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Abstract

The rapid increase in the demands for high bandwidth systems has motivated
research in optoelectronic technologies and architectures. At McGill University, a five year
five Major Project in Photonic Devices and Systems has been undertaken, with funding
from the Canadian Institute for Telecommunications Research. One of the main goals of
the project is to develop an optical backplane architecture capable of interconnecting several
electronic printed circuit boards with an aggregate bandwidth on the order of 1 Terabit per
second. Currently, the project is in its third year in which a representative subset of a
Terabit Photonic Backplane is under development.

The objectives of this thesis are three fold. First, we motivate the study of optical
backplanes by demonstrating that the interconnection network of a Cray T3D
Supercomputer can be embedded onto the optical backplane. In particular, we demonstrate
that the 3D mesh interconnect of the Cray T3D can be embedded into the "Dual Stream
Linear HyperPlane" [9]. Secondly, having established 2 motivation we then provide a
detailed review of the functional specifications of an optical backplane. In particular, we
provide a detailed review of the June 1995 backplane design [31]. Thirdly, having
established a motivation and a detailed design we then develop a executable software model
of the June 1995 backplane using the VHDL hardware description language. The VHDL
model is used to establish the functional correctness of the design. In addition, the VHDL
model is used to develop a real-time simulator for the photonic backplane using 4013 Field
Programmable Gate Armrays (FPGAs). The real time simulator can operate at a4 MHz clock
rate and can be used to test other electronic components such as the Message-Processors at
realistic clock rates. The real-time simulator developed in this thesis will be used for real-
time simulations of the associated high-speed electronic printed circuit boards which are
currently under development.



Résumé

La demande croissante pour des débits améliorés de transferts de données a stimulé
la recherche dans le domaine de l'optoélectronique et les architectures des systdmes qui y
sont reliés. A l'université McGill, un plan de cing ans a été mis en marche pour I'étude de
systémes optoélectroniques grice  une subvention de I'Institut Canadien pour la Recherche
en Télécommunication (CITR). L'un des objectifs principaux du projet est de développer
un systéme d'interconnexions optique capable de relier plusieurs cartes électroniques A un
régime de transfert de 'ordre de 1 Terabit/seconde. Le projet en est 2 sa troisime année et
une portion significative est déja en développement.

Les objectifs de ce mémoire se distinguent de trois fagons. Premierement, nous
justifions 'étude des systémes d'interconnexions optiques en syst2me d'interconnexions
d'un super-ordinateur puissant tel le Cray T3D peut se faire sur un systéme
d'interconnexion optique. Plus particuliérement, nous démontrons que l'interconnexion
tridimensionnelle en mailles du Cray T3D se réalise sur l'architecture optique d'un
hyperplan linéaire & double flot. Ensuite, ayant établi une justification pratique, nous
procédons & une analyse des spécifications d'un systéme d'interconnexions optique. Plus
précisément, une analyse détaillée est faite pour l'architecture du Systéme
d'Interconnexions de Juin 1995 (June 1995 backplane). Finalement, 2 la suite de la
justification pratique et de la description détaillée d'un systéme d'interconnexion optique,
nous procédons au développement d'un logiciel qui modéle le concept du  Systéme
d'Interconnexions de Juin 1995 en code VHDL (langage de description des matériels
VHSIC). Le modele VHDL vérifie le bon fonctionnement du concept par le biais de
simulations. En outre, la synthése du modéle VHDL sur matrice de portes logiques
programmables (FPGA) procure un simulateur temporel précis du systéme
d'interconnexions. Le simulateur du systéme d'interconnexions est réalisé sur des circuit
4013 de Xilinx, opere a 4 MHz et se préte a des tests réalistes d'autres composantes du
systéme tels les processeurs de messages. Le simulateur sur matrice de portes qui est
développé dans ce mémoire sera utilisé pour des simulations temporelles exactes des cartes
électroniques a haute performance reliées au projet et qui sont en voie de développement.
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Chapter 1: Introduction

Chapter 1
Introduction

1.1 Motivation

In recent years, a considerable amount of research has focused on integrating optics
with electronics. The impetus for such research arises from the physical limitations
inherent in all electronic devices. The ever increasing demand for high speed computers
and high throughput telecommunication systems has pushed present day logic to reach
unprecedented speeds [2](3]. Computers are advancing from parallel to massively parallel
architectures operating on multiple data streams while telecommunication systems are
rapidly progressing from circuit switching to packet based ATM switching systems thereby
inte:grating both voice and data transport [4]. Historically, the telecommunication and
computer industry were considered to serve orthogonal interests, However, as the
telecommunication industry migrates to packet switching based technology, the switching
networks will require switching nodes that are comparable to processing elements in a
computer application. In addition, as computers move towards massively parallel
architectures, the interconnection of potentially thousands of processors will be achieved
using switching networks similar to those used in the telecommunication systems. It is on
these systems that high performance demands are being placed on the most [2]. Figure 1.1
shows some memory and bandwidth requirements for past, present and future applications
[5). In the last decade, most applications such as oil reservoir modelling and 48-hour
weather forecasting required aggregate bandwidths in the Gigabits/sec. range. During the
1990s and well into the next century, applications such as the human genome project,
pharmaceutical design projects and less esoteric applications such as video conferencing
will require systems whose aggregate bandwidths are in the Terabits/sec. range.
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Figure 1.1 Memory and bandwidth requirements for past, present and future
systems.

For many years, researchers have anticipated the need for optics as a means to
implement these high bandwidth systems. Although logic gate switching times of less than
1 ns is presently achievable, it is unlikely that a purely electronic system as a whole could
switch at that rate. The limitation primarily arises from the two-dimensional nature of these
systems leading to long interconnection lines [6). High bandwidth systems normally imply
that the signals internal to the system itself propagate at high frequencies. The high
frequency transmission causes the capacitive and inductive effects of the interconnection
lines to become significant and the signal loss rate can be as high as .1 dB/cm [4] . These
effects cause a distortion of signals travelling through these lines [7] leading to an increase
in the bit error rate and necessitating error correction codes. The error correcting codes
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increasc the overall complexity of the system. In addition, adjacent interconnection lines
that are parallel to one another inductively interact at higher frequencies causing
electromagnetic crosstalk thereby degrading the signal as it propagates to its destination
[2]{3][6]. Furthermore, as vt (where v is the speed of the clock signal and 7 is its rise

time) becomes comparable to the interconnection distances between modules, transmission
lines will be necessary to distribute the clock [4].

A more interesting problem arises as the gate density of integrated circuits begin to
rise. As the number of gates on the die increases, the number of I/O pins required will also
increase. Empirical formulae such as Rent's Rule [2][8] given by

Number of Pins = k(Gates)©

attempt to quantify the number of pins required as the number of gates on an integrated
circuit (IC) increases, Here, k is a constant representing the degree of multiplexing or
signal line sharing and ¢ is a weighting factor whose value ranges from 1.0 to 3.0 (c is
typically 1.79 for high performance systems).

Figure 1.2 graphically represents Rent's Rule for various values of k with ¢ fixed at
1.79. The increase in gate density necessitates a greater number of input/cutput pins on
each IC thereby requiring higher degrees of connectivity. The increase in connectivity
leads to a growth in the density of signal traces surrounding the chip [2][3][8]. To
compensate, the cross-sectional area of the interconnect must be decreased. However, the
resistance of interconnects whose cross-sectional area have been reduced will increase due
to the skin effect that occurs at high frequencies [4][9][10).

Given these limitations, the ne=d for new paradigms in which electronic modules
are interconnected becomes clear. One such paradigm is the use of optical signals as a
means of interconnecting these electronic modules. Optical signals are non-interactive in
nature and hence do not suffer from any of the physical effects that plague electronics.
Optical signals also naturally propagate at high frequencies without any of the
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aforementioned signal distortions and can be very small in diameter (on the order of | pm).
Therefore, high connectivity is achievable [1]. Given that the optical signals have these
qualities, there is a tremendous potential for high bandwidth systems using optical
interconnects making them an ideal alternative to electronic interconnects [6] [11].

Number of Pins Required vs. Number of Gates on Chip
8 R o e rean R R

4
Number of Pins Required x 10

106 107
Number of Gates

Figure 1.2 Graphical representation of Rent’s Rule (c=1.79).

Recently, there have been many proposals and projects that attempt to capitalize on
the potential benefits of optics. The Canadian Institute for Telecommunications Research
(CITR) has undertaken a five year/five phase program to develop a backplane based on free
space optical interconnect technology. The backplane connects electronic printed circuit
boards (PCBs) via optical communication channels (OCCs). The OCCs are created by
optically interconnecting Smart Pixel Arrays (SPAs). The SPAs are optoelectronic devices
that have optical I/O connected to a semiconducting substrate consisting of processing
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electronics [12][13]). The backplane has a potential connectivity of up to ten thousand high
performance connections per PCB each capable of accommodating about | Gbits/sec. The
aggregate throughput is therefore estimated to be on the order of 1 Terabit per second
[12](14].

1.2 Author’s Contributions

The versatility of the Photonic Backplane (often called the Hyperplane) arises from
its ability to function in various applications. From the onset, the development of the
Photonic Backplane arose from the vision of a high speed packet switching centre
following the Asynchronous Transfer Mode (ATM) protocol for telecommunication
purposes or as an interconnecting mechanism for Massively Parallel Processing (MPP)
applications. It is the application to MPP systems that this thesis will concentrate on.

The contributions of this thesis are four fold. The first demonstrates the
applicability of the backplane in MPP systems by embedding the network topology of a
Cray T3D Supercomputer on to the Linear Hyperplane (the precise definition of the Linear
Hyperplane will be given in a later chapter). It is shown that the embedding process is
achievable through graph theory. Specifically, a method termed graph contraction is used
in the embedding process. Various embedding schemes are shown and some comparative
analyses will be made. The second contribution thoroughly documents the architecture of
the optical hardware that forms the basis of the backplane. The optical hardware devices
are termed CMOS SEED Smart Pixel Arrays (SPAs) and a complete physical and
architectural description of these devices is presented. The third contribution is the
development of the VHDL code that will describe the design of the SPAs (and hence, the
backplane). The VHDL code is then read by the Synopsys CAD tool which will simulate
the backplane design in software (a complete copy of the VHDL code can be found in
[40]). The fourth and final contribution is the development of a hardware simulator of the
design. The hardware simulator is achicved by synthesizing the VHDL code so that it can
be downloaded on to a Field Programmable Gate Array (FPGA) through which real time
simulations of the backplane can be undertaken. The resulting hardware simulator is an
invaluable tool allowing rigorous testing of any electronic device that will eventually be
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interfaced with the optical backplane at realistic clock rates,

1.3 Terminology

When participating in a project of this magnitude, it is vital that the definitions of the
terms used are clearly defined. In this thesis we will repeatedly make references to several
terms. Two of these terms are the Terabit Photonic Backplane and the Hyperplane. As we
noted earlter, CITR is undertaking a five year, five phase program to develop an optical
backplane that will have an aggregate throughput on the order of 1 Terabit per second [1].
In each phase, a demonstrator is designed and constructed. The demonstrators are used to
show the progress of the project and highlight all the milestones achieved. Currently,
McGill is in its third year of the five year program in which the design of the 1995/96
demonstrator is under development. The resulting 1995/1996 demonstrator will be a
backplane constituting a representative subset of the Terabit Photonic Backplane. The
design presented in Chapters 5 and 6 (which also can be found in [13][31]) of this thesis
represents a possible design for the 1995/1996 demonstrator. Because the nature of this
research leads to a constant evolution of designs, we have elected to refer to designs using
time stamps. Therefore, the design presented and discussed in Chapter 5 and 6 is called the
June 1995 backplane. The smart pixel arrays comprising the June 1995 backplane are
appropriately cailed the June 1995 smart pixel arrays.

1.4 Overview

The research presented here revolves around the Terabit Photonic Backplane project
in which a novel backplane architecture called the Hyperplane has been introduced. For
several years, many different proposals for optical systems have been made. Chapter 2
will review some of this work and discuss the practicality of these systems.

Chapter 3 is devoted to the Terabit Photonic Backplane project. The design of the
system will be described in detail as well as some of its functional specifications. The
operation of the system hinges on the smart pixel arrays alluded to in the previous section.
The optical aspect of the Smart Pixel Array is achieved using multiple quantum well
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technology. The physical nature of the multiple quantum well technology and its integration
in smart pixel array technology are briefly examined.

Next, the embedding of Cray T3D Supercomputer will be undertaken, Chapter 4
commences by formally describing the method of parallel graph contraction. It then
proceeds by reviewing the architecture of the Cray T3D and its embedding on to the
Hyperplane using parallel graph contraction. A comparative analysis of the various
embedding schemes is then made.

Chapter 5 will describe the functional specifications of the June 1995 Hyperplane
and the June 1995 smart pixel array to be used in the 1995/96 demonstrator. This will
outline, in essence, how the backplane will function if and when this particular design is
implemented.

Given the functional specifications of the June 1995 optical backplane and smart
pixel arrays, our next objective is to describe them using VHDL and simulate them using
Synopsys. The VHDL description is then synthesized for FPGA technology.! Chapter 6
commences by describing in some detail the FPGA technology as well as the hardware
description language-VHDL. The VHDL description of the system is described and the
simulation results are shown. The synthesis process is then outlined in detail and some
statistical results of the synthesis are subsequently given. The result of the synthesis
process is a hardware simulator for the backplane which can operate at realistic clock rates
(in the MHz range).

Finally, in Chapter 7, the concluding statements are presented with some additional
remarks on future work that could likely arise from this research.

1 The design of the June /994 optical backplane was also described using VHDL and synthesized
for FPGA technology by this author. A complete discussion of this research can be found in [3].
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Chapter 2
Evolution of Optical Technology

2.1 Introduction

With the foresight that the maximum speed of electronics will eventually reach a
physical maximum, the search for new solutions using optical signals had begun. Over
the past several years, there were many proposals for various optical devices and systems.
From this research, two schools of thought in optical technology emerged.  The first
deals primarily with replacing entire electronic modules with their optical counterparts.
The second uses optical signals as a means to interconnect electronic modules. In both
contexts, a module could be an integrated circuit, a printed circuit board or an entire system
such as a network or computer. In this chapter, we will closely examine both approaches
selecting representative examples from each. The chapter commences by describing the
systems using only optical devices, which shall hereafter be referred to as all optical
devices or systems, by citing specific examples. Some practical considerations of all optical
devices are then described including some remarks and observations made by researchers at
Honeywell who tried to implement a massively parallel processing system using only
optical devices. We will subsequently discuss systems that blend optics with present day
electronic systems. These hybrid systems are referred to as optoelectronic devices or

systems [11]. The advantages and disadvantages of optoelectronic devices are then
reviewed.
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2.2 All Optical Systems

In this section systems built entirely of optical systems are described. The objective
of al! optical devices is to create systems similar to electronic systems wiihout the use of
any clectronic device, including control logic. The main motivation for this approach is
that none of the components will suffer from the physical constraints that adversely affect
clectronic components. Theoretically, such systems would be capable of reaching speeds
unattainable by electronic systems.

2.2.1 All Optical Programmable Logic Gate

We begin by describing an all-optical programmable logic gate developed at Heriot-
Watt University [15]. The programmable zate, shown in Figure 2.1, is capable of
implementing eight two-input Boolean functions (ON, OFF, OR, NOR, AND, NAND,
XOR, XNOR). The programmable gate consists of two refractive and optically bistable
components.

HIl H2

S3 Output
G G2

Figure 2.1 Schematic of all optical programmable logic gate. S; and S; are the
optical input signals while H; and H; are the optical bias beams.
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The bulk of the logic processing is performed by G, while G2 acts as a logic level
discriminator to the output of G,. The inputs to the G; consists of three optical signals. S,

and S; are the optical binary inputs while H is a bias signal set to power levels labelled
a,b,or c (Figure 2, 2a).

(a) )

Figure 2.2 Idealized characteristics of the optical elements used.

These signals, either acting alone or combined, form the nonlinear output characteristic of
G (shown in Figure 2.2a). This has been termed on axis operation. The output of G,

labelled S3, is incident on to G, with Hj as the bias beam yielding a characteristic response
shown in Figure 2.2b.

By choosing the appropriate bias beams H, and Hj, the gate can be programmed to
implement any of the previously mentioned logic gates. For example, if we want to
implement an XOR gate, H; should be set to the intensity level c and Hy to . If Sy and S;
are both 0, then S3is C and if S; and S, are both one, then S3 is B. When either of these
power levels is incident on to Gg, the output will be 0 since Hj is set to p. If either S) or S;
is set high, then the intensity of S3 will be set to A. With S3 set to A and Ha to set to B, the
output S4 will be high. This is exactly the functionality of an XOR gate.

The functionality of the programmable logic gate hinges on the nonlinear responses
shown in Figure 2.2. Given that G; and G are solely responsible for performing the logic

10



Chapter 2: Evolution of Optical Technology

functions, they must be fabricated from optically bistable materials that exhibit such
characteristics [15).

One such device is the ZnSe based nonlinear interference filters. These interference
filters have similar characteristics as a Fabry-Perot Etalon with a nonlinear material in its
cavity [15). They are constructed by two outer stacks consisting of alternating layers of
high and low refractive indices and each with a thickness of a qu‘arter of the operating
wavelength, These stacks perform as the mirrors found in the Fabry Perot systems. The
cavity is filled with layers of absorbing materials preferably with a thickness of a half
wavelength each [8). This forms the nonlinear interference filter with an (in the case of
ZnSe) operating wavelength of 834 nm.

The maximum measured speed of this device is on the order of ] KHz and the
reconfiguration speed is about 1 MHz. However, to ensure that the response of G, is
identical for inputs S1, S; and H, the wavelengths of these inputs have to be within ] A
of each other. The only way to achieve this is to beam split one laser to form all three
inputs. However, as the authors outlined, this can be difficult to accomplish in practice and
is one of the major drawbacks of this design [15].

2.2,2 Stored Program Optical Computer (SPOC)

The Stored Program Optical Computer [16] is probably the first computer based
on the Von Neumann model that is made entirely of optical devices. It parts from other all
optical systems in that it is a general purpose device. Almost all other optical systems are
application specific. SPOC comprises of several modules that form the instruction register,
memory block, ALU, accumulator, address comparator and state control. The modules are
interconnected using optical fibre.

11
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Figure 2.3 Modular design of the Stored Program Optical Computer.

Figure 2.3 shows a modular design description of the system. Previous implementations
of any optical computer have relied on an external electronic host to provide control. SPOC
has both code and data in its optical memory and can manipulate the input data using it's
own built-in instruction set. The instruction set includes load/store instructions, ALU

operations and branch statements.

In any computer, it is essential that all signals are synchronized. In conventional
electronic computers, synchronization is maintained with the aid of flip-flops and a global
clock. SPOC, however, does not use such an approach. Instead, synchronization is
maintained by carefully determining the length of each fibre to control when signals arrive

at a gate. This method is termed time of flight synchronization.

12
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A < D =AC +BC'
B E=BC+AC A A+B
B ._..> _.'C A+B
C
(a) (b)
(©)

Figure 2.4 Optical components used to implement SPOC (a) directional coupler (b)
splitter/combiner (c) optical fibre.

The optical components used to build SPOC are shown in Figure 2.4, The
components include the optical switch, the splitter/combiner and the optical fibre. The
optical switch is a directional coupler fabricated on a Lithium Niobate substrate [16].
Essentially, the directional coupler is a waveguide that realizes a 2x2 switch whose states
(cross and bar) are determined by placing a voltage across it. In the absence of a voltage,
the coupler is in the cross state and when a voltage is applied, the switch put into the bar
state. The voltage across the switch is controlled by an optical signal C through a
photodetector. If the inputs are Boolean variables, then the directional coupler realizes the
boolean expressions shown in the figure.

The designers of SPOC claim that 4.5 V across the directional coupler is sufficient
to perform switching. This is comparable to the voltage levels found in CMOS devices.
However, in {8], it is shown that anywhere between 10-50 volts is required in order to
avoid any optical crosscoupling between waveguides. The rate at which the source voltage

13
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can reach such magnitudes is slew rate limited. This will limit the reconfiguration rate of
the system.

The splitter/combiner is a straightforward device. It merely combines two input
signals and then splits the combined signal back into two (logical OR operation). This
device however has one significant drawback. In [8])[17] it is noted that up to 7. percent
of signal power can be lost due to the coupling of signals in the splitter/combiner device
resulting in significant signal loss and highlighting the need for regencration.
Regeneration is achieved using optical amplifiers which introduce further delay into the
system thereby reducing the maximum overall operating speed and increasing the overall
cost.

The optical memory is achieved by the use of an optical fibre loop. The length of
the fibre is

l=nl

Here n is the number of bits to be stored in the optical fibre and the 1 is the distance

one bit travels in one clock period. As an example, 16 bit-words require 33 km of fibre if
the clock speed is 100 MHz (16][18]. Notice, however, that this memory unit is not
addressable. That is, memory is accessed in a serial manner which is considerably slower
than conventional random access memory.

ARITHMETIC LOGIC UNIT
In this section, the ALU of the SPOC system is described as a representative example of
how the various sub-modules operate. Figure 2.5 shows the configuration of the ALU

module of the SPOC. It consists of several directional couplers that implements a bit serial
addition function as follows:

Sn=AnBpCp -1 4 ApByCln 1 + AnBCot + ApB'Cly.i

14
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S, is the sum of A,, B, and the carry from the addition from the previous bit, n-1.

Observe that the ALU also performs logical AND and OR functions when performing
addition.

) e () e (R

Cn-1 — Bn —|

Figure 2.5 Arithmetic logic unit used in SPOC.

To save hardware, the ALU shown in Figure 2.5 was modified to simultancously
calculate seven functions in addition to the Add function. Using the current memory word
and the accumulator as inputs, a total of eight functions are performed. Only one of these
eight operations is required at a given time and so an 8 by 1 optical multiplexor (constructed
using multiple directional couplers) is added to the output of the ALU to route the required
solution to the proper destination [16].

All modules in the SPOC were interconnected using precisely cut fibre and operated
at speeds of about 50 MHz. However, as the speed of the computer increases, the signals
are more susceptible to changes in temperature. Such changes can cause signals to skew.,
Since there are no latches to maintain synchronization, this type of skew can have
disastrous effects. In addition, the designers of SPOC reported that any physical
disturbance of the optical fibre such as casual contact can cause shifts in the polarization of
the light [16].

2.3 Practical Considerations of ANl Optical Computing

In the introduction, it was mentioned that the main motivation of optical computing
was to find the means to implement faster, more powerful computers without the capacitive
and resistive effects that afflict electronic signal paths. The previous two sections described
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what the author believes to be representative examples of current optical computing.

Indeed almost all implemented optical computers are variations of the previous two
examples.

In both cases, the devices were implemented using almost no electronic devices, It
is clear that there will be no problems with capacitive or resistive effects and there will be
virtually no crosstalk between adjacent signals. At first glance, this might seem
encouraging. However, it is unlikely that such devices could be used to satisfy present
day demands and requirements. Although the programmable logic gate based solely on
optical devices is truly novel in nature, its maximum speed is limited to about | KHz.
Presently, electronic gates can operate in hundreds of MHz and in some cases up to | GHz

[6].

In the case of SPOC, the instruction set was similar to the Von Neumnann computer
invented fifty years ago. There is no practical application of a computer with such limited
power. In addition, [16] notes that although SPOC does not suffer from crosstalk, casual
contact with the optical fibre will cause changes in polarization in the signals travelling
through the fibre. Furthermore, SPOC can only operate at speeds that are comparable to
electronic computers. There are plans to significantly increase the processing speed of
SPOC. This, however, may not be possible since SPOC is synchronized using the time of
flight approach. As the speed of SPOC increases, the optical fibres will become more
sensitive to temperature changes making the system more difficult to synchronize.

A more serious problern with optical computing is memory. There is no efficient
way to store data. Recall that over 30 kilometres of fibre was required to store a 16 bit
word. Present day computers are equipped with several megabytes of memory to
implement a vast range of algorithms, It is not possible to implement such large amounts of
memory using optical fibre. Moreover, even if optical fibre could be used, the memory
would have to be implemented using loops of fibre. This implementation would not allow
random memory addressing and would degrade system performance.

16
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Despite the many virtues that are possible with all optical computing, present
technology is still too immature to create any marketable system. Consequently, a new
approach to optical computing is needed.

In 1990 researchers at Honeywell proposed a design for a massively parallel optical
computer. Although this system was never implemented, their analysis showed that it was
presently impractical to make all-optical computers. It was suggested that, although great
strides in optical computing had been made, the near term goals should research optics as a
means of interconnect between processors only and let all computational devices be handled
using current state of the art electronics [19]. In this manner, the capacitive effects of
signal paths could be avoided while maintaining a high degree of computational power that
has developed over the past fifty years. To the extent of the author's knowledge this was
the first paper that recommended a departure from all optical computing. Since then, much
of the research in optical computing has encompassed optics in computing. During this
time, the notion of optics competing with electronics began to die out and the prospect of
optics complementing electronics became increasingly popular [11][20].

2.4 Systems Based on Optoelectronic Devices

The second approach to using optics in present day technology is to blend optics
with existing electronic technology. In these systems, optical signals are generally used as
a means of interconnecting electronic modules. These modules could be individual chips,
multichip modules or printed circuit boards. The interconnection of these modules could
also be accomplished using lithium niobate fibres (optical fibre) or using free space optics.
The main advantage of using optical fibre is that the alignment constraints imposed on the
free space systems are relaxed to a certain degree. However, free space optics offers the
potential of higher degrees of connectivity and parallelism since the optical signals are much
smaller in diameter than optical fibre (optical signals can be 10 pm in diameter while optical
fibre can be up to 70 um in diameter). In this section, a systems level description of two
optoelectronic demonstrators will be examined. The first of these demonstrators is the
Systemn V project conducted at AT&T Bell Labs. The second is the OPTOBUS product
designed and developed by Motorola, Inc. The description of these systems will lead to the
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description of the Terabit Photonic Backplane project which will be described in great detail
in the next chapter.

2.4.1 System V Project

In this section, the System V project undertaken at AT&T's Bell Labs is reviewed
[21]. The system is a 32 x 16 switching fabric as shown in Figure 2.6, The system is a
five stage, 32 fibre input, 16 fibre output Extended Generalized Shuffle Network [21]. All
interconnects between stages are achieved using free-space optics in which optical signals
propagate orthogonally to the plane of the device substrate,

16 Fiber
Outputs

32 Fiber
Inputs

Figure 2.6 Architecture of the System V project (EGS network).

The network comprises the following. Each switching stage consists of a 4x4 array
of 2 by 1 multiplexors or (2,1,1) nodes. Each node has two active inputs, one active
output and an active capacity of 1. The switching stages are interconnected in a Banyan
fashion to realize the extended generalized shuffle topology. The Banyan interconnect
requires that each output of every node be imaged onto two inputs on the next stage. This
is achieved by placing Binary Phase Gratings (BPG) between stages. The BPG uses
Fourier Computer Generated Holograms (CGH) to perform a 1 to 3 split on each output
signal and is used to steer the output to the required inputs of the next stage (Figure 2.7).
Since only two input signals need to be imaged (in accordance with the Banyan
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interconnection scheme) on the next stage, one of the three spots generated by the BPG
must be blocked or masked [21].

 J

Device
Array 1

Device
Array 2

CGH

« >
210

Figure 2.7 Optomechanical setup for the System V demonstrator,

Each of the nodes is implemented using a smart pixel. Essentially, a smart pixel is
a device that has an optical input and an optical output (or modulator) embedded on a
semiconducting substrate. The substrate can have logic etched on to it for on-chip
processing. The optical input window will receive an optical input signal and convert it to
an equivalent electronic signal. The logic on the semiconducting substrate will process the
signal. The optical output window will convert an electronic signal from the substrate to an
optical signal by modulating a continuous wave of light. The System V network was
implemented using FET-SEED technology consisting of dual rail optical inputs and cutputs
which will be discussed in detail in the next chapter. The inputs consists of a pair of
quantum well p-i-n photodiodes and a pair of clamping diodes to restrict the voltage swing
of the input. The input/outputs were embedded on buffered FET logic which implemented
the 2 by | muitiplexor and a control latch. In all, 25 FET's per pixel were required. The
nodes were separated by a 210 pm pitch in all directions and the optical input and output
windows were each 11 tm x 11pm in dimensions [21].
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The network operated as follows. Upon startup, the control signals were clocked
into the nodes from the optical inputs and stored in the latches. The latches are enabled
using external electronic latch enable signals. Once the control latches are set, the network
configuration has been established. The network is then capable of routing data from the
input ports to the appropriate output ports [21].

The System V project was a significant achievement because there are immediate
applications of this system. If buffering is added to the system and a fast path-hunt
algorithm is implemented, then the network can be operated in a packet switching mode. In
addition, the use of optical signals as a means of interconnect allows dense interconnection
intensive systems to be readily implemented [21].

However, there are still many factors that need to be considered in any
interconnection scheme achieved using free space optics. The foremost difficulty is the
alignment of the free-space optical signals. Recall that the area of each input and output
window is about 11 pm x 11 pm. Physical conditions such as thermal expansion could
cause the beams to misalign and miss the input window.

2.4.2 OPTOBUS Optical Link

The OPTOBUS package is an optical link that represents one of the first marketed
products that utilizes optical interconnect through optoelectronic devices. It consists of a
one dimensional array of bi-directional optical interconnects with an aggregate throughput
of 1.5 Gbits/sec in each direction [22]. The first model of the OPTOBUS package
comprises 10 transmit and 10 receive channels in a single 96 pin grid array package. The
optical signals are transmitted and received through guided wave multimode optical fibre
lines that can be of various lengths. The optical fibre lines alleviate some of the many
alignment issues associated with free space optical transmission. Figure 2.8 shows the
architecture of the system which contains twenty optical fibre lines each with a core
diameter of 62 pm, Ten of these lines are used to transmit signals from Module 1 to
Module 2 and ten are used to receive signals from Module 2. Each optical fibre has data
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transfer capacity of 150 Mbits/sec leading to an aggregate data transfer rate of 1.5 Gbits/sec
in each direction [22].
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Figure 2.8 Functional layout of the OPTOBUS system.
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The transmission of data is achieved through a one dimensional array of ten vertical
cavity surface emitting lasers (VCSELs). The precise nature of VCSELs is rather detailed
and is beyond the scope of this thesis, However, it suffices to say that VCSELs are
miniature lasers that receive electronic data from its computer host through a laser driving
integrated circuit and converts the data into optical signals. The laser driving integrated
circuit must receive the data from the computer host in dual rail form. This means that all
data transmitted from the computer host must also be complemented. The light emanating
from the VCSELSs will travel along the optical fibre where it is eventually received by the
receiver on the receiving module. The receiver consists of an array of 10 photodetectors
connected to a transimpedance amplifier. In essence, the photodetectors will convert



Chapter 2: Evolution of Optical Technology

optical signals into electronic signals which can then be transmitted to the computer host on
the receiving board [22].

The high bandwidth capabilities of the OPTOBUS system allows designers to delve

into various applications such as high definition television (HDTV), data storage and file
servers [22].

2.5 Chapter Summary

In this chapter, a survey of optical technology was discussed. We began by citing
examples of systems that comprised only optical devices. We saw that although great
strides had been made in this area, optical technology was still too immature to completely
replace electronic technology. We then examined systems that blended optics with
electronics. These hybrid systems called optoelectronic devices offered the benefits of
using optics while still maintaining a high degree of computational power. We cited two
specific examples of systems based on optoelectronic devices.

In the next chapter, we will describe the Terabit Photonic Backplane which is also a
system based on optoelectronic devices. Once the specifics of the Terabit Photonic
Backplane have been discussed, we will demonstrate how it can be used in real world
applications (namely, the Cray T3D Supercomputer).
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Chapter 3

Overview of the Terabit Photonic
Backplane

3.1 Introduction

This chapter will overview the Terabit Photonic Backplane project mentioned in the
first chapter, The development of the Terabit Photonic Backplane is one of the main
objectives of the Major Project in Photonic Devices and Systems which is a five year
endeavour funded by the Canadian Institute for Telecommunications Research [1]. The
Major Project is subdivided into four projects. These projects conduct research in
Optoelectronic Devices, Optoelectronic Packaging Concepts, Optical and 0ptomechanical
Hardware and Large ATM Architectures. The research for these projects are carried out in
three research centres across Canada [1]. At the end of the five year endeavour, a free
space optical backplane with an aggregate throughput on the order of 1 Terabit/sec. will be
constructed. We refer to this backplane as the Terabit Photonic Backplane. In this
chapter, we review the architecture of the Terabit Photonic Backplane.
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3.2 Terabit Photonic Backplane

3.2.1 Overview of the Backplane

Figure 3.1 shows a conceptual view of a free-space optical backplane [12][13]
which could represent the Terabit Photonic Backplane. The backplane consists of a large
number of optically connected channels (OCCs). The OCCs are created by Smart Pixel
Arrays (SPAs) which are optically interconnected. SPAs are optoelectronic devices
consisting of optical inputs and/or optical outputs and a semiconducting substrate
consisting of electronic processing circuitry. The printed circuit boards (PCBs) shown in
Figure 3.1 can transfer data from one another by injecting signals into the OCCs via the
SPAs. The signals are then transferred to the destination PCBs where the SPAs wili
receive and extract the signals and convert themn back into electronic form. One of the main
advantages of using optical signals is the high degree of connectivity they offer. The
backplane can offer up to ten thousand high performance optical signals per PCB leading to
an aggregate throughput on the order of 1 Terabit per second [12][!3].

Figure 3.1 shows that each PCB hosts a series of integrated circuits (ICs} . Thesc
ICs could be high performance switching nodes in which case the entire backplane could be
used in a telecommunications application. Alternatively, the ICs could represent processing
elements in which case the backplane could be used in a massively parallel processing
application.
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Printed Circuit
Boards

Integrated
Circuits

Optical Backplane

Smart Pixel Arrays

Figure 3.1 Conceptual depiction of the Terabit Photonic Backplane (Hyperplane)

3.2.2 Smart Pixel Array Technology

In the previous section, we mentioned that data to be transferred between PCBs is
injected into the OCCs via the SPAs [12]. As its name implies, a smart pixel array is
simply an array of smart pixels. A smart pixel is an optoelectronic device that has an
optical input and/or an optical output with electronic processing circuitry and has the ability
to be integrated into two-dimensional arrays as shown in Figure 3.2 [12]). In Figure 3.1,
the SPAs are packaged optoelectronic chips that are mounted on 2 PCB. The SPA can
communicate with the ICs mounted on the PCB through the electrical channels.
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Figure 3.2 Smart pixel array.

In addition, each SPA can communicate with other SPAs mounted on other PCBs by using
a two dimensional array of free-space optical signals [12]. The SPA shown in Figure 3.2
is a representative diagram of smart pixel array technology. There are many different
technologies that can implement SPAs that are presently evolving. We will concern
ourselves with only two of these technologies. The first is the smart pixel array based on
VCSEL/MSM technology [12)[23] while the second is smart pixe! arrays based on CMOS
SEED technology [12). The long term goals of the Major Project is to develop monolithic
smart-pixel arrays based on vertical cavity surface emitting lasers (VCSELs), metal-
semiconductor-metal (MSM) photo-detectors and heterojunction field effect transistors
(HFETs) [1]. The VCSELSs are the optical outputs, the MSMs are the optical inputs and the
HFET is the substrate on which the processing electronics is etched. Currently, the
integration of HFETSs with MSM detectors in Indium Phosphide based materials is under
development. However, as we mentioned in the Introduction, demonstrators are built
approximately once every year to highlight the milestones achieved. Since Indium
Phosphide technology is still evolving, the SPAs used in the demonstrators thus far have
been implemented using CMOS SEED technology. The CMOS SEED SPAs are based on
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muitiple quantum well (MQW) technology. A full description of MQW technology will
be given next.

3.2.3 Multiple Quantum Wells

The main purpose of any optoelectronic device is to receive data in optical form and
convert it into an electronic form. Once in this state, any desired processing can be
performed on the data. Upon completion, the data can then be converted back into an
optical signal for transmission. This process is also known as optoelectronic conversion.
In the following, we will describe physical attributes of the Multiple Quantum Well which
forms the basis of the CMOS SEED Smart Pixel Array.

The efficacy of SEEDs as optoelectronic devices hinges on the changes in optical
absorbtion that are achieved by placing and external electric field across it. The
optoelectronic conversion capability is accomplished using multiple quantum well (MQW)
technology. Essentially an MQW is a device with a highly periodic structure consisting of
layers of dissimilar materials [6][7][8] formed on a substrate such as GaAs. Each quantum
well consists of a thin layer called a well surrounded on each side by a thicker layer called a
barrier.  Each layer is generally about 100 Angstroms thick and are grown using a
molecular beam epitaxy process. The well is usually fabricated with GaAs while the barrier
is made from AlGaAs. About 75 to 100 of these quantum wells are then stacked upon one
another to form the multiple quantum well as shown in Figure 3.3.

The MQW operates as follows. Associated with any material is an absorbtion
spectrum. The absorbtion spectrum gives an indication of how absorptive (that is how
much light incident on a given material will be absorbed) a material is as the energy (and
hence the frequency) of the light incident upon it varies. In bulk materials, this spectrum is
smooth and rises smoothly as the frequency (and hence the energy) of the photons
increases. In quantum weli materials, the absorbtion spectrum contains discrete steps.
These steps are present because the electrons and holes within quantum wells reside in
discrete energy levels. The absorbtion spectrum shifts as electric fields are applied
perpendicular to the quantum wells.
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1 24

Figure 3.3 Physical structure of an MQW.

In quantumn wells, the coulombic interaction between the electron and hole causes
the absorbtion spectrum to exhibit peaks called excitonic peaks. These peaks occur at
discrete energy levels associated with the incident photon. When a photon is incident to the
quantum well at these peaks, a bound electron-hole pair, called an exciton, is created. This
pair does not separate into a separate electron and hole but rather remains loosely coupled
similar to that of a loosely coupled hydrogen atom. In a bulk material, the excitons are
much Jarger and therefore are short lived except at low temperatures. However, in
quantum well materials, the excitons are confined by the wells because of the barriers

surrounding them. Therefore, even at room temperatures, the absorbtion spectrum exhibits
excitonic peaks [6][7](8].

If an electric field is applied the electrons and holes would be pulled apart, to some
degree, towards opposite sides of the well. If the material were a bulk material then the
electrons and holes would be torn apart into distinct electrons and holes. However, in the
case of the quantum well, the electrons and holes are prevented from being torn apart
because of the barriers surrounding the well. Thus the electrons and hoies would continue
to orbit one another. Since the electrons and holes are already pulled apart, less energy is
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required to form an exciton. Thus a red shifted absorbtion spectrum (an effect known as
the Quantum Confined Stark Effect or QCSE) is observed when an electric field is applied
as in Figure 3.4. In quantum wells where the band gap energy of the barrier is much
higher than that of the well, then each well acts independently and the absorption multiplies
by the number of wells.
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Figure 3.4 Quantum Confined Stark Effect (QCSE).

Given these properties, it is possible to construct an optical receiver and an optical
"transmitter” using the multiple quantum wells. The word transmitter is somewhat
deceptive because the MQW cannot produce light itself. However, using the QCSE, the
multiple quantum well can modulate a continuous wave of light. Essentially, the MQW as
a transmitter works as follows. A continuous wave of light is applied to the MQW. If the
there is no voltage across the MQW then most of the CW will be absorbed. If however, a
voltage is applied the absorption peak shifts and some of the CW will be reflected. That
reflected wave of light will be received by a SEED on another Smart Pixel Array (and hence
received by another printed circuit board) [8][7][24].
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The MQW can also act as an optical receiver. In the absence of any voltage, the
MQW behaves as a heavily reversed biased pin diode. Subjecting the reversed binsed
MQW to light, induces a photocurrent through the MQW. The presence of a photocurrent
corresponds to a logical 1 where the absence corresponds to a logical 0. The MQW has
several advantages. It can act as both a modulator and a receiver, it can be integrated in a
VLSI system to embed logic on the die itself.

3.3 Operation of the Terabit Photonic Backplane

One of the advantages of the Terabit Photonic Backplane is its ability to embed
various interconnection networks. The result is a multidimensional backplane which
provides PCB to PCB connectivity. The MP’s are capable of dynamically reconfiguring its
access to the bukplane channels establishing an interconnection network which is
dynamically reconfigurable. The resulting three dimensional interconnection design space
is often referred to as the Hyperplane [13].

So far, we have described the basic architecture of the Hyperplane and the
technology used to implement the optical channels. However, the diagram shown in
Figure 3.1 is only a conceptual depiction. There are several structures which can
implement the Hyperplane [9]. In the following, we will review two of these structures-
namely the Dual Stream Linear Hyperplane and the Circular Hyperplane, We will then
discuss the specifics of transmitted data between boards.

3.3.1 Dual Stream Linear Hyperplane
Figure 3.5 shows the structure for the dual stream linear Hyperplane consisting of

four PCBs [9). The OCCs are organized into two uni-directional data streams called the
upstream and the downstream.
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Figure 3.5 Typical structure of a Dual Stream Linear Hyperplane.

The upstream transmission means that PCB { will transmit to another PCB j where i < j.
The downstream transtission means that PCB i will transmit to another PCB j where i >j.
The fact that there are two uni-directional data streams implies that each PCB will need two

packaged SPAs, One SPA will be used for upstream transmission while the other will be
used for downstream transmission [9].

3.3.2 Circular Hyperplane

An alternative structure to the dual stream linear Hyperplane is the Circular
Hyperplane. Figure 3.6 shows the Circular Hyperplane for four boards. We see that
there is only one stream necessary in this implementation. Using bulk optics, PCB 3 in
Figure 3.6 is connected to PCB 0.
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PCB

Bulk Optics

Figure 3.6 Typical structure of a Circular Hyperplane.

3.3.3 Reconfigurable and Intelligent Operating Modes of the Hyperplane

The Hyperplane can operate in two general modes. The first is called the
reconfigurable mode while the second is called the intelligent mode [13]. The mode that the
Hyperplane operates in is dependent on the application it is being used in (eg.
telecommunications, massively parallel processing). In the reconfigurable mode, the
Hyperplane can be reconfigured to embed the network topology of any graph. This is
only limited by the number of electrical and optical channels. When operating in the
intelligent mode, the SPAs will process packets of data as they propagate through the
backplane. The processing electronics on each SPA will decide whether to extract a packet
based on predefined extraction criteria [13].

3.4 Summary
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In this chapter, a detailed explanation of the Terabit Photonic Backplane was given.
The concepts of multiple quantum well technology were also outlined. The topics covered
in this chapter is enough to give the reader an adequate background to understand the topics
covered in the subsequent chapters. In the next chapter, we demonstrate that the network
topology of a Cray T3D Supercomputer can be embedded on to the Hyperplane. The

purpose is to demonstrate that modern high performance systems can be implemented using
the Hyperplane
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Chapter 4
Graph Contraction and Embeddings

4.1 Introduction

In previous chapters, we have motivated the need for optical technology and
described the Terabit Photonic Backplane (otherwise known as the Hyperplane). One of
the primary advantages of the Hyperplane is its ability to embed a variety of networks
allowing it to satisfy the spectrum of requirements demanded by different applications
including parallel processing applications. Each printed circuit board could accommodate
one or more processors that would be interconnected optically to other processors on other
boards. One of the main bottlenecks inhibiting the performance of parallel processing
systems is the communication time between processors. As the number of processors in
the system increases, the limitations imposed by the communication between processors
become increasingly significant. This limitation is due to the two-dimensional nature of the
system that often implements a multidimensional network configuration leading to long
interconnection lines [6]. The network configuration itself also differs for differing
applications. How well the network configuration suits the demands for the particular
application will directly impact the overall performance of the system [25]. Since the
Hyperplane uses optical channels to interconnect its boards and is designed to be
reconfigurable, a greater degree of connectivity is thus achievable alleviating the communi-
cation bottleneck to a great extent. In this chapter, we will demonstrate the usefuiness of
the Hyperplane in a massively parallel processing architecture. We will examire the Cray
T3D Supercomputer and embed its network topology, through graph contractions, on to
the dual-stream linear Hyperplane (the embeddings of the Cray T3D Supercomputer on to
the Circular Hyperplane using similar schemes has been done in [13][31]). The chapter
commences by giving a formal description of graph contraction. Citing specific
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examples, we will carry the reader through the embedding process and demonstrate that the
Cray T3D can be implemented on to the dual-stream linear Hyperplane. We will, in
addition, discuss the number of printed circuit boards and the number of smart pixel arrays
per printed circuit board necessary to achieve this.

4.2 Graph contraction
4.2.1 Introduction to Graph Contraction

Graph contraction [25][28] is often used in parallel processing when a set of tasks
for a software application must be assigned to the parallel processing system whose
network topology is fixed. The scheduling of such tasks, in practice, is not always
straightforward because the execution times of each task may vary. Since the tasks are
often dependent on one another, a schedule for processors needs to be developed so that
each processor will execute at the appropriate time [26]. To help simplify the problem,
graph contraction is normally used for assigning the tasks to the processors [25][28].
However, graph contraction is also a useful tool, as we will shortly see, when embedding
networks onto the Hyperplane. Although the concepts in graph contraction are straight-
forward, a formal description of it will be given, in the next subsection, for the sake of
completeness.

In parallel processing, the software application consists of various tasks which are
executed by processors of the network. Ideally, the number of processors in the network
should be the same as the number of tasks in the application. Unfortunately, the overall
cost and complexity of the system rises proportionally to the number of processors it
contains. Fortunately, however, applications consisting of a large number of tasks can be
processed by smaller networks by assigning multiple tasks to each processor. The tasks
will share the resources of the processor [28). This approach not only reduces the number
of processors required but also alleviates the interprocessor communication latency to some
degree [28]. The challenge therefore lies in the assigning of tasks to a given topology that
yields the best performance. The process by which this is achieved is termed graph
contraction [25].
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Parallel software applications are often represented using standard graph notation in
which a vertex represents a process or task to be executed and an edge between two
vertices represents the communication between the two processes. Figure 4.1, shows an

example of such a graph, G(V,E). The set of vertices is represented by V(G) or simply V
where each vertex v €V and |V| represents the total number of vertices in G(V,E).
Similarly, the set of edges is represented by E(G) orsimply E where each edge
e € E and |E| represents the total number of edges in G(V,E). Two vertices, & and v, of
G(V,E) are termed neighbours if the edge {(u,v) € E where (u,v) represents an edge
connecting vertex u with vertex v. Additionally, G'(V',E') spans G(V,E) ifE‘'c E
[251[27](28].

Vertices >

Edge

Figure 4.1 Typical graph topology consisting of five
vertices and eight edges.

4.2.2 Formal description of Graph Contraction

The task of assigning a set of processes to a given network topology can be
represented by a mapping function ¢ which will transform or map a graph G (represent-

ing a set of tasks) to a reduced graph G’ that maintains certain properties of G(V,E). We
call the mapping function, a contraction of G(V,E) [28].
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Let G(V,E) be any arbitrary graph with the same characteristics described in the
previous subsection, Partition the set of vertices, V, into a set of mutually exclusive
subsets, V|, V,, .. such that the number of vertices represented in each subset does not
excced a positive integer, ! (i.c. |V,|s! for i=1, 2, ..). Such a partitioning of the graph
G is called an [-partition of G. The contraction ¢ will transform the graph G(V,E) into a
contracted graph G(V ', E’) by performing an [/-partition of G(V,E) and replacing each
resulting subset of vertices by a single vertex v, where v, € V', The edges are then added
according to the following rule. A pair of vertices (v,, v}) with i#j are joined by an edge
in G'(V', E') if and only if there is an edge connecting a vertex in V, with a vertex in
V,. This process is termed graph contraction [28]. Notice that when the subgraphs,
formed by the [-partition of G, are replaced by the set of vertices in V' ’, all the edges within
each subgraph are internally absorbed by the vertices in V. We define the width of a
contracted edge connecting v, withv,’ to be equal to ]ev‘,-.,J | where evy, €E and evy
represents the set of edges that connects a vertex in V, with a vertex in V. Additionally,
the number of vertices that a vertex v, contracts under the mapping @ is called the
cardinality of v,. A bounded contraction of degree | is a contraction from G(V,E) to
G'(V',E') such that the degree of any vertex v,€ V' is less than or equal to its
cardinality. Lastly, a bounded contraction of minimal degree, is simply a bounded
contraction of G whose degree / has been minimized [25].

Repeated applications of graph contraction to a problem results in an exponential
reduction in the size of the problem which can then be assigned to networks with fewer and
fewer processors. With this method, almost any parallel application could be executed
using a processing system of any size. However, as the number of processors decreases,
the number of tasks assigned to each processor will increase [28][29].

Thus far, the description of graph contraction has focused on its software
application. That is, the task is to assign a number of software tasks to a finite number of
processors with a fixed topology. it is important to note that for our purposes, graph
contraction will be used for the embedding of network topologies onto the Hyperplane and
not for parallel software applications. In this context, the vertices of a graph represent
processing elements of the Cray. After contraction, each of the contracted vertices
represents a set of processing elements placed on a single board. Given the network
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topology, we wish to embed these processors on to the dual-stream linear Hyperplane.
However, the Hyperplane has a fixed number of boards that it interconnects (the number of
boards varies from 16 to 64). If the number of vertices (processors) we wish to embed is
less than or equal to the number of boards accommodated by the Hyperplane, then we
merely assign one processor per board. If, on the other hand, the number of processors is
greater than the number of boards then we have to assign multiple processors to cach
board. We use graph contraction to assign these processors to the .boards.

4.3 Graph Embeddings

The connection intensive nature of the Hyperplane allows a number of different
network configurations to be embedded on to it [13][12]. The embedding process consists
of mapping a graph representing a network configuration on to the Hyperplane itself. The
Hyperplane represents a fixed architecture whose interconnection scheme varies to suit
different networks. The embedding describes the manner in which the boards need to be
connected to achieve the desired network topology. Figure 4.2 shows an example of a 4
board embedding on the Hyperplane. The nodes at the bottom of the template (numbered 0
to 3) represent the printed circuit boards connected to the Hyperplane. The vertical lines
connected to the nodes are the electrical connections between the board and its associated
SPA or SPAs (recall each board can have more than one SPA associated with it). The
bold, horizontal lines represent the optical connections between two boards (through the
SPAs). The bold squares symbolize an optical transmitter (or modulator) while the circles
symbolize an optical receiver. The template is divided into two halves. The top half
represents the downstream transmission while the bottom half represents the upstrecam
transmission. For each board a separate SPA is needed for the upstream and the down-
stream transmission. Downstream transmission simply means that node { will transmit to
another node j where i > j. Similarly, upstream transmission means that node i will
transmit to another node j where i <.
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Figure 4.2 Example of a 4 board embedding on the Hyperplane.

Figure 4.3 shows the convention we have chosen for the embedding process. The lelt half
of the electrical connections are used for downstream transmission and rec:sption of data.
The right half are used for upstream transmission and reception of data.

4 -

Downstream Upstream

Figure 4.3 Convention for placing upstream and
downstream optical connections.

4.4 Architecture of the Cray T3D Supercomputer
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In this section a bricf examination of the Cray T3D Supercomputer is given. The
Cray T3D represents the first of a three phasc project undertaken by Cray Research, The
goal of the project is to attain a massively parallel processing system (or MPP) that can
reach a sustained perfermance of one trillion floating point operations per second (1
Teraflop) on real customer codes [30]. The system is designed to support various styles
of MPP programming such as work-sharing, data parallel and message passing, The Cray
T3D comprises four types of components. These are the processing elements (PE), the
interconnection network that connects the nodes, the Input/Output gateways and the system
clock which operates at a period of 6.67 ns (or a frequency of 150 MHz). For our
purposes, we will concentrate only on the PEs and the interconnection network {30].

4.4.1 Processing Element

The Cray T3D, as with any MPP computer system, contains hundreds or thousands
of microprocessors each accompanied by some local memory. The combination of two
microprocessors, local memory and some support circuitry make up a processing clement.
Depending on the system configuration, the Cray T3D contains between 32 and 2048 PEs
[30).

The microprocessor in each PE is a 64 bit reduced instruction set computer (RISC)
microprocessor developed by Digital Equipment Corporation capable of performing
arithmetic and logical operations on 64-bit integer and 64-bit floating point registers. In
addition, the .. -~or. acessor is furnished with data and instruction cache memory. The
local memory is a *ynamic RAM for system data storage and is connected to the micropro-
cessor using a low latency and high bandwidth data path. The size of the DRAM varies
from 2 Megawords to 8 Megawords (where each word is defined to be 8 bytes). The
support circuitry aids the microprocessor by extending the control and addressing functions
of the microprocessor and includes an interface to the rest of the network as well as a block
transfer engine. System data is redistributed through the block transfer engine which
simply consists of an asynchronous direct memory access controller {30].

4.4.2 Interconnection Network Topology
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The interconnection network provides the connectivity among the PEs. Each
conncction between 2 PEs is a 24-bit bidirectional link, We will refer to a connection
between two PEs as a Cray channel. The interconnection topology of the Cray is a 3-
dimensional mesh. The mesh interconnection scheme interconnects PEs in each dimension
in a bidirectional ring or torus as shown in Figure 4.4. In this manner, the lowest
numbered PE in a dimension is directly connected to the PE with the largest number in the
same dimension. Figure 4.4 shows 2 one dimensional torus network.

O—(D+—D——(D—()+—()—

Figure 4.4 One dimensional bidirectional torus network

There are several advantages to this interconnection scheme. One such advantage is
throughput of information. In Figure 4.4, PE 1 can communicate with PE 7 by passing
through only one PE (PE 0). In the absence of the wrap around (the connection between
PE 0 and PE 7), PE | would have to transmit through five PEs to reach PE 7. Additional-
ly, the torus network offers some fault tolerance. Supposing, for example, PE 4 could not
directly transfer data to PE 5 because of a bad channel between the two PEs. PE 4 could
still transfer the data by sending it the long way around through all the other PEs in the
torus [30].
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Figure 4.5 Two dimensional bidirectional mesh network

Figure 4.5 shows an 8x8 mesh. Although not shown, each Cray channel is
bidirectional and is 24 bits wide in each direction. Figure 4.6 shows an 8x8x8 mesh. For
clarity most of the wrap around links have been suppressed but it is important to keep in
mind that these links still exist. The 3-dimensional mesh is a the network topology used in
a 512 PE Cray T3D. It is this network that we will contract into various contracted
networks and embed onto the Hyperplane.
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Processing
Element

Cray Channel
(24 bits)

Figure 4.6 Network topology of Cray T3D Supercomputer
(wrap around connections are suppressed for clarity).

4.5 Contraction and Embedding of the Cray T3D Interconnec-
tion Network

In this section we will present several possible schemes to contract the network
topology of the Cray T3D Supercomputer (similar contraction schemes were described in
[31]). We will contract the network topology using graph contractions described earlier in
this chapter. Let the network shown in Figure 4.6 be represented by a graph G(V,E) where
V represents the set of PEs and E represents the set of Cray channels that connect the PEs.
Recall that in the contraction process, our goal is to transform G into a simpler graph G’
which will retain certain properties of G. To accomplish this we must first divide the set
of vertices V into a set of mutually exclusive subsets such that the number of vertices in
each set does not exceed a positive integer /. Recall that such a partitioning is called an I
partition. The manner in which V is partitioned is completely arbitrary and therefore leads

to various contracted graphs. In the following, different contractions of the Cray T3D
interconnection network will be presented.
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4.5.1 Case 1: Contraction by Two Columns

The first contraction we will perform is contraction by two columns {31]. In this
method, the set of vertices of G is partitioned into mutually exclusive subsets two columns
at atime. That is, each subset represents two columns of vertices of G. Figure 4.7 shows
G with one partitioned subset (two columns) highlighted in black [31]. Since there are a
total of 512 vertices in G and each partition contains 16 vertices, there are a total of 32
mutually exclusive subsets (i.e. V,, V.. V,,). Each subset is then replaced by a separate
contracted vertex v,’. Neighbouring vertices are subsequently connected with edges.
The width of each edge is then determined using the procedure described in Section 4.2.2.

Contract by
Two Columns

Figure 4.7 Contraction of G through two column partitioning.

The process leads to a contracted graph G’ shown in Figure 4.8. Under this
contraction scheme, we are left with 32 contracted vertices. The vertices have been
numbered from O to 31 to aid us when we described the embedding procedure. In general,
any number can be assigned to any vertex. However, as we will see, the best embedding
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results generally arise when the numbering is ordered in the dimension of the fewest
number of vertices. In this case, the vertices in dimension d0 are numbered first. When
there are no more vertices to number in d0, then we move up one step in direction 47 and

continue counting again in direction d0 [31].

/
i do

Figure 4.8 Result from contracting G by partitioning by two columns.

Figure 4.9 shows the embedding of the resulting contracted graph. The contracted
graph has a total of 32 vertices, so the embedding shown in Figure 4.9 will have 32 nodes.
Recall that each node in the embedding represents a PCB. Since there are a total of 512
PEs in G, each PCB will host 16 PEs.

Each connection between the contracted vertices of Figure 4.8 has a width of 8
Cray channels in the d0 dimension and a width of 16 Cray channels in the 41 dimension.
In this context a Cray channel is a single unidirectional connection between two PEs in G.
In addition, each Cray channel has a capacity of 24 bits. The optical connections of the
embedding shown in Figure 4.9 represent the connections between the contracted vertices
of Figure 4.8. To achieve this, we let each optical connection in the embedding represent
8 Cray channels. The choice to let each optical connection represent 8 Cray channels is
mainly a matter of convenience. Therefore, each connection shown in Figure 4.8 that has a
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width of 8 Cray channels will be represented by one optical connection in Figure 4.9,
Moreover, each connection shown in Figure 4.8 that has a width of 16 Cray channels will
be represented by two optical connections in Figure 4.9,

The upstream connections have the exact same connection scheme as the downstream.
However the direction in which the data is transmitted in the upstream is opposite to that of
the downstream.

In Figure 4.9 there is bisecting line that divides the embedding into two halves of
equal size. We are interested in knowing the bisection width [5] of this embedding. The
bisection width is defined, in this context, as the number of optical connections that pass
through the bisecting line. The bisection width is a good indicator of the maximum
communication bandwidth in the embedding. The communication bandwidth along any
other cross section should be bounded by the bisection width [5].

In Figure 4.9, the bisection width is 18 optical connections in the upstream
direction and another 18 optical connections in the downstream direction. The bisection
width is useful in determining the total number of SPAs needed to implement the embed-
ding. We will calculate the total number of SPAs needed later in this chapter.

4.5.2 Case 2: Contraction by 4x4 Clusters

An alternative way of contracting G is to partition V by selecting a 4x4 cluster of
vertices as shown in Figure 4.10 [31]. The resulting contraction is a three dimensional
graph again with a total of 32 vertices as shown in Figure 4.11. Most of the wrap around
connections have been suppressed for clarity.
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Figure 4.10 Contraction of G through 4x4 cluster partitioning.

Each connection between the contracted vertices of Figure 4.11 has a width of 4
Cray channels in the d0 and d1 dimensions and 16 Cray channels in the d2 dimension. The
embedding of the contracted graph is shown in Figure 4,12, Each optical connection in
the embedding represents 8 Cray channels. Notice, however that the connections in the
d0 and d1 dimensions of Figure 4.11 have widths of 4 Cray channels. The question
remains how are these connections (which are 4 Cray channels wide) to be represented in
the embedding when each optical connection is 8 Cray channels wide, The sclution to this
is straightforward. For example, the connection between Vertex 1 and Vertex 3 of Figure
4.11 has a width of 4 Cray channels. However, recall that there is a wrap around edge
between Vertex 1 and Vertex 3 that has been suppressed in the figure. Therefore, there are
two connections (each having a width of 4 Cray channels) between Vertex 1 and Vertex 3.
As a result, a single optical channel in the embedding can be used to represent both
connections. This is true for all the connections in dimensions d0 and d1 in Figure 4.11.
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d2

do

Figure 4.11 Contracted result from 4x4 cluster partitioning

Referring to Figure 4.12, the bisection width is 19 optical connections in the
upstream direction and 19 optical connections for the downstream. Once again, the
connection topology of the upstream is the same as that of the downstream. The only
difference is that they transmit data in opposite directions thereby establishing the
bidirectionality of the embedding.

Many of the optical connections can be shuffled between rows. By rearranging the
optical connections between rows, we can compact the embedding which will reduce the
bisection width. In Figure 4.13, the bisection width 18 is optical channels in the upstream
and 18 in tiic downstream disections. This is slightly less than the uncompacted embedding
shown in Figure 4.12,
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4.5.3 Case 3: Contract by 2x4x2 Cluster

The final example of contraction that we will perform is to contract by partitioning
using a 2x4x2 cluster shown in Figure 4.14 {31]. The result is another 3 dimensional
contracted graph with 32 contracted nodes as shown in Figure 4.15. Once again keep in
mind that only two of the wrap around edges are shown. The rest of the wrap around
edges have, in Figure 4.15, been suppressed for clarity. Each connection between the
contracted vertices of Figure 4.15 has a width of 8 Cray channels in dimensions d/ and
d2 and 4 Cray channel in the d0 dimension. Figure 4.16 shows the embedding of the
contracted graph. Each optical connection has a width of 8 channels. We are again
confronted with the issue (first described in Section 4.5.2) that each optical connection in
the embedding is 8 Cray channels wide while the connections in the d0 dimension of
Figure 4.15 are only 4 Cray channels wide. We resolve this issue in the same manner
described in Section 4.5.2. The embedding has a bisection width of 21 optical connections

in each direction. Of all the embeddings presented so far, this embedding has the highest
bisection width.

Figure 4.14 Contraction of G through 2x4x2 cluster partitioning,.
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Figure 4.15 Contracted result from 2x4x2 cluster partitioning.
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4.6 Hardware Requirements for Implementation

In this section, the hardware requirements to implement the various embeddings
described in the previous section will be discussed. In essence, we want to determine the
total number of SPAs needed to implement each of the embeddings described. The purpose
of this exercise is to demonstrate that the Cray T3D Supercomputer can be implemented
using the Hyperplane. Recall that in each embedding, we calculated its bisection width.
As we will see in this section, the bisection width will help us determine the total number of
SPAs nceded. We measured the bisection width in terms of the number of optical
connections that passed through the bisecting line. In each embedding, an optical
connection represented 8 Cray channels. Recall that in this context, a Cray channel is a
single unidirectional connection between two PEs in the Cray T3D. Each Cray channel is
24 bits wide. Since each Cray channel is 24 bits wide, each optical connection is 8 x 24
or 192 bits (24 bytes) wide. Given this, our next task is to calculate, for each embedding
scheme, the total number of smart pixel arrays (SPAs) necessary to implement that
embedding.

Each SPA (as described in Chapter 3) is an array of pixels which can be divided
into logical optical channels each 8 bits wide [13]. Because these logical optical channels
are 8 bits wide, we refer to them as byfe channels [13]. The number of byte channels that
comprise a SPA is somewhat arbitrary. However, with existing CMOS technology, the
number of byte channels would typically be between 32 and 512. The SPA design
described in Chapter 3 supports 128 byte channels,

By determining the number of byte channels needed for a given embedding, we can
calculate the number of SPAs needed. We assume that the SPAs are completely imaged
from one to another. This means that the SPAs on each PCB must be able to support the
bisection width (which represents the maximum communication bandwidth along any cross
section of the embedding). In addition, each PCB must be interchangeable. Therefore
each PCB will have the same number of SPAs connected to it. The number of byte
channels needed is determined by the bisection width. For example, the embedding for
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Case 1 (shown if Figure 4.31) has a biscction width of 18 optical connections in each
direction (or a total of 36 in both directions). Since cach optical connection is 24 bytes
wide, each optical connection will require 24 byte channels. Since the embedding for Case
1 has a bisection width of 18 optical channels in cach direction, a total of 18 x 24 (or 432)
byte channels per PCB will be needed in each direction. Table 4.1 summarizes the
bisection width, the number of Cray channels and the number of byte channels necded in
each direction for all four embeddings.

|- Bisection Width

, Wi # of Cray
" .| (optical connections)

Channels. | Channpels

18

144

19

152

18

144

432

l

21

168

Table 4.1: Resource requirements for various contraction schemes.

Now that the total number of byte channels needed (in each direction) has been
calculated, our next objective is to determine the number of SPAs per PCB needed. The
number of SPAs per PCB is dependant on the number of byte channels comprising each
SPA. Let’s look at Case 1 as an example. Suppose each SPA comprises 32 byte
channels. Since we require that each PCB accommodate 432 byte channels, then 13.5
SPAs in each direction are needed to implement this embedding, Since we cannot have half
of a SPA, we actually need 14 SPAs in each direction. However, half of the fourteenth
SPA will be unused. These unused channels could be used to provide fault tolerance.
Table 4.2 summarizes the number of SPAs needed per PCB as the number of byte channels
comprising each SPA varies from 32 to 256.
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Embedding

# of SPAs/PCB

# of SPAs/PCB

#of SPAs/PCB

# of SPAs/PCB

| 32 byte channels | 64 byte channels | 128 byte channels | 256 byte channels
Casel 14 7 4 2
Case2 - 15 8 4 2
Case 2b- 14 7 4 2 |
Case3 - 16 8 4 2

Table 4.2: Number of SPAs (in each direction) needed per PCB as the number of byte
channels per SPA varies,

Now that the number of SPAs per PCB has been calculated it is useful to see which
embedding and which SPA make most efficient use of the available resources. Recall that
when we calculated the number of SPAs needed for the Case 1 embedding (using 32 byte
channels per SPA), we needed 13.5 SPAs per PCB. Since we can’t have half of a SPA,

we needed to round that value up to 14. As a result,

16 byte channels (or 3.7 % of the

total byte channels required) are unused. Table 4.3 tabulates the number of unused byte

channels for different SPAs and different embeddings.

represent the total percentage of unused byte channels,

ing .| Byte channels’7:% | By
.| uniséd (32 byte

5| charinel SPA) - :

: - &' Byte channels”
% ,unused (64. byte

unused (128 byte
| chiannel SPA):

The percent values in the table

- | Byte channels-
‘unused (256 byte
| channe] SPA) -

. 0 chanriel SPA)
| 16(3.7%)

16 (3.7%)

80 (18.5%)

80 (18.5%)

24 (5.3%)

56 (12.2%)

56 (12.2%)

36 (12.2%)

16 (3.7%)

16 (3.7%)

80 (18.5%)

80 (18.5%)

: 8 (1.6%)

8 (1. 6%)

8 (1.6%)

8 (1.6%)

Table 4.3: Tabulation of the number of byte channels unused. The percentages in
parentheses represent the total percentage of byte channels not used.

The values tabulated by Tables 4.1 to 4.3 give us an idea which of the embeddings

and which of the SPAs are better to use.

When interpreting the data presented in these

tables, there are two criteria that should be kept in mind. In general, it is preferable to use

the embedding that uses the fewest number of SPAs. However, it is also preferable to use
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those SPAs which yield the highest percentage of unused byte channels. The more unused
byte channels we have, the more fault tolerance we can give the system.

Table 4.2 shows that Case 3 is inefficient because it uses the most number of
SPAs. In addition, Table 4.3 shows that Case 3 has the lowest percentage of unused byte
channels. Therefore, Case 3 does not seem to match our criteria. Case 1 and 2b seem to
be the better embeddings because they require the fewest number of SPAs (Table 4.2).
Furthermore, if we implement these embeddings using 128 or 256 byte channel SPAs, we

will get the highest percentage of unused byte channels leading to the maximum amount of
fault tolerance.

4.7 Chapter Summary

In this chapter, we presented various embeddings of a Cray T3D Supercomputer on
to the Hyperplane. We commenced the chapter by introducing a method of graph
contraction and used this method to reduce the network topology of the Cray T3D so that it
could be embedded onto the Hyperplane. We contracted the Cray T3D topology in 3
different ways and then presented their embeddings onto the Hyperplane. Using these
embeddings, we calculated the total number of SPAs needed to implement these
embeddings as the number of byte channels comprising each SPA varied. We also
calculated the percentage of unused byte channels for the various embeddings and SPAs.
We noted that the in general, we would prefer those embeddings that used the fewest
number of SPAs. Furthermore, we preferred those SPAs that yielded the highest
percentage of unused byte channels. The more unused byte channels available, the more
fault tolerance we can give to the system. Using the values tabujated in Tables 4.1 to 4.3,
we determined that Case 1 and Case 2b used the fewest number of SPAs. We also noted
that these embeddings are best implemented using 128 or 256 byte channel SPAs since they

yield the highest percentage of unused byte channels (and therefore the maximum fault
tolerance}.
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Chapter 5
Functional Specifications of the

June 1995 Backplane

5.1 Introduction

In the previous chapter, we demonstrated that the dual-stream linear Hyperplane
could be used to interconnect the processors of a Cray T3D Supercomputer. In order to
accomplish this, the functional specifications of the Hyperplane have been evolving over
the past several years. One of the long term goals of the Major Project is to develop
monolithic Smart Pixel Arrays using Indium Phosphide based VCSEL/MSM technology
[1). However, as we mentioned in the Introduction, demonstrators are constructed
periodically to highlight milestones achieved. Because Indium Phosphide technology is
still evolving, the SPAs fabricated thus far are based on CMOS SEED technology. In this
chapter, we will review the design specifications for the June 1995 Backplane (also known
as the June 1995 Hyperplane) and the June 1995 SPA which are based on existing CMOS
technology. We use a time stamp in the design names to emphasize the fact that these
designs are constantly evolving. The complete structural specifications for the June 1995
Hyperplane can be found in [31]. The functional specifications specify functions or
behaviours without necessarily specifying structural implementations.
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5.2 June 1995 Hyperplane

Figure 5.1 shows a typical representation of the June 1995 Hyperplane2, The
number of PCBs connected could vary as the design evolves. For our purposes here, we
will assume that there are four PCBs connected. The Hyperplane primarily operates in one
of two modes. These modes are called the Reconfigurable Mode and the Intelligent Mode
[12][13]). These modes were described earlier in Chapter 3. Reconfigurable mode could be

used for massively parallel processing systems for example and intelligent mode could be
used for telecommunications applications.

Electronic

Optomechanical
upport Structure

Free-Space
Optical Interconnects

Smart Pixel I/O Arrays

Figure 5.1 Typical architecture of the June 1995 Hyperplane.

The architecture of the Hyperplane can be implemented using either the Circular
structure or the Dual Stream Linear Structure. Most of the designs reviewed in this chapter

2 From here on, the term Hyperplane will refer to the June 1995 Hyperplane and the term Smart
Pixel Array (SPA) will refer to the June 1995 SPA.
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can support either structure. For brevity, we will focus only on the circular structure.
Recall that PCBs wishing to send data will connect to one of the optical communication
channels [12] through its associated SPAs. Data is grouped together in the form of
packets. A PCB wishing to send a packet will divide the packet into bytes and send the
packet through the backplane one byte at a time. At the rising edge of each clock, the
PCB will typically insert a new byte into the backplane through the SPAs. At the same
time, the bytes circulating in the backplane will typically move from one PCB to the next
at every rising edge of a clock . That is during each clock cycle, the byte will move from
PCB jto PCB (j+1) mod 4 until it reaches it point of origin where it will be overwritten or
discarded. When operating in the intelligent mode, each packet will have a header that will
identify its destination. The logic on each SPA will process the packet headers to decide
whether to extract the packet as they travel through the backplane. When the Hyperplane is
operating in the i'econﬁgurable mode, the SPAs do not perform any packet processing or
filtering [13].

5.3 Smart Pixel Array Interface Signals

The Hyperplane is composed of a large number of optical communication channels
(OCCs) which are created by optically interconnecting smart pixel arrays (SPAs). Figure
5.2 shows the interface signals of the SPA [31].
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Injector

Channel 0 Da“‘-@L——

Injector
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Control-Latch-Enable

Global Reset
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Global Enable

Figure 5.2 Typical electrical interface signals for the June 1995 SPA (3
injector channels, 3 extractor channels and 8 optical byte channels shown).

For our purposes, interface signals refer to the electrical connections of the SPA
that would typically be connected to its associated printed circuit board. The optical
windows are also shown. Table 5.1 tabulates a brief description of the interface signals

[13].
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Elecironic YO Signal | Signal Deseription |
Clock Global synchronizing clock signal (typically 80 MHz.),
Global Reset Resets entire system to “idle” state,

Injector Channel x | Eight bit wide input channel for data transmission.

(x=0,1,2)

Ctl Latch Enbl. Configures control latch.

Global Enable Initiates data transmission and reception,

Address Bits Eight bits used to differentiate betwezn SPA boards.
Optical I/O 8x8 array of optical windows optically connecting boards.

Extractor Channel | Eight bit wide cutput channel for data reception.

(x=0,1,2)

. Table 5.1: Electrical interface signals of the June 1995 SPA,
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Figure 5.3: Functional diagram of an 8x8 Smart Pixel Array [13]-
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Figure 5.3 shows a functional schematic of the June 1995 SPA [31]. It consists of
an Bx8 array of smart pixels which is partitioned into 8 logical optical channels. Each
logical optical channel is 8 pixels (bits) wide and is therefore referred to as a byte channel
[13]). Therefore, the connection set by the byte channels establishes an 8 bit data path.
However, as we will see in a later section, if the packets are being submitted
asynchronously, then the SPA will need to be a 9x8 array of pixels. The difference
between synchronous and asynchronous packet transmission was discussed in Chapter 3.

Each byte channel has an associated channel control unit (CCU) and eight smart
pixels, Figure 5.4 shows the top left quadrant of Figure 5.3 [31]. In this figure only four
pixels per byte channel and four byte channels are shown for clarity. The CCU is used to
regulate the flow data through the channel. It consists primarily of an 8 bit control latch
configured before the Hyperplane begins transmitting and receiving data. The control latch
sets certain parameters that determine the way the channel will operate, In later sections we
will describe how the control latch accomplishes this. The number of pixels and the
number of I/O electronic pins that each SPA can accommodate is limited by the fabrication
technology of SPAs. It is expected however, that 32x32 SPA chips will be available in the
near future. Each smart pixel consists of an optical input port and an optical output port.
Therefore, each pixel is capable of handling one bit at any given time. Data is entered
through one of the three Injector Channels and is transmitted over the backplane over a
single byte channel. In addition to the CCU and smart pixels, the SPA consists of a
decoder and an arbitration circuit. The decoder is used to configure the control latch in each
CCU. In this way, the user can specify how the backplane will behave.
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Figure 5.4 Functional logic description of the top left quadrant of Figure 5.3

5.4 Smart Pixel Cell and Channel Specifications

Figure 5.5 shows the functional block diagram of a single smart pixel [13]. The
Injector Selector Circuit is a mux that will select which bit to transmit optically to the next
board. The injector selector control is controlled by the injector selector control bits that
come from the control latch in the CCU. The injector selector contro] will select a bit from
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onc of the three Injector Channel or the Optical lr.faut Port. The Extractor Selector Circuit
consists of three tristate buffers used to select which of the threc Extractor Lines to extract
the incoming data. The extractor sclector control which consists of three tri-state buffers is
controlled by the extractor sclector control bits. If the backplane is operating in
reconfigurable mode, then the extractor selector control bits come from the control latch in
the CCU. If the backpiane is operating in the intelligent mode, then the extractor selector
control bits will come from the arbitration unit (the CCU and the arbitration circuit wil} be
discusscd in later scctions).

€ » Control Signals from
- ! Channel Control Unit
. 1 L}
gg:ttcal Input : _E__Optical Output Port
! ]
1
Programmable ! i [ :
d - - 1
Delﬁy Circuit 14 i | 5 t ' Injector-Selector
|11 L !
Extractor- — )
SelectorCircuit : 4 Address-Comparison
E _ I_ : Circuit
- = Output from previous
Clock & {F—Si————— H—Ht—————————" Address-Comparison
Reset

circuit
(1 bit of each) (1 bit of each;

Figure 5.5 Logic diagram of a single smart pixel.

5.4.1 Address Comparison Circuit

When operating in the intelligent mode, each packet sent through the Hyperplane
has a header that encodes the address of the packet’s destination. When an byte channel
receives a header, it must read the header and decide whether it should extract this packet
and send it to its associated PCB. The address comparison circuit is responsible for
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making this decision. In this section, we will describe the operation of the address
comparisor: circuit.  Figure 5.6 shows the header of a pucket when the packets are
synchronously transmitted. Each board has its own unique 5 bit address that separates it
from the other boards. Bits 0 through 4 of the header are used to encode the address of the
boards. Since the board address is five bits long, the maximum number of boards that the
Hyperplane can accommodate is 32. However, for the purposes of the June 1995
Hyperplane, only four boards will be used. Bits 5, 6 and 7 designate groups of boards.
This will allow transmission to boards that belong to a certain group. After the header has
been sent, all subsequent bytes transmitted are the packet payload (data).

Group Address

“
Bit7; Bit6| Bit5| Bit4 | Bit3 | Bit2| Bit1] B0

Board Address

Figure 5.6 Typical packet header used for synchronous packet transmission.

In asynchronous packet transmission, a PCB can begin transmitting a packet at the
rising edge of any clock cycle. This is in contrast to the synchronous packet transmission
in which every PCB must begin transmitting its packets at the same time. However, in
asynchronous packet transmission, the address comparison circuit of each byte channel
must be able to differentiate between a header and data. Since packet can be transmitted at
any rising edge of the clock. the address comparison circuit will not know whether the byte
it is receiving is a header or data. One way to resolve this is to increase the width of the
byte channel so that it is 9 bits wide. Figure 5.7 shows a typical header of a packet when
the packets are asynchronously transmitted. The most significant bit of this header is a
Valid Header bit. The sole purpose of this bit is to give the address comparison circuit
some means to differentiate between the header and the data. By increasing the width of
the byte channels to 9 bits, we maintain the 8 bit data path.
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Group Address

ﬁ
Bit8 | Bit7 | Bit6| Bit5| Bitd | Bit3 | Bit2{ Bit1| Bit0

ValiJ Header Board Address

Figure 5.7 Typical packet header used for asynchronous packet transmission.

Figure 5.8 shows a schematic of a typical address comparison circuit found in each
smart pixel while Figure 5.9 shows a block diagram that describes a typical interconnection
oi address comparison circuits within an byte channel when the packets are synchronously
transmitted. The address comparison circuit for bits O through 4 (board address compari-
son) will check to see if the board address matches while the address comparison circuit for
bits 5, 6 and 7 will check if there is a group address matches (group address comparison).

Bit from Bit from
Address Latchl Packet Header

Figure 5.8 Address comparison circuit.

The results of the comparison are sent to the CCU. If either (or both) of the comparisons
match, then the byte channel will extract this byte and all subsequent bytes until the entire
packet has been received.
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Board Address
Comparison

To Synchoronizing %p Address
Unit in the Channel  Comparison
Control Unit

Figure 5.9 Interconnection of the address comparator circuits within a byte
channel (packets are transmitted synchronously).

Figure 5.10 shows the interconnection of the address comparator circuit when the
packets are sent asynchronously. This works in the exact same manner as the circuit
shown in Figure 5.9 except for the last comparator which compares the ninth bit of the
header to check whether the byte received is a header or just data. It must be pointed out

0 that the ninth bit in the header does not constitute any part of the data path established by
the byte channels.

T T T

Comparison § g 7 le—16 le— 5
= = | Board Address =
r{ A Comparison
< ~
To Synchoronizing Group Address
Unit in the Channel Lomparison

Control Unit

Figure 5.10 Interconnection of the address comparator circuits within a byte channel
(packelts are transmitted asynchronously).
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5.4.2 Programmable Delay Circuit

In acidition to the address comparison circuit, each smart pixel is equipped with a
programmable delay circuit. The schematic of the programmable delay circuit is shown in
Figure 5.11.

Bit 5 From
Control Latch
Incpming
Optical Bit To Injector
Selector Circuit
To Extractor
D Selector Circuit
Clock ——
Bit 6 From
Reset Control Latch

Figure 5.11 Programmable delay circuit.

Depending on the configuration settings of the control latch (in the CCU), the
programmable delay circuit will either route data entering it directly to the output or delay it
by one clock cycle (using the D-Flip Flop). The multiplexers are used to select whether the
data should be delayed or not. The multiplexers are controlled by the control latch in the
CCU. The programmable delay circuit enables the backplane to have buffering capabil-
ities.
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5.5 Channel Control Unit

Associated with each channel is a Channel Control Unit (CCU). Tts primary
function is to regulate the flow of data through a channel. Typically, the CCU consists of a
control latch and a synchronizing unit as shown in Figure 5.12. The functionality of the
CCU depends on whether the backplane is operating in the intelligent mode or
reconfigurable mode. If the backplane is operating in the intelligent, then the CCU will
provide the interface between byte channels and the arbitration circuit. A full description of
the arbitration circuit will be given later in this chapter.

The control latch in the CCU is an 8 bit latch that is used to configure the manner in
which the Hyperplane will operate. The most significant bit of the contro! latch determines
whether the backplane will be operating in the intelligent mode of the reconfigurable mode.
The next two bits configure the programmable delay circuit (this circuit will be described in
a later section). The next two bits form the Injector Selector Control bits discussed in the
last section. The last three bits are the Extractor Selector Control bits. These three bits are
only used if the backplane is operating in the reconfigurable mode (notice that the mux in
the channel control unit will select whether the extractor selector conirol bits come from the
cortro] latch or the arbitration circuit),
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o Mode Multiplexer
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Injector-Selector \ \ -
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Figure 5.12 Functional description of a typical Channel Control Unit.

In this particular design of the CCU, the synchronizing unit is only used when the
backplane is running in the intelligent mode of operation. Notice that the signals from the
address comparator circuits of Figures 5.9 or 5.10 are fed directly to the synchronizing
circuit. The design of the CCU shown in Figure 5.12 is the CCU used when the backplane
transmits packets asynchronously (notice the valid header comparison signal). With
minor adjustments (eg. removing the valid header comparison input signal), the CCU can
be modified to operate in a backplane where the packets are transmitted synchronously.

Figure 5.13 shows the schematic of the synchronizing circuit. This circuit is only
used when the backplane is operating in the intelligent mode. The inputs to the synchroniz-
ing circuit are signals from the address comparator circuit. The Valid Header Comparison
signal is only used when the backplane is transmitting packets asynchronously. If a
matching header arrives at a byte channel, the output signal (called Req) will be asserted.
The request signal will be sent to the arbitration circuit.
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Group Address
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Valid Header
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Figure 5.13 Logic description of a typical synchronizing circuit.

Req

5.6 Arbitration Circuit

One of the more complex components of the SPA is the arbitration circuit3. The
arbitration circuit is used only when the SPA is operating in intelligent mode. There are
several issues associated with the reception of data. Recall that there are typically cight byte
channels per SPA but only three extractor channels. A SPA, on occasion, may attempt to

. extract more packets than the number of extractor channels available (recall, there a2 3
extractor channels per SPA in the June 1995 design) [13]. In this case only it is important
that only three of these packets are extracted at any given time. In order to ensure this, an
arbitration circuit is used to map the byte channels onto the extractor channels {13]. All
other requests for extraction will be ignored. The mapping scheme used by the arbitration
circuit will be described in the following sections.

5.6.1 Overview of the Arbitration Circuit

Figure 5.14 shows a typical functional block diagram of the arbitration circuit. The
arbitration circuit consists of two components, The first is an arbiter and the second is a set
of counters. The arbiter has inputs which are connected to the synchronizing circuit of each

byte channel (the output signal Req in Figure 5.13 connects to one of the input signals of

3 The arbitration circuit described in this chapter is one structural implementation (developed by

this author)} of the generic arbitrator described in [31].
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the arbitration circuit). The output of the arbiter consists of 8 signals each 3 bits in width.
Euch output signal connects to the extractor selector control bits of a byte channel.

When the arbiter receives the Reg from one of the synchronizing circuits, it checks
to sec whether there are any free extractor channels. If none of them is free then the packet
will not be received. If there is a free extractor channel, then the arbitration circuit will
assign the extractor channel to the byte channel. The arbitration circuit does this by
appropriately setting the byte channel’s extractor selector control bits. At the same time,
the arbiter will send a start signal to one of the counters. The counter will increment at the
.ising edge of every clock pulse. The counters are used to track the number of words
received by the channel. The size of each packet is somewhat arbitrary. If the Hyperplane
is uscd in an ATM application then each packet would be 53 bytes in length., In this
implementation of the Hyperplane, we have assigned each packet to be 16 bytes (including
the header) in length. Therefore, each counter in the arbitration circuit is a four bit counter.
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Figure 5.14 Typical functional diagram for the arbitration circuit.

When the entire packet has been received, the extractor selector control bits need to
be reset so that the extractor channel is free to receive further incoming data. When the
counter reaches a predetermined value (which represents the number of bytes in a packet),
its sends a stop signal to the arbiter. At this time the extractor selector control bits for that
channel are reset and the counter is reset and remains idle until another packet is to be
received. Since there are three extractor channels, three separate counters are needed.

5.6.2 Functional Specifications of the Arbitration Circuit

Each transition is assumed to occur at the rising edge of the clock. The states are
encoded using three bits. Each bit represents an extractor channel. If the most significant
bit is high, then extractor channel 2 is busy. Similarly, if the least significant bit is high,
then extractor channel 0 is busy. Each byte channel has a request signal. When there is
an address match, the synchronizing circuit of the CCU will assert a request signal to the
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arbitration circuit on the next rising edge. The arbitration circuit will receive this signal and
cause the arbiter to change state. In addition there are two sets of internal signals that the
arbitration circuit will use, These are the startx and the stopx signals (where x ranges from
Oto 2). The startx signals are issued from the arbiter which instructs one of the counters to
begin counting. When the counter has reached a predetermined value, it will issue a stopx
signal which will instruct the arbiter that the channel has received the entire packet and its
extractor selector control bits can be reset. The output signals from the arbiter are the
extractor selector control bits fed to the channels. These signals are more difficult to
demonstrate on the state diagram. They will, however, be discussed shortly.

Figure 5.15 shows a typical state transition diagram for the arbiter. Each state is
encoded using three bits. When none of the extractor channels is busy, the arbiter is in
state 000. If one of the request signals is asserted high (denoted by req in the state
diagram), then the arbiter will change state. In addition, whenever a request signal is
asserted high, a startx signal is also asserted high. This will cause one of the counters to
begin counting. The sropx signals are received from one of three possible counters. The
stop signal will also cause the arbiter to change state as shown in Figure 5.15.

The only signals that are not shown on the state diagram are the 8 output signals.
Each output signal is 3 bits wide and connects to the extractor selector control of a byte
channel. Depending on which of the eight request lines was asserted and depending on the
state of the arbiter, the appropriate output signal would be asserted. For example, suppose
the arbiter is in state 011 (extractor channels O and 1 are busy) and signal request 5 is
asserted high. This means that byte channel 5 has a packet to extract. The arbiter will
move to state 111 and set start2 to a high state, This will cause Counter2 to begin
counting.
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Figure 5.15 State transition diagram of the arbitration circuit.

At the same time, output 5 will be set so that byte channel 5 will extract over the extractor
channel 2.

Notice that in this implementation of the arbitration circuit, when there is a header
match, there is a delay of two clock cycles until the extractor selector control bits are set.
When there is a match, the request signal will go high on the next clock cycle. On the
following rising edge of the clock, the arbitration circuit will change state and the counter
will start counting. Since there is a two clock cycle delay, the header of each packet will
have to be held in place for at least that many clock cycles. Therefore, in this implementa-

tion, when a packet is sent through the backplane, the header is sent at least two times
before any data is sent.
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5.7 Configuring the Smart Pixel Array

Before the Hyperplane can be used for transmission and reception of data, it first
needs to be configured. As mentioned in a previous section, the Hyperplane has two
modes of operation. The configuration process will instruct the Hyperplane which mode to
operate in.

The configuration process involves loading the Control Latch in the Channel
Control Unit. The leading of the Control Latch is a straightforward process. Each SPA
has a | to 8 decoder as shown in Figure 5.16. The decoder is used to select one of the
eight Control Latches. Thus the loading of the Control Latches is done one latch at a time.
The inputs of the decoder are connected to the last three bits of Injector Channel 1 while the
eight input bits of the Control Latch are connected to Injector Channel 0. The control data
to be loaded by the Control Latch are presented on to Injector Channel 0. The control bits
for the decoder (which will select the control latch on channel 0) are then presented on the
first three bits of Injector Charinel 1. Finally, the Control Latch Enable is strobed high at
which time the data on Control Latch (of channel 0) are loaded. The process is repeated
until all eight control latches on all eight channels are configured.

— Latch Enable 0
—® Latch Enable 1
— Latch Enable 2
— Latch Enable 3
~— Latch Enable 4
—® Latch Enable 5
—® Latch Enable 6
—# Latch Enable 7

Bits from Injector
Channel 1

Control Latch
Enable

Figure 5.16 Decoder for configuring the control latch.
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5.8 Chapter Summary

In this chapter, we have outlined the functional specifications of the June 1995
Smart Pixel Array. We began be describing the two primary modes of operation. These
modes are the reconfigurable mode and the intelligent mode. We then proceeded to give a
top-down description of the designs for the June 1995 Hyperplane and SPA. We
described the various components that comprise the SPA including the arbitration circuit
which was shown to be one of the more complex components in the design. In the next
chapter, we shall describe the June 1995 Hyperplane using a hardware description
language called VHDL.. Using this language, we will simulate the design to demonstrate its
functional correctness. We will then synthesize the design so that it can be downloaded on
to an FPGA. Once the design has been configured, the FPGA will behave as a hardware
simulator of the Hyperplane.
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Chapter 6

Simulation of the June 1595
Hyperplane using VHDL and FPGAs

6.1 Introduction

In the previous chapter, we took a detailed look at the functional specifications of
the June 1995 SPA and then proceeded to describe how these devices are interconnected to
form the June 1995 Hyperplane4. Our next objective is to test the design in some manner
to verify its functional correctness. One way of accomplishing this is to develop a
simulator for the Hyperplane which can operate in both hardware and software.

In this chaptzr, we describe the development of a simulator for the Hyperplane.
The software simulation is achieved using a hardware description language called VHDL
that describes the design and is simulated by a CAD tool. The CAD too! allows us to feed
our design with test vectors and give us the resulting output based on our design specifica-
tions. Once the functionality of the design has been verified in software, the CAD tool will
then “transform™ our design into a format which can be downloaded onto an programmable
device. The programmable chip will then behave as an hardware emulator of the
Hyperplane. In addition to verifying the its functional correctness, there is one additional

4 Recall, that Hyperplane and SPA refer to the June 1995 designs of the Hyperplane and SPA
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benefit to developing a hardware emulator for the Hyperplane. Recall that the Hyperplane
will interconnect a number of printed circuit boards. These printed circuit boards each have
clectronic ICs for processing. By developing a hardware simulator for the Hyperplane, we
can simulate how the ICs will behave when connected to Hyperplane. The VHDL model
for the June 1994 Hyperplane was developed and designed in [3).

The rest of this chapter is organized as follows. We begin by describing the
hardware description language VHDL and briefly discuss the CAD tool which will simulate
the design described by the VHDL code. Next, we will describe the Xilinx 4000 series
field programmable gate array (FPGA). These are the programmable devices that will form
the hardware implementation of our simulator. We then describe the structure of our
VHDL code and then simulate our design. The results of the simulation are subsequently
discussed. We then compile our design to generate a file that can be used to program the
FPGA. This process is called synthesis for FPGA technology. In the final section of this
chapter, we will discuss the timing and area statistics generated during the synthesis
process.

6.2 Design Entry Language

When designing a digital system, the designer can describe his design using one of
several methods. Historically, most of the design process was performed using schematic
capture tools. In this methodology, the designer would draw logic gates and connect them
using a CAD tool. Recently, a more popular method has emerged in which the designers
could describe their design using a high level language similar in many ways to the C
programming fanguage. It is a language which can readily describe complex digital
systems, VHDL stands for VHSIC Hardware Description Language where VHSIC stands
for Very High Speed Integrated Circuits [32].

There are several advantageous features to VHDL. Among the most important is its

ability to support hierarchy. That is, a digital system can be modelled as a set of intercon-
nected components. These components can each, in turn, be modelled as a set of
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interconnccted subcomponents. In this way, complex designs are casily described using
VHDL.

Each component or subcomponent in VHDL has an entity description associated
with it. The entity description describes the input and output ports to that component. In
addition to the entity, each component has an architecture description. The architecture
description describes the behaviour of the entity [32][33].

Once the entire design has been specified using VHDL, the designer is ready to
simulate it. The simulation requires two things. The first is a VHDL test bench, the
second is a CAD tool which can simulate VHDL designs. The CAD tool which we will be
using is the Synopsys 3.0b Design Compiler and Vhdldbx software. The test bench is
another VHDL file that assigns values to the inputs of our design at specified times. The
CAD tool will read the test bench and generate the output based on the design specifications
and the input vectors specified in the test bench,

6.3 Introduction to FPGAs

State of the art VLSI technology has provided the capability to implement powerful
digital devices such as microprocessors at an ever decreasing cost. It is now possible to
fabricate integrated circuits housing millions of transistors. Such devices are often
designed using the full custom layout approach. In this approach, each device on the
integrated circuit has been tailored to meet a set of specifications and, to date, utilizes the
least amount of silicon real estate. A less cumbersome approach to VLSI design would be
to use standard cells when laying out the design. This semi-custom approach reduces the
layout time but often requires larger areas of silicon. Both approaches, however, are
expensive by nature. They require several months of design and manufacturing effort
resulting in an increased cost to the consumer unless they are mass produced. In our
highly competitive society, the need to minimize the overall cost and the time to market is
paramount [34]. Given this need, field programmable gate arrays (FPGAs) have emerged
as the ideal solution to these time to market problems. In essence, an FPGA is a device
whose logic structure is configured by the end user without the need for fabrication
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facilities allowing for rapid prototyping and testing of designs. The use of FPGAs
dramatically reduce the time to market because the design needs only to be described at a
high level such as a schematic. CAD tools are used to “transform” the design into a bit
stream which is then downloaded to the FPGA [34][35]. The FPGA will behave according
to the design specifications. FPGAS are similar to programmable read only memotries or
programmable logic devices except their capabilities are far more extensive. In the
following, we describe in some detail the architecture of the field programmable gate array
and how it will relate to the modelling of the Phase III Smart Pixel Array.

An FPGA is a device with an array of uncommitted logic elements that can that are
generically interconnected. Figure 6.1 shows a conceptual view of an FPGA. As shown
in Figure 6.1 the FPGA consists of a two dimensional array of logic blocks and
interconnection resources that are used to interconnect the logic blocks. The logic elements
are blocks that can implement a small logic design. They typically have some form of
programmable devices (such as a look up table) to implement combinational circuitry and
one or more flip-flops to implement sequential circuitry. The interconnection resources
comprises segments of wires whose lengths typically vary [34][36][37]. In addition to the
logic elements and interconnection resources, FPGAs also house programmable switches
that are used to connect the logic elements to the segments of wire and to connect or one
segment of wire to another. In order for FPGAs to be a viable technology, it must be able
to implement a very large spectrum of designs. It is therefore inportant that the logic
blocks and the interconnection resources be as versatile as possible. There are many
manufacturers of FPGAs each with their own advantages and tradeoffs. In this chapter,
we will concentrate on the design of the XC4013 FPGA manufactured by Xilinx Corpor-
ation. However, before a detailed look at the architecture of the FPGA is undertaken, it is
useful to understand the implementation process when a design is downloaded on to an
FPGA [34][36].
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:_D—Loglc Block

Interconnection
Resources

Figure 6.1 Conceptual view of an FPGA.

The implementation of a logic design on an FPGA is for the most part carried out
by a CAD tool. Figure 6.2 shows a flow chart which depicts the steps that a CAD tool
will typically take during the implementation process of a design on to an FPGA.
Irrespective of how the design is described, the design entry is then transformed by the
CAD tool into some standard format such as Boolean expressions. These expressions are
then sent through the logic optimizer whose primary responsibility is to manipulate the

Boolean expressions in order to minimize the overall area or maximize the speed of the final
circuit [34].
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Figure 6.2 Synthesis process from design entry to configured FPGA.

The next step in the process in the technology mapping. Once the Boolean
expressions (and hence the original design) have been optimized, the technology mapper
will transform them into an equivalent circuit consisting of only logic elements. In essence,
the mapper will have partitioned the design into subcircuits so that each subcircuit can be
implemented by a logic element. The technology mapper will also perform some
optimization algorithms. Depending on the user specifications, the mapper will attempt to
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reduce the number of logic elements consumed (for arca optimization) or reduce the number
of stages in the critical path (for timing optimization) [34].

The next step is “place” these logic elements on the FPGA. A placement algorithm
is used to do this. The placement algorithm is used to determine the logic clements that will
implement the subcircuits. The main objective of the placement algorithm is to piace the

subcircuits in a manner which minimizes the total amount of interconnection resources used
[34].

The final routine used by CAD tool is the routing software. The routing software
assigns wire segments of the FPGA and configures the programmable switches in order to
establish the specified connections among the logic blocks. In essence, the subcircuits are
interconnected so that the original design is achieved. If the routing software is unable to
route the design (a phenomenon which is not uncommon when implementing large
designs), then it is possible that more than one FPGA will be required to implement the
design. Since the interconnection resources of the FPGA are fixed in place, the task of
routing is a difficult by nature.

Once the preceding steps have been successfully completed, the CAD tool will feed
its output to a programming unit which will then configure the FPGA. Once the FPGA is

configured, it will implement the initial design entry and the entire implementation process
has been completed.

6.3.1 Xilinx 4013 FPGA

As mentioned in the previous section, each manufacturer of FPGAs will design
their FPGA differently from other manufacturers. There are various types of FPGA
implementations ranging from one time programmable FPGAs to reprogrammable FPGAs.
In this section, the architecture of the Xilinx 4013 FPGA is described. The Xilinx 4013
FPGA has a general architecture similar to that of Figure 6.3. In the Xilinx architecture,
the logic elements are termed Configurable Logic Blocks (CLBs) and the 1/0 Cells are
termed I/O Blocks (IOBs). The programmable connections are achieved using n-channel
pass transistors which are controlled by static-RAM (SRAM) cells. The programmable
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connections are called switching matrices and are shown in Figure 6.4, The
interconnection resources consists of horizontal and vertical routing channels that
interconnect the CLBs. There are three types of interconnection lines differentiated by their
relative segment lengths. These are the single-length line, the double-length line and the
long lines. The single length lines are used primarily for short, local interconnections as
shown in Figure 6.4. The single length lines are arrays of horizontal and vertical lines each
intersecting a switch matrix between each block. The double length lines are double the
length of the single length lines and runs past two CLBs before intersecting a switching
matrix [34](36).

Horizontal Routing Vertical Routing
Channels Channels

OO 0o ggoob

U0 OO do Od
OO0 OO doa ag

O U g oy

Configurable Logic
VO Block Block

Figure 6.3 Architecture of an Xilinx 4000 series FPGA
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The long lines are an array of metal segments that traverse the entire length of the or width
of the FPGA. Long lines are used for high fan-out, time-critical signals which can also be
used to distribute clock signal with a minimum amount of skew.
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Figure 6.4 Routing resources to interconnect CLBs.

The configurable logic blocks (CLBs) are generic devices used to implement a small
subset of the entire design. The functional logic description of the CLB is shown in Figure
6.5. It consists of two 4-input logic function generators labelled F and G and a third
function generator with three inputs labelled H. These function generators provide the
combinational circuitry of each CLB. They can perform two independent functions of four
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variables, onc function of five variables, any function of four variables in conjunction with
some functions of five variables and some functions of nine variables [34][36].

In addition to the combinational circuitry, each CLB consists of the D-Flip Flops
which provide the sequential circuitry of each CLB. The D-Flip Flops are equipped with
asynchronous set and reset which are also controlled by the selector module. The set of
multiplexors on each CLB determine, in part, the functionality of the each CLB. The
outputs of the combinational function generators can be fed into the inputs of the D-Flip
Flop or directly to the CLB output. If the combinational function generators are fed directly
to the outputs, the D-Flip Flops can receive inputs from the selector in which case, the CLB
can be actually performing two different functions (one combinational and one sequential).
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Figure 6.5 Logic specification for the Configurable Logic Block of the Xilinx 4000
scries FPGA.
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The 10Bs provide the intertace between the internal logic of the FPGA and the
packaged pins [34][36].

6.4 VHDL Hierarchy of the Hyperplane

As mentioned in Section 6.2, one of the main features of VHDL is its ability to
support hierarchy. Befo.e we describe the our design using VHDL, it is first prudent to
develop a hierarchical description. Figures 6.6 through 6.10 show the various levels of the
hierarchy for our design. Each bounding box represents a separate entity. Figure 6.6
shows the highest level in the hierarchy. It consists of two entities, The first is the test
bench which we will use to simulate our design The second is the Backplane entity. The
Backplane entity will instantiate the entity of four SPAs and interconnect them in a
unidirectional ring. Notice that within the entity Backplane is another entity
Smart_Pixel_Array. This indicates that the entity Backplane will use the entity
Smart_Pixel_Array as its components. Since Backplane interconnects four smart pixel
arrays in a unidirectional ring, we say that the entity Backplane instantiates the
Smart_Pixel_Array four times.

Backplane_Test_Bench

Backplane

Smart_Pixel_Array

Figure 6.6 Top level of the nierarchy

The next level in the hierarchy (shown in Figure 6.7) describes the components that make
up Smart_Pixel_Array. As we described in Chapter 5, each SPA consists of eight SPC’s
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(smart pixel channels), an arbitration circuit and a decoder. Therefore the entity
Smart_Pixei_Array will instantiate entity Smart_Pixel_Channel eight times (byte channels
are occasionally referred to as Smart Pixel Channels). Notice that Smart_Pixel_Channel
will instantiate entities Smart_Pixel and Channel_Control_Unit.  In addition,
Smart_Pixel_Array will instantiate entities Arbitration_Unit and Decoder once each.

Smart_Pixel_Array

Smart_Pixel_Channel

Smart_Pixel

Channel_Control_Unit

Arbitration_Unit

Decoder

Figure 6.7 Second level in the hierarchy, illustrating a typical SPA.

Figures 6.8 to 6.10 show the third and fourth levels in the hierarchy for the rest of the
design. Once the hierarchy of our design was completed, the VHDL code for each level of
the hierarchy was created and then simulated using the Synopsys CAD tool. A complete
copy of the VHDL code can be found in [4C].
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Channel_Control_Unit

Control_Latch

Synchronizing_Circuit

Figure 6.8 Third level in hierarchy illustrating a typical channel control unit.

Arbitration_Unit

Arbiter

Counter

Figure 6.9 Third level in hierarchy illustrating the arbitraticn unit.
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Smart_Pixel

Tristate

Mux_4_to_1

Address_Comparator

Programmable_Delay_Circuit

DFF

Figure 6.10 Third and fourth levels in the hierarchy, illustrating a typical smart pixel and
the programmable delay circuit.

6.5 Design Verification Through Simulation

6.5.1 Propagation Delays Through the Logic Devices

Once the design has been described using VHDL, the next step is to verify its
functional correctness through simulation. The task of simulation is indeed difficult. It
would be unrealistic to demonstrate how the Hyperplane would behave under all contin-
gencies since this would constitute an exhaustive test. The number of test vectors in an
exhaustive test rise exponentially to the number of inputs to the system [38]. This section
will present some simulation results. It is the author’s belief that the simulations presented
in this chapter will demonstrate and verify the functional correctness of our design.

In order to establish proper timing analyses, the propagation delays through the
various components need to be taken into account. To determine these propagation delay,
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it is necessary to know what technology will be used. At the current time, it is expected
that upcoming demonstrators will be implemented using either .5 or .8 p CMOS technol-
ogy. In order to establish a worst case analysis, the delay specifications for 1.2 micron
CMOS technology was included in the VHDL code [39]. Table 6.1 summarizes the delay
specifications used. Adding the delays to the various components allows us to also
approximate the maximum speed the final design can accommodate. As can be scen, the
main bottleneck is the delay through the bond pads. The bond pads are used to inject and
extract data to and from the backplane. This delay will vary depending on the capacitive
load it needs to drive. However, a conservative estimate assumes the delay through the
bond pads to be about 25.0 ns.

Logic.Device +Propagation Deldy':
2 Input And 3.86 ns

4 Input And 4.67 ns II
2 Input Or 2.73 ns

2 Input Xor 427 ns “
2 Input Nor 2.73 ns

3 State Buffer 3.96 ns

D Flip Flop 4.39 ns

4 to 1 Mux 7.39 ns

4 Bit Counter 5.67 ns
Arbiter (approx.) 12.0 ns

Table 6.1: Summary of worst case propagation delays through various logic devices using
1.2 micron CMOS technology [39).

6.5.2 Simulation Setup and Results

Using the delay values specified in the previous section, the test bench was created.
Recall that there are two modes that the Hyperplane can operate in. For the sake of brevity,
the simulation of only the intelligent mode will be described. In addition, the simulation is
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set so that the packets are asynchronously transmitted, In order to operate in the intelligent
mode, cach board (and hence each SPA) must be assigned a unique address, Table 6.2
summarizes what address we have assigned to each SPA

0 10000010
1 10000011
|| 2 10000100

|| 3 10000101

Table 6.2: Address for the SPAs connected to the Hyperplane.

In Chapter 5, we noted that in order to preserve an 8 bit data path, the byte channel had to
be increased from 8 pixels to 9 pixels. However, for the sake of convenience, we have
elected to keep the byte channel at 8 pixels (8 bits) and still send packets asynchronously.
However, with minor adjustments to the VHDL code, the byte channel can be increased to

Gro[p Address

Bit7 Bitb!Bits Bit4| Bit3| Bit2| Bit1| Bit0

9 pixels.

Vaild Header Board Address

Figure 6.11 Description of address bits.

For our VHDL simulations, the clock has a period of 30 ns. Before the Hyperplane
can begin transmitting and receiving data, it must first be configured. The configuration
process loads data into the control latches of all the channel control units. This process was
described in some detail in Chapter 5. Figure 6.12 shows the simulation of the configur-
ation process. The figure is labelled with lines as an aid in our discussion. At Line A, we

see that the Reset signal is set high (see the bold dot on Line A). At this time all latches and

96



Chapter 6: Simulation of the June 1995 Hyperplane using VHDL and FPGAs

outputs are initialized to a low state. Once all components have been reset, the configuration
process begins. Figure 6.12 shows the status of all 12 injector channels and all 12
extractor channels. We will follow the configuration of SPA 0. Recall that two injector
channels are needed to configure a SPA. Injector channel 0 carries the data to be latched by
the control latches, Injector channel 1, carries the control bits of the decoder (Figure 5.16)
that selects the control latch to configure (the configuration process was described in
Chapter 5, Section 6).

The labelling of the signals in Figure 6.12 and 6.13 follow a unchangeable
convention created by the Synopsys 3.0 CAD tool. Injector0O(1), for example, means
injector channel 1 of SPA 0. At Line B in Figure 6.12, we see that InjectorO(1) has a value
of 00 and Injector0(0) has a value of F8 (see the two bold dots on Line B). InjectorO(1)
controls the decoder in each SPA while InjectorO(0) holds the data that the control latches
will be loaded with. Therefore at Line B, the first control latch of SPA 0 will be loaded
with the data F8 (at the rising edge of the clock). The same holds true for all the other
SPAs. At Line C we see that InjectorQO(1) has changed from 00 to 01. That means that the
next control latch has been selected for loading. InjectorO(0) remains the same. All this
means is that the control latch will be loaded with the same data as the previous control
latch. The configuration process continues until Line D where the last control latch is

loaded with a value EC (Injector0O(1) has a value of 07 and Injector{0) holds a value of
EC)

Once the configuration process has been completed, the Hyperplane is ready to
transmit and receive data. The test bench will begin feeding data through the Injector
Channels. Since it is difficult to visually trace the transmission of packets through the
backplane, Table 6.3 summarizes where the packets from a given SPA are destined.

Notice that four packets are destined for SPA 2 but only three of those packets can
be extracted from the backplane (there are only three extractor channels per SPA), We set
the headers of four packets for SPA 2 so that we can ensure that the arbitration circuit will
ignore all incoming packets if all three extractors are busy.
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ouice.” | Header
SPAQ | 11000101 |SPA3
SPAO 10100100 SPA2

SPA 1 11100010 SPA0 l
SPA 1 10100100 SPA 2 1
SPA 2 10100011 SoA

SPA 2 11100010 SPA 0

SPA 3 10100100 SPA 2

SPA 3 10100100 SPA 2

Table 6.3: Summary of packet origin and destination.
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Figure 6.12: Simulation of the configuration process.
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The transmission of data begins when the Global Enable signal goes high (see the
bold dot on Line E in Figure 6.13). At this time, most of injector channels are fed with
the header of various packets. The header needs to be held for at least two clock cycles to
allow time for the arbitration circuit to complete its task (to be conservative, all packet
headers were held for 3 clock cycles). To show that the backplane does transmit packets
asynchronously, the transmission of a packet from Injector1(2) has been delayed until Line
F. Once the header has been transmitted, a new byte is introduced at the falling edge of

every clock cycle. At the same time, all bytes in the backplane move from SPAJ to SPA
(j+1) mod 4. Thus if SPA 3 is transmitting to SPA 2, then each word would take 3 clock
cycles to travel from SPA 3 to SPA 2.

If we follow Table 6.3, we see that the packets arrive at the appropriate SPA and
are handled correctly. For example, the packet transmitted by InjectorO(1) has a header
whose hexadecimal address is A4. This indicates that the packet is destined for SPA 2. If
we look at Extractor2(1), at Line F (see the bold dot near the bottom of Line F) we see
that the data appearing on this extractor is the same data that was injected through
Injector0(1). We can measure the delay from when the data was injected by Injector 0(1) to
the time it was extracted by Extractor2(1). Line G shows the word 0D entering the

backplane over Injector0(1). Line H shows the same word being extracted by Extractor2
(1). The time between Line G and Line H is 110 ns (please see bold dots on Line G and
Line H). This delay is to be expected. There is a 25 ns delay to pass through the bond
pads of the injector channel. From there the data will hop from SPA to SPA at every rising
edge of the clock. Since the data is travelling from SPA 0 to SPA 2, it must make two
hops. Therefore, the data will take 2 clock cycles (or 60 ns) to move from SPA 0 to SPA

2. Finally, there is another 25 ns delay to pass through the bond pads of the extractor. The
sum of all these delays add to 110 ns.

The only packet that did not arrive at its destination is the packet sent by Injector3
(2). However this is to be expected. Table 6.3 shows that there are four packets destined

for the SPA 2. The last injector to transmit a packet destined for SPA 2 is Injector3(2). If
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the arbitration circuit is working correctly, then this packet should just be ignored. This is
indeed the case. This shows that the arbitration circuit simply ignored the packet from
Injector3(2).

Given the delays shown in Table 6.1, the simulation was executed for various clock
speeds. To ensure proper operation of the VLSI design, the clock must have a minium
period of 28 ns or 357 MHz. Referring to Table 6.1, we observe that the minimum clock
period for the VLSI design is 25 ns which represents the delay through the bond pads. The
additional 3 ns delay that we notice through simulations occurs because logic gates through
the datapath. It should be noted however, that the delays tabulated are worst case figures
based on 1.2 p CMOS technology. It is expected that the actual implementation of the
Hyperplane (which is expected to be fabricated using either .8 p or .5 p CMOS technol-
ogy) will be able to run at higher clock speeds.

6.6 Design Compilation and Synthesis for FPGA Technology

The final step in the development of our simulator is to synthesize the VHDL
description for FPGA technology. The major steps in the synthesis procedure were
shown in Figure 6.2. The logic optimization and the technology mapping are performed by
the Synopsys CAD tool. The last placement and routing of the design are performed by the
Xact software developed by the Xilinx corporation. When completed, the Xact software
will report the number of CLBs the design will require.

One of the obstacles that we faced was the shortage of pins available. Referring to
Figure 5.2 (on Page 62), we see that each SPA requires 60 electrical pins (i.e. not
including the optical I/0). If four SPAs were to be interconnected, then a total of 240 pins
would be needed. The target technology for synthesis was the Xilinx 4013 FPGA which
has a maximum total of 192 I/0 pins. Therefore, our FPGA simulator will only simulate
two SPAs connected together on one FPGA. This is not a serious problem since the main
motivation for developing a hardware simulator is to test the electronic components. We do
not need to simulate all four SPAs connected in a unidirectional ring to meet this end.
Therefore, our hardware simulator will only simulate two SPAs connected in a unidirec-
tional ring.
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Table 6.4 summarizes the resource utilization of our synthesized design. Notice

that there is a relatively large utilization of packed CLBs.

This is largely due to the

Synopsys 3.0 compiler. During the technology mapping phase, the compiler does not
capitalize of the built in latch enable on the CLB flip-flops. The result is a significant
increase in the overall logic area required to implement latch enable system. The target
libraries for the newer version of Synopsys were not readily available during the time of
compilation and synthesis. We expect to resynthesize the design when the target libraries

become available.

e N
Occupied CLBs 530 576 92
Packed CLB’s 421 576 73
Bonded IO Pins 105 192 54

| FG Fn. Generators 843 1152 73

|| H Fn. Generators 214 576 37

l| CLB Fiip Flops 281 1152 24

[ Tri-state Buffers 64 1248 5
Tri-State Half Long 64

Lines

Table 6.4: Resource utilization after partition, placement and routing of the design on a

Xilinx 4013 FPGA.

Tiining (Speed GradEE6)T| o

R AT Y e §

Titing (Speed Graded)

Pacl to Pad

102.3 ns

89.1 ns

Pad to Setup

210.5 ns

156.4 ns

Clock to Pad

92.0ns

70.2 ns

Clock to Setup

212 0 ns

Table 6.5: Timing statistics for two speed grades of the Xilinx 4013 FPGA.
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The timing statistics for the synthesized design are tabulated in Table 6.5. These
statistics are obtained using the Xdelay software also produced by Xilinx. The Xilinx 4000
series offers various speed grades. Table 6.5 shows the timing statistics for two such
speed grades.

¥ eyt F 4

(Timing Statistic 1 £+'Speed Grade 4 !

Minimum Clock Period 2120 ns 156.4 ns

Maximum Clock Speed 4.7 MHz 6.4 MHz “
Table 6.6: Maximum clock speeds for the Hyperplane emulator using different speed
grades of the Xilinx 4013 FPGA.

Table 6.6 tabulates the maximum clock speed of the emulator based on the critical
path calculated by the Xdelay package. Even with the faster FPGA, the maximum clock
speed of the emulator is restricted to 6.4 MHz. Again this is partly due to the Synopsys
3.0b compiler. We mentioned earlier that the compiler does not capitalize on the built in
latch enable system of each flip flop. The result is an increase in the overall logic area that
the final design will consume. This extra logic will also lead to propagation delays
affecting the overall speed of the design. We expect better performance values when the
newer libraries become available and our design is recompiled using the new versions of
Synopsys. Nevertheless, a hardware emulator that runs at 4 MHz would allow other
hardware modules (processing ICs mounted on each PCB) to be thoroughly tested. As
little as 5 years ago, a wire-wrapped prototype would be the only feasible method to
construct an emulator (since FPGA technology was not readily available). Such a
prototype would likely run at speeds less than 1 MHz, Hence the FPGA emulator is very
fast and convenient compared to the alternatives (i.e. wire wrapped prototypes).
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6.7 Chapter Summary

This chapter discussed the development of a simulator for the Hyperplane. The
simulator was developed in software and in hardware, The software simulator was created
using VHDL (a hardware description language). The VHDL code allowed us to describe
our design in a manner which could be read by a CAD tool Synopsys. The Synopsys tool
would then simulate our design based on the specifications of the VHDL description. We
presented the hierarchy of the VHDL description and then demonstrated the functional
correctness of our design by displaying some of the simulation results. We then
proceeded to synthesize our design for FPGA technology. We saw that the major
consumer of configurable logic blocks was the arbitration circuit. We also saw that the
Synopsys compiler that we used did not capitalize on the latch enable system causing an
increase in the overall area.

One of the novel aspects of this chapter is the usage of FPGA technology to
simulate an optoelectronic device and an optical backplane in real time. Based on previous
experiences with the modelling of an optical backplane using FPGAs our hardware
simulator will undoubtedly become an invaluable tool. The simulator allows us to develop
electronic hardware and analyze how it will behave when interfaced with the actual SPAs
at reasonable clock rates (in the MHz range).
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Chapter 7
Conclusion

As our information hungry society continues place greater and greater demands on
high bandwidth systems, the need for new paradigms in which data is transmitted and
processed begins to arise. The speed at which electronics can switch is limited by the
capacitive and inductive effects inherent to all systems. These effects are especially more
pronounced as the frequency at which data is transmitted increases. Moreover, as the
density of the electrical interconnect increases so do the deleterious effects of inductive
coupling.

In recent years, a considerable amount of research has focused on integrating optics
with electronics. The main advantage of these systems arises from the fact that optical
signals are naturally non-interactive, Therefore they do not suffer from the same high
frequency and cross coupling effects that plague electronic systems. Initially, much of
this research revolved around replacing entire electronic modules with equivalent optical
devices. Several years later it was discovered that greater benefits could be achieved if
optical technology was used to complement electronic technology and with this realization,
research in optoelectronic technology became increasingly widespread.

The Canadian Institute for Telecommunications Research is funding a Major Project
in Photonic Devices and Systems. One of the main goals of this five phase five year
project is to develop an optical backplane capable of interconnecting several printed circuit
boards with an aggregate bandwidth on the order of 1 Terabit per second. The backplane is
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appropriately referred to as the Terabit Photonic Backplane and much of this thesis revolves
around this project. We began by motivating the need for optics in technology and then
proceeded to discuss some of the work previously done in this area. Chapter 3 discussed
in some detail the Terabit Photonic Backplane (which we later called the Hyperplane) and
reviewed a rather new device which we termed Smart Pixel Arrays (SPAs). These SPAs
are based or Multiple Quantum Well (MQW) technology and perform the optoelectronic
conversions necessary to implement the Hyperplane.

In Chapter 4, we described a procedure called graph contractions, We used this
procedure to present several possible embeddings of a Cray T3D Supercomputer on to the
Hyperplane. For each embedding we calculated the bisection width. We then calculated
the number of SPAs (as the number of byte channels varied) needed to implement each
embedding. The bisection width was used to help calculate these numbers.

As part of the mandate for the Major Project, demonstrators are periodically
constructed to highlight the milestones achieved. Chapter 5 reviewed the functional
specifications of the June 1995 Hyperplane and the June 1995 SPA which can be used to

_ realize the embeddings of Chapter 4. The June 1995 Hyperplane is a representative subset
- of the Terabit Photonic Backplane.

' Finally, in Chapter 6 we developed a hardware and software simulator for the June
1995 backplane. The design was described using a hardware description language called
VHDL and simulated using the CAD tool Synopsys. We then compiled and synthesized
the design for FPGA technology. The synthesized design could be downloaded on to an
FPGA which would then behave, in hardware, as the backplane. The hardware simulator
will allow us to rigorously test any electronic components that will eventually be interfaced
with the backplane at realistic clock rates (in the MHz range).
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