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ABSTRACT

The regularity theory of the degenerate complex Monge-Ampère equation is

studied. First, the equation is considered on a compact Kähler manifold (M, g)

without boundary of dimension m. Accordingly, some background information on

Kähler geometry is presented.

Given a solution ϕ of the degenerate complex Monge-Ampère equation, it is

shown that its oscillation and gradient can be bounded independently of ϕ. The

Laplacian of ϕ is also estimated. There is a slight improvement from the literature

on the conditions required in order to obtain the estimate on the Laplacian of ϕ,

however the estimates developed only hold in the case of non-negative bisectional

curvature of M .

As an application, a Dirichlet problem in C
m is considered. The obtained esti-

mates are used to show existence and uniqueness of pluri-subharmonic solutions to

the degenerate complex Monge-Ampère equation in a domain in Cm.
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ABRÉGÉ

La question de la régularité des solutions de l’équation complexe Monge-Ampère

dégénérée est étudiée. Premièrement, l’équation est considérée sur une variété com-

pacte Kähler (M, g) sans frontière de dimension m. Une revue des concepts clés de

la géométrie Kähler est présentée.

Soit ϕ une solution de l’équation complexe Monge-Ampère dégénérée. Il est

démontré que la différence entre la borne supérieure et la borne inférieure de ϕ est

sous controle, et ainsi pour le gradient de ϕ. Le Laplacien de ϕ est également bornée.

Cette borne du Laplacien est une légerte amélioration de ce qui a été établi dans la

littérature jusqu’à présent, mais par contre, l’argument tient seulement sous la con-

dition que M a une courbure non-négative.

Les résultats sont appliqués à un problème de Dirichlet dans Cm. L’existence et

l’unicité d’une solution pluri-subharmonique de l’équation complexe Monge-Ampère

dégénérée dans un domaine dans Cm est démontré.
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CHAPTER 1
Introduction

We will be looking at the regularity theory of the degenerate complex Monge-

Ampere equation. Let us consider the equation on a compact Kähler manifold (M, g)

without boundary of dimension m. The problem of solving the complex Monge-

Ampere equation on M was first motivated by the Calabi conjecture. The Calabi

conjecture states that given a closed (1, 1) form R̃ in the Chern class of M , then there

exists a metric g̃ on M such that the Ricci form of (M, g̃) is R̃. This problem was

reduced to solving a non-degenerate Monge-Ampere equation, and the question was

completely solved by S.T. Yau in [12]. The solution of the Calabi conjecture had

significant geometric implications, in particular, leading to the theory of Calabi-Yau

manifolds, which now play a central role in string theory and complex geometry.

Although the Calabi conjecture deals with a non-degenerate Monge-Ampere

equation, Yau’s paper also treated the degenerate Monge-Ampere equation, with an

application to holomorphic sections of line bundles over M . More recently, the de-

generate Monge-Ampere equation has resurfaced in complex geometry through the

works of Donaldson [7]. Here, the degenerate Monge-Ampere equation appears in

trying to find a geodesic joining two Kähler potentials in the space of Kähler metrics.

It was shown by Chen in [6] that there exists C1,1 geodesics, and the proof involved
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the regularity theory of a degenerate Monge-Ampere equation.

In this thesis, we shall consider the following complex Monge-Ampere equation:

det(ϕij̄ + gij̄) = f det gij̄, (1.1)

where f : M → R. We shall assume f > 0, however, the goal will be to develop

an estimate that does not depend on the infimum of f . This will allow the a priori

estimates to be applicable to the degenerate case when f ≥ 0 via a limiting process.

The objective is the following: given a solution ϕ to (1.1) such that (ϕij̄ + gij̄)

is positive-definite, we seek an estimate |∆ϕ| ≤ C depending only on (M, g), sup f

and the infimum of ∆f
1

m−1 .

This problem is motivated by a similar result obtained for the real Monge-

Ampere equation by P. Guan in [8]. Previously, a bound on the Laplacian of ϕ

was obtained by Blocki in [3] while assuming that f
1

m−1∆(log f) is bounded below.

We obtain the estimate |∆ϕ| ≤ C depending only on (M, g), sup f and the infimum

of ∆f
1

m−1 , but only in the case when M is non-negatively curved. For manifolds of

arbitrary curvature, a result is only obtained in the case m = 2, and the estimate

also depends on |∇f 1/m|.

As an application of the estimates, we solve the Dirichlet problem for the degen-

erate complex Monge-Ampere equation on a domain Ω in Cm. This type of question
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was investigated by Bedford and Taylor in [2], and Caffarelli, Kohn, Niremberg and

Spruck in [5]. Here the problem is of the following form:

det uij̄(z) = f(z) in Ω,

u = 0 on ∂Ω.

We assume f ≥ 0, f
1
m is Lipschitz, and ∆f

1
m−1 is bounded below, and show that

there exists a unique solution u such that (uij̄) is positive-definite, and |∆u| ≤ C.
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CHAPTER 2
Preliminaries

2.1 Notions from Kähler Geometry

In this section, we will recall concepts and notation from the geometry of Kähler

manifolds. Let M be a complex manifold with local coordinates (z1, . . . , zm). These

coordinates are related to the coordinates of the real manifold of dimension 2m via

zk = xk + iyk, where i =
√
−1. In these local coordinates, we have the 1-forms

dzk = dxk + idyk, dz̄k = dxk − idyk.

We denote the set of k forms by ΩkM . The space ΩkM is spanned locally by

forms of the type

η(z) = f(z)dzi1 ∧ · · · ∧ dzip ∧ dz̄j1 ∧ · · · ∧ dz̄jq ,

where f is a smooth function defined locally, k = p+q where p and q are non-negative

integers, and i1, . . . , ip, j1, . . . , jq are elements of {1, 2, . . . , m}. We write

ΩkM =
⊕

p+q=k

Ωp,qM,

where Ωp,qM consists of forms which are locally spanned by the basis consisting of

the wedge product of p forms from {dz1, . . . , dzm} and q forms from {dz̄1, . . . , dz̄m}.
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With respect to these coordinates, we define the following basis for the tan-

gent space of M

∂

∂zk
:=

1

2

(

∂

∂xk
− i

∂

∂yk

)

,

∂

∂z̄k
:=

1

2

(

∂

∂xk
+ i

∂

∂yk

)

.

For a function f : M → C, we will use any of the following notation interchange-

ably: ∂f
∂zk

, ∂kf , and fk. Similarly, we will sometimes denote ∂f
∂z̄k

by ∂̄kf or fk̄.

We let the operators ∂ : Ωp,qM → Ωp+1,qM and ∂̄ : Ωp,qM → Ωp,q+1M act

on η in the following way. We remind the reader that the Einstein summation con-

vention is always assumed.

∂η =
∂f

∂zγ
dzγ ∧ dzi1 ∧ · · · ∧ dzip ∧ dz̄j1 ∧ · · · ∧ dz̄jq .

∂̄η =
∂f

∂z̄γ
dzγ ∧ dzi1 ∧ · · · ∧ dzip ∧ dz̄j1 ∧ · · · ∧ dz̄jq .

We can compute that

(∂ + ∂̄)(f) =
∂f

∂xj
dxj +

∂f

∂yj
dyj = df,

and similarly for forms, so we have ∂ + ∂̄ = d.

A Hermitian metric on M is an expression of the form

gjk̄(z)dz
j ⊗ dz̄k,
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such that (gjk̄(z)) is a Hermitian, positive-definite matrix at each point z and varies

smoothly with z.

For future reference, we compute the derivative of gij̄. We begin with the defi-

nition:

gij̄gik̄ = δj̄
k̄
.

Next, we take the derivative of both sides:

∂gij̄

∂zk
gik̄ = −gij̄

∂gik̄
∂zk

.

Contracting with glk̄ yields

glk̄gik̄
∂gij̄

∂zk
= −glk̄gij̄

∂gik̄
∂zk

.

Hence we obtain

∂glj̄

∂zk
= −glk̄gij̄

∂gik̄
∂zk

. (2.1)

Definition 2.1.1. The Kähler form Ω of (M, g) is defined as

Ω =
i

2
gjk̄dz

j ∧ dz̄k.

The Kähler form gives us the notion of a Kähler manifold.
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Definition 2.1.2. Let (M, g) be a complex manifold with a Hermitian metric. We

say M is a Kähler manifold if the Kähler form is closed: dΩ = 0.

The simple property dΩ = 0 yields a surprising amount of nice consequences.

We will now list the ones that will be used in the subsequent sections. These results

are all standard, and their proofs can be found in [10].

Theorem 2.1.1. (Existence of Normal Holomorphic Coordinates) A Her-

mitian manifold (M, g) is Kähler if and only if at each point p ∈ M , there exists

holomorphic normal coordinates: coordinates such that gjk̄(p) = δjk and

∂gjk̄(p)

∂zl
= 0,

∂gjk̄(p)

∂z̄l
= 0,

for all indices j, k, l.

Theorem 2.1.2. (Global ∂∂̄ lemma) Let M be a compact Kähler manifold. If ω

is a (1, 1) form on M such that ω = dα for some one-form α, then there exists a

function F on M such that ω = ∂∂̄F .

There is a relationship between the Kähler form Ω and the integration volume

element dV ol of the real Riemannian manifold identified with M of dimension 2m.

We note that by definition of dzk and dz̄k, we have (i/2)dzk ∧ dz̄k = dxk ∧ dyk.
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Theorem 2.1.3. Let (M, g) be a Kähler manifold of dimension m. Then the Kähler

form Ω satisfies

Ωm = m!(i/2)m det(gjk̄) dz
1 ∧ dz̄1 ∧ . . . dzm ∧ dz̄m

= m! dV ol.

The condition dΩ = 0 also implies some nice properties for the Christoffel sym-

bols. The closedness property means that

∂gij̄
∂zk

=
∂gkj̄
∂zi

,
∂gij̄
∂z̄l

=
∂gil̄
∂z̄j

. (2.2)

From the representation ΓA
BC = 1

2
gAD(gBD,C + gCD,B − gBC,D), we can see that many

Christoffel symbols must vanish.

Proposition 2.1.1. Let (M, g) be a Kähler manifold. Then the only non-vanishing

Christoffel symbols are of the form Γα
βγ or Γᾱ

β̄γ̄
. In other words, all Christoffel symbols

involving both barred and unbarred indices are identically zero.

The Laplace operator ∆ takes a particularly nice form on a Kähler manifold due

to the identities (2.2).

Proposition 2.1.2. On a Kähler manifold (M, g), the Laplace operator takes the

following form

∆ = gjk̄
∂2

∂zj∂z̄k
.
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The Riemannian curvature tensor R also has a simplified coordinate expression

on a Kähler manifold. For our purposes, we may take the following as a definition:

Rij̄kl̄ = − ∂2gij̄
∂zk∂z̄l

+
∑

p,q

gpq̄
∂gpj̄
∂z̄l

∂giq̄
∂zk

. (2.3)

The Bianchi identity and the symmetries of the derivatives of g recorded in (2.2)

yield the following symmetries for the curvature tensor

Rij̄kl̄ = Rkj̄il̄, Rij̄kl̄ = Rkl̄ij̄. (2.4)

We end this review on Kähler geometry with a technical definition. A lower

bound for the bisectional curvature of M is a constant B such that at each point we

have

Rij̄kl̄a
iajbkbl ≥ B|a|2|b|2, a, b ∈ C

m. (2.5)

If B ≥ 0, we say that M has non-negative bisectional curvature.

2.2 Useful Identities and Inequalities

Before ending this section, we mention some properties that will be useful when

considering equation (1.1). We will use the convention ϕij̄ = ∂2ϕ
∂zi∂z̄j

; as opposed to
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[12], subscripts do not indicate covariant derivatives. We shall denote

g′ij̄ := gij̄ + ϕij̄. (2.6)

Since we are looking for a solution ϕ of (1.1) such that (gij̄ + ϕij̄) is positive-

definite, we have that g′ defines a metric on M . Moreover, since

d
(

g′jk̄dz
j ∧ dz̄k

)

= d
(

gij̄dz
j ∧ dz̄k

)

+ d
(

ϕjk̄dz
j ∧ dz̄k

)

= 0,

we have that g′ is a Kähler metric on M . We shall use the notation ∆′ to denote the

Laplacian of (M, g′). While proving the second order estimate, we shall encounter an

expression involving ∆′∆ϕ. As it will be useful later on, now is as good of a time as

any to embark on a side-calculation and explicitly compute ∆′∆ϕ. First, by direct

computation, we have

∆′(∆ϕ) = g′kl̄
∂2

∂zk∂z̄l

(

gij̄
∂2ϕ

∂zi∂z̄j

)

= g′kl̄
∂2gij̄

∂zk∂z̄l
∂2ϕ

∂zi∂z̄j
+ g′kl̄

(

∂gij̄

∂z̄l
∂3ϕ

∂zi∂z̄j∂zk
+

∂gij̄

∂zk
∂3ϕ

∂zi∂z̄j∂z̄l

)

+ g′kl̄gij̄
∂4ϕ

∂zi∂z̄j∂zk∂z̄l
.

We choose coordinates guaranteed by Theorem 2.1.1 such that at the point in

consideration, we have gij̄ = δij , ∂gij̄/∂z
k = 0 and ∂gij̄/∂z̄

l = 0. Furthermore,

we can rotate this orthonormal basis in order to diagonalize the Hermitian matrix

(ϕ)ij̄. Hence we further assume that ϕij̄ = δijϕjj̄. With this convenient choice of

coordinates, the previous expression becomes

∆′(∆ϕ) = g′kl̄
∂2gij̄

∂zk∂z̄l
∂2ϕ

∂zi∂z̄j
+ g′kl̄δij̄

∂4ϕ

∂zi∂z̄j∂zk∂z̄l
.
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From (2.1), we substitute the expression for ∂g′ij̄

∂zk
, noting that all first order

derivatives of the metric vanish.

∆′(∆ϕ) = −g′kl̄git̄gnj̄
∂2gnt̄
∂zk∂z̄l

∂2ϕ

∂zi∂z̄j
+ g′kl̄δij̄

∂4ϕ

∂zi∂z̄j∂zk∂z̄l
.

Exploiting symmetries gij̄ = gjī and using (2.3), we obtain our final expression.

∆′(∆ϕ) = g′kl̄δij̄Rij̄kl̄ϕij̄ + g′kl̄δij̄ϕkl̄ij̄ . (2.7)

Before moving on, it needs to be shown that equation (1.1) is well-defined on

M . We need to show that (det g′ij̄)(det gij̄)
−1 is independent of choice of coordinates

and is thus globally defined.

Indeed, let {w1, . . . , wm} be another set of coordinates, and express the met-

ric g in these coordinates as hjk̄ and the metric g′ in these coordinates as h′
jk̄
. The

change of coordinates formula gives us gkl̄(z) = hαβ̄(w)
∂wα

∂zk
∂wβ̄

∂z̄l
. Hence

det(gkl̄) = det

(

∑

α,β

∂wα

∂zk
hαβ̄

∂wβ̄

∂z̄l

)

= det

(

∂wk

∂zl

)

det (hkl̄) det

(

∂wk̄

∂z̄l

)

.

We used the property det(ABC) = detA · detB · detC. An analogous identity

holds for det(g′
kl̄
), and since the coordinate transformation determinants cancel, we

obtain

det(g′
kl̄
)

det(gkl̄)
=

det(h′
kl̄
)

det(hkl̄)
.

We now state a few handy estimates. Since g′ij̄ = gij̄ + ϕij̄ is positive definite,
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we have 0 < Tr(gij̄ + ϕij̄). At any point p ∈ M , we may choose coordinates such

that gij̄ = δij̄ . Thus

0 < m+∆ϕ. (2.8)

We next notice the following inequality

(

m
∑

i=1

1

Bi

)m−1

≥
∑m

i=1Bi
∏m

i=1Bi

,

forBi > 0. The inequality comes from clearing the denominators and (σm−1(B))m−1 ≥

(
∏m

i Bi)
m−2(

∑m
i Bi) where σm−1(B) is the elementary symmetric polynomial of or-

der m− 1 in the m variables B1, . . . , Bm. Since g īi > 0, we thus have

∑

i

g′īi ≥
(
∑

i g
′
īi

∏

i g
′
īi

)1/(m−1)

.

Since (det g′ij̄) = f(det gij̄), if our coordinates at p ∈ M are such that gij̄ = δij̄

and ϕij̄ is diagonal, then
∏

i g
′
īi = f . Thus, with these coordinates,

∑

i

g′īi ≥
(

m+∆ϕ

f

)
1

m−1

. (2.9)

Another estimate that will be used many times is the inequality of arithmetic

and geometric means: for any list of m non-negative numbers Bi, we have

B1 +B2 + · · ·+Bm

m
≥ (B1 · B2 · · ·Bm)

1/m .

If we set Bi = g′īi, assuming the coordinates as above, we get

∑

i

g′īi ≥
(

m

f 1/m

)

. (2.10)
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There is one more often-used identity to be shown in this section. As before,

we assume our coordinates at p ∈ M are such that gij̄ = δij̄ , ∂kgjk̄(p) = 0 and ϕij̄ is

diagonal. Let α > 0, and compute

∂k(f det gij̄)
α = ∂k(det g

′
ij̄)

α

= α(det g′ij̄)
α−1∂k det g

′
ij̄

= α(det g′ij̄)
αg′γγ̄∂kg

′
γγ̄

= α(det g′ij̄)
αg′γγ̄ϕγγ̄k.

The last line used the formula for the derivative of the determinant ∂k detAij =

∑

i,j c(Aij)∂kAij = detAij

∑

i,j A
ji∂kAij for a matrix A. Thus

g′γγ̄ϕγγ̄k =
∂kf

α

αfα
. (2.11)
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CHAPTER 3
Estimates on Kähler Manifolds

3.1 Overview

The main result of this section is the following:

Theorem 3.1.1. Let (M, g) be a compact Kähler manifold with non-negative bisec-

tional curvature and empty boundary. Let f > 0 be a positive function on M such

that infM ∆f
1

m−1 ≥ −A for some constant A. For all ϕ ∈ C4(M) satisfying (1.1)

such that (ϕij̄ + gij̄) is positive-definite, we have

(sup
M

ϕ− inf
M

ϕ) + ||∇ϕ||∞ + ||∆ϕ||∞ ≤ C,

where C depends on (M, g), A, and sup f .

Even though we assume f > 0, this sort of estimate is useful for the degenerate

Monge-Ampère equation, since it does not depend on the lower bound of f .

If the assumption on the bisectional curvature of M is removed, results were

only obtained for the case when the dimension of M is m = 2. The estimate also

depends on ∇f 1/m. The result is the following:
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Theorem 3.1.2. Let (M, g) be a compact Kähler manifold without boundary of di-

mension m = 2. Let f > 0 be a positive function on M such that infM ∆f
1

m−1 ≥ −A

for some constant A, and f
1
m is Lipschitz continuous. For all ϕ ∈ C4(M) satisfying

(1.1) such that (ϕij̄ + gij̄) is positive-definite, we have

(sup
M

ϕ− inf
M

ϕ) + ||∇ϕ||∞ + ||∆ϕ||∞ ≤ C,

where C depends on (M, g), A, the Lipschitz constant of f
1
m , and sup f .

The only new work appearing in the proof of these theorems are the estimates

on the Laplacian of ϕ. We estimate the Laplacian directly from the L∞ estimate, and

therefore in the proof of Theorem 3.1.1, we obtain the estimate |∆ϕ| ≤ C depending

only on (M, g), (supϕ− inf ϕ), sup f and the infimum of ∆f
1

m−1 . However, a direct

gradient estimate can also be useful in some applications, for example when dealing

with a manifold with boundary. For the sake of completeness, we include the known

proofs of the L∞ estimate and direct gradient estimate.
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3.2 L∞ Estimate

We assume ϕ is a real-valued function in C4(M) such that (gjk̄ + ϕjk̄)dz
j ⊗ dz̄k

defines a Kähler metric on M , and det(gjk̄ + ∂2ϕ/∂zj∂z̄k) = f det gjk̄. Furthermore,

since we are only interested in controlling the difference (supM ϕ− infM ϕ), we may

shift ϕ by a constant without loss of generality. Thus for the remainder of this

section, we assume
∫

M

ϕ = 0. (3.1)

(i) The Supremum Estimate

The first step will be to estimate the supremum of ϕ, which will be quick and

painless with the help of Green’s functions. The estimate of the infimum of ϕ is more

involved.

We begin by recalling the properties of Green’s functions. The reference for

the following theorem is [1].

Theorem 3.2.1. (Green’s Functions) Let M be a compact Riemannian manifold.

Then there exists a function G(p, q) with the following properties:

(1) For all ϕ ∈ C2, we have

ϕ(p) = (Vol(M))−1

∫

M

ϕ(q) dV ol(q)−
∫

M

G(p, q)∆ϕ(q) dV ol(q).
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(2) The Green’s function is defined up to a constant, and can be chosen such that

G(p, q) ≥ 0.

(3)
∫

M
G(p, q) dV ol(q) = const.

The function G(p, q) is called the Green’s function of the Laplacian ∆. Let

G(p, q) be the Green’s function of the Laplacian ∆ on M , chosen such that G(p, q) ≥

0. Then since
∫

M
ϕ = 0, we have

ϕ(p) = −
∫

M

G(p, q)∆ϕ(q)dV ol(q).

From (2.8), we have

ϕ(p) ≤ m

∫

M

G(p, q)dV ol(q).

By Theorem 3.2.1,
∫

M
G(p, q) = C where C is independent of p ∈ M . Therefore

sup
M

ϕ ≤ mC.

We can also use the Green’s function to estimate
∫

M
|ϕ|.

∫

M

|ϕ| ≤
∫

M

| sup
M

ϕ− ϕ|+
∫

M

| sup
M

ϕ| =
∣

∣

∣

∣

∫

M

sup
M

ϕ−
∫

M

ϕ

∣

∣

∣

∣

+

∫

M

| sup
M

ϕ|.

17



Since
∫

M
ϕ = 0 and supM ϕ is bounded, we have

∫

M

|ϕ| ≤ 2mCVol(M). (3.2)

(ii) The Lp−1 Reduction Estimate

The key inequality to be shown in this section is the following:

∫

M

|∇|ϕ|p/2|2 ≤ p C1

∫

M

|ϕ|p−1. (3.3)

Assuming this estimate, we can obtain an estimate on
∫

M
|ϕ|2. Indeed, first

using the Poincaré inequality and (3.1), and afterwards using (3.3) and the estimate

on
∫

M
|ϕ| given by (3.2), we get

∫

M

|ϕ|2 ≤ C1

∫

M

|∇ϕ|2 ≤ C2

∫

M

|ϕ| ≤ C3. (3.4)

We now prove (3.3), following the argument given in [11]. Since d
dx
x|x|p−2 =

(p − 1)|x|p−2, we have ∂(ϕ|ϕ|p−2) = (p − 1)|ϕ|p−2∂ϕ. Denoting by Ω as the Kähler

form of M , we compute

d(ϕ|ϕ|p−2Ωm−ν
√
−1 ∂̄ϕ(

√
−1∂∂̄ϕ)ν−1)) = ϕ|ϕ|p−2Ωm−ν(

√
−1∂∂̄ϕ)ν

+ (p− 1)|ϕ|p−2Ωm−ν
√
−1∂ϕ ∧ ∂̄ϕ(

√
−1∂∂̄ϕ)ν−1.
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Hence by Stokes’s theorem, we obtain

∫

M

ϕ|ϕ|p−2Ωm−ν(
√
−1∂∂̄ϕ)ν = −

∫

M

(p− 1)|ϕ|p−2Ωm−ν
√
−1∂ϕ ∧ ∂̄ϕ(

√
−1∂∂̄ϕ)ν−1.

(3.5)

To obtain the bound (3.3), we look at the quantity

∫

M

((Ω +
√
−1∂∂̄ϕ)m − Ωm)ϕ|ϕ|p−2.

. Using (3.5), we compute the following:

∫

M

((Ω +
√
−1∂∂̄ϕ)m − Ωm)ϕ|ϕ|p−2 =

∫

M

m
∑

ν=1

(

m

ν

)

Ωm−ν(
√
−1∂∂̄ϕ)νϕ|ϕ|p−2

= −
∫

M

m
∑

ν=1

(p− 1)|ϕ|p−2

(

m

ν

)

Ωm−ν
√
−1∂ϕ ∧ ∂̄ϕ(

√
−1∂∂̄ϕ)ν−1.

(3.6)

We fix a point q ∈ M and choose coordinates such that gij̄ = δij (hence Ωij̄

is diagonal) and ϕij̄ is diagonal at the point in consideration. Taking a look at the

previous expression, the form under the integral at the point q looks like

m
∑

i=1

|∂iϕ|2χi,

where χi is given by

χi =

m
∑

ν=1

(p− 1)|ϕ|p−2

(

m

ν

)

Ωm−ν
√
−1dzi ∧ dz̄i(

√
−1∂∂̄ϕ)ν−1.
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This follows from

dzi ∧ dz̄j ∧ Ωm−ν ∧ (
√
−1∂∂̄ϕ)ν−1 = δijdz

i ∧ dz̄i ∧ Ωm−ν ∧ (
√
−1∂∂̄ϕ)ν−1.

We now estimate χi. As before, we denote g′
ij̄
= gij̄ + ϕij̄, and Ω′ will denote

the Kähler form associated to (M, g′ij̄). First, we compute

χi = (p− 1)|ϕ|p−2

m
∑

ν=1

m

ν

(

m− 1

ν − 1

)

Ωm−ν
√
−1dzi ∧ dz̄i(

√
−1∂∂̄ϕ)ν−1

= (p− 1)|ϕ|p−2

m−1
∑

ν=0

m

ν + 1

(

m− 1

ν

)

Ωm−ν−1
√
−1dzi ∧ dz̄i(

√
−1∂∂̄ϕ)ν

= (p− 1)|ϕ|p−2m

m−1
∑

ν=0

(
∫ 1

0

tνdt

)(

m− 1

ν

)

Ωm−ν−1
√
−1dzi ∧ dz̄i(

√
−1∂∂̄ϕ)ν

= (p− 1)|ϕ|p−2m

∫ 1

0

(t
√
−1∂∂̄ϕ+ Ω)m−1

√
−1dt dzi ∧ dz̄i

= (p− 1)|ϕ|p−2m

∫ 1

0

((1− t)Ω + tΩ′)m−1
√
−1dt dzi ∧ dz̄i.

We now use the fact that Ω and Ω′ are positive definite.

χi = (p− 1)|ϕ|p−2m

∫ 1

0

((1− t)Ω + tΩ′)m−1
√
−1dt dzi ∧ dz̄i

≥ (p− 1)|ϕ|p−2m

∫ 1

0

(1− t)m−1Ωm−1
√
−1dt dzi ∧ dz̄i

= (p− 1)|ϕ|p−2Ωm−1
√
−1dzi ∧ dz̄i.
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Using the volume form as given in Theorem 2.1.3, we have dV ol = ( i
2
)m det gjk̄dz

1∧

dz̄1 ∧ · · · ∧ dzm ∧ dz̄m. Since our coordinates at q are such that gjk̄ = δjk, we obtain

m
∑

i=1

|∂iϕ|2χi ≥
m
∑

i=1

|∂iϕ|2(p− 1)|ϕ|p−2Ωm−1dzi ∧ dz̄i

= |∇ϕ|2(p− 1)|ϕ|p−2m!
(
√
−1)m−1

2m−1
dz1 ∧ dz̄1 ∧ · · · ∧ dzm ∧ dz̄m

=
2√
−1

|∇ϕ|2(p− 1)|ϕ|p−2dV ol.

Therefore, we have shown

m
∑

ν=1

(p−1)|ϕ|p−2

(

m

ν

)

Ωm−ν
√
−1∂ϕ∧∂̄ϕ(

√
−1∂∂̄ϕ)ν−1 ≥ 2√

−1
|∇ϕ|2(p−1)|ϕ|p−2dV ol.

Integrating and using (3.6) yields

∣

∣

∣

∣

∫

M

(Ω +
√
−1∂∂̄ϕ)m − Ωm)ϕ|ϕ|p−2

∣

∣

∣

∣

≥ 2

∫

M

|∇ϕ|2(p− 1)|ϕ|p−2dV ol. (3.7)

On the other hand, from Theorem 2.1.3 , we have

(Ω+
√
−1∂∂̄ϕ)m−Ωm)ϕ|ϕ|p−2 = m!(det g′jk̄−det gjk̄)ϕ|ϕ|p−2 i

m

2m
dz1∧dz̄1∧· · ·∧dzm∧dz̄m.

Therefore,

(Ω +
√
−1∂∂̄ϕ)m − Ωm)ϕ|ϕ|p−2 = m!

(

det g′
jk̄

det gjk̄
− 1

)

ϕ|ϕ|p−2dV ol.

Since ϕ satisfies the Monge-Ampere equation (1.1), we can integrate and obtain

∫

M

(Ω +
√
−1∂∂̄ϕ)m − Ωm)ϕ|ϕ|p−2 = m!

∫

M

(f − 1)ϕ|ϕ|p−2dV ol.
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From now on, we omit writing out the volume form dV ol when integrating scalar

functions. Thus we obtain the estimate

∣

∣

∣

∣

∫

M

(Ω +
√
−1∂∂̄ϕ)m − Ωm)ϕ|ϕ|p−2

∣

∣

∣

∣

≤ m! sup
M

f

∫

M

|ϕ|p−1.

Combining this estimate with (3.7), we see that

∫

M

|∇ϕ|2|ϕ|p−2 ≤ C

p− 1

∫

M

|ϕ|p−1.

Since |∇|ϕ|p/2|2 = (p2/4)|ϕ|p−2|∇ϕ|2, we can conclude

∫

M

|∇|ϕ|p/2|2 ≤ p C1

∫

M

|ϕ|p−1.

We have thus shown (3.3).

(iii) The Moser Iteration

The obtain the next estimate, we use the Sobolev inequality. By the Sobolev

inequality with q = 2, q∗ = 2m/(m− 1), we have

|| |ϕp/2| ||2β ≤ C(|| |ϕ|p/2 ||2 + ||∇|ϕ|p/2 ||2),

where β = m/(m − 1). (Equation (1.1) is trivial when the dimension of the Kähler

manifold is m = 1, so we assume dimension m ∈ N, m > 1.) We note that 1 < β ≤ 2.

By squaring and applying (3.3), we can obtain

(
∫

|ϕ|βp
)1/β

≤ C2

(
∫

|ϕ|p +
∫

|∇|ϕ|p/2|2
)

≤ C2

(
∫

|ϕ|p + pC1

∫

|ϕ|p−1

)

.
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We use Holder’s inequality with conjugate exponents p/(p− 1) and p:

∫

M

|ϕ|p−1 ≤ V ol(M)1/p
(
∫

M

|ϕ|p
)

p−1
p

≤ V ol(M)1/p max{1,
∫

M

|ϕ|p}.

Combining this with the previous inequality yields

(
∫

|ϕ|βp
)1/β

≤ p C3 max{1,
∫

|ϕ|p}.

Rewritten in a more convenient notation, we have

||ϕ||pβ ≤ C
1/p
3 p1/p max{1, ||ϕ||p}. (3.8)

Let p0 = 2 and recursively apply (3.8) by replacing p with pβ after each step.

One obtains

||ϕ||pβk ≤
(

k−1
∏

k=0

(2C3β
k)

1

2βk

)

max{1, ||ϕ||2}. (3.9)

Taking the limit as k → ∞, we obtain

||ϕ||∞ ≤ C4max{1, ||ϕ||2}. (3.10)

The convergence of the product follows from the fact that

∞
∑

k=0

log(2C3β
k)

1

2βk =
∞
∑

k=0

(

log(2C3)

2βk
+

k log β

2βk

)

, (3.11)

converges. By (3.4), ||ϕ||2 is under control and hence ||ϕ||∞ ≤ C.
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3.3 Gradient Estimate

The following result was proved independently by Blocki [3] and P. Guan [9].

Theorem 3.3.1. Let (M, g) be a compact Kähler manifold without boundary. Let

f > 0 be a positive function on M such that f
1
m is Lipschitz continuous. For all

ϕ ∈ C4(M) satisfying (1.1) such that (ϕij̄ + gij̄) is positive-definite, we have

||∇ϕ||∞ ≤ C,

where C depends on (M, g), (supϕ− inf ϕ), the Lipschitz constant of f
1
m , and sup f .

Proof. We consider the test function

H = |∇ϕ|2e−α(ϕ),

where α(x) : [2, λ] → R is a function that will be specified later. In view of the

L∞ estimate, we may shift ϕ by a constant and assume that ϕ(p) ∈ [2, λ] for all

p ∈ M . As they will be needed later, the first thing to do is to compute the first two

derivatives of H .

Hγ = (gij̄)γϕiϕj̄e
−α(ϕ) + gij̄ϕiγϕj̄e

−α(ϕ) + gij̄ϕiϕj̄γe
−α(ϕ) − α′gij̄ϕiϕj̄ϕγe

−α(ϕ).
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Hγγ̄ = (gij̄)γγ̄ϕiϕj̄e
−α(ϕ) + (gij̄)γ(ϕiϕj̄e

−α(ϕ))γ̄ + (gij̄)γ̄(ϕiγϕj̄ + ϕiϕj̄γ − α′ϕiϕj̄ϕγ)e
−α(ϕ)

+ gij̄
(

ϕiγγ̄ϕj̄ + ϕj̄γγ̄ϕi

)

e−α(ϕ) + gij̄
(

ϕiγϕj̄γ̄ + ϕiγ̄ϕγj̄ − α′′ϕiϕj̄ϕγϕγ̄ − α′ϕiϕj̄ϕγγ̄

)

e−α(ϕ)

+ gij̄
(

−α′ϕγ̄(ϕiγϕj̄ + ϕγj̄ϕi)− α′ϕγ(ϕjγϕī + ϕγīϕj) + (α′)2ϕiϕj̄ϕγϕγ̄

)

e−α(ϕ).

Let p ∈ M be the point where H achieves its maximum. We choose coordinates

as in Theorem 2.1.1 such that at the maximal point p of H , we have gij̄(p) =

δij ,
∂

∂zk
gij̄(p) = 0. Furthermore, we may rotate these coordinates by a unitary

transformation and assume ϕij̄(p) = δijϕij̄(p). The vanishing of the first derivative

∇H(p) = 0 implies the following equality at the point in consideration:

∑

i

ϕiγϕī + ϕγϕγγ̄ = α′|∇ϕ|2ϕγ. (3.12)

By the maximum principle, 0 ≥ g′γγ̄Hγγ̄ at p, where g′ was defined in (2.6).

Using (3.12), (2.3), and the properties of our choice of coordinates, we can simplify

some terms in the expansion of Hγγ̄ computed above, and get:

0 ≥
∑

γ,i

g′γγ̄|ϕi|2Rīiγγ̄ + 2
∑

γ,i

g′γγ̄Re(ϕīγγ̄ϕi) +
∑

γ

g′γγ̄(|ϕγγ̄ |2 +
∑

i

|ϕiγ|2)

− α′
∑

γ

|∇ϕ|2g′γγ̄ϕγγ̄ − (α′′ + (α′)2)
∑

γ

g′γγ̄|ϕγ|2|∇ϕ|2. (3.13)

By the definition of g′ij̄, we have

∑

γ

g′γγ̄ϕγγ̄ =
∑

γ

ϕγγ̄

1 + ϕγγ̄
=
∑

γ

1 + ϕγγ̄ − 1

1 + ϕγγ̄
= m−

∑

γ

g′γγ̄. (3.14)
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Using the definition of bisectional curvature (2.5), (2.11), and (3.14), we manip-

ulate (3.13) and obtain

0 ≤ (B − α′)|∇ϕ|2
∑

γ

g′γγ̄ + (α′′ + (α′)2)|∇ϕ|2
∑

γ

g′γγ̄|ϕγ|2 + α′m|∇ϕ|2

− 2mf−1/mRe(
∑

γ

(f 1/m)γ̄ϕγ)−
∑

γ

g′γγ̄(|ϕγγ̄|2 +
∑

i

|ϕiγ|2). (3.15)

Next, we use Cauchy-Bunyakowsky-Schwarz and obtain

−
∑

i

|ϕiγ|2 ≤ −
∣

∣

∣

∣

∣

∑

i

ϕiγϕi

∣

∣

∣

∣

∣

2

|∇ϕ|−2.

From (3.12), we see that

−
∑

i

|ϕiγ|2 ≤ −|α′|∇ϕ|2ϕγ − ϕγϕγγ̄|2
|∇ϕ|2 .

= −(α′)2|∇ϕ|2|ϕγ|2 + 2α′|ϕγ|2ϕγγ̄ − |∇ϕ|−2|ϕγ|2ϕ2
γγ̄ .

We use (3.14) again to obtain

−
∑

γ

∑

i

g′γγ̄|ϕiγ |2 ≤ −(α′)2|∇ϕ|2
∑

γ

g′γγ̄|ϕγ|2 + 2α′|∇ϕ|2 − 2α′
∑

γ

g′γγ̄|ϕγ|2

−
∑

γ

g′γγ̄ϕ2
γγ̄ |∇ϕ|−2|ϕγ|2.

Substituting this identity in (3.15) and dividing out by |∇ϕ|2 yields

0 ≤ (B − α′)
∑

γ

g′γγ̄ + α′(m+ 2) +
2m|∇f 1/m|
|∇ϕ|f 1/m

−
∑

γ

g′γγ̄ϕ2
γγ̄

|∇ϕ|2 (1 +
|ϕγ|2
|∇ϕ|2 )−

2α′

|∇ϕ|2
∑

γ

g′γγ̄|ϕγ|2 + α′′
∑

γ

g′γγ̄|ϕγ|2.
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We select α(x) : [2, λ] → R such that α′ is large and positive, and α′′ is negative.

For example, we could use α(x) = Ex − x2, where E ≥ 2λ + B + 2m||∇f 1/m||∞.

Dropping negative terms and using (2.10),

0 ≤ (B +
2m|∇f 1/m|

|∇ϕ| − α′)
∑

γ

g′γγ̄ + α′(m+ 2) + α′′
∑

γ

g′γγ̄|ϕγ|2. (3.16)

By our choice of α(x), we have that α′ dominates the first term. The objective

is to bound |∇ϕ(p)| ≤ C. If |∇ϕ(p)| ≤ 1, we are done. Therefore, we assume

|∇ϕ(p)| ≥ 1. Throwing out the last term of (3.16), we obtain

(α′ − B − 2m|∇f 1/m|)
∑

γ

g′γγ̄ ≤ α′(m+ 2). (3.17)

Thus

1

1 + ϕγγ̄

= g′γγ̄ ≤ C1. (3.18)

It follows that

1 + ϕīi =
f

∏

γ 6=i(1 + ϕγγ̄)
≤ Cm−1

1 sup f. (3.19)

We have thus found an upper bound (m+∆ϕ) ≤ C2 at the point p. Returning

to (3.16), we throw out the first term this time and obtain

−α′′
∑

γ

g′γγ̄|ϕγ|2 ≤ α′(m+ 2). (3.20)

Since α′′ is negative, we have

−α′′ |∇ϕ|2
m+∆ϕ

≤ −α′′
∑

γ

g′γγ̄|ϕγ|2. (3.21)
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Therefore, we obtain

|∇ϕ|2 ≤ α′(m+ 2)(m+∆ϕ)

(−α′′)
≤ α′(m+ 2)C2

(−α′′)
. (3.22)

Thus we have bounded |∇ϕ(p)|2 ≤ C. It follows that for all z ∈ M , we have

|∇ϕ(z)|2 ≤ |∇ϕ(p)|2eα(ϕ(z))−α(ϕ(p)) ≤ CeEλ+λ2

.
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3.4 Laplacian Estimate

Before stating and proving our estimate, we recall the previously known results.

The first Laplacian estimate was obtained by S.T. Yau in [12]. It was shown that

for all ϕ ∈ C4(M) satisfying (1.1) such that (ϕij̄ + gij̄) is positive-definite, we have

|∆ϕ| ≤ C, where C depends on (M, g), a lower bound of ∆ log f , an upper bound of

f , and an upper bound of (supϕ− inf ϕ).

Another estimate was obtained by Blocki in [4]. It was shown that for all

ϕ ∈ C4(M) satisfying (1.1) such that (ϕij̄+gij̄) is positive-definite, we have |∆ϕ| ≤ C,

where C depends on (M, g), an upper bounds of ||f 1
m−1 ||C1,1 , and an upper bound

of (supϕ− inf ϕ). Later, this result was revisited by Blocki in [3] by replacing the

upper bound of ||f 1
m−1 ||C1,1 with a lower bound of f

1
m−1∆ log f and an upper bound

of f . We replace the lower bound of f
1

m−1∆ log f with a lower bound of ∆f
1

m−1 . This

is an improvement because

f
1

m−1∆ log f =
f

1
m−1

f 2
(f∆f − |∇f |2), and

∆f
1

m−1 =
f

1
m−1

f 2
(f∆f − m− 2

m− 1
|∇f |2).

We present the following proposition, which is the main result of this thesis.
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Proposition 3.4.1. Let (M, g) be a closed, compact Kähler manifold with non-

negative bisectional curvature. Let f > 0 be a positive function on M such that

infM ∆f
1

m−1 ≥ −A for some constant A. For all ϕ ∈ C4(M) satisfying (1.1) such

that (ϕij̄ + gij̄) is positive-definite, we have

|∆ϕ| ≤ C,

where C depends on (M, g), (supϕ− inf ϕ), A, and sup f .

Proof. From (2.8), we have −m < ∆ϕ and thus we only need to bound ∆ϕ from

above.

We will estimate the maximum value of the following test function

H = (m+∆ϕ)e−α(ϕ), (3.23)

where α : [2, λ] → R is a function that will be specified later. In view of the L∞

estimate, we may shift ϕ by a constant and assume that ϕ(p) ∈ [2, λ] for all p ∈ M .

We start by computing the first two derivatives of H .

Hγ = (∆ϕ)γe
−α(ϕ) − α′(m+∆ϕ)ϕγe

−α(ϕ),

Hγγ̄ = ((∆ϕ)γγ̄ − α′(m+∆ϕ)ϕγγ̄ − α′′(m+∆ϕ)ϕγϕγ̄) e
−α(ϕ)

+
(

−α′
(

(∆ϕ)γϕγ̄ + (∆ϕ)γ ϕγ

)

+ (α′)2(m+∆ϕ)ϕγϕγ̄

)

e−α(ϕ). (3.24)
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Let p ∈ M be the point where H achieves its maximum value. We choose coor-

dinates such that at p we have gij̄ = δij,
∂

∂zk
gij̄ = 0 and ϕij̄ = δijϕij̄.

At p, the gradient of H is equal to zero, and hence

(∆ϕ)j = α′ϕj(m+∆ϕ). (3.25)

We recall the notation g′ij̄ := gij̄ + ϕij̄. Since g′ defines a Kähler metric on M ,

we denote ∆′ = g′ab̄∂a∂̄b to be the Laplacian of (M, g′). By the maximum principle,

∆′H(p) ≤ 0, hence if we use this fact while substituting the gradient equation (3.25)

into (3.24), we obtain

∆′∆ϕ ≤ α′(m+∆ϕ)∆′ϕ+ (α′)2(m+∆ϕ)g′īiϕiϕī + α′′(m+∆ϕ)g′īiϕiϕī. (3.26)

Next, we take the first derivative of (det(gij̄ + ϕij̄))
1

m−1 = (f det gij̄)
1

m−1 . This

yields

(det g′ij̄)
1

m−1 g′ij̄(∂γgij̄ +ϕij̄γ) = (m−1)(det gij̄)
1

m−1∂γf
1

m−1 +f
1

m−1 (det gij̄)
1

m−1 gij̄∂γgij̄.

We then take another derivative of the previous expression.

(m− 1)∂̄γ(det gij̄)
1

m−1∂γf
1

m−1 + (m− 1)(det gij̄)
1

m−1∂γ ∂̄γf
1

m−1

+
(

∂̄γ((f det gij̄)
1

m−1 gij̄)
)

∂γgij̄ + (f det gij̄)
1

m−1 gij̄∂γ ∂̄γgij̄

=
1

(m− 1)
(det g′ij̄)

1
m−1 g′kl̄(∂̄γgkl̄ + ϕkl̄γ̄)g

′ij̄(∂γgij̄ + ϕij̄γ)

+ (det g′ij̄)
1

m−1 (g′ij̄(∂γ ∂̄γgij̄ + ϕij̄γγ̄) + (∂γgij̄ + ϕij̄γ)∂̄γg
′ij̄).
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At the point p, our choice of coordinates greatly simplifies the expression and

we are left with the following:

(m− 1)∂γ∂̄γf
1

m−1 + f
1

m−1 δij̄∂γ ∂̄γgij̄

=
1

m− 1
f

1
m−1 g′īig′jj̄ϕīiγϕjj̄γ̄ + f

1
m−1 (g′īi(∂γ ∂̄γgīi + ϕīiγγ̄) + ϕij̄γ∂̄γg

′ij̄).

From (2.1) and (2.3), we obtain

(m− 1)f
−1

m−1∂γ ∂̄γf
1

m−1 − δij̄Rij̄γγ̄

=
1

m− 1
g′īig′jj̄ϕīiγϕjj̄γ̄ − g′īiRīiγγ̄ + g′īiϕīiγγ̄ − g′īig′jj̄ϕij̄γϕjīγ̄. (3.27)

Also, using (2.7), at the point in consideration we have

∆′∆ϕ = g′kl̄∂k∂̄l(g
ij̄ϕij̄) = g′γγ̄ϕīiRīiγγ̄ + g′īiϕīiγγ̄ .

After summing the γ in (3.27) and substituting the previous identity, one obtains

the following at the point p:

(m− 1)f
−1

m−1∆f
1

m−1 = ∆′∆ϕ +
∑

k

1

m− 1
g′īig′jj̄ϕīikϕjj̄k̄ −

∑

k

g′īig′jj̄ϕījkϕij̄k̄

−
∑

k

g′īi(1 + ϕkk̄)Rīikk̄ +
∑

i,k

Rīikk̄.

We shall define

S :=
∑

i,k

Rīikk̄.
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We substitute (3.26), the definition of S, and use the definition (2.5) of bisec-

tional curvature B to obtain

(m− 1)f
−1

m−1∆f
1

m−1 ≤ α′m(m+∆ϕ)− α′(m+∆ϕ)

(

∑

i

g′īi
)

+ (α′)2(m+∆ϕ)g′īiϕiϕī

+ α′′(m+∆ϕ)g′īiϕiϕī +
∑

k

1

m− 1
g′īig′jj̄ϕīikϕjj̄k̄ −

∑

k

g′īig′jj̄ϕījkϕij̄k̄

−B(m+∆ϕ)

(

∑

i

g′īi
)

+ S. (3.28)

If M has non-negative bisectional curvature, then B ≥ 0 and the term involving

B can be thrown out. We are left with

(m− 1)f
−1

m−1∆f
1

m−1 ≤ α′m(m+∆ϕ) + S − α′(m+∆ϕ)

(

∑

i

g′īi
)

+ (α′′ + (α′)2)(m+∆ϕ)g′īiϕiϕī

+
∑

k

1

m− 1
g′īig′jj̄ϕīikϕjj̄k̄ −

∑

k

g′īig′jj̄ϕījkϕij̄k̄. (3.29)

The trouble terms are those involving third order derivatives, and we shall follow

the argument of P. Guan in [8] to control the following quantity for a fixed k:

1

m− 1
g′īig′jj̄ϕīikϕjj̄k̄ − g′īig′jj̄ϕījkϕij̄k̄. (3.30)

First, we drop mixed terms |ϕījk|2 for i 6= j and obtain

1

m− 1
g′īig′jj̄ϕīikϕjj̄k̄ − g′īig′jj̄ϕījkϕij̄k̄ ≤

1

m− 1

∣

∣

∣

∣

g′īiϕīik

∣

∣

∣

∣

2

− (g′īi)2|ϕīik|2.
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We recall that since ϕīi = ϕīi = ϕīi, we have that ϕīi(z) is a locally defined

real-valued function. Also, ϕīik = ∂zkϕīi where ∂zk = 1
2
(∂xk − i∂yk). Thus

|ϕīik|2 =
1

4
(ϕ2

īix + ϕ2
īiy),

where we write fx for ∂xkf , and there is no confusion since k is fixed. Thus we get

4

(

1

m− 1
g′īig′jj̄ϕīikϕjj̄k̄ − g′īig′jj̄ϕījkϕij̄k̄

)

≤ 1

m− 1

(

∑

i

g′īiϕīix

)2

−
∑

i

(g′īiϕīix)
2

+
1

m− 1

(

∑

i

g′īiϕīiy

)2

−
∑

i

(g′īiϕīiy)
2.

(3.31)

We shall show how to control the terms containing real derivatives in the x di-

rection. Let I = {1 ≤ i ≤ m : ϕīix(p) > 0} and J = {1 ≤ i ≤ m : ϕīix(p) < 0}.

We consider the two following cases. Case 1: I and J are both non-empty, or case

2: either I or J is empty.

In case 1, we have |I| ≤ m−1 and |J | ≤ m−1. From the Cauchy-Bunyakowsky-

Schwarz inequality, we know that

(
n
∑

i

ai)
2 ≤ n

∑

a2i ,

for ai ≥ 0. By letting n = m− 1, we will see that this case is easy to handle.
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Indeed, we can compute the following

1

m− 1
(
∑

i

g′īiϕīix)
2 −

∑

i

(g′īiϕīix)
2

=
1

m− 1

(

(
∑

I

g′īiϕīix)
2 + (

∑

J

g′īiϕīix)
2 + 2(

∑

I

g′īiϕīix)(
∑

J

g′īiϕīix)

)

−
∑

I

(g′īiϕīix)
2 −

∑

J

(g′īiϕīix)
2

≤ 1

m− 1

(

∑

I

g′īiϕīix

)2

−
∑

I

(g′īiϕīix)
2 +

1

m− 1

(

∑

J

g′īiϕīix

)2

−
∑

J

(g′īiϕīix)
2

≤ 0.

Case 2 is a little bit more delicate. Without loss of generality, we assume that

J = ∅. Therefore, ϕīix(p) > 0 for all i. Using (3.25), we obtain the following at p:

ϕīix ≤
m
∑

j=1

ϕjj̄x = 2Re(
∂

∂zk
∆ϕ) ≤ 2|(∆ϕ)k| ≤ 2α′|∇ϕ|(m+∆ϕ). (3.32)

We now compute

1

m− 1
(
∑

i

g′īiϕīix)
2 −

∑

i

(g′īiϕīix)
2

=
1

m− 1
(

m−1
∑

i=1

g′īiϕīix + g′mm̄ϕmm̄x)
2 −

m
∑

i=1

(g′īiϕīix)
2

=
2

m− 1
g′mm̄ϕmm̄x

m−1
∑

i=1

g′īiϕīix +
1

m− 1
(

m−1
∑

i=1

g′īiϕīix)
2 −

m−1
∑

i=1

(g′īiϕīix)
2

+
1

m− 1
(g′mm̄ϕmm̄x)

2 − (g′mm̄ϕmm̄x)
2.
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Without loss of generality, we can assume ϕmm̄(p) ≥ ϕīi(p) for all i. Therefore,

we have

1

m− 1
(
∑

i

g′īiϕīix)
2 −

∑

i

(g′īiϕīix)
2 ≤ 2

m− 1
g′mm̄ϕmm̄x

m−1
∑

i=1

g′īiϕīix

≤ 8

m− 1
(α′)2|∇ϕ|2(m+∆ϕ)2g′mm̄

m−1
∑

i=1

g′īi

≤ 8m

m− 1
(α′)2|∇ϕ|2(m+∆ϕ)

m
∑

i=1

g′īi.

The last line is justified as follows. Let B1, B2, . . . , Bm be such that Bi > 0 and

Bm ≥ Bi for all i ∈ {1, 2, . . . , m}. Then it is easy to see that

1

Bm

(

m
∑

i=1

Bi

)

m−1
∑

i=1

1

Bi
≤ m

m
∑

i=1

1

Bi
.

The terms involving y derivatives in (3.31) can be controlled in the same way

as the x derivatives. Thus combining both cases and (3.31), we obtain

1

m− 1
g′īig′jj̄ϕīikϕjj̄k̄ − g′īig′jj̄ϕījkϕij̄k̄ ≤ 4m

m− 1
(α′)2|∇ϕ|2(m+∆ϕ)

m
∑

i=1

g′īi. (3.33)

We substitute (3.33) into (3.29) and obtain

(m− 1)f
−1

m−1∆f
1

m−1 ≤ α′m(m+∆ϕ) + S − α′(m+∆ϕ)(
∑

i

g′īi)

+

(

α′′ + (α′)2(1 +
4m2

m− 1
)

)

(m+∆ϕ)|∇ϕ|2(
∑

i

g′īi). (3.34)
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Denote C0 := 1 + 4m2/(m − 1). Following an idea of Blocki in his gradient

estimate [3], we pick α(x) = (C0)
−1 log x. We know that α(ϕ) is well-defined, since

ϕ was renormalized such that 2 ≤ ϕ ≤ λ. This choice of α yields α′′ + C0(α
′)2 = 0

and hence we are left with

(m− 1)f
−1

m−1∆f
1

m−1 ≤ 1

2C0

m(m+∆ϕ) + S − 1

C0λ
(m+∆ϕ)(

∑

i

g′īi). (3.35)

By (2.9), we obtain

(m− 1)∆f
1

m−1 ≤ 1

2C0
f

1
m+1m(m+∆ϕ) + Sf

1
m+1 − 1

C0λ
(m+∆ϕ)1+

1
m+1 .

From the definition of A, we get

A(m− 1) ≥ 1

C0λ
(m+∆ϕ)1+

1
m+1 −

(

m

2C0
sup
M

f
1

m+1

)

(m+∆ϕ)− S sup
M

f
1

m+1 .

Thus there are constants C1,C2 under control such that

(m+∆ϕ(p))1+1/(m−1) ≤ C1(m+∆ϕ(p)) + C2.

Therefore either

(m+∆ϕ(p))1+1/(m−1) ≤ 2C1(m+∆ϕ(p)), or (m+∆ϕ(p))1+1/(m−1) ≤ 2C2.

It follows that there exists a constant C3 under control such that

m+∆ϕ(p) ≤ C3.
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Now that we have control of (m+∆ϕ) at p, we will show that we have control

of (m+∆ϕ) at all z ∈ M . Indeed,

(m+∆ϕ(z))e−α(ϕ(z)) ≤ (m+∆ϕ(p))e−α(ϕ(p)) ≤ C3e
−α(ϕ(p)).

Since α(x) = C−1
0 log x, we have

(m+∆ϕ(z)) ≤ C3(
λ

2
)1/C0 .

To complete the proof of Theorem 3.1.1, it remains to show that the bound

on the Laplacian implies the bound on the gradient. The direct gradient estimate

required f
1
m to be Lipschitz, so instead of using it, we shall use Schauder estimates.

If we look at ∆ϕ(z) := G(z), then |G(z)| ≤ C. Then by the Schauder estimates

sup
M

|∇ϕ| ≤ C0(||G||∞ + ||ϕ||2) ≤ C. (3.36)

We now move to complete the proof of Theorem 3.1.2. By dropping the as-

sumption on the bisectional curvature of M , the curvature terms wreak havoc on

the previous argument. To attempt to control these curvature terms, we strengthen

our hypothesis to match those of the gradient estimate (Theorem 3.3.1): we assume

f 1/m is Lipschitz continuous. In the case m = 2, this additional assumption makes

dealing with the terms (3.30) particularly easy, and we can thus obtain the following

estimate.
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Proposition 3.4.2. Let (M, g) be a closed, compact Kähler manifold of dimension

m = 2. Let f > 0 be a positive function on M such that infM ∆f ≥ −A for some

constant A, and f
1
2 is Lipschitz. For all ϕ ∈ C4(M) satisfying (1.1) such that

(ϕij̄ + gij̄) is positive-definite, we have

|∆ϕ| ≤ C, (3.37)

where C depends on (M, g), (supϕ − inf ϕ), A, the Lipschitz constant of f
1
2 , and

sup f .

Proof. We run the same argument as the proof of Proposition 3.4.1 up until equation

(3.28). In this case, we can simply let α(x) = x. Our test function is then H =

(m+∆ϕ) exp(−α0ϕ), where 0 < α0 is a constant. Equation (3.28) becomes

f
−1

m−1∆(f
1

m−1 ) ≤ α0m(m+∆ϕ) + S − (α0 +B)(m+∆ϕ)

(

∑

i

g′īi
)

+ (α0)
2(m+∆ϕ)g′īiϕiϕī +

∑

k

1

m− 1
g′īig′jj̄ϕīikϕjj̄k̄ −

∑

k

g′īig′jj̄ϕījkϕij̄k̄.

We see that if we choose α0 > B, the coefficient on the third term is negative.

To eliminate the α2
0 term, we substitute the gradient equation (3.25): (∆ϕ)j =

α0(m+∆ϕ)ϕj.

f
−1

m−1∆(f
1

m−1 ) ≤ α0m(m+∆ϕ) + S − (α0 +B)(m+∆ϕ)

(

∑

i

g′īi
)

+ (m+∆ϕ)−1g′īi(∆ϕ)i(∆ϕ)̄i +
∑

k

1

m− 1
g′īig′jj̄ϕīikϕjj̄k̄ −

∑

k

g′īig′jj̄ϕījkϕij̄k̄
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Using Cauchy-Bunyakowsky-Schwarz, we obtain

(m+∆ϕ)−1g′ij̄(∆ϕ)i(∆ϕ)j̄ = (m+∆ϕ)−1
∑

i

g′īi(
∑

k

ϕkk̄i)(
∑

k

ϕkk̄ī)

=
∑

i

g′īi

m+∆ϕ

(

∑

k

ϕkk̄i(1 + ϕkk̄)
1/2

(1 + ϕkk̄)
1/2

)(

∑

k

ϕkk̄i(1 + ϕkk̄)
1/2

(1 + ϕkk̄)
1/2

)

≤ (m+∆ϕ)−1
∑

i

g′īi

(

∑

k

|ϕkk̄i|2
(1 + ϕkk̄)

)(

∑

k

(1 + ϕkk̄)

)

=
∑

i,k

g′īig′kk̄|ϕkk̄i|2

≤
∑

i,j,k

g′īig′jj̄|ϕij̄k|2.

We are left with

f
−1

m−1∆(f
1

m−1 ) ≤ α0m(m+∆ϕ) + S − (α0 +B)(m+∆ϕ)

(

∑

i

g′īi
)

+
∑

k

1

m− 1
g′īig′jj̄ϕīikϕjj̄k̄.

It is at this point that we use the hypotheses that m = 2 and f 1/2 is Lipschitz

continuous. From (2.11), we see that g′γγ̄ϕγγ̄k = 2f−1/2∂kf
1/2. Therefore,

f−1∆f ≤ 2α0(2 + ∆ϕ) + S − (α0 +B)(2 + ∆ϕ)

(

∑

i

g′īi
)

+ 4
|∇f 1/2|2

f
. (3.38)

Since we choose α0 such that α0 +B > 0, we use (2.9) and get

f−1∆f ≤ 2α0(2 + ∆ϕ) + S − f−1(α0 +B)(2 + ∆ϕ)2 + 4f−1|∇f 1/2|2. (3.39)
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Therefore,

−A ≤ S sup
M

f + 4||∇f 1/2||2∞ + 2α0(sup
M

f)(2 + ∆ϕ)− (α0 +B)(2 + ∆ϕ)2. (3.40)

As shown in the previous argument, it follows that (m+∆ϕ) ≤ C.
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CHAPTER 4
Application to the Dirichlet Problem in Cm

4.1 Overview

As an application of the estimates shown previously, we shall solve a Dirichlet

problem in Cm, following the footsteps of [5]. We first establish some terminology.

We say a real-valued function u is pluri-subharmonic if (uij̄) is positive semi-

definite. We say a real-valued function u is strictly pluri-subharmonic if (uij̄) is

positive definite. Following the terminology of [4], if |∆u| is bounded, we say u is

almost C1,1. A domain Ω ⊂ Cm with smooth boundary ∂Ω is called strongly pseudo-

convex if there exists a smooth real-valued function r defined on a neighbourhood of

Ω̄ such that r < 0 in Ω, r = 0 on ∂Ω, r > 0 outside of Ω̄, dr 6= 0, and (rij̄(z)) is

positive-definite at each point in its domain.

Theorem 4.1.1. Let Ω be a strongly pseudo-convex domain in C
m. Let f : Ω → R

be a function such that f ≥ 0, |∇f 1/m| ≤ A1, and ∆f
1

m−1 ≥ −A2. Then there exists

a unique pluri-subharmonic, almost C1,1 solution u such that

det uij̄(z) = f(z) in Ω,

u = 0 on ∂Ω.
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Furthermore, ||u||C1(Ω̄) + ||∆u||∞ ≤ C, where C depends only on A1,A2, sup(f)

and Ω.

In order to solve this problem, we shall make use of a priori estimates, which

we now state.

Theorem 4.1.2. Let Ω be a strongly pseudo-convex domain in Cm. Let f : Ω → R

be a function such that f > 0, |∇f 1/m| ≤ A1, and ∆f
1

m−1 ≥ −A. Suppose there

exists a strictly pluri-subharmonic solution u ∈ C∞(Ω̄) such that

det uij̄(z) = f(z) in Ω,

u = 0 on ∂Ω.

Then there exists a constant C which depends only on Ω, sup(f), A1 and A2

such that

||u||C1(Ω̄) + ||∆u||∞ ≤ C.

4.2 Proof of the Main Theorem

Assuming Theorem 4.1.2, we shall now prove Theorem 4.1.1. The strategy will

be to solve the non-degenerate Dirichlet problem for f > 0, and then use a limiting

process. Let gε = f
1

m−1 + ε, with ε > 0. We extend f such that it is defined on all

of Cm. Let ϕρ = ϕ(|z|/ρ), where ϕ : Cm → R is a C∞ function of compact support
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such that 0 ≤ ϕ ≤ 1,
∫

ϕ = 1. We define hε,ρ : Ω → R in the following way:

hε,ρ(x) = (gε ∗ ϕρ(x))
m−1 =

(
∫

gε(y)ϕρ(x− y)dy

)m−1

.

We remark the following

∇f
1

m−1 =
m

m− 1
f

1
m(m−1)∇f

1
m . (4.1)

Denote β := 1
m(m−1)

. Since Ω̄ is compact, we know that gε ∗ ϕρ → gε uniformly

on Ω̄, and fβ ∗ ϕρ → fβ uniformly on Ω̄. Let ρ0 > 0 be small enough such that for

all 0 < ρ < ρ0, |gε ∗ ϕρ − gε| < ε/2 and |fβ ∗ ϕρ − fβ| < ε/2. We compute

|∇h1/m
ε,ρ | = m− 1

m

∣

∣(gε ∗ ϕρ)
−1/m ((∇gε) ∗ ϕρ)

∣

∣

=

∣

∣

∣

∣

(fβ∇f 1/m) ∗ ϕρ

(gε ∗ ϕρ)1/m

∣

∣

∣

∣

≤ A1
|fβ ∗ ϕρ|

|gε ∗ ϕρ|1/m

≤ A1
fβ + ε/2

(f
1

m−1 + ε− ε/2)1/m
.

If fβ ≤ ε1/m, then for all ε small enough

fβ + ε/2

(f
1

m−1 + ε/2)1/m
≤ ε1/m + ε/2

(ε/2)1/m
≤ 2.

On the other hand, if fβ ≥ ε1/m, then for all ε small enough

fβ + ε/2

(f
1

m−1 + ε/2)1/m
≤ 1 + (ε/2)f−β

(1 + (ε/2)f− 1
m−1 )1/m

≤ 1 +
ε1−1/m

2
≤ 2.
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Therefore, for all ε > 0 small enough, then for all 0 < ρ < ρ0(ε) we have

|∇h1/m
ε,ρ | ≤ 2A1.

We also notice

∆h1/(m−1)
ε,ρ = ∆(gε ∗ ϕρ) = (∆gε) ∗ ϕρ ≥ −A2 ∗ ϕρ = −A2. (4.2)

Now, we consider the non-degenerate Monge-Ampere Dirichlet problem

det(uε,ρ)ij̄ = hε,ρ in Ω,

uε,ρ = 0 on ∂Ω.

By [5], since hε,ρ is smooth, we know there exists a smooth strictly pluri-

subharmonic solution uε,ρ. For all ε and ρ small enough, we have |∇h
1/(m)
ε,ρ | ≤ 2A1

and ∆h
1/(m−1)
ε,ρ ≥ −A2. Therefore, by Theorem 4.1.2, we have

||uε,ρ||C1(̄Ω) + ||∆uε,ρ||∞ ≤ C,

for some constant C independent of ε and ρ. We let ρ → 0 and obtain a strictly

pluri-subharmonic solution uε of

det(uε)ij̄ = (f
1

m−1 + ε)m−1 in Ω,

uε = 0 on ∂Ω.

such that ||uε||C1(Ω̄) + ||∆uε||∞ ≤ C. Finally, we let ε → 0 and obtain a pluri-

subharmonic solution u of (4.1.1) such that ||u||C1(Ω̄)+ ||∆u||∞ ≤ C. Uniqueness will

follow from Lemma 4.3.2 which will be shown below.
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4.3 C1 Estimate

We now proceed to the proof of Theorem 4.1.2. Most of the work has been

done in the previous section, however we must still control the derivatives uij̄ near

the boundary ∂Ω. All the estimates from the compact Kähler case can be applied;

indeed, we can let M = K where K is a compact subset K ⊂ Ω, and gij̄(z) = δij̄

for all z ∈ K. All curvature terms vanish, and we obtain estimates for ∇u and ∆u

which reduce the problem to estimating these quantities on the boundary ∂Ω.

To prove Theorem 4.1.2, we follow the arguments given in [5]. We let ϕ be

a strictly pluri-subharmonic function on Ω such that ϕ = 0 on ∂Ω and

det(ϕij̄) > sup
Ω̄

f.

Such a ϕ may be constructed by multiplying the function r associated with Ω

by a large enough constant. To give a C0 estimate on u, we use a maximum principle.

Lemma 4.3.1. Let u, v be smooth real-valued functions on a bounded domain Ω ⊂

Cm such that v is strictly pluri-subharmonic, u is pluri-subharmonic, det vij̄ ≥ det uij̄

in Ω and v ≤ u on ∂Ω. Then v ≤ u on Ω̄.

Proof. We consider

0 ≤ det vij̄ − det uij̄ =

∫ 1

0

d

dt
det(tv + (1− t)u)ij̄dt

=

∫ 1

0

∑

i,j

c(tvij̄ + (1− t)uij̄)(v − u)ij̄dt.
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Since (uij̄) and (vij̄) are Hermitian matrices and (vij̄) is positive-definite, we

can simultaneously diagonalize them by choosing the right coordinates. Thus the

cofactor c(tvij̄ + (1− t)uij̄) becomes

c(tvij̄ + (1− t)uij̄) =
∏

k 6=i

(tvkk̄ + (1− t)ukk̄).

Since vkk̄ > 0, ukk̄ ≥ 0, we have a uniformly elliptic operator L(v − u) ≥ 0,

where

L =
∑

i,j

(
∫ 1

0

c(tvij̄ + (1− t)uij̄)dt

)

∂i∂̄j .

By the maximum principle for linear operators, v ≤ u.

Lemma 4.3.2. Let u, v be smooth real-valued pluri-subharmonic functions on a

bounded domain Ω ⊂ C
m such that det vij̄ ≥ det uij̄ in Ω and v ≤ u on ∂Ω. Then

v ≤ u on Ω̄.

Proof. Let ṽ = v + ε|z|2 − εmax∂Ω |z|2. For ε > 0 small enough, we have that ṽ is

strictly pluri-subharmonic, det ṽij̄ ≥ det uij̄ in Ω, and u ≥ ṽ on ∂Ω. By the previous

lemma, u ≥ ṽ on Ω̄. We let ε → 0 to obtain the result.

From the previous lemmas, we obtain ϕ ≤ u. To get a upper bound, we solve

the Laplace equation for a harmonic function h: ∆h = 0 in Ω and h = 0 on ∂Ω.

Then

∆u ≥ m(det uij̄)
1/n ≥ 0 = ∆h,
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thus u ≤ h by the maximum principle. From ϕ ≤ u ≤ h, we can obtain |∇u(z)| ≤

max{|∇ϕ(z)|, |∇h(z)|} for all z ∈ ∂Ω. Since ϕ and h depend only on Ω, we have a

gradient estimate on ∂Ω. The proof of Theorem 3.3.1 can push the interior gradient

estimate to the boundary. Thus we obtain

||u||C1(Ω̄) ≤ C.

4.4 Boundary C2 Estimate

From the proof of Proposition 3.4.1, we see that we can control ∆u on the

interior of Ω by its maximum on ∂Ω. Thus, it only remains to show a boundary

second-order estimate to complete Theorem 4.1.2.

Let p ∈ ∂Ω. Centre coordinates z1, . . . , zm such that p = 0. Denote t1 = x1,

t2 = y1, . . . , t2m−3 = xm−1, t2m−2 = ym−1, and t = ym. We will also use the notation

t′ = (t1, . . . , t2m−2). Rotate coordinates such that ∂t1r(0) = 0, . . . , ∂t2m−2r(0) = 0,

∂tr(0) = 0, and ∂xm
r(0) = −1.

We Taylor expand r near 0 and obtain

r = Re

(

−zm +
∑

i,j

aijzizj

)

+
∑

i,j

bij̄ziz̄j + O(|z|3).
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We can change coordinates z̃m = zm−∑ aijzizj , z̃k = zk for all k ≤ m−1. Thus

without loss of generality, we can can assume our coordinates near 0 are such that

r = −Re(zm) +

m−1
∑

i,j

cij̄ziz̄j +O(|z|3). (4.3)

Since ∂Ω is where r = 0, we can write

Re(zm) =

m−1
∑

i,j

cij̄ziz̄j +O(|z|3), z ∈ ∂Ω. (4.4)

xm(t
′) =

∑

i,j<2m

ξijtitj +O(|t′|3), (t′, xm) ∈ ∂Ω. (4.5)

Now, on ∂Ω near 0, we have u(t′, xm(t
′)) = ϕ(t′, xm(t

′)). Taking ∂ti we get

uti + uxm
∂tixm − ϕti − ϕxm

∂tixm = 0.

We apply ∂tj and evaluate at 0 to get

utitj (0) + uxm
(0)ξij − ϕtitj (0)− ϕxm

(0)ξij = 0.

Therefore, we have

|utitj (0)| = |ϕtitj (0)− ξij(uxm
− ϕxm

)(0)| ≤ C. (4.6)

We now estimate the mixed normal-tangential derivatives utixm
. We define

Ti =
∂

∂ti
− rti

rxm

∂

∂xm
, (4.7)
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for i = 1, . . . , 2m − 1. We can see that Tir = 0, and hence Ti is tangential to the

surface r = 0. For ε > 0, we define the region

Sε = {x ∈ Ω : xm ≤ ε}. (4.8)

We consider the following test function on Sε:

w := Ti(u− ϕ) + (ut − ϕt)
2 −Axm +B|z|2. (4.9)

The objective is to show the two following statements for suitable constants A

and B :

upq̄wpq̄ ≥ 0 in Sε, and (4.10)

w ≤ 0 on ∂Sε. (4.11)

Assuming (4.10) and (4.11), by the maximum principle we can conclude that

w ≤ 0 in Sε. Thus w(0) = 0 is a maximum, and wxm
(0) ≤ 0. We compute

wxm
= utixm

− ∂xm

(

rti
rxm

)

uxm
− rti

rxm

uxmxm
− ϕtixm

+ ∂xm

(

rti
rxm

)

ϕxm

+
rti
rxm

ϕxmxm
+ 2(ut − ϕt)(utxm

− ϕtxm
)−A+ 2Bxm.

By our gradient estimate and since rti(0) = 0 and ut(0) = ϕt(0), we obtain

utixm
(0) ≤ C. We can run through the argument again switching w to w̃ := −Ti(u−

ϕ) + (ut − ϕt)
2 − Axm +B|z|2 and get −utixm

(0) ≤ C, and thus

|utixm
(0)| ≤ C. (4.12)
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We now compute upq̄wpq̄ inside Sε to prove (4.10). Denote a = rti/rxm
. Let

z ∈ Sε, and rotate coordinates such that upq̄(z) is diagonal. We start with

∂p∂̄qTiu = ∂p∂̄q(uti + auxm
)

= ∂p(utiq̄ + aq̄uxm
+ auxmq̄

= upq̄ti + apq̄uxm
+ aq̄uxmp + apuxmq̄ + aupq̄xm

.

Using (2.11), we get upq̄upq̄ti = mf−1/m(f 1/m)ti . Combining this with our C1

estimate for u, we get

upq̄(Tiu)pq̄ ≥
−C1

f 1/m
− C2

∑

upp̄ + upq̄apuxmq̄ + upq̄aq̄uxmp. (4.13)

Since

∂

∂zm
=

1

2

(

∂

∂xm
− i

∂

∂ym

)

,

we obtain uxmq̄ = 2umq̄ + iuq̄t. Using upq̄umq̄ = δmp and the Cauchy-Bunyakowsky-

Schwarz inequality, we see that

|upq̄apuxmq̄| ≤ 2|an|+ |upq̄aputq̄|

≤ 2|an|+ (upq̄apaq̄)
1/2

(upq̄utputq̄)
1/2

≤ 2|an|+
1

2
(upq̄apaq̄ + upq̄utputq̄) .

Similarly, we can obtain

|upq̄aq̄uxmp| ≤ 2|an|+
1

2
(upq̄apaq̄ + upq̄utputq̄) .
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Combining these inequalities with (4.13), along with (2.10), we get

upq̄(Tiu)pq̄ ≥ −C3

∑

upp̄ − upq̄utputq̄. (4.14)

Next, we compute

upp̄∂p∂̄p(ut − ϕt)
2 = 2upp̄(|utp − ϕtp|2 + (ut − ϕt)(utpp̄ + ϕtpp̄))

= 2upp̄utputp̄ − 4upp̄uptϕp̄t + 2upp̄ϕtpϕtp̄ + 2(ut − ϕt)(u
pp̄utpp̄ + upp̄ϕtpp̄)

≥ 2upp̄utputp̄ − 4upp̄uptϕp̄t − C1

∑

upp̄

≥ 2upp̄utputp̄ − 4|u
pp̄

2
uptup̄t|1/2|(2upp̄)ϕptϕp̄t|1/2 − C1

∑

upp̄

≥ 2upp̄utputp̄ − upp̄uptup̄t − 4upp̄ϕptϕp̄t − C1

∑

upp̄

≥ upp̄utputp̄ − C2

∑

upp̄.

Combining this with (4.14), the trouble terms cancel and we obtain

upq̄wpq̄ ≥ B
∑

upp̄ − C3

∑

upp̄ ≥ 0,

for B large enough. We have thus shown (4.10).

We now prove (4.11). We look at ∂Sε as two pieces. The first piece is ∂Ω ∩ Sε.

Here u = ϕ and the tangential derivatives are equal. Furthermore, by (4.5) we have

a|z|2 ≤ xm near 0, for some a > 0. Hence

w = −Axm +B|z|2 ≤ −Axm +Ba−1xm ≤ 0
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for A large. The second piece of ∂Sε is {xm = ε} ∩ Ω, and by our C1 estimate, here

we have

w ≤ C − Aε+Bε2 ≤ 0.

We have thus shown (4.11) and (4.10). As shown in (4.12), this completes the

proof of the mixed tangential-normal estimate |uxmti(0)| ≤ C.

To complete the proof of Theorem 4.1.2, it remains to show that |unn̄(0)| ≤ C.

Using the expression from (4.4), along ∂Ω we have u(z′, zm(z
′)) = 0. We compute

second derivatives for i, j ≤ m− 1:

uij̄ + uixm

∂zm
∂z̄j

+ uj̄xm

∂zm
∂zi

+ uxmxm

∂zm
∂z̄j

∂zm
∂zi

+ uxm

∂2zm
∂zi∂z̄j

= 0.

At 0, we thus have

uij̄(0) = −cij̄uxm
(0). (4.15)

Since r is strictly pluri-subharmonic, cij̄ > 0. Fix zα ∈ ∂Ω. Since Ω has the

interior ball condition, let B ⊂ Ω be a ball such that B ∩ ∂Ω = {zα}. We have

∆u ≥ mf 1/m ≥ 0, thus by the Hopf lemma, if coordinate centred at zα are set such

that xm points in the direction of −n̂, we have uxm
(zα) ≤ −dα < 0. Since ∂Ω is

compact, we have d := infzα∈∂Ω dα > 0. Therefore,

uij̄(0) ≥ d cij̄(0),

(uij̄(0))i,j≤m−1 ≥ c0I,
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for some c0 > 0. Unravelling det uij̄ = f by cofactor expansion, we obtain

f = umm̄c(umm̄) +

m−1
∑

i=1

umīc(umī) = umm̄ det(uij̄(0))i,j≤m−1 +R,

where R is a quantity involving second order partials uαβ̄, where β 6= m. By our

previous estimates, R is under control. We have

|umm̄(0)| =
∣

∣

∣

∣

f −R

det(uij̄(0))i,j≤m−1

∣

∣

∣

∣

≤ sup f + |R|
cm−1
0

.

This completes the proof of Theorem 4.1.2.
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