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• ABSTRACT 

The opioid receptor family is comprised ofthree members: !l, cS and K, all ofwhich are G 

prote in coupled receptors, primarily acting through GUi/o subunits. Clinically, !l opioid 

receptor (MOR) agonists are used in the treatment of moderate to severe pain. cS opioid 

receptor (DOR) agonists are being developed as alternative analgesics, since stimulation 

ofthis receptor results in fewer adverse side effects. Characterization ofbehaviourally 

relevant !l and cS opioid receptors, as well as interactions between them, will provide a 

better understanding of opio id agonist-induced analgesia. 

Although the behavioural knockdown after antisense targeting of MOR has been well 

characterized, few studies have examined the corresponding in vitro changes. Thus, the 

tirst aim ofthis thesis was to determine the neuroanatomical extent of MOR knockdown 

• after pretreatment with peptide nucleic acid antisense in rats. Antisense pretreatment 

completely inhibited antinociception by the !l agoni st DAMGO, but produced no 

detectable ex vivo changes in brain or spinal MOR labelling or functional responses. 

This study suggests that there may be a small, critical population of MORs that mediate 

• 

antinociceptive responses to agoni st. 

The second aim ofthis thesis was to compare the CNS distribution offunctional DOR 

with radioligand binding. DOR labelling was determined autoradiographically using an 

agonist, (C 2sI]deltorphin II) and an antagonist ([12sI]AR-MI00613) radioligand. In 

adjacent tissue sections, functional DORs were detected using deltorphin Il-induced 

CSS]GTPyS binding. Overall, radioligand binding did not strongly predict the magnitude 
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of e5S]GTPyS responses, and this weak association is possibly explained by a paucity of 

DORs on the cell surface and/or heterogeneity in G protein receptor coupling. The 

highest e5S]GTPyS responses were found in the basal ganglia, while areas involved with 

pain perception (spinal cord, brain stem, and periaqueductal grey) possessed low 

e5S]GTPyS responses. 

The low deltorphin II-induced e5S]GTPyS binding in pain-related are as could explain the 

moderate degree of antinociception produced by (5 agonists relative to their Il 

counterparts. Thus, the third aim ofthis thesis was to investigate two pharmacological 

treatments (short- and long-term morphine pretreatment) that are reported to enhance 

behavioural responses to (5 agonists. As previously observed by others, short-term 

exposure to morphine resulted in sensitization to spinally administered (5 agonists. In 

contrast, long-term morphine pretreatment resulted in profound tolerance to the 

antinociceptive and locomotor stimulant effects of deltorphin II. After chronic morphine 

pretreatment, there was no detectable change in DOR labelling or e5S]GTPyS responses 

in the brain or spinal cord, suggesting that changes in downstream regulators may be 

responsible for this tolerance . 
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RÉSUMÉ 

La famille des récepteurs opioïdes est composée de trois sous-types: !-l, () et K. Ces trois 

récepteurs sont couplés aux protéines G et produisent leurs effets à travers les sous-unités 

Gai/o. Les agonistes du récepteur Il opioïde (MOR) sont utilisés cliniquement pour 

combattre la douleur modérée et sévère. Les agonistes du récepteur () opioïde (DOR) sont 

en phase de développement comme analgésique car ils produisent moins d'effets 

secondaires que les agonistes du MOR. Il est donc important de caractériser les effets 

comportementaux des agonistes MOR et DOR et des interactions entre ces deux sous­

types de récepteurs opioïdes. 

Malgré le fait que les changements comportementaux après l'injection d'antisense dirigé 

contre le MOR sont bien connus, les conséquences in vitro ont été caractérisé dans très 

peu d'études. Donc, le premier objectif de cette thèse était de déterminer l'expression du 

MOR au niveau neuroanatomique après l'injection d'antisense (acide nucléique 

peptidique) à des rats. Un traitement avec ces antisenses a complètement aboli l'effet 

anti-nociceptifnormalement observé en présence de l'agoniste MOR DAMGO, mais n'a 

produit dans le cerveau ou la moelle aucun changement discernable sur la liaison 

d'agoniste MOR ou sur la fonction de ce récepteur. Cette étude suggère qu'une petite 

population de MOR est impliquée dans la production des effets anti-nociceptifs des 

agonistes MOR. 

Le deuxième but de cette thèse était de comparer la distribution dans le système nerveux 

central (SNC) des DORs fonctionnels avec les sites de liaisons du DOR. Pour évaluer 
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ces sites de liaisons, un agoniste ([125I]deltorphin II) et un antagoniste ([125I]AR_ 

MI00613) radioactifs DOR ont été utilisé. Dans des sections de tissus adjacentes, les 

DORs fonctionnels ont été évalué en quantifiant la liaison de e5S]GTPyS après 

stimulation avec l'agoniste DOR deltorphin II. En général, l'intensité du marquage 

radioactif produite par la liaison des ligands radioactifs dans les différentes régions du 

SNC ne correspond pas avec l'intensité du marquage produite par la liaison du 

e5S]GTPyS en présence de deltorphin II dans ces mêmes régions. La pauvre association 

entre ces deux paramètres est possiblement expliquée par la faible densité des DOR à la 

surface cellulaire et/ou pourrait être causée par une hétérogenéité du couplage aux 

protéines G dans les différentes régions du SNC. Les plus hauts niveaux de liaison du 

e5S]GTPyS ont été observé dans le ganglion basal tandis que les régions impliquées dans 

la perception de la douleur (telle que la moelle, le PAG et le tronc cérébral) ont produit de 

faibles niveaux de liaison du e5S]GTPyS. 

Les faibles niveaux de DOR fonctionnels (évalués en utilisant la liaison du eSS]GTPyS 

en présence de l'agoniste deltorphin II) dans les régions impliquées dans la perception 

de la douleur pourraient être la cause des modestes effets anti-nociceptifs des agonistes 

DOR relatifs aux agonistes MOR. Donc, le troisième objectif de cette thèse était 

d'investiguer deux traitements pharmacologiques (traitement a la morphine de courte et 

de longue durée) qui augmentent les réponses comportementales des agonistes DOR. En 

accord avec des données publiées, un court pre-traitement avec la morphine (un agoniste 

du MOR) entraîne une sensibilisation aux agonistes DORs injectés dans la moelle. Par 

contre, un long traitement avec la morphine produit une tolérance importante aux effets 
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anti-nociceptif et locomoteur de la deltorphin II. Le traitement chronique avec la 

morphine ne produit aucun changement dans la moelle ou le cerveau sur les sites de 

liaison d'un ligand du DOR ou les sites de liaison du eSS]GTPyS engendré par un 

agoniste DOR. Ces résultats suggèrent que des changements aux effecteurs 

intracellulaires pourraient être la cause de cette tolérance . 
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receptor knockdown in central nervous system (CNS) following intracerebroventricular 

(i.c.v.) administration of peptide nuc1eic acid antisense (a novel antisense chemistry). 

The anti-Il opioid receptor antisense sequence abolished Il agonist-induced 

antinociception. Surprisingly, post mortem receptor autoradiographic analysis of CNS 

areas revealed no change in Il opioid receptor functional response (esS]GTPyS assay) or 

receptor labelling (e2sI]FK-33824 and Il opioid receptor immunoautoradiography). The 

antisense literature is rife with examples of small biochemical changes accounting for 

complete elimination of behavioural affects. These results provided the c1earest example 

of antisense-induced knockdown at the behaviourallevel, in the absence of c1ear changes 

at the tissue level. This study suggests that there may be a small but critical population of 

Il opioid receptors that are responsible for the behavioural effects of Il agonists. 

Chapter 3 

The distribution of (5 opio id receptors (DORs) in the rat CNS has been previously 

characterized by radioligand binding and immunohistochemistry. However, the 

functional neuroanatomy of DORs has not been mapped in any detail; this is potentially 

important, since these receptors appear to be primarily cytosolic. Opio id receptors can 

couple to Gi/0 G proteins, a process which is detected by agonist-stimulated eSS]GTPyS 
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binding. The purpose ofthis study was to compare the functional population of DORs to 

agoni st and antagonist radioligand binding. This study illustrated that for the DOR, 

radio ligand binding only partially predicted the functional receptor population. This is an 

important finding as labelling of the receptor is not equivalent to the receptor having 

functional relevance. The divergence between the static and functional measures may 

possibly reflect regional heterogeneity in G prote in receptor coupling, or in the 

subcellular localization ofDOR. 

Chapter 4 

The literature suggests that after short term morphine pretreatment, rats are sensitized to 

spinal antinociception by deltorphin II (8 opio id receptor agonist). Clinically, this finding 

may be important as it suggests that switching patients from Il to (5 agonists would 

prevent morphine tolerance, and the (5 agonists would be better analgesics due to the pre­

exposure to morphine. The aim of our study was to determine if chronic pretreatment 

with morphine would change (5 opioid receptor responses. Surprisingly, we found that 

after chronic morphine animaIs became tolerant to the effects of the (5 agonist, deltorphin 

II. More importantly, this tolerance lasted for 2 weeks after morphine withdrawal. 

Although initial studies suggested that short term morphine pretreatment primes the (5 

opioid receptor, our studies show that long term use of morphine results in a 

desensitization of the (5 opioid receptors. Our results indicate that (5 agonists may be 

limited in their use as analgesics if they are to be given to patients who have already been 

treated with morphine for their pain . 
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INTRODUCTION 

1.1 History of Opioids 

Opium has been used for centuries for its medicinal and euphoric properties, during 

which time it has been hailed both as a panacea for man's ills, and cursed as a scourge of 

civilization. Medical documentation of the use of opium soaked sponges to relieve pain 

during surgery can be found as early as 1500 BC (for review see Brownstein, 1993). 

Numerous literary works have portrayed opium as having near-mystical qualities. For 

instance, in Homer's Odyssey, Telemachus' grief over the 10ss ofhis father is stopped by 

a drug which will "luIl aIl pain and anger and bring forgetfulness of every sorrow"; and 

the famous addict Samuel Taylor Coleridge described opium as "the milk ofParadise" in 

his laudanum-induced "Kubla Khan". The abuse liability of opium is so great, that in the 

1830s China banned its use upon seeing how detrimental opium dens had become to 

Chinese society. The subsequent Opium War between China and Britain illustrated how 

the drug trade was as financially addictive to the merchants of the latter country as the 

drug itselfwas to the citizens of the former. Despite humanity's long familiarity with the 

derivatives of the poppy plant, there was almost total ignorance of how it worked. 

One of the first breakthroughs in understanding the unique pharmacology of opium 

occurred in 1806, when Friedrich Wilhelm Serturner isolated the primary active 

ingredient in opium and called it Morphine, after Morpheus, the god of dreams. 

Serturner did not hesitate to experiment on himself, and after morphine administration he 

experienced a euphoric dream-like state, followed by depression and nausea; "1 consider 

it my dut y to attract attention to the terrible effects ofthis new substance in order that 
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• calamity may be averted" (Scott, 1969). Morphine proved to be as addictive as opium, 

and so the hunt for opioid analgesics with low abuse liability began. The elucidation of 

the alkaloid structure of morphine led to the development of the synthetic opioid heroin, 

which was found to be more potent than morphine. Ironically, heroin was initially hailed 

as a non-addictive morphine substitute. Many other opio id agonists have since been 

characterized, but to date there are still no commercially available opioid drugs that are 

both analgesic and free from abuse liability. 

The search turned from the drug's chemistry to mammalian anatomy, specifically the 

receptors in the central nervous system (CNS) that regulate opioid responses. The first 

opioid receptor was discovered in 1973, by three separate groups, all using radiolabelled 

opioid agonist binding in brain homogenates (Pert and Snyder, 1973; Simon et al., 1973; 

• Terenius, 1973). Evidence for multiple opioid receptor types was demonstrated by the 

different pharmacological profiles of morphine (g opio id receptor, MOR), ketazocine (:~ 

opio id receptor, KOR), and N-allylnormetazocine (S.KF-I0047, Q opio id receptors) in 

• 

chronic spinal dog (Martin et al., 1976). Sigma receptors have since been shown to not 

be members of the opioid receptor family (Mannalack et al., 1986). The increased 

potency ofthe endogenous opioid peptide enkephalin to inhibit contractions in the mouse 

vas Qeferens relative to morphine led Kosterlitz and colleagues to propose the existence 

of ~ opioid receptors (DOR)(Lord et al., 1977). The presence of DOR was later 

confirmed in rodent brain (Chang and Cuatrecasas, 1979) . 
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Opioids are now defined as agonists that are displaced by naloxone (Dhawan et al, 1996) . 

The opioid receptor family inc1udes three members: the ~, Ô, and K opio id receptors 

(MOR, DOR and KOR respectively). AlI three are G prote in coupled receptors, 

primarily acting through GUi/o subunits (Dhawan et al., 1996). These receptors are found 

throughout the body, but two of the most important behavioural effects of opioids, 

analgesia and addiction, are mediated by opioid receptors in the brain and spinal cord. 

1.2 Endogenous Opioid Peptides 

It seemed unlikely that organisms would develop opioid receptors to respond to a plant­

derived drug (morphine), with which they might never come in contact. The more likely 

explanation was that organisms produced an endogenous ligand for these receptors, and 

shortly after the discovery of opio id receptors, the hunt for their naturalligand began . 

The earliest physiological evidence in support of endogenous opioids was that analgesia 

induced by electrical stimulation of certain brain areas was reversed by the pan-opioid 

antagonist naloxone (Akil et al., 1976). The first naturally occurring opio id peptides 

were discovered in pig brain, and named enkephalin meaning "in the he ad" (Hughes et 

al., 1975). The first two enkephalins discovered were chemically-related pentapeptides 

with the sequences Tyr-Gly-Gly-Phe-Leu (leu-enkephalin) and Tyr-Gly-Gly-Phe-Met 

(met-enkephalin). Of the opio id receptors, enkephalins had the greatest selectivity for 

DORs (Hughes et al., 1975). The subsequent discovery of ~-endorphin, (equally 

selective for MOR and DOR (Loh et al., 1976)), and the KOR preferring dynorphins 
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• (Goldstein et al., 1979) revealed that these three classes of endogenous opioid peptides 

shared the core sequence of Tyr-Gly-Gly-Phe-Leu/Met. 

The majority of these endogenous opioids are derived from three precursors, which 

undergo peptidase cleavage to produce smaller functional opio id peptides. Thus, 

proopiomelanocortin produces p-endorphin, as weIl as a number of other biologically 

important peptides such as adrenocorticotropic hormone (ACTH), and melanocyte 

stimulating hormone (MSH)(Nakanishi et al., 1979). Preproenkephalin encodes one copy 

ofleu-enkephalin, and four copies ofmet-enkephalin, including an octa- and a 

heptapeptide analogue (Table 1.2)(Noda et al., 1982a; Noda et al., 1982b; Khachaturian 

et al., 1985). Lastly, prodynorphin contains three leu-enkephalin core opioid sequences 

with C-terminal differences encoding dynorphin A, dynorphin B, and neo-endorphin 

• (Kakidani et al., 1982). Although these endogenous peptides are in general not highly 

• 

selective for any particular opio id receptor and are quickly degraded, their structure has 

lead to the development of numerous peptide agonists with greater selectivity and 

stability. For example, the highly selective MOR agoni st D-Ala2
, MePhe4

, Gly5 -01-

enkephalin (DAMGO)(Handa et al., 1981) and the selective DOR peptide D-Pen2
, D­

Pen5 -enkephalin (DPDPE)(Mosberg et al., 1983) are both based on the structure of 

endogenous enkephalin. Furthermore, endogenous opio id peptide derived from 

amphibian skin have yielded sorne of the most selective ligands for MOR (dermorphin) 

(Montecucchi et al., 1981) and DOR (deltorphin land II)(Erspamer et al., 1989; see 

Table 1.1 for review) . 
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Although the majority of clinically relevant opioid agonists act at MOR, none of the three 

above classes of endogenous opioids are highly selective for this receptor. It was not 

until 1997 that endogenous ligands with high affinity and selectivity for MOR were 

discovered (Zadina et al., 1997). These were termed endomorphin 1 and 2 and unlike 

other endogenous opioids they do not share the opioid peptide core, in ste ad they are 

tetrapeptides with the sequence Tyr-Pro-TrplPhe-Phe (Zadina et al., 1997). To date, the 

precursor peptide from which endomorphins are derived from is unknown (for review see 

Zadina et al., 1999). 

Opioid receptors are located throughout the brain and spinal cord. As the activation of the 

K opioid receptor results in dysphoria and hallucinations (reviewed in Martin and 

Eisenach, 2001), and upregulation of this receptor is associated with hyperalgesia (Wang 

et al., 2001), it does not pose a promising target for clinical use. The rest ofthis 

introduction will therefore focus on characteristics of J.l and 8 opioid receptors only . 
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• Table 1.1: Commonly used ligands that act at Il and Ô opioid receptors 

Receptor Endogenous Peptide Peptide Agonist Antagonist 
Ligand Agonist Antagonist 

MOR 
Endomorphin 1 DAMGO CTOP Morphine p-FNA 
Endomorphin 2 Dermorphin CTAP Fentanyl Naloxone 
p-endorphin Sufentanyl N aloxonazine 

DOR 
Leus -enkephalin DADLE DALCE BW373U86 Naltrindole (NTI) 
MetS -enkephalin DPDPE ICI 174864 SNC80 Benzylidenenaltrexone 
MetS -enkephalin- DSLET TIPP TAN 67 (BNTX) 
Ar~6-Phe7 Deltorphin 1 TIPP'I' Naltriben (NTB) 

Met -enkephalin- Deltorphin II NTl5'isothiocyanate 
Arg6Gl/Leu8 (5'-NTII) 

AR-M100613 

1.3 Neuroanatomical distribution of opioid receptors 

• 1.3.1 Distribution of opioid receptors in the brain 

The neuroanatomicallocalization of MOR and DOR has been extensively characterized 

using radio ligand binding, immunohistochemistry and in situ hybridization. In general, 

these three methods are in agreement as to the location of these receptors in rodent brain 

(Table 1.2). Direct comparison of MOR vs. DOR indicates that MOR has a broader 

neuroanatomical distribution (Mansour et al., 1995a). Both are expressed in pain-related 

areas such as the periaqueductal grey and rostroventral medulla, although MOR is more 

consistently detected in these regions (Goodman et al., 1980; Mansour et al., 1994a; 

Mansour et al., 1994b; Mansour et al., 1995a; Arvidsson et al., 1995a; Mansour et al., 

1995b; Cahill et al., 2001a). There is also an abundance ofboth receptors in the dopamine 

rich caudate putamen and nucleus accumbens, which play a role in reinforcing and 

• locomotor stimulant effects of MOR and DOR agonists (Narita et al., 2001). 
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Although the different methods used to localize DOR are generally in agreement, several 

apparent discrepancies have been noted. For example, the majority of autoradiographic 

studies have been performed with eH]DPDPE or with eH]deltorphin analogs, and 

generally they pro duce overlapping distributions. However, in the nucleus accumbens 

DPDPE binding is consistently shown throughout this structure (Mansour et al., 1987; 

Tempel and Zukin, 1987; Blackburn et al., 1988; Sharif and Hughes, 1989), but binding 

by deltorphin analogs is limited (Dupin et al., 1991; Renda et al., 1993; Kitchen et al., 

1995). This cannot be explained by the existence ofDOR subtypes, as both DPDPE and 

deltorphin l preferentially binds to the putative 81 subtype (see Section 1.8.1). There also 

appears to be an inconsistency between radio ligand binding and immunohistochemical 

localization ofDOR in the hypothalamus, periaqueductal grey and brain stem. In these 

structures DORs are poorly detected autoradiographically, but are moderately labelled by 

antibodies (Arvidsson et al., 1995a; Cahill et al., 2001a). This can be explained by the 

fact that these antibodies detect intracellular receptors (Svingos et al., 1995; Svingos et 

al., 1998; Svingos et al., 1999; Wang and Pickel, 2001; Cahill et al., 2001a) to which the 

radio ligand may be insensitive. 
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Table1.2 p.t and Ô opioid receptors in the rodent brain 

Brain Regions MOR DOR 

Limbic System 

Hippocampus Moderate Low 

Amygdala High Moderate 

Hypothalamus Moderate-low Low 

Cingulate Cortex High Moderate-low 

Extended Striatum 

Caudate Putamen High High 

Nucleus accumhens High High 

Olfactory Tubercle Low High 

Pain related areas 

Thalamus High Low 

Periaqueductal grey Moderate-low Low 

Raphe Moderate Low 

References: Goodman et al., 1980; Mansour et al., 1987; Tempel and Zukin, 1987; 
Blackburn et al., 1988; Sharif and Hughes, 1989; Dupin et al., 1991; Renda et al., 1993; 
Gouarderes et al., 1993b; Mansour et al., 1994a; Mansour et al., 1994b; Kitchen et al., 
1995; Arvidsson et al., 1995a; Mansour et al., 1995b; Arvidsson et al., 1995b; Hiller et 
al., 1996; Ding et al., 1996; Bakota et al., 1998; Unterwald et al., 1998; Cahill et al., 
2001a; Abeyta et al., 2002 
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1.3.2 Evidence for MOR and DOR in the dorsal root ganglia 

MOR and DOR are located on primary afferents which terminate in the spinal cord. 

Evidence for this is found after dorsal rhizotomy which results in a decrease in MOR and 

DOR binding and immunoreactivity in the superficial dorsal horn (Fields et al., 1980; 

Zajac et al., 1989; Besse et al., 1990; Gouarderes et al., 1991; Dado et al., 1993; Stevens 

and Seybold, 1995; Ding et al., 1996). Radioligand binding (Fields et al., 1980; 

Mennicken et al., 2003) and immunohistochemical (Dado et al., 1993; Mansour et al., 

1995b; Arvidsson et al., 1995b; Ding et al., 1996) studies have also confirmed MOR and 

DOR labelling on cell bodies of dorsal root ganglion. However, it is unclear on which 

type of primary afferent fibre these opioid receptors are located, since evidence of every 

combination ofC, AD and A~ fibres has been reported (Dado et al., 1993; Mansour et al., 

1994a; Arvidsson et al., 1995b; Ding et al., 1996; Wang and Wessendorf, 2001; 

Mennicken et al., 2003). 

1.3.3 MOR in spinal co rd 

Consistent findings using radio ligand binding, immunohistochemistry and in situ 

hybridization indicate that MOR is preferentially found in the superficial dorsal horn 

(lamina 1 and II) (Goodman et al., 1980; Sharif and Hughes, 1989; Zajac et al., 1989; 

Besse et al., 1990; Gouarderes et al., 1991; Hiller et al., 1994; Mansour et al., 1994b; 

Stevens and Seybold, 1995; Arvidsson et al., 1995b; Ding et al., 1996; Abbadie et al., 

2001). Although primary afferent terminaIs account for sorne ofthe MOR found in the 

spinal cord, dorsal rhizotomy results in only a partialloss of MOR binding in lamina 1 

and II (Zajac et al., 1989; Besse et al., 1990; Gouarderes et al., 1991; Stevens and 
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Seybold, 1995). Thus, it would appear that MOR is also expressed on intrinsic neurons 

within the spinal cord, and this has been confirmed by immunohistochemical detection of 

MOR on cell bodies in lamina II (Arvidsson et al., 1995b). Evidence from in situ 

hybridization (Mansour et al., 1994a; Mansour et al., 1994b; Wang and Wessendorf, 

2001) and binding studies (Goodman et al., 1980; Gouarderes et al., 1991; Mansour et al., 

1994b; Stevens and Seybold, 1995) indicate that MOR mRNA and prote in may also be 

present in deeper laminae, but this expression is less abundant than that found in laminae 

l and II. 

1.3.4 DOR in the spinal co rd 

There are conflicting reports of the distribution ofDOR in the rodent spinal cord. 

Localization of DOR throughout the grey matter of the spinal cord has been shown using 

autoradiography with deltorphin analogs (Gouarderes et al., 1993b; Mennicken et al., 

2003), DOR immunolabelling (Arvidsson et al., 1995a; Cahill et al., 2001a) and DOR in 

situ hybridization (Mansour et al., 1994a). However, several DOR radio ligands (i.e. 

[125I ]DADLE, eH]DPDPE, [3H]DTLET) have been found to label only the superficial 

dorsal horn (Goodman et al., 1980; Sharif and Hughes, 1989; Besse et al., 1990; 

Gouarderes et al., 1993b). To date, two DOR subtypes have been proposed, partly on the 

basis of pharmacological comparisons between 81 (DPDPE, deltorphin 1) and 82 

(deltorphin II, DTLET) selective agonists (Zaki et al., 1996)(see Section 1.8.1). Clearly, 

the differences in the above-mentioned DOR localization cannot be explained by these 

proposed subtypes, as ligands for both 81 and 82 can cause either profile . 
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1.3.5 Subcellular distribution of MOR and DaR 

Electron microscopy studies of MOR have found this receptor preferentially expressed on 

the cell surface (Svingos et al., 1996; Wang and Pickel, 2001; Aicher et al., 2001; Garzon 

and Pickel, 2002). In contrast, DOR are predominantly associated with intracellular 

organelles, as has been seen in the cortex, nucleus accumbens, caudate putamen and the 

lumbar spinal cord (Svingos et al., 1995; Svingos et al., 1998; Svingos et al., 1999; Wang 

and Pickel, 2001; Cahill et al., 2001a). This intracellular distribution may also explain 

why immunohistochemical staining tends to reveal DORs in more areas than radio ligand 

binding. For example, the periaqueductal grey is labelled by antibodies targeted to DOR 

(Arvidsson et al., 1995a; Cahill et al., 2001a), yet this structure is rarely detected by 

radio ligand binding (Mansour et al., 1987; Tempel and Zukin, 1987; Blackburn et al., 

1988; Sharif and Hughes, 1989; Renda et al., 1993). Moreover, this region does not 

appear to possess functional DOR in terms of antinociception (Bodnar et al., 1988; 

Ossipov et al., 1995) and electrophysiological responses to DOR agonists (Vaughan and 

Christie, 1997). Antibodies which bind to intracellular DOR may also detect receptors 

that are at different stages ofpost-translational modification or breakdown (Cahill et al., 

2001a). A further problem with DOR localization studies is that the majority of 

autoradiographic studies have used DPDPE, which appears to have a MOR component 

(Sora et al., 1997; Hosohata et al., 2000; Park et al., 2000; Fraser et al., 2000b). These 

different types ofbinding may not reflect the functional distribution ofDOR, which may 

be better detected using the eSS]GTPyS assay, a measure of G protein receptor coupling. 

Using DOR selective ligands, a direct autoradiographic comparison between DOR­

mediated eSS]GTPyS responses and radioligand binding would determine iffunctional 
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• DORs are a subpopulation of labelled DORs. This idea will be further developed in 

Chapter 3. 

1.4 Pain Pathways 

Painful stimuli are transmitted from primary afferents to the spinal cord and subsequently 

to the brain via ascending pain pathways, and descending pain pathways send inhibitory 

or facilitatory information through parallel pathways back to the spinal cord and primary 

afferent fibres (Millan, 2002). There are three different types of primary afferents; small 

calibre, unmyelinated C fibres and medium calibre, thinly myelinated AD fibres transmit 

nociceptive stimuli, while large calibre myelinated A~ fibres convey innocuous and 

mechanical stimuli to the spinal cord. In general, the threshold stimuli needed to activate 

nociceptors are stronger than those needed to activate A~ fibres, although they need not 

• be so strong as to cause tissue damage (Willis and Westlund, 1997). 

C and AD fibres primarily terminate in the superficial dorsal hom (lamina l and II), while 

A~ fibres terminate in deeper lamina III-VI (Mill an, 2002). Primary afferents terminate 

on projection neurons, or excitatory and inhibitory intemeurons within the spinal cord. 

The intemeurons serve to modulate the projection neurons, and inhibitory intemeurons 

can also inhibit excitatory intemeurons and primary afferents (Millan, 2002). Projection 

neurons transmit information from the spinal cord to numerous regions in the brainstem 

and midbrain, including the thalamus, periaqueductal grey, parabrachial region, and 

bulbar reticular formation. Pain-related information is subsequently passed on to the 

cortex and limbic structures such as the hypothalamus, amygdaloid nucleus, septal 

• 
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nucleus, and extended striatum (nucleus accumbens and olfactory tubercle in 

particular)(Willis and Westlund, 1997). 

In response to painful stimuli, brain regions then send descending projection neurons 

either directly to the spinal cord, or to other structures that have a direct projection to the 

spinal cord. Direct descending projections from the cortex, hypothalamus, nucleus 

tractus solitarius, dorsal reticular nucleus, parabrachial area and rostroventral medulla 

(medial aspect) (Basbaum and Fields, 1984; Millan, 2002) carry inhibitory or facilitatory 

information back to the spinal cord and primary afferents. These descending projection 

neurons can terminate on ascending projections, interneurons (excitatory or inhibitory), 

primary axon terminaIs, and other descending projections (Millan, 2002), thereby 

completing the pain circuit. 

Opioid agonists produce antinociceptive effects by modulated ascending and descending 

pain pathways (Basbaum and Fields, 1984). Consistent with its role in antinociception, 

MOR expression is found in dorsal root ganglia, superficial dorsal horn (lamina l and II), 

parabrachial nucleus, rostroventral medulla, nucleus of the tractus solitarius, 

periaqueductal grey, thalamus, limibic structures and cortex. DORs are also expressed in 

these brain regions, but at lower levels than MOR. Nevertheless, substantial DOR 

expression is detected in primary afferents, dorsal horn, amygdala, and cortex (see Table 

1.2, Section 1.3 and references therein). Endogenous opio id peptides are also found in 

numerous structures involved with antinociception. Enkephalin immunoreactivity has 

been reported in the superficial horn, rostroventral medulla, periaqueductal grey, 
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thalamus and limbic structures (Hokfelt et al., 1977; Basbaum and Fields, 1984; 

Khachaturian et al., 1985). B-endorphin has a more limited CNS distribution, and 

immunohistochemical detection in the periaqueductal grey, thalamus and hypothalamus 

has been observed (Khachaturian et al., 1985). Endomorphins are also distributed in 

numerous pain related areas such as the dorsal horn, thalamus, frontal cortex, 

hypothalamus and amygdala (Martin-Schild 1999, Horvarth 2000). OveraIl, f..L and 8 

opioid receptors along with their endogenous ligands are weIl placed to mediate 

antinociception. 

1.5 Antinociceptive actions of MOR 

Systemic administration of f..L agonists, such as morphine, have long been known to be 

analgesic. The anatomical sites mediating these antinociceptive responses has been 

determined using intracerebroventricular (i.c.v.), intrathecal (i.t.), and intraparenchymal 

microinjections directly into brain sites. 

lntracerebroventricular injection of MOR agonists results in antinociception (Yaksh and 

Rudy, 1978; Tseng and Fujimoto, 1985), which is blocked by naloxone (Tseng and 

Fujimoto, 1985). Further evidence for the role of brain MOR in antinociception is that 

direct infusion into the ventric1e of MOR-targeting antisense blocks the systemic (Chen et 

al., 1995a; Tyler et al., 1998) i.c.v or intra-P AG effects of morphine (Chen et al., 1995a; 

Rossi et al., 1997). In addition, MOR knockout mice are unresponsive to the 

antinociceptive effects of i.c.v f..L agonists (Mizoguchi et al., 1999; Hosohata et al., 2000). 
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The periaqueductal grey (PAG) is an important supraspinal site of MOR agonist-induced 

antinociception. For example, microinjection of morphine or DAMGO into the PAG 

results in an antinociceptive response (Yeung et al., 1977; Llewelyn et al., 1983; Jensen 

and Yaksh, 1986; Jones and Gebhart, 1988; Fang et al., 1989), and this is blocked by 

systemic and local injections of naloxone (Jensen and Yaksh, 1986). The P AG regulates 

responses to pain through its projection to the rostroventral medulla, a structure which 

provides a direct descending projection to the spinal cord (Basbaum and Fields, 1984). 

Evidence for this connection was seen by changes in neuronal firing in the R VM after 

morphine injections into the P AG (Heinricher et al., 1987). Microinjection of DAMGO 

and morphine directly into the RVM also results in antinociception in acute pain tests 

(Llewelyn et al., 1983; Jensen and Yaksh, 1986; Jones and Gebhart, 1988; Rossi et al., 

1994). Within the RVM, microinjection ofnaloxone into, or lesions of, the nucleus raphe 

magnus blocks antinociception induced by systemic morphine (Chance et al., 1978; 

Azami et al., 1982). Other sites of MOR agonist action include the thalamus (Cohen and 

Melzack, 1985; Carr and Bak, 1988), habenula (Cohen and Melzack, 1985), 

hypothalamus (Manning and Franklin, 1998) and the ventral tegmental area (Altier and 

Stewart, 1998). 

Spinal antinociceptive effects of MOR stimulation are also well established. In rats, 

intrathecal administration of the Il selective drugs; morphine, codeine, meperidene, 

methadone, fentanyl, and DAMGO lead to increased latencies in the hotplate and tail 

flick tests, and were blocked by systemic MOR antagonists (Yaksh and Rudy, 1976; 

Yaksh and Rudy, 1977; Pick et al., 1991). In addition, direct administration of antisense 
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targeting MOR into the spinal cord inhibited endomorphin-induced antinociception (Wu 

et al., 2002). Furthermore, evidence for the spinal antinociception by MOR agonists 

cornes from knockout studies, where the deletion of MOR resulted in a loss of 

antinociceptive responses produced by systemic or intrathecal Il agonists (Hosohata et al., 

2000). 

1.6 Antinociceptive actions of DOR 

Antinociception resulting from DOR stimulation is more complicated than its MOR 

counterpart. DOR agonists have been reported to be less antinociceptive than MOR 

agonists (Audigier et al., 1980; Porreca et al., 1984; Chaillet et al., 1984; Galligan et al., 

1984). There is no doubt that DOR agonists can be antinociceptive when given i.c.v. 

(Porreca et al., 1987; Qi et al., 1990; Ossipov et al., 1995; Kovelowski et al., 1999a; 

Kovelowski et al., 1999b; Hosohata et al., 2000; Fraser et al., 2000b), and knockdown of 

brain DOR by antisense results in complete knockdown ofDOR agoni st induced 

antinociception (Lai et al., 1995; Fraser et al., 2000a; Fraser et al., 2000b). However, 

supraspinal sites of action are not as clear as those for MOR. For example, unlike MOR, 

DOR infusion into the P AG does not appear to produce supraspinal antinociception. 

Although one group did report that microinjections of deltorphin II directly into the PAG 

was antinociceptive in the tail flick test (Rossi et al., 1994), no other group has found this 

site to be effective (Bodnar et al., 1988; Ossipov et al., 1995). Furthermore, 

electrophysiological studies suggest that DORs in the P AG are not functional (Vaughan 

and Christie, 1997) . 
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• The thalamus may also be a supraspinal site of action for DOR agoni st induced 

antinociception. For example, DADLE has been shown to produce increased latencies in 

the hot plate and tail flick tests when injected into the lateral thalamus (Walker and 

Yaksh, 1986), and DTLET injected into the ventrobasal thalamus decreases neuronal 

firing induced by noxious stimuli (Benoist et al., 1986). Characterization of these effects 

using more selective DOR ligands has not been done. DORs in the nucleus accumbens 

may also be important in antinociception to noxious peripheral stimuli (Schmidt et al., 

2002). 

The rostroventral medulla (RVM) has also been tested as a possible initiation site for 

DOR antinociception. Thus, injections of deltorphin II directly into the RVM results in 

antinociception in acute and chronic pain tests (Kiefel et al., 1993; Rossi et al., 1994; 

• Ossipov et al., 1995; Thorat and Hammond, 1997; Kovelowski et al., 1999a; Kovelowski 

• 

et al., 1999b; Hurley and Hammond, 2000). However, DOR agonist injection into this 

brain area was less potent than i.c.v. administration of the drug (Kovelowski et al., 

1999b), suggesting that the RVM is not the most important site for supraspinal DOR 

antinociception. Perhaps supraspinal antinociception produced by DOR agonists could be 

explained by synergy of DORs in numerous brain regions. 

Understanding of the antinociceptive effects of supraspinal DOR agonist action is further 

complicated by studies done in opioid receptor knockout mice. AnimaIs that lacked DOR 

retained supraspinal antinociception following i.c.v. DPDPE and deltorphin II, and this 

effect was only partially antagonized by the DOR antagonist naltrindole (Zhu et al., 
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1999). This antinociception was insensitive to MOR and KOR antagonists, but was 

completely blocked by naltrexone (Zhu et al., 1999). To explain these results, the authors 

proposed the existence of a b-like opioid receptor that is distinct from DOR (Zhu et al., 

1999). There is also the possibility that retention of supraspinal DOR response is due to 

sorne compensatory effect of genetic manipulation. Pharmacological specificity of 

deltorphin II and DPDPE may also be in question, and this will be further discussed in 

section 1.8.2. 

DOR agonists can also produce antinociception via a direct action in the spinal cord, and 

the pharmacological nature of this response is better understood than those in the brain. 

Initial reports found that intrathecal administration of the DOR agonist DADLE could 

block acutely painful stimuli (Tung and Yaksh, 1982; Hylden and Wi1cox, 1982) . 

Although DADLE has affinity for both DOR and MOR, this antinociceptive effect was 

not blocked by the /-l antagonist ~-FNA (Hylden and Wilcox, 1982), and did not show 

cross tolerance to morphine (Tung and Yaksh, 1982) suggesting a wholly DOR action. 

Later studies with DPDPE and the highly DOR-selective agonist deltorphin II confirmed 

that intrathecal DOR agonists were antinociceptive (Porreca et al., 1984; Porreca et al., 

1987). Responses to these agonists were blocked by DOR antagonists ICI 174864, 

naltrindole, 5'-NTII and naltriben (Heyman et al., 1987; Mattia et al., 1991; Sofuoglu et 

al., 1991; Mattia et al., 1992; Stewart and Hammond, 1993) but not by MOR antagonists 

(Heyman et al., 1987; Jiang et al., 1991). Antisense knockdown of spinal DOR, and 

deletion of DOR also resulted in a lack of response to intrathecal DPDPE and deltorphin 
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II (Standifer et al., 1994; Tseng et al., 1994; Bilsky et al., 1996; Zhu et al., 1999). In 

summary, DOR agonists can clearly induce antinociception by acting at spinal DOR. 

1. 7 Opioid Receptor Signalling 

Long before the cloning of the opioid receptors there were many indications that this 

receptor family was coupled to G proteins. For example, agoni st binding was reduced in 

the presence ofNa+ (Pert and Snyder, 1973; Kosterlitz et al., 1988), and addition ofGTP 

synergistically enhanced this effect (Childers and Snyder, 1980). Activation of opioid 

receptors resulted in inhibition of adenylate cyclase (Sharma et al., 1975), and this 

inhibitory effect was pertussis toxin sensitive (Hsia et al., 1984), dependent on GTP and 

Na + (Blume et al., 1979), and ultimately resulting in GTP hydrolysis (Koski and Klee, 

1981). Further evidence that opioid receptors were G prote in coupled came from 

reconstitution experiments where the addition of G j or Go Ga subunits to rat brain 

purified MORs increased the displacement of eH]naloxone by DAMGO (Ueda et al., 

1988). In addition, these two Ga subunits were co-purified with opioid receptors from 

brain homogenates (Wong et al., 1989). 

Cloning studies confirmed that opioid receptors belonged to the G prote in coupled 

receptor (GPCR) super-family. The 8 opioid receptor was the first to be cloned from the 

NG 108-15 cellline (Kieffer et al., 1992; Evans et al., 1992). Oligonucleotide primers 

based on the DOR sequence were then used to clone KOR (Meng et al., 1993; Minami et 

al., 1993), and MOR (Chen et al., 1993; Fukuda et al., 1993; Thompson et al., 1993). 

The putative structure ofthese receptors is typical of the GPCR super-family. These 
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• serpentine receptors have seven transmembrane alpha helices, three intracellular loops, 

three extracellular loops, an intracellular carboxy terminus and an extracellular amino 
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terminus. The opioid receptors are ~60% homologous to one another, and the greatest 

homology is in the transmembrane domains (73-76%) and the intracellular loops (86-

100%), which suggests that these receptors have similar intracellular interactions (Law et 

al., 2000b)(See Section 1.7). The greatest diversity, on the other hand, occurs at the 

extracellular face of the receptor, at the N terminus (9-10%) and extracellular loops (14-

72%), thereby conferring ligand selectivity (Xie et al., 1990; for review see Akil et al., 

1998 and Law et al., 2000) . 

1.7.1 Identification of Ga subunits coupling to MOR and DOR 

MOR and DOR primarily signal through Gailo subunits, and they appear to share many of 

the same Ga subunits. Both in cuItured cells and in vivo, it appears that MORs and 

DORs primarily couple to Gol-2, and Gil-3 (Connor and Christie, 1999). This has been 

determined by irreversibly labelling activated G proteins (Offermanns et al., 1991; Roerig 

et al., 1992; Laugwitz et al., 1993), by blocking the function of different Ga subunits 

using antibodies (Sanchez-Blazquez et al., 1993; Carter and Medzihradsky, 1993; Garzon 

et al., 1997b) or by antisense knockdown (Sanchez-Blazquez et al., 1995; Standifer et al., 

1996; Sanchez-Blazquez and Garzon, 1998). This overlap in G prote in coupling is 

supported by work do ne in SH-SY5Y cells where either SNC80 (8 agonist) or DAMGO 

(Il agonist) can promote dissociation of e5S]GTPyS prebound to the other ligand (AIt et 

al., 2002). However, there are subtle differences between MOR and DOR coupling. For 

example, in human neuroblastoma cells, it appears that MOR preferentially couples to Go 
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(Carter and Medzihradsky, 1993) and 0i3 (Laugwitz et al., 1993), while DOR more 

efficiently couples to Oil (Carter and Medzihradsky, 1993; Laugwitz et al., 1993). 

MORs and DORs can also couple to non-Oilo Oa subunits. For example there is in vitro 

and in vivo evidence to suggest that opioid receptors can act through Oz, a subunit related 

to 0 0 but insensitive to pertussis toxin (Wong et al., 1992). In support ofthis coupling, 

in HEK 293 cells which express Oi subunits, coexpression of cloned MOR and Oz 

resulted in inhibition of adenylate cyclase that was only partially blocked by pertussis 

toxin (Chan et al., 1995). In addition, antibodies to Oz blocked MOR stimulated OTPase 

activity in rat periaqueductal grey membranes (Oarzon et al., 1997b), and antisense 

knockdown of Oz blocked antinociception by MOR agonists (Sanchez-Blazquez et al., 

1993; Sanchez-Blazquez et al., 1995). Unlike MOR, the evidence for Oz coupling to 

DOR is equivocal. Two separate groups have found that in vitro (Tsu et al., 1995), and in 

vivo (Standifer et al., 1996) DOR can efficiently couple to Oz. However, another group 

found no change in DOR responses after antibody blockade (Sanchez-Blazquez et al., 

1993; Oarzon et al., 1997a; Oarzon et al., 1997b) or antisense targeting of Oz (Sanchez­

Blazquez et al., 1995). Thus, the ability ofDOR to couple to Oz is unclear. 

Other non-Oilo Oa subunits that can couple MOR and DOR are the Oq related, 0 15 and 

0 16, respectively (Offermanns and Simon, 1995; Lee et al., 1998). This coupling can lead 

to activated phospholipase C and subsequently to inositol phosphate production. 

However, opioid receptor stimulation may also activate this pathway by O~y subunits 

(Y oon et al., 1999) . 
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The Ga subunit selectivity profile for the Il and Ô opioid receptors has primarily been 

determined using reconstitution studies in cell membranes or by in vivo antisense 

knockdown. There are limitations to both ofthese techniques. An important limitation 

of cell culture is that within these systems cellular distribution of opioid receptors is not 

representative of in vivo expression. For example, in cell culture DORs are expressed on 

the cell surface (Ko et al., 1999; Alt et al., 2002), while ultrastructuallocalization ofDOR 

in brain and spinal cord indicates that these receptors are primarily intracellular (Svingos 

et al., 1995; Svingos et al., 1998; Svingos et al., 1999; Wang and Pickel, 2001; Cahill et 

al.,2001a). In vivo antisense studies are also limited, especially since knockdown of Ga 

subunits would be expected to disturb G prote in coupling not only to opioid receptors but 

to other GPCRs that contribute to behavioural responses. In this regard, it is noteworthy 

that Gs and Gq opioid receptor coupling has only been detected in in vivo antisense 

studies (Standifer et al., 1996; Sanchez-Blazquez and Garzon, 1998), and not in in vitro 

studies (Connor and Christie, 1999). One important thing to note about G prote in 

coupling of opioid receptors is the diversity in Ga subunits through which these receptors 

signal. The signalling response to opioid agonists may vary greatly depending on the 

population of Ga subunits expressed within a given cell and the abundance of other 

GPCRs that may be competing for these Ga subunits. 

1. 7.2 Opioid activation of GPy subunits 

The characterization of opioid receptor coupling has primarily focused on Ga subunits. 

However, G~y subunits appear to regulate many of the downstream effects of opioid 
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receptor activation. One such example is the MOR- and DOR-mediated inhibition of 

voltage dependent Ca ++ channels seen in ceIl culture (Seward et al., 1991; Schroeder et 

al., 1991; Morikawa et al., 1995) and in the brain (Stefani et al., 1994; Connor and 

Christie, 1998; Connor et al., 1999). This inhibitory effect is believed to be responsible 

for the attenuation of neurotransmitter release seen after opioid receptor activation 

(Bhoola and Pay, 1986; Schoffelmeer et al., 1986). Inhibition of Ca ++ conductance for 

other Gi/o GPCRs is produced by G~y subunits (Ikeda, 1996; Herlitze et al., 1996). 

However, opioid inhibition of Ca ++ channels is blocked by pertussis toxin, and is restored 

upon addition of Go and to a lesser extent Gi subunits (Hescheler et al., 1987). This 

suggests that Ga subunits may be necessary to couple the opioid receptors to this G~y 

effect. 

Opioid receptor activation also results in an increased K+ conductance, the most 

commonly observed being the G protein-activated inwardly rectifying conductance 

(GIRK)(North et al., 1987; Vaughan and Christie, 1997; for review see Williams et al., 

2001). GIRK channel opening is due to a direct action of G~y released from pertussis 

toxin sensitive G proteins (Reuveny et al., 1994; Jan and Jan, 1997; Yamada et al., 1998). 

The inhibitory effect of increased K+ conductance has two main consequences. First, it 

can result in a decrease in neurotransmitter release. For example, stimulation of MOR in 

the periaqueductal grey results in increased K+ conductance followed by an inhibition of 

GABAergic synaptic transmission (Vaughan and Christie, 1997). Second, increased K+ 

conductance results in hyperpolarization of the postsynaptic membrane, which reduces 

neuronal excitability (Grudt and Williams, 1994). 
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The G~'Y subunit may also be responsible for the stimulation of phospholipase C~ 

observed after opioid receptor activation. Activation ofthis enzyme results in the 

generation ofinositol 1,4,5-triphosphate (IP3) and diacylglycerol (DAG), which in tum 

leads to Ca++ mobilization from intracellular stores and activation of prote in kinase C 

(PKC). This signalling pathway has been detected in MOR (Smart et al., 1994; Smart et 

al., 1997) and DOR (Jin et al., 1994; Smart and Lambert, 1996). Although induction of 

phospholipase C~ may also be mediated by opioid receptors coupling to Gq, this is 

unlikely as blockade of G~'Y and not Gq was necessary to inhibit the release of 

intracellular Ca ++ following DOR stimulation (Yoon et al., 1999). However, it appears 

that Gi/o coupling is necessary for this G~'Y effect to occur, since opioid-induced Ca++ 

release is pertussis toxin sensitive (Smart et al., 1994) and blocked by antisense 

knockdown of Gi2 or Go (Murthy and Makhlouf, 1996). 

A further result of opioid-induced activation of G~'Y is stimulation of phosphoinositide 3-

kinase (PI3K) which in tum stimulates mitogen activated prote in (MAP) kinase (Hawes 

et al., 1996; Polakiewicz et al., 1998b). Activation of MAP kinase is also pertussis toxin 

sensitive, suggesting that it is mediated by coupling through Gi/o (Burt et al., 1996). 

MAP kinase activation is important for opioid receptor desensitization (Polakiewicz et 

al., 1998a), and appears to play a role in synaptic plasticity induced by chronic morphine 

exposure (Eitan et al., 2003) 
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1.7.3 Opioid receptor coupling and desensitization 

The general sequence for GPCR activation and desensitization is as follows: The inactive 

a subunit is bound to GDP and to ~y, and this trimer is bound to the receptor. Upon 

receptor activation by an agonist, the complex undergoes a change in conformation, 

resulting in the exchange of GDP for GTP at the a subunit. This guanine nuc1eotide 

exchange causes uncoupling of the heterotrimeric complex from the receptor, and a and 

~y subunits dissociate, and activate or inhibit several down stream effectors. The signal 

is terminated by hydrolysis of GTP to GDP on the a subunit either by intrinsic GTPase 

activity or by GTPase Activating Proteins (GAPs) of the Regulators ofG protein 

Signalling (RGS) famiIy. The heterotrimeric complex is reformed following the 

hydrolysis ofGTP to GDP . 

After agonist-induced uncoupling from the heterotrimeric complex, the receptor also 

undergoes significant changes. In most cases, the activated receptor is desensitized by 

phosphorylation by GPCR kinases (GRKs), which in turn recruit ~-arrestin to the cell 

surface. Arrestins recognize both the activated receptor confirmation as well as 

phosphorylated sites on the receptor (Luttrell and Lefkowitz, 2002; Perry and Lefkowitz, 

2002), and thus prevent the agonist-bound receptor from further signalling. Arrestins 

aiso promote receptor internalization by binding to the c1athrin adaptor protein, AP2, and 

to c1athrin itself. This allows the desensitized receptor to be engulfed into c1athrin coated 

pits (Goodman, Jr. et al., 1997; Laporte et al., 1999), and dynamin-dependent budding 

and fission delivers the ligand-bound receptors to early endosomes (Chu et al., 1997; 

Bohrn et al., 1997). At this point the receptor is either sorted to the lysosome for 
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degradation, or resensitized and recycled to the cell surface (for review see Gainetdinov 

et al., 2004). Although agonist activation of MOR and DOR results in phosphorylation 

of the receptor by GRKs (Arden et al., 1995; Pei et al., 1995; Zhang et al., 1996; El 

Kouhen et al., 1999), subsequent intemalization of MOR and DOR follow divergent 

pathways. 

1.7.4 DORs are degraded after agonist activation 

DOR have been shown to undergo degradation after agonist-induced intemalization. 

This has been demonstrated in recombinant neuronal and non-neuronal ceIllines 

transfected with DOR (Malatynska et al., 1996; Trapaidze et al., 1996; Afify et al., 1998; 

Ko et al., 1999), as well as in intact brain tissue (Tao et al., 1998). Intemalization of 

DOR is dependent on clathrin-coated pits, since DOR is colocalized with transferring (a 

marker for this type of endocytosis), and is inhibited by sucrose (which blocks formation 

of clatherin pits) (Ko et al., 1999). In neuronal cells stably transfected with DOR, short 

term treatment with DADLE resulted in ~ 10% of intemalized receptors being recycled to 

the cell surface, while a small portion was retained in the lysosome (Ko et al., 1999). In 

contrast, prolonged agonist treatment (4-24 h) results in profound DOR degradation by 

targeting to the lysosome. This degradation was blocked by chloroquine (an inhibitor of 

lysosomal acidification) (Ko et al., 1999), and DOR was colocalized with lysosome­

associated membrane protein-l and 2 (LAMP-1/2) (Ko et al., 1999; Whistler et al., 2002). 

The recently discovered GPCR associated sorting prote in (GASP) was necessary to target 

DOR to the lysosome, and disruption of the interaction between DOR and GASP resulted 

in DOR recycling (Whistler et al., 2002) . 
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Desensitization of DOR is not dependent on coupling to Gi/o proteins, since it is 

insensitive to pertussis toxin, which suggests that agoni st binding is sufficient to cause 

receptor downregulation (Chakrabarti et al., 1997; Remmers et al., 1998; Zaki et al., 

2001). It also appears that phosphorylation ofDOR by GRKs may be essential to induce 

internalization, but is not necessary to pro duce DOR trafficking to the lysosome 

(Whistler et al., 2001). 

1.7.5 MOR are recycled after agonist activation 

MOR ligands also produce endocytosis (Sternini et al., 1996; Keith et al., 1998; Garrido 

et al., 1999; Trapaidze et al., 2000), but unlike DOR, MOR is predominantly resensitized 

and recycled to the cell surface as seen in cell culture and CNS tissue (Koch et al., 1998; 

Wolf et al., 1999; Trafton et al., 2000; Law et al., 2000a; Koch et al., 2001; Whistler et 

al., 2002; Wang et al., 2003). Aiso unlike DOR, MOR internalization is sensitive to 

pertussis toxin, indicating that G prote in coupling is necessary for endocytosis 

(Chakrabarti et al., 1997; Zaki et al., 2001). 

A direct correlation between MOR phosphorylation and receptor desensitization has been 

demonstrated (Zhang et al., 1996), further establishing a relationship between GRK 

binding and uncoupling of the receptor. In addition, the ability of a f..L agonist to induce 

receptor phosphorylation is also correlated to its efficacy (Yu et al., 1997), and agonists 

such as DAMGO and etorphine are reported to induce rapid receptor phosphorylation and 

internalization (Yu et al., 1997). However, morphine is exceptional as unlike many other 
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Il agonists it is a po or inducer of receptor phosphorylation and subsequent intemalization 

(Arden et al., 1995; Keith et al., 1996; Stemini et al., 1996; Keith et al., 1998; Zhang et 

al., 1998). This effect may be due to agonist-induced conformational changes of MOR 

which make phosphorylation sites on the receptor more or less accessible by GRK. 

Morphine can induce receptor intemalization in the presence of over-expressed GRK-2 

(El Kouhen et al., 1999; Zhang et al., 1998), or over-expressed ~-arrestin (Zhang et al., 

1998; Whistler and Von Zastrow 1998). 

The inability of morphine to cause MOR intemalization may have implications for 

tolerance. Compared to other Il agonists, morphine causes rapid tolerance (Finn and 

Whistler, 2001) and this occurs mainly through adaptations downstream of MOR (NestIer 

and Aghajanian, 1997). It has been proposed that morphine causes accelerated tolerance 

development by providing continuous MOR signalling which is uninterrupted by the 

receptor endocytosis and resensitization that most Il agonists produce (He et al., 2002). In 

support ofthis idea, a low dose ofDAMGO can facilitate the ability of morphine to 

intemalize MOR, and this increased endocytosis results in a reduction in antinociceptive 

tolerance (He et al., 2002). This is a highly controversial hypothesis, as it runs contrary to 

the more conventional ide a that tolerance to chronic morphine is due to downregulation 

of MOR. 

In support of the hypothesis that intemalization of MOR is necessary to induce tolerance, 

Bohn and colleagues found that intemalization of MOR by ~-arrestin 2 was critical for 

the development of morphine tolerance. In this study, ~-arrestin 2 knockout mice did not 
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develop tolerance to the supraspinal antinociceptive effects of morphine (Bohn et al., 

2000), and had a delayed and atlenuated tolerance to spinal morphine antinociception 

(Bohn et al., 2002). p-arrestin 2 knockout mice also showed an enhanced antinociceptive 

response to morphine (Bohn et al., 1999; Bohn et al., 2002). These findings were 

explained by increased ability of MOR to couple to G proteins in pain-related areas 

(P AG, brain stem, spinal cord) in knockout vs. wild type animaIs (Bohn et al., 1999; 

Bohn et al., 2002). In addition, rewarding properties of morphine were also enhanced in 

p-arrestin 2 knockout animaIs, as seen by an increased conditioned place preference 

relative to wild type mice (Bohn et al., 2003). However, there was no difference in the 

physical withdrawal symptoms produced by naloxone between knockout and wild type 

animaIs (Bohn et al., 2000). Overall, these results suggest that MOR intemalization is 

important for morphine induced antinociception and tolerance . 

Although these studies suggest that morphine-induced endocytosis of MOR is important 

in the development oftolerance, one must consider that knockout of p-arrestin 2 affects 

intemalization ofnumerous other types ofreceptors which may explain these results. For 

example, DORs are intemalized after agonist stimulation, and these receptors have been 

shown to modulate tolerance to morphine (as discussed in Section 1.10.2), and may be 

sensitive to manipulations of p-arrestin 2. Furthermore, long term exposure to aIl MOR 

agonists eventually results in tolerance, suggesting that the ability of an agonist to induce 

intemalization may not be important. 
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1.8 Opioid receptor subtypes 

1.8.1 DOR subtypes 

DOR heterogeneity was first proposed based on radioligand binding studies in guinea pig 

cortical membrane and the DOR-rich NG 108-15 cellline. In both tissues the non­

selective opioid agonist eH]diprenorphine was inhibited biphasically by the DOR agoni st 

DSELT (Werling et al., 1988). Further evidence to support the existence ofDOR 

subtypes was provided by eH]DSLET and eH]DPDPE radio ligand binding. In rat brain 

homogenates eH]DSLET was found to label 40% more sites than eH]DPDPE (Sofuoglu 

et al., 1992), and BNTX inhibited eH]DPDPE binding 100 times more potently than 

eH]DSLET (Portoghese et al., 1992). In addition, autoradiographic comparison ofthese 

two radio ligands in the rat brain found that although they produced similar distributions, 

there were sorne regional differences, particularly in the hypothalamus, amygdala, cortex 

and periaqueductal grey (Hiller et al., 1996). 

Behavioural studies also support the existence ofDOR subtypes. For example, in acute 

pain tests supraspinal antinociception by DPDPE was blocked selectively by DALCE and 

BNTX. Conversely, antinociception by i.c.v. deltorphin II and DSLET was blocked by 

naltrindole 5'-isothiocyanate (5'-NTII) and naltriben (Ca1cagnetti et al., 1989; Sofuoglu 

et al., 1991; Jiang et al., 1991; Portoghese et al., 1992; Sofuoglu et al., 1993; Vanderah et 

al., 1994). Further evidence for the existence of DOR subtypes is provided by the 

finding that mice do not become cross tolerant after repeated administration of either 

DPDPE or deltorphin II (Mattia et al., 1991)(Table 1.3). On the basis ofthese behavioural 

findings two opioid receptor subtypes have been proposed: 81 which is stimulated by 
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• DPDPE and blocked by DALCE and BNTX, and 82 opioid receptors were activated by 

deltorphin II and blocked by 5'-NTII and naltriben (for review see Zaki et al., 1996). 

Table 1.3 Putative DOR subtype specifie ligands 

Receptor Subtype Agonist Antagonist 

81 DPDPE BNTX 
DALCE 

82 Deltorphin II Naltriben 
DSLET 5'-NTII 

8 SNC80 Naltrindole 
(combined) ICI 174864 

• Biochemical studies in the brain also support the 81/82 distinction. Basal (Buzas et al., 

1994) and forskolin (Noble and Cox, 1996) stimulated adenylyl cyclase activity was 

inhibited by DPDPE and deltorphin II, and this inhibition was blocked by BNTX and 

naltriben respectively. In addition, G prote in activation induced by 8 agonists also 

adheres to the 81/82 classification. A limited autoradiographic study in the mouse and rat 

forebrain and midbrain found that DPDPE- and deltorphin II-induced CSS]GTPyS 

binding was inhibited by BNTX and naltriben, respectively (Tsuji et al., 1999). 

The existence of 81/82 subtypes has also been proposed in the spinal cord, but 

experimental evidence in support ofthis is equivocal. First, the 82 antagonist naltriben 

was found to selectively antagonize antinociception by intrathecal deltorphin II and not 

• 
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DPDPE in rat (Stewart and Hammond, 1993). Second, in a neuropathic pain model, both 

i.t. DPDPE and deltorphin II significantly reduced allodynia and were antagonized by 

BNTX and 5'-NTII, respectively (Mi ka et al., 2001). Third, electrophysiological studies 

ofDOR in the spinal cord also suggest that DPDPE and deltorphin II differentially reduce 

excitatory postsynaptic currents and only the latter is inhibited by naltriben (Glaum et al., 

1994). Other findings do not appear consistent with the 81/82 distinction in the spinal 

cord. For example, 5'-NTII blocked both i.t. DPDPE and deltorphin II antinociception, 

where DALCE had no effect (Mattia et al., 1992). Additionally, i.t. antisense-targeting 

the DOR inhibited both i.t. DPDPE and deltorphin II induced antinociception in mice 

(Standifer et al., 1994). Based on the above evidence it is not clear if 81/82 subtypes exist 

in the spinal cord . 

1.8.2 Arguments against DOR subtypes 

A major weakness in the case for DOR subtypes is that DPDPE, the classic 81 agonist, 

has questionable selectivity for DOR. Evidence that DPDPE responses may have a 

MOR component is that in the brain the antinociceptive effects ofDPDPE are blocked by 

CTOP (Fraser et al., 2000b), and in the spinal cord i.t. DPDPE is blocked by i.t. CTAP 

(He et al., 2002). Furthermore, MOR knockout mice have a significantly reduced 

response to i.c.v. and i.t. DPDPE (Sora et al., 1997; Hosohata et al., 2000), and antisense 

knockdown ofDOR results in complete loss of deltorphin II-induced antinociception, but 

no concurrent inhibition of DPDPE (Bilsky et al., 1996; Fraser et al., 2000 but see 

Standifer et al., 1994; Tseng et al., 1994) . 
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Biochemical analysis also supports the notion that DPDPE requires functional MOR to 

pro duce its effects. For example, a fraction of DPDPE binding was displaced by 

DAMGO and morphine (Cotton et al., 1985), and DPDPE-induced e 5S]GTPyS binding is 

reduced in MOR knockout animaIs (Hosohata et al., 2000; Park et al., 2000 but see 

Matthes et al., 1996 and Narita et al., 1996). These studies suggest that DPDPE is either 

not selective for DOR, or that DPDPE requires interaction between both DOR and MOR 

in order to produce its effects. 

A further argument against the existence ofDOR subtypes cornes from molecular biology 

studies. In particular, only one clone has been identified for DOR with no 

polymorphisms or viable splice variants (Gaveriaux-Ruff et al., 1997; Wei and Loh, 

2002). The evidence for DOR subtypes may only be an accident of pharmacology and 

could reflect the interp1ay between MOR and DOR (See Section 1.10). 

1.8.3 MOR subtypes 

MOR subtypes were first classified on the basis ofbinding studies in brain homogenates. 

Two subtypes (Ill and 112) were proposed based on the differential binding affinities of 

eH]morphine, eH]enkephalin, and eH]dihydromorphine (Wo10zin and Pasternak, 1981). 

In animal studies an behavioura1 effects of morphine were blocked by ~-funaltrexamine, 

but on1y a few were blocked by the III selective antagonist naloxonazine. The III subtype 

is suggested to mediate the following behavioural effects of morphine: supraspinal 

antinociception, prolactin release, catalepsy, feeding and hypothermia (Pasternak and 

Wood, 1986). Interesting1y, the unwanted side effects of morphine administration -
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physical dependence, respiratory depression, sedation, bradykardia and gastric motility 

were not regulated by this subtype, but by 112 (Gintzler and Pasternak, 1983; Ling et al., 

1984; Pasternak and Wood, 1986). Contrary to this classification, one study has found 

that morphine antinociception and respiratory depression was blocked by naloxonazine 

(Rourke and Shaw, 1984). Nevertheless, if the 1l1l1l2 distinction is true it would suggest 

that a selective III agonist would be an ide al clinical analgesic. To date, no such agoni st 

has been found. 

ClinicaUy, aU analgesics targeted to MOR ultimately result in tolerance after prolonged 

exposure. However, cross tolerance to other opio id analgesics is incomplete, which 

argues for heterogeneity in MOR populations. The discovery that the morphine 

metabolite, morphine 6~ glucuronide (M6G) acted distinctly from morphine further 

complicated the nature and characterization of MOR subtypes. Unlike morphine, M6G is 

antagonized by low concentration of3-0-methylnaltrexone (Walker et al., 1999), and is 

antinociceptive in CXBK mice (which are insensitive to morphine )(Rossi et al., 1996). In 

addition, M6G does not develop cross tolerance to morphine (Pasternak, 2001). 

Antisense targeting different sequences of the MOR transcript suggests that morphine 

and M6G exert their antinociceptive effects via different splice variants. For example, 

exons 2 and 3 appear critical for M6G antinociception but not that of morphine, exon 1 is 

necessary for supraspinal morphine analgesia, and exon 4 is important for both 

supraspinal and spinal effects of morphine (Rossi et al., 1995a; Rossi et al., 1995b). 

Knockout studies support the distinction between morphine and M6G antinociception . 
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MOR knoekout miee generated by deletion of exon 1 (Sora et al., 1997; Sehuller et al., 

1999) or of exon 2 and 3 (Matthes et al., 1996; Loh et al., 1998) lost their antinoeieeptive 

response to morphine. However, knoekout mice with an ex on 1 deletion eontinued to 

respond to M6G, and this response was bloeked by naloxonazine or subsequent 

administration of antisense to exon 2 (Sehuller et al., 1999). 

These studies resulted in the seareh for spliee variants of MOR, and to date seven have 

been found (MOPl, MOPIA-F). AH identified splice variants possess exon 1-3, only 

MOPI has exon 4, and the rest vary in their 3' terminus (Pan et al., 1999; Pan et al., 

2000). However, whether these spliee variants have any real meaning is debatable. It is 

diffieult to reeoneile these spliee variants with the M6G studies, sinee an of these spliee 

variants contain exons 1-3. Thus, it is diffieult to understand how morphine-indueed 

antinoeieeption is retained after knoekdown of exon 2 and 3. EquaHy, it is unclear how 

M6G antinoeiception is retained after knoekdown or knoekout of exon 1. Furthermore, 

autoradiographie analysis of triple opio id reeeptor knoekout mice, where exon 1 of the 

MOR gene was deleted, reveal that naloxone binding was completely abolished (Clarke 

et al., 2002). Since opioid agonists are defined as naloxone displaceable (Dhawan et al., 

1996), M6G could be acting at a non-opioid receptor. 

1.9 Antisense approaches to characterize opioid receptors 

The opioid receptors have been extensively targeted by antisense. In particular, much of 

the evidence for MOR heterogeneity cornes from antisense studies. There are several 

advantages to the antisense approach. First, unlike knock-out models one need not worry 
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about unwanted alterations that might occur during genetic development. For example, 

the confusing supraspinal results reported for DOR knockout mice (see Section 1.6), may 

be explained by a compensatory response to gene deletion. Second, antisense approaches, 

unlike chronic antagonist exposure, do not directly bind to biologically active receptors 

which can result in unexpected responses. For instance, chronic administration of the 

opioid antagonist naltrexone results in upregulation of DOR in rat brain (Belcheva et al., 

1994). Third, since antisense only targets a short sequence ofmRNA it can be used to 

identify alternative splice variants, as has been determined for MOR subtypes (Pasternak, 

2001). 

However, commonly used antisense chemistries (phospodiester and phosphorothioate) 

are limited. The biggest problem is that first generation antisense compounds often lack 

efficacy and specificity. In addition, the most frequently used antisense reagent, 

negatively charged phosphorothioates, can have nonspecific interactions with proteins 

resulting in toxicity. Furthermore, these antisense chemistries activate RNase H, which 

recognizes DNA/RNA duplexes and c1eaves the RNA portion (Lima and Crooke, 1997). 

This enzyme can also recognize unstable complexes formed by transient hybridization of 

the sequence to non-target mRNA (Stein, 2000). 

The advent of the chemically novel peptide nucleic acid (PNA) oligomers may solve 

sorne ofthese problems. Relative to first generation antisense compounds, PNAs have a 

superior hybridization affinity and specificity (Nielsen, 2000), therefore relative to 

phosphorothioates shorter sequences can be use to target mRNA. In addition, PNA do 
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not activate RNase H, thereby foregoing irrelevant c1eavage ofnon-target mRNA (for 

review see Larsen et al., 1999). A further advantage of PNAs is that systemic 

administration ofthese oligomers can have antisense effects in the brain (Tyler et al., 

1999; McMahon et al., 2001; Tyler-McMahon et al., 2001; McMahon et al., 2002; Boules 

et al., 2004). 

PNA antisense has been used successfully to target both MOR and DOR. Our group 

found that i.c.v. administration ofPNA antisense to DOR, inhibited antinociceptive and 

locomotor stimulant effects of deltorphin II (Fraser et al., 2000a). Furthermore, relative 

to control animaIs, antisense pretreated rats had a 25% decrease in DOR e5S]GTPyS 

responses in whole brain homogenates (Fraser et al., 2000a), with no detectable change in 

radioligand binding. From this study it can be conc1uded that the e5S]GTPyS assay is a 

more sensitive measure to detect receptor changes after antisense pretreatment. 

Rat MOR has also been successfully targeted with PNA antisense given i.c.v. (Tyler et 

al., 1998) or intraperitoneally (McMahon et al., 2001). Antisense pretreatment resulted in 

a significant (~70%) decrease in antinociceptive responses to systemic morphine in the 

tail flick test. In vitro analysis was limited to the periaqueductal grey, where Western 

blot showed a ~ 50% reduction of MOR protein in antisense treated rats (Tyler et al., 

1998; McMahon et al., 2001). With regards to these studies, one must consider that 

injections of antisense directly into the PAG may result in nonspecific damage that would 

affect pain perception in general. Further, systemic administration ofPNA may produce 

antinociception by blocking peripheral MOR. To date, a thorough examination ofPNA 
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antisense effects in the brain has not been completed. We attempted to characterize the 

neuroanatomical extent ofPNA antisense knockdown after i.c.v. administration with the 

eSS]GTPyS in Chapter 2. 

1.10 Interactions between MOR and DOR 

1.10.1 Modulation of MOR by DOR 

There are many reports of acute DOR agonists potentiating MOR antinociception. For 

instance, in mice a low dose of leu-enkephalin caused a leftward shift in the dose 

response curve to systemic morphine, nearly halving the ED50 (Vaught and Takemori, 

1979; Lee et al., 1980; Barrett and Vaught, 1982). In addition, studies where the more 

DOR selective drug DPDPE was used, subantinociceptive doses given i.c.v. were able to 

potentiate the effects ofi.c.v morphine, and this potentiation was blocked by the 

administration of the DOR antagonist ICI 174864 (Heyman et al., 1989). In the spinal 

cord, the MOR agoni st DAMGO and a low doses of DPDPE had synergistic responses 

(Riba et al., 2002), although DPDPE was unable to modulate DAMGO or sulfentanil 

antinociception in the mouse brain (Heyman et al., 1989). Additional evidence of MOR 

modulation by DOR was that the DOR antagonist DALCE could block DOR mediated 

antinociception in the mouse tail flick test, but could not block DPDPE potentiation of 

morphine-induced antinociception (Jiang et al., 1990; Porreca et al., 1992). These studies 

led to a proposed distinction between DORs which modulate morphine antinociception, 

and those that are responsible for DOR antinociception. 
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Further interactions between MOR and DOR are seen with respect to the rewarding and 

physical dependence induced by cS agonists. MOR knockout mice do not show a 

conditioned place preference to deltorphin II, nor do they show somatic signs of 

withdrawal after chronic exposure to the same cS agonist (Hutcheson et al., 2001). 

1.10.2 The role of DOR in morphine tolerance 

Convergent evidence suggests that activation ofDOR is necessary for the induction of 

tolerance to antinociceptive effects of morphine. Thus, MOR tolerance can be inhibited 

by ablating DOR expression or function by knockout (Zhu et al., 1999), antisense (Kest 

et al., 1996), and pharmacological approaches (Adelhamid et al., 1991; Hepburn et al., 

1997 but see Fundytus et al., 1995). The additional observation that preproenkephalin 

knockout mice do not show morphine tolerance (Nitsche et al., 2002), suggests that 

stimulation ofDOR by enkephalin may be necessary to induce morphine tolerance. 

Regulation of morphine tolerance by DOR may be explained by the increased number of 

DOR sites seen after continuous morphine infusion (Gouarderes et al., 1993a). 

It is controversial whether DOR activation plays an important role in morphine 

withdrawal. Physical withdrawal symptoms are reported to be attenuated, but not 

abolished, by coadministration of naltrindole with morphine (Fundytus et al., 1995; 

Suzuki et al., 1997), and after antisense knockdown ofDOR (Sanchez-Blazquez 1997). 

However, DOR and preproenkephalin knockout mice did not show attenuated responses 

to naloxone-precipitated withdrawal (Zhu et al., 1999; Nitsche et al., 2002). Unlike 

tolerance to the antinociceptive effects of morphine, which is completely lost after 
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inhibition ofDOR function, it is unclear ifphysical withdrawal is regulated by this 

receptor. 

1.10.3 J.l and ô opioid receptor complexes 

Interactions between f.l and Ô agonists may be better understood by close physical 

interactions between MOR and DOR. Biochemical evidence for complexed MOR and 

DOR came from binding studies using the opioid agoni st DADLE, which was believed to 

have high and low affinity binding sites for DOR and MOR respectively. It was later 

proposed that the high affinity site was a DOR noncomplexed site (ôncx), and the low 

affinity site was DOR complexed to MOR (ôcx) (Rothman et al., 1984). There fore , 

under assay conditions which favoured the low affinity site (high Na + and Mn ++), 

eH]DADLE would detect the complexed opioid receptors (Rothman et al., 1984; Bowen 

et al., 1988). 

Cloning of the f.l and Ô opioid receptors allowed further investigation into the nature of 

opioid receptor interactions. Two separate groups obtained evidence for MORIDOR 

oligomerization (George et al., 2000) or dimerization (Gomes et al., 2000) using co­

immunopercipitation in transfected cell systems. MORIDOR oligomers may use 

alternate Ga subunits relative to either receptor alone, since inhibition by DAMGO or 

DPDPE of forskolin-stimulated cAMP production possessed altered sensitivity to 

pertussis toxin in those cells that expressed the oligomers (George et al., 2000). 

However, this altered G prote in coupling was not detected in another cell expression 
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system (Law et al., 2005). Heterodimerization may also result in the complexed 

receptors sharing the same G prote in heterotrimer (Law et al., 2005). 

In vivo, heterodimerization of Il and Ô opioid receptor has also been detected in mouse 

spinal cord membranes, and this interaction is proposed to be responsible for the 

potentiation of intrathecal morphine by the DOR antagonist TIPP\jf (Gomes et al., 2004). 

The physical interaction between MOR and DOR is thought to stabilize either receptor in 

the active receptor conformation when the other is occupied, thus explaining how a DOR 

antagonist may potentiate morphine (Gomes et al., 2004). 

In assessing the evidence for MORIDOR heterodimers, one should keep in mind that in 

order for the se two opioid receptors to directly interact, they must be coexpressed on the 

same cells and in the same subcellular compartment. Neuroanatomically MOR and DOR 

are expressed in similar but not identical CNS regions (Mansour et al., 1995b). Even 

when the two receptors are anatomically in the same CNS structure, they may not be 

coexpressed on the same cells. For example, an electron microscopic examination of 

DOR and MOR in the superficiallayers of the cervical spinal cord, found that 21 % of 

MOR labelled soma and dendrites also expressed DOR, and only 6% ofDOR labelled 

cells coexpressed MOR (Cheng et al., 1997). Furthermore, even if the two receptors are 

expressed by the same neurons, their subcellular distributions may prevent any physical 

interactions. As discussed in section 1.3.5, ultrastructurallocalization ofDOR is 

primarily on intracellular vesic1es, while MOR is preferentially expressed on the cell 

surface (Svingos et al., 1995; Svingos et al., 1996; Svingos et al., 1998; Svingos et al., 

57 



• 

• 

• 

1999; Wang and Pickel, 2001; Aicher et al., 2001; Cahill et al., 2001a; Garzon and 

Pickel, 2002). However, there is evidently enough DOR on the cell surface to be 

behaviourally relevant, and perhaps a small number of MORIDOR interactions would be 

enough to have a functional effect. The in vivo synergy se en between MOR and DOR 

agonists may also be explained by synaptic interactions between neurons expressing each 

receptor, or by a less direct interaction at the systems level. 

1.10.4 The effects of morphine on DOR 

The clinical use of 8 agonists in pain management is hindered because these agonists are 

not as efficacious as their Il counterparts. The sensitization ofDOR by morphine 

pretreatment may make DOR agonists a more viable analgesic target. The effects of 

morphine pretreatment were thoroughly characterized by one group that found that a 48 

hour exposure to morphine resulted in behavioural sensitization of spinal DOR (Cahill et 

al., 2001b; Morinville et al., 2003; Morinville et al., 2004). Morphine pretreated animaIs 

possessed an enhanced response to intrathecal deltorphin II in the hot plate and formalin 

tests. The effects of de1torphin II were mediated by DOR, since they were blocked by 

naltrindole. Numerous lines of evidence indicate that MOR stimulation by morphine is 

probably responsible for this DOR enhancement. First, the concurrent administration of 

CTOP with morphine abolished this DOR effect. Second, no sensitization to deltorphin 

II was observed in MOR knockout mice pretreated with morphine (Morinville et al., 

2003). Third, many Il agonists caused this enhancement ofDOR (Morinville et al., 2003). 

This form of sensitization appears to be the result of increased trafficking of DOR to the 

cell surface. There is no concurrent increase in DOR prote in abundance or mRNA 
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expression after morphine pretreatment (Cahill et al., 2001 b), which could account for the 

transient nature ofthis sensitization (Morinville et al., 2003). Systemic morphine 

pretreatment does not appear to change DOR expression throughout the CNS, since 

increases have been detected in the lumbar spinal cord, nucleus accumbens and 

neostriatum, but not in the frontal cortex (Lucido et al., 2005). To date, only changes in 

DOR spinal antinociception have been characterized using this morphine regimen, and it 

has yet to be determined if the upregulation ofDOR in the extended striatum translates to 

enhanced responses to the locomotor stimulant or rewarding effects of 8 agonists. 

Additionally, electrophysiological measures have detected sensitization ofDOR after a 

longer morphine dosing regimen that results in morphine tolerance. Unlike the 48 hour 

dosing regimen used in the previous studies, in this study rodents had a five day exposure 

to a slow release morphine preparation, which was previously reported to induce physical 

dependence to morphine (Chieng and Christie, 1996; Ingram et al., 1998). This morphine 

pretreatment resulted in an induction of functional DORs in the periaqueductal grey, an 

area where DOR agonists do not normally induce presynaptic inhibition of GABA 

currents (Hack et al., 2005). This gain offunction was also dependent on MOR and~­

arrestin, as observed with knockout mice (Hack et al., 2005). 

Sensitization of DOR-mediated effects after morphine exposure does not appear to be 

exclusive to antinociception. In rats, the locomotor stimulation induced by 

intracerebroventricular deltorphin II was greatly enhanced after chronic morphine 

pretreatment (Melchiorri et al., 1992). Importantly, this study found that enhancement of 
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DOR was greatest with chronic morphine regimens, either with daily injections of 

morphine or continuous infusion by minipump. Interestingly, sensitization to the 

locomotor stimulant effect of deltorphin II not only continued, but was further enhanced 

several weeks after morphine cessation. To date, the effects of chronic morphine 

pretreatment and withdrawal have not been assessed in antinociceptive assays. This issue 

is addressed in Chapter 4. 
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STATEMENT OF PURPOSE 

The overall aim of this the sis was to characterize functional responses of Il and Ô opioid 

receptors in rat central nervous system. Behaviourally relevant and G prote in coupled 

MOR and DOR receptor populations were examined using a number of different 

approaches. 

This thesis grew out oftwo related interests: peptide nuc1eic acid antisense and opioid 

receptors. As discussed in section 1.9, when 1 started my thesis work, the antisense 

approach was thought to have considerable potential as a tool for elucidating the 

physiological roles of proteins. Among the different antisense chemistries available, 

PNA appeared particularly promising but had been little characterized in vivo. We had 

demonstrated profound PNA-induced knockdown of DOR-mediated behavioural 

responses with little evidence of altered DOR prote in in vitro (Fraser et al., 2000a). The 

first aim of my thesis was to extend this approach to MOR. Although behavioural 

knockdown of MOR by phosphorothioate antisenses has been previously reported (Rossi 

et al., 1994; Rossi et al., 1995a; Rossi et al., 1995b; Chen et al., 1995b; Shah et al., 1997; 

Leventhal et al., 1997; Tyler et al., 1998; McMahon et al., 2001), very few studies have 

characterized the in vitro changes associated with this knockdown (Shah et al., 1997; 

Tyler et al., 1998; McMahon et al., 2001). Behavioural and biochemical knockdown of 

MOR after intraparenchymal or systemic administration of peptide nuc1eic acid (PNA) 

had been determined, but only one brain area was examined (Tyler et al., 1998; 

McMahon et al., 2001). Therefore, the first aim of the thesis was to characterize the 

neuroanatomical extent ofknockdown ofPNA antisense targeting MOR. 
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The second aim of this thesis was to compare in vitro DOR functional responses with 

radioligand binding. DOR activation can pro duce numerous behavioural effects, 

including antinociception. However, ultrastructurallocalization ofthis receptor indicates 

that it is primarily located on intracellular membranes (See Section 1.3.5). Anatomical 

distribution of the DOR has been well characterized using radioligand binding and 

immunohistochemistry. However, neither ofthese methods measure any functional 

DORs, i.e. those that are coupled to their G proteins. Thus, the aim of Chapter 3 was to 

autoradiographically compare DOR agonist and antagonist radioligand binding with a 

measure ofDOR function, namely deltorphin II-induced eSS]GTPyS binding. 

The final aim ofthis thesis was to observe the effects of chronic morphine pretreatment 

on behavioural responses mediated by DOR. Numerous interactions have been reported 

between the Il and Ô opioid receptors (see Section 1.10). Recent studies have determined 

that short term morphine pretreatment can result in a sensitization of brain and spinal 

DORs (Cahill et al., 2001 b; Morinville et al., 2003; Hack et al., 2005). Moreover, 

according to one report (Me1chiorri et al., 1992) chronic morphine pretreatment results in 

a dramatic cross sensitization to the locomotor stimulant effects of deltorphin II, and this 

sensitization increases after morphine withdrawal. Therefore, the primary aim of Chapter 

4 was to examine the effects of chronic morphine pretreatment and withdrawal on DOR 

mediated antinociception. 
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INTERVENING SECTION 1 

The initial aim of this thesis had been to characterize the effects of peptide nucleic acid 

(PNA) antisense in rat CNS. MOR was used as a model system since a published PNA 

antisense sequence targeting MOR was already known, and both in vivo and in vitro 

knockdown of this receptor could be determined. The aim of this chapter was therefore 

to survey the neuroanatomical extent of knockdown after antisense pretreatment. 

Although the behavioural knockdown of MORs using antisense oligodeoxynucleotides 

has been weIl characterized, very few of these studies have examined the corresponding 

in vitro knockdown after antisense pretreatment. 

What this study actually succeeded in showing was that PNA antisense targeting MOR 

caused a complete inhibition ofDAMGO-induced antinociceptive responses in the paw 

pressure test, without causing any change in DOR-mediated responses. However, there 

was no detectable change in MOR in vitro responses as measured by DAMGO-induced 

e5S]GTPyS autoradiography, [125I]FK 33824labelling or immunoautoradiography. 

Overall, these results suggest that there may be a small population of MORs which are 

responsible for the behavioural effects of Il agonists but which are too small to detect 

with any of the assays used. 
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ABSTRACT 

The goal of this study was to detennine the neuroanatomical extent of mu opioid receptor 

knockdown in central nervous system (CNS) following intracerebroventricular (i.c.v.) 

administration of peptide nuc1eic acid antisense. Rats received subchronic i.c.v. injections 

of anti-mu opio id receptor antisense, mismatch or vehic1e and were tested for paw 

pressure latency following i.c.v. mu opioid receptor agoni st ([D-Ala2
, NMe-Phe4

, Gly­

on-enkephalin; DAMGO) or delta opioid receptor agonist ((+)-4-[(aR)-a-((2S,5R)-4-

Allyl-2,5-dimethyl-l-piperazinyl)-3-methoxybenzyl]-N,N-diethylbenzamide; SNC80). 

The anti-mu opioid receptor antisense (but not mismatch) sequence abolished DAMGO­

induced antinociception with no reduction in the delta opio id receptor-mediated response. 

In contrast, post mortem receptor autoradiographic analysis of CNS areas revealed no 

change in mu opioid receptor functional response (e5S]GTPyS assay) or receptor 

labelling (C25I]FK-33824 and mu opioid receptor immunoautoradiography). These results 

provide further evidence for antisense-induced knockdown at the behaviourallevel in the 

absence of c1ear changes at the tissue level. 
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1. INTRODUCTION 

Peptide nucleic acids are synthetic deoxynucleotide analogs based on a pseudo-peptide 

backbone (Nielsen et al., 1991). Their chemical properties confer several potential 

advantages for antisense applications. For example, peptide nucleic acid antisenses have 

high affinity for mRNA and poor tolerance for base mismatches (Dias et al., 1999; Larsen 

et al., 1999; Ray and Norden, 2000). Peptide nucleic acids are also highly resistant to 

nucleases and proteases (Demidov et al., 1994). The polyamide backbone ofpeptide 

nucleic acids is not only achiral but also charge-neutral, minimizing interactions with 

proteins (Larsen et al., 1999), and at effective doses, peptide nucleic acids have not been 

associated with toxicity (Fraser et al., 2000a; Turner et al., 2003). An additional 

advantage is that peptide nucleic acids act independently of ribonuclease H, thereby 

avoiding nonspecific effects resulting from cleavage of non-target mRNA (Stein, 2000). 

As antisense agents, peptide nuc1eic acids have proven to be efficacious and target­

selective both in vitro (Aldrian-Herrada et al., 1998; Pooga et al., 1998; Cutrona et al., 

2000; Turner et al., 2003) and in vivo (Tyler et al., 1998; Pooga et al., 1998; Tyler et al., 

1999; Fraser et al., 2000a; McMahon et al., 2001; Tyler-McMahon et al., 2001; Rezaei et 

al., 2001; Turner et al., 2003). Antisense effects have been reported in rodent brain and 

spinal cord, with evidence of CNS efficacy not only after central injection but even after 

systemic administration (Tyler et al., 1999; McMahon et al., 2001; Tyler-McMahon et al., 

2001; McMahon et al., 2002; Turner et al., 2003). 
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The anatomical extent of prote in knockdown following central peptide nuc1eic acid 

antisense administration is largely unknown (Tyler et al., 1998). To address this question 

in the present study, we used a peptide nuc1eic acid sequence that was previously shown 

to produce profound behavioural effects, with a concomitant reduction in brain mu opio id 

receptor (~55%) in the PAG and hypothalamus (Tyler et al., 1998; McMahon et al., 

2001). In the present study, mu opioid receptor prote in knockdown was assessed not 

only by radioligand binding and immunohistochemistry, but also by eSS]GTPyS binding 

which is a potentially more sensitive measure (Fraser et al., 2000a). For greater 

anatomical resolution, mu opio id receptor abundance and function were assessed using 

tissue autoradiography. 
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2. MATERIALS AND METHODS 

2.1 AnimaIs 

Male Sprague-Dawley rats (325-350g; Charles River, St Constant, QC, Canada) were 

housed in groups of two in a temperature- and humidity-controlled animal colony, lit 

from 7 a.m. to 7 p.m. Food and water were available ad libitum. AlI experiments were 

approved by the McGill University Animal Care Committee, in accordance with 

Canadian Council on Animal Care guidelines. 

2.2 Surgery 

Rats were anesthetised by intraperitoneal injection ofketamine/xylazine (80/16 mglkg) 

solution (Bioniche, Belleville, ON, Canada and Novopharm, Toronto, ON, Canada) and 

placed in a stereotaxie device. Each animal was implanted with a 24-gauge guide 

cannula (Plastics One, Roanoke, V A, USA) extending into the right lateral ventricle of 

the brain (coordinates from bregma: AP, -0.8 mm; ML, 1.5 mm; DV, 4.1 mm) and fixed 

with dental cement. Rats were given dipyrone analgesic (100 mg/kg, V étoquinol, 

Lavaltrie, QC, Canada) immediately following surgery. To prevent occlusion, guide 

cannulae were kept patent by stainless steel inserts which extended 0.5 mm beyond the 

cannulae tip. Rats were allowed 5-7 days to recover from surgery before random 

allocation into treatment groups. 
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2.3 Peptide nucleic acid antisense constructs 

AH peptide nucleic acid sequences were donated by App1ied Biosystems (Framingham, 

MA). Peptide nucleic acid sequences were HPLC purified as TF A salts then converted to 

HC1 salts by freeze-drying from a di1ute aqueous HC1 solution. The comp1eteness of the 

conversion was confirrned by ion exchange chromatography. The anti-mu opioid 

receptor peptide nucleic acid sequence (5'-CAG CCT CTT CCT CT-3') and the 

mismatch sequence (CeG CAT ceT CTT CT) were designed according to Tyler et al. 

(1998). Peptide nuc1eic acid sequences were reconstituted in a stock solution of sterile 

ddH20 (1 mM) and stored at 4°C. On each antisense treatment day peptide nucleic acid 

antisense was di1uted to 0.1 mM (1 nrno1l10 J..l1) in Du1becco's phosphate buffered saline 

(DPBS; 0.5 mM MgCh, 2.7 mM KC1, 1.5 mM KH2P04, 7.3 mM NaC1, 8.0 mM 

Na2HP04), and the concentration was verified by deterrnining the absorption of the 

solution at a wave1ength of 260 nrn. The foHowing formula was used to quantify the 

peptide nucleic acid concentration: (A260/extinction coefficient of the sequence) x 

dilution factor. The presence of soluble aggregates of peptide nucleic acid was a1so 

scanned for at 300 nrn, and was found to be neg1igib1e for aH sequences used. 

2.4 lntracerebroventricular injections 

Antisense or vehicle (DPBS) was administered i.c.v. in daily bolus injections for 5 days. 

Antisense and opioid drugs were administered by the i.c.v. route to conscious rats 

through an indwelling 30 gauge injection cannu1a (Plastics One) connected via PE50 
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• polyethylene tubing to a 100 !lI Hamilton syringe. Solutions (10 !ll) were injected over 1 

minute, and the injection cannula was left within the guide cannula for an additional30 

seconds. 

2.5 Antinociceptive testing 

Each rat was tested on only one occasion. The same investigator performed aIl 

antinociceptive testing. Acute mechanonociception was measured using an analgesy 

meter (Ugo Basile, Varese, Italy). Briefly, a rat was gently restrained by hand and an 

increasing force was gradually applied to the right hind paw until the threshold force 

causing the rat to withdraw its paw was determined. A maximal eut-off force of 510 g 

was implemented for this study. Data are presented as percentage maximum possible 

• effect (%MPE), calculated as follows: %MPE = [(response-baseline)/(cut-off-baseline)] x 

• 

100%. 

AnimaIs were tested 18-20 hours after the last antisense injection. In all experiments, 

baseline response thresholds were measured immediately before the administration of 

opioid agonist. The antinociceptive response to opio id agonists was measured at 15, 30, 

45, and 60 minutes after drug treatment. ED80 doses ofDAMGO (0.2 nmol), and 

SNC80 (400 nmol) were determined by Fraser et al. (2000b) . 
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2.6 Preparation of tissue 

Rats were decapitated 3 hours after the hour-long test session and the brains and spinal 

cords were rapidly removed, frozen in 2-methylbutane (-50 Oc for 30 s) and stored at-40 

oC. Brain and spinal cord sections were cryostat-cut at 20 !lm. AU sections were taken 

according to Paxinos and Watson (1997). Sections for the caudate putamen were cut 

between 10.7 and 7.7 mm above the interauralline. The thalamic and periaqueductal 

grey sections were taken between 6.44 and 4.2, and 3.2-1.2 mm above the interauralline, 

respectively. Brain stem sections were cut between 1.3 and 2.6 mm below the interaural 

line. Sections were thaw-mounted onto gelatin-coated slides, air dried at room 

temperature for 10-15 min and vacuum dried with desiccant at 4°C overnight. Slides 

were then stored at -40°C until further use . 

2.7 t 5S]GTPyS autoradiography 

eSS]OTPyS autoradiography was performed using a protocol modified from Hyytia et al. 

(1999). Sections were thawed at room temperature and rehydrated for 20 minutes in 

assay buffer containing 50 mM Tris HCI, 5 mM MgCb, 100 mM NaCI, and 1 mM EDTA 

(pH 7.4). Sections were then preincubated for 1 hour with assay buffer plus 2 mM 

guanosine 5'-diphosphate sodium salt (ODP; Sigma Chemical Co., St. Louis, MO, USA) 

and 1 !lM 8-cyclopentyl-1 ,3-dipropylxanthine (DPCPX, adenosine A( 1) receptor 

antagonist, Sigma Chemical Co., St. Louis, MO, USA). The sections were incubated in 

plastic slide mailers for 1.5 hours with assay buffer plus 2 mM ODP, 1 !lM DPCPX, 1 

96 



• 

• 

• 

mM dithiothreitol, 225 pM guano sine 5'(y}5S-thio) triphosphate (e5S]GTPyS, 1250 

Ci/mmol, Perkin Elmer Life Science Products, Woodbridge, ON, Canada). Slide mailers 

were allocated to three incubation conditions: basal (i.e. no agoni st present), agoni st 

EC50 (with added mu opioid receptor agonist DAMGO 0.3 !lM (Sigma)), agoni st ECIOO 

(10 !lM DAMGO) and non-specific (i.e. 10 !lM unlabelled GTPyS (Sigma) with no 

agoni st present). Sections were then rinsed in ice-cold buffer (50 mM Tris HCI and 5 

mM MgCh, pH 7.4, 2 x 5 min), and distilled water (2s), then blow-dried. Sections were 

exposed to X-ray film for 24 hours in light-proofX-ray cassettes. Co-exposure with 

[14C] microscale autoradiographic standards (American Radiolabeled Chemicals, Inc., St. 

Louis, MO, USA) permitted quantification of the e5S] radioisotope (Miller, 1991). The 

films were processed with D19 developer and GBX fixer (Kodak) . 

2.8 (25I]FK-33824 autoradiography 

e25I]FK-33824 autoradiography was performed using a protocol modified from Fraser et 

al. (1999). [125I]FK-33824 was donated by AstraZeneca R&D Montreal (specific activity 

2200 Ci/mmol). Sections were thawed at room temperature and incubated at room 

temperature for 2 hours in assay buffer comprising 50 mM Tris HCI, 3 mM MgCh, 0.1 % 

bovine serum albumin (pH 7.4) and a non-saturating concentration of 0.03 nM [125I]FK_ 

33824. Non-specific binding was defined by the addition of the highly selective mu 

opioid receptor antagonist D-Phe-Cys-Tyr-D-Trp-Om-Thr-Pen-Thr-NH2 (CTOP, 1 !lM; 

Tocris, Ellisville, MO, USA). Following incubation, sections were rinsed in ice-cold 

wash buffer (50 mM Tris HCI, 3 mM MgCh; 3 x 5 min) and distilled water (2 s), then 
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blow-dried. Sections were exposed to Kodak X-OMAT AR X-ray film together with 

[ 1251] microscale autoradiographic standards (Amersham Pharmacia Biotech, Piscataway, 

NY, USA) for 24 hours in light-proofX-ray cassettes. The films were processed with 

D19 developer and GBX fixer (Kodak). 

2.9 Immunoautoradiography 

Immunoautoradiography of the mu opio id receptor was performed using a protocol 

modified from Grant and Clarke (2002). Sections were post-fixed in an aqueous solution 

containing 6% paraformaldehyde, 20% absolute a1cohol, 20% ethylene glycol, 10% 

glycerol, and 0.32 M sucrose for 1 hour at -20°C. After washing (2 x 5 min then 1 x 30 

min) in buffer (0.1 M phosphate buffer in 0.1 M NaCI (PBS)/0.3% Tween-20), sections 

were incubated in a bloc king solution containing 30% skim milk powder (Carnation), 3% 

goat serum (Vector) and 0.05% NaN3 for 2 hours at room temperature. After washing 

with buffer (1 x 10 min), sections were incubated with rabbit polyc1onal anti-mu opio id 

receptor antibody (1 :5000; Neuromics Inc. Minneapolis, MN, USA) in 1.5% goat serum 

and 0.05% NaN3 overnight at 4°C. As a control, non-specific binding was determined by 

incubating adjacent sections with 0.3 mM blocking peptide (NHQLENLEAETAPLP; 

Sheldon Biotech, McGill University, Montreal, QC, CANADA). After washing with 

buffer (1 x 5 min, 1 x 10 min, 1 x 30 min), the secondary antibody [125I]-labelled goat 

anti-rabbit IgG (Perkin Elmer Life Science Products; specifie activity 1200 Ci/mmol) 

was applied (8 pM) for 1 hour at room temperature. This antibody was added to a 

solution containing 10% skim milk powder, 5% goat serum, and 0.05% NaN3. Sections 
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were rinsed in ice-cold buffer (2 x 30 min), dipped briefly in distilled water, then blow­

dried. Sections were exposed to Kodak X-OMAT AR X-ray film together with [1251] 

microscale autoradiographic standards (Amersham Pharmacia Biotech, Piscataway, NY, 

USA) for 3 days in light-proofX-ray cassettes. The films were processed with D19 

developer and GBX fixer (Kodak). 

2.10 Quantitative image analysis 

Film autoradiographs were quantified using an M4 MCID computer-based system 

(Imaging Research, St. Catherines, ON, Canada). Specific binding was determined by 

subtraction of non-specific binding measured in adjacent sections. Agonist-stimulated 

eSS]GTPyS binding was calculated by subtracting basal binding from agonist stimulated 

binding. Regions ofinterest were identified by reference to adjacent Nissl-stained 

sections. 

2.11 Statistical analysis 

Non-linear regression analysis of concentration-response data (sigmoidal curve fit) was 

performed by GraphPad Prism version 4.00 for Windows (GraphPad Software, San 

Diego California USA, www.graphpad.com). Multiple comparisons (i.e. t-tests with 

Bonferroni adjustment) and power analyses were performed using Systat vlO.2 (SPSS 

Inc., Chicago, IL, USA) . 
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2.12 Overview of experiments 

Four separate experiments were performed using different sets of animaIs. In each 

experiment, animaIs were pretreated with antisense or vehic1e, tested behaviourally, and 

sacrificed for in vitro analysis. Experiment 1 investigated target selectivity in vivo (i.e. 

delta opioid vs. mu opioid receptor mediated antinociception), following which evidence 

offunctional knockdown in vitro (esS]GTPyS as say) was sought in the caudate-putamen 

and in brain areas that mediate mu opioid receptor antinociception. Experiment 2 tested 

whether behavioural knockdown was associated with changes in mu opioid receptor 

labelling (e25I]FK-33824 and immunoautoradiography) in the brain. Experiment 3 

investigated sequence selectivity in vivo (i.e. antisense vs. mismatch peptide nuc1eic 

acid). Experiment 4 tested for in vitro changes in the spinal cord that might account for 

the behavioural knockdoWll . 
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3.RESULTS 

3.1 Antisense abolished mu opioid receptor-mediated antinociception. 

In all four experiments, vehicle pretreated animaIs responded maximally or near 

maximally to the mu agonist DAM GO in the paw pressure assay. The peak drug effect 

occurred at 15 minutes post i.c.v. injection. In Experiments 1 and 3, pretreatment with 

anti-mu opioid receptor peptide nucleic acid antisense abolished this antinociceptive 

effect, as illustrated in Fig. 1. This effect was also seen in Experiments 2 and 4; thus no 

DAMGO response was observed after antisense pretreatment (mean ± SEM percent 

maximal possible effect, -1.6 ± 4.1, and 3.3 ± 5.8 respectively) . 

In order to test for target selectivity, antisense-pretreated rats were tested with the delta 

opioid receptor agonist SNC80 (Fig. lA). The anti-mu opioid receptor antisense did not 

detectably reduce the response to this drug (P>0.2). In a test for sequence selectivity, 

pretreatment with a mismatch peptide nucleic acid sequence did not significantly alter the 

response to DAMGO (P>0.3, Fig. lB). Lastly, pretreatment with antisense did not alter 

baseline antinociceptive responses (data not shown). 

3.2 Anti-mu opioid receptor peptide nucleic acid antisense did not pro duce a detectab!e 

knock-down in CNS tissues 

The functional response of the mu opio id receptor was determined in vitro using 
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• eSS]GTPyS autoradiography. Based on an initial characterization (Fig. 2), an 

approximate EC50 and maximal concentration ofDAMGO (0.3 and 10 !lM) were 

selected for further testing in brain and spinal cord. The mu opioid receptor agoni st 

DAMGO increased eSS]GTPyS binding in mu opio id receptor rich areas, consistent with 

the pattern of conventional radio ligand binding ([12SI]FK-33824) and 

immunoautoradiography (Fig. 3). 

In aIl four experiments, the caudate putamen and the periaqueductal grey were assessed 

for in vitro changes in mu opio id receptor function. Antisense pretreatment produced no 

detectable change in DAMGO-induced eSS]GTPyS binding in these regions, as 

represented in Fig. 4A and C. Subsequent analysis of other pain-related areas revealed no 

antisense effect, i.e. in thalamus, rostroventral medulla (Fig. 4B and D), cervical segment 

• 5 and lumbar segment 4 regions (Fig. 4E and F). 

• 

Possible knockdown of brain mu opio id receptor abundance was determined using a mu 

opioid receptor -specific radio ligand ([12SI]FK-33824). No change was detected after 

antisense pretreatment in the three areas assayed (i.e. caudate putamen, thalamus, and 

periaqueductal grey, Table 1). FinaIly, no change in mu opioid receptor 

immunoautoradiographic labelling was detected (Table 1). 

Power analyses were performed on the most sensitive measures in order to determine the 

smallest detectable antisense effects. To this end, the effects of 10 !lM DAMGO on 

eSS]GTPyS binding were normalized (i.e. mean DAM GO effect ofvehicle-pretreated 
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group defined as 100%) and pooled across all four experiments. On this basis, we would 

have been able to detect a 23% or greater knock-down ofthe DAMGO response in the 

caudate putamen, whereas only a 3% reduction was actually observed. In the 

periaqueductal grey, a 17% knockdown in e25I]FK-33824 binding would have been 

detectable, but instead a 2% increase was observed in the antisense group . 
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FIGURE 1 
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Figure 1. Effect of antisense pretreatment on mu opio id receptor-mediated 

antinociception. Experiments 1 and 3 are depicted in panels A and B respectively. 

Depending on the experiment, rats were pretreated with antisense, mismatch or vehicle 

for 5 days followed by acute challenge with DAMGO (0.2 nmol), SNC80 (400 nmol) or 

saline. Peptide nucleic acid antisense targeting mu opioid receptors abolished the 

antinociceptive response to DAMGO (A and B). SNC80-induced antinociception was 

not affected by pretreatment with antisense (A). A three base pair mismatch sequence 

did not alter DAMGO-induced antinociception (B). The y axis represents the mean ± 

SEM response (n=4-8 rats/group), expressed as a percentage of the maximal possible 

antinociceptive effect. The x axis shows time relative to injection of challenge drug. 

Veh, vehicle; AS, peptide nucleic acid antisense; MM, peptide nucleic acid mismatch; 

saI, saline . 
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Figure 2. Effect ofDAMGO on eSS]GTPyS binding in selected rat brain and spinal 

regions. DAMGO stimulated binding in the caudate putamen (CP), periaqueductal grey 

(P AG), cervical segment 5 (C5), and lumbar segment 4 (L4). The y axis shows mean ± 

SEM specifie eSS]GTPyS binding expressed as a percentage of basal binding (i.e. 

absence of agoni st) (n=6-8 sections) . 
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FIGURE 3 
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Figure 3. Representative autoradiograms ofDAMGO-stimulated eSS]GTPyS binding, 

[12SI]FK-33824, and mu opioid receptor immunoautoradiography. In the eSS]GTPyS 

assay, basal binding was determined in the absence of agonist, and non-specifie binding 

was determined in the presence of excess cold GTPyS. Non-specifie binding for 

e2sI]FK-33824 was determined by addition of 1 /lM CTOP, and was virtually 

undetectable. Non-specifie binding for immunoautoradiography was determined by the 

addition of 0.3 mM ofblocking peptide . 
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FIGURE 4 
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Figure 4. Lack of antisense induced knockdown ofDAMGO-stimulated eSS]GTPyS 

binding in rat CNS. Autoradiographie analysis of the response to EC50 (0.3 ~M) and 

maximal (10 ~) concentrations ofDAMGO revealed no difference between antisense 

vs. vehic1e pretreated rats in any area examined: (A) caudate putamen (CP), (B) thalamus 

(Thal), (C) periaqueductal grey (PAG), (D) rostroventral medulla, (E) cervical segment 5 

or (F) lumbar segment 4. Panels A-D are derived from Experiment 1; panels E-F are 

from Experiment 4. The y axis shows mean ± SEM specifie eSS]GTPyS binding 

expressed as a percentage of basal binding (i.e. in the absence of agoni st) (n=4-8 

rats/group) . 
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TABLE 1: Autoradiographie labelling ofmu opioid reeeptor with C25I]FK-33824 and 

immunoautoradiography after vehicle or antisense pretreatment (mean ± SEM). 

CNS Area 

CP 

Thalamus 

PAG 

[1251] FK -33824 

Vehicle 

1.27 ± 0.11 

1.14 ± 0.12 

0.44 ± 0.04 

Antisense 

1.44 ± 0.18 

1.07±0.14 

0.45 ± 0.06 

Immunoautoradiography 

Vehicle 

0.05 ± 0.02 

0.13 ± 0.01 

Antisense 

0.08 ± 0.03 

0.12 ± 0.01 

In eaeh case, non-specifie binding (NSB) was subtraeted from the total binding. Non­

specifie binding for C25I]FK-33824 and immunoautoradiography was defined by addition 

of 1 )lM CTOP and 0.3 mM bloeking peptide, respeetively (n=6-8 rats/group). 
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4. DISCUSSION 

The main finding of the present study was the clear dissociation of behavioural and 

biochemical effects of peptide nucleic acid antisense targeted to mu opio id receptor. 

Thus, antisense treatment abolished DAMGO-induced antinociception with little or no 

detectable loss of mu opioid receptor prote in or function in vitro. 

It is likely that the behavioural knockdown represents a true antisense effect for the 

following reasons. First, the effect was sequence-dependent, as demonstrated by the 

mismatch control. Second, the peptide nucleic acid antisense effect appeared to be target 

selective in behavioural tests. Thus, we observed no knockdown of SNC80-induced 

antinociception, a response mediated by delta opio id receptor (Bilsky et al., 1995; Fraser 

et al., 2000b) and independent ofmu opioid receptor (Fraser et al., 2000b). Sequence­

and target-dependent effects have also been reported following intraparenchymal (Tyler 

et al., 1998) or systemic (McMahon et al., 200 l) administration of the same sequence. 

In trying to reconcile our negative in vitro findings with previous mu opioid receptor 

peptide nucleic acid studies, several procedurai differences may be significant. For 

example, we administered antisense intracerebroventricularly, whereas in the earlier 

studies, it was administered either intraperitoneally or directly into brain tissue. We also 

gave the antisense daily, while in the previous studies it was given less frequently (Tyler 

et al., 1998; McMahon et al., 2001). It is important to note that our animaIs were 

sacrificed within hours of behavioural testing to insure that the antisense effect was still 

present. It is unlikely that our assays were less sensitive than those used previously . 
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Indeed, we assessed not only mu opio id receptor abundance (by radioligand binding and 

radioimmunohistochemistry) but also mu opioid receptor function using the eSS]GTPyS 

assay which we previously found to be more sensitive to antisense treatment (Fraser et 

al., 2000a). 

In view of the present mismatch between behavioural and biochemical responses it is 

important to note that aIl of the CNS regions mediating mu opioid receptor 

antinociception were assayed in the present study. The caudate putamen was also 

examine d, because of its proximity to the site of antisense injection. AlI these are as are 

abundant in mu opioid receptor (Mansour et al., 1994; Mansour et al., 1995), and 

therefore the signaIs in these regions were large enough for changes to be detectable. 

Since both the peptide nuc1eic acid antisense and DAMGO were given 

intracerebroventricularly, changes in supraspinal mu opioid receptor were anticipated. 

However, no change was found in sites thought to mediate supraspinal antinociception by 

DAMGO (i.e. thalamus, PAG, and rostroventral meduIla)(Carr and Bak, 1988; Fang et 

al., 1989; Rossi et al., 1994). It is not known whether a significant concentration of 

peptide nuc1eic acid antisense would accumulate in the spinal cord after i.c.v. 

administration. Therefore, as a final check, spinal regions that might contribute to 

DAMGO-induced antinociception were assayed, with the same negative result. 

The peptide nuc1eic acid antisense sequence used in this study is also complementary to 

several other rat transcripts (i.e. metabotropic glutamate receptor 6, ephrin BI, and 

succinate semialdehyde dehydrogenase), raising the possibility that our behavioural 
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knockdown was not mu opio id receptor -mediated. This possibility is unlikely for the 

foUowing reasons. First, metabotropic glutamate receptor 6 is located only in the eye 

(Nomura et al., 1994). Second, ephrin Blis known to decrease chronic inflammatory 

pain, but is reported not to play a role in transmission of acute pain stimuli (Battaglia et 

al., 2003). Third, inhibition of succinate semialdhyde dehydrogenase expression would 

disrupt GABA metabolism and tend to pro duce a general behavioural disruption (Gupta 

et al., 2003). Importantly, the preservation of delta opioid receptor-mediated 

antinociception foUowing peptide nucleic acid treatment renders aU these possibilities 

unlikely. 

It therefore appears that peptide nucleic acid antisense treatment suppressed expression of 

a behaviourally relevant mu opio id receptor population which was not detected in our in 

vitro assays. One possibility is that our antisense treatment differentiaUy targeted splice 

variants ofmu opioid receptor (Pasternak, 2001), but this is unlikely since our sequence 

targeted the 5' non-co ding region of the mu opioid receptor transcript. A second 

possibility is that DAMGO-induced antinociception occurred via G-proteins that are not 

readily detected by the eSS]GTPyS assay. However, it remains to be explained why no 

knockdown of mu opioid receptor was observed in our receptor binding and 

immunohistochemical assays. 

The present findings are reminiscent of our previous results using a peptide nucleic acid 

antisense sequence targeting delta opioid receptor (Fraser et al., 2000a). In the latter 

study, a marked inhibition of delta opio id receptor-mediated behavioural effects occurred, 
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with only a small (25%) inhibition of delta opioid receptor-mediated eSS]GTPyS 

response and no significant reduction in eH]-naltrindole binding in whole brain 

homogenates (Fraser et al., 2000a). A large discrepancy between behavioural 

knockdown and in vitro G-protein coupled receptor (GPCR) expression has also been 

reported for phosphodiester and phosphorothioate oligodeoxynucleotides (Weiss et al., 

1993; Qin et al., 1995; Shah et al., 1997). 

Such discrepancies may be especially surprising given that GPCRs, including the mu 

opioid receptor (Sora et al., 2001), are commonly associated with a receptor reserve (i.e. 

"spare receptors"). Hence, it has been proposed that newly synthesized receptors are 

especially susceptible to antisense treatment, and contribute disproportionately to in vivo 

pharmacological responses (Qin et al., 1995; Hua et al., 1998; Van Oekelen et al., 2003). 

Consistent with this notion, our results show a clear and selective behavioural 

knockdown in the absence of readily detectable in vitro changes. 
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• INTERVENING SECTION 2 

Although the results from Chapter 2 were intriguing, further PNA antisense studies could 

not be pursued for the following reasons. It became apparent that the antisense sequence 

used in Chapter 2 was not selective for MOR. Using a Basic Local Alignment Search 

Tooi (BLAST), it was discovered that this published sequence, previously thought to be 

unique, also showed 100% homology for three other targets (succinate semialdehyde 

dehydrogenase, ephrin BI and metabotropic glutamate receptor 6). Although two 

additional MOR-selective PNA sequences were screened, they did not prove to be 

effective antisense agents (Pradhan & Clarke, unpublished results). Therefore, in order to 

continue this research, a new MOR-specific and effective sequence would have had to be 

identified. The search for such a sequence became unfeasible when the company that 

was donating antisense sequences stopped its collaborations with all academic groups. In 

• addition, at this time the siRNA method of prote in knockdown was being developed for 

• 

in vivo use, and it appeared that the days of antisense were numbered. For these reasons, 

opioid receptors became the sole focus of the the sis. 

During the development of the eSS]GTPyS autoradiographic assay used in Chapter 2, it 

was noted that the Ô agonists (deltorphin II and SNC80) produced a much lower response 

relative to the ~ agoni st DAMGO. Furthermore, electron microscopy studies revealed 

that DORs were primarily associated with intracellular membranes. This raised the 

possibility that many DORs are non-functional, at least with respect to conventional 

pharmacology. Thus, the main objective ofthis study was to map functional DOR, and to 

compare this distribution with conventional radioligand binding . 
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• ABSTRACT 

The distribution of delta opioid receptors (DORs) in the rat CNS has been previously 

characterized by radio ligand binding and immunohistochemistry. However, the 

functional neuroanatomy of DORs has not been mapped in any detail; this is potentially 

important, since these receptors appear to be primarily cytosolic. Opioid receptors can 

couple to Gilo G proteins, a process which is detected by agonist-stimulated e5S]GTPyS 

binding. The purpose of this study was therefore to determine the distribution of 

functional DORs, as assessed by e5S]GTPyS autoradiographic labelling in response to 

the DOR agoni st deltorphin II. For comparison, adjacent sections were labelled with 

e25I]deltorphin II or the DOR antagonist e25I]AR-M100613. In aIl three assays, mu 

opioid receptors were blocked pharmacologically. The distributions of [125I]deltorphin II 

• and e25I]AR-M1 00613 were highly correlated but not identical. Deltorphin II increased 

• 

e5S]GTPyS binding in a concentration-dependent and naltrindole-sensitive manner. The 

regional e5S]GTPyS response to deltorphin II was only moderately predicted by agoni st 

or antagonist radioligand binding (r = 0.67 and 0.50 respectively). e5S]GTPyS responses 

to deltorphin II were strongest in the extended striatum (caudate putamen, nucleus 

accumbens, olfactory tubercle) and cerebral cortex. In contrast, sorne areas reported to 

mediate DOR analgesia (brain stem, spinal cord) possessed a much lower e5S]GTPyS 

response. These findings demonstrate the existence of a partial mismatch between DOR 

radioligand binding and e5S]GTPyS response. This divergence possibly reflects regional 

heterogeneity in G prote in receptor coupling, or in the subcellular localization ofDOR. 
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• INTRODUCTION 

Delta opioid receptors (DORs) are widely distributed throughout the brain and spinal 

cord (Mansour et al., 1995). Activation of these G-protein coupled receptors mediate 

numerous behavioural effects, inc1uding locomotor stimulation (Negri et al., 1991), 

reward (Longoni et al., 1998), and analgesia (Improta and Broccardo, 1992). Clinically, 

the most effective opioid analgesics are mu opioid receptor (MOR) agonists, but 

treatment with these drugs often results in undesirable side effects. In contrast, DOR 

agonists are promising candidates for drug development since they produce analgesia 

without the respiratory depression (Takita et al., 1997) and physical dependence (Devine 

and Wise, 1994) associated with Il opioid analgesics. 

• The CNS distribution of the DOR has been well characterized in rodents using 

radioligand autoradiography and immunohistochemistry (Tempel and Zukin, 1987; 

Blackburn et al., 1988; Gouarderes et al., 1993; Mansour et al., 1995; Arvidsson et al., 

1995; Hiller et al., 1996; Cahill et al., 2001). However, it is unc1ear whether these 

approaches reliably detectjunctional DORs, since most DORs appear to be intracellular 

rather than located on the cell membrane (Svingos et al., 1999; Wang and Pickel, 2001; 

Cahill et al., 2001). Like other opioid receptors, DORs act primarily through coupling to 

Gi/o G-proteins (Reisine et al., 1996; Connor and Christie, 1999) which can be localized 

with eSS]GTPyS autoradiography (Sim et al., 1995). Using this method, a thorough 

mapping of functional Ô opio id receptors has been reported only in guinea pig brain (Sim 

• 
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• and Childers, 1997), and analogous studies in the rat have been limited to a few brain 

areas (Hyytia et al., 1999; Sim-Selley et al., 2002). 

The primary aim ofthis study was therefare to compare the CNS distribution ofDOR 

function (esS]GTPyS assay) with DOR radioligand binding. To date, only one report has 

provided a direct comparison between radioligand binding and eSS]GTPyS response 

using the same DOR agonist (DPDPE) in both assays (Hyytia et al., 1999). However, the 

selectivity of this agoni st is questionable since several of its actions appear to be 

dependent on MORs (Sara et al., 1997; Hosohata et al., 2000; Park et al., 2000; Fraser et 

al., 2000). In the present study, we instead employed deltorphin II (DEL T), which 

appears more DOR selective (Hosohata et al., 2000; Fraser et al., 2000). As a further 

precaution, MORs were blocked by the addition of the ~ selective antagonist CTOP. 

• Thus, [12sI]DELT labelling was directly compared with DELT-stimulated eSS]GTPyS 

binding. Further comparisons were made with the DOR antagonist radioligand e2sI]AR-

M100613 since it reportedly offers several potential advantages for autoradiography 

(Fraser et al., 1999). 

• 
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EXPERIMENTAL PROCEDURES 

Subjects 

Subjects were male Sprague Dawley rats, weighing 325-350g (Charles River, St 

Constant, Quebec, Canada). Rats were housed in groups oftwo in a temperature- and 

humidity-controHed animal colony, lit from 7 a.m. to 7 p.m. Food and water were 

available ad libitum. AH experiments were approved by the McGill University Animal 

Care Committee, in accordance with Canadian Council on Animal Care guidelines. 

Preparation of tissue 

Rats were decapitated and the brains and spinal cords were rapidly removed and frozen in 

2-methylbutane (-50 Oc for 30 s) and stored at -40 oC. Brains were cryostat-cut (20 /lm 

sections) throughout the rostro-caudal extent of the brain (Paxinos and Watson, 1997). At 

each rostro-caudallevel, seven consecutive sections were coHected for autoradiographie 

comparison ofDOR antagonist (e25I]AR-MI00613), DOR agonist ([125I]DELT), and 

e5S]GTPyS binding. Sections were thaw-mounted onto gelatin-coated slides, air dried at 

room temperature for 10-15 min and vacuum dried with desiccant at 4°C overnight. 

Slides were then stored at -40°C until further use . 
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• e25I]AR-MI00613 and [125I]DELT autoradiography 

Radioligand autoradiography was performed using a protocol modified from Mennicken 

et al. (2003). Sections were thawed and preincubated at room temperature for 30 min in 

assay buffer comprising 50 mM TrisHCI with added 1 mM MgCb and 120 mM NaCI 

(pH 7.4). In the main experiment, the sections were then incubated in assay buffer in the 

presence of a non-saturating concentration of 0.4 nM e25I]DELT (for 1 ho ur) or 0.03 nM 

C25I]AR-M100613 (for 2 hours). In an additional experiment, an autoradiographic 

saturation binding analysis was performed with mid-striatal sections, using a range of 7-8 

radioligand concentrations (e25I]DELT 4.5 pM - 4.5 nM, [125I]LMA 2050.8 pM - 2.4 

nM). Both radio ligands (specifie activity 2200 Ci/mmol) were gifts from AstraZeneca 

R&D Montreal. The incubation buffer (pH 7.4) comprised 50 mM TrisHCI, 1 mM 

• MgCb, 120 mM NaCI, 0.5% bovine serum albumen (BSA), 0.1 mM 

• 

phenylmethylsulfonyl fluoride (PMSF), and a saturating concentration of the highly 

selective MOR antagonist D-Phe-Cys-Tyr-D-Trp-Om-Thr-Pen-Thr-NH2 (CTOP 1 ~M; 

Tocris, Ellisville, MO, USA). Non-specific binding was defined by the addition of the 

DOR selective antagonist naltrindole hydrochloride (0.1 ~M, Tocris). Following 

incubation, sections were rinsed in ice-cold assay buffer (3 x 3 min) and distilled water (2 

s), then blow-dried. Sections were exposed to Kodak X-OMAT AR X-ray film together 

with [1251] microscale autoradiographic standards (Amersham Pharmacia Biotech, 

Piscataway, NY, USA) for 24 hours (C 25I]DELT) or 72 hours ([125I]AR-M100613) in 

light-proofX-ray cassettes. The films were processed with D19 developer and GBX 

fixer (Kodak) . 
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eSS]GTPyS autoradiography 

eSS]GTPyS autoradiography was performed using a proto col modified from Hyytia et al. 

(1999). Sections were thawed at room temperature and rehydrated for 20 minutes in 

assay buffer containing 50 mM TrisHCI, 5 mM MgCb, 100 mM NaCI, and 1 mM EDTA 

(pH 7.4). Sections were then preincubated for 1 hour with assay buffer plus 2 mM 

guanosine 5'-diphosphate sodium salt (GDP; Sigma Chemical Co., St. Louis, MO, USA) 

and 1flM 8-cyc1opentyl-1,3-dipropylxanthine (DPCPX, adenosine A(l) receptor 

antagonist, Sigma Chemical Co., St. Louis, MO, USA). The sections were incubated in 

plastic slide mailers for 1.5 hours with assay buffer plus 2 mM GDP, 1 )lM DPCPX, 1 

flM dithiothreitol (DTT), 1 flM CTOP, 225 pM guano sine 5'(y)SS-thio) triphosphate 

(esS]GTPyS, 1250 Ci/mmol, Perkin Elmer Life Science Products, Woodbridge, ON, 

CAN). Slide mailers were allocated to three incubation conditions: basal (i.e. no agonist 

present), 10 flM deltorphin II (DEL T, Tocris, Ellisville, MO, USA), and non-specific (i.e. 

10 flM unlabelled GTPyS (Sigma) with no agonist present). Sections were then rinsed in 

ice-cold buffer (50 mM TrisHCI and 5 mM MgCb, pH 7.4, 2 x 5 min), and distilled water 

(2s), then blow-dried. Sections were exposed to X-ray film for 24 ho urs in light-proofX­

ray cassettes. Co-exposure with e4C] microscale autoradiographic standards (American 

Radiolabeled Chemicals, Inc., St. Louis, MO, USA) permitted quantification of the esS] 

radio isotope (Miller, 1991). The films were processed with D19 developer and GBX 

fixer (Kodak) . 
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• Quantitative image analysis 

Film autoradiographs were quantified using an M4 MCID computer-based system 

(Imaging Research, St. Catherines, ON, Canada). Binding was calculated based on 

autoradiographie standards and expressed as fmol/mg wet tissue equivalent. Non­

specifie binding was subtracted from the total binding of [12SI]DELT and e2sI]AR­

MI00613. Agonist-stimulated eSS]GTPyS binding was calculated by subtracting basal 

binding. Regions of interest were identified by reference to adjacent Nissl-stained 

sections. 

Statistical analysis 

• Non-linear regression analysis of saturation binding data (hyperbola) and concentration­

response data (sigmoidal curve fit) was performed by GraphPad Prism version 4.00 for 

Windows (GraphPad Software, San Diego California USA, www.graphpad.com). The 

Partial F test was used to compare one vs. two site binding models. Multiple 

• 

comparisons were made using Bonferroni t-tests. Scatterplots were subjected to Deming 

linear regression, since variability occurred in both x and y dimensions (Motulsky and 

Christopoulos, 2003). Statistical comparison of r2 values was performed according to Zar 

(1984). 
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• RESULTS 

Concentration response analysis of DELT -stimulated eSS]GTPyS binding 

The eSS]GTPyS response to DELT varied across the eight CNS regions assayed (Fig. 1). 

A concentration-dependent DEL T response was observed within the extended striatum 

(caudate putamen and olfactory tuberc1e) and cortex. Concentration response curves 

appeared sigmoidal, and EC50s were 0.14, 0.21, and 0.18 !lM for the caudate putamen, 

olfactory tuberc1e and cingulate cortex respectively. Maximal responses to DEL T were 

seen at 3 !lM and above. Of all the brain areas tested, the caudate putamen showed the 

greatest maximal response (84% increase at 10 !lM ofDELT). No significant response 

was detected in the periaqueductal grey, rostroventral medulla, substantia nigra pars 

• compacta, cervical or lumbar spinal cord in response to DEL T at any concentration tested 

(Fig.1). 

DOR mediation of DELT -stimulated eSS]GTPyS binding 

The eSS]GTPyS response to a maximal concentration ofDELT (10 !lM) was assessed in 

the presence vs. absence of the DOR antagonist naltrindole (Fig. 2). Naltrindole did not 

significantly alter basal or non-specific binding. The antagonist completely inhibited 10 

!lM DEL T -stimulated binding in all are as examined (caudate putamen, frontal and 

occipital cortices). 

• 
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• Comparison of DOR vs. MOR agonist stimulation of eSS]GTPyS binding 

We next compared the relative magnitude of delta vs. mu opioid receptor responses. For 

this purpose, maximal concentrations ofDELT and of the MOR agoni st DAM GO were 

tested in several areas possessing appreciable MOR and DOR binding (Mansour et al., 

1995). In aH areas tested, the DAMGO response was greater (Fig.3). 

Comparison of antagonist and agonist radioligand binding 

Saturation binding analysis of caudate-putamen yielded ko and Bmax values of 0.96±0.06 

nM and 19.6±0.5 fmol/mg for e25I]DELT and OA2±0.04 nM and 29.1±0.9 fmol/mg for 

e25I]AR-M100613. Corresponding values for frontal cortex were as foHows: 0.91±0.06 

nM and 12.8±0.3 fmol/mg (e 25I]DELT) and O.l8±0.02 nM and 16A±OA fmol/mg 

• (e25I]AR-MI00613). The data for aU four binding isotherms c10sely conformed to a one-

• 

site model (r2 > 0.997), and a two-site model did not yield a better fit (Partial F test, 

F<0.3 for aH). 

In the main autoradiographie study, non-saturating concentrations of e25I]AR-MI00613 

(0.03 nM) and e25I]DELT (OA nM) were used, with predicted receptor occupancies of 

approximately 10% and 45%, respectively, based on the above saturation analysis. 

Representative autoradiographs of e25I]AR-MI 00613 (antagonist) and e25I]DELT 

(agoni st) binding are shown in Fig. 4. The radioligand [125I]AR-MI00613 bound with a 

po or signal to noise ratio, and the pattern of non-specifie binding was not uniform across 

CNS areas. In contrast, non-specifie binding of e25I]DEL T was virtuaHy undetectable . 
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• Binding of the two radioligands was highly correlated across CNS areas (r=0.87, 

P<0.0001). This close relationship was also evident when the regional data were divided 

into quartile ranges (Table 1). However, a significant component of [12sI]AR-M100613 

binding remained in the absence of [12SI]DELT binding, as revealed by linear regression 

analysis (P<O.OOOl). 

Receptor binding vs. DEL T -stimulated esS] GTPyS response 

DOR radioligand binding was then compared to the eSS]GTPyS response to DELT in 

adjacent sections (Fig. 5, Table 1). For the functional assay, a maximal concentration of 

10 ~M DELT was chosen which was completely antagonized by naltrindole (see above). 

As predicted from the earlier concentration response analysis, DELT-stimulated 

• eSS]GTPyS binding was highest in the extended striatum and cortical regions. 

• 

Significant responses were even detected in the periaqueductal grey and rostroventral 

medulla which were unresponsive in the concentration-response study shown in figure 1. 

This difference is possibly attributable to the greater number of sections used per 

condition in the main study. 

Linear regression analysis was used in order to explore the relationship between 

radioligand binding and eSS]GTPyS response. Both DOR antagonist and agonist binding 

were significantly but only moderately correlated with the functional response (AR-

M100613 r=0.50, P<O.OOOl; DELT r=0.67, P<O.OOOl, Fig.5A and B). In this respect, 

e2sI]DELT and e2sI]AR-MI00613 binding were not significantly different (comparison 
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ofr2 values: P=0.059, one-tailed). As shown in figure 5, rnany points appeared to form 

distinct clusters; sorne clustering appeared to have a functional and/or anatornical basis 

(e.g. pain-related areas, thalarnic nuclei, doparninergic areas, and cortical regions) . 
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FIGURE 1 
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Figure. 1. Effect ofDELT on e5S]GTPyS binding in rat CNS. DELT stimulated 

e5S]GTPyS binding in the caudate putamen (CP), olfactory tuberc1e (ûT) and cingulated 

cortex (Cg) in a concentration-dependent manner. No significant increase in e5S]GTPyS 

binding occurred in the substantia nigra pars compacta (SNC), periaqueductal grey (PAG), 

rostroventral medulla (RVM), cervical segment 5 dorsal horn (C5 DR) or lumbar segment 

4 dorsal horn (L4 DR). The y axis shows mean ± SEM specific e5S]GTPyS binding 

expressed as a percentage of basal binding (i.e. in absence of agonist). * P<O.02 vs. basal 

condition (Bonferroni t-tests, n=6-12 brain sections) . 
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• FIGURE 2 
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Figure 2. Antagonism ofDELT-stimulated eSS]GTPyS binding by naltrindole in caudate 

• putamen (CP), frontal cortex (FrCtx) and occipital cortex (OcCtx). Responses to 10 llM 

DEL T (open bars) were blocked by the addition of 1.0 llM naltrindole (closed bars). The 

y axis shows mean ± SEM specifie eSS]GTPyS binding expressed as a percentage of 

basal binding (i.e. absence of agonist), n=6 brain sections . 
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• FIGURE 3 
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Figure 3. Stimulation of [3sS]GTPyS binding by !l vs. 8 opioid agonists applied at 

• maximal concentrations. Responses to DAM GO (10 !lM, open bars) were consistently 

greater than to DEL T (10 !lM, dark bars). The y axis shows mean ± SEM specifie 

eSS]GTPyS binding expressed as a percentage of basal binding (i.e. absence of agoni st) , 

n=5 rats. Abbreviations: CP, caudate putamen; Cg, cingulate cortex; PAG, periaqueductal 

grey; Lum, lumbar segment 4 . 
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• FIGURE 4 
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Figure 4. Representative autoradiograms of [12sl]AR-MI00613, [12SI]DELT and DELT­

stimulated eSS]GTPI'S binding in rat forebrain, midbrain, brain stem, and spinal cord 

(lumbar 4). lA values in the figure refer to distance (mm) anterior to the interauralline 

(Paxinos and Watson, 1997). Non-specifie binding (NSB) for agonist and antagonist 

radio ligands was determined by addition of 0.1 !lM naltrindole. [12SI]DELT produced 

virtually no non-specifie binding. In the eSS]GTPI'S assay, basal binding was 

determined in the absence of agonist, and non-specifie binding was determined in the 

presence of excess cold GTPI'S . 
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• FIGURE 5 
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• Figure 5. Poor prediction ofDOR functional response by C25I]AR-MI00613 and 

C25I]DELT binding. A and B AU 74 CNS are as are shown. Each point represents the 

mean value (n=5 rats), and SEM bars are omitted for c1arity. Specific radioligand 

binding was determined by subtraction of non-displaceable binding. Agonist-stimulated 

e5S]GTPyS binding was calculated by subtracting basal binding. AU measures are 

expressed as fmol/mg tissue. Correlational analysis revealed moderate associations 

between DEL T -stimulated e5S]GTPyS binding and labelling with [125I]AR_Ml 00613 (A, 

r=0.50; P<O.OOOl, n=74) or C25I]DELT (B, r=0.67; P<O.OOOl, n=74). Panels C, E, and G 

contain a subset of CNS areas from panel A together with its regression line. Panels D, 

F, and H relate in the same way to panel B. C and D Areas associated with DOR-

mediated analgesia possessed low radioligand binding and e5S]GTPyS response (see 

text). E and F Mesolimbic and nigrostriatal dopaminergic terminal regions possessed 

• much higher DOR binding and functional responses than the corresponding ceU body 

regions. Gand H Cortical regions had moderate to high DOR binding and [35S]GTPyS 

responses. 1 and J Thalamic regions mainly showed low binding in most measure . 
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TA. l.Comparison of Regional Distributions ofDELT-Stimulated C5S]GTPyS Binding with DOR Labeling by C25I]DELT And C25I]LMA205 in Rat CNS1 

Region [35S)GTPyS Response C25I)DELT C25I)LMA205 
mean ± SEM mean ± SEM mean ± SEM 

Cerebral Cortex 
C ingulate Cortex ++++ 0.31 ± 0.05 ++++ 2.70±0.15 ++++ 1.24 ± 0.04 
Frontal Cortex 

Lamina 1 ++++ 0.31 ± 0.05 +++ 1.90 ± 0.15 ++++ 1.05 ± 0.13 
Lamina II III ++++ 0.32 ± 0.03 ++++ 2.60 ± 0.18 ++++ 1.23 ± 0.03 
Lamina V ++++ 0.33 ± 0.04 ++++ 3.20 ± 0.16 ++++ 1.40 ± 0.06 
Lamina VI ++++ 0.30 ± 0.06 +++ 2.30 ± 0.12 ++++ 1.36 ± 0.03 

Parietal Cortex 
Lamina 1 +++ 0.23 ± 0.02 +++ 2.00±0.05 +++ 0.81 ± 0.06 
Lamina II III +++ 0.26 ± 0.01 ++++ 2.90 ± 0.12 +++ 0.90 ± 0.06 
Lamina IV +++ 0.21 ± 0.02 ++++ 2.40±0.12 +++ 0.84 ± 0.03 
Lamina V +++ 0.23 ± 0.02 ++++ 2.50 ± 0.05 +++ 0.89 ± 0.03 
Lamina VI +++ 0.26± 0.02 ++++ 2.80 ± 0.11 ++++ 1.18 ± 0.09 

Temporal Cortex 
Lamina 1 +++ 0.25±0.10 +++ 2.00±0.08 +++ 0.87 ± 0.08 
Lamina II III +++ 0.29 ± 0.10 ++++ 2.40± 0.07 ++++ 0.99 ± 0.13 
Lamina IV NS 0.23±0.11 +++ 1.90 ± 0.05 +++ 0.87 ± 0.11 
Lamina V ++++ 0.31 ± 0.09 ++++ 2.60 ±0.06 ++++ 1.11 ±0.11 
Lamina VI ++++ 0.38 ± 0.08 ++++ 2.50 ± 0.03 ++++ 1.35 ± 0.16 

Occipital Cortex 
Lamina 1 ++ 0.15±0.05 +++ 1.80 ± 0.15 +++ 0.75 ± 0.02 
Lamina II III ++ 0.17 ± 0.07 +++ 2.30 ± 0.13 ++++ 0.90 ± 0.10 
Lamina IV NS 0.14 ± 0.07 +++ 1.80 ± 0.09 +++ 0.71 ± 0.10 
Lamina V +++ 0.23 ± 0.06 ++++ 2.80 ± 0.16 ++++ 0.90 ± 0.09 
Lamina VI +++ 0.28 ± 0.05 ++++ 3.00 ± 0.24 ++++ 1.09 ± 0.11 

Basal Ganglia 
Anterior Caudate ++++ 0.56 ± 0.08 ++++ 5.20 ± 0.07 ++++ 1.49 ± 0.02 
Putamen 
Posterior Caudate ++++ 0.58 ± 0.06 ++++ 4.80 ± 0.17 ++++ 1.06 ± 0.04 

s accumbens -.n ++++ 0.30 ± 0.08 +++ 1.90 ± 0.18 +++ 0.68 ± 0.07 

Nucleus accumbens - ++++ 0.34 ± 0.10 ++++ 3.00 ± 0.29 ++++ 0.90±0.10 
shell 
Anterior OIfactory ++++ 0.38 ± 0.07 ++++ 4.40 ± 0.22 ++++ 1.48 ± 0.06 
Tubercle 
Posterior OIfactory ++++ 0.37 ± 0.05 ++++ 4.80±0.17 ++++ 0.98 ± 0.07 
Tubercle 
Lateral Septum NS 0.1O±0.07 ++ 0.56 ± 0.03 + 0.25 ± 0.01 
Medial Septum NS 0.09 ± 0.07 ++ 0.61 ± 0.02 + 0.32 ± 0.03 
Vertical Band of Broca ++++ 0.31±0.1O + 0.47 ± 0.08 + 0.29 ± 0.05 
Horizontal Band of +++ 0.18±0.06 ++ 0.65 ± 0.02 + 0.30 ± 0.04 
Broca 
Ventral Pallidum ++ 0.14 ± 0.09 +++ 0.88 ± 0.06 ++ 0.32 ± 0.04 
Bed Nucleus of the Stria NS 0.29 ± 0.25 ++ 0.60 ± 0.03 + 0.30 ± 0.04 
Terminalis 
Globus Pallidus +++ 0.25 ± 0.05 +++ 0.97 ± 0.09 ++ 0.36 ± 0.05 
Magnocellular Preoptic NS 0.09±0.14 ++ 0.51 ± 0.04 ++ 0.34 ± 0.02 
Area 

Thalamus 
Anterior Thalamic Group ++ 0.13 ±0.03 ++ 0.53 ± 0.02 ++ 0.34 ± 0.03 
Reunions Nucleus +++ 0.17±0.03 + 0.46 ± 0.02 + 0.24 ± 0.02 
Paraventricular ++++ 0.34 ± 0.06 + 0.37 ± 0.03 + 0.17 ± 0.02 
Thalamus 
Reticular Thalamus ++ 0.10 ± 0.03 + 0.41 ± 0.02 + 0.29 ± 0.01 
Ventral Thalamic Group + 0.06 ± 0.02 ++ 0.51 ± 0.02 + 0.29 ± 0.02 
Laterodorsal Thalamus + 0.04 ± 0.01 + 0.43 ± 0.02 + 0.22 ± 0.01 
Mediodorsal Thalamus ++ 0.09 ± 0.02 + 0.44± 0.03 + 0.22 ± 0.01 
Zona Incerta ++++ 0.45 ± 0.01 ++ 0.61 ± 0.02 + 0.27 ± 0.03 
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T.E 1 Continued 

[
35S]GTPyS Response [

125I]DELT [
125I]LMA205 Region 

mean ±SEM mean± SEM mean± SEM 
Hypothalamus 

0.34 ± 0.02 Anterior Hypothalamus +++ 0.27 ±0.05 + 0.51 ± 0.04 ++ 

Lateral Hypothalamus +++ 0.20 ± 0.01 + 0.47 ± 0.02 + 0.28 ± 0.02 

Arcuate Hypothalamus NS 0.01 ±0.12 + 0.33 ± 0.01 ++ 0.40 ± 0.07 

Ventromedial NS 0.61 ± 0.27 +++ 0.40 ± 0.00 ++ 0.52 ± 0.06 

Hypothalamus 
0.14 ± 0.02 Paraventricular NS 0.12 ±0.06 + 0.34 ± 0.02 + 

Hypothalamus 

Amygdala 
Medial Amygdala ++++ 0.52±0.12 +++ 1.22 ± 0.08 +++ 0.64 ± 0.06 

Central Amygdala NS 0.25 ±0.16 +++ 0.68 ± 0.06 + 0.31 ± 0.02 

Basolateral Amygdala ++++ 0.37 ± 0.06 ++++ 2.60±0.12 +++ 0.65 ± 0.04 

Basomedial Amygdala ++++ 0.29 ± 0.11 +++ 1.60±0.14 ++ 0.42 ± 0.02 

Cortical Amygdala +++ 0.24 ±0.05 +++ 1.60 ± 0.08 ++ 0.47 ± 0.06 

Mesencephalon 
Red Nucleus + 0.06± 0.02 ++ 0.52 ± 0.01 ++ 0.41 ± 0.17 

Ventral Tegmental NS 0.05 ±0.04 + 0.47 ± 0.02 ++ 0.35 ± 0.02 

Nucleus 
Periaqueductal Grey +++ 0.18 ± 0.03 +++ 0.71 ± 0.02 ++ 0.46 ± 0.03 
Substantia Nigra pars NS 0.06 ±0.07 ++ 0.55 ± 0.02 + 0.28 ± 0.01 
compacta 
Substantia Nigra pars NS 0.09 ± 0.05 + 0.43 ± 0.01 + 0.16 ± 0.02 
reticulata 

Pons 1.13 ± 0.10 
Pontine NS 0.08 ± 0.04 +++ 1.70±0.17 ++++ 
Raphe magnus and ++ 0.08 ± 0.03 NS 0.11 ± 0.05 + 0.22 ± 0.04 
pallidus 

• Medulla 
eus Reticularis NS 0.04± 0.04 NS 0.05 ± 0.03 + 0.37 ± 0.02 

Gigantocellularis 
Vestibular Nucleus NS 0.06 ± 0.03 NS O.OO± 0.04 ++ 0.37 ± 0.02 

Spinal Co rd 
Cervical 

Lamina 1 II ++ 0.13 ± 0.06 ++ 0.62 ± 0.02 +++ 0.54 ± 0.03 
Lamina III IV NS 0.06 ± 0.09 + 0.50 ± 0.01 ++ 0.53 ± 0.01 
Lamina V VI NS 0.03 ± 0.02 ++ 0.60 ± 0.02 +++ 0.65 ± 0.02 
Lamina VII + 0.06 ±0.01 ++ 0.54 ± 0.02 +++ 0.58 ± 0.02 
Lamina VIII ++ 0.13 ± 0.04 ++ 0.52 ± 0.02 +++ 0.60 ± 0.01 
Lamina IX NS 0.03 ± 0.02 + 0.44 ± 0.02 ++ 0.49 ± 0.02 

Lumbar 
Lamina 1 II ++ 0.15±0.05 ++ 0.53 ± 0.03 ++ 0.47 ± 0.03 
Lamina III IV + 0.04± 0.01 + 0.50 ± 0.01 ++ 0.50 ± 0.02 
Lamina V VI + 0.05 ± 0.01 ++ 0.55 ± 0.02 +++ 0.57 ± 0.02 
Lamina VII + 0.08 ± 0.01 ++ 0.59 ± 0.01 +++ 0.56 ± 0.02 
Lamina VIII + 0.06 ± 0.01 ++ 0.54 ± 0.01 +++ 0.60 ± 0.03 
Lamina IX + 0.07±0.00 + 0.44 ± 0.01 ++ 0.46 ± 0.03 

1 AIl measures were performed as described in the Materials and Methods, and are expressed as fmol/mg tissue. To 
aid comparison across measures, the mean values ofDELT-stimulated e5S]GTPyS, e25I]DELT and e25I]LMA205 
in aIl CNS regions were divided into quartiles (+ first quartile, very low; ++ second quartile, low; ++ + third 
quartile, moderate; ++ ++ fourth quartile, high). NS indicates non-significant binding as determined by a one tailed, 
single-sample t-test (i.e. mean vs. zero). Non-specifie binding was subtracted from the total binding of e25I]LMA205 and e25I]DELT. Agonist stimulated e5S]GTPyS binding was determined by subtracting basal 
binding (absence of agoni st) from agonist-stimulated binding . • 
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• DISCUSSION 

This study provides the first extensive anatomical characterization ofDOR function in 

both rat brain and spinal cord. The present study is also the first to compare [12SI]DEL T 

and C2sI]AR-MlO0613 autoradiographically. These data provided the basis for a large­

scale comparison of functional vs. conventional DOR radioligand measures. This 

comparison revealed that both [12SI]DEL T and C2sI]AR -MI 00613 binding are only 

moderately predictive ofDOR function, as determined by DELT-stimulated eSS]GTPyS 

binding. 

Neuroanatomical distribution of e2sI]DELT 

• In the brain, C2sl]DEL T labelling was highest in the striatum and cerebral cortex and was 

lowest in thalamus, mesencephalon, and medulla. This general pattern has also been 

found in binding studies using structural analogs of deltorphin (i.e. eH]deltorphin l, 

eH]Ile 5,6-deltorphin II) (Gouarderes et al., 1993; Renda et al., 1993; Goody et al., 2002; 

Clarke et al., 2003; Ploj and Nylander, 2003), or using the agonist eH]DPDPE binding 

(Mansour et al., 1987; Blackburn et al., 1988; Sharifand Hughes, 1989). 

Immunohistochemistry has also revealed a high receptor abundance in the striatum and 

cerebral cortex (Cahill et al., 2001). However, immunolabelling and C2sl]DELT binding 

c1early diverge, particularly in mesencephalon, pons and medulla. In these regions, 

moderate DOR immunolabelling occurred in many nuc1ei, whereas [12SI]DELT binding 

was sparse. Thus, it appears that antibodies detect a broader population of DOR than 
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• [125I]DELT. This might be expected, since DOR antibodies can detect intracellular 

receptors (Svingos et al., 1999; Cahill et al., 2001; Wang and Pickel, 2001), may be 

insensitive to agoni st affinity state, and may not discriminate between putative DOR 

subtypes. 

In the spinal cord, the distribution ofDOR has been mapped with several radio ligands 

(Goodman et al., 1980; Sharif and Hughes, 1989; Besse et al., 1990; Gouarderes et al., 

1993). Our quantitative analysis of [125I]DEL T binding demonstrated a homogeneous 

distribution across different laminae, in accordance with an earlier descriptive study using 

the same radioligand (Mennicken et al., 2003). The same pattern has been reported for 

eH]deltorphin 1 autoradiography (Gouarderes et al., 1993), DOR immunolabelling 

(Cahill et al., 2001) and DOR mRNA (Mansour et al., 1994). In contrast, several other 

• DOR radioligands (i.e. [125I]DADLE, eH]DPDPE, eH]DTLET) have been found to label 

the superficial dorsal horn preferentially (Goodman et al., 1980; Sharif and Hughes, 

1989; Besse et al., 1990; Gouarderes et al., 1993). These two distinct patterns cannot be 

explained by the proposed 81/82 receptor subtype classification (Zaki et al., 1996), since 

either ofthese two binding patterns can be produced by putative 81 (DPDPE, deltorphin 

1) or 82 (DEL T, DTLET) ligands. 

rt25I]AR-MI00613 autoradiography 

The DOR antagonist radioligand 125I-AR-M I00613 offers several theoretical advantages 

for autoradiography (Fraser et al., 1999). As an antagonist, its binding is not sensitive to 
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• the affinity state of the receptor; in addition, it appears not to differentiate between DOR 

subtypes (Fraser et al., 1999). Furthermore, while other DOR antagonist radio ligands are 

aH tritiated, [125I]AR-M100613 has high specific activity with negligible differential 

quenching in white vs. grey matter (Happe and Murrin, 1990). A high signal to noise 

ratio has also been predicted for e25I]AR-M100613 on the basis of membrane binding 

studies (Fraser et al., 1999), but this was not borne out in our autoradiographic assay. In 

fact, the high non-specific binding was the major reason we chose to use a radioligand 

concentration that resulted in only ~ 10% receptor occupancy. 

In general, the distribution of agonist ([ 125I]DEL T) and antagonist ([ 125I]AR_M1 00613) 

binding was similar. In absolute terms, [125I]DEL T binding was greater than [125I]AR_ 

M100613 in most areas, likely reflecting the greater degree ofreceptor saturation 

• produced by [125I]DELT (i.e. 45% vs. 10%). However, two observations suggest that 

e25I]AR-M100613 recognized a wider receptor pool than e25I]DELT. First, saturation 

• 

analysis revealed a higher Bmax for the antagonist radioligand in the areas sampled. 

Second, regression analysis predicted a component of e25I]AR-M1 00613 binding 

occurring in the absence of e25I]DEL T binding. This residual component, which was 

naltrindole-displaceable and hence likely to reflect DOR binding, was evident in a few 

areas that possessed virtually no [125I]DEL T binding. Perhaps in these areas, the DORs 

exist predominantly in a low affinity state for agonist and hence are not readily detected 

in the C25I]DELT assay. Alternatively, C25I]AR-M100613 may recognize one or more 

DOR subtypes that are not readily detected with [125I]DEL T. 
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DELT-stimulated eSS]GTPyS binding 

Previous studies have revealed only small stimulatory effects ofDELT on eSS]GTPyS 

binding in rodent brain, with maximal stimulation approximating 10-25% above basal 

binding (Fraser et al., 1999; Hosohata et al., 2000). However, whole membrane 

preparations were used, potentially masking strong responses in certain areas. The 

present autoradiographic study revealed considerable anatomical heterogeneity. Thus, 

eSS]GTPyS responses ranged from near-zero in many areas to an 80% increase in 

caudate putamen. This resuIt contrasts with previous findings using the DOR agonist 

pCI-DPDPE, which produced responses of similar magnitude across several forebrain 

areas (Sim-Selley et al., 2000). Hence, our resuIts provide further evidence that pCI­

DPDPE differs pharmacologically from DEL T (Fraser et al., 2000) . 

In our eSS]GTPyS assay, responses to the )..l agoni st DAMGO were considerably higher 

than responses to DEL T in every area examined. This finding is consistent with published 

results using either brain membrane homogenates (Fraser et al., 1999; AIt et al., 2002; 

Sim-Selley et al., 2002) or autoradiography (Sim-Selley et al., 2002). There are several 

possible factors that may contribute to the greater functional response of the MOR 

compared to the DOR. First, the sampled areas possess similar densities of MOR and 

DOR (Mansour et al., 1988), and hence relative abundance is unlikely to play a major 

role. Second, there may be increased G prote in coupling efficiency of MORs vs. DORs. 

Third, a greater number of MORs may be located on the plasma membrane. Finally, 
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• DAMGO is a full agonist, whereas deltorphin II has been reported to be a partial agoni st 

(Szekeres and Traynor, 1997; Clark et al., 1997). 

DELT -stimulated eSS]GTPyS binding vs. radioligand binding 

A correspondence exists between patterns of radio ligand binding and eSS]GTPyS 

response for several G protein coupled receptors (Sim et al., 1995). In this respect, a 

particularly strong correlation has been reported for both !l (r=0.90) and K (r=0.98) opioid 

receptors in rat brain (Hyytia et al., 1999). However, in an analogous study ofDOR using 

DPDPE as both radioligand and agonist, only a tenuous correspondence was seen 

(r=0.61, nonsignificant) (Hyytia et al., 1999). In the present study, radioligand binding 

revealed a highly significant but moderate correlation with DEL T -mediated function. A 

• minor source of divergence was the residual eSS]GTPyS response that occurred in areas 

• 

that lacked significant radioligand binding; possibly, this small response is not mediated 

by DORs. A greater source of mismatch between radioligand binding and function could 

reflect one of at least four factors, as follows. 

First, the affinity of C2sI]DELT or C2sI]AR-M100613 for DOR may vary across CNS 

regions, although we are unaware of any published evidence to support this. However, 

the close relationship between agonist and antagonist binding across CNS areas (r = 0.87) 

suggests that [12SI]DELT and [12sI]AR-M100613 affinityare either correlated or are 

relatively invariant. 
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Second, divergence in our assay conditions could potentially contribute to the differences 

between our agoni st radio ligand and functional measures. Both the [12sI]DEL T and 

eSS]GTPyS binding conditions (high Na+ and GDP, respectively) favoured the low 

agoni st affinity state of the receptor. However, it cannot be assumed that this agonist 

affinity shift occurred to the same extent in each assay across CNS regions. 

Third, efficiency of coupling between DOR and G proteins may be regionally 

heterogeneous, as has been proposed for mouse DOR (Oakley et al., 2003) and for rat 

MOR (Sim-Selley et al., 2000). In this context, variations in eSS]GTPyS response may 

reflect signalling through G proteins that are not readily detectable in this assay 

(Milligan, 2003) . 

A fourth potential factor is the extent to which DORs are intracellular, and whether these 

receptors would be detectable under our test conditions. In cryostat-cut sections, 

intracellular DORs are presumably accessible but whether any of our three assays is 

capable of detecting them is an open question. Electron microscopy studies suggest that 

in striatal patches (Wang and Pickel, 2001), nucleus accumbens shell (Svingos et al., 

1999), and lumbar spinal cord (Cahill et al., 2001), the majority of DORs occur on 

intracellular organelles and not on the outer cell membrane. Whether this is the case in 

other CNS areas remains to be determined. 

The existence of subtypes of DOR has been proposed, based partly on comparisons 

between putative 81 (e.g. DPDPE) and 82 (e.g. DEL T) agonists (for review see Zaki et al. 
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• (1996). Although there is considerable in vivo evidence for such a distinction, published 

in vitro data are equivocal (Sofuoglu et al., 1992; Buzas et al., 1994; Noble and Cox, 

1995; Hiller et al., 1996; Zaki et al., 1996; Kim et al., 2001; Parkhill and Bidlack, 2002). 

In one receptor autoradiographic study, support for the 51! 52 distinction has been 

claimed on the basis of regional differences between eH]DPDPE and eH]DSLET 

binding (Hiller et al., 1996). However, our own reanalysis ofthese data reveal a strong 

correlation between these markers (r=0.94). Since the CNS distribution ofDOR subtypes 

is uncertain, it is not clear whether our [125I]DEL T labelling corresponds to either the 

putative 51 or 82 receptor subtype. 

Behavioural implications 

• The highest DOR-mediated e 5S]GTPyS response and radioligand binding were found in 

the extended striatum (caudate putamen, olfactory tubercle, nucleus accumbens). DORs 

within this large forebrain structure have been implicated in several psychobiological 

effects, including arousal, stereotypy (Longoni et al., 1991; Spina et al., 1998), 

reinforcement (Longo ni et al., 1998), and analgesia (Schmidt et al., 2002). Interestingly, 

DOR agonists exert anti-parkinsonian effects in several animal models (Pinna and Di 

Chiara, 1998; Hudzik et al., 2000; Hille et al., 2001), likely via DOR activation in the 

caudate putamen. The present results encourage the further research ofDOR function in 

the extended striatum . 

• 
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• A prominent feature of the present study was the paucity of DEL T -stimulated 

eSS]GTPyS binding in sorne areas thought to mediate DOR antinociception (Ossipov et 

al., 1995; Thorat and Hammond, 1997; Kovelowski et al., 1999a; Kovelowski et al., 

1999b; Hurley and Hammond, 2000). This was the case ev en at high concentrations of 

DELT, and despite c1ear evidence of stimulation in other CNS areas tested in parallel. 

The marginal response in the spinal cord was particularly surprising since we have 

previously observed an appreciable increase in this region (Morinville et al., 2004); one 

potential explanation for this discrepancy is that in the present study, ~/8 receptor 

interactions were rendered unlikely by the addition of a MOR antagonist. 

How then can the present findings be reconciled with the numerous published reports of 

spinal and supraspinal DOR-mediated analgesia? One possible explanation is that DOR-

• mediated antinociception is produced by a critical but sparse population of Gi/o coupled 

• 

DORs that fall below the detection threshold of the assay. Alternative1y, DOR signalling 

in these regions may occur mainly through non-Gui/o subunits that are intrinsically 

difficult to detect in the eSS]GTPyS assay (Milligan, 2003). In this context, DELT-

induced spinal analgesia appears partially mediated by the phosphoinositol pathway 

(Sanchez-Blazquez and Garzon, 1998; Narita et al., 2000), and by GUq subunits in 

particular (Sanchez-Blazquez and Garzon, 1998). 

CONCLUSION 

The partial mismatch between conventional radio ligand binding and GTPyS responses 

indicates that to sorne extent, these markers detect different aspects of DOR expression 

147 



• 

• 

• 

and function. The finding that sorne areas thought to rnediate DOR analgesia possess 

little or no GTPyS response encourages the further characterization of alternate signalling 

rnechanisrns. In contrast, the strong GTPyS response in forebrain are as provides a 

potential focus for future behavioural studies . 
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• INTERVENING SECTION 3 

In chapter 3 it was shown that DOR in pain related areas (brain stem, spinal cord, and 

periaqueductal grey) possess low in vitro functional responses to deltorphin II. This may 

help to explain why DOR agonists are not as potent as MOR agonists in antinociceptive 

tests. Recent studies had shown that short term pretreatment with ~ agonists can result in 

an enhanced behavioural response to spinally administered deltorphin II (Cahill et al., 

2001; Morinville et al., 2003), and increased electrophysiological responses to DOR 

agonists in the periaqueductal grey (Hack et al., 2005). In addition, profound 

sensitization to the locomotor stimulant effects of deltorphin II had been observed after 

long term morphine pretreatment, and withdrawal (Melchiorri et al., 1992). In the 

previous chapters ofthis thesis, in vivo and in vitro assays characterizing MOR and DOR 

effects were established, therefore allowing us to examine interactions that may occur by 

• agonist stimulation ofthese two receptors. Thus, the aim ofthis study was to determine 

the effects of chronic morphine pretreatment on DOR-mediated behavioural and in vitro 

responses . 

• 
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ABSTRACT 

Delta opio id receptor (DOR) agonists produce only a moderate degree of antinociception, 

possibly reflecting the predominantly intracellular location ofDOR. Recent studies 

suggest that short term morphine pretreatment can increase DOR mediated 

antinociception by promoting the translocation of DOR to the cell surface. In the present 

study we examined the effects of longer term morphine pretreatment and withdrawal on 

DOR mediated antinociception in the formalin test. Male adult rats were pretreated daily 

with morphine (10 mg/kg s.c.) or saline for 10 days, and after 7 days ofwithdrawal were 

tested acutely with the DOR agoni st [D-Ala2,Glu4]-deltorphin (DELT). Unexpectedly, 

chronic morphine pre-exposure resulted in tolerance to DEL T - but not morphine-induced 

antinociception; cross-tolerance to DEL T was 10st at 14 days of withdrawal. Cross­

tolerance was also observed to the locomotor stimulant effects ofDELT. Thus, no 

evidence ofDOR sensitization was found after chronic morphine pretreatment. 

However, consistent with previous reports, short term (48 ho ur) pretreatment with 

morphine did result in sensitization to DELT. Subsequent in vitro analysis, using 

e5S]GTPyS and [125I]DELT autoradiography, did not detect any changes in DOR 

resulting from chronic morphine pretreatment. In conclusion, short term exposure to 

morphine resulted in DOR sensitization, whereas chronic morphine administration caused 

profound tolerance to DOR-mediated behavioral effects with no c1ear change at the 

receptor level. 
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INTRODUCTION 

Agonists at the delta opio id receptor (DOR) display analgesic activity in numerous 

animal models, and have fewer adverse effects than the widely-used mu agonists. 

Although promising, delta agonists are less efficacious than their mu counterparts. 

However, recent studies indicate that their efficacy can be enhanced by pretreatment with 

morphine and other mu agonists in rodents. For example, in antinociceptive tests, 

sensitization of spinal DOR occurred after short term exposure to morphine (Cahill et al., 

2001; Morinville et al., 2003). At the cellular level, electrophysiological studies have 

shown that functional DORs are induced in the periaqueductal grey by morphine 

pretreatment (Hack et al., 2005). This gain of function is thought to be mediated by a 

MOR-dependent translocation ofDOR from intracellular compartments to the cytosolic 

membrane (Cahill et al., 2001; Morinville et al., 2003). 

The facilitatory effects of morphine pretreatment on DOR-related behavior are not 

restricted to antinociception. Thus, morphine pretreatment markedly increased the 

locomotor stimulant effect ofDELT in rats (Me1chiorri et al., 1992). Importantly, this 

study showed that cross-sensitization was greatest with chronic morphine regimens, and 

continued to increase up to several weeks after morphine cessation. These findings have 

yet to be applied to pain paradigms. 

The aim of the present study was therefore to determine the effects of chronic morphine 

pretreatment and withdrawal on DOR-mediated antinociception. 
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• MATERIALS AND METHODS 

Subjects 

Subjects were male Sprague Dawley rats, weighing 225-250g (Charles River, St 

Constant, Quebec, Canada). Rats were housed in groups oftwo in a temperature- and 

humidity-controlIed animal colony, lit from 7 a.m. to 7 p.m. Food and water were 

available ad libitum. AlI experiments were approved by the McGill University Animal 

Care Committee, in accordance with Canadian Council on Animal Care guidelines. 

Morphine Pretreatment 

Rats were randomly alIocated to pretreatment groups, receiving daily subcutaneous (s.e.) 

injections of either 10 mg/kg morphine sulphate (Sabex, Boucherville, Quebec, Canada) 

or vehic1e (0.9% saline) for 10 days. Behavioral testing occurred on the i h dayof 

• withdrawal unless otherwise stated. 

• 

For short-term morphine pretreatment rats received escalating doses of morphine (5, 8, 

10, 15 mg/kg, s.e.) every 12 hours for 48 hours. Behavioral testing occurred 10-18 hours 

after the last injection. 

Formalin Pain Test 

AnimaIs were habituated to the test boxes for 10 minutes on the day before testing, and 

for 45 minutes immediately before the test session. Rats were given intrathecal [D­

Ala2,Glu4]-deltorphin (DELT, Tocris, Ellisville, MO, USA) or saline under general 

anaesthesia (1.5-2.0% isoflurane in O2), alIowed 10 minutes to recover, and then injected 
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• intraplantar with 2.5% formalin (50 ~l). Observation to determine nociceptive responses 

began immediately after formalin injection and continued for the next 50 min. A 

nociceptive score was determined for each 5 min block by measuring the amount of time 

spent in each of the four behavioral categories as previously described (Dubuisson and 

Dennis, 1977): 0, the position and posture ofthe injected hind paw is indistinguishable 

from the contralateral paw; 1, the injected paw has little or no weight placed on it; 2, the 

injected paw is elevated and is not in contact with any surface; 3, the injected paw is 

licked, bitten or shaken. A time-weighted nociceptive score, ranging from 0 to 300 was 

then calculated. 

Surgery 

Rats were anesthetized with ketamine/xylazine (80/16 mg/kg, i.p.)(Bioniche, Belleville, 

• ON, Canada and Novopharm, Toronto, ON, Canada) and placed in a stereotaxie device. 

• 

Each animal was implanted with a 24-gauge guide cannula (Plastics One, Roanoke, V A, 

USA) extending into the right lateral ventricle of the brain (coordinates from bregma: AP, 

-0.8 mm; ML, 1.5 mm; DV, 4.1 mm) and fixed with dental cement. Rats were given 

dipyrone analgesic (100 mg/kg, Vétoquinol, Lavaltrie, QC, Canada) immediately 

following surgery. To prevent occlusion, guide cannulae were kept patent by stainless 

steel inserts which extended 0.5 mm beyond the cannulae tip. Rats were allowed 5-7 

days to recover from surgery before random allocation to treatment groups. 
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• Locomotor testing 

Eight locomotor cages (58.1 cm long x 28.8 cm wide x 53.0 cm high) were used, each 

comprising four outer walls made of white plastic-coated partic1e board (Melamine) and 

an open top. Cages sat on linoleum flooring covered with a thin layer of Beta Chip 

bedding. The location and movements of rats during behavioral testing were monitored 

by a c10sed circuit television video camera (Panasonic) linked to a commercial tracking 

system (Etho Vision v3.0, Noldus Information Technology, Leesburg, VA). 

AnimaIs were habituated to the locomotor test cage for 1 hour the day before testing, and 

again for 30 minutes immediately prior to testing. A repeated measures design was used, 

where each rat was tested on days 7 and 8 of withdrawal; once with 

intracerebroventricular (i.c.v.) DELT (0.4 /lg) and once with i.c.v. vehic1e (0.9% saline), 

• in a counterbalanced order. Test solutions (10 /lI) were injected over 1 minute, and the 

injection cannula was left within the guide cannula for an additional 30 seconds. 

Locomotor activity was measured as the total horizontal distance moved, and the effects 

ofDELT were expressed as a difference between DELT and vehic1e test scores. 

• 

Preparation of tissue 

Rats were decapitated and the brains and spinal cords were rapidly removed, frozen in 2-

methylbutane (-50 Oc for 30 s) and stored at -40 oC. Tissue was cryostat-cut (20 /lm 

thick) and sections were taken through the caudate putamen (10.7 to 8.7 lA), 

periaqueductal grey (3.2-1.0 lA), rostroventral medulla (-1.3 to -2.6 lA), and L4-L5 

segments of the lumbar spinal cord (Paxinos and Watson, 1997). At each rostro-caudal 
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• level, seven consecutive sections were collected for autoradiographic comparison of 

DOR and MOR agonist mediated eSS]GTPyS binding, and [12SI]DELT labeling. Sections 

were thaw-mounted onto gelatin-coated slides, air dried at room temperature for 10-15 

min and then stored at -40°C until further use. 

[1251] DEL T autoradiography 

Radioligand autoradiography was performed using a protocol modified from Mennicken 

et al. (2003). Sections were thawed and preincubated at room temperature for 30 min in 

assay buffer comprising 50 mM TrisHCl with added 1 mM MgCb and 120 mM NaCl 

(pH 7.4). The sections were then incubated in assay buffer in the presence of a non­

saturating concentration (0.4 nM) of [125I]DELT for 1 hour. [12SI]DELT (specific activity 

2200 Ci/mmol) was a gift from AstraZeneca R&D Montreal. The incubation buffer (pH 

• 7.4) comprised 50 mM TrisHCl, 1 mM MgCb, 120 mM NaCl, 0.5% bovine serum 

albumen (BSA), 0.1 mM phenylmethylsulfonyl fluoride (PMSF), and a saturating 

concentration of the highly selective MOR antagonist D-Phe-Cys-Tyr-D-Trp-Orn-Thr­

Pen-Thr-NH2 (CTOP 1 !lM; Tocris, Ellisville, MO, USA). Non-specific binding was 

defined by the addition of the DOR selective antagonist naltrindole hydrochloride (0.1 

!lM, Tocris). Following incubation, sections were rinsed in ice-cold assay buffer (3 x 3 

min) and distilled water (2 s), then blow-dried. Sections were exposed to Kodak X­

OMAT AR X-ray film together with [1251] microscale autoradiographic standards 

(Amersham Pharmacia Biotech, Piscataway, NY, USA) for 24 hours in light-proofX-ray 

cassettes. The films were processed with D19 developer and GBX fixer (Kodak). 

• 
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• eSS]GTPyS autoradiography 

eSS]GTPyS autoradiography was performed using a protocol modified from Hyytia et al. 

(1999) Sections were thawed at room tempe rature and rehydrated for 20 minutes in assay 

buffer containing 50 mM TrisHCI, 5 mM MgCh, 100 mM NaCI, and 1 mM EDTA (pH 

7.4). Sections were then preincubated for 1 hour with assay buffer plus 2 mM guano sine 

5'-diphosphate sodium salt (GDP; Sigma Chemical Co., St. Louis, MO, USA) and 1 )lM 

8-cyc1opentyl-1,3-dipropylxanthine (DPCPX, adenosine A(1) receptor antagonist, Sigma 

Chemical Co., St. Louis, MO, USA). The sections were incubated in plastic slide mailers 

for 1.5 hours with assay buffer plus 2 mM GDP, 1 )lM DPCPX, 1 )lM dithiothreitol 

(DTT), 225 pM guanosine 5'(y)SS-thio) triphosphate (esS]GTPyS, 1250 Ci/mmol, 

Perkin Elmer Life Science Products, Woodbridge, ON, CAN). Slide mailers were 

allocated to six incubation conditions: basal (i.e. no agoni st present), 0.3 )lM DEL T, 10 

• )lM DELT, 0.3)lM [D-Ala2
, NMe-Phe4

, Gll-ol]-enkephalin (DAMGO), 0.5 )lM 

• 

morphine sulphate, and non-specific (i.e. 10 )lM unlabelled GTPyS (Sigma) with no 

agonist present). Sections were rinsed in ice-cold buffer (50 mM TrisHCI and 5 mM 

MgCh, pH 7.4, 2 x 5 min), distilled water (2s), and then blow-dried. Sections were 

exposed to X-ray film for 24 hours in light-proofX-ray cassettes. Co-exposure with 

C4C] microscale autoradiographic standards (American Radiolabeled Chemicals, Inc., St. 

Louis, MO, USA) permitted quantification of the esS] radioisotope (Miller, 1991). The 

films were processed with D 19 developer and GBX fixer (Kodak). 
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• Quantitative image analysis 

Film autoradiographs were quantified using an M4 MCID computer-based system 

(Imaging Research, St. Catherines, ON, Canada). Binding was ca1culated based on 

autoradiographie standards and expressed as fmol/mg wet tissue equivalent. Non­

specifie binding for e25I]DELT was negligible. Agonist-stimulated e5S]GTPyS binding 

was calculated by subtracting basal binding. Regions of interest were identified by 

reference to adjacent Nissl-stained sections. 

Statistical analysis 

Area under the curve values and linear regression analyses for the formalin test were 

generated using Prism 4.0 (GraphPad Software, San Diego California USA, 

• www.graphpad.com). Multiple comparisons were performed using t-tests (Systat v10.2, 

SPSS, Chicago, IL, USA). 

• 
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• RESULTS 

Except where noted, aIl rats were pretreated daily with morphine (10 mg/kg) or saline for 

10 days, and aH testing occurred on the seventh day of withdrawal. 

In formalin pain tests (Fig. lA and B), morphine pretreatment did not alter basal 

nociceptive scores obtained after acute saline challenge. As expected, intrathecal [D­

Ala2,Glu4]-deltorphin (DELT) dose-dependently decreased phase 2 formalin-induced 

nociception in saline pretreated rats (linear trend p<O.Ol; Fig. lA). However, chronic 

morphine pretreatment resulted in tolerance to this effect ofDELT (linear trend p>0.5; 

Fig. lB and le). Tolerance at the highest concentration ofDELT (0.3 Ilg/IlI) was 

particularly clear (p<0.02), and was confirmed in a subsequent experiment in a different 

group ofrats (p<O.OOl; Fig. 2A). Tolerance to DELT was lost by 2 weeks ofwithdrawal 

• from morphine pretreatment (Fig. 2B). 

• 

We next tested whether the same chronic morphine regimen would result in tolerance to 

acute morphine challenge given at the 7 day time interval (i.e. after withdrawal). For this 

purpose, a sub-maximal challenge dose of morphine was used (4 mg/kg; Abbott et al., 

1982). Tolerance was clearly absent (chronic morphine vs. saline, p=0.63; Fig.3). 

The effects of short term (48 hour) exposure to morphine were also tested. In contrast to 

the chronic dosing regimen, this short-term pretreatment resulted in sensitization to 

DELT-induced antinociception (p<0.02; Fig. 4). 
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• The occurrence oftolerance to spinal DELT antinociception following chronic morphine 

was unexpected, since the same chronic regimen has been reported to increase locomotor 

stimulant responses to i.c.v. DELT (Melchiorri et al. 1992). Therefore, in a final 

behavioral study, the effects ofthis chronic pretreatment regimen were tested on 

locomotor responses to i.c.v. DELT. In the control (saline pretreated) group, a significant 

locomotor stimulant effect ofDELT was observed in the first 30 minutes (p<O.OOI). 

Morphine pretreatment resulted in partial tolerance to this effect (p<0.05). The mean ± 

SEM DEL T -vehic1e difference scores for chronic morphine vs. saline were 3172 ± 824 

and 6810 ± 1292 cm, respectively. 

Possible changes in DOR function were assessed in vitro using the eSS]GTPyS assay. For 

this purpose, parallel groups of rats were chronically treated with morphine or saline but 

• were otherwise drug-naive. Assays were performed on three pain related CNS areas and 

on the DOR-rich caudate putamen (CP). Morphine pretreatment did not significantly alter 

GTPyS responses to DELT, except in the rostroventral medulla (RVM; p<0.02, Table 1). 

• 

However, in this brain region tolerance occurred only at the higher concentration of 

DEL T. To further investigate this result, the RVM and CP were assayed using a wider 

range ofDELT concentrations in a new group ofpretreated animaIs. Here, tolerance 

was not detected in either brain area (Fig. 5). In both the above experiments, mu agoni st­

induced GTPyS responses were not significantly affected by morphine pretreatment 

(Table 1 and Fig. 5). Finally, there were no significant differences in C2sI]DELT binding 

between morphine and saline pretreatment groups (Table 2). 
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Figure 1. The occurrence of tolerance to the antinociceptive effects of DEL T after chronic 

morphine pretreatment. Intraplantar injection of 2.5% formalin produced a biphasic 

nociceptive response, which was dose-dependently decreased by DEL T in saline 

pretreated rats (A), but not in the morphine pretreated group (B)(n=7-8 rats/group). The 

y axes for panels A and B show the mean ± SEM nociceptive score in response to 

formalin. Panels C and D show the antinociceptive dose response curves for phases 1 (0-

10 min) and 2 (15-50 min), respectively. The y axes in panels C and D represent area 

under the curve values, expressed as percent change from control (i.e. acute saline 

challenge). *p<0.02 morphine vs. saline pretreatment. 
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FIGURE 2 
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Figure 2. Antinociceptive response to DEL T returns after 14 days of withdrawal. Rats 

were pretreated with chronic morphine or saline and challenged with acute DEL T (10 /lg, 

i.t.) on day 7 (A) or day 14 (B) ofwithdrawal. Peak nociception occurred between 25-35 

min after intraplantar formalin injection, and these scores were averaged in order to 

perform at-test between the two pretreatment groups. Morphine and saline pretreated 

groups differed significantly in their response to i.t. DELT on day 7 (p<0.001) but not on 

day 14 (p=0.54) ofwithdrawal. The y axes show the mean ± SEM pain score in response 

to formalin, n=7 rats/group. 
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• FIGURE 3 
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Figure 3. Morphine pretreatment did not result in tolerance to morphine-induced 

antinociception. Rats were pretreated for 10 days with morphine (10 mg/kg) or saline, 

and tested on day 7 of withdrawal with a challenge dose of 4 mg/kg morphine. 

• Nociceptive scores were averaged between 25-35 min after formalin injection, and a t-

test revealed no significant difference between the two pretreatment groups (p=O.63). 

The y axes show the mean ± SEM pain score in response to formalin, n=5-7 rats/group. 
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FIGURE 4 
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Figure 4. Sensitization induced by short term pretreatment with morphine. Rats were 

pretreated every 12 hours with increasing doses of morphine (5, 8, 10, and 15 mg/kg) for 

48 hours, and challenged with DELT (3 Ilg, i.t.). Mean nociceptive scores at times 25, 30 

and 35 min after formalin injection were compared by t-test and revealed a significant 

difference between the two pretreatment groups (p<0.02, n=7-9 rats/group). 

172 



• 

• 

• 

FIGURE 5 
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Figure 5. No change in MOR or DOR mediated eSS]GTPyS responses after morphine 

pretreatment. Rats were pretreated with chronic morphine or saline, and on day 7 of 

withdrawal, in vitro responses to opioid agonists were assayed autoradiographically in the 

caudate putamen (CP) and rostroventral medulla (RVM). Analysis of the response to 

lower (0.1 and 0.3 !lM) and maximal (10 !lM) concentrations of DEL T, and EC50 

concentrations ofDAMGO (0.3 !lM) and morphine (0.5 !lM) revealed no difference 

between morphine vs. saline pretreated animaIs. The y axis shows mean ± SEM specifie 

eSS]GTPyS binding expressed as a percentage of basal binding (i.e. in the absence of 

agonist; n=8-9 rats/group). 
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TABLE 1 

Autoradiographic labeling ofDOR and MOR mediated [35S]GTPyS binding after chronic morphine or 
saline pretreatment 

CP PAG RVM 

AGONIST SAL MORPH SAL MORPH SAL MORPH SAL 

0.3 JlMDELT 163 ± 9 162 ± 12 103±3 102 ± 3 125 ± 13 119±9 99± 4 

10 JlMDELT 168 ± 6 165 ± 10 106±3 100± 5 145 ± 18 99± 7* 1l1±4 

0.3 JlM DAMGO 173 ± 15 158 ± 12 141 ± 8 130 ± 5 147± 12 141 ± 10 132 ± 6 

0.5 JlMMORPH 138 ± 6 129 ± 8 114±4 106±6 138 ± 10 117±7 112± 

In each case, [35S]GTPyS binding is expressed as a percentage ofbasal binding (i.e. in the absence of 
agoni st; n=7-8 rats/group). Abbreviations: CP, caudate putamen; PAG, periaqueductal grey; RVM, 
rostroventral medulla; DH, L4-5 dorsal horn. * p<O.02 unprotected t-test, shows difference between 
morphine vs. saline pretreatment groups. A partial replication ofthis experiment is shown in Fig. 5. 

12 

DH 
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MORPH 

109±4 

113 ± 3 

140 ± 13 

123 ± 7 



• 

• 

• 

TABLE 2 

Autoradiographie labeling of DOR by [125I]DEL T after ehronie morphine or saline pretreatment. 

AREA PRETREATMENT 

SAL MORPH 

CP 4.62 ± 0.30 4.92 ± 0.15 

PAG 0.48 ± 0.04 0.45 ± 0.02 

RVM 0.32 ± 0.04 0.32 ± 0.01 

L4-5 DH 0.43 ± 0.02 0.44 ± 0.01 

Abbreviations: CP, eaudate putamen; PAG, periaqueduetal grey; RVM, rostroventral medulla; DH, L4-5 
dorsal homo There were no signifieant differenees between pretreatment groups. Values are expressed as 
fmol/mg (mean ± SEM), n=7-8 rats/group. 
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• DISCUSSION 

Previously published reports suggest that both short and long term morphine pretreatment 

results in DOR sensitization. In contrast, we now report the novel observation that 

chronic morphine pretreatment can result in tolerance to DOR agonist-induced behavioral 

responses. This tolerance was observed one week after morphine withdrawal, a time at 

which animaIs were not tolerant to the effects of morphine. In vitro analysis in pain-

related areas revealed no concomitant changes in DOR function or binding. 

In the present study, the morphine dosing regimen proved critical for the induction of 

tolerance vs. sensitization to DELT. Thus, long term treatment (10 days and 7 days of 

withdrawal) resulted in near-total tolerance to DELT, whereas short term (48 hour) 

morphine exposure resulted in an enhanced response. The latter observation is consistent 

• with previous findings based on the same dosing regimen (Cahill et al., 2001; Morinville 

• 

et al., 2003). This form of sensitization appears transient, since it was lost 48 hours after 

the final morphine injection (Morinville et al., 2003). 

The chronic morphine regimen employed in the present study has been reported to cause 

a dramatic sensitization to the locomotor stimulant effects ofDELT (Melchiorri et al., 

1992). This sensitization appeared robust, in that it was obtained with several short and 

long term morphine regimens, and increased with time up to several weeks of 

withdrawal. In contrast, we observed c1ear tolerance to DELT-induced locomotion. 

There is no obvious explanation for these divergent findings. Several factors cannot be 
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responsible as they were kept constant between studies (e.g. morphine dosing regimen, 

withdrawal interval, DELT challenge dose, rat strain, age and sex). 

It is important to emphasize that the antinociceptive effects of DEL T in this study were 

almost certainly mediated by a direct action on DOR. First, the antinociceptive effect of 

DELT given at the highest dose used here (10 Ilg, i.t.), is sensitive to blockade by the 

DOR antagonist naltrindole (Cahill et al., 2001). Second, antisense targeting rat spinal 

DOR inhibited the effects of an even higher dose of i.t. DEL T (Bilsky et al., 1996). 

Third, in the present study, the antinociceptive effect of morphine, which is dependent on 

MOR but not DOR (Matthes et al., 1996; Sora et al., 1997) was still maintained 

concurrent with tolerance to DELT . 

Chronic morphine has been reported to induce cross-tolerance to behavioral effects of 

delta agonists in sorne but not all previous studies (Y obum et al., 1990; Adams and 

Holtzman, 1991; Stevens and Yaksh, 1992; Kalso et al., 1993; Catheline et al., 1996). 

However, the animaIs in all these reports were tested while still tolerant to morphine. In 

contrast, the present study included a one-week withdrawal period after which tolerance 

to morphine was not observed. Our findings appear to provide the first in vivo evidence 

for morphine-induced tolerance to a DOR agonist in the absence ofresidual tolerance to 

morphine. To our knowledge, the only analogous finding is provided by an in vitro study 

of adenylate cyclase activity (Noble and Cox, 1996). However, differential tolerance to 

DOR vs. MOR agonists was only seen in one of several brain regions examined, and the 

animaIs were tested directly after morphine pretreatment. 
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In the present study, the mechanism underlying the behavioral tolerance to DELT was 

investigated using two in vitro assays: DELT-induced eSS]GTPyS binding and 

[12SI]DELT autoradiography. Responses in this GTPyS assay reflect DOR function, but 

are only partially correlated with [12SI]DELT labeling (Pradhan and Clarke, 2005). Based 

on antisense experiments (Fraser et al., 2000), the GTPyS assay may be more sensitive to 

experimental manipulations. We observed a GTPyS response to DELT in all CNS regions 

tested, except in the PAG, consistent with previous findings (Pradhan and Clarke, 2005). 

This negative finding accords with electrophysiological evidence suggesting that DORs 

are non-functional in this brain area (Vaughan and Christie, 1997; Connor and Christie, 

1998; Hack et al., 2005). No c1ear effect of chronic morphine was detected in either the 

e2sI]DELT or eSS]GTPyS assay. The only possible indication oftolerance was a 

decrease in eSS]GTPyS binding in the rostroventral medulla seen at a single (maximal) 

concentration ofDELT (Table 1). However, this result was probably a false positive, 

since it would have been non-significant after Bonferroni correction and no such effect 

was detected at any DEL T concentration in a subsequent experiment (Fig. 5). 

These negative in vitro results suggest that the behavioral tolerance to DEL T was not due 

to changes in DOR abundance or to reduced coupling between DOR and G proteins. 

Several alternative explanations may be offered. First, DOR function may have been 

reduced in other brain areas that were not assayed. However, the major CNS areas that 

mediate antinociception were investigated (rostroventral medulla, lumbar spinal cord, and 

periaqueductal grey) (Rossi et al., 1994; Ossipov et al., 1995; Thorat and Hammond, 

1997; Kovelowski et al., 1999a; Kovelowski et al., 1999b). Second, changes in DOR 
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after morphine pretreatment possibly occur only in certain neuronal subcompartments . 

By way of analogy, morphine exposure appears to selectively change the distribution of 

dendritic, not somatic MOR (Haberstock-Debic et al., 2003; Hack et al., 2005). If a 

similar redistribution ofDOR were to occur, it would not necessarily be detectable by our 

in vitro assays. Third, DORs primarily signal through GUi/o, whereas evidence in mice 

suggests that DEL T -induced spinal analgesia may be partially mediated by GUq subunits 

(Sanchez-Blazquez and Garzon, 1998); coupling through GUq is not readily detected by 

the eSS]GTPyS assay (Milligan, 2003). 

There are at least two additional mechanisms that might explain behavioral tolerance to 

DELT following chronic morphine administration. Although DOR and MOR share 

downstream signaling cascades (Connor and Christie, 1999), differential tolerance could 

potentially occur ifthese two receptor pathways were segregated between cellular 

compartments or neuronal populations. In addition, we cannot mIe out the possibility that 

DELT antinociception occurs through mu/delta heterodimers, which in turn may be 

downregulated by chronic morphine exposure. It is currently unknown whether 

eSS]GTPyS responses and e2sI]DEL T autoradiography would detect such changes. 

DOR agonists, despite potential therapeutic advantages over mu agonists, have suffered 

from low antinociceptive efficacy in preclinical tests. Although several reports have 

indicated that morphine pretreatment can enhance DOR function, the present results show 

that DOR-mediated responses may be either sensitized or attenuated, depending on the 

dosing regimen . 
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Chapter 5 

GENERAL DISCUSSION 

5.1 Summary 

Several behavioural and biochemical aspects of Il and 0 opio id receptors were presented 

in this thesis. It was shown that PNA antisense targeting of MOR lead to a complete 

inhibition of Il agonist-induced antinociception. This knockdown was only se en at the 

behaviourallevel, and there was no corresponding decrease in brain or spinal MOR 

labelling or functional responses. During the development of the antisense study it was 

noted that 0 agonists possessed a much lower eSS]GTPyS response relative to MOR 

stimulation. This observation lead to the next chapter of the thesis, in which the 

neuroanatomical distribution of functional DOR was determined and compared to DOR 

radio ligand binding. Autoradiographic comparison of deltorphin lI-induced eSS]GTPyS 

binding vs. e2sI]deltorphin II and e2sI]AR-MlO0613 revealed that agoni st or antagonist 

radioligand binding was a poor predictor of functional DOR. The CNS areas with the 

greatest eSS]GTPyS responses were the extended striatum and cortex, while very low 

responses were detected in pain related areas. In the final experimental chapter, the Il and 

o opio id receptors were examined together by observing the changes in DOR after 

chronic morphine pretreatment. Long term exposure to morphine followed by a one 

week withdrawal period resulted in tolerance to deltorphin I1-induced antinociception and 

locomotor stimulation. This tolerance was not detected in vitro with either radioligand or 

eSS]GTPyS binding. Taken together, the results presented in this thesis suggest that 

MOR/DOR agonist interactions should be further characterized if 0 agonists are to be 
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• used c1inically, and that in vitro assays used in this thesis are not always predictive of 

behavioural responses. 

5.2 Methodological Limitations 

Throughout this thesis we were unable to detect significant biochemical changes in the 

central nervous system to explain significant loss of function in behavioural tests. 

Therefore, it is important to understand the limitations of our in vitro assays. A major 

limitation of the autoradiographic eSS]GTPyS assay is that there is high basal binding 

(i.e. absence of agonist), which can be seen in Fig 4, ehapter 3. This ean be partieularly 

problematic in areas such as the periaqueductal grey or dorsal horn, since small inereases 

in agoni st induced binding may not be detected due to the low signal to noise ratio. More 

importantly, further deereases in sueh areas brought about by experimental manipulations 

• (e.g. morphine pretreatment) would be ev en more diffieult to deteet. 

• 

The eSS]GTPyS autoradiographie assay provides a method for surveying large numbers 

of CNS areas, and deteeting highly loealized drug effeets. However, use of tissue 

homogenates allows for more replieates to be assayed. Using whole brain homogenates 

we previously detected a significant deerease in 0 agonist-indueed responses after PNA 

antisense targeting DOR (Fraser et al., 2000a). Antisense pretreated rats had a 25% 

decrease in SNC80-indueed eSS]GTPyS binding relative to control animaIs. A further 

advantage ofusing brain homogenates in this assay, is that it would be possible to detect 

changes in non-Gi/o G protein eoupling. Relative to other Ga subunits, Gi/o possess a 

substantially higher rate of basal guanine nuc1eotide exchange, and thus masks signaIs by 
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• other Ga subunits (Milligan, 2003). In order to detect non-Gi/o G coupling, antiserum 

against Ga subunits of interest can be used to bind to and isolate the Ga-esS]GTPyS 

complex (Milligan, 2003; Harrison and Traynor, 2003). Non-Gi/o Ga coupling has been 

reported for both MOR and DOR (see Section 1.7.1), and it is possible that these alternate 

signalling mechanisms are important for the behavioural effects observed in this thesis. 

There are certain generallimitations that one must keep in mind with regard to 

autoradiography. First, several of the most commonly used radioligands used to label the 

opioid receptor are agonists ([12SI]DELT, C2sI]FK33824, eH]DPDPE, eH]DAMGO), 

which are sensitive to the affinity states of the receptor, and could be sensitive to putative 

receptor subtypes. Antagonist radioligands, in contrast, are not sensitive to affinity states 

• of GPCRs, and are commercially available for MOR (eH]CTOP) and DOR 

(eH]naltrindole and eH]TIPp\jf). However, these particular radio ligands suffer from low 

• 

specific activity provided by the tritium label, as well as differential quenching in white 

vs. grey matter (Happe and Murrin, 1990). DOR tritiated antagonists pose additional 

concerns as eH]naltrindole has a low DOR to MOR selectivity (~ 6 fold) (Payza et al., 

1996), and TIPP\jf was reported to be a partial agoni st for DORs (Martin et al., 2001). 

It was hoped that the novel DOR antagonist AR-M100613 would provide a viable 

alternative, as it has a high selectivity for DOR over MOR, and does not discriminate 

between DOR subtypes (Fraser et al., 1999). A further advantage is that AR-M100613 is 

iodinated, and therefore has high specific activity and is not quenched in tissue. 
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Unfortunately, this radioligand is unsuitable for autoradiographic labelling ofDOR, since 

it possessed a low signal to noise ratio in autoradiographie sections. This high nonspecific 

binding suggests that [125I]AR-M100613 also labels a non-DOR population. Thus, there 

continues to be an absence of antagonist radio ligands specific for DOR autoradiography. 

Alternative techniques that could be used to detect changes in MOR after PNA antisense 

treatment, and DOR after chronic morphine pretreatment are as follows. One potential 

strategy would be to use immunohistochemistry or immunoblotting. However, a major 

problem in the opio id field is that there is a lack of reliable antibodies which selectively 

detect MOR or DOR. Although many groups have reported immunhistochemical 

detection ofboth opioid receptors, the antibodies used are usually polyc1onal, and highly 

susceptible to batch variation (Dr. Anne Morinville, personal communication). In fact a 

commonly used antibody to characterize the distribution ofDOR (Dado et al., 1993; 

Arvidsson et al., 1995; Tao et al., 1998) was found to be blocked by substance P 

(Arvidsson et al., 1995). Furthermore, another group has found that all of the available 

opio id receptor antibodies continue to show immunostaining in their respective knock out 

animaIs, and sometimes ev en in triple knock out animaIs (Dr. Brigitte Kieffer, personal 

communication). Because ofthis po or antibody selectivity, a thorough study of the 

colocalization of MOR and DOR has not been done. Poody selective opio id antibodies 

not only limit immunohistochemicallocalization, but also Western blot analysis. Thus, 

there is a real need for highly selective antibodies targeting the separate opioid receptors. 
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The advantage of immunolabelling of opioid receptors is that subcellular populations of 

the receptor can be visualized. This ability may prove to be crucial since morphine 

appears to selectively affect MOR in dendrites, but not axons (Haberstock-Debic et al., 

2003). For example, if chronic morphine pretreatment was producing tolerance to 

deltorphin II by subtly changing DOR in selective neuronal subcompartments, 

autoradiography would not provide the high resolution needed to detect these changes. 

A second approach to detect changes in MOR or DOR after antisense or chronic 

morphine pretreatment, would be to examine changes in down stream regulators of these 

receptors. There is sorne difficulty in this approach as all opioid receptors ultimately 

result in the same downstream signalling pathways. Thus, assays that do not depend on 

selective opioid receptor ligands (e.g. changes in MAP kinase phosphorylation) could not 

be used. However, monitoring changes in agonist-induced cAMP inhibition or GIRK or 

Ca ++ currents may reveal differences in experimentally manipulated animaIs relative to 

controls. One shortcoming ofthese alternative assays is that they do not allow the 

anatomical survey that can be performed with receptor labelling. 

Third, changes in MOR and DOR mRNA could be detected after the experimental 

manipulations used in this thesis. Changes in mRNA can be detected with in situ 

hybridization or RT PCR. In terms of antisense targeting the MOR, PNA binding to 

mRNA does not activate RNase H, thereby activating mRNA c1eavage. In cell culture 

• PNA has been reported to decrease (Aldrian-Herrada et al., 1998), or not change (Kilk et 
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al., 2004) mRNA levels. Onlyone study has characterized mRNA levels after PNA 

antisense pretreatment, and this group found an increase in target mRNA, which they 

propose to be a compensatory mechanism in response to the drop in protein that was 

detected (Boules et al., 2004). Thus, it is unclear if changes in mRNA levels would 

reflect changes at the prote in level. Even if reductions in mRNA were detected after 

antisense or chronic morphine pretreatment it would still not explain the behavioural 

effects as changes at the prote in level were not detected. 

5.3 Behaviourally relevant populations of MOR and DOR 

There are clear differences between MOR and DOR in vitro responses. In vitro results 

presented in Chapter 2, and a direct comparison of MOR vs. DOR e5S]GTPyS binding in 

Chapter 3, confirms that MORs have a larger in vitro functional responses compared to 

DORs. This greater response of MOR vs. DOR has been previously reported in the 

literature using whole brain homogenates (Fraser et al., 1999; Alt et al., 2002; Sim-Selley 

et al., 2002) and autoradiography (Sim-Selley et al., 2002). A likely explanation for the 

greater MOR response is that this receptor is abundantly expressed on the cell surface, 

while DOR are primarily found intracellulary (see Section 1.3.5). In addition, MOR 

possibly couples to G proteins more efficiently than DOR. These in vitro findings 

indicate the existence of a large pool of functional MOR. However, the results from 

antisense targeting of MOR seen in Chapter 2, suggests that a small critical population of 

receptors is responsible for the behavioural effects ofDAMGO. 
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Previous MOR antisense studies provide only a limited basis of comparison, as the 

majority have only demonstrated knockdown ofbehavioural effects, and have not 

quantified corresponding changes in CNS tissue (Rossi et al., 1994; Chen et al., 1995; 

Rossi et al., 1995a; Rossi et al., 1995b; Leventhal et al., 1997). However, one group did 

study changes in eH]DAMGO binding after phosphorothioate i.c.v. and i.t. antisense 

pretreatment in mice. Similar to our results, this group found that there was no change in 

eH]DAMGO binding in whole brain or spinal cord homogenates in the presence of a 

significant reduction in acute antinociceptive responses to systemic morphine (Shah et 

al., 1997). Two antisense studies have targeted rat MOR using the same PNA sequence as 

used in Chapter 2. This group found that antisense pretreatment resulted in a significant 

(~ 70%) decrease in antinociceptive responses to systemic morphine in the tail flick test, 

along with a ~ 55% reduction in MOR protein (as measured by Western blots) after either 

intra-PAG or systemic administration of antisense (Tyler et al., 1998; McMahon et al., 

2001). These latter results suggest that not all MORs on the cell surface act equally, and 

that even with almost half of the receptors still intact, behavioural effects are not 

maintained. A possible explanation for these antisense results is that newly synthesized 

receptors are particularly important for f.l agonist-induced antinociception in tests of acute 

pain. The extra receptors may play a modulatory role, and could be important in more 

complex behaviours such as inescapable or chronic pain, tolerance and dependence. 

The low in vitro responses for DOR suggest that agonists at this receptor have low 

antinociceptive potential. Ultrastructurallocalization finds the majority of DORs on 

intracellular vesic1es, raising the question of how they interact with exogenous ligand. 
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However, DOR agonists produce significant behavioural responses, including supraspinal 

(Chapter 2) and spinal (Chapter 4) antinociception (for review see Section 1.6). 

Apparently, the few receptors that are found on the cell surface are enough to mediate 

these behavioural effects. One possibility is that additive or synergistic responses from 

DORs in several brain and spinal structures are responsible for deltorphin Il-induced 

antinociception. In support of this hypothesis, co administration of deltorphin II into the 

periaqueductal grey and rostroventral medulla results in an additive antinociceptive effect 

(Rossi et al., 1994), and synergistic responses have been demonstrated when deltorphin II 

is concurrently injected into the rostroventral medulla and spinal cord (Kovelowski et al., 

1999). Overall, the antinociceptive actions of DOR agonists were not predicted by our in 

vitro assays . 

5.4 Non-antinociceptive uses for DOR agonists 

To date, the literature on DOR has primarily focused on antinociception. However, in 

view of the finding that DOR labelling and e5S]GTPyS responses were highest in the 

basal ganglia, cortex and amygdala, perhaps more emphasis should be placed on finding 

therapeutics that are relevant to these brain regions. For instance, 8 agonists represent a 

potential therapeutic in the treatment of Parkinsonian symptoms. Animal studies have 

shown that DOR agonists such as SNC80 can induce ipsilateral turning at low doses, and 

contralateral turning at high doses, in rats that have sustained unilateral 6-0HDA lesions 

of the striatum (Pinna and Di Chiara, 1998; Hudzik et al., 2000). These effects were 

blocked by the DOR antagonist naltrindole (Pinna and Di Chiara, 1998; Hudzik et al., 

2000). Thus, these findings suggest that SNC80 acts on DOR in intact and lesioned sides 
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of the striatum. SNC80 also exerts dose-dependent "restorative" effects in other animal 

models ofParkinson's disease. Thus, this drug increased locomotion in reserpine-treated 

rats, reversed akinesia induced by haloperidol or SCH23390, and reversed Parkinson-like 

symptoms in MPTP treated non-human primates (Hille et al., 2001). Systemic SNC80 

appears to potentiate DA receptor transmission, but does not itself increase DA release 

(Longoni et al., 1998), and may serve as a concurrent therapy with L-DOPA. This 

pairing would allow a decrease in the amount of L-DOP A used, hence prolonging the 

time before onset of dyskinesias associated with long term L-DOPA therapy (for review 

see Olanow et al., 2004 ). 

Further characterization ofDOR in the forebrain may also be important in the 

development of antidepressants. Several findings indicate that DORs may be important in 

emotional regulation. First, mice lacking this receptor have shown an increase in 

anxiogenic-like and depressive-like behaviours (elevated plus maze, light-dark box; and 

forced swim test) (Filliol et al., 2000). Second, preproenkephalin knock out animaIs also 

show an increased response in tests offear and anxiety (Ragnauth et al., 2001) along with 

increased aggression (Konig et al., 1996). Finally, DOR agonists (BW-372U86 and 

SNC80) can also decrease immobility in the forced swim test (a test which is predictive 

of effective antidepressants) (Broom et al., 2002). Our results showed that structures 

such as the amygdala and cortex which are involved in regulating emotional responses 

(Diamond 2004) had particularly high DOR binding and functional responses. 
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5.5 Tolerance to DOR agonists after morphine pretreatment 

Tolerance to the behavioural effects of deltorphin II were seen after chronic morphine 

pretreatment and withdrawal (Chapter 4), in the absence of changes in DOR Iabelling and 

e5S]GTPyS responses. This study raises numerous questions. Whether this cross 

tolerance can be induced by other ~ agonists needs to be determined. This may be a very 

important point, particularly as morphine does not cause substantiai intemalization of 

MORs, unlike many other ~ agonists (see Section 1.7.5). Previous studies examining the 

sensitization ofDOR responses after short term pretreatment with morphine had found 

that this cross sensitization could be produced by several MOR agonists (fentanyl, 

methadone,etorphine), and that cross sensitization did not occur in MOR knockout mice 

(Morinville et al., 2003). These findings indicate that analogous studies adapted to the 

chronic use and withdrawal regimen used in Chapter 4 may provide further insights on 

the role of MOR in producing DOR tolerance. 

In Chapter 4, tolerance to deltorphin II was detected one week after chronic morphine 

pretreatment. The experimentai design did not distinguish whether chronic morphine 

pretreatment, withdrawai or an interaction between the two was responsible. This 

question may be addressed by challenging animaIs with deltorphin II on the final day of 

morphine pretreatment, and to test another group on day seven of withdrawal. 
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Several hypotheses may help to explain the tolerance se en at DOR after chronic 

morphine pretreatment and withdrawal. The tirst such hypothesis is that deltorphin II 

acts at MORIDOR heterodimers to exert its antinociceptive effects, and that chronic 

morphine pretreatment downregulates these receptors and/or their associated signalling 

pathways. To date, there is very little in vivo evidence available to support the notion 

that deltorphin II exerts its behavioural effects by binding to MORIDOR heterodimers. 

In fact, the existence of MOR/DOR heterodimers in animaIs was only demonstrated in 

2004 (Gomes et al., 2004). In rats, the Il agoni st CTOP does not block antinociception 

produced by an ED80 dose ofi.c.v. deltorphin II in an acute pain test (paw pressure), 

suggesting a wholly DOR mediated behavioural response (Fraser et al., 2000b). 

However, in cells coexpressing MOR and DOR, CTOP has been found to reveal 

eH]deltorphin II binding sites possibly by stabilizing MORIDOR heterodimers (Gomes 

et al., 2000). According to these results deltorphin II should be potentiated by CTOP, 

and perhaps repeating the above mentioned in vivo study with a lower concentration of 

deltorphin II would reveal this effect. It is also possible that in the more complicated and 

longer lasting formalin pain test (used in Chapter 4), deltorphin II relies on MOR and 

DOR interactions, but this has yet to be determined. 

In our study, rats were tolerant to the antinociceptive effects of deltorphin II, but they 

were not concurrently tolerant to morphine. The antinociceptive effects of morphine are 

completely abolished in MOR knockout mice, indicating that this drug acts exclusively 

through MOR. If deltorphin II is acting through MORIDOR heterodimers, then our 

• results suggest that these heterodimers are downregulated for a longer time than MOR 
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alone. In cell culture and mouse spinal cord MOR/DOR heterodimers have been shown 

to have different signalling properties (George et al., 2000; Gomes et al., 2000; Gomes et 

al., 2004), and may ev en act through a different host of G proteins (pertussis toxin 

insensitive) (George et al., 2000), thus it is not inconceivable that this complex could also 

be differentially downregulated. It is unknown if the autoradiographic assays used in this 

thesis would detect MORIDOR heterodimers, but given the methodologicallimitations 

presented earlier, it is unlikely. 

A second possibility is that chronic morphine exposure results in an increase in 

enkephalin release which in turn downregulates DORs. In support ofthis idea, a 

microdialysis study showed a 340% increase in met-enkephalin release in rat PAG on the 

last day of chronic morphine pretreatment (Nieto et al., 2002). In addition, 

preproenkephalin mRNA in the P AG was increased from 40-70% during the first three 

days of morphine withdrawal (Fukunaga et al., 1996; Fukunaga et al., 1998). Increases in 

met-enkephalin after morphine pretreatment have also been detected in cat brain and 

spinal cord (Jhamandas et al., 1984). The putative downregulation ofDOR clearly does 

not occur early during morphine pretreatment, since surface DORs have been shown to 

be upregulated after short term morphine exposure (Cahill et al., 2001). However, DOR 

downregulation might become the dominant process during longer-term morphine 

exposure or during withdrawal. Experiments designed to observe changes in brain and 

spinal enkephalin during the dosing regimen used in Chapter 4 may help to further 

characterize the cross tolerance seen at DOR after morphine pretreatment. 
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Lastly, a better understanding ofDOR tolerance after morphine pretreatment may be 

obtained by using MOR tolerance as a heuristic. For example, tolerance at MOR and 

DOR is accompanied by cAMP superactivation (NestIer and Aghajanian, 1997; Varga et 

al., 2003). In contrast, NMDA antagonists appear only to prevent the development of 

tolerance to chronic morphine but not deltorphin II (Bilsky et al., 1996). Currently, 

nothing is known about the cellular mechanisms that mediate tolerance at DOR after 

morphine pretreatment 

5.6 Conclu ding Remarks 

• A major reoccurring theme in this thesis was the presence of behavioural effects which 

were not predicted by in vitro assays. In Chapter 2, a complete and reliable knockdown 

of MOR antinociception was observed after PNA antisense pretreatment, and in Chapter 

4 tolerance to both the antinociceptive and locomotor stimulant effects of deltorphin II 

were observed after chronic morphine pretreatment and withdrawal. However, in both 

cases there was no detectable change in brain or spinal receptor labelling or eSS]GTPyS 

responses. Furthermore, a thorough anatomical characterization of deltorphin I1-induced 

eSS]GTPyS responses suggested that DOR in pain related areas (spinal cord, brain stem 

and periaqueductal grey) had very low functional activity, whereas DOR agonists 

produce reliable antinociception by acting at supraspinal and spinal sites (Chapter 2 and 

4). The pharmaceutical industry continues to rely on in vitro screening of compounds 

• 
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(and orphan receptors), yet from this thesis it is clear that not aIl biochemical assays 

reliably predict therapeutically-relevant activity in the whole animal. 
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