑙,𝑏,𝑡

𝑑𝑟𝑖𝑓𝑡
 corresponds to the distance from the furthest stope mined in a 

year t to the access point in the sublevel l. This value is used to calculate the effective 

development distance ψ
𝑑,𝑙,𝑏,𝑡

𝑑𝑟𝑖𝑓𝑡∗
, that considers only the remaining length to be developed in a given 

period t considering the developments done in the previous years.  

ψ𝑐𝑙𝑏𝑡
𝑐𝑟𝑜𝑠𝑠𝑐𝑢𝑡 ≥ max

𝑗∈𝐽𝑏𝑐𝑙
(δ𝑗𝑐𝑙𝑏

𝑐𝑟𝑜𝑠𝑠𝑐𝑢𝑡∑𝑦𝑗𝑏𝑎𝑡
𝑎∈𝐴

) , ∀    𝑏 ∈ 𝐵, 𝑙 ∈ 𝐿𝑏 , 𝑐 ∈ 𝐶𝑙, 𝑡 ∈ 𝑇 (2.10) 

ψ𝑐𝑙𝑏1
𝑐𝑟𝑜𝑠𝑠𝑐𝑢𝑡∗ = ψ𝑐𝑙𝑏1

𝑐𝑟𝑜𝑠𝑠𝑐𝑢𝑡, ∀𝑏 ∈ 𝐵, 𝑙 ∈ 𝐿𝑏 , 𝑐 ∈ 𝐶𝑙, 𝑡 = 1 (2.11) 

ψ𝑐𝑙𝑏𝑡
𝑐𝑟𝑜𝑠𝑠𝑐𝑢𝑡∗ ≥ {[ψ𝑐𝑙𝑏𝑡

𝑐𝑟𝑜𝑠𝑠𝑐𝑢𝑡 − ∑ ψ𝑐𝑙𝑏𝑡′
𝑐𝑟𝑜𝑠𝑠𝑐𝑢𝑡∗

𝑡−1

𝑡′=1

]} , ∀𝑏 ∈ 𝐵, 𝑙 ∈ 𝐿𝑏 , 𝑐 ∈ 𝐶𝑙, 𝑡 > 1 (2.12) 

Eq. 2.10 to 2.11 show how the crosscut development distances are calculated. The same method 

is used for the crosscuts when compared to the drifts. However, by considering a mining 

direction that should be strictly followed, the process of deferring the crosscut development costs 

will also define how far from the access is worth mining.  
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Figure 2-7 – Example of drift development costs ψ
𝑑,𝑙,𝑏,𝑡

𝑑𝑟𝑖𝑓𝑡
 and effective development costs ψ𝑑,𝑙,𝑏,𝑡

𝑑𝑟𝑖𝑓𝑡∗
for the 

extraction of three stopes in three periods. 

∑ ∑ ∑  (𝑦𝑗𝑏𝑎𝑡  𝑤𝑗𝑏𝑎𝑠)

𝑗∈𝐽𝑏𝑎𝑎 ∈ 𝐴𝑏

−

𝑏∈𝐵ℎ

𝑑𝑡𝑠
ℎ ≤ 𝑈𝑡

ℎ, ∀ℎ ∈ 𝐻, 𝑡 ∈ 𝑇, 𝑠 ∈ 𝑆 (2.13)  

∑ ∑ ∑  (𝑦𝑗𝑏𝑎𝑡 𝑤𝑗𝑏𝑎𝑠)

𝑗∈𝐽𝑏𝑎𝑎 ∈ 𝐴𝑏

− 𝑑𝑡𝑠
𝑝

𝑏∈𝐵

≤ 𝑈𝑡
𝑝
, ∀ 𝑡 ∈ 𝑇, 𝑠 ∈ 𝑆 (2.14) 

Eq. 2.13 defines an upper bound for the extracted material considering the hoisting or haulage 

capacity of the haulage system associated to the mining zone configuration. Also, a constraint 

that limits the production of ore mined is considered (Eq. 2.14). These two constraints are 

modelled as soft constraints by allowing deviations from the defined boundaries considering a 

general case where block tonnages, consequently, stope tonnages, are variable for different 

geological scenarios 𝑠 ∈ 𝑆.  

∑ ∑ ∑ ( 𝑦
𝑗,𝑏,𝑎,𝑡

 𝜌
𝑗𝑏𝑎
𝜈𝑗𝑏𝑎)

𝑗∈𝐽𝑏𝑎

 
𝑎 ∈ 𝐴𝑏

 
𝑏∈𝐵

≤ 𝑈𝑘𝑡
𝑏𝑓
, ∀𝑘 ∈ 𝐾, 𝑡 ∈ 𝑇  (2.15) 

Backfilling capacity constraints (Eq. 2.15) are considered in a way that different upper bounds 

𝑈𝑘𝑡
𝑏𝑓

 can be chosen for different types of backfilling 𝑘 ∈ 𝐾. In this case, deviations are not 

allowed since no uncertainty is associated with the stope volume 𝜈𝑗𝑏. 

∑(∑ ∑ ψ
𝑑,𝑙,𝑏,𝑡
𝑑𝑟𝑖𝑓𝑡∗ +

𝑑∈𝐷𝑙𝑙∈𝐿𝑏

∑∑ ψ
𝑐,𝑙,𝑏,𝑡
𝑐𝑟𝑜𝑠𝑠𝑐𝑢𝑡∗

𝐶∈𝐶𝑙𝑙∈𝐿𝑏

)

𝑏∈𝐵

≤ 𝑈𝑡
𝑑𝑒𝑣𝑒𝑙𝑜𝑝

, ∀ 𝑡 ∈ 𝑇 (2.16) 
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Horizontal development capacities are added in terms of the maximum length of the total drifts 

and crosscuts (Eq.2.16).  

∑ ∑ ∑  (𝑦𝑗𝑏𝑎𝑡 𝑤𝑗𝑏𝑠𝑎)

𝑗∈𝐽𝑏

(𝑔𝑗𝑏𝑎𝜀𝑠 − 𝑈𝜀𝑡)

𝑎 ∈ 𝐴𝑏

− 𝑑εts
+

𝑏∈𝐵

≤ 0, ∀𝜀 ∈ 𝐸, 𝑡 ∈ 𝑇, 𝑠 ∈ 𝑆 (2.17) 

∑ ∑ ∑  (𝑦𝑗𝑏𝑎𝑡  𝑤𝑗𝑏𝑠𝑎)

𝑗∈𝐽𝑏

(𝑔𝑗𝑏𝑎𝜀𝑠 − 𝐿𝜀𝑡)

𝑎 ∈ 𝐴𝑏

+ 𝑑εts
−

𝑏∈𝐵

≥ 0, ∀𝜀 ∈ 𝐸, 𝑡 ∈ 𝑇, 𝑠 ∈ 𝑆 (2.18) 

In order to guarantee that grade requirements for different elements 𝜀 ∈ 𝐸 are achieved, grade 

blending constraints are added to the formulation (Eq. 2.17 and 2.18). These constraints allow 

deviations 𝑑εts
+

and 𝑑εts
−

 from upper and lower bounds respectively for each scenario𝑠 ∈ 𝑆. 

𝑦𝑗𝑏𝑎𝑡 ∈ {0,1}, ∀ 𝑏 ∈ 𝐵, 𝑎 ∈  𝐴𝑏, 𝑗 ∈ 𝐽𝑏𝑎, 𝑡 ∈ 𝑇   (2.19) 

𝑧𝑏𝑎 ∈ {0,1}, ∀ 𝑏 ∈ 𝐵, 𝑎 ∈  𝐴𝑏 (2.20) 

ψ𝑑𝑙𝑏𝑡
𝑑𝑟𝑖𝑓𝑡

, ψ𝑑𝑙𝑏𝑡
𝑑𝑟𝑖𝑓𝑡∗

≥ 0   , ∀ 𝑏 ∈ 𝐵, 𝑙 ∈ 𝐿𝑏 , 𝑑 ∈ 𝐷𝑙 , 𝑡 ∈ 𝑇 (2.21) 

ψ𝑐𝑙𝑏𝑡
𝑐𝑟𝑜𝑠𝑠𝑐𝑢𝑡, ψ𝑐𝑙𝑏𝑡

𝑐𝑟𝑜𝑠𝑠𝑐𝑢𝑡∗ ≥ 0  , ∀  𝑐 ∈ 𝐶𝑙  𝑏 ∈ 𝐵, 𝑙 ∈ 𝐿𝑏 , 𝑐 ∈ 𝐶𝑙, 𝑡 ∈ 𝑇 (2.22) 

𝑑ℎ𝑡𝑠
ℎ𝑎𝑢𝑙 ≥ 0   , ∀ ℎ ∈ 𝐻, 𝑡 ∈ 𝑇, 𝑠 ∈ 𝑆  (2.23) 

𝑑𝑡𝑠
𝑝𝑟𝑜𝑐 ≥ 0   , ∀ 𝑡 ∈ 𝑇, 𝑠 ∈ 𝑆 (2.24) 

𝑑εts
+, 𝑑εts

− ≥ 0  , ∀𝜀 ∈ 𝐸, 𝑡 ∈ 𝑇 , ∈ 𝑆 (2.25) 

Eq. 2.19 to Eq. 2.25 refer to integrality and non-negativity constraints.  

2.4 Case Study – Application at an Operating Underground Copper Mine 

In this section, an application of the proposed method at an operating underground copper mine 

is presented, where gold and uranium are secondary elements. First, the results for the underlined 

integrated stochastic framework are analyzed. Then, these results are compared to a stochastic 

sequential framework in which a stope design is given as an input to the method, fixing the 

available stopes to be scheduled, as well as its types. 

As the main input, 10 geostatistical simulations of Cu, Au, and U3O8 in a grid of size 5mx 5m x 

5m, for a mining zone of the considered mineral deposit are used. Previous studies show through 

a sensitivity analysis of the in the stochastic optimization of long-term mine planning, that 10-15 

simulations are sufficient to produce stable results. This conclusion is attributed to the support-



 

 

 

 

72  

scale effect, once a large number of blocks are grouped to generate the schedule of a given 

production period (Albor Consuegra and Dimitrakopoulos 2009; Dimitrakopoulos and Lamghari 

2022; Montiel and Dimitrakopoulos 2017). Figure 2-8 shows two realizations for copper, gold, 

and uranium grades. Mine accesses (i.e. ramp and decline) and ventilation systems are also fixed 

inputs. Figure 2-9 shows the available infrastructure in the mine and the defined mining 

direction. In addition, geometrical parameters for the shapes of the stopes were provided by the 

mining company operating the mine. The maximum and minimum dimensions of stopes are 

considered given geotechnical and drilling equipment requirements. Two possible mining zone 

configurations associated with these allowable shapes are considered (Table 2-7). These 

configurations account for the position of the access point at each sublevel according to the 

available ramp design. Three option types are used as an input, meaning that all stopes will have 

the possibility of being primary, secondary, or tertiary. 

For this case study the stopes are considered to be blasted and extracted bottom-up, with the 

pattern of extraction represented in Figure 2-5, and are subsequently backfilled with cemented 

aggregate fill (CAF), which is not considered a limiting feature in mine production. Thus, the 

same mining cost is used for all stope types. A horizontal development capacity is considered in 

terms of the maximum length that can be developed. A single haulage system is available with 

its maximum capacity constraining ore production. Once the sources of uncertainty considered 

do not directly affect the ore tonnage production, the mining capacity constraints are modeled as 

hard constraints. On the other hand, uncertainty in terms of copper, gold, and uranium grades is 

taken into consideration, thus, penalty costs for deviations from the minimum and maximum 

grades for these three elements' requirements are applied and are discounted throughout the years 

in order to manage the geologic risk. Table 2-8 displays the technical and economic parameters 

used in the optimization of the copper mine. It is worth noting that a fixed unit mining cost of 50 

$/t is considered. This cost incorporates drilling, blasting, mucking and other fixed yearly costs 

such as ventilation costs and backfilling that were scaled in terms of the yearly production rate. 
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Figure 2-8 – Realizations of (a) copper, (b) gold, and (c) uranium grades in a grid of 5m x 5m x 5m. 

(a) 

(b)

) 

(c)
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Figure 2-9 - Plan view of the developed infrastructure. 

 

Table 2-7 – Stope geometrical parameters 

Parameter Value/Description 

Minimum dimensions 10m x 30m x 30m 

Maximum dimensions 30m x 30m x 150m 

Configuration 1 15m x 30m x 40m (3,240 potential stopes) 

Configuration 2 30m x 30m x 80m (810 potential stopes) 

 

Table 2-8 – Technical and economic parameters used as input in the optimization 

Parameter Value 

Cu price ($/t)  8,500 

Au price ($/ozt) 1,200 

U3O8 price ($/t) 71,904 

Economic discount rate  10% 

Geologic discount rate  10% 

Processing recovery Cu (%)  94% 

Processing recovery Au (%)  70% 

Processing recovery U3O8 (%)  70% 

Mining cost ($/t)  50 

Processing cost ($/t)  13.5 

Haulage cost ($/t*km) 5 

Drifts development cost ($/m)  12,000 

Density (t/m3)  3.2 

Block tonnage (t)  400 

Mining capacity (Mt/y)  3 

Drift development capacity (m/y)  5,000 

Minimum copper mill head grade (%)  1.8 
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Parameter Value 

Minimum gold mill head grade (g/t) 1.0 

Maximum gold mill head grade (g/t) 2.0 

Minimum uranium mill head grade (g/t) 420 

Maximum uranium mill head grade (g/t) 600 

Penalty cost for deviations below minimum 

Cu mill head grade ($/unit) 

100 

Penalty cost for deviations below minimum 

and above maximum Au mill head grade 

($/unit) 

100 

Penalty cost for deviations below minimum 

and above maximum U3O8 mill head grade 

($/unit) 

10 

 

2.4.1 Results of the Integrated Stochastic Optimization  

The outputs of the proposed integrated stochastic approach are presented next. Figure 2-10 

shows the optimal stope shapes, types, and sequence of extraction throughout a 12-year life-of-

mine. The selection of the mining zone configuration represents the trade-off between selecting 

grades and development costs. The optimal configuration 2 (Table 2-7) guarantees a lower 

development cost, while deviations from grade production targets are well managed. The green 

curves in Figure 2-11 and Figure 2-12 show the risk profiles of the integrated stochastic stope 

design and schedule in terms 10%, 50%, and 90% probabilities (i.e. P10, P50 and P90). An NPV 

of 3.53 B$ (Figure 2-11a) considering the P50 and a cumulative development cost of 157 M$ 

(Figure 2-11b) are observed. Also, the ore production follows the maximum mining capacity 

(Figure 2-11c) and the Cu, Au, and U3O8 grades have small deviations from the defined bounds 

and tend to decrease through the years showing the effect of geological risk management (Figure 

2-12). These results are compared to a stochastic sequential framework in the next subsection.  

The formulation was implemented in C++ on Visual Studio 15 and solved with CPLEX v.12.8.0. 

The present application is compounded by 117,684 binary decision variables and 2,172,580 

constraints. Using a standard personal computer with six cores and 32 GB RAM, the 

preprocessing and optimization steps took approximately 24 hours and were constrained by 

memory allocation limitations, with a 15% optimality gap. 



 

 

 

 

76  

 

Figure 2-10 – Integrated stochastic optimization outputs from left to right: the stope types option selected 

and the extraction sequence 

Figure 2-11  – Risk profiles of the integrated (green curves) and sequential (black curves) stochastic 

frameworks: a) NPV; b) cumulative horizontal development cost; c) ore tonnage. 

a) b)

) 

c)

) 
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Figure 2-12 – Risk profiles of the integrated (green curves) and sequential (black curves) stochastic 

frameworks: a) Cumulative Cu content; b) mill Cu head grade; c) cumulative Au content; d) mill Au head 

grade; e) cumulative U3O8 content; f) mill U3O8 grade. 

 

a) b) 

c) d) 

e) 
f) 
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2.4.2 Comparison between the Integrated and the Sequential Stochastic 

approaches 

To show the importance of jointly optimizing the stope design and extraction sequence, the 

proposed method is compared to the stochastic sequential approach. In this sequential approach, 

the preprocessing steps generate the possible mining zone configurations with the respective 

allowable stope shapes. From these configurations and possible stopes, a stope design that 

maximizes the undiscounted cashflow, regardless of adjacency constraints and the horizontal 

development costs, is first generated. The selected stope locations and shapes are used as the 

inputs to generate the extraction sequence using the SIP formulation presented in Section 2.3. 

The black curves in Figure 2-11and Figure 2-12 show the results of this sequential approach. The 

same technical, geometric, and economic parameters presented in Table 2-7 and Table 2-8 are 

used. It is seen in Figure 2-11a, that the NPV of the integrated approach is 3.54 B$ while in the 

sequential approach it is 3.35 B$, considering the P50 in both cases. Therefore, the integrated 

approach is expected to produce a NPV 190 M$ higher than the sequential approach. Although 

less stopes are mined when the sequential approach is used, the development cost for the 

sequential approach is almost three times higher than that in the integrated approach (Figure 

2-11b).  Therefore, many stopes that have a positive impact economic value when the cumulative 

development costs are not considered become uneconomical and inaccessible when this 

information is actually taken into account. Figure 2-13 shows the comparison of the extraction 

sequence of the integrated and sequential approaches. In Figure 2-13b, the black wireframe 

shows the initial stope design generated with step-wise approach, that is noted to be physically 

different to the one produced by the integrated approach. In addition, it is seen that several  

stopes included in the initial design in Figure 2-13b are not included in the schedule, showing 

that, in fact, the effective development costs are critical in the economic value of stopes. It can be 

also noted that the stopes chosen in the sequential approach are smaller (i.e. configuration 1 in 

Table 2-7), generating more selectivity in terms of grades, but producing comparable metal 

contents for the three elements, Cu, Au, and U3O8 and meeting grade blending requirements (Figure 

2-12). The integrated approach, however, shows a higher metal production in early periods, 

which has a greater positive impact on the NPV, due to the time value of money.  
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Figure 2-13 - Comparison of the extraction sequence of the a) integrated approach and b) sequential 

approach (the wireframe corresponds to the stopes selected in the stope design). 

2.5 Conclusions 

A new mathematical programming formulation for the integrated stochastic optimization of 

stope design and long-term mine production scheduling is presented, along with its application at 

an operating underground copper mine. The method is developed based on the sublevel longhole 

open stoping (SLOS) with backfilling underground mining method and overcome the limitations 

of previously proposed approaches that are tailored to specificities of other mining methods. The 

SLOS variation considered in the present study follows the assumptions and parameters derived 

from an existing operational mine. The proposed method generates jointly the stope boundaries 

and the extraction sequence assuming that all stopes follow the same geometrical parameters. In 

addition, a pattern of extraction and a mining direction define adjacencies among stopes and a 

mining cycle can be completed in one year, which defines the period of extraction. 

The proposed two-stage stochastic integer programming (SIP) maximizes the NPV, as well as 

considers metal prices for different elements, mining costs for different types of stopes, 

horizontal development costs and haulage costs for the different systems available, while also 

minimizing the risk of not meeting production targets. The output of the optimization is an 

operational selection of mining zone configuration that defines the stope shapes and respective 

types, as well as the extraction sequence of stopes that respects the optimal adjacencies and 

defined mining direction, generating a risk resilient production schedule.  

a) b) 
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The proposed method is applied to an underground mine that has copper as the main element, as 

well as gold and uranium as the secondary elements. The mining zone studied has an available 

ramp and a ventilation system that defines a mining direction. It follows a pattern of extraction of 

primary, secondary, and tertiary stopes that defines the adjacencies. The integrated framework is 

compared to a sequential stochastic framework, in which a design that defines the mining zone 

configuration and stopes that maximize the undiscounted cashflow is used as a fixed input to the 

proposed SIP. Firstly, it is seen that physically different stope designs and, consequently, 

different extraction sequences are produced for these two different frameworks. Furthermore, the 

integrated approach shows an NPV that is 6% higher than the step-wise approach. The horizontal 

development costs of the sequential approach are shown to be clearly higher than in the 

integrated approach. This difference can be attributed mainly to the fact that the actual 

development costs cannot be considered when generating the initial stope design, which, thereby, 

limits the decisions in the extraction sequence for the stepwise framework.  Therefore, the 

importance of having an integrated method that is capable of exploiting the relationships 

between the optimization components is validated. 

A case study that accounts for multiple sources of uncertainty simultaneously is a topic for future 

research, once the presented SIP can directly accommodate commodity price uncertainty. The 

application and the several aspects of the method are built based on the assumption of a large 

underground mine divided into mining zones. In the presented case study, only one mining zone 

schedule was optimized due to the complexity associated with the orebody size and 

computational limitations. Considering that multiple mining zones can be mined simultaneously 

and can contribute to the production of ore that feeds the processing plant, an application that 

optimizes multiple mining zones simultaneously could be considered. In addition, the 

simultaneous optimization for a mining complex that assumes the existence of multiple mines, 

stockpiles, and processing streams, with critical considerations in terms of vertical development 

costs is an extension for future work. Furthermore, computational efficiency limitations are seen 

when a commercial solver is used, which restricts the model’s application to larger problems. 

Thus, a metaheuristic solver should be implemented in future developments.  
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3. Chapter 3 - Integrated Stochastic Underground Mine Planning 

with Long-term Stockpiling: Method and Impacts of Using High-

order Sequential Simulations 

3.1 Introduction 

Sublevel longhole open stoping (SLOS) is an underground mining method in which the orebody 

is divided into vertically oriented open stopes that are self-supported by rock pillars and are 

posteriorly backfilled. Horizontal extraction levels define the vertical boundaries of the stopes, 

and sublevel drifts and crosscuts are developed to enable longhole drilling (Hamrin 2001; 

Hartman and Mutmansky 2002; Pakalnis and Hughes 2011). The long-term mine planning 

process for this mining method relies on three main components. The stope layout defines the 

spatial design of mineable volumes according to geomechanical and geological properties 

(Alford 1995; Alford and Hall 2009; Alford Mining Systems 2022; Cawrse 2001). A network 

design of ramps, shafts, raises, wises, and other developments is done in order to define accesses 

and ventilation systems (Brazil et al. 2008; Brazil et al. 2003; Brazil and Thomas 2007). The last 

component defines the production schedule of stopes by maximizing the net present value (NPV) 

of the related life-of-mine (LOM) (Brickey 2015; Fava et al. 8-10 June 2011; Fava et al. 2013; 

Hauta et al. 2017; Little et al. 2011; Newman et al. 2010; Topal 2003; Trout 1995). Little et al. 

(2011) show that these three components should be optimized simultaneously, so that the 

interdependencies among stope grades, development costs, and the time value of money are 

captured in the mine planning optimization. In addition, geological uncertainty in grades and 

material types is known as a critical source of risk for mining projects and its management is 

essential for meeting production targets and generating realistic forecasts (Dimitrakopoulos 

2011; Dimitrakopoulos et al. 2002; Dowd 1994; Grieco and Dimitrakopoulos 2007; Ravenscroft 

1992).  

A mixed integer programming (MIP) model that integrates underground mine design and 

production scheduling was first proposed by Little et al. (2011, 2013)Little et al. (2013); Little et 

al. (2011). The MIP maximizes the discounted cash flow of the mined stopes and considers the 
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stope size and location, while under the constraints of the ore production and backfilling 

capacities. Therefore, the stope boundaries are an outcome of the production schedule. However, 

the costs associated with the development of access are not covered in this approach. Copland 

and Nehring (2016) incorporate level access development decisions in an integer program (IP) 

that maximizes the discounted revenue from mined stopes while minimizing the level`s 

development costs. Foroughi et al. (2019) optimize the underground mine production scheduling 

and stope layout through an IP that aims to jointly maximize two weighted objectives, the NPV 

and the overall metal recovery. Hou et al. (2019) integrate the mathematical formulation into the 

development of longitudinal drives and shaft level segments as unitary decisions linked to the 

stope`s extraction decisions. Although an analysis of the forecasts given different simulations of 

the orebody is done, the risk associated to the geological uncertainty is not managed or assessed 

through this approach. Furtado e Faria et al. (2022a) propose an integrated stochastic framework 

for the stope design and long-term mine production scheduling, tailored for the sublevel open 

stopping (SLOS) mining method. The authors develop a two-stage stochastic integer 

programming (SIP) (Birge and Louveaux 2011) formulation that jointly optimizes the stope 

design and production scheduling, while considering the cumulative development costs and 

managing the geological risk. Carelos Andrade et al. (2024) also explores the integrated 

stochastic approach to the SLOS mining method variant that uses backfilling practices and 

adjacency patterns of primary, secondary and tertiary stopes (Villaescusa 2014). This 

optimization framework aims to maximize the NPV while managing the geological risk, by 

minimizing deviations from production targets, which are related to mining and processing 

capacities, as well as the grade blending requirements. An application at an operating copper 

mine with secondary elements shows significant improvement in terms of the NPV when 

compared to a stochastic sequential framework (Carelos Andrade et al. 2024). Nonetheless, an 

important aspect that has not been addressed in these models is the presence of stockpiles, that 

are typically used in mining operations. It has been shown that, for long-term open pit mine 

planning and production scheduling, the consideration of all components of a mining complex in 

the optimization process leads to more realistic assumptions and forecasts (Dimitrakopoulos 

2018; Dimitrakopoulos and Lamghari 2022; Goodfellow and Dimitrakopoulos 2016, 2017; 

Montiel and Dimitrakopoulos 2015).  
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In order to assess and manage the spatial uncertainty and variability of grades and material types, 

a set of geostatistical simulations of the orebody is used as the main input to the optimization of 

the stope design and production scheduling (Carpentier et al. 2016; Dimitrakopoulos and Grieco 

2009; Dirkx et al. 2018; Furtado e Faria et al. 2022a, 2022b; Grieco and Dimitrakopoulos 2007; 

Hou et al. 2019; Villalba Matamoros and Kumral 2018). Geological attributes, such as metal 

grades and material types, can be modeled through geostatistical simulation methods that build 

upon the concept of spatial random fields (Chilès and Delfiner 1999; David 1988; Goovaerts 

1997; Journel and Huijbregts 1978; Mariethoz and Caers 2015; Rossi and Deutsch 2014). The 

sequential simulation paradigm allows for the assessment of an attribute at an unsampled 

location, by its conditioning value to sample data and previously simulated values, via Monte 

Carlo sampling of a probability distribution function (Goovaerts 1997). As an example, the 

sequential Gaussian simulation (SGS) (Goovaerts 1997; Journel 1994) can be mentioned as a 

simulation method that is conventionally employed. The SGS method, however, does not 

reproduce the connectivity of high grades given that a Gaussian random function model has the 

character of maximum entropy (Journel and Deutsch 1993). In addition, this traditional method 

relies on two-point spatial statistics. Although second-order statistics can fully characterize 

Gaussian random functions, they do not describe complex geological patterns in the presence of 

non-Gaussianity and non-linearity (Dimitrakopoulos et al. 2010; Guardiano and Srivasta 1993; 

Journel 2005; Remy et al. 2009). 

Methods based on multiple-point statistics (MPS) are introduced to overcome the limitations of 

the aforementioned traditional simulation methods (Arpat and Caers 2007; Chatterjee et al. 2012; 

Guardiano and Srivasta 1993; Journel 2005; Mariethoz and Caers 2015; Mariethoz et al. 2010; 

Remy et al. 2009; Strebelle 2002; Zhang et al. 2006). These methods infer the conditional 

probability distribution function (cpdf) by extracting multiple point patterns from a training 

image (TI) or geological analogue, without making any assumptions about it. These MPS-based 

simulation approaches tend to reproduce the spatial statistics of the TI, while a consistent 

mathematical modeling approach should be driven by the sample data (Goodfellow et al. 2012; 

Osterholt and Dimitrakopoulos 2018; Yao et al. 2018). Dimitrakopoulos et al. (2010) introduce 

the use of high-order cumulants to explicitly infer high-order statistics from the spatial data. 

Thus, the high-order simulation (HOSIM) algorithm follows the sequential simulation 

framework and uses spatial cumulants to derive the cpdf from available data, generating 
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realizations that show the natural connectivity of high grades and reproduce complex geometries 

(de Carvalho et al. 2019; Dimitrakopoulos and Yao 2020; Minniakhmetov and Dimitrakopoulos 

2017b; Minniakhmetov et al. 2018; Mustapha and Dimitrakopoulos 2010b, 2011; Yao et al. 

2018).  

The impact of using different simulation algorithms to generate mineral deposit models used as 

inputs for stochastic mine planning in open pit mines has been studied by de Carvalho and 

Dimitrakopoulos (2019). The related work compares the long-term open-pit mine production 

schedules and forecasts when SGS and HOSIM (de Carvalho et al. 2019) are used to generate the 

simulated orebody models serving as inputs to a simultaneous stochastic optimization framework 

(Goodfellow and Dimitrakopoulos 2016, 2017; Montiel and Dimitrakopoulos 2017, 2015, 2018). 

The application shows that the long-term sequence of extraction of mining blocks favors the 

high-grade continuity areas when simulations generated using the HOSIM method are used. The 

comparison also shows different final pit limits. In addition, more gold is produced at the end of 

the life-of-mine (LOM), leading to a higher expected NPV, when the optimization uses 

simulations generated with the HOSIM method. Thus, it is of interest to investigate how a 

HOSIM approach impacts the stochastic stope design and mine production schedule, particularly 

given that underground mining methods make assumptions in terms of the ore selectivity and 

spatial configuration of mineable volumes. 

The current work presents the extension of the integrated stochastic optimization of stope design 

and mine production scheduling proposed by Carelos Andrade et al. (2024) adding long-term 

stockpiling decisions to the previously developed SIP and related material destination decisions 

to the previously proposed SIP formulation. In addition, the sensitivity of the proposed 

scheduling model to different methods used for the geostatistical simulations of the mineral 

deposit involved is investigated in a case study at an operating underground copper mine. The 

case study presents the practical aspects of the proposed mathematical programming model 

based on simulated realizations of the copper deposit generated using a high-order sequential 

simulation approach (Minniakhmetov et al. 2018). In addition, the extraction sequence and 

forecasts are compared to those obtained when the deposit realizations are generated using 

sequential Gaussian simulation.  The following section presents a description of the underground 

mine planning approach with the integration of a linear stockpile. A brief review of the 
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sequential simulation methods, as relevant to the present study, is presented. Subsequently, a 

case study at an operating copper mine is presented, followed by conclusions and suggested 

future work. 

3.2 Methodology 

The following subsection presents an extended stochastic integer programming (SIP) 

formulation, which incorporates long-term stockpiling decisions into the integrated stochastic 

optimization of stope design and mine production scheduling. The method builds upon the work 

on the optimization framework considering the sublevel longhole open stoping (SLOS) mining 

method with backfilling (Carelos Andrade et al. 2024). The two stochastic simulation approaches 

(Goovaerts 1997; Minniakhmetov et al. 2018) used in the case study to generate orebody models 

quantifying geological uncertainty, that are inputs to the optimization process are also 

summarized. 

3.2.1 Mathematical formulation of the stochastic long-term underground mine 

production scheduling with stockpiling  

An extended stochastic integer program (SIP) (Birge and Louveaux 2011) that incorporates long-

term stockpiling decisions into the integrated stochastic optimization of stope design and mine 

production scheduling is proposed herein. The proposed method follows the optimization 

framework presented by Carelos Andrade et al. (2024) for the sublevel longhole open stoping 

(SLOS) mining method with backfilling, as per an operating copper mine. Therefore, only the 

new aspects of this methodology are detail herein. The method aims to optimize jointly the 

extraction sequence of stopes 𝑗 ∈ 𝐽 and horizontal development costs of drifts 𝑑 ∈ 𝐷𝑙 and 

crosscuts 𝑐 ∈ 𝐶𝑙 that will lead to stope boundaries that respect the stopes’ geometric parameters. 

The approach assumes the optimization of a mining zone of a large orebody that defines a 

volume with unique geotechnical requirements. A set of geostatistical simulations 𝑠 ∈ 𝑆 of the 

orebody describes the geological uncertainty. Initially, the orebody is represented in terms of 

blocks 𝑖 ∈ 𝐼 that are, subsequently, grouped into stopes 𝑗 ∈ 𝐽.   

Three data processing steps are needed to generate the inputs necessary to the proposed two-

stage SIP as shown in Figure 3-1. The first preprocessing step generates different mining zone 

configurations 𝑏 ∈ 𝐵 by dividing the mining zone into different mining fronts and sublevels 𝑙 ∈
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𝐿 according allowable stope and sublevel dimensions. Crosscuts c are developed within each 

mining front, parallel to a defined mining direction. Drifts d are developed perpendicularly to the 

cross-cuts. The approximated dimensions of crosscuts δ𝑗𝑐𝑙𝑏
𝐶  and drifts δ𝑗𝑑𝑙𝑏

𝐷 , as well as  the length 

𝛿ℎl𝑏
𝑉   from the surface to the access point of a haulage system h and its respective mining zone 

configurations 𝑏 ∈ 𝐵ℎ, for each sublevel 𝑙 ∈ 𝐿𝑏. In the second preprocessing step, shown in 

Figure 3-1, for each configuration b, stope type options 𝑎 ∈ 𝐴𝑏  are generated. Each stope type 

option 𝑎 defines a possible ordering of primary, secondary, and tertiary stope types  𝑘 ∈ 𝐾  , as 

exemplified Figure 3-2. Each stope is identified by an indicator parameter 𝜋𝑘𝑗𝑏𝑎, according to its 

type. Therefore, the set of predecessors 𝜑 ∈  𝛷𝑗𝑎 of a stope 𝑗 ∈  𝐽
𝑗,𝑎

 can be defined following 

geotechnical constraints. Along these steps, the stopes are assumed to fully occupy the space 

between the sublevels. To manage dilution, in the third step, the profitability of having stopes 

with heights γz that are smaller than the distance between sublevels and greater than the 

minimum stope height is evaluated. Thus, for a given mining zone configuration b, a stope type 

option a, a stope j and elements 𝜀 ∈ 𝐸, the economic value of each stope 𝑣𝑗𝑏𝑎𝑠(γ
z) is calculated, 

as shown in Eq. 3.1, for all its possible vertical dimensions γz and for each simulated orebody 

scenario s. A probability of non-exceedance threshold (e.g., P50) is predefined and only the 

economic value that corresponds to that threshold (e. g. , 𝑣𝑗𝑏𝑎
P50(γz)) is analyzed. The final stope 

heights are those that maximize the probabilistic economic value of a stope (𝑣𝑗,𝑏,𝑎
𝒫 (γz)), as in Eq. 

3.2, as follows 

𝑣𝑗𝑏𝑎𝑠(γ
z) = 𝑤𝑗𝑏𝑎𝑠(γ

z)(∑𝑔𝑗𝑏𝜀𝑠(γ
z)𝑅𝜀𝑃𝜀

𝜀∈𝐸

− (𝐶𝑃 +∑𝜋𝑘𝑗𝑏𝑎𝐶𝑘
 𝑀  

𝑘∈𝐾

)) ,

∀ 𝑗 ∈ 𝐽𝑏 , 𝑏 ∈ 𝐵, 𝑎 ∈ 𝐴, 𝑠 ∈ 𝑆 (3.1)

 

 

argmax
γz

𝑣𝑗𝑏𝑎
𝑃 (γz)
 

, ∀ 𝑗 ∈ 𝐽𝑏 , 𝑏 ∈ 𝐵, 𝑎 ∈ 𝐴 (3.2)  

where 𝑤𝑗𝑏𝑠(γ
z) and 𝑔𝑗𝑏𝜀𝑠(γ

z) are respectively the tonnage and grade of element 𝜀 within stope j 

in mining zone b, in scenario 𝑠, as function of the stope height γz, 𝑅𝜀 is the metal recovery of 

element 𝜀 and 𝑃𝜀 is the related metal price, 𝐶𝑃  is the unitary processing cost and 𝐶𝑘
 𝑀 is the 
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unitary mining cost for each stope type. The function argmax, in Eq. 3.2, returns the value of a 

stope height (𝛾𝑧) that maximizes the probabilistic economic value of a stope (𝑣𝑗𝑏𝑎
𝑃 (𝛾𝑧)). 

 

Figure 3-1 - Steps of the stope design and scheduling optimization (Source: Carelos Andrade et al. 2024). 

 

 

Figure 3-2 - Stope type option for different mining zone configurations (Source: Carelos Andrade et al. 

2024). 

 

Finally, the information generated in the three steps described above are used as input to the 

proposed extended two-stage SIP, that defines the fourth step of the presented method. The new 

SIP addresses the stope design and long-term production scheduling with the complement of 

stockpiling decisions. The related decisions variables, objective function and main constraints 

are described next. The mining zone configuration decision variables 𝑧𝑏𝑎 ∈ {0,1} control which 

mining zone configuration 𝑏 ∈  𝐵 and respective stope type option is selected 𝑎 ∈ 𝐴𝑏. These 
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decision variables directly impact the selections of stope shapes and types. A mining zone is 

associated with one or more haulage systems ℎ ∈ 𝐻. Therefore, identical mining zone 

configuration options (𝑏 and b’), in terms of stope shapes and sublevels, can exist but they will 

be associated with different available haulage systems (𝑏 ∈ 𝐵ℎ, and 𝑏′ ∈ 𝐵ℎ`). It is assumed that 

vertical accesses compatible with the haulage systems are already developed, which enables the 

variable 𝑧𝑏𝑎 to be time-independent. The stope selection decision variables 𝑦𝑗𝑏𝑎𝑡 ∈ {0,1} 

determine if a stope 𝑗 ∈ 𝐽𝑏 in a mining zone configuration 𝑏 ∈  𝐵, using stope type option 𝑎 ∈ 𝐴𝑏 

is mined in period  𝑡 ∈  𝑇 and sent directly to the processor. A variable 𝑥𝑗𝑏𝑎𝑡𝑡′ ∈ {0,1} controls 

the extraction sequence and posterior reclamation of stockpiled stopes by defining if  a stope 𝑗 ∈

𝐽𝑏 in a mining zone configuration 𝑏 ∈  𝐵, using stope type option 𝑎 ∈ 𝐴𝑏 is mined and sent to a 

stockpile in period t and rehandled at period 𝑡’ > 𝑡. Thus, it is assumed that a stockpile for each 

time period 𝑡’ can exist, or that the selection of the material of stopes within a stockpile is 

possible, in order to have a linear formulation (Brika 2019).  

Two continuous decision variables ψ𝑑𝑙𝑏𝑡
𝑑𝑟𝑖𝑓𝑡

 and ψ𝑐𝑙𝑏𝑡
𝑐𝑟𝑜𝑠𝑠𝑐𝑢𝑡 correspond to the developed distance of 

a drift d or a cross-cut c, for a sublevel l, in a mining zone configurations b, in period t. To 

account for the available structures developed in previous years, effective development distances 

ψ𝑑𝑙𝑏𝑡
𝑑𝑟𝑖𝑓𝑡∗

and  ψ𝑐𝑙𝑏𝑡
𝑐𝑟𝑜𝑠𝑠𝑐𝑢𝑡∗ are used in practice and they correspond to the cumulative horizontal 

development distances. The remaining decision variables refer to surplus deviations from 

haulage capacities for different haulage systems h (𝑑ℎ𝑡𝑠
ℎ𝑎𝑢𝑙), processing capacity (𝑑𝑡𝑠

𝑝𝑟𝑜𝑐
) and 

stockpiling capacities (𝑑𝑡𝑠
𝑠𝑝

), and deviations from lower and upper bounds for different elements 

ε ∈ E requirements, 𝑑εts
−

 and 𝑑εts
+

 respectively. Additional technical and economical 

parameters are presented in Table 3-1. 

Table 3-1 – List of technical and economic parameters 

Index Definition 

𝑤𝑗𝑏𝑎𝑠 Tonnage of stope j, in mining zone configuration b, stope sequencing option a 

and in geological scenario 𝑠 
𝑔𝑗𝑏𝜀𝑠 Grade of element 𝜀 within stope j in mining zone b, in scenario 𝑠 

𝑓𝑡
𝐸𝐷𝑅 Economic discount factor for period 𝑡 given an economic discount rate 

𝐶𝑙𝑡
𝐻  Discounted horizontal development discounted cost in sublevel l, at period t in 

$/km 
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Index Definition 

𝐶𝑘𝑡
 𝑀 Discounted mining cost for type k stopes at period t in $/t 

𝐶𝑃  Unitary processing cost $/t 

𝐶𝑡
𝑟𝑒ℎ𝑎𝑛 Discounted rehandling cost at period t in $/t 

𝐶ℎ𝑏𝑡
ℎ𝑎𝑢𝑙 

Discounted haulage cost at period t if ℎ ∈ 𝐻𝑟𝑎𝑚𝑝 in $/(tons*km) and if ∈ 𝐻𝑠ℎ𝑎𝑓𝑡 

in $/t 

𝐹𝑏𝑡 Fixed discounted cost for keeping the mining zone configuration b 

𝑈𝑡
𝑠𝑝

 Stockpiling capacity at period t(tons/year). 

Once stockpiling decisions are considered, mining, rehandling, and processing costs can be 

incurred in different periods for a given stope. Therefore, Eq. 3.3 describes the general profit of a 

stope at the period during which this stope is processed.  

𝑝𝑗𝑏𝑎𝑠𝑡 = 𝑓𝑡
𝐸𝐷𝑅𝑤𝑗𝑏𝑎𝑠 (∑𝑔𝑗𝑏𝜀𝑠𝑅𝜀𝑃𝜀

𝜀∈𝐸

− 𝐶𝑃) , ∀ 𝑗 ∈ 𝐽𝑏, 𝑏 ∈ 𝐵, 𝑎 ∈ 𝐴, 𝑠 ∈ 𝑆 (3.3) 

Eq. 3.4 presents the objective function in five parts. Part I aims to maximize the discounted 

revenue from the stopes that are mined and processed at the same period. Part II maximizes the 

revenue from the scheduled stopes that are stockpiled by applying the discounted mining and 

rehandling costs according to the year in which they are incurred in the production schedule. 

Haulage costs are managed in different ways depending on the transportation systems available 

and chosen by the optimizer. If material is hauled through a ramp, the distance from the sublevel 

to the surface (𝛿ℎ𝑏𝑙) must be considered; otherwise, if the material is hauled through a skip, the 

parameter 𝛿ℎ𝑏𝑙 is set as one. Part III of the objective function minimizes the effective 

development costs and part IV minimizes a fixed cost for keeping the mining zone in operation. 

Finally, part V manages the geological risk by minimizing the deviations from the production 

targets related to mining, stockpiling and processing capacities, and grade blending requirements. 

For that purpose, penalty costs 𝑐ℎ
ℎ𝑎𝑢𝑙,  𝑐𝑃, 𝑐𝑠𝑝  𝑐𝜀

+ and 𝑐𝜀
− are applied to correspond to the 

production requirements and targets, as they are discounted by a geological risk discounting 

factor 𝑓𝑡
𝐺𝑅𝐷 (Ramazan and Dimitrakopoulos 2013, 2005). 
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𝑚𝑎𝑥
1

|𝑆|
∑ ∑ ∑ ∑ ∑ (𝑝𝑗𝑏𝑎𝑠𝑡 − 𝑤𝑗𝑏𝑠 (∑𝜋𝑘𝑗𝑏𝑎𝐶𝑘𝑡

𝑃   

𝑘∈𝐾

−∑∑ 𝛿ℎ𝑏𝑙𝐶ℎ𝑏𝑡
ℎ𝑎𝑢𝑙

𝑙∈𝐿𝑏ℎ∈𝐻

))  𝑦𝑗𝑏𝑎𝑡
j ∈ 𝐽𝑏a ∈ 𝐴𝑏𝑏 ∈ 𝐵𝑡 ∈ Ts ∈ S

⏟                                                    
𝑷𝒂𝒓𝒕 𝑰

 

                               

+
1

|𝑆|
∑ ∑ ∑ ∑ ∑ ∑ (𝑝𝑗𝑏𝑎𝑠𝑡′ − 𝑤𝑗𝑏𝑠 (∑𝜋𝑘𝑗𝑏𝑎  𝐶𝑘𝑡

𝑀 

𝑘∈𝐾

−∑∑ 𝛿ℎ𝑏𝑙𝐶ℎ𝑏𝑡
ℎ𝑎𝑢𝑙

𝑙∈𝐿𝑏ℎ∈𝐻

− 𝐶𝑡′
𝑟𝑒ℎ𝑎𝑛))  𝑥𝑗𝑏𝑎𝑡𝑡′

j ∈ 𝐽𝑏a ∈ 𝐴𝑏𝑏 ∈ B

|𝑇|

𝑡′=𝑡+1

|𝑇−1|

𝑡s ∈ S
⏟                                                                    

𝑷𝒂𝒓𝒕 𝑰𝑰

 

                −∑ ∑ ∑  𝐶𝑙𝑡
 ℎ𝑜𝑟

𝑙∈𝐿𝑏𝑏 ∈ Bt ∈ T

( ∑ ψ𝑑𝑙𝑏𝑡
𝑑𝑟𝑖𝑓𝑡∗

d ∈ 𝐷𝑙

+ ∑ ψ𝑐𝑙𝑏𝑡
𝑐𝑟𝑜𝑠𝑠𝑐𝑢𝑡∗

c ∈ 𝐶𝑙

)

⏟                                
𝑷𝒂𝒓𝒕 𝑰𝑰𝑰

 

                −∑ ∑ ∑ 𝐹𝑏𝑡  𝑧𝑏𝑎
a ∈ 𝐴𝑏𝑏 ∈ B t ∈ T⏟            

𝑷𝒂𝒓𝒕 𝑰𝑽

 

                    −
1

|𝑆|
∑∑ 𝑓𝑡

𝐺𝑅𝐷 (𝑐ℎ
ℎ𝑎𝑢𝑙𝑑ℎ𝑡𝑠

ℎ𝑎𝑢𝑙 + 𝑐𝑃𝑑𝑡𝑠
𝑃 + 𝑐𝑠𝑝𝑑𝑡𝑠

𝑠𝑝
∑𝑐𝜀

+ 𝑑𝜀𝑡𝑠
+
+ 𝑐𝜀

−𝑑𝜀𝑡𝑠
−

𝜀∈𝐸

)

t ∈ Ts ∈ S⏟                                              
𝑷𝒂𝒓𝒕 𝑽

 (3.4)
 

The objective function is subjected to reserve, adjacency, non-overlapping, and capacity 

constraints. The addition of decision variables that control both the extraction sequence and the 

stockpiling decisions requires a simple adaptation of the reserve, adjacency and capacity 

constraints proposed by Carelos Andrade et al. (2024). New constraints are included to control 

the stockpiling capacity.   

𝜎𝑡,𝑠 =∑ ∑ ∑  (𝑤𝑗𝑏𝑠∑  𝑥𝑗,𝑏,𝑎,t,𝑡′ 

|𝑇|

𝑡`=2

)   ∀𝑡 = 1, 𝑠 ∈ 𝑆

𝑗∈𝐽𝑏𝑎 ∈ 𝐴𝑏𝑏∈𝐵

 (3.5) 

𝜎𝑡,𝑠 =∑ ∑ ∑  (𝑤𝑗𝑏𝑠(∑  𝑥𝑗,𝑏,𝑎,t,𝑡′ 

|𝑇|

𝑡`>𝑡

−∑  𝑥𝑗,𝑏,𝑎,t′,𝑡 

|𝑇|

𝑡′=1

)) + 𝜎𝑡−1,𝑠,   ∀𝑡 > 1, 𝑠 ∈ 𝑆

𝑗∈𝐽𝑏𝑎 ∈ 𝐴𝑏𝑏∈𝐵

 (3.6) 

𝜎𝑡,𝑠 − 𝑑𝑡,𝑠
𝑠𝑝
≤ 𝑈𝑡

𝑠𝑝
,   ∀𝑡 ∈ 𝑇,  𝑠 ∈ 𝑆 (3.7) 

Eq. 3.5 and 3.6 calculate the value of an auxiliar variable 𝜎𝑡,𝑠 that defines the tonnage left at the 

stockpiles at the end of period t for scenario s. This tonnage is constrained by a maximum yearly 

capacity 𝑈𝑡
𝑠𝑝

 that can be left stockpiled at the end of each period t, as shown in Eq. 3.7.   
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3.2.2 Mineral deposit modeling using sequential simulations 

Consider 𝑍(𝒖𝑖) a stationary ergodic random field indexed in 𝑅𝑛, where 𝒖𝑖, represents the 

location of the points 𝑖 = 1…𝑁 of the grid to be simulated in a domain 𝐷 ⊆ 𝑅𝑛 . The set 𝒅𝑛 =

{𝑧(𝒖α), α = 1…𝑛} denotes the original sample data conventionally obtained by the exploration 

data. A set 𝛬𝑖 represents the conditioning data for each node index by i. Therefore, 𝛬0 = {𝒅𝒏} is 

the conditioning data when the first point is simulated and only sample data is available and  

𝛬𝑖 = {𝛬𝑖−1 ∪ 𝑍(𝒖𝑖)} is the conditioning data for the subsequent points being simulated that 

includes the original sample data and previously simulated points. Accordingly, the sequential 

simulation paradigm defines that the joint probability density function (pdf) of the random field 

𝑍(𝒖𝑖) can be decomposed into the product of conditional univariate distributions (Goovaerts 

1997; Journel 1994) 

𝑓(𝑢1, … , 𝑢𝑁; 𝑧1, … , 𝑧𝑁|𝒅𝒏) = 𝑓(𝑢1, 𝑧1|𝒅𝒏)∏𝑓(𝒖𝑖, 𝑧𝑖|𝛬𝑖−1)

𝑁

𝑖=2

. (3.8)  

The conditional probability distribution function (cpdf) for any node 𝑢𝑖 can be written according 

to the Bayes’ rule as 

𝑓(𝑢i; 𝑧𝑖|𝛬0, 𝛬𝑖−1) =
𝑓(𝑢i; 𝜆0, 𝜆𝑖−1; 𝑧0, 𝛬0, 𝛬𝑖−1)

∫ 𝑓(𝑢i; 𝜆0, 𝜆𝑖−1; 𝑧0, 𝛬0, 𝛬𝑖−1)𝑑𝑢𝑖
 , (3.9) 

 

where 𝜆0 and 𝜆𝑖−1are the locations of the points in the conditioning data sets 𝛬0 and 𝛬𝑖−1, 

respectively and 𝑓(𝑢I; 𝜆0, 𝜆𝑖−1; 𝑧0, 𝛬0, 𝛬𝑖−1) is the joint pdf. 

3.2.3 High-order simulation using Legendre-like orthogonal splines 

To generate geostatistical simulations that account for high-order spatial statistics 

(Dimitrakopoulos et al. 2010; Dimitrakopoulos and Yao 2020; Minniakhmetov et al. 2018), the 

method proposed by Minniakhmetov et al. (2018), where the joint cpdf is approximated using 

high-dimensional polynomials combined with high-order spatial cumulants is used herein and  

summarized bellow. 
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𝑓(𝑢i; 𝜆0, 𝜆𝑖−1; 𝑧0, 𝛬0, 𝛬𝑖−1) =

∑ ∑ …

𝜔1

𝑚1=0

𝜔0

𝑚0=0

∑ 𝐿𝑚0,𝑚1…𝑚𝑛𝜑𝑚0(𝑧0)𝜑𝑚1(𝑧1)…𝜑𝑚𝑛(𝑧𝑛)

𝜔𝑛

𝑚𝑛=0

 , (3.10)
 

where 𝐿𝑘0,𝑘1,…𝑘𝑛 are coefficients of approximation and 𝜑𝑚0(𝑧0)𝜑𝑚1(𝑧1)…𝜑𝑚𝑛
(𝑧𝑛) follows the 

orthogonality property as  

∫ 𝜑𝑚𝜑𝑘(𝑧)𝑑𝑧 = 𝛿𝑚𝑘

𝑏

𝑎

 , (3.11) 

 where 𝛿𝑚𝑛𝑘𝑛 = {
1,𝑚 = 𝑘
0,𝑚 ≠ 𝑘

, ∀𝑘 = 0…𝜔 is the Kronecker delta.  

The orthogonal functions considered herein are Legendre-like orthogonal splines 

(Minniakhmetov et al. 2018) and the Legendre coefficients 𝐿𝑘0,𝑘1,…𝑘𝑛 can be approximated 

experimentally by calculating 

𝐿𝑘0,𝑘1,…𝑘𝑛 ≈ 𝐸[𝜑𝑘0(𝑧0)𝜑𝑘1(𝑧1)…𝜑𝑘𝑛(𝑧𝑛)] ≈

1

𝑁ℎ1,ℎ2…ℎ𝑛
∑ 𝜑𝑘0(𝑧0

𝑘)𝜑𝑘1(𝑧1
𝑘)…𝜑𝑘𝑛(𝑧𝑛

𝑘)

𝑁ℎ1,ℎ2…ℎ𝑛

𝑘=1

, (3.12)
 

where 𝑧𝑖
𝑘 , 𝑖 = 0…𝑛 are values taken from a training image (TI), or geologic analog, that contains 

densely sampled geological information and represents complex geological structures.  

The method relies on the definition of a spatial template formed by the central node being 

simulated and neighbouring values separated by lag vectors 𝒉𝑖 = 𝒖𝑖 − 𝒖0, 𝑖 = 1…𝑛, which is 

used to scan the TI, to calculate the Legendre coefficients. The high-order sequential simulation 

algorithm follows:  

1. Define a random path for visiting all unsampled nodes on the simulation grid.  

2. For each node 𝒖0 in the path:  

a. Find the closest neighbor nodes 𝒖1,𝒖2, … 𝒖𝑛. 

b. Obtain the spatial template configuration by calculating the lag vectors 𝒉𝑖. 

c. Scan the TI and find values 𝑧𝑖
𝑘, 𝑖 = 0…𝑛 given the spatial template configuration.  

d. Calculate the spatial Legendre coefficients 𝐿𝑘0,𝑘1,…𝑘𝑛  using Eq. 3.12.  
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e. Build the cpdf 𝑓(𝑢I; 𝑧𝑖|𝛬0, 𝛬𝑖−1) by calculating the joint probability density function 

as in Eq. 3.10 and normalizing it as shown in Eq. 3.9.  

f. Draw a uniform random value in [0,1] to sample 𝑧0 from the cumulative cpdf derived 

on the previous step.  

g. Add 𝑧0 to the set of conditioning data 𝛬𝑖 and move to the next node 

3. Repeat steps 1 and 2 to generate different realizations.  

3.2.4 Sequential Gaussian simulation 

The case study presented in Section 3.3 also uses sequential Gaussian simulation (SGS) 

(Goovaerts 1997; Isaaks 1990; Journel 1994) as an input, so that the related schedules and the 

forecast are compared to the ones obtained when the HOSIM is used. The method follows the 

sequential simulation paradigm, while assuming a Gaussian conditional probability distribution 

function (cpdf)  𝑓(𝑢I; 𝑧𝑖|𝛬0, 𝛬𝑖−1) that can be parametrized by its mean and variance. Initially, 

the original sample data is transformed to the Gaussian space, the experimental variogram is 

calculated from the transformed data, and the variogram model is inferred. Then, at each node, 

the Kriging system is used to obtain the conditional mean and variance, allowing the definition 

of a normal cpdf from which the simulated values will be sampled.  

3.3 Case study at an operating copper mine 

The case study presented herein shows first an analysis of the simulations produced by the high-

order sequential simulation (HOSIM) method described in Section 3.2.3 and a comparison to 

sequential Gaussian simulations (SGS) of a copper deposit related to an operating underground 

copper mine. These simulations obtained through the HOSIM method are used as an input to the 

proposed extended integrated stochastic optimization of the underground mine design and 

production schedule with stockpiling, the extraction sequence, and forecasts presented. A 

comparison between these outputs to the ones obtained with the same optimization framework 

and technical parameters, but with simulations generated with the SGS method, is subsequently 

shown.   
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3.3.1 High-order sequential simulations of the mineral deposit, results and 

comparisons to sequential Gaussian simulations 

The realizations of the copper deposit using the high-order sequential simulation (HOSIM) 

method are done in a grid size of 5m x 5m x 5m x 5m with 466,560 nodes. In order to generate 

the simulations, 1,510 exploration drillholes with 5 m composites are spatially distributed as 

fans, with centers at approximately every 30 m, which are used as the sample data, as shown in 

Figure 3-3. In addition, a training image (TI) generated from densely sampled blast hole data was 

used. A set of 20 high-order sequential simulations is generated in point support and then go 

through the previously described preprocessing steps to generate the inputs to the proposed 

optimization method. From this set, 10 simulations are used directly as an input to the 

optimization and the remaining 10 simulations are further used for the risk analysis of the related 

forecasts. The number of simulations follows previous studies that show that 10-12 simulations 

are sufficient to produce stable results for the mine planning optimization (Albor Consuegra and 

Dimitrakopoulos 2009; Dimitrakopoulos and Lamghari 2022; Montiel and Dimitrakopoulos 

2017).  

Ten simulations of the copper deposit, using the same exploration data, are generated based on 

the sequential Gaussian simulation (SGS) method are generated, to be used as means of 

comparison to the ones obtained using HOSIM. Figure 3-4 shows the grade-tonnage curves for 

the two sequential simulation frameworks being compared, considering the minimum stope 

dimensions (i.e., 15m x 30m x 40m).  The blue and green curves in the graph overlap each other 

for some of the simulated scenarios indicating that, for both methods, the grade and tonnage 

proportions are similar. Thus, the simulation method does not directly impact the metal 

quantities. Figure 3-5 shows cross sections of simulations using high-order and Gaussian 

sequential simulations. A visual inspection indicates that both realizations reproduce the spatial 

distribution of copper grades of the exploration data. However, the realization generated with the 

SGS shows a more dispersed behavior, representing the effect of maximum entropy when the 

data is transformed into Gaussian space. The highlighted high-grade areas show better 

connectivity for the realization generated with HOSIM, as expected.  
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Figure 3-3 – Exploration data with underground drilling fans 

 

Figure 3-4 – Grade-tonnage curves for simulated copper deposit using SGS and HOSIM, for stopes 

15x30x40m3 
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Figure 3-5 – Cross-sections of the simulations high-grade areas highlighted in red. 

 

The reproduction of spatial statistics of the simulations in terms of the exploration data is 

evaluated. Figure 3-6 shows the histograms of the sample data, TI, and high-order sequential 

simulation realizations. Similarly, Figure 3-7 to 10 show the variograms in x and y directions, 3rd 

and 4th order cumulant maps form the sample data, TI, and of a realization produced by HOSIM 

and SGS methods. The areas with red circles highlight the main differences among the cumulant 

maps. It is seen that both methods can reasonably reproduce the histograms and variograms of 

the exploration data. For 3rd and 4th order cumulants, however, the realization obtained with the 

HOSIM method shows a closer reproduction to the sample data, compared to what is shown for 

the realization obtained with the SGS method. In addition, although the described HOSIM 

method uses a TI to infer the conditional probability distribution function (cpdf), the simulated 

values reproduce the low and high-order statistics of the exploration (i.e., sample) data. In fact, 

the TI assumes an auxiliary part in the simulation procedure, while the initial sample data serves 

as conditioning data and is also used to calculate the cpdf. 
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Figure 3-6 – Histograms of samples (red), TI (green), a) HOSIM realizations (grey) and b) SGS 

realizations (blue) 

 

Figure 3-7 – Variograms in x direction of samples (red), TI (green), a HOSIM realizations (grey) and b) 

SGS realizations (grey) 

 

 

Figure 3-8 - Variograms in y direction of samples (red), TI (green), a) HOSIM realizations (grey) and b) 

SGS realizations (grey) 

 

a) b) 

b) 

a) 

a) 

b) 
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Figure 3-9 – 3rd order cumulant maps of sample data, the used TI, HOSIM simulated realization and SGS 

simulated realization, where areas highlighted in red show differences in cumulative maps. 

 

 

Figure 3-10 – 4th order cumulant maps of sample data, the used TI, HOSIM simulated realization and 

SGS simulated realization, where areas highlighted in red show differences in cumulative maps. 



 

 

 

 

99  

 

3.3.2 Integrated stope design and scheduling optimization and forecasting  

The application of the proposed integrated stochastic stope design and production scheduling 

with long-term stockpiling at a copper deposit is presented in this section. The comparison of the 

stope design, extraction sequence, and related forecasts using high-order and Gaussian sequential 

simulations presented in the previous section, are used as inputs to the optimization approach, the 

result of which is then analyzed.  

The present case study is developed for an operating underground copper mine. Therefore, mine 

accesses (i.e. ramp and decline) and ventilation systems are given as inputs. Figure 3-11 shows 

the available infrastructure in the mine and the defined mining direction. In addition, geometrical 

parameters for the shapes of the stopes were provided by the mining company operating the 

mine. The maximum and minimum dimensions of the stopes are considered, given geotechnical 

and drilling equipment requirements, as shown in , where the green arrow indicates the mining 

direction, and the red arrow indicates the direction to the surface decline. 

 

Table 3-2. These possible configurations account for the position of the access point at each 

sublevel according to the available ramp design. Three option types are used as an input, 

meaning that all stopes will have the possibility of being primary, secondary, or tertiary. In 

addition, the stopes are blasted and extracted bottom-up and are subsequently backfilled with 

cemented aggregate fill (CAF), which is not considered a limiting feature in the mine production. 

Thus, a single mining cost is used for all stope types. A horizontal development capacity is 

considered in terms of the maximum length that can be developed. A single haulage system is 

available with its maximum capacity constraining the mining capacity, and a processor with a 

smaller capacity that controls the copper concentrate product production. An annual stockpile 

capacity is considered in order to manage the grade blending, while uncertainty in terms of 

copper grades is taken into consideration. Thus, penalty costs for deviations from the minimum 

and maximum grades for this element’s requirements are applied and are discounted throughout 

the years to manage the geologic risk (Ramazan and Dimitrakopoulos 2013, 2005). Table 3-3 

displays the technical and economic parameters used in the optimization of the copper mine. The 
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proposed SIP model is programmed in the C++ language and solved using the CPLEX v.12.8.0 

software’s solver engine (IBM ILOG 2017).  

 

Figure 3-11 - Plan view of the developed infrastructure, where the green arrow indicates the mining 

direction, and the red arrow indicates the direction to the surface decline. 

 

Table 3-2- Stope geometrical parameters 

Parameter Value/Description 

Minimum dimensions 15m x 30m x 30m 

Maximum dimensions 30m x 30m x 150m 

 

Table 3-3 - Technical and economic parameters used as input in the optimization 

Parameter Value 

Cu price  8,500 $/t 

Economic discount rate 10% 

Geologic discount rate 10% 

Processing recovery Cu  94% 

Mining cost  50 $/t 

Processing cost  13.5 $/t 

Haulage cost  5 $/t∙km 

Rehandling cost  0.5 $/t 

Drifts development cost  12,000 $/m 

Density  3.2 t/m3 

Haulage capacity  3 Mt/year 

Processing capacity  2.5 Mt/year 

Stockpiling capacity  400 kt/year 

Drift development capacity  5,000 m/year 

Minimum copper mill head grade  1.8 % 

Penalty cost for deviations below minimum 

Cu mill head grade 

100 $/unit 
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Figure 3-12 displays the extraction sequence and the optimum stope types when the simulations 

generated with the HOSIM method are used. An operational extraction sequence that follows the 

mining direction and the bottom-up extraction approach, while respecting the adjacencies given 

by the optimized stope types is produced. The output results obtained with the high-order 

sequential simulations are compared to those obtained when the simulation generated using the 

SGS method are the inputs. Similar to Figure 3-12, Figure 3-13 displays the extraction sequence 

and the optimum stope types when the simulations generated with the SGS method are used. It is 

observed that, although for both cases the same parameters are considered, the extraction 

sequence displayed in Figures 12 and 13 are different, and relevant differences can be noticed on 

the final stope layout. Once the simulated grades are averaged into possible stope volumes, the 

more connected the high grades are, the higher the stope grades will be. When the simulations 

generated by the HOSIM method are used as inputs, areas further to the access point can be 

mined, once the profit generated from the metal content of this stope prevails over the 

cumulative horizontal development costs. On the other hand, when sequential Gaussian 

simulations are used, it is observed that the stopes closer to the access points are preferred once 

they incur lower development costs, as highlighted with the red circles Additionally, when the 

realizations generated by HOSIM are used, smaller stope sizes are chosen, allowing more 

selectivity in terms of high-grade stopes and less dilution. 

Figure 3-14 show the risk profiles considering the decisions optimized using the different inputs 

with 10 additional high-order sequential simulations. The results are presented in terms of P10, 

P50 and P90, representing the 10th, 50th and 90th percentiles of the related performance 

indicators, respectively. Figure 3-14a shows that the produced copper content is 4% higher when 

the realization generated with the HOSIM method are the related inputs. This can be explained 

by the maximum entropy that the Gaussian-based approaches generate with respect to the high 

grades. Thus, after the optimization process, it is observed that the high-grade areas are a better 

target when a better representation of extreme grade continuity is given as an input. The copper 

production impacts directly on the NPV, which is 6% higher for the HOSIM case compared to 

the SGS case, as shown in Figure 3-14b. Although the mined tonnage is similar for both cases 

(Figure 3-14c), the cumulative stockpiled tonnage is approximately 5% higher for the SGS case 

(Figure 3-14e), which means that the use of the stockpile is necessary to achieve the grade 
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blending requirements, incurring higher rehandling costs. Figure 3-14d shows that grade 

blending requirements are overall achieved for both cases, with probable deviations from the 

lower bound for the SGS case. As previously inferred from the extraction sequences (Figure 3-12 

and Figure 3-13), in the SGS case, the areas closer to the access points are privileged. In the 

graph displayed in Figure 3-15, the horizontal development costs for the SGS case are, in fact, 

lower for early periods. However, the total horizontal development cost is similar for both cases. 

Considering the ability of the optimization process to decide whether to stockpile mined material 

or not and when over the life of this mine, the analysis demonstrates that, in both scenarios, it is 

profitable to direct material to stockpiles, given the associated rehandling costs. This strategic 

choice results in an optimal NPV and minimum deviations from the required lower bound of 

copper grade Figure 3-16 shows the number of active stockpiles and tonnage left at the 

stockpiles for each period and for each case, assuming that multiple stockpiles can be used to 

assist the selection of the stockpiled material to be processed. The maximum yearly stockpiling 

capacity of 400,000 tons is respected and a maximum of three active stockpiles are needed for 

both cases. This finding underscores the significant role of stockpiling decisions in long-term 

mine planning, as they can conform to operational considerations and requirements. 
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Figure 3-12 – a) Extraction sequence and b) final stope types using input realization from 

HOSIM, red circles highlight the correspondent high-grade areas. 

 

 

Figure 3-13 – a) Extraction sequence and b) final stope types using input realization from SGS, 

red circles highlight the correspondent high-grade areas. 

a) 
b) 

b) a) 
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Figure 3-14 – Risk profiles for a) cumulative recovered copper, b) NPV, c) total 

tonnages mined, d) mill copper head grade, and e) cumulative stockpiled tonnage 

a) b) 

c) d) 

e) 
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Figure 3-15 - Cumulative development costs for drifts and crosscuts 

 

Figure 3-16 – Number of active stockpiles and tonnage left at the stockpiled for each periods 

3.4 Conclusions 

This chapter proposes an extension of previous work on the integrated stochastic optimization of 

stope design and mine production scheduling, through a two-stage stochastic integer 

programming (SIP) linear formulation that accounts for long-term stockpiling decisions for the 

sublevel open stoping (SLOS) mining method.  The operational aspects and impacts on the mine 

production scheduling with this additional component is evaluated. The objective function of the 

proposed SIP aims to maximize the net present value (NPV) of the project while managing the 

geological uncertainty, by minimizing deviations from production targets, subjected to 

operational constraints are presented. Additionally, the effects of using the high-order sequential 

simulation (HOSIM) method to generate the realizations of a copper deposit to be used as inputs 

for the proposed stochastic optimization formulation are also presented. This simulation method 

a) b) 
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infers high-order spatial statistics from available data, enabling the reproduction of complex 

geological patterns of natural phenomena. The optimized stope layout and production schedule 

along with the related forecasts are compared against a case in where the conventional sequential 

Gaussian simulations are the main inputs for the optimization formulation. It is observed that 

these simulation methods can be fairly compared against each other once they produce similar 

grade-tonnage pro-portions and reproduce related statistics, that is, histograms and variograms of 

the available sample data. It is seen, however, that, due to the maximum entropy property of the 

Gaussian-based methods, the extreme high grades are more spatially dispersed, showing a 

misrepresentation of the spatial connectivity of the high grades. It is also verified that the 

realizations obtained with the HOSIM method reproduce the sample data high-order spatial 

statistics despite utilization of a training image (TI).  

The application of the proposed method shows that the long-term stockpiles can be operationally 

implemented. Under the assumption of having multiple active stockpiles, to facilitate operational 

mining aspects, it is seen that a maximum of three active stockpiles are needed and the stockpile 

tonnage after each production year does not reach the maximum capacity of 400,000 tones, for 

both HOSIM and SGS input cases. In addition, it is observed that the optimization process takes 

advantage of the more connected high-grade representations of the copper deposit to generate the 

stope designs and production schedules. Notable differences are observed on the final stope 

boundaries and extraction sequences comparing the two cases. The HOSIM case tends to target 

the high-grade continuity areas to produce a 6% higher NPV, while the SGS case initially mines 

areas that incur a smaller horizontal development cost. This outcome is observed once the 

simulated values are averaged into large stope volumes; thereafter, the realizations with better 

connected high grades generate higher-grade possible stopes. As a result, the higher the stope 

grade, the lower the impact of the horizontal development cost on its profit. The HOSIM case 

produces a 4% higher copper content at the end of 12 years of production, which directly impacts 

on the cumulative cashflow. In addition, the HOSIM case is able to produce ore material that 

follows the grade-blending requirement of the mill by sending 5% less material to the stockpile.   

A case study that accounts for high-order sequential simulations of multiple elements is a topic 

for future research, once secondary and deleterious elements also play an important role in 

decision-making for mine planning activities. In addition, the simultaneous optimization of a 
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mining complex that assumes the existence of multiple mines, stockpiles, and processing streams 

is an extension for future work. Also, this simultaneous optimization approach should generalize 

to different types of underground mining methods, while further facilitating the interaction 

between underground and open-pit mining operations. Furthermore, as more components are 

included in the mathematical programming formulation, the development of alternative solvers, 

rather than the ones commercially available, is a proposed for future contribution. The proposed 

method addresses long-term underground stope layout, mine planning and production 

scheduling. However, it is recognized that intricate operational considerations, such as the 

scheduling of individual activities, prediction of technical parameters, and updates on 

geotechnical parameters, are important for short-term planning. Future developments related to 

short-term planning could consider integrating these aspects, as well as enabling the interaction 

between short and long-term planning.     

4. Chapter 4 - Conclusions and Future Research 

4.1 General Conclusions 

Underground long-term mine planning is conventionally addressed with a stepwise optimization 

framework that starts with the definition of a stope layout, followed by the design of haulage and 

ventilation network systems that connect the mining areas to the surface. Finally, the 

optimization of the life-of-mine production schedule is performed, aiming to maximize the net 

present value (NPV). This conventional stepwise framework is unable to exploit the synergies 

between the mine planning components, leading to suboptimal solutions. In addition, the 

traditional mine planning frameworks are deterministic, hence geological uncertainty and 

variability of grades and material types are not considered. Recent stochastic approaches have 

improved the sequential framework by jointly optimizing stope design and production 

scheduling. These few developments present specific mathematical formulations that are not 

generalizable to various mining methods and its variants. Additionally, several components and 

practices currently used in the mining industry, such as stockpiling and backfilling, are not 

incorporated in the developed methods. These observations motivate the development of 

stochastic optimization frameworks that are able to integrate the stope design and production 

schedule using operational considerations of an existing underground mine. The first model 
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proposed in this thesis presents a joint stochastic optimization of stope design and extraction 

sequence for a sublevel longhole open stoping (SLOS) mining method with backfilling and its 

application at an operating copper mine. The second method expands the first stochastic integer 

programming (SIP) formulation to incorporate stockpiling decisions and investigate the impacts 

of using high-order sequential simulations as inputs.  

The first method presented in Chapter 2 refers to the joint optimization of stope design and mine 

production scheduling for the SLOS mining method with backfilling. The proposed two-stage 

SIP maximizes the NPV, while managing the geological risk by minimizing the deviations from 

production targets. The outputs of the optimization include the operational selection of mining 

zone configuration that defines the stope shapes and respective types, as well as the stope design 

and extraction sequence of stopes that respects the optimal backfilling adjacencies and have 

optimal horizontal development costs. An application of the proposed method to an underground 

copper mine with gold and uranium as secondary elements is presented. As an operating mine, a 

ramp and a ventilation system that defines a mining direction are available infrastructure given as 

inputs. It follows a pattern of extraction of primary, secondary, and tertiary stopes. The 

integrated framework is compared to a sequential stochastic framework, in which a stope layout 

is used as a fixed input to the proposed SIP. It is seen that physically different stope designs and, 

consequently, different extraction sequences are produced for these two different frameworks. 

The proposed integrated approach outperforms the stepwise counterpart in terms of the NPV 

which is 6% higher. Similarly, the horizontal cumulative development costs are shown to be 

substantially higher when the sequential approach is used. These results show that the limited 

knowledge of time discounting and effective development distances when first obtaining the 

stope layout has a critical impact on the final production schedules. Thus, by jointly optimizing 

the underground mine planning components, it is possible to capitalize on their synergies to 

generate a truly optimal schedule. 

Chapter 3 presents the extension of the previously proposed method to incorporate long-term 

stockpiling decisions into the SIP. Additionally, the effect of using high-order sequential 

simulations (HOSIM) of the mineral deposit is evaluated. This investigation is motivated by the 

fact that conventionally used sequential simulation methods such as sequential Gaussian 

simulation (SGS) rely on two-point spatial statistics that are not able to properly characterize 



 

 

 

 

109  

complex spatial geometries or high-grade connectivity of natural phenomena. Also, the 

assumption of dealing with Gaussian random functions incurs high entropy in terms of extreme 

grades. An application of the proposed method for an operating mine compares the cases where 

the geological simulated orebody models of copper grades are generated with both HOSIM and 

SGS. The output stope designs and related production schedules are shown to be physically 

different. When the simulations generated with HOSIM are used, it is seen that fewer stopes are 

sent to the stockpiles. In addition, a higher copper metal production and a consequent 6% higher 

NPV are observed when high-order sequential simulations are used. These results are explained 

by the fact that the realizations generated with HOSIM show better high-grade connectivity 

allowing the availability of higher-grade stopes compared to the realizations generated with SGS.  

4.2 Recommendations for Future Research 

Future research on the proposed topic can be conducted with an application that considers 

multiple sources of uncertainty simultaneously as the presented SIPs can directly accommodate 

commodity price uncertainty. The presented applications consider the optimization of a single 

mining zone with common geotechnical and geometrical parameters.  Therefore, an application 

that optimizes multiple mining zones simultaneously could be considered. In addition, the 

simultaneous optimization for a mining complex that assumes the existence of multiple mines, 

stockpiles, and processing streams is an extension for future work. A case study that accounts for 

high-order sequential simulations of multiple elements is a topic for future research, as secondary 

and deleterious elements also play an important role in decision-making for mine planning 

activities. As more components are included in the mathematical model, higher computational 

efficiency is needed. The use of commercial solvers restricts the model’s application to larger 

problems. Thus, alternative solvers that use metaheuristic can be implemented in future 

developments.  
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