
INFORMATION TO USERS

Thil manuscrfpt hal bien rwpraduc:ed fram the micraftlm mater. UMI films

the tut directly from the origiIW' or copy lUbmitted. Thus, sorne thelis .nd

diuertlltion copie. are in typewriter r.ce, while others may be from any~ cf

computer printer.

The quallty of thl...production ...pendent upon the quallty of the

copy aubmltted. Broken or indistinct prim. coknd or poor qUility illustrations

and photogl'8pha, print bIIedthraugh, lubltll~rd margina, and improper

alignnwnt can 8dv.....1y 8Irect l8f)RXtuction.

ln the welikely event that the adhor did not send UMI a complete manulCript

and there are miUing .-an, the. will be noted. AllO, if uIWuthorized

copyright materilll had ta be removed, • note will indicate the deletion.

Oversize materilli. (e.g., rupl. dl'llWingl, cNlrts) .... reproduced by

sectioning the origilWl, begiming III the upper 1eft-t.1d corner .,d cantinuing

from Ieft ta right in eq...118CIionI with amall overt8ps.

Photographa included in the original manuscript have been reproduced

x8IOgrllphically in thi. capy. Higher quality 8- x r black and white

photognIphic printl are .-i..bIe for any photog,.. or illUItr8tionI çpMl'ing

in "'il capy for ., .cidltional ctwge. Contact UMI dnctly ta arder.

Bell & Haw.lllnfonMtion Mell.Mming
300 North ZHb Ra.d, Am Arbor, MI 481oe-1348 USA

800-521-œoD





•

•

Heat transport in Bismuth and electron-doped
cuprate superconductors

Patrik Lambert
Center for the Physics of Materials

Department of Physics, McGill University

Montréal, Québec, Canada

A Thesis submitted to the

Faculty of Graduate Studies and Research

in partial fulfiUment of the requirements for the degree of

Master of Science

@) Patrik Lambert, 1998



1+1 National Ubrary
ofC8nada

Acquisitions and
Bibliographie Services

385 wellington Street
Ottawa ON K1A 0N4
CIMda

Bibliothèque nationale
du canada

Acquisitions et
services bibliographiques

385. rue WellingtDn
Ottawa ON K1 A 0N4
c.n.da

The author bas granted a non­
exclusive licence allowing the
National Library ofCanada to
reproduce, lo~ distribute or sen
copies of this thesis in microform,
paper or electronic formats.

The author retains ownenhip ofthe
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may he printed or otherwise
reproduced without the author's
pemnSSlon.

L'auteur a accordé une licence non
exclusive permettant à la
Bibliothèque nationale du Canada de
reproduire, prêter, distribuer ou
vendre des copies de cette thèse sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

L'auteur conserve la propriété du
droit d'auteur qui protège cette thèse.
Ni la thèse ni des extraits substantiels
de celle-ci ne doivent être imprimés
ou autrement reproduits sans son
autorisation.

0-612...50810...2

Canadl



•

•



•

•

•

à ma famille,

à tous ces yeux noirs qui vous emmènent sur le versant ensoleillé de la vie,

à l'Europe naissante.



•

•

•



•
RÉSUMÉ

ABSTRACT

CONTENTS

ix

x

•

•

ACKNOWLEDGMENTS xi

1 INTRODUCTION 1

2 THEORETICAL REVIEW 3
2.1 Thermal conductivity . . . . . . . . . . . . . . . . . . . . . . . . . .. 3

2.1.1 Definition............................. 3
2.1.2 Electrons and the Wiedemann-Franz law . . . . . . . . . . .. 3
2.1.3 Phonons.............................. 6
2.1.4 Sources of thermal resistance 6

2.2 Thermal conductivity of conventional superconductors 12
2.2.1 Electronic thermal conductivity . . . . . . . . . . . . . . .. .. 13
2.2.2 Lattice thermal conductivity . . . . . . . . . . . . . . . . . .. 16

2.3 Unconventional superconductors . . . . . . . .. . . . . . . . . . . . .. 18
2.3.1 Quasiparticle transport in superconductors with nodes in the

gap function . . . . . . . . . . . . . .. . . . . . . . . . . . . .. 18
2.3.2 Lattice thermal conduetivity for High-Tc superconductors .. 19

3 THE HOLE-DOPED CUPRATE BI2SR2CACU20S 20
3.1 Structure and doping . . . . . . . . . . . . . . . . . . . . . . . . . .. 20
3.2 Gap symmetry 23
3.3 '!'ransport . . . . . .. . . .. . . . . . . . . . . . .. . . .. . . . . . . . .. 24

3.3.1 Normal state properties 24
3.3.2 Review of thermal conductivity . .. . . . . .. . . . . . . . . .. 25

4 THE ELECTRON-DOPED CUPRATE PR2-xCExCU04 29
4.1 Structure and doping . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.2 Gap symmetry 32
4.3 '!'ransport .. . . . . . . . . . . . . . .. . .. . . . . . .. . . . . . .. .. . .. 34

4.3.1 Normal state properties 34
4.3.2 Heat transport 35

5 EXPERIMENTAL DETAILS 37
5.1 Sample characterlzation 37

5.1.1 Electrical resistivity.. . . . . . . . . . . . . . . . . . . . .. . 37
5.1.2 Magnetic susceptibility .. . . . . . .. . . .. . . . . .. . .. . .. . 38
5.1.3 Scanning electron microscopy .... .. .. .. .. . . . . . . .. .. . . 38

5.2 The 'He cryostat . . .. . . . . . . . . .. .. .. .. . .. .. .. .. . . .. . . .. .. 38

v



vi CONTENTS

•

•

5.3 Thermal conductivity setup . . . . . . . . . . . . . . . . . . . . . .. 42
5.3.1 Description . . . . . . . . . . . . . . . . . .. 42
5.3.2 Estimation of heat losses . . . . . . . . . . . . . . . . . . . .. 43

5.4 Experimental procedure . . . . . . . . . . . . . . . . . .. 45
5.5 Test on an Al sample . . . . . . . . . . . . . . . . . . . . . . . . . .. 47

6 RESULTS AND DISCUSSION 50
6.1 Resistivity................................. 50
6.2 Thermal conductivity at high temperature (T > 1 K) . . . . . . . .. 54
6.3 Thermal conductivity at low temperature (T < 1 K) . . . . . . . . .. 60

6.3.1 Introduction: universal heat conduction . . . . . . . . . . .. 60
6.3.2 Experimental results . . . . . . . . . . . . . . . . . . . . . .. 62
6.3.3 Estimate of the thermal conductivity in Bi2Sr2CaCu20a. . .. 64
6.3.4 Summary . . . . . . . . . . . . . . . . . .. 68
6.3.5 Comment on the article of Movshovich et al.. 68

7 CONCLUSION 73

REFERENCES 74



•

•

•

FIGURES AND TABLES

FIGURES

2.1 Electrical conductivity u and electronie thermal conductivity /te of a
metaI as a function of temperature. 8

2.2 Thermal conductivity of a non-metallic crystal. . . . . . . . . . . .. Il
2.3 Superconducting density of states for a BCS superconductar as a fune-

tion of the quasipartiele energy. . . . . . . . . . . . . . . . . . . . .. 12
2.4 Ratio ofsupercanducting ta normal thermal conductivity for aluminum

as a function of T/Tc • • • • • • • • • • • • • • • • • • • • • • • • • •• 15
2.5 Thermal canductivity of niobium in the normal and superconducting

state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 17

3.1 Crystal structures ofhole-dopedcompounds L&2_zSrzCuO., YB~CU307-6
and Bi2Sr2CaCu20a. . . . . . . . . . . . . . . . . . . . .. 21

3.2 Schematic temperature--dopant concentration phase diagram for cuprates. 22
3.3 Fermi-surface gap functions and densities of states for various pairing

symmetries. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 24
3.4 BSCCO thermal conductivity data of N. P. Gng et al.. 26

4.1 Structure of Re2-3:Ce3:CuO. (Re=Pr, Nd, Sm, Eu) and La2-ZSr%CuO..
compounds 29

4.2 Phase diagram of NCCQ and LSCO. . . . . . . . . . . . . . . . . .. 31
4.3 Phase diagram of peCQ and NCCQ electron...doped superconductors 31
4.4 Penetration depth of NCCO electron-doped cuprate . 33
4.5 Temperature dependence of It(T) in peCQ. ..... 35

S.l Susceptibility apparatus . . . . . . . . . . . . . . . . 39
S.2 Low-temperature portion of the cryostat . . . . . . . . . . . . .. 40
5.3 The thermal conductivity apparatus 43
5.4 Cernox calibration curve and extraction of the temperature of the ther-

mometers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 46
5.5 Resistivity of Al • . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 47·
5.6 Thermal conductivity of Al ..................•.... 48
5.7 Linear fit ofthe low temperature thermal conductance ofAl-Verification

of the WF law. . . . . . . . . . . . . . . . . . . . . . . . . . . .. 48
5.8 Plot of the ratio "'/uT for Al. . . . . . . . . . . . . . . . . . . . . .. 49

6.1 Resistivity of peC~, YBCO, BSCCO and LSCO 52
6.2 Resistive superconducting transition or peCQ samples . . . . . . .. 53
6.3 Thermal conductivity of Bi2Sr1CaCu20S versus temperature . . . •. 54
6.4 Thermal conductivity vs temperature in BSCCO and YBCO . . . .. 55

vü



•
vili FIGURES AND TABLES

6.5 Thermal conductivity vs temperature in LSCO and PCCQ . . . . .. 55
6.6 Normalized thermal conductivity vs normalized temperature in BSCCQ

and YBCO 56
6.7 Normalized thermal conductivity vs normalized temperature in LSCO

and PCCQ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 56
6.8 Thermal conductivity versus temperature in Prl.SSCeO.1SCu04. . . .. 57
6.9 Low temperature thermal conductivity in superconducting and insu­

lating YBCO crystals, after L. Taillefer et al.. ..... . . . . . . .. 61
6.10 Low temperature thermal conductivity of PCCO, YBCO, BSCCO and

LSCO plotted as Ii./T versus T2. . . . . . . . . . . . . . . . . . . . .. 62
6.11 Low temperature thermal conductivity data in Ni-doped BSCCO. by

R. Movshovich et al.. . . . . . . . . . . . . . . . . . . . . . . . . . .. 69
6.12 K/T vs T and K/T vs Tl in our BSCCO sample as weIl as the pure

BSCCO sample of R. Movshovich et al.. 70

•

•

TABLES

6.1 Characteristics of our hole-doped samples. . .
6.2 Characteristics of our electron-doped samples. . . . . . . . . . . . . .
6.3 Sound velocity in YBCO, BSCCO and LSCO .
6.4 Experimental results and estimates for Ii./T in the zero temperature

limit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.5 Experimental results and estimates for the phonon coefficient in the

t t · T3 .asymp 0 le regIIIle.......................... .

51
51
59

63

64



•

•

•

RÉSUMÉ

La conductivité thermique s'avère très puissante pour sonder les quasiparticules é­

lectroniques, surtout à basse température. À plus haute température, elle renseigne

sur le comportement des phonons et des électrons, mais les deux contributions se
distinguent moins clairement.

Nous avons mené une étude comparative de la conductivité thermique dans les

cuprates dopés aux trous et aux électrons, centrée sur Bi2Sr2CaCu20S (dopé aux
trous) et Prl.85CeO.1SCu04 (aux électrons). Un examen de la littérature a montré
que l'apparente symmétrie entre ces deux familles (diagramme de phase, structure

présentant des similitudes) contraste avec des propriétés physiques différentes.

Nous avons détecté la présence d'un fluide normal résiduel dans Bi2Sr2CaCu20s,

en accord avec la théorie pour les supraconducteurs â-wave, et montré son absence

dans Prl.86CeO.1SCu04, indication d'un gap sans zero. A plus haute temperature nous
avons fait la première observation d'un pic à Tc dans la conductivité thermique de

Pr2-zCe%Cu04.
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ABSTRACT

Thermal conductivity is a powerful probe of electronic quasiparticles, especially at

low temperatures. At higher temperatures it gives very useful information on the

behavior of quasiparticles and phonons, however both contributions are more difficult

to identify precisely.

We carried out a comparative study of the thermal conductivity in the hole and

electron-doped cuprates, rocussed on Bi2Sr2CaCu20S (hole-doped) and Prl.SSCeO.lS­

CU04 (electron-doped). Arter a brier review of the literature it was clear that these

families show very different physical properties, although they present similar features

in their structure and phase diagram.

We detected the presence of a residual normal fluid in Bi2Sr2CaCu20S' in rather

good agreement with the theory for d-wave superconductors, and showed its ab­

sence in Prl.8SCeO.lSCu04, firm indication of a nodeless gap. At higher tempera­

tures we observed for the Hrst time a peak below Tc: in the thermal conductivity of

Prl.85CeO.lSCU04'
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1

INTRODUCTION

In 1986, the discovery ofsuperconductivity at about 30 K in La2-zSrzCu04 [1) was the

origin of an ever growing interest in high temperature superconductivity. Indeed, high

temperature superconductivity constitutes a very challenging intellectual problem and

has enormous potential for technological applications. The latter point leads scientists

to search for always higher critical temperatures, the record so far being '" 133 K for

a compound in the Hg-Ba-Ca-Cu-O system (at normal pressure).

The high Tc cuprate superconductors have a layered perovskite-like structure con­

sisting of conducting CU02 planes separated by insulating Iayers. These CU02 planes,

where are believed ta reside the charge carriers, are considered as playing a major role

in superconductivity. The charge carriers can he holes (in hole-doped cuprates) or

electrons (in electron-doped cuprates). After 12 years, the symmetry of the supercon­

ducting order parameter and the identity of the electron pairing mechanism appear

to be close to being established. However, some fundamental questions remain unan­

swered. For instance, the hole and electron doped cuprates have the common aspects

described above in their structure and have an apparently symmetric phase diagram.

However, they display surprisingly many different physical properties and their order

parameter seems to he of diff'erent symmetry. The Hrst difficulty arises from exper­

imental considerations. Whereas a consensus begins to exist about the symmetry

of the gap in the hole-doped superconductorst because of materials problems, only

two types of experiments have been able to give some information on this topie in

electron-doped cuprates. Thermal conductivity, by probing normal quasiparticle at

very low temperatures, can reliably give insight into the problem.

1



2 1 INTRODUCTION

Thus we present in this thesis a comparative study of the thermal conductivity in

• the hole and electron-doped cuprates. We have investigated three hole-doped com­

pounds, BhSr2CaCu20S in particular but also YBa2Cu306.9 and La1.S3SrO.17Cu04, as

weil as the electron-doped Prl.SSCeO.lSCU04.

Another point to be mentioned is the current interest in the low temperature

thermal conductivity of Bi2Sr2CaCu20s, because anomalies induced by magnetic field

or magnetic impurities have been reported. At low temperatures, the contributions

to the thermal conductivity arising from phonons and electrons can be extracted

reliably, which enabled us ta participate in the debate on the interpretation of the

anomalous features reported in the literature.

However, at higher temperatures thermal conductivity also gives very useful infor­

mation on the behavior of quasiparticles and phODOns, even if both contributions are

more difficult to identify precisely.

In this thesis, we review in chapter 2 some aspects of the theory of thermal con­

ductivity in normal metals and superconductors. Then we review in chapters 3 and 4

• the main properties of the hole-doped cuprate Bi2Sr2CaCu20S and the electron-doped

Pr2-%Ce%Cu04' respectively. Each of these two chapters is ended by a review of the

charge and heat conduction. Chapter 5 is a discussion about experimental aspects of

this work, restricted in the temperature range 1.5-150 K. Indeed, l haven't directIy

participated in the experiments at temperatures below 1 K, achieved with a dilution

fridge (see the acknowledgements). In chapter 6 we present and discuss our results

for the thermal conductivity bath below 1 K and above, belore concluding.

•
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2

THEORETICAL REVIEW

2.1 Thermal conductivity

2.1.1 Definition

In an isotropie solid, the thermal conductivity It is simply defined as the coefficient of

proportionality between the heat flow vector jj and the temperature gradient VT [2] :

(2.1)

ii measures the heat 80w rate through a unit cross-section perpendicular to it. A

negative sign is necessary to indicate that heat flows down a temperature gradient

from the hotter to the colder region.

In crystals without cubic symmetry, the equation becomes :

dT
Hi =-ltij-­

t).Xj

where the coefficients ltij fonn a second-rank tensor.

In a solid, heat is conducted byelectrons, phonons, magnetic excitations, etc., and

ft is the sum of the various contributions :

ft=lte+ltph+···

2.1.2 Electrons and the Wiedemann-.Franz law

(2.3)

•
The electron gas in solids is a quantum gas. The electronic states are indexed by

their band number n and their momentum vector k. This gas is described with

the distribution Cunction f",(r, k, t). If the extemal fields are weak enough one can

3



4 2 THEORETICAL REVIEW

neglect inter-band transitions and let the index n be implicit. The evolution towards

• equilibrium (disturbed by a thermal gradient, for instance) is govemed by collisions.

The Boltzmann equation is usually used to account for this process. In the semi­

classical model [2] it has the fonn :

(2.4)

(2.5)

•

al i~ ~ (81)-+-Vk/+VIc·Vr/= -
8t li ôt coll

with Vic = kVféE the velocity and F the extemal force. The left-hand side of

(2.4) is simply obtained by differentiation, from the fact that in absence of colli­

sion / (r+ dT, k+dk, t+ dt) = / (T, k, t). The right-hand side takes into account

the effects of collisions. The Boltzmann equation is valid provided that the dura­

tion of a collision is much smaller that the time T between two collisions (Tc < T),

and that lilT be much smaller than the typical energy of the system (in the case of

metals, the condition is iiiT <: ê F). The principal effect of the term (~)coll is to

let f relax towards a local equilibrium function, namely a local Fermi-Dirac function

1(0) = (exp (e:;:(~:l) + 1) -1. The exact fonn of the collision integral (~)coll de­

pends on the scattering mechanism involved. Guidelines ta calculate it will be given

in section (2.1.4). However, the matrix elements are difficult to evaluate and one

often makes the relaxation time approximation :

(8/) = _/(T,k,t) - I(O)(T,k,t)
8t coll T,

where 1(0) is the local Fermi-Dirac function and TE is the collision time. The signifi­

cance of this approximation is the assumption that the effect of collisions is ta let f

evolve towards 1(0), exponentially with a relaxation time of the arder of the collision

time T. In the case of isotropie impurity scattering and spatially uniform temperature

gradient and electromagnetie fields, the distribution function doesn't depend on r. If

the Fermi surface is isotropic, T depends only on Ilkll and (2.5) simply becomes :

(2.6)(al) = /t - 10
ôt coll Ti

• where 10 is the global equilibrium distribution function (the Fermi-Dirac funetion).



5

(2.7)

Now we want to calculate the thermal conductivity #t in those conditions (isotropie

Fermi surface and scattering). The thermal current density is given by

i~ =f :;E:kV-;' (A - /0)

2.1 Tbermal conductivity

•
Using the relaxation-time approximation (eqns. 2.4 and 2.6), in the absence of elec­

tromagnetic forces (F = 0), and in a steady-state regime (~ = 0), the Boltzmann

equation writes

(2.8)ft - fo .. v" 1= Vt· rJt
Tk

Setting Ik = 10+/(1) (where la is the Fermi-Dirac function) and neglecting the second

order terms, we get

.... .. .. a/o ét BIo.. ..Ik - 10 = -TtVk' Vr/o = -TkVIe' VT- =+Tt--Vt· VT (2.9)or T BEll:

(2.10)

•
Replacing in (2.7) gives

~ _ 1 f dk 2 a10 2 ..
Jq - T 4~ekaekTtVtcos6VT

where 6 is the angle with respect to the temperature gradient axis. Replacing by an

integration over energy and carrying out the angular integration, we obtaïn [2] :

{

+00 }.. 2 1 2 8/0 ..
iq = VpT3T [ E: 8E: N(E:)dE: VT (2.11)

Replacing by

d f 1 f aloCv =- eN(e)/o(e)dE =-- ilN(e)-de
([[' T ae (2.12)

we get
1 2

#te = 3CVVFT

With the same type of derivation, we find for the charge conduction :

(2.13)

(2.14)

•
With

1 f.-2 810 r 2 (lesT)ev = -- eN(e)-de = -N(êF)kBT +0 -
T Be 9 eF

(2.15)



and assuming the same scattering time for both thermal and electrical relaxation

processes, one gets
/te 1r

2fci
--- (2.16)uT - 3e2

Equation 2.16 is called the Wiedemann-Franz (WF) law while the ratio ~ is the

Lorenz number. The constant 1f;' = Lo = 2.44 X 10-8 wnK-2 is the Sommerfeld

value. The validity of the WF law will be discussed in section 2.1.4.

•
6 2 THEORETICAL REVIEW

(2.17)

(2.18)

•

2.1.3 Phonons

Once again, by using the Boltzmann equation formalism in the relaxation-time ap­

proach, the thermal conductivity for phonon heat carriers can be derived (see [3D:

3 BIT

Kph = 2::V
Ph

(k;) T3
[ T(X) (:~:)2dx

with () the Debye temperature, Vph an average phonon velocityand x = tI.w/kBT. The

scattering time T(X) is simply the inverse of the sum of the various scattering rates

(Matthiessen's mIe, see section 2.1.4.) relevant to the crystal under investigation.

The average phonon velocity Vph is given by vi(2s2 + 1)/(283 + 1) (see [3]) where 8 is

the ratio of longitudinal to transverse phonon velocity, Vi/Vt. In general, integrals of

the form (2.17) have to be evaluated numerically. Using

C(x)clx = 3ks ("8)3 T 3 x
4
e

z
€lx

21r2V 3 tl. (e,% - 1)2

and T(X) = l(x)/v(X) , equation (2.17) cao be written as

/Ç = ~vf l(x)C(x)dx

which is a logical extension of the simple kinetic equation

2.1.4 Sources of thermal resistance

(2.19)

(2.20)

In each heat channel, the conduction is limited because the mean free path of the

• heat carriers is reduced by various scattering mechanisms.



•
2.1 Thermal conductivity

Scattering of electrons.

The main sources of scattering for electrons are the following:

1

1. /mpurities and crystal de/ects. The scattering is elastic since the change of

energy of the impurity ([~p]2 /2M, where M is the mass of the crystal) is

much smaller than the initial energy of the electron.

Just as an example we will DOW give sorne guidelines to calculate the scattering

rate in this case (see for instance [4].) The probability of transition from Ik)
(supposed occupied) to 1ft) (supposed empty) is given by Fermi's Golden rule:

(2.21)

•

•

The collision integral is given by

( ~) coll =~[#= of electrons having a transition from 1ft) to 1k)
#= of electrons having a transition from If) to lki)]

=~ [W,kifkÏ(l- ft) - Wkitf,(l- fki)]

One can express the scattering rate ;" as a function of the collision integral

through equation (2.6). Since this process is elastic its scattering rate (and

consequently the electrical resistivity associated to it) is independent of tem­

perature. Thus K.e will have the same behavior as the electronic heat capacity

(linear in T at low temperatures).

2. Phonons. For the electron-phonon scattering, using Einstein model, where each

atom oscillates like an independent harmonic oscillator of energy E).., of proh­

ability P)., the transition probability is of the type Wii'iI'v with v' = 1.1 ± 1.

Electron-phonon scattering is inelastic. A clear temperature dependence for

the scattering rate in this case exists for T -< 9D and T > 8D. At high T,

P f"'J T and " f"'J '['0 (WF law). However since the Debye temperatures of the

elements or compounds we have studied lie above the range of our measure­

ments, we are mainly concemed in the low temperature limit. For T < 9D ,
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Figure 2.1: Electrical conduetivity (1 and electronic thermal conduetivity l'i.e oC a metal as funetion
oC temperature. The upper curves in each case are for more penect specimens than the lower curves.
after [3]

;" '""J T3 but low temperature electron-phonon scattering is one of the cases for

which the resistivity is not simply proportional to ~ t and actually p fOoJ TS [2].

DirectIy following equation (2.13), since ev fOoJ T, #te '""J T-2.

3. Electrons. Electron-electron scattering plays a minor role in the theory of con­

duction in normal metals (at low temperatures it is dominated by impurity

scattering and at higher temperatures by electron-phonon scattering) t except

in exceptionally pure crystals. However, as we shall see later, electron-electron

interactions are very important in high-temperature cuprates.

Figure 2.1 illustrates the behavior as a function of temperature of electrical and

electronic thermal conductivities of a normal metal, set by the dominant scattering

mechanisms. At high temperatures electran-phonan scattering is dominant, with a

rate proportional to the lattice vibrational energy, which is praportional ta T. Thus

U""J lIT. From equation (2.13), #te ""J ']'O. As the temperature is decreased, collisions

are less effective in limiting the mean Cree path and t7 increases raster than the liT

law (It l'V I/T'l). Eventually the electronic mean Cree path reaches a constant value

determined by impurities and other punctuai defects. In this range /te is linear in
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temperature.

So far in this section we have presented the main mechanisms causing the scattering

of electrons. Then as an illustration we have seen the usual behavior of the charge and

electronic thermal conductivities in normal metals (which doesn't necessarilyapply

ta the cuprate superconductors).

Scattering of phonons.

Now we will go on by a review of the main sources of scattering for phonons in

single crystals, followed by the schematic behavior of the thermal conductivity in an

insulating crystal. For more details see [3} and [5}.

1. Boundaries. At low temperatures the phonon mean Cree path l becomes large

enough to be comparable to the crystal size. Then, owing to the scattering of

the lattice vibrations at the surface, l is limited by the smallest dimension of the

sample (for a single erystal). The scattering rate is independent of frequency and

the corresponding thermal conductivity is proportional to the phonon specifie

heat. Thus, at low temperatures, #tph f"W T3 when the conduction is limited by

boundary scattering.

2. Electrons. When the phonon conduction is limited by conduction electrons, the

scattering rate is proportional to Wl and the thermal conductivity is proportional

to Tl.

3. Point defects. A defect which extends over a volume with linear dimensions

much smaller than the phonon wavelength can be considered as a point defect.

As a rough rule of thumb, the wavelength of the dominant phonons is equal to

(JfT interatomic distances. Point defects have a W4 dependence on the scattering

rate leading to It ,..., liT ~

4. Other phonons. Phonon-phonon collisions obey energy conservation (theyare

elastic processes) and the momentum conservation writes: qï +q2 = q"3+;, where

gis a reciprocallattice vector. When 9=0 the collision Î8 called a normal or N-
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process and it doesn't change the effective direction of the energy fiow, thereby

• not limiting the heat transport. If qi and q"'i are sucb that 9 =F 0, the collision is

called umldapp or U-process and in this case thermal energy is transported in

a quite different direction. Such a drastic change in if is a very effective source

of thermal resistance. At high temperatures (T ~ BD) the number of phonons

which take part in U-processes is proportional to T and since Cv is constant,

the thermal resistance is proportional to T, thus It "J 1/T. A more precise

treatment leads to It ,...., l/TZ with x between 1 and 2. At temperatures well

below flD, onlyan exponentially small fraction of the phonons will have large

enough wavevectors ta take part in U-processes, and It ,...., T3exp(8jbT) with

b~ 1.

•
5. Thnneling states. Atoms or groups of atoms tunnel between equilibrium posi­

tions at almost the same energy, with a smooth distribution over energy differ­

ence of the number of levels between which tunneling is possible. This model

would apply ta disordered systems in general and scattering of phonons by these

tunneling modes implies a T2 variation in thermal conductivity.

6. Other mechanisms, snch as sheet-like faults, dislocations, etc., don't play a very

important role in single crystals.

Figure 2.2 shows the dominant scattering mechanisms in an insulating crystal,

and the schematic behavior of thermal conductivity associated to them. At high

temperatnres, because ofphonon-phonon scattering "'Ph is inversely proportional to T.

When the temperature reaches a point where the fraction of phonons taking part in U­

processes imposes the exponential behavior of thermal condnctivity, the conductivity

increases 50 rapidly with decreasing temperature that the phonon mean free path

soon becomes comparable to the mean Cree path due to the scattering by lattice

defects. As temperature decreases phonons with longer wavelengths are excited, that

are unaffected by disorders on the atomic scale and are scattered by the sides of the

• sample. In this range Cu f'OW T3 and It is proportional to T3.
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Figure 2.2: Thermal conductivity of a non-metallie crystal. The upper curve is Cor a crystal oC larger
diameter than the Iower curve. The dominant phonon-scattering mechanism are indieated a10ng the
abscissa. after [3]

When there are more than one scattering mechanisms, each independent 0/ the

others, the total scattering rate, 1/T, is the sum of the several scattering rates from

different mechanisms (Matthiessen's mIe):• 1 1
--~­
T -~Ti

&

Validity of the Wiedemann-Franz law.

(2.22)

•

The Wiedemann-Franz law holds when the dominant scattering is elastic. Then

energy is conserved and both electrical and thermal currents are degraded in the same

way (a change of momentum of the electron). However, inelastic scattering provides a

degradation mechanism of the heat current (change of the thermal "charge" carried)

that has no equivalent in the electrical conduction, causing the law to break down.

Thus at low temperatures when the dominant electronic scattering is against impu­

rities, it holds. At intermediate temperatures because of electron-phonon scattering

the WF law breaks down. However it tums out that at high temperatures, especially

owing to Umklapp processes, the law aIso holds because the change of energy of each

electron involved in a collision with the lattice vibrations is small compared to ksT.
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Figure 2.3: Supercanducting density af states far a ses supercanductar as a functian of the quasi­
particle energy.

2.2 Thermal conductivity ofconventional superconductors

To begin it may he useful to discuss what is understood as a conventional supercon-

• ductor. Their behavior bas been very successfully described by the theory of Bardeen,

Cooper and Schrieffer (BCS) [61. For a review of this theory see [71. BCS showed that

in the presence of an attractive potential between electrons, the fundamental state of

the system is unstable relative to a linear combination of normal-state configurations

(k1\ -/c.1.), which are both either occupied or unoccupied. This instability causes the

opening of a gap a of order kBTc in the excitation spectrum, E(k) = [e(k)2 +L\(k)2I!,
where e(k) is the energy of an electron of wave-vector k in the normal state. For ther­

mal properties, this gaps leads to an exponentially activated behavior at low tem­

peratures. The density of states is shown in figure 2.3. Superconductors are called

conventional or BCS superconductor when they satisfy :

1. The attractive interaction between electrons is mediated via the exchange of

virtual phonons.

2. The actual fonn of the attractive potential ~t' chosen in the theory has no

: • angular dependence (s-wave potential). This implies that the gap is isotropie



After those recalls we can discuss the heat conduction. There are two funda­

mental aspects of the superconducting condensate which have effects on the thermal

conductivity of the superconductor :

•
2.2 Thermal conductivity ofconventional superconductors

(s-wave gap) and finite everywhere.

13

•

•

• Cooper pairs carry no entropy.

• Cooper pairs do not scatter phonons.

The 6.rst condition means that the electronic thermal conductivity decreases with

decreasing temperature more rapidly in the superconducting state than in the normal

state. Since K.e oc nvle , the number of quasiparticles decreases with temperature and

goes to zero at T = 0, thus K.e f'\J exp(-â/kT) at low temperature. The second

condition has a more subtle effect : provided that the mean-free path of phonons

lph at T > Tc is limited by electron scattering, the phonon thermal conductivity will

rise on passing into the superconducting state, because the number of quasi-particle

excitations rapidly decreases-leading ta an enhancement in the mean-free-path of

phonons 'ph. A competition between the rapidly diminishing Ke on the one hand and

the increasing Itph on the other hand will detennine the overall dependence of the total

thermal conductivity of a given superconductor. In the vast majority of cases K. faIls

rapidly as the material goes superconducting. However, in some alloys, sufficiently

disordered sa that #te is small and Itph accounts for a large fraction of the normal-state

thermal conductivity, one mayobserve a rise in the total conductivity as the sample

enters into its superconducting state (as in the lead-10%bismuth alloy [8]).

The theory of heat transport in conventional superconductors has been first pub­

lished by Bardeen, Rickayzen and Tewordt (BRT) [9]. We will now briefly sketch this

theory, and to begin with, the equation of thermal conductivity.

2.2.1 Electronic thermal conductivity

First, we only consider electron-impurity scattering. Here we will only quote the basic

results of the theory.. Applying the Boltzmann equation (2..4) ta the beat transport,
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we ohtain the electronic heat current :
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(2.23)

where Et is the quasiparticle energy, Vie the group velocity of the quasiparticles in the

superconducting state, Tk the relaxation time and JJi =cos(J where 8 is the angle with

respect to the temperature gradient axis. The quasiparticle velocity is round to he

(2.24)

(2.25)•

with N(O) the density of states at the Fermi level in the normal state and NII(E)

the quasipartic1e density of states. Thus at the Fermi level (le -+ leF or êk --+ 0),

'Vic -+ 0 : in addition to the loss of quasiparticle density in the superconducting state,

their velocity is gready redueed in the limit of low energies. Assuming an isotropie

gap, and applying the relaxation-time approximation, Bardeen et al. compute the

scattering time as

IEkl N,(E)
T, = êk TN = N(O) TN

where TN is the relaxation time in the normal state. As êt -+ 0, the scattering

time Til diverges : impurities have very little influence on low energy quasiparticles.

Comparing equations (2.24) and (2.25), we see that the drop of the group velocity is

compensated by the absence of impurity scattering and as a result, the mean free path

l = VT is not affected by the supereonducting transition1 : ls = LN for quasipartieles

of energy êlc -+ o. Inserting equations (2.25) and (2.24) into (2.23) and changing the

sum into an integral, we obtain:

1 2 ( ) r oo
2 81)

/te,. = 3TvFTNN 0 l
A

(T) dEE (-8E (2.26)

•
lThis compensation doesn't occv in superconductors with Dodes in the gap Cunetion. Indeed, near

a Dode Vt -t VF because E =E. Thus keeping a scattering time described by eqn. (2.25) would

yield an unphysical, infinite mean Cree path at low energies. As we shall see Iater, in the case of the

high-Tc cuprates, one bas ta assume on the contrary straDg, multiple scattering in order to account

Cor the experimental data.
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Figure 2.4: Ratio of supercondueting to normal thermal conductivity Cor aluminum as a function
oC TITe (aCter Satterthwaite [IOD. The solid Unes represent the BRT calculation in the presence
of impurity scattering Cor three values of the gap parameter, namely 2 â(O)= 3.00, 3.25, and 3.52
times "sTe.

8y letting d ~ 0, we still find equation (2.13) for the normal state thermal conduc·

tivity Ite,n. Dividing lte,6 by Ke,n we get

i +OC
2 aj fOC al

l'iJe.{T)/lten = dEE aEI dEe2-a' '6(T) 0 ê
(2.27)

(2.28)•

A plot of the theoretical (Ke,./Ite,n) versus (T/Tc), together with a plot ofexperlmental

data of aluminum, for three samples of varying impurity concentration, is provided

in fig. (2.4). As one can see, there is excellent agreement between this theory and

experiment.

For completeness, let us briefly consider the case of electron-phonon scattering,

which can he dominant in the case of very pure crystals. Kadanoff and Martin [Il},

have presented a theory in good agreement with experimental data. When the con­

ductivity is Iimited by phonon scattering,

"e = ~ : kf,T(r +VpIW I
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There exist two contributions to the thermal resistance: 1) r, which results from

• phonon absorption and emission and is proportional to T3, and 2) vF/I, which is due

to impurity scattering and is independent of T, and adds to the thermal resistance.

2.2.2 Lattice thermal conductivity

Phonon heat transport is not much affected by the superconducting state except via

electron-phonon scattering. In this case, in BRT theory [12], the thermal conductivity

is given by:

'" _ D( T)2 1.00
u

3
du ( )

g. - e 0 (eu - 1)(1 _ e-u)g(u) 2.29

where D is a constant independent of temperature, u the reduced energy nv/ksT,

and

yeu) = l-
u
e-

U

/ dEI~:''1 (1- ;1,)!(E)!(-E'), (2.30)

Energies are measured in units of kBT and g(u) represents physically the ratio of the

relaxation time of electrons in the normal state Te,n to that of quasiparticles in the

• superconducting state Te,,,. Therefore, it tends to 1 above Tc. In the superconduct­

ing state, it gives us the information about: 1) the numher of electrons that scatter

phonons, which decreases as temperature goes down. 2) the scattering matrix element

induding the coherence factor.

In summary, we have seen that a pairing between electrons gives rise to super­

conductivity and that a gap opens up between the ground state and the first excited

state. We have defined eonventional supereonductors as materials in which the pair­

ing is caused by electron-phonon interactions, leading to an isotropie s-wave gap. We

have presented a theory for the electronic thermal eonductivity base<! on impurity

scattering, which aceounted for the exponential activated behavior of "'e seen exper­

imentally, as we showed on Al. We mentioned that the phonon contribution is not

much affected by the transition except via electron-phanon scattering. To conclude

tbis section, we want to display the thermal conductivity of Nb (figure 2.5), which

• illustrates this last point, in addition ta the exponential drop of " below Tc. In nio-
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Figure 2.5: Thermal conductivity of niobium in the normal (triangles) and supercondueting (circles)
state (After [13]). The solid lines through the experimental data points are guides to the eye. The
lowest curve is the result expected from the BRT theory. Notice the peak at low temperature arising
from the phonon contribution.

bium, the critical temperature is 9.1 K, 8 times higher than in aluminum. Because of

the exponential behavior in BRT theory, the electronic contribution is negligible at

temperatures below 2 K. The phonon contribution, enhanced by the disappearance

of electron scattering, becomes dominant and peaks at low temperature. As tem­

perature is lowered the decrease in the number of phonon eventually wins over the

increase of the phonon mean Cree path, all the easier since the latter is limited by

boundary scattering..
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2.3 Unconventional superconductors

2.3.1 Quasiparticle transport in superconductors witb nodes in the

gap function

For an account of the theory of electronic thermal conductivity in unconventional

superconductors see [14). For a clean superconductor with an arder parameter that

vanishes along a Une on the Fermi surface the density of states increases linearlyas

a function of the excitation energy at low energies: N(E) l''J N,E/ ~o. However,

because of impurities, the density of states is approximately constant below a certain

energy 'Y, and is therefore non-zero at zero energy. 'Y can be viewed as arising from

a broadening of nodes by impurities. The energy scale ,." and thus the density of

states at zero energy N (0), depend on bath the impurity concentration, Tlimp, and

the scattering phase shift1 60 • However, whatever the phase shift, for any finite

concentration of impurities (and as a consequence for any physical crystal), "Y and

N (0) are finite.

The presence of impurities causes additional Cooper pairs to break, thus an in­

crease of the impurity concentration Rimp is accompanied by an increase of the residual

normal fluid density nn, which gives a greater contribution ta the thermal conductiv­

ity (i.e. N(O) l''J "Y). Parallel ta this the scattering of each quasiparticle by impurities

diminishes the mean Cree path for heat conduction in the zero temperature limit (i. e.

l f"W 1/"1). The two phenomena happen to compensate exactly in gaps with a line of

zero in the direction of transport, so that It(T -+ 0) doesn't depend on the impu­

rity concentration: it is universal, as first shawn by Lee [15]. The dependence of

"Y on the phase shift, mentioned above, is very strong. In the limit when 50 = 'Ir/2,

"Y f"W V'lrdor/2 where r is the normal state scattering rate, while in the opposite limit

(when 50 = 0), "Y '" 4~o exp (-1r~0/2r). We remark that "Y is larger for unitary scat­

tering, making universality easier to be achieved in this case. The theoretical values

IThe scattering phase shift specifies the strength of impurity scattering. The limit when 50 = 0

(Born limit) describes a weak scattering whereas the other limit, 50 = 1r/2 (unitary limit), applies

to strong, resonant, multiple scattering•



expected for some precise gap topology and symmetry of interest will be reviewed in

chapters 3 and 6 and compared ta experimental data.•
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(2.31)
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2.3.2 Lattice thermal conductivity for High-Tc superconductors

At sufficiently low temperatures for the phonon conductivity ta be in its asymptotic

"'Ph t'V T3 regime, equation (2.20) can be used (which is convenient since in this

range the coefficient /tph/T3 is approximately constant). For higher temperatures,

Tewordt and Wiilkhausen bave employed the BRT theory [12J for the lattice thermal

conductivity limited by electron scattering (see section 2.2.2), and have supplemented

it by taking into account additional scattering processes of the phonons by static

imperfections. They have written the final equation in a form convenient for fitting

experimental data:

(00 x4eZ
Kph(t) = At3 Jo dx (ez _ 1)2 X [1 + ctt4x4+ IJt2x2+ c5tx + "Ytxg(x, y)]-l

where t = +c is the reduced temperature, x = nw/ksT is the reduced phonon energy,

y = ~~1f is the parameter containing the energy gap. The coefficients correspond to

the diff'erent scattering mechanisms (by boundaries, point defects, sheet..like faults,

dislocations, and phonons). This theory is presented in full details in reference [16] .
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3.1 Structure and doping

Superconducting cuprates appear as complex systems. However they show common

structural features which are rather simple : their structures can be regarded as a

superposition aIong the crystal c-axis of metallic CU02 planes and insulating block

layers. The CU02 planes are believed to play a major role for superconductivity

whereas the insulating layers, composed of oxygen and a metallike Y, Ba, La, Tl or

Bi, are considered as "charge reservoirs" that supply charge carriers for the planes.

The electronically passive role played by the insulating layers gives to most of the high­

Tc cuprates a quasi two-dimensional character in their metallic and superconducting

properties. The mobile charge carriers can be hales (hole.doped cuprates) or electrons

(electron-doped cuprates).

In this thesis we will study an electron-doped compound (see chapter 4) and the

Bi2Sr2CaCu208 hole-doped compound (BSCCO). However a comparison will often be

made with two other hole-doped compounds, L&2-zSrzCu04 (LSCO), the first high

temperature superconductor discovered, and YB82CuaOr-6 (YBCO), the most widely

studied because high quality single crystals can be prepared (see for example [17]).

The crystal structures of LSCO, YBCO and BSCCO are shown in figure 3.1. In this

figure the structure of BSCCO is idealized ; in fact there is a mismatch between the

BaO-BiO-BiO-BaO and the CU02 layers, which produces a stretching of the Bi layers,

giving tise to an incommensurate modulation in the a direction, with a period ~ Sa.

Thus BSCCO is süghtly orthorhombic (a = 5.41À, b = 5.421, c = 30.9À). As in

20
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• Figure 3.1: Crystal structures and unit cell parameters oC the hole-doped high-Tc superconduetors
we have investigated (After [18]). a) LiL2-zSrzCU04, tetragonal : a=b=3.779 À, c=13.226 Àt
Tc ~ 40 K i b) YB&2CU30"t orthorhombic : a=3.818 Àt b=;3.884 À, c=11.683 Ât T~ ~ 94 K i c)
Bi2Sr2CaCu20S (Bi-2212), slightly orthorhombic : a=5.409 At b=5.420 À, c=30.930 A, Tc ~ 89 K.
Structure (c) is also that of the Thalium compound Tl-2212 and the elements corresponding to
BSCCO (Bi and Sr) are those indicated in parentheses.

•

YBCO, there is a bilayer of CU02 planes in the unit cell of BSCCO, as opposed to

a single layer in LSCO and the electron-doped cuprates of figure 4.1). As indicated

in rer. [19], the CU02 planes of the bilayers in YBCO and BSCCO are separated

by about 3.2 À, the distance between two bilayers being respectively about 8.2 and

12 À. In LSCO the single CU02 planes are separated by about 6.6 À (as weil as in the

electron-doped compounds). Thus the number of CU02 planes per unit length along

the c-axîs is respectively ~ 0.13, 0.15 and 0.17 À-1 in BSCCO, LSCO and YBCO.

We should aIso mention that the presence of holes could be explained by the overlap

of the Bi 65 and the Cu ~-r bands at the Fermi level [20].
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The proximity of antiferromagnetism (AFM) seen in the schematic phase diagram

• (figure 3.2) suggests that the electron pairing mechanism leading to superconductivity

in the cuprates may be mediated by antiferromagnetic spin fluctuations. .Actually

aen....ü.Eed ph... Clt.gfllm

O,.hn""dO"" mee.'
(Noa.F.,., Ilquld)

T(K)
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L...I._........IIo.-_.L-__"--_•......L.__......_-~o. 0 tO 0.20
X• Figure 3.2: Schematic temperature-dopant concentration phase diagram for cuprates. Alter [21}.

The soUd Unes labe1ed TN and Tc dellneate the antiferromagnetic and superconducting regions,
respectively. The "hatched" fine denoted T· represents the crossover into the pseudogap state (see
below).

a number of theoretical models (reviewed in [21]) based on AFM spin fluctuations

predict ~wave superconductivity with dZ 2_112 symmetry for the cuprates, precisely

the symmetry of the order parameter consistent with Most of the experiments in

hole-doped cuprates, as we shall see in the next section.

The Most important aspects of this section are probably, first, the presence of the

CU02 planes, which contain the charge carriers and are believed to play a key raIe in

superconductivity. The number of adjacent planes in the structure of the cuprates is

related to the transition temperature. Secondly, the presence of the antiferromagnetic

region close to the superconducting phase suggests antiferromagnetic spin fluctuations

• as mechanism for the pairing of electrons.
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Sînce the symmetry of the order parameter in high-Tc: superconductors provides clues

to identify the pairing mechanism, it is a key question to answer in order to develop

the theory of high-temperature superconductivity. To understand Cully the symme­

try of the order parameter ~o(k), one needs to know both its amplitude and its

phase. Some of the experiments giving information on l~o(k)1 are listed below. The

linear temperature dependence of the micrawave penetration depth [22] (or [23] in

BSCCO), the T3 power law at low temperature of the NMR longitudinal relaxation

rate IlT1 [24], the results of angle-resolved photoemission spectroscopy (ARPES)

measurements [25], Raman scattering [26] (in BSCCO : [27]), the residuallinear term

in thermal conductivity (28), all1 are consistent with a dz2_y:Z or extended s-wave

symmetry for hole-doped cuprates sucb as YBCO, LSCO and BSCCO. To distin­

guish between the two, information on the phase is needed. Experiments sensitive to

the phase, which have mainly been performed on YBCO, all involve the Josephson

effect (see for instance [7]). They are reviewed in the preprint by M. B. Maple [21].

Most of them, like SQUID interferometry, indicate a dz2-g2 symmetry. Some of them,

like c-axis Josephson tunneling, predict in addition a significant s-wave component.

The best candidate for Bi2Sr2CaCu20S is the arder parameter with d:2_ 112 symmetry.

Its Fermi-surface gap function as well as density of state is shawn in figure 3.3 (along

with that of s-wave or extended s-wave symmetry). The gap has zero amplitude for

lines on the Fermi surface, at angles ~ = m1r/4(m = 1,3,5,7). The density of states

N(E) ,..., E at low temperatures (however, see section 2.3.1).

Thus, a number of experiments firmly suggest an order parameter with d:2_y2

symmetry in the hole-doped cuprates YBCO, BSCCO and LSCO.

lin raet, since the linear term in thermal conductivity bas aIso been observed to he universal, this

experiment Cavors tJ.wave as opposed to anisotropie ~wave symmetry. Indeed, according ta the

theory [15}, universa1 transport wouldn't he observed in a superconduetor with ~wavegap symmetry•
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Figure 3.3: Fermi-surface gap functioD8 and densities of states of a tetragonal superconduetor for
various pairing symmetries. The gap funetioD8 are plotted in the k: =0 plane. N(E) shawn below
each gap Cunetion is the density of states for one-quasiparticle excitations. Unlike the classic ~wave

case, the extended ~wave and the .wave gap functions have a linear density of states at very low
temperatures. After [29].

3.3 Transport

3.3.1 Normal state properties

As in the other hole--doped cuprates, the in-plane resistivity in BSCCO is linear in

temperature over the measured temperature range :

(3.1)

This behavior is unusual in a normal metal where the generic low-temperature re­

sistivity is closer to p = A + BTs and the linear dependence appears only at high

temperatures (T ~ 8D /4), as seen in section 2.1.4. Although the usual formula of

phonon-limited resistivity happens ta give a reasonable fit ta the p(T) curve, it is

known that the linear temperature dependence is due ta electron-electron correla­

tions (see [30)). In the particu1ar case of Bi2Sr2CaCu20S at optimal doping the c-axis

resistivity seems to have a semiconductive behavior weIl reproduced by the following

formula [31],[32] :

(3.2)

where a, b and â are constant and for optimal doping according ta the data of

• Watanabe et al. [31], a ~ 20 m{}cmK, b~ 60cm. and à ~ 200 K. Watanabe et



3.3.2 Review of thermal conductivity

al. find an out-oflin-plane anisotropy ratio PclPab ~ 5 103 consistent with Yoshizaki

et al. 's PclPab ~ 104 [32]. Such a large anisotropy may be explained by the fact

that there are as manyas 4 insulating layers between the CU02 planes (for only 3

in YBCO for instance). Another explanation could be the macroscopic structure of

the BSCCO material, which looks like a superposition (along the c-axîs) of mika­

like sheets, possibly reducing the conductivity by tunneling between two sheets. In

addition, it is difficult in those conditions to evaluate whether the current distribution

is uniform in the sample, or only takes place in some sheets of the material representing

only a fraction of the sample.

One remarkable aspect of the normal state in Bi2Sr2CaCu20S is the existence of a

pseudogap (a suppression ofcertain but not all excitations) in the low energy spin, but

aIso charge excitation spectra. ARPES measurements [25] on BSCCO have revealed

that the symmetry of the pseudogap is consistent with the symmetry of the gap. The

pseudogap appears ta be intimately related to the superconducting energy gap, being

in some way its precursor.

•

•
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High temperature range (T > 1 K).

Figure 3.4 displays the thermal conductivity data obtained in BhSr2CaCu20S by

N. P. Ong et al.. The main feature is the hroad peak just below the transition. This

kind of peak has also been observed in many other hole-doped cuprates, like LSCO

and YBCO (see [34], [351). Two scenarios are "a priori" possible to interpret it. The

6rst one is the increase of the phonon mean Cree path following the loss of electronic

scatterers by pairing. The second one is a dramatic tise of the quasiparticle mean

Cree path below Tc, which would more than compensate the decrease of electronic

carriers density. Two experiments have given insight into the problem in YBCO and

convinced that most of the peak had to he attributed to the electronic heat carriers.

By a thermal hall effect experiment, a way of isolating the electronic thermal con­

ductivity Ket Krishana et al.. [36] have seen a peak of lte(T) below Tc. This result is
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Figure 3.4: Thermal conductivity of Bi2Sr2CaCu20s in zero field and in a 14.1 T magnetic field [33].

consistent with the microwave conductivity measurements of Bonn et al. [30]. They

have observed a broad peak in the microwave surface conductivity, indicative of a

rapid suppression of the electronic scattering rate below Tc. The data of Bonn et al.

have revealed that strong electron-electron scattering dominates the charge conduc­

tion in the normal state. As charge carriers condense in the superconducting state,

the dominant inelastic scattering goes with them. Given that the same broad peak

as in YBCO has been obtained in microwave measurements of the real part of the

conductivity in BSCCO [37] (meaning a suppression of the quasiparticle scattering

rate below Tc), and that the two materials show otherwise very similar properties,

there is no reason to think of a different scenario than in YBCO to explain the peak

of It below the transition.

The interpretation of the peak as an electronic feature mustn't hide the impor­

tance of the phonon contribution at other temperatures, and we are going now ta

compare the relative importance of both contributions to the thermal conductivity

st various temperatures. In the normal state, most of the heat is shown to be car­

ried by phonons (in YBCO Kef"'h ~ 0.1 [33]). The electron contribution is limited

by strong electron-electron scattering. Below the transition because of the pairing



Low temperature range CT < 1 K) .

In ref. [33}, Krishana et al. have reported an anomaly in the low temperature ther­

mal conductivity of Bi2Sr2CaCu20S (T < 25K), aIso seen later by Aubin et al. [38} :

at a transition field Ho, a sharp break in the slope of /C occurs, fol1owed by a plateau

region in which it is constant with increasing field. In ref. [39], a possible interpreta­

tion of this anomaly is given, in the fonn of an electronic phase transition from the

d:2_y2 state towards a d+id state, induced by the magnetic field. In this context,

R. Movshovich et al. have published another paper claiming a new phase transition

in low temperature thermal conductivity of Bi2Sr2CaCu20S [40}, which A. V. Bal­

atsky has explained by a possible transition towards a d:r:2+g2 + idzv statet induced

by magnetic impurities [41]. In their article, Movshovich et al. evaluate that the

heat is mainly carried by electrons at the temperature of the transition and thus at­

tribute it to a sudden suppression ofquasiparticle heat transport. We will discuss this

result in chapter 6 and show why it is not consistent with our data and interpretation.

of electrons the electronic scattering rate is suppressed and the quasiparticle mean

free path increases. In YBCO /C at the peak is more than twice the normal state

value [34). Sïnce most of the peak magnitude is attributed to electrons, "'e at the

peak dominates "Ph. However in less pure crystals like BSCCO or LSCO, the im­

portance of impurity scattering limits the increase of /Ce (800 section 6.2). In these

conditions it is unlikely that the electronic contribution dominates the transport of

heat at the peak. The peak is the result of the competition between the decrease of

the quasiparticle density and the concomitant increase of the quasiparticle mean free

path, the latter being restricted to a value determined by impurity scattering. Thus

at some point the electronic contribution decreases and below the peak /tph is "again"

dominant (assuming /te was the main contribution at the peak). However at very low

temperatures /Ce ,...., T while "'Ph ,...., T3 (see chapter 2) and at some temperature (of the

order of 100 mK as seen in chapter 6) the quasiparticles become the main carriers of

heat.

•

•

•
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In summary, some kind of electronic mechanism for inelastic scattering dominates

• transport properties in the normal state and is suppressed below the superconducting

transition at the same time as the quasiparticle density. In particular, this causes a

peak in the thermal conductivity. We have aIso stressed the importance of the phonon

contribution ta the heat transport in the cuprate superconductors. Ta finish, we have

noticed that a few anomalies have recently been reported in the low temperature

thermal conductivity of the Bi2Sr2CaCu20s compound, induced by a magnetic field

or magnetic impurities.

•

•
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THE ELECTRON-DOPED CUPRATE PR2-xCExCU04

4.1 Structure and doping

In 1989, Tokura et al. (42] have discovered materials that, unlike the hole-daped

cuprates, have ta be doped by electrons in arder ta become superconducting. In this

family of compounds, Re2-:rCe:rCuO.. where Re is a rare earth element (Pr, Nd, Sm

or Eu), electrons are introduced by substituting Re3+ ions by a small percentage of

Ce4+ ions. The material crystallizes into the T'-structure (simply the name given ta

the structure of figure 4.1a), close from the T-structure (fig. 4.1b) of their parent hole­

doped compound L&2-zSr:rCuO.. (LSCQ). In the electron-doped cuprates, the CU02

(a) NCCO (b) LSCO
CuO2(plaDe) ...--0.-.4

(Nd,Ce)O

CuO}(plane)

(Nd,Ce)O

o Nc1.ee

o 0

• Cu

(La,Sr)O

CuOiplane)

o u.5r

o 0

• Cu

•
Figure 4.1: Crystal structures of (a) 8.eJ-.Ce.CuO. in the T'-structure, after [42]. The arrange.
ment is tetragonal. For NCCO the unit cell parameters are a=b=3.95 Ât c=12.09 Àt Cor peC~
a=b=3.96 Â, c=12.16 À. (b) Uq-zSr.CuO. in the T-stnlcture. The arrow and X in (a) indicate
the approximate position of the empty apical site in the T'-structure•
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planes, considered as being responsible for superconductivity, are aIl equidistant (like

in LSCO : they are both part of the "single-Iayer" group). The dürerence between

the structure of Re2-:r:Ce;rCu04 and L&2-:r:Sr;rCU04 resides in the arrangement of the

insulating layers, the oxygen atoms lying in the lanthanide planes and in-between in

the T and T' cases respectively. In the T'-structure, there are no so-called apical

oxygens (oxygen atoms at the boundary with the insulating layers, shown by the

arrow in figure 4.1). This absence of apical oxygen atoms places the Cu ions in a

planar environment shared with only four 0 ions as nearest neighbors, to he compared

with an octahedral and tetrahedral arrangement in LSCO and YBCO, respectively.

Another characteristic of the Re2-;rCe;rCU04 family is that the maximum amount of

Ce doping allowed (solubility limit) varies as a function of the lanthanide used [43].

The greater the ionic radius of Re3+ (Pr, Nd, Sm, Eu from greatest to lowest), the

greater the volume of the unit cell and the greater the solubility limit. To illustrate

this, the compound Re2-;rCe;rCU04 with Re=Gd (the rare earth next to Eu in the

periodic table) is not superconducting at normal pressure because the ionic radius of

Gd is too small and causes a static distortion of the T'-structure (see [43)).

•

•
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•

Figure 4.3 shows the superconducting phase diagram of Pr2-:r:CezCu04 compared

to Nd2-zCezCu04 and figure 4.2 the more complete typical qualitative phase dia­

gram of an electron-doped cuprate (here that of Nd2-;rCezCU04) compared to that

of La2-:r:SrzCu04. Let us first draw general conclusions from figure 4.2. The most

striking feature is the close symmetry of the two diagrams, with the presence ofantifer­

romagnetism (AFM) followed, when the charge carriers concentration x is increased,

by the superconducting (SC) region, with a maximum ~ for x ~O.15. The main dif­

ference may be the relative size of these two regionst the AFM one being narrow and

the SC one wide in the hole-doped compound, and the reverse in the electron-doped

material. The AFM doping range extends up to x =0.12-0.14 in Nd2-zCezCU04 and

ooly 0.05 in La2-zSr;rCU04. Another dürerence is that superconductivity directIy

replaces antifenomagnetism in Nd2-zCez,CU04t whereas in L&2--%SrZCu04 the two

phases are separated by a spin glass region.
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ELECTRON-HOlE SYMMETRY (QUAlrrATlVE)
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Figure 4.2: Temperature-dopant phase diagram Cor the hole-doped L&2-zSrzCu04 and electron­
doped Nd2-z Cez Cu04 systems. AFM=antüerromagnetic phase, SG=spin glass phase, and
SC=superconducting phase. Alter [44].• 25-------------,
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Figure 4.3: Phase diagram of Nd2-zCezCuO. polycrystals (squares) &om [42] and Pr2-zCezCuO..
thin films (circles) of Patrick Fournier [45}.

•
The phase diagram of figure 4.3 seems ta be characteristic of electron-doped

cuprates sinee varying the substituent (Th for Ce) or the rare earth (Pr, Nd, Sm,

Eu) doesn't really change it [45], [44]. An important feature of this diagram is the

sharp increase ofTc between x=0.13 and x=0.15, which is a problem for making sam-
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pIes of intermediate Tc. Furthermore it worsen the consequences of inhomogeneities

• in the crystals. Skelton et al. [46] have determined using a micron-sized X-ray beam

the Ce homogeneity as a function of position along the c-axis of a 100 p.m thick cry~

tal. Their observation indicate that the material grows layer by layer with smoothly

varying Ce for Nd substitution. Because Tc is so sharply peaked around x=0.15,

the transport properties measured along the ab-plane of sucb a crystal might not

represent exactly the properties of the material with the nominal concentration (say,

x=O.15). There might be ab-planes in the crystal with different Te's, leading to stairs­

shaped multiple transitions. A prescription against this is to use thinner crystals, for

instance of thickness of the order of 10 p.m.

Another feature of this phase diagram, as alreacly mentioned, is the narrowness of

the doping range that allows superconductivity. For completeness we should mention

that Brinkmann et al. [47} have reported a wider doping range of superconductivity

in peCQ than shawn in figure 4.3. The authors found superconductivity within 50

ta 100 p.m thick Pr2-:rCezCU04 crystals with 0.05 < x :5 0.10 which reached a Tc of

• 25 to 28K. However inhomogeneous Ce distribution over the thickness could lead to

sucb observations.

In this section we have seen that the electron-doped cuprate superconductors all

crystallize in the same structure, different from that of LSCO only by the absence

of apical oxygen atoms. The superconducting phase diagram displays an evident

electron-hole symmetry, with a range of dopant concentration delimiting the super­

conducting phase being however narrower in the electron-doped compounds.

4.2 Gap symmetry

The similarity of the phase diagrams of L&2-zSrzCu04 and Nd2-zCezCU04 (fig. 4.2),

with appearance ofoptimal superconductivity at the same doping suggests an electron­

hale symmetry in mast of the physical properties. However, most of their normal state

• and superconducting properties are very different. And ta begin with, the order para-
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t=T/T c

Figure 4.4: Microwave penetration depth measurements from D. H. Wu et al. [49] and A. Andreone
et al. [48] compared to a fit using the .wave exponential mode! (soUd Une).

meter doesn't seem to have the same symmetry. Whereas many different experiments

are consistent with a d-wave gap in hole-doped superconductors (see previous chap­

ter), onlyl microwave measurements of the penetration depth and Raman scattering

have so far given limited information about the symmetry of the gap in electron-doped

cuprates, and they haven't shown evidence for nodes in it. The results of penetration

depth measurements in Ndt.ssCeO.15Cu04 performed by A. Andreone et al. [48} and

D.H. Wu et al. [49] are shown2 in fig. (4.4). There is a very good agreement with

an exponential dependence of the penetration depth with 2j).o/kBTc ~ 4 for both

sets of data. Note however that J. R. Cooper has suggested [50] that the value of 5,\

extracted from microwave measurements has to be corrected when the permeability

Pr diverges, which is the case in NCCO because of the large Nd moments. Taking

this inta account, he found an extracted value of 6"\(T) quadratic in T (dirty d-wave

behaviour). Another sensitive experiment which has revealed the anisotropie arder

parameter in hole-doped cuprates (see chapter 3) is Raman scattering. Displacement

l apart &am the work presented in this thesis
2The frequency difrerenœ 6f plotted in the figure is proportional ta 6X. where X. is the surface

reactanœ. 6.\ is related to X. by 6X.(T} == PoW6.\(T)•
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of low frequency spectral weight to higher frequencies as the sample is cooled down

• below Tc is attributed to the opening of the gap. Using two different polarization

configurations, one can deduce a superconducting gap and evaluate its anisotropy.

However in NCCO, Stadlober et al. find that the spectra are consistent with an ~

wave order parameter [51}.

It would he very useful to have other ways available of probing the electronic

system, but Many problems arise [45]. The large magnetic moment of the Re3+ ion

in Re-Ce-Cu-O prevents from measuring any relaxation rate of nuclear moments in

NMR. Tunneling experiments haven't given very reproducible data so far because of

material issues [52}. Owing to the difficulty of making good Josephson junctions, it

hasn't been possible yet to perform SQUID-type experiments, which are sensitive to

the phase of the gap. The resolution in ARPES [53] is about 6 meV, which is not

sufficient for measurements of 2Ao "J 8 meV (2Ao/lcsTc "J 4 with Tc ~ 20 K).

Thus the existing data tend to favor a nodeless ~wave gap in the electron-doped

• cuprates. However the information on the gap symmetry is still limited, mainly

because of material issues. In this context, thermal conductivity (being a bulk probe,

its reliability is not criticallyaffected by the sampie quality) can give a very useful

contribution to the question (see our results in chapter 6).

4.3 Transport

4.3.1 Normal state properties

•

While the resistivity is linear in temperature over a large temperature range in

hole-doped superconductors (see previous chapter), its behavior is very difFerent in

electron-doped cuprates. Patrick Fournier reports a nearly T2 dependence of Pab in

both Prt.85CeO.lSCUO. [45] and Nd1,ssCeO.lSCUO. [54] thin films, with a residual resis­

tivity Po of the order of 70 and 60 ptlcm respectively. Similarly, according to data o~

tained by Y. Dalichaouch et al., both PGII and Pt: ofoptimally doped Ret.83CeO.l1CuO.-1I

single crystals (Re=Nd and Sm) vary as Tl [55] . Thus the intrinsic temperature de-
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•

pendence of the electrical resistivity in electron-doped cuprates seems ta be T2 (as

confirmed in section 6.1). The Tl temperature dependence with fairly high residual

resistivity could be consistent with electron-electron scattering with a large elastic

scattering contribution (defects such as impurities, lattice defects, vacancies...).

Hall coefficient measurements in PCCQ and NCCQ have revealed another hole­

electron asymmetry. An upturn of RH towards positive values is observed in those

compounds at optimal doping (while RH 'V liT at optimal doping in hole-doped

cuprates), suggesting the presence of two types ofcharge carriers (holes and electrons)

in these systems which might have to be described by a two-carrier model (45} [54}.

At x = 0.2 in Pr2-zCezCu04, the Hall coefficient is positive in all the temperature

range (up ta room temperature) : the electron-like character bas disappeared, while

the sampie is still superconducting.

4..3.2 Heat transpC?rt

•

This review of heat transport in electron-doped cuprates and in particular in peCQ

is limited by the amount of literature existing on this topie. Figure 4.5 represents

the in-plane thermal conductivity ,,(T) in a sintered sample of Prl.85CeO.1SCu04 (left)

and ,,(T) in single crystals (right). Evaluating the maximum electronic thermal con­

ductivity with the Wiedemann-Franz law, both of these authors find that It is mostly
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phononic in the temperature range of the experiment and shows a pronounced maxi-

• mum around 30-40K, unrelated to the superconducting transition. Again, the absence

of any feature at the transition may be a consequence of bad sample quality. The one

order of magnitude difference compared to LSCO (higher in peCQ) is attributed by

both authors to the absence of apical oxygen in the T'-structure. H. Ogasawara et

al. suggest that the presence of apical oxygen atoms in La2-.zSr.zCu04 favours tun­

neling state scattering, thereby reducing the thermal conductivity due to phonons.

The thermal conductivity of peCQ will be compared ta that of its parent compound

LSCQ in chapter 6.

In concLusion, eLectron-doped cuprates present charge transport properties (qua­

dratic resistivity, uptum in RH) not seen in the electron-doped materials. The heat

conduction is much better in PCCQ and NCCQ than in LSCQ, as will be discussed

Later.

•

•
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5

EXPERIMENTAL DETAILS

Our YBCO sample is a single crystal grown by a self-flux method (see [17]) at the

beginning of this project, with the advice of R. Gagnon. The tetragonal YBa2Cu306.0

crystal is oxygenated for 5 days at 50Qee in O2 atmosphere, giving an orthorhombic

YBa2CU306.9 superconducting crystal. As a consequence of the tetragonal -+ or­

thorbombic transformation, domains of dominant il or borientation (twins) take place

in the crystal. They are removed by applying an uniaxial pressure on the sample (at

550eC for 30 min). Under the stress the slightly larger h-axis is favored perpendicu­

larly ta the axis of pressure. In the YBCO sampIe we investigated the pressure has

been applied parallel to the length of the crystal, and we measured transport along

the a-axis (in this way we don't have a direct contribution from Cu-O chains present

along the b-axis). The other samples are all single crystals sent from elsewhere (see'

tables 6.1 and 6.2).

5.1 Sample characterization

5.1.1 Electrical resistivity

For each crystal investigatedt we have measured the resistive superconducting tran..

sition with a low frequency resistance bridge (LR-700 form Linear Research Ine) or

a lock-in (SR-830 from Standford Research Systems). An electric current was di­

rected along the samplets length via contacts at its both ends, and the voltage was

measured between two points via contacts on its surface. In this configuration the

current doesn't go through the contacts, awiding to have their resistance included in

37
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the measurement. The contacts for the electric current were made of 100 pm silver

• wires glued on the sample by silver epoxy before being annealed. The contacts for

the voltage leads were made the sarne way but with 50 pm silver wires in arder ta

reduce the uncertainty on the geometric factor. The annealing time and temperature

depend on the compound. The electrical resistance of these contacts was typically

".J 100 and 3.5 ma at room temperature and helium temperatures. In our setup we

were able ta measure the electrical resistivity with the same contacts as those used

for the thermal conductivity. The advantage of this design is ta obtain the Lorenz

number without any geometric factor uncertainty.

5.1.2 Magnetic susceptibility

A magnetic susceptibility measurement facility was aIso available for the determina­

tion of Tc. This method presents the aclvantage of not requiring any special prepa­

ration (e.g. contacts), and it is more sensitive than resistivity ta possible inhomo­

geneities. The susceptibility apparatus is shawn in fig. (5.1).

• While the sample is in the normal state, its susceptibility is negligible, and as

the temperature drops below the transition point, magnetic flux is screened out of

the sampie and the effective volume of that secondary coll drops, which results in a

change in the total e.m.f. picked up.

5.1.3 Scanning electron microscopy

We used Scanning Electron Microscopy (SEM) ta measure the sample's dimensions

and to examine its macroscopic structure. The length L and section S are needed to

calculate the geometric factor L/ S which gives the absolute value of the conductivity

(th~rmal and electrical) from the conductance.

5.2 The 4He cryostat

•
The cryogenie apparatus we used was a "dipstick", insertable in a liquid 4He storage

dewar, which enabled us to reach temperatures down to 1.5 K by pumping on a

small Iiquid he1ium reservoir. The characteristics of this 4He cryostat can be found
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Figure 5.1: Susceptibilityapparatus: one resistance bridge is used for reading the thermometer and
another bridge to measure the susceptibility in mutual inductance mode.

in reference [58]. It has the qualities of low helium consumption, fast cool-down and

warm-up times and good temperature stability from 1.3 K to room temperature. The

portion which is inserted into the Dewar is shawn in fig. 5.2.

• Wiring: Our setup uses 38 wires connected to two 19-pin electrical feedthroughs

sealed hermetically on the upper portion of the cryostat. The wes are con­

tained in the tube used for evacuating the cao. In arder ta restrict the heat

flow from room temperature down into the cao, they are anchored at 2 stages :

on top of the vacuum can (4.2 K) and on the sample stage. The material and

size of the wires have also been chosen in this purpose : the 16 wires used ta

measure voltages are made of constantan (to limit thermal conductance) gauge

36, and the 20 used for the intensity are copper, gauge 36 (for low electrical

resistance). The 2 remaining, assigned ta carry stronger currents leading to the

heater, are in copper, gauge 30. The sample stage is connected ta the internai

pot by a brasa threaded rad, which provides an appropriate thermallink for the
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Figure 5.2: Low-temperature portion of the "He insertable cryostat. The tubes marked Cl and C2
are capillary feed-through tubes for use with a continuous 611 capillary.

smooth control of the sample temperature.

• Heater and thermometer: the temperature was controUed by a temperature

controller (from Lakeshore) working with two possible calibrated thermometers:

Pt (30-150 K) or Ge (1.0-75 K). We used the Ge thermometer from 1.5 ta 60 K

and then the Pt from 50 to 150 K. Originally heater and thermometer were

fixed on the sample stage (position H and T in figure 5.2). We have displaced

them on the sample holder to improve the thermal contact between them and

the sample holder.

• Vacuum cao: as shawn on top of fig. 5.2, a tapered grease seaI is used for the

vacuum cano Very convenient to seal hermetically the vacuum. can, it takes in

addition only a small fraction of the available cross-sectional area. We used

a diffusion pump to achieve pressures as low as 10-7 torr necessary for the

measurement of thermal conductivity (see below).

• Cooling procedure: From a ground temperature of 4.2 Kt temperatures as low



as 1.5 K can be reached by pumping on a pot of liquid helium which is fillerl

by pressurizing helium gas. Continuous refill of the pot is provided by a thin

capillary attached to the pot, the other end being immersed in the liquid helium

of the storage dewar. Although this refill Cacility is very simple in principle, it

has surprisingly taken some months beCore getting it to work properly. Most of

the time, some air trapped in the capillary must have blocked it upon freezing

below 77 K, and deprived from the refill, the pot was empty after ooly an

hour of experiment. The procedure which eveotually enabled us ta maintain

a temperature of 1.5-1.6 K as long as desired with the pot remaining full is

described below. The pumping tube going ta the pot was connected with a

"T" (via two valves) ta a primary pump at one end, ta a tube providing helium

gas at the other end. This helium gas tube was not ta be removed before the

end oC the experiment, to avoid any air contamination into the pot that could

risk ta block the capillary. In the same purpose, a cold trap was inserted in the

helium gas circuit in between the bottle and the dipstick. First, the bottle being

closed, all the helium gas circuit was pumped to remove air and other particles

present. Then the trap was filled with liquid nitrogen. In the next stage, the

pot was pressurized at about 14 psi with the clean helium gas Cree from possible

impurities that had condensed in the cold trap. With a surpressure in the pot no

air was to penetrate through the capillary and the dipstick could be immersed

into the dewar, where it was out of air contamination danger. Thus at this stage

it was possible ta remove the surpressure in the pot, the liquid helium in the

dewar being very pure. Then the stick was progressively dipped down to the

bottom of the dewar, which took less than an hour if exchange gas had been

previously inserted in the sample chamber. Once at liquid helium temperature

vacuum was made in the sample chamber. Clean heüum gas was pressurized

in the pot at about 6 psi, to fiU the pot with liquid helium (it takes about 20

minutes). If the vacuum in the chamber is sufficient, one can then pump on the

pot to lower the temperature down to about 1.5-1.6 K.

•

•

•

5.2 The 4He cryostat 41
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•
5.3 Thermal conductivity setup

5.3.1 Description

Ta measure thermal conductivity we used the so-called longitudinal steady-state

method (see (or example [3]). For every recorded point, the temperature of the

sample is stabilized at some temperature To, and then a constant heating power is

applied ta one end of the sample. At equilibrium, the temperature gradient across

the sample is measured and thermal conductivity is given by:

power .
K. = d. x geometnc factor

temperature gra lent
(5.1)

The setup is illustrated schematically in fig. (5.3). It is a 4-probe method (requiring

a cold bath at one end, a heater at the other and two thermometers in between).

Four silver wires are attached to the sample with silver epoxy, two of 50 IJm diameter

connected to the thermometers, and two of 100 j,'ID diameter connected ta the heater

and heat sink. The heater is connected to its contact with non superconducting

• solder, sa as to maintain a good thermal contact at any temperature.

For an accurate measurement of the thermal conductivity, all the heat dissipated

by the heater has to go across the sample. Thus the setup is designed to limit

heat lasses through the wires, thermometers, heater, through the residual gas of

the sampie chamber or by radiation. We used manganin coils ('"'J 40 n of 25IJm

wire) ta isolate thermally the thermometers and the heater from the Cu base. The

two thermometers were both 20 n Cernox resistors from Lakeshore, with a size of

1 x 1.5 mm2• These sensors have a semiconductive temperature dependence but

they are still sensitive above room temperature, and thus in the whole range of our

experiments (1.5-150 K). The heater was chosen to be a semiconductor-film resistor

of 1.5 kg, for its weak temperature dependence (except at temperatures below 10 K,

where its resistance increases fast), and its small size (1.5 x 1.5 mm2-the radiative

heat 1088 is proportional ta the surface area). The heater's resistance is much higher

than that of the manganin coUs (1.5 kG> 400), thus the power is dissipated almost

• entirely in the heater.
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Figure 5.3: Schematic drawing of the thermal conduetivity apparatus. Ag wires are glued with
epoxy along the sample, perpendicular to the direction of current, the manganin colls are connected
ta the electrical leads of the probe.

5.3.2 Estimation ofheat losses

The thermal conductivity of the high-Tc materials being in general rather low, the

risks of heat losses mentioned in the previous section are increased. To make sure

that they don't affect appreciably our results, we will try to estimate quantitatively

the losses at some points of the setup. For a study of the lasses concerning the data

obtained in the fridge, see the PhD thesis of B. Lussier ( [59]). Here we discuss the

lasses in the dipstick setup only. Points 2 and 3 of the calculations (conduction in agas

and radiation) are based on a study ofheat exchange in the book by G. K. White [60].

1. Losses through the wires. They are limited by manganin coils (40 gauge). The

thermal conductivity of manganin at 150 K is 13 Wm-1K-I [60], from which

we deduce its conductance 4.2 x 10-8 WK-l. Among the samples we have

investigated, the worse thermal conductance K was found in the very thin

BSCCO samples. At 150 K, K is typically of the order of 10-4 WI(-l and at

1.5 K it is 7 x 10-6 WI{-l. Thus even at 1.5 K, the heat loss through these coils

is negligible compared with the heat flow through the sample. Ifwe now include
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the thermal resistance of the contacts between heater and sample, and between

• sampie and heat sink, which are around 104 W-lK, we get a total conductance

of l x 10-4 WK-l, still much bigher than that of manganin coils.

2. Losses through the stJ1Tounding gas. Good vacuum must be maintained in the

can ta reduce heat exchange with the residual gas present in the sample cham­

ber. Sînce the pressure in the sample chamber is typically less than 5x 107 mbar,

the mean free path of the gas molecules is larger than the dimensions of the

cano In this case, according ta [60], the power lost by conduction through the

residual gas is given by :

. constant 2
Qconduetion = JT x aOp (T2 - Til Wlm (5.2)

where p is the pressure of the gas, Tl and T2 are the temperatures of the two

points between which heat is exchanged, and BQ, called the accommodation

coefficient, is always smaller than 1. For conduction in air, constant/JT ~

• 1.2 at room temperature, thus it is about 1.7 at 150 K. There is a constant

heat exchange between the sample holder at 150 K and the wall of the can at

4.2 K. However here we want ta calculate the extra conduction generated by

the power dissipated in the heater, relative ta the Cu base temperature. Thus

T2 - Tl = âTbeater- In our experiments at T = 150 K we had âTheater ~ 15 K

(estimated as being a little more than the 12K temperature difFerence between

the hot thermometer and the Cu base). With a pressure of 5 x 10-5 Pa, we

get Qcondudion < 1.3 mW1m2• The heat is exchanged through a heater surface

area of 2 x (1.5 mm x 1.5 mm) = 4.5 x 10-6 m2, 50 the power lost is less than

6nW. Compared ta the typical heat flaw through the sample /'Çi1T of the arder

of 1mW, it also turns out ta be a negligible effect.

3. Losses 6,1 radiation. They are more significant at high temperatures and limit

the temperature range of our experiments. For two plane parallel surfaces of

• emissivities êl and ê2 at temperatures Tl and T2, the heat transfer by radiation
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from an area A per unit time is [60]
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(5.3)

•

•

where CT is not the electrical conductivity but Stephan's constant, CT = 5.67 X

10-8 W/m2K4. Again we estimate the extra radiation caused by the power

in the heater, relative to the sink temperature. Thus Tl =150 K and T2 =
Tl + aTheater. Assuming both emissivities equal to 1 (the worst possibility), and

with A ~ 5mm2 and aTheater ~ 15 K we find Qrodiation = O.07mW at 150 K.

In our BSCCO measurements the power dissipated by the heater was about

1 mW at this temperature, and it was about 3.5 mW for the YBCO experiment.

Thus chis upper estimation of lasses by radiation represents 7% of the heat flow

across a BSCCO sample. Of course, emissivities are certainly less than one and

these losses are certainly actually less than 5% of the heater power. However

considering the T4 dependence of the losses it sounds reasonable ta stop the

experiments at 150 K.

5.4 Experimental procedure

The experiment is directed by an interactive program written with the "Labview"

software. For each point once the sink temperature adjusted by the temperature

controller1 is stable, one waits for equilibrium in the sample. The sample is consid­

ered as being in thermal equilibrium when the slope of the resistance of both Cernox

thermometers (calculated over the last 10 data points) is below a value fixed by the

program. At this stage the sink temperature Tsink and the voltage of both Cernox

thermometers2 Vcold(Q = 0) and3 Vhot(Q = 0) are recorded. Q stands for the heat

coming {rom the heater. These data are needed to make a calibration of the Cemox

1A Lakeshore DRC 93CA coupled to a calibrated Ge or Pt thermometer.
2Measured by two SR-850 lock-m amplifiera &am StandCord Research Systems. The lock-in sends a

low &equency ac voltage. which is converted into a current trough a 10 ka ümiting resistor and the

voltage across each thermometer is measured.
3In absence of power dissipated by the heater bath thermometers are at the same temperature but

"cold" and "hot" maIœ sense in presence of a temperature gradient in the sample.
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T
Il 0 t

Figure 5.4: IDustration of the analysis performed in order to extract the temperature of the ther­
mometers. The saUd and dashed Unes are respectively the calibration curves for the hot and cold
tbermometers.

thermometers. Then a temperature gradient is applied in the sample. After equi­

librium the program records the voltage U and intensity 1 of the heater, the new

• values ~old(Q) and Vhot(Q) of the voltage in both thermometers, and ~ink to check

that it hasn't increased appreciably. From the calibration curves V(T) of the Cernox

resistors, one can deduct the temperatures 1;:old and Thot corresponding to t'c:old (Q)

and ltbot(Q) (i.e. when the heater dissipates a power U x 1). This is illustrated in

figure 5.4 where the data cornes from the measurement of the sample BSCCO#2.

The calibration is obtained by a fit with third or fourth order polynomials of the

data "lnT versus ln V(O)" of the temperature as a function of thermometers volt­

ages. Then lnV(Q) is inserted in the polynomial, giving the corresponding lnT. The

exponential is taken to get Thot and Tco1d• Our method is accurate only if âTfT is

not too large (otherwise one looses resolution in the measurement) or not too small

(otherwise the noise takes too much relative importance). The program adjusts the

heater power 50 that âT/T remains close to 4%. The thermal conductivity It at

temperature T = (Tco1d + Tbot)/2 is then given byequation (5.1)

• (T) - UxI L
ft - x-

Thot - Tco1d S
(5.4)
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where L and S are the length and the cross-section area of the sample.

5.5 Test on an Al sample
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In arder ta test our experimental setup we measured the resistance and thermal con­

ductance of a 18.5 mm long aluminum wire of 50 JJm diameter and of purity 99.99%.

The resistivity (resistance divided by geometric factor) and thermal conductivity

(conductance multiplied by geometric factor) are plotted in figures 5.5 and 5.6 as

a function of temperature. One finds the features characteristic of normal metals

3
CUI
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Figure 5.5: Resistivity versus temperature of Al. The sample is 99.99% pure. The inset shows a
Cocus on the region of constant resistivity at low temperature.

described in fig. (2.1.4) : at high temperature u 1"tJ liT and thus p 1"tJ T. In this range

#te is constant. However the phonon contribution has to be taken ioto account and

a slight upward slope is expected for l'C. As temperature is decreased electrons begin

ta be less scattered by phonons and p decreases more slowly, while It increases. At

low temperature p eventually reaches a constant determined by impurity scattering

(inset of fig. 5.5). The phonon contribution to the thermal conductivity is negligible

and /Ç ~ #te 1"tJ T. Thus in this range the Wiedemann-Franz law holds and our data

should verify ft =(LoIp)T, or K =(LoIR)T (which is equivalent sinee the geometric

factors cancel out). Figure 5.7 shows a Cocus between 1.5 and 3.5 K of the thermal
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Figure 5.6: Thermal conductivity versus temperature of an Al wire in the whole range of our
experiments.
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Figure 5.7: Linear fit of the thermal conductance ofa 50 fJm diameter 18.5 mm long Al wire between
1.5 and 3.5 K. The slope KIT multiplied by the residual resistance R =0.4970 is in theory equal
to the Sommerfeld value of the Lorenz number Lo•

conductance K versus temperature. Note that in our setup R and K are measured

with the same contacts, which eliminates any uncertainty due to the need of geometric

factors. The linear fit gives a slope of 4.67x 10-5 WK-2. With a residual resistance

R =0.491 mO, we find La = 2.32 x 10-8 WOK-2. The WF law is verified with only

5% discrepancy relative ta the Sommerfeld value.

Figure 5.8 represents the experimental Lorenz number L = K.p/T compared ta

the Sommerfeld value (straight line), in the whole range of our experiments. As just

pointed out, at low temperature, L is close to Lu. As a resuIt of inelastic scattering

• (section2.1.4), L moves away from Lu at intennediate temperatures. However it is
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Figure 5.8~ Plot of the ratio L = ICIaT Cor the Al wïre. At low temperatures /t ~ /te and the curve
is an illustration of the Wiedemann-Franz law. The Sommerfeld value 108 x Lo =2.44 WOK-2 is
indicated by a line. In the high temperature part of the range the phonon contribution bas to he
taken into consideration.

expected ta tend ta Lo again at high temperature. As apposed ta this, the figure

shows that L becomes greater than Lo. This has ta be attributed mostly to the with­

temperature-increasing .phonon contribution Itpht which is absent from the WF law

but not negligible in this range. A part of this discrepancy with the WF law could

aIso come from heat losses by radiation, as mentioned earlier in this chapter.

Thus, we have verified the Wiedemann-Franz law at low temperature, proving the

reliability of our setup.
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RESULTS AND DISCUSSION

We have characterized a few pure single crystals of Prl.SSCeO.15Cu04, YB&2CUa06.g,

Bi2Sr2CaCu20s, and Lal.S3SrO.17CU04 (by resistivity measurements and for some of

them magnetization). AlI of them are optimally doped, which means that their dopant

concentration is that allowing the highest possible Te in each compound. As explained

in the previous chapter, the YBCa sample is a detwinned crystal and the data have

been taken for charge and heat current along the a direction, in arder ta avoid a direct

contribution from the CuO chains. Among those samples, one sample of LSCO, one of

YBCQ, two of BSCCO and two of peCQ have been chosen for further investigation.

Their characteristics are summarized in tables (6.1) and (6.2). In these tables is aIso

indicated for each sample the uncertainty on the geometric factor, which is the main

source of uncertainty in our measurements. Uncertainty information being given in

the tables, we haven't inserted error bars in our figures, in arder to keep them clearer.

6.1 Resistivity

One peT) curve for each compound studied is shawn in fig. (6.1). Our PCCQ samples

display a "J T2 resistivity, consistent with the existing data (section 4.3.1). The

three hole-doped compounds (YBCO, BSCCO and LSCO) present a linear resistivity

p = A+BT in the whole range starting close above the transition. However in the case

of LSCO there is a slight change of slope around 160 K. A is mOOly associated with

impurity scattering and B with inelastic scattering (varying the amount of impurities

changes A but not B). The values of A =Po (extrapolation at T =0 of the normal

• state. resistivity) and the slope B = dp/fir are summarized in table (6.1). In a

50



Table 6.1: The geometric factor, Tc: and resistivity of the hole-doped compounds. The second
column indicates the name and provenance of the sam.ples, with (PF) standing for Patrick Fournier
at University of Maryland, (NPO) bas been sent by N. P. Ong from Princeton University and the
growth of the sample labeled (RG) was, under the supervision of Robert Gagnan, a part of this
master's work. The geometric factor G is the length divided by the section of the crystal (the
resistivity is given by the resistance divided by G). The relative uneertainty on G is indicated in
parentheses. Tc: has been taken as the middle of the resistive transition and ~Tc is the interval in
which resistivity falls from 90 to 10%. Po and dpItlI' have been obtained !rom a linear fit of the
resistivity versus temperature curve in the range 7D-200K in LSCO, and 13~250K in BSCCO and
YBCO.
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Compound Sample Geometrie Tc aTc Po !Y!.
etT

(provenance) Factor

(m-I ) (K) (K) (Jt{}cm) (JtncmK-I)

Lal.83SrO.17CU04 (NPO) 3631(7%) 39 9 39 1.29

Bi2Sr2CaCu20S #1 (PF) ? 89 3.5 - -

#2 (PF) 35294(25%) 89 2.5 12 1.15

YBa2CUa06.9 15-5-97a-axis 15556(12%) 93.6 0.4 -10 1.10

or a#3 (RG)

Table 6.2: The geometric factor, Tc and resistivity of the electron-doped compounds. The second
column indicates the name and provenance of the samples, with (PF) standing for Patrick Fournier
at University of Maryland. The geometric factor G is the length divided by the section of the crystal
(the resistivity is given by the resistance divided by G). The relative uncertainty on G is indicated
in parentheses. Tc bas been taken as the middle of the resistive transition and 4Tc is the interval
in which resistivity falls Crom 90 ta 10%. Po bas been obtained Crom a second order polynomial fit
of the resistivity versus temperature curve in the range ~250K.

Compound Sample Geometrie Tc ~Tc Po

(provenance) Factor

(m-1) (K) (K) (pncrn)

Prl.SSCeO.1SCu04 #2 (PF) 44578(16%) 19 5.5 39

#3 (PF) 9n66(12%) 20 4 19



BSCCQ
YBCO

LSCO

PeCQ

6 RESULTS AND DISCUSSION

50 100 150 200 250 300
T(K)

52

500• 400

.-.. 300E

i
200~

~

100

0
0

Figure 6.1: Resistivity as a funetion of temperature of the samples PCCO#3, YBCO, BSCCO#2
and LSCO. See tables (6.1) and (6.2) for quantitative details.

very simple model we may use Drude formula (eqn. (2.14)) to express the inelastic

scattering rate 1/Tinel, and since the resistivity 1/q is linear in T,• _1_ = (N6)e
2 (dP) T

71nel m· dT
(6.1)

where 0, the filling factor, is the number of itinerant holes per Cu(2) ions (i.e. the

Cu ions of the CU02 planes) and N is the density of Cu(2) ions. A quantity related

to N is the linear density Np1anea of CU02 planes along the c-&XÎS. Thus in order to

compare the scattering rate in this model for our hole-doped samples, we want to

compare the ratio of the quantity Nplanea5~. In section 4.1, we saw that Np1anes is

respectively about 0.15, 0.13 and 0.17 in LSCO, BSCCO and YBCO. 6 is 0.25 in

YBa2Cu307 and Bi2Sr2CaCu20s (thus probably a bit less in YB&2CUa06.9) and 0.17

in LSCO [61J. With the values of dp/rIr listed in table (6.1), we 6nd La / 1.1 / 1.4 for

the ratio of I/Tinel in LSCO/BSCCO/YBCO, very similar in the three samples. Thus

there may be a common inelastic scattering mechanism, suggested from the results

from D. A. Bonn et al. in YBCO (see section 3.3.2) to be strong electron-electron

• interactions [30]. We aIso remark that dp/liT has the same value to within 20% in the
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Figure 6.2: Resistive superconducting transition of: (0) PCCO#2 ; ... PCCO#3.

3 samples. AU these results (p "-1 T with a similar slope in hole-doped compounds)

are consistent with existing data (see section 3.3.1). In particular, the more or less

equivalent scattering rate in severa! cuprates is also round in infrared spectroscopy

(see [62]) .

However the residual resistivity of the samples we have measured is rather lower for

each compound than in most samples reported in the literature, showing their com­

paratively high quality. Among "our" samples, the purest and most homogeneous

one is the YBCO crystal, characterized by a very sharp transition (less than 0.4 K)

and a negative residual resistivity. The growth process is very weIl mastered and aIl

the samples have nearly the same PT sharp transition and a 93.2 K< Tc <93.8 K.

Although the two Bi2Sr2CaCu20S crystals we have selected show a lin~ar resistivity

with a sharp transition (about 3 K) and a low Po, homogeneity and oxygen concentra­

tion are more diflicult to control in this mika-like compound. So one of the samples we

received presents a rounded resistivity curve. In the case of Pr2-zCezCU04 it hasn't

been achieved at this stage to grow repeatedly high quality crystais. As pointed out

in section 4.1, the consequences of inhomogeneous dopant concentration are enhanced

by the sharpness of the superconducting phase wagram. favoring multiple and broad

transitions. This is the case in our samplest as shown by their resistive transition in

fig. (6.2). PCCO#2 (squares) presents a transition in three stages and its residual
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resistivity is the double than in the other sample. Anyway in both La1.83SrO.17Cu04

• and Prl.8SCeO.lSCu041 superconductivity requires 15% impurities, moving the crys­

taIs away from stoichiometry and yielding large residual resistivities. In addition they

suifer from inhomogeneities in the concentration of dopant.

In this section we have presented our results for the resistivity (linear in tempe­

rature in hole-doped compounds, quadratic in peCQ) t in accordance with previous

data (see section 4.3.1). We have aIso discussed the materials quality, very high in

YBCO, reasonable in BSCCO, and comparatively rather poor in LSeO and peC~.

6.2 Thermal conductivity at bigh temperature (T > 1 K)

•
We present in this section the thermal conductivity versus temperature of Bi2Sr2Ca­

CU20S and Pr1.8SCeO.lSCu04 in the range 1.5 K to 120-150 K. These data will aIso be

compared to those for YB&2CU306.9 and Lal.83SrO.17CU04. ,,(T) in Bi2Sr2CaCu20S

is displayed in fig. (6.3). The curve presents the same qualitative features as that

6
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Figure 6.3: Thermal conductivity of Bi2Sr2CaCu20S versus temperature. (6) BSCCO#l ;
(<» BSCCO#2. The difrerence of magnitude between the two curves fies within the uncertainty on
the geometric ractor~

nom Ong et al. (fig. (3.4» : a kink at about 10 K and the weIl known peak below

Tc aIso seen in YBCO and LSCO (see figures (6.4) and (6.5». This peak is

• attributed ta a suppression of the quasiparticle scattering rate below the transition,
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Figure 6.4: Thermal canduetivity versus temperature in YBCO and BSCCQ. The left-side scale
corresponds to the left-side legend (circles). In arder to be able ta distinguish all the features of
It(T) in BSCCO, the data of the solid circles curve bas been plotted on a diff'erent scale (small plus
signs, BSCCQ zoom, right-side scale). The arrows indicate the scale associated ta each curve.
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Figure 6.5: Thermal conductivity versus temperature in LSCO and peco. The Ieft-side scale
corresponds to the Ieft-aide legend (diamands). Because the heat conduction is much better in
peco than is LSCO, the data of the salid diamonds curve bas been plotted on a different scale
(small plus signa, LSCO zoom, right-side scale). The arrows indicate the scale associated ta each
CUIVe.



56 6 RESULTS AND DISCUSSION

• 2.5

2

- 1.5
~~

W
~ 1

0.5

0
0 0.5 1

T/T
c

o YBCO
• sacco

1.5 2
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Figure 6.8: Thermal conductivity versus temperature in our two Prl.86Ceo.lISCUO" samples. Sample
#3 (saUd diamonds), which bas a lower residual resistivity, shows a feature at Tc contrary ta sample
#2 (empty diamonds).

as explained in section 3.3.2. Quantitatively our measurements aIso agree with the

data of Ong et al. within the uncertainty on the geometric factor. The geometric

factor for sample #:1 has been estimated from the resistivity data, in sucb a way

that dp(T) / dT is equal in samples #1 and #2. Since the peak is believed ta be due

to a rapid increase of the electronic mean Cree path below the transition, it should

be affected by the level of impurity scattering. In this respect, it is interesting to

compare the magnitude of the peak below Tc in the hole-doped compounds (figures

(6.6) and (6.7) are convenient for this comparison), and relate it to p(Te)/p(O), ratio

which underlines the relative importance of inelastic and elastic scattering. From

microwave conductivity data [63), p(Tc)/p(O) ,..., 100 in YBCO. From table (6.1), one

can estimate p(Tc:)/Po ,...., la in BSCCO and ,...., 2 in LSCO. This scales nearly exactly

with the magnitudes of the peak below Tc of respectively 115, 10 and 3% of the

normal state value in YBCO, BSCCO and LSCO. Thus most of the discrepancy in

the peak magnitudes can be explained by the diff'erent levels of purity (from cleanest

to dirtiest) in YBCO, BSCCO and LSCO samples.

Fig. (6.8) shows ,,(T) for PCCO. Three main features are observed in this figure :

a broad peak in the normal statet interrupted by a small peak just below Tet and a

large absolute value of the thermal conductivity compared with the other compounds
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(a factor of 5 to 10 relative to LSCO, as seen in fig. (6.5)). Let us now comment on

• these features, beginning with the normal state.

Because of inelastic scattering the Wiedemann-Franz law doesn't hold in this tem­

perature range and /te/uT < Lo. Thus LouT is an upper estimate of the electronic

thermal conductivity. Let us calculate it just above Tc: -: = p ~ 25 p.Ocm and

Tc: =20 K, which gives /te < LouT = 2 Wm-1K-1. We estimate then /te ta represent

less than 5% of the total conduction, the rest being attributed to phonons. Thus the

broad peak in the normal state bas to be phononic.

•

•

It is the first time that a feature at Tc in the thermal conductivity ofPr2_%CezCuO",

is reported, which confirms the comparative quality of this sample (PCCO#3). As

displayed in fig. (6.8), no feature at Tc is to he seen in PCCO#2, showing the sensi­

tivity of the peak to the scattering by defects. The T2 dependence of the resistivity

suggests that the main inelastic scattering in the normal state is electron-electron

scattering. Thus the peak could be explained, as in the hole-doped compounds, by

the disappearance below Tc of electron-electron scattering, with here a large elastic

scattering contribution (the small magnitude of the peak-2%- being related to the

small ratio p(~)/p(O) ,..., 1). However we should note that this scenario is easier ta be

achieved in the hole-doped compounds than in pcco, if we assume an exponential

drop of the normal fluid density below Tc: (as suggested by our low temperature PCCQ

data showed in fig. (6.10)). Indeed, the quasiparticle density decreases slower in a

superconductor with nodes in the gap function. In fact, another possibility for the

origin of the peak is that the phonon mean Cree path undergoes a small enhancement

owing to the 1088 of electronic scatterers below Tc, thereby increasing Itph. However

in this scenario it is more diflicult to account Cor the absence of peak in PCCO#2.

The third feature we noticed in fig. (6.8) was the high absolute value of the thermal

conductivity in PCCO (it is even higher in NCCO according to fig. (4.5) presented

in a previous chapter). Since we attributed at least 95% of the heat conduction to

phonons in the normal state, our question is why phonon conduction is much more

effective in PCCO. Let us aIso consider the other compounds. The difference of mag-



Table 6.3: Sound velocities in mIs: 1J, is the longitudinal sound ve1ocity, Vt the velocity of the faster
of the two transverse modes and < Vph > is given byeqn. (6.5). The values are after [65].•
6.2 Thermal conductivity at bigb temperature r:r> 1 K)

Vt Vt < Vph >

YBCO 6000 3700 4000

BSCCO 4600 2800 3000

LSCO 6000 2900 3000

NCCQ 7100 ? ?
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•

•

nitudes of ~ at 100 K are respectively about 20,10,4 and 4 for PCCO, YBCO, LSCO

and BSCCQ (see figures (6.4) and (6.5)). According to [64], the level of impurity

affects only weakly the normal state thermal conductivity and can only account for

a small part of the difference between the very pure YBCQ sampie and the BSCCO

and LSCQ ones. The sound velocity could be part of the clue. The larger the velocity

ofsound < Vph >, the larger the magnitude of K,n (normal state thermal conductivity)

in YBCO, BSCCO and LSCO (see table (6.3)). A comparison with fig. 6.1 shows hat

PCCQ is aIso much less resistive for the charge conduction than the three hole-doped

compounds. A striking feature is that the PCCQ and LSCO samples, which have

nearly identieal structures and are of similar quality, are the two extreme eonductors

of heat and of charge in figures (6.5) and (6.4), and (6.1). For the heat conduction,

this underlines the raIe of the apical oxygens in the scattering of phonons. The elee­

trame scattering of phonons could explain this Ceature, but the question to know why

there would be more electrons or a stronger electron-phonon scattering in LSCO is

not obvious.

In summary, the thermal conductivity in the range 1 to 150 K could respect

an electron-hole symmetry br presenting the same general features : the normal

state heat conduction is achieved in a large part by phonons, while the electronic

contribution is restricted by some strong inelastic electronic mechanism. Below the

transition this mechanism disappears, causing a broad peak, the magnitude of which
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is mainly related to the sample purity. However, we have noticed that the thermal

• conductivity is higher in the electron-doped than in the hole-doped compounds.

6.3 Thermal conductivity at low temperature (T < 1 K)

6.3.1 Introduction: universal beat conduction

The main purpose of our experiments at low temperatures (going down to T ~5o­

70 mK) was ta probe the density ofquasiparticles as T -+ o. As seen in section 2.3.1, a

superconductor with lines of nodes on the Fermi surface which has a finite concentra­

tion of impurities is predicted to have a finite density of excited states N(E) ~ N(O),

approximatively constant below an energy scale "'f, and above which N(E) "V E. On

the contrary, for a superconductor with a nodeless gap, N(E) =0 below ~. Thus the

presence or absence of a residual normal f1uid gives information on the symmetry of

the order parameter. In ref. [14], M. Graf et al. give the theoretical values of the elee­

tronic thermal conductivity in superconductors with a line node in the gap function,

• when kBT « "'f, for various possible gap symmetries. In aIl cases Ke(T)IT~O ex Tt

the constant of proportionality depending on the gap symmetry. An advantage of

working at low temperatures is that it is possible to isolate reliably Ke and /tph, when

the asymptotic T3 regime of the heat capacity has been reached. Then the phonon

thermal conductivity (formula 2.20) writes #tph = bT3, where b is approximatively

constant and the theoretical thermal conductivity has the form

K=aT+bT3 (6.2)

(aT and bT3 are respectively the contributions of quasiparticles and phonons). In

addition, as pointed out in section 2.3.1, for certain gap functions with appropriate

topology and symmetry, /te (as weIl actually as the charge conductivity eT) doesn't

depend on the impurity scattering rate (as long as "''Y« Ao, which won't apply if r
is too large), i.e. the conduction by the residual normal fluid is universal.

Universal transport in a superconductor has been observed for the first time by

• L. Taillefer et al. [28}. They have measured the thermal conductivity at low temper-
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Figure 6.9: "fT versus T2 for two YB&2CUSOv single crystals along the a-axis, one insulating
(11 = 6.0 ; triangles) and one supercondueting (11 = 6.9 ; circles). Lines are fits ta a + bT2 for
T < 0.15 K. After L. Taillefer et al. [28].

•
atures of pure and Zn doped YBa2Cua0 6.9 single crystals, as weil as an insulating

(deoxygenated) YBa2CUa06.o crystal. Their data, presented in fig. (6.9), could he

fitted as ~ = a + bT2 below T ~ 150 mK. For a 0.6%-Zn-doped sample, they found

that the limit !ft (i.e. for T -+ 0) was the same as in the pure sample, i.e. it is univer­

sal for small dopant concentrations. The comparison with the deoxygenated sample

is also very enlightening. The YB&2CUa06.9 sample presents a residuallinear tenn

in t'. Wbereas the insulating sampIe shows as expected no residuallinear term, its

temperature dependence is similar to that of the metallic sample. The experimental

data of Taillefer et al. illustrate nicely the predicted fonn of K./T since the electronic

contribution a vanishes when the electrons are removed and the phononic contribu­

tion bT2 is similar in both the YBa2CUa06.9 and YB&2CUa06.o samples. They find a

universallimit of 0.19 mWK-2cm-l, a result which is compared in their article with

the predictions of the theory. For a ~wave gap of dz2-1I:I symmetry, the T = 0 limit

of t'fT &long the a direction is [14]

•
(6.3)

where S = Idd(.)/d.laocle is the slope of the gap at the node and wp is the Drude

plasma frequency. Assuming the standard fi.wave gap ~o cos(2.) for which S =2âo,
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Figure 6.10: Thermal conductivity divided by temperature at low temperatures. (1) peCO#:2 ;
(~) BSCCO#2 ; (0) YBCO ; f:j LSCO

• and a weak-coupling value ~ = 2.14kBTc , there is agreement between the data and

the theory if wp = 1.5 eV. wp has been estimated from infrared measurements to be

~ 1.3 eV (see reference in [28]).

6.3.2 Experimental results

In this thesis we present measurements of the low temperature thermal conduc­

tivity in the ab-plane in other cuprates, namely pure samples of BhSr2CaCu20S'

Lat.S3SrO.17CuO" and Prl.SSCeO.1SCu04. The results are presented in fig. (6.10) where

they are compared to pure YB&2CU306.9 data. First we want ta draw general conclu­

sions and then we shall analyze the Bi2Sr2CaCu20S data in more detail. As appearing

clearly from the ",/T versus 'P plot, the data can be fitted as f. = a + bT2 below

T ~ 140 mK, as in [28}. Solid lines are a linear fit of the data points belowabout

130 mK. Again, aT and bT3 are respectively the electronic and phonon contributions.

The most striking point of fig. (6.10) is the Collowing: the thermal conductivity of the

• three hole-doped compounds (empty triangles, squares and circles) present a residual



Table 6.4: Electromc term. Experimental values and estimates (from eqn. (6.3)) of "IT in the
zero temperature ümit. The references can be round in the text.•
6.3 Thermal conductivity at Law temperature (l' < 1 K)

Wp S KolT (mWcm-1K-2 )

(eV) (meV) experiment theory

YBCO 1.3 35 (Tc) 0.12 0.1

~ 40 (STM) 0.09

BSCCO 1.1-1.2 20-21 (dA) 0.12-0.15

33 (Tc) 0.15 0.08-0.09

~65 (ARPES) 0.04

LSCO 0.8-0.9 15 (Tc) 0.02 0.09-1.1

63

•

•

linear term whereas in the case of the electron-doped Prl.SSCeO.USCu04 (solid circles),

l'CfT extrapolates to zero . The residuallinear term, signature of the presence ofquasi­

particles at very low temperatures means that there are gap nodes in the ab-plane

of the Fermi surface. The presence of this normal fluid at T = 0 is a consequence

of impurity scattering, causing pair-breaking at the nodes [66]. On the contrary,

the absence of linear term in Pr2-%Ce:z:Cu04 indicates that this superconductor has a

nodeless gap function. Our data are consistent with the other experiments wwch have

given information on the gap symmetry (sections 3.2 and 4.2) and have predicted a

d-wave order parameter in the hole-doped cuprates and a s-wave gap in the electron­

doped cuprates. This result is particularly important in Pr2-:z:Ce:z:CU04 where only

few experiments can give information on the gap symmetry. Thus our data are maybe

the strongest evidence for a nodeless gap in the electron-doped cuprates.

As we shall discuss later, another feature of fig. (6.10) is the similarity between the

YBCO and BSCCO data, a heing very close in both cases, as weIl as the temperature

dependence in ail the range of the figure. The results from a linear fit to the points

included in the asymptotic region are summarized in tables (6.4) and (6.5) along

with the theoretical estimations.. For BSCCO the fit gives a = 0.15 mW/cmK2• The

phonon coefficient b is 6.7 mW1cmK4 in BSCCO, very close to the 7.5 mW/cmK4
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.
(J < Vph. > Ao /trIh.IT3 (mWcm-1K-4)

(mJ/K4mol) (mIs) (pm) experiment theory

YBCO 0.3-0.4 4000 300 7.5 11-14

BSCCO 0.9-0.12 3000 200 6.7 12.5-16.5

LSCO 0.3-0.4 3000 600 4.4 30-40

Table 6.5: PhODOD tenD. Experimental values and e&timates (!rom eqn. (6.6» of the phonon
• coefficient in the asymptotic T3 regime The referenœs can he found in the text.

~ PCCQ 1 20

slope in YBCO. Now let us estimate for BSCCO the electronic and phononic coeffi­

cients from the theory.

•

.'

6.3.3 Estimate of the thermal conductivity in Bi2Sr2CaCu20S.

Electronic term.

The theoretical elements we need for this estimation are presented in section 2.3.1.

First we have to check that the energy for onp.-particle excitations is much less than

the bandwidth "'f, in which case the density of states N(E) is approximately constant.

The energy of the one-particle excitations is kBT, which in the region of our linear

fit is less than ka x 140mK. Thus kgT < 0.015 meV. Then we need to calculate h."'f.

In the unitary limit, it is given by V1r~o1ir/2 while in the limit of weak scattering,

li,.., ~ 4~o exp (-1r~o/21ir)t where r is the impurity scattering rate. It is generally

assumed that impurity scattering in the cuprates is weIl described by taking the

unitary limit [14], and this has been confirmed by the quantitative agreement between

the theory and the data of L. Taillefer et al. [28]. In reference [23], T. Jacobs et al.

indicate that the scatterlng rate at 130 K for his BSCCO single crystals is about

1.3 1014 8-1 (this is almost entirely inelastic since in very pure crystals the elasde

contribution is very small, as shown by the work of Romero et al. [67]). In reC [28}

r(T = 0) is evaluated from r(T = lOOK) via the microwave conductivity result that



the quasiparticle mean Cree path is known ta increase by a factor of about 100 between

10 and 100 K. Microwave conductivity experiments ([23J,[68]) have also shawn this

scattering suppression in BSCCO, but maybe with less amplitude, due ta the lesser

quality of the samples. Ta make a lower estimate of n'Y, we will assume a hundredfold

decrease of the scattering rate from the normal state ta low temperatures, yielding

tir < 10 meV. With ~o = 2.14kBTc =33 MeV in the weak coupling limit, one obtains

n'Y ~ 5 meV. Thus even for this lower bound estimate, ksT < n'Y and we can use

the zero temperature theoretical limits for l'te. Since Most of the experiments are

consistent with a dz2-1I2 arder parameter in Bi2Sr2CaCu20S' we will assume the gap

ta have this symmetry. In this case, [lte/TIT-.o is given byequation (6.3).

We adapt the values of the plasma Crequency wp =1.1-1.2 eV indicated in [14] (see

references therein). We will use four ways ta estimate the slope S of the gap at the

nodes.

•
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•

•

1. Thermal conductivity. Assuming w" ~ 1.1 eV, we estimate S from eqn. (6.3)

by inserting our experimental value of a= [l'te/TIT-.o = 0.15 mWcm- 1K-2. We

find S -17 meV.

2. Weak-coupling approximation. Assuming the standard d-wave gap ~o cos (2~)

for which S = 260' and a weak-coupling value 6 0 = 2.14ksTc, one finds

S - 33 meV (Tc =89 K).

3. Angle-resolved photoemission spectroscopy (ARPES). Here we estimate S from

the ARPES measurements of Ding et al. [53}. We can simply evaluate di­

rectly the slope at the node from the wagram of ~o versus the angle, which

gives S ~ 64 meV. Altematively, we assume again the standard d-wave gap

~o cos (2~), for which S = 2~o. Taking this time Ao from the data of Ding et

al., we find S ~ 66 meV.

4. MicrowBve measurement8 0/ the penetmtion depth. Another way of calcuIating

the slope of the gap is from the linear slope of the penetration depth at low
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temperatures obtained from microwave measurements. According to rer. [69],•
66

&'\ab(T) = À (0) 2lcB ln 2
T ab S (6.4)

•

•

d'À is the quantity obtained from the microwave measurements and the absolute

penetration depth can be expressed as "a6(0) = c/wp with c the speed of light

and w" the Drude plasma frequency. Assuming w" = 1.1 eV gives '\(0) = 1800 Â.

The results of T. Jacobs et al. [23} and S-F. Lee et al. [68} are very consistent

for the linear behavior of the penetration depth : they find a slope 6À/T of

10.2 À and 10 À respectively. Replacing by these values in equation (6.4) gives

S l'V 21 meV.

Estimates of "'o/T assuming wp =1.1-1.2 eV and our different estimates of S are

listed in table (6.4). While most of them are in good quantitative agreement with

our experimental value of 0.15 mW/cmK2 (which has an experimental uncertainty of

25%), there is a factor of 4 discrepancy between that value and the ARPES result.

This suggests that the fonn of the gap at the nodes could deviate from the standard

G.wave relation a ocos (2<) (S would be smaller than 2ao).

Phonon contribution.

Let us rewrite equation 2.20 in a form appropriate ta measurements on single

crystals at very low temperatures. The specifie heat is given by Cv = f3T3. The

phonon mean Cree path is determined by the size of the crystal and in high-quality

crystals it can be taken as Ao = "*v'Wi, which is the radius of a cylindrical crystal

with the same section as the rectangular sampIe [70]. The sound velocity needs ta be

averaged over the longitudinal and transverse modest and in single crystals [70], as

seen in section 2.1.3,
(282 + 1)

(Vpll) = V, (2s3 + 1) , (6.5)

where S = Vl/Vt and Vit Vt are respectively the longitudinal and transverse velocities.

In summary,

(6.6)



First we want to calculate the average phonon velocity. According to [71}, for the

phonon wave vector qj/ a:

VA = JCll .Vb = JC
6Il • VC = JCsr; (6.7)

A p'A p'fI P

•
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where v; is the velocity in direction q with polarization é, the Cii being the elastic

constants. The values of the elastic constants and the density p are listed in the

review article by J. Dominee [65}. The longitudinal sound velocity is v:. Taking only

the faster of the two transverse modes (here v~), we find

Vt ~ 4600m/s ; Vt ~ 2800m/s (6.8)

•

•

and from equation (6.5) (Vph) ~ 3000m/s.

A complete study of the specifie heat has been done in YBa2Cu306.9 [72}. An

estimate of the specific heat coefficient in BSCCO has been calculated from that in

YBCO using the relation {3 ex (T/8D)3 via the ratio of Debye temperatures a1so listed

in [65}. From {3 =0.3-0.4 mJ/molK4 and BD ~ 400 K in YBCO, with 8D ~ 280 K in

Bi2Sr2CaCu20s, one finds {3 =0.9-1.2mJ/moIK4 =6.5-8.7 J/K4m.

For the sample BSCCO#2 measured at low temperatures, Ao = 1.9 10-4m.

Gathering those results in the equation for the phonon thermal conductivity gives

b = l'i.ph/T3 = k.8 (Vph) Ao =12.5-16.5 mW/cmK. Thus our theoretical estimate is

twice the experimental value for h. The discrepancy probably lies mostly in the un­

certainty on the Debye temperature (between 230K and 300K in the review article of

Dominee) and the uncertainty on the dimensions of this sample.

After having discussed in the last two sections the contributions of phonons and

normal electrons to the low temperature thermal conductivity, we are DOW able to

evaluate their relative importance. Estimated and experimentally found contribu­

tions being reasonably consistent with each other, both approaches lead to the same

qualitative conclusions. From our experimental results (see tables (6.4) and (6.5))

and eqn. (6.2), we find that #te is dominant at the lowest temperatures, below about

150 mK, where both contributions are equivalent. Above 140 ml{ the T3 depen­

dence of Itph doesn't hold exactly but "PA still increases much Caster than #te, and the
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thermal conductivity becomes rapidly dominated by phonons. Ail these phonons are

• responsible for the temperature dependence of Iî./T seen in fig. (6.10), as shown by

our a + bTl fit and the accordance with the theory.

6.3.4 Summary

To summarize our low temperature results, we recall that the data could be fitted

as Iî./T = a + b'P below T ~ 140 mK. The electronic term a was found to be zero

in peC~, showing evidence for a gap without nodes and thus of a.wave symmetry.

These data considerably reinforces the limited existing evidence for an s-wave gap in

the electron..doped cuprates, as mentioned in section 4.2.

On the contrary we observed a non-zero linear term as T -+ 0 in the three hale­

doped compounds, signature of a residual normal ftuid, and thus of Dodes in the gap

function. As in YBCO, the data for BSCCO was round to be in good agreement with

the theory of universal transport in a superconductor with order parameter of d:z:2_ y2

symmetry (which assumes strong, resonant scattering). Consistently with the existing

• information on Bi2Sr2CaCu20S' this result suggests that the gap function possesses

this symmetry, and thus that the residual linear term we obtained ([Iî./T}T~O =

0.15 mWcm-1K-2) is universal. The phonon contribution "'Ph was found ta be similar

in BSCCO as in YBCO, and ta dominate the low temperature heat conduction above

T ~ 150 mK.

Using data given in the article by Graf et al. [14}, we also compared in table (6.4)

our data for LSCO to the theory for rlz2_y2 superconductors. Our zero temperature

extrapolation of Iî./T is a factor of 5 lower than the predictions of this theory, while

the extrapolation from earlier measurements also cited in [14} are a factor of 10 higher

than those predictions. As pointed by Graf et al. sncb discrepancies may be explained

by deviations from the strong scattering limit.

6.3.5 Comment on the article of Movshovicb et al..

The data obtained by R. Movshovich et al. are presented in fig. (6.11). The main

• body of the figure represents ,,(T)/T in the range 70-500 mI< for 3 samples ofdifferent
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Figure 6.11: Thermal conduetivity divided by temperature as a function of temperature for several
Ni-doped Bi2Sr2CaCu20a samples. (0) undoped, Tc =89 K i (6) Tc =74 K ; (1) Tc =77 K ; (Cl)
Tc =77 K, H ~ 200-300 G. Inset : thermal conduetivity of Bi2Sr2Ca(Cul-zNizhOs sample with
Te =77 K... H =0 G ; (0) H ~ 200-300 G .

•

•

Ni doping concentrations. The samples are Iabeled by their transition temperature

(89K, 77K and 74K), the lowest values of Tc corresponding to the highest doping

concentrations. The undoped sampIe presents no anomalous feature. The doping

with Ni ions causes a dramatic drop of the thermal conduetivity between T: =200 mK

and 160 mK. Intriguing result, the anomaly has disappeared in the Tc =74 K sample.

Thus this transition is very sensitive to the level of doping. It is also very sensitive

ta magnetic field, as shawn in the inset of fig. (6.11) : a small magnetic field (200­

300 Gauss) suppresses the effect. Quantitatively, this anomaly is characterized by a

80% drop of It between 200 and 150 mK, indicating that it takes place within the

main thermal transport channel of the system. In their article, Movshovich et al.

evaluate that the heat is mainly carried by electrons in this temperature range and

thus attribute the transition to a sudden suppression of quasiparticle heat transport.

They interpret it as an evidence for the gapping of the nodes of the order parameter

at the transition.. Rere we want to discuss three points mentioned in this article:

the theoretical temperature dependence of IÇ at low temperature, the ract that the

phonon term Itpl& could be neglected and the interpretation of the data as being an
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Figure 6.12: Thermal conductivity divided by temperature in Bi2Sr2CaCu20S. Comparison of our
data (circles) with the data of R. Movshovich et al. [40) for their pure sample (diamonds). In bath
samples Tc = 89 K. Left : tc/T vs T ; right : tcfT vs T2.

electronic feature.

Movshovich et al. describe their data below 300 mK as the sum of linear and

quadratic terms. In a similar analysis as Krishana et al. in [33], they interpret the T2

• term as following from the BRT theory (section 2.2.1) applied ta a pure 2D d-wave su­

perconductor in the limit T < ~. In the framework of this theory, the Tl dependence

is obtained by replacing the density of state of a conventional superconductor by that

of a pure d-wave superconductor, which is linear in energy (see fig. (3.3)). However

as we have shown earlier in the chapter, in this temperature range (T < 300 mK),

even for an undoped sample, one is in the regime where the density of states is ap­

proximately constant and the analysis of Movshovich et al. would be sound only at

higher temperatures. Our analysis, described byequation (6.2), is remarkably weU

illustrated by our data in fig. (6.10). In figure (6.12), we have transfered the l'C/T

data of R. Movshovich et al. for their pure sample, and plotted it along with our data

as a function of T (left) and Tl (right). As already seen in fig. (6.10), our data are

linear below T ~ 140 mK (or '["l ~ 0.02 K2) in the K./T vs Tl plot. Consequently

they show a (very) slight parabolic curvature in the l'CfT vs T plot, wmch proves the

absence of a quadratic term in K. in this temperature range. However Movshovich

• data are not consistent with this analysis, as seen in the right part of fig. (6.12) (K./T



VS T2), where it is obvions that no linear fit can be done. Actually they are not really

consistent either with their analysis (a quadratic term in K.) since in the ,;,IT versus

T plot (look also at fig. (6.11)), deviations from the Unear fit can be observed.•
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Secondly, using equation (6.6), the authors of [40] have made an upper limit es­

timate of the phonon contribution to the heat conduction. They conclude that Kph

is only a small fraction of the total conductivity and comparing their estimate ta a

previous similar calculation in YBCO [28]~ that Itph is seven times smaller in BSCCO.

Earlier in this section we have seen why the thermal conductivity should be written

as It =aT + bT3, which implies that the temperature dependence of /t/T has to be

attributed to phonons. Then, our data of fig. 6.10, where the temperature depen­

dence of l'C/T is very similar for YBCO and BSCCO, clearly show that the phonon

contribution in BSCCO is of the same order as in YBCO. In ref. [28], the upper

estimate for the phonon coefficient b = Itph/T3 is 17 mWK-4cm- L. Our value cal­

culated for BSCCO, 13-16 mWK-4cm-l, very close to the YBCO value, completely

disagrees with the assertion that the phonons contribute 7 times less in BSCCO than

in YBCO in this range of temperatures. We estimated in section 6.3.3 that above

T = 150 mK, the heat conduction is dominated by phonons : in the temperature

range of Movshovich transition (between 160 mK and T; ~ 200 mK) the phonon

contribution is higher than the electronic one and obviously cannot be neglected.

The third point rollows directIy from the previous one. Movshovich et al. con­

sidering that the phonons cannot account for the observed 80% drop of the thermal

conductivity since theyestimate that the lattice only contributes to a small fraction of

the conduction, attribute this feature to electrons. In the framework of our analysis,

the anomaly seen in the plot of KIT versus T in fig. (6.11) cannot be interpreted in

this way. Indeed, we find that the electronic contribution to K.IT is nearly constant

in the range of the experiments, all the temperature dependence, and therefore this

anomaly, being attributed. to phonons. However if the electronic thermal conductivity

presents no anomalous feature, as implied by our analysis, there is no reason Cor the

phonon conduction to drop at those temperature, and no more in a doped. sample
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than in a pure one. This leaves the interpretation of the data of Movshovich et al. an

• intriguing and unresolved problem.

Another point to mention is related to the extremely anisotropie character of

BSCCO (in versus out-of-plane) and its structure in sheets, as noted in section 3.l.

In order to have the heat passing through the whole bulk of the sample, it is im­

portant that the contact covers its entire end sections. In the experimental setup

of Movshovich et al. the heat is introduced by separately turning on two heaters

attached at diff'erent points along the sample (its end sections being attached to a

thermometer and the heat sink). The heat coming from the surface of the sample, it

is difficult to he sure that the temperature gradient is homogeneous along the c-a.~s

of the crystal.

Ta finish we shaH stress two weak points of the new phase observed by R. Movsha­

vich et al.. First if the nodes of the order parameter were gapped at the transition,

thereby suppressing the electronic heat conduction, there should be according to our

results no finite linear term below the transition. Secondly, this anomaly is very

• weak, in the sense that it is extremely dependent on both doping and magnetic field,

as mentioned at the beginning of this section.

In conclusion, because phonons dominate the heat conduction in this temperature

range, the effect observed by R. Movshovich et al. can not he interpreted as an

electronic feature, and is thus very puzzling. Theil data for the pure sample, which

show no anomaly, are consistent neither with the theory for et..wave superconductors

nor with our data for pure BSCCO (actually one implies the other since our data are

consistent with that theory) .

•



•

•

•
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CONCLUSION

In this study we have presented and compared the charge and heat conduction :

• in the BhSr2CaCu20S hole-doped cuprate, and we have compared it to YBCO,

which has similar transport properties.

• in the Pr2_%Ce%Cu04 electron-doped. cuprate, and compared. it to LSCO, its

parent compound from a structural point of view.

Despite the apparent symmetry of their phase diagram, we found that electron

and hole-doped superconductors present very different transport properties, while

the three hole-doped compounds show many common features. We obtained a linear

temperature dependence of the resistivity in the hole-doped samples, and quadratic

in PCCO, bath in accordance with previous data.

As for the thermal conductivity in the range 1.5-150 K, hale and electron-doped

cuprates seem ta display the same general features. We found that heat is carried

mainly by phoDons in the normal state, where the electronic contribution is restricted

by some strong electron-electron scattering mechanism. Below the transition the

disappearance of this mechanism causes a broad peak, the magnitude of which is

mainly related to the sample quality. We made the first observation of a peak below

Tc in PCCO, and the 'P behavior of the resistivity suggests ta interpret it by a

suppression of electron-electron scattering, as in the hole-doped compounds.

Our low temperature data could be fitted as "'fT =a+bT2 belowT ~ 140 mK. The

electronic term a was round ta he zero in peco, showing evidence for a gap without

Dodes and thus of s-wave symmetry~ These data considerably reinforces the limited

73
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existing evidence for an ~wave gap in the electron-doped cuprates. On the contrary

• we observed a non-zero linear term as T -+ 0 in the three hole-doped compounds,

signature of a residual normal ftuid, and thus of nodes in the gap function. As in

YBCO, the data for BSCCO was found ta be in good agreement with the theory

of universal transport in a superconductor with order parameter of d~_!l2 symmetry,

consistent with the existing information on Bi2Sr2CaCu20S. The phonon contribution

was round to dominate the Low temperature heat conduction above about 150 mK.

Having set those results, we showed that the anomaly in the Law temperature ther­

mal conductivity in Ni-doped sampLes of BSCCO could not possibly be an electronic

feature, leaving its interpretation unresolved.

•

•
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