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ABSTRACT

In this project, we present a finite-dimensional approach that will enable us to prove

bifurcations towards periodic solutions in quadratic semilinear Partial Differential

Equations (PDEs). To do so, we use the Banach space Xs of Fourier coefficients.

A projection on the N first coefficients and a set of hypotheses allow us to use the

Crandall-Rabinowitz Theorem and prove a bifurcation in the finite-projection. Then

we build up a well-chosen fixed point operator in order to prove the existence of a

bifurcation towards a periodic solution in the actual PDE (thanks to some regularity

results). Finally, we give some applications of our main Theorem. To highlight these

applications, we present a numerical method to approximate Spontaneous Periodic

Orbits and a second one to mimic the bifurcations of the finite-projection. Results

for Navier-Stokes equations and Kuramoto-Sivashinsky equation are presented.
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ABRÉGÉ

Dans ce projet, nous présentons une approche en dimension finie qui nous permet-

tra dans un second temps de prouver l’existence de bifurcations vers des solutions

périodiques dans les Equations aux Dérivées Partielles (EDP) quadratiques et semi-

linéaires. Pour cela nous utilisons le Banach Xs dans l’espace des coefficients des

séries de Fourier. Une projection sur les N premiers termes associée à un ensem-

ble d’hypothèses, nous permet l’utilisation du Théorème de Crandall-Rabinowitz

pour prouver l’existence de bifurcations dans la projection finie. Par la suite, nous

démontrons l’existence de bifurcations vers des solutions périodiques dans l’EDP

grâce à un opérateur de point fixe bien choisi et certains résultats de régularité.

Pour finir, nous exposons certaines applications de notre Théorème central. Dans le

but d’appuyer ces applications, nous développons une méthode numérique pour ap-

proximer les Orbites Périodiques Spontanées ainsi qu’une méthode pour approcher

les bifurcations de la projection finie. Finalement, nous donnons des exemples de ces

méthodes aux travers des équations de Navier-Stokes et de Kuramoto-Sivashinsky.
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Introduction

Periodic solutions in Partial Differential Equations (PDEs) are a central subject

in the analysis of existence of solutions. In fact, searching for periodic solutions

may seem useless at first sight if one thinks about finding general solutions to a

Cauchy problem. However, over the years it has been shown that periodic solutions

could lead to more complex patterns that help deepen the analysis of PDEs. It

is a first insight into the wider analysis of solutions. We want to emphasize the

importance of this kind of solution through the examples of turbulence and chaos.

These phenomena are the subject of very active investigations, in both the fields

of Mathematics and Physics. Now, if we specifically look at turbulence or chaos

in fluid dynamics, and especially in the Navier-Stokes equations, we encounter the

famous theory of Laudau and Lifshitz [33], derived in 1959. The idea relies on a

cascade of periodic solutions in which the period doubles at each step of the cascade.

This reasoning helped to understand the different scales of turbulence, and made

the link between macro and micro observations. Indeed, this phenomenon of period

doubling also justifies the distribution of the system’s energy in a similar cascading

way. Moreover, [29], [7] and [20] also describe the famous period doubling route to

chaos and turbulence. These articles provide theoretical details following Laudau

and Lifshitz’s idea of period doubling.

At this point, we want to get back to the theory of Laudau and Lifshitz, which

they derived from the experimental observations of Reynolds in the 19th century.

Indeed, they used the idea that the first step of turbulence is the “bifurcation” from

a steady state to a periodic solution, as the Reynolds number increases. Therefore,

if one detects bifurcations from steady states, it may lead to a better understanding

of turbulence. Such a premise motivates our study for bifurcations in PDEs. As a
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consequence, one part of our study will be to provide assumptions under which we

can find bifurcations from a steady state to a periodic solution in the incompressible

Navier-Stokes equations (NSE). Moreover, we aim to generalize our result in NSE

and apply it to the following class of PDEs :

Lu+ G(u, u) = f (1)

where the linear differential operator L and the bilinear differential operator G obey

some assumptions A(1− 3). To give an insight of our assumptions, we will suppose

that the linear term has a higher differential order than the non-linearity. In terms

of frequencies, this implies that the higher frequencies will be controlled by the linear

part. As a consequence, (1) is a quadratic semilinear partial differential equation.

From a notation point of view, f is called the forcing term or more simply the

forcing.

In the Navier-Stokes equations, or in parabolic equations in general, we want to

study bifurcations from a steady state u0. We call steady state a time-independent

solution of (1). The idea is to construct a branch of periodic solutions from u0. In

fact, it is also possible to impose the forcing to be stationary. Indeed, we developed

a method to prove the existence of Spontaneous Periodic Orbits (SPO), which is

defined as a periodic solution arising from a time-independent forcing f (see [48]).

Furthermore, we give a method to numerically approximate these solutions thanks

to the minimization of an appropriate energy. The interest for SPO also comes

from fluid dynamics. An experiment that accurately represents Spontaneous Period

Orbits is the von Kármán vortex street. It consists in making a fluid flow passed a

fixed cylinder and making the velocity of the fluid evolve. If the velocity is small,

then the fluid is laminar and circulates around the cylinder as we would imagine.

But if the velocity is increased enough, the flow begins to oscillate and vortices are

created in the wake of the cylinder. Moreover, they alternately leave the cylinder
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periodically from one side to the other. This phenomenon is called vortex shedding

and gives birth to the so-called Kármán vortex street.

In a general setting, we construct a domain of definition of L so that it becomes

invertible in that domain. Moreover, L does not particularly involve time deriva-

tives anymore. Then we want to reproduce the previous idea by creating a branch

of periodic solutions around some central solution u0, which is not necessarily sta-

tionary. Our technique is based on the decomposition in Fourier series and on a

finite-dimensional approximation of the problem. Secondly, we develop a fixed point

method, based on the finite-dimensional problem. This allows us to obtain strong

solutions to (1) in the infinite dimensional Banach space Xs. SPO will be a special

case of our main Theorem.

Some mathematical tools of interest to our theory will be explicited in the first

chapter. The second chapter of this thesis will provide the set up of the study, the

hypotheses and our main Theorem. In Chapter 3, under the given hypotheses, we

develop the finite-dimensional approach. The results will then be used to build up

branches of solutions to problem (1) thanks to a fixed point method. In Chapter 4 we

relax the hypotheses and shows how our result can be generalized to a wider range of

central solutions u0. Finally, we give some applications (in particular Spontaneous

Periodic Orbits) in Chapter 5, that will be completed with numerical results in

Chapter 6.
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Literature review

We want to begin this literature review by recalling some known results of the

Navier-Stokes equations. In fact, these equations are the perfect example for the

model of problems we describe. We are interested in the complexity of the equation

and moreover in the tremendous work that has been achieved in this field. In

particular, there is a large study of periodic solutions in NSE. We want to give a

review of this literature as it will help understand our point of view on the problem.

The first one to give an insight of such solutions in NSE was Serrin in 1959 when

he gave a note [43] linked to his previous article [44]. The hypothesis of Serrin was

the existence of a solution for a small Reynolds number, and under some periodicity

hypotheses of the domain, the forcing and the boundary condition, he gave the

existence of a periodic solution. The first point of interest in this early study is

the hypothesis of a small Reynolds number. This point implies in particular some

stability against perturbations that Serrin proved in [44]. In [47], Teramoto gave the

existence of periodic solutions under the same kind of hypothesis on the Reynolds

number. However, he just needed some bound and periodicity of the forcing for

the existence of solutions. In a similar way Kaniel and Shinbrot in [28] gave the

existence of periodic solutions for small periodic forcing and small initial data. One

interesting corollary of their result is that if the forcing is time-independent and if

the initial data is small, then the periodic solution is actually time-independent as

well. Therefore, this gives rise to the problematic of the Spontaneous Periodic Orbits

: how can we find strictly (non-constant) periodic solutions if the forcing term is

time-independent ? One necessary condition given by the work of the authors we

cited is when the Reynolds number is big enough. Even if we know from Galdi and

Kyed in [22] that Navier-Stokes has strong time-periodic solutions corresponding to
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time-periodic forcings, these result do not differentiate between a steady state and

a strictly periodic solution. This justifies why we want to use bifurcation theory

in order to prove the existence of Spontaneous Periodic Orbits. The existence of

bifurcations in NSE has already been studied by many authors, e.g., [26], [11] [35],

[14], [18] and [48]. In particular, [48] gives the existence of a Spontaneous Periodic

Orbit for the Taylor-Green forcing. The authors proved a branch of solutions, far

from the bifurcation, via a computer-assisted proof. The interesting connection

of the article with our study is how the branch was detected. They started from

a steady state that solves the stationary problem, and they numerically built the

bifurcation thanks to continuation with viscosity as the continuation parameter.

Our goal is to extend this kind of result to a wider range of steady states.

But as was mentioned before, we also want to generalize this idea to a larger class

of problems : given a known (strictly periodic or steady) solution u0, how can we

find a branch of periodic solutions in its neighborhood ? This leads us to the study of

the linearization of the differential operator around u0 and the possible bifurcation

properties. The Crandall-Rabinovitz Theorem in [15] is the fundamental tool for

this kind of analysis. From this point of view, we are going to discuss in what ways

our formulation can match the realm of bifurcations in PDEs by giving examples of

some related works.

Our hypothesis is less restrictive than just a parabolic or an elliptic hypothesis, but

we still give a review of the bifurcations in both setups. In fact we will show why

they are good candidates for bifurcations and adequate sources for examples. We

present this subject, in which Navier-Stokes equations take part, because there is no

general study of periodic solutions in PDEs. Our choice for this specific direction is

justified by the extremely broad range of literature with these hypotheses. This in

part underlines why we wanted to prove general results in quadratic equations, and
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not just limit ourselves with parabolic or elliptic equations. The case of hyperbolic

equations is more complicated for our approach. Indeed, they can be ill-posed, as it

can be seen through the wave equation.

We begin by studying the case where the equation (1) is elliptic. For this approach,

we refer to [31], as the elliptic hypothesis is fully addressed in Section III. We give

some details of the analysis. We begin by noticing that the Garding’s inequality

and the Lax-Milgram Theorem (see [19]) imply, for an elliptic operator, that the

corresponding Dirichlet problem has a unique weak solution, up to a constant shift

of the operator (induced by Garding’s inequality). Moreover, the elliptic regularity

also implies that the weak derivatives of the solution are well defined. In particular,

the analysis of [31] shows that second order elliptic operators have a zero Fredholm

index for suitable Hilbert spaces of definition. This special kind of operators is, as

a consequence, very suitable for the use of the Crandall-Rabinowitz Theorem. In

fact, we find in [31] the elliptic version of the Theorem. As it is a fitting hypothesis,

a lot of research has been made on the bifurcations in elliptic partial differential

equations, we give an insight of the accomplished work.

In a series of three articles, [15], [16] and [41], Crandall and Rabinowitz gave a

class of PDEs in which their Theorem can easily be applied. They considered the

following class of PDEs

L(u) +G(u) = λu (2)

with L being an elliptic linear operator and G is such that G(0) = 0 and DG(0) = 0.

Then clearly for λ being an eigenvalue of L, the linearization of L(u) + G(u) − λu

at zero is not invertible. Therefore, Crandall and Rabinowitz were able to use their

Theorem of bifurcation for this kind of problem. To be more specific, they proved a

bifurcation from the trivial line of solutions {(0, λ), λ ∈ R}. Then, in his work in [37],

6



Nirenberg gave a famous result, on the possible unboundedness of a continuum of so-

lutions for (2). This characteristic allows global bifurcation in Crandall-Rabinowitz

Theorem, where the statement is originally only local. In particular, this unbounded

continuum is the one associated with the principal eigenvalue of the operator L.

However, all the continua associated to the eigenvalues of L can also be bounded if

they intersect each other. These results have motivated works on the extension of

the local bifurcation into a global one. Amann summarized some important results

in [4] on the eigenvalue problems associated to elliptic systems. He also showed

the link with bifurcations. Moreover, Aliev, in [2] and [3], gave global bifurcations

results for some general second order elliptic equations under growth control on the

non-linearity. We can cite other works that give examples of bifurcations, sometimes

global, to different kinds of elliptic equations : [9], [12], [21] and [45].

Now we want to focus on the classical work of Chafee and Infante in [13] because it

is close to the idea of our approach. They studied the heat equation perturbed by

a non-linear term with an amplitude λ. The result they obtained is the stability of

the null solution for small λ and the apparition of two stable branches of solutions

for some critical λ1. The interesting idea is the use of a linear part which has a

unique solution to the associated Dirichlet problem. This is a similar criteria as

the one we impose on the linear operator L. The non-linearity can then be seen as

a perturbation of the well-posedness of the linear problem. In the same direction,

we can refer to Shinbrot and Kaniel in [46] and [28] that used the heat equation in

Navier-Stokes equations. They applied the Schaefer’s fixed point Theorem, presented

in the mathematical tools, to prove the existence of solutions.

As a consequence, we have seen that elliptic operators are suitable for the study of

bifurcations in PDEs. Therefore, it is natural to search for bifurcations in parabolic

equations where an elliptic operator is involved. We specifically look at time-periodic
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solutions in parabolic equations.

The book [39] by Vejvoda tries to catalog the main results on the subject and

gathers the main techniques to prove the existence of periodic solutions. Some other

insightful examples can be found in [5], [36], [32], [34], [25] and [40]. Even if this is

just a very small introduction to the subject, it still motivates our approach to build

a method to find bifurcations towards periodic solutions for this class of equation,

and in particular to the Navier-Stokes equations.

Therefore, we want to know in what cases these bifurcations lead to periodic solu-

tions. This brings us to the study of Hopf bifurcations, which we also present in

Chapter 1. This specific bifurcation type requires some non-degeneracy hypotheses

to be applicable. Therefore, a lot of research has been done in order to understand in

which specific cases a Hopf bifurcation is well suited. We first cite [17] from Crandall

and Rabinowitz where the authors put in place a strictly imaginary eigenvalue prob-

lem. From this they gave a range of PDEs in which we can find Hopf bifurcations.

Then we give some references for Hopf bifurcations in the Navier-Stokes equations :

[11], [14], [27], [30] and [35]. The last article gives the existence of Hopf bifurcations

thanks to a well defined set of stationary solutions. Each element of that set implies

that the hypotheses for a bifurcation will be satisfied. We distinguish our result

from this one as we will use a larger and more precise set of stationary solutions.

Overall, there is a need to assume some purely imaginary eigenvalues and/or some

non-degeneracy criteria. This is why we chose not to study Hopf bifurcation but

instead to analyse bifurcations in Fourier series. The periodicity of the solutions will

be a consequence of our construction.

In order to build our approach, we need to choose the adapted space for our

Fourier series. It naturally comes to mind to use of the Xs space defined in [24]. Xs

is a Banach space that is well suited for the study of partial differential equations.
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In particular, it gives sharp estimates for the convolution terms as it is shown in [23].

We cite [8] as an other use of that space for the study of resonant PDEs. Moreover,

if we can prove some regularity of the equation, the Fourier series give an excellent

way to approximate the solution. In fact, if we can prove some Gevrey regularity or

analycity of the solution, then the coefficients of the series decay exponentially. For

instance, it has been shown in some cases of Navier-Stokes equations in [20] and [38]

or in the Kuramoto-Sivashinsky equation where we refer to [6] and [10]. In addition

to the periodicity criterion, this exponential decay justifies our use of Fourier series

to approximate solutions.

We refer to [24] to highlight the method used in order to find solutions. The method

is based on an approximated solution upon which the authors built a branch of

solutions thanks to a fixed point method. This is exactly the method we are going

to use, but instead of using numerical solutions as approximations, we are going to

use solutions of finite-dimensional projections (on the N first frequencies). Then we

refer to [48] as a numerical method to detect bifurcations. The article shows the

existence of a Spontaneous Periodic Orbits by computer-assisted proof. The authors

first explicited a continuous branch of stationary solutions. Then by continuation,

they numerically detected a bifurcation. Finally, by following the new branch, they

proved a solution far from the bifurcation point, thanks to the radii polynomial

Theorem. This is an idea we hope to use but in reverse by continuously linking the

found SPO to the steady states line.

After giving the background for our study, we would now like to be more precise

by explicitly giving some Mathematical tools spoken about in the literature review.

These tools are central in the study of bifurcations in PDEs.
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CHAPTER 1
Mathematical tools

1.1 Definitions

We begin by giving some definitions. We refer to [1], [19] and [31] for more details.

Definition 1.1.1. (multi-index and vector inequalities) Let x, y ∈ Rm and α ∈ Nm,

we define xα := xα1
1 ...x

αm
m , where xi and αi are the ith component of x and α respec-

tively. We also define |α| := α1 + ...+ αm.

Moreover, we say that x ≤ y if for all i ∈ {1, ...,m}, xi ≤ yi. The same notation

holds for <,> and ≥.

Definition 1.1.2. (ball) Let R > 0 and (X, ||.||X) be a Banach space. Then BR :=

{x ∈ X, ||x||X ≤ R} ⊂ X denotes the closed ball of radius R centered at zero in X.

Definition 1.1.3 (elliptic, uniformly elliptic and parabolic operators). Let L =∑
|α|≤n

aα∂
α be a linear differential operator of order n on a domain Ω ⊂ Rm. (aα)α

are smooth real-valued functions on Ω. Then L is said to be elliptic if for all x ∈ Ω

and all ξ ∈ Rm we have

∑
|α|=n

aα(x)ξα 6= 0.

Moreover, L is said to be uniformly elliptic if n = 2k and if there exists C > 0 such

that for all ξ ∈ Rm

(−1)k
∑
|α|=2k

aα(x)ξα ≥ C|ξ|2k.

Finally, if L is uniformly elliptic, we say that ∂t + L is a parabolic operator.
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Definition 1.1.4 (semilinear PDE). A partial differential equation of order n, de-

fined on a domain Ω ⊂ Rm is said to be semilinear if for x ∈ Ω it has the form

∑
|α|=n

aα(x)∂αu+ a0(D
n−1u, ..., Du, u, x) = 0

where Di := {∂α, |α| = i} for i ∈ N.

Definition 1.1.5 (Fredholm operator and index). The Fredholm index is denoted

ind. It is defined for each bounded linear operator T : X → Y with X, Y two Banach

spaces. Moreover, T needs to have a finite-dimensional kernel, a finite-dimensional

cokernel and a closed range. T is called a Fredholm operator and ind T is given by

ind T := dim Ker(T )− dim coKer(T )

where Ker is the kernel and coKer is the cokernel.

1.2 Background results

We study the following problem :

F (x, λ) = 0 (1.1)

where the mapping F is defined as

F : U × R→ Z

(x, λ) 7→ F (x, λ).

U ⊂ X is an open set and X,Z are Banach spaces. We now give the main Theorems

related to that problem.
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1.2.1 Implicit function Theorem

Theorem 1.2.1 (Implicit function). Suppose that (1.1) has a solution (x0, λ0) ∈

U×R such that the Fréchet derivative of F with respect to x at (x0, λ0) , DxF (x0, λ0),

is bijective. We also assume that F and DxF (x0, λ0) are continuous.

Then there exists a neighborhood U1 × V1 ⊂ U × R of (x0, λ0) and a mapping f

defined from V1 to U1 such that f(λ0) = x0 and for all λ ∈ V1

F (f(λ), λ) = 0.

Furthermore, f is uniquely defined and is continuous on V1.

Remark 1. If F is k-times continuously (Fréchet) differentiable on U × R, then f

is k-times continuously differentiable as well on V1. Furthermore, if F is analytic,

then f will be analytic.

1.2.2 Crandall-Rabinowitz Theorem

Theorem 1.2.2 (Crandall-Rabinowitz). We suppose the following assumptions

• The line {(0, λ), λ ∈ R} is called the trivial line and each point of this line

solves (1.1).

• There exists λ0 such that the dimension of the Kernel of DxF (x0, λ0) is 1 and

DxF (x0, λ0) is a Fredholm operator of index zero.

• F is twice differentiable.

Moreover we suppose that

Ker(DxF (0, λ0)) = span(v0)

D2
x,λF (0, λ0)v0 /∈ R(DxF (0, λ0)),
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where Ker stands for Kernel and R for Range. Then there exists δ > 0 and a

non-trivial continuously differentiable curve through (0, λ0)

{(x(s), λ(s))| s ∈ (−δ, δ), (x(0), λ(0)) = (0, λ0)}

such that F (x(s), λ(s)) = 0 for all s ∈ (−δ, δ). Moreover, all the solutions around

(0, λ0) are either on this curve or on the trivial line.

1.2.3 Hopf Bifurcation

We look at the special case of (1.1) with a time derivative :

dU(x, t)

dt
= F (U(x, t), λ) (1.2)

where we still assume that the trivial line {(0, λ), λ ∈ R} is a line of solutions for

(1.2). Now the variable x ∈ Ω ⊂ Rm represents the space variable and t the time. Ω

is a bounded domain with smooth boundary. We solve for U as a function of (x, t)

under the parametrization of λ.

Then, we consider F to be a partial differential operator. We call Id the identity

operator and we add the following assumptions.

• There exits κ0 > 0 such that iκ0 is a simple eigenvalue of DUF (0, λ0) with

eigenvector ψ /∈ R(iκ0Id −DUF (0, λ0)).

• DUF (0, λ0) is an elliptic partial differential operator.

• F is three times differentiable.

Then, there exists (see [31]) a continuously differentiable curve of perturbed eigen-

values µ(r) near λ0, with µ(0) = λ0 and r small.

13



Therefore we can introduce a supplementary condition (with “Re” representing the

real part) :

Re(
dµ(r)

dr
) 6= 0

Theorem 1.2.3 (Hopf Bifurcation). Let F and DUF (0, λ0) satisfy the previous

assumptions. Moreover we add the following non-resonance condition

∀n ∈ Z \{−1, 1}, inκ0 is not an eigenvalue of DUF (0, λ0).

Then there exists δ > 0 and a non-trivial continuously differentiable curve through

(0, λ0) that solves (1.2)

{(U(s), λ(s))|s ∈ (−δ, δ), (x(0), λ(0)) = (0, λ0)}

such that U(s) is 2π
κ(s)

time-periodic with κ(0) = κ0, which means that ∀(x, t) ∈

Ω× R, U(s)(x, t + 2π
κ(s)

) = U(s)(x, t). Moreover, U(s) is in the 2π
κ(s)

periodic Holder

continuously differentiable functions space C1+α
2π
κ(s)

(R, Z)
⋂
Cα

2π
κ(s)

(R, X).

We refer to [31] for a more detailled definition of C1+α
2π
κ(s)

(R, Z)
⋂
Cα

2π
κ(s)

(R, X).

1.2.4 Fixed point method

We recall Schauder’s and Banach fixed point Theorems as they are given in [19] :

Theorem 1.2.4 (Schauder’s fixed point). Let X be a Banach space and suppose

that K ⊂ X is compact and convex. Then if

A : K → K

is continuous, then A has a fixed point in K.
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Theorem 1.2.5 (Banach fixed point). Let X be a Banach space. Then if

A : X → X

is a contraction mapping, then A has a unique fixed point in X.

Schauder’s fixed point technique

In particular, this Theorem can be useful to solve non-linear partial differential

equations. We give some framework in which the Theorem can be applied.

We still consider a smooth domain Ω ⊂ Rm and the following Cauchy problem

dU

dt
= L(U) +N(U) + f

U(0) = U0

where we consider U, f ∈ E ⊂ X and L(U), N(U) ∈ E with X a Banach space and E

an open subspace of X. We assume that L and N are partial differential operators.

Moreover, we assume that for all V0, f ∈ E, the following Cauchy problem has a

unique solution

dV

dt
= L(V ) + f

V (0) = V0.

Therefore, for all U ∈ E

dV

dt
= L(V ) +N(U) + f

V (0) = U(0)

has a unique solution. Then we define the following operator

A : E → E

U 7→ AU = V

15



where AU = V is the unique solution of the previous problem. Now if we are able

to find a convex and compact K ⊂ E on which A is continuous and such that

A : K → K, then the Schauder Theorem can be applied and there exits U ∈ K such

that AU = U . Therefore, by definition of A, U solves the initial problem.

Another advantage in the case of elliptic partial differential equations is the fact

that by being a solution to the PDE, V gains elliptic regularity, and in particular

the weak derivatives will be defined. We will use a similar idea in the construction

of our fixed point method.

We give [46] and [28] as examples of that idea in the case of the Navier-Stokes

equations.
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CHAPTER 2
Formulation of the problem and main result

In this second chapter, we begin by presenting our main problem as well as neces-

sary tools and spaces, in particular the Banach space Xs defined in [23]. Afterwards

we will state our central Theorem of existence.

2.1 The problem

The main goal is to study periodic solutions u of quadratic semilinear partial

differential equations of the following form :

L(u) + G(u, u) = f (2.1)

where L is a linear differential operator and G is a bilinear differential operator.

Moreover u is supposed to be a smooth real function defined on the bounded squared

domain Ω = [−π, π]m ⊂ Rm. We suppose that (2.1) is purely quadratic, i.e, it cannot

be transformed into a linear problem.

We recall the formulation used in [24] by introducing the weight of dimension 1 for

s1 ∈ R+ and k1 ∈ Z

ws1k1 :=

 1 if k1 = 0

|k1|s1 otherwise .

Then for s ∈ Rm+ and k ∈ Zm we define wsk := ws1k1 ...w
sm
km

.

Now we introduce some complementary assumptions on L and G, which will give

the semilinear characteristic to (2.1)

17



Assumption 1. There exists θ ≥ (1, ..., 1) such that Lu :=
∑
α≤θ

aα∂
αu with (aα)α a

sequence of constant coefficients.

Assumption 2. There exits γ ≥ (1, ..., 1) such that G(u, v) := G1(u)G2(v) :=∑
α,β≤θ−γ

pα∂
αu qβ∂

βv. Moreover, there exists Cg > 0 that gives

|

∑
α≤(θ−γ)

pαξα

∑
α≤θ

aαiξ
α | ≤ Cg

wγξ
and |

∑
β≤(θ−γ)

qβξ
β

∑
α≤θ

aαiξ
αi
i

| ≤ Cg
wγξ

for all i ∈ {1, ...,m} and |ξ| big enough.

Assumption 3. The Fourier series transform of L, defined as L, is invertible in a

suitable restricted subspace D of Xs+θ. Moreover, for a fixed U ∈ Xs+θ,

R(G(U, ·)) ⊂ D.

From now on we refer to these hypotheses as A(1− 3) and A(i) for the assumption

i (i = 1, 2, 3). The notations of A(3) are defined in the next section.

2.2 Function spaces

At this point we need to define the space in which we expect the solution u to live

in. As we search for periodic solutions, it is quite natural to look for u as a Fourier

series.

Remark 2. What we mean by periodic solution is a solution that is periodic with

respect to each variable. In fact, our solutions will be defined on the whole Rm and

they will be periodic in each direction of Rm. In the case of parabolic operators, as we

presented in the introduction and the literature review, the time-periodicity will be a

direct consequence of our general semilinear formulation. Moreover, in the spatial

elliptic setting, solutions correspond to spatially periodic stationary patterns (steady

states).
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This leads to the space of Fourier coefficients Xs (s ∈ Rm+ ) defined as

Xs := {U = (un)n∈Zm| ∀n ∈ Zm un = u−n and ||U ||s <∞}

where ||U ||s := sup
n∈Zm

|un|wsn is a weighed `∞-norm.

Similarly we introduce spaces of smooth functions that can be represented as Fourier

series on Ω for some s ∈ Rm+ . We denote i =
√
−1, then for s > (1, ..., 1), we can

define

Cs
Fou(Ω) :=


u ∈ C0(Ω)| ∃U = (un)n∈Zm ∈ Xs,∀n ∈ Zm un ∈ C and un = u−n,

∀x ∈ Ω, u(x1, ..., xm) =
∑
n∈Zm

une
i(n1x1+...+nmxm)

 .

In the previous definition, u ∈ Cs
Fou(Ω) implies in particular that u ∈ Ck if s > k +

(1, ..., 1). Now if we consider U = (un)n, the associated vector, it means that ||U ||s <

∞. This comes from the fact that the equivalent of ∂xi in Xs is a multiplication by

ini. Therefore a solution u lives in Cs
Fou(Ω) if it can uniquely be represented in Xs

and vice versa. As a consequence we can identify u ∈ Cs
Fou(Ω) and U ∈ Xs as the

same element. We keep the notation capital letter for elements in Xs and lower case

letter for elements in Cs
Fou(Ω).

We also define

X :=
⋂

s>(1,...,1)

Xs

as the set of vectors decaying quicker than any algebraic power. X is the equivalent

of C∞Fou(Ω) in terms of function space.

We now introduce the classical `2 inner product for series. The particular symmetry

of Fourier coefficients gives a real inner product.
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Proposition 2.2.1. Let s > (1, ..., 1), then

(·, ·) : Xs ×Xs → R

(U, V ) 7→ U
T
V

defines an inner product on Xs. Moreover

|| · ||2 : Xs → R

U 7→
√

(U,U)

defines a norm on Xs.

Proof. It is a classical result that (·, ·) defines an inner product and || · ||2 a norm for

s > (1, ..., 1). We prove that the `2 inner product restricted to Xs ×Xs maps to R.

U
T
V =

∑
k∈Zm

ukvk =
∑
k∈Zm

u−kvk =
∑
k∈Zm

u−kvk+ukv−k
2

∈ R where we used the fact that

ukv−k = u−kvk by definition of U, V and a change of indices in the third equality.

Moreover we define a norm |||.|||s for linear operators on Xs as

|||A|||s := max
||V ||s=1

||AV ||s.

We are now ready to transform our system with Fourier series.

2.3 Transformation to Fourier series

We begin this section by defining the convolution, given by the symbol “∗”, in Xs.

It will be the tool used to derived the bilinear term as it enables to represent in

Fourier series the multiplication in the function space.

Definition 2.3.1 (convolution in Xs). Let s > (1, ..., 1) and let a, b ∈ Xs. Then the

quantity a ∗ b :=
∑
k∈Zm

akbn−k is well defined and is called the convolution between a

and b.
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Proof. [23] shows that the convolution is well-defined for elements in Xs when s >

(1, ..., 1).

From now on we fix some s > (1, ..., 1) in order to be able to define convolutions.

Then, by injecting u ∈ Cs
Fou(Ω) in the equation (2.1) we can notice that the operator

L turns into an infinite diagonal matrix defined on Xs with coefficients Ln. Similarly

G becomes a bilinear operator G on Xs that can be derived as a convolution G1(U)∗

G2(V ) for U, V ∈ Xs. Now, we give below the definitions of L and G for some s ∈ Nm

∀ U, V ∈ Xs,

LU := (Lnun)n∈Zm , Ln :=
∑
α≤θ

i|α|aαn
α

(G(U)V )n :=
∑
k∈Zm

ukvn−kg(k, n), g(k, n) := 1
2

∑
α,β≤θ−γ

i|α+β|pαqβ(kα(n− k)β + kβ(n− k)α).

Remark 3. This definition of g(k, n) implies that g(k, n) = g(n − k, n). A con-

sequence of this change of index is that G(U)V = G(V )U for U, V ∈ Xs. For a

fixed U , G(U) can be seen as a linear operator on Xs. We notice that the domain

could have been Ω =
m∏
i=1

[−di
2
, di

2
] and the sizes di would have been integrated in the

definitions of Ln and g(k, n). However it is equivalent to our problem as we can

change the value of the coefficients aα, pα and qβ to take the size into account.

The equation (2.1) can then be turned into

LU +G(U)U = F (2.2)

where F is the equivalent of f in Xs. For a well chosen subspace D of Xs, the

Assumption 3 gives that the problem LU = V has a unique solution U ∈ D for each

V ∈ D. AsG(U)U ∈ D, by choosing F ∈ D, we make sense of the invertibility of L in

such a problem. We do not specify the subspace in which L will be invertible because

it will depend on the equation. Therefore, we will suppose that L is invertible on the
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full Xs and we will show in Chapter 5 how we deal with a specific D. The overall

reasoning we are about to present will not change. Therefore (2.2) is equivalent to

finding U ∈ Xs such that

IdU +G(L−1U)L−1U = F (2.3)

where Id stands for the identity operator. We will usually use this formulation to

prove the regularity results. When it is not mentioned, the equation (2.2) is the one

considered.

At this point we need to specify the set of indices on which we are going to work

with. Indeed, the symmetry un = u−n derived from Fourier series allows to work on

a subset of indices in Zm. We begin by defining the family of set of indices Ii

Ii := {n ∈ Zm| ni > 0 and nk = 0, k ∈ {1, ..., i− 1}}.

This enables us to introduce our three sets of indices of interest for some N ∈ Nm

I := (
⋃

i∈{1,...,m}

Ii)
⋃
{0}

IN := {n ∈ I| |ni| ≤ Ni for all i ∈ {1, ...,m}}

JN := {n ∈ Zm| |ni| ≤ Ni for all i ∈ {1, ...,m}}.

The set JN will be of use later, now we only take care of the two first sets. We

introduce the cardinality dN := |IN | and we define πN as the projection on the N

first coefficients

πN : Xs → CdN

U 7→ UN := (un)n∈IN .
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Similarly, for U ∈ Xs we note UN := (un)n/∈IN . We call πN the corresponding

projection, so that U = (πN(U), πN(U)).

Now we want to be able to easily go from finite to infinite dimension. This leads to

the next definition associated with an embedding result.

Definition 2.3.2 (tilde operator). Let N ∈ Nm and U ∈ CdN . We first extend U

by the Fourier symmetry “un = u−n” and then we pad it with infinitely many zeros.

The resulting vector is an element of Xs and we denote it Ũ . Therefore, the tilde

operator is the natural passage from CdN to Xs.

Proposition 2.3.1. For all N ∈ Nm and all s > (1, ..., 1), CdN is continuously

embedded in Xs.

Proof. Let N ∈ Nm and s ∈ Xs, then we take U ∈ CdN . Then clearly by construc-

tion, the corresponding Ũ (defined in Definition 2.3.2) respects the Fourier series

symmetry and has a finite number of non-zero terms. Therefore it is in Xs. This

gives the continuous embedding of CdN in Xs.

From this idea, we introduce the finite projections of our operators L and G ; for

N ∈ Nm and U0 ∈ Xs, we define

LN : CdN → CdN

U 7→ πN(LŨ)

GN(U0) : CdN → CdN

U 7→ πN(G(U0)Ũ).

As a consequence, we are going to be able to use the matrix analysis on LN and

GN(U0) as they can be seen as squared matrices of size dN .

Remark 4. We can replace Zm by I in the definition of the inner product of Propo-

sition 2.2.1 and then take the real part to obtain the same result. Moreover we can
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define (·, ·)N , the finite inner product on the indices IN . It also gives a norm ||.||N

on CdN (which is the usual `2 norm).

We now build our central function space U0 (as solutions will be built upon that

space). We say that U0 ∈ U0 if it satisfies the following hypothesis :

(H1) : U0 ∈ Xs+θ, U0 6= 0.

(H2) : There exists λ∗ ∈ R∗, N ∈ Nm such that LN + 2λ∗GN(U0) is not invertible.

(H3) : Ker(LN + 2λ∗GN(U0)) = span (U∗) where Ker is the kernel.

(H4) : GN(U0)U
∗ /∈ R(LN + 2λ∗GN(U0)) where R stands for the range.

From now on we suppose that U0 is not empty and we will see later how we can relax

the hypotheses (H1−4). In fact, (H1−4) are basically the hypotheses for Crandall-

Rabinowitz Theorem 1.2.2 in the finite-dimensional approach.

2.4 Existence bifurcations towards periodic solutions in (2.1)

We are finally in a position to state our central Theorem of existence.

Theorem 2.4.1. Let U0 ∈ U0 and be u0 the corresponding element in Cs+θ
Fou(Ω).

Then if N (from (H2)) is big enough, there exists δ > 0 and a unique (up to a

phase condition) non-trivial continuous branch lu of 2π-periodic (in each variable)

solutions in Cs+θ
Fou(Ω) to (2.1)

lu := {u(r) + λ(r)u0| r ∈ (−δ, δ) and (u(0), λ(0)) = (0, λ∗)}.

This branch corresponds to a continuous branch lf of forcing terms in Cs
Fou(Ω) given

by

lf := {λ(r)Lu0 + λ(r)2G(u0, u0), r ∈ (−δ, δ)}.
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CHAPTER 3
Construction of the bifurcation

3.1 Finite-dimensional approximation

In this section we build a solution for a finite number of frequencies. To do so

we take U0 ∈ U0 and we take N to be the vector of frequencies defined in (H2). As

before, we denote dN := |IN |. Then we begin by defining the operator Cf such that

the solutions of the finite-dimensional problem will be the zeros of the projection of

Cf on IN

Cf : Xs × U0 × R∗ → Xs

(U, U0, λ) 7→ LU + 2λG(U0)U +G(U)U.

Cf represents the linearization of (2.2) around U0 for a forcing term defined as

F = λLU0 + λ2G(U0)U0. We will prove later the well posedness of Cf but now we

work on the zeros of CN
f that we define as CN

f (U,U0, λ) := πN(Cf (U,U0, λ)).

Theorem 3.1.1. Let U0 ∈ U0. Then there exists δ > 0 and a non trivial continu-

ously differentiable curve through (0, λ∗) ∈ Xs × R :

l := {(Ũ1(r), λ(r))| r ∈ (−δ, δ), (Ũ1(0), λ(0)) = (0, λ∗)}

such that CN
f (Ũ1(r), U0, λ(r)) = 0 for all r ∈ (−δ, δ), where N ∈ Nm and λ∗ ∈ R∗

are defined in (H1−4).
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Proof. Let U0 ∈ U0 and its corresponding N ∈ Nm, λ∗ ∈ R∗. We first introduce the

mapping CNf that we define as

CNf : CdN × U0 × R∗ → CdN

(U1, U0, λ) 7→ LNU1 + 2λGN(U0)U1 +GN(Ũ1)U1

and we look for zeros of CNf in CdN × R∗ for the fixed U0.

Now we know that DU1CNf (0, U0, λ
∗) = LN + 2λ∗GN(U0) has a kernel of dimension

1 using (H3). Then clearly the rank-nullity Theorem yields that DU1CNf (0, U0, λ
∗),

as a finite-dimensional linear operator, has a zero Fredholm index. Moreover we have

D2
U1,λ
CNf (0, U0, λ

∗) = 2λGN(U0), so that (H4) gives that 2λGN(U0)U
∗ /∈ R(DU1CNf (0, U0, λ

∗)).

Then CNf is infinitely differentiable and (CdN , ||.||N) is a Banach space, where ||.||N

was defined in Remark 5. Therefore we can use the hypotheses (H1−4) to be able to

apply the Crandall-Rabinowitz Theorem 1.2.2. The Theorem gives us the existence

of a curve of solutions through (0, λ∗) ∈ CdN × R∗ :

{(U1(r), λ(r))| r ∈ (−δ, δ), (U1(0), λ(0)) = (0, λ∗)}.

Now to finish the proof we denote Ũ1(r) ∈ Xs the associated vector defined in Defi-

nition 2.3.2 for all r ∈ (−δ, δ). Then by construction of CNf , CN
f (Ũ1(r), U0, λ(r)) = 0

for all r ∈ (−δ, δ).

3.2 The fixed-point operator and the proof of Theorem 2.4.1

In this section we build a solution of (2.2) in Xs from a solution of the finite-

dimensional problem. To do so we build an operator TNr defined from Xs to Xs and

we prove that it has a fixed point which will be a solution to our problem. Again

we refer to the article [24] as the results we present are similarly built.

We begin by proving a result giving some regularity for the convolution.
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Proposition 3.2.1. Let s > (1, ..., 1) and U, V ∈ Xs. Then G(L−1U)L−1V ∈ Xs+γ

and there exists C > 0 that depends only on L, G and s such that

||G(L−1U)L−1V ||s ≤ C||U ||s||V ||s.

Proof. Let s > (1, ..., 1) and U, V ∈ Xs. Then by Assumption 2 we can deduce that

G1(L
−1U) ∈ Xs+γ and G2(L

−1V ) ∈ Xs+γ.

Note that G(L−1U)L−1V = G1(L
−1U)∗G2(L

−1V ). Then we refer to [23] and to the

estimate given for convolution terms in Xs to finish the proof of the Proposition.

The proof of the inequality is a direct consequence.

The previous Proposition will allow us to prove some regularity for the solutions of

(2.3) and, as a consequence, to show the equivalence between (2.1) and (2.3).

Proposition 3.2.2. Let s > (1, ..., 1) and F ∈ Xs. Then if V ∈ X t, such that

(1, ..., 1) < t ≤ s, solves (2.3) for the forcing term F ∈ Xs, it implies that V is

actually in Xs. Moreover V ∈ Xs solves (2.3) if and only if there exists u ∈ Cs+θ
Fou(Ω)

such that u is a strong 2π-periodic solution of (2.1) for the corresponding forcing

term f ∈ Cs
Fou(Ω).

Proof. We begin by proving the first assertion of the proposition using a bootstrap-

ping reasoning similar to the one provided in [24].

Suppose that V ∈ X t solves (2.3) for the forcing term F ∈ Xs. Then V = F −

G(L−1V )L−1V , which, considering the previous Proposition, implies in particular

that V ∈ X t+γ if t + γ ≤ s. Therefore, we can repeat this argument and we obtain

that V ∈ Xs. If t + γ ≥ s, then directly V ∈ Xs. This reasoning implies that the

Fourier series associated to V is uniformly convergent in Cs
Fou(Ω), as well as the one

associated to G(L−1V )L−1V .

Now we are going to prove the two sides of the equivalence :
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( =⇒ ) From the previous reasoning and A(3), we can deduce that there exists a

unique U := L−1V ∈ Xs+θ. This means that U ∈ Xs+θ solves (2.2) by construction.

The regularity of U gives that LU ∈ Xs and G(U)U ∈ Xs so that the corresponding

series converge uniformly in Cs
Fou(Ω). As a consequence, the corresponding u ∈

Cs+θ
Fou(Ω) of U is actually well defined and is a strong, 2π periodic solution of (2.1).

( ⇐= ) If u is a strong, 2π periodic solution of (2.1) then clearly the associated

U ∈ Xs+θ solves (2.2). Then we can easily build V = LU that solves (2.3).

Remark 5. The previous proof also shows the equivalence of (2.2) and (2.3) as the

solution U of LU = V will be smooth as well. This proves the well posedness of Cf

in the previous section. Moreover, we can obtain that V ∈ X if F ∈ X using the

same idea.

We define A(r) := INd + 2GN(Ũ1(r) + λ(r)U0)L
−N where L−N := (LN)−1. We know

from Crandall-Rabinowitz Theorem that the kernel of A(r) is at most of dimension

1 (see [31]). Then using the continuity of the determinant, we can distinguish two

cases.

(Case 1) : There exists δ > 0 such that A(r) is invertible for all |r| < δ and r 6= 0.

(Case 2) : There exists δ > 0 such that Ker(A(r)) = span(V ∗(r)) for all |r| < δ.

3.2.1 Case 1

We consider the following case

(Case 1) : There exists δ > 0 such that A(r) is invertible for all |r| < δ and r 6= 0.

Then we prove the following

Proposition 3.2.3. Let U0 ∈ U0 and we consider the corresponding branch from

Theorem 3.1.1, then there exists C0 > 0 that depends on U0, L and G such that for
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all r ∈ (−δ, δ)

r||(INd + 2λ(r)GN(Ũ1(r) + U0)L
−N)−1||s ≤ C0

where L−N := (LN)−1

Proof. By assumption, we have that

LN + 2λ(r)GN(Ũ1(r) + U0) is invertible for |r| > 0.

Therefore, as λ and Ũ1 are smooth functions of r, we just need to prove that the

limit when r goes to zero is finite.

Then,

INd + 2λ(r)GN(Ũ1(r) + U0)L
−N

= INd + 2(λ(r)− λ∗)GN(Ũ1(r) + U0)L
−N + 2λ∗GN(Ũ1(r) + U0)L

−N .

Now we use the smoothness of the determinant and the fact that

det(INd + 2λ∗GN(U0)L
−N) = 0 in order to use Taylor expansion and get that there

exists C > 0 such that

|det(INd + 2λ(r)GN(Ũ1(r) + U0)L
−N)|

= C(|λ∗ − λ(r)|+ ||Ũ1(r)||s) +O(r)

= Cr +O(r)

where we used Taylor expansions of λ and Ũ1 on the second equality and the fact

that dU1

dr
(0) = U∗ (see [31]).

For an invertible matrix A, we can use the adjoint formula to get that there exists

C∗ > 0 such that ||A−1||s ≤ C∗

|det(A)| . We finish the proof by applying this inequality

to our problem.
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We are now ready to introduce our fixed point result. The following lemma will

enable us to use the finite-dimensional bifurcation and to turn it into an actual

bifurcation for the PDE.

Lemma 3.2.1. Let U0 ∈ U0 and consider the associated results from Theorem 3.1.1

in the Case 1. Then for all r ∈ (−δ, δ) we denote W (r) := Ũ1(r) + λ(r)U0 ∈ Xs+θ

and we define the operator TNr as

• If r > 0,

TNr : BR(r,N) → BR(r,N)

V 7→

 πN(TNr )

πN(TNr )

where

 πN(TNr ) := V N − (INd + 2λ(r)GN(W (r))L−N)−1
CNf (rL−1V,W (r),λ(r))

r

πN(TNr ) := VN − CfN (rL−1V,W (r),λ(r))

r

• If r = 0,

TNr : {0} → {0}

0 7→ 0

with BR(r,N) ⊂ Xs and R(r,N) is defined in the proof. Then TNr is well defined and

has a unique non-trivial fixed point for all r ∈ (−δ, δ) for N big enough. Moreover

R(r,N) goes to zero when r approaches zero.

Proof. First of all, the proof of Proposition 3.2.2 gives that TNr is well defined in

Xs. From this, we develop a formula for R(r,N) and show that TNr will indeed map

BR(r,N) into itself.
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Using the fact that TNr is a Newton-like operator and the expression of Cf , we get

πN(TNr (V )) = −r(INd + 2GN(W (r))L−N)−1πN(G(L−1V )L−1V ).

Then we use Propositions 3.2.1 and 3.2.3 to obtain that

|| ˜πN(TNr (V ))||s ≤ CC0||V ||2s.

Now we search for a radius R∗ such that ˜πN(TNr (V )) will map BR∗ ⊂ Xs into itself.

From that point, we search for ||V ||s such that || ˜πN(TNr (V ))||s ≤ ||V ||s. A sufficient

condition is to use the previous inequality and analyse the second order polynomial

in ||V ||s.

Then, by defining R∗ := 1
4C0C

we obtain the desired result. The 1
4

will make sense

later.

Now we look at the second part πN(TNr (V )). We have by definition

πN(TNr (V )) = −πN(rG(L−1V )L−1V + 2G(W (r))L−1V + 1
r
[G(Ũ1(r))Ũ1(r) + 2λ(r)G(U0)Ũ1(r)]).

Similiarly as for the tilde operator in Definition 2.3.2, πN(TNr (V )) can be seen as

an element of Xs if we consider the N first frequencies to be zero. To simplify the

notations we keep πN(TNr (V )) unchanged but it has to be seen as an element of Xs

so we can take its norm.

Then we denote Ṽ := L−1W , V0 := L−1U0 and Ṽ1 := L−1Ũ1. Therefore as V ∈ Xs

we can use a reasoning similar to the proof of the Proposition 3.2.1 to get that

||πN(TNr (V ))||s ≤ C

ws+γN

(
r||V ||2s + 2||V ||s||Ṽ (r)||s + ||Ṽ1(r)||s

r
(2λ(r)||V0||s + ||Ṽ1(r)||s)

)
.

Similarly as before we analyse the second order polynomial and we define
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R±(r,N) :=
ws+γN −2C||Ṽ (r)||s±

√
(ws+γN −2C||Ṽ (r)||s)2−4C2||Ṽ1(r)||s(2λ(r)||V0||s+||Ṽ1(r)||s)

2C
.

These radii will be well defined in particular if

ws+γN ≥ 2C

(
2

√
||Ṽ1(r)||s(2λ(r)||V0||s + ||Ṽ1(r)||s) + ||Ṽ (r)||s

)
. (3.1)

Therefore πN(TNr (V )) maps all the balls of radii between R−(r,N) and R+(r,N)

into themselves. However a trivial fixed point of TNr would be − Ṽ1(r)
r

, which we

want to avoid. Therefore we look for a condition such that the radius where the

solution V lives will be strictly less that || Ṽ1(r)
r
||s but also between R−(r,N) and

R+(r,N) and less than R∗. It is sufficient to show that R−(r,N) ≤ || Ṽ1(r)
2r
||s and

R−(r,N) ≤ R∗, then to define R(r,N) := R−(r,N) in order to satisfy the previous

requirements.

We can begin by using the inequality 1−
√

1− x ≤ x for x ∈ (0, 1) to show that

R−(r,N) ≤ 2C||Ṽ1(r)||s(2λ(r)||V0||s + ||Ṽ1(r)||s)
ws+γN − 2C||Ṽ (r)||s

.

Therefore we will have R−(r,N) ≤ ||Ṽ1(r)||s
2r

if

ws+γN ≥ 4Cr(2λ(r)||V0||s + ||Ṽ1(r)||s) + 2C||Ṽ (r)||s. (3.2)

Then we will have R−(r,N) ≤ R∗ if

ws+γN ≥ 8C2C0||Ṽ1(r)||s(2λ(r)||V0||s + ||Ṽ1(r)||s) + 2C||Ṽ (r)||s. (3.3)

To conclude, if N is big enough such that (3.1-3) are satisfied, then we call R(r,N) :=

R2(r,N) and TNr will map BR(r,N) into itself.
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Moreover, let V1, V2 ∈ BR(r,N), then

||πN(TNr (V2))− πN(TNr (V1))||s

= ||πN(rG(L−1(V1 + V2))L
−1(V2 − V1) + 2G(W (r))L−1(V2 − V1))||s

≤ C

ws+γN

(
r||V1 + V2||s||V2 − V1||s + 2||Ṽ (r)||s||V2 − V1||s

)
≤ C

ws+γN

(
2rR(r,N) + 2||Ṽ (r)||s

)
||V2 − V1||s.

Similarly,

||πN(TNr (V2))− πN(TNr (V1))||s

≤ C0||πN(G(L−1(V1 + V2))L
−1(V2 − V1)||s

≤1

2
||V2 − V1||s.

using the fact that R(r,N) ≤ R∗ = 1
4CC0

. Therefore, TNr will be a contraction if

ws+γN > C(2rR(r,N) + 2||Ṽ (r)||s). (3.4)

Now as Ṽ1 and λ are continuous functions of r, then we can take the maximum norm

in (3.1 − 4) over (−δ, δ). Therefore we can find N big enough such that (3.1 − 4)

will be satisfied for all r ∈ (−δ, δ).

As a consequence, for N big enough, we can apply the Banach fixed point Theorem

for all r ∈ (−δ, δ) to obtain that TNr has a unique fixed point in BR(r,N) ⊂ Xs.

Moreover the condition (3.2) gives us that this fixed point is not trivially − Ṽ1(r)
r

.

We also obtained that

R(r,N) ≤ 2C||Ṽ1(r)||s(2||V0||s + ||Ṽ1(r)||s)
ws+γN − 2C||Ṽ (r)||s

which means that R(r,N) goes to zero as r goes to zero, which justifies our formu-

lation. Therefore, if r = 0, the only fixed point is zero.
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3.2.2 Case 2

We now consider the other possible scenario

(Case 2) : There exists δ > 0 such that Ker(A(r)) = span(V ∗(r)) for all |r| < δ.

We define U∗ = L−NV ∗ (in particular, U∗(0) is the vector defined in (H3)). In this

case, we need to add a phase condition in order to gain back some invertibility. We

begin by decomposing CdN = span(U∗(r))
⊕

Z(r) such that Z(r) = span(U∗(r))⊥.

Then, we define the mapping Hr as

Hr : CdN × R→ CdN × R

(U, λ) 7→

 LNU + 2λGN(U0)U + rGN(Ũ)U =
CNf (rU,U0,λ)

r

(U − U1(r)
r
, U∗(r))N

Therefore, for all |r| < δ, Hr(
U1(r)
r
, λ(r)) = 0 (the limit as r goes to zero is defined

as U1(r) = rU∗ +O(r) for r small).

Then we compute

D(r) := DHr(
U1(r)

r
, λ(r)) =

LN + 2GN(λ(r)U0 + Ũ1(r)) 2GN(U0)
U1(r)
r

(·, U∗(r))N 0

 .

We define W (r) = λ(r)U0 +U1(r) and we check the invertibility of DHr(
U1(r)
r
, λ(r))

as follows

DHr(
U1(r)

r
, λ(r))

U
λ

 = 0

⇐⇒

 LNU + 2λ(r)GN(W (r))U + 2λG(U0)
U1(r)
r

= 0

(U,U∗(r))N = 0

We know that U1(r)
r
→ U∗(0) when r → 0. Moreover, by (H4) we know that

GN(U0)U
∗(0) /∈ R(LN + 2λ(0)GN(U0)). Therefore, by continuity, there exists δ̃ > 0
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such that GN(U0)
U1(r)
r

/∈ R(LN + 2λ(r)GN(W (r))) for all |r| < δ̃. We redefine δ as

min(δ, δ̃).

Therefore, for |r| < δ, the first equality yields λ = 0 and U ∈ Z(r)⊥. But then

the last equation gives that U ∈ Z(r). Therefore U = 0 and we obtained that

DHr(
U1(r)
r
, λ(r)) is invertible for all |r| < δ.

Lemma 3.2.2. Let U0 ∈ U0 and consider the associated results from Theorem 3.1.1

in the Case 2. Then for all r ∈ (−δ, δ) we denote W (r) := Ũ1(r) + λ(r)U0 ∈ Xs+θ

and we define the operator TNr as

TNr : BR(r,N) → BR(r,N)

(V, λ) 7→



V N

λ

−D(r)−1

 CNf (rL−1V,W (r),λ)

r

(L−1V − U1(r)
r
, U∗(r))N


VN − CfN (rL−1V,W (r),λ(r))

r

with BR(r,N) ⊂ Xs × R and R(r,N) is defined in the proof. Then TNr is well de-

fined and has a unique non-trivial fixed point for all r ∈ (−δ, δ) for N big enough.

Moreover R(r,N) goes to zero when r approaches zero.

Proof. The proof is analogue to the one of the Case 1 as we similarly built up a

Newton-like fixed point operator. Notice that this time λ(r) can be perturbed. We

give below the changes in the needed conditions.

D(r)−1 is continuous in r so we can define C0 > 0 such that ||D(r)−1||s ≤ C0 for all

|r| < δ. Therefore, we define R∗ := 1
4CC0

min(1; 1
2||V0||s ) with V0 = LU0 and the first

component maps BR∗ into itself.

This changes condition (3.3) into

ws+γN ≥ 2C

R∗
||Ṽ1(r)||s(2λ(r)||V0||s + ||Ṽ1(r)||s) + 2C||Ṽ (r)||s.
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In particular, with this choice of R∗, we obtain the contractive feature of the first

component. As the second component does not change, we obtain the existence and

the uniqueness a fixed point for TNr for all |r| < δ.

We are now in a position to prove our main result.

Proof of Theorem 2.4.1. Let U0 in U0, then we consider the branch of solutions for

the finite dimensional projection given by Theorem 3.1.1. Moreover we suppose that

N ∈ Nm given in (H2) is big enough such that the conditions (3.1-4) of the previous

Lemmas are satisfied. Then for all r ∈ (−δ, δ), we know that TNr has a unique fixed

point V (r) in Xs for the Case 1 and a unique fixed point (V (r), λ(r)) for the Case

2.

Then by construction we obtain that λ(r)U0 + Ũ1(r) + rL−1V (r) ∈ Xs+θ solves

(2.2) for F (r) := λ(r)LU0 + λ(r)2G(U0)U0 ∈ Xs and for all r ∈ (−δ, δ). Moreover,

Theorem 3.1.1 and the Lemmas yield that Ũ1(0) + 0 × L−1V (0) = 0, so that it

justifies the origin of the branch. Then we use Proposition 3.2.2 to finish the proof

of the Theorem and obtain the equivalence of the branch in Cs+θ
Fou(Ω).

Remark 6. We note that we do not need the invertibility of L. In fact, we could

have just built a diagonal matrix with (wθn)n on the diagonal to match the higher

derivatives of L. This infinite matrix would have been invertible by construction and

it could have replaced L−1 in the formulation (2.3). Therefore, the whole proof of the

Theorem 2.4.1 can be done without L−1. However, we are going to see in Chapter 4

why it is interesting to assume the invertibility of L.

From a practical point of view, we notice that the conditions (3.1-4) will be easily

satisfied if r is small as V1(r) goes to zero as r goes to zero. Therefore, only a few

number of modes will be necessary to be able to use the previous Lemmas close to

r = 0.
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CHAPTER 4
Hypotheses (H1−4)

Now that our main result is set and proved, we work on the hypotheses (H1−4) to

relax them. We introduce the following hypothesis (H5) for U0 ∈ Xs+θ

(H5) : There exists N ∈ Nm big enough such that GN(U0) is invertible

In the following work we suppose that (H1) is satisfied, which means that we work

on Xs+θ. Then we call Hi ⊂ Xs+θ the subset of Xs+θ satisfying the hypothesis (Hi).

4.1 Hypothesis (H5)

We begin by showing that H5 is dense in Xs+θ.

Proposition 4.1.1. Let N ∈ Nm, then the set of vectors U ∈ CdN such that GN(Ũ)

is invertible is dense in CdN with dN = |IN |. Moreover H5 is dense in Xs+θ.

Proof. Let K := {U ∈ CdN , det(GN(Ũ)) = 0}, then as G is not trivial, the set K is

the set of the roots of a non-zero multivariate polynomial of order dN and with dN

variables. Therefore K is a (dN − 1)-dimensional C-vector field, which proves the

first part of the proposition.

Let U0 ∈ Xs+θ − H5 and let N ∈ Nm. Now, the previous result shows that we

can find a sequence (Un)n ⊂ CdN , such that GN(Ũn) is invertible for all n ∈ IN

and that converges to UN
0 . Then, as N is arbitrary, we can choose it as big as we

want. Therefore we create a sequence of vectors N1 < ... < Nk < ... in Nm and for

each k we can find a sequence (Ũk
n)n ⊂ H5 that converges to Ũ0

Nk
. Moreover, the

coefficients of U0 decay to the rate s+ θ by definition of Xs+θ. This means that, for
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each k and each ε > 0, we can find n∗ such that for all |n| ≥ |n∗|

||Ũk
n − U0||s+θ ≤ (||U0||s+θ + ε)ws+θNk

As a consequence we can build a sequence (Ũn)n ⊂ H5 that converges to U0 in Xs+θ.

This proves the density result.

4.2 Hypothesis (H2)

We can prove, under some very light criteria, that (H2) is actually an implication

of (H5). In this section we use the set of indices JN instead of IN because we are

going to need to use the symmetry of the Fourier series in order to make its property

appear. Therefore UN is now the projection on the indices JN and dN = |JN |. It is

clearly equivalent to work with JN , therefore we do not want to change the notations.

Proposition 4.2.1. Let N ∈ Nm and U ∈ Xs+θ such that un = u−n for all n ∈ JN

with dN = |JN | such that GN(U) is invertible, if dN − 1 is divisible by 4 then (H2)

holds.

Before giving the proof of the proposition we introduce some notations and results.

We fix V ∈ Xs+θ such that vn = v−n for all n ∈ JN and we begin by defining the

following operator D :

D : R→ CdN×dN

λ 7→ LN + λGN(V ).

We drop the index N to simplify the notations and we call U = V 2N as only the 2N

first frequencies are necessary. We call G(U) := GN(Ũ) then we notice thatG(U) can

be written as G(U) :=


UTG1

. . .

UTGN

 with Gn = (Gn(i,j))(i,j)∈J2N×JN = (1i=n−jg(i, n)).

Each matrix Gn is a Toeplix matrix that comes from the finite convolution induced

by G.
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Now we call ln the nth column of L and gkn the one of Gk.

Definition 4.2.1. Let M1 := {α ∈ RdN×d2N | αij = 0 or 1}.

Then for all U ∈ Cd2N and α ∈M1 we define Uα by

Uα :=
∏

i∈JN , j∈J2N

U
αij
j .

Moreover we define the following squared matrix

(gα, lα∗) :=

{
α∗iili +

∑
j∈J2N

αijgij

}
i∈JN

for α + α∗ ∈M1.

Proposition 4.2.2. For all λ ∈ R and dN − 1 divisible by 4,

det(D(λ)) =
∑

α+α∗∈M1, |α+α∗|=dN
λ|α|Uαdet((gα, lα∗)) ∈ R.

Proof. We consider D(λ)T instead of D(λ) and the formula for the determinant

directly comes from the linearity of the determinant with the columns. Then,

det(D(λ)) =
∑

α+α∗∈M1, |α+α∗|=dN

λ|α|Uαdet((gα, lα∗))

=
∑

α+α∗∈M1, |α+α∗|=dN

λ|α|det((gα, lα∗))
∏

i∈JN , j∈J2N

U
αij
j

=
∑

α+α∗∈M1, |α+α∗|=dN

λ|α|det((gα, lα∗))
∏

i∈JN , j∈J2N

Uj
α−i,−j

Now we use the change of variable β defined as βi,j = α−i,−j and we notice that

|β| = |α| and (gα, lα∗) = R(gβ, lβ) where R is the reflection operator R : (i, j) 7→

(−i,−j). However we can go from R(gβ, lβ) to (gβ, lβ) by dN−1
2

interchanges of rows.

But as dN − 1 is divisible by 4 by assumption, the operator R does not change the
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determinant. As a consequence it gives

det(D(λ)) =
∑

β+β∗∈M1, |β+β∗|=dN

λ|β|det(R(gβ, lβ∗))
∏

i∈JN , j∈J2N

Uj
βij

=
∑

β+β∗∈M1, |β+β∗|=dN

λ|β|det((gβ, lβ∗))
∏

i∈JN , j∈J2N

Uj
βij
.

This implies that det(D(λ)) is equal to its conjugate, as λ ∈ R, which means that

det(D(λ)) is real.

We are now in a position to prove Proposition 4.2.1

Proof of Proposition 4.2.1. By Proposition 4.2.2 we know that the determinant of

D(λ) is a real number. Moreover we assume that det(G(U)) < 0. Now D(0) = LN

and by assumption A(3) we obtain det(D(0)) 6= 0. We assume that det(D(0)) > 0.

As det(G(U)) < 0, we use the continuity of the determinant to conclude that there

exists λ > 0 big enough such that det(D(λ)) < 0.

To conclude we use again the continuity of the determinant and the intermediate

value Theorem to prove that there exists λ∗ 6= 0 such that det(D(λ∗)) = 0.

The same reasoning holds if det(G(U)) > 0 but we need to take λ < 0 small enough

instead. Indeed as d is always odd (of the form 2p + 1), we have λd < 0 whenever

λ < 0. The same argument can be used if the determinant of LN is negative.

4.3 The hypothesis (H3)

In this section we want to prove that H3 is dense in H2. The proof we use is

very similar to the one used in Section 4.1. This time we place ourselves in the set

of matrices of non-trivial kernel and we prove a similar result in a lower dimension

thanks to isomorphism.

Proposition 4.3.1. H3 is dense in H2.
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Proof. Clearly H3 ⊂ H2 by definition. Let N ∈ Nm, from Proposition 4.1.1 we know

that K1 := {U ∈ CdN , det(LN +2λ∗GN(Ũ)) 6= 0} is of dimension dN −1. Therefore,

K1 is isomorphic to a subspace of CdN−1 that we call K̂1. For each U ∈ K1, we call

Û its equivalent in K̂1. Similarly, the set of matrices {LN + 2λ∗GN(Ũ), U ∈ K1} is

isomorphic to a subspace of the square matrices of size dN − 1. For Û ∈ K̂1 , we call

M(Û) the square matrix of size dN − 1 corresponding to LN + 2λ∗GN(Ũ). Then,

we define K2 := {Û ∈ K̂1, det(M(Û)) = 0} and we obtain that K2 is of dimension

dN − 2 with the same reasoning as in Proposition 4.1.1. Then, by isomorphism, we

obtain that {U ∈ CdN , dim Ker(LN + 2λ∗GN(Ũ)) = 1} is dense in K1. Finally, we

use the reasoning of Proposition 4.1.1 to prove that H3 is dense in H2.

Remark 7. This type of result was generalized by Sard, as he developed a theory on

Hausdorff measure. We invite the interested reader to refer to [42] for more details.

4.4 Extension from U0 to Xs+θ
⋂
H4

Following the results of sections 4.1-3, we can extend Theorem 2.4.1 to Xs+θ
⋂
H4.

Theorem 4.4.1. H3 is dense in Xs+θ and Theorem 2.4.1 can be extended to Xs+θ
⋂
H4.

In particular, if U0 = 0 then the branch given by the Theorem turns into the singleton

{0}.

Proof. We consider a vector N ∈ Nm
∗ such that dN is divisible by 4. Under this

condition, Proposition 4.2.1 gives that (H5) implies (H2). However, as H5 is dense

in Xs+θ, it implies that H2 is dense in Xs+θ as well. Then we just need to use

Proposition 4.3.1 in order to obtain that H3 ⊂ H2 is dense in Xs+θ.

To prove the extension of the Theorem 2.4.1, we use the continuity of the operators

L and G in Xs+θ and the density of H3

⋂
H4 in Xs+θ

⋂
H4. Then the fact that

H3 ⊂ H2 ⊂ H1 allows to extend the validity of the Theorem.
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For the case U0 = 0 we use the invertibility of L to conclude that the only solution

to LU = 0 is 0 ∈ Xs+θ.

Remark 8. It is not obvious how to deal with the hypothesis (H4). It seems that this

condition has to be handled on a case to case basis. [15] gives the classical eigenvalue

example where this hypothesis is easily verified.

Moreover, our reasoning shows that the hypotheses (H1−3) do not depend on N as

it can be chosen as big as we want, as far as dN is divisible by 4. Therefore we just

have to find one example of that N big enough such that the conditions (3.1-4) are

satisfied. Then we hope that (H4) will be satisfied for such an N . As a consequence

there is some remaining work to pursue on H4 in order to extend our result to a

wider range of vectors.
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CHAPTER 5
Applications

The goal of this section is to present two kinds of problems that can be solved

thanks to Theorem 2.4.1. Moreover we will give concrete examples by expliciting

some equations.

5.1 Special case of time periodic solutions

Time periodic solutions are a recurrent subject in PDEs when one talks about

periodic solutions. To study this kind of solutions, we specify our class of PDEs

∂u

∂t
+ Lsu+ G(u, u) = f(x1, ..., xm−1). (5.1)

with Ls being a linear differential operator and G is a bilinear differential operator.

The variable t is defined as the time variable and x1, ..., xm−1 are the space variables.

In order to be in adequation with our formulation, we denote L := ∂u
∂t

+ Ls and we

suppose that the hypotheses A(1 − 3) are satisfied. Moreover we suppose that

Ls and G are spatial differential operators such that they do not depend on time

differentiation. Then, the forcing f is supposed to be time independent which will

lead us to the apparition of Spontaneous Periodic Orbits (SPO).

As Ls is a spatial differential operator, we can only consider its Fourier series trans-

form in space. From that point, we call L̂s its Fourier series transform in space and

we remove the “hat” when we include the time direction. Similarly, we call Ĝ the

operator G for the space directions. Finally, we call X̂s the spatial coefficients in

Xs and for U ∈ Xs, we call Un ∈ X̂s the space coefficients of U for the time index

n ∈ Z.
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In this section we consider a subspace of Xs which will be our space of stationary

parts

Xs
0 := {U ∈ Xs| Un = 0 for all n 6= 0}.

Therefore U0 ∈ Xs
0 (U0 is still our central solution, we will make sure to distinguish

it with our new notation) corresponds to a time-independent function in Cs
Fou(Ω).

Moreover, in all the future work, δ and r are the parameters defined in Theorem

2.4.1.

To underline the correspondence between X̂s and Xs, we give the following Propo-

sition.

Proposition 5.1.1. Let U0 ∈ Xs+θ
0 , then the two following statements are equiva-

lent :

(1) : Ker(L+G(U0)) = span(U) for some non zero U ∈ Xs+θ.

(2) : There exists a unique n∗ ∈ Z and a non zero Û ∈ X̂s+θ such that

Ker(L̂s + Ĝ(U0) + in∗Îd) = span(Û).

where Îd is the identity operator in X̂s+θ.

Proof. (1) =⇒ (2)

Suppose (1), then by assumption we know that there exists U ∈ Xs+θ such that

Ker(L+G(U0)) = span(U).

Moreover, as we explained, we can write U := (..., Un, ...) with Un ∈ X̂s+θ and n ∈ Z.

Here n represents the time index. Therefore, as U0 ∈ Xs
0 , for each n we have

inUn + L̂sUn + Ĝ(U0)Un = 0
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As a consequence, for each Un 6= 0 we obtain that Un is an eigenvector of L̂s+ Ĝ(U0)

for the eigenvalue −in. We need to show that there is only one n∗ ∈ Z such that

Un∗ 6= 0.

Indeed, suppose that there exist n,m ∈ Z such that n 6= m and Un, Um 6= 0.

In particular it implies that (0, ..., 0, Un, 0, ..., 0) and (0, ..., 0, Um, 0, ..., 0) are in the

kernel of L+G(U0), which is in contradiction with our hypotheses. Therefore, there

exists n∗ ∈ Z such that Un∗ 6= 0 (as U 6= 0) is an eigenvector of L̂s + Ĝ(U0) for the

eigenvalue −in∗ and −in is not an eigenvalue of L̂s + Ĝ(U0) if n 6= n∗.

This proves the first implication

(2) =⇒ (1)

Suppose (2) and that Ker(L + G(U0)) is at least of dimension 2. Then, following

the previous proof, we can show that there would exit at least two indices n,m ∈ Z

such that the eigenspaces of −im and −in for the operator L̂s + Ĝ(U0) would be of

dimension 1 (and 2 if n = m). But this is in contradiction with (2).

Now suppose that Ker(L + G(U0)) is the singleton {0}. Then again we use the

previous proof and (2) to build a non zero vector in the kernel of L+G(U0).

Remark 9. If we were to use the full set of indices J instead of I in the previ-

ous proof, we would find that −in∗ and in∗ are eigenvalues because of the Fourier

symmetry “un = u−n”.

5.1.1 Spontaneous Periodic Orbits

We study a special application of Theorem 2.4.1 which is the existence of Sponta-

neous Periodic Orbit (SPO). We call SPO a strictly (not constant in time) periodic

solution arising from a time-independent forcing term, in the set up of the previous

part.
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In this section we consider a subspace of Xs+θ
0 which will be our space of stationary

parts

Usta
0 := {U0 ∈ U0| un = 0 for all n such that nm 6= 0}.

Therefore U0 ∈ Usta
0 corresponds to a time-independent function in Cs+θ

Fou(Ω). We

can now give our existence result of SPO.

Theorem 5.1.1. Let U0 ∈ Ut
0 and be u0 the corresponding element in Cs+θ

Fou(Ω),

then if n∗ 6= 0, defined in Proposition 5.1.1, there exists δ > 0 and a non-trivial

continuous branch lu of 2π-spontaneous periodic solutions in Cs+θ
Fou(Ω) to (5.1)

lu := {u(r) + λ(r)u0, r ∈ (−δ, δ)}.

This branch corresponds to a continuous branch lf of forcing terms in Cs
Fou(Ω) given

by

lf := {λ(r)L1u0 + λ(r)2G(u0, u0), r ∈ (−δ, δ)}.

Proof. The proof is a direct consequence of Theorem 2.4.1. Moreover, by construc-

tion u0 is time-independent, so the branch lf is a branch of time-independent forcing

terms. Then Proposition 5.1.1 assures that the non-trivial branch is a branch of

(strictly) time dependent solutions. This justifies the title spontaneous.

5.1.2 Example 1 : 2D incompressible Navier-Stokes equation (vorticity
formulation)

u := (u1, u2) and w := ∇× u will solve the 2D Navier-Stokes vorticity equation if

∂tw + (u · ∇)w − ν∆w = ∇× f

∇ · u = 0

where w, u1 and u2 are real valued and ν > 0 is called the viscosity.
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The standard way to study this equation is to introduce the stream function ψ.

Indeed, the divergence free velocity in the Navier-Stokes equations enables us to

defined ψ as follows

u1 = ∂yψ

u2 = −∂xψ.

Then clearly ∇ · u = 0 is satisfied by construction of u and we have that w = −∆ψ,

therefore we can rewrite the system under the form

− ∂t∆ψ + ν∆2ψ − ∂yψ∂x∆ψ + ∂xψ∂y∆ψ = ∇× f. (5.2)

Therefore we can construct our operators L and G by defining the following quan-

tities

∀n, k ∈ I,

Ln = (n2
1 + n2

2)(in3 + ν(n2
1 + n2

2))

g(k, n) =
1

2
(k2n1 − k1n2)(k

2
1 + k22 − (n1 − k1)2 − (n2 − k2)2).

Clearly A(1) is satisfied and the higher order of L is (n2
1 + n2)

2. We call L1 := ∆2

as in the definition of 6.1.

Then G1 and G2 are of order 3 at most in n1, n2, whereas L is of order 4 as we saw.

Moreover L is of order 1 in n3 and G is constant in n3, therefore A(2) is validated

as well.

Finally, by definition of w, the components corresponding to (n2
1 + n2

2) = 0 will be

equal to 0. Therefore the set of definition for L will be the vectors in U ∈ Xs such

that Un = 0 if (n2
1 + n2

2) = 0. Moreover, g(k, n) = 0 for all k and all n such that

n1 = n2 = 0. Under that restriction, we can eliminate these terms from L and

obtain a linear term invertible, which implies that A(3) is satisfied.
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Theorem 5.1.2 (SPO in 2D-Navier-Stokes). Let U0 ∈ Usta
0 and be u0 the corre-

sponding element in Cs+θ
Fou(Ω). Let ν > 0, then if n∗ 6= 0 (in Proposition 5.1.1),

there exists δ > 0 and a non-trivial continuous branch lu of 2π-spontaneous periodic

solutions in Cs+θ
Fou(Ω) to (5.2)

lu := {u(r) + λ(r)u0, r ∈ (−δ, δ)}.

This branch corresponds to a continuous branch lf of forcing terms in in Cs
Fou(Ω)

given by

lf := {νλ(r)L1u0 + λ(r)2G(u0, u0), r ∈ (−δ, δ)}.

Proof. The proof is a direct consequence of Theorem 5.1.1.

5.1.3 Example 2 : 2D Kuramoto-Sivashinsky equation

u will solve the 2D Kuramoto-Sivashinsky equation if it satisfies

∂tu+ ν∆2u+ ∆u+
1

2
|∇u|2 = f (5.3)

where u is real valued and ν > 0.

We consider the case where ν > 1. Under that condition, we can easily check that

the assumptions A(1 − 3) are satisfied. In particular, A(3) will be satisfied if we

impose the mean value to be zero. We can then transform the problem, as in the

Navier-Stokes case, to obtain L invertible.

Theorem 5.1.3 (SPO in 2D-Kuramoto-Sivashinsky). Let U0 ∈ Usta
0 and be u0 the

corresponding element in Cs+θ
Fou(Ω). Let ν > 1, then if n∗ 6= 0 (in Proposition 5.1.1),

there exists δ > 0 and a non-trivial continuous branch lu of 2π-spontaneous periodic
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solutions in Cs+θ
Fou(Ω) to (6.3)

lu := {u(r) + λ(r)u0, r ∈ (−δ, δ)}.

This branch corresponds to a continuous branch lf of forcing terms in Cs
Fou(Ω) given

by

lf := {λ(r)(∆2 + ν∆)u0 + λ(r)2G(u0, u0), r ∈ (−δ, δ)}.

Proof. The proof is a direct consequence of Theorem 5.1.1.

5.2 Internally Excited Equation

This new application puts in place a linear operator that may be non-invertible.

In fact, we decompose the linear term between two invertible linear parts with

different signs. The part with the higher degree of differentiation is modulated by

some parameter ν. Therefore, if these linear operators are elliptic and if ν is small

enough, then the full linear operator will have eigenvalues with positive real parts.

Therefore if we add to this construction a time derivative, the system might have

growing modes : the eigenvalues with positive real parts might engender instability.

Moreover, as we will see in the Section 5.2.2, this kind of equation does not need

a forcing term to give rise to a bifurcation. This explains why we denote them

Internally Excited Equations (IEE).

5.2.1 Non-homogeneous case

We consider the following kind of equations

νL1u− L2u+ G(u, u) = f (5.4)

where L1 and L2 are continuous and linear differential operators and G is a contin-

uous bilinear differential operator. ν > 0 is a positive constant.
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Now still assume A(2) and we consider A(3) to be satisfied for both L1 and L2

separately but not necessarily to the sum. Moreover we turn A(1) into the following

assumption A(4).

Assumption 4. L1u :=
∑
α≤θ1

aα∂
αu and L2u :=

∑
α≤θ2

bα∂
αu where (aα)α and (bα)α

are sequences of constant coefficients.

Moreover we suppose that there exists Cg > 0 and γ ≥ (1, ..., 1) that gives |

∑
α≤θ2

bαξα

∑
α≤θ1

aαiξ
α | ≤

Cg
wγξ

for all i ∈ {1, ...,m} and |ξ| big enough.

We also need to transform the set U0 to match our formulation. We say that U0 ∈ UI
0

if it satisfies the following hypotheses :

(H1) : U0 ∈ Xs+θ1 , U0 6= 0.

(H2) : There exists ν∗ ∈ R∗ and N ∈ Nm such that ν∗LN1 − LN2 + 2GN(U0)

is not invertible.

(H3) : Ker(ν∗LN1 − LN2 + 2GN(U0)) = span (U∗).

(H4) : LN1 U
∗ /∈ R(ν∗LN1 − LN2 + 2GN(U0)).

Then again we can give an existence Theorem of periodic solutions in (5.4).

Theorem 5.2.1. Let U0 ∈ UI
0 and be u0 the corresponding element in Cs+θ1

Fou (Ω), then

there exists δ > 0 and a non-trivial continuous branch lu of 2π-periodic solutions in

Cs+θ1
Fou (Ω) to (5.4) with ν := ν(r)

lu := {(u(r), ν(r)), r ∈ (−δ, δ)}.

This branch corresponds to a continuous branch lf of forcing terms in Cs
Fou(Ω) given

by

lf := {ν(r)L1u0 − L2u0 + G(u0, u0), r ∈ (−δ, δ)}.
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Proof. We just need to notice that the proof of Theorem 2.4.1 can be applied if we

replace the role of 2λG(U0) by νL1 each time it appears.

5.2.2 Homogeneous case

In this section we show that the forcing is not necessary in the rise of periodic

solutions in the case of IEE. In fact, the excited part of the equation enables the

system to create periodic solutions by itself.

We consider the following class of equations

νL1u− L2u+ G(u, u) = 0 (5.5)

where we also assume the same assumptions as in Section 5.2.1. This kind of equation

is a perfect example for Crandall-Rabinowotz theory and the Theorem in [15] gives

the existence of bifurcations from the trivial line. Therefore, we can take U0 = 0

and apply our theory to obtain the same result as in Crandall-Rabinowitz theory.

Theorem 5.2.2. Suppose that there exists ν∗ ∈ R such that ν∗ is an eigenvalue

of LN1 (LN2 )−1, for N ∈ Nm big enough. Then, there exists δ > 0 and a non-trivial

continuous branch lu of 2π-periodic solutions in Cs+θ1
Fou (Ω) to (5.5) with ν := ν(r)

lu := {(u(r), ν(r)), r ∈ (−δ, δ)/(u(0), ν(0)) = (0, ν∗)}.

Proof. Let N ∈ Nm be as supposed, then by assumption LN1 and LN2 are invertible

diagonal matrices, therefore the eigenvectors of LN1 (LN2 )−1 will be part of the stan-

dard basis. From this point, it is obvious that the finite-dimensional hypotheses of

Crandall-Rabinowitz Theorem will be satisfied, and by A(1-4) we can use Theorem

2.4.1 to conclude.
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CHAPTER 6
Computational solutions

6.1 Energetic minimization

Even if we know that there exists spontaneous periodic orbits in (2.1) (thanks to

Theorem 5.1.1), it is not obvious how to actually compute such solutions. Our goal

in this section is to develop a numerical method to approximate them. The idea is

to introduce an energy such that its minima will be solutions of (2.2) in the case of

the Section 5.1. In this chapter we consider the full set of indices JN and dN = |JN |.

We naturally want to involve the `2 norm of Fourier coefficients in our energy.

Therefore, for a fixed N ∈ Nm, we define EN for all U ∈ CdN as

EN(U) := ||(LNU +GN(U)U)nm 6=0||22.

For simplicity in this chapter, we write Ũ as U . We will use the tilde symbol when

there is ambiguity. Then, if we find U such that E(U) = 0, then it means that the

equivalent function of LNU +GN(U)U in C∞(Ω) will be time-independent.

Remark 10. As U ∈ CdN , the complete energy should be L2NU2N + G2N(Ũ)U2N ,

where U2N is a padding with zeros of U to match the dimension 2N . In fact, having

E(U) = 0 does not imply (LŨ + G(Ũ)Ũ)nm 6=0 = 0 because the convolution term

makes “double frequencies” appear. However, this issue can be passed if we can

show that the coefficients of U decrease quick enough.

The problem of the energy EN lies in the fact that it is not complex differentiable

because of the norm operator. Therefore the idea is to decompose U = RU + iCU

with RU and CU respectively the real and imaginary parts of U . We call P (U)U :=
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(LNU +GN(U)U)nm 6=0 to simplify, then we define

Ê : RdN × RdN → R+

(RU , IU) 7→ ||P (RU + iIU)(RU + iIU)||22

which is infinitely differentiable on RdN × RdN .

6.2 Complexification

In this section, we introduce a simple trick that shows the equivalence of the mini-

mization with Ê or EN . What we call complexification is basically the identification

between of the Taylor expansion of Ê and the one of EN .

Lemma 6.2.1 (Complexification). For all U, h ∈ CdN respecting the symmetry un =

u−n for all n, such that h = Rh + iCh and U = RU + iRU , we have that

EN(U + h) = EN(U) + E1(U, h) +
E2(U, h)

2
+
E3(U, h)

6
+
E4(h)

24
with

E1(U, h) = DÊ(RU , CU)(Rh, Ch)

E2(U, h) = D2Ê(RU , CU)(Rh, Ch)

E3(U, h) = D3Ê(RU , CU)(Rh, Ch)

E4(h) = D4Ê(Rh, Ch)

where Ei is a polynomial of order i in h and DiÊ is the i-th derivative of Ê.

Proof. Let U, h ∈ CdN respecting the symmetry un = u−n for all n, such that

h = Rh + iCh and U = RU + iRU and let t ∈ R. Then U + th also respects the

symmetry of Fourier coefficients. Now Ê is a polynomial of order 4 so we can use

its Taylor expansion (which will in fact be exact) :
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Ê(RU + tRh, CU + tCh)

=Ê(RU ,CU )+tDÊ(RU ,CU )(Rh,Ch)+
t2

2
D2Ê(RU ,CU )(Rh,Ch)+

t3

6
D3Ê(RU ,CU )(Rh,Ch)+

t4

24
D4Ê(Rh,Ch).

Then by definition of Ê we have Ê(RU + tRh, CU + tCh) = EN(U + th) and as EN

is a polynomial of order 4 we can expand EN(U + th) in h and obtain

EN(U + th) = EN(U) + tE1(U, h) + t2E2(U,h)
2

+ t3E3(U,h)
6

+ t4E4(h)
24

where Ei is a

polynomial of order i in h.

Therefore we have two polynomials (in t) which are the same. As a consequence we

can identify their coefficients and obtain the statement of the Lemma.

Remark 11. Therefore we see ,thanks to Lemma 6.2.1, that the computations of

the derivatives of Ê are the same as the expansion coefficients of EN . The interest

of the complexification is to maintain the symmetries due to Fourier series and the

complex space.

Furthermore, U −∇cE
N(U) is equivalent to (RU , CU)−∇Ê(RU , CU). This is really

useful for the implementation of a gradient descent minimization.

In particular we have E1(U, h) := h
T∇cE

N(U) = (RT
h CT

h )∇Ê(RU , CU) and

E2(U, h) := h
T
HcE

N(U)h = (RT
h CT

h )HÊ(RU , CU)(RT
h CT

h )T respectively the com-

plexification of the gradient and the Hessian of Ê. All this quantities are real as we

proved in Proposition 2.2.1.

Lemma 6.2.2 (Gradient and Hessian). For all U ∈ CdN such that un = u−n,

∇cE
N(U) = 2P (2U)

T
P (U)U

HcE
N(U) = 2P (2U)

T
P (2U) + 4

∑
k∈IN

(P (U)U)kĜk

where (Ĝk) are derived from (Gk).
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Proof. Let U, h ∈ CdN such that un = u−n and similarly for h,

EN(U + h)− EN(U)

= h
T
L[P (U)U − F ] + 2h

T
(
G1U . . . GNU

)
[P (U)U − F ]

+ [P (U)U − F ]
T
Lh+ 2[P (U)U − F ]

T


UTG1

. . .

UTGN

h+ o(||h||).

Therefore, from the previous Lemma we deduce that ∇cE
N(U) = 2P (2U)

T
P (U)U .

Now similarly, using Lemma 6.2.1 again,

EN(U + h)− EN(U)− hT∇cE
N(U)

= h
T
P (2U)

T
P (2U)h+ 2


h
T
G1h

. . .

h
T
GNh


T

P (U)U + o(||h||2)

but (Gkh)i =
∑
n∈JN

1i=k−n
g(−i,−k)+g(−n,−k)

2
h−n =

∑
n∈JN

1i=k+n
g(−i,−k)+g(n,−k)

2
hn := (Ĝkh)i.

As a consequence we obtained thatHcE
N(U) = 2P (2U)TP (2U)+4

∑
k∈JN

(P (U)U)kĜk.

6.3 Minimization and Algorithm

Now that we introduced an energy that will lead to approximated solutions, we

use a minimization method. The method we choose is the classical gradient descent.

Therefore, for N ∈ Nm we can minimize EN until machine precision.

Then the idea is to consider a strictly increasing sequence of vectors (Nk)k ⊂ Nm

(N1 < N2 < ... < Nk < ...) and minimize Ek := ENk for all k. Therefore we create

a sequence of minima (Uk) where Uk ∈ CdNk . Theorem 5.1.1 shows that we can
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find some solutions in Xs+θ, which means that we might observe a decrease in the

amplitude of the coefficients.

In order to find such solutions, we chose, for each k, each initial guess by padding

the previous solution Uk by zeros to match the size in CdNk+1 . If indeed the decrease

of coefficients appears, the initial guess will be successively more accurate for each

k.

We give the following algorithm to summarize our minimization process :

Algorithm 1: Minimization for Spontaneous Periodic Orbits

Initialisation :

• Take N0 ∈ Nm and a random Ũ0 ∈ Cd0

• Find U0, using gradient descent, that minimizes E0

For N = Nk > Nk−1 :

• We pad Uk−1 with zeros, we call it Ũk

• Find Uk, using gradient descent with Ũk as the initial condition, that

minimizes Ek

6.4 Double frequencies

The convolution coming from GN(U)U is supposed to make “double frequencies”

appear but we cut them in our formulation of the problem. The double frequencies

are basically the frequencies between N strictly and 2N .

We define the following operator associated to the double frequencies :

GN
2 : CdN → Cd2N

U 7→ 1n∈J2N−JNG
2N(Ũ)

where Ũ ∈ Cd2N is the padded version of U with zeros.
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Lemma 6.4.1. If we call (Uk) a sequence of minimizers generated by Algorithm 1

such that (Uk) converges to U ∈ Xs+θ, then ||GNk
2 (Uk)Uk||∞ decreases to zero to the

rate s. For U ∈ CdN , we define the infinite norm ||.||∞ as ||U ||∞ := maxi∈IN |Ui|.

Proof. Let s > (1, ..., 1), then by definition of Uk, there exists k1 such that

∀|k| ≥ |k1|,

||LUk − LU ||s ≤ CwsNk

for some C > 0 independent of k.

Then by Proposition 3.2.1, we know that G(U)U ∈ Xs, therefore there exists C1 > 0

such that ||GN(U)U ||s ≤ C1w
s
N for all N ∈ Nm.

As a consequence, we can find |k| > |k1| big enough such that

||GNk
2 (Uk)Uk||∞ ≤ CwsNk

with C > 0 independent of k. This proves our lemma.

We are now ready to give the regularity result for our algorithm.

Theorem 6.4.2. If the sequence (Uk)k generated by Algorithm 1 converges to some

U in Xs+θ such that U /∈ Xs+θ
0 , then the equivalent of U in Cs+θ(Ω) is a Spontaneous

Periodic Orbit.

Proof. The Spontaneous character comes from the construction of the energy Ek

and of Lemma 6.4.1.
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6.5 Numerical results for the 2D Navier-Stokes vorticity equation

6.5.1 An example of a solution of Algorithm 1

In practice the Algorithm 1 shows excellent results for the Navier-Stokes equations

in a sense that we observe some exponential decay of the coefficients. This can be

justified by our previous reasoning. Moreover, we can cite [20] in which is shown the

Gevrey regularity of Navier-Stokes solutions and the exponential decay of Fourier

coefficients for Gevrey forcing terms. Our algorithm converges to this smooth type

of couple solution-forcing as we notice the exponential behavior after some critical

vector of frequencies N∗ ∈ Nm.

We fix the viscosity ν = 1 and we look for periodic solutions of period 2π in every

directions thanks to Algorithm 1. We stop the Algorithm for Nk = [10, 10, 10] and

we build the forcing term by taking the time-independent part of LUk + G(Uk)Uk.

By doing so, we make an error of order ||GNk
2 (Uk)Uk||∞ as we saw in Lemma 6.4.1.

However, if the coefficients of Uk decrease quickly enough, then this approximation

will be numerically satisfying. We give the representation of the forcing in the

following plot (which is actually the curl of some f for the vorticity equation).

Figure 6–1: An example of a 2D Navier-Stokes
forcing term generated by Algorithm 1
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Now, to verify the numerical interest of our solution, we use a second order Adams–Bashforth

solver and we solve for the previous forcing. Our initial condition is a small per-

turbation of the solution Uk we obtained in Algorithm 1. After some transient,

the Algorithm converges to a periodic solution. We give the plots of the numerical

solution at different times with a translation of the time to zero in order to skip the

transition.

Figure 6–2: An example of the vorticity w at different times of a period in 2D
Navier-Stokes

In addition to showing some stability against small perturbations, this verification

also allows to highlight the fact that the couple solution-forcing is non trivial. More-

over, in practise we can change the values of ν, of the period and of the sizes of the

domain, as we explained in Remark 4.
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6.5.2 Approximation of the bifurcation

We now show that we can numerically follow the reasoning from Section 3. In fact,

we want to develop a continuation method with respect to the amplitude of the

steady part of the solution. In that way we will mimic the reasoning done with our

parameter λ and try to numerically observe the bifurcation behavior of the system.

Therefore we fix a number of frequencies N0 and we use Algorithm 1 to obtain

a solution U0. Then we multiply the part in Usta
0 (defined in Section 5.1) of U0

by some 0.9 ≤ γ < 1. We call Uk
0 the projection of Uk on the subspace Usta

0 .

Therefore, we obtain a vectors Ũ1. Finally we use again Algorithm 1 using Ũ2 as an

initial condition and we repeat this procedure. We summarize the procedure in the

following algorithm

Algorithm 2: Approximation of the amplitude bifurcation

Initialisation :

• Take N0 ∈ Nm and a random Ũ0 ∈ Cd0

• Find U0, thanks to gradient descent, that minimizes E0

For k ≤ 1 :

• Find an adequate 0.9 ≤ γk < 1

• Multiply Uk−1
0 by γk. We call Ũk this vector.

• Find Uk, thanks to gradient descent with Ũk as the initial condition, that

minimizes E0

Remark 12. From Lemma 6.2.2, we notice that the second term of the Hessian

will be negligible if γk is close to 1. Therefore, if the matrix P (2Uk) is invertible,

then the Hessian is positive definite in a neighborhood of Uk. As a consequence the

gradient descent should converge. However, the Hessian will loose its invertibility out

of a smaller and smaller neighborhood as we approach a possible bifurcation point.

Therefore, γk has to be chosen closer and closer to 1 as we reach that point. We
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notice that this reasoning is very similar to the one we did in Section 3 for the fixed

point operator TNr and the radius R(r,N).

We use Algorithm 2 and we build a collection of vectors of size d0 solving the

minimization problem associated with E0. Then, for each vector, we separate the

component in Ut
0 from the rest. Then, using the previous notations, we plot for each

solution, the `2 norm of the part in Ut
0 (||U0||2) versus the time-dependent part of

the solution (||U1||2).
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Figure 6–3: Evolution of the time-dependent part versus the stationary part

This is obviously not a rigorous proof of a bifurcation but it gives nonetheless a nice

method to approximate them. In correlation with our theoretical results, we found

a way to numerically approximate bifurcations of Section 3. In order to actually

prove the bifurcation and all the solutions present on the branch, one could use a

Newton-like operator and the technique presented in [48].
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6.6 Numerical results for 1D Kuramoto-Sivashinsky equation

Similarly as the Navier-Stokes case, we want to use Algorithm 1 on the 1D

Kuramoto-Sivashinsky equation in order to approximate spontaneous periodic or-

bits. We obtained the following time-independent forcing :
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Figure 6–4: Example of a 1D Kuramoto-
Sivashinsky forcing term generated by Algo-
rithm 1

The solution we give is achieved for ν = 0.5. Therefore we are in the range where the

Kuramoto-Sivashinsky equation becomes internally excited, as the laplacian term is

perturbating the system.

In the same manner as before, we use an Euler step solver using the previous forcing.

Our initial velocity is a small perturbation of the solution we obtained in Algorithm

1. Now we give the results of the solver, after some transition time that we rescaled

to zero.
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Figure 6–5: An example of solution u at different times of a period in 1D Kuramoto-
Sivashinsky

Overall, it seems that the biharmonic part still ensures the stability of the system.

Therefore we were able to give numerical results. It is also interesting so see that

we can numerically approximate non trivial SPO in internally excited equations.
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Conclusion

To conclude, we developed a method to prove the existence of periodic solutions in

quadratic semilinear PDEs. We took advantage of the finite-dimensional approach

in Fourier series to build up a fixed point technique. As explained, this result might

be the entrance for a larger study such as the one of turbulence or chaos. This is

especially true as a lot of physics phenomena are represented by equations of this

type, we gave the examples of Navier-Stokes and Kuramoto-Sivashinsky equations.

Moreover, we tackled the problem of Spontaneous Periodic Orbits in Navier-Stokes

equations. We gave the theoretical existence of such solutions and we also developed

a numerical method to approximate them.

In addition to proving the answer of our specific Navier-Stokes problematic, we

generalized it and built a detailed analysis of bifurcations towards periodic solutions

in semilinear quadratic PDEs. We were also able to relax the hypotheses of our

main Theorem in order to extend it. There is still some study to pursue on (H4) to

fully understand the emergence of bifurcations.

To push this study further, one might be interested in developing a Newton-like

operator in order to use continuation. This could be particularly relevant in Navier-

Stokes equations where a continuation with the viscosity is possible. In fact, as it

is shown in [48], one can use the radii polynomial Theorem to actually prove the

continuation branch, once it is computed. In addition to the numerical interest, this

method could also extend our results to global ones. This would complete our study

both from a theoretical and practical point of view.
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