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Abstract

We consider estimates of the parameters of GARCH models of daily �nancial returns,
obtained using intra-day (high-frequency) returns data to estimate the daily conditional
volatility. Two potential bases for estimation are considered. One uses aggregation of high-
frequency Quasi- ML estimates, using aggregation results of Drost and Nijman (1993).
The other uses the integrated volatility of Andersen and Bollerslev (1998), and obtains
coe�cients from a model estimated by OLS or LAD, in the latter case providing consistency
and asymptotic normality in cases where moments of the volatility estimation error may
not exist. In particular, we consider estimation in this way of an ARCH approximation,
and obtain GARCH parameters by a method related to that of of Galbraith and Zinde-
Walsh (1997) for ARMA processes. We o�er some simulation evidence on small-sample
performance, and characterize the gains relative to standard quasi-ML estimates based on
daily data alone.
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1. Introduction

GARCH models are widely used for forecasting and characterizing the conditional

volatility of economic and (particularly) �nancial time series. Since the original contribu-

tions of Engle (1982) and Bollerslev (1986), the models have been estimated by Maximum

Likelihood (or quasi-ML) methods on observations at the frequency of interest. In the case

of asset returns, the frequency of interest is often the daily 
uctuation.

Financial data are often recorded at frequencies much higher than the daily. Even

where our interest lies in volatility at the daily frequency, these data contain informa-

tion which may be used to improve our estimates of models at the daily frequency. Of

course, following Andersen and Bollerslev (1998), higher-frequency data may also be used

to estimate the daily volatility directly.

The present paper considers two possible strategies for estimation of daily GARCH

models which use information about higher-frequency 
uctuations. The �rst uses the

known aggregation relations (Drost and Nijman, 1993) linking the parameters of GARCH

models of high-frequency and corresponding low-frequency observations. When such esti-

mates are based on QML estimates for the high-frequency data, however, relatively strin-

gent conditions are required, which may not be met in (for example) asset-return data.

The second potential strategy is to use the observation of Andersen and Bollerslev

(1998) that the volatility of low-frequency asset returns may be estimated by the sum

of squared high-frequency returns. While the resulting estimate may be used directly to

characterize the process as in Andersen and Bollerslev or Andersen et al. (1999), it is

also possible to use the sequence of low- (daily-) frequency estimated volatilities to obtain

estimates of conditional volatility models such as GARCH models, explicitly allowing for
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estimation error in the estimated daily volatility. The resulting models may be estimated

by a variety of techniques (including LS); by using the Least Absolute Deviations (LAD)

estimator, it is possible to obtain consistent and asymptotically normal estimates under

quite general conditions (in particular, without requiring the existence of moments of the

returns). We are then able to obtain estimates of GARCH parameters using an estimator

related to that of Galbraith and Zinde-Walsh (1997) for ARMA models.

In section 2 we describe the models and estimators to be considered and give some

relevant de�nitions and notation. Section 3 provides several asymptotic results, while

section 4 presents simulation evidence on the �nite- sample performance of regression

estimators relative to that of standard GARCH estimates based on the daily observations

alone.

2. GARCH model estimation using higher-frequency data

2.1 Processes and notation

We begin by establishing notation for the processes of interest. Consider a driftless

di�usion process fXtg such that

Xt = X0 +

Z t

0

�sXsdWs;

where fWtg is a Brownian motion process and �2s is the instantaneous conditional variance.

This is a special case of the structure used by, e.g., Nelson (1992), Nelson and Foster (1994).

The process is sampled discretely at an interval of time ` (e.g., each minute). We

are interested in volatility at a lower-frequency sampling, with sampling interval h` (e.g.,

daily), so that there are h high-frequency observations per low-frequency observation.

De�ne one unit of time as a period of length `:
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We index the full set of observations by � and the lower-frequency observations by

t; so that t = fh; 2h; : : : ; hTg: The size of the sample of low-frequency observations is

therefore T; and of the full set of high-frequency observations is hT: Following Andersen

and Bollerslev (1998), estimate the conditional volatility at t as the estimated conditional

variance

�̂2t =
ihX

j=(i�1)h+1

r2j ; (2:1:0)

with r2j = (xj � xj�1)
2: See Andersen and Bollerslev on convergence of �̂2t to

R t
t�1

�2sds:

Now consider ARCH and GARCH models at the lower-frequency observations:

�2t = ! +

qX
i=1

�i"
2
t�i; (2:1:1)

�2t = ! +

qX
i=1

�i"
2
t�i +

pX
i�1

�i�
2
t�i; (2:1:2)

where "t = yt � �t for a process yt with conditional mean �t; or in the driftless case

"t = Xt: So E("2t j t�i) � �2t : Models in the form (2.1.1), (2.1.2) are directly estimable if,

as in Andersen and Bollerslev, we have measurements of �2t : We return to this point in

Section 2.3 below.

Finally, we will refer below to the de�nitions of Strong, Semi-strong andWeak GARCH

given in Drost and Nijman (1993). In strong GARCH, f"tg is such that zt � "t=�t �

IID(0; 1); semi-strong GARCH holds where f"tg is such that E["tj"t�1; : : :] = 0 and

E["2t j"t�1; : : :] = �2t ; weak GARCH holds where f"tg is such that P ["tj"t�1; : : :] = 0 and

P ["2t j"t�1; : : :] = �2t ; where P ["
2
t j"t�1; : : :] denotes the best linear predictor of "

2
t given a

constant and past values of both "t and "
2
t :
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2.2 Estimation by aggregation

Drost and Nijman (1993) showed that time-aggregated weak GARCH processes lead

to processes of the same class, and gave deterministic relations between the coe�cients

(and the kurtosis) of the high frequency process and corresponding time-aggregated (low-

frequency) process for the weak GARCH (1,1) case. As Drost and Nijman noted, such

relations can in principle be used to obtain estimates of the parameters at one frequency

from those at another. In this section we examine the strategy of low-frequency estimation

based on prior high-frequency estimates. Time aggregation relations of course di�er for

stock and 
ow variables; here we treat 
ows, such as asset returns.

Consider the high-frequency GARCH(1,1) process

�2� = ! + �1"
2
��1 + �1�

2
��1; (2:2:1)

if "(h)t =
Pth

j=t(h�1)+1 "j is the aggregated 
ow variable, then its volatility at the low

frequency follows the weak GARCH(1,1) process

�2(h)t = �0 + �1"
2
(h)t + �1�

2
(h)t�1; (2:2:2)

with �0; �1; �1 given by the corresponding formulae (13-15) for  ;�; � in Drost and Nijman

(1993), adjusting for notation. To obtain consistent estimation by QML of the high-

frequency model, it will be necessary that the process is semi-strong GARCH: the standard

Quasi-ML estimator of the GARCH model will in general be inconsistent in weak GARCH

models (as noted by Meddahi and Renault 1996, 2000 and Francq and Zako��an 1998; see

the latter reference for an example and M-R 2000 for a Monte Carlo example on samples

of 80 000 { 150 000 simulated low frequency observations).
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We will show that the mapping

0
@�0
�1
�1

1
A =  

0
@ !
�1
�1

1
A (2:2:3)

provided by the Drost-Nijman formulae is a continuously di�erentiable mapping; it is also

analytic over the region where the parameters are de�ned.

This implies that any consistent estimator of the high-frequency parameters (!;�1; �1)

leads to a consistent estimator of the low-frequency parameters (�0; �1; �1); and simi-

larly that an asymptotically Normal estimator of the high-frequency parameters results in

asymptotic Normality of the low-frequency parameters.

Denote the vector

0
@ !
�1
�1

1
A by � and, correspondingly, let � =

0
@�0
�1
�1

1
A : Then  (�) = �:

Now denote by 
 2 R3 the region


 = f(!;�1; �1) 2 R
3j ! > 0; �1 � 0; �1 � 0; �1 + �1 < 1g;

that is, the region for which the GARCH(1,1) process is de�ned (see, e.g., Bollerslev 1986).

Theorem 1. For any estimator �̂ of � such that (i) �̂
p
!�; (ii) �̂

a
�N (�; V (�)), the

estimator �̂ =  (�̂) is such that for �̂ satisfying (i),

�̂
p
!�;

and for �̂ satisfying (ii),

�̂
a
�N(�; V (�̂));

where the asymptotic covariance matrix is V (�̂) = @ 

@�0
V (�)@ 

0

@�
:

Proof. It follows from (i) and consequently also from (ii) that since � 2 
;
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P (�̂ 2 
) ! 1: Consider now the formulae for � =  (�) over 
 in Drost and Nijman

(1993). From (15) of D-N we can obtain �1 from a solution to a quadratic equation of the

form Z2 � cZ + 1 = 0; where

c = c(!;�1; �1; �) (2:2:4)

is obtained from the expression in (15) of D-N. For � 2 
 it follows that c > 2 and

therefore �1 =
c
2
�
�
( c
2
)2 � 1

� 1
2 is such that 0 < �1 < 1: Moreover, it can be shown that

�1 < (�1 + �1)
h and so �1 obtained from (13) in D-N also lies between 0 and 1.

The transformation  

0
@ !
�1
�1

1
A can be written as

 

0
@ !
�1
�1

1
A =

0
BB@

h! 1�(�1+�1)
h

1�(�1+�1)

(�1 + �1)h �
c
2 +

�
( c2)

2 � 1
� 1
2

� c
2 +

�
( c2 )

2 � 1
�1
2

1
CCA ;

where c is given by (2.2.4); it is de�ned and di�erentiable everywhere in 
: .

Note that (as follows from Drost and Nijman 1993), even if �1 = 0; �1 is non-

zero as long as � > 0: As h increases, �1 and �1 decline; given �1 and �1; conditional

heteroskedasticity vanishes for su�ciently large h: Therefore, for substantial conditional

heteroskedasticity to be present in the low-frequency (aggregated) 
ow process, �1 + �1

must be close to unity.

Suppose now that a standard quasi-Maximum Likelihood estimator is used with semi-

strong GARCH high-frequency data to obtain estimates of �: Its asymptotic covariance

matrix is V [�̂QML] = [W 0W ]�1B0B[W 0W ]�1; where

W 0W =
hX
�=1

T

�
g�
�2�

� �
g�
�2�

�
0

and B0B =
TX
�=1

�
"2�
�2�
� 1

�2 �
g�
�2�

� �
g�
�2�

�
0

;
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with g� =
@�2

�

@�
=

0
@ 1
"2��1
�2��1

1
A : The asymptotic variance of the estimator �̂ based on 
ow

aggregation is then

@ 

@�0
[W 0W ]�1B0B[W 0W ]�1

@ 0

@�
: (2:2:5)

If �̂QML is the MLE this reduces to

@ 

@�0
[W 0W ]�1

@ 0

@�
: (2:2:6)

Example 1. Let the high-frequency process be ARCH(1); aggregation then leads to a

weak GARCH(1,1) process for the low-frequency data. However, the asymptotic covariance

matrix for the estimator �̂ is of rank 2 rather than 3, since the middle part in (2.2.5) or

(2.2.6) is of dimension 2 � 2: This indicates that there are cases where �̂ is clearly more

e�cient than �ML (or �QML) based on low-frequency data alone, with covariance matrix

of rank 3.

While estimation is feasible by this method, the requirements of this strategy, even

for consistent estimation, are fairly severe. In particular, the potential inconsistency of

QML estimation when only weak GARCH conditions apply means that we must assume

semi-strong GARCH at the high frequency if estimation is by QML. This is, however, an

arbitrary speci�cation; if the high frequency data are themselves aggregates of yet higher

frequencies, the semi-strong conditions do not follow. While consistent estimation of weak

GARCH models is in principle possible (see Francq and Zako��an 1998), the QML estimator

does not accomplish this.

More generally, estimation based on aggregation presumes knowledge of the high-

frequency structure, and requires the computation of di�erent aggregation formulae for
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each model form to be estimated. For these reasons, we will proceed to investigate esti-

mators based on the integrated volatility, which do not presume knowledge of the high-

frequency process beyond the conditions necessary for consistency of the daily volatility

estimate.

2.3 Estimation by regression using integrated volatility

As noted above, models of the form (2.1.1) and (2.1.2) are directly estimable if we have

estimates of the conditional variance of the low-frequency observations, �2t ; for example

from the daily integrated volatility, as in Andersen and Bollerslev.1 However, we will not

follow Andersen and Bollerslev in treating the observation as exact. Instead, we introduce

into the model the measurement error arising in estimation of �2t from the daily integrated

volatility (2.1.0), a speci�cation also employed by Maheu and McCurdy (2000). Let

�̂2t = �2t + et; (2:3:1)

properties of fetg follow from (2.1.0) and will be considered below.

The ARCH and GARCH models become

�̂2t = ! +

qX
i=1

�i"
2
t�i + et; (2:3:2)

�̂2t = ! +

qX
i=1

�i"
2
t�i +

pX
i=1

�i�̂
2
t�i �

pX
i=1

�iet�i + et: (2:3:3)

Both (2.3.2) and (2.3.3) are in principle estimable as regression models. The model

(2.3.3) has an error term with an MA(s) form; the coe�cients of this moving average

1Since we will be discussing low-frequency parameters hereafter, we no longer need to

distinguish from high-frequency and will omit the `bar' in symbols, referring to �2; �; �;

etc. for the low-frequency values.

8



process are subject to the constraint embodied in (2.3.3) that they are the same (up

to sign) as the coe�cients on lagged values of �̂2t : Estimation of these models by LS or

QML does however require relatively strong moment conditions to hold on the regressors

and the volatility estimation errors fetg; note that this is unlike the standard GARCH

model estimated by QML where conditions are usually applied to the rescaled squared

innovations.

Maheu and McCurdy (2000) �nd good results using the constrained model, estimated

by QML, on foreign exchange returns. Bollen and Inder (1998) estimate a model similar

to (2.3.3) by standard QML methods (without accounting for the error autocorrelation

structure), using intra-day data to obtain estimates of an unobservable sequence related

to daily volatility. This approach requires consistency of the estimates of the unobservable

sequence as the number of intra-day observations per day increases without bound, to

obtain consistency of the estimator; Bollen and Inder �nd good results on a sample of S

& P Index futures with a large number of observations per day.

Here we will consider estimation of models having the ARCH model (2.3.2), followed

by computation of GARCH parameters from the ARCH approximation. This strategy

also has the advantage of producing immediately an estimated model which is directly

useable for forecasting, and of allowing computation of parameters of any GARCH(p; q)

model from a given estimated ARCH representation. Su�cient conditions for consistent

and asymptotically normal estimation are given in Section 3 below; it is not necessary that

the number of intra-day observations per day (h) increase without bound.

To obtain estimates of GARCH parameters from the ARCH representation we pursue

an estimation strategy related to that of Galbraith and Zinde-Walsh (1994, 1997), in which

autoregressive models are used in estimation of MA or ARMAmodels. A high-order ARCH

9



model is used, and estimates of GARCH (p; q) parameters are deduced from the patterns

of ARCH coe�cients.

Consider �rst a case of known conditional variance �t: The GARCH process (2.1.2)

has a form analogous to the ARMA(p; q); using standard results on representation of an

ARMA (p; q) process in MA form (see, e.g., Fuller 1976), we can express (2.1.2) in the

form

�2t = �+

1X
`=1

�`"
2
t�`; (2:3:4)

with �0 = 0 and

�1 = �1

�2 = �2 + �1�1

...

�` = �` +

min(`;p)X
i=1

�i�`�i; ` � q;

�` =

min(`;p)X
i=1

�i�`�i; ` > q;

(2:3:5)

and �nally

� = (1� �(1))�1! =

 
1�

pX
i=1

�i

!
�1

!: (2:3:6)

Giraitis et al. (2000) give general conditions under which the ARCH(1) represen-

tation is possible for the GARCH(p,q) case; only the existence of the �rst moment and

summability of the coe�cients �` (in our notation) are required for the existence of a

strictly stationary ARCH(1) solution as given in (2.3.4).

To estimate the model using a truncated version of this ARCH(1) representation, we

use the estimated low-frequency conditional variance from (2.1.0), de�ning the estimation

10



error as in (2.3.1) and substituting into (2.3.4) to obtain

�̂2t = �+
kX
`=1

�`"
2
t�` + et: (2:3:7)

The truncation parameter k must be such that k!1; k=T ! 0 for consistent estimation

of the GARCH model.

This model may be estimated by LS or, to obtain results robust to less restrictive

conditions on the volatility estimation errors, LAD. Asymptotic properties of the estimator

are considered in Section 3. Estimation proceeds by �rst obtaining estimates of � =

(�1; �2; : : : ; �p) from (2.3.5) for ` > q; followed by estimation of the q parameters of � from

the �rst q relations of (2.3.5), and of ! from (2.3.6).

Begin by de�ning

v(0) =

2
664
�q+1
�q+2
...
�k

3
775 ; and v(�i) =

2
664
�q+1�i
�q+2�i

...
�k�i

3
775 : (2:3:7)

Next de�ne the (k � q)� p matrix V = [v(�1)v(�2) : : : v(�p)] =

2
664

�q �q�1 : : : �q�p+1
�q+1 �q : : : �q�p+2
...

...
�k�1 �k�2 : : : �k�p

3
775 :

where �r = 0 for r � 0: It follows from (2.3.5) that v(0) = �0V:

The p� 1 vector of estimates �̂ is de�ned by

�̂ = (V̂ 0V̂ )�1V̂ 0v̂(0); (2:3:9)

where the circum
ex indicates replacement of �` with the OLS-estimated values �̂` in the

de�nitions above. An estimate of � can then be obtained using the estimate of � and the

11



relations (2.3.5): that is

�̂1 = �̂1

�̂2 = �̂2 � �̂1�̂1

...

�̂q = �̂q �

min(q;p)X
i=1

�̂i�̂q�i:

(2:3:10)

Finally,

!̂ = �̂(1� �̂(1)) = �̂

 
1�

pX
i=1

�̂i

!
:

The covariance matrix of the estimates can be obtained easily from the estimates

of the representation (2.3.7) and the Jacobian of the transformation. Let the parameter

vector be � = (!; �; �); and let  2 be the variance of the noise et in (2.3.1). Then

var(�) = J 0(var�̂)J;

where �̂ is the vector of estimated ARCH parameters and J is the Jacobian of the trans-

formation (2.3.9)-(2.3.10). Computation of the covariance matrix of the LAD parameter

vector is discussed in section 3.

3. Asymptotic properties of the integrated volatility{regression estimates

In this section we discuss conditions for consistent and asymptotically Normal estima-

tion of the integrated volatility{regression model of Section 2 by Least Absolute Deviations.

Results for Quasi-Maximum Likelihood estimation of the ARCH model were established

by Weiss (1986), using the assumption of �nite fourth moments of the unnormalized data.

Lumsdaine (1996) established consistency and asymptotic Normality of the QMLE for

GARCH models by imposing conditions on the re-scaled data, zt = "t=�t; including the
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IID assumption and the existence of high-order moments. Lee and Hansen (1994) gener-

alized these results to fztg which are not IID, but simply strictly stationary and ergodic.

Consider the ARCH(k) model (2.3.7). Denote by V 2
T the matrix with elements

fV 2
T gij = (

PT
t=1 "

2
t�i"

2
t�j); such that VT = (V 2

T )
1

2 :

Assumption 1. Suppose that there exists c such that

T�c

 
TX
t=1

"2t�i"
2
t�j

!
= Op(1) and T cV �1

T = Op(1) (i)

(that is, the matrix is invertible with probability approaching 1), and

max "2t = op(T
c=2): (ii)

This assumption requires that max "2t not grow too fast in probability relative to the

sum (
PT

t=1 "
2
t�i"

2
t�j):

2

Next consider an assumption on the daily volatility estimation error,

et = �̂2t � �2t : (3:1:1)

This assumption embodies both the Error Assumption of Pollard (1991, p.189) and the

additional assumption of Pollard's Theorem 2 that the realizations of the process and the

errors (here, volatility estimation errors) are assumed independent.

2As an example, consider a case where the eighth unconditional moment of "t exists.

Then (i) is satis�ed for c = 1 by the WLLN, T�1(
PT

t=1 "
2
t�i"

2
t�j)

p
!E("2t�i"

2
t�j): At the

same time, if we re-write the ARCH(k) model (2.3.7) as a stationary AR(k) model by

de�ning wt = "2t � �2t (note that E(wtj"
2
t ; "

2
t�1; : : :) = 0 and var(wt) < 1); we obtain

"2t = �+
Pk

`=1 �`"
2
t�`+wt: Following example 2 of Pollard (1991) (generalizing to AR(k)),

it follows that max "2t = op(T
1=2): Of course, Assumption 1 can also hold in cases where

moments do not exist.
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Assumption 2. The volatility estimation errors fetg are IID with median 0 and a continuous

positive density f (:) in the neighbourhood of zero. The sequences of errors fetg and of

realizations of the process f"tg are independent.

Theorem 2. Consider the model (2.3.7),

�̂2t = �+

kX
`=1

�`"
2
t�` + et;

and suppose that Assumptions 1 and 2 are satis�ed. Then if �̂ = (�̂; �̂1; : : : ; �̂k) is the the

LAD-estimated parameter vector,

2f (0)VT (�̂ � �)
D
!N(0; Ik+1):

Proof. Follows from Pollard (1991, Theorem 2 and Example 1) for c = 1; can be

extended to any c: Assumption 1 satis�es the conditions (ii)-(iv) of Theorem 2 of Pollard

(1991), and combined with Assumption 2 provides all of the conditions (i)-(iv) for the

asymptotic distribution to hold.

4. Simulation evidence

In this section we present evidence primarily on the �nite-sample performance of

the regression estimator of 2.3 using the daily integrated volatility, and for comparison

the standard Quasi-ML estimator based on daily data alone. The Quasi-ML procedure

described and implemented by Schoenberg (1998) is used for the standard estimates. The

regression estimator uses (2.1.0) for a daily volatility estimate, followed by estimation of

(2.3.7) by OLS or LAD, and transformation to GARCH parameter estimates via (2.3.9)-

(2.3.10).
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In the �rst set of simulation exercises, low-frequency (daily) data alone are simulated,

because we need the high-frequency data only to generate estimates of �̂2t ; which we accom-

plish instead by adding noise directly to �2t ; which is known in simulation. The variance

of this noise controls directly the accuracy of our daily volatility estimate. The variance

of the added noise is set equal to the unconditional variance of the simulated process{a

very large noise element, corresponding to very weak information from the high-frequency

data (see Andersen and Bollerslev 1998, Maheu and McCurdy 2000 for examples of noise

variance expected in particular cases). The innovations are Normal, leading to a strong

GARCH model estimated by a true ML estimator. These cases are therefore as favourable

as possible for the QML estimator, but in the case of the regression estimators use noise

variances which are very high (unfavourable) by the standards of typical cases. The fact

that the process is strong GARCH is favourable, however, for the regression estimators,

and in particular for OLS relative to LAD.

The low-frequency sample size T is set at 200; 600 and the number of replications

is 2000 for each experiment. The three sets of parameter values used result from the

aggregation of high-frequency GARCH processes having parameters f!;�; �g equal to

(.01, .05, .945), (.01, .08, .89) and (.01, .10, .85).

In a limited second set of simulations, for T = 600 only, the high-frequency GARCH

process is simulated directly as in the �rst experiments, (strong GARCH, with normal

errors) and aggregated to form a (weak GARCH) daily returns process. Estimates of

the daily GARCH parameters on these daily data are obtained by QML, the regression

estimators, and the aggregation estimator. The `true' daily parameters are computed from

the aggregation formula of Drost and Nijman (1993) for the GARCH (1,1) 
ow case, for

comparison with the estimates from each method. Note that QML applied directly to the
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daily data is now technically inconsistent because only the weak GARCH conditions can be

guaranteed to apply. By contrast, the aggregation estimator operates here under the most

favourable possible circumstances: a high-frequency process which is strong GARCH and

of known GARCH(1,1) form is estimated by true ML, yielding consistent estimates because

of the conditions presumed for the high-frequency data. For the regression estimates, the

a daily volatility estimate has a noise variance implied by the number of observations

per day, h; which in these examples is set at 25 to keep overall sample sizes manageable.

This number, unrealistically small in most circumstances, is again unfavourable for the

regression estimates.

Results from the �rst set of simulations are contained in Figure 1xx. (results for

estimates of ! are not plotted, but are similar in accuracy to those for �:). Results for the

second set of simulations is reported in Figure 2xx.

Two general conclusions emerge from Figure 1xx. First, although the normally-

distributed errors make OLS e�cient relative to LAD in this case, the sacri�ce in using

the more generally-applicable LAD estimator is small; second, although a very noisy es-

timate of daily volatility is presumed, there are substantial gains in using the regression

estimators3 which take advantage of the higher-frequency data, relative to ML on the daily

returns data alone.

From Figure 2xx, we note �rst that OLS and LAD again perform similarly, but OLS

shows a longer upper or lower tail in most cases. Relative to the QML estimator, either

of these regression estimators shows good performance in most of these examples. Finally,

in these cases where conditions are ideal for the aggregation estimator, it markedly out-

3The regression estimators are presented here in unconstrained form, but can of course be

estimated with the same constraints as QML.
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performs any of the alternatives. While such circumstances may be unrealistic, the result

is unsurprising in the sense that this is the only estimator that forms estimates using each

one of the data points in the full high-frequency data set.

5. Concluding remarks
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