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Abstract 

The Fluctuation-Dissipation Theorem establishes the fundamental links between thermomechanical 

noise and damping. In this paper, we bridge the gap between theory and practice by developing 

protocols for estimating dissipation in low-loss microresonators by measuring thermomechanical 

noise using laser Doppler vibrometry. The measurement does not require external actuation of the 

device, and damping can be estimated without relying upon knowledge of material properties, device 

dimensions, or structural stiffness. The power spectral density of velocity and displacement noise is 

computed using a direct method that avoids segmenting the measurements in the time domain, 

thereby avoiding any bias in the estimation of the quality factor. We demonstrate the implementation 

of the protocol by measuring damping at room temperature and low pressure in four silicon-based 

microcantilever resonators with natural frequencies ranging from 17.6 to 26.7 kHz, and quality 

factors ranging from 42 10×  to 52 10× . The accuracy of noise-based estimates is evaluated by 

comparison with values of the log decrement measured under free decay. 
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I. INTRODUCTION 

Measuring and controlling damping is essential for the design and development of resonant 

microsystems (MEMS) that are used for sensing, vibration energy harvesting, signal processing, 

precision measurements, and materials characterization (see, for example [1], [2]). A direct 

measurement of dissipation or entropy generation is difficult; instead, damping is measured by 

monitoring the dynamics of the oscillating structure. Three methods are commonly used: (i) subject 

the system to time harmonic excitation and measure the phase angle, ,φ  by which the excitation 

leads the response; (ii) subject the system to time harmonic excitation and measure the quality factor, 

Q, from the half-power bandwidth of resonance at steady-state; and (iii) permit the structure to 

oscillate freely after an initial impulsive excitation and measure the log decrement, δ , from the 

decaying amplitude [3]. These measures can be related to each other, and to energy dissipation, when 

damping is small ( 0.1φ < ) and linear (that is, the magnitude of dissipation is independent of the 

amplitude of oscillation). To an excellent approximation [3],[4], 

1
2

WQ
W

δφ
π π

− ∆
= = = ,     (1) 

where W∆ is the energy dissipated per cycle and W is the maximum elastic energy in the structure 

during the vibration cycle. For all three methods, the measurement requires the structure to be 

actuated, either by integrating an actuator with the microsystem or by employing a shaker. This 

requirement can pose practical difficulties, especially for devices with complicated geometries and 

mode shapes, and introduce undesirable nonlinearities in the response of the microsystem.  

In this paper, we study a technique that does not require any external actuation. The essential idea is 

to estimate damping by measuring thermomechanical noise (also called mechanical-thermal noise). 

The link between thermomechanical noise and damping is established by the Fluctuation-Dissipation 

Theorem [5],[6]. A qualitative and intuitive understanding may be gained by viewing dissipation as a 

means of energy transfer from the mechanical structure to its thermal environment (or thermal 

reservoir), and from the reservoir to the structure. When a periodic force is applied on the structure, 

mechanical energy is converted to heat due to damping during each cycle of vibration. The structure 

can maintain its equilibrium temperature by transferring heat to the many microscopic degrees-of-

freedom of the reservoir. Conversely, in the absence of any external force, the structure will exhibit 
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spontaneous random displacements around its equilibrium position due to an injection of energy from 

the reservoir. 

The Fluctuation-Dissipation Theorem can be combined with the Equipartition Theorem to express 

thermomechanical noise as a function of damping [5]-[8]. Such expressions have been used to 

estimate the effects of damping on device performance (see, for example, [2], [9]), but the inverse 

problem of estimating damping by measuring thermomechanical noise has received relatively little 

attention, particularly for characterizing low-loss high-Q micromechanical resonators that are of 

interest for many applications. Any measurement of noise invariably contains contributions from 

several sources (building vibrations, electrical line noise, electronic noise, optical noise), and every 

contribution must be identified and taken into account in order to determine the thermomechanical 

noise spectrum. Some sources can be eliminated by design (for example, using air tables to isolate 

the specimen from building vibrations) and others (such as electronic and optical noise) can be 

excluded by signal processing.  

Thermomechanical noise can be measured using custom-built laser interferometers [10]-[13], 

position sensitive photodetectors (in the configuration commonly employed in atomic force 

microscopes) [14]–[19], and laser Doppler vibrometers [20]–[24]. Laser Doppler vibrometry (LDV) 

is a high-precision, non-contact interferometric technique and commercial vibrometers are available 

for characterizing the out-of-plane modes of micromechanical structures [25]. LDV is now widely 

used to study the dynamics of MEMS; for example, the stiffness of micromachined cantilevers used 

for scanning probe microscopy can be estimated by measuring thermomechanical noise using LDV 

[21]-[24]. It is therefore timely to extend these capabilities to noise-based estimation of damping in 

high-Q microresonators. 

The remaining sections of this paper are organized as follows. Section II establishes the theoretical 

foundations of the technique and presents a protocol for estimating damping from thermomechanical 

noise. The protocol is implemented by measuring damping in a set of four silicon-based 

microcantilever resonators with natural frequencies ranging from 17.6 to 26.7 kHz. The accuracy of 

noise-based estimates is assessed by comparison with values of the log decrement obtained under 

free decay. Section III describes the microfabrication and characterization of the devices; Section IV 

explains the methods used for measurement and analysis of noise; and Section V presents the main 

results of our study. 
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II. THEORETICAL FOUNDATIONS 

Let us consider the vibrations of a single mode of a linear microresonator. The elastic response can 

be modeled using a point mass m and a massless linear spring with stiffness k. The displacement of 

the mass at time t is designated x(t), and we seek the value of damping at the natural frequency 

0 (1/ 2 ) /f k mπ= . We assume that damping is small ( 0.1φ < ) and linear. Dissipation can be 

introduced into the model by adding a viscous dashpot with a damping coefficient c that is 

independent of frequency so that 0/ 2 /Q mk c m f cπ= =  [3]. Alternately, the dynamics of the 

mode can be modeled using a point mass and a complex spring with stiffness [ ]1 ( )k k i fφ∗ = + . Two 

cases are of particular interest for MEMS: (i) the Kimball-Lovell solid [4] with φ  independent of 

frequency, f, which is a good approximation over many decades of frequency for internal friction due 

to defect-induced anelasticity [26], [27]; and (ii) the Zener solid (also called the standard anelastic 

solid) with a single relaxation peak of the form [3] 

( )2
2( ) ,

1 2

ff
f

π τφ
π τ

= ∆
+

     (2) 

where ∆  and τ are the characteristic relaxation strength and relaxation time, respectively. Examples 

of mechanisms that exhibit a single relaxation peak include thermoelastic damping in monolithic 

beams [28], [29], Akhiezer damping [30], and Gorsky damping [31]. The phase angle and quality 

factor are related to each other, and to the log decrement, by Eq. (1). 

Now, let the resonator establish thermodynamic equilibrium by interacting with a heat reservoir. 

According to the Fluctuation-Dissipation Theorem, the presence of dissipation in the mechanical 

system will lead to spontaneous random fluctuations of the value of x(t) [5], [6]. The displacement 

noise can be conveniently analyzed in the frequency domain using the power spectrum. Denoting the 

Fourier transform of x(t) by ( )X f , the one-sided power spectral density (PSD) is 2( ) 2 ( )xS f X f=  

with units of m2/Hz. Following the approach of Saulson [7] and Levin [8], the PSD of displacement 

noise can be expressed as 

B
2 2( ) [ ( )]x

k TS f Y f
fπ

= ℜ ,     (3) 
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where kB is Boltzmann’s constant, T is the absolute temperature, ℜ  denotes the real part of a 

complex function, and ( )Y f is the mechanical admittance obtained by computing the response 1( )x t  

when a force 1( )F t is applied to the mass. If 1( )X f  and 1( )F f  denote the Fourier transforms of the 

displacement and force, respectively, then 

1

1

( )( ) 2
( )

X fY f i f
F f

π= .     (4) 

The mechanical admittance can be readily computed by applying a time-harmonic force on the mass. 

Accordingly, for viscous damping,  
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and for the complex spring,  
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In these expressions, 0( / )f fΩ =  is the non-dimensional frequency ratio.  

Equations (5) and (6) provide a direct and explicit link between thermomechanical noise and 

damping. Further, in the vicinity of the natural frequency ( 1Ω  ), both expressions reduce to a 

simple Lorentzian function given by 
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     (7) 

Expressions for the PSD of velocity noise can be obtained from (5)-(7) by noting that  

2 2
v ( ) 4 ( )xS f f S fπ=       (8) 

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available athttp://dx.doi.org/10.1109/JMEMS.2013.2286199

Copyright (c) 2013 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



6 
 

As an illustrative example, consider the effects of damping on thermomechanical noise for a 

microresonator with a stiffness of 10 N/m and natural frequency of 20 kHz (Figure 1). The PSD was 

computed by setting 1 43 10Q φ −= = × in Equations (5) and (6) for viscous damping and the Kimball-

Lovell solid, respectively. For the standard anelastic solid, the values of ∆  and τ were chosen to 

obtain  1 43 10φ − = ×  at 20 kHz. As expected, the curves collapse to a single peak at resonance

( )1Ω = .  

 

Figure 1. Power spectral density of displacement (in units of m2/Hz) and velocity (in units of 
(m/s)2/Hz) for a representative microresonator with stiffness of 10 N/m, natural frequency of 20 kHz, 
and quality factor of 43 10× . Three different models for damping are shown: viscous damping is 
denoted by the black curves; Kimball-Lovell solid (complex spring with φ independent of frequency) 
by the blue curves; and the standard anelastic solid by the red curves.  

 

Equations (7) and (8) suggest a simple protocol for estimating damping at the natural frequency: (i) 

measure the time series of noise associated with displacement or velocity; (ii) compute the power 

spectral density; and (iii) fit the resonance peak to obtain 1Q φ −= . Values of beam geometry, 

material property or structural stiffness are not required for measurement or analysis, and damping 

can be estimated without detailed knowledge of the underlying mechanisms of dissipation.  
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III. MATERIALS AND STRUCTURES 

Four high-Q microcantilever devices with fundamental natural frequencies ranging from 17.6 to 26.7 

kHz were selected for measurement and analysis. The cantilevers are attached monolithically to a 

large supporting frame. Specimen 1 is a bare silicon microcantilever. Specimens 2 to 4 are composite 

structures consisting of an array of aluminum nanowires patterned on one surface of silicon 

microcantilevers. The array is patterned at the root of the microcantilever with the nanowires oriented 

along the axis of the silicon beam. The length of each nanowire is 20% that of the silicon beam. The 

thickness of the nanowires ranges from 50 to 100 nm, the width from 100 to 400 nm, and the center-

to-center spacing between adjacent nanowires is 1 µm. The microfabrication and characterization of 

the microresonators have been described in detail previously [27], [32]-[36], and the salient points 

are summarized below. 

A. Microfabrication and nanopatterning 

The microcantilevers were micromachined using deep reactive-ion etching (DRIE) of double-side 

polished, (100)-oriented commercial grade silicon-on-insulator (SOI) wafers. The device layer 

defined the thickness of the microcantilevers, the buried-oxide layer served as an etch stop, and the 

handle layer formed the supporting frame. The first step was to grow 500 nm thick layers of silicon 

dioxide on both surfaces of the SOI wafers using wet oxidation at 1100 oC. A standard 

photolithography and etching process was implemented to pattern the oxide film on top of the device 

layer. A 10 µm thick layer of a positive photoresist (AZ9245, AZ Electronic Materials) was spin-

coated on this surface and patterned. Using the silicon dioxide and photoresist bilayer as a hard mask, 

the device layer was etched by DRIE and then cleaned using oxygen plasma. Subsequently, 100 nm 

thick silicon oxide layers were grown on all exposed silicon surfaces by placing the wafer in a 

furnace. The handle layer was then patterned and etched using a combination of dry etching with 

DRIE and wet etching using tetramethyl ammonium hydroxide (TMAH) to release the 

microcantilevers. Finally, the structures were dipped in HF to remove the silicon oxide from all 

surfaces of the silicon microcantilevers.  

Specimen 1 did not require any further processing. Specimens 2 to 4 were metalized by patterning an 

array of aluminum nanowires using a lift-off process implemented using electron-beam lithography. 

The microcantilevers were spray-coated with a 390 nm thick layer of a copolymer (MMA-MAA 

EL11 (Microchem, Inc.) that was diluted with methyl isobutyl ketone, and then baked at 150 oC for 
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90 seconds. Subsequently, the structures were spray coated with 200 nm of electron beam resist 

(PMMA A2, Microchem, Inc.) and baked at 180 oC for 90 seconds. The bilayer-resist-coated 

microcantilevers were patterned using electron beam lithography (Hitachi FEGSEM SU-70) 

operating at 30 kV with beam current of 357 pA and electron doses in the range of 6-8 nC/cm. After 

development, the lift-off process was implemented by depositing thin films of aluminum using 

electron-beam evaporation at a rate of 0.2 nm/s. The nanowires exhibit a columnar grain structure; 

the in-plane grain diameter is lognormally distributed with a median value that is approximately 

equal to the thickness of the nanowire [33].  

 

B. Measurement of log decrement 

The log decrement was measured at room temperature (23 oC) and low pressure ( 34 10−× Pa) using 

laser Doppler vibrometry. The supporting frame was mounted on a precision-machined stainless steel 

clamp,  attached to a shaker (NanoOP65, Mad City Labs Inc, WI, USA), and placed inside a vacuum 

chamber. The sensor unit consists of a laser head equipped with a 633 nm helium-neon laser and a 

built-in camera (OFV534 fiber coupled vibrometer sensor head, Polytec, Germany), and a digital 

velocity decoder (OFV5000 VD09 decoder) to process the voltage output from the sensor. The 

output of the LDV was captured using a data acquisition card (NI USB-6211, National Instruments 

Corp., USA) and recorded in LabVIEW (National Instruments Corp., USA). The laser beam has a 

diameter of 40 μm at a standoff distance of 30 cm, allowing the LDV to be positioned outside the 

vacuum chamber. A pneumatic vibration isolation table (RP Reliance, Newport Corp, USA) was 

used to isolate the chamber and measurement apparatus from ambient ground vibrations and 

pumping systems.  

The microcantilever was excited at a frequency close to, but less than, the fundamental natural 

frequency using the shaker. The amplitude of vibration was controlled to ensure that the strain in the 

structure was less than 10-5. The excitation was terminated and the free decay of the beam was 

recorded and analyzed to obtain the log decrement. The results of the measurements are presented in 

Table 1. The last column shows the effective quality factor calculated using Eq.(1). Multiple studies 

of the precision of our apparatus (~100 measurements, each consisting of a complete remount and 

pump down) indicate that the maximum fractional uncertainty in damping is 7% [27], [32]–[36]. 

Damping in the bare silicon microcantilever (Specimen 1) is due to thermoelastic damping and 
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clamping losses [32],[35]. For Specimens 2, 3 and 4, metallization due to aluminum leads to much 

higher dissipation due to grain-boundary sliding; hence, damping is a function of the thickness, 

width, and grain size distribution of the aluminum nanowires [27].   

Table 1. Geometry, natural frequency, and damping of the microcantilever devices. Specimen 1 is a 
bare silicon microcantilever. Specimens 2 to 4 are composite structures consisting of an array of 
aluminum nanowires patterned at the root of silicon microcantilevers. The dimensions of the 
nanowires are not shown in the table. 

 Dimensions of silicon 
microcantilevers 

Natural 
frequency  

Log 
decrement, 
δ  ( 7%± ) 

1Q π δ −=

( )7%±  Length Width Thickness 
Specimen 1 630 µm 300 µm 8.0 µm 26,749 Hz 51.63 10−×  419.3 10×  

Specimen 2 750 µm 300 µm 8.5 µm 21,046 Hz 55.8 10−×  45.40 10×  

Specimen 3 765 µm 300 µm 8.0 µm 19,160 Hz 52.7 10−×  411.6 10×  

Specimen 4 750 µm 300 µm 7.5 µm 17,664 Hz 41.3 10−×  42.40 10×  

 

IV. MEASUREMENT AND ANALYSIS OF NOISE 

A. Measurement of velocity time series 

Thermomechanical noise was measured at room temperature (23 oC) and low pressure ( 34 10−× Pa) 

using the apparatus and instruments described in the previous section, but without employing the 

shaker. Instead, the device was mounted on the precision-machined clamps and installed inside the 

vacuum chamber. The velocity of the tip of the microcantilever was monitored using the LDV 

without applying any external actuation. Each measurement consisted of recording the velocity time 

series for 90 seconds at a sampling frequency, sf , of 100 kHz. These values were chosen to ensure 

that: (i) the Nyquist frequency ( )0.5 sf  is much higher than the fundamental natural frequencies of 

the devices [37]; and (ii) a sufficient number (100–200) of points are collected for fitting the 

resonance peak. The latter can be increased by extending the recording time, but the measurement 

becomes more susceptible to sporadic extrinsic noise and temperature fluctuations. Hence, several 

full cycles of measurement and analysis were conducted to determine the appropriate recording time 

for our devices. Five samples of noise were recorded for each specimen. In addition, for one device 

(Specimen 3), noise was acquired for various durations from 90 to 130 seconds to quantify the effects 

of recording time on the estimate for damping. After recording, the voltage time series was imported 
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into MATLAB, filtered to remove any offset and linear drift, rescaled to velocity using a conversion 

factor of 5 mm/s/V, and numerically integrated to obtain the displacement. 

B. Power spectral density (PSD) of displacement and velocity 

The next step is to obtain the power spectral density of the displacement and velocity time series. The 

PSD of finite time signals can be estimated by segmenting the time series using an appropriate 

window function, computing the Fourier transform of each segment, and then appropriately 

reassembling the transforms. Such approaches (which include the widely used Welch periodogram 

technique [37]) are computationally efficient but suffer from spectral leakage and a bias in the 

estimation of the quality factor [38], [39]. Therefore, we employed a direct method (also called the 

Daniell method) that eliminates spectral leakage by avoiding segmenting. The underlying statistical 

concepts and numerical implementation of the Daniell method are discussed in detail in Ref. [38]. 

Briefly, a single Fourier transform of the entire time series is performed; then, the squared magnitude 

of the transform is averaged in the frequency domain by grouping adjacent frequency bins until the 

desired signal-to-noise ratio is reached and/or spectral leakage is eliminated. The number of adjacent 

frequency bins that are averaged together is called the averaging factor ( )α .  

C. Analysis of noise spectra 

 

 

 

 

 

 

 

Figure 2. Power spectral density of velocity noise (in units of (m/s)2/Hz) and displacement noise (in 

units of m2/Hz) for a measurement performed on Specimen 1. The arrows point to the fundamental 

resonance peaks. 
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Figure 2 shows a representative example of the PSD of displacement and velocity noise. The 

response contains a prominent peak at the fundamental natural frequency of the microcantilever. 

Following the discussion in Section II, this is identified as the resonance peak due to 

thermomechanical noise. A rough initial estimate of the natural frequency is usually sufficient to 

locate the resonance peak. If further verification is required, the measurement can be repeated at 

atmospheric pressure to check whether the peak broadens due to increased dissipation caused by air 

damping. 

In addition, the noise spectra contain other peaks due to building vibrations, instrumental noise, and 

aliased higher modes of vibrations. Measurements of the dynamics of the pneumatic air table using a 

triaxial accelerometer show that the peaks at low frequencies (<100 Hz) are due to building 

vibrations [36]. To identify the other peaks, we compared the velocity PSD of the four specimens in 

vacuum (Figure 3(a)) and at atmospheric pressure (Figure 3(b)). As expected, the fundamental 

resonance peak undergoes a characteristic broadening at atmospheric pressure. The same behaviour 

is exhibited by the aliased higher modes. Thus, a close examination of the noise spectra shows 

aliased peaks at the following frequencies: 12.8 kHz and 19.8 kHz for Specimen 1; 3.7 kHz and 30.9 

kHz for Specimen 2; 25.9 kHz and 41.6 kHz for Specimen 3; 9.9 kHz and 11.5 kHz for Specimen 4. 

By a process of elimination, we associate all remaining peaks with instrumental noise. 

Deconvolution by signal processing is necessary if the thermomechanical resonance overlaps with 

other noise peaks. This problem was not encountered for any of the four specimens. The resonance 

peaks are narrow (full width at half maximum ~ 3Hz in vacuum) and separated by over 750 Hz from 

any other peak.  
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Figure 3. Velocity power spectral density in (a) vacuum and (b) atmospheric pressure for Specimen 
1 (black), Specimen 2 (red), Specimen 3 (blue) and Specimen 4 (brown). The curves are offset for 
clarity and the arrows point to the fundamental resonance peaks.  

 

C. Fitting the resonance peak 

To fit the resonance peak, the PSD of displacement and velocity were expressed as 
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The white-noise baseline ( )1 1,A B , amplitude ( )2 2,A B , fundamental natural frequency ( )0f , and 

quality factor were obtained by implementing a weighted least-squares method using the Levenberg-

Marquardt algorithm [37]. The data, fitting curve, and residual errors were plotted to check that the 

fit captured the baseline, peak shape, and peak height, and that the residuals were uncorrelated [40]–

[42]. Figure 4 shows the resonance peak and fitting curves for one representative measurement 

performed on Specimen 4.  

 

 

 

 

 

 

 

 

 

Figure 4. Resonance peaks in the velocity PSD (in units of (µm/s)2/Hz) and displacement PSD (in 
units of nm2/Hz) for a measurement performed in vacuum on Specimen 4. The black lines were 
obtained by fitting Eq.(9) to the resonance peaks. 

 

V. Results and Discussion 

Table 2 presents the main results of our study. The natural frequency and quality factor are the 

averages of five independent measurements, each of 90 seconds in duration. The standard deviation 

of the natural frequency is less than 1 Hz (that is, one part in 105). The entries for Q are shown using 
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the following format: mean value ( ± relative uncertainty), where the relative uncertainty is the 

standard deviation reported as a percentage of the mean.  

Table 2.  Estimates for natural frequency ( 0f ) and quality factor (Q) obtained by analyzing the 
velocity PSD, v ( )S f , and displacement PSD, ( )xS f .  

 Velocity PSD Displacement PSD 

0f  (Hz) Q 0f  (Hz) Q 

Specimen 1 26,743  420.3 10 ( 6%)× ±  26,743  424.5 10 ( 18%)× ±  

Specimen 2 21,045  46.0 10 ( 18%)× ±  21,045  45.8 10 ( 19%)× ±  

Specimen 3 19,150  410.9 10 ( 26%)× ±  19,150  49.5 10 ( 15%)× ±  

Specimen 4 17,660  41.8 10 ( 6%)× ±  17,660  41.8 10 ( 8%)× ±  

 

The precision of our measurements is influenced by: (i) intrinsic errors associated with estimating the 

PSD using finite time-series of stochastic fluctuations and (ii) uncertainties associated with fit 

parameters obtained using least-squares analysis [37]-[40]. Sader et al. [40] recommended statistical 

analysis of multiple independent measurements because the goodness-of-fit of a single measurement 

may not provide an estimate of uncertainty even when the analysis results in an apparently excellent 

fit to measurements. Accordingly, we use the relative uncertainty, which ranges from 6% to 26%, as 

the measure of precision.   

As noted earlier, the precision is not affected by uncertainties in beam geometry, material properties, 

and structural stiffness, or by the details of the mechanisms responsible for dissipation. Instead, we 

must consider three factors that are integral to the measurement and analysis of thermomechanical 

resonance peaks. The first is the time for which noise is recorded. We acquired data for 90 s, and this 

duration was determined based on a trade-off between collecting a sufficiently large number of 

measurements in the vicinity of the resonance peak while avoiding errors due to sporadic extrinsic 

noise and drift. As a check, we performed additional measurements in which noise was acquired for 

various intervals between 90 s and 130 s for one device (Specimen 3). Over this range of recording 

times, the mean value of Q varied by 8% ( 4 410.4 10 11.3 10× − × ) and the standard deviation was 

typically 20% of the mean.  
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The second is the averaging factor ( )α  used for computing the PSD using the Daniell method. The 

variance can be reduced by increasing α , but this is achieved at the expense of degrading the 

frequency resolution and reducing the number of points available for fitting the resonance peak. 

Table 3 quantifies these effects for one representative analysis of the displacement PSD obtained 

from a measurement performed on Specimen 3. For 9α < , the peak was not sufficiently smooth and 

it was not possible to fit Eq.(9) using the weighted least-squares method. As α increased from 9 to 

17, the number of fit points reduced, the frequency resolution was degraded, and Q varied by ~7%. 

Notably, there was no systematic bias in the estimate for Q over this range, which is the primary 

motivation for using the Daniell method.  

Table 3. Effects of the averaging factor on fitting and estimation. 

α # of fit 
points 

Frequency 
resolution 

0f  Q 

9 234 0.10 Hz 19,150 Hz 9.50 × 104 

11 191 0.12 Hz 19,150 Hz 8.87 × 104 

13 163 0.14 Hz 19,150 Hz 9.43 × 104 

15 141 0.17 Hz 19,150 Hz 8.95 × 104 

17 124 0.19 Hz 19,150 Hz 9.07 × 104 

 

The third factor is the fitting of a sharp resonance peak which makes the estimate sensitively 

dependent on a small fraction of data points for low-loss devices with 510Q > . Typically, the PSD 

contains over 106 points but only ~100 are used for fitting the resonance peak. Further, the value of Q 

is influenced most by ~10 points that lie between the half-power points and the peak. The higher the 

Q, the sharper the resonance peak, and the smaller the number of points that control the fit 

parameters. One approach for quantifying these effects is to compare results obtained by fitting the 

displacement PSD and the velocity PSD. For Specimens 2, 3 and 4, the two estimates are in good 

agreement which suggests that it is sufficient to fit either the velocity PSD or the displacement PSD 

for devices with 510Q < . For Specimen 1, however, it was necessary to use higher averaging factors 

to fit the velocity PSD compared to the displacement PSD, which lead to differences in frequency 

resolution and fit parameters. Hence, the displacement PSD was used to estimate Q for this 

specimen.  
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Approaches for quantifying the absolute accuracy of damping in high-Q microresonators are not yet 

available. To our knowledge, no study has yet presented a detailed comparison of damping in well-

characterized specimens using two different techniques. As a first step towards filling this gap, we 

assess the relative accuracy of noise-based estimates (Table 2) by comparison with values of the log 

decrement obtained using the standard technique of free decay (Table 1). A close comparison of the 

two sets of measurements is possible because the same well-characterized devices, apparatus 

(precision-machined clamps, vacuum chamber, and vibration isolation systems), and instrumentation 

(LDV) were used for measuring free decay and noise. Thermomechanical noise overestimates free 

decay by 27% for Specimen 1 and 7% for Specimen 2, and underestimates by 18% for Specimen 3 

and 25% for Specimen 4. Variations in experimental conditions (for example, attaching the 

specimens to the clamps) can contribute to these differences. Measurements over a larger set of 

materials, structures, frequencies and quality factors are required to establish whether there are any 

fundamental limits to the accuracy of noise-based estimates of damping. 

 

VI. Summary and Conclusions 

In this paper, we focused on a technique for estimating damping in microresonators by measuring 

thermomechanical noise using laser Doppler vibrometry. Commercial LDVs cannot yet characterize 

in-plane modes or bulk modes; hence, the technique is currently limited to out-of-plane modes of 

microresonators. The measurement does not require the use of an actuator, and damping can be 

estimated without using values for beam dimensions, material properties, or structural stiffness. The 

various factors involved in recording thermomechanical noise, computing the power spectral density, 

and fitting the resonance peak were discussed in detail. A notable feature of our approach is the use 

of a direct method for computing the power spectral density, thereby avoiding any estimation bias 

resulting from segmenting the data in the time domain. The implementation of the protocol was 

demonstrated by characterizing damping at room temperature and low pressure in a set of four 

silicon-based microcantilevers with natural frequencies ranging from 17.6 to 26.7 kHz and quality 

factors ranging from 42 10×  to 52 10× .  

Our results can be combined with earlier studies to compare the relative merits and limitations of free 

decay, harmonic excitation, and thermomechanical noise for measuring damping at the natural 

frequency. In the free decay technique, damping is estimated by fitting the envelope of decaying 
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oscillations to obtain the logarithmic decrement. The number of fit points scales as the quality factor 

which makes free decay the technique of choice for precision measurements of damping in low-loss 

devices with 310Q > . Free decay is widely used for fundamental studies of damping and internal 

friction (see, for example, [2], [3], [26], [27]). The main limitations are the need for an actuator to 

initiate measurement and a loss of precision for highly damped devices [43]. Both limitations can be 

overcome by using thermomechanical noise to estimate damping over a wide range ( 61 10Q< < ). In 

general, however, noise-based estimates are less precise than free decay due to uncertainties caused 

by: (i) the estimation of the power spectral density of thermomechanical noise from finite time series 

of stochastic fluctuations and (ii) fitting a resonance peak to determine the quality factor. For 
510Q > , the fit is sensitive to measurement errors in a small set of data points (usually less than 10) 

that lie between the resonance peak and the half-power points. For 10Q < , the challenge is to 

identify a shallow and broad peak, and fit it with a function that accounts for the frequency 

dependence of viscous damping [44]. 

Harmonic excitation has three major limitations. First, an external actuator is required to apply a 

harmonic force of constant amplitude over the full spectrum of measurement. Second, the device can 

be driven into the nonlinear regime due to interactions with the actuator [1] and large displacements 

at resonance for high-Q devices [45]. Finally, as in the case of thermomechanical noise, errors are 

incurred when sharp resonance peaks are fit to determine the quality factor of low-loss devices. For 

all these reasons, harmonic excitation is usually not preferred for precision measurements and 

fundamental studies of damping and internal friction in high-Q devices.  
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