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ABSTRACT

The regularity theory of the degenerate complex Monge-Ampere equation is
studied. First, the equation is considered on a compact Kéhler manifold (M, g)
without boundary of dimension m. Accordingly, some background information on

Kahler geometry is presented.

Given a solution ¢ of the degenerate complex Monge-Ampere equation, it is
shown that its oscillation and gradient can be bounded independently of ¢. The
Laplacian of ¢ is also estimated. There is a slight improvement from the literature
on the conditions required in order to obtain the estimate on the Laplacian of ¢,
however the estimates developed only hold in the case of non-negative bisectional

curvature of M.

As an application, a Dirichlet problem in C™ is considered. The obtained esti-

mates are used to show existence and uniqueness of pluri-subharmonic solutions to

the degenerate complex Monge-Ampere equation in a domain in C™.
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ABREGE

La question de la régularité des solutions de I’équation complexe Monge-Ampeére
dégénérée est étudiée. Premierement, I’équation est considérée sur une variété com-
pacte Kéhler (M, g) sans frontiere de dimension m. Une revue des concepts clés de

la géométrie Kahler est présentée.

Soit ¢ une solution de I'équation complexe Monge-Ampere dégénérée. 1l est
démontré que la différence entre la borne supérieure et la borne inférieure de ¢ est
sous controle, et ainsi pour le gradient de . Le Laplacien de ¢ est également bornée.
Cette borne du Laplacien est une légerte amélioration de ce qui a été établi dans la
littérature jusqu’a présent, mais par contre, 'argument tient seulement sous la con-

dition que M a une courbure non-négative.
Les résultats sont appliqués a un probleme de Dirichlet dans C™. L’existence et

I'unicité d’une solution pluri-subharmonique de I’équation complexe Monge-Ampere

dégénérée dans un domaine dans C™ est démontré.

v
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CHAPTER 1
Introduction

We will be looking at the regularity theory of the degenerate complex Monge-
Ampere equation. Let us consider the equation on a compact Kéahler manifold (M, g)
without boundary of dimension m. The problem of solving the complex Monge-
Ampere equation on M was first motivated by the Calabi conjecture. The Calabi
conjecture states that given a closed (1, 1) form R in the Chern class of M, then there
exists a metric § on M such that the Ricci form of (M, §) is R. This problem was
reduced to solving a non-degenerate Monge-Ampere equation, and the question was
completely solved by S.T. Yau in [12]. The solution of the Calabi conjecture had
significant geometric implications, in particular, leading to the theory of Calabi-Yau

manifolds, which now play a central role in string theory and complex geometry.

Although the Calabi conjecture deals with a non-degenerate Monge-Ampere
equation, Yau’s paper also treated the degenerate Monge-Ampere equation, with an
application to holomorphic sections of line bundles over M. More recently, the de-
generate Monge-Ampere equation has resurfaced in complex geometry through the
works of Donaldson [7]. Here, the degenerate Monge-Ampere equation appears in
trying to find a geodesic joining two Kahler potentials in the space of Kahler metrics.

It was shown by Chen in [6] that there exists C''! geodesics, and the proof involved



the regularity theory of a degenerate Monge-Ampere equation.

In this thesis, we shall consider the following complex Monge-Ampere equation:

det(p;; + g;7) = f det g;3, (1.1)

where f : M — R. We shall assume f > 0, however, the goal will be to develop
an estimate that does not depend on the infimum of f. This will allow the a priori

estimates to be applicable to the degenerate case when f > 0 via a limiting process.

The objective is the following: given a solution ¢ to (1.1) such that (¢;; + g;7)
is positive-definite, we seek an estimate |Ap| < C depending only on (M, g), sup f

and the infimum of Af =

This problem is motivated by a similar result obtained for the real Monge-
Ampere equation by P. Guan in [8]. Previously, a bound on the Laplacian of ¢
was obtained by Blocki in [3] while assuming that f ﬁA(log f) is bounded below.
We obtain the estimate |Ap| < C' depending only on (M, g), sup f and the infimum
of Af ﬁ, but only in the case when M is non-negatively curved. For manifolds of

arbitrary curvature, a result is only obtained in the case m = 2, and the estimate

also depends on |V f1/™|.

As an application of the estimates, we solve the Dirichlet problem for the degen-

erate complex Monge-Ampere equation on a domain €2 in C™. This type of question



was investigated by Bedford and Taylor in [2], and Caffarelli, Kohn, Niremberg and

Spruck in [5]. Here the problem is of the following form:
detu;(z) = f(z) in Q,

uw =0 on 0.

We assume f > 0, f w s Lipschitz, and Af 71 is bounded below, and show that

there exists a unique solution u such that (u;;) is positive-definite, and [Au| < C.



CHAPTER 2
Preliminaries

2.1 Notions from Kahler Geometry

In this section, we will recall concepts and notation from the geometry of Kahler
manifolds. Let M be a complex manifold with local coordinates (z!,...,2™). These
coordinates are related to the coordinates of the real manifold of dimension 2m via

2% = aF +iy*, where i = v/—1. In these local coordinates, we have the 1-forms

dzF = da® 4 idy”, dzt = da* —idy”.

We denote the set of k& forms by QFM. The space ¥ M is spanned locally by

forms of the type
n(z) = f(2)dz Ao Adz AdFA - N dF

where f is a smooth function defined locally, k& = p+q where p and ¢ are non-negative
integers, and 4y, ...,10p, J1,. .., j, are elements of {1,2,...,m}. We write
M= P M,
p+q=k
where QP4M consists of forms which are locally spanned by the basis consisting of

the wedge product of p forms from {dz',...,dz"} and ¢ forms from {dz*,... dz™}.



With respect to these coordinates, we define the following basis for the tan-

9 _1(o .90
ozk 7 2\ dxk Oyt )’

9 _1(9 [, 0
ozk = 2 \ Oxk Z@yk ’

For a function f : M — C, we will use any of the following notation interchange-

gent space of M

ably: %, O f, and fi. Similarly, we will sometimes denote % by Opf or f;.

We let the operators 0 : QPIM — QPFLIMN and O : QPIM — QPITIM act
on 7 in the following way. We remind the reader that the Einstein summation con-

vention is always assumed.

on = OF 47 pdes A A dzie AdZ A - A dE,
027

_ of

on = =—=dz" Ndz"" N\---Ndz"" NdZ" N A dET
oz

We can compute that

J
= 9w oyd dy’ = df,

(0+0)(f)

and similarly for forms, so we have 0 + 0 = d.

A Hermaitian metric on M is an expression of the form

ng(Z)de ® dz",



such that (g;z(2)) is a Hermitian, positive-definite matrix at each point z and varies

smoothly with z.

For future reference, we compute the derivative of ¢gi. We begin with the defi-
nition:

gijgz’% =07

ErlEN]

Next, we take the derivative of both sides:

97 _ 509
D2k 7k 0zk "

Contracting with ¢’ yields

_ aglj = ag—
Ik _ — _ qlk_ ij ik )

Hence we obtain
g ik 599k

PER e 21)

Definition 2.1.1. The Kdhler form Q of (M, g) is defined as

i C
Q= §gj,;dz] A dz".

The Kéahler form gives us the notion of a Kahler manifold.



Definition 2.1.2. Let (M, g) be a complex manifold with a Hermitian metric. We
say M 1s a Kahler manifold if the Kahler form is closed: d€) = 0.

The simple property df2 = 0 yields a surprising amount of nice consequences.
We will now list the ones that will be used in the subsequent sections. These results

are all standard, and their proofs can be found in [10].

Theorem 2.1.1. (Existence of Normal Holomorphic Coordinates) A Her-
mitian manifold (M, g) is Kdahler if and only if at each point p € M, there exists

holomorphic normal coordinates: coordinates such that g;;(p) = d; and

99,(p)
07

d9,x(p)
02!

=0, =0,

for all indices 7, k, L.

Theorem 2.1.2. (Global 90 lemma) Let M be a compact Kihler manifold. If w
is a (1,1) form on M such that w = da for some one-form «, then there exists a

function F on M such that w = OOF .

There is a relationship between the Kahler form (2 and the integration volume
element dV ol of the real Riemannian manifold identified with M of dimension 2m.

We note that by definition of dz* and dz*, we have (i/2)dz* A dzF = dx* A dy*.



Theorem 2.1.3. Let (M, g) be a Kdihler manifold of dimension m. Then the Kdhler

form Q satisfies

Q™ = ml(i/2)" det(g;z) dz' ANdz" A ... dZ™ AN dZ"

=m! dVol.

The condition df) = 0 also implies some nice properties for the Christoffel sym-

bols. The closedness property means that

99;; _ 99x;  0gi; _ Oga
ozF 027 07 0%

(2.2)

From the representation Fgc = %gAD(gBD,c +9cp.B — 9Be.p), We can see that many

Christoffel symbols must vanish.

Proposition 2.1.1. Let (M, g) be a Kdhler manifold. Then the only non-vanishing
Christoffel symbols are of the form I'g., or F%‘W. In other words, all Christoffel symbols

involving both barred and unbarred indices are identically zero.

The Laplace operator A takes a particularly nice form on a Kéhler manifold due

to the identities (2.2).

Proposition 2.1.2. On a Kdhler manifold (M, g), the Laplace operator takes the

following form

o 0P

A=ght———r.
T 02107




The Riemannian curvature tensor R also has a simplified coordinate expression

on a Kéhler manifold. For our purposes, we may take the following as a definition:

0%gij 19957 991
T = — Z Pq bJ k'
Rzgkl » + ; g 82l 8z’f . (23)

The Bianchi identity and the symmetries of the derivatives of g recorded in (2.2)

yield the following symmetries for the curvature tensor

Rijki = Rk}il’a Rijki = Rkiij- (2-4)

We end this review on Kéhler geometry with a technical definition. A lower
bound for the bisectional curvature of M is a constant B such that at each point we

have

Rigpa'at*' > Bla|b, a,be C™, (2.5)

If B > 0, we say that M has non-negative bisectional curvature.

2.2 Useful Identities and Inequalities

Before ending this section, we mention some properties that will be useful when

considering equation (1.1). We will use the convention ¢;; = %; as opposed to



[12], subscripts do not indicate covariant derivatives. We shall denote

95 = 95 + ¢ (2.6)

Since we are looking for a solution ¢ of (1.1) such that (g;; + ¢;3) is positive-

definite, we have that ¢’ defines a metric on M. Moreover, since
d(gjed=’ A dz") = d (ggd= A dZF) + d (pd? A dz) =0,

we have that ¢’ is a Kahler metric on M. We shall use the notation A’ to denote the
Laplacian of (M, ¢’). While proving the second order estimate, we shall encounter an
expression involving A’Ay. As it will be useful later on, now is as good of a time as
any to embark on a side-calculation and explicitly compute A’Ap. First, by direct

computation, we have

_ 82 - 8290
/ — 1kl i
A0 =9 5 5 (9 aziaza‘)
_ P9 P (097 P 098 Py
02k07z! 021077 0z 0210z10zF  0zF 02007107

o 4
_'_g/kl ij "o

9 9%i0710+07

We choose coordinates guaranteed by Theorem 2.1.1 such that at the point in
consideration, we have g;; = 6;;, dg;;/0z" = 0 and 9g;;/0z" = 0. Furthermore,
we can rotate this orthonormal basis in order to diagonalize the Hermitian matrix
(¢);7. Hence we further assume that ¢;; = d;50,;. With this convenient choice of
coordinates, the previous expression becomes

_ a2gi5 6230 o 8490
/ — Ikl 1kl ¢ig
Al(Ag) 907 9205 9 0 GnigzioloR

10



From (2.1), we substitute the expression for %97?, noting that all first order
derivatives of the metric vanish.
4

[ it nj Pgui P A
/ _ KL it nj nt 1kl $ig
ANA9) ==079"9" 5 iaaaz05 T9 0 sma5007

Exploiting symmetries g;; = g;; and using (2.3), we obtain our final expression.

A/(ASO) = g/k[(sinijki@ij + g/k%ij@kl}'}- (2.7)

Before moving on, it needs to be shown that equation (1.1) is well-defined on
M. We need to show that (det g;;)(det 9;5) " is independent of choice of coordinates
and is thus globally defined.

Indeed, let {w!,... , w™} be another set of coordinates, and express the met-
ric g in these coordinates as h;z and the metric g’ in these coordinates as h;'E' The

w® dw?
ozk 0zl *

ow*  uwP ow* owk

We used the property det(ABC') = det A - det B - det C'. An analogous identity

change of coordinates formula gives us g;i(2) = hoz(w) Hence

holds for det(g;;), and since the coordinate transformation determinants cancel, we

obtain
det(g,7) _ det(h;)
det(gx) det (hyg) '

We now state a few handy estimates. Since ggj = g;; + ©;; is positive definite,

11



we have 0 < Tr(g;; + ¢;;). At any point p € M, we may choose coordinates such

that g;; = d;;. Thus

0<m+ Agp. (2.8)

We next notice the following inequality
m m—1 m
3 b S 21 Bi
i=1 B'l H’i=1 BZ
for B; > 0. The inequality comes from clearing the denominators and (o,,_1(B))™ " >
(IT" B)™ 232" Bi) where 0,,_1(B) is the elementary symmetric polynomial of or-
der m — 1 in the m variables By, ..., B,,. Since ¢" > 0, we thus have
rii > 95 Hm=
29" = (F -
p IL 9;
Since (det g;j) = f(det g;3), if our coordinates at p € M are such that g; = d;;
and ¢;; is diagonal, then [], g% = f. Thus, with these coordinates,

Y g (%A@O)m (2.9)

i

Another estimate that will be used many times is the inequality of arithmetic

and geometric means: for any list of m non-negative numbers B;, we have

B, +By+ -+ B, .
1+ 2—; + 2(31'32"'Bm)1/ .

If we set B; = ¢/, assuming the coordinates as above, we get
1ii m

12



There is one more often-used identity to be shown in this section. As before,
we assume our coordinates at p € M are such that g;; = 0,5, Org,r(p) = 0 and ¢;; is

diagonal. Let o > 0, and compute
Ok (f det g;3)* = Op(det gj;)"
= a(det giz)* 'O det g
= a(det g;3)"9"" Ocg's
= a(det gi5)9"7 .
The last line used the formula for the derivative of the determinant 0y det A;; =
>y C(Ai)OkAij = det Aj; 37, 5 ATOy Ayj for a matrix A. Thus

. O f*
"y o, — . 2.11
A i (2.11)

13



CHAPTER 3
Estimates on Kahler Manifolds

3.1 Overview

The main result of this section is the following:

Theorem 3.1.1. Let (M, g) be a compact Kihler manifold with non-negative bisec-
tional curvature and empty boundary. Let f > 0 be a positive function on M such
that infy; AfmT > —A for some constant A. For all p € CYM) satisfying (1.1)

such that (@;; + g;5) is positive-definite, we have
(sup ¢ —inf ) + [[Vol[oo + [[Aplloe < C,
M

where C' depends on (M, g), A, and sup f.

Even though we assume f > 0, this sort of estimate is useful for the degenerate

Monge-Ampere equation, since it does not depend on the lower bound of f.
If the assumption on the bisectional curvature of M is removed, results were

only obtained for the case when the dimension of M is m = 2. The estimate also

depends on V /. The result is the following:

14



Theorem 3.1.2. Let (M, g) be a compact Kdhler manifold without boundary of di-
mension m = 2. Let f > 0 be a positive function on M such that infy, Afﬁ > —A
for some constant A, and f% is Lipschitz continuous. For all o € CY(M) satisfying

(1.1) such that (p;; + gi7) is positive-definite, we have
(sup ¢ —inf ) + [[Vol[oo + [[Aplloe < C,
M

where C' depends on (M, g), A, the Lipschitz constant of f%, and sup f.

The only new work appearing in the proof of these theorems are the estimates
on the Laplacian of . We estimate the Laplacian directly from the L* estimate, and
therefore in the proof of Theorem 3.1.1, we obtain the estimate |Ap| < C depending
only on (M, g), (sup ¢ — inf ¢), sup f and the infimum of A f = However, a direct
gradient estimate can also be useful in some applications, for example when dealing
with a manifold with boundary. For the sake of completeness, we include the known

proofs of the L> estimate and direct gradient estimate.

15



3.2 L* Estimate

We assume ¢ is a real-valued function in C*(M) such that (g, + ¢;3)d2’ ® dz*
defines a Kéahler metric on M, and det(g;; + 8%p/927 0z%) = f det g, Furthermore,
since we are only interested in controlling the difference (sup,; ¢ — infy; ), we may

shift ¢ by a constant without loss of generality. Thus for the remainder of this

/Mg0: . (3.1)

section, we assume

(i) The Supremum Estimate
The first step will be to estimate the supremum of ¢, which will be quick and
painless with the help of Green’s functions. The estimate of the infimum of ¢ is more

involved.

We begin by recalling the properties of Green’s functions. The reference for

the following theorem is [1].

Theorem 3.2.1. (Green’s Functions) Let M be a compact Riemannian manifold.

Then there ezists a function G(p,q) with the following properties:

(1) For all ¢ € C?, we have

o(p) = (Vol(M))! /

M

¢(q) dVol(q) — /M G(p,q)Ap(q) dVol(q).

16



(2) The Green’s function is defined up to a constant, and can be chosen such that

G(p,q) > 0.

(8) [, G(p.q) dVol(q) = const.

The function G(p,q) is called the Green’s function of the Laplacian A. Let
G(p, q) be the Green’s function of the Laplacian A on M, chosen such that G(p, q) >

0. Then since [, ¢ =0, we have

From (2.8), we have

o(p) <m /M G(p.q)dVol(q).

By Theorem 3.2.1, [,, G(p,q) = C where C is independent of p € M. Therefore

sup p < mC.
M

We can also use the Green’s function to estimate [, |¢|.

/Mé/ Isupso—so|+/ Isupsolz‘/ suw—/w‘Jr/ | sup .
M M M M M M M M M M

17



Since [ 1 # = 0 and sup,, ¢ is bounded, we have

/ lp| < 2mCVol(M). (3.2)

(ii) The L' Reduction Estimate

The key inequality to be shown in this section is the following:

/M V]2 < p Gy /M ol (3:3)

Assuming this estimate, we can obtain an estimate on [, |¢[*>. Indeed, first
using the Poincaré inequality and (3.1), and afterwards using (3.3) and the estimate

on [, ¢l given by (3.2), we get

/ o2 < Cy / Vel? < C, / o] < s (3.4)
M M M

We now prove (3.3), following the argument given in [11]. Since %x|x\p_2 =
(p — 1)|z[P~2, we have d(p|p|P~2) = (p — 1)|¢|P20¢. Denoting by Q as the Kéhler
form of M, we compute
d(plp P2V =1 0p(V=1009)"71)) = ¢l ~2Q" " (V=100p)"

+ (p — 1)|@|P 2™ /=10 A Dp(v/—100p)" .

18



Hence by Stokes’s theorem, we obtain

/M ol (v T00p)” = — /M (0 — D)2y Top A Bip(v"To00) .
(3.5)

To obtain the bound (3.3), we look at the quantity
[ @+ vET000m - el
M

Using (3.5), we compute the following:
_ m m _
/ (4 V=190p)™ — Q™) p|p|P7* = / > (V)Qm_”(v—lﬁﬁw)”w\w\p‘z
M My—1

-/ Vzi;p it () VT A oty T

(3.6)

We fix a point ¢ € M and choose coordinates such that g;; = 0;; (hence €3
is diagonal) and ¢;; is diagonal at the point in consideration. Taking a look at the

previous expression, the form under the integral at the point ¢ looks like

> ol
=1

where y; is given by

Xi = Z(p —1)|pP2 <T) Q" VN —1dz" A dZ' (v —100p) .

v=1

19



This follows from
dz' Ndz ANQTTY N (V=100¢p)" ! = 6i;dzt AdEE A QYA (V=100¢)" !

We now estimate y;. As before, we denote 91/'3 = ¢;; + @5, and Q' will denote

the Kéhler form associated to (M, ggj). First, we compute

— —1|<P|”QZ ( )Qm Y=1dZ' A dE(V—100¢p)"

m—1

—1 o i
—(p-DleP?Y V”ﬁ : (m ) )Qm_”_lx/—ldzl A dZ (v =100¢)"
v=0

= (p— 1)|<p|p_2mmz_:1 < /0 1 t”dt) (m; 1) Q™ Z1d2 A dF(V—=100)”
v=0
= (p— D" *m /Ol(t\/—_lﬁéap + Q)" —1dt d2' A dF
= (p— Dlel"?m /01((1 — O+ Q)" =1dt d2 A d7E
We now use the fact that Q and € are positive definite.
xi = (p— 1l 2m/ (1 =)+ Q)™ =1dt dz* A dZ'

> (p— 1)|p|P 2m/ — QL T1dt d A dE

= (p—D|e|P2Q™ 'V ~1dz" A dZ".

20



Using the volume form as given in Theorem 2.1.3, we have dVol = (%)™ det g;zdz"A

dz' A -+ Adz™ A dz™. Since our coordinates at ¢ are such that gji = Ojx, we obtain

STl = S 18P — D2 m e A dZ?
=1 i=1

(V=D

ST dz* NdZ* A - Nd2™ N dE™

= |V’ (p — 1)|p|P>m!

2
= \/—_—1|V<P\2(P — Dpf~*dVol.

Therefore, we have shown

m

St () 2V ET0pAdA(V IO 2

v=1

2

\/_—1‘v30|2(p_1>|30|p_2d‘/01‘

Integrating and using (3.6) yields

VM(Q +V/=199¢p)™ — Q")plpl 7

>2 [ Vel Dleldvel. (37
M
On the other hand, from Theorem 2.1.3 |, we have
+/—=1900)™ = Q™| [P = m!(det ¢’; —det g.z)p|p[P~ YA NdE A - AdZADE™
/IO -l = (et et el

Therefore,

_ det ¢’

+ V- p) = plel’ = m! — plelP™ ol.
(Q+ V=180p)™ — U™)p|p[P~2 '< I 1) lp|P~2dV ol
det g;j,

Since ¢ satisfies the Monge-Ampere equation (1.1), we can integrate and obtain

/M(Q +V/=180p)™ — Q)plpP~? = m!/ (f = DglglP~2dVol.

M

21



From now on, we omit writing out the volume form dV ol when integrating scalar

functions. Thus we obtain the estimate

‘/ (Q 4+ VTT000)™ — ) pllP?| < mlsup f / ol
M M M

Combining this estimate with (3.7), we see that

_ C _
[ veblepr? < = [ jp
M p—=LJm

Since | V][22 = (p?/4)|0|P~2|V¢|?, we can conclude

/ V]l < p Cy / o,
M M

We have thus shown (3.3).

(iii) The Moser Iteration

The obtain the next estimate, we use the Sobolev inequality. By the Sobolev

inequality with ¢ = 2, ¢* = 2m/(m — 1), we have
11?2 1l2s < Ol P2 Iz + V]l []2),

where § =m/(m —1). (Equation (1.1) is trivial when the dimension of the Kéhler
manifold is m = 1, so we assume dimension m € N, m > 1.) We note that 1 < § < 2.

By squaring and applying (3.3), we can obtain
1/p
([1er) <cu(frer+ [110ree) <o [1ol+0en [1o0).

22



We use Holder’s inequality with conjugate exponents p/(p — 1) and p:

p—1

[ e < vaiane ([ o) " < vean e, [ o).

Combining this with the previous inequality yields

( / W)w < Gy max(1, [ |oP).

Rewritten in a more convenient notation, we have
1
el < C5/"p"? max{1, ||ell,}- (38)

Let po = 2 and recursively apply (3.8) by replacing p with pf after each step.

One obtains

[lpllpsr < <1:[(2036k)2;’“> max{L, ||g[|2}- (3.9)

k=0
Taking the limit as k — co, we obtain

[lplloo < Camax{l, [[¢]]2}. (3.10)

The convergence of the product follows from the fact that

S log(2C585) 5 =% <1°g2<;kc3) + k;%iﬁ) , (3.11)
k=0 k=0

converges. By (3.4), ||¢||2 is under control and hence ||¢|]o < C.
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3.3 Gradient Estimate

The following result was proved independently by Blocki [3] and P. Guan [9].

Theorem 3.3.1. Let (M, g) be a compact Kihler manifold without boundary. Let
f > 0 be a positive function on M such that fi 1s Lipschitz continuous. For all

¢ € CHM) satisfying (1.1) such that (¢ + g;5) is positive-definite, we have
IVelle < C,

where C" depends on (M, g), (sup ¢ —inf @), the Lipschitz constant of f%, and sup f.

Proof. We consider the test function
H = |Vp[*e @,

where «a(z) : [2,A\] — R is a function that will be specified later. In view of the
L> estimate, we may shift ¢ by a constant and assume that p(p) € [2,A] for all
p € M. As they will be needed later, the first thing to do is to compute the first two

derivatives of H.

/g

H, = (9)ypipie " + 970105679 + g7 003,67 — o' g" pipjip, 7).
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Hoy = (g7) 01059 + (67), (ipie )5 + (67)5(0irp5 + 0ip5y — & 0ipsep)e %)

+ 97 (P35 + Cirapi) €+ g7 (0inpzs + Qi — A Pips 1Py — A Qi) €70

+g” (—a’%(%wj +©3501) — &'y (i1 + 0ri¢p5) + (a’)zsoisogsowa) e ).

Let p € M be the point where H achieves its maximum. We choose coordinates
as in Theorem 2.1.1 such that at the maximal point p of H, we have g;;(p) =
ij, %gij(p) = 0. Furthermore, we may rotate these coordinates by a unitary
transformation and assume ¢;;(p) = d;;¢,;(p). The vanishing of the first derivative

V H(p) = 0 implies the following equality at the point in consideration:
D 0iyps + 9y095 = & |Vl 0, (3.12)

By the maximum principle, 0 > ¢""H.~ at p, where ¢’ was defined in (2.6).
Using (3.12), (2.3), and the properties of our choice of coordinates, we can simplify

some terms in the expansion of H,5 computed above, and get:

0 > Zg/w|%| Ru’y’y + 2 Zg/“{“/Re Qpry'ygoz + ngw |90’Y’Y|2 + Z |90VY|

V5t V5t v

— 'Y Vel s — (@ + (@)Y g7 e, PIVel® (3.13)

v v

By the definition of glfj, we have

1 5 —1 -
Zgl’wwv’y SO'Y'Y _ Z + SO’Y'Y =m — Zg/’y’y. (314)
Y

1‘|’S0w L4 ¢4y 5
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Using the definition of bisectional curvature (2.5), (2.11), and (3.14), we manip-
ulate (3.13) and obtain

0< (B=a)[Vel Y g™ + (" + @)Vl Y g7, + a'm| V|’

Y Y

= 2mf Ry () = 3207 (el + 3 e ). (3.15)

Y

Next, we use Cauchy-Bunyakowsky-Schwarz and obtain

- Z ‘(pifyP S -

From (3.12), we see that

2
V| 2.

2
~Y ol < - ||Vl %oy — 03045
v [Vepl|?

= —(&)?|VePloy ] + 20/ |0 [P35 — Vo 720, 025

We use (3.14) again to obtain

=D 97 en P < =1V Y g sl + 22 [V =22/ > g [,
¥ %

Y Y

= §E Ve e,
-

Substituting this identity in (3.15) and dividing out by |Vl|? yields

2m|V f1/]

0<(B—-d g7+ (m+2)+ = —
( )Z ( ) V| f1/m

ol
Yy, A2
g Sofy"y

oy |?
- Z V|2 (1+ |V;\2 |V<p\2 Zglw|¢v|2 + O‘”ZQMW 2.
Y
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We select a(x) : [2, \] = R such that o’ is large and positive, and o is negative.
For example, we could use a(z) = Ex — 2%, where E > 2\ + B + 2m||V f1/™||.
Dropping negative terms and using (2.10),

2m| V)

0<(B+
( IVl

o) g7+ (m+2)+a" > g, (3.16)
v

.
By our choice of a(z), we have that o/ dominates the first term. The objective
is to bound |[Ve(p)] < C. If [Ve(p)| < 1, we are done. Therefore, we assume

IVo(p)| > 1. Throwing out the last term of (3.16), we obtain

(o' = B=2m|[V /)Y g™ < o' (m+2). (3.17)
v
Thus
! vy
= < (. 3.18
L+ ¢4 o= ( )
It follows that
1+ ;= / < O sup f. (3.19)

ny;ﬁz(l + SO“/“_/)
We have thus found an upper bound (m + Ag) < C5 at the point p. Returning

to (3.16), we throw out the first term this time and obtain

o Z g ey ? < a'(m+2). (3.20)

Y

Since «” is negative, we have

" |V90‘2 " Yy 2
— AL < —« Zg loq]°. (3.21)
v
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Therefore, we obtain

o (m+2)(m+Ap) o (m+2)Cy

(=) (=)

Thus we have bounded |V¢(p)|? < C. Tt follows that for all z € M, we have

[Vel* <

< (3.22)

IVp(2)[2 < |V(p)[2e*#N-ale®) < M,
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3.4 Laplacian Estimate

Before stating and proving our estimate, we recall the previously known results.
The first Laplacian estimate was obtained by S.T. Yau in [12]. It was shown that
for all ¢ € C*(M) satisfying (1.1) such that (¢;; + g;5) is positive-definite, we have
|Ap| < C, where C' depends on (M, g), a lower bound of Alog f, an upper bound of

f, and an upper bound of (sup ¢ — inf ).

Another estimate was obtained by Blocki in [4]. It was shown that for all
¢ € C*(M) satisfying (1.1) such that (¢;;+¢;;) is positive-definite, we have |Ayp| < C,

where C' depends on (M, g), an upper bounds of | fﬁHcm, and an upper bound

of (sup ¢ — inf ¢). Later, this result was revisited by Blocki in [3] by replacing the

fﬁHcm with a lower bound of fﬁAlogf and an upper bound

upper bound of |
of f. We replace the lower bound of f T A log f with a lower bound of A f 71 This

is an improvement because

1

m—1

Freatogf =1

(fAf = IVf?), and

fﬁ
f2

We present the following proposition, which is the main result of this thesis.

e =Ly -T2
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Proposition 3.4.1. Let (M,g) be a closed, compact Kdhler manifold with non-
negative bisectional curvature. Let f > 0 be a positive function on M such that
inf Afﬁ > —A for some constant A. For all o € C*(M) satisfying (1.1) such

that (p;; + gi7) is positive-definite, we have
[Ap] < C,

where C' depends on (M, g), (supp —inf ), A, and sup f.

Proof. From (2.8), we have —m < Ay and thus we only need to bound Ag from

above.

We will estimate the maximum value of the following test function
H = (m+ Ayp)e ), (3.23)

where a : [2,\] = R is a function that will be specified later. In view of the L*>
estimate, we may shift ¢ by a constant and assume that ¢(p) € [2, A] for all p € M.

We start by computing the first two derivatives of H.

H, = (Acp),ye_o‘(@ - O/(m + Agp)gpye_a(‘p),

Hoys = (Ap)yy — &/ (m + Ap) oy — o (m + Ap)pyipy) e

+ <—o/ ( (Ap)yos + (Ap), <p7> + () (m + A<P)<P7<P»-y> o—ole) (3.24)
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Let p € M be the point where H achieves its maximum value. We choose coor-

dinates such that at p we have g;; = d;, é% gi7 = 0 and ¢;; = 05,5

At p, the gradient of H is equal to zero, and hence
(Ap); = d'pj(m + Ap). (3.25)

We recall the notation ggj = ¢;; + ¢i;. Since ¢’ defines a Kéhler metric on M,
we denote A’ = ¢/9,9, to be the Laplacian of (M, ¢'). By the maximum principle,
A'H(p) <0, hence if we use this fact while substituting the gradient equation (3.25)

into (3.24), we obtain
ANAp < o/ (m+ Ap) N+ (o) (m + Ap) g pip; + o’ (m + Ap)g" vipi. (3.26)

Next, we take the first derivative of (det(g;; + gpii))ﬁ = (fdet gij)ﬁ. This

yields
L5 1 1 1 1 s
(det 92/3) m—1 g/ ](&/915 + 90237) — (m — 1)(det gli) m—1 8%]" m—1 4 fm—l (det gz;) m—1 g J ’*/gzi
We then take another derivative of the previous expression.

(m — 1)0,(det g5) 770, {77 + (m — 1)(det g;5) 750, f 7=
+GMU®wwﬁw@ﬁmm+U®wmﬁw@MMﬁ

1 Pl pim .
= (et g T Oyt + oum )™ (90 + i)

_1 7;7' =~ — if
+ (det g;) ™1 (9" (0,0,9:5 + Pijyy) + (04935 + ¢i4) 059" ).
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At the point p, our choice of coordinates greatly simplifies the expression and

we are left with the following:

(m — 10,0, 7T + fm1690,0,9;
1

=L i 155 Lo Jirg 3 5 1ij
= 779" 9 v + [7(97(0,0,95 + Ping) + Pig10,9™)-

From (2.1) and (2.3), we obtain

(m — 1)fm’—flay(§yfﬁ _ SR

(Vielel

1 i 177 i i1 i G
= =99 iy = 9" Ry + 9" 0iy — 979" 005 (3.27)

Also, using (2.7), at the point in consideration we have

1ii

A/ASO = glk[akél (96801'3) = QW_Y‘PﬁRﬁW + 9 Piiyy-
After summing the 7 in (3.27) and substituting the previous identity, one obtains

the following at the point p:

=1 1 1 i i P
(m—=1)frtAfmT =NAp+ Z mgl 97 inpjiE — Zgl 97 Oijebijn
k K

- Z 9" (1 + ¢u) Riguk + Z Rk
! ik

We shall define

S = Z Rﬁkl%
ik

32



We substitute (3.26), the definition of S, and use the definition (2.5) of bisec-

tional curvature B to obtain
—L L / 11 1ii
(m— 1) fmTAf7T < o'm(m + Ap) — o (m + Ay) (Zg ) m+ Ap)g" pig;
+ o (m + Ap)g i + Z ——— " oapi — ) 9" e
k
—mm+A@<§}ﬁ)+S (3.28)

If M has non-negative bisectional curvature, then B > 0 and the term involving

B can be thrown out. We are left with
1 1 ~
(m—1)fm1Afm71 <a'm(m+Ap)+S—ad(m+ Agp)(Zg’“)

+ (o + (Oé’)Z)(m + Ap) g pip;

+ Z g’”g’“%ks@m > 9 g gegE (3.29)
k

The trouble terms are those involving third order derivatives, and we shall follow

the argument of P. Guan in [8] to control the following quantity for a fixed k:

19’“9’“%k%5z 99" ki (3.30)

First, we drop mixed terms |¢;;|? for ¢ # j and obtain

2

1 i
_( ' ) |()0uk|2

i 1 _ i 1 1ii
—g g“wm@];k g g“s%k%]k_ |9 P

m—1
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We recall that since @; = ¢;; = ¢;i, we have that ¢;(z) is a locally defined

real-valued function. Also, @;;, = O,xp,; where O,x = %(@Ek — i0yx ). Thus

1
12 2 2
lparl” = Z(@m + %zy)>

where we write f, for 0, f, and there is no confusion since k is fixed. Thus we get

2
4 <_m — 19/ gm@ﬁk@jjk —q gljy%jk%jk) < —— <Z q ‘Piix) B Z(g/ %Zm)z

i

2
+ ﬁ (Z g’ﬁwﬁy) = (d"em,)"

7

(3.31)

We shall show how to control the terms containing real derivatives in the = di-
rection. Let I = {1 < i < m : @;i.(p) >0} and J = {1 <i < m: g;i(p) < 0}.
We consider the two following cases. Case 1: I and J are both non-empty, or case

2: either I or J is empty.

In case 1, we have |I| < m—1and |J| < m—1. From the Cauchy-Bunyakowsky-

Schwarz inequality, we know that

n

(Z a;)* < nZa?,

for a; > 0. By letting n = m — 1, we will see that this case is easy to handle.
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Indeed, we can compute the following

%(Z glﬁ%h)z - Z(Q,ﬁ%h)Q

i

% ((Z 9 0i)? + O g 0ia) + 200 g"0i) (D g’”s%))
1 J 1 J
> (g7 em)* = > (9" pi)
I J

2 2
- (Z g’”wm> = (g pm) + ﬁ (Z g’”s%) = (9" pi)
I J

1 J

<0.

Case 2 is a little bit more delicate. Without loss of generality, we assume that

J = (. Therefore, p;;,(p) > 0 for all i. Using (3.25), we obtain the following at p:
0
Piie < Zsom 2Re(578¢) < 2/(Ap)i| < 20/ [Vp|(m + Ap). (3.32)

We now compute

%(Z 9lﬁ<ﬂﬁx)2 - Z(g/ﬁ%h)2

i

m—1 m

o 1 ri mm /22

9 m—1 m—1 m—1
. 1ii 1ii
- m — 19 Sommw Z g Somm + ux Z Somm

=1 =1 =1

1 mm 2 mm 2

+ m— 1(9 Ormma) (""" Ormma)”-
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Without loss of generality, we can assume ¢, (p) > ;i(p) for all i. Therefore,

we have

m—1
1 i1 i1 2 mm i1
——(Q_0"ew)’ = D (")’ < 9" e D 9" Pita
7 i=1

7

m—1
8 mm i
< (@)[Ve(m + Ap)’g™ " Y o
=1
< (Il m+ Ap) D g
=1

The last line is justified as follows. Let By, Bs, ..., B,, be such that B; > 0 and

B,, > B; for alli € {1,2,...,m}. Then it is easy to see that

The terms involving y derivatives in (3.31) can be controlled in the same way

as the = derivatives. Thus combining both cases and (3.31), we obtain

1 T i 157 4m = i
mgl 97 vanpiin — 9" 9" eirpin < P 1(0/)2|V<p\2(m + Ap) Zgl - (3.33)

=1

We substitute (3.33) into (3.29) and obtain

(m — 1)fm7—lefﬁ <am(m+ Ap)+ S —a'(m+ A@)(Z g/ﬁ)

2

4
+ (o/’ + (o)?(1 + m
m —

D) (m+ AT 5. (330
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Denote Cy := 1 + 4m?/(m — 1). Following an idea of Blocki in his gradient
estimate [3], we pick a(z) = (Cy) ' logz. We know that a(p) is well-defined, since
¢ was renormalized such that 2 < ¢ < X. This choice of a yields o + Cy(a’)? = 0

and hence we are left with

S U T 1 1 -
— m—1 m—1 < R _ 111 . .
(m—1)fm1Af < 2COm(m+Ag0) + S —CO)\(m+Ag0)( EZ g") (3.35)

By (2.9), we obtain
(m— DAF7T < —— frm(m + Ag) + SF7 — ——(m + Ag)H
m —_ m— _— m m m m _— m m .
=20y 7 Co\ 4
From the definition of A, we get
1 1+ 1 m 1 1
Am —1) > ——(m+ Ap) " m+it — [ ——sup f=+1 | (m+ Ap) — Ssup fm1.
Co>\ 200 M M
Thus there are constants C',C5 under control such that

(m + Ap(p)) D < Ci(m + Ap(p)) + Ca.
Therefore either
(m + Ap(p)) D < 2Ci (m+ Ap(p)),  or (m+ Ap(p)) Y < 20,
It follows that there exists a constant C3 under control such that

m+ Ap(p) < Cs.
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Now that we have control of (m + Ayp) at p, we will show that we have control

of (m+ Ayp) at all z € M. Indeed,
(m 4 Ap(2))e™@E) < (m + Ap(p))e @P) < Cye=@?)),
Since a(z) = Cy ' log z, we have

(m+ Ag(2)) < Cy(5)10.

O

To complete the proof of Theorem 3.1.1, it remains to show that the bound
on the Laplacian implies the bound on the gradient. The direct gradient estimate
required f w to be Lipschitz, so instead of using it, we shall use Schauder estimates.

If we look at Ap(z) := G(z), then |G(z)| < C. Then by the Schauder estimates
sup [Vig] < Co([lGle + [lell) < € (3.36)

We now move to complete the proof of Theorem 3.1.2. By dropping the as-
sumption on the bisectional curvature of M, the curvature terms wreak havoc on
the previous argument. To attempt to control these curvature terms, we strengthen
our hypothesis to match those of the gradient estimate (Theorem 3.3.1): we assume
f1/™ is Lipschitz continuous. In the case m = 2, this additional assumption makes
dealing with the terms (3.30) particularly easy, and we can thus obtain the following

estimate.
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Proposition 3.4.2. Let (M, g) be a closed, compact Kihler manifold of dimension
m = 2. Let f > 0 be a positive function on M such that infy, Af > —A for some
constant A, and f% is Lipschitz. For all ¢ € CY M) satisfying (1.1) such that

(%; + gi;) is positive-definite, we have
|Ap| < C, (3.37)

where C' depends on (M, g), (supy — inf ), A, the Lipschitz constant of f%, and

sup f.

Proof. We run the same argument as the proof of Proposition 3.4.1 up until equation
(3.28). In this case, we can simply let a(z) = x. Our test function is then H =

(m + Ap) exp(—apy), where 0 < ayp is a constant. Equation (3.28) becomes

FaiA(Fa1) < agm(m + Ap) + S — (ag + B)(m + Ap) ( Zg)

+ (a0)(m + Ap) g pigi + Z 19’”9’“<puks0m > 9 g e
k

We see that if we choose oy > B, the coefficient on the third term is negative.

To eliminate the a3 term, we substitute the gradient equation (3.25): (Ag); =

Oéo(m + A(,O)(p]
FRTA(f7T) < agm(m + Ag) + S — (ap + B)(m + Ap) ( Zg'ﬁ)

+ (m+ Ap) T g (Ap)i(Ap); +Z ——— 0" e — 9" einei
k
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Using Cauchy-Bunyakowsky-Schwarz, we obtain

(m + Ap) T g (Ap)i(Ap); = (m+ Ap)” Z " Z Prki) Z Oriz

/Z

B Z m + Ap
_ 1 |90k12i‘2

< (m+ AQO ! g” _— 1+ Ori

= Zg/ﬁg/k%ﬂk/}iﬁ

ik

<Y 9" el

i7j7k

(14 @pp) '/

We are left with
T A(f7T) < agm(m + Ap) + 5 — (g + B)(m + Agp)(Zg’ﬁ)
+ Z g/”g/]j(pukgpj]k

It is at this point that we use the hypotheses that m = 2 and f/? is Lipschitz

continuous. From (2.11), we see that ¢""7p. - = 2f 7120, f1/2. Therefore,

|Vf1/2|2

7 (3.38)

fTIAf <2002+ Ap) + S — (ag + B) (2 + Agp)(Zg/ii) 14

%

Since we choose ag such that oy + B > 0, we use (2.9) and get

FIAf <2002+ Ap) + S — fHag + B)(2+ Ap)2 +4f V22 (3.39)

40

Orri(1+ @k%)l/ (L + o) /?
(1 + pp)/?

)



Therefore,
—A < Ssup f+ 4|V Y212 + 2a0(sup £)(2 + Ap) — (ap + B)(2 + Ap)?. (3.40)
M M

As shown in the previous argument, it follows that (m + Ay) < C.
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CHAPTER 4
Application to the Dirichlet Problem in C™

4.1 Overview
As an application of the estimates shown previously, we shall solve a Dirichlet

problem in C™, following the footsteps of [5]. We first establish some terminology.

We say a real-valued function w is pluri-subharmonic if (u;;) is positive semi-
definite. We say a real-valued function w is strictly pluri-subharmonic if (u;;) is
positive definite. Following the terminology of [4], if |Au| is bounded, we say w is
almost C*!. A domain 2 C C™ with smooth boundary 052 is called strongly pseudo-
convez if there exists a smooth real-valued function r defined on a neighbourhood of
Q such that » < 0in Q, r = 0 on 9, r > 0 outside of Q, dr # 0, and (r;(z)) is

positive-definite at each point in its domain.

Theorem 4.1.1. Let €2 be a strongly pseudo-convex domain in C™. Let f : Q) — R
be a function such that f >0, |V fY/™| < Ay, and Afﬁ > —Ay. Then there exists

a unique pluri-subharmonic, almost C%' solution u such that
detu;(2) = f(z) in €,
u=0 on 0f.
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Furthermore, ||ul|c1q) + ||Aul|lee < C, where C' depends only on Ay, Az, sup(f)
and 2.

In order to solve this problem, we shall make use of a priori estimates, which

we now state.

Theorem 4.1.2. Let ) be a strongly pseudo-convex domain in C™. Let f : Q) — R
be a function such that f > 0, |[VfY™| < Ay, and Afﬁ > —A. Suppose there

exists a strictly pluri-subharmonic solution u € C*(2) such that
det u;(2) = f(2) in €,

uw=0 on 0f).

Then there exists a constant C' which depends only on Q, sup(f), Ay and Ay
such that

lullerg) + [[Aulle < C.

4.2 Proof of the Main Theorem

Assuming Theorem 4.1.2, we shall now prove Theorem 4.1.1. The strategy will
be to solve the non-degenerate Dirichlet problem for f > 0, and then use a limiting
process. Let g. = f meT 4 g, with € > 0. We extend f such that it is defined on all

of C™. Let ¢, = ¢(|z|/p), where ¢ : C™ — R is a C™ function of compact support
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such that 0 < ¢ <1, [ ¢ =1. We define h. , : 2 — R in the following way:

mAw=4%*¢Aww%1=(/ﬁxm¢Ax_m@Qm4.

We remark the following

m
-1

VT = FrmDV fm. (4.1)
m

Denote 3 := m(n}b_l). Since Q is compact, we know that g. x ¢, — g. uniformly

on Q, and f? % ¢, — f? uniformly on Q. Let py > 0 be small enough such that for

all 0 < p < po, |g: * p, — ge| < /2 and | * p, — fP| < &/2. We compute

m m—1 —1/m
|Vhi7/p = T ‘(96 * ©p) Y ((Vge) = ‘Pp)‘
_ ‘ (fﬁvfl/m) * ‘Pp‘
(ga * @p)l/m
< Al |fﬁ*gop|
N ‘ge *Sop|1/m
fP+e/2
(f7T +e—g/2)m

< A

If f# <el/™ then for all € small enough

fP+e/2 - gl/m 4 ¢/2 <9
T L O

On the other hand, if f% > ¢!/, then for all £ small enough

B -8 1-1/m
fP+e/2 - 1+ (e/2)f <146

(f7 efm = (14 (/2 mm)ym = 2
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Therefore, for all € > 0 small enough, then for all 0 < p < pg(e) we have
VR < 24.
We also notice
ARYED = A(ge % 0,) = (Age) * 0, > —Ag  p, = — Ay (4.2)
Now, we consider the non-degenerate Monge-Ampere Dirichlet problem
det(uep);; = hep in Q,

us,, =0 on 0.

By [5], since h., is smooth, we know there exists a smooth strictly pluri-
subharmonic solution u. ,. For all € and p small enough, we have \Vh;,/p(m” <24,

and Ah;,/p(m_l) > —As. Therefore, by Theorem 4.1.2, we have
[|ue plleniay + [[AUe pl|o0 < C,

for some constant C independent of € and p. We let p — 0 and obtain a strictly

pluri-subharmonic solution u, of
det(uz) = (77 +¢)"" inQ,

ue = 0 on O€.

such that |[uc||ci) + [|[AU:l|ee < C. Finally, we let ¢ — 0 and obtain a pluri-
subharmonic solution u of (4.1.1) such that |[u[|c1q) +[|Aul||e < C. Uniqueness will

follow from Lemma 4.3.2 which will be shown below.
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4.3 (' Estimate

We now proceed to the proof of Theorem 4.1.2. Most of the work has been
done in the previous section, however we must still control the derivatives u;; near
the boundary 0€2. All the estimates from the compact Kéahler case can be applied;
indeed, we can let M = K where K is a compact subset K C €2, and g;;(2) = 05
for all z € K. All curvature terms vanish, and we obtain estimates for Vu and Au

which reduce the problem to estimating these quantities on the boundary 0f2.

To prove Theorem 4.1.2; we follow the arguments given in [5]. We let ¢ be

a strictly pluri-subharmonic function on {2 such that ¢ = 0 on 02 and

det(yp;;) > sup f.
Q

Such a ¢ may be constructed by multiplying the function r associated with €2

by a large enough constant. To give a O estimate on u, we use a maximum principle.

Lemma 4.3.1. Let u, v be smooth real-valued functions on a bounded domain €2 C
C™ such that v is strictly pluri-subharmonic, u is pluri-subharmonic, det v;; > det u;;

in Q and v <wu on Q. Then v <u on (.

Proof. We consider
Ld
0 < detwv;; —detu;; = / i det(tv + (1 — t)“)iidt
0

= /0 Z c(tv; + (1 = t)uz) (v — u)g;dt.
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Since (u;;) and (v;;) are Hermitian matrices and (v,;) is positive-definite, we
can simultaneously diagonalize them by choosing the right coordinates. Thus the
cofactor c(tv;; 4+ (1 — t)u,;) becomes
c(tvg + (1 = t)u;) = H(tvk;; + (1 — t)uyz)-
ki

Since vz > 0, uzr > 0, we have a uniformly elliptic operator L(v — u) > 0,

where
1
L= Z (/ c(tv; + (1 — t)ui;)dt) 0;0;.
— 0
i\j
By the maximum principle for linear operators, v < u. O

Lemma 4.3.2. Let u, v be smooth real-valued pluri-subharmonic functions on a
bounded domain @ C C™ such that detv;; > detu;; in Q and v < u on 0Q. Then

vguonQ.

Proof. Let © = v + ¢|z|* — e maxyq |z|>. For € > 0 small enough, we have that v is
strictly pluri-subharmonic, det o;; > det u;; in 2, and v > ¥ on 0€2. By the previous

lemma, v > ¥ on . We let £ — 0 to obtain the result. O

From the previous lemmas, we obtain ¢ < u. To get a upper bound, we solve
the Laplace equation for a harmonic function A: Ah = 0 in Q and A~ = 0 on 0.
Then

Au > m(det u,-;)l/" > 0= Ah,
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thus u < h by the maximum principle. From ¢ < u < h, we can obtain |Vu(z)| <
max{|Ve(z)|,|Vh(z)|} for all z € 0. Since ¢ and h depend only on €2, we have a
gradient estimate on 0€). The proof of Theorem 3.3.1 can push the interior gradient

estimate to the boundary. Thus we obtain

l[uller@) < C.

4.4 Boundary C? Estimate
From the proof of Proposition 3.4.1, we see that we can control Au on the
interior of €2 by its maximum on 0€2. Thus, it only remains to show a boundary

second-order estimate to complete Theorem 4.1.2.

Let p € 09. Centre coordinates zi,..., 2z, such that p = 0. Denote t; = z1,
to=9y1, ..., tom—3 = Tm—1, tam—2 = Ym_1, and t = y,,,. We will also use the notation
t'" = (t1,...,tam—2). Rotate coordinates such that 9,,r(0) =0, ..., Oy, ,r(0) =0,

0r(0) =0, and 0,,r(0) = —1.
We Taylor expand r near 0 and obtain

r = Re (—zm + ZCLUZiZj) + ZbijZizj + O(|z|3)

1,J 1,J
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We can change coordinates Z,, = 2z, — > a;jz2;, 2 = 2, for all k < m—1. Thus
without loss of generality, we can can assume our coordinates near 0 are such that

m—1
r=—Re(zpn) + Z cijzizi + O(|2]%). (4.3)

i7j

Since 0f) is where r = 0, we can write

m—1
Re(zy,) = Z cijzizi + O(|2]*), =z € 0. (4.4)
,J
ru(t) = Y &itit; + O(E), (',2,) € 0. (4.5)
1,7<2m

Now, on 02 near 0, we have u(t', z,,(t')) = o(t', z,,(t")). Taking 0, we get
Up;, + Uy, Op T — Pt; — Py O T = 0.
We apply ;, and evaluate at 0 to get
tgt;(0) + g, (0)€i5 — p1,e,(0) — 4, (0)&i5 = 0.
Therefore, we have
[tte; (0)] = 022, (0) — &5 (U, — ©2,,) (0)] < C. (4.6)

We now estimate the mixed normal-tangential derivatives wu,,,,. We define

0 T, 0

Ot 1y, Oy

(4.7)
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fori=1,...,2m — 1. We can see that T;r = 0, and hence T; is tangential to the

surface r = 0. For € > 0, we define the region
Se={xeQ:x, <e} (4.8)
We consider the following test function on S.:
w = Ty(u— @) + (us — ¢;)* — Az, + Bz (4.9)

The objective is to show the two following statements for suitable constants A
and B :

uPw,; > 0in S., and (4.10)
w < 0 on JS.. (4.11)

Assuming (4.10) and (4.11), by the maximum principle we can conclude that

w < 0in S.. Thus w(0) = 0 is a maximum, and w,,,(0) < 0. We compute

/rti /rti Tti

Tm Tm Tm

Tti

+

Pz, T 2(Ut - @t)(utgcm - QOtgcm) — A+ 2Bux,,.

By our gradient estimate and since 74, (0) = 0 and u:(0) = ¢.(0), we obtain
Ut;z,,, (0) < C. We can run through the argument again switching w to @ := —T;(u —

o)+ (uy — ¢1)? — Az, + B|2|? and get —uy,,,,(0) < C, and thus

Ut (0)] < C. (4.12)

50



We now compute uP%w,; inside S. to prove (4.10). Denote a = 4, /r,,,. Let

z € Se, and rotate coordinates such that w,;(2) is diagonal. We start with

9,0, Tiv = 0,0, (uy, + auy,))
= Op(ut,q + gy, + atiy, g

= Upgt; T Apgliz,, T Agly,,p T Aplg,,q + AUpgz,, -

Using (2.11), we get uPTu,q, = mf~Y™(f1/™), . Combining this with our C*

estimate for u, we get

_ -C _ _ _
uP (Tiu)pg > fl—/"{” — Oy Z uP? + uPlayuy,, o + uPlagu,, . (4.13)

o _1(9o 9
8Zm N 2 8xm Zﬁym ’

we obtain u,,,; = 2Umg + tug. Using uP9u,,; = 0my and the Cauchy-Bunyakowsky-

Since

Schwarz inequality, we see that

|upqapuxml?| S 2|a'n| _I_ |upqaputq|
< 2a,| + (WPaya0)"? (WP Tugyug)
1 - _
< 2|a,| + 2 (uPapag + uPugtig) -

Similarly, we can obtain

_ 1 _ _
[uPlaguy,, | < 2|an| + B) (uayag + uPlugiyg) -

51



Combining these inequalities with (4.13), along with (2.10), we get
uP1(Tiu)pg > —Cs Z uPP — uPTuguyg. (4.14)
Next, we compute
w8,y (wr — 1) = 20" (Jugy — @ipl* + (e — 00) (Ui + Pipp))

= 2uPPugp gy — 4uPPup o5 4 207 i1 4 2(ue — @) (UPPUgp 4 UPPpp5)

> 2uPPuyyuy — duPPuypop — Cy E uPP

i uPP 5 p
> 20 gty — 4|TUPtUﬁtP/z\(2Upp)<ﬂpt90ﬁt\1/2 —Cr ) u?

> 2uPPup,uy — uPPuprup — 4uPPopps — Ch E uPP

> uPPugyuyy — Co Z uPP,
Combining this with (4.14), the trouble terms cancel and we obtain
uPlw,; > B Z uP? — Cy Zupﬁ >0,

for B large enough. We have thus shown (4.10).

We now prove (4.11). We look at 9S; as two pieces. The first piece is 9 N S..
Here u = ¢ and the tangential derivatives are equal. Furthermore, by (4.5) we have

a|z|? < x,, near 0, for some a > 0. Hence

w = — Az, + B|z|* < —Ax,, + Ba 'z, <0
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for A large. The second piece of S, is {z,, = ¢} N, and by our C* estimate, here
we have

w< C — Ae + B2 < 0.

We have thus shown (4.11) and (4.10). As shown in (4.12), this completes the

proof of the mixed tangential-normal estimate |u,,,, (0)] < C'.

To complete the proof of Theorem 4.1.2, it remains to show that |u,(0)] < C.
Using the expression from (4.4), along 02 we have u(2’, z,,(2")) = 0. We compute

second derivatives for i, 7 < m — 1:

0%m 0Zm
u’l3 _I_ uixm 82‘7 + ujxm i + uxmxm

0z

% 0z, Pz
0% 0z | moLigm

At 0, we thus have
u;5(0) = —c;5us,, (0). (4.15)
Since 7 is strictly pluri-subharmonic, ¢;; > 0. Fix z, € 0€2. Since € has the
interior ball condition, let B C € be a ball such that B N 9Q = {z,}. We have
Au > mfY™ > 0, thus by the Hopf lemma, if coordinate centred at z, are set such
that z,, points in the direction of —n, we have u,, (z,) < —d, < 0. Since 0f is

compact, we have d := inf,_csq d, > 0. Therefore,

(13(0))ij<m—1 = col,
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for some cq > 0. Unravelling det u;; = f by cofactor expansion, we obtain

m—1

f == umr‘nc(umm> + Z umic(umg) = Umm det(uij(()))i,jgm—l + R,
i=1

where R is a quantity involving second order partials u,z, where 8 # m. By our

previous estimates, R is under control. We have

(0] f—R sup f + |R|
mm det(uij(o))i,jgm—l an_l ‘

This completes the proof of Theorem 4.1.2.
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