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Abstract 

Neurosurgical decision-making is guided by surgical experience and supported by a 

vast array of tools used in the presurgical evaluation. In this thesis, I examine how pre-

dictive analytics and multimodal imaging can contribute to diagnosis and prognosis in 

neuro-oncology and to the presurgical evaluation for drug-resistant epilepsy. I present 

new machine learning models and a practical app for predicting meningioma malig-

nancy and survival (chapter 2). I additionally discuss some key ethical issues relating to 

the application of artificial intelligence (AI) in medical diagnostics (chapter 3), including 

how AI systems remain biased by the same sociocultural biases that shape the datasets 

these systems are trained on. In relation to multimodal imaging in epilepsy surgery, in 

chapter 4 I introduce a new open-source software application for computing subtrac-

tion ictal single-photon emission CT coregistered to MRI (SISCOM). In chapter 5, I dis-

cuss the analysis and interpretation of ictal magnetoencephalography (MEG) in two 

case reports of the first patients we recorded sleeping overnight in the MEG. Finally, in 

chapter 6 I present the results of a study investigating the potential of a series of imag-

ing modalities (PET, SPECT, diffusion-weighted MRI, and MEG) in helping localise and 

differentiate a recently characterised histopathological entity, oligodendroglial hyper-

plasia, from focal cortical dysplasia. These studies together offer new hypotheses and 

directions of investigation that could lead to more quantitative tools to guide neuro-

surgical decision-making and improved patient outcomes.   
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Résumé 

La prise de décision en neurochirurgie est guidée par l'expérience chirurgicale et sou-

tenue par une vaste gamme d'outils utilisés dans l'évaluation préchirurgicale. Dans 

cette thèse, j'examine comment l'analyse prédictive et l'imagerie multimodale peuvent 

contribuer au diagnostic et au pronostic en neuro-oncologie et à l'évaluation préchi-

rurgicale de l'épilepsie pharmacorésistante. Je présente de nouveaux modèles d'ap-

prentissage statistique et une application pour la prédiction de la malignité des mé-

ningiomes et les statistiques de survie associées (chapitre 2). J'aborde également cer-

tains enjeux éthiques liés à l'application de l'intelligence artificielle (IA) aux diagnostics 

médicaux (chapitre 3), notamment la manière dont les systèmes d'IA peuvent être biai-

sés par les mêmes préjugés socioculturels qui façonnent les ensembles de données 

sur lesquels ces systèmes sont entraînés. En ce qui concerne l'imagerie multimodale 

appliquée à la chirurgie pour l'épilepsie, je présente dans le chapitre 4 une nouvelle 

application logicielle à code source ouvert pour l’étude individuelle de la tomographie 

par émission monophonique critique—intercritique (SISCOM). Dans le chapitre 5, 

j'aborde l'analyse et l'interprétation de la magnétoencéphalographie (MEG) critique 

dans les deux premiers patients que nous avons enregistrés au cours d'une nuit pen-

dant qu'ils dormaient dans la MEG. Finalement, dans le chapitre 6, je présente les ré-

sultats d'une étude sur le potentiel d’une approche basée sur l’imagerie multimodale 

(TEP, TEMP, IRM de diffusion et MEG) pour aider à localiser et à différencier une entité 
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histopathologique récemment caractérisée, l'hyperplasie oligodendrogliale, de la dys-

plasie corticale focale. Ensemble, ces études offrent de nouvelles hypothèses et direc-

tions de recherche qui pourraient conduire à des outils plus quantitatifs pour guider la 

prise de décision en neurochirurgie et améliorer les résultats chirurgicaux. 
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Original contributions 

Chapters 2, 3, 4, 5, and 6 constitute original scholarship and are published (chapter 2) 

or have been submitted for publication and are currently under review (Chapters 3-6). 

 In chapter 1, I introduce the rationale for this thesis and discuss the relevant lit-

erature. I further provide a concise overview of the background knowledge relating to 

the work presented in this thesis. 

 Chapter 2 describes original work on new machine learning models designed 

to assist with the diagnosis and prognosis of meningiomas. The study represents, to 

our knowledge, the first application of these methods to the meningioma cases from 

the Surveillance, Epidemiology, and End Results population-based US registry 

(>60,000 patients). I additionally extended previous work on balanced ensemble clas-

sifiers with the Balanced Logistic Regression-Random Forests (BLR-RF) model pre-

sented in this paper. Finally, I programmed a new smartphone web app to accompany 

the manuscript. The code of this app is made freely available under an open-source 

licence (https://github.com/jeremymoreau/meningioma).  

 Chapter 3 is a commentary on ethical issues relating to some less discussed as-

pects of the application of artificial intelligence (AI) to medical diagnostics. In this chap-

ter, I report original statistics on geographical disparities in funding and publication 

output in the field of AI-assisted medical diagnostics. I also provide theoretical case 

examples and discuss recent notable instances of possible systemic bias in machine 

learning classifiers used in this context. 

https://github.com/jeremymoreau/meningioma
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 Chapter 4 describes a new software program I wrote for computing subtraction 

ictal single-photon emission CT coregistered to MRI (SISCOM). SISCOM is a well-es-

tablished technique for quantitative analysis of ictal vs interictal SPECT images 1, but 

the implementation of the software is entirely new and is intended to offer a user-

friendly tool to perform these analyses. The code of this app is made freely available 

under an open-source licence (https://github.com/jeremymoreau/mnisiscom).  

 Chapter 5 presents two new case reports of children with drug-resistant epilepsy 

in whom we recorded seizures while they underwent an overnight magnetoenceph-

alography (MEG) recording. This is to our knowledge, the first published report of ictal 

recordings in children who spent a night sleeping in the MEG. 

 Chapter 6 describes original results from a study on multimodal imaging per-

formed in a group of drug-resistant epilepsy patients in whom we identified a newly 

characterised histopathological entity, oligodendroglial hyperplasia (OH). In this study 

we provided the first evidence, to our knowledge, that OH can be radiologically differ-

entiated from focal cortical dysplasia type II using diffusion-weighted MRI. We further 

demonstrate that fluorodeoxyglucose positron emission tomography (FDG PET) and 

MEG imaging of focal slowing could also be particularly valuable in localising OH. 

 Finally, chapter 7 provides a general discussion of the results in chapters 2-6. I 

discuss the overall objectives met in the thesis as well as potential paths for future de-

velopments. I also provide a brief summary of the overall findings presented in the 

thesis and final conclusions on the aggregate body of work. 

https://github.com/jeremymoreau/mnisiscom
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1 
Chapter 1 – Introduction 

I would like to see the day when somebody would be appointed surgeon somewhere who had 
no hands, for the operative part is the least part of the work.  

— Harvey W. Cushing 

 

The first task of neurosurgery is to identify which patients to operate, and which pa-

tients not to operate. Then, one must decide what needs to be resected, and indeed, 

what must not be resected. While conceptually simple, these two tasks require consid-

erable preparation and forethought. This decision-making process is made based on 

the surgeon’s experience and informed by an increasingly sophisticated armamentar-

ium of tools including multimodal preoperative imaging 2,3, intraoperative imaging 4 

and neurophysiological monitoring 5, and neuronavigation 6,7. The range of available 

instruments continues to advance, and new developments in artificial intelligence (AI) 

8–10 and novel applications of imaging 3,11 are improving patient outcomes and helping 

streamline preoperative neurosurgical planning. The overarching aim of this thesis is 

to assist with this decision-making process. I focus specifically on applications of these 

methods to the presurgical evaluation in neuro-oncology (chapter 2) and epilepsy sur-

gery (chapters 4-6).  
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 The thesis is structured in two major parts. The first discusses applications of 

machine learning to basic clinical data to aid with the diagnosis and prognosis of men-

ingiomas, as well as some of the ethical considerations involved with the application of 

AI to medical diagnostics. The second deals specifically with novel approaches in ap-

plying multimodal imaging in the presurgical evaluation of children with drug-resistant 

epilepsy. A major aim of the thesis is also to provide a path to translatability by provid-

ing software tools to aid with the presurgical evaluation, whenever relevant. In the next 

sections, I provide some general context and background on prior work investigating 

ways in which AI and multimodal imaging can assist in the presurgical evaluation. 

These topics are necessarily broad in scope and I therefore aim in particular to refer-

ence key developments in the field and provide background knowledge of fundamen-

tal concepts discussed in later chapters. 

Predictive analytics 

The term “predictive analytics” encompasses a broad range of statistical techniques 

including machine learning, deep learning, AI, as well as more traditional methods 

such as linear and logistic regression 12. In general terms, the overall aim of predictive 

analytics is to use past data to make predictions about the future 12. As applied to med-

ical diagnostics, purpose of predictive analytics is to provide health outcome predic-

tions for individual patients (or groups of patients in the case of public health) based 

on a body of historical patient data 13. The terms machine learning, deep learning, and 
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AI are frequently used somewhat interchangeably, but there are some notable differ-

ences. It could be said that AI is the broadest category which encompasses both ma-

chine learning and deep learning, while deep learning itself represents a subset of 

techniques falling under the category of machine learning. 

AI refers simply to any computer-based decision-making system. Early AI sys-

tems relied on pre-programmed directives manually written by a human programmer 

(e.g. if tumour size > 50 mm, diagnosis = “malignant”). So-called “expert systems” were 

initially the subject of great enthusiasm in the 1960s and early 1970s 14, but failed to 

live up to initial expectations in applications to healthcare 15 and many other fields 16. 

Different explanations for this failure have been discussed, including social factors and 

technological limitations 15, but one major drawback of these early AI systems was the 

inability of rule-based decision-making to successfully account for and adapt to the 

uncertain, incomplete, and “messy” data that characterise real-world clinical problems. 

The dampening of this initial enthusiasm led to the first “AI winter” in the 1980s, which 

was characterised by funding cuts and diminished research output in the field of artifi-

cial intelligence research 17. 

 In contrast to these early developments, the recent resurgence of interest in AI 

has for the most part been characterised by the application of automated “machine 

learning” algorithms. Unlike rule-based decision-making systems, these algorithms are 

never explicitly instructed on how to solve a problem, but rather are designed to learn 

solutions from vast numbers of case examples 10. Deep learning refers to a subset of 

machine learning methods, artificial neural networks with many intermediary layers, 
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that have been found to be particularly suitable for dealing with large datasets of un-

structured data 18. The decision on whether “deep learning” or other machine learning 

methods are more suitable for any given problem depends mostly on the type of data 

one needs to work with. For instance, deep learning would be a better choice if the 

input data consisted of thousands of MRI scans of patients with a brain tumour. On the 

other hand, more classical machine learning methods, such as support vector ma-

chines or random forests 12, are typically preferable when dealing with more structured 

information. The basic clinical variables used in the models discussed in chapter 2 (e.g. 

tumour size and location, age, type of surgery) are an example of these kinds of more 

structured datasets. In either case, machine learning algorithms for the most part fall 

under two general categories based on the type of question they are used to answer, 

supervised and unsupervised learning. 

Supervised machine learning 

As an analogy, take a first-year radiology resident. Throughout their residency they will 

be exposed to thousands of scans and will be required to dictate reports under the 

supervision of a staff radiologist. The staff radiologist will tell the resident when they 

are right or wrong, thus shaping and gradually improving the resident’s internal diag-

nostic “model”. Supervised machine learning works around the same principle. The 

model is trained on thousands of examples for which the correct answer is known (e.g. 

1000 images of dogs and cats, with labels indicating whether the image is of a dog or 

a cat), and then asked to make predictions for unlabelled examples. The performance 

of the model is then judged based on the accuracy of these predictions. Supervised 
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learning represents the bulk of the research on applications of machine to medical di-

agnostics 19, and is also the type of machine learning discussed in chapter 2. 

Unsupervised machine learning 

Returning, to our analogy, take again our first-year radiology resident who is this time 

tasked with looking at 1000 MRIs of patients with a meningioma and then grouping 

them into 3 different categories based on appearance. There are many ways they could 

decide to perform this task. They could decide to classify the tumours based on size, 

on localisation, or any other imaging characteristics. The only defining characteristic of 

each of the 3 groups is that the meningiomas within each group would be similar to 

each other in some way.  Unsupervised machine learning is as the name suggests, “un-

supervised”, in the sense that no labelled training examples are provided. Unsuper-

vised learning can help find natural groupings in datasets and is often also used as a 

method of selecting relevant features (i.e. predictor/independent variables) of interest 

to be used in further analyses 20.  As an example of unsupervised learning in practice, 

one study used these methods to find general groupings of research topics (e.g. clini-

cal, pain, tumour, complications) in spine surgery by automatically clustering 38 years 

of spine-related literature 21. 

Applications of machine learning in neurosurgery 

Research interest in applications of machine learning in medicine has grown exponen-

tially in the past 5-years (see chapter 3, Fig. 3-1 for reference). Neurosurgery has been 

no exception. Applications in neurosurgery have included diagnosing and grading 
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brain tumours 22–26, localising epileptogenic cortex 27–31, evaluating surgical perfor-

mance 32, and predicting post-surgical outcomes 9,33–35. Particularly exciting recent de-

velopments include one study that used machine learning to provide near real-time 

intra-operative brain tumour diagnosis that was non-inferior to pathologists’ interpre-

tations of standard histological images 26. Another study developed an AI-system de-

signed to analyse CT images to help triage acute neurological events, such as stroke 

and hydrocephalus, in order to predict urgency and reduce time to diagnosis and treat-

ment 36. While human radiologists still had greater accuracy, the AI in this study was 

150 times faster in providing an interpretation of the CT study (1.2s vs. 177s on average) 

36. With continued model refinements and increasingly large datasets on which to train 

machine learning systems, we can expect that these kinds of tools will start making 

progressively greater impact in everyday neurosurgical care within the next decade 9,37–

39. It is most likely that this contribution will come in the form of a partnership between 

human and machine, whereby AI can help provide rapid and accurate diagnostic and 

prognostic workflows, thereby freeing time for human physicians and surgeons to fo-

cus on other tasks 8. 

  AI already contributes to timesaving in small everyday tasks such as by enabling 

the speech-to-text conversion in dictation software or by sorting out junk email mes-

sages from our inboxes. One key characteristic of many of the already successful real-

world applications of machine learning has been the very big datasets available to train 

these models. For instance, AlphaGo, the first AI to beat the human world champion at 

the game of Go, was initially trained on a database of over 29 million positions from 
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160,000 games played by high-ranking human players 40. A similar trend can be ob-

served in studies applying machine learning in neurosurgery. The AI models trained in 

the first study on intraoperative brain tumour diagnosis cited above for example was 

trained using over 2.5 million histological specimen samples, while the second study 

on CT-based triaging of acute neurological events was trained on a dataset of over 

30,000 CT images. While AI can be successful without “big data” 41, large datasets do 

often improve model performance. Indeed, in many practical scenarios, simply collect-

ing more—and more diverse—data often yields better results than what can be achieved 

by algorithmic tweaking alone. Thankfully, healthcare data is not a scarce resource. 

One estimate put the total volume of healthcare data in 2013 at 153 exabytes (1 exa-

byte = 1 million terabytes, 1 terabyte ≈ 100,000 1mm isotropic T1 MRIs) and projected 

that that number could reach 2,314 exabytes by 2020 42. The challenge, however, re-

mains in curating these data in usable and accessible formats to enable AI research. 

Much of healthcare data consists of unstructured information (notes, charts, etc.) stored 

on a vast array of various, often incompatible, electronic health records and picture 

archiving and communication systems 10,43,44. Some of the early work I contributed to in 

this PhD 45–48 had for aim to help in this data consolidation effort, but still larger-scale 

collaborations and policy discussions will need to be had in order to unlock the maxi-

mum potential for impact of these data. 

Finally, I feel we must consider the ethical implications of machine learning and 

big data as applied to neurosurgery and healthcare in general. While the development 
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of new AI has tremendous potential to impact patient care, reduce wait times, and im-

prove outcomes, there have been valid criticisms of how some of this new technology 

is being introduced 49–51. Concerns have been raised around issues of consent 52,53, pri-

vacy 54,55, and data ownership 55–57. A more in-depth discussion of some of these aspects 

is given in chapter 3.  

Paediatric epilepsy surgery 

Epilepsy affects over 10 million children worldwide, and about a third of those requir-

ing therapy will fail to respond to pharmacological treatment 58. Resection of epilepto-

genic tissue can eliminate or decrease seizure frequency 59 in many of these patients. 

Moreover, early treatment in children is associated with better cognitive and develop-

mental outcomes 60,61. Quick and accurate presurgical evaluation is thus crucial. 

Definitions 

A number of terms are commonly used in discussing the presurgical evaluation for 

drug-resistant epilepsy. First, drug-resistance is typically defined as having failed two 

or more appropriately-selected antiepileptic drugs (AED), after which the chances of a 

third AED controlling seizures is greatly reduced 62. Key concepts also include the epi-

leptogenic zone, seizure onset zone, and irritative zone, which are illustrated in Fig. 1-

1 below. 
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Fig. 1-1 The epileptogenic, seizure onset, and irritative zones. EZ: Epileptogenic zone, SOZ: Seizure 

Onset Zone, IZ: Irritative zone. Original illustration based on anatomical photographs by Crawford & 

McBurney 63 

The epileptogenic zone (EZ) is defined as the area of cortex that needs to be resected 

in order for the patient to achieve seizure freedom 64. It is a theoretical concept in the 

sense that there is presently no perfect way of delineating the EZ 64. Whether or not an 

EZ truly exists in all focal epilepsy patients remains a matter of debate, and ongoing 

research on the concept of epileptic “networks” 65–68 may provide further insight into 

why some patients fail to achieve seizure freedom post-surgery. In the present day, 
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however, the aphorism, “you can’t resect a network” still holds and the EZ provides a 

practical, if perhaps limited, conceptual framework in guiding the presurgical evalua-

tion. While the EZ remains a theoretical concept, the seizure onset zone (SOZ) corre-

sponds, more tangibly, to the area of cortex from which seizures arise 64. The SOZ can 

be grossly localised on the basis of ictal scalp EEG or, more precisely, with the help of 

invasive stereo-EEG (SEEG) or subdural grids 64. Ictal magnetoencephalography, dis-

cussed in chapter 6, could also be a way to more precisely define the SOZ noninva-

sively 69. Similarly to the SOZ, the irritative zone (IZ) corresponds to area of cortex from 

which interictal epileptiform discharges (IEDs, “spikes”) arise. While the IZ generally 

overlaps with the SOZ, it can involve a more extensive area of cortex or, at times, even 

include secondary areas at a distance from the SOZ 70. The IZ is still valuable in approx-

imating the EZ, but the SOZ is generally considered the gold standard 64. In addition to 

the SOZ and IZ, two additional zones worth mentioning are the lesional zone (LZ) and 

the functional deficit zone (FDZ). The LZ corresponds to the area in which a structural 

lesion is visible (typically as viewed on MRI), whereas the FDZ relates to the area of 

cortex that is functionally abnormal in the interictal period (typically as measured by 

18F-FDG PET hypometabolism or SPECT hypoperfusion). Finally, the expression “elo-

quent cortex” is often used to refer to areas of cortex which if resected would lead to 

severe neurological deficits (e.g. language, vision, motor function, etc.) 64,71,72. 

Outcomes 

The first randomised control trial of surgery in children with drug-resistant epilepsy 

showed that patients who underwent epilepsy surgery had, at 12 months postop, 
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higher rates of seizure freedom (77%) than patients in the medical-therapy group (7%) 

and also scored significantly better on measures of behaviour and quality of life 73. This 

is consistent with the results of a recent systematic review and meta-analysis, which 

included 258 studies, and concluded that the odds ratio (OR) of seizure freedom for 

surgery vs. medical therapy was 6.49 74. This meta-analysis reported seizure freedom 

rates of 64.8% at 1-year postop and 60.3% at 5-years postop 74. Seizure freedom rates 

were greater for hemispheric surgery (74.7%) and temporal lobe surgery (73.3%) than 

for extratemporal surgical cases (60.2%). Likewise, tumours (79.8%) and mesial tem-

poral sclerosis (77.9%) had the highest rates of seizure freedom, while malformations 

of cortical development had reported seizure-free percentages of 57.1% 74. 

 While seizure-freedom remains the most reported outcome, a growing number 

of studies have recognised the importance of measuring the impact of surgery on cog-

nition, behaviour, and quality of life (QOL). One recent meta-analysis found that chil-

dren who achieved seizure-freedom had significantly improved QOL post-operatively 

or as compared to medically treated controls 75. The study further found an average 

2.26-point intelligence quotient (IQ) increase postop as compared to preop and a 

10.61-point increase as compared to medically treated controls (pooled OR of 9.51 for 

IQ improvement in surgically vs. medically treated patients) 75. Further studies have re-

ported that earlier surgical treatment in children is associated with better cognitive and 

developmental outcomes 60,61,70 
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Multimodal imaging & electrophysiology in drug-resistant epilepsy 

On October 1st, 1971 at Atkinson Morley’s Hospital in London, England, a woman with 

a suspected brain tumour underwent the first human CT scan on an experimental scan-

ner devised by British engineer Godfrey Hounsfield 76,77. The acquired image was only 

80 × 80 pixels in size and took almost five minutes to produce, but this event would 

mark the beginning of a new era in neurology and neurosurgery. The first large case-

series of CT in epilepsy were reported by Gastaut et al. in 1975 78. Of the 1,702 patients 

with epilepsy included in these studies, atrophic lesions were reported in 56% of cases 

78. The introduction of the x-ray by Roentgen in 1895 79, of pneumo-encephalography 

by Dandy in 1918 80,81, of EEG by Berger in 1924 82,83, of PET by Sweet & Brownell in 

1953 84,85, and finally of MRI by Mansfield in 1977 86 are some other noteworthy land-

marks in the history of neuroimaging in epilepsy 76. In most centres today, a combina-

tion of EEG, MRI, PET, SPECT, and occasionally MEG forms the standard of care in terms 

of noninvasive studies used in the presurgical evaluation for drug-resistant epilepsy 3. 

MRI 

MRI remains the primary method used to outline the lesional zone 3. T1, T2, and FLAIR 

sequences form part of standard dedicated MRI epilepsy protocols 87. Seizure freedom 

rates have been reported to be higher in children with a visible lesion on standard MRI 

(OR = 0.54), though this is also dependent on pathology 74. For instance, patients with 

a nonlesional MRI had on average higher seizure freedom rates (51.5%) than patients 

with a hypothalamic hamartoma (45.9%) 74. Additional advanced MRI techniques in-
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cluding diffusion-weighted MRI (water diffusion/white matter) 88–90, arterial spin label-

ling (blood perfusion) 91–94, MRI spectroscopy (metabolism) 95, and EEG-functional MRI 

(EEG-fMRI, interictal spikes) 96–98 are also the target of ongoing research, but are not 

presently as broadly utilised across most centres.  Another exciting development going 

forward will be the application of ultra-high field 7T MRI. In one study, 7T MRI (including 

0.25 x 0.25 x 2mm T2*W GRE and 0.7mm isotropic FLAIR sequences) identified a struc-

tural lesion in 6/21 (21%) patients who had no visible lesions on a previous conven-

tional MRI 99.  Nonetheless, presently with routine clinical MRI protocols, 15-30% of pa-

tients with drug-resistant focal epilepsy do not have visible lesions on MRI 3. Yet, 51.5% 

of these “nonlesional” cases  still achieve seizure freedom following surgery 74. In these 

cases, as well as in the even greater proportion of patients who have only poorly de-

fined/subtle lesions on MRI, additional imaging is critically important in helping to de-

fine a good presurgical hypothesis 3. 

PET 
18F-Fluorodeoxyglucose (FDG) is the most commonly used radiotracer in PET studies 

for the presurgical evaluation of drug-resistant epilepsy 100. Hypointensities on FDG 

PET indicate lower glucose uptake/metabolism and are used as a marker of the func-

tional deficit zone 100. In one study of 54 children with drug-resistant epilepsy who un-

derwent both FDG PET and SISCOM (see SPECT section below), FDG PET was localis-

ing in 31/54 (57%) of patients, as compared to 36/54 (67%) for SISCOM and 21/54 

(39%) for MRI 101. In the 33 MRI-negative cases, FDG PET or SISCOM were found to be 

concordant with the presumed epileptogenic zone in 22/33 (67%) patients 101. While 
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FDG PET remains the standard of care, a number of studies have explored the use of 

other radiopharmaceuticals including 11C-ABP688 102 and 11C-AMT 103,104, which could 

be superior to standard FDG PET in some cases. While these newer tracers have the 

potential to lead to better diagnostic yields for PET imaging in epilepsy, the require-

ment for an on-site cyclotron due to the short half-life of carbon-11 (20 minutes) is a 

current barrier to broader adoption 103. 

SPECT 

SPECT measures blood flow (perfusion) using a gamma-emitting radiotracer (e.g. 

99mTechnetium-ECD) 105. It is typically the only imaging modality used in the presurgical 

evaluation for which attempts are made to obtain both interictal and ictal scans 3,105. 

Seizures are generally associated with increased blood flow (hyperperfusion) within 

epileptic cortex, while the interictal state is characterised by hypoperfusion 106. Ob-

served interictal hypoperfusion is, however, often more subtle than ictal hyperperfu-

sion 106. When both interictal and ictal SPECT scans are available, a technique called 

subtraction ictal single-photon emission CT coregistered to MRI (SISCOM) 1 has been 

shown to be particularly valuable in helping to localise the epileptogenic zone 101,107–109. 

In one prospective study, SISCOM was found to be concordant with the site of surgery 

in 23/28 (82%) of patients 108. Timing of the tracer injection however remains an im-

portant determinant of the localisation sensitivity of SISCOM  107,108. Continuous video-

EEG monitoring and auto-injectors have been proposed as a method of reducing in-

jection latencies 110,111.  
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EEG & MEG 

EEG and MEG both measure the weak electric potentials (EEG) or magnetic fields (MEG) 

generated principally by the summated postsynaptic potentials of large ensembles of 

synchronously firing pyramidal neurons 112,113. Unlike imaging methods like MRI or PET, 

the spatial resolution of EEG and MEG is not uniform, with deeper sources of electrical 

activity being more difficult to detect 114. In the context of epilepsy, it has been esti-

mated that detection of an interictal epileptiform discharge with MEG requires about 

3-4 cm2 of synchronously firing cortex, as compared to 6-20 cm2 for EEG 115.  Beyond 

the raw traces obtained from MEG or EEG (see chapter 5, Fig. 5-1 for example), a tech-

nique called EEG/MEG source imaging (ESI or MSI) allows for the functional data from 

a high-density EEG (~64 or more channels/electrodes) or MEG to be combined with a 

model of an individual's head derived from an anatomical MRI 116. Using this model and 

by solving a so called inverse problem 112, it is possible to estimate the location of a 

neural source (e.g. an interictal spike) within the brain. 

In a retrospective study of 455 patients with drug-resistant epilepsies, Stefan et 

al. reported that MEG source imaging of interictal spikes accurately localised the 

treated lobe in 89% of 131 patients who underwent surgery 117. They further reported 

that MEG provided information beyond routine clinical investigations (video-EEG, MRI, 

SPECT, PET) in 35% of a subgroup of 104 cases, with "crucial" information being pro-

vided in 11%. Similarly, a more recent case-series of 132 surgical epilepsy patients re-

ported a 66% rate of concordance of MEG with the resection. In this case series, 85% 

of patients in whom MEG was concordant with the resection volume achieved seizure 
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freedom, as compared to 70% of patients overall 118. One recent prospective study also 

looked at combined EEG/MEG source imaging (EMSI) in 141 patients and reported a 

localisation accuracy of 44-57%, which was not significantly different from MRI (49-76%) 

or PET (54-86%) 119. EMSI also provided new clinically-useful information in 34% of pa-

tients 119. While patients are frequently admitted for long-term video-EEG recordings 

to capture seizures on scalp EEG 64, ictal MEG is rarely captured because of the rela-

tively short duration of these recordings. When available, however, there is early evi-

dence that these ictal MEG recordings can provide reliable localisation of the SOZ with 

greater spatial resolution than scalp EEG 69. 

Invasive EEG (SEEG/subdural grids) 

Finally, while noninvasive imaging can lead directly to a resection, a second phase in-

vestigation with invasive EEG is sometimes required, especially in MRI-negative cases, 

to verify and refine the presurgical hypothesis 70. SEEG, first popularised by Talairach 

and Bancaud in the 1960s 120, and subdural strips/grids, introduced by Wyler et al. in 

the 1980s 121, are the two main types of invasive EEG. Long the standard in many Euro-

pean centres (and the MNI), SEEG has recently been rapidly gaining in popularity in 

North America as well 122, in part due to the lower rate of complications 123 and the 

advent of robot-guided SEEG 124. In one recent meta-analysis, the pooled rate of any 

complications for SEEG was 1.3% 125. This compares favourably to the pooled rate of 

4.0% for only haemorrhagic complications reported in another meta-analysis of com-

plications related to subdural grid implantation 126.  In another recent systematic review, 

SEEG was associated with lower morbidity (4.8% vs. 15.5%) and mortality (0.2% vs. 
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0.4%) as compared to subdural grids 127. In terms of seizure-freedom, however, there 

is insufficient evidence to favour either SEEG or subdural grids, and further research is 

needed to identify which patients might more specifically benefit from either of these 

two techniques 127–129. 
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2 
Chapter 2 – Individual-patient prediction of meningioma 

malignancy and survival using the Surveillance, 
Epidemiology, and End Results database 

All models are wrong, but some are useful.  

— George E. P. Box 

Preface 

The manuscript in this chapter describes the application of machine learning methods 

to the diagnosis and prognosis of meningiomas. It touches on two main themes of the 

thesis, how predictive analytics applied to big datasets can aid decision-making in neu-

rosurgery and how apps can help translate these tools to real-world practice. The man-

uscript was published as: 

Moreau JT, Hankinson TC, Baillet S, Dudley RWR. Individual-patient prediction of 

meningioma malignancy and survival using the Surveillance, Epidemiology, and 

End Results database. npj Digital Medicine. 2020;3(1):12. 

www.nature.com/articles/s41746-020-0219-5 

  

https://www.nature.com/articles/s41746-020-0219-5
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Abstract 

Meningiomas are known to have relatively lower aggressiveness and better outcomes 

than other CNS tumours. However, there is considerable overlap between clinical and 

radiological features characterizing benign, atypical, and malignant tumours. In this 

study, we developed methods and a practical app designed to assist with the diagnosis 

and prognosis of meningiomas. Statistical learning models were trained and validated 

on 62,844 patients from the Surveillance, Epidemiology, and End Results database. We 

used balanced logistic regression-random forest ensemble classifiers and proportional 

hazards models to learn multivariate patterns of association between malignancy, sur-

vival, and a series of basic clinical variables—such as tumour size, location, and surgical 

procedure. We demonstrate that our models are capable of predicting meaningful in-

dividual-specific clinical outcome variables and show good generalizability across 16 

SEER registries. A free smartphone and web application is provided for readers to ac-

cess and test the predictive models (www.meningioma.app). Future model improve-

ments and prospective replication will be necessary to demonstrate true clinical utility. 

Rather than being used in isolation, we expect that the proposed models will be inte-

grated into larger and more comprehensive models that integrate imaging and molec-

ular biomarkers. Whether for meningiomas or other tumours of the CNS, the power of 

these methods to make individual-patient predictions could lead to improved diagno-

sis, patient counselling, and outcomes. 
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Introduction 

Meningiomas are the most common primary CNS tumour, with an incidence of 8.14 

per 100,000 population 130. They typically present with gradual onset of symptoms in 

the later decades of life and have generally favourable outcomes relative to other CNS 

tumours 131. However, there is a great deal of variability in both aggressiveness and 

outcomes 132. The decision to opt for a 'watch-and-wait' approach is made in around 

half of patients 133, but the process leading to this decision making remains challenging 

and often relies on simple heuristics, which may or may not be based on up to date 

evidence. The ability to precisely predict meningioma malignancy and survival beyond 

this standard would therefore be of clinical significance. 

Many efforts to date in applying machine learning methods to the detection and 

grading of meningiomas have focussed on MRI imaging characteristics in small sam-

ples of patients. In this study, we develop and validate new predictive models using a 

set of basic clinical variables available in the Surveillance, Epidemiology, and End Re-

sults (SEER) database to predict meningioma malignancy and survival after specific 

treatments. The models are trained and tested on 62,844 patients included in SEER, an 

authoritative population-based cancer dataset with ~28% coverage of the US popula-

tion 134. A new smartphone and web app was also developed to accompany this man-

uscript (www.meningioma.app). 

http://www.meningioma.app/
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Rather than being used in isolation, we expect that the proposed models will be inte-

grated into larger and more comprehensive models that will integrate imaging and 

molecular biomarkers. The source code of the meningioma.app also provides an easy 

entry-point for future investigators to translate predictive models for broader dissemi-

nation. 

Results 

Malignancy 

Descriptive univariate statistical results of features initially included in the Balanced Lo-

gistic Regression-Random Forests (BLR-RF) model are presented in. No inferential sta-

tistical tests were performed as the goal of these exploratory analyses was solely to 

identify features with potential discriminatory value in relation to the outcome variables. 

Younger patients, and patients below the age of 20 especially, had relatively more ma-

lignant and borderline malignant meningiomas than older patients (Fig. 2-1a). Con-

versely, the relative prevalence of benign meningiomas was higher in older patients. 

In absolute numbers, however, benign meningiomas were much more frequent than 

borderline malignant or malignant meningiomas (Fig. 2-1c). Larger tumours were more 

malignant than smaller tumours (Fig 2-1b), especially those larger than 30mm, but with 

considerable overlap. Specifically, 66% of benign meningiomas in this sample were 

smaller than 3 cm (94% <6 cm), whereas 82% of malignant and borderline malignant 

ones were larger than 3 cm (22% > 6 cm).  
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Meningiomas were 2.8 times more frequent in females than in males, but the 

proportion of borderline malignant and malignant meningiomas was twice as great in 

men (Fig. 2-1e). Relative frequency of borderline malignant and malignant meningio-

mas was slightly higher in patients identified as black or "other" than in patients identi-

fied as white (Fig. 2-1f). The proportion of malignant or borderline malignant tumours 

was greater for tumours categorized as bilateral than for midline or unilateral tumours 

(Fig. 2-1d). This is likely an effect of tumour size, as discussed below. Meningiomas 

categorized as localizing to "other" regions were more malignant than those localizing 

exclusively to the cerebral or spinal meninges (Fig. 2-1g). 84.7% of meningiomas in this 

"other" group were from ICD-O-3 topography code 71.x (Brain), whereas 13.5% were 

coded as 72.x (Spinal Cord and Other Central Nervous System), and 1.8% (10 patients) 

fell under 75.1/75.3 (Pituitary/Pineal glands). In total, 86.3% of 62,844 meningiomas in 

this sample localized to the cerebral meninges (C70.0), 3.2% to spinal meninges 

(C70.1), 9.6% to meninges not otherwise specified (C70.9), and only 0.9% to the "other" 

group. Given the more aggressive behaviour of intraparenchymal meningiomas 135 and 

the large proportion of meningiomas in this group localizing to C71.x ICD-O-3 topog-

raphy codes ("Brain", as opposed to C70.x, "Cerebral Meninges") we can speculate 
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that this "other" group could, at least in part, consist of intraparenchymal meningiomas. 

 

Fig. 2-1 Descriptive statistics for the malignancy outcome variable. Kernel density plots illustrate the 

distribution of benign, borderline malignant, and malignant meningiomas according to age at diagnosis 

(a) and tumour size (b). These kernel density plots are conceptually equivalent to histograms, but illus-

trate density (i.e. relative number of patients) as a continuous function of age/tumour size. Total number 

of meningiomas by WHO ICD-O-3 behaviour codes are shown in c. Absolute numbers and percentages 

of patients with benign, borderline malignant, and malignant meningiomas by subgroup are shown for 

laterality (d), sex (e), race (f), and primary tumour site (g).  

Survival 

The log hazard ratios of the survival model are presented in Fig. 2-2. There was an 

expected effect of age at diagnosis on probability of survival and increased tumour size 

was associated with worse survival. Malignant tumours predicted worse survival than 

borderline malignant tumours, and borderline malignant tumours worse survival than 

benign tumours. At the time of censoring, 76% of patients with a benign meningioma 

were alive (median age at diagnosis: 66) as compared to 80% of patients with a bor-

derline malignant tumour (median age at diagnosis: 60) and 61% of patients with a 
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malignant tumour (median age at diagnosis: 61). Surgeries coded as "55: Gross total 

resection", "30: Radical", and "22: Resection (spinal cord or nerve)" predicted the 

greatest improved survival relative to no surgery. Patients who underwent a "40: Partial 

resection of lobe", "21: Subtotal resection (brain)", or other surgery had a relatively 

smaller improvement in survival. Amongst patients who did not undergo surgery, pa-

tients for whom the surgery was contraindicated due to another condition and patients 

who refused surgery had worse survival relative to patients for whom surgery was not 

recommended. Patients identified as black had worse survival than non-black patients, 

males had worse survival than females, and uninsured patients worse survival than in-

sured patients. In the initial analyses, age at diagnosis, tumour size, sex, race, primary 

tumour site, and laterality were selected as features for both the malignancy and sur-

vival models. Additionally, surgical procedure, tumour behaviour (if available), insur-

ance status, and reason for no cancer-directed surgery were included in the survival 
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model alone. 

 

Fig. 2-2 Log hazard ratios for each of the features of the survival model. Negative values indicate pro-

portionally lower probability of death. Positive values indicate proportionally higher probability of death. 

Error bars represent 95% confidence intervals.  

Classifier scoring 

Illustration of the performance of the malignancy classifier is presented in Fig. 2-3. The 

model was scored on the test dataset consisting of 18,854 randomly assigned patients 

initially set aside, and a weighted F1 score of 0.82 was obtained. Fig. 2-3a is a confusion 
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matrix showing predicted vs. true class labels, normalized by row, at the selected 

thresholds used in the app.  

The calibration plot (Fig. 2-3e), precision-recall curve (Fig. 2-3f), and receiver 

operating characteristic (ROC) curve (Fig. 2-3g) are also provided. The calibration dia-

gram plots predicted probabilities against the true observed distribution of each class 

in the test dataset. The precision recall curve illustrates precision (positive predictive 

value) as a function of recall (sensitivity) and is complemented by the receiver operat-

ing characteristic (ROC) curve, which illustrates sensitivity and specificity. The average 

precision was 0.18 (SD: 0.01, chance level: 0.05) and the AUC was 0.83 (SD: 0.01, 

chance level: 0.5). At the selected thresholds, we obtained a sensitivity of 0.79 with 

specificity of 0.75 and a positive predictive value (PPV) of 0.14 with a negative predic-

tive value (NPV) of 0.99. Feature importance is illustrated in Fig. 2-3b. Tumour size and 

age at diagnosis were the two most important features in the malignancy model and 

were the only features retained in the final model. Fig. 2-3d shows the distribution of 

tumour behaviour categories relative to tumour size and age at diagnosis. 

Finally, figure 3c shows the learning curves (scored for AP and AUC), which illus-

trate the gain in classification performance attained by increasing the training sample. 

As a performance baseline, we also plot the classification performance of a "dummy" 

classifier that randomly generates predictions on the basis of the class distribution in 

the training set. For both AUC and AP, improvement in model performance plateaus 

around ~5,000-10,000 training examples (i.e. individual patients), after which addi-

tional training examples did not improve performance.  



Chapter 2 

43 

 

Fig. 2-3 Performance of the malignancy classifier. a, Confusion matrix illustrating predicted vs. true la-

bels for the malignancy classifier, as evaluated on the test set. Values are normalized across each row. B: 

Benign, BM/M: Borderline malignancy/Malignant. b, Drop-column feature importance showing de-

crease in classifier performance resulting from dropping a given feature, in decreasing order of im-

portance. The red dot indicates the mean and error bars 95% confidence intervals. c, Learning curves 

illustrating training (red line) and cross-validation (blue line) model performance (measured by Area un-

der the Receiver Operating Characteristic curve and Average Precision) as a function of the number of 

patients used in training the classifier. The point of convergence between the training and cross-valida-

tion curves indicates when adding more cases to the training no longer results in an improvement in 

performance. Shaded outlines represent 1 standard deviation. The grey line represents the performance 

of a dummy classifier, which randomly generates predictions on the basis of the class distribution in the 

training set. d, Bivariate kernel density plot (can be understood as a "2-dimensional histogram") of tu-

mour size vs. age at diagnosis. e, Calibration plot, as evaluated on the test set. f, Precision-Recall curve 

and Receiver Operating Characteristic curve (g) for Benign vs. Borderline Malignant/Malignant menin-

gioma classification. For f and g, the grey dashed line indicates chance level performance and the 

shaded outline represents the 95% confidence intervals.  

 Calibration and performance scoring results for the survival model are shown in 

Fig. 2-4. A calibration plot for the survival model, as evaluated on the test set, is shown 
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in Fig. 2-4a. Figure 2-4b shows time-de-

pendent average precision (APt) and area 

under the receiver operating characteristic 

curve (AUCt) 136,137 values for the survival 

model. For 5-year survival, overall APt was 

0.62 (95% CI: 0.60-0.64, event rate: 0.25) 

and AUCt was 0.81 (95% CI: 0.80-0.82). We 

also obtained a Uno's C-statistic 138 of 0.79. 

Uno's C in an improvement of Harrel's con-

cordance index 139, which has the added 

benefit of being independent of the study-

specific censoring distribution 138. A con-

cordance index of 0.5 represents chance-

level performance whereas a concordance 

index of 1 indicates perfect performance. In 

order to assess the generalizability of our 

classifiers we also subdivided the test set by 

SEER registry and computed the above re-

ported scores for each registry inde-

pendently (Table 2-1). 

 

  

Fig. 2-4 Calibration and performance of the sur-
vival model. a, Survival model calibration plot, as 

evaluated on the test set. b, Time-dependent 

area under the curve (AUCt, yellow line) and av-

erage-precision (APt, blue line) for the survival 

model, as evaluated on the test set. The event 

rate/chance level is represented by the dashed 

grey line. Shaded outlines represent 95% confi-

dence intervals. 
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Table 2-1. Summary of performance metrics for the malignancy and survival models per SEER registry 
(for all registries with at least 100 cases) as evaluated on the test 

 Malignancy model  Survival model 

SEER Registry F1(w) AP Chance 
level  

AUC  Uno's C AP(5y) Event 
rate 

AUC(5y) 

California ex-
cluding 
SF/SJM/LA 

0.80 0.18 0.06 0.82  0.81 0.66 0.26 0.81 

Seattle (Puget 
Sound) 

0.88 0.19 0.03 0.88  0.76 0.56 0.22 0.80 

Los Angeles 0.78 0.20 0.05 0.83  0.78 0.54 0.22 0.81 
New Jersey 0.81 0.18 0.05 0.83  0.79 0.71 0.27 0.83 
Kentucky 0.86 0.18 0.04 0.87  0.76 0.54 0.26 0.76 
Greater Geor-
gia 

0.82 0.15 0.05 0.84  0.72 0.64 0.26 0.80 

Detroit (Metro-
politan) 

0.82 0.15 0.05 0.79  0.76 0.69 0.31 0.81 

San Francisco 0.81 0.22 0.06 0.82  0.8 0.60 0.23 0.84 
Louisiana 0.82 0.10 0.04 0.80  0.85 0.71 0.30 0.78 
Iowa 0.86 0.42 0.07 0.87  0.76 0.64 0.23 0.80 
Utah 0.86 0.09 0.02 0.79  0.84 0.67 0.2 0.81 
Connecticut 0.80 0.19 0.05 0.84  0.81 0.59 0.21 0.83 
Atlanta (Metro-
politan) 

0.82 0.22 0.05 0.87  0.82 0.58 0.20 0.85 

San Jose 0.81 0.21 0.06 0.83  0.77 0.45 0.20 0.79 
New Mexico 0.77 0.14 0.05 0.74  0.79 0.61 0.23 0.86 
Hawaii 0.78 0.21 0.04 0.88  0.77 0.59 0.27 0.81 

Mean 0.82 0.19 0.05 0.83  0.79 0.61 0.24 0.81 

SD 0.03 0.07 0.01 0.04  0.04 0.07 0.03 0.03 

F1(w): weighted F1 score, AP: Average precision, Chance level/Event rate: baseline performance level 

for AP, AUC: Area under the receiver operating characteristic curve, Uno's C: Uno's concordance index, 

AP(5y): 5-years time-dependent average AP, AUC(5y): 5-years time-dependent AUC, SD: standard de-

viation 

Discussion 

We present the development and validation of two classifiers for the prediction of men-

ingioma malignancy and survival. Using only a very limited set of clinical variables, we 

demonstrate that our models are capable of predicting meaningful clinical outcomes. 

Previous studies using the SEER database have used various machine learning meth-

ods for diagnosis and prognosis purposes in breast 140–144 and lung cancers 145,146, but 
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have not applied these techniques to the SEER data on meningiomas. As compared to 

classical statistical approaches, the value of predictive modelling is the ability to obtain 

predictions for individual patients rather than group means. In the framework of levels 

of evidence for predictive biomarkers proposed by Woo et al. 147, the models intro-

duced here fall under the "development" stage and we emphasize the need for future 

prospective studies and model refinement using imaging and molecular data. The pre-

sent models represent a valuable performance baseline and proof of concept for future 

studies to surpass and could, for instance, be used in a Bayesian framework as priors 

to improve the performance of models developed solely on the basis of imaging or 

molecular features. We nonetheless believe that meningioma.app provides a unique 

entry point for furthering the translatability and transparency of machine learning mod-

els, which too often remain impossible for the average clinician to evaluate because of 

the time and programming knowledge this would require. Our intention here is to al-

low for clinicians to easily test out the models to provide feedback for improvement 

and generate interest in the possibilities of such tools. We also hope that this will in-

spire others to replicate our approach and have therefore made the source code of 

meningioma.app available under a free open-source license. 

We report on the meningioma data up to the November 2017 SEER release, but 

our observational results are broadly consistent with what has been reported in previ-

ous epidemiological literature on meningiomas. From 2004 to 2010, Kshettry et al. re-

ported that WHO grade II and III meningiomas accounted for 4.2% and 1.2% of newly 
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diagnosed meningiomas, respectively 148. Likewise, after exclusions, we identified a to-

tal of 62,844 meningiomas for the period between 2004 and 2015, of which 4.0% were 

coded as borderline malignant and 0.9% as malignant. As in our previous work, we 

found that while paediatric meningiomas may include relatively more aggressive sub-

types, young age is overall associated with reduced all-cause mortality 133. In regard to 

sex, across all ages overall, meningiomas were more frequent in females than in males, 

but malignancy 148 and mortality 132,149,150 were greater in males than females. Also con-

cordant with previous reports, black race and larger tumour size were found to be ad-

verse prognostic factors 132,151,152. Regarding lateralisation, we found that the propor-

tion of malignant/borderline malignant tumours was greater for bilateral meningiomas. 

This effect is presumably explained by size as bilateral tumours were on average larger 

(41.5 mm) than midline (30.0 mm) or unilateral (27.2 mm) tumours. Gross total resec-

tion was also found to be a strong predictor of longer survival 132,150,152. Additionally, in 

patients who did not undergo surgery, we found differences in survival based on the 

reason why no cancer-directed surgery was performed, with relatively worse survival in 

patients who refused surgery or for whom surgery was contraindicated due to another 

condition as compared to patients for whom surgery was not recommended. We also 

found, as expected, that uninsured patients had worse survival than insured patients. 

As compared to previous studies of meningiomas in SEER, our present study is 

chiefly differentiated by the application of statistical learning methods. Specifically, we 

trained an ensemble voting classifier using a random undersampling procedure in-

spired by the Balanced Random Forest algorithm 153 and proportional hazards models 
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154,155 to predict malignancy and survival. Ensemble classifiers often outperform any 

classifier used independently and also can help reduce the risk of overfitting the train-

ing data 156. In this study, we found that the method indeed did help produce a better 

calibrated model while also marginally improving classification performance over ei-

ther balanced random forest or balanced logistic regression used alone (Supplemen-

tary Figures 2-1 & 2-2). The results in Fig. 2-3e indicate that the model is well-calibrated 

(e.g. a predicted probability of 20% that a meningioma is non-benign suggests a true 

20% chance that the meningioma is indeed non-benign), but does not make predic-

tions with high probability values. This is consistent with the classification accuracy of 

the model, but is also in part due to very imbalanced base class distribution in this 

dataset; any randomly selected meningioma has about a 95% chance of being benign 

and, conversely, only a 5% chance of being non-benign. 

An intrinsic advantage of ensemble classifiers is the ability not only to provide a 

binary prediction of the predicted outcome, but also to provide probability estimates 

by calculating the proportion of votes in the ensemble (e.g. if 50 of 100 base classifiers 

in the ensemble predict one outcome, the predicted probability estimate is 50%). This 

is illustrated together with individualized survival curves for an example 56-year-old 

man in the screenshots of our app shown in Fig. 2-5. A second calibration step was 

however necessary to provide well-calibrated probability estimates for the malignancy 

classifier, as discussed in the Methods below. One important consideration is that the 

provided individualized survival curves should only be used to estimate survival of a 
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patient for whom a specific treatment course has been decided and not to guide treat-

ment decisions for that specific patient. While perhaps a seemingly subtle interpreta-

tion difference, the second use would likely be invalid due to probable patient selec-

tion effects in SEER (e.g. the patients who did not undergo surgery are not the same 

patients who received a gross total resection). Our smartphone optimized web app 

(www.meningioma.app), allows inputting basic clinical details for any new patient to 

obtain straightforward predictions of malignancy and survival. The details entered into 

the app are run through exactly the same models described in this paper, but without 

the need for any advanced technical or programming knowledge. 

http://www.meningioma.app/
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Fig. 2-5 Example predicted malignancy and survival curves for an insured 56-year-old white man with 
a unilateral 54 mm wide meningioma localizing to the cerebral meninges. Try the app at www.menin-

gioma.app  

Previous studies have used classifiers for the detection and grading of meningi-

omas and other CNS tumours, but these have almost exclusively focused on MRI 24,157 

or histopathological 158 imaging characteristics to drive their predictions. We also ex-

tend classical survival analysis methods to the machine learning framework and 

demonstrate how proportional hazard ratios can be used to create individualized pa-

tient-specific survival curves (also illustrated in Fig. 2-5). While predictive modelling of 
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imaging and molecular-genetic profiles should undoubtedly form part of the effort for 

more accurate diagnostic and prognostic tools 159, we demonstrate here that the infor-

mational value to be gained from even the simplest of clinical variables is not to be 

ignored. Moreover, we position the value of such a tool as being of particular relevance 

at the pre-biopsy/surgery stage, which is of particular interest in the case of meningio-

mas where only roughly half of tumours are microscopically confirmed 151. It is also 

worth noting that the sample size of these previous studies was on an entirely different 

scale, ranging from dozens to a few hundred patients at most. Rather than competing 

with these prior models, what we hope to highlight here is the potential value of com-

bining models trained on large epidemiological datasets with classifiers trained on 

smaller but richer datasets. Further improvements to model performance will be 

needed before clinical translatability can be achieved. While marginal improvements 

might still be achievable with the current dataset by refining the models themselves, a 

larger challenge for translatability lies in collecting and curating large multimodal da-

tasets for training and validation against clinical outcomes. 

With ever decreasing storage costs and the advent of open databasing solutions 

for genetic 160 and neuroimaging data 45,161, the possibility of expanding the scope of 

national cancer registries for large-scale inclusion of de-identified source data will lead 

the way for the next generation of predictive models. Recent large-scale projects for 

population genotyping and brain imaging such as the UK biobank represent a signifi-

cant opportunity in this regard 162,163. Additionally, efforts to provide curation as well as 
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streamlined consent 164 and de-identification 46,47 of data from electronic medical rec-

ords and picture archiving communication systems are another important step in this 

direction 44,165–167. Allowing for the wealth of patient data already being recorded for 

routine care to be used to advance predictive disease modelling has the potential to 

simplify specific aspects of clinical decision making as well as improve diagnostic and 

prognostic accuracy for future patients. We also highlight the need to expand outcome 

variable reporting beyond survival. Indeed, functional outcomes and quality of life are 

also key to informed clinical decision making and patient counselling. In the case of 

meningiomas, surgery for benign tumours is frequently undertaken to treat comorbid 

seizures or other neurological symptoms. We could therefore imagine predictive mod-

els being developed to determine which patients are more likely to benefit from such 

interventions. Likewise, we could foresee training models to learn patterns of associa-

tion between certain tumour features (e.g. size and location) and treatment variables 

(surgery type, adjunctive therapy), and the probability of specific neurological compli-

cations. 

There are inherent limitations to any study of retrospective registry-based data, 

such as selection and reporting biases. We have described these in detail in previous 

work 168–171. Nonetheless, one of the benefits of the present study in this regard was the 

random assignment of 30% of patients to a "test" dataset, which was sequestered until 

the final models were developed. This allowed for pseudo-prospective evaluation of 

our models and therefore reduced bias in the scoring of model performance. While 

we demonstrated good generalizability of the model across SEER registries, the true 
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test of these models will have to come from replication with prospective, multi-registry, 

and international patient cohorts. Also, given the poor discrimination between border-

line malignant and malignant meningiomas (Fig. 2-3d) based on the limited set of clin-

ical variables available in SEER, we opted to focus current analyses on binary classifica-

tion between benign and non-benign tumours. We consider the ability to differentiate 

these two categories to be the more important question from a clinical perspective 

since, as previously reported by Dolecek et al. 151, only 29% of borderline malignant 

and 31% of malignant meningiomas received no initial treatment, as compared to 60% 

of benign meningiomas. Future work with richer datasets should, however, attempt to 

distinguish between these categories. 

Regarding treatment variables, only surgery was investigated and we did not 

include radiotherapy or chemotherapy as features of interest in the survival classifier 

because there are substantive concerns with these data in SEER 172. Starting with the 

November 2016 data submission, these data have been removed from the main SEER 

research databases. We do, however, emphasize the need for radiotherapy in particu-

lar to be investigated with another dataset. Also, Simpson grading is not available in 

SEER and some heterogeneity is therefore expected in the gross total resection group 

173. We also excluded the small percentage of patients who had a second meningioma 

recorded in SEER so as not to bias scoring of the model (i.e. each training or testing 

example was one patient). It would, however, be valuable to predict outcomes in these 

patients with subsequent meningiomas—or any second cancer, whether occurring prior 
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to or after the meningioma. Finally, this study remains, at least in part, a proof of con-

cept of what can be achieved with predictive modelling of cancer registry data. We 

fully realize that more powerful models will need to integrate radiographic and molec-

ular features in their predictions, and hope to update meningioma.app with such mod-

els in future work.  

We report the development and validation of predictive models of meningioma 

malignancy and associated survival. On the basis of a very limited set of clinical varia-

bles such as age, sex, and tumour size, our models are shown to be capable of predict-

ing individual-patient outcomes. Our modelling approach provides complementary in-

formation to previous epidemiological reports and could lead to the development of 

new practical diagnostic and prognostic tools in oncology. Beyond the traditional pa-

per-and-pencil nomograms, we provide an original open-source smartphone and web 

application to illustrate the translation of complex nonlinear predictive models to real-

world practice. In particular, the ability of our statistical learning models and app to 

provide individual-specific predicted survival curves could be valuable for patient 

counselling. 

Methods 

Participants 

The latest SEER data release (November 2017) was queried using SEER*Stat v8.3.5 for 

all cases of meningioma (WHO ICD-O-3 histology codes 9530-9539) recorded in the 
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brain and spinal cord. A complete de-

scription of the SEER*Stat search 

query is provided in the supplemen-

tary information (Supplementary Note 

1). The data included patients diag-

nosed between 2004 and 2015 across 

18 registries in 13 states. Only the first 

meningioma recorded in SEER for 

each patient was included in analyses. 

In total, 88,015 patients were initially 

identified. Patients diagnosed prior to 

2004 were excluded because their di-

agnosis predates the passage of Pub-

lic Law 107-260, which mandated the 

collection of non-malignant tumours 

151. Patients for whom the method of 

diagnostic confirmation was unknown or clinical only were also excluded. Moreover, 

all ICD-O-3 /1 (borderline malignant) and /3 (malignant) meningiomas without positive 

histological diagnosis were excluded. We also excluded meningiomas recorded as be-

ing larger than 150mm as such cases are extremely rare and more likely represent cod-

ing errors in SEER (e.g. an "803 mm" meningioma). In addition to these exclusion cri-

teria, we excluded case listings for which features (age, tumour size, race, tumour site, 

Fig. 2-6 Flow diagram illustrating criteria for patient inclu-

sion. 
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surgery) or outcome variables (malignancy, survival) of interest were not available. Ex-

clusion criteria are illustrated in Fig. 2-6. After exclusions, the final number of patients 

included in analyses was 62,844. As SEER contains no personally identifiable infor-

mation and this study relied exclusively on secondary use of observational epidemio-

logical data from a public national database, our institutional research ethics board 

deemed this study to be exempt from review. Transparent Reporting of a multivariable 

prediction model for Individual Prognosis Or Diagnosis (TRIPOD) reporting guidelines 

were implemented in this manuscript 174. 

 

Feature selection 

Descriptive statistics were computed and exploratory data analysis was performed to 

identify potential features (i.e. predictor variables) for inclusion in the machine learning 

models. Selection criteria for features included data availability (variables with large 

numbers of missing points were excluded) and discriminatory capability in relation to 

the two outcomes of interest—malignancy and survival. Malignancy was defined as per 

WHO ICD-O-3 histology and behaviour codes. ICD-O-3 behaviour codes were used as 

WHO grade is not consistently available for meningiomas in SEER 148,152. Previous stud-

ies have used the following correspondence from WHO grade to ICD-O-3 histology 

and behaviour codes: WHO I: 9530/0, 9531/0, 9532/0, 9533/0, 9534/0, 9537/0; WHO 

II: 9530/1, 9531/1, 9532/1, 9533/1, 9534/1, 9537/1, 9538/1, 9539/1; WHO III: 9530/3, 

9531/3, 9532/3, 9533/3, 9534/3, 9535/3, 9537/3, 9538/3, 9539/3 148,152. We have opted 
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here to display the original ICD-O-3 labels as they are reported in SEER (i.e. /0: benign, 

/1: borderline malignancy, /3: malignant). 

All-cause mortality was used in survival analyses because cause-specific mortal-

ity is not reliably available across all meningioma cases in SEER 133. Moreover, as 

demonstrated in Fig. 2-2, treatment and clinical variables other than age clearly impact 

all-cause survival. We also obtained a Uno's C of 0.70 for a model excluding malig-

nancy and age at diagnosis, as compared to a Uno's C of 0.79 for the model including 

all features. Supplementary Fig. 2-3 additionally illustrates AUCt and APt when age and 

malignancy are excluded from the survival model. Survival was defined on the basis of 

the "Survival months" variable in SEER, which is calculated on the basis of the date at 

diagnosis and date at last contact 134. Censoring was based on the "Vital status recode" 

variable in SEER. Features with low-frequency classes were recoded into more general 

classes where appropriate in order to have sufficient examples for training and cross-

validation. Features were also recoded when it was found that two or more classes did 

not provide additional information in respect to the outcome variable (e.g. patients 

with left vs right sided meningiomas had equivalent survival). Primary tumour site was 

recoded by ICD-O-3 topography codes as either "cerebral meninges" (C70.0), "spinal 

meninges" (C70.1), "meninges not otherwise specified" (C70.9), and "other". Race, as 

defined in the SEER database, was recoded into "white", "black", and "other" groups. 

Tumour laterality was recoded as "bilateral" (e.g. large meningiomas extending over 

both hemispheres), "midline" (e.g. falcine meningiomas), or "not bilateral". The original 

SEER coding for surgical procedures was preserved except for "10: Tumor destruction 
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NOS", "50: Surgery stated to be "debulking", and "90: Surgery, NOS" codes, which 

were recoded as "other surgery" because they accounted in total for only 0.7% of all 

surgically-treated cases. 

Classifier design and validation 

Of the 62,844 included patients, 30% (18,854) were randomly selected and set aside 

for use as a test (validation) dataset whereas the data of the remaining 43,990 patients 

were used for training (development) and cross-validation. 13,197 of these 43,990 

cases were used for cross-validation and initial model exploration (Supplementary Fig. 

2-1). The use of a true "test" set allows for unbiased estimation of model performance, 

which cannot be achieved through cross-validation alone since human or automated 

optimization of models and model parameters inherently biases scoring towards arti-

ficially inflated classification accuracy 175. Two separate classifiers were trained and 

tested, one for each of the outcome variables of interest. Preprocessing, hyperparam-

eter optimization, cross-validation, and scoring were performed using the scikit-learn 

Python module 176.  

For the malignancy model, a voting ensemble classifier (BLR-RF) combining bal-

anced logistic regression and balanced random forest base models was implemented. 

This BLR-RF classifier implements a random undersampling procedure akin to that of 

the Balanced Random Forest (BRF) 153 algorithm whereby each base classifier in the 

ensemble is trained on a randomly selected class-balanced subsample of the training 

dataset. The imbalanced-learn Python package 177 was used to perform the random 

undersampling and the MLxtend package to build the ensemble voting classifier 178. 
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As compared to BRF, we found that, in this dataset, our BLR-RF classifier provided bet-

ter probability calibration and was less prone to overfitting (Supplementary Fig. 2-1). 

The BRF algorithm is an extension of the popular random forest algorithm 179, which 

builds ensembles of decision trees and uses a voting procedure to output the overall 

classification decision. Both our BLR-RF classifier and BRF are distinguished from stand-

ard random forests by additionally resampling data within random bootstrap samples 

(smaller samples randomly drawn from the training data) to address the problem of 

class imbalance 153. We found this procedure to be effective in this highly imbalanced 

dataset (i.e. ~95% of meningiomas were benign), as compared to regular logistic re-

gression or random forests (Supplementary Fig. 2-1). In the implementation used in 

the present study, we resampled the non-minority classes (i.e. all non-malignant tu-

mours) so that each bootstrap sample contained roughly equal numbers of benign and 

non-benign tumours. In order to improve model calibration, we applied a second 

probability calibration step using Platt scaling 180 with a subset of data not used in the 

initial training (Supplementary Fig. 2-1) . 

Hyperparameter optimization was performed using 1000 iterations of random-

ized 181 5-fold stratified K-fold cross-validation using the weighted F1 score, as imple-

mented in scikit-learn 176, as the primary scoring metric. We selected this weighted F1 

score as the scoring metric for training the model as it penalises misclassifications of 

the minority class (i.e. non-benign meningiomas) to a greater extent, which is critical in 

this very imbalanced dataset (e.g. we could obtain 95% accuracy simply by classifying 
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all meningiomas as benign). The F1 score ranges from 0 (worst) to 1 (best) and is de-

fined as the harmonic mean of precision (PPV) and recall (sensitivity). It is better suited 

than accuracy or area under the receiver operating characteristic curve (AUC) for meas-

uring classifier performance in imbalanced datasets 182. Candidate models were also 

evaluated using confusion matrices obtained from the cross-validation set. Confusion 

matrices are a simple way to represent true vs. predicted classes and calculate rates of 

true and false positives and negatives. For the survival model, we used the implemen-

tation of Cox's proportional hazards model in the lifelines Python package 155. This 

model is suited for working with censored survival data and has the benefit of provid-

ing easily interpretable prediction probabilities.  

Model scoring for the malignancy model was performed using a series of met-

rics including the F1 score and confusion matrices, as described above, but also preci-

sion-recall and receiver operating characteristic (ROC) curves, which can also be sum-

marised by the average precision (AP) and area under the curve (AUC) metrics. AUC 

tends to provide overly optimistic estimates of performance in imbalanced datasets 

and it is therefore also useful to evaluate the precision-recall curve in these cases 183. 

Average precision is prevalence-dependent and should therefore be evaluated in the 

context of the baseline population prevalence. We report chance-level values to illus-

trate this baseline. For the survival model, we report time-dependent average precision 

(APt) 136 and area under the curve (AUCt) 184 values, using the R implementation in the 

APtools package 137, as well as Uno's C-statistic 138. We used the implementation of 

Uno's C provided in the scikit-survival Python package 185. In addition to Uno's C, time-
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dependent AP and AUC values provide a useful complement for model evaluation. APt 

has been suggested to be of particular value for assessing low probability events 137, 

but is also dependent on prevalence and should therefore be evaluated against the 

baseline event rate at each time point. In addition to the above metrics, we also provide 

calibration plots of predicted vs. observed risk. Confidence intervals were computed 

using bootstrap resampling of the test set with 1000 iterations for precision-recall, ROC, 

APt, and AUCt values. 

Data availability 

All data used in this study are available for download through the SEER program: 

https://seer.cancer.gov/data-software 

Code availability 

The source code for meningioma.app is available for download at 

https://github.com/jeremymoreau/meningioma 
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Supplementary information 

Supplementary Figures 

 

Supplementary Fig. 2-1 Exploratory model comparison for initial models after hyperparameter optimi-

zation but prior to probability calibration (a), and after calibration (b). KNN: K-Nearest Neighbours, LR: 

Logistic regression, RF: Random Forests, BRF: Balanced Random Forest, BLR: Balanced Logistic Regres-

sion, BLR-RF: Balanced Logistic Regression-Random Forests. For (a) and (b), the first row contains con-

fusion matrices illustrating predicted vs. true labels, as evaluated on the test set. Values are normalized 

across each row. B: Benign, BM/M: Borderline malignancy/Malignant. The second row consists of kernel 

density plots illustrating the distribution of predicted probabilities for the benign (blue) and non-benign 
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(red) meningioma classes. The third row consists of calibration diagrams plotting predicted probabilities 

against the true observed distribution of each class in the test dataset.  

 

 

Supplementary Fig. 2-2 Receiver Operating Characteristic curve (a) and Precision-Recall curve (b) for 

Benign vs. Borderline Malignant/Malignant meningioma classification. The grey dashed line indicates 

chance level performance and the shaded outlines represents 95% confidence intervals. KNN: K-Nearest 

Neighbours, LR: Logistic regression, RF: Random Forests, BRF: Balanced Random Forest, BLR: Balanced 

Logistic Regression, BLR-RF: Balanced Logistic Regression-Random Forests 
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Supplementary Fig. 2-3 Time-dependent area under the curve (AUCt) and average-precision (APt) for 

the survival model including or excluding age and malignancy as features of interest, as evaluated on 

the test set. The event rate/chance level is represented by the dashed grey line. Shaded outlines repre-

sent 95% confidence intervals. 
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Supplementary Notes 

 

Supplementary Note 1. SEER*Stat search query. 

Database Name: 

Incidence - SEER 18 Regs Research Data + Hurricane Katrina Impacted Louisiana Cases, 

Nov 2017 Sub (1973-2015 varying) 

 

Selection: 

{Site and Morphology.Primary Site - labeled} = 'C70.0-Cerebral meninges','C70.1-Spi-

nal meninges','C70.9-Meninges, NOS','C71.0-Cerebrum','C71.1-Frontal lobe','C71.2-

Temporal lobe','C71.3-Parietal lobe','C71.4-Occipital lobe','C71.5-Ventricle, 

NOS','C71.6-Cerebellum, NOS','C71.7-Brain stem','C71.8-Overlapping lesion of 

brain','C71.9-Brain, NOS','C72.0-Spinal cord','C72.1-Cauda equina','C72.2-Olfactory 

nerve','C72.3-Optic nerve','C72.4-Acoustic nerve','C72.5-Cranial nerve, NOS','C72.8-

Overlapping lesion of brain & CNS','C72.9-Nervous system, NOS','C75.1-Pituitary 

gland','C75.2-Craniopharyngeal duct','C75.3-Pineal gland' 

 

AND {Site and Morphology.ICD-O-3 Hist/behav} = '9530/0: Meningioma, 

NOS','9530/1: Meningiomatosis, NOS','9530/3: Meningioma, malignant','9531/0: Me-

ningothelial meningioma','9531/1: Meningiothelial meningioma, borderline','9531/3: 

Meningiothelial meningioma, malignant','9532/0: Fibrous meningioma','9532/3: Fi-

brous meningioma, malignant','9533/0: Psammomatous meningioma','9533/3: Psam-

momatous meningioma, malignant','9534/0: Angiomatous meningioma','9534/3: An-

giomatous meningioma, malignant','9537/0: Transitional meningioma','9537/3: Tran-

sitional meningioma, malignant','9538/0: Clear cell meningioma, benign','9538/1: 

Clear cell meningioma','9538/3: Papillary meningioma', 

  

Select Only: Cases in Research Database



Chapter 3 

67 

3 
Chapter 3 – Biased intelligence: on the 

subjectivity of digital objectivity 
I assure you, Watson, without affectation, that the status of my client is a matter of less moment 

to me than the interest of his case. 

— Sir Arthur Conan Doyle, The Adventure of the Noble Bachelor 

Preface 

The manuscript in this chapter offers a timely discussion of some less discussed ethical 

issues relating to the application of AI and machine learning to medical diagnostics. 

While developing AI systems applied to neurosurgery was one of the objectives of this 

thesis, I felt it was also important to consider the potential sources and consequences 

of systemic biases that can unintentionally affect the predictions of AI systems. This 

chapter includes a discussion of our own work described in the previous chapter as 

well as theoretical cases and notable recent examples from the published literature.  

The manuscript was submitted and is currently under review as: 

Moreau JT, Baillet S, Dudley RWR. Biased intelligence: on the subjectivity of digital 

objectivity. 
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Whether IBM's Watson, Google's DeepMind, or Tencent's WeDoctor, the last few years 

have been characterised by unprecedented levels of research interest and new invest-

ments in artificial intelligence (AI) and digital healthcare technology. The number of 

publications on applications of AI and machine learning to medical diagnosis has dra-

matically increased since around 2015 (Fig. 3-1). Correspondingly, venture capital-

backed digital health and AI startups worth over $1 billion now number in the dozens 

(Fig. 3-1) 186. Yet, this influx of new investment has not been without controversy. Goog-

le's recent partnership with national health group Ascension, which gave the company 

access to the clinical data of around 50 million patients, has been the target of signifi-

cant mediatic and congressional scrutiny 187. Likewise, pharmaceutical giant Glax-

oSmithKline's (GSK) $300 million investment in direct-to-consumer genetic testing pro-

vider 23andMe has aroused similar concerns 188. Under the terms of their 4-5 years 

agreement, GSK gained access to 23andMe's genetic data and became its exclusive 

collaborator for drug target discovery programmes 189. While much of the coverage of 

these partnerships has focussed on issues of privacy and consent, we argue that an-

other key consideration lies in the risks associated with exclusive or privileged access 

to databases of patient data and the development of proprietary diagnostic algorithms. 
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Fig. 3-1Publications on AI/machine learning applied to medical diagnosis and number of private AI or 
healthcare startup companies valued at >US$1B. Map shows the total number of publications on AI/ma-

chine learning applied to medical diagnosis by country from 2000 to 2019. In the legend, numbers in 

brackets represent number of publications while the colour gradient illustrates percentile categories. 

The bottom line diagram plots the same data by year and country. Data were extracted from Scopus 

using the search strategy reported by Liu et al. 190 Red dots on the map illustrate the number of venture 

capital-backed private AI or healthcare startup companies with a valuation of over >US$1B 186.  

Why should we care about openness and transparency in AI development? Take 

the hypothetical case of a tech company developing a new proprietary AI to make pre-

scription recommendations using electronic health record data from a large academic 
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medical centre. Aware of this ongoing programme, a pharmaceutical company de-

cides to make its drugs available at a discounted price to the hospital, resulting in in-

creased prescription of its drugs relative to competitors. Now, without any overt collu-

sion, the tech company's AI may learn that these drugs are more often prescribed by 

the hospital's physicians and therefore have increased probability of recommending 

them in the future. Clearly these recommendations are inappropriate and not based 

on any medical evidence, yet without the ability to inspect the proprietary AI or the 

data it was trained on, the possibilities for peer review and scrutiny would be severely 

limited. Should AIs have their own disclosures? How would such disclosures be regu-

lated and enforced? Would it be desirable to avert healthcare "data monopolies" with 

new antitrust legislation? These are questions regulators will need to answer sooner 

rather than later. While not AI-driven, the recent revelation that popular electronic 

health record vendor Practice Fusion received kickbacks in exchange for displaying 

alerts in its software designed to increase prescriptions of opioid analgesics 191 is a 

chilling reminder of the ability of software vendors to influence treatment decisions. 

The unmonitored allowance of proprietary healthcare AIs trained on privately held da-

tasets risks providing an avenue for plausible deniability in addition to further hinder-

ing the detectability of such complicit partnerships between drug manufacturers and 

software vendors. 

Beyond theoretical scenarios, take also for example a recent study by a group 

of Google researchers who designed an AI system to read mammograms that outper-

formed radiologists on a breast cancer identification task 192. While unintentional and 
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acknowledged by the authors, 95% of the over 90,000 mammograms used in the study 

were acquired on devices made by a single manufacturer. Would the AI perform as 

well on images from another manufacturer's systems? What about the 10-year-old 

mammography system still operating in an under-resourced community? Further stud-

ies and clinical trials will be needed to obtain these answers, but this case highlights 

just how easy it is for systemic biases to be introduced even when no foul play is in-

volved. Nonetheless, AI presents a tremendous opportunity to reduce barriers to care 

in low-resource settings around the world 193. Unfortunately, current trends in AI re-

search and private funding (Fig. 3-1) suggest the existence of strong geographical bias. 

A select group of countries, including notably China and the US, are responsible for 

most of the research and investment in AI-assisted medical diagnostics. Unless repre-

sentative samples of patients are included, the likelihood of these tools providing 

equal benefits outside of their countries of origin is limited. Collaboration and ex-

change of data and experience between healthcare systems on a global scale is 

needed if we are to benefit from truly generalisable and equitable AI systems. 

AI systems often —even to the ignorance of their creators —replicate the societal 

biases extant within the data they are trained on. In our own study 194, we found that 

the models we had trained to predict meningioma malignancy and survival predicted 

worse survival for black and uninsured patients. While these predictions are factually 

representative of the data in the large population-based national cancer registry on 

which we trained our models, the predicted outcomes are much more reflective of so-
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cial and economic realities than they are of any biology. Other previously reported ex-

amples of bias include a melanoma diagnosis algorithm that did not factor skin colour 

or the use of genomic databases in which minorities are underrepresented 8. These 

cases underscore the importance for healthcare practitioners to critically assess the 

predictions of putatively "objective" machine learning systems. They are also a re-

minder that while technological solutions will undoubtedly form part of our efforts for 

better care delivery, other systemic issues remain just as, if not more, critical to address. 

Sensitivity, specificity, and other metrics tell only part of the story. While we can 

and should attempt to build performant AI systems that emulate ethical decision mak-

ing, we must remember that human-designed AI remains biased by the same social, 

cultural, and political biases that shaped the data these systems were trained on. The 

physician's role as an advocate for patients' interests is as important today as it has ever 

been. We will increasingly come to rely on AI-assisted diagnosis and prognosis in the 

years to come, but treatment recommendations must remain conscious of societal con-

text and continue to represent a shared decision-making process between physician 

and patient. 
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4 
Chapter 4 – MNI SISCOM: An open-source tool 

for computing subtraction ictal single-photon 
emission CT coregistered to MRI 

The Analytical Engine has no pretensions whatever to originate anything. It can do whatever 
we know how to order it to perform... But it is likely to exert an indirect and reciprocal influence 

on science itself. 

— Ada Lovelace, Notes  

Preface 

This chapter describes a software tool I wrote for computing subtraction ictal single-

photon emission CT coregistered to MRI (SISCOM). In line with the objectives of the 

thesis, the goal of this program is to develop imaging tools to aid with the presurgical 

evaluation for epilepsy surgery. The program was also used for parts of the analyses in 

chapter 6. This chapter provides a concise overview of the rationale for the tool, its uses, 

and a description of the available features. The program and source code are made 

freely available. The manuscript was submitted and is currently under review as: 

Moreau JT, Saint-Martin C, Baillet S, Dudley RWR. MNI SISCOM: An open-source 

tool for computing subtraction ictal single-photon emission CT coregistered to MRI. 
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Abstract 

Objective. We aimed to develop a simple user-friendly desktop application for com-

puting subtraction ictal single-photon emission CT coregistered to MRI (SISCOM). 

Conclusion. MNI SISCOM is a new free and open-source software application for com-

puting SISCOM and producing practical MRI/SPECT/SISCOM image panels for review 

and reporting. It minimises manual user interaction and helps save time as compared 

to more general-purpose neuroimaging data analysis tools. 

Introduction 

Subtraction ictal single-photon emission CT coregistered to MRI (SISCOM) 1 is a widely 

used and well-established technique for quantitative analysis of ictal vs interictal SPECT 

images. The technique consists of computing difference images between coregistered 

and standardised ("z-scored") SPECT scans captured in the interictal and ictal phases. 

The technique highlights areas of hyperperfusion in the ictal as compared to the inter-

ictal scan, which has been demonstrated to be valuable in helping localise the seizure 

onset zone 107. In a prospective study evaluating SISCOM in patients with either non-

lesional MRIs or discordant data in the presurgical evaluation (e.g. discordant EEG and 

MRI), SISCOM was found to be concordant with the surgical resection in 82% of pa-

tients and 22/26 patients with post-surgical follow-up achieved Engel class I (15) or 

class II (7) outcomes 108. In one recent meta-analysis 107, concordance between SISCOM 

and the surgical resection as compared to non-concordant SISCOM was associated 
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with a 3.28 times higher seizure-free odds ratio for temporal cases (2.44 for extra-tem-

poral cases). Timing of the tracer injection however remains a critical determinant of 

the localisation sensitivity of SISCOM  107,108. 

The conceptual basis of SISCOM is relatively simple, but there is presently a lack 

of user-friendly free and open-source software to compute SISCOM results from raw 

SPECT and MRI images. general-purpose neuroimaging data analysis packages such 

as SPM 195 already provide tools (e.g. coregistration and image calculators) that allow 

for the computation of SISCOM results, but obtaining these results typically requires 

several time consuming manual steps and necessitate a certain level of technical ex-

pertise. There have been previous efforts to design purpose-built software for compu-

ting SISCOM 196, but we could not find any open source software program that is ac-

tively maintained and runs on current versions of Mac/Windows/Linux operating sys-

tems. Here we present a newly developed cross-platform and open-source application 

to facilitate the process of computing SISCOM images. The goal of this project is to 

provide a freely available single-purpose and user-friendly tool to implement SISCOM. 

Materials and Methods 

The MNI SISCOM desktop application (Fig. 4-1) runs on Windows, Mac, and Linux com-

puters and can be downloaded here: https://github.com/jeremymoreau/mnisiscom. 

Detailed installation instructions are provided on the download page linked above. In 

addition to MNI SISCOM, the SPM software package 195 must also be installed. SPM is 

a popular general-purpose brain imaging data analysis program and is used by MNI 

https://github.com/jeremymoreau/mnisiscom
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SISCOM for SPECT and MRI image coregistration (i.e. aligning the SPECT images to 

the T1 MRI) and normalisation (warping MRI and SPECT images into standard MNI co-

ordinate space). 

 

Fig. 4-1 Screenshot of main graphical user interface window of MNI SISCOM. 

Usage of the desktop application is very straightforward. Simply launch the app 

and, after setting the SPM installation path in the "Settings" menu, select the T1 MRI, 

interictal SPECT, ictal SPECT, and folder where results will be saved. The other options 

do not generally require tweaking, but detailed explanations of each option can be 

viewed by hovering over the option label in the app. Once the "Compute" button is 
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clicked, MNI SISCOM will take ~2-5 minutes to compute the SISCOM results, depend-

ing on the speed of the computer. Of note, currently only MRI and SPECT images in 

NIfTI format (https://nifti.nimh.nih.gov) are supported. If exporting original DICOM im-

ages from PACS, we recommend using MRIcron 197 to convert DICOM images to NIfTI. 

MRIcron can be downloaded here: https://www.nitrc.org/projects/mricron. In MRIcron 

click on the "Import" menu and select "Convert DICOM to NIfTI". 

In addition to the desktop application, a command line interface and user scrip-

table library written in the Python programming language is also made available for 

more technically inclined users. These interfaces allow for the integration of MNI SIS-

COM into other software pipelines or tools developed by others. An example Python 

script is provided (https://github.com/jeremymoreau/mnisiscom/tree/master/exam-

ples) to illustrate how these tools can be used to run MNI SISCOM on a group of patient 

MRI and interictal/ictal SPECT images without any user intervention. The command line 

tool and Python library can easily be installed via the standard Python Package Index: 

https://pypi.org/project/mnisiscom/ 

https://nifti.nimh.nih.gov/
https://www.nitrc.org/projects/mricron
https://github.com/jeremymoreau/mnisiscom/tree/master/examples
https://github.com/jeremymoreau/mnisiscom/tree/master/examples
https://pypi.org/project/mnisiscom/
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Results 

MNI SISCOM outputs scrollable 3D vol-

umes of SISCOM results in NIfTI format, 

but also produces convenient image 

panel slides for rapid review and inclu-

sion in presentations/reports. These 

panel slides include large panels showing 

interictal/ictal SPECT and SISCOM results 

side-by-side (Fig. 4-2) as well as a series 

of compact panels in axial, coronal, and 

sagittal orientation showing only inter-

ictal/ictal SPECT or SISCOM results (Fig. 

4-3a). Moreover, MNI SISCOM can op-

tionally output, using the bundled Nilearn 

module 198, schematic maximum intensity 

projection ("glass brain") images showing 

thresholded SISCOM maps superim-

posed over an anatomical reference 

drawing (Fig. 4-3b). For group studies, 

MNI SISCOM also provides the option to produce 3D NIfTI volumes in the standard 

MNI coordinate space, which can then be used in SPM 195 or other neuroimaging soft-

ware packages to perform statistical comparisons between groups of patients. 

Fig. 4-2 Example MRI panel result file generated by 
MNI SISCOM showing interictal/ictal SPECT and 
SISCOM results side-by-side. This figure shows only 

5 consecutive slices out of 23 axial slices with 5mm 

thickness. Coronal and sagittal panels are also gen-

erated, but not shown here. 
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Fig. 4-3 Other types of result files generated by MNI SISCOM include compact axial/coronal/sagittal 

slides showing only interictal/ictal SPECT or SISCOM results (a) and schematic maximum intensity pro-

jection ("glass brain") images showing thresholded SISCOM maps superimposed over an anatomical 

reference drawing (b). 

Discussion 

Computation of SISCOM results is possible using existing general-purpose brain im-

aging data analysis programs, but obtaining such results is often time consuming and 

labour intensive. Our aim was to eliminate all the steps usually involved in obtaining 

SISCOM with a simple and modern desktop application. MNI SISCOM greatly simpli-

fies the process by providing nearly entirely automatic processing of SPECT and MRI 
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images in order to generate SISCOM results with minimal user interaction. The appli-

cation is also completely free and open-source, and we will continue contributing new 

features and usability improvements. We are also happy to receive suggested feature 

requests and help tailor the functionality of the application to the community's needs. 

Limitations include currently only supporting the NIfTI file format and requiring another 

program to convert DICOMs to NIfTI as well as only supporting the classical SISCOM 

algorithm. Additionally, MNI SISCOM currently depends on SPM for image coregistra-

tion, which requires another program to be installed. Future steps will include imple-

mentation of additional algorithms such as STATISCOM, which has been demonstrated 

to be superior to the more commonly used classical SISCOM algorithm in many cases 

199. We are also planning on building and bundling a database of interictal SPECT im-

ages in standard MNI space to allow for statistical comparison of individual patient ictal 

SPECT scans against the norm without the need for an interictal SPECT. 

Conclusion 

MNI SISCOM is a user-friendly free and open-source application for computing SIS-

COM. It provides a straightforward graphical desktop interface and helps minimise 

manual image manipulation tasks as compared to more multi-purpose brain imaging 

processing tools. Finally, the MRI/SPECT/SISCOM image panels generated by MNI SIS-

COM are a useful addition to help increase the efficiency of review and reporting of 

SISCOM results. 

 



Chapter 4 

82 

Disclosure 

All authors report no conflicts of interest relevant to this article. 

 

Acknowledgments 

J.T.M. was supported by the Fonds de Recherche du Québec - Santé and the Founda-

tion of Stars. S.B. was supported by a Discovery Grant from the Natural Science and 

Engineering Research Council of Canada (436355-13), the NIH (1R01EB026299-01), 

and a Tier-1 Canada Research Chair in Neural Dynamics of Brain Systems. This research 

was undertaken thanks in part to funding from the Canada First Research Excellence 

Fund, awarded to McGill University for the Healthy Brains, Healthy Lives initiative. 

 



Chapter 5 

83 

5 
Chapter 5 – Overnight Ictal Magnetoencephalography 

I have known many persons in sleep groaning and crying out, some in a state of suffocation, 
some jumping up and fleeing out of doors, and deprived of their reason until they awaken, 

and afterward becoming well and rational as before, although they be pale and weak. 

— Hippocrates, On the Sacred Disease 

Preface 

This chapter presents two case reports of the first patients we recorded sleeping over-

night while undergoing magnetoencephalography (MEG). While big datasets give us 

the ability to utilise new developments in machine learning and AI, in the next two 

chapters I explore how new ideas in multimodal imaging can also contribute to the 

presurgical evaluation. This is to our knowledge, the first published report of overnight 

ictal MEG. In this chapter, we discuss the analysis and outcomes, but also some of the 

practical considerations of performing such recordings in children. The manuscript was 

submitted and is currently under review as: 

Moreau JT, Simard-Tremblay E, Albrecht S, Rosenblatt B, Baillet S, Dudley RWR. 

Overnight Ictal Magnetoencephalography. 

  



Chapter 5 

84 

Practical Implications 

In patients with drug-resistant epilepsy for whom nocturnal seizures are recorded dur-

ing an admission for EEG telemetry, overnight ictal magnetoencephalography is a via-

ble methodology that can help localise the seizure onset zone. 

 

The added value of magnetoencephalography (MEG) in the presurgical evalua-

tion for drug-resistant epilepsy is well-recognised 113,119,200,201. However, MEG remains 

for the most part limited to analysis of interictal epileptic activity 69,113. Seizures are un-

commonly captured due to logistical considerations despite mounting evidence of the 

value of ictal MEG in localising the seizure onset zone 69,202. Here we report the record-

ing and analysis of ictal MEG recordings in two drug-resistant epilepsy presurgical can-

didates that spent a night sleeping in the MEG at our institute. 

Case 1 

An 8-year-old girl with drug-resistant epilepsy of suspected right fronto-temporal 

origin was admitted for presurgical workup. Up to 4 months prior to this admission the 

patient only had nocturnal seizures. Frequency increased up to ~10 seizures/day and 

she began having daytime events that were described by the mother as consisting of 

a blank stare and non-responsiveness. Her first MRI revealed only asymmetry between 

bilateral temporal sulci. Following routine admission for EEG telemetry during which 

frequent nighttime seizures were recorded, a 4h overnight MEG recording was per-

formed during sleep. One brief seizure lasting ~45s was captured at 2:13am (Fig. 1A), 



Chapter 5 

85 

which consisted of arousal followed by forced head version to the left. Electrographic 

onset preceded the head turn by ~6s and was characterised by rhythmic alpha activity 

beginning at T4 on EEG and over right temporal sensors on MEG. MEG source imaging 

of alpha frequencies at seizure onset suggested a right anterior temporal generator 

(Fig. 1B). A second 3T MRI including 3D T1 and FLAIR sequences showed anterior tem-

poral blurring of the grey-white matter junction (Fig. 2C). FDG PET and SPECT scans 

showed right temporal hypometabolism and hypoperfusion, respectively. She under-

went a tailored resection including the anterior temporal cortex all the way to mid-pos-

terior temporal cortex. Surgical pathology (Fig. 1D-G) from the anterior temporal cor-

tex, which included the MEG seizure onset zone, showed focal cortical dysplasia (FCD) 

type IIa, while the posterior aspect of the superior temporal gyrus contained rare dys-

morphic neurons in cortex, but no frank FCD. The patient is currently seizure-free at 11 

months follow-up. 
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Fig. 5-1 Case 1 ictal MEG and pathology. (A) Reduced montage (76 of 275 MEG channels displayed) 

showing the seizure onset followed by movement artefact. (B) Magnetic source imaging of preop ictal 

MEG overlaid on postop MRI. (C) Preop T1 MRI showing blurring of the grey-white matter junction in an 

area colocalising with the MEG seizure onset zone. (D, E, F) Surgical pathology consisting of cortex and 

subcortical white matter from the resected anterior aspect of the superior temporal gyrus, showing focal 

cortical dysplasia (FCD) type IIa. (G) Surgical pathology consisting of cortex and subcortical white matter 

from the resected posterior aspect of the superior temporal gyrus, showing rare dysmorphic neurons in 

cortex, but no frank FCD. (D) H&E 10x. (E) NeuN 10x. (F) SMI-32 20x. (G) H&E 20x.  
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Case 2 

A 13-year-old boy with drug-resistant epilepsy who underwent a previous SEEG study 

that failed to localise the seizure onset zone was readmitted for presurgical evaluation. 

Since 2.5 years of age, multiple EEGs recorded nocturnal electrographic seizures lo-

calising to the left posterior temporal-occipital region. In later EEGs, clinical seizures 

were additionally recorded in left frontal and frontopolar regions. Interictally, abundant 

spikes and continuous slow waves were recorded in the left temporal region. Prior to 

the present admission, the patient was having up to 20 seizures per night. Semiology 

was characterised by sudden arousal from sleep, confusion, agitation, some pelvic 

twisting and thrusting, and dystonic posturing of the right hand. A 5h overnight MEG 

recording was performed and 14 clinical seizures were recorded. One representative 

seizure is shown in Fig. 2B (onset for all seizures in Fig. 2C) together with MEG source 

imaging of the low-voltage fast activity in Fig. 2A. FDG PET also showed diffuse left 

hemispheric hypometabolism (Fig. 2E). Given that a majority of seizures on EEG and 

MEG localised to an area of left inferior parietal/posterior temporal cortex not covered 

by the previous SEEG study (Fig. 2D) and suspected signal abnormalities in left tem-

poral opercular/posterior insular cortex on 3T MRI, a second SEEG implantation with 

broader coverage was undertaken. While abundant seizures were recorded, the study 

failed to localise a focal generator. Ictal spread to the same posterior perisylvian region 

that we had localised with ictal MEG preceded the stereotyped clinical onset, but this 

occurred late in the seizure. No surgery could be offered. 
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Fig. 5-2 Case 2 ictal MEG, FDG PET, and SEEG. (A) MEG source imaging over 5s windows of the seizure 

in (B) showing ictal spread beginning in the left supramarginal gyrus. (B) Reduced montage (76 of 275 

MEG channels displayed) showing seizure onset and spread. (C) MEG source imaging of seizure onset 

in 9 independent seizures (4 L parietal, 3 L frontal, 1 L inferior temporal, 1 R occipital) captured during 

the overnight ictal MEG. 5 seizures were excluded because of artefact or missed onset. Each colour 

represents a different seizure. (D) ictal MEG source imaging plotted over first SEEG postimplantation 

MRI. SEEG electrodes are shown in grey, with green channel labels. (E) 18F-FDG PET showing diffuse left 

hemispheric hypometabolism. 

Discussion 

In many tertiary epilepsy centres, including our own, MEG is presently rarely utilised 

during nighttime off-hours. We argue that overcoming the logistical challenges of such 

recordings presents a significant opportunity for the acquisition of routine ictal MEG. 
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In the two cases presented here, we demonstrate that recording natural sleep in unse-

dated children overnight is both achievable and can allow for routine ictal MEG record-

ings in well-selected patients, such as those with sleep-related seizures. 

Practically, some suggestions from our experience include adding a comfortable mat-

tress above the standard patient support and a thin pillow in the MEG helmet to pre-

vent discomfort from the EEG electrodes, and placing a second bed in the magnetically 

shielded MEG room for a parent to sleep next to the child. In conclusion, overnight 

MEG recordings in well-selected candidates are proposed as a viable methodology to 

obtain routine ictal MEG in the presurgical evaluation for drug-resistant epilepsy. 
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6 
Chapter 6 – Localisation of oligodendroglial hyperplasia 

and differentiation from focal cortical dysplasia type II 
with multimodal imaging 

Medicine is a science of uncertainty and an art of probability. 

— Sir William Osler 

Preface 

In this chapter we describe the application of multimodal imaging to a newly charac-

terised histopathological entity in children with drug-resistant epilepsy. We demon-

strate that some imaging modalities not previously investigated in these patients can 

help localise and differentiate this pathology from more common malformations of cor-

tical development. This chapter again highlights how novel applications of imaging 

techniques can aid in the presurgical evaluation for paediatric epilepsy. The manu-

script was submitted and is currently under review as: 

Moreau JT, Vinaik R, Simard-Tremblay E, Albrecht S, Saint-Martin C, Rosenblatt B, 

Baillet S, Dudley RWR. Localisation of oligodendroglial hyperplasia and differentia-

tion from focal cortical dysplasia type II with multimodal imaging. 
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Abstract 

Newly defined histopathological entities such as oligodendrocyte hyperplasia (OH) 

might account for some cases of previously described negative pathology focal epi-

lepsy. The imaging characteristics of OH are however poorly characterised. In this 

study, we obtained 3T T1, T2, and diffusion-weighted MRI (DWI) as well as MEG, FDG 

PET, and interictal/ictal SPECT in 4 patients with OH and 7 control patients with FCD. 

Surgical specimens were stained with OLIG2 and cell density measurements were per-

formed. Patients with OH showed significantly greater OLIG2-positive cell densities 

(3046 ± 839 cells/mm2) than FCD patients (1506 ± 265 cells/mm2). Normalised appar-

ent diffusion coefficient (ADC) values within the resection volume were significantly 

higher in OH as compared to FCD. ADC, PET, and MEG had the highest localisation 

value and high interrater agreement in patients with OH. Mean resection volume was 

significantly greater for OH (43.2 cm3) than FCD (5.3 cm3). 7/7 FCD patients and 2/4 OH 

patients were seizure free at >18 months follow-up. We conclude that quantitative anal-

ysis of DWI could allow for non-invasive differentiation between OH and FCD. PET, 

ADC, and MEG imaging of focal slowing could be particularly valuable in localising 

poorly defined lesions in patients with OH. 

 

Keywords: epilepsy surgery, oligodendroglial hyperplasia, PET, SPECT, magne-

toencephalography, diffusion-weighted MRI 
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Introduction 

Malformations of cortical development are the most frequent cause of focal drug-re-

sistant childhood epilepsy 203. While focal cortical dysplasia (FCD) accounts for the ma-

jority of these cases 203, newly defined histopathological entities such as oligoden-

droglial hyperplasia (OH)—which is characterised by increased densities of oligoden-

droglial-like cells (OLCs) in subcortical white matter 204—may explain some of the previ-

ously described negative pathology cases 203. Here, we specifically use the term OH to 

refer to a focal increase in OLIG2-immunoreactive cells in patients with drug-resistant 

epilepsy, though terms including "oligodendrocytosis" 205 and "mild malformation of 

cortical development with oligodendroglial hyperplasia" 204 have also been used. 

In a study of histopathological findings in 2623 children, Blümcke et al. reported 

1-year seizure-free rates of 79.9% for tumours, 59.9% for malformations of cortical de-

velopment, and 55.2% for children in whom no specific lesion could be identified 203. 

Reports of seizure freedom rates in OH vary, with one study reporting seizure freedom 

in only 6/18 (33%) patients (mean 11.8 years follow-up) 204, while another group re-

ported 1-year seizure-freedom in 13/18 (72%) of their patients, which they attributed 

to more extensive surgical resections 205. As with this later study, there is mounting ev-

idence suggesting that observed increases in OLCs could be associated with more ex-

tensive epileptic networks in children, which might require more extensive multilobar 

resections to achieve seizure freedom 205–207. While the exact mechanisms have not 

been fully explored, Sakuma et al. 207 have proposed that interactions between cortical 
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epileptic neurons and subcortical OLCs in OH could contribute to these extensive ep-

ileptogenic networks. 

Given possible differences in surgical treatment and outcomes, the ability to lo-

calise and differentiate OH from other malformations of cortical development would 

be valuable. Previous case series of patients with OH have noted blurring of the grey-

white matter junction, increased cortical thickness, and subcortical T2/FLAIR signal hy-

perintensities 204,205,208–210. However, in one study that compared MRI and MEG imaging 

characteristics between OH and FCD I, imaging features were similar between the two 

pathologies 205. We aimed to assess the value of additional imaging modalities, beyond 

conventional MRI, in either helping localise or differentiate tissue with OH from controls 

with FCD alone. Specifically, we qualitatively and quantitatively evaluated contributions 

from diffusion-weighted MRI, 18F-FDG PET, interictal/ictal SPECT, interictal magne-

toencephalography (MEG), MEG power spectral density, and T1/T2 ratio MRI, in a se-

ries of patients with OH and a group of control patients with FCD. 

Materials and Methods 

Patients 

The study received full approval from the McGill University Health Centre’s Research 

Institute Ethics Board, and all involved patients and/or parents/guardians signed an 

informed consent form to be enrolled in the study. Pathology reports for all patients 

who underwent epilepsy surgery at the Montreal Children's Hospital between 2015 



Chapter 6 

94 

and 2019 were reviewed. These dates were selected as they correspond to the intro-

duction of a new imaging protocol at our centre that included all the imaging modali-

ties discussed in this study. All 4 patients with a pathological diagnosis of oligoden-

droglial hyperplasia and a consecutive series of 7 control patients with focal cortical 

dysplasia were included. 

MRI, PET, SPECT, and MEG image acquisition 

We obtained 3T T1, T2, and diffusion MRI pre-operatively (preop) and post-operatively 

(postop) in all patients. 18F-FDG PET, ictal and interictal SPECT, and MEG were acquired 

only preop. Preop MRIs were acquired on a Siemens Skyra 3.0T while postop MRIs 

were acquired on either this same scanner (n = 5) or a Philips Achieva 3.0T intraopera-

tive MRI (n = 6). Preop and postop T1 MRIs were acquired with a 1-mm isotropic reso-

lution. T2 MRIs were acquired with either 3.5-mm slice thickness and 0.5-mm in-plane 

resolution or 1-mm slice thickness and 0.5-mm in-plane resolution. Apparent diffusion 

coefficient (ADC) images with 5-mm slice thickness and 1-mm in-plane resolution were 

obtained from diffusion-weighted images with b-values of 0, 500, and 1000 s/mm2. PET 

was acquired on a Philips Gemini TF scanner with a 2-mm isotropic resolution. SPECT 

was acquired on a GE Tandem Discovery 670 with a 4.4-mm isotropic resolution. MEG 

was acquired on a 275-channel CTF system with a sampling rate of 2.4KHz. 

Pathology and image processing 

Surgical specimens were stained with OLIG2, an immunohistochemical marker of oli-

godendroglial-like cells 207. Quantitative cell density measurements of OLIG2-positive 
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cells were performed using QuPath 211. For each patient, all MRI, PET, and SPECT im-

aging was first coregistered to the preop T1 MRI using SPM 195. MRIs were resliced into 

1-mm isotropic voxel dimensions and skull-stripped using pstrip 212. Surgical cavity 

margins were manually outlined using Freesurfer's 213 FreeView. T1/T2 ratio images 

were computed using the MRTool SPM12 toolbox 214. ADC images were masked using 

a white matter mask generated using Freesurfer and intensities were normalised within 

image volumes. PET and SPECT values were normalised to the cerebellum. MEG anal-

yses were performed using Brainstorm 215. An overlapping spheres volume head 

model was computed from Freesurfer surfaces generated from the preop T1 MRI. 

Source imaging was performed using dSPM and power spectral densities were com-

puted in source space using Welch's method (as implemented in Brainstorm). Mean 

volumes and normalised mean imaging values within the margins of the surgical cavity 

were extracted using FSL 216. 

Interrater agreement and statistical analyses 

For all qualitative analyses, 3 independent raters (C.S.M, J.T.M, R.W.R.D.) reviewed the 

imaging with an outline representing the margins of the surgical cavity overlaid above 

the volume. They were asked to rate whether there was no signal abnormality, a subtle 

abnormality, or a clear abnormality within the outline. For calculations of interrater 

agreement, the "yes" and "yes (subtle)" choices were combined. After reviewing the 

imaging independently, the three raters re-examined all images together and made a 

consensus decision. All statistical analyses were performed in R. Mean differences in 

imaging values, resection volumes, and cell densities between the OH and FCD groups 
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were compared using Welch's 2-sample t-tests and corrected for multiple comparisons 

using the Bonferroni method. Robust regressions between cell densities and imaging 

values were performed using the robustbase R package (MM-estimator) to minimise 

the impact of potential outliers. Interrater reliability was assessed using percentage 

agreement. Means ± one standard deviation are reported unless otherwise specified. 

Results  

Example OLIG2-pathology slides as well as PET, ADC, T1/T2 MRI, and MEG imaging 

results for two FCD and two OH patients are presented in Fig. 6-1. Qualitative localisa-

tion value consensus results are shown in Fig. 6-2A and interrater agreement in Fig. 6-

2B. ADC, PET, and MEG had the highest localisation value for OH (concordant in 4/4 

patients) with high inter-rater agreement (ADC: 82%, PET: 91%, MEG delta power: 

100%). There were no significant differences in preop mean imaging values within the 

volume of the surgical resection between the OH and FCD II groups (adj. p > 0.05) 

except for ADC (adj. p = 0.02, Fig. 6-2C). There was also a significant positive relation-

ship between OLIG2-positive cell densities and ADC intensities (adj. R2 = 0.49, adj. p = 

0.01, Fig. 6-2C). Mean resection volumes were significantly greater for OH (42.2 ± 16.1 

cm3) than FCD II (5.3 ± 2.5 cm3), p = 0.006 (Fig. 6-2D). Patients with OH showed signifi-

cantly greater OLIG2-positive cell densities (3046 ± 839 cells/mm2) than FCD II patients 

(1506 ± 265 cells/mm2), p = 0.01, or literature-reported autopsy values (~950 ± 200 

cells/mm2) 204 (Fig. 6-2E). 7/7 FCD patients and 2/4 OH patients were seizure free at an 

average 31 months postop (range 18-55 months, Supplementary Table 6-1).  
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Fig. 6-1 Example pathology, PET, ADC, T1/T2 MRI, and MEG results in 2 OH and 2 FCD patients. 
OLIG2-stained surgical pathology slides, MEG delta power overlaid on postop MRI, 18F-FDG PET, appar-

ent diffusion coefficient (ADC), and T1/T2 ratio MRI for two example focal cortical dysplasia type II pa-

tients (A, B) and two patients with oligodendroglial hyperplasia (C, D). Red outline indicates the margins 

of the surgical resection. 𝛿: delta (2-4Hz)  
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Fig. 6-2 Qualitative (A, B) and quantitative (C, D, E) evaluation of imaging and pathology for focal cor-
tical dysplasia (FCD) and oligodendroglial hyperplasia (OH). A, Percentage of patients for whom a sig-

nal abnormality was observed within the margins of the surgical resection. Results show the consensus 

decision of the 3 raters. B, Percentage interrater agreement for each of the modalities. C, Scatter plot 

shows normalised apparent diffusion coefficient (ADC) as a function of OLIG2-positive cell density within 

resected tissue. Bar plots show mean ADC values and 95% confidence intervals for FCD II and OH. D, 

Mean resection volume and 95% confidence intervals for FCD II and OH. E, Mean OLIG2-positive cell 

density for FCD II and OH.  

Discussion  

The objectives of the present study were to identify imaging modalities that could help 

localise OH and, if possible, differentiate OH from FCD radiologically. We found that 

FDG PET, ADC, and MEG imaging of focal slowing were particularly useful in localising 

pathological tissue in patients with OH (Fig. 6-2A). Several previous case reports and 
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small case series have identified imaging characteristics of OH on T1, T2, and FLAIR 

MRI 204,205,208–210,217. Beyond MRI, one study additionally reported that MEG spike source 

clusters were identified in 67% of patients with olidodendrocytosis and were concord-

ant with the surgical resection in all cases 205. In addition to MEG source imaging of 

interictal spikes, MEG localisation of focal slowing localised the epileptic generator in 

the present sample of patients with OH. As with the previous study 205, however, we 

found no significant differences in MEG features between the OH and FCD groups. In 

fact, of the 5 imaging modalities investigated, only ADC showed significant differences 

between OH and FCD. Given the value of diffusion-weighted MRI for white matter im-

aging, it seems reasonable to expect that ADC may be particularly relevant in patients 

with OH.  

ADC is one of the methods frequently utilised in the radiological diagnosis of 

oligodendrogliomas 218. As with oligodendroglioma, our results suggest that ADC can 

help localise abnormal tissue in patients with OH. The noted increase in ADC values 

we report with OH is akin to the higher ADC values typically observed in low-grade 

tumours 218. However, it has also been reported that the high nucleus-to-cytoplasm ra-

tios observed in high-grade tumours are associated with lower ADC values due to re-

striction of water diffusion 219. While associated with increased cellularity, cell densities 

in OH remain on average lower than even low-grade oligodendroglioma 204, which may 

explain why increased, rather than decreased, ADC was observed in our sample of pa-

tients with OH. 
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Regarding surgical outcomes, previous studies have suggested that OH may be 

associated with relatively poorer seizure freedom outcomes. Likewise, while the pre-

sent sample is small, 2/4 patients with OH were not seizure free (Engel IIb and Engel 

IIIa) as compared to 7/7 FCD patients who were seizure-free at an average of over 2 

years postop. Despite the poorer outcomes, our patients with OH underwent signifi-

cantly larger resections than those with FCD (Fig. 6-2D). This is consistent with previous 

reports suggesting that OH may require larger resections than FCD 205. 

Some methodological limitations of this study include the small sample size, the 

use of different scanners and sequences in some patients, and the lack of more ad-

vanced diffusion-weighted MRI (e.g. HARDI, DTI, DKI). OH remains a relatively rare if 

perhaps underreported pathological entity 204, and multi-institutional collaboration will 

be needed to provide reliable assessments of seizure freedom rates and to validate 

the present preliminary imaging results on larger cohorts. While we relied on retro-

spective analysis of available imaging at our institution, future studies would benefit 

from prospective evaluation with standardised imaging protocols. In particular, given 

the promising results obtained with ADC, we feel that the inclusion of higher spatial 

and angular resolution diffusion-weighted MRI sequences could be a particularly inter-

esting avenue to explore in future work. 

 In conclusion, the present study provides preliminary evidence that PET, ADC, 

and MEG source imaging of focal slowing could have value in localising epileptogenic 

tissue in patients with histologically-confirmed OH. Additionally, quantitative analysis 

of ADC could allow for differentiation of OH from FCD II alone. 
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Supplementary Table 6-1 Demographic and clinical information of the study sample. 

ID Age Sex Seizure onset zone Pathology Follow-up 
(months) 

Outcome 
(Engel) 

FCD1 5 F L Temporal FCD 2b 39 Ia 
FCD2 14 F R Precentral FCD 2a 40 Ia 
FCD3 2 M L Precentral FCD 2b 55 Ia 
FCD4 5 M R temporo-occipito-parietal FCD 1a 20 Ia 
FCD5 10 F R SMA FCD 2a 18 Ia 
FCD6 11 F L fronto-central FCD 2a 18 Ia 
FCD7 7 M L Precentral FCD 2a 19 Ia 
OH1 13 M L Temporal OH and FCD 1b 45 IIb 
OH2 14 M R Frontal OH and FCD 2a/2b 42 Ia 
OH3 11 M R Frontal OH and gliosis 22 Ia 
OH4 10 F R Temporal OH and HS 21 IIIa 
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7 
Chapter 7 – General discussion 

I may not have gone where I intended to go, 
 but I think I have ended up where I needed to be. 

— Douglas Adams, The Long Dark Tea-Time of the Soul 

 

In this thesis, I presented a body of work demonstrating how predictive analytics and 

multimodal imaging can assist in some aspects of decision-making in neurosurgery. 

Specifically, I contributed studies demonstrating applications of machine learning 

techniques and novel applications of multimodal imaging in the context of neuro-on-

cology and paediatric epilepsy surgery. These studies represent a beginning rather 

than an end to the direction I would like to take in future work. Many of the tools and 

techniques developed in this thesis have the potential to contribute to new advance-

ments in related areas. The meningioma malignancy and prediction app presented in 

chapter 2 for instance could easily be adapted for other cancers, neurological or oth-

erwise. Likewise, it is my intention to continue updating the SISCOM app discussed in 

chapter 4 to add new features such as support for newer algorithms like STATISCOM 

199 and add support for quantitative analysis of other imaging modalities such as PET. 

This reflects a general theme of this thesis, to not only build new tools, but also to share 

them and make them available for anyone to adapt and expand upon.  
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 In chapter 2, I presented machine learning models, trained on data from over 

60,000 patients, designed to aid in the diagnosis and prognosis of meningiomas. 

While the actual implementation remains foremost a proof of concept, much of the 

methodology remains very applicable to future endeavours. In particular, as is dis-

cussed in the body of the paper, I am keen to expand the predictive models to build in 

molecular and imaging data into the predictions. In future developments, I envisage it 

being possible to upload an MRI and lab values in the app, which would then use these 

additional data to provide more accurate predictions. Nonetheless, at least for survival 

predictions, the models and app could already be valuable in providing better esti-

mates of survival probabilities, which could aid in patient counselling. In this regard, I 

would like to conduct follow-up prospective validation studies to better assess on one 

hand the predictive validity of the estimates, but also user experience of physicians 

using the app and patient feedback on the personal relevance of these kinds of pre-

dictions. In the end, I feel tools must be developed in the interest of patients and im-

proving care, and obtaining this kind of feedback is crucial in determining where we 

should be investing more time and resources. 

 In chapter 3, I followed-up on the practical application presented in chapter 2 

with a discussion of some of the ethical issues involved in the use of machine learning 

in medicine. I presented original statistics on geographical publication bias and spatial 

inequality in investments in AI applied to medical diagnostics. AI has great potential to 

decrease costs and improve diagnostic accuracy in lower-resource settings 193, but this 
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will require early attention, and perhaps legislation, ensuring that representative da-

tasets of patient information can be collected and applied in training AI systems. In this 

chapter I also highlight how AI does nothing in the way of addressing the systemic 

biases already extant within our healthcare systems, and, if left unaddressed, even runs 

the risk of exacerbating some of these issues by giving healthcare providers a false 

sense of “objectivity” in making healthcare decisions that may, at least in part, be driven 

by socioeconomical rather than medical factors. From a legal perspective also, the 

“black box” nature of many of these algorithms could make it harder to detect foul play 

from ill-intentioned actors guided by commercial interest. While there are no easy an-

swers to any of these problems, at least discussing their existence and publicising not 

just the potential, but also the limitations of AI applied to healthcare will hopefully lead 

to the development of fairer, more equitable, AI systems in real-world practice. 

 In chapter 4, I transitioned to discussing an open-source software application I 

recently developed for the computation of subtraction ictal single-photon emission CT 

coregistered to MRI (SISCOM). I started out this project mostly because we needed 

such a tool to compute SISCOM, but have developed it over the last year to make it 

more user-friendly and accessible to others. One benefit of open-source software is 

that anyone with the inclination can modify the program to suit their own needs. Be-

yond the future directions discussed in the chapter itself, one additional aspect I would 

like to develop is the use of deep learning to combine predictions from multiple imag-

ing modalities (e.g. SISCOM, PET, and MRI). This would likely require larger datasets of 
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MRI and nuclear imaging scans than I currently have available, but could further con-

tribute to better outlining the lesional and functional deficit zones. It would also be 

interesting to include an aspect of seizure-freedom prognostication, by training not 

only on surgical patients who achieved seizure freedom, but also on seizure frequency 

in those who did not. For instance, we could imagine the software predicting a per-

centage probability of seizure-freedom if the highlighted region were to be resected. 

 In chapter 5, I begin my discussion of applications of multimodal imaging to the 

presurgical evaluation in patients with drug-resistant epilepsy. In this chapter, I begin 

with two case presentations of the first two children we recorded sleeping overnight in 

the MEG at the MNI. I discussed the analysis and implications for one “positive” and 

one “negative” case to illustrate both the benefits and challenges involved in the appli-

cation of ictal MEG. I additionally offered some practical recommendations on certain 

changes we have made that have facilitated and improved the comfort of these over-

night recordings. While logistically challenging, these scans have the potential to pro-

vide valuable information in well-selected patients with nocturnal seizures. They also 

represent a better utilisation of expensive equipment that is presently underutilised 

outside of regular working hours. Future directions will include amassing a larger case-

series of overnight ictal MEG recordings and prospectively evaluating localisation ac-

curacy against invasive EEG and surgical outcomes. 

 Finally, in chapter 6 I present the results of a study investigating the potential of 

a series of imaging modalities in helping localise and differentiate a recently character-

ised histopathological entity, oligodendroglial hyperplasia (OH), from focal cortical 
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dysplasia. I demonstrated that while PET, ADC, and MEG source imaging of focal slow-

ing could help localise epileptogenic tissue containing OH, only ADC was capable of 

differentiating between OH and FCD type II. This remains a relatively small case series 

and future studies will need to replicate this work with greater sample sizes, but the 

results suggest that OH may radiologically differ from other malformations of cortical 

development in at least some aspects. Given the over 50% of children who become 

seizure free after a histologically-negative resection 203 further work is clearly needed 

to provide additional mechanistical explanations of epilepsy in these patients. An ap-

proach combining both carefully labelled surgical pathology and advanced pre-oper-

ative imaging could contribute to furthering this objective. Correlation of ex-vivo im-

aging of surgical specimens to histology could also help develop a better understand-

ing of the imaging features of the various sequences used in the presurgical evaluation. 

 In conclusion, in this thesis I presented a group of studies with the overarching 

aim of assisting in some aspects of decision-making in neurosurgery. I made new con-

tributions to applications of machine learning techniques in neuro-oncology and pro-

vided software and methodological developments that could aid in the presurgical 

evaluation for children with drug-resistant epilepsy. These studies together offer new 

hypotheses and directions of investigation that could lead to more quantitative tools 

to guide neurosurgical decision-making and improved patient outcomes. In future 

work, I hope to expand on this body of research with larger prospective and controlled 

studies, as well as by continuing to develop software applications that will aid in trans-

lating these findings to real-world practice.
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