
An examination of the trend-renewal
process for use in recurrent events
modelling in sports and medicine

by Meng Zhao

Master of Science

Department of Mathematics and Statistics

McGill University

Montréal, Québec

2016-06-25

A thesis submitted to McGill University in partial fulfillment of the
requirements for the degree of Masters of Science from the Department of

Mathematics and Statistics at McGill University

c© Copyright Meng Zhao 2016



ACKNOWLEDGEMENTS

I thank my supervisors Dr. Russell Steele and Dr. Ian Shrier for their

incredible mentorship and support. The work in this thesis was supported by

a discovery grant from the Natural Sciences and Engineering Research Council

of Canada (NSERC) and a Collaborative Health Research Project grant jointly

funded by NSERC and the Canadian Institutes for Health Research (CIHR).

I am also grateful to Dr. Diana Pietzner for helpful communication regarding

the computational details of her work.

ii



ABSTRACT

The trend-renewal model for recurrent time-to-event data is seldom used

outside of the reliability literature. This thesis thoroughly discusses the foun-

dations of the trend-renewal process, emphasizing its applicability in the fields

of sports injury and medicine. It proposes ways to better utilize a popular

choice of parametric framework to address research questions in practical set-

tings, in particular, an alternative to the classical Cox proportional intensities

formulation of covariate effects. Simulation studies are carried out to evaluate

the finite sample inference of parametric trend renewal models with unobserved

heterogeneity. Finally, an application to a medical dataset is provided.
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ABRÉGÉ

Le modèle renouvellement-de-tendance pour les données récurrentes de

temps de survie est rarement utilisé en dehors de la littérature de fiabilité.

Cette thèse examine en profondeur les fondements du processus renouvellement-

de-tendance, mettant l’accent sur son application dans les domaines des blessures

sportives et de la médecine. Elle propose des moyens pour mieux utiliser

un cadre paramétrique populaire pour répondre aux questions de recherche

en milieu pratique, en particulier, une alternative à la méthode classique

Cox d’intensités proportionnelles. Des simulations sont effectuées pour éval-

uer l’inférence en échantillonnage fini de modèles renouvellements-de-tendance

paramétriques avec hétérogénéité non observée. Enfin, une application à un

ensemble de données médicales est fournie.
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CHAPTER 1
Introduction

The need for effective statistical analysis of recurrent time-to-event data

has been present and is ever-growing in many fields such as the social sci-

ences, insurance, biology, medicine, and machine reliability. Models should

be carefully constructed and methods should be carefully chosen to provide

valid answers to specific problems in these different fields. All models have

their limitations and drawbacks, but some become more popular than others.

For example, certain methods are heavily used because the literature on them

is extensive, they are easy to interpret, or they are reputable in that field’s

research community. It might be due to a combination of these reasons that

the modelling of recurrent sports injury has seen relatively slow development,

such that many analysts are still defaulting to only examining the time to first

event, or in the most elaborate cases, applying some variation of a modulated

renewal model which incorporates covariates in a Cox proportional hazards

-like fashion. These analyses can be valid for answering particular questions,

but when they are invalid, it is often the case that there are at most a handful

of useful but relatively unknown alternatives. One of the many reasons for this

is that the literature does not contain explanation and motivation for these

alternatives.

This thesis focuses a model from the reliability literature and repurposes

it with a view towards the fields of sports injury and medical analyses, whose

research objectives are often quite different from those of reliability.

Until recently, the trend-renewal process (TRP) has rarely been used

outside of reliability analysis, i.e. only in contexts where the subjects being
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observed are machines or strictly mechanical processes. For example, Yang

et al. (2012) analyses the failure profiles of high throughput screening (HTS)

automation systems and cylinder head production processes under the TRP

framework. Of its application to medical recurrent events, we found only

one example: Pietzner and Wienke (2013) demonstrate the use of the TRP

for a hospital readmission times dataset collected from colon cancer patients

originally analyzed by Gonzalez et al. (2005). Currently in the literature there

is no application of the TRP to recurrent sports injury. This thesis does not

fill this gap, however, it does provide some methodology for the analysis of

recurrent sports injury under the trend-renewal process framework and make

suggestions about how a mathematically convenient choice of parametric TRP

can be interpreted in practical settings. In a future application the TRP can

potentially be used to answer specific questions about athletes’ injury patterns

and to help measure the efficacy of rehabilitation programs.

The fact that TRPs have not been used much in fields outside of reliabil-

ity could largely be due to researchers’ emphasis on their mathematical conve-

nience rather than practical interpretability. While the statistical literature on

trend-renewal models has focused on parametric estimation (Lindqvist et al.

(2003); Lindqvist (2006)), semiparametric (Heggland and Lindqvist (2007);

Jokiel-Rokita and Magiera (2012)), and nonparametric (Gámiz and Lindqvist

(2016)), or on prediction (Franz et al. (2014)), guidelines for interpretation in

a practical context are either absent or inadequate.

This thesis will highlight the convenience of the TRP and its potential to

describe a variety of modulation in the failure times of repairable systems. It

provides an in-depth discussion of the parametric TRP in the way of modelling

and inference and offers some new considerations for how to better use the

popular Weibull-power-law choice of TRP to answer questions common in
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medical and sports injury analyses. Chapter 2 provides a summary of the

common frameworks used to model recurrent events. Chapter 3 presents useful

interpretations of the Weibull-power-law TRP and then Chapter 4 contains

several finite sample evaluations of inference in two common parametric TRPs.

Chapter 5 provides a demonstration on the hospital readmission dataset of

Gonzalez et al. (2005) and finally Chapter 6 concludes with a discussion and

future work.
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CHAPTER 2
Background

2.1 Overview of single-event survival analysis

The general problem in single event (or time-to-first-event) survival anal-

ysis can be described in the following way. Let Y be a random variable repre-

senting the time to first occurrence of an event of interest. For instance, the

event of interest could be the failure of a machine, a patient exiting a state of

remission of a disease, or an athlete getting injured during a season. To avoid

unnecessary complication, we will assume the time scale – of machine oper-

ation, of remission, or of exposures on the playing field – has a well-defined

initiation point.

We generally estimate the distribution of Y by sampling observations from

it. Because of finite resources, the observed data is T = min(Y,C) where C is

a random variable representing the censoring time of Y . An observation time

is said to be censored if we do not know when exactly the event of interest

occurred. There are different kinds of censoring but the most common form of

censoring is right-censoring, i.e. when T = min(Y,C) and the only information

known is that a subject had not yet experienced the event of interest by time

T . Standard causes of right-censoring are from the subject staying event-free

until the end of the study, in which case C is the period of study, or from the

subject being lost to follow-up before the end of the study, in which case C

may or may not be independent of Y .

The basic observations for m subjects are {(Ti, δi) : i = 1, ...,m} where

δi is an indicator of whether subject i was censored. Given these survival

(equivalently failure or waiting) times and censoring statuses of m subjects,
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it is of interest to estimate the population distribution of failure times. In

addition, the effects of certain covariates Z are often of interest, so that the

completely observed data can be written as {(Ti,Zi, δi) : i = 1, ...,m}.

Let Ft− be the complete history of all available information for subjects

up to time t− (until just before t). Then the hazard function is defined as:

h(t|Ft−) = lim
∆t→0

Pr (t ≤ Y < t+ ∆t |Y ≥ t,Ft−)
∆t . (2.1)

The hazard function is frequently used to characterize survival distributions

because it can be thought of as an instantaneous rate at time t, given survival

until time t, and it determines all other aspects of the survival process.

Where censored data is concerned, the common condition required for

standard approaches to maximum likelihood statistical inference to be valid is

that of independent censoring (Prentice and Kalbfleisch (1980, Section 5.2)),

which is defined by (2.1) being equivalent to:

lim
∆t→0

Pr (t ≤ Y < t+ ∆t |Y ≥ t, C ≥ t,Ft−)
∆t .

In other words, the censoring mechanism must be part of the observed event

history Ft− . This is because, if we can know that {C < t} ∈ Ft− , then we

would also have {C ≥ t} = {C < t} ∈ Ft− . Independent censoring is achieved

when there is no unobserved heterogeneity amongst subjects – in other words,

conditional on some covariates Z, the censoring time C|Z and event time Y |Z

are independent, and Z is observed in the complete history. If we somehow

could know this, then knowing a subject’s censoring time would be superfluous

to knowing Ft− ! However, independent censoring is an unverifiable condition

in practical settings (Tsiatis (1975)).
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The consequences of incorrectly assuming independent censoring have

been well examined and will not be explored in this thesis. Here we sim-

ply emphasize that most of statistical inference for single event and recurrent

event models hinges on the validity of the independent censoring assumption.

Now, recall that if a random variable Y has a continuous distribution then

its hazard function hY (·), density function fY (·), and survivor function SY (·)

are related:

hY (t) = fY (t)
Pr (Y ≥ t) = fY (t)

SY (t) .

Hence, assuming the distributions of Y and C are continuous and re-

spectively parametrized by θY (the parameters of interest) and θC (the nui-

sance parameters), the full likelihood of θY in hazard-survivor form for data

{(Ti,Zi, δi) : i = 1, ...,m} would be, under independent and non-informative

censoring:

Li(θY ) =
m∏
i=1

[hY (ti)SY (ti)]δi [SY (ti)]1−δi .

Note that, formally, the notions of independence and non-informativeness

are different; examples can be constructed where censoring is independent

yet informative (Andersen et al. (1993, section III.2.2)). The subtlety is not

relevant to our intents and purposes and from now on, our assumption of in-

dependent censoring will implicitly contain the assumption of non-informative

censoring. All the likelihood functions in this thesis are constructed assuming

that the hypothetical parameter determining the censoring mechanism con-

tains no information about the parameter of interest determining the event

process.

2.2 Overview of recurrent event survival analysis

Extending single event survival analysis to the recurrent events setting

is complicated for multiple reasons. First of all, depending on the research
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question we must decide how to appropriately characterize the association of

past event history with future event propensity in our specific research con-

text. There are two related but different ways that researchers have modelled

recurrent event processes:

1) analysing the intensity function by specifying the instantaneous proba-

bility that an event occurs, conditional on the full event history, or

2) analysing the gap times by specifying either the distributions of gap

times between events or the expected event count by some time t, with

either marginal or conditional assumptions.

The focus of this thesis will be on a certain class of intensity based models

(approach 1 above), with minimal discussion on gap time based analysis. The

role of the hazard function is integral to our approach, but requires the use of

additional notation.

Suppose m subjects are under observation for an event of interest which

each subject can experience multiple times. For subject i, let Ti1 < Ti2 <

... < Tini
be the times at which events occur, where Tij is the time of the jth

event and ni events are observed for the i-th subject. Let the amount of time

between occurrence of the (j − 1)th event and occurrence of the jth event be

Wij, indexed by j = 1, ..., ni; hence Tik = ∑k
j=1Wij. Then {Ni(t), t ≥ 0} is

the right-continuous counting process associated with subject i, with typically

Ni(0) = 0 and N(Tij) = j. Let the event history for subject i up until, but

not including, time t be denoted Hi(t) = {Ni(s) : 0 ≤ s < t}. We use Ni(s, t)

to denote the number of events occurring in the interval [s, t].

In practical settings subjects will not all be observed for the same period

of time; when they are not observed they may or may not be at risk to have

an observed event. If subject i is observable on the interval [τi0, τi], then we
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use an indicator Yi(t) = I(τi0 ≤ t ≤ τi) that equals 1 only if the subject is at

risk of having an observed event at time t.

There will be further discussion in later sections about the choice of time

scale (i.e. how the age of a process is measured), but common choices are ei-

ther calendar time or cumulative exposure time (i.e. amount of time a subject

has been observed and at risk of the event). Once the time scale is selected,

the process age will be used synonymously with total time. By contrast gap

time, the time between successive events or the time since the most recent

event, is synonymous with waiting time.

2.3 The intensity function

The definition of the hazard function in (2.1) can be alternatively under-

stood as the instantaneous probability of the counting process {N(t), t ≥ 0}

with history Ht− increasing from 0 to 1 at time t:

h(t|Ht−) = lim
∆t→0

Pr (N(t+ ∆t)−N(t) = 1|N(t−) = 0,Ht−)
∆t .

If the counting process is allowed to continue past the first jump, we can

still talk about the instantaneous probability of increasing by exactly 1 at time

t but now that there is a process history to consider, we define this quantity

conditional on all the known aspects of the process history up until then:

λ(t|Ht−) = lim
∆t→0

Pr (N(t+ ∆t)−N(t) = 1|Ht−)
∆t . (2.2)

This is the intensity function, which identifies the event generating mecha-

nism and determines any other characteristic of the event process. Henceforth,

the intensity of a process will be used synonymously with conditional inten-

sity; it is always implied that the intensity at time t is conditional on the

8



process history up until t. Note: counting processes in discrete time scale are

beyond the scope of this thesis; we will always assume a continuous time scale.

For a single recurrent event process observed on the time interval [0, τi]

with ni events at times ti1, ti2, ..., ti,n(τi) the likelihood of θ which identifies the

model can be shown to be: [Andersen et al. (1993, section 2.7)]

Li(θ) = exp

−
τi∫

0

λ(u|Hi(u)) du


ni(τi)∏
j=1

λ(tj|Hi(tij)) (2.3)

provided that the time τi which censors the last observed event is a stopping

time with respect to the process history up until τi. In other words, the

”decision” to stop observing the process at time τi can depend only on aspects

of the process history up until time τi and not on anything afterwards. Hence,

by assuming independence between subjects, the full likelihood is the product

of their contributions:

L(θ) =
m∏
i=1

Li(θ)

and maximum likelihood procedures can be employed to estimate θ.

Extra caution must be taken in the presence of censoring. In fact, appro-

priately modeling dependence conditional on event history becomes extremely

delicate if the last waiting time is censored, because the last waiting time is

automatically a function of the censoring time and the previous gap times.

In the absence of covariates, or if the measured covariates do not contain

sufficient information to account for the heterogeneity among subjects in the

framework of a model, the censoring can result in biased analysis (Follmann

and Goldberg (1988)).
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2.4 Minimal and perfect repair: two classical frameworks

The two classical frameworks in which recurrent events are modeled are

the Poisson process and the renewal process. This section describes the basic

assumptions and intensity functions for these two commonly used models.

A Poisson process is characterized by an intensity function that is unaf-

fected by the occurrence of events. The event history up until time t does not

affect the instantaneous probability of an event at time t. In the absence of co-

variates, the intensity function of a Poisson process is a function of cumulative

exposure time only:

λ(t|Ht−) = ρ(t).

ρ(t) is both the intensity and the rate function of the Poisson process (PP); as

it does not depend on Ht− , it is the unconditional instantaneous probability

of an event at time t. If the intensity function is a constant over time, then it

describes a homogeneous Poisson process (HPP); if it varies over time, then it

describes a nonhomogeneous Poisson process (NHPP).

The only restriction on ρ(·) is that it must be nonnegative and integrable,

since the expected cumulative number of events in (s, t] is given by

µ(s, t) := E [N(s, t)] =
t∫
s

ρ(u) du (Cook and Lawless (2007, section 2.2.1))

and must be finite. The Poisson process gets its name from the following

properties:

• N(s, t) is distributed as Poisson with mean µ(s, t); and

• the number of events occurring in an interval (s1, s2] is a random variable

independent of the number of events that occur in an interval (s3, s4],

provided that s2 < s3 (sometimes called the property of independent in-

crements). Note that the gap times are in general not independent unless

10



the process is homogeneous Poisson, in which case the gap times are i.i.d.
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Figure 2–1: Example of a HPP intensity function (left) and a NHPP intensity
function (right), emphasizing that the event history, for instance at times
t1, t2, t3, does not affect the intensity function of a Poisson process.

On the other hand, a renewal process is characterized by an intensity function

that is affected by the occurrence of events. After each event, the intensity

function resets to its value at time 0 and evolves along a fixed trajectory. In

the absence of covariates, or in the presence of covariates which are known

in the process history Ht− , the intensity function of a renewal process is a

function of only the elapsed time since the most recent event:

λ(t|Ht−) = h(t− TN(t−))

where TN(t−) is the time since T0 = 0 at which the N(t−)th event occurred

and t− TN(t−) is the waiting time since the most recent event.

Equivalently, the renewal process (RP) can be characterized by the length

of the gaps between successive events being identically distributed, i.e. W1,W2, ...,Wk

i.i.d.∼ some distribution F . The function h(·) in the intensity is the hazard func-

tion corresponding to F .
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Figure 2–2: Example of a renewal process intensity function, emphasizing that
the intensity function undergoes a perfect renewal after each event at times
t1, t2, t3

Hence, the distribution of N(t) is given by

Pr (N(t) ≥ n) = Pr (Tn ≤ t) = Pr
 n∑
j=1

Wj ≤ t


whereas the distribution of N(s, t) is generally intractable.

We can view the Poisson process and the renewal process as sitting on

opposite ends of the spectrum of repair condition. In actuality, any event of

interest will take a non-zero amount of time to occur and to be observed, but

in survival modelling an event is just an instantaneous jump in a counting

process on some time scale. Furthermore, the concept of repair requires a

consideration of how much time a repair takes and whether a subject is at

risk of failure during a repair. In the field of machine reliability, it is usually

realistic to assume that while a system is undergoing repair it is not at risk

for the next event; the time axis for the intensity can and should be exactly

exposure time. In contrast, in a medical setting this simplification can be less

tenable depending on the event of interest. Whereas two machines that have

the same operation history but different rest periods can be relied upon to
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have similar risk for the next failure, two patients with the same event history

but different recovery periods can differ drastically in their risk for the next

event. Still, for our purposes we will always assume the total time for a given

process is its own cumulative exposure time.

Regarding subjects as repairable systems, they follow a Poisson process

if they undergo minimal repair, i.e. after a failure the system returns to the

state it was in immediately before the failure and the system’s risk of the

next failure follows the same trajectory as it would if said failure had not

occurred. On the other extreme, they follow a renewal process if they undergo

perfect repair, i.e. after a failure the system returns to the state it was in

at time 0 and the trajectory of the system’s risk of the next failure restarts

and follows the same trajectory as it did from time 0, where the set trajectory

does not change with respect to N(t). Hence we will say that the principal

time scale of the Poisson process is total (or cumulative) time while that of

the renewal process is the gap (or waiting) time. Note that the homogeneous

Poisson process is the only example of a counting process which is both Poisson

and renewal. The only way that a repairable system undergoes both minimal

and perfect repair is if its intensity function is constant over its operational

lifespan. The homogeneous Poisson process can be specified by the gap times

W1,W2, ... being i.i.d. Exponential, or equivalently that the number of events

in an interval is Poisson with mean proportional to the length of the interval.

Since humans can be thought of as repairable systems experiencing recur-

rent illnesses or injuries which require treatment and/or rehabilitation, when

analysing recurrent injury data the intensity-based models such as the Pois-

son process and the renewal process are often appealing candidates because of

their simplicity and interpretability. However, sometimes neither of these ap-

proaches are adequate because a repairable system might repair partially, its
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behaviour falling patently between the extremes. The model we will examine

in the next section can be thought of as either modifying the Poisson process

intensity by allowing the intensity function to undergo some sort of renewal

after each event or modifying the renewal process by allowing the intensity

function to evolve differently after each event.

2.5 Imperfect Repair: the trend-renewal-process

Lindqvist et al. (2003) introduced the trend-renewal process as a gen-

eralization of an idea attributed to Berman (1981), who had proposed the

inhomogeneous gamma process. Berman noted that the recurrent event pro-

cess with event times {T1, T2, ...} obtained by taking every κ-th event of a

nonhomogeneous Poisson process with intensity function λ(t) is equivalent to

the process {Λ(T1),Λ(T2), ...}, where Λ(t) =
t∫

0
λ(u) du is a renewal process in

which the gaps {Λ(T1),Λ(T2)− Λ(T1), ...} are distributed i.i.d. gamma with

unit scale parameter and shape parameter κ. He used this model to define

{T1, T2, ...} as an inhomogeneous gamma process; it reduces to a NHPP if the

gaps are i.i.d. unit Exponential (i.e. κ = 1) and reduces to a RP if λ(t) is

a constant. Lindqvist extended Berman’s strategy to create a more general

class of models.

Given a recurrent event process that starts at time T0 = 0 with sub-

sequent event times {T1, T2, ...}, if there exists a monotone (order-preserving)

transformation of the time scale such that the failure times on the transformed

time scale follow a RP, then {T1, T2, ...} is a trend-renewal process. Denote

this monotone transformation A(t) for t ≥ 0. Then Vj = A(Tj) − A(Tj−1),

j = 1, 2, ... are i.i.d. with cdf F . Figure 2–3 gives an example of how the

transformation might look.
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Original timeline

Transformed timeline

T0 = 0 T1 T2 T3 T4 T5

V1︷ ︸︸ ︷
A(T1)

V2︷ ︸︸ ︷
A(T2) ...A(T4)

V5︷ ︸︸ ︷
A(T5)

Figure 2–3: Heuristic illustration of an event process on the trend-renewal
timescale and its corresponding renewal process timescale after a transforma-
tion A(·), for a history with events at T1, T2, ..., T5.

Letting f(v) denote the density function of F , h(v) denote the hazard

function f(v)
1−F (v) , and a(t) = d

dt
A(t), the intensity function of such a trend-

renewal process (TRP) can be written:

λ(t|Ht−) = h(A(t)− A(tN(t−)))a(t). (2.4)

Notice that the intensity function is a product of two factors: one which

depends only on the time elapsed since the most recent event on the trans-

formed timeline, and another which depends only on the total age of the

process. In the words of Cook and Lawless (2007, section 5.2.2), a trend-

renewal process seems to describe situations where “the propensity for an

event changes over time while the mechanism triggering events is station-

ary”. Pietzner and Wienke (2013) noted that the trend-renewal process is a

good “alternative to other recurrent event models especially when the time-

scale is difficult or unclear” and that while the other common recurrent event

models (such as Andersen-Gill (AG), Wei-Lin-Weissfeld (WLW), and Prentice-

Williams-Peterson (PWP)) require us to commit to either the total time or

the waiting time as the principal time scale of the intensity, the TRP intensity

connects the two in a mathematically elegant way. Moreover, a(·) and F are

commonly specified such that, if accounting for one of these operating time
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scales is superfluous in the TRP framework, its corresponding term in the

intensity reduces to a constant. One then needs only to select among nested

models to determine whether one or both of the operating time scales are in-

deed significant. For instance, if a(t) is constant in (2.4), then we would have

the intensity function of a simple renewal process, and if F is the unit Expo-

nential distribution, then we would have the intensity of a Poisson process.

For a TRP, the distribution of the number of events occurring in (0, t] is

given by

Pr (N(t) ≥ n) = Pr (Tn ≤ t) = Pr (A(Tn) ≤ A(t))

and is analytically tractable if, for example, the gap times on the transformed

timeline are i.i.d. exponential random variables.

To specify a parametric trend-renewal model, we need only specify the

monotone function a(t) (called the trend function) and the distribution F

(called the renewal distribution) of the gap times in the renewal process.

There exists extensive literature about parametric inference in the TRP frame-

work (Lindqvist et al. (2003); Lindqvist (2006)) and less has been established

about semiparametric inference, i.e. when certain assumptions about either

the trend function or the renewal distribution are relaxed (Heggland and

Lindqvist (2007); Jokiel-Rokita and Magiera (2012)). Recently, Gámiz and

Lindqvist (2016) developed a method for nonparametric inference in the TRP

framework, using kernel smoothing.

2.5.1 Covariates and unobserved heterogeneity

In many settings a covariate may influence the propensity of having an

event and it is necessary to control for that influence, where measurements

are available. It is therefore common to incorporate covariates into the trend
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function, for example in a multiplicative way:

ai(t) = a0(t)g(Xi(t)) (2.5)

where g(·) is a function of the possibly time-dependent covariates Xi(t). For

fixed, time-independent covariates the most common choice is g(Xi) = exp(X>i β)

for some parameter β of covariate effects. This formulation would allow, for

example, the ratio of the conditional intensities of two processes from different

treatments to be a constant at every time t.

When the measured covariates are insufficient to account for differences

among subjects, then we have unobserved heterogeneity. In sports injury, this

is more commonly referred to as “frailty”. A random effect with a prespec-

ified distribution can be incorporated into the model as a surrogate for the

underlying mechanisms that cause individuals to differ with respect to their

event intensities. In a TRP, this is most often done by specifying a subject i’s

conditional intensity in the following form:

λ(t|Ht− , ui) = uiλ0(t|Ht−) (2.6)

where ui is an unobservable subject-specific realization from a distribution H

and multiplicatively modifies the baseline intensity λ0(·) defined by a trend

function and renewal distribution common to all subjects. Whereas a TRP

model without heterogeneity assumes that subjects with all the same measured

covariates and the same time of most recent event have the same intensity

going forward regardless of their history before their most recent event, the

TRP with heterogeneity models dependence among all the event times within

a subject.

This concludes the introduction to the trend-renewal process framework.

In principal, there are many choices of trend function and renewal distribution
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that one can assume to build a trend-renewal model; one can also loosen the

assumptions and fit the model semiparametrically. This thesis will not dis-

cuss semiparametric and nonparametric inference for TRPs, but the following

subsection discusses popular choices of fully parametric TRPs where the trend

function is of the “power-law” form in the reliability literature, the renewal

distribution is either Weibull or gamma, and in the case of frailty, H is gamma

or log-Normal.

2.5.2 Parametric inference

Let the trend function and renewal distribution be parametrically spec-

ified and, in the absence of covariates, θ be the parameter vector specifying

A(t) and F . Furthermore, let

• {tij : i = 1, ...,m; j = 1, ..., ni} be the observed event times for m sub-

jects,

• vij = A(tij)−A(ti,j−1) for i = 1, ...,m, j = 1, ..., ni denote the observed

transformed gap times,

• τi independently and non-informatively censor subject i’s final waiting

time, and

• νi = Ai(τi) denote subject i’s transformed censoring (or end-of-study)

time.

Then by independence between subjects and independence of gap times on the

transformed time scale {Vij : j = 1, 2, ...}, we can write the likelihood of θ as:

L(θ) =
m∏
i=1


ni∏
j=1

f (vij)

S (νi − Ai(ti,ni
)) . (2.7)
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Applying the transformation from the renewal timescale to the original timescale,

we arrive at the form:

L(θ) =
m∏
i=1


ni∏
j=1

f (Ai(tij)− Ai(ti,j−1)) ai(tij)

S(Ai(τi)− Ai(ti,ni
)). (2.8)

In general the solutions to the score equations have no closed form but can be

found using general-purpose optimization software.

Weibull-power-law trend-renewal model

A popular choice of trend function is a(t) = ab tb−1 for parameters a, b >

0. An equally popular choice of renewal distribution is the Weibull. For

identifiability, one must restrict the form of the Weibull, for example to having

unit mean or unit scale and a free shape parameter (Pietzner and Wienke

(2013)). For convenience, the latter formulation is used in this thesis, so that

the hazard function of the renewal distribution is h(w) = cwc−1 for parameter

c > 0.

The function a(t) = ab tb−1 is the Jacobian of the time transformation

A(t) = atb, which in reliability is referred to as “power law” form and also of

the same form as a Weibull hazard. Therefore, a TRP where the hazard of the

renewal distribution and the trend function are both monomials is often called

a Weibull-Weibull (or Weibull-power-law) TRP. In the absence of covariates,

its intensity function is:

λ(t|Ht−) = acbctb−1(tb − T bN(t−))c−1. (2.9)

a is merely a scaling parameter and has no influence on the shape of the

intensity. If b = 1, then (2.9) does not depend on total time; it restarts after

the occurrence of each event and so reduces to the intensity of a RP with

Weibull gaps. If c = 1, then (2.9) does not depend on the wait time and
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is unaffected by the occurrence of previous events, thereby reducing to the

intensity of a PP.

Figure 2–4 shows what the Weibull-power-law TRP intensity function

might look like for a process that has had three events, illustrating why this

parametric TRP can be seen as nonhomogeneous Poisson process extended to

have imperfect renewals. As an example, note that the scenarios corresponding

to b = 1.72, c = 0.8 and b = 1.72, c = 0.95 could reflect situations where the

intensity (risk of an event) is always decreasing as time goes on, but overall,

the subject is in worse and worse shape after each event compared to how it

was going forward from any previous event.

Process age
T0=0 T1 T2 T3 T4T0=0 T1 T2 T3 T4T0=0 T1 T2 T3 T4T0=0 T1 T2 T3 T4

Process age
T0=0 T1 T2 T3 T4T0=0 T1 T2 T3 T4T0=0 T1 T2 T3 T4T0=0 T1 T2 T3 T4

Process age
T0=0 T1 T2 T3 T4T0=0 T1 T2 T3 T4T0=0 T1 T2 T3 T4T0=0 T1 T2 T3 T4

Process age
T0=0 T1 T2 T3 T4T0=0 T1 T2 T3 T4T0=0 T1 T2 T3 T4T0=0 T1 T2 T3 T4

Process age
T0=0 T1 T2 T3 T4T0=0 T1 T2 T3 T4T0=0 T1 T2 T3 T4T0=0 T1 T2 T3 T4

Process age
T0=0 T1 T2 T3 T4T0=0 T1 T2 T3 T4T0=0 T1 T2 T3 T4T0=0 T1 T2 T3 T4

Figure 2–4: Scale-free plots of the TRP intensity function (solid lines) of the
form (2.9) with fixed trend parameter b = 1.72 and varying renewal parameter
c taking values 0.6, 0.8, 0.95, 1.05, 1.2, and 1.4 (in order of the plots from left
to right), compared with the NHPP intensity function (dashed lines) of the
form (2.9) with fixed trend parameter b = 1.72 and c = 1, conditional on a
hypothetical event history of event occurrences at T1, T2, T3.

In a later section we discuss the interpretation of the parameters in the

Weibull-power-law TRP for practical purposes - in particular, their roles in

describing the association between a past event and future risk looking forward.
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If subject i has event times ti1, ti2, ..., ti,ni
and censoring time ti,ni+1, then

under the Weibull-power-law TRP framework parametrized by θ = (a, b, c)>

the gap times on the renewal timeline are given by

vi1 = a tbi1 ; vij = a tbij − a ti,j−1, j = 2, 3, ..., ni + 1.

Under independent censoring, its likelihood contribution is given by (2.8) as:

Li(θ) =


ni∏
j=1

acb tb−1
ij c vc−1

ij

 · exp
− ni+1∑

j=1
vcij

 (2.10)

Fitting a Weibull-power-law TRP to m subjects is just a matter of maxi-

mizing
m∏
i=1

Li(θ), which standard software can handle with ease. For a deriva-

tion of the maximum likelihood estimators in the Weibull-power-law TRP,

see Jokiel-Rokita and Magiera (2012). Estimated standard errors can be ob-

tained from the square root of the diagonal of the inverse observed information

matrix. Although there are concerns about making possibly incorrect assump-

tions on both the trend function and renewal distribution, the clear advantage

is that the usual properties of maximum likelihood estimation can be applied,

for example, to do hypothesis testing.

Cook and Lawless (2007, chapter 5) discuss trend-renewal models briefly

in their book, demonstrating the use of a TRP in section 5.2.2. They let the

trend function be a(t) = exp(α+βt) for α, β > 0 and the renewal distribution

be Weibull with unit scale and shape δ. They don’t refer to this model as

anything other than a trend-renewal process, but it is, more specifically, a

reparametrization of the Weibull-power-law TRP. If the original event times

{T1, T2, ...} follow aWeibull-power-law TRP, then {Y1 = log T1, Y2 = log T2, ...}

follow Cook and Lawless’s TRP. This can be seen by reparametrizing the trend

function.
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From the loglinear trend function a(y) = exp(α + βy), we get the trans-

formation that takes the original process to a renewal process:

A(y) =
y∫

0

a(u) du = eα(eβy − 1)/β

Let y(t) = log(t) be an additional transformation of the original time scale

which we will compose with A(y). Then the trend function for the log time

scale is

a(t) = dA(y(t))
dt

= dA(y(t))
y(t) · dy(t)

dt
= eαtβ · 1

t

= eαtβ−1

Letting a = eα

β
, b = β, c = δ we obtain a power-law trend function. Hence,

fitting the TRP with the a log-linear trend function and Weibull renewal to

event times on the log scale gives the same estimates as fitting the TRP with

power-law trend and Weibull renewal to event times on their original scale.

There’s no clear reason to prefer one parametrization over the other except

for convenience – e.g. to facilitate numerical optimization.

Frailty can be modeled multiplicatively in the intensity function (see

(2.6)). Then the intensity function of a heterogeneous Weibull-power-law TRP

is:

λ(t|Ht− ,Xi, ui) = uia
cb tb−1c(tb − T bN(t−))c−1. (2.11)

Note that, conditional on ui, this is the process intensity of a TRP with trend

a(t) = ab tb−1 and Weibull renewal distribution with shape c and scale u−1/c
i .

If ui follows a distribution H parametrized by some measure of variance

γ, then the heterogeneous Weibull-power-law TRP as above is parametrized

by θ = (a, b, c, γ)>. Fixing b to 1, c to 1, or γ to 0, or combinations thereof,

give nested models. The complete nesting structure can be visually depicted
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as a cube with relevant submodels at each vertex and each edge connects two

models that differ by exactly one parameter (Lindqvist et al. (2003)).

We adopt a notation similar to that of Lindqvist et al. (2003) and use

HTRP(a(·), F,H) to denote the parametric “heterogeneous trend-renewal pro-

cess” that has trend function a(·), renewal distribution F , and frailty distri-

bution H. Then the following are its “closest” submodels:

1. If a(t) is a constant with respect to t then the model becomes a renewal

process with frailty denoted by HRP(a, F,H).

2. If F is an Exponential (i.e. with a constant hazard) then it becomes a

nonhomogeneous Poisson process with frailty denoted by HNHPP(a(·), exp, H).

3. If H has a variance of 0, then it becomes a TRP(a(·), F, 1).

If these simplifications happen in combination, then further submodels are

obtained. In particular, 1 and 2 in conjunction gives the HHPP(a, exp, H),

which is a well-defined model but, to avoid confusion, should be referred to by

its initialism and not the expansion. The directed arrows in Figure 2–5 (similar

to the figures in Lindqvist et al. (2003)) depict increases in complexity in three

possible directions.

HRP HTRP

RP TRP

HHPP HNHPP

HPP NHPP

non-linear trend

non-Exponential gap times

heterogeneity

Figure 2–5: Nesting structure of the model with formulation HTRP(F, a(·), H)
and its seven submodels, depicted as a cube, with each arrow pointing to the
larger model of the two vertices.
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Comparing a nested pair of models in one of the three directions corre-

sponds to testing a null hypotheses of either the Poisson property, homogeneity

across systems, or constant trend. A likelihood ratio test (LRT) will suffice

for selecting among nested models on the cube if certain conditions hold; the

asymptotics are valid for heterogeneous subjects only as the number of sub-

jects tends to infinity, and for small samples of homogeneous subjects if they

are observed long enough (Andersen et al. (1993, section VI.1.2)). However,

it is worth noting that testing a null hypothesis of homogeneity across sub-

jects does not yield a null distribution of the LRT statistic that is the usual

chi-squared distribution. There is no heterogeneity across subjects only when

the random effect distribution is degenerate, i.e. when the frailty parameter

falls on the boundary of its parameter space. One way to perform this test,

which a result of Chernoff (1954) provides, is to note that under the null, the

LR test statistic takes 0 with probability 1/2 and chi-squared with probability

1/2. This thesis will not explore other options for testing homogeneity across

subjects.

To avoid issues with multiple testing, using information criteria such as

AIC or BIC may be preferable. Selection using LRT and BIC will be investi-

gated via simulation in a later section but further discussion about appropriate

model selection in TRPs is beyond the scope of this thesis. For example, there

exist modifications of the LRT for heterogeneity which involve extending the

parameter space at the cost of interpretability (e.g. Aalen and Husebye (1991,

Appendix II) and Andersen et al. (1993, chapter IX)).

Finally, time-independent covariates can be incorporated in the Weibull-

power-law HTRP in the usual Cox proportional hazards construction via the

trend function as in (2.5), i.e. by letting ai(t) = ab tb−1 exp(X>i β). The inten-

sity function of a heterogeneousWeibull-power-law TRP with time-independent
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covariates is:

λ(t|Ht− ,Xi, ui) = uia
c exp(cX>i β)b tb−1c(tb − T bN(t−))c−1. (2.12)

Note that, conditional on ui, this is the process intensity of a TRP with trend

a(t) = ab tb−1 exp(X>i β) and renewal distribution Weibull with shape c and

scale u−1/c
i .

Gamma renewal

If we keep the power-law trend function a(t) = ab tb−1 for parameters a, b > 0,

but define the renewal distribution to be gamma with shape c and scale 1

(again, because the a parameter accounts for the scaling) then we obtain

the gamma-power-law trend-renewal model. This allows for a different class

of intensity functions than the Weibull-power-law TRP while also containing

the Poisson process as a special case. Neither the intensity function nor the

likelihood are available in closed form, but the likelihood is easily computed

using numerical methods:

L(θ) =
m∏
i=1


ni∏
j=1

fG
(
atbij − atbi,j−1

)
abtb−1

ij


∞∫

aτi
b−atbi,ni

fG(u) du (2.13)

where fG(x) = 1
Γ(c)x

c−1e−x.

If b = 1, then the process reduces to a RP, more specifically, a homoge-

neous gamma process. If c = 1, then the gap times on the renewal scale are

again exponential and we obtain a NHPP.

Inference for the TRP with Gamma distributed frailty

General optimization software can usually fit the heterogeneous Weibull-

power-law TRP with intensity (2.12) with ease. In Chapter 4, all of the finite

sample inference is performed efficiently in R (R Core Team (2015)) for even
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moderate-sized datasets.

Consider, in the absence of covariates, a fully parametric heterogeneous

trend-renewal process with trend a(·), continuous renewal distribution F , and

subject-level random effects i.i.d. gamma with mean 1 and variance γ (i.e.

shape 1/γ and scale γ). Let h(·), S(·) denote the hazard function of the renewal

distribution. In such a model, subject i’s intensity function conditional on their

random effect is given by:

λ(t|Ht− , ui) = uiλ0(t) = a(t)uih(A(t)− A(TN(t−))). (2.14)

Conditional on a fixed ui, (2.14) is the intensity function of a TRP where a(t)

is the trend and the renewal distribution has hazard function h∗i (t) = uih(t).

In other words, the renewal distribution would conveniently have survivor

function S∗i (t) = [S(t)]ui .

It is worth noting that when fitting parametric TRPs with gamma frailty

in the above form, if the subjects are too homogeneous, the MLE of the param-

eter determining the random effects distribution might fall on the boundary

of the parameter space. For frailty that is multiplicative on the intensity func-

tion, this corresponds to the frailty distribution being degenerate at 1. If the

full unconditional likelihood for a TRP parametrized by θ = (a, b, c, γ)> with

frailty density fH is

L(θ) =
m∏
i=1

∞∫
0

Li(θ |ui)fH(ui) dui,

then it will converge to

L(θ) =
m∏
i=1

Li(θ |ui = 1)
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as the variance γ of the frailty distribution goes to 0. However, reaching an ex-

tremely small MLE of γ might cause numerical instability, and so checking that

γ̂MLE = 0 should be done manually, by verifying that ∂ logL(θ)
∂γ

∣∣∣∣∣
γ=0

evaluated

at the MLEs of the other parameters is negative (Lindqvist et al. (2003)). A

negative profile likelihood derivative at the frailty parameter boundary point

of interest and the MLEs of the other parameters indicates that there is in-

deed a local maximum; a positive value means that the MLE of the frailty

parameter is strictly not on the boundary.

As a quick example, for a TRP with trend function a(t) = dA(t)
dt

, renewal

distribution gamma (scale 1, shape = c), and frailty distribution gamma (mean

= 1, variance = γ), we have from Lindqvist et al. (2003) that the derivative

(from the right) of the full log-likelihood, evaluated at γ = 0 is

∂ logL(θ)
∂γ

≈ c2

2

m∑
i=1

{
[ni − A(Ti,ni

)]2 − ni
c

}
(2.15)

after applying asymptotic approximations of the digamma function. Let sub-

ject i be observed from time 0 to time ti,ni+1 = τi with events occurring

at ti1, ..., tini
. For convenience, let the transformed observed gap times be

vij = A(tij) − A(ti,j−1), j = 1, 2, ..., ni + 1. Then the conditional likelihood

for subject i is:

Li(θ|ui) =
 ni∏
j=1

uiλ0(tij) [S(vij)]ui

 · [S(vi,ni+1)]ui . (2.16)

Letting fH(u) = 1
Γ(1/γ)γ1/γ u

1/γ−1 exp(−u/γ) denote the density of the frailty

distribution, the marginal likelihood for subject i is given by

Li(θ) =
∞∫
0

Li(θ|ui)fH(ui) dui,

which, because u is gamma distributed, is available in closed form:
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Li(θ) =
 ni∏
j=1

λ0(tij)
 · 1

Γ(1/γ)γ1/γ

∞∫
0

u
1/γ+ni−1
i exp (−ui/γ)

ni+1∏
j=1

S(vij)
ui

dui

=
 ni∏
j=1

λ0(tij)
 · 1

Γ(1/γ)γ1/γ

∞∫
0

u
1/γ+ni−1
i exp

−ui
1/γ −

ni+1∑
j=1

logS(vij)
 dui

=
 ni∏
j=1

λ0(tij)
 · Γ(1/γ + ni)

(
1/γ −

ni+1∑
j=1

logS(vij)
)−(1/γ+ni)

Γ(1/γ) γ1/γ

=
 ni∏
j=1

λ0(tij)
 ·
 ni∏
j=1

(1/γ + j) γ
 ·
1− γ

ni+1∑
j=1

logS(vij)
−(1/γ+ni)

where the latter two factors are recognizable as the gamma moment generating

function M(s) = (1 − γs)−1/γ taken to the ni-th derivative and evaluated at
ni+1∑
j=1

logS(vij).

One might wonder which random effect distributions besides the gamma

yield tractable marginal likelihoods. Cook and Lawless (2007, section 3.5.1)

note that any distribution with non-negative support and a closed-form Laplace

transform (or closed-form moment generating function) will suffice. To see

this, let the Laplace transform of such a density fH be:

L(s) =
∞∫
0

e−sufH(u) du

whose rth derivative is:

L(r)(s) =
∞∫
0

(−1)rure−sufH(u) du.

Then the marginal likelihood for one subject is given by:

Li(θ) =
∞∫
0

 ni∏
j=1

λ0(tij) [S(vij)]ui

 · uni
i [S(vi,ni+1)]ui fH(ui) dui

=
 ni∏
j=1

λ0(tij)
 ∞∫

0

uni
i exp

ui
ni+1∑
j=1

logS(vij)

 fH(ui) dui.
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Now letting s∗ = −
ni+1∑
j=1

logS(vij), we have that:

Li(θ) =
 ni∏
j=1

λ0(tij)
L(ni) (s∗)

which is the frailty distribution’s Laplace transform taken to as many deriva-

tives as subject i’s event count, evaluated at the sum of the renewal scale

cumulative hazards at the renewal scale gap times, and scaled by the product

of the baseline intensity evaluated at the original event times.

Mathematical tractability is the main advantage of using gamma dis-

tributed random effects in the fashion of (2.6) to model frailty in a population

but it may not always be a suitable choice. Indeed the choice of frailty distri-

bution can have substantial impact on conclusions in survival analysis. (e.g.

see Congdon (1995)) The following gives a brief discussion about an alterna-

tive distribution for the subject-level random effects, one that doesn’t have a

closed form moment-generating function but that does have a simpler inter-

pretation, as is discussed in the next subsection.

Inference for the TRP with log-Normal distributed frailty

Let m subjects follow a process intensity given by (2.6), i = 1, ...,m,

where ui is the unobservable subject-specific realization from a log-Normal

distribution with median 1. The log-intensity can be written as:

log λ(t|Hi(t), ui) = log ui + log λ0(t) (2.17)

where log ui ∼ Normal with mean 0 and variance σ2. Then the frailty parame-

ter σ2 is directly interpretable as the variance of the error distribution around

log λ0(t), the expected value of the log-intensity at t.
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Let the TRP be parametrically specified such that the trend function is

a(t) = dA(t)
dt

and the renewal distribution has density f(·), hazard h(·), and

survivor function S(·). Then the likelihood of the ith process (again with

t11, ..., t1,ni
denoting the event times and τi = ti,ni+1 being a stopping time) is:

Li(θ) =


ni∏
j=1

a(tij)h(vij)

 · EZ
exp

niZ + eZ
ni+1∑
j=1

logS (vij)




where vij = A(tij) − A(ti,j−1), j = 1, ..., ni + 1 and the expectation is of a

function of Z which follows a Normal distribution with mean 0 and variance

σ2.

Standard numerical optimization software will, in general, be able to han-

dle the maximum likelihood procedure. Exceptions can occur – especially for

gradient-based methods – for datasets in which some subjects have extremely

high event counts; this issue is relevant and will be encountered in the simu-

lation studies of Chapter 4, but will not be explored further in this chapter.

2.6 A view towards other modulated renewal models

In the previous section, we presented the trend-renewal process as a con-

venient option for modelling imperfect repair; it can be obtained simply by

adding a time trend to a pure renewal process. For this reason, the TRP is

one way to add modulation to a renewal process, even though the TRP is not

generally considered a modulated renewal process. The term modulated RP

is most commonly used to describe a semiparametric approach to modelling

recurrent events and usually refers to Cox’s modulated renewal process first

introduced in 1972. Other frameworks for adding modulation to a RP fall un-

der the class of time transform models, as does the TRP itself in some contexts

(see Cook and Lawless (2007, section 5.2.2)) however, they involve modelling

either the expected length of gap times or the cumulative mean of the counting
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process itself. We address these alternatives in order to round out the litera-

ture review of the closest cousins to the TRP among well-established methods.

2.6.1 Cox modulated renewal model

The modulated renewal process is an extension of the canonical renewal

process and provides a flexible way to allow dependence of the intensity func-

tion on aspects of the process history. The distribution of the jth gap time

Wj is specified conditional on covariates z(t), fixed and known at time Tj−1 =
j−1∑
k=1

Wk. The mathematical definition of a modulated renewal model is given

by the intensity function:

λ(t|Ht−) = h0(t− TNt−
) g(z(t)) (2.18)

where h0(·) depends only on t− TNt−
, the time elapsed since the most recent

event, and g depends on arbitrary features of the event history Ht− , such as

event count up to time t or previous gap times. As in a renewal process,

there is a term in the intensity function that, after each event, resets to what

it was at time 0. This piece is the (unspecified) baseline renewal process

with hazard function h0(·), and the covariates z(t) modify this baseline via

the function g(·). A flexible parametric modulated renewal process might

let Wj |z(t) ∼ eYj where Yj is some random variable whose mean is z(t)>β.

Semiparametric estimation would make no assumptions about the form of

h0(cot) and, in analogy to the semiparametric Cox PH model for the usual

single-event survival analysis, a common choice of g is g(z(t)) = exp(z(t)>β)

(see Cox (1972)).

Comparing the above (2.18) and the TRP intensity (2.4) with trend func-

tion (2.5) makes it clear that TRP models are not contained in the class of
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modulated RPs because the principal time scale of a modulated RP is still as-

sumed to be waiting time. Neither are modulated RPs special cases of TRPs

because the covariates in a TRP affect the transformation from the original

time scale to the renewal time scale.

2.6.2 Time transform models

Some might argue that a more natural way of modelling times to events, at

least in the single time-to-event setting, is not through the hazard function but

rather through the expected length of gap times or the cumulative mean of the

counting process itself. In the words of D. R. Cox (Reid (1994)), “accelerated

life models are in many ways more appealing [than the proportional hazards

model] because of their quite direct physical interpretation”.

Recall that the accelerated failure time (AFT) model in single-event sur-

vival analysis incorporates covariate effects as “accelerating” (or decelerating)

the age of a process. In general, given time-fixed covariates X, the hazard

function of the first event time is:

h(t|θ) = θh0(θt)

where θ is some function of X, the most popular choice being θ = eX>i β.

Inference on θ can be done parametrically, semiparametrically, or nonpara-

metrically. The many ways to extend the AFT in the recurrent events context

loosely form a class of time transform models. For instance, Strawderman

(2005) presented a semiparametric model incorporating covariate effects in

the conditional intensity function. In brief, it assumes that if an event process

has fixed covariates X, then conditional on X the waiting timesW1,W2,W3, ...

are independent random variables such thatWj = Vj e
X>β, j = 1, 2, 3, ... where

V1, V2, V3, ... are i.i.d. from some distribution F0. In the absence of censoring,
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this is equivalent to letting the hazard function of Wj be:

hj(t|X) = eX>i βh0
(
eX>i βt

)

where h0(·) is the hazard function associated with F0. This formulation is in

direct analogy to the usual AFT, and is referred to as the accelerated gap time

(AGT) model.

Lin et al. (1998) present a marginal model where the counting process

{Ni(t), t ≥ 0} associated with fixed covariates Xi has a cumulative mean func-

tion µi(t) = E [Ni(t)|Xi] of the form

µi(t) = µ0
(
eX>i βt

)
. (2.19)

That is, the expected number of events experienced by a process with fixed

covariates Xi by time t on the original time scale is a given by a (population-

fixed) function evaluated at eX>i βt. Strawderman (2005) notes that if a process

follows an AGT with covariate effects β and renewal distribution F0, then its

mean function is (2.19) with the same β and µ0(·) being the renewal function

associated with F0.

Broadly speaking, one may be tempted to think of the TRP as a time

transform model too, except that unlike the models mentioned, in a TRP

framework the transformation from the original timescale is not limited to a

linear transformation in total time t.

2.7 Motivation for studying trend-renewal processes

This chapter has reviewed the foundations of the TRP in detail and dis-

cussed briefly the alternatives for modelling recurrent events in the literature.

However, outside of specialized literature on reliability modelling, there is less
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written about TRPs than about the models discussed in Section 2.6. As men-

tioned before, one of the few examples of the TRP being applied to medical

recurrent events is given by Pietzner and Wienke (2013), where the Weibull-

power-law TRP with log-Normal distributed frailty is fitted to a dataset of

hospital readmission times of colon cancer patients (Gonzalez et al. (2005)).

The reason the TRP is not used in analysis of medical or sports injury

data could be because researchers find well-established methods more appeal-

ing; it could alternatively be because TRPs are not well understood. It might

seem inconvenient to have to establish what it means in a practical context

for the recurrent event data to be thought of as one time-scale transform away

from following a renewal process. From the lack of literature applying the

TRP to data where the subjects are humans, it is unclear what a parametric

(or even semiparametric) TRP would offer that the other approaches, such as

parametric accelerated-time or semiparametric conditional intensity, do not.

The following chapter attempts to address some of these issues by discussing

how to more effectively utilize a popular choice of parametric TRP.
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CHAPTER 3
Improving the utility of the Weibull-power-law TRP

While semiparametric and nonparametric inference for the TRP may be

appropriate when the goal is optimal fit and prediction, parametric inference

for the TRP requires relatively smaller sample sizes, can be quite flexible, and

allows standard maximum likelihood theory to be applied. Furthermore, the

popular choices of power-law trend and Weibull renewal allow for convenient

plotting and interpretation for many research questions.

This chapter begins with an overview of standard interpretations of how

the trend and renewal parameters in a Weibull-power-law TRP affect the inten-

sity of the process. It then presents two different and targeted considerations

of what the trend and renewal parameters imply about the association between

past event history and future risk. Finally, it will give a new suggestion for

how covariate effects can be modelled differently than in the classical approach.

3.1 Classical interpretation of the Weibull-power-law TRP

Pietzner and Wienke (2013) provide an interpretation of the parameters in

a Weibull-power-law TRP in terms of how the parameters affect the behaviour

of the intensity function over the interval until the first event and then over

the subsequent intervals. Recall from equation (2.9) the intensity function of

the Weibull-power-law TRP:

λ(t|Ht−) = acbctb−1
(
tb − T bN(t−)

)c−1
.

The a parameter is only a scaling parameter and does not affect the shape

of the intensity function. The roles that the trend parameter b and renewal
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parameter c play must be addressed separately for the intensity until the

first event and for the intensity until subsequent events. For the first event,

if bc > 1, the intensity is increasing until the first event, irrespective of the

shape after the first event. If bc < 1, it is decreasing until the first event, again

irrespective of the shape after the first event (Pietzner and Wienke (2013)).

Table 3–1 provides a useful summary of the behaviour of the intensity function

for all subsequent events for various values of b and c.

It is an artifact of the mathematical formulation that it is possible for

the shape of the intensity until the first event to have different direction of

monotonicity from that of the intensity between all subsequent events. If

bc = 1 but b 6= 1, c 6= 1, then the intensity until the first event is constant and

its shape between subsequent events changes according to either the first or

the third row of Table 3–1, depending on b.

Figure 2–4 shows some examples of the Weibull-power-law TRP intensity

for a subject with three events in its history for b > 1 combined with various

values of c, and Pietzner and Wienke (2013) provides an example intensity

plot for most of the combinations in Table 3–1. However, with these inter-

pretations, we are limited to describing the baseline intensity function for a

population only in general terms, such as whether it is increasing or decreas-

ing or whether the renewals follow a upward or downward time trend. When

discussing the association between past event history and future risk in, for

example, sports injury analysis, more targeted questions might be asked, such

as “in what way would the risk of a subject, with a certain history, differ from

the event risk of himself had he had a different but comparable history?” or

“by how much would the injury risk of a player who gets injured during a

season differ from the injury risk of another player who remains injury-free?”

These questions are not easily answered by Table 3–1 or a simple plot of the

36



Table 3–1: Summary of the behaviour of the Weibull-power-law TRP inten-
sity function after the 1st event for different values of the trend and renewal
parameters (Pietzner and Wienke (2013))

Behaviour of Renewal parameter
intensity function c < 1 c = 1 c > 1

b < 1 Decreases
between
successive event
times;
faster decrease
after jth event
than after
(j − 1)th event

Decreases and is
unaffected by
occurrence of
events

Increases
between
successive event
times;
slower increase
after jth event
than after
(j − 1)th event

Trend
parameter

b = 1 Decreases
between
successive event
times in the
exact same
pattern after
each event

Constant w.r.t.
time

Increases
between
successive event
times in the
exact same
pattern after
each event

b > 1 Decreases
between
successive event
times;
slower decrease
after jth event
than after
(j − 1)th event

Increases and is
unaffected by
occurrence of
events

Increases
between
successive event
times;
faster increase
after jth event
than after
(j − 1)th event

fitted intensity function.

3.2 New considerations for the Weibull-power-law TRP

Existing interpretations of the trend parameter b and renewal parameter

c in the Weibull-power-law TRP are limited to only describing in broad terms

how they affect the intensity function underlying an event process. Here, we

37



discuss their roles in quantifying the difference between the intensities of pro-

cesses with comparable but different histories. The following two subsections

each present a formulation of relative intensity that quantifies notions such as

extent of recovery in recurrent injury data.

3.2.1 Relative intensity: comparing two processes with regard to
their most recent event time

For the first formulation let us begin by considering a process that has had

one event with a process that did not have that event but was exposed for the

same amount of time. What does the combination of the trend and renewal

parameter values tell us about the difference in intensity of these processes,

going forward from the first process’s event?

Let us compare two processes realized from the same Weibull-power-law

TRP:

• subject 1 who has been exposed on the interval [0, t) and has had an

event at s < t;

• subject 2 who has been exposed on the interval [0, t) and has not had an

event.

Using the usual parametrization involving a, b, c, the ratio of intensities func-

tions matching subject 1’s and subject 2’s descriptions, at time t, is:

λ1(t|H1(t))
λ2(t|H2(t)) = ab tb−1c(atb − asb)c−1

ab tb−1catb(c−1) =
[
1−

(
s

t

)b]c−1

. (3.1)

If we think of x = t− s as the time elapsed since s, then we can define

rs,0(x) =
1−

(
1

1 + x/s

)bc−1

(3.2)
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to be the function which gives the intensity ratio at time x+s as a function of
x
s
, the elapsed time since the event scaled by the time of the event. Note that

rs,0(x) does not depend on t, the cumulative time since process initiation.

The behaviour of rs,0(x) is independent of the scaling parameter a and

depends only on b and c. Moreover, it suffices to consider just r1,0(x) (i.e.

where s = 1) because r1,0(x) differs from rs,0(x) only by a horizontal scaling

factor of s.

In practical terms, rs,0(x) is the relative intensity of having had a first

event versus having had none in the framework of the Weibull-power-law TRP.

Its properties can be described as follows, particularly with regard to the trend

and renewal parameters:

1. lim
x→∞

rs,0(x) = 1 for any values of b and c, i.e. the effect of having had

the event at s “wears off” as more and more time passes.

2. If c = 1, then rs,0(x) is identically 1; indeed, as in a NHPP, having an

event does not change one’s risk of future event from what it would have

been if the event had not occurred;

3. Only c controls the monotonicity and concavity of rs,0(x); both c and b

control the rate of change (refer to Figure 3–1).

• If c < 1, then rs,0(x) decreases from infinity to 1 in a convex fashion;

the closer c is to 1 (for a fixed value of b) the faster the decrease,

the greater b is (for a fixed value of c) the faster the decrease.

• If 1 < c < 2, then rs,0(x) increases from 0 to 1 in a concave fashion;

the closer c is to 1 (for a fixed value of b) the faster the increase,

the greater b is (for a fixed value of c) the faster the increase.

• If c > 2, then rs,0(x) increases from 0 first in a convex fashion and

then continues concavely to 1; the greater c is (for a fixed value of
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b) the later the transition to concave, and again, the greater b is

(for a fixed value of c) the faster the increase.
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Figure 3–1: Plots of r1,0(x), the relative intensity of having had a first event
versus having had none in the Weibull-power-law TRP framework, for various
combinations of trend and renewal parameters b and c.
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Figure 3–1 illustrates the behaviour of r1,0(x) for various combinations of

b and c. These plots are useful because one unit on the time axis represents s

amount of time. For example, let the time axis be exposure time and consider

two athletes hypothetically following the same Weibull-power-law TRP: one

player got injured after playing for s = 5 weeks into a season and returned

to play for another 5 injury-free weeks while the other had an injury-free 10

weeks. To compare the first player at 10 weeks of his playing time to the second

player at 10 weeks of his playing time, we would compute x = (10 − 5)/5 as

the elapsed time since the more recent event scaled by the time of the more

recent event. The ratio of the first player’s intensity at 10 weeks of his playing

time to the second player’s intensity at 10 weeks of his playing time would

thus be given by r1,0(1).

The impact of time-independent covariates on the intensity ratio is simple

to see if the covariates are incorporated in the power-law trend function as:

a(t) = a0(t) exp(X>β)

where a0(t) = abtb−1 is the baseline trend, X = (x1, ..., xp)> is the covariate

vector, and β = (β1, ..., βp)> denotes the corresponding effects. With this for-

mulation, we have the familiar interpretation that, fixing all other covariates,

every 1 unit increase in xj corresponds to a change in the baseline trend by a

factor of eβj (i.e. a change in the Weibull-power-law TRP baseline intensity

by a factor of ecβ). More generally, if subject 1 with covariates X1 and subject

2 with covariates X2 are observed on [0, t) and subject 1 has had an event at

time s < t while subject 2 is event-free, then the ratio at time t = s + x of

their intensities is given by

λ1(t|H1(t),X1)
λ2(t|H2(t),X2) = rs,0(x) exp(c (X1 −X2)>β)
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which reduces to (3.1) if the two subjects have no measured differences. Note

that this formulation of the baseline intensity incorporates covariate effects

merely as scaling constants on the baseline intensity; they are absorbed into

the overall scaling parameter a, and cannot effect the shape of the intensity. In

a later subsection we discuss how to compare the trend and renewal behaviour

between, say, two treatment groups.

One of the reasons why the Weibull-power-law TRP is so easy to work

with is the availability of the intensity function in closed form. The fact that

the ratio rs,0(x) is easy to interpret is another. Now we make this quantity a

bit more general.

Compare two subjects following the same baseline intensity:

• subject 1 with covariates X1 who has been exposed on the interval [0, t)

and whose most recent event was at s1 < t;

• subject 2 with covariates X2 who has been exposed on the interval [0, t)

and whose most recent event was at s2 < s1 < t.

At time t, the ratio of the intensity functions accounting for covariates and

given these histories is:

λ1(t|H1(t),X1)
λ2(t|H2(t),X2) = ab tb−1c(atb − asb1)c−1 exp(cX>1 β)

ab tb−1c(atb − asb2)c−1 exp(cX>2 β)

=
[

(t/s1)b − 1
(t/s1)b − (s2/s1)b

]c−1

exp(c(X1 −X2)>β).

Letting p = s2/s1 ∈ [0, 1] and x = t − s1 > 0 be the elapsed time since the

more recent event, define

rs1,s2(x) =
[

(1 + x/s1)b − 1
(1 + x/s1)b − (s2/s1)b

]c−1

(3.3)

and hence we have that the ratio of the subjects’ intensities depends on the

ratio of the two subjects’ most recent event times and is a function of x/s1,

the elapsed time since s1 scaled by s1. Moreover, similar to before, we can
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define a scaled quantity

r1,p(x) =
[

(1 + x)b − 1
(1 + x)b − pb

]c−1

. (3.4)

(3.4) only differs from (3.3) by a horizontal scaling of s1 and therefore captures

the behaviour of (3.3) where b and c are concerned. And indeed, if p = 0 i.e.

subject 2 never had an event, then r1,p(x) reduces to the r1,0(x) discussed

previously.

A natural question to ask at this point is, how would we construct a

confidence interval for r1,p(x) for a fitted Weibull-power-law TRP? It may be

sensible to use the parametric bootstrap. After fitting a model, one could easily

simulate bootstrap datasets from the TRP specified by the point estimates (for

more on the simulation procedure, see section 4.1) and hence approximate a

distribution for the point estimates. Then the lower and upper percentiles of

the bootstrap parameter estimates can be used to compute the corresponding

confidence bounds on r1,0(x). However, at this point constructing confidence

bounds on this intensity ratio has not been well developed enough to merit

further discussion in this thesis.

In practical terms, rs1,s2(x) is the relative intensity of two processes fol-

lowing the same Weibull-power-law TRP which are the same age but differ in

the times of their most recent events. It is clear from inspection of (3.4) that,

for a fixed p, the properties of r1,p(x) are identical to the three properties of

rs1,0(x) detailed previously. For fixed b and c, the closer p is to 1 (i.e. the

closer the two subjects’ most recent event times) the faster r1,p(x) approaches

1, and the closer p is to 0 (i.e. the further apart the two subjects’ most re-

cent event times) the slower r1,p(x) approaches 1. Figure 3–2 gives plots of

r1,p(x) for c = 0.6, 1.6 and b = 0.4, 1.5, which have similar behaviour to the
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corresponding plots in Figure 3–1 and show the extra dimension of p where

increasing p corresponds to faster convergence of r1,p(x) to 1.
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Figure 3–2: Plots of r1,p(x), the relative intensity of having had a most recent
event at s1 versus having had one at s2 < s1 in the Weibull-power-law TRP
framework, for various combinations of trend and renewal parameters b and c.

Finally, we conclude this subsection with an extension of the previous

example of what r1,p(x) practically quantifies. Let the time axis be exposure

time and consider two athletes hypothetically following the same Weibull-

power-law TRP: one player got injured after playing for s1 = 8 weeks into a

season and returned to play for another 4 injury-free weeks while the other

got injured after playing for s2 = 6 weeks and returned to play for another

4 injury-free weeks. To compare the first player at 10 weeks of his playing

time to the second player at 10 weeks of his playing time, we would compute
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p = s2/s1 = 0.75 as the ratio of the event times and x = (10 − 8)/8 as the

elapsed time since the more recent event scaled by the time of the more recent

event. The ratio of the first player’s intensity at 10 weeks of his playing time

to the second player’s intensity at 10 weeks of his playing time would thus be

given by r1,0.75(0.25). We could also go the other way and ask, for instance,

how long would the first player play after returning from getting injured at s1

before his intensity gets to 100q% of the second player’s intensity? Estimating

this would mean solving for x in r1,0.75(x) = q.

3.2.2 Relative intensity: comparing going forward from the most
recent event and going forward from a previous event

For the second formulation let us consider a subject following a Weibull-

power-law TRP parametrized by a, b, c who has been exposed in the interval

[0, t), with a most recent event at s1 < t. How would the process intensity

going forward from t compare with the process intensity going forward from

an event that occurred prior to the one at time s1? Let x = t − s1 denote

the elapsed time since his most recent event and s2 < s1 be the time of an

earlier event (where s2 = 0 means that the comparison is with the subject’s

intensity going forward from time 0). Then the comparison can be made using

the intensity ratio

λ(x+ s1|H(x+ s1))
λ(x+ s2|H(x+ s2)) = ac b (x+ s1)b−1c [(x+ s1)b − sb1]c−1

ac b (x+ s2)b−1c [(x+ s2)b − sb2]c−1 .

In a familiar fashion as before, we can define this as the intensity ratio rs1,s2(x)

and write it as a function of x

s1
, the elapsed since s1 scaled by s1, and of
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p = s2/s1 the ratio of the two relevant event times:

rs1,s2(x) =
(

x/s1 + 1
x/s1 + s2/s1

)b−1 [ (x/s1 + 1)b − 1
(x/s1 + s2/s1)b − (s2/s1)b

]c−1

=
(
x/s1 + 1
x/s1 + p

)b−1 [ (x/s1 + 1)b − 1
(x/s1 + p)b − pb

]c−1

.

And hence we can define

r1,p(x) =
(
x+ 1
x+ p

)b−1 [ (x+ 1)b − 1
(x+ p)b − pb

]c−1

(3.5)

which differs from rs1,s2(x) only by a horizontal scaling of s1 and whose be-

haviour is independent of the scaling parameter a.

In practical terms, rs1,s2(x) is the relative intensity of going forward from

the most recent event versus going forward from another earlier event, in

the framework of the Weibull-power-law TRP. Inspection of (3.5) tells us two

straightforward properties:

1. lim
x→∞

rs2,s1(x) = 1 for any values of b and c, i.e. in the long run a subject’s

intensity becomes more and more like how it would be if the most recent

event had not occurred;

2. If b = 1, then rs2,s1(x) is identically 1; indeed, as in a RP, after each

event occurrence the intensity simply restarts the same fixed trajectory.

If p = 0, then the relative intensity quantifies the difference between the in-

tensity going forward from some event and the intensity going forward from

process initiation; for example, in sports injury, it may be of interest to com-

pare an athlete after getting injured with either himself or a similar athlete at

the start of the season. Hence r1,0(x) quantifies how far from perfectly renewed

a subject is, after having had an event, if perfectly renewed is the state of the

subject going forward from process initiation. Refer to Figure 3–3 for plots of

r1,0(x) for various combinations of trend and renewal parameter values. While
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the roles of b and c in the behaviour of r1,0(x) are not easily described, but in

general:

• If b > 1, the ratio decreases from infinity and if b < 1 the ratio increases

from 0.

• If c is small enough there exists a finite point where the ratio equals 1.

– If b > 1, it means that for a period of time after having had an

event at s1 the subject has a higher intensity than he did going

forward from time 0; at some point his risk is equal to what it was

at an earlier time in the process but after this point his intensity

will be lower than what it was when he was event-free;

– If b < 1, it means that for a period of time after having had an event

at s1 the subject has a lower intensity than he did going forward

from time 0; at some point his risk is equal to what it was at an

earlier time in the process, but after this point his intensity will be

higher than what it was when he was event-free.

Once again, the following is an example of what the intensity ratio r1,0(x)

practically quantifies. Let us consider just one athlete assumed to follow the

Weibull-power-law TRP whose process age is his exposure time. He gets in-

jured after playing for s2 = 5 weeks into a season and returns to play for

another 5 injury-free weeks before getting injured again at s1 = 10 weeks of

playing time; after he returns he remains injury-free for the rest of the season.

To compare his risk at 12 weeks of his cumulative playing time (or 2 weeks

after his second injury) with his risk when he had played 2 weeks into the

season, we would have p = 0/s1 = 0 and x = (12− s1)/s1 = 0.2 as the elapsed

time since the more recent event scaled by the time of the more recent event.

The ratio of his intensity at 2 weeks after coming back from his second injury
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Figure 3–3: Plots of r1,0(x), the relative intensity comparing going forward
from an event at s1 and going forward from process initiation in the Weibull-
power-law TRP framework, for various combinations of trend and renewal
parameters b and c, with a gray line at 1 for reference

to his intensity at 2 weeks into the season would thus be given by r1,0(0.2).

Alternatively, we could compare his risk at 7 weeks of his cumulative playing
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time (or 2 weeks after his first injury) with his risk at 2 weeks into the season;

we would have p = 0/s2 and x = (7 − s2)/s2 = 0.4 and compute the relative

intensity r1,0(0.4). And in certain cases, we could also ask: how long would

the first player need to play after returning from getting injured at s1 before

his intensity is equal to what it would be if he were playing that long from the

beginning of the season? Estimating this quantity would require solving for x

in r1,0(x) = 1.

3.2.3 New consideration of how to incorporate categorical covari-
ates

In the previous section, we discussed how a given Weibull-power-law TRP

can be interpreted in the context of two formulations of relative intensity,

where covariates enter the intensity function in a manner analogous to the

classical Cox proportional hazards formulation in standard survival analysis.

A review of the literature on TRPs reveals only examples where covariates are

incorporated in the trend-renewal intensity function in a multiplicative way,

i.e.

λ(t|Hi(t),Xi) = λ0(t|Hi(t)) exp
(
X>i β

)
.

For example, Lindqvist et al. (2003) suggests incorporating the effect of co-

variates in the trend function by letting the trend function for the ith subject

be ai(t) = g(Xi)a0(t) so that g(Xi) scales the “baseline” trend function a0(t)

common to all subjects. The example he gives is g(Xi) = exp(X>i β). In the

Weibull-power-law TRP, this allows for what we will henceforth call a propor-

tional intensities model with a parametric baseline because the intensity takes

the form:

λ(t|Hi(t),Xi) = acb tb−1c(tb − TN(t−))c−1 exp(cX>i β). (3.6)
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Pietzner and Wienke (2013) also use this structure for their analysis of covari-

ate effects.

If the covariates are categorical, then defining the intensity in this manner

for a Weibull-power-law TRP simply creates a different scaling factor a for each

subgroup, i.e.

λ(t|Hi(t),Xi) = acb tb−1c
(
tb − TN(t−)

)c−1
exp(cX>i β)

= exp
{
c
(
log a+ X>i β

)}
b tb−1c

(
tb − TN(t−)

)c−1
.

However, it can be limiting to incorporate covariates in the model in such

a way that their multiplicative effects on the intensity are merely constant over

time. A proportional intensity ratio between two groups means that a process

in group A with the same history as a process in group B has the same shape

of intensity function. But there are many settings where this might not be

the case. Take the hospital readmission data of Gonzales et al. (2005) as an

example. If a question of interest is “do women have shorter readmission times

on average than men?”, then it is appropriate to fix the trend parameter b and

the renewal parameter c to be the same for the two groups and allow only

the scaling parameter to depend on sex. However, answering the question

“does the risk of readmission for women renew differently than the risk of

readmission for men?” is more complex. If it is reasonable to assume that the

shape of the intensity function is the same for a man and a woman with the

same process history, then we can proceed as before. If instead the intensity for

males increases over time whereas the intensity for females decreases, then we

would run into a familiar problem: just as the Cox proportional hazards model

in single-event survival analysis is inappropriate if the hazard function for one

group crosses with that of another, the very realistic possibility of crossing
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intensity functions in the recurrent event setting undermines the suitability of

the proportional intensities -type TRP model.

Consider now a second example. It is conceivable that late stage cancer

patients would be far more vulnerable to readmission after a hospital visit

(e.g. due to surgery or other complications) than patients in early stage. Due

to their frailty, the sojourn times of late stage patients could have higher vari-

ance than those of early stage patients. This would translate to an increasing

intensity for early stage patients and a decreasing intensity for late stage. The

next subsection explains how the TRP framework can perhaps be utilized to

address this.

Allowing a different renewal parameter for each level

If the research question pertaining to categorical covariate effects is “what

do different values of this covariate say about the association between past

event history and future risk?” then it might actually make more sense to

model the covariates in a Cox-like fashion not on the a parameter, but on the

c parameter in the Weibull-power-law TRP.

If there is reason to believe that the shape of the intensity function could

be significantly different for the p levels of a predictor, then let the intensity

be parametrized by the usual a and b as well as a vector βc in the following

way:

λ(t|Hi(t),Xi) = acib tb−1ci
(
tb − T bN(t−)

)ci−1
(3.7)

where Xi = (X1, X2, ..., Xp−1)> are indicators and ci = exp
{
X>i βc

}
is the

renewal parameter corresponding to the subgroup in which subject i belongs.

This formulation assumes the same scaling and trend parameters for everyone,

to maintain comparability and might be suitable if it is believed that how the
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underlying propensity for an event changes over time does not vary much

among subjects but the evolution of the process triggering events does. For

example, athletes in different positions hypothetically differ greatly in style of

play but can be expected to become weary over a season at mostly the same

pace.

As an illustration, take a hypothetical sample such that each process is a

realization of a Weibull-power-law TRP with scale parameter a = 0.002 and

trend parameter b = 1.2 but the renewal parameter c equals c1 = 0.6 for a

subject in the untreated group and equals c2 = 2 for a subject in the treated

group. We set the censoring time to 730 and simulate a dataset of 100 sub-

jects with half treated and half untreated with median event counts of 4 and 5

respectively. Then, fit to this dataset two models: the true model allowing for

different renewal parameters for the two groups but assuming the same scaling

and trend, and the alternative model which assumes “proportional intensities”,

allowing different scaling parameters but assuming the same trend and renewal

parameters for everyone. Now consider a process history of one event at time

200. In Figure (3–4) the black solid lines show the true intensities from which

the data are simulated, the blue lines show the estimated intensities from the

correct model, and the red lines show the estimated intensities from the incor-

rect model. If the proportional intensities model is fitted to subpopulations

that exhibit this kind of disparity, it may not capture the difference between

them adequately or accurately. The red solid and dashed red lines respec-

tively illustrate the intensity ratio between the treatment groups if that ratio

has to be constant over time. But clearly, with such different renewal patterns

between the subgroups, the intensity ratio must vary over time.

Fitting the wrong model might lead to the inference that one group is

consistently at lower risk of readmission than the other, when actually the
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Figure 3–4: True intensity functions (conditional on same event history) for
levels of a binary covariate depicted by the black lines with solid for treated
and dashed for untreated. The estimated intensity functions from the correctly
specified model (different renewal parameter c for each group) are depicted by
the blue lines with solid for treated and dashed for untreated. When the
incorrectly specified model allowing for a different scaling parameter a for
each group is fitted, the estimated intensity functions are depicted by the red
lines with solid for treated and dashed for untreated.

difference can be as subtle as the “strong” group’s risk of readmission starting

out lower than but eventually surpassing the “weaker” group’s risk. Of course,

if we had simulated data from a model with covariate effects modelled by

proportional intensities, then the model with covariate effects modelled on the

renewal parameter would yield poor fit.

In a practical context, there is no known true model to speak of for any

given dataset. Therefore, if one opts to perform analysis in the TRP framework

where the data has subpopulations that have to be directly compared and

could be reasonably described by significantly different shapes of intensity,
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one could consider fitting both the models fitted above as well as the larger

model which allows different scaling and different renewal in combination. For

instance, if one is interested in comparing the p levels of a predictor encoded

as above, one could consider letting the intensity function be parametrized by

the fixed b as well as the vectors βa and βc and defining it as

λ(t|Hi(t),Xi) = aci
i b t

b−1ci
(
tb − T bN(t−)

)ci−1
(3.8)

where ai = exp
{
X>i βa

}
and c = exp

{
X>i βc

}
are the scaling and renewal

parameters in the intensity function associated with covariate vector Xi. The

models (3.6) and (3.7) would be nested in (3.8) and hence can be compared

with it using the LRT. If the extra parameters are deemed insignificant, then

the two simpler models could reasonably be compared using BIC.

It is conceivable to allow a different c for each subgroup, so why not also

consider the case where a different b is allowed for each subgroup? On one

hand, Figure 3–4 illustrates an extreme example showing the consequences of

fitting a proportional intensities model when the assumption is violated. On

the other hand, it is unclear whether there would ever be a practical situation

where there would be reason to believe that fixing the scaling parameter and

allowing treatment groups to have different trend parameters would yield much

better fit or significantly different conclusions than fixing the trend parameter

and allowing treatment groups to have different scaling parameters. Even with

moderate observed event counts, if the shape of the intensity functions for dif-

ferent subgroups is assumed to be the same (i.e. to maintain comparability by

having fixed c) then it is reasonable and also suffices for interpretation’s sake

to assume that the time trends for two subgroups differ by a constant factor

over time.
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3.3 Analogous interpretations in other parametric TRPs

The previously introduced ideas for interpretation of parametric TRPs

using notions of relative intensities of comparable event histories would also

be feasible for different choices of trend function and/or renewal distribution;

the Weibull-power-law TRP is only special because the relative intensities

we examined have closed form and have behaviour dependent only on two

parameters.

For example, in the popular but less convenient gamma-power-law TRP

the relative intensity for the pair of comparable event histories defined in sec-

tion 3.2.1 and in section 3.2.2 is not available in closed form and depends on

all the parameters. Nevertheless, the relative intensities can still be graphed

and used similarly to our previous demonstration. In fact, preliminary inves-

tigation reveals that, if the shape parameter c defining the gamma renewal

distribution is the renewal parameter of the gamma-power-law TRP, then the

overall effect of the trend parameter b and renewal parameter c on the relative

intensity in the gamma-power-law framework is the same as the overall effect

of the corresponding parameters on the relative intensity in the Weibull-power-

law framework. In other words, the effect of b > 1 or b < 1 in the gamma-

power-law TRP goes in the same direction as the effect of b > 1 or b < 1 in

the Weibull-power-law TRP, and same goes for c. We leave to future work the

explicit computation of each relative intensity quantity (and the quantification

of the trend and renewal parameter effects) in parametric contexts beyond the

Weibull-power-law TRP.

Finally, we also note that it would be straightforward to incorporate cate-

gorical covariates in the gamma-power-law TRP by allowing different renewal

parameters for each level of a covariate. However, explicit exploration and
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implementation of this idea to contexts beyond the Weibull-power-law case is

beyond the scope of this thesis.
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CHAPTER 4
Finite sample evaluation of inference

Maximum likelihood inference is known to work well in large samples,

however, in a practical application, we are often faced with the reality of

datasets that are potentially not large enough to yield useful or trustworthy

parameter estimates.

In the context of analysis on recurrent machine failures, large sample ap-

proximations are often appropriate because of the high number of events as

well as the given that the operating environment and “subjects” in a sample

are made to be as similar as possible. In the contexts of recurrent illness or

recurrent sports event, however, we often must make due with limited numbers

of subjects and even more limited event counts per subject; this is especially

a problem if athletes are sufficiently different that frailty should be accounted

for but events within subjects are infrequent. In this chapter, simulation stud-

ies are used to gauge how well parameters are estimated in correctly specified

models for moderate sample sizes of subjects and low event counts when the

data are generated from the Weibull-power-law and gamma-power-law frame-

works.

All of the simulation studies in this chapter are conducted in R and opti-

mization is performed with the optim function. Note that in order to have an

unrestricted parameter space for optim to search, the log-likelihood function

is always reparametrized with the parameters on the log-scale. The stargazer

package by Hlavac (2015) streamlined the reporting of results.

We are concerned only with fitting models under the assumption of in-

dependent censoring, where the likelihood in (2.8) is valid. This is commonly
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achieved by either simulating censoring times from a distribution independent

of that from which the renewal process gap times are drawn or prespecifying

the observed event count. We set censoring times equal to a constant such that

the desired average event count n is observed in the subjects. For example,

for a TRP without unobserved heterogeneity, the censoring time in the RP

timeline for all subjects will be ν = nE [V1], making τ = A−1(ν) the censoring

time on the TRP timeline.

Finite sample evaluation of inference for categorical covariates in the

Weibull-power-law TRP – both the framework where each treatment group

has a different scaling parameter (i.e. proportional-intensities covariate ef-

fects) and the framework where each treatment group has a different renewal

parameter – were conducted but we omit the results from this thesis for two

reasons. Firstly, note that to simulate from such frameworks involves merely

adjoining smaller datasets simulated from the TRPs defined by the parameter

for the respective treatment group and baseline parameters shared by every-

one. Hence, the quality of estimation for the baseline parameters depends

on the total subject count and observed event counts, while the quality of

estimation for each of the subgroup-specific parameters depends on the sub-

group’s subject count and observed event counts. The simulation studies in

this chapter suffice to report equivalent conclusions as would the omitted sim-

ulation studies. Another reason is that Pietzner and Wienke (2013) already

conducted simulation studies for the heterogeneous Weibull-power-law TRP

with two continuous covariates and log-Normal distributed subject-level ran-

dom effects. They showed that the estimation of all parameters is quite good

for moderate subject counts and very good for low event counts.

Pietzner and Wienke (2013) is the only example we found in the literature

which evaluates finite sample inference in the TRP framework; whereas they
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simulated from the heterogeneous Weibull-power-law TRP with log-Normal

random effects, we simulate from the heterogeneous Weibull-power-law TRP

with gamma random effects and the gamma-power-law TRP with gamma

random effects.

We hypothesize that estimation of the baseline parameters in a parametric

TRP with random effects is not robust to misspecification of the distribution

of the random effects, but this has not yet been investigated in the literature

nor in our work.

4.1 Simulation study: Estimation of parameters in the Weibull-
power-law TRP

When the true data generating process is the Weibull-power-law TRP

without heterogeneity and the correct model is fitted, we expect maximum

likelihood estimation of the parameters in the correctly specified model to do

extremely well for moderate sample sizes. For this first study, we evaluate

how well the scaling, trend, and renewal parameters in the Weibull-power-law

TRP can be estimated if the average observed event count is low to moderate.

It is very straightforward to simulate events for one subject. Once the

time transformation A(·) and renewal distribution F are chosen, one needs

only to:

1. generate V1, V2, V3, ... i.i.d. from F to make gap times from a RP; censor

the RP at some fixed time ν such that n events are observed; and

2. compute Tj = A−1
(

i∑
k=1

Vk

)
for j = 1, 2, 3, ..., n as the event times on the

original timeline.

We carry out this procedure for the parameter configuration a = 0.004, b =

1.2, c = 0.9. The trend and renewal parameters are set such that the intensity

is increasing until the first event and henceforth decreasing, which is a scenario
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that has not been simulated from before; the simulation studies reported in

Pietzner andWienke (2013) used a true parameter configuration of b = 1.5, c =

0.5. (See the end of section 4.2 for more details about their simulation studies.)

Furthermore, b and c are deliberately close to the values that would reduce

the TRP to a PP and/or a RP; we want to see how many total observed

counts in the data would be adequate to distinguish the fitted model as being

significantly different from the PP and RP.

For each combination of censoring time (τ = 185, 320, 645, which respec-

tively yield approximate average observed event counts of 2, 4, and 9) and

sample size (m = 25, 50, 100) 1000 datasets were generated. To fit the (cor-

rectly specified) model, we find the maximizers of the log of the likelihood

function (2.10) and the estimated standard errors of the parameter estimates

are obtained by taking the square root of the diagonal of the inverse of the

observed information matrix. Since all the observed gap times are assumed to

be independent within as well as between subjects in a TRP without frailty,

we expect the usual 95% confidence intervals to yield adequate coverage.

Tables 4–1 to 4–3 report the results for each censoring time, respectively.

Each table displays, for each sample size, the true parameters on the log scale,

the mean of the point estimates, the standard error of the point estimates, the

mean of the estimated standard errors, and the coverage of the 95% confidence

intervals.

In general, we note that at least 200 observed events are needed to distin-

guish the trend parameter from 1, and at least 400 observed events needed to

distinguish the renewal parameter from 1. The gain in precision by doubling

the average event count is roughly the same as that of doubling the subject

count.
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Table 4–1: Results of simulation study 4.1 where the average number of events
per subject is approx. 2. Columns refer to subject count, parameter name, true
parameter value, mean of the point estimates, standard error of the estimates,
mean of the estimated standard errors of the point estimates, and coverage
percentage of the 95% confidence intervals.

No. subjects Parameter True Mean S.e. estimates Mean s.e. Coverage
log(a) -5.521 -5.604 1.158 1.115 0.939

25 log(b) 0.182 0.178 0.177 0.172 0.937
log(c) -0.105 -0.072 0.14 0.139 0.929

log(a) -5.521 -5.594 0.745 0.787 0.95
50 log(b) 0.182 0.186 0.117 0.122 0.958

log(c) -0.105 -0.096 0.098 0.098 0.950

log(a) -5.521 -5.546 0.552 0.549 0.948
100 log(b) 0.182 0.182 0.086 0.086 0.947

log(c) -0.105 -0.098 0.071 0.069 0.939

Table 4–2: Results of simulation study 4.1 where the average number of events
per subject is approx. 4. Columns refer to subject count, parameter name, true
parameter value, mean of the point estimates, standard error of the estimates,
mean of the estimated standard errors of the point estimates, and coverage
percentage of the 95% confidence intervals.

No. subjects Parameter True Mean S.e. estimates Mean s.e. Coverage
log(a) -5.521 -5.661 0.851 0.826 0.953

25 log(b) 0.182 0.194 0.118 0.117 0.939
log(c) -0.105 -0.096 0.09 0.089 0.950

log(a) -5.521 -5.56 0.553 0.574 0.960
50 log(b) 0.182 0.185 0.079 0.082 0.965

log(c) -0.105 -0.099 0.063 0.063 0.951

log(a) -5.521 -5.531 0.401 0.403 0.938
100 log(b) 0.182 0.182 0.058 0.058 0.940

log(c) -0.105 -0.100 0.044 0.044 0.948

4.2 Simulation study: Estimation of parameters in the Weibull-
power-law TRP with unobserved heterogeneity

Now we evaluate the finite sample parameter estimation in the heteroge-

neous Weibull-power-law TRP in the absence of covariates but with subject-

level random effects following a gamma distribution with mean 1 and scale
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Table 4–3: Results of simulation study 4.1 where the average number of events
per subject is approx. 9. Columns refer to subject count, parameter name, true
parameter value, mean of the point estimates, standard error of the estimates,
mean of the estimated standard errors of the point estimates, and coverage
percentage of the 95% confidence intervals.

No. subjects Parameter True Mean S.e. estimates Mean s.e. Coverage
log(a) -5.521 -5.589 0.568 0.578 0.966

25 log(b) 0.182 0.188 0.072 0.074 0.959
log(c) -0.105 -0.100 0.054 0.054 0.952

log(a) -5.521 -5.537 0.405 0.406 0.949
50 log(b) 0.182 0.182 0.052 0.052 0.954

log(c) -0.105 -0.103 0.038 0.038 0.946

log(a) -5.521 -5.522 0.292 0.286 0.942
100 log(b) 0.182 0.182 0.037 0.037 0.946

log(c) -0.105 -0.104 0.027 0.027 0.950

parameter γ. We assess how well the parameters can be estimated in a cor-

rectly specified model for datasets with low to moderate event counts.

It is also straightforward to simulate events for a subject following the

heterogeneous Weibull-power-law TRP with subject-level frailty whose inten-

sity function is given by (2.12). Subject i’s event times can be generated as

follows:

1. Sample ui from the gamma distribution with shape 1/γ and scale γ.

2. Generate Vi1, Vi2, Vi3, ... i.i.d. Weibull with shape c and scale u1/c
i .

3. Compute Tij =
(1
a

i∑
k=1

Vik

)1/b
for j = 1, 2, 3, ... as the event times on the

original timeline.

We carry out this procedure for the parameter configuration a = ×10−5, b =

1.8, c = 2.4, γ = 0.5. For each combination of censoring time (τ = 380, 560, 730,

which respectively yield approximate average observed event counts of 2, 4,

and 9) and sample size (m = 25, 50, 100, 200) 1000 datasets were generated.
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Tables 4–4 to 4–6 summarize, in order, the results for each censoring time.

The columns in each table give the number of subjects in each dataset, the

reparametrized parameters, the true values, the mean of the point estimates,

the standard error of the point estimates, the mean of the estimated standard

errors, and the 95% CI coverage, based on 1000 datasets.

The results show that when the heterogeneous model is correctly speci-

fied and the subject count is moderately high, the estimation of a, b, and c is

excellent even when most subjects have a low event count. However, for some

data sets when the mean observed event count is 2, numerical maximization of

the likelihood resulted in either non-convergence or convergence to extremely

small estimates of the frailty variance γ; this is reflected in the footnote and

otherwise large estimated standard errors in the fourth row of Table 4–4.

4.3 Simulation study: Estimation of parameters in the gamma-
power-law TRP with unobserved heterogeneity

Now we evaluate finite sample parameter estimation in the heterogeneous

gamma-power-law TRP in the absence of covariates but with a random effect

(frailty) at the subject level which follows a gamma distribution with mean 1

and scale parameter γ.

As before, let h(·) and S(·) denote the hazard and survivor functions

of the renewal distribution. Recall from section 2.1.3 that, conditional on the

random effect ui, subject i’s intensity function is that of a TRP with power law

trend and renewal distribution with survivor function S∗i (t) = [S(t)]ui . Since

the density, survivor, and quantile functions for the gamma distribution are

1 8 of 1000 datasets had an estimate of γ that was too close to 0 for the
standard error to be estimable.
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Table 4–4: Results of simulation study 4.2 where the average number of events
per subject is approx. 2. Columns refer to subject count, parameter name, true
parameter value, mean of the point estimates, standard error of the estimates,
mean of the estimated standard errors of the point estimates, and coverage
percentage of the 95% confidence intervals.

No. subjects Parameter True Mean S.e. estimates Mean s.e. Coverage
log(a) -9.721 -9.782 0.837 0.829 0.944

25 log(b) 0.588 0.591 0.076 0.076 0.948
log(c) 0.875 0.901 0.128 0.128 0.946
log(γ)1 -0.693 -0.954 1.503 3.972 0.947

log(a) -9.721 -9.705 0.578 0.584 0.945
50 log(b) 0.588 0.585 0.054 0.054 0.951

log(c) 0.875 0.885 0.086 0.090 0.955
log(γ) -0.693 -0.800 0.542 0.704 0.971

log(a) -9.721 -9.751 0.411 0.415 0.950
100 log(b) 0.588 0.590 0.038 0.038 0.947

log(c) 0.875 0.880 0.065 0.063 0.953
log(γ) -0.693 -0.733 0.308 0.298 0.976

log(a) -9.721 -9.704 0.290 0.292 0.943
200 log(b) 0.588 0.586 0.027 0.027 0.949

log(c) 0.875 0.880 0.046 0.045 0.934
log(γ) -0.693 -0.712 0.202 0.204 0.954

readily available in base statistical programs, the inverse probability transform

can be exploited to generate event times. In other words, conditional on ui, the

random variable S−1(1−Z1/ui) (where Z ∼ Unif(0, 1)) has survivor function

S∗(·).

Now subject i’s times can be simulated by the following procedure:

1. Generate ui from the gamma distribution with shape 1/γ and scale γ.

2. Generate Zi1, Zi2, ... i.i.d. standard Uniform.

3. Compute Vi1, Vi2, Vi3, ... as the (1−Z1/ui

i1 )th, (1−Z1/ui

i2 )th, (1−Z1/ui

i3 )th, ...

quantiles of the gamma with unit scale and shape c.

4. Compute Tij =
(1
a

i∑
k=1

Vik

)1/b
for j = 1, 2, 3, ... be the event times on the

original timeline.
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Table 4–5: Results of simulation study 4.2 where the average number of events
per subject is approx. 4. Columns refer to subject count, parameter name, true
parameter value, mean of the point estimates, standard error of the estimates,
mean of the estimated standard errors of the point estimates, and coverage
percentage of the 95% confidence intervals.

No. subjects Parameter True Mean S.e. estimates Mean s.e. Coverage
log(a) -9.721 -9.732 0.503 0.507 0.952

25 log(b) 0.588 0.587 0.044 0.044 0.954
log(c) 0.875 0.886 0.079 0.076 0.943
log(γ) -0.693 -0.799 0.456 0.417 0.972

log(a) -9.721 -9.726 0.370 0.360 0.941
50 log(b) 0.588 0.587 0.032 0.031 0.940

log(c) 0.875 0.878 0.053 0.054 0.955
log(γ) -0.693 -0.742 0.283 0.281 0.960

log(a) -9.721 -9.726 0.259 0.254 0.945
100 log(b) 0.588 0.588 0.023 0.022 0.948

log(c) 0.875 0.878 0.038 0.038 0.952
log(γ) -0.693 -0.711 0.193 0.195 0.962

log(a) -9.721 -9.730 0.182 0.180 0.951
200 log(b) 0.588 0.588 0.016 0.016 0.937

log(c) 0.875 0.876 0.027 0.027 0.944
log(γ) -0.693 -0.708 0.136 0.137 0.956

The above procedure is carried out for the parameter configuration a = 7 ×

10−4, b = 1.6, c = 4.2, γ = 0.5. For each combination of censoring time

τ = 600, 1000 (respectively yielding average observed event counts of approx-

imately 4 and 9) and sample size m = 25, 50, 100, 200, 1000 datasets were

generated.

Tables 4–7 to 4–9 report the results for each respective censoring time.

The columns are, in order: the number of subjects in each dataset, the

reparametrized parameters, the true values, the mean of the point estimates,

the standard error of the point estimates, the mean of the estimated standard

errors, and the 95% CI coverage, based on 1000 datasets.
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Table 4–6: Results of simulation study 4.2 where the average number of events
per subject is approx. 9. Columns refer to subject count, parameter name, true
parameter value, mean of the point estimates, standard error of the estimates,
mean of the estimated standard errors of the point estimates, and coverage
percentage of the 95% confidence intervals.

No. subjects Parameter True Mean S.e. estimates Mean s.e. Coverage
log(a) -9.721 -9.734 0.390 0.388 0.947

25 log(b) 0.588 0.588 0.033 0.032 0.943
log(c) 0.875 0.882 0.058 0.057 0.943
log(γ) -0.693 -0.791 0.362 0.347 0.960

log(a) -9.721 -9.727 0.282 0.274 0.942
50 log(b) 0.588 0.588 0.024 0.023 0.940

log(c) 0.875 0.879 0.04 0.040 0.945
log(γ) -0.693 -0.745 0.241 0.240 0.954

log(a) -9.721 -9.719 0.199 0.194 0.946
100 log(b) 0.588 0.587 0.016 0.016 0.944

log(c) 0.875 0.877 0.028 0.028 0.948
log(γ) -0.693 -0.715 0.172 0.168 0.950

log(a) -9.721 -9.72 0.143 0.137 0.938
200 log(b) 0.588 0.588 0.012 0.011 0.940

log(c) 0.875 0.876 0.019 0.020 0.958
log(γ) -0.693 -0.703 0.120 0.118 0.953

Once again, the results show that when the heterogeneous model is cor-

rectly specified and the subject count is moderately high, the estimation of a,

b, and c is excellent even when most subjects have a low event count. However,

for some data sets when the mean observed event count is 2, numerical max-

imization of the likelihood resulted in either non-convergence or convergence

to extremely small estimates of the frailty variance γ; this is reflected in the

footnote and otherwise large average estimated standard error in the fourth

row of Table 4–7.
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Table 4–7: Results of simulation study 4.3 where the average number of events
per subject is approx. 2

No. subjects Parameter True Mean S.e. estimates Mean s.e. Coverage
log(a) -7.264 -7.217 0.975 0.964 0.934

25 log(b) 0.470 0.468 0.088 0.087 0.944
log(c) 1.435 1.499 0.252 0.244 0.937
log(γ)2 -0.693 -1.123 1.955 10.385 0.939

log(a) -7.264 -7.247 0.672 0.682 0.944
50 log(b) 0.470 0.469 0.061 0.062 0.945

log(c) 1.435 1.465 0.166 0.171 0.948
log(γ) -0.693 -0.801 0.643 0.950 0.961

log(a) -7.264 -7.261 0.481 0.482 0.940
100 log(b) 0.470 0.470 0.044 0.044 0.941

log(c) 1.435 1.449 0.120 0.120 0.953
log(γ) -0.693 -0.734 0.360 0.338 0.956

log(a) -7.264 -7.260 0.343 0.340 0.944
200 log(b) 0.470 0.470 0.031 0.031 0.943

log(c) 1.435 1.443 0.083 0.085 0.947
log(γ) -0.693 -0.716 0.233 0.230 0.960

2 5 of 1000 datasets had an estimate of γ that was too close to 0 for the
standard error to be estimable.
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Table 4–8: Results of simulation study 4.3 where the average number of events
per subject is approx. 4

No. subjects Parameter True Mean S.e. estimates Mean s.e. Coverage
log(a) -7.264 -7.276 0.620 0.616 0.943

25 log(b) 0.470 0.471 0.054 0.054 0.949
log(c) 1.435 1.457 0.160 0.156 0.941
log(γ) -0.693 -0.830 0.669 0.485 0.974

log(a) -7.264 -7.276 0.455 0.436 0.938
50 log(b) 0.470 0.471 0.040 0.038 0.938

log(c) 1.435 1.442 0.107 0.110 0.955
log(γ) -0.693 -0.743 0.315 0.310 0.964

log(a) -7.264 -7.271 0.327 0.308 0.928
75 log(b) 0.470 0.470 0.028 0.027 0.936

log(c) 1.435 1.439 0.080 0.078 0.943
log(γ) -0.693 -0.716 0.215 0.214 0.955

log(a) -7.264 -7.272 0.220 0.217 0.948
100 log(b) 0.470 0.471 0.020 0.019 0.939

log(c) 1.435 1.437 0.056 0.055 0.942
log(γ) -0.693 -0.709 0.148 0.150 0.961
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Table 4–9: Results of simulation study 4.3 where the average number of events
per subject is approx. 9

No. subjects Parameter True Mean S.e. estimates Mean s.e. Coverage
log(a) -7.264 -7.265 0.412 0.402 0.931

25 log(b) 0.470 0.470 0.033 0.033 0.940
log(c) 1.435 1.441 0.104 0.101 0.938
log(γ) -0.693 -0.773 0.354 0.336 0.947

log(a) -7.264 -7.278 0.288 0.284 0.941
50 log(b) 0.470 0.471 0.024 0.023 0.936

log(c) 1.435 1.439 0.069 0.071 0.959
log(γ) -0.693 -0.738 0.235 0.234 0.949

log(a) -7.264 -7.267 0.195 0.201 0.953
75 log(b) 0.470 0.470 0.016 0.016 0.953

log(c) 1.435 1.436 0.051 0.050 0.945
log(γ) -0.693 -0.718 0.161 0.164 0.958

log(a) -7.264 -7.265 0.143 0.142 0.942
100 log(b) 0.470 0.470 0.012 0.012 0.956

log(c) 1.435 1.436 0.036 0.036 0.941
log(γ) -0.693 -0.704 0.119 0.116 0.949
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CHAPTER 5
Application to medical data

The trend-renewal process has potential for application in many medical

settings; it is often of interest to analyze, for example, the rate of recurrence

of a disease or condition within a population or to quantify the difference in

propensity for the event of interest between treatment groups. In this section

we extend the analysis of Pietzner and Wienke (2013) on the dataset from

Gonzalez et al. (2005). Available in the R library frailtypack, this dataset gives

the hospital readmission times of 403 colorectal cancer patients, i.e. the time

between the first admission and the second admission, and the time between

all subsequent readmissions. The first admission is defined as time point 0.

The time-independent covariates that are of interest are: sex (male or female),

chemotherapy (yes or no), and Duke’s stage (3 groups: combined stage A-B,

stage C, or stage D).

Among the patients, 199 had no readmissions, and 150 had one or two

readmissions. The patient with the highest event count had 22 readmissions.

458 were censoring times out of a total of 861 observed gap times. While the

median event count is 1, this is partially offset by the large sample size of

subjects; this is relevant because – as the simulation studies demonstrated –

if events are too scarce then the heterogeneity is impossible to estimate.

The TRP, RP, and NHPP fitted to the data has the intensity function:

λ(t|H(t),X) = acb tb−1c(tb − T bN(t−))c−1 exp(X>β)

where Xi = (Xchemo, Xfemale, XDukeC , XDukeD)> is the covariates vector of in-

dicators and b, respectively c, are constrained to 1 for the latter two models.
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Table 5–1: Estimated parameter values (standard error) for Weibull-power-law
models with proportional intensities covariate effects and no heterogeneity for
the hospital readmissions dataset

Parameter NHPP RP TRP

log(a) -5.22 (0.263) -7.12 (0.204) -10.1 (0.791)
log(b) -0.278 (0.043) 0 – 0.339 (0.072)
log(c) 0 – -0.607 (0.103) -0.769 (0.056)
Chemotherapy -0.249 (0.104) -0.235 (0.103) -0.18 (0.104)
Female -0.503 (0.100) -0.441 (0.100) -0.439 (0.101)
Duke’s stage C 0.394 (0.120) 0.347 (0.119) 0.366 (0.119)
Duke’s stage D 1.57 (0.128) 1.21 (0.129) 1.26 (0.130)
BIC 6912.3 6647.1 6630.0

The HTRP, HRP, and HNHPP fitted to the data has the intensity function:

λ(t|Hi(t),Xi, ui) = ui a
cb tb−1c(tb − T bN(t−))c−1 exp(Xiβ)

with again b, respectively c, constrained to 1 for the latter two models, and

either ui ∼ exp(Yi) where Yi ∼ N (0, σ2) (see Table 5–2) or ui ∼ Gamma with

mean 1 and variance γ (see Table 5–3).

Table 5–2: Estimated parameter values (standard error) for Weibull-power-
law models with proportional intensities covariate affects and log-Normal dis-
tributed unobserved heterogeneity fitted to the hospital readmissions dataset

Parameter HNHPP HRP HTRP

log(a) -6.23 (0.255) -7.58 (0.023) -9.48 (0.709)
log(b) -0.182 (0.027) 0 – 0.225 (0.068)
log(c) 0 – -0.448 (0.020) -0.554 (0.055)
Chemotherapy -0.214 (0.206) -0.194 (0.112) -0.155 (0.148 )
Female -0.552 (0.170) -0.471 (0.135) -0.473 (0.142)
Duke’s stage C 0.399 (0.196) 0.342 (0.123) 0.356 (0.166)
Duke’s stage D 1.66 (0.300) 1.3 (0.158) 1.37 (0.195)
log(σ2) 0.192 (0.130) -0.456 (0.023) -0.497 (0.214)

BIC 6696.1 6566.6 6561.3
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Table 5–3: Estimated parameter values (standard error) for Weibull-power-law
models with proportional intensities covariate affects and gamma distributed
unobserved heterogeneity fitted to the hospital readmissions dataset

Parameter NHPP RP TRP

log(a) -5.510 (0.316) -7.05 (0.245) -8.96 (0.698)
log(b) -0.194 (0.045) 0 – 0.230 (0.069)
log(c) 0 – -0.207 (0.144) -0.568 (0.055)
Chemotherapy -0.242 (0.171) -0.207 (0.144) -0.164 (0.143)
Female -0.643 (0.164) -0.516 (0.140) -0.514 (0.139)
Duke’s stage C 0.391 (0.190) 0.354 (0.161) 0.365 (0.159)
Duke’s stage D 1.57 (0.225) 1.250 (0.188) 1.31 (0.188)
log(γ) 0.284 (0.147) -0.343 (0.205) -0.413 (0.216)
BIC 6706.3 6572.8 6567.3

Note: the results for the NHPP, HNHPP, and HRP in Tables 5–1 and 5–2

differ from those published in Tables III and IV of Pietzner and Wienke’s

paper. We had performed all our optimization with R whereas they had used

the nlmixed package in SAS. We wrote to Dr. Pietzner about a discrepancy

between our results and theirs and she then accepted our request for the some

of the SAS code they used. They probably mis-reported the fitted values and

AIC for the NHPP, HNHPP, and HRP because, after running their code, we

arrived at the results shown here.

The best model out of the above, according to BIC, is the HTRP with

log-Normal frailty, though it gives very similar parameter estimates to those in

the HTRP with gamma frailty. The estimated trend and renewal parameters,

b̂ and ĉ describe the behaviour of the intensity function associated with a

“typical” (baseline) subject. In the framework of this model, there is evidence

of heterogeneity in the patients’ intensity functions around the baseline, as

indicated by the estimate of γ̂ = 0.608 (95% CI [0.400, 0.925]).

Conclusions about the covariate effects arrived at by Pietzner and Wienke

align with the conclusions of Gonzalez et al. (2005): that women have a lower
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risk of readmission to the hospital after treatment than men, that chemother-

apy had no significant effect, and that patients at Duke’s stage D have sig-

nificantly higher risk compared with those in the reference group combining

Duke’s stage A and B.

As a demonstration we also fit the Weibull-power-law model with covari-

ate effects modelled on the renewal parameter to this dataset. More specif-

ically, we fit the Weibull-power-law HTRP parametrized by parameters a,

b, c0,γ, and the vector βc = (βchemo, βfemale, βDukeC , βDukeD)>, with intensity

function:

λ(t|Hi(t),Xi, ui) = ui a
c
ib t

b−1ci(tb − T bN(t−))ci−1

where ci = exp(c0 + X>i βc) is the renewal parameter for the subgroup with

covariates Xi and ui ∼ exp(Yi) where Yi ∼ N (0, σ2). Table 5–4 displays the

results for this random effect model as well as the results for the corresponding

TRP without the random effect. We can see that there is no significant differ-

ence in the renewal parameters between the two levels of any covariate except

for a barely significant effect of being female as opposed to male. The BIC

values are also poor; this framework for modelling covariates clearly provides

an ill fit to this dataset.

Note that the popular Cox-based models such as Andersen-Gill (AG),

Wei-Lin-Weissfeld (WLW), and Prentice-Williams-Peterson (PWP) are used

when estimating the effects of covariates is of interest and interpretation of

the baseline intensity for the typical subject is not. With regard to covariate

effects, since the model with best fit according to BIC out of the ones fitted

above is still the Weibull-power-law with log-Normal random effects fitted by

Pietzner and Wienke, we direct the reader to Pietzner and Wienke (2013)

for a comparison of the estimated covariate effects in this parametric TRP

framework with those reached by fitting the existing popular recurrent events
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Table 5–4: Estimated parameter values (standard error) for Weibull-power-
law models with covariate effects on the renewal parameter and either no
unobserved heterogeneity (left column) or log-Normal distributed unobserved
heterogeneity (right column) fitted to the hospital readmissions dataset

Parameter TRP HTRP

log(a) -9.392 (0.734) -8.846 (0.191)
log(b) 0.278 (0.076) 0.155 (0.030)
βc0 -0.867 (0.103) -0.516 (0.086)
βc1 0.077 (0.086) -0.018 (0.077)
βc2 0.262 (0.083) 0.191 (0.076)
βc3 -0.069 (0.101) -0.110 (0.088)
βc4 -0.191 (0.107) -0.097 (0.091)
log(γ) – – -0.101 (0.163)
BIC 6741.4 6615.1

models such as Andersen-Gill (AG), Wei-Lin-Weissfeld (WLW), and Prentice-

Williams-Peterson (PWP), and frailty models.

We explained in previous Chapter 3 how to interpret the baseline in-

tensity parameters in a parametric TRP model to describe the behaviour of

the typical subject in a simple, meaningful manner. Interpreting the trend

and renewal parameters in a parametric TRP has not been done before, so

we proceed by demonstrating the interpretation of the baseline intensity in

the Weibull-power-law TRP with log-Normal random effects for this data set.

Referring to the third column of Table 5–2: an estimate of c below 1 means

that the intensity is decreasing until each hospital readmission, and the occur-

rence of an event then causes what looks like a “spike” in risk of readmission

immediately afterwards, as the intensity renews. Over time, until the next

readmission, the risk decreases to look more similar to what it would have

been if the most recent readmission hadn’t happened. Estimates of b above

1 and c below 1 mean that a patient’s intensity function going forward from

the jth readmission is heightened relative to how it was going forward from
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the (j − 1)th readmission. According to b̂ = 1.252 and ĉ < 1 everyone strictly

renews “worse than perfectly”.

Figure 5–1 plots the intensity ratio (equation (3.2)) given the fitted b̂ and

ĉ. It shows the relative intensity, of the typical patient exposed in the interval

[0, t] with a first readmission at time s < t to the intensity of a typical patient

exposed in the interval [0, t] with no readmission, as a function of x/s, the

time elapsed since s scaled by s. For instance, one can tell from the graph

that, if the typical patient’s risk follows a Weibull-power-law TRP with trend

parameter 1.252 and renewal parameter 0.575, then it would take another

0.475 s amount of time after the patient’s readmission at time s before his risk

of readmission is 150% of what it would be if the first readmission had not

occurred. If he remains event free for longer, say until 1s time after his first

readmission, his risk will further decrease to 126% of what it would be if he

were still event-free.
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Figure 5–1: The plot of r1,0(x) for the baseline process in the Weibull-power-
law HTRP fitted to the hospital readmission data, where b̂ = 1.252, ĉ = 0.575.
The blue and red lines respectively indicate where the the relative intensity of
having had an event at s to having had no event equals 1.5 and 1.26.

Figure 5–2 plots the intensity ratio (equation (3.5)), the relative intensity

of going forward from the most recent event at time s versus going forward from

process initiation for a typical subject. It illustrates how close to completely
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renewed a subject is going forward from an event, when compared with going

forward from the first admission. For example, one can see from the graph

that, for a subject with a readmission at time s, once 0.1s time has passed

since that readmission his risk is 29% higher than what it was at time 0.1s

from the first admission. At time 0.5s after the readmission at time s, his risk

is only 9% higher than what it was at time 0.5s from the first admission.
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Figure 5–2: The plot of r1,0(x) for the baseline process in the Weibull-power-
law HTRP fitted to the hospital readmission data, where b̂ = 1.252, ĉ = 0.575.
The blue and red lines respectively indicate where the relative intensity equals
1.29 and 1.09.

It is worth noting that, for a dataset of this nature with low event counts

for almost all subjects and high proportion of censoring, it might not make

much sense to discuss interpretations of the fitted model in such precise terms.

However, for another dataset with less censoring and research objectives specif-

ically about relating past event history and future risk, the procedure to arrive

at such quantitative conclusions as the above would be the same.
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CHAPTER 6
Conclusion and future work

This thesis provides an in-depth introduction to the trend-renewal pro-

cess for modelling recurrent time-to-event data, highlighting some attractive

properties such as its mathematically elegant manner of combining the cu-

mulative time scale and the gap time scale in the intensity function and the

ease of parametric inference. One of its objectives is to make the TRP more

accessible as a tool of analysis in sports injury and medical analyses.

The main contributions are new notions of relative intensity to more effec-

tively utilize the popular Weibull-power-law choice of TRP, as well as a caution

and a suggestion about potential violation of the classical Cox proportional

intensities formulation of covariate effects. One avenue for future work could

be to recompose these ideas in other parametric frameworks or when inference

is performed semiparametrically or nonparametrically.

The only simulation studies we found in the literature evaluating fi-

nite sample inference for the TRP framework involved the Weibull-power-

law TRP with log-Normal distributed frailty (Pietzner and Wienke (2013)).

We conducted and reported the results of analogous simulation studies for

the Weibull-power-law TRP with gamma distributed frailty and the gamma-

power-law TRP with gamma distributed frailty.

In the way of statistical inference, the literature is well developed. This

thesis did not discuss nonparametric inference for the TRP at all, though fully

nonparametric methods of inference for multiple event processes is certainly

a useful direction to pursue, as the only paper on fully nonparametric infer-

ence for the TRP (Gámiz and Lindqvist (2016)) was published very recently

78



and proposes a method applicable only when a single event process is being

observed. Along a different vein, there has been little to no work done on

Bayesian inference for the TRP.

For purposes of improving interpretability in practical settings, one might

build a causal model from the TRP framework. Finally, future work to extend

the general applicability of the TRP might pursue the modelling of time-

varying covariates or the modelling of competing risks where multiple types of

events are of interest.
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