
."". National Library
01 Canada

Acquisitions and
Bibhographic Services Branch

395 Wcllinglon Slrccl
OltawiJ, OntarIO
K1AON4

NOTICE

BibliothèQue nationale
du Canada

Diroction des acquisitions et
des services bibliographiques

395. rue Wellington
OIlaWO (0010110)
K1AeN4

AVIS

The quality of this microform is
heavily dependent upon the
quality of the original thesis
submitted for microfilming.
Every effort has been made to
ensure the highest quality of
reproduction possible.

If pages are missing, contact the
university which granted the
degree.

Sorne pages may have indistinct
print especially if the original
pages were typed with a poor
typewriter ribbon or if the
university sent us an inferior
photocopy.

Reproduction in full or in part of
this microform is governed by
the Canadian Copyright Act,
R.S.C. 1970, c. C-30, and
subsequent amendments.

Canada

La qualité de cette microforme
dépend grandement de la qualité
de la thèse soumise au
microfilmC\ge. Nous avons tout
fait pour assurer une qualité
supérieure de reproduction.

S'i! manque des pages, veuillez
communiquer avec l'université
qui a conféré le grade.

La qualité d'impression de
certaines pages peut laisser à
désirer, surtout si les pages
originales ont été
dactylographiées à l'aide d'un
ruban usé ou si l'université nous
a fait parvenir une photocopie de
qualité inférieure.

La reproduction, même partielle,
de cette microforme est soumise
à la Loi canadienne sur le droit
d'auteur, SRC 1970, c. C-30, et
ses amendements subséquents.

Embeddings of a Cray T3D Supercomputer onto a
Free-Space Optical Backplane

Palash Desai
(B.Eng 1993)

Microelectronics and Computer Systems Laboratory
Department of Electrical Engineering

McGill University, Montréal, PQ Canada

~ McGill
October 1995

A thesis subnùlled to the Faculty ofGraduate Studies and Research in partial fulfillment of
the requirements for the degree of

Master of Engineering

Cl Copyright By Palash Desai 1995

1+1 National Library
of Canada

Bibliothèque nationale
du Canada

Acquisitions and Direction des acquisitions et
Bibliographie Services Brench des services bibliographiques

395 Wellington SI,oel 395. rue Wellington
Ollawa, Onlarlo Ollawa (Ontario)
K1A ON4 1<1A ON4

The author has granted an
irrevocable non-exclusive licence
allowing the National Library of
Canada to reproduce, loan,
distribute or sell copies of
his/her thesis by any means and
in any form or format, making
this thesis available to interested
persons.

The author retains ownership of
the copyright in his/her thesis.
Neither the thesis nor substantial
extracts from it may be printed or
otherwise reproduced without
his/her permission.

L'auteur a accordé une licence
irrévocable et non exclusive
permettant à la Bibliothèque
nationale du Canada de
reproduire, prêter, distribuer ou
vendre des copies de sa thèse
de quelque manière et sous
quelque forme que ce soit pour
mettre des exemplaires de cette
thèse à la disposition des
personnes intéressées.

L'auteur conserve la propriété du
droit d'auteur qui protège sa
thèse. Ni la thèse ni des extraits
substantiels de celle-ci ne
doivent être imprimés ou
autrement reproduits sans son
autorisation.

ISBN 0-612-12115-1

Canada

Abstract

The rapid increase in the demands for high bandwidth systems has motivated

research in optoelectronic technologies and architectures. At McGill University, a five year

five Major Project in Photonic Devices and Systems has been undertaken, wilh funding

from the Canadian Institute for Telecommunications Research. One of the main goals of

the project is to develop an optical backplane architecture capable of interconnecting severa!

electronic printed circuit boards with an aggregate bandwidth on the order of 1Terabit per

second. Currently, the project is in its third year in which a representalive subset of a

Terabit Photonic Backplane is under development.

The objectives of this thesis are three fold. First, we motivate the study of optical

backplanes by demonstrating that the interconnection network of a Cray T3D

Supercomputer can he emhedded onto the optical backplane. In particular, we demonstrate

that the 3D mesh interconnect of the Cray T3D can he embedded into the "Dual Stream

Linear HyperPlane" [9]. Secondly, having established a motivation we lhen provide a

detailed review of the functional specifications of an optical backplane. In particular, we

provide a detailed review of the June 1995 backplane design [31]. Thirdly, having

established a motivation and a detailed design we then develop a executable software model

of the June 1995 backplane using the VHDL hardware description language. The VHDL

model is used to establish the functional correctness of the design. In addition, the VHDL

model is used to develop a real-time simulator for the photonic backplane using 4013 Field

Programmable Gate Arrays (FPGAs). The reaJ time simulator can operate at a 4 MHz dock

rate and can he used to test other electronic components such as the Message-Processors al

reaJistic dock rates. The real-time simulator developed in this thesis will he used for real­

time simulations of the associated high-speed electronic printed circuit boards which are

currently under development.

Résumé

La demande croissante pour des débits améliorés de transf~rts de données a stimulé

la recherche dans le domaine de l'optoélectronique et les architectures des systèmes qui y

sont reliés. À l'université McGill, un plan de cinq ans a été mis en marche pour l'étude de

systèmes optoélectroniques grâce à une subvention de l'Institut Canadien pour la Recherche

en Télécommunication (CITR). L'un des objectifs principaux du projet est de développer

un système d'interconnexions optique capable de relier plusieurs cartes électroniques à un

régime de transfert de l'ordre de 1 Terabitlseconde. Le projet en est à sa troisième année et

une portion significative est déjà en développement.

Les objectifs de ce mémoire se distinguent de trois façons. Premierement, nous

justifions l'étude des systèmes d'interconnexions optiques en système d'interconnexions

d'un super-ordinateur puissant tel le Cray T3D peut se faire sur un système

d'interconnexion optique. Plus particulièrement, nous démontrons que l'intcrconnexion

tridimensionnelle en mailles du Cray T3D se réalise sur l'architecture optique d'un

hyperplan linéaire à double flot. Ensuite, ayant établi une justification pratique, nous

procédons à une analyse des spécifications d'un système d'interconnexions optique. Plus

précisément, une analyse détaillée est faite pour l'architecture du Système

d'Interconnexions de Juin 1995 (June 1995 backplane). Finalement, à la suite de la

justification pratique et de la description détaillée d'un système d'interconnexion optique,

nous procédons au développement d'un logiciel qui modèle le concept du Système

d'Interconnexions de Juin 1995 en code VHDL (langage de description des matériels

VHSIC). Le modèle VHDL vérifie le bon fonctionnement du concept par le biais de

simulations. En outre, la synthèse du modèle VHDL sur matrice de portes logiques

programmables (FPGA) procure un simulateur temporel précis du système

d'interconnexions. Le simulateur du système d'interconnexions est réalisé sur des circuit

4013 de Xilinx, opère a 4 MHz et se prête à des tests réalistes d'autres composantes du

système tels les processeurs de messages. Le simulateur sur matrice de portes qui est

développé dans ce mémoire sera utilisé pour des simulations temporelles exactes des cartes

électroniques à haute performance reliées au projet et qui sont en voie de développement.

•

•

Acknowledgments

When 1 think of ail the people who have directly and indirectly aidt:d me during

these past two years, 1 wonder whether a simple acknowledgment would do them any

justi~e. 1would like to begin by expressing my gratitude to my supervisor Ted Szymanski

for his guidance and for providing me with an excellent environmentto explore new and

somewhat esoteric areas of electrical engineering. 1 thank H. Scott Hinton for teaching all

of us to strive for personal excellence and to David V. Plant for his dynamism and

kindness.

When one looks at the inner workings of any major project, it is usually the support

staff that keep things operating smoothly. Jacek Slaboszewicz is gratefully acknowledged

for keeping the MACS Lab computing network running under the most difficult of

situations. 1 am also greatly indebted to Sylviane Duval and Bess LeBlanc who have

always cheerfully answered my questions and helped me with university procedures.

1salute the volunteers of the WalkSafe Network and Foot Patrol of McGill Univer­

sity. 1doubt 1 will ever meet such a fantastic group of dedicated and selfless individuals.

If 1 could, 1 would thank each and every one of them for making my stay at McGill so

pleasant and fulfilIing. Among all the people that 1 have met through this organization, 1

would Iike to express my deepest warmth and affection for Amynah, Aous, Brandon,

Denny, Faisal, Jocelyn, Karim, Kathy, Liza, Nadine, Tanya and Tracy.

1 have many fond memories of my association with the MACS Lab. 1 am very

privileged to calI all the students who work there my friends. 1 especially salute

Boonchuay, Eric, Michael, Sherif and Stéphane for being such wonderful people to know

and to work with. 1 am greatly indebted to Nilanjan Mukherjee for spending countless

hours answering my questions and to Ara Hajjar for helping me with Xilinx technology.

Finally. and most importantly. 1 would like to thank my parents and my sister for

their years of unvavering support and understanding. Without them, the past two years

would not have been possible.

This thesis is dedicated to the memory of Vijayaben Desai. One of the g("t~alest

souls l have ever known.

}~unding Acknowledgements

The Canadian Institute for Telecommunications Research (CITR) is a member of

the Canadian Networks of Centres of Excellence (NCE). It is currently funding a Major

Project in Photonic Deviees and Systems [1]. The Major Project comprises of four projects

located in three centres throughout Canada. These projects include the Optoelectronic

Deviees, Optoelectronic Packaging Concepts, Optical and Optomechanical Hardware

and Large ATM Architectures [1].

One of the goals of this Major Project is to construct a photonic backplane based on

free-space optics using smart pixel arrays. A photonic backplane architecture has been

proposed to meet this end. The backplane architecture is currently under development at

McGiII University in which printed circuit boards will be optically interconnected.

The research presented herein was funded by CITR through project number 94-3-4

entitled Large ATM Architectures and by the Natural Science and Engineering Research

Council of Canada grant number OGPOI21601. This research was carried out in the

Microelectronics and Computer Systems Laboratory (MACS) at McGilI University. The

computing resources are on loan to the MACS Laboratory from the Canadian

Microelectronics Corporation through the 1993-1995 Equipment Loans.

•
Table of Contents

Abstract ..

Résumé ii

Acknowledgments o.. iii

Funding Acknowledgements v

Table of Contents vi

List of Figures ix

Chapter 1

Introduction 1

1.1 Motivation 1

1.2 Author's Contributions 5

1.3 Terminology 6

1.4 Overview 6

Chapter2

Evolution of Optical Technology 8

2.1 Introduction 8

2.2 AlI Optical Systems 9

2.2.1 AlI Optical Programmable Logic Gate 9

2.2.2 Stored Program Optical Computer (SPOC) Il

2.3 Practical C0'?5iderations of AlI Optical Computing•..... 15
2.4 Systems Based on Optoelectronic Deviees• 17

2.4.1 System V Project .. 18

2.4.2 OPTOBUS Optical Link 20

2.5 Chapter Summary 22

...3.4 Summary

Chapter 3

Overview of the Terabit Photonic Backplane 23

3.1 Introduction 23

3.2 Terabit Photonic Backplane 24

3.2.1 Overview of the Backplane 24

3.2.2 Smart Pixel Array Technology 25

3.2.3 Multiple Quantum Wells 27

3.3 Operation of the Terabit Photonic Backplane 30

3.3.1 Dual Stream Linear Hyperplane 30

3.3.2 Circular Hyperplane 31

3.3.3 Reconfigurable and Intelligent Operating Modes of the

Hyperplane 32

33

Chapter4

Graph Contraction and Embeddings 34

4.1 Introduction 34

4.2 Graph contraction 35

4.2.1 Introduction to Graph Contraction 35

4.2.2 Formai description of Graph Contraction 36

4.3 Graph Embeddings 38

4.4 Architecture of the Cray T3D Supercomputer 40

4.4.1 Processing Element 40

4.4.2 Interconnection Network Topology 41

4.5 Contraction and Embedding of the Cray T3D Interconnection Network .. 43

4.5.1 Case 1: Contraction by Two Columns 44

4.5.2 Case 2: Contraction by 4x4 Clusters 46

4.5.3 Case 3: Contract by 2x4x2 Cluster 52

4.6 Hardware Requirements for Implementation 55

4.7 Chapter Summary 58

Chapter 5

Functional Specifications of the June i 995 Ba~kplanc 59

5.1 IntrodUl:tion , , , , 59

5.2 June 1995 Hyperplan" 60

5.3 Smart Pixel Array Interfacc Signais 61

5.4 Smart Pixel Cell and Channel Specifications ,.............. 66

5.4.1 Address Compurison Circuit 67

5.4.2 Programmable Delay Circuit 71

5.5 Channel Control Unit 72

5.6 Arbitration Circuit 74

5.6.1 Overview of the Arbitration Circuit 74

5.6.2 Functionai Specifications of the Arbitration Circuit 76

5.7 Configuring the Smart Pixel Array 79

5.8 Chapter Summary 80

Chapter6

Simulation of the June 1995 Hyperplane using VHDLand FPGAs 81

6.1 Introduction 81

6.2 Design Entry Language 82

6.3 Introduction to FPGAs 83

6.3.1 Xilinx 4013 FPGA 87

6.4 VHDL Hierurchy ofthe Hyperplane 91

6.5 Design Verification Through Simulation 94

6.5.1 Propagation Delays Through the Logic Devices 94

6.5.2 Simulation Setup and Results 95

6.6 Design Compilation and Synthesis for FPGA Technology 102

6.7 Chapter SUlI'mary 105

•

Chapter7

Conclusion

References

.. 106

108

•

•

.-.

List of Figures

Figure 1.I Memory and bandwidth requirements for past, present and future
systems. 2

Figure 1.2 Graphical representation of Rent's Rule (c=I.79). 4

Figure 2.1 Schematie of ail optical programmable Jogic gate. SI and S2 are the

optical input signais while HI and H2 are the optical bias beams. 9

Figure 2.2 Idealized characleristics of the optical elements used. 10

Figure 2.3 Modular design of the Stored Program Optical Computer. 12

Figure 2.4 Optical components used to implement SPOC (a) directional coupler (b)

splitter/combiner (c) optical fibre. 13

Figure 25 Arithmetic logic unit used in SPOC. 15

Figure 2.6 Architecture of the System V project (EGS network). 18

Figure 2.7 Optomechanical setup for the System V demonstrator. 19

Figure 2.8 Functionallayout of the OPTOBUS system. 21

Figure 3.1 Conceptual depiction of the Terabit Photonic Backplane (Hyperplane) 25

Figure 3.2 Smart pixel array. .•.................................... 26

Figure 3.3 Physieal structure of an MQW. 28

Figure 3.4 Quantum Conlined Stark Effect (QCSE). 29

Figure 3.5 Typieal structure of a Dual Stream Linear Hypcrplane. 31

Figure 3.6 Typieal structure of a Cireular Hyperplane. 32

Figure 4.1 Typieal graph topology consisting of live vertices and eight edges. 36

Figure 4.2 Example of a 4 board embedding on the Hyperplane. 39

Figure 4.3 Convention for placing upstream and downstream optical connections. 39

Figure 4.4 One dimensional bidirectional torus network 41

Figure 4.5 Two dimensional bidirection~1 mesh network 42

Figure 4.6 Network topology of Cray T3D Supercomputer (wrap around

connections are suppressed for clarity). 43

Figure 4.7 Contraction of G through two column partitioning. 44

Figure 4.8 Result from contracting G by partitioning by two columns. 45

Figure 4.9 Case 1 embedding 47

Figure 4.10 Contraction ofG through 4x4 cluster partitioning. 48

Figure 4.11 Contracted result from 4x4 cluster partitioning 49

Figure 4.12 Case 2 contraction 50

Figure 4.13 Case 2 collapsed embedding 51

Figure 4.14 Contraction ofG through 2x4x2 clusterpartitioning. 52

• Figure 4.15 Contracted result from 2x4x2 cluster partitioning. 53

Figure 4.16 Embedding of the Case 3 contraction. 54

Figure 5.1 Typical architecturc of the June 1995 Hyperplane. 60

Figure 5.2 Typical electrical interface signaIs for the June 1995 SPA (3 injector

channels. 3 extractor channels and 8 optical byte channels shown). 62

Figure 5.3 FunctionaJ schematic of an 8x8 SPA. 64

Figure 5.4 Functionallogic description of the top left quadrant of Figure 5.3 66

Figure 5.5 Logic diagram of a single smart pixel. 67

Figure 5.6 TypicaJ packet header used for synchronous packet transmission. 68

Figure 5.7 TypicaJ packet header used for asynchronous packet transmission. 69

Figure 5.8 Address comparison circuit. 69

Figure 5.9 Interconnection of the address comparator circuits within a byte channel

(packets are transmitted synchronously). 70

Figure 5.10 Interconnection of the address comparator circuits within a byte

channel (packets are transmitted asynchronously). 70

Figure 5.11 Programmable delay circuit. 71

Figure 5.12 FunctionaJ description ofa typicaJ Channel Control Unit. 73

Figure 5.13 Logic description ofa typicaJ synchronizing circuit. 74

Figure 5.14 TypicaJ functionaJ diagram for the arbitration circuit. 76

• Figure 5.15 State transition diagram of the urbitration circuit. 78

Figure 5.16 Decoder for configuring the controllalch. 79

Figure 6.1 Conceptual view of an FPGA. 85

Figure 6.2 Synthesis process from design entry 10 configured FPGA. 86

Figure 6.3 Architecture of an Xilinx 4000 series FPGA 88

Figure 6.4 Routing resources to interconnect CLBs. 89

Figure 6.5 Logic specification for the Configurable Logic Block of the Xilinx 4000

series FPGA. 90

Figure 6.6 Top level of the hierarchy 91

Figure 6.7 Second level in the hierarchy. illustrating a typical SPA. 92

Figure 6.8 Third level in hierarchy illustrating a typical channel control unit. 93

Figure 6.9 Third level in hierarchy illustrating the urbitration unit. 93

Figure 6.10 Third and fourth levels in the hierarchy. illustmting a typical smart

pixel and the programmable delay circuit. 94

Figure 6.11 Description of address bits. 96

Figure 6.12 Simulation of the configumtion process. 99

Figure 6.13 Simulation of packet transmission and reception 100

Chapter 1: Introduction

Chapter 1
Introduction

1.1 Motivation

In recent years, a considerable amount of research has focused on integrating optics

with electronics. The impetus for such research arises from the physicallimitations

inherent in all electronic devices. The ever increasing demand for high speed computers

and high throughput telecommunication systems has pushed present day logic to reach

unprecedented speeds [2][3]. Computers are advancing from parallel to massively parallel

architectures operating on multiple data streams while telecommunication systems are

rapidly progressing from circuit switching to packet based ATM switching systems thereby

inte:grating both voice and data transport [4]. Historically, the telecommunication and

computer industry were considered to serve orthogonal interests. However, as the

telecommunication industry migrates to packet switching based technology, the switching

networks will require switching nodes that are comparable to processing elements in a

computer application. In addition, as computers move towards massively parallel

architectures, the interconnection of potentially thousands of processors will be achieved

using switching networks similar to those used in the telecommunication systems. It is on

these systems that high performance demands are being placed on the most [2]. Figure 1.1

shows sorne memory and bandwidth requirements for past, present and future applications

[5]. In the last decade, most applications such as oil reservoir modelling and 48-hour

weather forecasting required aggregate bandwidths in the Gigabitslsec. range. During the

1990s and well into the next century, applications such as the human genome project,

pharmaceutical design projects and less esoteric applications such as video conferencing

will require systems whose aggregate bandwidths are in the Terabitslsec. range.

1

•

•

•

C/rapter 1: Introduction

Global Cœnge
Human Genome
Fluid Turbdence
Quantum Physics
Vision

t3 1 TB
5e
~ 100GB

! 10GB

~ 1GBe
11)

:a 100MB

1 10 100 lom 10000

Bandwidth Requirements (in Gigabits/sec.)

Figure 1.1 Memory and bandwidth requirements for pasto present and future
systems.

For many years; researchers have anticipated the need for optics as a means to

implement these high bandwidth systems. Although logic gate switching limes of less than

1 ns is presently achievable; it is unlikely that a purely electronic system as a whoJe could
switch at that rate. The limitation primarily arises from the two-dimensional nature of these

systems leading to long interconnection lines [6]. High bandwidth systems normally imply

that the signais internaI to the system itself propagate at high frequencies. The high

frequency transmission causes the capacitive and inductive effccts of the intercor.nection

lines to become significant and the signalloss rate can be as high as .1 dB/cm [4]. These

effcets cause a distortion of signaIs travelling through these lines (7)leading to an increase

in the bit error rate and necessitating errer correction codes. The error correcting codes

2

Chapter i: introduction

increase the overalI compIexity of the system. In addition, adjacent interconnection Iines

that are parallei to one another inductively interact at higher frequencies causing

electromagnetic crosstalk thereby degrading the signal as it propagates to its destination

[2][3][6]. Furthermore, as VT (where v is the speed of the clock signal and T is its rise

time) becomes comparable to the interconnection distances between modules, transmission

Iines will be necessary to distribute the clock [4].

A more interesting problem arises as the gate density of integrated circuits begin to

rise. As the number of gates on the die increases, the number ofVO pins required will also

increase. Empirical formulae such as Rent's Rule [2][8] given by

1

Number ofPins = k(Gates) C

attempt to quantify the number of pins required as the number of gates on an integrated

circuit (lC) increases. Here, k is a constant representing the degree of multiplexing or

signal line sharing and c is a weighting factor whose value ranges from 1.0 to 3.0 (c is

'typically 1.79 for high performance systems).

Figure 1.2 graphically represents Rent's Rule for various values of k with c fixed at

1.79. The increase in gate density necessitates a greater number of input/output pins on

each le thereby requiring higher degrees of connectivity. The increase in connectivity

leads to a growth in the density of signal traces surrounding the chip [2][3][8]. To

compensate, the cross-sectional area of the interconnect must be decreased. However, the

resistance of interconnects whose cross-sectional area have becn reduced will increase due

to the skin effect that occurs at high frequencies [4][9][10].

Given these limitations, the need for new paradigms in which electronic modules

are interconnected becomes clear. One such paradigm is the use of optical signais as a

means of interconnecting these electronic modules. Optical signais are non-interactive in

nature and hence do not suffer from any of the physical effects that plague electronics.

Optical signaIs also naturally propagate at high frequencies without any of the

3

· .· .· .

•

•

•

C/Japter 1: Introduction

aforementioned signal distortions and can be very small in diameter (on the order of 1J.Lm).

Therefore, high connectivity is achievable [1]. Given that the optical signaIs have these

qualities, there is a tremendous potentiai for high bandwidth systems using opticnl

interconnects making them an ideal alternative to electronic interconnects [6] [Il].

Number of Pins Required vs. Number of Gates on Chip
8 r--.....-.,... .,.. ,.,....""'..-.,..."""",,........,..,.,.,"",,,,,...,---.;,..-...-."",.,........,.,.,.,;;,,...-....."""".,....,...,..""."",,,,..,... -,,...........,..,...,.,.,.,

• • • • •• , •••• 1 ••• • ••••• ••• •• •••• • •••• l''
f • , t.tlo fi" .tt.. • •• , ••• ,.
f • • • ••• ,.... •• 110""

• • • •••• • ••• o""·
7 '" ":" ":' : .~. ':':':~:' ... ":". ":' .~ ':":.:" :":: ":" ~'":' ~ ~: :::' ... ":" . ":" ':" ": ":' :":":':" ... ':" ..;. :.: : ':: .

• 1" •• 111 l'. ,.",. •••• ••••• • •• ,. Il'0
, ,. 1 •• '" •• •••• lU • "'" tt. 1 •• Il Il ••· . . .· . . .
• "'" • tt t.. ~ • • ••• • • • ••• .., • • •••• •••••• •."~ .. ~. ~.~ ":.~":~~ :~ ..:" ~ .:.~~~:: ": .. ~. ~.~ ~ ~~:~ ~ ... ~. ";" ~:. ~.:" ::.:":~ .. ~ .;."~. ~. ~: I~: k =2.0
• , , • • •. 1.1.1. • ••• "111 •• , •• •••. 1 ..•••.· . 1. t.... . t.. . t... . .· t.... . .· t... ., ,... . t... . .
t ••• •••• • •••• 1... . .t t.... .. t , ,"" •••• ,,f" ••••~~.,., ••• ~,,., ,,.,",,., , ••• , ••••••••••••• ,,~,. , •: :::: :::: ::: :: :::: .. ,.. '''J ".... ,.. , ": ::: ::::: ::: :::::: ::: ::::: c= 1.79 ::::· . . .· . . .
• ••• ,.... ,.. , ., ••• • • •• ~. ., t • t '" • .,., ••

•••••••• ••• _ _ Il ~ .. _............. ••

• • • • ••••• •••• ••••• • •• 11.... •••• • • , •••
• 11. •••• "'" • ••••• • ••• , 1... ,1 ••• ••••• •••• ••••• • 1 "' 1.,.. 1 ..• 1 .•••··
• "'tI ,... ••••• •.• • •••.. "'" ••••

• 1... ••••• • •. 1..... • ••• '.'1. • ••••••••· . . .· ,',. . t.· .,... . .· ,.1.1... . .. ,..... . .· , .
• ,.. ••••• • l" .,.,.. • ,

....:.. ! ..:.:..:~:.:"::.....: : :- .:.:.:. ::.: : .. ~ ..>: ~ .: ~:: :...:..:..:.:. ::.' ..· t... . . .
• • t, ••••• ..,' ""t •••••••••
• • •• ••••• •••• ••••• ,. t •• , •••
• ••• 1. ••• • •• , I •• n •• •••••••
• ••• ••••• •••• ••••• • •• + , ••••
• ••• ••••• •••• • ••• Il •••

1 ,.,.: .. !. ~':":':':~:"" .:... ~.~ ':'~~~::""';";' ':.: ·:;m···.;·· " ..;.: :":':':'
• ••••• 1. , ..··· .. ,.... ." ..
• •• ,.1 ..

Number ofGates

Figure 1.2 Graphical representation of Rent's Rule (c=1.79).

Recently. there have been many proposaIs and projects that attempt to capitalize on

the potentiaI benefits ofoptics. The Canadian Institute for Telecommunications Research

(CITR) has undertaken a five year/five phase program to develop a backplane based on free

space opticaI interconnect technology. The backplane connects electronic printed circuit

boards (PCBs) via opticaI communication channels (OCCs). The OCCs are created by

opticaIly interconnecting Smart Pixel Arrays (SPAs). The SPAs are optoelectronic devices

that have opticaI ua connected to a serniconducting substrate consisting of processing

4

Chapler 1: lnlroduclion

electronics [12][13]. The backplane has a potential connectivity of up to ten thousand high

performance connections per PCB each capable of accommodating about 1 Gbits/sec. The

aggregate throughput is therefore estimated to be on the order of 1 Terabit per second

[12][14].

1.2 Author's Contributions

The versatility of the Photonic Backplane (often called the Hyperplane) arises from

its ability to function in various applications. From the onset, the development of the

Photonic Backplane arose from the vision of a high speed packet switching centre

foIlowing the Asynchronous Transler Mode (ATM) protocol for telecommunication

purposes or as an interconnecting mechanism for Massively Paraliel Processing (MPP)

applications. It is the application to MPP systems that this thesis wiIl concentrate on.

The contributions of this thesis are four fold. The first demonstrates the

applicability of the backplane in MPP systems by embedding the network topology of a

Cray T3D Supercomputer on to the Linear Hyperplane (the precise definition of the Linear

Hyperplane wiIl be given in a later chapter). It is shown that the embedding process is

achievable through graph theory. Specifically, a method termed graph contraction is used

in the embedding process. Various embedding schemes are shown and sorne comparative

analyses wiIl be made. The second contribution thoroughly documents the architecture of

the optical hardware that forms the basis of the backplane. The optical hardware devices

are termed CMOS SEED Smart Pixel Arrays (SPAs) and a complete physical and

architectural description of these devices is presented. The third contribution is the

development of the VHDL code that will describe the design of the SPAs (and hence, the

backplane). The VHDL code is then read by the Synopsys CAO tool which wiIl simulate

the backplane design in software (a complete copy of the VHDL code can be found in

[40]). The fourth and final contribution is the development of a hardware simulator of the

design. The hardware simulator is achicved by synthesizing the VHDL code so that it can

be downloaded on to a Field Programmable Gate Array (FPGA) through which real time

simulations of the backplane can be undertaken. The resulting hardware simulator is an

invaluable tool allowing rigorous testing of any electronic device that will eventually be

5

•

Chapter 1: Introduction

interfaced with the optical backplane at realistic dock rates.

1.3 Terminology

When participating in a project of this magnitude. it is vitalthatthe definitions of the

terms used are clearly defined. In this thesis we will repeatedly make references to several

terms. Two of these terms are the Terabit Photonic Backplane and the Hyperplane. As we

noted earlier, CITR is undertaking a five year, five phase program to develop an optical

backplane that will have an aggregate throughput on the order of 1Terabit per second [1].

ln each phase, a demonstrator is designed and constructed. The demonstrators are used to

show the progress of the project and highlight ail the milestones achieved. Currently.

McGill is in its third year of the five year program in which the design of the 1995/96

demonstrator is under development. The resulting 1995/1996 demonstrator will be a

backplane constituting a representative subset of the Terabit Photonic Backplane. The

design presented in Chapters 5 and 6 (which also can he found in [13][31]) of this thesis

represents a possible design for the 1995/1996 demonstrator. Because the nature ofthis

research leads to a constant evolution of designs, we have elected to refer to designs using

time stamps. Therefore, the design presented and discussed in Chapter 5 and 6 is called the

June 1995 backplane. The smart pixel arrays comprising the June 1995 backplane are

appropriately called the June 1995 smart pixel arrays.

1.4 Overview

The research presented here revolves around the Terabit Photonic Backplane project

in which a novel backplane architecture called the Hyperplane has been introduced. For

several years, many different proposais for optical systems have been made. Chapter 2

will review sorne of this work and discuss the practicality of these systems.

Chapter 3 is devoted to the Terabit Photonic Backplane project. The design of the

system will he descrihed in detail as weil as sorne of its functional specifications. The

operation of the system hinges on the smart pixel arrays alluded to in the previous section.

The optical aspect of the Smart Pixel Array is achieved using multiple quantum weil

6

Chapter J: Introduction

technology. The physical nature of the multiple quantum weil technology and its integration

in smart pixel array technology are briefly examined.

Next. the embedding of Cray T3D Supercomputer will be undertaken. Chapter 4

commences by formally describing the method of parallel graph contraction. Il then

proceeds by reviewing the architecture of the Cray T3D and its embedding on to the

Hyperplane using parallel graph contraction. A comparative analysis of the various

embedding schemes is then made.

Chapter 5 will describe the functional specifications of the June 1995 Hyperplane

and the June 1995 smart pixel array to be used in the 1995/96 demonstrator. This will

outline. in essence. how the backplane will function if and when this particular design is

implemented.

Given the functional specifications of the June 1995 optical backplane and smart

pixel arrays. our next objective is to describe them using VHDL and simulate them using

Synopsys. The VHDL description is then synthesized for FPGA technology.l Chapter 6

commences by describing in sorne detail the FPGA technology as weil as the hardware

description language-VHDL. The VHDL description of the system is described and the

simulation results are shown. The synthesis process is then outlined in detail and sorne

statistical results of the synthesis are subsequently given. The result of the synthesis

process is a hardware simulator for the backplane which can operate at realistic clock rates

(in the MHz range).

Finally. in Chapter 7. the concluding statements are presented with sorne additional

remarks on future work that could likely arise from this research.

1The design of the June 1994 optical backplane was aIso described using VHDL and synthesizcd

for FPGA lechnology by Ibis author. A complete discussion of Ibis research can he found in [3].

7

Chapter 2: Evolution ofOptical Tee/mology

Chapter 2

Evolution of Optical Technology

2.1 Introduction

With the foresight that the maximum speed of electronics will eventually reach a

physical maximum, the search for new solutions using optical signais had begun. Over

the past several years, there were many proposais for various optical devices and systems.

From this research, two schools of thought in optical technology emerged. The first

deals primarily with replacing entire electronic modules with their optical counterparts.

The second uses optical signais as a means to interconnect electronic modules. In both

contexts, a module could he an integrated circuit, a printed circuit board or an entire system

such as a network or computer. In tbis chapter, we will closely examine both approaches

selecting representative examples from each. The chapter commences by describing the

systems using only optical devices, wbich shall hereafter be referred to as ail optical

devices or systems, by citing specifie examples. Sorne practical considerations of all optical

devices are then described including some remarks and observations made by researchers at

Honeywell who tried to implement a massively parallel processing system using only

optical devices. We will subsequently discuss systems that blend optics with present day

electronic systems. These hybrid systems are referred to as optoelectronic devices or

systems [Il]. The advantages and disadvantages of optoelectronic devices are then

reviewed.

8

•

•

Chapter 2: Evolution ofOptical Technology

2.2 Ali Optical Systems

ln this section systems built entirely of optical systems are described. The objective

of aIl optical devices is to create systems similar to electronic systems without the use of

any electronic device. including controllogic. The main motivation for this approach is

that none of the components will suffer from the physical constraints that adversely affect

clectronic components. Theoretically, such systems would be capable of reaching speeds

unattainable by electronic systems.

2.2.1 Ali Optical Programmable Logic Gate

We begin by describing an all-optical programmable logic gate developed at Heriot·

Wall University [15]. The programmable gate, shown in Figure 2.1. is capable of

implementing eight two-input Boolean functions (ON, OFF. OR, NOR, AND, NAND,

XOR, XNOR). The programmable gate consists of two refractive and optically bistable

components.

HI H2

SI

S2

•
Figure 2.1 Schematic of ail optical programmable logic gate. SI and S2 are the

optical input signais while Hl and H2 are the optical bias beams.

9

•

Cllapter 2: Evolution ofOptieal Teellnology

The bulk of the logic processing is performcd by G1 while G2 acts as a logic level

discriminator to the output of G,. The inputs to the GI consists of three optical signais. SI

and S2 are the optical binary inputs while H, is a bias signal set to power levels labclled

a. b. or e (Figure 2. 2a).

Figure 2.2 Idealized characteristics of the optical elements used.

These signals, either acting alone or combined, form the nonlinear output characteristic of

Gl (shown in Figure 2.2a). This has been termed on axis operation. The output of Gh

labelled S3, is incident on to G2with H2 as the bias bearn yielding a characteristic response

shown in Figure 2.2b.

By choosing the appropriate bias bearns HI and H2, the gate can be programmed to

implement any of the previously mentioned logic gates. For exarnple, if we want to

implement an XOR gate, Ht should be set to the intensity level c and H2 to~. If SI and 52

are both 0, then 53 is C and if 5 1 and 52 are both one, then 53 is B. When either of these

power levels is incident on to G2, the output will be 0 since H2 is set to~. If either 51 or 52

is set high, then the intensity of 53 will be set to A. With 53 set to A and H2to set to ~. the

output 54 will be high. This is exactly the functionality of an XOR gale.

The functionality of the programmable logic gate hinges on the nonlinear responses

shown in Figure 2.2. Given that Gt and G2 are solely responsible for performing the logic

tO

•

•

Chapler 2: Evolution ofOptical Technology

funclions, lhey musl be fabricaled from oplically bislable malerials that exhibil such

characlerislics (15).

One such device is lhe ZnSe ba~ed nonlinear interference fillers. These inlerference

fiIlers have similar characlerislics as a Fabry-Perol Etalon with :; nonlinear material in ils

cavily (15). They arc constructed by tNO outer stacks consisting of altemating layers of

high and low refractive indices an!! each with a thickness of a qu~rter of the operating

wavelength. These stacks perforro as the mirrors found in the Fabry Perot systems. The

cavity is filled with layers of absorbing materials preferably with a thickness of a half

wavelength each (8). This forros the nonlinear inlerference filler with an (in the case of

ZnSe) opcrating wavelength of 834 nm.

The maximum measured speed of this device is on the order of 1 KHz and the

reconfiguration speed is about 1 MHz. However, to ensure that the response of G 1 is

identical for inputs SI, S2 and HI, the wavelengths of these inputs have to be within 1 A
of each other. The only way to achieve this is to beam split one laser to forro ail three

inputs. However, as the authors outlined, this can he difficult to accomplish in practice and

is one of the major drawbacks of this design (15).

2.2.2 Stored Program Optical Computer (SPOC)

The Slored Program Opt/cal Computer [16] is probably the first computer based

on the Von Neumann model that is made entirely of optical devices. It parts from other ail

optical systems in that it is a general purpose device. Almost ail other optical systems are

application specific. SPOC comprises of several modules that forro the instruction register,

memory black, ALU, accumulalor, address comparator and state control. The modules are

interconnected using optical fibre.

11

•

•

C/lapter 2: Evo/Iltion ofOptica/ Tee/m%gy

1

~
Memory
Counter ~ 1 Mcmory

11
Addrcss 1

Instruction 1
Comparator

r &Register _ State
Control •

Program
1

ALU
1.... Counter

~-
1

Figure 2.3 Modular design of the Stored Program Optical Computer.

Figure 2.3 shows a modular design description of the system. Previous implemcntations

of any optical computer have relied on an extemal electronic host to provide control. SPOC

has both code and data in its optical memory and can manipulate the input data using it's

own built-in instruction set. The instruction set includes load/store instructions, ALU

operations and branch statements.

ln any computer, it is essential that all signais are synchronized. ln conventional

electronic computers, synchronization is maintained with the aid of flip-flops and a global

dock. SPOC, however, does not use such an approach. Instead, synchronization is

maintained by carefully determining the length ofeach fibre to control when signais arrive

at a gate. This method is termed time offlight synchronization.

12

• Chapter 2: Evolution ofOptical Technology

A

B

C

(a)

O=AC+BC'

E = BC +AC'

------{@..---

(b)

A+B

A+B

•

•

(c)

Figure 2.4 Optical components used to implement SPOC (a) directional coupler (b)

splitter/combiner (c) optical fibre.

The optical components used to build SPOC are shown in Figure 2.4. The

components include the optical switch. the splitter/combiner and the optical fibre. The

optical switch is a directional coupler fabricated on a Lithium Niobate substrate [16].

Essentially, the directional coupler is a waveguide that realizes a 2x2 switch whose states

(cross and bar) are determined by placing a voltage across il. In the absence of a voltage,

the coupler is in the cross state and when a voltage is applied, the switch put into the bar

state. The voltage across the switch is controlled by an optical signal C through a

photodetector. If the inputs are Boolean variables, then the directional coupler realizes the

boolean expressions shown in the figure.

The designers of SPOC c1aim !hat 4.5 V across the directional coupler is sufficient

to perform switching. This is comparable to the voltage levels found in CMOS devices.

Howevcr, in [8], it is shown that anywhere between 10-50 volts is required in order to

avoid any optical crosscoupling between waveguides. The rate at which the source voltage

13

• C/lapler 2: Evolution ofOptical Teclmology

can reach such magnitudes is slew rate limitcd. This williimit the reconliguration rate of

the system.

The splitter/combiner is a straightforward device. It merely combines two input

signais and then splits the combined signal back into two (logical OR operation). This

device however has one signilicant drawback. In [8)[17] it is noted that up to 7:, percent

of signal power can be lost due to the coupling of signais in the splitter/combiner device

resulting in significant signal loss and highlighting the need for regeneration.

Regeneration is achieved using optical ampliliers which introduce further delay into the

system thereby reducing the maximum overall operating speed and increasing the overal1

cost.

The optical memory is achieved by the use of an optical fibre loop. The length of

the fibre is

1= nie

Here n is the number of bits to be stored in the opticallibre and the le is the distance

one bit travels in one clock period. As an example, 16 bit-words require 33 km of libre if

the c10ck speed is 100 MHz [16][18]. Notice, however, that this memory unit is not

addressable. That is, memory is accessed in a seriai manner which is considerably slower

than conventional random access memory.

ARITHMETIC LOGIC UNIT

In this section, the ALU of the SPOC system is described as a representative example of

how the various sub-modules operate. Figure 2.5 shows the conliguration of the ALU

module of the SPOC. It consists of severa! directional couplees that implements a bit seriai

addition function as fol1ows:

14

• Chapter 2: Evolution ofOptical Technology

Sn is the sUm of An. Bn and the carry from the addition from the previous bit, n·/.

Observe that the ALU also performs logical AND and OR functions when performing

addition.

An

An'

Cn-I Bn

.Sn

•

•

Figure 2.5 ArithmetÎC logic unit used in SPOC.

To save hardware. the ALU shown in Figure 2.5 was modified to simultancously

calculate seven functions in addition to the Add function. Using 'che current memory word

and the accumulator as inputs. a total of eight functions are perfonned. Only one of these

eight operations is required at a given time and so an 8 by 1optical multiplexor (constructed

using multiple directional couplers) is added to the output of the ALU to route the required

solution to the proper destination [16].

AIl modules in the SPOC were interconnected using precisely eut fibre and operated

at speeds of about 50 MHz. However. as the speed of the computer increases. the signais

are more susceptible to changes in temperature. Such changes can cause signaIs to skew.

Since there are no latches to maintain synchronization. this type of skew can have

disastrous effects. In addition. the designers of SPOC reported that any physical

disturbance of the opticaI fibre such as casual contact can cause shifts in the poJarization of

the light [16].

2.3 Practical Considerations of Ali Optical Computing

In the introduction. il was mentioned that the main motivation of opticaJ computing

was to find the means ta impJement faster. more powerfuJ computers without the capacitive

and resistive effects that afflict electronic signal paths. The previous two sections described

15

•

•

C/zapler 2: EVO/Ulioll ofOplica/ Tee/Ill%gy

what the author believes to be representative examples of current optical computing.

Indeed almost ail implemented optic:al computers are variations of the previous two

examples.

In both cases, the devices wem implemented using almost no electronic devices. Il

is clear that there will be no problems with capacitive or resistive effects and there will be

virtually no crosstalk between adjacent signaIs. At first glance, this might seem

encouraging. However, it is unlikely that such devices couId be used to satisfy present

day demands and requirements. Although the programmable logic gate based solely on

optical devices is truly novel in nature, its maximum speed is Iimited to about 1 KHz.

Presently, electronie gates can operate in hundreds of MHz and in sorne cases up to 1 GHz

[6].

In the case of SPOC, the instruction set wa~ similar to the Von Neumann computer

invented fifty years ago. There is no practical application of a computer with such Iimited

power. In addition, [16] notes that although SPOC does not suffer from crosstalk, ca~ual

contact with the optical fibre will cause changes in polarization in the signaIs travelling

through the fibre. Furthermore, SPOC can only operate at speeds that are comparable to

electronic computers. There arl: plans to significantly increase the processing speed of

SPOC. This, however, may not be possible since SPOC is synchronized using the time of

flight approach. As the speed of SPOC increases, the optical fibres will become more

sensitive to temperature changes making the system more difficultto synchronize.

A more serious problem with optical computing is memory. There is no efficient

way to store data. Recall that over 30 kilometres of fibre was required to store a 16 bit

word. Present day computers are equipped with several megabytes of memory to

implement a vast range of algorithms. It is not possible to implement such large amounts of

memory using optical fibre. Moreover, even if optical fibre could he used, the memory

would have to he implemented using loops of fibre. This implementation would not allow

random memory addressing and would degrade system performance.

16

Chapler 2: Evolution ofOplical Technology

Despite the many virtues that are possible with ail optical computing, present
technology is still too immature to create any marketable system. Consequently, a new

approach to optical computing is needed.

In 1990 researchers at Honeywell proposed a design for a massively parallel optical
computer. Although this system was never implemented, their analysis showed that it was

presently impractical to make ali-opticai computers. Il was suggested that, although great

strides in optical computing had heen made, the near term goals should research optics as a

means of interconnect hetween processors only and let ail computational devices he handled
using current state of the art electronics [19]. In this manner, the capacitive effects of

signal paths could he avoided while maintaining a high degree of computational power that

has developed over the past fifty years. To the extent of the author's knowledge this was

the fICSt paper that recommended a departure from ail optical computing. Since then, much

of the research in optical computing has encompassed oplics in compuling. During this

time, the notion of optics competing with electronics began to die out and the prospect of

optics complementing electronics became increasingly popular [11][20].

2.4 Systems Based on Optoeleetronie Deviees

The second approach to using optics in present day technology is to blend optics

with existing electronic technology. In these systems, optical signais are generally used as

a means of interconnecting electronic modules. These modules could be individual chips,

multichip modules or printed circuit boards. The interconnection of these modules could

also he accomplished using lithium niobate fibres (optical fibre) or using free space optics.

The main advantage of using optical fibre is that the alignment constraints imposed on the

free space systems are relaxed to a certain degree. However, free space optics offers the

potential of higher degrees ofconnectivity and parallelism since the optical signais are much

smaller in diameter than optical fibre (optical signais can he 10 lJ.IIl in diameter while optical

fibre can he up to 70 lJ.IIl in diameter). In this section, a systems level description of two

optoelectronic demonstrators will he exanûned. The fICSt of these demonstrators is the

System V project conducted at AT&T Bell Labs. The second is the OPTOBUS product

designed and developed by Motorola, Inc. The description of these systems will lead to the

17

ClJapter 2: Evolution ofOptlcal Tee/mology

description of the Terabit Photonic Backp1ane project which will be described in great detllil

in the next chapter.

2.4.1 System V Project

In this section, the System V project undertaken at AT&T's Bell Labs is reviewed

[21]. The system is a 32 x 16 switching fabric as shown in Figure 2.6. The system is Il

five stage, 32 fibre input, 16 fibre output Extended Generalized Shuffle Network [21]. Ali

interconnects between stages are achieved using free-space optics in which opticlli signais

propagate orthogonally to the plane of the device substrate.

32 Fiber
Inputs

16 Fiber
Outputs

Figure 2.6 Architecture of the System V project (BGS network).

The network comprises the following. Bach switching stage consists of a 4x4 array

of 2 by 1 multiplexors or (2,1,1) nodes. Each node has two active inputs, one active

output and an active capacity of 1. The switching stages are interconnected in a Banyan

fashion to realize the extended generalized shuffle topology. The Banyan interconnect

requires that each output of every node be imaged onto two inputs on the next stage. This

is achieved by placing Binary Phase Gratings (BPG) between stages. The BPG uses

Fourier Computer Generated Holograms (CGH) to perform alto 3 split on each output

signal and is used to steer the output to the required inputs of the next stage (Figure 2.7).

Since only two input signais need to be imaged (in accordance with the Banyan

18

• Chapter 2: Evolution ofOptical Technology

interconnection scheme) on the next stage, one of the three spots generated by the BPG

must be blocked or masked [21].

Figure 2.7 Optomechanical setup for the System V demonstrator.•

Deviee
Array 1

f f

210 Il

f f

Deviee
Array2

•

Each of the nodes is implemented using a smart pixel. Essentially, a smart pixel is

a device that has an optical input and an optical output (or modulator) embedded on a

semiconducting substrate. The substrate can have logic etched on to it for on-chip

processing. The optical input window will receive an optical input signal and convert it to

an equivalent electronic signal. The logic on the semiconducting substrate will process the

signal. The optical output window will convert an electronic signal from the substrate to an

optical signal by modulating a continuous wave of light. The System V network was

implemented using FET-SEED technology consisting of dual rail optical inputs and outputs

which will he discussed in detail in the next chapter. The inputs consists of a pair of

quantum weil p-i-n photodiodes and a pair of cla.rnping diodes to restrict the voltage swing

of the input. The input/outputs were embedded on buffered FET logic which implemented

the 2 by 1 multiplexor and a controllatch. In all, 2S FETs per pixel were required. The

nodes were separated by a 210 J.lm pitch in ail directions and the optical input and output

windows were each Il J.1D1 x 11J1.IIl in dimensions [21].

19

•

•

Chapter 2: Evolution ofOptical Technology

The network operated as follows. Upon startup, the control signais were clocked

into the nodes from the optical inputs and stored in the latches. The latches are enabled

using extemal electronic latch enable signais. Once the controllatches are set, the network

configuration has been established. The network is then capable of routing data from the

input ports to the appropriate output ports [21].

The System V project was a significant achievement because there are immediate

applications of this system. If buffering is added to the system and a fast path-hunt

algorithm is implemented, then the network can be operated in a packet switching mode. In

addition, the use of optical signais as a means of intereonnect allows dense interconnection

intensive systems to be readily implemented [21].

However. there are still many factors that need to be considered in any

interconnection scheme achieved using free space optics. The foremost difficulty is the

alignment of the free-space optical signais. Recal1 that the area of each input and output

window is about Il J.1m x Il J.1m. Physical conditions such as thermal expansion couId

cause the bearns to misalign and miss the input window.

2.4.2 OPTOBUS Optical Link

The OPTOBUS package is an opticallink that represents one of the first marketed

products that utilizes optical interconnect through optoelectronic devices. It consists of a

one dimensional array of bi-directional optical interconnects with an aggregate throughput

of 1.5 Gbits/sec in each direction [22]. The first mode1 of the OPTOBUS package

comprises 10 transmit and 10 receive channels in a single 96 pin grid array package. The

optical signais are transmitted and received through guided wave multimode optical fibre

!ines that can he of various lengths. The optical fibre !ines alleviate sorne of the many

alignment issues assoeiated with free space optical transmission. Figure 2.8 shows the

architecture of the system which contains twenty optical fibre !ines each with a core

diameter of 62 J.1m. Ten of these !ines are used to transmit signais from Module 1 to

Module 2 and ten are used to receive signais from Module 2. Each optical fibre has data

20

• Chapter 2: Evolution ofOptical Technology

transfer capacity of 150 Mbits/sec leading to an aggregate data transfer rate of 1.5 Obits/sec

in each direction [22].

Protocol TxIRx
Interface Module

.. Tx

MT
C nnector

Rx--+
Fiber Ribbon---..j

L Connectorized Jrl---- Umbilical ----11

1

...
- oBasic ---iJ

.. Link lL oIntelligent ..1
1 Link•

Figure 2.8 Funetionallayout of the OPTOBUS systp.m.

•

The transmission of data is achieved through a one dimensional array of ten vertical

cavity surface emitting lasers (VCSELs). The precise nature ofVCSELs is rather detailed

and is beyond the scope of this thesis. However, it suffiees to say that VCSELs are

miniature lasers that receive electronie data from its computer host through a laser driving

integrated circuit and converts the data inta optieal signais. The laser driving integrated

circuit must receive the data from the computer host in dual rail fonn. This means that all

data transmitted from the computer host must also he complemented. The Iight emanating

from the VCSELs will travel aIong the optical fibre where it is eventually received by the

receiver on the receiving module. The receiver consists of an array of 10 photodetectors

connected to a transimpedance amplifier. In essence. the photodetectors will convert

21

Chapter 2: Evolution ofOptical Technology

optical signais into electronic signais which can then be transmilled to the computer host on
the receiving board [22].

The high bandwidth capabilities of the OPTOBUS system allows designers to delve

into various applications sueh as high definition television (HDTV), data storage and file

servers [22].

2.5 Chapter Summary

In this chapter. a survey of optieal technology was discussed. We began by citing

examples of systems that comprised only optical devices. We saw that although great

strides had been made in this area. opticaltechnology was still too immature to completely
replace electronic technology. We then examined systems that blended optics with

electronics. These hybrid systems called optoelectronic devices offered the benefits of

using optics while still maintaining a high degree of computational power. We cited two

specifie examples of systems based on optoelectronic devices.

In the next chapter. we will describe the Terabit Photonic Backplane which is also a

system based on optoelectronic devices. Once the specifies of the Terabit Photonic

Backplane have been discussed, we will demonstrate how it can be used in real world

applications (namely. the Cray T3D Supercomputer).

22

Chapter 3: Terabit Photonic Backplane Project

Chapter 3

Overview of the Terabit Photonic
Backplane

3.1 Introduction

This chapter will overview the Terabit Photonic Backplane project mentioned in the

firsl chapler. The development of the Terabit Photonic Backplane is one of the main

objectives of the Major Project in Photonic Devices and Systems which is a five year

endeavour funded by the Canadian Institute for Telecommunications Rest:arch [1]. The

Major Project is subdivided into four projects. These projects conduct research in

Optoelectronic Deviees. Optoeleetronic Paekaging Concepts. Optical and Optomechanical

Hardware and Large ATMArchitectures. The research for these projects are carried out in

three research centres across Canada [1]. At the end of the five year endeavour, a free

space optical backplane with an aggregate lhroughput on the order of 1Terabitlsec. will he

constructed. We refer to this backph'ne as the Terabit Photonic Backplane. In this

chapter. we review the architecture of the Terabit Photonic Backplane.

23

•

Chapter 3: Terabit Photonic Backplane Projcct

3.2 Terabit Photonic Backplane

3.2.1 Overview of the Backplane

Figure 3.1 shows a conceptual view of a frce-space optical backplanc (12)[13)

which could represent the Terabit Photonic Backplane. The backplane consists of a large

number of optically connected channels (OCCs). The OCCs are created by Smart Pixel

Arrays (SPAs) which are optically interconnected. SPAs are optoelectronic devices

consisting of optical inputs and/or optical outputs and a semiconducting substrate

consisting of electronic processing circuitry. The printed circuit boards (PCBs) shown in

Figure 3.1 can transfer data from one another by injecting signais into the OCCs via the

SPAs. The signais are then transferred to the destination PCBs where the SPAs will

receive and extract the signais and convert them back into electronic form. One of the main

advantages of using optical signais is the high degree of connectivity they offer. The

backplane can offer up to ten thousand high performance optical signais per PCB leading to

an aggregate throughput on the order of 1 Terabit per second [12][13].

Figure 3.1 shows that each PCB hosts a series of integrated circuits (lCs). Thesc

ICs could be high performance switching nodes in which case the entire backplane could he

used in a telecommunications application. Altematively. the ICs could represent processing

elements in which case the backplane could he used in a massively parallel processing

application.

24

Chapter 3: Terabit Photonic Backp/ane Project

Inlegraled
Circuils

•

Smart Pixel Arrays

Figure 3.1 Conceplual depiction of the Terabit Pholonic Backplane (Hyperplane)

3.2.2 Smart Pixel Array Technology

In the previous section, we mentioned that data 10 he transferred hetween PCBs is

injecled into the acCs via the SPAs [12]. As its name implies, a smart pixel array is

simply an array of smart pixels. A smart pixel is an optoelectronic device that has an

optical input and/or an optical output with electronic processing circuitry and has the ability

to he integrated into two-dimensional arrays as shown in Figure 3.2 [12]. In Figure 3.1,

the SPAs are packaged optoelectronic chips that are mounled on a PCB. The SPA can

communicate with the ICs mounted on the PCB through the elcctrical channels.

2S

• Chapter 3: Terabit Photonic Backplane Project

Electrical 1/0
(less thon la Gbilslsec.) 1

l"

Smart Pixel
Array

Opticall/O

•

•

Figure 3.2 Smart pixel array.

In addition, each SPA can communicate with other SPAs mounted on other peBs by using

a two dimensional array of free-space optical signais [12]. The SPA shown in Figure 3.2

is a representative diagram of smart pixel array technology. There are Many dirferent

technologies that can implement SPAs that are presently evolving. We will concem

ourselves with only two of these technologies. The first is the smart pixel array based on

VCSEUMSM technology [12][23] while the second is smart pixel arrays based on CMOS

SEED technology [12]. The long tenn goals of the Major Project is to develop monolithic
smart-pixel arrays based on vertical cavity surface emitting lasers (VCSELs). metal­

semiconductor-metal (MSM) photo-detectors and heterojunction field effect transistors

(HFETs) [1]. The VCSELs are the optical outputs. the MSMs are the optical inputs and the
HFET is the substrate on which the processing electronics is etched. Currently. the

integration of HFETs with MSM detectors in Indium Phosphide based materials is under

development. However. as we mentioned in the Introduction. demonstrators are built

approximately once every year to highlight the milestones achieved. Since Indium

Phosphide technology is still evolving. the SPAs used in the demonstrators thus far have

becn implemented using CMOS SEED technology. The CMOS SEED SPAs are bascd on

26

•

Chapter 3: Terabit Photonic Backplane Project

multiple quantum weil (MQW) technology. A full description of MQW technology will

be given next.

3.2.3 Multiple Quantum Wells

The main purposc of any optoclectronic device is to receive data in optical form and

convert it into an electronic form. Once in this state, any desired processing can be

performed on the data. Upon completion, the data can then be converted back into an

optical signal for transmission. This process is also known as optoelectronic conversion.

In the following, we will describe physical attributes of the Multiple Quantum Weil which

forms the basis of the CMOS SEED Smart Pixel Array.

The efficacy of SEEDs as optoclectronic devices hinges on the changes in optical

absorbtion that are achieved by placing and external electric field across il. The

optoclectronic conversion capability is accomplished using multiple quantum weil (MQW)

technology. Essentially an MQW is a device with a highly periodic structure consisting of

layers of dissirnilar materials [6][7][8] formed on a substrate such as GaAs. Each quantum

weil consists of a thin layer called a weil surrounded on each side by a thicker layer called a

barrier. Each layer is generally about 100 Angstroms thick and are grown using a

molecular beam epitaxy process. The weil is usually fabricated with GaAs while the barrier

is made from AlGaAs. About 75 to 100 of these quantum wells are then stacked upon one

another to form the multiple quantum weil as shown in Figure 3.3.

The MQW operates as follows. Associated with any material is an absorbtion

spectrum. The absorbtion spectrum gives an indication of how absorptive (that is how

much Iight incident on a given material will be absorbed) a material is as the energy (and

hence the frequency) of the Iight incident upon it varies. In bulk materials, this spectrum is

smooth and rises smoothly as the frequency (and hence the energy) of the photons

increases. In quantum weil materials, the absorbtion spectrum contains discrete steps.

These steps are present because the electrons and holes within quantum wells reside in

discrete energy levels. The absorbtion spectrum shifts as electric fields are applied

perpendicular to the quantum wells.

27

• Chapter 3: Terabit Photonk Backplane Project

+
V

MQW

•

•

Figure 3.3 Physical structure of an MQW.

In quantum wells, the coulombic interaction between the electron and hole causes

the absorbtion spectrum to exhibit peaks called excitonic peaks. These peaks occur at

discrete energy levels associated with the incident photon. When a photon is incident to the

quantum well at these peaks, a bound electron-hole pair, called an exciton, is created. This

pair does not separate into a separate electron and hole but rather remains loosely coupled

similar to that of a loosely coupled hydrogen atom. In a bulk material. the excitons are

much larger and therefore are short lived except at low temperatures. However. in

quantum weIl materials. the excitons are confined by the wells because of the barriers

surrounding them. Therefore, even at room temperatures. the absorbtion spectrum exhibits

excitonic peaks [6][7][8].

Ifan electric field is applied the electrons and holes would he pulled apart, to sorne

degree, towards opposite sides of the weil. If the material were a bulk material then the

electrons and hales would be tom apart into distinct electrons and holes. However, in the

case of the quantum weIl, the electrons and holes are prevented from being tom apart

because of the barriers surrounding the weil. Thus the electrons and ho:es wouId continue

to orbit one another. Since the electrons and holes are already pulled apart. less energy is

28

• Chapter 3: Terabit Pholonic Backp/ane Project

required to form an exciton. Thus a red shifted absorbtion spectrum (an effect known as

the Quantum Confined Stark Effect or QCSE) is observed when an electrie field is applied

as in Figure 3.4. In quantum wells where the band gap energy of the barrier is mueh

higher than that of the weil. then each weIl acts independently and the absorption multiplies

by the number of wells.

v=O

•

c
o
.~

~
VI

:(

8S0nm Wavelength

•

Figure 3.4 Quantum Confined Stark Effeet (QCSE).

Given these properties. it is possible to construct an optical receiver and an opticaI

"transmitter" using the multiple quantum wells. The word transmitter is somewhat

deceptive because the MQW cannot produce light itself. However, using the QCSE. the

multiple quantum weIl can modulate a continuous wave of light. Essentially. the MQW as

a transmitter works as folIows. A continuous wave of light is applied to the MQW. If the

there is no voltage across the MQW then rnost of the CW will be absorbed. Ifhowever. a

voltage is applied the absorption peak shifts and sorne of the CW will be reflected. That

cellected wave of light will be received by a SEEO on another Smart Pixel Array (and hence

received by another printed circuit board) [8][7][24].

29

Chapter 3: Terabit Photonic Backplane Project

The MQW can also act as an optical receiver. In the absence of any voltage, the

MQW behaves as a heavily reversed biased pin diode. Subjecting the reversed biased

MQW to light, induces a photocurrent through the MQW. The presence of a photocurrent

corresponds to a logical 1 where the absence corresponds to a logical O. The MQW has

several advantages. lt can act as both a modulator and a receiver, it can be integrated in a

VLSI system to embed logic on the die itself.

3.3 Operation of the Terabit Photonic Backplane

One of the advantages of the Terabit Photonic Backplane is its ability to embed

various interconnection networks. The result is a multidimensional backplane which

provides PCB to PCB connectivi~. The MP's are capable of dynamically reconfiguring its

access to the blo~kplane channels establishing an interconnection network which is

dynamically reconfigurable. The resulting three dimensional interconnection design space

is often referred to as the Hyperplane [13].

So far, we have described the basic architecture of the Hyperplane and the

technology used to implement the optical channels. However, the diagram shown in

Figure 3.1 is only a conceptual depiction. There are several structures which can

implement the Hyperplane [9]. In the following, we will review two of these structures­

namely the Dual Stream Linear Hyperplane and the Circular Hyperplane. We will then

discuss the specifies of transmitted data between boards.

3.3.1 Dual Stream Linear Hyperplane

Figure 3.5 shows the structure for the dual stream linear Hyperplane consisting of

four PCBs [9]. The OCCs are organized into two uni-directional data streams called the

upstream and the downstream.

" .

30

• Chapter 3: Terabit Photonic Backplane Project

PCB

Figure 3.5 Typical structure of a Dual Stream Linear Hyperplane.•

Downstream

Upstream

o 1 2 3

The upstream transmission means that PCB i will transmit to another PCB j where i < j.

The downstream transmission means that PCB i will transmit to another PCB j where i >j.

The fact that there are two uni-directional data streams implies that each PeB will need two

packaged SPAs. One SPA will be used for upstream transmission while the other will he

used for downstream transmission [9].

3.3.2 Circular Hyperplane

An alternative structure to the dual stream !inear Hyperplane is the Circular

Hyperplane. Figure 3.6 shows the Circular Hyperplane for four boards. We see that

there is only one stream necessary in this implementation. Using bulk optics, PCB 3 in

Figure 3.6 is connected to PCB O.

31

Chapter 3: Terabit Photonic Backplane Project

PCB

~
- - -- ==-- - -- - -

3 2 1 0

i
Bulk Optics

figure 3.6 Typical structure of a Circular Hyperplanc.

3.3.3 Reconligurable and Intelligent Operating Modes of the Hyperplane

The Hyperplane can operate in two general modes. The first is called the

reconfigurable mode while the second is called the intelligent mode [13]. The mode that the

Hyperplane operates in is dependent on the application it is being used in (eg.

telecommunications. massively parallel processing). In the reconfigurable mode, the

Hyperplane can be reconfigured to embed the network topology of any graph. This is

only Iimited by the number of electrical and optical channels. When operating in the

intelligent mode, the SPAs will process packets of data as they propagate through the

backplane. The processing electronics on each SPA will decide whether to extract a packet

based on predefined extraction criteria [13].

3.4 Summary

32

Chapter 3: Terabit Photonic Backplane Project

ln this chapter, a detailed explanation of the Terabit Photonic Backplane was given.
The concepts of multiple quantum weIl technology were aIse outlined. The topics covered

in this chapter is enough to give the reader an adequate background to understand the topics
covered in the subsequent chapters. In the next chapter, we demonstrate that the network

topology of a Cray T3D Supercomputer can be embedded on to the Hyperplane. The

purpose is to demonstrate that modem high performance systems can he implemented using

the Hyperplane

33

C/zapter 4: Grap/z Contraction and Embeddings

Chapter 4
Graph Contraction and Embeddings

4.1 Introduction

In previous chapters, we have motivated the need for optical technology and

described the Terabit Photonic Backplane (otherwise known as the Hyperplane). One of

the primary advantages of the Hyperplane is its ability to embed a variety of networks

allowing it to satisfy the spectrum of requirements demanded by different applications

including parallel processing applications. Each printed circuit board could accommodate

one or more processors that would be interconnected optically to other processors on other

boards. One of the main bottlenecks inhibiting the performance of parallel processing

systems is the communication time between processors. As the number of processors in

the system increases, the limitations imposed by the communication between proccssors

become increasingly significant. This limitation is due to the two-dimensional nature of the

system that often implements a multidimensional network configuration leading to long

interconnection Iines [6]. The network configuration itself also differs for differing

applications. How weil the network configuration suits the demands for the particular

application will directly impact the overall performance of the system [25]. Since the

Hyperplane uses optical channels to interconnect its boards and is designed to be

reconfigurable, a greater degree of connectivity is thus achievable alleviating the communi­

cation bottleneck to a great extent. In this chapter. we will demonstrate the usefulness of

the Hyperplane in a massively parallel processing architecture. We will examine the Cray

T3D Supercomputer and embed its network topology, through graph contractions, on to

the dual-stream Iinear Hyperplane (the embeddings of the Cray T3D Supercomputer on to

the Circular Hyperplane using similar schemes has been done in [13][31]). The chapter

commences by giving a formaI description of graph contraction. Citing specifie

34

Chapter 4: Graph Contraction and Embeddings

examples, we will carry the reader through the embedding process and demonstrate that the

Cray T3D can be implemented on to the dual-stream linear Hyperplane. We will, in

addition, discuss the number of printed circuit boards and the number of smart pixel arrays

per printed circuit board necessary to achieve this.

4.2 Graph contraction

4.2.1 Introduction to Graph Contraction

Graph contraction [25][28] is often used in parallel processing when a set of tasks

for a software application must be assigned to the parallel processing system whose

network topology is fixed. The scheduling of such tasks, in practice, is not always

straightforward because the execution times of each task may vary. Since the tasks are

often dependent on one another, a schedule for processors needs to be developed so that

each processor will execute at the appropriate time [26]. To help simplify the problem,

graph contraction is normally used for assigning the tasks to the processors [25][28].

However, graph contraction is also a useful tool, as we will shortly see, when embedding

networks onto the Hyperplane. A1though the concepts in graph contraction are straight­

forward, a formai description of it will be given, in the next subsection, for the sake of

completeness.

In para1lel processing, the software application consists of various tasks which are

executed by processors of the network. Ideally, the number of processors in the network

should be the same as the number of tasks in the application. Unfortunately, the overall

cost and complexity of the system rises proportionally to the number of processors it

contains. Fortunately, however, applications consisting of a large number of tasks can be

processed by smaller networks by assigning multiple tasks to each processor. The tasks

will share the resources of the processor [28]. This approach not only reduces the number

of processors required but also aIIeviates the interprocessor communication latency to sorne

degree [28]. The challenge therefore lies in the assigning of tasks to a given topology that

yields the best performance. The process by which this is achieved is termed graph

contraction [25].

3S

e Cllapter 4: Orapll Contraction and Embeddings

Parallel software applications are often represented using standard graph notation in

which a vertex represents a process or task to be executed and an edge between two

vertices represents the communication between the two processes. Figure 4.1, shows lin

example of such a graph, O(V,E). The set of vertices is represented by V(O) or simply V

where each vertex v E V and IVI represents the total number of vertices in O(V,E).

Similarly, the set of edges is represented by E(O) or simply E where each edge

e EE and lEI represents the total number of edges in O(V,E). Two vertices, Il and v, of

O(V,E) are termed neighbours if the edge (u,v) E E where (II,V) represents an edge

connecting vertex u with vertex v. Additionally, 0' (V' ,E') spans O(V,E) if E'ç; E

[25][27][28].

•
Vertices ...-------+..

~~--Edge
\---~

Figure 4.1 Typical graph topology consisting of Cive

vertices and eight edges.

4.2.2 FormaI description of Graph Contraction

The task of assigning a set of processes to a given network topology can be

represented by a mapping function cp which will transform or map a graph 0 (represent­

ing a set of tasks) to a reduced graph 0' that maintains certain properties of O(V,E). We

cali the mapping function. a contraction of O(V,E) [28].

36

Chapter 4: Graph Contraction and Embeddings

Let G(V,E) be any arbitrary graph with the same characteristics described in the

previous subsection. Partition the set of vertices, V, into a set of mutually exclusive

subsets, VI' V2' ... such that the number of vertices represented in each subset does not

exceed a positive integer, [(Le.IV,1 ~ [for i= 1,2, ...). Such a partitioning of the graph

G is called an [-partition of G. The contraction cp will transform the graph G(V,E) into a

contracted graph G(V' , E') by performing an [-partition of G(V.E) and replacing each

resulting ~ubset of vertices by a single vertex v; where v; eV'. The edges are then added

according to the following rule. A pair of vertices (v;, v;) with i '" j are joined by an edge
in G' (V' , E') if and only if there is an edge connecting a vertex in VI with a vertex in

V)' This process is termed graph contraction [28]. Notice that when the subgraphs,

formed by the [-partition of G, are replaced by the set of vertices in V ' , ail the edges within

each subgraph are internally absorbed by the vertices in V'. We define the width of a

contractededgeconnectingv,' withv j ' to be equal to leYVI where eyV eE andeyy
I} IJ I}

represents the set of edges that connects a vertex in VI with a vertex in Vj • Additionally,

the number of vertices that a vertex v; contracts under the mapping cp is called the

cardinality of v;. A bounded contraction ofdegree [is a contraction from G(V,E) to

G'(V' ,E') such that the degree of any vertex v;e V' is less than or equal to its

cardinality. Lastly, a bounded contraction of minimal degree, is simply a bounded

contraction of G whose degree [has been minimized [25].

Repeated applications of graph contraction to a problem results in an exponential

reduction in the size of the problem wbich can then he assigned to networks with fewer and

fewer processors. With tbis method, almost any parallel application could be executed

using a proc~ssing system of any size. However, as the number of processors decreases,

the number of tasks assigned to each processor will increase [28][29].

Thus far, the description of graph contraction has focused on its software

application. That is, the task is to assign a number of software tasks to a finite number of

processors with a fixed topology. it is important to note that for our purposes, graph

contraction will he used for the emhedding of network topologies onto the Hyperplane and

not for parailei software applications. In this context, the vertices of a graph represent

processing elements of the Cray. After contraction, each of the contracted vertices

represents a set of processing elements placed on a single board. Given the network

37

Chapter 4: Grapll Contraction and Embeddings

topology, we wish to embed these processors on to the dual-stream linear Hyperplanc.

However, the Hyperplane has a fixed number of boards that it inlerconnects (the number of

boards varies from 16 to 64). If the number of vertices (processors) wc wish to cmbcd is

less than or equal to the number of boards accommodated by the Hyperplanc. then we

merely assign one processor per board. If, on the other hand, the number of processors is

greater than the number of boards then we have to assign multiple processors 10 cach

board. We use graph contraction to assign these processors to the .boards.

4.3 Graph Embeddings

The connection intensive nature of the Hyperplane allows a number of different

network configurations to be embedded on to it [13][12]. The embedding process consisls

of mapping a graph representing a network configuration on to the Hyperplane itself. The

Hyperplane represents a fixed architecture whose interconnection scheme varies to suit

different networks. The embedding describes the manner in which the boards need to be

connected to achieve the desired network topology. Figure 4.2 shows an example of a 4

board embedding on the Hyperplane. The nodes at the bouom of the template (numbered 0

to 3) represent the printed circuit boards connected to the Hyperplane. The verticallines

connected to the nodes are the electrlcal connections between the board and its associatcd

SPA or SPAs (recall each board can have more than one SPA associated with it). The

bold, horizontallines represent the optical connections between two boards (through the

SPAs). The bold squares symbolize an optical transmitler (or modulator) while the cirdes

symbolize an optical receiver. The template is divided into two halves. The top half

represents the downstream transmission while the boltom half represents the upstrcam

transmission. For each board a separate SPA is needed for the upstream and the down­

stream transmission. Downstream transmission simply means that node i will transmit to

another node j where i > j. Similarly, upstream transmission means that node i will

transmit to another node j where i < j.

38

• Chapter 4: Graph Contraction and Embeddings

Electrical Connections

Optical llU
Rcceiver

0++--.
~ Dawn'Ircam

Upstream

Optical
Connection

cal
!ator ~

0 1 2 3

.Pnnted CircUit Boards
(Nodes)

Opti
Modu

•
Figure 4.2 Example of a 4 board embedding on the Hyperplane.

Figure 4.3 shows the convention we have chosen for the embedding p~.ss. The left half

of the electrical connections are used for downstrcam transmission and rec::ption of data.

The right half are used for upstrearn transmission and reception of data.

Downstream Upstream

Figure 4.3 Convention for placing upstream and

downstream optical connections.

•
4.4 Architecture of the Cray T3D Supercomputer

39

•

Cllapter 4: Grapll Contraction and Embeddings

In this section a brief examination of the Cray T3D Supercomputer is given. The

Cray T3D rcpresents the first of a three phase project unùertnken by Cray Research. The
goal of the project is to auain a massively parallel processing system (or MPP) that can
reach a sustained perfcrmance of one trillion f10ating point operations per second (1

Teraflop) on real customer codes [30). The system is dcsigned to support various styles
of MPP programming such as work-sharing. data parallel and message passing. The Cray

T3D comprises four types of components. These arc the processing elements (PE). the

interconnection network that connects the nodes. the Input/Output gateways and the system

clock which operates at a period of 6.67 ns (or a frequency of 150 MHz). For our

purposes, we will concentrate only on the PEs and the interconnection network [30).

4.4.1 Processing Element

The Cray TID. as with any MPP computer system. contains hundrcds or thousands

of microprocessors each accompanied by sorne local memory. The combination of two

microproeessors, local memory and sorne support circuitry mnke up a processing element.

Depending on the system configuration. the Cray T3D contains between 32 and 2048 PEs

[30).

The microproeessor in each PE is a 64 bit reduced instruction set computer (RISC)

microprocessor developed by Digital Equipment Corporation capable of performing

arithmetic and lo~ical operations on 64-bit integer and 64·bit f10ating point registers. In

addition, the f-'O,", :>cessor is fumished with data and instruction cache memory. The

local memory is a •;namic RAM for system data storage and is connected to the micropro­

cessor using a low latency and high bandwidth data path. The size of the DRAM varies

from 2 Megawords to 8 Megawords (where each word is defined to be 8 bytes). The

support circuitry aids the microproeessor by extending the control and addressing functions

of the microproeessor and includes an interface to the rest of the network as weil as a block

transfer engine. System data is redistributed through the block transfer engine which

simply consists of an asynchronous direct memory access controller [30).

4.4.2 Interoonnedion Network Topology

40

•

•

Chapter 4: Graph Contraction and Embeddings

The interconnection network provides the connectivity among the PEso Each

conneclion between 2 PEs is a 24-bit bidirectional Iink. We will refer to a connection

between two PEs as a Cray channel. The interconnection topology of the Cray is a 3­

dimensional mesh. The mesh interconnection scheme interconnects PEs in each dimension

in a bidirectional ring or torus as shown in Figure 4.4. In this manner, the lowest

numbered PE in a dimension is directly connected to the PE with the largest number in the

same dimension. Figure 4.4 shows a one dimensional torus network.

Figure 4.4 One dimensional bidirectional torus network

There are several advantages to this interconnection scheme. One such advantage is

throughput of information. In Figure 4.4, PE 1 can communicate with PE 7 by passing

through only one PE (PE 0). In the absence of the wrap around (the connection between

PE 0 and PE 7), PE 1 would have to transmit through five PEs to reach PE 7. Additional­

Iy, the torus network offers sorne fault tolerance. Supposing, for example, PE 4 could not

directly transfer data to PE 5 because of a bad channel between the two PEso PE 4 could

still transfer the data by sending it the long way around through ail the other PEs in the

torus [30].

41

Cllapter 4: Grapll Contraction and Embeddings

Figure 4.5 Two dimensiona! bidirectiona! mesh network

Figure 4.5 shows an 8x8 mesh. Although not shown, each Cray channel is

bidirectiona! and is 24 bits wide in each direction. Figure 4.6 shows an 8x8x8 mesh. For

c1arity mos! of the wrap around links have been suppressed but it is important to keep in

mind that these links still exist. The 3-<1imensiona! mesh is a the network topology used in

a 512 PE Cray T3D. It is this network that we will contract into various contracted

networks and embed onto the Hyperplane.

42

Chapter 4: Graph Contraction and Embeddings

1 1 .1 1 1 1

/ 1 / 1 1.-. - '" .
1 1 1 .1 .1

1 1 1 1 1
1 l", 1 1 1

Processing
Element

t..,~~~~~~~;:t~::"' .5Cray Channel
(24 bits)

Figure 4.6 Network topology of Cray T3D Supercomputer

(wrap around connections are suppressed for clarity).

4.5 Contraction and Embedding of the Cray T3D Interconnec­
tion Network

In this section we will present several possible schemes to contract the network

topology of the Cray TID Supercomputer (similar contraction schemes were described in

[31 D. We will contract the network topology using graph contractions described earlier in

this chapter. Let the network shown in Figure 4.6 be represented by a graph G(V,E) where

V represents the set of PEs and E represents the set ofCray channels that connect the PEso

Recall that in the contraction process, our goal is to transform G into a simpler graph G'

which will retain ccrtain properties of G. To accomplish this we must first divide the set

of vertices V into a set of mutually cxclusive subsets such that the number of vertices in

each set does not exceed a positive integer 1. Recall that such a partitioning is called an 1·

partition. The manner in which Vis partitioncd is completely arbitrary and therefore leads

10 various contractcd graphs. In the following, diffcrent contractions of the Cray T3D

intcrconnection nctwork will be presented.

43

• Cllapter 4: Graph Contraction and Embeddings

4.5.1 Case 1: Contraction by Two Columns

The first contraction we will perform is contraction by two columns [31]. In this

method, the set of vertices of G is partitioned into mutually exclusive subsets two colurons
at a time. That is, each subset represents two columns of vertices of G. Figure 4.7 shows
G with one partitioned subset (two columns) highlighted in black [31]. Sincc thcre are a

total of 512 vertices in G and each partition contains 16 vertices, there are a total of 32
mutually exclusive subsets (Le. V0' VI'" V31)' Each subset is then replaced by a separate
contracted vertex v,'. Neighbouring vertices are subsequently connected with edges.
The width of each edge is then determined using the procedure described in Section 4.2.2.

•
Contract by

TwoColumns

•

Figure 4.7 Contraction of G through two column partitioning.

The process leads to a contracted graph G' shown in Figure 4.8. Under this

contraction scheme, we are left with 32 contracted vertices. The vertices have been

numbered from 0 to 31 ta aid us when we described the embedding procedure. In general,

any number can be assigned ta any vertex. However. as we will see, the best embedding

44

• Chapter 4: Graph Contraction and Embeddings

results generally arise when the numbering is ordered in the dimension of the fewest

number of vertices. In this case, the vertices in dimension dO are numbered firs!. When

there are no more vertices to number in dO, then we move up one step in direction dl and

continue counting again in direction dO [31].

Figure 4.8 Result from contracting G by partitioning by IWo columns.

Figure 4.9 shows the embedding of the resulting contracted graph. The contracted

graph has a total of 32 vertices, so the embedding shown in Figure 4.9 will have 32 nodes.

Recall that each node in the embedding represents a PCB. Since there are a total of 512

PEs in G, each PCB will host 16 PEso

Each connection between the contracted vertices of Figure 4.8 has a width of 8

Cray channels in the dO dimension and a width of 16 Cray channels in the dl dimension.

In this context a Cray channel is a single unidirectional connection between IWo PEs in G.

In addition, each Cray channel has a capacity of 24 bits. The optical connections of the

embedding shown in Figure 4.9 represent the connections between the contracted vertices

of Figure 4.8. To achieve this. we let each optical connection in the embedding represent

8 Cray channels. The choice to let each optical connection represent 8 Cray channels is

mainly a matter ofconvenience. Therefore, each connection shown in Figure 4.8 !hat has a

4S

Chapter 4: Graph Contraction and Embeddings

width of 8 Cray channels will be represented by one optical connection in Figure 4.9.

Moreover, each connection shown in Figure 4.8 that has a width of 16 Cray channels will

be represented by two optical connections in Figure 4.9.

The upstream connections have the exact same connection scheme as the downstream.

However the direction in which the data is transmitled in the upstream is opposite to that of

the downstream.

In Figure 4.9 there is bisecting line that divides the embedding into two halves of

equal size. We are interested in knowing the bisection width [5] of this embedding. The

bisection width is defined, in this context, as the number of optical connections that pass

through the bisecting line. The bisection width is a good indicator of the maximum

communication bandwidth in the embedding. The communication bandwidth along any

other cross section should be bounded by the bisection width [5].

In Figure 4.9. the bisection width is 18 optical connections in the upstream

direction and another 18 optical connections in the downstream direction. The bisection

width is useful in determining the total number of SPAs needed to implement the embed­

ding. We will calculate the total number of SPAs needed later in this chapter.

4.5.2 Case 2: Contraction by 4x4 Clusters

An alternative way of contracting G is to partition V by selecting a 4x4 cluster of

vertices as shown in Figure 4.10 [31]. The resulting contraction is a three dimensional

graph again with a total of 32 vertices as shown in Figure 4.11. Most of the wrap around

connections have been suppressed for c1arity.

46

• •
Case 1: 8x8x8 Mesh Contracted by 2 Colurnns

•
Downstream

18

18

Each optical connection represent~ 8 Cray channels.

rf- " .1 .1 J J.J...II
i ,

1'1
1 1 1 il-, 1 , , l'..-

1 1
1

1

1, , ,
'1,,-. - , ;}f , 1,.- p- .-

Bisecting Line

Upstream

Figure 4.9: Embedding of G when contracted by 2 columns.

Chapter 4: Graph Contraction and Embeddings

1 1 111 1

1

1

1 1

1 1

1
1

1
1

1

1

1
1

1
1 1

1 1

1
1

1
1

•
Figure 4.10 Contraction of G through 4x4 cluster partitioning.

Each connection between the contracted vertices of Figure 4.11 has a width of 4

Cray channels in the dO and dl dimensions and 16 Cray channels in the d2 dimension. The

embedding of the contracted graph is shown in Figure 4.12. Each optical connection in

the embedding represents 8 Cray channels. Notice, however that the connections in the

dO and dl dimensions of Figure 4.11 have widths of 4 Cray channels. The question

remains how are these connections (which are 4 Cray channels wide) to be represented in

the embedding when each optical connection is 8 Cray channels wide. The solution to this

is straightforward. For example, the connection between Vertex 1 and Vertex 3 of Figure

4.11 has a width of 4 Cray channels. However, recall that there is a wrap around edge

between Vertex 1 and Vertex 3 that has been suppressed in the figure. Therefore. there are

two connections (each having a width of4 Cray channels) between Vertex 1 and Vertex 3.

As a result, a single optical channel in the embedding can be used to represent both

connections. This is true for all the connections in dimensions dO and dl in Figure 4.11.

48

•

•

•

Chapter 4: Graph Contraction and Embeddings

d2

dO

Figure 4.11 Contracted result from 4x4 cluster partitioning

Referring to Figure 4.l2t the bisection width is 19 optical connections in the

upstream direction and 19 optical connections for the downstream. Once againt the

connection topology of the upstream is the same as that of the downstream. The only

difference is that they transmit data in opposite directions thereby establishing the

bidirectionality of the embedding.

Many of the optical connections can be shuffled between rows. By rearranging the

optical connections between rowst we can compact the embedding which will reduce the

bisection width. In Figure 4.l3 t the bisection width 18 is optical channels in the upstream

and 18 in me downstream directions. This is slightly less than the uncompacted embedding

shown in Figure 4.12.

49

• • •
Case 2: 8x8x8 Mesh Contracted by 4x4 Clusters

Downstream

111111 1111 1... 1111 1111 1111 1111 1111 1111 1111 111111111 11111111111 Il

.,
.,

'TTT

Il:üi' 1111 1111 Il

..

! lin "" Il

..

Up5tream

&..;..:..'~;.JJL..:.16.=.Jl!2l1t811t9 âQ: li: ~ ~ ~~ ~ E ~I~ 2Q.!!.

Bisecting Line

19

Figure 4.12: Embedding cfG when contraeted by 4x4 clusters

• • •
Downstream

Case 2b: 8x8x8 Mesh Contracted by 4x4 Cluster (Compacted Embedding)

Each optical connection represents 8 Cray channels

I-:tJJ~ L l- (1,
1 . 1

".- ,- - - 1'11

- - fJj
1

- - ,
1 . f

1 V
- !,

- ,
-

Bisecting Line

..

UINream

dl f / d2

L dO

Figure 4.13: Compacted embedding ofG when contracted by 4x4 clusters.

• Chapter 4: Graph Contraction and Embeddings

4.5.3 Case 3: Contract by 2x4x2 Cluster

The final example of contraction that wc will pcrform is to contract by purtitioning

using a 2x4x2 cluster shown in Figure 4.14 [31]. The result is another 3 dimensional

contracted graph with 32 contracted nodes as shown in Figure 4.15. Once agnin keep in

mind that only two of the wrap around edges are shown. The rest of the wrap around

edges have, in Figure 4.15, been suppressed for clarity. Euch connection bctween the

contracted vertices of Figure 4.15 has a width of 8 Cray channels in dimensions dJ and

d2 and 4 Cray channel in the dO dimension. Figure 4.16 shows the embedding of the

contracted graph. Each optical connection has a width of 8 channels. We are again

confronted with the issue (flest described in Section 4.5.2) that each optical connection in

the embedding is 8 Cray channels wide while the connections in the dO dimension of

Figure 4.15 are only 4 Cray channels wide. We resolve this issue in the same manner

described in Section 4.5.2. The embedding has a bisection width of 21 optical connections

in each direction. Of all the embeddings presented so far, this embedding has the highest

bisection width.•
Contract by

2x4x2 Cluster

..
1 1 1 / 1 1 1 /1

.' / / / J 1 1 1 Il
1 (. / . /,i "~ 'Ji//I

:(_._./: L.. (~ .. t. .. (, 1 . III' I/j
'-- <~ / /_...~._._.. ~.... J... J: il: J Il

1/,,/, 1
-..-.:----............---~...... : :"j ,lI] :/1/1',/: 11/1____I-"-iI__.......~ ~ i 1 !II .)/1

IIi III 1
__-e.;__--tt-'-;__~__~ Ij-;/I/' III

l , Il.'

: 1 11/: 1/
____.:......t.-._.r-ia_...._. 'C~I/!I

! 'Vi

•
Figure 4.14 Contraction of G through 2x4x2 cluster partitioning.

52

• Chapter 4: Graph Contraction and Embeddings

-)
24 26 28 30

/ / / /

~//.I'>"
. 1 1 ~44/.1.' •.·········.-;1j.•-_...-.---_....

.j 8
dO

d2

dl

Figure 4.15 Contractcd rcsult from 2x4x2 clustcr partitioning.

53

• • •
Downstream

Case 3: Contraction by 2x4x2 cluster

• IIItI " , • .. .1, '. 1111 l, Il' , Il Il

21 28 29 30 31- '-- ~

"

if

'"

1
" ., " " .. ". .. .,"ij

1-
=
~tt Bu ;-m

2JŒlŒJŒHI mm .1..l.!Jl.2. ~] ml Ji Lm"i5 16111711 18 1Œ ~ 1! EI~ ~ ~I~
Each optical connection represent 8 Cray channels. Bisecting Line

21
OCRs

21
OCRs

efupslream

TI DowoSlream

..

Upstream

J) d2
/

dl

dO

Figure 4.16 Embedding ofG when contraeted by 2x4x2 cluster.

•

•

C/zapter 4: Grap/z Contraction and Embeddings

4.6 Hardware Requirements for Implementation

ln this section, the hardware requirements to implement the various embeddings
describcd in the previous section will be discussed. In essence, we want to determine the

total numbcr of SPAs nccded to implement each of the embeddings describcd. The purpose

of this exercise is to demonstrate that the Cray T3D Supercomputer can be implemented
using the Hypcrplane. Recall that in each embedding, we calculated its bisection width.

As we will see in this section, the bisection width will help us determine the total numbcr of

SPAs needed. We measured the bisection width in terms of the number of optical

connections that passed through the bisecting Hne. In each embedding, an optical

connection represented 8 Cray channels. Recall that in this context, a Cray channel is a

single unidirectional connection bctween two PEs in the Cray T3D. Each Cray channel is

24 bits wide. Since each Cray channel is 24 bits wide, each optical connection is 8 x 24

or 192 bits (24 bytes) wide. Given tbis, our next task is to calculate, for each embcdding

scheme, the total number of smart pixel mays (SPAs) necessary to implement that

embcdding.

Each SPA (as describcd in Chapter 3) is an array of pixels wbich can be divided

into logical optical channels each 8 bits wide [13]. Because these logical optical channels

are 8 bits wide, we rcfer to them as byte channels [13]. The numbcr of byte channels that

comprise a SPA is somewhat arbitrary. However, with existing CMOS technology, the

numbcr of byte channels would typically be bctween 32 and 512. The SPA design

describcd in Chapter 3 supports 128 byte channels.

By determining the numbcr of byte channels needed for a given embcdding, we can

calculate the numbcr of SPAs needed. We assume that the SPAs are completely imaged

from one to another. This means that the SPAs on each PCB must bc able to support the

bisection width (which represents the maximum communication bandwidth along any cross

section of the embcdding). In addition, each PCB must be interchangeable. Thercforc

each PCB will have the same numbcr of SPAs connected to il. The number of byte

channels needed is determined by the bisection width. For example, the embedding for

55

•

Chapter 4: Grapll Contraction and EmlJeddings

Case 1 (shown if Figure 4.31) has a biseetion width of 18 optieal connections in eneh

direction (or a total of 36 in both directions). Sinee elleh optielll eonneetion is 24 bytes
wide, eaeh optical connection will require 24 byte ehllnnels. Sinee the el11bcdding for CIL,e

1 has a bisection width of 18 optical channels in each direction,lItotlil of 18 x 24 (or 432)

byte channels per PCB will be needed in ellch direction. Tlible 4.1 sUl11ll1l1rizes the
biseetion width, the nUll1ber of Cray ehannels and the number of byte ehllnnels needed in
each direction for all four embcddings.

Embedding ,Bisection Width # of Cray #ofByte
,.. (optical connections) Channels Channels

Caser 18 144 432

Case2:'.'· 19 152 456

Case'2b .• ~.:'., 18 144 432

Case 3 .. 21 168 504

Table 4.1: Resouree requirements for various contraction schemes.

Now that the total number of byte channels needed (in each direction) has been

calculated, our next objective is to determine the number of SPAs per PCB needed. The

number of SPAs per PCB is dependant on the number of byte channels comprising each

SPA. Let's look at Case 1 as an example. Suppose each SPA comprises 32 byte

channels. Since we require that each PCB accommodate 432 byte channels, then 13.5

SPAs in each direction arc needed to implement this embedding. Since we cannot have half

of a SPA, we actually need 14 SPAs in each direction. However, half of the fourteenth

SPA will be unused. These unused channels could be used to provide fault tolerance.

Table 4.2 summarizes the number ofSPAs needed per PCB as the numbcr of byte channels

comprising each SPA varies from 32 to 256.

S6

•

•

Chapter 4: Graph Contraction and Embeddings

Embedding # of SPAslPCB # of SPAslPCB #of SPAs/PCB # of SPAs/PCB
32 bytechannels 64 byte channels 128 byte channels 256 byte cbannels

Case 1 14 7 4 2

Case 2 15 8 4 2

Case2b 14 7 4 2

Case 3 16 8 4 2

Tablc 4.2: Number of SPAs (in each direction) needed per PCB as the number of byte
channels per SPA varies.

Now that the number of SPAs per PCB has been calculated it is usefulto sec which

embedding and which SPA make most efficient use of the available resources. Recall that

whcn we calculated the number of SPAs needed for the Case 1 embedding (using 32 byte

channe1s per SPA), we needed 13.5 SPAs per PCB. Since we can't have half of a SPA,

we needed to round that value up to 14. As a result, 16 byte channels (or 3.7 % of tbe

lotal byle channels required) are unused. Table 4.3 tabulates the number of unused byte

channels for different SPAs and different embeddings. The percent values in the table

repre.~enl the total percentage of unused byte cbannels.

Embedding, B~è:baiûîèls)~;,S' ;B~Chârinèls: =; 'B~.cbanDels< ';" B~chailDels '.
.

,,' ."~ :ûnii&ed'(32byië< i lÛIusecr(64bj1ê. IlDUSed (l28byte' üniJsetf(256bYte •. , êliliMêl·SPA)}': bâlïnèl SPA) . . î:Jilü.uiel Sf'A):, ; cbÏlÏÛ1elSPA)'<'.. 'c ':'; .;>';
" ., .' ..' . ".

CaseJ:i·.< 16 (3.7%) 16 (3.7%) 80 (18.5%) 80 (18.5%)
Case2:' , 24 (5.3%) 56 (12.2%) 56 (12.2%) 56 (12.2%).
Case2b. '. , 16 (3.7%) 16 (3.7%) 80 (18.5%) 80 (18.5%),

Case3·· 'r 8 (1.6%) 8 (1.6%) 8 (1.6%) 8 (1.6%)

Table 4.3: Tabulation of the number of byte channels unused. The percentages in
parentheses represent the total percentage of byte cbannels not used.

The values tabulated by Tables 4.1 to 4.3 give us an idea whicb of tbe embeddings

and which of the SPAs are better to use. When interpreting tbe data presented in these

tables, there are two crileria that should be kept in mind. In general, it is preferable to use

the embedding that uses the fewest number of SPAs. However, it is also preferable to use

57

Chapter 4: Graph Contraction and Embeddings

those SPAs which yield the highest pcrcentage of unused byte channels. The more unused

byte channels we have, the more fault tolerance wc can give the system.

Table 4.2 shows that Case 3 is inefficient because it uses the most number of

SPAs. In addition, Table 4.3 shows that Case 3 has the lowest pereentage of unused byte

ehannels. Therefore, Case 3 does not seem to match our criteria. Case 1 and 2b seem to

be the betler embeddings because they require the fewest number of SPAs (Table 4.2).

Furthermore, if wc implement these embeddings using 128 or 256 byte channel SPAs, wc

will get the highest pcrcentage of unused byte channels leading to the maximum amount of

fault tolerance.

4.7 Chapter Summary

In this chapter, wc presented various embeddings of a Cray T3D Supcrcomputer on

to the Hyperplane. Wc commenced the chapter by introducing a method of graph

contraction and used this method to reduce the network topology of the Cray T3D so that it

could be embedded onto the Hypcrplane. We contracted the Cray T3D topology in 3

different ways and then presented their embeddings onto the Hypcrplane. Using these

embeddings, we calculated the totai number of SPAs needed to implement these

embeddings as the number of byte channels comprising each SPA varied. We also

caiculated the pcrcentage of unused byte channels for the various embeddings and SPAs.

We noted that the in generai, we would prefer those embeddings that used the feV/est

number of SPAs. Furthermore, we preferred those SPAs that yielded the highest

pcreentage of unused byte channels. The more unused byte channels available, the more

fault tolerance we can give to the system. Using the vaiues tabulated in Tables 4.1 to 4.3,

we determined that Case 1 and Case 2b used the fewest number of SPAs. We aiso noted

that these embeddings are best implemented using 128 or 256 byte channel SPAs since they

yield the highest pcrcentage of unused byte channels (and therefore the maximum fault

tolerance).

S8

Chapter 5: Functional Specifications ofthe Phase III Hyperplane

Chapter 5

Functional Specifications

June 1995 Backplane

5.1 Introduction

of the

In the previous chapter, we demonstrated that the dual-stream linear Hyperplane

couId be used to interconnect the processors of a Cray T3D Supercomputer. In order to

accomplish this, the functional specifications of the Hyperplane have been evolving over

the past several years. One of the long teern goals of the Major Project is to develop

monolithic Smart Pixel Arrays using Indium Phosphide based VCSEUMSM technology

[1]. However, as we mentioned in the Introduction, demonstrators are constructed

periodically to highlight milestones achieved. Because Indium Phosphide technology is

still evolving, the SPAs fabricated thus far are based on CMOS SEED technology. In this

chapter. we will review the design specifications for the June 1995 Backplane (also known

as the June 1995 Hyperplane) and the June 1995 SPA which are based on existing CMOS

technology. We use a time stamp in the design names to emphasize the fact that these

designs are constantly evolving. The complete structural specifications for the June 1995

Hyperplane can be found in [31]. The functional specifications specify functions or

behaviours without necessarily specifying structural implementations.

S9

•

•

•

Cilapter 5: Functional Specifications of tlle Phase III Hyperplallc

5.2 June 1995 Hyperplane

Figure 5.1 shows a typical representation of the June 1995 Hyperplane2• The

number of PCBs connected couId vary as the design evolves. For our purposes here. wc
will assume tOOt there are four PCBs connected. The Hyperplane primarily operr.tes in one

of two modes. These modes are called the Reconfigurable Mode and the IntelUgent Mode

[12][13]. These modes were described earlier in Chapter 3. Reconfigurable mode could be
used for massively parallel processing systems for example and intelligent mode could be

used for telecommunications applications.

Optomechanical
upport Structure

Free-Space
Optical Interconnects

Figure 5.1 Typical architecture of the June 1995 Hyperplane.

The architecture of the Hyperplane can be implemented using either the Circular

structure or the Dual Stream Linear Structure. Most of the designs reviewed in this chapter

2 From hcre on. the term Hyperplane will refcr ta the June 1995 Hyperplane and the term Smart

Pixel Amzy (SPA) will refer ta the June 1995 SPA.

60

Chapter 5: Functional Specifications ofthe Phase 1Il Hyperplane

can support either structure. For brevity, we will focus only on the circular structure.

Recall that PCBs wishing to send data will connect to one of the optical communication

channels [12] through its associated SPAs. Data is grouped together in the form of

packets. A PCB wishing to send a packet will divide the packet into bytes and send the

packet through the backplane one byte at a time. At the rising edge of each c1ock, the

PCB will typically insert a new byte into the backplane through the SPAs. At the same

time, the bytes circulating in the backplane will typically move from one PCB to the next

at every rising edge of a c1ock. That is during each c10ck cycle, the byte will move from

PCB j to PCB (j+ J) mod 4 until it reaches it point of origin where it will be overwritten or

discarded. When operating in the intelligent mode, each packet will have a header that will

identify its destination. The logic on each SPA will process the packet headers to decide

whether to extract the packet as they !ravel through the backplane. When the Hyperplane is

operating in the reconfigurable mode, the SPAs do not perform any packet processing or

filtering [13].

5.3 Smart Pixel Array Interface Signais

The Hyperplane is composed of a large number of optical communication channels

(OCCs) which are created by optically interconnecting smart pixel arrays (SPAs). Figure

5.2 shows the interface signais of the SPA [31].

61

• Chapter 5: Functional Specifications ofthe Phase III Hyperplane

Global Reset

~
Clock (Optional)

~

Optical 10 channels
Control-Latch-Enable

Injector Data
8" .. Data

Extractor
Channel 0 7 Channel 0

E!lliIElIiiDElIilIii
Dili IIIm 81111 III

Injector Data mllEiBBEIm 8 Extractor
Channel 1 1iIIIIIDI11i111111B Data Chanf\el 1

El Il Innl El El Il

Injector Il El iii El ElElIJ III ExtractorData ~/ El 811111:111. Il 8
Channel 2 ..

IIJBIUlimmliEl
Data Channel 2

Address
~"Bits

..

• Global Enable

Figure 5.2 TypicaI electrical interface signaIs for the June 1995 SPA (3
injector channels. 3 extractor channels and 8 optical byte channels shown).

For our purposes. interface signais refer to the electrical connections of the SPA

that would typically be connected to its associated printed circuit board. The optical

windows are aIso shown. Table 5.1 tabulates a brief description of the interface signais

[13].

• 62

Chaplcr 5: Funclional Spccifications of Ihe Phase III Hyperplane

Elcctronié IIO Signal-· ..• Signai'Description .
. .'. ..' ,'; .": ;', .

Clock Global synchronizing clock signal (typically 80 MHz.).

Global Rcset Resets entire system to "idle" state.

Injector Channel x Eight bit wide input channel for data transmission.

(x=O,I,2)

Ctl Latch Enbl. Configures controllatch.

Global Enable Initiates data transmission anù reception.

Address Bits Eight bits used to differentiate between SPA boards.

Optical 1/0 8x8 array of optical windows optically connecting boards.

Extractor Channel Eight bit wide output channel for data reception.

(x=O, 1,2)

Table 5.1: Electrical interface signals of the June 1995 SPA.

63

• •

Figure 5.3: FunctionaI diagram of an 8x8 Smart Pixel Array [13].

Byte Channel 0

Byte Channel 1

Byte Channel 2

Byte Channel 3

Byte Channel 4

Byte Channel 5

•

•

•

Chapler 5: Functional Specifications ofthe Phase 1Il Hyperplane

Figure 5.3 shows a functional schematic of the June 1995 SPA [31]. Il consists of

an 8x8 array of smart pixels which is partitioned into 8 logical optical channels. Each

logical optical channel is 8 pixels (bits) wide and is therefore referred to as a byte channel

[13]. Therefore, the connection set by the byte channels establishes an 8 bit data path.

However, as we will see in a later section, if the packets are being submitted

asynchronously, then the SPA will need to be a 9x8 array of pixels. The difference

between synchronous and asynchronous packet transmission was discussed in Chapter 3.

Each byte channel has an associated channel control unit (CCU) and eight smart

pixels. Figure 5.4 shows the top left quadrant of Figure 5.3 [31]. In this figure only four

pixels per byte channel and four byte channels are shown for c1arity. The CCU is used to

regulate the flow data through the channel. It consists primarily of an 8 bit controllatch

configured before the Hyperplane begins transmitting and receiving data. The controllatch

sets certain parameters that determine the way the channel will operate. In later sections we

will describe how the control latch accomplishes this. The number of pixels and the

number of 1/0 electronic pins that each SPA can accommodate is Iimited by the fabrication

tcchnology of SPAs. Il is expected however, that 32x32 SPA chips will be available in the

near future. Each smart pixel consists of an optical input port and an optical output port.

Therefore, each pixel is capable of handling one bit at any given time. Data is entered

through one of the three Injector Channels and is transmitted over the backplane over a

single byte channel. In addition to the CCU and smart pixels, the SPA consists of a

decoder and an arbitration circuit. The decoder is used to configure the controllatch in each

CCU. In this way, the user can specify how the backplane will behave.

65

• Chapter 5: Functional Specifications ofthe Phase III Hyperplalle

Injector
Channels

(bit 4)

lAddress
(b't 4)

Injecter Injector
Channels Channels

(bit 6) (bit 5)

lAddress 1Address
(blil 6) <r 5)

::::>
u
u

-

Injector
Injector Channel 0 Channels

Arbi~:l~~: for colntrOI) (bilt~~1~)s
Circuit 1

Iil~
L!Jg~g_g~o

9
i

Contrel­
Enable

1
EXlractor
Channels

(bit 7)

Injector
Channell
(4 bits)

Decoder
(for control)

""
•

Figure 5.4 Functionallogic description of the top lert quadrant of Figure 5.3

5.4 Smart Pixel Cell and Channel Specifications

•
Figure 5.5 shows the functional block diagram of a single smart pixel [13]. The

Injector Selector Circuit is a mux that will select which bit to transmit optically to the next

board. The injector selector control is controlled by the injector selector control bits that

come from the conl1'Ollateh in the CCU. The injector selector control will select a bit from

66

• Chapter 5: Funetional Speciflcatiom; ofthe Pha.'ie 1/1 Hyperplane

..
one of the threc Injector Channel or the Opticallr.pUl Port. The EXlrnctor Selector Circuit

ronsists of three tristate buffers used to select which of the three Extractor Lines to extract
the incoming datu. The exlractor selector control whic~ consists of three tri-state buffers is

controlled by the extractor selector control bits. If the backplane is opcrating in

reconfigurable mode, then the extractor selector control bits come from the control latch in

the CCU. If the backplane is operating in the intelligent mode, then the extractor selector
control bits will come from the arbitration unit (the CCU and the arbitration circuit will be

discussed in later sections).

Control Signais from
Channel Control Unit

Optical Output P"rt

lnjector-Selector

_-++..---:Address-Comparison
Circuit

~~E§§§§§m~~§§g~~ Output from previousClock & (::l 1 Address-Comparison
Re.~et - - - - - - - - - - - - circuit

Extractor Channels Injector Channels
(1 bit of each) (1 bit of each)

Optieal Input
Port ----yo+f-

Extractor­
SeleetorCircuit

Programmable~!W"'f
Delay Circuit•

Figure 5.5 Logie diagram of a single smart pixel.

5.4.1 Address Comparison Circuit

•

When operating in the intelligent mode, each packet sent through the Hyperplane

has a header that encodes the address of the packet's destination. When an byte channel

rcceives a header, it must read the header and decide whether it should extract this packet

and send it to its associated PCB. The address comparison circuit is responsible for

67

• C/wptcr 5: F14nctional SpccificntiOtJ.li oft/II! Phase III HyperplclIIt!

making this decision. In this section, we will describe the operation of the uddress
comparison circuit. Figure 5.6 shows the header of a packet when the packets arc
synchronously transmitted. Each board has its own unique 5 bit uddress that sepurutes il
from the other boards. Bits 0 through 4 of the header are used to encode the uddress of the
boards. Since the board addrcss is live bits long, the maximum number of bourds that the

Hyperplane Can accommodate is 32. However, for the purposes of the June 1995

Hyperplane. only four boards will be used. Bits S, 6 and 7 designate groups of bourds.
This will. allow transmission to boards that hclong to a certain group. After the hcader hus

been sent, all subsequent bytes transmittcd arc the packet payload (data).

,

•
f

Group Addrcss

J

Board Address

•

Figure 5.6 Typical packet header used for synchronous packet transmission.

ln asynchronous packet transmission, a PCB can begin transmitting a packet at the

rising edge of any dock cycle. This is in contrast to the synchronous packet tr.h1smission

in which every pce must begin transmitting its packets at the same time. However. in

asynchronous packet transmission, the address comparison circuit of each byte channel

must he able to differentiate between a header and data. Since packet can he transmitted at

any rising edge of the clock.. the arldress comparison circuit will not know whether the byte

it is receiving is a header or data. One way to resolve this is to increase the width of the

byte channel so that it is 9 bits wide. Figure 5.7 shows a typical header of a packet when

the packets are asynchronously transmitted. The most significant bit of this header is a

Valid Header bit. The sole purpose of this bit is to give the address comparison circuit

sorne means to differentiate between the header and the data. By increasing the width of

the,byte channels to 9 bits, we maintain the 8 bit data path.

68

• C/wpter 5: FUflctional Specifications ofthe Phase III Hyperplane

\f

Vali Header

Group Address

J

Board Address

•

•

Figure 5.7 TypicaJ packet header used for asynchronous packet transmission.

Figure 5.8 shows a schematic of a typical address comparison circuit found in each

smart pixel while Figure 5.9 shows a black diagram' that describes a typical interconnection

oi' address comparison circuits within an byte channel when the packets are synchronously

transmitted. The address comparison circuit for bits 0 through 4 (board address compari~

son) will check to see if the board address matches while the address comparison circuit for

bits 5. 6 and 7 will check if there is a group address matches (group address comparison).

Bit from Bit from
Address Latch 1 Packet Header

Figure 5.8 Address comparison circuit.

The results (jÎ the comparison are sent to the ecu. Ifeithcr (or both) of the comparisons

match, then the byte channel will extract this byte and all subsequent bytes until the entire
packet has becn received.

69

• Chapter 5: Functional Specijicllticms ofthc PJUl.'iC III Hypcrpt"",..'

11 11 11 II 11 II 11 11
6~

Board Address
Il ..- ~:__---.... Comparison

To Synchoronizing Group Address
Unit in the Channel Comparison
Control Unit

Figure 5.9 Interconnection of the address comparator circuits within a byte

channel (packets are transmitted synchronously).

•
Figure 5.10 shows the interconnection of the address comparator circuit when the

packets are sent asynchronously. This works in the exact same manner as the circuit

shawn in Figure 5.9 except for the last comparator which compares the ninth bit of the

header ta check whether tt.t byte received is a header or just data. It must he pointcd out

that the ninth bit in the head,:r does not constitute any part of the data path establishcd by

the byte channels.

tl 11 II 11 IIt! II 11

Board Address
I{ :======-_~~__--.J Comparison

To Synchoronizing Group Address
Unit in the Channel Comparison
Control Unit

Figure 5.10 Interconnection of the address comparator circuits within a byte channel

(packets are transmitted asynchronously).

• 70

• Chapter 5: Functional Specifications ofthe Phase /Il Hyperplane

5.4.2 Programmable Delay Circuit

ln addition ta the address comparison circuit. each smart pixel is equipped with a

programmable delay circuit. The schematic of the programmable delay circuit is shown in

Figure 5.11.

BitS From
Control Latch

Ta Extractor
Selector Circuit

To Injector
Selector Circuit

Bit 6 From
Control Latch

o

Reset

Clock -~---.--...J

Incoming -.,------,.----i
Optical Bit

•
Figure 5.11 Programmable delay circuit.

Depending on the configuration settings of the control latch (in the CCU). the

programmable delay circuit will either route data entering il directly ta the output or delay it

by one clock cycle (using the D-Flip Flop). The multiplexers are used to select whether the

data should he delayed or not. The multiplexers are contrcl1ed by the controllatch in the

CCU. The programmable delay circuit enables the backplane ta have buffering capabil­

ities.

• 71

•

•

Chapter 5: Functionai Specifications ofthe Phase /l/ HyperplclIle

5.5 Channel Control Unit

Associated with each channel is a Channel Control Unit (CCU). Its primary

function is to regulate the llow of data through a channel. Typically, the CCU consisls of a

controllatch and a synchronizing unit as shown in Figure 5.12. The functionality of the

CCU depends on whether the backplane is operating in the intelligent mode or
reeonfigurable mode. If the backplane is operating in the intelligent. then the CCU will

provide the interface hetween byte ehannels and the arbitration circuil. A full description of

the arbitration ci[1,;ui! will he given later in this chapter.

The controllatch in the CCU is an 8 bit latch that is used to configurc the manner in

which the Hyperplane will operate. The most significant bit of the eontrollatch determines

whether the backplane will he operating in the intelligent mode of the reconfigurable mode.

The next two bits configure the programmable delay circuit (this circuit will he descrihed in

a later section). The next two bits form the Injector Selector Control bits discussed in the

last section. The last three bits are the Extractor Selector Control bits. These three bits are
only used if the backplane is operating in the reconfigurable mode (notice that the mux in

the channel control unit will select whether the extractor selector conlrol bits come from the

cor.trollatch or the arbitration circuit).

72

Chapter 5: Fanctional Specifications ofthe Phase III Hyperplane

p Address
parison

Selector
its

d Header
parison

d Address
parison

Mode MultiplexerProgrammable Delay
C' 't C t 1B'tIrcui on ro IS~ \

Injeclor-Selector ~
Control bits __

f-
\

13.~Extracto1r-Selector Extractor-

Control-Latch- Control bits '""} Control B

Enabl~ 2~ 3 3 -1 3

I~
Control Bit (bo])

Vali
1 CorntfControl Latch

1
Boar

Reset bits from Injector 0 Corn

Synchronizer Grou
Unit Corn

Arbitration •
Circuit

Figure 5.12 Functional description of a typical Channel Control Unit.

Ir. this particular design of the CCU, the synchronizing unit is only used when the

backplane is running in the intelligent mode of operation. Notice that the signais from the

address comparator circuits of Figures 5.9 or 5.10 are fed directly to the synchronizing

circuit. The design of the CCU shown in Figure 5.12 is the CCU used when the backplane

transmits packets asynchronously (notice the valid header comparison signal). With

minor adjustments (eg. removing the valid header comparison input signal), the CCU can

he modified to operate in a backplane where the packets are transmitted synchronously.

Figure 5.13 shows the schematic of the synchronizing circuit. This circuit is only

used when the backplane is operating in the intelligent mode. The inputs to the synchroniz­

ing circuit are signais from the address comparator circuit. The Valid Header Comparison

signal is only used when the backplane is transmitting packets asynchronously. If a

matching header arrives at a byte channel, the output signal (called Req) will he asserted.

The request signal will he sent to the arbitration circuit.

73

• Chapter 5: Functional Specifications of the Phase III Hyperplane

Group Addrcss
--;il:---+-Comparison

Valid Header
Comparison

"'--+-Board Addrcss
Comparison

L --4__========:rGlobal
Enable

L..----------Clock
Figure 5.13 Logic description of a typical synchronizing circuit.

Req ----i--1Q D

5.6 Arbitration Circuit

•
One of the more complex components of the SPA is the arbitration circuit3. The

arbitration circuit is used only when the SPA is operating in intelligent mode. There are

severaI issues associated with the reception ofdata. RecaIl that there are typically eight byte

channels per SPA but only three extractor channels. A SPA, on occasion. may attempt to

extract more packets than the number of extractor channels available (recall. there b"~ 3

extractor channels per SPA in the June 1995 design) [13]. In this case only it is important

that only three of these packets are extracted at any given time. In order to ensure this. an

arbitration circuit is used to map the byte channels onto the extractor channels [13]. Ali

other requests for extraction will he ignored. The mapping scheme used by the arbitration

circuit will he described in the following sections.

5.6.1 Overview of the Arbitration Circuit

Figure 5.14 shows a typical functional block diagram of the arbitration circuit. The

arbitration circuit consists of two components. The first is an arbiter and the second is a set

of counters. The arbiter has inputs which are connccted to the synchronizing circuit of each

byte channel (the output signal Req in Figure 5.13 connects to one of the input signais of

•
3 The arbitration circuit described in tms chapter is one structural implcmcntation (dcvcloped lJy

this author) of the gcneric arbitrator dcscribed in [31 J.

74

•

•

Chapter 5: Functional Specifications ofthe Phase III Hyperplane

the arbitration circuit). The output of the arbiter consists of 8 signais each 3 bits in width.
Each output signal connecls to the extractor selector control bits of a byte channel.

When the arbiter receives the Req from one of the synchronizing circuits, it checks
to see whether there are any free extractor channels. If none of them is free then the packet

will not be received. If there is a free extractor channel, then the arbitration circuit will

assign the extractor channel to the byte channel. The arbitration circuit does this by
appropriately setting the byte channel's extractor selector control bits. At the same time,

the arbiter will send a start signal to one of the counters. The counter will increment at the

.ising edge of every clock pulse. The counters are used to track the number of words
received by the channel. The size of each packet is somewhat arbitrary. If the Hyperplane

is uscd in an ATM application then each packet would be 53 bytes in length. In this

implementation of the Hyperplane, we have assigned each packet to he 16 bytes (including
the header) in length. Therefore, each counter in the arbitration circuit is a four bit counter.

75

• Clrapter 5: Functional Specifications of tire Plrase III Hyperplcme

Requesl Signais

0234567

- - - - - - - - - - - - -
slnrtO
~

CounIer
stopO Il

i- startl

Arbrer
Counler

1

1:stop2 Counter

~ ~ 1-- 3 ~e- 3 3e- 3 2
slnrt2

f- ,... f- - 1- - 1- - - - - -

1

1

1

1

1

1

1

1
....

•
01234567

Output Signais

Figure 5.14 Typical funclional diagram for the arbitration circuit.

When the enlire packet has been receiveJ. the extractor selector control bits need to

be reset so that the extractor channel is free to receive further incoming data. When the

counter reaches a predetermined value (which represents the number of bytes in a packet).

its sends a stop signal to the arbiter. At Ibis lime the extractor selector control bits for that

channel are reset and the counter is reset and remains idle until another packet is to be

received. Since there are three extractor channels. three separate counters arc nceded.

5.6.2 Functional Specifications of the Arbitration Circuit

Each transition is assumed to occur at the rising edge of the clock. The states arc

encoded using three bits. Each bit represents an extractor channel. If the most significant

bit is high. then extractor channel 2 is busy. Similarly. if the least significant bit is high.

then extra::tor channel 0 is busy. Each byte channel has a request signal. When there is

an address match, the synchronizing circuit of the CCU will assert a request signal to the

76

• Chapter 5: Functional Specifications ofthe Phase /II Hyperplane

arbitration circuit on the next rising edge. The arbitration circuit will receive this signal and

cause the arbiter to change state. In addition there are two sets of internai signais that the

arbitration circuit will use. These are the startx and the stopx signais (where x ranges from

oto 2). The startx signais are issued from the arbiter which instructs one of the counters to

begin counting. When the counter has reached a predetermined value, it will issue a stopx

signal which will instruct the arbiter that the channel has received the entire packet and its

extractor selector control bits can be resel. The output signais from the arbiter are the

extractor seJector control bits fed to the channels. These signais are more difficult to

demonstrate on the state diagram. They will, however, be discussed shortly.

Figure 5.15 shows a typical state transition diagram for the arbiter. Each state is

encoded using three bits. When none of the extractor channels is busy, the arbiter is in

state 000. If one of the request signais is asserted high (denoted by req in the state

diagram), then the arbiter will change state. In addition, whenever a request signal is

asserted high, a startx signal is also asserted high. This will cause one of the counters to

begin counting. The stopx signais are received from one of three possible counters. The

stop signal will also cause the arbiter to change state as shown in Figure 5.15.

The only signais that are not shown on the state diagram are the 8 output signais.

Each output signal is 3 bits wide and connects to the extractor selector control of a byte

channel. Depending on which of the eight request lines was asserted and depending on the

state of the arbiter, the appropriate output signal would be asserted. For example, suppose

the arbiter is in state 011 (extractor channels 0 and 1 are busy) and signal request 5 is

asserted high. This means that byte channel 5 has a packet to extracl. The arbiter will

move to state III and set start2 to a high state. This will cause Counter2 to begin

counting.

77

Chapter 5: Functional Specifications ofthe Phase 111 Hyperplane

ri
.tooO

1000 001
}

req/.tanO

l'r.q/.tant "tapi
tapI

(011

stop2
req/slan2

stop2
req/slanO topO

(010 III ~I

r.q topO
SlOp2 r.q/slanO

(
110

~

req/stanl
stop1

(
rcq/stanO

)-100 lOI
J stopO \.

stop2

Figure 5.15 State transition diagram of the arbitration circuit.

At the sarne time, output 5 will be set so that byte channel 5 will extract over the extractor

channel 2.

Notice that in Ibis implementation of the arbitration circuit, when there is a header

match, there is a delay of two clock cycles until the extractor selector control bits are set.

When there is a match, the request signal will go high on the next clock cycle. On the

following rising edge of the clock, the arbitration circuit will change state and the counter

will star! counting. Since there is a IWo clock cycle delay, the header of each packet will

have to be held in place for at 1east that many clock cycles. Therefore, in tbis implementa­

tion, when a packet is sent through the backplane, the header is sent at least two times

before any data is sent.

78

Chapter 5: Functional Specifications ofthe Phase 1Il Hyperplane

5.7 Configuring the Smart Pixel Array

Before the Hyperplane can be used for transmission and reception of data, it first
needs to be configured. As mentioned in a previous section, the Hyperplane has two

modes of operation. The configuration process will instruct the Hyperplane which mode to

operate in.

•

The configuration proccss involves loading the Control Latch in the Channel

Control Unit. The loading of the Control Latch is a straightforward process. Each SPA

has alto 8 decoder as shown in Figure 5.I6. The decoder is used to select one of the

eight Control Latches. Thus the loading of the Control Latches is done one latch at a time.

The inputs of the decoder are connected to the last three bits of Injector Channell while the

eight input bits of the Control Latch are connected to Injector Channel O. The control data

to he loaded by the Control Latch are presented on to Injector Channel O. The control bits

for the decoder (which will select the controllatch on channel 0) are then presented on the

first three bits of Injeptor Channell. Finally. the Control Latch Enable is strobed high at

which time the àata on Control Latch (of channel 0) are loaded. The process is repeated

until ail eight controllatches on ail eight channels are configured.

3

/1-- Latch Enable 0

1-- Latch Enable 1
1-- Latch Enable 2

1-- Latch Enable 3

1-- Latch Enable 4

1-- Latch Enable 5

Control Latch 1-- Latch Enable 6
Enable __---1 \f---. Latch Enable 7

Bits from Injector
Channel 1-+--.1

Figure 5.16 Decoder for configuring the controllatch.

79

• Chapter 5; Functional Specifications ofthe Phase III Hyperplane

5.8 Chapter Summary

In this chapter, we have outlined the functional specifications of the June 1995

Smart Pixel Array. We began be describing the two primary modes of operation. These

modes are the reconfigurable mode and the intelligent mode. We then proceeded to give a

top-down description of the designs for the June 1995 Hyperplane and SPA. We

described the various components that comprise the SPA including the arbitration circuit

which was shown to be one of the more complex components in the design. In the next

chapter, we shaH describe the June 1995 Hyperplane using a hardware description

language called VHDL. Using this language, we will simulate the design to demonstrate its

functionai correctness. We will then synthesize the design so that it can he downloaded on

to an FPGA. Once the design has been configured, the FPGA will behave as a hardware

simulator of the Hyperplane.

80

• Cllapler 6: Simulation of Ille JIIIW 1995 HyperplclIIe /Ising VifDL (/1/(/ FPGA.I'

Chapter 6

Simulation of the June 1995
Hyperplane using VHDL and FPGAs

6.1 Introduction

In the previous chapter, we took a detailed look at the functional specifications of

the June 1995 SPA and then proceeded to describe how these devices are intercollnected to

form the June 1995 Hyperplane4• Our next objective is to test the design in sorne manner

to verify ils functional correctness. One way of accomplishing this is to develop a

simulator for the Hyperplane which can operate in both hardware and software.

In this chapl~r, we describe the development of a simulator for the Hyperplane.

The software sim:.J1ation is achieved using a hardware description language called VHOL

that describes the design and is simulated by a CAO tool. The CAO tool a1lows us to feed

our design with test vectors and give us the resulting output based on our design specifica­

tions. Once the functionality of the design has been verified in software, the CAO tool will

then "transform" our design into a format which can be downloaded onto an programmable

device. The programmable chip will then behave as an hardware emulator of the

Hyperplane. In addition to verifying the ils functional correctness, there is one additional

4 Recall. thal Hyperplane and SPA refenD the June t995 designs of the Hyperplane and SPA

81

Chapter 6: Simulation ofthe June 1995 Hyperplane using VHDL and FPGAs

benefitto developing a hardware emulator for the Hyperplane. RecaIlthatthe Hyperplane
will interconnect a numbcr of printed circuit boards. These printed circuit boards each have

electronic ICs for processing. By developing a hardware simulator for the Hyperplane, wc
can simulate how the ICs will behave when connected to Hyperplane. The VHDL model

for the June 1994 Hyperplane was developcd and designed in [3].

The rest of this chapter is organized as follows. We begin by describing the

hardware description language VHDL and briefly discuss the CAD tool which will simulate

the design described by the VHDL code. Next, we will describe the Xilinx 4000 series
field programmable gate array (FPGA). These are the programmable devices that will form

the hardware implementation of our simulator. We then describe the structure of our

VHDL code and then simulate our design. The results of the simulation are subsequently

discussed. We then compile our design to generate a file that can be used to program the

FPGA. This process is called synthesis for FPGA technology. In the final section of this

chapter, we will discuss the timing and area statistics generated during the synthesis

process.

6.2 Design Entry Language

When designing a digital system, the designer can describe his design using one of

several methods. Historically, most of the design process was performed using schematic

capture tools. In this methodology, the designer would draw logic gates and connect them

using a CAD tool. Recently, a more popular method has emerged in which the designers

could describe their design using a high level language similar in many ways to the C

programming language. It is a language which can readily describe complex digital

systems. VHDL stands for VHSIC Hardware Description Language where VHSIC stands

for Very High Speed Integrated Circuits [32].

There are severa! advantageous features to VHDL. Among the most important is ils

ability to support hierarchy. That is, a digital system can be modelled as a set of intercon­

nected components. These components can each, in tum, be modelled as a set of

82

• Cllapter 6: Siml/lation oftlle JI/ne /995 Hyperplal/e I/,vil/g VHDL {md FPGA.~

interconr.ccted subcomponellts. In this way. complcx dcsigns arc cnsily dcscribcd using

VHDL.

Each component or subcomponent in VHDL has an entity description nssoeinted

with il. The entity description deseribes the input and output ports to that componenl. In

addition to the entity. eaeh component has an architecture description. The architecture

description describes the behaviour of the entity [32][33].

Once the entire design has been specified using VHDL, the designer is ready to

simulate it. The simulation requires two things. The first is a VHDL test beneh, the

second is a CAD tool whieh can simulate VHDL designs. The CAD tool which we will be

using is the Synopsys 3.0b Design Compiler and Vhdldbx software. The test beneh is

another VHDL file that assigns values to the inputs of our design at specified times. The

CAO tool will read the test beneh and generate the output based on the design specifications

and the input vectors specified in the test bench.

6.3 Introduction to FPGAs

State of the art VLSI technology has provided the capability to implement powerful

digital devices such as microprocessors at an ever decreasing cost. Il is now possible to

fabricate integrated circuits housing millions of transistors. Such devices are often

designed using the full custom layout approach. In this approaeh, each device on the

integrated circuit has been tailored to mect a set of specifications and. to date, utilizes the

least amount of silicon real estate. A less cumbc:rsome approaeh to VLSI design would he

to use standard cells when laying out the design. This semi-custom approaeh reduces the

layout time but often requires larger areas of silicon. Both approaches, however, are

expensive by nature. They require several months of design and manufacturing effort

resulting in an inereased cost to the consumer unless they are mass produced. In our

highly competitive society, the need to minimize the overall cost and the time to market is

paramount [34]. Given this need. field programmable gate arrays (FPGAs) have emerged

as the ideal solution to these time to market problems. In essence, an FPGA is a device

whose logic structure is eonfigured by the end user without the need for fabrication

83

Chapter 6: Simulation ofthe June 1995 Hyperplane using VHDL and FPGAs

facilities allowing for rapid prototyping and testing of designs. The use of FPGAs

dramatically reduce the time to market because the design needs only to be described at a

high level such as a schematic. CAD tools are used to "transform" the design into a bit

stream which is then downloaded to the FPGA [34][35]. The FPGA will behave according

to the design specifications. FPGAs are similar to programmable read only memories or

programmable logic devices except their capabilities are far more extensive. In the

following. we describe in some detailthe architecture of the field programmable gate array

and how it will relate 10 the modelling of the Phase III Smart Pixel Array.

An FPGA is a device with an array of uncommitled logic elements that can that are

generically interconnected. Figure 6.1 shows a conceptual view of an FPGA. As sh"wn

in Figure 6.1 the FPGA consists of a two dimensional array of logic blocks and

interconnection resources that are used to interconnect ihe logic blacks. The logic elements

are blocks that can implement a small logic design. They typically have some form of

programmable devices (such as a look up table) to implement combinational circuitry and

one or more flip-flops to implement sequential circuitry. The interconnection resources

comprises segments ofwires whose lengths typically vary [34][36][37]. In addition to the

logic elements and interconnection resources. FPGAs a1so house programmable switches

that are used to connect the logic elements to the segments of wire and to connect or one

segment of wire to another. In order for FPGAs to be a viable technology, it must be able

to implement a very large spectrum of designs. It is therefore important that the logic

blocks and the interconnection resources be as versatile as possible. There are many

manufacturers of FPGAs each with their own advantages and tradeoffs. In this chapter,

we will concentrate on the design of the XC4013 FPGA manufactured by Xilinx COipor­

ation. However. IJefore a detailed look at the architecture of the FPGA is undertaken, it is

usefui to understand the implementation process when a design is downloaded on to an

FPGA [34][36].

84

• Clzapter 6: Simulation oftlze June 1995 Hyperplane using VHDL and FPGAs

1/0 Cel!

Interconnection
Resources

Figure 6.1 Conceptual view of an FPGA.

The implementation of a logic design on an FPGA is for the most part carried out

by a CAD tool. Figure 6.2 shows a f10w chart which depicts the steps that a CAD tool

will typically take during the implementation process of a design on to an FPGA.

Irrespective of how the design is described, the design entry is then transformed by the

CAO tool into sorne standard format such as Boolean expressions. These expressions are

then sent through the logic optimizer whose primary responsibility is to manipulate the

Boolean expressions in order to minimize the overall area or maximize the speed of the final

circuit [34].

85

•

•

•

Chapter 6: Simulation ofthe June 1995 Hyperplane using VHDL and FPGAs

Figure 6.2 Synthesis process from design entry to configured FPGA.

The next step in the process in the technology mapping. Once the Boolean

expressions (and hence the original design) have heen optimized. the technology mapper

will transform them into an equivalent circuit consisting of ooly logic elements. In essence.

the mapper will have partitioned the design into subcircuits so that each subcircuit can he

implemented by a logic element. The technology mapper will a1so perform sorne

optimization algorithms. Depending on the user specifications. the mapper will attempt to

86

•

•

ClJapter 6: Simulation of tire June 1995 Hyperplane lIsing VHDL and FPGAs

reduce th~ number of logic elements consumed (for arca optimization) or reduce the numbcr
of stages in the critical palh (for timing optimization) [34].

The next step is "place" these logic elemcnts on the FPGA. A placement algorithm
i5 used to do this. The placement algorithm is used to determine the logic clements that will
implement the subcircuits. The main objective of the placement algorithm is to pince the

subcireuits in a manner which minimizes the total amount of intereonnection resourees used
[34].

The final routine used by CAD tool is the routing software. The routing software

assigns wire segments of the FPGA and configures the programmable switches in order to

establish the specified connections among the logic blacks. In essence, the subcireuits are

interconnected so that the original design is achieved. If the routing software is unable to
route the design (a phenomenon which is not uncommon when implementing large

designs), then it is possible that more than one FPGA will be required to implement the

design. Since the interconnection resources of the FPGA are fixed in place. the task of

routing is a difficult by nature.

Once the preceding steps have been successfully completed. the CAD tool will feed

its output to a programming unit which will then configure the FPGA. Once the FPGA is
configured, it will implement the initial design entry and the entire implementatioll process

has been completed.

6.3.1 Xilinx 4013 FPGA

As mentioned in the previous section. each manufacturer of FPGAs will design

their FPGA differently from other manufacturers. There are variolls types of FPGA

implementations ranging from one time programmable FPGAs to reprogrammable FPGAs.

In this section. the architecture of the Xilinx 4013 FPGA is described. The Xilinx 4013

FPGA has a general architecture similar to that of Figure 6.3. In the Xilinx architecture.

the logic elements are termed Configurable Logic Blocks (CLBs) and the 1/0 CeUs are

termed 1/0 Blocks (lOBs). The programmable connections are achieved using n-channel

pass transistors which are controUed by static-RAM (SRAM) ceUs. The programmable

87

Chapter 6: Simulation of the June 1995 Hyperplane using VHDL and FPGAs

connections are Lalled switching matriees and are shown in Figure 6.4. The

interconnection resources consists of horizontal and vertical routing channels that

interconnectthfl CLBs. There are three types of interconnection !ines differentiated by their

relative segmentlengths. These are the single-Iength !ine, the double-length !ine and the

long !ines. The single length !ines are used primarily for short, local interconnections as

shown in Figure 6.4. The single length !ines are arrays of horizontal and vertical!ines each

intersecting a switch matrix between each block. The double length !ines are double the

length of the single length !ines and runs past two CLBs before intersecting a switching

matrix [34](36).

Horizontal Routing
Channels

o
o
o
o
o
o
o
o

Vertical Routing
Channels

j

Configurable Logic
Block

0 000 DO DO

D D D D

D D D D

D D D D

D D Q D

D DD 0 D DD
cr

UO Block

o
o
o
o
o
o
o
o

Figure 6.3 Architecture of an Xilinx 4000 series FPGA

88

• Chapter 6: Simulation of the June 1995 Hyperplane IIsing VHDL anc/ FPGAs

The long !ines are an array of metal segments that traverse the cntice lcngth of the or width

of the FPGA. Long lines are used for high fan-out, time-critienl signaIs whieh can also be

used to distribute clock signaI with a minimum amount of skew.

g gg

,
\

Switching Switching
Matrix Matrix

,
"- V

~~

...... 1--'
F4 C4 G4 Q2

vi G

1 GJ
lock CLB
1 CJ

1<' (1 F2 C2 Gf3

Switching Switching
Matrix Matrix

J,.
Routin Switch Se mentWlnn

.........

/'
....

/
,

\
/

" p
1-0'

Each switching matrix
point consists of six
routing switches.

+•

Figure 6.4 Routing resources to interconnect CLBs.

•

The configurable logic blocks (CLBs) are generic devices used to implement a small

subset of the entice design. The functionallogic description of the CLB is shown in Figure

6.5. It consists of two 4-input logic function generators labelled F and G and a third

function generator with three inputs labelled H. These function generators provide the

combinational circuitry ofeach CLB. They can perfonn two independent functions of four

89

• Chapter 6: Simulation of the June 1995 Hyperplane using VHDL and FPGAs

variables, one function of five variables, any function of four variables in conjunction with

sorne funclions of five variable!i and sorne functions of nine variables [34][36].

In addition to the combinational circuitry. each CLB consists of the D·Flip Flops
which provide the sequentiaI circuitry of each CLB. The D-Flip Flops are equipped with
asynchronous set and reset which are aIso controlled by the selector module. The set of
multiplexors on each CLB determine. in part. the functionality of the each CLB. The

outputs of the combinationaI function generators can be fed into the inputs of the D·Flip

Flop or directly to the CLB output. If the combinationaI function generators are fed directly

to the outputs, the D·Flip Flops cao receive inputs from the selector in which case, the CLB
can he actually performing two different functions (one combinationaI and one sequential).

Cl C2 C3 C4

DIN

YQ

XQ

Logic F
Fn of t-~'----t-l-'
Fl-F4

Logic
Fnof

F,O',Hl

GI­
G2-- Logic G'

G
3- Fn of t-"-......-+------+~

01-G4
G4-

FI

F2
F3
F4

CLOCK----------1-..----.1.--=:--1

•

•
Figure 6.5 Logic specification for the Configurable Logic Block of the Xilinx 4000

series FPGA.

90

•

•

•

Chapter 6: Simulation afthe June 1995 Hjperplane lIsing VHDL and FPGAs

The lOBs provide the interface between the internai. logic of the FPGA and the

packaged pîns [34][36].

6.4 VHDL Hierarchy of the Hyperplaue

As mcntioned in Section 6.2, one of the main features of VHDL is its ability to

support hierarchy. Befo..·c Wc describe the our design using VHDL, it is first prudent to

develop a hierarchical description. Figures 6.6 through 6.10 show the various levels of the

hierarchy for our design. Each bounding box represents a separate entity. Figure 6.6

shows the highest level in the hierarchy. Il consists of two entities. The first i5 the test

bench which we will use to simulate our design The second is the Backplanc entity. The

Backplane entity will instantiate the entity of four SPAs and intcrconnect thcm in a

unidirectional ring. Notice that within the entity Backplane is another entity

SmarcPixel_Array. This indicates that the entity Backplane will use the entity

SmarCPixel_Array as its components. Since Backplane interconnects four smart pixel

arrays in a unidirectional ring, we say that the cntity Backplane instantiates the

SmarCPixel_Array four limes.

Backplane_TescBench

Backplane

SmarCPixeCArray

Figure 6.6 Top level of the nierarchy

The next level in the hierarchy (shawn in Figure 6.7) describes the components that make

up SmarcPixel_Array. As we described in Chaptel' 5, each SPA consists of eight SPCs

91

•

•

•

Chapter 6: Simulation ofthe June 1995 Hyperplane using VHDL and FPGAs

(smart pixel channels), an arbitration circuit and a rl,!çoder. Therefore the entity

Smart_Pixel_Array will instantiate cntity SmarCPixel_Channel eight times (byte channcls

are occasionally referred to as Smart Pixel ChannC:1s). Notice that SmarCPixel_Channel

will instantiate entities Smart_Pixel and Channel_Control_Unit. In addition,

Smart_Pixel_Array will instantiate entities Arbitration_Unit and Decoder once each.

Smart_PixeCChannel

SmarCPixel

Channel_ControeUnit

Arbitration_Unit

Decoder

Figure 6.7 Second level in the hierarchy. illustrating a typical SPA.

Figures 6.8 to 6.10 show the third and fourth levels in the hierarchy for the rest of the

design. Once the hierarchy of our design was completed, the VHDL code for each level of

the hierarchy was created and then simulated using the Synopsys CAO tool. A complete

r.opy of the VHDL code can he found in [40].

92

Chap/er 6: Simula/ion of/he June 1995 Hyperplalle ..sillg VHDL al/cl FPGAs

Channel_Control_Unit

Control_Lalch

SynChrOniZin!l-CirCU~

Figure 6.8 Third level in hierarchy illustrating a typical channel control unit.

Arbitration_Unit

1 Arbiter

[Counler

Figure 6.9 Third level in hierarchy ilIustrating the arbitraticn unit.

93

•

•

•

C/zapter 6: Simulation of the June 1995 Hyperplane us;ng VHDL and FPGAs

SmarCPixel

Tristate

Address_Comparator

Programmable_Delay_Circuit

DFF

Figure 6.10 Third and fourth levels in the hierarchy, illustrating a typical smart pixel and

the programmable delay circuit.

6.5 Design Verification Through Simulation

6.5.1 Propagation Delays Through the Logie Deviees

Once the design has heen described using VHDL, the next step is to verify its

functional correctness through simulation. The task of simulation is indeed difficult. It

wouId he unrealistic to demonstrate how the Hyperplane would behave under all contin·

gencies sinee tbis would constitute an exhaustive test. The number of test veetors in an

exhaustive test rise exponentially to the number of inputs ta the system [38]. This section

will present sorne simulation results. It is the author's helief that the simulations presented

in this chapter will demonstrate and verify the functional correctness ofour design.

In arder ta establish proper timing analyses, the propagation delays through the

various components necd to be taken into account. Ta detennine these propagation delay,

94

•

Clrapter 6: Simulation oftire June 1995 Hyperplalle usillg VHDL allli FPGAs

it is necessary to know what technology will be used. At the current time, il is expected

that upcoming demonstrators will be implemented using eilher .5 or .8 ~ CMOS technol­
ogy. ln order to establish a worst case analysis, the delay specificutions for 1.2 micron

CMOS technology was included in the VHDL code [39]. Tuble 6.1 summarizes Ihe delay

specifications used. Adding the delays 10 the vurious componenls allows us to 1Iiso
lIpproximale the maximum speed the final design can accommodlile. As can be seen, the

main bottleneck is the delay through the bond pads. The bond pads are used 10 inject and

exlract data to and from the backplane. This delay will vary depending on the capllcitive

load it needs to drive. However, a conservative estimate assumes the delay through the
bond pads to be about 25.0 ns.

•;.... , "0", ,-,~·r~.;' ·./k,"'!.~·",:.""',

:,:,iPiôpiïgâiioJÎ'DClay~'I:OgICDéVlce.,., \";.:" ,""
.,. "', 'n~·:."·· ,.c" .'.. ·;·,.···.,l'" ,., :1... ',.. ",,' ., " ",": ,.~. ,',' .. '

2 Input And 3.86 ns

4 InpuIAnd 4.67 ns

2 Input Or 2.73 ns

2 InputXor 4.27 ns

2 Input Nor 2.73 ns

3 State Buffer 3.96 ns

DF1ip Flop 4.39 ns

4to 1Mux 7.39 ns

4 Bit Counter 5.67 ns

Arbiter (approx.) 12.0 ns

Bond Pad (approx.) 25.0 ns

Table 6.1: Summary of worst case propagation delays through various logic devices using
1.2 fiÙcron CMOS technology [39].

6.5.2 Simulation Setup and ResuUs

Using the delay values specified in the previous section. the test bench was created.

Recal1 that there are two modes that the Hyperplane can operate in. For the sake of brevity.

the simulation ofonly the intelligent mode will be described. In addition. the simulation is

9S

• Chapter 6: Simulation ofthe June 1995 Hyperplane using VHDL and FPGAs

set so that the packets are Q!;ynchronously transrnitted. In arder ta operate in the intelligent

mode, cach board (and hence each SPA) must be assigned a unique address. Table 6.2

summarizes what address we have assigned ta each SPA

o

2

3

10000010

10000011

10000100

10000101

•

Table 6.2: Address for the SPAs connected to the Hyperplane.

In Chapter 5. we noted that in order ta preserve an 8 bit data path. the byte channel had to

be increased from 8 pixels to 9 pixels. However. for the sake of convenience. we have

elected to keep the byte channel at 8 pixels (8 bits) and still send packets asynchronously.

However, with minor adjustments to the VHDL code, the byte channel can he increased to

9 pixels.

Vaild Hender Board Address

•

Figure 6.11 Description of address bits.

For our VHDL simulations. the clock has a period of 30 ns. Before the Hyperplane

can begin transmitting and receiving data, it must ficst be configured. The configuration

process loads data into the controllatches ofaIl the channel control unîts. This process was

described in sorne detail in Chapter 5. Figure 6.12 shows the simulation of the configur~

ation process. The figure is labelled with lines as an aid in our discussion. At Line A, we

see that the Reset signal is set high (sec the bold dot on Une A). At this time alllatches and

96

Chapter 6: Simulation of the June 1995 Hyperplane using VHDL and FPGAs

outputs are initialized to a low state. Once ail components have heen rcset, the configuration

process begins. Figure 6.12 shows the status of ail 12 injector channels and ail 12

extractor channels. We will follow the configuration of SPA O. Recnllthattwo injcctor

channels are needed to configure a SPA. Injector channel 0 carries the data to he latched by

the controllatches. Injector channel l, carries the control bits of the decoder (Figure 5.16)

that selects the control latch to configure (the configuration process was described in

Chapter 5, Section 6).

The labelling of the signais in Figure 6.12 and 6.13 follow a unchangeablc

convention created by the Synopsys 3.0 CAD tooI. InjectorO(1), for example, means

injector channel 1 of SPA O. At Line B in Figure 6.12, we see that InjectorO(l) has a value

of 00 and InjectorO(O) has a value of F8 (see the two bold dots on Line B). InjectorO(l)

controis the decoder in each SPA while InjectorO(O) holds the data thatthe controllatches

will be loaded with. Therefore at Line B, the first control latch of SPA 0 will be loaded

with the data F8 (at the rising edge of the clock). The same holds true for ail the other

SPAs. At Line C we see that InjectorO(1) has changed from 00 to 01. That means thatthe

next controllatch has been selected for loading. InjectorO(O) remains the same. Ali this

means is thatthe controllatch will be loaded with the same data as the previous control

latch. The configuration process continues until Line D where the last control latch is

loaded with a value EC (InjectorO(l) has a value of 07 and InjectorO(O) holds a value of

EC)

Once the configuration process has been completed, the Hyperplane is ready to

transmit and receive data. The test bench will begin feeding data through the Injector

Channels. Since it is difficult to visually trace the transmission of packets through the

backplane, Table 6.3 summarizes where the packets from a given SPA are destined.

Notice that four packets are destined for SPA 2 but only three of those packets can

be extracted from the backplane (there are only threc extractor channels per SPA). We set

the headers of four packets for SPA 2 so that we can ensure that the arbitration circuit will

ignore all incoming packets if ail three extractors are busy.

97

Chap/er 6: Simulation of/he June 1995 Hyperplane using VHDL and FPGAs

Soûfcè
••••••••••••

,Header Destination
, .,

SPAO 11000101 SPA 3

SPA 0 10100100 SPA 2

SPA 1 11100010 SPA 0

SPA 1 10100100 SPA2

SPA 2 10100011 SPA 1

SPA 2 11100010 SPA 0

SPA3 10100100 SPA 2

SPA 3 10100100 SPA 2

Table 6.3: Summary of packet origin and destination.

98

•

LlneA LineR LlncC Llne D

~j,2'i'SJ'~• ~...~ 'cm·,Wtr"i.f,ouMT·_~.·"·"S'''IUIl!!' 1.11] >-

Ello Edit Mlrko. "To ~Iow Wincl w l!elp

~~, ~ ~ ~"" ,,~"" ~ ,,~ " ~~- ~ !-J JUUL -nu U U U U U U U UUUL UUUUUU
''"'
cUJlldl.tnItiII ru UUUU-UU l---- 1

~ met0r0(2X7.tI) uu
~ r1tcIOfO(IX7!1) 2 00 DI 02 1 03 1 .. 1 os 1 " r 07 ' 1 M 159 lit ..
.. Wectcri)(OX7!1) 2 .. " .. 1 rA 1 .. T " ,1 '" T .. 100 ..
....torl(2X'D) 22 ..
... *10l'I(tX1!1) 2 00 1 DI 1 02 03 .. os " 1 07 .. 2e '" oc
.. WlClcrl(OX7,O) 2 .. 1 " 1 .. 1 " 1 '" '" " " ..
.. ..tor2(2X7:O) ~z '" .. 10 ..
... .--tor2(lX7.o) 2 00 DI 1 02 1 03 1 .. 1 os 1 06 1 07 " " '"
.. WICICI'2(oX7D) Z .. 1 " 1 '" A) 1.. '0 '"
.. i'ltCta3(2X7:O) 00 1 ... "
... IrilctQr3(1 X7D) 2 00 1 DI 1 02 1 03 1 .. 1 os 06 1 07 1 ... 16A 1211 2e

.. Wtclor3(oX7D) 2 " 1 .. 1 .. 1 .. 1" 1 fO 1 '" 1 A) 1"1" 2'

... ptrll:t0r0(2X1.o) · "... IlItrxlorO(l)(7:0) II

... tx1nttorO(Ol(1:O) ZZ

... tlltrlctorl(2X71J) · ZZ

... IlItr1ttorl(1 X7tJ) · ZZ

... ptnctorl(OX7:O) ZZ lA)

... extndOr2(2X7J1) · ZZ

... utrlttOl'2(1 X7:O) · zz 1...

... lJdnl:tor2(OX7.o) ZZ 1 ...

... extneteIr3(2X7:0) · "

... extntter3(1 XJD) · ZZ

... utnctor3(OX7:O) 21

•
Figure 6.12: Simulation of the configuration process.

•
lIOns

.. ~

LlneEI LlneFI IneG ILineH
lU

~11o ~"
Ma...., IIoTo

_ Win lIow Iloi.

~ ,~ ~ P.o 1,~ ,',lPO 1,2fIO "" 1,~ " 1- l U U U U l UU ,..IUUU ~UUUU UUUUUU UUUUU.....
cI.,IItltl_....-.- 1

.~1I7.o) uu

.. .-.torO(IVDI D71 " '" le • 1,. " o. " " lA " " 00

"~lCUI)II' '" "100 o1" " " .. " .. " " .. " 00 1 '" l'D ~71'Dles ..
.. ".IQX7.o~ lE II " " ID " .. DI " " " " 'D 1 " 1 " 2'1&412C .. 120 127
.. ""(IX7D) " " " C co .. " " " ... D' " 00 .c 00

.. '-1011(017.0) Irai .. " .. " 'C 'D 00

.. n.c1ar2gX7.G) '" " ID " " " " " ... " " "

... rMlCIf2(1 X7D) 111"1 .. " " " " .. " oc 10 .. " .C ID

... HKIg2(OX7.o) ."1 '" 54 'D " " 'C • C .. 00

.. _tllr3(2X7.oIII~ 00 1 " , " " 7D " " " " " " " 20 :M 1 00

.. "",tcf3(IX7.o) " .. " C •• " " " " " " 7C .. 'C 00

... HKIllr3(OPO) '" "1" • " 2! " .. " .. " • C 2• 2C 00

....~X7.a) II

.. MtrICtorO(IP.o) II

... MlndDfO(llV.o II Il .. " '5)" "" '8 .C 1 .. 1 00 1 II

... ...trIrtuI'l(2P.o) II

... _ll'ldorl(IP.o, II Il '" 54 'D .. " •• .. 'C 'C 45 1 00 1 II

... MIrEbl(OV.o) II " " " " .. " " .. " .. " .C 20 2C 00 "... MtrldDr2(2X7'o) II ·1 " .. " 2C ID " 27 " " " " 7C 'D 3C 1 00 1 II

........2(1,;7.01 II " " 'C .. ,.
" DO ,. ,. ,." " 00 II

... Mll'lldlll'acoxr.o) II 1 " 12C 23 OC 115 .. " " " 2C DD IC 00 1 II

......1r1tb'3(2P:O) II

... MIrIdar3(Il(7.o) II

... MIndDr3(OX7.o) " 1 l '" 58100 010130 la 12C "'1'" 141a41!2 Ol! IôIl! 00 II cs 140'7

•

Figure 6.13: Simulation ofpacket transmission and reception.

Chapter 6: Simulation ofthe June 1995 Hyperplane l/sing VHDL and FPGAs

The transmission of data begins when the Global Enabie signal goes high (see the

bold dot on Line E in Figure 6.13). At this time. most of injector channels are fed with

the header of various packets. The header needs to be held for at least two clock cycles to

allow time for the arbitration circuit to complete its task (to be conservativc, ail packct

headers were held for 3 clock cycles). To show thatthe backplanc does transmit packets

asynchronously, the transmission of a packet from Injector1(2) has been delayed until Line

F. Once the header has been transmiued. a new byte is introduced at the falling edge of

every clock cycle. At the same time, ail bytes in the backplane move from SPAj to SPA

(j+1) mod 4. Thus if SPA 3 is transmitting to SPA 2, then each word would take 3 clock

cycles to travel from SPA 3 to SPA 2.

If we follow Table 6.3. we see that the packets arrive at the appropriate SPA and

are handled correctly. For example, the packet transmitted by InjectorO(I) has a header

whose hexadecimal address is A4. This indicates that thc packet is destined for SPA 2. If

we look at Extractor2(1). at Line F (see the bold dot near the bottom of Line F) we see

that the data appearing on this extractor is the same data that was injected through

InjectorO(l). We can measure the delay from when the data was injected by Injector 0(1) to

the time it was extracted by Extractor2(l). Line G shows the word 00 entering the

backplane over InjectorO(1). Line H shows the same word being cxtracted by Extractor2

(l). The time between Line G and Line H is 110 ns (please see bold dots on Line G and

Line H). This delay is to be expected. There is a 25 ns delay to pass through thc bond

pads of the injector channel. From there the data will hop from SPA to SPA at every rising

edge of the clock. Since the data is travelling from SPA 0 to SPA 2, it must make two

hops. Therefore, the data will take 2 clock cycles (or 60 ns) to move from SPA 0 to SPA

2. Finally, there is another 25 ns delay to pass through the bond pads of the extractor. The

sum of ail these delays add to 110 ns.

The only packet that did not arrive at its destination is the packet sent by Injector3

(2). However Ibis is to he expected. Table 6.3 shows that there are four packets destined

for the SPA 2. The last injector to transmit a packet destined for SPA 2 is Injector3(2). If

lot

•

Chapter 6: Simulation o/the June 1995 Hyperplane using VHDL and FPGAs

the arbitration circuit is working correctly, then this packet should just be ignored. This is
indeed the case. This shows thatthe arbitration circuit simply ignored the packet from

Injector3(2).

Given the delays shown in Table 6.1, the simulation was executed for various clock

speeds. To ensure proper operation of the VLSI design, the clock must have a minium

period of 28 ns or 35.7 MHz. Referring to Table 6.1, we observe that the minimum clock

period for the VLSI design is 2S ns which represents the delay through the bond pads. The
additional 3 ns delay that we notice through simulations occurs hecause logic gates through

the datapath. Il should be noted however, that the delays tabulated are worst case figures

based on 1.2 1.1 CMOS technology. It is expected that the actual implementation of the

Hyperplane (which is expected to be fabricated using either .8 1.1 or .5 1.1 CMOS technol­

ogy) will he able to nln at higher clock speeds.

6.6 Design Compilation and Synthesis for FPGA Technology

The final step in the development of our simulator is to synthesize the VHDL

description for FPGA technology. The major steps in the synthesis procedure were

shown in Figure 6.2. The logic optimization and the technology mapping are perforrned by

the Synopsys CAO tooI. The last placement and routing of the design are perforrned by the

Xact software developed by the Xilinx corporation. When completed, the Xact software

will report the numher of CLBs the design wiII require.

One of the obstacles that we faced was the shortage of pins available. Referring to

Figure 5.2 (on Page 62), we see that each SPA requires 60 electrical pins (i.e. not

including the optical VOl. If four SPAs were to he interconnected, then a total of 240 pins

would he needed. The target technology for synthesis was the Xilinx 4013 FPGA which

has a maximum total of 192 YO pins. Therefore, our FPGA simulator will only simulate

two SPAs connected together on one FPGA. This is not a serious problem since the main

motivation for developing a hardware simalator is to test the electronic components. We do

not need to simulate all four SPAs connected in a unidirectional ring to meet this end.

Therefore, our hardware simulator will only simulate two SPAs connected in a unidirec­
tional ring.

102

Chapter 6: Simulation of the June 1995 Hyperplanc using VHDL and FPGAs

Table 6.4 summarizes the resource utilization of our synthesized design. Notice

that there is a relatively large utilization of packed CLBs. This is largely due to the

Synopsys 3.0 compiler. During the technology mapping phase. the compiler does not

capitalize of the built in latch enable on the CLB flip-flops. The result is a significant

increase in the overalllogic area required to implement latch enable system. The target

libraries for the newer version of Synopsys were not readily available during the time of

compilation and synthesis. We expect to resynthesize the design when the target libraries

become available.

lRê8:"""'~rjfJ~B;~ "'~ilYseilZItf'q ,~'ïllAvâitàb1è'~iB ?4{~tutiliZitioœC." •...g1!~;~;~~;\c.;J1~.ll!;••• 't,:\1r '. ,t.t'-'H'V,"~:' ~ ~41.!, ..,__","" '"'.".' '. t}~:S! \.t!'•.•'",.~.-' ... -~ _,

Occupied GLBs 530 576 92

Packed CLB's 421 576 73

Bonded 10 Pins 105 192 54

FG Fn. Generators 843 1152 73

H Fn. Generators 214 576 37

CLB Fiip Flops 281 1152 24

Tri-Statc Buffers 64 1248 5

Tri-State Half Long 64 96 66
Lines

Table 6.4: Resource utilization after partition, placement and routing of the design on a
Xilinx 4013 FPGA.

~Pàihï1~
~i1r~'..~'pc··_"":~ 'f,j '~··~tft' --.' ~Timiô'7it(S~ëcfGiàdê'!lf4)1

;'~""'''' ..., ,IJ ",;!lPl!1gKS.~&~~~ID~ ~.:"' .._.........'"8'::",.,.." -.. ..-~_.;f.~.·.·_.~,~" ,-

PadtoPad 102.3 ns 89.1 ns

Pad to Setup 210.5 ns 156.4 ns

ClocktoPad 92.0 ns 70.2 ns

Clock to Setup 212.0 ns 144.1 ns

Table 6.5: Timing statistics for two speed grades of the Xilinx 4013 FPGA.

t03

Chflpter 6: Simulation ofthe June 1995 Hyperplane using VHDL and FPGAs

The timing statistics for the synthesized design are tabulated in Table 6.5. These

statistics are obtained using the Xdelay software a1so produced by Xilinx. The Xilinx 4000

series offers various speed grades. Table 6.5 shows the timing statistics for two such

speed grades.

'~ii'@ig,~~t!Stiç&f.;\~{f~i:!::!~;!ln?Sp@ ••Gfcî.~e:Il';F 'f,':Speedqta,a#·84;:'
Minimum Clock Period 212.0 ns 156.4 ns

Maximum Clock Speed 4.7 MHz 6.4 MHz

Table 6.6: Maximum cIock speeds for the Hyperplane emulator using different speed

grades of the Xilinx 4013 FPGA.

Table 6.6 tabulates the maximum cIock speed of the emulator based on the critical

path calculated by the Xdelay package. Even with the faster FPGA, the maximum clock

speed of the emulator is restrlcted to 6.4 MHz. Again this is partly due to the Synopsys

3.0b compiler. We mentioned earlier that the compiler does not capitalize on the built in

latch enable system of each f1ip flop. The result is an increase in the overalllogic area that

the final design will consume. This extra logic will a1so lead to propagation delays

affecting the overall speed of the design. We expect better performance values when the

newer libraries become available and our design is recompiled using the new versions of

Synopsys. Nevertheless, a hardware emulator that runs at 4 MHz would a1low other

hardware modules (processing ICs mounted on each PCB) to be thoroughly tested. As

little as 5 years ago, a wire-wrapped prototype would be the only feasible method to

construct an emulator (since FPGA technology was not readily available). Such a

prototype would likely run at speeds less than 1 MHz. Hence the FPGA emulator is very

fast and convenient compared to the alternatives (Le. wire wrapped prototypes).

104

Clzapter 6: Simulation oftlze June 1995 Hyperplane usiflg VHDL ancl FPGAs

6.7 Chapter Summary

This chapter discussed the development of a simulator for the Hypcrplanc. The

simulator was developed in software and in hardware. The software simulalor was crcated

using VHDL (a hardware description language). The VHDL eode allowed us 10 describe

our design in a manner whieh could be read by a CAD tool Synopsys. The Synopsys tool

would then simulate our design based on the specifications of the VHDL description. We

presented the hierarchy of the VHDL description and then demonstrated the funetional

correctness of our design by displaying sorne of the simulation results. We then

proceeded to synthesize our design for FPGA technology. We saw that the major

consumer of configurable logic blocks was the arbitration circuit. We also saw thut the

Synopsys compiler that we used did not capitalize on the latch enable system cuusing an

increase in the overall area.

One of the novel aspects of this chapter is the usage of FPGA technology 10

simulate an optoelectronic device and an optical backplane in real time. Based on previous

experiences with the modelling of an optical backplane using FPGAs our hardware

simulator will undoubtedly become an invaluable tool. The simulator allows us to develop

electronic hardware and analyze how it will behave when interfaced with the actual SPAs

at reasonable dock rates (in the MHz range).

lOS

Chapler 7: Conclusion

Chapter 7

Conclusion

As our infonnation hungry society continues place greater and greater demands on

high bandwidth systems, the need for new paradigms in which data is transmitted and

processed begins to arise. The speed at which electronics can switch is limited by the

capacitive and inductive effects inherent to aIl systems. These effects are especially more

pronounced as the frequency at which data is transmitted increases. Moreover, as the

density of the electrical interconnect increases so do the deleterious effects of inductive

coupling.

In recent years, a considerable amount of research has focused on integrating optics

with electronics. The main advantage of these systems arises from the fact that optical

signaIs are naturaIly non-interactive. Therefore they do not suffer from the same high

frequency and cross coupling effects that plague electronic systems. Initially, much of

this research revolved around replacing entire electronic modules with equivalent optical

devices. Several years later it was discovered that greater benefits could be achieved if

optical technology was used to complement electronic technology and with this realization,

research in optoelectronic technology became increasingly widespread.

The Canadian Institute for Telecommunications Research is funding a Major Project

in Photonic Devices and Systems. One of the main goals of this five phase five year

project is to develop an optical backplane capable of interconnecting severaI printed circuit

boards with an aggregate bandwidth on the order of 1 Terabit per second. The backplane is

106

• Chapler 7: Concll/sion

appropriately referred to as the Terabit Photonic Backplane and much of this thesis revolves

around this projec!. We began by motivating the need for optics in technology and then
proceeded to discuss sorne of the work previously done in this area. Chapler 3 discussed

in sorne detail the Terabit Photonic Backplane (which we later called the Hyperplane) and
reviewed a rather new device which we termed Smart Pixel Arrays (SPAs). These SPAs

are based Ol! Multiple Quantum Weil (MQW) technology and perform the optoelectronic

conversions necessary to implementthe Hyperplane.

In Chapter 4, we described a procedure called graph contractions. We u.ed this
procedure to present several possible embeddings of a Cray T3D Supereomputer on to the

Hyperplane. For each embedding we calculated the bisection width. We then calculatcd

the number of SPAs (as the number of byte channels varied) needed to implement each

embedding. The bisection width was used to help calculate these numbers.

As part of the mandate for the Major Project, demonstrators are periodically

constructed to highlight the milestones achieved. Chapter 5 reviewed the functional

specifications of the June 1995 Hyperplane and the June 1995 SPA which can be used to

realize the embeddings ofChapter 4. The June 1995 Hyperplane is a representative subset

of the Terabit Photonic Backplane.

Finally, in Chapter 6 we developed a hardware and software simulator for the June

1995 backplane. The design was described using a hardware description language called

VHDL and simulated using the CAO tool Synopsys. We then compiled and synthesized

the design for FPGA technology. The synthesized design could be downloaded on to an

FPGA which would then behave. in hardware, as the backplane. The hardware simulator

will a1low us to rigorously test any electronic components that will eventually be interfaced

with the backplane at realistic dock rates (in the MHz range).

107

References

References

1. Canadian Institute for Telecommunications Research, Annual Report 1995. Available

from McGiII University by calling (514) 398 8104.

2. Jurgen Jahns and Sing H. Lee ed., "Optical Computing Hardware," Academie Press

Inc., San Diego, Ch l, wriUen by Thomas Cloonan, "Architectural Considerations for

Optical Computing and Photonic Switching" pp 1-41, 1994.

3. Palash Desai and Ted H. Szymanski, "Simulation and Modelling of a Smart Pixel Array

Optical Backplane Using FPGA's" Proceedings ofthe Third Canadian Workshop on Field

Programmable Deviees, Montréal, Canada, pp 38-43, May 29-June l, 1995.

4. Manoj Verghese, A Software Based Design Space Exploration of a Free-Space

Photonic Backplane. Master's Thesis, McGill University, June 1995.

5. Kai Hwang, Advanced Computer Architecture. Parallelism, Scalability,

Programmability, New York, NY, McGraw HiU. 1993.

6. Julia J. Brown, J.T. Gardner and Stephen R. Forrest. "An Integrated. Optically

Powered. Optoelectronic "Smart" Logic Pixel for Interconnection and Computing

Applications," IEEE Journal of Quantum Electronics. Vol. 29, NO. 2, pp. 715-726.

February 1993.

108

• References

7. Anthony L. Lentine and David A. B. Miller, "Evolution of the SEED Technology:

Bistable Logic Gates to Optoelectronic Smart Pixels", IEEE JOIlrnal of Qualltlll/l

Electronics, Vol. 29, No. 2, pp. 655-669, February 1993.

8. H.S. Hinton, An Introduction to Pllotonic Switclling Fabrics, Plenum Press, New

York, New York, 1993.

9. T.H. Szymanski and H.S. Hinton, "Architecture of a free·space circular photonic

Hyperplane", Submitted.

10. Ted H. Szymanski, "Intelligent optical backplanes," International Conference on

Optical Computing - 95, Salt Lake City, Utah, March 12-17, 1995.

11. Stephen R. Forrest and H. Scott Hinton, "Introduction to the Special Issue on Smart

Pixels", IEEE Journal of Quantum Electronics, vol. 29, no. 2, 598 -599, February 1993.

12. H. Scott Hinton and Ted H. Szymanski, "Intelligent Optieal Baekplane", To Appear

Conference on Massively Parallel Processing witll Opticallnterconnections, San Antonio,

Texas, Oetober 23-24, 1995.

13. Ted H. Szymanski and H. Scott Hinton, "Design of a Terabit Free-Spaee Photonie

Baekplane for Parallel Computing", To Appear, Second International Conference on

Massively Parallel Processing using Opticallnterconnects 1995. San Antonio, Texas,

Oetober 23-24, 1995.

14. T.H. Szymanski and H.S. Hinton, "Smart pixel designs for a terabit free-spaee

photonie backplane", IEEElLEOS Summer Topieal Meeting '94, Lake Tahoe, Nevada,

July 11-13, 1994.

15. R.G.A Craig and Frank Tooley, "All-optieal programmable logie gate," Applied

Optics, Vol 29, pp. 2148-52, May 1990.

109

References

16. T. Main, R. J. Feuerstein, H. F. Jordan, V.P. Heuring, J. Feehrer and C. E. Love,

"Implementation of a general-purpose stored-program digital optical computer", Applied

Optics Vol. 33, No. 8, 1619-28, March 10, 1994.

17. T.J. Cloonan, "Free-space optical implementation of a feed forward crossbar

network," Applied Optics, 31, pp. 3213-3224, June 1992.

18. V.P. Heuring et al., "Bit-seriai architecture for optical computing," Applied Optics, 29,

3213-3224, June 1992.

19. A. Guha et al., "Designing massively parallel optical computers: a case study," Applied

Optics, 29, pp. 2187-2200, May 1990.

20. B. Jenkins, et al., "Optical computing: Introduction by the feature editors," Applied

Optics, 31, pp. 5423-5425, Sept. 10, 1992.

21. F.B. McCormick, T. J. Cloonan, A. L. Lentine, J. M. Sasian, R. L. Morrison, M G.

Beckman, S. L. Walker, M.J. Wojcik, S. J. Hinterlong, R. J. Crisci, R. A. Novotny, and

H. S. Hinton, "Five-stage free-space optical switching network with field-effect-transistor

self-electro-optic-effect-deviee smart-pixel arrays", Applied Optics, Vol. 33. No 8. 1601­

1618, March 10, 1994.

22. Motorola, OPTOBUS Technical In/annatian, October 1994.

23. S.Matsuo et al. "Photonic switch monolithically integrating an MSM PD, MESFET's,

and a vertical-eavity surface-ernitting laster", LEOS'94 Pastdeadline Paper, Boston, MA,

October 31-November 3,1994, pp. PD2.1.

24. David R. Rolston, "Multiple Quantum Weil Deviees and their Impact on Optical

Architectures", Proceedings of the Topical Meeting on Photonic Deviees and Systems, pp

77-82, November 2-3, 1994.

110

•

References

25. Y. Lyuu and E. Schenfeld, " Parallel Graph Contraction with Applications to a

Reconfigurable Parallel Architecture", International Conference 011 Parallel Processillg,

St. Charles, Illinois, pp. III-258 • III-265, 1994.

26. Ramaswamy Govindarajan, Guang Gao and Palash Desai, "Minimizing Burfer

Requirements under Rate-Optimal Schedule in Regular Dalanow Nelworks" submilled 10 the
IEEE Transactions on VLSI Systems, 1995.

27. Michael R. Gary and David S. Johnson, Computers and Intractability. A Guide ta

the Theory of NP-Completeness, W.H. Freeman and Company, New York, New York,

1979.

28. A. Barak and R. Ben-Natan, "Bounded Contractions of Full Trees", Journal of

Parallel and Distributed Computing, 17, 363-369, 1993.

29. A. Rosenfeld, "Arc Coloring, Partial Path Groups, and Parallel Graph Contractions",

Journal ofParallel and Distributed Computing, Vol. 7, 335-354, 1989.

30. Cray Research, Inc., Cray T3D System Architecture Overview, Revision I.C,

September 23, 1993.

31. T.H. Szymanski, "Notes on the Optical Backplane", Internai Document, June 1995

available by calling (514) 398 5934.

32. Jayaram Bhasker, A VHDL Primer, Englewoods Cliffs, NJ, PTR Prentice Hall,

1995.

33. Douglass L. Perry, VHDL 2nd ed., McGraw-HiII, New York, NY, 1994.

34. S.D. Brown, RJ. Francis, J. Rose, Z. G. Vranesic, Field-Programmable Gate

Arrays, K1uwer Academie Publishers, USA, 1992.

lU

References

35. Betina Hold, Pramod C. Bhall and Vinod K. AgarwaI, "Rapid Prototyping and

Synthesis of a Self-testing ABS Controller using CAO Too1s", Proceedings ofthe Second

Canadian Workshop on Field Programmable Deviees, Kingston, Ontario, pp. 2.1.1­

2.1.8, June 13-16, 1994.

36. XiIinx, The Programmable Logic Data Book, 1994.

37. S. M. Trimberger ed., Field-Programmable Gate Array Technology, K1uwer

Academic Publishers, USA, 1994.

38. Miron Abramovici, Melvin A. Breuer, Arthur O. Friedman, Digital Systems Testing

and Testable Design, W.H. Freeman and Company, New York, 1990.

39. Mosis, CMOSN CeU Library Notebook Vol. 1 1.2 Micron, Revision 3.0A, 1992.

112

