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Abstract 

Electromagnetic band-gap (EBG) structures, often termed frequency selective surfaces 

(FSSs) or photonic band-gap (PBG) materials, have found widespread applications as fil­

ters for rnicrowaves and optical signaIs. Due to their frequency selective features and ease 

of implementation in printed circuit board (PCB) technology, EBG structures are utilized 

in power distribution networks (PDNs) to induce wide stopband and to provide global 

power / ground noise suppression. Attenuation characteristic of EBG structures within their 

forbidden frequency regions is examined in this thesis which ultirnately provides the inser­

tion loss obtained by inserting the EBG structure in the PDN. Bandgap characterization is 

efficiently achieved by applying the Bloch analysis to only one unit-ceU of the EBG struc­

ture. For that purpose, two approaches have been investigated: the transmission-line (TL) 

technique and the finite element method (FEM). Printed-circuit EBG structures can be 

efficiently modeled by transmission-line circuits; thus TL techniques are widely used for 

their fast characterization. The developed TL model is exploited to investigate the power 

attenuation within the badgap regions of PDNs containing EBG structures. A full-wave 

finite element code has been developed for accurate prediction of the stopband characteris­

tics of periodic media. A number of simple periodic geometries are examined by the finite 

element code showing unique spectral properties of EBG structures, such as existence of 

evanescent and/or complex modes within their stopbands. 
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Résumé 

Les structures à bandes interdites électromagnétiques (BlE) sont également nommées sur­

faces sélectives en fréquence (SSF) ou bandes interdites photoniques (BIP). On leur connaît 

de nombreuses applications telles que les filtres micro-ondes et les filtres optiques. Grâce 

à leur dispositif de sélection de fréquence et leur facilité d'implantation dans les circuits 

imprimés (CI), les structures BlE sont usitées pour les réseaux de distribution de puissance 

(RDP) dans le but d'introduire une large bande atténuée et de supprimer le bruit global. 

Les caractéristiques d'atténuation de ces structures, à l'intérieur des régions de fréquences 

interdites, sont examinées dans cette thèse: en insérant la structure BlE dans le RDP, un 

affaiblissement d'insertion se produit. La caractérisation de la bande interdite est réalisée 

en appliquant l'analyse de Bloch à une cellule unique de la structure BlE. Pour cela deux 

approches ont été étudiées : la technique par lignes de transmission et la méthode par 

éléments finis. Les structures BlE à circuits imprimés peuvent être effectivement modélisées 

à l'aide de circuits à base de lignes de transmission. Cette technique est largement utilisée 

pour sa rapidité de caractérisation. Le modèle de transmission développé est exploité afin 

de déterminer l'atténuation présente dans les régions interdites des RDP contenant des 

structures BlE. Un code par analyse d'éléments finis a été développé pour prévoir, avec 

précision, les caractéristiques de la bande d'atténuation de la structure périodique. De 

simples structures périodiques sont examinées par ce programme démontrant ainsi des pro­

priétés spectrales uniques de la structure BlE comme l'existence de modes évanescents 

et/ou complexes dans leur bande d'atténuation. 
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Chapter 1 

Introduction 

Wave propagation through spatially periodic structures has been the subject of continuing 

interest for many years [1, 2J. Periodic structures are increasingly utilized by a wide variety 

of microwave and optical devices primarily because of their potential applications in the 

design of waveguides, transmission-line systems and circuit components. 

The interest in waveguiding structures of this type stems from the following two proper­

ties [3J: (a) they can support waves with phase velocities much less than the speed of light, 

(b) they may exhibit pass bands and stop bands, i.e. frequencies at which electromagnetic 

waves propagate along the structure (passband) and those at which they are cut off and 

cannot propagate (stopband). Property (a) is of fundamental importance in slow-wave 

devices [4J. Attribute (b) allows for their utilization as filters [5, 6J or as refiectors of elec­

tromagnetic energy [7, 8, 9J -they can refiect an incident wave without phase reversaI (an 

artificially perfect magnetic conductor (PMe)). Therefore, analysis of periodic structures 

has historically provided two types of information: the dispersion characteristics of the sup­

ported modes and the phase of the refiection coefficient of the structure under plane wave 

illumination. However, in many practical cases, the former is of more interest as it provides 

useful information about the frequency-selective features of the periodic structures. 

Many numerical and analytical techniques have been proposed during the past decades 

to examine the modal behavior of periodic structures, e.g. [10, 11, 12, 13, 14, 15J. Despite 

their unquestionable success in predicting the passbands and the dispersion of propagating 

modes within those frequency regions, these techniques fail to reveal enough information 

about the stopbands. Our knowledge of the stopband physics is still very limited -mostly 
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restricted to those of one-dimensional (ID) periodic structures [16, 17]. Therefore, a com­

plete modal analysis for aU frequency ranges has not yet been realized. 

The question that has been recently brought up about the stopband is whether there 

exist modes in the stopband or not, and if so what are they like and how are such modes 

related to the evanescence of electromagnetic energy? The answers to these questions will 

be crucial in gaining more physical insight into the stopband behavior and consequently the 

problem of eigenmode characterization of periodic structures. The first and a major step 

for stopband characterization is to obtain the propagation constants of evanescent and/or 

complex modes within banned frequencies and to predict the attenuation characteristics 

associated with each of them. 

This thesis examines the attenuation behavior of different modes within the the stop­

band of doubly and triply periodic structures. Existence of evanescent modes with imagi­

nary phase constants and/or modes with complex propagation constants in their forbidden 

frequency regions is investigated. Through several studied cases, the preceding questions 

about the nature of the stopband are answered1 and various modal characteristics of peri­

odic structures are demonstrated2 . 

1.1 Rationale 

1.1.1 Motivation 

Recently, periodic structures have found wide spread applications as a viable solution to 

the problem of power / ground noise suppression and port isolation in high-speed digital and 

mixed-signal electronic circuits [19, 20, 21, 22, 23]. In these applications, the periodic struc­

ture is incorporated in the power distribution network of the electronic circuit by replacing 

one of the reference voltage planes such as the one shown in Fig. 1.1(a) [24]. Examples of 

implementation of these types of modified PDN in printed circuit board technology have 

been reported in the literature [20, 21, 22, 23, 25, 26]. A similar approach, nonetheless more 

chaUenging due to the fabrication, material and geometrical constraints, is applicable to 

1 It should be noted that the formation of stop bands and the mechanisms responsible for evanescence 
of electromagnetic energy within them are not the subject of the present thesis and are not investigated 
herein. 

2It is worth noting that for a complete modal characterization of periodic structures visualization of the 
field distribution is required along with the propagation constant of each mode. Field visualization is out 
of the scope of this thesis and therefore is not addressed here. 
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modern system integration platforms, such as system-on jin-package. In aIl of these system 

integration scenarios, design engineers need to employ efficient methods to account for the 

added frequency-selective features of the modified PDN in simulations. 

This modified PDN has a paraIlel-plate arrangement in which one of reference voltage 

planes may be periodicaIly patterned (refer to Fig. 1.1 (b )) or may be textured by using the 

-------- -..... .,..../ ........ 
/ , 

Noisy part of the system 

?---------------~ , '-
/"""'.... .... ' ..... 

/ , 

Sensitive to noise 

~ 
/ , 1 \ 

1 \ ( \ 
1 \ 1 1 
t J 
\ 1 
\ / , / 

\ 1 
\ 1 , / 

" /,;.... Power plane ,.--
-----""" 

EBG structure Through vias 

(a) 

Top View Top View 

Side View Side View 

(b) (c) 

Fig. 1.1 (a) The parallel-plate PDN of a typical electronic circuit with an 
embedded periodic structure for suppression of power / ground noise [18]. (b) 
Top view and side view of a modified PDN with a patterned power plane [19]. 
(c) Top view and side view of a modified PDN with a textured ground plane 
[20]. 
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mushroom EBG structure originally introduced by Sievenpiper et. al. [27] (see Fig. 1.1( c)). 

In both cases, owing to the modal characteristics of the periodic structure, a bandgap is 

induced within the operating frequency range of the PDN which acts as a band reject filter 

and mitigates the voltage fluctuations on the power delivery network. The insertion loss as 

weIl as the width of stopband region are two important measures of the efficiency of this 

noise suppression method. Wave evanescence is recognized as the responsible mechanism 

for the incurring losses in the stopband [28]. Therefore, prediction of the attenuation 

characteristics and the frequency range of the induced stopband are required in proper 

design of a periodic structure for a target application. This in turn caUs for routines that 

are capable of capturing evanescent modes with real propagation constants and, in general, 

complex modes of such structures. 

1.1.2 Objective 

The objective of this thesis is to develop such codes for obtaining complex propagation 

constants of periodic structures in general and then applying them to configurations like 

Figs. 1.1(c), 1.1(b). Complex eigenmode analysis of periodic structures aUows for their 

bandgap modal characterization. This information is particularly useful for investigation 

of the insertion loss characteristics achieved by inserting the EBG in the parallel-plate PDN 

configurations. Indeed, the ultimate goal is to investigate port isolation and insertion loss 

between two measurement ports placed arbitrarily in such modified PDN boards. 

Fabrication of PDNs with EBG embodiments is a time consuming and costly process. 

Therefore, measuring the port isolation achieved by inserting the EBG in a paraUel-plate 

PDN in a multilayer substrate is not always economical. On the other hand, using available 

general purpose electromagnetic (EM) solvers, the required insertion loss information can 

only be found along certain directions of signal propagation and for relatively small sizes 

of PDN boards. As the distance between two measurement ports increases, full-wave simu­

lation of the whole PDN board becomes computationally costly and inefficient. Therefore, 

the alternative solution techniques proposed in this thesis, are investigated which enable 

efficient extraction of attenuation characteristics along arbitrary directions by analyzing 

only one unit-cell of the periodic structure. For that purpose, two distinct approaches have 

been investigated: 

• Transmission-line techniques are used for fast characterization of the stopband be-
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havior. Undoubtedly, field analysis techniques predict the passbandjstopband modes 

most accurately; But, they are time consuming and have large memory requirements. 

TL techniques, on the contrary, allow for rapid estimation of passbandjstopband 

characteristics and offer an efficient means for analysis of printed-circuit periodic 

structures . 

• The finite element method is employed to accurately capture complex modes of such 

structures and thereby to predict their bandgap behavior. The FEM has been used for 

quite sorne time to find the propagating modes of periodic structures and to predict 

the pass band frequencies [12], and indeed commercial programs offer this capability. 

However, to the best of author's knowledge, no one has yet used FEM to find the 

attenuation constant of a mode in the stop band. 

1.2 Thesis Organization 

Following this introduction, Chapter 2 reviews the fundamentals of electromagnetic field 

modeling in periodic structures from both TL and FEM points of view. Chapter 3 is on 

transmission-line modeling of microwave and printed-circuit periodic structures. The em­

phasis will be on the stopband characterization of geometries that are particularly employed 

in power distribution networks. Chapter 4 ad dresses the finite element (FE) modeling of 

periodic structures. The FE model is implemented using an existing 3D FE code. This 

platform was enhanced for the prediction of bandgap behavior and complex eigenmode 

analysis of the electromagnetic waves in periodic media. 

Simulation results for a number of representative periodic structures are presented in 

both Chapters 3 and 4. As far as the modal behavior is concerned, the so called k - f3 
diagrams are traditionally used to represent the dispersion characteristics of propagating 

modes. Corresponding to k - f3 diagrams, k - a diagrams are introduced herein to charac­

terize the attenuation of modes in the stopband frequencies. lndeed, the imaginary and the 

real parts of the complex propagation constants along arbitrary directions of propagation 

are plotted versus frequency to provide the desired k - f3 and k - a diagrams, respectively. 

Extraction of insertion 10ss information from k - a diagrams is discussed in Chapter 3. 

Closing remarks and discussion on future work can be found in Chapter 5. 
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Chapter 2 

Background 

Techniques that are currently utilized for analyzing periodic structures can be divided 

into two major categories: transmission-line techniques and field analysis techniques. The 

former methods are borrowed from the area of transmission-line theory. These techniques 

model the dielectric media with transmission-lines and are well-suited to analysis of printed­

circuit and TL-based periodic structures. TL techniques are constrained by the accuracy 

of results as weIl as the geometrical complexity of the structures they can handle. The 

latter methods are taken from the area of computational electromagnetics (CEM). These 

techniques are applicable, in principle, to any type of geometries and yield the most accurate 

results. 

This chapter briefly reviews the fundamentals of electromagnetic fields modeling in pe­

riodic structures. The foundation for electromagnetic waves behavior in periodic media is 

provided in § 2.1. One-dimension al and two-dimensional (2D) transmission-line models are 

outlined in § 2.2. Also introduced in this section are the so called band diagrams (k - (3 

diagrams) and the corresponding attenuation diagrams (k - 0: diagrams) which characterize 

the propagating and evanescent modes of periodic structures, respectively. TL techniques 

deal with the equivalent voltages and currents along the periodic structure. Periodic net­

work analysis is applied to these voltages and currents which allows for rapid production 

of dispersion and attenuation diagrams. § 2.3 presents different solution techniques from 

the area of CEM and discusses the salient features of each. CEM techniques, as opposed to 

transmission-line techniques, deal with the actual electromagnetic fields within the periodic 

structure and are therefore costly in terms of simulation time and memory requirements. 
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2.1 Fundamental Concepts 

2.1.1 Maxwell's Equations 

The basic equations of electromagnetic theory are Maxwell's equations. Assuming steady­

state oscillations, these equations can be written in differential form [29] as, 

V' x E = -jwB 

V' x H =jwD+J 

V'·D=p 

V'·B=O 

(2.1a) 

(2.1b) 

(2.1c) 

(2.1d) 

where E is the electric field intensity, B is the magnetic flux density, H is the magnetic 

field intensity, and D is the electric flux density. The electric current density J and the 

electric charge density pare time-harmonic sources of the electromagnetic fields. 

The electric charge density and the electric current density are related through the 

continuity equation 

V'·J=-jwp (2.2) 

which is a statement of the conservation of charge. Moreover, for linear and isotropie media, 

the constitutive relations 

B = /-Lr/-LoH 

(2.3a) 

(2.3b) 

provide the dependency between E, D and B, H where tO, /-Lo, tr, and /-Lr are the free­

space permittivity, free-space permeability, relative permittivity, and relative permeability, 

respectively. 

The four Maxwell's equations (2.1), together with the equation of continuity (2.2), and 

the constitutive relations (2.3) provide the necessary framework to predict an macroscopic 

electromagnetic interactions. With the assumption that there are no free charges and 

currents in the periodic medium, Eqns. (2.1a) and (2.1b) may be combined to obtain the 

governing wave equation: 
1 

V' x -V' x F - k6qF = 0 
p 

(2.4) 
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x 

z 

a 

Fig. 2.1 One-dimensional array of dielectric slabs of width b in a periodic 
lattice with period a. 

8 

where ko = wV/-LoEo is the free-space wave number, and p = /-Ln q = Er for F = E and 

p = Er, q = /-Lr for F = H. Eq. (2.4) along with the essential boundary conditions governs 

the propagation of electromagnetic waves in periodic media. 

2.1.2 Flouqet's Theorem 

The starting point in solving the problems of periodic structures is the Floquet's theorem. 

Floquet solved differential equations with periodic coefficients [30J. Bloch further extended 

Floquet's work to cases with periodic boundary conditions [31J. Floquet's theorem states 

that the wave solution in periodic media consists of an infinite number of spatial harmonies. 

Consider the one-dimensional periodic array of dielectric slabs shown in Fig. 2.1. It has 

been found [31J that the fields at a point in an infinite periodic structure differ from those 

a period a away by a propagation factor e-'Ya
. That is, 

F(x, y, z + a) = e-'Ya F(x, y, z) (2.5) 

where '"Y = Cl' + j (3 is the complex propagation constant along the z-axis. Consequently, the 

field solution F, subject to the constraint (2.5), may be written as 

(2.6) 
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where F p( x, y, z) is a periodic function of z with period a. 

From Eq. (2.6) we see that at some point z + a the electromagnetic field is related to 

the one at z by: 

F(x, y, z + a) = e-')'(z+a) Fp(x, y, z + a) 

= e-')'a . e-')'Z F p(x, y, z) 

= e-')'a F(x, y, z) (2.7) 

which satisfies the repetitive pattern required by Eq. (2.5). Expanding Fp(x, y, z) into its 

infinite Fourier series [32], 

( ) ""'" ( ) _ j 2n1T z Fp x,y,z = ~Fpn x,y e a (2.8) 
n 

the field solutions can then be represented as: 

-')'Z -J-Z 2: 
·2n1T 

F(x,y,z) = Fpn(x,y)e e a 

n 

(2.9) 
n 

where În = a + j (fJ + 2:7r) and F pn (x, y) are the expansion coefficients, given by: 

( ) 1 la ( ) j 2n1T z F pn X, Y = - F pX, y, z e a dz. 
a 0 

(2.10) 

Each term in the expansion (2.9) is caIled a spatial harmonie. The nth harmonie has a 

phase constant fJn = fJ + 2n7r, often referred to as the Floquet's mode numbers. 
a 

Therefore the exact solution for the one-dimensional periodic problem involves finding 

the complex mode numbers În and the Floquet periodic vector variable F p' This method 

is termed the plane wave expansion method [33] and ordinarily results in an eigenvalue 

equation whose solution is obtained by equating the Fourier series coefficients on both 

sides of the equation. Finding expansion coefficients for two- and three-dimensional (3D) 

periodic structures is a mathematicaIly rigorous task and closed form formula are only 

available for specifie unit ceIl shapes [34]. Therefore, alternative solution techniques, such 

as simple transmission-line models or numerical methods, should be used for general cases. 
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The possibility of expressing the fields in a periodic structure in the form given by 

Eq. (2.5) means that we Can restrict the analysis domain to a unit cell of the structure and 

find the field solution F, itself, instead of F p. In this approach, those solutions which satisfy 

the (2.5) constraint on the unit cell surfaces are sought. lndeed, in a more general sense, 

Eq. (2.5) is a type of boundary condition that should be imposed on the tangential field 

components on the unit cell closures in such analysis. Once the solution is found within 

one period, say 0 :::; z :::; a, the field everywhere else in the structure is given by: 

F (x, y, z + ma) = (e -,a) m F (x, y, z) 

= e-,ma F(x, y, z). (2.11) 

Throughout this thesis, the latter approach will be followed and the modal characteristics of 

periodic structures will be explored by applying the Bloch analysis to a unit-cell. Modeling 

the electromagnetic fields within a unit-ceIl thus forms a major part of our analysis and is 

discussed in the subsequent sections. 

2.2 Equivalent Transmission-Line Models 

It is a common practice in electromagnetic theory to model dielectric properties like permit­

tivity and permeability by distributed L-C networks. A prime example is the transmission­

line matrix (TLM) method [35J. This concept has been widely used in various areas of 

electromagnetics including the propagation of waves in periodic media. Transmission-line 

theory allows one to formulate a simple solution for the propagation of transverse electro­

magnetic waves (TEM) through periodic media. 

The use of equivalent TL models in the area of periodic structures was primarily in­

troduced for modeling waveguides that were periodically loaded with capacitivejinductive 

discontinuities [3J. Since then, many L-C loaded planar transmission-line grids [36, 37], 

metal-dielectric periodic structures [14J and metamaterials [15, 38, 39J were investigated 

using TL techniques. What foIlows outlines briefly the basic ideas behind the TL mod­

eling of periodic structures. General lD and 2D transmission-line models are discussed 

here which are applicable to both periodic dielectric and printed-circuit structures. Chap­

ter 3 is dedicated to implementation of this approach for 2D printed-circuit and TL-based 

structures. 



2 Background 
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a 
Fig. 2.2 Loaded transmission-line model for a unit cell of the one­
dimensional array of dielectric slabs of width b and relative permittivity Erd in 
a periodic lattice with period a. 

2.2.1 One-Dimensional Periodic Structures 

Il 

Fig. 2.2 illustrates the equivalent transmission-line model for one unit cell of the one­

dimensional array of dielectric slabs shown in Fig. 2.1. The dielectric slabs and free-space 

regions are modeled by short sections of transmission-line as seen in the figure where b is 

the length of the shorter section BB' with characteristic impedance Zd and propagation 

constant "Id = jf3d = jkoJE;d, a is the length of the entire transmission-line section AA', Zo 

is the characteristic impedance of the free-space transmission-line sections, and "10 = jf30 = 

j ko is the propagation constant of the free-space sections of length d = a"2b
. A similar, 

but slightly different, model is applicable to ID periodically loaded TL structures where 

transmission-lines sections are loaded by lumped L-C components instead of TL sections 

of different characteristics. 

The propagation characteristics of such periodic media can be easily determined by 

analyzing the voltage and current waves that may propagate along the cascade connection 

of the three TL sections. Multiplying the AB CD transfer matrix of each transmission line 

section, yields 

jZcddSd 1 [ Co 
Lso 
Zo 

(2.12) 
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where Co = cos {3od, So = sin {3od, Cd = cos{3db and Sd = sin {3db. Moreover, VA, lA and VA', 

lAI represent the voltage and current waves at the input and output terminaIs of the unit 

ce Il , respectively. The ABCD parameters are given by 

(2.13a) 

(2.13b) 

(2.13c) 

(2.13d) 

Due to the periodic nature of the structure, the voltage VAl and current lA' at the A' plane 

are required to be the same, except for a propagation factor, as the value of VA and lA at 

the A plane, that is 

(2.14) 

where 1 = a + j {3 is the propagation constant along the structure and a is the length of 

the unit cell. Combining Eqns. (2.12), (2.14) yields 

(2.15) 

Nontrivial solutions of (2.15) are obtained by setting the determinant of the above matrix 

to zero which gives the following transcendental equation for the propagation constant " 

(2.16) 

The frequencies where the right hand side of Eq. (2.16) returns a value greater than unit y 

and 1 is purely real (r = a), define the stopband of the structure. At frequencies where 

cosh ,a < 1, the propagation constant is purely imaginary (, = j (3). These frequencies 

define the passband of the structure. 

In Fig. 2.3 is plotted the real and the imaginary parts of the complex propagation 

constant 1 for a periodic array of dielectric slabs with filling fraction b / a = ~ and relative 



2 Background 

-
~o 

(a) (b) 

-
~o ···Stopbilnd 

0.2 0.4 0.6 0.8 1.2 0.5 1.5 2 2.5 
ua, Np pa, rad 

Fig. 2.3 Complex propagation constant for TEM modes of the one­
dimensional array of dielectric slabs. (a) real part (attenuation diagram) and 
(b) imaginary part (band diagram). 
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3 

dielectric constant Er = 9. The accuracy of these results is verified against exact analytical 

solutions and numerical findings from FEM in Chapter 4. The band diagram .(Fig. 2.3(b)) 

is shown for normalized propagation values f3a E [0, ?TJ. The band diagram repeats itself 

every 2?T. Moreover, if,,/ is a solution of Eq. (2.16), obviously -"/ is also a solution. Thus 

only normalized propagation values between 0 and ?T need to be calculated to determine 

aIl of the propagating modes in the structure. This region is often referred to as the 

irreducible Brillouin zone [1 J. For one-dimensional periodic structures, this is a trivial 

determination. For two-dimensional structures, however, the irreducible Brillouin zone 

becomes more complicated. Further description of the Brillouin zone for two-dimensional 

square lattices will be given in the following section. The attenuation diagram (Fig. 2.3( a)) 

provides the stop band behavior and is plotted for the normalized values na. 

2.2.2 Two-Dimensional Periodic Structures 

Structures with periodicity in two directions can also be represented conveniently by their 

equivalent transmission line models. A two-dimensional periodic array of air holes (edge 

length b) drilled in a dielectric medium with period a is depicted in Fig. 2.4. Also shown 
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Fig. 2.4 Cross-sectional view of two-dimensional array of air holes of edge 
length b drilled in a dielectric medium with period a. (a) The actual periodic 
structure and (b) its equivalent transmission-line network representation. 
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in the figure is the equivalent TL network of the structure representing the TMz 
1 waves 

that may propagate along the x and y axes. Owing to the specific arrangement of the 

electric and magnetic fields for TEz 
2 modes, they cannot be captured by the transmission 

line model and therefore are not considered here. 

The unit ceIl of the TL model comprises of four orthogonaIly arranged transmission line 

sections of length a/2 (see Fig. 2.5). In each branch the air hole and the dielectric regions 

are modeled by short sections of transmission line as seen in Fig. 2.5(b) where b/2 is the 

length of the free-space section with characteristic impedance Zo and propagation constant 

~o = jf30 = jko. Dielectric TL sections have a length of d = (a - b)/2, characteristic 

impedance of Zd and propagation constant ~d = jf3d = jko.JE;d. It is worth noting that 

whereas the ID TL model is exact, this 2D model is not. The 2D TL model neglects the 

effect of sharp edges at the corners of the drilled air holes within the unit cell. 

The AB CD matrix of each branch is obtained by multiplying the transfer matrix of the 

lIf the electric field has only an axial (or z-directed) component, the mode is transverse magnetic to z 
and is denoted TMz. 

2If the electric field has only components in the transverse x-y plane, the mode is transverse electric to 
z and is denoted TEz. 
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Fig. 2.5 Top view of a unit cell of the two-dimensional periodic array of air 
holes drilled in a dielectric medium. (a) The actual periodic dielectric unit 
cell and (b) its equivalent transmission-Hne network representation. 

two transmission line sections yielding 

[ 
cosf3dd jZdsinf3dd 1 [ ~osf3o~ b jZoSin~o~ 1 
L sin f3dd cos f3dd io sin 1302 cos 1302 

= [ cosf3o~ b jZoSin~o~ 1 [ ~osf3dd jZd sin f3dd 1 
io sin 1302 cos 1302 L sin f3dd cos f3dd 
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(2.17) 

(2.18) 

where k = x, y. Note the order in which the matrices are multiplied for inputjoutput 

stages. Applying Bloch boundary conditions to the voltages and currents at the ports of 

the unit ceIl, along with Kirchhoff's voltage and current laws at the intersection yields the 

foIlowing system of linear equations: 

(A~e-1'xa)vx + (B~e-1'xa)Ix - (A~e-1'ya)vy - (B~e-1'ya)Iy = 0 

(Cij/:}.i + COe-1'xa)v: + (Cij/:}.i + COe-1'ya)v: x x x x y y y y 

(2.19a) 

(2.19b) 

(2.19c) 

(2.19d) 



2 Background 16 

where ~t = AtDt - BtCL (k = x, y) and rx = a x + jf3x, ry = a y + jf3y denote the 

propagation constants along x and y, respectively. Eliminating Ix, Iy from (2.19) we obtain 

the homogeneous matrix equation 

(2.20) 

where 

91k (2.21a) 

92k = (2.21b) 

with ~k = AkDk - BkCk, (k = x, y). The system (2.20) admits a nontrivial solution if 

det( G) = 0, which yields the dispersion equation 

( 
Zo Zd). . cosh rxa + cosh rya = 2 cos (f3ob + 2f3dd) + 2 - - - - sm f30b sm 2f3dd 
Zd Zo 

(2.22) 

for the two-dimensional periodic dielectric structure. 

The propagating modes of the structure are found by specifying the propagation vector 

(Ix = jf3x, ry = jf3y) and seeking the frequency solutions. The solutions of the frequen­

cies of the unique propagation vectors in the structure are found for specific values of 

{f3xa, f3ya} E [0, n] according to the irreducible Brillouin zone of the unit cell. For the 

square lattice, aIl of the possible directions of propagation are grouped into eight regions 

with particular symmetry (refer to Fig. 2.6). Symmetry considerations of the square lattice 

reveals that the number of unique regions of propagation is one [1]. The shaded area in 

Fig. 2.6 is the irreducible Brillouin zone of the isotropic square lattice and represents the 

smallest region where propagation within the lattice is unique. This region is typically 

defined by symmetric points on the edges of the lattice denoted r, X, and M. In order to 

completely determine aIl the admitted modes, every possible vector that falls into the irre­

ducible Brillouin zone must be checked. Fortunately, the band structure can be determined 

approximately by sweeping the edges of the zone. Along the r-x line modes of the form 

13 = f3xx + Oy are examined. The X-M line is for modes of the form 13 = ~x + f3yy and the 

M-r line is for modes of the form 13 = f3xx + f3yy where f3x = f3Y' 
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Fig. 2.6 Irredueible Brillouin zone of the isotropie square lattiee with lattice 
constant a. 

17 

The full band structure (TMz) for a periodic array of air ho les with b/a = 0.25 drilled in 

a dielectric medium with Er = 13 is shown in Fig. 2.7. A complete TM band gap exists over 

a significant range of frequencies. Certainly, larger incomplete bands exist (particularly 

in the r -X direction) where propagation is aIlowed for specific directions and these gaps 

can be effectively used in designs that do not need total omni-directional stopbands. The 

accuracy of these results is verified against plane wave expansion method [34]. A good 

agreement between both results was found up to certain frequencies. 

Other two-dimensional periodic structures, such as the one shown in Fig. 1.1 (b), can 

also be investigated using the preceding formulation. In Chapter 3, we have investigated 

a number of printed periodic structures using the above TL techniques. In particular, 

power distribution networks with periodic embodiments/loading are modeled using their 

equivalent two-dimensional TL networks and complex modes of such periodic networks 

are investigated. Transmission-line models, despite their limitations, are still fast and 

reasonably accurate. They're use fuI for gaining a qualitative insight into the problem 

of modeling electromagnetic fields in periodic structures. They offer an efficient means 

for analysis of printed-circuit periodic structures and can be easily integrated into circuit 

simulators. A major downside of these models is that they are typicaIly tailored for specific 

types of unit ceIl geometries. TL modeling of more complex geometries su ch as the two­

dimension al periodic array of dielectric rads shown in Fig. 2.8 is difficult and in sorne 
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Fig. 2.7 Dispersion curves of the two-dimensional periodic array of air holes 
drilled in a dielectric medium with Er = 13 and filling fraction b/ a = 0.25. 
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cases, like three-dimensional periodic volumes, is impossible. Moreover, these models are 

only valid under certain assumptions and for specifie fields configurations. Therefore, more 

accurate models are required which can be applied to a variety of unit cell geometries and 

are capable of capturing aIl the propagating modes of these structures. Accurate modeling 

of periodic structures calls for numerical methods that deal with the actual electromagnetic 

fields in the unit cell rather than the equivalent voltages and currents. These methods are 

briefly reviewed in the following section. 

2.3 Field Analysis Techniques 

CEM methods that are widely utilized for modeling the electromagnetic behavior of peri­

odic structures are the transmission-line matrix method [40], the finite difference methods 

in both time (FDTD) [41] and frequency domains (FDFD) [42], the method of moments 
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Fig. 2.8 Cross sectional view of two-dimensional array of dielectric rods of 
diameter b in a periodic square lattice with period a [34}. 
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(MoM) [11] and the finite element (FE) method [12]. Depending on the architecture or the 

application of the structure, as weIl as the ease of implementation of the numerical model 

itself, a specific technique may be preferred in each particular case. 

This section outlines two of the mostly used techniques for numerical modeling of elec­

tromagnetic fields in infinite periodic structures: the finite-difference time-domain method 

and the finite element method. The FDTD method directly simulates the time evolution of 

the characteristic equation of the problem. The FEM solves for the time harmonic eigen­

modes, i.e. the dispersion relation in the frequency domain. A more complete survey of 

the CEM techniques for periodic modeling may be found in [43]. 

2.3.1 Finite-Difference Time-Domain Method 

The finite-difference time domain method solves MaxweIl's equations by discretizing them 

in both time and space. Yee [44] first introduced this novel approach ofreplacing MaxweIl's 

equations with finite difference equations. Taflove [45] further developed this method and 

ever since its conception, the FDTD method has dramaticaIly progressed and gained in 

popular use. 

Many research works dealing with FDTD modeling of periodic dielectric materials and 

incorporation of periodic boundary conditions in this analysis technique have been pub­

lished (see, e.g., [10,46,47,48,49]). To apply the FDTD procedure to periodic media, the 

problem domain is truncated to one unit ceIl of finite size. Then using an electric-field (E) 
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Fig. 2.9 Positions of the field components in a standard 3D Yee cell. 
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grid, which is offset both in space and time from a magnetic-field (H) grid (see Fig. 2.9), 

one obtains the update equations that yield the present fields (nth time step) throughout 

the computational domain, in terms of the past fields (n - 1th time step). The update equa­

tions are used in a leap-frog scheme, to incrementally march the E and H fields forward in 

time [50J. 

Implementation of the time-domain periodic boundary conditions (PBCs) in the FDTD 

algorithm is not as trivial as the frequency-domain Floquet's constraints. Assuming a 

doubly periodic structure, the frequency domain PBC is given by 

(2.23) 

where ax and ay are the spatial periodicities in the x- and y-coordinate directions, respec­

tively. When translated into the time-domain, the above condition becomes 

F(x + ax , y + ay, t) = F(x, y, 2 + .!!:JL + t) 
Vphx Vphy 

(2.24) 

The phase shifts f3xax and f3yay in (2.23) now become time shifts equal to the periodic 

dimensions divided by the appropriate phase velocities. A time shift can be modeled in the 

FDTD algorithm by storing a sufficient number of time samples of the fields at the periodic 

boundaries [47J. Therefore, the update equations for the fields on the slave surfaces of 

periodic boundary pairs (see Fig. 2.10) should be modified according to the fields on the 

master surfaces shifted forward in time. 
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Fig. 2.10 Two-dimensional FDTD mesh for one periodic cell. Only one 
layer of Yee cells in both the x- and y-coordinate directions is shown. 
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FDTD is particularly well-suited to computing transient responses in periodic structures. 

It does that by illuminating the unit cell by a sinusoidal plane wave and recording the 

transient response. Eigen frequencies are then obtained by taking a fast Fourier transform 

(FFT) of the response; the peaks in the frequency spectrum correspond to 8igen frequencies. 

Another advantage of FDTD is that it can easily handle complex, inhomogeneous geometries 

with anisotropie materials. Moreover, the resulting matrices from a FDTD analysis are 

sparse, structured matrices that can be solved efficiently by iterative solvers [51]. 

Despite these advantages, there are major drawbacks to the FDTD method. One is 

the use of Cartesian grids that conform poorly to curved geometries and introduce the 

so-called staircase error. The other is the spatial displacement of the E and H grids 

in a FDTD discretization which makes the implementation of the boundary conditions 

difficult and brings up the stability constraints. In general, the FDTD method cannot be 

used for simulations with strict accuracy constraints owing to the approximation errors 

introduced by the finite difference operators [51]. Another drawback, particularly relevant 

to the present thesis, is that with the FDTD method it would not be possible to treat the 

propagation constant as an unknown since it results in update equations involving future 

(unknown) field values [17]. 
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2.3.2 Finite Element Method 

When it cornes to computing steady-state responses in electromagnetics, the finite element 

method (FEM) is preferred to the method of finite differences. FEM is a popular numerical 

modeling technique that can be applied to any boundary value problem. FEM was first 

applied to electromagnetic problems in 1968 [52J and since then the method has been 

employed in diverse areas of electromagnetics such as antennas, microwave circuits and 

scattering applications [53J. 

FE techniques usually deal with a variational formulation (or equivalently a weighted 

residual) of the governing differential equation. The stationary point of the variational 

formulation yields the solution to the boundary value problem. It is obtained by discretizing 

the problem domain into small subdomains (finite elements) and then approximating the 

unknown variable over each finite element using subdomain expansion functions. 

A number of Flouquet-based FEM analyses of periodic structures have been reported 

in the literature [54, 55, 56, 57, 58, 12J. Incorporation of the frequency-domain periodic 

boundary conditions (e.g. Eq. (2.23)) in the FEM is straight forward. PB Cs are introduced 

to the discretized form of the functional (residual) by modifying the expansion coefficients 

(unknowns of the system of equations) associated with the subdomain regions that lie 

on the periodic boundary pairs. lndeed, the unknown coefficients for a slave surface are 

determined from their counterparts on the master surface (see Fig. 2.11). Therefore, slave 

unknowns can be eliminated from the system of equations, provided their contribution is 

accounted for in the system through master unknowns. 

There are advantages and disadvantages associated with the FEM. Firstly, the FE ma­

trices tend to be less sparse and structured than those produced by the FDTD approach. 

Furthermore, in the FEM, a matrix must be inverted. Current linear-algebra technology 

limits the size of the matrix that can be inverted and, thus, limits the number of unknowns 

that the FEM can handle. On the other hand, the FEM, regardless of its implementation 

challenges, bears several advantages in terms of flexibility and accuracy over the FDTD 

method. The FEM can easily model inhomogeneous materials bounded by curved sur­

faces and it avoids the staircasing error introduced in standard finite difference methods. 

Moreover, with FEM, the eigen frequencies are directly obtained from the resulting eigen­

value equation and therefore no postprocessing of the data (such as the Fourier transforms 

required in FDTD method) is involved. 
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Fig. 2.11 Two-dimensional FEM mesh for one periodic celL Only one layer 
of triangular elements in both the x- and y-coordinate directions is shown, 
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Concluding, for the particular modeling problem presented in this thesis, the FE method 

has been chosen, The deciding factor for this choice has been that various experiments on 

the frequency-selective features of periodic structures are carried out in the frequency­

domain much easier than the time-domain, Moreover, the goal here is, in particular, the 

treatment of the stopband behavior and, in general, extraction of complex propagation 

constants. This information cannot be extracted from a field analysis of a unit ceU of a 

periodic structure with FDTD at aU while it can be easily obtained using FEM. A complete 

treatment of the finite element modeling of complex eigenmodes in periodic structures is 

presented in Chapter 4. 
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Chapter 3 

Transmission-Line Modeling 

Periodic structures that operate in the microwave range of the electromagnetic spectrum 

are commonly composed of arrays of met al patches [59J, or aperture elements within a 

metallic screen [60J, patterned on a grounded dielectric substrate. Such geometries are 

generally referred to as metallo-dielectric electromagnetic bandgap structures and can be 

analyzed using equivalent transmission-line models. 

Due to the ease of implementation in printed-circuit technology, EBG structures are 

increasingly used in PDNs of high-speed circuits for global suppression of simultaneous 

switching noise (SSN). Such applications have directed much attention to the bandgap 

behavior of these structures. Indeed, prediction of the insertion loss in the bandgap along 

with dispersion characteristics has become an important part of their design process. 

Primarily, the transverse resonance technique (TRT) was used to determine the disper­

sion characteristics of a parallel-plate waveguide (PPW) with an EBG surface replacing one 

of the conductor plates [20J. This technique predicts an approximate ID dispersion diagram. 

ID transmission-line model for such covered EBG structure was introduced in [61,62]. This 

model assumes that the propagation of electromagnetic waves is only along one principal 

axis and uses a lumped-element equivalent circuit to represent the EBG structure. This 

single stage lumped-element model is a modification of the effective sheet impedance model 

originally proposed by Sievenpiper in [27] for the mushroom-type EBG configurations. In 
these analytical and modeling approaches no explicit information about the 2D nature 

of excitation of the periodic structure is included. Therefore, a complete analysis for all 

possible directions of signal propagation has not yet been realized. 
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The focus of this chapter is on 2D transmission-line modeling of microwave periodic 

structures which aIlows for stop band characterization of periodic structures in aIl azimuthal 

directions. The TL model employs a 2D network of transmission-line section that are peri­

odicaIly loaded by lumped L-C components. § 3.1 briefly overviews the theory of operation 

for 2D periodic TL networks. Complex eigenmode analysis of such electrical networks is 

discussed in this section. The TL model has been shown to be capable of capturing evanes­

cent modes and predicting the stopband behavior of periodic structures. Simulation results 

for a number of representative EBG structures are presented in § 3.2. Complex propaga­

tion constants along arbitrary directions of propagation are plotted versus frequency. The 

results confirm the capability of the developed TL model in modal characterization of the 

periodic structures at aIl frequencies and in particular the attenuation behavior in the 

bandgap regions. § 3.3 discusses the extraction of insertion loss information from attenua­

tion diagrams. 

3.1 Theory of TL modeling 

Grbic and Eleftheriades [14] proposed the modal analysis of 2D transmission-line structures 

with periodic L-C loadings. They employed Bloch analysis to examine the propagation 

characteristics of a 2D negative refractive index (NRI) transmission-line structure. In [15], 

Caloz and Itoh presented a 2D anisotropie metamaterial, exhibiting positive refractive index 

(PRI) in one direction and NRI in the orthogonal direction using a similar TL model. 

The dispersion analyses presented in both [14, 15] foIlow the same approach given in 

Chapter 2, i.e. a purely imaginary propagation vector b = j{3 = jf3xx + jf3yy) is specified 

and the frequency solutions (ko) are sought. The band structure and thus the propagating 

modes of the TL network are easily found this way by plotting k - f3 diagrams. However, 

this approach does not let the propagation constant (ï) be treated as an unknown of the 

characteristic equation. Therefore, modes of the form ï = 0: (evanescent modes) or in 

general ï = 0: + j{3 (complex modes) cannot be captured. 

In the methodology presented here, frequency is specified and the characteristic equation 

is solved for the complex propagation constants bx = Œx + jf3x, Iy = Œy + jf3y). Thus, all 

the propagating b = j(3), the evanescent b = 0:) or even the complex b = 0: + j(3) 

modes of the structure can be found. The band diagrams and the attenuation diagrams 

are then obtained by plotting the imaginary and real parts of ï versus frequency. 
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Fig. 3.1 The network representation of the unit cell of a 2D TL periodic 
structure. Each branch is denoted by its transmission matrix T = [ABCD]. 

3.1.1 Characteristic Equation 
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As explained in § 2.2, the transmission-line analysis of such periodic structures involves 

constructing an equivalent TL circuit for a unit cell of the structure. Thereafter, the Bloch 

theorem is applied to the voltages and currents at the terminaIs of the unit cell to obtain 

the characteristic equation of the structure. The 1 solutions of the characteristic equation 

thus determine the waves that may propagate along the cascade connection of the basic 

cells. 

An equivalent transmission-line model for a unit cell of a 2D periodic structure is shown 

III Fig. 3.1 where each TL branch is represented by its ABCD transfer matrix labeled 

T~, T:, T; and TJ. The overall structure can be viewed as an infinite array of unit cells in 

both x and y directions. In general, the TL branches are loaded transmission-line sections 

where the loading may be represented by either series and/or parallellumped components 

or transmission-line sections with different characteristics impedance or a combination of 

both. In either case, the loading effect is accounted for in the overall transfer matrix of 

the branch. At their intersection, the two ladder TL networks can also share a common 

parallel component which is represented by its transfer matrix Tz = [ABCD]z. 
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Applying Bloch boundary conditions to the voltages and currents at the four ports of 

the unit ceIl, along with Kirchhoff's voltage and current laws at the intersection yields the 

following system of linear equations, as suggested in [14, 15}: 

Vr 
D~ Vx - B~Ix 

o = Ai Di _ Bi Ci 
x x x x 

DtVy - Btly 
Vo = Ai Di - Bi Ci y y y y 

Va = (A~Vx + B~Ix) e-'Yxa 

Vr = (A°V, + BOl) e-'Yya o y y y y 

Va = _ Bzlz 
AzDz - BzCz tI - Azlz -C~Vx+A~Ix -C~Vy+A~Iy 

n=l n - AzDz - BzCz + A~D~ - B~C~ + AtDt - BtCt 

Eliminating Iz and Va, the above set of equations reduces to 

(~t - A~e-'Yxa) Vx - (~t + B~e-'Yxa) Ix = 0 

(~t -A~e-'Yya) Vy - (~t + B~e-'Yya) Iy = 0 

(A~e-'Yxa)vx + (B~e-'Yxa)Ix - (A~e-'Yya)vy - (B~e-'Yya)Iy = 0 

(~t + C~e-'Yxa + ~: ~t) Vx + (~t + c~e-'Yya) Vy 

-(1t -D~e-'Yxa + ~: ~t) Ix - (~r -D~e-'Yya) Iy = 0 

(3.1a) 

(3.1b) 

(3.1c) 

(3.1d) 

(3.1e) 

(3. If) 

(3.2a) 

(3.2b) 

(3.2c) 

(3.2d) 

where D.~ = A~D~ - BkCk, (k = x, y). Further simplifications are obtained if the networks 
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representing the series branches are reciprocal, where ,0.~ = 1 [28] and 

Ak = Ai = D'k 
B - Bi - BO k - k - k 

C - Ci - Co k - k - k 

D - Di - AO 
k - k - k' for k = x, y 

In that case, Eq. (3.2) can be rewritten in matrix form as 

Vx ax bx 0 0 Va, 

(M) Ix 0 0 ay by Ix 
Vy fx gx -fy -gy Vy 

Iy hx Zx cy dy Iy 

=0 

28 

(3.3) 

(3.4) 

where the elements of Mare given at the bottom of the pagel. Nontrivial solutions of 

Eq. (3.4) can then be found by setting the determinant of M to zero which yields the 

dispersion equation. The dispersion equation for networks with reciprocal series branches, 

is given by 

(3.6) 

where 

(3.7) 

with 

for k = x,y. 
(3.8) 

In Eq. (3.6), Px, Py, and Rare explicitly known in terms of frequency and lx, IY are 

unknown functions of frequency. One way to treat Eq. (3.6) is to specify a propagation 

ak = Dk(l - e-,k a ) 

bk = -Bk(l + e-,k a ) 

Ck = Ck (l + e-,k a ) 

dk = -Ak(l - e-,k a ) 

(3.5) 
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vector b = jf3 = j(3xx + j(3yf)) and find the frequency solutions of the admitted modes 

[14, 15]. In fact, specifying a propagation vector, the dispersion equation reduces to a 

nonlinear equation in terms of frequency which can be numerically solved using mathematic 

software (e.g. MATLAB). On the other hand, given a frequency, the propagation vector , 

can be treated as an unknown of the equation. The latter approach, which we are more 

interested in, allows us to find complex modes of the periodic structure. For a specified 

frequency and a direction of propagation, complex modes are obtained by solving the 

nonlinear equation in terms of propagation constant "l, as discussed in the next section. 

3.1.2 Solution of the Characteristic Equation 

Let f = cos cpx + sin cpf) be the unit vector along an arbitrary direction where cp denotes the 

angle that f forms with the x-axis. For any propagation vector , = "Ir along that direction 

one may write 

, = "Ir = "1 cos cp x + "1 sin cp f) 
~ '-v-" 

'Yx 'Yy 

which constraints "Ix and "Iy by 
"Ix "Iy 

--=--="1 
cos cp sin cp 

Therefore, Eq. (3.6) can be rewritten in terms of scalar "1 as 

Py cosh ("la cos CP) + Px cosh ("la sin cp) - R = a 

(3.9) 

(3.10) 

(3.11) 

Eq. (3.11) is now ready to be treated with MATLAB as a nonlinear equation in terms of "l, 

once frequency (f) and direction of wave propagation (r) are specified. Obviously, an the 

unique directions of propagation within the irreducible Brillouin zone of the square lattice 

(the shaded area in Fig. 3.2) should be inspected to completely determine the complex 

eigenmodes ofthe periodic structure. However, as explained in § 2.2.2, sweeping the edges of 

the zone provides the band structure and predicts the attenuation along certain directions. 

Therefore, the only directions which are examined here correspond to the edges of the 

irreducible Brillouin zone, as follows. 

f-X line is for modes directed along the x-axis with , = "IxX + Of); i.e., r = x and "Iy is 
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_ .:r, , 
Y=j-X+Y,Y a . 

Fig. 3.2 "'t constraints on the edges of the irreducible Brillouin zone of the 
symmetric square lattice with lattice constant a. 

forced to 0 (Œy = (3y = 0). Therefor Eq. (3.6) reduces to 

R-Px 
cosh "'txa = Po 

y 

30 

(3.12) 

which can be solved for "'tx as a function of frequency. X-M line is for modes of the form 

, = j: x + "'tyy; that is lx is set to 0 + j ~ (Œx = 0, (3xa = 7r) or equivalently , is constrained 

to vectors with bacos1>1 = 7r, and 0::::; sin 1> ::::; ~. Thus, Eq. (3.6) becomes 

R+Py 
cosh,ya = Px (3.13) 

which is solved for IY likewise. Finally, M-f is for the propagation direction of f = x;f, 
and IX is set equal to IY yielding 

cosh Ixa = cosh Iya = 
Px+Py 

R 
(3.14) 

Therefore, Eq. (3.11) once inspected on the edges of the irreducible Brillouin zone, is 

expected to predict the band structure of the propagating modes while providing the at­

tenuation constant of the evanescent modes within the forbidden frequency regions. At 

each frequency, the real and the imaginary parts of the complex propagation constant 1 

yield the attenuation and the phase constant of the corresponding mode, respectively. 
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3.2 Simulation Models and Results 

The formulation presented in § 3.1 can be easily applied to a variety of metallo-dielectric 

EBG structures. This section presents simulation results for a number of EBG structures 

that are particularly employed in power distribution networks. The first structure consid­

ered is the mushroom-type EBG structure. The second example investigates the mushroom 

EBG once it is embedded in a parallel-plate waveguide. Lastly, an array of interconnected 

metallic patches patterned on a grounded dielectric substrate is examined. For each model, 

complex propagation constants along different directions of propagation are obtained. Plots 

of the real and imaginary parts of the propagation constant are presented which characterize 

the passband and stop band behavior of the periodic structures. 

3.2.1 Mushroom Structure 

Sievenpiper et al. [27] originally used the mushroom structure in low-profile antenna designs 

to improve the gain and directivity of the antenna. Later in [20], Abhari and Eleftheriades 

employed this structure to suppress the power/ground noise induced in a parallel-plate 

power distribution network. 

The mushroom EBG structure is shown in Fig. 3.3(a). It consists of a lattice of met al 

patches, connected to a solid metal sheet by conducting vias. An equivalent transmission­

line model of the unit cell of the structure is also depicted in Fig. 3.3(b). This model 

assumes strong field concentration in the dielectric substrate, below metallic patches, and 

neglects the fields penetrating into the open region. The fringing field between patches is 

accounted for by the series capacitors shown in Fig. 3.3(b). The resulting series impedance 

Zl = . 2
1
C ' thus, represents the gap between the patches. It is cascaded to a TL section of 

JW g 

length d = ~ with characteristic impedance of Zd and propagation constant of "Id = j (3d. 

The TL section represents the parallel-plate transmission line formed by each patch and 

the lower ground plane. Multiplying the transfer matrices of Zl and the TL section yields 

the overall [AB CD] matrix of the series branch. Furthermore, the via at the center of each 

patch is modeled by a single impedance Z2 = jwLv. With Zl and Z2 normalized to the 

characteristic impedance of the TL sections, the transmission matrices of the series and 
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w= 9.6mm 

Top View 1 1 

H== 
Side View 

(a) (b) 

Fig. 3.3 The mushroom-type EBG structure: (a) top view and side view, 
(b) equivalent transmission-line model of one unit cell of the structure. 

shunt branches are given by 

1'series 

Tshunt 

j sin (3dd + Zl cos (3dd 1 
cos(3dd 
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(3.15) 

(3.16) 

Note that the series branches are represented by reciprocal networks, therefore Eq. (3.6) 

along with Eqns. (3.15), (3.16) yield the following dispersion equation for the mushroom 

structure 

(3.17) 

The characteristic impedance and propagation constant of the TL sections are those of a 
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lossless parallel-plate transmission line, given by 

(3.18) 

where 'f}o is the characteristic impedance of free space (3770), c is the speed of light in 

vacuum, Er is the relative permittivity of the substrate and w is the radian frequency. 

Moreover, the values of Lv and Cg are obtained using approximate formulas [61, 63, 64] 

C - wEo(l + Er) h-1(2w) 
g - COS-

7f g 
(3.19) 

f1h 1 
Lv = -4 (log( - ) + q - 1) 

7f q 
(3.20) 

with 

(3.21) 

where w is the width of the patches, g is the gap between patches, r is the radius of the 

cylindrical vias, h is the thickness of the dielectric substrate and a is the lattice constant. 

Initially, the developed formulation was applied to the loaded transmission-line geom­

etry presented in [14) for validation purposes and identical dispersion diagram was ob­

tained. In this thesis that the parallel-plate PDNs are discussed the EBG structure shown 

in Fig. 3.3(a) is analyzed since it has been previously employed in the design of PDNs [20). 
Two sets of experiments were carried out. In the first set of numerical experiments, 

the propagation vector /3 was specified and the frequency solutions (1) were obtained. 

Fig. 3.4 shows the band structure obtained from this analysis. Each region of Fig. 3.4 

corresponds to a distinct set of phase constants (/3x,/3y). As seen in the figure, there are 

three omni-directional stopbands within the plotted frequency range where the propagation 

of electromagnetic waves is forbidden for every possible direction. 

In the second set of numerical solutions (Figs. 3.5- 3.7), frequency was specified and 

the propagation constants were found from Eqns. (3.12-3.14). Fig. 3.5(a) is a plot of the 

imaginary part of the propagation constant along the x-axis ('l'x) which corresponds to the 

r-x region of Fig. 3.4. Fig. 3.5(b) represents the real part of 'l'x within the r-x region for 

the frequency range considered in Fig. 3.4. Fig. 3.6 corresponds to the X-M region and is a 
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plot of the imaginary and real part of the complex propagation constant "!y once ,,!xa is fixed 

to j7r. FinaIly, Fig. 3.7 depicts the imaginary and real part of "!x ("(y) corresponding to the 

M-r region of the band diagram. In aIl three diagrams, the imaginary part of the complex 

propagation constants matches the respective region in the dispersion curves obtained from 

the first set of solutions. 

The real part of the complex propagation constant in each region of the irreducible 

Brillouin zone represents the attenuation constant of the evanescent modes in the incurring 

stopbands. The unit of the horizontal axis in the attenuation diagrams is in Neper's sin ce 

Œxa and Œya parameters are plotted versus frequency. In other words, the attenuation 

diagram provides the decay rate per unit cell in Nepers. Stopbands exist when the atten­

uation constants Œx or Œy are nonzero. For instance, in the r - X region, Œx =1= 0 in the 

0-1.56, 2.81- 3.3 and 6.48 - 12 GHz frequency bands (evanescence regions), while in the 

1.56 - 2.81 and 3.3 - 6.48 GHz frequency bands it equals to zero (propagation regions). 

In the X - M region, Œy =1= 0 in the 0 - 1.25, 1.56 - 6.48 and 10.24 - 12 GHz frequency 

g 
--

Fig. 3.4 Dispersion curves of the mushroom-type EBG structure of 
Fig. 3.3(b) 
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Fig. 3.5 Complex propagation constant of the mushroom structure in region 
r-x: (a) imaginary part, and (b) real part. 
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Fig. 3.6 Complex propagation constant of the mushroom structure in region 
X-M: (a) imaginary part, and (b) real part. 
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Fig. 3.7 Complex propagation constant of the mushroom structure in region 
M-r: (a) imaginary part, and (b) real part. 
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bands (evanescence regions) and it equals to zero in the 1.25 - 1.56 and 6.48 - 10.24 GHz 

frequency bands (propagation regions). Finally, in the M - r region, a x and a y are both 

non zero in the 0-1.25,2.81-3.3 and 10.24-12 GHz frequency bands (evanescence regions) 

and a x = a y = 0 in the 1.25 - 2.81 and 3.3 - 10.24 GHz frequency bands (propagation 

regions). It should be noted here that in the omnidirectional stopbands a x and a y are 

simultaneously nonzero, namely the 0 - 1.25, 2.81 - 3.3 and 10.24 - 12 GHz ranges. 

3.2.2 Shielded Mushroom Structure 

The next example considered was a PDN containing an EBG structure, that is a PDN 

with textured ground plane. Fig. 3.8(a) shows the EBG structure of Fig. 3.3(a) once 

incorporated in the PDN of an electronic circuit. The top plate of the PDN is isolated from 

the embedded EBG structure by a dielectric layer of thickness t l and dielectric constant 

Er!. Therefore, the host parallel-plate medium is composed of two dielectric layers, with 

the lower layer containing the conductive vias. The lower layer has a thickness of t 2 and a 

dielectric constant of Er 2. As shown in [61], the most broad-band performance is achieved 

wh en t l « t 2 and Er! » Er2· 
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Fig. 3.8 The mushroom EBG structure embedded in parallel-plate power. 
planes: (a) top view and side view, (b) equivalent transmission-Hne model of 
one unit cell of the structure. 
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}t' 
t2 

In this configuration, the top and the bottom solid conductor planes form an inhomo­

geneously filled PPW in which the dominant mode is identified as a longitudinal section 

magnetic (LSM)2 mode [3J. This lowest order quasi-TEM mode can be modeled by a simple 

transmission-line with an effective dielectric constant of 

(3.22) 

as suggested in [61J. An equivalent transmission-line model of one unit cell of the structure 

is shown in Fig. 3.8(b). The characteristic impedance and the phase constant of the TL 

sections are given by Eq. (3.18) along with the Er obtained from Eq. (3.22). The parallel 

2Hybrid TMz modes also referred to as LSM modes have no axial (z-directed) magnetic field component. 



3 Transmission-Line Modeling 38 

plates are periodically loaded with a lumped impedance of 

1 1 
Z2 = -.-- + . 1 

)wCl )wC2 + -:--L 
JW v 

(3.23) 

representing the EBG structure. The patches and the vias of the EBG structure are modeled 

by a shunt L-C branch. The value of Lv is obtained from Eq. (3.20) and the top and the 

bottom capacitances, Cl and C2 , are approximated by parallel-plate capacitors. With Zl 

set to 0 (since there's no discontinuity in the top shield), Eq. (3.17) reduces to 

cosh rxa + cosh rya = 2 cos f3e a + 2~ sin f3e a 
Z2 

resulting in the band diagram of the modified PDN. 

(3.24) 

Again two sets of numerical experiments were carried out. Firstly, propagating modes of 

the structure were obtained by specifying f3 vectors and finding frequency solutions. Fig. 3.9 

presents the k - f3 diagrams obtained for the modified PDN of Fig. 3.8(a). As shown in the 

figure, a stopband is induced over the frequency range 2.47 - 13.23 GHz. Achievement of 

such a wide bandgap is an important feature for noise suppression in modern broadband 

electronic applications. 

Next, the complex modes of the modified PDN are obtained by specifying frequency 

and finding , solutions (see Figs. 3.10- 3.12). As expected, the imaginary part of the 

complex r (Figs. 3.10- 3.12) perfectly matches the corresponding region of the dispersion 

diagram shown in Fig. 3.9. The other useful engineering plots are the attenuation diagrams 

of Figs. 3.1O(b) - 3.12(b) which represent the attenuation per unit cell along different 

directions of excitation. The attenuation constants Œx and Œy are of primary interest herein, 

since the EBG structure is employed to suppress the switching noise in the PDN by inducing 

an omni-directional wide stopband. Moreover, these graphs can be used to qualitatively 

investigate port isolation and insertion loss characteristics achieved by inserting the EBG in 

the parallel-plate configurations. The attenuation diagrams show that the maximum noise 

mitigation occurs at Jo = 2.785 GHz within the r-x region with a value of 8.69 Neper/unit 

cell or -75 dB for one unit cell. 
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Fig. 3.9 Dispersion curves of the modified PDN with a textured ground 
plane of Fig. 3.8(b) 
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Fig. 3.10 Complex propagation constant of the shielded mushroom struc­
ture in region f-X: (a) imaginary part, and (b) real part. 
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Fig. 3.11 Complex propagation constant of the shielded mushroom struc­
ture in region X-M: (a) imaginary part, and (b) real part. 
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Top View 

Side View 

(a) (b) 

Fig. 3.13 The PDN with a perforated power plane: (a) top view and side 
view, (b) equivalent transmission-line model of one unit cell of the structure. 

3.2.3 PDN with Patterned Power Plane 
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Lastly, a PDN with a perforated metallic power plane was investigated which is an array of 

interconnected metaIlic patches patterned on a dielectric substrate (see Fig. 3.13(a». The 

unit ceIl of the periodic structure and its equivalent transmission line model is shown 

in Fig. 3.13(b). In the TL model metallic patches are represented by low-impedance 

(Zl = ~~) transmission-line sections of length d = ~ and microstrip interconnects are 

modeled by high-impedance (Zh = ~ 2;) transmission-line sections of length ~ = a~w. 
The propagation constants of both transmission-line sections are the same and are given 

by "Id = jf3d = j~Fr· Using Eq. (2.22), the characteristic equation of the TL model reads 

) ( 
Zl Zh). . cosh 'Yxa + cosh'Yya = 2 cos (f3da + 2 - Zh - Zl smf3dw smf3d(a - w) (3.25) 

which can now be solved using both approaches. 

Fig. 3.14 shows the propagating modes of the structure obtained by specifying the 

propagation vector f3 and solving Eq. (3.25) for admitted frequencies. Further inspection 
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Fig. 3.14 Dispersion curves of the PDN with a perforated power plane of 
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of the dispersion curves reveals that there are two omni-directional stopbands within the 

frequency range plotted here. 

In the second set of trials, the complex modes of the structure were obtained by spec­

ifying frequency and fin ding propagation constants. Corresponding to each region of the 

Brillouin zone (r-X, X-M, M-r), complex propagation constants are obtained and plotted 

in Figs. 3.15-3.17, respectively. The real part of the complex propagation constant in each 

region predicts the stopband behavior of the PDN within each omni-directional bandgap. 

It can be noted that the dimensions used in the design of Fig. 3.13(b) do not lead to 

optimum characteristics. As can be seen in Fig. 3.14, the current design of Fig. 3.13(b) 

yields a fundamental stopband extending over the frequency range 6-10 GHz while a wider 

bandgap with lower cut-off frequency (around 1 GHz) is required for such applications in 

PDNs. The developed TL model can now be used to determine the required specifica­

tions for a proper design as it provides a fast means of design optimization and bandgap 

characterization. 
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Fig. 3.17 Complex propagation constant of the interconnected patched in 
region M-r: (a) imaginary part, and (b) real part. 

3.3 Extraction of Insertion Loss Information from k - 0: Diagrams 

The attenuation diagrams presented in the preceding sections can be efficiently used to 

investigate port isolation and insertion loss characteristics between two measurement ports 

placed arbitrarily in such modified PDN boards. 

To obtain the power attenuation along each direction of propagation one should find 

the insertion loss between two measurement ports as given by 

(3.26) 

where n is the number of unit cells along the considered direction and 821 has the unit 

of decibel. The attenuation values (aa) are obtained from the k - a diagram associated 

with the corresponding region of the irreducible Brillouin zone for that direction. lndeed, 

Eq. (3.26) expresses the overall incurred losses in signal (noise) transmission through PDNs 

containing an EBG structure. 

For instance, in Fig. 3.18 the insertion loss along x-direction for four unit cells of the 

PDN shown in Fig. 3.8(a) is presented. A representative diagram of this structure depicting 
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3.8(a) in the x-direction. The simulation setup for the FEM analysis is pre­
sented in the inset diagram. 
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the locations of port 1 and port 2 is shown in the inset of Fig. 3.18. This 5 21 response is 

generated using Eq. (3.26) along with the attenuation values (axa) obtained from Fig. 3.10 

for the r-x region of the irreducible Brillouin ZOne. Also presented in Fig. 3.18 is the 

insertion loss obtained from full-wave simulations using the commercial FE-based software, 

HFSS [65]. To simulate the 2D periodic structure, H-wall boundary conditions were consid­

ered for the sidewalls in FEM simulations. It can be observed from Fig. 3.18 that the 2D 

transmission-line model provides an accurate prediction of the bandgap as weIl as capturing 

the essence of insertion loss signature up to relatively high frequencies. Lastly, it should 

be mentioned that the 2D TL simulations were obtained in less than a couple of seconds 

while it took about half an hour for the commercial FEM solver to generate the insertion 

loss diagram using the same computational resources. 
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3.4 Discussion 

The 2D transmission-line model presented in this chapter has been shown to be capable of 

capturing complex modes of PDNs containing EBG structures. Moreover, the transmission­

line model results in a small matrix equation, namely the dispersion equation, which allows 

for rapid production (in a few seconds) of band diagrams. Therefore, a first-order estimation 

of the propagating modes within passbands as weIl as the evanescentjcomplex modes within 

stopbands is obtained through a simple formulation. Consequently, the band diagrams and 

the corresponding attenuation diagrams are generated in a fast and efficient fashion. Thus 

we may conclude that the question of modal behavior of 2D periodic structure within their 

forbidden frequency regions can be partially answered using simplified TL models. 

However, as discussed before, the transmission-line models are of limited accuracy. 

Such models are generally valid up to certain frequencies and are suit able for specifie 

field configurations in periodic structures. For instance, Fig. 3.19 reproduces the band 

diagrams of the shielded mushroom structure (Fig. 3.9) using HFSS. In the first passband 

there is excellent agreement between the transmission-line model and the FEM simulations. 

Furthermore, the 2D model predicts the induced stopband over the frequency range 2.47-

13.23 GHz quite accurately (compared to full-wave simulations). In terms of simulations 

time, the TL model results are obtained in seconds while the FEM simulations take hours 

on the same computing platform. From the accuracy viewpoint, as the frequency increases, 

the higher order LSM and LSE3 modes in the loaded PPW are excited and the quasi-TEM 

transmission-line model fails to accurately predict the full band structure of the modified 

PDN. It can be observed from Fig. 3.19, that the higher order modes (above 13 GHz) and 

the second stopband in the dispersion diagram obtained from FEM simulations are not 

captured by the circuit model. This suggests that the simple lumped-element substitute 

for the EBG structure within the PPW seems to be valid up to certain frequencies and a 

more accurate model is required for prediction of the band structure at higher frequencies. 

Furthermore, a full-wave method is required that can capture complex modes of such 

periodic structures. Current state of the art of field analysis techniques (particularly com­

mercial software packages), allows for finding propagating modes of periodic structures, 

solely. A vailable general purpose electromagnetic (EM) codes commonly obtain the band 

3LSE stands for longitudinal section electric. Hybrid TEz modes also referred to as LSE modes have 
no axial (z-directed) electric field component. 
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diagrams of periodic structures by specifying propagation vectors (3 and finding eigen fre­

quendes. Therefore, the accuracy of dispersion curves presented in Figs. 3.4, 3.9, 3.14 can 

easily be validated using full-wave commercial softwares. However, in order to accurately 

predict the stopband behavior a field analysis technique is required that can treat the prop­

agation constant as the unknown of the formulation. This particularly is needed to verify 

the accuracy of the attenuation diagrams (e.g. Figs. 3.5-3.7, 3.10-3.12, 3.15-3.17) obtained 

with transmission-line model using the latter approach as they cannot be validated by the 

available full-wave simulators. For that purpose, the author has developed a computer code 

based on the finite element method which can be applied to periodic structures to provide 

their bandgap information in aIl azimuthal directions. Development, implementation and 

testing of the finite element model is the subject of the following chapter. 
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Chapter 4 

Finite Element Modeling 

The finite element method is a popular electromagnetic modeling technique. FEM is par­

ticularly weIl suited for computing steady-state responses. This chapter concentrates on 

the FE modeling of periodic structures as opposed to the TL model that was discussed in 

Chapter 3. The FE model employs a weighted residual formulation, that is applicable to 

complex eigenmode analysis of the electromagnetic waves in periodic structures. 

§ 4.1 briefly discusses the relevant electromagnetic theory and the weighted residual 

formulation of the problem. This section also outlines the resulting matrix polynomial and 

its assembly process. Implementation details of the finite element program and its integra­

tion in mesh generation and eigensolver modules are explained in § 4.2. Numerical results 

for different simulation models are presented in § 4.3. Plots of the imaginary and the real 

parts of the propagation constants versus frequency are shown. These plots demonstrate 

the efficiency and capability of the developed FE code in capturing complex modes. 

4.1 Theory 

Solutions of electromagnetic problems by the finite element method have weIl established 

procedures. FE formulations are worked out either using the Rayleigh-Ritz variation al 

principle or using the Galerkin choice of the family of weighted residual methods [66]. 

Either method is ordinarily expected to give the same results. The common approach for 

high frequency vectorial FE formulations is via a variational route [67]. In the present work 

it is found that the treatment applicable to periodic constraints foIlows conveniently from 

a weighted residual analysis. 
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4.1.1 Vector Wave Equation 

Consider Maxwell's equations in differential form. When applied to solving electromagnetic 

problems with steady-state oscillations, field variables are denoted by complex phasors [29J. 

We st art from Faraday's and Ampère's laws, assuming magnetically and electrically linear 

media: 

V'xE 

V'xH 

-JWJ-lH 

JWfE+J 

( 4.1) 

(4.2) 

where E is electric field, H is magnetic field, J-l is permeability of the medium, f is permit­

tivity of the medium and J is current density. 

Assuming there are no free charges and currents in the device, Eqns. (4.1) and (4.2) 

may be combined to obtain the vector wave equation: 

1 
V' x -V' x F - k5qF = 0 

p 
(4.3) 

where kÔ = W2J-lOfO, P = J-ln q = f r for F = E and p = f n q = J-lr for F = H. Eq. (4.3) along 

with essential boundary conditions governs the propagation of electromagnetic waves in a 

periodic structure [12]. 

A problem domain bounded by a closed surface is considered (see the unit-ceIl in 

Fig. 4.1). In general the bounding surface of the unit-cell may comprise any or aIl of 

the following: an electric wall on which n x E = 0; a magnetic wall on which n x H = 0; 

or periodic boundary pairs, over which the transverse fields are related by: 

Ft(Dx, y, z) = CxFt(O, y, z) 

Ft(x, Dy, z) = CyFt(x, 0, z) 

Ft(x, y, Dz) = CzFt(x, y, 0) 

(4.4) 

where Cx = e-rxDx , Cy = e-ryDy , Cz = e-rzDz and, = ({x, Iy, IZ) is the Floqeut propa­

gation vector and subscript t denotes tangential part of the vector F. As implied by (4.4), 

the periodicity can be along each coordinate axis of the structure. 

Finding an approximate solution F to the unknown vector variable F is the subject 

of the following sections. Throughout the rest of this thesis, we choose E as the working 
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Fig. 4.1 The unit-ceIl of a 3D periodic problem. 

variable; the formulation for H follows triviaIly. 

4.1.2 Weighted Residual Formulation 

In the weighted residual method, the approximate solution to a typical boundary value 

problem is sought by weighting the residual of the governing differential equation. The 

best approximation to the unknown quantity is the one that minimizes the residual error 

to the least value at aIl points of 0 [66J. Consider the weighted residual integral 

(4.5) 

Applying the vector form of Green's theorem [68J to Eq. (4.5) yields: 

R = 1n W· (V' X ~r V' x E - k5ErE) dO 

i ( W x ~r V' x Fi ) . n dS. (4.6) 

Thus, setting to zero the residual given in Eq. (4.5) for an arbitrary weight function W, 

requires that the governing curl-curl equation is satisfied 

1 - 2-
V' X -V' x E - koErE = 0 

J-tr 
(4.7) 
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and 

(4.8) 

Le. the surface integral vanishes for every weight function. 

Further inspection of the surface integral reveals that (4.8) is naturally eliminated pro­

vided that the trial function E and weight functions W are subject to periodic constraints 

in a manner similar to [12J. For instance, consider the boundary closures associated with 

the x periodicity in Fig. 4.1. For this boundary pair, the trial functions are restricted to 

Co functions [69J whose transverse components are related by 

(4.9) 

while the restriction on the transverse components of the weight functions is imposed by 

reciprocal exponential factors; i.e. 

(4.10) 

Then because of the equal and opposite normal vector n, the parts of the surface integral 

corresponding to this boundary pair yield: 

1 Wt x (~\7 x E) . n dS + 1 W t x (~\7 x E) . n dS 
x=o f.-lr t x=Dx f.-lr t 

l n x w tO • [(~\7 x E) (O,y,z) - Cl (~\7 x E) (Dx,Y,Z)] dS = ° 
x=o f.-lr t x f.-lr t 

(4.11) 

where WtQ = Wt(O, y, z). The residual term given by (4.11) is naturally forced to zero for 

all WtQ since (4.1) and (4.4). 

In a similar fashion, the transverse components of trial functions E and weight functions 

W can be constrained along the other two periodicity axes (Y- and z-axis), eliminating the 

surface integral in Eq. (4.8). These constraints are given by: 

Et(x, Dy, z) = CyEt(x, 0, z) 

Et(x, y, Dz) = CzEt(x, y, 0) 
(4.12) 
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and 

(4.13) 

In passing we notice that the trial function E and weight functions W are further restricted 

to vector functions whose transverse components on electric walls are specified as Et = 0 

and W t = O. The latter forees the surface integral to vanish on portions of S where 

homogeneous Dirichlet boundary condition (n x E = 0) should be imposed [69]. Magnetic 

walls, however, do not need any special treatment sinee (4.8) naturaIly vanishes over those 

portions: 

(W x H)· n = -(n x H)· W = o. (4.14) 

Therefore, the residual 

(4.15) 

applies to the whole region n. Setting to zero the expression given in Eq. (4.15) thus forms 

the basis for a weighted residual solution of the electromagnetic problem described here. 

4.1.3 Selection of Interpolation Functions 

The use of vector interpolation functions (also known as tangential or edge elements) in 

the solution of 3D electromagnetics is now weIl established. It prevents non-zero spurious 

solutions associated with nodal finite elements, from appearing. Edge elements have de­

grees of freedom (Dof) associated with edges rather than nodes. They enforce tangential 

continuity, but not normal continuity, on the trial vector variable. Relaxation of normal 

continuity is important in dealing with abrupt changes in Er and Jkr as weIl as conducting 

and dielectric sharp corners [70]. 

Here, vector finite elements, such as tetrahedral elements [71], are employed ta set up 

the trial functions. Within a finite element e the vectar variable E is expanded as: 

(4.16) 
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where Ni are the vector interpolation functions and E'j are the corresponding scalar degrees 

of freedom. The constant gj is introduced to impose the desired constraints. In Galerkin's 

option of weighted residual method, the weight functions are selected from expansion func­

tions: 

W~ = c~N~ (4.17) 

where ci are arbitrary constants. This usually leads to the most accurate solutions and is 

therefore widely used in developing FE formulations [66]. 

The constants gj and ci are specified in a way that ensures the required constraints on 

W and E are satisfied [12]: 

• If N~ corresponds to an element edge or face in an n x E = 0 constrained surface, ci 
is set to zero to satisfy the requirement W t = 0 on that surface. 

• Otherwise, If Ni lies on an internaI element boundary, gj and cj are chosen such that 

for any element e' sharing that face or edge, gj = gj' and cj = cj'. A value of gj = 1 

and cj = 1 may conveniently be chosen in that case. 

• If Ni is associated with a degree of freedom Ej on the master surface of a periodic 

boundary pair (say geometric part 2 in Fig. 4.1), there is a degree of freedom Et{ 
associated with Ni' on the corresponding slave surface (geometric part 3 in Fig. 4.1). 

Then choosing gj = 1, Eq. (4.9) implies that g'k' = ex. In a similar fashion, cj is set 

to unit y while Eq. (4.10) restricts ck to J
x

' 

The first two restrictions on gj and ci guarantee the Co continuity of W and E across 

inter-element boundaries, as well as the imposition of n x E = 0 on electric walls. The 

third constraint, however, holds provided the finite element mesh is identical at periodic 

boundary pairs [12]. This way Ej' can be set equal to E'j thereby eliminating it from the 

list of unknowns. 

The system of equations that results from the discretization (4.16) and incorporation 

of the above constraints are explained next. 

4.1.4 Assembly to Form the System of Equations 

The next step, which is a major step in finite element analysis, is to set up the FE matrices. 

To formulate the system of equations, the elemental residual is formed first. Then through 
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a pro cess called assembly, this residual is summed over all elements. Finally the boundary 

conditions are imposed to obtain the final form of the FE matrices. 

The Co continuity imposed on the trial functions assures safe use of: 

(4.18) 

as the elemental residual. Indeed, the surface integrals associated with inter-element bound­

aries cancel in the summation over aH elements and thereby need not be included in 

Eq. (4.18) [12]. In matrix notation Eq. (4.18) is represented by: 

(4.19) 

where {Re} and {Ee} are column vectors corresponding to W~ and Ej, respectively. As­

suming that Mr and Er are constant within De, the local matrix elements Sij and Tij are 

given by: 

( 4.20) 

(4.21) 

Furthermore, [ce] and [ce] are diagonal matrices with nonzero elements ci and gj, respec­

tively. Eq. (4.19) avoids building ci and gj into [se] and [Te] which allows these constants 

to be treated as unknowns. Summing (4.19) over aH elements, a global matrix equation: 

{R} = [C] ([S]- k5[T]) [C]{E} = 0 (4.22) 

is assembled where {E} is the column vector of degrees of freedom. 

In order to incorporate the periodic constraints in the assembled global matrices, we 

notice that vector {E} can be divided into four subvectors: 

E1nt 

{E} = E~,s 
(4.23) 

E~s , 

E~,s 
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where each subvector is associated with one of the geometric parts labeled in Fig. 4.1. 

{E1nt } corresponds to degrees of freedom that do not lie on any of the periodic boundary 

pairs of the unit-cell closure (geometric part 1 in Fig. 4.1). {E~,s} corresponds to Dofs 

associated with edges or faces that lie on periodic boundary pair (2,3) in Fig. 4.1 and {E~,s} 

and {E~ s} are associated with periodic boundary pairs (4,5) and (6,7), respectively. , 
Now, eliminating the degrees of freedom associated with slave surfaces of periodic 

boundary pairs (geometric parts 3, 5 and 7 in Fig. 4.1) and introducing periodic con­

straints in [e} and [G], the global matrix equation can be rewritten as: 

{H} = [Cl ([S]- k5[T]) [a]{E} = 0 (4.24) 

where {E} = {E1nt E~ E~ E~}T is the column vector of reduced degrees of freedom. [a] 
and [Cl are rectangular matrices, represented in block form by: 

1 0 0 0 

0 1 0 0 

0 CzI 0 0 

[a] = 0 0 1 0 

0 0 Cyl 0 

0 0 0 1 

0 0 0 CxI 

1 0 0 0 0 0 0 

[Cl 
0 1 .lI 0 0 0 0 Cz 

0 0 0 1 .lI 0 0 Cy 

0 0 0 0 0 1 .lI cX 

where 1 stands for identity matrix of appropriate size. Hence, Eq. (4.24) becomes: 

where 

{H} = ([8]- k5[T]) {E} = 0 

[8] 
[T] 

[C] [S] [a] , 
[CJ[T] [a] . 

(4.25) 

(4.26) 

( 4.27) 

( 4.28) 

(4.29) 
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Eq. (4.27) is now ready to be solved for the degrees of freedom {E}, i.e. the unknown 

coefficients E'j used in (4.16) expansion. 

4.1.5 Solution of the System of Equations 

The final step in a finite element analysis is solving the system of equation. The resultant 

system may be divided into two categories: deterministic and eigenvalue types. Deter­

ministic types are associated with electromagnetic problems where there exists a source 

or excitation. On the contrary, eigenvalue types are usually associated with source-free 

problems [66J. 

The electromagnetic problem that was investigated is source free. Therefore, Eq. (4.27) 

becomes an eigenequation. It potentially carries two different eigenvalue problem. One is 

posed as if, is given and ko is sought, while specifying ko yields the other. 

Fixed-, eigenproblem 

One way to solve Eq. (4.27) is to specify the Floquet propagation vector , = ('l'x, 'l'y, 'Yz) 

and find the eigenvalues k5 and eigenvectors {E} of the generalized eigenvalue problem 

(GEP): 

[Sl{ E} = k~ [Tl{ E}. (4.30) 

Given Gx = e-"!xDx, Gy = e-,,!yDy and Gz = e-,,!zDz the matrices [CJ and [CJ are accordingly 

built using Eqns. (4.25), (4.26). Thereafter one finds [SJ and [TJ from (4.28), (4.29) to 

form the above eigenequation. 

A similar approach has been used in [12] with , = jf3. In [12], the Floquet propagation 

vector f3 = (f3x,/3y , f3z) is directly built into [SJ and [TJ to form the eigenequation without 

introducing [CJ and [CJ. However, with this approach, only the unattenuated propagating 

modes of the structure, i.e. the passband characteristics, are captured. In order to obtain 

the stopband behavior and correspondingly the complex solutions of the propagation vector, 

one should treat Eq. (4.27) the other way around, leaving, as an unknown of the equation. 

Introducing [CJ and [CJ into the system of equations, allows us to reformulate Eq. (4.27) 

in terms of , and solve for it as explained in the next section. 
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Fixed-ko eigenproblem 

The other eigenproblem, which here we are more interested in, is obtained by specifying a 

ko and seeking ï. For simplicity, assume the direction of wave propagation is solely along 

the x-axis, i.e. ï = ('x, 0, 0). Carrying out the matrix multiplications given in Eq. (4.28) 

one may write: 

[S] [C] [8] [G] 

8
12 

8
13

] [Dg 0 ] 822 823 0 I 

832 833 0 CxI 

De812 + Cx De813 1 
822 + Cx 823 + Jx 832 + 833 

(4.31) 

where [8] is represented in block form. AIso, blocks of [Cl and [G] associated with interior 

parts and y- and z-periodicity are denoted by De and Dg, respectively. Then, doing the 

same for [1'], Eq. (4.27) reads: 

{H} 

(4.32) 

where 

(4.33) 

Eq. (4.32) is a quadratic eigenvalue problem (QEP) in CX' Its eigenvalues yield the propa­

gation constant IX which may now be a real, an imaginary or a complex value. We conclude 

that the above reformulation is expected to capture complex modes of the structure and 

thereby is capable of predicting the stopband behavior as weIl as passband. 



4 Finite Element Modeling 58 

In the above analysis, the contribution of Cy and Cz is accounted for in block matrices 

De and Dg which in this case are independent of CX. However, there is no fundamental 

difficulty in treating the more general case with non zero ,",/y and ,",/z. The bottom line is 

the same, yielding a nonlinear eigenvalue problem in Cx, but of higher order, where for a 

specifie direction of wave propagation vector ï, Cy and Cz are written in terms of CX. 

4.2 Implementation 

The present thesis integrates three software tools for computer implementation of the FE 

analysis outlined in § 4.1: Geompack++, P3D and MATLAB. Geompack++ [72] is a mesh 

generation package and is used for subdivision of the domain into finite elements. P3D [73] 

is a 3D finite element code for solving Maxwell's equations in time-harmonic regime, em­

ployed for building the FE matrices. The matrix equation is finally solved using MATLAB's 

eigensolver [74]. 

In addition to the input/output files provided for proper functioning/integration of the 

three modules, the author has developed a number of routines for incorporation of the 

periodic analysis into the FE code. 

4.2.1 Domain Discretization 

The discretization of the problem domain is usually considered a preprocessing task which 

can be completely separated from the other steps. The manner in which the domain is 

subdivided into finite elements greatly affects the memory requirements, the computation 

time and the accuracy of the numerical simulations [66]. Thus considerable attention has 

been devoted to optimized FE discretization since its conception [75], [76]. 

Among the many public domain and commercial mesh generators, Geompack++ has 

been chosen in this thesis to perform meshing operations. Geompack++ is an object­

oriented C++ successor of Geompack901 for the generation of 2D and 3D finite element 

meshes. Its capabilities include: generating a mesh given a region, generating a 3D mesh 

given a surface mesh and improving/refining a given mesh. Due to the efficient algorithms, 

Geompack++ runs very fast on Windows systems. 

One of the advantages of Geompack++, over the other mesh generators, is that it allows 

lWritten in Fortran90 and first released in June 1999. 
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discretizing a fully 3D periodic unit-cell with identical boundary meshes for more than one 

masterjslave pair. As mentioned in § 4.1.3 P. 54, it is a requirement that the finite element 

mesh at periodic boundary pairs be identical. Many mesh generators would not allow any 

periodic cases to be investigated or mostly restrict the analysis to singly periodic cases. 

With Geompack++, however, doubly and triply periodic cases can be easily investigated 

by enforcing identical meshes at each periodic boundary pair (see Fig. 4.2). 

Z 1 

~x A triangle with unsplittable edges 

Fig. 4.2 Identical surface mesh at periodic boundary pairs. 

Geompack++ is provided as a Windows executable that interfaces with applications 

via special file formats. Through input files one defines the geometry to be meshed and 

the desired meshing operations. The output file contains information about the subdivided 

geometry. 

Geometry definition 

The geometry is defined by two text (ASCII) files; Region. rg3 and CurveSurf ace. cs3. 

The 3D region file consists of four groups of information: vertices coordinates, vertices 

extra-info records, loops and shells. The first logical record contains x, y and z coordinat es 

of the nodes upon which the geometry is built. Miscellaneous information about nodes, if 

any at all, is saved in a separate group called vertices extra-info record. Loops (boundary 

of a simple face), once put together, define surfaces and shells (boundary of a subregion or 
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interior space hole) are used to indicate different material types or interior holes within the 

geometry. Associated with each 3D region file, there is a 3D curve/surface file that consists 

of information on the curves and surfaces of the region. In the simplest case, curves are line 

segments connecting two or more nodes and surfaces are planar facets over which curves 

and loops topologically lie. Furthermore, each labeled surface can be assigned a boundary 

condition code for different types of boundary conditions. A detailed description of the 

region and curve/surface file formats is available in [77]. 

In order to have Geompack++ generate a mesh that is identical at periodic boundary 

pairs, similar grids are utilized for each master/slave pair. Then aIl the loops that topo­

logically lie on these surfaces are defined using unsplittable edges and faces (Refer to [77] 

and Fig. 4.2). This way, it is ensured that no extra nodes are introduced to master/slave 

surfaces during the mesh generation process. 

M eshing operation 

Once the geometry is defined properly, many meshing operations can be performed on it 

by invoking the Geompack++ executable zgp. As input, zgp requires a text (ASCII) file 

Oper. in that contains the meshing operation code, operation-dependent meshing fields and 

names of region, curve/surface and mesh files. Operation code 302 generates a tetrahedral 

mesh given a 3D region of interest. More information on input/output file format and 

meshing operations carried out by Geompack++ is available in [78]. 

A mesh file Mesh. msh3 will then be generated if no inconsistency errors occur during the 

meshing operation. The 3D mesh file format consists of five groups of information: vertices 

information, vertices extra-info record, element nodes, element faces and constrained mesh 

edges [77]. In Mesh. msh3, a region code is assigned to each element associated with various 

material types defined in Region. rg3. Element faces also have boundary condition codes 

according to those defined in CurveSurface. cs3 for labeled surfaces. 

The mesh file format produced by Geompack++, however, is not compatible with the 

tetrahedral mesh files accepted by P3D and therefore has to be further processed to comply 

with the required P3D formats. Postprocessing of Mesh. msh3 yields two of the required 

input files to P3D: Tets. dat and Topology. dat. The former is initially read in by P3D 

to obtain the required mesh information such as actual nodes labeling and their spatial 

coordinates, tetrahedral elements and their associated boundary condition and region codes. 
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The latter is read in during Dofs generation and contains the same information as Tets . dat 

but this time with virtual no de labels. In Topology. dat a mesh node that topologically 

lie on the slave surface of a periodic boundary pair is given the same label as the one it 

matches on the corresponding master surface. Therefore, a virtually wrapped geometry is 

formed by connecting the unit-cell closures at periodic boundary pairs (see Fig. 4.3). This 

way, the elements edges and faces that lie on master/slave surfaces share their associated 

degrees of freedom, as required by Eq. (4.24). 

Fig. 4.3 Virtual no de labels on slave surfaces. 

4.2.2 Finite Element Code 

Having discretized the unit-ce Il into tetrahedral elements, the next step is to generate the 

degrees of freedom associated with edges, faces and volume of each tetrahedron. In this 

work, a 3D finite element code, called P3D, is utilized for Dofs generation and FE matrix 

assembly. P3D is a FE-based code written mainly in C++ which solves MaxweIl's equations 

in the time-harmonic regime. EssentiaIly, it solves the vector wave equation for the electric 

field. 

P3D was first released in 1999 [79] and originally developed to extract the scattering 

parameters of microwave devices [73]. It was further extended in [80] to handle eigenmode 

analysis of periodic structures. The latter is implemented using the formulation given 
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III [12] and thereby is not suit able for a complex eigenmode analysis proposed in this 

thesis. To that goal, the author has added a number of routines to P3D that make the 

complex eigenmode analysis, and therefore the stopband characterization, feasible. Before 

we concentrate on the implementation details of P3D, sorne of the required input files for 

its correct functioning are outlined below. 

Required input files 

Along with Tets. dat and Topology. dat, three other input files are required by P3D to 

compile: 

• Matl. dat defines material properties (permittivity, permeability) for each region. 

Material properties are considered symmetric tensors, thus six complex values are 

needed for each. 

• BCs. dat assigns boundary conditions to labeled surfaces. P3D, obviously, imposes no 

constraints on the field on a surface labeled PMe since it solves for the electric field. 

On the contrary, the tangential electric field is forced to zero on a surface labeled PEe. 

Other boundary conditions are allowed [73]. Also note that the unit-cell closures are 

labeled PMe (natural boundary condition); Periodic constraints are imposed through 

the formulation, later on. 

• Uni v . bin contains various universal matrices used at run time to build the local 

matrices [se] and [Te]. The universal matrix approach, introduced in [81], allows for 

efficient computation of the integrals given in Eqns. (4.20) and (4.21), using symbolic 

mathematics softwares (e.g. Maple). 

Generation of the degrees of freedom 

One of the great advantages of object-oriented programming (OOP) languages like C++ 
is the ease with which object-oriented codes are modified. The magic of OOP mainly 

lies beyond the fact that data structures and functions are encapsulated into packages 

called classes. Objects are different instances of these classes and inherit sorne of the 

properties of the class from which they are instantiated. However, their implementation 

information is hidden in the object and is not accessible nor needed during the hand shake 

with other objects. Therefore, changes to existing modules (classes and their objects) does 
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not introduce major modifications, if any at aIl, to other classes. Furthermore, new modules 

are easily integrated into the code using well-defined interfaces [82]. 

Classes that were reused from P3D are namely Mesh, Topology, Field, Neighbor and 

SparseMatrix. The FE code st arts by instantiating a Mesh object and a Topology object 

which read mesh from Tets . dat and Topology. dat, respectively. A Field object is created 

next which is used for generating the degrees of freedom. Dofs are generated by calling 

field->generateDofsO. The degrees offreedom are associated with element edges, faces 

and volume. For each element, a list of neighboring elements is formed (using a Neighbor 

object) to check whether its edges or faces are shared by an earlier element; if an edge 

or face is shared with an earlier neighbor, the degree of freedom associated with that 

edge or face is taken from the list. If not, a new Dof is generated. The volume Dofs 

are not shared, therefore new on es are generated for each element. Thereafter, function 

buildConstraints 0 finds which Dofs should be constrained due to boundary conditions. 

Constrained Dofs are then set to zero and eliminated from the system of equations. 

FinaIly, the sparsity pattern of the local matrices localS and localT, is built and 

the contribution of each element is added to the sparsity pattern of the global matrices 

globalS and globalT, respectively. In the main body of the code, P3D calls a function 

named Assemble 0 that instantiates local/global matrix objects using the SparseMatrix 

class. SparseMatrix is specifically defined for saving nonzero elements of the lower triangle 

of sparse symmetric matrices. globalS and globalT are then written to text files for 

transmission to the eigensolver. 

Rearranging the degrees of freedom 

As required by Eq. (4.30), identical Dofs should be assigned to the elements edges and faces 

that topologically lie on the slave surface of a periodic boundary pair and their counterparts 

on the master surface. This is achieved in [80] by replacing the Topology class during Dofs 

generation instead of the original Mesh class, which virtually connects the mesh at periodic 

boundary pairs. With this implementation, the contributions of the master and slave Dofs 

add to the same row of the global FE matrices [8] and [T]; Therefore, the slave Dofs are 

automatically eliminated from the system of equations during the matrix assembly. 

On the other hand, Eq. (4.32) requires that the contributions of the master and slave 

Dofs account for separate rows in the global FE matrices [8], [T] and the slave Dofs be 
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reduced after the assembly process by introducing the matrices [Cl and [C]. For this 

purpose, two new functions were added to the Field class: generateSlaveDofsO and 

reOrderDof s 0 so that the available version of P3D could be exploited for the assembly 

process. The former assigns new labels to the degrees of freedom associated with the slave 

surface of the periodic boundary pair under consideration. Furthermore, it ensures that 

the orientation of new slave Dofs is identical to that of the existing master Dofs. The latter 

reorders the degrees of freedom in the Dofs list (array) so as to have interior Dofs first and 

then the master Dofs and slave Dofs respectively after, in the list. The degrees of freedom 

are generated on an element-by-element basis and therefore sorted in the Dofs list based 

on the numbering of elements. The function reOrderDof s () rearranges them according to 

the order given in (4.23) so that the resulting global matrices assembled by P3D can be 

treated the way shown in Eq. (4.33). 

Order of elements 

The use of high-order edge elements in solving vector electromagnetic problems by FEM, 

is now well-established and recognized as a computationally efficient approach [83]. In 

combination with the more conventional mesh refinement (h-adaption), increasing the order 

of elements (p-adaption) can lead to exception al performance [84]. 

The general high-order elements have two separate function spaces for representing the 

interpolation bases: gradient and rotational. The gradient order represents irrotational 

functions with zero curl while the rotational order has a set of functions with nonzero 

curls. There are many advantages to this separation of function spaces. One su ch benefit 

is the optimal representation of a vector field in an electromagnetic problem where its curl 

dominates [79}. Note that if a field is represented as a polynomial of order p, its curl is a 

polynomial of order p-l. Thus, when the gradient and rotational spaces are both complete 

to pth order, the result is an element which is complete to or der p. This is not necessarily 

an optimal choice. A better balance in the accuracy of representing the field and its curl 

is obtained by removing those degrees of freedom that do not affect the curl, i.e. when the 

gradient order is one less than the rotational order and the element is complete to p - lth 

order. 

P3D makes use of tetrahedral edge elements of arbitrary order [79] to set up the vec­

tor trial functions. At run time, the elements order is decided first, by a function call 
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field->fixorders 0 and then Dofs are generated according to that order. Each element 

has gradient and rotational degrees of freedom associated with its six edges, four faces and 

the interior volume. The high-order elements employed herein, allows the utilization of a 

coarse mesh with relatively low number of elements in the computer simulations. 

4.2.3 Eigensolver 

The proper choice of an eigensolver is mainly affected by the structure of the matrices 

defining the problem as well as the spectral properties of the eigenvalue problem itself. QEPs 

[85] are a class of nonlinear eigenvalue problems that are less familiar and less routinely 

solved than the standard GEPs [86]. Furthermore, Eq. (4.32) is an ill-posed eigenvalue 

problem, due to the singularity of [M2] and [M3]. Therefore, great attention has to be 

devoted to the numerical solution of the eigenvalue problem raised here. 

Solution technique 

The QEP is to find scalars ..\ and non zero vectors x, y satisfying 

(..\2 M +..\C + K)x = 0, y*(..\2M+..\C+K) =0 (4.34) 

where M, C and K are n x n matrices with complex entries and x, y are the right and left 

eigenvectors, respectively, corresponding to the eigenvalue ..\. 

A major division in the solution methods for the QEP is between those that de al with 

the original form of the QEP [87], [88] and those that first linearize it into a GEP of twice 

the dimension and then apply GEP techniques [86]. Most of the numerical methods that 

treat the problem in its original form are variants of Newton's method [89]. There are two 

drawbacks to these Newtonian variants: (a) they compute one eigenpair at a time and (b) 

even for a good initial guess, there is no guarantee that the method converges to the desired 

eigenvalue. Here, we concentrate on the alternative option, i.e. methods that compute aU 

the eigenvalues and eigenvectors of the QEP through one of its linearizations. The cost is 

to solve a problem of twice the dimension of the original problem. 

The easiest way to construct a linearization, also employed in this thesis, is to use 

a substitution such as u = ..\x in (..\2 M + ..\C + K)x = 0 and rewrite the equation as 
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),M u + Cu + K x = a [85]. This yields the GEP 

[; ~] [ : ]- À [~ _~] [ : ] ~ 0 (4.35) 

which has 2n eigenvalues/vectors. A linearization is not unique and the choice between 

different companion forms is problem-dependent. A more detailed description of the eom­

monly used eompanion forms of a QEP is given in Appendix A. 

There is a second division based on the properties of the matrices; direct methods 

[90] for dense, sm aIl- to medium-sized problems and iterative methods [91] for large seale 

problems. The former techniques compute aIl the eigenvalues while the latter compute 

a few eigenvalues and, upon request, eigenvectors. A major drawback to methods used 

for dense problems is that they usually destroy any sparsity in the matrices forming the 

problem. This leads to large memory requirements and high execution times for QEPs of 

large dimension. On the contrary, in large-scale applications, matrices are usually sparse 

and stored in spacial data structures. This Iimits the type of operations one can perform 

on matrices and often iterative methods require matrices with special properties (e.g., 

symmetric, positive definite) for their efficient functioning. 

Owing to singularity of [M2] and [M3] , the matrices yielded from the linearization of 

Eq. (4.32) are neither symmetric nor positive definite. lndeed, the resulting 2n x 2n matrices 

in the linear problem inherit this singularity which diminishes the use of an iterative soiver. 

Generalized singular value decomposition (GSVD) techniques for large sparse matrix pairs 

have been reported [92] but not realized as a software package, yet. Therefore, direct 

methods are preferred for the present work. 

The crucial role of the higher-order finite elements utilized in this thesis, is now more 

vivid. With high-order elements, one avoids employing a fine mesh thus deais with a sm aller 

number of unknowns. This leads to a medium-sized matrix equation that can be handled 

by direct solvers while still maintaining a good accuracy. 

Software tool 

Most linear algebra-related software packages include subroutines that implement a widely 

used decomposition method for the numerical solution of GEPs, called QZ algorithm [90]. 

This thesis exploits MATLAB's built-in functions to solve the QEP. In MATLAB, the 
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polyeig(K, C, M) command is an implementation of the QZ algorithm which returns the 

2n eigenvalues and, optionally, the right eigenvectors. The alternative way is to build the 

linearized GEP using Eq. (4.35) and use the command eig(·) to obtain the eigenpairs. 

4.3 Simulation Results 

This section presents the simulation results for different test cases. Three simulation models 

are investigated to verify proper functioning of the developed FE code. Firstly, a singly 

periodic structure is considered. The second model is a doubly periodic array of metal rods. 

Lastly, a triply periodic array of metal cubes is examined. In each experiment, complex 

propagation constants are obtained for different directions of propagation vector. Both 

real and imaginary parts of the propagation constant are plotted versus frequency which 

characterize the passband and stop band behavior of the periodic structures, respectively. 

For the case of a stratified periodic medium (singly periodic problem), numerical simulations 

are compared to analytical solutions. For the two last problems, the results obtained for the 

imaginary part of the propagation vector are compared to the dispersion curves presented 

in [12], [93}. There are no published results on the real part solutions for these two cases. 

4.3.1 Electromagnetic Kronig-Penney (EKP) model 

The first configuration considered was the electromagnetic equivalent of the Kronig-Penney 

model in quantum mechanics [94]. The EKP model is a repeated pattern of two infinite 

layers of given permittivity, permeability and width (Fig. 4.4(a)). Its 3D unit ceIl is shown 

in Fig. 4.4(b). 

Two experiments were carried out to obtain the TEM modes of the configuration. In the 

first experiment (Fig. 4.5), the propagation vector {3 was specified and frequency solutions 

(ko) were found using Eq. (4.30). In the second experiment (Fig. 4.6), ko was specified and 

the Floquet constant corresponding to periodic variations along x-axis (1'x) was found using 

Eq. (4.32). Fig. 4.6(a) depicts the imaginary part of the complex propagation constant and 

Fig. 4.6(b) shows its real part. In both trials, we found a very good agreement between 

the FEM results and those of the analytic solution given in [12]. 

Further inspection of Fig. 4.6 reveals that TEM(2,O,O) and TEM(3,O,O) modes captured 

in higher frequency ranges are, indeed, continuations of the fundamental TEM(1,o,o) mode. 

Depending on ko (frequency) , this TEM mode exhibits various characteristics. Up to 
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Fig. 4.5 Dispersion curves of the EKP model for TEM modes. 
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4.24 rad/m, TEM(I,o,o) is a propagating mode with a purely imaginary propagation constant 

(Ix = j{3x) and its phase constant ({3xDx) increases from 0 to 1f radians. Within the 

range 4.24-8.18 rad/m, it becomes a complex mode (Ix = Œx + j{3x) , maintaining a phase 

change of 1f along the unit-cell boundaries while its attenuation constant (ŒxDx) changes 

between 0 and 1.1 Nepers. Beyond 8.18 rad/m it propagates again with the phase constant 

now decreasing from 1f to O. At 11.38 rad/m attenuations start and the mode becomes 

evanescent (Ix = Œx) and so on for higher frequencies. This result proves the capability of 

the FE program in capturing complex modes in general and the stopband characterization 

in particular. 

For both experiments, a mesh consisting of 18 tetrahedra was employed. High-order 

tetrahedral elements of gradient order 2 and rotational order 3, from now on referred to by 

a pair of indices (2,3), were utilized. The FE program assigns 45 degrees of freedom (16 

gradDof and 29 rotDof) to each element which adds up to 324 for the entire unit-cell. Each 

point of the FEM curves is obtained in 68 seconds with a 1.53 GHz, 1 GByte RAM PC. In 

order to capture TEM modes, PEC and PMC boundary conditions were imposed on x-y, 

x-z surfaces (boundary dosures) of the unit-cell, respectively. Iy and IZ were set to zero 

in the assembly process which, along with PEC and PMC boundary conditions, correspond 

to purely transverse field vectors, both E and H. In other words, we have been looking for 

solutions that have no variations with y and z. 

4.3.2 Doubly Periodic Array of Metal Rods 

The next simulation model considered was a doubly periodic array of infinitely long (in 

z-direction) and perfectly conducting metal rods (see Fig. 4.7(a)). The 3D unit cell of the 

geometry is shown in Fig. 4. 7(b). Since we are only considering solutions that have no 

variations along z, field solutions in such structures are either transverse electric (TE) or 

transverse magnetic (TM). The TE modes are obtained by imposing PMC on the top and 

bottom planes of the unit-cell while imposing PEC on these planes yields the TM modes. 

Here, TM modes are investigated due to the sm aller size of the resulting FE matrices -the 

degrees of freedom associated with top and bottom surfaces are forced to zero in this case 

(PEC boundary condition) and finally eliminated from the system of equations which yields 

a relatively sm aller matrix equation compared to the one built for TE modes. 

Again the problem was tackled in two different ways. Fig. 4.8 shows the first set of 
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Fig. 4.7 Doubly periodic array of infinitely long metal rods: (a) top view, 
(b) its 3D unit-cell. Dx = Dy = lm, Dz = O.75m, w = O.5m, Er! = {tri = 1. 
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dispersion curves obtained by specifying a propagation vector and solving for permitted 

frequencies. The accuracy of these results were verified by the FE code used in [80]. A 

very good agreement was found between the two results. The so called k - f3 diagram of 

Fig. 4.8 has two regions; the first region (A -+ B), is generated by setting f3y to zero and 

varying f3xDx from 0 to 7L In the second region (B -+ r), f3xDx is fixed to 7f and f3yDy 

varies from 0 to 7f. Simulation results revealed that no TM mode cou Id propagate below 

ko = 4.18 rad/m. Therefore, the ko range shown in Fig. 4.8 was intentionally chosen for 

the following fixed-ko experiments. 

The second set of curves (Figs. 4.9, 4.10), are obtained by specifying ko and finding 

complex propagation constants 'Yx and 'Yy, each at a time. Note that 'Yz was set to zero in 

all experiments. Fig. 4. 9( a) represents the imaginary part of 'Yx and Fig. 4. 9(b) depicts its 

real part. These curves were obtained by setting 'Yy to zero. lndeed, Fig. 4.9(a) corresponds 

to region A -+ B of Fig. 4.8 and the TM modes found in both trials perfectly match. 

However, Fig. 4.9 provides more information on the origin of each mode and their behavior 

in different frequency regions. 

Firstly, the complex eigenmode analysis (see Fig. 4.9) reveals that only three of the four 

TM modes encountering in the ko range shown here are independent. The fourth mode (blue 

squares) is in fact a continuation of the second mode. Moreover, as in the EKP model, each 

of these modes follows a different trend in each frequency range. For instance, TMl (green 
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Fig. 4.8 Dispersion of TM modes of the doubly periodic array of metal rods. 

triangles in Fig. 4.9) is a complex mode (/3lxDx = 1T) with high attenuation (alxDx » 1) 

in low frequency regions. In a short frequency range it propagates (Ilx = j /3lx) and 

experiences a phase change from 1T to o. Thereafter, it becomes evanescent (rix = aIx) and 

dies out rapidly (aIxDx » 1). The second mode (TM2) is initiaIly evanescent (r2x = a2x); 

then propagates (r2x = j/32x) until it becomes a complex mode (r2x = a2x + j/32x) with a 

phase change of 1T radians. At ko = 5.4 rad/m it starts to propagate again with the phase 

change now varying from 1T to 0, and finally it turns back evanescent at higher frequencies. 

Lastly, TM3 found to be evanescent (r3x = a3x) up to ko = 4.85 rad/m and propagates 

(r3x = j/33x) in the range (4.85-5.15). Beyond ko = 5.15 rad/m, it supports a complex 

mode (r3x = Œ3x + j/33x) with 1T phase change along the unit-ceIl. 

Fig. 4.10 shows the imaginary and real parts of the complex propagation constant Iy 

once IxDx = j1T. Here, b: was chosen for lx, according to the value assigned to /3x in 

the second region of Fig. 4.8. We found excellent correspondence between Fig. 4.10(a) 

and region B -+ r of Fig. 4.8. The propagating TM modes of the structure can then be 

identified using Fig. 4.8 or Fig. 4.1O(a); while, more information about the nature of each 
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mode, their behavior as a function of frequency and the attenuation along the unit-cell are 

given in Fig. 4.1O(b). 

In aIl trials, a mesh consisting of 84 tetrahedra of order (2,3) was employed. The 

resulting system of equations had a total 1185 degrees of freedom. Each point of the fixed­

ka curves is obtained in 267 seconds on the same computing platform. Obviously, with 

a dense sol ver , simulations time increases as the number of Dofs increases. As a rule of 

thumb, n-times larger systems are solved in about n3 greater time. 

4.3.3 Triply Periodic Array of Metal Cubes 

Lastly, the tri ply periodic array of perfectly conducting metal cubes in Fig. 4.11 was exam­

ined. Aiso shown in the figure is the 3D unit-cell of the structure. Simulation results are 

shown in Figs. 4.12- 4.15. Fig. 4.12 represents the dispersion curves obtained from fixed-, 

experiments. These results are in a very good agreement with those presented in [93] for 

the same structure. In [93], only three of the five modes depicted here are presented. 

Each region of Fig. 4.12 corresponds to a distinct set of Floquet triples ({3x,{3y,{3z). In 

the A -+ B, {3y and {3z are fixed to zero and {3xDx varies from 0 to 7r with an incremental 

step of ~. In the B -+ r, {3z is fixed to zero and {3x is set to !;x; in this case {3yDy varies from 

o to 7r with the same incremental step, ~. FinaIly, in the r -+ ~ region of the diagram, 

{3xDx and {3yDy are both set to 7r and {3zDz varies from 0 to 1L 

z ...... ---ID)(--.-

tL:x 
(a) (b) 

Fig. 4.11 Triply periodic array of perfectly conducting met al cubes: (a) 3D 
view, and (b) its unit-cell. Dx = Dy = Dz = lm, w = D.5m, Ed = Md = 1. 
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Fig. 4.12 Band structure of the triply periodic array of met al cubes. 

Associated with each region of the k - f3 diagram, we performed three separate trials. In 

each trial a ko value and two of the three components of the triple (ryx, "Iy, "Iz) were specified 

and the other component of the complex propagation vector was found. Fig. 4.13 shows 

the imaginary and real parts of "Ix as a function of frequency, where "Iy and "Iz were both 

set to zero. Subsequently, the imaginary and real parts of "Iy are plotted versus frequency 

in Fig. 4.14. These curves were obtained by setting "Ix equal to b: while maintaining "Iz 

at zero. Finally, "IxDx and "IyDy are set to jn and "Iz is sought, yielding Fig. 4.15. The 

challenge here was to trace each individu al curve when two curves cross, as in Figs. 4.14 

and 4.15. 

The mesh employed here consisted of 154 tetrahedral (2,3) elements resulting in 2778 

degrees of freedom. Owing to the large number of Dofs, the required time to solve each 

matrix equation dramatically increased compared to singly and doubly periodic models. 

Each point of the fixed-ko curves for the tri ply periodic array was found in 2900 seconds. 
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4.4 Discussion 

The aim here was to develop a finite element system, capable of handIing complex eigen­

mode analysis and predicting the stop band behavior of evanescent modes in periodic struc­

tures. That goal was achieved and the accuracy of the developed FE code was tested on 

different simple geometries with periodicity in one, two or three dimensions. However, its 

applicability to more complicated structures such as the mushroom structure investigated 

in Chapter 3 is another issue. 

First of aIl, the mushroom structure has geometrical complications and is difficult to 

model with Geompack++. Even for the simple geometries of § 4.3, providing the necessary 

input files to perform meshing operations is a time-consuming task let alone the patch-via 

structure. Thus, its integration into the available software package requires more time and 

effort which is obviously out of the scope of a Master's thesis and its timeframe. 

Geometry modeling aside, the more important downside is the use of a dense solver 

for solving the eigenvalue problem. The FE matrices, built during assembly process, are 

sparse. However, due to the lack of a suit able eigensolver for sparse singular matrices, at 

the final stage the matrix pair should be transformed and stored as full matrices so as to 

be analyzed by the eigensolver. As the complexity of the structure increases, the number 

of Dofs required for its accurate modeling gets larger. The larger the system of equations 

is, the longer computer simulations take. Moreover, the memory required to save these 

matrices is another issue that arises when dealing with many Dofs. The bottom line is that 

the simulation of the mushroom structure (open or shielded) is computationally costly and 

thus not feasible with the available computing platform and implementation. 

A few attempts were made to explore ways of reducing the simulation time. One was to 

use lower-order elements. Tetrahedral edge elements of order (1,2) have relatively sm aller 

number of Dofs (6 + 14 = 20) compared to (2,3) elements (16 + 29 = 45) and therefore 

may be used to assemble sm aller FE matrices. Fig. 4.16 represents the result found for 

the region A ~ B of Fig. 4.12 using (1,2) elements with the same mesh used in §4.3.3 

(154 elements) and 940 Dofs. Compared to Fig. 4.13, these results were obtained in a 

significantly shorter time -each point on the curves took the eigensolver 255 seconds to 

find. However, only one (blue squares) of the two degenerate modes of the structure was 

captured accurately. The eigenvalues obtained for the second mode (red triangles) were 

erroneous which is most likely due to the deficient number of elements. Reducing the order 
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of elements while maintaining a coarse mesh is thereby not an option since a minimum 

number of Dofs is always required for accurate modeling in the FEM. 

The alternative tried here was to store the matrix elements in single-precision format 

rather than the default double-precision format. With single-precision storing format the 

memory required to save the matrices is half of that of the double-precision format. It 

should, ordinarily, lead to faster simulations time. However, the simulation results were 

not accurate enough and therefore are not presented here. 
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Chapter 5 

Conclusion 

5.1 Concluding Remarks 

This thesis highlights the modal behavior of periodic structures in their forbidden frequency 

regions. The bandgap characterization was achieved using two different approaches: the 

transmission-line technique and the finite element method. 

A transmission-line model for 2D periodic structures was investigated which allows for 

a complex formulation of the dispersion equation. The TL model was shown to be capable 

of capturing evanescent modes and predicting the stopband behavior of periodic structures. 

Power distribution networks containing EBG structures can be efficiently modeled by 

2D transmission line circuits. The developed TL model is exploited to investigate the band 

diagrams of the mushroom-type EBG structure embedded in a parallel-plate PDN; an ar­

rangement which is commonly used for global suppression of switching noise in high-speed 

circuits. The transmission-line model allows for rapid production of band diagram and 

prediction of attenuation information within the induced bandgap regions. Fast character­

ization of the stopband behavior is particularly useful for investigation of the insertion loss 

achieved by inserting a prototype EBG in a parallel-plate PDN. Moreover, the developed 

TL model offers an efficient means of design optimization which can be used to determine 

the required specifications of an EBG structure for a target application. However, it was 

developed using major simplifications and is therefore of limited accuracy. 

For accurate prediction of evanescent modes within the stopband, a finite element model 

was developed, implemented and verified. The FE simulation revealed various modal char­

acteristics of periodic structures within their null transmission frequency ranges. Evanes-
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cent modes as weIl as complex modes have been shown to exist in the stopbands. The finite 

element code was tested on a few simple geometries. The FE results perfectly match those 

of the exact analytical solutions for one-dimensional periodic media. The band structure of 

doubly and triply periodic array of metal rods and cubes were investigated next. An excel­

lent agreement was found between our results and those given in [12, 93], while the finite 

element formulation presented in this thesis aIlows for the prediction of bandgap behavior. 

Lastly, both the TL model and the FE model have the advantage that the frequency is 

specified as an input parameter and the characteristic equation is solved for the complex 

propagation constant as an eigenvalue solution. This gives the applications great commer­

cial potential as a software package. 

5.2 Recommendations for Future Work 

The accuracy of the generated band diagrams of the shielded mushroom structure inves­

tigated in § 3.2 can be further improved using a multiconductor transmission-line (MTL) 

[95,96] model instead of a TL model with a simple lumped-element substitute for the EBG 

structure within the PPW. In [97], Elek and Eleftheriades presented a ID MTL analysis 

of the shielded Sievenpiper structure that predicts the bandgap region as weIl as the dis­

persion characteristics of the lower order TM modes with accuracy comparable to finite 

element simulations. In that work, the shielded mushroom structure is investigated by ap­

plying Floquet analysis to the MTL structure formed by the paraIlel-plate conductors and 

mushroom patches. The future work from transmission-line viewpoint consists of modeling 

shielded EBG structures using a 2D MTL model. 

The simulation models investigated in § 4.3 were simple periodic geometries. However, 

in practice, the periodic structures that are employed in power distribution network of 

PCBs are rather complex structures such as the patch-via EBG. The future work from 

finite-element viewpoint consists of modeling realistic and practical geometries such as 

those presented in § 3.2. 

To be able to model realistic geometries, bigger matrices and more complex meshes 

are needed. Like an finite element analyses, the final step of the FE modeling, involves 

solving a large matrix equation. In this work, the resulting FE matrices were singular and 

the singular value decomposition (SVD) of the characteristic equation was carried out by 

MATLAB. MATLAB's built-in GSVD routines are not suit able for use with large, structured 
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matrices as they are based on direct QZ algorithms and cannot handle large sparse matrices. 

Therefore, due to the singularity of matrices, the resulting characteristic equation could not 

be solved fast. This makes the FEM simulation of complex geometries with large number 

of Dofs inefficient. An alternative eigensolver which may be examined for this purpose is 

ARPACK++ [98]. ARPACK++ is an eigensolver for large sparse matrices which is capable of 

handling complex generalized eigenvalue problems. The matrices treated with ARPACK++ 

are not required to be Hermitian (nor positive definite) matrices. Therefore, GSVD can be 

carried out while the singular matrices are stored in compressed sparse column formats. 

However, for the class of complex generalized eigenvalue problems with singular matrices 

incurred here, the user is required to supply the necessary matrix-vector products by himself 

instead of passing them to ARPACK ++ classes constructors. 

Moreover, the FE formulation worked out in this thesis restricts the finite element 

mesh on opposite sides of unit cell to be exactly the same, referred to as periodic mesh. 

Consequently, for singly periodic structures two of the opposite boundary triangulations 

need to be identical in order to enforce the periodic boundary conditions. (PBCs). For 

doubly and triply periodic structures, four and six boundary closures triangulations need 

to be matched, respectively, which makes the situation more restrictive. Periodic meshing 

of complex geometries critically limits the efficiency and reliability of the finite element 

model, as discussed in § 4.4. Vouvakis et. al. [99] proposed a new FEM method for 

analysis of infinite periodic structures which does not require a periodic mesh on either 

si de of the PBC surfaces. In [99], the boundary value problem was transformed into a 

hybrid form and PB Cs were weakly enforced on both sides of the Floquet cell through the 

use of the cement finite element method [100]. Therefore, a nonmatching triangulation can 

be employed which makes possible the use of other mesh generation packages. 
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Let Q(À) = À2 M + ÀC + K be an n x Tt matrix polynomial of degree 2, where M, C and 

K are n x n complex matrices. Q(À) is often called a À-matrix and its spectrum is denoted 

by A(Q), 

A(Q) = {À Ete: det Q(À) = O} (A.1) 

which is the set of eigenvalues of Q(À). Two À-matrices P(À) and Q(À) are equivalent if 

P(À) = E(À)Q(À)F(À) (A.2) 

where E(À) and F(À) are À-matrices with constant nonzero determinants. It follows that 

the the zeros of det P(À) and det Q(À) coincide [85]. 

The linearization for Q(À) involves finding its equivalent linear À-matrix A - ÀB. A 

2n x 2n linear À-matrix A - ÀB is said to be a linearization of Q(À) [101] if 

[ 
Q(À) 0 1 = E(À)(A - ÀB)F(À) 

o In 
(A.3) 

where E(À) and F(À) are 2n x 2n À-matrices with constant nonzero determinants. Ob­

viously, the spectrum of Q(À) and A - ÀB coincide. A linearization is not unique and 

should be chosen with respect to the structural properties of Q( À) such as symmetry or 

definiteness, whenever possible. 
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The most popular linearizations used in practice are either from the first companion 

form [85] 

LI: [ ON 1 >.[N 0 1 
-K -0 0 M 

(A.4) 

or of the second companion form 

L2: (A.5) 

where N can be any nonsingular n x n matrix. It is straightforward to show that (A.4), 

for instance, is a linearizations of Q(>.) [85]; sim ply choose, 

F(>') = [1 0 1 
>'1 l 

and carry out the matrix multiplications; (A.3) follows trivially. 

(A.6) 

The choice between the first and second companion forms mainly relies on the singularity 

of M and K. If K is nonsingular (A.4) is the right choice while for a nonsingular M, (A.5) 

is preferred. In general N is chosen to be the identity matrix or a multiple of the identity 

matrix like IIMIII or IIKIII. 
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