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PREFACE

The main contribution of this thesis is to develop a higher order gravitational

potential model of the primary bodies of a binary asteroid system and use it to study

various aspects of the full restricted three body problem (FRTBP). Various issues

such as how the solution of the FRTBP is affected by the solar radiation pressure and

by the rotational motion of the primary bodies as well as their non-circular motion

around their barycenter, are examined.

Here is a summary of the contributions made in the thesis:

• Analytical expression for the gravitational potential based on a fourth-order

Taylor series expansion.

• Equations of motion of the full two body problem and of the full restricted three

body problem based on the above mentioned gravitational potential model.

• Design of spacecraft trajectories compatible with the solar radiation pressure

(SRP) in the full circular restricted three body problem (FCRTBP).

• Detailed study of the influence of the solar radiation pressure acceleration

model on the motion of a spacecraft in the FCRTBP.

• Design of spacecraft trajectories when the shape, rotational motion and non-

circular orbital motion of the primary bodies are taken into account, which

corresponds to the full restricted three body problem (FRTBP).
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• Development of a Lyapunov stability theory-based controller to make it suitable

for spacecraft reference trajectories with small discontinuities.

• Calculation of inertia integrals of the fourth order of an ellipsoid and of a

polyhedron shape model.
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ABSTRACT

Asteroid missions are now an important component of space exploration and

binary asteroids comprise approximately 16% the Near-Earth Asteroids (NEA) pop-

ulation. This fact combined with the planned mission to binary asteroid 65803

Didymos has generated a lot of interest in the study of spacecraft dynamics in the

vicinity of binary asteroids. The combination of the effect of the irregular shape and

the rotational motion of the primary bodies of the binary asteroid system makes

them not only non-linear, but also non-autonomous systems. External perturba-

tions, such as the Solar Radiation Pressure (SRP) play an important role in the

motion of a spacecraft in such an environment. The dynamics of a spacecraft in a

binary environment with those characteristics is known as the Full Restricted Three

Body Problem (FRTBP). This thesis studies different aspects of the FRTBP. First,

it details the gravitational potential of a small irregular body and of a binary as-

teroid system It is followed by the development of the equations of motion of the

Full Two Body Problem (FTBP). Then, the study of the influence of the SRP on

the trajectory of a spacecraft in this environment is done. Spacecraft trajectories

design techniques taking the SRP acceleration into account are developed. Then, a

study of the influence of the SRP acceleration modeling method on the trajectory of

a spacecraft is conducted, showing that the attitude of the spacecraft and a detailed

model of the SRP acceleration are required to conduct studies of the FCRTBP. The

last part of this thesis is the investigation of the motion of a spacecraft when internal
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perturbations to the FTBP are included, including the rotational motion of the pri-

mary bodies and their non-circular mutual motion. This part of the study develops

a technique to design nominal spacecraft trajectories in the FRTBP using a fourth-

order gravitational potential model of the two primary bodies. It then compares the

control effort required when these reference trajectories are used with that required

when reference trajectories built with simpler models are used.
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ABRÉGÉ

Les missions vers les astéröıdes sont maintenant une composante importante de

l’exploration spatiale. Les astéröıdes binaires forment environ 16% de la population

des astéröıdes proches de la Terre. Ce fait, combiné avec la mission prévue vers

l’astéröıde binaire 65083 Didymos a généré beaucoup d’intérêt pour la dynamique

des vaisseaux spatiaux opérés près d’astéröıdes binaires. La combinaison de l’effet de

la forme irrégulière et de la rotation des corps primaires d’un astéröıde binaire en fait

des systèmes non seulement non-linéaires, mais aussi non-autonomes. La pression de

radiation solaire (PRS), une perturbation externe au système, joue un rôle important

dans la trajectoire d’un vaisseau spatial dans cet environnement. La dynamique d’un

vaisseau spatial opéré près d’un astéröıde binaire avec ces caractéristiques est con-

nue sous le nom de problème complet restreint des trois corps (PCRTC). Cette thèse

étudie différents aspects du PRCTC. En premier lieu, elle décrit le potentiel gravi-

tationnel d’un petit corps ayant une forme irrégulière, ainsi que celui d’un astéröıde

binaire, suivi du développement des équations du mouvement du problème complet

des deux corps (PCDC). Ensuite, l’étude de l’influence de la PRS sur la trajectoire

d’un vaisseau spatial dans cet environnement est effectuée. Tout d’abord, une tech-

nique servant à développer des trajectoires de vaisseaux spatiaux intégrant la PRS

est expliquée et démontrée. Par la suite, une étude de l’influence du choix du modèle

de l’accélération due à la PRS sur la trajectoire d’un vaisseau spatial est conduite.

Cette partie de l’étude a démontré qu’un modèle détaillé de l’accélération due à la

PRS est requis pour conduire des études sur le PCRTC. La dernière partie de cette
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thèse considère la trajectoire d’un vaisseau spatial lorsque des perturbations interne

au PCDC, incluant la rotation des corps primaires et leur orbite non-circulaire autour

du centre de masse du système. Cette partie de l’étude utilise une technique pour

concevoir des trajectoires de référence dans le PCRTC utilisant un modèle du poten-

tiel gravitationnel des deux corps primaires d’ordre 4. Finalement, une comparaison

de l’effort de contrôle nécessaire pour garder un vaisseau spatial sur ces trajectoires

et de celui requis lorsque la trajectoire de référence est conçue en utilisant un modèle

plus simple est effectuée.
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NOMENCLATURE

A = 6x6 matrix of the linearized model of the dynamics of a spacecraft in a

binary asteroid system

A,B,C= semi-axes of the ellipsoids representing the primary bodies in sections

3.1.1 and 4.0.4

a = semi-major axis of the mutual orbit of the primary bodies of a binary

asteroid system

aSRP = acceleration due to the solar radiation pressure

b = Sun-Earth distance

B = mass to area ratio of the spacecraft

c = speed of light

C = Jacobi constant for a specific orbit

CAB = direction cosine matrix transformation matrix relating the

components of a vector expressed in reference frame A to those of

the same vector expressed in reference frame B.

D = distance between a spacecraft and the Sun

D0 = distance between the Earth and the Sun

Di = arbitrary constant positive definite symmetric matrices used in the

calculation of the controller gains

dm = mass element of a single asteroid
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dmi = mass element of primary body i of a binary asteroid

dS = vector in the direction normal to the surface S of the facet of a

tetrahedron in a polyhedron shape model

dUgrav = gravitational potential of a mass element

D,E,F= vertices composing a facet of a tetrahedron in a polyhedron shape

model (Appendix B)

e = eccentricity of the mutual orbit of the primary bodies of a binary

asteroid system

e = error vector between the state of a reference trajectory and the state

of the actual trajectory of a spacecraft

e′, e′′ = first and second differentiation with respect to non-dimensionalized

time of the error vector between the state of a reference trajectory

and the state of the actual trajectory of a spacecraft

F (t) = matrix containing the second derivatives of the gravitational potential

with respect to the x, y, z direction of the synodic reference frame

F (X) = constraint vectrix of the multiple shooting correction algorithm

Fgravj = gravitational force in the direction of the j axis of the body fixed

reference frame

G = universal gravitational constant

H = Hamiltonian of a system

h = non-dimensionalized angular momentum of a binary asteroid system

about its barycenter

G,H = edges of a facet of a tetrahedron in a polyhedron shape model
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(Appendix B)

g h = non-dimensionalized coordinates of edges G and H (Appendix B)

I = inertia matrix of a small body (Appendix B)

Inxn = identity matrix of dimension nxn

Ijji = second-order principal moment of inertia of primary body i

J(X) = matrix of the Jacobian calculated from the state and constraint

vectrices of the multiple shooting correction algorithm

Jjji = second-order inertia integral of primary body i

Jjjjji = fourth-order inertia integral of primary body i

Jjjkki = coupled fourth-order inertia integral of primary body i

l = characteristic length of the mutual orbit of the primary bodies of a

binary asteroid system

L = Sun luminosity

M = total mass of a single asteroid or a binary asteroid system

Mi = mass of primary body i

Ni = number of tetrahedrons composing the layered mascons model of

primary body i

n = mean angular velocity of the mutual orbit of a binary asteroid system

n̂i = unit vector of the direction normal to reflecting surface i of the

spacecraft

P = period of a binary asteroid system or of a periodic trajectory

PSRP = measure of the pressure exerted by the solar radiation on a spacecraft

P0 = solar flux at 1 Astronomical Unit(AU)
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P (t) = time-varying matrix used in the calculation of the control input of the

Lyapunov controller

Q = constant positive definite symmetric matrix used in the calculation of

the control input of the Lyapunov controller

q = generalized coordinates used in the derivation of the equations of

motion in the context of the FTBP

R = distance between the center of mass of a single asteroid and a

spacecraft (sections 2.1 and 2.2)

R = distance between the centers of mass of the primary bodies of a

binary asteroid system (section 3.1)

R = position vector of the center of mass of of body 2 with respect to the

center of mass of body 1 (section 3.3.2)

R = position vector of the center of mass of a polyhedron shape model

Ri = position vector of the center of mass of the spacecraft relative to the

barycenter of a binary asteroid system

Ri = distance between the center of mass of the spacecraft relative to the

center of mass of primary body i

ri = non-dimensionalized position vector of the center of mass of the

spacecraft relative to the center of mass of primary body i

r = vector going from the position of the origin of a polyhedron shape

model to the center of the facet of a tetrahedron in a polyhedron

shape model

r = non-dimensionalized distance between the centers of mass of the
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primary bodies of a binary asteroid system (section 3.4)

r0 = characteristic asteroid size of a binary asteroid system

r0 = position vector of the spacecraft on a nominal trajectory with respect

to the barycenter of a binary asteroid system

rs = specular reflectivity parameter of the spacecraft

rd = diffuse reflectivity parameter of the spacecraft

∆R = position vector of the centroid of a tetrahedron of a polyhedron shape

model

∆S = surface of a facet of a polyhedron shape model

T = kinetic energy of a single asteroid or binary asteroid system

T0 = zeroth-order term of the kinetic energy

T2 = second-order term of the kinetic energy

U = effective potential a binary asteroid system

Ugrav = gravitational potential a single asteroid or a binary asteroid system

u = control input vector

û = unit vector of the direction going from the Sun to the barycenter of

a binary asteroid system

u = reciprocal of the non-dimensionalized distance between the primary

bodies centers of mass

uc = reciprocal of the non-dimensionalized distance between the primary

bodies centers of mass in the case of circular motion of the primary

bodies of a binary asteroid system

ûR = unit vector along the position vector R of point P relative to the
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center of mass of the asteroid

ûRj
= j component of the unit vector along the position vector R of

point P relative to the center of mass of the asteroid expressed

in the asteroid body fixed reference frame

∆V = volume of a tetrahedron of a polyhedron shape model

V = gravitational potential energy of a binary asteroid system

(chapters 2 and 3)

V = Lyapunov function used in the controller algorithm (chapter 6)

X = state vectrix of the multiple shooting correction algorithm

X, Y, Z = dimensional X, Y and Z components of the position vector of a

spacecraft with respect to the center of mass of an asteroid body

expressed in the body fixed reference frame

x, y, z = non-dimensionalized x, y and z components of the position vector of a

spacecraft with respect to the center of mass of a single asteroid

body expressed in the body fixed reference frame

x, y, z = components of position vector vector going from the position of the

origin of a polyhedron shape model to the center of the facet of a

tetrahedron in a polyhedron shape model (Appendix B)

xi, yi, zi= non-dimensionalized x, y and z components of the position vector of a

spacecraft with respect to the center of mass of primary body i

αi = angle between the Xi axis of the body fixed i reference frame and the

XS axis of the synodic reference frame

γ = flight path angle, measured with respect to the XS axis of the synodic
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reference frame

δ = position vector of a mass element of a single asteroid with respect to

its center of mass

δj = j component of the position vector of a mass element of a single

asteroid with respect to its center of mass expressed in the body fixed

reference frame (section 2.1)

δi = position vector of a mass element of primary body i relative to its

center of mass

ε = square of the ratio between the characteristic distance l and the

characteristic primary body size r0 of a binary asteroid system

θ = angle of rotation of the synodic reference frame with respect to the

inertial reference frame

λ = angle between the plate reference frame and the inertial reference frame

µ = mass parameter of a binary asteroid system

ρ = density of a small irregular body (Appendix B)

ρααi = second-order non-dimensionalized principal moment of inertia of

primary body i

ρααααi = fourth-order non-dimensionalized non-coupled inertia integral of

primary body i

ρααββi = coupled fourth-order non-dimensionalized inertia integral of primary

body i

τ = non-dimensionalized time

Φ = state transition matrix
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ψ = amplitude of the libration motion of body 2

Ω = dimensional angular velocity of a binary asteroid system

ω = non-dimensionalized angular velocity of a binary asteroid system

ω′ = non-dimensionalized angular acceleration of a binary asteroid system

ω0 = natural frequency of libration normalized by the mean motion of the

mutual orbit of the primary bodies of a binary asteroid system

ωc = non-dimensionalized rotation rate in the FTBP in the case of circular

motion of the primary bodies of a binary asteroid system

ω = skew-symmetric matrix of the non-dimensionalized angular velocity

of the mutual orbit of a binary asteroid system

(sections 6.1.1 and 6.2.1)

ωc = skew-symmetric matrix of the non-dimensionalized angular velocity

of the mutual orbit of a binary asteroid system for circular motion

(section 4.0.8)

ω′ = skew-symmetric matrix of the non-dimensionalized angular

acceleration of the mutual orbit of a binary asteroid system

(section 6.1.1)
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ACRONYMS

CRTBP Circular Restricted Three Body Problem

FCRTBP Full Circular Restricted Three Body Problem

FRTBP Full Restricted Three Body Problem

FTBP Full Two Body Problem

SRP Solar Radiation Pressure
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CHAPTER 1
Introduction

1.1 Background and Motivation

Missions to asteroids are now an important component of the space exploration

program of major space agencies in the world, with the goal of better understanding

the formation of the solar system and learn about their dynamics to be able to

react in case of a possible collision with the Earth. Some well-known examples of

missions are NEAR Shoemaker (orbited asteroid Eros in 2000) [1], Hayabusa (landed

on asteroid Itokawa in 2005) [2], Dawn, (orbited asteroid Vesta in 2011 and dwarf

planet Ceres in 2015) [3], Hayabusa 2 (arrived in the vicinity of asteroid Ryugu in

June 2018) [4, 5], and OSIRISRex (arrived at asteroid Bennu in December 2018) [6].

Binary asteroid systems compose approximatively 16% of near Earth asteroids

[7]. They are composed of two asteroids orbiting the barycenter of the system. ESA

and NASA are currently in the planning phase of a mission, the Asteroid Impact

and Deflection Assessment (AIDA) mission, to the binary asteroid system 65803

Didymos. The NASA component of the mission, the Double Asteroid Redirection

Test (DART), is planned to be launched in 2021 and arrive in the vicinity of Didymos

in 2022 and the ESA part of the mission, Hera, is planned to be launched in 2023

and arrive close to Didymos in 2026 [8, 9].

The dynamics models used to represent binary asteroid systems have greatly

evolved in the past ten years. The first models represented the primary bodies of
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the system as a sphere and an ellipsoid [10]. Later, systems with other geometrical

shapes were also studied [11]. Now, the models are using information extracted from

polyhedron shape models, which show that the main bodies of the binary systems

have highly irregular shapes [12, 13].

Since the main body has a angular velocity that is different from the one of

the binary asteroid system as a whole and an irregular shape, the gravitational

potential of the binary asteroid system does not only depend on the position where

it is calculated, but also on time. The observations of the Didymos system also show

that the mutual orbit of the primary bodies does not follow a circular motion, but is

slightly elliptical [14]. Uncertainties are also part of the Didymos model, like in any

model of a system never visited [15]. These uncertainties may impact the calculation

of the gravitational potential of the bodies of the binary asteroid system, thus the

dynamics of a spacecraft in its vicinity.

All of these perturbations add complexity to the dynamics of a spacecraft in such

an environment. The problem where these perturbations are added to the model is

known as the Full Restricted Three Body Problem (FRTBP). In the FRTBP, the pri-

mary bodies are modeled using a polyhedron shape model. Their individual angular

velocities are taken into account, as well as their non-circular motion around their

barycenter. The primary bodies have small masses compared to planetary bodies like

the Earth, causing external perturbations, like the Solar Radiation Pressure (SRP),

to also affect the dynamics of a spacecraft in the FRTBP.
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Studying the FRTBP applied to binary asteroid systems, such as Didymos, is

enhancing the knowledge of the dynamics of a spacecraft in their vicinity. With the

coming AIDA mission, this is of prime interest to the spacecraft dynamics community.

1.2 Literature Review

The simplest way to model the dynamics of a spacecraft in a binary system is

through the Circular Restricted Three Body Problem (CRTBP). It is appropriate

for systems such as the Earth-Moon or the Sun-Earth systems, but in the case of

binary asteroid systems, it is not sufficient to correctly model the system. Pertur-

bations coming from the irregular shape of the primary bodies and their angular

velocity, different from the one of the system as a whole modify the Full Two Body

Problem (FTBP) which is the foundation of the Full Restricted Three Body Problem

(FRTBP). The small gravitational field of the primary bodies of a binary asteroid

system causes external perturbations, such as the Solar Radiation Pressure (SRP),

to greatly influence the motion of a spacecraft in their vicinity.

This section reviews the CRTBP and then introduces the different perturbations

to the CRTBP and how they are integrated into the FRTBP. The last part of the

section is dedicated to the design of trajectories in the FRTBP.

1.2.1 The Circular Restricted Three Body Problem

The CRTBP is a special case of the Three-Body Problem (TBP) that was first

studied by Isaac Newton in the 17th century. It studies the motion of a negligible

mass body in a binary system composed of two primary bodies. The CRTBP is

restricted by having the third body having a mass considered negligible compared

to the primary bodies and by considering the primary bodies as point masses. It is
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circular because the mutual orbit of the primary bodies is circular, having a constant

angular velocity and a constant distance between the primary bodies. The CRTBP

was investigated by Euler and Lagrange in the 18th century. Euler first introduced

the idea of using a rotating frame to describe the motion of a small body of negligible

mass influenced by two massive bodies. In the early 20th century, Henry C. Plummer

and Forest R. Moulton produced families of periodic orbits near the libration points.

Plummer’s work was dedicated to the collinear libration points and Moulton’s work

was about both the collinear and triangular libration points. Victor Szebehely’s

book, Theory of Orbits: The Restricted Problem of Three Bodies published in 1967

[16], summarizes the knowledge about the Restricted Three Body Problem until then

[17].

Farquhar was the first to use the term ”halo orbits” in his Ph.D. thesis published

in 1968 [18]. Hénon also worked on the RTBP orbits in the same timeframe and

produced a series of papers on the numerical exploration of the restricted problem,

the fifth of which was dedicated to periodic orbits and their stability [19]. In 1973,

Farquhar and Kamel published a paper describing an analytical solution for quasi-

periodic orbits about the translunar libration point [20]. They proposed a technique

to generate solutions for Lissajous orbits and how they evolve when the in-plane

and out-of-plane frequencies are set to equal values. In 1979, Breakwell and Brown

described the evolution of halo orbits about L1 and L2 [21]. They used the half orbit

transition matrix to adjust the initial conditions, so that to obtain periodic orbits.

In their work, they used a numerical solution, instead of an analytical one like in the

work of Farquhar and Kamel.
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In 1984, Howell, published two papers related to halo orbits. The first one

presented a numerical study of the halo orbits near collinear libration points for

mass ratio (µ) values ranging from 0 to 1. She presented a technique to generate

periodic halo orbits and to assess their stability using the state transition matrix

[22]. In a second paper, published the same year, Howell presented a special case

of the halo orbits: almost rectilinear halo orbits. These appear when the orbits get

closer to the smallest primary body of the system, creating a bridge between the L1

and L2 halo orbits. She presented how to solve the singularities appearing close to

the primary body by using a regularization scheme [23].

Many papers describe the families of orbits about the L1 and L2 libration points.

One of them, written by Howell, presented the different orbit families near libration

points, including Lyapunov, Lissajous and halo orbits [24]. Folta et al. [25] presented

the station-keeping strategies for different families of orbit about the Earth-Moon

libration points, considering the ARTEMIS mission as an application. In this paper,

they spent great effort describing the models and characterizing different families of

orbits.

Several other studies compare the different possible orbits close to the Moon

with the goal of conducting Moon related missions. Grebow et al. [26] studied

different families about the Earth-Moon L1 and L2 libration points and compared

their periods, stability and stationkeeping costs. Later, Whitley and Martinez did

similar work, but included lunar orbits, such as low lunar and lunar frozen orbits

[27].
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Davis and Howell got interested in the long-term evolution of orbits about libra-

tion points. Their work was done for the Sun-Saturn system, but could be applied to

any system, such as a binary asteroid system. They used Poincaré maps to describe

the satellite trajectory status at its next periapsis passage: escape through L1 or L2,

stay bounded or impact the smaller primary, based on the position of the current

orbit periapsis. They could use their maps to identify passage periapsis between L1

and L2 [28, 29].

Doedel et al. developed a bifurcation and continuation software, AUTO, to find

periodic orbits about the equilibrium points in the CRTBP [30, 31]. They worked

on the periodic orbits that exist for systems with various mass-ratio. They also built

maps of the bifurcations that lead to various types of periodic orbits starting from

the equilibrium points of the Earth-Moon system.

1.2.2 The Full Restricted Three Body Problem (FRTBP)

This section of the literature review presents various aspects of the FRTBP. It

is necessary to model correctly the motion of a primary bodies of the binary asteroid

system to then understand the dynamics of a spacecraft in such an environment.

Modeling of The Gravitational Potential of a Small Irregular Body

The way the gravitational potential of the primary bodies of a binary asteroid

system is modeled is based on the models developed for small irregular bodies such

as single asteroids. This section presents the evolution of the gravitational models

used for single asteroids. Most of them are also presented in Ref. [32].

There are many ways to model the gravitational potential of a small body. Poly-

hedron shape models of a single asteroid, such as 4769 Castalia [33]and 4179 Toutatis
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[34], have been derived from range-Doppler radar images. Werner and Scheeres have

developed the expressions for the calculation of the gravitational potential of a small

body based on the polyhedron shape model [35]. They have compared it with mas-

cons and spherical harmonics models and concluded that the polyhedron shape model

should be used when the spacecraft is located inside the circumscribing sphere of the

small body. Scheeres et al. used the shape model of 4179 Toutatis to derive a second-

order gravitational potential model of the asteroid to be used when the spacecraft is

outside of the circumscribing sphere of the body while the polyhedron shape model

itself is required when the spacecraft is inside the circumscribing sphere. They then

used the model to study the motion of a spacecraft it the vicinity of the asteroid

[36]. Most spacecraft operations, except close approach and landing, are outside of

the circumscribing sphere of a small body. Since the polyhedron shape approach is

computationally expensive, the spherical harmonics expansion of the gravitational

potential is then what has been used for most studies on the subject.

The gravitational potential of a body can be expressed in terms of its inertia

integrals. Dobrovolskis developed a simple method to calculate the inertia integrals

of the second order of an arbitrarily shaped body using a polyhedron shape model

[37]. These values can be used instead of the spherical harmonics to better represent

the inertia of the small body.

Wang et al. [38] used a second-order gravitational potential of a triaxial ellipsoid

to model an asteroid and study the dynamics of a spacecraft in its vicinity. The model

used was based on the second-order spherical harmonics of the small body. Kikuchi et

al. [39], on the other hand, used a fourth-order expression of the spherical harmonics
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of a triaxial ellipsoid to model the gravitational potential of a small body and study

the orbit-attitude and solar radiation pressure coupled motion of a spacecraft in its

vicinity.

A layered-mascon model, with the position of the mascons located at the cen-

ters of mass of the tetrahedrons composing the polyhedron shape model has been

developed by Venditti [40]. Chanut et al. [42] compared the layered-mascon model

with the polyhedron shape model developed by Werner and Scheeres [35] and showed

that it can model the gravitational potential outside of a small body with precision

while being less computationally expensive.

The Full Two Body Problem (FTBP)

Binary asteroid systems require to be treated differently from systems like the

Earth-Moon or the Sun-Earth systems. Their primary bodies have irregular shapes

that need to be taken into account when calculating their mutual motion, known as

the Full Two Body Problem (FTBP).

Bellerose and Scheeres started their study of the FTBP by modeling the pri-

mary bodies as an ellipse and a sphere [43]. They used a second-order gravitational

potential model of the primary bodies to conduct an analysis of the system while the

primary bodies are in relative equilibrium. It was found that this equilibrium state

is achievable when one of the principal axes of the ellipsoid is pointing towards the

sphere. In their study of the FRTBP, they considered the mutual orbit of the pri-

mary bodies to be circular. They also studied the stability of the equilibrium points

of the binary system, using the Routh criteria. As in the case of the CRTBP, they

found out that only the equilateral points are stable in the FRTBP as well. Scheeres
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also explores the FTBP in [44], studying the stability in the planar case. Here again,

the model used for the mutual gravitational potential of the primary bodies is of the

second order.

Woo and Misra [11] studied the FTBP and the FRTBP for systems composed

of bodies with complex geometrical shapes. They combined geometrical shapes to

develop methods to calculate the second-order moments of inertia for shapes such as

a pear and a peanut. They also used the calculated moments of inertia to study the

FTBP, finding conditions for a binary asteroid system to be in relative equilibrium

and have its body orbit their barycenter in a circular fashion.

Hou et al. [45] developed the expression for the mutual gravitational potential of

a binary system with primary bodies of arbitrary shapes and mass distribution. The

expression they developed is based on a sum that is truncated at the order desired

and needs to be calculated at each step of a simulation. They used it to study the

FTBP, calculating the mutual motion of the primary bodies for binary systems such

as 1999 KW4. They suggested that truncating the gravitational potential at the

fourth order is sufficient in the study of the FTBP.

Shi et al. [46], on the other hand, developed the equations for the mutual

gravitational potential of the primary bodies of a binary asteroid system based on a

polyhedron shape model for the first primary body and an ellipsoid for the second

primary body. Based on this model of the gravitational potential, they also developed

the equations for the gravitational force and torque exerted on each other by the

primary bodies of the system.
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Naidu and Margot were interested on the rotational motion of the primary bodies

in the FTBP. They developed relations between the eccentricity of the mutual orbit

of the bodies around their barycenter and the libration motion of the smallest body

[47].

Trajectories in the Full Restricted Three Body Problem

In Ref. [10], Bellerose and Scheeres pushed further the analysis of the equilibrium

of a binary asteroid system. They also presented a method to find periodic orbits in

the Full Two Body Problem (FTBP) in such a system by using the Poincaré map

reduction method. Then, the solution of the FTBP was inserted into the FRTBP

to compute possible trajectories for a particle in a binary asteroid system. They

studied the motion of a spacecraft around the stable equilateral equilibrium points

for primary bodies in a circular mutual motion.

Woo and Misra determined trajectories in the full circular restricted three body

problem (FCRTBP) [48]. They used a zeroth-order development of the equations

of motion to design Lissajous trajectories near the collinear equilibrium points and

bounded trajectories near the equilateral equilibrium points. The trajectories near

the collinear equilibrium points were controlled using a Lyapunov controller. Their

gravitational potential model was based on the second-order moments of inertia of

an arbitrarily shaped body.

Li et al. used a grid search and a two-stage multiple-shooting correction scheme

to find bounded trajectories in the FCRTBP [49]. They first found periodic motion

in a scenario where the angular velocity of the primary bodies of the binary asteroid

system is the same as that of the system as a whole using a grid search method.
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They then used the two-stage multiple-shooting correction scheme to modify the

trajectories so that they would be fitted for the FCRTBP where the angular velocity

of the primary bodies would be different from the one of the system as a whole.

Those trajectories lasted a few orbits, but they were not periodic. They were also

developed based on the 1999 KW4 binary asteroid model, where the primary bodies

have a circular motion around their barycenter. They used a Lyapunov controller to

keep the spacecraft on the reference trajectories that had been calculated.

Ferrari [50] developed a single-stage multiple-shooting correction scheme that

has also been used by Capannolo et al. [12]. They used it to to build periodic tra-

jectories using a polyhedron shape model of binary asteroid system 65803 Didymos.

The periodic orbits were calculated with the angular velocity of the primary bodies

being the same as the angular velocity of the binary asteroid system as a whole and

assuming circular mutual motion of the primaries. Initial conditions were then ex-

tracted and used in the FCRTBP to understand the nature of similar quasi-periodic

trajectories in the FCRTBP.

1.2.3 Solar Radiation Pressure (SRP)

Since the primary bodies of a binary asteroid system are small, their gravita-

tional potential is low. The motion of a spacecraft in their vicinity can then be

significantly affected by an external perturbation, such as the SRP. In Ref. [39], it

is shown that the attitude-orbital coupling, added with the SRP is an important

component of the dynamics of a spacecraft in the vicinity of a single asteroid and it

is believed that this will also apply to binary asteroid systems. This section discusses
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how the SRP has been modeled and included in the dynamics model of a spacecraft

in the vicinity of binary asteroid systems.

Models of the SRP acceleration have been examined in various contexts and

environments. McInnes has written a book detailing the theory and models required

for solar sailing [51]. This book is an excellent reference for anyone working with

the SRP. Farrés et al. [52] described different ways to model the SRP acceleration,

from the cannonball model to highly complex models using spherical harmonics or

finite elements analysis. Their goal was to compare the complexity of the model and

the computing cost of the last two. Misra et al. [53], on the other hand, used an

N-plate model, which they called a cuboid in the context of a single asteroid. They

studied the combined effect of the SRP and the orbital-attitude coupled dynamics,

which cannot be determined properly using a cannonball model.

Other studies on the dynamics of a spacecraft around a single asteroid focussed

mainly on the possibilities the SRP offers on the design of trajectories that would not

exist without it [54, 55]. Xin et al. [54] found that the SRP enabled to produce new

types of motion around single asteroids called forced orbital motion. Giancotti et al.

[55], also investigated spacecraft trajectory design taking the SRP into account.

Morrow and Heiligers have, independently, conducted research on the possibili-

ties of having a spacecraft using a solar sail to stay in hovering points in the vicinity

of a single asteroid or orbiting it. Because the hovering points and trajectories are

further away from the asteroid, these studies neglected the shape of the asteroid in

their model [56, 57]. Garćıa Yárnoz et al. used a solar sail to compute trajectories in

the Sun-Asteroid CRTBP [58]. Here, the shape of the asteroid has been neglected,
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but the trajectories found can be an interesting starting point for a study using a

more detailed model of a single asteroid.

Heiligers and Scheeres [57] used a solar sail to explore hovering points in the

vicinity of a binary asteroid. In their case, the spacecraft does not go to close

proximity of the primary bodies of the binary asteroid, so an oblate sphere is used

to model them. Dell’Elce et al. [59] have worked on getting the most suitable orbits

for a mission such as AIDA. In their study, a fairly simple model of the SRP, the

cannonball model, has been used. These studies use trajectories that go to the

proximity of the binary asteroid system, such as Distant Retrograde Orbits (DROs).

The possible use of a solar sail for missions in the Earth-Moon system has also

been studied [60, 61]. These are interesting starting points for the study of the

possibility of new trajectories when the SRP acceleration is taken into account in

their design. These analysis were based on a zeroth-order gravitational potential

model as it is normally the case for the Earth-Moon system. In the case of a binary

asteroid system, the perturbations due to the higher order terms of the gravitational

potential are not negligible, making the search for trajectories more complex.

1.3 Objectives of the Thesis

The overall objective of this thesis is to study the dynamics of a spacecraft in

the vicinity of a binary asteroid system. In the present case, the full model of the

binary asteroid system, including the rotation, realistic shape and mutual motion of

its primary bodies, is utilized.

The first objective of the thesis is to develop an analytical expression for a

fourth-order gravitational potential model of a binary asteroid system to be used in
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this study. It includes the development of the equation of the gravitational potential

of an arbitrarily shaped body, keeping all terms up to the fourth order. It also

includes the calculation of the required fourth-order inertia integrals.

The second objective of this thesis is to understand the role of the SRP in the

motion of a spacecraft in the context of the FCRTBP, where the irregular shape

of the primary bodies is taken into account. The individual rotational motion of

the primary bodies and their non-circular motion around their barycenter are not

taken into account. It also includes the study of the impact of the modeling SRP

acceleration and of the attitude scheme of the spacecraft on the FCRTBP.

The third objective is to study the dynamics of a spacecraft in the FRTBP by

including the rotations of the primary bodies and their non-circular motion around

their barycenter in the model of the binary asteroid system. The design of the nom-

inal spacecraft trajectories based on the FCRTBP is done first. Then a comparison

is carried out between the control effort required when the trajectories are designed

using the full model of the binary asteroid with that required when a simpler model

is used.

1.4 Outline of the Thesis

Chapter 2 presents the development of the gravitational potential of a small

irregular body, such as a single asteroid. An expression for the gravitational potential

based on a fourth-order Taylor series expansion is developed first. This is then

translated into the gravitational force exerted on a unit mass spacecraft operated

in the vicinity of a single asteroid. Then a comparison is made between the results

obtained with the Taylor series expansion with those obtained by another team using
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a fourth-order spherical harmonics model. This, added with the calculation of the

Hamiltonian on a long period of time, validates the model. The model is then applied

to a binary asteroid system.

Chapter 3 visits the FTBP. It first explores the development of the equations of

motion in the FTBP. The case of circular motion of the primary bodies is then dis-

cussed. The equations of motion are applied to the binary asteroid system Didymos

65803. A short study of the sensitivity of the system to the value of the constant of

integration of the equation related to the angular velocity of the system shows how

complex the FTBP can be.

In chapter 4, a technique to compute periodic trajectories is developed for a

spacecraft operated in the FCRTBP and subjected to the SRP. Sets of planar trajec-

tories such as planar Lyapunov orbits around L1 and retrograde trajectories around

body 2 are found for different attitude schemes of the spacecraft.

In chapter 5, a set of trajectories around body 1, body 2 and the around the full

binary asteroid system are developed. They are then used in a model of the FCRTBP

including the SRP acceleration for different attitude schemes of a spacecraft. The

evolution of the uncontrolled trajectories is then studied to understand how the SRP

acceleration affects them. It is done for two cases: when the binary asteroid system

is at the perihelion of its orbit around the Sun and when the binary asteroid system

is at the aphelion of its orbit around the Sun.

The FRTBP is visited in chapter 6. It includes the design and control of space-

craft trajectories in the FRTBP, including a detailed model of the SRP acceleration.

In this chapter, the full term means that the inertia integrals are calculated based on
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a polyhedron shape model of the primary bodies, that the rotational motion of the

primary bodies and the shape of their mutual orbit are as described in the literature.

The trajectories suitable for the FRTBP are developed based on a multi-shooting

correction algorithm. A control system based on the Lyapunov stability theorem is

used to compute the control thrust required for different types of orbits and various

levels of detail used in the model.

Chapter 7 concludes the thesis. It synthesizes the finding of the study of the

FRTBP. It also recommends topics for future work.
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CHAPTER 2
Gravitational Potential of a Small Irregular Body

The gravitational potential of a binary asteroid system is modeled based on the

gravitational potential of a small irregular body and can be modeled in many dif-

ferent ways. Only a few years ago, the standard model for analytical development

of the equations describing the gravitational potential of a small irregular body was

in terms of the second-order spherical harmonics. About four years ago, the fourth-

order spherical harmonics model of the gravitational potential started to be used.

Now, many small irregular bodies are modelled using shape polyhedron models from

which it is possible to calculate the gravitational potential using different techniques.

One of them is to use the polyhedron shape model to extract the second and fourth-

order inertia integrals and use them in a Taylor series expansion of the gravitational

potential where the terms are kept up to the fourth order. Reference [45] demon-

strated that such a gravitational model of the fourth order is necessary and sufficient

to model the mutual motion of the primary bodies of a binary asteroid system. This

model of the gravitational potential has the main advantage that it can use the in-

ertia integrals for any shape model to calculate the gravitational forces acting on a

spacecraft in the vicinity of the small body or conduct analytical investigations of the

effects of the parameters of the system. The model does not require too much com-

puting power, which is desirable during the development phase of a mission where

the models of the small irregular body are updated regularly, requiring the analyses
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to be repeated. Another novel technique to model the gravitational potential of small

irregular bodies has been developed by Venditti et al. [41]. It consists of separating

the body into layers of mascons and sum the gravitational potential of each mascon

to get the gravitational potential of the body.

2.1 Fourth-order Taylor Series Expansion of the Gravitational Potential
of a Small Irregular Body

The gravitational potential of an arbitrarily shaped asteroid is first calculated.

The calculations are all made in the body fixed reference frame, which has its origin

at the center of mass of the asteroid and is aligned with the principal moments of

inertia of the asteroid (see Appendix A). The axis of rotation of the asteroid is

aligned with its maximum moment of inertia, as shown in Fig. 2–1.

X

Y

Z
�

CoM

Figure 2–1: Body fixed reference frame
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The gravitational potential due to a mass element dm at a point P at the distance

|R− δ| from the of mass element of the asteroid can be written as:

dUgrav =
G

|R− δ|
dm (2.1)

where G is the universal gravitational constant, δ is the position vector of the mass

element dm relative to the center of mass of the asteroid and R is the position vector

of point P relative to the center of mass of the asteroid, as shown in Fig. 2–2.

CoM

dma
�

R-�

R

P

Y

X

Z
�

Figure 2–2: Gravitational potential of a mass element at point P

The total gravitational potential of the asteroid at point P is the sum of the

gravitational potential generated by all the mass elements of the asteroid:

Ugrav =

∫
G

|R− δ|
dm (2.2)

Integration of Eq.2.2 requires the expansion of the 1
|R−δ| term in a Taylor series,

which is described below.
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First, it is necessary to rewrite the expression 1
|R−δ| as:

1

|R− δ|
= [(R− δ) · (R− δ)]−1/2

=
[
R2 − 2 (R · δ) + δ2

]−1/2
=

1

R

[
1− 2

R
(ûR · δ) +

(
δ

R

)2
]−1/2 (2.3)

where ûR is the unit vector along the position vector R of point P relative to the

center of mass of the asteroid. The last expression of Eq. 2.3 can be converted into

(1 + x)−1/2 where x = − 2
R

(ûR · δ) +
(
δ
R

)2
, and can be expanded binomially:

(1 + x)−1/2 = 1− 1

2
x+

3

8
x2 − 5

16
x3 +

35

128
x4... (2.4)

Let us compute each term individually, keeping the terms up to O (1/R4):

1

2
x = −(ûR · δ)

R
+

1

2

(
δ

R

)2

3

8
x2 =

3

8

(
4

R2
(ûR · δ)2 − 4δ2

R3
(ûR · δ) +

δ4

R4

)
5

16
x3 = − 5

2R3
(ûR · δ)3 +

15

4R4
δ2 (ûR · δ)2 +O

(
R−5

)
35

128
x4 =

35

8R4
(ûR · δ)4 +O

(
R−5

)
(2.5)
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Grouping the terms together and inserting them into Eq. 2.1, one obtains the

following result:

dUgrav =G

{
1

R
− 1

R2
(ûR · δ) +

1

R3

[
3

2
(ûR · δ)2 − 1

2
δ2
]

+
1

R4

[
−3

2
δ2 (ûR · δ) +

5

2
(ûR · δ)3

]
+

1

R5

[
3

8
δ4 − 15

4
δ2 (ûR · δ)2 +

35

8
(ûR · δ)4

]} (2.6)

The total gravitational potential of the asteroid being the sum of the gravi-

tational potential exerted by all the mass elements of the asteroid, one needs to

integrate each of the terms in Eq. 2.6 over the entire mass distribution of the as-

teroid. After some algebra, detailed in Appendix B, the final expression for the

gravitational potential of an asteroid at a point P, calculated up to the fourth-order,

can be written as:

Ugrav =
MG

R
+

3G

2R3

[
1

3
(Ixx + Iyy + Izz)−

1

R2

(
X2Ixx + Y 2Iyy + Z2Izz

)]
+

G

8R5

[
35

R4

(
X4Jxxxx + Y 4Jyyyy + Z4Jzzzz

+ 6
(
(XY )2 Jxxyy + (Y Z)2 Jyyzz + (XZ)2 Jzzxx

))
− 30

R2

(
X2Jxxxx + Y 2Jyyyy + Z2Jzzzz+(

X2 + Y 2
)
Jxxyy +

(
Y 2 + Z2

)
Jyyzz +

(
Z2 +X2

)
Jzzxx

)
+ 3 (Jxxxx + Jyyyy + Jzzzz) + 6 (Jxxyy + Jyyzz + Jzzxx)

]

(2.7)

where R is the distance between point P and the center of mass of the asteroid, X,

Y , Z are the components of the position vector of point P with respect with the
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center of mass of the asteroid, expressed in the asteroid body fixed reference frame,

Ixx, Iyy, Izz are the principal moments of inertia of the asteroid and Jxxxx, Jyyyy,

Jzzzz, Jxxyy, Jyyzz, Jzzxx are fourth-order inertial integrals of the asteroid. Appendix

C details methods that can be used to calculate the fourth-order inertial integrals.

2.2 Gravitational Force Exerted on a Spacecraft by an Asteroid

The gravitational force exerted on a unit mass spacecraft by an asteroid is the

gradient of the gravitational potential calculated in the previous section:

Fgrav =
∂Ugrav
∂R

(2.8)

The components of the gravitational force along the asteroid body principal axes

are then:

Fgravx =
∂Ugrav
∂x

Fgravy =
∂Ugrav
∂y

Fgravz =
∂Ugrav
∂z

(2.9)

where Ugrav is calculated using Eq. 2.7. The resulting equations can be found in

Appendix B.

2.2.1 Validation of the Fourth-order Gravitational Potential Model of a
Small Irregular Body

Before validating of the gravitational potential model developed in this chapter

by comparing with an existing model, it is necessary to ascertain that the simulation

results are reliable. This is done by using the principle of the conservation of the

Hamiltonian of a dynamical system. It is calculated, in the inertial reference frame
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located at the center of mass of the asteroid, using the following expression:

H = T2 − T0 + V (2.10)

where T2 contains all terms in the kinetic energy that are quadratic in generalized

velocities and T0 contains all terms that are independent of generalized velocities. V

is the potential energy of the system. In the present case, the generalized coordinates

used are the components of the position vector expressed in the asteroid body fixed

reference frame, X, Y and Z. Based on this, the equation for the kinetic energy of

a unit mass spacecraft in the inertial reference frame is:

T =
1

2

[(
Ẋ2 + Ẏ 2 + Ż2

)
+ Ω2

(
X2 + Y 2 + Z2

)]
(2.11)

where Ω is the angular velocity of the asteroid body fixed reference frame, X, Y ,

Z and Ẋ, Ẏ , Ż represent the components of the position and the velocity of the

unit mass expressed in the asteroid body fixed reference frame.
(
Ẋ2 + Ẏ 2 + Ż2

)
corresponds to T2 and Ω2 (X2 + Y 2 + Z2) corresponds to T0.

In the actual system, the only force acting on the spacecraft is the gravitational

force, which is a conservative force. By definition, the gravitational potential energy

of a unit mass spacecraft is the negative value of the gravitational potential of the

asteroid at point P located at the center of mass of the spacecraft:

Vgrav = −Ugrav (2.12)

The Hamiltonian is then:

H =
1

2

[(
Ẋ2 + Ẏ 2 + Ż2

)
− Ω2

(
X2 + Y 2 + Z2

)]
− Ugrav (2.13)
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A simulation of the motion of a unit mass spacecraft around a model of the

single asteroid Eros was run for a simulated duration of three days. As shown in

Fig. 2–3, the Hamiltonian was conserved throughout the simulation. This gives us

confidence in the dynamics simulation code developed.
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Figure 2–3: Constant Hamiltonian for a unit mass spacecraft orbiting asteroid Eros

Next, the validation of the gravitational model is done by comparing simulation

results with those found in Ref. [39], where a model based on spherical harmonics

of the fourth order was used. For this exercise, the same spacecraft model and orbit

as the ones used in their paper were utilized. The norm of the forces calculated over

a full orbit of the spacecraft for each order term of the gravitational potential were

compared. They are presented in Figs. 2–4 and 2–5.
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Figure 2–4: Variation of forces acting on
spacecraft over one orbit [39]
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Figure 2–5: Variation of forces acting
on spacecraft over one orbit

The forces calculated by the different potential order terms are similar (see

Figures 2–4 and 2–5). In these figures, the blue curve represents the force from the

zeroth-order term of the gravitational potential, the green ones the force from the

second-order terms of the gravitational potential and the black ones the force from

the fourth-order terms of the gravitational potential. The force contributions are of

the same order of magnitude and follow a similar trend for each of the order terms of

the gravitational potential. The main difference is that the individual order terms in

the Taylor series cannot be separated into different terms like those for the spherical

harmonics. As there are not a lot of available data on the subject, this has been

the best possible validation exercise. Both models being an approximation of the

gravitational potential, this exercise is mainly qualitative.

2.3 Gravitational Potential of a Binary Asteroid System

The gravitational potential of a binary asteroid system is the sum of the grav-

itational potential of each of the primary bodies. A graphical description of the

parameters used in the calculation of the gravitational potential is shown in Fig.2–6.
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Figure 2–6: Geometry of the gravitational potential

In Fig. 2–6, R is the position vector of the center of mass of the spacecraft with

respect to the barycenter of the binary asteroid system, δi is the position vector of

a mass element of body i with respect to the center of mass of primary body i, ri is

the position vector of the center of mass of the spacecraft with respect to the center

of mass of primary body i and ri − δi is the position vector of the center of mass of

the spacecraft with respect to a mass element of body i.

In the case of a binary asteroid system, the calculations are made in the synodic

reference frame, which rotates with the same angular velocity than that of the system

as a whole. The primary bodies are orbiting their barycenter, which is located at the

origin of the synodic reference frame. Their rotational motion is about the ZS axis

the the synodic reference frame. Each primary body has its own angular velocity,

which can be different from that of the system as a whole. The primary body i fixed

reference frame is then not necessarily aligned with the synodic reference frame. This

particularity needs to be taken into account in the calculation of the gravitational

potential. The expression for the gravitational potential of primary body i, expressed
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in the synodic reference frame, is as follows. The total gravitational potential is the

sum of Ugrav1 and Ugrav2.

Ugravi =
GMi

Ri

+
3G

2R3
i

[
1

3
(Ixxi + Iyyi + Izzi)−

1

R2

(
X2
i Ixxi + Y 2

i Iyyi + Z2
i Izzi

)]
+

G

8R5
i

[
35

R4
i

{
X4
i Jxxxxi + Y 4

i Jyyyyi + Z4
i Jzzzzi

+ 6
(
X2
i Y

2
i Jxxyyi + Y 2

i Z
2
i Jyyzzi + Z2

iX
2
i Jzzxxi

)}

− 30

R2
i

{
X2
i Jxxxxi + Y 2

i Jyyyyi + Z2
i Jzzzzi

+
(
X2
i + Y 2

i

)
Jxxyyi +

(
Y 2
i + Z2

i

)
Jyyzzi +

(
Z2
i +X2

i

)
Jzzxxi

}

+ 3 (Jxxxxi + Jyyyyi + Jzzzzi) + 6 (Jxxyyi + Jyyzzi + Jzzxxi)

]
, i = 1, 2

(2.14)

where Xi, Yi, Zi are the components of the position vector of the spacecraft with

respect to the center of mass of primary body i in the primary body i-fixed reference

frame and can be calculated using the direction cosine transformation matrix (DCM)

relating the components in the primary body i-fixed reference frame to those in the

synodic reference frame (CbiS):


Xi

Yi

Zi

 = CbiS


XSi

YSi

ZSi

 =


cosαi sinαi 0

− sinαi cosαi 0

0 0 1



XSi

YSi

ZSi

 (2.15)
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where XSi
, YSi

and ZSi
are the components of the position vector of the spacecraft

with respect to the center of mass of primary body i expressed in the synodic reference

frame. The XS1 and XS2 components are calculated as follows:

XS1 = XS + µR

XS2 = XS − (1− µ)R

(2.16)

where XS is the X component of the position vector of the center of mass of the

spacecraft with respect to the barycenter of the binary asteroid system expressed

in the synodic reference frame. The primary bodies of a binary asteroid system are

located along the XS axis of the synodic reference frame, which means that the YSi

and ZSi
components of the position vector of the spacecraft with respect to the center

of mass of primary body i have the same value than the YS and ZS components of the

position vector of the center of mass of the spacecraft with respect to the barycenter

of the binary asteroid system. The rotation of the primary bodies of the binary

asteroid system being only about the ZS axis of the synodic reference frame, ZS has

the same value as Zi.

2.4 Determination of the Gravitational Potential of a Binary Asteroid
System Using Layered Mascons

A layered mascons model can be used when a polyhedron shape model of the

primary bodies is available and permits to compute the gravitational potential with

greater detail than the Taylor series expansion model. The mascons are distributed

in the irregular small body via an algorithm developed by Venditti et al. and detailed

in Ref. [41]. In this algorithm, the polyhedron shape model is used to build the shape

of the body. The body is separated into multiple layers, each of them containing the
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same number of tetrahedrons as the number of faces of the polyhedron shape model.

A mascon is located at the center of mass of each tetrahedron, building the layered

mascon model of the body. This can be applied to the primary bodies of a binary

asteroid system. Figure 2–7 shows the final result of the distribution of the mascons

in the binary asteroid system 65803 Didymos.

Figure 2–7: Graphical representation of the Didymos binary asteroid system using a
layered mascons model

Once the position and the mass of the mascons are known, the total gravitational

potential of the binary asteroid system is given by:

Ugrav =

N1∑
i=1

Gdm1i

|R1 − δ1i|
+

N2∑
j=1

Gdm2j

|R2 − δ2j|
(2.17)

where dm1i is the mass of tetrahedron i of body 1, dm2j is the mass of tetrahedron j

of body 2, δ1i is the position vector of the position of the center of mass of tetrahedron

i of body 1 with respect to the center of mass of body 1, δ2j is the position vector

of the position of the center of mass of tetrahedron j of body 2 with respect to the
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center of mass of body 2, N1 is the number of tetrahedrons composing body 1 and

N2 is the number of tetrahedrons composing body 2.

The layered mascons method uses much simpler equations than the Taylor series

expansion since it is simply adding zeroth-order terms. This method requires more

computing power to calculate the gravitational potential than the inertia approach

because of the summation that needs to be executed at each step. However, it is much

less computationally expensive than the formal polyhedron shape based gravitational

potential calculation, while using the detailed shape of the body.

2.5 Non-dimensionalization

Non-dimensionalization of the terms in an equation (or expression) is done by

removing the units of the variables involved in the problem. Non-dimensionalization

simplifies the equations and the calculations by reducing the variation of the values of

the variables in the problem, avoiding having very large and very small values in the

same calculation. The first step in non-dimensionalization is to choose characteristic

parameters of size, distance and rotation rate, as well as a mass parameter.

The characteristic size in this study is the largest semi-axis of the biggest primary

body of the binary asteroid system, r0. It is used to non-dimensionalize the moments

of inertia of the primary bodies of the binary asteroid system. The characteristic

length of the mutual orbit of the primary bodies, l, is the nominal distance between

the centers of mass of the primary bodies of a binary asteroid system. It is used to

non-dimensionalize distance-related quantities, such as the position of the spacecraft.

The characteristic rotation rate, n, is the rotation rate of a system with spherical

primary bodies of the same masses as the ones of the system and the same distance
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separating their centers of mass l. It is calculated by:

n =

(
G (M1 +M2)

l3

) 1
2

(2.18)

The mass parameter is the ratio of the mass of the smallest primary body to the

total mass of the binary asteroid system:

µ =
M2

M1 +M2

(2.19)

These characteristic parameters are used to calculate the non-dimensionalized

parameters used in the dynamics model. For example, the non-dimensionalized time

is τ = nt, the non-dimensionalized position coordinates of the spacecraft are x =

X/l, y = Y/l, z = Z/l, the non-dimensionalized velocities of the spacecraft are x′ =

Ẋ/nl, y′ = Ẏ /nl, z′ = Ż/nl and the non-dimensionalized accelerations are x′′ =

Ẍ/n2l, y′′ = Ÿ /n2l, z′′ = Z̈/n2l. Note that ()′ and ()′′ denote differentiation with

respect to the non-dimensionalized time, τ .

Other non-dimensionalized parameters of the binary asteroid system used here

are the following:

Non-dimensionalized reciprocal of the distance between the centers of mass of the

primary bodies:

u =
l

R
(2.20)

Square of the ratio between the characteristic distance l and the characteristic pri-

mary body size r0 of the binary asteroid system, ε:

ε =
(r0
l

)2
(2.21)
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Non-dimensionalized rotation rate of the binary asteroid system:

ω =
Ω

n
(2.22)

where Ω is the dimensional rotation rate of the binary asteroid system.

Non-dimensionalized inertia parameters of the primary bodies:

ρ2αα =
Iαα
r20M

ρ4αααα =
Jαααα
r40M

ρ4ααββ =
Jααββ
r40M

(2.23)

where M is the total mass of the single asteroid or of the binary asteroid system.

The non-dimensional expression for the gravitational potential of a binary as-

teroid system is then:

Ugrav =
2∑
i=1

µi

{
1

ri3
+

3

2r3i3
ε

[
1

3

(
ρ2xxi + ρ2yyi + ρ2zzi

)
− 1

r2i3

(
x2i ρ

2
xxi + y2i ρ

2
yyi + z2ρ2zzi

)]

+
1

8r5i3
ε2

[
35

r4i3

(
x4i ρ

4
xxxxi + y4i ρ

4
yyyyi + z4ρ4zzzzi

+ 6
(
(xiyi)

2 ρ4xxyyi + (yiz)2 ρ4yyzzi + (xiz)2 ρ4zzxxi
) )

− 30

r2i3

(
x2i ρ

4
xxxxi + y2i ρ

4
yyyyi + z2ρ4zzzzi

+
(
x2i + y2i

)
ρ4xxyyi +

(
y2i + z2

)
ρ4yyzzi +

(
z2 + x2i

)
ρ4zzxxi

)
+ 3

(
ρ4xxxxi + ρ4yyyyi + ρ4zzzzi

)
+ 6

(
ρ4xxyyi + ρ4yyzzi + ρ4zzxxi

) ]}
(2.24)

where µ1 = (1− µ) and µ2 = µ.
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Just as for the case of a single asteroid, the gravitational force exerted by the

binary asteroid on a unit mass spacecraft is the gradient of the gravitational potential,

calculated in the directions of the axes of the synodic reference frame. Its expression

in the XS direction is given by:

fgravx =
2∑
i=1

−µi

{[
1

r3i3
+

3

2r5i3
ε

((
ρ2xxi + ρ2yyi + ρ2zzi

)
− 5

r2i3

(
x2i ρ

2
xxi + y2i ρ

2
yyi + z2ρ2zzi

))

− 1

8r7i3
ε2

(
−315

r4i3

(
x4i ρ

4
xxxxi + y4i ρ

4
yyyyi + z4ρ4zzzzi

+ 6
(
(xiyi)

2 ρ4xxyyi + (yiz)2 ρ4yyzzi + (xiz)2 ρ4zzxxi
))

+
210

r2i3

(
x2i ρ

4
xxxxi + y2i ρ

4
yyyyi + z2ρ4zzzzi

+
(
x2i + y2i

)
ρ4xxyyi +

(
y2i + z2

)
ρ4yyzzi +

(
x2i + z2

)
ρ4zzxxi

)

− 15
(
ρ4xxxxi + ρ4yyyyi + ρ4zzzzi

)
− 30

(
ρ4xxyyi + ρ4yyzzi + ρ4zzxxi

) ]
xSi

+
3

2r5i3
ε

[(
2xi cosαiρ

2
xxi − 2yi sinαiρ

2
yyi

)
− 1

8r7i3
ε2

[
35

r2i3

(
4x3i cosαiρ

4
xxxxi − 4y3i sinαiρ

4
yyyyi

+ 6
((

2xiy
2
i cosαi − 2x2i yi sinαi

)
ρ4xxyyi − 2yiz

2 sinαiρ
4
yyzzi + 2xiz

2 cosαiρ
4
zzxxi

))

− 60

(
xi cosαiρ

4
xxxxi − yi sinαiρ4yyyyi + (xi cosαi − yi sinαi) ρ4xxyyi

− yi sinαiρ4yyzzi + xi cosαiρ
4
zzxxi

)]}
(2.25)
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The gravitational forces in the Ys and Zs directions of the synodic reference

frame give similar results. They are omitted here for brevity.

2.6 Summary

This chapter has put the fundamentals of the study of the motion of a spacecraft

in the vicinity of a small irregular body: the modeling of its gravitational potential.

A model using a Taylor series of the fourth order was presented and compared with

a model using spherical harmonics of the fourth order. Both models gave similar re-

sults. The demonstration of the conservation of the Hamiltonian principle completed

the validation of the model. The case of a binary asteroid composed of irregular bod-

ies was then studied. Two ways to model it were discussed: a Taylor series expansion

of the fourth order and a layered mascon model. The non-dimensionalization of the

variables used in the FRTBP was described. These variables will be used throughout

this thesis. The next chapter studies the motion of the primary bodies of a binary

asteroid system, the FTBP.
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CHAPTER 3
The Full Two Body Problem

The FTBP describes the motion of the primary bodies of a binary system. The

FRTBP, which describes the motion of the third body, the spacecraft, in that system

depends on the mutual motion of the primary bodies. In this chapter, the term

”Full” means that the irregular shape of the primary bodies is considered in the

binary asteroid model. The individual primary bodies have angular velocities that

are different from the angular velocity of the system as a whole and their mutual

motion around the barycenter of the system can be non-circular. In the current

thesis, the motion of the primary bodies is assumed to be planar, as is the case for

the binary asteroid 65803 Didymos. It is also assumed that the primary bodies’

axes of rotation coincide with the angular momentum vector of the binary asteroid

system as per the description of the system made in Ref. [15]. The biggest body is

called body 1 and the smallest body is called body 2. The binary asteroid system is

assumed here to be stand alone, which means that external influences, such as the

gravitational field of the Sun, are not taken into account. Figure 3–1 illustrates the

FTBP with the definition of its parameters R, α1, α2, θ and the inertial, body 1

fixed, body 2 fixed and synodic reference frames. These are described in more detail

in Appendix A.
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Figure 3–1: The full two body problem

3.1 Equations of Motion of a Binary Asteroid System

The equations of motion for the Full Two Body Problem are developed here

based on Lagrange’s equations. The expression for the gravitational potential is

based on Eq. 2.7. Considering that the mass of body 1 is M1 and the mass of body

2 is M2, the potential energy, using a fourth-order gravitational potential model, is

given as:
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V1−2 =− GM1M2

R
− 3GM2

2R3

[
1

3
tr [I1]− {µR,1}T [I1] {µR,1}

]
− 3GM1

2R3

[
1

3
tr [I2]− {µR,2}T [I1] {µR,2}

]
− GM2

8R5

[(
35û4Rx,1 − 30û2Rx,1 + 3

)
Jxxxx1 +

(
35û4Ry,1 − 30û2Ry,1 + 3

)
Jyyyy1

+
(
35û4Rz,1 − 30û2Rz,1 + 3

)
Jzzzz1

+ 6
(
35û2Rx,1û

2
Ry,1 − 5

(
û2Rx,1 + û2Ry,1

)
+ 1
)
Jxxyy1

+ 6
(
35û2Ry,1û

2
Rz,1 − 5

(
û2Ry,1 + û2Rz,1

)
+ 1
)
Jyyzz1

+ 6
(
35û2Rz,1û

2
Rx,1 − 5

(
û2Rz,1 + û2Rx,1

)
+ 1
)
Jzzxx1

]

− GM1

8R5

[(
35û4Rx,2 − 30û2Rx,2 + 3

)
Jxxxx2 +

(
35û4Ry,2 − 30û2Ry,2 + 3

)
Jyyyy2

+
(
35û4Rz,2 − 30û2Rz,2 + 3

)
Jzzzz2

+ 6
(
35û2Rx,2û

2
Ry,2 − 5

(
û2Rx,2 + û2Ry,2

)
+ 1
)
Jxxyy2

+ 6
(
35û2Ry,2û

2
Rz,2 − 5

(
û2Ry,2 + û2Rz,2

)
+ 1
)
Jyyzz2

+ 6
(
35û2Rz,2û

2
Rx,2 − 5

(
û2Rz,2 + û2Rx,2

)
+ 1
)
Jzzxx2

]
(3.1)

To develop the equations of motion (EoM) of the binary system using Lagrange’s

equations, the following general coordinates are chosen:

− R is the distance between the centers of mass of the bodies

− θ is the angle between the XS axis of the synodic reference frame and the XI

axis of the inertial reference frame (aligned with the Sun)
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− α1 is the angle between the X1 axis of the body 1 fixed reference frame and

the XS axis of the synodic reference frame (which is in the direction of the

imaginary line joining the centers of mass of the primary bodies)

− α2 is the angle between the X2 axis of the body 2 fixed reference frame and

the XS axis of the synodic reference frame

The equation for kinetic energy only uses 2nd order terms:

T =
1

2

M1M2

M1 +M2

(
Ṙ2 +R2θ̇2

)
+

1

2
Izz1

(
θ̇ + α̇1

)2
+

1

2
Izz2

(
θ̇ + α̇2

)2
(3.2)

The generalized coordinates are then:

q =

[
R θ α1 α2

]
(3.3)

The system is considered to have planar motion and the primary bodies are

always located on the XS axis of the synodic reference frame, so the ûRi,j for the i

direction and j primary bodies 1 and 2 are:

ûRx,1 = cosα1; ûRx,2 = cosα2

ûRy,1 = − sinα1; ûRy,2 = − sinα2

ûRz,1 = ûRz,2 = 0

(3.4)

With these assumptions, and after some algebra, the gravitational potential

energy of the binary asteroid system is:

38



V1−2 =− GM1M2

R
+

3GM2

2R3

[
Ixx1 cos2 α1 + Iyy1 sin2 α1 −

1

3
(Ixx1 + Iyy1 + Izz1)

]

+
3GM1

2R3

[
Ixx2 cos2 α2 + Iyy2 sin2 α2 −

1

3
(Ixx2 + Iyy2 + Izz2)

]

− GM2

8R5

[
35
(
cos4 α1Jxxxx1 + sin4 α1Jyyyy1

)
− 30

(
cos2 α1Jxxxx1 + sin2 α1Jyyyy1

)
+ 3 (Jxxxx1 + Jyyyy1 + Jzzzz1) + 210

(
cos2 α1 sin2 α1

)
Jxxyy1

− 30
(
Jxxyy1 + sin2 α1Jyyzz1 + cos2 α1Jzzxx1

)
+ 6 (Jxxyy1 + Jyyzz,1 + Jzzxx1)

]

− GM1

8R5

[
35
(
cos4 α2Jxxxx2 + sin4 α2Jyyyy2

)
− 30

(
cos2 α2Jxxxx2 + sin2 α2Jyyyy2

)
+ 3 (Jxxxx2 + Jyyyy2 + Jzzzz2) + 210

(
cos2 α2 sin2 α2

)
Jxxyy2

− 30
(
Jxxyy2 + sin2 α2Jyyzz2 + cos2 α2Jzzxx2

)
+ 6 (Jxxyy2 + Jyyzz2 + Jzzxx2)

]
(3.5)

The equations of motion are developed based on Lagrange’s equations:

d

dt

∂T

∂q̇j
− ∂T

∂qj
+
∂V

∂qj
= 0 (3.6)

In the coming section, the non-dimensionalization of the equations of motion is done

as in section 2.5.
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3.1.1 Development of the Equations for Each Generalized Coordinates

In this section, the equations for each generalized coordinate are given in details.

Equation for the Generalized Coordinate R

After some algebra, the equation for the generalized coordinate R is:

R̈ =Rθ̇2 − G(M1 +M2)

R2

+
9

2R4

G(M1 +M2)

M1

[
Ixx1 cosα1

2 + Iyy1 sinα1
2 − 1

3
(Ixx1 + Iyy1 + Izz1)

]
+

9

2R4

G(M1 +M2)

M2

[
Ixx2 cosα2

2 + Iyy2 sinα2
2 − 1

3
(Ixx2 + Iyy2 + Izz2)

]
− 5

8R6

G(M1 +M2)

M1

[
35
(
cos4 α1Jxxxx,1 + sin4 α1Jyyyy,1

)
− 30

(
cos2 α1Jxxxx,1 + sin2 α1Jyyyy,1

)
+ 3 (Jxxxx,1 + Jyyyy,1 + Jzzzz,1) + 210

(
cos2 α1 sin2 α1

)
Jxxyy,1

− 30
(
Jxxyy,1 + sin2 α1Jyyzz,1 + cos2 α1Jzzxx,1

)
+ 6 (Jxxyy,1 + Jyyzz,1 + Jzzxx,1)

]

− 5

8R6

G(M1 +M2)

M2

[
35
(
cos4 α2Jxxxx,2 + sin4 α2Jyyyy,2

)
− 30

(
cos2 α2Jxxxx,2 + sin2 α2Jyyyy,2

)
+ 3 (Jxxxx,2 + Jyyyy,2 + Jzzzz,2) + 210

(
cos2 α2 sin2 α2

)
Jxxyy,2

− 30
(
Jxxyy,2 + sin2 α2Jyyzz,2 + cos2 α2Jzzxx,2

)
+ 6 (Jxxyy,2 + Jyyzz,2 + Jzzxx,2)

]
(3.7)

After non-dimensionalizing and making a change of variable from r to u, the

reciprocal of the non-dimensionalized distance between the centers of mass of the

primary bodies of the binary asteroid system, and after some algebra, the expression
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for u′′ is:

u′′ =
2u′2

u
− uθ′2 + u4

− 9u6

2
ε

[
ρ2xx1 cos2 α1 + ρ2yy1 sin2 α1 −

1

3

(
ρ2xx1 + ρ2yy1 + ρ2zz1

)]
− 9u6

2
ε

[
ρ2xx2 cos2 α2 + ρ2yy2 sin2 α2 −

1

3

(
ρ2xx2 + ρ2yy2 + ρ2zz2

)]
+

5u8

8
ε2

[
35
(
cos4 α1ρ

4
xxxx1 + sin4 α1ρ

4
yyyy1

)
− 30

(
cos2 α1ρ

4
xxxx1 + sin2 α1ρ

4
yyyy1

)
+ 3

(
ρ4xxxx1 + ρ4yyyy1 + ρ4zzzz1

)
+ 210

(
cos2 α1 sin2 α1

)
ρ4xxyy1

− 30
(
ρ4xxyy1 + sin2 α1ρ

4
yyzz1 + cos2 α1ρ

4
zzxx1

)
+ 6

(
ρ4xxyy1 + ρ4yyzz1 + ρ4zzxx1

)]

+
5u8

8
ε2

[
35
(
cos4 α2ρ

4
xxxx2 + sin4 α2ρ

4
yyyy2

)
− 30

(
cos2 α2ρ

4
xxxx2 + sin2 α2ρ

4
yyyy2

)
+ 3

(
ρ4xxxx2 + ρ4yyyy2 + ρ4zzzz2

)
+ 210

(
cos2 α2 sin2 α2

)
ρ4xxyy2

− 30
(
ρ4xxyy2 + sin2 α2ρ

4
yyzz2 + cos2 α2ρ

4
zzxx2

)
+ 6

(
ρ4xxyy2 + ρ4yyzz2 + ρ4zzxx2

)]
(3.8)

Equation for the Generalized Coordinate θ

The equations for the generalized coordinate θ reflect the principle of conserva-

tion of angular momentum. The dimensional equation:

d

dt

∂T

∂θ̇
= 0 (3.9)
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represents the conservation of angular momentum, which means that:

∂T

∂θ̇
= h (3.10)

where h is the constant of integration and is calculated based on the initial conditions

of the system. In that case, θ̇ is calculated using:

θ̇ =
M1 +M2

M1M2

1

R2

[
h− Izz1

(
θ̇ + α̇1

)
− Izz2

(
θ̇ + α̇2

)]
(3.11)

The non-dimensionalized version of the equation is:

θ′ =
hu2

nl2
+ εu2

(
ρ2zz1
µ

(θ′ + α1
′) +

ρ2zz2
1− µ

(θ′ + α2
′)

)
(3.12)

Equations for the Generalized Coordinates α1 and α2

The generalized coordinates α1 and α2 are paired with the generalized coordinate

θ in their equations:

θ̈ + α̈1 =
1

Izz1

[
−3GM2

2R3

[
sin 2α1 (Iyy1 − Ixx1)

]
+
GM2

8R5

[(
−70 cosα1

2 sin 2α1 + 30 sin 2α1

)
Jxxxx1

+
(
70 sinα1

2 sin 2α1 − 30 sin 2α1

)
Jyyyy1 + 210

(
− sinα1

2 sin 2α1 + sin 2α1

)
Jxxyy1

+ 30 (− sin 2α1Jyyzz1 + sin 2α1Jzzxx1)
]]

(3.13)
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The equation related to the sum of θ and α2 is:

θ̈ + α̈2 =
1

Izz2

[
−3GM1

2R3

[
sin 2α2 (Iyy2 − Ixx2)

]
+
GM1

8R5

[(
−70 cosα2

2 sin 2α2 + 30 sin 2α2

)
Jxxxx2

+
(
70 sinα2

2 sin 2α2 − 30 sin 2α2

)
Jyyyy1 + 210

(
− sinα2

2 sin 2α2 + sin 2α2

)
Jxxyy2

+ 30 (− sin 2α2Jyyzz2 + sin 2α2Jzzxx2)
]]

(3.14)

Their non-dimensionalized versions are:

θ′′ + α′′1 =
3µu3

2ρ2zz1

[
− sin 2α1

(
ρ2yy1 − ρ2xx1

)]
+
µu5ε

8ρ2zz1

[(
−70 cosα1

2 sin 2α1 + 30 sin 2α1

)
ρ4xxxx1

+
(
70 sinα1

2 sin 2α1 − 30 sin 2α1

)
ρ4yyyy1 + 210

(
− sinα1

2 sin 2α1 + sin 2α1

)
ρ4xxyy1

+ 30
(
− sin 2α1ρ

4
yyzz1 + sin 2α1ρ

4
zzxx1

)]
(3.15)

and

θ′′ + α′′2 =
3µu3

2ρ2zz2

[
− sin 2α2

(
ρ2yy2 − ρ2xx2

)]
+
µu5ε

8ρ2zz2

[(
−70 cosα2

2 sin 2α2 + 30 sin 2α2

)
ρ4xxxx2

+
(
70 sinα2

2 sin 2α2 − 30 sin 2α2

)
ρ4yyyy2 + 210

(
− sinα2

2 sin 2α2 + sin 2α2

)
ρ4xxyy2

+ 30
(
− sin 2α2ρ

4
yyzz2 + sin 2α2ρ

4
zzxx2

)]
(3.16)
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Rotational Motion of the Primary Bodies

While solving the equations of motion of the FTBP, the angular velocity of body

1 is usually set at a value that is constant and chosen based on the measurements

made on the chosen system. Body 2 is often assumed to have a mean angular velocity

that is the same than that of the binary system as a whole. A libration motion is

added to the rotational motion of body 2. As shown in Ref. [47], it is the eccentricity

of the mutual orbit of the primary bodies that influences the libration motion of body

2. Even in the case of a system in equilibrium, libration motion still occurs with the

same frequency as the mean motion of the mutual motion of the primary bodies of

the binary asteroid system. According to Ref. [47], the amplitude ψ of the libration

motion is:

ψ =
2e

ω2
0 − 1

(3.17)

where e is the eccentricity of the mutual orbit of the primary bodies around their

barycenter, and ω0 is the natural frequency of libration motion normalized by the

frequency of the mean motion of the mutual orbit. It is given by:

ω0 =
√

3 (B − C) /A (3.18)

where A, B and C are the semi axes of the ellipsoid representing body 2.

3.2 The Case of Mutual Circular Motion

A special case of the FTBP is the case of the primary bodies orbiting their

barycenter with a circular motion. It means that the inverse of the distance between

their centers of mass (u) and the angular velocity of the binary system (ω = θ′) are

constant. Their values will be referred to as uc and ωc. To calculate the values for uc
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and ωc, the values of α1, α2 are set to 0 and α′1 and α′2 are set to their mean values.

The system of equations to solve is then:

0 =− ucω2
c + u4c

− 3u6c
2
ε
[(

2ρ2xx1 − ρ2yy1 − ρ2zz1
)]

− 3u6c
2
ε
[(

2ρ2xx2 − ρ2yy2 − ρ2zz2
)]

+
5u8c
8
ε2

[(
8ρ4xxxx1 + 3ρ4yyyy1 + 3ρ4zzzz1

)
− 6
(

4ρ4xxyy1 − ρ4yyzz1 + 4ρ4zzxx1

)]

+
5u8c
8
ε2

[(
8ρ4xxxx2 + 3ρ4yyyy2 + 3ρ4zzzz2

)
− 6
(

4ρ4xxyy2 − ρ4yyzz2 + 4ρ4zzxx2

)]
(3.19)

and

0 = ωc −
hu2c
nl2
− εu2c

(
ρ2zz1
µ

(ωc + α′1) +
ρ2zz2

1− µ
(ωc + α′2)

)
(3.20)

The equations are solved numerically. The value of the constant of integration

h is calculated based on Eq. 3.12:

hc =
nl2

u2c

(
ωc − εu20

(
ρ2zz1 (θ′ + α′1)

µ
+
ρ2zz2 (θ′ + α′2)

1− µ

))
(3.21)

where (θ′ + α′1) and (θ′ + α′2) are approximate values of the angular velocity of body

1 and body 2 in the inertial reference frame. Note that the parameters uc and ωc

are used to adjust the initial conditions of the system when solving the equations of

motion of the FTBP and the FRTBP. They represent the ratio between the u and

ω values for a binary system composed of spherical bodies and the ones for a binary

system composed of non-spherical bodies.
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3.3 Application to the Binary Asteroid System 65803 Didymos

The NASA/ESA AIDA mission planned to the binary asteroid system 65803

Didymos is one of the motivations for the research presented in this thesis. This

is why a model of the binary asteroid system 65803 Didymos is used for numerical

applications throughout the document. The equations of motion developed in Section

3.1 are now applied to this specific system. The Didymos system has the parameters

presented in Tables 3–1 and 3–2. The values in Table 3–1 are taken from Ref. [15].

The second and fourth-order inertia integrals presented in Table 3–2 are calculated

based on the Didymos polyhedron shape model, using the technique presented in

Appendix C.2. The polyhedron shape model is used with the authorization from the

author of Ref. [63]. For the Didymos binary asteroid system, the calculated values

for uc and ωc are 0.99368 and 0.99390 respectively.

Table 3–1: Didymos system parameters

Parameter Body 1 Body 2 System

Eccentricity N/A N/A 0.03

Semi−major axis(m) N/A N/A 1180

Mass(kg) 5.2294e+ 11 4.8631e+ 09 5.2780e+ 11

Rotation period(hrs) 2.26 11.92 (assumed) 11.92
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Table 3–2: Didymos calculated second-order moments of inertia and fourth-order
inertia integrals

Parameter Body 1 Body 2

Ixx (kg ·m2) 3.1348e+ 16 1.0307e+ 13

Iyy (kg ·m2) 3.1920e+ 16 1.4555e+ 13

Izz (kg ·m2) 3.2790e+ 16 1.6389e+ 13

Jxxxx (kg ·m4) 1.1722e+ 21 4.6916e+ 16

Jyyyy (kg ·m4) 1.0963e+ 21 1.6236e+ 16

Jzzzz (kg ·m4) 9.8672e+ 20 7.9095e+ 15

Jxxyy (kg ·m4) 3.6539e+ 20 9.1998e+ 15

Jyyzz (kg ·m4) 3.2277e+ 20 3.7774e+ 15

Jzzxx (kg ·m4) 3.3555e+ 20 6.4211e+ 15

The equations of motion of the FTBP are defined using the generalized coor-

dinates u, θ, α1 and α2. The initial conditions for the generalized coordinates α1

and α2 are set to 0. The initial conditions of the generalized coordinates u0 and θ′0

are calculated based on the Keplerian equations of the two-body problem, using the

eccentricity, e, and the semi-major axis, a, of the assumed Keplerian mutual orbital

motion of the primary bodies around the barycenter of the binary asteroid system.

In the classical two-body problem, where the bodies can be considered as point

masses, R is calculated using:

R =
a (1− e2)
1 + e cos θ

(3.22)
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In its non-dimensionalized version, considering the nominal case where a = l, r is:

r =
(1− e2)

(1 + e cos θ)
(3.23)

For a binary system with spherical bodies, the parameter u could then be calculated

using:

u =
1

r
=

(1 + e cos θ)

(1− e2)
(3.24)

In the case of a binary system with non-spherical bodies, the value of the parameter

u has to be adjusted using the parameter uc calculated in section 3.2:

u = uc
1 + e cos θ

1− e2
(3.25)

Similarly, θ′ is calculated using:

θ′ = ω = ωc
(1 + e cos θ)2

(1− e2)3/2
(3.26)

The initial conditions u0 and θ′0 are then the values of Eq. 3.25 and Eq. 3.26 where

θ is set to θ = 0.

The values of u0 and θ′0 are used to calculate the approximation of the value of

the constant of integration h required to solve the equations of motion:

h =
nl2

u20

(
θ′0 − εu20

(
ρ2zz1 (θ′ + α′1)0

µ
+
ρ2zz2 (θ′ + α′2)0

1− µ

))
(3.27)

where (θ′ + α′1)0 and (θ′ + α′2)0 are the initial angular velocity of the primary bodies

calculated in the inertial reference frame.

These parameters were used to simulate the mutual motion of the primary bodies

of the system using the equations of motion of the FTBP. The motion of body 2 is
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modeled as described in section 3.3, with the semi-axes of body 2 being A = 103 m,

B = 79 m, and C = 66 m. Figure 3–2 shows that the distance between the centers

of mass of the binary bodies oscillates between 1152 m and 1230 m. The eccentricity

is then 0.033. The averaged distance between the primary bodies is of 1191 m.
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Figure 3–2: Distance R between the centers of mass of the primary bodies of the
binary asteroid system for ten revolutions of the system

The Hamiltonian, in the present case is identical to the total energy of the

system:

H = T + V (3.28)

Figures 3–4 and 3–3 show the kinetic and potential energy over ten revolutions of the

binary asteroid system. Figure 3–5 shows the total energy of the system. The actual

variation of the energy being approximately 0.004%, it is considered as constant.

This concludes this part of the validation of the equations of the FTBP used in the

simulation model.
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Figure 3–3: Potential energy for ten revolutions of the system

0 2 4 6 8

Number of Revolutions

9.842

9.844

9.846

9.848

9.85

9.852

K
in

e
ti
c
 E

n
e
rg

y
 (

J
)

10
9

Figure 3–4: Kinetic energy for ten revolutions of the system
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Figure 3–5: Total energy for ten revolutions of the system

3.3.1 Effect of Varying the Constant of Integration h

The parameter that affects the results presented in Figures 3–2 to 3–5 is the

constant of integration h. Solving the FTBP requires to have an exact value of h

which is obtained by iterating it around the result given by Eq. 3.27. Figure 3–6

shows how the generalized coordinate R changes throughout 50 revolutions of the

binary asteroid system when the constant h used is the one calculated initially, h0.

To get the results seen in Fig. 3–2, the constant to use is 1.00012h0. Figure 3–7

shows the result for a value of 0.999h0. In these figures, the distance between the

centers of mass of the primary bodies changes constantly.
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Figure 3–6: Distance R between the centers of mass of the primary bodies of the
binary asteroid system of the binary asteroid system for the constant h set at h0
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Figure 3–7: Distance R between the centers of mass of the primary bodies of the
binary asteroid system of the binary asteroid system for the constant h set at 0.999h0

As demonstrated in Ref. [47] the motion of the primary bodies of the binary

asteroid system is also highly influenced by the rotational motion of body 2, which

is assumed to be librating about the XS axis of the synodic reference frame with an
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unknown exact amplitude and frequency. The equations of motion of the model of

the FTBP are then highly sensitive to these unknowns and to the initial condition

of their generalized coordinates.

3.3.2 Gravitational Potential Energy of a Binary Asteroid System Using
a Layered Mascons Model

The layered mascons model described in section 2.4 can also be used to calculate

the gravitational potential energy of a binary asteroid system. In this case, the

equation is:

V12 = −
N1∑
i=1

N2∑
j=1

Gdm1idm2j

|R+ δ2j − δ1i|
(3.29)

This model is used to validate the fourth-order Taylor series expansion model

of the gravitational potential energy of the binary asteroid system that is used to

calculate the equations of motion of the FTBP.

Figure 3–8 shows how similar are the curves when the potential energy of the

system is calculated using a fourth-order Taylor series expansion model vs the layered

mascon model over one full orbit of the primary bodies around their barycenter.
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Figure 3–8: Potential energy calculated using the Taylor series expansion and the
layered mascons models

To give an order of magnitude of the difference between both models, Fig. 3–9

shows the percentage of difference between the gravitational potential energy calcu-

lated with both models. The difference is less than 0.1%, which is not significant.

This result shows that both models are equivalent. Because of the lower computa-

tional time required when using the fourth-order Taylor series expansion model, this

model will be used in the following chapters of this thesis.
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Figure 3–9: Difference in the calculation of the gravitational potential energy of the
binary asteroid system

3.3.3 Variation of the Gravitational Potential Energy of a Binary Aster-
oid System due to Uncertainties in its Parameters

The distance between the primary bodies and the eccentricity of the mutual

orbit of the primary bodies around the barycenter of the 65803 Didymos binary

asteroid are nominally set to 1180 m and 0.03. In fact, there are some uncertainties

in the measurements of these values. In Ref. [15], it is stated that the distance

between the primary bodies varies between 1160 and 1220 m and the eccentricity

has a maximal value of 0.03. In this section, the motion of body 2 is calculated using

the equations for Keplerian motion adjusted for irregular bodies. It is estimated as

an elliptical motion with an eccentricity e, angular frequency and reciprocal of the

distance between the primary bodies of the system for circular motion of the primary

bodies ωc and uc, and semi-major axis a. In the case of an elliptical motion, the value

of ω, ω′ and r at true anomaly θ can be calculated using the following equations:
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ω =
ωc (1 + e cos θ)2

(1− e2)3/2

ω′ =
−2ωcω (1 + e cos θ) (e sin θ)

(1− e2)3/2

r =
(a/l) (1− e2)
uc (1 + e cos θ)

(3.30)

In this section, the gravitational potential energy of the binary asteroid system

is compared for different values of the semi-major axis, a, and eccentricity, e, of

the orbit of mutual orbit of the primary bodies around the barycenter of the binary

asteroid system. The values used are a = 1160 m, a = 1180 m, a = 1220 m and

e = 0.00, e = 0.01, e = 0.02, e = 0.03. Figures 3–10 and 3–11 show that the

variation of the semi-major axis has a larger impact on the potential energy of the

binary asteroid system than the variation of the eccentricity.
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Figure 3–10: Potential energy variation for different semi-major axis values
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Figure 3–11: Potential energy variation for different eccentricity values

3.4 Summary

In this chapter, the motion of the primary bodies of a binary asteroid system,

i.e. the FTBP, was studied. The equations of motion were developed based on

Lagrange’s equations, using the gravitational potential and the kinetic energy of the

system. The case of the circular motion has been described. The theory has then been

applied to the binary asteroid system 65803 Didymos, showing that the equations

of motion developed represent well the motion of the primary bodies of the system.

The conservation of the Hamiltonian principle was demonstrated. The gravitational

potential energy of the system has been compared for two type of models: the Taylor

series expansion of the fourth order and the layered mascons model. It was shown

that both models are equivalent. It was finally shown that the distance between the

primary bodies is the parameter of the FTBP that affects the most the variation of

the potential energy of the binary asteroid system. In the coming chapters, the effect
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of the SRP acceleration on the trajectory of a spacecraft operated in the FCRTBP

is studied.
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CHAPTER 4
Spacecraft Trajectories Compatible with the Solar Radiation Pressure in

the FCRTBP

Asteroids have a small mass compared to planets like the Earth, reducing the

gravitational force they can exert on a spacecraft. It means that some external per-

turbations, like the SRP have a non-negligible impact on the motion of a spacecraft

in their vicinity. In Ref. [39], it is shown that the SRP acceleration can have a value

that is as large as the second-order terms of the gravitational acceleration. It is

believed that these conclusions also apply to binary asteroid systems. This chapter

is dedicated to the design of spacecraft trajectories in the vicinity of binary asteroids

that are compatible with the SRP acceleration. The SRP is taken into account at

the beginning of the design process by integrating it into the equations of motion

instead of treating it as a perturbation. In the current study, solar sailing is not a

goal of the mission. Since the SRP acceleration is coupled with the attitude of the

spacecraft, orbits have been designed using various spacecraft attitude schemes. A

stability study has also been conducted on the trajectories designed with and without

SRP acceleration included in the model.

4.1 Models Used in this Chapter

The first section of this chapter details the models used to design the SRP-

compatible trajectories. It starts with some assumptions on the dynamical model.
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Then, the SRP acceleration model is described, followed by the equations of motion

of the spacecraft and the binary asteroid and spacecraft models.

4.1.1 Assumptions

As this chapter is dedicated to the study of the effect of the SRP on the motion

of the spacecraft, some simplifications have been made to the model of the binary

asteroid system. The full model will be studied in Chapter 6. These simplifications

are summarized into the following assumptions:

(i) The time frame used in the study is short enough to consider the barycenter

of the binary asteroid system to be at an approximately fixed position in the

inertial reference frame.

(ii) Because of assumption (i), the distance between the spacecraft and the Sun is

considered to be fixed.

(iii) The primary bodies of the binary asteroid system have a uniform density.

(iv) The primary bodies of the binary asteroid system move around their barycenter

in circular orbits, which means that they are orbiting at a constant rate and

the distance between their centers of mass remains constant. This is why the

actual problem is defined here as the full circular restricted three body problem

(FCRTBP)

(v) The binary system is in equilibrium, which means that the orientation of pri-

mary body 2 with respect to the orientation of primary body 1 is fixed and

both bodies rotate at the same rate as the binary asteroid system.
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(vi) The orbital plane of the primary bodies of the binary asteroid system around

their barycenter has the same orientation as the orbital plane of the binary

asteroid system around the Sun.

4.1.2 Solar Radiation Pressure Acceleration Model

Different types of SRP acceleration models have been used in the literature.

References [51, 52] give a good description of most of them. The SRP acceleration

models used in this thesis are described in Appendix D. In most of previous studies,

simple models, such as the cannonball model has been used. In this chapter, the

SRP acceleration is calculated based on a flat plate model. In that case, the n̂

vector is always n̂1 and the n̂2 and n̂3 vectors are set to [0 0 0]T . The spacecraft is

considered as only having specular reflectivity, with no absorption. The shadowing

of the primary bodies of the binary asteroid system is not taken into account in the

calculations. In this case, the acceleration of the spacecraft due to the SRP is given

by:

aSRP =

(
PSRP
B

)
(1 + rs) 〈û, n̂〉2n̂ (4.1)

Two spacecraft attitude schemes are considered in this chapter. The attitude

schemes were chosen to respond to observation of the primary bodies requirements.

In the first attitude scheme, XP axis pointing of the plates reference frame is always

aligned with the direction of the XS axis of the synodic reference frame. In this

specific attitude scheme, the spacecraft would be observing one of the primary bodies

for at least part of its orbit, assuming that the sensor is along the XP axis of the

plates reference frame. In that case, the n̂ vector, with its components expressed in
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the synodic reference frame, is:

n̂ = sign (cosθ)

[
1 0 0

]T
(4.2)

where sign (cosθ) is used to signify that when cosθ is negative, i.e. the XS direction

of the synodic reference frame is in the direction opposite to the direction of the XI

axis of the inertial reference frame, it is required to inverse the sign of the n̂ vector.

The SRP is then pushing the spacecraft in the negative XS direction of the synodic

reference frame.

The second spacecraft attitude scheme, flight-path-angle-aligned (FPA-aligned),

keeps the XP axis of the plates reference frame normal to the direction of flight of

the spacecraft. This scheme allows the spacecraft to observe both primary bodies

during the course of one orbit for the planar Lyapunov trajectory and body 2 for the

retrograde around body 2 trajectory, assuming that the sensor is along the XP axis

of the plates reference frame. In this case, the n̂ vector is normal to the direction of

flight and is calculated in the synodic reference frame:

n̂ = sign (cosθ)

[
sinγ cosγ 0

]T
(4.3)

γ = tan−1
(
y′

x′

)
(4.4)

where x′ and y′ are the x and y the non-dimensionalized components of the velocity

of the spacecraft, expressed in the synodic reference frame. In both cases, the com-

ponents of the û vector, expressed in the synodic reference frame, are calculated as
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follow:

û =

[
cos(θ) −sin(θ) 0

]T
(4.5)

4.1.3 Equations of Motion

Putting all the previous models together leads to the equations of motion of a

spacecraft in the vicinity of a binary asteroid system. In the synodic reference frame,

they are given by:

x′′ = 2ωcy
′ + Ux + aSRPx

y′′ = −2ωcx
′ + Uy + aSRPy

z′′ = Uz + aSRPz

(4.6)

where Ui is the differentiation with respect to the coordinate i of the effective po-

tential, which is the sum of the gravitational potential, as calculated in section 2.3,

with α1 and α2 set to 0, and the potential generated by the centripetal acceleration

[61]:

U = Ugrav +
1

2
ω2
c

(
x2 + y2

)
(4.7)

where ωc is the non-dimensionalized rotation rate of the binary asteroid system for

circular motion.

4.1.4 Binary Asteroid and Spacecraft Models

Since Didymos is the binary asteroid system targeted by the AIDA mission,

a similar system is used here for numerical simulation. The primary bodies are

both modelled as tri-axial ellipsoids. The dimensions of the principal semi-axes and

primary bodies mass used are given in Table 4–1 [59]. The distance between their
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centers of mass is l = 1180 m, the mass ratio parameter is µ = 0.009214 and the

rotation period of the system is 11.9 hours. For the purpose of the SRP acceleration

calculation, the system is considered to be at the fixed distance from the Sun of 1

AU . As Didymos has an heliocentric orbit with a semi-major axis of 1.645 AU and

an eccentricity of 0.384 [59], this distance is close to its orbit. The spacecraft used

in this study is considered purely reflective with a mass to area ratio of 50 kg/m2.

Table 4–1: Dimensions of body 1 and body 2 of the binary asteroid system

Parameter Body 1 Body 2

A(m) 399 103

B(m) 392 79

C(m) 380 66

mass(kg) 5.22937e+ 11 4.86315e+ 09

4.2 Designing SRP-compatible Trajectories in the FCRTBP

This section presents the technique used to calculate trajectories that are com-

patible with the SRP in the FCRTBP. After initial guess trajectories are calculated

in the CRTBP, SRP-compatible trajectories in the CRTBP are selected. Then, a

differential-correction scheme is used to modify them so that they are fitted to the

FCRTBP with SRP.

4.2.1 Initial Guess for Designing Periodic Orbits in the Classical CRTBP

Planar periodic orbits in the context of the classical CRTBP, where the primary

bodies of the system are considered as point masses, serve as the foundation of

the search for periodic orbits in the context of a binary asteroid system. Since the
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calculations are made in the synodic reference frame, which is rotating, the SRP

acceleration is time dependent with a period equal to the one of the binary asteroid

system as a whole. To be able to find a periodic orbit in such an environment, it

has to have a period that is a rational fraction or a multiplier of the period of the

binary asteroid system. Once an orbit with a SRP compatible period is found, it is a

candidate to be modified to fit for a higher order gravitational potential model and

the SRP acceleration model. The criteria for the orbit to be SRP-compatible are the

following:

(i) The orbit has to exist in the classical CRTBP for the mass ratio of the binary

asteroid system targeted.

(ii) The period of the orbit has to be a rational fraction or a multiplier of the period

of the binary asteroid system.

Note that even when these criteria are met, it is always possible that the orbit do

not exist in a higher-terms gravitational potential model or in a model including the

SRP acceleration.

The first step to find a periodic planar orbit in the classical CRTBP is to de-

termine the value of the Jacobi constant C for which the periodic orbits exist for

different distances from the libration points around which the spacecraft orbits. This

is done through a 2-D grid search with the XS component of the initial position of

the spacecraft in the synodic reference frame and the Jacobi constant C as param-

eters. This can also be described as Poincaré mapping with the Poincaré section

being the ZS-YS plane at the required XS component of the initial position of the
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spacecraft. As demonstrated in Ref.[16], the Jacobian constant C, can be calculated

in the classical CRTBP:

C = 2U −
(
x′

2
+ y′

2
+ z′

2
)

(4.8)

For the periodic orbit search, the equations of motion of the classical CRTBP are

solved numerically for the defined parameters. Here, the search for periodic orbits

is limited to planar orbits that are XS-axis symetric. Choosing the initial position

of the spacecraft on the XS axis of the synodic reference frame and considering only

planar motion permits to have the following set of initial conditions:

xt0 =

[
x0 0 0 0 y′0 0

]T
(4.9)

Note the difference between xt0 , which represents the initial state vector, and x0,

which represents the XS component of the initial position of the spacecraft in the

synodic reference frame.

The final conditions are the state values when the spacecraft crosses the XS axis

for the second time, i.e. after a full orbit. The difference between the initial and final

conditions is calculated for each of the C values. A candidate periodic orbit is found

when this difference is below a pre-defined threshold. It is then added to a pool

of candidate periodic orbits. The candidate periodic orbits are then refined using a

differential-correction scheme, described in section 4.2.4. It is then possible to get

other members of its family of periodic orbits, which have similar C values and initial

conditions using the same differential-correction method. In the present study, the
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L2 and L1 planar Lyapunov families of periodic orbits, as well as retrograde orbits

around body 2 are studied.

4.2.2 Selecting SRP-compatible Orbits

From the candidate orbits found in classical CRTBP, the only ones that are

suitable for an SRP-compatible orbits are the ones with a period that is a rational

fraction of the rotation period of the binary system studied. This is to make sure

that the system, including the SRP, can be considered as time invariant. When this

criterion is not met, the trajectory loses its periodicity. For retrograde orbits around

body 2, it leads to quasi-periodic orbits, but for Lyapunov orbits, it leads to either

escape from the binary asteroid system or impact with one of the primary bodies.

In the later case, a higher level of orbit control would be required to maintain it.

The period chosen for our study is half of the rotation of the system (P/2) which, in

non-dimensionalzed value, is equivalent to: P = π/ωc.

4.2.3 Qualitative Impact of the SRP on Equilibrium Points and the Ja-
cobi Constant

As the force caused by the SRP acceleration is a non-conservative force acting

on the spacecraft, there are a few differences in the study of the dynamics of the

spacecraft in a binary asteroid system including it. The first aspect to consider is

that there are no equilibrium points for the system. In fact, strictly speaking, it

would be more appropriate to refer to quasi-equilibrium points in an equilibrium

region. It would correspond to the equilibrium points of the classical CRTBP for a

system where the SRP acceleration is not taken into consideration.

The second aspect that changes when the SRP acceleration is incorporated into

the dynamics model is that there is no constant of integration anymore. The Jacobi
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value, C, is constantly changing when accelerations from non-conservative forces,

such as the SRP acceleration are added to the system. The C constant used here is

calculated in the classical CRTBP, using a model without the SRP acceleration.

A quantitative study of these impacts of the SRP acceleration on the dynamics

of a spacecraft in the vicinity of a binary asteroid system is done in Chapter 5.

4.2.4 Differential-correction Scheme

Once target initial positions and C values are found, the orbit is refined using a

differential-correction scheme. The differential-correction scheme developed in Refs.

[22] and [61] is used here to be able to go from orbits found in the classical CRTBP

to orbits that fit models using higher-orders terms of the gravitational potential and

the SRP acceleration. Here is a summary of the method presented in Ref. [61]. It

applies to a linearized system, where the position vector of the spacecraft relative to

the barycenter of the binary asteroid system, r, can be replaced by the sum of the

position vector of a spacecraft on the reference trajectory relative to the barycenter of

the binary asteroid system and the variation of the position of the spacecraft around

the reference trajectory:

r = r0 + δr (4.10)

Linearizing the equations of motion of the system and defining the states of the

linearized system as x =

[
δr δr′

]
, it is possible to define a matrix A such that:

x′ = Ax (4.11)
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In the actual case, the A matrix corresponds to the linearized model of the system:

A =

 03x3 I3x3

−∂2U
∂r2
|r0 ωc

 ,ωc =


0 2ωc 0

−2ωc 0 0

0 0 0

 (4.12)

where r0 is the position vector of the spacecraft at the corresponding step of the

simulation.

The state transition matrix, Φ (τf ; τ0), relates the change in the initial state and

the state at the final non-dimensionalized time τf of the simulation:

δx (τf ) = Φ (τf ; τ0) δx (τ0) (4.13)

and is calculated via numerical integration, with Φ (τ0; τ0) = I6x6 as initial condition:

Φ′ (τf ; τ0) = AΦ (τf ; τ0) (4.14)

In the present case, the goal is to find the set of initial conditions for which the

initial conditions and the final conditions, after one period of the trajectory, would

be equal: x (τf ) = x (τ0), which means that δx (τf ) would be as close as possible to[
0 0 0 0 0 0

]T
. The initial and final states are:

x (τ0) =

[
x0 0 z0 0 y′0 0

]T
,x (τf ) =

[
xf yf z0 x′f y′f z′f

]T
(4.15)

By setting the point where the final states are evaluated to the intersection

with the XS axis of the synodic reference frame, i.e. yf = 0, the final states of the
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trajectory are then:

x (τf ) =

[
xf 0 zf x′f y′f z′f

]T
(4.16)

δx (τf ) is then set to:

δx (τf ) =

[
(x0 − xf ) 0 (z0 − zf ) −x′f

(
y′0 − y′f

)
−z′f

]T
(4.17)

As in Ref.[61], the period of the orbit is an important parameter since the SRP

acceleration is also taken into consideration there. The final conditions are expanded

into a Taylor series of the first order:

δx (τf + δτf ) = δx (τf ) +
∂x

∂τ

∣∣∣∣∣
τ=τf

δτf (4.18)

which is equivalent to:

δx (τf + δτf ) = Φ (τf ; τ0) δx (τ0) +
∂x

∂τ

∣∣∣∣∣
τ=τf

δτf (4.19)

Eq. (4.19) is a system of 6 equations, but only rows 4 and 6 need to be solved:

−x′f
−z′f

 =

φf,41 φf,43 φf,45

φf,61 φf,63 φf,65



δx0

δz0

δy′0

+

x′′f
z′′f

 δτf (4.20)

The four unknowns, (δx0, δz0, δy
′
0, δτf ) can be reduced to three when taking into

account that the final time, (τf,req), is fixed by the requirement of having a trajectory

for which the period is a rational fraction of the period of the rotating binary system:

δτf = P/k − τf (4.21)
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where P is the period of the binary asteroid system and k is a integer. Row 2 of Eq.

(4.19) can be used to solve for the third unknown:

δyf = 0 = φf,21δx0 + φf,23δz0 + φf,25δy
′
0 + y′fδτf (4.22)

Solving Eqs. (4.20-4.22) gives the change in the initial conditions that needs to be

made to get closer to a periodic trajectory. Executing this algorithm iteratively gives

precise initial conditions for periodic trajectories and orbits.

4.2.5 Orbits in the Higher-order Gravitational Potential Model and In-
cluding the SRP

Once the SRP-compatible orbits are chosen, a continuation scheme, combined

with the differential-correction scheme presented in [61], is applied to make them

fit the higher-order gravitational potential model, the FCRTBP. The steps are as

follows:

1. Obtain the classical CRTBP orbit.

2. Increase the higher gravitational potential model factor f2 or f4.

3. Apply the differential-correction scheme to get new initial conditions.

4. Repeat steps 2 and 3 until the higher gravitational potential model factor is

equal to 1.

The differential-correction algorithm would not converge if the second-order and

fourth-order terms were added in their full value. The gravitational potential factor,

f2 and f4 are numbers between 0 and 1 multiplying the higher order terms, increasing

slowly their effect in the model:

U = U0 + f2U2 + f4U4 (4.23)
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At the beginning of the algorithm, they are set to 0. They are individually

increased by a value of 0.1 each time step 2 is repeated, until they reach the value

of 1. The value of f2 has to reach 1 before f4 starts to increase.

Each of the parameters of the higher-order gravitational potential model have

to be slowly increased by the gravitational potential model factor, including uc, ωc

and the values of the accelerations due to the corresponding gravitational potential.

The same algorithm applies to the trajectories found here to add the SRP to the

model. It has to be done for each attitude scheme individually to get SRP-compatible

trajectories.

4.3 Numerical Results

The techniques described in this chapter have made possible the design of peri-

odic trajectories in the context of the FCRTBP for binary asteroid systems including

the SRP acceleration. The results that were conclusive were based on planar L1 Lya-

punov orbits and retrograde orbits around body 2. As stated earlier, the criterion of

the period of the trajectory has to be followed and reduces the number of trajectories

that can be brought from the classical CRTBP families of periodic orbits around li-

bration points to trajectories based on the fourth-order gravitational potential model

and the SRP acceleration.

The results focus on trajectories around body 2 of the system illustrated in Fig.

4–1. The figures presented later in the chapter will focus on the dynamics of the

spacecraft close to primary body 2 of the system, so only the data between xS(non-

dimensionalized) = 0.7 and 1.3 are presented. This is to ensure that the results can

be seen clearly.
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Figure 4–1: Binary asteroid system

4.3.1 Zeroth-order Gravitational Potential Model Orbits

The first orbit families designed are the planar Lyapunov families of orbits

around both L1 and L2 libration points of the classical CRTBP. In Fig. 4–2, the

families are shown around primary body 2 of the system. The orbits were ”grown”

from the libration points until their limits would intersect with primary body 2. The

constant C, initial conditions and period of all of them are presented in Tables 4–2

and 4–3.

Table 4–2: Planar Lyapunov family of orbits around L1

C x0 period

3.13920 0.83485 2.83709

3.12742 0.83172 2.899722

3.11371 0.82860 2.981758

3.09835 0.82531 3.088008

3.09145 0.82381 3.141593
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Table 4–3: Planar Lyapunov family of orbits around L2

C x0 period

3.15288 1.13293 3.34751

3.15056 1.12548 3.35680

3.14687 1.11754 3.37149

3.14242 1.10966 3.39110

3.13706 1.10084 3.41955

3.13437 1.09628 3.43730

In Fig. 4–2, the ellipse in the center represents primary body 2 of the system,

whereas the stars (∗) represent the L1 and L2 libration points, calculated in the

classical CRTBP. Tables 4–2 and 4–3 show that in the case of the L2 planar Lyapunov

family, it was not possible to get an orbit with a period that is a rational fraction of

the non-dimensionalized rotation period of the system (2π for the classical CRTBP).

In the case of the L1 planar Lyapunov family, only one orbit fits the criterion, which

is the one with a C value of 3.09145 and a period of π. It is represented with a thick

purple curve in Fig. 4–2. This orbit was then selected to be modified, so that it

would exist in a higher-order gravitational potential model that would also include

the SRP acceleration.
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Figure 4–2: Planar Lyapunov orbits around L1 and L2

A family of retrograde orbits around body 2 has also been designed. The result-

ing initial conditions for periodic orbital motion can be seen in Table 4–4, with the

resulting trajectories in Fig. 4–3. In this case, a trajectory with a period of π was

found for a C value of 2.94978.

Table 4–4: Retrograde orbits around body 2

C x0 period

2.95926 1.14712 2.85000

2.95427 1.15443 3.00000

2.94978 1.16144 3.14159

2.94503 1.16926 3.29678

2.93900 1.17961 3.49658

2.93175 1.19311 3.74634

2.92426 1.20744 3.99600
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In Fig. 4–3, the stars represents the L1 and L2 libration points. The external

orbit is the original one and the orbit represented by a thick red curve is the one

with the required period. The ellipse in the center is the surface of the primary body

2 of the system.
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Figure 4–3: Family of retrograde orbits around body 2

It is possible to graphically represent the evolution of the three families of orbits

on a plot. In Fig. 4–4, the lines show the evolution of the family as a function

of the XS component of the initial position in the synodic reference frame and the

Jacobi constant C. The stars indicate when a trajectory has a period of π. The L2

Lyapunov orbits family does not contain an orbit with a value of π, so it will not be

used further in this study.
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Figure 4–4: Evolution of families with respect to initial position and C

4.3.2 Fourth-order Gravitational Potential Model Trajectories

Once the orbits with proper periods were selected, both for the planar Lyapunov

orbit and the retrograde orbit around body 2, the differential-correction scheme,

combined with the continuation scheme, was applied to get trajectories based on a

fourth-order gravitational potential model. The initial conditions for each of them

can be found in Table 4–5. Note here that the period of the trajectory is not equal to

π, but equal to π/ωc, since the rotation period of a binary asteroid system with non-

spherical bodies is: 2π/ωc. In Fig. 4–5 and 4–6, the difference between trajectories

modeled with a zeroth and a fourth-order gravitational potential model is visible.
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Figure 4–5: Retrograde trajectories around body 2 of zeroth-order and fourth-order
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Figure 4–6: L1 planar Lyapunov trajectories of zeroth-order and fourth-order
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Table 4–5: Initial conditions for periodic trajectories using a fourth-order gravita-
tional potential model

Trajectory type x0 y′0 Period

L1 planar Lyapunov 0.82335 0.29592 3.14466

Retrograde around body 2 1.16576 −0.45787 3.14466

4.3.3 Fourth-order Gravitational Model Trajectories with SRP Acceler-
ation

As stated earlier, two different spacecraft attitude schemes have been considered

here. They were chosen because of their practical significance in a mission where the

spacecraft would be oriented in such a way that it would be observing one or both

primary bodies of the system. The first attitude scheme, XS axis pointing, has the

XP axis of the plates reference frame always aligned with the positive XS axis of the

synodic reference frame, so the spacecraft would be observing primary body 2 of the

system for the entire planar Lyapunov trajectory and part of the retrograde around

body 2 trajectory. In the second one, FPA-aligned, the spacecraft rotates during its

trajectory, so that the XP axis of the plates reference frame is perpendicular to its

velocity vector. This scheme allows the spacecraft to observe both primary bodies

during the course of one orbit for the planar Lyapunov trajectory and body 2 for

the retrograde around body 2 trajectory. The trajectories designed with the SRP

acceleration included in the model are periodic after a full rotation of the system

about its barycenter. This periodicity is achieved by choosing trajectories with a

period that is a rational fraction of the rotation period of the system, π/ωc. In this

case, both trajectories that were tested with the SRP acceleration included in the
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model had a period of half the one of the system, so they go back to their initial

conditions after two ”orbits”. This can be observed in Figs. 4–7, 4–8 and 4–9. Note

that Fig. 4–9 is Fig. 4–8 zoomed on the trajectory to show the effect of the SRP on

it. The initial conditions for each of these trajectories are in Table 4–6.
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Figure 4–7: Retrograde trajectories around body 2 with and without SRP accelera-
tion included in the model
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Figure 4–8: L1 planar Lyapunov trajectories with and without SRP acceleration
included in the model
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included in the model, zoomed on trajectory

Table 4–6: Initial conditions for periodic trajectories with SRP acceleration, fourth-
order gravitational potential model

Trajectory Spacecraft attitude scheme x0 y′0 Period

L1 planar Lyapunov XS axis pointing 0.82254 0.29525 3.14466

L1 planar Lyapunov FPA-aligned 0.82281 0.29598 3.14466

Retrograde around body 2 XS axis pointing 1.17569 −0.46343 3.14466

Retrograde around body 2 FPA-aligned 1.17727 −0.46203 3.14466

4.3.4 Stability Comparison of the Trajectories

A monodromy matrix has been computed for each of the trajectories described

previously. It has been calculated over a full rotation of the binary asteroid system,

so that the trajectories including the SRP acceleration could complete their cycle.

For a periodic orbit to be stable, all of the eigenvalues of its monodromy matrix

have to lay on a unit circle, i.e. have a norm value of 1. In the present cases, the
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only trajectory satisfying this condition is the retrograde trajectory around body 2

when calculated with the primary bodies represented as point masses. The planar

Lyapunov orbits around the L1 and L2 libration points, on their side, are known to be

unstable [61]. It is not possible for a spacecraft to stay on these trajectories without

active control. The evolution of the eigenvalues, as shown in Table 4–7, show that

much of the instability is gained when the trajectories are based on a higher-order

gravitational potential model, meaning that the shape of the primary bodies is taken

into account. SRP has some impact, but it is not as important as the shape of the

primary bodies.

Table 4–7: Eigenvalues for L1 planar Lyapunov trajectories and retrograde trajecto-
ries around body 2

Trajectory Gravity model Attitude scheme Norm of max.

eigenvalue

L1 planar Lyapunov 0th no SRP 1.20203e6

L1 planar Lyapunov 4th no SRP 1.27607e6

L1 planar Lyapunov 4th XS axis pointing 1.27595e6

L1 planar Lyapunov 4th FPA-aligned 1.27625e6

Retrograde around body 2 0th no SRP 1

Retrograde around body 2 4th no SRP 13.20294

Retrograde around body 2 4th XS axis pointing 13.55095

Retrograde around body 2 4th FPA-aligned 13.55739
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4.3.5 Trajectories with a Different Period

Trajectories with a slightly different period (3.1, instead of 3.144663) were also

tested. For the L1 planar Lyapunov type trajectory, with the FPA-aligned attitude

scheme, Fig. 4–10 show that the spacecraft would definitively leave the trajectory

before the end of the rotation of the binary asteroid system.
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Figure 4–10: Lyapunov trajectory with a period of 3.1

In the case of the retrograde trajectory around body 2, the difference is not as

clearly visible if not zooming in the initial and final position region. When zoomed

in, as in Fig. 4–11, it is possible to see that the trajectory does not close. The

impact of the difference in the period is more clear when considering the maximum

eigenvalue of the monodromy matrix, as it goes from 13.557391 for a trajectory with

a period of half the one of the system (3.144663) to 37.118950 for a trajectory with a

period of 3.1. It shows that for an orbit with a period that is slightly different than

an optimal one, the SRP acceleration has a great impact on its stability.
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Figure 4–11: Retrograde trajectory around body 2 with a period of 3.1, zoomed on
initial position

4.4 Summary

In the present chapter, planar periodic trajectories of a spacecraft in the vicinity

of a binary asteroid system using a fourth-order Taylor series expansion gravitational

potential model and the SRP acceleration were designed in the FCRTBP. It was

found that it is possible to obtain such trajectories when the period criterion of

the chosen trajectories from the classical CRTBP is met. It has to be noted that

the planar Lyapunov orbits are unstable and cannot be maintained for significant

periods of time without control. These trajectories show little difference in their

stability when compared to trajectories without the SRP acceleration included in

the model. It means that when the trajectory is carefully designed, its stability is

not significantly influenced by the SRP itself, which is not the case when the period

of the orbit is slightly different from an optimal one. The difference in stability

between the classical CRTBP trajectories and the ones in the FCRTBP including
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the SRP acceleration comes mainly from the non-sphericity of the primary bodies of

the binary asteroid system. The next chapter is studying the attitude-SRP coupling

by looking at how non-controlled spacecraft trajectories are influenced by the SRP

acceleration model and the spacecraft attitude scheme of the spacecraft used.
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CHAPTER 5
Impact of the Solar Radiation Pressure Acceleration Model on

Spacecraft Trajectories in the FCRTBP

As previously stated, the SRP acceleration may not be negligible when calcu-

lating the motion of a spacecraft in the vicinity of a binary asteroid. This chapter

studies how the choice of the SRP acceleration model influences the strength of the

SRP acceleration acting on the spacecraft. It compares the results between when the

binary asteroid is at perihelion and at aphelion of its orbit around the Sun. Since

the SRP acceleration is coupled with the attitude of the spacecraft, this chapter also

studies how it is possible to take advantage of the choice of the nominal attitude of

the spacecraft so that the SRP affects the spacecraft dynamics in a desirable manner.

Finally, a special case of retrograde orbits around body 2 is studied.

As in the previous chapter, some simplifications to the model of the binary

asteroid system are made to put the focus of the study on the effect of the SRP

acceleration. The same assumptions as in chapter 4 are made here, except that, in

this case, two positions in the orbit of the binary asteroid system around the Sun

are considered: at perihelion and at aphelion. For each case, the time frame used in

the study is short enough to consider the barycenter of the binary asteroid system

to be at an approximately fixed position in the inertial reference frame.

The gravitational potential model used is the one with Taylor series expansion

described in section 2.3. The SRP acceleration models are summarized in Appendix
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D, with the generic equation being Eq. D.1. In this chapter, the SRP acceleration

models that are studied are: the cannonball, the flat plate, the multi-body flat plate

and the N-plates models. Various attitude schemes for the spacecraft are examined.

The effect of different optical parameters of the spacecraft on the SRP acceleration

is investigated using the flat plate model.

5.1 Description of the Attitude Schemes

The direction and norm of the SRP acceleration in the synodic reference frame

are highly dependent on the orientation of the spacecraft with respect to the direction

of the û vector. In this chapter, five different attitude schemes are examined, with

their impact on various types of trajectories. Note that all the n̂i are described for

the different attitude schemes. In the case of the use of a flat plate or multi-body flat

plate model, the n̂ vector to use is n̂1. In the case of the cannonball, the attitude of

the spacecraft has no effect on the SRP acceleration.

5.1.1 Generic Expressions for the Components of the n̂ Vector Expressed
in the Synodic Reference Frame

The components of the n̂i vectors in the synodic reference frame are calculated

from their equivalent in the inertial reference frame. The general procedure is devel-

oped here and will be applied to the calculation of the expressions for each attitude

scheme.

Figure 5–1 shows the relationship between the plates reference frame and the

inertial reference frame. It also shows how the û vector is always aligned with the

XI axis of the inertial reference frame.
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Figure 5–1: Kinematics between plates reference frame and inertial reference frame

The plates reference frame, for the planar case, rotates around the ZI axis of

the inertial reference frame with an angle λ, giving the direction cosine matrix:

CIP =


cosλ −sinλ 0

sinλ cosλ 0

0 0 1

 (5.1)

where CIP is the direction cosine matrix describing the orientation of the inertial

reference frame relative to the plates reference frame.

The expressions of the components of the n̂i vectors in the plate reference frame

are:

n̂1P =

[
1 0 0

]T
n̂2P =

[
0 1 0

]T
n̂3P =

[
0 0 1

]T (5.2)
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The expressions of the components of each of the n̂i vectors in the inertial reference

frame are then:

n̂1I =

[
cosλ sinλ 0

]T
n̂2I =

[
−sinλ cosλ 0

]T
n̂3I =

[
0 0 1

]T (5.3)

The first component of the n̂i vectors expressed in the inertial reference frame

always needs to be positive, so that it is in the same direction as the û vector (SRP

cannot produce an acceleration in a direction opposite to the û vector). To assure

that, the components of the n̂i vectors need to be multiplied by the sign of their first

component.

Once the components of the n̂i vectors are calculated in the inertial reference

frame, they need to be put in the synodic reference frame for simulation purposes.

This is done by a rotation of an angle θ around the ZI axis of the inertial reference

frame. This time, the rotation being from the inertial reference frame to the synodic

reference frame, the direction cosine matrix is transposed:

CSI =


cosθ sinθ 0

−sinθ cosθ 0

0 0 1

 (5.4)

where CSI is the direction cosine matrix describing the orientation of the synodic

reference frame relative to the inertial reference frame.
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The direction cosine matrix describing the orientation of the synodic reference

frame relative to the plates reference frame is then given by:

CSP = CSICIP =


cθcλ+ sθsλ sθcλ− cθsλ 0

cθsλ− sθcλ sθsλ+ cθcλ 0

0 0 1

 (5.5)

where c stands for cosine and s for sine.

In all cases the unit vector û, with components expressed in the synodic reference

frame, is given by:

ûS =

[
cosθ −sinθ 0

]T
(5.6)

The generic expressions for the n̂i vectors in the synodic reference frame are then

given by:

n̂1S = sign (cλ)

[
cθcλ+ sθsλ cθsλ− sθcλ 0

]T
n̂2S = sign (−sλ)

[
sθcλ− cθsλ sθsλ+ cθcλ 0

]T
n̂3S =

[
0 0 1

]T (5.7)

Note that in the attitude schemes described in this study, the n̂3 vector has no

effect on the SRP acceleration as: 〈û, n̂3〉 = 0 for all the schemes presented.

5.1.2 Solar Panels Always Perpendicular with the XS Direction of the
Synodic Reference Frame (XS attitude scheme)

In this attitude scheme, the XP axis of the plates reference frame is always

aligned with the XS axis of the synodic reference frame. In that case λ = θ in Eq.

5.7. This results in the following expressions for the n̂i vectors expressed in the
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synodic reference frame:

n̂1S =

[
1 0 0

]T
n̂2S =

[
0 1 0

]T
n̂3S =

[
0 0 1

]T (5.8)

5.1.3 Maximum SRP Acceleration (MaxSRP Attitude Scheme)

For the case of the MaxSRP attitude scheme, plate 1 is perpendicular to the

n̂1 vector. Its surface includes the solar panels of the spacecraft, so it is the plate

with the largest surface. It is then the plate that contributes the most to the SRP

acceleration. In this scheme, vector n̂1 is always parallel to the û vector, making the

SRP acceleration maximal, which results in the λ angle being 0 in Eq. 5.7. In this

case, the expressions for the components of the n̂i vectors in the synodic reference

frame are:

n̂1S =

[
cosθ −sinθ 0

]T
n̂2S =

[
sinθ cosθ 0

]T
n̂3S =

[
0 0 1

]T (5.9)

Note that in this scheme, the n̂2 vector has no effect on the SRP acceleration as:

〈û, n̂2〉 = 0.

91



5.1.4 Minimal SRP Acceleration (MinSRP Attitude Scheme)

The SRP acceleration is minimal when the dot product of the n̂1 vector and the

û vector is minimized, which means that the û and the n̂1 vectors are perpendicular,

making the dot product of the two vectors null. This is made possible by having

the λ angle set to π/2 in Eq. 5.7. The other surfaces of the spacecraft are still

contributing to the SRP acceleration, so it is not canceled. The expressions of the

components of the n̂i vectors in the synodic reference frame are then:

n̂1S =

[
sinθ cosθ 0

]T
n̂2S = −

[
−cosθ sinθ 0

]T
n̂3S =

[
0 0 1

]T (5.10)

5.1.5 Oscillation of Plate 1, Averaged Around Maximal SRP Accelera-
tion (Oscill MaxSRP Attitude Scheme)

To maximize the energy produced by the solar panels, while reducing the impact

of the SRP, it was decided to consider a scheme where the spacecraft would oscillate

around the maximum SRP acceleration attitude scheme with an amplitude of 45

degrees and a rate that is the same as the rotation rate of the binary asteroid system.

In this case the oscillation angle, λ, in radians, is calculated using:

λ =
π

4
sinθ (5.11)

and the expressions of the components of the n̂i vectors in the synodic reference

frame are as per Eq. 5.7.
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5.1.6 Oscillation of Plate 1, Averaged Around Minimal SRP Accelera-
tion (Oscill MinSRP Attitude Scheme)

As the solar panels would never face the Sun if the spacecraft would always be

in a minimal SRP acceleration attitude scheme, it was decided to add an attitude

scheme where the spacecraft would oscillate around the minimal SRP acceleration

attitude scheme with an amplitude of 45 degrees and a rate that is the same as the

rotation rate of the binary asteroid system. This is to make sure that the solar panels

are exposed to the radiation from the Sun. In this case the oscillation angle, λ, in

radians, is calculated using:

λ =
π

4
sinθ +

π

2
(5.12)

The expressions of the components of the n̂i vectors in the synodic reference frame

are then identical to Eq. 5.7.

5.2 Equations of Motion

The equations of motion used for this chapter are the same as described in

section 4.1.3. The gravitational potential model is also calculated as in section 2.3.

5.3 Binary Asteroid and Spacecraft Models

The binary asteroid model used is the same as in chapter 4. For the purpose of

the SRP acceleration calculation, two cases are studied: at perihelion and at aphelion

of the orbit of the 65803 Didymos binary asteroid system around the Sun, which are

at 1.013 AU and at 2.276 AU from the Sun respectively [64].

The spacecraft has the same optical properties as the ones presented in [52]. Its

optical properties and mass to area ratio are different for each surface, as shown in

Table 5–1.
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Table 5–1: Characteristics of the different surfaces of the spacecraft

Surface % of surface B Spec ref Dif ref

1− solar panel 76 50 0.249 0.044

1− bus 24 50 0.06 0

2− bus 100 296.17 0.06 0

3− bus 100 217.77 0.06 0

In Table 5–1, surface 1 is composed of the solar panels and the satellite bus. Since

the total of the specular reflectivity, the diffusive reflectivity and the absorptivity is

1, only two of the optical properties, specular and diffusive reflectivity here, need to

be given.

5.4 Choice of Trajectories Used for the Study

A range of types of trajectories have been tested using a model that is not taking

the SRP acceleration into account before conducting this study. Figure 5–2 shows

the planar trajectories around the primary bodies and the whole system, and Fig. 5–

3 shows trajectories part of the CRTBP in the vicinity of L1. The planar trajectories

used in this study were designed using a combination of Poincaré mapping and a

differential-correction scheme, as described in section 4.2.4. In the case of the spatial

trajectories tested, the initial guesses required for the differential-correction scheme

were provided by using the AUTO numerical continuation and bifurcation software

[31]. Figure 5–4 shows the position in the XS direction of the spacecraft for the

planar Lyapunov, vertical Lyapunov and halo orbits with respect to the number of

revolutions of the binary asteroid system. It shows that they do not stay bounded
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when not controlled. In the case of the planar Lyapunov orbit, the end of the data

shows when the spacecraft impacts body 2 of the binary asteroid system. This is

why they are not taken into account further in this chapter. The orbits chosen for

the analysis are then the planar orbits orbiting either around the individual primary

bodies or the entire system. The chosen trajectories are: retrograde around body

1, retrograde about body 2, retrograde around the entire system and direct around

the entire system, which are all planar trajectories. Each spacecraft attitude scheme

is applied to all of the chosen base orbits, giving an extended portrait of the effects

and the possibilities given by the SRP acceleration.

Figure 5–2: Candidate trajectories around primary bodies and the binary asteroid
system as a whole
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Figure 5–3: Candidate CRTBP trajectories in the vicinity of L1
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Figure 5–4: Position in the XS direction of the candidate CRTBP trajectories in the
vicinity of L1 with respect to the number of revolution of the binary asteroid system

5.5 Studies Done on Each Attitude Schemes Described in Section 5.1

Various studies are conducted for each of the attitude schemes described in

section 5.1. The studies include calculating the variation of the C value and the

position where the spacecraft crosses the XS-ZS plane of the synodic frame. This is
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done throughout 10 to 20 rotations of the binary asteroid system to give a reasonable

overview of the behavior of the spacecraft under the influence of the SRP. A study of

the variation of the SRP acceleration and of the equilibrium regions over 1 rotation

of the binary asteroid system is also done. The analyses are done for both when the

binary asteroid system is at perihelion and when it is at aphelion of its orbit around

the Sun.

5.6 Numerical Results

The numerical results section is separated into three parts. First, the choice of

the SRP acceleration model used for the analysis is explained. Secondly, analysis of

the influence of the attitude scheme on the impact of the SRP acceleration is done

for different planar orbits. Last, the same analysis is done for the special case of

retrograde trajectories around primary body 2 that were designed specifically for

each of the attitude schemes.

5.6.1 Choice of the SRP Model Acceleration to Use

The SRP acceleration was numerically calculated throughout one rotation of

the binary asteroid system for the XS attitude scheme. In Ref. [51], the case of a

non-perfectly reflecting solar sail is addressed. Here, the reflectivity was varied in the

case of the flat plate model. In the present study, the spacecraft that is targeted has

a much lower specular reflectivity coefficient since it is not designed with solar sailing

in mind. The spacecraft has solar panels which are mainly absorptive. The effect of

using the real optical properties is then more visible. Figures 5–5 and 5–6 show how

the SRP acceleration changes over one rotation of the binary asteroid system for the

different cases and distances between the binary asteroid system and the Sun.
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Figure 5–5: SRP acceleration in the XS direction of the synodic reference frame for
different models and parameters over one rotation of the binary asteroid system

0 1 2 3 4 5 6 7

theta (rad)

-8

-6

-4

-2

0

2

4

6

8

S
R

P
 a

c
c
e
le

ra
ti
o
n
 Y

s
 (

n
d
)

10
-3

cannonball ref = 1

FP ref = 1

FP ref = 0

FP ref = 0.249

multiFP ref = 0.249

N-Plate ref = 0.249

(a) Binary asteroid system at perihelion of its
orbit around the Sun

0 1 2 3 4 5 6 7

theta (rad)

-8

-6

-4

-2

0

2

4

6

8

S
R

P
 a

c
c
e
le

ra
ti
o
n
 Y

s
(n

d
)

10
-3

cannonball ref = 1

FP ref = 1

FP ref = 0

FP ref = 0.249

multiFP ref = 0.249

N-Plate ref = 0.249

(b) Binary asteroid system at aphelion of its
orbit around the Sun

Figure 5–6: SRP acceleration in the YS direction of the synodic reference frame for
different models and parameters over one rotation of the binary asteroid system
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In Fig. 5–5 and 5–6, the cases studied are the flat plate model with specular

reflectivity (ref) of 0, 1 and 0.249, the multi-body flat plate model (multiFP) with a

reflectivity of 0.249, the N-plate model (N-Plate) with a reflectivity of 0.249 and the

cannonball model with a reflectivity of 1.

As can be found in Ref. [51] and Ref. [52], there is a loss of the detail when

the specular reflectivity is set to 1, since it does not show the SRP acceleration in

the YS direction of the synodic reference frame. Since the absorptivity produces

an acceleration in the direction of the û vector, the spacecraft has an acceleration

in a direction that is different than if its surface is considered purely reflective.

This explains the choice of using realistic reflectivity and absorptivity values in the

calculation of the SRP acceleration.

Similarly to the results in Ref. [52], there are other details that appear when

the more complex N-plate model is used, especially in the YS direction of the synodic

reference frame. When the attitude scheme of the spacecraft becomes more complex,

these details become even more important. Since the model is not highly computa-

tionally intensive and the details available could make a difference in the results, it

is used throughout the rest of the analyses in this chapter.

As expected, the difference is less noticeable when the binary asteroid system is

at aphelion than at perihelion of its orbit around the Sun. As there is still a difference

in the acceleration due to the SRP for the different models of the SRP acceleration,

both distances are included in the other analysis.
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5.6.2 Acceleration due to SRP throughout one Rotation of the Binary
Asteroid System

As the binary system is rotating, the direction of the û vector changes direc-

tion in the synodic reference frame. It creates variations in the acceleration of the

spacecraft due to the SRP in the synodic reference frame. It is similar to what is

observed when the azimuth of a spacecraft located at the Sun-Earth L2 is varied [52].

This variation depends on the attitude of the spacecraft with respect to the inertial

reference frame and not on its position, since it is considered as being at a constant

distance with respect to the Sun. Figures 5–7 and 5–8 show how this acceleration

varies in the synodic reference frame throughout the rotation of the binary asteroid

system for the different attitude schemes studied here.
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Figure 5–7: SRP acceleration in the XS direction of the synodic reference frame
throughout one rotation of the binary asteroid system for the N-plate SRP acceler-
ation model
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Figure 5–8: SRP acceleration in the YS direction of the synodic reference frame
throughout one rotation of the binary asteroid system for the N-plate SRP acceler-
ation model

It is this variation of the SRP acceleration over one revolution of the binary

asteroid system that makes the system time-variant (non-autonomous). As the mo-

tion of the spacecraft is calculated in the synodic reference frame, it does not have

an acceleration that is constant for a specific position, except if the trajectory has

a specific period. This is what is observed in the coming parts of the study as the

trajectories that were periodic when the SRP acceleration was not taken into account

are highly modified by the SRP. Figures 5–7 and 5–8 also show the difference in the

variation of the SRP acceleration when the binary asteroid system is at perihelion

and when it is at aphelion of its orbit around the Sun.
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5.6.3 Equilibrium Regions throughout one Rotation of the Binary As-
teroid System

As the SRP acceleration changes while the binary asteroid system is rotating,

the position of the equilibrium points is also changing. Since they change position,

it is more appropriate to refer to them as equilibrium regions. Figure 5–9 shows

the variation of the value of the L1 equilibrium point for 1 rotation of the binary

asteroid system for all the different attitude schemes. The area covered by the curves

represents the equilibrium region for L1. As one can notice, the curves have a shape

similar to the one of the variation of the SRP acceleration in the XS direction of the

synodic reference frame, see Fig. 5–7.
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Figure 5–9: Evolution of the L1 equilibrium region for one rotation of the binary
asteroid system
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5.6.4 Study of the Influence of the Attitude Scheme on the Impact of
the SRP Acceleration

Here, planar trajectories around body 1, body 2 and around the entire system

are analyzed. For each of the trajectories, the attitude schemes described in section

5.1 are applied. The data that is looked at is as follow: the evolution of the C value

and the value of the XS coordinate at the XS-ZS plane crossing. These give both a

quantitative and qualitative overview of the evolution of the trajectories.

Table 5–2 shows the initial conditions, i.e. initial position x0 and velocity vy0,

in the synodic reference frame and the C value of the analyzed trajectories before

the SRP acceleration is added to the model. Retro main is the retrograde trajectory

around primary body 1, Retro small is the retrograde trajectory around primary body

2, Retro sys is the retrograde trajectory around the entire binary asteroid system

and Direct sys is the direct trajectory around the entire binary asteroid system. The

trajectories can also be seen in Fig. 5–2.

Table 5–2: Description of trajectories analyzed

Trajectory x0 vy0 C

Retro main 0.41600 −1.96446 1.02825

Retro small 1.16501 −0.45776 2.94431

Retro sys 1.15929 −2.11045 −1.30116

Direct sys 1.50997 −0.75521 3.04700
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Crossing of the XS-ZS Plane

Figures 5–10 to 5–16 show the values of the XS component of the position vector

of the spacecraft at the crossing of the trajectories with the XS-ZS plane. The dark

regions are the space taken by the primary bodies. If a cloud of dots crosses one

of the dark regions, the spacecraft has impacted one of the primary bodies. The

simulations are done over a duration of ten revolutions of the binary asteroid system

except for the case of the direct trajectory around the binary asteroid system where

the simulation time was doubled because of its long period. For each figure, test

case 1 is for the XS attitude scheme, test case 2 is for the MaxSRP attitude scheme,

test case 3 is for the Oscill MaxSRP, test case 4 is for the MinSRP attitude scheme

and test case 5 is for the Oscill MinSRP attitude scheme. When the binary asteroid

system is at the perihelion of its orbit around the Sun, the trajectories using the

MaxSRP and Oscill MaxSRP attitude schemes have a greater risk of impacting one

of the primary body. The MinSRP attitude scheme prevents impacts with a primary

body. The trajectories where the Oscill MinSRP attitude scheme is used also seem

to be safe. When the XS attitude scheme is used, the safety of the trajectory is

more dependent on the trajectory. As expected, changing the attitude scheme of the

spacecraft can change the issue of a mission from unsafe for the spacecraft to safe.

On the other hand, the impact of the attitude of the spacecraft on the trajectories

is not as obvious when the binary asteroid system is at the aphelion of its orbit around

the Sun. In that case, the attitude scheme of the spacecraft does not influence the

safety of the mission.
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Figure 5–10: Retrograde trajectory around primary body 1 crossing with XS-ZS
plane
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Figure 5–11: Retrograde trajectory around primary body 1 crossing with XS-ZS
plane zoomed around primary body 1
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Figure 5–12: Direct trajectory around binary asteroid system crossing with XS-ZS
plane
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Figure 5–13: Retrograde trajectory around binary asteroid system crossing with
XS-ZS plane

106



0.5 1 1.5

X
s
(nd)

0

1

2

3

4

5

6
T

e
s
t 
c
a
s
e

(a) Binary asteroid system at perihelion of its
orbit around the Sun

0.5 1 1.5

X
s
(nd)

0

1

2

3

4

5

6

T
e
s
t 
c
a
s
e

(b) Binary asteroid system at aphelion of its
orbit around the Sun

Figure 5–14: Retrograde trajectory around binary asteroid system crossing with
XS-ZS plane zoomed around primary body 2
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Figure 5–15: Retrograde trajectory around primary body 2 crossing with XS-ZS
plane
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Figure 5–16: Retrograde trajectory around primary body 2 crossing with XS-ZS
plane zoomed around primary body 2

Evolution of the C Value

As stated in section 4.2.3, when the SRP acceleration is considered, there is no

Jacobi constant related to the trajectory. A C value can still be calculated, but it

will change as the spacecraft is operated in the binary asteroid environment. Figures

5–17 to 5–20 show how the C value varies for the different trajectories studied. It is

interesting to note that the averaged energy of the spacecraft can then be modified

by using a different attitude scheme. Even if the amplitude of the variation of the

C value is smaller at aphelion than at perihelion of the binary asteroid system orbit

around the Sun, it is visible.
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Figure 5–17: Evolution of the C value for two rotations of the system for a retrograde
trajectory around primary body 1
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Figure 5–18: Evolution of the C value for four rotations of the system for a direct
trajectory around the binary asteroid system
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Figure 5–19: Evolution of the C value for two rotations of the system for a retrograde
trajectory around the binary asteroid system
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Figure 5–20: Evolution of the C value for two rotations of the system for a retrograde
trajectory around primary body 2
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Special Case: Retrograde Trajectories Around Primary Body 2 De-
signed with SRP Acceleration

A special case to study the possibility of having periodic trajectories in the

presence of the SRP was considered. For each of the spacecraft attitude schemes a

new retrograde trajectory was designed around primary body 2 using the technique

presented in section 4.2.4. The initial conditions for these trajectories when the

binary asteroid system is at the perihelion of its orbit around the Sun are presented

in Table 5–3. Table 5–4 represent the initial conditions when the binary asteroid

system is at aphelion of its orbit around the Sun.

Table 5–3: Initial conditions for periodic trajectories

Attitude scheme x0 vy0 C

X 1.17793 −0.46364 2.94267

Max 1.18914 −0.46953 2.94196

Oscill max 1.18462 −0.46733 2.94193

Min 1.16888 −0.45927 2.94385

Oscill min 1.17937 −0.46395 2.94216
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Table 5–4: Initial conditions for periodic trajectories

Scheme x0 vy0 C

X 1.16759 −0.45880 2.94396

Max 1.17010 −0.45978 2.94371

Oscill max 1.16933 −0.45950 2.94376

Min 1.16577 −0.45804 2.94422

Oscill min 1.16748 −0.45868 2.94404

These trajectories have a period that is half of the period of rotation of the

binary asteroid system. Figure 5–21 shows these trajectories over ten revolutions

of the binary asteroid system for the MaxSRP and MinSRP attitude schemes for

both binary asteroid system-Sun distances. Similar results are found for the other

attitude scheme. It can be noted here that these trajectories are periodic and do not

diverge. The dark ellipse in the middle is primary body 2. This periodicity is also

visible in the evolution of the C value. Since the trajectories do not start with the

same position and velocity, they all have different C curves. What is to be noticed

in Fig. 5–22 is that the C values are periodic, as are the trajectories.
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Figure 5–21: Periodic trajectories over ten revolutions of the binary asteroid system
shown in the synodic reference frame
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Figure 5–22: Evolution of the C value for the periodic trajectories over two revolu-
tions of the binary asteroid system
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5.7 Summary

This chapter presented a full study of the effect of the SRP on the dynamics of

a spacecraft in the vicinity of a binary asteroid represented in the FCRTBP. Various

ways of modeling the SRP acceleration, taking into account the optical properties

of the spacecraft and different attitude schemes, were studied. The results when the

binary asteroid system is at perihelion and when it is at aphelion of its orbit around

the Sun were also compared. It was shown that when the binary asteroid system

is at perihelion, the choice of the SRP acceleration model has a direct impact on

how a change in the attitude of the spacecraft is reflected in its dynamics. It was

demonstrated that the only model that can correctly show how the dynamics of the

spacecraft is affected by the SRP acceleration is the N-plate model.

Then, a study of the variation of the SRP acceleration and the equilibrium

regions was done over one evolution of the binary asteroid system, showing the

complexity of the dynamics of a spacecraft in a binary asteroid system when the

SRP acceleration is taken into account. The SRP acceleration value depends on

the attitude of the spacecraft with respect to the inertial reference frame and the

angular position of the synodic reference frame with respect to the inertial reference

frame, not on the position of the spacecraft, contrary to the acceleration due to the

gravitational potential of the binary asteroid system.

A few spacecraft attitude schemes were then studied for different trajectories

of the spacecraft in the binary asteroid system. Here, it was demonstrated that the
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attitude scheme has a direct impact on the safety of the spacecraft in a potential mis-

sion, showing the important coupling between the attitude and the orbital dynamics

in the presence of the SRP.

Finally, a special case was presented. This particular case for this specific bi-

nary asteroid system, similar to Didymos, showed that it can be possible to have

periodic motion for some trajectories in the FCRTBP even when a more complex

SRP acceleration model is used.

This chapter intended to demonstrate how details such as the level of complexity

of the SRP acceleration model, the optical properties of the spacecraft, the attitude

scheme of the spacecraft and the distance between the binary asteroid system and

the Sun can affect the orbital dynamics of a spacecraft in a binary asteroid system

environment.

Next chapter is studying the FRTBP. A more detailed model of the binary aster-

oid system, including the SRP acceleration, is used to design spacecraft trajectories.
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CHAPTER 6
The Full Restricted Three Body Problem

The previous chapters studied the impact of the SRP on the motion of a space-

craft in the FCRTBP. In fact, the mutual motion of the primary bodies of the binary

asteroid 65083 Didymos is not circular, but elliptical. The primary bodies are not

tri-axial ellipsoids, but have complex irregular shapes. On top of this, body 1 has

an angular velocity that is different from that of the system as a whole. This chap-

ter is dedicated to studying how these characteristics of the system impact the way

trajectories should be designed in the FRTBP and how it is possible to maintain

a spacecraft as close as possible to these trajectories by using a control system de-

signed for this purpose. This involves using a multiple-shooting correction scheme

to go from a trajectory design in the classical CRTBP to one that is optimized for

the FRTBP. The control system used is based on Lyapunov’s stability theory, aug-

mented with Butterworth low-pass filters. As recommended in the previous chapters,

the SRP acceleration is incorporated into the dynamical model used to design the

trajectories.

Here, the time frame used is still short enough to consider the barycenter of

the binary asteroid system to be a at an approximately fixed position in the inertial

reference frame and orbits the Sun in the same plane as the mutual motion of the

primary bodies of the system. The primary bodies are considered to have a uniform

density.
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The gravitational potential model used is the fourth-order Taylor series expan-

sion. The inertial integrals are calculated based on a polyhedron shape model of the

primary bodies, as described in Appendix C.2. The N-plates model, described in

Appendix D, is chosen for the calculation of the SRP acceleration. The spacecraft

is assumed to have an inertially fixed attitude, with its solar panels always facing

the Sun, which corresponds to the attitude scheme Maximum SRP acceleration de-

scribed in section 5.1.3. The motion of body 2 around the barycenter of the system

is calculated using Keplerian motion, as described in section 3.3.3.

6.1 Equations of Motion

The equations of motion are based on the theory of the FRTBP, with the ad-

dition of the acceleration due to the SRP. In the FRTBP, the spacecraft is operated

in a system where the primary bodies are orbiting their barycenter. The equa-

tions of motion are expressed in the synodic reference frame. In the FRTBP, the

non-dimensional equations of motion for non-spherical bodies, including the SRP

acceleration, are:

x′′ = 2ωy′ + ω′y + Ux + aSRPx

y′′ = −2ωx′ − ω′x+ Uy + aSRPy

z′′ = Uz + aSRPz

(6.1)

where x′′, y′′ and z′′ are the acceleration in the XS, YS and ZS directions of the

synodic reference frame; ω is the angular velocity and ω′ is the angular acceleration

due to the non-circular motion of the primaries of the binary asteroid system; aSRPi

is the acceleration due to the SRP in the i direction of the synodic reference frame,
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Ui is the differentiation with respect to the coordinate i of the effective potential,

which is the sum of the gravitational potential and the potential generated by the

centripetal acceleration of the rotating binary asteroid system:

U = Ugrav +
1

2
ω2
(
x2 + y2

)
(6.2)

6.2 Building Nominal Trajectories

One of the goals in this chapter is to be able to build nominal trajectories for

a spacecraft operated in a binary asteroid system. Their main characteristic is that

they require low control thrust to be maintained. These trajectories are built based

on an initial guess calculated in the CRTBP, as explained in section 4.2.1. The

initial guess trajectories are then divided into multiple segments that connect in the

CRTBP, but not in the FRTBP. The goal of the multiple-shooting correction scheme

is to modify the segments so that they connect in the FRTBP, creating a trajectory

that is as much as possible continuous both in position and in velocity.

6.2.1 Multiple-shooting Correction Scheme

The multiple-shooting correction scheme used to design the trajectories is shortly

described here. It is based on the work done by [50] and [12], but applied to the

dynamics model defined in this chapter.

The trajectory is built based on an initial guess, calculated based on a simpler

model, which is divided in N segments. At each iteration, the segments are adjusted

so that the trajectory is, as much as possible, continuous in position and velocity.

The modifications to the initial conditions of the segments required to achieve this

goal are calculated based on the state transition matrix of each segment.
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Definition of the State Transition Matrix for One Segment

Similarly to the case of the differentiation-correction scheme presented in Chap-

ter 4, the state transition matrix of a segment relates its final and initial state:

δx (k + 1) = Φ (k + 1; k) δx (k) (6.3)

where k is the time at the beginning of a segment k + 1 is the time at the begin-

ning of the next segment. Φ (k + 1; k) is calculated via numerical integration, with

Φ (k; k) = I6x6, a 6x6 identity matrix as initial condition:

Φ′ (k + δt; k) = AΦ (k + δt; k) (6.4)

where δt corresponds to the difference between the time at the beginning of a segment

and the simulation time and A is defined below.

Note that it is also possible to relate the variation of the state of node k with

the variation of the state of node k + 1 by inverting the state transition matrix:

Φ (k + 1; k) = Φ−1 (k; k + 1) (6.5)

Defining the state of the linearized system as x =

[
δr δr′

]
, where δr and δr′

are the variations of a position and its derivative around an operating position r0, it

is possible to define a matrix A such that:

x′ = Ax (6.6)
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In the actual case, the A matrix corresponds to:

A =

 0 I3

∂2U
∂r2
|r0 + ω′ 2ω

 (6.7)

Note that the SRP acceleration is not included in the calculation of matrix A.

ω′ =


0 ω′ 0

−ω′ 0 0

0 0 0

 ,ω =


0 ω 0

−ω 0 0

0 0 0

 (6.8)

Then, to find how to modify the initial state of a segment, so that the final state

is the same as the initial states of the next segment, the following equation needs to

be applied:

δx (k) = Φ−1(k; k + 1)δx (k + 1) (6.9)

One needs to observe that the state transition matrix is calculated based on a

linearized version of the equations of motion of the system. An iteration process

is then required to achieve continuity in the trajectory. It is also possible that the

correction scheme is not capable of converging into a satisfactory solution.

Correcting Multiple Segments Simultaneously

To assure that the correction is optimized, it has to be done simultaneously

on all segments. For that purpose, a state vectrix, a matrix composed of vectors, is

built with the state of the spacecraft (position and velocity) at the beginning of each
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segment:

X0 =



X0
1

...

X0
N−1

X0
N


(6.10)

Since the goal is to have the final state of a segment being equal to the initial

state of the next segment, the constraint vectrix is composed of the difference between

the final state of a segment and the initial state of the following segment, which

corresponds to the required variation of the final state to have continuity between

the segments. Note that periodicity is ensured by including the difference between

the final state of the last segment and the initial state of the first segment:

F (X) =



Xf
1 −X0

2

...

Xf
N−1 −X0

N

Xf
N −X0

1


=



δXf
1

...

δXf
N−1

δXf
N


= δXf (6.11)

The Jacobian matrix of the state and constraint vectrices is:

J (X) =
∂F (X)

∂X

=



∂Xf
1

∂X1
−∂X2

∂X2
0 . . . 0

0
∂Xf

2

∂X2
−∂X3

∂X3
0 . . .

. . . 0
∂Xf

k

∂Xk
−∂Xk+1

∂Xk+1

...

−∂X1

∂X1
0 . . . 0

∂Xf
N

∂XN


(6.12)
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As one can see, the diagonal elements of the Jacobian matrix,
∂Xf

k

∂Xk
correspond to

the state transition matrix between the end of one segment and the beginning of the

same segment. The other non zero terms are the negative of 6x6 identity matrices.

The variation of the initial condition of each segment required to reduce the gap

between the end of one segment and the beginning of the following one can then be

calculated using the Moore-Penrose generalized inverse of the Jacobian:

δX0 = J (X)T
(
J (X)J (X)T

)−1
F (X) (6.13)

6.3 Control System

The trajectories built using the multiple-shooting scheme described in this chap-

ter are unstable. For the spacecraft to be able to stay in the vicinity of the trajec-

tories, it has to use control thrust. The design of the control system is described

here.

6.3.1 Lyapunov Control

The controller used in this study is based on the Lyapunov stability theory. It

is used to compare the required control effort for spacecraft trajectories calculated

based on the FRTBP to those calculated based on the CRTBP. The equations used

are developped by [48], but they are applied to the dynamics model described earlier

in this chapter. The error and control signals are calculated using the full model based

on the Taylor series expansion model of the gravitational potential. The equations

required for the controller are summarized here.
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The error between the state of a nominal (desired) trajectory and the state of

the actual trajectory of the spacecraft is defined by:

e (t) = r (t)− rd (t) (6.14)

Considering the motion of a spacecraft in a rotating frame, where the mutual

orbit of the primary bodies is circular, the acceleration of the error is then defined

by:

e′′ + 2ωe′ + ω2e = F (t) e+ u (6.15)

where u is the control thrust vector and the matrix F (t) is defined by Eq. 6.16. It is

calculated at each time step of the simulation at the value of the non-dimensionalized

components xS, yS, zS of the position vector of the desired trajectory at that point

in time:

F (t) =


∂2Ugrav

∂x2
∂2Ugrav

∂x∂y

∂2Ugrav

∂x∂z

∂2Ugrav

∂y∂x

∂2Ugrav

∂y2
∂2Ugrav

∂y∂z

∂2Ugrav

∂z∂x

∂2Ugrav

∂z∂y

∂2Ugrav

∂z2

 (6.16)

ω is defined in Eq. 6.8 and ω2 is defined by:

ω2 = ωω =


−ω2 0 0

0 −ω2 0

0 0 0

 (6.17)

The Lyapunov function, V , is given by:

V =
1

2

deT

dt
D1

de

dt
+

1

2
eTD2e (6.18)
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where D1 and D2 are two constant positive definite matrices. After some algebra,

the input required for a system to be asymptotically stable (dV/dt strictly negative)

is:

u = −Q (e′)− P (t) e (6.19)

where the Q matrix is a constant positive definite matrix that needs to be tuned by

the controller designer and [P (t)] is a time-varying matrix:

P (t) = Qω +D−11 D2 + F (t) (6.20)

6.3.2 Smoothing the Control Thrust Signal

One of the issues with using a multiple-shooting scheme to design the nominal

trajectories for a spacecraft is that the segments are continuous up to a certain

tolerance. In the case of highly unstable trajectories, the difference between the

state at the end of a segment and the state at the beginning of the following segment

often reaches a plateau. This is translated in small glitches in position and velocity

between the segments of the trajectory. These glitches are visible in the calculated

control thrust required, which would be hard to achieve in a realistic system. An

effective way to smooth out the trajectories is to introduce a low pass filter between

the calculation of the error vector and the input to the Lyapunov controller and, also

after the calculation of the control thrust input. This reduces the noise in the control

input and the maximum control thrust required to keep the spacecraft close to its

nominal trajectory. Here, low-pass fourth-order Butterworth filters, with a cutoff

frequency that varies between 0.35 and 0.45 times the sampling frequency of the

simulation are used. These values are tuned for each case and are chosen to reduce
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the high frequency signals as much as possible, while keeping enough information to

be able to control the trajectory of the spacecraft.

6.4 Analysis Procedure Using the 65803 Didymos Binary Asteroid Sys-
tem Model

The first step is to find initial guesses for the planned trajectories. In the present

study, retrograde trajectories around body 2 have been targeted because they are

planned to be used in the Hera part of the AIDA mission. L1 libration points

trajectories, such as planar Lyapunov, vertical Lyapunov and halo types orbits have

also been targeted because of the location of L1, which is between the two primary

bodies and permit observing them both at the same time. Initial guesses, with the

binary system assumed to be composed of two point mass bodies with a circular

mutual orbit, have then be designed for each of the targeted trajectory types.

The initial guess trajectories are then modified using the multiple-shooting

method to fit a dynamical model based on a fourth-order Taylor series expansion

of the gravitational potential of the primary bodies, with a system with primary

bodies having circular mutual motion and body 1 having its own angular velocity.

The final trajectory includes the SRP acceleration and the non-circular mutual mo-

tion of the primaries. For each type of trajectory, the three calculated trajectories

are then used as nominal trajectories for a spacecraft operated in a fourth-order

dynamical model of the FRTBP. The second and fourth-order inertia integrals are

calculated based on the Didymos 65803 polyhedron shape model, used with the au-

thorization from the author of Ref. [63]. The control effort to keep the spacecraft

close to the nominal trajectory is then recorded and compared for the three nominal

trajectories. Once this is done, a filter is added in the controller to smooth out the
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control thrust input. The resulting trajectory and control thrust are compared with

the ones without the filter.

As described earlier, the dynamical model used in this study is of the fourth

order. The controller and the corrector, on the other hand, are of the second order.

It reduces the computation time and the risk of numerical instability due to very

small numbers produced by the second differentiation of the gravitational potential.

The SRP acceleration model used in this study keeps the spacecraft in an inertially

fixed attitude, with its solar panels always facing the Sun, which means maximal

SRP acceleration.

Two orbits of an initial guess are used to build a nominal trajectory. The

nominal trajectory is then repeated multiple times, until the binary asteroid system

has made five rotations, for a total of approximately 60 hours. The control thrust

results are plotted for 40 hours to make it easier to see the data.

The system used in this study is the Didymos 65803 system, with its parameters

summarized in Tables 3–1 and 3–2.

6.5 Numerical Results

The results are presented per trajectory types. Figure 6–1 shows the trajectories

in the binary asteroid system. The figures for each trajectory are zoomed on the

trajectories themselves to show the details. The control thrust shown in Figures

6–4-6–19 have the following legend: blue is the thrust in the XS direction, red is the

thrust in the YS direction and yellow is the thrust in the ZS direction. It represents

the thrust required to control a 500 kg spacecraft.
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Figure 6–1: Initial guess trajectories

6.5.1 Retrograde Trajectory Around Body 2

The retrograde trajectory around body 2 requires 15 segments to be built. Figure

6–2 shows how it has evolved from the initial guess to the full model. Figure 6–3

shows that the spacecraft follows closely the desired trajectory. In Fig. 6–4, it is

possible to see that, as mostly expected, as details are added to the model used to

design the nominal trajectory, less control thrust is required to keep the spacecraft

on it. The numbers being small for all nominal trajectories (less than 3 mN), and

the control thrust required being cyclic, but stable, it is not absolutely necessary to

use the more complex model to design the trajectory.
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Figure 6–2: Evolution of the nominal retrograde trajectory around body 2
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Figure 6–3: Real retrograde trajectory around body 2 followed by spacecraft
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Figure 6–4: Control thrust for the retrograde trajectory around body 2

When the filter is applied to the retrograde trajectory around body 2, the os-

cillations in the required control thrust are reduced significantly for all nominal
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trajectories, as can be seen in Fig. 6–6. On the other hand, some of the error and

control signals is lost, meaning that the nominal trajectory is not followed as well, as

can be seen in Fig. 6–5. In all cases, the spacecraft trajectory stays bounded. This

is a trade-off that may be required between following an exact trajectory or having

a control signal easier to follow.
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Figure 6–5: Spacecraft retrograde trajectory around body 2 when using low pass
filters
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Figure 6–6: Control thrust for the retrograde trajectory around body 2 when using
low pass filters

6.5.2 Planar Lyapunov Trajectory

The planar Lyapunov type trajectory also shows good results. It requires 15

segments to be built. Figure 6–7 shows how it has evolved from the initial guess to
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the full model. In Fig. 6–8, one can see that it is quite hard for the control system

to keep the spacecraft on the nominal trajectory. It is constantly a little off. In

Fig. 6–9, it is possible to see that, again, as expected, as details are added to the

model used to design the nominal trajectory, less control thrust is required to keep

the spacecraft on it. In that case, there is significant improvement in the control

thrust required to keep the spacecraft on the nominal trajectory between each of the

steps.

Figure 6–7: Evolution of the planar Lyapunov nominal trajectory
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Figure 6–8: Real planar Lyapunov trajectory followed by spacecraft
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Figure 6–9: Control thrust for the planar Lyapunov trajectory

It was not possible to use the low-pass filters when the nominal trajectory is

the initial guess based on the CRTBP. The control signal did not contain sufficient

information for the spacecraft to keep a bounded trajectory. In the other two cases,

the filtered signal was sufficient to keep the spacecraft trajectory bounded, as can

be seen in Fig. 6–10. On the other hand, Fig. 6–11 does not show significant

improvement in the required thrust. It may not be necessary here to use the filters.
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Figure 6–10: Spacecraft planar Lyapunov trajectory when using low pass filters
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Figure 6–11: Control thrust for the planar Lyapunov trajectory when using low pass
filters

6.5.3 Vertical Lyapunov Trajectory

The vertical Lyapunov type trajectory requires 45 segments to be built. Figure

6–12 shows how it has evolved from the initial guess to the full model. Figure 6–13

shows the actual trajectory followed by the spacecraft. In Fig. 6–14, it is possible to

see that the control thrust required suddenly increases at approximately 16.5 hours,

which is when the initial nominal trajectory is repeated. It means, here, that the

error between the initial and final states of the nominal trajectory is too large and

requires a larger control thrust to maintain the trajectory. Notice that the controller

can handle the perturbation and still keep the spacecraft on the nominal trajectory.

It is then preferred here, to not include the major perturbations such as the SRP

acceleration and the ellipticity of the mutual orbit in the model used to build the

nominal trajectory.
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Figure 6–12: Evolution of the vertical Lyapunov nominal trajectory

Figure 6–13: Real vertical Lyapunov trajectory followed by spacecraft
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Figure 6–14: Control thrust for the vertical Lyapunov trajectory
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When the filters are added to the controller, the spacecraft does not follow the

nominal trajectory as well as without them, but Fig. 6–15 shows that the trajectory

followed by the spacecraft is still bounded. Figure 6–16 shows that the required

control thrust is significantly reduced and oscillates quite less when the filters are

added.

Figure 6–15: Spacecraft vertical Lyapunov trajectory when using low pass filters
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Figure 6–16: Control thrust for the vertical Lyapunov trajectory when using low
pass filters

6.5.4 Halo Trajectory

The halo type trajectory requires 45 segments to be built. Figure 6–17 shows

how it has evolved from the initial guess to the full model. In this case, it was
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not possible to build a trajectory with the ellipticity of the mutual orbit, so the

”full model” is based on circular mutual motion of the primary bodies. Figure 6–

18 shows the actual trajectory followed by the spacecraft. It is a little bit off the

nominal trajectory, but is still bounded. In Fig. 6–19, it is possible to see that, due

to the high number of segments and the small discontinuities between them in the

full model, the spacecraft requires more control thrust to be kept on the full model

nominal trajectory than on the other ones. In the case of trajectories which show

more instability, it is then not necessary to include the major perturbations such as

the SRP acceleration or the ellipticity of the mutual orbit of the primary bodies in

the model used to build the nominal trajectory.

Figure 6–17: Evolution of the halo nominal trajectory
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Figure 6–18: Real halo trajectory followed by spacecraft
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Figure 6–19: Control thrust for the halo trajectory

When the filters are added to the controller, the spacecraft does not follow the

nominal trajectory as well as without them, but Fig. 6–20 shows that the trajectory

followed by the spacecraft is still bounded. Figure 6–21 shows that the required

control thrust is reduced when compared with the case without the filters. Here,

again, there is no significant difference in the required thrust when using a more

detailed model to build the nominal trajectory, but still based on a circular motion

of the primary bodies. This would lead to the conclusion that the perturbation from

the CRTBP that affects the nominal trajectory the most is the non-circular motion

of the primary bodies around the system’s barycenter.
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Figure 6–20: Spacecraft halo trajectory when using low pass filters
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Figure 6–21: Control thrust for the halo trajectory when using low pass filters

6.6 Summary

In this chapter, nominal trajectories that can be maintained with low control

effort were designed for a spacecraft operated in a binary asteroid system, such as

Didymos 65803. The dynamical model used included a fourth-order Taylor series

expansion of the gravitational potential model of the primary bodies, the specific

angular velocity of body 1, the elliptical mutual motion of the primary bodies and

the SRP acceleration. The second-order moments of inertia and fourth-order iner-

tia integrals of the primary bodies required for the Taylor series expansion of the

gravitational potential were calculated based on their polyhedron shape model. The
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gravitational potential model is simple to implement, it does not use an excessive

amount of computational power, while taking advantage of the precision of the poly-

hedron shape model.

It was shown that, for planar trajectories, nominal trajectories built using the

full model uses less control thrust to keep a spacecraft close to the designed nominal

trajectory. For 3D trajectories, which require more segments to be built or cannot

fully reach periodicity, the more detailed model did not give a nominal trajectory

easier to control. This is due to the higher number of discontinuities in the trajecto-

ries. It has been shown that, for most cases, adding low-pass filters in the controller

reduces the amplitude and the oscillations in the required thrust signal. The down-

side of using it is that the nominal trajectory is followed slightly less well by the

spacecraft. From the results for the halo type of trajectory, where it was not possible

to build a nominal trajectory for a non-circular mutual motion of the primary bodies

around the system’s barycenter, it is possible to deduce that the non-circular motion

of the primary bodies is the main source of perturbation with respect to the CRTBP.

For all trajectories, it is shown that it is possible to keep the spacecraft on

the nominal trajectory using a reasonable amount of thrust with the appropriate

Lyapunov stability theory based controller.
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CHAPTER 7
Conclusions

This chapter presents the concluding remarks of this thesis. It summarizes the

research findings of the previous chapters and then presents several suggestions for

future research work that can be done in the area of the FRTBP applied to missions

to binary asteroid systems.

7.1 Summary of the Findings

Binary asteroid systems are composed of two small irregular celestial bodies.

Their gravitational potential needs to be calculated based on their specific shape. A

gravitational model based on a fourth-order Taylor series expansion was developed

and validated in chapter 2. The validation was based on the comparison of the

results obtained in the thesis with those in another study using a different model.

The principle of the conservation of the Hamiltonian of a spacecraft orbiting a single

asteroid was used to validate the simulation code. Then, the model obtained for a

single asteroid was extended to a binary asteroid system. The layered mascons model

was then introduced. In the case of binary asteroids, the calculations were carried out

using non-dimensionalized values to minimize numerical errors due to large variations

in values. The description of the non-dimensionalization of the parameters of a binary

asteroid system concluded that chapter.

The following chapter was dedicated to the study of the Full Two Body Problem

(FTBP). The FTBP studies the motion of the primary bodies of a binary asteroid
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system based on their specific shape, rotational motion and the distance between

their centers of mass. The equations of motion were developed using Lagrangian

dynamics. For that purpose, the gravitational potential energy, using the fourth-

order Taylor series expansion, and the kinetic energy expressions were obtained. The

FTBP included the non-circular motion and the individual rotational motion of the

primary bodies. The case of circular motion of the primary bodies was also studied.

These results were integrated into the analysis conducted in the later chapters. The

equations of motion depend on a constant of integration related to the conservation of

angular momentum of the system, which is calculated based on the initial conditions

of the system. It was found that a small variation in the value of this constant of

integration changes the behavior of the system significantly. A study of the 65803

Didymos binary asteroid system was also done. One of the observations was that both

the layered mascons and the fourth-order Taylor series expansion models give similar

gravitational potential energy results. This, again, is another reason for using the

gravitational potential of an irregular small body using a fourth-order Taylor series

expansion, which involves less computational effort.

Since the primary bodies of a binary asteroid have a small mass, the SRP accel-

eration produces a non-negligible effect on the motion of a spacecraft in its vicinity.

The first task dedicated to the study of the impact of the SRP acceleration on the

FCRTBP focused on the design of spacecraft trajectories that are SRP-compatible.

To be SRP-compatible, a trajectory needs to have a period that is a rational frac-

tion or a multiplier of the period of the binary asteroid system as a whole. The

chosen period of the trajectories here is half the period of the binary system. A
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single-shooting differential correction scheme was used to design the trajectories. A

study of the stability of the trajectories showed that the shape of the primary bodies

of the system has a larger impact on the stability of the trajectory than the SRP

acceleration alone. It was also shown that a trajectory with a period that is only

slightly different from half the period of the system is significantly more unstable

than a trajectory with the right period.

To further study the effect of the SRP acceleration on the motion of a spacecraft

in the FCRTBP, it was decided to compare different SRP acceleration models, optical

parameters and spacecraft attitude schemes. This part of the study only concerned

trajectories that were bounded for a long-term duration. The study showed that

the choice of the SRP acceleration model used, including the appropriate selection

of the optical parameters, may influence the safety of a mission, especially when the

binary asteroid system is at the perihelion of its orbit around the Sun. Different

spacecraft attitude schemes that can be used throughout a mission were examined.

Here, again, the safety of the mission was linked to the attitude scheme, showing the

coupling between the SRP acceleration and the attitude of the spacecraft. It demon-

strated numerically the impact on the equilibrium points and the Jacobi constant

of a trajectory when the SRP acceleration is added to the model. Because of the

time-dependency of the system induced by the SRP, the equilibrium points become

equilibrium regions and there is no Jacobi constant anymore. This completed the

study of the impact of the SRP acceleration on the FCRTBP.

The last chapter was dedicated to the study of the FRTBP as a whole. It

integrated the irregular shape and the rotational motion of the primary bodies, their
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non-circular motion around their barycenter and the SRP acceleration. A polyhedron

shape model of the 65803 Didymos binary asteroid system was used to calculate the

inertia integrals of the pimary bodies. This dynamic system is non-autonomous as the

forces exerted on the spacecraft operating in its vicinity are time-dependent. This fact

complicated the search for periodic trajectories and their maintenance. A multiple-

shooting correction scheme was then used to find planar and 3D trajectories that

require minimal control for maintenance. It was observed that the parameter that

has the greatest effect on the trajectories is the non-circular motion of the primaries,

where the distance between their centers of mass is varying. It was even impossible

to add it to the halo type trajectory. A Lyapunov stability theory based controller

was used to maintain the spacecraft on these trajectories. It was then observed that

the small discontinuities of the trajectory noticeably affected the required thrust

to maintain the trajectories. Two low-pass Butterworth filters were then added to

the controller. The first one was applied to the error signal and the other one to

the control thrust signal. It had the effect of reducing the need for control thrust

and smoothing the control signal significantly. Finally, it was noted that the thrust

required to maintain the trajectories designed never exceeded 10 mN for a 500 kg

spacecraft. This shows that it is possible to keep a spacecraft close to a trajectory

in the FRTBP with limited thrust.

7.2 Suggestions for Future Work

This thesis covered a great range of subjects related to the FRTBP, but there

are still more to study.
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The fourth-order Taylor series expansion used for the gravitational potential

model does not allow one to work with bodies having non-uniform densities. One

way to overcome this would be to use the layered mascons model with variations in

the density of the primary bodies. This would make the model closer to the real

situation and enhance the quality of the trajectories that could be designed.

As the model of a binary asteroid system can become quite complex, using

machine learning tools could lead to new trajectories that would be optimized for

a particular system. This could prevent having discontinuities in the trajectories

causing the glitches in the control signal seen in chapter 6.

The findings related to the effect of the SRP acceleration could be used as a

foundation to design a control system that would not require the use of propellant

to maintain the trajectory of a spacecraft. This, combined with the use of ma-

chine learning, would really improve the quality of the trajectory maintenance for a

spacecraft in the context of the FRTBP.
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APPENDIX A
Reference Frames Used in the Thesis

Various reference frames are used to understand the dynamics of a spacecraft

in the vicinity of a binary asteroid system. Here is a description of the ones used in

this thesis. They are also illustrated in Fig.A–1.

Inertial Reference Frame (XI; YI; ZI)

This reference frame is centered at the Sun. Its axes are fixed in the inertial

space. Because the calculations are done in a time frame short enough to consider the

barycenter of the binary asteroid system to be at an approximately fixed position in

the inertial space, the inertial reference frame can also be located at the barycenter

C of the binary asteroid system.

Synodic Reference Frame (XS; YS; ZS)

This reference frame is centered at the barycenter C of the system. Its XS axis

is aligned with the line joining the center of masses of primary body 1 and primary

body 2. Its ZS axis is aligned with the angular momentum vector of the system. The

YS axis completes the right-handed reference frame. This reference frame rotates at

the same rate as primary bodies 1 and 2 are rotating around their barycenter.

Primary Bodies 1 and 2 Body Fixed Reference Frames (X1; Y1; Z1

and X2; Y2; Z2)

These reference frames are aligned with the principal moments of inertia of their

corresponding primary body. The Xi axis is directed towards the minimum moment
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of inertia axis of body i, the Zi axis is directed towards the maximum moment

of inertia axis of body i and the Yi axis completes the right-handed system. This

reference frame also applies to a single asteroid as being the body fixed reference

frame.

Plates Reference Frame (XP ; YP ; ZP )

This reference frame refers to the orientation of the vectors normal to the plates

involved in the calculation of the SRP. Its XP axis is the vector normal to the

surface of the spacecraft including the solar panels, its YP axis is aligned with the

solar panels, and its ZP axis completes the right-handed system.

Figure A–1: Reference frames
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APPENDIX B
Development of the Expression of the Gravitational Potential of an

Asteroid

The calculation of the gravitational potential of an asteroid based on the Taylor

series expansion of Eq. 2.2 requires to integrate each of the terms of Eq. 2.6.

Because the body fixed reference frame has its origin at the center of mass of the

asteroid and has its axes along the principal moments of inertia of the asteroid,

the (ûR · δ) , δ2 (ûR · δ) and (ûR · δ)3 terms of Eq. 2.6 vanish when integrated over

the entire mass distribution of the asteroid. The remaining terms are integrated

individually for clarity.

Zeroth-order term:

Ugrav,0th =

∫
G

R
dm =

MG

R
(B.1)

where M is the total mass of the asteroid.

Second-order terms:

Ugrav,2nd =

∫
G

R3

[
3

2
(ûR · δ)2 − 1

2
δ2
]
dm =

3G

2R3

[
1

3
tr [Ia]− {ûR}T [Ia] {ûR}

]
(B.2)

where {ûR} is a column matrix containing the components of the ûR unit vector

expressed in the body fixed reference frame and [Ia] is the inertia matrix of the

asteroid. Since the body fixed reference frame is aligned with the principal moments
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of inertia, it is represented by:

[Ia] =


Ixx 0 0

0 Iyy 0

0 0 Izz

 (B.3)

Considering that the components of the unit vector are equivalent to the com-

ponent of the full size vector divided by the length of the vector and considering the

inertia matrix presented above, the expression for the contribution of the second-

order terms to the gravitational potential is as follow:

Ugrav,2nd =
3G

2R3

[
1

3
(Ixx + Iyy + Izz)−

1

R2

(
X2Ixx + Y 2Iyy + Z2Izz

)]
(B.4)

where X, Y and Z are the components of the position vector of point P with respect

to the center of mass of the asteroid expressed in the asteroid body fixed reference

frame.

Fourth-order terms:

Ugrav,4th =

∫
G

R5

[
3

8
δ4 − 15

4
δ2 (ûR · δ)2 +

35

8
(ûR · δ)4

]
dm (B.5)

The integration of the fourth-order terms will be done one term at a time for more

clarity. Let us start by defining:

δ2 = δ2x + δ2y + δ2z (B.6)
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where δx, δy and δz are the x, y and z components of the position vector of the mass

element dm relative to the center of mass of the asteroid and

ûR · δ = ûRxδx + ûRyδy + ûRzδz (B.7)

where ûRx, ûRy and ûRz are the x, y and z components of the unit vector ûR in the

asteroid body fixed reference frame.

The integration of the first fourth-order term, δ4 is then:∫
δ4dm =

∫ (
δ2x + δ2y + δ2z

)2
dm

=

∫ [
δ4x + δ4y + δ4z + 2

(
δ2xδ

2
y + δ2yδ

2
z + δ2zδ

2
x

)]
dm

(B.8)

The integration of the second fourth-order term gives:∫
δ2 (ûR · δ)2 dm =

∫ [(
δ2x + δ2y + δ2z

)
(ûRxδx + ûRyδy + ûRzδz)

2

]
dm

=

∫ [(
δ2x + δ2y + δ2z

) (
(ûRxδx)

2 + (ûRyδy)
2 + (ûRzδz)

2)
+
(
δ2x + δ2y + δ2z

) (
2 (ûRxδx) (ûRyδy) + 2 (ûRyδy) (ûRzδz)

+ 2 (ûRzδz) (ûRxδx)
)]
dm

(B.9)

The second line of the integration gives terms in δ3xδy, δ
2
xδyδz, δ

3
xδz... which

vanish when integrated over the entire mass distribution of the asteroid. Keeping
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only the first line and rearranging, the integral is then:∫
δ2 (ûR · δ)2 dm =∫ [
û2Rxδ

4
x + û2Ryδ

4
y + û2Rzδ

4
z

+
(
û2Rx + û2Ry

)
δ2xδ

2
y +

(
û2Ry + û2Rz

)
δ2yδ

2
z +

(
û2Rz + û2Rx

)
δ2zδ

2
x

]
dm

(B.10)

Finally, the last fourth-order term:∫
(ûR · δ)4 dm

=

∫
(ûRxδx + ûRyδy + ûRzδz)

4 dm

=

∫ [
(ûRxδx)

2 + (ûRyδy)
2 + (ûRzδz)

2 + 2 (ûRxδx) (ûRyδy)

+ 2 (ûRyδy) (ûRzδz) + 2 (ûRzδz) (ûRxδx)
]2
dm

(B.11)

Here again, when multiplying, terms in δ3xδy, δ
2
xδyδz, δ

3
xδz... appear. When

integrated, they vanish. Considering this and after some algebra, the final expression

for the last fourth-order term is:∫
(ûR · δ)4 dm

=

∫ [
(ûRxδx)

4 + (ûRyδy)
4 + (ûRzδz)

4 + 6 (ûRxûRy)
2 δ2xδ

2
y

+ 6 (ûRyûRz)
2 δ2yδ

2
z + 6 (ûRzûRx)

2 δ2zδ
2
x

]
dm

(B.12)

Inserting the resulting fourth-order terms in Eq. B.5, the integral for the cal-

culation of the contribution of the fourth-order terms to the gravitational potential
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gives:∫
G

R5

[
3

8
δ4 − 15

4
(ûR · δ)2 +

35

8
(ûR · δ)4

]
dm

=
G

8R5

{[
35û4Rx − 30û2Rx + 3

] ∫
δ4xdm+

[
35û4Ry − 30û2Ry + 3

] ∫
δ4ydm

+
[
35û4Rz − 30û2Rz + 3

] ∫
δ4zdm

+ 6
[
35û2Rxû

2
Ry − 5

(
û2Rx + û2Ry

)
+ 1
] ∫

δ2xδ
2
ydm

+ 6
[
35û2Ryû

2
Rz − 5

(
û2Ry + û2Rz

)
+ 1
] ∫

δ2yδ
2
zdm

+ 6
[
35û2Rzû

2
Rx − 5

(
û2Rz + û2Rx

)
+ 1
] ∫

δ2zδ
2
xdm

}

(B.13)

The remaining expressions needing to be integrated are giving the fourth-order

inertia integrals that will be used in the expressions for the gravitational potential

of an asteroid represented by any arbitrary shape:∫
δ4xdm = Jxxxx∫
δ4ydm = Jyyyy∫
δ4zdm = Jzzzz∫
δ2xδ

2
ydm = Jxxyy∫

δ2yδ
2
zdm = Jyyzz∫

δ2zδ
2
xdm = Jzzxx

(B.14)
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Rearranging Eq. B.13, the contribution of the fourth-order terms to the gravi-

tational potential is:

Ugrav,4th =
G

8R5

[
35

R4

(
X4Jxxxx + Y 4Jyyyy + Z4Jzzzz

+ 6
(
(XY )2 Jxxyy + (Y Z)2 Jyyzz + (XZ)2 Jzzxx

))
− 30

R2

(
X2Jxxxx + Y 2Jyyyy + Z2Jzzzz

+
(
X2 + Y 2

)
Jxxyy +

(
Y 2 + Z2

)
Jyyzz +

(
Z2 +X2

)
Jzzxx

)
+ 3 (Jxxxx + Jyyyy + Jzzzz) + 6 (Jxxyy + Jyyzz + Jzzxx)

]
(B.15)

The force exerted by the gravitational potential of an asteroid by a unit mass

can be calculated as per Eq. 2.9. After some algebra, the expressions for the force

components exerted on a unit mass by an asteroid are as follow:
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Fgravx =

{
− MG

R3
− 3G

2R5

[
(3Ixx + Iyy + Izz)−

5

R2

(
X2Ixx + Y 2Iyy + Z2Izz

) ]

+
G

8R7

[
−315

R4

(
X4Jxxxx + Y 4Jyyyy + Z4Jzzzz

+ 6
(
(XY )2 Jxxyy + (Y Z)2 Jyyzz + (XZ)2 Jzzxx

))
+

70

R2

(
5X2Jxxxx + 3Y 2Jyyyy + 3Z2Jzzzz

+ 3
(
X2 + 3Y 2

)
Jxxyy + 3

(
Y 2 + Z2

)
Jyyzz + 3

(
X2 + 3Z2

)
Jzzxx

)

− 15 (5Jxxxx + Jyyyy + Jzzzz)− 30 (3Jxxyy + Jyyzz + 3Jzzxx)

]}
X

(B.16)

Fgravy =

{
− MG

R3
− 3G

2R5

(
(Ixx + 3Iyy + Izz)−

5

R2

(
X2Ixx + Y 2Iyy + Z2Izz

))

+
G

8R7

[
−315

R4

(
X4Jxxxx + Y 4Jyyyy + Z4Jzzzz

+ 6
(
(XY )2 Jxxyy + (Y Z)2 Jyyzz + (XZ)2 Jzzxx

))
+

70

R2

(
3X2Jxxxx + 5Y 2Jyyyy + 3Z2Jzzzz

+ 3
(
3X2 + Y 2

)
Jxxyy + 3

(
Y 2 + 3Z2

)
Jyyzz + 3

(
X2 + Z2

)
Jzzxx

)

− 15 (Jxxxx + 5Jyyyy + Jzzzz)− 30 (3Jxxyy + 3Jyyzz + Jzzxx)

]}
Y

(B.17)
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Fgravy =

{
− MG

R3
− 3G

2R5

(
(Ixx + Iyy + 3Izz)−

5

R2

(
X2Ixx + Y 2Iyy + Z2Izz

))

+
G

8R7

[
−315

R4

(
X4Jxxxx + Y 4Jyyyy + Z4Jzzzz

+ 6
(
(XY )2 Jxxyy + (Y Z)2 Jyyzz + (XZ)2 Jzzxx

))
+

70

R2

(
3X2Jxxxx + 3Y 2Jyyyy + 5Z2Jzzzz

+ 3
(
X2 + Y 2

)
Jxxyy + 3

(
3Y 2 + Z2

)
Jyyzz + 3

(
3X2 + Z2

)
Jzzxx

)

− 15 (Jxxxx + Jyyyy + 5Jzzzz)− 30 (Jxxyy + 3Jyyzz + 3Jzzxx)

]}
Z

(B.18)
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APPENDIX C
Fourth-order Inertia Integrals of an Arbitrarily Shaped Body

C.1 Fourth-order Inertia Integrals of an Ellipsoid

The ellipsoid for which the calculation of the fourth-order inertia integrals are

calculated here has uniform density and semi-axes of a, b, and c. The expressions

of the fourth-order inertia integrals are calculated based on the integration over the

entire body of the ellipsoid of x4, y4, z4, x2y2, y2z2, z2x2. In the case of Jzzzz,

the calculation is done as explained in this appendix and is based in the method

described in [62] for the second-order moments of inertia of an ellipsoid.

First, let us define the integral to calculate:

Jzzzz =

∫
M

z4dm = ρ

∫
V

z4dxdydz (C.1)

where ρ is the density of the ellipsoid, M is the total mass of the ellipsoid, dm is a

mass element of the ellipsoid and V is the volume of the ellipsoid. We know that the

surface curve of the ellipsoid is defined by the equation:

x2

a2
+
y2

b2
+
z2

c2
= 1 (C.2)
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A change of variables transforms the ellipsoid into a sphere:

x = au⇒ dx = adu

y = bv ⇒ dy = bdv

z = cw ⇒ dz = cdw

(C.3)

We now have:

Jzzzz = ρ

∫
Vsphere

c4w4abc dudvdw = ρabc5
∫
Vsphere

w4dudvdw (C.4)

Transforming into spherical coordinates:

u = r cos θ sinφ

v = r sin θ cosφ

w = r cosφ

(C.5)

and using the Jacobian of: ∣∣∣∣∂ (u, v, w)

∂ (r, θ, φ)

∣∣∣∣ = r2 sinφ (C.6)

then:

dudvdw = r2 sinφ drdθdφ (C.7)

and:

Jzzzz = abc5ρ

∫ π

0

∫ 2π

0

∫ 1

0

r6 cos4 φ sinφ drdθdφ (C.8)

After some algebra:

Jzzzz =
4

35
abc5πρ (C.9)
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where:

ρ =
M

4
3
πabc

(C.10)

so the final expression for Jzzzz is:

Jzzzz =
3Mc4

35
(C.11)

Similarly:

Jxxxx =
3Ma4

35

Jyyyy =
3Mb4

35

(C.12)

A similar method can be used to find the coupled inertia integrals:

Jxxyy =
3Ma2b2

105

Jyyzz =
3Mb2c2

105

Jzzxx =
3Mc2a2

105

(C.13)

C.2 Calculating Inertia Integrals from a Polyhedron Shape Model

The inertia integrals of an arbitrary shape can be calculated based on its polyhe-

dron shape model. Dobrovolski developed a method to calculate the inertia integrals

of the second order based on a polyhedron shape model [37]. A few concepts de-

scribed in Ref. [37] are first summarized. The technique required to calculate the

fourth-order inertia integrals are then be explained.

A polyhedron shape model is composed of tetrahedrons having their triangular

face composing the external shape of the body. Each face is described by the coor-

dinates of the vertices composing it, named here D, E and F as in Fig. C–1. The
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edges G andH are defined as follow:

G = E −D

H = F −D
(C.14)

All of the vertices coordinate of the model are defined with respect with the

originO which does not necessarily correspond to the center of mass of the arbitrarily

shaped body.

D

E

F

H

G

O

Figure C–1: Facet with vertices and edges

The first things to define are the area of a facet, the volume of a tetrahedron

and the center of mass of the body modeled using a polyhedron shape.

The area of a facet, ∆S is the norm of the cross product of the edges G and H

divided by 2:

N = G×H

∆S = N/2

(C.15)
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The total surface of the body is then the sum of all the ∆Ss.

The volume of a tetrahedron is 1/3 its height multiplied by the surface of its

facet:

∆V = D/3 · (G×H) /2 (C.16)

Here again, the total volume of the body is the sum of the ∆V s.

Considering the body has uniform density ρ, each tetrahedron can be considered

having a mass of ∆M = ρ∆V . The centroid of a tetrahedron is calculated by:

∆R = (D +E + F +O) /4 (C.17)

The center of mass R of the body as a whole is calculated as follow:

R =
∑

∆M∆R/M =
∑

∆V∆R/V (C.18)

C.2.1 Second-order Inertia Integrals

The calculation of the second-order inertia integrals is well described in Ref.

[37] and will be summarized here. The second-order moments of inertia can be

represented in the inertia matrix of the body:

[I] =


Ixx Ixy Ixz

Ixy Iyy Iyz

Ixz Iyz Izz

 (C.19)
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since Ijk = Ikj, there are only six values to calculate to get the full inertia matrix.

Each term of the inertia matrix can be calculated are follow:

Ixx = Jyy + Jzz

Iyy = Jxx + Jzz

Izz = Jyy + Jxx

Ixy = −Jxy

Iyz = −Jyz

Izx = −Jzx

(C.20)

where:

Jjk = ρ

∫ ∫ ∫
jk dV (C.21)

is the inertia integral. The triple integral in x, y, and z is done over the volume of

the body with a uniform density ρ.

In Ref. [37], the volume integral is simplified using Gauss’ theorem stating that

the integral of a value q = divQ over a closed volume V is equal to the integral of

Q over its boundary S: ∫ ∫ ∫
qdV =

∫ ∫
Q · dS (C.22)

Here, dS is a vector in the direction normal to the surface S with a magnitude

equal to the element of area dS. Taking the vector Q parallel to the radius vector

r going from the origin of the tetrahedron to the center of the external surface

(r = D +G+H) assures that only the external surface contribute to the integral.
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The simplest choice of Q is then jkr/5. The products of inertia then become:

Jjk =
ρ

5

∫ ∫
jkr · dS (C.23)

Considering that:

r · dS = (r ·N/N) dS = (6∆V/N) dS (C.24)

the integral to evaluate is then:

∆Jjk = ρ
6

5

∆V

N

∫ ∫
jk dS (C.25)

To simplify the integral, let us define dimensionless coordinates (g, h) in the plane

of the facet D, E, F such that:

r = D + gG+ hH (C.26)

We then have:

x = Dx + gGx + hHx

y = Dy + gGy + hHy

z = Dz + gGz + hHz

(C.27)
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The element of area dS then becomes Ndgdh. Inserting the last results into C.25

gives:

∆Jjk =
6

5
ρ∆V

∫ ∫
jk dgdh

=
6

5
ρ∆V

∫ ∫
(Dj + gGj + hHj) (Dk + gGk + hHk) dgdh

=
6

5
ρ∆V

∫ ∫ [
DjDk + g2GjGk + h2HjHk + g (DjGk +DkGj)

+ h (DjHk +DkHj) + gh (GjHk +GkHj)
]
dgdh

(C.28)

With the limit of integration being either 0 < g < 1− h, 0 < h < 1 or 0 < h <

1− g, 0 < g < 1, it can be calculated that:∫ ∫
dgdh =

1

2∫ ∫
g dgdh =

∫ ∫
hdgdh =

1

6∫ ∫
g2 dgdh =

∫ ∫
h2dgdh =

1

12∫ ∫
gh dgdh =

1

24

(C.29)

Substituting in Eq. C.28 and applying G = E −D and H = F −D, gives the

final result:

∆Jjk =
ρ∆V

20
[2DjDk + 2EjEk + 2FjFk +DjEk +DkEj +DjFk +DkFj + EjFk + EkFj]

(C.30)

As previously, Jjk is the sum of the ∆Jjks.

At this point, the inertia matrix is populated, but the origin of the reference

frame used to define the position of the vertices is not necessarily the center of mass

of the body and the reference frame is not necessarily aligned with the principal
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moments of inertia of the body. One of the assumption made in the development

of the fourth-order Taylor series expansion gravitational potential model is that the

body fixed reference frame is aligned with the principal moments of inertial of the

body. It is then necessary to modify the polyhedron shape model to use it to calculate

the inertia integrals required for the gravitational potential model. First, let us use

the parallel axis theorem to calculate the equivalent moments and products of inertia

for a reference frame having its origin at the center of mass of the body. By using

the previously calculated center of mass of the body with coordinates X, Y and Z:

I ′ = I −M


Y 2 + Z2 −XY −XZ

−XY X2 + Z2 −Y Z

−XZ −Y Z X2 + Y 2

 (C.31)

Because the inertia matrix is composed of real numbers and is symmetric, its

eigenvalues and also real numbers and its eigenvectors are orthogonal. The direction

cosine matrix (DCM) describing the orientation of the actual reference frame relative

to reference frame aligned with the principal axes is then the matrix composed of the

eigenvectors of the inertia matrix with the reference frame aligned with the center

of mass of the body. Transposing it gives the DCM describing the reference frame

aligned with the principal axes of the body relative to the original reference frame.

Knowing that, it is then possible to calculate the coordinates of each vertices into

the reference frame aligned with the principal moments of inertia of the body and

having its origin at the center of mass of the body. Applying Eq. C.30 to the

modified coordinates show that the products of inertia have now negligible values
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compared to the principal moments of inertia. These modified coordinates will be

used to calculate the fourth-order inertia integrals of the body.

C.2.2 Fourth-order Inertia Integrals

Using the modified coordinates for the calculation of the fourth-order inertia

integrals permits to only calculate the following six values, the other ones being

null:Jxxxx, Jyyyy, Jzzzz, Jxxyy, Jyyzz, Jzzxx. The same method than the one described

in [37] is used here. In the case of the fourth order, Q is (jk)2r/7. The integrals

that need to be evaluated are:

∆Jjjkk =
6

7
ρ∆V

∫ ∫
jjkk dgdh

=
6

7
ρ∆V

∫ ∫
(Dj + gGj + hHj)

2 (Dk + gGk + hHk)
2 dgdh

=
6

7
ρ∆V

∫ ∫ [
D2
jD

2
k + g

(
2D2

jDkGk + 2DjGjD
2
k

)
+ g2

(
D2
jG

2
k + 4DjGjDkGk +D2

kG
2
j

)
+ g3

(
2G2

jDkGk + 2DjGjG
2
k

)
+ g4

(
G2
jG

2
k

)
+ h

(
2D2

jDkHk + 2DjHjD
2
k

)
+ h2

(
D2
jH

2
k + 4DjHjDkHk +D2

kH
2
j

)
+ h3

(
2H2

jDkHk + 2DjHjH
2
k

)
+ h4

(
H2
jH

2
k

)
+ gh

(
2D2

jGkHk + 4DjGjDkGk + 4DjHjDkGk + 2GjHjD
2
k

)
+ g2h

(
2G2

jDkHk + 4DjGjGkHk + 4GjHjDkGk + 2DjHjG
2
k

)
+ g2h2

(
G2
jH

2
j + 4GjHjGkHk +G2

kH
2
k

)
+ g3h

(
2G2

jGkHk + 2GjHjG
2
k

)
+ gh3

(
2H2

jGkHk + 2GjHjH
2
k

)
+ gh2

(
2DjGjH

2
k + 4DjHjGkHk + 4GjHjDkHk + 2H2

jDkGk

) ]
dgdh

(C.32)
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The required extra integrals for the calculation of the fourth-order inertia inte-

grals are then: ∫ ∫
g3 dgdh =

∫ ∫
h3dgdh =

1

20∫ ∫
g4 dgdh =

∫ ∫
h4dgdh =

1

30∫ ∫
gh2 dgdh =

∫ ∫
g2h dgdh =

1

60∫ ∫
gh3 dgdh =

∫ ∫
g3h dgdh =

1

120∫ ∫
g2h2 dgdh =

1

180

(C.33)

Substituting these results into Eq. C.32 and after some algebra, the resulting

calculation of the fourth-order inertia integrals is:

∆Jjjkk =
6

7
ρ∆V

[
1

2
D2
jD

2
k +

1

12

(
D2
j

(
G2
k +H2

k

)
+ 4DjDk (GjGk +HjHk) +D2

k

(
G2
j +H2

j

))
+

1

3

(
D2
jDk (Gk +Hk) +DjD

2
k (Gj +Hj)

)
+

1

10

(
Dk

(
G2
jGk +H2

jHk

)
+Dj

(
GjG

2
k +HjH

2
k

))
+

1

30

(
G2
jG

2
k +H2

jH
2
k

)
+

1

12

(
D2
jGkHk + 2DjGjDkHk + 2DjHjDkGk +GjHjD

2
k

)
+

1

30

(
Dk

(
G2
jHk +H2

jGk + 2GjHjGk + 2GjHjHk

)
+Dj

(
HjG

2
k +GjH

2
k + 2GjGkHk + 2HjGkHk

))
+

1

60

(
HjGj

(
G2
k +H2

k

)
+HkGk

(
G2
j +H2

j

))
+

1

180

(
G2
jH

2
k +H2

jG
2
k + 4GjHjGkHk

)]
(C.34)
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C.2.3 Validation of the Fourth-order Inertia Integrals Calculated from a
Polyhedron Shape Model

The validation of the calculation of the fourth-order inertia integrals has been

done using a polyhedron shape of an ellipsoid with a mass of 4.8631492e09 kg and

size of semi-axes of a = 103 m, b = 79 m and c = 66 m, which are the mass

and dimensions of the smallest body of the 65803 Didymos binary asteroid system

[59]. As demonstrated previously, the equations for the fourth-order gravitational

potential of an ellipsoid based on the volume integral are:

Jxxxx =
3M

35
a4; Jyyyy =

3M

35
b4; Jzzzz =

3M

35
c4

Jxxyy =
3M

105
a2b2; Jyyzz =

3M

105
b2c2; Jzzxx =

3M

105
a2c2

(C.35)

Table C–1 compares the values obtained using the expressions of Eq. C.35 with

the values calculated using the polyhedron shape model.

Table C–1: Fourth-order inertia integrals of an ellipsoid

M. of Inertia Integral Polyhedron

Jxxxx 4.69159e16 4.61936e16

Jyyyy 1.62360e16 1.59861e16

Jzzzz 7.90945e15 7.93842e15

Jxxyy 9.19980e15 9.05805e15

Jyyzz 3.77739e15 3.74709e15

Jzzxx 6.42114e15 6.36964e15

The values are similar and show that the equations are good to be used for

a polyhedron shape model. The difference between the values from the volume
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integral and from the polyhedron shape are due to the shape model not being an

exact ellipsoid. It is composed of facets that are flat and not following the exact

external shape of the ellipsoid.
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APPENDIX D
Solar Radiation Pressure

The information contained here comes mainly from [52] and [51]. The SRP

acceleration is created by the impact of photons emitted by the Sun hitting the

spacecraft [51]. When calculating the SRP acceleration, two unit vectors are con-

sidered. The first one, û is the unit vector representing the direction of the solar

radiation. In the synodic reference frame, the components of the û vector are repre-

sented as:

[
cos θ − sin θ 0

]
where θ is the angle between the direction of sunlight

(XI axis of the inertial reference frame) and the XS axis of the synodic reference

frame. The second unit vector, n̂, represents the unit vector of the normal to the

reflecting surface of the spacecraft. Both vectors are shown in Fig. D–1.

^

n

Impacted surface

Sun

Photons ^

u

Figure D–1: Geometry used to describe the solar radiation pressure acceleration

Another aspect to be considered in the model of the SRP acceleration is the

optical properties of the spacecraft, which can go from perfectly reflective, as in the
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case of an ideal solar sail, to mainly absorptive, as in the case of a solar panel. The

optical properties of the spacecraft are the specular reflectivity, the absorptivity and

the diffusive reflectivity of the surface. The absorptivity generates an acceleration

that is in the same direction as the vector û. The specular reflectivity generates

an acceleration that is in the direction of the n̂ vector. The diffusive reflectivity

generates a force that is somewhere in between as it is not possible to know where

exactly the photons are diffused. It is then visible in both the n̂ and in the û

directions in the equation of the acceleration due to the SRP.

These aspects are reflected in the generic equation for the SRP acceleration:

aSRP =
PSRP
B

[
〈û, n̂〉 (1− rs) û+ 2

(
rs 〈û, n̂〉2 +

rd
3

)
n̂
]

(D.1)

where aSRP is the vector of the acceleration due to the SRP, rs and rd are the

specular and diffusive reflectivity of the spacecraft, respectively, B is the mass to

area ratio of the spacecraft and PSRP is a measure of the pressure exerted by the

solar radiation on a spacecraft and is calculated as follows [51]:

PSRP =
P0

c

(
D0

D

)2

(D.2)

where P0 (1367W/m2) is the solar flux at 1 Astronomical Unit(AU), c is the

speed of light (2.998e08m/s), D0 is the Sun-Earth distance (1.495e11m) and D is

the distance between the spacecraft and the Sun [52]. In the case of a spacecraft

operated in the vicinity of a binary asteroid system, the distance D is calculated

between the barycenter of the binary asteroid system and the Sun.
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It is important to note that the absorptivity of the spacecraft is considered

here. Since the sum of the specular reflectivity, the diffusive reflectivity and the

absorptivity is 1, then only two of the parameters are required for the equation. The

absorptivity is then included, along with the diffuse reflectivity, in the (1− rs) term

of Eq. D.1. As one can see in Eq. D.1, if a spacecraft is not perfectly reflective, it is

accelerated by the SRP in more than one direction: partially in the direction of the

û vector, and partially in the direction of the n̂ vector. This creates another level of

complexity to the dynamics of a spacecraft in this kind of environment.

The coming subsections present different types of models that can be used to

calculate the SRP acceleration. It goes from the simplest one, the cannonball model,

to a much more complex one, the N-plates model, that considers the attitude of the

spacecraft with respect to the inertial reference frame and some aspects of the shape

of the spacecraft. The models were derived from the information found in [52].

Cannonball Model

The cannonball model is the simplest way to model the SRP acceleration. This

is the model used in Ref. [59]. It considers the spacecraft as a sphere, so the attitude

of the spacecraft is not part of the model. The n̂ vector is then always parallel to

the û vector, making the SRP acceleration always at its maximum possible value.

Most of the time, the spacecraft is also considered as purely reflecting.

For these conditions, the SRP acceleration is given by:

aSRP =
2PSRP
B

û (D.3)
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Flat Plate Model

The flat plate model is commonly used for the calculation of the SRP accel-

eration. It has the advantage of taking into consideration the orientation of the

main surface of the spacecraft exposed to the SRP. For this model, the spacecraft is

considered as a flat surface with uniform optical properties and area to mass ratio

throughout the surface. It uses Eq. D.1 for the calculation of the acceleration due

to the SRP.

Multi-body Flat Plate Model

This model considers the main surface of the spacecraft exposed to the SRP as

being built from bodies with different properties. Most of the time, it is an addition

of the solar panel and of the satellite bus. These bodies may have different reflectivity

and absorptivity values. The values of the parameters are calculated based on the

ratio of the surface of the bodies. For example, for a spacecraft where 25% of the

surface exposed to the SRP is the satellite bus and 75% the solar panels, the final

absorptivity would be: 0.25absbus + 0.75absSP . The equation to use would then be

the same as for the flat plate model.

N-plates Model

The N-plates model sums the effect of the SRP on all surfaces of the spacecraft

affected by the SRP. For example, if the spacecraft is not perfectly aligned with the û

vector, there would be more than one surface where the photons would hit. For each

plate, the reflectivity is calculated based on the multi-body flat plate model. Each

plate also has its own mass to area ratio, B. In Fig. 3, n̂1 is aligned with the XP
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axis of the plates reference frame, n̂2 is aligned with YP axis of the plates reference

frame and n̂3 is aligned with the ZP axis of the plates reference frame.

^

^

^

^

Figure D–2: Graphical representation of the n̂ vectors involved in the N-plates model

In this case the total acceleration due to the SRP is the sum of the accelerations

due to the impact of the photons on each surface exposed to the SRP:

aSRP =
3∑
i=1

PSRP
Bi

[
〈û, n̂i〉 (1− rsi) û+ 2

(
rsi 〈û, n̂i〉

2 +
rdi
3

)
n̂i

]
(D.4)
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