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Abstract

In the representation of musical audio, it is common to favour either a signal or symbol

interpretation, where mid-level representation is an emerging topic. In this thesis we inves-

tigate the perspective of structured, intermediate representations through an integration of

theoretical aspects related to separable sound objects, dictionary-based methods of signal

analysis, and object-oriented programming. In contrast to examples in the literature that

approach an intermediate representation from the signal level, we orient our formulation

towards the symbolic level. This methodology is applied to both the specification of analyt-

ical techniques and the design of a software framework. Experimental results demonstrate

that our method is able to achieve a lower Itakura-Saito distance, a perceptually-motivated

measure of spectral dissimilarity, when compared to a generic model and that our structured

representation can be applied to visualization as well as agglomerative post-processing.
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Abrégé

Dans la représentation du signal audio musical, il est commun de favoriser une interprétation

de type signal ou bien de type symbole, alors que la représentation de type mi-niveau, ou

intermédiaire, devient un sujet d’actualité. Dans cette thèse nous investiguons la perspec-

tive de ces représentations intermédiaires et structurées. Notre recherche intègre tant les

aspects théoriques liés à des objets sonores séparables, que les méthodes d’analyse des sig-

naux fondées sur des dictionnaires, et ce jusqu’à la conception de logiciels conus dans le

cadre de la programmation orienté objet. Contrairement aux exemples disponibles dans

la littérature notre approche des représentations intermédiaires part du niveau symbol-

ique pour aller vers le signal, plutôt que le contraire. Cette méthodologie est appliquée

non seulement à la spécification de techniques analytiques mais aussi à la conception d’un

système logiciel afférent. Les résultats expérimentaux montrent que notre méthode est

capable de réduire la distance d’Itakura-Saito, distance fondé sur la perception, ceci en

comparaison à une méthode de décomposition générique. Nous montrons également que

notre représentation structurée peut être utilisée dans des applications pratiques telles que

la visualisation, l’agrégation post-traitement ainsi qu’en composition musicale.
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Chapter 1

Introduction

This thesis investigates the middle-ground between two common representations of musi-

cal information. The first is a system of symbols understood by musicians working in a

particular idiom. In the Western tradition, a familiar example of such a system is the score

where the fundamental unit of information is the note. The largely prescriptive nature of

the score-based representation can be contrasted with that of music as an audio signal.

This waveform representation is based on the measurement of an acoustic phenomenon,

that is a representation of the information associated with the physical domain of musical

sound. Put another way, it is principally descriptive, i.e. an artifact of a process. When dis-

cretized, the lowest level of information provided by the signal representation is a sampled

value associated with the underlying process.

Depending on the context, each of the units addressed above can offer certain advan-

tages. For example, a note-based representation facilitates the analysis and manipulation

of musical elements at the symbolic level, i.e. in the language used by musicians. More gen-

erally, a symbolic representation lends itself to abstract comparison and classification. On

the other hand, music represented as a sequence of samples can be treated (or transformed)

using techniques from digital signal processing.

In this thesis, we integrate symbolic features into quantitative analysis in an effort to

capitalize on the desirable properties associated with each representational paradigm. How-

ever, rather than attempt to determine pitch or other relatively high-level attributes from

the signal itself, we look to sources of information from a different modality. In particular,

we explore a top-down approach to signal analysis starting from the basic elements of a
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score-based representation. In this investigation, we are motivated by a qualitative descrip-

tion of sound in terms of separable objects and we have treated a symbolic representation as

a starting point for the dissection of sounds into invertible structures with varying degrees

of abstraction.

In this regard, we believe that the representation of an object is inextricably linked

to that which is used to represent it. Though this may appear to be a vague statement,

from the perspective of computation, it is a practical consideration. In order to explore

the topic of structured representations of audio, we have developed a similarly structured

interface to data and functionality in a software framework. Here, the motivation was two-

fold. First, to test the applicability of our conceptual model to software design. Second, to

develop a working framework to facilitate experimentation both in an empirical sense and

as part of a collaborative project oriented towards music creation. Further, software design

in this context has constituted an interesting point of convergence between the opposed

perspectives presented above. Here, it is common for signal and symbol representations

to coexist and research in the area of computer-aided composition has highlighted some

benefits of their interaction [9].

Aside from a viable approach to software design, the exploration of structured repre-

sentations of musical audio requires versatile signal modeling techniques as, from the signal

perspective, this class of signals features disparate behaviours.

Dictionary-Based Methods (DBMs) are a category of analysis techniques used to ap-

proximate a signal according to a set of elementary waveforms, or atoms. The result of

such an analysis is a model consisting of discrete objects with interpretable attributes, in

some sense reminiscent of notes.

The representation of musical signals by DBMs has many desirable properties. In

particular, they are flexible with regards to the members of an analysis set and are thus able

to represent a variety of sound classes more directly, i.e. they can yield a model consisting

of fewer, more salient elements. In this thesis, we are motivated by the possibility that such

models are more readily interpretable and lend themselves to further structured/mid-level

representations.

One significant drawback to DBMs however, is their computational complexity. This

facet is directly related to their flexibility in the sense that, in order to find the most

representative set of elementary functions for a given signal, one must theoretically consider

all combinations of elementary functions in all parameter configurations. Of course, this
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is impossible in practice and we are required to make decisions regarding the contents

of the dictionary in order to ensure the tractability of a decomposition while facilitating a

desirable representation in terms of meaningfulness and sparsity. Therefore, where possible,

it is advantageous to include as much information regarding the expected features of a

given analysis target as possible. Furthermore, we consider that the addition of such

information can contribute to structured representation. In accordance with our top-down

methodology, we consider fundamental symbolic entities, namely sound source and notated

musical context.

The aforementioned considerations associated with DBMs pertain to the members of

the analysis set, i.e. the dictionary. Aside from this feature, DBMs are also concerned with

strategies to amass atoms over the course of an analysis to decompose a signal. Among these

techniques, a popular sub-optimal technique is Matching Pursuit (MP), which operates by

extracting the atom most correlated with the signal at each iteration. In consideration of a

structured extension to MP, we introduce a variant where we extract a set of atoms based

on an inductive principle pertaining to the relatedness of components at each iteration. To

evaluate our results, in addition to the typical measurement of the signal-to-residual ratio,

we consider a perceptually-motivated distance measurement based on spectral similarity,

namely the Itakura-Saito distance.

The organization of this thesis is as follows:

In Ch. 2, we examine crossdisciplinary approaches to the representation of sound that

reconcile the two opposing descriptive modalities. As mentioned, this discussion is centred

around an interpretation of sound in terms of separable entities, or objects. As such, we

are motivated by an associated conceptual model developed by Pierre Schaeffer[57]. After

introducing this method of qualitative analysis, we compare and contrast it with features

of other perspectives, including quantitative analysis/synthesis and the representation of

sound in computational contexts. As regards the tools of quantitative analysis, we draw

particular attention to the relatively recent consideration of a mid-level representation.

In Ch. 3, we present DBMs. In doing so, we first address the associated theoretical

foundations and characterize this class of techniques as a generalization of signal represen-

tation by means of orthogonal bases. Following this presentation, we turn our attention to

examples in the literature where the various stages of a dictionary-based analysis procedure

have been customized to consider features expected in a musical signal.

In Ch. 4, we present the software framework developed to serve as an intermediary
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between dictionary-based methods and the quasi-symbolic representation of sound objects

using an object-oriented data representation. In this chapter, we demonstrate the func-

tionality of its core components, and present a collaborative project where it was featured

in the context of computer-aided composition.

In Ch. 5 we present experiments where we have considered symbolically-oriented fea-

tures at multiple stages of the analysis/synthesis process. The first series of experiments

demonstrates the properties of our MP variant and compares its performance to a generic

decomposition in the modeling of sound source-specific signals. In the second series of

experiments, we use a score-based representation as a guide for atomic decomposition and

model visualization. In the final series we explore how a structured model can be used in

agglomerative post-processing.
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Chapter 2

Perspectives on the Representation

of Sound Objects

2.1 Introduction

In this chapter, we are concerned with perspectives that treat sound as being composed

of separable entities with associated attributes. Generally speaking, through its respective

approach to analysis, each perspective adds an aspect of identity to the physical phenomena

it is concerned with and is indicative of a reconciliation between two descriptive poles.

The first pole is characterized by the representation of sound in symbolic terms, i.e. a

sound itself is a signifier pointing to the concept of an object. This interpretation is ap-

pealing in that it constitutes a high-level description oriented towards abstract comparison

and classification. On the other hand, it could be considered limiting in its description of

the acoustic (or aesthetic) properties of a given sound. The second pole is characterized by

the representation of sound as a signal, that is a measurement of a physical quantity. This

representation is appealing in that it accounts for the specificities of a particular sound to

the degree that a convincing facsimile can be rendered. On the other hand, the separation

of a sound signal into easily interpretable or meaningful elements can be difficult.

In the sections that follow, we examine three general perspectives and the descriptive

approaches associated with each. Here, we are motivated by the applicability of the ap-

proach to structured representations of audio.

In Sec. 2.2, we discuss descriptive systems associated with a qualitative analysis of
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sound. Here, we present the sound object of Pierre Schaeffer and further extensions to this

conceptual model.

In Sec. 2.3, we turn to a perspective that is not only concerned with the analysis of a

given sound, but also the ability to modify and reconstruct it from the analytical result,

that is an analysis/synthesis representational paradigm. Historically, the models associated

with this perspective have tended towards a signal interpretation, however a more recent

development in this area is the concept of a mid-level intermediate representation and this

approach is presented in detail.

In Sec. 2.4, we consider the representation of sound in reference to data and computa-

tional paradigms where our general concept of analysis pertains to the form and interaction

of the components in these systems. Here, we examine the interaction between the control

of sound synthesis and the description of sonic entities in the contexts of domain-specific

programming languages, computer-aided composition, and certain object-oriented imple-

mentations with a direct connection to the conceptual model of a sound object.

2.2 Conceptual Models

In this section, we approach the analysis of sound from conceptual models founded in qual-

itative description. In contrast to the perspectives and techniques presented in subsequent

sections, the qualitative analysis of sound is oriented towards a symbolic interpretation.

That is, it begins with a description of perceptually significant entities in a sound. In a

sense, this analytical perspective can be characterized as a generalization of a score-based

representation of music to sound.

2.2.1 Sound Objects

In the introduction to this chapter, we outlined two opposing interpretations regarding

the representation of sound. Rather than consider signal and symbol representations as

being indicative of a rigid dichotomy, here we characterize them as tendencies towards

opposing ends of a spectrum. Naturally, this characterization is motivated by the notion of

representations that fall between these poles. So, conceptually speaking, what is the basis

for such intermediate models?

In [57], Pierre Schaeffer develops a taxonomy for the description of sounds built upon

the notion of a sound object. The sound object can be considered a generalization of a
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traditional note in the context of musique concrête, as it ascribes an identity to elements

of sound with internal coherence that retain their character upon multiple auditions [11].

According to Schaeffer, these objects are determined by an intentional process of reduced

listening, which operates without making reference to the supposed source or meaning of a

sound, thus distancing it from a purely symbolic interpretation. Furthermore, though cor-

related with the physical signal, a sound object is considered as a separate and interpreted

entity without an objective formulation.

The taxonomy described by Schaeffer is built upon typo-morphological description.

From this perspective, a sound object retains an aspect of a symbolic representation, i.e.

persistent typological identity, and sound is comprised of a heterogeneous collection of such

elements [48]. On the other hand, the morphological facet of this descriptive approach is

more analogous to signal-based representation. This aspect is concerned with a description

of sound objects in terms of features that evolve over time, though the information repre-

sented in this case is of a psychoacoustic (rather than acoustic) nature. In the remainder of

this section, we present two cases where typo-morphological description has been developed

further.

2.2.2 Spectromorphology

The issue of time-dependent evolution was developed further by Smalley in his theory

of sound representation based upon the application of morphological criteria to spectra,

i.e. Spectromorphology [63]. It can be considered a furthering of Schaeffer’s qualitative

mechanism by means of perceptually motivated spectral descriptors, that is a vocabulary

to describe the shape of a sound object [64].

The motivation behind this method was to further qualify the representation and lis-

tening experience of sounds without clear causal identities. In a practical setting, this

methodology has been applied to musical analysis and ‘score-like’ visualization of electroa-

coustic music [70].

2.2.3 Microsound

Where spectromorphology is primarily concerned with the change of certain interpreted

features over time, microsound is a conceptual model that considers the constituency of

sound in terms of its elementary materials [48]. Tending towards a signal interpretation,
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these elements exist at the limits of perception and microsound describes a time scale

beneath a note but greater than the sample-level associated with a signal. In this way,

it can be considered as a typology oriented towards the signal interpretation of sound.

That is, where the spectromorphological perspective associates a signal-like morphology

to a semblance of a symbolic identity, microsound associates a symbol to elements that

approach the signal level using a taxonomy of grains.

However, it is noted that this examination was typically from the perspective of con-

struction, as microsound arose from a particular creative aesthetic in the works of Xe-

nakis [77] as well as the granular synthesis of Truax [71], Roads [47], and others [69]. This

is to say that the granular approach to sound assembly and synthesis predated an invert-

ible modeling technique1 and, as such, can be considered a conceptual model stemming

primarily from the perspective of synthesis.

2.3 Analysis/Synthesis and Intermediate Representations of

Audio

In this section, we move from conceptual models of sound objects to the description of

separable entities using the quantitative methods of the analysis/synthesis paradigm. These

intermediate representations constitute a precise description of sound and, in contrast to

the qualitative description of the previous section, add to the formulation of their analytical

techniques the constraint of invertibility2.

In this domain, the task of finding an intermediate representation is a problem of rec-

onciling opposing principles towards a signal interpretation. That is, in order to satisfy the

constraint of invertibility, it must be possible to infer a sample-level representation from a

model. On the other hand, an intermediate representation consisting of considerably fewer

components facilitates processing, e.g. by means of a targeted approach.

1It has been suggested, e.g. in [67], that dictionary-based analysis methods provide such a counterpart.
In Chapter 3, these are presented in detail.

2As such, we limit our discussion of quantitative methods to those whose analyses enable reconstruction
and set aside the wealth of descriptors used for classification in music information retrieval [30].



2 Perspectives on the Representation of Sound Objects 9

2.3.1 Low-Level Intermediate Representations

Though not directly concerned with the modeling of sound objects in the sense of Scha-

effer, certain tools from the domain of signal processing provide a generic classification

of sound phenomena. We characterize these as low-level intermediate representations, as

they make little reference to symbolic entities and require additional interpretation for such

association.

Though this may be considered a consequence of the analytical techniques involved

rather than their goal, in the context of the current discussion, Spectral Modeling Synthe-

sis (SMS) [62] is notable for the separation of a given signal into classes of phenomena.

Originating from the sinusoidal representation of McAulay and Quatieri [38], SMS treats

a signal as the combination of a slowly-varying deterministic component and stochastic

component characterized by a time-varying filter applied to white noise [61]. Later devel-

opments included an improved method for obtaining cogent sinusoidal partials [16] and the

addition of model for transient part [73].

Where SMS and extensions provide a model of sound object classes based on spectral

properties, sound segmentation is concerned with the classification of signal excerpts based

on their time-domain properties, e.g. as in [20] or [51].

2.3.2 Mid-Level Intermediate Representations

In [19], Rosenthal and Ellis develop the concept of a mid-level representation of audio and

define a set of attributes that such a representation should have. Here, we review these

attributes and relate them to the conceptual models of the previous section.

• Sound source separation : In contrast to the concept of reduced listening as artic-

ulated by Schaeffer, here sound source identity is considered a fundamental consider-

ation of a signal representation. This is perhaps unsurprising as the study approaches

the topic form the perspective of computational auditory scene analysis, which is an

effort to apply the principles of the human auditory system, as described by Breg-

man [7], to machine listening.

• Invertibility : This attribute is characterized by the ability to synthesize a result

from the representation that is at least similar, and ideally perceptually equivalent, to
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the original. Here, the most important aspect is the separate synthesis of meaningful

parts.

• Component reduction : Rather than consider each value of a signal (or its time-

frequency representation) in isolation, a mid-level representation should reduce the

number of components even if only by a grouping of elements such that its overall

size remains unchanged. Both this feature and invertibility are congruent with the

division of a sound into heterogeneous objects as specified by the conceptual models

presented in the previous section.

• Abstract salience of attributes : This attribute pertains to the parameters of the

representation and suggests that they should be indicative of their intended physical

characteristics in terms of perception.

• Physiological plausibility : This principle states that, ideally, a mid-level repre-

sentation should approximate the auditory system. Or, at least, that it should not

contradict it. Though perhaps not explicitly stated as such, these two latter features

allude to an aspect of qualitative description. Specifically, that a component of the

representation should correspond to a perceptually valid and meaningful element in

the signal.

Through an examination of these criteria, we have demonstrated that in many cases

they can be related to aspects of the conceptual models presented in Sec. 2.2, where a

noted exception is the significance given to sound source separation in the criteria of Ellis

and Rosenthal. However, there is also a divergence from the conceptual perspective ex-

hibited by the clear desire to express mid-level representations quantitatively (including

their synthesis). Further, though concerned with a representation of sound that is more

oriented towards a symbolic interpretation than prior analysis/synthesis techniques, here

the construction of a mid-level representation was approached in a bottom-up manner. In

fact, the remainder of the study is an evaluation of certain signal-oriented, quantitative

sound representations (e.g. the Fourier transform, sinusoidal tracks, and the constant Q-

transform) according to related criteria as well as the development of an alternate model

called a Weft. That is, entities approaching the symbolic level are inferred from successive

application of signal processing tools. Nevertheless, we shall see in Chapter 3 that the crite-
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ria associated with a mid-level representation are featured prominently in the formulation

of musically-oriented dictionary-based methods.

2.4 Data and Computational Paradigms

In this section, we address the representation of separable sound entities from the per-

spective of data organization, that is the building blocks used to generate sound. In our

generalized view, we deem this an analysis-by-construction approach to sound. Here, we

focus on three different contexts: languages for sound synthesis, computer-aided compo-

sition, and specific object-oriented data models notable for their abstract characterization

of sound objects. As in previous sections, we highlight representational issues in the given

context of the recurring theme of symbol/signal archetypes.

2.4.1 Data Representation in Sound Synthesis Languages

Superficially, sound synthesis languages tend towards a signal interpretation and sequences

of symbolic musical events are generally characterized as a slowly evolving, relatively

narrow-bandwidth signals, e.g. MIDI. A further examination of the predominant data model

yields a familiar conceptual framework.

At the core of the MUSIC-N family of sound synthesis languages is a kind of low-level

typo-morphological design principle. In a sense analogous to modular analog synthesizers,

representation of sound in this context is typically framed as a high-level control of hidden

processes essentially without an intermediate representation. This facet is evidenced by

the division between unit generators [37] and the evolution of their control parameters over

time. For example, this division is explicit in the syntax of Csound, with its definition of

an orchestra (i.e. the specification of unit generators and their interaction) and a score (i.e.

the control of the evolution of synthesis parameters). In fact, these two specifications are

even supplied in separate file types [5].

Though we have provided an example relative to a widely used, more modern descen-

dant of the MUSIC-N family, this particular typo-morphological design pattern is also

evident in other implementations, such as the MPEG-4 Structured Audio Standard [58].

More generally, it is typical feature of modular (or dataflow oriented) sound synthesis

languages whether they are text-based, e.g. Supercollider [39], or graphically-based, e.g.

Max/MSP [45] [6].
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To further demonstrate this organizational division, we mention that these disparate

data features often operate at separate temporal rates, where unit generators function

at the audio rate and the morphological control layer operates at a slower control rate. A

notable exception is the ChucK language, which features a sample-synchronous, concurrent

programming model where data elements operate in accordance with a single temporal

reference [74].

Though the prevalence of this approach to data organization speaks to its ability to

articulate certain sound synthesis routines, a considerable shortcoming associated with

this approach is the representation of analysis/synthesis procedures. As regards sound

synthesis languages, analysis and synthesis stages are often coupled, and a small number of

established processes are offered in the form of integrated tools [75]. An exception to this

tendency is demonstrated by more recent developments in the ChucK language. These have

introduced a unit analyzer, i.e. an analysis building block analogous to the unit generator

described above [75]. This feature is significant in that it offers direct access to analysis

parameters and results (as they develop over time), thus permitting the construction of

intermediate representations. Aside from this relatively recent approach, we notice that

the typical coupling of analysis and synthesis stages results in a reduced modularity in the

application of this technique.

2.4.2 Representation of Sound in Computer-Aided Composition

In contrast to the signal-oriented representation of sound synthesis languages, in environ-

ments for Computer Aided Composition (CAC) such as OpenMusic [1], the representation

of sound objects tends towards a symbolic interpretation. Audio waveforms and inter-

mediate representations built from audio (e.g. sound segmentations) are characterized as

note-like objects and are treated according to compositional purposes [8]. In this context,

sound synthesis is subject to a similar high-level of control with its parameters being subject

to symbolic procedures [65].

2.4.3 (Sound) Object-Oriented Data Models

In this subsection we present Object Oriented (OO) models in the context of computer

music. Here, the emphasis is on an OO data interpretation of sound objects. That is,

other systems employ an OO software design strategy (e.g. Supercollider, ChucK, and
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OpenMusic), however, here we address those that exhibit a direct relationship to the sound

object of Schaeffer, as it is the application of the conceptual model to a programming

paradigm that is of interest rather than the paradigm itself.

The defining data structure in OO programming expresses a connection between state

(attributes) and functionality (methods). Further considerations specifically relevant to

sound, are the management of time-evolution in an OO context as well as a coherent

framework for multiple levels of sonic organization.

Referring to the latter of these aspects, aside from the difficulties associated with anal-

ysis/synthesis discussed in Sec. 2.4.1, a particular disadvantage of the typo-morphological

setting provided in the MUSIC-N family of synthesis languages (and its associates) is with

regards to the organization of higher-level musical sound structures such as phrases, sec-

tions, or other combinations of elements [56]. Towards this end, several projects have

constructed systems based on an OO data model in conjunction with the conceptual model

of a sound object, as this model makes no formal distinction between levels of sonic orga-

nization provided that they elicit a qualitative description, i.e. a component of an isolated

instrumental sound is a sound object as is the recording of an entire piece of music.

FORMES [50] was a project concerned with sound synthesis in the context of musical

composition. The most important aspect of FORMES to our current discussion is that of

a process. A FORMES process is a named entity that groups together procedural rules, a

scheduler, a set of local environmental variables, and subprocesses. Further, a process is

subject to a precise duration. Together the properties of a process provide a hierarchical,

structured approach to control of sound synthesis in the form of a precise morphological

routines. These routines can provide a kind of internal coherence to the evolution of

control parameters and consequently the resultant sound, i.e. the synthesis of a kind of

sound object.

Kyma [56] is a system for sound manipulation that makes an explicit link to the con-

ceptual model of sound object. In Kyma, these objects are defined as an Atom, (e.g. a

stream of samples), a unary transform T (s) of a sound object s, or an N -ary transfrom

T (s0, s1, · · · , sm) of multiple sound objects [54]. As in FORMES, a finite duration is as-

sociated with these fundamental objects. With this definition, it is evident that a sound

object in Kyma can consist of an accumulation of sound objects, thus facilitating higher-

level musical structures and subsequent grouped processing. In a sense, Kyma represents

a kind of programmable audio workstation built on OO principles [55].
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The CLAM framework is more recent application of OO principles to the concept of a

sound object [3]. However, here the conceptual model is extended to subsume essentially

all entities relevant to musical audio discourse. For example, a given audio track is an

object, as is a musical note, or an instrument, or any other element that can be associated

with a state and behaviour. One goal of this framework is to provide a user with pluggable

objects in the context of analysis/synthesis and effects processing [2]. In this sense it is

reminiscent of a proposed feature of extended SuperVP [17].

In this thesis, we are concerned with the building blocks of an analysis/synthesis system,

that is a method of interacting with sound analysis data built on OO principles and the

objects available in such a system. In this regard, CLAM is of particular interest as it in-

cludes an analysis stage, i.e. a sound object identification procedure. Though founded on an

inclusive conceptual model and implemented according to OO principles, in consideration

of what we believe to be a desirable formulation of the problem of music representation, we

notice a shortcoming as regards the identification of sound objects in the system. Specif-

ically, descriptive methods consider only low level or high level features. That is, those

closely related to a pure signal interpretation, such as spectral descriptors, or those more

analogous to sound classification. That is, a mid-level representation is not provided.

2.5 Conclusion

In this chapter, we have identified a dilemma with respect to the representation of sound,

namely the reconciliation of physical and symbolic interpretations. Further, we have made

reference to three general perspectives that address this issue with their respective analytical

mechanisms. In comparing these methods, we have observed varying tendencies towards

the symbolic or signal interpretation. However, in this observation, we have noted a lack of

tools that fully integrate a mid-level, invertible representation into a modular and malleable

software framework. That is, while tools exist to perform analysis/synthesis in a symbolic

framework (for instance, the integration of SuperVP processes in OpenMusic [9]), these

constitute an interaction between signal and symbolic aspects rather than a framework

making explicit use of mid-level representations.
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Chapter 3

Dictionary-Based Methods and

Musical Audio

3.1 Introduction

Dictionary-based methods (DBMs) are a class of adaptive analysis techniques used to obtain

a parametric representation of a signal according to a set of elementary functions, or a

dictionary consisting of atoms. Highlighting two important features from this definition, a

DBM is specified by the properties of its analysis set and one or more rules by which to

combine its elements in order to approximate the target signal.

In Sec. 3.2, we address the theoretical aspects of DBMs and present them as a gener-

alization of conventional signal representation by means of waveform bases. Further, we

show how a set of analysis functions without the constraint of mutual independence can

permit a sparse representation of a signal where a majority of its energy is accounted for

by a small number of coefficients. However, a consequence of this generalized setting is

the absence of a unique signal representation stemming from the redundant nature of the

analysis set. This feature has led to the development of criteria related to the form of a

desirable model.

The first criterion alludes to the strong relationship between DBMs and audio coding,

where the ideal representation has been considered to be the model that is most sparse,

i.e. consists of the least number of elements from the analysis dictionary [52].

On the other hand, researchers in the area of musical signal analysis have been motivated

2011/12/13



3 Dictionary-Based Methods and Musical Audio 16

by the flexibility afforded by DBMs to formulate the analysis process in consideration of

expected (and targeted) features of the signal in question. These efforts represent the

adoption of another criteria pertaining to the structured nature or ‘meaningfulness’ of the

representation. This is taken to mean that the salient components of a signal are well-

represented in the model.

Ideally, these two criteria would be equivalent. That is, the optimal representation in

terms of sparsity would also be the most meaningful. However, the multifaceted nature

of musical phenomena is such that determining what constitutes a signal ‘component’ and

what makes it ‘well-represented’ in this context eludes a single objective formulation. As

such, strategies concerned with different aspects of the analysis process have been developed

to account for sound objects expected in a musical signal.

A typical dictionary-based signal analysis procedure can be expressed as a sequence

of three stages. The first stage is concerned with the properties of the atoms contained

within the dictionary. The second stage is concerned with how a decomposition takes

place, i.e. the process by which atoms are selected and combined. In an optional third

stage, the contents of the synthesis book, i.e. the model, can be grouped according to some

structural metric. Throughout the literature, each of these stages has been re-formulated to

incorporate knowledge about musical audio, e.g. [34][28][15][68]. Following the presentation

of the theoretical foundation of DBMs, each of the stages discussed above is addressed in

detail. In the sections that follow we restrict our presentation to discrete-time as we are

primarily concerned with digital audio signals.

3.2 Foundations of Dictionary-Based Methods

In this section we provide an overview of the theoretical aspects central to dictionary-based

methods. We first present time-frequency uncertainty as the motivation for waveform

representations using overcomplete sets, which are presented in the second section.

3.2.1 Time-Frequency Uncertainty

The analytical foundation for an atomic representation of sound was developed by Ga-

bor [23]. Dissatisfied with the counter-intuitive description of a signal in terms of either

time or frequency, Gabor sought to express a signal as a sum of elementary functions local-

ized in both domains, that is a time-frequency representation. Here, a result was the formal
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expression of the reciprocal relationship between time and frequency. Stated concisely, a

coordinate in the time-frequency plane can not be determined with arbitrary precision si-

multaneously in both domains. That is, increased specification in time results in increased

ambiguity in frequency and vice versa. Using the notation of Heisenberg’s uncertainty

principle, this duality can be stated as

∆t∆f ≥ 1 (3.1)

where ∆t and ∆f represent the effective duration and bandwidth of the time-frequency

quadrant, respectively.

In order to facilitate his time-frequency signal representation, Gabor developed a para-

metric function that satisfies the lower bound of the uncertainty relation defined in Eq.

(3.1). This function, referred to as a quantum of information by Gabor, takes the form of

a complex sinusoid whose amplitude is modulated by a Gaussian distribution, i.e.

g (t) = e−α
2(t−u)e2πjωt (3.2)

where t, u, ω, and α represent time, translation, frequency, and variance. These Gabor

atoms have been used extensively in the literature for both general and domain-specific

DBMs (see Sec. 3.3).

3.2.2 Waveform Representations

The definition of DBMs given at the beginning of this chapter is reminiscent of more

conventional signal representations by means of waveform bases, such as those of the time

or frequency domain. In broader terms, waveform bases and dictionaries are collections

that both belong to a general class of time-frequency analysis tools, referred to as waveform

representations. Here, we outline the basic properties of these constructs and leave details

regarding specific collections for music signal analysis to the subsequent section. In the

following, we limit our discussion to the finite-dimensional Hilbert spaces RN and CN ,

which we denote by H.

A waveform representation of a signal is a model built from a linear combination of

elementary functions, or atoms. Among this class of techniques, waveform bases find the

most straightforward expression and can be considered the foundation from which further
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techniques are developed.

The defining properties of waveform bases are completeness and orthogonality. Consid-

ering the first property, a set of waveforms Φ = {ϕi}i∈I is complete with regards to H if,

for any signal x ∈ H, there exists an expansion in the form of

x =
∑
i∈I

αiϕi (3.3)

where αi represents the ith expansion coefficient, obtained by

αi = 〈x, ϕi〉 (3.4)

and the set I is an index over Φ. The property of orthogonality states that 〈ϕi, ϕj〉 = 1 if

i = j and 0 otherwise.

As we are primarily concerned with the properties of the set Φ, we reconsider it as a

matrix of size N2 with the vectors ϕi as its rows and x as a column vector of length N . As

such, we write the equivalence relation in matrix-vector form as

x = Φ†α (3.5)

where † denotes Hermitian conjugation and

α = Φx (3.6)

Expressed as such, Eq. (3.6) is the expansion of a signal into a basis and Eq. (3.5) is the

inverse operation.

Following from the definition of a basis presented above, we observe that the set of time-

domain basis functions built from a sequence of Dirac impulses is certainly the simplest

example of a matrix Φ. In fact, it is merely the identity matrix of the N -dimensional vector

space where all entries are zero except along the diagonal, i.e.

ΦD =


1 0 · · · 0

0 1 · · · 0
...

...
. . .

...

0 0 · · · 1

 (3.7)
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In the context of time-frequency analysis, the other fundamental set of waveform bases

are those that define the discrete Fourier transform (DFT). Though often depicted as a

discrete sum, as in [42], here we focus on the expression of the DFT in matrix form [60]

ΦF =
1√
N



1 1 1 1 · · · 1

1 z z2 z3 · · · zN−1

1 z2 z4 z6 · · · z2(N−1)

1 z3 z6 z9 · · · z3(N−1)

1
...

...
...

...

1 zN−1 z2(N−1) z3(N−1) · · · z(N−1)(N−1)


(3.8)

where z = e
2πj
N and 1√

N
is a scalar that ensures that the transform is orthonormal, i.e. that

it preserves the inner product. These basis functions are shown in Fig. 3.1, for N = 64.
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Fig. 3.1 DFT basis functions

Waveform bases exhibit the attractive qualities of completeness and uniqueness, i.e. they

are able to represent any signal in the vector space over which they form a basis in exactly

one way. However, in practice it is possible (and indeed probable) that this representation

will rely on a large number of elements, which is to say that the energy of the signal will

be distributed over many coefficients. This feature is a consequence of the homogeneous

nature of basis functions, which are generally obtained by strict translation, modulation,

or dilation operations upon a single characteristic wave shape. As such, waveform bases
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tend to represent signals consisting of heterogeneous components in a non-sparse manner,

making use of the interaction between many elements of the analysis set. In terms of

meaningfulness, this facet implies that the resultant representation may be difficult to

interpret or even misleading with respect to underlying components in the signal.

As an illustration, consider a synthetic discrete-time signal x whose time-domain wave-

form is shown in Fig. 3.2a . This signal consists of three windowed sinusoids. The first

is a formant-wave function (FOF) [49] with a duration of 93 milliseconds and a centre

frequency of 1510.425 Hz. The second is a truncated Gaussian window with a duration of

5 milliseconds applied to a stationary sinusoid with a frequency of 2205 Hz. The third is

a Hann window [29] with a duration of 23 milliseconds applied to a linearly-chirped sinu-

soid, which begins at 88.2 Hz and increases by 2976.75 Hz over its duration. The Fourier

transform, or frequency-domain representation, of x is given in Fig. 3.2b. Though both of

these representations are perfect in the sense that they exhibit no loss of information, the

features of the underlying components are only well-depicted relative to their respective

domains. In particular, the ‘timeless’ representation afforded by the Fourier transform has

smeared the change in frequency of the chirped sinusoid across many coefficients1

Time (s)

(a) Time-domain representation (b) Frequency-domain representation by DFT bases
(real part)

Fig. 3.2 A synthetic signal x as represented by common waveform bases

A principal feature of DBMs that differentiates them from waveform bases is the relax-

ation of the constraint of orthogonality. Practically speaking, this can be thought of as a

1As mentioned by Gabor in [22], a ‘change in frequency’ is not defined in terms of the Fourier transform
as it is a statement of both time and frequency.
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consequence of the desire to introduce heterogeneous analysis functions that may be more

well-suited to describing the underlying components of a signal. However, these functions

may not be related to each other by a simple, orthogonality-preserving operation. As we

will see, the lack of orthogonality renders the analysis expression more complicated. On

the other hand, a well-chosen dictionary and decomposition strategy can facilitate a more

sparse and/or meaningful representation.

If we begin by abandoning the constraints of orthogonality and homogeneity, we may

turn to the issue of what properties an analysis set should have. In many situations, it could

be advantageous to retain some of the formal properties of a basis, especially as regards

completeness. In this context, the concept of a frame of a vector space is introduced.

A frame is a mathematical construct that generalizes a basis to sets of non-orthogonal

functions that span a vector space [31]. If Φ = {ϕi}i∈I is subset of H, it is considered a

frame if there exists two constants A,B such that 0 < A ≤ B <∞ and

A||x||2 ≤
∑
i∈I

| 〈x, ϕi〉 |2 ≤ B||x||2 (3.9)

for all x ∈ H. Simply put, this frame condition implies that there is no x ∈ H that is

orthogonal to all elements in Φ (the lower bound) and that sum has finite energy (the

upper bound).

If the elements of Φ are linearly dependent and span H, it is evident that Φ contains

more items than are strictly required to represent a given signal. In this case, the set is

said to be overcomplete and there may be an infinite number of signal representations built

from a linear combination of its elements. The loss of a unique representation is in a sense

the cost of using a redundant analysis set, which may be more suited to sparse/meaningful

representations of a signal.

Here, we present frames in order to illustrate some of the benefits of redundancy in terms

of the representation of signals. This is accomplished by demonstrating the relationship

between frames and the discrete setting of the Short-Time Fourier Transform (STFT) [44].

As we have illustrated in Figs. 3.2a and 3.2b, a representation of a signal in the

time or frequency domain can constitute a counter-intuitive description of the underlying

components in a signal. The essential property of the discrete STFT is the localization of

the DFT bases in time in order to describe spectral content or change.

Consider a finite-dimensional vector in RN as the discretized signal x[n]. The STFT of
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x[n] can be expressed as

X [k,m] =
∞∑

n=−∞

x [n]w [n−m] e−j
2π
K
kn, k = [0, 1, · · · , K − 1] (3.10)

While it is a fundamental property of the DFT that the set
{
e−j

2π
K
kn
}
k=0...K−1

consti-

tutes a basis of CK , the STFT introduces constraints upon the time support of the analysis

atoms2 that must be satisfied in order to ensure reconstruction. Specifically, invertibility is

also determined by the spacing, or hop size, of the analysis atoms as well as the properties

of the analysis window w[n]. In order to satisfy this constraint, the upper bound on the

hop size is determined by a window-specific feature such that the sum of evenly spaced

windows is a constant [29], as in Fig. 3.3.
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Fig. 3.3 Sum of overlapping Hann windows (length = 1024, hop size = 341)

Alternatively, the STFT can also be expressed in matrix form as is depicted in Fig. 3.4

where each row depicts a time and frequency localized sinusoid. Rephrased using the

terminology of DBMs the minimum hop size is the limit that ensures the completeness of

the collection, hence the possibility of reconstruction. A hop size smaller than the minimum

increases redundancy in the analysis set and this overcomplete collection constitutes a frame

2In the literature, e.g. [4], it is common to encounter the term grain here in reference to the sample-
wise product of window function and sinusoid. To emphasize the relationship, we favour the analogous
terminology used in the context of DBMs.
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of the space occupied by the signal. This property is evidenced by the rectangular shape

of the STFT matrix.
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Fig. 3.4 STFT Frame (N = 64, hop size = 2)

While bases and frames are both subject to strict mathematical definitions, a waveform

dictionary is not specified with such precision. In [15], a dictionary is defined as a set

of elementary functions D (typically more redundant than a tight frame) that spans some

vector space H such that, for x ∈ H, x can be expressed as a linear combination of elements

in D. However, as we shall see in the context of music-specific techniques, even this

relatively loose definition does not hold and D might be designed to be only complete for

some subspace of H. In the context of these application-specific techniques, it is perhaps

more appropriate to relax this definition further and adopt a pragmatic view. Here, we

consider a dictionary to be a collection of waveforms used to build some representation of

x, be it oriented towards sparsity, meaningfulness in some setting, or some other criterion.

Put another way, the specification of the contents of the dictionary is a parameter of the

analysis procedure and the resultant representation is a function of this choice, which may

be informed by knowledge about a class of signals. The decomposition of a signal according

to DBMs can be characterized as a process of navigating the analysis set in order to find a

desirable representation according to some guiding principle.

Returning to the signal x in Fig. 3.2a, it is evident that a set of analysis functions

consisting of linearly-chirped Hann atoms, relatively brief Gabor atoms, and FOFs would
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elicit a more concise representation than those of the time or frequency domain3. While we

make no assurance that such a set is complete, in Fig. 3.5 we show the first three iterations

of a decomposition of x using a collection of heterogeneous atoms and a Matching Pursuit

algorithm, whose properties are discussed in detail in Sec. 3.4.1. In Fig. 3.6, we show

a visualization of the time-frequency energy distribution of the model x̃ by means of a

wivigram [67].

Time (s)

Time (s)

Time (s)

Fig. 3.5 First three atoms extracted from x

Time (s)

Fig. 3.6 Wivigram of the model x̃

3This is of course provided that the parameters of the underlying components in x are accounted for in
the dictionary.
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This example represents a significant simplification of the problem since, having cre-

ated the synthetic signal, we can hazard a fairly omniscient guess about the properties of

the elements in the analysis set. Of course, it is typically not possible to know a priori

precisely what set of functions will yield a desirable representation. Furthermore, signals

stemming from naturally occurring phenomena may not be so well-behaved with regards

to the analytical expression of their underlying components. However, within a particular

problem domain certain assumptions can aide the formulation of a DBM.

3.3 Dictionaries for the Analysis of Musical Audio

In this section we present elementary functions, and collections thereof, from the perspec-

tive of musical audio signal analysis. In this research area, assumptions based on expected

features have been used in the selection of analysis functions for used in atomic decom-

position. In the presentation that follows, we proceed from generally applicable analysis

functions to those that incorporate specific information about instrument sources 4.

3.3.1 Generic Time-Frequency Atoms

In computer music applications, one of the most common time-frequency representations

is the phase vocoder. While it is common to present the phase vocoder according to a

filterbank or Fourier transform interpretation [18], it is equivalent to the STFT presented

in the previous section. As such, the properties of the frame interpretation apply to all

commonly encountered analysis window functions [29]. This set of windowed sinusoids can

be considered the most often used collection of time-frequency atoms.

3.3.2 Atoms and Classes of Musical Signal Phenomena

Recalling the sines + noise paradigm [61], there has historically been a desire to express

musical signals as being comprised of separable classes of phenomena. Though this is not

structured in the sense of a mid-level representation, with regards to DBMs, a strategy has

been to consider atoms with an analytical expression that approximates objects found in

musical signals.

4Regarding variables, in the following s, t, u, ω are reserved for scale, time, translation, and frequency
respectively. Additionally, the function g refers to the Gabor atom in Eq. (3.2)
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The asymmetry of components found in musical signal has been approached in a number

of ways. For example, Goodwin included damped sinusoids of the form [24]

d(α,u,ω) (t) = e−α(t−u)e2πjωty(t− u) (3.11)

where α corresponds to a damping coefficient and y(t) is the Heaviside function, i.e.

y (t) =

0, if t < 0

1, if t ≥ 0
(3.12)

The Formant-Wave-Function (FOF), introduced in [49], can be used to provide more

nuance to the description of asymmetrical signal phenomena. In essence, a FOF is a damped

sinusoid where the initial discontinuity has been smoothed by a cosine shape of variable

duration, i.e.

FOF(α,β,ω) (t) =


0, for t ≤ 0

1
2

(1− cos (βt)) e−αt sin (2πωt) , for 0 ≤ t ≤ π
β

e−αt sin (2πωt) , for t ≥ π
β

(3.13)

Here, π
β

corresponds to the attack (or rise) time of the window and, in practice, the shape

can be time-shifted as in Eq. 3.11. Though developed primarily for synthesis, this function

has been employed in the context of atomic decomposition, e.g. in [28] where it was used

for piano note-event detection.

In [35], Lewicki developed a model of the human auditory encoding system founded on

an assumption of sparsity. Here, the shape of the optimal function was found to be variable

in terms of the bandwidth associated perceptually-motivated sound classes. This function

can be approximated by a gammatone of the form

f(σ,u,β,ω) (t) = (t− u)σ−1 e−2πβ(t−u)e2πjωty (t− u) (3.14)

where β and σ represent order and bandwidth, respectively. These parameters tune the

asymmetry of the time-frequency energy distribution.

To target signal components that change in frequency, a method using linearly-chirped



3 Dictionary-Based Methods and Musical Audio 27

Gabor atoms of the form

g(s,u,ω,c) (t) =
1√
s
g

(
t− u
s

)
ej(ω(t−u)+ c

2
(t−u)2) (3.15)

was developed by Gribonval [27].

In order to account for the acoustic nature of many musical instruments, Gribonval

introduced harmonic atoms of the form

h(t) =
K∑
k=1

αkg(s,u,ωk) (t) (3.16)

where ωk ≈ kω [28]. In practice, the relationship between components was strictly harmonic

or specified by a function defined a priori.

3.3.3 Music-Specific Atoms

More recently, the method of harmonic atoms has been extended to instrument/context-

specific atoms [34].

h(s,u,ω,c,A,Φ) (t) =
M∑
m=1

ame
jφmg(s,u,m·ω,mc0) (t) (3.17)

where A = {am}m=1...M the vector of partial amplitudes, Φ = {φm}m=1...M the vector of

partial phases. Here, A was obtained through a supervised learning procedure consisting

of classical spectral peak estimation and vector quantization using a database of labeled

exemplars. The elements of Φ were tuned during the decomposition.

Incorporating further contextual information, music scene-adaptive atoms were used

in [10]. Here, the spectral characteristics relevant to each MIDI note were estimated from

monotimbral recordings according to an unsupervised process for the purpose of note-event

detection and automated transcription.

In [12], Cho and Kuo developed a formal expression of dictionaries comprised of source-

specific subspaces. Working from an overcomplete set Φ that spans a Hilbert space H, one

can assume that only a subset of Φ is relevant to the consideration of audio signals in H.

In turn, only a subset of this subset is relevant to the analysis of particular instrument,

that is
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Φinst ⊂ Φmusic ⊂ Φaudio ⊂ Φ (3.18)

(see Fig. 3.7 for an illustration of this principle).

By conducting an atomic decomposition on a training database, one can obtain a rela-

tively sparse description of the elements relevant to a particular analytical task. Further-

more, these can be grouped in order to exhibit structural characteristics, e.g. harmonic

components.

Universal audio space

Music subspace

Instrument 
(sub)subspace

Speech subspace

Fig. 3.7 Audio space and subspaces

3.4 Decomposition Algorithms

In this section we discuss decomposition strategies. As in the previous section we begin

with generic decomposition strategies and progress to more musically-oriented techniques.

3.4.1 Generic Decomposition

Given an overcomplete set of elementary functions, finding the optimal signal representation

using a finite subset represents a computationally intractable combinatorial maximization

problem. As a result of this difficulty, the focus of algorithmic implementations has been

the development of tractable sub-optimal solutions. The most popular of these, known as
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Matching Pursuit (MP) [36], is an example of a greedy algorithm. As such, it follows the

problem solving heuristic of making a locally optimal choice in the hopes of producing a

globally optimal result [13]. In this case, the model is obtained via the iterative projection

of the residual onto the maximally correlated atom in the dictionary.

MP has many desirable properties. For example, the convergence of the algorithm has

been proven, its resulting model is typically sparse in comparison to the time-domain repre-

sentation, and its typical usage is computable in a reasonable amount of time following [32].

Furthermore, the simple structure of the algorithm facilitates modification for particular

analytical purposes. However, in its unmodified form, MP is essentially myopic, as it looks

only to minimize the energy of the residual. As will be discussed at length in Chap. 5, there

are salient components of musical signals that have relatively little energy (e.g. partials in

the upper frequency range) and will be considered by MP only after many iterations.

3.4.2 Structured Decomposition

Though the convergence of MP was proven by Mallat and Zhang, the non-orthogonal nature

of the dictionary contents implies that there is a complex interaction between atoms in

the model. That is, the relationship between the components of a signal and the linear

combination of a subset of atoms chosen from the dictionary may not be readily apparent.

Motivated to account for signal components that a human listener would classify as

separable, several extensions to MP have been proposed in order to offset the greedy nature

of the algorithm, which is ambivalent to intuitively structured elements.

In [15], Daudet used a variant of MP, referred to as Molecular Matching Pursuit(MMP)

using a dictionary that consisted of the union of two sets of basis functions, namely modified

discrete cosine and discrete wavelet bases. At each iteration of MMP, a cluster of atoms is

classified as either tonal or transient and extracted.

Following the formulation of harmonic atoms, a variant of MP (HMP) was designed to

obtain their specification over the course of a decomposition [28]. That is, where MMP

makes an assumption about the continuation of tonal components in time this strategy

expects harmonic components above the frequency of an atom.

Essentially as a combination of MMP and HMP, Meta Molecular Matching Pursuit

was introduced in [33]. This procedure consists of two stages. First, a tonal component

is identified, as in MMP. Second, a harmonic comb is fitted to the component. However,
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in contrast to a typical application of MP, this technique is applied directly to a STFT

matrix, i.e. with a single atomic scale/frequency resolution. Nevertheless, this technique

was reported to have faired better than HMP in the analysis of signals that exhibit frequency

modulation due to the chaining of atoms together to form tonal components. Though, in

the analysis of piano sounds, components were missed as inharmonicity was not accounted

for in the system.

3.5 Post-Processing

In contrast the techniques discussed above, domain knowledge has also been incorporated

as a supplementary stage to a generic decomposition. Here, we outline two projects that

featured this approach.

3.5.1 Agglomerative Clustering

In [68], Sturm describes a post-processing technique that clusters atoms according to a

measure of similarity using as material a prior, generic decomposition. In this case, the

metric employed was the complex correlation coefficient between each pair of atoms in the

model. As in MMP, the targeted higher-order structures considered by this procedure were

narrow band tonal components and broad band transient components.

3.5.2 Atom Prioritization

In a different application, MP decompositions on a database of instrument samples are used

to obtain instrument-specific subspaces as a post-processing stage [12]. In this procedure,

the contribution of each atom to the overall energy of the decomposition is tabulated and

all atoms above a given threshold are considered members of a sub-dictionary to be used

for the decomposition of signals featuring a particular instrument. A further step combined

harmonically-related members of the sub-dictionary to yield instrument-specific atoms and

these were used for musical signal separation.
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3.6 Conclusion

In this chapter, we have presented a category of signal analysis tools. After reviewing the

foundations of DBMs, we have presented the customization of generic DBMs to musical sig-

nal analysis. Here, assumptions about expected features of musical signals have been used

to inform the choice of elementary functions used in analysis, structured decomposition,

and post-processing.

Recalling the concept of a mid-level representation presented in Sec. 2.3.2, it is in-

teresting to apply the associated criteria to DBMs. Of these, sound source separation,

invertibility, and component reduction are principal motivating features behind the formu-

lation of music-specific DBMs. Physiological plausibility could also be interpreted in the

application of structured decomposition. However, with the exception of source-specific

atoms, these structured techniques have been oriented towards the representation of signal

objects, i.e. partials and transients, through bottom-up construction.
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Chapter 4

pydbm

4.1 Introduction

In Ch. 2, we presented perspectives on the analysis, both qualitative and quantitative, and

synthesis of (musical) sound objects as well their representation in data. In the examination

of these perspectives, we observed a lack of structured intermediate representations in

the context of the analysis/synthesis paradigm. In Ch. 3, we presented dictionary-based

methods as a set of signal processing tools that exhibit many of the properties considered

desirable for a mid-level representation. Furthermore, in the literature, these methods have

been applied to the task of musically-oriented analysis and structured representation.

pydbm is a library, written in the python programming language, which we have devel-

oped to apply dictionary-based analysis/synthesis methods to the structured representation

of musical signals. In particular, pydbm is an Object-Oriented (OO) framework designed

to obtain structured models of audio and provide methods to visualize, synthesize, and

otherwise manipulate these representations.

In the sections that follow we outline the architecture of pydbm, demonstrate the func-

tionality of its core components, and present a collaborative project where it was featured

in the context of computer-aided composition.

4.2 System Architecture

In comparison to structured DBMs, OO software design represents a similarly structured

approach to data. Specifically, a fundamental aspect of OO programming is the union

2011/12/13
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of data and functionality in a single data structure, called an object. Another principal

feature is inheritance, which is characterized by a hierarchical propagation of functionality

amongst objects, typically progressing from a relatively abstract description to further spec-

ification. Perhaps due to the conceptual link between musical elements and this abstract

hierarchical classification, OO software design has been employed frequently in musical ap-

plications [43]. In pydbm, we have applied this design philosophy to the development of a

modular framework for the structured and invertible representation of musical audio.

4.2.1 Modules and Classes

In python, modules are collections of definitions, e.g. classes and/or functions , which can

be imported into an environment recognized by the python interpreter. In this subsection,

we present the modules of pydbm.

atom

In this module, we apply the concept of a unit generators (discussed in Sec. 2.4.1) to classes

of atom generators, see Fig.4.1 for an illustration of the classes and inheritance relations

found in the module. In pydbm we deal exclusively with time-frequency atoms and, as

such, each generator inherits from the window and sinusoid base classes. The window

class is particularly important in the context of signal analysis, as it features methods to

calculate window-specific attributes described in [29], such as equivalent noise bandwidth

and minimum overlap percentage.

As the union of attributes and methods, a generator class is equipped with a function

that returns a parametrically specified atom in the form of a one-dimensional array. Due to

the extent to which these functions are called during analysis procedures, they have been

optimized and compiled as extensions in the C programming language using cython [72].

In pydbm, each atom genre is associated with specific multidimensional data types that

are defined by the associated set of generating parameters and the context in which they

appear. For example, a (chirped) FOF atom has generating parameters: frequency, phase,

chirp rate, rise time and decay time. In the context of an analysis set, i.e. a dictionary,

it also has an onset time and if part of a model, i.e. a book, it has a scaling coefficient.

As regards class attributes, each generator contains the relevant metadata associated to its

data types. In terms of structured analysis, the harmonic classes are for use in dictionaries
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and books consisting of instrument-specific atoms. Here, the generating functions are the

same, but the data type has additional fields pertaining identifying the properties of the

an individual component in a structure.

Window Sinusoid

HarmonicSinusoid

atom

HannGen GaborGen GammaGenFOFGen DampedGen

Harmonic
HannGen

Harmonic
GaborGen

Harmonic
GammaGen

Harmonic
FOFGen

Harmonic
DampedGen

Fig. 4.1 Classes and inheritance in the atom module

In pydbm the atom module is self-contained, that is it does not inherit from objects in

other modules. This is not the case of the remaining modules and in order to provide a

system-wide context before presenting each of the remaining components in detail, we draw

attention to Fig. 4.2, which illustrates the pydbm class tree.

base

The base module consists primarily of abstract base classes, which are not intended to

be instantiated directly but contain some elementary functionality that is inherited across

several modules. Here we briefly mention the key properties of the constituent classes:

Types, Group, Spectral, and IO.

The Types class is essentially a meta-level description of the data types considered in

pydbm. This includes the atom types discussed above as well as SDIF[76] types considered.



4 pydbm 35

Di
ct
io
na
ry

Sp
ec
tra
l

Di
ct
io
na
ry

In
st
ru
m
en
t

Di
ct
io
na
ry

So
un
dg
ra
in

Di
ct
io
na
ry

Bl
oc
k

Di
ct
io
na
ry

Ty
pe
s

G
ro
up

IO

Sp
ec
tra
l

Bo
ok

Sp
ec
rtr
al

Bo
ok

So
un
dg
ra
in

Bo
ok

M
isc

Ut
ils

Tr
an
s

Ut
ils

Bl
oc
k

In
st
ru
m
en
t

Su
bs
pa
ce

Co
rp
us

Pa
rti
al

M
od
el

Pa
rti
al

Sc
or
e

ob
je
ct

Ta
rg
et

M
od

ul
e 

M
em

be
rs

hi
p 

Le
ge

nd

ba
se

ut
il
s

di
ct
io
na

ry

da
ta

bo
ok

F
ig
.
4
.2

In
h

er
it

an
ce

re
la

ti
on

s
in

p
y
d
b
m



4 pydbm 36

With regards to atom generator classes, type descriptions are stored in an associative

way. That is, the name of a type, e.g. ‘hann’ in the case of a Hann generator, points

to an object that has been instantiated along with the initialization of the parent class.

This process is done only once, again avoiding overhead during computationally expensive

analysis procedures. This associative organization also permits the use of dictionaries

containing arbitrarily mixed atom types and is also important if one wanted to edit the

contents of a model as regards atom type.

Group is an abstract base class inherited by any object that contains a set of atoms,

that is any dictionary or book. It provides methods to count, partition, or parametrically

alter a group of atoms. Also, it overloads the addition operator to provide an intuitive way

to merge dictionary and book objects. For two dictionary/book objects A + B = C, the

result being a new dictionary/book object whose atoms are the union of A and B. In this

way we offer direct access to the data contained within a group in order to permit logical

filtering, mixing operations, and the creation of subgroups.

Spectral is a base class with methods to perform conventional estimation and inter-

polation of spectral peaks. Additionally it also defines methods to compute spectral shape

statistics, i.e. centroid, spread, skewness, and kurtosis. It inherits from Types to facilitate

computation of window properties, e.g. coherent gain.

The IO base class is merely a generic wrapper for read/write capabilities in terms

of audio, afforded by the scikits audiolab package [14] and SDIF, using python bindings

developed by Moguillansky [40].

data

This module contains objects which describe some intermediate data structures that can

be used in conjunction with the more central dictionary-based analysis/synthesis objects.

In particular, they describe components using a different modality than the weighted linear

combination that is at the foundation of atomic decomposition. In this sense, they are

included to suggest components (from outside of the system) to be modeled as targets or

act as unconventional elements incorporated in a modeling procedure.

In the context of the experiments presented in Sec. 5.3, and more generally the interac-

tion between signal and symbolic representations of music explored in this thesis, the most

important class in this module is the Score. This class has methods to parse and store a
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MusicXML file in the associated hierarchical manner, which is depicted in Fig. 4.3.

Part Object 
(0)

Score Object

Measure 
Object (0, 0)

Measure 
Object (0, M)

Part Object 
(P) ...

....

Note Object 
(0, 0, 0)

Note Object 
(0, 0, N)

...

...

...

...

...

...

...

...

...

...

...

...

...

Fig. 4.3 Hierarchical organization of a Score object.

We have also included a Corpus class that can be used to reference a database of

sound files and obtain information associated with them. This class is important to the

project described in Sec. 4.3. Target, is a class that can be used in relation to the target

of a particular analysis. In practice, it facilitates the storage of an audio waveform and

associated metadata. A PartialModel class is also defined in this module. This class is

initialized with an analysis in the form of a SDIF partial tracking file and converts each

partial into a Partial object. In certain situations, a partial model can be useful as a

guide for atomic decomposition, that is it points to regions of interest. Of course, this is

only the case if an atomic decomposition can offer some benefit in terms of representation

that a partial model can not, for example the broadband region often associated with the

onset of a partial. Similarly, spurious partials could be indicative of a region in a signal

more appropriately modeled by a multi-resolution DBM.
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dictionary

In pydbm, a dictionary is an object that unifies the functionality and data associated with

an analysis procedure. Here, functionality refers to the methods used to construct a set of

atoms and the decomposition algorithm(s) associated with each class. On the other hand,

data refers to the storage of analysis function parameters, here represented as a structured

array, and the metadata associated with a given dictionary instance. The classes within

the dictionary module have been designed differently in terms of these two features with

varying degrees of specificity with regards to musical signals.

The Dictionary class is the most generic setting of a dictionary object in the sense

that its functionality is not specifically tailored to the analysis of musical signals. As such,

its constructive methods are rooted in a signal interpretation. For example, it contains

methods to add atoms that constitute STFT frames and time-frequency regions. As far

as higher-level identities are concerned, these are also based in signal structures. That is,

methods are available to add atoms to tile a region associated with a partial or transient.

Similarly, the constituent decomposition methods are of a general nature. Here, we have

implemented a standard Matching Pursuit (MP) as well as a version of MP that features

a gradient descent optimization of an arbitrary set of atom parameters.

The BlockDictionary class is similarly generic, in fact there are methods to convert a

BlockDictionary into a Dictionary and vice versa. Here, the difference is with regards

to the MP implementation where, in a BlockDictionary the computation of the inner

products is accomplished in the frequency domain. In some situations, this can speed up

computation, however this is not always the case since it typically involves a relatively large

Fourier transform. Nevertheless, one significant improvement in this implementation is that

it is computationally equivalent to check all time locations. That is, the decomposition is

time-shift invariant.

The SpectralDictionary class is an example of a structured dictionary. Its decom-

position strategy incorporates an assumption that elements occurring simultaneously are

potentially related and extracts a group of atoms at each iteration. Here, one can further

refine this structural relationship with an arbitrary degree of preference towards harmonic-

ity1. In light of this assumption, it features a constructive method that adds atoms to

target approximately harmonic components above a particular fundamental frequency over

1This variant of MP is the subject of Sec. 5.2.1.
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a span of time.

With further specificity, the InstrumentDictionary class also contains constructive

methods to target a particular fundamental frequency. However, in this case the set of

atoms is itself structured, as the parameters are determined from a database of labeled

exemplars. At each iteration, the source-specific MP extracts a set atoms whose frequencies

and amplitudes are representative of the instrument in question.

Stemming from a different motivation, the SoundgrainDictionary considers a collec-

tion of sound files (found in an associated Corpus object) as atoms. At each iteration, its

‘decomposition’ strategy looks for the most suitable match between the residual and the

members of the Corpus. The goal here is a particular aesthetic, rather than analysis.

book

Similar to a dictionary, the attributes of a book object describe a set of atoms. However,

rather than being specified directly, these are the result of an associated analysis. In

this way, a particular decomposition strategy can be considered a morphism that maps

a dictionary object to a book object. Amongst members of this module, functions for

synthesis, agglomeration, and visualization are the principal differentiating features.

A Book object is the product of a decomposition using a Dictionary or BlockDictionary

object. In this case, synthesis is a straightforward process and includes options to add fre-

quency modulation. In terms of clustering operations, a method is defined to compute the

cross-correlation of the atoms in the book and agglomerate them into ‘molecules’ as de-

scribed in [68]. This object also includes a method to visualize the model using a wivigram.

A SpectralBook object is the product of a decomposition using a SpectralDictionary

or a InstrumentDictionary. It inherits from class Book but redefines its synthesis methods

to facilitate frequency modulation appropriate to a quasi-harmonic structure. In addition

to the cross-correlation operation, the SpectralBook class defines a routine to compute

the spectral self-similarity of its structures and agglomerate these into molecules. In terms

of visualization, it also adds a piano roll-like display that is the subject of Sec.5.3.1.

A SoundgrainBook object is the result of the SoundgrainDictionary matching pro-

cedure. In this case, there is no synthesis function, but rather a process of scaling and

assembling appropriate sound files.
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utils

This module defines two classes with more generic tools that are inherited by multiple

classes.

The MiscUtils class includes miscellaneous tools, for example methods to perform con-

versions and make measurements of local energy. However, most important here are func-

tions to quantify the effectiveness of a model. We have implemented measures of entropy

and the perceptually motivated Itakura-Saito spectral distance, which will be discussed in

more detail in Chap. 5.

As methods, the TransUtils class has common transforms such as the short-time

Fourier transform, and the discrete-cosine transform. Most important in the context of

DBMs is the implementation of the discrete Wigner-Ville distribution. The superposed

distribution of atoms, sometimes referred to as a wivigram [67], is a common way to visu-

alize a sparse approximation.

4.2.2 Illustration of Work Flow

In the code listing below, we illustrate the functionality of pydbm in a simple case. Here, we

demonstrate the basic stages of a dictionary-based analysis/synthesis procedure, namely

the definition of a dictionary, the application of a decomposition algorithm, and the optional

post-processing of a synthesis book. In the listing, italicized text are comments that outline

the steps of the procedure.�
#import the necessary modules

import pydbm . d i c t i o n a r y

import pydbm . base

#u s e f u l python l i b r a r y o f numeric t o o l s

import numpy as np

#g e t audio

I = pydbm . base . IO ( )

x , f s = I . readAudio ( ’ / Users /grahamboyes/Desktop/ t e s t . wav ’ )

#i n s t a n t i a t e a Dic t ionary o b j e c t



4 pydbm 41

D = pydbm . d i c t i o n a r y . Dic t ionary ( f s )

#s p e c i f y t h r e e s e t s o f STFT− l i k e a n a l y s i s f u n c t i o n s

#with a s s o c i a t e d window−s p e c i f i c arguments where necessary

durat ions = [ 6 4 , 256 , 2048 ]

hops = [ 8 , 32 , 256 ]

atom types = [ ’damped ’ , ’ gabor ’ , ’FOF ’ ]

win args = [{ ’damp ’ : 0 . 1} , {} , { ’ r i s e ’ : 32 , ’ decay ’ : 2016} ]

min time = 0

max time = [ l en ( x ) − d for d in durat ions ]

#i t e r a t e through the l i s t and add atoms

for i , durat ion in enumerate ( durat ions ) :

D. addSTFT( atom types [ i ] ,

durat ion ,

hops [ i ] ,

min time ,

max time [ i ] ,

∗∗win args [ i ] )

#perform a n a l y s i s o f s i g n a l x us ing a Matching Pursu i t a l go r i th m

#the MP al gor i thm r e t u r n s s i g n a l v e c t o r s o f the model and r e s i d u a l

#as w e l l as a Book o b j e c t

max i t e r a t i on s = 10

SRR thresh = 35 .

model , r e s i d u a l , Book = D.MP(x , max i t e ra t i ons , SRR thresh )

#p a r t i t i o n and s y n t h e s i z e the model

#( i f i t c on ta ins gabor atoms )

i f any (Book . atoms [ ’ type ’ ] == ’ gabor ’ ) :

inds = np . where (Book . atoms [ ’ type ’ ] == ’ gabor ’ ) [ 0 ]

B1 , B2 = Book . p a r t i t i o n ( inds )

#. . . app ly some changes to the models here . . .

Book = B1+B2
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#s y n t h e s i z e the book and w r i t e audio

x hat = Book . s y n t h e s i z e ( synthtype=’ d e f a u l t ’ )

I . writeAudio ( x hat , ’ / Users /grahamboyes/Desktop/ t e s t h a t . wav ’ , f s )
� �
In contrast to other dictionary-based software libraries, such as MPTK [32], in pydbm we

sought to provide a high-level and malleable interface to DBMs. Here, we were especially

interested in the design of a framework that could be integrated into environments for

musical creation.

4.3 Application of pydbm in Computer-Aided Composition

In this section we discuss the application of pydbm to computer-aided composition in the

context of a specific collaborative project with composer/researcher Marlon Schumacher

around the composition of his piece Ab-Tasten. Its premiere was given as part of a

live@CIRMMT concert at McGill University in April 2011. Binaural renderings of this

performance are available at http://www.music.mcgill.ca/~marlon/audio/Abtasten.

4.3.1 OpenMusic and SDIF

To promote interactivity, dictionary definition and decomposition processes were bundled as

command-line executables. These were then wrapped in a LISP interface by Marlon Schu-

macher in order to facilitate control in a compositional context. An example of the resulting

environment is shown in 4.4. Here, we note the gabor-params and the gabor-decomp el-

ements. These correspond, respectively, to the definition of a dictionary of Gabor atoms

and a subsequent decomposition of a target signal (located in the top-left of the image).

The Sound Description Interchange Format (SDIF) [76] was adopted to facilitate OM

access to the low-level pydbm features, e.g. the set of atom parameters associated with a

dictionary or book. An OM interface to this data is shown in 4.5.

4.3.2 Corpus-Based Decomposition

Though DBMs are typically expressed in the formal setting of sparse and/or structured

approximation, the flexibility of the components of the system also render DBMs suitable

http://www.music.mcgill.ca/~marlon/audio/Abtasten
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Fig. 4.4 pydbm components wrapped in OM (image provided by Marlon
Schumacher)
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Fig. 4.5 Access to book parameters via SDIF (image provided by Marlon
Schumacher)

for creative purposes. Here, we demonstrate this principle in their application to corpus-

based synthesis [59].

A set of directories containing sound material can be used to define a Corpus object.

This object is subsequently supplied to a SoundgrainDictionary along with a set of onsets.

These samples are then used to approximate a sound target. In this sense, it is similar to

the adaptive concatenative synthesis described in [66]. However, instead of an assembly

process based on signal descriptors, here we use a variant of a Matching Pursuit algorithm,

i.e. we apply the comparison at the signal level.

In contrast to sparse signal approximation, the goal of this technique is not to obtain

a low-order model that is perceptually identical to the target, but is rather to assemble

existing material in a way that retains features of both the corpus and the target. Here, the

breaking condition assigned to the maximum number of pursuit iterations and to a certain

extent the density of onset locations become synthesis control parameters, which can be

set to yield a result closer to the target2.

2Audio examples illustrating this principle are available at http://mt.music.mcgill.ca/~boyesg/

thesis_examples/4.3.2.html. See Appendix A for details regarding the sound examples website.

http://mt.music.mcgill.ca/~boyesg/thesis_examples/4.3.2.html
http://mt.music.mcgill.ca/~boyesg/thesis_examples/4.3.2.html
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In this collaborative project, this technique was used to suggest an approximation of a

sound using piano tones. In turn, this model could be manipulated by the composer and

used as control data for a Disklavier, which realized this ‘score’ in concert.

4.4 Conclusion

In this chapter, we have presented a software framework designed for dictionary-based anal-

ysis/synthesis with an emphasis on structured representation of musical signals. Further,

we have detailed its modular design and demonstrated its applicability to computer-aided

composition.
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Chapter 5

Experiments

5.1 Introduction

In this chapter we present experiments wherein we consider two sources of a priori informa-

tion stemming from symbolic entities, namely sound source and notated musical context.

Recalling the points where outside information can be introduced into a dictionary-based

method (DBM), as presented in Chap. 3, we sought techniques that included high-level

information in the design of targeted dictionaries, decomposition strategies, and post-

processing procedures. In this way, we have adopted a top-down approach to signal analysis

where we were motivated to obtain structured and mid-level representations of musical au-

dio.

In the techniques and experiments described in the first section, we are chiefly interested

in the application of knowledge about sound sources. In Sec. 5.2.1, we introduce an exten-

sion to Matching Pursuit (MP), which iteratively redefines the effective analysis dictionary

during the pursuit according to an estimate of spectral peaks. Motivated by the model-

ing of sound sources, this algorithm features a parameterized tolerance for inharmonicity.

Following the description of this algorithm, we demonstrate some of its properties through

the decomposition of synthetic signals. In Sec. 5.2.2, we describe our application of this

technique to the identification of source-inspired dictionaries to be used by a standard MP.

In the subsequent experiment, Sec. 5.2.3 these structured elements are compared to decom-

position by a conventional MP. In Sec. 5.2.4, we apply our technique to the determination

of instrument-specific analysis structures and apply them for the task of separable sound

source modeling for synthesis.

2011/12/13
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In Sec 5.3, we consider a symbolic representation of the musical context associated with

a given target. Here, we demonstrate how such high-level information can be used to inform

structured atomic decomposition and the visualization of mid-level representations.

In Sec 5.4, we demonstrate how post-processing in the context of structured decomposi-

tion can be used to construct intermediate representations for visualization and synthesis.

The availability of sound examples corresponding to the sections of this chapter is

detailed in Appendix A.

5.1.1 Terminology for Structured Representation

Prior to the presentation of experiments, we define our use of terminology for structured

representation in terms of a hierarchical organization based on atoms and groups thereof.

This terminology is used in reference to both analysis and synthesis elements.

We recall that in the context of dictionary-based methods an atom refers to the lowest

level of organization, and each structured representation can be reduced to a ‘flattened’

collection of such units. In the experiments that follow, a structure refers to a first-order

group, i.e. a set of atoms. Similarly, a metastructure is a second-order group, i.e. a structure

of structures. At the limit of our formalism an atom could be regarded as a structure of

order 0. We favour this terminology as it can be extended arbitrarily to accommodate

further grouping procedures.

From our perspective on structured representation, the collection of atoms associated

with a generic synthesis book1 constitutes a first-order group and is structurally equivalent

to any other set of atoms. In this sense we are inspired by the descriptive language of Scha-

effer’s sound object, which makes no formal division between a recording of an entire piece

of music and any excerpt from it [57]. By our terminology, any hierarchical organization

built from atoms is uniformly regarded as a structure.

We contrast our interpretation to examples in the literature, e.g. [28] or [34], where

a group of harmonically related elementary functions is deemed an atom and [15], where

transient and tonal structures are assigned the term molecule. We notice that, though

motivated by a description of a different character, the objects of their respective models

are of the same structural order.

1Here, we give the presentation in terms of the synthesis construct, but it applies analogously to a
dictionary
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In terms of our implementation, we emphasize that the differentiating feature between

a structure and a book is the functionality attached to the latter. That is, in addition to

being associated with a set of atoms, a book also defines methods for operating upon this

collection. We note that our descriptive formalism is paralleled in the behaviour of the

Group base class in pydbm as each of its derived classes is initialized with a corresponding

order N and each of its atoms is specified by a unique N -dimensional index. Further, the

addition of Group derived classes, is handled such that they retain their internal structure.

5.2 Structured Analysis of Sound Sources

In this section we consider the symbolic notion of a sound source identity and examine

how this feature can be applied to structured signal analysis. We introduce a variant of

MP that can be used to model a signal, but can also yield a vertically-structured inter-

mediate representation suited to the definition of targeted sets of analysis functions. After

the presentation of this method, we demonstrate its application to the determination of

source-inspired dictionaries, offer a comparison of MP based techniques for the modeling

of monotimbral sounds, and apply it to the task of separable sound modeling for synthesis.

5.2.1 Spectrally-Inductive Matching Pursuit

As we were motivated by the development of analysis functions tailored to the spectral

properties of specific sources, we begin our presentation by recalling two similar studies

discussed in Chap. 3 (namely those of Leveau et al [34] and Cho et al [12]). In each,

instrument-specific atoms are determined from analyses of a labeled database. However,

the techniques involved in this process differed. In [34], collections of partial amplitudes are

obtained according to a conventional spectral peak extraction procedure on the contents

of a database of labeled samples. Afterwards, for each pitch label, the vectors of partial

amplitudes are quantized in order to reduce the number of elements considered in the

subsequent decomposition.

On the other hand, in [12], a MP decomposition is applied to a labeled database. The

atoms determined from the decompositions are then prioritized, as discussed in Sec. 3.5.2,

and a suitable subspace is determined for each instrument in consideration.

In comparing these two strategies, we notice appealing features of each and have im-

plemented a hybrid strategy in an attempt to integrate the positive features of both. The
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result is a variation of MP that iteratively decomposes a signal according to an estimate of

spectral peaks.

Firstly, an advantage of the strategy employed by Cho et al is the multi-scale (and thus

multi-bandwidth) description of the target sound. On the other hand, in [34], Leveau et al

only use a single scale with a duration of 46 ms in their applications. Though not stated

explicitly, the limitation of using a single scale could be related to the parameters of the

peak extraction learning procedure, that is partial amplitudes were estimated relative to a

single scale.

Second, is the issue of frequency resolution, which is in fact tied to another basic differ-

ence between these strategies. The technique described by Leveau et al features a built-in

assumption of harmonicity. In this case, they can construct a dictionary that considers any

fundamental frequency, assigning to each element the most appropriate vector of partial

amplitudes. Of course, the cost of this assumption is that they can not model inharmonic

sounds using this technique. On the other hand, Cho et al make no assumption about har-

monicity. However, this implies that they must specify a priori which frequencies they will

consider. For their preliminary subspace estimate, Cho et al report a constant frequency

sampling of 800 points. This is possibly related to the computational complexity associated

with atomic decomposition.

Having considered the advantages of the techniques discussed above, we developed a

vertically-oriented extension to MP stemming from a supervised approach, which we re-

fer to as Spectrally-Inductive Matching Pursuit (SpecIMP). In its application, a structure

characterized by a set of time-localized spectral peaks is extracted at each iteration. Owing

to established techniques in this domain, we improve the estimate of peak frequencies using

the interpolation strategy presented in [61]. The amplitude and phase values for each peak

are obtained as in a standard MP. This procedure is depicted in Fig. 5.1, where the ‘update

region’ refers to the elements of the dictionary whose temporal location overlaps with the

extracted structure. In the two segments that follow, we outline some properties of our

approach and illustrate their utility through the analysis of synthetic signals.

Inharmonicity Tolerance and Effective Dictionary Size

In general, the motivation behind the development of this variant of MP was to help the

technique identify quasi-harmonic structures while also permitting a description without a
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Fig. 5.1 Flow diagram of SpecIMP procedure
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strict assumption of harmonicity. In the structured analysis of sound sources this feature

was thought to be desirable, as the partials of many instruments occur at roughly integer

multiples of a fundamental frequency, though in practice there is often deviation from the

theoretical location. In this sense, it is a more general setting of harmonic MP [28].

To account for variability, we specify a tolerance as regards the degree of inharmonicity

permissible as an additional parameter of the decomposition. In this way, the materials

of the associated dictionary suggest a fundamental frequency and the inharmonicity toler-

ance is used to apply a constraint on the harmonic nature of the components above this

fundamental. A high inharmonicity tolerance implies that a larger region of the spectrum

is considered around the theoretical location of a harmonic component (at a specific time,

with a specific analysis bandwidth)2. Though more accepting of deviation, the cost of a

high inharmonicity tolerance is that the description of a harmonic source within a mixture

could be obscured if an unrelated component is located within the bounds defined by the

tolerance.

Generally speaking, it is not necessary to supply an extensive estimate of frequency pa-

rameters in the specification of the dictionary, thus reducing the complexity of the pursuit.

This feature is a consequence of the fact that the peak estimation procedure is adapted

to the residual at each iteration. This implies that the number of atoms considered by

the decomposition is substantially larger than what is specified prior to analysis. Here, we

contrast the specification of a sparse dictionary with the effective size of the dictionary

used over the course of the decomposition.

As a variant of MP, the successive refinement the dictionary becomes important partic-

ularly when it is not necessarily complete, as the process of decomposition can introduce

artifacts whose properties are difficult to predict. However, there is also a benefit associ-

ated with SpecIMP in an overcomplete setting, in the sense of the structured nature of the

resultant representation. Furthermore, in comparison to a standard MP implementation,

components in the upper region of the frequency spectrum are modeled in early stages

of a SpecIMP decomposition to its vertical orientation. In practice, components in this

region are often initially neglected by the greedy nature of MP as they typically account

for relatively little signal energy though they are salient in terms of perception.

To illustrate the functionality related to inharmonicity tolerance, consider the signal

2Here, we note there is a built-in minimum spacing assigned in the peak estimation procedure relative
to the bandwidth of a given window function and atom duration.
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depicted in Fig. 5.2a and the corresponding sonogram in Fig. 5.2b (where the magnitude

is given in dB). This signal contains a harmonic structure consisting of three components

located at 220 Hz, 440 Hz, and 660 Hz. In addition to this harmonic group, it contains

three inharmonic components located at 363 Hz, 589 Hz, and 910 Hz. A SpecIMP de-

composition using a dictionary with defined fundamental frequencies and a low tolerance

for inharmonicity is able to extract the harmonic group. An example of this capability is

illustrated in Figs. 5.3a and 5.3b. The associated residual is depicted in Figs. 5.4a and 5.4b.

Structured Description of Transients with Harmonic Behaviour

Congruent with other dictionary-based decomposition techniques, SpecIMP facilitates multi-

scale, i.e. multi-resolution, analysis. However, in a structured sense, this type of decom-

position is more readily able to account for the broadband phenomena encountered in the

attack portion of asymmetrical signal phenomena. That is, it provides a pseudo-harmonic

description of a transient that might be encountered in the analysis of an instrument that

can be characterized as a struck resonator, e.g. a piano or marimba.

As an illustration, consider the signal in Fig. 5.5a, which is the result of a FOF window

(with a brief rise time) being applied to a harmonic sinusoid with five components. As

depicted in the corresponding sonogram, Fig. 5.5b, the brevity of the attack implies that

there is energy distributed across many frequencies in this region of the signal. Though

this behaviour is congruent with the concept of a transient, we would also like to provide a

description of the internal harmonic relationship between the components of the signal in

our model.

Using a multi-scale SpecIMP decomposition consisting of Hann atoms, the transient

region is modeled by quasi-harmonically ordered, brief atoms. This feature is illustrated by

the first five iterations of the decomposition, as depicted by the wivigram3 in Fig. 5.6a. We

measure the approximation of the model according to the signal-to-residual ratio (SRR)

between the nth order model and residual, which is defined as

SRRn = 10log10
||mn||2

||rn||2
(5.1)

After 53 iterations a total of 212 individual atoms have been extracted, see Fig. 5.6b, and

3In this section, wivigrams show the magnitude of the scaling coefficient obtained by the decomposition
in dB.
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time (s)

(a) Time-domain waveform

time (s)

(b) Short-time Fourier transform

Fig. 5.2 Synthetic signal containing a harmonic group and inharmonic com-
ponents.
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time (s)

(a) Time-domain waveform

time (s)

(b) Short-time Fourier transform

Fig. 5.3 SpecIMP model (low inharmonicity tolerance)
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time (s)

(a) Time-domain waveform

time (s)

(b) Short-time Fourier transform

Fig. 5.4 SpecIMP residual (low inharmonicity)
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the SRR has reached 40 dB. Audibly, this approximation is judged to be quite close to the

original.

We contrast the previous strategy with a multi-scale Hann atom decomposition using

standard MP. As MP does not target harmonic structure, the algorithm proceeds by ex-

tracting individual atoms in a greedy manner, i.e. initially favouring the non-transient part

of the signal that accounts for the majority of the energy (Fig. 5.7a). The standard MP

model achieves a SRR of 40 dB, however only after 440 iterations (Fig. 5.7b). Further, we

notice the considerable number of atoms of a corrective nature. In fact, stemming from

the greedy nature of the algorithm, the refinement of the low-frequency components with

higher energy occurs prior to the modeling of high-frequency transient region. Again, the

result is audibly quite close to the original. However, we argue that the model yielded

by SpecIMP is more easily interpretable without any further organization, owing to the

structured nature of the decomposition process.

The end result of such a decomposition is stored in a ‘flattened’ manner. That is, each

spectral component is accessible by a 2-tuple index indicating its membership within a

structure and the structure within a decomposition. As such, we can consider isolated atoms

or the embedded spectral structure. Such a structure can lend itself to the application of

audio effects, e.g. adding vibrato to a signal for an essentially harmonic model. To illustrate

in a simple case, we refer again to the signal in Fig. 5.2a and the subsequent extraction of

its harmonic structure, we are able to apply vibrato (whose depth is scaled logarithmically

owing to the structured nature of the model) and add the result to the residual of the

signal. The sonogram of the resulting signal is shown in Fig. 5.8.

In terms of computational complexity, the adaptive process of redefining the effective

dictionary due to estimates of peaks typically implies that the initial dictionary has consid-

erably fewer elements than a strictly overcomplete MP dictionary. In the example above,

the former contained 20361 elements compared to the 741031 elements of the latter, which

was constructed as a union of STFT frames with functions of three durations. This factor

is not trivial in light of processes involving a database of sounds, such as the determination

of relevant source-specific subspaces detailed below, or musical signal analysis in a practical

setting.
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time (s)

(a) Time-domain waveform

time (s)

(b) Short-time Fourier transform

Fig. 5.5 Asymmetric harmonic test signal
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time (s)

(a) Wivigram (5 iterations/20 atoms)

time (s)

(b) Wivigram (53 iterations/212 atoms)

Fig. 5.6 SpecIMP model of asymmetrical harmonic test signal
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time (s)

(a) Wivigram of the standard MP model (20 iterations/atoms)

time (s)

(b) Wivigram (440 iterations/atoms)

Fig. 5.7 Standard MP model of asymmetrical harmonic test signal
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time (s)

Fig. 5.8 Sonogram of resynthesis after extracting the harmonic structure
and applying vibrato
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5.2.2 Source-Inspired Sub-Dictionaries

In a different approach, we were concerned with the pre-processing capacity of SpecIMP.

Here, with respect to the specification of dictionaries suited to the decomposition of sig-

nals featuring a particular sound source. The further partitioning of such a dictionary be

accomplished to target a particular note of an instrumental source. We refer to a construct

of this type as a Source-Inspired Sub-Dictionary (SISD)

In order to obtain such dictionaries, we applied SpecIMP to a database containing a

selection of files from the McGill University Master Samples [41], where each is labeled with

the appropriate note name. In the experiments described here, we consider cello, piano,

and clarinet audio files that have been downsampled to a rate of 11025 Hz.

For each sound sample, a multiscale SpecIMP decomposition was conducted until a

SRR of 35 dB was achieved or the model ceased to improve4. Each decomposition consists

of atoms of three durations: 23 ms, 92 ms, 371 ms. Spectral peaks were deemed acceptable

if their magnitude was above -90 dB and they fell within 3 semitones of their expected

harmonic location. In this procedure, we were relatively generous with thresholds in order

to obtain a rich model as elements deemed undesirable could be pruned afterwards. This

process of pruning can be equated to a sampling of effective dictionary used by SpecIMP.

5.2.3 Comparison of Methods for Monotimbral Signal Modeling

In this subsection, we compare the performance of selected MP-based analysis strategies in

the modeling of signals consisting of isolated cello and piano notes. Here, we are interested

in how directly a particular strategy can represent a sound source and we a favour a model

that accounts for a monotimbral signal in few ideally structured and salient components.

In this experiment, we consider standard MP, SpecIMP, and standard MP using a SISD.

With regards to the two latter strategies, we examine the difference between an adaptive

estimate of spectral components and a static dictionary that constitutes a sampling of pre-

determined model. Further, these extensions are compared to a typical MP decomposition.

To be congruent with the sub-dictionary determination procedure, we have considered

decompositions using Hann atoms with three possible durations: 23 ms, 92 ms, 371 ms.

4This can be the case if the residual contains no viable spectral peaks, e.g. if the peak frequency
location lies outside the bounds defined by the inharmonicity tolerance or if peaks fall below the assigned
dB threshold.
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The generic dictionaries, to be utilized by standard MP, are specified as a union of sampled

STFT frames relative to each duration. So, regardless of the analysis target, the frequency

resolution in these dictionaries is a constant 2.691 Hz.

The dictionaries for SpecIMP were centered around the fundamental frequency cor-

responding to the note in question. Multiple configurations related to the dB threshold

for spectral peak estimation and inharmonicity tolerances were attempted throughout the

course of this experiment.

Source-specific dictionaries consist of atoms suggested by prior SpecIMP decomposi-

tions. These atoms have been quantized in terms of frequency, where the choice quantiza-

tion factor represents a tradeoff between frequency resolution and dictionary size (conse-

quently the associated computational complexity). In contrast to the frequency resolution

of dictionaries for standard MP, the sampling of the spectrum in source-inspired dictionaries

is not done at fixed bins and they exhibit a greater resolution around expected components

(see Fig. 5.9).

In the decompositions considered here, we quantized the frequencies of the SpecIMP

decomposition using a baseline of 0.11025 Hz, that is 0.001% of the sampling rate. Fur-

thermore, the magnitude coefficients determined in the preceding SpecIMP decompositions

were used to further prune the members of the dictionary. Here, we assigned a threshold

of -60 dB to the L2 norm of the atoms determined by SpecIMP.

In this experiment, the decomposition targets were selected piano and cello samples

from the RWC database[25]. Each represents a different configuration with the follow-

ing parameters: instrument, note, performer, playing style, and playing dynamic. These

configurations are summarized in Tab. 5.1.

For each sound sample and each decomposition strategy we initially conducted a low

order approximation of 100 individual components. We chose to stop at this point, as the

decay of residual energy has been proven to decay exponentially in MP and, in this ex-

periment, we are primarily concerned with how a given dictionary/decomposition strategy

behaves towards highly-correlated signal components. However, for MP and SpecIMP we

later compared a higher order estimate. Here, the latter is in fact 100 iterations the spectral

pursuit, that is the resultant models consist of 100 ordered structures.

The results of the experiment are displayed in Tabs. 5.2 and 5.3. Here, the upper table

shows decompositions with a breaking condition at 100 individual components (atoms) and

below decompositions where the breaking conditions were set at a SRR of 35 dB, as well
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(d) inst=piano, f0=261.63 Hz (detail)

Fig. 5.9 Unique frequencies in source-specific dictionaries.

Index Instrument Note Performer Playing Style Dynamic

1 cello C2 1 Normal Forte
2 cello E2 1 Normal Forte
3 cello G2 1 No Vibrato Mezzo
4 cello F#5 1 No Vibrato Mezzo
5 cello A3 3 Normal Forte
6 piano A#1 1 Normal Forte
7 piano G7 1 Normal Forte
8 piano F5 1 Stopped Mezzo
9 piano F2 3 Normal Forte
10 piano C6 3 Normal Mezzo
11 piano C4 2 Normal Forte

Table 5.1 Summary of sound sample parameters
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MP SISD-MP SpecIMP (100 comp.)

Index D B SRR ISD (×103) D B SRR ISD (×103) D B SRR ISD (×103)

1 155228 100 12.99 18100.75 199254 100 13.15 20329.21 5480 100 (5) 7.13 4410.84

2 92852 100 19.24 29073.03 104714 100 19.76 21157.80 3320 100 (5) 5.65 8843.39

3 175635 100 18.375 9967.12 31617 100 17.06 10340.64 6210 100 (5) 2.17 415.35

4 143109 100 17.76 359.09 70809 100 17.03 224.26 5070 100 (20) 16.635 361.82

5 169258 100 10.84 3959.70 62037 100 10.81 6180.12 5980 100 (13) 6.25 4252.01

6 166709 100 5.98 11834.54 147528 100 6.41 9355.42 5870 100 (5) 2.73 8278.57

7 28683 100 12.71 142.30 5124 100 5.78 63528.72 1170 100 (34) 12.9 70.68

8 20268 100 28.87 25.34 20386 100 25.11 286.74 840 100 (30) 27.32 18.04

9 149105 100 8.57 5896.62 165392 100 9.20 243102.54 5270 100 (4) 3.29 5029.70

10 31749 100 22.92 8.00 40386 100 15.46 723.69 1230 100 (58) 19.28 6.14

11 112494 100 17.01 846.41 111041 100 16.38 2714.44 4020 100 (26) 17.51 562.54

Table 5.2 Low order models
(Index=corresponding sample in Fig. 5.1, D=dictionary size, B=book size
(with no. of structures in parentheses where appropriate), SRR=signal-
residual-ratio, ISD=Itakura-Saito distance)

MP SpecIMP (100 struct.)

Index D B SRR ISD (×103) D B SRR ISD (×103)

1 155228 2011 35.01 26.06 5480 4133 (100) 35.02 7.71

2 92852 1358 35.00 157.26 3320 3515 (100) 35.03 23.77

3 175635 908 35.00 65.06 6210 1978 (100) 35.27 15.08

4 143109 1649 35.00 0.38 5070 1075 (100) 27.62 22.35

5 169258 1728 35.00 0.32 5980 2314 (100) 30.49 0.12

6 166709 3367 35.00 5.36 5870 4344 (100) 32.57 1.06

7 28683 1065 35.01 0.0004 1170 1562 (100) 33.47 0.01

8 20268 202 35.01 7.88 840 221 (100) 34.10 3.173

9 149105 3352 35.01 0.92 5270 3439 (100) 28.67 0.19

10 31749 358 35.01 0.74 1230 168 (100) 23.71 5.27

11 112494 740 35.01 2.26 4020 1370 (100) 26.45 0.24

Table 5.3 High order models
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as a maximum of 100 structures in the case of SpecIMP. In terms of the book size in the

SpecIMP cases, the numbers in parentheses denote the number of structures, i.e. groups of

atoms.

The measurements used to gauge the effectiveness of the model are the SRR (specified

in Eq. 5.1) and the Itakura-Saito Distance (ISD), which is defined as

ISD
(
P [k] , P̂ [k]

)
=

1

K

∑
k

P [k]

P̂ [k]
− logP [k]

P̂ [k]
− 1 (5.2)

for discrete power spectra P [k] and P̂ [k]. We found the ISD to be of interest for our

purposes here, as it was developed as a perceptual measure of the distortion between a

spectrum and its approximation[46].

Interpreting the results of this experiment, the measurements (i.e. SRR and ISD) con-

trast the decomposition strategies employed by MP and SpecIMP. MP, which extracts one

atom per iteration and looks only to minimize the energy of the residual as much as pos-

sible, was typically able to achieve higher SRR compared to SpecIMP in both low and

high order models. In the high order model, MP also yields a more sparse representation

relative to SRR. On the other hand, SpecIMP, which extracts a vertical structure at each

iteration was almost always able to achieve a lower ISD. For our purposes, this feature

is significant as we are primarily interested in meaningful intermediate representations for

analysis/synthesis and we consider the ISD (along with the SRR) to be a better indication

of the effectiveness of a model in this regard than the SRR alone. So, in the application

of our technique, this experiment has demonstrated that we sacrifice a relatively high SRR

for spectral similarity and a structured representation.

The exceptions where MP exhibited a superior performance in terms of ISD are ob-

served in the case of piano notes that exhibit noise-like characteristics, e.g. the sound of

the hammer, or the dense spectral content associated with sympathetic resonance below

the fundamental. Though able to account for broadband signal features around partials,

these features were difficult for SpecIMP to account for, e.g. sample nos. 7 and 10. Sim-

ilarly, sample no. 4 contains a substantial noise-like component, which was not efficiently

accounted for by SpecIMP, explaining its relatively poor performance in modeling this

sample.

As a follow-up experiment to test whether or not SpecIMP is able to account for noise-
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like features in a transient if the analysis was configured differently, we added sets of Hann

atoms with relatively short durations (1.5 ms and 6 ms) to the SpecIMP dictionary. Fur-

ther, we added a set of FOF atoms with a relatively brief rise time (3 ms). We performed

two decompositions of sample nos. 7 and 10. First, with breaking condition of 100 indi-

vidual components and second with a breaking condition of a 35 dB SRR. The results of

this experiment are shown in Tab. 5.4. We observe that the decomposition of these sound

samples using SpecIMP with augmented dictionaries was superior than their MP counter-

parts in the previous experiment in terms of ISD and comparable in terms of SRR. Also, we

notice that these samples are more effectively described by structures containing relatively

few broadband elements. This is unsurprising, as these sounds are representative of a brief

decay time, i.e. there is minimal resonance or energy concentration around partials.

SpecIMP (100 comp.) SpecIMP (35 dB)

Index D B SRR ISD (×103) D B SRR ISD (×103)

7 23380 100 (25) 12.6 30.2 23380 1244 (320) 35.01 0.00001

10 24400 100 (39) 17.64 1.31 24400 1441 (846) 35.01 0.007

Table 5.4 Results of follow-up experiment

The results associated with SISD-MP were inconsistent, not showing any clear advan-

tage in terms of SRR or ISD. There were instances where a given model performed better

in terms of a measurement, however there were also examples where it performed quite

poorly (especially in terms of the spectral measure). This deficiency is possibly related to

the sampling of the prior models, or their analysis parameters. For instance, we notice that

the performance of SISD-MP was comparable (and occasionally superior) to MP for the

cello samples. In this way, the difficulty associated with noise-like features in SpecIMP was

passed to the SISD. Further, as demonstrated by the follow-up experiment, the minimum

scale of 23 milliseconds was not sufficiently short to span the transient region of the piano

notes in an effective way.

Another possible shortcoming pertaining to the SISDs could be the material from which

the prior models were built, if for example the database was not adequately representative.

In light of these limitations, we conducted the remainder of the experiments in this chapter

taking advantage of the adaptive and structured nature of SpecIMP.

In the experiment presented in this section, the models obtained via SpecIMP were

less sparse than those of a traditional MP. However, in the contexts of targeted analysis
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stemming from symbolic sources and building perceptually-motivated intermediate repre-

sentations of audio we have chosen to develop SpecIMP further in the experiments that

follow. This is due to its structured nature, its performance in terms of ISD, and its reduced

computational complexity.

5.2.4 Sound Source Modeling in Mixed Signals

While SpecIMP is able to model structures with varying degrees of harmonicity (or mixtures

thereof) it is not able to resolve spectral components that fall within the bounds defined

by an inharmonicity tolerance that could have originated from different sources. In this

subsection we demonstrate that the SISDs, though not demonstrably superior for sound

modeling, can be used to obtain instrument-specific structures for analysis. We have tested

these constructs in the task of separable source modeling for synthesis in a simple case

where the partials of the sources do not overlap substantially.

In this experiment, SISDs were obtained according to the method described in Sec. 5.2.2.

However, in this case, a combination of k -means clustering and threshold-based pruning

was used to define instrument-specific analysis structures. A selection of instrument-specific

structures are shown in Figs. 5.10 and 5.11.

As in SpecIMP, a set of atoms is extracted at each iteration. However, in contrast to

that approach, in this case the dictionary is static (i.e. not adapted to the residual) and

each component of an analysis structure is associated with a an amplitude scalar α. In

order to permit the comparison of structures in a decomposition using the greedy heuristic

of MP, the energy of each group has been normalized prior to analysis such that
∑

k α
2
k = 1,

where k is an index over the components of a structure.

Two mixtures containing single clarinet and cello notes were made using materials from

the McGill University Master Samples. The simple nature of these targets is indicative of

our motivation, where we are concerned here with an invertible model of separable parts

as described in Ellis and Rosenthal’s criteria for desirable mid-level representations [19],

rather than only classification.

In this experiment, each mixture was modeled with a dictionary specified as the union

of the appropriate elements for each source and note. This is to say that the cello and

clarinet analysis structures were considered over the course of the same decomposition.

For each mixture, we extracted a total of 100 structures. The results of this procedure
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Fig. 5.10 Selected cello analysis structures and their spectra
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Fig. 5.11 Selected clarinet analysis structures and their spectra

Mixture Cello Part Clarinet Part

Mix. Index Book SRR ISD (×103) Book SRR ISD (×103) Book SRR ISD (×103)

1 1079 (100) 17.34 715.25 564 (52) 1.2 0.8 515 (48) -3.62 1.32

2 1123 (100) 17.39 485.121 528 (36) -5.24 1.775 595 (64) -3.03 0.54

Table 5.5 Results of separation by instrument-specific analysis structures
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time (s)

(a) Cello (G#2, 103.826 Hz)

time (s)

(b) Clarinet (C5, 523.25 Hz)

time (s)

(c) Clarinet (D5, 587.329 Hz)

Fig. 5.12 Components of target mixtures

are summarized in Tab. 5.5. Interpreting these figures, and in comparison to the previous

experiment, we note that the ISDs related to the extracted parts are relatively low, implying

that there is a fair degree of spectral similarity between separated source and the unmixed

target. On the other hand, the SRR associated with the extracted sources is quite poor.

Furthermore, the time-domain waveforms of the extracted sources are noticeably different

from the originals, substantially so in the case of the cello. This feature points to an

interesting and somewhat unexpected feature of these models. In the case of the cello

extraction, the vibrato of the target has been largely neutralized. We attribute this feature

to the clustering stage of the preprocessing procedure, which acted to flatten any variation

in the prior model. Also, we notice that essentially all aspects associated with noise profile

of a sound source are left in the residual.

As with the performance of the SISDs in the previous experiment, we suspect that the

instrument-specific analysis structures were overly rigid in practice. In this sense, it may be

preferable to assume a purely harmonic model, as in [34], so that the fundamental frequency

could be specified arbitrarily. However, this implies the use of a large dictionary, which is

a detrimental feature associated with the technique due to the computational complexity

involved.

In this subsection we have demonstrated the application of SpecIMP to the definition

of instrument-specific analysis structures. Further, these structures have been tested in the

separable analysis/synthesis of sound sources in two simple mixtures. Though the resultant

models fall short of being audibly convincing, they constitute a second-order structured and

invertible representation. That is, the model is divisible into sound source metastructures,
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(a) Sonogram of Cello G#2 and Clarinet C5 mixture no. 1
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(b) Sonogram of Cello G#2 and Clarinet D5 mixture no. 2

Fig. 5.13 Target mixtures
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(a) Mixture no. 1
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(b) Mixture no. 2

Fig. 5.14 Cello signals extracted from mixtures
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(a) Mixture no. 1

1 2 3 4 5
time (s)

1000

2000

3000

4000

5000

6000

fr
e
q
u
e
n
cy

 (
H

z)

64

56

48

40

32

24

16

(b) Mixture no. 2

Fig. 5.15 Clarinet signals extracted from mixtures
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each consisting of ordered sets of atoms. It is our belief that even low fidelity models

of this nature could present opportunities in the application of effects processing, e.g.

spatialization.

5.3 Symbolic Representations for Dictionary-Based Signal

Analysis

In the experiments presented in the previous section, we assumed knowledge of the fun-

damental frequency and source associated with the target sounds. However, in a practical

setting, how can this high-level information be obtained and incorporated applied to mu-

sical signal modeling?

Rather than attempt to determine pitch or other relatively symbolic attributes from

the signal itself, here we discuss a top-down approach to signal analysis starting from a

symbolic representation. In this section, we are motivated by the qualitative description

of sound in terms of separable objects and we have treated a symbolic representation as a

starting point for the dissection of sounds into invertible structures with varying degrees

of abstraction. In this section, we have tailored sets of analysis functions according to a

given musical context using a score-based representation.

5.3.1 Visualization of Structured Decompositions

Prior to the experiments, we present our method for visualizing structured models devel-

oped in conjunction with the analytical techniques discussed in this subsection.

In contrast to the predominantly signal-based visualization of a decomposition by wivi-

gram, we have developed a technique that retains some of the properties of the former but

is more oriented towards a symbolic interpretation of musical sound. This technique is

accomplished by the superposition of the sum the scaling coefficients associated with each

structure in the model around its fundamental frequency. That is, this method of visu-

alization is made possible due to the embedded structure of our decomposition strategy

and is reminiscent of a piano roll MIDI editor found in many commercial music sequencing

programs.

On the other hand, our method also depicts several signal-based characteristics of a

model. For example, rather than discrete notes, we observe clusters of spectral structures
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that are specified below the note level 5. Typically, these structures have a more precise

time-frequency location than a score-based representation. In our implementation, the res-

olution of these axes has been parameterized. So, in order to obtain a visualization closer

to a MIDI representation, the frequency resolution can be reduced to a semitone. Con-

versely, a high frequency resolution yields a visualization similar to a log-scale wivigram.

In a related feature, unlike a purely symbolic depiction, the approximate bandwidth of

the fundamental atom of a structure is shown with the vertical dimension of the rectan-

gle. Following the log-scale convention of musical notation, the vertical dimension of each

rectangle is scaled appropriately.

To demonstrate our method of visualization, we performed a score-informed decompo-

sition of an excerpt from the first cello suite (henceforth referred to as BWV1007) [21]. The

score representation of this excerpts is given in Fig. 5.16a. By way of contrast, we show

the audio waveform associated with the cello suite excerpt in Fig. 5.16b and emphasize

that, in this section, we seek a visualization that falls somewhere between the two. The

application of our technique to a model of this excerpt is shown in Figs. 5.17a and 5.17b.

For comparison, a wivigram of the same model is shown in Fig. 5.18. Here, we believe that

our method represents a midpoint between commin signal and symbol visual depictions and

that through configuration of parameters its orientation can be tuned towards a desired

descriptive pole.

5.3.2 Modeling of Monophonic Musical Signals

In this subsection, we present the use of a symbolic representation to facilitate the struc-

tured atomic decomposition of a musical signal with a single sound source and melodic

line. We believed that this knowledge, along with our inductive decomposition algorithm,

would contribute to a structured and invertible musical signal representation.

To test this hypothesis, we chose to model the subject of the C minor fugue from the

first book of the Well-Tempered Clavier (BWV847) [26]. The corresponding score (in the

format of a MusicXML file) was obtained from the Kern score database [53] and is depicted

in 5.19. In our system, MusicXML was chosen as the format for score representation due to

its presence in various programs related to music creation, such as OpenMusic and Finale,

as well scholarly projects, such as Kern.

5Though, setting a threshold on the display leaves only the spectral structures with most overall energy,
thus permitting a more MIDI-like visualization if desired.
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Fig. 5.16 Two common representations of BWV1007



5 Experiments 76

(a) Semitone frequency resolution

(b) 1/5 of a semitone frequency resolution

Fig. 5.17 Pseudo piano roll representations of BWV1007 demonstrating dif-
ferent frequency resolutions
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Fig. 5.18 Wivigram of BWV1007 model (detail)

After being converted into pydbm Score objects, the approximate time-frequency loca-

tions of the relevant notes were used to build dictionaries consisting of Hann atoms. Here,

the durations and onsets were suggested using the conjunction of note length information

from the score and the output of an adaptive marker generation algorithm developed for

this task. However, we did not treat these theoretical temporal features as hard constraints

since there is bound to be temporal variation when observed at the signal level. Variation

in fundamental frequency was accounted for, in part, by specifying atoms around the theo-

retical location. However, the adaptive nature of SpecIMP also accounts for this variation

within the bound of the tolerance.

In our experiment, we compared a decomposition informed by a symbolic representation

to a baseline decomposition by standard MP.

Results for the score-specific technique are shown in Tab. 5.6, where we note that the

bottom two entries contained FOF atoms (with short rise times) placed around expected

note onsets. These were included in light of the follow-up experiment summarized in

Tab. 5.4. The results of the standard MP decompositions are shown in Tab. 5.7.

In examination of these results, we notice that they are congruent with the experiment
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the countersubject in green.

Score-Informed SpecIMP

Index Dictionary Book durations tol. peak thresh. (dB) SRR ISD (×103)

1 23874 3553 (64, 256, 1024, 2000) 100 -80 15.2 2.13

2 10050 3592 (256, 1024, 2000) 100 -80 10.87 7.42

3 10030 1970 (256, 1024, 2048) 100 -90 19.67 8.52

4 19400 738 (128, 512, 2048) 100 -90 16.44 6.66

5 43090 8262 (128, 256, 1024) 1000 -100 29.54 0.37

6 16670 1962 (128, 1024) 200 -100 21.08 3.57

7 28930 680 (256, 1024, 2048) 100 -70 15.62 5.56

8 200 2005 (1024) 100 -70 -6.66 2.44

Table 5.6 Score-informed procedure
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Standard MP

Index Dictionary Book durations SRR ISD (×103)

1 184665 1000 (128, 2048) 20.45 23.1

2 276629 1970 (256, 1024, 2048) 25.51 4.83

Table 5.7 Baseline MP results

in Sec. 5.2.3 in that MP is able to achieve a higher SRR in direct comparison (Index 3 of

5.6 and Index 2 of 5.7. In this case the standard MP was also able to achieve a lower ISD.

However, we refer to the sonograms in Fig. 5.20 to illustrate how MP favours the refinement

of low-frequency components. That is, fewer of the upper partials are accounted for by MP.

Again, we believe this to be related to the durations used and SpecIMP was not able

to account for the energy of the transient. This can be contrasted with decomposition no.

8, where the dictionary consisted of only a single duration of FOF with a rise time of 3

ms. This decomposition only modeled the attack portion of each note, see Fig. 5.21, and it

achieved a relatively low ISD. Similarly, decomposition no. 1, was able to account for the

attack regions and obtained a low score.

Further, we notice that increasing the inharmonicity tolerance (here given in midicents)

improved the performance of the SpecIMP in the sense that more of the signal energy was

accounted for. However, in this case the correspondence to the score is obscured. That is,

many structures are used to account for energy around a partial. Here, we note that, in

this experiment, a high inharmonicity tolerance was required to achieve a synthesis that

was a close approximation to the original.

However, overall we prefer to develop the SpecIMP models further, as they constitute

structured representations and lend themselves to intuitive visualization, Fig. 5.22. Data

oriented in this ways also suggests further post-processing procedures, e.g. those presented

in Sec. 5.4.

In this experiment we have demonstrated that a symbolic representation associated

with a musical signal can guide dictionary-based analysis. Similar to how knowledge about

the time-frequency characteristics of sounds and window functions can facilitate parameter

configuration in low-level analysis methods such as the STFT, knowledge about the ex-

pected features of sources and musical context can facilitate analysis methods for mid-level

representation. In terms of computation, it is certainly possible to proceed without this

knowledge. However, the use of spectrally-oriented analysis structures, which can be tuned
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Fig. 5.20 Sonogram comparison of decomposition strategies (1970 individ-
ual atoms each)
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Fig. 5.21 FOF-only decomposition
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Fig. 5.22 Pseudo piano roll representation of BWV847 fugue subject mode
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to approximate quasi-harmonic structures, can benefit from a symbolic representation as it

limits the scope of the search. Furthermore, considering this type of model from the per-

spective of musical symbols can yield an intuitive visualization of note-like regions while

depicting signal characteristics such as energy and bandwidth.

5.3.3 Application to Polyphonic Musical Signal Analysis

Following the results of the previous experiment, we applied the use of a symbolic repre-

sentation to the analysis of polyphonic audio. Preliminary tests showed that similar results

to the previous section could be obtained. That is, with a sufficiently wide tolerance, the

score-informed procedure could obtain a model of varying quality depending on parame-

ters. So, we turned instead to a more specialized and difficult task: the separable modeling

of individual parts in a musical signal6.

In this test, we focused on BWV847 (measures 3 and 4 in Fig. 5.19) and the goal

was to obtain a separable model of the transposed fugue subject and the counter subject.

However, in this case we were not able to model each part separately with a high degree of

quality since the region associated with the inharmonicity tolerance was either too wide, as

to extract components of both parts in individual structures, or too narrow, as to exclude

components that should be in a structure. However, we were able to obtain a separable low

order model consisting of 1092 individual atoms, where the measurements associated with

the model are an SRR of 16.14 and an ISD of 57.37× 103. The piano roll visualization of

this model is shown in Fig. 5.23.

As regards SpecIMP, we have determined two difficulties encountered in the task of

part separation. First, is the presence of overlapping elements, notes (in the symbolic

representation) and partials (in time-frequency). A related difficulty is the tuning of the

inharmonicity tolerance such that the spectral components are assigned to the appropriate

fundamental frequency, a problem if the tolerance is too high, and spectral components are

not missed, a problem if the tolerance is too low.

6Here we use part to indicate a melodic line in a polyphonic monotimbral mixture
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Fig. 5.23 Pseudo piano roll representation of BWV847 countersubject re-
gion

5.4 Agglomerative Clustering of Spectral Structures

In this section we apply agglomerative clustering stage to first-order structured models ob-

tained by SpecIMP decomposition. In these techniques, we follow the procedure presented

in [68]. However, in contrast to this study where the comparison occurred at the atomic

level, we apply further grouping procedures to predetermined sets of atoms. Here, we iden-

tify two features of our approach that we believe to be advantageous in comparison to the

atom-level technique. First, is a practical detail about implementation. This agglomera-

tive family of techniques is built upon the computation (and storage) of N2 (dis)similarity

measurements7, rendering them unsuitable for large problems. Though typically consist-

ing of considerably fewer elements than a time-domain representation, a model obtained

by a DBM can still be comprised of a sufficiently large number of atoms to render this

computation impractical. On the other hand, comparison at an intermediate layer of the

model can greatly reduce the computational load8. As regards what we consider to be the

second overall advantage, we notice that the metastructural level describes elements that

approach symbolic entities.

7Though, as mentioned in the next subsection, typically only half of these need to be computed.
8As an illustration, we refer to the difference between individual structures and components in the

SpecIMP models in Fig. 5.3.
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5.4.1 Agglomerative Algorithm

The two techniques described below are based on a single algorithmic foundation where the

differentiating feature is the method of comparing structures. Here, we have implemented

an algorithm that traverses a dissimilarity matrix and clusters structures deemed similar

into metastructures, which is likely quite similar to the algorithm used in [68].

This algorithm is recursive over a binary dissimilarity matrix M where the lower triangle

is identical to the upper triangle and/or not considered9.

A metastructure is formed by a process of chaining together elementary structures.

That is, for each element, each element deemed similar to it is added to the group, as is

each element deemed similar to the second element and so on until no elements remain. It is

important to note that an element appears only once in the resulting set of metastructures,

i.e. each structure retains its uniqueness and a concatenation of the metastructures is

equivalent to the initial model.

5.4.2 Note Region Metastructures

As mentioned in the previous section, in the context of a SpecIMP decomposition, a note

is a symbolic entity that can be associated with a set of structures. Operating under the

assumption that these structures are comprised of a number of quasi-harmonically related

components above a fundamental frequency, we are able to agglomerate them according to

a measure of dissimilarity. In the technique described here, we reduce each structure to a

point in two-dimensional time-note space. We then compute the dissimilarity matrix as the

Euclidean distance between each pair of structures. Optionally, a weighting coefficient can

be applied to each parameter. An example of the result of this process is shown in 5.24.

Through the tuning of weight coefficients we are able to consider the neighbourhood

around a cluster with a varying degree of tolerance for deviation in fundamental frequency

and temporal location. For example, the metastructures have been constructed with a

localized tolerance for a fundamental frequency within roughly a whole tone. As such,

the recurring two and three note motives of the fugue subject are agglomerated into a

relatively high-level construct. Applying more weight to the frequency parameter results in

metastructures that resemble individual notes. Though we observe some distortion when

notes overlap. Selected metastructures from each procedure are shown in Fig. 5.25.

9In the case of the ISD employed in Sec. 5.4.3 the measurement is asymmetrical.
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Fig. 5.24 Binary dissimilarity matrix of note-like properties in a BWV847
model

In this subsection we have demonstrated how the conjunction of a structured represen-

tation of audio and a symbolically-inspired agglomerative process can be used to obtain

second-order structures exhibit note-level organization.

5.4.3 Metastructures Based on Spectral Similarity

In the literature, structured representations have often considered source as a fundamental

identity, e.g. it is a criterion of a mid-level representation. In some cases, a source (in the

causal sense) may not exist, e.g. electronic music where it has been suggested that a type of

symbolic representation could be of use [64]. Alternatively, even if there is a causal source,

perhaps an organization stemming from a more abstract description could be of interest,

e.g. to the targeted application of audio effects.

In [68], the phase-invariant complex correlation coefficient is used to judge the similarity

of atoms in the decomposition. Here, we agglomerate the spectral structures determined

by a SpecIMP decomposition according to a perceptually-motivated measure of spectral

similarity, the ISD. In order to compare this technique to that of the previous section, we

begin with a model of BWV847. The associated distance matrix is shown in Fig. 5.26 and
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Fig. 5.25 Selected metastructures, where the agglomerative process associ-
ated with the left column targeted adjacent note groups and the process as-
sociated with the right column targeted individual notes. The first row shows
the concatenation of all metastructures in the respective process, though they
are identical, to illustrate the relationship between the extracted components
and the model.
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selected metastructures in Fig. 5.27.

A similar technique was applied to a segment of electroacoustic music, namely an excerpt

from Poème Électronique by Varèse. Selected metastructures from this procedure are shown

in

Fig. 5.26 Binary self-similarity matrix for a model of BWV847
(ISD > 500× 103)

The result of this procedure is a structured representation that is not tied to sound

source or a specific note, but rather a ‘transcription’ based on spectral units. In terms of

the examples produced here, we contrast the metastructures obtained from BWV847 to

their counterparts in the previous section. Specifically. those determined by the measure

of spectral similarity have a more synthetic character. This is owing to the fact that the

structuring method points to the recurrence of similar spectra rather than the approxima-

tion of a symbolic entity whose definition is found outside of the system. Depending on the

task at hand, we believe that both of these intermediate representations could be useful

in sound signal processing. In our second example, there is little reference to constituent

symbolic entities and our technique provides an invertible description of the organization

of materials with similar spectra.

To underscore the relationship to the conceptual frameworks presented in Ch. 2 and

our OO framework, each metastructure is represented in data as a new SpectralBook

object that is the product of partitioning of the initial model. In this way, we construct a
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Fig. 5.27 Selected spectrally-similar metastructures obtained from a model
of BWV847
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Fig. 5.28 Selected spectrally-similar metastructures obtained from a model
of an excerpt from Poème Électronique



5 Experiments 90

hierarchical representation that is in some sense analogous to a score, albeit less referential

in terms of its constituent symbols.

5.5 Conclusion

In this chapter we have presented experiments concerned with structured and invertible

representations of musical signals. Over the course of this study we have observed that an

adaptive technique, based on a simple inductive principle, typically resulted in a superior

performance by a perceptual measure of spectral similarity than a generic decomposition/-

dictionary or a standard decomposition algorithm using a dictionary obtained by sampling

the effective dictionary of the adaptive process. Furthermore, when combined with infor-

mation about a musical context in score-like form, this approach to analysis was able to

yield a structured intermediate representation in between a signal and a score. This feature

was demonstrated through the development of a method of visualization that mixes repre-

sentational modalities as well as the further agglomeration of structured models into sound

objects that approach (or overlap with) a conventional symbolic representation of music.

Moreover, an example was given where an excerpt of electro acoustic music, without clear

causal features, was divided into classes of spectral units.
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Chapter 6

Conclusion

In this thesis, we have approached the reconciliation of symbolic and signal interpretations

of musical audio by customizing the stages of dictionary-based analysis/synthesis proce-

dures. Further, we have provided an operational set of tools in an integrated environment

called pydbm.

Through the consideration of two external high-level features, namely sound source

and notated musical context, we have shown that a top-down approach to musical signal

processing can yield a structured intermediate representations of sound based on separable

objects. Moreover, each method suggests future avenues of inquiry.

We have demonstrated that a supervised strategy, built upon a general principle re-

garding the relatedness of simultaneous quasi-harmonically components and iteratively re-

finement of the effective dictionary, can be integrated into a Matching Pursuit-derived

algorithm. In our experiments, this technique was consistently able to achieve a lower

Itakura-Saito distance than a comparable generic technique.

An extension to this spectrally-inductive approach would further parameterize the struc-

ture rather than the atom. That is, in the approach reported here, we specify the param-

eters of an atom that we believe would be a viable seed from which to obtain a vertical

structure. Other parameters that influence the character of the structure; specifically the

inharmonicity tolerance, maximum number of spectral components, and minimum energy

threshold are set as global variables of the pursuit. In examination of the results of the

experiments presented here, and working with the software framework in general, we note

that our approach was at times inflexible and could be generalized by specifying the pa-

2011/12/13
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rameters of the structure for each seed atom in the dictionary. For example, different

structures could be specified using different inharmonicity tolerances. We believe that this

could be particularly useful to specify structures oriented transients in the same pursuit

as those oriented towards tonal elements. For example, in our experiments the effective

modeling of transients typically called for a higher degree of inharmonicity tolerance and

fewer components in comparison to tonal features. Further, we believe this extension to be

conceptually appealing in that all stages of the technique would occur at a higher level of

abstraction in comparison to a generic method of atomic decomposition as well as being a

reasonable tradeoff between adaptive and static strategies.

From a set of spectrally-inductive pursuits we were able to define source-inspired dic-

tionaries and instrument-specific analysis structures. Though not a perfect model in the

perceptual sense, the latter of these was able to provide a separable and invertible model

of sources in our simple mixtures. In this regard, we speculate that a technique built solely

on spectral peak frequencies and amplitudes learned from a data base of examples will be

insufficient to completely model a sound source in a meaningful and malleable way. Indeed,

these structures describe but one facet of instrumental sounds and we imagine that they

could be used in conjunction with other techniques, e.g. some source-specific description of

noise profile.

One motivation behind a structured approach to analysis/synthesis was to facilitate

abstract classification of separable objects in an audio signal. Stemming from a struc-

tured model, we employed two measurements of distance to agglomerate elements into

metastructures that approach symbolic entities. Here, the first was more oriented towards

a score-based representation and could be extended to consider other symbolic musical

features, e.g. chords. In general, we believe that a symbolically-oriented post-processing

procedure could be developed to re-evaluate the accuracy of a decomposition informed by a

score and perhaps that this strategy could be employed to help the system in a polyphonic

setting.

The second agglomerative approach made less reference to symbolic considerations, but

rather constructed metastructures based on spectral similarity. This technique could be

extended to consider temporal organization as well, i.e. to produce a time-localized mea-

sure of spectral similarity between structures. We believe such a model could be used

to construct a state-transition network between spectral classes and provide a kind of in-

vertible counterpart to the spectromorphological conceptual model, perhaps suitable for
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a score-like visualization of electroacoustic music. Further, having determined metastruc-

tures, we believe that (spectral) similarity metrics could also be applied to that level of

organization in order to add further levels to the hierarchy. That is, a hierarchical represen-

tation of the form: individual time-frequency atoms, spectral structures, metastructures,

’metametastructures’, and so on until no further divisions can be made.

The development of these techniques suggests a symbolic method of manipulating sepa-

rable sound objects. From the outset, it was our belief that a model of this type called for a

similarly structured high-level interface in data. Toward this end we developed pydbm as an

object-oriented framework for structured dictionary-based analysis/synthesis. In Sec. 2.4.3

we presented the FORMES project as an innovative computational approach to the control

of sound synthesis1. Through the Group class (and its derived classes, i.e. dictionaries and

books) in pydbm we have applied this methodology to analysis/synthesis, where the time-

localized synthesis control parameters associated with a book approximate an analyzed

sound. We note that, although this was not the goal of this thesis, pydbm could also be

used for granular synthesis (not rooted in analysis), taking advantage of the structured and

flexible approach to manipulating sets of atoms.

However, we believe the most interesting extensions to our framework would be a further

development of the functionality and generality associated with the Group class.

As regards functionality, we imagine the utility of further operator overloading especially

as dictionary-based audio effects are developed, e.g. pitch-shifting and time-stretching.

In terms of generality, we are interested in a continuation of the formalized approach to

Group structuring and conversion between hierarchical levels. For example, a reductive

class method to ‘flatten’ a Group-derived object to a hierarchical level below returning a

new, more generic object with associated class strategies for decomposition (or synthesis).

Conversely, a chunking method to apply and shape hierarchical levels. Toward this end we

envision dictionary and book metaclasses. These would serve as class factories able to define

an Nth order hierarchical object at run time, redefining class methods as necessary. We

believe that this approach would facilitate further structured agglomerative techniques, e.g.

a nested process that continually spawns and re-organizes books of an arbitrary order until

some breaking condition is met. In terms of analysis, perhaps a method of this character

could also be applied to dictionary learning.

1We recall that FORMES provided an object-oriented and hierarchical control paradigm consisting of
time-dependent parent and child processes.
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In terms of integration into a musically-oriented software environment, the efforts re-

ported in this thesis were exploratory. That is, through participation in a collaborative

project, we have demonstrated that a framework founded on DBMs can be used in the

context of computer-aided composition. Extensions in this area would provide more trans-

parent access to analysis and synthesis constructs, e.g. facilitating algorithmic manipulation

of the sound objects defined at various structural levels.

In short, our efforts constitute a relatively early exploration of the application of

dictionary-based methods to the representation of musical audio. As these methods de-

velop further, they are bound to suggest new approaches to the representation of sound

objects. Conversely, musical sound as a rich and highly structured phenomena is likely to

remain an interesting subject for analytical techniques, thus influencing their development

and highlighting a symbiotic nature between the two disciplines.



95

Appendix A

Sound Examples

A website featuring audio examples of the material presented in this thesis is available at

http://mt.music.mcgill.ca/~boyesg/thesis_examples/frontmatter.html

To facilitate presentation, the sound examples have been divided according to the sections

of the thesis text. These correspondences are detailed below.

4.3.2 : http://mt.music.mcgill.ca/~boyesg/thesis_examples/4.3.2.html

5.2.1 : http://mt.music.mcgill.ca/~boyesg/thesis_examples/5.2.1.html

5.2.3 : http://mt.music.mcgill.ca/~boyesg/thesis_examples/5.2.3.html

5.2.4 : http://mt.music.mcgill.ca/~boyesg/thesis_examples/5.2.4.html

5.3.2 : http://mt.music.mcgill.ca/~boyesg/thesis_examples/5.3.2.html

5.4.2 : http://mt.music.mcgill.ca/~boyesg/thesis_examples/5.4.2.html

5.4.3 : http://mt.music.mcgill.ca/~boyesg/thesis_examples/5.4.3.html
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