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ABSTRACT

The history of classical conditioning 1s summanized The contributions and
weaknesses of several earher models of classical conditiomng are studied Two new
neuronal models are proposed The first, called the deluy-producing connections (or
DPC) model, 15 an ¢xtension of the Klopf (1988) and Sutton & Barto (1981) models The
DPC model makes two contributions (1) it represents the trace of each conditioned
stimuli (CS) by differential cquations, and (2) 1t replaces cach CS in the activation rule
with a trace of the relevant CS A method 1s suggested to measure the trace of a CS The
second model, called the adaptive delays (or AD) model, 1s proposed as an extension of
the DPC model to account for the phenomenon of inhibition of delay Both models
reproduce the shape of a CR, the curve of efficacy of conditioning as a function of the
intersumulus interval (IS1), the dependence of the optimal ISI on CS duration, the
extinction of a CR (even for long lasting CSs as opposed to Klopf's (1988) model), and

several other properties of classical conditiontng



RESUME

L'historique des découvertes du conditionnement classique est résume Les torees
et les faiblesses de divers modeles existants de conditionnement classique sont ctudiees
Deux nouveaux modéles neuronaux sont proposés Le premuer, fe modele a commextons
produsant des délais (ou CPD), est une cxtension des modeles de Klopt (1988) ¢t de
Sutton et Barto (1981) Le modele CPD apporte deux contributions (1) 1l represente fa
trace d'un stimulus conditionnel (SC) par une équation différenticlie, et (2) 1l remplace
les SCs, dans la régle d'activation, par leur trace  Une méthode est proposee pour mesutcet
la trace d'un SC Le sccond modéle, le modéle a délats adaptatifs (ou DAY, est développe
a partir du modéle CPD, afin de rendre compte au phénomene de croissance de la latence
de la réponse conditionnelle (RC) dans la techmique d'anticipation Les deux modeles
reprodwsent la forme de la RC, la conrbe de Vefticacité du condiionnement en fonction
de I'ntervalle entre le SC et le stimulus incondittonnel (SI), la dépendance de 'intervalle
SC—SI optimal envers la durée du SC, lextinction (méme pour un long SC
contrarrement au modéle de Klopf (1988)) ct de nombreuscs autres proprictes du
conditionnement classique.
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1. INTRODUCTION

Classical conditioning 1s at the nterface of three maimn ficlds of psychology
physiological psychology, ammal learming and the neural network paradigm m cogmitive
psychology New findings have expanded the scope of classical conditioning processes
Traditional views considered classical conditioning to merelv unohve  secietony,
reflexive, or emotional processes However, evidence now shows the mvoh ement of
classical conditioning in drug tolerance effects, relapses to drug abuse, the placebo eftect,
the operation of the immune system. vicanious learming and cven i rule-poverned
behavior "Classical conditioning [ | has been found to occur in simpler and simplet
organisms and recently even demonstrated in braimn slices and mn utero " (Furkhan, 1989)
New discoverics 1n classical conditioning have shed some hght on ity neurobiological
mechanism Classical condiaoning has also been studied at the level of the neuron
(Byrne, 1987, Carew, i{awkins, and Kandel, 1983, Hawhkins, Carew, & Kandel, 1986,
Thompson et al | 1984)

1.1 Definition of Classical Conditioning:

A classical conditioning (or Pavlovian conditioming) process 15 a learning
procedure involving four basic components

(1) the Unconditioned Stimulus (US),

(2)  the Unconditioned Response (UR),

(3)  the Conditioned Stimulus (CS),
and (4) the Conditioned Response (CR)

Prior to conditioning, the US mnately clicits the UR, hut the CS docs not chicit the
CR. During conditioning, the CS 1s paired with the US Following conditioning, the €°S
ehcits the CR The strength (or intensity) of the CR increases steadily during acquisition
until a maximum or asymptotic level 1s reached

The classic example of this procedure 1s the historic case of Paviov's dog When
food (US) 1s presented to a dog, the dog starts to salivate (UR) When a bell 1s presented
to a dog, without food, 1t produces nothing but an orienting response (OR) If the bell
(CS) 1s repeatedly associated with the presentation of food, the dog will learn to salivate
(CR) when the bell rings, even if the bell s now not followed with food (no US or
extinction) Classical conditioning 1s a form of associative learning  However, the
animal being conditioned not only makes an association between two sumult, but also
learns a temporal relationship between a CS and a US Because this association s non-
commutative, 1t represents the learning of a fundamental causal relationship A subject
learns that the CS predicts the US, that 1s when a subject detects a CS, a US 1s expected
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With classical conditioning an organism 1s able to discnminate cause and effect

relationships in the environment

1.2 Aims and Mcthod:

After a presentation of the physiological computational context and after a briet
review of properties of classical conditioning and a review of some models of Pavliovian
conditoning, | will present two new models of Pavlovian conditioning The first,
presented in Chapter 4, and called the deluy-producing connections (or DPC) model. 1s
an extension of the Klopt (1988) and Sutton & Barto (1981) models The DPC model
includes two contributions It proposes (a) representing the trace of each CS by a third-
order differential equation, and (b) replacing each CS in the activation rule by the trace
of the CS The second model. presented in Chapter 5, and called udaptive delays (or AD)
model, 15 an extenston of the DPC model which accounts for the phenomenon of
inhibition of delay and for CS preexpeosure effects The AD model assumes that the
amphtude of 1he trace of a CS as well as the position of its peak can change during
condiiomng Both models have interesting features each reproduces the shape of a CR,
the curve of etficacy of conditioning as a function ot the interstimulus interval (ISI), the
dependence of the optimal IS1 on CS duration, the extinction of a CR (even for long
lasting CSs as opposed to Klopf's (1988) model), and several other properties of ciassical
condiiomng  However, the AD model does not give a rehable account of some
propertics that are explamed by the DPC model | also present a new method of
measuring difterent parameters of classical conditioning (Section 5 5 of Chapter 5) My
work 1s theoretical and the "experniments” accomphshed are computer simulations

Many models of Pavlovian conditioning are discrete as a function of intensity of
stimuli (¢ g, Hall & Pcarce, 1980, Rescorla & Wagner, 1972, Wagner, 1975). This
mcans that a stimulus 1s acsumed to be cither present or absent One of my aims 1s to
incorporate the itensities of the stimuli as real numbers  Another way to divide models
1s according to their real-time properties Some model are non-real-time models (e g,
Hall & Pearce, 1980, Rescorla & Wagner, 1972, Wagner, 1975) and others are real-time
models (¢ g , Gluck & Thompson, 1987, Klopf, 1988, Sutton & Barto, 1981) "Real-time"
in this context does not mean continuous time, it means "the temporal association of
signals cach cntical event in the sequence leading to learning has a ime of occurrence
assoctated with it, and this time plays a fundamental role [ |" (Klopf, 1988), 1 e the time
sequence of events 1s umportant Non-real-time models usually have the trial as the time
unit Real-time models. however, make 1t possible to explore time contingencies and to
produce more sophisticated predictions This 1s important because close to 30% of the



major properties of classical condiioning (see Table D 1 1n Appendiy DY are real-time
properties With a rcal-time model 1t 1s possible to explain the mfluence of stmulus
duration and delnvs between stimult on the resulting CR mtensity - Phis influenee
critical For example. 11 the CS 1s presented after the US (bachward conditioning) a ven
weak CR develops, while a strong CR develops when the CS s presented just betore the
onset of the US (as in trace conditioning) Also. with a model that 1< continuous i regand
to intensity. 1t 1s possible to explam the influence of the US mtensity and the CS miensity
on the CR strength

Models of Pavlovian conditioning can be divided into two categories m anothet
manner, according to thewr claim to universality The first catepory claims o explaun all
types of classical conditioning Rescorla & Wagner's (1972) model and the Wapne
(1981) SOP model would be 1n this categorv The second category seeks to explam a
specific reflex of a given antmal An example of this latter category would be Gluck-
Thompson's (1987) model of the siphon retraction reflex of the Aplvsia, and the
Schmajuck-Moore (1989) model of hippocampal mampulations on the classically
conditioned suctituting membrane response (NMR) The approach that 1 take talls into
the first category However, in achieving greater gencrality, there s a risk of appeanmg
more arbitrary To mimimize that nsk, I apply my models to a particular et of” dala,
namely NMR 1n rabbits

1.3 Developments in Classical Conditioning:

Since the seminal works of Bechterev (1913), Watson (1920) and Pavlov (Pavioy,
1927), classical conditioning has traditionally been thought to apply to unconditioned
reflexes of secretion. motor response or ecmotional response Conditioning of secretion
was shown with sahiva, gastrnic juices (Pavlov, 1927), pancreatic enzymes, and 1insulm
(Mayer, 1953) Conditioning of motor response has been studied, for example, with
withdrawal of the leg ( Bechterev, 1913), and the mictitating membrane reflex (Baldwin &
Baldwin, 1981, Hughes & Schlosberg, 1938) Condiioning of ecmotional response was
observed with the conditioning of  fear (Watson, 1916), galvamc <k response
(Perruchet, 1979), cardiac response (Bouchard, 1974, Monn ct al, 1987), and food
aversion (Garcia et al | 1966) Recently, the set of URs to which classical conditioning
applies has been extended, although some of the results are stll a matter for debate
Drug Tolerance

Siegel and his associates (Stegel et al , 1976, 1977) used morphine as the US
producing an UR of analgesia They suggested that the environment where the drug s

taken can act as a CS and that the CR 1s opposed to the JR Morphine produces analgesia




and hypoactivity while the opposed CR, they propose, produces hyperalgesia and
hyperactivity It has also been suggested that conditioning 1s responsible, at least in part,
for the phenomenon of drug tolerance {(MacRae & Siegel. 1988. Schnur & Martinez.
1989, Siegel, 1976, 1987) Tolerance to a drug develops when, with repeated use, the
cffectiveness of the drug declines and thus larger doses are necessary to achieve the same
pharmacological cffects Siegel (1977) found that exposure to the environment (CS)
without the drug (US), once the association has been "conditioned", resuits in the
extinction of the opponent CR, the elimination of the CR produces a stronger reaction to
the drug itselt” Sicgel and his associates (Siegel et al , 1982) observed that drug overdose
typically occurs when an addict takes his or her usual drug dose, but 1n an unfamihar
environaiet This opposite conditioned reaction (CR) to drugs has been shown with
drugs other than morphine. Siegel (1972, 1975) showed that amimals to whom nsulin
was admimstered displayed a CR of hyperglycemia; Lang (1966) observed that animals
with a history of atropine administration demonstrate hypersalivation as a CR; Greeley
(1984) and Mansficld and Cunningham (1980) discovered opposed CR to the
hypothermic cffect of alcohol; Hinson, Poulos & Cappell (1982) showed opposed CR to
the sedative effect of pentobarbital, Poulos (1981) showed opposed CR to the anorexic
effect of amphetamine. Mathematical models of addiction assume an exponential decay
over ime of recidivism pressure and relapse rate (Fan & Elketroussi, 1989) This 1s
consistent with the view that the environment acts as a CS and that the CR is to take
drugs This CR 1s extinguished 1n an exponential fashion as a usual classically
conditioned CR would be
Placebo Eftect

Wickramasekera (1985) proposed that the placebo effect could be modeled using

classical conditioning, and furthermore he made 17 specific predictions from the model.
One of these predictions 1s a description of the nocebo effect as the antithesis to placebo
effect. CSs can acquire harmful effects through association with illness.

Immune System

Ader and Cohen (1982, 1985) accidentally discovered that environmental events
could suppress the functioning of the immune system Following the pu.fing of saccharin-
flavored water (CS) with cyclophosphamide (US), a drug that produces nausea and
suppresses the immune system, some of the test animals died as a result of the
presentation of the CS without the US Later they confirmed those preliminary results by
studying the development of the immune disease lupus erythematosus 1n New Zealand
mice Other studies have successfully classically conditioned other immune responses
such as histamine release in guinea pigs (Russell et al , 1984), natural killer cell activity



in mice (Ghanta et al , 1985), adjuvant arthritis 1n rats (Klosterhalfen & Klosterhalfen,
1983) and delayed-type hypersensitivity in normal humans (Smith & McDaniels, 1983)
Vicarious Learming:

A subject can leam to respond to a particular stimulus as a result of obsening the
expenence of others The development of a CR following such an observation 1s called
vicarious condittorung Bandura (1977) demonstrated that CS-CR associations can be
acquired by humans through vicarious conditioning experiences Mincha et al (1984)
found that monkeys learned to fear snakes after exposure to another monkey reacting
fearfully to a snake Without such exposure, the monkeys did not fear snahes

The foregoing studies indicate that Paviovian conditioning 1s such a widespread
phenomenon that it deserves detailed study Furthermore a model capable of predicting
the properties of classical conditioning is likely to have applications n a wide range of
domains

1.4  The Neural Network Paradigm:

Models containing networks of ncuron-like units have become dominant in the
study of both cogmitive psychology and artificial intelligence (cg, Anderson &
Rosenfeld, 1988, Feldman, 1985, Lacouture & Marley, 1991, Rumelhart & McClelland,
1986; Shultz & Schmudt, 1991) Artficial neural networks are frequently referred to as
connectionist models, parallel distnbuted processing (PDP) models, or adaptive/scli-
orgamzing networks. These networks typically have a large number of umits and arc
applied to phenomena such as visual pattern perception, decision mahking, word
recognition, and coordinated motor actions

Main Charactenistics of Neural Network Models-

Artificial neural networks are assumed to possess two basic features

a) Each neuron-like unit 1s governed by two equations, an activation rule and a
learming rule The activation rule involves the combination of nputs entering the umt
and determines what the output should be. Connection weights arc associated to cach
connection. The influence of an input on the output under the activation rule s
proportional to its connection weight The learning rule specifies how the connection
weights should be modified.

b) Interactions between units imply the transmission of activation levels from the
output of one unit to the input of another. Most often outputs are postulated to be an all
or none firing (0 or 1 usually) The input level of the recerving unit 1s often the product of
the current activation level by the current connection weight at the receiving unit

10



Bnief History
McCulloch and Pitts (1943) were the inventors of our modern concept of the

activation rulc They contended that a neuron will fire in an all-or-none fashion if the
sum of 1ts inputs exceeds a certain threshold This 1s mathematically represented by

Equations .1 and | 2

n
Yy =3 VX)), (1.1)
1=1
| if Z> T,
where f(Z) = (12)
0 otherwise,

and where
Y(t) 1sthe output at time t,
V/(t) 1s the connection weight of input 1 at time t;
X,(t) 1sthe activation level of input 1 at time t,
f(Z) s the activation function (or threshold function),
and T 1s the threshold
Donald O Hebb (1949) 1s the originator of the principle on which many modern
learning rules are based He wrote:
"When an axon of cell A 1s near enough to excite a cell B and repeatedly
or persistently takes part in firing 1t, some growth process or metabolic change
takes place in one or both cells such that A's efficiency as one of the cells finng B
1s increased "
In other words, a connection weight increases 1f presynaptic activity 1s cont:guous in time
to postsynaptic activity This 1s called the Hebbian learning rule, and is mathematically
represented by Equations (1 3) and (1.4)
AV (1) =c XD Y(1), (1.3)
where' AV () 1s the change in connection weight of input i at the time step t,

and ¢ 1S a rate parameter
The same Equation in a differential form (Sutton & Barto, 1981) reads:
dVv, = c X(t) Y(1), (1.4

where dV, is an infimtesimal variation of V, at time t.

In effect, Hebb applied the ancient law of temporal contiguity at the neural level.
In mathematical terms, the weight value V, is the correlation of the activation of unit i
with the output



Amazingly, the review of the mamn learning rules for neural networks s at the
same time a review of seme major models of classical conditioning  Furthermore, the
Hebbian learning rule has recently interested physiological psvehologists because of the
phenomenon of long-term potentiation (LTP) Bliss and Lomo (1973) discovered that
intense electrical stimulation of the presynaptic perforant path of the hippocampus
caused a long-term increase 1n the magmitude of excitatory postsynaptic potentials in the
dentate gyrus, this increase 1s called LTP The results suggest that neurons are Hebbian in
character with respect to their learmng mechanism Rescarchers are trying to shed some
light on the relationship between this physiological phenomenon and the behavior of
whole animals (Shapiro & Caramanos, 1990)

Widrow-Hoff Learming Ruie

Sutton and Barto (1981) realized that what has been called the Widrow-Hott
learning rule (Widrow & Hoff, 1960) was equivalent to the Rescorla & Wagner (1972)
model of classical conditiomng (Rescorla & Wagner, 1972) This rule 1s also known as
the delta rule, or the adaline rule, or the LMS (least mean square) rule (Gluch & Bower,
1988; Rumelhart, McClelland et al, 1986) The Widrow-Hoft rule 1s an iterative

procedure for solving a set of hinear inequalities An exact solution to such a sct of hncar

inequahities exists if the desired response 1s a linearly separable function of the stimulus
patterns. This rule 1s expressed by the following equation’

AV (t) = c, [ Z(t) - Y(t) ] X(0), (15)
where Z(t) 1s a special input signal
The Rescorla & Wagner rule has the form'

AV = o B[ M- Z \ZON! (16)
=
where: a, is the salience of the CS,,
B is related 1o the associability between the US and the CS,
(Rescorla & Wagner assume that there are two possible valucs for 3
Bo which 1s the value of 8 when there 1s no reinforcement and
By which 1s the value of 8 when there 1s a reinforcement),
A(t) is the intensity of the US at time t,
and S is the set of (indexes of) all sttmuli present on the current tnal

a, and B are constant valued learning rate parameters A(1) has a constant positive
value when the US 1s present and equals zero when the US 1s absent




We can show that Equation 1 5 15 a special case of Equation 1 6 when X(t) 1s
equal to 1 when the CS; 1s present and 1s equal to 0 when the CS, 1s absent By putting
Z(t)=A(t), and ¢, = o, 3 n Equation 1 5, we get

n

AV (1) af[ M- [XmVm] ] (17)
71
n

Notice that Z V(t) and Z [ X(1) V(1) ] are two equivalent notations The

16 /=1
first term 1s the sum of all the weights of the CSs present 1n a tnal. The second term 1s the
sum of all the weigths multiphied by X;it), and X,(t) is equal to 1 when the CS, is present
and is equal to 0 when the CS, 1s absent Thus, Equations 1.7 and 1.5 are equivalent
under the given conditions to Equation 1 6.
Klopt (1972, 1982)
Klopf introduced the notions of synaptic ehgibility and reinforcement into real-

time learming mechanisms, taking into account sequential rather than simultaneous
events His learming rule 1s.

AV (1) = ¢ X,(t-k) Y(t-k) S(t), (1.8)
where. S(t) s the neuronal membrane potential (S(t) 1s approximately equal to /(t));
and Kk 1s the nominal interval of time required for a neuronal output to feed back

and influence the neuronal input

In thrs model, presynaptic activity X (t-k) and postsynaptic activity Y(t-k), when
they occur 1in conjunction, render a synapse eligible for modification However, the
efficacy of an chgible synapse does not change unless the subsequent membrane
potential, S(t), 1s nonzero This S(t) functions as a reinforcer This learming rule correlates
events of the past [X,(t-k) and Y(t-k)] with an event of the present [S(t)]
Sutton & Bants (1981)

Sution and Barto invenizd a learning rule for their model of classical conditioning

which s also used for other applications of neural nets (Stmpson, 1990) Their rule is.

AV(1) =e XD [ Y- YW, (19)
where. X () = o X (t-1) + X (t-1), (1.10a)
1 f 2> T,
f2)= (1.2)
0 otherwise,
n
YO =2z + Y [VOXD]), (1.10b) from (1.1)
1=1
and YO =BYt-1)+(1- B) Y,(t-1). (1.10c)



The vanables and parameters are the following
X,() 1s the trace of X(1) (X,(0) = 0).
X,(t) signals the presence of the CS, when the CS§, 1s present X(1) 1, otherwise
X,(1)=0.
Y(t) 1s the output response at time t Y(t) 1s the UR when X(t) 0 and Y(t) 1s the
CR when Z(t)=0,

V(t) 15 the trace of Y(t) at imet (—\7(0) =0).

Z(t) 1s the intensity of the US at time t,

a IS a positive constant,
and B 1s a positive constant with value less than 1.

It is important to note that in the preceding Equations 1 10a and 1 10b, the
notation (t-1) does not represent current real ime t minus one umt of real time, but rather
it represents the time step number minus one time step This notation 1s used throughout
the thesis. It 1s a standard in this area (see Klopf, 1986, 1988, Sutton & Barto, 1981)

The curve of -)?‘(t) looks like an average of X (1) 1n the last At multiphed by a
constant The curve of —\?(t) looks like an average of Y(t) in the last At If we mterpret
32,(1) and V(t) as means, the rule in Equation 1 9 computes the corrclation between the
mean value of X(t) and the deviation from the mean of Y(t)

Klopf (1986) & Kosko (1986)

Klopf (1986) has proposed a correlation equation that correlates the changes in
X(t) with the change in Y(t). This same rule was independently discovered by Kosko
(1986). It is called differential Hebbian learning The relation s

AV(1) = ¢ AX,(t-k) AY(t) (111)
Klopf (1988)

Klopf (1988) modified his differential Hebbian learning rule 1n order to simulate
classical conditioning. This rule is called drive-reinforcement learning (DD-R) and s as
follows:

AV = AY() 3 Gl vtk AXt- k), (112)
k=t
where: AV/((t) = V,(t+1)- V1),
AY(t) = Y(t)- Y(t-1),
X (t-k) - X;(t-k-1) of{X,(t-k) -X, (t-k-H] >0,
Axt(t - k) =
0 otherwise.
Here: X(t) is the frequency of action potentials at the ith synapse at time t,

AX(t-k) represents a positive change in presynaptic level at ime t-k,
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Y(t) 1S the postsynaptic frequency of finng at discrete time t,

AY(1) represents a change 1n postsynaptic level at time t,

T 15 the longest intersumulus interval, measured 1n discrete time

steps, over which delay conditioning 1s effective;

and  Cp 15 an cmpirically established learming-rate constant

Note that X(t) and Y(t) are not limited to the binary values 0 and 1 They
represent frequencies of firing, so they can take any real value between 0 and, say, 300
As £ D. Adnan (1946) found, the frequency of firnng (or frequency of action potentials)
in a nerve cell is related to the intensity of the stimulus (Kuffler, Nicholls, & Martin,
1984) Action potentials are brnief electrical pulses, about 0 1 V in amplitude, that last for
about | msec and move along nerves Thus this model can simulate CS intensity
varniation effects Since Y(t) can take other values than just O or 1, it is defined with a
different activation function f(Z) than Equation 1 2. The activation function 1s now the

following’
0 ifZ < T,
JN(2)=42 fTsZ < 1, (1.13)
1 fZ > 1

Dnive-reinforcement learning theory has been widely used since 1988 (Baird & Klopf,
1992, Baird and Klopf, 1993, Gluck, Parker & Reifsnider, 1988; Klopf, Morgan &
Weaver, 1993, Morgan, Patterson & Klopf, 1990)

Classical conditioning, by definmition, 1s a form of associative learning. Weights in
neural networks represeni association strengths between umts It therefore makes sense to
posit that an effective model of classical condiioning will make an interesting learning
rule for neural networks In this perspective, the search for an effective learming rule 1s
the search for an effective model of classical conditioning The converse also seems to be
true Neural networks can be used to simulate classical conditioning and make 1t possible
to reproduce behaviors that other models of Paviovian conditioming cannot adequately
account for (Kehoe, 1989; Klopf, 1988, Sutton & Barto, 1981) Examples of those
behaviors are (see Chapter 2 for definitions) compound conditioning, negative patterning
(XOR), and positive patterning

Neural networks using learning rules analogous to classical conditioning models
can then be applied to more cognitive problems such as categorization learning (Shanks,
1991), belief persistence (Vallée-Tourangeau, 1993), evaluation of causality, and so on.
In this way, there 1s a bndge between behavioral and cognitive psychology
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2. THE MAJOR PROPERTIES OF CLASSICAL CONDITIONING

Classical conditioning 1s a very complex phenomenon that exhibits numerous
properties The logical procedure 1s to study those charactenstics betore building a model
reproducing Paviovian conditioming Thus the propertics of Pavlovian conditioming are
presented 1n detail, since they are what the models attempt to fit The reader can reter to
Table D 1 in Appendix D for a summary listing of the following properties

2.1  Types of Classical Conditioning

We have seen that classical conditioning can be shown with different USs, tor
example with food, loud noise shock (Hall & Pearce, 1980), morphine injection (Sicgel,
1982), immune system depression { Adler & Cohen, 1980, 1982, 1985), puff of wir in the
eye (Gormezano et al , 1983), and so on. The CSs can also be 1n different modahties, for
example visual, auditory, tactile, or gustative (Klein, 1991)

Conditioning can be either excuatory or inibutory In excitatory conditioning the
CS acquires the ability to signal the presence of a US, whereas 1n inhibitory conditioning
the CS signals the absence of a US (Doré, 1988) The strength of an excntatory CS can
only be measured by the strength of the CR, but the strength of an inhibitory CS can be
evaluated by indirect measures The presence of an mhmbitory CS; can make the
acquisition of a new CR (CS, - US) slower Thus 1s called the retardution test (Marchand
& Moore, 1974, cited by Gormezano, Kehoe, & Marshall, 1983) Also 1f a second CS
(CS,) has acquired the amility to produce a CR (CR;) then the simultaneous presentation
of the inhibitory CS,; with the excitatory ”S, produces a smaller CR,. This 1s called the
summation test (Rescorla, 1969, cited by Doré, 1988) Excitatory and imhibitory
conditioning can be referred to as the learning of a positive and a negative correlation
respectively (Kamin & Kremer, 1971)

At one time, there was a concern regarding the nature of the conditioned
response. Is the CR just the UR elicited by the CS? Or 1s the CR a behavior distinctively
different from the UR? Paviov (1927) defended a stimulus substitution (5-S) theory
suggesting that as a result of conditioning, the CS becomes able to elicit the UR More
recently, the consensus 1s that even when the CR 1s analogous to the UR, they are never
perfectly identical (Mackintosh, 1974) In fact, the CR secems to mimic the UR n some
cases and to be opposed to 1t in other cases When a CR mimics a UR 1t 1s a conditioned
facilitation When a CR 1s opposed to a UR 1t 1s a conditioned diminution and the CR 1<
called a compensatory CR (Wagner, 1981)




The following are examples of a CR that mimics the UR conditioning of the
salivation reflex with dogs (Pavlov, 1927), conditioning of the nictitating membrane
response with rabbits (Gormezano et al , 1983), human eyelid conditioning (Kimble and
Ost, 1961, cited by Wagner, 1981), siphon retraction reflex with Aplysia (Kandel &
Schartz, 1985) The following arc examples of compensatory CR CR to the sedative
cffect of pentobarbital (Hinson et al , 1982), CR to the hypothermia effect of alcohol
(Greeley, 1984, Mansficld & Cunninghan, 1980) and all the other examples mentianed
carlier for drug tolerance Cardiac deceleration 1s often the CR to shock-paired CSs,
whereas the UR to shock s cardiac acceleration (Obrist, Sutterer, & Howard, 1972)

Notc that both an inhibitory CS and a compensatory CS have the ability to
decrease the UR However, the compensatory CS generates a measurable CR while an
mhibitory CS producces a "silence of behavior" Table 2 1 summarizes the different types
of CR with their motivational properties Often the behavior 1s complicated by a mixture
of facihtatton and diminution depending on what 1s measured. For example Wagner
(1981) reports that, in hmb flexion cenditioming n the dog with a cortical US, the
probability of a detectable UR to a threshold US was increased by a prior CS, while the
vigor of the UR to a tramming-level US was decreased.

Aversive Condrioning Apettive Conditioning

Facilitaing |Compensatory |Facilitaing |Compensatory

CR CR CR CR
Conditoned Excrtaton Aversive Apettve Apettive Aversive
Conditoned Inhibrion Neutral Neutral Neutral Neutral

Types of Pavlovian conditioning with their motivational properties.
Table 2.1

Conditioning situations can vary according to the rate of reinforcement. In
continuous remforcement a CS 1s followed by a US 100% of the time, while a partial
remforcement procedure 1s one in which only a portion of the CSs that are presented are
tollowed by the US.



2.2 Properties of Pavlovian Conditioning

The types of conditioming that have just been described possess many
charactenistics Those charactenistics are summarized n the rest of this chapter
Acquisition, Extinction and Spontancous Recovery

The typical ucquisition curve of the CR, 1 ¢ the strength of the CR as a function
of tnals, 1s usually taken to be sigmmd n shape (S-shaped) (Mackintosh, 1974, Pavioy,
1927) This means that the first tnals show a positively accelerating curve for the CR
while the subsequent trials show a CR amplitude that accelerates negatively and reaches
a constant value, the asymptotic valuc of the CR Acquisition has a slower imtial rate for
partial reinforcement but the asvmptotic levels ot the CR are high (Gormezano ct al |
1983) Spaced CS-US presentations produce faster acquisition of the CR than doces
massed presentation (Klein, 1991) Caffeine and benzednne (two shmulants) increase the
rate of acquisition Sodium bromide (a depressant) slows the rate of acquisition (Hhilgart
& Marquis, 1940 cited by Klein, 1991)

The conditioned response decays when the CS 1s presented without the US Thas
phenomenon, called extinction, 1s observed to be negatively accelerating and normally
reaches zero as an asymptote (Klein, 1991) The extinction of an excitatory CR 1s usually
described as being slower than 1ts acquisition (Bush & Mosteller, 1955, Rescorla &
Wagner, 1972, Wagner, 1981) However, conditioned inhibitors extingmsh much more
slowly (1f at all) than conditioned excitators Extinction 1s slower in partial reinforcement
procedures than in continual rentorcement procedures This 1s called the partial
remforcement extinction ¢ffect (PREL) (Gormezano et al , 1983) Extinction s faster
with massed extinction than with spaced extinction (Hilgard & Marquis, 1940 cited by
Klein, 1991) Empincal investigation reveals that the longer the CS-alone exposure lasts,
the greater 1s the reduction in CR strength (Monti & Smith, 1976, Shipley, 1974, cited by
Klein, 1991) The two stimulants caffeine and benzedrine slow extinction but the
depressant sodium bromide enhances extinction (Hilgard & Marqus, 1940 cited by
Klemn, 1991).

If one waits a certain period of time after an extinction process and then presents
the CS again, the CR often reappears The return of the CR following extinction 1s called
spontaneous recovery (Doré, 1988) Continued presentation of the CS without the US
eventually leads to the long term suppression of the CR (Klemn, 1991) [ interpret this last
observation in the following terms the more CS-alone presentations there are, the
smaller the spontancous recovery Bouton (1991) found that redcquisition of an
extinguished CS 1s dependent on the context In a context similar to the extinction
context, the reacquisition would be slower than the onginal acquisiion
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Time Relationships Between the US and the CS
Delay conditioning 1s a conditioning procedure in which CS onset precedes US

onset and CS offset occurs at the same ume or after US onset Delay conditioning
produces conditioned excitation (Klein, 1991)

Trace condittoming 1s a conditioning procedure in which the CS 1s presented and
terminated prior to US onset Trace conditioming produces conditioned excitation (Klen,
1991) As the delay between CS onset and US onset (1 e., the mterstimulus interval or
ISI) increases, the rate of acquisition increases, reaches a peakh, then decreases, and tends
toward zcro for long ISI The asymptote of the CR 1s more a function of the ISI than of
the CS duration (Klein, 1991)

In the simuliancous conditioning paradigm, the CS and US onsets occur at the
same ume, as do CS and US offsets Simultaneous conditioning produces small
excitatory conditioning or no conditioning at all (Flaherty, 1985 cited by Klopf, 1988).
Some conditioning has been reported for simultaneous conditioning in the case of fear
conditioning (Burkhardt & Ayres, 1978, cited by Klopf, 1988)

In hackward condioning, the US is presented and terminated pnior to the CS
onset Currently, the consensus appears to be that backward conditioning can lead to a
weak conditioned excitation imitially but that extended backward conditioning usually
yiclds conditioned inhibition (Wagner, 1981)

Delay conditioning produces stronger conditioning than trace conditioming Trace
conditiomng produces stronger conditioming than simultaneous conditioning Finally,
simultaneous conditioning produces stronger conditioning than backward conditioning
(Klein, 1991) "Longer optimal ISIs have been observed for long fixed delay CSs than for
short trace CSs" (Schneiderman, 1966, cited by Sutton and Barto, 1981)

In a temporal conditioning expeniment, there s no distinctive CS. Instead, the US
is presented at regular intervals, and over time the CR will appear just prior to the onset
of the US (Klem, 1991).This leads to a weak and unstable CR (Dor¢, 1988). Another
temporal phenomenon was revealed by Pavlov's classic research (1927) with dogs He
demonstrated the development of the ability to suppress the CR until the end of the CS-
US interval, a phenomenon he labeled inubition of delay. The CR peak tends to be
located around the ime of US-UR onset (Gormezano et al , 1983) Kimmel reported that
the latency of the galvamic skin response (GSR) increases with tramning (Kimmel, 1965
cited by Klein, 1991). The vanance of the CR seems to increase with the CS-US interval
(Gormezano et al , 1983) Millenson and his associates (Millenson et al , 1977), studying
the nictitaing membrane reflex in rabbits, gave the US sometimes at 700 msec after CS
onset and sometimes at 200 msec after CS onset The CR exhibited 2 peaks, one at 200




msec and one at 700 msec The peak of the CR at 700 msec appears only when the US s
not presented at 200 msec The peak height ratio 1s proportional to the number of
reinforcement ratio for both delays CS preexposure has been shown to slow the
acquisition of inhibition of delay (Schachtman, Channel, & Hall, 1987)
US and CS Effects

US duration cffects designate the fact that the longer the US lasts, the faster
the acquisition and the higher the asymptote of the CR (Gormezano et al | 1983) In the
same way as US duration, an increased US intensity produces faster acquisition and a
higher asymptote of the CR This 1s called (/S intensuty effects (Prokasy, Grant, & Myers,
1958 cited by Klein, 1991) Prior exposure to a US reduces its abihty to remnforce
excitatory conditioning, a phenomenon called /S precxposure effect (Randich &
LoLordo, 1979) A subset of the US preexposure effect is the proximal US cffect In
rabbit eyehd conditioning (Terry, 1976) and 1n taste aversion conditoning (Domjan &
Best, 1977), 1t has been shown that presentation of a "proximal US" shortly betore a CS
1s paired with a "conditioming US" attenuates the latter US's potency

CS intensity can affect the strength of the conditioned response A greater CR
strength 1s produced by a more intense CS (Bames, 1956, Frey, 1969, cited by Klemn,
1991), a phenomenon called ('S tntensuty effects However, an mtense CS does not
produce an appreciably greater CR than a weak CS Nonetheless, if both the intense and
the weak CS are experienced, the intense CS will produce a significantly greater CR than
the weak CS (Crnice and Huntcr, 1964 cited by Kiein, 1991)

Nonremnforced presentations of a CS prior to reinforced presentations retards
subsequent acquisition of the CR and lowers the asymptotic strength of the CR These are
the ('S preexposure effects or latent imhibition (Baker & Mackintosh, 1977, Lubow &
Moore, 1959) Latent inhibition affects both excitatory and nhibitory conditioning
(Klemn, 1991). In sensory preconditioning, two neutral simuli CS, and CS,, are paired
prior to reinforcement In a second phase, CS, 1s paired with a US The CS-US painng
results in the ability of the CS,, as well as the CS,, to ehicit the CR The best procedure to
produce a strong effect requires that (1) the CS, precedes the CS, by several seconds and
(2) use of only a few CS,-CS, painings in order to prevent the development of  learned
irelevance (Rizley & Rescorla, 1972 cited by Klen, 1991) Extinction of the CR, also
extinguishes the CR, (Rizley & Rescorla, 1972)

Configural Leamning

Configural learning designates the classical conditioming procedures involving
more than one CS The followng describes properties in different configural learning
situations

20




I'he acquisition of a CR 1s impaired when the CS-US interval s too long
However, several studies (reported by Klein, 1991) have observed that the attenuation of
condiioning produced by a CS-US interval can be reduced if a second stimulus 1s
presented between the CS and US Pavlov (1927) found that a more intense tone
overshadowed the association of a less intense tone with the US The rate of acquisition
15 greater and the asymptote of the CR 1s higher for the more salient CS when two CSs
of different salience are presented together with the US (Klein, 1991) This 1s called
overshadowmg  Overshadowing does not always occur when two cues of different
salience are paired with a US, in fact there are some circumstances in which the presence
of a sahent cue leads to a stronger CR than would have occurred if the less sahient cue
had been presented alone (Garcia & Rusimak, 1980, cited by Klein, 1991) When ths last
situation occurs 1t 1s called the porentiation of a less salient cue

Kamin (1968) demonstrated that the presence of a previously associated cue
(CS,) will prevent, or block, the development of a new association between a second cue
(CS,) and the US We say that there 1s hlocking of CS, by CS, Mackintosh and his
associates ( Dickinson, Hall, & Mackintosh, 1976, Mackintosh, Bygrave, & Picton, 1977,
Pearce & Hall, 1980) showed that a surpnising! event (surprising US or CS) can prevent
the CS, from blocking the CS,-US association This 1s sometimes called unblocking

Pavlov (1927) observed that following CS-US painng, presenting the CS with
another neutral simulus (CS,) enabled the CS, to ehicit the CR Note that the CS, 1s
presented a certain length of time before the CS as in a CS-US pairing The usual CS-
US painng 1s a first-order conditioning, while learming the CR as just descnbed, by
association of CS, with CS,, 1s a second-order conditioming According to Paviov any
conditioning process of an order higher than one 1s higher-order conditioning. The
strength of a CR acquired through hgher-order conditioning 1s weaker than that
developed through first order conditioning. The CR to the CS, nses and then
extingwishes after repeated painng with the CS; The CS,; also extinguishes (Klemn,
1991)

The phenomenon called conditioned inhibition can be produced 1n different ways
One way 1s to establish an excitatory conditioming by paining a first CS (CS,) with a US,
in a first phase In a second phase, the CS (CS,) 1s presented at the same time as a new
CS (C8;,) but the US 1s absent The CS, becomes a conditicned inhibitor. In relation to
conditioned inhibition, 1t 1s opportune to introduce a notation that 1s useful to describe
expenments with several conditioned stimult The different CSs are represented by

VA surprising stimulus in this context 1s a simulus that 15 presented for the first time or that s presented at a
new intensity level
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different letters The minus (-) sign as a superscript indicates that the configuration ts not
remforced. while a plus (+) sign indicates that the configuration s remforeed
Conditioned intubition would be therefore represented by A' AB- As opposed to
second order conditioning, successive pairing oft CSs A and B doces not lead to extinetion
of both CRs They both reach an asymptote Note that the difference between
conditioned inhibitton and second order conditioning 15 that in condittoned inhibitton the
onset and oftsct of the stimult are synchronized, while 1n second order condittoning
stimulus B precedes stimulus A (Klein, 1991)

nan overexpectation task, each of two CSs (A and B) are paired sepatately with
a US and both acquire the maximal CR Both CSs are then combined, i a second phase.
and the compound AB 1s reinforced with the same US as each received m the first phase
The first trials of the second phase exhibit a CR that 1s greater than cach indinvidual
response, after which the CR to the compound decreases 1f we test cach individual CS i
a third phase, each of their CRs are smaller than 1n phasc | (Rescorla & Wagner, 1972)
This sequence can be represented by At BY L AB' L test A test B Ina
superconditioning procedurce, a first CS (A) 1s treated tn such a way that it becomes a
conditioned mhbitor (e g, X+ AX"), then stimulus A 1s paired with a second stimulus B
and reinforced B will have a faster rate of acquisition and a higher asymptote mn presence
of the ihibitor A than it would have without the inhibitor (Rescorla & Wagner, 1972)
This sequence can be depicted by X' AX-, AB!

In a discrinunation learning experiment, presentations of the compound AX arce
reinforced and mixed with presentatton of the compound BX that 1s not reinforeed (AX!
BX-) The conditioned responsc to AX tends toward an asymptote, the conditioned
response to BX increases and then decreases The CR to A 1s greater than the CR to X
The CR to X 1s greater than the CR 10 B The CR to B tends toward zcro (Rescorla &
Wagner, 1972) The psedodiscrimnation procedure 1s a trcatment in which the
compounds AX and BX arc both partially reinforced on a 50% schedule (1 ¢ | reinforeed,
on average, once every two presentations of the compound) T'his can be represented by
AX- 05, AX* 0.5, BX- 05, BX* 05 The conditioned response to X after traming 1s
greater than the CR to A orto B The CR to A 1s equal to the CR to B (if they have cqual
salience) Even when we control for the number of US presentations, the CR to X 15
much greater in a pseudodiscrimination task than in a discrimination task (Rescorla &
Wagner, 1972, Wagner, Logan, Haberlandt, and Price, 1968)

Compound conditioning uses configuration A* AX* that 15, A 1s reinforced when
presented alone and the compound AX 1s also remnforced This procedure produces a

greater CR for A than for X Another compound conditioning experiment uses the
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configuration A- AX*, where A is not renforced when presented alone and the
compound AX is reinforced This procedure produces the reverse result, namely a greater
CR for X than for A (Rescorla & Wagner, 1972)

Positive patterning involves a more complex discnmination than the previous
oncs Positive patterning involves reinforced presentations of the compound (AB™)
mtermixed with an equal number of unreinforced presentations of the separate
components (A~ B-) (Kehoe, 1989) The CR to the compound AB 1s greater than the CR
to the separate elements (A or B) The CR to the separate elements (A or B) increases at
first and then decreases during traiming Negative patterming involves the nonreinforced
presentation of the compound AB (AB-) intermixed with an equal number of reinforced
presentations of the separate components (A* B*) (Kehoe, 1989) The CR to AB
increases faster than the CR to A or B and then decreases, tending toward zero Negative
patterming takes more trials to learn than positive patterning. Kehoe (1989) has shown
that the learning of conditioned nhibition (A* AB-) in a first phase accelerates learning
of negative patterning in a following phase

There are other types of configural learming tasks, such as the feature positive task
(AB*, A-) and stmulus compounding (A*, B*, test AB) Recently Pearce (1993) used the
following configuration A*, B*, C*, ABC- The compound of three stimuh was not
reinforced while the individual stimuli were reinforced. He observed that the CR to the
pairs of stimuli (AB, AC, or BC) decreased faster than the CR to the individual cues (A,
B, or )

This impressive list of properties is only a brief summary of the vast literature on
classical conditioming. The list also constitutes the data domain that mathematical models
of Pavlovian conditioning currently attempt to explain.




3. MODELS OF CLASSICAL CONDITIONING: A CRITICAL REVIEW

In the previous chapter some models ot classical conditioning were described in
the perspective of their use as learming rules for neural networks Now a few models of
classical conditioning are going to be described and evaluated by comparing therr
predictions with the experimental properties of classical conditioning For cach model, |
give a description of their main assumptions, their major contnibutions and their mayor
problems. The reader can refer to the Tables D | and D 2 in Appendix D for a summary
of the properties of classical conditioning accounted for by the different models

3.1 Historical Perspective

Pavlov (1927) suggested that as a result of conditioning, the CS becomes ablice to
elicit the same response as the US. According to Paviov, the presentation of the US
activates one area of the brain Stimulation of the neural area responsible for processing
the US leads to the activation of a brain center responsible for generating the UR There
1s an nnate, direct connection between the brain center simulated by the US and the
brain center controlling the UR When the CS 1s presentcd, it excites a distinct brain arca
When the US follows the CS, the brain centers responsible for processing the CS and the
US are active at the same time In Pavlov's view, the simultancous activity 1 two ncural
centers leads to a new functional neural pathway between the active neural centers The
establishment of this connection causes the CS to activate the neural center processing
the CS, which then arouses the US neural center, and finally the US center activates the
response center for the CR In short, Pavlov asserts that the CS becomes a substitute for
the US. Since Pavlov's (1927) work, it has been shown that in many circumstances of
classical conditioning the CR does not mimic the UR Compensatory CRs are 1n
contradiction with Pavlov's (1927) view (Schnur & Martinez, 1989, Sicgel, 1987, 1988)

Konorski (1967) posited that the representation produced by any stimulus
involves the activation of a series of "units” 1n order, in the same way as in a neuronal
projection system, beginning with receptive units, followed by transit umits, and
evenmally terminating with so-called gnostic units The units at several levels of the
represemational series are capable, when activated, of producing behavioral effects A
CS will come only to activate a portion of the sequence appropnate to the US Konorski
assumed that only the highest level, gnostic umts, of the US representation can be
activated by a CS and only the activity of such umits will be reflected in the CR His view
can account for the difference between the CR and the UR Wagner and his associates
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drew inspiration from Konorski's (1967) theoretical view to build therr SOP (Wagner,
1981), and AESOP models (Wagner & Brandon, 1989).

Hull (1943, 1952) introduced a mathematical formalism for learmng and
motivation that has been very influential. The abihity of verbal theories to predict
behavior 1s limited by their imprecise nature Hull's formalism was an attempt to correct
this imprecision Hull (1943) developed a formula that expressed how the strength of a
behavior 1s related to leaming and motivation The formula was

sEr: erxD’ (3'1)
where 15 the strength of the behavior (note. s r stands for Stimulus-Response),
(H,  1s the strength of the learned response (the habit),
and D 1s the strength of the dnive.

For example, the strength of the behavior (E, could be measured by the number of trials
necessary to obtain extinction after an acquisition phase, the habit ;H, could be measured
by the number of traimng tnals presented during the acquisition phase; and the drive D
could be measured by the number of hours of food depnivation in a case where food is
used as a reinforcer By 1952, Hull had modified his initial formulation to add the
construct of incentive motivation, symbolized as K K represents the quantity and quality
of the reinforcement. Thus the formula becomes:
sEr = Hex Dx K (3.2)

This relation implies that the increment (or decrement) in learning is dependent upon the
amountof habit already conditioned and upon the strength of the reinforcement.

In 1955, Bush and Mosteller presented a stochastic model of conditioning that
was closely related to Hullian theory This model specifies the changes in probability of a
response (Ap,) as a result of a learning trial by the following equation:

Ap, = B (A-py), (33)
where B is the learming rate parameter,
Pn is the probability of a response on tnal n,

and A is the asymptote of learning
B and A are determined by the nature of the US and CS involved on a trial. This model
reproduces the negative acceleration and the asymptote of the acquisition curve.

3.2 The Rescorla & Wagner (1972) Model
Main Assumptions of the Rescorla-Wagner Model
The reader can refer to Equation 16 for a formal description of this model. The
four main premises of the Rescorla-Wagner (1972) model are the following :
I- There is a maximum associative strength that can develop between a CS and a
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US The asymptotic level of conditioning 1s determined by the strength of the US

2- The amount of associative strength gained on a particular traiming tnial 1s attected
by the level of prior training

3- The rate of conditioning vanes depending on the CS and the US used The rate 1s
high with some stimuli, but low wath others

4- The level of conditioning on a particular tnal s influenced not only by the
amount of prior conditioning to the stimulus but also by the level of previous
conditiomng to other stimuli associated with the US

The Major Contnibutions of the Rescoria-Wagner (1972) Model

The Rescorla-Wagner (1972) model gives a good account of the phenomena of
overshadowing and blocking The model also provides an explanation for the US
preexposure effect (Baker & Mackintosh, 1979), and for the acquisition of a conditioned
inhibition Predictions are in agreement with experimental data tor procedures of
configural learning such as overexpectation, superconditioning, discrimination lcarming,
pseudodiscnmination, and compound conditioning
The Problems of the Rescorla-Wagner (1972) Model

Behavioral data show that conditioned inhibition does not extingwish, while the
Rescorla-Wagner (1972) model predicts its extinction. For example, a condiioned
inhibitor 1s represented by a negative value of V (t) and duning extinction the US s absent
(i.e. A(t) = 0). Therefore Equation 1.6 becomes AV (1) =, B [ -V,(1) ] This term s
positive since V(t) 1s negative, so |V (t) decreases and therefore inhibition 1s
extinguishing. The results of a simulation! of their model, shown in Figure 3 1, ilustrate
this problem. Notice that in the following figures CS 1, CS 2, V 1, and V 2 stand for CS,,
CSy, Vy,and V,

In order to predict the acquisition of a conditioned excitation n a second-order
conditioning procedure with the Rescorla-Wagner (1972) model, one has to make a
variable substitution’ V,; becoming A The model does not predict either the CS
preexposure effect or sensory preconditioning Since the Rescorla-Wagner (1972) model
1s not a real-time model, none of the intratnal effects are explained by the model This
means that delay conditioning, trace conditioning, backward conditioning, simultancous
conditioning, inhibition of delay, the shape of the curve of the CR, the US duration
effects, and the CS duration effects are left unexplained

lIn addition to my own new models, I simulated the Rescorla & Wagner (1972) model, the Pearce & Hall
(1980) model, and the Klopf (1988) model The results are summanzed in Appendix D, Table D 1 All
figures, including Figure 3 1, result from these simulations
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Rescorla-Wagner (1972) with 2 CSs

Conditioned Inhibition Procedure and E xiinction Procedure:

1.00
CS1

0Q0

1.00
cs52

0.00

1.00
uUs

0.00

97.88
Vi

0.00

0.00
va

-95.96

Figure3.1 The CS2 in an acquisition phase becomes a conditioned inhibitor
(V2 < 0) and in the extinction phase V2 tends toward zero.
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3.3 The Sutton & Barto (1981) Model
Assumptions of the Sutton & Barto (1981) Model

The reader can refer to Chapter | (Equations 19, 1.10a, 110b, 12, 1 1) for a
formal description of the model. The five core assumptions of the Sutton & Barto (1981)
model are the following

1- There is a trace for each CS,, that follows the amplitude of the CS,, but increases
more slowly and decays more slowly than the CS, itself.
2- The CS, comes 1o elicit the same response as the US, corresponding to Pavlov's

(1927) stimulus substitution theory The CR and the UR are added together in what we
can call the output response.
3- There 1s a trace of the output response which follows the amphitude of the output
response but which increases more slowly and decays more slowly than the output
response itself.
4- The trace of the CS, causes the corresponding connection weight V(1) to become
"tagged" as being cligible for modification for a certain period of time (the duration of
the trace of the CS,). This 1s Klopf's (1972) idea
5- The effectiveness of a reinforcement is proportional to the difference between the
output response and the trace of the output response.
The Major Contributions of the Sutton & Barto (1981) Modecl

Sutton and Barto's (1981) model is a real-time mcdel which makes it possible to

address the question of intratrial effects Their model reproduces a curve somewhat
analogous to thc asymptotic CR versus ISI (inter-stimulus interval) The model can
simulate the CS and US duration effects. The behavioral obscrvation that trace
conditioning 1s stronger than simultaneous conditioning 1s reproduced. The inhibitory
aspect of the backward conditioning procedure 1s predicted by the model The model also
accounts for second-order conditioming Several other propertics are explained the CS
intensity effects, conditioned inhibition, blocking, overshadowing, US intensity effects,
and several configural learning procedures
Problems with the Sutton & Barto (1981) Model

In the formulation of their model, Sutton and Barto posit that X (t) 1s cqual to 0 or
1 and that the constants ¢ and « are the same for each CS This does not make 1t possible

to have CSs of different sahience In my modeling, I assume that X(t) vanes between
and 1, as do Z(t), Y(t) and i,(t) According to Klopf (1988), the Sutton & Barto (1981)
model does not reproduce experimental data for the delay conditioning procedure. The
Sutton & Baito (1981) model predicts acquisition of a conditioned inhibiton for delay
conditioning instead of a conditioned excitation. This last problem occurs because in a
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delay conditioning procedure the CS 1s present during the complete duration of the US.
32,( t) 1s necessanly greater at the end of the US than at the beginning of the US If we call
t, the ime step of US onset and t, the time step of US offset, then X (ty) > X (t;) Let
Y(1) - Y(t-1) and Z(1) ~ | when the US is present We have AV/(t) = 0 for t; <t <t,,
because [Y(t)-Y(t-1)]z O for t; < t < t, Then, after the first tnal, the total change of
connection weight AV, 1s
AV, = AV{(t)) + AV(t,),

¢ Xt [Y()-Y-D T + ¢ X, () [Y(t)-Y(t-D ] (35)
Because we are studying the first tnal, V(1) = 0 for t <t; Also, since we postulate that

I

learning 1s slow, 1 e |AV(t, )] = & <<1, we obtain that

JCZap+ Y [V X)),

=1

= f(1+0),
= 1, (3.6)

fCZ-n+ Y [Vi-D XD 1),

1=1

i

Y(t,y)

i

Yit,-1)

= f(0+0),
= 0, 3.7)

n
A(Zty)+ Y [V X)),

=1
= f(0+¢0),
= 0, (3.8)
n
J(Z-)+ D [ VD X(-D 1),

=1
= f(1+e1),
1. 3.9)
By substituting Equations 3.6-3.9 1n Equation 3.5, we obtain:
AV c X (t)[1-0] + ¢ X(t,)[0- 1],
Coe[X ) - X))
Because we have X (t,) > X (1)), this means that AV, is negative and delay conditioning

il

Y(ty)

i

Y(t,-1)

iy

i

It

produces conditioned inhibition.

Another problem is that the Sutton & Barto (1981) model simulates only
faciltating CR, 1.e. a CR that mimics the UR. Furthermore, experimental data show that
the optimal ISl can be longer than the CS duration (Gormezano et al., 1983). The Sutton
& Barto (1981) model cannot reproduce such a phenomenon because -)z,(t) decreases as
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soon as CS, offset occurs Their model also does not explain the following phenomena

spontaneous recovery, CS preexposure effects, sensory preconditioning, the shape of the
curve of the CR, and inhibition of delay

3.4 The Kiopf (1988) Model
Assumptions of Klopf's (1988) Model
The reader can refer to Chapter 1 (Equation 1.12 and the following) for a formal

description of the model Klopi's {1988) model 1s based on the following eight major
assumptions:

1- The CS, comes to clicit the same response as the US This 1s the stumulus
substitution theory of Pavlov (1927) The CR and the UR are added together in what we
can call the response.
2- The change 1n connection weight of the CS, at a given time 1s proportional to the
product of the change of the CS amplitude by the change of the output response at that
time
3- Only postitive changes in input CS levels are used in the correlation
4- Instead of correlating approximately simultancous CS level changes and output
response changes, earlier CS level changes should be correlated with later output
response level changes
5- The interval between correlated changes in input CS level and changes 1in output
response level ranges from one time step to the maximum effective ISI in delay
conditioning
6- The magnitude of an carhier CS level change (at a ime t-k) correlated with a later
output response level change (at a time t) should be weighted by a factor €, Cy 1s an
empirically established learming-rate constant that 1s proportional to the cfficacy of
conditioning when the ISI 1s k
7- The change 1n a connection weight is proportional to the absolute value of the
current connection weight.
8- Connection weights are either inhibitory or excitatory, 1€ connection weights
are etther negative (V1,) or positive (Ve,)
Major Contributions of the Klopf (1988) Model

Klopf's (1988) model reproduces experimental data for the delay conditioning

procedure, as opposed to the Sutton & Barto (1981) mode! which did not ths model also
accounts for the imtial positive acceleration in the S-shaped acquisition curves in animal
learmng Klopf's (1988) model reproduces the correct order of magnitude for the
different time contingency procedures, 1¢. delay conditiomng 1s stronger than trace
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conditoning, trace conditiomng 1s stronger than simultaneous conditioning, and
simultaneous conditioning is stronger than backward conditioning The curve of the
asymptotic strength of the CR as a function of ISI is reproduced by the Klopf (1988)
model The optimal ISI in his model can be longer than the CS duration, 1n agreement
with experimental data (Gormezano et al , 1983) and as opposed to the Sutton & Barto
(1981) model

The model can simulate the CS and US duration effects. The inhibitory aspect of
the backward conditioning procedure is predicted by the model. The model also accounts
for second-order conditioning. Several other properties are explained. the CS intensity
effects, conditioned inhibition, blocking, overshadowing, US intensity effects, and
several configural leaming procedures.
Problems with Klopf''s (1988) Model

| realized that Klopf's (1988) model predicts an extinction rate that varies as a
function of the CS duration. This 1s presented in Figure 3.2. This is very different from
the results of my DPC model presented in Chapter 4 (see Figure 4.10). In fact the
extinction rate in Klopf's (1988) model decreases steadily as a function of the CS
duration and eventually reaches zero This means that the CR of a long CS, i.e. a CS with
a duration that is longer than the maximum effective ISI in delay conditioning (i.e. 1),
does not extinguish at all An example of such a case is presented in Figure 3.3

E xtinction Rate Versus CS Duration:

— 80
™70}
60
50
40
30
20
10
0 + -+ + +
05 1 15 2 25 3

CS Duration [sec]

Extinction Rate

Figure3.2 The extinction rate predicted by Klopf's (1988) model decreases as a
function of the CS duration, the ISI and the US being constant. Extinction rate in this
figure is obtaned after an acquisition phase and 2 extinction trials. The extinction rate is
equal to the ratio of the strength of the CR on the second test trial over the strength of the
CR on the first test trial The strength of the CR was the same for the first tnial of each
CS duration (1. 0.6) The acquisition phase had 10 tnials for the CS duration of 0.5 sec
and 5 trials for the other CS durations.
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For example, if we have a CS duration of t; and an ISl of t5, with t; > v~ t,, then there
would be acquisition of a CR (a conditioned excitation), because IS1 1s t, which s less
than © However, during the extinction process, when no US is presented, the decrease of
AV (t) occurs when AY(t) <0 which s at the CS oftset It we suppose that the C8S onset
occured at a time t;), then at the CS offset t 1s equal to t,tt; and we have
T
AV (tgrt) = AY(+) Y. CulVtry-k) aX(tg k) (3 10)
k=1

The positive part of AX(t,+t)-k) 1s equal to zero for the whole duration of the CS, except
at the CS onset when t = t;, 1 e. AX|(t;) > 0 which 1s for k = t; However, C 1s equal to
zero for k = t;, because t; > t. Thus AV (ty+t}) = O, which means that V(1) docs not
change and therefore there 1s no extinction

Another problem with Klopfs (1988) model 1s that "C; 1s an cmpincally
established learning-rate constant that 1s proportional to the cfficacy of conditioning
when the ISI 1s 3" (Klopf, 1988) However, Klopf (1988) did not specify exactly how the
efficacy of conditioning 1s measured, 1 e. he did not specify the CS and US durations used
to measure the efficacy of conditioning The CS and US duration arc important because
they change the shape of the curve of efficacy of conditioning as a function of the IS In
fact, "longer optimal ISIs have been observed for long fixed delay CSs than for short
trace CSs" (Schneiderman, 1966, cited by Sutton and Barto, 1981) If the maximum valuc
of C, is at k = j, then because each Cy is constant, the optimal ISI 1s always at t - j ime
steps. In other words, because each C, 1s constant, Klopfs (1988) modcl cannot
reproduce the fact that the optimal 1S varies with CS duration

Klopf's (1988) model simulates facilitating CRs, 1.c CRs that mimic the UR, but
not compensatory CRs. His model also does not explain the following phenomena
spontaneous recovery, CS preexposure effects, sensory preconditioning, the shape of the
curve of the CR, and inhibition of delay

To summarize the above discussion, the Rescorla and Wagner (1972) model s
highly efficient, with few equations it simulates many propertics of classical
conditioming However, 1t is not a real-time model and consequently docs not reproduce a
whole set of properties of classical conditiontng Klopfs (1988) model reproduces the
properties accounted for by the Rescorla and Wagner (1972) model plus several real time
properties, but 1t has many equations The Sutton and Barto (1981) model 1s intermediate
between Rescorla and Wagner's (1972) model and Klopf's (1988) model it 15 a real-time
modet and 1s efficient but does not account for as many properties as Klopf's (1988)
model. Overall, Klopf's (1988) model seems superior to the others

32




us

Vel

Vi1l

‘ Figure 3.3
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Klopf (1988)

Acquisition and Extinction of a CR:

50 100 150 200 250 300
Time [Sec]

A long CS acquires the ability to elicit a CR, but the CR doesn't

extinguish. Connection weights (Vil, Vel) stay constant when the CS is presented alone.
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4. THE DELAY PRODUCING CONNECTIONS MODEL

In this chapter, I develop a real-time model of classical conditioning  T'his modcl
is motivated by the previously described propertics and builds upon previous models of
classical conditioning There are two major differences between the model presented
here and previously mentioned models (Hebb, 1943, Klopt, 1972, 1986, 1988, Rescorla-
Wagner, 1972, Sutton-Barto, 1981). The first feature 1s a change in the activation rule
that enables Y(t) to mimic a real CR The second feature 1s that the connections have the
ability to produce delays. After conditioming, this model produces fixed delays between a
CS, onset and the peak of the corresponding CR This delay 1s fixed as opposed to
variable in my later adaptive delays model The model 1s consequently called "delay-
producing connections (or DPC) model" Section 4 2 presents arguments for why these
features were introduced

4.1  Formal Description of the Delay-Producing Connections Model

The model can be summanzed by the following equations with the notation
defined in Table 4.1. The rationale underlying thesc assumptions 1s set out in detail after
they have been presented.

V(1) = V(t-1) + AV (1), (4 la)

AV|(1) = o (t-2) B (Y(1)-Y(t-1)), (4 1b)
0 if Xi(t) < 0,

a(t) = (42)
i;(t) otherwise,

3v 25,
d2X(0) 5 X 2 dXiY 35 ) oa ) g
dt dt dt dt
Y(ty=f(M0) + Y [oy(t) Vi(V)]), (4 4)
1=

0 fZ < T,

fZ)=1z f T<Z < M, (45)
M if 2 > M,

Y(t)=Bg Y(t-1)+ (1- Bg) Y(t-1), from (1 10c)

and  o,(0)=V(0)=X,(0)=Y(0)=0 Vie{l, .,n}

For the defimtions of the symbols, the reader can refer to Table 4 1
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Symbol Definition

A 1s a constant that controls the amplitude of the peak of o(t)

a,(t) 1s the trace of the CS at time t

B 15 a learning rate parameter related to the US

Bn 1s an extinction ratc for the trace of Y(t)

J(Z) 1s the activation function

A(t) 1s the intensity of the US at time t

M 1s the maximum value of Y(t)

T 1s a threshold for Y(t) (as Klopf (1988) did, 1 will take T=0)

T, 1s a delay between the onset of CS, and the peak of a,(t)
when the CS; 1s a step-like input

0 1s a constant fixing the delay between the onset of CS, and the
peak of a,(t) Normally, 0 =2/ Tp

V(1) 1s the connection weight between the CS, and the output at time t.

X\t 1s the amplitude of the CS, at time t

X, (t) 1s the virtual trace of the CS, at time t. When X; (t) 1s positive 1t 15
equivalent to a,(t), but when Xi ( t) 1s negative, it represents an
inertia (or a reluctance, or a delay) to produce a trace of the CS,. |

Y(t) 1s the response at time t

—Y—(t) is the trace of the response Y(t) attime t.

Defimtions of the Variables and Parameters of the DPC Model.

Table 4.1

4.2  Assumptions of the Delay Producing Connections Model

Imitial Hypothesis

In accordance with a number of authors (Hebb, 1943, Klopf, 1972,1982,1986;
Rescorla-Wagner, 1972, Sutton & Barto, 1981), the imitial hypothesis 1s that the rate of
change 1n connection weight 1s proportional to the product of a function of the CS, and a
function of the CS, and the US. Formally, this hypothesis can be expressed as

AV(D) = IX(O] FIAW), Y(1), YD), (4.6)
where Y(1) = A1) + Y. X(HV (1), from (1.1)
1=1
A(t) 1s the intensity of the US at time t,
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Y(t) s the neuronal output at the ime t,
and —Y—(t) 1s a form of average of the values ot Y(1) over the last few time steps Y (1)
15 a tunction of Y(1-k)
In the models we studv we have erther Y(1) - 0, Y(1) [jn?(x—l) t - B) Yi-1),
or Y(t) = Y(t-h) In Hebb's (1943) learming rule, the corresponding tunctions are (X (1))
= ¢X,(t) and F]A(1), Y(1), ?(t)] = Y(1) (sce Equation 13) For Rescorla and Wagner
(1972), the functions are t{X()=c, and EF{A(t), Y1), Y(O] — B{2A(H-Y(OH] - [&[ A(t)-

Z X(OV (1) ], where g, 1s the salience of the CS, and A(1) 1s the stiength of the US (see

1=]
Equation 1 7) Klopf's (1972, 1982) model used f]X(t)] X (t-h) and F|A(t), Y(1), \7(t)|
= Y(t-k)Y(t) (see Equation | 8), while in Klopf (1986) [X,(1)] cAX(t-h) and
FIA(), Y(t), ?(t)] = Y(t)-Y(t-k) (see Equation | 11), taking Y()  Y(-h) In his more
recent model Klopf (1988) adopts a more complex formulation that cannot be reduced to
the form {[X(t)]F[A(t), Y(1), —Y-(t)] (see Equation 1 12) Sutton and Banto (1981) have
used fIX(t)] =¢ Y,(t) and FA(), Y(U), Y(U)] = [Y() - Y(U)] (see Equation 19) taking
_Y_(t) =PBg Y(t-1) + (1- Bg) Y(t-1) (see Equation | 10b)

In the present context the function {[X(0)] can be interpreted as the trace of the
CS, and the function F[A(t), Y(t), Y(1)] as the "associability” of the US Associabilsty
represents the amount of reinforcement a US can provide at a given moment in time The
absolute value of” F[A(t), Y(t), V(t)] ts linked to the "surpnse” caused by the US onset or
offset

To have the rate of change of V, proportional to a function of the amphtude of the
CS, makes sense because’ (1) the strength of the CR dunng acquisition increases with
the number of trals (Pavlov, 1927), 1¢ the number of CS, presentations,  (2) more
intense CSs have a faster acquisition rate.

In the same way, to have AV, proportional to a function of the US and the CS 1s
logical because: (1) acquisition is faster and the asymptote hgher lor a stronger US, (2)
the level of conditioning on a particular tnal 1s influenced not only by the amount of prior
conditioning to the stimulus but also by the level of previous conditioning to other
stimuh associated with the US (Kamin, 1969, Rescorla-Wagner, 1972)
The shape of the curve of the CS, trace

The first question 1s. what 1s the shape of the curve of the CS, trace (1 ¢, f1X (1)})”
From the properties of classical conditioning, which were reviewed in Chapter 2, several
characteristics of the curve of f[X(t)] can be deduced In the following, | et «(t) —
fIX,(t)]. Consequently, the change of connection weight becomes

AV(t) = a,(t) FA), Y(1), Y(1)]. (4 7a)
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Trace conditioning and backward conditioning are symmetrical situations n
terms of the timing relationships between the CS and the US but produce very different
results with backward conditioning being weaker than trace conditioming. This leads to
the assumption that the trace of a CS ( 1e, a(t) ) and the associability of a US (i.e.,
FIA(t), Y(t), Y(t)] ) must have different shapes as a function of time

From the fact that trace conditioning 1s stronger than backward conditioning, one
can deduce two other things. First, the decay of a(t) must be slower than the increase of
FIA(1), Y(U), Y( t)], otherwise a(t) and F[A(t), Y(t), V(t)] would not overlap and there
would be no trace conditioning Second, the increase of «(t) must be slower than the
decay of F[A(t), Y(t), V(t)], otherwise a,(t) and F{A(t), Y(t), ?(t)] would overlap more
and backward conditioning would be stronger

The position of the peak of a,(t) must change with the CS duration, because
"longer optimal ISIs have becn observed for long fixed delay CSs than for short trace
CSs" (Schnerderman, 1966, cited by Sutton and Barto, 1981) This could be explained if
we suppose that a,(t) increases slowly and that this increase 1s diminished by CS offset
However, a,(t) must continue to increase even after CS offset because often the optimal
ISI 1n a trace condioning procedure 1s longer than CS duration For example, with the
nictitating membrane reflex (NMR) of rabbits, a CS of 50 msec with a US of 50 msec has
an optimal ISI of aproximately 250 msec (Gormezano et al , 1983).

a,(t) must decay slowly even when the CS 1s still present because "a long CS 1s
ignored shortly after 1t begins, whereas even an tnstantaneous overt CS causes ar internal
representation of some significant duration” (Sutton & Barto, 1981).

The shape of the curve of a,(t) might be analogous to the shape of the curve of the
asymptotic strength of the CR as a function of the ISI. This means that a(t) would be
zero for a certain delay after CS onset, then a,(t) would slowly increase and reach a peak
(tn 250 msec for NMR) and then would have an even slower decay. This latter hypothesis
has been proposed by Gluck and Thompson (1987) and 1n a modified form by Klopf
(1988) However, we have to be cautious with this hypothesis because acquisition 1s not
only the result of o(t), but rather the result of the product of a(t) with
FIM), Y(1), Y (0]

On the basis of the foregoing reasoning, the predicted shape of the trace of a CS
(1.e, a(t)) for a short CS and a long CS 1s portrayed in Figures 4 1 and 4.2 respectively
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Alpha for a Short CS:

Alpha o

Time

Figure 4.1  The theoretical curve of o (t) for a short CS, a(t) continucs to increase
even after CS, offset a,(t) shows a slow increase and an cven slower decay

Alpha for a Long CS:

Alpha

Time

Figure 4.2  The theoretical curve of a(t) fora long CS, The peak of a(1) occurs later
for a long CS than 1t does for a short CS, a,(t) decreases cven when the CS, 15 sull
present.
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The Shape ot the Associability of a US
Logically, the next question 1s- what 1s the shape of the associability ofa US (i e,
FIA(t), Y(), Y( )] )? Hebb's (1943) suggestion leads to F[A(t), Y(t), —Y_(t)] = Y(t), with

Y(t) = a(t) ¢ Z [X,(t) V,(v)] (see Equation 1.3), Rescorla and Wagner (1972) chose
-1

FIM, Y(U, Y] = BR2A-Y(O)] = [ Mt - D X(t) V(t) ] (see Equation 17), Sutton
1=1

and Barto (1981) set F[A(1), Y(1), Y(1)] = [Y(1)-Y(1)] where Y(t) = BY(t-1) + (1- B)Y(t-1)
(see Equation 1 9), and Klopf (1986, 1988) chose F[A(t), Y(t), V(t)] = Y(t) - Y(t-1) (see
Equations I Il and 1 12)

There is an advantage 1n not having the associability of a US (F[A(t), Y(t), Y(t)])
depend on A(t) explicitly, as opposed to the formulation of Rescorla-Wagner (1972).
There 1s no way for a connection to be "informed" of A(t) other than through the
postsynaptic membrane Thus, it makes more sense that F[A(t), Y(t), ?(t)} be solely a
function of Y(t) (the sum of all inputs to a neuron) and of ?(t), rather than depending on
A(t) explicitly as well. It 1s a coherent way to define a neuron-like umit Furthermore, an
equation of F[A(t), Y(t), ?(t)] as a function of a difference between Y(t) and a trace of
Y(t) (Y(1-1) or Y(1)) can take into account the fast increase and fast decay hypothesized
carhicr for F[A(1), Y(1), Y(1)]. Therefore, F[A(t), Y(1), Y(1)] = F[0, Y1), Y(1)] =
F(AY(t)) secms a reasonable choice

Taking Y(t) as the response 1s equivalent to adopt the stimulus substitution theory
of Pavlov (1927), 1.e. the CR mimics the UR. However, there 1s a problem with the
defimuon of Y(1). Y(t) 1s the response that follows the stimulus inputs A(t) and X(t).
When A(t)=0 and X(t)»0, Y(t) is the CR. When A(t)»0 and X,(1)=0, then Y(t) is the UR.

Y(t) = f( Z [X(V) V,(v)] ) is the CR, but it does not have the shape of a real
1=

expenmental CR. Since X (t) is generally a square wave, a CR which 1s equal to Y(t) will
also be a square wave, while the typical curve ot a CR as a function of time has a skewed
nght bell shape (Gormezano et al., 1983). In fact, the curve of the CR looks like the
hypothesized curve of o, (t) (see Figure 4.3) This leads me to assume that Y(t) should be
modulated by a(t) The activation rule that I have been discussing thus far 1s given by
Equation 1.10b of Chapter 1, taking 2(t) = A(t), 1 €.

Y(t)= £+ Y [ X0 V(0)). from (1.10b)

Replacing X(t) by a,(t) in Equation 1 1, results in
Y = f(AM)+ Y [a® V®]). (4.4)

1=l
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F[A(t), Y(1), ?(t)] Keeps the same notation, only the defimition of Y(t) changes The CR
becomes equal to f( Z o, (1) V(t) ) (A() = 0 becausc A(t) corresponds to the US which
=1

is not usually present when testing for the CR) and has a skewed bell shape as long as

a,(t) retains this shape and as long as f(Z) 1s not operating at saturation f(Z) 1s not
operating at saturation if 0 < f(Z) < M, where M is the maximum value of f(7) Ths
would be coherent with Klopf's (1988) defimitions of the vanables Y(t) and X(t) For
Klopf (1988), Y(t) and X((t) represent firing frequencies. This means that they can take
on a wide range of values (between 0 and about 300 Hz), not only the values 0 or 1 as in
many other models (e.g., Sutton-Barto, 1981) A definition of f(Z) that would be
consistent with my previous assumptions would be the form given in Equation 45,

namely:
if Z < T,

0
f(Z)=3Z f T< Z < M,
M fZ > M

Experimental CR Curves:

...........
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Percentaje of Maximum CR
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Time
Figure43  Approximative curves of expenmental CRs These CRs are of the

nictitating membrane reflex 1n rabbits. CR, illustrates an ISI of 200 msec while CR,
corresponds to an ISI of 750 msec These curves are based on Gormezano ¢t al. (1983)

Now that the curve of Y(t) is more clearly determined, 1t is possible to give a
more precise definition of the associability of a US: F{A(t), Y(t), V(t)] = F(AY(1)) What
definition of AY(t) should we adopt. AY(1)=Y(1)-Y(t) (Sutton-Barto, 1981) or AY(t)-
Y(t)-Y(t-1) (Klopf, 1988)7 At this point the equation for AV,(1) 1s AV (t) = a,(t)F(AY(t))
In a backward conditioning procedure the US offset occurs before the CS onset AY(t)
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becomes negative after the US offset (because Y(t)<Y(t-1)) and AY(t) will subsequently
tend toward zero (as Y(t) tends toward zero) After the CS onset a(t) slowly increases. If
AY(1) stays negative for too short a penod of time, a,(t) would be very small, the product
a,(1)F(AY(1)) would also be very small, and AV (t) would not change much If AY(t) 1s
cqual to (Y(t)-Y(t-1)), AY(t) would be negative for only one time step after US offset,
which 1s too short for (1) to be noticably greater than zero By choosing AY(t) equal to
(Y(t)-Y (1)), the amount of time that AY(t) stays negative can be controlled through ?(t).
Thus, we will take AY(t) = Y(1)-Y(t) and F(AY(t)) = B AY(t). Using also Equation 4.7a,
the cquation for AV (t) then becomes

AV(1) = (1) B(Y(1)-Y (1)), (4 7b)
where B 1s a learming rate parameter related to the associability of the US (as in the
Rescorla-Wagner (1972) model)

Classical conditioning can be seen as a form of causality learning, the CS being
the cause and the US being the effect. It makes sense for the change of associative
strength to correlate a prior value of the CS with a current value of the US, as did Klopf
(1972, 1982, see Equation 1.8) Thus, it would be coherent to take a,(t-k) instead of o, (t)
in Equation 4 7b This change implies an even slower increase of the CS, trace, i.c.
f1X,(1)] = o(t-k), which reflects the fact that conditioning is weaker for backward than
for simultaneous conditioning, and weaker for simultaneous than for dciay and trace
condittoning. Thus, we obtain® AV (t) = o, (t-k) B (Y(t)-?(t)) However, after a few
simulations using (Y(t)-Y(t)), it appeared that this term did not vary quickly enough, not
producing enough nhibition, 1€ extinction was too slow. (Y(1)-Y(t-1)) gave better
results, thus we arnve at

AV(1) = oy(t-k) B (Y(1)-Y(t-1)) (4.8)

What value of k should be used? The process of extinction of a CR with the delay
producing modet 1s different from other real-ime models (e g, Klopf, 1988; Sutton &
Barto, 1980) In fact, in the first part of the CR, when Aa(t) is positive, AY(t) is positive
and V(1) increases However, n the second part of the CR, when Aca,(t) 1s negative,
AY(1) 1s negative and V (t) decreases The mechamsm that insures that V (t) decreases
more 1n the second part than it has increased in the first part 1s the presence of the -k in
Equation 4.8 Duning extinction the US 1s absent, so A(t) = 0 and Y(t) depends only on

Z a,(1)V,1). The number of ume steps where AV (t) is greater than zero (i.e. the

1=l

number of time steps where { Y(t)-Y(t-1)) 1s greater than zero) 1s reduced by k time steps
(because ay(t-k) = 0 for k more time steps than with o, (t), when (Y(t)-?(t-l)) > 0).
However, the number of time steps where AV (t) is smaller than zero stays the same with
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a,(t-K) or a(t) (because ay(t-k) > 0 for the whole penod when (Y(t):Y—(t-l)) ~ 0) This
insures more decrease than increase, unless o, (t) or $ 15 100 large 1 tried the value & 1
and the model was satisfactory but $ had to be small (around 0 2) in order to produce
extinction and conditioned inhibition Such a small value of B produces a slow
acquisition Then I tried k=2 and this produced a more stable extinction for an higher
value of B (around 0.6). Therefore, | adopt k =2
An Equation for the Trace of a CS

At this point the trace of the CS, (1 e., fIX,(t)]) and the assoctabiliy of a US (1¢ .
FIA(Y), Y(1), ?(t)]) depend on a,(1) The problem is what 1s the equation of o, (1)? Gluck
and Thompson (1987) have, in their stochastic model. a plasticity function dxt) that 1s
very much like our determmnistic o (1) They used the equation ®(t)  T(t)(1-T(1)), where
T(t) is a function that s zero at t = 0, but which jumps to | when a CS action potential 1s
generated, and then exponentially decays Thus, after an action potential 1s generated
d(t) is

o(t) = @ 71 t)(1- @ 011 for e, (4 9)
where t, is the time of the last action potential This equation 1s not ideal for ay(t), aside
from the fact that the connection has to "memonze” the time t, by some mystenous
mechanism. The curve of an expenimental CR has another property that 1s not included 1n
d(t) close to the CS onset, the CR s positively accelerating The slope of the CR s zero
and then slowly increases (see Figure 4 3) (Gormezano et al | 1983) However, Equation
4.9 does not have a positively accelerating curve 1n the neighborhood of t - t
seen in Figure 4.4.

as can be

03

Another curve that 1s analogous in shape to Equation 49,15 a(t) t ¢ but as

can be seen 1n Figure 4.5, it 1s also not positively accelerating in the neighborhood of t 0

Intensity

Time

Figure 44  The graph of a,(t) = e 041 - e-0t)
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Intensity

Time

Figure 4.5  The graph of a(t) = te-o

The simplest equation that fulfills the specifications for a(t) and 1s positively
accelerating just after CS, onset, is:

a,(t) = t2e -0 (4.10)
(See Appendix A for other mathematical reasons to use Equation 4 10.) Figure 4.6
illustrates Equation 4.10. T, 1s defined as the delay between CS, onset and the peak of
a,(t). Note that Tp =2/0.

Intensity

|
|
\ 4
0 Tp Time

Figure 4.6  The equation o (t) = t2€ -0t is positively accelerating in the neighborhood
of t=0 There is a delay of Tp=2/0 between the onset of the CS, and the peak of a(t),
for a step-like CS,.

The next step is to represent a.(t), the trace of the CS,, by a differential equation.
The use of a differential equation makes the system more physically realistic because a
connection only has to "memorize"” information regarding the last few time steps (e.g.,
a,(t=-1), a;(t-1), and @, (t-1) ) instead of "memorizing” t, for an indefinite period
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of time as with Equation 49 Appendix A contains the demonstration of a third-order
differential equation, whose output is equal to  At2e -0t for a step-hke input X (1) T'his
equation is the following.

d X, (1) X, (1)

3o se

d Xl(t) (1-X|(t) R R v «

A 39 AU 392 4N L 535 (1 =oa i) 3
dl r TR =2A (435

In Equation 4 3, A 1s a constant that controls the amphtude of the peak of a(1) and X, (1)
is the trace of the CS, When X, (1) 15 positive 1t 1s equivalent to a(1), but when X, (1) 1s
negative, it represents an inertia (or a reluctance, or a delay) to produce a trace of the CS,
By taking only the positive part of X (t), we get the following equation for (1)
0 if X, (1) < 0,
o (t) = (42)
_)_(.l (t) otherwise

The motivation of each component of thc mode! 1s now complcted

4.3  Results of Simulations Using the DPC Model

The DPC Model was applied to vanous situations in classical conditioning
Simulations in this chapter and the next one were executed with the Microsoft Excel 4 0
spreadsheet on an IBM PC compatible computer !
Choice of Parameters

The constants in the model were chosen to approximate the nictitating membrane
response (NMR) in rabbits The parameters used in the simulations are presented in
Appendix C. The NMR was chosen because more data were available on its real-time
properties 8 was chosen around the optimal IS] and then increased until the simulation
reproduced the experimental curve of the asymptotic strength of the CR as a tunction of
the ISI Note that this method is as valid as Klopf's (1988) decision to take values of €
that fitted the same curve and as valid as Gluck and Thompson's (1987) choice of 0 to fit
the same curve. Using this process, 0 was found to be equal 10 909 Hz Now that 0 15

fixed, A can be found by using the following equation from Appendix A
2,2
Aax 0 “€
4

If we want the maximum value of o) (1.€., 0y, ) to be equal to one, then A is cqual to

A= (A.10)

153. B was chosen with mgher values than experimental data would suggest, in order to

1] thank Richard S Sutton for the suggestion that I use a spreadsheet to develop the simulations This 1dea
saved me some time




accelerate execution, because of time and computer memory limitations 2 Therefore f3
was chosen equal to 0 6 g controls the damping of the trace of Y(t) (0 <Bg <1), g =0
mmphes a very small damping ( _Y—(t) = Y(t-1)), while g = 09 produces a slow change 1n
Y(t) At first, By was fixed at zero and then slowly increased to obtain a plausible
amount of backward conditioning The final value used for fg was 0 I M, the maximum
value for Y(t), was chosen high enough to avoid Y(t)=M M s equal to 3. The amphitudes
of the CSs are set equal to 1 0 and the intensity of the US is set equal to 10 This
combination of values for M, the CS amplitudes and US 1intensity 1s equivalent to Klopf's
(1988) choices for M, he used M = 1, but set the US intensity around 0.5 and the CS
amphitudes around 0 2 In this way M 1s greater than Y(t).
Results

The DPC model predicts a wide range of classical conditioning phenomena,
including backward conditioning, delay conditioning and trace conditioning, conditioned
and unconditioned stimulus duration and intensity effects, partial reinforcement effects,
intersimulus interval effects, second-order conditioning, conditioned 1nhibition,
extinction, blocking, overshadowing, compound conditioning, discrimination learning,
overexpectation and superconditioning effects. However, those results are not presented
in detail for this model, since they are presented 1n detail for the adaptive delays model in
Chapter 5 which 1s an extension of the present model. Only the most interesting resuits
are presented in the current chapter The reader can refer to Appendix C for more details
on the parameter values used and to Table D 1 in Appendix D for a summary of the
properties predicted by the model.
The most interesting charactenistics of the model are the following:
1- Its output Y(t) mimics the CR, as can be seen from the result of a simulation 1n
Figure 4.7 The predicted CR 1s positively accelerating immediately after the CS onset
and skewed to the nght.
2- The curve of a(t), the trace of the CS,, reproduces the behavior that has been
deduced for short and long CSs. (See Figure 4 8.) The peak of a(t) is reached more
quickly after the onset of CS, for a short CS, than for a long CS,, while a,(t) decreases for
a long CS, even if the CS, 1s still present. This means that the optimal ISI will be smaller
for shorter CSs than for longer CSs. This prediction differs from Klopf's model where the
constants C, are independent of the CS duration (see Equation 1.12).

“This 1s a rather common practice. The examples of simulations provided by Gluck-
Thompson (1987) reach an asymptote 1n only 3 or 4 trials for the acquisition of a CR .
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3- With the model presented here, extinction occurs for CSs of any duratton Figure
4.9 shows an example of extinction for a CS of 1000 msec. and Figure 4 10 gives the
curve of the extinction rate as a function of the CS duration Figure 4 10 1s very different
from the equivalent curve for Klopf's (1988) model as discussed 1n Chapter 3 (see Figure
3.2) Klopf's (1988) model predicts no extinction for long CSs, t¢ for CSs that arc fonger
than t (the longest ISI over which delay conditioning 1s effective)

CR in a Trace Conditioning Procedure:

100
90
80
70
60
50
40
30
20
10

-+ " e 3 + &
— g * 4 ¥ +

Percentage of Maximum
CR

300
Time Since CS Onset [msec]

Figure 4.7 The CR obtained with a simulation of the delay-producing conncctions
model for a trace conditioning procedure

Alpha for a Short and a Long CS:

© o
o WO -~

o
~

Long CS (1sec)

o O
oo

"""" Short C3
(50msec)

o
n

mplitude of Alpha

A

(=]
O -

0 05 1
Time [sec]

Figure 4.8 The curves of ay(t), the trace of the CS,, computed using Equation 4.1
and 4.12 for two different CS durations. The short CS duration 1s 50 msec. The long CS
duration is 1000 msec The peak of a(t) for a short CS occurs before the peak of «(t) for
a long CS. a(t) is decreasing for the long CS even when the long CS is still present.
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Acquisition and Extinction for a Long CS (1000rmsec);

100+ Acquisition ———— - - Btncionr—————e
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Figure 4.9  Acqusition and extinction with a CS that lasts for 1 sec. Extinction is
rapid cven if CS duration 1s long. This simulation was done in a delay conditioning
procedure The ISI was 250 msec, the intertrial interval ( ITI ) was 3 sec.
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Figure 4.10 Extinction rate as a function of CS duration, the ISI and the US being
constant The extinction rate in this figure 1s obtained after an acquisition phase and 2
extinction trials The extinction rate is equal to the ratio of the strength of the CR on the
second test trial over the strength of the CR on the first test trial. The acquisition phase
had 10 tnals for the CS duration of 100 msec, 3 tnals for the CS duration of 500 msec,
and 5 trials for the ¢ther CS durations CRs were of equivalent amplitude.
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4- Finally, by choosing 8 appropniately, the model reproduces the relationship
between the asymptotic strength of the CR and the [SL. as depicted in Figure 4 11

Asymptotic strength of the CR versus ISI:
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Figured.11  The strength of the CR as a function of the [SI 1n a trace conditioning
procedure, as obtained with the delay-producing connections model

Inhibition of Delay

Although these results are interesting, there 1s a problem. With experimental CRs,
the shape of the CR changes during traiming (Gormezano ct al, 1983, Pavlov, 1927)
With a long ISI the peak of the CR moves during training toward the US onset At the
end of the traiming period, the peak of the CR 1s at the US onsct This phenomenon s
known as inhibition of delay Inhihition of delay could be the result of an "emergent

property” of a network of several units, where cach unit behaves according to some

learning rule. In fact, the most prevalent explanations for inhibition of dclay, among
theorists, involve real-time neural models These models use delay hnes (Desmond,
1990, Desmond & Moore, 1988, Desmond & Moore, 1991, Grossberg & Schmajuk,
1989; Sutton & Barto, 1990) and assume that cach CS generates a cascade of stimulus
elements X (t), each with its own time course The associative strength V(1) of cach
element is proportional to its intensity X(t) at US onset. The CR 1s the result of the sum

n
across the products for each element ( Z [ X,(t) V[(t) ] ) at atime t Therefore, the result
J=1
of that sum is a CR with a peak at US onset
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To explain how delay lines operate in real brains, we could invoke transmission
delays through the nerve cells Action potentials travel along a nerve at a speed up to 120
meters/sec (Kuffler, Nicholls, & Martin, 1984) To create a delay of one second, we
would need 120 meters of nerves However, the chemical transmission at the level of the
synapse 1s slower than the clectrical transmission A transmission delay of 05 to 1.0
mscc is associated with a chemical synaptic transmission (Kuffler, Nicholls, & Martin,
1984) It would therefore take 1000 to 2000 synaptic transmissions to generate a delay of
one second These numbers are not impossible, but they suggest that the explanation of
delays 1s not hikely to be related to transmission delays
Instead, delays could be due to activation delays. By activation delay, | mean the
amount of time a cell takes to reach 1its maximum firing frequency This amount of time
could be of the order of several msec and is therefore a plausible source of delays in the
brain The delay-producing connections model can be extended to include a mechanism
analogous to delay hines If we have a random distribution of 8 (a different 6, for each
connection), cach connection would have 1ts own time course. A set of such connections
would reproduce the eftects of a delay line. This last hypothesis deserves to be
investigated, but for now [ will investigate in another direction, which 1s to assume that 6
1s modified during traiming
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S. THE ADAPTIVE DELAYS MODEL

The following chapter descrnibes an extension of the DPC model of Chapter 4
This extension was developed to provide an explanation of inhibition of delay and CS
preexposure effects Inmbition of delay can be seen as an emergent property of a network
that would use the DPC model, but the adaptive delays model 1s an attempt to explain
inhibition of delay at the level of connections To do so, delays of varable lengths
between the CS onset and the US onset were introduced In other words, the output delay
at a connection 1 adapts to the input delay between the CS; and the US  These
charactenstics led me to choose the name "adaptive delays (or AD) model” A decrease
of the amplitude of a(t), as a result of nonreinforced CS presentations, was introduced to
explain the CS preexposure effects Section 5 2 explamns the rationale for these changes

5.1 Formal Description of the Adayptive Delays Model
The model can be ssmmarized by the following equations

V(1) = V(t-1) + AV|(1), (4 1a)
AV(1) = oy(t-2) B (Y(D-Y(1-1)), (4 1b)
o) =LX (1) ], from (4 12)!
z ifz>0,
lz]= (51)
0 otherwise,
31T, 237
LRi() 30 X, de<>+0 % (1 =2ng" Dl )
T dt T d ' di
AB(1) = -hO,(yor(t) + (s /AL) B(1) [a(t-2) - o (-3} LAY(1) 2, (5 3)
Yy = f(A) + 3 [o(t) V1)), (4 4)
1=
0 ifZ < T,
J ARV if T< Z < M, (4 5)
M fZ > M,
Y1) =PBg Y(--1) + (1- Bg) Y(t-1), (110)
and o (0)=V,0)=X,(0)= Y(0)=0 Yiell,. ,n}

1This notation is borrowed from Donegan, Gluck and Thompson (1989)
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' Symbol

Definition

oy(t)

vVt
X\(t)
Xi (t)

Y(t)
Y(1)

1S a constant that controls, with D, the amplitude of the peak

of a,(t)

is the trace of the CS, at ime t.

is a learming rate parameter related to the US

is an extinction rate for the trace of Y(t).

is a constant that controls the decrease of the amplitude of

the peak of a,(t) as a function of habituation.

is the activation function

is the habituation rate of 6(t)

1s the intensity of the US at time t.

is the maximum value of Y(t)

1s the sensitization rate of 6,(t)

is a threshold for Y(t) (as Klopf (1988) did, I will take T=0).

is a delay between the onset of the CS, and the peak of a,(t)
when the CS, s a step-like input

i1s a constant fixing the delay between the onset of CS, and the
peak of a(t). Normally 6,(t) =2/ T, .

is the connection weight between the CS, and the output at time t.
is the amplitude of the CS, at time t.

is the virtual trace of the CS, at ime t. When X; (t) is positive it is
equivalent to o (t), but when X; (t) is negative, it represents an
inertia (or a reluctance, or a delay) to produce a trace of the CS,
is the response at time t.

is the trace of the response Y(t) at time t

Definitions of the Vanables and Parameters of the Adaptive Delays Model.

Table 5.1

Note that 1if h =0 and s = 0, then AG(t) = 0, 6(t) is constant and the AD model is
equivalent to the delay producing connections model. In other words, the DPC model is a

special case of the AD model.

51



5.2  Assumptions of the Adaptive Delays Model
An evolving a(t)

Wagner (1976), Mackintosh (1975), Pearce and Hall (1980) have suggested that
the associativity of a CS, (the equivalent of the magmtude of a,(t)) changes during
conditioning It we admt that the trace of the CS, 1e a (1), changes with traming, then
the imtial hypothesis that o,(t) 1s a function solely of the CS, no longer holds However,
that hypothesis was a first approximation In this section, 1 continue to maintan that o (t)
depends predominantly on the CS, and hypothesize that the change of o (1) 1s slow |
make that hypothesis because the movement of the peak of the CR, during the process of
inhibition of delay, 1s slow This new premise does not affect my reasoming concerning
the shape of a,(t), because a,(t) changes slowly and the premises were primanly based on
the hypothesis that the change of connection weight was explained by a product of the
two functions f]X(t)] (the trace of the CS,) and F[A(t), Y(t), V(t)l (the associality of a
US), rather than resting on the invanability of ] X(1)}.

The new hypothesis is as follows When A(1)=0, Y(t) 1s cqual to the CR
According to Equation 4.4, Y(t) 1s modulated by a(t) in the following way

Y(t) = f(k(t) + Z [ o(t) V(1)) ) Since the peak of the CR moves temporally duning

=1

condionng, one can hypothesize that 1t 1s a change 1n the position of the peak of ayt)
which causes this movement T, , the position in time of the peak of a(t) (T, - 2/ 0),
could change as a result of the habituation and the sensitization processes

Habituation 1s a decrease in the strength of a behavioral responsc that occurs
when an imtially novel eliciting simulus 1s repeatedly presented. The most prevalent
physiological explanation of habituation involves a synaptic mechanism (Kandel &
Schwartz, 1985), or more precisely a presynaptic mechanism Work on Aplysia has
shown that reduced responsiveness occurs as a result of a long-lasting depression of

transmitter release from the terminals of the sensory neurons to the motor neurons The
presynaptic action potential becomes shortened in duration This gives nise to a weaker
inward calcium current and therefore to a smaller amount of transmitter release
Sensitization 1s the enhancement of an ammal's reflex responses as a result of the
presentation of a strong stimulus

Since the CS is by itself a neutral stimulus, 1t 1s logical to think that it should be
governed by the laws of habituation. This hypothesis 1s confirmed by CS preexposure
effects CS preexposure effects correspond to the following phenomenon nonreinforced
presentations of a CS prior to reinforced presentations retard subsequent acquisition of
the CR. These effects can be explained, 1n a first approximation, 1f we assume that «(t)
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habituates to the nonreinforced presentations of the CS, (i.e. to X/(t)). In other words, the
amphtude of a,(t) would decrease with nonreinforced presentations of the CS, and this
would slow a subsequent acquisition of the CR with reinforced presentations of the CS,.

When there 1s a long CS and the US onset is at the end of the CS, since there is no
reinforcement at first, o (t) would habituate to the CS, (that is X(t)). The amplitude of
a,(1) would decrease and the position of its peak would move forward in time in the
direction of the US onset (T, would increase) This hypothesis 1s summanized in Figure
5.1 Conversely, a sensitization, provoked by the US onset, would change the amplitude
of a,(t)and move the posttion of its peak toward the US onset. Sensitization would have
the effect of increasing or decreasing T, as well as increasing or decreasing the
maximum amplitude of o (t).

ALPHA AS A FUNCTION OF HABITUATION:
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Figure§.1 The assumed behavior of a(t), the trace of the CS, as a function of
habituation In this example, when the amplitude of o,(t) goes from around 0.9 to around
0.3, 1ts peak moves fromt=0.2 to t=0.8 sec.

The mechanisms of habituation and sensitization that are proposed here may or
may not exist at the level of the synapse of real neurons. That 1s not the point at issue
here Even if these mechamsms of modification of T, do not exist physiologically, this
learning rule could offer an interesting way to approximate the behavior of a population
of neurons by a single connection. If only for this reason, 1t is worthwhile pursuing this
line of thought. Furthermore, to model the CS preexposure effects and inhibition of delay
in a single process is an attractive possibility.
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It therefore makes sense to implement habituation and sensitization at the level of
the connection weights In fact, habituation and sensitization have been ntroduced n
learning rules by several authors (Gluck & Thompson, 1987, Grossherg & Schmajuhk,
1987, Hawkins & Kandel, 1984). Gluck and Thompson in their stochastic model of
Aplysia used the following equation for habituation-
(1n our notation) AV (1) = - B, V() X(D),
where 3, 1s a constant that governs the rate of habituation Grossberg and Schmajuk

) v
(1987) use, to stmulate habituation, the differential equation % = B(l-y)-CS vy where
¢

B, C and S are constants Here again the variation of a vanable (y) 1s proportional to this
same variable mulitiplied by a negative constant In my DPC model, the vanable that
would show the phenomenon of habituation 1s 6, The habituation term will then be
-h6,(t), where h is the habituation rate However, habituation should occur only when
there is a CS, This can be obtained 1f we multiply -h0(1) by X (1) or a(t) Should we
multiply by X(t) or by a,(t)? If we have a very long CS,, o,(t) wall increase, reach a peak,
and then decrease toward zero, while X(t) will stay at a constant value during the full
duration of CS,. This means that if we use X(t) in the habituation term, a very long CS
could provoke a significant decrease of 0,(t) in just one tnal. This cflect would be
minimized by using a(t); the habituation term then becomes -h0()a,(t) The detated
explanation for the choice of sensitization term 1s provided in Appendix B The final
expression for the variation of 6(t) 1s:

AB(t) = -hB(to,(t) + (s/At) B,(t) [or,(t-2) - ar(t-3)] LAY (1) L, (53)
z ifz>0,
where [Z]= (51)
0 otherwise,
B t+1)= 8(t)+ A8(), (5.4)
and s 1S a sensitization rate constant.

In order to have the amplitude of c1(t) decrease when T, increases, 1.¢. when O
decreases, we replace A by A0in Equation 4 3. This yiclds
PRi() g XY L, 2 dXi()
dt Vooar ! dt
The maximum amplitude of a(t), o, 1S determined by Equation A10 (see Appendix
A) oy,  =A(2/6)e-2 Substituting AP for A in Equation A10 results in
Upax = 4A00-2€ -2 (5.5)

+0, 3 ’>Z,(t)=2/\o;”5x—£'—’ . (52)
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where D 1s a constant that governs the decrease of the amplitude of a(t), the amphitude
of a,(t) being proportional to 6 to the power D-2 If D=2, then o, = 4Ae 2, and the
amphtude of a,(t) 1s independent of © That means that there 1s no habituation for D=2

If'D - 2, then oy, increases with increasing T, Therefore to arrive at an habituation of
the amphitude of a,(t), one must take D > 2 In the following I wall assume that D > 2. If
Equation 55 1s expressed as a function of Ty, instead of O, things are clearer.
Substituting 8 =2 /T in Equation 5 5, we obtain

402 Ha e ?
Opax ™ TD_Z
p

(5.6)

From Equation 5.6 1t is easy to see that if T, increases, ay,, decreases (provided that
D>2).

Because T, adapts itself to the delay between the onset of the CS, and the onset
of the US, the model 1s called adaptive delays model.

5.3  Results of Simulations Using the Adaptive Delays Models

The AD model was applied to a series of situations in classical conditioning, The
results of these simulations are presented below. The final parameter values used are
displayed 1n Appendix C
Choice of Parameters

As 1n the DPC model, the constants in the model were chosen to approximate the
nictitating membrane response (NMR) in rabbits. We can define Ty, as the shortest
delay biologically possible between the CS onset and the peak of the CR. Tomn 1S fixed
by the shortest ISI that generates a positive associative strength in trace conditioning In
rabbit NMR, the shortest ISI in a trace conditioning procedure that generates
conditioning 1s equal to 100 msec, with a CS of 50 msec and a US of 50 msec. By
simulation Ty, was found for this case to be equal to 175 msec. T, the initial value for
the delay between the CS onset and the peak of a,(t), was chosen arbitrarily because no
data were available to suggest its value It was chosen close to Ty, but a bit higher in
order to accelerate learing in trace conditioning for long ISI (i.e. greater than 250 msec).
At, the time interval between two time steps, has to be smailer than approximately one
quarter of Tomn- Otherwise the equation of oy(t) 1s unstable. Taking a certain safety
margin, At was fixed at 25 msec.

The amplitude of a(t) is controlled by the parameters A and D (see Equation
3.5). D was selected by approximation, starting at D = 2.0 and increasing until the
simulation reproduced the expenmental curve of t'.e asymptotic strength of the CR as a
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function of the ISI If we choose the maximum amplitude of o (1) equal to one, then A

can be determined by Equation 5 6 and by using T, = Ty, n the tollowing way
_ 420 Hae?

amm& D-2 (5 7)
Tpmm
D-2 2
andso A = Tp“““ ©  Pmax
D-2 (38)
4(2777)

With oy, = 1,D=28and Ty, =0.175 sec, this gives A =0.26
The values of h, s and p were chosen by tral and error If one increases the

habituation rate h, one must increase the sensitization rate s, otherwise habituation will
dominate over sensitization and consequently the amplitude of the CR will decrease even
if there is a reinforcement. The sensitization rate s tends to synchromze the peak of a(t)
with the onset of the US s affects the learning rate because, for a short US, when the
peak of o, (t) arnves at the same time as the onset of the US, Aa,(t) 1s very small Also the
rate of change of V (t) 1s proportional to Aa,(t) for a short US and Ag,(t) 1s small around
the peak of a(t) (see Appendix B, Equation B3) Consequently, the faster agt)
synchronizes itself with the onset of the US, the faster learning stops The habituation
parameter h also affects the learning rate, because it decreases the amplitude of o (t) h, s
and B were chosen with higher values than experimental data would suggest, in order to
accelerate execution, because of time and computer memory hmutations 2 | then assume
that one trial of simulation corresponds to N experimental tnials Unless otherwise
specified, in the following simulations h 1s equal to 0 05, s 1s equal to 0 03, and 3 15 equal
to 0.6. If B is greater than approximately 0.7 the increase of V(1) 1s too fast, and there 1s
no extinction and no conditioned inhibition

Bg controls the damping of the trace of Y(t) (0 < g <'I) By - 0 implics a very
small damping (Y (t) = Y(t-1)) while Bg =09 produces a slow change 1n Y(1) At first,
B was fixed at zero and then slowly increased to obtain a plausible amount of backward
conditioning The final value used for Bg was 0 1| M, the maximum value for Y(t), was
chosen high enough to avoid Y(1)=M. M is cqual to 3 The amphitudes of the CSs are set
to 1 0 and the intensity of the US is also set to 1.0.

2As mentioned in Chapter 4, this is a rather common practice. The examples of
simulations provided by Gluck-Thompson (1987) reach an asymptote 1n only 3 or 4 tnals
for the acquisition of aCR .
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Remarks About the Figures

Figures 5 2 to S 31, for the most part, have the same tormat. On each figure there
are several curves and each curve has its own scale Two curves that are the same size on
paper might have different scales The scale of a curve i1s placed at its left As an
cxample, the notation 9 99E-02 means 999x<102 1.e. 0099 Alpha and Theta are
cquivalent notations for a(t) and 0(t) V1 and V2 are equivalent notations for V(t) and
V,(t) When a US and a CS overlap, the CR often resembles two supenmposed peaks.
Usually, a low, broad peak merges into a high, narrow peak The narrow, high peak
should be 1gnored, 1t 1s only a transitory effect. The Sutton-Barto (1980) model and the
Klopf (1988) model produce the same transitory effect. This effect could be mimmized
with a smaller §, but this would slow the acquisition of a CR
Types of Conditioning

The AD model makes it possible to stmulate conditioned excitation as well as
conditioned inhibition, as can be seen 1n Figures 52 and 5 3 respectively. Figure 5.2
shows the acquisition of a conditioned excitation, while Figure 5.3 shows the acquisiton
of a conditioned inhibition A conditioned excitator CS, has a positive value of
associative strength V (t), while a conditioned inhibitor has a negative value of V,(t). Ina
simple case, when a US starts at a time t; and ends at a time t,, 1f we have o(t;-2) >
a(ty-2), this produces excitation and V, increases If we have a,(t;-2) < o(t)-2), this
produces inhibition and V, decreases (see a demonstration in Appendix B) The model
however only allows simulation of facilitating CRs, 1.e. CRs that mimic the UR. This is
also the case with the Sutton and Barto (1981) model or Klopf (1986, 1988) models
Acquisition and Extinction

The model exhibits the main properties of the acqustion of a CR. The curve of
acquisition is sometimes S-shaped (see Figure 5 2) or 1s simply negatively accelerating at
other times (see Figure 5 4) If the delay between the peak of o (t) and the onset of the
US is long, then the peak of a,(t) moves toward the onset of the US (by the hypothesized
mechanism of habituation and sensitization). This leads to a positively accelerating
acquisition curve However, when the onset of the US 1s close to the peak of a(t),
acquisttion 1s already high and there is only a negatively accelerating acquisition curve
for the CR All the curves of acqusition of a CR are negatively accelerating at some
point and reach an asymptote Partial reinforcement leads to a slower acquisition curve
This effect can be seen by comparing Figure 5.4 with Figure 5.5. Both figures represent
cquivalent delay conditioning procedures, except that Figure 54 1s a continual
reinforcement and Figure 5 5 1s a partial reinforcement (the CS 1s reinforced once out of
two presentations). Afier the same number of US presentations, the conditioned response
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in continual reinforcement reaches 0 2, while 1t reaches 0 08 in the partial reinforcement
situation

Extinction is represented in Figure 5 3, 54 and 55. These figures display a
negatively accelerating extinction, where the amplitude of the CRs tends toward zcro For
smaller CRs, extinction 1s slower than acquisition For trace condiioming, with a very
short CS, o(t) 1s very small and extinction, being proportional to ay(t), wall be very slow
Conditioned inhibitors don't extingmsh, 1e the negative value of V(1) stays the same
during extinction, as shown in Figure 53 This concords with experimental data,
Extinction 1s slow for partial reinforcement when the CR acquired 1s small
Time Contingencies

The strength of the CR produced by the AD model for the different time
contingency paradigms generaily follows experimental findings Delay conditioning
produces stronger CRs than trace conditioning, as can be scen by compartng Figure 56
with Figure 5.7 After 20 trials of delay conditiomng the CR reaches 0 28 (see Figure
53°5), while after 20 tmals of trace conditioning the CR reaches 009 (sce Figure S 7)
Simultancous conditioning, as illustrated by Figure 5 8, leads to inhibttion, so trace
conditioning 1s stronger. Simultaneous conditiomng s stronger than backward
conditioning in the sense that it produces stronger inhibition. Backward conditioning 1s
displayed in Figure 5.9.

The efficacy of delay conditioming 1s a function of the ISI, as represented in
Figure 5 10. The CR 1s absent for small ISIs, increases rapidly for ISls between 150 msec
and 200 msec, then decreases progressively (the curve doesn't show ISIs greater than 350
msec because the intertrial interval was 1 sec).

The asymptotic strength of the CR as a function of the ISI i a trace conditioning
procedure 15 pictured in Figure 5 11 The magnitude of the CR depends on the ISI There
is no CR for a ISI smaller or equal to S0 msec The strength of CRs increases with ISls
between 50 and 150 msec, then the CR decreases with incrcasing ISIs This 1s in
conformity with experimental results (Gormezano et al., 1983) CS duration influences
the asymptotic value of the CR For a CS duration shorter than the optimal ISI, a longer
CS produces a stronger CR. If we compare Figure 5 12 and Figure 57, both depict the
same procedure except that the simulation of Figure 5.7 uses a CS of 50 msec, while the
CS of Figure 5.12 lasts for 100 msec. The result 1s an asymptotic strength of 0 09 for the
CS of 50 msec and of 0.40 for the CS of 100 msec.
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Adaptive Deiays Model

Acaquisition in a Trace Conditioning Procedure ( 1S1 = 250 msec ):
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Figure5.2 The acquisition of conditioned excitation in trace conditioning. The
acquisition curve of V and the CR is a sigmoid. Both CS and US last for 50 msec.

59




1.00
CS1
0.00
1.00
Ccs2
0.00
1.00
us
0.00
1.79
Y
0.00
11.43
Thetal
’ 9.96
10.00
Theta2
8.32
1.26
vi
0.00
2.80E-02
V2
-3.29E-01
0.99
CR1
0.00
2.26E-02
CR2 0.00E+00

. Figure 5.3

Adaptive Delays Model

Conditioned Inhibition Procedure and E xtinction Procedure:
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The acquisiton of a conditioned inhibition in a delay conditioning

procedure. The conditioned inhibition does not extinguish.
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Adaptive Delays Model

Acquisition and Extinction in a Delay Conditioning Procedure:
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. Figure 5.4  The acquisition of a CR is negatively accelerating in this case of delay

conditioning. Extinction is also negatively accelerating.
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Adaptive Delays Model

Acquisition and Extinction in a Partial Beinforcement Procedure:
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Figure 5.5 In this partial reinforcement, the CS 1s reinforced once out of two
presentations. The CR reaches 0.08 instead of 0.2 in the continual reinforcement
situation of Figure 5.4, for the same number of reinforcements.
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Adaptive Delays Model

Acaquisition in a Delay Conditioning Procedure (151 = 200 msec):
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The curve of acquisition of a CR in this delay conditioning procedure is
negatively accelerating. A test trial indicates that the amplitude of the CR is 0.28.
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‘ Adaptve Delays Model

Acaquisition in a Trace Conditioning Procedutre (1S =200 msec ).
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. Figure 5.7  The acquisition of a CR in trace conditionng procedure reaches an

asymptote at 0.09. The asymptote of the CR in delay conditioning (Fig. 5 6) 15 lower.



‘ Adaptive Delays Model

Acquisition in @ Simultaneous Conditioning Procedure:
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‘ Figure 5.8  Simultaneous conditioning produces no CR. The CS becomes a
conditioned inhibitor, V decreases steadily. Y is not affected, since the peak of a(t)

arnves after the offset of the US.
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Adaptive Delays Model

Acquisition in a Backward Conditioning Procedure { ISI = -50 msec
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Backward conditioning produces no CR. The CS becomes a smail

conditioned inhibitor, since V is negative. This effect is weaker than for Figure 5.8.




Asymptotic strength of the CB versus IS}:
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Figure 5.10 The asymptotic strength of the CR as a function of the ISI. The CS lasts
for a vanable period of time in this graph. The CS lasts for SO msec with ISI = -50 and 0
mseg, it lasts for 100, 150, 200, 250, 300, 350 and 400 msec with ISI = 50, 100, 150, 200,
250, 300 and 350 msec respectively. The US lasts for 50 msec. The efficacy of
conditioning depends on the ISI and CS duration. When the ISI equals -50 msec, it is a
backward conditionmng situation. When the 15! equals 0, it is a simultaneous conditioning
situation All the other values of the ISI represent delay conditioning procedures.
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Figure 5.11 The asymptotic strength of the CR as a function of the ISI. The CS and the
US last for 50 msec. When the ISI equals -50, it 1s a backward conditioning situation
When the ISI equals 0 it is a simultaneous conditioning situation. When the ISI equal 50,
it is a delay conditioning situation. All the other values of the ISI represent a trace
conditioning procedure. The efficacy of conditioning is a function of the iSI. There is no
CR until ISI 1s greater than 50 msec, then the strength reaches a peak at 150 msec and
progressively decreases. The peak corresponds to a shorter ISI than in Figure 5 9, because

the CSs are shorter here.
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Adaptive Delays Model

CS Duratior Eftects (CS duration = 100 msec):
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Figure 5.12 A longer CS produces a stronger CR. The CR reaches 0.4 here with a CS
of 100 msec, while it reaches only 0.09 in Figure 5.7 for a CS of 50 msec in duration.
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Simultaneous conditiomng 1s supposed to produce little excitatory conditiomng or
no conditioming at all (see Chapter 2) The AD model predicts inhibitiory conditiomng
for short CSs and USs (see Figure S 8) This 1s because the snset of the US occurs when
o,(t-2) 1s zero and does not contribute to a change in 'V, while the oftset of the US occurs
when a,(t) 1s increasing, and gives at that point a negative AV, If we ook at Figure S 8,
we can see that the response Y(t) 1s not inhubited by the acquisiion of the conditioned
inmibition. This 1s because the peak of a,(t) occurs after the oftsct of the US With post-
asymptotic conditioning, o(t) would not tertere because T, Keeps mcreasing by
habituation. However, CSs and USs longer than the optimal ISI produce much less
inhibition because at that point in time a,(t) 1s small

Backward conditioming procedures produce weak inhibitory conditioming  For
instance, Figure 5.9 shows that after 20 tnals, V| reaches -0 03 The model does not
produce the effect of the first tnals being excitatory, each tnal 1s inhibitory in this
situation
CR Properties

The model was designed especially to simulatc CR properties and so it does The
curve of a CR is different from the square wave curve of a CS (sce Iigure 5 13) The
variance of the CR increases with increasing ISI (sce Figure 5 13) The CR s also
positively accelerating at first as an experimental CR (see Frgure 5 13) We see in Figure
5.13 that nhibition of delay is well reproduced The peak of the CR moves during
training and 1s positioned at US onset at the end of training
CS and US Effects

An example of the US duration effects 1s obtained by comparing Figure 57 with

Figure 5 14 Both situations of trace conditioning are 1dentical except that Figure 57 15
produced with a US of 50 msec, while Figure § 14 1s produced with a US of 100 msec
The US of 100 msec produced a CR of 0 16, while the US of 50 msec produced a CR of
0.08. A longer US produces a higher asymptote for the CR

Figures 52 and 5.15 provide an example of US intensity effects in a trace
conditioming procedure The figures differ in US intensity Figure 5 2 1s the output of a
simulation with a US intensity of 1 and Figure 5 15 1s the output of a simulation with a
US intensity of 0 5 The US intensity of 1 produces a CR of 0 047, while the US intensity
of 0.5 produces a CR of 0.021 Although this result 1s in accordance with experimental
data, other simulations of the same effects were inconclusive As was mentioned in the
introduction of the present chapter, the parameters h, s and [3 were given unrealistically
high values in order to accelerate simulations It has also been cxplained that <, the
sensitization parameter, affects the learning rate the faster the sensitization, the faster the
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CR reaches an asymptote The intensity of the US affects the sensitization process, with a
stronger US producing a stronger sensitization (see Equation 53) With a stronger
sensitization, the CR reaches an asymptote faster and the asymptotic value of the CR is
smaller than it would have been with a smaller US This chain of events can bc grasped
by companing Figure 5 7 with Figure 5 16 The model is sensitive in regard to s.

CS intensity effects are explained by the model This i1s seen by companng Figure
517 with Figure 57 Figure 5 7 represents a simulation using a CS ntensity of 1, and
Frgure 5 16 a simulation with a CS intensity of 0 5 These graphs show that acquisition 1s
faster with the stronger CS The CR obtained with a CS intensity of 1 1s 0 09, while the
CR obtained with the CS intensity of 0.5 1s 0.04 However, CS durations greater than the
optimal ISI do not show such an increase of the CR for an increase of CS duration.

In a CS preexposure procedure, the CS 1s presented several times before the
pairing with the US. In this case, we can expect the habituation process to cause a
decrease of a (t), which should slow the acquisition process. This is what the simulation
reveals as represented by Figures 5 6 and 5 18. With a preexposure to the CS, the CR
nceds more trials to reach the asymptotic value of the CR (in accordance with
expernimental data), but the asymptotic value 1s the same with or without preexposure as
opposed to experimental data where the asymptote is smaller. The CS preexposure is
therefore only partially simulated by the model.

Configural Leaming

An overshadowing effect 1s presented in Figure 5.19. A CS with a salience equal
to 1 1s presented in conjunction with a CS that has a salience equal to 0.2. The first CS
produces a CR of 0 31, while the second produces a CR of 0 025 at asymptote. The CS
with the smaller salience has a smaller CR at asymptote, as expected.

The blocking procedure 1s successfully simulated by the model only 1If we take s
equal to zero. Figure 5.20 represents a blocking procedure obtained in a delay
conditioming paradigm, by taking s=0 The CS, 1s presented in a first phase and the
corresponding CR reaches 0 23, while the CR to the CS, presented paired with the CS,;
in a second phase only reaches the value 0 02 When s is greater than zero, the peak of
the CR, acquired in the first phase moves duning conditioning. In the second phase the
CR, acts as a reinforcer for the second CS because a,(t) and CR, are not simultaneous,
and there 1s therefore no blocking. When s = 0, as with the DPC model, the delay before
the peak of the conditioned response 1s fixed and the blocking procedure 1s well
reproduced
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Relationships Between the CR and the US Across Tuals:
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Figure 5.13  During conditioning, the peak of the CR moves toward the onset of the US
and its variance increases.
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Adaptive Delays Model

US Duration Effects in a Trace Conditioning Procedure:
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. Figure 5.14 A longer US produces a higher asymptote for the CR. The US of 100 msec

produced a CR of 0.16, while the US of 50 msec (see Figure 5.7) produced a CR of 0.09.
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Adaptive Delays Model

US Intensity Effects in @ Trace Conditioning Procedure:
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. Figure 5.15 A less intense US produces a smaller CR. A US intensity of 0.5 produces a

CR of 0.02, while a US intensity of 1 in Figure 5.2 produces a CR of 0.047.

74



’ Adaptive Delays Model

US Intensity Effects in a Trace Conditioning Procedure:
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. Figure 5.16 A problem arises with higher values of s (here s=0.Q3). The CR is stronger
with a US intensity of 0.5, than it is in Figure 5.7 with a US intensity of 1.
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. Adaptive Delays Model

CS Intensity Effects:
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. Figure5.17 The CR obtained with the CS intensity of 0.5 is 0.04, while the CR

obtained in Fig. 5.7 with a CS intensity of 1 is 0.09. Acquisition is also slower here.
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Adaptive Delays Model

CS Preexposure Effects in a Delay Conditioning Procedure:
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Figure 5.18 Preexposure to the CS in a first phase slows the acquisition of the CR ina

second phase.

77




Adaptive Delays Model

Overshadowing Procedure:

CS11.00 ‘HUU q,‘rI—'L HHPJLH
000 Julliid L.“._'L . L U]_ -
cs 2 2.005-01 'TUUJ ﬂl"rLT FLH ﬂan "Lﬂ
oooe+00 JLILJL I | _JL | L J]_ ninis
1.00 ]
us UL L l
0.00 | |
1.68
Y
0.00
10.00
Thetal
9.28
10.00
Theta2
9.46
1.09
V1
0.00
2.95E-01
V2
0.00E+00
0.75
CR1
0.00
cre 405E-02
0.00E+00
0 25 5 75 10 125 15 175 20
Time [Sec]

Figure 5.19 The less salient CS (CS,) acquire a smaller CR than the more salient CS
(CS,). CS, produces a CR of 0.31, while the CS, produces a CR of 0.025 at asymptote
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' Adaptive Delays Model
Blocking Procedure:
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. Figure5.20 The CS, is presented alone and its CR reaches 0.23. In a second phase the
CR to the CS,, presented at the same time as CS,, reaches only 0 01. The acquisition of a

CR to CS, 1s blocked by the presence of the previously acquired CR;.
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An example of second-order conditiomng 1s shown in Figure 521 Fhe CR
acquired 1n a first phase 1s used as a remnforcer for another CS (CS,) presented in the
second phase The CS, acquires a CR, and then this CR;, extinguishes ttself” while the
CR, extinguishes also In an overexpectation procedure two CSs are sepanately paired
with a US and then they are presented together at the same time as the US Figure 522
pictures what 1s happening in this situation At first, the response Y(t) 1s higher when the
CSs are presented together than it 1s when the CSs are presented individually
Subsequently, the response to the compound stimulus decreases The CR to the
individual CSs also decreases 1n this final phase (Klein, 1991)

Figure S 23 represents the superconditioning procedure A stimulus CS; acquires
a stronger conditioned response 1n presence of the conditioned imnhibitor €S, W a CS s
presented alone with the US (as in Figure 5 6) 1t ehcits a CR of 0 41, but presented with
the inhibitor 1t elicits a CR of 0 99

A discrimination learning procedure 1s represented by the sequence AKX BX-
The compound formed by the stimuli A and X is reinforced, while the compound formed
by the stimuli B and X 1s not reinforced Such an experiment produces a stronger CR for
A than for X; a stronger CR for X than for B; the CR to B tends toward zero, the CR to X
increases and then decreases, the CR to BX increases and then decreases afterward, the
CR 0 AB 1s greater than the CR to BX All these propertics are evident in the simulation
results presented 1n Figures 5 24 and 525 In these figures A 1s CSy, B s CS;, and X 15
CS; Figure 5.26 gives an example of a pseudodiscrimination procedure This procedure
is summanzed by the following AX+ 0.5/ AX- 05/ BXt 05/ BX-05 The compound
AX 1s remnforced half of the time and the cempound BX 1s reinforced half of the time
The essential features of this phenomenon are presented in Figure 5 26 (CSy A, C5,
B, and CS; = X) The CR to X 1s equal to 0 7 and 1s greater than the CR to A and the CR
to B The CR to A 1s approximately equal to the CR to B The CR to X (0 7) 1s greater
than the CR to X at the end of the discnmination procedure (= 0 03) (Figure 5 23)
However, to obtain a pseudodiscrimination simulation that corresponds to cxpenimental
data, 1t was again necessaryto seth =0,5s =0and 3 ~0 2.

The compound conditioning procedure where a stimulus A 1s reinforced when 1t
is presented alone and 1s also reinforced when 1t 15 presented in conjunction with X (this
1s summarized by A+ AX+), should producc a stronger CR to A than to X Figure 527
shows this effect, the CR to A (CR ) reaches 0 44, but the CR to X (CR;) 15 zero at the
end of traiming In another compound conditioning procedure, a stimulus A 15 not
reinforced when .t 1s presented alone, but 1s reinforced when presented in conjunction

with X (this 1s summarized by A AX+) This should produce a stronger CR to X than to
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A Figure 5.28 shows this effect, the CR to X (CR,) reaches 0.34 while the CR to A
(CR,) tends toward zero at the end of training.

The AD model, being a single umit model, does not have the structure necessary
to account for morc complex forms of configural learning For example positive
patterning, ncgative patterning, and feature positive procedures are not explained by the
model An accouiit of such phenomena can be made by a network model, but not by a
single unmit model (Kchoe, 1989) However, the DPC model or the AD model could be

implemented at the network level to test for these phenomena

This space intentionally left blank.
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‘ Adaptive Delays Model
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. Figure 5.21 The CR, acquired in a first phase is used as a reinforcer for the CS, in a

second phase. The CS, acquires a CR; and subsequently both CRs are extinguished.
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Figure 5.22 CS, and CS, separately acquire a CR, then they are paired together with
the US. At first Y is higher than it is with individual CSs, then Y and both CRs decrease.
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Figure 5.23 In phase 1, the CS, becomes a conditioned inhibitor. The CS; acquires a
stronger CR (0.91) paired with the CS,, than it does (0.4) when not paired, as in Fig. 5.6
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Figure 5.24 Here we have A=CS;, B=CS,, and X=CS;. The compound AX is
reinforced, while BX is not reinforced. V, increases and then decreases. See Fig. 5.25.
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Discrimination Learning (AX+ BX-):
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. Figure 5.25 The CR to A is greater than the CR to X, which in tum is greater than the

CR to B. The CR to AX is greater than the CR to BX. See also Figure 5.24.
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Adaptive Delays Model
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Figure 5.26 (CS; = A, CS; = B, and CS; = X). The CR to X is equal to 0.7 and is

‘ greater than the CR to A and the CR to B. The CR to X (0.7) is greater than the CR to X
at the end of the discrimination procedure (= 0.03) ( see Figure 5.25).
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Adaptive Delays Model
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. Figure 527 This compound conditioning procedure produces a stronger CR to A than

to X. The CR to A (CR/) reaches 0 44, but the CR to X (CR;) is 0 at the end of traiming
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Figure 5.28 This compound conditioning procedure produces a stronger CR to X than
to A. The CR to X (CR,) reaches 0.34, but the CR to A (CR,) is 0 at the end of training,
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Temporal Conditioning:

In a temporal conditioning procedure, there 1s no distinctive CS Instead, the US
is presented at regular intervals The two-neuron network of Figure 529 1s an attempt to
simulate this phenomenon The 1dea 1s that the first neuron produces a UR when a US 1s
presented. The UR of the first umt becomes the CS of the second umit The second umit
also recetves the US as an input At a given time, the most recent US pioduces a UR that
becomes a CS for the second umt, and that CS should producc a CR whose peak
hopefully will be synchromzed with the next US onset This would model temporal
condittoming. Figure 5.30 presents the results of a simulation using such a two-ncuton
network The most recent CR can be considered as a prediction ot the next US The CR
is weak, 1n accordance with expenimental data Unfortunately the peak of the CR does
not coincide with the next US, but rather occurs in the middie of the detay between the
two USs

us UR Cs CR

Figure 5.29 A two-neuron network to model the temporal conditioning paradigm
There is no distinctive CS The first unit produces a UR when a US s presented This UR
becomes the CS of the second umit

5.4  Predictions of Both Models

The DPC model and the AD model gencrate some ongmal and testable
predictions (for which 1 have no data) The following predictions are common to both
models because they do not depend on adaptation of 0 as a function of time
]- Longer CSs have a faster extinction of their corresponding CR than shorter CSs
This prediction 1s very different from Klopf's (1988) model, which predicts slower
extinction for long CSs (long 1n companision with T in Equation | 12)
2- Simultaneous conditioning produces inhibition nstead of a small excitatory
conditioning or no conditioming at all However, the mhbitory effect (a,(t)V,(t)) occurs
after the US (for short USs with the DPC model)
3- The optimal ISI for short CSs 1s smaller than the optimal ISI for long CSs This 1s
because the peak of a,(t) occurs sooner after the onset of the CS for short CSs than for
long CSs.
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Figure 5.30 In a temporal conditioning procedure, there is no distinctive CS. Instead,
the US is presented at regular intervals. The most recent CR can be interpreted as a
prediction of the next US. However, the peak of each CR is in the midle of two USs.
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Figure 531 After acquisition, doubling the intensity of the CS should produce a
stronger CR (1.12 instead of 0.2) and a faster extinction (se¢ Figure 5.4 as compansion).

92



4- If 1n a first phase a CS 1s paired with a US and acquires the ability to chicit a CR,
then an increase n the intensity of the CS n a second phase should increase the
amplitude of the CR This phenomenon is represented in Figure 5 31 The model does not
take into account the generalization decrement that should occur when one moditics the
CS Several other models predict the same effect (Gluch-Thompson, 1987, Klopt. 1988,
Wagner, 1981, Sutton-Barto, 1981) Generalization decrement will be opposed to that
effect and should tend to decrease the CR  If the gernerahization decrement 1s stronger
than the increase of the CR due to intensity, at least this intensaty et¥ect should produce a
skewness 1n the curve of the CR as a function of the intensity of the CS  The shew should
be 1n the direction of higher CS intensity.

The following predictions are specific to the AD model (1¢ for cases where h#0
or s#0) because they depend on the adaptation of 0 as a function of time
I- The extinction process should modify the shape of the CR by increasing the delay
between the onset of the CS and the peak of the CR This 1s caused by the habituation
term in Equation 5 3
2- In some cases CS preexposure could in fact accelerate the acquisition of a CR
This would happen if the 1mitial peak of o(t) is much prior to the onsct of the US 1f the
right number of CS presentations are made before conditioning begins, the peak of o (t)
would arrive closer to the onset of the US and learning would be faster

55 A Method for the Measure of the CS Trace
The theoretical shape of the curve of a(t) 1s denved from a number of
expenmental results. | have used the curve of the expernmental CR, the curve of the
strength of the CR as a function of the ISI, and have theorized about the differences
between backward, simultaneous, trace and delay conditoming However, 1t would be
preferable to find a way to measure a,(t) directly This method can be deduced from
Equation 4 8, which s
AV(1) = a(t-k) B (Y(1)-Y(t-1)) (4 8)
1 propose to use a long lasting CS, much longer than the optimal 151 The CS should last
as long as an ISI that 1s too long to produce noticeable conditioning Klopf (1988) lets t
denote the longest ISI over which delay conditioning 1s effective If the CS duration is
equal to t,, then I require t; > t The US duration should be cven longer than the CS
duration. If US duration 1s equal to t;, then t; - t; A long CS makes it possible to
capture the shape of o(t), without a possible perturbation that 1s hypothesized to occur at
the CS offset A long US 1s required to ehminate the influence of the US offset Only a
few trials of conditioning should be madc in casc the shape of a(t) 1s modificd dunng
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condittoning and also because the contribution of ay(t-2)V(t) to Y(t) should be
neghgeable compared with A(t). If all those conditions are met, then the curve of the
strength of the CR, after only a few trials as a function of ISI, should be proportional to
the curve of «,(1-2) as a function of time This is shown in Figure 5.32, the curve of the
strength of the CRs, obtained wath the previously described procedure, 1s proportional to
the curve of a,(t-2)

Square Root of the CR and Theoretical Curve of Alpha

——&—— Square Root of CR

e Theoretical Alpna

Square Root of the CR
Amplitude of Alpha

P 4
\ . g

0 100 200 300 400 500

IS! for the Square Root of the CR and
Time for Alpha [msec]

Figure 5.32 The curve of the square root of the strength of the CRs (obtained in a test
trial after two CS-US pairing) as a function of ISIs 1s compared to the theoretical curve of
ay(t-2) as a function of time The CS had a duration of 1500 msec and the US had a
duration of 3000 msec. The CR is in fact the result of a simulation using o, (t-2) Both
curves are not equal, they are proportional. This 1s why there are two Y scales.

This phenomenon can also be mathematically proven. We call- AV, the total
change of connection weight after one trial; A, the US intensity; t.; the time of CS onset;

t; the CS duration; t, the US duration; and t, the time of the US onset. Thus, we have:
t,+t,

AV, = 3 a(t-2) B(Y(D)-Y(t-1))

t:t( A}

However, (Y(t)-?(t-l )) = 0 between t < t < t,. Therefore, we obtain:
t, +,

AV, = D oy (t-2) B(Y(1)-Y(t-1)).

t=t,
We have hypothesized that a,(t-2)V (t) << Y(t) This implies that (Y(t)—?(t—l )) = 0, when
the US is present, i.e. for (ty+1) <t<(ty+ ty) Att=ty+t, we have a(t-2) = 0. Thus;
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AV, = o(t5=2) B (Y(t)-Y(tp-1))
Since US intensity 1s A, then Y(t,) 1s equal to A, and ?(t(yl =Y (1y-N=0 We finally get
AV, = a(ty-2) B A
The strength of the CR after N tnals 1s (for a small N)
CR  =Y(t)-2) when A(t)=0,
= oy(tp) N AVI >
=Noy(tp)o(tg-2) B Ay,
=N B Ag[a(te-2)f
This implies that the strength of the CR after one tna' 1s proportional to the square of
a(tg-2), where a(ty 2)1s the value of at-2) after a delay equal to the ISI following CS
onset. This method does not give the exact value of a(t-2), but 1t gives its shape
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6. DISCUSSION

The AD model s 1n agreement with experimental data in a number of areas
Thus, 1t accurately reproduces the phenomenon of inhibition of” delay, the shape of the
CR 15 a skewed nght bell shape positively accelerating in the neighborhood of the onsct
of the CS, the CR of long CSs extinguishes (as opposed to Klopf's (1988) model), the
opumal ISl for short tracc CSs 1s shorter than the optimal ISI for long delay CSs; and
scveral other properties (see Table D 1 1n Appendix D for a summary) The AD model 1s
in partial agrecment with behavioral data concerning the CS preexposure effect, the
sigmoid curve of acquisition of a CR and temporal conditioning However, the AD model
has cncountered a few problems in regard to other procedures of classical conditioning
Low values had to be attributed to s, h, and B 1n order to reproduc* the behavioral data
regarding blocking, pscudoconditioning, and the US intensity effects, in contrast to
higher values used for all other properties The gain obtained by mtroducing delays of
vanablc duration at the level of the connections 1s offset by the loss of other properties of
classical conditioning Furthermore, to build the AD model certain assumptions were
introduced, some of them post hoc such as for the sensitization term fcr 0,(t) I also had
to include new constants and vanables. In other words, the ratio of benefit over cost 1s
too low 1n the case of the AD model (see Table D 2 1n Appendix D)

Chapter 5 may be considered as an extended proof by contradiction I posited that
the amplitude and the peak of the trace of the CS, [o(t)] vary in parallel during
conditioning  The results are ambigous. We are left with the following set of possibilities.
1t 1s possible that neither the amplitude nor the peak of o(t) vary, or that only the
amphitude or only the peak of a,(t) vary, or finally that they both vary independently
Certain results of the simulations provide clues that might help solve this problem The
phenomenon of blocking was noc explained by the AD model, but 1t was explained by the
DPC model Let us call CS; the CS that s reinforced in the first phase of a blocking
procedure, and CS, the CS that 1s reinforced in conjunction with the CS; in the second
phase The reason why blocking 1s not predicted by the AD model 1s that the CS,
increased th. delay (T,) between the onset of the CS; and the peak of the CRy, in
conformity with inhibition of delay However, in doing so, ¢(t) and a,(t, were no longer
simultaneous 1n the second phase, the peak of w(t) occurring after the peak of a(t).
Thus, the CR, was acting as a second-order reinforcement n regard to the CS,. Instead
of blocking, there was potentiation of conditioning It therefore seems difficult to
umplement the presence of vanable delays at the level of the connection and still account
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for the phenomenon of blocking Thus, two possibilitics remain erther the amplitude of
a,(t) vares or 1t does not This question 1s examined a httle turther on

The delay-producing connections model. on the other hand., 15 1n accordance with
expenimental data for the following phenomena the shape of the CR s a shewed night
bell shape positively accelerating in the reighborhood ot the anset of the €8, the CR of
long CSs extingwishes, the optimal IS1 for short trace CSs 15 shorter than the optimal 181
for long delay CSs, and several other properties of classical conditioning (see Tavle D 1
of Appendix D for details) Furthermore, when 1 encountered problems with the AD
model 1in regard to the phenomena of blocking, pseudodiscrimmation, wnd the US
intensity effects, | had to set s and h at zero 1n order to simulate these propertics When s
and h are equal to zero, the AD model becomes cquivalent to the DPC model The DPC
model 1s more robust 1n accounting for the charactenstics of classical condioming, The
DPC model makes use of fewer assumptions than the AD model In other words, the ratio
of benefit over cost for the DPC model 1s higher than for the AD model

How can we improve the DPC model? Several avenucs could be taken for future
research. One avenue would be, as discussed carlier, to add an habituation of «(t) to the
CS and a sensitization of o,(t) to the US, 1e a vanation of’ the amplitude of  ay (1),
without a change n the position of its peak This assumption could account for the CS
preexposure effects 1f a CS 1s presented repeatedly without reinforcement, the amplitude
of o (t) would decrease and the acquisition of a CR should be slower afterward 1 we
add a spontaneous recovery of the habituated response, e 1f we supposc that aft)
returns to 1ts original amplitude afier an habituation because of the mere passage of time,
this could account for the phenomenon of spontancous recovery of the CR The
spontaneous recovery of an habituated response 1s a common property of habituation
(Doré, 1988, Kandel & Schwartz, 1985, Thompson & Spencer, 1966) These two
assumptions would also explain why massed cxtinction is faster than spaced extinction
In a spaced extinction, there would be almost no habituation, 1 ¢ no decrease of w(t),
only V(t) would decrease, given that when the delay between two CS presentations 1s
long, a(t) returns to its original value by spontancous recovery A massed extinction,
however, would produce a strong habituation, 1 ¢ a stisag diminution of «(t) Stnce the
amplitude of the CR, is the result of the product of ay(t) by V (1), the decrease of the CR
would be faster with massed extinction than it would with spaced extinction These
assumptions would also explain why massed acquisiion 1s slower than spaced
acquisition Because of habituation, o (t) would be smaller in a massed acquisition than
in a spaced acquisition and acquisition should be sfower It remains to be seen whether
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the simulation of these latter hypotheses has any undesirable effects on the predictions of
the model for other properties of classical conditioning
To explain inhibiton of delay with the DPC model 1s more straightforward
Using the principle of delay hines, we can assume that for one CS a neuron receives
several connections, and cach connection has 1ts own time course, t ¢ its own value of
(Tph (thus of 0) The connections reaching their peak closer to the US onset will
overshadow the other connections whose peak 1s farther from the US onset The peak of
the CR being equal to the sum of a(t)V (1) for cach connection, its peak will be close to
the US onsct The DPC model seems to offer an interesting method of implementing a
delay lhine
The acquisition curve of the DPC model 1s negatively accelerating and 1s not a
sigmoid In order to account for the initial positive acceleration 1n the S-shape acquisition
curves observed in ammal learning, several authors use the same method (Frey & Sears,
1978, Gluck & Thompson, 1987, Klopf. 1988) They simply multiply thetr leaming rule
by the connection weight (V(t)) For example, Klopf (1988) used the following equation:

T

AV = AY() Y Cp vk [ax(t-k) (112)

k=l
If AV (t) 1s proportional to |V‘(t-k)
When lV,(t-k)| increases, learming 1s faster, this corresponds to the positively

, then for low values of lVl(t—k)l learning 1s slow

accelerating section of the acquisition curve  If |V,(t-k)| increases even more, then
AY(t) decreases and compensates for the increase of | V (t-k) | and this 1s the negatively
accclerating section of the acquisition curve However, | Vl(t-k)l cannot be equal to zero,
otherwise no learning would occur This means that | V,(t-k)| must have an imtial and a
minimum value different from zero This implies that one must use mhibitory
connections and excitatory connections, 1€ connection weights that are either negative
or positive When a connection weight 1s negative 1t stays negative. and when a
connection weight is positive 1t stays positive This restriction doubles the number of
connections and consequently the number of equations neccssary to account for the
properties of classical conditioning This 1s why this possibility was avoided in the DPC
model However, having inhibitory connections that are permanently inhibitory and
excitatory conncections that are permanently excitatory, 1s more physiologically realistic
(Klopf, 1988, Kuffler, Nicholls, & Martin, 1984) Thus, to multiply the learning rule by

|V‘{ t-k) |, makes reproduction of interesting properties possible, but has a high cost
Another possibility can be investigated. It would be simpler to multiply the learning rule
by (v ¢ |Vl(t-|\) ), where v 1s a positive constant As this term will never be equal to
zero, 1t would not be necessary to use connections that are exclusively excitatory or
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exclusively ihibitory This would not double the number of equations, 1t would simply
mtroduce enother constant (1¢ v)

Aunother problem encountered by the DPC model s that the curve of the
t mptotic strength of the CR as a function of the 181 (see Figure 4 1) decreases more
*y +-dy than the experimental curve Thas s due to the fact that the cune of a(t) tor a
P78 decrcases too rapdly This problem can be solved in two wavs One wayv 1s to
usc o= suggestton raade to explain inhibiion of delay, which 1s to have sevenal
conne. tes for cach CS, each connectton having its own value of ('u‘p)k In this way,
sory. covections wiil have lgher values for (T,), the CR will decay more slowly and
the ¢ =~ the asy mptoric strength of the ( R as a function of the 181 will decay more
el 3L Mver way would be to find another equation for o(t), that would decay more
+hwe 'S, This equation would teplace Equation 4 3

IR

L ST
TN

nd the AD models account for facilitating CRs, 1 ¢ CRs that nunue the
o oy CRs are left unexplamed by the models There are two domains in
wona o ory CRs are more frequent CRs to drugs (Greeley, 1984, Hinson et al |
1982, A <" Lid & Cunninghan, 1980, Obnist, Sutcrer, & Howard, 1972, Sicgel, 1982)
and affective CRs (Solomon & Corlnt, 1980, 1974, Wagner, 1981, Wagner & Brandon.
1989) In order to take 1nto account the fact that a compensatory CR 1s opposed to the
UR, we could replace the activation rule

Y(t) = f(A(t) + E o, () VD), (4 6)

i=l

with the following rule

YO = f(M) 1Y [ o) Vil ) (0 1)

t=|
where r1s a constant equal to 1 for facilitating CRs and equal to -1 for compensatory
CRs Wagner and Brandon (1989) suggested that there are two distinct UR sequences -—
a sensory sequence and an emotive one The sensory and cmotive attributes of a US
activate separate sequences of activity Further, the latency of the sensory and cmotive
activity sequences can differ in that some timing properties of the emotive sequence are
slower than the corresponding timing properties of the sensory sequence Consequently,
the shape of the curve of a compensatory CR differs from that of a facihitating CR ‘The
typical UR of an emotional US (Solomon & Corbit, 1980, 1974} looks hke Figure 6 1,
1.e the UR increases rapidly, reaches a peak, and then decreases even when the US s sull
present This is the case for example with the heart rate of a dog as a function of time,

when shocks are used as US (Solomon & Corbit, 1980, 1974) When z ja(HV, (V)] O

[

3
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Y(t) 1s supposed to be cqual to the UR, 1e Y(t) = f((t)) Typcally A(t) 1s a square
wave, so Y(1) 1s a square wave too However, the UR 1n Figure 6.1 1s not a square wave
This means that we should replace A(t) by a function of A(t), a function that would have
the shape of a typical UR This 1s the same kind of rationale that made me replace X((t)
by «,(t) For example, we could replace A(t) by (2,(t)-A,(1)), where A,(t) 1s the excitatory
process of A(t) and Ay(t) 1s the opponent process of A(t) The activation rule becomes.

VOO0 1 Y Lot Vo)) (6 1)
Some possible equations for A, (t) and Ay(t) arc
()= Ky (M) = 24 (1)), (62)
and %lh(l):Kb(i(l)—lb(l)), (6 3)
where K, 1s a time constant that governs the rate of vanation of the excitatory
process;

Ky 1s a ime constant that governs the rate of variation of the opponent
process,
and K, <K,
With a facilitating CR, K, would be very high and K, would be zero Thus, we obtain:
(Aa(1)-Ay(1)) = (M(1)-0) = A(t) However, Equations 6 1, 6 2 and 6 3 have to be tested.

UR to an Emotive Stimulus:

"

Time

Figure 6.1  General shape of a UR to a square wave emotive US as a function of time
For example, the US could be a shock and the UR could be a heart rate ‘

The DPC model does not account for more complex forms of configural learning,

for example. positive patterning, negative patterming, and feature positive procedure.
Such phenomena can be accounted for by a network model, not by a single unit model
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(Kehoe, 1989) However. the delay-producing connections model or the AD model could
be implemented at the network level to simulate these phenomena

Some phenomena lead one to think that the rules of classical conditioning might
apply to cases of learning where there 18 no reinforcer The phenomenon of sensony
preconditioning and the McCullough effect in vision are two examples of such
phenomena In sensory preconditioning, two neutral stimuli CS; and C'S, are paired prior
to reinforcement In a second phase, the CS; s pared with a US The CS-US pamning
results 1n the abtlity of the CS,, as well as the CS, to ehieit the CR Extinction of the CR|
also extinguishes the CR, (Rizley & Rescorla, 1972) T'his can be explamed tof we
suppose that an assoctation has been created between a sensory representation of the CS,
and a sensory representation of the CS,, with this association occurrnng betore the
presentation of the reinforcer In the visual system, opponent color responses can come o
be clicited by achromatic stimuli which have been parred with chromatic stimuh
(McCullogh, 1965, cited by Schull, 1979), this 1s called the McCullogh cffect Schull
(1979) provides the following example of this effect "If [ ] onc spends a few minutes
viewing black vertical stripes [ ] supertmposed upon a bright red background | |, the
stripes acquire a long-lasting ability to clicit an opponent response |} hours or days
later, long after simple aftenmages have dissipated, when one views vertical black and
white stripes they appear black and light green " Again no reinforeer s present, yet both
cases are a form of associative learming as 1s classical condtiomng  ‘Therefore, 1t s
possible that the learning rules of classical conditioning might apply to a vast domain of
phenomena These examples of associative learming without a reinforcer suggest that ot
could make sense to use real-ime learning rules of classical conditioning (hke the DPfC
learning rule) 1n ncural networks and to apply these networks to perceptual or cogmtive
problems
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Appendix A
Demonstration of a Differential Equation for o(t)

Drfferential Equation for a,(1)
One important property of a,(t) (the CS, trace), deduced in Chapter 4, 1s that o(t)
continues to ncrease after CS, offset with a short CS, (1 ¢ a CS duration shorter than T,

2/6) If a,(t) was represented by a first-order differential equation involving CS,, then
a,(t) would start to decrease at the time of CS, offset If o (1) was represented by a
second-order differential equation involving CS,, then the acceleration of (1) would be
negative with a high magmtude at CS, offset, and the peak of o(t) would still be m the
neighborhood of CS, offset This was confirmed by simulation for the second-order
differential equation obtained by taking X, (t)= A0 istead of AtC-" The use of a
third-order differential equation therefore seems necessary Wath a third-order differential
equation, at CS offset, the slope of acceleration of o (t) becomes negative, but the
acccleration 1s still positive, thus creating a delay before a,(t) reaches its peak
We want to obtain an output following the cquation At2¢ " for a step-like mput
The output vanable will be called 5(-. (t) and the input vanable 1s X (t) (the salience off
the C§, at time t) The step-like input for X,(t) 1s represented by the Heaviside function
U(t). Wt) is defined in the following way
0 fort < 07,
W) = (A1)
1 fort > 0"

Thus, we have X|(t) = %(t) By taking the Laplace transform of X (t) we get

Xi(s) = AX(1) = Jut)) =1/s (A2)
The desired output 1s X, (1)= At2e-% Taking the Laplace transform of X, (t) we obtain

X(5) = K Ri(0) = K Aed) - —20 (A3
(s +0)
The transfer function H(s) of a linear differential system 1s defined as the ratio of the
Laplace transform of the output function over the Laplace transform of the input
function, 1.e:

Hs) =  Xi(s)/ X(s) (A4)

1



Substituting Fquations A2 and A3 in Equation A4, the value of H(s) 1s°
I'4

2A ]
L(s+9)3

H(s)

(1/s) ~°
2A's
(s +0)
2A's
= (A5)
(s3+ 30 s2 + 30%s + 93)
From A4 and A5 we oblain
H(s) Xi(s) _ : 22As _ —,
Xi(s) (s°+ 30s° + 30°s + 6°)
and so assuming that
2% X — dX:(t
a7 Xy L)j'“) =0, ———-‘IX;“) - 0, Xi(0)=0, and i _
we obtain
(s3+30s% +30%s+ 0% Xi(s) = 245 X,(s) (A6)

By taking the inverse Laplace transform of each side of the Equation A6 we

obtain;

dX; (1)

3 2. Y —
7 Xl(t)+30 d Xl(t)+392 dX(]"(t)+93 Xl(t)=2AT, (A7)

dt dt
For a step-like input X (t) = (1), X, (t) will be positive or equal to zero (for t < 0).
However, for other kinds of inputs (e.g., X,(t) =1 - 1(t) ) X, (t) will take negative values
In Chapter 4, no meaming has been attributed to negative values of a(t) o (t) will
therefore be defined as the positive part of X, (t) Thus we have
0 if Xi(t) < 0,
a(t) = ~ (A8)
Xi(t) otherwise.

Propertics of” at (1)
By construction, a,(t) produced by a step-like input U(t) 1s equal to At2e -0t for
12 0. The peak of o(t) 1sat t = T, and at this point &, (T, ) = 0. This point is found by
taking the derivative of a(t), 1e. a;(t) = 2At € -0 - AQ t2¢ -0 which is equal to zero.
Dividing by Ate-®, we get 2 -0 t=0 This value of t is by definition equal to Ty, thus
T, =2/86 (A9)
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If we fix the maximum value of o(t) as being equal to a constant .. then the
constant A 1s determined Since the maximum value of a(1) occursat t - T, 270, we
can find A by puttingt=2/60 n At2e-0t This leads to
0,(2/0) =ama = A(2/0)2e-2/00 and then to

Oy = A(2/0 )2e-2, (A10)
From that we get

2.2
7
A= Fmx? € (AL1)
4
In short, (1) the peak of o (t) occurs at t -~ Ty, = 2/0 afier the onset of the CS,,

2 2

Ly -

for a step-like CS, and (2) A has to be smaller or cqual to 07 in order for the

maximum value of a(t) to be smaller or equal to one
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Appendix B
Development of the Sensitization Term for 6;(t)

It has been hypothesized 1n Chapter 4 that a sensitization, provoked by the US
onsct, would change the amplitude of a(t) (the CS, tracc) and move the position of its
peak (1¢ Ty) toward the US onset In this assumption, sensitization increases or
decreases T, as well as increases or decreases the maximum amplitude of ou(t)

Since T, = 2/ 8, increasing T, means decreasing 6 and decivasing T, means
increasing O When US onset 1s before Tp s Tp shenild decrease and when US onset is
p should increase When Aoy(t) = a(t) - a,(t-1), 1f US onset 1s before T, ,
then Aa(t) 1s positive at US onset and if US onset 1s after T, , then Aoy(t) 1s negative at
US onset

after lp VT

In summary, we want

0 to increase, 1.¢ Tp to decrease, if Aa,(t) > 0 at US onset,
and 0todccrease, 1¢ Tp to 1ncrease, if Ao (t) < 0 at US onset.
Then a reasonable assumption 1s that the change 1n 0 1s proportional to Ao(t), 1e.
formally

AO(t) ~ Aa(t),

at the time of US onset AY(t) 1s positive at US onset, therefore the positive part of AY(t)
can be taken as a measure of US onset The positive part of AY(t) can be expressed by
the notation [AY(1) ] If we make A6(t) proportional to FAY(t)‘L the sensitization will be
stronger for strong US and weaker for small USs, which makes sense So we assume:

A0 ~[AY()]

When a vanable 1s proportional to two quantities, 1t is also proportional to the
product of thosc two quantities Thus, we have

AB(1) ~ Ao (1) [AY (1) ]

If we introduce a sensitization constant s, we can replace the proportionality
symbol ~ by an equality sign. Then A6(t) becomes

AB() = s Aa(t) [AY(1)] (B1)

A simulation using this term in a delay conditioning procedure, where the initial
value of T, 1s smaller than the ISI, showed a strange behavior. The delay between CS
onsct and the peak of the CR increased, reached US onset and then decreased again This
was due to the fact that the CR tends to synchronize its peak with high values of AY(t),
but the CR ncreases and influences Y(t) T, tends to synchronize itself with the peak of
the denivative of the CR This 1s why T, decreases in a second phase. To correct that
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behavior, 1t 1s possible to emphasize the difference in magmitude between the CR and the
US by taking [AY(t) ] mstead of [AY(t)] This power of two transtormation will give
more weight to the biggest values of AY(t) and should fix T, at US onset The equation
of sensitization then becomes
AB() = s Ao () [ AY(D ] (B)

Stmulations using this new equation showed another problem T, tends to
synchronize itself with the onset of the US and stays there, as intended owever, when
T, reaches the onset of the US, the connection weight AV(t) decreases slowly toward
zero Equation B2 modifies 6(t) so that the peak of the CR armives at the same time as the
onset of the US The learming rule 1s, according to Equation 4 1b

AV((1) = a(t2) B (Y(1)-Y (1))
For example, if a US lasts for 2 time steps, the onset of the US occurs at Ty, and the
offset of the US occurs at Tp+2 Takmg a US intensity of A,, (Y(1)-Y(1)) wll he
approximately equal to A, at US onset and approximately equal to -3, at US offset The
total change of connection weight from T, to T, +2, 15 therefore approximatcly equal to

Avl al(Tp'z) B (}‘0) + al(Tp) B (-A,),
Le AV, = B A ofTy-2) - o (Tp))
Since a(T,) is greater than a,(T -2), given the defimtion of T, . then AV, 1s negative and

V(1) decreases The solution seems simple — the onset of the US should oceur at 1,12

m

instead of at T, In this way, the total change in connection weight between 1,12 and
T, +4, will be appreximately equal to

AV, =B A a(Tp) - (T +2)) (B3)
Since a‘(Tp+2) 1s smaller than o(Tp), Vi(1) will not decrcase This can be accomphished
by taking Aa,(t-2) instead of Aay(t), in the above equations, leading to

AB() = s A (t-2) FAY(1) 2 (134)

In order to make the value of AO(t) invarniant as a function of a change in AL, we

can divide the sensitization term B4 by At With this division, 1t 1s not nccessary to
change s if one changes the time step At The scnsitization term becomes

AB(t) = (/A1) Aa(t-2)[ AY(t) P (395)
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Appendix C
Parameter Specifications for the Computer
Simulations of the Neural Models

Rescorla-Wagner's (1972) Model
The simulation of Figure 3 1 uscd the following parameter and vanable values

Lcarning rate parameter 1n presence
of a reinforcement B;=10

Learning rate parameter in absence

of a reinforcement: Bo = 0.9.
Salience of the first stimulus. o; =03
Salience of the second stimulus o, =03,
Maximum associative strength’ A =100.
Initial conditions V1(0)=V,(0)=0.

Klopf's (1988) Model

The simulations of Figures 3 2 and 3.3 used the following parameter and variable values
Learning rate constants C,=5.0,C,=3.0,C5=15, C,;=0 75, Cs=0 25.
Maximum number of time steps over

which delay conditioning 1s effective t = 5.

The maximum value of Y(t) M=1.
Neuronal threshold: T=0. ‘
Initial conditions Vg (0)=+0.1, V[1(0)=-0 1. i

The time step At = 0 5 sec, US intensity =0 5 and CS amplitude =0 2.
The simulation of Figure 3.2 used ISI = 1 sec, ITI= 15 sec, US duration = 2.5 sec.
Timing of the CS-US configuration of Figure 3.3 1s described in Table C.1.

Delay-Producing Connections Model

The Figures 4 7-4 11 used the following parameter and vanable values:

Learning rate parameter B=06
Damping factor for the trace of Y(t). Bg =0 1.
The maximum value of Y(t) M=3
Neuronal threshold T=0.
Constant governing the amplitude

of the peak of o (t) A =184
Position of the peak of a(t): "I‘p = 220 msec.
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Imitial conditions a,(0)=V,(0)=0

Amplitude of the CSs 1.0

Intensity of the US 10.

Figure 4 7 used At =25 msec, ISI = 50 msee, ITI = 1 sec, CS duration - 50 msce, and
US duration = 50 msec.

Figure 4 8 used: At = 50 mscc, CS duration = 50 msec and 1000 msec, and no US

Figure 4 9 used At = 50 msec, ISI = 250 msec, IT1 - 3 sce, CS duration  Isec, US
duration = 50 msec and US intensity =0 1

Figure 4 10 used" At =25 msec, ISI =200 msec, ITI=1 § scc, and US duration 300 msec
Figure 4 11 used At =50 msec, ITI = 1 sec, CS duration = 50 msec, and US duration
50 msec

Adaptive Delays Model
The simulations of Figures 52, 5.4 and 5.6 - 5.13 used the following parameter and
variable values

Learning rate parameter p=0.6
Damping factor for the trace of Y(t) fg=0 1.
The maximum value of Y(t) M=3,
Neuronal threshold T=0.
Constant governing the amplitude

of the peak of a(t) A=184
Minimum delay for the peak of ot,(t): Ty, = 175 msec
Habituation of o (t) D=28.
Habituation rate h=0.05
Sensitization rate: s=0.03
Initial conditions. 0,(0) = 10 Hz, a,(0) = V,(0) -0
Amplitude of the CSs' 10
Intensity of the US: 10.

The other figures in Chapter 5 used the same parameter values cxcept as now noted The
simulations of Figures 5 2 and 5.15 used the same parameter values except for h -0, S
0.01 and B = 0.2 The simulation of Figure 520 used k. =0, s - O and f - 02 The
simulation of Figure 5.16 used a US intensity of 0 S, and the simulation of Figures 5 16
and 5.17 used a CS amplitude of 05 The simulation of Figure 5 19 used an amphtudc of
0.2 for the CS,. Figure 5.32 used h =0, s =0 and f =0 2 with a CS amphitudc of 0 |
Table C.1 summanizes the timing of the CS-US configurations of single CS figures, while
Table C.2 does the same for figures with more than one CS.
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Timing of the CS-US Configurations of Single CS Figures:

Figure # |Time Step {CS Duration/ Trials # *  |US Duration/Trnals # 1Sl I
jmsec] [msec] [msec] [msec] [msec]

33 50015000/1-20 3500/1-10 1500f 15000

49 5011000/1-20 750/1-10 250] 3000

52 25|50/1-21 50/1-20 250 1000

54 25)375/1-20 50/1-10 325| 1000

55 25[375/1-30 50/1.357 .18 325] 1000

56 25|250/1 -21 50/1-20 200} 1000

57 25]50/1-20 50/1-20 200] 1000

58 25}50/1-20 50/1-20 0] 1000

59 25(50/1-20 50/1-20 -50f 1000

512 25]100/1-20 50/1-20 200{ 1000

513 50{750/1-36 50/1-2,4-35 700] 3000

514 25]50/1-20 100/1-20 200] 1000

515 25{50/1-20 50/1-20 200] 1000

516 25{50/1-20 50/1-20 200f 1000

517 25150/1-20 50/1-20 200{ 1000

518 25]250/1-40 50/21-40 200{ 1000

531 25|375/1-20 50/1-10 325{ 1000

| 532 2511500 3000 0.50, ,500{ 6000

* Trnials # represents the trials duning which the stimulus was present

Table C.1

Timing of the CS-US Configurations in Figures of Configural Learning:

Figure #| Time Step |CS 1 CcSs2 CS3 us
[msec]
53 25 0/250/1-20 0/250/2.4. .18.20-31 |none 200/250/1.3, .19
519 25 0/300/1-20 0/300/1-20 none 250/300/1-20
520 50 0/400/1-80 0/400/21-80 none 350/400/1-80
521 25 0/250/1-10 0/250/11-20 none 200/250/1-10
100/350/11-20
522 25 0/375/1-10,21-30 {0/375/11-30 none 325/375/1-30
523 25 0/250/1-20 0/250/2,4, ,20.21-40 |0/250/21-40 200/250/1.3, 19,
20-40
524 50 0/350/1.3, 19 |0/350/2.4. .20 0/350/1-20 300/350/1.3, .19
525 50 0/350/1.2 19 0/350/2,4, .20 0/350/1-20 300/350/1.3, .19
526 50 0/350/1.2.5.6.9.10,|0/350/3.4.7.8,11,12, 10/350/1-20 300/350/1.3. 19
13.14.17.18 15.16

527 50 0/350/1-80 0/350/1.3, .79 none 300/350/1-80
528 50 0/300/1-40 0/300/1,3. .39 none 250/300/1 3, .39

* Time of onset/ time of offset/ trnials during which stimulus was present.

Table C.2
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Appendix D

Properties and Madels of Classical Conditioning

Types of Conditioning
Conditioned Excitation
Conditioned lnhlbmon

Facmtatmg_C}F_l

Compensatory CR

Acquisition

Positive acceleration at first
Negative acceleration later
Reaches an asymptote

Slower with partial reinforcement
Space_d fa,ster than massed
Stlmulants increase the rate
Depressants decrease the rate
Extinction A2

Negative acceleration
A.,ymptote IS zero
Slower than aoqwsmon

§_I9wer for |gr_1 1bitor than excitator
Slower for partial reinforcement
Massed faster than spaced
Stlmulants decrease the rate
Depressants increase the rate
Spontaneous Recovery

CR reappears after extinction

Smaller CR after more CSs-alone

FAR Y- d
<< <z

1iz'z2 2

-;}z'z

Pips

T
k394
)

. e

jz'zz <z <<<H

Reacguisition.

Faster than acquisition

Time Contingencies

Delay stronger than trace

fl_'réée stronger than simultaneous
Simutangous stronger than backwerd
Optimal 1SI shorter for short trace
CSs than for long delay CSs

Properties = ey ,ﬁ,
R
e S G
5 u t
c S t u
o P u t t
L t , o k
i ' 1, a t , n !
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; w e | | a | o i
| Loe B . U om K
H P9 H l a |t [
|§i'.l?‘§1“‘f§r3
Author(s) =~ _ _ ab; S PSP I
Year 119 311 972|1980|1981i1981 1987]198811993 1993
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Properties’

R
e S G
s u { ™M
c S t u ' M
(] P u t c ] [
r e t o k n g
1 a t n - a n
' " a r [} - T u a
. i c n 8 h ! u
; w e a o t 1
! a B r om K t
iH 9 H  a t p i
e n a r o s [ D
3 b e [ t o [} P A
Author(s) . b r ' ) 2 n 1 c D
24 gt * 2k i} . “ =X 3] {4 . sedbeor Y 4_1"‘
Delay Conditioning- et e e s S5y
Produces excitator i
Efficacy is a function of CS onset
Trace Conditioning.
Produces excitator

Rate of acquisihon as a function of ISI
reaches a peak and deciine
independent of CS duration

Optimal 15| can be longer than CS duration
Simultaneous Conditioning

Little or no conditioning
Backward Conditioning:

The firsttnials are excitatory
Subsequent trials are inhibitory !
Temporal Conditioning.

The CR predicts US onset

CR Propertties:

Shape of the CR differentthan CS

Vanance of CR increases with ISI
Peak of CR at the onset of US

Inhibition of Delay T L R TN T L
CRmoves forwardduringtraning N N IN N N _ N N N

Y
2peaksinthe CRf2USsat2iSls N N IN' N IN_ N N N N
N

With 2 ISIs. second peak appears only hrst ‘ \ !
US 15 absent

US Duration Effects

Faster acquisition for longer US|
Higher asymptote for longer US
US Intensity Effects

Faster acquisition for stronger US

Higher asymptote for stronger US
US Preexposure Effect

Decreased asymptote

CS Intensity Effects-

Faster for stronger CS

Higher asymptote for the strong Cs |f

acquisition is done with both N Y Y Y Y XY Y Y Y |
CRampl independentofCSampl. N Y Y Y N Y Y Y
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Properties:

Author(s)

CS Preexposure Effect:

Slower acquisition

Affects excitation and inhibition
Sensory Preconditioning:

CR for a non-reinforced CS
Optimal #CS2 before CS1 =~
Optimal if only a few tnals (CS1 CSZL N
Bridge between CS and US _
Attenuation of cond. produced by a |
delay 1s reduced by a second CS !
Overshadowing' .
More salient CS -> higher asymptote .N

More salient CS -> faster acqguisition N

Potentiation of a less sahent cue

A strong CS facilitates a weak CS
Blocking

Past training blocks new learning
Un blockug

Second Order Condmomng
Produces Conditioned Excitaton
Not as strong as fljﬂ@er

Wil be extinguished
Caonditioned Inhibitton (A+ AB-)-

'Y

Do not extlngﬂsh N

Overexpectation (A+ B+ AB+)

IN

A surprising US removes blocking N »

#n senes CRtoBnotes stongasCRtoA N

Y
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CRtoAB>CRtoAorB Y
CRtoABdecreases N Y Y AGEEA SN S
CRto A or B have decreased N Y Y Y Y Y Y Y Y
Superconditioning (X+AX- AB+):

CRto Bincreases faster thanyjustB+ N Y Y ¥ Y ¥ ; iY Y
Higher asymptote than just B+ 'N Y Y Y Y Y Y Y Y
0550 e
CRto X>A=8B N Y 7 Y Y ? Y Y i"
6§;;>?§reater thanCRmndiscnmnaton N Y 2 Y Y 7 'y v ot
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Properties

FO o X

Author(s) :
Discnmination Learning (AX+ BX-)

CRto AB > CRto BX

Compound Conditioning (A+ AX+)
CRto A>>CRtoX

Compound Conditoning (A- AX+)
CRto X>>CRto A

AB+ A- B-
CRtoAandCRtoB=0

CRto AB is > zero

Positive Patterning (A- B- AB+)
CRtoAandCRtwoB=0

8@ ~-~0C00vo D

~eoc>0 0 g

CR A>X>B N Y Y
CRto B=0 Ny 2
CR1o X goes up and then down IN ¥ 1o
CRtoBXgoesupandthendown N %Y i?

@0 -~ 0 T

Yy ¥y Y
Yo ¥ I,Y ,_‘Y"_li__
Y i° y ¥y v
Y N ¥ Ny
= ——— —

380 -~ ~CcWw

O -~ m

3200030 TA XO0C -0

X

- —_—e m 3a - £

-~-_—cp3e -

CR to AB > zero L

CRt0Aand CR108 goes up  and then down | N
Negative Patterning (A+ B+ AB-) ik
Longer to learn than positive pat
Intially AB stronger CR than A and B 8%
Atthe end CRtoAB=0_ 1
Feature Positive (AB+ A-).
Can learn it

Pearce (1993) (A+B+C+ ABC-)

IN

———

N

IN

IN _IN N |
!E IN_IN
Y Y Y

IN

AB,BC AC decreases fasterhan A 8,C  |M _J_ltl___lN_ IN |_Nm _IN_IN
CR ot ABC stronger than AB C_a! first ~ i_Y___ Y y Y 'Y YUY Y Y
CRto ABC = 0 atthe end N IN N N N N IN INTN

Legend
Y

means that the property is accounted for by the model;

* means that the property is partially accounted for by the model;

N

Table D.1

means that the property is not accounted for by the model.




Mathematical Properties of Models of Classical Conditioning:

Properties. A Models:
R, ' ) 1
Poobe slat |
s l u i I , M
c S t  u ! \ M
o P u t c 9 )
f e t o x| n q
| a t n ! a n
! a T o - T 1 u a
! c n B8 h ! t u
w [ a o t |
a B r m K t
H 9 [ H a t [} |
e n ‘ a [ o s o D
Author(s) SO S I O I I I IR
Year. 1_9_431 1972| 198011981|1981/19871988! 1993/ 1993
Number of Properties Explained | 16 2| 394| 368/ 464} 492| 454/ 556| 574 574
Number of Equations for n CSs: !n+1 n 2n+1|2n+1{2n+2{3n+4{2n+1:2n+2!3n+2
Number of Vanables for n CSs 2n+1i2n+1|2n+2[2n+2{2n+3|7n+8|3n+14n+1/5n+1
Number of Parameters for n CSs. in+t1 n+3 [n+2 2 3 6' 7 4 8
Number of Equatonsfor3CSs. | 4. 3] 71 7| 8 12| 7] 8
Number of Vanables for 3CSs 71 71 8] 8 8 290 10 13 16
Number of Parameters for 3 CSs » 4] 6] 21 2 3 6 7‘ 4 8
Benefit/ Cost Ratio + 1081246/ 216/ 273! 246/ 097/1232: 23' 164
Table D.2
Legend

The number of properties was computed from the Table D1 A "Y" counts for 1 point, a

"*" counts for 0.2 points and a "N" counts for none.

The benefit is the number of properties while the cost 1s the sum of the number of

equations, the number of variables and the number of constants.
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