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Abstract 

Colloid filtration experiments were performed using latex particles (50 nm, 110 nm and 

1500 nm) in both the presence and absence of 5.0 mgIL humic acid (HAs). At low ionic 

strengths (1 - 10 mM KC1), an increase in attachment efficiency (a) with increasing 

particle size was observed, which contrasts with predictions based on DL VO theory. The 

presence of HAs generally resulted in a decrease in a. Characterization experiments to 

better understand this behaviour inc1uded partic1e sizing using dynamic light scattering 

(OLS) and zeta potential using laser Doppler velocimetry (LDV). The partic1es' 

hydrodynamic diameters were unchanged in the presence of HAs. HAs lead to an 

increase in absolute zeta potential for the 50 nm and 110 nm colloids and a decrease in 

zeta potential for the 1500 nm partic1es. A discussion of the apparent deviations from 

Derjaguin-Landau-Verwey-Overbeek (DLVO) theory and explanations for the observed 

behaviour are provided. 

Abstract 

Des expériences de filtration des colloïdes ont été effectuées en utilisant des particules de 

latex (50, 110 et 1500 nm) en présence ou sans 5.0 mgIL d'acides humiques (AH). A 

basse force ionique (1- 10 mM KCI), une augmentation de l'efficacité d'attachement (a) 

avec l'augmentation de la taille des particules a été observé, ce qui contredit les 

prédictions basées sur la théorie DLVO. La présence d'AH résultait généralement en une 

baisse d'a. Pour mieux comprendre les tendances observées, des expériences de 

charactérization incluant la mesure du diamètre des particules utilisant DLS et le potentiel 

zéta utilisant LDV. Le diamètre hydrodynamique des particules demeure stable en 

présence des AH. Les AH augmentent le potentiel zéta absolu pour les colloïdes de 50 et 

110 nm et une baisse en potentiel zéta pour les particules de 1500 nm. Une discussion des 

différences apparentes avec la théorie DL VO et des explications des tendances observées 

sont données. 
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1.0 Background and Motivation 

1.1 History and Environmental Relevance 

Dutch scientist Anton van Leeuwenhoek flfst observed bacteria in 1674 using a 

microscope of his own design [1]. Though he likely didn't appreciate their significance 

at the time, those early observations helped pave the way for bioengineering and by 1862 

Louis Pasteur and Claude Bernard were recognizing the potential for harnessing these 

microscopie organisms [2]. With the invention of new analytical and imaging 

techniques, humans began to exert their control over things on a progressively smaller 

scale. In 1953, James D. Watson and Francis Crick made use of crucial x-ray diffiaction 

images to propose a model for the structure ofDNA and allowed for the characterization 

of the building blocks of life [3]. Further innovations are leading towards a future 

wherein humans will likely be able to control the manufacture of materials and perhaps 

life itself on an atom-by-atom or molecule-by-molecule basis. Currently, materials are 

being manufactured that have characteristic dimensions which are smaller than 100 nm 

and this newfound ability to tailor materials on the nanoscale has lead to the development 

of a flourishing nanomaterials sector creating products for a wide range of consumer and 

industrial applications. 

To prevent health and environmental consequences that may become associated 

with these products throughout their life-cycle, an urgent need exists to consider the 

possible implications of nanomaterial fabrication. If not, the production, use and eventual 

disposaI of nanomaterials will invariably lead to their presence in air, water and soils. 

Conscientious use of nanomaterials will require a better understanding of their mobility, 

bioavailability and toxicity prior to their widespread development to assess the associated 

risks. 

Barly research efforts have largely focused on hazards associated with exposure to 

nanomaterials, particularly to those involved in the fabrication of these materials [4]. 

This exposure can occur through the skin, the lungs and the gastrointestinal tract. While 

meticulous workplace handling of materials and proper disposaI of wastes may help to 

limit human exposure, there is still insufficient information regarding the partitioning of 
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these partic1es into various phases (e.g. air and water) and the mobility and persistence of 

nanomaterials in the environment. Furthermore, while regulations controlling the 

disposaI of wastes are often drafted in terms of mass concentrations, a growing body of 

evidence suggests that the physicochemical properties of a material that are most strongly 

linked to its toxicity are its surface area, size, acidity and metal content [4]. Due to their 

relatively small size, a given mass of nanomaterials will have a much larger specifie 

surface area than micron-sized particulates and hence have much more potential for 

toxicity. As a result, if emission standards for nanomaterials are to be appropriate, they 

would best be stated in terms of surface area or number concentration. 

Initial investigations into the mobility of nanomaterials in systems that resemble 

groundwater aquifers have found that mobility is a function ofboth surface chemistry [5] 

and particle size [6-8] and that varying the functionalization of a given nanoparticle can 

lead to significant differences in that partic1e's mobility [9, 10]. For example, 

nanoparticulate fullerene aggregates (nC60) have very limited mobility in porous media 

due to their low solubility in water white fullerol has been found to be highly mobile [Il]. 

Findings such as these underscore the need to avoid using generalizations in the 

implementation of a regulatory environmental framework for nanomaterials. 

IntuitiveIy, many assume that given their small size, nanopartic1es will be highly 

mobile in aquatic environments. Classical colloid filtration theory states that, all other 

properties being equal, the mobility of very small partic1es should be limited because 

their high diffusivities should lead to a higher incidence of collisions with the surface of 

granular materials such as sand grains. However, some of the short-range forces (e.g., 

structural or hydration forces, diffuse-Iayer interactions, steric interactions) that are often 

neglected in standard colloidal interactions may become relevant over the length scales 

involved in nanopartic1e deposition [4]. This and other factors may lead to large 

discrepancies between the actual and predicted mobility of nanoparticles in the 

subsurface and are the reasons why further study of nanopartic1e transport and fate in 

subsurface environments is required. 
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1.2 Colloid Filtration Theory 

Prior to examining the transport and fate of anthropogenic nanomaterials in saturated 

porous media, it is important to first gain an understanding of the mechanisms that are 

involved in the contact and potential attachment of nanoparticles to an individual 

collector (i.e. sand grain). When a fluid streamline passes close to the surface of an 

individual collector witbin a granular porous matrix, there is a possibility that particles 

entrained witbin that streamline will come sufficiently close to the collector to contact its 

surface. It is generally accepted that tbis process is a function ofthree main mechanisms: 

interception, sedimentation, and Brownian diffusion [12]. Interception occurs when the 

diameter of the particle is sufficiently large that its streamline carries it directly to the 

collector surface. When the action of gravit y causes contact between particles and 

collectors that would not have otherwise contacted, tbis mechanism is referred to as 

sedimentation. Finally, as aIl particles are undergoing Brownian motion (or diffusion) on 

a small scale as they travel along a given streamline, this Brownian diffusion can 

sometimes cause them to contact the surface of the collector. Brownian diffusion is of 

particular relevance for smaller particles such as the anthropogenic nanoparticles being 

considered in this work [12]. 

The overall efficiency with which a given suspension of particles will contact the 

surface of a collector can be considered as the sum of the individual contributions of each 

of these three aforementioned mechanisms. This is commonly referred to as the single­

collector contact efficiency and is described by the following expression: 

~=%+~+~ W 
where 1/0 is the overall single-collector contact efficiency, 1/1 is the contribution due to 

interception, 1/G is the contribution due to gravit y (sedimentation), and 1/D is the 

contribution due to Brownian diffusion [13]. Previous studies have suggested that the 

three transport mechanisms can be expressed as power functions of the primary 

dimensionless groups thought to influence the transport of particles to the collector 

surface [14, 15] (e.g. 170 = aA;N~N:eN:dW' where a-e are constants) [13]. 

Attempts have been made by several groups to develop semi-empirical 

correlations that may be used to describe the individual contributions of each of the three 
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mechanisms to the overall single-collector contact efficiency. For many years, the 

equation proposed by Rajagopalan and Tien (RT) was the approach most commonly used 

to determine the single collector contact efficiency for colloid transport in saturated 

granular media [15]. However, Tufenkji and Elimelech [12] have recently proposed a 

new correlation equation for predicting the single-collector contact efficiency. This new 

correlation is quickly gaining widespread acceptance as providing more attention to the 

fundamental processes governing particle transport and has been shown to provide better 

agreement with experimental data. Tufenkji and Elimelech developed a method whereby 

optimal values of the power-Iaw constants for each of the three transport mechanisms 

could be obtained through regression analysis. The correlation equation proposed by 

Tufenkji and Elimelech (TE) [12] is given by: 

11 =2 4A'x N -0.08IN-0.715N 0.05~ 55A Nl.675N 0.1240 2'lN -O.24N I.IIN 0.053 (2) 
'10 . S R Pe vdW' S RA' R a vdW 

where As IS a porosity dependent parameter of Happel' s model 

(As = 2(1- yS) /(2 - 3y + 3y5 - 2y6», NR is the aspect ratio, Npe is the Peclet number, 

NvdW is the van der Waals number, NA is the attraction number, and No is the gravit y 

number. 

Simply making contact with a collector surface does that ensure that a colloid will 

attach. In fact, particle removal from the pore fluid is often thought of as being the 

product of the single-collector contact efficiency and the attachment efficiency [13]: 

(3) 

where a, the attachment efficiency, is the ratio of the rates of particle attachment to 

particle contact and 11 is the single-collector removal efficiency. The attachment 

efficiency ranges from 0 (no particle attachment) to 1 (all particles that contact the grain 

surface are retained). Currently, there are no satisfactory theoretical models to describe 

the attachment efficiency. The classic model put forth by Derjaguin, Landau, Verwey, 

and Overbeek (i.e., DLVO theory) attempts to determine a function relating a particle's 

total interaction potential to the sum of attractive and repulsive forces, hydrodynamic 

forces and the separation distance between particle and collector [16, 17]. However, 

experimental evidence does not satisfactorily support predictions made using this model 

[6-9]. Altematively, Yao et al. [13] proposed an expression for the attachment efficiency 
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which they obtained through the integration of a mass balance of particles over a 

differential volume of the porous media: 

(4) 

where de is the mean diameter of a collector, L is the length of the column of porous 

medium, 6 is the porosity of the porous medium, C and Co are respectively the 

breakthrough and influent particle concentrations [11]. The concentration value that is 

considered to be the "breakthrough" value is the average steady state concentration of 

particles eftluent from the column following the initial injection of a colloidal suspension 

[12]. The influent particle concentration is obtained by directly measuring the particle 

concentration of the ''unfiltered'' colloid suspension. 

1.3 The Role of Partic1e Size in Colloid Deposition 

As previously discussed, the overall efficiency with which a suspension of particles 

contacts the surface of a collector can be considered the sum of the individual 

contributions of interception, sedimentation, and Brownian diffusion. As particle size 

changes, the contribution of each of these mechanisms to the single-collector contact 

efficiency also changes. Furthermore, both van der Waals and electrical double layer 

(EDL) forces have a dependence on particle size which results from the necessity to 

account for the radii of curvature of the two surfaces in the force calculations [9]. In 

order to better illustra te the significance of particle size, it is convenient to represent the 

total interaction potential between the two surfaces as: 

(5) 

where l/>T is the total interaction potential between the surfaces and is a product of G (a 

function of surface potentials, Hamaker constant, Debye length and separation distance) 

which is highly dependent on the chemistry of solutions and F(a) given by 

F(a) = (al az) / (a, + az) for particles of radii al and a2 and by ap for a particle 

interacting with a flat plate [9]. 

Classical DL VO theory predicts a dramatic increase in the total interaction energy 

of a colloidal suspension with increasing particle size and subsequently predicts 
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significant decreases in the attachment efficiency and the rate of coagulation. While this 

theory is still considered to be the most rigorous treatment of colloidal interactions 

available, simplifying assumptions (i.e., perfectly smooth and sphericai 

particles/collectors, etc.) involved in its derivation limit its usefulness [16, 17]. 

Furthermore, a number of colloidal interaction forces (i.e., hydrophobicity, hydration 

forces, etc.) have been neglected in its derivation and while they may be insignificant at 

larger separations, their contribution to the total interaction can become significant at 

short distances [9]. Contrary to the predictions of DL VO theory, a growing body of 

experimental evidence has found that colloidal stability and attachment efficiency may be 

independent of particle size [6-8]. Various explanations have been proposed to 

rationalize this discrepancy such as the surface roughness of the particles or collectors, 

hydrodynamic interactions, the non-homogeneity of surface charge distribution, the 

dynamics of colloidal interactions and coagulationldeposition in the secondary energy 

minimum [9]. While each of these factors likely merit attention, the current 

understanding of these factors precludes their inclusion in any rigorous quantitative 

assessment. 

1.4 The Role ofNaturai Organic Matter in Colloid Deposition 

The interactions between various contaminants and subsurface sediment grains have been 

found to be highly dependent on the physicochemical and hydrodynamic conditions that 

are predominant in the subsurface environment [18-21]. As this is likely to be true for 

anthropogenic nanomaterials, it is important to ensure that any laboratory scale 

experiments designed to model the transport and fate of contaminants in the subsurface 

are representative of the system that they are modelling. One environmental factor that is 

often not accounted for in transport studies is the presence of organic macromolecules in 

groundwater. This natural organic matter (NOM) is ubiquitous in natural systems and 

cursory examination of works related to NOM indicates that it is likely to have a 

significant impact upon the surface potential of colloidal particles [22,23] and influence 

the dynamics of colloidal transport in subsurface systems [19, 22-26]. 

The term "natural organic matter" is a collective term for a group of organic 

macromolecules found in both subsurface and surface waters that range in composition 
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from complex residues of cell wall structures to polysaccharides, proteins and organic 

acids such as humics and fulvics. These macromolecules are formed through the 

decomposition of plant, animal and bacterial tissue and the relative contributions of these 

components to the natural organic matter present in a particular area is influenced by the 

area's physical, geochemical and hydrological characteristics as well as fluctuating 

factors such as temperature, sunlight and biological prevalence [27]. 

While it is recognized that these ubiquitous macromolecules have an important 

effect on soil and aquatic systems due to their role in buffering pH and in increasing the 

cation exchange capacity, their influence on the stability of colloidal suspensions is 

largely uncertain. One particular fraction of NOM known as humic acid (HA) has been 

selected as the particular focus of tbis investigation. They are natural polyelectrolytes 

and are considered to be organic acids despite having a wide variety of functional groups. 

In-situ microscopic examinations of HAs have found that their macromolecular structure 

1S not only highly dependent upon solution chemistry due to the 

protonationldeprotonation of their various functional groups but also upon their origin 

(soil versus fluvial). Sorne notable differences commonly observed between the 

macromolecular structures of HAs of different origin are the lower solubility, higher 

aromatic content and lower carboxyl content of soil derived HAs relative to fluvial 

humics [28]. HAs fonn more than one type of macromolecular structure in aqueous 

suspensions that is not so simply characterized as to say that RAs form rings in acidic and 

high ionic strength solutions and elongated structures in dilute or alkaline solutions as 

was previously held [29]. Although there has been a great deal of study of natural 

organic matter, little is known about its impact on the stability of nanoparticle 

suspensions. 

1.5 Objectives 

The general objective of this investigation is to detennine the effect of partic1e size in 

conjunction with that of the presence of NOM on the transport of nanomaterials under 

saturated conditions representative of groundwater environments. The specific objectives 

of tbis study are (i) to perform an investigation of the effect of colloid size on the 

transport and fate of nanopartic1es in a model groundwater system under a broad range of 
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physicochemical conditions; (ii) to investigate whether the presence of NOM would 

similarly impact the transport and fate of nanopartic1es as they do that of micron-scale 

colloids; and (iii) to characterize the materials used in the investigation aimed at aiding in 

the interpretation of data obtained from filtration studies. 

2.0 Theory 

2.1 Material Characterization 

2.1.1 Particle Sizing 

One of the aims of this project was to develop a better understanding of the role that 

partic1e size plays in colloid transport in aquatic systems. According to the DL VO 

theory, partic1e transport should be significantly influenced by partic1e size. As partic1e 

size increases, the presence of heightened energy barri ers should greatly increase the 

stability of a colloidal suspension. In order to accurately assess the impact that particle 

size has on transport, it is necessary to fust measure the size of the partic1es used during 

the experimental investigation and to this end, size measurements were carried out using 

a technique known as Dynamic Light Scattering (OLS). The theory behind this technique 

will now be discussed in detail. 

As partiel es are suspended in a medium, they are constantly undergoing collisions 

with solvent molecules and neighbouring partic1es and as a result they undergo random 

(Brownian) motion. Due to the random nature of this "walk" the motion of a particle 

undergoing Brownian diffusion is not measured as a velocity but rather by its 

translational diffusion coefficient (D). The Einstein relation on kinetic theory states: 

(6) 

where fi is the mobility of the partic1es, kB is Boltzmann' s constant and T is the 

temperature. This relationship shows that diffusion is directly proportional to 

temperature [30]. At low Reynolds numbers (i.e. laminar flow regime), Stokes law 

states: 

1 
-=67Cl1 a 
Il P 

(7) 
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where 'fi is the viscosity and ap is the particle radius. Combining and solving for the 

hydraulic diameter of the partic1e (dH) results in the well known Stokes-Einstein 

equation: 

d 
_ kB T 

H-
31t'T]D 

(8) 

an examination of which demonstrates that the rate of Brownian diffusion is inversely 

proportional to the hydraulic diameter of the particle. 

Measurements of partic1e size can be obtained using DLS. Fundamental to this 

process is the faet that as light hits small particles the light is scattered. The Rayleigh 

approximation states that 1 oc d 6 where 1 is the intensity of scattered light [31]. When 

many beams of light are scattered by many small partic1es, the beams interfere with each 

other resulting in a complex and dynamic speckle pattern. The rate at which the intensity 

pattern changes with time can be related to the size of the partic1es. If the partic1es are 

small, they will move rapidly and their intensity fluctuations will be faster white 

conversely, larger partic1es will move less rapidly and their intensity variations will be 

slower [32]. For monodisperse particles, a correlation equation can be used to plot the 

intensity variation versus time: 

< 1(t) I(t + 1") > = G( 1") = A [1 + B exp(-2 D «4 7( ni Â)sin(e/2)y 1")] (9) 

where A is the baseline correlation funetion, B is the intercept of the correlation funetion, 

D is the diffusion coefficient, n is the refraetive index of the solution, Â is the wavelength 

of the laser, e is the scattering angle, t is time and T is the time difference (i.e. sample 

time) of the correlator [32]. The mean diameter (z-average) and the width of the 

distribution (polydispersity) are then calculated from the values of the correlation 

equation versus time, often using the cumulants analysis as described in ISO 13321 

which states that a third order polynomial can be used such that: 

(10) 

where b is the z-average diffusion coefficient and 2 c / b2 is the polydispersity index 

[32]. 
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2.1.2 Zeta Potenlial 

DL VO theory predicts that the total interaction energy between partic1es in a colloidal 

suspension is dependent upon a number of factors, inc1uding surface potential. As 

previously mentioned, it is predicted that particle size and the presence of NOM will have 

significant impacts on the surface potential of a suspension of colloids. To determine 

whether the behaviour of suspensions during filtration experiments can be explained by 

these changes in surface potential, it is necessary to characterize the surface potential of 

the colloids across the range of experimental conditions investigated. Since direct 

measurement of the surface potential of a colloidal partic1e is difficult, indirect 

measurements of surface potential are often used in their stead and one such measure is 

known as the zeta potential. Zeta potential can be determined by making use of a process 

known as Laser Doppler Velocimetry (LDV) in conjunction with Phase Analysis Light 

Scattering (PALS) [33]. The rationale behind these measurements as weIl as a detailed 

description of the theory behind this technique is provided below. 

The majority of particles in an aqueous suspension carry a charge on their surface. 

This surface charge is largely the result of the ionization of acidic and basic functional 

groups on the partic1e surface. The dissociation of an acidic functional group results in a 

negatively charged surface whereas the ionization of a basic group will lead to the 

formation of a positively charged surface. The net surface charge of a particle is then a 

function of the relative strengths of its various acidic and basic functional groups and of 

the pH of the solution. The development of a net charge at the surface of the partic1e 

affects the local distribution of ions and leads to the development of a boundary layer 

wherein there exists a higher concentration of counter ions than that of the bulk phase. 

This boundary layer can be further subdivided into two regions depending upon how 

strongly the counter ions in these regions are associated with the surface of the particle. 

The inner region is known as the Stem layer and within this region ions are very strongly 

associated with the surface whereas the ions in the outer region, known as the diffuse 

layer, are much less firmly associated [16, 17]. Furthermore, within this diffuse layer 

there exists a notional boundary wherein the ions inside that boundary remain associated 

with the particle as it travels through the medium. This boundary acts as the surface of 
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hydrodynamic shear for the particles and the electrical potential at this boundary is 

known as the zeta potential. 

An important property of charged particles is their tendency to interact with an 

applied electric field. These interactions are collectively referred to as electrokinetic 

effects and of interest in this discussion is the effect known as electrophoresis. As 

charged particles suspended in an electrolyte are subjected to an applied electric field, 

they will have a tendency to be attracted to the oppositely charged electrode. The 

velocity of a particle in an electric field is called its electrophoretic mobility and can be 

related to the zeta potential of a particle through use of the Henry equation [34]: 

U :;: _2_s_z_f_(K_a.....:cp_) 

e 317 
(11) 

where Uf, = electrophoretic mobility, 8 = dielectric constant of the solution, z = zeta 

potential, andf(TC ap) is the Henry's function (dependent upon TC = Debye length and ap = 

particle radius). The reciprocal of the Debye length is often thought of as being the 

"thickness" of the electrical double layer. WeIl known approximations are often used 

when determining the appropria te value of the Henry' s function. For the common case of 

particles larger than 0.2 microns dispersed in more than 10-3 molar 1: 1 electrolyte, the 

Smoluchowski approximation is used and the Henry's function is taken as 1.5. For small 

particles in the presence of less than 10-3 molar 1: 1 electrolyte, the Huckel approximation 

is used and 1.0 is used for the Henry's function [34]. In other words, when the thickness 

of the electrical double layer is small relative to the size of the particle the Smoluchowski 

approximation is used and when partic1e size is small relative to the EDL thickness, the 

Huckel approximation is used. Alternately, the Debye length TC can be calculated using: 

K-1 :;: So Sr kB T 
( )

0.5 

20001 NA e2 
(12) 

where 80 is the permittivity of free space (F/m), 8r is the relative permittivity of the 

medium, 1 is the ionic strength of the medium (mol/L), NA is Avogadro's number and e is 

the electronic charge (C) [33]. 

The measurement of electrophoretic mobility using a Malvern Instruments 

Zetasizer Nano makes use of a combination of Laser Doppler Velocimetry (LDV) and 
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Phase Analysis Light Scattering (pALS) and is known as the M3-PALS technique [33]. 

Light scattered from a moving partic1e causes a shift in the frequency of that light. When 

combined with a reference sample having a similar path length, interference results in a 

modulated beam having a beat frequency equal to the difference between sample and 

reference beams. This beat frequency can then be compared to a reference frequency and 

used to determine the magnitude of the Doppler sbift [33]. Measurements of 

electrophoretic mobility in a closed capillary are often complicated by a phenomenon 

known as electroosmotic flow wherein fluids directly adjacent to the capillary waHs begin 

flowing. Traditionally, tbis complication was avoided by taking measurements at the 

stationary layer but difficulties in accurately determining the tbickness of the stationary 

layer led to large inaccuracies in mobility measurements, particularly if the cell wall was 

bighly charged [33]. Recently, investigations into the relaxation times pertinent in 

electrophoresis and electroosmosis have shown that colloidal particles respond to an 

applied field considerably faster than does the bulk fluid in the capillary [35]. An 

important implication of this research is that it is possible to altemate the electrical 

current at such a frequency that electroosmosis is suppressed while colloidal partic1es are 

still able to follow the field according to their DC mobility. In modem electrophoresis 

techniques such as the Mixed Mode Measurement or M3-P ALS technique used by the 

Zetasizer Nano, tbis principle is further developed as the electric current is alternated 

using both Fast Field ReversaI (FFR) and Slow Field ReversaI (SFR) and the difference 

between the mean of the two is used to determine both the mobility contribution of 

electroosmotic flow and the charge of the capillary walls [33]. 

3.0 Materials and Methods 

3.1 Materials' Selection and Preparation 

3.1.1 Nanoparticles 

Suiphate Latex Microspheres: Latex microspheres are a classic example of modei 

colloids as they can be obtained with a wide range of functional groups and well-defined 

surface properties. Sulphate latex microspheres of varying sizes (50 nm, 110 nm, and 

1500 nm) and mass concentrations were purchased from Interfacial Dynamics 
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Corporation. These particular particles were selected for investigation because they 

range in size from nano-scale to micron-seale while having surfaee charge densities that 

are reported to be comparable. Their sizes, electrophoretic mobilities and relative 

hydrophobicities have been measured and analyzed. 

Solutions used in colloid filtration experiments were prepared in 100 mL 

volumetric flasks by diluting stock colloidal samples in electrolyte of varying ionic 

strength (1 - 100 mM KCI). The ionic strength of the electrolyte was varied through the 

addition of a 1 M KCI stock solution to deionized (DI) MilliQ water. Number 

concentrations of the differing sized particles were chosen in order to provide maximum 

resolution in a UV-visible spectrophotometer. The number concentrations used for the 50 

nm, 110 nm and 1500 nm latex colloids were respectively, 1. 15xlOll
, 1.16x1010 and 

8.04x106 particles/mL. For all experiments, pH was maintained at 5.7±0.2. 

3.1.2 Collectors 

Dltrahigh Purity Quartz Sand: Selected for use as a model collector, this ultrahigh purity 

sand, though not perfectly representative of natural soils, was selected to provide a closer 

approximation to natural systems than traditionally examined media (such as soda-lime 

glass beads). The average grain size of the purchased sand (Sigma-Aldrich) was 0.2 - 0.4 

mm, but prior to use, the sand was sieved using -50/+70 D.S. standard sieves (300 and 

212 /-lm. mesh size, respectively) to obtain a sand sample having an average grain size of 

256 /-lm. Given the very small scale of the particles being examined, it is essential that aIl 

sand media being used be of the utmost purity and cleanliness. To ensure cleanliness of 

the media being used in the experiments, a11 media was cleaned according to the 

procedure outlined by Litton and OIson [36]. This process involves first bathing the 

media in 12 M HCI for twenty-four hours, and then washing with DI water until the pH 

of the rinse solution reaches 5.5-6.0. The media was then baked in a MAS 7000 

Microwave Fumace at 120°C for one hour and then at 800°C for five hours. This process 

is designed to ensure that the media is not only dry but that any organics that may have 

been present are volatilized. 
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3.1.3 Natural OrganicMatter (NOM) 

A well-characterized form of NOM (Suwannee River Humic Acid (SRHA)) was obtained 

from the International Humic Substances Society (IHSS). Experiments were performed 

using solutions containing NOM at ionic strengths and pHs that are considered to be 

representative of groundwater conditions. Collectively, natural organic matter (NOM) 

represent a significant fraction of organic carbon present in soit and aquatic systems [28] 

and its concentration as humic substances is found to range between 0.5 - 5 mgIL in 

streams, rivers and lakes, between 10 - 30 mg/L in marshes, bogs and swamps [37] and 

between 1 - 50 mg/L in groundwater systems [38]. 

Stock humic acid solutions were prepared using 100 mg vials of dry SRHA 

purchased from the IHSS. Dried SRHA was dissolved in DI containing 1 mM NaOH to 

ensure complete dissolution. Since humic acids are generally the second most plentiful 

fraction of humic substances (following fulvic acids) [37], a moderate humic acid 

concentration of 5 mg/L was selected for experiments. Electrolytes for experiments in 

the presence of humic acids were prepared using appropriate volumes of humic acids 

buffered to a pH of5.7±0.2 using appropria te volumes of 0.1 M NaOH. 

3.2 Colloid Filtration Studies 

To examine the macro-scale deposition of the selected anthropogenic nanomaterials onto 

quartz surfaces, real time measurements of the transport and deposition of these 

nanomaterials have been made as a suspension of these particles travels through a fully 

saturated column packed with granular media. The transport and deposition of 

nanoparticles occurring within the column is quantified on-line using a UV-Vis 

spectrophotometer (Agilent Technologies) by measuring the difference between the light 

absorbed by the column influent and eftluent solutions. The environmental parameters 

(i.e., ionic strength and NOM concentration) affecting the deposition of colloids onto 

collectors has been systematically examined in order to determine their individual effects. 

Because the purpose ofthis study is to examine the interaction between colloidal 

particles and granular collectors under saturated conditions, it is essential that extreme 

care be given to remove aIl air from the system to prevent the formation of microscopic 

air bubbles which could affect the observed colloid deposition. To tbis end, preparation 
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for a column filtration experiment has involved the preconditioning of aIl media to be 

used in an experiment by soaking it in the electrolyte solution to be used in the 

experiment. Volumetrie flasks (100 mL) containing the solutions and media were left in 

a shaker for a period of 24 hrs prior to each experiment. 

To maximize the reproducibility of the column experiments, a meticulous and 

rigorous column packing procedure has been developed. First, a fine nylon mesh 

membrane is placed at the bottom of the column to ensure that none of the collectors 

(sand grains) exit the column. If the collectors should happen to exit the column, then 

they could either clog the line effluent from the column or they could make their way into 

the measurement cell and affect the absorbance readings. In order to ensure that the 

column was packed identically each time, the column was gently vibrated throughout the 

addition of the media to the column. This has ideally allowed the media to pack together 

just as tightly in each experiment. The diameter of the packed column was 10 mm and its 

length varied between 150 and 165 mm. A schematic diagram of the experimental setup 

has been included for illustrative purposes and is given in Figure 1. 

tu w8ste 

saturated 
columnof 
granular 

media 

towllIIte 

colJoids + 
elerirolyte 

f10wcell 

Figure 1. Schematic diagram of experimental setup 
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Finally, once the column was packed and before the introduction of the colloids to 

the system, at least twenty pore volumes of electrolyte solution was passed through the 

column to ensure that the column was fully equilibrated with the background solution 

(one pore volume is the volume of free-space in the column unoccupied by media). This 

was in accordance with the equilibration proto col established by Tufenkji and Elimelech 

[39]. 

The experiment itself then consisted of injecting approximately three pore­

volumes of the colloid solution through the fully equilibrated column at an approach 

velo city of approximately 2.1x10-4 mis. The deposition ofthis colloidal suspension was 

then monitored using a UV-Vis spectrophotometer at a wavelength of 254 nm and using a 

1-cm flow-through œIl. Through observation of the difference between the absorbance 

of the colloid solutions influent and effiuent from the column, it was possible to 

determine how much of the influent colloid solution deposited on the surface of the 

collectors. 

3.3 Material Characterization 

To assist in the interpretation of data obtained from colloid filtration experiments, it is 

necessary to characterize the physicochemical characteristics of the materials being used 

in the experiments in question. This characterization includes the determination of 

partic1e size through dynamic light scattering (DLS) and the surface charge of the 

colloids through mobility measurements. The procedures used for each of these 

characterization techniques are outlined in further detail below. 

3.3.1 Particle Sizing 

Partic1e size measurements were made for each of the samples prepared for colloid 

filtration experiments using disposable capillary cells (Malvern). For the size 

measurements obtained using DLS to be accurate it is essential that the motion of 

particles in the dispersion be truly random. This means that aIl samples being measured 

must have achieved thermal stability in order to eliminate natural convection. 
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3.3.2 Zeta Potential 

Measurements were made for each of the samples prepared for colloid filtration 

experiments using disposable capillary cens. Zeta potential instruments are not calibrated 

but rather they use first principles in their measurement protocols. Due to the 

consumable nature of the disposable capillary cells, the performance of these cells 

deteriorates with time. As such it is essential that an cens be verified before and 

throughout use by measuring the mobility of a zeta potential standard. The standard 

provided with the Malvem Instruments Zetasizer Nano is a well characterized dispersion 

of latex partic1es (DTS0050) and yields a zeta potential of -50 mV (± 5 mV). Sample 

mobility is measured by conducting a phase comparison of the detected signal with that 

of the reference frequency (the modulator frequency of 320 Hz is used as a reference) 

during the FFR portion of the measurement. The Henry equation (Bq Il) is then used to 

convert mobility measurements to zeta potential. The Smoluchowski approximation is 

used to convert mobility to zeta potential. The Huckel approximation is only used in 

cases where BDL thickness is large relative to partic1e size and this only occurs for the 

smallest partic1es at very low ionic strengths and this is not the case in this instance. 

4.0 Results and Discussion 

4.1 Colloid Filtration Studies 

A series of colloid filtration experiments were performed across a broad range of 

physicochemical conditions and resultant from these experiments is a series of partic1e 

breakthrough curves. This data was then interpreted using equations [1, 2 and 3] 

previously developed. This resulted in the development of a series of attachment 

efficiency versus ionic strength data for each of the three latex partic1es studied in both 

the presence and absence of HAs. This data has been summarized and is presented in 

Figure 2. 
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a) 
---0"- 50 nm Latex 
---13" 110 nm Latex b) 

-0- 50 nm Latex (5.0 mglL HA) 
-13-110 nm Latex (5.0 mglL HA) 

._.8--- 1500 nm Latex -8-1500 l'lm Latex (5.0 mg/L HA) 

10° 101 1<Y 

Ionie Strength (mM) Ionie Strength (mM) 
Figure 2. Attachment efficiency versus ionic strengtb 

4.1.1 The E.ffect ofParticle Size 

Inspection of Figure 2 reveals insight into the transport and filtration behaviour of the 

three different-sized model colloids across the range of physicochemical conditions 

studied. Focusing first on the pattern observed for each of the partic1es, it can be noted 

that as ionic strength of the electrolyte was increased, attachment efficiency generally 

increased for ail particles examined. Upon first inspection this finding seems 

theoretically consistent as it is expected that the thickness of a partic1es' EDL should 

decrease as ionic strength is increased. As a result, the energy barri ers that are 

encountered during partic1e-grain surface interactions are expected to be smaller resulting 

in increased attachment of partic1es on the grain surface. 

Examination of Figure 2 also reveals a trend in measured values of the attachment 

efficiency with increasing particle size. At very low ionic strengths, it can be observed 

that there is an increase in the attachment efficiency with increasing particle size which is 

in marked contrast with DL VO theory that predicts a decrease in attachment efficiency 

with increasing partic1e size. This observation will be discussed in greater detail in 

section 4.2.2.1. 

23 



As ionic strength is increased, a transition in the behaviour can be observed. 

White at low ionic strengths (1 - 10 mM KCl) there is a marked increase in attachment 

efficiency with changing ionic strength, at higher ionic strengths (10 - 100 mM KCl), the 

effect on attachment efficiency is lessened. Furthermore, the effect of particle size on 

attachment efficiency is no longer observed at high ionic strengths with a11 three particle 

sizes reaching plateaus in their attachment efficiencies in approximately the same range 

(0.3 ± 0.2). 

To interpret the trends observed between the particle sizes and to rationalize sorne 

of the apparent contradictions of DL VO theory, it is necessary to have a more thorough 

discussion of the role of particle size in DL VO theory. Due to their usefulness in data 

interpretation, equations will be presented that will allow the development of quantitative 

estimates of the potentials and energy barriers involved in the colloidal interactions being 

examined. As previously discussed, classic DL VO theory states that the total interaction 

potential between two surfaces should be the sum of attractive van der Waals and 

repulsive EDL interactions as represented by: 

(13) 

where lJ>.r is the total interaction potential, (/Jv is the vdW interaction energy and (/JE is the 

electrostatic repulsion energy. Theoretical expressions for vdW interactions should 

account for the effect of retardation and one such model proposed by Gregory [40] for the 

sphere-plate case is given by: 

Aap 

tftv::: 6h(1+14h/ À) (14) 

where A is the Hamaker constant for the interacting media (Hamaker constant of 1 x 10-20 J 

was selected for the polystyrene - quartz - water system), h is the separation distance 

between particle and collector and Â. is the "characteristic wavelength" of the interaction, 

often assumed to be 100 nm [9]. Theoretical expressions for the EDL interaction force 

have been derived for the cases of constant potential [41], constant charge [8], and 

intermediate interactions [42]. For the constant potential case, the expression proposed 

by Hogg, Healy and Fuerstenau (HHF) is given by [41]: 
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(JE =1&'80 8 y ap (21/f1 I/f2In(1+exp~-J<hlJ+(I/f12 +I/f/)ln(1-exp(-2Kh))] (15) 
l-exp -Kh 

where If/l and 1f/2 are respectively the surface potentials of the colloids and the collectors. 

While each of these theoretical expressions has their limitations and neither of these 

"static" models of surface potential can be perfectly representative of reality, the HHF 

model was selected because it predicts the lowest values ofEDL interaction potential [9]. 

To make use of these theoretical expressions to estimate the energy barriers 

involved in the partic1e-surface interactions examined, it is necessary to first have a 

measure of the surface potentials for the colloidal suspensions examined. As direct 

measurement of the surface potentials of a suspension of colloidal partic1es is difficult, an 

indirect means of measurement was used. The results of this investigation are 

summarized in section 4.2.2 and a discussion of how these findings may be used in the 

interpretation of the observed trends of attachment efficiency with increasing particle size 

and ionic strength is inc1uded. 

4.1.1 The Effect of NOM 

To assist in the interpretation of the data obtained from the colloid filtration experiments 

and to better highlight the impact of HAs on attachment efficiency with increasing 

partic1e size and ionic strength, the data has been rearranged and is presented in Figure 3. 

a) 
.. -0--- 50nm Latex b) --- 0--- 110nm Latex c) --- 0--- 1500nm Latex 
-8-50nm Latex (5_0 mgILHA) -8-110nm Latex (5.0 mg/L HA) -8-1500nm Latex (5.0 mg/L HA) 

:E 1 0° ~,--"'--'-"""""' ....... ---'----r-T""""""r---:> :E 10° ........ COf"_ ........................... ---...-.-......................... :E 1 0° ~rr--.,.....,. ................. ---.--..,....,.........,r---:> 
{)' {)' {)' 

l'u'//:=: 1,°' )(~ i'~ 
:Pl 10.2 ~ 10.2 (I{ ~ 10.2 

« LL.u.I"--.................. ....L.. ........................... .L.-.-;J ~ ~ 
10° 10° 

Ionie Strength (mM) Ionie Strength (mM) Ionie Strength (mM) 

Figure 3. Attachment efficiency versus ionic strength 
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Examination of these figures shows that presence of RAs generally resulted in a 

decrease in the observed attachrnent efficiency for aIl three particle sizes. To better 

understand this observation, further discussion of the role of NOM in aquatic systems is 

required. 

It has come to be accepted by many researchers that the primary physicochemical 

effect of NOM in aquatic systems is that it tends to impart a negative surface charge to 

suspended particulates and that this increased surface charge should result in an increase 

in the stability of a colloidal suspension [38]. This finding has been confirmed and 

supported by the works of many [27, 43, 44]. However, it has also altemately been 

observed that the presence of larger naturaI organic macromolecules resulted in the 

formation of colloidal bridges and resulted in the destabilization and eventual coagulation 

of a colloidal suspension [27]. 

To formulate an explanation of the observed decreased attachment efficiency in 

the presence of HAs for aIl three partic1e sizes, it was attempted to determine whether it 

was a physical phenomenon or a physicochemical effect. A set of experiments were 

carried out to characterize the colloidal suspensions in the presence and absence of NOM 

and the results of these experiments and a discussion of how they may be used in the 

interpretation of the observed data is inc1uded in section 4.2. 

4.2 Material Characterization 

A series of experiments were performed to characterize the materials used in the 

investigation to aid in the interpretation of data obtained from the filtration studies. 

These experiments inc1ude the measurement of particle size through dynamic light 

scattering and the characterization of surface potential through mobility measurements. 

These results and a discussion of how they can aid in the interpretation of colloid 

filtration experiments are presented in detail. 

4.2.1 Partide Sizing 

Differences in partic1e size in the presence and absence of RAs may have contributed to 

the impact of RAs that was observed during colloid filtration experiments. In order to 

determine the role RAs may have played in decreasing the attachment efficiency of aIl 
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three partic1e sizes, it was important to measure the size of the actual samples used during 

experiments. Furthermore, this also allowed for the confirmation that the measured size 

of the partic1es corresponds with the size quoted by the manufacturer and provided a 

means of observing whether partic1e coagulation or flocculation was occurring. The 

results of these particle size measurements have been summarized and are presented in 

Figure 4 . 

.-... 
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~ 
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-0- 50 nm Latex (5.0 mg/L HA) 
-6.-110 nm Latex (5.0 mg/L HA) 
-8-1500 nm Latex (5.0 mg/L HA) 
--- 0--- 50 nm Latex 
--.6.--. 110 nm Latex 
--- 0--· 1500 nm Latex 

Ionie Strength (mM) 

Figure 4. Hydraulic diameter versus ionic strengtb 

Observation of the results presented in Figure 4 lends itself to severa! insights. 

While sorne slight deviation between the measured hydrodynamic diameter of the 

particles and the size quoted by the manufacturer may be observed, it can be conc1uded 

that the hydrodynamic diameter was unchanged in the presence of NOM. This 

observation tends to indicate that a physical mechanism is not responsible for the 

decrease in the attachment efficiency for aIl three partic1es that was observed in the 

presence of HAs and that a physicochemical mechanism bears further consideration. 

Specifically, the hypothesis that in the absence of NOM Încreased physical straining of 

larger partic1es led to increased partic1e removal is disproved. 

4.2.2 Zeta Potential 

To interpret the role that surface potential may play in the attachment of the different 

sized partic1es over the range of conditions examined, mobility measurements were made 

with aIl three latex partic1es in the presence and absence ofHAs and the data obtained 

from these experiments is presented in Figure 5. 
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Figure 5. Eledrophoretie mobility versus ionie strength 

As previously discussed, measured mobility data is often converted to zeta 

potential (Bq Il) as it is commonly used as an interpretive tool. Resultant from these 

conversions is a series of zeta potential versus ionic strength data and this data bas been 

summarized and is presented in Figure 6. 
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Figure 6. Zeta potential versus ionie strength 

The electrical charge and potential of latex partic1es originates from the 

dissociation of functionalized surface groups. As these groups are successively 

protonated or deprotonated with changes in pH, the surface charge of the partic1e 

changes. In the EDL model, charged surfaces in an aqueous solution will attract counter~ 

ions from the solution. The presence of the se counter-ions "masks" the charge on the 
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particle's surface. At a given pH and as the ionic strength of the solution is increased, 

there will be more counter-ions present in solution. The particles' electrical double layer 

will then "shrink" as the ionic strength of the solution is increased and result in a 

continuous decrease in measured potential [5]. However, rather than continuously 

decreasing with increasing ionic strength, the general shape of the three pairs of 

experimental mobility and zeta potential curves exhibit a maximum at a moderate ionic 

strength (10 mM KCI) wbich is in contrast to what may be predicted by the DL VO 

theory. 

This finding has been observed by a number of groups and various qualitative 

explanations for tbis behaviour have been proposed including the preferential adsorption 

model and the so-called hairy layer model [5, 45-48]. The preferential adsorption model 

argues that this maximum may be explained by the preferential adsorption of co-ions onto 

the surfaces of latex particles amplifying the electrokinetic potential of the colloids [47]. 

The hairy layer mode! envisions the surface of polymer lattices as being comprised of 

polyelectrolyte chains carrying the surface charge [45, 46]. As ionic strength is varied, 

tbis layer is hypothesized to expand and contract due to the repulsion of the functional 

groups. As this occurs, the location of the plane of shear is said to be affected and 

consequently so too is the electrokinetic potential. Elimelech and 0 'Melia [5] considered 

both of these models and while they do not argue against the existence of a hairy layer at 

the surface of latex particles, they concluded that the maximum that often occurs in the 

mobility curves of negatively charged polystyrene latex particles is more likely to be 

detennined by the combined action of co-ions and counterions at the interface [5]. They 

proposed that the shape of latex particles' mobility curve as a function of electrolyte 

concentration is determined by the relative contributions of three competing processes: 

(1) Neutralization of negative charge on the surface by adsorption of counterions causing 

a decrease in the electrokinetic potential (less negative); (2) Approach of co-ions close to 

the surface of the particles, causing an increase of the electrokinetic potential (more 

negative); (3) Compression of the diffuse double layer due to high bulk concentration of 

electrolyte, causing a decrease in electrokinetic potential (less negative) [5]. 
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4.2.2.1 The Effect ofParticle Size 

As was previously discussed, an increase in the attachment efficiency with increasing 

particle size was observed during the course of colloid filtration experiments, which is in 

marked contrast with theory. A growing body of experimental evidence does not fully 

substantiate DL VO theory and the effect of particle size on colloidal stability and 

attachment efficiency may not be as readily included in rigorous quantitative analysis as 

current theory espouses [6-8]. Many of the explanations put forth to rationalize these 

discrepancies merit further attention but certain fundamental processes in colloidal 

interactions are not yet sufficiently understood to permit their inclusion into the 

theoretical framework. While it may not yet be feasible to rigorously include these 

factors in a quantitative analysis, a qualitative discussion of surface roughness, 

hydrodynamic interactions, surface charge heterogeneities, the dynamics of colloidal 

interactions and deposition in the secondary energy minimum can be of use in 

understanding the deviations of observations from the behaviour predicted by DL VO 

theory. A qualitative discussion of each of the se possible explanations will be presented 

in brief as very thorough discussions of the se explanations have been presented elsewhere 

[49]. 

1. Hydrodynamic Interaction. The hydrodynamic or viscous interaction between two 

particles or a particle and a surface is a phenomenon caused by the resistance to flow of 

the liquid in the narrowing gap between the two surfaces. Attempts have been made to 

include the hydrodynamic resistance into calculations of the theoretical collision 

efficiency and they have shown that the impact is relatively small [14, 50]. In fact, it has 

been demonstrated that the hydrodynamic resistance is particularly small for Brownian 

particles relative to that experienced by larger particles [14, 50]. This means that if the 

hydrodynamic resistance were included in calculations of the theoretical collision 

efficiency, suspensions of larger particles should be even further stabilized and as a 

result, hydrodynamic resistance can not be used to explain the deviations from DL VO 

theory that were observed. 
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2. Dynamics of Interaction. As was previously discussed, theoretical expressions for 

the EDL interaction force are generally derived upon an assumption of either constant 

potential [41], constant charge [8] or an intermediate case based which makes use of the 

linear superposition approximation [42]. While each of these approximations has its 

relative merits and applicability, neither of these "static" approximations can be truly 

representative of the dynamic processes that are believed to be involved in colloidal 

interactions. White no theory currently exists which rigorously treats the dynamics of 

colloidal interactions, preliminary investigations into interfacial electrodynamics indicate 

that hydrodynamic drag on the electrical double layer combined with the fluxes of 

various ions at the interface might counteract the impact of particle size that is 

traditionally predicted by DLVO theory and might help to explain some of the deviations 

from theory that were observed during this investigation [9, 51-53]. 

3. Surface Charge Distribution. Ca1culations of the theoretical collision efficiency 

assume that the surface potentials of particles and collectors are both uniformly 

distributed and constant [41] for a given solution chemistry, whereas examination of 

mobility measurements indicates that there is likely a distribution of surface potentials 

within a given suspension. By considering the surface potentials of particles and 

collectors as random variables, groups have investigated the impact of a distribution of 

particle surface properties [54] and zeta potentials [55] on coagulation rates and the 

impact of distributions in zeta potential on deposition rates for both non-Brownian [56] 

and Brownian particles [9]. Assuming a normal distribution of zeta potentials for their 

suspensions, Elimelech and O'Melia [9] concluded that a distribution in zeta potentials 

could not explain the insensitivity to particle size that they observed during deposition 

studies. Given tbis conclusion and the fact that an even greater deviation from the results 

predicted by DL VO was observed during the experiments outlined in section 3.2, it can 

be concluded that the deviations from DL VO theory that were observed during the 

colloid filtration experiments can not be explained by a distribution in the surface charge 

of particles or collectors. 
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4. Deposition in Secondary Minima. When plotting interaction energy versus 

separation distance, DL VO theory predicts the presence of both a deep energy weIl 

(known as the primary minimum) very close to the collector surface and a shallower 

energy well (the secondary minimum) separated by an energy barrier that impedes 

deposition in the primary minimum [8]. For a given set of chemical conditions, DL VO 

theory predicts that both the height of the energy barrier and the depth of the secondary 

energy weIl will increase with increasing particle size. Wiese and Healy [8] argued that 

the apparent failings of predictions made using DL VO theory could be explained using an 

energetic argument that incorporated the secondary minima. They argued that white 

heightened energy barriers might decrease the rate of particle coagulation deposition in 

the primary minimum, the presence of deepening energy wells might lead to the 

favourable energetic conditions required for deposition in the secondary minimum [8]. 

Many groups have since reasserted that anomalous particle size effects could be 

explained by deposition or coagulation in the secondary energy minimum [6,57]. While 

the role of the secondary minimum in colloid deposition is still much debated, it is 

theoretically possible provided that the force resultant from the particle' s kinetic energy 

and the fluid's drag is insufficient to drive the particles out of the secondary minima [9]. 

Theoretical analysis of the trajectory of Brownian and non-Brownian particles predicts 

that deposition in the secondary minimum is only possible at the rear stagnation point of 

a spherical collector where the sum of EDL, vdW and drag forces on the particle are zero 

[15, 56, 58-60]. This means that while deposition in the secondary minimum is certainly 

possible, its impact may be limited by the number of available rear stagnation points. 

The existence of the secondary energy minimum may be used to explain sorne of 

the anomalous particle size effects that were observed during this investigation. Increases 

in the depth of the secondary energy minimum with increasing particle size could be 

sufficiently favouring deposition in secondary minima and this could explain the increase 

in attachment efficiency with increasing partic1e size. Since the depth of the secondary 

minimum would increase with increasing ionic strength, it is likely that deposition in 

secondary minima would be most significant at high ionic strength. This could partially 

exp Iain the transition in behaviour that was observed with increasing ionic strength. 

However, the significance of particle deposition in the secondary minimum is still much 
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debated and since the attachment efficiencies for aIl three partic1e sizes plateau in the 

same range at high ionic strengths, it seems unlikely that deposition in secondary minima 

alone may exp Iain the observed deviations trom predictions. 

5. Surface Roughness. Calculations of the theoretical collision efficiency assume that 

both partic1es and collectors are spherical. While both the partic1es and collectors 

selected for this investigation are likely to be considerably more spherical than the 

majority of those encountered in realistic situations, neither the latex particles nor the 

sand grains are perfectly spherical. Many groups have investigated the interplay between 

the effect of partic1e size and surface roughness on colloïdal stability [7, 61, 62] and the 

disparity with respect to the effect of partic1e size on deposition that has been observed by 

a number of groups has been attributed by sorne to the roughness of the surfaces involved 

in the interactions [7]. In order to model the impact of surface roughness on the total 

interaction energy, the roughness of a partic1e or collector is envisioned as being small 

half-spheres protruding from their surfaces [9, 57]. Attempts have been made by several 

groups to develop mathematical models to describe surface roughness in such a way as to 

account for the relative size of particles and surface asperities [63-65]. While no 

universally accepted model describing the impact of surface roughness yet exists, initial 

attempts have been made to model simple interactions wherein the surface asperities of 

collectors are assumed to be much larger than those of the partic1es [9]. The results of 

this investigation showed that the height of the energy barrier was considerably reduced 

in the presence of these surface asperities. While it was conc1uded that the presence of 

surface roughness alone could not account for the observed discrepancies with respect to 

partic1e size [9], it was demonstrated that surface roughness could at least be contributing 

to the observed erroneous partic1e size effect. It is important to note that the etfect of 

interfacial dynamics or deposition in secondary energy minima that were discussed above 

may have considerable interplay with the impact of surface roughness. However, the 

understanding of these factors and particularly of their interplay is still quite limited, and 

as such, their impact on colloidal stability cannot yet be fully assessed quantitatively [9]. 
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Interaction Energy Promes 

To better understand the observed behaviour, zeta potential measurements were related to 

surface potential as discussed above and the theoretical expressions for vdW and EDL 

interaction energy developed previously were used to calculate the heights of the 

theoretical energy barriers that would exist between colloids and collectors across the 

range of physicochemical conditions examined in this investigation. As previously 

discussed, DL VO profiles were calculated by adding the contributions of vdW as given 

by Gregory [40] and EDL as given by Hogg, Healy and Fuerstenau [41]. The values of 

zeta potential used for the collectors were taken from Redman et al [66]. The presence of 

NOM was assumed to not affect the zeta potential of the collectors. This is a reasonable 

assumption because the crystalline and ultra-pure nature of the collectors should cause 

them to have very little affinity for the HAs. The results of these computations are 

summarized 10 Figure 7. 
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Figure 7: Interaction energy versus separation distance 
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Examination ofthese plots shows that the height of the energy barrier is predicted 

to increase with increasing partic1e size in both the presence and absence of HAs. This 

means that ifwe strictly consider irreversible attachment in the primary energy minimum, 

the heightening of this energy barrier with increasing partic1e size should mean that 

interactions between colloids and collectors should get progressively more unfavourable 

and in particular, the interactions for the 1500 nm colloids should be highly unfavourable. 

Given the height of the energy barrier at all but the highest ionic strengths (8050-1995 kT 

at 1-30 mM), DLVO theory would predict that primary deposition of the 1500 nm 

colloids should be highly improbable. However, despite these predictions, the reverse 

trend was observed in this investigation and the attachment efficiency of the 1500 nro 

colloids is higher than that of either of the two smaller colloids. It should be noted that 

under these same conditions deposition in the secondary energy weIl (0.21 - 7.9 kT at 1 -

30 mM, respectively), is more likely than deposition in the primary energy weIl. 

Examination of plots of interaction energy versus separation distance serves to highlight 

the shortcomings of such a simplified and static model for colloidal interactions and 

reinforces the point that the dynamic nature of colloidal interactions is not fully 

accounted for in standard DL VO considerations. 

4.2.2.2 The Effect of NOM 

The presence ofHAs leads to an increase in the absolute zeta potential of the suspensions 

for the 50 nm and 110 nm colloids. As previously discussed, it is accepted by many that 

NOM' s primary physicochemical effect in aquatic systems is to impart a negative surface 

charge to suspended particulates and that this increased surface charge should result in an 

increase in the stability of a colloidal suspension [38]. This predicted behaviour is 

observed in the case of the two smaller nanopartic1es. The increases in the absolute 

values of zeta potential of the colloids observed in Figure 6 should result in increased 

stability and this has been confirmed by the decrease in attachment efficiencies observed 

in Figure 3. However, for the 1500 nm colloids, the presence ofHAs leads to a decrease 

in the absolute value of zeta potential as can be observed in Figure 6. Despite this 

contrary behaviour, observation of the results presented in Figure 3 shows that attachment 

efficiency was decreased in the presence of NOM, just as it was in the case of the two 
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smaller nanoparticles. This finding is of great interest because it tends to indicate that 

surface charge effects can not fully explain the differences in attachment efficiency 

behaviour that were observed in the presence and absence of NOM for aIl three particles. 

In particular, it indicates that that there may be sorne other mechanisms contributing to 

the attachment behaviour of the colloidal suspensions (particularly evident for the 1500 

nm particles) and that there may be sorne shortcomings in the ability ofDLVO theory to 

predict colloidal behaviour. 

It was the intent of the experimental design to isolate the parti cIe size effect as 

much as possible by obtaining three colloidal particles of different sizes having similar 

zeta potentials. Despite this effort, it can be noted that the zeta potential of the 1500 nm 

colloids was considerably larger than that of the 50 nm and 110 nm particles. As a result, 

differences that were observed in the attachment efficiency behaviour of the three particle 

sizes is not purely a parti cIe size effect as had been the intent of the experimental design. 

While this further complicates the interpretation of the results obtained from the colloid 

filtration experiments, it has also made possible sorne other interesting observations about 

the NOM' s interactions that might not have otherwise been observed. Careful inspection 

of the absolute values of zeta potential for the 50 nm and 110 nm particles relative to 

those of the 1500 nm particles yielded an explanation for the reversaI in charge behaviour 

that was observed in the presence of RAs for the 1500 nm colloids. 

Due to their being preconditioned with RAs as a part of the experimental 

protocol, it is likely that the RAs would become very closely associated with the 

hydrophobic surfaces of the latex particles. Since the RAs are likely to bear a particular 

average surface charge of its own, then rather than amplifying or neutralizing the charge 

of the particles (as in the model proposed by Elimelech and O'Melia), the RAs could be 

"masking" the charge of the particles with their own. As was previously mentioned, the 

average measured zeta potential for the 1500 nm particles was considerably higher than 

either of the two nanoparticles. It is possible that the average charge borne by the RAs 

used in these experiments could lie somewhere in between that of the 1500 nm particles 

and the two nanoparticles. If this is the case, it is possible that the reversaI in charge 

behaviour in the presence of RAs that was observed for the larger colloids can be 
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explained by the average potential of the RAs Iying somewhere in between that of the 

smaller and larger latex partic1es. 

This does not however, exp Iain why the trend in attachment efficiency for aIl 

three partic1es is the same despite the reversaI in charge behaviour that was observed 

during the zeta potential characterization experiments (for the 1500 nm colloids). While 

the experimental data obtained throughout the course of this investigation might not 

provide any conclusive explanations as to why the attachment efficiency trend was 

seemingly unaffected by the observed reversaI in charge behaviour, a partial explanation 

may be possible. Some of the seemingly erroneous behaviour can potentially be 

attributed to the influence of some of the short-range forces (e.g., hydrophobic 

interactions, diffuse-layer interactions, steric interactions) that are often neglected in 

standard colloidal interactions. For example, the decrease in zeta potential observed for 

the two smaller partic1es in the presence of RAs was conc1uded to be the cause of the 

decreased attachment efficiency. Rowever, if we altemately concluded that the decrease 

in attachment efficiency observed in the presence of RAs is the result of some 

unaccounted-for steric or hydrophobic interaction (for exampIe), it is possible that the 

presence of the RAs could cause decreased attachment efficiency for all three partic1e 

sizes irrespective of the observed reversaI in charge behaviour. 

5.0 Conclusions 

A series of colloid filtration experiments were performed using three different sized latex 

particles (50 nm, 110 nm and 1500 nm) across a broad range of physicochemical 

conditions and in both the presence and absence of 5.0 mgIL humic acid. At very Iow 

ionic strengths (1 - 10 mM KCl), an increase in attachment efficiency with increasing 

partic1e size was observed, which is in contrast with theoretical predictions of decreasing 

attachment efficiency with increasing partic1e size. At higher ionic strengths (10 - 100 

mM KCI), the effect of particle size on attachment efficiency was no longer observed. 

Furthermore, the presence of RAs generally resulted in a decrease in the observed 

attachment efficiency for aIl three partic1e sizes. A series of characterization experiments 

were performed to better understand the observed increased attachment efficiency with 
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increasing particle size at low ionic strengths and the decreased attachment efficiency in 

the presence ofHAs for aIl three particle sizes. 

While some slight deviation between the measured hydrodynamic diameter of the 

particles and the size quoted by the manufacturer was observed, it was concluded that the 

hydrodynamic diameter was unchanged in the absence or presence of HAs and that the 

results of the deposition studies were not being confounded by the occurrence of particle 

coagulation. As was previously discussed, an increase in the attachment efficiency with 

increasing particle size was observed during the course of colloid filtration experiments, 

which is in marked contrast with theory. It is argued that the apparent deviations from 

DL VO theory can be explained by interactions between surface roughness, the dynamic 

nature of colloidal interactions and deposition in secondary energy minima. 

The presence of HAs was found to lead to an increase in the absolute zeta 

potential of the suspensions for the 50 nm and 110 nm colloids, however for the 1500 nm 

colloids, the presence of HAs lead to a decrease in the absolute value of zeta potential. 

This finding is of great interest because it tends to indicate that surface charge effects can 

not fully explain the differences in attachment efficiency behaviour. Careful inspection 

of the absolute values of zeta potential for the colloidal suspensions yielded the 

conclusion that since RAs are likely to bear a particular average surface charge of its 

own, then rather than amplifying or neutralizing the charge of the particles, the RAs 

could be "masking" the charge of the particles with their own. If the average charge 

borne by the NOM lies between that of the 1500 nm particles and the two nanoparticles. 

the reversaI in charge behaviour in the presence of RAs can be rationalized. 

While the experimental data obtained did not provide any satisfactorily conclusive 

explanations to the observed attachment efficiencies despite the observed reversaI in 

charge behaviour, a partial explanation may be possible. The seemingly erroneous 

behaviour could potentially be attributed to some short-range force (e.g., hydrophobic 

interactions, diffuse-layer interactions, steric interactions) that is often neglected. Ifwe 

alternately concluded that decreased attachment efficiency in the presence of HAs 

resulted from some unaccounted-for sterle or hydrophobie interaction (for example), then 

the observed decrease in zeta potential in the presence of HAs could be concluded to be 

coincidental to the decrease in attachment efficiency rather than causative. 
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Appendix A: Microsphere Attachment to Hydrocarbons (MATH) 

A.l.0 Background and Motivation 

Anomalies were observed in the behaviour of the colloïdal suspensions in the presence of 

HAs and since the earlier characterization experiments had not yielded a definitive 

explanation, it was decided that another possible explanation might lie in some of the 

short range forces (i.e., London forces. hydrophobicity, etc.) that are not considered in 

DL VO. In particular, since it is suspected that HAs are closely associated with the 

hydrophobic surfaces of the latex partic1es, it was decided to further investigate the 

hydrophobic interactions between HAs and the partic1es by characterizing the relative 

hydrophobicity of the three colloids in their presence and absence. In particular, it is of 

interest to determine whether the anomalous behaviour of the 1500 nm latex particles can 

be explained by some difference in the nature of their hydrophobic interactions with HAs. 

The process used to manufacture latex polystyrene microspheres is a form of 

radical polymerization wherein the reactive sites are kept separated from each other by 

dispersing the monomers in a continuous phase. This process is better known as 

emulsion polymerization and involves the emulsification of non-polar functionalized 

styrene monomers in water. Non-polar molecules dispersed in water tend to associate 

and this is known as the hydrophobic effect. This tendency leads to the formation of 

nano-scale latex partic1es that consist of many polymer chains. Despite the presence of 

repulsive forces due to the surface charge of the partic1es, if left unchecked 

polymerization will continue and the size of the resultant latex partic1es will increase. 

To control the production of latex microspheres, surfactants are often used 

because their hydrophobic tails will tend to be attracted to the polymer surface and the 

charge of the hydrophilic head repels other similarly coated latex partic1es. The latex 

partic1es used in the present studyare surfactant-free. As an alternative stabilizer, many 

surfactant-free polymerization processes make use of water-soluble polymers and the 

result is the formation of a "hairy layer" of water-soluble polymer surrounding a 

hydrophobic polymer core. 
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Prior to polymerization, styrene monomers can be functionalized such that latex 

molecules having widely different surface properties can be readily prepared. The latex 

particles selected for this investigation were chosen to have similar surface charge 

densities so that their respective EDL interactions are comparable. Despite efforts to 

achieve differently sized particles having similar surface properties, it is possible that 

there are relative hydrophobicity differences between the particles. The relative 

hydrophobicity of the particles is of interest in colloid filtration experiments because the 

hydrophobic effect could lead to an increase in particle deposition [67-70]. Furthermore, 

once the particles have been conditioned with RAs it is possible to observe differences in 

the way each of the particles interacts with HAs and this could differentially affect the 

hydrophobicities of the three particles. 

There are several different tests that are commonly used for the measurement of 

relative hydrophobicity of which the two most commonly used are contact angle and 

MATH tests. While contact angle measurements made on smooth and uniform surfaces 

have a solid theoretical basis it is still unclear what effects differential drying of the lawn 

[71] and the formation of surface microstructure have on measurements. Furthermore, it 

was decided that the quantities of nanoparticles that would be required to create "lawns" 

of nano-scale colloids of comparable size to those traditionally used for bacterial contact 

angle measurements would be financially prohibitive and wasteful. 

The other ofthese tests, known as the MATH test, involves contacting an aqueous 

suspension of particles to an organic phase (hydrocarbon) and relates the relative 

partitioning of particles into the organic phase to those particles' relative 

hydrophobicities. While it was originally developed exclusively for measuring bacterial 

cell surface hydrophobicity [72], it has since been extended here to the testing of 

inorganic colloids (Microsphere Adhesion to Hydrocarbons). Since adhesion to 

hydrocarbon will not only be a function of hydrophobicity but also of van der Waals, 

electrostatic repulsion and various other short range forces, it is important that 

experimental conditions be chosen that minimize the impact that these other factors have 

on adhesion. As such it is important that MATH tests be carried out at the particles' 

isoelectric point to eliminate the impact that surface charge effects have on adhesion. 
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A.2.0 Materials and Methods 

A. 2.1 Materials 

Sulphate Latex Microspheres: As mentioned in Section 3.1.1 Nanopartic1es, sulphate 

latex microspheres of varying sizes (50 nm, 110 nm, and 1500 nm) and mass 

concentrations were purchased trom Sigma-Aldrich. Solutions used were prepared in 50 

mL Falcon tubes by diluting stock colloidal samples in electrolyte of varying ionic 

strength (1 - 100 mM KCI). The ionic strength of the electrolyte was varied through the 

addition of a 1 M KCI stock solution to deionized (DI) water. The number concentrations 

used for the 50 nm, 110 nm and 1500 nm latex colloids were respectively, 1.15xlO11
, 

1.16x101o and 8.04x106 partic1es/mL. For all experiments, pH was adjusted to the 

isoelectric point through addition of 12 M HCL n-Hexadecane was selected for use as the 

sample hydrocarbon. 

A.2.2 Methods 

MATH tests were carried out in standard 10 mm glass test tubes to which were added 4 

mL of n-hexadecane and 1 mL of sample latex partic1es suspended in electrolyte. The 

mixtures were agitated at maximum velocity on a Fisher-Scientific 150 W analog mini­

vortex for 120 s. It is essential that test tubes be uniformly c1ean and to this end, they 

were acid washed prior to use [72]. Samples were then left to stand for 15 min to allow 

sufficient time for the complete partitioning of the organic phase. A Pasteur pipette was 

then used to carefully remove the aqueous phase and transfer it to a quartz cuvette. 

Absorbance of the aqueous phase was measured at 254 nm using a spectrophotometer 

before and after being contacted with the hydrocarbon. The process was repeated in 

triplicate for aU experimental conditions tested. To be able to account for the absorbance 

of any hydrocarbons remaining in the aqueous phase and for the partitioning of HAs, 

control experiments were performed where electrolyte and hydrocarbon were contacted 

in the absence of the latex partic1es. 

The isoelectric points for the three latex particles were determined by preparing 

suspensions having the same number concentration as those in the filtration experiments, 

with 10 mM KCI and in both the presence and absence of RAs. The pH of these 
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solutions was then manipulated through the addition of appropria te volumes of Hel and 

NaOH and a measurement of the electrophoretic mobility of the solutions was performed 

at each pH. Due to the loss of dispersion stability that occurs near the point of zero 

charge, resolution in mobility measurements is lost near tbis point, and as such the 

isolectric points for the colloids was then estimated with as much accuracy as was 

possible. 

A.3.0 Results 

As was previously discussed, MATH tests are often carried out at a particle's isoelectric 

point as this allows the relative hydrophobicity of the partic1e to be examined in the 

absence of electrostatic interactions. The isoelectric points of the three colloids were 

determined and the results ofthis investigation are summarized in Table 1. 

Zeta 
Mobility Conductivity 

SampleName pH Potential 
(m\l) (pmcmNs) (mS/cm) 

Zeta 
Mobility Conductivity 

SampleName pH Potential 
(m\l) (pmcmNs) (mS/cm) 

61 nmLatex 1.09 ·18.20 -1.32 51.7é 61 nmLatex 1.1 -6.46 -0.47 63.70 
0.0 [maIL] 1.47 -23.58 -1.71 16.45 5.0TnKilL 1.6 -17.90 -1.30 19.40 

10 [mM] KCI 2.47 -40.30 -2.92 3.50 10 rmMl KCI 2.5 -31.78 -2.30 3.55 
5.61 -46.63 -3.38 1.59 5.6 -48.33 -3.50 1.59 
11.94 -46.85 -3.39 3.63 11.7 -57.05 -4.13 2.65 

Zeta 
Mobility Conductivity 

SampleName pH Potential 
(m\l) (pmcmNs) (mS/cm) 

Zeta 
Mobility Conductivity 

SampleName pH Potential 
lmVl 

(pmcmNs) (mS/cm) 

110 nm Latex 1.07 -11.02 -0.80 56.35 110 nm Latex 1.1 -8.29 -0.60 67.25 
0.0 [mg/L] 1.56 -24.83 -1.80 18.00 5.0rma/L 1.6 -16.40 -1.19 20.23 

10 [mMl KCI 2.45 -36.48 -2.64 3.55 10 [mM] KCI 2.5 -34.13 -2.47 3.58 
5.5 -46.23 -3.35 1.62 5.7 -55.08 -3.99 1.61 

11.71 -61.53 -4.46 2.83 11.8 -63.43 -4.59 3.27 

Zeta 
Mobility Conductivity 

SampleName pH Potential 
(m\l) (pmcmNs) (mS/cm) 

Zeta 
Mobility Conductivity 

SampleName pH Potential 
(m\l) (pmcmNs) (mS/cm) 

1500 nm Latex 1.09 -12.68 -0.92 52.08 1500 nm Latex 1.1 -6.31 -0.46 65.45 
0.0 [maIL] 1.58 -40.03 -2.90 17.05 5.0rmalL 1.5 -12.85 -0.93 21.53 

10 [mM] KCI 2.48 -73.15 -5.30 3.52 10[mMl KCI 2.5 -40.30 -2.92 3.48 
5.6 -101.58 -7.35 1.59 5.7 -84.00 -6.09 1.56 

11.76 -104.50 -7.58 2.86 12.1 -76.35 -5.53 4.13 

Table 1: lsoelectic points for 50, 110 and 1500 nm latex colloids 

The loss in resolution that occurs in electrophoretic mobility measurements taken near the 

point of zero charge may have lead to slight inaccuracies in the isoelectric points 

determined. Despite the possibility of inaccuracies, the ultimate goal of determining the 

isoelectric point was to minimize the impact that charge has on hydrophobicity 
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measurements and this was achieved. During the course of MATH tests, aqueous 

samples were intimately contacted with hydrocarbons and the partitioning of colloids 

between aqueous and organic phases was permitted. To determine the impact of any 

leftover hydrocarbon that may remain in the aqueous phase following agitation and prior 

to sampling and in an attempt to quantify the impact that the partitioning of RAs have on 

the measured absorbance, control experiments were performed involving aqueous 

suspensions either with or without RAs that did not contain any colloids. The results of 

these controls have been normalized by dividing the absorbance of sampI es taken 

following agitation with the absorbance of the samples taken beforehand. The raw data 

and a plot of CICO versus solution composition data for these control experiments have 

been summarized and are presented in Table 2 and Figure 8. The raw data has been 

inc1uded here because it is important to note the absolute value of absorbance shifts that 

were observed in the controls relative to the MATH tests themselves. 

Controls 

10 [mM] 
10 [mM] & 

humics 
100 [mM] 

100 [mM) & 
humics 

Absorbance: Co Absorbance:SamDles 
Average StDev Average StDev 
0.0116 0.00005 0.0149 0.0006 

0.1459 0.0005 0.0605 0.0031 
0.0121 0.0002 0.0154 0.0009 

0.1546 0.0018 0.0609 0.0040 

Table 2: MAm test raw data (controls) 
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Figure 8: CICO versus solution composition (controls) 

CICo 

1.2861 

0.4145 
1.2730 

0.3936 

Inspection of these results allows certain observations to be made. When MATH 

tests were carried out in the absence of colloids and RAs, the presence of remnant 

hydrocarbon in the aqueous phase contributed to the total absorbance and resulted in CICo 

values greater than unity. Furthermore, when MATH tests were carried out in the 
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absence of colloids but in the presence of HAs, a significant portion of the HAs 

partitioned into the organic phase resulting in CICo values considerably lower than unity. 

White it is possible that the presence of HAs may have some effect on the separation of 

hydrocarbon and aqueous phases following agitation by stabilizing the dispersed organic 

phase, it is assumed for the sake of this investigation that the presence of HAs does not 

effect the amount of n-hexadecane that is remnant in the aqueous phase at the time of 

sampling. For the value of absorbance shift representing the partitioning of HAs to be 

truly representative, the absorbance shift caused by the presence of remnant hydrocarbon 

should first be subtracted. 

MATH tests were carried out with aIl partic1e sizes at their respective isoelectric 

points (pH~ 1) and at physicochemical conditions that were representative of the range of 

physicochemical conditions investigated during the colloid filtration experiments in both 

the presence and absence of RAs. The raw data and unadjusted CICo versus solution 

composition data for these experiments have been summarized and are presented in Table 

3 and Figure 9. The raw data has been included here because it is important to note the 

absolute value of absorbance shifts that were observed in the con troIs relative to the 

MATH tests themselves, as was previously discussed. 

Solution 51 nm Latex 110 nm Latex 1500 nm Latex 

Composition CICo ClCo C/Co 

10 [mM] 0.100 0.063 0.077 
100 [mM] 0.072 0.084 0.208 
10 [mM] & 

0.171 0.196 0.273 
humic$ 

100 [mM] & 
0.186 0.186 0.295 

humic$ 

Table 3: Unadjusted MAm test raw data (colloids) 

CICo@ 254 (UnadJ.) E351 Ml Latex 11110 nm Latex 01500 nm Latex 

0.4 

0.3 +---------------~ 

0.3 +------------1 
~0.2 -I-------r-,.....-­
UO.24--------I 

0.1 +--r."",....-------i 
0.1 

0.0 

10 (mM) 100 [mM] 10 [mM] & humlcs 100 [mM) & 
humlc$ 

Figure 9: Unadjusted CICO versus solution composition (colloids) 
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As was previously discussed, the absorbance shift factors for the partitioning of 

unassociated RAs and remnant n-hexadecane determined during control experiments 

could then be used to adjust the data obtained with the various colloidal partiel es. This 

will ideally allow the impact of RAs and n-hexadecane partitioning that was previously 

mentioned to be factored out of the experimental data. This allows the impact of NOM 

on the relative hydrophobicity of the partiel es to be examined in isolation. The raw data 

and adjusted CICo versus solution composition data for these experiments have been 

summarized and are presented in Table 4 and Figure 10. As before, the raw data bas been 

included here to note the absolute value of absorbance shifts that were observed. 

Solution 61 nm Latex 110 nm Latex 1600 nm Latex 

Composition Adj. CICo Adj. C/Co Adj. C/Co 

10 [mM] 0.088 0.052 0.068 
100 [mM] 0.059 0.075 0.199 
10 [mM] & 

0.592 0.627 0.567 
humics 

100 [mM] & 
0.714 0.559 0.595 

humics 

Table 4: Adjusted MAm test raw data (colloids) 

CICo @ 254 (Adj.) El51 nm Latex 11110 nm latex p1500 nm lot.x 

0.8 

0.7 +--------------~1__-___' 

0.6 +----------
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0.2 +-------........,---,---
0.1 h~=:;:;:::::,----;;=:m;;;;;;;;j 
0.0 +-'~IIIIlIIL-..L....,-J~ __ ........L~ 

10 (mM] 100 (mM) 10 (mM) & humic$ 100(mM)&humÎcs 

Figure 10: Adjusted CICO versus solution composition (colloids) 

A.4.0 Conclusions and Projections to Future Works 

Anomalies that were observed in the behaviour of the colloidal suspensions in the 

presence of RAs lead to the conclusion that sorne short range force (i.e., London forces, 

hydrophobicity, etc.) not normally considered in DLVO rnight be at least partly 

responsible. In particular, since hydrophobie interactions are suspected to be involved in 
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the association ofHAs with the hydrophobie surfaces of the latex particles, it was decided 

to investigate the relative hydrophobicity of the three colloids in their presence and 

absence. Two of the most commonly used tests of relative hydrophobicity are contact 

angle and MATH tests. While contact angle measurements have a solid theoretical basis, 

it was decided that the quantities of nanoparticles required would be financially 

prohibitive and wasteful. The other of these tests, known as the MATH test, involves 

contacting an aqueous suspension of particles to an organic phase (hydrocarbon) and 

relates the relative partitioning of particles into the organic phase to those particles' 

relative hydrophobicities. While it was originally developed exclusively for measuring 

bacterial ceU surface hydrophobicity [72], it has since been extended here to the testing of 

inorganic colloids (Microsphere Adhesion to Hydrocarbons). 

Observation of the data obtained from the MATH tests confirms the expectation 

that the latex particles being investigated are indeed hydrophobic. Figure 10 shows that 

in the absence of HAs, the majority of latex particles preferentially partitioned to the 

organic phase, as would be expected ofhydrophobic particles. In the presence ofHAs, a 

greater fraction of the particles remained in the aqueous phase following agitation. It was 

concluded that the HAs acted as an organic phase dispersed within the aqueous phase and 

that the close association between HAs and the colloids allowed the latex particles to be 

sufficiently hydrophobically stabilized to remain dispersed in the aqueous phase. While 

this observation indicates that hydrophobicity is likely playing sorne kind of role in the 

observed behaviour of the colloids during deposition studies, the creation of a significant 

dispersed organic greatly complicated the interpretation of data obtained from MATH 

tests. 

Therefore, white the results obtained from MATH tests might hint at interesting 

conclusions and while the extension of MATH tests to inorganic particles is likely still a 

viable prospect, the MATH test was found to be inappropriate for the three phase system 

created through the inclusion of HAs as the interpretation of data became practicably 

impossible. 
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Appendix B: Biofilms Experiments 

B.l. 0 Introduction 

The role that microorganisms play in the mobility of pollutants and colloids in the 

subsurface has not been traditionally recognized despite the fact that they play a 

significant role in completing the cycling of the majority of the earth' s nutrients. In fact, 

the majority of groundwater systems are home to a rich ecosystem, inc1uding invertebrate 

[73] and (to a lesser extent) vertebrate [74] organisms. In fact, it has been estimated that 

groundwater systems are home to the greatest number of rare taxa of all the earth's 

ecosystems [75]. Recently, an increasing amount of researchers are realizing that the 

most pronounced effect of microorganisms in subsurface systems lies in their tendency to 

form biofilms. Though biofilms are formed and inhabited by individual microbial cells, 

they form highly structured microenvironments inc1uding microcolonies of various 

species that can develop synergistic relationships [76]. Research has demonstrated that 

such microconsortia are capable of degrading structures far more complex than could be 

utilized by single members of the consortium [77]. This ability has largely been 

attributed to the ability of the se microbes to release extracellular polymerie substances 

(EPS) [78]. EPS are biosynthetic polymers that mainly consists of proteins and 

polysaccharides, but the extracellular environment forming the biofilms can also contain 

substantial amounts of DNA, lipids, glycolipids and humic substances [79, 80]. Using 

batch-style experiments, one group found that biofilm thickness acquired a sort of quasi­

steady state after approximately five days growth under high nutrient loadings. The same 

group also observed that the porosity of the medium decreased between 50 and 96% and 

permeability decreased between 92 and 98% [81]. This observation indicates that given 

the proper geochemistry and a sufficient supply of substrates, thick biofilms can develop 

and significantly alter porosity and permeability of the medium and thereby greatly 

affecting the transport of influent mobile colloids. However, to date there have been very 

few controlled laboratory investigations quantifying the effect that biofilms have on the 

transport and fate of colloids. And of the few such experiments that have been 

performed, they have yielded puzzling results as one group has observed decreased 
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cryptosporidium parvum oocyst removal in the presence ofbiofilms [82] whereas others 

have observed that biofilms are "sticky" and they aid in the removal of colloids [76, 83]. 

It was decided to design a protocol for the study of transport when the 

experimental system is first preconditioned with biofilms in order to facilitate future 

research in this arena. The initial plan was to first design an experimental protocol that 

could be used for homogeneously conditioning packed columns with biofilm-coating. 

The intent had been to then perform a selected number of filtration experiments using the 

nano- to micron-scale latex particles in order to be able to compare with the results 

obtained from earlier experiments. While it proved to be beyond the scope of this project 

to perform any colloid filtration experiments in biofilm preconditioned columns, the 

protocol is outlined below and a discussion of the works with a projection to future works 

is included. 

B.2.0 Materials and Methods 

B.2.] Materials 

2x 

2x 

2x 

Lennox Broth (LB) growth media 

Potassium Chloride 

Agar 

Quartz sand (Sigma) 

Pseudomonas aeruginosa ATCC # 27853 

Pair of column end-pieces and fittings 

1.6 cm diameter glass chromatography column 

Masterflex peristaltic pump 

Masterflex tygon pump tubing 

Syringe pump 

Standard tygon tubing 

Assorted Omnifit fittings and tee/4-way valves 

Oven 

Meat thermometer 
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2.0 L graduated cylinder 

500 mL baftled Erlenmeyer flask 

2x 2.0 L screw-top Erlenmeyer flask 

3x 1.0 L Erlenmeyer flask 

2x 250 mL Wheaton bottle 

1.0 L beaker (for waste collection) 

3x Magnetic stir-bar 

Large weighing dishes 

B.2.2 Methods 

Biojilms: Pre-preparation 

Pre-prepare: lx 1.0 L Erlenmeyer flask with 20.0 g/L LB media (+ stir-bar); 

2x 1.0 L screw-top Erlenmeyer flask with 2.0 g/L LB media (+ stir-bar); 

lx 500 mL baftled Erlenmeyer flask with 20.0 g/L LB media; 

2x 1.0 L Erlenmeyer flask with sterile deionized water; 

2x 7.5g sterile and saturated sand in 250 mL Wheaton bottle; 

lx 1.5% wt/v agar/20.0 g/L LB plate of P. aeruginosa 27853 

* AlI transfers that expose sterile media to atmosphere (particularly inoculation) 

must be carried out in a Biological Safety Cabinet (BSC) 

Media Preparation 

• Rinse 3x 1.0 L Erlenmeyer flask with deionized water 

• Rinse lx 500 mL Baftled Erlenmeyer flask with deionized water 

• Rinse 2x 1.0 L Screw-top Erlenmeyer flask + cap with deionized water 

• Fill 2x 1. 0 L Erlenmeyer flask with -800 mL deionized water 

• Cap flask with sponge, metal foil, autoclave tape and set aside for sterilization 

o These will be used for column flushing 

• Fill lx 1.0 L Erlenmeyer flask with a small volume of deionized water 

• Rinse a large weighing dish 
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• Tare weighing dish on analytical balance and measure 16.0 g LB media 

• Transfer media from weighing dish to flask using rinse bottle as necessary 

• Shake flask manually until homogeneity of media is achieved 

• Fill flask with deionized water up to 800 mL mark 

• Shake flask manually 

• Rinse magnetic stir-bar with deionized water and drop into media flask 

• Cap flask with sponge, metal foil, autoclave tape and set aside for sterilization 

o This will be used for conditioning the column with full strength media 

• Fill lx 2.0 L graduated cylinder with a small volume of deionized water 

• Rinse a large weighing dish 

• Tare weighing dish on analytical balance and measure 5.0 g LB media 

• Transfer media from dish to graduated cylinder using rinse bottle as necessary 

• Swirl contents of graduated cylinder to manually homogenize media 

• Fill graduated cylinder with deionized water up to 250 mL mark 

• Swirl contents of graduated cylinder to manually homogenize media 

• Transfer ~ 150 mL of media into 1 x 500 mL baffied Erlenmeyer flask 

• Cap flask with sponge, metal foil, autoclave tape and set aside for sterilization 

o This will be used to make a liquid bacterial culture from the plate 

• Fil12x 2.0 L screw-top Erlenmeyer flasks with a small volume of deionized water 

• Rinse a large weighing dish 

• Tare weighing dish on analytical balance and measure 3.2 g LB media 

• Transfer media from weighing dish to flask using rinse bottle as necessary 

• Shake flask manually until homogeneity of media is achieved 

• Fill flask with deionized water up to 1600 mL mark 

• Shake flask manually 

• Rinse magnetic stir-bar with deionized water and drop into media flask 

• Cap flask with screw-top cap and autoclave tape and set aside for sterilization 

o This will be used to maintain the growth ofbacteria in the column as part 

of the column conditioning procedure 
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Sand Preparation 

• Rinse 2x 250 mL Wheaton bottle + cap 

• Fill 2x 250 mL Wheaton bottle with a small volume of deionized water 

• Rinse a large weighing dish 

• Tare dish on analytical balance and measure 2x 7.5 g prepared quartz sand 

• Transfer sand from dish to flask using rinse bottle as necessary 

• Fill 2x 250 mL Wheaton bottle with water up to - 200 mL mark 

• Cap bottle with screw-top cap and autoclave tape and set aside for sterilization 

Sterilization 

• Sterilize media and sand using autoclave on liquid cycle 

• Store lx 1.0 L Erlenmeyer flask with 20.0 g/L LB media, 2x 1.0 L screw-top 

Erlenmeyer flask with 2.0 g/L LB media, 2x 1.0 L Erlenmeyer flask with 

deionized water and 2x 7.5g quartz sand in 250 mL Wheaton bottle at 37°C 

• Set aside lx 500 mL baftled Erlenmeyer flask with 20.0 g/L LB media for 

bacterial culture preparation 

BacteriaJ Culture Preparation 

• Pre-prepare 1.5% wt/v agar/20.0 g/L LB plates 

• Inoculate plate from frozen culture (cryogenic tube) of P. aeruginosa 27853 

• Label, seal and place plate in incubator at 37°C for -24 hrs 

• Remove plate ftom incubator and store in 4°C fridge 

*It is important to ensure that the next phase of this process is carried out 

concurrently with column-preparation and column conditioning such that bacterial 

culture and sterilized column are simultaneously available 

• Inoculate lx 250 mL baftled Erlenmeyer flask with P. aeruginosa 27853 picked 

from 1.5% wt/v agar/20.0 g/L LB plate 

• Retum P. aeruginosa 27853 plate to fridge 

• Place 500 mL baftled Erlenmeyer flask in incubator and shake at 200 rpm 

ovemight for,.." 18hrs 

• Take a sample of solution from 500 mL baffled Erlenmeyer flask and measure 

turbidity using UV-visible spectrophotometer at 600 nm wavelength 
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• Dilute sample until standardized turbidity measurement of 0.3 is achieved 

• Use a 1.0 mL sample of diluted culture to inoculate 1.0 L screw-top Erlenmeyer 

flask with 2.0 g/L LB media as it circulates through the column (column 

preparation details to follow) 

Biofilms: Column Preparation 

• Rinse surfaces of column and lower end-pieces with 85% ethano]f15% methanol 

• Wipe lower end-pieces with a kimwipe and re-rinse with 85% ethano]f15% 

methanol 

• Fill columns until they contain a significant standing volume of ethanol 

• Allow sorne ethanol to drain from the column to flush effiuent lines of air bubbles 

• Close outlet valves to prevent the emptying of the column 

• Refill column with a standing volume of ethanol 

• Add lower sand membrane using sterile pipette 

• Fill each column with pre-saturated sand and minimal volume of water (ensure 

that the lower membrane is undisturbed by adding the first small quantity of sand 

very slowly) 

• Vibrate column with back-massager to ensure homogeneous column packing 

• Attach ethanol beaker inline 

• Flush to waste through aU valves and start flow of ethanol to end-pieces 

• Rinse top end-pieces with ethanol, wipe with kimwipe and re-rinse with ethanol 

• Seal column without air bubbles 

Biofilms: Column Conditioning 

• Flush column with ethanol for -1 OPV' s 

• Switch to 20.0 g/L LB media beaker precondition columns with media for -20 

PV's (spin) 

• Switch to 2.0 g/L media beaker and begin flushing (spin) 

• Inoculate media flask with 1.0 mL of liquid culture 

• Allow solution to circulate ovemight ~18 hrs (spin) 

• Back-flush column for ~6 hrs (spin) 
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• Switch to fresh 2.0 g/L media every 24 hrs and repeat steps inc1uding circulation 

ovemight ~ 18 hrs and back-flush -6 hrs 

• Continue until even colour gradient is achieved across length of column 

Biofilms: Column Characterization 

Column Homogeneity 

Once conditioned with biofilms, the goal ofthis protocol is to be able to perform a series 

of filtration experiments in order to determine the effect that biofilm conditioning has on 

the deposition behaviour of colloïdal suspensions. However, in order to be able to 

compare the results of experiments carried out in separate columns, it is of paramount 

importance that the various columns be as homogeneously and consistently conditioned 

as possible. To this end, aU growth parameters are controlled as tightly as possible. As is 

the rationale with the preparation of a growth curve, given similar inoculant volume and 

concentration, nutrient availability and external growth conditions (i.e. temperature, etc.) 

the observed growth of biofilm should be roughly equivalent between experiments. 

However, as a means of demonstrating that this assertion is true, it had been the intent of 

this project to condition a series of columns with biofilms and then characterize the 

distribution ofbacteria throughout the column. 

IdeaIly, after having been conditioned with biofilms, it would be possible to 

slowly remove the column of sand from the chromatography column and divide its length 

into sections. Each ofthese sections could then be placed into a separate Falcon tube and 

vortexed to liberate attached biofilms and bacteria from the surface of the sand grains. 

After a short settling period, it would then be possible to take a sample of the liquid 

solution and using plate counting techniques quantify the distribution of bacteria 

throughout the column. Though it may be argued by some that not aIl of the bacteria 

harvested from a biofilm community in this manner are going to be culturable, the 

number of bacteria that are culturable within a given slice should be comparably 

representative of the total number of bacteria. It had been the intention of this project to 

carry out this investigation and quantify bacterial distribution throughout the column but 

due to time constraints, this goal was not achieved. 
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Biojilms: Filtration Experiments 

The experimental setup designed for use in these experiments incorporated a direct input 

for colloidal partic1es similar to the system that was used in the majority of my filtration 

experiments. This was ultimately to allow for the comparison of elution curves in the 

presence and absence of biofilm conditioning. However, it was decided that it would not 

be possible to perform filtration studies using the exact colloidal partic1es that were used 

throughout the bulk of my Masters. A UV-visible spectrophotometer has been used 

throughout the rest of the project to characterize the difference in turbidity between 

solutions influent and eftluent to a column. A limitation of this equipment is that it is 

unable to differentiate between colloidal partic1es, bacterial ceUs and biofilm debris. This 

would make it impossible to compare the turbidity of influent and eftluent solutions. 

It was decided that a better approach would involve the use of fluorescently 

labelled latex partic1es and a fluorescent spectrophotometer. This would allow for the 

influent and eftluent concentrations of latex partic1es to be characterized without overt 

interference from the debris present in the eftluent solution. Due to time constraints and 

equipment acquisition delays, it was not possible to attempt these filtration studies using 

fluorescently labelled latex partic1es. 

B.3.0 Conclusions and Projections to Future Work 

Over the course of this project, a protocol has been developed for the conditioning of 

columns with biofilms in order to be able to carry out colloidal filtration studies in their 

presence and absence. Given a consistent column packing technique, tightly regulated 

growth parameters and consistent inoculants it is believed that the use of this protocol 

will result in comparable biofilm. However, in order to prove that this is true, 

quantification of the distribution of bacteria throughout the column is still required and 

should be the initial focus of future works. Once it has been established, use of this 

protocol in conjunction with fluorescently labelled latex particles and a fluorescent 

spectrophotometer should ultimately make an investigation into the effect of biofilm 

conditioning on the transport behaviour of colloidal suspensions in porous media 

possible. 
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