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 Abstract 

Alzheimer’s disease (AD) and Parkinson’s disease (PD) are among the prevailing causes 

of dementia and movement disorder, respectively. These neurodegenerative diseases are 

physiologically complex and symptomatically heterogeneous. Neuropathologically, AD is 

characterized by the accumulation of amyloid plaques and tau tangles, along with characteristic 

patterns of gray matter atrophy. However, this multi-faceted disorder also involves other, often 

earlier physiological alterations such as inflammatory, vascular, metabolic, and neuronal activity 

dysregulation. While the main hallmarks of PD are the aggregation of α-synuclein and the 

selective death of the nigrostriatal dopaminergic neurons, many other nuclei in the central and 

peripheral nervous system are also affected. Most cases of AD and PD are sporadic, with 

uncertain etiology. We lack an integrative understanding of how multiple physiological systems 

contribute to disease progression, what molecular and cellular substrates underlie their 

interactions, and how these factors vary across individuals. As a result, no disease-modifying 

treatments exist despite decades of efforts.  

Critically involved in inter-cellular communication, neurotransmission is a potential link 

between the varied pathophysiology of AD and PD. Multiple neurotransmitter systems are 

associated with both disorders and have been a focus of pharmacological treatment. The loss of 

the dopaminergic neurons of the substantia nigra defines the motor symptoms of PD, and the 

death of acetylcholine-producing neurons of the basal forebrain is implicated in AD and other 

dementias. Many other neurotransmitter systems are also linked to specific symptoms. Yet, a 

systematic understanding of neurotransmission dysfunction has been impeded by both technical 

and practical limitations of molecular imaging. 
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This thesis has attempted to address this gap using a whole brain computational model 

incorporating neurotransmitter receptor architecture as a mediator of macroscopic physiological 

interactions over the course of AD and PD progression. These receptor-enriched multifactorial 

causal models (re-MCM) combine longitudinal multi-modal neuroimaging data (including 

structural, functional, diffusion and perfusion MRI, and molecular imaging for amyloid, tau, 

dopamine transporter, and glucose metabolism) and templates of neurotransmitter receptor 

concentrations (measured by post mortem autoradiography). These subject-specific models are 

defined by interpretable parameters corresponding to i) regional effects due to receptor-mediated 

interactions between pathophysiological factors, and ii) propagation of abnormality along the 

structural connectome. By comparing model-inferred mechanisms with multi-domain symptoms 

across patients, latent “disease axes” can then be identified at the population level.  

Our results support a multi-neurotransmitter view of AD and PD, and emphasize the need 

to consider individual patient-specific mechanisms driving disease progression. In AD, two 

prominent axes are found, corresponding to i) executive dysfunction and ii) memory, language, 

and visuospatial dysfunction. In PD, i) motor symptoms and psychomotor speed define the major 

axis, while ii) visuospatial, working memory and psychiatric symptoms characterize a secondary 

axis. Notably, the extent of model-inferred deviation from a normative distribution of 

neurotransmitter mechanisms is correlated with symptom severity. 

This exploratory analysis of model-inferred latent mechanisms allows us to link 

neurochemistry with macroscopic neuroimaging alterations. In a wider context, the approach 

proposed in this thesis lays the groundwork for mechanistic insight into the biology of 

neurodegenerative diseases, as well as a systematic approach to personalized and precision 

medicine approaches to pharmacological target selection. 
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Résumé  

La maladie d'Alzheimer (MA) et la maladie de Parkinson (MP) figurent, respectivement, 

parmi les principales causes de démence et de troubles du mouvement respectivement. Sur le 

plan neuropathologique, la MA se caractérise par l'accumulation de plaques amyloïdes et 

d’enchevêtrements de tau, ainsi que par des schémas caractéristiques d'atrophie de la matière 

grise. Cependant, ce trouble multifacette implique également d'autres altérations physiologiques 

telles que la dysrégulation inflammatoire, vasculaire, métabolique et neuronale. Alors que les 

principaux signes distinctifs de la MP sont l'agrégation de l'α-synucléine et la mort sélective des 

neurones dopaminergiques nigrostriés, de nombreux autres noyaux du système nerveux central et 

périphérique sont également affectés. La plupart des cas de MA et de MP sont sporadiques, avec 

une étiologie incertaine. Il manque une compréhension intégrative de la manière dont les 

multiples systèmes physiologiques contribuent à la progression de la maladie, quels substrats 

moléculaires et cellulaires sous-tendent leurs interactions, et comment ces facteurs varient d'un 

individu à l'autre. En conséquence, aucun traitement modificateur de la maladie n'existe malgré 

des décennies d'efforts.  

Contrôleurs de communication intercellulaire, la neurotransmission est un lien potentiel 

entre la pathophysiologie variée de la MA et de la MP. De multiples systèmes neurotransmetteurs 

sont associés à ces deux troubles et ont été le point focal des traitements pharmacologiques, 

notamment les rôles bien connus de la dopamine dans le parkinsonisme et de l'acétylcholine dans 

la démence. De nombreux autres systèmes neurotransmetteurs sont également liés à des 

symptômes spécifiques. Cependant, une compréhension systématique de la dysfonction de la 

neurotransmission a été entravée à la fois par des limitations techniques et pratiques de l'imagerie 

moléculaire. Cette thèse a tenté de combler cette lacune en utilisant un modèle mathématique du 
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cerveau entier incorporant la concentration des neurorécepteurs comme médiateur des 

interactions physiologiques au cours de la progression de la MA et de la MP. Ces modèles 

combinent des données de neuroimagerie multimodale de patients avec des modèles post-

mortem de concentrations de neurorécepteurs. Ces modèles spécifiques à chaque sujet sont 

définis par des paramètres interprétables correspondant à i) des effets régionaux dus aux 

interactions médiées par les récepteurs entre les facteurs pathophysiologiques, et ii) la 

propagation de l'anomalie le long du connectome structurel. En comparant les mécanismes 

inférés par le modèle avec les symptômes multi-domaines chez les patients, des "axes de 

maladie" latents peuvent alors être identifiés au niveau de la population.  

Nos résultats soutiennent une vision multi-neurotransmetteur de la MA et de la MP, et 

soulignent la nécessité de considérer les mécanismes spécifiques à chaque patient conduisant à la 

progression de la maladie. Dans la MA, deux axes saillants sont trouvés, correspondant aux 

dysfonctions i) des fonctions exécutives et ii) de la mémoire, du langage et des habiletés 

visuospatiales. Dans la MP, i) les symptômes moteurs et la vitesse psychomotrice définissent 

l'axe principal, tandis que ii) les symptômes visuospatiaux, les troubles de la mémoire de travail 

et les symptômes psychiatriques caractérisent un axe secondaire. Notablement, l'étendue de 

l'écart inféré par le modèle par rapport à une distribution normative des mécanismes 

neurotransmetteurs est corrélée à la sévérité des symptômes.  

Cette analyse exploratoire des mécanismes latents inférés par le modèle nous permet de 

relier la neurochimie aux altérations neuroimaging macroscopiques. Dans un contexte plus large, 

l'approche proposée dans cette thèse jette les bases d’une compréhension mécaniste de la 

biologie des maladies neurodégénératives, ainsi qu'une approche systématique de la médecine 

personnalisée et de la sélection de cibles pharmacologiques de précision. 
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SNpc Substantia nigra pars compacta 

SNpr Substantia nigra pars reticula 

STAIAD State-Trait Anxiety Inventory for Adults 

STN Subthalamic nucleus 

SuStaIn Subtype and Stage Inference 

SVD Singular value decomposition 

TDP-43 Transactive response DNA-binding protein 43 

TVB The Virtual Brain 

VGAM Vector generalized additive model 

WMH White matter hyperintensities 
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Chapter 1. Introduction 

Background and rationale 

Neurodegenerative disorders (NDD) involve progressive structural and functional 

alterations to specific neuronal populations, manifesting as clinical syndromes such as dementia 

and movement disorders [1]. While there are varied and complex genetic [2] and environmental 

[3] contributors, most cases of NDDs are “sporadic” and not attributed to Mendelian inheritance. 

The major risk factor for NDDs is ageing, with which they share molecular hallmarks such as 

genomic instability, epigenetic modifications, and mitochondrial dysfunction [4]. However, the 

causes of sporadic NDD onset, as a process distinct from normal ageing, remain unknown.  

Alzheimer’s disease (AD) and Parkinson’s disease (PD) are the two most common 

NDDs, and the leading causes of dementia and movement disorder, respectively [5]. The 

prevalence of AD and PD is substantial in seniors and rises exponentially with age [6] [7]. In a 

globally ageing population, the number of individuals with dementia is expected to triple 

between 2019 and 2050 [8], and the worldwide burden of PD has already doubled in the past 

generation [9]. These trends represent enormous quality-of-life and economic costs, for the 

patient, their caregivers, the healthcare system, and wider society [10]. 

Yet, there are currently no treatments that can stop the progression of AD or PD, largely 

due to the incomplete understanding of disease biology, and the marked physiological and 

symptomatic variability between individuals [11]. The brain is a complex organ, with many 

physiological processes responsible for healthy function. Their disruption contributes to 

pathways shared across NDDs and with ageing, such as oxidative stress, apoptosis, genomic 

instability, impaired proteostasis, cellular senescence, and immune, metabolic and vascular 
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dysfunction [1] [4] [12]. Although NDDs are categorized by disease-specific symptoms and 

pathophysiology, there is notable inter-patient heterogeneity and inter-disease overlap [13] [14]. 

The underlying dysfunction often begins decades before symptom onset [15] [16] [17], with the 

etiology of sporadic disease onset being unknown.  

AD is characterized by the neuropathological accumulation of amyloid plaques and tau 

tangles along with gray matter atrophy, but also involves many physiological alterations 

including vascular, inflammatory, metabolic and neuronal activity dysregulation [18] [19]. [20] 

[21] [22]. PD is primarily associated with the loss of nigrostriatal dopaminergic neurons, but has 

a complex pathophysiology encompassing many locations in the central and peripheral nervous 

systems [23] [24]. Particularly, both diseases exhibit selective vulnerability of neuronal 

populations from specific neurotransmitter systems, such as the basal forebrain cholinergic 

system in AD [25], and the adrenergic locus coeruleus and serotonergic raphe nuclei and their 

cortical projections in PD [24] [26].  

In addition to the extensive evidence of disease-affected neurotransmission, these systems 

are targeted pharmacologically in the form of cholinesterase inhibitors for dementia and 

dopaminergic therapy for PD [25] [24]. However, this treatment is symptomatic and not disease-

modifying. Despite recent progress in anti-amyloid monoclonal antibodies, they have also 

arguably failed to demonstrate clinically significant benefit [27] (although this may depend on 

the trial duration [28]). With an imperfect understanding of etiology and pathogenesis, we lack 

definitive biological markers of progression and targets for treatment. As a result, the diseases 

are currently incurable. 

A major barrier to our scientific understanding of NDDs as well as their treatment is the 

missing link between cellular and molecular mechanistic dysfunction, their consequences on 
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regional, network and whole-brain integrity, and the appearance of clinical symptoms. In 

addition to case-control comparisons, there is a need for a systems-level understanding of NDDs 

as i) dysregulated physiological interactions [29], ii) the molecular and cellular features 

underlying vulnerability, and iii) how inter-individual variability in these interactions relates to 

symptomatic profiles. 

A potential link between these disease factors is neurotransmission, which underlies 

communication and cell-cell interaction in the brain. Computational models of 

neurotransmission-mediated dysfunctional physiological interactions can address these current 

gaps in NDD research by a two-pronged approach: i) insight into disease biology and ii) 

improved characterization of individual patients and their therapeutic needs [30]. However, the 

lack of suitable radioligands and the expense of in vivo molecular imaging has been an 

impediment to identifying neurotransmission-based molecular mechanisms involved in the 

disease [31] [32].  

To circumvent this limitation, this work introduces the receptor-enriched multi-factorial 

causal model (re-MCM), an extension of the original MCM framework [33] that incorporates 

neurochemical features in the form of a group-averaged neurotransmitter receptor 

autoradiography template for 15 receptor types. In these personalized, whole-brain models, 

patient-specific mechanistic effects are inferred by the role of receptor-mediated interactions 

between factors such as cerebral blood flow, glucose metabolism, neuronal activity, 

proteinopathy accumulation and atrophy. By introducing individual variability in 

neurotransmitter receptor influence on physiological interactions, these personalized models can 

infer the subject-specific patterns of receptor-mediated dysfunction and their relationship to 
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symptomatic deterioration in NDDs. This approach can thus offer interpretable yet data-driven 

insight into latent mechanisms of physiological dysfunction in AD and PD.  

Objectives  

To facilitate our evolving understanding of neurodegenerative disorders, our work 

presents the first integrative generative model linking multiple neurotransmitter receptors with 

macroscopic brain alterations and clinical symptoms. Importantly, estimating patient-specific, 

receptor involvement addresses an urgent clinical need by laying the foundation for model-based 

personalized treatment design. Furthermore, the novel methodology of using non-individualized 

receptor templates to infer patient-specific receptor involvement has broad applications in 

computational modeling when individualized imaging is infeasible.  

The objectives of this thesis include: 

1)  Developing a dynamical system model of interacting pathophysiological variables 

(e.g., cerebral blood flow, functional activity, gray matter density, proteinopathy, etc.) 

in AD and PD with mediation by the regional concentrations of 15 neurotransmitter 

receptors, 

2) Validation of these models (in their ability to fit the empirical data), and the 

contribution of receptor distribution maps, 

3) Association of model-inferred mechanisms with multi-domain symptoms to identify 

interpretable latent biological mechanisms driving symptom severity, 

4) Characterization of individual-specific neurotransmission dysfunction, and 

5) Estimation of spatial contributions of these mechanisms. 
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Overview of thesis 

To address these pressing issues in AD and PD, two of the most common 

neurodegenerative disorders, this thesis has introduced a dynamical system model of 

neurodegenerative disease progression incorporating interactions of imaging-derived 

physiological measures modulated by neurotransmitter receptor concentrations. Chapter 2 

provides a brief overview of the range of pathological processes involved in AD and PD, as well 

as the strengths and limitations of (neuroimaging, etc.) techniques to quantify their 

spatiotemporal profiles. Chapter 3 is a literature review of computational modeling approaches 

applied to (mainly in vivo neuroimaging) data, from data-driven models of biomarker trajectories 

to mechanistically interpretable dynamical system and biophysical models, with a focus on their 

ability to evaluate disease hypotheses. Chapters 4 and 5 introduce the receptor-informed 

multifactorial causal model (re-MCM) and its applications to AD and PD, respectively. Finally, 

Chapter 6 discusses the results of this thesis, its limitations, and potential directions of future 

work. 
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Chapter 2. Imaging pathophysiology in 

neurodegenerative disorders 

Preface 

This chapter provides a brief overview of the pathophysiology of Alzheimer’s disease 

(AD), Parkinson’s disease (PD) and related disorders, as well as the landscape of neuroimaging 

modalities used in research and clinical contexts. Chapter 3 complements the literature review in 

this section, by discussing computational modeling approaches to integrating multi-modal 

biomarker data and evaluating mechanistic hypotheses. 

Pathophysiology and disease mechanisms 

This section discusses the physiological mechanisms believed to contribute to disease 

progression, potential interactions between these processes, and the role of neurotransmission in 

relation to different cell types and physiological systems. 

Proteinopathy  

The aggregation of specific misfolded proteins is a defining feature of the major 

neurodegenerative disorders. This subsection introduces the main proteinopathies implicated in 

AD, PD and related disorders. 

Amyloid 

From the first pathological studies by Alois Alzheimer in the early 20th century, 

extracellular plaques and intracellular neurofibrillary tangles have been the hallmark pathology 
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of AD [34]. Later molecular studies identified the peptide amyloid beta as the main component 

of the plaques, leading to the amyloid cascade hypothesis, summarized in Figure 2.1 [35]. This 

theory considers all other AD pathophysiology, such as tangles and neuronal death, to be 

downstream of the accumulation of amyloid beta peptides.  

Amyloid pathology is produced by the improper cleavage of amyloid precursor protein 

(APP), a transmembrane protein whose function is not fully understood [36]. The non-

amyloidogenic pathway cleaves APP within the β-amyloid (Aβ) fragment, while the 

amyloidogenic pathway produces β-amyloid monomers [37], which aggregate into fibrils and 

plaques [38]. These aggregations are believed to have neurotoxic effects via glutamatergic 

excitotoxicity, inhibitory GABAergic interneuron dysfunction, ion channel disruption and 

dendritic degeneration [39] [40] [41]. Prion-like seeding followed by cell-to-cell spreading of 

amyloid has been demonstrated in animal models [42] [43]. In the human brain, amyloid plaques 

are first observed in the neocortex, spreading to the allocortex, basal ganglia, midbrain and 

eventually the pons and cerebellum [44]. The balance between production and clearance is 

blamed for the aggregation of amyloid, with the latter mechanism primarily implicated in non-

genetic cases [45] [46] [37]. An alternative viewpoint proposes that the true mechanism involves 

a loss of healthy protein function (proteinopenia), rather than a gain of toxic protein function 

(proteinopathy) [47]. However, the precise roles of amyloid and its homeostasis in health and 

disease remain open questions [48], and its localization may involve regional vulnerability due to  

a combination of molecular/cellular architecture, synaptic activity, metabolic demands, 

neurovascular impairment and other physiological factors. 

While amyloid pathology may precede the appearance of cognitive symptoms by up to a 

decade, the correlation with cognitive deterioration is weaker than for other factors such as tau 
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tangles [40]. Although amyloid may influence age of onset (e.g., in genetic variants), the rate of 

progression appears to have an amyloid-independent component [41]. Furthermore, in vivo and 

post mortem evidence shows that brains of many non-demented individuals have amyloid 

pathology [40] [49], suggesting a more complex etiology involving other physiological factors. 

Finally, the current generation of anti-amyloid monoclonal antibody trials have had mixed results 

[50] [51]. It seems unlikely that amyloid clearance alone is a viable route to preventing or curing 

AD [52], and the failure of anti-amyloid therapy is partially blamed on the other main 

proteinopathy culprit: tau [41]. 
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Figure 2.1. The amyloid cascade hypothesis of AD. 
A sequence of pathogenic events is believed to occur due to either increased Aβ42 

production (in dominantly inherited AD) or decreased Aβ42 clearance (sporadic AD). Figure 
adapted with permission from [40]. 

Tau 

An alternate hypothesis of AD pathobiology gives primacy to tau, a protein involved in 

microtubule polymerization and stabilization [49]. In the healthy brain, tau is primarily found in 

axons, where it undergoes phosphorylation to detach itself from microtubules for transport. Tau 
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pathology involves the accumulation of the protein in a hyperphosphorylated state either as 

neurofibrillary tangles in neuronal cell bodies, or as threads in axons or dendrites [49]. 

Neurofibrillary tau tangles impede synaptic transmission by altering electrophysiological 

properties [53], resulting in increased input resistance, reduced action potential amplitude and 

delayed dynamics. Cognitive decline correlates better with the burden of tau rather than amyloid, 

and, as with amyloid, neurofibrillary tau tangles have been observed in clinical populations well 

before AD symptoms [21]. 

While amyloid is considered to be upstream of tau in the traditional, linear pathological 

cascade [54], there is evidence that the proteins interact in a more complex feedback loop [55]. 

Generally, amyloid is believed to “trigger” or facilitate tau pathology. In addition to amyloid 

directly inducing tau oligomerization and indirectly promoting tau release via hyperactivity, 

microglial activation, neuronal hyperexcitability, vascular alterations and lipid metabolism and 

other physiological processes may be intermediary modulators [41].  

Tau pathology also propagates along connected cells spatially in a characteristic pattern 

described by Braak and Braak [56]: it is first evident in the transentorhinal region (stages I and 

II), spreading to limbic areas  (stages III and IV) and the neocortex (stages III and IV). This 

progression pattern is correlated with cognitive and clinical manifestations [56]. Despite 

evidence for the interactions of these two proteins and amyloid-facilitated tau spreading, the 

spatiotemporal patterns of amyloid and tau are distinct (Figure 2.2), suggesting independent 

effects as well [57] [41].  

Beyond AD, tauopathies encompass a wide range of neurological conditions with diverse 

symptoms, such as frontotemporal dementia (FTD), and progressive supranuclear palsy (PSP) 
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[58]. More broadly, tau pathology is present in 92-100% of neurodegenerative disease patients’ 

brains [59]. 

 

Figure 2.2. The spatial paradox of amyloid and tau propagation in AD. 
a) Tau and amyloid follow characteristic spatial spreading patterns in the AD spectrum. 

b) Although the conventional belief has been that amyloid facilitates tau pathology, the two 
originate in distinct brain regions. c) In primary age-related tauopathy (PART), amyloid 

pathology is not present, and tau does not spread to neocortical regions. d) On the other hand, in 
the presence of amyloid pathology, tau does spread to the neocortex, and this pattern is 

associated with AD. Figure adapted with permission from [60]. 

α-synuclein 

Synucleinopathies are another major neuropathologically-defined macrofamily of 

disorders, ranging from multiple system atrophy (MSA) to dementia with Lewy bodies (DLB) 

and PD [61]. Synucleinopathies vary in clinical presentation; some combination of motor 
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symptoms and autonomic dysfunction occurs in almost all cases, but cognitive, psychiatric and 

olfactory dysfunction can also occur in PD and DLB.  

The shared neuropathological feature of synucleinopathies is Lewy bodies, the primary 

component of which is the cytoplasmic aggregations of α-synuclein. This misfolded protein is 

primarily found in presynaptic terminals, and is believed to be involved in synaptic maintenance, 

mitochondrial homeostasis, dopamine metabolism and chaperone activity [62]. Propagation of α-

synuclein along connected cells is believed to facilitate the spreading of pathology [63]. 

In vivo α-synuclein imaging in humans is not currently possible, and candidate PET 

radioligands suffer from cross-binding to amyloid fibrils [64]. While not yet part of the routine 

clinical workflow, emerging methods for CSF α-synuclein quantification are a proposed 

component of biomarker-based staging systems of PD [65]. Previously, the main line of evidence 

has been pathological evaluations, which shows co-occuring α-synuclein in most AD patients 

[66]. 

TDP-43 

Transactive response DNA-binding protein 43 (TDP-43) is normally localized in nuclei 

and associated with transcriptional regulation [67]. TDP-43 is linked to several 

neurodegenerative diseases, particularly the frontotemporal dementia (FTD) and amyotrophic 

lateral sclerosis (ALS) spectrum [68]. Lacking in vivo PET radioligands [69], much of our 

evidence of its role in AD and PD comes from neuropathological evaluations. Co-occurrence of 

cytoplasmic inclusions of hyperphosphorylated TDP-43 proteinopathy was found to occur in 

around 37% of autopsied brains with a neuropathological diagnosis of AD, and the combination 

of AD and TDP-43 pathology raised the odds of AD dementia [70]. TDP-43 co-pathology was 

found in 7.2% of neuropathologically confirmed PD cases and 19% of PD dementia cases [67]. 
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Whether TDP-43 pathology in isolation is sufficient for disease onset is an open question, 

given the frequency of co-pathology [71]. Ultimately, neuropathological burden (including 

amyloid, tau and Lewy body pathology as well as micro- and macroscopic infarcts) explains less 

than one-third of the variance in rate and onset of cognitive decline [72], suggesting the need to 

consider other physiological processes as well. 

Inflammation  

Long established as a feature of neurological conditions such as chronic traumatic 

encephalopathy (CTE), ALS and multiple sclerosis (MS), sustained neuroinflammation is 

increasingly seen as a core pathophysiology of AD, PD (where it is associated with increased 

dementia risk [73]), other neurodegenerative diseases and ageing [21] [74] [75] [76]. Activation 

of the immune system is observed in nearly all pathological conditions [74], and progressive 

immunodeficiency is a characteristic of ageing [75]. While both adaptive and innate immune 

cells activation is involved, the latter differentiate disorders such as AD from primarily 

inflammatory disorders such as MS [74]. While inflammatory activity in the brain is not 

necessarily always harmful, similar pathways seem to have both protective and deleterious 

effects under different conditions [77] [76].  

Initially believed to be a by-product of neuronal cell death, neuroinflammation may be an 

early mediator of disease onset and progression, acting as an intermediary in processes such as 

amyloid seeding of tau pathology and α-synuclein toxicity [21] [77]. In animal models, 

microglial activation even seems to initiate amyloid and tau pathology [74]. The peripheral 

immune system also appears to be involved, notably via the gut-brain axis in PD [78] and 

systemic inflammation in AD [74]. Furthermore, both AD and PD are linked to risk variants of 

genes associated with inflammation [74] [75].  
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As the primary immune cells of the central nervous system, microglia naturally play a 

key role in maintaining a healthy inflammatory response. Microglial activation and microglia-

neuron interactions are regulated by multiple cellular signaling pathways, including cytokines 

and neurotransmitters [77] [21]. Astrocytes are also believed to be involved via their role in 

maintaining homeostasis and neuron-glia communication [79]. Extracellular release of GABA by 

astrocytes inhibits the inflammatory response of activated microglia, and the microglial GABAB 

receptors are particularly associated with this anti-inflammatory role [21]. Recent evidence from 

in vivo proteomic markers suggests that astrocyte reactivity is the key factor modulating 

amyloid-induced tau hyperphosphorylation [80]. Nicotinic cholinergic receptors on astrocytes 

and microglia are implicated in amyloid	metabolism, as well as in amyloid-related oxidative 

stress and neurotoxicity [81]. Furthermore, glial nicotinic cholinergic receptors also modulated 

neurotransmission via indirect interactions with NMDA, AMPA and GABA receptors, as well as 

with the regulation of intracellular calcium [81]. The activation of GABA, cholinergic and 

adrenergic receptors also reduces microglial inflammatory response [82] [21]. On the other hand, 

glutamatergic neurotransmission and the immune system are involved in many bidirectional 

interactions involving glia, astrocytes, and oligodendrocytes. Particularly, impaired glial 

clearance of extrasynaptic glutamate may dysregulate synaptic glutamatergic neurotransmission 

[79]. The adrenergic system is believed perform an anti-inflammatory role via glial cell binding 

and free radical scavenging [83], reducing excitotoxic, oxidative and amyloid-dependent 

damage.  

The complex regulation of inflammatory activity in the brain involves diverse cell types 

and signalling pathways, including neurotransmission. While the exact immunological 

mechanisms contributing to disease progression are unknown and likely complex [75] [74], they 
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are considered potential therapeutic targets. However, although epidemiological studies have 

associated anti-inflammatory treatments with a reduced risk of AD and PD [21] [75], clinical 

trials have failed to replicate these observations [84] [74]. Further work needs to be done to 

identify molecular markers associated with disease-linked neuroinflammation and potential 

treatment response [79]. In addition to fluid markers of neuroinflammation, recently developed 

translocator protein (TSPO) tracers for PET imaging may offer a window into the in vivo 

spatiotemporal progression [76], although they are impeded by cost, low signal-to-noise ratio, 

and TSPO gene polymorphisms affecting binding [75].  

Cerebral blood flow 

The brain receives up to one-fifth of cardiac blood output [85], and altered cerebral blood 

flow (CBF) is a clinically relevant facet of conditions from stroke to hypertension. Many lines of 

evidence support early and chronic brain hypoperfusion in AD, before other pathological 

changes or symptom onset [86] [87] [12]. Ageing is associated with a 15% drop in CBF between 

the ages of 20 and 65, independently of structural alterations [87]. Neuropathologically, small 

vessel disease (which may include thickened walls, inflammation and edema) is present in the 

majority of elderly brains, and often co-occurs with amyloid pathology [44]. Contributing to age-

associated degeneration, there is also a close relationship between cerebrovascular ageing and 

immunosenescence [88]. If vascular risk factors (which almost universally reduce CBF) are also 

present, impaired neuron-astroglial metabolism may result in sufficient ischemia and hypoxia to 

cause cognitive impairment [87]. Epidemiologically, AD shares these risk factors, such as stroke, 

hypertension and carotid atherosclerosis, as well as pathology and symptoms with vascular 

dementia [12] [89]. 
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In addition to the shared epidemiological and neuropathological features, there are AD-

associated molecular and cellular correlates of vascular dysfunction. These include amyloid 

cytotoxicity, impaired amyloid clearance, blood-brain barrier breakdown, and immune and 

inflammatory dysregulation [90] [89]. Sustained ischemia and hypoxia are believed to induce 

amyloid pathology [87], which in turn may in turn impair neurovascular function [89]. 

Furthermore, apolipoprotein E (APOE), associated with amyloid clearance in AD, also has a 

vascular role in lipid metabolism and cholesterol transport [90]. 

Finally, the close coupling between neuronal activity, metabolism and perfusion requires 

intercellular signalling between neurons, glia, endothelial cells and blood vessels. The brain 

modulates cerebral perfusion by i) systemic regulation of blood flow, ii) cerebrovascular 

autoregulation of arterial wall stiffness in response to blood pressure, and iii) regional, activity-

dependent distribution of blood (neurovascular coupling). Neurotransmitters are primarily 

involved in signalling for vascular regulation (primarily glutamate) [91] and neurovascular 

coupling (dopamine) [92]. The loss of the vasodilatory cholinergic system may also contribute to 

impaired blood flow, and this may be the basis of cholinergic symptomatic therapy [90]. 

Similarly, glutamatergic activity drives glucose metabolism [93], which is closely tied to its 

bloodborne delivery. 

Given its early occurrence and severe consequences on metabolic, inflammatory and 

neuronal function, vascular dysfunction may have causative, additive, or synergistic 

contributions to other pathology (a topic further explored in the following chapter). The vascular 

hypothesis of AD considers hypoperfusion (and hypometabolism) to be the driving force, leading 

to subsequent neurodegenerative alterations [87] [12]. The synthesis of this evidence linking 
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vascular, metabolic and inflammatory dysregulation supports their inclusion in potential 

biomarker definitions of AD [18]. 

In contrast, cognitive impairment in PD appears to be independent of co-existing vascular 

pathology [94]. On the wider PD spectrum, vascular lesions are associated with Braak stage in 

Parkinson’s disease dementia (PDD) but not PD [95]. However, vascular PD is a distinct clinical 

diagnosis used for patients with gait impairment and subcortical white matter lesions, or other 

pathology consistent with a vascular cause (e.g., stroke or ischemic injury) [96].  

Metabolism  

The brain is a mass-disproportionate consumer of energy, and vulnerable to damage from 

insufficient nutrients [19]. A regionally heterogeneous hypometabolism of glucose is also 

implicated in the cascade resulting in cognitive decline in AD [20]. Historically, the prevailing 

opinion has held that hypometabolism is a consequence of reduced neural function in AD. The 

loss of synapses and reduced neurotransmitter production are implicated in the inhibition of 

mitochondrial enzymes, increased oxidative stress and synaptic dysfunction [97]. These factors 

would reduce the metabolic demand for glucose due to a loss of function.  

However, it has more recently been proposed that hypometabolism is an early event in 

AD. Notably, carriers of ε4 allele of APOE display pockets of cortical hypometabolism decades 

before AD symptoms appear. A systemic and relatively early deterioration in glucose 

metabolism, which is common in the elderly, may selectively strain brain regions with a high 

energetic demand [20]. Dysregulation of glucose metabolism and impaired glycolysis may 

initiate pathogenic pathways [19]. As a consequence, fuel-deprivation may induce pathologies 

[87] such as microvascular alterations, tau hyperphosphorylation, regional starvation, atrophy, 
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amyloid deposition, mitochondrial dysfunction, and oxidative damage via increased 

gluconeogenesis [20].  

In addition to neurons and glial cells, endothelial cells of capillaries in the brain and the 

blood-brain barrier also undergo structural and oxidative damage in AD [98]. Smooth muscle 

cells in artery walls are also flattened [99]. Many of the strongest risk factors for AD are in fact 

vascular, such as a prior history of stroke which doubles the risk of dementia [89]. Vascular and 

metabolic dysfunctions can lead to cognitive decline, even when CBF is not reduced enough to 

cause ischemic injury [100]. Furthermore, mitochondrial dysfunction and oxidative damage are 

also observed in other disorders, such as PD [101]. Thus, vascular and metabolic systems are 

also potential targets for therapeutics, potentially via receptor pathways.  

Neurotransmission 

Most of the brain’s intense demand for energy [102] is used for synaptic transmission 

[103]. This function is performed by neurotransmitters, the main signalling molecules of the 

brain. Neurotransmission is an ancient chemical system, with diverse secretory cell types already 

present before the evolution of nervous systems [104]. It underlies physiological processes from 

the cellular scale to cognition, mood, and behaviour. Maintaining optimal intra- and extra-

cellular concentrations of neurotransmitters, vesicular transporters, and receptors is a dynamic 

and carefully regulated process [105], with deviations having severe functional consequences 

linked to diseases [106]. Notably, synapse loss has been known to be a much stronger correlate 

of neuropsychological symptoms than plaques and tangles [97]. Neurotransmission is involved in 

many disease-affected processes with functional consequences. These molecular and cellular 

processes are critical components of a mechanistic understanding of neurodegenerative 

disorders, and neurotransmitter receptors are important pharmacological targets [25]. 
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Neurotransmitters can have wide variety of chemical structures, including amino acids 

(such as glutamate and GABA), monoamines (such as dopamine, serotonin, 

adrenaline/epinephrine, and histamine), peptides (such as oxytocin and opioid peptides), purines 

(such as adenosine) and others (such as acetylcholine) [107]. Their receptors are protein 

structures embedded in cell membranes to which synaptic neurotransmitters bind. Ionotropic 

receptors are large assemblies of several proteins forming an ion channel through the membrane, 

whereas G protein-coupled receptors (GPCRs) are usually a single protein [108]. When a 

neurotransmitter binds to its ionotropic receptor, conformational changes rapidly open the ion 

channel, while the neurotransmitter is attached or until desensitization. On the other hand, 

GPCRs respond significantly slower, by activating intermediary GTP-binding proteins, and have 

long-term effects on neuronal excitability [109]. The nicotinic acetylcholine receptor (nAChR) 

and the GABAA receptor are examples of fast ionotropic receptors, whereas the muscarinic 

acetylcholine receptors and GABAB receptors are GPCRs.  

Neuronal cells can be partially defined by neurotransmitter expression, which offers 

insight into their functional specialization. Pyramidal neurons are associated with cortical 

regions, and long-range connections between distant brain regions. They mainly express 

glutamate, the primary excitatory neurotransmitter. Inhibitory interneurons modulate activity 

within their vicinity by releasing the neurotransmitter GABA. While it is best known 

peripherally for its role in neuromuscular junctions, acetylcholine is expressed by excitatory 

interneurons in the CNS. The monoamine family, comprised of serotonin, and the 

catecholamines dopamine, adrenaline and noradrenaline, has modulatory roles. Given the 

complexity of neurotransmission from the sub-cellular to circuit and network levels, there remain 
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many open questions about the roles of distinct neurotransmitter families, their co-expression 

and interactions, their sub-cellular pathways of action and their disruption in disease [109]. 

Neurotransmission is mainly associated with neuron-neuron signalling, with transmitters 

released from vesicles into the synapse and binding to receptors post-synaptic on the post-

synaptic neuron. However, these molecules (neurotransmitters, transporters, and receptors) 

mediate signalling in a variety of other cell types and cellular structures. Sub-cellular 

organization is important for signal transmission; autoreceptors on pre-synaptic neurons can 

modulate neurotransmitter release [110]. The cholinergic system is involved in blood flow 

regulation via endothelial cells and anti-inflammatory pathways via microglia [111]. While 

glutamate is primarily associated with its key role as the main excitatory neurotransmitter, its 

receptors are expressed in many cell types in the brain and periphery [112]. Microglia also 

express many types, such as glutamatergic, GABAergic, adrenergic, dopaminergic, cholinergic, 

opioid and cannabinoid receptors [113]. Through volume transmission, they sense their 

environment and modulate the release of chemicals such as chemokines and cytokines, which in 

turn affect neuronal function [114]. The effects of these released molecules may be either 

protective or neurotoxic, and the interplay between these diverse systems is not fully understood 

[114]. Under normal physiological function, it is believed that active neurotransmission is 

required to suppress microglial activation [114] [113]. 

Synaptic energy consumption generally decreases with aging, and, since the number of 

receptors at a synapse is energetically constrained, receptor systems are also affected [103]. In 

addition to age-related degradation, in vivo PET imaging studies have provided evidence for 

receptor binding changes in AD and PD with specific symptomatic correlates.  
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The roles of specific forms of neurotransmission in NDDs is well established, namely 

dopaminergic deficit in PD and cholinergic loss in AD [25]. However, both disorders involve 

dysfunction in multiple additional neurotransmitter systems, often with robust symptomatic 

associations. While not considered primarily a neurotransmitter disease, AD is associated with 

long-term receptor-induced degeneration, such as excessive glutamatergic excitotoxicity leading 

to neuronal death [32] and the basal forebrain cholinergic system suffers early degeneration, the 

degree of which is correlated with clinical progression [48]. Beyond the cholinergic and 

glutamatergic system, serotonin- and norepinephrine-producing neurons are also damaged [115]. 

Neurons belonging to different neurotransmitter systems show differential sensitivity to amyloid 

toxicity, with cholinergic neurons being the most vulnerable, followed by serotonergic, 

dopaminergic, and least of all GABAergic neurons [116].  

Recent studies have correlated spatial variability in neurotransmitter gene expression with 

neurovascular [117] and structural-functional decoupling [118] in PD. Furthermore, specific 

neurotransmitter-symptom associations have been identified, such as cholinergic freezing of gait 

and dementia [119], serotonergic depression and tremor [120], and adrenergic postural symptoms 

[121]. These pathways are depicted in Figure 2.3. The multi-neurotransmitter involvement in PD 

is acknowledged by the dual syndrome hypothesis [122], which posits that dopamine-mediated 

fronto-striatal executive impairment and cholinergic visuospatial dementia are co-occurring 

processes. 

For decades, neurotransmission has been a key pharmacological target for AD and PD 

[123] [124]. Cholinesterase inhibitors (ChEIs) have been used to increase cholinergic 

neurotransmission as symptomatic therapy for dementias due to AD, PD, vascular dementia or 

Lewy body disease [125], and the NMDA antagonist memantine is used to reduce glutamatergic 
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excitotoxicity [25]. The standard for PD treatment has been dopaminergic therapy using 

precursors such as levodopa, although this can result in treatment non-response as well as severe 

side effects  [123] [126].  

In the following subsections, a brief overview of the role of major neurotransmitter 

families is provided, along with molecular and clinical evidence of dysfunction in AD and PD. 

 
Figure 2.3. Multi-neurotransmitter dysfunction in PD. 

 Figure adapted with permission from [24]. 
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Acetylcholine  

Acetylcholine (ACh) is a prominent neurotransmitter in both the central and peripheral 

nervous systems. In the brain, cholinergic neurotransmission is associated with attention, 

learning, memory, stress, and sleep cycle regulation [127]. Cholinergic neurons in the brain may 

be projection neurons, involved in long-range connections, or interneurons participating in local 

circuits. Cholinergic receptors may be ionotropic nicotinic receptors or muscarinic GPCRs, with 

the latter influencing a diverse range of cation channels to enable either hyper- or de-polarization 

[127]. While muscarinic receptors are usually excitatory in cortical regions (although inhibition 

is also possible) [127], nicotinic receptors are believed to have a modulatory role [127]. 

The nucleus basalis of Meynert in the basal forebrain is the main source of cholinergic 

input to the hippocampus, amygdala and prefrontal cortex, involved in attention and memory 

[127]. In AD patients, these cholinergic projection neurons are lost [128]. Simultaneously, 

depolarization-induced acetylcholine release, uptake of the precursor choline and activity of the 

ACh-synthesizing enzyme choline acetyltransferase are also reduced [128]. This evidence of 

selective vulnerability and symptomatic association is the basis of the cholinergic hypothesis of 

AD [128]. Similar cholinergic loss is also observed in other neurodegenerative disorders such as 

PD, where the severity of neuronal loss is correlated with cognitive impairment [119], suggesting 

a shared mechanism contributing to dementia across disorders. Acknowledging this cholinergic 

component, the dual syndrome hypothesis of PD proposes that distinct processes underlie 

different aspects of neuropsychological presentation: dopaminergic denervation of fronto-striatal 

circuits leads to executive impairment, while the cholinergic system contributes to memory and 

visuospatial dysfunction that leads to dementia [122]. 
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There is evidence for the interaction of the cholinergic system with other 

pathophysiological factors [129], such as amyloid- and tau-producing molecular pathways. 

Neurofibrillary tangles are higher in individuals taking muscarinic antagonist medication [130], 

and acetylcholine loss has also been implicated in a vascular pathway, via disruptions of 

neurovascular coupling in AD [131]. In relation to amyloid, the cholinergic system may have a 

neuroprotective role; stimulation of cholinergic receptors may increase non-amyloidogenic APP 

metabolism, and anti-muscarinic therapy increases amyloidogenic metabolism [128] [130]. For 

decades, one of the few clinically effective symptomatic treatments of AD (and more broadly 

other dementias) has been cholinesterase inhibitors, which increase the levels of acetylcholine 

available at synapses [129].  

Glutamate 

Glutamate is by far the most abundant neurotransmitter in the mammalian brain, with 

concentrations 3 orders of magnitude above those of dopamine, norepinephrine, and serotonin 

[132]. As the main excitatory neurotransmitter expressed widely throughout the brain, it is highly 

co-localized with functional activity [133]. Glutamatergic synaptic transmission is mediated by a 

variety of receptors serving specialized roles, from ionotropic N-methyl-d-aspartate (NMDA), α-

amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and kainate receptors to the 

metabotropic receptor family [134]. They are involved in critical aspects of learning and 

memory; for example, long term potentiation/depression is a form of synaptic plasticity elicited 

by the coincident activity of pre- and post-synaptic neurons. The process is activated by the 

stimulation of NMDA receptors and involves the addition or removal of AMPA receptors at the 

synapse [135]. 
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Maintaining appropriately low levels of extracellular excitatory neurotransmitter 

concentrations is important for a high signal-to-noise ratio, and to avoid neuronal hyperactivity, 

which can lead to cell death [132]. Astrocytes are heavily involved in maintaining this 

extracellular homeostasis and recycling neurotransmitters such as glutamate and γ-aminobutyric 

acid (GABA) [136]. There is a close relationship between glutamate recycling and glucose 

metabolism [137], with an increase in glucose uptake at glutamate release [138].  

Glutamate-induced excitotoxicity is implicated in cell death across neurodegenerative 

disorders, including AD and PD [139]. Excitotoxicity may also be triggered by other 

pathophysiological conditions, such as ischemia [140]. Under disrupted oxygen or glucose 

access, AMPA and kainate receptors appear to mediate oligodendrocyte death and axonal loss via 

hypoxic-ischemic damage [141]. The effects of amyloid may be specific to sub-cellular structure, 

promoting extra-synaptic NMDA response in low concentrations (by limiting glutamate uptake 

and causing glutamate spillover) but inducing synaptic depression (by reducing NMDA receptor 

activity and inducing its endocytosis) at higher concentrations [142] [143]. Additionally, 

excessive tau leads to NMDA receptor hyperactivity via the kinase Fyn [142], flooding neurons 

with dangerous levels of calcium. Conversely, excessive extra-synaptic NMDA activity may also 

lead to tau overexpression [144]. Believed to inhibit these pathways of excitotoxicity, NMDA 

receptor antagonists such as memantine are used for symptomatic treatment in AD [142]. 

Dopamine	 

Dopaminergic neurons are primarily found in the midbrain, mainly projecting to various 

brain regions from the substantia nigra pars compacta (SNc) and ventral tegmental area (VTA) 

[116]. Via the meso-striatal pathway (linking the SNc to the caudate and putamen nuclei) and 

glutamatergic corticostriatal projections, the dopaminergic system is involved in controlling 
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voluntary movement. Dopamine is also involved in reward via the meso-cortico-limbic pathway, 

from the VTA to the hippocampus, cortex and nucleus accumbens [116].  

In neurodegenerative diseases, dopamine is most associated with the dysfunction of the 

meso-striatal pathway, where the loss of striatal dopaminergic signalling results in increased 

GABAergic inhibition of thalamo-cortical connections and subsequently the motor symptoms of 

parkinsonism [101]. As shown in Figure 2.4, this occurs due to dopaminergic neuronal death and 

reduced dopamine synthesis in the substantia nigra pars compacta (SNpc). The dopamine 

precursor levodopa is the basis of pharmacological treatment of PD, and non-pharmacological 

treatments such as deep brain stimulation (DBS) are used to target this circuit when 

dopaminergic therapy fails [145]. 

However, other conditions also involve dopaminergic degeneration. Ageing is also 

associated with reduced dopaminergic neurotransmission, lower expression of some D2 receptor 

subtypes, and decreased dopamine transporter (DAT) expression in several regions [116]. Apathy 

and executive dysfunction are also linked to the impairment of dopaminergic neurotransmission, 

and the subsequent effects in areas with dopaminergic projections such as the frontal and 

prefontal cortices [116]. In AD patients, dopamine modulates the excitability of cortical 

cholinergic neurons [146], the binding potential of hippocampal D2 dopaminergic receptors 

correlates with memory performance [147], and the presence of dopamine-related symptoms is 

associated with worsened clinical progression [116]. 

The wider catecholaminergic system, which includes dopamine, noradrenaline and 

adrenaline, displays complicated receptor alterations in AD [25]. Receptor densities may be 

either reduced or increased, potentially due to compensatory mechanisms. Dopaminergic also has 
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wide-ranging influence on other disease-affected processes, such as its mediation of 

neurovascular coupling [92]. 

 

Figure 2.4. The basal ganglia circuit in PD. 
Under normal conditions, the direct pathway enables movement, while the indirect 

pathway inhibits it. In PD, the loss of dopaminergic function in the substantia nigra pars 
compacta (SNpc) results in increased inhibitory signaling to the thalamus, resulting in motor 

symptoms. This circuit is targeted pharmacologically as well as surgically, with the subthalamic 
nucleus (STN) being an important stimulation target for focused ultrasound. Figure adapted with 

permission from [148]. 

GABA 

The primary inhibitory neurotransmitter γ-aminobutyric acid (GABA) is synthesized 

from glutamate [149] [150]. It regulates neuronal excitability and maintains an appropriate 

excitatory/inhibitory (E/I) balance, which are critical factors for memory formation, learning and 

cognition among other functions [150]. Although GABAergic interneurons initially appeared to 

be spared in AD, there is evidence for a GABAergic role. While the disrupted E/I balance is 

partially explained by glutamate and acetylcholine, GABAergic compensatory mechanism 
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initiated by amyloid-induced, glutamate-triggered GABAA receptor response may also be 

involved [150]. 

GABA is a common pharmacological target for anaesthesia, with evidence linking 

general anaesthesia with tau pathology [151]. In cultured neurons, GABA receptor activation 

increased tau hyperphosphorylation [152]. Conversely, in transgenic mice, tau appears to 

hyperactivate GABAergic interneurons, hinting at a potential positive feedback loop in AD.  

[152] 

Adrenaline 

At the behavioural level, the adrenergic system is involved in functions such as attention, 

learning and memory [153]. The locus coeruleus (LC), a brainstem structure containing half the 

adrenergic system [153], is an early site of neurodegenerative pathology across disorders [154]. 

In AD, the LC loses approximately 70% of its neurons [153]. Tau deposition and 

neurodegeneration occurs early in the pre-symptomatic phase of AD, while α-synuclein 

deposition also occurs here in PD [154] [155] [156]. Degeneration of the LC is even better 

correlated with AD onset and duration than the cholinergic nucleus basalis of Meynert [157]. The 

locus coeruleus projects to the hippocampus, which is associated with memory deficiency in AD. 

The α1	adrenergic receptor, which is involved in hippocampal memory and learning, undergoes 

alterations in AD, and has been proposed as a potential therapeutic target [158].  

The adrenergic system is also involved in interactions with various pathophysiological 

factors. The noradrenergic system is implicated in the tau hyperphosphorylation cascade; 

amyloid oligomers bind to the α2	receptor, which signals glycogen synthase kinase 3 (GSK-3β) 

activation and tau phosphorylation [159]. Rodent models of PD also suggest that the adrenergic 

system plays a protective role against neuroinflammation and neurodegeneration [160]. 
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Additionally, the α2	adrenergic in cerebral microvessels receptors increased by approximately 

60%, while the α1	receptor is reduced by approximately 25% in the cortices of AD patients, but 

not in normal ageing [161]. Furthermore, agonistic autoantibodies of the α1	adrenergic receptor 

were found in 50% of AD patients [162], suggesting an involvement with immune response. 

Serotonin 

Serotonin, or 5-hydroxytryptamine (5-HT), has a variety of functions as a 

neurotransmitter and a hormone. As the latter, it is involved with glucose homeostasis and 

adiposity [163]. In the brain, it is associated with mood, anxiety and sleep, and is an important 

pharmacological target in psychiatric disorders. Notably, patients of neurodegenerative diseases 

experience psychiatric symptoms at heightened rates, with estimates ranging from half to over 

two-thirds of dementia patients suffering from depression [164] [165] . The use of the most 

common class of antidepressants, selective serotonin reuptake inhibitors (SSRIs), is linked to a 

statistically significant improvement in cognitive performance on the Mini-Mental State 

Examination (MMSE) [164]. [166]. It must be noted that many antipsychotics used in psychiatric 

contexts act on multiple neurotransmitter systems, such as Risperidone (a dual dopamine and 

serotonin receptor antagonist), sometimes with unclear mechanisms [25] [25]. 

Elements of the serotonergic system are selectively altered in AD, with more severe 

depletion of serotonin in early-onset AD brains. The concentrations of 5HT2 receptors are 

generally reduced while the loss of 5HT2 receptors has region-specific correlations with 

aggression (temporal cortex) and cognitive decline (hippocampus) [167] [168] [25]. Stimulation 

of 5HT4A	serotonergic receptors promotes a non-amyloidogenic cleavage of amyloid precursor 

protein (APP), and is considered neuroprotective [169]. In PD patients, cortical serotonin 

transporter density varied inversely with PET-derived amyloid load [170]. 
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Serotonin and the catecholamines (adrenaline, epinephrine and dopamine) also have 

important roles in the gastrointestinal system, controlling blood flow, gut motility, nutrient 

absorption, innate immunity and the microbiome, with known alterations in PD [171]. Although 

serotonin cannot cross the blood-brain barrier, the peripheral serotonergic system also exerts 

effects on the brain via the vagus nerve [172] [163]. 

Imaging pathophysiology 

Many of the dysfunctional systems in NDDs are imaged in clinical and research settings 

(Figure 2.5). This section provides a brief overview of the physical mechanisms behind common 

neuroimaging modalities, such as magnetic resonance imaging (MRI), positron emission 

tomography (PET), and single-photon emission computed tomography (SPECT), particularly to 

characterize the spatial distributions of pathology in living subjects. In addition, the biological 

relevance and utility in studying AD and PD is discussed. 

Structural MRI 

Structural MRI modalities are used to non-invasively evaluate macroscopic changes to 

gray and white matter. MRI is based on the principle of nuclear magnetic resonance (NMR); 

nuclei in a strong magnetic field produce an electromagnetic signal when perturbed by a 

secondary, weaker oscillating field. In a scanner, a strong external magnetic field aligns the 

magnetic moments of hydrogen nuclei (i.e., protons) in tissue, and a secondary radio frequency 

(RF) pulse is then applied perpendicularly to perturb the magnetization. This new net 

magnetization has two components: longitudinal and transverse, and the precession of the 

transverse component around a receiver coil induces a current, which in turn produces the MR 

signal and resulting image. By applying the external magnetic field as a gradient, the source of 
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the MR signal can be determined. When the secondary RF pulse is turned off, the magnetization 

of nuclei exponentially decays to equilibrium with the magnetic field. Tissue-specific properties 

influence the spin-lattice/longitudinal (T1) and spin-spin/transverse (T2) relaxation times, which 

forms the basis of contrast in structural images.  

Parameters of the magnetic field gradient and RF sequences, such as the repetition time 

(TR) between applied pulse sequences and the time to echo (TE) between applied and received 

pulses, can be modulated to enhance contrast in the signal. This allows images to be sensitive to 

specific tissue properties, such as fat and water content. Common pulse sequence schemes 

include spin echo (produced by pairs of RF pulses and used for T1- and T2-weighted images), 

gradient echo (where a dephasing gradient field is followed by a rephasing gradient of the 

opposite polarity, used in functional MRI), and echo planar (where the gradient is rapidly and 

repeatedly reversed, used in diffusion-weighted MRI). 

Some of the most common and well characterized types of MR images are T1- and T2-

weighted scans. Produced using short TE and TR, anatomical structures and gray matter have a 

higher signal in T1-weighted images. Using longer TE and TR, T2-weighted images are instead 

determined by the spin-spin or transverse relaxation time (T2), which describes how quickly 

protons go out of phase after the RF pulse is applied. T2-weighted images are typically used to 

image white matter structures. The resulting images can be further processed to obtain surface- 

or volume-based estimates, such as cortical thickness, surface area and gray matter density. 
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Figure 2.5. Common clinical and research applications of neuroimaging in AD. 
While some imaging modalities, such as T1 MRI and its resulting gray matter atrophy 

maps, are established tools in clinical practice, other modalities are emerging with newly 
validated molecular tracers (e.g., TSPO and SV2A). Figure adapted with permission from [173]. 

Gray matter density  

By definition, neurodegeneration implies tissue loss. Topographical patterns and rates of 

atrophy are correlated with cognitive impairment [174], for the whole brain and specific regions. 

In AD, atrophy canonically begins in the medial temporal lobe (including the hippocampus), and 

extending along a temporal-parietal-frontal progression [175]. Subtype analysis suggests the 

presence of consistent spatial patterns of atrophy in AD: atypical, limbic-predominant, 

hippocampal-sparing and mild patterns [176] [177]. In PD, gray matter atrophy is also observed, 

associated with dementia, predictive of dopaminergic treatment response [178], and distinct 

between motor subtypes [179]. In non-demented PD patients, performance on multiple cognitive 

domains is correlated with regional gray matter volume [180]. 
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T1/T2 ratio 

The ratio of T1 to T2 signal, while originally presumed to reflect myelin content [181], 

has become a measure of microstructural integrity [182] [183]. A major practical advantage is the 

use of images from the two most ubiquitous scanning protocols. Furthermore, compared to 

diffusion MRI metrics, the T1/T2 ratio is not susceptible to the crossing fiber problem. While the 

precise interpretation of the T1/T2 signal is unresolved [184], it correlated strongly with dendrite 

density in MS patients [185]. The T1/T2 ratio thus provides a view of tissue microstructure that 

is complementary to measures such as myelin water fraction, fractional anisotropy and mean 

diffusivity, with which it shares low covariance [182]. 

Diffusion MRI 

The motion of molecules such as water in biological tissue is constrained by 

microstructure, primarily axonal membranes, and modulated by properties such as myelination 

[186]. Diffusion-weighted MRI exploits this property to obtain a signal that is sensitive to the 

diffusive freedom of water molecules along different directions, which reflects microstructure. 

This is usually achieved via the phase dispersion in multiple (6+) non-collinear directions. 

Commonly used pulse sequences rely on the attenuation of spin rephasing due to the motion of 

molecules between pulses. Due to its sensitivity to cellular architecture, diffusion MRI is useful 

for quantifying various aspects of tissue microstructure [187] and connectivity through 

tractography [188] [189]. 

Fick’s first law of diffusion describes the diffusive flux vector 𝐽 of a particular molecule 

with a concentration 𝑪 at position	𝐫 and time 𝑡 as 

𝑱(𝐫, 𝒕) = −𝑫∇𝑪(𝐫, 𝒕), 
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where 𝐷 is the diffusion tensor (in the general case of anisotropic diffusion) 

𝑫 = 0
𝐷!! 𝐷!" 𝐷!#
𝐷!" 𝐷"" 𝐷"#
𝐷!# 𝐷"# 𝐷##

1. 

In a small volume, the change in concentration can be described as function of the flux 

$%
$&
= −∇ ∙ 𝐽(𝐫, 𝒕), 

which leads to Fick’s second law 

$%
$&
= 𝑫∇'𝐂(𝐫, 𝒕). 

The spatiotemporal probability of finding a particle is defined by  

𝐏(𝐫, 𝑡) = 𝐂(𝐫,𝒕)
𝑵

. 

With anisotropic diffusion, the probability of a particle being displaced from 𝒓𝟎 to 𝒓 is 

given by [190] 

𝐏(𝐫|𝐫𝟎, 𝑡) =
𝟏

8|𝐃|(𝟒𝜋𝑡)𝟑
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The Bloch-Torrey equation [191] modifies the Bloch equation (describing the temporal 

evolution of the magnetization vector 𝑴) to account for diffusion:  
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where 𝑇Land 𝑇Lare the relaxation time constants, 𝑀! and 𝑀" are the transverse 

components, 𝑀# is the longitudinal component, and 𝐵6 is the magnetic field vector. In diffusion-

weighted imaging (DWI), the baseline MR signal 𝑆6 experiences exponential decay [192] 
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𝑆 = 𝑆6𝑒1MN, 

where 𝐷 is the (scalar) diffusion coefficient and the 𝑏-value determines the diffusion 

weighting. In practice, pulse sequences may vary, but for a pure rectangular pulse, this is given 

by the Stejskal-Tanner formula 

𝑏 = 𝛾'𝛿'𝐺'(Δ − O
P
)	, 

where 𝛾 is the gyromagnetic ratio,	𝛿 is the gradient duration, 𝐺 is the gradient magnitude 

and Δ is the time interval between gradient onset and the refocusing pulse. 

While in diffusion tensor imaging (DTI),  

𝑆 = 𝑆6𝑒1QN,  

The diffusion tensor can be estimated from a series of diffusion-weighted images with 

different gradient directions.  

The primary uses of diffusion MRI as quantitative markers of disease progression arise 

from measures relating to microstructure, and connectomes reconstructed from fiber 

tractography [189]. 

Microstructural measures from diffusion imaging 

Scalar quantities derived from the diffusion tensor are interpreted as measures of 

microstructural integrity [182]. From an eigendecomposition of the diffusion tensor, we can 

obtain several quantities such as axial diffusivity (AD), radial diffusivity (RD), fractional 

anisotropy (FA) and mean diffusivity (MD).  

• AD is the eigenvalue of the diffusion tensor along the primary axis: 

• AD = 𝜆L, 

• RD is the average of the eigenvalues along the axes perpendicular to the main 

direction of diffusion:  
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RD = R&SR+
'

. 

The quantities are usually interpreted to reflect tissue properties along these axes; AD is 

assumed to reflect axonal density, while RD is a measure of myelination.  

• MD is the average of all the eigenvalues of the diffusion tensor: 

MD = R*SR&SR+
P

, 

and thus represents an overall measure of the mobility of water molecules in all 

directions. Increased MD is associated with edema.  

• FA is a measure of the directional freedom of diffusion: 

FA = X1
2
8(𝜆L − 𝜆')' + (𝜆L − 𝜆P)' + (𝜆' − 𝜆P)'

8𝜆L' + 𝜆'' + 𝜆P'
 

FA is high in directed tissue, such as most white matter regions, and low in more isotropic 

tissue such as gray matter [193]. Changes to FA are associated with axonal integrity.  

It is usually assumed that AD corresponds to axonal density, RD reflects myelination, 

MD is a measure of edema, and FA quantifies axonal integrity. However, these quantities are 

indirect measures of diffusive freedom, and have ambiguous links to specific tissue alterations. 

For example, FA may decrease due to reduced myelination, axonal density, or axonal coherence 

[194]. Co-existing pathological mechanisms (e.g., inflammation, axonal injury and 

demyelination) can confound interpretation [195]. Ex vivo histopathological studies in animals 

also question any simple injective interpretations. While diffusion measures are sensitive to 

white matter pathology, the correspondence between AD and RD and histological markers of 

axonal density and myelination depends on the scale of analysis (e.g., pixel/voxel-scale vs. ROI-

based) and type of pathology (e.g., mouse spinal cord contusion injury vs. multiple sclerosis-type 

lesions) [196]. FA matches immunofluorescence markers of myelin in two-photon laser 
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microscopy of mouse brains, particularly in white matter regions with consistent fiber 

orientations and low dispersion, while RD is inconsistently associated with myelin in white 

matter [197]. 

Furthermore, the mathematical assumptions behind these interpretations may not be valid 

in all cases due to complex fiber geometry within each voxel. Biophysical models are typically 

used to estimate tissue microstructure from the diffusion MRI signal; axons are typically 

modeled as straight cylinders, and potential undulating trajectories may lead to an overestimation 

of properties such as diameter [192]. Diffusion measures such as FA can also suffer from the 

“crossing fibers” problem; voxels containing orthogonal fibers will have a low FA suggesting the 

absence of directed structure [193]. A variety of biophysical models attempt to account for tissue 

complexity, from the simple ball-and-stick model to multi-compartment models considering 

extra-axonal space [192] [198].  

Despite ambiguous interpretation, DTI-derived measures can be useful features for 

quantifying white matter integrity, showing alterations in ageing [194], AD [199] and PD [200]. 

Gray matter is assumed to contain more heterogeneous tissue with more problematic 

interpretation. However, diffusion measures can still be informative; PD patients exhibit higher 

subcortical gray matter MD compared to controls [201], and cortical MD is sensitive to 

longitudinal alterations in the AD continuum [202]. 

Estimating macroscopic brain connectivity from the diffusion weighted 

imaging 

Neuronal communication necessitates connectivity at various spatial scales from local 

circuits to macroscopic brain networks. The physical substrate of this connectivity is the 

myelinated axon bundles that make up white matter. By stitching together information from the 
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diffusion MRI signal from neighbouring voxels at various orientations, these bundles can be 

reconstructed through the process of fiber tractography [203].  

Typically, local (voxel) fiber orientations are used to define a three dimensional vector 

field, with long-range fiber connections as streamlines of this field. However, complex tissue 

architecture, with different orientations, can be present simultaneously in each voxel. The 

simplest methods assume a single deterministic fiber orientation per voxel from the diffusion 

tensor, whereas higher-order methods define a probabilistic fiber orientation distribution function 

(fODF) [204]. From reconstructed tracts and streamlines, a whole-brain connectome can be 

generated. Generally, the edges between the regions of interest are weighted by the number of 

reconstructed streamlines. 

In contrast to experimental methods for microscopic connectivity mapping (such as light 

microscopy, tract tracing, electron microscopy, etc.), diffusion tractography is non-invasive but 

limited to macroscopic analysis (i.e., at the scale of brain regions). Diffusion tractography cannot 

resolve the direction of connectivity, and it can be difficult to determine the origin and end points 

of fiber tracts. As tractography does not directly image the connections, it must be kept in mind 

that generated tracts and connectomes are, to some extent, a virtual construct rather than a 

ground truth confirmation of connectivity between two regions [205]. 

Nevertheless, fiber tractography has been a useful tool in characterizing the structural 

connectivity of the brain. The resulting connectomes can themselves be studied using the 

framework of graph theory [188]; concepts such as centrality, modularity and global efficiency 

are frequently used to describe and interpret individual and group differences in connectomics 

[206]. Another downstream application of particular relevance to neurodegenerative disorders is 
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the structural connectome-based modeling of pathology spreading, covered in Chapter 3 [207] 

[208] [209] [210]. 

Functional MRI 

In the 1980s, the activation-dependent increase in blood oxygenation was observed by 

PET studies [211]. The magnetic susceptibility of blood is oxygenation dependent; 

deoxyhemoglobin is paramagnetic, while oxygenated hemoglobin is not. Blood oxygenation can 

thus modulate the dephasing of NMR signal in blood and nearby tissue [212]. Consequently, this 

blood oxygenation dependent (BOLD) signal can be observed via the T2* parameter, which is 

the transverse relaxation rate in the presence of inhomogeneities due to intrinsic imperfections in 

the magnetic field or tissue-induced field distortions [213]. 

In functional MRI (fMRI), BOLD signal has been used as a proxy of neuronal activity 

without the need for an exogeneous contrast agent [214]. As a result of its non-invasive 

methodology, fairly high spatial and temporal resolution, and integration with other common 

MRI protocols, fMRI has overtaken PET as the technique of choice for functional imaging [215]. 

While fMRI is often used to investigate the neural correlates of task performance, resting 

state functional activity (rs-fMRI) has emerged as a potential marker of neurodegenerative 

disorders such as AD [216]. Metrics based on functional connectivity (FC) are popular, derived 

from the temporal correlations in the BOLD signal between brain regions. Age-related alterations 

in resting state activity have been observed, with purported mechanisms including white matter 

degeneration, neurotransmission dysfunction and proteinopathy deposition [217]. As an 

alternative to measures, such as FC and regional homogeneity, that integrate information across 

brain regions, localized measures such as the fractional amplitude of low frequency fluctuations 

(fALLF) are also altered in disease [218]. These low frequency fluctuations seem to be localized 
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in gray matter [216]. FC, FC dynamics and fALFF are similarly informative rs-fMRI measures 

for classifying AD, and the marginal information gain from combining the metrics is minimal 

[219]. In distinguishing PD patients from controls, fALFF has 92% sensitivity and 87% 

specificity [220].  

Finally, the BOLD signal is not a perfect representation of neuronal activity. There is the 

risk of contamination from non-neuronal fluctuations (e.g., cardiac and respiratory cycles) and 

bulk head motion [216]. Technically, fMRI reflects the hemodynamic response to mass neuronal 

activity [215]. This hemodynamic origin must be kept in mind when interpreting fMRI data in 

the context of other related modalities (e.g., FDG-PET for glucose metabolism and ASL MRI for 

CBF). There are several biochemical steps separating synaptic transmission, calcium dynamics, 

metabolic demand, neurovascular coupling and the BOLD signal measured by fMRI. This leaves 

the precise timing, cellular source and neurotransmission systems responsible for activity 

unresolved [221]. The signal also reflects dynamically changing factors, such as hemodynamic 

response function, which can vary spatially between brain regions and temporally across 

contexts [215]. 

Arterial spin labeling 

Given the physiological and clinical importance of CBF, many methods have emerged to 

image brain hemodynamics using PET, SPECT, MRI, computed tomography (CT), and 

ultrasound [222]. These modalities vary in their clinical practicality, sensitivity, spatial coverage, 

and resolution. Arterial spin labeling (ASL) is a technique to measure perfusion using MRI 

without the use of a contrast agent, by magnetically “tagging” endogenous water molecules 

upstream of the target tissue. This allows relatively fast and convenient perfusion imaging during 

routine MRI scanning. While methods for labelling vary, the core idea of ASL is to measure the 
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small downstream change in MR signal due to the flow of (e.g., inverted magnetization), 

typically by subtracting a control image from the tagged acquisition [223]. This flow-weighted 

map can then be converted into a perfusion map.  

The flow signal is a small fraction (~1%) of the background signal [222]. A high signal-

to-noise ratio is needed to observe changes; ASL cannot detect flow that is below a certain 

threshold (~10mL/100g per minute) [222]. Due to the subtraction of the two images, ASL is 

sensitive to motion. Furthermore, signal from large vessels is suppressed, and the flow in micro-

vessels is emphasized. Generally, ASL predicts blood flow well in gray matter, with retest 

consistency in the same subjects [222]. Technical advances and clinical studies have validated 

the relevance of ASL-derived measures of CBF alterations in the AD continuum [224] [87].  

Molecular imaging with PET and SPECT 

Unlike structural and diffusion MRI, which primarily image anatomical structures, 

molecular imaging aims to measure the spatial distribution of specific molecules which are 

involved in critical biochemical processes. This is often achieved using an injected 

radiopharmaceutical contrast agent that crosses the blood-brain barrier, binds to the target 

molecule, and contains an isotope that produces ionizing radiation. The produced photons are 

measured by detectors and then a three-dimensional image is reconstructed tomographically. In 

positron emission tomography (PET), proton decay in the radioisotope emits a positron, and its 

annihilation with a nearby electron creates a pair of gamma energy photons. These photons travel 

in opposite directions, and PET scanners are designed for the coincident detection of such photon 

pairs. In single-photon emission tomography (SPECT), gamma radiation is directly emitted by 

the isotope, and a collimator is used to restrict the photon acceptance again for spatial precision. 
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PET radiolabels typically use the isotopes 18F (with a half-life of 110 minutes) or 11C (with a 

half-life of 20 minutes) [225], and 123I is a common SPECT isotope [226]. 

While PET generally has superior resolution and sensitivity, practical considerations and 

availability may favour SPECT in some applications [225]. PET spatial resolution is constrained 

to the millimeter scale by fundamental physical effects, such as positron travel between 

production and annihilation and acollinearity of emitted photons [227]. Both PET and SPECT 

are also limited by (detector or collimator) geometric response, photon penetration and scattering 

[228]. However, some effects can be negated through technological modifications (e.g., 

simultaneous MRI-PET to reduce positron travel with an external magnetic field) or modeled and 

corrected during reconstruction (e.g., correction of attenuation due to tissue traversal, and 

improved source estimation using time-of-flight). 

Lacking a collimator, PET is more sensitive to emission events, has higher spatial 

resolution and uses isotopes with significantly shorter half-lives compared to SPECT. Although 

this latter point allows higher doses to be used during the scan, it presents logistical difficulties 

and requiring cyclotrons onsite [228]. More importantly, the availability of radiotracers 

constrains PET and SPECT imaging to specific molecules [229]. This is particularly evident in 

neuroimaging applications, where radiopharmaceuticals are further limited by the extremely 

selective permeability of the blood-brain barrier [230].  

When tracers are available for the molecule of interest, PET and SPECT offer an 

unmatched ability for in vivo imaging. Radiolabel development strives for high affinity, high 

specificity, ease of radiosynthesis, blood-brain barrier penetration, uptake into the structure of 

interest, in vivo stability and well characterized kinetics [225]. In recent years, amyloid and later 

tau PET tracers have been established in research and clinical practice for AD and related 
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disorders [231]. There are also ongoing efforts to develop tracers for other protein aggregates, 

such as α-synuclein and TDP-43, as well as other relevant markers such as glial activation and 

myelin [232] [233] [234]. These developments in molecular imaging can enable the in vivo 

quantitative assessment of increasing numbers of biochemical processes, and support a biological 

definition of neurodegenerative disorders [235] [236].  

FDG PET 

The radiotracer 2-[fluorine-18]fluoro-2- deoxy-d-glucose (FDG) is used to assess glucose 

metabolism. FDG is one of the most common PET tracers, and an established component of the 

clinical workflow in fields ranging from oncology and neurology. Hypometabolism due to 

reduced activity in glutamatergic synapses and astrocytes is an early marker of future progression 

to AD in individuals with mild cognitive impairment [173]. When patients have similar memory 

test performance, patterns of hypometabolism show differences between AD, DLB, FTLD and 

other neurological disorders [237]. 

Amyloid PET 

One of the main insights from PET imaging is the spreading of proteinopathy, which 

could previously only be characterized semi-quantitatively during neuropathological examination 

[238]. PET tracers for amyloid, such as Pittsburgh compound B (PiB), florbetapir, florbetaben 

and flutemetamol, have also been established in research and clinical settings [231]. PiB binds to 

different variants of extracellular amyloid plaques as well as vascular deposits [231]. Amyloid 

PET shows more diffuse spreading, unlike characteristic regional vulnerability to tau pathology 

and neurodegeneration in AD [48]. Amyloid PET can be positive in cognitively normal 

individuals, particularly older APOE4 carriers, and in other neurodegenerative disorders at 

increasing rates with age [239].   
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Tau PET 

Tau PET tracers such as flortaucepir have emerged in the past decade [231], allowing the 

characterization of spatiotemporal spreading patterns of tau and comparison with post-mortem 

Braak stages [56] [240]. Epidemic spreading models of tau PET data suggest that, while 

anatomical connectivity explains tau propagation patterns, the regional presence of amyloid may 

accelerate tau spreading [241]. Subtypes of tau deposition trajectories have been identified in AD 

[242], and distinct tau spatial patterns correspond to atrophy subtypes [177]. Based on modeling, 

tau pathology may influence memory performance differently during disease progression; via 

reduced functional connectivity in cognitively unimpaired individuals, but posterior hippocampal 

atrophy in mild cognitive impairment patients [243].  

The primary clinical utility of tau PET imaging is differential diagnosis of AD from other 

neurodegenerative conditions. However, this is less effective in mild cognitive impairment and 

other tauopathies cannot be reliably identified, partially due to overlap in regions with off-target 

binding [244]. Nevertheless, among imaging biomarkers, tau PET corresponds to cognitive 

decline better than hippocampal volume, amyloid PET and CSF measures [245] [246], and has 

established itself in biomarker-based definitions of AD, such as the A/T/N framework [236]. 

Neurotransmitter receptors and transporters 

Molecular imaging modalities such as PET and SPECT have also enabled the in vivo 

spatial characterization of neurotransmitter receptors and transporters. Common clinical 

applications range from the dopaminergic system in movement disorders [226] to the 

serotoninergic system in psychiatric disorders [225].  

Although PET spatial resolution is superior, SPECT is cheaper and does not require on-

site cyclotron facilities. For these reasons, it is widely used in the clinic, particularly for 
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dopaminergic imaging for the differential diagnosis and progression monitoring of PD patients as 

well as in psychiatric disorder [247]. Targets range from post-synaptic D1 and D2 receptors to 

pre-synaptic 18F-FDOPA (the fluorinated form of L-DOPA, the dopamine precursor) and 123I-

Ioflupane, used to image the dopamine transporter (DAT) [226].  

PET radiotracers also exist for serotonergic, norepinephrine, opioid, cholinergic, GABA, 

glutamate and cannabinoid targets [229], many of which are important targets in psychiatric 

disorders [247] as well as neurodegeneration [225]. In addition to numerous case-control studies 

showing molecular alterations in disease, receptor PET occupancy studies are useful tools in 

drug development [248] [249]. 

 

Figure 2.6. Biological definitions of neurodegenerative diseases. 
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While symptomatic presentation is currently a key criterion for diagnosis, robust 
biomarkers and potentially new, data-driven disease definitions would allow objective diagnosis 

using in vivo imaging (and other) markers. Figure adapted with permission from [235]. 

Magnetic resonance spectroscopy 

Magnetic resonance spectroscopy (MRS) is the neuroimaging analogue of NMR 

spectroscopy, which is frequently used in chemistry. While MRI can image anatomical structure 

(sensitized to some tissue property), MRS instead quantifies the biochemical composition of a 

localized area [250] [251]. Local magnetic fields for NMR-active nuclei, such as hydrogen 

protons, vary based on the specific electron distributions of their bonded molecules, resulting in 

distinct spectral peaks in the NMR signal. Unlike single-target PET and SPECT, this allows the 

simultaneous quantification of multiple chemicals including neurotransmitters such as glutamate 

and GABA, without requiring radioligands [250] [251]. Furthermore, unlike the synaptic targets 

of PET and SPECT radioligands, intracellular chemicals also contribute to the MRS signal [251]. 

Functional MRS can also resolve metabolite levels during task and resting state conditions [251]. 

MRI signal originates from the abundant hydrogen protons in water and fat, but MRS 

targets much rarer metabolites and chemicals. With limited sensitivity, spatial resolution and 

coverage, MRS is restricted to specific, small regions of interest [250] [251], and not feasible for 

routine whole-brain imaging like PET and SPECT. 

Histochemical autoradiography 

In addition to in vivo molecular imaging methods, the spatial distributions of 

neurotransmitter receptors can be quantified post-mortem using immunohistochemistry in 

combination with in vitro autoradiography [252]. Typically, a donor brain is sliced, stained and 

then imaged for one or multiple targets [253]. 
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Unlike PET and SPECT, post mortem autoradiography is not sensitive to motion during 

scanning. Theoretically, the maximum resolution from post-mortem autoradiography (effectively 

constrained by the slice width) can far exceed the millimeter-scale maximum resolution of PET 

imaging [227]. While appropriate radioligands that bind to molecular targets are required, 

restrictions of clinically approved in vivo radioligands are eased. However, access to post 

mortem brains, the expense of histological quantification and the technical difficulties of 

reconstructing three dimensional brain maps can limit practical utility. 

Conclusion 

The clinical syndromes of AD and PD are primarily characterized by dementia and 

movement disorder, respectively. While the underlying pathobiology has long been defined by 

proteinopathy (amyloid and tau in AD, and Lewy bodies in PD), both are now acknowledged to 

be multi-system disorders, involving vascular, metabolic and inflammatory alterations.  

The molecular pathways mediating these pathophysiological processes are not fully 

understood. However, the selective vulnerability of neuronal populations based on 

neurotransmitter and receptor expression, molecular evidence of interactions between 

neurotransmission and pathophysiology, and symptomatic benefit from neurotransmitter-based 

therapy suggest the involvement of multiple neurotransmitter systems.  

There are a number of open questions about the etiology and pathogenesis of AD and PD. 

Why do proteinopathies, such as amyloid plaques and tau tangles, originate in and propagate 

along specific brain regions? What neurochemical features support the regional vulnerability to 

long-term physiological changes such as atrophy and microstructural damage? How can we 

determine individualized therapeutic needs from clinical and neuroimaging data (e.g., cholinergic 

medication in PD [122])? Improved spatiotemporal characterization using multi-modal 
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neuroimaging and other in vivo biomarkers offers a pathway to answer these questions, for an 

unbiased biological definition of NDD onset and progression (Figure 2.6). 
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Chapter 3. Beyond the usual suspects: multi-factorial 

computational models in the search for 

neurodegenerative disease mechanisms 

Ahmed Faraz Khan, Yasser Iturria-Medina 

Preface 

The causes of neurodegenerative disease onset are not well understood, and it is often 

unclear whether observed features such as proteinopathy accumulation are upstream causes or 

downstream effects. Enabled by the maturity of large observational neuroimaging studies, a 

number of studies have attempted to align (often multi-modal) data from diverse groups of 

patients to understand the spatiotemporal progression of features such as atrophy, or the temporal 

relationship between different biomarkers. In addition to these models of biomarker trajectories, 

causal models of interacting biological factors explicitly incorporate interactions between these 

processes. Increasingly, there are also attempts to link macroscopic but easily observable features 

with more detailed but difficult-to-acquire molecular and cellular atlases of gene and receptor 

expression.  Finally, multi-scale biophysical models of neuronal activity attempt to incorporate 

modalities with diverse spatial and temporal resolutions. 

This chapter provides a broad overview of this spectrum of computational models, their 

applications to understanding neurodegenerative disease progression, and how they can impact 

our understanding of disease biology and influence clinical practice. 

The contents of this chapter are under review for an invited review article. 
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Abstract 

From Alzheimer’s disease to amyotrophic lateral sclerosis, the molecular cascades 

underlying neurodegenerative disorders remain poorly understood. The clinical view of 

neurodegeneration is confounded by symptomatic heterogeneity and mixed pathology in almost 

every patient. While the underlying physiological alterations originate, proliferate, and propagate 

potentially decades before symptomatic onset, the complexity and inaccessibility of the living 

brain limit direct observation over a patient’s lifespan. Consequently, there is a critical need for 

robust computational methods to support the search for causal mechanisms of neurodegeneration 

by distinguishing pathogenic processes from consequential alterations, and inter-individual 

variability from intra-individual progression. Recently, promising advances have been made by 

data-driven spatiotemporal modeling of the brain, based on in vivo neuroimaging and 

biospecimen markers. These methods include disease progression models comparing the 

temporal evolution of various biomarkers, causal models linking interacting biological processes, 

network propagation models reproducing the spatial spreading of pathology, and biophysical 

models spanning cellular- to network-scale phenomena. In this review, we discuss various 

computational approaches for integrating cross-sectional, longitudinal and multi-modal data, 

primarily from large observational neuroimaging studies, to understand i) the temporal ordering 

of physiological alterations, ii) their spatial relationships to the brain’s molecular and cellular 

architecture, iii) mechanistic interactions between biological processes, and iv) the macroscopic 

effects of microscopic factors. We consider the extents to which computational models can 

evaluate mechanistic hypotheses, explore applications such as improving treatment selection, and 

discuss how model-informed insights can lay the groundwork for a pathobiological redefinition 

of neurodegenerative disorders. 
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Introduction 

Over a century after Charcot, Alzheimer and Lewy, we still do not fully understand the 

pathogenic causes of sporadic neurodegenerative disorders, such as Alzheimer’s disease (AD), 

Parkinson’s disease (PD), amyotrophic lateral sclerosis (ALS), and frontotemporal dementia 

(FTD) [254]. Consequently, despite recent advances in anti-amyloid therapy for early AD [255] 

[256], disease modifying treatments generally remain elusive [257]. With a projected three-fold 

increase in the incidence of dementia by 2050 [8], there is an urgent imperative to identify and 

therapeutically target the root molecular causes of neurodegeneration. 

Historically, physiological changes to the living brain could not be observed. 

Characteristic post-mortem pathological features, such as amyloid plaques and neurofibrillary 

tangles in AD or spinal cord degeneration in ALS, were only identified after the advent of 

histology and the clinic-anatomical method [258] [259]. Lacking early biomarkers, the nosology 

of neurodegenerative diseases has been driven primarily by clinical symptoms. For example, the 

diagnosis of AD is an evolving concept, with distinct clinical and pathobiological definitions, 

intertwined with the historical concept of “senile dementia” [260]. However, there is significant 

symptomatic as well as pathological overlap between neurodegenerative diseases [261] and with 

normal brain aging [4]. As such, even expert clinicians can make erroneous diagnoses, with 

around one-fifth of patients being clinically misdiagnosed with AD or PD compared to post-

mortem pathological examination [262] [263]. Formalized criteria attempt to codify supportive 

and exclusionary features to standardize diagnosis [264], but, without definitive biological 

definitions and markers, it can be difficult to distinguish risk factors from prodromal disease 

features to place patients along an expected progression timeline [265]. As a result, our current 

conceptions of the major neurogenerative “diseases” are arguably in fact syndromes, grouped 
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together by shared clinical manifestation but potentially obscuring diverse underlying 

physiological mechanisms [266] [267] [11]. 

On the other hand, neuropathological examination at autopsy shows that most patients 

have mixed pathology [268] [269] [270] [271] [272] [273] [274]. From autopsy analysis of 10 

pathologies in individuals from 8 diagnostic classes, Robinson et al. found 161 different 

pathological combinations, with up to 7 present concurrently in a given individual [275]. In 

particular, tau pathology is nearly universal across the major neurodegenerative disorders [59]. In 

addition to the characteristic accumulation of amyloid and tau, co-pathological TDP-43 and α-

synuclein are present in one-third and half of AD patients, respectively [59]. AD is also 

associated with neuroinflammation and metabolic dysregulation [22] [18] [19], and shares risk 

factors, pathology and symptoms with vascular dementia [12]. Patients of both sporadic and 

genetic variants of FTD have tau, TDP-43 and other proteinopathies [276], likely forming a 

continuum with ALS patients [277]. Furthermore, FTD itself encompasses several clinical 

syndromes with shared symptoms, including behavioural variant FTD, (semantic and non-fluent) 

primary progressive aphasias, progressive supranuclear palsy (PSP), and corticobasal syndrome 

(CBS) [278]. Synucleinopathies, such as PD, dementia with Lewy bodies (DLB) and REM sleep 

behaviour disorder, also exhibit overlapping clinical, neurochemical and morphological 

characteristics [279]. While PD is primarily associated with movement dysfunction due to 

nigrostriatal dopaminergic loss, patients also present various neurobiological alterations having 

strong associations with multiple neurotransmitter systems and peripheral organs [280]. The 

presence of co-pathologies could affect the observed efficacy of treatments and clinical trials 

[281], and require a more nuanced approach involving individualized and multi-factorial 

treatment [282].  
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While early pathological studies were limited to post-mortem autopsy, the advent of in 

vivo biomarkers in recent decades has allowed quantitative assessment throughout disease 

progression starting from preclinical or prodromal stages. Non-invasive neuroimaging techniques 

have enabled the characterization of structural, functional, proteinopathy, vascular and metabolic 

alterations, revealing long periods of preclinical pathogenesis [17]. Trading spatial specificity for 

improved temporal resolution, electrophysiological modalities such as EEG/MEG can evaluate 

regional and network activity dysfunction [283]. On the other end, bulk tissue and single 

cell/nucleus transcriptomics can achieve microscopic spatial resolution, although they are 

dependent on the acquisition of post-mortem brain tissue and thus more restricted in spatial 

coverage and sample size [284] [285]. In addition, many plasma, cerebrospinal fluid (CSF) and 

peripheral markers have shown promise for integration into clinical practice [286]. 

Following the emergence of potential in vivo biomarkers, there have been increasing 

efforts to define neurodegenerative diseases, and categorize and stage patients based on 

underlying biological alterations rather than by clinical symptoms [236] [287] [288] [289] [290] 

[291]. For an autosomal dominant disorder with a genetic continuum such as Huntington’s 

disease (HD), the starting point can be defined by genotype, followed by pathological 

biomarkers, and finally the appearance of symptoms and functional changes [291]. Alternatively, 

the amyloid/tau/neurodegeneration (A/T/N) framework [289] does not consider temporal 

ordering, but instead categorizes patients along an “Alzheimer’s continuum” based on a 

combination of binary features: namely, the presence of (e.g., CSF or PET) markers of amyloid 

and tau pathology as well as neurodegeneration or neuronal injury (e.g., hippocampal volume, 

cortical thickness, or CSF neurofilament light) [292]. With the development of CSF α-synuclein 

seed amplification assays [293], biomarker-based criteria are now emerging for PD. Two recently 
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proposed approaches, SynNeurGe and the Neuronal Synuclein Disease Integrated Staging 

System (NSD-ISS), classify PD- and DLB-related disorders based on genotype, the presence of 

(e.g., CSF) α-synuclein, and imaging markers of PD-associated neurodegeneration without 

necessitating clinical symptoms [294] [65]. Theoretically, biomarker-based categorization can 

also flexibly incorporate other forms of pathology (e.g., vascular or metabolic indices in AD 

[18]) and alternative markers of the same pathology, although alignment with symptoms and 

clinical diagnosis appears to be sensitive to the specific choice of biomarkers for the A/T/N 

framework [292]. Biomarker-driven categorization is expected to improve the biological 

homogeneity of preclinical and prodromal subjects enrolled in clinical trials [294] [65] [291], but 

it remains to be seen whether the correct physiological factors are being considered [295]. The 

implications of clinical and pathological intra-disease heterogeneity and inter-disease overlap 

require further clarification. Perhaps a more integrative taxonomy of neurodegenerative disorders 

is needed, considering the multi-dimensional variability of clinical, anatomical, molecular, and 

etiological factors. To this end, a branching hierarchy considering divergence in genetics, 

followed by molecular pathways, and finally modifiable risk factors has been proposed [296]. 

Regardless of disease definitions, there are critical open questions about the mechanisms 

of onset and progression. Are the varied manifestations of each disorder diverging responses to a 

common, latent cause, or a combination of distinct underlying processes resulting in similar 

clinical syndromes [287] [297]? Are the various culprit proteinopathies the true etiology of 

neurodegenerative disorders, or are they the consequences of compensatory mechanisms [298]? 

What factors underlie varying therapeutic needs and treatment responses of patients with the 

similar clinical diagnosis?  
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To address these questions, there is a need for a systems-level understanding of 

interactions across various physiological systems and levels of brain organization [29]. Multi-

modal computational modeling can support these efforts by integrating data types across spatial 

and temporal scales in biologically interpretable formulations. In this review, we cover recent 

advances in the computational modeling of spatiotemporal brain alterations in various 

neurodegenerative disorders. We particularly emphasize how data-driven in silico models, which 

are fit to empirical observations without necessitating detailed a priori knowledge about 

underlying mechanisms, can evaluate disease hypotheses and impact clinical practice. We 

present these approaches in an increasing order of mechanistic detail. We begin by introducing 

continuous- and discrete-time disease progression models (DPMs) that stitch together data from 

cross-sectional observational studies to infer the order of physiological alterations and their 

variability in patients. Although these methods can flexibly incorporate multiple modalities with 

minimal a priori specification, they cannot resolve potential interactions between physiological 

variables.  Addressing this consideration with causal structure, we discuss dynamical system 

models of interacting physiological factors and network propagation. These models have an 

element of mechanistic insight, and recent studies have extended them with the molecular and 

cellular architecture of the brain. Finally, we consider multi-scale biophysical models, where 

effects explicitly propagate from microscopic cellular mechanisms to mesoscopic circuits and 

macroscopic signals reproducing empirical neuroimaging and electrophysiological data. 

Together, this body of work follows the general theme of inferring latent disease mechanisms by 

fitting interpretable whole-brain computational models to observable biomarker data. 
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Biomarker trajectories in latent disease time 

Neurodegenerative disorders can affect multiple symptomatic domains, including 

memory, language and executive dysfunction, and involve diverse physiological alterations, such 

as proteinopathy, cerebrovascular impairment, atrophy and hypometabolism. Often, the profile of 

physiological and symptomatic deterioration is characteristic to the stage of disease progression. 

For example, incontinence followed by sleep disorders are some of the earliest symptoms of PD 

(occurring 1-2 decades before motor symptoms) [299], and, during the long prodromal phase of 

AD, decline in semantic memory precedes more global cognitive deficit and eventually dementia 

[300].  

The idea that the neurodegenerative disease progression follows stereotypical hierarchies 

quantifiable by biological (rather than clinical) variables can be traced to post mortem 

pathological staging [301]. In the early 1990s, Braak and Braak identified a characteristic 

sequence of neurofibrillary tangle progression in the brains of AD patients (Fig. 3.1a), from 

transentorhinal (Stages I-II) to limbic (Stages III-IV) and finally neocortical (Stages V-VI) 

regions [302]. Neuropathological staging has since been attempted for various proteinopathies, 

diseases and cohorts [303] [304]. These studies emphasize the importance of the disease-specific 

spatiotemporal progression of pathological factors; for example, while tau pathology is involved 

in both AD and chronic traumatic encephalopathy (CTE), it follows distinct spreading patterns in 

the two disorders [301]. 

The establishment of in vivo (PET, MRI and CSF) markers in clinical practice has offered 

a chance to extend staging systems to the preclinical phase, closer to pathogenesis. In an 

influential work, Jack et al. proposed a hypothetical cascade of multiple biomarkers in AD [54], 

conceptually similar to Fig. 3.1b. Echoing the traditional amyloid hypothesis [305], these 
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biomarker curves implied that abnormal levels of amyloid and tau accumulation are followed by 

structural alterations, which finally lead to clinical symptoms [54]. An important corollary of this 

would be that upstream physiological alterations can signal the onset of symptoms, allowing 

early diagnosis and treatment. Enabled by large, observational imaging initiatives in various 

neurodegenerative disorders [306, 307, 308], many studies have since attempted to test 

hypothetical cascades and uncover the true orderings of biomarker alterations using DPMs. 

Constructing disease trajectories from cross-sectional data 

These DPMs are generally data-driven, typically fitting monotonic functions to empirical 

biomarker data with minimal assumptions about the underlying mechanisms. A key problem in 

fitting such trajectories is the absence of observations covering the entire course of disease 

progression in any single subject. Longitudinal studies are typically much shorter than the 

decades-long periods of preclinical, prodromal, and finally symptomatic progression of most 

neurodegenerative disorders. As a result, inferring population biomarker trajectories over the 

entire course of a disease requires stitching together data from subjects at varying disease stages 

(Fig. 3.1b) [309]. This data, whether a single visit or a sequence of measurements, can have 

inter-individual variability in disease stage and severity, and subjects may not follow the same 

trajectory.  

For simplicity, we first consider the case where there is a common population trajectory. 

Individuals’ snapshots must be temporally aligned to correctly place each subject in the 

population trajectory. Continuous-time DPMs usually achieve this by arranging subjects 

according to a latent temporal variable, usually referred to as “disease age”, “disease time”, 

“disease progression score” (DPS) or pseudotime. This disease age is distinct from chronological 

age but better reflects onset and progression from patients’ markers [310]. To fit long-term, 
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multivariate population biomarker trajectories from longitudinal snapshots over a shorter period, 

a popular approach for continuous-time DPMs has been to combine i) mixed-effects modeling to 

account for subject-specific random effects on a fixed population trajectory, and ii) self-modeling 

regression to adjust the population trajectory for individualized onset and rate of progression 

along a common latent disease time. In the remainder of this section, we will discuss some 

applications of this paradigm (as well as others) to various neurodegenerative disorders. 

Familial age of onset as scaffolding for disease time  

Due to a degree of predictability imposed by genetic risk, autosomal dominant disorders 

such as dominantly inherited AD (DIAD) and familial FTD are a suitable testbed for the DPM 

temporal alignment problem. In these disorders, individuals highly likely to progress to dementia 

can be identified in the preclinical phase. DIAD is relatively rare (around 1% of total AD cases) 

[15] and occurs significantly earlier (around 30-50 years of age) [311]. Unlike sporadic AD, 

which has no Mendelian inheritance pattern, DIAD is associated with pathogenic mutations of 

amyloid protein precursor (APP), presenilin-1 (PSEN1) and presenilin-2 (PSEN2) [15]. Although 

age of onset can vary, with over one-quarter of at-risk siblings developing familial AD more than 

10 years apart in age [312], a systematic review and meta-analysis suggests that parental age of 

onset explains over 38% of the variance [313]. Likewise, autosomal dominant inheritance is 

observed in 10-15% of FTD patients due to mutations in genes such as progranulin (GRN), 

microtubule-associated protein tau (MAPT) and chromosome 9 open reading frame 72 (C9orf72), 

as well as others [314]. The influence of genetic risk on age of onset in familial FTD is genotype-

dependent [315]. This heritability of disease onset age has informed early attempts at modeling 

biomarker progression in DIAD. 
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For example, Bateman et al. estimated expected years to/since disease onset in DIAD by 

subtracting parental age of onset from patients’ chronological age [15]. This estimate was used to 

fit linear mixed effects models of multi-modal biomarkers. The resulting trajectories suggest that 

CSF amyloid is the earliest biomarker to become abnormal (declining up to 25 years before 

symptom onset), followed by amyloid PET, CSF tau and atrophy (15 years before onset), 

hypometabolism and episodic memory dysfunction (10 years before onset), and cognitive 

impairment (5 years before clinical diagnosis).  

In familial FTD, atrophy patterns vary by genotype between carriers of C9orf72, GRN 

and MAPT variants [316]. For these mutation carriers, Staffaroni et al. predicted symptom onset 

using a joint Bayesian mixed effects model of longitudinal clinical assessments, regional brain 

volume and plasma neurofilament light chain (NfL) data [16]. Estimated disease onset ages were 

sampled from a prior distribution of carriers of the same mutations, and biomarker functions 

were fit with mutation-specific temporal shift and scale parameters. Using this method, regional 

brain atrophy and elevated plasma NfL levels were found to appear 10 to 40 years before 

noticeable symptomatic deterioration across genotypes [16].  

Other studies have attempted to extrapolate models from genetic to sporadic disease. In a 

genetic AD cohort, Almkvist et al. fit curvilinear functions mapping years to expected clinical 

onset to various cognitive assessments [317]. If non-familial AD follows a similar clinical 

trajectory, inverting these relationships could be used to infer years to/since clinical onset from 

shared cognitive assessments. This calculated disease age did correlate better with CSF and 

imaging biomarkers than chronological age in non-familial mild cognitive impairment (MCI) 

and AD patients [318], with a bimodal distribution of onset age corresponding to early- and late-

onset forms of sporadic AD.  
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It is important to test the assumptions of these extrapolations, and consider the extent to 

which familial and sporadic variants of a disorder are aligned in their pathological cascades. 

DIAD presents an opportunity to study the pre-symptomatic stage in carriers of risk variants who 

will go on to develop AD [311] with a somewhat predictable age of onset [313]. While similar 

trajectories of posterior cingulate amyloid deposition and memory decline have been noted in 

DIAD and sporadic AD patients, the latter display faster hippocampal atrophy [15] [305] [17] 

and an amyloid-independent medial temporal tauopathy [319]. A recent comparison of DIAD 

and sporadic early-onset AD clinical and biomarker progression reiterates that the former is more 

homogeneous, while the latter is more likely to exhibit atypical phenotypes [320]. For example, 

unlike sporadic AD, almost all DIAD patients exhibited an amnestic syndrome. Differences in 

genetic risk factors may drive the heterogeneity of sporadic AD [320], as well as potential later 

onset age, as more varied risk factor and comorbidities can accumulate over time. 

Estimating disease onset in sporadic disorders 

The pathological processes underlying sporadic neurodegenerative disorders such as AD 

and PD also begin decades before their characteristic symptoms [288] [299] [321]. Several early 

works used standardized clinical assessments to align subjects [322] [323]. In the Alzheimer’s 

Disease Neuroimaging Initiative (ADNI) cohort, Yang et al. fit individual-specific functions to 

longitudinal cognitive scores with temporal offsets representing age of onset [324], and applied 

this subject ordering to other biomarkers. While the inferred ordering was consistent with the 

hypothetical cascade [54], this method did not account for subject-specific variability in rate of 

progression, which can be a major consideration in AD [325]. 

Subsequent DPMs have considered inter-individual variability in rate of progression 

[326]. In an exemplar study on the ADNI cohort, Jedynak et al. iteratively fit i) a subject-specific 
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DPS as a linear function of chronological age and ii) population biomarker curves as sigmoidal 

functions of DPS [326]. To simultaneously fit nonlinear population curves and subject-specific 

disease time, many studies use iterative or Bayesian approaches [310] [327] [310].  

In contrast to the hypothetical biomarker cascade of Jack et al. [54], the Rey Auditory 

Verbal Learning Test was the first marker to become abnormal in the data-driven model of 

Jedynak et al., followed by hippocampal volume and CSF amyloid and tau concentrations [326]. 

Considering covariates, Ishida et al. found genotype-dependent timing of cognitive decline in 

female AD patients [327].  

In addition to determining the timing of biomarker alterations, DPMs can be used to stage 

individual patients and predict the onset of clinical symptoms. Combining Bayesian inference 

with flexible logistic basis functions and stage-dependent rates of progression, Bilgel and 

Jedynak predicted age of dementia onset in the ADNI cohort with a root mean-squared error of 

1.5 years [328]. The distributions of model-inferred disease times differ significantly between 

diagnostic classes in the AD spectrum [310].  Such estimates of latent disease time can be used to 

define clinical trial endpoints [16] and detect treatment effects using fewer participants [327]. 

DPM-inferred individualized disease time can also be the basis for data-driven probabilistic 

diagnosis and estimation of time to conversion [329]. Based on the DPM of Lorenzi et al., the 

transition from healthy to diseased state in AD largely corresponds to hypo-metabolism and 

temporal atrophy, with more advanced stages reflected by neuropsychological markers [329]. 

These results suggest that integrative, model-based disease time inference is particularly useful 

for early disease stages, when clinical symptoms are less evident. Furthermore, these DPMs can 

flexibly incorporate clinical, imaging, and fluid biomarkers, as well as other features such as 

topological properties of spatial brain maps [330]. 
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Temporal associations between markers 

Based on observational studies, the DPMs presented so far do not provide explicit 

evidence for causality. However, a simple yet critical epidemiological evidence of causality is 

temporality; presumed causes must precede their consequences. [331]. From this lens, the timing 

of biomarker alterations from DPMs can be used to evaluate disease hypotheses. 

A major topic in AD research is the relationship between the two defining pathologies: 

amyloid and tau. Amyloid is believed to facilitate tau pathology, but the two proteinopathies also 

appear to have synergistic as well as independent effects [332] [333]. Developed for survival 

analysis, the framework of accelerated failure time (AFT) is a straightforward way to evaluate 

temporality via a common biomarker trajectory with individual-specific temporal shifts. Based 

on AFT analysis, model-inferred individual temporal shifts of amyloid and tau accumulation in 

the AD spectrum are better correlated with increasing proteinopathy burden than chronological 

age. APOE ε4 genotype shifted both amyloid and tau curves earlier, by 6.1 and 2.6 years, 

respectively. These curves were also moderately correlated, with an average delay of 13.3 years 

between amyloid and tau accumulation [334]. While the AFT analysis does not demonstrate 

causation, it shows how the timing of amyloid and tau pathology are related and affected by 

covariates. Disentangling synergistic from independent effects of amyloid and tau requires more 

detailed mechanistic modeling, discussed in later sections. 

Cerebrovascular disease (CVD) pathology also frequently co-exists in AD, suggesting a 

potential relation to proteinopathy accumulation. Comparing disease trajectories of CVD-

associated white matter hyperintensities (WMH) and fractional anisotropy (FA) with AD-

associated amyloid and tau PET imaging shows moderate within-disease temporal correlations 

between individualized timings of amyloid and tau accumulation (r=0.57) and WMH and FA 
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alterations (r=0.44) in the AD spectrum [335]. However, these imaging measures of CVD and 

AD pathology did not show strong correlations across disease measures nor with hippocampal 

volume, nor were associations with clinical symptoms considered. As a result, the authors 

propose that vascular and proteinopathy components in AD represent independent mechanisms 

[335]. However, interpretations are limited by the non-specificity of imaging measures to 

vascular pathophysiology, as well as aspects of vascular dysfunction not captured by WMH or 

FA.  

Perfusion imaging modalities such as arterial spin labeling MRI can measure vascular 

function [336], which may be disrupted before structural alterations. Acknowledging the 

presence of diverse physiological alterations in late-onset AD, Iturria-Medina et al. fit multi-

modal (structural, functional, metabolic, amyloid and tau) imaging, CSF and plasma mixed-

effects models to infer biomarker abnormality as the distance between diseased and healthy 

trajectories [337]. Notably, vascular alterations (from arterial spin labeling MRI) preceded all 

other biomarker alterations, and memory deficit was observed early and continued to decline in 

parallel with neuroimaging- and biospecimen-based markers over disease progression. 

Assumptions about trajectory shape 

In addition to inter-subject variability in timing, assumptions about trajectory shape and 

biomarker dynamic range are important considerations in fitting empirical data. Using a non-

parametric approach to fit monotonic splines to population trajectories in the ADNI cohort shows 

varying degrees of linearity and sigmoidal form among biomarkers [309], suggesting that some 

biomarkers did not capture the final, plateauing stage of a hypothetical sigmoidal disease 

trajectory. On the other hand, hippocampal volume had the highest signal-to-noise ratio at these 
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disease stages, in agreement with another non-linear mixed-effects model where it was the 

largest contributor to model-inferred disease time [309] [327]. 

A common assumption is that trajectories are monotonic, with markers progressing 

consistently from normal to diseased levels. It is important to note that biomarker progression 

may not conform to assumptions about trajectory shape, such as linearity, exponentiality, 

sigmoidal shape or even monotonicity, especially when considering features derived from 

topology [338] or dimensionality reduction [339]. Relaxing assumptions about mean trajectory 

shape apart from smoothness, Schmidt-Richberg et al. developed a probabilistic method based on 

vector generalized additive models (VGAMs) to estimate disease stage and rate of progression 

using quantile regression [340]. Using converter subjects that progressed to a worsened disease 

state, this method fits biomarker probability density functions for clinical assessments and low-

dimensional projections of imaging data obtained using Laplacian eigenmaps [339], while 

handling missing data and non-monotonic biomarker trajectories. Addressing the common 

trajectory assumption, Guerrero et al. transitioned from mean population to individualized 

disease progression models by selecting a subpopulation of similar patients based on 

neighborhood in a low-dimensional projection [341]. The theory of fitting subject-specific 

trajectories as temporally re-parameterized, spatially-shifted variants of a group trajectory that is 

a geodesic on a Riemannian data manifold has also been mathematically developed [342], and 

applied to high-dimensional cortical thickness features [343] as well as neuropsychological data 

from ADNI [342].  
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Feature selection and inferring disease time from high-dimensional 

data 

At a finer resolution than ROI-averaged features, other works have applied DPMs to 

voxel- or vertex-wise data. This higher-resolution characterization can help resolve pathological 

trajectories that may be regionally variable. Bilgel et al. [344] extended an earlier DPM [326] to 

voxel-wise amyloid PET data from the Baltimore Longitudinal Study of Aging (BLSA) cohort, 

finding the earliest amyloid accumulation in the precuneus despite its similar rate of change as 

other cortical regions, which is consistent with other studies [345]. Notably, their calculated DPS 

correlated better with mean cortical distribution volume ratio than subject-specific offset and rate 

of change parameters. Marinescu et al. developed Data-driven Inference of Vertex-wise 

Evolution (DIVE) [346], which was used to infer sigmoidal biomarker trajectories of vertex 

clusters in AD and posterior cortical atrophy (PCA) from cortical thickness MRI and amyloid 

PET data. By iteratively clustering vertices, estimating biomarker trajectories for each cluster, 

and inferring disease pseudo-time, DIVE can automatically segment the cortex into (potentially 

disconnected) regions sharing similar progression patterns.  

Model scalability with large numbers of features is an important consideration for high-

dimensional data from transcriptomics, proteomics and epigenomics. Analogous to DPMs, 

trajectory inference methods are commonly used in single-cell analyses to characterize dynamic 

cellular processes such as differentiation and life cycles from single-cell omics [347]. These 

concepts have also been applied to infer population trajectories from cross-sectional data [348] 

[349]. The general approach to trajectory inference is to fit a graph to individuals’ data points in 

a reduced dimensional space, linking them along a continuum that can be used to calculate a 

pseudotime (which in this context is equivalent to a disease time or progression score). 
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Prioritizing variance between patients and controls during dimensionality reduction, a contrastive 

trajectory inference algorithm was applied to bulk tissue post-mortem brain and in vivo blood 

gene expression from cross-sectional cohorts of late-onset AD and HD patients [348]. This 

method used distance along a minimum spanning tree to healthy control references to calculate 

patients’ pseudotimes, which are significantly correlated with the severity of neuropathologies 

(Cerad, Braak and Vonsattel stages) and cognitive performance. Another study on 

transcriptomics-based trajectory inference in the AD instead used a manifold learning approach 

that fits a nonlinear transformation to a low dimensional space where subjects have a tree 

structure. Pseudotimes calculated from this tree did correspond to neuropathological stages and 

diagnoses, and a “disease resistant state” was also found, consisting of subjects with disease-like 

transcriptomic profiles but no pathological diagnosis of AD [349]. In general, the choice of 

dimensionality reduction algorithms and graph structure can influence results, such as the ability 

to identify branching structure in the data [350]. Beyond transcriptomics, trajectory inference 

methods have also been applied to voxel-scale imaging data using latent embeddings from 

variational autoencoders (VAEs) [351].  

The impact of disease variability on staging 

In general, heterogeneity in biomarker trajectories can be a major confounding factor for 

staging. Acknowledging the symptomatic and physiological heterogeneity of neurodegenerative 

disorders, there have been many attempts to identify disease subtypes from clinical data, in vivo 

markers, and pathology [352]. While a detailed discussion of subtyping is outside the scope of 

this review, some methodological concerns are covered elsewhere [353]. Typically, subtyping 

involves unsupervised methods such as clustering or network community detection [354] applied 

to cross-sectional [355] or longitudinal [356] features. In AD, the consensus from imaging and 
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neuropathology points towards 3 subtypes, representing typical, limbic-predominant and 

hippocampal-sparing/minimal-atrophy spatial patterns [13] [357], while CSF proteomics-based  

clustering 5 subtypes with distinct molecular signatures that are identifiable from the pre-clinical 

phase [358]. However, disease stage can also exert significant influence on progression-naïve 

subtyping (e.g., in PD [359]), and distinguishing between effects due to disease progression and 

trajectory is important [348] [360].  

To address both sources of variability simultaneously, expectation-maximization methods 

can be used iteratively to assign subjects to and construct biomarker trajectories for subtypes, 

with an initial subtyping solution provided by clustering. Applying this approach to a reduced 

dimensional fused network of multi-omics (transcriptomics, epigenetics, proteomics, and 

metabolomics) data identified 3 molecular subtypes in AD [360], 

With the presence of disease subtypes, the interpretation of subtype-specific DPS can 

become more complicated. For example, when subtype-specific DPS reflects the distance from a 

subject to a healthy control reference population along its trajectory [360], can these scores be 

compared across subtypes? One way to anchor the subtypes would be to calibrate all subtype-

specific DPS in reference to a clinical score threshold. However, this is likely not a major 

concern in practice, as accurately placing a patient along the expected trajectory of their 

identified subtype would be more relevant than comparing scores across subtypes.  

Patients sharing the same clinical diagnosis may not be biologically homogeneous, and 

may follow distinct trajectories. To account for this variability, we have seen attempts to shift 

towards unsupervised discovery of subtypes [360] and individualized modeling [341]. Other 

studies have considered the effects of risk factors, such as APOE genotype, on model parameters 

[322]. While population disease trajectories are informative in understanding the stereotypical 
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sequence of biomarker alterations, it is important to consider the factors that may contribute to 

heterogeneity during modeling and analysis.   

Sequences of alterations in event-based models 

In contrast to the DPMs presented so far that assume a latent temporal continuum of 

disease progression, event-based models (EBMs) order biomarkers according to discrete 

transitions from normal to abnormal states. Because of this simplicity, EBMs can extract an 

intuitive biomarker ordering, depicted in Fig. 3.1c, using cross-sectional data from small datasets 

[361]. With this practical advantage, applications of EBMs to a variety of imaging, clinical, 

neuropathological and biospecimen features across diseases have provided data-driven insight 

into biomarker ordering and their subtype variability. 

Discretizing disease stages 

As with continuous-time DPMs, some of the earliest EBM studies addressed autosomal-

dominant disorders, where carriers can be identified before symptom onset. An influential work 

by Fonteijn et al. [361] characterized the progression of regional atrophy and clinical diagnosis 

in familial AD and HD patients. At the core of EBMs are mixture models, a statistical approach 

to fitting data arising from multiple subpopulations. In the original EBM formulation of Fonteijn 

et al., a mixture of Gaussian and uniform distributions is fit to each event/biomarker. The 

Gaussian distribution corresponds to the likelihood of observing a biomarker value when the 

event has not occurred, while the uniform distribution corresponds to the likelihood given that 

the event has occurred [361]. An overall likelihood can then be calculated for each sequence of 

event orderings, and a Markov chain Monte Carlo (MCMC) algorithm is used to sample the 

posterior distribution of event orderings given biomarker data. A characteristic sequence of 
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events as well as their uncertainty estimates (represented by the gray elements in Fig. 3.1c) can 

then be calculated. In familial AD, hippocampal atrophy was the earliest imaging marker, 

occurring before MCI diagnosis, and soon followed by inferior parietal and precuneus atrophy. 

In HD, putamen, caudate, thalamus, posterior cingulate and superior frontal atrophy were the 

earliest markers. 

Applications of EBMs to a variety of disorders have reproduced known aspects of disease 

progression while providing a quantitative staging system. Young et al. [362] extended the 

original EBM of Fonteijn et al. to sporadic AD, reproducing the early abnormality in CSF protein 

levels that is consistently observed, followed by regional atrophy rate, cognitive decline and 

decreased regional brain volume. Similar EBMs have been applied to anatomical connectivity-

derived network measures in sporadic AD [363]. Combining a cross-sectional EBM with 

longitudinal differential equation modeling of multi-modal biomarkers in DIAD showed that 

many biomarker alterations accelerate with disease progression [364], in contrast to the 

sigmoidal plateauing hypothesized by many studies [54]. In DIAD, cortical and then subcortical 

amyloid accumulation was followed by p-tau, CSF amyloid and tau, neurodegeneration in the 

putamen and nucleus accumbens, cognitive decline, cerebral hypometabolism and finally other 

regional neurodegeneration [364]. Using gray and white matter, brainstem, cerebellar and 

ventricular volumes, Eshaghi et al. applied an EBM to transitions from normal to atrophic states 

of regional gray matter in multiple sclerosis (MS) patients [365]. Consistent with histopathology, 

primary-progressive and relapse-onset variants of MS showed similar orderings of regional 

atrophy. These prolific applications reflect the simplicity and generality of the EBM approach. 
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Estimating disease time from EBMs 

Unlike continuous time DPMs, the standard EBM formulation infers only the relative 

ordering of biomarker alterations, but not any timing between events or global disease time. 

Variations such as the temporal event-based model (TEBM) assign both a stage and progression 

risk to individuals, thus placing them on a disease timeline [366]. Notably, TEBM predicts 

conversion time (when all cognitive biomarkers become abnormal) with more accuracy and 

precision than the standard EBM or a continuous time Gaussian process DPM. Acknowledging 

the noise in clinical diagnosis, Venkatraghavan et al. developed a discriminative EBM also 

incorporating timing between events [367]. This approach first fits PDFs for easily separable 

subsets of controls and AD patients. It then infers subject-specific orderings, generalizes these 

orderings to the populations, estimates relative temporal distances between events, and stages 

patients based on this ordering. Notably, model-derived patient stages from discriminative EBM 

better reflected the progression of AD patients than stage estimates from other contemporary 

EBM formulations [367]. In a “typical AD” subset consisting of amyloid-negative controls and 

amyloid-positive MCI and AD patients, p-tau becomes abnormal before the cognitive 

assessments. However, with the full dataset, CSF amyloid and cognitive alterations precede p-

tau; in general, the biases introduced by inclusion criteria must be considered. Notably, 

hippocampal volume and other structural measures follow cognitive alterations, potentially due 

to the insufficient sensitivity of these imaging markers to early mild changes in this cohort [367]. 

Accounting for heterogeneity of event sequences 

The original EBM formulation assumed a common monotonic trajectory for all 

biomarkers across the cohort. This assumption is likely more valid for certain subgroups, such as 
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patients of autosomal dominant disorders, or amyloid- and/or APOE-positive subjects who show 

less variability in event sequences [362]. Alternative formulations [368] allow heterogeneity in 

the temporal ordering of biomarkers using a probabilistic model. However, they considered the 

probability density functions of pre- and post-event classes to be independent Gaussian 

distributions for each biomarker, which likely exhibit correlation. Disentangling these distinct 

sources of variability, Subtype and Stage Inference (SuStaIn) simultaneously performs 

unsupervised subtyping and temporal disease staging using an iterative training procedure [369]. 

As a result, it has been able to derive data-driven subtypes based on progression patterns across 

many diseases.  

Using structural MRI data, this method was able to identify known genotypes from 

imaging data of FTD patients, while proposing two distinct latent phenotypic subtypes linked to 

the C9orf72 genotype [369]. In AD, three subtypes were identified based on regional origin of 

atrophy: i) the hippocampus and amygdala in the typical subgroup, ii) the nucleus accumbens, 

insula and cingulate in the cortical subgroup, and iii) the pallidum, putamen, nucleus accumbens 

and caudate in the subcortical subgroup [369]. These data-driven progression subtypes appear to 

correspond to the 3 neuropathologically observed subtypes of AD [357] [370]. SuStaIn also 

identified 4 distinct spatiotemporal trajectories of AD tau accumulation, corresponding to 

different clinical profiles and outcomes [242]. Modeling amyloid accumulation, SuStaIn found 

cortical and subcortical subtypes with the latter corresponding to more typical AD clinical 

presentation [371], while another study showed that cortical amyloid deposition is best explained 

by three subtypes defined by frontal, parietal and occipital initiation of abnormality [372]. 

Combining both proteinopathies in AD, SuStaIn also consistently reproduces complementary 
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"amyloid-first” and “tau-first” subtypes from separate modeling using in-vivo PET and 

neuropathological evaluation [373]. 

In TDP-43 proteinopathies, including ALS, FTD, and the recently characterized limbic-

predominant age-related TDP-43 encephalopathy neuropathological change (LATE-NC) [374], 

an ordinal variant of SuStaIn has been used to define a more fine-grained data-driven subtyping, 

staging and disease classification based on neuropathological progression [375]. From atrophy 

progression in the ALS-FTD spectrum, SuStaIn subtyping found two cortical atrophy subtypes in 

addition to a normal-appearing group, and staging correlated well with clinical and 

neuropathological measures [376]. Using diffusion and neuromelanin-sensitive MRI measures in 

PD, SuStaIn suggested the presence of 2 distinct subtypes, with different clinical and 

pathological progression [377]. In MS patients, subtypes were defined by normal-appearing 

white matter, cortical and lesion subtypes, with the latter having the highest relapse rate and 

positive treatment response [378].  

From sequences of alterations to interactions between biomarkers 

In the past decade, both continuous time DPMs and discretized EBMs have helped 

characterize the sequence of physiological alterations in neurodegenerative disorders. These 

methods have attempted to account for inter-subject variability in timing, onset and trajectory, 

potential bias due to covariance between biomarkers, and differing trajectory shapes across 

biomarkers. DPMs have revealed a long prodromal period with multi-factorial alterations, such 

as the early roles of CSF amyloid accumulation in dominantly inherited AD [15], vascular 

dysregulation in AD [337], and atrophy and elevated NfL before symptom onset in FTD [16]. 

Furthermore, DPMs can integrate multiple data modalities to stage patients and estimate future 

progression [329], which may be particularly useful for pre-symptomatic individuals. While 
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DPMs and EBMs often assume a common population trajectory, formulations such as SuStaIn 

can identify patient subtypes from variability in progression ordering [369]. However, the typical 

optimization procedure constrains EBMs to a limited number of features, precluding their 

application to high dimensional (e.g., multi-omics) or high-resolution (e.g., whole-brain 

imaging), and thereby limiting mechanistic insight. 

Mechanistically, similar pathological cascades seem to be shared between 

neurodegenerative diseases [379]. Data-driven subtyping and transdiagnostic clustering can help 

identify the distinct and shared mechanisms of different neurodegenerative disorders. To a 

limited extent, the ordering of disease alterations can be used to evaluate the temporality of 

pathogenic hypotheses [334, 335, 337]. However, the DPMs discussed account for relationships 

between biomarkers only implicitly, such as via joint probability distributions [16]. As such, 

while empirically validating hypothetical disease cascades is an important step towards 

understanding disease progression, biomarker timing only hints at the relationships between 

various neurobiological processes. In the following section, we discuss causal models that 

explicitly incorporate the interactions between multiple disease factors to evaluate hypotheses of 

disease pathogenesis and progression. 
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Figure 3.1. Data-driven biomarker trajectory inference and staging. 
A) Neuropathological staging systems, such as the Braak stages for AD, represent the 

earliest attempts to identify characteristic pathophysiological progression patterns [302]. The 
accumulation of neurofibrillary tangles begins in transentorhinal regions (Stages I and II) and 
propagates along a stereotypical pattern to limbic (Stages III and IV) and neocortical (Stages V 

and VI) regions. The figure has been adapted with permission from [380]. B) Using in vivo 
(imaging, fluid and clinical) biomarkers from large observational studies, continuous-time 

disease progression models attempt to stitch together data points from many subjects to infer 
population trajectories along a latent disease time. With minimal a priori assumptions, these 

methods must account for inter-subject variability in disease onset and progression rate, as well 
as the potential existence of sub-populations with distinct trajectories. C) Event-based modeling 

is another approach to characterizing biomarker alterations over disease progression. (Left) 
This method does not explicitly model the trajectory along a latent temporal variable, but instead 

identifies the most likely sequences of biomarker alterations, along with their uncertainty 
represented by the gray elements in this positional variance diagram. These markers can be any 

combination of features from different brain regions and modalities. (Right) Event-based 
modeling is the basis for simultaneous Subtyping and Stage Inference (SuStaIn), a method that 

identifies sub-populations with varying event sequences. For example, SuStaIn identified 3 
subtypes of AD atrophy progression, corresponding to typical, cortical-dominant and subcortical 

patterns. The figure was originally published in [369], is covered by the  Creative Commons 
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/) and has been 

adapted to show only 4 disease stages. 

Evaluating disease hypotheses using mechanistic and causal 

models 

Neurodegenerative disorders are accompanied by a multitude of alterations. Aging is a 

major risk factor across neurodegenerative disorders, which share features such as genomic 

instability, loss of proteostasis and cellular senescence [4]. These related but distinct processes 

may represent the primary causes of damage (e.g., genomic instability) or compensatory 

responses that eventually result in physiological degradation (e.g., cellular senescence) [4].  A 

variety of genetic, environmental, pathogenic, lifestyle and dietary risk factors also contribute to 

sporadic disorders [2] [3] [22]. There is a notable vascular component to dementias, from AD 

[12] [22] to FTD [89]. The peripheral system [11] and gut-brain axis [381] also contribute to the 

onset and progression of PD. The integrity of the brain is thus multi-faceted, involving 

http://creativecommons.org/licenses/by/4.0/


   104 

supporting vascular, metabolic, inflammatory processes that support neuronal function. It is thus 

necessary to consider interactions between physiological factors and their causal directions, 

which may follow indirect, non-linear and complex pathways [382] (Fig. 3.2a), as well as inter-

individual differences. 

In this section, we shift away from the DPMs of the previous sections, which infer the 

order of biomarker alterations and event sequences but cannot resolve how these factors may 

influence each other. We now consider dynamical systems-based causal models of 

neurodegenerative disease progression. These methods explicitly employ interactions between 

disease factors. As a subset of these models with particular relevance to neurodegenerative 

diseases, we also consider network models of pathology propagation. With mechanistic 

interpretability and causal structure, these models are suited to testing disease hypotheses and 

inferring perturbational/treatment effects. 

Model-inferred targets for combinatorial therapy in complex 

disorders 

Given the unknown etiologies and heterogeneity of most neurodegenerative disorders, 

multiple therapeutic approaches are likely required [383]. However, identifying treatment targets 

is not trivial; disease-affected biomarkers do not necessarily translate to effective therapeutic 

targets  [384]. Selecting candidate targets and designing clinical trials is likely to benefit from 

personalized and precision medicine approaches [385]. To this end, dynamical systems modeling 

using systems of coupled differential equations can characterize the spatio-temporal behaviour of 

key variables, impose causal structure on interactions, identify pathways involved in disease 

progression, and predict the outcomes of interventions.  
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Using a dynamical systems framework called multifactorial causal modeling (MCM), 

Iturria-Medina et al. fit whole-brain population models of structural, functional, metabolic, 

vascular, and amyloid alterations as functions of their local pairwise interactions and inter-region 

propagation along anatomical, vascular and functional networks [33]. Consistent with earlier 

DPM analysis [337], vascular followed by functional activity alterations were the most likely 

initial pathogenic events based on cross-sectional data. Such dynamical systems models are well 

suited to the rich mathematical tools of control theory, to determine perturbational inputs to 

guide the brain to a different state (Fig. 3.2a). These models can identify optimal treatment 

targets, doses and durations in various domains from molecular interaction networks [386] to 

brain stimulation [387]. In AD, MCM suggests that single-target therapy (e.g., targeting only 

amyloid accumulation or only vascular dysregulation) would be the least efficient way to return 

an advanced AD brain to a healthy state [33].  

While cross-sectional data can be leveraged to select specific parameters to personalized 

using sensitivity analysis  [388], applying MCM directly to individualized data can suggest 

biologically-based, patient-specific combination therapy to restore a healthy brain state [389]. 

Using a similar dynamical systems model, Zheng et al. note a stage-dependence on the 

relationship between physiological biomarkers and cognition; the amyloid parameter is most 

important at early disease stages but decreases in influence over time as neuronal degeneration 

has a stronger effect, further supporting combination therapy [388]. 

Network models of misfolded protein propagation 

Neurotoxicity due to misfolded protein accumulation and inter-region propagation is a 

common theme across disorders, implicating pathogenic proteins with archetypal spreading 

patterns such as amyloid, tau, alpha-synuclein and TDP-43 [390]. In addition to the characteristic 
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patterns of proteinopathy, numerous studies have also co-localized structural and functional 

networks with disease-specific pathological alterations [391] [392], such as default mode 

network atrophy and hypometabolism in AD [393] and functional connectivity-associated tau 

accumulation in primary tauopathies [394]. These findings are the basis of the network 

degeneration hypothesis of neurodegeneration, depicted in Fig. 3.2b, which suggests that 

pathological changes propagate along brain networks [395] [396]. The convergence of empirical 

data and the emergent field of network neuroscience  [397] has enabled extensive connectome-

based modeling studies of neurodegenerative and other brain disorders [209] [398] [208].  

A wide range of network propagation models have been applied to data from molecular 

neuroimaging. These models are defined and differentiated by their assumptions about seeding, 

clearance, propagation, and network organization. At the whole-brain level, simple isotropic 

diffusion is insufficient to explain the spatiotemporal spreading of pathological proteins across 

the brain. With diverse tissue types and long-range connections, the cytoarchitecture and 

connectome are likely determinants of propagation.  

Investigating the consequences of purely diffusive propagation without regional 

specificity, Raj et al. developed a linear network diffusion model (NDM), with protein 

propagation along concentration gradients on a static structural connectome obtained from 

tractography [399] [400]. Certain eigenmodes of network diffusion patterns showed similarities 

to AD and behavioral variant FTD (bvFTD) atrophy patterns (Fig. 3.2c), and this model was also 

more predictive of end-stage atrophy and metabolic alterations than baseline imaging in the 

ADNI cohort, with inter-class differences in rate parameters [400]. Lacking a directed human 

connectome, Pandya et al. [401] extended the network diffusion model with regional analogues 

from the mouse connectome and examined the effects of directed connectivity on progressive 
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supranuclear palsy (PSP) atrophy. Both anterograde and retrograde propagation of purported 

tauopathy captured distinct topological patterns, suggesting the importance of propagation in 

both directions. Extensions of this approach attempted to infer seed regions of atrophy patterns 

[402], with most AD seed regions located in the temporal lobe, hippocampus and entorhinal 

cortex. Notably, model-derived seeds had a higher predictive power than assuming a common, 

hippocampal seeding, although no lower-dimensional latent structure was observed in the 

atrophy patterns and seeding regions. The importance of seed regions in determining eventual 

spatial spreading is emphasized by an anisotropic diffusion model, which recovers characteristic 

amyloid, tau, α-synuclein and TDP-43 deposition patterns based on different seed regions [403]. 

An important consideration in modeling protein propagation is chemical kinetics, such as 

the relationship between aggregation and clearing processes [207]. Garbarino and Lorenzi used 

Bayesian model comparison to evaluate different hypotheses of amyloid propagation in AD in 

silico [345]. Among increasingly complex dynamical systems models assuming i) constant 

diffusion of amyloid [399], ii) reaction-diffusion where aggregation and diffusion are 

simultaneous, and iii) non-linear accumulation, clearance and propagation, the latter performed 

best, where propagation is triggered by saturated aggregation rather than being a constant 

diffusive process. 

Based on in vitro, animal and human studies, the aggregation of proteinopathy is believed 

to induce “prion-like” misfolding in normal proteins [301]. Compartmental models of interacting 

susceptible, infectious, and recovered (SIR) populations are commonly used to simulate 

infectious diseases, and such an epidemic spreading model (ESM) has been developed for intra-

brain pathology propagation [404]. Initially applied to amyloid PET data from ADNI (Fig. 3.2d), 

there is a decrease in amyloid clearance rate and age of pathology appearance when going from 
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healthy controls to early and late MCI and finally AD patients [404]. Applications of this ESM to 

tau PET spreading patterns note that regions with high amyloid accumulation also display higher 

tau levels than predicted by connectivity-based spreading alone [241]. Other ESMs using MEG 

and tau PET data also demonstrated that functional connectivity predicts tau distribution patterns 

better than structural connectivity or simple diffusion [405], implicating dynamic activity as a 

substrate of pathological progression. In AD, amyloid accumulation is believed to form feedback 

loops with neurovascular uncoupling [406], and tau accumulation [55]. Causal mediation 

analysis suggests that amyloid positivity contributes to tau in the inferior temporal gyrus via a 

direct pathway as well as via medial temporal lobe tau levels [407], implying that both pathways 

would need to be targeted once an individual exhibits neocortical tau. Other, more detailed 

theoretical models (incorporating multiple forms of nucleation, elongation, etc.) also support the 

importance of amyloid-tau interactions and misfolded protein clearance, although available PET 

imaging data is unable to resolve all model mechanisms [408] [409]. Epidemiological models 

have also been combined with downstream modeling of neurotoxic proteinopathy effects result 

in atrophy (Fig. 3.2e) [410]. 

Competing hypotheses credit either connectivity-dependent intracellular or distance-

dependent extracellular mechanisms for misfolded protein propagation. To compare these 

alternatives, Schäfer et al. [411] modeled longitudinal PET data using individualized network 

diffusion models. Although limited by the lack of follow-up imaging samples (with typically 3-4 

visits per subject in ADNI), connectivity-based models seem to better match the longitudinal 

progression patterns observed in tau PET. Similar analyses using subject-specific Bayesian 

hierarchical modeling found statistically significant differences in average tau production rates 

and tau-dependent atrophy parameters between amyloid-positive and amyloid-negative 
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individuals [412] [413]. Other works suggest the importance of disease stage, with early 

spatiotemporal evolution of tau driven by propagation whereas local production dominates in 

later stages, with individual and regional factors explaining some variability [414] [415]. 

The model-inferred evidence for activity-dependent, connectome-driven and amyloid-

enabled tau accumulation exemplifies the one application of causal modeling in evaluating 

disease hypotheses  [405] [241] [407]. However, specific biological mechanisms of seeding, 

propagation and selective regional vulnerability remain unresolved [416]. Convincing answers to 

these mechanistic questions will likely require continued integration of macroscopic models 

dominant in the imaging community with microscopic aspects of chemical kinetics [207], 

cellular and molecular features [208], and clinical phenotype in dynamically-evolving models 

[209]. 
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Figure 3.2. Mechanistic models of pathophysiological interactions and network 
propagation. 

Dynamical systems-based models are used to explicitly represent intra-region 
interactions between different physiological systems, and inter-region propagation of 

pathophysiology. A) Dynamical systems models impose causal structure on the relationships 
between variables. They can be used to simulate the spatiotemporal evolution of brain dynamics, 

and to determine optimal therapeutic inputs. The figure on the right has been adapted from 
[417] and is under the Creative Commons Attribution 4.0 International License 

http://creativecommons.org/licenses/by/4.0/. B) Network models of connectome-driven 
pathophysiology propagation. These models consider the spatiotemporal propagation of disease 

factors, such as misfolded proteins, from regional epicenters along brain networks (e.g., 
structural, functional, or vascular connectomes). C) A network diffusion model noted the 

resemblance between eigenmodes of the structural connectome graph Laplacian and the disease-
specific atrophy patterns observed in healthy ageing, AD and bvFTD. Figures have been 

adapted with permission from [399]. D) An epidemic spreading model (ESM) frames 
proteinopathy dynamics in terms of regional production, clearance, misfolding and propagation 
of misfolded proteins, and replicates spatial progression patterns observed from PET imaging. 
The figure has been adapted with permission from [404]. E) Although no approved α-synuclein 

PET tracer exists at the time of writing, this epidemiological model of neurotoxic protein 
propagation and subsequent atrophy in PD patients replicated empirical atrophy patterns. The 

figure has been adapted with permission from [410]. 
 

Molecular and cellular vulnerability to disease progression 

Brain regions are differentiated by various molecular factors such as cytoarchitecture, 

neurochemistry, transcriptomics, and connectivity [418] [419], which render them selectively 

vulnerable in disease [301]. While the DPMs discussed so far can reconstruct biomarker 

trajectories and sequences, characterize spatial patterns of alterations and infer interactions 

between macroscopic neuroimaging features, the underlying molecular and cellular mechanisms 

are more difficult to ascertain.  

Linking these biomarkers, which are often non-specific to pathophysiology [213] [420], 

to mechanistic pathways requires information about features such as gene expression and 

neurochemical organization. However, molecular data must typically be obtained post-mortem, 

limiting its spatial and temporal coverage, sample size, and availability for a disease population 

http://creativecommons.org/licenses/by/4.0/
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of interest. Recently, many analyses have instead attempted to link spatiotemporal imaging 

pathology from neurodegenerative disease cohorts with template distributions of molecular 

features, such as mRNA expression for over 20,000 genes from the Allen Human Brain Atlas 

(AHBA) [421, 422], or neurotransmitter receptor densities from post-mortem autoradiography 

[423, 424]  or PET imaging [425]. The growing body of research integrating neuroimaging-

derived features with whole-brain molecular data (typically from averaged templates) has been 

termed the “molecular nexopathy paradigm” [426] or “imaging transcriptomics” [427, 428] (Fig. 

3.3a). In this section, we summarize recent attempts to integrate molecular and cellular features 

in computational models of disease progression. We begin with several studies that show spatial 

correlations between imaging and molecular features. We then discuss how cellular and 

molecular features are used to augment mechanistic models, such as molecular-informed 

network propagation models and whole-brain dynamical models of coupled molecular and 

macroscopic physiological systems [429]. 

Neurochemical correlates of functional, perfusion and structural 

alterations 

Neurotransmitter receptors are particularly relevant to behavioural function, interactions 

between physiological systems and pharmacological response. Neurotransmission dysfunction is 

implicated in many neurodegenerative disorders including AD and PD, and in their frequently 

co-occurring psychiatric symptoms [430] [23]. However, the expense of PET and the lack of in 

vivo radioligands [431] has impeded large-scale, case-control imaging studies for many receptor 

types in disease populations. Nevertheless, healthy template distributions of neurotransmitter 
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receptors are an informative proxy, and their physiological relevance to various populations has 

been supported by co-localization with macroscopic imaging signatures.  

As the signaling system underlying neuronal activity, a natural first question is how 

neurotransmitter receptor architecture relates to spatial findings from functional and perfusion 

imaging. Cerebral blood flow (CBF) response to multiple drugs in young, healthy subjects is 

spatially correlated with autoradiography-derived receptor densities according to the 

corresponding drug-receptor affinity [432]. In the case of the dopaminergic D2 receptor, 

antipsychotic CBF response was better explained by PET-derived receptor density maps than by 

the mRNA expression profile of the corresponding gene DRD2 [433]. This is likely due to the 

many intermediary post-transcriptional steps separating gene expression from functioning 

receptors, supporting the complementary, but not identical, informativeness of these features. 

Acknowledging the multi-receptor binding of most psychedelic drugs and the complex 

interactions between various neurotransmitter systems, Luppi et al. found that 

pharmacologically-induce functional network reorganization is co-localized with 

neurotransmitter receptor expression [434], and regional susceptibility to cortical thinning in 11 

neurological, developmental, and psychiatric disorders [434].  

The impact of neurochemistry on structural vulnerability has also been supported by 

group-wise differences in the spatial correlation between receptor densities and disease-

associated imaging features, such as atrophy patterns in schizophrenia patients with dyskinesia or 

parkinsonism [435], cortical thinning in PD patients with and without visual hallucinations [436], 

and white matter tract alterations in major psychiatric disorders (MPDs) [437]. In addition to 

patients with psychiatric symptoms, recent works have also co-localized healthy neurotransmitter 

receptor and transporter expression with structural and functional alterations in 
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neurodegenerative disorders. In behavioral variant FTD patients, reduced fractional amplitude of 

low frequency fluctuations (fALFF) in fronto-temporal and fronto-parietal regions correlated 

with the densities of serotonergic 5HT1B and 5HT2A, GABAA and D2 receptors as well as the 

norepinephrine transporter [438]. In particular, the strengths of the latter two associations 

correlated with symptom severity. In a PD cohort, fALFF alterations significantly associated 

with healthy D2 and 5HT1B receptor templates for both on and off levodopa conditions [439]. 

Voxel-wise gray matter volume differences spatially correlated with D1 receptor and serotonin 

transporter densities in primary progressive aphasia (PPA) patients  [440], and these spatial 

correlations are dependent on genotype and disease stage in FTD patients [441]. Specifically, 

prodromal C9orf72 mutation carriers were associated with dopaminergic and cholinergic 

pathways, and MAPT carriers were linked to dopaminergic and serotonergic pathways, whereas 

no significant neurotransmission associations were found for prodromal GRN carriers. On the 

other hand, symptomatic FTD patients of all subtypes showed multi-receptor involvement 

including dopaminergic, serotonergic, glutamatergic and cholinergic pathways [441]. These 

studies suggest that the neurochemical architecture of the brain may influence the selective 

vulnerability of brain regions to structural and functional alterations, a topic that is further 

explored by mechanistic models discussed in later sections. 

Transcriptomics correlates of imaging alterations 

The spatial variation of gene expression in the brain and its relationship to imaging-

derived features is also a topic of increasing interest [442]. Gene expression provides 

complementary molecular information to neurochemistry, and can be related to specific 

biological pathways using gene ontology. Correlative analyses using transcriptomic data have 

been applied to imaging signatures such as morphometric alterations in psychiatric disorders 
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[443] and inter-individual variability in healthy white matter functional connectivity [444]. The 

transcriptomic correlates of white matter tract alterations are consistent with genes associated 

with MPDs from other lines of evidence, such as genome-wide association studies 

(GWAS) [437].  

The correspondence between specific, disease-associated genes and imaging measures 

can be disease- and pathology-specific; AD amyloid deposition shows a moderate positive 

correlation with the amyloid precursor protein gene APP, whereas neurodegeneration instead 

shows a similar association with the tau-associated gene MAPT [445]. In the main FTD 

genotypes, there is no significant correlation between atrophy patterns and C9orf72, GRN and 

MAPT expression [446]. However, genes associated with astrocytes and endothelial cells were 

overexpressed in regions with high atrophy, while neuronal- and microglial-associated genes 

were overexpressed in spread regions. In ALS patients, only OPTN showed a significant 

correlation with atrophy among disease-associated genes [447]. These correlative analyses can 

thus offer data-driven insight in addition to risk genes identified by GWAS.  

Co-localization of imaging alterations and cell type expression 

In addition to the contributions of diverse molecular pathways, the differential 

involvement of various cell types in neurodegenerative disorders is increasingly acknowledged 

[448] [449] [450]. Even characteristic disease genes, such as the APOE ε4 allele, appear to have 

cell type-specific effects [451], and mediation analysis suggests a pathway from tau pathology to 

cognitive decline via specific inhibitory neuronal, oligodendrocyte, astrocyte and endothelial cell 

populations [452]. In a case-control comparison of post-mortem tissue from AD patients and 

controls, the expression of cell type marker genes points to a decrease in excitatory neurons but 

an increase in inhibitory neurons and astrocytes in regions associated with AD cortical thinning 
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[453]. Whole-brain cell type proportion estimates from the AHBA gene expression data also 

indicate a correlation between the densities of non-neuronal cell types, particularly microglia and 

astrocytes, with atrophy across 11 neurodegenerative diseases including early and late onset AD, 

PD, ALS, FTD and dementia with Lewy bodies [454].  

However, tissue heterogeneity is a notable limitation in bulk transcriptomics. As 

genomics progresses from bulk tissue to single-cell/nucleus sequencing and spatial 

transcriptomics [455] [456], and larger omics datasets such as the Seattle Alzhiemer’s Disease 

Brain Cell Atlas (SEA-AD) become available [457], there is an increasing opportunity to 

integrate molecular information across scales and characterize regional and inter-individual 

variability [458] [459]. For example, Zeighami et al. combined the AHBA with single-cell gene 

expression from the middle temporal gyrus to compare the spatial expression patterns of disease-

associated genes for 40 brain disorders, including neurodegenerative, developmental, psychiatric 

and movement disorders, and identify enrichment in specific cell types [460].  

These applications represent some of the first efforts at resolving the cell type basis of 

neuroimaging alterations. Given the complicated and non-specific interpretation of many 

imaging measures (e.g., the influence of hemodynamics and afferent signals over regional 

activity on the BOLD signal [213]), the ability to disentangle the contributions of diverse cell 

types is a promising development. 

Neurochemical and transcriptomic features in causal models 

Molecular features can also be used to augment causal and network models discussed 

previously. Extensions of MCM have incorporated molecular mediation of interactions between 

pathological factors (Fig 3.3b) to improve the model explainability of structural, functional, 

metabolomic, cerebrovascular and proteinopathy alterations in the AD spectrum [461] [462]. In 
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these personalized models, inter-individual variability in receptor-mediated interactions terms 

closely correlated with symptom severity. In AD, two “disease axes'', consisting of receptor-

mediated biological interactions (e.g., between vascular and metabolic alterations), robustly 

correlated with inter-individual variability in i) executive dysfunction and ii) memory, language, 

and visuospatial symptoms [462]. Consistent with the dual syndrome hypothesis of PD [463], 

two distinct axes of model-inferred receptor-mediated interactions corresponded primarily to 

motor symptoms and secondarily to visuospatial, psychiatric and memory axis with a strong 

cholinergic component [464]. Likewise, inter-individual co-variability between transcriptomic 

contributions to imaging alterations and symptom severity in AD suggests the involvement of a 

wide variety of pathways, ranging from oxidative stress, immune/inflammatory response, G 

protein-coupled receptors, and mRNA splicing [461]. These findings support a biologically- and 

clinically relevant role of multiple neurotransmitter systems and diverse molecular pathways, 

informed by the neurochemical and transcriptomic organization of healthy brains. 

The relative influence of local molecular vulnerability on connectome-driven propagation 

of proteinopathy (e.g., amyloid and tau in AD) remains an open question. Based on graph and 

network metrics in cognitively normal subjects, amyloid propagation co-localized with CLU 

expression and dendritic genes, whereas tau propagation was associated with MAPT expression 

and axonal genes, in addition to a shared association with lipid metabolism and the APOE gene 

[465].  Gradients of APOE and the glutamatergic synaptic gene SLC1A2 expression are also 

implicated in the tau spreading network in cognitively unimpaired subjects [466]. However, an 

NDM suggests that gene expression alone does not explain pathology in AD; connectome-driven 

propagation predicts atrophy and hypometabolism better than the expression of single genes or 

principal components of multiple genes [467].  
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The pathways linking microscopic aggregation of α-synuclein with macroscopic 

functional activity and global brain network dysfunction in PD are also unresolved. Zheng et al. 

developed an epidemic spreading model of atrophy as a combination of α-synuclein mediated 

neurodegeneration and deafferentation (Fig 3.2e) [410]. Informed by evidence of gene function, 

the production and clearance of α-synuclein in this model were determined by the regional 

expression levels of SNCA and GBA, respectively. These transcriptomic features significantly 

improved model fit, with the substantia nigra identified as the region most likely to result in an 

epidemic spreading condition from an initial misfolded protein seeding. Similar dependence on 

structural brain networks and transcriptomic factors (SNCA and GBA) were also observed in the 

related synucleinopathies of isolated REM sleep behavior disorders using compartmental 

modeling [468]. Validating a computational network diffusion model in mice injected with α-

synuclein, Henderson et al. found evidence for primarily retrograde transmission and dependence 

on SNCA expression [469]. In sporadic and genetic bvFTD, an agent-based spreading model 

implicated both network spreading effects as well as transcriptomic vulnerability in [470]; 

atrophy patterns from deformation-based morphometry (DBM) were correlated with the 

expression of FTD-associated C9orf72 and TARDP genes. Epicenters varied between groups, 

potentially reflecting the convergence of multiple pathogenic factors to a common clinical 

syndrome mediated by network architecture [470]. These diverse applications demonstrate how 

transcriptomic data can be integrated into mechanistic models with or without prior knowledge 

of gene function. 

Linking molecular features to model-inferred treatment needs 

With regional variability in physiological interactions, connectome-based spreading of 

pathological factors, complex relationships between physiological and clinical biomarkers, and 
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cell type-specific vulnerability, clinical prognosis can be complicated. Notably, causal models 

such as MCM can solve the problem of optimal, personalized treatment using the mathematical 

tools of control theory [389]. Optimal controller design supports the efficiency of multi-factorial 

treatments, and notably, model-derived personalized therapeutic intervention fingerprints were 

found to better predict plasma gene expression than clinical assessments in the ADNI cohort 

[389]. In the PPMI cohort, imaging-derived therapeutic intervention fingerprints correlated 

significantly with genetic factors and plasma gene expression that also explain levodopa 

response [471]. 

The recently emerging body of work integrating molecular features with longitudinal 

imaging and clinical data indicates that connectivity, multiple transcriptomic pathways, diverse 

neurotransmitter systems and cytoarchitecture together determine regional vulnerability to 

physiological alterations in neurodegenerative disorders. As such analyses proliferate, it is 

important to note several sources of variability. Post-mortem data is rare and typically under-

sampled compared to imaging data, and inter-subject or even inter-hemisphere variability is not 

fully characterized. At a more fundamental level, pleiotropic genes and polygenic traits 

complicate the reverse inference of genes responsible for imaging phenotypes [472]. Future work 

should aim to standardize methodology, for example microarray probe selection, the choice of 

brain atlas, interpolation, lateralization, within- and across-donor normalization, null brain maps, 

and open-access toolboxes [473] [474] [475] [476]. Nevertheless, the nascent field of imaging 

transcriptomics, using molecular data from representative populations [427], is a promising 

approach to linking in vivo macroscopic alterations with molecular pathways. 
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Biophysically constrained multi-scale dynamical models 

Connectivity and interactions in the brain spans various scales, from local synapses and 

mesoscale circuits to long-range projections between distant brain regions [477]. As a result, 

there are complex relationships between microscopic molecular factors such as gene expression, 

cellular properties such as membrane potential and spike density, aggregation of neurotoxic 

pathology and neuronal activity, and macroscopic brain network dynamics. While the models 

discussed so far can hint at disease-relevant aspects of brain organization, the propagation of 

dysfunction up the hierarchy from microscopic to macroscopic scales has not explicitly 

addressed.  

Biophysically constrained, whole-brain models of neuronal activity attempt to integrate 

data from multiple spatial scales to capture these relationships, typically with connectivity at the 

scales of i) cortical circuits comprising interacting excitatory and inhibitory neuronal populations 

and ii) long-range projections between macroscopic regions [478]. We distinguish these 

biophysically constrained models by their explicit modeling of multiple levels of brian 

organization. Simultaneously, these models must be detailed enough to provide mechanistic 

specificity, yet coarse-grained to be tractable. Microscopic properties of neural populations are 

typically averaged into spatiotemporal mean field or temporal neural mass models consisting of 

interacting populations of excitatory and inhibitory neurons, which contribute to macroscopic 

regional signals and network phenomena (Fig. 3.3c). By optimizing regional and global 

parameters to fit empirical data (e.g. fMRI or EEG/MEG signals), such approaches can evaluate 

the influence of cellular and molecular features on macroscopic alterations [479] [480] [481], 

and identify treatment targets for pharmacological interventions or brain stimulation [387]. 
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Evaluating effective connectivity 

Dynamical Causal Modeling (DCM) is a popular framework for model-based hypothesis 

testing [482], and has been used in many studies on task-based or resting state functional 

imaging (i.e., fMRI, EEG and MEG). At the core of DCM are individualized differential 

equation models of excitatory and inhibitory neural masses with local connections in cortical 

microcircuits as well as laminar-specific inter-regional projections. A forward model transforms 

this modeled neuronal activity into measured signal (e.g., BOLD signal for the fMRI models). 

Bayesian model comparison is then used to evaluate competing models [483], and DCM 

parameters can be compared across subjects and diagnostic classes. Unlike correlative measures 

(e.g., functional connectivity), DCM employs a causal model, and examining its parameters 

enables analysis of properties such as the effective connectivity of regional neuronal populations 

[484]. For example, DCM-inferred effective connectivity from the left dorsal premotor cortex to 

the left superior parietal cortex was (negatively) correlated with years to clinical onset in pre-

symptomatic HD mutation carriers [485]. 

Neurotransmission modulates functional activity on a fixed 

structural connectome 

A cognitively essential phenomenon that spans spatial scales and neurophysiological 

systems is the emergence of complex neuronal dynamics on a relatively fixed structural network 

via neurotransmitter modulation [486]. Multi-scale dynamical models are well suited to 

evaluating the effect of neurotransmission on the activities of local neuronal populations, as well 

as their hemodynamic or electrophysiological signatures (via observable BOLD or M/EEG 

signals). 
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The serotonergic system has several agonists of neuropsychiatric interest including 

psilocybin and LSD. Given the relatively fast action of these drugs, they offer a testbed for in 

silico dynamical modeling of pharmacological interventions. To investigate the effect of LSD on 

functional dynamics in a whole-brain, mean-field computational model, Deco et al. incorporated 

a single global gain parameter mediating the effect of local 5HT2A receptor density on regional 

neuronal activity [487]. In this model, neuronal parameters were first fit to minimize the 

statistical distance between the temporal correlations of simulated and placebo condition 

functional connectivity matrices, and then tuned to the LSD condition using the global gain 

parameter. To simulate the effects of psilocybin intake on the BOLD signal, Kringelbach et al. 

instead used a dynamically coupled model of neuronal-neurotransmitter interaction [486]. 

Serotonin release is determined by neuronal activity, and vice versa, with regional 5HT2A 

receptor density modulating the effect, and the model is fitted to features obtained by clustering 

the phase coherence between regional activity in a reduced dimensional space. The results 

support the importance of specific receptor density in both models; the 5HT2A receptor 

distribution is significantly more informative to the pharmacological response of LSD [487] and 

psilocybin [486] than other serotonergic receptors or the serotonergic transporter. This molecular 

insight has therapeutic implications since pharmacological treatment of psychiatric disorders 

typically involves selective serotonin reuptake inhibitors (SSRIs) acting via the transporter. 

Psychedelic drug response has also been associated with an increased entropy of 

electrophysiological signals, and the subjective experience of psychedelics and the increased 

firing rate entropy may relate to the consequential ease of achieving different dynamical states of 

activity. [488]. Herzog et al. fit mean-field models, with serotonergic gain modulation of 

neuronal firing rate, to fMRI data from subjects under the influence of LSD and controls, and 
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simulated resting state activity with and without 5HT-2A agonism [489]. The regional increase in 

activity entropy due to LSD was explained well by a combination of local 5HT2A receptor 

density and connectivity. Using network control theory informed by 5HT2A receptor density, 

Singleton et al. quantified LSD, psilocybin and DMT response as a reduction in brain network 

control energy [417] [490], associated with reduced functional connectivity differentiation [491].  

In a non-psychedelic scenario, Coronel-Oliveros et al. demonstrated the relevance of PET 

templates of cholinergic receptors and transporters to resting state and attentional task activity 

[492]. Whole-brain models based on neural masses were fit to EEG and BOLD signals from 

nicotine users. The model-inferred mechanistic effect of nicotine was reduced global coupling 

and local feedback inhibition. Furthermore, nodal functional connectivity changes correlated 

with α4β2 receptor density [492].  

Other multi-scale dynamical models have also incorporated aspects of neurotransmission. 

A mean field model links observable measures of functional integration/segregation with 

unobservable neurotransmitter kinetics (synaptic release and receptor binding) and its coupling 

with neuronal activity [493]. This model demonstrates that departures from an optimal E/I (i.e., 

glutamate/GABA) balance are associated with altered network measures of 

integration/segregation observed in functional connectivity analysis in neurological disorders 

[493]. A DCM study also integrated neurotransmitter concentrations from magnetic resonance 

spectroscopy (MRS) and resting state activity from MEG, to examine the specific connections 

affected by inter-individual differences in neurotransmitter concentrations in healthy subjects 

[494]. As expected, GABA concentrations influenced local recurrent inhibitory effective 

connectivity in the model, while glutamate levels influenced excitatory connections. 
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Mechanisms of excitatory-inhibitory imbalance and excitotoxicity in 

neural mass models 

Electrophysiological data from M/EEG provides better temporal resolution at the expense 

of the spatial resolution of fMRI, and certain features such as attenuation of specific spectral 

bands are characteristic of AD  [495]. In an early work combining neural mass modeling with a 

connectome template in AD, de Haan et al. simulated electrophysiological signals in healthy and 

diseased states with activity-dependent degeneration of synapses in response to spike density 

[496]. Compared to non-specific degeneration, activity-dependent degeneration better explained 

the structural and functional network alterations expected in AD, including oscillatory slowing, 

power spectrum attenuation, long-range desynchronization, hub vulnerability, and altered 

functional networks [496]. Notably, hub regions with high connectivity showed specific 

vulnerability as the sites of both higher amyloid deposition and increased neural activity. 

Although the symptomatic correlates of these alterations were not characterized, such models 

can be used to simulate expected macroscopic outcomes of interventions [497]. Counter-

intuitively, excitatory neuronal stimulation was found to best preserve network activity. These 

findings highlight the complex response of the brain to simple perturbations, and the need for 

principled modeling of treatment effects. In AD patients, Sanchez-Rodriguez et al. used the 

framework of optimal control to determine stimulation target regions to steer the alpha band 

power spectrum towards a healthier, higher frequency state [387]. Notably, individuals with high 

anatomical connectivity (i.e., short path lengths and high global efficiency) had a lower 

stimulation energy cost. 

Fitting MEG data from controls and MCI patients with amyloid pathology, van Nifterick 

et al. evaluated various mechanistic hypotheses of cellular alterations to excitatory and inhibitory 
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populations in AD [498]. Pyramidal neuronal hyperactivity, inhibitory neuronal hypoexcitability, 

increased excitatory-excitatory coupling and decreased inhibitory-excitatory coupling were 

linked to oscillatory slowing [498]. Similar neural mass models have been used to assess various 

candidate markers of excitation-inhibition (E/I) ratio [499]. 

Other works explicitly include local amyloid and tau levels and their pathological 

propagation in neural mass models. Alexandersen et al. assumed connectivity-driven propagation 

of tau and more diffuse spatial spreading of amyloid simultaneously from multiple epicenters 

[500]. This model showed an initial increase in alpha band power in simulated M/EEG signals 

followed by a decrease, as well as a slowing of alpha band oscillations due to a decrease in 

excitatory activity and increased global coupling. 

With the advent of new imaging targets, dynamical models can incorporate several 

molecular factors simultaneously. Sanchez-Rodriguez et al. combined structural, functional, 

amyloid, tau and glial imaging, plasma markers and clinical data from 132 subjects on the AD 

spectrum from the Translational Biomarkers in Aging and Dementia (TRIAD) cohort in neural 

mass model [501]. The subject-specific influences on neuronal excitability (i.e., firing 

thresholds) of regional levels of amyloid, tau and their synergistic interaction were optimized to 

reconstruct individuals’ BOLD signals. AD subjects were characterized by lower alpha power 

and increased theta power, with neuronal excitability differing based on amyloid status and 

Braak stage. Notably, model-inferred, latent neuronal hyperexcitability correlated with worsened 

cognitive symptoms and plasma tau biomarker concentrations [501].  

The Virtual Brain (TVB) [502] is a multi-scale, whole brain mean field modeling 

framework that has been used to reproduce features of empirical fMRI and EEG signals [503], 

relate them to cellular-scale properties such as E/I balance [504], optimize lead placement for 
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deep brain stimulation [505] and predict functional connectivity outcomes of neurosurgery [506] 

[507]. In the context of neurodegenerative disorders, TVB has also been used to infer the 

macroscopic impact on EEG signals of amyloid modulation of neuronal dynamics [508]  In AD 

patients, simulations reproduced properties of EEG signals, and reducing model weights 

(simulating the effects of the NMDA receptor antagonist memantine) partially reversed the 

characteristic oscillatory slowing [508]. Dynamical models such as TVB can also be used to infer 

relevant mechanistic alterations. Fitting resting state fMRI data in controls, amnestic MCI 

subjects and AD patients, statistically significant inter-subject correlations were observed 

between model parameters (representing excitatory-excitatory, excitatory-inhibitory, inhibitory-

excitatory, and global coupling) and various cognitive domains [509]. These model parameters 

can differ between diagnostic categories and functional networks. For example, AD patients have 

significantly increased excitatory coupling in the default mode network, but it is reduced in the 

somatomotor network. The frontoparietal network, which is preserved in AD, involves 

alterations to all 4 TVB parameters in FTD  [510]. 

Perturbational trajectories in low dimensional space 

Low dimensional embeddings can be useful in capturing the salient structure of high 

dimensional brain states, such as neuronal activity or functional connectivity [511]. To compare 

the regional effects of external stimulation on different brain regions and across conditions, Sanz 

Perl et al. fit a phenomenological whole-brain model to the empirical functional connectivity of 

healthy controls, and AD and behavioral variant FTD patients [512]. Different waveforms of 

stimulation were applied to these models (specifically, to the bifurcation parameter, related to the 

excitatory-inhibitory balance). The resulting functional connectivity trajectories were visualized 

in a low dimensional space via variational autoencoders (VAEs), a non-linear dimensionality 
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reduction technique with a regularized latent space. While the parameters of this model 

themselves are difficult to interpret, proximity in the VAE latent space implies similar functional 

connectivity, and diagnostic classes clustered well in the latent space representation of functional 

connectivity. Perturbational trajectories in this latent space were then used to determine the 

proximity of different brain regions to the distribution in healthy controls. Depending on the 

waveform, stimulation to visual areas, the sensorimotor cortex, and the temporal lobe, including 

the hippocampus, perturbed AD subjects towards healthy latent representations. Meanwhile, 

frontal regions were the most important to behavioral variant FTD perturbations [512]. 

Multi-modal data integration in biophysical models 

Dynamical models are a promising approach to understanding the molecular mechanisms 

behind macroscopic observations, and their associations with clinical variables at the group or 

individual level. Many dynamical models have incorporated molecular information, particularly 

neurotransmission and neurotoxic proteinopathy mechanisms, and explored the effects of 

external perturbation. More generally, other molecular drivers of regional susceptibility can also 

be incorporated, potentially informed by the models presented in the preceding sections. In 

contrast to the many dynamical models that simulate functional or electrophysiological activity, 

Khanal et al. developed a biophysical model of atrophy and brain deformation to generate 

realistic simulated atrophy patterns from longitudinal data in AD [513]. Accounting for the 

different mechanical properties of parenchyma and CSF, tissue remodeling minimizes internal 

mechanical stress due to neuronal death. A promising avenue of future work is the incorporation 

of other physical drivers of neurodegenerative brain alterations, including mechanical stress due 

to atrophy or inflammation, molecular influences on cellular properties, macroscopic influence 

on brain networks, and global effects of environmental factors. Looking beyond dynamical 



   128 

models of neuronal activity and considering mechanical effects is a promising direction for 

multi-scale models [514]. 
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Figure 3.3. Understanding the role of cellular architecture and molecular mechanisms 
on large-scale brain alterations. 

3) Imaging transcriptomics analyses use spatial correlations to identify cellular and 
molecular features co-localized with imaging alterations. B) Dynamical systems 

models can incorporate cellular architecture, for example, as mediators of 
physiological interactions. The figure has been adapted with permission from [464]. 

C) Biophysically constrained models consider the cellular, mesoscale circuit, and 
macroscopic network effects. These models can incorporate molecular mechanisms 

such as amyloid- and tau-mediated hyperexcitability [501] and serotonergic 
receptor-mediated gain modulation [487] at the appropriate scale. The figure has 

been adapted with permission from [487]. 
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Category Definition Example method Summary 
Continuous-
time disease 
progression 
models 
(DPMs) 

DPMs are 
mathematical 
models that describe 
the temporal 
progression of one 
or more disease-
associated markers 
(e.g., a clinical 
assessment, 
neuroimaging 
measure, CSF 
assay, etc.) either in 
individual patients 
or as population-
averaged 
trajectories. 

Mixed-effects 
model 

Mixed effect models hierarchically 
model between- and within-subject 
variability via a combination of 
fixed and random effects. They are 
statistically suited to the correlated 
errors that arise from repeated and 
unevenly spaced measurements 
from observational studies [341] 
[337] [310].  

Quantile 
regression 

Rather than estimating the mean of 
the dependent variable, quantile 
regression models different parts of 
the distribution (e.g., medians or 
quartiles). These methods can be 
flexible in the trajectories that can be 
modeled, while retaining 
interpretability (e.g., vector 
generalized additive model [340]). 

Trajectory 
inference 

Analogous to its applications in 
single-cell analysis, trajectory 
inference algorithms arrange 
subjects according to disease 
severity, typically fitting trees in a 
low-dimensional space [348] [349]. 

Event-based 
models 
(EBMs) 

A family of DPMs 
that estimates the 
most likely 
sequences of 
biomarker 
alterations from 
cross-sectional data. 
These methods 
assume that a 
mixture of sub-
populations 
(patients and 
controls) underlies 

Discriminative 
event-based model 
(DEBM) 

DEBM expands on the standard 
EBM to estimate a central ordering 
across subjects from which a 
relative distance between events can 
be estimated [367]. 

Subtype and Stage 
Inference 
(SuStaIn) 

An EBM that simultaneously 
clusters subjects into subtypes 
following distinct disease 
trajectories [369]. 
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biomarker data 
[361] [362]. 

Dynamical 
systems 
models 
(regional 
interactions) 

Using coupled 
differential 
equations, these 
models impose 
causal structure on 
the interactions 
between variables. 
This may take the 
form of intra-region 
interactions 
between different 
biomarkers or inter-
region propagation 
of pathophysiology. 

Multifactorial 
causal model 
(MCM) 

MCM models the interactions 
between various disease factors, as 
well as their propagation along 
(structural, functional, or vascular) 
brain networks [33]. Extensions of 
MCM have considered cellular and 
molecular features that may mediate 
these interactions, such as gene and 
receptor expression [461] [464] 
[462]. 

Dynamical 
systems 
models 
(network 
propagation) 

Dynamical systems 
models are also 
used to represent the 
spatiotemporal 
propagation of 
pathological factors 
from an epicenter 
region. 

Epidemic 
spreading model 
(ESM) 

Based on epidemiological 
compartmental models, this network 
propagation model considers the 
spreading of pathological agents 
(typically misfolded proteins such as 
amyloid) following a susceptible-
infectious-recovered (SIR) 
paradigm.  Regions have an 
increased chance of developing 
more severe pathology after 
“infectious” seeding from a 
connected region [404].  

SIR model with 
gene expression 
and simulated 
atrophy 

This model incorporates  GBA and 
SNCA transcriptomics maps to 
inform regional α-synuclein 
production and clearance rates. 
Regional atrophy is a consequence 
of α-synuclein accumulation [410]. 

Network diffusion 
model (NDM) 

These models consider the 
spreading of pathology to follow a 
diffusion process along a 
connectome [399]. 

Multi-scale 
biophysical 
models 

Biophysical models 
of whole-brain 
neuronal activity 
dynamics integrate 
cellular and 
molecular 
properties, 

The Virtual Brain 
(TVB) 

TVB is a multi-scale biophysical 
model and platform for simulating 
individualized EEG, MEG and 
BOLD data, and inferring inter-
group differences in personalized 
model parameters (e.g., E/I balance) 
[502] [508] [510] [504] [509]. 
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mesoscale regional 
microcircuits, and 
large-scale 
connectivity. These 
models are typically 
fit to fMRI or EEG 
data and can 
evaluate inter-
individual or inter-
group differences in 
unobservable 
physiological 
parameters such as 
excitatory-
inhibitory (E/I) 
balance. 

Dynamic causal 
model (DCM) 

Neuronal systems with (e.g., 
hemodynamic) forward models are 
used to simulate functional 
neuroimaging signals (i.e., fMRI, 
EEG, MEG, etc.). Bayesian model 
comparison is used to determine the 
neuronal mechanisms (e.g., 
effective connectivity) behind 
observed signals [485]. 

Pathophysiological 
activity decoder  

Regional levels of amyloid and tau 
affect local neuronal excitability, 
and their effects on BOLD signals 
are simulated using a hemodynamic 
model [501]. 

Coupled neuronal-
neurotransmitter 
model 

Serotonergic neuromodulation and 
activity-driven neurotransmitter 
release is modeled explicitly. These 
models are fit to empirical 
functional activity data [486]. 

Table 3.1. Computational approaches to integrating multi-modal neuroimaging data to 
characterize disease progression and infer latent mechanisms. 
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Primary 
cohort 

Modeling approach Summary 

Dominantly 
inherited 
Alzheimer’s 
disease 
patients 

Continuous-time DPM 
of CSF, blood, 
cognitive and imaging 
markers 

The earliest biomarker alterations (decreased 
CSF amyloid levels) were found up to 25 years 
before expected symptom onset. This was 
followed by increased amyloid PET signal, CSF 
tau and atrophy. Finally, hypometabolism, 
episodic memory impairment and global 
cognitive impairment occur in the decade 
leading up to symptom onset [15]. 

Sporadic 
Alzheimer’s 
disease 
patients 

EBM with subtyping 
(SuStaIn) of tau PET 

Four spatiotemporal trajectories of tau 
progression were identified, defined by limbic, 
medial temporal lobe-sparing, posterior and 
lateral temporal tau patterns [242]. 

Multiple 
sclerosis (MS) 
patients 

EBM of gray matter 
atrophy 

Relapse onset and primary-progressive MS 
patients follow distinct atrophy sequences that 
are consistent within each subtype [365]. 

Parkinson’s 
disease 
patients with 
an elevated 
risk of 
dementia 

EBM of clinical and 
imaging (quantitative 
susceptibility mapping 
and diffusion-
weighted imaging) 
features 

The classic prodromal symptoms of REM sleep 
behaviour and olfactory problems precede all 
other markers, and the earliest imaging markers 
are frontal and temporal iron concentrations 
[515]. 

Familial 
frontotemporal 
dementia 
patients 

Continuous-time DPM 
of clinical 
assessments, regional 
brain volumes and 
plasma NfL 

Biomarker trajectories are (GRN, MAPT and 
C9orF72) genotype-dependent [16]. 

Posterior 
cortical 
atrophy (PCA) 
patients 

Longitudinal 
differential equation 
model and cross-
sectional EBM of 
regional brain 
volumes and 
neuropsychological 
assessments 

The characteristic occipital and parietal atrophy 
are followed by temporal lobe atrophy and 
ventricular expansion. Visuospatial processing 
declines rapidly in PCA compared to AD [516]. 

Table 3.2. Examples of data-driven characterization of biomarker alterations in 
neurodegenerative disease cohorts. 
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Discussion and conclusion 

Summary 

Despite varying genetic [2], environmental [3] and age-related [4] risk factors, causes of 

sporadic neurodegenerative disease onset remain unknown. Healthy brain function requires the 

coordination of multiple physiological systems, and neurodegenerative disorders can affect 

altered neuronal activity, proteinopathies, vascular dysfunction, neuroinflammation, metabolic 

alterations, cell death, and atrophy. In the preceding decade, computational models of these 

multi-factorial processes have proliferated. Continuous time DPMs and discretized EBMs have 

provided data-driven staging of biomarker abnormality, network propagation models have 

characterized pathology propagation across brain networks, the integration of molecular data 

sources has identified salient aspects of cyto-, receptor- and transcriptomic-architecture, and 

dynamical systems models have been used to reproduce and evaluate disease mechanisms.  
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Figure 3.4. Using multi-factorial computational models to improve treatment selection 
and test mechanistic hypotheses. 

Computational models of spatiotemporal pathophysiology progression can go beyond 
correlative analysis and infer disease-altered mechanisms. A) Integrative in silico modeling of 
the progression of multiple biomarkers can be used to predict future disease progression and 

infer optimal therapeutic interventions at an individualized level [389]. B) The role of the 
molecular architecture of the brain in various disease-affected alterations is an open question. 

Molecular pathways enriched in disease-affected tissue (e.g., where amyloid and tau 
accumulation alters functional activity) can be used to identify potential therapeutic targets 
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[517]. C) Computational modeling can benefit from diverse data sources, incorporating 
population-derived distributions of disease onset age with in vivo biomarker data [16], using 
homologous structures in other species to inform directed network propagation models [401], 

and validating model predictions using invasive experiments in animal models [518]. 

 

Causal inference using computational models 

Yet, the central question remains: what are the causes of sporadic neurodegenerative 

disease onset, and how can they be treated? Over the 20th century, the post mortem clinico-

anatomical method has been largely superseded by correlational in vivo neuroimaging studies 

[331], but this has not resulted in robust, disease-specific diagnostic or prognostic markers [519] 

[520]. Biomarker correlates of symptoms and treatment effects may be spurious, compensatory, 

or secondary to causal pathogenic mechanisms. The gold standard of causal evidence is the 

randomized controlled trial, requiring experimental intervention, in which studied populations, 

manipulated variables, and observed outcomes are carefully defined and individuals are blindly 

separated into control and treated groups. In the context of neurodegenerative pathogenesis in 

humans, this is often infeasible due to ethical concerns, the long temporal scale of disease 

progression, and the lack of appropriate counterfactuals.  

Sufficient sample sizes can often be achieved only by multi-site observational studies, 

which can suffer from recruitment bias, missing data, patient drop-out, and varying protocols. 

Standardized workflows and validation in independent datasets may alleviate some of these 

issues, as well as harmonization to correct for technical and sample differences [521]. 

Nevertheless, large observational studies can still be leveraged for causal inference [522], and the 

Bradford Hill criteria provide a blueprint to design experiments and analyses to evaluate 

causality [331]. For example, DPM and EBM approaches can support or refute purported causal 

relationships between biomarkers via temporality, while dynamical systems approaches can 
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incorporate explicit causal structure and are well suited to modeling response to external 

perturbation. Other statistical techniques such as regression discontinuity design, differences-in-

differences, Bayesian networks, and structural equation modeling are also appropriate for quasi-

experimental causal inference [523]. Finally, we must be aware of the multiplicity of meaning 

behind the term “causal mechanism” in the literature, which can range in spatial scale from 

molecular interactions and cellular processes to circuit properties and abstract topological and 

network concepts [524]. 

In addition to considerations about causality, study design is often not explicitly 

considered or justified in computational models of observational data. In randomized 

experiments, there is a clear and well-defined distinction between pre-existing covariates, and 

outcomes after treatment. If the latter differ between the two groups significantly more than 

random chance, they are attributed to the treatment. However, this distinction between covariates 

and outcomes can be more blurred in observational studies. Well-designed observational studies 

should aim to approach characteristics of randomized experiments. One way to do so may 

include the definition of multiple control groups, to account for plausible alternatives [525]. 

On a related note, case-control studies may be sensitive to the precise selection criteria, 

particularly in the absence of robust biomarker disease categories. Often, inclusion criteria are 

intended to homogenize the studied population, but can introduce assumptions and biases. For 

example, amyloid-based definitions of “typical AD” can affect the results of downstream DPM 

analysis [367], and it is unclear whether patients with tau but no amyloid pathology should be 

considered to have early AD or non-AD pathology [526]. 

Although they are inherently limited by cohorts, study design, and collected data 

modalities,  computational brain models can potentially resolve the “causality gap” [527], a 
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prerequisite for improving treatment target selection [528] [387]. Conversely, interventional 

studies can provide rich evidence to evaluate generative brain models and resolve causality. 

Autopsies [529] and biopsies conducted during standard treatment procedures (e.g., deep brain 

stimulation [530] or tumor [458] surgeries) can also be a valuable source of omics data with 

minimal modifications to routine clinical workflow. Phenotyping patients selected based on 

genotype also offers an alternative to the typical imaging transcriptomics workflow [472]. As the 

field continues to mature, closer links between experimental design, computational modeling and 

clinical considerations are imperative to resolving the unmet potential of neuroimaging-based 

modeling in clinical practice [520]. 

 

Clinical applications of computational models 

Computational models also have rich applications outside of causal inference and 

scientific hypothesis testing. Suggested use cases of DPM-inferred latent disease time include 

defining endpoints [16], and inclusion criteria [327] [366] to reduce the number of subjects 

required to observe intervention effects in clinical trials. Personalized treatment design based on 

whole-brain dynamical models can also guide clinical interventions (Fig. 3.4a) [471] [33] [389] 

[531] [407], a paradigm that has wide applications from psychiatric disorders  [532] [478] to 

epilepsy [533] [534]. While other applications are often focused on controlling pathological 

neuronal activity via stimulation, neurodegenerative disorders are likely to require multi-faceted 

treatment addressing the many affected physiological systems [33], with some responding slower 

than others. Indeed, current single-target, anti-amyloid monoclonal antibodies fail to cross the 

threshold of clinically important cognitive and functional benefit [27].  Model-inferred 

computational drug repurposing based on associated molecular pathways can also be used to 
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speed up the drug development process (Fig. 3.4b) [517]. Given potential limitations about the 

controllability of brain networks as well as practical implementations of such interventions, 

significant work is still needed to translate computational models into clinical practice [535]. 

Expanding current whole-brain models 

There are several other methodological avenues for future work for whole brain 

computational models. Connectome-based modeling typically considers either structural or 

functional connectivity. However, a more complete picture may need to also consider metabolic, 

vascular, and molecular connectivity  [33]. Comprehensive integration of multiple forms of 

connectivity and features driving local molecular vulnerability using causal, network and 

biophysical models is a promising avenue of research [536] [537].   

Supporting these methodological extensions are technical advances providing new 

sources of molecular data. Causes of selective vulnerability, including cell type, can be further 

characterized throughout the cellular life cycle by single cell profiling and iPSC methods [448]. 

Given the differential contributions of genes associated with specific sub-cellular structures, the 

ever-improving spatial resolution of cellular profiling is a valuable development [465]. While in 

vitro and animal models cannot perfectly reproduce cognitive decline and other phenotypic 

aspects of neurodegenerative disorders [538], they can be used to validate new methods (Fig. 

3.4c). In non-human animals, meso- and micro-scale features can be probed more invasively, and 

intervention effects can be tested more readily [539]. Computational models of protein 

propagation in rodents can image features such as directional [401] and meso-scale connectivity 

[518] [540], and microglial influence [541]. Other functionally relevant neuroanatomical 

features, such as laminar structure, may be further resolved by advances in human imaging 

[542].  
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Finally, an important consideration that is often overlooked in DPMs is the roles of 

genetic, sex, environmental, lifestyle and comorbid risk factors in sporadic disease onset and 

progression. One way to address this would be genome-wide association studies (GWAS) with 

imaging phenotypes and analysis of modifiable risk factors from large observational studies. For 

example, diabetes, air pollution and alcohol intake frequency were associated with structural 

degeneration of a vulnerable brain network [543]. Furthermore, DPMs have also noted genotype-

specific progression patterns. In sporadic AD, an early EBM application noted more 

homogenized disease progression in APOE ε4 carriers  [362], while a continuous-time DPM 

demonstrated sex differences in how genotype affects progression [327]. The main familial FTD 

genotypes also present distinct progression patterns [16]. Data-driven analysis of the impact of 

other non-autosomal dominant genetic risk factors on progression trajectories would address an 

important gap in our understanding of sporadic neurodegenerative diseases.  

Bringing in vivo biomarkers to clinical practice  

Although imaging and fluid measures have shown promise in research settings, we still 

lack definitive clinical biomarkers across neurodegenerative diseases, particularly in the early 

prodromal or preclinical stages [544] [545] [546]. Robust in vivo biomarkers are likely necessary 

for the detection of disorders in the pre-clinical phase, when treatment is most likely to succeed, 

as well as to monitor progression and treatment response [526] [547]. While there may be 

systematic factors hindering impact on clinical practice, such as a shortage of resources, 

physician unfamiliarity, non-standardized testing, lack of regulatory approval, incomplete 

validation, and inconsistent coverage by healthcare systems [548] [286], there are also technical 

limitations. In vivo biomarkers have varying but generally imperfect specificity and sensitivity to 

the underlying physiological process of interest. For example, the BOLD signal is merely a 
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proxy for functional brain activity [549], molecular imaging is susceptible to regionally-

heterogeneous ligand uptake and off-target binding [526], and fluid markers are subject to 

variable protein kinetics [526]. As such, biomarkers (and any model-inferred features such as 

disease time) require extensive normative characterization, standardization across studies, 

replication across cohorts, and validation with neuropathology and clinical status [550].  

Towards biomarker-based disease definitions 

Even with clinical and neuropathological validation, there is room for disagreement about 

what (combination of) pathology constitutes a particular disorder due to the absence of definitive 

biological disease definitions. Individuals with tau but no amyloid pathology from PET imaging 

may be considered to have either early AD or non-AD pathology [526]. Furthermore, co-

pathologies are potential sources of heterogeneity driving biological subtypes in disorders such 

as AD [13].  

The knowledge gap between symptomatically defined neurodegenerative diseases and 

unknown pathogenic causes is a major impediment to drug development [551]. In general, the 

ratio of research and development expenses to FDA-approved drugs has been rising 

exponentially since the middle of the 20th century [552]. Yet, potential reversals to this trend may 

be occurring due to genomics-validated targets for rare diseases, where drug development 

benefits from biologically homogenized patient populations [553]. Until the recent anti-amyloid 

monoclonal antibodies, neurodegenerative disorders have suffered for decades from a lack of 

successful drug trials [547]. The typical pharmacological approach for these complex and 

heterogeneous diseases is fixated on a single target, usually reducing the insoluble form of a 

proteinopathy such as amyloid, tau, α-synuclein or TDP-43 [298] [554] [555] [556]. However, 
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looking beyond the usual proteinopathy suspects can reveal effective modifiable risk factors such 

as vascular health [89].  

To this end, biological disease definitions are imperative, and likely involve molecular 

networks spanning multiple pathways [551]. A thorough  molecular profiling of brain tissue or 

other biospecimens is needed to stratify biological heterogeneity [557] [360], along with 

combination therapy addressing the affected molecular networks and macroscopic physiological 

systems [547] [555]. The integrative computational modeling approaches discussed in this 

review can support these efforts to uncover the biological basis of clinical heterogeneity in 

transdiagnostic populations [558] [282]. 
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Chapter 4. Personalized brain models identify 

neurotransmitter receptor changes in Alzheimer's 

disease 

Ahmed Faraz Khan, Quadri Adewale, Tobias R. Baumeister, Felix Carbonell, Karl Zilles, Nicola 
Palomero-Gallagher, Yasser Iturria-Medina 

Preface 

Imaging and computational modeling studies support a multi-faceted view of AD, 

involving proteinopathy as well as vascular, metabolic, structural and functional alterations. 

However, the role of the brain’s neurochemical organization in mediating the pathophysiological 

cascade had not been well characterized. This chapter presents the first application of the 

receptor-enriched multifactorial causal model (re-MCM) to AD, extending the original 

implementation of MCM to account for neurochemical features [33]. Using longitudinal data 

from ADNI for healthy controls, MCI subjects and AD patients, we fit personalized (i.e., subject-

specific) models of 6 neuroimaging-derived variables representing regional brain integrity. The 

imaging variables are gray matter density, functional neuronal activity, CBF/perfusion, glucose 

metabolism and amyloid and tau distribution. These models are informed by the spatial 

distributions of 15 neurotransmitter receptors from autoradiography-derived templates. In this 

work, we verify that group-averaged autoradiography templates are informative to subject-

specific models, and identify specific model-inferred physiological interactions associated with 

symptomatic decline. 
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This work was published in Brain on October 4, 2021 [462] and is accessible online: 

https://doi.org/10.1093/brain/awab375. 

Abstract 

Alzheimer’s disease (AD) involves many neurobiological alterations from molecular to 

macroscopic spatial scales, but we currently lack integrative, mechanistic brain models 

characterizing how factors across different biological scales interact to cause clinical 

deterioration in a way that is subject-specific or personalized. Neurotransmitter receptors, as 

important signaling molecules and potential drug targets, are key mediators of interactions 

between many neurobiological processes altered in AD. We present a neurotransmitter receptor-

enriched multifactorial brain model, which integrates spatial distribution patterns of 15 

neurotransmitter receptors from post-mortem autoradiography with multiple in-vivo 

neuroimaging modalities (tau, amyloid-β and glucose PET, and structural, functional and arterial 

spin labeling MRI) in a personalized, generative, whole-brain formulation. Applying this data-

driven model to a heterogeneous aged population (N=423, ADNI data), we observed that 

personalized receptor-neuroimaging interactions explained about 70% (± 20%) of the across-

population variance in longitudinal changes to the six neuroimaging modalities, and up to 39.7% 

(P<0.003, FWE-corrected) of inter-individual variability in AD cognitive deterioration via an 

axis primarily affecting executive function. Notably, based on their contribution to the clinical 

severity in AD, we found significant functional alterations to glutamatergic interactions affecting 

tau accumulation and neural activity dysfunction, and GABAergic interactions concurrently 

affecting neural activity dysfunction, amyloid and tau distributions, as well as significant 

cholinergic receptor effects on tau accumulation. Overall, GABAergic alterations had the largest 

effect on cognitive impairment (particularly executive function) in our AD cohort (N=25). 

https://doi.org/10.1093/brain/awab375
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Furthermore, we demonstrate the clinical applicability of this approach by characterizing 

subjects based on individualized ‘fingerprints’ of receptor alterations. This study introduces the 

first robust, data-driven framework for integrating several neurotransmitter receptors, multi-

modal neuroimaging and clinical data in a flexible and interpretable brain model. It enables 

further understanding of the mechanistic neuropathological basis of neurodegenerative 

progression and heterogeneity, and constitutes a promising step towards implementing 

personalized, neurotransmitter-based treatments. 

Introduction 

Alzheimer’s disease (AD) involves degenerative changes to several neurobiological 

processes spanning molecular to macroscopic scales, including proteinopathies, modified gene 

expression, synaptic alterations, vascular dysregulation, hypometabolism, and structural atrophy 

[25]. In AD, these processes begin decades before the manifestation of cognitive deterioration 

[559], with vast inter-patient heterogeneity in age of disease onset, spatial distribution of 

neuropathologies, progression patterns, and clinical presentation [560]. Currently, there are no 

effective disease-modifying treatments for AD, despite many expensive attempts [559] [560]. 

These failures may be attributed to: i) the use of a generalized medicine approach to treatment 

without considering the pathophysiological and clinical heterogeneity of the disease [561] [562] 

[563], ii) the focus on single disease factors (e.g. tau and amyloid) whereas most biological 

mechanisms in AD are multi-factorial [564], and, importantly, iii) an incomplete multi-scale 

understanding of how molecular and macroscopic factors interact to cause disease progression 

[565]. 

Recently, multi-modal neuroimaging models [566] [86] have unravelled the temporal 

ordering of macroscopic structural, functional, vascular and proteinopathy changes in AD. 
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Furthermore, personalized models of longitudinal neuroimaging data have been used to identify 

subject-specific alterations of neurobiological processes including tau and amyloid accumulation, 

blood flow, and neural activity at rest [567]. Nevertheless, such neuroimaging models lack a 

mechanistic basis in molecular and cellular processes. While these modalities may involve 

molecular imaging, such as amyloid or tau PET, their spatial resolution is limited in practice 

[227]. Identifying important pathways between truly microscopic-scale variables and observable 

macroscopic neuroimaging (i.e. molecular PET and MRI) in AD would both advance the 

understanding of the underlying biology and improve the selection of therapeutic targets tailored 

to an individual’s particular disease subtype or presentation. 

One particularly relevant class of molecules is neurotransmitter receptors, which regulate 

a variety of biological processes known to be dysfunctional in neurodegeneration. As 

neurotransmitter receptors are mediators of many relevant neurobiological factors, studying them 

is critical for a complete mechanistic understanding and the potential treatment of abnormal 

brain conditions such as neurodegeneration [25]. For example, dopamine receptors expressed by 

the cerebral microvasculature and glial cells appear to modulate the coupling between neural 

activity and vascular response [92], which is altered in AD [100]. As an organ, the brain 

consumes energy disproportionately to its mass [102]. A significant fraction of this energy 

expenditure is attributed to synaptic signalling and molecular synthesis, with approximately 37% 

of this associated with postsynaptic receptors and housekeeping processes [103]. The production 

and degradation of neurotransmitter receptors is a complex, dynamic process that is regulated in 

response to changes in many variables, such as receptor activation, gene expression, and external 

stimuli [105]. Since these processes are energy-intensive, changes to their concentrations are 

likely to indicate relevant biological alterations, making them a potential therapeutic target. 
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Although it is not primarily considered a neurotransmitter disease, AD is associated with 

dysfunction in several important neurotransmitter receptor systems. Particularly, acetylcholine 

and glutamate receptors are implicated in essential stages of a pathological neurodegenerative 

cascade, including cholinergic hydrolysis and glutamatergic excitotoxicity [25]. Neurotransmitter 

receptor alterations are also suspected of being a mechanistic pathway in healthy ageing [568]. 

Thus, integrating neurotransmitter receptors with macroscopic neuroimaging data has the 

potential to uncover molecular pathways important to ageing and disease progression. However, 

in-vivo neurotransmitter receptor imaging is difficult, due to the lack of specific in-vivo 

radiolabels [31]. Typically, receptor mapping has involved either post-mortem histology, or 

expensive positron emission tomography (PET) imaging for a limited set of molecules with 

available radionuclides. As such, large longitudinal in-vivo datasets for several receptors would 

be extremely expensive or technologically infeasible to collect. Consequently, alterations to 

neurotransmitter systems during disease progression are not well characterized [32]. 

Motivated by these concerns, we propose a whole-brain generative formulation 

integrating high resolution in vitro neurotransmitter receptor density maps and in vivo multi-

modal neuroimaging. For the first time, this model allows a quantitative comparison of the causal 

role of different neurotransmitter receptors and neuroimaging modalities in healthy aging and 

neurodegeneration. Specifically, we fit subject-specific generative models of neuroimaging data 

in an aging population covering the AD spectrum (N=423, ADNI data), augmented with 15 

whole-brain neurotransmitter receptor distribution patterns. We then treat the parameters of these 

personalized models as subject-specific measures representing latent receptor-neuroimaging 

interactions, and identify multi-scale interactions that explain mechanistic variability and 

cognitive heterogeneity between AD subjects. We find that receptor density maps and their 
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interactions with neuroimaging significantly improve the fit of neuroimaging models, providing 

a valid proxy for true, longitudinal in-vivo receptor imaging. Examining model parameters in AD 

patients, we found an axis of variability between receptor-imaging interactions and cognitive 

decline, primarily affecting executive function. Specifically, this  axis is influenced by predictors 

of tau distribution and resting state neural activity, concordant with recent reports in late-onset 

AD [569] [570]. Via this axis, mechanisms of glutamatergic, cholinergic and GABAergic 

receptor interactions correlated significantly with cognitive decline in AD. In contrast, while 

receptor-imaging interactions in healthy individuals did not vary significantly with cognitive 

status, mechanisms affecting cerebral blood flow (CBF) changes and gray matter atrophy 

accounted for most of the inter-individual heterogeneity. This work represents the earliest 

attempt to integrate several neurotransmitter receptors and multi-modal neuroimaging data in a 

universal formulation, representing a notable advance towards implementing individually-

tailored neurotransmitter-based diagnosis and treatment in neurodegeneration. 

Materials and methods 

Ethics statement 

The study was conducted according to Good Clinical Practice guidelines, the Declaration 

of Helsinki, US 21CFR Part 50–Protection of Human Subjects, and Part 56–Institutional Review 

Boards, and pursuant to state and federal HIPAA regulations (adni.loni.usc.edu). Study subjects 

and/or authorized representatives gave written informed consent at the time of enrollment for 

sample collection and completed questionnaires approved by each participating site Institutional 

Review Board (IRB). The authors obtained approval from the ADNI Data Sharing and 

Publications Committee for data use and publication, see documents http://adni.loni.usc.edu/wp-

http://adni.loni.usc.edu/
http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Data_Use_Agreement.pdf
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content/uploads/how_to_apply/ADNI_Data_Use_Agreement.pdf and 

http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Manuscript_Citations.pdf, 

respectively. 

Data description and processing 

Study participants 

This study used longitudinal data from N=423 participants (149 healthy, 151 early mild 

cognitive impairment (EMCI), 103 late mild cognitive impairment (LMCI), and 20 AD-

diagnosed subjects at baseline) from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) 

(adni.loni.usc.edu). Demographic information is summarized in Supplementary Table S1. At 

least three different imaging modalities were acquired for each included subject (i.e. structural 

MRI, fluorodeoxyglucose PET, resting functional MRI, Arterial Spin Labeling and/or Amyloid-ß 

PET). The ADNI was launched in 2003 as a public-private partnership, led by Principal 

Investigator Michael W. Weiner, MD. The primary goal of ADNI has been to test whether serial 

magnetic resonance imaging (MRI), PET, other biological markers, and clinical and 

neuropsychological assessments can be combined to measure the progression of mild cognitive 

impairment (MCI) and early Alzheimer’s disease (AD). 

Structural MRI acquisition/processing 

Brain structural T1-weighted 3D images were acquired for all N=423 subjects. For a 

detailed description of acquisition details, see http://adni.loni.usc.edu/methods/documents/mri-

protocols/. All images underwent non-uniformity correction using the N3 algorithm [571]. Next, 

they were segmented into grey matter, white matter and cerebrospinal fluid (CSF) probabilistic 

maps, using SPM12 (fil.ion.ucl.ac.uk/spm). Grey matter segmentations were standardized to 

http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Data_Use_Agreement.pdf
http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Manuscript_Citations.pdf
http://adni.loni.usc.edu/
http://adni.loni.usc.edu/methods/documents/mri-protocols/
http://adni.loni.usc.edu/methods/documents/mri-protocols/
https://fil.ion.ucl.ac.uk/spm/
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MNI space [572] using the DARTEL tool [573]. Each map was modulated in order to preserve 

the total amount of signal/tissue. Mean grey matter density and determinant of the Jacobian (DJ) 

[573] values were calculated for the regions described in Methods: Data description and 

processing: Receptor densities and brain parcellation. For each region, obtained grey matter 

density and DJ values were statistically controlled for differences in acquisition protocols. Both 

measurements provided equivalent modeling results. All the results/figures presented in this 

study correspond to the DJ, which constitutes a robust local measure of structural atrophy. 

Fluorodeoxyglucose PET acquisition/processing 

A 185 MBq (5 ± 0.5 mCi) of [18F]-FDG was administered to each participant (N=418) 

and brain PET imaging data were acquired approximately 20 min post-injection. All images were 

corrected using measured attenuation. Also, images were preprocessed according to four main 

steps [574]: 1) dynamic co-registration (separate frames were co-registered to one another 

lessening the effects of patient motion), 2) across time averaging, 3) re-sampling and 

reorientation from native space to a standard voxel image grid space (“AC-PC” space), 4) spatial 

filtering to produce images of a uniform isotropic resolution of 8 mm FWHM, and 5) affine 

registration to the participant’s structural T1 image. Next, using the registration parameters 

obtained for the structural T1 image with nearest acquisition date, all FDG-PET images were 

spatially normalized to the MNI space [572]. Regional standardized uptake value ratio (SUVR) 

values for the regions considered were calculated using the cerebellum as reference region. 

Resting fMRI acquisition/processing 

Resting-state functional images were obtained using an echo-planar imaging sequence on 

a 3.0-Tesla Philips MRI scanner for N=127 subjects. Acquisition parameters were: 140 time 

points, repetition time (TR)=3000 ms, echo time (TE)=30 ms, flip angle=80°, number of 
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slices=48, slice thickness=3.3 mm, in plane resolution=3 mm and in plane matrix=64×64. Pre-

processing steps included: 1) motion correction, 2) slice timing correction, 3) alignment to the 

structural T1 image, and 4) spatial normalization to MNI space using the registration parameters 

obtained for the structural T1 image with the nearest acquisition date, and 5) signal filtering to 

keep only low frequency fluctuations (0.01–0.08 Hz) [575]. For each brain region, our model 

requires a local (i.e. intra-regional, non-network) measure of functional activity, in order to 

maintain mechanistic interpretability and to prevent data leakage of network information into 

local model terms (described further in Receptor-Enriched Multifactorial Causal Model). Due to 

its high correlation with glucose metabolism [576] and validation as an AD-sensitive metric 

[577] [219], we calculated regional fractional amplitude of low-frequency fluctuation (fALFF)  

[578] as a measure of functional integrity. 

Furthermore, while our model uses structural connectivity as the network along which 

inter-region propagation occurs, we also calculated and used a functional connectome, as the 

average of the absolute Pearson correlation matrices across all healthy subjects with fMRI data 

(N=42). Based on this, we compared model performance using structural and functional 

connectivity, characterizing the choice of connectivity metrics (see Multi-scale interactions 

involving neurotransmitter receptors are important to explaining multifactorial brain 

reorganization and Supplementary Fig. S8). 

ASL acquisition/processing 

Resting Arterial Spin Labeling (ASL) data were acquired using the Siemens product 

PICORE sequence for N=195 subjects. Acquisition parameters were: TR/TE=3400/12 ms, 

TI1/TI2=700/1900 ms, FOV=256 mm, 24 sequential 4 mm thick slices with a 25% gap between 

the adjacent slices, partial Fourier factor=6/8, bandwidth=2368 Hz/pix, and imaging 
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matrix=64×64. For preprocessing details see ”UCSF ASL Perfusion Processing Methods” in 

adni.loni.usc.edu. In summary, main preprocessing steps included: 1) motion correction, 2) 

perfusion-weighted images (PWI) computation, 3) intensity scaling, 4) CBF images calculation, 

5) alignment to the structural T1 image, and 6) spatial normalization to MNI space [572] using 

the registration parameters obtained for the structural T1 image with the nearest acquisition date, 

and 6) mean CBF calculation for each considered brain region. 

Amyloid-ß PET acquisition/processing 

A 370 MBq (10 mCi ± 10%) bolus injection of AV-45 was administered to each 

participant (N=422), and 20 min continuous brain PET imaging scans were acquired 

approximately 50 min post-injection. The images were reconstructed immediately after the 20 

min scan, and when motion artifact was detected, another 20 min continuous scan was acquired. 

For each individual PET acquisition, images were initially preprocessed according to four main 

steps [574]: 1) dynamic co-registration (separate frames were co-registered to one another 

lessening the effects of patient motion), 2) across time averaging, 3) re-sampling and 

reorientation from native space to a standard voxel image grid space (“AC-PC” space), 4) spatial 

filtering to produce images of a uniform isotropic resolution of 8 mm FWHM, and 5) affine 

registration to the participant’s structural T1 image. Next, using the registration parameters 

obtained for the structural T1 image with the nearest acquisition date, all amyloid images were 

spatially normalized to the MNI space [572]. Considering the cerebellum as an Aß non-specific 

binding reference, SUVR values for the regions were calculated. 

Tau PET acquisition/processing 

A 370 MBq/kg bolus injection of tau specific ligand 18F-AV-1451 ([F- 18] T807) was 

administered to each participant (N=238), and 30 min (6 × 5 min frames) brain PET imaging 

http://adni.loni.usc.edu/
http://adni.loni.usc.edu/
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scans were acquired starting at 75 min post-injection (N = 200). Images were preprocessed 

according to four main steps [574]: 1) dynamic co-registration (separate frames were co-

registered to one another lessening the effects of patient motion), 2) across time averaging, 3) re-

sampling and reorientation from native space to a standard voxel image grid space (“AC-PC” 

space), 4) spatial filtering to produce images of a uniform isotropic resolution of 8mm FWHM, 

and 5) affine registration to the participant’s structural T1 image. Next, using the registration 

parameters obtained for the structural T1 image with the nearest acquisition date, all tau images 

were spatially normalized to the MNI space [572]. Considering the cerebellum as a non-specific 

binding reference, SUVR values for the grey matter regions considered were calculated. 

Receptor densities and brain parcellation 

In-vitro quantitative receptor autoradiography was applied to measure the densities of 15 

receptors in 44 cytoarchitectonically defined cortical areas spread throughout the brain [579]. 

These receptors span major neurotransmitter systems, and show significant regional variability 

across the brain. Brains were obtained through the body donor programme of the University of 

Düsseldorf. Donors (three male and one female; between 67 and 77 years of age) had no history 

of neurological or psychiatric diseases, or long-term drug treatments. Causes of death were non-

neurological in each case. Each hemisphere was sliced into 3 cm slabs, shock frozen at -40C, and 

stored at -80C. 

Receptors for the neurotransmitters glutamate (AMPA, NMDA, kainate), GABA 

(GABAA, GABAA-associated benzodiazepine binding sites, GABAB), acetylcholine (muscarinic 

M1, M2, M3, nicotinic α4β2), noradrenaline (α1, α2), serotonin (5-HT1A, 5-HT2), and dopamine 

(D1) were labeled according to previously published binding protocols consisting of pre-

incubation, main incubation and rinsing steps [579]. The ligands used are summarized in 
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Supplementary Table S3. Receptor densities were quantified by densitometric analysis of the 

ensuing autoradiographs, and areas were identified by cytoarchitectonic analysis in sections 

neighbouring those processed for receptor autoradiography, and which had been used for the 

visualization of cell bodies [580].  

A brain parcellation was then defined with the aid of the Anatomy Toolbox [581] using 

44 regions of interest for which receptor densities were available [253]. This parcellation was 

based on areas identified by cortical cytoarchitecture, as well as other cyto- and receptor-

architectonically defined regions with receptor measurements (regions are summarized in 

Supplementary Table S4). These 44 regions were mirrored across left and right hemispheres for a 

total of 88 brain regions in our parcellation. For each receptor, regional densities were 

normalized using the mean and standard deviation across all 88 brain regions. 

The structural T1 images of the Jülich [581] and Brodmann [582] brain parcellations 

were registered to the MNI ICBM152 T1 template using FSL 5.0's FLIRT affine registration tool 

[583], and the obtained transformations were used to project the corresponding parcellations to 

the MNI ICBM152 space (using nearest neighbor interpolation to conserve original parcellation 

values). In the MNI ICBM152 space, voxels corresponding to the cytoarchitectonically defined 

regions from [253] were identified from the regions in the Anatomy Toolbox, with the remaining 

Brodmann regions (Supplementary Table S4) filled in using the Brodmann brain atlas. The 

resulting parcellation of 88 brain regions in the common template space was then used to extract 

whole-brain multi-modal neuroimaging data and estimate the diffusion-based connectivity 

matrix, as described in Materials and Methods: Multimodal neuroimaging data and Materials 

and Methods: Anatomical connectivity estimation.  
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Anatomical connectivity estimation 

The connectivity matrix was constructed using DSI Studio (http://dsi-

studio.labsolver.org). A group average template was constructed from a total of 1065 subjects 

[584]. A multishell diffusion scheme was used, and the b-values were 990, 1985 and 2980 

s/mm2. The number of diffusion sampling directions were 90, 90, and 90, respectively. The in-

plane resolution was 1.25 mm. The slice thickness was 1.25 mm. The diffusion data were 

reconstructed in the MNI space using q-space diffeomorphic reconstruction [585] to obtain the 

spin distribution function [586]. A diffusion sampling length ratio of 2.5 was used, and the output 

resolution was 1 mm. The restricted diffusion was quantified using restricted diffusion imaging 

[587]. A deterministic fiber tracking algorithm [588] was used. A seeding region was placed at 

whole brain. The QA threshold was 0.159581. The angular threshold was randomly selected 

from 15 degrees to 90 degrees. The step size was randomly selected from 0.5 voxel to 1.5 voxels. 

The fiber trajectories were smoothed by averaging the propagation direction with a percentage of 

the previous direction. The percentage was randomly selected from 0% to 95%. Tracks with 

length shorter than 30 or longer than 300 mm were discarded. A total of 100000 tracts were 

calculated. A custom brain atlas based on cytoarchitectonic regions with neurotransmitter 

receptor data [253] was used as the brain parcellation, as described in Materials and Methods: 

Data description and processing: Receptor densities and brain parcellation, and the connectivity 

matrix was calculated by using count of the connecting tracks. 

Multimodal neuroimaging data 

After pre-processing ADNI neuroimaging data for all 6 modalities and extracting it for 

the cytoarchitectonically defined atlas described in Materials and Methods: Data description and 

http://dsi-studio.labsolver.org/
http://dsi-studio.labsolver.org/


   157 

processing: Receptor densities and brain parcellation, subjects lacking sufficient longitudinal or 

multimodal data were discarded. The disqualification criteria were i) fewer than 4 imaging 

modalities with data, or ii) fewer than 3 longitudinal samples for all modalities. For the 

remaining subjects, missing neuroimaging modalities at each time point with actual individual 

data were imputed using trimmed scores regression with internal PCA  [589]. Imputation 

accuracy was validated using 10-fold cross-validation, showing a strong capacity to recover the 

real data (correlation values: rCBF = 0.44, ramyloid = 0.60, rneural activity = 0.95, rgray matter = 0.80, 

rmetabolism = 0.81, rtau = 0.71; all P<10-6). Finally, a total of 423 subjects were left with all 6 

neuroimaging modalities with an average of 4.75 (±2.71) time points. We used the mean and 

variance of each neuroimaging modality across all regions and healthy subjects to calculate z-

scores of neuroimaging data across all (healthy, MCI, and AD) subjects. Please see 

Supplementary Tables S1-S2 for demographic characteristics, and Materials and Methods: 

Multimodal neuroimaging data and Supplementary Fig. S1 for a detailed flowchart of the 

selection and analysis of the participants. 

Cognitive scores 

We used multiple composite scores derived from the ADNI neuropsychological battery. 

Protocols for deriving each score are described in the respective ADNI protocols documentation 

or relevant publication for executive function [590], memory [590], language [591], visuospatial 

functioning [591], mini-mental state examination (MMSE) [592], and the Alzheimer’s Disease 

Assessment Scale (ADAS11/13) [592]. With an average of 7.27 ± (2.55) evaluations per subject 

in our cohort (N=423), we calculated cognitive decline as the linear best fit rate of change of 

each cognitive score with respect to examination date. Thus, for each patient, cognitive decline 

was represented by a set of 7 rates of change. 
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Receptor-Enriched Multifactorial Causal Model (re-MCM) 

Under the framework of the multifactorial causal model (MCM) introduced in [567], we 

consider the brain as a dynamical system of anatomically connected regions defined by 

interacting, neuroimaging-derived biological factors. These biological factors are tissue structure, 

neuronal activity, blood flow, metabolism, and the accumulation of misfolded proteins (amyloid, 

tau), quantified by structural MRI, functional MRI, ASL MRI, FDG PET, amyloid PET and tau 

PET, respectively. Each biological factor 𝑚 at a particular brain region 𝑖 is represented by a 

single variable 𝑆T,U, whose rate of change is a function of i) local states of other factors, and ii) 

the propagation of the same factor across anatomically connected regions. Thus, in our model, 

pathological factors can propagate throughout the brain, but any direct interactions between 

factors must occur locally within a region. 

In this study, for a given subject, and at each of the 𝑁ROI = 88 brain regions, the system 

is defined by 𝑁fac = 6 state variables or factors. Each factor 𝑆T,U represents the 𝑚th 

neuroimaging modality at the 𝑖th brain region. Factor dynamics can be decomposed into local 

effects due to factor-factor interactions and network propagation of the factor. In general, the 

differential equation describing this coupled system for a given subject is: 

4V,,.(&)
4&

= 𝑓(𝐒∗,U(𝑡))
Local Effects

+ 𝑔(𝐒T,∗(𝑡), 𝐶U↔∗
Inter-region Propagation

),                                                                        (1) 

where 𝑓 and 𝑔 are functions that determine the effects of local multi-modal interactions 

and propagation, respectively, and 𝐶U↔∗ is the net connectivity of region 𝑖. Here, we extend the 

basic MCM formulation (Equation 1) to include the local effects of neurotransmitter receptors. 

With 𝐑 being a 𝑁rec × 𝑁ROI matrix of spatial maps, composed of local densities 𝑟Y,U of a receptor 
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𝑘 at a region 𝑖, and 𝐑∗,U  being a 𝑁rec × 1 vector of all receptor densities in region 𝑖, we define the 

general form of the receptor-enriched MCM (re-MCM) as: 

4V,,.(&)
4&

= 𝑓(𝐒∗,U(𝑡), 𝐑∗,U) + 𝑔(𝐒T,∗(𝑡), 𝐶U↔∗).                                                                               

(2) 

The first term 𝑓(𝐒∗,U(𝑡), 𝐑∗,U) represents the local component, which is the interaction 

between the factor 𝑚 and all other factors in region 𝑖, mediated by the local densities of receptors 

in that region. The second term 𝑔(𝐒T,∗(𝑡), 𝐶U↔∗) represents the contribution due to network 

propagation of the factor 𝑚, mediated by the net anatomical connectivity 𝐶U↔∗ of the region 𝑖. 

The functions 𝑓 and 𝑔 in Equation 2 define the global imaging factor dynamics, which are valid 

for all brain regions. Thus, regional differences are due to different imaging factor states, 

receptor distributions and anatomical connectivity, but the mechanisms of their interactions, 

represented by 𝑓 and 𝑔, are consistent across the whole brain. 

Given the decades-long temporal scale of neurodegeneration compared to the relatively 

short few months between neuroimaging samples, we assume a locally linear, time-invariant 

dynamical system: 

4V.
,(&)
4&

= ∑ 𝛼Z→T\fac
Z]L 𝑆Z,U(𝑡) + ∑ 𝛼YT

\rec
Y]L 𝑟Y,U + 𝛼prop

T ∑ i𝐶 →U𝑆T,^(𝑡) − 𝐶U→^𝑆T,U(𝑡)j
\ROI
^]L,^_U ,        

(3) 

where 𝐶U→^ is the directed anatomical connectivity from region 𝑖 to 𝑗, and 4V,,.(&)
4&

 was 

defined by the local rate of change of neuroimaging data for successive longitudinal samples at 

times 𝑡′ and 𝑡: 

4V,,.(&)
4&

= V,,.(&)1V,,.(&`)
&1&`

.                                                                                                                 

(4) 
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In this work, we expand the local effect term to include i) direct factor-factor effects, ii) 

interaction terms mediated by 𝑁rec = 15 receptor types, and iii) direct receptor effects (Equation 

3) on the neuroimaging factor rate of change 4V,,.
4&

. The local factor effects term n Equation 3 is 

now expanded: 

𝛼Z→T = 𝛼6Z→T
Direct Factor-Factor Term

+ ∑ 𝛼YZ→T
\rec
Y 𝑟UY

Interaction Term
.                    

(5) 

Although the receptor maps 𝐑 are constant templates with spatial but no temporal 

variation, their interaction terms add a dynamic element, as they imply a regional heterogeneity 

to neuroimaging predictors that is not directly explained by the direct receptor term in Equation 

3. For instance, we might notice that (hypothetically) the interaction between a glutamatergic 

receptor and functional activity is a significant predictor of gray matter atrophy. Whether or not 

functional activity or the glutamatergic receptor map are significant predictors on their own, the 

significance of the interaction term would imply that the spatial distribution template of the 

glutamatergic receptor is informative when combined with functional activity. 

Additionally, for propagation, we consider only symmetric connectivity 𝐶 ↔U between 

regions 𝑖 and 𝑗, using a template connectivity matrix for all subjects, as described in Anatomical 

connectivity estimation, to give the propagation term 

𝑝T,U(𝑡) = ∑ 𝐶 ↔U
\ROI
^]L,^_U i𝑆T,^(𝑡) − 𝑆T,U(𝑡)j.	                                                                               

(6) 

This reduces the net propagation of a factor 𝑚 to a region 𝑖 to a single propagation term. 

A more complete treatment may consider vascular connectivity as well [567] [561], as this 
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measure may be more relevant for different processes (such as functional activity, CBF and 

metabolism, respectively).  

4V,,.(&)
4&

= ∑ o𝛼6Z→T + ∑ 𝛼YZ→T
\rec
Y 𝑟Y,^p

\fac
Z]L 𝑆Z,U(𝑡) + ∑ 𝛼YT

\rec
Y]L 𝑟Y,U + 𝛼prop

T 𝑝T,U(𝑡)                       

(7) 

Formulated in this way, each model contains a set of 𝑁params = 𝑁fac × (1 + 𝑁rec) + 𝑁rec +

1 = 113 parameters {𝛼}!T for subject 𝑥 and factor 𝑚 (or 678 total parameters per subject). Apart 

from the propagation term, which is specific to the imaging modality output of the model, all 

predictors are identical for the 6 neuroimaging modalities. That is, a common set of receptor 

maps, multi-modal neuroimaging states, and pseudo-personalized receptor-imaging interactions 

are used as predictors. However, based on their respective effects on each output modality, we 

obtain 678 distinct biological parameters per subject, each with a distinct mechanistic 

interpretation (e.g. the effect of neural activity on metabolism or the effect of neural activity on 

CBF). We then perform linear regression, using the terms in Equation 7 as predictors with 

longitudinal ADNI neuroimaging samples 𝑆T,U(𝑡) and receptor maps 𝐑, to estimate subject- and 

modality-specific parameters {𝛼}!T for each subject 𝑥 and modality 𝑚. Separate regression 

models were built for i) each of the N=423 qualifying subjects, and ii) each of the 6 

neuroimaging factors. These subjects were drawn from the ADNI dataset with at least 4 recorded 

neuroimaging modalities, and at least 3 longitudinal samples for at least one modality. 

To evaluate model fit, we calculate the coefficient of determination (𝑅') for each subject. 

This is summarized by modalities in Fig. 4.2. With the data vector 𝐲 with elements 𝑦T,U,& =

4V,,.(&)
4&

, and model predictions 𝐲x with 𝑦x = 𝑦xT,U,&, the coefficient of determination is 
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𝑅' = 1 − ∑ (.,/ 𝐲,,.,/1𝐲c,,.,/)&

∑ (.,/ 𝐲,,.,/1d𝐲,e)&
,                                                                                                            

(8) 

where < 𝐲T > is the mean of neuroimaging data for a particular modality 𝑚 across all 

brain regions and longitudinal samples. 

Statistical analysis 

Model fit 

Personalized model fit quantified by the coefficient of determination (R2) was evaluated 

for each subject and neuroimaging modality. F-tests were used to compare receptor-

neuroimaging (113 parameters per modality) and neuroimaging-only (8 parameters per modality) 

to fitting neuroimaging data in each subject (F-test with p<0.05). The model fit (R2) was 

evaluated for each subjects’ neuroimaging models using 1000 iterations of randomly permuted 

receptor maps (with receptor densities shuffled across regions independently for each receptor 

type), and we calculated the p-value of the true receptor data model R2 compared to this 

distribution. 

Biological parameters and relationship with cognition 

We aimed to further clarify how the cognitive decline observed in AD progression is 

modulated by specific neurotransmitter receptor systems and their causal interactions with 

macroscopic biological factors (i.e. amyloid, tau, CBF, neural activity, glucose metabolism and 

gray matter density). As changes in several receptor densities are difficult to image in-vivo, we 

analyzed the receptor terms from our personalized re-MCM approach as a proxy for the 

importance of each particular receptor’s distribution or interactions in predicting multi-domain 

cognitive deterioration in AD. To consider the inter-subject variability in the diseased population, 
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we used a combination of cognitive assessment scores as disease severity descriptors (i.e. 

executive function, memory, language, visuospatial functioning, MMSE, ADAS 11 and ADAS 

13; see Materials and Methods: Cognitive Scores).  

We aimed to robustly identify significant and relevant re-MCM parameters that represent 

molecular-neuroimaging interactions associated with cognitive decline, using a data-driven 

multivariate cross-correlation analysis in combination with a randomized permutation test to 

ensure the statistical stability of our results. By concurrently analyzing the multivariate changes 

across all re-MCM parameters, this multidimensional analysis searched for large clusters of 

functionally related receptor-neuroimaging interaction mechanisms statistically associated with 

AD-associated cognitive changes. In other words, the SVD method used here (and its associated 

permutation test) identified the specific set of receptors and/or imaging features that were 

maximally related to cognitive decline. To this end, we selected a clinical subgroup of interest 

(either N=112 cognitively healthy subjects or N=25 AD patients from the N=423 total subjects 

with sufficient multi-modal neuroimaging data), and performed the following procedure on the 

original set of 678 re-MCM parameters and 7 rates of cognitive decline per subject (executive 

function, memory, language, visuospatial functioning, MMSE, and ADAS11/13): 

To identify correlated axes of variation, we performed principal component analysis 

(PCA) on all 678 biological parameters separately on the healthy and AD subjects, and ranked 

parameters based on the variance explained in the first principal component (PC). 

To relate biological parameters to cognition, we performed singular value decomposition 

(SVD) on the cross-covariance matrix between significant parameters and rates of cognitive 

decline for AD patients, after adjusting for covariates (baseline age, education and gender). SVD 

allows us to simultaneously reduce the dimensionality of the 7 cognitive assessments and to rank 



   164 

parameters by their variation with cognition. Where 𝑋 is a matrix of z-scores of each re-MCM 

parameter for this clinical subgroup and 𝑌 is a matrix of the corresponding z-scores of the rates 

of clinical decline, the cross-covariance matrix 𝐶 = 𝑋𝑌′ is decomposed as 

        𝐶 = 𝑈𝑆𝑉′                                                                                                                             

(9) 

where 𝑈 and 𝑉 are orthonormal matrices of spatial loadings for the coefficients and 

cognitive scores, respectively, and 𝑆 is a (diagonal) matrix of singular values {𝑠L, … , 𝑠f}.  

To evaluate the significance of SVD components, we performed permutation tests by 

shuffling the mapping between subjects’ re-MCM parameters and cognitive scores, and repeating 

SVD. To compare permuted iterations, we performed a Procrustes transformation to align the 

axes of singular components. We kept only those singular components that are significant 𝑝 <

0.05) compared to 1000 permutation iterations of SVD components. 

We performed 1000 iterations of bootstrapping on the parameters 𝑋, and discarded the 

parameters with non-significant 95% confidence intervals. 

For the remaining significant re-MCM parameters and SVD components, we computed 

the variance explained per parameter. We then summed the contribution of each significant 

parameter 𝑗 to each significant SVD component 𝑖, weighted by the fraction of total variance 

explained by the 𝑖th component  

        𝑟',param,sig = ∑
g.,0
&

∑ g.,0
&

0
Parameter 

contribution

\SVD,sig
U

h.
&

∑ h0
&

0
.

Singular value
contribution

                                                                           

(10) 
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Inter-subject mechanistic variability 

To explore the potential clinical utility of our approach at the personalized level, we 

performed a quantitative comparison between diseased participants in terms of their inter-subject 

variability across different receptor systems. To this end, we defined individual-specific 

“fingerprints” of the alterations in receptor-modulated synergistic interactions. Specifically, for 

each participant i and receptor system r, we calculated the Mahalanobis distance 𝐷U,iof re-MCM 

parameters 𝛼U,i associated with cognitive decline in our AD cohort (Fig. 4.4; Supplementary 

Table S5). This distance is calculated between subject’s parameters 𝛼U,i, and the distribution of 

healthy subjects’ parameters for receptor r, with means  𝜇U,i and a covariate matrix 𝑺1𝟏, 

 𝐷U,i = 8(𝛼U,i − 𝜇U,i)E𝑺1𝟏(𝛼U,i − 𝜇U,i).                                                                                

(11)    

To quantify the relationship between this summary metric of receptor alterations and 

specific cognitive domains, we performed multivariate linear regression on rates of cognitive 

decline (adjusted by age, gender, education level and APOE4 status; N=25) using the z-scores of 

the Mahalanobis distances for  the 6 receptor systems. We also estimated the explanatory 

importance of each receptor system, as the percentage improvement in model fit (R2) by 

including a particular receptor Mahalanobis distance. 

Data and code availability 

The three datasets used in this study are available from the ADNI database (neuroimaging 

and cognitive evaluations; http://www.adni.loni.usc.edu), the HCP database (tractography 

template for connectivity estimation; http://www.humanconnectomeproject.org/), and receptor 

density data published in [253]. We anticipate that the re-MCM method will be released soon as 

http://www.adni.loni.usc.edu/
http://www.humanconnectomeproject.org/
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part of our available and open-access, user-friendly software [593] (https://www.neuropm-

lab.com/neuropm-box.html). 

Results 

Capturing receptor-mediated multifactorial brain reorganization 

Here, we aimed to develop a multi-scale generative brain model linking regional receptor 

densities (for 15 neurotransmitter receptors) and multimodal neuroimaging-based factors (for six 

biological variables) in a flexible, unified formulation. We aimed to use this mathematical 

framework to infer receptor alterations associated with the long-term physiological changes of 

complex brain reorganization processes (namely aging and neurodegeneration) and their 

cognitive impact. Because changes in receptor concentrations are difficult to measure in vivo, our 

receptor density maps were composed of group-averaged templates, with spatial distributions of 

receptors but no inter-individual variability or intra-individual longitudinal progression. 

Consequently, we use the predictive importance of receptor distributions in generative models of 

abnormal neuroimaging-derived biological variables as a proxy for alterations in either receptor 

density or mechanistic interactions with other imaging-derived variables.  

We proceeded to characterize the multifactorial brain dynamics of each participant using 

the developed neurotransmitter receptor-enriched multifactorial causal model (re-MCM; Fig. 

4.1) and the quality-controlled, multi-modal longitudinal neuroimaging data (described in 

Materials and Methods: Data description and processing). For each participant with sufficient 

longitudinal and multi-modal data (N=423), the re-MCM was fit for all 6 neuroimaging 

modalities, to obtain receptor-imaging biological parameters reflecting local factor-factor 

interactions mediated by neurotransmitter receptor distributions (e.g. amyloid-tau interactions 

https://www.neuropm-lab.com/neuropm-box.html
https://www.neuropm-lab.com/neuropm-box.html
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modulated by NMDA receptors) and the spreading of effects via anatomical networks (e.g. 

amyloid and tau propagation along white matter connections).  

 

Figure 4.1. Neurotransmitter receptor-enriched multifactorial causal modeling. 
a) For each subject with longitudinal neuroimaging data, changes between subsequent 

samples in each neuroimaging modality are decomposed into local synergistic effects due to i) 
the direct influence of all neuroimaging-quantified biological factors, ii) receptor density 
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distributions, and iii) multi-scale receptor-imaging interactions, and iv) global network-
mediated intra-brain propagation. Combining this data across (NROI=88) brain regions and 
multiple neuroimaging samples results in a multivariate regression problem to identify the 

subject-specific parameters {α}. b) At a group level, these personalized model parameters are 
then compared to subjects’ cognitive assessments (specifically, the rates of decline for 7 

composite cognitive scores described in Materials and Methods: Cognitive scores) using a 
singular value decomposition (SVD) procedure on the cross-covariance matrix, to identify multi-

scale receptor-neuroimaging interactions that are robustly correlated with the severity of 
cognitive symptoms in AD (outlined in Materials and Methods: Biological parameters and 
relationship with cognition). c) In the context of personalized applications, inter-subject 

variability in receptor-imaging interactions can be used as clinical “fingerprints” of molecular 
alterations representing different disease mechanisms. Patients can then receive individually 

tailored treatment plans to address their underlying etiology, based on their specific fingerprints. 
For example, patients with greater vascular alterations may benefit more from lifestyle 

interventions such as physical exercise, whereas patients with greater receptor alterations may 
require neurotransmitter-based medication (depending on the most affected receptor). 

Furthermore, treatment plans can be continually adjusted with follow-up visits. 

Multi-scale interactions involving neurotransmitter receptors are 

important to explaining multifactorial brain reorganization 

Firstly, we proceeded to evaluate the ability of the re-MCM approach to fit longitudinal 

neuroimaging data with and without receptor maps and multi-scale receptors-imaging 

interactions (Fig. 4.2a-b). For each of the six neuroimaging modalities per subject, we calculated 

the coefficient of determination (R2) as a measure of model accuracy for explaining the real 

imaging-specific longitudinal changes. While model accuracy varied by imaging modality, we 

observed that the personalized models including receptor-neuroimaging interactions explained 

approximately 70% (± 20%) of observed variance in all modalities (Fig. 4.2a).  

Inter-region propagation in our model occurs along structural connectivity. While 

functional connectivity can be a better predictor of fMRI data, structural connectivity is a better 

measure of the actual physical substrate connecting brain regions. Nevertheless, to explore the 

effects of alternate connectivity measures, we repeated our modeling steps using functional 

connectivity in place of the structural connectivity derived from diffusion-MRI tractography. 
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While the connectivity matrices differed, we found almost no change in model fit or parameters 

across subjects, with a high correlation r>0.99 of model R2 (P<0.001) across all modalities 

(Supplementary Fig. S8). We attribute this to the dominance of intra-regional effects in our 

model, with many interacting local receptor and neuroimaging predictors, and also to the shared 

information in structural and functional connectivity [594]. 

Next, to evaluate the relevance of receptor densities and receptor-mediated interactions 

between biological factors quantified by imaging (e.g. amyloid-tau interaction modulated by 

GABA), we compared the model fit of full re-MCM models (incorporating receptor-factor 

interactions as previously described) with restricted models (using only neuroimaging predictors 

and network propagation). The models including receptor maps and receptor-imaging 

interactions explained, on average, more than twice as much of the variance in longitudinal 

neuroimaging changes (Supplementary Table S7; P<0.001 with a two-sample t-test). To account 

for the greater explanatory power of a larger model with more parameters, we quantified the 

improvement in individual neuroimaging modeling due to the receptor terms, we conducted F-

tests between the full re-MCM formulation (Fig. 4.2a) and the restricted model (Fig. 4.2b). As 

hypothesized, we observed that the inclusion of receptor maps and multi-scale (receptor-

imaging) interaction terms significantly improved (P<0.05) the model accuracy for 86.8%-99.0% 

of the subjects (Fig. 4.2c) while accounting for the additional degrees of freedom in the model 

with receptors. While the inclusion of receptors and receptor-imaging interactions improved 

model performance for all subjects and modalities, this improvement was not always significant, 

most notably in 13.2% of gray matter atrophy models (Fig. 4.2c). We attribute this to the use of a 

shared, group-averaged set of neurotransmitter receptors templates (further tested below).  
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Having established that receptor maps and receptor-neuroimaging interactions do 

significantly improve personalized neuroimaging models, we then performed a permutation 

analysis on the receptor maps to test the informativeness compared model performance using 

averaged receptor templates to a set of null receptor maps. For each subject, the model fitting 

procedure was repeated using 1000 random permutations of the spatial receptor maps. Receptor 

densities were shuffled across regions of interest, independently for each receptor. We then 

compared the distribution of model fit (R2) using these randomly permuted data with the R2 

obtained for the models using the true receptor templates. We observed that the significance of 

the improvement in model fitting over randomized receptor maps varied by imaging modality, 

for example, being lower for metabolism than for neural activity (Fig. 4.2d). Nevertheless, the 

true receptor templates perform significantly better in approximately 80%-98% of all subjects, 

depending on the modality. The gain in model performance by imaging modality is presented in 

Supplementary Table S8, and generally fell between 15.6% ± 13.3% (p<0.0417) for glucose 

metabolism to 22.3% ± 15.0% (p<0.003) for neural activity. Notably, the modalities for which 

true receptor data was the least informative (metabolism and gray matter atrophy), were also the 

ones for which augmenting the model with receptor data provided the least significant 

improvements across all subjects. Furthermore, we compared the proportion of subjects with 

significant improvements over null maps across diagnoses, shown in Supplementary Fig. S7. On 

average across modalities, 96.2% of healthy subjects’ models were significantly improved, 

wheras this was progressively lower for MCI subjects (89.4% for early MCI and 89.8% for late 

MCI) and AD patients (78.3%). 

We hypothesize that accentuated aging processes and neurodegeneration may alter 

receptor densities or interaction mechanisms in each individual, requiring the biological 
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parameters in our personalized models to compensate. Identifying these specific alterations is the 

subject of the remaining subsections.  

 

Figure 4.2. Receptor density templates and multi-scale receptor-neuroimaging 
interactions significantly improve individual longitudinal neuroimaging models. 

The improvement in neuroimaging modeling was evaluated in terms of i) including direct 
receptor terms and receptor-neuroimaging interactions in the model, and ii) using true receptor 
density maps compared to randomized, spatially permuted maps. The histograms in (a) and (b) 

show the distribution of the coefficient of determination (R2) of N=423 individual models of 
neuroimaging changes including (a) and excluding (b) receptor predictors. Subject-specific 
linear models fit neuroimaging changes reasonably well, with a significant improvement by 
including receptor terms. This is confirmed by the F-test between subject models with and 

without receptor densities and receptor-imaging interactions (113 and 8 parameters, 
respectively). The proportion of subjects for whom the F-statistic is above the critical threshold 

is shown in (c). This critical threshold corresponds to a statistically significant (P<0.05) 
improvement due to the receptor terms in the re-MCM model, accounting for the increase in 

adjustable model parameters. Furthermore, to validate the benefit of the receptor templates over 
randomized null maps, re-MCM models were fit with 1000 spatially-shuffled receptor maps for 
each subject. The p-value of the model fit (R2) using true receptor templates compared to the 
distribution of R2 of models using randomized templates was calculated for each subject. The 
proportion of subjects for whom the true receptor maps resulted in a statistically significant 
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improvement in model fit (P<0.05) is shown in (d).  The results of these two analyses in (c) and 
(d) validate the use of averaged receptor templates in personalized neuroimaging models. 

Characterizing receptor-imaging interaction variability in healthy 

aging and AD 

We aimed to characterize the variability in receptor-mediated brain reorganization in the 

studied healthy aging (N=112) and AD subpopulations (N=25). In the healthy population, we 

performed a principal component analysis (PCA) on all re-MCM biological parameters (678 in 

total) across the 6 neuroimaging modalities, finding that the first principal component (PC1) is 

able to explain 97.3% of the group’s variance. The most variable parameters contributing to PC1 

belonged to CBF and gray matter models (Fig. 4.3a). That is, if current CBF in a region becomes 

less important (relative to other re-MCM predictors) to predicting its future change, gray matter 

density also becomes less important to predicting future atrophy, whereas the current level of 

amyloid becomes more important to predicting future accumulation. These results suggest that, 

in the absence of an influential disease process (e.g. neurodegeneration), inter-individual 

differences in the long-term brain reorganization are mechanistically driven by receptor-mediated 

processes affecting CBF and gray matter density. Most prominently, these include the CBF 

effects due to interactions between the dopaminergic D1 receptor and amyloid distribution 

(2.9%), the adrenergic α1 receptor and gray matter density (2.7%), the GABAA benzodiazepine 

site and neural activity (GABAA/BZ; 2.0%), and the GABAA receptor and gray matter density 

(1.8%). Additionally, the interaction between the glutamatergic AMPA receptor and amyloid 

distribution as a predictor of gray matter atrophy (2.3%) are also notably variable.  

In the AD group (N=25), with the presence of a neurodegenerative condition, the first PC 

of the re-MCM biological parameters only explained 26.2% of the population variability (with 
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subsequent PCs explaining less than 10% each). Along this main axis of variability, inter-

individual differences are primarily due the effects of neural activity as a direct or receptor-

mediated predictor of tau accumulation (Fig. 4.3b; 7.9% of PC1 via the direct term, 7.3% via 

adrenergic α1receptors, 5.7% via serotonergic 5HT1A receptors, 4.0% via dopaminergic D1 

receptors, and 3.7% via cholinergic α4β2 receptors). The next subsection covers a deeper analysis 

of the AD group. 

Interestingly, in the healthy subpopulation, when the individually small contributions of 

all receptor-terms for each target neuroimaging modality were summed (Fig. 4.3c), we observed 

that the receptor mechanisms that affect CBF changes, gray matter atrophy and amyloid 

accumulation were the most variable, with GABAergic and serotonergic mechanisms 

dominating. For example, combined variability due to GABAergic (9.7% of PC1), serotonergic 

(8.7% of PC1) and adrenergic (primarily α1 receptors; 7.3% of PC1) interactions predicting CBF 

changes accounted for approximately a quarter of variability across all 6 neuroimaging 

modalities and 678 total parameters (25.7% of PC1). As seen in Fig. 4.3b, the main sources of 

biological parameter variability in AD (Fig. 4.3d) involved neural activity predictors of tau 

accumulation. Predictors of tau accumulation involving adrenergic (9.9% of PC1), serotonergic 

(9.6%), cholinergic (6.6%) and dopaminergic (4.7%) interactions were the most variable. 
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Figure 4.3. Variability of biological parameters across healthy and AD subjects. 
a-b) PCA-based sources of variability in the 678 re-MCM parameters across healthy 

subjects (N=112) and AD patients (N=25), respectively. The first principal component (PC1) 
captured 97.3% of the variance across parameters in healthy subjects, and 26.2% in AD 

patients. The top 10 biological parameters and their contributions to PC1 are plotted (with their 
target neuroimaging models in the legend), highlighting the receptor-imaging interactions that 
characterize the main axis of variability in each clinical subgroup. In healthy subjects, a multi-

factorial combination of receptor-imaging interactions affecting atrophy and CBF changes were 
the most variable parameters along PC1. Notably, for AD patients, the top parameters were 
direct or receptor-mediated effects of neural activity on various (but especially tau) imaging 

models. c-d) To evaluate the relative importance of receptor- and factor-factor interactions, we 
then aggregated the importance of all direct or interaction terms involving a given predictor 
class (factor or receptor type) along PC1, for healthy subjects (c) and (d) for AD patients, 

respectively. Note that the percentage variation across all parameters is shown. As such, there is 
an overlap in terms between the two heat maps (receptor-factor interaction terms contribute to 

both), and they should be interpreted separately. 
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Receptor-imaging alterations underlying cognitive deterioration in 

AD 

To determine the receptor-neuroimaging alterations underlying multiple cognitive 

variations in AD, we performed a multivariate cross-correlation analysis between the rate of 

changes of the selected cognitive descriptors and the biological parameters across all AD 

subjects (Materials and Methods: Biological parameters and relationship with cognition). 

Notably, we found that just the first component of the identified biological parameters can 

explain up to 39.7% (P<0.004, FWE-corrected) of the inter-individual variability in AD 

cognitive deterioration (Fig. 4.4a). Furthermore, we identified the specific cognitive domains that 

are correlated with receptor-neuroimaging alterations (Fig. 4.4c), with executive dysfunction 

being the most salient cognitive feature with respect to receptor-neuroimaging parameters. 

Finally, Fig. 4.4d presents a detailed pathway of 95 receptor-imaging interactions significantly 

associated with cognitive decline based on feature bootstrapping, and their associated 

neuroimaging modalities mediating AD-related symptom severity. These results show that a 

multi-factorial set of molecular alterations are relevant to cognitive decline in AD. Cumulative 

effects of different neuroimaging interactions and receptor subtypes from the same family are 

summarized in Fig. 4.5, quantified by the total cognitive variance explained by all parameters of 

the relevant category via the significant SVD component. 

Gray matter density (2.1%) and CBF (1.5%) changes as predictors of neural activity 

dysfunction, and CBF (1.3%) and glucose metabolism (1.0%) as predictors of tau distribution 

were the most cognitively-significant pathways between imaging modalities, although tau as a 
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predictor of amyloid distribution (0.7%), neural activity dysfunction (0.7%) and glucose 

metabolism (1.2%) was also significant. Overall, as predictors, biological parameters involving 

CBF, tau and gray matter density were the most significant in relation to the cognitive severity of 

AD. The neuroimaging models of neural activity dysfunction and tau accumulation were the 

major sources of cognitively-significant biological parameters.  

In terms of receptor systems, glutamatergic, GABAergic and cholinergic alterations were 

significant to cognitive decline, as summarized in Supplementary Table S6. Alterations to 

glutamatergic predictors of resting state functional activity (2.5%), GABAergic predictors of 

amyloid deposition (1.4%), and cholinergic predictors of tau distribution (1.4%) were the 

dominant receptor effects.  

Furthermore, while the second component was borderline non-significant (p<0.051), it 

explained 23.4% of the variance between model parameters and cognitive decline (r=0.89, p<10-

8; Supplementary Fig. S10). In this axis, receptor-imaging parameters predicting neural activity 

were less prominent, with CBF and metabolism model parameters contributing more. 

Cognitively, this second component corresponded to non-executive function domains, primarily 

memory, language and visuospatial function. 

As a control case, we performed an equivalent cross-correlation analysis in the healthy 

population, notably finding the first principal component relating re-MCM parameter with rates 

of cognitive decline in health to be non-significant (Supplementary Fig. S3), although the second 

principal component explaining a small amount of cognitive variance was significant (15.5% 

variance explained, p<0.02; Supplementary Fig. S4). Furthermore, we found no significant 

component in amyloid-negative healthy subjects (p>0.2 for all components). We attribute this 
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effect to the lack of consistent cognitive decline in the analyzed healthy population, in contrast to 

the large variability observed for AD.  

To test the sensitivity of our findings to genetic covariates, we repeated our analyses both 

with and without APOE ε4 allele status and a polygenic hazard score (PHS) [595] as covariates 

in the SVD analysis, in addition to age, gender and education in both cases. To overcome the low 

number of AD subjects, we expanded our criteria to include MCI and AD subjects (N=177 for 

APOE status, N=161 for PHS). Importantly, we confirmed that the previously identified AD-

related significant latent variables and parameters are robust to the inclusion of APOE status and 

PHS (Supplementary Fig. S5 and S6). Finally, to further restrict our analysis to subjects on the 

amyloid-mediated AD spectrum, we repeated the SVD analysis in amyloid positive subjects with 

MCI and AD (N=52). As was the case in the initial AD group, we found one significant principal 

component (44.3% variance explained, p<0.003) with a high correlation between model 

parameters and cognitive decline (mainly executive function; r=0.76,p<0.001). The main 

receptor-imaging interactions along this axis were analogous to those in the AD group, namely 

cholinergic predictors of tau accumulation, although parameters of the neural activity model 

were less prominent in favour of predictors of metabolism (particularly for adrenergic and 

cholinergic systems; see Supplementary Fig. S9). 
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Figure 4.4. Significant neurotransmitter receptor-imaging interactions underlying AD 
clinical severity. 

a) The latent cross-correlation components are ranked by the fraction of cognitive 
decline variance explained by re-MCM biological parameters (along with the reported p-values 
based on the permutation analysis; see Biological parameters and relationship with cognition). 

In this case, only a single latent component was significant (39.7% variance explained, p<0.004, 
FWE-corrected). b) A notable correlation (r=0.80; P<10-8) between the projections of 

statistically stable re-MCM parameters and rates of cognitive decline in the principal component 
space was observed, with the removal of an outlier subject more than 3 median absolute 

deviations from the median. c) Saliences of cognitive decline to this first latent component, 
providing a relative ranking of cognitive domains. These saliences are proportional to the 
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contribution of each term relative to every other term, for example showing that executive 
dysfunction is most correlated with alterations to receptor-imaging interactions in AD. d) 

Receptor-imaging pathways that are significantly correlated with cognitive decline, arranged by 
neuroimaging model and receptor type (Supplementary Table S5). The angle of each sector is 
proportional to the contribution of the corresponding parameter to explaining the variance in 
the rates of cognitive decline. The inner sectors represent the 6 neuroimaging modalities that 
together comprise each personalized re-MCM model. Within each modality, the intermediate 
sectors represent the neurotransmitter system involved, while the outer sector consists of the 
specific two-way receptor-neuroimaging interactions or direct predictor terms in the model. 

Notably, while receptors appear only as predictors in the outer sector, neuroimaging modalities 
appear both as predictors and as model outputs in the inner sectors. Thus, the relative 

importance of each neuroimaging modality to explaining cognitive differences is not fully 
represented by the angle of each inner sector. 

 

 

Figure 4.5. Contributions of mechanistic pathways to the severity of cognitive decline in 
AD. 

To better visualize the importance of neuroimaging factors and neurotransmitter receptor 
systems, heatmaps of the cumulative cognitive variance explained by each predictor category in 

each neuroimaging model are shown. These variances are the percentages of total cognitive 
variance that are explained by significant biological parameters of each category via the first 
significant SVD component. As such, the rows of the heatmap on the left replicate the inner 

sector of Fig. 4.4d, while the columns show the importance of each imaging modality or receptor 
family as predictors, with CBF and tau predictors explaining the most variance in cognitive 

decline. 

Clinically similar subjects have different underlying receptor 

alterations 

Finally, for each participant and receptor family, we defined a summary metric 

quantifying how much receptor-based mechanisms differ from clinically healthy subjects (see 

Statistical analysis: Inter-subject mechanistic variability). For example, a given subject’s 
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glutamatergic Mahalanobis distance is a combined measure of the “unhealthiness” of receptor-

based interactions and spatial distributions involving NMDA, AMPA and kainate, while 

accounting for the variation of these mechanisms in healthy subjects. 

Although a simplified summary metric, the receptor Mahalanobis distances explained a 

large proportion of cognitive variance in the AD population, with 71.4% for executive function 

(p<0.0004), 43.3% for memory (p<0.08), 18.7% for language (p<0.66), 40.1% for visuospatial 

function (p<0.10), 43.8% for MMSE (p<0.08) and 33.8% for ADAS11 (p<0.22). Figure 4.6a 

shows the effects of each receptor family on cognitive domains, as well as the percentage 

improvement in explaining cognitive variance due to each receptor family. We note the large 

negative effects of GABAergic alterations on executive function and the MMSE, and 

dopaminergic alterations on memory. Interestingly, cholinergic alterations showed a moderate 

positive effect and explanatory importance towards executive function.  

In Figure 4.6b-c, we illustrate how two AD patients with similar cognitive symptoms 

present distinct receptor alteration fingerprints, with primarily glutamatergic and cholinergic 

mechanisms respectively. Importantly, this result suggests that even subjects with identical 

clinical diagnoses present distinctive underlying spatiotemporal molecular alterations, and 

supports the use of whole-brain generative models to uncover patient-specific receptor and 

potential disease mechanisms to target clinically. 
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Figure 4.6. Receptor alterations underlying inter-individual disease heterogeneity. 
a) In AD patients (N=25), we quantified the relative effect sizes of standardized 

Mahalanobis distances of receptor mechanisms on different cognitive domains. We also 
standardized the regression coefficients within each cognitive domain before visualizing to 

facilitate comparison across cognitive domains, and the percentage improvement in model fit 
(R2) due to each receptor system is also shown. For example, the explanation of inter-subject 

variability in executive function decline by glutamatergic, cholinergic, adrenergic, serotonergic 
and dopaminergic Mahalanobis distances is improved by 120% (i.e. more than doubled) by the 

inclusion of GABAergic Mahalanobis distance as well. b-c) We show two AD subjects, with 
similar symptoms across a variety of cognitive domains. For these subjects, we calculated the 
Mahalanobis distance to the distribution of all healthy subjects (N=112), along mechanisms 
involving each receptor family. The subjects show distinct receptor alterations based on their 

longitudinal neuroimaging changes, despite their shared designation as AD patients and similar 
cognitive profiles.   
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Discussion 

In this work, we have presented a personalized, whole-brain and generative multi-modal 

neuroimaging model incorporating receptor-neuroimaging interactions using in-vivo data. 

Subsequent analyses on the resulting models have allowed, for the first time, the identification of 

i) variability in receptor-neuroimaging interactions in healthy subjects and AD patients, and ii) 

specific pathways of receptor-neuroimaging interactions that are important to cognitive decline 

in AD patients. This exploratory analysis provides a bridge between molecular-level mechanisms 

and observable macroscopic neuroimaging biomarkers of healthy aging and AD, revealing which 

neurotransmitter receptor systems mediate dysfunctional interactions between neurobiological 

processes such as cerebral blood flow, amyloid and tau deposition, gray matter atrophy, neural 

activity and metabolism. 

Due to the difficulty of comprehensive, personalized in vivo receptor imaging for a large 

cohort, receptor maps were not specific to each subject, but instead the averaged templates of 4 

post-mortem brain samples. Post-mortem in vitro autoradiography allowed the imaging of a large 

number of receptor types, even those without in vivo radioligands. Firstly, our work demonstrates 

that i) multi-scale interaction terms involving the spatial distributions of neurotransmitter 

receptors are highly informative to models of neuroimaging progression, and ii) even group-

averaged receptor map templates can significantly improve the personalized model fit in nearly 

all subjects when combined with personalized neuroimaging predictors. Specifically, 

incorporating receptor maps and multi-scale receptor-imaging interactions to personalized 

models with multi-modal neuroimaging predictors improves the average data variance explained 

from approximately 40% to 70% (Fig. 4.2a, b). This improvement is statistically significant (F-

test with P<0.05) in almost all subjects (Fig. 4.2c), even after accounting for the additional 
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predictive power of the larger, multi-scale models. Including only receptor maps without 

receptor-imaging interactions also resulted in a more modest yet significant improvement in the 

vast majority of subjects across all imaging modalities (Supplementary Fig. S2). This is a 

particularly strong result, validating the use of a group-averaged receptor template, given the 

large improvement and the stringent criterion accounting for additional model parameters.  

Additionally, models using the true receptor templates perform significantly better 

(P<0.05 of 𝑅') than models using randomly permuted, null receptor maps in almost all subjects 

(Fig. 4.2d; 80.4%-98.1%, depending on the modality), although this improvement was less 

evident with disease progression (Supplementary Fig. S7). These results, along with the 

consistency of regional receptor densities across the 4 (aged but healthy) brains used to produce 

the templates compared to inter-region variability [253], support the applicability of receptor 

templates to a wider population. Receptor mapping studies across more diverse clinical groups of 

patients would help validate or augment our modeling approach. Nevertheless, given the 

difficulty of acquiring a wide variety of in-vivo molecular data, due to a limited number of 

appropriate radioligands, and the high cost of longitudinal molecular imaging, these results on 

model accuracy are a promising validation for the combination of other molecular templates 

(such as gene expression atlases) with personalized neuroimaging predictors. These “pseudo-

personalized” molecular-imaging predictors can then be incorporated into neuroimaging models 

and used to infer mechanistic alterations in a group of subjects. If these personalized models are 

sufficiently accurate, as in this work, the weights of their biological parameters then serve as 

proxies for individual-specific alterations to receptor-mediated mechanisms.  

While interpreting these parameters, it is important to distinguish between the types of 

biological mechanisms they represent, which include (for each neuroimaging model) i) direct 
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neuroimaging effects, ii) direct receptor density effects, iii) receptor-imaging interactions, iv) 

network propagation and v) offset terms representing an intrinsic rate of change for the 

neuroimaging modality. We hypothesize that ageing and neurodegeneration alter the spatial 

distributions of and functional interactions involving neurotransmitter receptors, which would 

lead to subject-specific model parameters to compensate in the absence of inter-subject 

variability in receptor data. Thus, model parameters are a proxy for alterations to spatial maps of 

receptors or their interactions with neurobiological processes (represented by direct model 

receptor density terms and receptor-imaging interaction terms in the model, respectively). In our 

parameter analyses in Receptor-imaging alterations underlying cognitive deterioration in AD, 

direct receptor density terms represent alterations to the spatial distribution of a particular 

receptor. Each interaction biological parameter value can be interpreted as the effect of the 

corresponding receptor or imaging factor on the brain reorganization process, as measured by 

neuroimaging changes, given “normal” (i.e. spatial mean) values of all related predictors 

involving the same receptor or imaging term, respectively. For example, we consider the case 

where the interaction term between a glutamatergic receptor and amyloid in the CBF model is 

significantly related to cognitive decline. This implies that, under normal levels of amyloid and 

the glutamatergic receptor individually, a functional alteration in this mechanism (quantified by 

the re-MCM parameter weight) is correlated with faster cognitive deterioration. 

Biological parameters were evaluated for principal axes of variability in Fig. 4.3 and the 

cognitively relevant variability in Fig. 4.4. The former method was used to identify linear 

combinations of biological parameters that accounted for inter-individual differences in receptor 

and/or neuroimaging interaction strengths in healthy and AD subjects. On the other hand, the 

goal of the latter analysis was to identify biological parameters that were robustly correlated with 
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multivariate measures of cognitive decline in AD. The purpose of these analyses was not to 

compare effects sizes between predictors, but rather to explore inter-subject differences in 

receptor-imaging interactions in relation to cognitive decline. For example, if regional amyloid 

accumulation strongly predicts changes in functional activity, but this biological parameter is 

consistent across subjects with different clinical and cognitive states, it would not be significant 

to our analysis. Rather than using clinical diagnosis, which is subject to large variability due to 

patient presentation and clinician bias, we used a combination of cognitive test scores. 

Ultimately, cognitive performance is the phenotype of interest in neurodegeneration. Our SVD 

analysis allows us to identify parameters associated with cognitive scores, rather than simply 

those with a large variability between individuals due to other causes. 

Sources of variability in healthy and AD subjects (Fig. 4.3) reflect alterations to 

mechanisms of receptor-imaging interaction that predict the same or another imaging modality. 

Here, we observed that a single PCA component explains 97.3% of the inter-individual 

variability in healthy subjects. Along this axis, a multi-faceted combination of receptor-imaging 

interaction predictors of CBF alterations (e.g. the interaction between dopaminergic D1 receptors 

and amyloid) and gray matter atrophy (e.g. the interaction between glutamatergic AMPA 

receptors and amyloid) account for the majority of variability (Fig. 4.3a, c). Interestingly, there is 

relatively low variability in the biological parameters of receptor influence on neural activity, 

glucose metabolism and tau distribution in healthy individuals (Fig. 4.3c). In healthy subjects, 

the receptor-imaging mechanisms affecting these factors are comparatively consistent, whereas 

the mechanisms behind atrophy, CBF regulation and amyloid accumulation display more inter-

subject heterogeneity. 
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In contrast, the first principal component of AD subjects’ biological parameters explained 

only 26.2% of the total variance, but this was dominated by neural activity as a (receptor-

modulated) predictor of tau accumulation (as well as other neuroimaging modalities; Fig. 

4.3b,d). Receptor mechanism variability was largely explained by adrenergic and serotonergic 

predictors, for example the interactions of α1 and 5HT1A receptors with neural activity to predict 

tau accumulation. As tau is primarily present in axonal microtubules, the exacerbation of tau 

pathology has been linked to enhanced neural activity [596]. Conversely, tau is also believed to 

suppress and silence neural activity [570]. Thus, the principal component of variability in AD 

subjects may represent variability in an activity-dependent tau accumulation via adrenergic α1, 

serotonergic 5HT1A, dopaminergic D1, and cholinergic α4β2 receptors. This would be consistent 

with the observed mediation of tau hyperphosphorylation by adrenergic and serotonergic 

receptors in animal models [159] [597]. 

From the inner sectors of Fig. 4.4d, inter-individual differences in cognitive decline are 

most correlated with biological parameters of the neural activity, tau and amyloid models, and 

least correlated with biological parameters of the CBF, gray matter density and glucose 

metabolism models. In other words, differences in receptor-imaging interactions affecting CBF 

changes are less relevant to cognitive symptom severity in AD than those affecting resting state 

functional activity. While neural activity is not a cognitively important predictor of other 

neuroimaging modalities, many predictors of neural activity dysfunction are correlated with 

cognitive severity in AD (Fig. 4.5). Conversely, predictors of CBF do not vary significantly with 

cognition, whereas CBF itself is an important predictor of many other neuroimaging modalities. 

This may imply a causal ordering, with CBF alterations preceding dysfunctional activity. 
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The glutamatergic system is implicated in cognitive decline via its role as the major 

excitatory mediator of neural activity [598] [599] [600]. In AD, the glutamatergic system is 

involved in excitotoxicity due to calcium ion influx via NMDA receptors [598], resulting in 

synaptic loss and neuronal cell death [599]. Tau and amyloid are involved via an overactivation 

of NMDA receptors [124]. The synaptic activation of NMDA receptors is linked to specific 

neurophysiological conditions, particularly activity-dependent synaptic plasticity, as well as 

behavioural symptoms of multiple brain disorders including AD [601]. In addition, AMPA 

receptors are involved in synaptic scaling, and consequently learning and memory. Reductions in 

AMPA receptor levels have been observed in mouse models of AD [602], as well as in the 

entorhinal cortices [603] of AD patients, with a differential preservation of certain subunits in the 

hippocampus [604], and AMPA receptor endocytosis has been linked to the phosphorylated tau 

signaling cascade [605]. Thus, the established AD-related alterations and cognitive roles of the 

glutamatergic NMDA and AMPA receptors would be consistent with their significant modulation 

of resting state functional activity in relation to cognitive decline in AD via interactions with 

CBF, glucose metabolism and tau. 

From the columns of Fig. 4.5, CBF changes are the largest neuroimaging driver of 

cognitively relevant dysfunction in other modalities, consistent with its precedence among AD 

imaging biomarkers [86]. Closely coupled to neural activity, CBF is mediated by several 

neuronal factors, including vasodilatory neurotransmitters, and vascular dysregulation is 

implicated in the pathogenesis of AD [606]. CBF interactions with a multitude of receptors were 

correlated to cognitive severity via amyloid, neural activity, gray matter density and tau models. 

This is consistent with the amyloid-dependent relationship of CBF to memory performance 

[607], and the link to tau pathology via gene expression alterations in AD [608].  



   188 

Furthermore, inter-individual differences in the effects of tau on other imaging modalities 

are also major contributors to AD-associated cognitive decline, as seen in Fig. 4.5. These include 

glutamatergic interactions affecting neural activity and amyloid accumulation, and a 

multifactorial set of receptor interactions affecting metabolism. Cognitive decline in AD is 

accompanied by changes in the role of regional tau concentration as a predictor of amyloid 

distribution, suggesting synergistic or mediation effects such as the tau axis hypothesis [609]. 

Tau is believed to mediate amyloid toxicity [609], which may explain the significant role of tau 

as a predictor of amyloid accumulation (Fig. 4.5). Multimodal PET imaging has shown a region-

dependent relationship between tau burden and hypometabolism in AD [610]. Furthermore, 

alterations to glucose metabolism in mice brains were found to lead to abnormal tau 

hyperphosphorylation [611]. Along with the established neural activity dysfunction due to tau 

accumulation [612], these mechanisms are consistent with the cognitively significant role of tau 

as a predictor of other neuroimaging modalities.  

Along with NMDA, acetylcholine is the neurotransmitter system most associated with 

Alzheimer’s disease and its clinical treatment [613]. Based on the cholinergic hypothesis, 

dysfunction in acetylcholine-producing basal forebrain regions would eventually lead to synaptic 

deafferentation in the cortical regions to which they project [614], with cognitive implications 

[615]. This is consistent with the significant role of cholinergic predictors of tau distribution, 

which appear to be more correlated with cognitive severity of AD than amyloid distribution (Fig. 

4.5).  

Although GABAergic receptors were not initially linked to AD, recent evidence has 

uncovered disease-related alterations, contributions to pathogenesis, and a potential therapeutic 

role in AD [152]. The disruption of the excitatory/inhibitory balance maintained by GABAergic 
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signaling has been implicated in the cognitive symptoms of AD, such as an increase in epileptic 

seizures [616]. Electrophysiological activity has found a functional remodeling of GABAergic 

neurons in AD, showing reduced currents and a faster rate of desensitization [617]. The presence 

of amyloid was also found to affect the expression of the α6 subunit of the GABAA receptor 

[152]. Furthermore, a role for tau has been proposed in the regulation of GABAergic function 

and synaptic plasticity to maintain normal cognition [616]. Additionally, it has recently been 

found that the administration of benzodiazepine in mouse brains leads to tau 

hyperphosphorylation [618]. Such drugs potentiate GABAergic neurotransmission by binding to 

the benzodiazepine binding site of GABAA receptors. As such, this may indicate a mechanistic 

pathway for the induction of tau pathology involving GABAergic receptors, based on the tau and 

gray matter sectors of Fig. 4.4d. From Fig. 4.4d, the GABAA-associated benzodiazepine site is 

particularly involved in cognitively significant interactions affecting amyloid accumulation. 

GABAA and GABAB receptors play a notable cognitive role by affecting neural activity 

dysfunction, and all three GABAergic targets included in this work are involved via tau 

accumulation.  

Finally, we introduced a summary metric of alterations to receptor-mediated interactions 

with reference to their normal variation in healthy ageing. Particularly, we found that 

GABAergic alterations had the largest effect on cognitive impairment in AD patients, 

significantly affecting executive function and the MMSE (Fig. 4.6a). Furthermore, we showed 

that subjects with identical clinical diagnosis and similar cognitive symptoms can have distinct 

underlying dynamics and receptor alteration fingerprints (Fig. 4.6b-c). These results highlight the 

clinical utility of our dynamical modeling approach. By fusing in vitro receptor templates with 

longitudinal neuroimaging data and modeling the underlying dynamics of receptor-mediated 
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neurobiological interactions, we are able to infer subject-specific mechanistic alterations despite 

the lack of subject-specific receptor data. As a demonstrative example, we summarized subject-

specific alterations at the scale of receptor families. However, in a clinical context, subject-

specific alterations at the broad scale of receptor families, the finer scale of specific receptors, or 

even specific receptor-neurobiological interactions (e.g. NMDA × CBF interactions) can be used 

to design personalized, precision treatments, which will be a topic of future work. 

The whole-brain re-MCM models used cytoarchitectonically identified cortical regions of 

interest, neglecting sub-cortical structures for which no receptor distribution data was available. 

Many neurotransmitter alterations relevant to neurodegeneration occur in these regions, notably 

dopamine deficiencies in the basal ganglia in Parkinson’s disease and early cholinergic neuronal 

death in AD. As such, including sub-cortical regions may better characterize important molecular 

pathways. Nevertheless, some effects of these phenomena are captured via projections to cortical 

neurons that are covered by our regions of interest. Additionally, future work will aim to 

integrate CSF into the model.  

In this work, we used fractional amplitude of low-frequency fluctuation (fALFF) [578] as 

the regional measure of functional integrity. Low frequency (0.01-0.08 Hz) oscillations in the 

blood oxygenation level-dependent (BOLD) signal reflect the intensity of spontaneous activity in 

the resting brain, primarily in the default mode network [578]. When the amplitude of low 

frequency fluctuations (ALFF) is normalized by the overall power spectrum of the BOLD signal 

to calculate fALFF, the effects of physiological noise are suppressed [578]. However, compared 

to ALFF, fALFF significantly amplifies the signal from some non-default mode network regions 

(namely temporal-parietal regions and the precentral gyrus) [578], reducing its desired specificity 

to resting state activity. Nevertheless, fALFF shows high temporal stability over the course of 
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fMRI scans [619], long-term (i.e. about 6 month) test-retest reliability [620], and high sensitivity 

to AD progression [577] [219]. Alternative fMRI-based metrics include regional homogeneity 

(ReHo) [621] or graph theoretic metrics such as functional connectivity degree [622]. Comparing 

fALFF, ReHo, and graph-based metrics using simultaneous resting state fMRI/PET scans, Aiello 

et al. found functional connectivity degree to be the least correlated to glucose uptake, while the 

difference in correlation to glucose uptake between fALFF and ReHo was not significant [576]. 

Furthermore, as an intentional consideration to maintain model interpretability, our modeling 

framework avoids graph theoretic fMRI metrics in order to separate local, intra-region effects 

from inter-region effects due to network propagation. Although graph theoretic features can have 

biophysical interpretation, such as weighted degree representing transneural propagation or 

regional participation coefficients reflecting metabolic demands, they integrate information from 

multiple regions, which causes a leakage of network information into the intra-regional 

component of our model. Thus, as fALFF is a local fMRI measure that has been found to be at 

least as informative as ReHo in reflecting metabolic activity and validated as a measure sensitive 

to AD progression by multiple studies [577] [219], all the analyses and results presented in this 

study correspond to fALFF as the measure of resting state functional integrity. It is, however, 

important to note that all available fMRI metrics have limitations in reflecting actual neuronal 

activity or integrity. Here, our choice of metric is aligned with the “neurocentric” resting-state 

fMRI model [623], which assumes that the spontaneous fluctuations in BOLD signal reflect 

ongoing neuronal processes. Multiple limitations to this model have been pointed out, including 

the lack of clear neurophysiological interpretability [623], suggesting that interpretations of 

resting state fMRI-based findings (including ours) should be taken with caution. 
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In addition to intra-region effects, our model considered network propagation along the 

tractography-derived white matter structural connectome. However, functional, metabolic [624] 

and vascular connectivity define complementary biophysical networks that may also contribute 

to the propagation of neurodegenerative pathology. For simplicity and to focus on local, receptor-

mediated interactions, we restricted our model to structural connectivity. The structural 

connectome is the physical substrate for the axonal propagation of pathology, and the scaffolding 

for the more abstract functional network. However, to estimate the effect of our choice of 

connectivity, we repeated our model fitting with functional connectivity, finding no significant 

change in model fit (Multi-scale interactions involving neurotransmitter receptors are important 

to explaining multifactorial brain reorganization and Supplementary Fig. S8). We attribute this 

to (i) the dominance of intra-regional effects in our model, with a relatively low contribution due 

to propagation effects and (ii) the shared information between anatomical and functional 

connectivity [594]. While this work has focused on local interactions between biological 

processes, dynamical interactions also occur at a network level. For example, structural 

connectivity [625] and the vascular network [626] are two of the factors that shape functional 

connectivity, and modeling the dynamic interactions between these networks may be a potential 

direction for future work. 

The dynamical system modeling approach in this work relies on longitudinal and multi-

modal neuroimaging data in order to fit personalized models. Consequently, our results would 

benefit from larger cohorts with more longitudinal samples of multi-modal data. Additionally, 

receptor map templates of patients at different stages of aging and disease progression would 

improve the characterization of salient alterations. While we have attempted to uncover causal 

molecular-macroscopic mechanisms, due to the lack of personalized, longitudinal receptor maps, 
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some identified biological model parameters may in fact reflect a molecular alteration (i.e. a 

change in either spatial distribution or functional alteration of a receptor) in response to a change 

in a macroscopic biological variable. As such, the exploratory interpretation of our results in 

relation to cognitive decline in AD should account for both possible causal directions between a 

given biological parameter and its target modality. For example, α1 receptors interacting with tau 

to predict functional activity represents a 3-way interaction, which may in fact reflect a causal 

direction from functional activity to adrenergic alteration. Furthermore, we have assumed a 

direct relationship between each imaging modality and an underlying neurobiological process. 

For instance, CBF in our model was derived from ASL MRI, the temporal resolution of which is 

limited by the relaxation time of blood. However, recent work on venous blood flow using 

BOLD perfusion lag-mapping has shown significant age-related changes outside the temporal 

resolution of ASL MRI [627]. As new or improved imaging biomarkers are developed for AD, 

their future inclusion in the re-MCM framework would improve the coverage of potential 

disease-related mechanisms. 

Nevertheless, these results offer interpretable results via molecular targets and 

mechanisms of action. We find that receptor distributions mediate interactions between 

macroscopic biological factors that significantly affect cognitive decline in AD. Specifically, 

inter-individual differences in cognitive deterioration correlate with the modulation of neural 

activity dysfunction primarily by glutamatergic receptors, amyloid accumulation by GABAergic 

receptors, and tau buildup by glutamatergic, GABAergic and cholinergic receptors. Traditionally, 

the accumulation of misfolded proteins, namely amyloid and tau, has been implicated in the 

pathogenesis of AD. However, our results suggest a multi-factorial, and heterogeneous set of 
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mechanisms involved in disease.  Furthermore, our personalized, data-driven approach allows us 

to account for inter-subject heterogeneity in biological pathology and clinical presentation.  

A growing body of evidence supports the critical role of neurotransmitter receptors in AD 

symptoms severity and their subsequent potential as therapeutic targets [628] [629]. 

Neurotransmitter-based drugs such as the acetylcholinesterase inhibitor donepezil and the 

NMDA antagonist memantine have long been proposed as potential treatments for AD patients. 

However, these drugs have shown limited efficacy and adverse side effects [32] [124]. We 

propose that using personalized and multi-scale modeling can identify patient-specific alterations 

and therapeutic needs, by stratifying patients based on the biological parameter weights 

corresponding to the underlying, cognitively significant mechanisms (Figs. 4.1c and 4.6). This 

information can then be used to design individually tailored multi-factorial therapies to slow the 

process of cognitive decline in both diseased and normally-ageing individuals. 
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Supplementary material 

Category All re-MCM subjects 
Healthy 
Aging AD 

Total subjects 423 112 25 
Female 194 (45.9%) 56 (50.0%) 9 (36.0%) 
Mean age (years) 71.8 (±7.0) 73.8 (±6.0) 72.0 (±5.5) 
Mean education (years) 16.4 (±2.7) 16.5 (±2.8) 16.4 (±2.8) 
APOE4 positive 175 (41.4%) 35 (31.2%) 8 (32.0%) 

Supplementary Table 4.1. Summary of demographic data for ADNI subjects. 
Summary of demographic data for subjects included in 3 analysis: i) all re-MCM models, 

ii) healthy subjects that did not progress to MCI or AD, and iii) subjects that developed AD. 

 

Category 
All re-MCM 
subjects 

Healthy 
Ageing AD 

CBF 195 (46.1%) 39 (34.8%) 16 (64.0%) 
Amyloid 422 (99.8%) 112 (100.0%) 25 

(100.0%) 
Neural 
Activity 

127 (30.0%) 32 (28.6%) 6 (24.0%) 

Metabolism 418 (98.8%) 109 (97.3%) 24 (96.0%) 
Gray Matter 423 (100.0%) 112 (100.0%) 25 

(100.0%) 
Tau 238 (56.3%) 82 (73.2%) 14 (56.0%) 

Supplementary Table 4.2. Proportion of subjects with multi-modal neuroimaging data by 
clinical subgroup. 
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Neurotransmitter Receptor Ligand Type 
Glutamate AMPA [PH]-AMPA Agonist 

NMDA [PH]-MK-801 Antagonist 
Kainate [PH]-Kainate Agonist 

GABA GABAA [PH]-Muscimol Agonist 
GABAB [PH]-CGP 54626 Antagonist 
GABAA-associated 
benzodiazepine binding site 
(GABAA/BZ) 

[PH]-Flumazenil Antagonist 

Acetylcholine M1 [PH]-Pirenzepine Antagonist 
M2 [PH]-Oxotremorine-M Agonist 
M3 [PH]-4-DAMP Antagonist 
Nicotinic α4β2  [PH]-Epibatidine Agonist 

Noradrenaline α1 [PH]-Prazosin Antagonist 
α2 [PH]-RX 821002 Antagonist 

Serotonin 5-HT1A [PH]-8-OH-DPAT Agonist 
5-HT2 [PH]-Ketanserin Antagonist 

Dopamine D1 [PH]-SCH 23390 Antagonist 
Supplementary Table 4.3. Autoradiography ligands and receptor targets. 
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Lobe Anatomical subdivision Jülich area Region name  
Occipital lobe Visual cortex hOc1 Brodmann’s area 17 / 

V1 
hOc2 Brodmann’s area 18 / 

V2 
hOc4d V4 
hOc3d V3d 
hOc3v V3v 
hOc4v V4 

Extrastriate cortex FG1 Part of Brodmann 
area 19 

FG2 Part of Brodmann 
area 19 

Parietal lobe Somatosensory cortex 1 Brodmann’s area 1 
2 Brodmann’s area 2 
3a Brodmann’s area 3a 
3b Brodmann’s area 3b 

Superior parietal lobule 5L Brodmann’s area 5L 
5M Brodmann’s area 5M 
7A Brodmann’s area 7A 

Inferior parietal lobule PGa Anterior inferior 
parietal area  

PGp Posterior inferior 
parietal area  

PFt Temporal inferior 
parietal area 

PFm Medial inferior  
parietal area  

Temporal lobe Auditory cortex Te1 Temporal area 1 (part 
ofBrodmann’s area 
41) 

Te2 Temporal area 2 (part 
of Brodmann’s area 
41) 

Hippocampus CA+dentate Cornu ammonis + 
fascia dentata 

Entorhinal cortex Ent Brodmann’s area 28 
 20 Brodmann’s area 20 

 21 Brodmann’s area 21 
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 22 Brodmann’s area 22 
 36 Brodmann’s area 36 
 37 Brodmann’s area 37 
 38 Brodmann’s area 38 

Frontal lobe Agranular premotor cortex 6 Brodmann’s area 6 
Primary motor cortex 4p Brodmann’s area 4p 
Broca’s region 44  

45  
Frontopolar cortex Fp1 Frontopolar area (part 

of Brodmann area 10) 
Fp2 Frontopolar area (part 

of Brodmann area 10) 
Orbitofrontal cortex Fo1 Orbitofrontal area 

(part of Brodmann 
area 11) 

Lateral prefrontal 46 Brodmann’s area 46 
 47 Brodmann’s area 47 

 8 Brodmann’s area 8 
 9 Brodmann’s area 9 

Cingulate regions 
(multiple lobes) 

Anterior cingulate p24ab Pregenual cingulate 
areas p24a & p24b 

p32 Pregenual cingulate 
area p32 

Posterior cingulate 23 Brodmann’s area 23 
31 Brodmann’s area 31 

Supplementary Table 4.4. Jülich histological atlas regions. Note that regions are defined 
by cytoarchitecture, and thus do not correspond perfectly with functional regions. 
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Neuroimaging 

Modality Model Parameter Receptor Type 

Explained 

Variance 

CBF 

 NMDA × CBF 

 

Glutamatergic 0.22% 

 M2 × CBF 

 

Cholinergic 0.30% 

 M2 × Amyloid 

 

Cholinergic 0.17% 

M1 

 

Cholinergic 0.30% 

 α1 × Gray Matter Adrenergic 0.11% 

 D1 × Amyloid 

 

Dopaminergic 0.22% 

Amyloid 

 Kainate × CBF 

 

Glutamatergic 0.10% 

 AMPA × Tau 

 

Glutamatergic 0.15% 

 NMDA × Tau 

 

Glutamatergic 0.18% 

 Kainate × Tau 

 

Glutamatergic 0.10% 
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 AMPA 

 

Glutamatergic 0.13% 

 GABAA/BZ × CBF 

 

GABAergic 0.33% 

 GABAA/BZ × Neural 

Activity 

 

GABAergic 0.26% 

 GABAA/BZ × 

Metabolism 

 

GABAergic 0.26% 

 GABAA/BZ × Tau 

 

GABAergic 0.22% 

 GABAB 

 

GABAergic 0.29% 

 α4β2 

 

Cholinergic 0.29% 

 α2 × Amyloid  Adrenergic 0.19% 

 α2 × Tau  Adrenergic 0.11% 

 α2  Adrenergic 0.31% 

 5HT2 × CBF 

 

Serotonergic 0.34% 

 5HT1A 

 

Serotonergic 0.13% 

 D1 × Metabolism 

 

Dopaminergic 0.15% 
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 Neural Activity  Non-Receptor 0.04% 

 spreading  Non-Receptor 0.14% 

Neural Activity 

 AMPA × CBF 

 

Glutamatergic 0.24% 

 Kainate × CBF 

 

Glutamatergic 0.15% 

 AMPA × Amyloid 

 

Glutamatergic 0.16% 

 AMPA × Neural Activity 

 

Glutamatergic 0.14% 

 AMPA × Metabolism 

 

Glutamatergic 0.36% 

 NMDA × Metabolism 

 

Glutamatergic 0.15% 

 AMPA × Gray Matter 

 

Glutamatergic 0.42% 

 AMPA × Tau 

 

Glutamatergic 0.29% 

 NMDA × Tau 

 

Glutamatergic 0.30% 

 Kainate × Tau 

 

Glutamatergic 0.13% 
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 NMDA 

 

Glutamatergic 0.15% 

 GABAA × CBF 

 

GABAergic 0.27% 

 GABAB × CBF 

 

GABAergic 0.35% 

 GABAA × Gray Matter 

 

GABAergic 0.23% 

 GABAB 

 

GABAergic 0.27% 

 M1 × CBF 

 

Cholinergic 0.11% 

 M2 × CBF 

 

Cholinergic 0.17% 

 M2 × Amyloid 

 

Cholinergic 0.16% 

 M3 × Neural Activity 

 

Cholinergic 0.20% 

 M1 × Gray Matter 

 

Cholinergic 0.14% 

 M2 × Gray Matter 

 

Cholinergic 0.23% 
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 M1 

 

Cholinergic 0.12% 

 M3 

 

Cholinergic 0.23% 

 α2 × CBF  Adrenergic 0.26% 

 α2 × Amyloid  Adrenergic 0.32% 

 α2 × Gray Matter  Adrenergic 0.15% 

 5HT2 × Gray Matter 

 

Serotonergic 0.42% 

 D1 × Amyloid 

 

Dopaminergic 0.29% 

 D1 × Gray Matter 

 

Dopaminergic 0.49% 

 D1 

 

Dopaminergic 0.31% 

Metabolism 

 Kainate × Metabolism 

 

Glutamatergic 0.11% 

 Kainate × Tau 

 

Glutamatergic 0.18% 

 Kainate 

 

Glutamatergic 0.14% 

 GABAA × Tau 

 

GABAergic 0.20% 
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 GABAA/BZ × Tau 

 

GABAergic 0.22% 

 α4β2 × CBF 

 

Cholinergic 0.11% 

 M2 × Tau 

 

Cholinergic 0.16% 

 α4β2 × Tau 

 

Cholinergic 0.11% 

 α2 × Gray Matter  Adrenergic 0.11% 

 α1 × Tau  Adrenergic 0.14% 

 5HT1A × Tau Serotonergic 0.14% 

 D1 × Neural Activity 

 

Dopaminergic 0.17% 

 spreading  Non-Receptor 0.16% 

Gray Matter 

 NMDA × Gray Matter 

 

Glutamatergic 0.07% 

 GABAA/BZ × CBF 

 

GABAergic 0.28% 

 M3 × CBF 

 

Cholinergic 0.21% 

 M2 × Gray Matter 

 

Cholinergic 0.10% 

 α2 × Metabolism  Adrenergic 0.07% 
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 5HT2 × CBF 

 

Serotonergic 0.18% 

Tau 

 NMDA × CBF 

 

Glutamatergic 0.16% 

 Kainate × Amyloid 

 

Glutamatergic 0.10% 

 Kainate × Metabolism 

 

Glutamatergic 0.36% 

 GABAA/BZ × CBF 

 

GABAergic 0.29% 

 GABAA 

 

GABAergic 0.12% 

 GABAB 

 

GABAergic 0.27% 

 M3 × CBF 

 

Cholinergic 0.33% 

 α4β2 × Amyloid 

 

Cholinergic 0.17% 

 M2 × Neural Activity 

 

Cholinergic 0.10% 

 α4β2 × Metabolism 

 

Cholinergic 0.18% 
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 α4β2 × Tau 

 

Cholinergic 0.25% 

 α4β2 

 

Cholinergic 0.36% 

 α1 × CBF  Adrenergic 0.12% 

 α1 × Metabolism  Adrenergic 0.11% 

 α2 × Metabolism  Adrenergic 0.24% 

 α2 × Gray Matter  Adrenergic 0.10% 

 5HT2 × CBF 

 

Serotonergic 0.40% 

 5HT1A × Amyloid 

 

Serotonergic 0.15% 

 5HT1A × Tau 

 

Serotonergic 0.20% 

 Metabolism  Non-Receptor 0.08% 

 Gray Matter  Non-Receptor 0.25% 

Supplementary Table 4.5. Biological parameters most correlated with cognitive decline 
in AD, and the percentage of cognitive decline variance explained. 
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Receptor Type 
Total Variance 
Explained 

Glutamatergic 4.47% 
GABAergic 3.85% 
Cholinergic 4.46% 
Adrenergic 2.34% 
Serotonergic 1.96% 
Dopaminergic 1.63% 

Supplementary Table 4.6. Total cognitive variance explained by receptor type in AD 
patients (via the significant SVD component). 

 

Imaging Modality Average Gain in R2 P-value 
CBF 125% ± 123% P<0.001 
Amyloid 119% ± 141% P<0.001 
Neural Activity 123% ± 150% P<0.001 
Metabolism 133% ± 200% P<0.001 
Gray Matter 234% ± 389% P<0.001 
Tau 141% ± 142% P<0.001 

Supplementary Table 4.7. Performance gain due to the inclusion of receptor maps, and 
the p-value from a two-sample t-test for each modality. 

 

Imaging Modality Average Gain in R2 P-value 
CBF 19.5% ± 13.7% P<0.01 
Amyloid 20.5% ±15.3% P<0.01 
Neural Activity 22.3% ± 15.0% P<0.01 
Metabolism 15.6% ± 13.3% P<0.04 
Gray Matter 20.2% ± 18.4% P<0.03 
Tau 21.5% ± 13.0% P<0.01 

Supplementary Table 4.8. Performance gain due to true receptor distributions over null 
maps, and p-value of the true receptor data model belonging to the null distribution. 
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Supplementary Figure 4.1. Modeling and analysis pipeline. 
First, multi-modal neuroimaging data, neurotransmitter receptor maps and 

tractography-derived connectivity matrices are used to fit personalized neuroimaging models. 
PCA was used to identify biological parameters contributing to inter-individual variability in 

healthy and AD subgroups. Subsequently, model parameters were compared to the subject-wise 
variation of cognitive decline in the AD subgroup using singular value decomposition. SVD 

allows the ranking of parameters based on the variance explained, allowing the identification of 
prominent alterations. 
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Supplementary Figure 4.2. Receptor maps improve neuroimaging model accuracy.  

In all (N=423) subjects, we fit personalized neuroimaging models using receptor maps 
and neuroimaging data, but excluding receptor-neuroimaging interactions. a) The distribution of 
R2 shows a moderate improvement over the restricted model with no receptor data (Fig. 2b). b) 
The majority of subjects showed a significant (P<0.05) improvement in R2, based on an F-test 
between the restricted, interaction-free model (with receptor maps) and the neuroimaging-only 

model of Fig. 2b. 
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Supplementary Figure 4.3. Secondary significant component links biological parameters 
to cognitive decline in healthy ageing. 

We performed singular value decomposition linking biological parameters to rates of 
cognitive decline in N=112 healthy subjects. The latent components are ranked by the fraction of 
cognitive decline variance explained, and p-value based on the permutation analysis outlined in 
Biological parameter cognitive significance analysis. A minor SVD component linking re-MCM 

parameters to rates of cognitive decline was significant (p<0.02 for the second component). 
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Supplementary Figure 4.4 Significant neurotransmitter receptor-imaging interactions 
underlying cognitive decline in healthy aging. 

Receptor-imaging interactions significantly correlated, via the second principal 
component, to cognitive decline in healthy aging are shown (PC2; 15.5% variance explained, 

p<0.02; N=112). 
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Supplementary Figure 4.5. Effect of APOE4 status on significant neurotransmitter 
receptor-imaging interactions underlying cognitive decline in MCI and AD subjects (N=177). 

a) Cognitive decline variance explained by significant receptor-imaging interactions 
identified after covariate adjustment of subjects’ model parameters by APOE ε4 allele status, for 
the first principal component (40.2% variance explained, p<0.001). b) Significant interactions 

identified without covariate adjustment by APOE status in the same subgroup, for the first 
principal component (41.9% variance explained, p<0.001).   
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Supplementary Figure 4.6. Effect of polygenic hazard score (PHS) on significant 
neurotransmitter receptor-imaging interactions underlying cognitive decline in MCI and AD 

subjects (N=161). 
a) Cognitive decline variance explained by receptor-imaging interactions identified after 

covariate adjustment of subjects’ model parameters by polygenic hazard scores, for the first 
principal component (40.6% variance explained, p<0.001). b) Significant interactions identified 

without covariate adjustment by polygenic hazard score in the same subgroup, for the first 
principal component (42.2% variance explained, p<0.001).   
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Supplementary Figure 4.7. Distribution of significantly improved receptor template 
model fit by diagnoses (N=423). 

The average number of subjects (across all 6 modalities) for whom the true receptor 
maps resulted in significantly better model fit (p<0.05) than the randomly permuted receptor 

maps. The receptor template is most informative for healthy subjects, and progressively less for 
MCI and AD subjects. 
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Supplementary Figure 4.8. Distribution of model fit (R2) for re-MCM models using 
functional connectivity (N=423). 

 The model performance is virtually indistinguishable from the structural connectivity 
model (Fig. 2; r>0.99 for all modalities). 
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Supplementary Figure 4.9. Model parameters significant to cognitive decline in amyloid-
positive MCI and AD subjects (N=52). 

 Cognitive decline variance explained by receptor-imaging interactions, for the first 
principal component (44.3% variance explained, p<0.003; r=0.76, p<10-8 after removing 
outliers more than 3 MAD from the projections of model parameters and cognitive scores, 

p<0.001).   
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Supplementary Figure 4.10. Second component of receptor-cognitive variance in AD 
(N=25). 
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Contributions of receptor-imaging interactions to explaining the inter-subject variance 
between model parameters and cognitive scores projected to the second principal component 

(23.4% variance explained, p<0.051). a) The second component also showed a high correlation 
between model parameters and cognitive scores (r=0.890, p<10-8). b) Cognitive variance in this 
axis showed a lower contribution of executive dysfunction. c) Receptor-imaging interactions in 

the second component showed a lower contribution due to neural activity model parameters, and 
a greater contribution due to CBF and metabolism models. 
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Chapter 5. Patient-specific models link 

neurotransmitter receptor mechanisms with motor 

and visuospatial axes of Parkinson’s disease 

Ahmed Faraz Khan, Quadri Adewale, Sue-Jin Lin, Tobias R. Baumeister, Yashar Zeighami, 
Felix Carbonell, Nicola Palomero-Gallagher, Yasser Iturria-Medina 

Preface 

Two centuries after being described by James Parkinson, a critical challenge for the 

treatment of Parkinson’s Disease (PD) is posed by its remarkable multifactorial complexity. The 

classic dopaminergic circuit does not sufficiently explain PD’s neuropathological and symptomatic 

variability, and many other neurotransmitter systems appear to be involved. Patients present a 

broad and heterogeneous set of motor, cognitive, psychiatric, sleep and sensory symptoms, and 

often do not respond well to dopaminergic medication. Improved treatment requires a 

comprehensive understanding of the various neurotransmission pathways underlying 

physiological degeneration and associated with symptomatic variability. However, the lack of 

suitable radioligands and the high cost of in vivo molecular imaging are a critical impediment to 

identifying molecular mechanisms involved in the disease.  

Here, we develop and validate the first patient-centered approach to quantify 

neurotransmitter receptor involvement in PD neurodegeneration and symptomatic variability. 

Using advanced mathematical modeling integrating 15 important neurotransmitter receptor spatial 

distributions, 6 clinically-sensitive neuroimaging modalities, structural brain connectivity, and 11 

clinical assessments from the Parkinson’s Progression Markers Initiative (PPMI), we identify 
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receptor-mediated mechanisms of interaction between several measures of brain alterations (gray 

matter density, resting-state functional activity, dopamine transporter SPECT imaging, mean 

diffusivity, fractional anisotropy and t1/t2 ratio). We note that regional receptor architecture 

explains a large fraction of neurodegenerative changes in our cohort (N=71 PD patients), with 

multiple receptor families involved. Furthermore, correlating model-derived patient-specific 

receptor mechanisms with motor, psychiatric and cognitive clinical assessments, we discover two 

distinct, parallel disease axes representing motor symptoms with a strong GABAergic component, 

and cholinergically-dominant visuospatial symptoms. Importantly, we also identify specific brain 

regions of high receptor influence in PD-caused brain reorganization. 

The multi-faceted nature of PD is increasingly acknowledged. To facilitate our evolving 

understanding of the disorder, our work presents the first integrative model linking multiple 

neurotransmitter receptors with macroscopic brain alterations and clinical symptoms. Importantly, 

estimating patient-specific, receptor involvement addresses an urgent clinical need by laying the 

foundation for model-based personalized treatment design. Furthermore, the novel methodology 

of using non-individualized receptor templates to infer patient-specific receptor involvement has 

broad applications in computational modeling when individualized imaging is infeasible. 

The work presented in this chapter was published in Nature Communications on 

September 26, 2023, and is available online: https://doi.org/10.1038/s41467-023-41677-w.  

Abstract 

Parkinson’s disease involves multiple neurotransmitter systems beyond the classical 

dopaminergic circuit, but their influence on structural and functional alterations is not well 

understood.  Here, we use patient-specific causal brain modeling to identify latent 

https://doi.org/10.1038/s41467-023-41677-w
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neurotransmitter receptor-mediated mechanisms contributing to Parkinson’s disease progression. 

Combining the spatial distribution of 15 receptors from post-mortem autoradiography with 6 

neuroimaging-derived pathological factors, we detect a diverse set of receptors influencing gray 

matter atrophy, functional activity dysregulation, microstructural degeneration, and dendrite and 

dopaminergic transporter loss. Inter-individual variability in receptor mechanisms correlates with 

symptom severity along two distinct axes, representing motor and psychomotor symptoms with 

large GABAergic and glutamatergic contributions, and cholinergically-dominant visuospatial, 

psychiatric and memory dysfunction. Our work demonstrates that receptor architecture helps 

explain multi-factorial brain re-organization, and suggests that distinct, co-existing receptor-

mediated processes underlie Parkinson’s disease. 

Introduction 

Parkinson’s disease (PD) is primarily associated with a nigrostriatal dopamine deficit 

resulting in the characteristic motor symptoms of tremor, rigidity, and bradykinesia. However, 

the involvement of other brain circuits is now widely recognized [630], and the majority of 

patients also present numerous non-motor symptoms such as dementia, depression, sleep 

disorders, or apathy [631]. For this multi-system disease with significant inter-patient 

heterogeneity in pathology, symptoms and treatment response [632] [24] [633], consistent links 

between genetic, neuropathological and clinical subtypes remain elusive [634]. With no cure 

[635], symptomatic pharmacological treatment (e.g. levodopa) is at best partially effective [123] 

and may result in undesired side effects with chronic administration [126]. Given that diagnostic 

accuracy in untreated or medication non-responder PD patients is as low as 26% [636], an 

improved understanding of biological mechanisms and potential therapeutic targets underlying 
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pathological and symptomatic heterogeneity is imperative to bridging the treatment gap in PD 

[637] [638] [639].    

Neurotransmission underlies many disease-related mechanisms as well as 

pharmacological response [123] [124]. Regional variability in neurotransmitter receptor gene 

expression correlates with altered macroscopic interactions such as neurovascular [117] and 

structural-functional decoupling [118]. Multiple non-dopaminergic nuclei are affected in PD 

[640] [122], with specific neurotransmitter systems linked to symptoms such as cholinergic 

freezing of gait and dementia [119], serotonergic depression and tremor [120], and adrenergic 

postural symptoms [121]. The dual syndrome hypothesis of PD [122] proposes a dichotomy 

between dopamine-mediated fronto-striatal executive impairment and a cholinergically-mediated 

prodromal visuospatial dementia. To better characterize the role of neurotransmission in 

mediating neurodegenerative brain reorganization, an integrative model linking multiple receptor 

systems, macroscopic brain reorganization and clinical symptoms would be essential. However, 

we are limited by the absence of whole-brain spatial distribution maps of neurotransmitter 

receptors in PD patients [123].    

On the other hand, neuroimaging supports the multi-factorial and heterogeneous view of 

PD [641]. Various modalities are routinely used to support differential diagnosis [642] [637] 

[643] and evaluate treatment effects [644]. Multi-modal modeling of neuroimaging alterations 

can elucidate the temporal ordering, disease trajectories, and interactions of various pathologies 

in neurodegeneration [566] [86], and link these macroscopic observations with underlying 

genetic and transcriptomic determinants [645]. Multifactorial causal modeling (MCM) is a 

mechanistic modeling approach that is able to identify contributions of interacting factors to 

longitudinal changes [567], which can be used in a personalized medicine context to design 
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optimal therapeutic interventions [561]. Combining multi-modal neuroimaging with spatial 

distribution templates of 15 neurotransmitter receptors from post-mortem autoradiography [253] 

in an MCM-based approach significantly improved the explanation of degenerative changes in 

individual patients’ neuroimaging data, and linked specific receptor-pathology interactions to 

clinical symptoms in Alzheimer’s disease (AD) [646]. Furthermore, this approach was able to 

estimate individualized receptor alterations based on inter-subject differences in receptor-

neuroimaging interactions.  

Here, we extend previous molecular-phenotypic PD characterizations in four fundamental 

ways: i) by combining spatial distribution maps of 15 key neurotransmitter receptors derived 

from post-mortem autoradiography [253] with longitudinal neuroimaging data in a personalized 

modeling framework to infer the individualized importance of various receptor-mediated 

interactions (N=71, PPMI data), ii) by demonstrating the improved ability of receptor-enriched 

multifactorial causal modeling (re-MCM) to explain imaging-measured neurodegeneration and 

identify consistent mechanistic changes across patients, iii) by characterizing inter-patient 

heterogeneity, specifically linking receptor-based mechanistic alterations to two main axes of 

motor, cognitive and psychiatric symptoms, iv) quantitatively mapping brain regions with high 

receptor influence on PD neurodegeneration.  

Results 

Model-based approach to inferring personalized neurotransmitter 

receptor alterations 

To characterize neurotransmitter receptor contributions to the multifaceted 

neurodegenerative processes of PD, we fit receptor-informed individualized generative 
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computational models to the longitudinal alterations of 6 biological factors. Each biological 

factor is associated with neurodegeneration in PD, namely atrophy, dysregulated functional 

activity, dopaminergic deficiency, directed and microstructural damage, and dendrite loss, 

represented by the neuroimaging-derived measures of gray matter density (GM), fractional 

amplitude of low frequency fluctuations (fALFF), dopamine transporter SPECT (DAT-SPECT), 

fractional anisotropy (FA), mean diffusivity  (MD), and t1/t2 ratio [184] [185]. Neuroimaging 

data was acquired over multiple imaging scans for N=71 PD patients (PPMI data, Methods: Data 

description and processing). In addition, regional densities for 15 neurotransmitter receptors 

(from glutamatergic, GABAergic, cholinergic, adrenergic, serotonergic, and dopaminergic 

families) were derived from averaged templates (Methods: Data description and processing: 

Receptor densities and brain parcellation), and anatomical connectivity was estimated from the 

high-resolution Human Connectome Project template (HCP-1065; Methods: Anatomical 

connectivity estimation).  

The neurotransmitter receptor-enriched multifactorial causal model (re-MCM; Fig. 5.1) 

decomposes the spatiotemporal evolution of pathology of multiple biological factors into 

localized receptor- and network-mediated effects (Fig. 5.1a). Model parameters explicitly 

represent distinct biological mechanisms, namely i) direct and ii) receptor-mediated pairwise 

interactions between imaging-derived biological factors (dopaminergic deficiency, functional 

activity, microstructural damage, dendrite density, and atrophy), iii) effects of local 

neurotransmitter receptor densities on factor-specific longitudinal deterioration, and iv) 

spreading of pathology to and from anatomically connected regions. Notice that, in the absence 

of true personalized longitudinal receptor imaging, model weights of specific receptor-mediated 

biological mechanisms compensate to fit individualized trajectories of neurodegeneration. Thus, 
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inter-subject variability in model weights serves as a proxy for the corresponding receptor 

densities or receptor-pathology interactions. Specifically, i) the improvement of model fit by the 

inclusion of healthy aged receptor templates validates their application to this clinical population, 

ii) biological mechanisms that are statistically stable across subjects represent mechanistic 

pathways shared by all PD patients in our cohort, iii) inter-patient co-variability between 

biological mechanisms and clinical symptoms represents overlapping disease processes (Fig. 

5.1b), and iv) inter-region variability in the model fit improvement due to receptor templates can 

identify regions differentially affected by neurotransmitter receptor alterations in PD (Fig. 5.1c). 
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Figure 5.1. Neurotransmitter receptor-enriched multifactorial causal modeling. 
a) Each patient’s longitudinal pathological progression is decomposed into local effects 

due to: i) direct influence of every imaging-derived biological factor (e.g., atrophy on resting 
state functional activity), ii) receptor density distribution (e.g., D1 receptor density on DAT loss), 

and iii) receptor-pathology interactions (e.g., D1 receptors × DAT interactions on functional 
activity), in addition to iv) network-mediated inter-region propagation. Combining this data 

across (NROI=95) brain regions and multiple visits results in a multivariate regression problem 
to identify the patient-specific parameters {α}. b) Decomposing the covariance matrix of 

patients’ model-derived biological mechanism weights and clinical scores (specifically, the rates 
of decline of composite clinical scores; Methods: Clinical scores) identifies multivariate axes of 

receptor-factor interactions that are robustly correlated with the severity of combinations of 
clinical symptoms in PD (Methods: Biological parameters and relationship with cognition). c) 

The regional contributions of receptor interactions to neurobiological changes are estimated by 
a feature importance analysis. We fit individualized models for every biological factor with and 

without each receptor map and performed permutation tests on the improvement in regional 
model residuals due to the inclusion of receptor maps. The resulting improvements are the 

significant regional influence of receptors on each target biological factor model. 
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Neurotransmitter receptor maps significantly improve the 

explanation of multi-factorial brain reorganization in PD 

Before proceeding to identify relevant model-derived biological mechanisms in PD, we 

first aimed to validate that re-MCM robustly fits patient-specific neuroimaging data. For each of 

the 6 biological factors and all subjects (N=71), we calculated the coefficient of determination 

(R2) as a measure of the data variance explained. On average, re-MCM explained 74% ± 18% of 

the variance in rate of pathology accumulation (Fig. 5.2a), although model fit varied by 

biological factor, with neural activity dysfunction (fALFF; 81% ± 11%), dopaminergic 

degeneration (DAT-SPECT; 80% ± 13%) and dendrite loss (t1/t2 ratio; 80% ± 12%) being 

explained better than gray matter atrophy (GM; 58% ± 14%), or microstructural damage (MD; 

70% ± 14%, and FA; 0.74 ± 0.13). For validation, we repeated the model-fitting without 

receptor-pathology interactions or direct local receptor density effects. On average, 

neuroimaging-only models without receptor data explained 52% ± 20% of the variance in 

neuroimaging rate of change (Fig. 5.2b), and the inclusion of receptor templates improves the 

data variance explained by 42.3%. Dopaminergic loss (DAT-SPECT) was the least improved by 

the addition of receptor maps, with imaging-only models explaining 60% ± 17%, a drop of 20% 

of variance on average compared to the full re-MCM. On the other hand, gray matter atrophy 

(GM: 22% ± 17% variance explained without receptor maps) was the most reliant on receptor 

data. While DAT-SPECT scans themselves already image the density of presynaptic 

dopaminergic transporters, gray matter atrophy models benefit more from regional differentiation 

based on receptor expression. 

Figure 5.2c presents the improvement in each participant’s model fit due to receptor 

mechanisms, compared to the restricted, neuroimaging-only models. Accounting for the 
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increased model size from 8 to 113 parameters, the F-statistics of 80.3% (MD) to 100% (DAT-

SPECT) of patients is significant (p<0.05 red dotted line in Fig. 5.2c). We then performed a 

permutation test for the significance of the informativeness of receptor maps, by randomly 

shuffling each receptor map across brain regions 1000 times and fitting the re-MCM with each 

set of permuted maps.  

The resulting distribution of model fit (R2) was used to calculate significance levels for 

re-MCM with true receptor data from Figure 5.2a. For each biological factor, we plotted the 

number of subjects with significantly better model fit (p<0.05) compared to the null distribution 

in Fig. 5.2d.  Notably, nearly all patients’ biological factor models are significantly improved by 

the inclusion of receptor maps, except for undirected microstructural damage (MD; 67.6% or 48 

subjects). Across all participants, Fisher’s method gives χ2 statistics in the range of 800< χ2 < 

2300 (depending on the biological factor), corresponding to a near-zero combined P-value. These 

analyses validate the use of averaged receptor templates in patient-specific PD models.  
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Figure 5.2. Contribution of receptor distributions to explaining multimodal brain 
reorganization in PD. 

Pathological factors are quantified by 6 neuroimaging-derived metrics: gray matter 
density (GM), neuronal activity (fractional amplitude of low frequency fluctuations; fALFF), 

dopamine transporter density (DAT) from SPECT, directed microstructure (fractional 
anisotropy; FA), undirected microstructure (mean diffusivity; MD), and dendrite density (t1/t2 

ratio). The improvement in modeling the accumulation of pathology was evaluated in terms of i) 
the additional explanatory power due to receptor information, and ii) the significance of true 

receptor maps compared to null distributions. The histograms show the distribution of the 
coefficient of determination (R2) of N=71 individual models of longitudinal neuroimaging 

changes including (a) and excluding (b) receptor predictors. Notably, including receptor terms 
improves model fit for all biological factors, although to varying extents. (c) Subject-wise F-tests 

between models with and without receptor maps (113 and 8 parameters, respectively) show 
proportions of subjects for whom the F-statistic is above the critical threshold (red dotted line). 

This critical threshold corresponds to a statistically significant (P<0.05) improvement due to the 
receptor terms in the re-MCM model, accounting for the increase in adjustable model 

parameters. Furthermore, to validate the benefit of the receptor templates over randomized null 
maps, re-MCM models were fit with 1000 spatially permuted receptor maps for each subject. 

The p-value of the model fit (R2) using true receptor templates compared to the distribution of R2 
of models using randomized templates was calculated for each subject. (d) Proportion of 

subjects for whom the true receptor maps resulted in a statistically significant improvement in 
model fit (P<0.05; red dotted line). 
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Identifying stable neurobiological mechanisms and receptor-

pathology interactions in PD 

We proceeded to identify biological mechanisms consistently involved in structural, 

functional, and dopaminergic brain alterations in PD. For this, 99% confidence intervals for each 

re-MCM parameter across all patients were calculated and used to identify stable predictors. 

Since all predictors were standardized before data fitting, model weights are the relative effect 

sizes of different biological mechanisms on the rate of change of their target biological factor 

over the course of PD progression. Specifically, these neurobiological mechanisms are  i) direct 

effects of local pathology, ii) direct effects of local receptor densities, iii) local receptor-

pathology interactions, and iv) network propagation of pathology (Methods: Receptor-Enriched 

Multifactorial Causal Model).  

Figure 5.3a shows the relative effective sizes of stable biological mechanisms. The most 

influential stable predictors of each biological factor’s rate of change are the direct effects of 

local alterations to the same modality. Propagation of pathology along the structural connectome 

is also a minor yet stable predictor for all data modalities except functional activity (fALFF) and 

directed microstructural damage (FA), with a much lower effect than the local evolution of 

neurodegeneration. Notably, from Figure 5.3b, functional brain alterations (fALFF) do not 

appear to drive structural alterations (GM and MD), instead interacting bidirectionally with 

dendritic density (t1/t2). 

Nevertheless, local interactions between imaging-based biological factors, whether direct 

or receptor-mediated, constitute a significant driver of PD neurodegeneration in all cases, and 
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form a complex network with potentially bidirectional influences (Fig. 5.3b). While 

comparatively smaller for functional activity, dopaminergic transporter density and directed 

microstructural integrity (FA), receptor-mediated interactions constitute approximately half the 

model effects for gray matter atrophy (GM), overall microstructural integrity (MD) and dendrite 

density (t1/t2).   

We observed that a relatively sparse set of receptors is involved in stable interactions for 

each biological factor (Fig. 5.4). The muscarinic M2 and nicotinic α4β2 receptors contribute 

significantly to gray matter atrophy, neuronal activity dysfunction, and dopaminergic loss. The 

Bz site is also prominently associated with neuronal activity dysfunction and dopaminergic loss. 

The serotonergic 5HT2 receptor is involved in functional and undirected microstructural 

alterations, while glutamatergic effects are marked by NMDA affecting gray matter atrophy, 

AMPA and kainate affecting directed microstructure and kainate affecting dendrite density, 

respectively. 

Generally, the dopaminergic, cholinergic, serotonergic, glutamatergic and GABAergic 

systems broadly affect (micro-)structural alterations (GM, MD and t1/t2). Serotonergic 

mechanisms are most associated with undirected microstructural alterations (MD), and 

secondarily dysfunctional neural activity (fALFF). Cholinergic receptors are prominent 

predictors of atrophy, microstructural damage and loss of dendrites (GM, MD and t1/t2), with 

minor influence on functional activity and dopaminergic transporter density. Glutamatergic 

receptors have a moderate influence across structural modalities (GM, MD, FA and t1/t2). 

GABAergic influence is minor yet stable across functional (fALFF and SPECT) and (micro-

)structural (MD and t1/t2) modalities. Adrenergic and dopaminergic receptors are the least 

involved in stable neurobiological mechanisms, with α2 adrenergic receptor modulating directed 
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microstructural damage (FA), and the D1 dopaminergic receptors mediating the effect of atrophy 

on microstructure (MD). 

For atrophy (GM), functional activity (fALFF) and microstructure (MD) models, the 

direct effects of specific receptor density maps reflect local susceptibility to neurodegeneration. 

The densities of the muscarinic M2 and nicotinic α4β2 cholinergic receptors help explain inter-

region variability in the rate of gray matter atrophy, while M2 and the serotonergic 5HT2 receptor 

densities are stable predictors of both altered activity (fALFF) and microstructural damage 

(MD).  

 

Figure 5.3. Receptor-mediated interactions explaining longitudinal neurodegeneration 
in PD. 

A) Statistically stable biological mechanisms in PD show significant receptor-mediated 
contributions. The angle of each outer sector is proportional to the mean weight of each stable 

(99% confidence interval) re-MCM model weight across the PD patients. The inner sectors 
represent the 6 modeled biological factors. Within each factor, the intermediate sectors 

represent the neurotransmitter system involved, while the outer sector consists of the specific 
two-way receptor-pathology interactions or direct predictor terms in the model. Notably, 

biological factors may appear as both model predictors (outer sector) and targets (inner sector). 
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B) Effect size (number of chords) of statistically stable interactions between any pair of 
biological factors modeled in PD. 

 

Figure 5.4. Receptors mediating degenerative alterations to different macroscopic 
biological factors in PD. 

The combined statistically stable model effects of each receptor type on each biological 
factor are shown. The muscarinic M2 and nicotinic α4β2 receptors contribute significantly to gray 

matter density, neuronal activity and dopamine transporter alterations. The Bz site is 
prominently associated with activity and dopamine transporter alterations. The serotonergic 

5HT2 receptor is involved in functional and microstructural (MD) alterations, while 
glutamatergic effects are marked by NMDA affecting gray matter atrophy, AMPA and kainate 
affecting directed microstructural damage (FA) and kainate affecting dendrite density (t1/t2), 

respectively. Notably, the D1 receptor distribution is relatively homogeneous and not marginally 
informative in the presence of DAT imaging. 
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Two axes of receptor-pathology alterations underlie clinical 

symptoms in PD 

To link model-derived receptor-mediated neurobiological mechanisms with clinical 

presentation in PD, we identified shared axes of covariance between re-MCM-derived biological 

mechanisms and motor, non-motor, cognitive and psychiatric symptoms (Methods: Clinical 

scores). Partial least squares (PLS) regression using singular value decomposition (SVD) across 

all patients (N=71) was used to identify multivariate and overlapping relationships between 

identified biological parameters and clinical symptoms (Methods: Covariance of biological 

mechanisms with clinical symptoms) via projections to a latent space. Two latent components 

were relevant based on permutation tests, explaining 48.4% (P=0.001, FWE-corrected) and 

13.2% (P=0.069, FWE-corrected) of the population co-variance, respectively. Projections of 

biological mechanisms and clinical scores to these components show moderate to high 

correlations of r=0.70 (P=3.11×10-11; Fig. 5.5a) and 0.86 (P=3.75×10-21; Fig. 5.5b).   

Interestingly, the first component (primary axis; Fig. 5.5c) largely corresponds to 

variance of the MDS-UPDRS Parts 1-3 scores (composed of cognitive, psychiatric and motor 

aspects of daily living, as well as a motor exam), and SDM (assessing attention, perceptual 

speed, motor speed, and visual scanning [647]). On the other hand, the second component 

(secondary axis; Fig. 5.5d) is associated with the BJLOT (visuospatial judgment), LNS (working 

memory), STAIAD (anxiety) and the GDS (depression in older adults). The statistically stable 

biological mechanisms contributing to each axis are summarized in Figure 5.6. Both components 

show that inter-subject symptom variability is associated with multiple receptor-mediated 

biological mechanisms and neuropathological changes. The primary axis is largely driven by 

GABAergic alterations (explaining 5.97% of the total covariance via this component), although 
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glutamatergic (4.85%), cholinergic (4.77%), and serotonergic (3.77%) alterations are also 

prominent. The secondary axis is instead associated primarily with cholinergic alterations 

(1.74%), although GABAergic (1.24%) and glutamatergic (1.19%) alterations also play a role. 

While the local (regional) evolution of pathology in each considered biological factor and 

its network propagation are prominent stable predictors of PD neurodegeneration (Fig. 5.3), the 

influence of these mechanisms does not co-vary prominently with symptom severity. Instead, we 

find a broad array of receptors with clinical effects along both latent axes, as shown in Fig 5.5. 

For example, the mainly motor symptoms of the primary axis are associated with inter-subject 

variability in glutamatergic and GABAergic interactions affecting microstructural integrity (MD 

and FA) and dendrite density (t1/t2). In contrast, the visuospatial, psychiatric and memory 

dysfunction of the secondary axis is associated more with inter-subject variability in cholinergic 

interactions affecting microstructure (MD) and dendritic density (t1/2), as well as changes to GM 

density. 
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Figure 5.5. Two axes of covariance between biological mechanisms and symptom 
severity in PD. 

a) Based on a permutation analysis, two latent SVD components were significant or near-
significant, explaining 48.4% (P=0.001, FWE-corrected) and 13.2% (P=0.069, FWE-corrected) 

of the covariance respectively. a,b) High correlations of r=0.70 (P=3.11×10-11) and 0.86 
(P=3.75×10-21), between the projections of statistically stable (based on 95% confidence 

intervals from bootstrapping) biological mechanisms and rates of clinical decline onto the latent 
components were observed. c,d) Bootstrap ratios of each clinical assessment to the two latent 

components, providing a relative ranking of motor, nom-motor, psychiatric and cognitive 
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domains. These saliences are proportional to the contribution of each term relative to every 
other term, for example showing that MDS-UPDRS scores, SDM and HVLT scores are the top 

contributors to the primary axis. Details about specific scores can be found in Methods: Clinical 
scores. 

 

Figure 5.6. Distinct combinations of receptor-mediated interactions are associated with 
the two axes of clinical symptoms. 

Biological mechanisms correlated with clinical severity in PD via the a) 
motor/psychomotor and b) visuospatial/memory/psychiatric axes are plotted. Representing the 

effects of receptor densities, local pathology, receptor-pathology interactions, and network 
propagation of pathological factors, combinations of patient-specific mechanisms co-vary with 

specific clinical symptoms. Sector colours represent the output pathological factor of each 
model, named in the inner (central) sectors. For each mechanism, the angle is proportional to 

the percentage of mechanistic-clinical covariance explained. The outer sector contains the 
specific mechanisms, while the middle sector is grouped by receptor families and the inner 

sector by target biological factor. 
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Mapping receptor influence in PD 

Finally, we inferred the degree of receptor influence on multi-modal PD 

neurodegeneration at different brain regions, by identifying brain regions where the inclusion of 

a specific receptor predictor consistently improves the explanation of a particular type of 

neuropathology across all subjects. For each receptor, we fit individualized, single receptor-

enriched models, and compared their ability to explain the accumulation of pathology at each 

brain region with restricted, neuroimaging-only models (see Methods: Regional influence). At 

each brain region, we studentized residuals across all patients, with each residual representing 

the unexplained pathology in a region at a given imaging visit. Then, for all regions, we 

computed the Wilcoxon rank sum statistics of the population residuals from the two models, and 

repeated the model-fitting procedure with 1000 randomly shuffled receptor maps to obtain a null 

distribution of Wilcoxon statistics. We used this permutation test to filter brain regions with 

significant residual improvements (P<0.05) over the null distributions. These maps do not 

represent the regions with the highest pathological severity, but rather those where longitudinal 

alterations are significantly better explained by the inclusion of a particular receptor distribution. 

In Figure 5.7, we summarize the receptor influence maps for the top 4 receptor-pathology 

pathways (Fig. 5.3a): 5HT2 and M2 on microstructural alterations (MD), α4β2 on gray matter 

atrophy (GM), and kainate on dendrite density (t1/t2). Receptor influence maps for all biological 

factors are presented in Supplementary Figures S1-S6.  

Among other regions, the 5HT2 receptor most prominently influences microstructure 

(MD) in the anterior and medial thalamus, left posterior cingulate region (Brodmann area 31), 

anterior prefrontal cortex, left primarily motor cortex, right premotor cortex and supplementary 

motor area (Brodmann area 6). The muscarinic M2 receptor influences microstructural 
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alterations in the somatosensory cortex, left distal visual area V3d, right primary motor cortex, 

left hippocampus (CA), right primary somatosensory cortex (Brodmann area 2), lateral prefrontal 

cortex (Brodmann areas 46 - left and 47 - right), and entorhinal cortex (Brodmann areas 36-right 

and 37-left). The nicotinic α4β2 receptor influences gray matter atrophy in the (left and right) 

thalamus, primary somatosensory cortex (Brodmann area 2), right temporal inferior parietal area, 

left caudate nucleus and entorhinal cortex (left Brodmann region 22). Kainate influences dendrite 

density in a broad set of regions, focused on the thalamus, visual areas (V1, V2 and the ventral 

parts of V3 and V4 in the right hemisphere, and V1 and ventral V4 in the left hemisphere), and 

prefrontal areas. 

Across biological factors, glutamatergic receptors contribute significantly to explaining 

neurodegeneration in fronto-temporal regions (Supplementary Fig. S1). Particularly, both AMPA 

and kainate receptors contribute strongly to most factors (except for dopamine transporter loss) 

in frontal regions. The influences of GABAA receptors, GABAB receptors and the 

benzodiazepine binding site (Bz site) generally follow their distribution (Supplementary Fig. S2), 

peaking at visual, visual-parietal and fronto-temporal areas, respectively. Notably, dendrite loss is 

most pronounced at subcortical and fronto-temporal regions for all GABAeric receptors. 
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Figure 5.7. Model-derived maps of receptor influence on PD neurodegeneration. 
We compared the (a) receptor densities and (b) influence maps. Influence maps show the 

brain regions where specific receptors are consistently informative to explaining the 
neuropathological changes across all PD subjects, and are re-scaled to arbitrary units for 

visualization. They represent the population-wide improvement in model residuals at each region 
due to the inclusion of receptor density maps and receptor-pathology interactions as model 

predictors for each PD patient. Receptor influences are calculated as the Wilcoxon rank-sum 
statistics of each model’s residuals for a region, and the maps show only regions with significant 

z-scores (P<0.05) of Wilcoxon rank-sum statistics relative to the null distributions. 
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Discussion 

The complex pathophysiology of PD involves multiple difficult-to-map neurotransmitter 

systems, and the selective vulnerability of various non-dopaminergic nuclei [24]. We apply a 

personalized, causal brain modeling approach that combines longitudinal neuroimaging data and 

clinical assessments with averaged spatial receptor templates, to infer the previously 

uncharacterized roles of receptor-mediated interactions in PD neurodegeneration and 

symptomatic heterogeneity.  

In PD, dopaminergic neuroimaging is common [648], and some non-dopaminergic targets 

such as acetylcholinesterase have been characterized [649]. However, the expense of PET 

imaging and the lack of suitable in vivo radioligands have impeded the study of many other 

receptor alterations in a PD population. Our method circumvents this limitation by inferring the 

importance of receptor interactions in individualized models of brain reorganization. We note 

that the different receptor maps are not very correlated with each other (Supplementary Fig. S1-

S6) and the “multi-receptor fingerprint” of each (cyto-architectonically defined) brain region is 

distinct, particularly differing across the functional hierarchy [253]. In vitro multi-receptor 

autoradiography of the caudate nucleus and midcingulate area 24 of progressive supranuclear 

palsy (PSP) patients showed differentiation of patients from age-matched controls, as well as 

diverging alterations in clinical subgroups of PSP [650]. In this related movement disorder, 

notable, previously unknown receptor associations (to kainate and adenosine type 1 receptors) 

were discovered, supporting the case for more thorough receptor mapping studies in 

neurodegenerative populations.  

Lacking in vivo or in vitro receptor mapping data in PD patients, we attempted to use in 

silico modeling to infer regional susceptibility to neurodegeneration based on receptor 
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expression, and characterize the relationship between inter-individual variability in receptor-

mediated neurodegeneration and symptomatic variability. Recent works in Alzheimer’s disease 

(AD) have demonstrated that model parameters from personalized brain models can represent 

otherwise unobservable, latent mechanisms that relate to phenotype better than raw imaging data 

[651] [646] [652]. 

While we used autoradiography-derived templates of receptor density, receptor gene 

expression may be used as a proxy [653]. For example, the Allen Human Brain Atlas 

(http://human.brain-map.org) gene expression template has been used to identify transcriptomic 

pathways mediating neurodegeneration in AD [652]. However, several translational and 

trafficking steps separate gene expression and synaptically integrated receptors. Although 

receptor densities and gene expression are correlated for selected receptor subunit genes and 

across certain cytoarchitectonically-defined regions [654], this is not universally true [655]. Low 

correlations are also observed between gene expression and in vivo PET imaging of dopamine 

transporters [656]. Other works combining unimodal neuroimaging from disease cohorts with 

PET- and SPECT-derived healthy neurotransmitter receptor and transporter templates have 

uncovered the co-localization of specific neurotransmitter systems with PD resting state fMRI 

alterations [657], dyskinesia- and parkinsonism-associated atrophy in schizophrenia patients 

[658], gray matter atrophy in symptomatic FTD and its genetic subtypes [659], and functional 

alterations in behavioral variant FTD [660]. Furthermore, our averaged autoradiography-derived 

receptor templates are correlated with neurobiological processes such as drug-induced cerebral 

blood flow changes [661]. Additionally, in vitro autoradiography allows access to a broader class 

of receptors (without in vivo ligands) at a sub-millimeter resolution (as low as 0.3mm slice width 

per receptor [253]) compared to PET with its theoretical bound of ~2mm spatial resolution [662]. 

http://human.brain-map.org/
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Future work will extend the presented results with voxel-scale whole brain receptor maps rather 

than macroscopically averaged values.  

We incorporated several neuroimaging-derived measures sensitive to PD progression 

[663], from structural MRI-based gray matter density (GM) and dendrite density (t1/t2 ratio), 

diffusion-based measures of microstructural integrity (MD and FA) [664], functional neuronal 

activity (fALFF) and presynaptic dopamine transporter availability (DAT-SPECT). Resting-state 

fMRI-derived metrics such as fALFF can distinguish PD patients from controls [220], with 

fALFF being able to explain up to 25% of variability in MDS-UPDRS scores [665]. While 

initially proposed as a quantitative measure of demyelination from routine MRI scans, t1/t2 ratio 

has since been demonstrated to have a stronger correlation with dendritic density [184] [185], 

particularly relevant to synaptic integrity and receptor activity. Furthermore, our flexible 

modeling approach can be extended to incorporate other relevant modalities.  

Although receptor maps were averaged from neurologically healthy aged brains, earlier 

work has demonstrated their utility in other cohorts, namely healthy aged subjects, mildly 

cognitively impaired subjects, and AD patients from the Alzheimer’s disease Neuroimaging 

Initiative (ADNI) [646]. Extending this validation to the PPMI cohort, we note an approximately 

42.3% improvement in the explanation of neuropathology accumulation in receptor-enriched 

models. These improvements are statistically significant for well over 90% of subjects (P<0.05 

in both F-tests and permutation tests; Fig. 5.2c, d) for all biological factors with the exception of 

undirected microstructural damage (MD). We used a non-parametric permutation to generate null 

receptor distributions, which does not consider any spatial autocorrelation in the receptor maps 

[666]. The lack of voxel-scale receptor maps and the inclusion of subcortical regions in our 
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parcellation would preclude both cortical surface rotation-based methods as well as parametrized 

models requiring autocorrelation information in other, more typical statistical analyses.  

For a third of all subjects, the improvement in model fit of undirected microstructure was 

not significantly better than permuted null distributions of receptors. While diffusion MRI can be 

sensitive to aspects of gray matter microstructure [667] [668], it is less accurate than in white 

matter due to the heterogeneity of tissues and their (lack of) organization [669]. Yet, despite the 

limitation of partial volume effects in gray matter ROIs [200], receptor-enriched models fit 

longitudinal alterations to microstructure reasonably well (average r2 = 0.70 for undirected MD 

and r2 = 0.74 for directed FA; Fig. 5.2).  

Differential neurotransmitter and receptor expression may underpin the selective 

vulnerability of several neuronal populations, from the dopaminergic substantia nigra to the 

adrenergic locus coeruleus and serotonergic raphe nuclei, and their cortical projections [26]. 

Furthermore, PD neurodegeneration may alter both the spatial distributions as well as functional 

interactions of specific dopaminergic and non-dopaminergic receptors, with symptomatic 

consequences [124]. In our mechanistic modeling framework, each model weight is interpretable 

as the importance of specific neurobiological mechanism. Receptors contribute to 

neurodegeneration in re-MCM either as i) direct effects representing regional susceptibility to 

neurodegeneration based on receptor expression, or ii) receptor-mediated interactions involving a 

source and target biological factor. Additionally, biological factors have i) local effects on 

themselves and other factors, and ii) intra-factor network effects due to propagation of pathology 

along the structural connectome. Lacking inter-subject variability in receptor data, our model 

compensates by assigning weights differently across subjects. Consistent trends in model weights 
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reflect the importance of the corresponding neurobiological mechanism across the PD 

population, while co-variability with symptoms suggests clinical relevance.  

First, we identified specific mechanisms affecting neurodegeneration across the PD 

cohort (Fig. 5.3). We observed a complex network of interactions between biological factors, 

with distinct receptor profiles affecting each factor. The large contributions of receptor-mediated 

inter-factor interactions (Fig. 5.3a) supports the multi-system view of PD. Fewer receptors are 

statistically stable predictors of longitudinal changes to functional activity (fALFF), directed 

microstructural damage (FA) and dopaminergic neurotransmission (SPECT), while gray matter 

atrophy (GM), dendrite density (t1/t2 ratio) and undirected microstructural changes (MD) show 

greater influence from a more diverse set of receptors.  

Notably, the D1 receptor map is not a stable predictor of DAT alterations. While 

presynaptic DAT density and postsynaptic dopaminergic receptor distributions are strongly 

related under normal conditions, they may be affected differently by disorders. For example, 

while D2 receptor availability is reduced in alcoholism, DAT availability is preserved [670]. In 

PD, DAT-SPECT and receptor PET imaging have distinct clinical interpretations [671], and 

increased dopamine turnover early at symptom onset has implicated presynaptic mechanisms at 

this disease stage [672]. Furthermore, healthy aged D1 receptor expression is relatively 

uninformative as it is comparatively homogeneous across cortical regions (Supplementary Fig. 

S6) and likely redundant to the model in the presence of individualized DAT imaging. On the 

other hand, DAT density also peaks in striatal regions, and DAT-SPECT is not able to resolve 

cortical radiotracer uptake as well as DAT-PET [673]. SPECT is currently more prevalent 

clinically for DAT imaging, and was thus the modality used in a large, multi-center study such as 
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PPMI. Nevertheless, it must be noted that DAT-SPECT is limited in its ability to resolve cortical 

alterations, and this is likely reflected in its under-emphasis in our results. 

Network degeneration hypotheses of PD pathogenesis implicate various mechanisms 

from the propagation of neurotoxic alpha-synuclein [674] to the structural and functional 

neurodegeneration following striatal denervation [675]. We note that propagation is only a small 

contributor to the accumulation of pathology, and is dwarfed by local effects in our models (Fig. 

5.3a). These findings may potentially reflect distinct disease phases. Our cohort was composed 

entirely of PD patients, for whom propagative, disease seeding processes may have already 

occurred, and neurodegeneration may now be driven by local effects. Furthermore, white matter 

tractography may not completely capture the connectivity between our cyto- and receptor-

architectonically defined regions. A more complete treatment may consider vascular connectivity 

as well [567] [561], which may also be a substrate for pathology propagation. 

We find notable glutamatergic effects on multiple (micro-)structural factors 

(Supplementary Fig. S1): gray matter atrophy (NMDA), directed microstructural damage 

(AMPA and kainate), and dendrite density (kainate and NMDA). As NMDA and AMPA 

receptors are postsynaptic targets of glutamate, these mechanisms likely reflect the structural 

consequences of excitotoxicity and cell death [676]. On the other hand, kainate is believed to 

modulate synaptic transmission and plasticity [677], which may affect dendritic density. In our 

models, NMDA receptor influence is focused on occipital and temporal regions, AMPA influence 

is highest in frontal regions, and kainate influences mainly dendrite loss in both frontal and 

occipital regions. Among glutamatergic receptors, influence on microstructure of the motor 

cortex (MD, FA and t1/t2) is prominent, although it is more limited for atrophy or functional 

alterations.  
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The stable roles of GABAergic receptors (Fig. 5.3a) suggest their involvement via altered 

neuronal activity inhibition, interaction with the dopaminergic system, and potential regional 

vulnerability to microstructural degradation or dendrite loss. Inter-subject variability along the 

primary, mainly motor axis correlates with GABAergic mechanisms affecting microstructure 

(FA, MD and t1/t2) and functional activity. Furthermore, a magnetic resonance spectroscopy 

(MRS) study found reduced levels of GABA in the visual cortex of PD patients [678], consistent 

with the regions of maximal influence of GABAA and GABAB receptors in our model.  

Due to the necessity for sufficient longitudinal and multi-modal scans, no healthy 

subjects met our inclusion criteria. As each individualized model is fit independently, we account 

for the confounding effects of healthy ageing on model-derived mechanisms by performing a 

multivariate correlation with 11 assessments representing various symptomatic domains, with 

age as a covariate. Presently, PD is defined primarily by clinical symptoms, and thus any 

combination of model mechanisms robustly correlated with multi-domain symptoms can be 

considered as contributing to the spectrum of PD rather than healthy (i.e. non-symptomatic) 

aging. 

Various non-dopaminergic neurotransmitter systems have been associated with specific 

symptoms in PD, including cholinergic memory defects, adrenergic impairment of attention, and 

serotonin-driven depression [679] and visual hallucinations [680] [681].  Comparing model-

derived receptor mechanisms and clinical assessments across PD patients, we observe two main 

axes of co-variability. The primary component represents motor/psychomotor symptoms 

associated prominently with GABAergic mechanisms, with secondary contributions from 

glutamatergic, cholinergic, and serotonergic systems (Supplementary Table S7). The secondary 

component is defined by visuospatial, memory and psychiatric symptoms, with the cholinergic 
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system being the dominant receptor family. Mechanisms affecting microstructure (FA and MD) 

are more prominent in the primary component, while those affecting gray matter density are 

greater in the secondary component. Nevertheless, receptor mechanisms affecting microstructure 

and dendrite density (t1/t2) contribute strongly to both axes. 

The secondary component is consistent with the cholinergically-driven visuospatial 

aspect of the dual-syndrome hypothesis of PD [122].  Stable cholinergic mechanisms are also 

present for every biological factor except directed microstructure (FA), most notably the 

contributions to dendrite loss (t1/t2), undirected microstructural damage (MD) and gray matter 

atrophy (Fig. 5.3a). Specifically, we note prominent muscarinic M2 and nicotinic α4β2 receptor 

influences (on MD and GM, respectively) on the primary somatosensory cortex, a site of reduced 

activation in PD (Fig. 5.7) [682]. Our model suggests that nicotinic and muscarinic cholinergic 

systems strongly affect PD symptoms along specific pathways primarily involving dendritic 

density, atrophy, and degradation of microstructure (Fig. 5.6b). While typically associated with 

cognitive impairment and dementia in PD, cholinergic degeneration is also linked to depressive 

mood, apathy, olfaction, sleep disorder, and postural and gait disorder [683]. Epidemiological 

studies of smokers suggest a neuroprotective role for nicotinic receptors [684], which experience 

widespread decrease in PD [685]. The cholinergic and dopaminergic systems interact at 

biochemical, circuit and functional levels [679], tightly coupled by nicotinic receptors expressed 

on striatal dopaminergic neurons and acetylcholine [679] [686] modulate dopaminergic 

neurotransmission. An imbalance of cholinergic and dopaminergic neurotransmission may thus 

underlie PD cognitive dysfunction [679]. Our results suggest that cholinergic receptor 

distributions contribute to both motor and non-motor axes, albeit via distinct pathways (Fig. 5.6a, 

b).   
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We note the mild motor phenotype of the PD patients from PPMI included in this work 

(mean MDS-UPDRS Part III score, Supplementary Table S1). Potential low variability in these 

scores in combination with the poor cortical signal in DAT-SPECT may have under-emphasized 

the dopaminergic-motor axis of PD. Nevertheless, the dopaminergic relationship with motor 

symptoms is reproduced in the primary, mainly motor component, with DAT-SPECT appearing 

as a target imaging modality. In addition to the classical dopaminergic-motor axis, our work 

presents a multi-modal perspective of PD, associating multivariate combinations of receptor 

distributions with macroscopic imaging-derived pathological alterations, and motor and non-

motor symptoms. 

In addition to mediating inter-factor interactions, dysfunctional interactions between 

receptors may also be involved in neurodegeneration. Neurotransmitter release is regulated by 

presynaptic auto- and hetero-receptors [687], which in PD is potentially impaired in the 

dopaminergic system [688] and in GABAergic inhibition of the motor cortex [689]. Where 

possible, concurrent receptor or transporter imaging in a PD cohort would help clarify the role of 

neurotransmission balance in neurodegeneration.  

We attempted to cover a broad variety of (particularly structural) disease-sensitive 

neuroimaging modalities. Yet, PD neurodegeneration is complex and likely also involves 

changes to surface morphology  [690] [691], such as gyrification. However, to include the basal 

ganglia and thalamus in our model using the same set of features, we did not include surface-

based measures.  

Despite the prevalence of PD, the causes of this neurodegenerative condition remain 

unknown, and treatment is limited to symptomatic therapy complicated by individual variability 

in clinical presentation, side effects and treatment response [692]. Our work sheds light on the 
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complex, especially non-dopaminergic neurotransmitter receptor-mediated mechanisms 

underlying brain reorganization and symptomatic variability in PD. As longitudinal data 

collection progresses in large cohorts, model-derived mechanisms may help differentiate 

mechanisms distinct to PD and its (genetic or clinical) subtypes, Parkinson-plus syndromes, 

other neurodegenerative diseases, and healthy ageing. Since neurotransmitter receptors are 

clinically efficacious drug targets [693], future work will explore the use of our personalized 

modeling approach to design personalized receptor-based therapy. 

Methods 

Ethics statement 

This work has been conducted in accordance with ethical guidelines and regulations. 

Neuroimaging and clinical data in this study was acquired through the multi-center Parkinson’s 

Progression Markers Initiative (PPMI; ppmi-info.org). Following good clinical practices and in 

accordance with the Declaration of Helsinki guidelines, study subjects and/or authorized 

representatives gave written informed consent at the time of enrollment for sample collection and 

completed questionnaires approved by each participating site Institutional Review Board (IRB). 

The authors obtained approval from the PPMI for data use and publication, see documents 

https://www.ppmi-info.org/documents/ppmi-data-use-agreement.pdf and https://www.ppmi-

info.org/documents/ppmi-publication-policy.pdf, respectively. 

https://www.ppmi-info.org/
https://www.ppmi-info.org/documents/ppmi-data-use-agreement.pdf
https://www.ppmi-info.org/documents/ppmi-publication-policy.pdf
https://www.ppmi-info.org/documents/ppmi-publication-policy.pdf
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Data description and processing 

Study participants 

This study used longitudinal data from N=71 participants from the PPMI from 12 

international sites, with a clinical diagnosis of PD. Demographic information is summarized in 

Supplementary Table S1. The inclusion criterion was the presence of at least 3 different imaging 

modalities (i.e. structural MRI, resting functional MRI, diffusion MRI and/or dopamine SPECT) 

over at least 3 visits at the time of our analysis.  

Structural MRI acquisition/processing 

Brain structural T1- and T2-weighted 3D images were acquired for all N=71 subjects. A 

detailed description of acquisition details can be found from the PPMI procedures manuals at 

http://www.ppmi-info.org/. T1- and T2-weighted images from 3T scanners were acquired as a 3D 

sequence with a slice thickness of 1.5 mm or less, under three different views: axial, sagittal and 

coronal. All images underwent non-uniformity correction using the N3 algorithm [571]. Next, 

they were segmented into gray matter probabilistic maps using SPM12 (version 12, 

https://fil.ion.ucl.ac.uk/spm). Gray matter segmentations were standardized to MNI space [572] 

using the DARTEL tool [573]. Each map was modulated to preserve the total amount of 

signal/tissue. Mean gray matter density [573] values were calculated for the regions described in 

Methods: Data description and processing: Receptor densities and brain parcellation.  

Resting fMRI acquisition/processing 

Resting-state functional images were obtained using an echo-planar imaging sequence on 

3T MRI scanners for N=71 subjects. For a detailed description of acquisition protocols, please 

see http://www.ppmi-info.org. Acquisition parameters were: 140 time points, repetition time 

https://fil.ion.ucl.ac.uk/spm/
http://www.ppmi-info.org/
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(TR)=2400 ms, echo time (TE)=25 ms, flip angle=80°, number of slices=40, slice thickness=3.3 

mm, in plane resolution=3.3 mm and in plane matrix=68×66. Pre-processing steps included: 1) 

motion correction, 2) slice timing correction, 3) alignment to the structural T1 image, and 4) 

spatial normalization to MNI space using the registration parameters obtained for the structural 

T1 image with the nearest acquisition date, and 5) signal filtering to keep only low frequency 

fluctuations (0.01–0.08 Hz) [575]. For each brain region, our model requires a local (i.e., intra-

regional, non-network) measure of functional activity, to maintain mechanistic interpretability 

and to prevent data leakage of network information into local model terms (described further in 

Receptor-Enriched Multifactorial Causal Model). Due to its high correlation with glucose 

metabolism [694] and disease progression in PD [220] , we calculated regional fractional 

amplitude of low-frequency fluctuation (fALFF) [578] as a measure of functional integrity. 

Diffusion MRI acquisition/processing 

Diffusion MRI (dMRI) images were acquired using standardized protocol on 3T MRI 

machines from 32 different international sites. Diffusion-weighted images were acquired along 

64 uniformly distributed directions using a b-value of 1000 s/mm2 and a single b = 0 image. 

Single shot echo-planar imaging (EPI) sequence was used (116 × 116 matrix, 2 mm isotropic 

resolution, TR/TE 900/88 ms, and twofold acceleration). An anatomical T1-weighted 1 mm3 

MPRAGE image was also acquired. Each patient underwent two baseline acquisitions and a 

further two one year later. More information on the dMRI acquisition and processing can be 

found online at http://www.ppmi-info.org/. Preprocessing steps included: 1) motion and eddy 

current correction [695], 2) EPI distortion correction, 2) alignment of the T1-weighted image to 

the b0 image based on mutual information, 3) calculation of the deformation field between the 

diffusion and T1-weighted images, 4) calculation of the voxelwise diffusion tensors, 5) 

http://www.ppmi-info.org/
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alignment to the structural T1 image, and 6) spatial normalization to MNI space [572] using the 

registration parameters obtained for the structural T1 image with the nearest acquisition date, and 

6) calculation of mean values of summary metrics (FA and MD) for each considered brain 

region. 

Dopamine SPECT acquisition/processing 

A 111-185 MBq (3-5 mCi) bolus injection of I-123 FB-CIT was administered to each 

participant (N=71), and the SPECT scan was performed 4 hours post-injection. Raw projection 

data was acquired as a 128x128 matrix and the SPECT image was reconstructed. Attenuation 

correction and Gaussian blurring with a 3D 6mm filter were applied. The reconstructed and 

corrected SPECT images were normalized and registered to MNI space [572], and average values 

were calculated for all considered regions of interest. 

Receptor densities and brain parcellation 

In-vitro quantitative receptor autoradiography was applied to measure the densities of 15 

receptors in 57 cytoarchitectonically defined cortical areas spread throughout the brain [579]. 

These receptors span major neurotransmitter systems and show significant regional variability 

across the brain. Brains were obtained through the body donor programme of the University of 

Düsseldorf. Donors (three male and one female; between 67 and 77 years of age) had no history 

of neurological or psychiatric diseases, or long-term drug treatments. Causes of death were non-

neurological in each case. Each hemisphere was sliced into 3 cm slabs, shock frozen at -40C, and 

stored at -80C. 

Receptors for the neurotransmitters glutamate (AMPA, NMDA, kainate), GABA 

(GABAA GABAA-associated benzodiazepine binding sites, GABAB), acetylcholine (muscarinic 

M1, M2, M3, nicotinic α4β2), noradrenaline (α1, α2), serotonin (5-HT1A, 5-HT2), and dopamine 
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(D1) were labeled according to previously published binding protocols consisting of pre-

incubation, main incubation and rinsing steps [579]. The ligands used are summarized in 

Supplementary Table S3. Receptor densities were quantified by densitometric analysis of the 

ensuing autoradiographs, and areas were identified by cytoarchitectonic analysis in sections 

neigbouring those processed for receptor autoradiography, and which had been used for the 

visualization of cell bodies [580].  

A brain parcellation was then defined with the aid of the Anatomy Toolbox [581] using 

57 regions of interest for which receptor densities were available [253]. This parcellation was 

based on areas identified by cortical cytoarchitecture, as well as other cyto- and receptor-

architectonically defined regions with receptor measurements (regions are summarized in 

Supplementary Table S4). These 57 regions were mirrored across left and right hemispheres for a 

total of 114 brain regions in our parcellation. For each receptor, regional densities were 

normalized using the mean and standard deviation across all brain regions. 

The structural T1 images of the Jülich [581], Brodmann [582], AAL3 [696] and DISTAL 

[697] brain parcellations were registered to the MNI ICBM152 T1 template using the FSL 

(version 6.0) FLIRT affine registration tool [698], and the obtained transformations were used to 

project the corresponding parcellations to the MNI ICBM152 space (using nearest neighbor 

interpolation to conserve original parcellation values). In the MNI ICBM152 space, voxels 

corresponding to the cytoarchitectonically-defined regions from [253] were identified from the 

regions in the Anatomy Toolbox, with the remaining Brodmann regions filled in using the 

Brodmann brain atlas. Supplementary Table S4 summarizes the ROI maps used to create the 

Brain atlas for regions with receptor data. The resulting parcellation of 114 brain regions in the 

common template space was then quality controlled, and small regions under 50 voxels were 
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excluded. The resulting atlas with 155 bilateral brain regions (95 of which had receptor data) was 

used to extract whole-brain multi-modal neuroimaging data and estimate the diffusion-based 

connectivity matrix, as described in Methods: Multimodal neuroimaging data fusion and 

Methods: Anatomical connectivity estimation.  

Anatomical connectivity estimation 

The connectivity matrix was constructed using DSI Studio (March 8, 2019 build; 

http://dsi-studio.labsolver.org). A group average template was constructed from a total of 1065 

subjects [584]. A multi-shell diffusion scheme was used, and the b-values were 990, 1985 and 

2980 s/mm2. The number of diffusion sampling directions were 90, 90, and 90, respectively. The 

in-plane resolution was 1.25 mm. The slice thickness was 1.25 mm. The diffusion data were 

reconstructed in the MNI space using q-space diffeomorphic reconstruction [585] to obtain the 

spin distribution function [586]. A diffusion sampling length ratio of 2.5 was used, and the output 

resolution was 1 mm. The restricted diffusion was quantified using restricted diffusion imaging 

[587]. A deterministic fiber tracking algorithm [588] was used. A seeding region was placed at 

whole brain. The QA threshold was 0.159581. The angular threshold was randomly selected 

from 15 degrees to 90 degrees. The step size was randomly selected from 0.5 voxel to 1.5 voxels. 

The fiber trajectories were smoothed by averaging the propagation direction with a percentage of 

the previous direction. The percentage was randomly selected from 0% to 95%. Tracks with 

length shorter than 30 or longer than 300 mm were discarded. A total of 100000 tracts were 

calculated. A custom brain atlas based on cytoarchitectonic regions with neurotransmitter 

receptor data [253] was used as the brain parcellation, as described in Methods: Data description 

and processing: Receptor densities and brain parcellation, and the connectivity matrix was 

calculated by using count of the connecting tracks. 

http://dsi-studio.labsolver.org/
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Multimodal neuroimaging data fusion 

After pre-processing PPMI neuroimaging data for all 6 modalities, data harmonization 

was performed using ComBat (commit 91f8bf3, 

https://github.com/Jfortin1/ComBatHarmonization) [699]. Each site used the same scanner for 

all subjects, and our harmonization procedure corrected for batch effects due to sites while 

preserving variance due to clinical diagnosis, age, education level, sex and (left or right) 

handedness. After extracting harmonized neuroimaging data for the cytoarchitectonically defined 

atlas described in Methods: Data description and processing: Receptor densities and brain 

parcellation, subjects lacking sufficient longitudinal or multimodal data were discarded. The 

disqualification criteria were i) fewer than 4 imaging modalities with data, or ii) fewer than 3 

longitudinal samples for all modalities. For the remaining subjects, missing neuroimaging 

modalities (primarily FA, MD and t1/t2 ratios) at each visit were imputed using trimmed scores 

regression. Finally, a total of N=71 subjects were left with all 6 neuroimaging modalities with an 

average of 3.59 (± 0.50) time points. We used the mean and variance of each neuroimaging 

modality across all regions to calculate z-scores of neuroimaging data for all subjects. Please see 

Supplementary Table S1 for demographic characteristics. 

Clinical scores 

We used multiple composite scores derived from the PPMI clinical (motor, non-motor, 

psychiatric, cognitive, etc.) testing battery, namely the Benton Judgment of Line Orientation Test 

(BJLOT [700]), Geriatric Depression Scale (GDS [701]), Hopkins Verbal Learning Test (HVLT 

[702]), Letter Number Sequencing (LNS [703]), Movement Disorders Society – Unified 

Parkinson's Disease Rating Scale (MDS-UPDRS [704]) Parts 1 (non-motor aspects of daily 

https://github.com/Jfortin1/ComBatHarmonization
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living; NP1), 2 (motor aspects of daily living; NP2), and 3 (motor exam; NP3), the Montreal 

Cognitive Assessment (MoCA [705]), semantic fluency (SF), State-Trait Anxiety Inventory for 

Adults (STAIAD [706]), and Symbol Digit Modalities (SDM [707]) tests.  Protocols for deriving 

each score are described in the respective PPMI protocols documentation. We calculated 

symptomatic decline as the rate of change (linear slope) of the 11 clinical scores with respect to 

examination date. Average numbers of longitudinal evaluations per clinical score are summarized 

in Supplementary Table S2. 

Receptor-Enriched Multifactorial Causal Model (re-MCM) 

Multifactorial causal modeling is a generalized framework [567] [646] that treats the 

brain as a dynamical system of ROIs characterized by multiple interacting neuroimaging-

quantified biological factors. Pathology may develop over time in each factor, affecting other 

factors locally and propagating to neigbouring regions via anatomical connections. We introduce 

the receptor-enriched multifactorial causal model (re-MCM), in which the local densities of 

various neurotransmitter receptors mediate interactions between biological factors at each brain 

region. 

In this work, the biological factors are gray matter density, neuronal activity, presynaptic 

dopamine, demyelination/dendritic density and two measures of white matter integrity, derived 

from structural T1 MRI, resting state functional MRI (rs-fMRI), DAT-SPECT, T1/T2 ratio, FA 

and MD, respectively. For any given subject and at a particular brain region 𝑖, the level of 

pathology of each biological factor 𝑚 is represented by a single variable 𝑆T,U, calculated as the 

deviation from the neuroimaging signal at the baseline visit. The temporal evolution of pathology 

𝑆T,U in modality 𝑚 at brain region 𝑖 is given by following differential equation: 
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Local Effects

+ 𝑔(𝐒T,∗(𝑡), 𝐂U↔∗
Inter-region Propagation

).                                                                               

(1) 

The functions 𝑓and 𝑔 govern the global biological factor dynamics that are consistent 

across all brain regions. The local component 𝑓o𝑆,U(𝑡), 𝑅,Up is the cumulative effect of all 

biological factors on factor 𝑚 within region 𝑖 mediated by 𝑹U, composed of local densities 𝑟Y,U of 

a receptor 𝑘 at a region 𝑖. The propagation term 𝑔 represents the net spreading of pathology in 

factor 𝑚 along anatomical connections 𝐶U↔∗ of the region 𝑖. Since the inter-visit interval of 

approximately 6 months is significantly shorter than the temporal scale of neurodegeneration, we 

assume a locally linear, time-invariant dynamical system: 

4V.
,(&)
4&

= ∑ 𝛼Z→T\fac
Z]L 𝑆Z,U(𝑡) + ∑ 𝛼YT

\rec
Y]L 𝑟Y,U + 𝛼propT ∑ i𝐶 →U𝑆T,^(𝑡) − 𝐶U→^𝑆T,U(𝑡)j

\ROI
^]L,^_U ,        

(2) 

where 𝐶U→^ is the directed anatomical connectivity from region 𝑖 to 𝑗, and 4V,,.(&)
4&

 the 

local rate of change of neuroimaging data for successive longitudinal samples at times 𝑡′ and 𝑡: 

4V,,.(&)
4&

= V,,.(&)1V,,.(&`)
&1&`

.                                                                                                                 

(3) 

Local effects include i) direct factor-factor effects, ii) interaction terms mediated by 

𝑁rec = 15 receptor types, and iii) direct receptor effects on the biological factor rate of change 

4V,,.
4&

 (the second term in Equation 2). The first term in Equation 2 is expanded as: 

𝛼Z→T = 𝛼6Z→T
Direct Factor-Factor Term

+ ∑ 𝛼YZ→T
\rec
Y 𝑟UY

Interaction Term
.                    

(4) 
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The propagation term assumes symmetric connectivity 𝐶 ↔U between regions 𝑖 and 𝑗, 

using a template connectivity matrix for all subjects, as described in Anatomical connectivity 

estimation, so we define the propagation component as: 

𝑝T,U(𝑡) = ∑ 𝐶 ↔U
\ROI
^]L,^_U i𝑆T,^(𝑡) − 𝑆T,U(𝑡)j.                                                                               

(5) 

Thus, for each subject, the evolution of pathology in each biological factor 𝑚 at region 𝑖 

is described by: 

4V,,.(&)
4&

= ∑ o𝛼6Z→T + ∑ 𝛼YZ→T
\rec
Y 𝑟Y,^p

\fac
Z]L 𝑆Z,U(𝑡) + ∑ 𝛼YT

\rec
Y]L 𝑟Y,U + 𝛼propT 𝑝T,U(𝑡).                      

(6) 

Each model contains a set of 𝑁params = 𝑁fac × (1 + 𝑁rec) + 𝑁rec + 1 = 113 parameters 

{𝛼}!T for subject 𝑥 and factor 𝑚 (or 678 total parameters per subject), each with a distinct 

neurobiological interpretation (e.g. the effect of reduced white matter integrity on gray matter 

atrophy mediated by glutamatergic receptor density). We perform linear regression, using the 

terms in Equation 6 as predictors with longitudinal PPMI neuroimaging samples 𝑆T,U(𝑡) and 

receptor maps 𝑅, to fit parameters {𝛼}!T for each subject 𝑥 and modality 𝑚. Separate regression 

models were built for i) each of the N=71 qualifying subjects, and ii) each of the 6 neuroimaging 

factors. These subjects were drawn from the PPMI dataset with at least 3 recorded neuroimaging 

modalities, and at least 3 longitudinal samples for at least one modality. 

We then calculate the coefficient of determination (𝑅' for each model to evaluate model 

fit, summarized in Figure 5.2. With the true neuroimaging-derived data 𝑦T,U,& =
4V,,.(&)

4&
, subject-

wise mean imaging data < yT >	for modality 𝑚 across all brain regions and longitudinal 

samples, and model predictions 𝑦T,U,&, the coefficient of determination is 
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𝑅' = 1 − ∑ (.,/ n,,.,/1no,,.,/)&

∑ (.,/ n,,.,/1dn,e)&
    .                                                                                                        

(7) 

Model fit 

For each subject and neuroimaging modality, we evaluated the quality of model fit by 

calculating the coefficient of determination (R2). Secondly, to evaluate the improvement in 

model fit due to receptor and receptor-mediated interaction terms while accounting for the 

difference in model size for each subject, we used F-tests (p<0.05) to compare the model fit of 

the full, receptor-neuroimaging interaction models (113 parameters per modality) with restricted, 

neuroimaging-only (8 parameters per modality) models.  

Finally, we evaluated the significance of the improvement in model fit (R2) due to actual 

receptor distributions with a permutation test using 1000 iterations of randomly permuted 

receptor maps (with receptor densities shuffled across regions independently for each receptor 

type), calculating the p-value of the model R2 with the true receptor data compared to the null 

distribution.  

Covariance of biological mechanisms with clinical symptoms 

To identify multivariate links between receptor-mediated biological mechanisms and to 

clinical symptoms in PD, we performed a data-driven partial least squares (PLS) regression 

analysis. Using singular value decomposition (SVD) to factorize the population covariance 

matrix between re-MCM parameters and clinical assessments (summarized in Methods: Clinical 

scores) to its eigenvectors, we identify multivariate axes of co-varying features. Different axes 

represent orthogonal disease processes affecting symptom severity. Permutation tests and 
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bootstrapping ensure the statistical significance of the axes and the stability of identified 

mechanisms and symptoms, respectively. The algorithm is summarized as follows: 

We performed SVD on the cross-covariance matrix between all 678 re-MCM parameters 

and rates of clinical decline for N=71 PD patients, adjusted for covariates (baseline age, 

education, and sex). SVD simultaneously reduces the dimensionality of features, and ranks them 

by their contribution to each axis. The cross-covariance matrix 𝐶 = 𝑋𝑌′ of the z-scores of re-

MCM parameters 𝑋 and the z-scores of the clinical decline rates 𝑌 is decomposed as 

        𝐶 = 𝑈𝑆𝑉′                                                                                                                             

(8) 

where 𝑈 and 𝑉 are orthonormal matrices of spatial loadings for the parameters and 

clinical scores, respectively, and 𝑆 is a diagonal matrix of singular values {𝑠L, … , 𝑠f}.  

We then performed permutation tests by shuffling the mapping between subjects’ re-

MCM parameters and clinical scores, and repeating Step 1 for 1000 iterations, to evaluate the 

significance of latent components. We performed a Procrustes transformation to align the axes of 

singular components in order to compare components from permuted iterations. We retained only 

those significant (p<0.05 with respect to the permuted distribution) singular components. 

To discard non-stable re-MCM parameters and clinical assessments in each axis, we 

performed 1000 iterations of bootstrapping on the parameters 𝑋 and clinical scores 𝑌. To 

compare permuted iterations, we performed a Procrustes transformation to align the axes of 

singular components. We discarded the parameters with non-stable 95% confidence intervals. 

For the remaining stable re-MCM parameters and clinical scores, and significant latent 

components, we computed the variance explained per parameter 𝑗 along each axis 𝑖:  
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        𝑟U,^' =
g.,0
&

∑ g.,0
&

0
Parameter	
contribution

                                                                                           (9) 

Regional influence 

To infer the spatial patterns of receptor involvement in neurodegeneration, we examined 

the improvement in neuroimaging models due to the inclusion of each receptor map. For each 

biological factor 𝑚, receptor 𝑘 and brain region 𝑖, we fit a restricted, single-receptor version of 

the model 

 
4V.,B

,(&)

4&
= ∑ o𝛼6Z→T + 𝛼YZ→T𝑟Y,^p𝑆Z,U(𝑡) + 𝛼YT𝑟Y,U + 𝛼propT ∑ i𝐶 →U𝑆T,^(𝑡) −

\CDE
^]L,^_U

\FGH
Z]L

𝐶U→^𝑆T,U(𝑡)j ,(10) 

where the longitudinal rate of change of each factor is predicted by its network 

propagation, direct factor effects, the local density of a single receptor 𝑘, and factor interactions 

with the density of only receptor 𝑘. We compare this model with a restricted, neuroimaging-only 

model excluding receptor density and interactions:  

4V.,B
, (&)

4&
= ∑ 𝛼Z→T\FGH

Z]L 𝑆Z,U(𝑡) + 𝛼propT ∑ i𝐶 →U𝑆T,^(𝑡) − 𝐶U→^𝑆T,U(𝑡)j
\CDE
^]L,^_U .(11) 

To generate brain maps representing receptor influence on neuroimaging changes,  

for each subject, we fit the single receptor and neuroimaging-only models for all 

biological factors and receptors, and studentize the residuals across regions and time points, 

we combine the studentized residuals corresponding to each region across subjects and 

time points, and calculate the Wilcoxon rank sum statistic 𝑤U,YT  between studentized residuals of 

the two models, 

we compute a null distribution of the Wilcoxon statistic by repeating Steps 1-2 with 1000 

randomly permuted receptor maps per imaging modality and receptor,  
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to estimate the significance of the Wilcoxon maps of each receptor across all 6 imaging 

modalities, we calculate the z-scores  𝑧U,YT  of the Wilcoxon statistic 𝑤U,YT  to its null distribution. 

Data availability 

The three datasets used in this study are publicly available. The PPMI database 

(neuroimaging and clinical evaluations; https://www.ppmi-info.org/) is available to access after 

completing a data use agreement and submitting an online application (https://www.ppmi-

info.org/access-data-specimens/download-data). The HCP database (HCP-1065 [584]; 

tractography template for connectivity estimation; http://www.humanconnectomeproject.org/) is 

available at https://brain.labsolver.org/hcp_template.html, and receptor autoradiography data 

published in [253] is available at https://github.com/AlGoulas/receptor_principles.  

  

https://www.ppmi-info.org/
http://www.humanconnectomeproject.org/
https://brain.labsolver.org/hcp_template.html
https://github.com/AlGoulas/receptor_principles
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Code availability 

The PLS-SVD code is available at https://github.com/neuropm-lab/svd_pls. The re-MCM 

method (implemented in Matlab 2019b) will be incorporated as a part of our open-access, user-

friendly software (https://www.neuropm-lab.com/neuropm-box.html) [593] . 
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Supplementary material 

 

Category PD subjects  
Mean MDS-UPDRS Part III 
score 

18.8 ± 8.7 

Female patients 20 (28.2%) 
Mean age (years) 59.6 ± 9.8 
Mean education (years) 15.5 ± 2.8 
Non-white patients 0 
Right handed patients 64 (90.1%) 

Supplementary Table 5.1. Summary of demographic data for N=71 PD patients. 

 

Category 
Number of 
evaluations 

BJLOT 7.62 ± 1.13 
GDS 8.27 ± 1.09 
HVLT 7.65 ± 1.14 
LNS 7.63 ± 1.12 
LXF 0.79 ± 0.56 
NP1 15.0 ± 1.9 
NP2 15.0 ± 1.9 
NP3 19.5 ± 4.0 
NP4 9.94 ± 3.0 
MoCA 7.63 ± 1.12 
SF 7.62 ± 1.11 
STAIAD 8.28 ± 1.08 
SDM 7.66 ± 1.15 

Supplementary Table 5.2. Mean and standard deviation of the number of clinical 
evaluations per subject. 
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Neurotransmitter Receptor Ligand Type 
Glutamate AMPA [PH]-AMPA Agonist 

NMDA [PH]-MK-801 Antagonist 
Kainate [PH]-Kainate Agonist 

GABA GABAA [PH]-Muscimol Agonist 
GABAB [PH]-CGP 54626 Antagonist 
GABAA-associated 
benzodiazepine binding site 
(GABAA/BZ) 

[PH]-Flumazenil Antagonist 

Acetylcholine M1 [PH]-Pirenzepine Antagonist 
M2 [PH]-Oxotremorine-M Agonist 
M3 [PH]-4-DAMP Antagonist 
Nicotinic α4β2  [PH]-Epibatidine Agonist 

Noradrenaline α1 [PH]-Prazosin Antagonist 
α2 [PH]-RX 821002 Antagonist 

Serotonin 5-HT1A [PH]-8-OH-DPAT Agonist 
5-HT2 [PH]-Ketanserin Antagonist 

Dopamine D1 [PH]-SCH 23390 Antagonist 
Supplementary Table 5.3. Autoradiography ligands and receptor targets. 
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Lobe Anatomical 
subdivision 

Jülich 
area 

Region name  Atlas source 

Occipital lobe Visual cortex hOc1 Brodmann’s area 
17 / V1 

Jülich 

hOc2 Brodmann’s area 
18 / V2 

Jülich 

hOc4d V4 Jülich 
hOc3a V3a Jülich 
hOc3d V3d Jülich 
hOc3v V3v Jülich 
hOc4v V4 Jülich 

Extrastriate cortex FG1 Part of 
Brodmann area 
19 

Jülich 

FG2 Part of 
Brodmann area 
19 

Jülich 

Parietal lobe Somatosensory 
cortex 

1 Brodmann’s area 
1 

Jülich 

2 Brodmann’s area 
2 

Jülich 

3a Brodmann’s area 
3a 

Jülich 

3b Brodmann’s area 
3b 

Jülich 

Superior parietal 
lobule 

5L Brodmann’s area 
5L 

Jülich 

5M Brodmann’s area 
5M 

Jülich 

7A Brodmann’s area 
7A 

Jülich 

Inferior parietal 
lobule 

PGa Anterior inferior 
parietal area  

Jülich 

PGp Posterior inferior 
parietal area  

Jülich 

PFt Temporal 
inferior parietal 
area 

Jülich 
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PFm Medial inferior  
parietal area  

Jülich 

Temporal lobe Auditory cortex Te1 Temporal area 1 
(part of 
Brodmann’s area 
41) 

Jülich 

Te2 Temporal area 2 
(part of 
Brodmann’s area 
41) 

Jülich 

Hippocampus CA Cornu ammonis  Jülich 
DG Dentate gyrus Jülich 

Subiculum Subiculum Subiculum Jülich 
Entorhinal cortex Ent Brodmann’s area 

28 
Jülich 

 20 Brodmann’s area 
20 

Brodmann 

 21 Brodmann’s area 
21 

Brodmann 

 22 Brodmann’s area 
22 

Brodmann 

 36 Brodmann’s area 
36 

Brodmann 

 37 Brodmann’s area 
37 

Brodmann 

 38 Brodmann’s area 
38 

Brodmann 

Frontal lobe Agranular premotor 
cortex 

6 Brodmann’s area 
6 

Jülich 

Primary motor 
cortex 

4p Brodmann’s area 
4p 

Jülich 

Broca’s region 44  Jülich 
45  Jülich 

Frontopolar cortex Fp1 Frontopolar area 
(part of 
Brodmann area 
10) 

Jülich 

Fp2 Frontopolar area 
(part of 
Brodmann area 
10) 

Jülich 
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Orbitofrontal cortex Fo1 Orbitofrontal 
area (part of 
Brodmann area 
11) 

Jülich 

Lateral prefrontal 46 Brodmann’s area 
46 

Brodmann 

 47 Brodmann’s area 
47 

Brodmann 

 8 Brodmann’s area 
8 

Brodmann 

 9 Brodmann’s area 
9 

Brodmann 

Cingulate regions 
(multiple lobes) 

Anterior cingulate p24ab Pregenual 
cingulate areas 
p24a & p24b 

Jülich 

p32 Pregenual 
cingulate area 
p32 

Jülich 

Posterior cingulate 23 Brodmann’s area 
23 

Brodmann 

31 Brodmann’s area 
31 

Brodmann 
 

Basal ganglia Striatum Putamen Putamen AAL 
Caudate Caudate nucleus AAL 

Pallidum Globus 
pallidus 

Globus pallidus DISTAL 

Subthalamic nucleus STN Subthalamic 
nucleus 

DISTAL 

Forebrain Thalamus Thalamus 
(anterior) 

Thalamus 
(anterior) 

AAL 

Thalamus 
(medial) 

Thalamus 
(medial) 

AAL 

Thalamus 
(lateral) 

Thalamus 
(lateral) 

AAL 

Supplementary Table 5.4. Brain regions with receptor data, and the corresponding atlas 
used to extract the ROI map.  

Note that regions are defined by cytoarchitecture, and thus do not correspond perfectly 
with functional regions. 
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Neuroimaging 

Modality Model Parameter Receptor Type Explained Variance 

GM AMPA x fALLF  Glutamatergic 0.12% 

GABAB  GABAergic 0.18% 

α4β2 x GM  Cholinergic 0.31% 

M1 x fALLF  Cholinergic 0.10% 

M2 x fALLF  Cholinergic 0.31% 

α4β2 x fALLF  Cholinergic 0.10% 

M3 x FA  Cholinergic 0.16% 

M1 x t1/t2  Cholinergic 0.12% 

M1  Cholinergic 0.10% 

α2 x fALLF  Adrenergic 0.42% 

5HT1A x SPECT  Serotonergic 0.29% 

D1 x fALLF  Dopaminergic 0.29% 

GM  Non-Receptor 0.14% 

SPECT  Non-Receptor 0.20% 

fALFF Kainate x SPECT  Glutamatergic 0.10% 

NMDA x FA  Glutamatergic 0.33% 

Kainate x t1/t2  Glutamatergic 0.24% 

Bz site x GM  GABAergic 0.31% 

GABAB x fALLF  GABAergic 0.29% 

GABAA x FA  GABAergic 0.27% 
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M2 x FA  Cholinergic 0.13% 

M1  Cholinergic 0.18% 

M2  Cholinergic 0.21% 

5HT1A x t1/t2  Serotonergic 0.08% 

D1 x GM  Dopaminergic 0.19% 

GM  Non-Receptor 0.16% 

SPECT Kainate x FA  Glutamatergic 0.15% 

α1 x FA  Adrenergic 0.12% 

5HT2 x GM  Serotonergic 0.18% 

5HT1A x MD  Serotonergic 0.25% 

5HT2 x t1/t2  Serotonergic 0.23% 

5HT2  Serotonergic 0.21% 

D1 x FA  Dopaminergic 0.14% 

D1  Dopaminergic 0.21% 

FA  Non-Receptor 0.31% 

MD  Non-Receptor 0.19% 

FA Kainate x GM  Glutamatergic 0.22% 

AMPA x t1/t2  Glutamatergic 0.13% 

Kainate x t1/t2  Glutamatergic 0.18% 

AMPA  Glutamatergic 0.36% 

Kainate  Glutamatergic 0.28% 

GABAA x MD  GABAergic 0.20% 
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Bz site x t1/t2  GABAergic 0.20% 

GABAB x t1/t2  GABAergic 0.30% 

GABAA  GABAergic 0.67% 

M1 x fALLF  Cholinergic 0.15% 

M3 x MD  Cholinergic 0.48% 

α4β2 x t/1t2  Cholinergic 0.19% 

α2 x GM  Adrenergic 0.25% 

α2 x MD  Adrenergic 0.23% 

α1 x t1/t2  Adrenergic 0.16% 

α1  Adrenergic 0.13% 

5HT1A x SPECT  Serotonergic 0.08% 

5HT2 x SPECT  Serotonergic 0.18% 

5HT2 x MD  Serotonergic 0.17% 

5HT2 x t1/t2  Serotonergic 0.12% 

GM  Non-Receptor 0.28% 

SPECT  Non-Receptor 0.12% 

MD  Non-Receptor 0.21% 

t1/t2  Non-Receptor 0.23% 

spreading  Non-Receptor 0.17% 

MD AMPA x fALLF  Glutamatergic 0.23% 

Kainate x fALLF  Glutamatergic 0.37% 

Kainate x FA  Glutamatergic 0.20% 



   276 

NMDA x MD  Glutamatergic 0.25% 

Kainate x MD  Glutamatergic 0.38% 

GABAA x GM  GABAergic 0.41% 

Bz site x fALLF  GABAergic 0.31% 

GABAB x MD  GABAergic 0.11% 

GABAA  GABAergic 0.35% 

Bz site  GABAergic 0.50% 

M1 x MD  Cholinergic 0.18% 

M1  Cholinergic 0.21% 

M2  Cholinergic 0.43% 

M3  Cholinergic 0.67% 

α1 x FA  Adrenergic 0.10% 

α2  Adrenergic 0.13% 

5HT1A x GM  Serotonergic 0.12% 

5HT2 x fALLF  Serotonergic 0.54% 

5HT1A x FA  Serotonergic 0.22% 

5HT2  Serotonergic 0.45% 

D1 x FA  Dopaminergic 0.15% 

fALLF  Non-Receptor 0.29% 

FA  Non-Receptor 0.24% 

t1/t2 AMPA x FA  Glutamatergic 0.21% 

NMDA x FA  Glutamatergic 0.55% 
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NMDA  Glutamatergic 0.38% 

Kainate  Glutamatergic 0.16% 

Bz site x GM  GABAergic 0.31% 

GABAA x FA  GABAergic 0.62% 

Bz site x FA  GABAergic 0.27% 

Bz site x MD  GABAergic 0.35% 

Bz site x t1/t2  GABAergic 0.13% 

GABAB x t1/t2  GABAergic 0.20% 

M1 x SPECT  Cholinergic 0.21% 

M1 x FA  Cholinergic 0.15% 

M2 x FA  Cholinergic 0.08% 

M1 x t1/t2  Cholinergic 0.13% 

M3 x t1/t2  Cholinergic 0.18% 

α2 x fALLF  Adrenergic 0.28% 

α2  Adrenergic 0.21% 

5HT2 x GM  Serotonergic 0.52% 

5HT2 x SPECT  Serotonergic 0.14% 

D1 x FA  Dopaminergic 0.19% 

offset  Non-Receptor 0.25% 

FA  Non-Receptor 0.19% 

Supplementary Table 5.5. Biological parameters most correlated with clinical symptoms 
in PD via the primary component, and the percentage of clinical score covariance explained via 

this component. 
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Neuroimaging 

Modality Model Parameter Receptor Type Explained Variance 

GM NMDA x GM  Glutamatergic 0.06% 

NMDA x SPECT  Glutamatergic 0.10% 

NMDA x MD  Glutamatergic 0.05% 

Kainate x MD  Glutamatergic 0.04% 

AMPA  Glutamatergic 0.08% 

NMDA  Glutamatergic 0.04% 

GABAA x GM  GABAergic 0.04% 

GABAA x fALLF  GABAergic 0.09% 

GABAA x FA  GABAergic 0.05% 

GABAA x MD  GABAergic 0.05% 

M1 x fALLF  Cholinergic 0.07% 

M1 x MD  Cholinergic 0.19% 

M3  Cholinergic 0.08% 

α4β2  Cholinergic 0.08% 

α2 x SPECT  Adrenergic 0.11% 

α1  Adrenergic 0.07% 

5HT2 x FA  Serotonergic 0.13% 

5HT2  Serotonergic 0.06% 

D1 x GM  Dopaminergic 0.10% 

D1 x MD  Dopaminergic 0.07% 
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D1  Dopaminergic 0.06% 

offset  Non-Receptor 0.06% 

t1/t2  Non-Receptor 0.04% 

fALFF GABAB x SPECT  GABAergic 0.06% 

M3 x GM  Cholinergic 0.06% 

α4β2 x t1/t2  Cholinergic 0.05% 

5HT2 x MD  Serotonergic 0.08% 

5HT1A x t1/t2  Serotonergic 0.03% 

GM  Non-Receptor 0.04% 

FA  Non-Receptor 0.06% 

t1/t2  Non-Receptor 0.04% 

SPECT AMPA  Glutamatergic 0.04% 

NMDA  Glutamatergic 0.08% 

Kainate  Glutamatergic 0.12% 

GABAB x GM  GABAergic 0.05% 

Bz site x fALLF  GABAergic 0.05% 

GABAB x FA  GABAergic 0.07% 

α4β2 x SPECT  Cholinergic 0.14% 

α1 x SPECT  Adrenergic 0.04% 

α2 x SPECT  Adrenergic 0.07% 

α2  Adrenergic 0.09% 

5HT2 x fALLF  Serotonergic 0.09% 

D1 x FA  Dopaminergic 0.03% 
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FA Kainate x GM  Glutamatergic 0.10% 

NMDA x SPECT  Glutamatergic 0.10% 

Kainate x FA  Glutamatergic 0.09% 

Kainate  Glutamatergic 0.12% 

GABAA x SPECT  GABAergic 0.04% 

GABAB  GABAergic 0.07% 

α1 x GM  Adrenergic 0.06% 

α2 x fALLF  Adrenergic 0.05% 

α1 x SPECT  Adrenergic 0.09% 

α1 x t1/t2  Adrenergic 0.06% 

5HT1A  Serotonergic 0.08% 

D1 x MD  Dopaminergic 0.07% 

MD Kainate x MD  Glutamatergic 0.04% 

Bz site x fALLF  GABAergic 0.06% 

Bz site x SPECT  GABAergic 0.07% 

GABAA x FA  GABAergic 0.07% 

Bz site x FA  GABAergic 0.04% 

GABAB x MD  GABAergic 0.16% 

Bz site  GABAergic 0.06% 

GABAB  GABAergic 0.06% 

M2 x fALLF  Cholinergic 0.05% 

M1 x SPECT  Cholinergic 0.03% 

M2 x FA  Cholinergic 0.07% 
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M1 x t1/t2  Cholinergic 0.06% 

M2 x t1/t2  Cholinergic 0.06% 

M2  Cholinergic 0.06% 

M3  Cholinergic 0.09% 

α2 x fALLF  Adrenergic 0.04% 

5HT1A x GM  Serotonergic 0.05% 

5HT1A x t1/t2  Serotonergic 0.04% 

5HT2  Serotonergic 0.06% 

D1 x SPECT  Dopaminergic 0.07% 

t1/t2  Non-Receptor 0.06% 

t1/t2 AMPA x SPECT  Glutamatergic 0.07% 

NMDA x FA  Glutamatergic 0.07% 

GABAA x GM  GABAergic 0.04% 

GABAB x GM  GABAergic 0.04% 

Bz site x SPECT  GABAergic 0.06% 

GABAB x SPECT  GABAergic 0.05% 

M1 x GM  Cholinergic 0.08% 

M3 x GM  Cholinergic 0.14% 

M2 x SPECT  Cholinergic 0.04% 

α4β2 x MD  Cholinergic 0.06% 

M1  Cholinergic 0.16% 

M3  Cholinergic 0.15% 

α1 x GM  Adrenergic 0.03% 
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α1 x SPECT  Adrenergic 0.07% 

α1 x FA  Adrenergic 0.04% 

α1 x MD  Adrenergic 0.08% 

5HT2 x GM  Serotonergic 0.07% 

5HT2 x MD  Serotonergic 0.05% 

D1 x MD  Dopaminergic 0.06% 

D1 x t1/t2  Dopaminergic 0.07% 

GM  Non-Receptor 0.06% 

Supplementary Table 5.6. Biological parameters most correlated with clinical symptoms 
in PD via the secondary component, and the percentage of clinical score covariance explained. 

 

Receptor Type 
Total variance explained 
in the primary component 

Total variance explained in 
the secondary component 

Glutamatergic 4.85% 1.19% 
GABAergic 5.97% 1.24% 
Cholinergic 4.77% 1.74% 
Adrenergic 2.02% 0.88% 
Serotonergic 3.77% 0.75% 
Dopaminergic 1.16% 0.53% 
Supplementary Table 5.7. Total MCM parameter-clinical co-variance explained by 

receptor type in PD patients (via each  SVD component). 

 

Imaging Modality Average Gain in R2 P-value 
GM 35.6% ± 10.8% P=1.16×10-27 
fALFF 18.8% ± 8.0% P=7.22×10-13 
SPECT 20.2% ± 12.4% P=1.38×10-9 
FA 21.7% ± 11.8% P=5.87×10-11 
MD 19.0% ± 9.1% P=1.69×10-9 
t1/t2 17.1% ± 9.3% P=5.83×10-9 

Supplementary Table 5.8. Performance gain due to the inclusion of receptor maps, and 
the p-value from a two-sample t-test for each modality, across all (N=71) subjects. 
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Imaging Modality Average Gain in R2 P-value 
GM 13.4% ± 5.3% P=2×10-16 
fALFF 7.3% ± 4.5% P=2×10-16 
SPECT 6.7% ± 4.3% P=2×10-16 
FA 7.5% ± 5.3% P=2×10-16 
MD 5.3% ± 4.0% P=2×10-16 
t1/t2 6.0% ± 3.5% P=2×10-16 

Supplementary Table 5.9. Performance gain due to true receptor distributions over null 
maps, and p-value of the true receptor data model belonging to the null distribution, using 

Fisher’s method to combine p-values across all (N=71) subjects. 
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Supplementary Figure 5.1. Glutamatergic receptor influence maps. 
The first row shows the densities of AMPA, NMDA and kainate receptors, with remaining 

rows showing their influence on gray matter density (GM), fractional amplitude of low frequency 
fluctuations (fALFF) from rs-fMRI, dopaminergic transporter (DAT) SPECT density, fractional 
anisotropy (FA), mean diffusivity (MD) and t1/t2 ratio. All maps are re-scaled to arbitrary units 

for visualization, and show only regions with significant z-scores (P<0.05) of Wilcoxon rank-
sum statistics relative to the Wilcoxon statistics due to null distributions (1000 iterations with 

permuted receptor maps). 
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Supplementary Figure 5.2. GABAergic receptor influence on imaging modalities. 
 The first row shows density maps for GABAA, GABAB and the Bz binding site, with 

remaining rows showing receptor influence maps for each imaging modality, including gray 
matter density (GM), fractional amplitude of low frequency fluctuations (fALFF) from rs-fMRI, 
dopaminergic transporter (DAT) SPECT density, fractional anisotropy (FA), mean diffusivity 

(MD) and t1/t2 ratio. All maps are re-scaled to arbitrary units for visualization, and show only 
regions with significant z-scores (P<0.05) of Wilcoxon rank-sum statistics relative to the 

Wilcoxon statistics due to null distributions (1000 iterations with permuted receptor maps). 
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Supplementary Figure 5.3. Cholinergic receptor influence maps. 

The first row shows the densities of the muscarinic M1, M2 and M3, and cholinergic α4β2 
receptors, with remaining rows showing receptor influence maps for each imaging modality, 

including gray matter density (GM), fractional amplitude of low frequency fluctuations (fALFF) 
from rs-fMRI, dopaminergic transporter (DAT) SPECT density, fractional anisotropy (FA), 

mean diffusivity (MD) and t1/t2 ratio. All maps are re-scaled to arbitrary units for visualization, 
and show only regions with significant z-scores (P<0.05) of Wilcoxon rank-sum statistics 
relative to the Wilcoxon statistics due to null distributions (1000 iterations with permuted 

receptor maps). 
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Supplementary Figure 5.4. Adrenergic receptor influence maps. 
The first row shows α1 and α2 receptor density maps. with remaining rows showing 

receptor influence maps for each imaging modality, including gray matter density (GM), 
fractional amplitude of low frequency fluctuations (fALFF) from rs-fMRI, dopaminergic 

transporter (DAT) SPECT density, fractional anisotropy (FA), mean diffusivity (MD) and t1/t2 
ratio. All maps are re-scaled to arbitrary units for visualization, and show only regions with 

significant z-scores (P<0.05) of Wilcoxon rank-sum statistics relative to the Wilcoxon statistics 
due to null distributions (1000 iterations with permuted receptor maps). 
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Supplementary Figure 5.5. Serotonergic receptor influence maps. 

The first row shows the 5HT1A and 5HT2 serotonergic receptor density maps, with 
remaining rows showing receptor influence maps on gray matter density (GM), fractional 

amplitude of low frequency fluctuations (fALFF) from rs-fMRI, dopaminergic transporter (DAT) 
SPECT density, fractional anisotropy (FA), mean diffusivity (MD) and t1/t2 ratio. All maps are 
re-scaled to arbitrary units for visualization, and show only regions with significant z-scores 

(P<0.05) of Wilcoxon rank-sum statistics relative to the Wilcoxon statistics due to null 
distributions (1000 iterations with permuted receptor maps). 
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Supplementary Figure 5.6. Dopaminergic receptor influence maps. 
The first row shows the D1 dopaminergic receptor density, with remaining rows showing 

its influence on each imaging modality, which include gray matter density (GM), fractional 
amplitude of low frequency fluctuations (fALFF) from rs-fMRI, dopaminergic transporter (DAT) 
SPECT density, fractional anisotropy (FA), mean diffusivity (MD) and t1/t2 ratio. All maps are 
re-scaled to arbitrary units for visualization, and show only regions with significant z-scores 

(P<0.05) of Wilcoxon rank-sum statistics relative to the Wilcoxon statistics due to null 
distributions (1000 iterations with permuted receptor maps). 
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Chapter 6. Discussion 

Summary of findings 

Neurodegenerative disorders such as AD and PD involve multi-factorial physiological 

alterations, from dysregulated neuronal activity and perfusion changes to atrophy and 

proteinopathy accumulation. Altered neurotransmission has been implicated in many of these 

physiological changes [25] [24], but the role of multi-neurotransmitter dysfunction and its 

association with multi-domain symptomatic variability has not been sufficiently characterized.  

To address this key gap in our knowledge of disease biology, this thesis has attempted to 

link the spatiotemporal progression of neurodegenerative changes with the neurotransmitter 

receptor architecture of the brain. Using longitudinal multi-modal imaging markers in 

combination with receptor autoradiography and diffusion tractography templates, personalized 

whole-brain computational models with interpretable parameters are fit to healthy aged subjects, 

individuals on the AD spectrum and PD patients. These model parameters represent the subject-

specific roles of mechanisms, such as local receptor-mediated interactions between physiological 

systems (e.g., blood flow and atrophy) and the network propagation of abnormalities. Notably, 

using a data-driven inter-subject comparison with multi-domain symptom severity, we identify 2 

distinct and co-occurring “disease axes” in both AD and PD with distinct symptomatic profiles. 

These results suggest that disorders such as AD and PD may involve the overlap of separate 

disease processes, that additively or synergistically result in the observed clinical progression. 
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Modeling approach 

Chapter 4 introduces re-MCM, a dynamical system model where the state variables are 

regional measures of gray matter density, functional activity, CBF, glucose metabolism, and 

amyloid and tau levels. These variables are quantified by structural, functional and perfusion 

MRI as well as FDG, AV-45 and AV-1451 PET. Chapter 5 presents an application of re-MCM to 

PD, examining the receptor-mediated interactions between gray matter atrophy, functional 

activity dysregulation, microstructural changes, and dopaminergic loss. These factors are 

quantified using T1-derived gray matter density, t1/t2 ratio, fALFF, MD, FA and DAT density 

maps, from structural, functional, and diffusion MRI and DAT SPECT. For each individual 

subject, the regional rate of change in each physiological variable is decomposed into i) within-

region interactions with other variables (both direct and mediated by the local concentrations of 

15 neurotransmitter receptors), and ii) inter-region propagation of abnormality along the 

structural connectome.  

Receptor template maps are informative to the individualized 

progression of pathophysiology 

In a heterogeneous aged population (consisting of healthy aged subjects, MCI individuals 

and AD patients), re-MCM explains an average of ~70% (± 20%) of longitudinal variance in 

imaging rate of change, including a ~20% improvement due to (direct and interaction) receptor 

effects (Supplementary Table S8). In PD patients, the inclusion of regional receptor 

concentrations improved the model variance explained by ~42.3% on average. These 

improvements are significant for almost all subjects after accounting for increased model size, 

and compared to permuted null models.  
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Overall, there are widespread interactions between different forms of structural and 

functional degradation (Chapter 5, Figure 5.3), with distinct contributions attributed to the spatial 

patterns of neurotransmitter receptor distribution (Chapter 5, Figure 5.4). Receptor distributions 

contribute especially strongly to gray matter atrophy, undirected microstructural damage (MD), 

and dendrite loss (t1/t2).  

These findings support the hypothesis of this work, that even group-averaged templates 

of molecular data are relevant features determining local vulnerability to neurodegenerative 

changes. 

Inter-subject variability in model mechanisms is linked to multi-

domain symptomatic profiles 

Lacking definitive biological disease definitions, clinical symptoms are the variable of 

interest with which we attempted to validate model-inferred mechanistic differences between 

subjects. Notably, inter-subject variability in model parameters is significantly and robustly 

correlated with multi-domain cognitive symptoms using PLS-SVD cross-decomposition. In AD 

(N=25), there are two prominent latent components. The first component (p<0.003, FWE-

corrected) explains 39.7% of parameter-symptom co-variability with its main cognitive 

contribution from executive dysfunction. Prominent cognitively associated receptor effects 

include glutamatergic disruption of functional activity, GABAergic mediation of amyloid 

accumulation, and cholinergic mediation of tau accumulation. There is also a secondary 

component (23.4% co-variance explained, Supplementary Figure S10) with a similarly high 

correlation between projections of model parameters and cognitive scores (r=0.890, p<10-8). In 
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this secondary component, memory, language and visuospatial dysfunction correlate mainly with 

model predictors of perfusion changes, metabolic alterations and proteinopathy accumulation. 

While healthy ageing (N=112), there is less consistent cognitive variability. Nevertheless, 

a statistically significant and stable secondary PLS-SVD component was observed (15.5% co-

variance explained, p<0.02), mainly linked to tau accumulation, followed by atrophy, CBF, 

functional activity and metabolic alterations. Notably, predictors of amyloid accumulation did 

not correlate with cognitive decline in healthy ageing. 

In PD patients (N=71), there are two significant and stable components (explaining 

48.4% and 13.2% of the co-variance, respectively). In each of these components, the latent 

projections of parameters and clinical rates of decline are strongly correlated (r=0.70 and r=0.86, 

respectively). These components correspond to motor symptoms and cognitive processing speed, 

and visuospatial function along with working memory, depression and anxiety (Chapter 5, Figure 

5.5c-d). The two disease axes have distinct model-inferred mechanistic contributions; for 

example, GABA and glutamate receptor distributions drive t1/t2 ratio changes in the primary 

component, while the cholinergic system plays the largest role in the secondary component. The 

results correspond closely to the dual syndrome hypothesis of PD [122], which postulates 

dopaminergic executive impairment and cholinergic visuospatial dysfunction. However, as noted 

in Chapter 5, Discussion, the dopaminergic maps in our models are relatively uninformative due 

to their spatial homogeneity, complementary information with DAT-SPECT, and early depletion 

in PD patients [708].  
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Finally, to derive spatial information from these subject-level model parameters, we 

inferred the importance of receptor templates to explaining the physiological alterations at 

different brain regions in PD. 

The distance of patients’ neurotransmission mechanisms from a 

normative distribution is correlated with symptomatic decline 

By comparing receptor parameters between AD patients and a normative distribution 

from healthy controls, an overall “receptor alteration fingerprint” is obtained. These 6 features 

(one per neurotransmitter family) explained 71.4% of the variance in executive function scores, 

and 43.8% of the variance in MMSE scores for AD patients (Chapter 4, Figure 4.6). Particularly, 

i) executive dysfunction seemed to be explained by GABAergic and cholinergic alterations, ii) 

memory scores largely depended on dopaminergic alterations, and iii) MMSE is associated with 

a combination of glutamatergic, GABAergic and serotonergic scores. Finally, we demonstrate 

that subjects with similar clinical scores can have different model-inferred neurotransmission 

dysfunction (e.g., more cholinergic vs. more glutamatergic alterations), providing a grounding 

for model-based treatment selection.  

Inferring latent mechanisms from model parameters 

The work presented in this thesis fits personalized (i.e., subject-specific) models where 

each 𝛼 model parameters in Equations 4.7 or 5.6 has a biological interpretation: i) direct effects 

between the physiological processes behind imaging measures (e.g., the effect of local amyloid 

accumulation on gray matter atrophy), ii) receptor-mediated interactions (e.g., NMDA-mediated 

effects of amyloid accumulation on gray matter atrophy), iii) direct receptor effects (e.g., local 
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vulnerability to gray matter atrophy based on NMDA receptor expression), and iv) network 

propagation of pathophysiology (e.g., amyloid propagation to neighboring regions, or  

transneuronal degeneration leading to atrophy). 

These parameters are then compared across subjects, to identify mechanisms consistently 

associated with symptom severity. More generally, computational models with interpretable 

parameters can be used to infer mechanistic differences between individuals or groups that may 

not be directly observable. The most prominent example of this approach is the incorporation of 

amyloid-facilitated neuronal hyperexcitability and disrupted excitatory-inhibitory (E/I) balance 

in biophysical models of EEG or fMRI activity, with the influence of external (network) input on 

local populations modulated by an optimized global coupling factor (𝐺).  

In the personalized models of Stefanovski et al., a network of regional Jansen-Rit neural 

mass models (which consists of excitatory and inhibitory interneurons in addition to excitatory 

pyramidal cells) produce simulated EEG output [508]. PET-derived amyloid load determines the 

inhibitory time constant. Qualitative features in the bifurcation diagrams of neural mass model 

input-output relationships (e.g., the presence of limit cycles) at varying amyloid burden reflect 

model-inferred differences between diagnostic classes. Interestingly, regional variation in 

amyloid burden was associated with oscillatory slowing in AD patients, but the opposite occurs 

in cognitively normal individuals [508]. Simulated therapy using memantine (an NMDA receptor 

antagonist) increases mean EEG frequency, suggesting a mechanistic explanation for the 

symptomatic benefits of the drug [508]. 

Using a similar model, Patow et al. note inter-class differences in amyloid- and tau- 

driven scaling parameters. Amyloid influences neuronal activity more in the early stages of the 

AD spectrum (i.e., in MCI patients), while tau dominates later [709]. Zimmerman et al. note that 
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personalized biophysical model parameters correlate better with cognition than more direct, 

imaging-derived measures such as structural or functional connectivity [651]. Sanchez-

Rodriguez et al. observe increased synergistic effects of amyloid and tau burden on neuronal 

activity with disease progression [501]. 

There studies support i) the importance of intra-individual, inter-region influence of 

pathological factors on neural activity, and ii) the inter-individual differences in model 

parameters between diagnostic classes. The design of such in silico models may be informed by 

suspected disease mechanisms, and, conversely, it may guide other molecular or interventional 

studies. 

However, while the interaction parameters capture a subject-specific effect (i.e., the 

NMDA-functional activity interaction parameter in the atrophy model represents the effects of 

spatial variability in this variable if NMDA density and functional activity were at their spatial 

mean values), it is unclear whether this may be due to an altered receptor distribution, 

dysfunctional receptor activity, or some other, potentially molecular or cellular factor. Instead, 

the parameters provide clues for more detailed molecular investigation (e.g., in vitro or animal 

studies). 

Evaluating mechanistic hypotheses 

Identifying causal mechanisms of disease onset and progression is an overarching goal in 

ageing and neurodegeneration research. Causal mechanisms are particularly important in 

neurodegeneration, where upstream targets for effective disease-modifying treatment have not 

been identified (resulting in the “causality gap”  [527]). However, “causal mechanism” can be a 

nebulous term, referring to a variety of abstractions from the molecular, cellular, circuit, network, 
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system or behavioral level [710]. In the context of this thesis, a mechanism refers to the 

biological interpretations of model parameteters summarized in the previous subsection.  

By inferring latent biological mechanisms and their inter-subject differences, 

computational models such as re-MCM can support the search for mechanistic hypotheses even 

with observational data. Although this work relies on observational data (with the model 

structure being causal), the Bradford Hill criteria for causation provide a multi-dimensional 

guideline to evaluate such studies based on effect size, reproducibility, specificity of findings, 

temporal order of proposed cause and effect, a dose-dependent gradient of effects, consistency 

with known mechanisms, and  coherence between different types of studies (e.g., replicating 

mechanisms between computational models and in vitro studies) [331]. 

So, while these individualized model parameters have biological interpretations, this 

work is exploratory. Definitive conclusions about disease biology, and robust translation to 

therapy would require replication of observed associations from other imaging cohorts, as well as 

thorough validation of the identified molecular mechanisms.  

Limitations 

Modeling requires longitudinal and multi-modal imaging data 

The work presented in this thesis has attempted to characterize the progression of and 

interactions between multiple imaging modalities in individual subjects. Naturally, the 

availability of sufficient multi-modal and longitudinal data has limited the number of qualifying 

subjects (N=25 AD and N=71 PD patients), particularly lacking controls from the PPMI cohort. 

The number of longitudinal imaging visits per subject determined the sample size in subject-

specific model fitting, while the number of subjects with sufficient data determined the sample 
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size for downstream analysis. Therefore, simple linear techniques (linear regression and PLS-

SVD) were used in these steps. Nevertheless, imaging models as well as stable and significant 

PLS-SVD components captured a substantial amount of data variance.  

To ensure that all neuroimaging modalities could be included in the model, missing 

longitudinal neuroimaging data was imputed when necessary. If assumptions about the 

underlying mechanism of missingness (e.g., data missing at random) are not valid, imputation 

may introduce bias. Imputation may also reduce effective sample size and underestimate data 

variability. 

The models were also fit to a broader range of subjects from ADNI (N=423 total, 

including cognitively unimpaired individuals, MCI subjects and AD patients). While this allowed 

the characterization of parameter variability and provided a normative distribution for receptor 

parameters (Chapter 4, Clinically similar subjects have different underlying receptor alterations), 

symptom severity is milder and AD-specific phenotype is more difficult to ascertain. 

On the other hand, more data was available for PD patients compared to controls in the 

PPMI cohort. However, PPMI aimed to recruit subjects who had recently been diagnosed with 

PD and had not yet been treated [306]. The subjects likely represent an early motor phase of PD, 

a transitionary period between the earliest non-motor manifestations and the more severe disease 

progression to come.  Longitudinal studies with pre-symptomatic individuals that converted to 

PD may be informative in potential differences in model-inferred mechanisms over progressive 

disease stages. Likewise, characterization of more advanced PD patients may be informative to 

understanding the receptor basis of diverging clinical subtypes. 
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Finally, for practical clinical applications of such dynamical systems models, it would be 

desirable to perform system identification with as few time points as possible and using the least 

invasive modalities. 

Receptor distributions are from averaged templates  

A major motivation for this work was to infer the involvement of multiple 

neurotransmitter systems in physiological alterations over the course of ageing and 

neurodegenerative disease progression, in the absence of individualized receptor distribution 

data. It must be noted that longitudinal receptor mapping for over a dozen neurotransmitter 

receptors would be prohibitively expensive. Instead, post-mortem autoradiography templates 

were used, which were based on the neurotransmitter receptor profiles of healthy aged 

individuals (72-77 years old) with no neurological or psychiatric conditions [423]. The usage of 

post-mortem autoradiography data allowed the inclusion of receptor types without in vivo 

radioligands, and many recent studies (summarized in Chapter 3) have examined the spatial 

correlation of patients’ neuroimaging features with molecular template data (from PET, 

autoradiography or the Allen Human Brain Atlas post mortem gene expression). 

 The models presented in this thesis assume that the receptor architecture of healthy aged 

brains is representative of the molecular environment at the onset of ageing and 

neurodegeneration. Despite using averaged data from a different set of subjects, this work 

demonstrates that the aged brain’s neurotransmitter receptor architecture is informative to 

understanding individualized interactions between various physiological systems. Receptor 

templates provided statistically significant improvements in almost all subjects’ imaging models 

(between 15.6% and 22.3% average improvement among ADNI subjects, and 42% average 

improvement in PD), after accounting for increased model size and compared to spatial null 
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models (Chapter 4, Multi-scale interactions involving neurotransmitter receptors are important 

to explaining multifactorial brain reorganization and Chapter 5, Neurotransmitter receptor maps 

significantly improve the explanation of multi-factorial brain reorganization in PD). 

However, receptor architecture is not static, and is itself affected by neurodegeneration as 

well as normal ageing. Receptor PET binding studies in animal models and AD and PD patients 

[711] [123] as well as post mortem assessment of neurotransmitter metabolites [712] point 

towards alterations of neurotransmitters, transporters and receptors. The dynamics of these 

features over the ageing and neurodegenerative process would need to be better characterized. 

Biophysical modeling to infer specific mechanisms of neurotransmission dysfunction (e.g., 

presynaptic neurotransmitter or transporter alterations or post-synaptic receptor modifications) 

would be a promising avenue of future work with pharmacological relevance.  

Receptor data has limited spatial resolution  

The regionally averaged receptor autoradiography data constrained the analysis to a 

custom brain parcellation [579]. While some recent studies have used whole-brain PET templates 

or gene expression maps to spatially correlate imaging alterations with molecular features 

(summarized in Chapter 3), the three data modalities not strongly correlated [655]. They likely 

represent different views of the underlying biological processes. The latter is arguably closer to 

the relevant biological feature (functional proteins), with a theoretically higher spatial resolution 

than PET [227].  

As these regions are defined by cyto- and receptor-architecture, they are consistent in 

terms of receptor expression. However, there may be partial volume effects in imaging 

modalities, due to overlapping tissue types, as well as potential blurring effects in small volume 

regions and lower spatial resolution imaging modalities. Registration of the histological data to 
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3D brain maps would allow more fine-grained analysis, i) at the voxel scale, ii) using different 

brain atlases, and iii) with the spatial distributions of specific cell types [454]. 

Imaging abnormalities are physiologically non-specific 

A major limitation in interpreting neuroimaging-based features as distinct physiological 

mechanisms is their non-specificity. Broadly, fMRI has strong influence from non-neuronal 

processes, diffusion MRI and T1/T2 ratio have unclear microstructural origin, and molecular 

PET imaging can suffer from off-target binding and heterogeneous uptake [526]. Below, some 

specific limitations of imaging markers used in this thesis and caveats about interpretation are 

highlighted. 

Interpreting microstructure  

Diffusion MRI measures are typically interpreted in terms of axonal integrity and 

myelination in white matter (Chapter 2). However, in the primarily gray matter regions of our 

atlas, diffusion is assumed to be more isotropic. In Chapter 5, over-interpretation of the 

underlying alterations has been avoided by considering FA and MD to reflect “directed” and 

“undirected” microstructure, respectively.  

As an alternative underlying source for the diffusion scalar maps, a study comparing in 

vitro imaging of a ferritin-loaded phantom with in vivo data suggests that gray matter diffusion 

MRI measures may instead be associated with ferritin-bound iron [713]. Iron accumulates in 

gray and white matter with age in specific patterns, potentially as a consequence of factors such 

as increased blood-brain barrier permeability, neuroinflammation, and disrupted iron 

homeostasis [714] [715]. The distribution and concentration of brain iron may change in 
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neurodegenerative diseases [713], which offers yet another interpretation for the diffusion scalar 

maps. However, further validation of diffusion MRI metrics in these regions is necessary. 

Even in purely white matter regions, interpretation of FA is further complicated by the 

“crossing fibers problem”. A decrease in FA is assumed to reflect the loss of directed white 

matter microstructure, but it is estimated that 63%-90% of white matter voxels contain multiple 

fiber bundles of different orientations [716]. As a result, FA cannot distinguish between the lack 

of directed microstructure and the presence of directed microstructure with orthogonal 

orientations. In the latter case, the selective degeneration of white matter fiber bundles along one 

orientation can counter-intuitively increase the anisotropy of a voxel [193]. This is intrinsic to the 

complex organization of brain tissue, and not an artifact of technical limitations [717]. As an 

aggregate measure of diffusivity along all axes, MD is expected to be more robust to the 

“crossing fibers problem” [193]. Alternatively, fixel-based analysis could disentangle the signal 

due to each fiber bundle [718].  

Finally, while the T1/T2 ratio is often associated with myelin [181], comparison with 

other imaging measures, such as myelin water fraction (MWF), diffusion scalars and 

magnetization transfer ratio, suggests a non-myelination component [182] [183]. In Chapter 5, 

the T1/T2 ratio has been interpreted as a measure of dendrite density, due to its strong correlation 

(at least in MS patients) [185] . While the precise underlying microstructural source for the 

T1/T2 signal is unresolved, it provides an additional picture that is distinct from diffusion MRI 

[182]. 

Partial volume effects  

Partial volume effects may introduce bias into certain imaging modalities. A single voxel 

may contain multiple tissue types (e.g., gray and white matter as well as CSF) or orientations 
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(such as crossing fibers) [719]. These varied tissue types can have vastly different properties, 

such as the 2-5 times higher perfusion of gray matter compared to white matter (with CSF not 

being perfused) [720]. In the gray matter regions of the atlas, this may particularly affect the 

interpretation of diffusion MRI measures.  

Furthermore, atrophy may lead to an overestimation of gray matter MD [721], and ASL-

measured perfusion [720] alterations. The direct effect of gray matter alterations on MD in 

Chapter 5, Figure 5.3a may reflect atrophy-related changes (which are much smaller than MD 

changes not associated with atrophy) . These specific biases are somewhat mitigated in our 

models, where multiple imaging and neurochemical features are considered simultaneously. 

However, more broadly, the effects of partial volume effects would need to be robustly 

characterized to validate mechanistic conclusions from MCM, potentially by using voxel-scale 

receptor atlases. 

Functional activity alterations 

The BOLD signal is an indirect measure of neuronal activity; it contains contributions 

from metabolic and vascular processes, as well as other non-neuronal factors such as cardiac and 

respiratory noise and cerebral autoregulation [722]. Furthermore, hemodynamic response has 

spatiotemporal variation [723], and modulatory neurotransmission can break the conventional 

interpretation of BOLD response as reflecting neuronal activity. For example, local inhibitory 

circuits may suppress the inputs from projection neurons, resulting in a BOLD response without 

the accompanying neuronal activity [549]. Thus, it would be more accurate to consider the 

BOLD signal as a measure of regional synaptic input and local activity [549]. 

Of particular interest to this thesis is the resting state BOLD signal, in the absence of task 

stimulus. The origins of intrinsic resting state dynamics are an open question, potentially arising 



   304 

from sodium and potassium ion concentration dynamics [724] or the anatomically-facilitated 

coupling between oscillatory activity across brain regions [725]. It has been suggested that 

resting state activity reflects some sort of “functional capacity” that can be affected in disease 

[726]. 

The models presented in this thesis used the fALFF as the measure of regional functional 

integrity, which may suppress physiological noise by focusing on low frequency (0.01-0.08 Hz) 

BOLD oscillations [578]. Unlike functional connectivity (FC) and related measures such as 

regional homogeneity (ReHo), fALFF does not incorporate information from outside the ROI, 

which is a desired property of for the interpretability of state variables in re-MCM. Furthermore, 

it exhibits intra-scan temporal stability [619], test-retest reliability [620], and sensitivity to AD 

and PD progression [577] [219] [220] [665]. It also shows a higher correspondence to glucose 

uptake compared to other fMRI measures, thus potentially better reflecting neuronal activity 

[576]. While there is an association between resting state BOLD and electrophysiological 

measurements, the latter explains only around 10% of the BOLD signal variability [623]. Thus, 

while it appears to be relevant to disease progression, these caveats must be noted in interpreting 

fALFF as a measure of neuronal activity. 

Finally, we must note the limited temporal limitations of perfusion and functional MRI. 

Veins (and capillaries) are the major contributors to the BOLD signal, and they dilate more 

slowly than arteries [723]. However, the flow of dilation is too fast to be temporally resolved by 

fMRI [723]. The temporal delay between neuronal activity and the corresponding BOLD spike 

(more precisely, the full width at half maximum of the hemodynamic response function) is 

estimated to be around ~5 seconds [727]. Similarly, ASL would not be able to resolve processes 

faster than the longitudinal relaxation time of blood [627] [728]. 
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Important disease processes may not be captured by the imaging modalities 

While this thesis has attempted to cover a wide range of physiological processes, it is 

likely that several important factors have been missed. Although it is believed to be a significant 

factor in AD and PD [21] [74] [75], an imaging marker of neuroinflammation has only recently 

emerged in the form of translocator protein (TSPO) PET [76]. Ongoing efforts to develop and 

validate PET tracers for TDP-43 [729] and α-synuclein [730] would also enable in vivo 

assessment of their contribution to disease progression. As large, multi-site longitudinal studies 

incorporate such emerging imaging markers, we will have an opportunity to expand 

computational models such as re-MCM to study new processes. 

Applications and extensions to the model 

Connectivity 

In this work, we considered a combination of local, receptor-mediated interactions and 

network propagation of pathophysiology. The substrate for this network was the white matter 

structural connectome. However, the spreading of physiological dysfunction may occur along 

other networks, such as functional, vascular, metabolic and molecular connectivity [33] [536] 

[731] [537], as well as nearby brain regions (e.g., diffusion in extracellular space). How these 

different forms of connectivity are interrelated is also an important question; structural and 

vascular connectivity both seem to determine functional connectivity [625] [626]. Furthermore, 

while directional connectivity cannot be inferred from diffusion tractography, analogous regions 

from tracer-derived animal connectomes may be an informative proxy [401]. 

Finally, more detailed biophysical modeling of multi-scale connectivity and interactions 

may be a promising direction. Incorporating receptors in regional microcircuits [486] [501] and 
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incorporation of protein aggregation kinetics [207] may elucidate better mechanistic insight. For 

example, a computational model of spatiotemporal amyloid distribution suggests that 

propagation may be driven by regional differences in capacity for the misfolded protein [732]. 

Cell types 

One of the defining features of neurodegenerative diseases is the selective loss of specific 

cellular populations. As discussed in Chapter 2, non-neuronal cell types are linked with many of 

the interactions considered in this work, such as astrocyte reactivity modulating tau 

hyperphosphorylation [80].  There is evidence for the differential vulnerability of various cell 

types in neurodegeneration [733]. Voxel-scale whole brain cell type atlases, derived from gene 

expression, would help resolve potential cell-specific effects [454], and could be used as 

complementary or alternative molecular features in MCM. In general, complementary cellular 

and molecular information would clarify whether receptor mechanisms or other spatially 

correlated features underlie the associations observed in this thesis. 

Data-driven transdiagnostic categorization using model parameters 

Despite diverging phenotype, neurodegenerative diseases share the defining features of 

progressive and selective neuronal loss followed by cognitive and functional decline. There is 

notable genetic, pathological, imaging, and clinical overlap between neurodegenerative diseases, 

and with psychiatric disorders [734] [165] [735]. This psychiatric component is evident in the 

role of depression and anxiety in the secondary PD axis in Chapter 5: Two axes of receptor-

pathology alterations underlie clinical symptoms in PD. 

Most PD patients with dementia have AD pathology [261]. Other conditions (e.g., PD 

dementia, LBD or vascular dementia) can often be confused for AD, and around 15% of ALS 
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patients meet the clinical criteria for FTLD [558] [736]. A meta-analysis suggests that the best-

case diagnostic accuracy for PD (by movement disorder specialists) is around 80% and has not 

significantly improved since the 1980s despite advances in imaging [262]. Similarly, up to 23% 

of patients clinically diagnosed with AD do not have autopsy-confirmed AD pathology [263] 

(with the remainder often having mixed pathology [59] [275]). Misdiagnosis may be particularly 

likely in the early stages and mild phenotypes, where atypical presentations and treatment 

response (two criteria often used to distinguish diseases) are less evident [737] [263] [261]. 

These estimates may also be affected by the inconsistency of disease definitions; either 

neuropathological evaluation, consensus criteria (e.g., UK Parkinson’s Disease Society Brain 

Bank Research Center criteria or the MDS Clinical Diagnosis Criteria) or refined diagnosis by 

experts may be used as the ground truth diagnosis. 

One possible interpretation of mixed pathology can be the co-occurrence of independent 

(but possibly interacting) age-related disorders. It is possible that mixed pathology may 

additively or synergistically contribute to symptomatic clinical disease, despite each pathology 

individually being at “subclinical” levels [261]. To disentangle the contributions of different 

disease processes, a biological taxonomy of neurodegenerative disorders based on affected 

anatomical pathways, vulnerable cell populations and molecular features [738] may be 

necessary. 

To support these efforts, integrative, transdiagnostic analysis using mechanistic models 

such as MCM could be used to identify shared and distinct underlying biological mechanisms 

from in vivo data. The identification of multiple “disease axis” for AD (Chapter 4: Receptor-

imaging alterations underlying cognitive deterioration in AD) and PD (Chapter 5: Two axes of 

receptor-pathology alterations underlie clinical symptoms in PD) from patient-specific 
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computational models is a demonstration of this approach. Combining existing large studies 

across disease cohorts may be feasible start, with data-driven analysis using clinical symptoms 

rather than case-control comparisons based on diagnosis. However, the lack of shared 

biomarkers and clinical (e.g., simultaneous cognitive and psychiatric) assessments can be an 

impediment in practice. 

Biological definitions of AD and PD using model parameters 

In addition to the transdiagnostic overlap among neurodegenerative diseases, there is 

notable within-disease heterogeneity in disorders such as AD and PD [13] [739]. While they have 

historically been defined by a combination of symptoms and neuropathological features, it is 

acknowledged that a biological (as opposed to clinical) disease definition for living patients is 

needed [708]. Biomarker-based categorizations would ideally allow biologically homogenized 

groups of patients to be selected for clinical studies. Recently, efforts along these lines have 

spread from AD to other conditions (e.g., the ATN [236] and SynNeurGe [294] frameworks for 

AD and PD, respectively). However, these are evolving concepts [740] and the precise 

combinations of biological factors underlying disease remain to be determined. Interpretable 

models such as MCM can support these efforts by resolving latent mechanisms and “deeper” 

biophenotype that may differ between clinically similar patients; such as the dysfunction of 

specific neurotransmitter systems (Chapter 4: Clinically similar subjects have different 

underlying receptor alterations) or physiological interactions. 

Neurotransmission imbalance in neurodegenerative diseases 

Besides their canonical role in neuronal signal transduction, neurotransmitters are 

involved in maintaining essential processes such as neurovascular coupling [91] [92]. 
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Conversely, optimal neurotransmission requires the coordination of multiple (neuronal and non-

neuronal) cell types [136], and cell dysfunction or death may impact neurotransmission. 

Furthermore, neurotransmitter systems interact not just with other processes, but also with each 

other [109]. Dopamine can influence the excitability of cholinergic neurons [146], nicotinic 

cholinergic receptors generally seem to have a modulatory role [127], and serotonin modulates 

glutamatergic and GABAergic neurotransmission in several brain regions [741].  

Consequently, neurotransmission balance is a critical to healthy brain function. Multi-

receptor “fingerprints” of various brain areas are distinct [424] [423]. The excitatory/inhibitory 

balance between glutamatergic and GABAergic systems has a strong influence on cortical 

dynamics, and the cholinergic and adrenergic systems maintain the balance between segregation 

and integration [742]. The cholinergic system allows segregation by modulating multiplicative 

gain selectively, the noradrenergic system allows integration by broadly affecting response gain.  

Disease can thus involve neurotransmission dysfunction bidirectionally and in complex 

ways, including loss of function and compensatory upregulation (e.g., M1 cholinergic receptors 

are upregulated in temporal cortex of DLB patients [130]). However, as alluded earlier, the 

present formulation of re-MCM does not explicitly model alterations in receptor distributions, 

nor can it conclude whether receptor parameters reflect altered distributions or functional 

interactions. Incorporating neurotransmission (as some combination of transmitters, receptors 

and transporters) as state variables in detailed biophysical models, particularly where 

individualized PET data is available, may be a promising avenue to resolve the directionality of 

interactions with other physiological processes [486].  
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Clinically, the synergistic roles of multi-neurotransmitter system alterations in AD and 

PD may help explain the molecular and cellular basis of neurotransmitter therapy side effects and 

non-response [123] [126] [743] [25]. 

Validation of treatment response  

Coupled differential equations are suited to modeling complex systems composed of 

interacting factors. Particularly relevant for clinical applications, input response can be 

simulated, and optimal (e.g., minimum dose) combinatorial therapeutic interventions can be 

determined using control theory [33] [387]. However, these models typically rely on certain 

assumptions, such as linear time-invariance in the case of this thesis. While this allows a well-

developed mathematical framework to be applied [744], its biological validity would need to be 

verified in living organisms. Nevertheless, we note that the temporal scales considered in this 

work (~6 month follow ups for generally less than 5 years) may justify the assumption of local 

linearity, relative to the long temporal scale of neurodegeneration. Furthermore, we note the 

relatively high model fit using this approach (e.g., ~70% average explained variance in the ADNI 

cohort). 

In the interpretation of mathematical models of biological systems, it is important to 

avoid the “prediction-explanation fallacy”; prediction-optimized models that fit the data well do 

not necessarily replicate the same data-generating processes [745]. An important validation of 

dynamical systems models such as re-MCM would be the accurate simulation of interventions 

(e.g., treatment response). While this thesis lacked intervention effects, they would be an 

important validation. In animal models, more invasive interventional studies can be performed 

(e.g., injection of misfolded proteins or localized brain stimulation) to validated model-predicted 

input response.  
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Finally, the precise implementations of as well as theoretical assumptions behind brain 

network controllability [746] [535] [747] remain unverified in living organisms.  

Guiding clinical practice and personalized medicine 

Neurotransmitter-based medications have been at the core of clinical treatment for 

decades, from levodopa for PD to cholinesterase inhibitors and glutamatergic antagonists for 

dementias [711] [32]. However, they provide only symptomatic therapy, often with non-response 

or side effects. Furthermore, while recent anti-amyloid monoclonal antibody treatments have 

shown some improvements in symptomatic progression, the clinical importance is a subject of 

debate [27] [28]. We propose that these failures are due to i) the use of generalized medicine 

without consideration for the vast heterogeneity in pathology and symptoms between patients 

and ii) the focus on single targets whereas the disrupted pathways in AD and PD are multi-

factorial. Personalized computational models allow us to account for both of these reasons, to 

infer combinatorial and individual-specific therapeutic needs [562] [563]. 

Clinically, misdiagnosis can occur due to the overlap in early symptoms and lack of 

definitive biomarkers. A critical consequence of misdiagnosis is an inappropriate treatment plan. 

One-fifth to one-third of patients misdiagnosed with AD may be receiving inappropriate 

medication, which typically involves acetylcholinesterase inhibitors or glutamate blockers 

(especially during these studies prior to the approval of anti-amyloid monoclonal antibodies) 

[263]. With sufficient validation in diverse clinical cohorts, model-based inference of 

individualized neurotransmission dysfunction may better resolve specific latent mechanisms to 

be targeted (Chapter 4, Clinically similar subjects have different underlying receptor alterations), 

and dynamical system models can be used to design optimal combinatorial therapy [33]. 
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In addition to localized effects of brain stimulation [387] or manipulation of macroscopic 

imaging-derived variables [33], incorporating pharmacokinetics may be necessary to accurately 

model drug response [661]. This may be particularly relevant to oral neurotransmitter-based 

medication, where factors such the blood-brain barrier (impermeable to large molecules and most 

small molecules) must be considered [230]. Modelling treatment response may be one avenue to 

resolve open questions after the current wave of anti-amyloid therapy, such as the optimal 

timing, duration and dose of treatment [37] [51]. Given the importance of peripheral and 

systemic risk factors in neurodegeneration [89], extensions may even consider how 

cardiovascular and metabolic systems influence spatiotemporal brain degeneration. 

Given the multiple physiological systems affected and the vast heterogeneity within 

neurodegenerative disorders such as AD and PD [13] [743], personalized and precision medicine 

approaches may be necessary to determine effective targets, doses, durations and timing for 

combinatorial therapy. Practically, personalized medicine requires large datasets with sufficient 

diversity to capture rare disease subtypes, selection of participants at the suitable disease stages 

and appropriate harmonization across sites and cohorts [748]. 
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Chapter 7. Conclusion  

There is a scientific and clinical need for an integrative and comprehensive systems-level 

understanding of the role of neurotransmission dysfunction in multi-scale neurodegenerative 

changes [29]. This thesis has presented a dynamical system model of multi-factorial 

physiological alterations in AD and PD, mediated by the receptor architecture of the brain. This 

constitutes first computational model considering several physiological processes, multi-

neurotransmitter dysfunction and multi-domain symptomatic decline in AD and PD.  

This work supports the claim that the neurotransmitter receptor architecture of brain helps 

explain regional vulnerability to various neurodegenerative changes. Inter-individual differences 

receptor-mediated interactions correlate strongly with distinct disease axes in both AD and PD, 

supporting the perspective that these disorders are multi-factorial and involve widespread 

neurotransmission dysfunction. Comparisons with normative distributions suggest that model-

inferred mechanisms of overall neurotransmission dysfunction are relevant correlates of clinical 

severity. The potential spatial variability in these dysfunctional interactions, and other potential 

cellular/molecular drivers of neurodegeneration are promising avenues of immediate extension. 

This work sets the stage for an integrative computational modeling incorporating 

cellular/molecular template atlases and individualized neuroimaging data to ultimately infer 

optimal treatment targets for neurodegenerative disease patients. 
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