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Abstract

This thesis consists of a series of theoretical contributions to algorithmic methods

for phase retrieval from diffraction intensity measurements. Our work is presented in

three related, but somewhat independent parts.

The first part consists of a refinement to the phase propagation methods developed

by Bates et al. in 1982 [1–3]. We introduce a correction term for the calculation of the

phase difference between actual samples in reciprocal space. We show, numerically,

how our method leads to improved image reconstructions in 1D.

In the second part we develop an algorithm for phase retrieval based on the Fourier

series expansion of a sharp, square object support. We obtain a series of equations

that describe the dependence between different points in reciprocal space, and show

that this dependence becomes simpler when only a few terms of the expansion are

taken into account. Our algorithm consists of two stages: In the first one, a few

of the coupled equations are solved in order to obtain the phase within a localized

region. This is followed by a propagation stage in which the rest of the unknown phase

values are obtained by means of simple propagation method. We present a numerical

example in which we use a downhill minimization method to solve the equations that

arise on the first stage.

Finally, we propose a strategy for phase retrieval from x-ray diffraction measure-
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ments of a system undergoing the kinetics of a first-order transition following a tem-

perature quench. We use both, a simple theoretical model and numerical simulations

to obtain an expression for the average phase-decorrelation time in ordering dynam-

ics. We present an example to show how this result can be used to solve the phase

problem faster and with higher convergence rates.



Résumé

Cette thèse consiste en une série de contributions théoriques à des méthodes algorith-

miques pour la récupération de phase à partir de mesures d’intensités de diffraction.

Notre travail est présenté en trois parties liées mais indépendantes.

La première partie consiste en un raffinement des méthodes de propagation de

phase développée par Bates et al. en 1982 [1–3]. Nous introduisons un terme de

correction pour le calcul de la différence de phase entre des échantillons réels dans

l’espace réciproque. Nous montrons, numériquement, la façon dont notre méthode

mène à des reconstructions d’image améliorées en 1D.

Dans la seconde partie, nous développons un algorithme pour la récupération de

phase basé sur le dévelopement en série de Fourier d’un support carré. Nous obtenons

une série d’équations qui décrivent la dépendance entre les différents points dans

l’espace réciproque, et nous démontrons que cette dépendance devient plus simple

lorsque seuls quelques termes de l’expansion sont pris en compte. Notre algorithme

est composé de deux étapes: dans la première, quelques-unes des équations couplées

sont résolues en vue d’obtenir la phase dans une région localisée. Elle est suivie par

une étape de propagation dans laquelle le reste des valeurs de phase inconnues sont

obtenues au moyen de la méthode de propagation simple. Nous présentons un exemple

numérique dans lequel nous utilisons une méthode de minimisation de descente pour

v



vi

résoudre les équations qui se posent sur la première étape.

Enfin, nous proposons une stratégie pour la récupération de la phase des mesures de

diffusion de rayons x d’un système subissant la cinétique d’une transition de premier

ordre, après une trempe. Nous utilisons un modèle théorique simple et des simulations

numériques afin d’obtenir une expression du temps moyen de décorrélation de phase

dans la dynamique d’ordre. Nous présentons un exemple pour montrer comment ce

résultat peut être utilisé pour résoudre le problème de la phase plus vite et avec des

taux plus élevés de convergence.
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arship and that they contribute to the advancement of knowledge.

• The derivation of a correction term used to compute the phase difference be-

tween two adjacent actual sampling points in reciprocal space from scattering

intensity measurements of localized objects. This term was incorporated into a

new phase retrieval algorithm.

• The derivation of a set of equations involving complex-valued points in recip-
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author devised a phase retrieval algorithm based on two stages: (1) the solution

of a finite subset of equations that relate to a local region reciprocal space and,

(2) the propagation of this solution.

• The derivation of a theoretical model to obtain the the Fourier phase-decorrelation

time in systems undergoing ordering after a temperature quench. This quantity

was also obtained via numerical simulations.

• The derivation and implementation of a strategy for phase retrieval from coher-

ent scattering intensity measurements at different times for a system undergoing

ordering.
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Chapter 1

Introduction

The work presented in thesis is intended to contribute to the field of algorithmic

methods for phase retrieval from intensity measurements. This matter (also known

as phase reconstruction) is raised in many fields of interest, such as astronomy, crys-

tallography and the emerging field of diffraction microscopy. Although, for the most

part this work has a general scope, it was mostly developed with the latter application

in mind. In particular, we centered our attention to the problem of phase reconstruc-

tion for localized, non-periodic objects. In crystallography, the periodic nature of

atoms produces strong constructive interference resulting in specific directions. As

a result, localized, high intensity spots can be observed in the diffraction pattern.

In contrast, non periodic objects present a more broadly distributed intensity, which

require higher brilliance sources and more sensitive detectors. In addition, a high

degree of coherence, both longitudinal and transverse is required to determine the

specific structure of a sample. Consequently, the availability of high intensity, coher-

ent x-ray beams produced by synchrotron sources has been crucial to the development

of diffraction imaging techniques. This has also been possible due to several addi-
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2 CHAPTER 1. INTRODUCTION

tional technological innovations, such as charged couple devices (CCD), employed in

the construction of detectors, and modern computers, which enable the use of robust

computational techniques for data manipulation. Phase retrieval algorithms, which

often require a large number of numerical operations are examples of these techniques.

The nature of this thesis is theoretical. Our work consists of three related, some-

what independent contributions; each one presented in a different chapter. An outline

of how content is organized is given below.

In chapter 2 we introduce basic concepts, some theory and the notation used

throughout the thesis. We present an overview of the existing iterative methods

for phase retrieval and discuss their application to several type of problems. We

provide some examples to illustrate the advantages and limitations of most widely

known algorithms. We also present a brief discuss the work of Bates et al [1–3] which

constitutes the basis of non-iterative propagation methods. Finally we give a brief

introduction to the scaling behavior that characterizes the time evolution of systems

undergoing kinetics of a first order transition (ordering).

In chapter 3 we present a refinement to the phase retrieval method for oversam-

pled intensity measurements introduced in Ref. [2]. We derive a correction term to

evaluate phase differences between adjacent actual sampling points more precisely.

We show how the inclusion of this term leads to improved image reconstructions and

the reduction of error buildup in a recursive propagation scheme.

Chapter 4 contains the derivation of another method based on the solution of the

phase problem in two stages. In the first one, the phase is found within a localized

region in reciprocal space. The second stage consists of the recursive propagation of

the solution. We take the Fourier series expansion of a sharp square support and

derive a set of equations whose coupling is related to the number of terms considered
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in this expansion. A minimization method is used to solve the system of non-linear

equations that arises in the first stage.

In chapter 5, we introduce a strategy for phase retrieval from intensity mea-

surements for objects representing systems undergoing ordering after a temperature

quench. We show how phase reconstructions from intensity measurements of a non-

equilibrium system can be achieved faster and with higher convergence rates by choos-

ing an appropriate time interval between measurements. We support our findings by

calculating phase-decorrelation times (both theoretically and numerically).

Finally, we present our conclusions in chapter 6 and briefly discuss possible related

lines of work as a follow-up for the future.





Chapter 2

Background

2.1 Phase Retrieval

2.1.1 Fourier Transforms

The Fourier transform is an operation that transforms one complex-valued function

of a real variable into another. Fourier transforms have applications in many fields.

They are particularly helpful in signal processing and optics, where functions with

oscillatory components are often encountered. We now proceed to define the Fourier

transform. Let f(x) be a piecewise continuous, differentiable and absolutely integrable

function. The Fourier transform of f , F (k) is defined as:

F (k) ≡
∫

∞

−∞

f(x)e−ikxdx, (2.1)

where x and k are real variables and both f and F are, in general, complex-valued.

The Fourier transform is a generalization of the Fourier series representation of a

function. The variable k is usually called a wavenumber and its inverse is propor-
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6 CHAPTER 2. BACKGROUND

tional to the wavelength (λ) of the component of f represented by F (k) (k = 2π/λ).

Alternatively, the frequency, defined as ν = 1/λ = k/(2π), can be used. The Fourier

transform is an invertible, linear transformation, which implies that the function f(x)

is recovered via the formula

f(x) =
1

2π

∫

∞

−∞

F (k)eikxdx, (2.2)

called the inverse Fourier Transform. This property is called completeness. In d

dimensions, Eqs. (2.1) and (2.2) become, respectively,

F (k) =

∫

f(r)e−ik·rddr, (2.3)

and

f(r) =
1

(2π)d

∫

F (k)eik·rddk. (2.4)

The d-dimensional analog of k, k is called the wave-vector. As with any complex

quantity, the Fourier transform can be represented in terms of its real and imaginary

parts or its modulus and phase. The latter representation (which is the one we use

here) can be written in the form F (k) = A(k)eiφ(k), known as Euler’s formula.

2.1.2 Discrete Fourier Transforms

When a function does not exist in analytical form, but instead is approximated by

a set of samples within a finite interval or region, Eqs. (2.3) and (2.4) cannot be

applied directly. Instead, an approximation that involves the sampled values of the

function must be used. Let there be a sequence of N values {fm} = (f0, f1, ..., fN−1),

representing samples of the continuous 1D function f at regular intervals ∆x. The
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discrete Fourier transform (DFT) of Fn is also a sequence of N values and it is given

by

Fn ≡
N−1
∑

m=0

fme
−2πimn/N . (2.5)

The values fm are recovered by applying the inverse DFT, Fn. The inversion formula

is given by

fm =
1

N

N−1
∑

n=0

Fne
2πimn/N , (2.6)

where the pre-factor 1/N is a normalization constant analogous to 1/(2π) in the

continuous case. The values Fn represent samples on a grid in reciprocal space at

intervals ∆k. The sampling intervals ∆x and ∆k are related by

∆x∆k =
2π

N
. (2.7)

The generalizations of (2.5) and (2.6) to higher dimensions are straightforward. It is

important to keep in mind that, since only samples of the function f within a finite

interval are used, the DFT is only an approximation to the Fourier Transform, and is

subject to a type of distortion called aliasing. Choice of an appropriate sampling rate

is key to minimizing this distortion. Equation (2.7) also shows how the sampling rate

in one space is related to the size of the total sampling region (the whole region over

which the function is sampled) in the other. The DFT can be computed efficiently in

practice using a fast Fourier transform (FFT) algorithm, which reduces the number

of computational steps from O(N2) to O(N log N) in each dimension.

In this work, we focus on two-dimensional functions and their Fourier Transforms.

Since we are working with data obtained from numerical simulations, we deal with

samples and we need to use DFTs. Below we show an example of a real 2D function
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Figure 2.1: (a) A 2D real-valued function fmx,my represented by an image of size 64×64
pixels. The modulus (b) and phase (c) of the DFT Fnx,ny are plotted separately. In
(b) the intensity of each pixel is proportional to the modulus, with black being the
maximum intensity. For (c) the values of the phase are represented by color, using
the color map on the right.
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in the form of a image and its DFT. We represent an image by gray-scale a pixel

matrix. The intensity of each pixel is mapped to a numerical value. This is done in

such a way that the maximum (white) and minimum (black) intensities correspond

to the values +1 and −1 respectively. The two-dimensional DFT, Fn, is obtained and

split into two parts, modulus (An) and phase (φn). Results are shown graphically in

Fig. 2.1.

2.1.3 Sampling Theorem

An important result that we use extensively in this work is the Nyquist-Shannon

sampling theorem. It states that if a function contains no frequency components

above a certain value B, it can be completely represented by a series of equally spaced

samples at intervals of size 1/(2B) or smaller. Such types of functions are said to be

band-limited or localized in reciprocal space. Conversely, a function localized within

an interval of size 2L can be completely represented by samples in reciprocal space

taken at intervals of size 1/(2L) or smaller 1. The region (in this case the interval

2L) to which the function is localized is called support. This can also be described

as the region outside of which the function is zero. The quantity 2B is called the

Nyquist rate. What is meant by completely represented in this context is that one

can obtain the value of a function at any point by interpolation from the samples.

Mathematically, this is expressed using the Whittaker-Shannon interpolation formula

shown below. Let fm, m = −∞, ...,∞ be the set of values of a band-limited function

f(x) of bandwidth B, sampled at equal intervals of size 1/(2B). The function f(x)

1An important remark is that a function and its Fourier transform pair cannot be simultaneously
localized; if one is localized, the other must be infinitely extended.
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can then be reconstructed using

f(x) =
∞
∑

m=−∞

= fmsinc(2Bx−m), (2.8)

where

sinc(t) =
sin(πt)

πt
, (2.9)

is called the (normalized) sinc function. It might be worth stressing that the sampling

rate must be equal to or larger than the Nyquist rate for a function to be completely

represented by its samples. Half of the sampling rate is also called the Nyquist

frequency. When a function is sampled at a rate higher that the Nyquist rate it is

said to be oversampled. Sampling at a rate is lower than the Nyquist rate can lead

to aliasing. When this occurs, frequencies higher the Nyquist frequency are wrapped

and appear as lower frequencies.

2.1.4 The phase problem

It is often the case that one is able to measure a property involving only the magnitude

(modulus) of the Fourier transform of a quantity of interest. In such cases, one cannot

apply an inverse Fourier transform directly because the phase is unknown. However,

in many cases there is additional information available which may be enough to

uniquely determine the missing phase. This matter is commonly referred to as the

phase problem, and it is raised in many fields of interest, such as x-ray crystallography,

x-ray, neutron or electron diffraction (which are the basis of the emerging field of

diffraction microscopy and astronomy. The task of obtaining the phase information

is called phase retrieval. In this context, the function representing the quantity of
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interest is often called the object or the image. In x-ray diffraction experiments, for

instance, the objective is to probe the microscopic structure of materials by measuring

the intensity of scattered radiation in a detector. As we discuss with more detail

below in section 2.2, this intensity is proportional to the squared modulus of the

Fourier transform of the property that causes the scattering. In most cases, some

information is available in the form of constraints that are characteristic of the object

of study (e.g., positivity, compactness, support, object intensity, or a combination of

these). Unfortunately, even when enough is known to retrieve the phase in principle,

no procedure has been developed that systematically guarantees the solution of the

phase problem for all cases. However, several methods have been developed and

applied with varying degrees of success.

2.1.4.1 Uniqueness

The problem of uniqueness is a crucial issue regarding the solution to the phase prob-

lem. Let, for instance, A(k) be the true (measured) Fourier modulus. Then an object,

f(r) (with Fourier transform pair F (k)) is a solution if it simultaneously satisfies: (1)

that |F | is equal to the measured Fourier modulus A and (2) the complementary,

known object-space constraints. Uniqueness implies that no other function g (also

satisfying the object-space constraints) exists that cannot be distinguished from f

based only on observation of A. In Ref. [1], Bates identifies three possible ambigui-

ties for the phase, φ(k), of F (k) called trivial characteristics (TC). Namely, that the

quantity φ(k) cannot be distinguished from any of the following:

1. φ(k) + κ, where κ is a real constant;

2. φ(k) − ξ · k, where ξ is a real constant vector;
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3. −φ(k).

These ambiguities are irresolvable when only |F | is known. Fortunately they become

less relevant when only the form of f is of interest, which is the case most of the time.

Also, some of them can be resolved under certain types object-space constraints.

Starting with TC-1, a constant term in the phase translates into a constant phase

factor in the object, which has no effect in the form of f . If, in addition, the object

is known to be real, the number of compatible objects is reduced to two (f and

−f), and to one if the object is non-negative. TC-2 corresponds to a shift in origin

of the object, which again, does not change the form of f . Finally, TC-3 implies

indistinguishability between f and −f ∗; once again, the form of f is unaffected.

Thus, the relevant question regarding uniqueness of the solution to the phase problem

is whether the form of f can be recovered uniquely from |F |. It turns out that the

answer depends on the dimensionality of the problem. It has been shown [4, 5] that

no unique solution exists for one-dimensional objects. In contrast, uniqueness for

real, non-negative objects with finite support in two dimensions or more was shown

theoretically by Bruck and Sodin in 1979 [5], and by Hayes [6] and Bates [1]. Later,

Barakat and Newsam showed that multiplicity of solutions for complex objects is

“pathologically rare”.

2.1.4.2 Oversampling and support

An important result to consider in the solution of the phase problem is the fact that

the square of the Fourier modulus is the Fourier transform of the autocorrelation

function of the object. Mathematically we can express this as

R̂ff (k) =

∫

Rff (r)e
−ik·rddr = |F (k)|2, (2.10)
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where R̂ff (k) is the Fourier transform of the autocorrelation function Rff (r), defined

as

Rff (r) = f(r) ∗ f ∗(−r) =

∫

f(x)f ∗(r − x)ddx. (2.11)

For localized objects, the autocorrelation function generally extends to an area of

at most twice the size of the object in each direction, therefore is itself localized. For

objects that are also non-negative, the support of the autocorrelation function can be

used as an upper limit for the size of the support of an object. In this work we focus

on real, strictly localized objects of tight support (meaning the size of the object

is exactly known). Considering that the object is localized, the sampling theorem

gives a lower bound for the sampling rate (in reciprocal space) for the object (and

its Fourier Transform) to be completely determined. However, this condition applies

only when both the magnitude and the phase information are sampled; yet the phase

problem assumes that the latter is unknown. In Ref. [1] Bates uses the fact that the

object autocorrelation can be obtained directly from the Fourier modulus to argue

that one must sample at a rate of at least twice the Nyquist rate in each direction to

be able to obtain the phase information; this, sampling beyond the Nyquist rate, is

known as oversampling. The sampling interval in reciprocal space is proportional to

the inverse of the size of the object represented in image space. As a consequence,

oversampling is equivalent to extending the field of view beyond the object’s support.

If this is done by a factor of at least two in each direction, not only the object but its

autocorrelation are represented without aliasing 2. Another approach to oversampling

is based in the notion that it leads to extra image-space information when the object

support (or an estimate of it) is known, since one can then use the known “zero”

2The size of the autocorrelation’s support cannot extend beyond twice the size (in each dimension)
of the object’s support
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values outside the support as constraints. In 2000, Miao and Sayre [7] defined an

oversampling ratio σ as

σ =
area of the field of view (in pixels)

area of the object’s support
, (2.12)

where it is assumed that all pixel values outside the support area are zero. By counting

the degrees of freedom, they showed that the phase problem is undetermined unless

σ ≥ 2. This implies that sampling rates ≥ 21/2 in each dimension for a 2D object

and ≥ 21/3 for a 3D object are necessary (although not always sufficient) conditions

for unique reconstructions.

2.1.5 Iterative methods

The most common approach to solving the phase problem is the use of iterative

methods. In these type of methods, an initial guess is iterated recursively through a

succession of steps until a solution that satisfies the known constraints (both in the

object and reciprocal spaces) is found. The first important contribution in this area

was made Gerchberg and Saxton [8] in 1972. They developed an algorithm for phase

retrieval for cases where both the Fourier and object-space magnitudes are known.

Fienup [9], modified the Gerchberg-Saxton algorithm for objects applying support and

non-negativity constraints. Later, he introduced a set of algorithms, amongst which

the ‘hybrid input-output’ (HIO) is the most widely used in imaging applications [10].

Elser [11] introduced the ‘difference map’ and identified the Fienup algorithms as

special cases of the iterated projections method. In general, for all of the algorithms

mentioned above, the performance depends on the set of a priori constraints available

for the particular type of images for which the algorithm is applied. An overview of
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Figure 2.2: General scheme for iterative phase retrieval algorithms.

the most important methods as well as examples of their application are presented in

sections 2.1.5.1 and 2.1.5.2.

In Fig. 2.2, we present a common general scheme for iterative phase retrieval meth-

ods. We represent the object and its Fourier Transform pair as an N-dimensional vec-

tors whose components correspond to the values ofN pixels in a regular d-dimensional

regular grid. In addition to the Fourier modulus in reciprocal space, a set of a par-

ticular type constraints in object-space is assumed to be known a priori. We can

identify a set of four common basic steps to each (the j-th) iteration :

1. An input g
(j)
r , is discrete Fourier-transformed. This input is either an initial

guess (for j = 0) or a correction involving the output from the previous iteration.

2. From the resulting complex-valued data G
(j)
k

, the modulus is discarded, replaced

by the true (measured) modulus AT
k

and combined with the phase to yield new

values F
(j)
k

.
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3. An inverse Fourier transform is performed to get a new object f
(j)
r .

4. A new input g
(j+1)
r is generated using f

(j)
r or a combination of both g

(j)
r and f

(j)
r ,

in such way that that the object constraints either enforced or brought about.

The algorithm stops once a fixed point is reached, which occurs when the output

does not (significantly) change between consecutive iterations. The result may or

may not correspond to the solution depending on whether it simultaneously satisfies

the constraints in both object and reciprocal spaces. When it does, the values fr

should correspond to the true object fT
r

3, provided that the solution is unique.

Iterative algorithms have been successfully implemented in many instances. How-

ever, due to the non-convex nature of the search space, stagnation is often encoun-

tered. We present examples of this in the following sections. While there are many

practical strategies to evade this problem [12], none of these guarantees that a solution

can be reached within a finite amount of time starting from an arbitrary initial guess

point. It has also been observed that complex valued reconstructions are noticeably

harder than real-valued positive ones [13–16].

2.1.5.1 The Error-Reduction Algorithm

The Error-Reduction Algorithm is based on the Gerchberg-Saxton algorithm, which

was originally developed for phase reconstruction from intensity measurements in

both image and reciprocal spaces. The latter consists of four steps; the first three

of them being exactly like the ones described in the previous section: An object is

Fourier-transformed, the Fourier modulus is replaced by its measured value, and the

result is inverse Fourier-tranformed. In the fourth step, a new estimate is obtained by

3Or, equivalently, f∗

−r
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also replacing the modulus in object space with the corresponding measured value.

Using the same notation as the previous section, we denote the modulus and phase of

output f
(j)
r as a

(j)
k

and θ
(j)
k

respectively. If we also call the true (measured) modulus

of the object, aT
k
, then, in the fourth step, the input for a new iteration is obtained

as

g(j+1)
r

= aT
k
eiθ

(j)
k , (2.13)

where aT
k

replaces ak. This scheme can be easily modified to be applicable to a large

class of problems. In particular, cases for which a set of partial contraints in the object

domain are known a priori. An example of this would be finite support constraints.

The fourth step of the algorithm for this case takes the form.

g(j+1)
r

=















f
(j)
r , if r ∈ S,

0, if r /∈ S,
(2.14)

where S is the set of points that constitute the object’s support. The fourth step, as

described in 2.14 sets the input for a new iteration to be output from the previous

iteration except for the region in which the object is known to be zero, i.e., the object

support constraints are enforced in each iteration.

The generalization of the Gerchberg-Saxton algorithm to a wider class of problems

is known as the error-reduction algorithm. The correction performed in step (4) can

be modified to enforce the set of constraints applicable to a particular case. In

accordance with its name, the error-reduction algorithm has the property of reducing

an error metric in each iteration. The convergence of this algorithm for a 2-D object

is shown below.
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We start by defining an error metric at the j-th iteration in the Fourier domain:

E
(j)
F =

1

N2

∑

k

|F (j)
k

−G
(j)
k
|. (2.15)

where N is the number of samples in each direction. Since the phase of Fk is the

same as Gk (see Fig. 2.2), F and G only differ in modulus. Thus, when the modulus

of Gk is the true modulus, steps (1) to (3) leave gr unchanged, making the output, fr,

equal to the input. As the input must satisfy the object domain constraints while the

output must satisfy the Fourier domain constraints, a solution has been reached when

they are equal. Note that this corresponds to the error metric defined in Eq. (2.15)

being zero. A similar error metric can be defined in object space:

E
(j)
O =

∑

r

|g(j+1)
r

− f (j)
r

|. (2.16)

By Parseval’s theorem [17] we have

E
(j)
F =

1

N2

∑

k

|F (j)
k

−G
(j)
k
|2 =

∑

k

|f (j)
r

− g(j)
r
|2. (2.17)

We now compare Eq. (2.17) to EO in Eq. (2.16). By definition, g
(j)
r and g

(j+1)
r must

both satisfy the object constraints. Also at any point r, g
(j+1)
r is the closest value

to f
(j)
r that satisfies the object constraints (g

(j+1)
r is the projection of f

(j)
r into the

object-constraints space). Then, the inequality

|f (j)
r

− g(j+1)
r

| ≤ |f (j)
r

− g(j)
r
|, (2.18)
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must hold. We can therefore use (2.18) to compare (2.16) and (2.17)

E
(j)
O ≤ E

(j)
F . (2.19)

Similarly, using Parseval’s theorem we have

E
(j)
O =

∑

r

|g(j+1)
r

− f (j)
r

|2 =
1

N2

∑

k

|G(j+1)
k

− F
(j)
k

|2. (2.20)

A similar argument to the one used to obtain (2.18) can be applied to the Fourier

domain. F
(j)
k

and F
(j+1)
k

satisfy the Fourier constraints by definition; while for any

value of k, F
(j+1)
k

is the closest value to G
(j+1)
k

that satisfies the Fourier constraints.

Therefore, we have

|G(j+1)
k

− F
(j+1)
k

| ≤ |G(j+1)
k

− F
(j)
k

|. (2.21)

Comparing (2.15) and (2.20) with the use of (2.21) we get

E
(j+1)
F ≤ E

(j)
O . (2.22)

Finally, combining (2.19) and (2.22), we get

E
(j+1)
F ≤ E

(j)
F , (2.23)

which shows that the error must either decrease or stay the same with each iteration.

A condition similar to (2.22) can be obtained in terms of the error metric defined

by (2.16) in the object space, making both EO or EF equally valid as indicators of

the performance of the algorithm. Despite the fact that the error metric is mono-

tonically decreasing, the error reduction-algorithm tends to either converge slowly or
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stagnate [8, 18, 19]. In practice, its performance depends on the type of constraints

imposed. Convergence seems to be reasonably fast for the problem of two intensity

measurements, but very slow for the problem of single intensity measurements [10].

Below we present two examples to illustrate the application and performance of the

error reduction algorithm. For both cases, we use as a sample the real valued image

of size 128×128 (Fig. 2.3), and a random image as initial guess. In the first example,

we run the algorithm taking the modulus of both object and Fourier as a priori

information. In the second example, we apply support constraints by embedding the

object in an area four times the size of the object. We use a normalized rms error

metric defined as

Ē
(j)
F =

√

E
(j)
F

∑

k
|AT

k
|2 . (2.24)

The error is plotted against the number of iterations. For the two intensity problem,

the convergence of the algorithm is shown in Fig. 2.4(a) and the corresponding

final output image in 2.4(b). The error decreases rapidly during the first iterations,

then reaches a plateau. This stagnation behaviour is typical of the error-reduction

algorithm. The retrieved image is mostly correct except for a few small localized

regions. Results for the finite support constraints example are shown in Fig. 2.5.

As mentioned above, the fourth step of error-reduction algorithm is now given by

Eq. (2.14). The error metric decreases rapidly during some stages and slowly during

others. At about 1000 iterations the method stagnates. Note how the retrieved

image mostly preserves the features of the true image, but appears blurry in some

areas. Through these examples we have shown how, in practice, the error-reduction

algorithm does not perform very well, even when it is applied to simple images like

that of Fig. 2.3. We can attribute this to the fact that the Fourier modulus is a
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Figure 2.3: Sample image of size 128 × 128 pixels.
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Figure 2.4: Phase retrieval for the two intensity problem using the error-reduction
(Gerhberg-Saxton) algorithm. (a) Error metric vs. iteration number. (b) Retrieved
image (output from the last iteration).
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Figure 2.5: Phase retrieval using the single intensity error-reduction algorithm with
support constraints. (a) Error metric vs. iteration number. (b) Retrieved image
(output from the last iteration).
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non-convex constraint [11]. In the following section, present an example in which we

use the same image as a test for a better performing algorithm.

2.1.5.2 The Hybrid-Input Output Algorithm

The Hybrid Input-Output (HIO) algorithm belongs to a family of “input-output”

methods originally devised by Fienup [10] in 1892. It has proven to be the most

successful algorithm in a wide variety of imaging applications. Although, in some

ways similar to the error reduction algorithms HIO also differs in important ways.

First of all, unlike the error-reduction method it does not completely enforce the

object constraints in every iteration. More importantly, only the output (and not

the input) corresponds to the solution once a fixed point has been reached. The idea

behind this method is to modify the input in each iteration in such a way that the

output is driven (but not enforced) to satisfy the object constraints. In practice it

only differs from the error reduction algorithm in the fourth step. Suppose that, in

the j-th iteration, an input g
(j)
r is transformed through steps (1) to (3) into output

f
(j)
r . In general, unless a solution has been found, this output will not satisfy the

object domain constraints. However, this output can be projected onto a value for

which these constraints hold; we call this c
(j)
r . In the error reduction algorithm c

(j)
r

would be used as input for a new iteration. In the HIO algorithm, it is instead used

to compute a correction to the previous input proportional to the difference c
(j)
r −f (j)

r

at all points r where the object constraints are defined. For the particular case of

finite object support, the new input, computed in step (4) is given by

g(j+1)
r

=















f
(j)
r , if r ∈ S,

g
(j)
r − β(f

(j)
r − c

(j)
r ), if r /∈ S,

(2.25)
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where β is a constant feedback parameter. Empirically, is has been found that values

of β between 0.5 and 1.0 work well. Note that, for r /∈ S, cr = 0, since the image is

zero outside the support. We can therefore rewrite (2.25) as

g(j+1)
r

=















f
(j)
r , if r ∈ S,

g
(j)
r − βf

(j)
r , if r /∈ S.

(2.26)

To evaluate the performance of this algorithm, a new error metric different from

both EO and Ef must be defined. The reason for this is that gr is no longer an

estimate of the image, and is not equal to fr when the algorithm converges. Instead,

a convenient measure of the error is a quantity proportional to the magnitude of the

object outside the support. We define the error metric for the HIO algorithm as

E
(j)
HIO =

∑

r/∈S

|fr|2. (2.27)

Unfortunately, it has been found that EHIO does not always correlate strongly with

the image quality, often making it difficult to distinguish between true and false

solutions [12]. For this reason it usually a good idea to apply the algorithm repeatedly

from the start, using different guesses as inputs to corroborate results. We now apply

the HIO algorithm with the parameter β set to 0.7 to the sample image from the

previous section (Fig. 2.3). The retrieved image as well as the convergence curve of

the error metric are shown in Fig. 2.6. Once again, we use a normalized rms error

metric defined as

Ē
(j)
HIO =

√

E
(j)
HIO

NS′

, (2.28)

where NS′ is the area of the field of view outside the support, equal to the number



26 CHAPTER 2. BACKGROUND

of terms of the sum in Eq. 2.28. We can clearly see from Fig. 2.6(a) that, although

the error does not decrease monotonically, HIO converges significantly faster than

the error-reduction algorithm for finite support object constraints. Also, Fig. 2.6(b)

shows an image virtually identical to that of Fig. 2.3.

2.1.6 Recursive propagation

Recursive propagation methods are a particular type of non-iterative phase retrieval

methods, based on the outwards propagation of the phase (in reciprocal space) from

a point or region in which its value is known. The first approach of this kind was

introduced by Bates et al. in 1982 [1–3]. They proposed a series of phase retrieval

algorithms from oversampled measurements of the Fourier modulus for compact im-

ages. The work presented in chapter 3 and, to some extent, in chapter 4 roughly

follows the same solution scheme. In this section, as well as in chapter 3, we use

the variable frequency ν (ν in more than one dimension) instead of wave-number k

(wave-vector k) to be consistent with the notation used in Refs. [1–3] and [20] .

The idea behind the work of Bates et al. is based on the principle that, for a

“sufficiently” localised (as explained below) image f(r) in d dimensions, its Fourier

Transform F (ν) can be usefully represented using an expansion in sampling functions

sampl(ν) centered at points pl in a regular rectangular grid called actual sampling

points:

F (ν) =
∑

l

Flsampl(ν − pl). (2.29)

The value Fl is the l-th complex expansion coefficient of F (ν) and the sampling

functions must satisfy

sampl(0) = 1 (2.30)
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Figure 2.6: Phase retrieval using HIO with object support constraints. The feedback
parameter β is set to 0.7.(a) Error metric vs. iteration number. (b) Retrieved image.



28 CHAPTER 2. BACKGROUND

and

sampm(pn − pm) = 0. (2.31)

When the sampling functions take the form of a product (over all dimensions) of

normalized sinc functions (sinc(t) = sin(πt)/πt), equation 2.29 becomes

F (ν) =
∑

l

Fl

d
∏

j=1

sinc[(uj − pl,j)/αj], (2.32)

where νj and pl,j are the components in the j-th direction of ν and pl respectively. This

equation is an expression for the Shannon-Whittaker sampling theorem, which, as we

stated in section 2.1.3 holds when the image is strictly localized. It is important to

note that Eqs. (2.30) - (2.32) are consistent only if the sample points pl are located at

regular intervals in a uniform rectangular d-dimensional grid, with spacing αj, where

1/αj is the size of the image in the j-th direction. Therefore, the sample points can be

written as pl,j = ljαj. From (2.30) and (2.31), we have F (pl) = Fl. Also important is

the fact that the values Fl are proportional to the Fourier series expansion coefficients

of f(r). Thus, knowledge of the magnitude and phase of all significant values of F (ν)

at a sampling rate 1/αj, the Nyquist rate, is enough to construct both the image (using

a DFT) or its Fourier Transform (using the sampling theorem). As in section 2.1.4.2,

when the value of |F (ν)| (and no other a priori information) is available, the phase

information can only be recovered by sampling at a rate higher than the Nyquist rate

(oversampling). This implies that samples of values of |F (ν)| must be obtained at

points that are in-between the conventional Bragg (actual) samples. For the methods

described in [1–3, 21], localized, single lobed sampling functions are used instead of

the infinitely extended sinc function. The use of localized functions in 2.29 implies

that f(r) can no longer be localized because the Fourier transform of a localized
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function is infinitely extended. Instead, when 2.29 holds for single lobed sampling

functions, the image is said to be weakly localized (or quasi-localized of order 1). The

convenience of using single-lobed sampling functions is that it greatly simplifies 2.29.

The range of the sampling functions is limited because only a few terms (values of Fl)

on the right-hand side of 2.29 survive for any given value of ν. The method devised

by Bates takes advantage of this fact and applies 2.29 with single-lobed sampling

functions at values of ν located at the midpoints between actual sampling points in

each direction. Note that this requires using an additional rectangular sampling grid

and oversampling by a factor of at least two in each direction. The resulting equations

turn out to have only a few unknowns (the phases of the actual samples) in common

with each other, which makes them easier to solve numerically. Assuming the values

of |F (ν)| are given for both the actual sampling points and the midpoints, one can

obtain a relation between three adjacent samples (two actual, one in between) on the

same line. For clarity, we will write this expression below for 1D (it is essentially the

same when d > 1 because only samples within the same line are involved). We denote

the actual samples magnitudes as Al = a2
l = |F (lα)|2 and the in-between samples

magnitudes as Bl = b2l = |F ((l + 1/2)α)|2, for integer values of l. The resulting

expression is

Bl =
1

ζ
(Al + Al+1 + 2alal+l cos(ωl)). (2.33)

Here ζ is a parameter that depends on the value of the sampling function at α/2 and

ω is the phase difference between actual samples F (lα) and F ((l + 1)α). In practice

it makes sense to consider only a finite range of values for l (those for which the value

of |F | is significant). We denote −M and M to be, respectively, the upper and lower

limits for the index l. The value of M determines the resolution at which we expect
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the image to properly represented. The only unknown in 2.33 is ωl, so this equation

can be used to compute the magnitudes of the phase difference between adjacent

actual samples. As explained in detail in [1], these values can be used to obtain the

phases at the actual sampling points for d ≥ 2. The only obvious limitation for this

method is that (as mentioned above) it is applicable only to weakly localized images.

However, a similar approach is employed in [1] to find an approximate solution for

images that are effectively strictly localized, given that we are able to sample |F (ν)|

at an even higher rate in each direction. It is for this particular case that we centered

our attention and developed improvements upon the previous work. In particular

we present refinements to the computation of the phase differences between actual

samples. A detailed description of this work is presented in chapter 3.

2.2 X-Ray scattering

Scattering or diffraction can be described as the perturbation of electromagnetic radi-

ation or particles by one or more non-uniformities in the propagation medium. This

principle can be used to probe the microscopic structure of materials by measuring

the deflection of a beam of (usually) electrons, neutrons or x-rays. This deflection

takes place as some spatial inhomogeneity of a sample material makes the incident

beam scatter in different directions. The outgoing radiation can then be directed

towards a screen where a detector measures its intensity. A very simplified schematic

representation of radiation scattering from a sample is shown in figure 2.7. An inci-

dent wave represented by wave-vector k0 is directed towards a sample. The outgoing,

scattered radiation from the sample is represented by wave-vector kf . The scattering

vector k = k0 − kf is proportional to the momentum transfer between the incoming
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k0

k f
k

Sample

Figure 2.7: Typical geometry of a scattering experiment. An incident wave rep-
resented by wave-vector k0 is directed towards a sample. The outgoing, scattered
radiation from the sample is represented by wave-vector kf . The intensity of this
radiation is measured by a detector located in the back. The scattering vector k is
defined as k = k0 − kf

and outgoing waves. It is also proportional (in magnitude) to the distance from the

origin of the diffraction pattern in the detector.

In crystallography, the fact that x-rays have a typical wavelength in the scale of

nanometers, which is on the scale of covalent chemical bonds, allows for the probing

of the distance between atoms and the determination of the orientation of the bonds

that constitute the primitive cell. For this case, radiation is scattered by electrons

and inhomogeneities in electron density are probed. Because of the periodic nature

of crystals the scattered radiation from a monochromatic beam tends to interfere

constructively in specific directions and destructively in all others. As a consequence,

a pattern of localized high intensity spots can be observed in a detector placed far away

behind the sample. These spots are known as Bragg peaks. Many inverse methods

for crystallography have been developed and used successfully in the determination

of crystal structures from scattered intensity measurements.

In this thesis, we are concerned with the structure of non-periodic materials. In

chapter 5 we focus specifically on the study of domains formed during a phase-
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transition (we call this ordering from now on) after a quench of a homogeneous sys-

tem. We are therefore interested in homogeneities in the order parameter in the form

of domain interfaces. Throughout this work, we assume that the scattering from

these systems is elastic, i.e., no energy is absorbed or transferred to the medium.

There is an additional important remark to make regarding the nature of the beam

with which the sample is illuminated. Very different scattering patterns are observed

depending on whether the beam is coherent or not. Coherence can be defined as

the degree to which a wave is monochromatic (temporal coherence) and transversely

uniform (transverse coherence). Perfectly coherent radiation propagates as a plane

wave. Scattering from incoherent radiation cannot represent the detailed structure of

the probed material, because different regions within a sample scatter independently,

which leads to random interference. When this is the case, the measured intensity

depends on an incoherent average over different regions of the scattering volume. To

eliminate this incoherent average the incoming beam must have a coherence volume

(the volume of the region in which the wave is both temporally and transversally

coherent) larger than the size of the sample. Studies of material using ordinary (inco-

herent) light can therefore only measure average properties. A technical limitation for

experiments involving coherent x-ray scattering of non-periodic materials is the need

for high brilliance coherent x-ray sources. A high intensity source is needed because

of the absence of localized, strong constructive interference regions that characterize

periodic materials. Fortunately radiation from high brilliance synchrotron sources,

has been available since the past two decades, allowing significant progress in the

field of diffraction microscopy in recent years. This technique has been succesfully

applied to imaging of non-periodic samples since 1999. The first image reconstruction

was performed by measuring the soft x-ray diffraction pattern of a sample consisting
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of a 2D array of gold dots [22]. Since then, two- and three-dimensional imaging of

nanocrystals [23, 24] and biological samples [25–29] has been achieved.

When the incident radiation is coherent, averaging over different regions does

not occur. In this case, the measured scattering intensity displays a characteristic

speckled pattern. This pattern contains information about the specific structure

of the sample, and not only average properties. In the Born approximation, the

intensity is proportional to the magnitude of the Fourier Transform of the function

that represents the inhomogeneity, like electron density, that is directly related to the

structure of the sample. If we represent the property that causes the scattering as

the field ψ(r), then

I(k) ∝ |ψ̂(k)|2, (2.34)

where I(k) is the measured intensity and k is the scattering wave-vector. As men-

tioned above, the scattering intensity provides some information about the structure.

However the intensity alone is insufficient to recover the precise form of this structure

because the phase of the Fourier transform ψ̂(k) cannot be measured by conventional

detectors. In order to obtain the real-space function ψ(r), one needs to apply a phase

retrieval method (as we mentioned in section 2.1.4) using an appropriate set of con-

straints. Throughout the rest of this work we consider real objects with finite support

in two dimensions. Accordingly, we choose to apply the support constraint.

2.3 Ordering and scaling laws

In chapter 5 we focus on coherent scattering from systems undergoing ordering (ki-

netics of a first-order transition) after a temperature quench. We represent the order

parameter as a continuous field ψ(r) . As we mentioned in section 2.2, the character-
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istic scattering intensity pattern for these systems features rapidly fluctuating pieces,

known as speckle. A typical configuration of domains undergoing ordering and their

corresponding speckle patterns at a fixed time τ is shown in Fig. 2.8.

Ordering is characterised by well-known dynamic scaling behaviour, i.e., patterns

at two different times are statistically similar and their properties differ only by a

time-dependent factor. This behavior, known as the scaling regime, usually holds for

late times, where domains are well defined and interfaces are relatively sharp. The

time dependence of the characteristic length R, which is the only time dependent

quantity, is known to obey a power law of the form R(t) = [Bτ ]n, where B is a

constant and n depends on the conservation laws (or absence thereof) that govern

the ordering dynamics. A large number of ordering phenomena fall into two categories

(called universality classes): (1) those for which the order parameter is not conserved,

called model A, and (2) those for which the order parameter is conserved, model B.

All of the results presented here are obtained for both of these models. The exponent,

n is known to have a different value for each of these classes. Namely, 1/2 for model

A and 1/3 for model B [30–32]. Examples of systems described by model A are the

Ising model with flip-spin dynamics, and binary alloys undergoing an order-disorder

transition. Systems described by model B include the conserved Ising model and

binary alloys undergoing spinodal decomposition.

Important properties of a system can be obtained from scattering measurements.

In incoherent scattering, for instance, the Fourier Transform of the density (or order

parameter) correlation function is proportional to the structure factor:

S(k, τ) = 〈I(k, τ)〉 ∝ Ĉ(k, τ), (2.35)
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Figure 2.8: Examples of 2D ordering (numerical simulations with a grid of size 512×
512) following a temperature quench. (a) Domain growth (model A) at time τ = 75
(in rescaled units). (b) Speckle pattern (

√
I) of system (a) calculated as the modulus

of its Fourier transform. (c) Spinodal decomposition (model B) at τ = 2000 and (d),
speckle pattern (

√
I) of (c).
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where

C(r, τ) = 〈ψ(0, τ)ψ(r, τ)〉. (2.36)

The brackets in Eqs. (2.35) and 2.36 denote ensemble average over initial conditions,

which is a way of simulating incoherent scattering. If a system is isotropic then all

average properties depend only on the magnitude of the wave-vector k = |k|. When

the scaling relation holds, one can express S(k, τ) in terms of a scaling function that

depends only on scaled time t ∝ τk1/n,

S(k, τ) = k−dF1(t). (2.37)

Alternatively S(k, τ) can also be expressed in terms of a function of only the scaled

wavenumber k′, defined as k′ = kR(τ) ∝ kτn,

S(k, τ) = R(τ)dF ′

1(k
′). (2.38)

Equations (2.35)-(2.38) are valid for incoherent scattering, where self-averaging takes

place and one cannot obtain information about the specific structure (the domains’

configuration at a given time) of the system, as opposed to coherent scattering. In

the latter case, phase retrieval from the measured scattering intensity is needed to

obtain the order parameter field or a quantity proportional to it.

In chapter 5, we propose a phase retrieval strategy in which an algorithm (we use

HIO, but this is not essential) is applied consecutively using simulated intensity data

taken at different times of a single instance of ordering dynamics. As we will describe

in chapter 5, by choosing appropriate time intervals in which to measure, we can

improve phase retrieval by making better initial guesses, taken from previously ob-
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tained solutions at “nearby” states. In other words, for a system undergoing spinodal

decomposition or domain growth, we propose the use of intensity “snapshots” taken

at sufficiently short time intervals to facilitate phase retrieval when the solution at

one or more of these times is known.





Chapter 3

Phase retrieval by propagation

In this chapter we introduce an algorithm for phase retrieval based on improvements

to the methods developed by Bates et al. [1–3]. Specifically, we develop a more precise

way of calculating phase differences between adjacent actual sampling points. This

leads to a reduction in the error buildup in a recursive phase propagation scheme. In

the next two sections we present a detailed derivation of this algorithm as well as a

few examples of how this method can lead to improved image reconstructions. The

content of this chapter is based on the work presented in Ref. [20].

3.1 Method

As we mentioned in section 2.1.6, our main goal is to derive a series of equations to

be used within an algorithm for phase reconstruction based on recursive propagation

of the solution. Our method is restricted to strictly localized images. Although this

method can be easily generalized to 3D images, we consider its application for 1D

and 2D cases only. It is shown in [21] that there is a unique solution to the phase

39
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problem only if it is known that the image is the most compact one compatible with

the modulus of its Fourier transform (unless the image is known to be positive). We

assume that this is indeed the case and that a good estimate of the support size of

the image is known. For the purpose of simplicity we present most of the details

of the derivation in one dimension, as the generalization for the 2D case is rather

straightforward.

We begin by defining a strictly localized function f(x), where x is a scalar (real)

and where f can be real or complex, such that f |(x)| = 0 for |x| > L. Here L

is a real, positive scalar and so 2L is the size of the support for f . This function

can be effectively represented, within the interval [−L,L] by the finite Fourier series

expansion:

f(x) =
M
∑

n=−M

Cne
2πinx/2L, (3.1)

with complex coefficients, Cn given by:

Cn =
1

2L

∫ L

−L

f(x)e−2πinx/2L dx. (3.2)

For 1D the Shannon-Whittaker sampling theorem takes the form:

F (ν) =
M
∑

n=−M

FNy
n sinc(2Lν − n), (3.3)

where F (ν) is the Fourier Transform of f(x) 1:

F (u) =

∫ L

−L

f(x)e−2πiνx dx. (3.4)

1As a reminder, we are using the variable ν (instead of k) in this chapter to be consistent with
the notation used in Refs. [1–3].
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Note that the interval of integration is finite since f is localized. It is also important

to keep in mind that

FNy
n = F (n/2L) = 2LCn. (3.5)

We shall refer to the points located at ν = n/2L as the Nyquist sampling points and

to the values FNy
n as the Nyquist samples.

Consider now a representation of f within an interval 2L′ larger than its support,

i.e. L′ > L. For reasons that should be clear shortly, it is convenient to choose L′

to be an integer multiple of L. Then L′ = NL, where the integer N will be referred

to as the linear oversampling ratio, as defined in [33]. Equation (3.3) is still valid if

we replace L by L′ because the localization of f within 2L implies localization within

2L′. This gives us

F (ν) =
M ′

∑

n=−M ′

Fnsinc(2L′ν − n), (3.6)

where Fn = F (n/2L′). The number of terms in the sum (now 2M ′ + 1) needs to

be increased proportionally with N to properly represent F . We may loosely set M’

to correspond to the sampling point beyond which |F (ν)| is negligible (less than an

arbitrarily small value). Note that

F (n/2L) = F (Nn/2L′), (3.7)

or FNn = FNy
n which means that, because N is integer, equations (3.3) and (3.6) have

coefficients in common which are the Nyquist samples. To preserve the terminology

employed in [1–3] the points at ν = n/2L′, and the values Fn will be called actual

sampling points and actual samples respectively. Finally, the values of F between

actual samples are named in between samples. Before we continue, it is important
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to point out that those values, Fn, that correspond to points between the Nyquist

sampling points are not independent the values FNy
n . Once both the magnitude and

phase for all FNy
n is fixed, the values of Fn can be obtained employing (3.3).

The idea behind using the expansion (3.6) instead of (3.3) is that we expect the

samples at a finer spacing to represent F (ν) more smoothly. It makes sense then to

employ (3.6) to derive an simple, approximate interpolation relation for values F (ν)

between two actual sampling points. An example of such relation is:

F ([n+ 1/2]/2L′) ≃ γ{Fn + Fn+1}, (3.8)

which yields equation (2.33) simply by squaring both sides and making the substitu-

tion ζ = 1/γ2. An algorithm that uses (3.8) with γ = 1/2 is derived in [21]. As we

mentioned in the previous section, equation (2.33) can be used to estimate |ωn| pro-

vided we oversample enough to measure at actual as well as at in between sampling

points. The value of γ is not fixed. In [2, 3] it is chosen to be the value that mini-

mizes certain error metric, calculated after the phase has been computed. An obvious

disadvantage of this approach is that one has to apply the reconstruction algorithm

many times for different values of γ until the “best” reconstruction is found. Below

we take a different approach, one that yields a value that depends only on the linear

oversampling ratio, N .

We proceed by evaluating the error made by using the simple interpolation relation

(3.8). To maintain some consistency with the notation used in [1–3] we continue to

use the notation introduced in section 2.1.6 for the actual and in between samples,
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now evaluated with the sampling interval 1/2L′:

Fn = ane
iθn (3.9)

and

Bn = b2n = |F ([n+ 1/2]/2L′)|2, (3.10)

where θn is the phase of the actual sample, F (n/2L′). We define an error function

En at each of the in between sampling points as

En = cos(ωtrue
n ) − cos(ωest

n ), (3.11)

where ωtrue is the exact relation for the phase difference between two adjacent actual

samples and ωest is the estimate that satisfies the approximate relation (3.8). The

two terms in (3.11) are then given by:

cos(ωtrue
n ) =

FnF
∗
n+1 + F ∗

nFn+1

2anan+1

(3.12)

and

cos(ωest
n ) =

ζBn − An − An+1

2anan+1

. (3.13)

Considering the fact that the truly independent variables are the Nyquist samples

or, more precisely, the phases at the Nyquist samples, we write all the terms in both
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(3.12) and (3.13) in terms of the expansion given by equation (3.3). This gives us

An =
M
∑

j=−M

M
∑

k=−M

aNy
j aNy

k cNy
j,k

× sinc(εj,n − ǫ)sinc(εk,n − ǫ),

(3.14)

An+1 =
M
∑

j=−M

M
∑

k=−M

aNy
j aNy

k cNy
j,k

× sinc(εj,n + ǫ)sinc(εk,n + ǫ),

(3.15)

Bn =
M
∑

j=−M

M
∑

k=−M

aNy
j aNy

k cNy
j,k

× sinc(εj,n)sinc(εk,n),

(3.16)

and

cos(ωtrue
n ) =

1

anan+1

M
∑

j=−M

M
∑

k=−M

aNy
j aNy

k cNy
j,k

× sinc(εj,n + ǫ)sinc(εk,n − ǫ).

(3.17)

We have defined ǫ = 1/2N . For all the expressions above, the variables with the

superscript Ny correspond to values at the Nyquist sampling points. The matrix

elements cNy
j,k are defined as the cosine of the phase difference between the Nyquist

samples j and k,

cNy
j,k = cos(θNy

k − θNy
j ). = cos(ωNy

j,k ) (3.18)

We have also defined the quantity εj,n to be proportional to the distance that separates

the in between sampling point ν = [n + 1/2]/2L′ and the Nyquist sampling point
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ν = j/2L:

εj,n = [n+ 1/2]/N − j. (3.19)

We now substitute (3.14)-(3.16) into (3.13) and then (3.13) and (3.17) into (3.11) to

get:

En =
1

anan+1

(

M
∑

j=−M

M
∑

k=−M

aNy
j aNy

k cNy
j,k Ω(εj,n, εk,n, ǫ)

+

(

2 − ζ

2

)

Bn

)

,

(3.20)

where Ω is defined as

Ω(ε1, ε2, ǫ) =
1

2
[sinc(ε1 + ǫ) + sinc(ε1 − ǫ)]

× [sinc(ε2 + ǫ) + sinc(ε2 − ǫ)]

+ 2sinc(ε1)sinc(ε2).

(3.21)

Since, in principle we can make ǫ to be arbitrarily small, it makes sense to approximate

Ω by a truncated series of powers of ǫ. Because Ω(ε1, ε2, 0) = 0 and Ω(ε1, ε2, ǫ) =

Ω(ε1, ε2,−ǫ) the first non vanishing them is quadratic. Thus, for small ǫ (large N)

we have:

Ω(ε1, ε2, ǫ) ≃− ǫ2
(

sinc(ε1)
[

π2sinc(ε2)

+(2/ε2
2) (cos(πε2) − sinc(ε2))

]

+sinc(ε2)
[

π2sinc(ε1)

+(2/ε2
1) (cos(πε1) − sinc(ε1))

])

.

(3.22)

Note that, since the next term in the series is proportional to ǫ4, (3.22) is a reasonably
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good approximation for values of N as small as ∼ 4. Substituting in (3.20) and using

(3.16) we get:

En =
1

anan+1

(

1

2N2

M
∑

j=−M

M
∑

k=−M

aNy
j aNy

k cNy
j,k

× sinc(εj,n)J(εk,n) +

[

2 − ζ

2
− π2

2N2

]

Bn

)

,

(3.23)

where J is defined as

J(ε) = (2/ε2)(sinc(ε) − cos(πε)). (3.24)

Note that, at the limit N → ∞, En = 0 for ζ = 4. Our goal is now to find an

approximate expression for En that does not depend on all of the unknown values

cNy
j,k and then substitute this expression into (3.11) to improve the calculation of |ωn|.

It it straightforward to notice that equation (3.23) can be simplified by choosing

the value of ζ that makes the coefficient in square brackets vanish. We set then the

value of ζ to

ζ = 4 − π2/N2. (3.25)

The function J(ε) is shown in Fig. 3.1. Since its envelope decays much faster than

the sinc function, a reasonable approximation is to truncate it into a single-lobed

function. We define:

Jsl(ε) =















J(ε) for |ε| ≤ 1

0 for |ε| > 1

(3.26)

Using Jsl(ε) instead of the infinitely extended J(ε) greatly simplifies equation (3.23).

For fixed n, the values εk,n are discrete and equally spaced at intervals of unit size.

This implies that at most two terms in the sum over index k in equation (3.23) can
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Figure 3.1: Functions sinc(ε) (dash-dot line), J(ε) (dashed line) and Jsl(ε) (solid
line), truncated to zero outside the interval [−1, 1].



48 CHAPTER 3. PHASE RETRIEVAL BY PROPAGATION

survive. Substituting Jsl into (3.23) and the result into (3.11) we get:

cos(ωcorr
n ) = cos(ωlin

n ) +
bn

2N2anan+1

[

aNy
j cj,nJsl(εj,n)

+aNy
j+1cj+1,nJsl(εj,n − 1)

]

.

(3.27)

Here, j is the index of the closest Nyquist sample to the left of actual sampling point

n. We define the coefficient cj,n as:

cj,n = cos
(

θ([n+ 1/2]/2L′) − θNy
j

)

. (3.28)

We have also renamed ωest
n as ωlin

n to stress that it corresponds to estimate obtained

using the linear interpolation formula (3.8). The term in square brackets in (3.27)

represents a correction to the simple interpolation relation (3.13). Accordingly, we

will refer to it as the correction term.

The only unknown quantities in (3.27) are cj,n and cj+1,n, which depend on the

phase differences between the point ν = [n+ 1/2]/2L′ and the nearest Nyquist sam-

pling points to the left and the right. Both of these quantities can be approximated

using the following general scheme: By performing a preliminary phase propagation

from Nyquist sampling point νNy
j to point νNy

j+1 we can find an estimate for θNy
j+1. This

can be done using (3.13) (which does not depend on any unknown variables) to get

estimates of |ωn|. (In the 1D case, the signs of |ωn| must be known a priori for the

phase to be unique 2. For the 2D case, the signs can be obtained unambiguously using

2The solution to the phase problem is not unique in 1D. In the most general case (for a complex
image), there can be up to 22M−1 different sets of phases compatible with a set of 2M + 1 given
magnitudes al. This is consistent with the fact that there are two possible choices for the sign of
each phase difference (ωl) between adjacent samples [1].
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the method described in [1].) Since we started at point νNy
j , θNy

j is assumed to be

already known (or estimated). Then we can use the following expression to estimate

θ at all the in between sampling points between νNy
j and νNy

j+1:

θ

(

n+ 1/2

2L′

)

≃ phase

{

Fn + Fn+1

− 1

4N2

[

FNy
j Jsl(εj,n) + FNy

j+1Jsl(εj,n − 1)
]

}

.

(3.29)

The equation above can be obtained through a similar derivation as the one that

leads to (3.27), applied to equation (3.8) instead of (3.13). Finally, we can use (3.27)

with the estimates obtained in the previous step to repeat the propagation between

the two Nyquist sampling points. This should give us better estimates, and so we

can repeat the propagation with the updated estimates until we get a stationary

solution. It is important to mention that for the 2D phase propagation this must be

done simultaneously for each row and column of actual points within a Nyquist cell.

Thus estimates for the phase must be computed not only at the Nyquist points on the

corners but also on the sides of the Nyquist cell. This scheme is illustrated in Fig. 3.2.

The values of the phase at the actual sampling points on all sides of the Nyquist cell

are estimated on the preliminary propagation. These values are then used to estimate

the phases of all the in between points with of (3.29) applied to all rows and columns.

The propagation is repeated until a steady solution is found. Once the solution for

the first Nyquist cell has been computed. The rest of the solution can be found by

outwards propagation for the remaining Nyquist cells, with the procedure described

above repeated for each cell. The values of the phases at the Nyquist sampling points,

with the corresponding known amplitudes, are sufficient to compute the form of the

retrieved image function using (3.1). The complete phase retrieval scheme is outlined



50 CHAPTER 3. PHASE RETRIEVAL BY PROPAGATION
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Sampling points:

Actual

In between

propagation
preliminary propagation,
needed for further correction.

Values estimated in the

Actual cell

Figure 3.2: Propagation scheme in 2D within a single Nyquist cell. The phase is
propagated at each actual cell (any square formed by four adjacent black dots) from
the lower-left corner to the upper-right corner of the Nyquist cell. The values of the
phase at the edges (marked with squares) need to be updated at each subsequent
propagation that includes the correction term. The propagation in each Nyquist cell
is iterated until a steady solution is reached. In the 1D case the propagation is done
within single line (left to right).

in Fig. 3.3.

3.2 Results

We present a few examples of the method described in the previous section. We

first consider phase propagation in 1D. We construct a sample that consists of a real,

strictly localized image f(x) of support size equal to unity. We take this image to be

effectively represented within the interval [−1/2, 1/2] as a Fourier series of finite (a

few) number of terms (2M + 1). This gives us:

f(x) =
M
∑

n=−M

Cne
2πinx, (3.30)
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Figure 3.3: General scheme for phase retrieval.
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where Cn = FNy
n = aNy

n exp
(

iθNy
n

)

. Since f is real, Friedel’s Law requires that

Cn = C∗
n, which implies than only M +1 coefficients in (3.30) can be fixed arbitrarily.

For the sample images we show in Fig. 3.4, we fixed the value of M to M = 8, i.e.

we take 8-component images. We use a half-normal distribution with variance σ2 = 1

to generate the amplitudes of the M + 1 independent coefficients, and a continuous

uniform distribution on the interval [0, 2π] for the phases. The phase θNy is set to

zero for the zeroth mode (j = 0). The constructed sample functions are represented

by solid lines. For the calculation of the phase-retrieved functions (dashed lines)

we assume knowledge of the signs of the phase differences between adjacent actual

points. This information could be available from (possibly) noisy estimates (Φn) of

such phase differences obtained externally [34]. Then a recursive phase correction

method, in which the only signs of phase difference estimates are used in combination

of the computed values |ωn|, should yield better results than using the values Φn

directly, provided that the values |ωn| are more accurate. This approach is applied

(and described in more detail) in [2]. Our results, obtained using (3.27) are compared

with reconstructions of the same system using Bates’s interpolation relation (3.13).

We call the latter Bates’s images. We show examples of reconstructions for three

different linear oversampling ratios: N = 4, 6, and 8. We found that our method

works well for N ≥ 4. For Bates’s images (right), we set the parameter ζ to an

optimum value via the minimization of an error criterion function defined in [2]. For

our own results (left), we used the value of ζ fixed by (3.25). It can be seen from

the figure that, for the cases considered our method yields consistently (although not

dramatically) better results than Bates’s method, with the additional advantage that

our equations have no adjustable parameters.
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Figure 3.4: Sample eight-component images (solid lines) and reconstructed images
(dashed lines). (a), (c) and (e) were obtained using the method described in section
3.1 with the correction term from (3.27). (b), (d) and (f) were obtained using Bates’s
method with (3.13). The (optimal) values of γ used for Bates’s reconstructions are,
respectively: γ = 0.509, γ = 0.497, and γ = 0.503. Different linear oversampling
ratios were used for each reconstruction: N = 4 for (a) and (b), N = 6 for (c) and
(d), and N = 8 (e) and (f).





Chapter 4

Localized phase retrieval

In this chapter, as with the previous one, we introduce a phase retrieval algorithm

from oversampled intensity measurements in 2D. We consider an approximation to the

particular case in which a real-space object is embedded in a sharp square support.

We obtain the relations that describe the dependence between different points in

reciprocal space when a Fourier expansion is used, and show that this dependence

becomes simpler when only a few of these modes are taken into account. Within

this approximation, we introduce an method that consists of two stages: In the first

one a few of the values for the phase within a localized region in reciprocal space are

obtained. These values are then used to obtain the rest of the unknown phase values

by means of a simple propagation method on the second stage. In section 4.2 we

present an example in which we use a downhill minimization method with different

starting points to solve the system of non-linear equations that arises on the first

stage. This chapter contains the work presented in Ref.[35]

55
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4.1 Method

We start by defining a continuous 2-D function represented (within a finite interval)

by a set of N2 discretely sampled points {ψr}. The components (x, y) of the index r

run from 0 to N − 1. The set {ψr} constitutes the unknown real-space object to be

reconstructed. The Discrete Fourier Transform (DFT) of ψr is given by

ψ̂k =
1

N2

N−1
∑

x=0

N−1
∑

y=0

ψre
−2πi(kxx+kyy)/N = Ake

iφk , (4.1)

where k runs over the same values as r. The values Ak, the moduli ψ̂k, are known from

intensity measurements 1 and from now on we will consider them as fixed parameters.

The phases {φk} are unknown and the solution of the phase problem lies in obtaining

these phases.

We consider a system in which the object (the finite set of values {ψr}) is embedded

in a support whose value outside the object is known. In particular we are interested

in the case where the support is zero outside the object. To represent an image

beyond the object one must sample the intensity (oversample) beyond the Nyquist

rate in reciprocal space. Here we consider a 2D object whose intensity is oversampled

by exactly a factor of 2 in each dimension; this corresponds to a system where the

support is 4 times as big as the object. We set its size to be (2N)2. An example of such

a system is shown in Fig. 4.1, obtained from a simulation of non-equilibrium domain

growth where the scalar order parameter is not conserved (Model A). From 4.1(b), we

can observe how the oversampled the intensity appears smoother than conventional

1It is important to keep in mind that the DFT is only an approximation to the continuous Fourier
Transform, whose square modulus is the actual quantity measured in an intensity detector. This
approximation should be valid as long as the whole sampling interval in reciprocal space is chosen
to be large enough so that the Fourier amplitude of wavenumbers beyond this interval is known to
be sufficiently small.



4.1. METHOD 57

k x

k y

 0  100  200  300  400  500
 0

 100

 200

 300

 400

 500

−30 −20 −10  0  10  20  30

−30

−20

−10

 0

 10

 20

 30

(a) (b)

Figure 4.1: (a) A 2D object embedded in a support 4 times is size. (b) The corre-
sponding diffraction pattern intensity; obtained by taking the DFT of (a).

Bragg sampling intensity (see Fig. 2.8).

In what follows, we show how sampling beyond the Nyquist rate in reciprocal

space gives rise to known relations between Fourier modes that intrinsically carry

information about the phase. The Sampling Theorem states that, given a continuous

localized function (i.e. a function whose value is zero outside a finite interval), its

Fourier Transform can be obtained from its values sampled at regular intervals whose

size is given by the Nyquist rate. Mathematically we can express this the following

way: Let f(t) be a function that vanishes for |t| > L. Then f̂(ω) is determined by its

values at ωn = nπ/L by the formula

f̂(ω) =
∞
∑

−∞

f̂(ωn)
sin(L(ω − ωn))

L(ω − ωn)
. (4.2)

We have considered the special case of a symmetric interval [−L,L] for f but it can

be shown that a similar expression to (4.2) can be obtained for any interval of size
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2L. From the Sampling Theorem it is clear that sampling at a frequency finer than

the Nyquist rate is unnecessary if one knows all the values (modulus and phase) of

f̂n = f̂(ωn). However, oversampling is useful when a part of f̂n (like the phase, in

our case) is unknown. For this case, (4.2) provides a relation between phases of the

in-between oversampled points and the points sampled at the Nyquist rate. For this

work we consider oversampling at exactly half the Nyquist rate in each dimension.

The expression obtained from (4.2) evaluated at the mid values ωn + π/2L is

f̂(ωn + π/2L) =
∞
∑

n′=−∞

f̂(ωn′)ĝ(n− n′) (4.3)

where

ĝ(n) =
(−1)n

π(n+ 1/2)
. (4.4)

In practice, we can only take a finite number of terms to compute (4.2) and therefore

we must return to a discrete representation. If for each dimension we take a set of

N values sampled at the Nyquist rate then by oversampling at half of the original

interval we get 2N points (in each dimension). Denoting the set of oversampled

points as ψ̂k = ψ̂kx,ky
, we call the original points even and the mid (oversampled)

points odd, and we obtain the following relations as discrete analogs of Eq. (4.3) in

two dimensions:

ψ̂2kx,2ky+1 =
1√
N

N−1
∑

ky′

= ψ̂2kx,2ky′
ĝky−ky′

(4.5)

ψ̂2kx+1,2ky
=

1√
N

N−1
∑

kx′

= ψ̂2kx′ ,2ky
ĝkx−kx′

(4.6)

ψ̂2kx+1,2ky+1 =
1

N

N−1
∑

kx′

N−1
∑

ky′

ψ̂2kx′ ,2ky′
ĝkx−kx′

ĝky−ky′
. (4.7)
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The set of N values ĝk, the discrete analog of ĝ(n) is given by

ĝk =
1√
N

(−1)k

tan(π(k + 1/2)/N)
. (4.8)

Note that, except for a constant factor, ĝk and ĝ(n) are identical for small values of k

(or n). Fig. 4.2 shows the plot of ĝk. By examining this plot and equations (4.5-4.7)

it becomes apparent how each of the odd-even (o-e), even-odd (e-o) and odd-odd (o-o)

modes depend on the even-even (e-e) neighboring modes. For instance, plot 4.2 shows

the way the contribution of each mode falls off as a function of distance. In any case,

we could in principle use equations (4.5-4.7) to obtain the phases of ψ̂2k by taking

the modulus of each equation and solving the system (which is in fact, over-specified)

for the N2/2 independent phases 2. However, the problem with this approach is that

the system of equations that results is nonlinear and difficult to solve for mainly two

reasons: (1) the coupling of modes (given by the range of function ĝk) and (2) the

fact that the number of unknowns (N2/2, the e-e modes) grows as the size of the

system. The approach that we take in this paper (which will be described shortly)

is based on an approximation that allows us to both limit the range of interaction

between modes and more importantly, limit the number of unknowns by picking a

finite region in reciprocal space for which the problem is locally determined (at least

in principle). The rest of the information is obtained by a propagation method that

involves solving only equations of one variable.

We start by pointing out the fact that the nature of the interaction between modes

depends on the shape of the support; for instance, the shape of the function ĝk is

specific to a perfectly squared support with sharp edges. Accordingly, we have found

2if the object is real, Friedel’s law implies that Ak = A2N−k and φk = −φ2N−k.



60 CHAPTER 4. LOCALIZED PHASE RETRIEVAL

ĝ
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Figure 4.2: Plot of function ĝk.
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Figure 4.3: The first few terms of the expansion of a 1-D support function (a pulse
of lenght N and height 1.)

that the use of other supports gives different interaction functions. We now consider

an expansion via Fourier series of a square support like the one in Fig. 4.1. For a 1-D

pulse function height 1 and length L within an interval of length 2L centered at the

origin (see Fig. 4.3) we obtain

S(x) =
1

2
+

∞
∑

n=1

(

2

nπ

)

sin
(nπ

2

)

cos
(nπx

L

)

. (4.9)

The discrete version, Sx, where x = 1, . . . , N , is simply obtained by substituting N

for L and taking the sum up to only N − 1. A 2-D square support can be formed by

the product SxSy.

Let ψP be a system of size (2N)2 consisting of four identical objects of size N2 like
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the one in Fig. 4.1-(a) embedded one in each corner. A system similar to the one in

Fig. 4.1a can be obtained taking the product of ψP with a window S = SxSy in one

of the corners of the system. In the case where S is an exact square support function

(all terms of the series are considered), the part of ψP that lies outside the window

has no effect in the intensity pattern. This should also hold approximately if enough

terms of the expansion of S are taken into account. We define our system as

ψS = S ψP . (4.10)

Taking the Fourier Transform and applying the Convolution Theorem we have

ψ̂S kx,ky
=

1

2N

2N−1
∑

kx′=0

2N−1
∑

ky′=0

Ŝkx−kx′
Ŝky−ky′

ψ̂P kx′,ky′
. (4.11)

Here Ŝkx
and Ŝkx

are the 1-D DFTs of Sx and Sy respectively. We now take Sx Sy to

be expansions of the pulse function up to the m-th term. We obtain the DFT as the

sum of the DFTs of each term. This gives us

Ŝ
(m)
k =

√
2N

{

1

2
δk,0+

+
m
∑

l=1

(

2

lπ

)

sin

(

lπ

2

)

(δk,l + δk,−l)

}

.

(4.12)

The Kroeneker delta terms in Eq. (4.12) correspond to the terms that survive in the

sums of Eq. (4.11) -the neighbors of mode k. It is interesting to note that the number

of terms taken into account in the expansion of S determines the range of interaction

between modes. Before rewriting explicit instances of Eq.(4.11) using (4.12) we state
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a few relations that can be derived from the way the system ψP is constructed:

ψ̂P 2kx,2ky
= 2ψ̂kx,ky

ψ̂P 2kx+1,2ky
= ψ̂P 2kx,2ky+1 = ψ̂P 2kx+1,2ky+1 = 0.

(4.13)

As a reminder, ψ̂kx,kx
corresponds to the DFT of only one (any) of the copies of

the object in ψP . From (4.13) it is clear that knowledge of the e-e amplitudes and

phases of ψ̂P is enough information to obtain ψ̂ whose inverse DFT gives us the object

(or image). The sum in (4.11) is also simplified by the fact that all even terms are

zero (sin(πl) = 0). The next step is choosing the number of terms to be taken into

account into the expansion of Sx,y and obtaining explicit results for (4.12). In this

work we have considered up to the third order in the expansion of Sx,y. We have

empirically found that this leads to a good compromise between having a reasonably

good approximation of the support and keeping the task of numerically solving the

resulting equations feasible. In the case of a first order expansion we obtain

ψ̂S 2kx,2ky
=

1

4
ψ̂P 2kx,2ky

(4.14)

ψ̂S 2kx,2ky+1 = −2i

π

(

ψ̂S 2kx,2ky
− ψ̂S 2kx,2ky+2

)

(4.15)

ψ̂S 2kx+1,2ky
= −2i

π

(

ψ̂S 2kx,2ky
− ψ̂S 2kx+2,2ky+1

)

(4.16)

ψ̂S 2kx+1,2ky+1 = − 4

π2

(

ψ̂S 2kx,2ky
− ψ̂S 2kx,2ky+2

−ψ̂S 2kx+2,2ky
+ ψ̂S 2kx+2,2ky+2

)

.

(4.17)

As with (4.5-4.7), one can take the moduli of Eqs. (4.15-4.17) for each non e-e

mode and solve for the e-e phases of ψ̂S. In fact this can be done easily, since only two
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phases are involved in each equation (four for (4.17)). Therefore, given a reference

phase (that of the central mode k for instance) one can obtain all other phases by

propagation. For this work, however, we consider the inclusion of the next two terms

in the expansion of the support function, given that this yields a significantly better

approximation of the square support as shown in Fig 4.4. The resulting equations for

non e-e modes ((4.14) still holds) are:

ψ̂S 2kx,2ky+1 = i
3
∑

n=−2

cnψ̂S 2kx,2ky+2n (4.18)

ψ̂S 2kx+1,2ky
= i

3
∑

n=−2

cnψ̂S 2kx+2n,2ky
(4.19)

ψ̂S 2kx+1,2ky+1 = −
3
∑

n=−2

3
∑

m=−2

Cm,nψ̂S 2kx+2m,2ky+2n. (4.20)

The vector of coefficients c is given by cT = (2/π)[−1/5,−1/3,−1, 1, 1/3, 1/5] and

Cm,n = cmcn. Figure 4.5 gives a schematic representation of equations (4.18-4.20).

The range of interaction in this case includes three e-e neighbors to each side of the

e-o (or o-e) modes and 36 around the o-o modes. Again, taking the moduli of the

non e-e modes gives us the equations to obtain (in principle) the unknown phases of

the e-e modes. However, because the interaction is now deeper, the coupling of the

nonlinear equations is stronger and the system is harder to solve than for the first

order expansion. Fortunately the method we introduce here involves solving a fixed

(and relatively small) number of algebraic equations that does not depend on the size

of the system.

We consider a square subsystem of 17× 17 modes in reciprocal space, centered at

the origin (k = 0). Within this system there are 81 phases (the phases of the e-e
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Figure 4.4: First (a), second (b) and third (c) order expansions of the support function
in 2D. (d) Corresponds to the exact support function.
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odd−odd modes

pivot modes

even−odd modes

odd−even modes

range of interaction

Figure 4.5: Graphical representation of the dependence of non e-e modes on e-e

modes (grey locations). The e-e modes enclosed in the marked regions are the ones
that determine the value of chosen pivot modes via Eqs. (4.18-4.20). Each type if
equation (horizontal, vertical, and combined) is represented.
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modes) whose specification determines the remaining modes via equations (4.19-4.20).

Yet, because of Friedel’s law only 40 of this 81 phases are independent (the phase

of the central mode is assumed to be known). We also find exactly 40 independent

equations within this system which can be horizontal (o-e), vertical (e-o) or combined

(o-o). With this in mind we are able to split the solution of the problem in two

stages (Fig. 4.6 ). In the first (core) stage, the 40 central independent phases are

found using 40 independent equations of the form (4.18-4.20), this is the difficult part

because all equations are nonlinear and we need to use a numerical method to solve it.

The second (propagation) stage consists of applying the vertical (4.18) and horizontal

(4.19) equations successively to find the phases outside of the central subsystem. This

can be done in a much easier way because one needs to solve for only one variable in

each equation. In the next section we briefly describe how we apply this two stage

method to retrieve the phase of a sample system.

4.2 Results

We applied the method described in the last section for a system that consists of

the object in Fig. 4.1 embedded in the support of Fig. 4.4(c) (see Fig. 4.7). The

simulated intensity was obtained by taking the DTF of the system, and the resulting

amplitude values were used as the only available data.

As we mention above, the number of unknowns (and equations) to solve for in

the first stage does not depend on the size of the system. Instead it is fixed by the

number of terms taken into account in the expansion of the support function. For

the first stage, the system of equations is obtained by taking all possible (horizontal,

vertical and combined) independent equations of the form of (4.18-4.20) that contain



68 CHAPTER 4. LOCALIZED PHASE RETRIEVAL

(a)

(b)

Figure 4.6: Two-stage method for obtaining the phases of the e-e modes (which is
enough to determine the structure of the object). In the first stage (a) a region of fixed
size (grey area) is selected around mode k = 0 (central black dot). Within this region
there are exactly 40 independent phases and 40 independent equations relating this
phases; these equations can be solved numerically. In the second stage (propagation),
the value of neighboring e-e phases outside the core is obtained successively. Note
that, in the equation relating 5 phases inside the central region and one outside of it,
the latter is the only unknown.
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Figure 4.7: Sample pattern for phase retrieval.
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Figure 4.8: Convergence of the error function E for the minimization method (stage
1 of the phase retrieval scheme). A Conjugate Gradients scheme was used in which
the Fletcher-Reeves and the Polak-Ribière search directions were alternated every 200
iterations. The vector that minimizes E (tol = 10−9) yields the solution of the 40
core phases.
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all the independent variables (phases) within the central region, and then obtaining

the squared modulus for each; this eliminates the unknown phases of the pivot points.

It also results in the creation of cosine terms whose arguments are the phase differences

between the e-e modes contained in the equation. This equations are nonlinear and

cannot be solved by conventional matrix inversion methods. An algorithm such as

Newton’s method may be applied but we have found that, for this particular case it

tends to be numerically unstable unless we start with a very good initial estimate.

Our approach was to transform the system of equations into a minimization problem.

Since the resulting objective function is analytical, gradient search methods such as

Steepest Descent or Conjugate Gradients can be applied. However, as it is expected

from the non-linearity of our equations, local minima, which correspond to false

solutions, are encountered. To tackle this problem we took a set of different starting

points (picked randomly); and then chose the solutions that yielded the smallest values

for the objective function after minimization (those below an arbitrary, pre-defined

tolerance) to ensure that we found a global minimum. For our objective function we

found the best results by applying a scheme using the Conjugate Gradients method;

and alternating between the Fletcher-Reeves [36] and the Polak-Ribière [37] search

directions every few iterations. Figure 4.8 shows the convergence rate of the objective

(error) function for a “good” starting point. We found that typically 1/20 of the initial

guesses converged to global minima. The vector of 40 phases found to minimize the

objective function was used in the propagation stage to find the rest of the phases.





Chapter 5

Phase retrieval for ordering

systems

In this chapter we are concerned with the time dependence of the Fourier transform

phase of coherently scattered radiation from a system undergoing ordering. Specif-

ically, we derive a simple model that takes into account the known scaling laws for

ordering dynamics to predict the statistical behaviour of the Fourier transform phase.

We consider a two-dimensional system of domains undergoing ordering for both the

non-conserved and conserved order parameter cases (models A and B respectively).

In section 5.2, predictions from our model are compared with numerical experiments

where a time dependant Ginzburg-Landau equation is integrated to compute the dy-

namics of the real-space system; then a simple numerical (discrete) Fourier Transform

is applied to compute the Fourier phase as well as the amplitude (directly related to

scattering intensity). An average phase-decorrelation time (the average time it takes

for the phase to change by a specific amount) is obtained using both our theoretical

model and the numerical results. In section 5.3, this quantity is used to implement a

73
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phase-retrieval strategy that consists of measuring scattering intensities of the same

non-equilibrium system at different times, and then applying an iterative phase re-

trieval algorithm (like Fienup’s Hybrid Input-Output) recursively with improved ini-

tial estimates for faster convergence and higher convergence rates. In the following

section we present the derivation of our model. The content of this chapter is based

in the work presented in Ref. [38].

5.1 Model

We begin by deriving a simple model to obtain the standard deviation of the phase

change between two times of the domains evolution for ordering dynamics. Let there

be a system described by order parameter ψ(r, τ). We consider ordering after a

symmetric quench into the coexistence region. In the late time regime, where domains

are well defined and of size considerably larger compared to the thickness of interfaces,

the value of ψ at a point within one of the domains can be approximated by the

equilibrium value of that order parameter under the present set of conditions. For

instance, let ±ψeq, with ψeq > 0, be the equilibrium value of the order parameter,

then we consider ψ(r, τ) ≃ ±ψeq everywhere except at the interfaces. Furthermore,

we neglect the interface thickness.

Within this approximations we take our system to be described by the field ψ(r, τ),

which can take only the values ±ψeq. Let ψ̂(k, τ) be the spacial 2D Fourier transform

of ψ(r, τ). We can write ψ̂ in terms of its modulus A and phase φ,

ψ̂(k, τ) = A(k, τ)eφ(k,τ). (5.1)
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As mentioned in section 2.3, at late times of the evolution of domains, the statistical

properties of the system depend on time only through a characteristic length, R(t).

This quantity corresponds to the average domain size.

Within our approximations, both the magnitude and argument of the Fourier

transform are fully determined by the position of the interfaces. Hence the motion of

the interfaces completely determines the time evolution of both modulus and phase.

With this in mind we have constructed the simplest possible model that both allows

for some analysis and roughly preserves the same features of the real domains in

terms of interface motion. We describe this model below, mentioning a few important

approximations along the way.

We define our model system, ψ0(r, τ), to be a set of non-intersecting 2D circles

with their centres randomly distributed and with sizes obeying the following time-

dependent distribution:

n(κ) = ακρ(κ), (5.2)

where, α is a proportionality constant n(κ) is the proportion of circles of curvature

κ (radius r = 1/κ) and ρ(κ) is the curvature distribution of the true system, defined

in such way that ρ(κ)dκ is proportional to the total interface length of curvature

κ and κ + dκ. The proportionality constant in Eq. (5.2) can be obtained via the

normalisation of n(κ) which gives α = 1/〈κ〉 = R.

We now take the Fourier Transform of ψ0(r). Since this is a linear operator, we

can define the quantity δψ̂0(k, κ) as the partial Fourier Transform of all circles of

curvature between κ and κ+ dκ. The value of ψ0(k) is then:

ψ̂0(k) =

∫

∞

0

n(κ)δψ̂0(k, κ)dκ. (5.3)
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In a finite system (because the number of circles is a discrete quantity) the integral

in Eq. (5.3) must become a sum.

Our next approximation is that the distribution n(κ) is sufficiently sharp and

dominated by the mean. In this case n(κ) = δ(κ− 〈κ〉) and ψ̂0(k) = ψ̂0(k, κ). Given

now that all circles are assumed to be of radius R = 1/〈κ〉 our model system ψ0(r, τ)

is described by only R and the set {rj} representing the positions of the centres of

the circles. Ignoring the constant background term, whose Fourier transform gives a

term proportional to δ(k), we have, for k 6= 0,

ψ̂0(k;R, {rj}) = 2ψ0

∑

j

Π̂(k;R, rj), (5.4)

where,

Π(r;R, rj) =















1, if |r − rj| ≤ R

0, otherwise,

(5.5)

corresponds to a circular step function of radius R, centered on rj. Its Fourier trans-

form is proportional to the Bessel function of the first kind and order one, J1 with a

phase factor determined by the value of rj:

Π̂(k;R, rj) =
2πR

k
J1(kR)eik·rj . (5.6)

Substituting Eq. (5.6) into Eq. (5.4) we get

ψ̂0(k;R, {rj}) =
4πψ0R

k
J1(kR)

∑

j

eik·rj . (5.7)

The phasor sum on Eq. (5.7) becomes a random walk in 2D if the positions {rj}
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are randomly distributed. Next, we consider a small displacement of the interface,

which in our model system corresponds to an expansion or contraction of the circles

that constitute it. It is important to stress at this point that we are not modelling

our real systems domains to be ψ0. Rather, we are modelling the displacement of the

domains interfaces within a short period of time (for the purpose of phase change)

as if it were approximately given by the displacement of the interfaces in our model

system. We consider the simplest case of interface displacement that produces an

argument change in our model system, which is the uniform expansion or contraction

of circles. To first order, we consider that displacement to be given, in average, by

the change in characteristic domain size δR within a short time δτ . Thus each circle

is allowed to either randomly contract or expand (but not displace) by δRj = ±|δR|.

The resulting change in ψ0 is given by

δψ̂0(k;R, {rj}) =ψ̂0(k; {R + δRj}, {rj})

− ψ̂0(k;R, {rj})

=4πψ0RJ0(kR)
∑

j

eik·rjδRj (5.8)

for small values of |δRj|. Since the signs of δRj are random, the sum in Eq.(5.8) is

also a random walk but independent to that of Eq. (5.7). Seeing both ψ̂0 and δψ̂0 as

statistically independent phasors and knowing the variance of the magnitude of each,

we can estimate the variance of the argument difference δφ:

〈δφ2〉 ≈ 2

(〈|δR|〉
R

)2

. (5.9)

To obtain Eq. (5.9) we have, in addition, taken only the lowest order terms in
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the expansion of both J0 and J1, thus making it only valid for kR ≪ 1 (small

wavenumbers). Note that, for that limit, the above expression is no longer dependent

on k. Now we substitute the time dependence into R and δR, given by R = [Bτ ]n

and δR ≃ (dR/dτ)δτ = nBnτn−1δτ . Substituting in Eq. (5.8), we get

D(τ, δτ) ≡ 〈δφ2〉1/2 = βnτ̄−1δτ, (5.10)

where τ̄ is the average time within the interval δτ and β is a proportionality constant.

Equation (5.10) gives us the RMS value of the change in argument as a function of

time. It should be valid for small time intervals and small values of kR. Even though

many approximations were made in its derivation, equation (5.10) is in fairly good

agreement with our numerical results as will be seen in the following sections.

5.2 Numerical Work

In this section we obtain, via numerical simulations, a few important properties to

describe the time evolution of the Fourier transform phase during phase separation.

To obtain ensemble averages of quantities, we perform a set of simulations for systems

undergoing phase-ordering after a temperature quench into a coexistence region, vary-

ing only initial conditions determined by thermal noise. We consider the dynamics

described by both a non-conserved (Model A) and a conserved (Model B) order pa-

rameter. For each case we use a deterministic equation that can easily be integrated

in time using Euler’s method. The derivation of this equation as well as the details of

the integration procedures are identical those presented in Ref. [39] for Model A and

Ref. [40] for Model B. As is done in both of these references, thermal noise is neglected
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Figure 5.1: Contour plots of scaled phase decorrelation function, C(t1, t2). (a) Model
A (non-conserved) dynamics. (b) Model B (conserved) dynamics. Note that plots
are symmetric about the t1 = t2 line since C(t2, t1) = C(t1, t2).
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Figure 5.2: Characteristic time difference log(δtc) forD = 〈δφ2〉1/2 = 45◦ as a function
of average time, log(t̄). For both plots, Model A (a) and Model B (b), the fit for early
times (left solid line) has a slope of ≈ 1, which gives δtc ∝ t̄.
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throughout the domains’ evolution and the source of randomness is the initial state.

In Refs. [39] and [40], intensity is calculated from the Fourier transform modulus in

simulations of phase-ordering dynamics. These results are used to compute the two-

time covariance correlation functions to characterise intensity (speckle) fluctuations

from the average (whose behavior is well known). In the case of the phase, which is

not measurable, its average value (at any time) has no physical meaning; it is only

useful when it is known at a particular instance. However the average rate of change

of the phase in time is a useful quantity since it is related to the real space evolution

of the domains. In this work we compute what we define as the phase decorrelation

function:

Ck(k, τ1, τ2) = 〈(φ(k, τ1) − φ(k, τ2))〉1/2. (5.11)

As expected, this quantity can also be collapsed into a scaling function dependent

only on scaled times ti = Bk1/nτi at the late stages of phase-ordering: Ck(k, τ1, τ2) =

C(t1, t2). By construction C(t, t) = 0, and increases as ∆t increases.

To compute C(t1, t2), all simulation parameters (except system size; we took 512)

were kept identical to those used in Refs. [39] and [40] to facilitate comparison of

results. The contour plot of the square root of C(t1, t2) for models A and B is pre-

sented in figure 5.1. These plots are similar to those of two time intensity covariance

presented in Refs. [39] and [40]. Following their approach, we also substitute t1 and

t2 by the more natural variables: time average t̄ = (t1 + t2)/2 and time difference

δt = |t2 − t1|. We also define a ‘characteristic’ value δtc that corresponds to the time

difference at which 〈δφ2〉1/2 has a definite value. In figure 5.2 we plot (again for model

A and model B) the characteristic time difference vs. average time for 〈δφ2〉1/2 = 45◦.

We can see that for both cases, at small average times δtc increases linearly with time.
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This result agrees with the one obtained with our model on the previous section (note

that Eq. 5.10 remains unchanged if we use rescaled time t instead of τ). Below, this

result is used to obtain time intervals for which the angle decorrelation is constant,

as this helps us choose optimal “snapshots” of the system for phase retrieval.

5.3 Results

We now present an example where we incorporate the results obtained in the previ-

ous section into our phase retrieval strategy. The way we proceed is essentially by

generating a series of simulated intensity “snapshots” at time intervals determined

with the use of Eq. (5.10). These “snapshots” represent measurements at different

times of a single undergoing domain growth. We let {τj}; j = 1, 2, ...Ns be the set of

(rescaled) times at which these snapshots are taken. They are chosen the following

way: the first time τ1 of the series is chosen to be any time within the late-stage

growth regime (where scaling applies and domains are well defined). The next step

is to apply Eq. (5.10) recursively (having chosen a value for the constant β and for

D) to obtain the rest of the time series. The last time of the series should be one

for which the system possesses a well-defined and relatively simple structure; simple

enough to be easily reconstructed (without stagnation) by a standard phase retrieval

method like HIO regardless of the initial guess employed. In the following sample

run, where we consider domain growth (Model A) in a 2D system of size 256 × 256.

We let D = 45◦ and we obtain the value of β from the plot of Fig. 5.2-(b). In the

form of a recursive relation, Eq. (5.10) (recall that under the approximations of our
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model, Eq. (5.10) holds for both τ and t) reads:

τn+1 = γτn, (5.12)

where γ = (2 + ǫ)/(2 − ǫ) and ǫ = Dβ/n. Equation (5.12) shows the times {τj}

constitute a geometric series. Empirically, we found τ1 = 12.5 and τN = 500 to be

appropriate initial and final times. For the value of γ ≃ 1.2 obtained from the graph,

we found that approximately 22 time frames cover the entire time interval. The value

of γ was slightly adjusted to ≃ 1.193 so that the final frame corresponds to τ = 500.

For the final intensity frame, we applied Fienup’s HIO algorithm (details of its

implementation are are given in Ref. [10]) with finite, tight support constraints to

retrieve the image ψ(r). As initial input image we used a set of random numbers

uniformly distributed between −ψeq and ψeq. In what follows, we refer to this initial

random guess as random input. Once the phase (and therefore) the image at τN

was found. We used this image as input (initial estimate) for the HIO algorithm at

τN−1. Because we expect some degree of correlation between the phase at these two

times, the input ψN must be a better estimate than a random one. Indeed, as we

show below, the convergence of the algorithm is much faster in the former case. We

repeat this procedure recursively for all time-frames until we get to τ1. In figure 5.3

we compare the error metric (ε) convergence curves obtained with this strategy to

the same curves obtained from random inputs. We pick sample intensity snapshots

(we show the corresponding order parameter images instead) at four different times

between (and including) τ1 and τN . We found, as Fig. 5.3 shows, that using the

strategy we propose above, drastically reduces convergence time for each sample. An

interesting finding is that the improved initial estimate (IIE) convergence curves are
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Figure 5.3: Patterns of domain growth (model A) after temperature quench, at four
different times: (a) τ = 12.5, (b) τ = 35.8, (c) τ = 122.8 and (d) τ = 500. (e)-
(h) Error metric, ε vs. number of iterations for phase retrieval of the corresponding
patterns on the left. Convergence curves for random inputs (RI) are compared with
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all approximately the same (they overlap) for different times. Fig. 5.4 shows ensemble

averages of IIE curves for the same set of times shown in Fig. 5.3. Collapse of the

data to a single curve is apparent. Empirically we found the best fit to this curve to

be a stretched exponential.

We have also studied the effect of the time sampling rate, which is determined

by the parameter γ. Our results are presented in Fig. 5.5, which was obtained the

following way: We computed an ensemble of 20 samples of ordering systems with

model A dynamics after a temperature quench from different random initial states.

For all samples, we took the patterns at τ0 = 12.5 and τf = 500 as, respectively, the

initial and final sampling times. We then varied the number of intensity snapshots

(Ns) to be taken between τ0 and τf and computed the corresponding value of γ,

γ =

(

τf
τ0

)
1

Ns+1

. (5.13)

The intensity sampling times for each series were obtained using Eq. 5.12. For each

value of gamma, the total number of Fienup’s HIO steps required to recursively

obtain ψ(r, τ0) from ψ(r, τf ) involving the in-between intensity measurements (as in

the method described above) was computed and the ensemble average taken.

The plot of Fig. 5.5 shows how, if we wish to recover only ψ(r, τ0) from ψ(r, τf ),

intensity sampling at intermediate times is unnecessary. It also shows that values

of γ below ∼ 1.007 correspond to excessive sampling. We observed that the reason

behind the sharp increase in number of iterations beyond this value is that each

sample requires at least one HIO step to converge. We can also notice that there

is no significant variation for the computational time between the values γ ∼ 1.02

and γ ∼ 1.26. It is important to keep in mind that the above analysis does not take



5.3. RESULTS 87

γlog(log(  ))

−3.0 −2.5 −2.0 −1.5 −1.0 −0.5 0.0
 0

 500

 1000

 1500

 2000

 2500

 3000

T
ot

al
 n

um
be

r 
of

 H
IO

 s
te

ps

Figure 5.5: Average number of total HIO steps needed to reconstruct a pattern at
time τ0 = 12.5 starting from a pattern at time τf = 500 vs. sampling time ratio γ.
The largest value of γ corresponds to no intensity samples between τ0 and τf (Ns = 0)
while the smallest value corresponds to Ns = 4095 samples.



88 CHAPTER 5. PHASE RETRIEVAL FOR ORDERING SYSTEMS

into account the extra additional information obtained from the images retrieved at

intermediate times, which is one of the reasons our strategy could still be useful in

practice.



Chapter 6

Conclusions

Throughout this work, we have studied several topics related to methods for phase

retrieval from intensity measurements.

In chapter 3, we presented an algorithm for phase retrieval based on recursive phase

propagation from estimated phase differences between Fourier samples for strictly

localized images. Our work is based on a higher order correction to an expression ob-

tained by Bates [1–3, 21] to compute phase difference estimates. We showed, through

a few examples, how our method yields improved estimates for the phase differences

as well as for image reconstructions in 1D. Unfortunately, we have found problems for

the application of our algorithm to images in higher dimensions. Specifically, we have

observed the presence of “unsteady” states when applying the correction terms for the

phase differences to a single Nyquist cell propagation. This is related to the fact that

the sign of each actual phase difference is chosen by a “minimum difference between

paths” criterion, and that the choice may be wrong if the phase difference estimates

are not accurate enough. Although we have not been able to overcome this difficulty,

we believe that it should be resolved once better estimates for each phase difference

89
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can be computed at the preliminary propagation stage. Further improvement could

be achieved by making the function Jsl to be more extended; although this would im-

ply the need for the inclusion of additional unknown phases in the correction term of

(3.27). The computational effort required by this method is not significantly greater

than that required by Bates’s method. For an image consisting of Md components

and a linear oversampling ratio of N in each direction, the time complexity of the

algorithm is O(MdNd) times the number of iterations required for each Nyquist cell

propagation to converge. Empirically, we found this to be ∼ 30−50, regardless of the

values of N and d. Like all recursive propagation algorithms, this one has the draw-

back of being overly sensitive to both noise in intensity measurements and rapid phase

variations, which lead to error buildup. Consequently, it is most likely inappropriate

for images with high frequency components. However, it can be readily implemented

as a refinement for the “crude phase estimation” stage (followed by “Fienup tidy-

ing”) of the composite method proposed in [41], given that our approach avoids the

stagnation problems associated with the most common iterative algorithms.

A somewhat similar approach was adopted in chapter 4, where we introduced

algorithm for phase retrieval from intensity measurements using a special support

function which approximates a sharp-edged square support. We showed that, taking a

few terms of a Fourier series expansion of the support function, it is possible to reduce

the phases that need to be found simultaneously to a number that is independent of

the size of the system, which greatly simplifies the solution of the phase problem. We

also showed how the remaining phases can be found successively using a propagation

method. Unfortunately, we found that the direct implementation for this method

for the case of the sharp square support fails because, as the equations no longer

hold exactly, their approximate solution via minimization becomes unstable. This
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is further worsened by error buildup during the propagation stage. We believe the

inclusion of more terms in the expansion of the support may help to solve this problem.

In doing this, only the range of interaction between modes and the number of modes

that must be determined simultaneously during the first stage is affected. Thus, the

generalization of this scheme for an arbitrary number of terms could be an interesting

task for future works. Moreover, different support geometries (like circular) and other

system/support size ratios could be studied.

In chapter 5 we studied the time dependance of the fluctuations of the Fourier

transform phase of a system undergoing ordering. This was achieved by the use

of a simple model and through numerical simulations. We found an expression to

estimate the time interval for which the phase statistically decorrelates. This time

interval depends on the average time between two states of the domains’ evolution. We

also devised and applied an effective strategy for phase retrieval that greatly reduces

the convergence time of a typical algorithm like Fienup’s HIO. This can be done by

picking intensity “snapshots” at optimally chosen time intervals that are less than

the corresponding decorrelation time. Initially, we solve the phase problem for a late

time frame, where the domains have coarsened. Then we use the solution as an initial

guess for an earlier more complex frame. This is repeated recursively backwards in

time. Our method features only one adjustable parameter which determines average

angular distance between frames. In a real experiment, this strategy’s applicability is

limited by the rate at which intensity measurements are available. Unfortunately, as

of today, scattering experiments for systems undergoing ordering cannot collect high

quality coherent data at the typical rate at which first order transitions occur [42].

In the hope that in the future higher brilliance sources and better detectors become

available, the use of experimental data would constitute a good test for the practical
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application of our proposed phase retrieval strategy.
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