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ABSTRACT 

Abstract 

The main objective of this thesis is to study and investigate the dynamics and stability of 

cantilevered structures subjected to internal, external, or simultaneous internal and 

external axial flows. This was accomplished, in some cases, by deriving the linear 

equations of motion using a Newtonian approach and, in other cases, by making the 

necessary modifications to existing theoretical models. The continuous cantilevered 

systems were then discretized using the Galerkin method in order to determine their 

complex eigenfrequencies. Moreover, numerous experiments were performed to compare 

and validate, or otherwise, the theoretical models proposed. More specifically, the four 

cantilevered systems studied were the following: (i) a pipe conveying fluid that is fitted 

with a stabilizing end-piece, which suppresses flutter by blocking the straight-through exit 

of flow at the downstream end; (ii) a pipe aspirating fluid, which flutters at low flow 

velocities in its first mode; (iii) a free-clamped cylinder (i.e. with the upstream end free 

and the downstream end clamped) in confined axial flow, which also flutters at low flow 

velocities in its first mode and eventually develops a buckling instability; and (iv) a pipe 

subjected to internal flow, which after exiting the pipe is transformed to a confined 

counter-current annular flow, that becomes unstable by flutter too. 
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SOMMAIRE 

Sommaire 

L'objectif principal de cette these est d'etudier la dynamique et la stabilite de structures 

encastrees-libres soumises a des ecoulements axiaux internes, externes, ou mixtes. D'un 

point de vue theorique ceci a ete accompli, dans certains cas, en derivant les equations 

lineaires du systeme en utilisant une approche newtonienne et, dans d'autres cas, en 

faisant les modifications necessaires a des modeles deja existants. Les equations 

differentielles partielles ont par la suite ete discretisees en utilisant la methode de 

Galerkin afin de determiner les frequences propres complexes des systemes continus 

encastres-libres. De plus, de nombreuses experiences en laboratoire ont ete effectuees 

pour comparer et valider (ou invalider) les modeles theoriques proposes. Plus 

precisement, quatre systemes encastres-libres ont ete etudies : (i) un tuyau parcouru par 

un fluide interne et equipe d'un bout en plastique stabilisant, qui supprime le flottement 

en bloquant la sortie directe de 1'ecoulement a l'extremite aval; (ii) un tuyau aspirant un 

fluide, qui flotte dans son premier mode propre a de faibles vitesses de debit; (iii) un 

cylindre encastre en aval et libre en amont soumis a un ecoulement externe confine par un 

canal rigide, qui flotte egalement dans son premier mode propre a de faibles vitesses de 

debit, et qui developpe par la suite une instabilite statique (c'est-a-dire par flambage); et 

(iv) un tuyau parcouru par un fluide interne qui se deverse dans un espace confine autour 

du tuyau se transformant en un ecoulement annulaire en direction inverse, et qui devient 

lui aussi instable par flottement. 
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NOMENCLATURE 

Nomenclature 

The symbols that are presented here are those which appear most frequently throughout 

this thesis; thus, the following list is not, in any way, exhaustive but rather limited. It 

should also be mentioned that, whenever the need arises, additional symbols that do not 

appear in the following list will be defined in the text. Moreover, the dimensionless 

counterparts of dimensional quantities are not generally stated here. 

Alphabetic Symbols: 

cross-sectional flow area of the pipe, ;ED,2/4 
A 

cross-sectional area of the cylinder, nD1 /4 

Ae external cross-sectional area of the pipe, TTD^/A 

Ai internal cross-sectional area of the pipe, TZD] /4 

c viscous damping due to the surrounding fluid 

Cb base drag coefficient 

Co form drag coefficient 

Cf friction drag coefficient 

CN normal friction drag coefficient 

CT tangential friction drag coefficient 

D diameter of the cylinder 

Dch diameter of the rigid channel confinement 

Dh hydraulic diameter 

Dt inner diameter of the pipe 

D0 outer diameter of the pipe 

E Young's modulus of the pipe or cylinder 

E viscoelastic damping of the pipe or cylinder 

EI flexural rigidity of the pipe or cylinder 

/ shape parameter for the tapered end 

/ frequency of oscillation of the pipe or cylinder in Hertz 
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NOMENCLATURE 

f„ natural frequency of the pipe or cylinder in its «th mode in Hertz 

g gravitational acceleration 

/ area moment of inertia of the pipe or cylinder 

{ length of the tapered end 

L length of the pipe or cylinder 

m mass per unit length of the pipe or cylinder 

me mass of the end-piece 

M mass per unit length of the internal fluid 

Ma added mass per unit length due to the surrounding fluid 

p mean axial pressure 

P externally applied pressure 

pe external mean axial pressure 

Pi internal mean axial pressure 

t temporal variable 

T period of an oscillatory cycle 

T axial tension 

f externally applied tension 

u dimensionless axial velocity of the fluid 

ue dimensionless external axial velocity of the fluid 

ut dimensionless internal axial velocity of the fluid 

U axial velocity of the fluid 

Ue external axial velocity of the fluid 

Ut internal axial velocity of the fluid 

w lateral deflection of the pipe or cylinder 

A W work done by the fluid on the pipe or cylinder in an oscillatory cycle 

x, y spatial variables 

. L+e 

xe parameter equal to — [ A(x)dx for the tapered end attached to the cylinder 
A L 

( )cr critical value 

v 



NOMENCLATURE 

Greek Symbols: 

a ratio of the flow velocities v and U for aspirating pipe 

a viscoelastic damping of the pipe or cylinder 

7 depressurization parameter for aspirating pipe 

S downstream parameter (d = 0: axially unconstrained; <5 = 1: axially constrained) 

Sn logarithmic decrement of the pipe or cylinder in its nth mode 

Ss entry parameter for aspirating pipe (Ss = 0: vertical entry; ds=l: tangential entry) 

K shear force factor for aspirating pipe 

/T hysteretic damping of the pipe or cylinder 

Me dynamic viscosity of the fluid 

v Poisson ratio of the pipe or cylinder 

P density of the pipe or cylinder 

pe density of the external fluid 

pf density of the fluid 

Pi density of the internal fluid 

fa axial t ime delay for aspirating pipe 

fe lateral t ime delay for aspirating pipe 

X confinement parameter 

y/ ratio of the angles 3 and x f° r aspirating pipe 

a> dimensionless complex frequency of the pipe or cylinder 

Q frequency of oscillation of the pipe or cylinder in rad/s 
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CHAPTER 1 

CHAPTER 1 

Introduction 

1.1 Motivation and General Remarks 

Systems involving flow-induced vibrations will never cease to exist, whether they 

arise in nature or in engineering systems. Consequently, knowledge of fluid-structure 

interactions is an important tool that every engineer should possess in his toolbox. 

Although some flow-induced vibrations are desirable, such as for making music using 

woodwind instruments, many are undesirable and even dangerous, especially in 

engineering systems where large-amplitude vibrations may be detrimental not only to 

equipment, but also to human life. 

It has become steadily recognized over the past years that the pipe conveying fluid 

is a model dynamical problem, or a paradigm in dynamics [see Pai'doussis & Li (1993) 

and Pai'doussis (1998, 2004)]. Pai'doussis & Li (1993) noted that the pipe conveying fluid 

is a physically simple system that is governed by relatively simple equations. 

Furthermore, experiments are fairly easy to perform, and experimental results can be 

easily compared with theoretical ones. In addition, the system is more general than other 

paradigms, such as the column subjected to a compressive load or the rotating shaft. Most 

importantly, however, the pipe conveying fluid is the simplest fluid-structure interactions 

problem from which more complex variants may be derived and studied, as we shall soon 

discover in this and upcoming chapters. 

This thesis deals with slender flexible cylindrical structures subjected to either 

internal and/or external axial flow, which are systems that are readily found in 

engineering. Some examples of engineering applications include Coriolis mass-flow 
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CHAPTER 1 

meters, hydroelastic ichthyoid propulsion systems, deep-water risers, towed flexible 

barges, towed seismic arrays, nuclear reactor internals, and other power-generating 

systems [see Pai'doussis (1998, 2004)]. In general, however, research in this field has 

usually been curiosity-driven [see Pai'doussis (1993)] with engineering applications 

arising some years after the dynamics of a particular system have been understood and 

established. It suffices to say that the study of fluid-structure interactions is not a dying 

engineering field, given the multitude of research papers that are continually being added 

to the literature. In what follows, a selective rather than exhaustive literature review of 

cantilevered cylindrical structures subjected to either internal and/or external axial flow is 

presented. The interested reader can find a much fuller review in Pai'doussis (1998,2004). 

1.2 Literature Review 

1.2.1 The cantilevered pipe conveying fluid 

The dynamics of pipes conveying fluid was first studied almost 70 years ago by 

Bourrieres (1939), who derived the correct nonlinear equations of motion by modelling 

the pipe conveying fluid by two infinitely flexible and inextensible strings located one 

within the other. He also obtained remarkably accurate information regarding the stability 

of the cantilevered system, but he was unable to predict the critical flow velocity at the 

onset of oscillatory instability because of the unavailability of computers. Ashley & 

Haviland (1950) revisited the problem to elucidate the vibration of the Trans-Arabian 

pipe line, yet they arrived at an incorrect equation of motion. The correct linear equations 

of motion were then derived by Feodos'ev (1951), Housner (1952), and Niordson (1953) 

using three different approaches, but their focus was mainly on the stability 

characteristics of the simply-supported system rather than the cantilevered one. 

Benjamin (1961a,b) was the first to tackle the problem of articulated cantilevered 

pipes conveying fluid from both a theoretical and experimental perspective. He modelled 

the articulated cantilevered system, which possesses n degrees of freedom, as a series of n 

rigid pipes interconnected by n flexible joints, whereby the upstream end is clamped and 

the downstream end is free, and he also considered the continuous cantilevered system to 
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CHAPTER 1 

be a limiting case of the articulated one when n tends to infinity. He adapted the 

Lagrangian method to deal wi th systems having infinite energy, that is, where m o m e n t u m 

constantly flows in and out, and arrived at the correct equat ion for the energy gained by 

the chain of pipes from the fluid over a period of oscillation, T, 

T 

AW = ^-Mu{k2+UT-R)dt, (1.1) 
o 

where R denotes the posi t ion vector at the free end of the last p ipe , and T denotes the 

unit vector in the tangential direction at the free end of the last pipe. He then used 

Hami l ton ' s principle to derive the linear equation of mot ion, valid for infinitesimal 

motions , for a continuously flexible pipe conveying fluid, 

EI—T + MU — T + 2MU + (M + m)—r- = 0. (1.2) 
obc4 dx2 dxdt v ' dt2 

He was also the first to observe, at sufficiently h igh flow velocit ies, the oscillatory 

instability in articulated pipes conveying fluid - the discrete equivalent of the 

continuously flexible pipe. Furthermore, if the fluid w a s water , he somet imes observed 

buckling when the pipes were suspended vertically, that is, w h e n the effect of gravity was 

significant. However , if the fluid was air, static instabilities were never observed. 

Gregory & Pai'doussis (1966a,b) further studied, both theoretically and 

experimentally, the dynamics of a continuous cantilevered pipe conveying fluid confined 

to move in a horizontal plane. They derived the linear equat ion of mot ion using the 

Newtonian approach, also arriving at Eqn. (1.2), and constructed stability curves for the 

dimensionless critical frequency of oscillation, cocr, and dimensionless critical flow 

velocity, ucr, as a function of the mass parameter , /?, by solving the equat ion of mot ion 

using exact and approximate methods . It is noteworthy to ment ion that the more general 

case where the free end of the pipe is fitted with a convergent nozzle was also considered. 

Experiments by Gregory & Pai'doussis (1966b) confirmed the oscillatory instability that 

was observed by Benjamin (1961b). They also found that damping can be unpredictably 

destabilizing in some circumstances. 

3 



CHAPTER 1 

Later, Pai'doussis (1970a) studied, both theoretically and experimentally, the 

dynamics of a vertically hung, continuous cantilevered pipe conveying fluid, and 

concluded that buckling does not occur for this type of system after all, regardless of the 

fluid being conveyed. This paradox was later clarified in a paper by Pai'doussis & Deksnis 

(1970). On the other hand, he found that standing cantilevers, whereby the free end is 

located above the clamped one, of long or intermediate length buckled under their own 

weight at zero flow velocity, regained stability (became straightened) with increasing 

flow, and then developed flutter; while those of short length exhibited the same 

dynamical behaviour as regular hanging cantilevers. Pai'doussis (1970a) derived 

essentially the same expression as Benjamin (1961a) for the work done by the fluid on the 

pipe over a period of oscillation, T, namely 

AW = -MU\ 
dw^ 

+ u 
dwY dw^ 

dt A dx, 
dt. (1.3) 

Consequently, if both ends of the pipe are supported, then (dw/df) = 0 at both ends, and 

AW = 0 always; thus, the system is conservative, and oscillatory instabilities are not 

possible. For cantilevered pipes, however, AWj^O generally. Since w(0, t) = 0, Eqn. (1.3) 

may be rewritten as 

AW -MUJ dw 

~dt. 
+ U 

dw 

iV 

dw | 

dx)L 

dt*0. (1.4) 

Therefore, if U is positive and sufficiently small, then AW < 0, and free motions of the 

cantilevered pipe are damped since the energy gained by the pipe from the fluid is 

negative. Alternatively, if U is positive and sufficiently large, and (dw/dx)L and (dw/df)L 

have opposite signs over most of the cycle, then AW > 0, and free motions of the 

cantilevered pipe are amplified since the pipe gains energy from the fluid. This suggests a 

dragging, lagging motion which has, in fact, been observed by all of the researchers 

mentioned thus far. 

Pai'doussis & Issid (1974) later derived a more general linear equation of motion 

for a pipe conveying fluid in which gravity, dissipation in the material of the pipe, 
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CHAPTER 1 

dissipation to the surrounding fluid, external tensioning, and external pressurization 

effects were included, and t/was no longer assumed to be constant, namely 

(E- ^ + E)I^- + [MU> - T + pA{\ - 2vS)]^-
dt J etc4 L F V ndx2 

(M + m)g - M — V m dt 
(L-x^ + lMU^- (1.5) 

dx dxdt 
,.. ^ dw dw ,.. \d2w A 

+ (M + m)g — + c — + \M + m)—r = 0. 
dx dt dt 

In addition, Semler et al. (1994) derived the nonlinear equation of motion for a 

cantilevered, as well as for a simply-supported pipe conveying fluid, using energy and 

Newtonian methods. These equations were validated and compared to existing equations, 

and it was concluded that the equations of Semler et al. (1994) were not only the most 

correct, but also the most complete. 

Hill & Swanson (1970) extended the work of Gregory & Pai'doussis (1966a,b) to 

include the effect of additional lumped masses on the dynamics of a cantilevered pipe 

conveying fluid. It is interesting to note that the only difference in the linear equation of 

motion, given by Eqn. (1.2), is that the mass of the pipe per unit length, m, is replaced 

with m{x), which is given by 

N 

m(x) = m + ^jmkS(x-xk), (1.6) 

where m* are the N lumped masses located at a distance Xk from the clamped end, and 

S(x - x^ is a Dirac delta function. Hill & Swanson (1970) solved the equation of motion 

using the Galerkin method for a number of different cases, and then constructed stability 

curves for the dimensionless critical flow velocity, ucr, and dimensionless frequency of 

oscillation, cocr, as a function of the mass parameter, /?. In most cases, the effect of 

additional lumped masses was destabilizing when compared to the plain system, and was 

dependent both on the location of the lumped masses, as well as on the parameters of the 

system. Further studies on this topic have been carried out by Jendrzejczyk & Chen 

(1985), and Chen & Jendrzejczyk (1985), to name only two, from an experimental 

perspective. 
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Figure 1.1. Transition from equilibrium to chaos; a plot of u versus Ye: S: stationary pipe; 

PL: planar oscillation; CW: clockwise rotating motion; CCW: counter-clockwise rotating 

motion; PL,CW: clockwise rotating planar oscillation; PL,CCW: counter-clockwise 

rotating planar oscillation; PL(R): planar oscillation rotating through a finite angle; PL,P: 

coupled planar and pendular oscillation; PL,P(R): coupled planar and pendular oscillation 

rotating through a finite angle; N: nutation; CH: chaos [Copeland & Moon (1992)]. 

Figure 1.2. Sketches of the various periodic motions: (a) PL; (b) CCW; (c) PL(R); 

(d) PL,P; (e) N [Copeland & Moon (1992)]. 
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Copeland & Moon (1992) studied the three-dimensional nonlinear dynamics of a 

cantilevered pipe conveying fluid with an end-mass attached at the free end, and 

demonstrated that this system possessed an extremely rich dynamical behaviour during its 

transition from equilibrium to chaos, as shown in Figs. 1.1 and 1.2. Pai'doussis & Semler 

(1998) studied the same system, both theoretically and experimentally, yet they 

considered only planar motion, and they modelled the pipe as a beam with flexural 

rigidity. In an earlier study, Semler & Pai'doussis (1995) showed that the route to chaos 

for the two-dimensional system with a mass defect, that is, with a negative end-mass 

rather than a positive one, is via type I intermittency. More recently, Wadham-Gagnon et 

al. (2007) derived the complete three-dimensional nonlinear equations of motion for a 

cantilevered pipe conveying fluid with an end-mass attached at the free end, and 

Modarres-Sadeghi et al. (2007) studied the dynamics of the system, and compared the 

results to the experiments conducted by Pai'doussis & Semler (1998). 

1.2.2 The cantilevered pipe aspirating fluid 

The first experiments involving a cantilevered pipe aspirating fluid, whereby the 

fluid is aspirated from the free end to the clamped one, were carried out in the mid-1960s 

by Professor Michael P. Pai'doussis of McGill University while he was working at the 

Chalk River Nuclear Laboratories in Chalk River, Ontario. Unfortunately, flutter was 

never observed, and the experiments were eventually abandoned because of a large 

transmural pressure that caused a shell-type buckling collapse near the clamped end, even 

after reinforcement of the pipe at that location [see Pai'doussis (1998)]. In 1986, 

Pai'doussis built a new experimental set-up at McGill University to revisit the problem, 

but a rather unfortunate event involving the bursting of a rubber hose in his set-up 

brought about the abandonment of this experiment in disgust [see Pai'doussis (1998)]. 

A year earlier, Pai'doussis & Luu (1985) had studied the dynamics of a 

cantilevered pipe aspirating fluid, its main application being the deep ocean mining of 

minerals, such as manganese nodules, on the sea floor. The effects of marine currents and 

other perturbations were neglected in an effort to isolate the effects of the internal flow on 

the stability of the system. In their analysis, +U was essentially replaced with -U in the 
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CHAPTER 1 

equation of motion for the cantilevered pipe conveying fluid, which also included the 

effects of gravity, buoyancy, added mass, viscous damping, and an end-mass. 

Consequently, it was concluded that the cantilevered pipe aspirating fluid loses stability 

by flutter at very low flow velocities; in the absence of damping, the pipe is inherently 

unstable, thereby losing stability at practically zero flow velocity. Nevertheless, these 

conclusions were not convincing, given that experiments up to that point had suggested 

that the cantilevered pipe was actually stable at low flow velocities. 

Pai'doussis (1998, 1999) re-evaluated the problem of a cantilevered pipe aspirating 

fluid to illustrate that the system is actually stable at infinitesimally small flow velocities. 

The latter was attributed to the fact that the flow entering the free end of the pipe is not a 

jet, as is the case for a pipe discharging fluid, but rather a sink-like flow. Thus, the gauge 

pressure at the free end and throughout the pipe is not zero; rather, a depressurization 

arises, equal to 

p = -pU2=-MU2/A. (1.7) 

Hence, a term equal to pA(d2w/dx2) was added to the equation of motion, given by Eqn. 

(1.2), as follows: 

EI^ + (pA + MU2)^ + 2MU^ + (M + m)^ = 0. (1.8) 
&c4 yF 'dx2 dxdt v f dt2 

Therefore, for the aspirating case, U< 0, and Eqn. (1.7) was used for p, which led to the 

conclusion that the system cannot flutter because of the absence of the centrifugal force. 

New experimental evidence involving two flexible elastomer pipes fitted with plastic 

elbows at their free ends, and interconnected by a pump at their clamped ends also 

suggested that the system remains stable because a centrifugal force did not arise in the 

pipe aspirating flow. 

Later, Kuiper & Metrikine (2005) argued that the conclusion reached by 

Pai'doussis (1998, 1999) was incorrect since the depressurization at the free end of the 

pipe influences the dynamics of the system only slightly. Furthermore, they reasoned that, 

even in the absence of the centrifugal force, the Coriolis force generates negative 

damping in the case of an aspirating pipe, and thus the system may lose stability after all. 
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They also suggested that the depressurization at the inlet should be equal to a value 

between -pU2 and -lApU2, the latter found using Bernoulli's equation; as a result, the 

centrifugal force may not cancel out. Moreover, Kuiper & Metrikine (2005) attributed the 

contradiction between existing theory and experiments to the drag caused by the non-

negligible viscosity of the surrounding fluid [see also Kuiper et al. (2007a)]. 

on 

X V 
(8) 

on 

(c) (d) 
Figure 1.3. (a) The free end of the pipe, definition of the coordinate systems used, and the 

angle/; (b) definition of the forces exerted by the fluid on the pipe; (c) the inlet flow 

assumed in the basic model, with v always in the vertical direction; (d) the inlet flow 

assumed in the variant model, with v always tangential to the free end of the pipe 

[Pai'doussis et al. (2005)]. 

This led to a reappraisal of the problem by Pai'doussis et al. (2005), whereby two 

new theoretical models, as illustrated in Fig. 1.3, were proposed [see also Pai'doussis 

(2005, 2008a)]. The basic model assumed that a small mean flow velocity facing the inlet, 

v, remained tangential to the undeflected pipe, i.e. it remained in the vertical direction, 

during the motion of the system. The linear equation of motion was determined using 

Newtonian methods, as well as Hamilton's principle, giving 

, 3 . r , ^ , ^ W . ... ,rrr2 ^ W n,„r8
Z\V 8\V 

E—+EU A 
. dt J dx* 

+ aMW 
dx2 •2MU + c-

dxdt dt 

+ {M + m + MJ^ + Mu{%-aU^)s(X-L)=0, 
dt \ot ox J 

(1.9) 
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where a = v/U, and S(x - L) is a Dirac delta function. A two-mode Galerkin analysis of 

this model demonstrated that the system is unconditionally stable, regardless of the value 

of a. On the other hand, the variant model assumed that v remained tangential to the free 

end of the pipe; it also considered y, a dimensionless parameter that is related to the 

tensioning induced on the pipe by the depressurization at the inlet. The linear equation of 

motion was determined using both Newtonian methods and Hamilton's principle, giving 

v dt ) dx* L v A r,¥ dx2 dxdt 

+ c ^ + (M + m + Ma)^- + MU^S(x-L)=0, 
dt v aJ dt2 dt v ; 

(1.10) 

where a = v/U, y = r/[(l - a)MU2 J, and d(x - L) is a Dirac delta function. A two-mode 

Galerkin analysis of this model demonstrated that the stability of the system depends on 

the value of the factor [l-(l-arXl + f)L anc^ whether or not dissipation is included. 

Consequently, if a and y are chosen such that [l - (l - cr)(l + y)] = 0, then the system is 

unconditionally stable. However, if a and y are chosen such that [l - (l - a)(l + y)] > 0, 

and dissipation is excluded, then the system loses stability by flutter in its first mode. 

Also, if a and y are chosen such that [l - (l - or)(l + y)] < 0, and dissipation is excluded, 

then the system loses stability by flutter in its second mode. When dissipation is included, 

the system is stable for the range of flow velocities that are of practical interest. It was 

concluded that the flow field in the neighbourhood of the intake was the key to 

determining whether the centrifugal forces vanish either partially or totally; thus, a 

computational fluid dynamics study was initiated, and is discussed later. 

Kuiper et al. (2007b), Kuiper & Metrikine (2008), and Kuiper (2008) investigated 

the dynamics of a cantilevered pipe aspirating fluid even further, to determine whether the 

instability predicted by theory can be captured in experiments. Their experimental set-up 

consisted of an approximately five meter long plastic pipe partly submerged in a large six 

meter diameter tank filled with water. The pipe's motion was measured using two non-

contact displacement transducers positioned in two perpendicular locations. Moreover, 

the motion of the tip of the cantilevered pipe was recorded with an underwater camera. 

Their experiments showed that a partly submerged cantilevered pipe aspirating fluid does 
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lose stability at a specific critical flow velocity. Above this critical point, the motion of 

the pipe is an unpredictable and complicated combination of (i) nearly periodic orbital 

motions, and (ii) noise-like vibrations of small amplitude. These experimental 

observations were compared with existing theories, and although the correct frequencies 

of oscillation were predicted, the critical flow velocities for the onset of flutter, as well as 

the behaviour of the cantilevered pipe in the unstable region, were not. As a result, it was 

concluded, once more, that further study regarding the flow field near the inlet of the pipe 

would need to be carried out in order to improve the theoretical model of the system. 

More recently, Giacobbi (2007), Giacobbi et al. (2008b), and Pa'idoussis (2008b) 

performed an extensive numerical investigation of a cantilevered pipe aspirating fluid 

using a computational fluid dynamics and finite element analysis model in ANSYS. The 

purpose of this numerical investigation was two-fold. Firstly, the flow field near the inlet 

of the pipe was investigated to establish estimates for the parameters a, y, and Ss in the 

linear equation of motion for the system, given by 

E'°- + E 
. dt 

\ d 4 W r. / , Vi -W*srr2d2W ^ll/fTTd2W dw 

I ^ + [l-(l-«X + r)]MU —-2MU— + C-

+ (M + m + M„)—r- + MU V a) dt2 dt ' dx 
S(x-L) = 0, 

(1.11) 

where a = v/U, y - T/\^l - a)MU2 \, Ss = 0 or 1 for vertical or tangential entry, 

respectively, and S(x - L) is a Dirac delta function. Secondly, and perhaps most 

importantly, the possibility of self-excited oscillations was examined. In general, the main 

conclusion drawn from this study was that flutter does indeed occur at critical flow 

velocities in the range of those observed experimentally. Another conclusion was that Ss 

is very close to unity; thus, the fluid enters the pipe nearly tangentially at the inlet. 

1.2.3 The cantilevered cylinder in axial flow 

One of the earliest studies on the topic of long flexible cylinders in axial flow was 

carried out by Hawthorne (1961). He was concerned with the directional stability, or 

"snaking", of the Dracone barge, which is a long flexible container with tapered ends that 
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is towed and designed to carry liquids that are less dense than seawater, including petrol, 

diesel, kerosene, and freshwater. Most importantly, he demonstrated that buckling is 

possible for the Dracone barge system. 

y U 

u 

Figure 1.4. A cantilevered cylinder with a well-streamlined free end in axial flow 

[Pai'doussis (1966a)]. 

Following Hawthorne's (1961) formulation for the Dracone barge, Pai'doussis 

(1966a,b) studied, both theoretically and experimentally, the dynamics of a slender 

flexible cylindrical structure in axial flow, where the fluid velocity is directed parallel to 

the x-axis of the system. The reader is referred to Fig. 1.4 for a diagram of the 

cantilevered cylinder in axial flow. Pai'doussis (1966a) derived the linear equation of 

motion for the system using Newtonian methods. Note that gravity was neglected since 

the motion of the cylinder was confined to a horizontal plane, and internal dissipation was 

not accounted for either. Therefore, for small, free, lateral motions of the cylinder, 

Pai'doussis (1966a) obtained the following equation: 

E'd>^<hihDUlcA(^s)L-^} 
-[w + \PfD

1u2(\-sY:b]^+\pfDuch 
dw dw 
_ + [ / _ 
dt dx 

+ m 
d2w 

dt2 

(1.12) 

= 0, 

written in a slightly different manner here, where S = 0 if the downstream end is not 

supported, and S = 1 if it is. If the two ends of the cylinder are supported, then the 

standard boundary conditions apply. However, if the cylinder is cantilevered, then the 

following boundary conditions apply at x = L: 
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etc2 8x3 f \dt dx) V f re dt2 K J 

where/is a shape parameter first introduced by Hawthorne (1961) that is related to the 

tapering of the free end of the cylinder, and is equal to unity for a perfectly streamlined 

end. Moreover, 

1 L+e 

xe=-JA(x)6x, (1.14) 

where t is the length of the tapered end. For a cantilevered cylinder with a sufficiently 

streamlined end, Pai'doussis (1966a) found that the system initially becomes unstable in 

its first mode by divergence, regains stability, and then becomes unstable in its second 

and third modes by flutter. He also reasoned that/plays a key role in predicting the 

stability of the cantilevered system. If the free end is sufficiently blunt, that is, for small 

enough/ then the cantilevered system is stabilized, and i f /= 0, no buckling occurs at all. 

The effect of other system parameters on the stability of the system was also investigated, 

but is not discussed here for brevity. Moreover, in his experiments, Paidoussis (1966b) 

observed first-mode divergence, followed by second-mode flutter, and then third-mode 

flutter, as expected and predicted by theory. 

Unfortunately, the equation of motion in Paidoussis (1966a) - Eqn. (1.12) here -

is incorrect because, in the derivation, F^dw/dx) was omitted in the ^-direction force 

balance equation. This error was not detected from the beginning, and regrettably found 

its way into other researchers' work, including Pao (1970), and Chen & Wambsganss 

(1972), to name but two. The correct, and also more general, linear equation of motion, 

which includes internal dissipation, gravity, pressurization, and confinement effects, was 

derived by Paidoussis (1973) [see also Paidoussis (1974, 2004)], and is given by 

. at 

+ [ip/DU>CT+(m-p/A)g][(l-±S)L-x]+±p/D
2U2(l-S)Cb}^ (1.15) 
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for a cylindrical structure in unconfined axial flow; for laterally confined flow the 

equation of motion is given by 

, at 
' f £ + ZP,{{ + V | J w- {t[T + (1 - 2vX^)] 

+ \pfDU2Cf \+J? 
V £ + ( m - / ? ^ ) » 

/.y 

[(\-±S)L-x] 

Hp^o-^H^f^g.ip^f 
(1.16) 

+ {jn-pfA)g + ^pfDU2Cj 
( D^ 

\Dkj 

<3w d2w . 

Therefore, when / = 1, £>/A> = 0, and CN= Cj= C/, then Eqn. (1.16) reduces to Eqn. 

(1.15), as expected. It is worth mentioning that Pai'doussis (1973) reported that the 

correction of the frictional terms in the equation of motion did not drastically alter the 

dynamical behaviour of the cantilevered system, although its effect on the system with 

both ends supported was more pronounced. As before, at small flow velocities, free 

motions of the cylinder are damped, and at sufficiently high flow velocities, the 

cantilevered cylinder undergoes first-mode buckling, followed by second-mode and third-

mode flutter at even higher flow velocities. 

A fascinating comparison between cylinders subjected to external axial flow and 

pipes subjected to internal axial flow was made by Pai'doussis (1987). If internal 

dissipation, gravity, tensioning, and pressurization effects are neglected, Eqn. (1.15) 

becomes the following: 

EI—- + MU —r- + 2MU + Fv + (M + m)—r- = 0, 
dx4 dx2 dxdt v v ' dt2 

(1.17) 

where M=pjA is the virtual, or added, or hydrodynamic, mass of the fluid per unit length, 

and Fv are the viscous forces due to surface traction. Note the similarities between Eqn. 

(1.2) for a pipe conveying fluid and Eqn. (1.17) for a cylinder in axial flow. Pai'doussis 

(1987) points out that the viscous forces make the system a nonconservative one, even if 

the ends of the cylinder are supported, and do not cancel the pressure loss forces, as is the 

case for a pipe conveying fluid. However, the viscous forces do not drastically alter the 
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dynamical behaviour of the system when both ends are supported; the system initially 

loses stability by buckling, and then at higher flow velocities, the system loses stability by 

coupled-mode flutter. This post-divergence behaviour, which does not occur 

experimentally for a pipe conveying fluid but does for a cylinder in axial flow, is 

obviously related to the viscous forces. On the other hand, the cantilevered cylinder in 

external axial flow behaves rather differently vis-a-vis that with internal flow because of 

the real flow effects about the free end of the cylinder. In this case, if the free end is 

sufficiently streamlined, the cylinder initially loses stability by divergence, and then at 

higher flow velocities, the system develops single-mode flutter. However, for a 

cantilevered pipe conveying fluid, the system loses stability only by single-mode flutter in 

experiments. 

Figure 1.5. A towed cylinder in axial flow with nose and tail sections 

[Paidoussis (1968)]. 

To date, nonlinear studies on cylindrical structures subjected to external axial flow 

have been rather limited. However, a great deal of work was done by Lopes et al. 

(1999a,b) to set the stage for a more rigorous look at the nonlinear dynamics of the 

system. Possibly the first most complete nonlinear study for cantilevered cylinders was 

presented in a three-part paper by Paidoussis et al. (2002), Lopes et al. (2002), and 

Semler et al. (2002), where the physical dynamics of the system were discussed, 

including experimental observations and the mechanisms of instability, the nonlinear 

equations of motion were derived, and finally, the theoretical results, both linear and 

nonlinear, were presented and compared with experimental ones. 

A lot of work has been done on the dynamics of towed flexible cylinders in axial 

flow beginning with Hawthorne's (1961) work on the Dracone barge. Some years later, 

the original work by Paidoussis (1966a,b) on the dynamics of slender flexible cylinders in 

axial flow was extended to the next system under consideration, namely that of a cylinder 
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totally submerged in fluid, and towed at a steady speed U, by Paidoussis (1968, 1970b). 

The system is illustrated in Fig. 1.5. The linear equation of motion for the system, as 

derived by Paidoussis (1970b), is 

ElKZ + pJ 
dx" 

& rr & ^ 1 I^TT^ ('3™ T T ^ 

- 2 a2 

- [i pfD
2U2C2 + \ pfDU2CT (L - x)]-^ + m - ^ = 0, 

and the boundary conditions are 

d3w 
EI-^ + flPfAU\— + U 

Sdw 

[dt 
dw 

dx 

d2w 

8t2 + ipfD
2U2[cT± + Q+C2)™ + (m + f]PfA)xi 

r f 3
3 w . ATT(dw TTdw\ ( . \ d2w 

= o, 
x=0 

EI 

dx 

dx2 
A=0 

EI 

dx J 
= 0, 

x=L 

dx2 0, 
'*=/, 

(1.18) 

(1.19) 

where/i and_/2 are the shape parameters for the nose and tail, respectively, C\ and C2 are 

the coefficients of form drag for the nose and tail, respectively, and s is the length of the 

tow-rope. Furthermore, x\ and X2 in Eqn. (1.19) are given by 

. 0 , L+e2 

xl = — i A(x)dx, x2 = — J A(x)Ax, (1.20) 
-t. 

where l\ and €2 are the lengths of the nose and tail, respectively. In general, it was found 

that the stability of the towed system can be optimized if the nose is well-streamlined, the 

tail is blunt, and the length of the tow-rope is short. However, if the tail is well-

streamlined, and the length of the tow-rope is not too short, then a criss-crossing or 

yawing motion associated with the zeroth mode of the system develops at low towing 

speeds. A first-mode oscillatory motion is also predicted at low towing speeds but is not 

discernible in experiments. It is noteworthy to mention that both the zeroth- and first-

mode instabilities are essentially quasi-rigid body motions, whereas higher-mode 
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instabilities are flexural oscillatory motions. Thus, at higher towing speeds, the system 

loses stability in its second and third flexural modes. The latter was predicted by theory 

and confirmed by experiments. 

Additional work on towed flexible cylinders has been performed by Pao (1970), 

Pai'doussis & Yu (1976), Triantafyllou & Chryssostomidis (1984, 1985, 1989), and 

Dowling (1988a,b). Of particular interest is the work of Dowling (1988a), who found that 

very long and slender towed cylinders do not flutter. Triantafyllou & Chryssostomidis 

(1985) had also arrived at this conclusion by modelling the system as a string, or in other 

words, as a beam with negligible bending stiffness, which is pinned at the upstream end 

and free at the downstream end; yet, past experiments had suggested otherwise. 

Fortunately, an interesting paper by de Langre et al. (2007) concluded that very long and 

slender flexible cylinders in axial flow are in fact subject to flutter if their free end is 

well-streamlined; however, this is a coupled-mode flutter, as opposed to the presumed 

single-mode type that arises via a Hopf bifurcation. 

1.2.4 The cantilevered tubular beam subjected to internal and external flow 

The study of cylindrical tubular beams subjected to internal and external axial 

flow has a rather limited history. Perhaps the first study on the topic was by Cesari & 

Curioni (1971), who investigated the buckling instability of the system for various 

boundary conditions, namely clamped-free, clamped-clamped, pinned-supported, 

clamped-supported, clamped-pinned, and pinned-pinned. For the case of a clamped-free 

or cantilevered cylindrical structure, it was determined that buckling does not occur if the 

external fluid effects are ignored, as was concluded by many in the past. Furthermore, it 

was found that an increase in the dimensionless external mass parameter has a stabilizing 

effect on the system, as does an increase in the frictional force parameters. However, a 

broader and more extensive treatment of the subject was made by Hannoyer & Pai'doussis 

(1978), and will be discussed in more detail shortly. In addition, specific studies involving 

variants of the plain system were carried out by Pai'doussis & Besancon (1981), who 

investigated the dynamics of clustered cylindrical structures subjected to concurrent 

internal and external axial flow as a simplified model for a shell-and-tube heat exchanger, 
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and by Wang & Bloom (1999), who investigated the dynamics of submerged and inclined 

concentric pipes with different lengths to gain insight concerning the vibration issues of a 

silo water-mixing unit used in the pulp and paper industry. 

Hannoyer & Paidoussis (1978) studied the dynamics of cylindrical tubular beams 

subjected simultaneously to internal and external axial flow, and derived the linear 

equation of motion in which gravity, internal dissipation, and external boundary layer 

growth were accounted for. Therefore, for small, free, lateral motions of the cylindrical 

structure, it was found that 

'E-UE 
. dt 

\ d4w 

8x4 + PA 
d 

+ U, 
dt ' dx w 

d Y dw + ^U + ( , ; S ¥ tV-& 
dw} t . \ dw 

-KPeA-PA-mJg — 
dx 

- {(T + AePe - AiPi \ + [(peAe - M -m)g-\ CfiPeD0U] ](L - x)\ 
d2w 

dx2 

+ ±Cftp.D0Ul 
dw dw 

ydt dx 

dw d2w 

Yt 
+lMeCD — + m—r = 0, 

(1.21) 

where U* is a reduced external flow velocity, and the usual boundary conditions for a 

cantilevered system apply, except for the one related to the shear force at the free end, 

that is, at x = L, which is given by 

d2w 
lip + fpMe + (A -P)AM ^r ~fP.(A ~AP: 

dt1 

dw" 

dt)L 

+ [fpe{AlU:-AeUe)+2plAluM 
d2w} ( „ . d 

dxdt 
E— + E 

dt 
dy 

Kdx j 

- l/Pe (4 - 4 Peu; + [{pe - P)Ae +(p-p )A, y\j^j = o, 

(1.22) 

where I is the length of the tapered end, and Ae is an average area given by 

-r 1 
L+l 

Ae=~p f 4 (*)**• (1.23) 
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Note that/and Ae were both calculated as though the end-piece were conical, and/was 

also calculated assuming that separation does not occur, so that 

A *ik3/2 -43/2)/(4/2 -A11), f~*efa2+te -A)2]- d-24) 

The system was investigated both theoretically and experimentally by Hannoyer & 

Pai'doussis (1978) and agreement between the results was found to be relatively good. For 

a cylindrical tubular beam supported at both ends, increasing either the internal flow 

velocity or the external flow velocity, or even both, caused the system to initially lose 

stability by buckling, followed by a series of flutter and buckling instabilities. On the 

other hand, for a cantilevered cylindrical tubular beam, the behaviour of the system was 

more complicated, and depended on the internal and external flow velocities, as well as 

on the shape of the free end. If the free end was blunt, then the dynamics was dominated 

by the internal flow, and the system lost stability only by flutter. If the free end was well-

streamlined, both buckling and flutter instabilities could arise, depending on the 

parameters of the system. 

Pi 

Figure 1.6. Diagram of the fallacious drill-string patent related by Den Hartog 

[Den Hartog (1969)]. 
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An interesting application of a cylindrical structure subjected simultaneously to 

internal and external axial flows that are counter-current and dependent on one another, in 

contrast to what has been discussed until now, is the patented drill-string that was 

described by Den Hartog (1969) in a lecture, and is shown in Fig. 1.6. In this system, 

slurry is pumped down a hollow drill-rod in order to rotate a floating drill-bit as a turbine, 

and thereby drill into underlying rock. The slurry and debris flow up around the drill-rod 

in an annular region formed by the drill-rod and an outer jacket, which is in contact with 

the ground, and the by-products of drilling are then carried away to the surface. The 

inventor of this patent claimed that the system would not buckle during normal operation, 

as is the case with traditional drill-strings, since the drill-rod is not subject to any 

compressive stresses, yet experiments proved otherwise. The latter has been discussed by 

Pai'doussis (1998), who stated that the system buckles just the same, and perhaps even 

earlier, because of the effect of internal pressurization. This was also realized by Den 

Hartog (1969), who considered this to be a fallacious patent. Additional studies regarding 

the drill-string problem have also been made by Grigoriev (1978), Luu (1983), and Zhang 

& Miska (2005). 

Pai'doussis et al. (2008) also studied the linear dynamics of the idealized hollow 

drill-rod and floating fluid-powered drill-bit problem discussed above. They derived the 

linear equation of motion, the final expression being 

d4w d2w ,fd2w „TT d2w TTld
2w^ 

+ 2U1 + U EI — T + m —r- + p A; 
y dt2 ' dxdt ' dx2 j dx4 8t 

fd2w _ d2w rr?d2w^ 
+ ZPeAe •2U„^ + U2 

y dt2 e dxdt e dx2 j 
{(T - AiPi + A,p\ 

4 m + pA-pA)g-iCfPeD0U
2(l + D0/Dh)](L-x)}^ (L25> 

+ \{m + pA -peAe)g-\CfPeD0U
2{\ + D0/Dh)]^ 

, _ _. TT dw dw _ 
+ $CfPeDoU— + c— = 0, 

dt dt 

where pt =pe= p/, and 

P^PeL+PfUXUe-U), PeL=[pfg + {\CfPfD0U
2/AeXDjDh)Y. (1.26) 
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Furthermore, the internal and external fluid velocities are related through continuity, 

U,A,=UeAch, (1-27) 

and the usual boundary conditions for a cantilevered system apply. The main conclusions 

drawn from this work is that for relatively wide annular flow regions, the dynamics of the 

system is dominated by the internal flow. Consequently, the system is damped for small 

flow velocities, but loses stability by flutter at higher flow velocities. On the other hand, 

for relatively narrow annular flow regions, the dynamics of the system is dominated by 

the external flow. Thus, the system loses stability by flutter at low flow velocities since 

the external annular flow tends to destabilize the system. It should be noted that these 

critical flow velocities are just large enough to overcome the effect of dissipative forces. 

Another application of this research is the design of MEMS devices, such as 

microcantilevers and microchannels, exhibiting very low damping, or high Q factors, for 

atomic force microscopy (AFM) in viscous liquids and biomolecular detection, as related 

by Putman et al. (1994), Burg & Manalis (2003), Fukuma et al. (2005), and Basak et al. 

(2006). Therefore, by understanding the dynamics of a cylindrical structure subjected 

simultaneously to internal and external axial flows, the damping of these MEMS devices 

could possibly be reduced drastically by subjecting the microcantilevers and 

microchannels to flow velocities that are close to, but inferior to the critical velocities for 

the onset of flutter. 

1.3 Outline of the Thesis 

The main objective of this thesis is to study the dynamics and stability of slender 

flexible cantilevered cylindrical structures, or tubular beams, subjected to either internal 

flow, external flow, or both flows simultaneously, using an experimental approach. The 

experiments were methodically designed and performed, and the results are compared 

with existing linear theories. Furthermore, appropriate modifications are made to the 

equations of motion if more effective models of the systems are sought. 

This thesis encompasses six chapters. Chapter 1 provides a selective rather than 

exhaustive literature review of four distinct, yet closely-related, systems in fluid-structure 
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interactions: (i) the cantilevered pipe conveying fluid, (ii) the cantilevered pipe aspirating 

fluid, (iii) the cantilevered cylinder in axial flow, and (iv) the cantilevered tubular beam 

subjected to internal and external flow. The main objective of the thesis is stated, and an 

outline is also provided. Chapter 2 deals with the dynamics of a cantilevered pipe 

conveying fluid that is fitted with a stabilizing end-piece, which is an end-piece that 

effectively removes the compressive force that is necessary for flutter to develop. Chapter 

3 presents the dynamics of a cantilevered pipe aspirating fluid, and attempts to answer a 

question that has perplexed researchers for over twenty years, that is, do pipes aspirating 

fluid lose stability at infinitesimally small flow velocities? Chapter 4 considers the 

dynamics of a cantilevered cylinder in axial flow, where the fluid is directed from the free 

end to the clamped end. Chapter 5 treats the dynamics of the infamous drill-string 

problem of a cantilevered pipe conveying fluid downwards which then flows upwards 

around the pipe in a confined annular region. Lastly, Chapter 6 contains some general 

conclusions and remarks concerning the theoretical and experimental results presented in 

this thesis, and recommendations for future work are made. 
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CHAPTER 2 

Dynamics of a Cantilevered Pipe Conveying Fluid 

Fitted with a Stabilizing End-Piece 

The work presented in this chapter was presented at the 21st Canadian Congress of 

Applied Mechanics by Rinaldi & Pai'doussis (2007); however, the theoretical and 

experimental results have been updated, and new ones have also been computed. 

2.1 Introduction 

It is known, both theoretically and experimentally, that a cantilevered pipe 

conveying fluid is a nonconservative system that loses stability by flutter via a Hopf 

bifurcation. The latter can be explained by examining the expression for the work done by 

the fluid on the pipe over a period of oscillation, T, given by Eqn. (1.4), and repeated 

here, 

AW = -MUJ 
,2 

^ 1 +U 
dt , 

dw 

~dt A5* A d /*0 . (1.4) 

For values of U that are positive and sufficiently small, it is clear that AW is negative. 

Therefore, the cantilevered pipe remains stable because free motions of the system are 

damped. However, for values of U that are positive and sufficiently large, it is clear that 

AW can be positive if the slope and velocity of the free end of the pipe have opposite 

signs over most of the cycle of oscillation. This dragging, lagging motion is actually 

observed during experiments once the critical flow velocity for flutter has been reached. 
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Thus, the cantilevered pipe flutters because free motions are amplified. The reader is 

referred to Pai'doussis (1998) for an in-depth treatment of the subject, as well as for 

additional explanations. 

A typical Argand diagram for a cantilevered pipe conveying fluid is shown in Fig. 

2.1. Note that the vertical axis is the imaginary component of the dimensionless complex 

frequency, Im(co), which is related to the damping of the system, while the horizontal axis 

is the real component of the dimensionless complex frequency, Re(<y), which represents 

the frequency of oscillation of the system. Furthermore, a positive value of Im(cy) gives 

rise to damped oscillations, while a negative value of Im(co) gives rise to amplified 

oscillations. Only the four lowest modes of the cantilevered system as a function of the 

dimensionless flow velocity, u, are plotted. At this point, it is worth mentioning that the 

most general form of the linear equation of motion for a pipe conveying fluid, given by 

Eqn. (1.5), and repeated here, 

v dt J 
I ^ + [MU2-T+pA(l-2vS)]^ 

dx4 L F v ndx2 

(M + m)g - M 
d(J_ 
dt 

{L - x)-r-T-+ 2MU-
dx1 dxdt 

(1.5) 

/ . . \ dw dw / \d2w 
+ (M + m)g— + c— + {M + m)—[- = 0, 

ox at at 

may be rendered dimensionless through the use of the following dimensionless 

parameters: 

<? = - v 
w 

T 

( EI ^ 

M + m 
(2.1) 

to yield 

_ . d5T] 84JJ 
a —T J— + — T + u2 -r + n(i-2vs)+( p>i — -r\i-z) d2v 

d? 
ST/ dr] d2rj 

or or 

(2.2) 

where 
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u = 
M_ 

EI 

v> 
UL,fi = 

M _(M + m)gLi
 r_TL2 

M + m' V~ EI ' ~ EI ,n = 
pAL2 

EI 

a = E(M + m) 

Yt E* 
a 

cL2 

[El(M + m)f co = 
M + m 

EI 

v> (2.3) 

QL2 

From Fig. 2.1, it can be seen that, for small values of u, the flow induces damping in all 

four modes. However, at u = 5.6, the system becomes unstable by flutter in its second 

mode via a Hopf bifurcation. Furthermore, at u ~ 13, the system becomes unstable by 

flutter via another Hopf bifurcation in its fourth mode. 

3 

I 

Figure 2.1. Argand diagram as a function of u for a cantilevered pipe withy? = 0.20 and 

u = y = T = n = a* =cr = 0: — exact analysis; — four-mode Galerkin approximation 

[Gregory & Pai'doussis (1966a)]. 

But what happens when an end-mass is attached to the free end of the pipe? 

Although a cantilevered pipe with an end-mass flutters also, the dynamical behaviour of 

this system is more complex than that of the plain system. In general, the system is 

destabilized (loses stability at lower u), post-Hopf bifurcations are encountered, and 

three-dimensional chaotic motions are observed. Copeland & Moon (1992), who studied 

the nonlinear dynamics of pipes with added end-masses, recorded the various motions 

that arise during the transition from equilibrium to chaos as a function of the 
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dimensionless flow velocity, u, for various end-masses. In addition to the usual planar and 

rotational motions, rotating planar, coupled planar and pendular, and nutating oscillations 

were also recorded. The reader is referred to Chapter 1 for more information. 

The present study was motivated by the dynamics of a flexible cantilevered pipe 

conveying fluid that is fitted with an end-piece or, in other words, a hollowed end-mass, 

which allows the fluid to either pass straight through, or to be diverted by 90° at the 

downstream end. In general, the present study is curiosity-driven and academic in nature 

rather than applications-oriented. The scope of this chapter is to present experimental and 

theoretical results showing that a cantilevered pipe equipped with an end-piece that 

diverts flow by 90° at the free end exhibits an entirely different behaviour from that when 

it is discharging normally. 

2.2 Theoretical Investigation 

2.2.1 Theoretical model 

The general linear equation of motion for a cantilevered pipe conveying fluid 

without an end-mass at the free end has been derived by Pai'doussis & Issid (1974). 

Furthermore, Semler & Pai'doussis (1995) have shown that the presence of the end-mass 

may be accounted for in the equation of motion by replacing the term (m + M) by the term 

[m + M + me8(x - L)], where S(x - L) is a Dirac delta function. Therefore, neglecting 

dissipation to the surrounding fluid, external pressurization effects, and assuming that the 

internal flow velocity remains constant, the linear equation of motion for the system 

becomes the following: 

EI 1 + a + ^ 
K O ; 

d_ 

dt 
a ^ + ( M f / 2 - f ) ^ - \ l [ M + m + meS(x-L)W 8 W 

dx* v ' dx1 [J/ e J dx2 

+ 2MU + \M + m + m„S(x - LJ\g — + \M + m + m„S(x - LJ\—z- = 0, 
dxdt L e V ;JB dx l e \ n dt2 

where the internal dissipation is a combination of hysteretic and viscoelastic damping, in 

which a two-parameter Kelvin-Voigt model is employed for the latter [see Pai'doussis & 

26 



CHAPTER2 

des Trois Maisons (1971)]. Eqn. (2.4) may be rendered dimensionless through the use of 

the dimensionless parameters found in Eqn. (2.1) to give 

( 
1 + 

+ 

a +; 
CO dx 

d*tj 

d? + («
2-r) d

2rj /[1 + r.^-i)^ 
u 

82?j 

d{2 

ogor og or 

(2.5) 

where u, /?, y, T, and co have been defined in Eqn. (2.3), and 

r = 
m„ 

(m + M)L , a = 
EI Y2 a 

\M + m) L 
(2.6) 

The system is discretized following the Galerkin procedure and assuming a 

solution of the form 

*(#,*)=5>, (A, B (2.7) 
r=\ 

where </>r(£) a r e the comparison functions, taken here to be the cantilever beam 

eigenfunctions, and qr(
T) &XQ m e generalized coordinates, which eventually leads to an 

expression of the form 

[A£]q + [C]q + [AT]q = 0, (2.8) 

where q = {y^2 ?\) • Specifically, Eqn. (2.7) is substituted into Eqn. (2.5) to give 

(2.9) 

+ 2fi*uMr + y[\ + TeS(x - L)Yqr + [1 + reS(* - L)M}= 0. 

Thereafter, Eqn. (2.9) is multiplied by 0S{<%) and integrated over the domain [0, 1], giving 

X\8srqr + (a* + ^'/o})A4
rSsrqr + (u2 -T)psrqr -y(l + Te)csrqr + yd„qr 

+ 2P*ub„qr + jbsAr + F,tAM)9r + Mr + KA^M)l = 0, 
(2.10) 
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where 

c" = (- \Y+S - (A SIX V ' °rr = ^r<7r ~ ^r<Jf ®"12') 

for a cantilevered pipe [see Paidoussis (1998, p. 87)]. The elements of the mass [M], 

damping [C], and stiffness [K\ matrices in Eqn. (2.8) are found from Eqn. (2.10) to be 

Msr = Ssr + TJs(lMl (2.14) 

Csr = (a* + ?la>yr8sr + ip*ub„, (2.15) 

Ksr = K8„ + ybsr + [u2-T- y{\ + Te)\sr + yd. + >T>,(l)tf(l) (2-16) 

Now, the mechanism for the suppression of flutter by blockage of the straight-

through exit of the flow may be explained by considering the simplified linear equation of 

motion, in which gravity has been neglected, 

EI—T + [MU2 -T)—Y + 2MU + (M + m)—r = 0. (2.17) 
dx dx dxdt dt 

In this case, an axial force balance at the free end of the cantilevered pipe gives 

T - MU2, and so clearly the centrifugal or compressive term essential in generating 

flutter vanishes [see Paidoussis (1998)]. In this regard, it is often difficult to visualize how 

the axial flow could generate an effective compressive load, MU2[d2w/dx2), but the 

experiments presented in Section 2.3.3 neatly demonstrate its existence. 
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2.2.2 Theoretical results 

The system studied is a pipe with a* = 0.00017, /T = 0.03927, /? = 0.142, and 

y = 27.6. Figs. 2.2 and 2.3 present the Argand diagrams using a five-mode Galerkin 

approximation for the first three modes as a function of the dimensionless flow velocity, 

u, for the unblocked cantilevered pipe that is mounted with the four-holed, i.e. Te = 0.196, 

and the eight-holed, i.e. Te = 0.200, end-piece, respectively. In both cases, the Argand 

diagrams are similar to the one shown in Fig. 2.1, and the system generally becomes 

unstable in its second mode by flutter. For Ye = 0.196, the critical flow velocity is 

u\ = 5.05, and the critical frequency of oscillation is Re(coi) = 17.9. Similarly, for 

Ye - 0.200, the critical flow velocity is u\ = 5.03, and the critical frequency of oscillation 

is Re(cyi) = 17.9. The corresponding experimental values for the first bifurcation, which 

will be discussed in Section 2.3.3 and are presented in Table 2.3, are u\ = 5.46 and 

Re(oi) = 16.3 for both Te = 0.196 and Te = 0.200. Note that the multiplicative factor to 

switch from u to U in m/s is 1.06, while that to switch from a to / in Hz is 0.142. 

Unfortunately, linear theory cannot predict the second bifurcation; thus, it is 

necessary to resort to nonlinear theory, even though the model discussed until now is 

linear. The author is grateful to Dr. Yahya Modarres-Sadeghi for providing his Fortran 

code, which uses Houbolt's scheme to solve second order nonlinear ordinary differential 

equations with nonlinear inertial terms, in order to produce bifurcation diagrams so that 

an adequate comparison can be made between theory and experiment. The reader is 

referred to Wadham-Gagnon et al. (2007) and Modarres-Sadeghi et al. (2007) for the 

nonlinear equation of motion and dynamics, respectively, of a cantilevered pipe 

conveying fluid in the presence of an end-mass. Fig. 2.4 shows a bifurcation diagram of 

the dimensionless free-end displacement, rj, versus dimensionless flow velocity, u, for the 

unblocked cantilevered pipe that is mounted with the four-holed end-piece. The system is 

stable for u < u\ = 5.0, and loses stability by travelling-wave type flutter at u\ ~ 5.0. 

Fixed-node type flutter of smaller amplitude then develops at uj ~ 6.8, and the motion of 

the system becomes more complex for «3 > 7.0. The corresponding experimental values 

are u\ - 5.46 and u-i = 8.53, where u\ is in reasonably good agreement with theory. 
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Figure 2.2. Argand diagram as a function of u for an unblocked cantilevered pipe with 

Te = 0.196 using a five-mode Galerkin approximation. 
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Figure 2.3. Argand diagram as a function of u for an unblocked cantilevered pipe with 

Te = 0.200 using a five-mode Galerkin approximation. 
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Figure 2.4. Bifurcation diagram for an unblocked cantilevered pipe with Te = 0.196 using 

N = 4 modes. 
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Figure 2.5. Bifurcation diagram for an unblocked cantilevered pipe with Ye = 0.200 using 

JV=4modes. 
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Similar results are found for the unblocked cantilevered pipe that is mounted with the 

eight-holed end-piece [see Fig. 2.5]. In this case, the theoretical values are also u\ ~ 5.0, 

«2 ~ 6.8, and u?, ~ 7.0. The corresponding experimental values are u\ = 5.46 and ui - 8.54, 

where u\ is, once again, in reasonably good agreement with theory. Note that the 

bifurcation diagrams were obtained by a nonlinear theory correct to third order, using a 

finite difference method scheme with N = 4 modes. 

Moreover, Figs. 2.6 and 2.7 present the Argand diagrams using a five-mode 

Galerkin approximation for the first three modes as a function of the dimensionless flow 

velocity, u, for the blocked cantilevered pipe that is mounted with the four-holed and the 

eight-holed end-piece, respectively. In both cases, the flow induces damping in all three 

modes. Consequently, the imaginary component of the dimensionless complex frequency, 

Im(cy), increases with increasing dimensionless flow velocity, u, and the system remains 

stable for all flow velocities investigated in the range 0 < u < 12. This is expected since, 

in the equation of motion, the centrifugal term, MU2[d2w/dx2), is cancelled by the 

blockage-induced tension on the pipe, T. 

2.3 Experimental Investigation 

2.3.1 Experimental apparatus 

The experiments were performed with a flexible elastomer pipe and two plastic 

end-pieces that differ solely in the number of holes machined, i.e. either four or eight 

holes. The fluid conveyed was water. The pipes were cast using a two-part silicone rubber 

kit consisting of a base and a curing agent. The reader is referred to Appendix A for a 

detailed procedure of the casting process. Note that a small elastomer ring was embedded 

at the free end of the pipe during the casting process in order to facilitate mounting the 

end-pieces onto the pipe during experiments. Additionally, both end-pieces were designed 

with a removable plug. Thus, a plugged end-piece allowed for a 90° diversion of the flow 

at the downstream end of the cantilevered pipe, while an unplugged end-piece allowed the 

straight-through passage of the flow [see Fig. 2.8]. 
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Figure 2.8. Schematic of the end-pieces with (a) four holes and (b) eight holes: — 90° 

diverted flow; — straight-through flow. The inserts of (a) and (b) provide a cross-

sectional view of the plugged end-piece that is mounted at the downstream end of the 

flexible cantilevered pipe. 

The geometrical and physical properties of the pipe and end-pieces are 

summarized in Tables 2.1 and 2.2. Note thatyj, and 8„ are the natural frequency and log 

decrement of the pipe in the «th mode. For higher modes, i.e. n > 4, the log decrement of 

the system was approximated by dn = 0.0516« - 0.0144, which is the linear regression 

line that best fits the data for the first three modes. The reader is referred to Appendix B 

for specific information concerning the determination of the natural frequencies, flexural 

rigidity, and logarithmic decrements of the cantilevered pipe system using experimental 

techniques. 

Table 2.1. The geometrical and physical properties of the pipe 

Do 
[m] 

0.0159 

[m] 

0.00635 

L 

[m] 

0.448 

EI 

[Nm2] 

7.11xlO"J 

m 

[kg/m] 
0.191 

M 

[kg/m] 
0.0317 

P 
[-] 

0.142 

7 

[-] 
27.6 

— * 

a 

[-] 0.00017 

— * 

[-] 
0.03927 

A 
[Hz] 

1.07 

h 
[Hz] 

4.10 

h 
[Hz] 

10.2 

<*i 

[-] 
0.0346 

Si 

[-] 
0.0937 

<*3 

["] 
0.138 

34 



CHAPTER 2 

Table 2.2. The geometrical and physical properties of the end-pieces 

End-piece 
me [kg] 
r e [ - ] 

4 holes 
0.0195 
0.196 

8 holes 
0.0199 
0.200 

Row straightener 

Pressure transducer 

Magnetic .i . t 
flowmeter t Optica! sensor 

t 
Accumulator Weighing scales 
tank 

£t 
Reservoir 

Centrifugal pump 
Figure 2.9. Schematic of the experimental set-up [PaTdoussis & Semler (1998)]. 

r rDrain 

The experimental set-up consists mainly of (i) a cantilevered pipe vertically hung 

over (ii) a collecting tank, which rests on weighing scales, (iii) a centrifugal pump, which 

supplies recirculating water from a reservoir rather than from the mains, (iv) an Omega 

FMG710 magnetic flowmeter, which measures the volumetric flow rate, and (v) an 

Optron system, which is a non-contact electro-optical biaxial displacement follower 

system that consists of an optical head and a control unit. A schematic of the experimental 

set-up is shown in Fig. 2.9. The combination of a flow straightener and an accumulator 

tank, which attenuates pulsations from the centrifugal pump, ensures that the flow is 
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uniform at the inlet of the pipe. The Optron system is used together with LabVIEW, 

which is a graphical programming software, to acquire a time signal of the motion of the 

pipe at a point along its length. The acquired time signals are then analyzed using 

MATLAB to determine the frequency of oscillation of the pipe at various flow velocities. 

The reader is referred to Appendices D and E for a comprehensive treatment regarding 

the measurement of the flow velocity through the pipe, and the measurement of the 

frequency of oscillation of the pipe. Furthermore, additional information with regards to 

the experimental apparatus and set-up can be found in Pai'doussis & Semler (1998). 

2.3.2 Experimental procedure 

The procedure for a water experiment involving a flexible cantilevered pipe 

conveying fluid that is fitted with a stabilizing end-piece is as follows: 

1. Attach either a plugged or unplugged end-piece to the downstream end of the pipe 

depending on whether the flow is to be diverted by 90° or pass straight through. 

2. Mount and clamp the upstream end of the pipe to the brass support, which is located 

at the water flow outlet of the piping system. 

3. Connect the control unit, the low-pass filter, and the light source to power outlets with 

the power cords provided. 

4. Connect the control unit to the optical head with the appropriate cable provided. 

5. Connect the control unit to the low-pass filter with a BNC cable. Set the cut-off 

frequency on the low-pass filter to an appropriate value, such as 50 Hz. 

6. Connect the low-pass filter to the data acquisition device with a BNC cable. 

7. Connect the data acquisition device to a computer with the USB cable provided. 

8. Open LabVIEW and load SCMEAS.VI. Set the count to an appropriate value, such as 

24 000, set the rate to 400, and set the range to ±10 V. 

9. Observe the pipe through the viewer of the optical head. Position and adjust the 

optical head so that the desired target, which is a point that lies along the length of the 

pipe, is in sharp focus. 

10. Set the horizontal target phase switch to either light to the right or light to the left. Set 

the Filter to OFF and set the Power/Mode to LIGHT LEVEL on the control unit. 
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11. Position the optical head so that the centre of the viewer is located within the darkest 

area of the target. Adjust the LOCK ON with a screwdriver until the horizontal meter 

reads -20%. 

12. Position the optical head so that the centre of the viewer is located within the lightest 

area of the target. Adjust the light source, and/or the lens aperture of the optical head, 

and/or the high voltage on the control unit with a screwdriver until the horizontal 

meter reads +40%. 

13. Set the Power/Mode to HORIZONTAL on the control unit. 

14. Position the optical head so that the horizontal meter reads 0%. 

15. Turn on the pump at low flow rate by pressing the green button on the control valve. 

Remove any air bubbles that are trapped in the system using the release valve. 

16. Slowly increase the flow rate by turning the knob of the control valve right. Release 

the knob at the onset of a bifurcation. At each critical flow rate, run SCMEAS.VI in 

LabVIEW, and read the volumetric flow rate from the Omega DPF64 ratemeter. 

17. Slowly decrease the flow rate to zero by turning the knob of the control valve left. 

Turn off the pump by pressing the red button on the control valve. 

18. Post-process the recorded time signals in MATLAB to obtain the frequency of 

oscillation of the system at each recorded step. Convert the critical volumetric flow 

rate readings, in litres/second, to flow velocity readings, in metres/second. 

2.3.3 Experimental results 

The quantitative experimental results for the first two bifurcations of a 

cantilevered pipe that is fitted with an unplugged end-piece are given in Table 2.3. Note 

that Ucr is the critical flow velocity measured in m/s, and fcr refers to the critical 

frequency of oscillation of the system measured in Hz. Moreover, the time history traces 

and power spectral density plots for the experiments are presented in Figs. 2.10 to 2.13. 

The qualitative experimental results for the two end-pieces are similar, as 

expected in view of their physical similarity [see Table 2.2]. At low flow velocities, the 

cantilevered pipe experiences an increase in damping with increasing flow, as can be 

37 



CHAPTER2 

Table 2.3. Experimental critical flow velocities and frequencies of oscillations 

4 holes 
8 holes 

First bifurcation 

Ucr 
[m/s] 
5.79 
5.79 

Ucr 

["] 
5.46 
5.46 

for 
[Hz] 
2.32 
2.32 

Re(oc,) 
[-] 
16.3 
16.3 

Second bifurcation 
Ucr 

[m/s] 
9.04 
9.05 

UCr 

[-] 
8.53 
8.54 

far 
[Hz] 
4.54 
4.54 

Re(ocr) 
[-] 
32.0 
32.0 

determined by slightly perturbing the cantilevered pipe. As the flow velocity is increased, 

the pipe experiences a decrease in damping, eventually becoming negative and giving rise 

to a Hopf bifurcation. This Hopf bifurcation is characterized by two-dimensional, planar, 

travelling-wave type flutter involving second beam-mode shape oscillations. As the flow 

is increased further, a second bifurcation is encountered, which is characterized by two-

dimensional, planar, fixed-node type flutter involving third beam-mode shape 

oscillations, and a fixed node at approximately mid-length. Furthermore, the system 

exhibits a higher frequency of oscillation. As the flow is increased even more, the 

frequency of oscillation increases further, and higher, more complex vibrational modes 

are observed. Eventually, the motion becomes chaotic, and impacting occurs with the 

walls of the collecting tank; at this point, the experiment is stopped. It should also be 

noted that the cantilevered pipe exhibits three-dimensional, transient behaviour just prior 

to the onset of the first and second bifurcations for only brief periods of time; during this 

time, the system searches for, and also locates, its preferred two-dimensional plane of 

motion for flutter to occur within. 

On the other hand, the observed dynamical behaviour of a cantilevered pipe that is 

fitted with a plugged end-piece was entirely different. For this system, the cantilevered 

pipe did not display any oscillatory motion, or any other instability for that matter, as 

expected. Consequently, the system remained stable for all investigated flow velocities. 

Note that the maximum attainable flow velocity was limited by the pressure capacity of 

the plug. Once the pressure capacity was attained, the plug would simply break away 

from the end-piece without any warning, falling into the collecting tank, and the 

cantilevered pipe would flutter, provided that the flow velocity exceeded the critical flow 

velocity needed for flutter to develop. 
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5 10 
Frequency (Hz) 

Figure 2.10. First bifurcation (a) time trace, and (b) power spectral density plot for 

Te = 0.196. 

5 10 
Frequency (Hz) 

15 

Figure 2.11. Second bifurcation (a) time trace, and (b) power spectral density plot for 

Te = 0.196. 
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2.4 Summary 

In this chapter, the dynamics of a flexible cantilevered pipe conveying water fitted 

with two different plastic end-pieces, which can either be plugged or left unplugged, was 

investigated. The experimental results for the first bifurcation of a cantilevered pipe fitted 

with an unplugged end-piece are in reasonably good agreement with both linear and 

nonlinear theory, and the existence of two-dimensional and chaotic behaviour, whereby 

the former is either a travelling-wave or a fixed-node type flutter, was successfully 

observed in experiments. On the other hand, the experimental results for the second 

bifurcation, which cannot be captured with linear theory, were nevertheless predicted by 

nonlinear theory; however, their quantitative agreement was not exceptionally good, 

resulting in errors of roughly 26% for the dimensionless critical flow velocity, ucr, based 

on an average of the experimental and theoretical values. The reason for this latter is most 

probably that (i) an insufficient number of modes were used in the Fortran code of 

Modarres-Sadeghi, or (ii) the rotational inertia of the end-piece was not taken into 

account in the theoretical model. 

Moreover, the experimental results for the cantilevered pipe fitted with a plugged 

end-piece are in very good agreement with the linear model presented. It has been 

demonstrated that the suppression of flutter is a consequence of blocking the straight-

through exit, since the tension induced thereby on the pipe is equal to the effective 

centrifugal or compressive load that is generated by the axial flow. Hence, a plugged end-

piece is, in fact, a stabilizing device; without it, the cantilevered pipe would otherwise 

flutter and develop more complex dynamical behaviour after the first bifurcation. 
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CHAPTER 3 

Dynamics of a Cantilevered Pipe Aspirating Fluid 

3.1 Introduction 

One of the earliest models of a cantilevered pipe aspirating fluid was proposed by 

Pai'doussis & Luu (1985), in which [/was simply replaced by - [ / in the linear equation of 

motion of a cantilevered pipe conveying fluid, thus leading to dynamical behaviour for 

the aspirating case which is the mirror-image of that for the discharging one. Thus, it was 

found that, in the absence of damping, the system loses stability by flutter at practically 

zero flow velocity, and then regains stability at a higher flow velocity. Since experiments 

up to that point had suggested that the system actually remains stable, Pai'doussis (1998, 

1999) re-evaluated the problem by examining the flow field at the inlet of the cantilevered 

pipe. Since the intake flow resembles a sink rather than a jet, the mean gauge pressure at 

the free end and throughout the pipe, p,^ which was found equal to -MlflA, cancels out 

the centrifugal force in the linear equation of motion. Consequently, it was concluded that 

the cantilevered pipe aspirating fluid remains stable because of the disappearance of the 

centrifugal force, which is essential for flutter to develop. Kuiper & Metrikine (2005) 

subsequently argued that the system may flutter notwithstanding, even in the absence of 

the centrifugal force, because of the Coriolis force, which generates negative damping in 

the case of an aspirating pipe. Furthermore, they argued that the depressurization at the 

inlet had likely been overestimated by Pai'doussis (1998, 1999), and thus the centrifugal 

force is not wholly cancelled out after all. This led to a reappraisal of the problem by 

+ This is the mean component that does not vary with axial position; on that is superimposed the axially varying component 

due to frictional pressure loss, the effect of which is cancelled by the axially varying tensile force on the pipe. 
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Paidoussis et al. (2005), whereby two new theoretical models were presented, and it was 

concluded that the flow field at the inlet of the cantilevered pipe would need to be 

investigated further; this time, however, using computational fluid dynamics and finite 

element analysis. 

The present study was motivated by the dynamics of a flexible cantilevered pipe 

aspirating fluid, which is a dynamical problem that has perplexed researchers for many 

years in the field of fluid-structure interactions. In general, the present study is academic; 

however, applications in ocean mining, natural gas liquefaction, and gas hydrate 

exploitation do exist. 

The scope of this chapter is three-fold. Firstly, the theoretical model proposed by 

Pai'doussis et al. (2005) is re-derived with the effect of gravity included for both 

convenience and clarity. Secondly, the model is modified by applying axial and lateral 

time delays to the forces exerted on the pipe at the inlet. Note that the parameters 

a, f, and Ss, which appear in the linear equation of motion for the system [see Section 

3.2.1], are fixed based on the numerical results obtained by Dana Blake Giacobbi [see 

Giacobbi et al. (2008a)], presently a M.Eng. student at McGill University in the fluid-

structure interactions group, using a computational fluid dynamics and finite element 

analysis model in ANSYS. Thirdly, the theoretical and experimental results are compared 

to determine whether this system loses stability by flutter at small flow velocities. 

3.2 Theoretical Investigation 

3.2.1 Paidoussis, Semler & Wadham-Gagnon (2005) model with non-negligible gravity 

The linear equation of motion for small lateral motions of a cantilevered pipe 

aspirating fluid is derived using the Newtonian approach, and closely following the 

formulation by Paidoussis & Issid (1974) for a pipe conveying fluid, in order to arrive at 

the theoretical model proposed by Paidoussis et al. (2005). The system, consisting of a 

uniform flexible pipe of length L, internal perimeter S, internal cross-sectional flow area 

A, mass per unit length m, and flexural rigidity EI, which aspirates incompressible fluid of 

density pj, mass per unit length M, and flowing in the pipe with a uniform axial flow 
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velocity U, is illustrated in Fig. 3.1. Note that the pipe is considered to be inextensible, 

and that the undisturbed or equilibrium axis of the pipe is assumed to be coincident with 

the x-axis of the system. The effect of gravity is also considered to be non-negligible. 

Note that the curvilinear coordinate along the centreline of the pipe, s, may be used 

interchangeably with the vertical coordinate, x, since the lateral motions, w(x, t), are 

assumed to be small compared to the diameter of the pipe, i.e. LID0 is large, and the 

motion is assumed to be two-dimensional and confined to, say, the x-y plane. The reader 

is referred to Paidoussis (1998) for the derivation of the inextensibility condition, and also 

for useful information concerning the Eulerian and Lagrangian coordinate systems. 

Figure 3.1. A cantilevered pipe aspirating fluid [Paidoussis & Issid (1974)]. 

The forces and moments acting on a small element Sx of the fluid and the pipe are 

illustrated in Figs. 3.2 and 3.3, respectively, in which/? is the fluid gauge pressure, Fdx is 

the reaction force of the pipe on the fluid in a direction normal to the fluid element, qSSx 

is the shear force, or reaction force, of the pipe on the fluid in a direction tangential to the 

fluid element, Mgdx is the weight of the fluid element, T is the axial tension, Q is the 
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" • J 

MgSx pA+(d(pA)Wx)Sx 
Figure 3.2. A small element Sx of the fluid showing applied forces. 

• * • > • 

• 
.v 

c(dw/dt)6x «• 

T+(dndx)Sx 

M+(dJlWx)6x 

Figure 3.3. A small element dx of the pipe showing applied forces and moments. 
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lateral shear force, M is the bending moment, mgSx is the weight of the pipe element, 

MagSx is the weight of the added mass, or buoyant force, due to the surrounding fluid, and 

c(dw/df)Sx is the viscous damping due to the surrounding fluid. For unconfined flow, the 

viscous damping coefficient, c, is given by 

C =7F f (3.1) 

where S = Qr0 Iv, r0 = ViD0, D0 is the outer diameter of the pipe, Q is the circular 

frequency of oscillation, and v is the kinematic viscosity of the surrounding fluid [see 

Paidoussis(1998,p. 120)]. 

Applying Newton's second law to the fluid element shown in Fig. 3.2, the 

equations of motion in the x- and ̂ -direction are 

A^- + qS + Mg + F— = Mafx, 
dx dx 

(3.2) 

•'-4('9**f->- (3.3) 

where a^ and % are the accelerations of the fluid element in the x- and ^-direction, 

respectively. Similarly, applying Newton's second law to the pipe element shown in Fig. 

3.3, the equations of motion in the x- and ̂ -direction are 

ZL-qS + (m-Ma)g-F% = 0, 
ox ox 

(3.4) 

dQ d f 
+ F + 

dx dx dx 

„dw dw ( \ 
(3.5) 

where apy is the acceleration of the pipe element in the ^-direction. From Euler-Bernoulli 

beam theory, it is known that 

dx 
1 + a + 

d_ 

dt 

d3w 

dx3 (3.6) 
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where the internal dissipation is a combination of hysteretic and viscoelastic damping, in 

which a two-parameter Kelvin-Voigt model is employed for the latter [see Pai'doussis & 

des Trois Maisons (1971)]. Note that terms of second order, such as the inertial forces in 

the axial direction, have been neglected from the equations of motion above, as well as 

the effects of angular acceleration. 

Now, the velocity of the pipe element is 

Tj _ dr _ dx r dy -
p~~dt~~dtl+~dtJ' 

(3.7) 

where f is the position vector measured from the origin to a point on the pipe. The 

velocity of the centre of the fluid element is 

Vf=Vp-Ur, (3.8) 

where r is the unit vector tangential to the pipe, and is given by 

dx r dy -
T I +—J-

ds ds 
(3.9) 

Therefore, 

dx7 _ dy -:']_ fdx7 _ dy 7 
f I dt dt a,'+^j-U-u*r+j?)"^ (110) 

where D( )fDt is the material derivative. Since y = w, dx/ds ~ 1, and dxldt ~ 0, the velocity 

of the centre of the fluid element reduces to 

Vf = -Ui + 
dw dw 

dt dx 
(3.11) 

and the acceleration of the centre of the fluid element is 

af 

Consequently, 

D2r 

~ Dt2 dt dx 
wj = 

rd^w_ 

dt1 . 2 U ^ + U^)j. 
dxdt dx2 

(3.12) 
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A d2w - , r5
2W TT2 afr = 0, a,, =—--2U + U *fa *fy dtL dxdt 

d2w 

dx2 , a py 

d2w 

dt2 
(3.13) 

Eqns. (3.3), (3.5), (3.6), and (3.13) are combined to give 

EI 1 + a +• 
V 

dw 

Q dt 

d4w d 

dx4 dx 

id
2w 

(T-pA) 
dw 

dx 

( & 
+ M 

dlw 

dt2 

d2w 
-2U^^ + U 

dxdt dx2 

(3.14) 
uyv ( TL* \ u w n 

+ c — + (m + Mn)—r- = 0. 
dt v "' dt2 

Similarly, Eqns. (3.2), (3.4), and (3.13) are combined to give 

d 
-(T-pA)=-(M + m-Ma)g. 
dx 

(3.15) 

Integrating Eqn. (3.15) from x to L yields 

(T - pA)\x_L-(T -pA)=-(M + m-Ma)g(L-x). (3.16) 

In general, the tension and pressure at x = L is zero, unless an externally applied tension, 

T, and an externally applied pressure, p, are present. Hence, combining Eqns. (3.14) to 

(3.16), the equation of motion for a cantilevered pipe aspirating fluid becomes 

EI 
( 

1 + a + 
d_ 

dt 

d4w 

dxA + [MU2 -(T-pA)-(M + m-Ma)g(L-x)] 
d2w 

dx2 

-2MU^ + (M + m-Ma)g^- + c ^ + (M + m + Ma)^ = 0. 
dxdt v a)& dx dt V a) dt2 

(3.17) 

The forces exerted by the fluid on the pipe at the inlet, which is inclined at an 

angle/ = tm~l(dw/dx)L ~ (dwldx)i, are illustrated in Fig. 3.4 for both the (x, y)- and (<f, in­

coordinate system, and a mean flow velocity, v, is also shown facing the inlet of the pipe. 

Thus, it is assumed that a sudden change in the flow velocity from -v to -U arises as the 

fluid enters the pipe, giving rise to the parameter a = v/U. We consider two possibilities, 

differentiated by a new parameter, Ss: (i) v is unrealistically assumed to remain in the 

vertical position at all times, and we identify this by Ss = 0; (ii) v remains tangential to the 

free end of the pipe at all times, and in this case Ss = 1. Now, the forces exerted by the 
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pipe on the fluid in the x- and ̂ -direction are equal to the change in momentum, MU(AU). 

For Ss = 0, we have 

Fx =MU[-U cos z-(-v)\ 

F=MU[(wL-UsinZ)-0\ 

(3.18) 

(3.19) 

where wL = (dwldi)L, and for Ss - 1, we have 

Fx = MU[- U cos x - (- v cos %)\ 

F = MU[(wL - U sin %) - (- v sin %)} 

(3.20) 

(3.21) 

ion 

X W 
(a) 

0~^| KkWHH^ I 

(c) (d) 

Figure 3.4. (a) The free end of the pipe, the definition of the coordinate systems used, and 

the angle/; (b) definition of the forces exerted by the fluid on the pipe; (c) the unrealistic 

inlet flow, with v always in the vertical direction (ds = 0); (d) the tangential follower inlet 

flow, with v always tangential to the free end of the pipe (Ss=l) 

[Pai'doussis etal. (2005)]. 

Since %1S presumed to be small, then 

c o s ^ « l , 

s i n ^ « ^ « w L , 

where w'L = (dw/dx)L. Therefore, for 8S = 0, the forces Fx and Fy can be written as 

(3.22) 

(3.23) 
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Fx=-MU2{\-a), (3.24) 

Fy=MU(wL-Uw'L), (3.25) 

and for ds = 1, 

Fx=-MU2{l-a), (3.26) 

Fy=MU[wL-(l-apw'L] (3.27) 

The forces exerted by the fluid on the pipe at the inlet, F* and F*, are equal and opposite 

to those exerted by the pipe on the fluid at the inlet, Fx and Fy. Thus, for ds = 0, 

Fx*=MU2(l-a), (3.28) 

F;=-MU(WL-UW'L), (3.29) 

and for Ss = 1, 

Fx=MU2{\-a), (3.30) 

F; = -MU[wL - (1 - ccpw'L} (3.31) 

The forces exerted by the fluid on the pipe at the inlet in the £- and ^-direction, 

respectively, are 

F;*F;, (3.32) 

F^-MU[wL-(\-Ss)aUw'L] (3.33) 

It is now supposed that 

-pA = F*=MU2(l-a), (3.34) 

f = -yp{Ae - A)=fy(l-a)MU2 = yfy-a)MU2, (3.35) 
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where 0 < y < 1, y =fy,f= (Ae - A)IA, and Ae and A are the external and internal cross-

sectional areas of the pipe, respectively [see Paidoussis et al. (2005)]. Consequently, 

(T - pA) = (l - aft + y)MU2 (3.36) 

Moreover, the equation of motion for a cantilevered pipe aspirating fluid, Eqn. 

(3.17), is subject to the appropriate boundary conditions for a cantilevered pipe. At x = 0, 

and at x = L, 

dw 
w = — = 0, 

dx 

(3.37) 

d w d w 

dx1 dx' 
'^-(i-s.ydj-
dt dx 

= 0, (3.38) 

where the shear force boundary condition is related to F^, and can be inserted in the 

equation of motion by means of a Dirac delta function, <S(x - L) [see Paidoussis (1998, p. 

13)]. Eqns. (3.17), (3.36), and (3.38) are combined to give 

EI 
f 

1 + 
*A 

v ^J 

d_ 

dt 

d*w
 + [l-(l-a\\ + y)]MU>d2w 

dx dx' 

-(M + m-Ma)g(L-x)^--2MU^- + {M + m-Ma)g^ 
dx dxdt dx 

dw / \d w 
+ c — + (M + m + M„)—T- + MU 

dt v "' dt2 dt v *' dx 
S(x-L) = 0. 

(3.39) 

Eqn. (3.39) is rendered dimensionless through the use of the following 

dimensionless parameters: 

V 
w 

( 
T = 

EI 

M + m + M r2 ' 
(3.40) 

a J 

to yield 
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1 + a + 
CO dr 0 + t.-(.-aXl + * - H l - d 0 - 2 ^ ^ 

dn drj d2t] 
+ Y—L + <J — + — T + 

d£, dr dr2 

dt] 
fiXu?Z-(\-SM)au 2drj_ 

(3.41) 

4?-i)=o, 

where 

u = \ EI 
v> 

a = 

UL, p 

EI 

M 

M + m + Mc 
-, r 

(M + m-Ma)gI? 

EI 

M + m + M 
a 

~r2' a -
cL2 

a J 

0) = 
EI J 

€11}. 

(3-42) 

The system is discretized following the Galerkin procedure and assuming a 

solution of the form 

i7fe*)=2>,(«?)?,B (3.43) 
r=\ 

where <l>r{£) are the comparison functions, taken here to be the cantilever beam 

eigenfunctions, and qr(j) are the generalized coordinates, which eventually leads to an 

expression of the form 

[M]q + [c]q + Mq = 0, (3.44) 

where q = {q\,q2,...,qN} • Specifically, Eqn. (3.43) is substituted into Eqn. (3.41) to give 

N 

I 
- 2^u£qr + r<t>'rqr + ojrqr + trqr + PYluS{£ - \)</>rqr 

-{l-Ss)cm2^-^r}=0. 

(3.45) 

Thereafter, Eqn. (3.45) is multiplied by ^(^) and integrated over the domain [0, 1] to 

give 

52 



CHAPTER 3 

X\8srqr + (a* + /TA>>X<7, + {l - (*"«)(l + ?)V ~r\„qT + ydsrqr 

- 2P*ub„qr + AM, + oSJlr + Ssrl + fiXu+MrOtir (3"46) 
- ( 1 - ^ ) ^ ^ ( 1 ) ^ ( 1 ) ^ = 0, 

where 

(AjAr)
2

+(-\y 
, b r r = 2 , (3.47) 

cr '(-P-tj;^^=^2-A^ (3.48) 

4(A,<rr-l,o-,+2)r y „ 3 + ( l , / l , ) ' 
c,,> (3.49) A'-ni 

for a cantilevered pipe [see Pai'doussis (1998, p. 87)]. The elements of the mass [M\, 

damping [C], and stiffness [K\ matrices in Eqn. (3.44) are found from Eqn. (3.46) to be 

Msr=Ssr, (3.50) 

Csr = [(a* + p/aty + cr\>sr -
2 ^ K + fi^fy^M (3.51) 

Ksr = £,8, + ybsr +11 - (1" ^X1 + f * 2 " r K + K , - (1 - *,>» V.Mtfto (3-52) 

Now, in the upcoming three sections, the theoretical model proposed by 

Pai'doussis et al. (2005) is modified to include two distinct time delays, which arise 

because the forces at the free end of the cantilevered pipe do not develop instantaneously, 

but rather take time to be fully realized. Furthermore, the mean flow velocity, v, facing 

the inlet of the pipe is now generally directed at an angle 3, as shown in Fig. 3.5, 

whereby 0 < 3 <x, giving rise to the parameter y/ = 3/ X- As a result, the case of vertical 

entry is recovered when y/ = 0, and that of tangential entry is recovered when y/ = 1. 

However, y/ is not limited to either 0 or 1; it may take on any value in the range 0 < y/ < 1. 

Nevertheless, as related by Giacobbi et al. (2008a), yi is very close to 1, at least for air­

flow, because the fluid enters the pipe almost tangentially at the inlet. Note that the 
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primary difference between the three models to be presented in what follows is the 

sequence of application of the time delays. 

u 

,,-v 
i i 

Figure 3.5. The free end of the pipe and the definition of the angle 3 

[Paidoussis etal. (2005)]. 

3.2.2 Delay and non-purely-tangential entry model I 

The forces exerted by the pipe on the fluid at the inlet in the x- and ̂ -direction are 

equal to the change of momentum, MU(AU), and may be written as follows: 

Fx = MU[- Ucosx~(-v cos 3)\ 

F = MU[(wL - U sin %) - (- v sin 5)} 

(3.53) 

(3.54) 

Since x and 3 are presumed to be small, then Eqns. (3.22) and (3.23) hold, in addition to 

cos & «1, 

sin3 » 3 * y/% » yAv'L. 

Therefore, the forces Fx and Fy can be written as 

Fx=-MU2(\-a), 

F=MU[wL-{\-ayspw'L} 

(3.55) 

(3.56) 

(3.57) 

(3.58) 
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The forces exerted by the fluid on the pipe at the inlet, F* and F*, are equal and opposite 

to those exerted by the pipe on the fluid at the inlet, Fx and Fy. Thus, 

F*=MU2(\-a), (3.59) 

Ff
y = -MU[wL - (l - aytpw'L ] (3.60) 

The forces exerted by the fluid on the pipe at the inlet in the £- and C-direction, 

respectively, are 

F;*F*X, (3.61) 

F ; * -MU[wL - (l - y/)aUWL } (3.62) 

Next, we apply two distinct delays to F^ and F^: one in the axial or ̂ -direction, 

f0, and another in the lateral or ^-direction, fr Both fa and fe are assumed to be 

constants, and to have the following forms: 

- A - IA 
cr cr 

D D 
Te = "T-2- o r Te = -T - 2 - ' (3 64) 

where CI = Q(U = Ucr) = Q(U = 0) is a good approximation for Q since the latter is not 

known in advance. Additionally, it is presumed that 

w = wexp[iQ,(t - f)] = w exp(r'Q?)exp(- iClf) = w exp(i'Q/)exp(- i<p), (3.65) 

where (p = Qf. Furthermore, 

w = iQw exp(/Qf )exp(- i<p) = iQw, (3.66) 

leading to the expression 
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Q sr ' Q ar ar y (3.67) 

Note that Eqn. (3.67) is correct only if Q is real, that is, on the boundary of neutral 

stability. Thus, the delayed forces exerted by the fluid on the pipe at the inlet in the £- and 

C-direction are 

F ; * M t / 2 ( l - a ) e x p ( - ^ J , 

F* « -MU[wL - (l - y/)aUw'L ]exp(- i<pt), 

(3.68) 

(3.69) 

where 

exp(-i>fl) = cos(-<pa)+isin(-^)«1 - i p a = 1 -Ffl — ( ), 
ot 

(3.70) 

exp(-i<pt) = cos(-^) + /sin(-<pe)&l-i(p( =\-Te — ( ). 
dt 

(3.71) 

Hence, 

F ; « M £ / 2 ( l - ^ l - r a | ( ) 

F^-MU[wL-(l-^)aUw'L^l-fejt( ) 

(3.72) 

(3.73) 

It is now supposed that 

-pA = F;=MU2(l-a^l-faft() (3.74) 

T = -yp(Ae-A) = fy{\-a)MU: 

' - ' • 5 < > 
= f(l - a ) M / : • - ' • l < > . (3.75) 

Consequently, 

{r-pA)={\-a\\ + y)MU7 

' - ' • s < > 
(3.76) 
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Furthermore, the equation of motion for a cantilevered pipe aspirating fluid, Eqn. 

(3.17), is subject to the appropriate boundary conditions for a cantilevered pipe. At x = 0, 

Eqn. (3.37) applies, and atx = L, 

d w d w 

dx' dx* dt 6x 
= 0, (3.77) 

where the shear force boundary condition is related to F£, and can be inserted in the 

equation of motion by means of a Dirac delta function, S(x - L). Eqns. (3.17), (3.76), and 

(3.77) are combined to give 

EI 1 + a + 
d_ 

dt 
^ M M l - ^ l + F ) ] * * / ^ 
dx 

d2w 
-{M + m-Ma )g(L - X)^Y + (l - a\\ + y)MU2xa 

dx1 

d w i \ dw dw 
-2MU + (M + m-Ma)g — + c — 

dxdt dx dt 

d3w 

dx2dt 

+ (M + m + M„)—r- + MU 
v "' dt1 dt dx 

S(x-L) 

•MUx, 
Q2W-{\-¥)aUd2w 

dt dxdt 
S(x-L) = 0. 

(3.78) 

Eqn. (3.78) may be rendered dimensionless through the use of the dimensionless 

parameters given in Eqn. (3.40) to yield 

1 + 
(-„ u"\ d 
a + — 

V (O dx 

d4?j 

d{ J + ti-(i-aXi + yF-r(i-#)} 
d2rj 

d{2 

+ P*u 
drj _. d V 
dx e dx2 j - ( 1 - V ) 

.( 
mi 

2« V dr) _. d TJ 

d£ T( d%dx 
*(£-l) = 0, 

(3.79) 

where Eqn. (3.42) holds, in addition to 
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( El 

M + m + M a J 

V>f ( 
-±- f' = 

EI v> 
M + m + M a) 

(3.80) 

The system is discretized following the Galerkin method described in Section 3.2.1, 

giving 

Csr = [{a* + Fla>)£ + *}>sr -IfiXub, + (1 - aXl + f VKc„ 

+ /? V,(lk(l)+ (1" YW*M)<I>M 

Ksr = %&„ + ybsr + {i - (i - «)(i + r)V - rW + yd„ - (1 - wWk 0 U (i) 

3.2.3 De/ay arcd non-purely-tangential entry model II 

(3.81) 

(3.82) 

(3.83) 

Once again, the forces exerted by the fluid on the pipe at the inlet in the x- and y-

direction are given by Eqns. (3.59) and (3.60), while those in the £- and ("-direction are 

given by Eqns. (3.61) and (3.62). An axial delay, fa, given by Eqn. (3.63), is then applied 

to F^ to yield Eqn. (3.72). Proceeding with the {"-direction, we obtain 

F: « -MU[wL - (1 - ¥)aUw'L - (1 - apfaw'L } 

Next, a lateral delay, re, given by Eqn. (3.64), is applied to Eqn. (3.84) to give 

(3.84) 

K * ~MU[wL - (1 - ¥)aUw'L - (1 - apfaw'L ] • - ' • I " (3.85) 

Thus, in this model (model II), the delay in the {-direction is applied sequentially to that 

in the ^-direction, instead of the two being applied in parallel (as in model I). 

The equation of motion for a cantilevered pipe aspirating fluid, Eqn. (3.17), is 

subject to the appropriate boundary conditions for a cantilevered pipe. At x = 0, Eqn. 

(3.37) applies, and at x = L, 
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d3W 
EI -—r - MU 

dxi e dr' ot ox oxot 

(3.86) 
= 0, 

where the shear force boundary condition is related to F£, and can be inserted in the 

equation of motion by means of a Dirac delta function, S(x - L). Eqns. (3.17), (3.76), and 

(3.86) are combined to give 

EI 1 + 
(-. n^d 

a + dt 
^ + M l - a X i + r ) ] w ^ 

,d2w 
-{M + m-Mjg{L-x)^ + {\-a)(l + y)MU\-^-

ox ox ot 
d2w dw Bw 

2MU^- + (M + m-Ma)g — + c-
dxdt dx dt 

(3.87) 

+ (M + m + M„)—T- + MU v aJ dt2 ot ox oxot 
S(x - L) 

•MUx, ^l-(i-yi)au^-(i-a)jfa
 d3w 

dt dxdt dxdt2 
S(x-L) = 0. 

The dimensionless form of Eqn. (3.87), via Eqn. (3.40), is 

1 + 
A_„ ft'} d 
a + — 

V CO dr 

d't] 

d^ + {l_(l_aXl + y)]u2-y(l-<f)} 
d2t] 

+ (1-aXl + f V f ; - ^ — 2 ^ « - ^ + y ^ + 3 + ̂  

^3-(i-^2^-(i-«yf;-^-
dx d£, v ' a d$dx 

6{§-\) 

or dqdx dqdx 
S(£-1) = 0, 

(3.88) 

where Eqns. (3.42) and (3.80) still hold. Galerkin discretization follows, as in Section 

3.2.1, yielding 
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Msr = 8sr - ^iir<v1(ivr(i)+(i - « y f;fM(iV;(ii 

Csr = [{a* + j2'/a>)% + *>„ - 2 / ? ^ + (l -aft + f V ^ X 

+ ^ I I ^ O K (i)- (i - « y f.vf(iV;(i)+(i - ^KfM(i>;(i), 

^ = A X + ^ + {i - (I - a\\+f)Y - r]csr+Ydsr - (I - vW^M)-

3.2.4 Delay and non-purely-tangential entry model III 

(3.89) 

(3.90) 

(3.91) 

Here, the forces exerted by the pipe on the fluid at the inlet in the x- and y-

direction are given by Eqns. (3.53) and (3.54), i.e. as in model I. Next, we apply a delay 

fa as in Eqn. (3.63) to Fx, and a delay f( as in Eqn. (3.64) to Fy, but only to the terms 

related to the fluid velocity inside the pipe, i.e. not those involving v, to obtain 

Fx - MU[- U cos % exp(~ Wa ) ~ (~ v c o s «9)1 

F = MU[(wL - U sin ̂ )exp(- itpt) - (- v sin &)\ 

(3.92) 

(3.93) 

where exp(-i(pa) and exp(-/#>,,) are given by Eqns. (3.70) and (3.71), respectively. 

Since x and 3 are presumed to be small, then Eqns. (3.22), (3.23), (3.55), and (3.56) 

hold. Therefore, the forces Fx and Fy can be written as 

Fr = -MU' (>-«)-r.f() (3.94) 

Fy = MU\ wL-{\- ay/)Uw'L -rt — (wL -Uw'L ) 
ot 

(3.95) 

The forces exerted by the fluid on the pipe at the inlet, F* and F*, are equal and opposite 

to those exerted by the pipe on the fluid at the inlet, Fx and Fy. Thus, 

F* = MU: 

ot 
(3.96) 
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F; = -MU\ wL-{l- ay/pw'L -fe— (wL - Uw[) 
at 

(3.97) 

The forces exerted by the fluid on the pipe at the inlet in the <f- and C-direction, 

respectively, are 

F;«F;, 

F: « -MU[wL - (1 - ¥)ccUw'L -fewL+ (fe - fa pw[ } 

It is now supposed that 

-pA = F* =MU7 0-«K.f() 

T=-yp(Ae-A) = fyMU~< <j-«)-^() = fMU: 8 o-«)-̂ o 
Consequently, 

(T-pA)=(\ + y)MU: G-M.fO 

(3.98) 

(3.99) 

(3.100) 

(3.101) 

(3.102) 

The equation of motion for a cantilevered pipe aspirating fluid, Eqn. (3.17), is 

subject to the appropriate boundary conditions for a cantilevered pipe. At x = 0, Eqn. 

(3.37) applies, and at x = L, 

d w d w 

dx* dx> 

dw u \ rrdw - S2w i_ ^\rTd2w 
= 0, (3.103) 

where the shear force boundary condition is related to F^, and can be incorporated in the 

equation of motion via a Dirac delta function, <5(x - L). Note that an arbitrary factor, K, 

has been introduced since it is presumed that the shear force at the inlet does not fully 

materialize. Eqns. (3.17), (3.102), and (3.103) are combined to give 
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EI 1 + 
( -*\ a 

— M I o a +r 

\ Q dt 

-(M + m-Ma)g(L-x)^ + (l + f)MU2fa - ^ -v W5v / ^ v / / a dx2dt 

d w / \ dw dw 
- 2MU + (M + m- Mjg— + c — 

dxdt dx dt 
+ (M + m + M„)—z- + KMU V a} dt2 '^-(\-¥)ccU^ 

dt dx 
S(x-L) 

-KMU\ 1" - - \ll '•aJu 

dt1 dxdt 
S(x-L) = 0. 

(3.104) 

Utilizing Eqn. (3.40), the dimensionless equation of motion is 

1 + a + 
CD dr 0 + ti-(i-aXi + r)V-r(i-d0 

+ (i+fV2f; -• d3/7 _ nu d2ri dn drj d2ri 
• — ^ — 2 B h u - + v —'- + <T—'- +—f 

dfdr d@r d% dz dr2 

+ K 
dr dc, dr 

+ (r;-ra*)w 
d2T] 

d£jdx 
*fe-l) = 0, 

(3.105) 

where Eqns. (3.42) and (3.80) hold. The system is discretized following the Galerkin 

procedure described in Section 3.2.1 to give 

Msr = ssr-Kj3^uf;^Ml 

Csr = [{a* + F/a>)% + a}>sr - 2^ubsr + (l + rV<cs 

(3.106) 

(3.107) 

Kr=^Sr+jbr + {l-{l-aXl + y)y-r)p„+}dr-K{l-^W^M)- (3-108) 
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3.2.5 Theoretical results 

The three delay and non-purely-tangential entry models described in Sections 

3.2.2 to 3.2.4 were investigated numerically using MATLAB, and only the most pertinent 

results are presented here for brevity. The system studied is a flexible pipe with 

a* = 0.00030, ft = 0.03578, fi = 6.10x10"*, and y = 11.9, which corresponds to a 

physical system with the following dimensional quantities: D0 = 0.0159 m, Dt< = 0.00934 

m, L = 0.401 m, EI = 7.63xl0-3 Nm2 , m = 0.144 kg/m, M = 8.81 xlO-5 kg/m, and 

Ma = 3.01 xlO-4 kg/m. Tables 3.1 and 3.2 present the various models and delays, 

respectively, that appear throughout this section, where Ucr = 61.3 m/s and Q = 1.107 Hz 

were chosen based on experimental results, which will be presented in Section 3.3.3. 

In addition, Tables 3.3, 3.4, and 3.5 present the nondimensional frequencies, co, at 

u = 1.00 (for the first three modes) and at for a particular system. More 

specifically, Table 3.3 shows the effect of the various models on the dynamics of a 

system with a = 0.40, y - 0.30, and y/ = 1.00, which is the most realistic model based on 

the work of Giacobbi et al. (2008a), as a function of the various delays if gravity and 

damping effects are included in the equation of motion, while Tables 3.4 and 3.5 show the 

effect of the various delays on the dynamics of a system with specified parameters using 

model III-C. Note that an "F" in the "Instability" row corresponds to a loss of stability via 

flutter, while a "B" corresponds to a loss via buckling, and that the bracketed term 

following the "F" or "B" refers to the unstable mode or modes. Moreover, it should be 

mentioned that the multiplicative factor to switch from u to U in m/s is 23.2, while that to 

switch from co to / in Hz is 0.228. 

Referring to Table 3.3, when no delay is applied, models I, II, and III-A yield 

identical results and nondimensional critical flow velocities, i.e. ucr - 4.32; however, 

models III-B and III-C result in lower critical flow velocities. Similarly, when delay III or 

IV is applied, models I, II, and III-A exhibit similar nondimensional frequencies and 

critical flow velocities, i.e. ucr ~ 4, while models III-B and III-C yield lower critical flow 

velocities, i.e. ucr ~ 3 and ucr ~ 2, respectively. Furthermore, in all of the above cases, 

model III-C results in the lowest nondimensional critical flow velocities; when no delay is 

applied, ucr = 2.10, when delay III is applied, ucr - 2.08, and when delay IV is applied, 
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ucr = 2.06. On the other hand, when delay I, II, V, or VI is applied, models I and II yield 

very similar, if not identical, dynamical results and nondimensional critical flow 

velocities, i.e. ucr ~ 4; however, models III-A, III-B, and III-C result in higher critical 

flow velocities when compared to the latter, the largest being for model III-C. Lastly, the 

system always loses stability in its first mode by flutter via a Hopf bifurcation. 

Table 3.1. Definition of the various models studied 

Model I 

Model II 

Model III-A 

Model III-B 

Model III-C 

Description 

The model of Section 3.2.2 

The model of Section 3.2.3 

The model of Section 3.2.4 with K = 1.00 

The model of Section 3.2.4 with K = 0.80 

The model of Section 3.2.4 with K = 0.60 

Table 3.2. Definition of the various delays studied 

No Delay 

Delay I 

Delay II 

Delay III 

Delay IV 

Delay V 

Delay VI 

ra[s] 

0 

0 

0 

\DjUcr 

DjUcr 

\DjUcr 

DjUcr 

T( [S] 

0 
DJ(\LQ) 

Dj(iLQ) 

0 

0 
DJ^LQ) 

D0/{\LQ) 

Referring to Table 3.4, if gravity and damping effects are excluded from model 

III-C when studying the dynamics of a system with specified a, f, and t// parameters, the 

system is unstable by flutter in all three modes at practically zero flow velocity, i.e. 

ucr = 0.01, which is the smallest nondimensional flow velocity step, Aw, in the MATLAB 

code. In addition, for all of the system parameters studied, the nondimensional 

frequencies for a specific mode are practically the same at ucr, regardless of the delay that 

is applied, i.e. co\ ~ 3.52, a>2 ~ 22.0, and coj, ~ 61.7. 

Referring to Table 3.5, if gravity and damping effects are included in model III-C, 

then the dynamics of a system with specified a, f, and if/ is more complex. More 
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specifically, a system with either a = 0.40 and y - 0.30, or a = 0.20 and y = 0.25, 

always loses stability by flutter in its first mode, and is either equally or slightly more 

stable for y/ = 0.95 than for y/ = 1.00, based on the critical flow velocities, regardless of 

the delay that is applied. On the other hand, a system with a = 0.20, y = 0.50, and 

y/ = 0.95 loses stability by buckling in its second mode at very high nondimensional flow 

velocities, i.e. ucr ~ 16, when delay I or V is applied, and loses stability by flutter in its 

first mode when either no delay or when delay II, III, IV, or VI is applied, while a system 

with a = 0.20, y = 0.50, and y/= 1.00 always loses stability by flutter in its first mode, 

regardless of the delay that is applied. Furthermore, a system with a = 0.20 and y = 0.50 

is either as much or slightly more stable for y/ = 0.95 than for y/ = 1.00, based on the 

critical flow velocities, when either no delay or when delay II, III, IV, or VI is applied, 

and is less stable for y/ = 0.95 than for y/ = 1.00 when delay I or V is applied. Lastly, 

delays I, II, V, and VI are always stabilizing when compared to the case of no delay, 

while delays III and IV are always destabilizing, based on the critical flow velocities. 

In general, the system with a = 0.40 and y = 0.30 exhibits the lowest critical flow 

velocities, is slightly more stable for y/ = 0.95 than for y/ = 1.00, and as the shear force 

factor, K, is decreased from 1.00 to 0.80 to 0.60, the critical flow velocities are increased 

when delay I, II, V, or VI is applied, and they are decreased when either no delay or when 

delay III or IV is applied. Thus, it is evident that a, y, y/, K, xa, and fe need to be fixed 

before any comparison with experiments can be done in the upcoming section. 

Thus, from Tables 3.3, 3.4, and 3.5, the most realistic system (in terms of 

similarity with observed behaviour [see Section 3.3.3]) is given by model III with 

a = 0.40 and y = 0.30, in which gravity and damping effects have been included, y/ is 

very close to 1.00, the shear force factor, K, is less than 1.00, and either no delay or delay 

III or IV is applied, i.e. when the lateral delay, f(, is zero. 

Moreover, the results suggest that the lateral delay, fe, was overestimated 

because the critical flow velocities are too high when delay I, II, V, or VI is applied. After 

some review, it was discovered that f( was actually overestimated by a factor of lit since 

the frequency of oscillation, Q, was not converted from Hz to rad/s in the MATLAB code. 
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Table 3.3. Values of co at u = 1 and at u = ucr for a system with a = 0.40, / = 0.30, 

y/ = 1.00, and non-negligible gravity and damping effects 

NO DELAY 

Re(e>,) @u = \ 
Im(«>i) @ u = 1 
Re(e>2) @ « = 1 
Im(a>2) @ M = 1 
Re(coj) @ u = 1 
Im(<u3) @ « = 1 

Instability 

Ucr 

Re(o>) @u = u„ 
Im(to) @u = u„ 

Model I 

5.583 
0.044 

24.192 
0.438 

63.955 
1.646 

F ( l s t ) 
4.32 
5.915 
0.000 

Model II 

5.583 
0.044 

24.192 
0.438 

63.955 
1.646 
F ( l s t ) 
4.32 
5.915 
0.000 

Model III-A 

5.583 
0.044 

24.192 
0.438 
63.955 
1.646 
F ( l s t ) 
4.32 
5.915 
0.000 

Model III-B 

5.583 
0.034 

24.192 
0.428 

63.955 
1.636 

F ( l s t ) 
3.12 

5.738 
0.000 

Model III-C 
5.583 
0.025 

24.192 
0.418 
63.955 
1.626 

F ( l s t ) 
2.10 
5.642 
0.000 

DELAY I 

Re(«>i) @ « = 1 
Im((u,) @ « = 1 
Re(»2) @ « = 1 
Im((o2) @ « = 1 
Re(o3) @ « = 1 
Im(<o3) @ « = 1 

Instability 

«„ 
Re(<u) @u = ucr 

lm(co) @,u = ucr 

Model I 

5.611 
0.044 

24.321 
0.441 

64.287 
1.658 
F ( l s t ) 
4.31 

6.026 
0.000 

Model II 

5.611 
0.044 

24.321 
0.441 

64.287 
1.658 

F ( l s t ) 
4.31 
6.026 
0.000 

Model III-A 

5.611 
0.320 

24.289 
1.476 

64.205 
3.342 

F ( l s t ) 
8.44 

8.804 
-0.003 

Model III-B 

5.605 
0.255 

24.272 
1.254 

64.161 
2.982 

F ( l s t ) 
8.55 

8.702 
-0.001 

Model III-C 

5.600 
0.190 

24.254 
1.034 

64.114 
2.629 

F ( l s t ) 
8.66 

8.580 
0.000 

DELAY II 

Re(«>,) @ « = 1 
Im(a>i) @ u = 1 
Re(ra2) @ ii = 1 
Im(e>2) @ M = 1 

Re(to3) @ « = 1 
Im(<o3) @ H = 1 

Instability 

ucr 

Re(eo) @u = ucr 

lm(ci)) @u = ucr 

Model I 

5.639 
0.044 

24.454 
0.444 

64.638 
1.670 

F ( l s t ) 
4.29 
6.140 
0.000 

Model II 

5.639 
0.044 

24.454 
0.444 

64.638 
1.670 

F ( l s t ) 
4.29 
6.140 
0.000 

Model III-A 

5.641 
0.604 

24.370 
2.575 
64.399 
5.178 

F ( l s t ) 
7.88 

9.198 
-0.001 

Model III-B 

5.629 
0.480 

24.341 
2.115 
64.331 
4.412 

F(ls*) 
8.09 

9.059 
-0.001 

Model III-C 
5.617 
0.357 

24.309 
1.668 

64.252 
3.675 
F ( l s t ) 
8.31 

8.899 
-0.001 

DELAY III 

Re(ft>!) @ M = 1 
Im(cut) @ « = 1 
Re(a>2) @ « = 1 
Im(e>2) @ u = 1 
Re(«)3) @ « = 1 
Im(ft)3) @ H = 1 

Instability 

«cr 

Re(o) @u = ucr 

Im(co) @u = ucr 

Model I 

5.583 
0.044 

24.192 
0.438 
63.955 
1.644 

F ( l s t ) 
4.35 
5.921 
0.000 

Model II 

5.583 
0.044 

24.192 
0.437 

63.955 
1.643 

F ( l s t ) 
4.26 
5.904 
0.000 

Model III-A 

5.583 
0.044 

24.192 
0.436 

63.955 
1.641 

F ( l s t ) 
4.22 
5.897 
0.000 

Model III-B 

5.583 
0.034 

24.192 
0.426 

63.955 
1.631 

F ( l s t ) 
3.06 

5.731 
0.000 

Model III-C 

5.583 
0.024 

24.192 
0.416 

63.955 
1.622 

F ( l " ) 
2.08 
5.640 
0.000 
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Table 3.3. cont 'd 

DELAY IV 

Re(a>0 @ « = 1 
\m(fi)\) @ « = 1 
Re(c*2) @ « = 1 
Im(a>2) @ « = 1 
Re(e>3) @ « = 1 
Im(a>3) @ « = 1 

Instability 
M„ 

Re(o) @u = ucr 

\m{oj) @u = u„ 

Model I 
5.583 
0.044 

24.192 
0.437 
63.955 
1.642 
F(l s ' ) 
4.38 
5.926 
0.000 

Model II 
5.583 
0.044 

24.192 
0.436 
63.955 
1.640 
F(l s t) 
4.20 
5.894 
0.000 

Model III-A 
5.583 
0.043 

24.192 
0.434 
63.955 
1.636 
F(l s t) 
4.12 
5.880 
0.000 

Model III-B 
5.583 
0.034 
24.192 
0.424 
63.955 
1.627 
F (1st) 
3.00 
5.724 
0.000 

Model III-C 
5.583 
0.024 
24.192 
0.415 
63.955 
1.617 
F (1st) 
2.06 
5.639 
0.000 

DELAYV 

Re(o,) @ « = 1 
Im(»i) @ « = 1 
Re((o2) @ « = 1 
Im(a)2) @ u = 1 
Re(e>3) @ « = 1 
Im(<u3) @ M = 1 

Instability 
u„ 

Re(w) @u = ucr 

Im(a>) @u = u„ 

Model I 
5.611 
0.044 
24.321 
0.440 
64.287 
1.656 
F(l s t) 
4.33 
6.030 
0.000 

Model II 
5.611 
0.044 
24.319 
0.440 
64.280 
1.654 
F(l s t) 
4.25 
6.012 
0.000 

Model III-A 
5.611 
0.320 

24.289 
1.474 

64.206 
3.337 
F(l s t) 
8.39 
8.839 
-0.003 

Model III-B 
5.605 
0.255 

24.272 
1.252 

64.161 
2.978 
F(l s t) 
8.51 
8.733 
-0.001 

Model III-C 
5.600 
0.189 
24.254 
1.032 

64.114 
2.624 
F(l") 
8.63 

8.606 
-0.001 

DELAY VI 

Re(coi) @ « = 1 
Im(w,) @ H = 1 
Re(o2) @ M = 1 
Im(tu2) @ « = 1 
Re(<w3) @u = \ 
Im(«>3) @ « = 1 

Instability 

«„ 
Re(cu) @ « = «„ 
Im(a>) @u = ucr 

Model I 
5.639 
0.045 
24.454 
0.442 
64.638 
1.666 
F(l s t) 
4.35 
6.154 
0.000 

Model II 
5.639 
0.044 
24.447 
0.441 
64.609 
1.663 
F(ls t) 
4.18 
6.109 
0.000 

Model III-A 
5.641 
0.604 
24.370 
2.571 
64.400 
5.168 
F(l s t) 
7.73 

9.287 
0.000 

Model III-B 
5.629 
0.479 

24.341 
2.112 
64.331 
4.403 
F (1st) 
7.96 

9.140 
-0.002 

Model III-C 
5.617 
0.356 
24.309 
1.665 

64.253 
3.666 
F(l s t) 
8.20 
8.973 
-0.001 
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Table 3.4. Values of co at u = 1 and at u = ucr for a system with negligible gravity and 

damping effects computed using model III-C 

Re(a>,) @ u = 1 
Im(<o,) @ « = 1 
Re(e>2) @ « = 1 
Im(e>2) @ « = 1 
Re(e>3) @ « = 1 
Im(fi>3) @ H = 1 

Instability 

u„ 
Re(ft>!) @u = ucr 

101(0!) @U=U„ 
Re(tt>2) @u = u„ 
Im(o>2) @u = ucr 

Re(e>3) @ « = M„ 
Im(fl>3) (§}« = « „ 

a = 0.40, jF =0.30, 

No Delay 
3.534 
-0.020 
21.963 
-0.020 
61.612 
-0.020 

F (1s t-3 rd) 
0.01 

3.516 
0.000 

22.034 
0.000 

61.697 
0.000 

Delay I 
3.543 
0.149 

22.024 
0.574 

61.789 
0.961 

F ( l s t -3 r f ) 
0.01 

3.516 
0.000 

22.035 
0.000 

61.699 
0.000 

y/ = 0.95,7 = 

Delay II 
3.549 
0.321 

22.074 
1.184 

61.945 
1.983 

F (1s t-3 rd) 
0.01 

3.516 
0.000 

22.036 
0.000 

61.701 
0.000 

0, a' = 0 , Ji' = 0 , o - = 0 

Delay III 
3.534 
-0.020 
21.963 
-0.021 
61.612 
-0.024 

F ( l s , -3 n i ) 
0.01 

3.516 
0.000 

22.034 
0.000 

61.697 
0.000 

Delay IV 
3.534 
-0.020 
21.963 
-0.023 
61.612 
-0.028 

F ( l s , - 3 r f ) 
0.01 

3.516 
0.000 

22.034 
0.000 

61.697 
0.000 

Delay V 
3.543 
0.149 

22.024 
0.572 

61.789 
0.957 

F (1s t-3 rd) 
0.01 

3.516 
0.000 

22.035 
0.000 

61.699 
0.000 

Delay VI 
3.549 
0.321 

22.075 
1.181 

61.945 
1.974 

F (1s t-3 rd) 
0.01 

3.516 
0.000 

22.036 
0.000 

61.701 
0.000 

Re(fi),) @ M = 1 
Im(fi>i) @ « = 1 
Re(o2) @ « = 1 
Im(o2) @ « = 1 
Re(tw3) @ « = 1 
Im(o3) @ « = 1 

Instability 

"<r 
Re(a)i) @u = u„ 
Im((«i) @u = u„ 
Re(e>2) @ « = «„ 
Im(o)2) @u = u„ 
Re(w3) @u = ucr 

Im(e>3) @ « = «„ 

a = 0.4 

No Delay 
3.543 
-0.020 
21.968 
-0.020 
61.615 
-0.020 

F (1s t-3 rd) 
0.01 

3.516 
0.000 

22.034 
0.000 

61.697 
0.000 

0, y = 0.30, 

Delay I 
3.553 
0.149 

22.029 
0.574 

61.792 
0.961 

¥(}*-$*) 
0.01 

3.516 
0.000 

22.035 
0.000 

61.699 
0.000 

^ = 1.00,j' = 

Delay II 
3.559 
0.320 

22.080 
1.184 

61.948 
1.983 

F (1s t-3 rd) 
0.01 

3.516 
0.000 

22.036 
0.000 

61.701 
0.000 

0, a* = 0 , Ji' =0 , f f = 0 

Delay III 
3.543 
-0.020 
21.968 
-0.021 
61.615 
-0.024 

F (1s t-3 rd) 
0.01 

3.516 
0.000 

22.034 
0.000 

61.697 
0.000 

Delay IV 
3.543 
-0.020 
21.968 
-0.023 
61.615 
-0.028 

F (1s t -3 rd) 
0.01 

3.516 
0.000 

22.034 
0.000 

61.697 
0.000 

Delay V 
3.553 
0.149 

22.029 
0.572 

61.792 
0.957 

F (1s t-3 rd) 
0.01 

3.516 
0.000 

22.035 
0.000 

61.699 
0.000 

Delay VI 

3.559 
0.320 

22.080 
1.181 

61.948 
1.974 

Y (Ist-3rd) 
0.01 

3.516 
0.000 

22.036 
0.000 

61.701 
0.000 

Re(toi) @ M = 1 
I m ^ O @ « = 1 
Re(«)2) @ « = 1 
Im(<u2) @ « = 1 
Re(«)3) @ « = 1 
Im(<a3) @ « = 1 

Instability 
M„ 

Re(c>i) @u = ucr 

Im(o>i) @u = u„ 
Re(to2) @u-u„ 
Im(e)2) @u = u„ 
Re(«)3) @u = u„ 
Im(fi>3) @ « = «„ 

a - 0.2 

No Delay 
3.487 
-0.019 
22.092 
-0.020 
61.770 
-0.020 

F (1 s t-3 rd) 
0.01 

3.516 
0.000 

22.034 
0.000 

61.697 
0.000 

0, y = 0.50, 

Delay I 
3.497 
0.151 

22.153 
0.574 

61.946 
0.961 

F (1s t-3 rd) 
0.01 

3.516 
0.000 

22.035 
0.000 

61.699 
0.000 

i/t = 0.95,y = 

Delay II 
3.502 
0.325 

22.204 
1.185 

62.102 
1.982 

F(\*.y*) 

0.01 
3.516 
0.000 

22.036 
0.000 

61.701 
0.000 

0, a* = 0 , / 

Delay III 
3.487 
-0.019 
22.092 
-0.022 
61.770 
-0.025 

F (1s t-3 rd) 
0.01 

3.516 
0.000 

22.034 
0.000 

61.697 
0.000 

V =0 , f f = 0 

Delay IV 
3.487 
-0.020 
22.092 
-0.023 
61.770 
-0.029 

F (1 s t-3 rd) 
0.01 

3.516 
0.000 

22.034 
0.000 

61.697 
0.000 

Delay V 
3.497 
0.151 

22.153 
0.572 

61.946 
0.956 

F (1s t-3 rd) 
0.01 

3.516 
0.000 

22.035 
0.000 

61.699 
0.000 

Delay VI 
3.502 
0.325 

22.204 
1.181 

62.102 
1.973 

F (1s t-3 rd) 
0.01 

3.516 
0.000 

22.036 
0.000 

61.701 
0.000 



CHAPTER 3 

Table 3.4. cont 'd 

Re(o),) @ u = 1 
lm(a)i) @ u = 1 
Re(e>2) @ « = 1 
Im(a>2) @ u = 1 
Re(o>3) @ M = 1 
Im(a>3) @ « = 1 

Instability 
H„ 

Re(a>i) @ « = «„ 
1111(a)!) @u = u„ 
Re(e>2) @u = ucr 

Im(a>2) @u = u„ 
Re(a>3) @u = u„ 
Im(o»3) @u = ucr 

a = 0.20, y =0.50, 

No Delay 
3.492 
-0.019 
22.095 
-0.020 
61.772 
-0.020 

F (1st-3rd) 
0.01 
3.516 
0.000 

22.034 
0.000 
61.697 
0.000 

Delay I 
3.501 
0.151 

22.156 
0.574 
61.948 
0.961 

F (1st -3rd) 
0.01 
3.516 
0.000 

22.035 
0.000 
61.699 
0.000 

y/ = 1.00,j» = 

Delay II 
3.507 
0.325 

22.207 
1.185 

62.104 
1.982 

F (1st -3rd) 
0.01 
3.516 
0.000 

22.036 
0.000 

61.701 
0.000 

0, a* =0 , /T =0,<r=0 

Delay III 
3.492 
-0.020 
22.095 
-0.022 
61.772 
-0.025 

F ( 1 ^ . 3 " i ) 

0.01 
3.516 
0.000 

22.034 
0.000 
61.697 
0.000 

Delay IV 
3.492 
-0.020 
22.095 
-0.023 
61.772 
-0.029 

F (1st-3rd) 
0.01 
3.516 
0.000 

22.034 
0.000 

61.697 
0.000 

Delay V 
3.501 
0.151 

22.156 
0.572 

61.948 
0.956 

F (1st-3rd) 
0.01 

3.516 
0.000 

22.035 
0.000 
61.699 
0.000 

Delay VI 
3.507 
0.325 
22.207 
1.181 

62.104 
1.973 

F (1st-3rd) 
0.01 
3.516 
0.000 

22.036 
0.000 
61.701 
0.000 

Re(oi) @ « = 1 
Im(a>i) @ w = 1 
Re(a>2) @ « = 1 
Im(a»2) @ « = 1 
Re(ft)3) @ M = 1 
Im(w3) @ « = 1 

Instability 
«cr 

Re(«>i) @u = u„ 
Im(<yi) @u = u„ 
Re(o2) @u = u„ 
Im(a»2) @u = ucr 

Re(o3) @u = u„ 
Im(a»3) @u = ucr 

« = 0.2 

No Delay 
3.511 
-0.020 
22.032 
-0.020 
61.696 
-0.020 

F(l s ,-3 l d) 
0.01 
3.516 
0.000 

22.034 
0.000 
61.697 
0.000 

0, f - 0.25, 

Delay I 
3.521 
0.150 

22.093 
0.574 

61.872 
0.961 

F ( 1 s t . 3 n i ) 

0.01 
3.516 
0.000 

22.035 
0.000 
61.699 
0.000 

y/ = 0.95,y= 

Delay II 
3.527 
0.323 

22.144 
1.185 

62.028 
1.983 

F ( l « . 3 n i ) 

0.01 
3.516 
0.000 
22.036 
0.000 
61.701 
0.000 

0, a' =0 , ]i' =0,«r = 0 

Delay III 
3.511 
-0.020 
22.032 
-0.021 
61.696 
-0.024 

F(ls t-3nl) 
0.01 
3.516 
0.000 

22.034 
0.000 
61.697 
0.000 

Delay IV 
3.511 
-0.020 
22.032 
-0.023 
61.696 
-0.028 

F (1st-3rd) 
0.01 
3.516 
0.000 

22.034 
0.000 

61.697 
0.000 

Delay V 
3.521 
0.150 

22.093 
0.572 

61.872 
0.957 

F (1st-3rd) 
0.01 
3.516 
0.000 

22.035 
0.000 
61.699 
0.000 

Delay VI 
3.527 
0.323 

22.144 
1.181 

62.028 
1.974 

F (1st-3rd) 
0.01 
3.516 
0.000 

22.036 
0.000 
61.701 
0.000 

Re(«»i) @ « = 1 
Im(o,) @ « = 1 
Re(o2) @ « = 1 
Im(a>2) @ « = 1 
Re(o»3) @ « = 1 
Im(o»3) @ M = 1 

Instability 
«cr 

Re(e>!) @u = ucr 

Im(a>i) @ « = ucr 

Re(a»2) @u = u„ 
Im(e>2) @u = u„ 
Re(a»3) @u = u„ 
Im(o3) @u = ucr 

a-0.2 

No Delay 
3.516 
-0.020 
22.035 
-0.020 
61.697 
-0.020 

F (1st-3rd) 
0.01 
3.516 
0.000 
22.034 
0.000 
61.697 
0.000 

0, y - 0.25, 

Delay I 
3.526 
0.150 

22.096 
0.574 

61.874 
0.961 

F (1st-3rd) 
0.01 
3.516 
0.000 

22.035 
0.000 
61.699 
0.000 

^=1.00,y = 

Delay II 
3.531 
0.323 

22.146 
1.184 

62.030 
1.983 

F (1st-3rd) 
0.01 

3.516 
0.000 

22.036 
0.000 
61.701 
0.000 

0, a* =0 , ) 

Delay III 
3.516 
-0.020 
22.035 
-0.021 
61.697 
-0.024 

F (1st-3rd) 
0.01 
3.516 
0.000 

22.034 
0.000 
61.697 
0.000 

V = 0, a = 0 

Delay IV 
3.516 
-0.020 
22.035 
-0.023 
61.697 
-0.028 

F (1st -3rd) 
0.01 

3.516 
0.000 

22.034 
0.000 
61.697 
0.000 

Delay V 
3.526 
0.150 

22.096 
0.572 

61.874 
0.957 

F (1st-3rd) 
0.01 
3.516 
0.000 

22.035 
0.000 

61.699 
0.000 

Delay VI 
3.531 
0.323 

22.147 
1.181 

62.030 
1.974 

F (1st-3rd) 
0.01 
3.516 
0.000 
22.036 
0.000 

61.701 
0.000 
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Table 3.5. Values of co at u = 1 and at u = ucr for a system with non-negligible gravity and 

damping effects computed using model III-C 

Re(<w,) @ u = 1 
101(0)0 @U = \ 
Re(<u2) @ « = 1 
Im(o>2) @ « = 1 
Re(e>3) @ « = 1 
Im(a>3) @ « = 1 

Instability 
u„ 

Re(o) @u = u„ 
Im(e>) @ « = «„ 

a = 0.40, y = 0.30, 

No Delay 
5.577 
0.025 

24.187 
0.418 
63.952 
1.626 
F(l s ' ) 
2.11 
5.618 
0.000 

Delay I 
5.594 
0.190 

24.249 
1.034 

64.111 
2.629 
F(l s t) 
8.67 
8.577 
0.000 

!P = 0.95,># 

Delay II 
5.611 
0.357 

24.304 
1.668 

64.249 
3.675 
F(l s t) 
8.32 

8.895 
-0.002 

0,«*^0, fTt0,at0 
Delay III 

5.577 
0.025 
24.187 
0.416 
63.952 
1.622 
F(l s t) 
2.09 
5.617 
0.000 

Delay IV 
5.577 
0.024 

24.187 
0.415 
63.952 
1.618 
F(l s ' ) 
2.07 
5.616 
0.000 

Delay V 
5.594 
0.190 

24.249 
1.032 

64.111 
2.624 
F(l s t) 
8.64 
8.604 
-0.001 

Delay VI 
5.611 
0.357 

24.304 
1.665 

64.250 
3.666 
F(l s ') 
8.20 

8.975 
0.000 

Re(co!) @ « = 1 
Im(a>i) @ u = 1 
Re(e>2) @ « = 1 
Im(<y2) @u = \ 
Re(<o3) @ u = 1 
Im(o>3) @ u = 1 

Instability 
u„ 

Re(co) @u = ucr 

\m(oj) @u = ucr 

a = 0.40, y =0.30, 

No Delay 
5.583 
0.025 

24.192 
0.418 
63.955 
1.626 
F(l s t) 
2.10 
5.642 
0.000 

Delay I 
5.600 
0.190 

24.254 
1.034 

64.114 
2.629 
F(l s t) 
8.66 
8.580 
0.000 

y/= 1.00,y?0, a* £ 0 , J * # 0 , a + 0 

Delay II 
5.617 
0.357 

24.309 
1.668 

64.252 
3.675 
F(ls t) 
8.31 

8.899 
-0.001 

Delay III 
5.583 
0.024 

24.192 
0.416 
63.955 
1.622 
F(l s t) 
2.08 
5.640 
0.000 

Delay IV 
5.583 
0.024 

24.192 
0.415 
63.955 
1.617 
F(l s t) 
2.06 
5.639 
0.000 

Delay V 
5.600 
0.189 

24.254 
1.032 

64.114 
2.624 
F(l s ' ) 
8.63 
8.606 
-0.001 

Delay VI 
5.617 
0.356 

24.309 
1.665 

64.253 
3.666 
F(l s t) 
8.20 
8.973 
-0.001 

Re(o0 @ u = 1 
Im(a>i) @ u = 1 
Re(e)2) @ u = 1 
Im(o2) @ « = 1 
Re(to3) @ M = 1 
Im(w3) @ H = 1 

Instability 

«„ 
Re(o) @u = ucr 

Im(w) @u = ucr 

« = 0.2 

No Delay 
5.548 
0.025 

24.303 
0.416 
64.104 
1.623 
F(l s t) 
2.61 
5.446 
0.000 

0, f = 0.50, 

Delay I 
5.565 
0.192 

24.364 
1.032 

64.263 
2.626 
B (2nd) 
16.08 
0.000 
0.000 

^ = 0.95,7^0, a" £ 0 , Ji' ^0,<r^0 

Delay II 
5.582 
0.361 

24.420 
1.667 

64.401 
3.672 
F(l s t) 
13.60 
15.702 
0.000 

Delay III 
5.548 
0.025 

24.303 
0.414 
64.104 
1.619 
F (1st) 
2.55 
5.451 
0.000 

Delay IV 
5.548 
0.025 

24.303 
0.412 
64.104 
1.614 
F(l s t) 
2.50 
5.455 
0.000 

Delay V 
5.565 
0.192 

24.365 
1.031 

64.263 
2.621 
B (2nd) 
16.08 
0.000 
0.000 

Delay VI 
5.582 
0.361 

24.420 
1.664 

64.402 
3.662 
F(l s t) 
12.60 

15.159 
-0.001 

Re(«j,) @ « = 1 
Imicoi) @ u = 1 
Re(e>2) @ « = 1 
Im(fi>2) @ u = 1 
Re(fl>3) @ " = 1 
Im(o3) @ u = 1 

Instability 
Ucr 

Re(co) @u = ucr 

lm(a>) @u = uc, 

a = 0.20, y = 0.50, 

No Delay 
5.551 
0.025 

24.305 
0.416 
64.106 
1.623 
F(l s t) 
2.59 
5.468 
0.000 

Delay I 
5.568 
0.192 

24.367 
1.032 

64.264 
2.626 
F(l s t) 
18.86 

18.888 
-0.001 

y/ = 1.00, y# 0, a* £ 0, Ji' + 0, at 0 

Delay II 
5.585 
0.361 

24.422 
1.667 

64.403 
3.672 
F(ls t) 
13.60 
15.701 
0.000 

Delay III 
5.551 
0.025 
24.305 
0.414 
64.106 
1.619 
F (1st) 
2.53 
5.472 
0.000 

Delay IV 
5.551 
0.025 

24.305 
0.412 

64.106 
1.614 
F(l s t) 
2.48 
5.476 
0.000 

Delay V 
5.568 
0.192 

24.367 
1.030 

64.265 
2.621 
F(l s t) 
17.70 

18.157 
-0.001 

Delay VI 
5.585 
0.361 

24.422 
1.664 

64.403 
3.662 
F(l s ') 
12.60 
15.158 
-0.001 
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Table 3.5. cont 'd 

Re(e>0 @ u = 1 
Im(c>i) @ u = 1 
Re(a>2) @ « = 1 
Im(«>2) @ « = 1 
Re(e>3) @ « = 1 
Im(e>3) @ w = 1 

Instability 
ucr 

Re(e>) @u = ucr 

Im(a>) @u = ucr 

a = 0.20, y = 0.25, 

No Delay 
5.564 
0.025 

24.249 
0.417 
64.032 
1.625 
F(ls*) 
2.30 
5.551 
0.000 

Delay I 
5.580 
0.191 

24.311 
1.033 

64.191 
2.627 
F(l s ') 
14.62 

11.281 
-0.001 

^ = 0.95,y#0, a' ±0, Ji' £0,c£0 

Delay II 
5.597 
0.359 

24.366 
1.668 

64.329 
3.673 
F(l s t) 
11.69 
11.295 
0.000 

Delay III 
5.564 
0.025 

24.249 
0.415 
64.033 
1.621 
F(l s t) 
2.27 
5.551 
0.000 

Delay IV 
5.564 
0.025 

24.249 
0.414 

64.033 
1.616 
F(ls*) 
2.24 
5.552 
0.000 

Delay V 
5.580 
0.191 

24.311 
1.031 

64.191 
2.623 
F(l s t) 
14.18 
11.284 
-0.001 

Delay VI 
5.597 
0.359 
24.366 
1.665 

64.330 
3.665 
F(l s t) 
11.14 

11.297 
0.000 

Re(a>,) @ « = 1 
Im((y,) @ « = 1 
Re(fl)2) @ H = 1 
Im(a>2) @ « = 1 
Re(e>3) @ u = 1 
Im(a>3) @ u = 1 

Instability 
«„ 

Re(e>) @u = u„ 
Im(o) @u = ucr 

a = 0.2 

No Delay 
5.566 
0.025 

24.251 
0.417 

64.034 
1.625 
F (1st) 
2.29 
5.566 
0.000 

0, y =0.25, 

Delay I 
5.583 
0.191 

24.313 
1.033 

64.193 
2.627 
F(l s t) 
14.62 
11.277 
-0.001 

^=1.00,j>#0, a* £ 0 , ft' 5*0,ff?£0 

Delay II 
5.600 
0.359 
24.368 
1.668 

64.331 
3.673 
F(l s t) 
11.69 
11.293 
0.000 

Delay III 
5.566 
0.025 

24.251 
0.415 

64.034 
1.620 
F(l s t) 
2.26 
5.566 
0.000 

Delay IV 
5.566 
0.025 

24.251 
0.414 

64.034 
1.616 
F(l s t) 
2.23 
5.566 
0.000 

Delay V 
5.583 
0.191 

24.313 
1.031 

64.193 
2.623 
F(l s t) 
14.18 
11.280 
-0.001 

Delay VI 
5.600 
0.359 

24.369 
1.665 

64.332 
3.665 
F(l s ') 
11.14 
11.296 
0.000 

However, Fig. 3.6 demonstrates that this error has a small impact on the critical flow 

velocity results since the correct values for the lateral delay, fe, fall within the range 

1(T s < ft < 10" s, where ucr is found to vary only slightly. Hence, it was deemed 

unproductive to repeat the relevant calculations in Tables 3.3, 3.4, and 3.5. Nevertheless, 

a more realistic ve would be within the range 10 s < r, < 10" s because this would 

result in lower critical flow velocities. 

Fig. 3.7 presents a typical Argand diagram using model III-C, in which gravity 

and damping effects are included, and a five-mode Galerkin approximation for the first 

three modes as a function of u for an aspirating pipe with a = 0.40, y = 0.30, y/ = 1.00, 

K = 0.60, fa = DilUcr, = 1.52xl0"4 s, and fe = 10"3 s. Note that the lateral delay, fe, was 

chosen rather arbitrarily based on Fig. 3.6. From Fig. 3.7, it can be observed that the 

system becomes unstable by flutter via a Hopf bifurcation in its first mode at ucr = 2.63, 

while the second and third modes are subject to flow-induced damping for 0 < u < 12. 
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Figure 3.6. Nondimensional critical flow velocity, ucr, as a function of the lateral delay, 

fe, for • fa = 0, • fa = { DjUcr = 7.62 x 10"5 s, A ffl = DjUcr = 1.52 x 1(T4 s. 
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Figure 3.7. Argand diagram as a function of u for a = 0.40, y = 0.30, y/ = 1.00, K = 0.60, 

fa =1.52xl0-4s,and it = 10-3 s using a five-mode Galerkin approximation. 
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3.3 Experimental Investigation 

3.3.1 Experimental apparatus 

The experiments of a cantilevered pipe aspirating fluid were conducted using air, 

as opposed to water, the usual choice for the case of a cantilevered pipe conveying fluid. 

Earlier water experiments led to unconvincing results for two main reasons. Firstly, 

dissipation to the surrounding fluid is increased when the pipe is submerged in water, a 

fluid that is more viscous than air. Therefore, oscillations that are damped out in water 

become discernible in air. Secondly, with water flow, a shell-type buckling collapse 

occurs near the clamped end of the cantilevered pipe, which is due to a large transmural 

pressure difference as the flow velocity is increased; this may be eliminated if air is 

chosen as the working fluid. 

The present experiments were performed with three flexible pipes: (i) an ordinary 

elastomer pipe, (ii) a stiffened elastomer pipe, and (iii) a denser elastomer pipe. The 

second pipe was stiffened by inserting a thin metal blade along the length of the pipe 

during the casting process in order to confine the motion of the pipe to a two-dimensional 

plane. Note that, if the ordinary elastomer pipe is used, the system exhibits three-

dimensional behaviour. The third pipe was made denser, and thus heavier, by introducing 

fine copper particles within the two-part silicone rubber mixture during the casting 

process, and was also cut shorter in length. The reader is referred to Appendix A for a 

detailed procedure of the conventional casting process. Table 3.6 presents the geometrical 

and physical properties of each flexible elastomer pipe described above. Note that^, and 

S„ are the natural frequency and log decrement of the pipe in the nth mode. For higher 

modes, i.e. n > 4, the log decrement of the system is approximated by the linear 

regression line that best fits the data for the first three modes. The reader is referred to 

Appendix B for specific information concerning the determination of the natural 

frequencies, flexural rigidity, and logarithmic decrements of the cantilevered pipe system 

using experimental techniques. Additionally, the pipes were fitted with differently 

profiled end-pieces, which are illustrated in Table 3.7, in order to prevent what appears to 
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Table 3.6. The geometrical and physical properties of the pipes 

Properties 
Do 
Di 
L 
EI 
m 
M 
Ma 

P 
y 

—* 
a — * 

A 
h 
h 
dx 
di 
s3 
s„ 

[m] 
[m] 
[m] 

[N-m2] 
[kg/m] 
[kg/m] 
[kg/m] 

["] 
I" 1 
[" 1 
[ - ] 
[Hz] 
[Hz] 
[Hz] 
[" ] 
[" ] 
[" ] 
[" 1 

Pipel 
0.0159 

0.00934 
0.401 

7.63 xlO'3 

0.144 
/(fluid density) 
/(fluid density) 
/(fluid density) 
/(fluid density) 

0.00030 

0.03578 
1.27 
5.47 
14.8 

0.0423 
0.119 
0.160 

0.0590^-0.0107 

Pipe 2 
0.0159 
0.00794 

0.412 
8.25 xlO"3 

0.184 
/(fluid density) 
/(fluid density) 
/(fluid density) 
/(fluid density) 

0.00030 

0.03914 
1.20 
5.08 
12.5 

0.0438 
0.101 
0.215 

0.0854H-0.0511 

Pipe 3 
0.0159 

0.00635 
0.346 

LlOxlO"2 

0.355 
/(fluid density) 
/(fluid density) 
/(fluid density) 
/(fluid density) 

0.00023 

0. 04863 
1.34 
5.86 
15.6 

0.0587 
0.141 
0.183 

0.0623H + 0.0030 

Table 3.7. The various end-pieces used during the air experiments 

Pipel 

Pipe 2 

Pipe 3 

End-piece A 

c | 

.-••''' 

1 ''• i | 

End-piece B 

1 .•••'' '•'-. 1 

End-piece C 

!..-•''' 
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be either a shell-type flutter or dynamic divergence instability, which produces a very 

loud noise, followed quickly afterwards by a shell-type buckling collapse at the free end 

of the pipe when the flow velocity attained u ~ 6.59 in an experiment with pipe 1. The 

various profiled end-pieces were also used for better fluid entry at the free end of the 

cantilevered pipe. 

Air in Air out 

(a) 

0) 

(ii) 

(iii) 

Airou 

1 

Air in 

JL 

(b) 

Figure 3.8. (a) Discharging configuration; (b) aspirating configuration, 

(i) Large steel tank; (ii) plexiglas protective conduit; (iii) flexible elastomer pipe. 

The experimental set-up consists primarily of (i) a large steel tank, (ii) an internal 

plexiglas flow-guiding protective conduit, (iii) an Optron system, which is a non-contact 

electro-optical biaxial displacement follower system that consists of an optical head and a 

control unit, and (iv) a flexible elastomer pipe. The large steel tank is the one built by 

Pai'doussis in 1986 at McGill University to conduct experiments involving a cantilevered 

pipe aspirating water [see Chapter 1]. The author is indebted to Dana Blake Giacobbi for 

removing the rust that had formed over the years, and also painting the interior surface of 

the tank, so that it may be used for experiments once again. The tank, which possesses a 

plexiglas window for viewing and recording purposes, as well as three pressure gauges 

located at three different locations, can easily be switched to accommodate either a 

discharging or an aspirating cantilevered pipe, as shown in Fig. 3.8. The internal plexiglas 
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flow-guiding protective conduit (15 cm * 15 cm in internal cross-section) is placed within 

the tank, and attached by eight bolts to the top cover of the tank, such that it appears 

suspended. The combination of a screen, a honeycomb, and an additional screen is found 

at the bottom end of the conduit for flow-straightening purposes. This ensures that the air 

entering the conduit does not disturb nor perturb the pipe during experiments. 

The Optron system is used in combination with LabVIEW'to acquire a time signal 

of the motion of the pipe at various flow velocities. The acquired time signals are then 

analysed using MATLAB to extract useful information, or more specifically, the frequency 

and amplitude of oscillation of the cantilevered pipe at a particular flow velocity. Note 

that the Optron system must be calibrated before each experiment so that the amplitude 

scale of a time signal corresponds to a displacement in millimetres rather than a voltage. 

The reader is referred to Appendices C, D, and E for information regarding the 

displacement calibration of the Optron system, the experimental measurement of the flow 

velocity, and the experimental measurement of the frequency of oscillation of the system. 

3.3.2 Experimental procedure 

The procedure for a typical air experiment involving an aspirating cantilevered 

pipe is outlined below. Figs. 3.9 and 3.10 should be consulted as they provide some 

useful information. 

1. Mount and clamp a flexible elastomer pipe at one end to the brass support that is 

located at the air flow outlet, and attached by three bolts to the top cover of the large 

steel tank. Note that a pressure gauge and a muffler are also attached to the brass 

support. 

2. Connect the control unit, the low-pass filter, and the light source to power outlets with 

the power cords provided. 

3. Connect the control unit to the optical head with the appropriate cable provided. 

4. Connect the control unit to the low-pass filter with a BNC cable. Set the cut-off 

frequency on the low-pass filter to an appropriate value, such as 50 Hz. 

5. Connect the low-pass filter to the data acquisition device with a BNC cable. 

6. Connect the data acquisition device to a computer with the USB cable provided. 
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7. Open LabVIEWand load SCMEAS.VI. Set the count to an appropriate value, such as 

24 000, set the rate to 400, and set the range to ±10 V. 

8. Observe the pipe through the viewer of the optical head. Position and adjust the 

optical head so that the desired target, which is a point that lies along the length of the 

pipe and usually corresponds to the free end, is in sharp focus. 

9. Set the horizontal target phase switch to either light to the right or light to the left. Set 

the Filter to OFF and set the Power/Mode to LIGHT LEVEL on the control unit. 

10. Position the optical head so that the centre of the viewer is located within the darkest 

area of the target. Adjust the LOCK ON with a screwdriver until the horizontal meter 

reads -20%. 

11. Position the optical head so that the centre of the viewer is located within the lightest 

area of the target. Adjust the light source, and/or the lens aperture of the optical head, 

and/or the high voltage on the control unit with a screwdriver until the horizontal 

meter reads +40%. 

12. Set the Power/Mode to HORIZONTAL on the control unit. 

13. Calibrate the Optron system so that the amplitude scale of the resulting time signals 

corresponds to a displacement in millimetres rather than a voltage [see Appendix C]. 

14. Position the optical head so that the horizontal meter reads 0%. 

15. Attach the braided hose, which is connected to a pressurized reservoir, to the air inlet. 

16. Open the main air valve that supplies the laboratory with compressed air from a 

source located in the basement of the Macdonald Engineering Building of McGill 

University. 

17. Verify that manometer valve 3 is open. Open manometer valves 1 and 2 together. 

Close manometer valve 3. Note that a water (or mercury) manometer is used to 

measure the difference between the upstream and downstream pressure of the orifice 

plate. Refer to Figs. 3.9 and 3.10. 

18. Increase the flow velocity in incremental steps using the air control valve. At each 

step, run SCMEAS.VI in LabVIEW, record the values of Pu AP = P\-P2, P3, P*, Ps, 

T, and estimate the frequency,/ with a chronometer and the maximum amplitude, A, 

with a ruler that is glued to the acrylic glass protective housing. Refer to Fig. 3.10. 
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19. Decrease the flow velocity to zero using the air control valve, and then close the main 

air valve. Close manometer valves 1 and 2 together. Open manometer valve 3. 

20. Post-process the recorded time signals in MATLAB to obtain the frequency and the 

amplitude of oscillation of the system at each recorded step. 

Figure 3.9. Schematic of the manometer valves. 

Air Supply Air Control Valve 

Main Air Valve Orifice Plate Pressurized Reservoir 

Figure 3.10. Schematic of the experimental set-up. 
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3.3.3 Experimental results 

Table 3.8 presents the numerical values of some key theoretical and experimental 

results, such as the multiplicative factors to switch from u to U in m/s and co t o / i n Hz, 

the critical flow velocities for flutter and critical frequencies of oscillation using model 

III-C with parameters a = 0.40, y = 0.30, y/ = 1.00, K = 0.60, xa = Dt/Ucr, and ft = 10"3 s, 

and the experimental flow velocities, amplitudes, and frequencies that were recorded 

during the aspirating pipe experiments. Note that the multiplicative factors are 

approximate since they are based on the average air density in and surrounding the pipe 

for a particular experiment. However, the experimental results were plotted using the true 

multiplicative factors, which vary for each pipe and each flow velocity recorded. Note 

that the subscripts /' and/ in Table 3.8 refer to the initial and final values recorded in an 

experiment, respectively. 

The experimental results for ten separate experiments involving a cantilevered 

pipe aspirating fluid are presented in Figs. 3.11 to 3.20. Typically, a bifurcation diagram 

of amplitude versus nondimensional flow velocity, and a diagram of frequency versus 

nondimensional flow velocity are presented in each figure. Note that the time history 

signals were generally obtained for a point located close to the free end of the pipe; the 

exact location is mentioned in Figs. 3.11 to 3.20. Furthermore, each experiment is 

labelled based on the pipe tested, as well as the end-piece used. For example, Experiment 

1A refers to the use of pipe 1 and end-piece A, as identified in Table 3.7. Note, however, 

that the letter X in Experiment IX refers to the use of no end-piece, which always results 

in shell-type flutter and buckling instabilities at the free end of the pipe. If available, 

visual estimates for frequency and amplitude are also included in Figs. 3.11 to 3.20. 

In general, the amplitude of oscillation of the system increases as the flow velocity 

is increased. More specifically, at low flow velocities, the amplitude grows slowly, but at 

higher flow velocities, the amplitude grows much quicker. Note that pipe 1 exhibits the 

largest amplitudes, while pipe 3 exhibits the smallest. Thus the question remains: Does a 

cantilevered pipe aspirating fluid lose stability by flutter at small flow velocities? The 

answer is yes, if one considers a flow velocity of approximately 60 m/s to be small. 

Unfortunately, smaller flow velocities cannot be attained with the experimental set-up 
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currently being used because of an unstable and inadequate air flow supply from the 

mains at lower flow velocities. However, it can definitely be said that the cantilevered 

pipe aspirating fluid does flutter for all measurable flow velocities. The numerical results 

of Giacobbi (2007) and Giacobbi et al. (2008b) also confirm this. 

Furthermore, although it is tempting to explain the non-zero amplitude 

measurements at low flow velocities with either the presence of flow irregularities or 

structural imperfections, the frequency versus nondimensional flow velocity graphs do 

provide some additional valuable insight. In every experiment, the frequency remains 

Table 3.8. Key results including multiplicative factors, vibration amplitudes, flow 

velocities, and vibration frequencies 

Experiment 

IX-Run #1 
1A-Run# l 
1A-Run#2 
1A-Run#3 
IB-Run #1 
l C - R u n # l 
2A - Run #1 
2A-Run#2 
2A-Run#3 
3 A - R u n # l 

Multip 
fad 

u-+U 

23.2 
22.7 
21.8 
21.8 
21.9 
22.0 
21.6 
24.7 
23.4 
38.6 

licative 
ors 

co^f 

0.228 
0.227 
0.227 
0.227 
0.227 
0.227 
0.198 
0.198 
0.198 
0.234 

Theoi 
critica 

UCr 

2.61 
2.58 
2.49 
2.48 
2.50 
2.52 
2.89 
3.27 
3.11 
6.06 

"etical 
values 

Re(Ocr) 

5.69 
5.68 
5.67 
5.67 
5.67 
5.68 
6.15 
6.19 
6.17 
6.49 

Experimental 
flow velocities 

«/ = Ucr 

2.49 
2.54 
2.49 
2.49 
2.49 
2.60 
2.81 
2.84 
2.83 
1.96 

Uf 

6.58 
10.0 
10.4 
10.3 
11.0 
11.0 
9.38 
7.50 
8.39 
5.68 

Experimental 
max amplitudes 

A,-
[mm] 
0.312 
0.945 
0.369 
N/A 
0.194 
0.616 
0.124 

0.0782 
0.125 

0.0627 

A/ 
[mm] 
3.55 
18.8 
13.4 
N/A 
15.0 
11.4 
2.97 
2.28 
2.58 
0.445 

Experiment 

IX-Run #1 
1A-Run#l 
1A-Run#2 
1A - Run #3 
IB - Run #1 
l C - R u n # l 
2 A - R u n # l 
2A-Run#2 
2A-Run#3 
3 A - R u n # l 

Experimental 
rms am 

A, 
[mm] 
0.107 
0.372 
0.151 
N/A 

0.0663 
0.202 
0.0547 
0.0291 
0.0563 
0.0176 

plitudes 

A/ 
[mm] 
1.38 
6.25 
5.97 
N/A 
5.40 
3.84 
1.12 

0.967 
1.11 

0.169 

Experimental frequencies 
(PSD-8 windows) [Hz] 

1 

1.27 
1.17 
1.17 
1.17 
1.17 
1.17 
1.07 
1.07 
1.07 
1.37 

2 

1.17 
1.07 
1.07 
1.07 
1.07 
1.07 

None 
None 
None 
1.27 

3 

None 
0.977 
0.977 
0.977 
0.977 
0.977 
None 
None 
None 
None 

(PSD-

1 

1.17 
1.17 
1.17 
1.17 
1.17 
1.17 
1.17 
1.17 
1.17 
1.37 

6 windows) [Hz] 

2 

None 
0.977 
0.977 
0.977 
0.977 
0.977 
0.977 
0.977 
0.977 
None 

3 

None 
None 
None 
None 
None 
None 
None 
None 
None 
None 
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Figure 3.11. Results of Experiment IX - Run #1 measured at the free end of the pipe. 

(a) amplitude versus u: • ruler estimate, • max amplitude, A rms amplitude; (b) frequency 

versus u: • chronometer estimate, • PSD (8 windows), A PSD (16 windows). 
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Figure 3.12. Results of Experiment 1A - Run #1 measured 5 mm above the free end of the 

pipe, (a) amplitude versus u: • ruler estimate, n max amplitude, A rms amplitude; 

(b) frequency versus u: • chronometer estimate, • PSD (8 windows), A PSD (16 windows). 
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Figure 3.13. Results of Experiment 1A - Run #2 measured 5 mm above the free end of the 

pipe, (a) amplitude versus u: • ruler estimate, n max amplitude, • rms amplitude; 

(b) frequency versus u: • chronometer estimate, • PSD (8 windows), A PSD (16 windows). 
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(a) 

Figure 3.14. Results of Experiment 1A - Run #3 measured 76 mm above the free end of 

the pipe, (a) frequency versus u: • chronometer estimate, • PSD (8 windows), 

• PSD (16 windows). 
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Figure 3.15. Results of Experiment IB - Run #1 measured 5 mm above the free end of the 

pipe, (a) amplitude versus u: • ruler estimate, • max amplitude, A rms amplitude; 

(b) frequency versus u: • chronometer estimate, • PSD (8 windows), A PSD (16 windows). 
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Figure 3.16. Results of Experiment 1C - Run #1 measured 5 mm above the free end of the 

pipe, (a) amplitude versus u: • ruler estimate, • max amplitude, • rms amplitude; 

(b) frequency versus u: • chronometer estimate, • PSD (8 windows), • PSD (16 windows). 
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Figure 3.17. Results of Experiment 2A - Run #1 measured 8 mm above the free end of the 

pipe, (a) amplitude versus u: • ruler estimate, • max amplitude, A rms amplitude; 

(b) frequency versus u: • chronometer estimate, • PSD (8 windows), A PSD (16 windows). 
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Figure 3.18. Results of Experiment 2A - Run #2 measured 8 mm above the free end of the 

pipe, (a) amplitude versus u: • ruler estimate, • max amplitude, A rms amplitude; 

(b) frequency versus u: • chronometer estimate, • PSD (8 windows), A PSD (16 windows). 
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Figure 3.19. Results of Experiment 2A - Run #3 measured 8 mm above the free end of the 

pipe, (a) amplitude versus u: • ruler estimate, • max amplitude, A rms amplitude; 

(b) frequency versus u: • chronometer estimate, • PSD (8 windows), A PSD (16 windows). 
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Figure 3.20. Results of Experiment 3 A - Run #1 measured 5 mm above the free end of 

the pipe, (a) amplitude versus u: m max amplitude, • rms amplitude; 

(b) frequency versus u: m PSD (8 windows), • PSD (16 windows). 
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Figure 3.21. Time history signal of Experiment 1C - Run #1 for u - 11.0 illustrating the 

typical shuddering motion commonly encountered during experiments. 

rather constant at approximately 1 Hz, but also exhibits zero, one, or sometimes two 

slight jumps, depending on the number of overlapping PSD windows, i.e. either 8 or 16 

windows [see Table 3.8]. Moreover, the system, which is characterised predominantly by 

a three-dimensional, low frequency, first-mode type of flutter, also demonstrates an 

unexplainable intermittent shuddering motion, whereby the amplitude of oscillation 

decreases for brief periods of time, as seen in Figure 3.21. In addition, the pipe undergoes 

a slight extension, which is likely a Poisson-ratio-related effect due to depressurization. 

3.4 Summary 

In this chapter, the linear equation of motion for a cantilevered pipe aspirating 

fluid proposed by Pai'doussis et al. (2005) was re-derived taking gravity into 

consideration. This theoretical model was then modified by introducing two distinct time 

delays: one in the axial direction, fa, and another in the lateral direction, fr Overall, 

three delay and non-purely-tangential entry models were proposed, differing solely in the 

sequence of application of the delays. For model I, fa and fe were applied to F^ and 

F£, respectively, in parallel. For model II, first fa was applied to F£ « F*, then F£ was 

determined from F* and the updated F*, and finally fe was applied to the resulting F^, 

thereby leading to a coupling of fa and f( in one of the inertial (or Msr) terms of the 

equation of motion. For model III, Ffl and fe were applied to Fx and Fy, respectively, but 
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only to the terms involving the flow velocity within the pipe, U; F^ and F£ were 

determined thereafter. 

Furthermore, some key theoretical results were presented in tables, and a typical 

Argand diagram for the dynamical system as a function of u was plotted. In general, the 

theoretical results show that a realistic system with a = 0.40, y = 0.30, and y/ = 1.00 

becomes unstable by flutter in its first mode via a Hopf bifurcation if gravity and damping 

effects are included in the analysis. Moreover, ra = Dj/Ucr, re =10" s, and K = 0.60 are 

good estimates for the axial and lateral time delays, as well as for the shear force factor, K, 

when compared to experimental results. 

Moreover, a description of the experimental apparatus and a detailed procedure 

was provided, along with the main results for ten different aspirating pipe experiments, 

presented in both tabular and graphical form. In general, the amplitude of the system 

increased as the flow velocity increased, while the frequency of oscillation remained 

rather constant at about 1 Hz. Therefore, it can be concluded that the aspirating pipe 

flutters at very small flow velocities in its first mode, based on both theoretical and 

experimental evidence. Agreement between theory and experiment was very good for 

pipes 1 and 2; however, the same cannot be said for pipe 3. Note that, in every 

experiment, the pipe was observed to lose stability by flutter in its first mode from the 

very beginning; that is, from the lowest flow velocity recorded. In general, the theoretical 

nondimensional critical flow velocity for pipe 1 was, on the average, ucr~2.5, while the 

average experimental one was also ucr ~ 2.5. For pipe 2, the average theoretical 

dimensionless critical flow velocity was ucr ~ 3.1, while the average experimental one 

was ucr ~ 2.8. For pipe 3, the theoretical nondimensional critical flow velocity was found 

to be ucr ~ 6.1, while the experimental one was found to be only ucr ~ 2.0. However, the 

maximum amplitude recorded for pipe 3 was very low, i.e. Amax — 0.445 mm. Therefore, 

if higher flow velocities could have been attained with the experimental apparatus, it is 

possible that the system would exhibit much higher amplitudes, and that the dynamical 

behaviour would suggest a higher critical flow velocity. 

Lastly, three interesting phenomena were also observed during the experiments, 

which included (i) an extension of the pipe as the flow velocity was increased, which is 

probably a Poisson-ratio-related effect, (ii) an intermittent shuddering motion, whereby 
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the amplitude of the system diminished considerably for reasons unknown, and (iii) an 

unexplainable (at present) shell-type flutter or dynamic divergence instability followed by 

a shell-type buckling collapse at the free end of the cantilevered pipe when no stiffening 

end-piece was attached. 
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CHAPTER 4 

Dynamics of a Free-Clamped Cylinder in Confined 

Axial Flow 

4.1 Introduction 

Perhaps the earliest study regarding slender flexible cylindrical structures in axial 

flow was undertaken by Hawthorne (1961), who investigated the dynamics of the 

Dracone barge system, which is a towed, long flexible container with tapered ends that 

carries liquids lighter than seawater. His work then paved the way for a theoretical and 

experimental study of the dynamics of slender flexible cylinders in axial flow subject to 

different boundary conditions, i.e. clamped-free, pinned-pinned, and clamped-clamped, 

by Pai'doussis (1966a,b). The resulting linear equation of motion, given by Eqn. (1.12), 

and repeated here, is 

d'w d TT 9 | 5 1, „ r , , „ r/. , „\T idw 

»iF+ 'Hs+"S - 5 * ' ^ » - * * - * £ dt dx J dx [ dx J „ ,„. 
(1.12) 

d2w , ^rT„ fdw TTdw~\ d2w - [«r + } PfD
2u2 (l - s)cb ] |-£ +1 P/DUCN + U—\ + m—r = 0, 

dt dx J dt2 

where the standard boundary conditions apply if the two ends of the cylinder are 

supported, and Eqn. (1.13), repeated here, 

* * " • 

T^T^W s Arid™ Tjdw\ i , A 82M ^ = 0 , 
(1.13) 
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applies at x = L if the cylinder is cantilevered. Unfortunately, Eqn. (1.12) was incorrect 

because, in the derivation, FN and Ft were taken in the x- and ^-directions, instead of 

normal and longitudinal on the cylinder. Consequently, the correct, and more general, 

linear equation of motion for a slender flexible cylinder in confined axial flow was 

derived by Pai'doussis (1973) [see also Pai'doussis (1974, 2004)], which is given by Eqn. 

(1.16), and repeated here, 

fH^Mi<)^[T^-2^A)] 

+ pfDU2Cj l + §-\ + (m-pfA)g [(l-±S)L-x] 

+iPfD^-s^+iPfDUCf^+u^yiPfDc^ 
(1.16) 

+ (m-pfAJg + tpfDU'Cj 
f D^ 

\Dkj 

dw d2w . 
— + m—^- = 0. 
dx dt2 

Note that, if the axial flow is unconfmed, the equation of motion for this system can be 

recovered if/ is set equal to 1, DIDh is set equal to 0, and CN=CT= Cf. 

A typical Argand diagram for a clamped-free cylinder in unconfmed axial flow, 

where only the three lowest modes of the system are plotted as a function of the 

dimensionless flow velocity, u, is illustrated in Fig. 4.1. From this figure, it can be seen 

that, in all three modes, free motions of the cylinder are damped for small values of u. 

However, at u ~ 2.04, the system becomes unstable by divergence in its first mode. This 

occurs because the real component of the dimensionless complex frequency, Re(cy), is 

zero, while the imaginary component, Im(cy), becomes negative. The system is then 

restabilized before losing stability by flutter in its second mode via a Hopf bifurcation at 

u ~ 5.16. Thereafter, the system is restabilized once again; beforehand, it becomes 

unstable by flutter in its third mode via another Hopf bifurcation at u ~ 8.17. The reader is 

referred to Pai'doussis (1973, 1974, 2004) for details concerning the dynamics of a 

cylinder subject to boundary conditions other than clamped-free. 

The present study was motivated by the dynamics of a flexible cantilevered 
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Figure 4.1. Argand diagram as a function of u for a clamped-free cylinder in unconfined 

axial flow withy? = 0.50, ecf= l,x=l,f= 0.80, Xe = 0.01, a* =d = h = y = cb = 0 

[Paidoussis(1973)]. 

cylinder in confined axial flow, where the flow is directed from the free to the clamped 

end, as opposed to the case described above, where the flow is directed from the clamped 

to the free end. This system is of particular interest because its dynamical behaviour can 

be compared to that of a pipe aspirating fluid [see Chapter 3], just as the clamped-free 

cylinder has been compared to the pipe conveying fluid in Chapter 1. Note that, if the 

ends are supported, the cylinder behaves similarly to the pipe, at least up to the point of 

the first instability; however, the same cannot be concluded for the cantilevered system. 

Now, the scope of this chapter is to derive the linear equation of motion for the free-

clamped cylinder in confined axial flow following Pai'doussis' (1973) formulation, as well 

as to present the theoretical and experimental results of the analysis, and lastly, to 

compare these results. 
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4.2 Theoretical Investigation 

4.2.1 Theoretical model 

The linear equation of motion for small lateral motions of a free-clamped cylinder 

in confined axial flow is derived using the Newtonian approach, and closely following the 

formulation by Pai'doussis (1973) for a cylindrical structure subjected to axial flow. The 

system, which consists of a uniform flexible cylinder of length L, cross-sectional area A, 

mass per unit length m, and flexural rigidity EI, which is immersed in an incompressible 

fluid of density p/, and uniform flow velocity U, is illustrated in Fig. 4.2. Note that the 

cylinder is equipped with a tapered end-piece of length { at its free end. Furthermore, the 

cylinder is considered to be inextensible, the undisturbed or equilibrium axis of the 

cylinder is assumed to be coincident with the x-axis of the system in the direction of 

gravity, and the effect of gravity is regarded as non-negligible. In addition, the curvilinear 

coordinate along the centreline of the cylinder, s, may be used interchangeably with the 

vertical coordinate, x, since the lateral motions, y = w(x, t), are assumed to be small 

compared to the diameter of the cylinder, i.e. LID is large, and the two-dimensional 

motion is assumed to be confined to the x-y plane. 

- i • : • v 

J 

I 
T 
X 

Figure 4.2. A free-clamped cylinder in axial flow. 
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(FA+F^dx 
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Q+(dQI8x)&x 

M+(dMldx)dx 

Figure 4.3. A small element dx of the cylinder showing applied forces and moments. 

- • . V 

F0XSx 

+FpySx 

pA+(d(pA)Idx)dx 
Figure 4.4. A small element dx of the cylinder surrounded by fluid on all sides. 
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Fig. 4.3 illustrates the forces and moments acting on a small element dx of the 

flexible cylinder, where Q is the lateral shear force, T is the axial tension, M is the 

bending moment, mgdx is the weight of the cylinder element, FpxSx is the hydrostatic 

force in the x-direction, FpySx is the hydrostatic force in the ^-direction, FASX is the 

inviscid hydrodynamic force in the normal direction, FLSX is the viscous force in the 

longitudinal direction, and FNSX is the viscous force in the normal direction. 

Newton's second law is now applied to the small element dx of the flexible 

cylinder shown in Fig. 4.3, yielding the equations of motion in the x- and ^-direction, 

respectively 

ox ox 
(4.1) 

dx dx\ dx 
+ F -F ^-(F +F )=m — (4.2) 

From Euler-Bernoulli beam theory, it is also known that 

Q = -
dM 

dx 
-EI 1 + a + 

/rW 
Q dt 

d3w 

dx 3 ' (4.3) 

where the internal dissipation is a combination of hysteretic and viscoelastic damping [see 

Pai'doussis & des Trois Maisons (1971)]. Note that the effects of angular acceleration, and 

terms of second order, such as the inertial forces in the axial direction, have been 

neglected from Eqns. (4.1) and (4.2). 

The velocity of a small element dx of the flexible cylinder is 

- dr dx-r dy -
Vc = — = —/ + — J, c dt dt dt 

(4.4) 

where r is the position vector measured from the origin to a point on the cylinder, 

denoted by P in Fig. 4.2. The resultant fluid velocity flowing past the cylinder is 

Vf=-Uf + V, (4.5) 

where f is the unit vector tangential to the cylinder, and is given by 
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_ dx- dy -
T = 1 + — J. 

ds ds 

(4.6) 

Hence, we may write 

Vf=-U 
^dxr dy -A 

i+—J + 
ds ds 

^dx-r dy-A | 

dt dt ; > dt ds]y yJ* 
(4.7) 

As proposed by Lighthill (1960) and shown by Pai'doussis (1973, 2004), the 

inviscid hydrodynamic force per unit length is equal and opposite to the rate of change of 

momentum per unit length, [(d/dt) - U(d/dx)](Mv), where Mis the added mass of the fluid 

per unit length, which is equal to xp$A for a cylindrical body in confined axial flow, and v 

is the resultant fluid velocity in the ^-direction, which is given by the j component in 

Eqn. (4.7). It should also be mentioned that x is a confinement parameter that is equal to 

{Dch + D2)/(Dch
2 - D1), where D is the diameter of the cylinder, and Dch is the diameter of 

the confining annular channel [see Fig. 4.5]. Therefore, 

V 

' ' •Mr f f s 
dw dw 

dt dx 
(4.8) 

where we have utilized the fact that_y = w and dxlds ~ 1. 

Using the expressions proposed by Taylor (1952), but in a form modified by 

Pai'doussis et al. (2008), the viscous forces per unit length in the longitudinal and normal 

directions are 

FL=\pfDU2CT, 

FN=\PfDUCh 
dw dw\ 

-U 
dt dx + c-

dw 

~dl' 

(4.9) 

(4.10) 

where Cj and C# are the tangential and normal friction drag coefficients, and c is the 

viscous damping due to the surrounding fluid, which is given by the expression 

c = 
2V2 \ + f 

4^ [i-ff 
Clp,A, (4.11) 
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where y = DIDch, S= Qr lv,r- lAD, Q. is the circular frequency of oscillation, and v is 

the kinematic viscosity of the ambient fluid [see Pai'doussis et al. (2008)]. 

The hydrostatic forces per unit length in the x- and _y-direction are the resultants of 

the mean pressure, p, acting on the outer surfaces of the small element dx of the flexible 

cylinder illustrated in Fig. 4.3. If this element is temporarily frozen in time and 

completely immersed in fluid, then two additional forces, namely pA and 

{pA + [d(pA)/dx]dx}, which are shown in Fig. 4.4, will arise on the two remaining 

surfaces of the element. The resultant of these forces, and of the hydrostatic forces, Fpx 

and Fpy, is known: it is equal to the buoyancy force. Moreover, if/? is assumed to be a 

linear function of x, which is a reasonable assumption, then 

dx 
8xi + 

py 

dp 

d ( Adw^ 
pA — 

dx dx 
dxj - -<Qpn&A 

(4.12) 

= -Jj]V/?d(vol) = -°E-AM 
vol dx 

Consequently, we have 

F §pA-?Mt 
dx dx 

dx\ dx J py 

(4.13) 

(4.14) 

The mean pressure, p, is now obtained by considering a fluid element of length dx 

and confined flow area ACh, as shown in Fig. 4.5. A force balance of the flow in the 

annular channel region yields 

-faA<»+Ff+Pf§AC=0> (4.15) 

where Ach =f\D^h -D2), and F/ is the total factional force, given by F/ = FiJ(Stot/S0), 

where Stot = xDCf, + xD is the total wetted area per unit length, and S0 = xD is the outside 

wetted area per unit length. It is thus confirmed that dpldx > 0, as it should be. Eqn. (4.15) 

is then integrated with respect to x to give 
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pA = FL 

{ D^ 

\DhJ 
+ PfgA x, (4.16) 

where £)/, = 4Ach/Stot = Dch - D is the hydraulic diameter of the annular channel region, 

and the mean pressure at x = 0, i.e. at the exit, is assumed to be zero. 

-*\v 
M* 0 O 

FjSx 

Sx 

^ < 3 Q*(?pf(lx)Sx)Ae„ 
K £ * 

Figure 4.5. A small element dx of the fluid showing the total frictional force Fj. 

Using Eqns. (4.8) to (4.10) and (4.13), the equation of motion in the x-direction, 

Eqn. (4.1), becomes 

-z- + mg—£-A + -^-±pfDU2CT=0. 
ox ox ox 

(4.17) 

Thus, an expression for d(T + pA)/dx is now determined from Eqn. (4.17). Upon 

rearranging, 

°fZ±P£=*A + lpDU2C 
dx dx 

mg. 

Combining Eqns. (4.9), (4.16), and (4.18) yields 

(4.18) 

d{T + pA) 
_ i 

dx 
\PfDWC, 

V A y 
\m-pfA\ \g- (4.19) 
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Eqn. (4.19) is now integrated from x to L to give an expression for (T+pA) as follows: 

{T + pA)=(T + pA)L-
D 

pfDU2CT 1 + — -(m-pfA)g 
V A y 

(L-x). (4.20) 

From Paidoussis (1973, 2004), the term (T+pA)L in Eqn. (4.20) is 

(T + pA)L =(pL-pb)A = -±pfD
2U2Cb, (4.21) 

where pb is the base pressure, and Q is the base drag coefficient. Note that Eqn. (4.21) is 

negative since pb > PL when the flow is directed from the free to the clamped end. 

Consequently, the cylinder will experience a compressive load, as opposed to a tension, at 

its free end. 

The linear equation of motion for a flexible free-clamped cylinder in confined 

axial flow is now determined from the equation of motion in the >>-direction, Eqn. (4.2), 

and from the other relevant expressions presented in the foregoing, to give 

EI 1 + a + tL. 
Q 

•A 

+ 

) 

\2TT2 

dt 

d*w 

dxA 

fD^ 
\pfDU2CT — -(m-pfA)g 

vA/ 
dw 

dx 

±pfDWCb + \pfDU2cS\ + ^A-{m-pfA)g (L-x) 
d2w 

dx2 

+ ZP/A 
rd2w 

dt2 
-2U^ + U 2 d2w^ 

dxdt dx Wf"? 
dw d2w 

+ c — + m —T- = 0, 
dt dt2 

which is subject to the appropriate boundary conditions; at x = 0, 

(4.22) 

w = — = 0, 
dx 

(4.23) 

and at x = L, 

*£-* (4.24) 
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EI^ + (iPfDWCb+fXPfAU>)^-fZptAuf-(fXP/A + m ) X ^ = <>, 

where the shear boundary condition, given by the second expression in Eqn. (4.24), is 

derived in detail in Appendix G. Since HL « 1, the boundary conditions are assumed to 

be applied at x = L. Now, Eqn. (4.24) may be inserted into Eqn. (4.22) by means of a 

Dirac delta function, S(x - L), thus resulting in the final form of the equation of motion 

for a flexible free-clamped cylinder in confined axial flow, 

El 1 + 
A 

a + 

2r r2 

dt 
d4w 

dx" 
\pfDU2CT (m-pfA\ lg 

dw 

dx 

+ UPfD'U'Cb + 

+ XPfA 
rd2w 

\pfDU2C, 

d2w 

1 + D_ 

V DHJ 
2 . . . \ 

(m-pfA), \g (L-x) 
d2w 
dx2 

2Hf \dt dx) dt y dt2 dxdt dx2 j 

d2w 
+ m—r- + 

dt2 

\dw dw 
-(ipfD

2U2Cb+f%pfAU2)^ + fxpfAU ^ 

d2w 

S(x-L) 

+ {fXPfA + WK "^r s(x -L) = 0. 

(4.25) 

The dimensionless form of Eqn. (4.25) is obtained by using the parameters 

<? = • 77 = w X = 
EI v> 

pfA + m 
(4.26) 

to yield 

1 + a + £' 
CO dx 

^+[±cy+±£cy(i+hXi-{)-r(i-{)+Xu2]^ 
oq d$ 

dqdx dq dx 

+[i+/?Or-i)]0+[-&^2+/2«2)0+/^«|j 

ox 

S{§-I) 

(4.27) 
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where 

u = 
<PlA* 

\EI j 
UL,P= P'A ,YSm-p^ 

a = 
EI v = 

pfA + m 

pfA + m 

cL2 

EI 

J}'a^[El(PfA + mf,C° 
pfA + m 

EI 

V> 
QZ,2 , 

- l r - l r - I r -L u-R_ _£«. 
;r 7T ;r D £>„ 

(4.28) 

The system is discretized following the Galerkin procedure. Thus, a solution of 

the form 

i7fcr)=J>(&,to (4.29) 
r=l 

is assumed, where <j)r{£) are the comparison functions, which are taken to be the 

cantilever beam eigenfunctions, and qr{v) are the generalized coordinates. This 

eventually leads to an expression of the following form: 

[M]q + [c]q + [£]q = 0, 

where q = {quqi,...^}1 • Combining Eqns. (4.27) and (4.29) yields 

(4.30) 

YuV'Mr + (a' + ft'/a>)tfjrqr + [\cbu
2 + \eeTu2(i + h)-y + wfyq, 

-[|scTu2{l + h)~y\frqr -2xPYlu^rqr -(}scTu2h-y + ±ecNu2}/>'rqr 

(i ecNpK + a\qr + [1 + p{x - l ) M - ( | cbu
2 + fxu2 fasfe -1) 

SfxP^Ar + & + PifX - tfttMr H -1)} = 0-

+ 

+ 

Multiplying Eqn. (4.31) by ^(^) and integrating over the domain [0, 1] gives 

X\8srqr + (a * + ju *\(o)£r8srqr + [\ cbu
2 + \ scTu2 (l + h) -y + xu2 \srqr 

- [\scTu2(l + h)-y\isrqr - 2zPKubJr - (\scTu2h -y + ±ecNu2)bsrqr 

+ ( | aN0*u + <r)ssrqr + [1 + P(z ~ lKqr ~ (l c„u2 + fxu2 >S (\Mh 

+ fzP^U^M^r + [1 + fi(fX ~ l ) k . A ( l V r ( 0 s f r = ^ 

(4.31) 

(4.32) 
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where 

c. 

*--(vtf+(-ir,i""2, (4'33) 

(4.38) 

4fo<r, - kta„ + 2), )r+s _ 3 + (ls/Ary 

i-&M \-{Ki\y 

for a cantilevered pipe [see Pai'doussis (1998, p. 87)]. From Eqn. (4.32), the elements of 

the mass [M\, damping [C], and stiffness [K] matrices in Eqn. (4.30) are determined to be 

the following: 

Msr = [1 + P{z ~ l)K + [1 + fi(fz ~ l)k. A (1 Vr (1), (4-36) 

Csr = [(a* +?/*>)% +±eeNj3y>u + cr\>sr -IzfiKub.+fzfiKu+MM (4-37) 

Ksr = K#sr -{^£cTu2h-y + \scNu2))sr + |icbu2 +\scTu2(\ + h)-r + zu2K 

-[\eey(\ + h)-y)lsr-{\cy+fxu2)t>M'M 

Ml Theoretical results 

In this section, a system with a* =0.00030, JT = 0.03578, fi = 1.14><10"3, 

y = 17.6, e = 25.3, h = 0.455, / = 1.22, Xe = 0.00792, cN = 0.0100, c r = 0.0125, and 

Cb = 1 -/(generally), which will be varied for different cases, is studied using linear 

theory. This corresponds to a physical system with the following dimensional 

characteristics: D = 0.0159 m, Dch = 0.0508 m, L = 0.401 m, EI = 7.63><10"3 Nm2, 

m = 0.213 kg/m, and p̂ 4 = 2.43 xlO"4 kg/m. The Argand diagrams for the three lowest 

modes as a function of the nondimensional flow velocity, u, are presented in Figs. 4.6 to 

4.9 for four separate cases, i.e./= 1.00 (cb = 0),f= 0.80 (cb = 0.20),/= 0.60 (ch = 0.40), 

and/= 0.80 (cb = 0.60). Note that the multiplicative factor to switch from dimensionless u 

to £/in m/s is 13.9, while that to switch from dimensionless co to/in Hz is 0.187. 
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a :. 
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Re(w) 

"5& <f) 

Figure 4.6. Argand diagram as a function of u for a free-clamped cylinder in confined 

axial flow with/= 1.00 and Q, = 0 using a five-mode Galerkin approximation. 

Figure 4.7. Argand diagram as a function of u for a free-clamped cylinder in confined 

axial flow with/= 0.80 and c* = 0.20 using a five-mode Galerkin approximation. 
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Figure 4.8. Argand diagram as a function of u for a free-clamped cylinder in confined 

axial flow with/= 0.60 and c& = 0.40 using a five-mode Galerkin approximation. 

Figure 4.9. Argand diagram as a function of u for a free-clamped cylinder in confined 

axial flow with/= 0.80 and Cb = 0.60 using a five-mode Galerkin approximation. 
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From Fig. 4.6, the system with/= 1.00 and Q, = 0 loses stability by divergence in 

its first mode at ucr>d = 2.39, since the dimensionless complex frequency, co, becomes 

purely imaginary and negative at this critical flow velocity. Prior to ucrj = 2.39, however, 

the flow actually induces damping in the first mode of the system. Moreover, for the full 

range of flow velocities studied, i.e. 0 < u < 3, the damping of the system is increased 

with flow velocity for the second and third modes too, since Im((y) increases and Re(<y) 

decreases. Note that the damping ratio is given by £*= Im(cy)/Re(ey). 

From Fig. 4.7, the system with/= 0.80 and Cb - 0.20 loses stability by divergence 

in its first mode at ucrj = 2.66, since Re(<y) becomes zero and Im(<y) becomes negative at 

this critical value. However, just prior to uCr,d - 2.66, the system becomes unstable by 

flutter in its first mode via a Hopf bifurcation at ucrj- 2.65 with a frequency of oscillation 

of Re(cocrJ) = 0.417, since Re(w) remains positive, while lm(oo) becomes negative at this 

critical value. Furthermore, for values of u in the range 0 < u < 2.64, the flow induces 

damping in the first mode of the system. The latter also holds true for values of u in the 

full range of flow velocities studied, i.e. 0 < u < 3, for the second and third modes of the 

free-clamped system. In addition, the system wi th /= 0.80 and Q, = 0.60, whose Argand 

diagram is shown in Fig. 4.9, behaves similarly to the above system; however, in this 

case, ucr/
= 2.42, Re(cycr/) = 0.415, and ucrj = 2.43. 

From Fig. 4.8, the system with/= 0.60 and Q, = 0.40 loses stability by flutter in its 

first mode via a Hopf bifurcation at ucrj = 1.27 with a frequency of oscillation of 

Re((Ocrj) - 5.68, since the first-mode locus enters the unstable region of the Argand 

diagram at this critical flow velocity, while Re(cy) remains positive. For the full flow 

range investigated, i.e. 0 < u < 3, the system remains stable in its second and third modes, 

and the first mode is not restabilized after ucrj~ 1-27, since Im(eo) remains negative. 

4.3 Experimental Investigation 

4.3.1 Experimental apparatus 

The air experiments of a free-clamped cylindrical structure in confined axial flow 

were performed using three flexible cylinders: (i) an ordinary elastomer cylinder, (ii) a 
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blade-stiffened elastomer cylinder, and (iii) a denser elastomer cylinder. These cylinders 

are essentially the same pipes that were used during the experiments of a cantilevered 

pipe aspirating fluid; here, however, pipes 1 and 2 are filled with stagnant water. The 

reader is referred to Section 3.3.1 of Chapter 3 for information concerning the three 

cylinders mentioned above, and for a description of the experimental set-up and 

apparatus. Note that the aspirating configuration, shown in Fig. 3.8 of Chapter 3, was 

used for the confined axial air-flow experiments presented here; however, an annular 

channel was added to the set-up. This annulus was made from plexiglas, and was attached 

to a brass support by means of an adaptor and four pins, which were secured with set-

screws. The reader is referred to Appendix F for the technical drawings of the brass 

support, pins, adaptor, and annulus. Table 4.1 presents the geometrical and physical 

properties of each cylinder, while Table 4.2 presents the profiles of the different end-

pieces that were fitted at the free end of a cylinder during an experiment. Note that 

CN = 0.0100 and CT - 0.0125 were used for the normalized normal and tangential friction 

drag coefficients, respectively. Throughout this chapter, Experiment 1A refers to the use 

of cylinder 1 and end-piece A, Experiment IB refers to the use of cylinder 1 and end-

piece B, and so on and so forth, as illustrated in Table 4.2. 

Table 4.1. 

Properties 
D 

Dch 

L 
EI 
m 

PjA 
P 
7 

— * 
a — * 

A 
h 
h 
Si 

s2 
di 

s„ 

[m] 
[m] 
[m] 

[Nm2] 
[kg/m] 
[kg/m] 

[" ] 
["] 
I " 1 
[" 1 
[Hz] 
[Hz] 
[Hz] 
[ - ] 
[ - ] 
[ - ] 
[ - ] 

The geometrical and physical properties of the cylinders 

Cylinder 1 
0.0159 
0.0508 
0.401 

7.63 xlO-3 

0.213 
/(fluid density) 
/(fluid density) 
/(fluid density) 

0.00030 

0.03578 
1.27 
5.47 
14.8 

0.0423 
0.119 
0.160 

0.0590/7-0.0107 

Cylinder 2 
0.0159 
0.0508 
0.412 

8.25x10-3 

0.233 
/(fluid density) 
/(fluid density) 
/(fluid density) 

0.00030 

0. 03914 
1.20 
5.08 
12.5 

0.0438 
0.101 
0.215 

0.0854^-0.0511 

Cylinder 3 
0.0159 
0.0508 
0.346 

uoxio-2 

0.355 
/(fluid density) 
/(fluid density) 
/(fluid density) 

0.00023 

0. 04863 
1.34 
5.86 
15.6 

0.0587 
0.141 
0.183 

0.0623« + 0.0030 
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Table 4.2. The various end-pieces used during the air experiments 

End-piece A End-piece B End-piece C End-piece D 

Cylinder 1 

Cylinder 2 

Cylinder 3 

xe = 0.00318 m xe = 0.00529 m xe = 0.00794 m xe = 0.0106 m 

xe = 0.00318 m 

xe = 0.00318 m 

4.3.2 Experimental procedure 

The experimental procedure for a typical air experiment involving a free-clamped 

cylinder subjected to external confined axial flow is the same as that described in Section 

3.3.2 of Chapter 3 for a cantilevered pipe aspirating fluid. The reader is referred to Figs. 

3.9 and 3.10 of Chapter 3, once more, for schematics of the manometer valves and the 

experimental set-up, respectively. 

4.3.3 Experimental results 

Table 4.3 presents some of the main experimental and theoretical results for six 

different confined air-flow experiments of a free-clamped cylinder, including the 

multiplicative factors to convert values of nondimensional u and co to dimensional U 
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(m/s) and/(Hz), the smallest and largest experimental amplitudes of oscillation, i.e. Amin 

and Amax, for both maximum and root-mean-square readings from the recorded time 

history signals, as well as the critical flow velocities and frequencies at the onset of flutter 

and/or buckling. Additionally, Figs. 4.10 to 4.15 illustrate how the amplitude of 

oscillation and the dominant frequency vary with increasing dimensionless flow velocity. 

Note that the experimental amplitude readings were determined either from ruler 

measurements or from the recorded time history signals, whereas the frequency readings 

were found either from chronometer measurements or from the PSD plots of the time 

history signals using 8 or 16 windows for averaging [see Appendix E]. Moreover, the 

experimental critical flow velocity for divergence, ucr,d, was determined by fitting a 

parabolic regression line through the experimental data points of the frequency versus 

dimensionless flow velocity graph. The critical flow velocity was then approximated by 

extending the regression line to the w-axis of the graph; the point where the regression 

line crossed the w-axis was considered to be the critical point for the onset of buckling. 

In general, the air-flow experiments for a free-clamped cylinder demonstrate that 

the system loses stability in its first mode by flutter at very low flow velocities 

(u = ucrj~ 0.3 to 0.4), and then, at higher flow velocities (u = ucr,d ~ 1.1 to 1.7), the 

system exhibits a static instability, and thereby buckles in a first-mode configuration. 

Theoretically, the frequency of the system is zero at the onset of buckling. However, this 

condition is never fully realized in the experiments presented here; in fact, it is never 

realized due to nonlinear effects [see Pai'doussis (1998, 2004)]. As a consequence, the 

critical flow velocity for buckling must be extrapolated from the available experimental 

data points by means of a parabolic regression line, as described in the previous 

paragraph. 

Moreover, the experiments illustrate that, while the cylinder is fluttering, the 

amplitude of oscillation of the system increases rather rapidly before attaining a 

maximum; thereafter, the amplitude of oscillation ceases to increase. Note that the 

amplitudes presented in Figs. 4.10 to 4.15 are the amplitudes of oscillation, which are not 

to be confused with the transverse buckling displacement. Therefore, an amplitude of 

oscillation equal to zero would imply that the cylinder has become unstable by 
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Table 4.3. Key results including multiplicative factors, vibration amplitudes, flow 

velocities, and vibration frequencies 

Exp. 

1A 
IB 
1C 
ID 
2A 
3A 

Multiplicative factors 

u^U 

13.9 
13.7 
13.9 
13.9 
14.4 
19.4 

<o->f 

0.187 
0.187 
0.187 
0.187 
0.176 
0.234 

Experimental 
max amplitudes 

Am in 
[mm] 

0.0851 
0.0668 
0.0737 
0.0736 
0.0792 
0.0843 

A m a x 

[mm] 
15.5 
8.04 
12.6 
14.4 
6.94 
8.45 

Experimental 
rms amplitudes 
Amin 
[mm] 

0.0182 
0.0247 
0.0186 
0.0196 
0.0202 
0.0196 

•A. max 
[mm] 
6.77 
3.16 
4.16 
4.69 
3.05 
3.06 

Exp. 

1A 
IB 
1C 
ID 
2A 
3A 

flutl 

ucr/ 

0.377 
0.380 
0.380 
0.376 
0.371 
0.270 

Experimental 
er and buckling results 

fcr,f 

PSD 8 
1.07 
1.12 
1.12 
1.12 
1.03 
1.32 

Hzl 
PSD 16 

1.07 
1.17 
1.17 
1.07 
1.07 
1.27 

Ucr,d 

1.70 
1.64 
1.64 
1.67 
1.23 
1.08 

Theoretical 
flutter and buckling results 

/ = 1.00 
Ucrf 

None 
None 
None 
None 
None 
None 

Re(GW 
None 
None 
None 
None 
None 
None 

,cb = 0 
Mcr^d 

2.39 
2.39 
2.39 
2.39 
2.46 
2.20 

Re(Gw) 
0 
0 
0 
0 
0 
0 

Exp. 

1A 
IB 
1C 
ID 
2A 
3A 

Theoretical 
flutter and buckling results 

/ = 0.80, cb = 0.20 
UcrJ 

2.65 
2.65 
2.65 
2.65 
2.73 
2.42 

Re(a>crj) 

0.417 
0.412 
0.406 
0.400 
0.424 
0.708 

Mcrji 

2.66 
2.66 
2.66 
2.66 
2.74 
2.44 

Re(ew) 
0 
0 
0 
0 
0 
0 

Theoretical 
flutter and buckling results 

/ = 0.60, cb = 0.40 
UCr{ 

1.27 
1.27 
1.28 
1.28 
1.40 
2.89 

Re(eW 
5.68 
5.62 
5.54 
5.47 
5.80 

0.423 

UCr4 

None 
None 
None 
None 
None 
2.90 

Re(ftw) 
None 
None 
None 
None 
None 

0 

Exp. 

1A 
IB 
1C 
ID 
2A 
3A 

Theoretical 
flutter and buckling results 

/ = 0.80, cb = 0.60 
Ucr,f 

2.42 
2.42 
2.42 
2.42 

None 
2.22 

Re(«><rj) 

0.415 
0.410 
0.404 
0.397 
None 
0.450 

UcrJ 

2.43 
2.43 
2.43 
2.43 
2.50 
2.23 

Re(ftW) 
0 
0 
0 
0 
0 
0 
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Figure 4.10. Results of Experiment 1A measured 5 mm above the free end of the 

cylinder, (a) amplitude versus u: • ruler estimate, • max amplitude, • rms amplitude; (b) 

frequency versus u: • chronometer estimate, • PSD (8 windows), • PSD (16 windows). 
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Figure 4.11. Results of Experiment IB measured 5 mm above the free end of the 

cylinder, (a) amplitude versus u: • ruler estimate, • max amplitude, A rms amplitude; (b) 

frequency versus u: • chronometer estimate, • PSD (8 windows), • PSD (16 windows). 
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Figure 4.12. Results of Experiment 1C measured 5 mm above the free end of the 

cylinder, (a) amplitude versus u: • ruler estimate, • max amplitude, A rms amplitude; (b) 

frequency versus w. • chronometer estimate, • PSD (8 windows), • PSD (16 windows). 
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Figure 4.13. Results of Experiment ID measured 5 mm above the free end of the 

cylinder, (a) amplitude versus u: • ruler estimate, • max amplitude, • rms amplitude; (b) 

frequency versus u: • chronometer estimate, • PSD (8 windows), A PSD (16 windows). 
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Figure 4.14. Results of Experiment 2 A measured 5 mm above the free end of the 

cylinder, (a) amplitude versus u: • ruler estimate, • max amplitude, • rms amplitude; (b) 

frequency versus u: • chronometer estimate, • PSD (8 windows), A PSD (16 windows). 
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Figure 4.15. Results of Experiment 3A measured 5 mm above the free end of the 

cylinder, (a) amplitude versus u: u max amplitude, • rms amplitude; (b) frequency versus 

u: • chronometer estimate, • PSD (8 windows), A PSD (16 windows). 
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divergence, since the frequency is zero, and oscillations no longer occur. This condition is 

never fully realized either, unless we consider the ruler estimates, as in Figs. 4.10 and 4.14. 

Unfortunately, the behaviour of the cylinder at, and beyond, the onset of buckling 

could not be studied due to flow limitations of the experimental apparatus, since the 

experiments were generally terminated when the largest possible flow velocity was 

attained. It should also be mentioned that the experimental data reveals that cylinder 1 

develops the largest amplitudes of oscillation because it is the most flexible, while 

cylinder 3 develops the largest critical frequencies for flutter because it is the shortest. 

For each experiment, a comparison between theoretical and experimental results 

can be found in Table 4.3. Note that the theoretical results in the flow velocity range 

0 < u < 3 have been presented for four different cases: ( i ) /= 1.00 and cb = 0, ( i i ) / - 0.80 

and cb = 0.20, (iii)/=0.60 and cb = 0.40, and (iv)/= 0.80 and cb = 0.60. Regrettably, none 

of these cases accurately corresponds to what is observed in experiments; that is, flutter at 

very low flow velocities, followed by buckling at higher flow velocities. More 

specifically, if we consider the first case, divergence is the only predicted instability. 

Similarly, if we consider the third case, the system becomes unstable solely by flutter (for 

cylinders 1 and 2), yet the experimental results for fcrj match the theoretical ones quite 

nicely, i.e.fcrj~ 1 Hz. On the other hand, if the second or fourth case is considered, both 

flutter and buckling are predicted; however, the experimental results for ucrj,fcrf, and ucr,d 

do not agree very well with the theoretical ones. Furthermore, if we consider the second 

and fourth cases, wherein/is set equal to 0.80 and cb is increased from 0.20 to 0.60, it is 

found that the critical flow velocities for both the onset of flutter and divergence are 

decreased as cb is increased; thus, the system becomes less stable, as expected, since the 

compressive load at the free end (x = L) is increased. 

It should be noted that buckling is an instability that is quite sensitive to 

imperfections within the pipe. Therefore, it is likely that the predicted theoretical critical 

flow velocities for divergence have actually been overestimated, and are thus closer in 

value to those determined experimentally. Nevertheless, the current linear model for a 

free-clamped cylinder in axial flow needs to be modified, perhaps by reassessing the 

boundary conditions at x - L, in order to validate, or otherwise, the experimental results 

presented in this chapter. A first-attempt at improving the model is made in Appendix H. 
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4.4 Summary 

In this chapter, the linear equation of motion for a free-clamped cylinder subjected 

to confined axial flow was derived using a Newtonian approach, and the theoretical 

results were presented in Argand diagrams as a function of the nondimensional flow 

velocity using a five-mode Galerkin approximation. Four combinations off, which is a 

parameter related to the tapering of the end-piece, and cb, which is the normalized base 

drag coefficient, were investigated, namely ( i ) / = 1.00 and cb - 0, ( i i ) / = 0.80 and 

cb = 0.20, (iii) / =0.60 and cb = 0.40, and (iv) / = 0.80 and cb = 0.60. For the first 

combination, the cylinder became unstable by buckling in its first mode at ucr^ = 2.39. 

For the second combination, the system lost stability by flutter in its first mode via a Hopf 

bifurcation at ucrj- 2.65 with a frequency of Re(cycr/) = 0.417; afterwards, the cylinder 

became unstable via first-mode divergence at ucrj = 2.66. For the third combination, the 

system lost stability by flutter in its first mode via a Hopf bifurcation at ucrj- 1-27 with a 

frequency of Re(cocrJ) = 5.68. For the fourth combination, the system became unstable by 

first-mode flutter via a Hopf bifurcation at ucr/= 2.42 with Re(coCrJ) = 0.415; thereafter, 

the cylinder lost stability by first-mode divergence at ucr,d = 2.43. Note that the second 

and third modes of the cylindrical structure remained stable for the full range of flow 

velocities considered, i.e. 0 < u < 3, regardless of the combination of/and cb chosen. 

Moreover, confined air-flow experiments of a free-clamped cylinder were 

performed, and the experimental results were compared to theoretical ones. 

Unfortunately, the linear model proposed in Section 4.2.1 was incapable of accurately 

predicting the dynamical behaviour of the system. Therefore, modifications to the 

boundary conditions at x = L, or to the linear model itself, are suggested for future work. 

The reader is referred to Appendix H for a possible improvement to the model. 

In any case, in the experiments, the cylinder was observed to exhibit first-mode 

flutter at very low flow velocities, i.e. ucr/ ~ 0.3 to 0.4. It should be mentioned that the 

motion of the free-clamped cylinder in axial flow during flutter was very similar to that of 

the cantilevered pipe aspirating fluid. However, at higher flow velocities, i.e. ucr,d~ 1.1 to 

1.7, the cylinder was observed to lose stability by first-mode buckling as well, but the 

cantilevered pipe aspirating fluid did not experience a second instability [see Chapter 3]. 
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Furthermore, the experimental amplitudes of oscillation for the cylindrical structures were 

found to increase relatively quickly before reaching a maximum, and then began 

decreasing afterwards. Additionally, the experimental plots of frequency versus 

dimensionless flow velocity revealed the typical parabolic behaviour that characterizes a 

buckling instability. Consequently, a parabolic regression line was utilized to estimate the 

critical flow velocity of divergence for each of the experiments presented in this chapter. 

Lastly, the largest amplitudes were recorded with cylinder 1, and the highest frequencies 

were found with cylinder 3, respectively the most and least flexible cylinder. 
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CHAPTER 5 

Dynamics of a Cantilevered Pipe Subjected 

Simultaneously to Counter-current Internal and 

Confined External Axial Flows 

5.1 Introduction 

The historical account of cylindrical structures subjected concurrently to internal 

and external axial flows is fairly limited. Perhaps Cesari & Curioni (1971) were the first 

to carry out a study of the topic. They investigated the buckling instability of the system 

subject to six different restraint conditions: clamped-free, clamped-clamped, pinned-

supported, clamped-supported, clamped-pinned, and pinned-pinned. Possibly the most 

complete theoretical and experimental treatment of the subject, however, was carried out 

by Hannoyer & Pai'doussis (1978), who studied the dynamics of the system when the 

internal and external flows do not depend on each other. In this case, the linear equation 

of motion is given by Eqn. (1.21), 

E — + E\I — T + p,A\ — + Ut — 
{ dt J dx4 ' \dt ' dxj w 

.(d . . . d\(dw TT dw\ / . . \ dw 

J dx 

d2w 
(1.21) 

- {(T + AePe - A,p, )L + [(peAe - p-A, -m)g-\ CftPeD0U
2

e }{L - x)\ 
dx2 

dw TT dw} , „ dw d2w 

dt e dx 2 e D dt dt2 + \CMp.D0U\— + U — U l ^ C D — + 111-5- = 0, 
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where the standard boundary conditions for a cantilevered pipe apply, except for the one 

related to the shear force at x = L, which is given by Eqn. (1.22), 

lip+fP.K+(A - P M > ( ^ ? ) -fp.iA. -A^:{f)L 

+ [fpe(AiU:-AeUe)+2piAiUi]i 
' O W * 

ydxdtj -H*™ 'sV 
ydX3 j 

- {fPe (A. - A, peu; + [{pe - P)Ae +(p-Pl )4 ]gt[ dw 
dx 

= 0, 
JL 

(1.22) 

where U* is a reduced external flow velocity, t is the length of the tapered end, and Ae is 

an average area given by Eqn. (1.23), 

, L+e 

A=~JAe{x)dx. (1.23) 

Hannoyer & Pai'doussis (1978) found that the dynamical behaviour of the system is 

generally complex, and cannot be predicted from an analysis of the internal and external 

flows separately. Furthermore, the dynamics is not only dependent on the combined effect 

of the internal and external flow velocities, but also on the shape of the free end of the 

cantilevered pipe. In fact, the dynamics is dominated by the internal flow if the free end is 

blunt, and as a consequence, the system becomes unstable by flutter only. On the other 

hand, depending on the parameters of the system, both buckling and flutter may occur if 

the free end is nicely streamlined. 

Some years later, Pai'doussis et al. (2008) revisited the topic. This time, however, 

the internal and external flows were considered counter-current, and related through 

continuity. Moreover, the external axial flow was confined to an annular region. This 

work was inspired mainly by the fallacious patent for a drill-string system, consisting of 

an idealized hollow drill-rod and a floating fluid-powered drill-bit, which was described 

by Den Hartog (1969) in a lecture. The reader is referred to Chapter 1 for additional 

details on the drill-string system. The linear equation of motion for this system, as derived 

by Pai'doussis et al. (2008), is given by Eqn. (1.25), 
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„Td4w d2w . 
EI —r- + m —— + p,A, 

dx4 dt2 y' ' 

(d2w _ d2w „7d
2w^ 

+ 2U<^- + U 2 

v dt2 ' dxdt ' dx2 j 

+ XPeA 
f a2 a2 a2 A 
^ - 2 U e ^ + U2^-

y dt dxdt dx j 

+ 

-{(T-AiPi+AePe)L 

lm + PtAl-paAw)g-\CfptDmU;{l + DjDk)YL-x%d2w ( L 2 5 ) 

dx2 

dw 
+ [{m + plAi-peAe)g-\CfPeD0U

2{l + DjDh)]dx 

where p, = pe= pj and p ^ , = M, and the standard boundary conditions for a cantilevered 

pipe apply. Theoretically, Pai'doussis et al. (2008) found that the dynamics is dominated 

by the internal flow if the annular flow region is wide; therefore, the system is damped at 

low flow velocities, and eventually loses stability by flutter via a Hopf bifurcation at 

higher flow velocities. In contrast, the dynamics is dominated by the external flow if the 

annular flow region is narrow. Consequently, the system loses stability by flutter via a 

Hopf bifurcation at very low flow velocities since the external annular flow is 

destabilizing. Hence, the resulting dynamical behaviour of this system is very similar to 

that of a free-clamped cylinder in confined axial flow at low flow velocities [see 

Chapter 4]. 

The present study was motivated by the dynamics of a cantilevered pipe subjected 

simultaneously to counter-current internal and confined external axial flows, which are 

related through continuity, and thus not independent of each other. The scope of this 

chapter is to re-derive the linear equation of motion proposed by Paidoussis et al. (2008), 

while including some modifications, such as the presence of an end-mass and/or nozzle at 

the free end of the cantilevered pipe. More importantly, however, the results obtained 

through experimentation will be presented, and compared to those obtained through 

application of the theoretical model. 
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5.2 Theoretical Investigation 

5.2.1 Paidoussis, Luu & Prabhakar (2008) model 

In this section, the Newtonian approach is used to re-derive the theoretical model 

of Paidoussis et al. (2008) for small lateral, two-dimensional motions of a cantilevered 

pipe subjected simultaneously to counter-current internal and confined external axial 

flows. Fig. 5.1 depicts the system being considered, which consists of a uniform flexible 

pipe of length L, internal cross-sectional area Ah based on the inner pipe diameter Dt, 

external cross-sectional area Ae, based on the outer pipe diameter D0, mass per unit length 

m, and flexural rigidity EI. Furthermore, the pipe conveys an incompressible fluid of 

density pf, and mass per unit length M, with an internal flow velocity £/,. The fluid leaving 

the free end of the pipe then flows upwards in an annular channel of cross-sectional area 

Ach, based on the outer pipe diameter D0 and the annular channel diameter DCh, with an 

external flow velocity Ue. Note that Ut and Ue are related through continuity, i.e. 

UjAj - UeAch. The pipe is considered to be inextensible, and is also vertically hung, thus 

the effect of gravity is taken into consideration in the derivation of the equation of 

motion. Moreover, the x-axis, which is in the direction of gravity, is assumed to be 

coincident with the undisturbed or equilibrium axis of the pipe, and the curvilinear 

coordinate along the centreline of the pipe, s, is used interchangeably with the vertical 

coordinate, x, since lateral motions of the system, y = w(x, t), are assumed to be small. 

The forces and moments acting on a small element dx of the internal fluid and 

pipe are shown in Figs. 5.2 and 5.3, respectively. Note that^/ is the mean gauge pressure 

for the internal flow region, pe is the mean gauge pressure for the external annular flow 

region, Findx is the hydrodynamic force in the normal direction due to the internal flow, 

FitSx is the hydrodynamic force in the tangential direction due to the internal flow, MgSx 

is the weight of the internal fluid element, T is the axial tension, Q is the lateral shear 

force, M is the bending moment, mgSx is the weight of the pipe element, Fpx5x is the 

hydrostatic force in the x-direction, FpySx is the hydrostatic force in the ^-direction, FASX 

is the inviscid hydrodynamic force in the normal direction, FLSX is the viscous force in the 

longitudinal direction, and FNSX is the viscous force in the normal direction. 
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Figure 5.1. A cantilevered pipe subjected simultaneously to dependent, counter-current 

internal and confined external axial flows [Paidoussis & Issid (1974)]. 

The equations of motion in the x- and ^-direction for the internal fluid are found 

by applying Newton's second law to the small element Sx illustrated in Fig. 5.2 to give 

• Ai^-Fil+Fin^ + Mg = Mafx, 
ox ox 

(5.1) 

-A, 
' dx 

Pi 
dx -Fi<-^-Fin=MaJy> (5.2) 

where ajx and ajy are the accelerations of the internal fluid element in the x- and y-

direction, and are determined following the formulation presented in Section 3.2.1 of 

Chapter 3 to be 

«& = ° > af> = 
dzw „Tr d

lw , T 2 d
2w 

'A fy dt2 • + 2U, 
dxdt dx 2 ' 

(5.3) 
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+ y 

X 

Figure 5.2. A small element Sx of the internal fluid showing applied forces. 
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{FA+Fy)Sx 
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\k+{6Mi£x)bx 

Figure 5.3. A small element Sx of the pipe showing applied forces and moments. 
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In the same way, the equations of motion in the x- and jy-direction for the pipe are found 

by applying Newton's second law to the small element dx shown in Fig. 5.3, yielding 

% + F„-F^-F^-FL+(FA+F„)^ + mg = 0, 
OX OX OX 

dQ d (-dw} dw dw /„ , „ \ 

(5.4) 

(5.5) 

where apy is the acceleration of the pipe element in the ^-direction, and was found in 

Section 3.2.1 of Chapter 3 to be 

a py 

d2w 

dt2 ' 
(5.6) 

Moreover, from Euler-Bernoulli beam theory, 

dx 
1 + a + 

Q dt 
d3w 

dx 3 ' (5.7) 

where the internal dissipation in the material of the pipe is assumed to be a combination 

of hysteretic and viscoelastic damping [see Pai'doussis & des Trois Maisons (1971)]. It 

should be mentioned that the effects of angular acceleration, as well as second order 

terms, were not included in the foregoing expressions. 

The inviscid hydrodynamic force in the normal direction, FASX, the viscous force 

in the longitudinal direction, FiSx, the viscous force in the normal direction, F^Sx, the 

hydrostatic force in the x-direction, FpX5x, and the hydrostatic force in the ^-direction, 

FPydx, were all previously derived. The reader is referred to Section 4.2.1 of Chapter 4 for 

more details. Thus, we have 

f V 
--Ue — 
dt dx 

dw dw 

dt e dx 
FA = XPfA 

where the confinement parameter is given by % = iplh + A? )l\Plh ~ &] )> 

(5.8) 

FL=±pfD0u;cf, (5.9) 
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F.-WJUjcfe-U*) 
\dt e dx ) dt ' + c-

dw 
(5.10) 

where we have set CT=CN= C/, and 

F• ^_HpAlt 
dx dx 

r d ( A ^ 

(5.11) 

(5.12) 

Note that the viscous damping due to the surrounding fluid, c, in Eqn. (5.10) is given by 

c = 
2V2 \ + f 
4s (i-fj QpfAe, (5.13) 

where y = D0IDch, S = Qr0 /v, r0 = V2D0, Q is the circular frequency of oscillation, and v 

is the kinematic viscosity of the surrounding fluid [see Paidoussis et al. (2008)]. 

Furthermore, the mean external gauge pressure, pe, in Eqns. (5.11) and (5.12) is found by 

performing a force balance on a small element dx of the external flowing fluid, which is 

contained in the annular region formed by the pipe on one side and by the rigid channel 

on the other, as shown in Fig. 5.4, to yield 

^Ah+Ff+PfgAch=0, (5.14) 

where Ach = f \D2
ch - D2

0), and Fj is the total frictional force, given by Fj = FL(Stot/S0), 

where Stot
= xDch + KD0 is the total wetted area per unit length, and S0 = 7tD0 is the outside 

wetted area per unit length. Integrating Eqn. (5.14) with respect to x gives 

PeA 
' A A 

V^y 
+ PfgAe i*» (5.15) 

where Dh = 4ACh/Slot - DCh - D0 is the hydraulic diameter of the annular channel. Note that 

the mean external gauge pressure at x = 0 is assumed to be zero. 
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-*•>' 
PA* 

X 

FjSx 

#x 

K- " f t * 
(pe+(dpJ?x)dx)Ach 

Dcl 
- » 

Figure 5.4. A small element dx of the external fluid showing the total frictional force F/. 

The linear equation of motion is now obtained by combining Eqns. (5.2), (5.3), 

(5.5) to (5.10), and (5.12) to yield 

EI 
( T.*\ 

1 + 

d_ 

dx 

a +: 

Q dt 
d*w d2w 

+ m—T- + M 
(d2w 

(T - p,A, + p,A,) 

dx' dt2 

dw 

2„,\ 

dt2 

„ r r d w rr2 d w 
+ 2Ut + U2 — r 

dxdt dx 

dx 

dw dw 

+ ZP/A 
d2w „,T d2w ,T-> d2w\ 

dt2 -2U„ 
dxdt 

• + U e a„2 dx1 
(5.16) 

+ \pfD0UeCf — + c— = ti, 
2Hf ° e f dt dt 

where (T-pjAt +peAe) is found by combining Eqns. (5.1), (5.3), (5.4), (5.8) to (5.11), and 

(5.15) to give 

d-^lPA±PAl=liPiD^ci(l + DJDh)-(n, + M-/,fA,)g. 
dx 

Integrating Eqn. (5.17) from x to L gives 

(5.17) 

(T-piAi+PeAe)=(T-pA+PeA)L-\PfD0U
2CJ 

+ (m + M-pfAe)g(L-x). 

i3 
V A y 

(L-x) 
(5.18) 
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Introducing Eqns. (5.17) and (5.18) into Eqn. (5.16) yields 

EI 1 + a + 
- \ d 

Q dt 

d4w d2w 
+ m—r- + M 

(d2w 

dx4 dt1 

(T-plA,+ptA,)L-ipfD0U
2.CJ 

dt2 + 2 U ^ + U, 2
 d2w 

' dxdt ' dx2 

1 + A 
D, 

(L-x) 
hj 

d2w 

dx2 

-{m + M-pfAe)g(L-x) d
2w 

dx2 

+ (m + M-pfA,)g-±pfD0U
2.C_ 

( 

+ XPfA 
(# dlw 

dt2 
-2U, 

82w 

dxdt 
+ U. 

f 

2 dlw 

1 + 
D 

2...\ 

D, 'hj 

dw 

dx 

+ \pfDnUCf — + c — = 0. 2Hf ° e f dt dt 

(5.19) 

The presence of an end-mass at the free end of the pipe may be accounted for by 

replacing the quantity (m + M) by [m + M+ med(x - L)] in Eqn. (5.19), where S(x - L) is a 

Dirac delta function. Hence, the final form of the equation of motion, correct to first 

order, for a cantilevered pipe subjected simultaneously to counter-current internal and 

confined external axial flows is 

EI 1 + — M I d a + — 
dt 

d4w d2w , J d2w 
. +m—T- + M 

etc4 dt2 dt2 

_..,. d2w TT + 2U, + U, 2 d
2w 

' dxdt ' dx2 

+ meS(x - L) 
d2w 

dt2 
{T-PiAi+PeA\-\pfD0U

2
eC_ 

v A y 
(L-x) d2w 

dx2 

d2w 
dx2 -U[m + M + meS(x - L)-pfAe]gdx 

+ l[m + M + meS(x -L)-pfAe\-\ pfD0U
2Cj i3 

V A y 

dw 

dx 

+ XP/A 
(# dzw ^Tr d^w TT2 d

2w > 

dt2 •2U. 
dxdt 

+ U. e a„2 dx2 

dw dw 
+ ±pfDoUeCf — + c— = 0, 

2Hf ° e f dt dt 

(5.20) 

which is subject to the standard cantilevered boundary conditions; at x = 0, 

dw 
w = — = 0, 

dx 

(5.21) 
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and at x = L, 

d w _d w 

~dxT~'dxr = 0. (5.22) 

The only undefined quantity in Eqn. (5.20) is the term (T-pjAj +peAe)L. Now, the 

end-mass attached to the free end of the pipe is assumed to be a very short convergent 

nozzle. In Pai'doussis (1998, p. 76), where we have a cantilevered pipe discharging to 

atmosphere, 

(T -pA)L = APA)L = -MU\U}.-U,\ (5.23) 

where U, = U^AJAj) is the discharge velocity, and Aj is the cross-sectional area of the 

nozzle exit. In Eqn. (5.23), it is understood that Ti, which is the tension at x = L, is zero. 

Nevertheless, TL, which is an externally applied tension, is retained for generality. 

Consequently, Eqn. (5.23) becomes 

(T-pAl^-MUfaj-U,) (5.24) 

Pa. 

t 
\ 

f 

t 

u. 

Pe =0 

PeL 

* 
PiL 

Figure 5.5. Diagram showing the locations of the mean pressures and flow velocities. 

Furthermore, the pressure just outside the free end of the pipe, p*L, which is shown in 

Fig. 5.5, is related topei through the relationship 
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PiL + I PfU] =PeL+l PfUe + PfgK> (5.25) 

where h0 is the head loss arising from the sudden expansion in flow area from Aj to Ach, 

and is given by the expression 

1 K = Ygc{uJ-ueJ, (5.26) 

where C = 1 is taken [see Paidoussis et al. (2008)]. Combining Eqns. (5.25) and (5.26) 

yields 

Pl=P*+PfU.(u.-Uj) (5.27) 

A further reduction in pressure arises because of the presence of the nozzle; so, we can 

write the following: 

pIL=ptu.+PjU,(Uj-Ui) (5.28) 

Introducing Eqn. (5.27) into Eqn. (5.28) gives 

PlL=PeL+PfUXUe-Uj)+PfUi{Uj-Ui\ (5.29) 

where, from Eqn. (5.15), 

JeL 

(D.^ 

A. KDHJ 
+ P/g (5.30) 

Note that, in the absence of the nozzle, Uj = Uj in Eqn. (5.29), and the expression for pn 

in Paidoussis et al. (2008) is recovered; in the case of an infinite external annular flow 

area, Ue = 0, and assuming that/>e£ = 0, the expression for/?;/, in Paidoussis (1998, p. 76) 

is recovered, as expected. Therefore, we have 

(T-pA+PAl^-AtuAu.-UjyMUfaj-U,) 

+ + pfsA 
(5.31) 
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Now, the linear equation of motion is rendered dimensionless by substituting the 

following dimensionless parameters in Eqn. (5.20): 

x w ( 
T = 

EI V* 
m + M + p f A e 

t 

IF 
(5.32) 

This eventually leads to the expression 

\Jr+&a 
O) dr 0+[i+A(*-i)+r.*fc-i)]0 

ogoT dg 

(rL-TIlL+neL)+y\l-g' + - ^ - C/£We
2(l + / z ) ( W ) 2 V 

d2rj 

dg-2 

+ ir: 
1 + r^fe-i)' 

1-2A 
-\cfeue K. + 4| + i^^| + C T | = o, 

(5.33) 

where 

a 
EI V> -

m + M + pfAe 

a _(m + M + pfAe 
V> 

T 2 , 0 ) = 

U: = 
Yi ' UiL' u< = 

v EI j 

EI 

UeL, 

GIL2 

fi,= 
M 

;P.= 
PfAe m„ _ Y — 

m + M+ p f A e ' e [m + M + pfAe )L' 

r 

m + M + pfAe 

_{m + M-pfAe)gI? _TJ}_ _ PilAfi _ peLAeL
2 

~ pr ' L ~ r , ' l i/L — T-,T » L1eL — ~ r ' 
EI 

cf =—Cf, e = — , h = —s-, <J = 
'f 

n 

EI EI EI 
cL2 

D0 ' Dh ' [El(m + M + pfAef 

(5.34) 

After some manipulation, the dimensionless form of Eqn. (5.31) may be expressed as 

{TL-UiL+UeL)=TL-a2u][\-{a2
ch - l ) / * 2 ] - ^ , / ^ ) 2 - l ] 

+ \cfeu2h(l-cc2)+PfgAeL
3{l-a?)/EI, 

(5.35) 
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where 

The Galerkin method is used to discretize the system by assuming a solution of 

the form 

?fc0 = 5>r(&,to (5-37) 

where <t>r{£) axe the comparison functions, i.e. the cantilever beam eigenfunctions, and 

<7r(r) are the generalized coordinates. This leads to JV decoupled ordinary differential 

equations, which may be expressed concisely as 

[M]q + [c]q + Mq = 0, (5.38) 

where q = {q\,qi,...,qN} • Using Eqn. (5.37), Eqn. (5.33) becomes 

N 

+ 

£ fcto, + (a * + jt jcoYtAr + [i + A Or -1)+r.*fe - i M 

-Hi + r./(i-2/?J]-ic^(i + A)Kv, + l r - ^ X ( 1 + * ) k ^ (5-39) 

Hi+r.^-i)/(i-2/?.)]-iC/a.2(1+*)k^ 
(ic/£M^+o-V^}=0. 

+ • 

+ 1 

Multiplying Eqn. (5.39) by #,(£) and integrating over the domain [0,1] yields 

X\8srqr + (a* + M'/afts^, + [l + /*.(* " l)]<M, + I>,(lK(l)«[, 

+ 2(1/,/?/* - ^ ^ K ^ , + («.2 + ^ 2 K * , - (YL - n t t + n e L )csr^r 

- {r[1 + Te /(l - 2/?,)] - i C/£We
2 (1 + h))csrqr + [r - 1 C /a (

2 (l + A)}Ur (5.40) 

+ ̂ -icX(1 + *)K«r + r[r./(i-2A)k(iV;(i)?r 

+ ( | c / f ^ + 0 - ^ = 0 , 

where we have 
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C. 

K = {KlK)2+{-Vs,K=2, (5'41) 

" ( - I V ^ - U M ) 2 ' Crr = Ar<7^2 ~ ̂ a^ (5'42) 

4fog„ - y , + 2), )r+s _3 + (As/Ary 

for a cantilevered pipe [see Pai'doussis (1998, p. 87)]. The elements of the mass [M], 

damping [C], and stiffness [K\ matrices in Eqn. (5.38) are found by inspection of Eqn. 

(5.40) to be 

Msr = [1 + PXX ~ 1)K + r.^(lVr(li (5.44) 

Csr = [{a* +F/a>)% +±c,eu.fiX +a^sr + 2(11,/?* -zuj*)b„t (5.45) 

Ksr = Kssr + \r-\ cfeu] (1+h)}sr - (rL - niL + ueL ysr 

+ {u-+xu2
e -y[l + re/(\-2/3e)] + \cfeu2

e(l + h)}csr (5.46) 

+ |r-ic/ai.2(l + *)K+Hr./(l-2A)k(lV;0) 

Note that the case of no end-mass is recovered if Fe is set equal to zero in Eqns. (5.44) to 

(5.46). Furthermore, (FL - Tin + TleL) is given by Eqn. (5.35). 

5.2.2 Theoretical results 

The system studied in this section has the following dimensionless characteristics: 

a* = 0.00021, ft* = 0.04920, /?, = 0.0542,fie = 0.339, Ye = 7.49x10"3, y = 7A4,TL=0, 

cf= 0.0159, e = 21.6, A = 1.00 (or 1.67), at = 0.400, a7 = 0.320, ach = 2.00 (or 1.60), and 

X = 1.67 (or 2.28). These quantities correspond to a physical system defined by 

D0 = 0.0159 m, A = 0.00635 m, Dj = 0.00508 m, Dch = 0.0318 m (or 0.0254 m), 

L = 0.343 m, EI= 1.05><10"2 Nm2 , m = 0.355 kg/m, M= 0.0317 kg/m,pjAe = 0.198 kg/m, 

and me = 1.50><10"3 kg. The Argand diagrams for the three lowest modes as a function of 

the dimensionless internal flow velocity, w„ for the two values of acu investigated are 
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presented in Figs. 5.6 and 5.7. It should be mentioned that the multiplicative factor to 

switch from w, to Ut in m/s is 1.68, that to switch from ue to Ue in m/s is 0.671, and that to 

switch from co to / in Hz is 0.181. Additionally, we have that 

ue = 0.133K, for au =2.00, 
(5.47) 

ue = 0.256M, for ach - 1.60. 

From Fig. 5.6, it is seen that for wide annular channels, here ach = 2.00, the 

cantilevered pipe becomes unstable by flutter in its second mode at an internal flow 

velocity of uiiCr = 4.42, and with a frequency of oscillation of Re(ft)c/.) = 11.4. This 

dynamic instability occurs via a Hopf bifurcation, since the imaginary component of the 

dimensionless complex frequency, Im(a>), becomes negative at this critical point, while 

the real component, Re(co), remains greater than zero. Note that the internal flow plays a 

dominant role here: the system exhibits similar behaviour to that when it is simply 

discharging internal fluid [see Chapter 2]. It should also be mentioned that both the first 

and third modes of the system remain stable; the flow induces damping for the entire 

range of internal flow velocities considered, i.e. for 0 < ut < 8. 

From Fig. 5.7, it is determined that for a narrow annular channel, here aCh = 1.60, 

the cantilevered pipe loses stability by flutter in its first mode via a Hopf bifurcation at an 

internal flow velocity of uiiCr = 2.25, and with a frequency of oscillation of Re(cycr) = 4.16. 

On the other hand, the second-mode locus of the system remains stable over the full range 

of internal flow velocities investigated. In fact, an increase in the internal flow velocity 

causes an increase in system damping. The cantilevered pipe also exhibits single-mode 

flutter when the fluid attains an internal flow velocity of uitCr = 7.55, this time in its third 

mode with a critical frequency of oscillation Re(cocr) = 20.7. Thus, it can be concluded 

that the critical flow velocity, as well as the frequency of oscillation for the first 

encountered instability are much lower for ach = 1.60 than for ach = 2.00. The latter is 

expected since the first-mode frequencies of the system are generally lower than the 

second-mode ones for fairly small flow velocities. Lastly, it is interesting to note that the 

unstable modes for ach = 1.60 are stable for aCh = 2.00; similarly, the unstable mode for 

ach - 2.00 is stable for ach = 1.60. 
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Figure 5.6. Argand diagram as a function of w, for ach = 2.00 using a fifteen-mode 

Galerkin approximation. 

Figure 5.7. Argand diagram as a function of w, for ach
 = 1 -60 using a fifteen-mode 

Galerkin approximation. 
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5.3 Experimental Investigation 

5.3.1 Experimental apparatus 

The water experiments of a cantilevered pipe subjected simultaneously to internal 

and confined external axial flow were carried out with a flexible elastomer pipe, in which 

fine copper particles were added in the two-part silicone rubber mixture during the 

casting process [see Appendix A]. The geometrical and physical properties of the pipe are 

presented in Table 5.1. Note that the logarithmic decrements of the system for modes 

greater than n = 3 are approximated by d„ = 0.0623« + 0.0030. The reader is referred to 

Appendix B for an account of the determination of the natural frequencies, flexural 

rigidity, and logarithmic decrements of the pipe, and also to Section 2.3.1 of Chapter 2 for 

a complete description and a schematic of the experimental set-up. 

A variety of plastic end-pieces, including a nozzle with diameter Dj = 0.00508 m 

(a.j = 0.320) and mass me = 1.50><10"3 kg (Fe = 7.49x10"3), a semi-spherical end-piece with 

mass me = 2.10x10" kg (re = 1.05x10"), and four sets of rings with thicknesses varying 

from 4.76 mm to 12.7 mm were employed during the experiments, as illustrated in Fig. 

5.8. It should be mentioned that the rings, which were used to prompt a leakage-flow 

instability, were placed approximately 3 mm from the free end of the pipe, and that each 

set of rings consisted of: one of 20.6 mm in width, which was used for the narrow channel 

experiments (ach = 1 -60), and another of 27.0 mm in width, which was used for the wide 

channel experiments (ach = 2.00). 

The reader is also referred to Fig. 5.9 for a sketch of the experimental apparatus 

and to Appendix F for the technical drawings of the individual components, and an 

assembly of the rigid annular channel, which surrounds the cantilevered pipe and confines 

the external axial flow. It should be mentioned that this apparatus was fabricated almost 

entirely from plexiglas, and was enclosed within square plexiglas tubing, which allowed 

easier viewing and recording of the motion of the cantilevered system during 

experiments. Moreover, a screen and honeycomb were incorporated into the design in 

order to straighten the flow emerging from the free end of the pipe, and subsequently 

140 



CHAPTER 5 

Table 5.1. The geometrical and physical properties of the pipe 

Do 
[ml 

0.0159 

Di 
fml 

0.00635 

L 
fml 

0.343 

EI 
[N-m2l 

1.05x10^ 

m 
fkg/ml 
0.355 

M 
fkg/ml 
0.0317 

PjAe 

fkg/ml 
0.198 

Pe 
f-1 

0.339 

Pi 
f - 1 

0.0542 

7 
f - 1 
7.14 

— * 

a 

f - 1 0.00021 
f - 1 

0. 04920 

/ i 
fHzl 
1.34 

h 
fHzl 
5.86 

h 
fHzl 
15.6 

f - 1 
0.0587 

s2 
f - 1 

0.141 

<*3 

["] 
0.183 

Figure 5.8. Schematic of the plastic end-pieces used in experiments: (a) nozzle with 

Dj = 0.00508 m and me = 1.50xl0'3 kg; (b) semi-spherical end-piece with 

me = 2.10><10"3 kg; (c) 4.76 mm thick rings; (d) 6.35 mm thick rings; (e) 12.7 mm thick 

rings; and (f) 6.35 mm thick profiled rings. 
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brass clamp 

annular channel 

square tubing 

elastomer pipe 

screen 

honeycomb 

Figure 5.9. Sketch of the experimental apparatus showing the direction of flow. 

hitting the bottom surface of the experimental apparatus. Note that the assembly 

components that required gluing were chemically bonded using methylene chloride. 

Moreover, both the cantilevered pipe and the annular channel were mounted onto a brass 

support, which was located at the water flow outlet of the piping system. A two-piece 

brass clamp was then used to secure the upstream end of the cantilevered pipe. The reader 

is referred to Figs. F.8 and F.9 in Appendix F for the technical drawings of the brass 

support and two-piece brass clamp. 

5.3.2 Experimental procedure 

The experimental procedure for a typical water experiment involving a 

cantilevered pipe subjected simultaneously to counter-current internal and confined 

external axial flows is essentially the same as that described in Section 2.3.2 of Chapter 2 

for a cantilevered pipe conveying fluid that is fitted with a stabilizing end-piece. 

However, one of the additional steps at the beginning of the procedure is the securing of 

the plexiglas annular channel to the brass support using four long bolts and four nuts. An 

additional step, which is to be carried out after step 13 and prior to step 14, is the 
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calibration of the Optron system for amplitude measurements in millimetres as per 

Appendix C. Moreover, step 18 should also include the determination of the amplitude of 

oscillation from the recorded time history signals for each measurement. 

5.3.3 Experimental results 

Some important quantitative results, including the critical flow velocities and 

frequencies of oscillation, i.e. uitCr 3ndfcr, as well as the initial and final amplitude values, 

i.e. A, and A/, for both maximum and root-mean-square readings from the experimental 

time history signals, for a cantilevered pipe subjected simultaneously to internal and 

confined external axial flow are presented in Table 5.2 for experiments involving a wide 

annular channel, i.e. aCh = 2.00, and in Table 5.3 for those involving a narrow one, i.e. 

ach = 1.60. It should be mentioned that the name given to a particular experiment was 

selected based on the end-piece or ring that was mounted at, or very close to, the free end 

of the cantilevered pipe [see Fig. 5.8]. For Experiment X, however, no end-piece or ring 

was used. Moreover, the multiplicative factors to convert from dimensionless w„ ue, and co 

to dimensional £/, (m/s), Ue (m/s), and/(Hz), respectively, are given in Table 5.4, along 

with the multiplicative factor which relates w, to ue for ach
 = 2.00 and ach = 1.60. 

Furthermore, some important qualitative results, including the variation of both amplitude 

and frequency with dimensionless internal flow velocity, are presented in Figs. 5.10 to 

5.23. Note that the frequency readings were obtained from PSD plots of the acquired time 

history signals using either 8 or 16 averaging windows [see Appendix E], and that the 

/ versus ut graphs include the theoretical first- and second-mode frequencies for 

comparison purposes. 

The observed dynamical behaviour of the system during experiments indicates 

that the cantilevered pipe becomes unstable by flutter in its first mode at practically zero 

internal flow velocity, regardless of the amount of confinement; that is, for aCh = 2.00, we 

have ui>cr ~ 0.2 to 0.7, and for ach
 = 1-60, we have uhcr - 0 . 1 to 0.6. Note that the actual 

critical internal flow velocities may well be lower than those presented in Tables 5.2 and 

5.3, since the critical values were chosen to be the lowest possible internal flow velocity 

measurements after Uj = 0. 
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Table 5.2. Key results including amplitudes, velocities, and frequencies for ach
 = 2.00 

Exp. 

X 
A 
B 

CI 
Dl 
El 
Fl 

Theoretical 
critical values 

Ui,cr 

5.51 
4.42 
5.50 
5.51 
5.51 
5.51 
5.51 

Re(cycr) 

11.7 
11.4 
11.7 
11.7 
11.7 
11.7 
11.7 

Experimental 
critical values 

Hi,cr 

0.59 
0.19 
0.49 
0.36 
0.72 
0.68 
0.69 

far 
[Hzl 
0.684 
0.806 
0.781 
0.684 
0.854 
0.903 
0.781 

Experimental 
max amplitudes 

A, 
[mm] 

0.0790 
0.0557 
0.0587 
0.0613 
0.0713 
0.0796 
0.0630 

A/ 
[mm] 
2.14 
2.52 
2.33 
1.39 
1.85 
2.23 
1.84 

Experimental 
rms amplitudes 

A/ 
[mm] 

0.0114 
0.0118 
0.0104 
0.0121 
0.0117 
0.0127 
0.0120 

A/ 
[mm] 
0.726 
0.837 
0.786 
0.359 
0.563 
0.656 
0.609 

Table 5.3. Key results including amplitudes, velocities, and frequencies for ach = 1.60 

Exp. 

X 
A 
B 

C2 
D2 
E2 
F2 

Theoretical 
critica 

M-itcr 

2.30 
2.25 
2.32 
2.30 
2.30 
2.30 
2.30 

values 

Re(ocr) 

3.97 
4.16 
4.01 
3.97 
3.97 
3.97 
3.97 

Experimental 
critica 

Uitcr 

0.21 
0.21 
0.53 
0.42 
0.63 
0.10 
0.57 

values 
for 

FHzl 
0.684 
0.806 
0.659 
0.659 
0.781 
0.684 
0.806 

Experimental 
max amplitudes 

A/ 
[mm] 

0.0636 
0.0584 
0.0723 
0.0645 
0.0714 
0.0646 
0.0626 

A/ 
[mm] 
2.47 
2.11 
2.01 
2.04 
2.13 
2.62 
2.04 

Experimental 
rms amplitudes 

A, 
[mm] 

0.0135 
0.0165 
0.0127 
0.0114 
0.0135 
0.0144 
0.0128 

A/ 
[mm] 
0.799 
0.692 
0.699 
0.595 
0.650 
0.682 
0.681 

Table 5.4. Relevant multiplicative factors 

Multiplicative factors 

We—• Ue 

Ui - > Ue 

ach = 2.00 
1.68 

0.671 
0.133 
0.181 

aCh = 1-60 
1.68 

0.671 
0.256 
0.181 

From Figs. 5.10 to 5.23, it can be seen that the vibration amplitude of the 

cantilevered pipe increases almost linearly as the internal flow velocity is increased, 

which is suggestive of a dynamic instability, regardless of the amount of confinement, 

and may be followed by one, or even a combination of the following: (i) a small decrease 

in amplitude with increasing flow, and/or (ii) a saturation amplitude, where an almost 

constant amplitude is recorded with increasing flow. Although it is tempting to attribute 
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Figure 5.10. Results of Experiment X {ach = 2.00) measured 16.0 cm below the clamped end 

of the pipe, (a) amplitude versus u;. m max amplitude, • rms amplitude; (b) frequency versus 

W. • mode 1 (theoretical), • mode 2 (theoretical), • PSD (8 windows), A PSD (16 windows). 
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(a) 

Figure 5.11. Results of Experiment A (aCf, - 2.00) measured 16.0 cm below the clamped end 

of the pipe, (a) amplitude versus u{. m max amplitude, • rms amplitude; (b) frequency versus 

w,: • mode 1 (theoretical), • mode 2 (theoretical), • PSD (8 windows), • PSD (16 windows). 
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Figure 5.12. Results of Experiment B (ach = 2.00) measured 16.0 cm below the clamped end 

of the pipe, (a) amplitude versus «,: • max amplitude, A mis amplitude; (b) frequency versus 

Ui. • mode 1 (theoretical), • mode 2 (theoretical), • PSD (8 windows), A PSD (16 windows). 
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Figure 5.13. Results of Experiment CI (ach = 2.00) measured 16.0 cm below the clamped end 

of the pipe, (a) amplitude versus u{. • max amplitude, A rms amplitude; (b) frequency versus 

u{. • mode 1 (theoretical), • mode 2 (theoretical), • PSD (8 windows), A PSD (16 windows). 
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Figure 5.14 Results of Experiment Dl (ach = 2.00) measured 16.0 cm below the clamped end 

of the pipe, (a) amplitude versus «,: • max amplitude, • rms amplitude; (b) frequency versus 

w,: • mode 1 (theoretical), • mode 2 (theoretical), • PSD (8 windows), • PSD (16 windows). 

149 



CHAPTER 5 

L.J 

2.0 -

1.5 -

1.0 -

0.5 • 

00 9 

*~ : i~ 

1 
> 

I 

. 1 1 1 ; 

i 

\ | ;' 

i 

i i i ; B 

— l i ' 

' 

' 

• <. j * .p.. 

• • 

A 

i 

L"i"..i 

g 

.i 

• • 
_„j •__ 

l l 

%. A 

— i 

1 & 

~% ') ; 

• 

-

A 

! ™ J . . . 

: T 

0.00 0.50 1.00 1.50 2.00 2.50 3.00 

u, 

(a) 

Figure 5.15. Results of Experiment El (aCh = 2.00) measured 16.0 cm below the clamped end 

of the pipe, (a) amplitude versus u{. m max amplitude, A rms amplitude; (b) frequency versus 

w,: • mode 1 (theoretical), • mode 2 (theoretical), • PSD (8 windows), • PSD (16 windows). 

150 



CHAPTER 5 

") ^ -, 
Z.J 

2.0 -

1.5 -

¥ 
< 

1.0 -

0.5 -

f\ r> ! 
U.U i 

— 

1 

0.00 

-< • -• 

• 

A 
1 

0.50 

. • 

A A 

i 

1.00 

• 

A 

• 

A 

i 

1.50 

• 

. 

_ . i 
• 

~A*"~" A""" " 

i 

2.00 

. 

• 

• 
, i ! 

A, <
 A 

i 

2.50 

- --

3.00 

4 ^ - i 

4.0^ 

3.5 -

3.0 -

— 2.5 -

£ 
^ 2.0 -

1.5 -

1.0 -
< 

0.5 -

n n i 
U.U I 

• \ _ 

-

- -
• 

0.00 

i 

• 

* 

J 

' 

' 

! 

- 1 
. : . 

1 
' 

0.50 

• 

•.. , • . 

• 

t 

^ 
& . 
• • 

1 

1.00 

_•_ 

|3 

• 

^ ) 

• 
# 

! 

m 

t 

• 

! 
1 

1.50 

u, 

. 1 

• 
• 

i 

>_ 

n -

• 

> 
i 

2.00 

, 
1 

• ; • 

> 

„ 

i H 

• 

> 

• • 

• 

i 

2.50 3.00 

(b) 

Figure 5.16. Results of Experiment Fl (ach - 2.00) measured 16.0 cm below the clamped end 

of the pipe, (a) amplitude versus ut: • max amplitude, A mis amplitude; (b) frequency versus 

u{. • mode 1 (theoretical), • mode 2 (theoretical), • PSD (8 windows), A PSD (16 windows). 
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Figure 5.17. Results of Experiment X (aCh = 1.60) measured 16.0 cm below the clamped end 

of the pipe, (a) amplitude versus «,: • max amplitude, • rms amplitude; (b) frequency versus 
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Figure 5.18. Results of Experiment A (aCh = 1.60) measured 16.0 cm below the clamped end 

of the pipe, (a) amplitude versus uf. m max amplitude, • rms amplitude; (b) frequency versus 
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Figure 5.20. Results of Experiment C2 (ac/, = 1.60) measured 16.0 cm below the clamped end 

of the pipe, (a) amplitude versus u{. m max amplitude, • rms amplitude; (b) frequency versus 

u{. • mode 1 (theoretical), • mode 2 (theoretical), • PSD (8 windows), A PSD (16 windows). 
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Figure 5.21. Results of Experiment D2 (ach = 1.60) measured 16.0 cm below the clamped end 

of the pipe, (a) amplitude versus u{. m max amplitude, • rms amplitude; (b) frequency versus 

u{. • mode 1 (theoretical), • mode 2 (theoretical), • PSD (8 windows), • PSD (16 windows). 
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Figure 5.22. Results of Experiment E2 (aCh = 1.60) measured 16.0 cm below the clamped end 

of the pipe, (a) amplitude versus ut: m max amplitude, • rms amplitude; (b) frequency versus 

u{. • mode 1 (theoretical), • mode 2 (theoretical), • PSD (8 windows), A PSD (16 windows). 
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Figure 5.23. Results of Experiment F2 (cy, = 1.60) measured 16.0 cm below the clamped end 

of the pipe, (a) amplitude versus u{. m max amplitude, A rms amplitude; (b) frequency versus 

u{. • mode 1 (theoretical), • mode 2 (theoretical), • PSD (8 windows), A PSD (16 windows). 
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the small amplitude measurements, i.e. A/;max - 1 . 4 mm to 2.5 mm for acy, = 2.00 and 

A/max ~ 2.0 mm to 2.6 mm for ach = 1.60, to turbulence, the empirical expression 

proposed by Pai'doussis (2004, p. 869) for predicting small-amplitude vibrations has 

shown otherwise. The empirical expression was applied to the data acquired in 

Experiment X for ach = 1.60, and it predicted that the turbulence-induced vibration 

amplitudes would lie between 0 mm and 0.075 mm if the empirical factor, K, was set 

equal to 1 for quiet, laboratory-type conditions, and in the worse case, between 0 mm and 

0.375 mm, if AT was set equal to 5 for realistic, industrial conditions. 

Furthermore, from Figs. 5.10 to 5.23, it is observed that the vibration frequency 

also exhibits an almost linear increase as the internal flow velocity is increased, regardless 

of the confinement. However, this effect is more pronounced for the experiments 

involving an external ring rather than an end-piece, which is somewhat expected because 

the rings were introduced to prompt a leakage-flow instability in an effort to decrease the 

critical internal flow velocity, thus leading to an earlier occurrence of the instability [see 

Pai'doussis (2004)]. It should be mentioned that the theoretical model of Section 5.2.1 

does not consider the presence of a ring attached to the external surface of the 

cantilevered pipe. Consequently, the theoretical critical flow velocities presented in 

Tables 5.2 and 5.3 are equivalent to those of the simple system, which includes neither an 

end-mass nor a nozzle. Additionally, the cantilevered pipe did not show signs of a second 

instability beyond the first one; in fact, the system became chaotic at relatively low 

internal flow velocities, which was apparent from the time history signals and their 

corresponding PSD plots, and violent impacting of the pipe occurred with the sides of the 

rigid channel surrounding it. 

Unfortunately, from Tables 5.2 and 5.3, it can be seen that the theoretical results 

do not correspond well to the dynamical behaviour recorded in experiments. More 

specifically, if we consider the experiments with ach = 2.00, the theoretical results predict 

that the cantilevered pipe loses stability by flutter in its second mode instead of its first 

mode, as observed experimentally, at uiyCr ~ 5.4 with fcr ~ 2.1 Hz, on the average. 

However, the experimental results suggest much lower critical flow velocities and 

vibration frequencies. Moreover, if we consider the experiments with ach = 1.60, the 

theoretical results predict that the system becomes unstable by flutter in its first mode at 
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ui>cr ~ 2.3 with fcr ~ 0.72 Hz, on the average. Although the theoretical vibration 

frequencies agree quite well with the experimental ones, the theoretical critical flow 

velocities are still much too high compared to the experimental ones. Consequently, it is 

obvious that the theoretical model of Section 5.2.1 is flawed, and that modifications need 

to be made in order to accurately predict the dynamical behaviour of a cantilevered pipe 

subjected simultaneously to internal and confined external axial flow. Lastly, it is 

interesting to note that the experimental vibration frequencies are bounded between the 

first- and second-mode theoretical ones for the full range of experimental flow velocities 

studied, and that the system displays more second-mode behaviour at higher flow 

velocities when the pipe is mounted with an external ring. 

5.4 Summary 

In this chapter, the linear equation of motion proposed by Pai'doussis et al. (2008) 

for a cantilevered pipe subjected simultaneously to internal and confined external axial 

flow is re-derived using a Newtonian approach, and the effect of an end-mass and/or 

nozzle mounted at the free end of the pipe is incorporated into the derivation. It should be 

mentioned that the standard model of Pai'doussis et al. (2008) is recovered if the end-mass 

parameter, Te, is set equal to zero, and if the dimensionless diameter of the nozzle exit, a.j, 

is set equal to the dimensionless inner diameter of the pipe, a,. 

Furthermore, the dynamical behaviour of a typical bench-top system was studied 

using a fifteen-mode Galerkin approximation for both a wide {ach - 2.00) and a narrow 

(aCh = 1.60) annular confinement, and the theoretical results were presented in Argand 

diagrams as a function of the nondimensional internal flow velocity, w,. In general, the 

cantilevered system with aCh - 2.00 behaved similarly to the standard discharging pipe, 

thereby losing stability solely by flutter via a second-mode Hopf bifurcation, since the 

internal flow plays a dominant role in such circumstances. Moreover, the critical flow 

velocity was found to be uiyCr
 = 4.42, and the corresponding vibration frequency was 

determined to be Re(cocr) = 11.4. On the other hand, the cantilevered system with 

ach =1.60 became unstable by flutter via a first-mode Hopf bifurcation at a critical flow 

velocity of uiiCr = 2.25, and with a frequency equal to Re(cocr) = 4.16. Then, at a much 
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higher flow velocity, i.e. uiiCr = 7.55, the pipe lost stability in its third mode via another 

Hopf bifurcation. Here, the corresponding frequency of oscillation was Re(cocr) = 20.7. 

Moreover, the results for eleven separate experiments involving a cantilevered 

pipe subjected simultaneously to internal and confined external axial flow were presented 

in both tabular and graphical form. Experimentally, the system became unstable by flutter 

at very low flow velocities, even without a ring-related annular confinement, regardless of 

the value of ach, and the dynamical behaviour was very similar to that observed for a free-

clamped cylinder in confined axial flow [see Chapter 4], as expected. More specifically, 

for aCh = 2.00, the critical flow velocities were found to be in the range 0.2 < uitCr < 0.7, 

and for ach = 1.60, it was found that 0.1 < ui>cr < 0.6. From the A versus ut graphs, it was 

determined that the vibration amplitude of the pipe increased almost linearly as the 

internal flow velocity was increased. Note that the maximum vibration amplitudes for 

experiments with ach = 2.00 were found to lie in the range 1.4 mm < A/max < 2.5 mm, and 

for ach = 1-60, it was found that 2.0 mm < A/max < 2.6 mm. Similarly, from the/versus w, 

graphs, it was observed that the vibration frequency of the pipe increased almost linearly 

as the internal flow velocity was increased, but the rise was more prominent for 

experiments involving an external ring, as opposed to an end-piece. At higher flow 

velocities, yet still reasonably low, the motion of the cantilevered pipe was chaotic, and 

impacting occurred with the rigid channel. 

The theoretical and experimental results were compared, and it was regrettably 

concluded that the theoretical model derived in Section 5.2.1 was inadequate for 

predicting the dynamical behaviour of this system. Therefore, modification to the current 

linear model is suggested for future work. For the experiments with ach = 2.00, a number 

of discrepancies can be singled out from the theoretical results, such as the overestimated 

critical flow velocities and vibration frequencies, in addition to an incorrect prediction of 

the unstable mode. Theoretically, it was found that UtyCr - 5 . 4 andfcr - 2.1 Hz, on the 

average, and that the unstable mode was the second one. On the other hand, for the 

experiments with ach ~ 1.60, the theoretical critical flow velocities were also 

overestimated, but the vibration frequencies and the unstable mode were in good 

agreement with the experimental results. Theoretically, it was found that uiyCr - 2 . 3 and 

fcr~0.72 Hz, on the average, and that the unstable mode was the first one. 
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CHAPTER 6 

Conclusion 

6.1 Concluding Remarks 

6.1.1 Dynamics of a cantilevered pipe conveying fluid fitted with a stabilizing end-piece 

In this thesis, Chapter 2 was motivated by the dynamics of a cantilevered pipe 

conveying fluid fitted with an end-piece, wherein the fluid, chosen to be water, was 

allowed to either pass straight through, representing the standard discharging case, or was 

diverted by 90° at the free end, corresponding to the instability-free case. This work was 

not particularly applications-oriented, but rather curiosity-driven, and was motivated by 

the desire to acquire new knowledge. The dynamics of the system was studied both 

theoretically and experimentally. 

Theoretically, the linear dynamics of a typical bench-top system was studied using 

a five-mode Galerkin approximation. In general, the unblocked cantilevered pipe fitted 

with either the four-holed (Te = 0.196) or the eight-holed (Te = 0.200) end-piece became 

unstable in the second mode by single-mode flutter at relatively high flow velocity. Not 

unexpectedly, however, linear theory could not adequately predict the second bifurcation, 

which was observed experimentally, and it was necessary to resort to nonlinear theory, 

which was implemented in Fortran using Dr. Yahya Modarres-Sadeghi's code with N = 4 

modes. From the nonlinear perspective, the cantilevered pipe became unstable by 

travelling-wave type flutter first, followed by fixed-node type flutter afterwards, 

regardless of the end-piece tested - which agreed with observation. On the other hand, the 

blocked cantilevered pipe remained stable for all flow velocities because the centrifugal 
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term, MU 2(d2w/dx2), which is essential in bringing about flutter, was cancelled by the 

blockage-induced tension on the pipe, T. 

Experimentally, the unblocked cantilevered pipe experienced a first bifurcation in 

its second mode, which was characterized by two-dimensional planar, travelling-wave 

type flutter, regardless of the end-piece studied. Then, at a higher flow velocity, the 

system experienced a second bifurcation in its third mode, which was characterized by 

two-dimensional planar, fixed-node type flutter, and a higher vibration frequency. At 

even higher flow velocities, the motion of the cantilevered pipe became more complex, 

and the vibration frequency increased even further, eventually leading the system to 

chaos. In contrast, the blocked cantilevered pipe did not display any instability for the full 

range of flow velocities studied. Therefore, it can be concluded that an end-piece 

plugging the straight-through flow of fluid is a stabilizing device if mounted on a 

cantilevered pipe. 

6.1.2 Dynamics of a cantilevered pipe aspirating fluid 

Chapter 3 was concerned with the dynamics of a cantilevered pipe aspirating 

fluid. Here, the working fluid was chosen to be air because earlier experiments with water 

proved unfruitful. The system was studied both theoretically and experimentally in an 

effort to answer the notorious question: Does a cantilevered pipe aspirating fluid lose 

stability by flutter at small flow velocities? The theoretical model proposed by Pai'doussis 

et al. (2005) was re-derived; however, this time, the effect of gravity was included in the 

equation of motion, in addition to an axial and a lateral time delay of the forces acting at 

the free end of the pipe. Moreover, universal values were chosen for some key 

parameters, such as a, y, and y/, based on the numerical ANSYS work of a colleague, 

Dana Blake Giacobbi. A number of experiments, using three different flexible elastomer 

pipes, and a number of profiled end-pieces, were also performed in a pressurized steel 

tank, wherein air was forced into the tank and up the pipe. Note that some important 

engineering applications for this system include the ocean mining of minerals from the 

sea floor, such as manganese nodules, the liquefying of natural gas onboard ships by 
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aspirating cold seawater, and the exploitation of gas hydrate deposits, such as methane 

crystals. 

Three delay and non-purely-tangential entry models, differing primarily in the 

sequence of application of the time delays, were studied. Theoretically, the best model 

was model III; that is, where the axial and lateral delays, fa and ft, were applied only to 

the terms involving U in the expressions for Fx and Fy, and F^ and F,* were determined 

afterwards, with a = 0.40, f = 0.30, y/ = 1.00, K = 0.60, xa = Dt/Ucr, and fe = 10'3 s. Note 

that gravity and damping effects should also be taken into consideration. In general, this 

system was subject to a Hopf bifurcation in its first mode at relatively low flow velocity, 

while the second and third modes exhibited flow-induced damping. 

From the experimental perspective, the vibration amplitude of the cantilevered 

pipe increased as the flow velocity increased from the very beginning, but the vibration 

frequency remained constant throughout at about 1 Hz, which is close to the first-mode 

natural frequency of the system. Consequently, together with the numerical results of 

Giacobbi (2007) and Giacobbi et al. (2008b), it was concluded that the cantilevered pipe 

aspirating fluid does indeed flutter at small flow velocities in its first mode. It should be 

mentioned that some additional interesting phenomena were also observed in the 

experiments, such as (i) a Poisson-ratio-related extension of the pipe with increasing flow, 

(ii) an intermittent shuddering motion, and (iii) in the absence of a stiffening end-piece, a 

shell-type flutter instability (or perhaps, a dynamic divergence) followed by a shell-type 

buckling collapse at the free end of the cantilevered pipe. 

6.1.3 Dynamics of a free-clamped cylinder in confined axial flow 

Chapter 4 was concerned with the dynamics of a free-clamped cylinder in 

confined axial flow, where the chosen fluid - air - was directed from the free to the 

clamped end. The linear equation of motion of the system was derived using a Newtonian 

approach, and closely following the formulation of Pai'doussis (1973) for cylindrical 

structures subjected to axial flow. The resulting theoretical results were then compared 

with the available experimental ones. Here, too, the research was curiosity-driven, and 

thus academic in nature. 
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The dynamical behaviour of a typical bench-top system was studied using linear 

theory for four combinations of the parameters/and ct, namely (i)/= 1.00 and Cb = 0, (ii) 

/ = 0.80 and cb = 0.20, (iii)/= 0.60 and cb = 0.40, and (iv)/= 0.80 and cb = 0.60. For the 

first case, the free-clamped cylinder became unstable solely by buckling in its first mode. 

For the second and fourth cases, the system initially lost stability by flutter via a Hopf 

bifurcation in its first mode, followed immediately thereafter by divergence in its first 

mode as well. For the third case, however, first-mode flutter was the only instability 

predicted by linear theory for the full range of flow velocities investigated, i.e. 0 < u < 3. 

Three different flexible elastomer cylinders were tested experimentally, along 

with a number of tapered end-pieces. Generally, the cylinder became unstable by flutter 

in its first mode at very low flow velocity, i.e. from the very beginning of the experiment, 

and the vibration amplitude of the system increased quickly with increasing flow until 

reaching a maximum. Then, at higher flow velocities, the system lost stability by 

divergence in its first mode, and the vibration frequency of the system decreased 

parabolically to practically zero. Note that the vibration amplitude also ceased to grow 

during the buckling instability. 

Furthermore, it was concluded that the theoretical results do not agree well with 

the behaviour observed in experiments. Although, theoretically, a system with/= 0.80 

and cb = 0.20 or / = 0.80 and cb = 0.60 does exhibit both flutter and divergence, the 

predicted critical flow velocities are too high compared with those found experimentally. 

However, it is likely that the critical flow velocities for the onset of buckling are higher in 

theory than in practice because divergence is sensitive to imperfections. It should also be 

mentioned that, prior to buckling, the observed dynamical behaviour of the free-clamped 

cylinder in confined axial flow was very similar to that observed in the experiments of a 

cantilevered pipe aspirating fluid. 

6.1.4 Dynamics of a cantilevered pipe subjected simultaneously to counter-current 

internal and confined external axial flows 

Chapter 5 dealt with the dynamics of a cantilevered pipe subjected simultaneously 

to counter-current internal and confined external axial flows, where the internal and 
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external flows were related through continuity, and the working fluid was chosen to be 

water. The linear equation of motion of the system proposed by Pai'doussis et al. (2008) 

was re-derived using the Newtonian approach; however, this time, the possibility of an 

end-mass and/or nozzle mounted at the free end of the cantilevered pipe was accounted 

for in the derivation. Furthermore, the results of a number of experiments were discussed, 

and also compared with the predicted theoretical behaviour of the system. This work was 

partly motivated by the fallacious drill-string patent described by Den Hartog (1969) in a 

lecture. Another more reasonable application deals with the design of MEMS devices, 

such as microcantilevers and microchannels, which are expected to possess high Q 

factors, i.e. low damping, for atomic force microscopy and biomolecular detection in 

viscous fluids. 

From the theoretical perspective, a typical bench-top model with acf, = 2.00, i.e. 

wide annular confinement, became unstable by flutter in its second mode via a Hopf 

bifurcation, much like a cantilevered pipe discharging fluid does. Consequently, it was 

concluded that the internal fluid plays the dominant role for systems subjected to wide 

annular confinement. On the other hand, a typical bench-top model with ac/, = 1.60, i.e. 

narrow annular confinement, lost stability by single-mode flutter; but, this time, the 

unstable mode was the first one. Furthermore, at a much higher flow velocity, the third 

mode of the system also became unstable by flutter via a Hopf bifurcation. Thus, it was 

concluded that the external fluid plays the dominant role for systems subjected to narrow 

annular confinement. 

The corresponding experiments were performed with a flexible elastomer pipe, 

wherein fine copper particles were introduced during the casting process, and a variety of 

plastic end-pieces and rings were mounted at, or very close to, the free end of the pipe. 

Qualitatively, the cantilevered system became unstable at very low flow velocities, i.e. 

from the very beginning of the experiment, regardless of the amount of confinement and 

whether a ring was used or not, and behaved similarly to the free-clamped cylinder in 

confined axial flow. Moreover, both the vibration amplitude and the vibration frequency 

were observed to increase almost linearly with increasing flow velocity, but the effect of 

the latter was more pronounced for experiments in which an external ring was mounted at 

the free end. This was expected because the rings were included to create a leakage-flow 
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instability, thereby making the system less stable. Then, at higher, yet still low, flow 

velocities the cantilevered system was observed to behave chaotically, and impacting 

occurred with the sides of the rigid annular channel surrounding the pipe. Unfortunately, 

it was concluded that, once again, the theoretical results did not match the experimental 

ones very well, thus paving the way to some suggestions for future work. 

6.2 Future Work 

In general, this thesis was concerned with the dynamics of cylindrical or tubular 

cantilevered systems subjected to internal and/or external axial flows. While ample work 

has been presented thus far, both theoretically and experimentally, there still exists much 

work to be carried out in the near future. 

To begin with, for the cantilevered pipe aspirating fluid, it has been determined 

that the flow is, in fact, compressible within the pipe, since the Mach number is very 

close to, and generally exceeds, M= 0.30 for the majority of flow velocities investigated 

in a single experiment. Thus, it is essential to include the effects of compressibility in the 

equation of motion; in other words, density changes within the aspirating pipe, which 

result in significant changes in all other properties of the system, including temperature 

and pressure, must be accounted for. Moreover, it is very likely that a number of 

circulation cells, which give rise to lift forces, are formed within the region delineated by 

the pipe and the rigid annular channel while the cantilevered pipe is aspirating fluid. 

Consequently, the effect of these lift forces should also be included in the equation of 

motion in a suitable manner. In addition, both the intermittent shuddering motion, and the 

shell-type flutter (or dynamic divergence), followed by a shell-type buckling collapse of 

the flexible elastomer pipe should be studied further experimentally. 

Moreover, for the free-clamped cylinder in confined axial flow, and the 

cantilevered pipe subjected simultaneously to counter-current internal and confined 

external axial flows, the equations of motion need to be re-visited, and modifications need 

to be made to the boundary conditions at the free end, i.e. at x = L, in an effort to better 

model the dynamical behaviour that was observed experimentally. For example, it is 

likely that the boundary condition stating that the bending moment is zero, as it has been 
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assumed throughout Chapters 4 and 5, is incorrect. Although, perhaps, computationally 

expensive, it would be worthwhile to perform numerical simulations in ANSYS for both 

the cylinder and pipe systems mentioned above. This would aid in visualizing the flow 

field in the vicinity of the free end, in addition to providing some valuable information 

concerning the forces that are developed there. The reader is referred to Appendix H for a 

first-attempt at improving the theoretical model of Chapter 4 for a free-clamped cylinder 

in confined axial flow. Additionally, for the cantilevered pipe subjected simultaneously to 

counter-current internal and confined external axial flows, it would be interesting to 

devise an experiment wherein the damping of the system may be measured. 

Lastly, it would be worthwhile to extend the work of this thesis to include 

nonlinear effects once, of course, the linear equations of motion have been adequately 

modified and perfected. This would be useful in predicting the vibration amplitudes of the 

systems, as well as the instabilities which occur after the first one. Moreover, additional 

experiments should be performed, in which the minimum attainable flow velocities are 

lowered for the water experiments, while the maximum attainable flow velocities are 

raised for the air experiments. However, this would require some modifications to the 

existing experimental apparatus, such as the Omega FMG710 magnetic flowmeter for the 

water experiments, as well as the size of the air control valve for the air experiments. 
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Pipe Casting Process 

The flexible elastomer pipes used during experiments are made from Silastic® E RTV 

Silicone Rubber from Dow Corning, which is a two-part silicone rubber kit consisting of 

a base and a curing agent. The pipe casting tools are illustrated in Fig. A.l. Additional 

information can be found in Pai'doussis (1998, Appendix D). The pipe casting process is: 

1. Clean the mould and plexiglas piston to remove any grease, dirt, or additional residue 

left over from a previous casting. 

2. Apply a thin coat of release agent (PAM® cooking spray works well) on the inner 

surfaces of the mould, and on the central rod for easier pipe removal afterwards. 

3. Tightly secure the two sections of the mould by fastening its fourteen bolts using an 

open-end wrench. Apply an approximately equal amount of torque to each bolt. 

4. Attach the two brass end-pieces to the mould using four screws for each end-piece. 

The brass end-pieces are needed to connect the central rod and the mould, in addition 

to facilitating the injection of the silicone rubber via small holes. Attach braid-

reinforced tubing to both brass end-pieces using worm-drive hose clamps. 

5. Affix the assembled mould to the tripod found in the laboratory using two C-clamps. 

6. Prepare the silicone rubber by thoroughly mixing the base and curing agent in a 

plastic container using a hand-held drill and a mixing paddle. The base-to-curing-

agent weight ratio must be 10:1, and can easily be measured with a weighing scale. 

Note that the silicone rubber remains pourable for up to two hours after being mixed. 

7. Carefully pour the silicone rubber into the plexiglas piston. Make certain to limit the 

amount of air introduced into the mixture. 
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8. Connect the plexiglas piston to the vacuum pump, which is equipped with a regulator 

valve, to de-aerate the mixture and eliminate the occurrence of air voids within the 

pipe. De-aerate the mixture for approximately ten to fifteen minutes. 

9. Attach the plexiglas piston to the lower end of the assembled mould using a worm-

drive hose clamp via the braid-reinforced tubing that is already attached to the mould. 

10. Slowly turn the lead screw of the plexiglas piston clockwise to inject the silicone 

rubber and totally fill the mould. Be very careful to never reverse the turning. Stop 

turning once the mixture has entered the braid-reinforced tubing at the upper end of 

the assembled mould. 

11. Let the silicone rubber mixture cure for approximately 48 hours at room temperature. 

Note that the polymerization of the base and curing agent requires only 24 hours. 

12. Remove the flexible elastomer pipe from the mould. This step can be simplified by 

introducing compressed air into the mould using a blowgun. 

Figure A.l. Tools required for the pipe casting process: (a) mould and release agent; 

(b) tripod; (c) weighing scale, mixing tools, and silicone rubber (curing agent and base); 

(d) plexiglas piston and vacuum pump. 
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Determination of Flexural Rigidity and Damping 

Flexible elastomer pipes made using Silastic® E RTV Silicone Rubber from Dow 

Corning possess practically the same physical properties if, and only if, they are cast from 

the same batch of silicone rubber. If not, their physical properties, such as their flexural 

rigidity and damping constants, will differ considerably from one pipe to another. The 

method used to determine the flexural rigidity and damping constants of a flexible 

elastomer pipe is based on the work by Pai'doussis & des Trois Maisons (1969, 1971). 

Additional information can also be found in Pai'doussis (1998, Appendix D). 

B.l Determination of Flexural Rigidity 

The flexural rigidity, EI, of a flexible elastomer pipe is determined by planar free-

vibration experiments of a cantilevered pipe containing no fluid that is hung vertically 

and excited in its first-mode natural frequency. This can be achieved rather effortlessly by 

displacing and releasing the free end of the cantilevered pipe such that it oscillates in its 

first mode. The displacement of the pipe is then measured using the Optron system, 

which is a non-contacting optical tracking system. A PSD plot is then constructed using 

the resultant time signal [see Appendix E] in order to determine the first-mode natural 

frequency of the system. From Pai'doussis & des Trois Maisons (1969), 

[ReWriReWK 
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where y is a gravity parameter, co\ is the nondimensional first-mode natural frequency, g 

is the gravitational constant, L is the effective length of the pipe, and Q.\ = 2^/1 is the 

dimensional first-mode natural frequency in radians/second. Using the right-hand side of 

Eqn. (B.l) and Table A.l from Paidoussis & des Trois Maisons (1969), the corresponding 

value of y can be found by linear interpolation. The flexural rigidity, EI, of the pipe is 

then calculated from the expression 

where m is the mass per unit length of the pipe, and all other quantities were defined 

previously. 

Figure B.l. The small DC motor and crank-slider that are used to excite the pipe. 

B.2 Determination of Logarithmic Decrements 

The logarithmic decrements, 8„, of a flexible elastomer pipe are also determined 

by planar free-vibration experiments of a cantilevered pipe containing no fluid that is 

179 



APPENDIX B 

10 15 
Frequency (Hz) 

E -4 

Figure B.2. Typical first mode (a) time signal, (b) PSD plot, and 

(c) ln(displacement) versus time plot. 
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hung vertically and excited in its first-, second-, and third-mode natural frequencies. The 

first mode is, once again, excited manually; however, the second and third modes are 

excited mechanically with a small DC motor that is equipped with a crank-slider. The 

experimental set-up is shown in Fig. B.l. When the DC motor is turned off abruptly, the 

pipe oscillates in only the mode of interest. The decaying pipe vibration is then measured 

using the Optron system, and the natural frequency of the mode of interest is determined 

from a PSD plot of the time signal [see Appendix E]. Note that a low-pass Chebyshev 

Type 1 filter is applied in MATLAB to the first-mode time signal, whereas band-pass 

Chebyshev Type 1 filters are applied to the second- and third-mode time signals, in order 

to remove any noise or unwanted components from the signals. The filtered time signals 

are then used to plot ln(displacement) versus time graphs [see Fig. B.2], whereby the 

linear slope of the decaying peaks is used to determine the logarithmic decrement of the 

mode of interest, which is found from the expression 

c slope 
S*=~r- (B.3) 

J n 

It is then assumed that the logarithmic decrements for higher modes, i.e. for n > 3, 

increase linearly with modal number. 

B.3 Determination of Hysteretic and Viscoelastic Damping Constants 

If internal dissipation in the material of the flexible elastomer pipe is to be 

considered, the hysteretic damping constant, //*, and the dimensionless viscoelastic 

damping constant, a*, must be determined from the experimental first-, second-, and 

third-mode dimensionless natural frequencies and logarithmic decrements, as well as 

from the resultant gravity parameter, y. Then, using Figs. 1 and 2 from Paidoussis & des 

TroisMaisons(1971), the values of <5,*, 8*2, and 8\, whereby 

£ = - . _ " / v (B.4) 
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can be read directly from the graphs. This leads to three independent equations but only 

two unknowns, namely Ji* and a*. Fig. B.3 shows an example plot of three such 

independent equations. The hysteretic and viscoelastic damping constants are then chosen 

simultaneously by trial-and-error such that the error in computing £,*, 8*2, and 8\ is 

minimized on the whole. Referring to Fig. B.3, Ji* is chosen as the average of JL{ and 

Ji2* as an initial trial; similarly, a * is chosen as the average of a* and a2*. Once these 

initial values of Ji* and a* are calculated, they can be tweaked in order to minimize the 

error in computing 8*, 82, and 8\ fromEqn. (B.4). 

0.06 T 1 

0.05^| 

0 0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 
—* 

a 

Figure B.3. Typical plot used to determine the hysteretic, //*, and viscoelastic, a*, 

damping constants of a flexible elastomer pipe. 
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Optron Displacement Calibration 

The Optron system is an electro-optical biaxial displacement follower system that tracks 

the motion of an object along a vertical and/or horizontal axis. In order for tracking to 

take place, the object must possess a light-dark or dark-light interface. If such an interface 

does not exist, then a sharp discontinuity in illumination can be achieved with the help of 

a DC lamp. Note that the Optron system has been designed to provide the user with a 

measure of displacement. 

a> - t 
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Figure C.l. Typical displacement calibration curve for the Optron system. 

Since the output of the Optron system is a voltage rather than a physical 

displacement, the displacement of the object cannot be determined directly from the time 
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signals recorded in LabVIEW. As a result, the Optron system must be calibrated so that 

the amplitude scale of the time signal corresponds to a displacement in millimetres rather 

than a voltage. This can be achieved rather effortlessly by moving the optical head of the 

Optron system through a fixed distance that completely traverses the object from its light 

to dark area, or vice versa. Note that the object should remain stationary, or motionless, 

throughout the entire calibration process for accurate readings. Fig. C.l shows a typical 

calibration curve from which a voltage difference can be read for a specified 

displacement. Since the relationship between voltage and displacement is linear, the two 

can be correlated using the resultant calibration curve. 
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Experimental Measurement of Flow Velocity 

The only measurement taken during water experiments is the volumetric flow rate, Q. 

However, the air experiments were a little more involved, and six key measurements were 

taken, namely (i) the pressure upstream of the orifice plate, Pi, (ii) the pressure 

differential across the orifice plate, AP, (iii) the pressure at location 3 on the large steel 

tank, P3, (iv) the pressure at location 4 on the large steel tank, P4, (v) the pressure at 

location 5 on the large steel tank, P5, and (vi) the air temperature, T. Refer to Fig. 3.10 for 

a schematic of the experimental set-up. 

D.l Water Flow Velocity Measurements 

During water experiments, the volumetric flow rate, Q, is simply read from the 

Omega DPF64 ratemeter, which receives an input signal from the Omega FMG710 

magnetic flowmeter. However, since the units being read were initially unknown, it was 

necessary to calibrate the ratemeter before any water experiments could take place. This 

was done by recording the time needed to collect 25 pounds of water at five specified dial 

positions on the controller. Referring to Table D.l and Fig. D.l, it was found that the 

ratemeter displays the volumetric flow rate, Q, in litres/second, which can easily be 

converted to a flow velocity, U, in meters/second using the following expression: 

U - & ^ , (D.l) 
A 
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where A = fD? is the flow area of interest, and Dt is the inner diameter of the pipe in 

meters. 

Table D.l. Ratemeter calibration data 

DIAL POSITION 20 

Trial 

1 
2 
3 

Average 

Weight 
flbsl 
25 
25 
25 
25 

Time 
[si 

88.62 
88.97 
89.28 
88.96 

Q 
[L/sl 

0.1281 
0.1276 
0.1271 
0.1276 

Reading 
m 

0.1280 
0.1280 
0.1280 
0.1280 

Difference 
[%1 

0.069 
0.325 
0.671 
0.309 

DIAL POSITION 40 

Trial 

1 
2 
3 

Average 

Weight 
ribsl 
25 
25 
25 
25 

Time 
[si 

52.04 
52.69 
52.34 
52.36 

Q 
[L/sl 

0.2181 
0.2154 
0.2169 
0.2168 

Reading 
m 

0.2170 
0.2170 
0.2170 
0.2170 

Difference 
[%1 

0.518 
0.722 
0.058 
0.088 

DIAL POSITION 60 

Trial 

1 
2 
3 

Average 

Weight 
flbsl 
25 
25 
25 
25 

Time 
[si 

41.87 
41.75 
41.93 
41.85 

Q 
[L/sl 

0.2711 
0.2719 
0.2707 
0.2712 

Reading 
m 

0.2725 
0.2725 
0.2725 
0.2725 

Difference 
[%1 

0.512 
0.226 
0.654 
0.464 

DIAL POSITION 80 

Trial 

1 
2 
3 

Average 

Weight 
Hbsl 
25 
25 
25 
25 

Time 
[si 

34.97 
34.28 
34.72 
34.66 

Q 
[L/sl 

0.3246 
0.3311 
0.3269 
0.3276 

Reading 
[?1 

0.3275 
0.3275 
0.3275 
0.3275 

Difference 
[%1 

0.886 
1.109 
0.173 
0.017 

DIAL POSITION 100 

Trial 

1 
2 
3 

Average 

Weight 
flbsl 
25 
25 
25 
25 

Time 
[si 

29.55 
29.77 
29.48 
29.60 

Q 
[L/sl 

0.3841 
0.3813 
0.3850 
0.3835 

Reading 
m 

0.3825 
0.3825 
0.3825 
0.3825 

Difference 
[%1 

0.427 
0.315 
0.666 
0.259 
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Figure D.l. Ratemeter calibration curve. 

D.2 Air Flow Velocity Measurements 

flow 
d\ &d2 

flow 

Figure D.2. Schematic of the orifice plate. 

The mass flow rate of air supplied to the large steel tank during air experiments is 

found using an orifice plate, which is a flowmeter device that works based on Bernoulli's 

principle. Assuming steady-state, inviscid, incompressible flow in a horizontal pipe, and 

negligible frictional losses, Bernoulli's principle reduces to 

p^\Py^ = p^\Pyl (D.2) 

where Pi and Pj are the fluid pressure upstream and downstream of the orifice plate, 

respectively, p\ is the fluid density, V\ is the fluid velocity upstream the orifice plate, V2 is 
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the fluid velocity through the orifice hole, and the volumetric flow rate is given by 

Q=V\AX = V2A2. This leads to 

P1-P2=\P\Q2IA2
2-Q

2IA2
X\ (D.3) 

where A\ is the cross-sectional area of the pipe, and Ai is the cross-sectional area of the 

orifice hole. Rearranging for Q gives 

Introducing the beta factor, /? = dild\, the coefficient of discharge, Q ~ 0.60 for fully-

developed turbulent flows, and the expansion factor, Y ~ 1 for air and small pressure 

differences, to account for compressibility effects, leads to the following expression for 

the volumetric flow rate, Q: 

4 2 d i i-/?4 Q=-Acjr\ ir'• (D-5) 

Multiplying Eqn. (D.5) by the density of the fluid upstream the orifice plate, p\, gives the 

expression for the mass flow rate, m : 

m = -d2CdY\ ^_ — . (D.6) 

Assuming air to be an ideal gas, the density of the fluid upstream the orifice plate, pi, is 

given by 

where Pi and T\ ~ T are measured directly, and R = 286.9 J/(kgK) is the ideal gas 

constant for air. Assuming a constant air density, p, the axial flow velocity, U, is given by 

m 
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where m is the mass flow rate given by Eqn. (D.6), and A/ is the flow area of interest. 

Unfortunately, the air density, p, cannot be measured directly. Therefore, a preliminary 

guess for p can be made using the ideal gas law, 

P = 
RT 

(D.9) 

where P is the average of P4 and P5: 

P = 
(P*+P5) 

RT 
(D.10) 

Now, compressibility effects must be taken into account if the Mach number is greater 

than M = 0.30 for the majority of flow velocities investigated, which is the case for an 

aspirating pipe. This can be accomplished through the use of the following isentropic 

flow expressions: 

II 

* 
P_. 
Po 

1 + 

1 + 

r-\ 

r-\ 

M2 

M2 

-1 

1 

(D.ll) 

(D.12) 

where T0 is the stagnation temperature, p0 is the stagnation density, y = 1.4 is the specific 

heat ratio for air, M= Ulc is the Mach number, and c = yjyRT* is the speed of sound in 

air. Since the Mach number is small everywhere but inside the flexible elastomer pipe, the 

temperature, T, and the density, p, are assumed to be stagnation values, i.e. T0 = T and 

Po - p. In order for the solution to converge to more accurate axial flow velocities inside 

the flexible elastomer pipe, an iterative process is established whereby the updated values 

of temperature and density, T* and p', are determined from the stagnation values, T0 and 

Po, as well as from the previously calculated Mach numbers, M. Although T* does not 

appear in Eqn. (D.8) explicitly, it is nevertheless needed to calculate p* in Eqn. (D.12) 

because of the presence of a non-negligible M. 
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Experimental Measurement of Frequency 

The main frequency of a time signal is determined using Welch's method. This technique 

can be used to produce power spectral density plots, i.e. PSD plots, which describe how 

the power of a signal is distributed with frequency. In a PSD plot, the frequency resulting 

in the largest peak yields the main frequency of the system. Fortunately, Welch's method 

can easily be implemented in MATLAB using thepwelch command. 

More specifically, Welch's method divides a time signal into a specified number 

of overlapping sections, and then computes, as well as averages, the power spectral 

density of each individual section. Fig. E.l illustrates a typical MATLAB code that is used 

to produce PSD plots from time signals. In this example, the acquired time signals are 

truncated to 214 discrete sample points, and divided into eight sections with 50% overlap. 

Furthermore, each section is windowed with a Harming window. Fig. E.2 illustrates a 

typical PSD plot in MATLAB. 

In Fig. E.l, note that A is a vector containing the original time signal, while B is 

the truncated time signal from which the mean value of A has been subtracted. In 

addition, Fs is the sampling frequency in Hertz, N is the total number of discrete sample 

points, WINDOW specifies the type of window used, i.e. Hanning, as well as the length of 

each windowed section, NOVERLAP specifies the number of discrete sample points to 

overlap from section to section, and NFFT is the number of fast Fourier transform points 

used to calculate the power spectral density estimate. NFFT is typically chosen to be the 

maximum between 256 and the next power of 2 greater than the length of each windowed 

section. Moreover, note that the units for power spectral density in Fig. E.2 are dB/Hz. 
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clear all; clc; 

foi "mat long 

Fs = 400; 
N = 2*14; 
WINDOW = HANNING(3640) ; 
NOVERLAP = 1820; 
NFFT = 4096; 

load('signal'); 

A(:,l) = sigl.data; 
A( 
A( 
A( 
A( 

,2) = sig2.data 
,3) = sig3.data 
,4) = sig4.data 
,5) = sigS.data 

for I = 1:N 
t(I) = I/Fs; 

enc 1 

for J = 1:5 
figure (J) 
B = A(1:N, J)-mean(A(l:N, J) ) ; 
[Pxx,F] = pwelch(B,WINDOW,NOVERLAP,NFFT,Fs) 
P = 10*logl0(Pxx); 
subplot(2,1,1), plot(t,B); 
xlabeK'Time (s) ') ; 
ylabel('Displacement (V)'); 
axis( [0 45 -2 2] ) ; 
subplot (2,1, 2) , plot(F,P); 
xlabel('Frequency (Hz)'); 
ylabel('Power spectral density (dB/Hz)'); 
axis([0 50 -80 0]); 
filename = sprintf('figure_%d.bmp',J); 
saveas(J,filename,'bmp'); 
F(find(P==max(P))) 

end 

Figure E.l. Typical MATLAB code for producing PSD plots from time signals. 

-1 1 T" -i r-
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Figure E.2. Typical PSD plot produced in MATLAB from a time signal. 
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Figure F.l. Assembly technical drawing. 
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Figure F.2. Component technical drawings. 
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Figure F.3. Assembly technical drawings. 
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Figure F.5. Subassembly #2 technical drawings. 
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Figure F.6. Subassembly #3 A technical drawings. 
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Figure F.9. cont'd. 
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APPENDIX G 

Shear Boundary Condition for a Free-Clamped 

Cylinder in Confined Axial Flow 

It is assumed that the free end of the free-clamped cylinder in confined axial flow is fitted 

with a rigid tapered end-piece of length {, where -CIL « 1, and has a cross-sectional area 

A(x), which varies smoothly from A at x = L to zero at x = L +I. The forces being applied 

to the tapered end-piece are illustrated in Fig. G. 1. It should be noted that the forthcoming 

derivation of the shear boundary condition at x = L is correct to first order. Furthermore, 

the derivation follows the formulation of Lopes et al. (2002), but in a simplified manner. 

The variation of the Lagrangian of the tapered end-piece is 

d J Zdt = - J J m(x)—^ Sydxdt, (G. 1) 

where m(x) = pbA(x), and pb is the density of the tapered end-piece. Thus, Eqn. (G.l) 

reduces to 

SJ Zdt = - J m —-^ xe8ydt, (G.2) 

where 

1 L+e 

xe=-JA(x)ix. (G.3) 
A L 
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-*•}' 

x 

= -El(d*w/dx3) 

piAi&wiefi) + 

Figure G.l. Schematic of the tapered end-piece showing applied forces. 

Considering only the virtual work done by the inviscid hydrodynamic force in the 

transverse direction, FA, and the hydrostatic forces in the x- and ^-direction, Fpx and Fpy, 

acting on the tapered end-piece, yields 

t2L+e 

\dmt = \\{-Fpx+FAsmex)8x + {Fpy-FAcos9x)5y\axti, (G.4) 
n i 

where cos#j «1, sin#, »dw/dx, and 

FPX = ~P 

<U(x) 

F = — py dx 
\ 

dx 

pA(x) 

8t dx 

dw | 

&"/ 
dv 1 FA = fXPfMA —~U—v = fxpfA — — A(x) - fxpfUv M

x) 
f"dtA^' J ^ ' dx ' 

(G.5) 

where v = [dwldt - U(dw/dx)]. Simplifying Eqn. (G.4), and eliminating second order 

terms gives 

hL+t 

J SWOt = \\{- FpxSx + [Fpy - FA )Sy}dxdt, 
', L 

\smt = -\\{pA)LSx + \{pA)L^ + fZPfA 
d2w T/dw TTdw 
—z-x.+U\ U — 
dt 

2 e \dt dx 

(G.6) 

\8y\dt. 
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Thus, combining Eqns. (G.2) and (G.6) gives 

8 j Zdt + J 81m = - j {pA\ Sxdt 

'2 

I m -Z xe + {pA)L — + fxpfA 
d2w dw rTdw 

, xe+U\—-U-
dt2 [dt dx dt2"' ~'* dx 

' l > . 

The term in the curly brackets in Eqn. (G.7) is equal to the following: 

\8ydt. 

(G.7) 

,. dw d2w dw 
-Q:-n^ = -m-Zx,+(j,A)L^ + fXp,A 

dx dt2 ~e " ^ V L dx ' JAyf 

d2w TJ(ow TTdw^ 
— r x e +U\ U — 
dt2 {dt dx 

(G.8) 

The shear force and tension acting on the tapered end-piece, Q[ and T*L, are equal in 

magnitude but opposite in direction to those acting on the pipe, QL and TL, such that 

& ^ - = - m 
dw d-^xe+(pA)L^ + fZPfA 

d2w 

dt 
x„+U 

fdw r.dw 
2 "e dt 

U — 
dx , 

(G.9) 

Rearranging Eqn. (G.9) for Qi yields 

_ d2w (rr A 3w . .d2w . ATT(dw TTdw^ 
Q, =-m—-xe -\T + pA)r fXPfA—rx

e-fZPfAU\ U — 
*L dt2 e V ,L dx f dt2 e * f {dt dx 

(G.10) 

where it was found that (T + pA)L = -\pfD
2U2Cb. Therefore, Eqn. (G.IO) becomes 

\dw dw d2w 
QL={\pfD

2U2Cb+fXPfAU2)^-fZpfAU^-{f%pfA + m)xe^, (G.ll) 
dx dt dt1 

and the shear boundary condition at x = L for a free-clamped cylinder in confined axial 

flow is thus 

EI^ + ^pfD
2U2Cb+f%pfAU2)^-f%PfAU^-{fZpfA + m)xe^ = 0. (G.12) 

ax ox ot ot 
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APPENDIX H 

Improvements to the Model for a Free-Clamped 

Cylinder in Confined Axial Flow 

Here, it is presumed that two additional forces - similar to those introduced in Chapter 3 

for a cantilevered pipe aspirating fluid - arise at the free end of the cylinder, in addition to 

those already presented in Chapter 4. The forces exerted by the fluid on the cylinder at 

x = L for both the (x, y)- and (£ C)-coordinate system are shown in Fig. H. 1. It should be 

noted that a mean flow velocity, v, is shown facing the free end of the cylinder; thus, it is 

assumed, once again, that the fluid velocity undergoes a sudden change from -v to -U, 

giving rise to the parameter a = v/U. 

Figure H.l. Schematic of the forces exerted by the fluid on the cylinder at the free end, 

the (x,y)- and (<f, £)-coordinate systems, and the angle x [Pai'doussis et al. (2005)]. 
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In Eqn. (4.20) of Chapter 4, an expression for (T+pA) is provided as follows: 

(T + pA) = (T + pA)L- ±pfDU2CT\l + ~\-{m-pfA)g (L-x), (H.1) 

where 

{T + pA)L=(TL+pLA)+T. (H.2) 

Note that TL is the tension and pL is the pressure at x = L, while T is a newly added 

externally applied tension at x = L. Furthermore, from Eqn. (4.21), it is known that 

{TL+pLA)=-\pfD
2U2Cb 

Therefore, combining Eqns. (H.l), (H.2), and (H.3) gives 

(H.3) 

(T + pA) = T-±pfD
2U2Cb- \pfDU2ci\ + ^A-(m-pfA)g 

V Uh) 
(L-x). (H.4) 

Now, T and the additional term in the shear boundary condition, which is given 

by the second expression in Eqn. (4.24), are determined from the forces F* and F*, 

which act on the cylinder at x - L, and are equal to the change in momentum, xPjAU(AU). 

Referring to Fig. H. 1, 

K = -xpfAU[- Ucosx-{-v cos x)\ 

F* = -%pfAU[(- wL-U sin x)-(-v sin %)\ 

(H.5) 

(H.6) 

where cos % ~ 1>sm X * X K WL >an^ oc = v/U. Thus, 

F;*xPfAU2{\-a), 

F;*XPfAU[wL+{\-a)Uw'L} 

(H.7) 

(H.8) 

Furthermore, the forces exerted by the fluid on the cylinder at x = L in the <f- and in­

direction, respectively, are determined to be 
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F* = F* cos x + Fy sin % « %pfAU2 (l - a), (H.9) 

Fc* = F ; COSx -F* sinx ~ ZP/AUwL (H.10) 

Consequently, the expressions for the newly added externally applied tension, and 

the updated shear boundary condition are 

T=F^xPfAU2(\-a), (H.ll) 

rd
3w dw 

EI~ + {±PfD
2U2Cb+fxpfAU2)^-(f-\)xpfAU ^ 

(H.12) 

The updated equation of motion for a free-clamped cylinder in confined axial flow is 

EI 1 + 
7* A 

a +• 
Q. j 

2TT2 

dt 

d4w 

dx4 

D 
\pfDU2CT J±\-{m-pfA)g 

vA 
dw 

dx 

+ HpfD
2U2Cb + \pfDU2CT\\ + ^-\-(m-pfA)g 

,5 2 w 
XPfAU2^-a)-^- + xPfA 

v Ay U-*)\ 
d2w 
dx2 

dlw 
dt2 - 2 1 / 

d2w 

dxdt 
+ U 2

d2w^ 

dx2 

+ **"*.(£-<£ J 

+ 

& &2 

- ( | P /Z>2tf2Q + / ^ ^ U2 ) ^ + (/• - 1 ) ^ ^ £/ ^ 

+ tep7^ + m)xe -^- S(x - L) = 0. 

<?(x-l) 

(H.13) 

Eqn. (H.13) is rendered nondimensional by using the parameters appearing in Eqn. (4.26), 

and the system is discretized using the Galerkin method. Two additional terms arise as a 

result of the modifications just made: one in the damping matrix, [C], and the other in the 

stiffness matrix, [K\. The updated elements of the mass [M], damping [C], and stiffness 

[K\ matrices for the system are thus 

Msr = [l + P{X ~ OK, + [1 + P(fX ~ I)]*.*, (1 Vr to (H.14) 
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Figure H.2. Argand diagram as a function of u for a free-clamped cylinder in confined 

axial flow with/= 1.00 and cj = 0 using a five-mode Galerkin approximation. 

Figure H.3. Argand diagram as a function of u for a free-clamped cylinder in confined 

axial flow with/= 0.80 and Cb = 0.20 using a five-mode Galerkin approximation. 
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Figure H.4. Argand diagram as a function of u for a free-clamped cylinder in confined 

axial flow with/= 0.60 and c* = 0.40 using a five-mode Galerkin approximation. 

Figure H.5. Argand diagram as a function of u for a free-clamped cylinder in confined 

axial flow with/= 0.80 and c\, = 0.60 using a five-mode Galerkin approximation. 
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Table H.l. Key results including multiplicative factors, vibration amplitudes, flow 

velocities, and vibration frequencies 

Exp. 

1A 
IB 
1C 
ID 
2A 
3A 

Multiplicative factors 

u-+U 

13.9 
13.7 
13.9 
13.9 
14.4 
19.4 

<»-*/ 

0.187 
0.187 
0.187 
0.187 
0.176 
0.234 

Experimental 
max amplitudes 

•rVmin 

[mm] 
0.0851 
0.0668 
0.0737 
0.0736 
0.0792 
0.0843 

Amax 
[mm] 
15.5 
8.04 
12.6 
14.4 
6.94 
8.45 

Experimental 
rms amplitudes 

Amin 
[mm] 

0.0182 
0.0247 
0.0186 
0.0196 
0.0202 
0.0196 

Amax 
[mm] 
6.77 
3.16 
4.16 
4.69 
3.05 
3.06 

Exp. 

1A 
IB 
1C 
ID 
2A 
3A 

flutl 

ucrJ 

0.377 
0.380 
0.380 
0.376 
0.371 
0.270 

Experimental 
er and buckling results 

fcr.f 

PSD 8 
1.07 
1.12 
1.12 
1.12 
1.03 
1.32 

Hz| 
PSD 16 

1.07 
1.17 
1.17 
1.07 
1.07 
1.27 

«er,rf 

1.70 
1.64 
1.64 
1.67 
1.23 
1.08 

Theoretical 
flutter and buckling results 

/= i.oc 
UCr/ 

0.51 
0.51 
0.52 
0.52 
0.57 
0.97 

ReCooj) 

6.09 
6.03 
5.95 
5.88 
6.28 
5.11 

,cb = 0 

UCr4 

2.35 
2.35 
2.35 
2.35 
2.41 
2.16 

Re(ow) 
0 
0 
0 
0 
0 
0 

Exp. 

1A 
IB 
1C 
ID 
2A 
3A 

Theoretical 
flutter and buckling results 

/ = 0.80, cb = 0.20 
UCr/ 

0.42 
0.42 
0.43 
0.43 
0.47 
0.78 

Re(eW 
6.14 
6.08 
6.00 
5.93 
6.34 
5.35 

UcrM 

2.59 
2.59 
2.59 
2.59 
2.67 
2.38 

Re(ew) 
0 
0 
0 
0 
0 
0 

Theoretical 
flutter and buckling results 

/ = 0.60, cb = 0.40 
UCr/ 

0.36 
0.36 
0.37 
0.37 
0.40 
0.66 

Re(eW 
6.17 
6.11 
6.03 
5.96 
6.38 
5.47 

Ucr,d 

2.99 
2.99 
2.99 
2.99 
None 
2.73 

Re(cw) 
0 
0 
0 
0 

None 
0 

Exp. 

1A 
IB 
1C 
ID 
2A 
3A 

Theoretical 
flutter and buckling results 

/ = 0.80, cb = 0.60 
UCr,f 

0.42 
0.42 
0.43 
0.43 
0.47 
0.78 

RefcW) 
6.13 
6.07 
5.99 
5.92 
6.33 
5.30 

Ucr,d 

2.38 
2.38 
2.38 
2.38 
2.45 
2.19 

Re(ew) 
0 
0 
0 
0 
0 
0 
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Csr = [{a* +F/a>)% +±ecN^u + a\>sr-2Xp>iubsr+fz/]y>utM(l) 

Ksr = X\8„ - (}seTu2h - y + \scNu2)bsr + [|cbu2 + \scTu2^ + h)-y + %u2 )psr ^ 

-^scTu2{\ + h)-Y]isr-{\cy+fxu2^M^)-Xu2{\-a)csr. 

Now, the Argand diagrams for the three lowest modes as a function of the 

dimensionless flow velocity, u, are presented in Figs. H.2 to H.5 for a system with the 

parameters a* =0.00030, p* =0.03578, fi = 1.14xl0"3, y = 17.6, e = 25.3, h = 0.455, 

X = 1.22, Xe = 0.00792, cN = 0.0100, cT = 0.0125, a = 0.90, and cb = 1 -/(generally) for 

four different cases: (i) i.e./= 1.00 and cb = 0; (ii)/= 0.80 and cb = 0.20; (iii)/= 0.60 and 

Cb = 0.40; and ( iv ) /= 0.80 and cb = 0.60. In all instances, the system initially becomes 

unstable by flutter via a Hopf bifurcation in its first mode at very low flow velocities, i.e. 

0.36 < ucr/< 0.51, followed by first-mode divergence via a pitchfork bifurcation at much 

higher flow velocities, i.e. 2.35 < ucrj < 2.99. It should be noted that, prior to buckling, in 

Figs. H.2, H.3, and H.5, the first-mode locus is shown to regain stability, since Im(cy) 

becomes positive, after the system undergoes flutter. Moreover, in all cases, the second 

and third modes remain stable for all flow velocities falling within the range 0 < u < 3. 

Furthermore, Table H. 1 presents both the experimental and theoretical results for 

the four different combinations of / and cb considered above. Contrary to the results 

presented in Section 4.3.3 of Chapter 4, all combinations of/and cb capture qualitatively 

what is observed experimentally: first-mode flutter at low flow velocities and first-mode 

divergence at higher flow velocities, i.e. 0.270 < ucr/< 0.380 and 1.08 < ucr,d < 1-70. The 

experimental results for the critical oscillation frequency also match the theoretical values 

agreeably: fcrj is roughly equal to 1 Hz. Thus, the changes introduced in this appendix to 

the original model (derived in Section 4.2.1) have significantly improved the theoretical 

results, in the sense of bringing them closer to the experimental observations. It is worth 

mentioning that a theoretical model with/= 0.80 and cb = 0.60 is perhaps the best in this 

regard, as compared to the other combinations of/and cb, since ucr/is kept low and ucrj 

is not made too high. 
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